

DYNAMIC SYSTEMS, INC. SITE CHARACTERIZATION WORK PLAN

DEC SITE NO. 442040

TOWN OF POESTENKILL RENSSELAER COUNTY, NEW YORK

Prepared for:

Dynamic Systems, Inc. 323 State Route 355 Poestenkill, New York 12140

Prepared by:

Spectra Environmental Group, Inc. Spectra Engineering, Architecture, & Surveying, P.C. 19 British American Boulevard Latham, New York 12110 (518) 782-0882

> December 2011 Spectra Project No. 11124

ONE CIVIC CENTER PLAZA, SUITE 401 POUGHKEEPSIE, NY 12601 (845) 454-9440 FAX (845) 454-9206 19 BRITISH AMERICAN BOULEVARD LATHAM, NY 12110 (518) 782-0882 FAX (518) 782-0973 307 SOUTH TOWNSEND STREET SYRACUSE, NY 13202 (315) 471-2101 FAX (315) 471-2111

WWW.SPECTRAENV.COM

DYNAMIC SYSTEMS, INC. SITE CHARACTERIZATION WORK PLAN Town of Poestenkill, Rensselaer County, New York

TABLE OF CONTENTS

PROF	ESSIO	NAL ENGINEER'S CERTIFICATION1
1.0	INTR	ODUCTION2
	1.1	SITE LOCATION, SITE OCCUPANTS AND OPERATIONS2
2.0	WOR	KPLAN PURPOSE3
3.0	PRELIMINARY WORK AND INVESTIGATION	
4.0	SITE CHARACTERIZATION PLAN	
	4.1	RECORDS REVIEW4
	4.2	Source Investigation4
	4.3	SOIL AND GROUNDWATER SAMPLING
	4.4	PROJECT SCHEDULE
5.0	REPC	ORT AND DETERMINATION OF SIGNIFICANT THREAT

FIGURES

- Figure 1Site Location Map
- Figure 2 Site Plan

APPENDICES

- Appendix A Phase II Site Investigation Report Prepared by GaiaTech Inc.
- Appendix B Workplan Schedule
- Appendix C NESHAP Solvents Reports 2004-2009
- Appendix D Degreaser Photos

PROFESSIONAL ENGINEER'S CERTIFICATION

I hereby certify that I or my agents have examined this facility (Dynamic Systems Inc.), that I have reviewed the related documents submitted to me by my agents, and, being familiar with the provisions of DER 10, attest that this Site Characterization Work Plan has been prepared in accordance with good engineering practices.

Frank R. Peduto, P.E.

P.E. License No. 052728

Date: December 8, 2011

WARNING: It is in violation of New York State Education Law, Article 145, Section 7209, Special Provision 2, for any person unless he/she is acting under the direction of a Licensed Professional Engineer or Land Surveyor to alter an item in any way. If an item bearing the seal of an Engineer or Land Surveyor is altered, the altering Engineer or Land Surveyor shall affix to the item his/her seal and notation, "Altered By" followed by his/her signature and date of such alteration, and a specific description of the alteration.

1.0 INTRODUCTION

On behalf of Dynamic Systems, Inc. (DSI), located at 323 State Route 355 in Poestenkill, New York, Spectra Environmental Group, Inc.'s (Spectra) is submitting this site characterization work plan (SC) to address trichloroethylene contamination identified in an earlier Phase II Investigation at the DSI site.

Information reviewed prior to the development of this work plan includes the Phase I Environmental Site Assessment (September 2010) and the Phase II Site Investigation Report, with addendum (December 2010), conducted and prepared by GaiaTech Inc. The report, which includes findings, boring logs, and the laboratory analytical results, is provided in Appendix A.

1.1 SITE LOCATION, SITE OCCUPANTS AND OPERATIONS

The one acre site is located on the northwest corner of the 82 acre property at 323 State Route 355, Poestenkill, New York. The site is developed with an approximately 29,000 square foot light industrial building. The building contains offices, production areas, testing areas, a painting room, a machine shop, and a warehouse. A leach-field based septic system is located on the building's west side and a water supply well is located on the northern side. The well is located north of the parking lot on the north side of the building. It is an approximately 180 foot deep drilled well installed in 1966 (See Figure 2). Municipal water became available in the town in January 2011. Usage rates and well construction details are unknown. The well was disconnected in June 2011 when the facility changed over to the municipal public water supply system.

The site is occupied exclusively by DSI personnel. DSI conducts assembly and testing of equipment used for thermal testing of metals. A small vapor degreasing unit, installed in 1966, used trichloroethylene (TCE) to clean components of equipment prior to use in the operation.

Attached are sample NESHAP reports (Appendix C) filed from 2004 to 2009. Typical usage per year varies. In 2010 the average monthly consumption was 174 lbs. (approximately 14 gallons) (TCE is listed as 12.11 lbs per gallon). In 1999 the average monthly consumption was 165 lbs.

From 1999 to 2010 the annual average monthly usage minimum was 140 lbs/month and the annual average monthly usage maximum was 174 lbs/month. The consumption is the amount lost into the air via the permitted exhaust stack on the equipment.

The degreasing unit was decommissioned and removed in July 2011. It was removed and replaced by a water-based ultra-sound unit. The tank on the TCE degreaser was intact and had

no cracks or leaks when it was removed (Appendix D - Degreaser Photos). All TCE inventory has been properly removed from the premises.

2.0 WORKPLAN PURPOSE

The goal of the SC workplan is to determine whether a site meets the state's definition of a hazardous waste site by confirming or denying the presence of hazardous waste and determining whether or not the site poses a significant threat to public health or the environment.

3.0 PRELIMINARY WORK AND INVESTIGATION

In September 2010, GaiaTech Incorporated, Chicago, Illinois (GaiaTech) was hired to perform a Phase I Environmental Site Assessment. The Phase I report identified three areas of environmental concern; a vapor degreaser unit situated within a concrete pit, a historical site use which included the use of chemicals such as oils, coolants and paints, and a leach-field based septic system.

Based on the Phase I findings, a limited Phase II was conducted in November 2010 in which six (6) soil borings were advanced in the area of the degreaser unit and septic leach field area. Soil samples from GP-5 and GP-6 were installed inside near the degreaser unit. At GP-5 several contaminants (acetone @ .12 mg/kg and Cis-1,2-dichlorothene @0.9 mg/kg) exceeded the most stringent SCOs for the protection of groundwater but did not exceed any other SCOs. TCE was detected in both GP-5 and GP-6 at concentrations of 0.1 kg/mg (below the most stringent SCO of 0.47 mg/kg) and 0.48 mg/kg (minimally above the most stringent SCO of 0.47mg/kg). A complete description with accompanying results tables and boring logs are provided by the GaiaTech Phase II and the Supplemental Investigation report in Appendix A. Section 4.2 (original report) and Section 6.2 (Supplemental Investigation) provides a complete description with summary tables for the six (6) soil borings described in the text.

In December 2010, GaiaTech performed a supplemental Phase II ESA Investigation which included the installation of three (3) temporary monitoring wells and five (5) groundwater monitoring wells. The Phase II ESA Investigation Report identified elevated levels (3800 ppb) of TCE in groundwater in one temporary monitoring well (GP-5) located inside and adjacent to the vapor degreasing unit (see GaiaTech report in Appendix A). The regulatory standard for TCE in groundwater is 5 ppb (ug/L). Several other wells indicated an exceedance of the standard but all were an order of magnitude below the level found in GP-5.

In addition, while there has been no impact to the facility's potable well system, DSI has abandoned that well and connected to the municipal water supply system.

Based on Spectra's review of existing data presented in both the Phase II report and the groundwater monitoring system, it appears the source of the TCE is in the vicinity of the vapor degreasing unit. This plan is based on these initial findings and includes additional soil and groundwater sampling and some soil excavation.

4.0 SITE CHARACTERIZATION PLAN

4.1 **RECORDS REVIEW**

A records review has been conducted and is included in the GAIA Phase II Report in Appendix A. It is anticipated that the records review conducted in the GAIA Phase II report will satisfy the records review requirement.

4.2 SOURCE INVESTIGATION

In order to access the soil beneath the former degreaser unit, the following activities will be conducted:

- a) breakup and remove the concrete pit which supported the degreaser unit; concrete will be disposed of as C&D debris;
- b) once exposed, examine soil in the pit with a PID meter;
- c) if PID indicates contamination, remove soil from the pit to the extent practicable;
- d) if groundwater is encountered within the pit area it will be collected in a vacuum truck by a Part 364 licensed hauler and dispose in accordance with state regulations at a licensed facility;
- e) collect soil and groundwater samples; number and location of samples will be determined after consultation with the DEC; and
- f) upon review with the DEC of sampling results from the pit, the pit will be filled in and restored. Restoration will include backfilling with crush run gravel up to the bottom level of the concrete floor layer. The concrete floor layer will then be returned to floor grade.

A materials handling plan, a Health and Safety Plan and a Community Air Monitoring Plan (if required) will be submitted under separate cover.

4.3 SOIL AND GROUNDWATER SAMPLING

A minimum of one grab soil sample will be taken from each sidewall and bottom of the excavated pit. Soil samples collected from the pit will be sent to a New York State Department of Health certified laboratory for analysis for volatile organic contaminants (VOCs) and chlorinated solvents using EPA Methods 8260. The final number and location of samples will be determined after consultation with the DEC.

All existing monitoring wells will be gauged and water levels recorded. Wells will be purged to extract a minimum of three volumes from each well. One groundwater sample will be collected from each of the existing site monitoring wells and sent to a New York State Department of Health certified laboratory for analysis for volatile organic contaminants (VOCs) and chlorinated solvents using EPA Method 8260. The sample results from the monitoring well network will be compared to results from the 2010 sampling event. All purge water will be collected from the wellhead from which it was removed and disposed at a regulated disposal facility.

All data will undergo third-party data validation. A Data Usability Summary report shall be provided with the Site Characterization Report and will be submitted in the Department's electronic data deliverable (EDD) format.

4.4 **PROJECT SCHEDULE**

The project will be completed in accordance with the schedule provided in Appendix B.

5.0 **REPORT AND DETERMINATION OF SIGNIFICANT THREAT**

Spectra will provide a written report that summarizes the results of the site characterization and any interim remedial measures taken. The report will include laboratory analytical soil and groundwater sampling results, a determination of groundwater flow, maps showing soil and groundwater concentrations. The report will be submitted to the DEC to review and determine whether there is any significant threat to human health and/or the environment from hazardous waste disposal at this site.

FIGURES

PDF created with pdfFactory trial version www.pdffactory.com

APPENDIX A

PHASE II SITE INVESTIGATION REPORT PREPARED BY GAIATECH INC.

GaiaTech

135 South LaSalle Street • Suite 3500 • Chicago, IL 60603

PHASE II SITE INVESTIGATION REPORT

DYNAMIC SYSTEMS, INC. 323 STATE ROUTE 355 POESTENKILL, NEW

FOR SUBMITTAL TO:

McDermott, Will & Emery 227 West Monroe Chicago, Illinois 60606-5096

PREPARED BY:

GAIATECH INCORPORATED CHICAGO, ILLINOIS

DECEMBER 2010

Ргојест No. B1621--420-0

www.gaiatech.com

TABLE OF CONTENTS

EXECUTIVE SUMMARYI			
1.0	INTRODUCTION		
	1.1 Site Description and Background		
	1.2 Scope of Work		
	1.3 Area Geology and Hydrogeology		
2.0	PHASE II FIELD ACTIVITIES 3		
	2.1 Methodology		
	2.1.1 Soil Sampling		
	2.1.2 Groundwater Sampling 4		
	2.1.3 Sample Management and Investigation Derived Wastes		
3.0	NEW YORK REGULATORY FRAMEWORK 6		
	3.1 Soil Regulatory Standards		
	3.2 Groundwater Regulatory Standards		
4.0	PHASE II ANALYSIS AND DISCUSSION7		
	4.1 Geology and Hydrogeology		
	4.2 Soil Sampling Results		
	4.3 Groundwater Sampling Results		
	4.3.1 Historic Site Use		
	4.3.2 Vapor Degreaser		
	4.4 Recommendation		
5.0	SUPPLEMENTAL INVESTIGATION FIELD ACTIVITIES10		
	5.1 Methodology10		
	5.1.1 Soil Sampling10		
	5.1.2 Groundwater Sampling11		
	5.1.3 Sample Management and Investigation Derived Wastes		
	5.1.4 Surveying		
6.0	SUPPLEMENTAL INVESTIGATION LABORATORY ANALYSIS AND		
	DISCUSSION13		
	6.1 Geology and Hydrogeology		
	6.2 Soil Sampling Results		
	6.3 Groundwater Sampling Results		
7.0	CONCLUSIONS		
8.0	LIMITATIONS		

FIGURES

- 1 Site Location
- 2 Site Features
- 3 Sampling Locations
- 4 Potentiometric Surface Map

TABLES

- 1 Soil Sampling Results
- 2 Groundwater Sampling Results
- 3 Groundwater Elevation Data

APPENDICES

- A Soil Boring/Monitoring Well Logs
- B Limited Phase II Laboratory Analytical Report
- C Supplemental Phase II Laboratory Analytical Report

EXECUTIVE SUMMARY

GaiaTech Inc. was retained to perform a Limited Phase II site investigation at the Dynamic System, Incorporated site in Poestenkill, New York. The purpose of the Limited Phase II and supplemental investigations were to investigate potential subsurface impacts related to concerns identified at the site during GaiaTech's recent Phase I Environmental Site Assessment (ESA).

The 2010 Phase I Environmental Site Assessment identified historic site use and a vapor degreaser unit as areas of environmental concern (AECs). In November 2010, GaiaTech performed a limited Phase II sampling investigation of these two AECs with the investigation consisting of the advancement of six soil borings and collection of groundwater samples from each boring. The limited Phase II identified soil impacts (exceeding applicable Soil Cleanup Objectives) in the vicinity of the vapor degreaser. Groundwater sampling identified limited impacts (exceeding applicable Water Quality Standards) adjacent to the degreaser unit. Sampling of groundwater in the vicinity of the vapor degreaser unit identified trichloroethene (TCE) and TCE degradation products at concentrations exceeding the applicable Water Quality Standards. Based on these findings, a supplemental investigation was recommended.

During the December 2010 supplemental investigation, five permanent monitoring wells were installed at the site with three boring/temporary wells. Groundwater sampling performed during the supplemental investigation identified TCE and its degradation product cis-1,2-dichloroethene at groundwater locations adjacent to the vapor degreaser and in exterior areas south of the degreaser location. TCE concentrations in groundwater ranged from 370 ug/l to 17 ug/l during the follow-up investigation. The groundwater cleanup standard for TCE is 5 ug/l. The TCE impacts identified in groundwater extend approximately 260 feet south of the degreaser location. One deeper groundwater monitoring well (GMW-1), with total depth of approximately 56 feet below grade, was located in the exterior area immediately east of the degreaser unit and yielded no TCE impacts.

Based on the soil and groundwater sample results, no significant impacts were found related to the septic leach field. A low concentration of 4-Nitroaniline was detected in one groundwater sample, which could be a false positive and may not be indicative of any significant subsurface impact. However, a spill or release from a TCE source (likely the degreaser unit) has impacted soil and groundwater in the southeastern portion of the building. Additional investigation may be required to fully determine the extent of the identified solvent impacts. Based on the results of the limited site investigation conducted, it is likely that further action may be required to address the identified impacts at the site.

1.0 INTRODUCTION

GaiaTech, Incorporated (GaiaTech) was retained to perform a Phase II sampling investigation and a subsequent supplemental investigation at the Dynamic Systems, Incorporated (DSI) facility located at 323 State Route 355 in Poestenkill, New York (Figure 1).

1.1 Site Description and Background

The site was developed for agricultural use as early as the mid-1800s. Based on information obtained from site representatives and a review of historical aerial photographs, a barn was located in the approximate location of the current septic system until approximately 1966, when it was burned down as a training exercise for the local fire department.

The northern portion of the approximately 82-acre site is developed with an approximately 29,000-square-foot industrial building. The building contains offices, production areas, testing areas, a painting room (containing one inactive booth and one active booth), a machine shop, and a warehouse. Asphalt-paved parking areas adjoin the building. A leach-field based septic system is located west of the site building. A water supply well is located north of the building. The completed Phase II site investigation has focused on the northern portion only. The southern approximately 60 acres of the site consist of agricultural land. Figure 2 illustrates the site features.

The site building was constructed in 1966 for Duffer Associates, a predecessor of DSI. According to site representatives, the current vapor degreaser and associated concrete pit were installed at the time of construction, and the current septic system and leach field were also installed at that time. Duffer Associates used the site for assembly and testing of equipment for thermal testing of metal. The company was reorganized through a reverse merger buyout of several shareholders in 1986, and the name was changed to Duffer Scientific. The name was changed to DSI in 1993.

DSI conducts assembly and testing of equipment used for thermal testing of metal at the site. A small vapor degreasing unit using trichloroethylene (TCE) is used to clean components of equipment prior to assembly. Some metal components of equipment are painted in a paint booth, depending on specifications. Finished products are stored in the warehouse until delivered to customers by common carrier.

A Phase I Environmental Site Assessment (ESA) was performed by GaiaTech in September 2010. The Phase I ESA report identified the following areas of environmental concern for the site which warrant additional investigation:

• Vapor Degreaser: The site operates a vapor degreaser, containing TCE, which is situated within a concrete pit. The pit appeared to be approximately 4 feet deep. Site representatives stated that the degreaser and pit were installed when

the building was constructed in 1966, and were not aware of spills from the degreaser. There is a potential for impact given the age of the degreaser and its historical contents.

• Historical Site Use: Historical site operations since 1966 have involved use of chemicals such as oils and coolants and paints, and operation of a leach-field based septic system. The historical use of these chemicals suggests a potential for subsurface impacts at the site.

1.2 Scope of Work

Based on the findings of the Phase I ESA, a limited Phase II sampling investigation was performed at the site in November 2010.

During the limited Phase II investigation, GaiaTech installed 6 soil borings at the site to assess potential impacts associated with the historical use of the site. The investigation addressed the vapor degreaser unit and the historical site use (primarily the septic leach field area) issues identified by the Phase I ESA. One water sample was collected from a tap connecting to the on-site production water well.

Upon review of the limited Phase II investigation results, a supplemental investigation was performed at the site in December 2010. GaiaTech conducted the follow-up investigation which included the installation and sampling of three (3) temporary monitoring wells (TMW1 to TMW3) and five (5) groundwater monitoring wells (GMW1 to GMW5), shown on the attached Figure 3.

1.3 Area Geology and Hydrogeology

The 7.5-minute topographic map of the area (*Poestenkill, New York* quadrangle, 1995) indicates that the site is located at an approximate elevation of 460 feet above mean sea level. The site and site area slope to the east toward a wetland area and Newfoundland Creek.

Area topography indicates that groundwater in the site area is expected to flow to the east (toward Newfoundland Creek). Based on area topography and recorded groundwater depth data information for area provided by EDR, the depth to groundwater in the site area is anticipated to range between 10 to 20 feet bgs.

Based on data collected for the Phase I ESA, no off-site water supply wells are identified within approximately 2,600 feet of the site. Site representatives stated that a municipal water connection would soon be available for the site with a water line currently present across and along Route 355.

Project No. B1621-420-0

2.0 PHASE II FIELD ACTIVITES

On November 12 and 13, 2010, GaiaTech installed 6 soil borings at the site to assess potential impacts associated with the historical use of the site. The investigation foused on: (1) the area of the vapor degreaser unit and its immediately downgradient areas; and (2) the septic leach field area.

2.1 Methodology

Prior to field activities, GaiaTech completed a subsurface utility clearance at the site through the New York Underground Facilities Protective Organization (NYUFPO). Additionally, a private utility locator completed a subsurface utility clearance in the areas of the borings.

2.1.1 Soil Sampling

On November 12 and 13, 2010, a total of 6 soil borings were installed at the site (Figure 2), all of which were converted to temporary monitoring wells. The borings were performed by Aquifer Drilling & Testing, Inc. (ADT) of Albany, New York. Each boring was installed using a direct-push Geoprobe[®] sampling unit. Continuous subsurface soil samples were collected using five-foot stainless steel sampling tubes lined with acetate sample liners. Upon retrieval from the sampler, each soil sample was visually inspected for logging purposes and evidence of contamination. Each soil sample was then collected into separate sample bags to be used for field-screening (described further below) and classification prior to collecting soil samples for laboratory analysis. Soil characteristics such as soil type, color, moisture, consistency, grain size, odor, and plasticity were recorded on soil boring logs. Boring locations are illustrated on Figure 3. Copies of these logs are provided in Appendix A.

Specific soil boring locations were determined based on the utility markings. The borings associated with each issue identified in the Phase I are listed below:

- Historical Site Use: Two soil borings (GP-1 and GP-2) were installed adjacent to the septic system leach field. A drinking water sample was collected from a tap within the site building; and
- Vapor Degreaser: Two soil borings (GP-3 and GP-4) were installed outside the southeastern corner of the site building (downgradient) of the vapor degreaser. Two additional soil borings (GP-5 and GP-6) were installed inside the site building, near the existing vapor degreaser unit.

Each of the soil samples underwent field screening for ionizable volatile organics contamination using a Mini-Rae photo-ionization detector (PID) equipped with a 10.6eV lamp, calibrated to a 100 volumetric parts per million

(Vppm) isobutylene standard. The field screening is used to provide an indication of the potential presence of volatile organic compounds (VOCs) to aid in the selection of samples for laboratory analyses. Specific PID field screening procedures were as follows:

- The soil sample was placed in a sample bag.
- The soil boring number and sample depth was written on the sample bag.
- The sample was allowed to warm up under ambient/room temperatures.
- The PID was utilized to draw the headspace from above the soil-air interface.
- The maximum PID reading was recorded on each respective soil boring log.

Soil samples from the borings in which field screening suggested the greatest potential VOC content or other impact were retained for possible laboratory analysis. The samples were then secured in a cooler and preserved with ice.

2.1.2 Groundwater Sampling

Groundwater samples were collected from each of the soil borings, GP-1 through GP-6. The borings were allowed to remain open and disposable tubing was placed down the borehole. Groundwater was present in each boring. Development of the temporary wells was performed to ensure that groundwater was entering the boring from the surrounding subsurface. Development was performed using a peristaltic pump and the disposable tubing.

Groundwater samples were collected using the peristaltic pump and tubing. Upon collection, the samples were transferred into laboratory supplied bottles. The samples were then secured in a cooler and preserved with ice.

Upon completion of soil boring and groundwater sampling activities, and between uses to avoid cross contamination, all down-hole soil boring and nondedicated sampling equipment was decontaminated using an Alconox[®]/water wash and scrubbing, followed by a water rinse. Once the groundwater sample was retrieved from a boring location, the borehole was back-filled with the soil cuttings and bentonite, and the surface was restored (to the extent feasible) to its original condition.

Temporary well locations are illustrated on Figure 3. Logs of the wells are presented in Appendix A.

Project No. B1621-420-0

2.1.3 Sample Management and Investigation Derived Waste

Under strict sample chain-of-custody procedures, the samples were delivered to Test America in Buffalo, New York.

Investigation Derived waste was containerized in 55-gallon drums and staged on-site, pending disposal off-site at a late day.

3.0 NEW YORK REGULATORY FRAMEWORK

The New York State Department of Environmental Conservation (DEC) has established soil and groundwater regulatory standards under Title 6 of the New York Codes, Rules and Regulations (6 NYCRR).

3.1 Soil Regulatory Standards

GaiaTech compared all soil results to the DEC Soil Cleanup Objectives (SCOs) promulgated in 6 NYCRR Part 375, Subpart 375-6. The SCOs for applicable constituents are provided on Table 1.

3.2 Groundwater Regulatory Standards

GaiaTech compared groundwater sample results to the DEC Water Quality Standards (WQSs) promulgated in 6 NYCRR Part 703, Subpart 703.5. The WQSs for applicable constituents are provided on Table 2.

4.0 PHASE II ANALYSIS AND DISCUSSION

The data obtained during the limited Phase II investigation is summarized and discussed below.

4.1 Geology and Hydrogeology

The soil borings advanced during the limited Phase II were completed to depths ranging from 10 to 15 feet below ground surface (bgs). The subsurface materials typically encountered at the site consisted of mixtures of silt, clay, sand, and gravel.

Groundwater was encountered in the borings at depths ranging from 7 to 12.5 feet bgs.

Soil boring logs documenting field observations are provided in Appendix A.

4.2 Soil Sampling Results

Three soil samples were collected and submitted for laboratory analyses. One sample was obtained from a boring (GP-3) advanced in the southeastern exterior portion of the site. The remaining soil samples were obtained from borings advanced in the vicinity of the vapor degreaser (GP-5 and GP-6). The soil samples were selectively analyzed for VOCs, semivolatile organic compounds (SVOCs), and total Resource Conservation and Recovery Act (RCRA) metals. The locations of the soil borings are illustrated on Figure 3.

Soil boring GP-3 was installed outside of the southeastern corner of the site building. Acetone was detected in the soil sample from GP-3 at a concentration of 0.053 milligrams per kilogram (mg/kg), which exceeds the SCO for protection of groundwater (0.05 mg/kg). The acetone concentration does not exceed any other SCOs. Methylene chloride, total xylenes, 2-methylnaphthalene, bis(2-exylhexyl)phthalate, naphthalene, arsenic, barium, cadmium, chromium, lead, mercury, and selenium were detected in GP-3, but each of these analytes was present at a concentration below the applicable SCO.

Soil samples were collected from borings GP-5 and GP-6, which were installed inside the southeastern portion of the main building and located near the vapor degreaser. Acetone was detected in sample GP-5 at a concentration of 0.12 mg/kg, which exceeds the most stringent SCO (protection of groundwater at 0.05 mg/kg). The detected acetone level does not exceed any other established SCOs. Cis-1,2-dichlorthene (C12DCE) was identified at a concentration of 0.9 mg/kg in sample GP-5. This concentration exceeds the protection of groundwater SCO (the most stringent SCO) of 0.25 mg/kg. The C12DCE concentration does not exceed any other SCOs. Levels of methylene chloride, trans-1,2-dichloroethene, total 1,2-dichloroethene, and TCE were detected in soil sample GP-5, but were less than the most stringent SCO. TCE was detected in both GP-5 and GP-6 at concentrations of 0.1 mg/kg and 0.048 mg/kg, respectively, which are below the most stringent SCO of 0.47 mg/kg. Both C12DCE and trans-1,2-dichloroethene are degradation products of TCE.

The soil sampling results are summarized on Table 1. The laboratory analytical report is presented in Appendix B.

4.3 Groundwater Sampling Results

A total of six groundwater samples (GP-1 through GP-6) were collected from the borings/temporary monitoring wells and submitted for laboratory analysis. The groundwater samples were selectively analyzed for VOCs, SVOCs, and dissolved RCRA metals. Additionally, a water sample (TW-1) was collected from an interior sink tap, which was connecting to the on-site production water well, and was analyzed for VOCs and SVOCs.

4.3.1 Historic Site Use

No VOCs or SVOCs were detected in the tap water (TW-01) sample. Temporary wells were installed in soil borings GP-1 and GP-2, located adjacent to the septic field. No VOCs were detected in the groundwater samples from GP-1 and GP-2. 4-Nitroaniline was detected in samples GP-1 and GP-2 at concentrations of 0.0077 milligrams per liter (mg/l) and 0.0039 mg/l, respectively. The level of 4-nitroaniline in sample GP-1 exceeds the WQS of 0.005 mg/l. Diethyl phthalate and di-n-butyl phthalate were detected in both samples (GP-1 and GP-2), but neither sample exhibited a concentration exceeding the applicable WQS. Dissolved barium was detected in sample GP-1 at a concentration less than the WQS and was not detected in sample GP-1 and GP-2. No other analytes were detected in temporary well groundwater samples GP-1 and GP-2.

4.3.2 Vapor Degreaser Area

Temporary monitoring wells GP-3 through GP-6 were sampled to evaluate potential impacts associated with the vapor degreaser unit. Wells GP-3 and GP-4 were located on the southeastern exterior area of the site. Wells GP-5 and GP-6 were located adjacent to the vapor degreaser in the interior of the building. During the limited Phase II investigation, a limited volume of groundwater was recovered from temporary well GP-6. Due to the limited volume, groundwater sample GP-6 was only analyzed for VOCs.

In sample GP-3, the VOCs ethylbenzene (at a concentration of 0.019 mg/l) and vinyl chloride (at a concentration of 0.0038 mg/l) were detected at levels exceeding the applicable WQS. Additional VOCs 1,1-dichloroethane, total 1,2-dichloroethene, benzene, C12DCE, toluene, TCE, and total xylenes were

detected in sample GP-3, but were not identified at concentrations exceeding the applicable WQSs. C12DCE and vinyl chloride are both degradation products of TCE. The other southeastern exterior groundwater sample location (GP-4) exhibited detected concentrations of total 1,2-dichlorothene, C12DCE, TCE, and vinyl chloride. C12DCE (concentration of 0.0082 mg/l) and TCE (concentration of 0.015 mg/l) each exceeded the applicable WQS (0.005 mg/l for each compound). Although total 1,2-dichloroethene and vinyl chloride were detected in sample GP-4, the concentrations did not exceed the applicable WQS. Both of these compounds are considered degradation products of TCE. Several SVOCs were detected in samples GP-3 and GP-4, but none exhibited concentrations exceeding the applicable WQS. Sample GP-3 was analyzed for dissolved metals and several were detected, but none had identified concentrations exceeding an applicable WQS.

Interior groundwater samples GP-5 and GP-6 (collected adjacent to the vapor degreaser) exhibited C12DCE (concentrations of 0.22 and 0.065 mg/l, respectively) and TCE (concentrations of 0.015 and 3.8 mg/l, respectively) at levels exceeding the applicable WQS. Sample GP-5 also had identified concentrations of 1,1,2-trichloroethane of 0.0015 mg/l (exceeding the WQS of 0.001 mg/l) and pentachlorophenol of 0.014 mg/l (exceeding the WQS of 0.001 mg/l). In sample GP-6, vinyl chloride was detected at a concentration of 0.0051 mg/l, which exceeds the WQS of 0.002 mg/l. No other analytes were detected in these samples (GP-5 and GP-6) at concentrations exceeding an applicable WQS.

Groundwater sampling results are summarized on Table 2. The laboratory analytical report is presented in Appendix B.

4.4 **Recommendation**

Based on the findings of the limited Phase II investigation, GaiaTech recommended a supplemental investigation consisting of the installation of five permanent monitoring wells and three temporary monitoring wells to further evaluate the soil and groundwater impacts identified at the site.

5.0 SUPPLEMENTAL INVESTIGATION FIELD ACTIVITIES

Based on the findings of the limited Phase II sampling investigation (November 2010 event), a supplemental investigation was performed at the site. The supplemental investigation activities were performed from December 2, 2010 through December 5, 2010.

5.1 Methodology

Prior to field activities, GaiaTech completed a subsurface utility clearance at the site through the NYUFPO with a private utility locator retained to complete a subsurface utility clearance in the areas of the borings. Borings were planned for the following locations:

- Permanent monitoring wells (GMW-1 and GMW-3) at exterior locations east and south of the vapor degreaser location, respectively;
- Permanent monitoring well (GMW-2) at an interior location adjacent to the vapor degreaser. One deep monitoring well was planned for this area, however, it become a shallow groundwater monitoring well because of limited access to the plant.
- Permanent monitoring wells (GMW-4 and GMW-5) installed in the unused farm field and located approximately 260 feet south and east of the vapor degreaser location, respectively; and
- Three temporary monitoring wells (TMW-1 through TMW-3) located at the edge of the lawn area surrounding the building (along the tree line area).

5.1.1 Soil Sampling

GaiaTech retained Zebra Environmental Corporation of Schenectady, New York and ADT to perform the borings/wells. Due to limited access inside the plant, GaiaTech could not install a deep monitoring well inside the plant near the degreaser. Instead, one permanent deep monitoring well (deep well GMW-1) was located immediately outside the plant and was advanced to a depth of approximately 56 feet bgs to evaluate groundwater quality in the deeper zone beneath the area of the site. Permanent well (intermediate well) GMW-3 was advanced to a depth of 28 feet bgs to provide a groundwater sample at an intermediate depth. All other permanent and temporary monitoring wells were completed to depths ranging from 12 to 17 feet bgs.

Each well was created by advancing a soil boring using direct-push Geoprobe[®] or hollow stem auger methodology. Continuous subsurface soil samples were obtained from the direct-push unit using a five-foot long sampling tube with disposable acetate liners. The direct-push drilling was completed to a maximum depth of 31 feet bgs. Subsurface soil samples were collected during hollow stem auger drilling by advancing a two-foot long split spoon sampler at five-foot intervals. Upon retrieval from the sampling unit, each soil sample was visually

inspected, logged, and inspected for evidence of contamination. Each soil sample was then collected into separate sample bags to be used for field-screening and classified using the methodology described previously. Soil samples were collected from each boring for laboratory analysis. Two soil samples were obtained from interior boring GMW-2. Soil samples collected from the borings were secured in a cooler and preserved with ice.

Soil boring locations are illustrated on Figure 3. Logs of the borings are provided in Appendix A.

5.1.2 Groundwater Sampling

The boreholes for the permanent monitoring wells were over-drilled to provide annular space around the constructed well. Over-drilling was performed using 8.25-inch outside diameter hollow stem augers (wells GMW-1 and GMW-3), a 2-inch diameter MacroCore direct-push tube (well GMW-2), and 3.25-inch diameter MacroCore direct-push tube (wells GMW-4 and GMW-5). Once the borehole was over-drilled, the permanent well was constructed within the annular space. Wells GMW-1 and GMW-3 through GMW-5 were constructed of ten-foot long, two-inch diameter polyvinyl chloride (PVC), 0.0010-inch slotted screen and blank PVC riser. Interior well GMW-2 was constructed using ten-foot long, one-inch diameter, 0.0010-inch slotted PVC screen and PVC riser. Silica sand was placed in the annular space surrounding the well screen and was extended to approximately one to two feet above the top of the screen. A bentonite seal was placed above the sand and extended one to two feet above the screen. Remaining annular space (in wells GMW-1 and GMW-3) was backfilled with soil cuttings. All wells were covered by a protective, flushmount road box placed in cement.

Temporary wells were completed by installing ten-foot long, one-inch diameter, 0.0010-inch slotted PVC screen and blank riser into the boring. The screen and riser were removed from the temporary wells after completion of groundwater sampling. Groundwater samples were collected from temporary wells using a check valve and disposable tubing.

Permanent well GMW-1 was developed using a stainless steel impeller pump. Development continued until the well was dry. Permanent wells GMW-2 through GMW-5 were developed using a surge block, disposable tubing, and a check valve to remove water. Well GMW-4 was developed until it became dry. Wells were allowed to recover after development. Approximately 12 hours after development, groundwater samples were subsequently collected from each permanent well using a check valve or the impeller pump. All groundwater samples were collected and transferred into appropriate laboratory supplied bottles. The samples were then secured in a sample cooler and preserved with ice.

The monitoring well locations are illustrated on Figure 3. Logs of the wells are provided in Appendix A.

5.1.3 Sample Management and Investigation Derived Waste

Under strict sample chain-of-custody procedures, the samples were delivered to Test America in Edison, New Jersey. All soil and groundwater samples were analyzed for VOCs.

Upon completion of soil boring and sampling activities, and between uses to avoid cross contamination, all down-hole soil boring and non-dedicated sampling equipment was decontaminated using an Alconox[®]/water wash and scrubbing, followed by a water rinse. Temporary monitoring wells were removed after collection of the groundwater samples and the borehole was backfilled with soil cuttings and bentonite. The surface was restored (to the extent feasible) to its original condition.

Soil cuttings from the borings were containerized at the site. A limited volume of cuttings were returned to the borehole and used to backfill the boring above the bentonite seal. A total of four drums of cuttings are present at the site. One drum of development water is also present at the site.

5.1.4 Surveying

Subsequent to the installation of the permanent wells, a relative elevation survey was performed to determine well and groundwater elevations. The survey was performed by RDM Surveying Consultants of Troy, New York. The relative elevation survey utilized the top of casing of interior well GMW-2 as the benchmark elevation (set as 200.00 feet). All other well elevations were determined relative to the elevation at GMW-2. Survey results are summarized on Table 3.

After well development, GaiaTech measured water levels in the five monitoring wells using an electronic water-level probe. The water level measurements and the survey data were used to determine the elevations of the groundwater table beneath the areas of the site and were used to determine the direction sof groundwater flow.

Project No. B1621-420-0

6.0 SUPPLEMENTAL INVESTIGATION LABORATORY ANALYSIS AND DISCUSSION

The data obtained during the supplemental Phase II investigation is summarized and discussed below.

6.1 Geology and Hydrogeology

Soil borings/wells GMW-1 and GMW-3 were advanced to depths between 31 and 56 feet bgs to evaluate subsurface conditions in the deeper zones of the site. Deep boring GMW-1 encountered silt to a depth of approximately 12 feet with gravel extending to 15 feet. Underlying the gravel were layers of silt, clay, and silty clay (typically with little sand in the shallower strata). The silt and clay units were stiff to very stiff, but did not preclude advancement of the split-spoon or augers. Intermediate boring/well GMW-3 encountered similar materials in the subsurface (silt and sand to 20 feet bgs with silt to the terminus of the boring at 31 feet bgs).

Groundwater was present in the permanent wells at depths ranging from 1.17 to 14.88 feet. Based on the well and groundwater elevations, groundwater flow was determined to be directed to the southeast under a gradient of 0.06.

Figure 4 presents the potentiometric surface map for the site. Table 3 presents the groundwater elevation data.

6.2 Soil Sampling Results

GaiaTech compared all soil results to the DEC SCOs promulgated in 6 NYCRR Part 375, Subpart 375-6. A summary table of the soil analytical results is attached as Table 1. None of the nine soil samples collected from the borings advanced for the permanent and temporary monitoring wells during the follow-up investigation. Of the soil samples collected during the initial and floow-up investigations, only GP-5 (near the degreaser) exhibited any analyte concentrations exceeding the most stringent SCOs. Soil sampling results are summarized on Table 1. The laboratory analytical report is presented in Appendix C.

6.3 Groundwater Sampling Results

GaiaTech compared the groundwater sample results from wells GMW-1 through GMW-5 and TMW-1 through TMW-3 to the DEC GSs promulgated in 6 NYCRR Part 703. A summary table of the groundwater analytical results is attached as Table 2.

Deep well GMW-1 (east of the vapor degreaser) and shallow wells TMW-2, and TMW-3 did not exhibit any VOC concentrations exceeding the DEC GSs. However, TCE was

detected in the groundwater samples collected from wells GMW-1, TMW-2, and TMW-3 with concentrations ranging from 0.00027 to 0.0023 mg/l.

Well GMW-2, adjacent to the vapor degreaser, exhibited concentrations of c12DCE and TCE exceeding the applicable GSs. The detected concentration of c12DCE (0.028 mg/l) exceeds the GS of 0.005 mg/l. The TCE level detected in the GMW-2 groundwater sample (0.16 mg/l) exceeds the GS of 0.005 mg/l.

Intermediate well GMW-3, located south of the degreaser, exhibited c12DCE and TCE levels exceeding the applicable GSs. The detected c12DCE concentration was 0.028 mg/l (GS of 0.005 mg/l) and TCE was present at a level of 0.37 mg/l (GS of 0.005 mg/l).

Well GMW-4, located approximately 250 feet further downgradient from GMW-3, exhibited a TCE concentration of 0.017 mg/l (exceeding the GS of 0.005 mg/l). No other analytes were detected at concentrations exceeding a GS in groundwater sample GMW-4.

Temporary well TMW-1, located approximately 50 feet south of GMW-3, had c12DCE and TCE levels exceeding the applicable GSs. Sample TMW-1 exhibited a c12DCE concentration of 0.012 mg/l (exceeding the GS of 0.005 mg/l) and a TCE concentration of 0.029 mg/l (exceeding the GS of 0.005 mg/l).

Groundwater sampling results are summarized on Table 2. The laboratory analytical reports are presented in Appendix C.

7.0 CONCLUSIONS

GaiaTech performed a limited Phase II site investigation at the DSI site in Poestenkill, New York. Based on the limited Phase II and the supplemental investigation conducted at the DSI site and described in this report, GaiaTech has the following conclusions:

- No significant impacts were found related to the septic leach field. A low concentration of 4-Nitroaniline was detected in one groundwater sample, which could be a false positive and may not be indicative of any significant subsurface impact.
- No impacts were detected in the groundwater sample collected from an outlet tap supplied by the on-site well (located on the north side of the building).
- Based on the soil and groundwater sample results, a spill or release from a TCE source (likely the degreaser unit) has impacted soil and groundwater in the southeastern portion of the building. Additional investigation may be required to fully determine the extent of the identified solvent impacts. Based on the results of the limited site investigation conducted, it is likely that further action may be required to address the identified impacts at the site.

8.0 LIMITATIONS

GaiaTech performed this investigation exclusively for McDermott, Will & Emery and Thayer-Hidden Creek. This report and the findings shall not be relied upon, in whole or in part, by any other party, except by or with the express consent of GaiaTech and authorized representatives of McDermott, Will & Emery and Thayer-Hiiden Creek. This report and the findings contained herein shall not be relied upon, in whole or in part, by any other party, except by or with the express written consent of a responsible official of GaiaTech. Any reliance upon this report by third parties beyond its intended purpose shall be at such parties' sole risk.

GaiaTech has conducted these professional services in accordance with current scientific principles and industrial standards of practices in the fields of environmental science and engineering on the date the work was conducted and in the same geographical area of the subject site for similar studies. GaiaTech's findings and recommendations must be considered as professional opinions based upon the limited data collected during the course of the environmental site investigation, which is limited in time and scope. GaiaTech makes no warranty, express or implied.

Only a limited number of groundwater and soil samples were collected. The variations among these samples and results may not become evident until further investigation. In the event that more data are available, it may be necessary to re-assess the conditions of the subject site in order to revise the conclusions and recommendations contained in this report.

Independent laboratories have performed analytical laboratory analyses. GaiaTech has derived the findings and recommendations, in part, from the analytical reports. These findings are contingent upon the validity of the analytical reports.

Limited groundwater and soil samples were analyzed for specific parameters as detailed in the report. Other chemical compounds, which were not analyzed for, may exist at the site, although unlikely based upon available information regarding the subject site identified during the Phase I ESA.

Figures

DSI Poestenkill, New York Project No. B1621-621-2

Site Location Map

GaiaTech

Tables

.

Project No. B1621-420-0

TABLE 1 Soll Sampling Results

Sample ID				GP-3	GP-5	GP-6	GMW-1	GMW-2	GMW-2	GMW-3	GMW-4	GMW-5	TMW-1	TMW-2	TMW-3
Sample Depth (ft)	Soil	l Cleanup Objec	ctives	1-2	4-6	7-8	8-10	8-10	10-12	15-16	10-11	10-11	13-14	7-8	6/7/2010
Date Sampled				11/12/2010	11/13/2010	11/13/2010	12/2/2010	12/3/2010	12/3/2010	12/2/2010	12/2/2010	12/2/2010	12/2/2010	12/2/2010	12/2/2010
	Residential	Industrial	Protection of Groundwater												
/OCs - Method 8260B		mg/kg							Ē	g/kg					
Cetone	100	1,000	0.05	0.053	0.12	BDL	0.004	0.0064	0.0056	0 0046	0.0057	0 0042	1 0054	1 1000	1 000
Carbon Disulfide	NE	NE	NE	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.00055	BDL	BDL	BDL	BDL
Methyl Acetate	NE	NE	NE	BDL	BDL	BDL	BDL	0.0007	BDL						
Methylene chloride	51	1,000	0.05	0.036	0.018	0.018	0.00061	0.00071	BDL	0.00077	0.00062	0.00080	0.00083	0.00074	00064
rans-1,2-Dichloroethene	100	1,000	0.19	BDL	0.0057	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
richloroethene	10	400	0.47	BDL	0.1	0.048	0.0018	0.0058	0.005	0.15	BDL	BDL	0.0016	BDL	BDL
,2-Dichloroethene, total	NE	NE	NE	BDL	0.9	0.0048	BDL	BDL	BDL	0.00065	BDL	BDL	BDL	BDL	BDI.
is-1,2-Dichloroethene	59	1,000	0.25	BDL	0.9	0.0048	BDL	BDL	0.00055	0.00065	BDL	BDL	BDL	BDL	BDI
Aylenes, total	100	1,000	1.6	0.34	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
VOCs Method 8270C		mg/kg	ί. ε							g/kg					
-Methylnaphthalene	NE	NE	NE	1.1	BDL	BDL	NA								
3is(2-ethylhexyl)phthalate	NE	NE	ЯË	13	BDL	BDL	NA								
Vaphthalene	100	000	12	0.59	BDL	BDL	NA								
CRA Metals - Method SW 846		mg/kg							Ĩ	g/kg					
Irsenic	16	16	16	5.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	350	10,000	820	193	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
admium	2.5	60	7.5	0.204	NA	NA	NA	AN	NA	NA	NA	NA	NA	NA	AN
hromium	22*	\$00	19*	17.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	AN
ead	400	3,900	450	14.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aercury	0.81	5.7	0.73	0.0364	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
selenium	36	6,800	4	1.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
lilver	36	6,800	8.3	BDL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	AN
votes: umples analyzed at Test America in Buff	falo, New York an	nd Edison, New Je	ersey; Only detected	d compounds are lis	sted.										

Soil Remediation Objectives adapted from New York State Department of Environmental Conservation 6 NYCLR Part 315, Subpart 37-6. VOGs: Jodatile Organic Compounds; SVOCs: Semi-Volatile Organic Compounds BDL: Below Laboranto Detection Inith; NE: Not eatablished; NA: Not analyzed BDL: Below Laboranto pojective for hexavalent chromium is presented. There is no soil cleanup objective for total dhromiu * The soil cleanup objective for hexavalent chromium is presented. There is no soil cleanup objective for total dhromiu * The soil cleanup objective for hexavalent chromium is presented. There is no soil cleanup objective for total dhromiu * The soil cleanup objective for hexavalent chromium is presented. There is no soil cleanup objective for total * The soil cleanup objective for hexavalent chromium is presented. There is no soil cleanup objective for total dhromiu * The soil cleanup objective for hexavalent chromium is presented. There is no soil cleanup objective for total dhromiu * The soil cleanup objective for hexavalent chromium is presented. There is no soil cleanup objective for total dhromiu * The soil cleanup objective for hexavalent that exceed Protection of Groundwater Soil Cleanup Objective

Prepared by: REK Checked by:MD

Project No. B1621-420-0

TABLE 2 Groundwater Sampling Results

Dynamcis Systems Inc. Pocatenkull, New York

Sample ID		TW-1	GP-1	GP-2	GP-3	GP-4	GP-5	GP-6	GMW-1	GMW-2	GMW-3	GMW-4	GMW-5	TMW-1	TMW-2	TMW-3
Date Sampled	Groundwater Standards	11/12/2010	11/12/2010	11/12/2010	11/12/2010	11/12/2010	11/13/2010	11/13/2010	12/5/2010	12/3/2010	12/4/2010	12/4/2010	12/4/2010	12/2/2010	12/2/2010	12/2/2010
VOCs - Method 8260B	1/gm								mg/l							
1,1,2-Trichloroethane	0.001	BDL	BDL	BDL	BDL	BDL	0.0015	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1-Dichloroethane	0.005	BDL	BDL	BDL	0.00055	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1, 1-Dichloroethene	0.005	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.00035	BDL	BDL	BDL	BDL	BDL
11,2-Dichloroethene, total	BE	BDL	BDL	BDL	0.0018	0.0082	0.22	0.065	BDL							
Acetone	0.05	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.031	BDL	0.021	BDL	BDL	BDL	BDL	BDL
Benzene	0.001	BDL	BDL	BDL	0.00053	BDL	BDL	BDL	0.00021	BDL	0.00044	BDL	0.00022	0.00031	0.00027	BDL
2-Butanone	0.05	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.015	BDL						
Carbon Disuinde	5000	BUL	BUL	BUL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.0019	BDL	BDL	BDL	BDL
trans-1.2-Dichloroethene	0000	BDL	RDI	BDL	BDI	RDI	N.44 RDI	LUG3	BUL	0.00056	0.00041	86000.0	BUL	0.00042	BUL	BDL
Ethylbenzene	0.005	BDL	BDL	BDL	0.019	BDL	BDL	BDL	BDL	BDL	BDL	RDI	BDL	0.00043	0 000 S L	D DODA7
2-Hexanone	NE	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.0051	BDL	0.0015	BDL	BDL	BDL	BDL	BDI.
4-Methyl, 2-pentanone	0.05	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.0016	BDL	0.0010	BDL	BDL	BDL	BDL	BDL
Methyl tertiary Butyl Ether (MTBE)	NE	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.0012	0.0002	BDL	BDL	BDL	BDL
Tetrachloroethene	0.005	BDL	BDL	BDL	BDL	BDL	0.0028	BDL	BDL	BDL	0.00039	0.00041	BDL	BDL	BDL	BDL
Toluene	0.005	BDL	BDL	BDL	0.004	BDL	BDL	BDL	0.00055	0.0003	0.00058	0.00057	0.00047	0.0017	0.0019	0.0020
Trichloroethene	0.005	BDL	BDL	BDL	0.002	0.015	3.8	0.21	0.00027	0.16	0.37	0.017	BDL	0.029	0.0023	0.0019
Vinyl chloride	0.002	BDL	BDL	BDL	0.0038	0.0011	0.0014	0.0051	BDL	BDL	0.0019	BDL	BDL	0.0013	BDL	BDL
Xylenes, total	BE	BDL	BDL	BDL	0.11	BDL	BDL	BDL	0.00048	BDL	0.00062	0.00078	BDL	0.0015	0.0017	0.0015
SVOCs - Method 8270C	mg/l								l/gm							
2,4-Dimethylphenol	-	BDL	BDL	BDL	0.0073	BDL	BDL	NA	NA	NA	NA	NA	NA	NA	NA	AN
2-Methylnaphthalene	RE	BDL	BDL	BDL	0.0015	BDL	BDL	NA	NA	NA	٩N	NA	NA	NA	NA	NA
4-Methylphenol	E	BDL	BDL	BDL	0.00088	BDL	0.00052	NA	AN	NA						
4-Nitroaniline	0.005	BDL	0.0077	0.0039	BDL	BDL	0.0015	NA	AN	NA	AN	NA	NA	NA	NA	NA
Buryl benzyl phthalate	NE	BDL	BDL	BDL	BDL	BDL	0.00048*	AN	AN	NA	NA	AA	NA	NA	NA	NA
Ujetnyi phthalate	NE	BDL	0.0014	0.00053	0.0001	0.00075	0.0007	AN	AN	AN	NA	NA	NA	AN	NA	NA
	0.0	BUL	100	0.00048-	0.0010	0.00045*	16000'0	AN.	AN	AN	AN	AN	AN	NA	NA	NA
	10.0	DUL	100	BUL	100.01	BUL	BUL	AN	AN	AN	AN	AN	AN	NA	NA	AN
L'EBRECHIOLODINENOI	100'0	BDL	BUL	BUL	BUL	BDL	6.014	AN	NA	AN	AN	AN	NA	NA	AN	AN
Dissolved Metals - US EPA Method 6010B/7470A	∕ām								mg/l							
Arsenic	0.05	MM	IUB	NA	00000	NIA	VIV	N N			111					
Barium		NA	0.0404	NA	0.419	NA	NA	NA	VN	AN	VN	VN	VN	VIN	VIV	AN A
Cadmium	0.005	NA	BDL	NA	0.0004	NA	NA	NA	NA	NA	VN	AN	VN	VIN		VN
Chromium	0.05	AN	BDL	NA	BDL	NA	NA	AN	NA	AN	NA	AN	AN	NA	AN AN	AN NA
Lead	0.05	NA	BDL	NA	0.005	NA	NA	NA	NA	AN	NA	NA	NA	NA	NA	NA
Mercury	0.0007	NA	BDL	NA	BDL	NA	AN	AN	NA							
Selenium	0.01	AN	BDL	AN,	BDL	AN	AN	AN	AN	NA	NA	AN	NA	NA	NA	NA
Silver	cv.0	NA	BUL	¢Z.	BDL	AZ	√ Z	AZ	AN	AZ	AN N	AN	AN	NA	NA NA	NA

Note: Sumples analyzed ar Freat America, Buffalo, New York and Edison, New Jersey. Only detected compounds are liste Groundwater Standards adapted from New York Stare Department of Environmental Conservation (DEC 6 NYCRR Part 703. VOCs: 5 Vonisito Organic Compounds. SVOCs: 5 Semi-Volatile Organic SVOCs: 5 Semi-Volatile Organic BDL: Below detection lime associated method blank. Detection likely due to laboratory contamination. Compound was detected in the associated method blank. Detection likely due to laboratory contamination. mg/l is approximately equivalent to parts per millon (ppm).

.

TABLE 3

Dynamic Systems Inc. Poestenkill, New York

GROUNDWATER ELEVATION DATA

	TOC Elevation	Depth to	Groundwater
Well ID	(feet)	Water (feet)	Elevation (feet)
GMW-1	199.49	13.81	185.68
GMW-2	200	4.63	195.37
GMW-3	199.48	14.88	184.6
GMW-4	182.23	2.63	179.6
GMW-5	188.45	1.17	187.28

NOTE: Well level data was collected after development.

Appendix A

Soil Boring/Monitoring Well Logs

11-16-2010 V:\Projects\B1621- Dynamic Systems, Inc\B1621-420-0-Dynamic Systems Sampling\Technica\\GP-1.bor

11-16-2010 V: Projects/B1621- Dynamic Systems, Inc/B1621-420-0-Dynamic Systems Sampling/Technical/GP-2.bor

11-16-2010 V:\Projects\B1621- Dynamic Systems, Inc\B1621-420-0-Dynamic Systems Sampling\Technica\GP-3.bor

11-16-2010 V:IProjects/B1621- Dynamic Systems, Inc/B1621-420-0-Dynamic Systems Sampling/Technical/GP-4.bor

11-16-2010 V:\Projects\B1621- Dynamic Systems, Inc\B1621-420-0-Dynamic Systems Sampling\Technical\GP-6.bor

12-13-2010 Z:\Projects\B1621- Dynamic Systems, Inc\B1621-420-0-Dynamic Systems Sampling\Technica\GMW1.bor

12-13-2010 Z:\Projects\B1621- Dynamic Systems, Inc\B1621-420-0-Dynamic Systems Sampling\Technica\\GMW1.bor

12-13-2010 Z.\Projects\B1621- Dynamic Systems, Inc\B1621-420-0-Dynamic Systems Sampling\Technica\\GMW1.bor

12-13-2010 Z: Projects/B1621- Dynamic Systems, Inc/B1621-420-0-Dynamic Systems Sampling/Technica//GMW2.bor

12-13-2010 Z:\Projects\B1621-Dynamic Systems, Inc\B1621-420-0-Dynamic Systems Sampling\TechnicaNGMW3.bor

12-13-2010 Z:\Projects\B1621- Dynamic Systems, Inc\B1621-420-0-Dynamic Systems Sampling\Technica\\GMW3.bor

12-13-2010 Z: Projects/B1621- Dynamic Systems, Inc/B1621-420-0-Dynamic Systems Sampling/Technica/IGMW5.bor

12-13-2010 Z: Projects/B1621- Dynamic Systems, Inc/B1621-420-0-Dynamic Systems Sampling/Technical/TMW2.bor

12-13-2010 Z: Projects/B1621- Dynamic Systems, Inc/B1621-420-0-Dynamic Systems Sampling/Technical/TMW3.bor

Appendix B

Limited Phase II Laboratory Analytical Report

Analytical Report

Work Order: RTK1123

Project Description Poestenkill, NY Project

For

Rebecca Kusek

GaiaTech Inc. 135 S. LaSalle St. Chicago, IL 60603

S.

Brian Fischer Project Manager Brian.Fischer@testamericainc.com Thursday, November 18, 2010

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

PALISCADER IN UNARCHAUNTAL I DO 190

GaiaTech Inc. 135 S. LaSalle St. Chicago, IL 60603 Work Order: RTK1123

Received: 11/13/10 Reported: 11/18/10 13:08

Project: Poestenkill, NY Project Project Number: [none]

TestAmerica Buffalo Current Certifications

As of 08/16/20 10

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-N Y044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP,SDWA, CWA, RCRA,	N Y455
New York*	NELAP, AIR, SDWA, CWA, RCRA	10026
North Dakota	CWA, RCRA	R-176
Oklahoma	CWA, RCRA	9421
Oregon*	CWA, RCRA	N Y200003
Pennsylvania*	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
Texas*	NELAP CWA, RCRA	T104704412-08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA, RCRA	252

*As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

HALLEADER IN UNV ROBUBLING TURPES

GaiaTech Inc. 135 S. LaSalle St. Chicago, IL 60603 Work Order: RTK1123

Project: Poeslenkill, NY Project Project Number: [none] Received: 11/13/10 Reported: 11/18/10 13:08

CASE NARRATIVE

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

A pertinent document is appended to this report, 1 page, is included and is an integral part of this report.

Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

<u>TestAmerica</u>

HALLADDA IN LINE POTINEATAEL ESTIMA

GaiaTech Inc. 135 S. LaSalle St. Chicago, IL 60603 Work Order: RTK1t23

Received: 11/13/10 Reported: 11/18/10 13:08

Project: Poestenkill, NY Project Project Number: [none]

DATA QUALIFIERS AND DEFINITIONS

в	Analyte was	detected in	the	associated	Method	Blank.

D08 Dilution required due to high concentration of target analyte(s)

J Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.

M7 The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS).

M8 The MS and/or MSD were below the acceptance limits. See Blank Spike (LCS).

MHA Due to high levels of analyte in the sample, the MS and /or MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).

P18 Lab to filter and preserve volumes.

P7 Sample filtered in lab.

Z2 Surrogate recovery was above the acceptance limits. Data not impacted.

NR Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below the laboratory reporting limit.

ADDITIONAL COMMENTS

Results are reported on a wet weight basis unless otherwise noted.

THE LEADER IN LAV REPARENTAL LETTING

GaiaTech Inc.			Work Order: R	TK1123				Rec	eived 11	/13/10
135 S. LaSalle St.								Rep	orfed: 11	/18/10 13:08
Chicago, IL 60603			Project: Poeste	enkill, NY P	roject					
			Project Numbe	r: [nor	ne]					
			Executive	Summa	rv - Detect	ions				
	Sample	Data			· · · · · · · · · · · · · · · · · · ·	Dit	Date	l a h		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTK1123-01	(GP-3 1-2 - S	olid)			Sam	oled: 11	/12/10 10:45	Rec	vd: 11/13/1	to 09:30
Volatile Organic Compo	unds by EPA	8260B								
Acelone	53		28	48	uolko dou	1.00	11/16/10 12:20	81	10//1520	00000
Methylene Chloride	36		5.7	2.6	uging diy uging diy	1.00	11/16/10 12:30		10/(1539	8260B
Xytenes, total	340		11	0.96	ug/kg dry ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B 8260B
Semivolatile Organics b	V GC/MS				0 0 - 7		· · · · · · · · · ·			02000
2-Methylnaphthalene	1100	D08	950	14		F 00	14/10/10 00 10			
Bis(2-ethylbexyl)	13000	D08	950	210	ug/kg ary	5.00	11/16/10 20:49	MAF	10K1500	8270C
phihalate		000	300	310	ug/kg ary	5.00	11/16/10 20:49	MAF	10K1500	8270C
Naphthalene	590	D08,J	950	16	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Total Metals by SW 846	Series Metho	ds								
Arsenic	5.1		2.3	0.5	ma/ko doj	1.00	11/17/10 22:08	hAu hA	10//1516	60100
Barium	193		0.565	0.124	mg/kg dry	1.00	11/17/10 22:08	Moha	10/(1510	6010B
Cadmium	0.204	J	0.226	0.034	ma/ka day	1.00	11/17/10 22:08	Moh	10/(1516	6010B
Chromium	17.8		0.565	0.226	ma/ka dry	1.00	11/17/10 22:08	MAYM	10/(1516	6010B
Lead	14.6		1.1	0.3	ma/ka day	1.00	11/17/10 22:08	MVAN MVAA	10/(1510	60100
Selenium	1.1	J	4.5	0.6	marka day	1.00	11/17/10 22:08	hdvad	10//1510	6010B
Mercury	0.0364		0.0228	0.0092	mg/kg dry	1.00	11/17/10 13:17	JRK	10K1560	7471A
General Chemistry Para	meters									
Percent Solids	88		0.010	NR	%	1.00	11/17/10 07:14	100	10K1493	Doy Weight
Sample ID: RTK1123-03 (GP-1 - Water)			Samo	lad: 11	12/10 12:00			0.00.00
Semivolatile Organice by	COMP	·			Samb	IGU. 11/	12/10 12:00	Recv	a: 11/13/10	0.09:30
A Nilconniline	<u></u>									
4-INITO201000	1.1	J	9.4	0.24	ug/է	1.00	11/17/10 23:06	JLG	10K1499	8270C
Dieloyi potnalate	1.4	J	4.7	0.21	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270 C
Di-n-bulyi prinalale	0.75	J, B	4.7	0.29	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
Dissolved Metals by SW	846 Series M	ethods.								
Barium	0.0404	P7	0.0020	0.0005	mg/L	1.00	11/17/10 20:58	AMH	10K1510	6010B
Sample ID: RTK1123-04 (GP-2 - Water))			Sampl	led: 11/	12/10 12:30	Recv	d: 11/13/10	0 0 9:3 0
Semivolatile Organics by	/ GC/MS									
4-Nitroaniline	3.9	J	9.6	0.24	ua/L	1.00	11/17/10 23-29	JI G	10K1499	82700
Diethyl phthalate	0.53	J	4.8	0.21	- <u>-</u> g/-	1.00	11/17/10 23:29	JIG	101(1400	82700
Di-n-butyl phthalate	0.48	J, B	4.8	0.30	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
Sample ID: RTK1123-05 (GP-3 - Water)	I			Sampl	ed: 11/	12/10 13:15	Recv	d: 11/13/10	09:30
Volatite Organic Compou	inds by EPA	8260B			·					
1,1-Dichloroethane	0.55	.!	1.0	0.38	110 ⁻⁰	1.00	11/10/10 07-50	NUM		
1,2-Dichloroethene. Total	1.8	J	20	0.00	ug/L	1.00	11/10/10 07:56	NMD	10K1505	8260B
Benzene	0.53	.1	10	0.70	ug/t,	1.00	11/10/10 07:56	NIMD	10K1505	8260B
cis-1,2-Dichloroethene	1.8	0	1.0	0.41	ug/L	1.00	11/10/10 07:56	NMD	10K1505	8260B
Ethylbenzene	19		1.0	0.01	ug/L	1.00	11/10/10 07:56	NMD	10K1505	8260B
Toluene	40		1.0	0.74	ug/L	1.00	11/16/10 07:56	NMD	10K1505	8260B
Trichloroethene	20		1.0	0.51	ug/L	1.00	11/16/10 07:56	NMD	10K1505	8260B
Vipyl chloride	20		1.0	0.46	ug/L	1.00	11/16/10 07:56	NMD	10K1505	8260B
- any ontorida	5.0		1.0	0.90	ug/L	1.00	11/16/10 07:56	NMD	10K1505	8260B

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

<u>TestAmerica</u>

BILLEADER IN "MV BORRICH AR	u Listinaa									
GaiaTech Inc. 135 S. LaSalle St.		N	Work Order: F	RTK1123				Rece Repo	vived: 11. orted: 11	/13/10 /18/10 13:08
Chicago, IL 60603		1	Project: Poesl	tenkilt, NY Pro	ject			•		
-		ſ	Project Numb	er: [none]						
				0						
	. .		Executive	e Summar	/ - Detect	tions	_			
	Sample	Data				Dil	Date	L.ab		
Anatyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTK1123-05 (GP-3 - Wate	r) - cont.			Sam	pled: 11	/12/10 13:15	Recy	vd: 11/13/:	10 09:30
Volatile Organic Compo	unds by EPA	<u> 8260B - con</u>	<u>t.</u>							
Xytenes, 1otal	110		2.0	0.66	ug/L	1.00	11/16/10 07:56	NMD	10K1505	8260B
Semivolatile Organics by	<u>GC/MS</u>									
2,4-Dimethylphenol	7.3		4.8	0.48	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
2-Methylnaphthalene	1.5	J	4.8	0.58	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
4-Methylphenol	0.88	J	9.7	0.35	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
Diethyl phthalate	0.91	J	4.8	0.21	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270 C
Di-n-butyl phthalate	0.88	J, B	4.8	0.30	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270 C
Naphthalene	1.9	J	4.8	0.7 3	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270 C
Dissolved Metals by SW	846 Series I	<u>Methods</u>								
Arsenic	0.0099	J, P7	0.0100	0.0056	mg/L	1.00	11/17/10 21:01	AMH	10K1510	6010B
Barium	0.419	P7	0.0020	0.0005	mg/L	1.00	11/17/10 21:01	AMH	10K1510	6010B
Cadmium	0.0004	J, P7	0.0010	0.0003	mg/L	1.00	11/17/10 21:01	AMH	10K1510	6010B
Lead	0.0050	P7	0.0050	0.0030	mg/L	1.00	11/17/10 21:01	AMH	10K1510	6010B
Sample ID: RTK1123-06 (GP-4 - Wate	r)			Sam	pled: 11	/ 12/10 13: 00	Recy	/d: 11/13/1	10 0 9: 30
Votatile Organic Compou	unds by EPA	A 8260B								
1,2-Dichloroethene, Totat	8.2		2.0	0.70	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
cis-1,2-Dichloroethene	8.2		1.0	0.81	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Trichloroethene	15		1.0	0.46	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Vinyl chloride	1.1		1.0	0.90	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Semivolatile Organics by	GC/MS									
Diethyl phthalate	0.75	J	4.9	0.22	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270 C
Di-n-butyl phthalate	0.43	J, B	4.9	0.30	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270 C

OR LEADER IN UNP ROMMENTAL THROMAG

GaiaTech Inc. 135 S. LaSalle St.	Work Order: RTK1123	Received: 11/13/10 Reported: 11/18/10 13:08
Chicago, IL 60603	Project: Poestenkill, NY Project	Reported: 11/16/10 13:08
	Project Number: [none]	

Sample Summary

Sample Identification	Lab Number	Client Matrix	Date/Time Sampled	Date/Time Received	Sample Qualifiers
GP-3 1-2	RTK1123-01	Solid	11/12/10 10:45	11/13/10 09:30	
TW-1	RTK1123-02	Water	11/12/10 09:00	11/13/10 09:30	
GP-1	RTK1123-03	Water	11/12/10 12:00	11/13/10 09:30	P18
GP-2	RTK1123-04	Water	11/12/10 12:30	11/13/10 09:30	
GP-3	RTK1123-05	Water	11/12/10 13:15	11/13/10 09:30	P18
GP-4	RTK1123-06	Water	11/12/10 13:00	11/13/10 09:30	

THE FOURTH IN TANK CHARMING TRAINING

GaiaTech Inc.			Work Order: F	RTK1123				Rece	eived: 11/	/13/10
135 S. LaSalle SI.								Repo	orted: 11	/18/10 13:08
Chicago, IL 60603			Project: Poest	enkill, NY P	roject					
			Project Numb	er: (non	e]					
			Aı	nalytical	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample (D: RTK1123-01 (0	GP-3 1-2 - So	olid)			Samp	oled: 11	/ 12/1 0 10:45	Recv	/d: 11/13/1	0 0 9: 30
Volatile Organic Compou	nds by EPA	8260B								
1,1,1-Trichloroethane	ND		5.7	0.41	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
1,1,2,2-Tetrachloroethane	ND		5.7	0.92	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
1,1,2-Trichloroethane	ND		5.7	0.74	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
1,1,2-Trichlorothfluoroeth	ND		5.7	1.3	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
ane										
1,1-Dichloroethane	ND		5.7	0.69	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
1,1-Dichloroethene	ND		5.7	0.70	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
1,2,4-Trichlorobenzene	ND		5.7	0.35	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
1,2-Dibromo-3-chloroprop	ND		5.7	2.8	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
ane										
1,2-Dibromoethane	ND		5.7	0.73	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
(EDB)										
1,2-Dichlorobenzene	ND		5.7	0.45	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
1,2-Dichloroethane	ND		5.7	0.29	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
1,2-Dichtoroethene, Total	ND		11	3.0	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
1,2-Dichloropropane	ND		5.7	2.8	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
1,3-Dichlorobenzene	ND		5.7	0.29	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
1,4-Dichlorobenzene	ND		5.7	0.80	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
2-Butanone (MEK)	ND		28	2.1	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
2-Hexanone	ND		28	2.8	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
4-Methyl-2-pentanone (MIBK)	ND		28	1.9	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
Acetone	53		28	4.8	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
Benzene	ND		5.7	0.28	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
Bromodichloromethane	ND		5.7	0.76	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
Bromoform	ND		5.7	2.8	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
Bromomethane	ND		5.7	0.51	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
Carbon disulfide	ND		5.7	2.8	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
Carbon Tetrachloride	ND		5.7	0.55	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
Chlorobenzene	ND		5.7	0.75	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
Chlorodibromomethane	ND		5.7	0.73	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
Chloroethane	ND		5.7	1.3	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
Chtoroform	ND		5.7	0.35	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
Chloromethane	ND		5.7	0.34	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
cis-1,2-Dichloroethene	ND		5.7	0.73	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
cis-1,3-Dichloropropene	ND		5.7	0.82	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
Cyclohexane	ND		5.7	0.80	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
Dichlorodifluoromethane	ND		5.7	0.47	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
Ethylbenzene	ND		5.7	0.39	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
Isopropylbenzene	ND		5.7	0.86	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
Methyl Acetate	ND		5.7	1.1	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
Methyl tert-Butyl Ether	ND		5.7	0.56	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
Methylcyclohexane	ND		5.7	0.87	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
Methylene Chloride	36		5.7	2.6	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
Styrene	ND		5.7	0.28	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
Tetrachloroethene	ND		5.7	0.76	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
Toluene	ND		5.7	0.43	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
trans-1,2-Dichtoroethene	ND		5.7	0.59	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
1rans-1,3-Dichloropropen	ND		5.7	2.5	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
e					-					
Trichloroethene	ND		5.7	1.3	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

BUL CONDER IN LAN RONARDARE ALS HAR

GaiaTech Inc. 135 S. LaSalle St.			Work Order:	RTK1123				Rece	eived: 11/	13/10 18/10 13:08
Chicago, IL 60603			Project: Poes	alenkill, NY Pr	roied			Кер		10/10/10:00
			Project Numb	per: (non	e]					
			А	nalytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTK1123-01 (GF	P-3 1-2 - So	olid) - cont.			Samp	led: 11/	12/10 10:45	Recv	/d: 11/13/1	0 09:30
Volatile Organic Compound	ds by EPA	8260B - cor	1 <u>t.</u>							
Trichlorofluoromethane	ND		5.7	0.54	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
Vinyl chloride	ND		5.7	0.69	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
Xylenes, total	340		11	0.96	ug/kg dry	1.00	11/16/10 12:30	RJ	10K1539	8260B
1,2-Dichloroe1hane-d4	113 %		Surr Limits:	(64-126%)			11/16/10 12:30	RJ	10K1539	8260B
4-Bromofluorobenzene	110 %		Surr Limits:	(72-126%)			11/16/10 12:30	RJ	10K1539	8260B
To/uene-d8	108 %		Surr Limits:	(71-125%)			11/16/10 12:30	RJ	1 <i>0K1</i> 53 9	8260B
Semivolatile Organics by G	C/MS									
2,4,5-Trichlorophenol	ND	D08	950	210	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
2,4,6-Trichlorophenol	ND	D08	950	63	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
2.4-Dimotophenol	NU	008	950	00	ug/kg ary	5.00	11/16/10 20:49	MAF	10K1500	8270C
2,4-Dinitrophenol		008	950 1900	200	ug/kg ury	5.00	11/16/10 20:49	MAE	101/1500	82700
2.4-Dinitrophene		008	950	150	ug/kg dry ug/kg dry	5.00	11/16/10 20:49	MAE	10K1500	82700
2.6-Dinitrotoluene	ND	D08	950	230	ua/ka drv	5.00	11/16/10 20:49	MAF	10K1500	8270C
2-Chloronaphthalene	ND	D08	950	64	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
2-Chlorophenol	ND	D08	950	48	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
2-Melhyinaphthalene	1100	D08	950	11	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
2-Methylphenol	ND	D08	950	29	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
2-Nitroaniline	ND	D08	1900	300	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
2-Nitrophenot	ND	D08	950	43	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
3,3-Dichlorobenzidine	ND	D08	950	830	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
3-NILIOZALINE	ND	008	1900	220	ug/kg ary	5.00	11/16/10 20:49	MAE	10K1500	8270C
4,6-Diniti 0-2-metriyiphen	ND	000	1900	330	uging diy	5.00	11/10/10/20:49	IAIYL.	101/100	02700
4-Bromophenyl phenyl	ND	D08	950	300	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
elher 4 Chiere 2 methylohongi	ND	000	050	20	un lug da i	r 00	14/40/40 00:40		401/4500	00700
4-Chloroaniline	ND	008	950	280	ug/kg ary ug/kg dor	5.00	11/10/10/20:49	MAE	10K1500	82700
4-Chlorophenyl phenyl	ND	008	950	200	ug/kg dry	5.00	11/16/10 20:49	MAF	101(1500	82700
ether		200	000	20	uging city	0.00	11/10/10 20.45	1412-0	101(1000	02700
4-Methylphenol	ND	D08	1900	53	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
4-Nitroaniline	ND	D08	1900	110	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
4-Nitrophenol	ND	D08	1900	230	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Acenaphihene	ND	D08	950	11	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Acenaphthylene	ND	D08	950	7.8	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Acetophenone	ND	008	950	49	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Atrazina		008	950	24	ug/kg ary	5.00	11/16/10 20:49		10K1500	82700
Benzaldebyde		008	950	100	ug/kg dry ug/kg dry	5.00	11/16/10 20:49		10K1500	82700
Benzo(a)anihracene	ND	D08	950	16	ug/kg dry	5.00	11/16/10 20:49	MAE	10K1500	82700
Benzo(a)pyrene	ND	D08	950	23	ua/ka dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Benzo(b)fluoranthene	ND	D08	950	18	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Benzo(ghi)perylene	ND	D08	950	11	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Benzo(k)fluoranthene	ND	D08	950	10	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Biphenyl	ND	D08	950	59	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Bis(2-chtoroethoxy)metha	ND	D08	950	52	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Bis(2-chloroethyl)ether	ND	D08	950	82	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
2,2'-Oxybis(1-Chloroprop ane)	ND	D08	950	99	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

<u>TestAmerica</u>

THE CLODER DOLLAR RONAL ADDRESS OF

GaiaTech Inc.			Work Order:	RTK1123				Rece	vived: 11	/13/10
135 S. LaSalle St.								Repo	orted: 11	/18/10 13:08
Chicago, IL 60603			Project: Poe Project Num	stenkill, NY P ber: [non	roje ci ne[
			۵	nalytical	Report					
Analyte	Sample Result	Data Qualifiers	RL.	MDI.	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTK1123-01 (0	GP-3 1-2 - S	olid) - cont.			Samp	oled: 11/	12/10 10:45	Recy	/d: 11/13/1	0 09:30
Semivolatile Organics by	GC/MS - co	ont,								
Bis(2-ethylhexyl) phthalate	13000	D08	950	310	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Butyl benzyt phthatate	ND	D08	950	250	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Caprolactam	ND	D08	950	410	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Carbazole	ND	D08	950	11	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Chrysene	ND	D08	950	9.5	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Dibenzo(a,h)anthracene	ND	D08	950	11	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Dibenzofuran	ND	D08	950	9.9	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270 C
Diethyl phihalate	ND	D08	950	29	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Dimethyl phthalate	ND	D08	950	25	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Di-n-butyl phthalate	ND	D08	950	330	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Di-n-octyl phthalate	ND	D08	950	22	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Fluoranthene	ND	D08	950	14	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Fluorene	ND	D08	950	22	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Hexachlorobenzene	ND	D08	950	47	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Hexachlorobutadiene	ND	D08	950	49	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Hexachlorocyclopentadie	ND	D08	950	290	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Hexachloroethane	ND	D08	950	73	ua/ka drv	5.00	11/16/10 20:49	MAF	10K1500	8270C
Indeno(1,2,3-cd)pyrene	ND	D08	950	26	ua/ka drv	5.00	11/16/10 20:49	MAF	10K1500	8270C
Isophorone	ND	D08	950	47	ua/ka drv	5.00	11/16/10 20:49	MAF	10K1500	8270C
Naphthalene	590	D08,J	950	16	ua/ka drv	5.00	11/16/10 20:49	MAF	10K1500	8270C
Nifrobenzene	ND	D08	950	42	ua/ka drv	5.00	11/16/10 20:49	MAF	10K1500	8270C
N-Nitrosodi-n-propylamin	ND	D08	950	75	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
e N-Nitrosodiphenylamine	ND	D08	950	52	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Pentachlorophenol	ND	D08	1900	330	ug/kg dry	5,00	11/16/10 20:49	MAF	10K1500	8270C
Phenanthrene	ND	D08	950	20	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Phenol	ND	D08	950	100	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
Pyrene	ND	D08	950	6.1	ug/kg dry	5,00	11/16/10 20:49	MAF	10K1500	8270C
Tetraethyl-Lead	ND	D08	5600	910	ug/kg dry	5.00	11/16/10 20:49	MAF	10K1500	8270C
2,4,6-Tribromophenol	131 %	 D08	Surr Limits:	(39-146%)			11/16/10 20:49	MAF	10K1500	8270C
2-Fluorobiphenyl	123 %	D08,Z2	Surr Limits:	(37-120%)			11/16/10 20:49	MAF	10K1500	8270C
2-Fluorophenol	84 %	D08	Surr Limits:	(18-120%)			11/16/10 20:49	MAF	10K1500	8270C
Nitrobenzene-d5	109 %	D08	Surr Limits:	(34-132%)			11/16/10 20:49	MAE	10K1500	8270C
Phenol-d5	105 %	D08	Surr Limits:	(11-120%)			11/16/10 20:49	MAF	10K1500	8270C
p-Terpheny/-d14	122 %	D08	Surr Limits:	(58-147%)			11/16/10 20:49	MAF	10K1500	8270C
Total Metals by SW 846 S	eries Metho)ds								
Arsenic	5.1		2.3	0.5	mg/kg dry	1.00	11/17/10 22:08	MxM	10K1516	6010B
Barium	193		0.565	0.124	mg/kg dry	1.00	11/17/10 22:08	MxM	10K1516	6010B
Cadmium	0.204	J	0.226	0.034	mg/kg dry	1.00	11/17/10 22:08	MxM	10K1516	6010B
Chromium	17.8		0.565	0.226	mg/kg dry	1.00	11/17/10 22:08	MxM	10K1516	6010B
Lead	14.6		1.1	0.3	mg/kg dry	1.00	11/17/10 22:08	MxM	10K1516	6010B
Selenium	1.1	J	4,5	0.6	mg/kg dry	1.00	11/17/10 22:08	MxM	10K1516	6010B
Silver	ND		0.565	0.226	mg/ko drv	1.00	11/17/10 22:08	MxM	10K1516	6010B
Mercury	0.0364		0.0228	0.0092	mg/kg dry	1.00	11/17/10 13:17	JRK	10K1560	7471A
General Chemistry Paran	neters									
Percent Solids	88		0.010	NR	%	1.00	11/17/10 07:14	JRR	10K1 4 93	Dry Weight

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

THE ELADER IN LNP ROTABLY AF ALS HAVE

GaiaTech Inc.	Work Order: RTK1123								Received: 11/13/10 Reported: 11/18/10 13:08		
135 S. LaSalle St.											
Chicago, IL 60603	Project: Poestenkill, NY Project							itop		10/10/10:00	
			Project Numl	ber: [non	e]						
			A	nalvtical	Report						
	Sample	Data		,		Dil	Date	Lab			
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method	
Sample ID: RTK1123-02 (TW-1 - Wate	r)			Sam	pled: 11	/ 12/10 0 9: 00	Rec	vd: 11/13/1	0 09:30	
Volatile Organic Compo	unds by EPA	8260B									
1.1.1-Trichloroethane	ND		1.0	0.82	uall	1.00	11/18/10 00.47		101/1505		
1,1,2,2-Tetrachloroethane	ND		1.0	0.02	ug/L	1.00	11/16/10 06:47		10K1505	8260B	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L	1.00	11/16/10 06:47	NMD	10/1505	82000 82600	
1,1,2-Trichlorofrifluoroeth	ND		1.0	0.31	ua/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
ane					-3-				101/1000	02000	
1,1-Dichloroethane	ND		1.0	0.38	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
1,1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
1,2-Dibromo-3-chloroprop	ND		1.0	0.39	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
ane	10										
1,2-Dibromoethane	ND		1.0	0.73	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
(EUD) 1.2-Dichlorobenzene	ND		1.0	0.70							
1.2-Dichloroethane	ND		1.0	0.79	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
1 2-Dichloroethene Total			1.0	0.21	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
1.2-Dichloropropage			2.0	0.70	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
1.3-Dichlorobenzene	ND		1.0	0.72	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
1 4-Dichlorobenzene	MD		1.0	0.70	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
2-Butanone (MEK)	ND		10	1.04	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
2-Hexanone	ND		50	1.3	ug/L	1.00	11/10/10 06:47	NMD	10K1505	8260B	
4-Melbyl-2-peptapope	ND		5.0	1.2	ug/L	1.00	11/10/10 06:47	NMD	10K1505	8260B	
(MIBK)			0.0	4 . (ugru	1.00	11/10/10 00:47	UNNU	10K1505	8260B	
Acetone	ND		10	3.0	ua/)	1.00	11/16/10 06:47	NMO	10//1605	92600	
Benzene	ND		1.0	0.41	ua/)	1.00	11/16/10 06:47	NIAAD	10/1505	0200B	
Bromodichloromethane	ND		1.0	0.39	ua/L	1.00	11/16/10 06:47	NMD	10/(1505	82608	
Bromoform	ND		1.0	0.26	ua/L	1.00	11/16/10 06:47	NMD	10/(1505	8260B	
Bromomethane	ND		1.0	0.69	ua/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
Carbon disulfide	ND		1.0	0.19	ua/L	1.00	11/16/10 06:47	NMD	10K1505	82608	
Carbon Tetrachloride	ND		1.0	0.27	ua/L	1.00	11/16/10 06:47	NMD	10K1505	82608	
Chlorobenzene	ND		1.0	0.75	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
Chlorodibromomethane	ND		1.0	0.32	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
Chloroethane	ND		1.0	0.32	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
Chloroform	ND		1.0	0.34	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
Chloromethane	ND		1.0	0.35	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
cis-1,2-Dichtoroethene	ND		1.0	0.81	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
Cyclohexane	ND		1.0	0.18	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
Dichlorodifluoromethane	ND		1.0	0.68	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
Enylbenzene	ND		1.0	0.74	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
Isopropylbenzene	ND		1.0	0.79	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
Methyl Acetate	ND		1.0	0.50	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
Methyl tert-Butyl Ether	NO		1.0	0.16	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
weinvicycionexane	ND		1.0	0.16	ug/L	1.00	11/16/10 06:47	NMD	10K1505	82 6 0B	
weinylene Chlonde	ND		1.0	0.44	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
Styrene	ND		1.0	0.73	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
Tetrachioroethene	ND		1.0	0.36	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
rowene	ND		1.0	0.51	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
iraus-1,2-Dichloroethene	ND		1.0	0.90	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
irans-1,3-Dichloropropen	ND		1.0	0.37	ug/L	1.00	11/16/10 06:47	NMD	10K1505	82 6 0B	
- Trichloroethene	ND		1.0	0.46	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
					÷ -	- +					

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

NUL STURGE IN THAT MORALING YOF FRAME

GaiaTech Inc.	Work Order: RTK1123								Received: 11/13/10		
135 S. LaSalle St.								Repo	orted: 11/	18/10 13:08	
Chicago, IL 60603			Project: Poes	tenkill, NY Pro	pject						
			Project Numb	er: [none	[
			A	nalytical F	Report						
B	Sample	Data	-			Dil	Date	Lab			
Analyte	Result	Qualifiers	RL	WDL	Units	Fac	Analyzed	Tech	Batch	Method	
Sample ID: RTK1123-02	r) - cont			Sampled: t1/12/10 09:00			Recvd: 11/13/10 09:30				
Volatile Organic Compo	unds by EPA	8260B - co	n t.								
Trichlorofluoromethane	ND		1.0	0.88	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
Vinyl chloride	ND		1.0	0.90	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
Xylenes, total	ND		2.0	0.66	ug/L	1.00	11/16/10 06:47	NMD	10K1505	8260B	
1,2-Dichloroe1hane-d4	111%		Surr Limits:	(66-137%)			11/16/10 06:47	NMD	10K1505	8260B	
4-Bromofluorobenzene	96 %		Surr Limits:	(73-120%)			11/16/10 06:47	NMD	10K1505	8260B	
Toluene-d8	105 %		Surr Limits:	(71-126%)			11/16/10 06:47	NMD	10K1505	8260B	
Semivolatile Organics b	V GC/MS										
2,4,5-Trichlorophenol	ND		4.8	0.46	ug/L	1.00	11/17/10 22:42	JLG	10K1499	8270C	
2,4,6-Trichlorophenol	ND		4.8	0.59	ug/L	1.00	11/17/10 22:42	JLG	10K1499	8270C	
2,4-Dichlorophenol	ND		4.8	0.49	ug/L	1.00	11/17/10 22:42	JLG	10K1499	8270C	
2,4-Dimethylphenol	ND		4.8	0.48	ug/L	1.00	11/17/10 22:42	JLG	10K1499	8270C	
2,4-Dinitrophenol	NU		9.6	2.1	ug/L	1.00	11/17/10 22:42	JLG	10K1499	8270C	
			4.8	0.43	ug/L	1.00	11/1//10 22:42	JLG	10K1499	8270C	
2.0-Difficionantithalane			4.8	0.38	ug/L	1.00	11/17/10 22:42	JLG	10K1499	82700	
2-Chloronbepol	ND		4.8	0.44	ug/L	1.00	11/17/10 22:42	JLG	10K1499	82700	
2-Methyloanitibalapa	ND		4.0	0.51	ug/L	1.00	11/17/10 22.42	JLG JLC	101/1499	92700	
2-Methyloheool	ND		4.0	0.38	ugru	1.00	11/17/10 22:42	JLG	10/1499	92700	
2-Nitroapiline	ND		9.6	0.30	ug/L	1.00	11/17/10 22:42	JIG	101(1499	82700	
2-Nitronhenol	ND		4.8	0.46	ug/c ug/l	1.00	11/17/10 22:42	JIG	101(1499	82700	
3.3'-Dichlorobenzidine	ND		4.8	0.38	ua/L	1.00	11/17/10 22:42	JIG	10K1499	82700	
3-Nitroaniline	ND		9.6	0.46	ua/l.	1.00	11/17/10 22:42	JLG	10K1499	8270C	
4.6-Dinifro-2-methylphen	ND		9.6	2.1	ug/L	1.00	11/17/10 22:42	JLG	10K1499	8270C	
ol					Ū.						
4-Bromophenyl phenyt ether	ND		4.8	0.43	ug/L	1.00	11/17/10 22:42	JLG	10K1499	8270C	
4-Chloro-3-methylphenot	ND		4.8	0.43	ug/L	1.00	11/17/10 22:42	JLG	10K1499	8270C	
4-Chloroaniline	ND		4.8	0.57	ug/L	1.00	11/17/10 22:42	JLG	10K1499	8270C	
4-Chlorophenyl phenyt	ND		4.8	0.34	uğ/L	1.00	11/17/10 22:42	JLG	10K1499	8270C	
einer 4-Methylohepol	ND		3.0	0.35	uoll	1.00	11/17/10 22:42	ШG	10/21/00	92700	
4-Nitroapilipe	ND		9.6	0.00	uart	1.00	11/17/10 22:42	11.G	101(1499	82700	
4-Nitrophenol	ND		9.6	1.5	ug/L	1.00	11/17/10 22:42	JIG	101(1435	82700	
Acenaphhene	ND		4.8	0.39	ua/L	1.00	11/17/10 22:42	JLG	10K1499	8270C	
Acenaphthylene	ND		4.8	0.37	ua/L	1.00	11/17/10 22:42	JLG	10K1499	8270C	
Acetophenone	ND		4.8	0,52	ua/L	1.00	11/17/10 22:42	JLG	10K1499	8270C	
Anthracene	ND		4.8	0.27	uğ/L	1.00	11/17/10 22:42	JLG	10K1499	8270C	
Atrazine	ND		4.8	0.44	ug/L	1.00	11/17/10 22:42	JLG	10K1499	8270C	
Benzaldehyde	ND		4.8	0.26	ug/L	1.00	11/17/10 22:42	JLG	10K1499	8270C	
Benzo(a)anthracene	ND		4.8	0.35	ug/L	1.00	11/17/10 22:42	JLG	10K1499	8270C	
Benzo(a)pyrene	ND		4.8	0.45	ug/L	1.00	11/17/10 22:42	JLG	10K1499	8270C	
Benzo(b)fluoranthene	ND		4.8	0.33	ug/L	1.00	11/17/10 22:42	JLG	10K1499	8270C	
Benzo(ghi)perylene	ND		4.8	0.34	ug/L	1.00	11/17/10 22:42	JLG	10K1499	8270C	
Benzo(k)fluoranthene	ND		4.8	0.70	ug/L	1.00	11/17/10 22:42	JLG	10K1499	8270C	
Biphenyl	ND		4.8	0. 6 3	ug/L	1.00	11/17/10 22:42	JLG	10K1499	8270C	
Bis(2-chloroethoxy)metha ne	ND		4.8	0.34	ug/L	1.00	11/17/10 22:42	JLG	10K1499	8270C	
Bis(2-chloroethyl)ether	ND		4.8	0.38	ug/L	1.00	11/17/10 22:42	JLG	10K1499	8270C	
2,2'-Oxybis(1-Chloroprop	ND		4.8	0.50	ug/L	1.00	11/17/10 22:42	JLG	10K1499	8270C	
ane)											

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 7 t6-691-2600 fax 716-691-7991

www.testamericainc.com

TestAmeric

THE CLADER IN UND RODOLOGICE LEGISLE

p-Terpherry/-d14

92 %

Work Order: RTK1123 GaiaTech Inc. 11/13/10 Received: 135 S. LaSalle St. Reported: 11/18/10 13:08 Chicago, IL 60603 Project: Poestenkill, NY Project Project Number: [none[Analytical Report Sample Data Dil Date Lab Analyte Result RL MDL Qualifiers Units Fac Analyzed Tech Batch Method Sample ID: RTK1123-02 (TW-1 - Water) - cont. Sampled: 11/12/10 09:00 Recvd: 11/13/10 09:30 Semivolatile Organics by GC/MS - cont. Bis(2-ethylhexyl) ND 4.8 1.7 1.00 ug/L 11/17/10 22:42 JLG 10K1499 8270C phthalate Butyl benzyl phthatate ND 4.8 0.40 ug/L 1.00 11/17/10 22:42 8270C JLG 10K1499 Caprolactam ND 4.8 2.1 ug/L 1.00 11/17/10 22:42 JLG 10K1499 8270C Carbazole ND 4.8 0.29 ug/L 1.00 11/17/10 22:42 JLG 10K1499 8270C Chrysene ND 4.8 0.32 ug/L 1.00 11/17/10 22:42 JLG 10K1499 8270C Dibenzo(a,h)anthracene ND 4.8 0.40 ug/L 1.00 11/17/10 22:42 JLG 10K1499 8270C Dibenzofuran ND 9.6 0.49ug/L 1.00 11/17/10 22:42 JLG 10K1499 8270C Diethyl phthalate ug/L ND 4.8 0.21 1.00 11/17/10 22:42 JLG 10K1499 8270C Dimethyl phthalate ND 4.8 0.35 ug/L 1.00 11/17/10 22:42 JLG 10K1499 8270C Di-n-bulyl phthalate ND 4.8 0.30 ug/L 1.00 11/17/10 22:42 JLG 10K1499 8270C Di-n-octyl phihalate ND 4.8 0.45 ug/L 1.00 11/17/10 22:42 JLG 10K1499 8270C Fluoranthene ug/L ND 4.8 0.38 1.00 11/17/10 22:42 10K1499 JLG 8270C Fluorene ND 4.8 0.35 ug/L 1.00 11/17/10 22:42 JLG 10K1499 8270C Hexachlorobenzene ND 4.8 0.49 ug/L 1.00 11/17/10 22:42 10K1499 JLG 8270C Hexachlorobutadiene ND 4.8 0.65 ug/L 1.00 11/17/10 22:42 JLG 10K1499 8270C ND Hexachlorocyclopentadie 4.8 0.57 ug/L 1.00 11/17/10 22:42 JLG 10K1499 8270C ne Hexachloroethane ND 4.8 0.57 ug/L 1.00 11/17/10 22:42 JLG 10K1499 8270C Indeno(1,2,3-cd)pyrene ND ug/L 4.8 0.45 1.00 11/17/10 22:42 JLG 10K1499 8270C Isophorone ND 4.8 0.41 ug/L 1.00 11/17/10 22:42 JLG 10K1499 8270C Naphthalene ND 4.8 0.73 ug/L 1.00 11/17/10 22:42 JLG 10K1499 8270C Nitrobenzene ND 48 0.28ug/L 1.00 11/17/10 22:42 JLG 10K1499 8270C N-Nitrosodi-n-propylamin ND 4.8 0.52 ug/L 1.00 11/17/10 22:42 JLG 10K1499 8270C e N-Nifrosodiphenylamine ND 4.8 0.49 ug/L 1.00 11/17/10 22:42 JLG 10K1499 8270C Pentachlorophenol ug/L ND 9.6 2,1 1.00 11/17/10 22:42 JLG 10K1499 8270C Phenanthrene ND 4.8 0.42 ug/L 1.00 11/17/10 22:42 JLG 10K1499 8270C Phenol ND 4.8 0.38 ug/L 1.00 11/17/10 22:42 JLG 10K1499 8270C Pyrene ND 4.8 0.33 ug/L 1.00 11/17/10 22:42 JLG 10K1499 8270C 2,4,6-Tribromophenol 103 % Surr Limits: (52-132%) 11/17/10 22:42 JLG 10K1499 8270C 2-Fluorobiphenyl 81 % Surr Limits: (48-120%) 11/17/10 22:42 JLG 10K1499 8270C 2-Fluorophenol 43 % Surr Limits: (20-120%) 11/17/10 22:42 JLG 10K1499 8270C Nitroberizene-d5 78 % Surr Lími/s: (46-120%) 11/17/10 22:42 JLG 10K1499 8270C Phenol-d5 32 % Surr Limits: (16-120%) 11/17/10 22:42 JLG 10K1499 8270C

Surr Limits: (24-136%)

11/17/10 22:42 JLG

10K1499

8270C

THE LEADER IN UNVIRONMENTAL TESTING

GaiaTech Inc. Work Order: RTK1123 Received: 11/13/10 135 S. LaSalle St. Reported: 11/18/10 13:08 Chicago, IL 60603 Project: Poestenkill, NY Project Project Number: [none] Analytical Report Sample Dil Data Date Lab Analyte RL MDL Result Units Qualifiers Fac Analyzed Tech Batch Method Sample ID: RTK tt23-03 (GP-1 - Water) Sampled: tt/t2/t0 t2:00 Recvd: tt/t3/t0 09:30 Volatile Organic Compounds by EPA 8260B 1.1.1-Trichloroethane ND 1.0 0.82 ug/L 1.00 11/16/10 07:10 NMD 10K1505 8260B 1.1.2.2-Tetrachloroethane ND 1.00 1.0 0.21 ug/L 11/16/10 07:10 NMD 10K1505 8260B ug/L 1,1,2-Trichloroethane ND 1.0 0.23 1.00 11/16/10 07:10 NMD 10K1505 8260B 1,1.2-Trichlorotrifluoroeth ND 0.31 1.0 ug/L 1.00 11/16/10 07:10 NMD 10K1505 8260B ane 1,1-Dichloroethane ND 1.0 0.38 ug/L 1.00 11/16/10 07:10 NMD 10K1505 82608 1,1-Dichloroethene ND 1.0 0.29 uq/L 1.00 11/16/10 07:10 NMD 10K1505 82608 1,2,4-Trichlorobenzene ND 1.0 0.41 ug/L 1.00 11/16/10 07:10 NMD 82608 10K1505 ND 1,2-Dibromo-3-chloroprop 1.0 0.39 ug/L 1.00 11/16/10 07:10 NMD 10K1505 8260B ane ND 1,2-Dibromoethane 1.0 0.73 ug/L 1.00 11/16/10 07:10 NMD 10K1505 8260B (EDB) 1.2-Dichlorobenzene ND 0.79 1.0 ug/L 1.00 11/16/10 07:10 NMD 10K1505 8260B 1,2-Dichloroethane ND 1.0 0.21 ug/L 1.00 11/16/10 07:10 NMD 10K1505 8260B 1.2-Dichloroethene, Total ND 2.00.70 ug/L 1.00 11/16/10 07:10 NMD 10K1505 8260B 1,2-Dichloropropane ND 1.0 0.72 ug/L 1.00 11/16/10 07:10 NMD 10K1505 8260B 1,3-Dichlorobenzene ND 0.78 1.0 ug/L 1.00 11/16/10 07:10 NMD 10K1505 82608 1,4-Dichtorobenzene ND 1.0 0.84 ug/L 1.00 11/16/10 07:10 NMD 10K1505 82608 2-Butanone (MEK) ND 10 1.3 ug/L 1.00 11/16/10 07:10 NMD 10K1505 82608 ug/L 2-Hexanone ND 5.0 1.2 1.00 11/16/10 07:10 NMD 10K1505 82608 4-Methyl-2-pentanone ND 5.0 2.1ug/L 1.00 11/16/10 07:10 NMD 10K1505 8260B (MIBK) ND Acetone 10 3.0 ug/L 1.00 11/16/10 07:10 NMD 8260B 10K1505 Benzene ND 1.0 0.41 ug/L 1.00 11/16/10 07:10 NMD 10K1505 8260B Bromodichloromethane ND 1.0 0.39 ug/L 1.00 11/16/10 07:10 NMD 10K1505 8260B Bromoform ND 1.0 0.26 ug/L 1.00 11/16/10 07:10 NMD 10K1505 8260B **Bromomethane** ND 1.0 0.69 ug/L 1.00 11/16/10 07:10 NMD 10K1505 8260B Carbon disulfide ND 1.0 0.19 ug/L 1.00 11/16/10 07:10 NMD 10K1505 8260B Carbon Tetrachloride ND 1.0 0.27 ug/L 1.00 11/16/10 07:10 NMD 10K1505 8260B Chlorobenzene ND 1.0 0.75 ug/L 1.00 11/16/10 07:10 NMD 10K1505 8260B ug/L Chlorodibromomethane ND 1.0 0.32 1.00 11/16/10 07:10 NMD 10K1505 8260B Chloroethane ND 1.0 0.32 ug/L 1.00 11/16/10 07:10 NMD 10K1505 8260B Chloroform ND 1.0 0.34 ug/L 1.00 11/16/10 07:10 NMD 10K1505 8260B Chloromethane ND 1.0 0.35 ug/L 1.00 11/16/10 07:10 NMD 10K1505 8260B cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 1.00 11/16/10 07:10 NMD 10K1505 8260B cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 1.00 11/16/10 07:10 NMD 10K1505 8260B Cyclohexane ND 1.0 0.18 ug/L 1.00 11/16/10 07:10 NMD 10K1505 8260B **Dichlorodifluoromethane** ND 1.0 ug/L 0.68 1.00 11/16/10 07:10 NMD 10K1505 8260B 11/16/10 07:10 NMD Ethylbenzene ND 1.0 0.74 ug/L 1.00 10K1505 82608 Isopropylbenzene ND 1.0 0.79 ug/L 1.00 11/16/10 07:10 NMD 10K1505 82608 Methyl Acetate ND 1.0 0.50 ug/L 1.00 11/16/10 07:10 NMD 10K1505 82608 Methyl tert-Butyl Ether ND 1.0 0.16 ug/L 1.00 11/16/10 07:10 NMD 10K1505 82608 Methylcyclohexane ND 1.0 0.16 1.00 ug/L 11/16/10 07:10 NMD 10K1505 82608 Methylene Chloride ND 1.0 0.44 ug/L 1.00 11/16/10 07:10 NMD 10K1505 82608 Styrene ND 1.0 0.73 ug/L 1.00 11/16/10 07:10 NMD 10K1505 82608 Tetrachloroethene ND 1.00.36 ug/L 1.00 11/16/10 07:10 NMD 10K1505 8260B Totuene ND 1.0 0.51 1.00 ug/L 11/16/10 07:10 NMD 10K1505 8260B 1rans-1,2-Dichloroethene ND 1.0 0,90 ug/L 1.00 11/16/10 07:10 NMD 10K1505 8260B 1rans-1,3-Dichloropropen ND 1.0 0.37 1.00 ug/L 11/16/10 07:10 NMD 10K1505 8260B e Trichloroethene ND 1.0 0.46 ug/L 1.00 11/16/10 07:10 NMD 10K1505 8260B

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 7t6-69t-2600 fax 716-69t-799t

THE ECADER IN THAIRCRAFTING VELOCIARS

GaiaTech Inc.			Work Order:	RTK1123				Rec	eived 11/	13/10
135 S. LaSalle St.								Ren	orted: 11/	18/10 13:08
Chicago, IL 60603			Project: Poe	stenkill, NY Pr	oject			p		10/10/10:00
			Project Num	ber: [non	e]					
				nalytical l						
	Samole	Data	· · · ·	hiaiyucari	report	50	0.4			
Analyte	Result	Qualifiers	RL	MDL	Units	Eac	Date Analyzed	Lab	Ratch	Method
Sample ID: RTK1123-03	[GP-1 - Water) - cont.			Sam	nled: 11	112110 +2:00	Baa		0.00-20
	• • •				Can	preu. II	12/10 (2,00	nec	vu: [[/]]j/[0.09:30
Volatile Organic Compo	ounds by EPA	8260B - co	n t .							
Visual estanda	ND		1.0	0.88	ug/L	1.00	11/16/10 07:10	NMD	10K1505	8260B
Valyi Chionde	ND		1.0	0.90	ug/L	1.00	11/16/10 07:10	NMD	10K1505	8260B
Aylenes, total			2.0	0.66	ug/L	1.00	11/16/10 07:10	NMD	10K1505	8260B
1,2-Dichloroethane-d4	111 %		Surr Limits:	(66-137%)			11/16/10 07:10	NMD	10K1505	8260B
4-Bromofluorobenzene	93 %		Surr Limits:	(73-120%)			11/16/10 07:10	NMD	10K1505	8260B
Toluene-d8	101 %		Surr Limits:	(71-126%)			11/16/10 07:10	NMD	10K1505	8260B
Semivolatile Organics b	<u>y GC/MS</u>									
2,4,5-Trichlorophenol	ND		4.7	0.45	uo/L	1.00	11/17/10 23:06	ШG	10//1400	01700
2,4,6-Trichlorophenol	ND		4.7	0.58	ug/L	1.00	11/17/10 23:06	11.0	1061499	92700
2,4-Dichlorophenol	ND		4.7	0.48	ua/L	1.00	11/17/10 23:06	JLG	101/1499	82700
2,4-Dimethylphenot	ND		4.7	0.47	ug/L	1.00	11/17/10 23:06	JIG	101(1499	82700
2,4-Dinitrophenot	ND		9.4	2,1	ua/L	1.00	11/17/10 23:06	JIG	101(1400	82700
2,4-Dinitrotoluene	ND		4.7	0.42	ua/L	1.00	11/17/10 23:06	JIG	101(1409	82700
2,6-Dinitrotoluene	ND		4.7	0.38	ug/L	1.00	11/17/10 23:06	JIG	101(1499	82700
2-Chloronaphthalene	ND		4,7	0.43	ug/L	1.00	11/17/10 23:06	JIG	101(1400	82700
2-Chlorophenol	ND		4.7	0.50	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
2-Methylnaphthalene	ND		4,7	0.57	ug/L	1.00	11/17/10 23:06	JLG	10K1499	82700
2-Methylphenol	ND		4.7	0.38	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
2-Nitroaniline	ND		9.4	0.40	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
2-Nitrophenol	ND		4.7	0.45	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
3,3'-Dichlorobenzidine	ND		4.7	0.38	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
3-Nitroaniline	ND		9.4	0.45	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
4.6-Dinitro-2-methylphen	ND		9.4	2.1	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
4-Bromophenyl phenyl	NĎ		4.7	0.42	ua/L	1.00	11/17/10 23:06	JIG	101/1499	82700
ether					-3			0	10111-03	02/00
4-Chloro-3-methylphenol	ND		4.7	0.42	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
4-Chloroaniline	ND		4.7	0.56	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
4-Chlorophenyl phenyl	ND		4.7	0.33	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
ether										
4-Methylphenot	ND		9.4	0.34	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
4-Nitroaniline	7.7	Ĵ	9.4	0.24	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
4-Nitrophenol	ND		9.4	1.4	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
Acenaphthene	ND		4.7	0.39	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
Acenapminylene	ND		4.7	0.36	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
Acetophenone	ND		4.7	0.51	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
Aninracene	ND		4.7	0.26	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
Arazine	ND		4.7	0.43	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
Benzaldenyde	ND		4.7	0.25	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
Benzo(a)anthracene	ND		4.7	0.34	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
Denzo(a)pyrene	ND		4.7	0.44	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
Benzo(p)nuoranthene	ND		4.7	0.32	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
Benzo(gni)perviene	ND		4.7	0.33	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
Denizo(K)nuoranmene Riebeeut	ND		4.7	0.69	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
	ND		4.7	0.62	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
i⇔is(∠-chioroeinoxy)metha ne	ND		4.7	0.33	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
Bis(2-chloroethyl)ether	ND		4.7	0.38	наЛ	1.00	11/17/10 22:06	ПĊ	101/1400	93700
2,2'-Oxybis(1-Chloroprop	ND		4.7	0.49	ug/L	1.00	11/17/10 23:08	JLG	10/(1499	92700
ane)					-3			0.0	10111100	02700

TestAmerica Buffalo - t0 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

OR TONDER DE PAR MONARMENT DE LAR

GaiaTech Inc.			Work Order	RTK1123				Rec	eived: 11/	13/10
135 S. LaSalle St.								Pen	orted: 11/	18/10 13:08
Chicago, IL 60603			Project: Poe	stenkill. NY P	roiect			ПСр	onea	10/10/10:00
			Project Num	iber: [non	e]					
			,	Analytical	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL.	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTK1123-03	(GP-1 - Wate	r) - cont.			Sam	pled: 11	/12/10 12:00	Rec	vd. 11/13/1	00.30
Semivolatile Organice b						p.cu. 11		Nec	vu. 11/10/10	103.30
Bie (2 othulhosul)	ND	AIL .	4 7	47						
ohthalate	ND		4.7	1.7	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
Butyl benzyl phthalate	ND		4.7	0.40	tia/l	1.00	11/17/10 23:06	II G	1081400	92700
Caprolactam	ND		4.7	2.1	U0/I	1.00	11/17/10 23:06	11.0	101(1499	92700
Carbazole	ND		4.7	0.28	ug/L	1.00	11/17/10 23:08	.11 G	101(1455	82700
Chrysene	ND		4.7	0.31	ua/L	1.00	11/17/10 23:06	JLG	10/(1499	82700
Dibenzo(a,h)anthracene	ND		4.7	0.40	ua/l	1.00	11/17/10 23:06	II G	101(1499	82700
Dibenzofuran	ND		9,4	0.48	ug/L	1.00	11/17/10 23:06	JLG	101(1499	82700
Diethyl phthalate	1.4	J	4.7	0.21	- <u>3</u> .= ua/l	1 00	11/17/10 23:06	16	101(1400	82700
Dimethyt phthalate	ND		4.7	0.34	ua/l	1 00	11/17/10 23:06	JLC II G	101(1499	82700
Di-n-butyl phthalate	0.75	J. B	4.7	0.29	ua/l	1 00	11/17/10 23:06	11 G	10/(1400	82700
Di-n-octyl phthatate	ND		4.7	0.44	ua/l	1.00	11/17/10 23:06	11.6	10/(1400	02700
Fluoranthene	ND		4.7	0.38	Ua/)	1.00	11/17/10 23:06	11.0	101(1499	82700
Fluorene	ND		4.7	0.34	ua/l	1 00	11/17/10 23:06	JLG	101(1499	82700
Hexachlorobenzene	ND		4.7	0.48	ug/L	1.00	11/17/10 23:06	11.0	101/1499	82700
Hexachlorobutadiene	ND		4.7	0.64	ua/l	1.00	11/17/10 23:06	JLG	10/(1400	92700
Hexachlorocyclopentadie	ND		4.7	0.56	ug/L	1.00	11/17/10 23:06	3EG	10/(1499	92700
ne				0.00	09.0	1.00	111110 20.00	31.0	10/1499	02700
Hexachloroethane	ND		4,7	0.56	ua/L	1.00	11/17/10 23:06	JI G	10//1400	82700
Indeno(1,2,3-cd)pyrene	ND		4.7	0.44	ua/L	1.00	11/17/10 23:06	JIG	101(1499	82700
Isophorone	ND		4.7	0.41	-g	1.00	11/17/10 23:06	JIG	101/1499	82700
Naphthalene	ND		4.7	0.72	ua/L	1.00	11/17/10 23:06	.# G	10101400	82700
Nitrobenzene	ND		4.7	0.27	ua/L	1.00	11/17/10 23:06	JIG	101(1499	82700
N-Nitrosodi-n-propytamin	ND		4.7	0.51	ua/l	1.00	11/17/10 23:06	JIG	101(1400	82700
e				-				020	101(1+55	02700
N-Nitrosodiphenylamine	ND		4.7	0.48	ua/L	1.00	11/17/10 23:06	JIG	1081499	8270C
Pentachloropheno!	ND		9.4	2.1	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
Phenanthrene	ND		4.7	0.42	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
Phenol	ND		4.7	0.37	ug/L	1.00	11/17/10 23:06	JLG	1061499	82700
Pyrene	ND		4.7	0.32	ug/L	1.00	11/17/10 23:06	JLG	10K1499	8270C
2,4,6-Tribromophenol	66 %		Surr Limits:	(52-132%)			11/17/10 23:06	JLG	10K1499	82700
2-Fluorobiphenyl	84 %		Surr Limils:	(48-120%)			11/17/10 23:06	JI G	10//1409	8270C
2-Fluorophenol	43 %		Surr Limits:	(20-120%)			11/17/10 23:06	JIG	10/(1499	82700
Nitrobenzene-d5	85 %		Surr Limits:	(46-120%)			11/17/10 23:06	JIG	10//1/00	82700
Phenol-d5	34 %		Surr Limits:	(16-120%)			11/17/10 23:06	JG	10/(1400	82700
p-Terphenyl-d14	52 %		Surr Limits:	(24-136%)			11/17/10 23:06	JLG	10K1499	8270C
Dissotved Metals by SW	846 Series M	ethods								
Arsenic	ND	P7	0.0100	0.0056	mo/l	1 00	11/17/10 20-69		10//1610	60400
Barium	0.0404	P7	0.0020	0.0005	ma/l	1.00	11/17/10 20.00		101(1310	00105
Cadmium	ND	P7	0.0020	0.0000	mati	1.00	11/17/10 20:08		10//1510	0010B
Chromium	ND	P7	0.0010	n 00000	ma/L	1.00	11/17/10 20:00		10//1510	DUTUE
Lead	ND	P7	0.0040	0.0009	mg/L	1.00	11/17/10/20:58	AWIN	10K1510	6010B
Seleníum	ND	P7	0.0000	0.0000	mg/L	1.00	11/17/10 20:58	AME	10/(1510	00108
Silver	ND	P7	0.0130	0.0007	mg/L mg/l	1.00	11/17/10 20:58		101(1510	0010B
Mercury	ND		0.0000	0.0017	mg/L	1.00	11/17/10/20:58	AMH	10K1510	6010B
			0.0002	0.0001	mg/c	1.00	11/17/10 13:18	JKK	10K1557	747UA

<u>TestAmerica</u>

THE CLADER IN THE PRONUMENTAL TERMS

GaiaTech Inc. 135 S. LaSalle St. Chicago, IL 60603 Work Order: RTK1123

Received: 11/13/10 Reported: 11/18/10 13:08

Project: Poestenkill, NY Project Project Number: [none]

			А	nalytical F	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RĻ	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTK1123-04 (0	GP-2 - Wate	r)			Samı	pled: 11/	12/10 12: 30	Rect	vd: 11/13/10	0 0 9: 30
Volatile Organic Compou	nds by EPA	8260B								
1,1,1-Trichloroelhane	NÐ		1.0	0.82	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
1,1.2-Trichloroethane	ND		1.0	0.23	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
1,1,2-Trichlorolrifluoroeth	ND		1.0	0.31	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
ane										
1,1-Dichloroethane	ND		1.0	0.38	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
1,1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
1,2-Dibromo-3-chloroprop	ND		1.0	0.39	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
ane 1,2-Dibromoethane	ND		1.0	0.73	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
(EDB)										
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
1,2-Dichloroethane	ND		1.0	0.21	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
1,2-Dichloroethene, Total	ND		2.0	0.70	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
1,2-Dichloropropane	ND		1.0	0.72	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
2-Bulanone (MEK)	ND		10	1.3	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
2-Hexanone	ND		5.0	1.2	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
Acetone	ND		10	3.0	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
Benzene	ND		1.0	0.41	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
Bromodichloromethane	ND		1.0	0.39	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
Bromoform	ND		1.0	0.26	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
Bromomethane	ND		1.0	0.69	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
Carbon disulfide	ND		1.0	0.19	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
Carbon Tetrachloride	ND		1.0	0.27	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
Chlorobenzen e	ND		1.0	0.75	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
Chlorodibromomethane	ND		1.0	0.32	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
Chloroethane	ND		1.0	0.32	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
Chloroform	ND		1.0	0.34	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
Chloromethane	ND		1.0	0.35	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
Cyclohexane	ND		1.0	0.18	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
Dichlorodifluoromethane	ND		1.0	0.68	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
Elhylbenzene	ND		1.0	0.74	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
Isopropyibenzene	ND		1.0	0.79	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
Meinyl Acelaie	ND		1.0	0.50	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
Melnyi tert-Butyi Ether	ND		1.0	0.16	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
Melhylcyclohexane	ND		1.0	0.16	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
Methylene Chloride	ND		1.0	0.44	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
Styrene	ND		1.0	0.73	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
l eirachloroethene	ND		1.0	0.36	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
loiuene	ND		1.0	0.51	ug/Ł	1.00	11/16/10 07:33	NMD	10K1505	8260B
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
trans-1,3-Dichloropropen e	ND		1.0	0.37	ug/Ł	1.00	11/16/10 07:33	NMD	10K1505	8260B
Trichloroethene	ND		1.0	0.46	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

DRETCHDER IN TAXINGUIRNEYE FORDAR

GaiaTech Inc.			Work Order: F	RTK1123				Rece	eived: 11/	13/10
135 S. LaSalle St.								Rep	orted: 11/	18/10 13:08
Chicago, IL 60603			Project: Poes	tenkill, NY Pro	oject					
			Project Numb	er: (none	1					
			A	nalytical F	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL.	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTK1123-04 (GP-2 - Water	r) - cont.			Sam	pled: 11/	12/10 12:30	Recy	/d: 11/13/1	0 0 9:30
Volatile Organic Compo	unds by EPA	8260B - co	<u>nt.</u>							
Trichlorofluoromethane	ND		1.0	0.88	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
Vinyl chloride	ND		1.0	0.90	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
Xylenes, total	ND		2.0	0.66	ug/L	1.00	11/16/10 07:33	NMD	10K1505	8260B
1,2-Dichloroethane-d4	112 %		Surr Limi/s:	(65-137%)			11/16/10 07:33	NMD	10K1505	82608
4-Bromofluorobenzene	99 %		Surr Limits:	(73-120%)			11/16/10 07:33	NMD	10K1505	8260B
Toluene-d8	108 %		Surr Limits:	(71-126%)			11/16/10 07:33	NMD	10K1505	8260 <i>B</i>
Semivolatile Organics b	y GC/MS									
2,4,5-Trichlorophenol	ND		4.8	0.46	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
2,4,6-Trichlorophenol	ND		4.8	0.59	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
2,4-Dichlorophenol	ND		4.8	0.49	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
2,4-Dimethylphenot	ND		4.8	0.48	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
2,4-Dinitrophenol	ND		9.6	2.1	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
2,4-Dinitrotoluene	ND		4.8	0.43	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
2,6-Oinitrotoluene	ND		4.8	0.38	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
2-Chloronaphthalene	ND		4.8	0.44	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
2-Chlorophenol	ND		4.8	0.51	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
2-Methylnaphthalene	ND		4.8	0.58	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
2-Methylphenol	ND		4.8	0.38	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
2-Nitroaniline	ND		9.6	0.40	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
2-Nitrophenot	ND		4.8	0.46	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
3,3-Dichlorobenzidine	ND		4.8	0.38	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
3-Nitroaniline	ND		9.6	0.46	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
4,6-Dinitro-2-methylphen	ND		9.0	2.1	ug/L	1.00	11/17/10 23:29	JEG	10/(1499	82700
4-Bromophenyl phenyl	ND		4,8	0.43	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
ether	200					4.00				
4-Chloro-3-methylphenol	ND		4.8	0.43	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
4-Chioroaniline	ND		4.8	0.57	ug/L	1.00	11/1//10 23:29	JLG	10K1499	8270C
4-Chiorophenyi phenyi	IND		4.8	0.34	ug/L	1.00	11/17/10 23:29	JLG	108(1499	82700
4-Methylphenol	ND		96	0.35	ua/l	1.00	11/17/10 23:29	.1LG	101/1499	8270C
4-Nitroaniline	3.9	.1	9.6	0.24	ug/L	1.00	11/17/10 23:29	JIG	10/(1400	82700
4-Nitrophenol	ND	-	9.6	1.5	ua/L	1.00	11/17/10 23:29	JIG	10K1499	8270C
Acenaphthene	ND		4.8	0.39	ua/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
Acenaphthylene	ND		4.8	0.37	ua/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
Acetophenone	ND		4.8	0.52	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
Anthracene	ND		4.8	0.27	ug/L	1.00	11/17/10 23:29	JLG	1 0 K1499	8270C
Atrazine	ND		4.8	0.44	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
Benzaldehyde	ND		4.8	0.26	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
Benzo(a)anthracene	ND		4.8	0.35	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
Benzo(a)pyrene	ND		4.8	0.45	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
Benzo(b)fluoranthene	ND		4.8	0.33	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
Benzo(ghi)perylene	ND		4.8	0.34	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
Benzo(k)fluoranthene	ND		4.8	0.70	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
Biphenyl	ND		4.8	0.63	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
Bis(2-chloroethoxy)metha	ND		4.8	0.34	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
Bis(2-chloroethvt)ether	ND		4.8	0.38	ua/l	1.00	11/17/10 23:29	JIG	10/(1499	8270C
2,2'-Oxybis(1-Chloroprop	ND		4.8	0.50	ua/L	1.00	11/17/10 23:29	JLG	10K1499	8270C
ane)				-						

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 1el 716-691-2600 fax 716-691-7991

THE ELADER IN THE PROPERTY ALL TRADING

GaiaTech Inc. 135 S. LaSalle St. Chicago, IL 60603 Work Order: RTK1123

Reported:

11/13/10 Received: 11/18/10 13:08

Project: Poestenkill, NY Project Project Number: [none]

	Analytical Report												
	Sample	Data				Dil	Date	Lab					
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method			
Sample ID: RTK1123-04 (GP-2 - Wate	r) - cont.			Sam	pled: 11/	12/10 12:30	Rec	vd: 11/13/1	0 09:30			
Semivolatile Organics by	<u>y GC/MS - co</u>	ont.											
Bis(2-ethylhexyl)	ND		4.8	1.7	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270 C			
prinalate Rutul benzul abtibalate	٨Ю			0.40		4.00	44/47/40 00.00		40144400				
Contologiam	ND		4.0	0.40	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C			
Carbarele			4.8	2.1	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C			
Carbazoie	NU		4.8	0.29	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C			
Chrysene	NU		4.8	0.32	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C			
Dipenzo(a,n)amnracene	ND		4.8	0.40	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C			
Dipenzoruran	ND		9.6	0,49	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C			
Dietnyt phinatale	0.53	J	4.8	0.21	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C			
Dimethyl phihalate	ND		4.8	0.35	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C			
Di-n-butyl phihalate	0.48	J, B	4,8	0.30	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C			
Di-n-octyl phihalate	ND		4.8	0.45	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C			
Fluoranthene	ND		4.8	0.38	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C			
Fluorene	ND		4.8	0.35	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C			
Hexachlorobenzene	ND		4.8	0.49	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C			
Hexachlorobutadiene	ND		4.8	0.65	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C			
Hexachlorocyclopentadie	ND		4.8	0.57	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C			
ne													
Hexachloroethane	ND		4,8	0.57	ug/L	1,00	11/17/10 23:29	JLG	10K1499	8270C			
Indeno(1,2,3-cd)pyrene	ND		4.8	0.45	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C			
tsophorone	ND		4.8	0.41	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C			
Naphthatene	ND		4.8	0.73	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C			
Nitrobenzene	ND		4.8	0.28	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270 C			
N-Nitrosodi-n-propylamin	ND		4.8	0.52	ug/L	1,00	11/17/10 23:29	JLG	10K1499	8270C			
ê													
N-Nitrosodiphenylamine	ND		4,8	0.49	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C			
Pentachlorophenol	ND		9.6	2.1	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C			
Phenanthrene	ND		4.8	0.42	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C			
Phenol	ND		4.8	0.38	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C			
Pyrene	ND		4.8	0.33	ug/L	1.00	11/17/10 23:29	JLG	10K1499	8270C			
2,4,6-Tribromophenol	53 %		Surr Limits:	(52-132%)			11/17/10 23;29	JL.G	10K1499	8270C			
2-Fluorobiphenyl	79 %		Surr Limits:	(48-120%)			11/17/t0 2 3 :29	JLG	10 <i>K14</i> 99	8270C			
2-Fluorophenol	37 %		Surr Limits:	(20-120%)			11/17/10 23:29	JLG	10K1499	8270C			
Nitrobenzene-d5	76 %		Surr Limits:	(46-120%)			11/17/10 23:29	JLG	10K1499	8270C			
Phenol-d5	30 %		Surr Limits:	(16-120%)			1 <i>1/17/10</i> 2 3 :29	JLG	10K1499	8270C			
p-Terphenyl-d14	51 %		Surr Limits:	(24-136%)			11/17/10 23:29	JLG	10K1499	8270C			

TestAmerica

BUL CONDER IN LAW REMARKING TESTING

Work Order: RTK1123 GaiaTech Inc. Received: 11/13/10 135 S. LaSalle St. Reported: 11/18/10 13:08 Chicago, IL 60603 Project: Poestenkill, NY Project Project Number: [none] Analytical Report Sample Dif Date Data Lab MDL RŁ Analyte Result Units Fac Qualifiers Analyzed Tech Batch Method Sample ID: RTK1123-05 (GP-3 - Water) Sampled: 11/12/10 13:15 Recvd: 11/13/10 09:30 Volatile Organic Compounds by EPA 8260B 1,1,1-Trichloroethane ND 1.0 0.82 1.00 11/16/10 07:56 NMD 10K1505 8260B ug/L ND 1.00 11/16/10 07:56 NMD 1,1,2,2-Tetrachloroethane 1.0 0.21 ug/L 10K1505 8260B 1,1,2-Trichloroethane ND 1.0 0.23 1.00 NMD 8260B ug/L 11/16/10 07:56 10K1505 1,1,2-Trichlorotrifluoroeth ND 1.0 0.31 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B ane 1.1-Dichloroethane 0.55 .1 1.0 0.38 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B 1.1-Dichloroethene ND 1.0 0.29ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B 1.2.4-Trichlorobenzene ND 1.0 0.41 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B 1,2-Dibromo-3-chloroprop ND 1.0 0.39 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B ane 1.2-Dibromoethane ND 1.0 0.73 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B (EDB) 1,2-Dichlorobenzene ND 1.0 0.79 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B ND 11/16/10 07:56 NMD 1,2-Dichloroethane 1.0 0.21 ug/L 1.00 10K1505 8260B 1,2-Dichloroethene, Total 1.8 J 2.0 0.70 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B 1,2-Dichloropropane ND 1.0 0.72 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B 1,3-Dichlorobenzene ND 1.0 0.78 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B 1,4-Dichlorobenzene ND 1.0 0.84 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B 2-Butanone (MEK) ND 10 1.3 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B 2-Hexanone ND 5.0 1.2 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B 4-Methyl-2-pentanone 2.1 ND 5.0 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B (MIBK) ND 10 3.0ug/L 1.00 11/16/10 07:56 NMD 8260B Acetone 10K1505 0.53 1.0 0.41 ug/L 1.00 11/16/10 07:56 NMD Benzene .1 10K1505 8260B Bromodichloromethane ND 1.0 0.39 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B Bromoform ND 0.26 1.00 11/16/10 07:56 10K1505 8260B 1.0 ug/L NMD Bromomethane ND 1.0 0.69 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B Carbon disulfide ND 1.0 0.19 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B Carbon Tetrachloride ND 1.0 0.27 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B Chlorobenzene ND 0.75 1.00 1.0 ug/L 11/16/10 07:56 NMD 10K1505 8260B Chlorodibromomethane ND 1.0 0.32 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B Chloroethane ND 1.0 0.32 ug/L 1.00 NMD 11/16/10 07:56 10K1505 8260B Chloroform ND 1.0 0.34 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B Chloromethane ND 1.0 0.35 1.00 11/16/10 07:56 10K1505 ug/L NMD 8260B cis-1,2-Dichloroethene 1.8 1.0 0.81 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B 1.0 ND 0.36 11/16/10 07:56 cis-1,3-Dichloropropene ug/L 1.00 NMD 10K1505 8260B Cyclohexane ND 1.0 0.18 1.00 ug/L 11/16/10 07:56 NMD 10K1505 8260B Dichlorodifluoromethane ND 1.0 0.68 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B Ethylbenzene 19 1.0 0.74 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B ND Isopropylbenzene 0.79 11/16/10 07:56 NMD 1.0 ug/L 1.00 10K1505 8260B ug/L Methyl Acetate ND 10 0.50 1.00 11/16/10 07:56 NMD 10K1505 8260B Methyl tert-Butyl Ether ND 1.0 0.16 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B Methylcyclohexane ND 0.16 1.00 11/16/10 07:56 NMD 10K1505 1.0 ug/L 8260B Methylene Chloride ND 1.0 0.44 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B Sivrene ND 1.0 0.73 1.00 NMD ug/L 11/16/10 07:56 10K1505 8260B Tetrachloroethene ND 1.0 0.36 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B Toluene 4.0 1.0 0.51 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B 1.0 1.00 trans-1,3-Dichloropropen ND 0.37ug/L 11/16/10 07:56 NMD 10K1505 8260B e Trichloroethene 2.0 1.0 0.46ug/L 1.00 11/16/10 07:56 NMD 10K1505 8260B

TestAmerica Buffalo - 10 Hazelwood Drive Amhers1, NY 14228 tel 716-691-2600 fax 716-691-7991

FOR ELADER IN UNVERSIONAL CLUTING

GalaTech Inc.			Work Order: F	RTK1123				Rece	eived: 11/	13/10
135 S. LaSalle St.				Rep	orted: 11/	18/10 13:08				
Chicago, IL 60603			Project: Poesl	enkill, NY Pro	piect					
•			Project Numb	er: [none	-j					
			Δ.	nalytical F						
	Samola	Data	A	adylical r	τεροιτ	014	Data			
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Lab Tech	Batch	Method
Sample (D: RTK1123-05 (GP-3 - Wate	r) - cont.			Sam	niade 14	149/40 49:4E	Deer	.4.41/42/4/	0.00.00
		,			Jan	pieu. Th	1210 13.13	Reci	vu: Entorn	1.03:20
Volatile Organic Compo	unds by EPA	8260B - co	n <u>t.</u>							
Trichlorofluoromethane	ND		1.0	0.88	ug/L	1.00	11/16/10 07:56	NMD	10K1505	8260B
Vinyl chloride	3.8		1.0	0.90	ug/L	1.00	11/16/10 07:56	NMD	10K1505	8260B
Xylenes, total	110		2.0	0.66	ug/L	1.00	11/16/10 07:56	NMD	10K1505	8260B
1,2-Dichloroelhane-d4	111 %		Surr Limits: ((66-137%)			11/16/10 07:56	NMD	10K1505	82608
4-Bromofiuorobenzene	115 %		Surr Limits: (73-120%)			11/16/10 07:56	NMD	10K1505	8260B
Toluene-d8	106 %		Surr Limits: (71-126%)			11/16/10 07:56	NMD	10K1505	8260B
Semivolatile Organics by	y GC/MS									
2,4,5-Trichlorophenol	ND		4.8	0.46	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
2,4,6-Trichlorophenol	ND		4.8	0.59	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
2,4-Dichlorophenol	ND		4.8	0.49	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
2,4-Dimethylphenol	7.3		4.8	0.48	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
2,4-Dinifrophenol	ND		9.7	2.1	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
2,4-Dinitrotoluene	ND		4.8	0.43	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
2,6-Dinifrotoluene	ND		4.8	0.39	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
2-Chloronaphthalene	ND		4.8	0.44	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
2-Chlorophenol	ND		4.8	0.51	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
2-Methylnaphthalene	1.5	J	4.8	0.58	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
2-Methylphenol	ND		4.8	0.39	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
2-Nitroaniline	ND		9.7	0.41	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
2-Nitrophenol	ND		4,8	0.46	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
3,3'-Dichlorobenzidine	ND		4.8	0.39	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
3-Nitroaniline	ND		9.7	0.46	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
4,6-Dinitro-2-methylphen ol	NĎ		9.7	2.1	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
4-Bromophenyl phenyl ether	NĎ		4.8	0.43	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
4-Chloro-3-methylphenol	ND		4.8	0.43	ua/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
4-Chloroaniline	ND		4.8	0.57	uq/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
4-Chlorophenyl phenyl	ND		4.8	0.34	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
A-Methylohenol	0.88	1	07	0.26	un h	1.00	11/17/10 29:59		101/1400	00700
A-Nitrophiline	ND	5	9.7	0.35	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
4 Nitrophanol	ND		9.7	1.5	Ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
Aconophenoi	ND		9.7	1.5	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
Acenaphthylene	ND		4.0	0.40	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
Acetophonone	ND		4.0 4 0	0.57	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
Anthracene	ND		4.0	0.52	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
Atrazina	ND		4.0	0.27	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
Renzaldobudo			4.0	0.44	ug/L	1.00	11/17/10 23:53	JLG	10K1499	82700
Benzo(a)enthracena	ND		4.0	0.26	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
	ND		4.0	0.35	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
Benzo(b)fluorenthono			4.8 4 0	0.45	ug/L	1.00	(1/17/10/23:53	JLG	10K1499	8270C
Banzo(abi)necidene			4.0	0.33	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
Benzo(ghi)peryiene Benzo(k)fluorenthere			4.ð	0.34	ug/L	1.00	(1/17/10/23:53	JLG	10K1499	8270C
Sinhonyl			4.8	0.71	ug/L	1.00	(1/17/10/23:53	JLG	10K1499	8270C
Dipricity)			4.8	0.63	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
ne ne	NU		4.8	0.34	ug/L	T.00	(1/17/10/23:53	JLG	10K1499	8270C
Bis(2-chloroethyl)ether	ND		4.8	0.39	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
2,2'-Oxybis(1-Chloroprop	ND		4.8	0.50	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
ane)					-					

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE CLADER IN THE REMARKMENT OF THE PARTY OF

GaiaTech Inc.			Work Orde	r: RTK1123				Ren	eived: 11/	13/10
135 S. La S alle St.								Den	orted: 11	19/10 12:09
Chicago, IL 60603			Project: Po	estenkill. NY f	Project			Veh	oneu. m	10/10 13:00
			Project Nu	nber: [no	ne]					
				Analytical	Report					
	Sample	Data		/mary tioa	report					
Analyte	Result	Ouglifiere	PI	Mini	L Ins idea	Dil	Date	Lab		
Sample ID: RTK1123.05	(GD-3 - Wata	Quanners	FX L		Units	Fac	Analyzed	Tech	Batch	Method
	GF-J- Male	y-cont			Sam	pled: 11	/12/10 13:15	Rec	vd: 11/13/1	0 09:30
Semivolatile Organics b	<u>y GC/MS - co</u>	ont.								
Bis(2-ethylhexyl)	ND		4.8	1.7	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
Butvi benzvi obihalate	ND		4.9	0.41		1.00				
Caprolactam	ND		4.0 A A	0.41	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
Carbazole	ND		4.0	2,1	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
Chrysene	ND		4.0	0.29	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
Dibenzo(a.b)anthracene	ND		4.0	0.32	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
Dibenzofuran	ND		4.0	0.41	Ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
Diethvl obthatate	0.91	1	9.7	0.48	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270 C
Dimethyl phthatate	ND	5	4.0	0.21	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
Di-n-butyl phthalate	0.88	1 R	4.0	0.35	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
Di-n-octyl phthalate	ND	0, D	4.0	0.30	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
Eluoranthene	ND		4.0	0.45	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
Fluorene	ND		4.0	0.39	ug/L	1,00	11/17/10 23:53	JLG	10K1499	8270C
Hexachlorobenzene	ND		4.0	0.35	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
Hexachlorobutadiene	ND		4.0	0.49	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
Hexachlorogyolapontodia	ND		4.8	0.66	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270 C
ne	NU		4.8	0.57	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
Hexachlomethane	NID		4.0	0 57						
Indepo(1.2.3-cd)purepa	ND		4.8	0.57	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
Isophorope	ND		4.8	0.45	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
Naphthalopo	NU 10		4.8	0.42	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270 C
Nephralene	1.9	J	4.8	0.73	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
Nilioberizene	ND		4.8	0.28	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
N-Nilfosodi-n-propylamin e	ND		4.8	0.52	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
N-Nitrosodiphenvlamine	ND		4.8	0.40	00/	1.00	11/47/10 00/50		101/1100	
Pentachlorophenol	ND		97	21	ug/L	1.00	11/17/10 23.53	JLG	10K 1499	8270C
Phenanthrene	ND		4.8	0.43	ug/L	1.00	11/1//10 23:53	JLG	10K1499	8270C
Phenol	ND		4.8	0.38	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
Pyrene	ND		48	0.30	ug/L	1.00	11/17/10 23:53	JLG	10K1499	8270C
2.4.6.Tribromonhanal	104.90			0.00	uy/L	1.00	11/1/10 23:53	JLG	10K1499	8270C
2,4,0* mbiomophendi 2-Ekiorabiohenvi	104 %		Surr Limits:	(52-132%)			11/17/10 23:53	JLG	10K1 49 9	8270C
2-Fluorophanol	0370		Surr Limits:	(48-120%)			11/17/10 23:53	JLG	10K1499	8270C
2-riuorophenor Nikohanzana dE	40.70		Sur Limits:	(20-120%)			11/17/10 23:53	ЛG	10K1 49 9	8270 C
Rhapol dE	0176		Sun Limits:	(46-120%)			11/17/10 23:53	JLG	10K1499	8270C
e Temberul di i	34 %		Surr Limits:	(16-120%)			11/17/10 23:53	JLG	10K1499	8270 C
p-rerphenyi-014	54 %		Surr Limi/s;	(24-136%)			11/17/10 23:53	JLG	10K1499	8270C
Dissolved Metals by SW	846 Series M	ethods								
Arsenic	0.0099	J, P7	0.0100	0.0056	ma/l.	1.00	11/17/10 21:01	амн	10/(1510	60100
Barium	0.419	P7	0.0020	0.0005	ma/L	1.00	11/17/10 21:01	АМН	10/(1510	60100
Cadmium	0.0004	J, P7	0.0010	0.0003	mo/l	1.00	11/17/10 21:01		10/(1610	60100
Chromium	ND	P7	0.0040	0.0009	me/l	1.00	11/17/10 21:01		10/(1010	6040D
Lead	0.0050	P7	0.0050	0.0000	mo/l	1.00	11/17/10 21:01	AMU	101(1010	6010B
Selenium	ND	P7	0.0150	0.0087	more	1.00	11/17/10 21:01		101/1510	BUTUB
Silver	ND	P7	0.0030	0.0007	09/L	1.00	11/17/10/21:01		10K1510	6010B
Mercury	ND		0.0000	0.0017	mg/c	1.00	11/17/10/21:01	AMH	10K1510	6010B
,			0.0002	0.0001	mg/t	1.00	1/1//10 13:20	JKK	10K1557	7470A

ORE FEADER IN TWA ROAMENENE LES LARS

GaiaTech Inc.			Work Order: f	RTK1123				Rec	eived: 11/	13/10
135 S. LaSalle St.								Rep	orted: 11/	18/10 13:08
Chicago, IL 60603			Project: Poes	tenkill, NY Pr	roject					
			Project Numb	er: (non	ej					
			A	nalytical	Report					
	Sample	Data			•	Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTK1123-06 (0	GP-4 - Water	г)			Sam	pled: 11	/ 12/10 13: 00	Rec	vd: 11/13/1	0 0 9:3 0
Volatile Organic Compou	nds by EPA	8260B								
1,1,1-Trichloroethane	ND		1.0	0.82	ua/!	1.00	11/16/10 12:51	н	10/(1538	8260P
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L	1.00	11/16/10 12:51	LH	10/(1538	82608
1,1,2-Trichloroethane	ND		1.0	0.23	ua/L	1.00	11/16/10 12:51	1.11	10K1538	8260B
1,1,2-Trichlorotrifluoroeth	ND		1.0	0.31	ua/L	1.00	11/16/10 12:51	LH	10K1538	8260B
ane					- 0					02000
1,1-Dichloroethane	ND		1.0	0.38	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
1,1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
1,2-Dibromo-3-chloroprop	ND		1.0	0.39	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
ane										
1,2-Dibromoethane	ND		1.0	0.73	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
(EDB)										
1,2-Dichlorobenzene	UN ND		1.0	0.79	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
1.2-Dichloroethane	ND D D		1.0	0.21	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
1.2-Dichloroemene, Iolai	8.2		2.0	0.70	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
1,2-Dichloropropane	UN D		1.0	0.72	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
1.3-Dichlorobenzene			1.0	0.78	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
2 Butanana (MEK)	ND		1.0	0.84	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
2-Dulanone (MER)			10	1.3	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
			5.0	1.2	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
(MIBK)	IND		5.0	2.1	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Acetone	ND		10	3.0	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Benzene	ND		1.0	0.41	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Bromodichloromethane	ND		1.0	0.39	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Bromoform	ND		1.0	0.26	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Bromomethane	ND		1.0	0.69	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Carbon disulfide	ND		1.0	0.19	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Carbon Tetrachloride	ND		1.0	0.27	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Chlorobenzene	ND		1.0	0.75	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Chlorodibromomethane	ND		1.0	0.32	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Chioroelhane	ND		1.0	0.32	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Chlorotorm	ND		1.0	0.34	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Chloromethane	ND		1.0	0.35	ug/L	1.00	11/16/10 12:51	LH	10K15 3 8	8260B
cis-1,2-Dichloroethene	8.2		1.0	0.81	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Cyclohexane	ND		1.0	0.18	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Dichlorodifluoromethane	ND		1.0	0.68	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Einyibenzene	ND		1.0	0.74	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Isopropyidenzene	ND		1.0	0.79	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Methyl Acerate	UN		1.0	0.50	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Mennyi tert-Bunyi Ether	UN.		1.0	0.16	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Methyloge Oblecide	UN D		1.0	0.16	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Spread	UN ND		1.0	0.44	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Stylene	UN ND		1.0	0.73	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Teluene	ND		1.0	0.36	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
			1.0	0.51	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
	UN Alto		1.0	0.90	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
irans-1,3-Dichioropropen	UNI.		1.0	0.37	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Trichloroethene	15		1.0	0.46	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B

TestAmerica Buffalo - 10 Hazetwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

BRE LUADER IN LAV REININGMAL TESTING

GaiaTech In c. 135 S . LaSalle St.			Work Order: F	RTK1123				Rece	eived: 11/	13/10 18/10 13 [.] 08
Chicago, IL 60603			Project: Poesi Project Numb	tenkill, NY Pro er: (none	oject]					
			A	nalytical F	Report					
	Sample	Data		-	• · ·	Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTK1123-06 (GP-4 - Wate	r) - cont.			Samj	pled: 11/	1 2/1 0 13:00	Recy	vd: 11/13/10	0 09: 3 0
Votatile Organic Compo	unds by EPA	8260B - co	n t.							
Trichlorofluoromethane	ND		1.0	0.88	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Vinyl chloride	1,1		1.0	0.90	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
Xylenes, total	ND		2.0	0.66	ug/L	1.00	11/16/10 12:51	LH	10K1538	8260B
1,2-Dichloroethane-d4	95 %		Surr Limits:	(66-137%)			11/16/10 12:51	LH	10K1538	82608
4-Bromofluorobenzene	98 %		Surr Limits:	(73-120%)			11/16/10 12:51	LH	10K1538	8260B
Toluene-d8	121 %		Surr Limits:	(71-126%)			11/16/10 12:51	LH	10K1538	8260B
Semivolatile Organics by	GC/MS									
2,4,5-Trichlorophenol	ND		4.9	0.47	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8 2 70C
2,4,6-Trichlorophenol	ND		4.9	0.60	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
2,4-Dichlorophenol	ND		4.9	0.50	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
2,4-Dimethylphenol	ND		4.9	0.49	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
2,4-Dinitrophenol	ND		9.8	2.2	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
2,4-Dinitrololuene	ND		4.9	0.44	ug/L	1.00	11/18/10 00:17	JLG	t0K1499	8270C
2,6-Dinitrololuene	ND		4.9	0.39	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
2-Chioronaphinaiene	ND		4.9	0.45	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
2-Chlorophenol	ND		4.9	0.52	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
2 Methylaboad	ND		4.9	0.59	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
2-Meanyphenoi 2-Miroaniline	ND		4.9	0.39	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
2-Nitronhenol	ND		3.0	0.47	ug/L	1.00	11/10/10 00:17	JLG	101(1499	02700
3 3'-Dichlorobenzidine	ND		4.5 4 Q	0.47	ug/L Hg/l	1.00	11/18/10 00:17	JLG	106 1499	92700
3-Nifroaniline	ND		9.8	0.00	ug/L	1.00	11/18/10 00:17	ILC:	10/(1499	8270C
4 6-Dinitro-2-methylphen	ND		9.8	22	ug/L	1.00	11/18/10 00:17	JLG	1011499	82700
ol				2.2	ug , E			ÚLO.	101(1-33	02700
4-Bromophenyl phenyl ether	ND		4.9	0.44	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
4-Chloro-3-methylphenol	ND		4,9	0.44	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
4-Chloroaniline	ND		4.9	0.58	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
4-Chlorophenyl phenyt	ND		4.9	0.34	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
ether										
4-Methylphenol	ND		9.8	0.35	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
4-Nitroaniline	ND		9.8	0.25	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
4-Nitrophenoi	ND		9.8	1.5	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
Acenaphinene	ND		4.9	0.40	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
Acertaphonysene	ND		4.9	0.37	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
Actionaciana	ND		4.9	0.53	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
Atrazina			4.9	0.27	ug/L	1.00	11/18/10 00:17	JLG	10K1499	82700
Benzaldehvde	ND		4.9 4 Q	0.45	ug/L	1.00	11/10/10 00:17	JLG	10K1499	82700
Benzo(a)anthracene	ND		40	0.20	ug/L	1.00	11/10/10 00:17	JLG	10/1499	02700
Benzo(a)ovrene	ND		4,5 4 Q	0.35	ug/L	1.00	11/18/10 00:17	JLG	10/1499	0270C
Benzo(b)fluoranthene	ND		49	0.33	ug/L	1.00	11/18/10 00:17	JIG	101(1499	82700
Benzo(ghi)pervlene	ND		4.9	0.34	ualt.	1.00	11/18/10 00:17	.11.6	101(1499	82700
Benzo(k)fluoranihene	ND		4.9	0.72	ua/L	1.00	11/18/10 00:17	JEG	10K1499	82700
Biphenyl	ND		4,9	0.64	ua/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
Bis(2-chloroethoxy)metha	ND		4.9	0.34	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
ne					-					
Bis(2-chloroethyt)ether	ND		4.9	0.39	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
2,2'-Oxybis(1-Chloroprop ane)	ND		4.9	0.51	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN LYNY PORTUGNERS, HUS HYNS

GaiaTech Inc. Work Order: RTK1123 135 S. LaSalle St. Chicago, IL 60603 Project: Poestenkill, NY Project Project Number: [none] **Analytical Report** Sample Data Dil Analyte Result RL MDL. Qualifiers Units Fac

Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Anatyzed	Tech	Batch	Method
Sample ID: RTK1123-06	(GP-4 - Wate	r) - com.			Sam	pted: 11	/12/10 13:00	Rec	vd: 11/13/1	0 09:30
Semivolatile Organics b	<u>y GC/MS - co</u>	<u>ont.</u>								
Bis(2-ethythexyl)	ND		4.9	1.8	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
prinalate But i bormi abitalata										
Consideration	ND		4.9	0.41	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
Capitilatian			4.9	2.2	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
Chrysope	ND		4.9	0.29	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
Dibonzo(a b)orthrasana	ND		4.9	0.32	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
Dibenzofuran	ND		4.9	0.41	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
Didenzoluran Didenzoluran	ND		9.8	0.50	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
Dienty primatate	0.75	J	4.9	0.22	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
Dimethyl phinalate	ND		4.9	0.35	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
Di-n-bulyi prinalate	0.43	J, B	4.9	0.30	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
Di-n-octyl prinatate	ND		4.9	0.46	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
Fluoranthene	ND		4.9	0.39	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
Fluorene	ND		4.9	0.35	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
Hexachlorobenzene	ND		4.9	0.50	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
Hexachlorobuladiene	ND		4.9	0.67	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
Hexachlorocyclopentadie ne	ND		4.9	0.58	ug/L	1.00	11/18/10 00:17	JLG	10K1499	8270C
Hexachloroethane	ND		4.9	0.58	ual	1.00	11/19/10 00:17	10	10//1400	00700
Indeno(1.2.3-cd)pyrene	ND		49	0.46	ug/L	1.00	11/19/10 00.17	JEG	10K1499	82700
Isophorone	ND		49	0.42	ug/L	1.00	11/10/10 00.17	JLG	10K1499	82700
Naphthalene	ND		4.9	0.75	ugrt	1.00	11/10/10 00:17	JLG	10K1499	8270C
Nitrobenzene	ND		40	0.75	ugrt	1.00	11/10/10 00:17	JLG	10K1499	82700
N-Nilrosodi-n-propylamin	ND		49	0.53	ug/c ug/l	1.00	11/10/10 00:17	JLG	10K1499	8270C
e			1.0	0.00	ugre	1.00	1110/10/00.17	JLG	10K1499	8270C
N-Nilrosodiphenylamine	ND		4.9	0.50	uoti	1.00	11/18/10 00-17	"	10//1400	00700
Pentachlorophenol	ND		98	22	ug/i	1.00	11/18/10 00:17		10/(1499	82700
Phenanihrene	ND		49	0.43	ug/L	1.00	11/19/10 00:17		10/1499	82700
Phenol	ND		4.9	0.38	ug/L	1.00	11/10/10 00.17	JLG	10K1499	82700
Pyrene	ND		4.9	0.33	ug/L	1.00	11/18/10 00:17	JLG	10K1499 10K1499	8270C 8270C
2,4,6-Tribromophenol	102 %		Surr Limits: 1	(52-132%)			11/18/10 00:17	110	10//1400	92700
2-Fluorobipheny/	74 %		Surr Limits: ((48-120%)			11/18/10 00:17	II G	10/(1-53	92700
2-Fluorophenol	33 %		Surr Limits: (20-120%)			11/18/10 00:17	JI G	10/(1499	92700
Nilrobenzene-d5	66 %		Surr Limits: (46-120%)			11/18/10 00.17	JIG	10/(1400	82700
Phenol-d5	27 %		Surr Limits: 1	16-120%)			11/18/10 00:17	11G	10/11/00	92700
p-Terpheny/-d14	59 %		Surr Umils: (24-136%)			11/18/10 00:17	JLG	10K1499	8270C

Received: 11/13/10

Reported: 11/18/10 13:08

Date

Lab

<u>TestAmerica</u>

THE LEADER IN LAW REMARKINE TRAINING

GaiaTech Inc. 135 S. LaSalle SI. Chicago, IL 60603 Work Order: RTK1123

Received: 11/ Reported: 11/

1: 11/13/10 1: 11/18/10 13:08

Project: Poestenkill, NY Project Project Number: [none]

SAMPLE EXTRACTION DATA

Burnet			Wt/Vol		Extract		_	Lab	
Parameter	Batch	Lab Number	Extracte	Units	Volume	Units	Date Prepared	Tech	Extraction Method
Dissolved Metals by SW 846	Series Methods								
6010B	10K1510	RTK1123-03	50.00	mL	50.00	mL	11/16/10 11:50	MDM	3005A
6010B	10K1510	RTK1123-05	50.00	mL	50.00	mL	11/16/10 11:50	MDM	3005A
7470A	10K1557	RTK1123-03	30.00	mL	50.00	mL	11/17/10 10:15	JRK	7470A
7470A	10K1557	RTK1123-05	30.00	mL	50.00	mL	11/17/10 10:15	JRK	7470A
General Chemistry Parameter	เร								
Dry Weight	10K1493	RTK1123-01	10.00	g	10.00	g	11/15/10 15:32	JRR	Dry Weight
Semivolatile Organics by GC/	MS								
8270C	10K1500	RTK1123-01	30.41	g	1.00	mL	11/16/10 08:00	CXM	3550B MB
8270C	10K1499	RTK1123-06	1,020.00	mL	1.00	mL.	11/16/10 10:00	JXB	3510C MB
8270C	10K1499	RTK1123-05	1,035.00	mL.	1.00	mL	11/16/10 10:00	JXB	3510C MB
8270C	10K1499	RTK1123-02	1,040.00	mL	1.00	mL.	11/16/10 10:00	JXB	3510C MB
8270C	10K1499	RTK1123-04	1,040.00	mL.	1.00	տե	11/16/10 10:00	JXB	3510C MB
8270C	10K1499	RTK1123-03	1,060.00	ու	1.00	mL	11/16/10 10:00	JXB	3510C MB
Total Metals by SW 846 Serie	s Methods								
6010B	10K1516	RTK1123-01	0.50	g	50.00	mL.	11/16/10 11:50	MDM	3050B
7471A	10K1560	RTK1123-01	0.60	g	50.00	mL.	11/17/10 11:30	JRK	7471A_
Volatile Organic Compounds I	by EPA 8260B								
8260B	10K1538	RTK1123-06	5.00	mL	5.00	mL	11/16/10 10:19	LCH	5030B MS
8260B	10K1505	RTK1123-02	5.00	mL	5.00	mL	11/15/10 19:40	NMD	5030B MS
8260B	10K1505	RTK1123-03	5.00	mĻ	5.00	mL	11/15/10 19:40	NMD	5030B M S
8260B	10K1505	RTK1123-04	5.00	mL	5.00	mL	11/15/10 19:40	NMD	5030B MS
8260B	10K1505	RTK1123-05	5.00	mL	5.00	mL	11/15/10 19:40	NMD	5030B MS
8260B	10K1539	RTK1123-01	5.00	g	5.00	mL	11/16/10 09:27	RMJ	5030B MS

BRUELADER IN UNV ROMMUNICAL ED 1140

GaiaTech Inc. 135 S. LaSalle St.			Work Ore	der: RTK1123				Rece	ived:	11/13/3 11/18/3	10
Chicago, IL 60603			Project: I Project N	Poestenkill, NY Pr lumber: [non	rojeci e]						
			LA	BORATORY	QC DATA						
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
Volatile Organic Compou	inds by EP	A 8260B						·			
Blank Analyzed: 11/15/10	(Lab Num	ber:10K15	05-BLK1,	Batch: 10K1505	5)						
1,1,1-Trichloroethane	-		1.0	0.82	ւց/Լ	ND					
1,1,2,2-Tetrachloroethane			1.0	0.21	սց/Լ	ND					
1,1,2-Trichloroethane			1.0	0.23	ug/L	ND					
1,1,2-Trichlorotrifluoroeth ane			1.0	0.31	ug/L	ND					
1,1-Dichloroethane			1.0	0.38	ug/L	ND					
1,1-Dichloroethene			1.0	0.29	ug/L	ND					
1,2,4-Trichlorobenzene			1.0	0.41	ug/L	ND					
1,2-Dibromo-3-chloroprop ane			1.0	0.39	ւց/Լ	ND					
1,2-Dibromoethane (EDB)			1.0	0.73	ug/L	ND					
1,2-Dichlorobenzene			1.0	0.79	ug/L	ND					
1,2-Dichloroethane			1.0	0.21	ug/L	ND					
1.2-Dichloroelhene, Total			2.0	0.70	ug/L	ND					
1,2-Dichloropropane			1.0	0.72	ug/L	ND					
1,3-Dichlorobenzene			1.0	0.78	ug/L	ND					
1,4-Dichlorobenzene			1.0	0.84	ug/L	ND					
2-Bulanone (MEK)			10	1.3	ug/L	ND					
2-Hexanone			5. 0	1.2	ug/L	ND					
4-Methyl-2-pentanone (MIBK)			5. 0	2.1	ug/L	ND					
Acetone			10	3.0	ug/L	ND					
Benzene			1.0	0.41	ug/L	ND					
Bromodichloromethane			1.0	0.39	ug/L	ND					
Bromoform			1.0	0.26	ug/L	ND					
Bromomethane			1.0	0.69	ug/L	ND					
Carbon disulfide			1.0	0.19	ug/L	ND					
Carbon Tetrachloride			1.0	0.27	ug/L	ND					
Chloropenzene			1.0	0.75	ug/L	ND					
Chlorodibromomethane			1.0	0.32	ug/L	ND					
Chloroeinane			1.0	0.32	ug/L	ND					
Chlorotorm			1.0	0.34	ug/L	ND					
chioromethane			1.0	0.35	ug/L	ND					
cis-1,2-Dichloroemene			1.0	0.81	ug/L	ND					
Cvelebovene			1.0	0.35	ug/L	ND					
Diablaradifuarametheme			1.0	0.18	ug/L	ND					
Ethylhonzana			1.0	0.68	ug/L	ND					
⊏unyinenzene			1.0	V./4	ug/L	ND					

THE LUADER IN THE ROMMENTAL LEGING

GaiaTech Inc.	Work Order: RTK1123					Rece	ived:	11/13/1	10		
Chicago, IL 60603			Project: Po Project Nu	estenkill, NY Promoter: [none	oject 2]			Repo	rted:	11/18/	10 13:08
			LA	BORATORY	QC DATA						
Analyta	Source Result	Spike Level	RL	MCI	11-14-	D14	%	% REC	%	RPD	Data
Volatile Organic Compou	nds by EP	A 8260B			Units	Result	REU	Limits	KPD	Limit	Quaimers
Blank Analyzed: 11/15/10	(Lab Num	ber 10K15	05.8LK1 B	stch- 10K1505	N						
Isopropylbenzene	(t.0	0.79	/ ug/L	ND					
Methyl Acetate			1.0	0.50	ug/L	ND					
Methyl tert-Butyl Ether			1.0	0.16	ug/L	ND					
Methylcyclohexane			1.0	0.16	ug/L	ND					
Methylene Chloride			t.0	0.44	ug/L	ND					
Styrene			1.0	0.73	ug/L	ND					
Tetrachloroethene			1.0	0.36	ug/L	ND					
Toluene			1.0	0.51	ug/L	ND					
frans-1,2-Dichloroethene			1.0	0.90	ug/L	ND					
trans-1,3-Dichloropropen			1.0	0.37	ug/L	ND					
Trichloroethene			1.0	0.46	ua/L	ND					
Trichlorofluoromethane			1.0	0.88	ug/L	ND					
Vinyl chloride			1.0	0.90	ug/L	ND					
Xytenes, total			2.0	0.66	ug/L	ND					
Surrogate;					ug/L		95	66-137			
1,2-Dichloroemane-04 Surrogale: 4-Bromofiuorobenzene					ug/L		103	73-120			
Surrogate: To/uene-d8					ug/L		107	71-126			
LCS Analyzed: t1/15/10 (I	Lab Numbe	er:10K150	i-BS1, Batch	: 10K1505)							
1,1,1-Trichloroethane			t.0	0.82	ug/L	ND		73-126			
1,1,2,2-Tetrachtoroethane			1.0	0.21	ug/L	ND		70-126			
1,1,2-Trichloroethane			t.0	0.23	ug/L	ND		76-122			
1,1,2-Trichlorofrifluoroeth ane			1.0	0.31	ug/L	ND		60-140			
1,1-Dichloroethane		25.0	1.0	0.38	ug/L	23.9	95	71-129			
1,1-Dichloroethene		25. 0	1.0	0.29	ug/L	22.3	89	65-138			
t,2,4-Trichlorobenzene			1.0	0.41	ug/L	ND		70-122			
1,2-Dibromo-3-chloroprop ane			1.0	0.39	ug/L	ND		56-134			
1,2-Dibromoethane (EDB)			t.0	0.73	ug/L	ND		77-120			
1,2-Dichlorobenzene		25.0	1.0	0.79	ug/L	26.7	107	77-120			
1,2-Dichloroethane		25. 0	1.0	0.21	ug/L	23.3	93	75-t27			
t,2-Dichloroethene, Total			2.0	0.70	ug/L	48.7		72-124			
1,2-Dichloropropane			1.0	0.72	ug/L	ND		76-120			
1,3-Dichlorobenzene			1.0	0.78	ug/L	ND		77-120			
1,4-Dichlorobenzene			1.0	0.84	ug/L	NÐ		75-120			
2-Bulanone (MEK)			10	1.3	ug/L	ND		57-140			

<u>TestAmerica</u>

SHE LEADER IN DRV POSSIENDAU TESTING

GaiaTech Inc.			Work Order: RTK\$123			Received: Reported:		11/13/	10			
Chicago, IL 60603			Project: Poestenkill, NY Project Project Number: [none]				Repo	nted:	11/18/	10 13:08		
	, , ,		TIOLE									
	Source	Spike		LADORAN				97	0/ DEC	97	DDD	Dete
Analyte	Result	Level	RL	MDL	ι	Jnits	Result	REC	Limits	RPD	Limit	Qualifiers
Volatile Organic Compou	nds by EP/	A 8260B										Quantity
LCS Analyzed: 11/15/10 ((Lab Numbe	er:10K1508	j-BS1,	Batch: 10K15	05)							
2-Hexanone			5.0	1.2	•	ug/L	ND		65-127			
4-Methyl-2-pentanone (MIBK)			5.0	2.1		ug/L	ND		71-125			
Acetone			10	3.0	:	ug/L	ND		56-142			
Benzene		25. 0	1.0	0.41	:	ug/L	25.3	101	71-124			
Bromodichloromethane			1.0	0.39	:	ug/L	ND		80-122			
Bromolorm			1.0	0.26	1	ug/l.	ND		66-128			
Bromomelhane			1.0	0.69		ug/L	ND		36-150			
Carbon disulfide			1.0	0.19		ug/L	ND		59-134			
Carbon Tetrachloride			1.0	0.27		ug/L	ND		72-134			
Chlorobenzene		25.0	1.0	0.75	1	ug/L	26.8	107	72-120			
Chlorodibromomethane			1.0	0,32	1	ug/L	ND		75-125			
Chloroelhane			1.0	0.32	1	ug/L	NÐ		69-136			
Chloroform			1.0	0.34	1	ug/L	ND		73-127			
Chloromelhane			1.0	0.35	1	ug/L	ND		49-142			
cis-1,2-Dichloroethene		25.0	1.0	0.81	t	ug/L	24.2	97	74-124			
cis-1,3-Dichloropropene			1.0	0.36		ug/L	ND		74-124			
Cyclohexane			1.0	0.18	t	ug/L	ND		70-130			
Dichlorodifluoromethane			1.0	0.68	t	ug/L	ND		33-157			
Ethylbenzene		25.0	1.0	0.74	t	ug/L	26.7	107	77-123			
Isopropylbenzene			1.0	0.79	t	ug/L	ND		77-122			
Methyl Acetate			1.0	0.50	t	ug/L	ND		60-140			
Methyl tert-Butyl Elher		25.0	1.0	0.16	1	ug/L	19.7	79	64-127			
Methylcyclohexane			1.0	0.16	1	ug/L	ND		60-140			
Methylene Chloride			1.0	0.44	1	ug/L	NÐ		57-132			
Slyrene			1.0	0.73	1	ug/L	NÐ		70-130			
Telrachloroethene		25.0	1.0	0.36	1	ug/L	27.7	111	74-122			
Toluene		25.0	1.0	0.51	t	ug/L	25.5	102	70-122			
1rans-1,2-Dichloroethene		25.0	1.0	0.90	t	Jg/L	24.5	98	73-127			
trans-1,3-Dichloropropen e			1.0	0.37	t	Jg/L	ND		72-123			
Trichloroethene		25.0	1.0	0.46	t	Jg/L	25.4	101	74-123			
Trichlorofluoromelhane			1.0	0.88	t	ug/L	ND		62-152			
Vinyl chloride			1.0	0.90	t	ug/L	ND		65-133			
Xylenes, total		75.0	2.0	0.66	1	ıg/L	80.1	107	76-122			
Surrogale: 1.2-Dicblomethane-d4					ť	ug/L		94	66-137			
Surrogate:					t	ıg/L		105	73-120			

4-Bromofluorobenzene

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 1el 716-691-2600 fax 716-691-7991

unisevien la fan Honalloure (fa Jar) 								
GaiaTech Inc.	Work Order: F	TK1123					Received:	11/13/10
135 S. LaSalle St.	Desig -1. Door 1	o	(De-11				Reported:	11/18/10 13:08
Unicago, IL 60603	Project: Poest Project Numbr	enkill, Nì ec: Fr	r Project					
Valatile Original Annual International			101101					
Volatile Organic Compounds by EPA 8260B								
LCS Analyzed: 11/15/10 (Lab Number:10K1505	BS1, Batch: 1	0 K150 5	5)					
Surrogate: Tojuene-d8				ug/L		108	71-126	
Valatile Organic Companyed by EDA 2050D								
Volable Organic Compounds by EPA 6280B								
Blank Analyzed: 11/16/10 (Lab Number: 10K153	8-BLK1, Batcl	h: 10K1	538)					
1,1,1-Trichloroethane	1.0	0.82		ug/L	ND			
1,1,2,2-Tetrachloroethane	1.0	0.21		ug/L	ND			
1,1,2-Trichloroethane	1.0	0.23		ug/L	ND			
1,1,2-Trichlorothfluoroeth ane	1.0	0.31		ug/L	NĎ			
1,1-Dichloroethane	1.0	0.38		ug/L	ND			
1,1-Dichloroethene	1.0	0.29		ug/L	ND			
1,2,4-Trichlorobenzene	1.0	0.41		ug/L	ND			
1,2-Dibromo-3-chloroprop ane	1.0	0.39		ug/L	ND			
1,2-Dibromoethane (EDB)	1.0	0.73		ug/L	ND			
1,2-Dichlorobenzene	1.0	0.79		ug/L	ND			
1,2-Dichloroethane	1.0	0.21		ug/L	ND			
1,2-Dichloroethene, Total	2.0	0.70		ug/L	ND			
1,2-Dichloropropane	1.0	0.72		ug/L	ND			
1,3-Dichlorobenzene	1.0	0.78		ug/L	ND			
1.4-Dichlorobenzene	1.0	0.84		ug/L	ND			
2-Bulanone (MEK)	10	1.3		ug/L	ND			
2-Hexanone	5.0	1.2		ug/L	ND			
4-Methyl-2-pentanone (MIBK)	5.0	2,1		ug/L	ND			
Acetone	10	3.0		ug/L	ND			
Benzene	1.0	0.41		ug/L	ND			
Bromodichloromethane	1.0	0.39		ug/L	ND			
Bromoform	1.0	0.26		ug/L	ND			
Bromomethane	1.0	0.6 9		ug/L	ND			
Carbon disulfide	1.0	0.19		ug/L	ND			
Carbon Tetrachloride	1.0	0.27		ug/L	ND			
Chiorobenzene	1.0	0.75		ug/L	ND			
Chiorodibromomethane	1.0	0.32		ug/L	ND			
Chloroethane	1.0	0.32		ug/L	ND			
Chioroform	1.0	0.34		ug/L	ND			
Chloromethane	1.0	0.35		ug/L	ND			
cis-1,2-Dichloroethene	1.0	0.81		ug/L	ND			
cis-1,3-Dichloropropene	1.0	0.36		ug/L	ND			
Cyclohexane	1.0	0.18		ug/L	ND			

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

1.0

0.68

ND

ug/L

<u>TestAmerica</u>

Dichlorodifluoromethane

THE ELABER IN LAW WORKLENTKE TER HAG

GaiaTech Inc. 135 S. LaSaile St.	Work Order: RTK1123					Rece	ived:	d: 11/13/10 d: 11/18/10 13:0/			
Chicago, IL 60603			Project: Project /	Poestenkill, NY Pr Number: [noni	rojec1 e]			Rept	mea:	11/10/	10 13:08
			L	ABORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Volatile Organic Compou	nds by EP/	A 8260B									
Blank Analyzed: 11/16/10	(Lab Num	ber:10K15	538-BLK1,	Batch: 10K1538)						
Elhylbenzene			1.0	0.74	, ug/L	ND					
isopropyibenzene			1.0	0.79	ug/L	ND					
Methyl Acetate			1.0	0.50	ug/L	ND					
Methyl tert-Butyl Ether			1.0	0.16	ug/L	ND					
Methylcyclohexane			1.0	0.16	ug/L	ND					
Methylene Chloride			1.0	0.44	ug/L	ND					
Styrene			1.0	0.73	ug/L	ND					
Tetrachioroethene			1.0	0.36	ug/L	ND					
Toluene			1.0	0.51	ug/L	ND					
1rans-1,2-Dichloroethene			1.0	0.90	ug/L	ND					
1rans-1,3-Dichloropropen			1.0	0.37	ug/L	ND					
e Trichloroethene			1.0	0.46	un/l	ND					
Trichlorofluoromethane			10	0.88	ug/L	ND					
Vinyi chloride			1.0	0.90	ug/L						
Xylenes, total			2.0	0.66	ug/L	ND					
Surrogate:											
1,2-Dichloroethane-d4					ug/L		110	66-137			
Surrogate: 4-Bromofluombenzene					ug/L		98	73-120			
Surrogate: Toluene-d8					ug/L		107	71-126			
LCS Analyzed: 11/16/10 /I	ah Numbo	r-10 8153 9	BC4 Det	b. 4084528)							
1.1.1-Trichloroethane	ub Numoç	1.101(155)	1001, 080	0.92	. – 4						
1.1.2.2-Tetrachioroethane			1.0	0.02	ug/L	ND		73-126			
1.1.2-Tricbloroetbane			1.0	0.21	ug/L	ND		70-126			
1.1.2-Trichlorotrifluoroeth			1.0	0.23	ug/L	ND		76-122			
ane			1.5	0.51	ugru	NU		60-140			
1,1-Dichloroethane		25.0	1.0	0.38	ug/L	25.1	100	71-129			
1,1-Dichloroethene		25.0	1.0	0.29	ug/L	23.0	92	65-138			
1,2,4-Trichlorobenzene			1.0	0.41	ug/L	ND		70-122			
1,2-Dibromo-3-chtoroprop ane			1.0	0.39	ug/L	ND		56-134			
1,2-Dibromoethane (EDB)			1.0	0.73	ug/L	ND		77-120			
1,2-Dichlorobenzene		25.0	1.0	0.79	ug/L	27.2	109	77-120			
1,2-Dichloroethane		25.0	1.0	0.21	ug/L	27.2	109	75-127			
1,2-Dichloroethene, Total			2.0	0.70	ug/L	49.4		72-124			
1,2-Dichloropropane			1.0	0.72	ug/L	ND		76-120			
1,3-Dichlorobenzene			1.0	0.78	ug/L	ND		77-120			
1,4-Dichlorobenzene			1.0	0.84	ug/L	ND		75-120			

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE ELADER IN LAW ROMINMAL LIGHTS

GaiaTech Inc. 135 S. LaSalle St.			Work Order: RTK1123				Received: Reported:		11/13/	10 10 13:08	
Chicago, IL 60603			Project: Poer Project Num	stenkill, N ber: [Y Project [none]			(CpC		, i i i i i i	10.00
· · · ·			LAB	ORATO	RY QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Volatile Organic Compour	nds by EP/	A 8260B									
LCS Analyzed: 11/16/10 (Lab Numb	er:10K1538	-BS1, Batch:	10K153	8)						
2-Butanone (MEK)			10	t.3	, ug/L	ND		57-140			
2-Hexanone			5.0	1.2	ug/L	ND		65-127			
4-Methyl-2-pentanone (MIBK)			5.0	2.1	ug/L	ND		7 t-125			
Acetone			10	3.0	ug/L	ND		56-1 4 2			
Benzene		25.0	1.0	0.41	ug/L	25.6	102	71-124			
Bromodichloromethane			1.0	0.39	ug/L	ND		80-122			
Bromoform			1.0	0.26	ug/L	ND		6 6- 128			
Bromomethane			1.0	0.69	ug/L	ND		36-150			
Carbon disulfide			1.0	0.19	ug/L	ND		59-134			
Carbon Tetrachtoride			1.0	0.27	ug/L	ND		72-134			
Chlorobenzene		25.0	1.0	0.75	ug/L	26.3	105	72-120			
Chlorodibromomethane			1.0	0.32	ug/L	ND		75-125			
Chloroethane			1.0	0.32	ug/L	ND		69-136			
Chloroform			1.0	0.34	ug/L	ND		73-127			
Chloromethane			1.0	0.35	ug/L	ND		49-142			
cis-1,2-Dichloroethene		25.0	1.0	0.81	ug/L	24.6	99	74-124			
cis-1,3-Dichloropropene			t.0	0.36	ug/L	ND		74-124			
Cyclohexane			1.0	0.18	ug/L	ND		70-130			
Dichlorodifluoromethane			1.0	0.68	ug/L	ND		33-157			
Ethylbenzene		25.0	1.0	0.74	ug/L	26.3	105	77-123			
Isopropylbenzene			1.0	0.79	ug/L	ND		77-122			
Methyl Acetate			1.0	0.50	ug/L	ND		60-140			
Methyl tert-Butyt Ether		25.0	1.0	0.16	ug/L	20.4	82	64-127			
Methylcyclohexane			1.0	0.16	ug/L	ND		60-140			
Methylene Chloride			1.0	0.44	ug/L	ND		57-132			
Styrene			1.0	0.73	ug/L	ND		70-130			
Tetrachloroethene		25.0	1.0	0.36	ug/L	26.3	105	74-122			
Toluene		25.0	1.0	0.51	ug/L	24.5	98	70-122			
trans-1,2-Dichloroethene		25.0	1.0	0.90	ug/L	24.7	99	73-127			
trans-1,3-Dichloropropen e			1.0	0.37	ug/L	ND		72-123			
Trichloroethene		25.0	1.0	0.46	ug/L	26.4	105	74-123			
Trichlorofluoromethane			1.0	0.88	ug/L	ND		62-152			
Vinyl chtoride			1.0	0.90	ug/L	ND		65-133			
Xylenes, total		75.0	2.0	0.66	ug/L	75.7	10 t	76-122			
Surrogate:					ug/L		110	66-137			

1,2-Dichloroe/hane-d4

THE LEADER IN LAW ROMAENTAL TEGRAPHIC

GaiaTech Inc. 135 S. LaSalle SI. Chicago, IL 60603	GalaTech Inc. 135 S. LaSalle St. Chicago, IL 60603			Work Order: RTK1123 Project: Poestenkill, NY Project				Received Reported		ed: 11/13/10 ed: 11/18/1013:08	
-			Project	Number: [noi	ne]						
			L	ABORATOR	Y QC DATA					·	
	Source	Spike					%	% PEC	%	000	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Onalifiers
Volatile Organic Compou	inds by EP/	4 8260B									<u>uuunnerg</u>
LCS Analyzed: 11/16/10	(Lab Numb	er:10K153	8-BS1, Ba	itch: 10K1538)							
Surrogale:					ug/L		97	73-120			
4-Bromofluorobenzene Surrogate: Toluene-d8					ua/L		102	71-126			
Volatile Organic Compou	nds by FP4	8260B			- <u>-</u> -		TOL.	1-720			
Black Analyzed: 11/16/10	(oh blues)										
1 t 1-Tricblorgetbage		per:10K15	39-BLK1,	Batch: 10K153	9)						
1 1 2 2-Tetrachloroethane			5.0	0.36	ug/kg wet	ND					
1.1.2-Trichloroethane			5.0	0.81	ug/kg wet	ND					
1.1.2-Tricklorotrifluomoth			5.0	0.65	ug/kg wet	ND					
ane			5.0	1.1	ug/kg wet	ND					
1, t-Dichloroethane			5.0	0.61	ug/kg wet	ND					
t,1-Dichloroethene			5.0	0.61	ug/kg wet	ND					
1,2,4-Trichlorobenzene			5.0	0.30	ug/kg wet	ND					
1,2-Dibromo-3-chloroprop ane			5.0	2.5	ug/kg wet	ND					
1,2-Dibromoethane (EDB)			5.0	0.64	ug/kg wet	ND					
t,2-Dichlorobenzene			5.0	0.39	ug/kg wet	ND					
1,2-Dichloroethane			5.0	0.25	ug/kg wet	ND					
1,2-Dichloroethene, Total			10	2.6	ug/kg wet	ND					
t,2-Dichloropropane			5.0	2.5	ug/kg wet	ND					
1,3-Dichlorobenzene			5.0	0.26	ug/kg wet	ND					
1,4-Dichlorobenzene			5.0	0.70	ug/kg wet	ND					
2-Butanone (MEK)			25	1.8	ug/kg wet	ND					
2-Hexanone			25	2.5	ug/kg wet	ND					
4-Methyl-2-pentanone (MIBK)			25	1.6	ug/kg wet	ND					
Acetone			25	4.2	ug/kg wet	ND					
Benzene			5.0	0.24	ug/kg wet	ND					
Bromodichloromethane			5.0	0.67	ug/kg wet	ND					
Bromoform			5.0	2.5	ug/kg wet	ND					
Bromomethane			5.0	0.45	ug/kg wet	ND					
Carbon disulfide			5.0	2.5	ug/kg wet	ND					
Carbon Tetrachloride			5.0	0.4 8	ug/kg wet	ND					
Chlorobenzene			5.0	0.66	ug/kg wet	ND					
Chlorodibromomethane			5.0	0.64	ug/kg wet	ND					
Chloroethane			5.0	1.1	ug/kg wet	ND					
Chloroform			5.0	0.31	ug/kg wet	ND					
Chloromethane			5.0	0.30	ug/kg wet	ND					

THE CEADER IN CAN RONMENTAL TESTING

GaiaTech Inc. 135 S. LaSalle St			Work Order: RTK (123					Rece	ived:	11/13/10 11/18/10 13:09	
Chicago, IL 60603			Project: F Project N	Poestenkill, NY F lumber: [nor	Project ne]			керс	nted:	E 1/10)	10 13:08
			LA	BORATOR	Y QC DATA						
Analyte	Source Result	Spike Level	RL	MDI	ligite	Pacult	% PEC	% REC	% R9D	RPD Limit	Data
Volatile Organic Compou	nds by EP.	A 8260B			Units	Nesuit	NEC.	Linits		LUM	Quanners
Blank Analyzed: 11/16/10	l I ah Num	hard0K41	20 01 1/4 1	Databy 106152	201						
cis-1,2-Dichloroethene	i (Las Num		5.0 5.0	0.64	ua/ka wet	ND					
cis-1,3-Dichloropropene			5.0	0.72	ug/kg wet	ND					
Cyclohexane			5.0	0.70	ug/kg wet	ND					
Dichlorodifluoromethane			5.0	0.41	ug/kg wet	ND					
Ethylbenzene			5.0	0.34	ug/kg wet	ND					
Isopropylbenzene			5.0	0.75	ug/kg wet	ND					
Methyl Acetate			5.0	0.93	ug/kg wet	ND					
Methyl tert-Butyl Ether			5.0	0.49	ug/kg wet	ND					
Methylcyclohexane			5.0	0.76	ug/kg wet	ND					
Methylene Chloride			5.0	2.3	ug/kg wet	ND					
Styrene			5.0	0.25	ug/kg wet	ND					
Tetrachloroethene			5.0	0.67	ug/kg wet	ND					
Toluene			5.0	0.38	ug/kg wet	ND					
trans-1,2-Dichloroethene			5.0	0.52	ug/kg wet	ND					
trans-1,3-Dichloropropen			5.0	2.2	ug/kg wet	ND					
Trichloroethene			5.0	1.1	ug/kg wet	ND					
Trichlorofluoromethane			5.0	0.47	ug/kg wet	ND					
Vinyl chloride			5.0	0.61	ug/kg wet	ND					
Xylenes, total			10	0.84	ug/kg wet	ND					
Surrogate:					ug/kg wet		94	64-126			
1,2-Dichloroethane-64 Surrogate:					ug/kg wet		100	72-126			
4-Bromofluorobenzene Surrogate: Toluene-d8					ua/ka wet		104	71-125			
I CS Analyzed: 11/16/10	l ah Numb	ar-101/153	0.BS1 Bat	h. 10815301							
1.1.1-Trichloroethage			50	0.36	Ha/ka wet	ND		77.121			
1.1.2.2-Tetrachloroethane			5.0	0.81	ua/ka wet	ND		80-120			
1, t.2-Trichloroethane			5.0	0.65	ua/ka wet	ND		78-122			
1,1,2-Trichlorotrifluoroeth ane			5.0	1.1	ug/kg wet	ND		60-140			
1, t-Dichloroethane		50.0	5.0	0.61	ug/kg wet	48.6	97	79-126			
1,1-Dichloroethene		50.0	5.0	0.61	ug/kg wet	50.5	101	65-153			
1,2,4-Trichlorobenzene			5.0	0.30	ug/kg wet	ND		64-120			
1,2-Dibromo-3-chloroprop ane			5.0	2.5	ug/kg wet	ND		6 3- 124			
1,2-Dibromoethane (EDB)			5.0	0.64	ug/kg wet	NĎ		78-120			
1,2-Dichlorobenzene		50.0	5.0	0.39	ug/kg wet	45.3	91	75-120			
1,2-Dichloroethane		50.0	5.0	0.25	ug/kg wet	45.5	91	77-122			

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-69 t-2600 fax 716-691-7991

<u>TestAmerica</u>

HE LEADER IN THE ROUMENT ALL THE ING.

GaiaTech Inc. Work Order: RTK1123								Rece	ived:	l: 11/13/t0	
135 S. LaSalle St.								Repo	orted:	11/18/	10 13:08
Chicago, IL 60603			Project: Po Project Nu	pestenkill, NY P	roject						
			Projectivu	moer. Inor							· · · · · · · · · · · · · · · · · · ·
			LAI	BORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Anatyte Volatile Organia Composi	Result	Levet	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
votatile Organic Compou	inas by EP.	A 8260B									
LCS Analyzed: 11/16/10	(Lab Numb	er:10K153	9-BS1, Batc	h: 10K1539)							
1,2-Dichloroethene, Total			10	2.8	ug/kg wet	99.1		82-120			
1,2-Dichloropropane			5.0	2.5	ug/kg wet	ND		75-t24			
1,3-Dichlorobenzene			5.0	0.26	ug/kg wet	ND		74-t20			
1,4-Dichlorobenzene			5.0	0.70	ug/kg wet	ND		73-120			
2-Butanone (MEK)			25	1.8	ug/kg wet	ND		70-134			
2-Hexanone			25	2.5	ug/kg wet	ND		59-130			
4-Methyl-2-pentanone (MIBK)			25	t.6	ug/kg wet	ND		65-133			
Acetone			25	4.2	ug/kg wet	ND		61-137			
Benzene		50.0	5.0	0.24	ug/kg wet	48.6	97	79-127			
Bromodichloromethane			5.0	0.67	ug/kg wet	ND		80-122			
Bromoform			5.0	2.5	ug/kg wet	ND		68-126			
Bromomethane			5.0	0.45	ug/kg wet	ND		37-149			
Carbon disulfide			5.0	2.5	ug/kg wet	ND		64-131			
Carbon Tetrachloride			5.0	0.48	ug/kg wet	ND		75-135			
Chlorobenzene		50.0	5.0	0.66	ug/kg wet	49.2	98	76-124			
Chlorodibromomethane			5.0	0.64	ug/kg wet	ND		76-125			
Chloroethane			5.0	1.1	ug/kg wet	ND		69-135			
Chlorolorm			5.0	0.31	ug/kg wet	ND		80-118			
Chloromethane			5.0	0,30	ug/kg wet	ND		63-127			
cis-1,2-Dichloroethene		50.0	5.0	0.64	ug/kg wet	48.6	97	81-117			
cis-1,3-Dichloropropene			5.0	0,72	ug/kg wet	ND		82-t20			
Cyclohexane			5.0	0.70	ug/kg wet	ND		70-130			
Dichlorodifluoromethane			5.0	0.41	ug/kg wet	ND		57-142			
Ethylbenzene		50.0	5.0	0.34	ug/kg wet	48.9	98	80-120			
Isopropylbenzene			5.0	0.75	ug/kg wet	ND		72-120			
Methyl Acetate			5.0	0.93	ug/kg wet	ND		60-140			
Methyl tert-Butyl Ether		50.0	5.0	0.49	ug/kg wet	43.5	87	63-125			
Methylcyclohexane			5.0	0.76	ug/kg wet	ND		60-140			
Methylene Chloride			5.0	2.3	ug/kg wet	ND		61-127			
Styrene			5.0	0.25	ug/kg wet	ND		80-120			
Tetrachloroethene		50.0	5.0	0.67	ug/kg wet	52.3	105	74-122			
Toluene		50.0	5.0	0.38	ug/kg wet	45.7	91	74-128			
trans-1,2-Dichloroethene		50.0	5.0	0.52	ug/kg wet	50.6	101	78-126			
trans-t,3-Dichloropropen			5.0	2.2	ug/kg wet	ND		73-123			
e					-						
Trichloroethene		50.0	5.0	t.1	ug/kg wet	47.9	96	77-129			
Inchlorofluoromethane			5.0	0.47	ug/kg wet	ND		65-146			
Vinyl chloride			5.0	0.61	ug/kg wet	ND		61-133			

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 7 t6-69 t-2600 fax 716-691-7991

THE ELADER IN LAW RESIDENTIAL TERMINA

GaiaTech Inc. 135 S. LaSalla St			Work Or	der: RTK1123			Received: Reported:			11/13/10 11/18/10 13:08			
Chicago, IL 60603			Project: Project N	Poestenkill, NY Pr Number: [non	roject e[Керс	neo:	11/10/	10 13.06		
	LABORATORY QC DATA												
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers		
Volatile Organic Compounds by EPA 8260B													
LCS Analyzed: 11/16/10	(Lab Numb	er:10K153	9-BS1, Ba	tch: 10K1539)									
Xylenes, total		150	ťO	0.84	ug/kg wet	149	99	80-1 2 0					
Surrogate:					ug/kg wet		93	64-126					
1,2-Dicnioroeinane-04 Surrogate:					ug/kg wet		103	72-126					
4-Bromotiuorobenzene Surrogate: Toluene-d8					ug/kg wet		105	71-125					

BILLEABER IN UNV RONMENSAUTUS (INS.

GaiaTech Inc.			Work Orde	/ork Order: RTK1123				Received		11/13/	10
135 S. LaSalle St.								Repo	rted:	11/18/	10 13:08
Chicago, IL 60603			Project: Po	estenkill, NY P	roject						
			Project Nu	mber: [non	ej						
			LAE	BORATORY	′ QC DATA						
	Source	Spike	Ċ1				%	% REC	%	RPD	Data
Analyte	Result	Level	KL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Semivolatile Organics by	GC/MS										
Blank Analyzed: 11/17/10	(Lab Num	ber:10K14	99-BLK2, B	atch: 10K149	9)						
2,4,5-Trichlorophenol			5.0	0.48	ug/L	ND					
2,4,6-Trichlorophenol			5.0	0.61	ug/L	ND					
2,4-Dichlorophenol			5.0	0.51	ug/L	ND					
2,4-Dimethylphenol			5.0	0.50	ug/L	ND					
2,4-Dinitrophenol			10	2.2	ug/L	ND					
2,4-Dinitrotoluene			5.0	0.45	ug/L	ND					
2,6-Dinitrotoluene			5.0	0.40	ug/L	ND					
2-Chloronaphthalene			5.0	0.46	ug/L	ND					
2-Chloropheno!			5.0	0.53	ug/L	ND					
2-Methylnaphthalene			5.0	0.60	ug/L	ND					
2-Methylphenol			5.0	0.40	ug/L	ND					
2-Nitroaniline			10	0.42	ug/L	ND					
2-Nitrophenol			5.0	0.48	ug/L	ND					
3,3'-Dichlorobenzidine			5.0	0.40	ug/L	ND					
3-Nitroaniline			10	0.48	ug/L	ND					
4,6-Dinitro-2-methytphen			10	2.2	ug/L	ND					
ol			50	0.45	- 4	20					
4-Bromophenyi phenyi ether			5.0	Ų.49	ug/L	UM					
4-Chloro-3-methylphenol			5.0	0.45	ug/L	ND					
4-Chloroaniline			5.0	0.59	ug/L	ND					
4-Chlorophenyl phenyl			5.0	0.35	ug/L	ND					
ether											
4-Methylphenol			10	0.36	ug/L	ND					
4-Nitroaniline			10	0.25	ug/L	ND					
4-Nitrophenol			10	1.5	ug/L	ND					
Acenaphinene			5.0	0.41	ug/L	ND					
Acenaphthylene			5.0	0.38	ug/L	ND					
Acetophenone			5.0	0.54	ug/L	ND					
Anthracene			5.0	0.28	ug/L	ND					
Atrazine			5.0	0.46	ug/L	ND					
Benzaldenyde			5.0	0.27	ug/L	ND					
Benzo(a)anthracene			5.0	0.36	ug/L	ND					
Benzo(a)pyrene			5.0	0.47	ug/L	ND					
Benzo(b)fluoranthene			5.0	0.34	ug/L	ND					
Benzo(ghi)perylene			5.0	0.35	ug/L	ND					
Benzo(k)fluoranthene			5.0	0.73	ug/L	ND					
Biphenyl			5.0	0.65	ug/L	ND					

THE FOURTH IN THAN HORMONIAL TO HAR

GalaTech Inc.			Work Order: RTK1123				Received Reported		1: 11/13/10			
135 S. LaSalle S t. Chicago, II, 60603			Project: I	Poestenkill NY P	roient			Repo	rted:	ted: 11/18/10 13:08		
0110030112 00000			Project N	lumber: [non	e]							
			L/	BORATORY	QC DATA							
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers	
Semivolatile Organics by	GC/MS											
Blank Analyzed: 11/17/10) (Lab Nurr	ber:10K14	99-BLK2.	Batch: 10K1499	ł)							
Bis(2-chloroethoxy)metha	`		5.0	0.35	ug/L	ND						
ne Ris(2-chloroethul)ether			5.0	0.40	100	ND						
2 2'-Ovubis(1-Chioroprop			5.0	0.40	ug/L un/l							
ane)			5.5	0.02	ugrt							
Bis(2-ethylhexyt) phthalate			5.0	1.8	ug/L	ND						
Butyt benzyl phthalate			5.0	0.42	ug/L	0.46					Ĵ	
Caprolactam			5.0	2.2	ug/L	ND						
Carbazole			5.0	0.30	ug/L	ND						
Chrysene			5.0	0.33	ug/L	ND						
Dibenzo(a,h)anthracene			5.0	0.42	ug/L	ND						
Dibenzofuran			10	0.51	ug/L	ND						
Diethyl phthalate			5.0	0.22	ug/L	ND						
Dimethyl phthalate			5.0	0.36	ug/L	ND						
Di-n-butyl phthalate			5.0	0.31	ug/L	0.37					J	
Di-n-octyl phthatate			5.0	0.47	ug/L	ND						
Fluorantnene			5.0	0.40	ug/L	ND						
Hubrene			5.0	0.36	ug/L	UN ND						
Hexachioropenzene			5.0	0.51	ug/L							
Hexachioropulatione			5.0	0.68	ug/L							
пехастогосусторентавле ле			5.0	0.59	ugit	ND						
Hexachtoroethane			5.0	0.59	ug/L	ND						
Indeno(1,2,3-cd)pyrene			5.0	0.47	ug/L	ND						
Isophorone			5.0	0.43	ug/L	ND						
Naphthalene			5.0	0.76	ug/L	ND						
Nitrobenzene			5.0	0.29	ug/L	ND						
N-Nitrosodi-n-propylamin e			5.0	0.54	ug/L	ND						
N-Nitrosodiphenylamine			5.0	0.51	ug/L	ND						
Pentachlorophenol			10	2.2	ug/L	ND						
Phenanthrene			5.0	0.44	ug/L	ND						
Phenol			5.0	0.39	ug/L	ND						
Pyrene			5.0	0.34	ug/L	ND						
Surrogate: 2,4,6-Tribromophenol					ug/L		104	52-132				
Surrogate: 2-Ekiorobioheovi					ug/L		74	48-120				
2-r luoros uneny Surrogale: 2-Fluorophenol					ug/L		45	20-120				

<u>TestAmerica</u>

NATIONER IN TAX SCREENANT LEADARS

GalaTech Inc. 135 S. LaSalle St.			Work Order: RTK1123					Received: Reported:		11/13/10 11/18/10 13:08	
Chicago, IL 60603			Project: Poe Project Num	stenkill, NY Proj ber: [none]	ject			Topo		,.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			LAB	ORATORY	QC DATA						
• 1. 4-	Source	Spike	PI	1161		 /-	%	% REC	%	RPD	Data
Semivolatile Organics by	GC/MS	Level			Units	Result	REC	Limits	RPD	Limit	Qualifiers
Black Acabrad: 11/17/10	liah Num	bor:10 K 14(ab. 1061100)							
Surrogale:	(Lab Rum	061.101.143	33-DLILL, DØI	CII. 101(1499)	ug/L		76	46-120			
Nilrobenzene-d5 Surrogale: Phenol-d5							34	16,120			
Surrogate: p-Terphenyl-d14					ug/L		102	24-136			
LCS Analyzed: 11/17/10	(Lab Numb	er:10K1499	-BS2, Batch:	10 K1499)							
1,2,4-Trichlorobenzene		100	10	0.44	ug/L	55.1	55	40-120			
1,2-Dichlorobenzene			10	0.40	ug/L	ND		33-120			
1,3-Dichlorobenzene			10	0.48	ug/L	ND		28-120			
2,4,5-Trichlorophenol			5.0	0.48	ug/L	ND		65-126			
2,4,6-Trichlorophenol			5.0	0.61	ug/L	ND		64-120			
2,4-Dichlorophenol			5.0	0.51	ug/L	ND		64-120			
2,4-Dimethylphenol			5.0	0.50	ug/L	ND		57-120			
2,4-Dinitrophenol			10	2.2	ug/L	ND		42-153			
2,4-Dinitrotoluene		100	5.0	0.45	ug/L	104	104	59-125			
2,6-Dinitrotoluene			5.0	0.40	ug/L	ND		74-134			
2-Chloronaphthalene			5.0	0.46	u9/L	ND		52-120			
2-Chlorophenot		100	5.0	0.53	ug/L	63.8	64	48-120			
2-Methylnaphthalene			5.0	0.60	ug/L	ND		48-120			
2-Methylphenol			5.0	0.40	ug/L	ND		39-120			
2-Nitroaniline			10	0.42	ug/L	ND		67-136			
2-Nitrophenol			5.0	0.48	ug/L	ND		59-120			
3,3'-Dichlorobenzidine			5.0	0.40	ug/L	ND		33-140			
3-Nitroaniline			10	0.48	ug/L	ND		69-129			
4,6-Dinitro-2-methylphen of			10	2.2	ug/L	ND		64-159			
4-Bromophenyl phenyt ether			5.0	0.45	ug/L	ND		71-126			
4-Chloro-3-methylphenol		100	5.0	0.45	ug/L	87.1	87	64-120			
4-Chloroaniline			5.0	0.59	ug/L	ND		60-124			
4-Chlorophenyl phenyl ether			5.0	0.35	ug/L	ND		71-122			
4-Methylphenol			10	0.36	ug/L	ND		36-120			
4-Nitroaniline			10	0.25	ug/L	ND		64-135			
4-Nitrophenol		100	10	1.5	ug/L	40.1	40	16-120			
Acenaphthene		100	5.0	0.41	ug/L	81.8	82	60-120			
Acenaphthylene			5.0	0.38	ug/L	ND		63-120			
Acetophenone			5.0	0.54	ug/L	ND		45-120			
Anthracene			5.0	0.28	ug/L	ND		69-131			
Atrazine			5.0	0.46	ug/L	ND		70-129			

THE LLADER IN LINE ROMALINE TECHNOL

GaiaTech Inc.			Work Ord	Received:		11/13/10					
135 S. LaSalle St.								Repo	rted:	11/18/	10 13:08
Chicago, IL 60603			Project: P Project N	oestenkill, NY Pr umber: Inone	oject el						
	6	0-11-	LA	BURATURY	QC DATA						_
Anshte	Source Result	Spike	RL	MDL	Lloite	Result	% REC	% REC	% RPD	RPD	Data Qualifiere
Semivolatile Organics by	GC/MS				onita			Linita			Quantera
LCS Analyzed: 11/17/10 (Lab Numb	er:10K149	9-BS2. Bate	ch: 10 K149 9)							
Benzaldehyde			5.0	0.27	ug/L	ND		30-140			
Benzo(a)anthracene			5.0	0.36	ug/L	ND		73-138			
Benzo(a)pyrene			5.0	0.47	ug/L	ND		74-126			
Benzo(b)fluoranthene			5.0	0.34	ug/L	ND		75-133			
Benzo(ghi)perylene			5.0	0.35	ug/L	ND		66-152			
Benzo(k)fluoranthene			5.0	0.73	ug/L	ND		75-133			
Biphenyl			5.0	0.65	ug/L	ND		30-140			
Bis(2-chloroethoxy)metha			5.0	0.35	ug/L	ND		62-120			
Bis(2-chloroethyl)ether			5.0	0.40	ug/L	ND		51-120			
2,2'-Oxybis(1-Chloroprop ane)			5.0	0.52	ug/L	ND		47-120			
Bis(2-ethylhexyl) phthalate		100	5.0	1.8	ug/L	109	109	69-136			
Butyl benzyl phthalate			5.0	0.42	ug/L	ND		62-149			
Caprolactam			5.0	2.2	ug/L	ND		30-140			
Carbazole			5.0	0.30	ug/L	ND		68-133			
Chrysene			5.0	0.33	ug/L	ND		69-140			
Dibenzo(a,h)anthracene			5.0	0.42	ug/L	ND		67-144			
Dibenzofuran			10	0.51	ug/L	ND		66-120			
Diethyl phthalate			5.0	0.22	ug/L	ND		78-128			
Dimethyl phthalate			5.0	0.36	ug/L	ND		73-127			
Di-n-butyl phthalate			5.0	0.31	ug/L	0.480		67-132			J,B
Di-n-octyl phihalate			5.0	0.47	ug/L	ND		72-145			
Fluoranthene			5.0	0,40	ug/L	1.27		67-133			J
Fluorene		100	5.0	0.36	ug/L	91.0	91	66-129			
Hexachlorobenzene			5.0	0.51	ug/L	ND		38-131			
Hexachlorobuladiene			5.0	0.68	ug/L	ND		30-120			
Hexachloro cyc lopentadie ne			5.0	0.59	ug/L	NU		23-120			
Hexachloroethane		100	5.0	0.59	ug/L	44.3	44	25-120			
Indeno(1,2,3-cd)pyrene			5.0	0.47	ug/L	ND		69-146			
Isophorone			5.0	0.43	ug/L	ND		64-120			
Naphthalene			5.0	0.76	ug/L	ND		48-120			
Nitrobenzene			5.0	0.29	ug/L	ND		52-120			
N-Nitrosodi-n-propylamin e		100	5.0	0.54	ug/L	76.1	76	56-120			
N-Nitrosodiphenylamine			5.0	0.51	ug/L	ND		25-125			
Pentachlorophenol		100	10	2.2	ug/L	100	100	39-136			
Phenanthrene			5.0	0.44	ug/L	ND		67-130			

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 1422B tel 716-691-2600 fax 716-691-7991

THE LEADER IN LYN WONNENTAE TERMING

GaiaTech Inc. 135 S. LaSalle St.			Work C	order:RTKtt;	23			-	Rece Repo	ived: orted:	t t/t3/ t t/18/	t0 10 13:08
Chicago, IL 60603			Project Project	: Poestenkill, Number:	NY Project [none]							
			L	ABORAT	ORY QC	DATA						
A u alian	Source	Spike Lovel	RI	MDI				%	% REC	%	RPD	Data
Semivolatile Organics by	GC/MS	LEVEI		MIDE		Units	<u>Result</u>	REC	Limits	KPU	Limit	Qualifiers
1 CS Anabizadi 11/17/10 /	lah Numh	00101010100	Den D		001							
Phenoi		100	50 50	0 39	231	uo/l	312	31	17,120			
Pvrene		100	5.0	0.34		uo/I	101	t0 t	58-136			
		100										
Surrogate: 2.4.6-Tribromonbenol						ug/L		96	52-132			
Surrogate:						ug/L		72	48-120			
Surrogate:						ug/L		37	20-120			
2-ruorophenor Surrogate:						ug/L		70	46-120			
Ntrobenzene-d5 Surrogate: Phenol-d5						uaA		30	16-120			
Surrogate:						ug/L		94	24-136			
p-Terphenyl-dt4						-						
Semivolatile Organics by	<u>GC/MS</u>											
Blank Analyzed: 11/16/10	(Lab Num	ber:10K15(00-BLK1,	Batch: 10ł	(1500)							
2,4,5-Trichlorophenol			t70	36	Ų	ig/kg wet	ND					
2,4,6-Trichlorophenol			t70	tt	Ų	ig/kg wet	ND					
2,4-Dichlorophenot			170	8.7	Ų	ig/kg w e t	ND					
2,4-Dimethylphenol			170	45	Ų	ig/kg wet	ND					
2,4-Dinitrophenol			330	58	u	ig/kg wet	ND					
2,4-Dinitrotoluene			t70	26	u	ig/kg wet	ND					
2,6-Dinitrotoluene			t70	41	u	ig/kg wet	ND					
2-Chloronaphthalene			t70	t t	u	g/kg wet	ND					
2-Chlorophenol			170	8.5	u	g/kg wet	ND					
2-Methylnaphthalene			170	2.0	u	ıg/kg wet	ND					
2-Methylphenol			t70	5.1	u	ıg/kg wet	ND					
2-Nitroaniline			330	53	U	ig/kg wet	ND					
2-Nitrophenol			t70	7.6	U	ig/kg wet	ND					
3,3'-Dichlorobenzidine			t70	150	U	ig/kg w e t	ND					
3-Nitroaniline			330	38	U	ig/kg wet	ND					
4,6-Dinitro-2-methylphen of			330	57	u	ig/kg wet	ND					
4-Bromophenyl phenyl			t7 0	53	Ų	ig/kg wet	ND					
4-Chtoro-3-methylphenol			170	6.8	U	g/kg wet	ND					
4-Chloroaniline			170	49	U	a/ka wet	ND					
4-Chlorophenyl phenyl			170	3.5	u	g/kg wet	ND					
-Meihvinhenol			330	0.2		alka wet	ND					
4-Nitroaniline			330	5.5 ta	u 	a/ka wet						
			000		ų	9.09.001	110					

TestAmerica

BILL SADER IN THE REPORT OF THE

GaiaTech Inc.		Work Order: RTK1123						ived:	l: 11/13/1 0		
135 S. LaSalle St.								Repo	rted:	11/18/	t0 t3:08
Chicago, IL 60603			Project: F Project N	oestenkill, NY F umber: (noi	Project ne)						
			LA	BORATOR	Y OC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Semivolatile Organics by	GC/MS										
Blank Analyzed: 11/16/10	(Lab Num	nber:10K15	500-BLK1, E	Batch: 10K150	0)						
4-Nitrophenol			330	40	ug/kg wet	ND					
Acenaphthene			170	2.0	ug/kg wet	ND					
Acenaphthylene			t70	1.4	ug/kg wet	NĎ					
Acetophenone			170	8.5	ug/kg wet	ND					
Anthracene			170	4.3	ug/kg wet	ND					
Atrazine			t70	7.4	ug/kg wet	ND					
Benzaldehyde			t70	18	ug/kg wet	ND					
Benzo(a)anthracene			t70	2.9	ug/kg wet	ND					
Benzo(a)pyrene			t70	4.0	ug/kg wet	ND					
Benzo(b)fluoranthene			t70	3.2	ug/kg wet	ND					
Benzo(ghi)perylene			t70	2.0	ug/kg wet	ND					
Benzo(k)fluoranthene			ŧ70	1.8	ug/kg wet	ND					
Biphenyl			t70	tO	ug/kg wet	ND					
Bis(2-chloroethoxy)metha			t70	9.0	ug/kg wet	ND					
ne											
Bis(2-chloroethyl)ether			170	t4	ug/kg wet	ND					
2,2'-Oxybis(1-Chloroprop			170	t7	ug/kg wet	ND					
Bis(2-ethylhexyt)			170	54	ug/kg wet	ND					
Butyl benzyl phthalate			t70	4 5	ug/kg wet	ND					
Caprolactam			170	72	ug/kg wet	ND					
Carbazole			t70	1.9	ug/kg wet	ND					
Chrysene			t70	1.7	ug/kg wet	ND					
Dibenzo(a,h)anthracene			t70	2.0	ug/kg wet	ND					
Dibenzofuran			t70	1.7	ug/kg wet	ND					
Diethyl phthalate			t70	5.0	ug/kg wet	ND					
Dimethyl phthalate			t70	4.3	ug/kg wet	ND					
Di-n-butyl phthalate			170	58	ug/kg wet	ND					
Di-n-octyl phthalate			ŧ70	3.9	ug/kg wet	ND					
Fluoranthene			t70	2.4	ug/kg wet	ND					
Fluorene			t70	3.8	ug/kg wet	ND					
Hexachtorobenzene			t70	8.3	ug/kg wet	ND					
Hexachlorobutadiene			t70	8.5	ug/kg wet	ND					
Hexachlorocyclopentadie ne			ŧ70	50	ug/kg wet	ND					
Hexachloroethane			t70	13	ug/kg wet	ND					
Indeno(1,2,3-cd)pyrene			170	4,6	ug/kg wet	ND					
Isophorone			170	8.3	ug/kg wet	ND					

THE SUADLE IN UNV ROTATION ALL LONING

GaiaTech Inc. 135 S. L aS alle S t.			Work Orde	er: RTK1 t23				Rece	ived: ided:	11/13/ t1/18/	10 10 13:08
Chicago, IL 60603			Project: Po Project Nu	bestenkill, NY f mber: [no	Project ne]			, iope			
			LAI	BORATOR	Y QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Quatifiers
Semivolatile Organics by	GC/MS										
Blank Analyzed: 11/16/10	(Lab Num	ber:10K15	00-BLK1, B	atch: 10K150	00)						
Naphthalene	`		t70	2.8	, ug/kg wet	ND					
Nilrobenzene			170	7.4	ug/kg wet	ND					
N-Nitrosodi-n-propylamin e			170	13	ug/kg wei	ND					
N-Nitrosodiphenylamine			170	9.1	ug/kg wet	ND					
Pentachlorophenol			33 0	57	ug/kg wet	ND					
Phenanthrene			170	3.5	ug/kg wet	ND					
Phenol			170	18	ug/kg wet	ND					
Pyrene			170	1.1	ug/kg wet	ND					
Tetraethyl-Lead			990	16 0	ug/kg wet	ND					
Surrogate: 2.4.6-Tribromophenol					ug/kg wet		87	39-146			
Surrogate: 2-Eluorobioheovi					ug/kg wei		59	37-120			
Surrogate: 2-Fluoronhenol					ug/kg wet		49	18-120			
Surrogale: Nitrobenzene-d5					ug/kg wet		54	34-132			
Surrogale: Phenol-d5					ug/kg wet		57	11-120			
Surrogale: p-Terphenyl-d14					ug/kg wet		80	58-147			
LCS Analyzed: 11/16/10 (Lab Numb	er:10K1500	-BS1, Batc	h: 10K1500]							
1,2,4-Trichlorobenzene		3260	320	4.7	ug/kg wet	1740	53	39- t20			
1,2-Dichlorobenzene			320	3.2	ug/kg wet	ND		t8-120			
1,3-Dichlorobenzene			320	2.9	ug/kg wet	ND		14- t20			
1,4-Dichlorobenzene		3260	320	2.2	ug/kg wet	1520	47	34-t20			
1,4-Dioxane		3260	200	37	ug/kg wet	ND		11-t20			
2,4,5-Trichlorophenol			170	36	ug/kg wet	ND		59-t26			
2,4,6-Trichlorophenol			170	11	ug/kg wet	ND		59-t23			
2,4-Dichlorophenol			170	8.6	ug/kg wet	ND		52- t20			
2,4-Dimethylphenol			170	45	ug/kg wet	ND		36- t20			
2,4-Dinitrophenol			320	58	ug/kg wet	ND		35-t46			
2,4-Dinitrototuene		3260	170	26	ug/kg wet	2250	69	55-t25			
2,6-Dinitrotoluene			170	40	ug/kg wet	ND		66- t28			
2-Chloronaphthalene			170	11	ug/kg wet	ND		57-t20			
2-Chlorophenol		3260	170	8.4	ug/kg wet	t770	54	38- t20			
2-Methylnaphthalene			170	2.0	ug/kg wet	ND		47-120			
2-Methylphenol			170	5.1	ug/kg wet	ND		48-12 0			
2-Nitroaniline			320	53	ug/kg wet	ND		61-130			
2-NiIrophenot			170	7.5	ug/kg wet	ND		50-120			

THE LEADER IN LINE ROMMENTAL LEADING

GaiaTech Inc.			Work Or	Rece	ived.	: 11/13/10					
135 S. LaSalle SI.			Repo	orted:	11/18/	10 13:08					
Chicago, IL 60603			Project: I	Poestenkill, NY I	Project						
			FIDECLE	number. (no	ме						
			LA	BORATOR	Y QC DATA						
Anaivte	Source Result	Spike Level	RL	88551		m	%	% REC	%	RPD	Data
Semivolatile Organics b	y GC/MS			mDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
3.3'-Dichlorobeoridine	(Lab Numb	er:10K15(0-BS1, Bai	tch: 10K1500)							
3-Nitroaniline			220	140	ug/kg wet	ND		48-126			
4 6-Dinitro-2-methyloben			320	38	Ug/kg wet	ND		61-127			
ol			320	57	ng/kg wet	ND		49-155			
4-Bromophenyt phenyl ether			170	52	ug/kg wet	ND		58-131			
4-Chloro-3-methylphenol		3260	170	6.8	ug/kg wet	2080	64	49-125			
4-Chloroaniline			170	48	ug/kg wet	ND		49-120			
4-Chlorophenyl phenyl ether			170	3.5	ug/kg wet	ND		63-124			
4-Methylphenot			320	92	uđka uot	ND		50 4 40			
4-Nitroaniline			320	18	ug/kg wet	ND		50-119			
4-Nitrophenot		3260	320	40	ug/kg wet	2540	70	63-128			
Acenaphthene		3260	170	1.9	ug/kg wet	1000	70 61	43-137			
Acenaphthylene		0200	170	1.3	ug/kg wet	ND	01	53-120			
Acetophenone			170	8.5	ua/ka wet	ND		56-121 66-120			
Anthracene			170	4.2	ug/kg wet			62-120			
Alrazine			170	7.3	ua/ka wet	ND		73-133			
Benzaldehyde			170	18	ua/ka wet	ND		21-120			
Benzo(a)anthracene			170	2.8	ug/kg wet	ND		65-133			
Benzo(a)pyrene			17 0	4.0	ug/kg wet	ND		64-127			
Benzo(b)fluoranthene			17 0	3.2	ug/kg wet	ND		64-135			
Benzo(ghi)perytene			170	2.0	ug/kg wet	ND		50-152			
Benzo(k)fluoranthene			170	1.8	ug/kg wet	ND		58-138			
Biphenyl			170	10	ug/kg wet	ND		71-120			
Bis(2-chloroethoxy)metha			170	9.0	ug/kg wet	ND		61-133			
ne Bis(2-chtoroethvi)ether			170	4.4							
2,2'-Oxybis(1-Chloroprop			170	14 17	ug/kg wei ug/kg wei	ND		45-120 44-12 0			
Bis(2-ethylhexyl)		3260	170	53	ug/kg wet	2480	76	61-133			
Butyi benzyi phihalate			170	44	ua/ka wet	ND		61-120			
Caprolactam			170	71	ua/ka wet	ND		54-133			
Carbazole			170	1.9	ug/kg wet	ND		59-129			
Chrysene			170	1.6	ug/kg wet	ND		64-131			
Dibenzo(a,h)anthracene			170	1.9	ug/kg wet	ND		54-148			
Dibenzofuran			t70	t.7	ug/kg wet	ND		56-120			
Diethyl phthalate			170	5.0	ug/kg wet	ND		66-126			
Dimethyl phthalate			17 0	4.3	ug/kg wet	ND		65-124			

AND FEAR REPAIR AN RUMPEAL OF THE DAY

GaiaTech Inc. 135 S. LaSalle St.			Work Order: RTK (123						Received: Reported:		t0 10 13:08
Chicago, IL 60603			Project: Poe Project Nurr	estenkill, NY Pr iber: [none	oject e]			Topo	, 100.		
			LAB	ORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Anatyle	Result	Levet	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Semivolatile Organics by	GC/MS										
LCS Analyzed: 11/16/10	(Lab Numb	er:10K1500)-BS1, Balch	: 10 K15 00)							
Di-n-butyl phthalate	•		170	57	ug/kg wet	ND		58-130			
Di-n-octyl phthalate			170	3.9	ug/kg wet	ND		62-133			
Fluoranthene			170	2.4	ug/kg wet	ND		62-131			
Fluorene		3280	170	3.8	ug/kg wet	2200	68	63-126			
Hexachlorobenzene			170	8.2	ug/kg wet	ND		60-132			
Hexachlorobutadiene			170	8.4	ug/kg wet	ND		45-t20			
Hexachlorocyclopentadie ne			170	50	ug/kg wet	ND		31-120			
Hexachloroethane		3260	170	13	ug/kg wet	1460	45	41-120			
Indeno(1,2,3-cd)pyrene			170	4.6	ug/kg wet	ND		56-149			
Isophorone			t70	8.2	ug/kg wet	ND		56-120			
Naphthalene			170	2.7	ug/kg wet	ND		46- t20			
Nitrobenzene			170	7.3	ug/kg wet	ND		49-120			
N-Nitrosodi-n-propylamin e		3260	170	13	ug/kg wet	1970	61	46-120			
N-Nitrosodiphenylamine			170	9.0	ug/kg wet	ND		20-119			
Pentachlorophenol		3260	320	57	ug/kg wet	2590	80	33-136			
Phenanthrene			170	3.5	ug/kg wet	ND		60-130			
Phenol		3260	170	17	ug/kg wet	t690	52	36-120			
Pyrene		3260	170	1.1	ug/kg wet	2500	77	51-133			
Tetraethyl-Lead		3260	980	160	ug/kg wet	932	29	10-120			J
Surrogate:					ug/kg wet		79	39-146			
2,4,0- mbromophenor Surrogate: 2-Eluorohinheovi					ug/kg wet		59	37-120			
Surrogate: 2-Fluorophenol					ug/kg wet		51	18-120			
Surrogate: Nitrobenzene-d5					ug/kg wet		57	34-132			
Surrogate: Pheno/-d5					ug/kg wet		58	11-120			
Surrogate: p-Terphenyl-d14					ug/kg wet		72	58-147			
Matrix Spike Anatyzed: 1 QC Source Sample: RTK1123-0	1/16/t0 (La	b Number:	10K1500-MS	1, Batch: 10i	(15 00)						
1,2,4-Trichlorobenzene	ND	3750	1900	27	ug/kg dry	3880	104	39-120			D08
t,2-Dichlorobenzene	ND		1900	t8	ug/kg dry	ND		18-120			D08
t,3-Dichlorobenzene	ND		1900	t7	ug/kg dry	ND		14-120			D08
t,4-Dichlorobenzene	ND	3750	1900	t3	ug/kg dry	2980	79	34-120			D08
1,4-Dioxane	ND	3750	1 t 00	210	ug/kg dry	ND		1 t-120			D08
2,4,5-Trichlorophenol	ND		960	210	ug/kg dry	ND		59-126			D08
2,4,6-Trichlorophenol	ND		960	63	ug/kg dry	ND		59-t23			D08
TestAmerica Buffalo - 10	Hazelwood	Drive Am	herst, NY 14	228 tel 716-6	591-2600 fax 71	16-691-799	91				

THE ELABER IN LYVIRCHMENTAL TESTING

GaiaTech Inc. 135 S. LaSalle St.			Work Order: RTK1123				Received: Reported:		11/13/10 11/18/10 13:08		
Chicago, IL 60603			Project: F Project N	Poestenkill, NY P lumber: [nor	'roject ae]						
			LA	BORATOR	QC DATA						
Analvte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
Semivolatile Organics by	GC/MS										
Matrix Spike Analyzed: 1 QC Source Sample: RTK1123-0	1/16/10 (La)1	ab Number	:10 K15 00-I	WS1, Batch: 10)K t500)						
2,4-Dichlorophenol	ND		960	50	ug/kg dry	ND		52-120			D08
2,4-Dimethylphenol	ND		960	260	ug/kg dry	330		36-120			D08,J
2.4-Dinitrophenol	ND		1900	330	ug/kg dry	ND		35-146			D08
2,4-Dinifrotoluene	ND	3750	960	150	ug/kg dry	4100	109	55-125			D08
2,6-Dinitrotoluene	ND		960	230	ug/kg dry	ND		66-128			D08
2-Chloronaphthalene	ND		960	64	ug/kg dry	ND		57-120			D08
2-Chlorophenol	ND	3750	960	48	ug/kg dry	3440	92	38-120			D08
2-Melhylnaphthalene	1110		960	12	ug/kg dry	1020		47-120			D08
2-Methylphenol	ND		960	29	ug/kg dry	ND		48-120			D08
2-Nitroaniline	ND		1900	300	ug/kg dry	ND		61-130			D08
2-Nitrophenol	ND		960	43	ug/kg dry	ND		50-120			D08
3,3'-Dichlorobenzidine	ND		960	830	ug/kg dry	ND		48-126			D08
3-Nitroaniline	ND		1900	220	ug/kg dry	ND		61-127			D08
4,6-Dinitro-2-methyl p hen ol	ND		1900	330	ug/kg dry	ND		49-155			D08
4-Bromophenyl phenyl elher	ND		960	300	ug/kg dry	ND		58-131			D08
4-Chloro-3-melhylphenol	ND	3750	960	39	ug/kg dry	4790	128	49-125			D08,M7
4-Chloroaniline	ND		960	280	ug/kg dry	ND		49-120			D08
4-Chlorophenyl phenyl ether	ND		960	20	ug/kg dry	ND		63-124			D08
4-Methylphenol	ND		1900	53	ug/kg dry	ND		50-119			D08
4-Nilroaniline	ND		1900	110	ug/kg dry	ND		63-128			D08
4-Nilrophenol	ND	3750	1900	230	ug/kg dry	4820	128	43-137			D08
Acenaphihene	ND	3750	960	11	ug/kg dry	4310	115	53-120			D08
Acenaphthylene	ND		960	7.8	ug/kg dry	ND		58-121			D08
Acelophenone	ND		960	49	ug/kg dry	ND		66-120			D08
Anthracene	ND		960	24	ug/kg dry	ND		62-129			008
Alrazine	ND		960	42	ug/kg dry	ND		73-133			D08
Benzaldehyde	ND		960	100	ug/kg dry	ND		21-120			D08
Benzo(a)anthracene	ND		960	16	ug/kg dry	ND		65-133			D08
Benzo(a)pyrene	ND		960	23	ug/kg dry	ND		64-127			D08
Benzo(b)fluoranthene	ND		960	18	ug/kg dry	ND		64-135			D08
Benzo(ghí)perylene	ND		960	11	ug/kg dry	ND		50-152			D08
Benzo(k)fluoranthene	ND		960	10	ug/kg dry	ND		58-138			D08
Biphenyl	ND		960	59	ug/kg dry	ND		71-120			D08
Bis(2-chloroethoxy)metha	ND		960	52	ug/kg dry	ND		61-133			D08
Bis(2-chloroethyl)ether	ND		960	82	ug/kg dry	ND		45-120			D08

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-799 t

<u>TestAmerica</u>

AR FEADER IN TAX BOXARALYE FOULS?

GaiaTech Inc. 135 S. LaSalle St.			Work Order: RTK1123					Received: Reported:		: 11/13/10 : 11/18/10 13:08	
Chicago, IL 60603			Project: Project N	Poestenkill, NY Pi łumber: (non-	e(I						
			L,4	BORATORY	QC DATA						
	Source	Spike	51				%	% REC	%	RPD	Data
Analyte Semivolatile Organics by	GC/MS	Levei	<u><u></u><u></u></u>	MUL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Maddin O-Din Assolution de de		• • • • · · · ·	40144 -00		K45001						
QC Source Sample: RTK1123-0	1116/10 (La 1	ib Number	10K1500-	MOT, Batch: 10	K1500}						
2,2'-Oxybis(1-Chloroprop ane)	ND		960	99	ug/kg dry	ND		44-120			D08
Bis(2-ethylhexyl) phthalate	12900	3750	960	310	ug/kg dry	14900	53	61-133			D08,M8
Butyl benzyl phthalate	ND		960	260	ug/kg dry	ND		61-129			D08
Caprolactam	ND		960	410	ug/kg dry	ND		54-133			D08
Carbazole	ND		960	11	ug/kg dry	ND		59-129			D08
Chrysene	ND		960	9.5	ug/kg dry	ND		64-131			D08
Dibenzo(a,h)anthracene	ND		960	11	ug/kg dry	ND		54-148			D08
Dibenzoluran	ND		960	9.9	u9/kg dry	ND		56-120			D08
Diethyl phthalate	ND		960	29	ug/kg dry	ND		66-126			D08
Dimethyl phthalate	ND		960	25	ug/kg dry	ND		65-124			D08
Di-n-butyl phthalate	ND		960	330	ug/kg dry	ND		58-130			D08
Di-n-octyl phthalate	ND		960	22	ug/kg dry	ND		62-133			D08
Fluoranthene	ND		960	14	ug/kg dry	ND		62-131			D08
Fluorene	ND	3750	960	22	ug/kg dry	4690	125	63-126			D08
Hexachlorobenzene	ND		960	47	ug/kg dry	ND		60-132			D08
Hexachlorobutadiene	ND		960	49	ug/kg dry	ND		45-120			D08
Hexachlorocyclopentadie ne	ND		960	290	ug/kg dry	ND		31-120			D08
Hexachloroethane	ND	3750	960	73	ug/kg dry	2980	80	41-120			D08
Indeno(1,2,3-cd)pyrene	ND		960	26	ug/kg dry	ND		56-149			D08
Isophorone	ND		960	47	ug/kg dry	ND		56-120			D08
Naphthalene	593		960	16	ug/kg dry	495		46-120			D08,J
Nitrobenzene	ND		960	42	ug/kg dry	ND		49-120			D08
N-Nitrosodi-n-propylamin e	ND	3750	960	75	ug/kg dry	4000	107	46-120			D08
N-Nitrosodiphenylamine	ND		960	52	ug/kg dry	ND		20-119			D08
Pentachlorophenol	ND	3750	1900	330	ug/kg dry	4530	121	33-136			D08
Phenanthrene	ND		960	20	ug/kg dry	ND		60-130			D08
Phenol	ND	3750	960	100	ug/kg dry	3380	90	36-120			D08
Pyrene	ND	3750	960	6.1	ug/kg dry	4770	127	51-133			D08
Tetraethyl-Lead	ND	3750	5600	910	ug/kg dry	3090	82	10-120			D08,J
Surrogate: 2,4,6-Tribromophenol					ug/kg dry		132	39-146			D08
Surrogate:					ug/kg dry		120	37-120			D08
Surrogate: 2-Fluorophenol					ug/kg dry		82	18-120			D08

*	+ +	1000	$\sim \sim \sim$	$-\infty$
-1		r r	12	17 7 3
1	$\nabla - \gamma T$	1 1	15 31	IX _X _A
I			· • • •	$\sim \sim$
-				
- 82	Sand Sand Start Start Street and Street and Street Street	and all the second	and dead damages and	start fails of the black second

THE FEARER IN UNVIRONABLINE AT THE

GaiaTech Inc. 135 S. LaSalle St. Chicago, IL 60603			Work Order: Project: Poes Project Numb	Received: Reported:		1 t/13/ t0 1 1/ t8/ 10 13:08					
			LABO	RATORY	QC DATA						
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
Semivolatile Organics by	GC/MS										
Matrix Spike Analyzed: 11 QC Source Sample: RTK1123-0	/16/10 (La 1	ab Number:	10K1500-MS1	, Batch: 10K	1500)						
Surrogate: Nirobenzene-d5 Surrogate: Dhanol d5					ug/kg dry		102	34-132			D08
Surrogate: p-Terphenyl-d14					ug/kg dry ug/kg dry		115	58-147			D08 D08
Matrix Spike Dup Analyze QC Source Sample: RTK1123-0	d: 11/16/1(1	0 (Lab Nun	nber:10K1500	-MSD1, Batcl	h: 10K1500)						
1,2,4-Trichlorobenzene	ND	3780	1900	27	ug/kg dry	3580	95	39-120	8	30	D08
t,2-Dichlorobenzene	ND		1900	t8	ug/kg dry	ND		18-120		29	D08
t,3-Dichlorobenzene	ND		1900	t7	ug/kg dry	ND		14-120		37	D08
1,4-Dichlorobenzene	ND	3780	1900	13	ug/kg dry	2910	77	34-120	2	35	D08
1,4-Dioxane	ND	3780	1100	210	ug/kg dry	NÐ		11-120		50	D08
2,4,5-Trichtorophenol	ND		96 0	210	ug/kg dry	NÐ		59-12 6		t8	D08
2,4,6-Trichlorophenol	ND		960	63	ug/kg dry	ND		59-123		t9	D08
2,4-Dichlorophenol	ND		960	50	ug/kg d ry	ND		52-120		t9	D08
2,4-Dimethylphenol	ND		960	260	ug/kg dry	ND		36-120		42	D 0 8
2,4-Dinitrophenol	ND		t900	330	ug/kg dry	ND		35-1 4 6		22	D08
2,4-Dinitrotoluene	NÐ	3780	960	t50	ug/kg dry	4320	114	55-t25	5	20	D08
2,6-Dinitrotoluene	ND		960	230	ug/kg dry	ND		66-t28		15	D08
2-Chloronaphthalene	ND		960	64	ug/kg dry	ND		57-t20		21	D08
2-Chlorophenol	ND	3780	960	49	ug/kg dry	3270	87	38-120	5	25	D08
2-Methylnaphthalene	1110		960	12	ug/kg dry	839		47-120	20	21	D08,J
2-Methylphenol	ND		960	29	ug/kg dry	51.0		48-120		27	D08,J
2-Nitroaniline	ND		t900	310	ug/kg dry	ND		61-130		15	D08
2-Nitrophenol	ND		960	44	ug/kg dry	ND		50-t20		18	D08
3,3'-Dichlorobenzidine	ND		960	840	ug/kg dry	ND		48-126		25	D08
3-Nitroaniline	ND		t900	220	ug/kg dry	ND		61-127		t9	D08
4,6-Dinitro-2-methylphen ol	ND		1900	330	ug/kg dry	ND		49-155		15	D08
4-Bromophenyl phenyl ether	ND		960	300	ug/kg dry	ND		58-131		15	D08
4-Chloro-3-methylphenol	ND	3780	960	39	ug/kg dry	4750	126	49-125	0.8	27	D08,M7
4-Chloroaniline	ND		960	280	ug/kg dry	ND		49-120		22	D 0 8
4-Chlorophenyl phenyl ether	ND		960	20	ug/kg dry	ND		63-124		16	D 0 8
4-Methylphenol	ND		1900	53	ug/kg dry	ND		5 0- 119		24	D08
4-Nitroaniline	ND		t900	110	ug/kg dry	ND		63-128		24	D08
4-Nitrophenol	ND	3780	t900	230	ug/kg dry	4950	131	43-137	3	25	D08
Acenaphthene	ND	3780	960	11	ug/kg dry	4400	116	53-120	2	35	D08

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

<u>TestAmerica</u>

NUL CLABER IN LINERCOMMENTAL INSTAG

GaiaTech Inc. 135 S. LaSalle SI. Chicago, IL 60603			Work O/der: RTK1123 Projeci: Poeslenkill, NY Project				Received: Reported:		11/13/10 11/18/10 13:08		
			Project	Number: [none	e]eet						
			Ĺ	ABORATORY	QC DATA						
Analvte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
Semivolatile Organics by	GC/MS									`	
Matrix Spike Dup Analyze QC Source Sample: RTK1123-0	ed: 11/16/1()1) (Lab Nur	nber:10K	1500-MSD1, Bate	ch: 10K1500)						
Acenaphlhylene	ND		960	7.8	ug/kg dry	ND		58-121		18	D08
Acelophenone	ND		960	49	ug/kg dry	ND		66-120		20	D08
Anlhracene	ND		960	24	ug/kg dry	ND		62-129		15	D08
Alrazine	ND		960	43	ug/kg dry	ND		73-133		20	D08
Benzaldehyde	ND		960	100	ug/kg dry	ND		21-120		20	D08
Benzo(a)anIhracene	ND		960	17	ug/kg dry	ND		65-133		15	D08
Benzo(a)pyrene	ND		960	23	ug/kg dry	ND		64-127		15	D08
Benzo(b)fluoranthene	ND		960	19	ug/kg dry	ND		64-135		15	D08
Benzo(ghi)perylene	ND		960	11	ug/kg dry	ND		50-152		15	D08
Benzo(k)fluoranthene	ND		960	11	ug/kg dry	ND		58-138		22	D08
Biphenyl	ND		960	60	ug/kg dry	ND		71-120		20	D08
Bis(2-chloroethoxy)metha	ND		960	52	ug/kg dry	ND		61-133		17	D08
Bis(2-chloroethyl)elher	ND		960	83	ug/kg dry	ND		45-120		21	D08
2,2'-Oxybis(1-Chloroprop an e)	ND		960	100	ug/kg dry	ND		44-120		24	D08
Bis(2-elhylhexyl) phlhalate	12900	3780	960	310	ug/kg dry	14300	37	61-133	4	15	D08,M8
Butyl benzyl phthalale	ND		960	260	ug/kg dry	ND		61-129		16	D08
Caprolactam	ND		960	410	ug/kg dry	ND		54-133		20	D08
Carbazole	ND		960	11	ug/kg dry	ND		59-129		20	D08
Chrysene	ND		960	9.6	ug/kg dry	ND		64-131		15	D08
Dibenzo(a,h)anthracene	ND		960	11	ug/kg dry	ND		54-148		15	D08
Dibenzofuran	ND		960	10	ug/kg dry	ND		56-120		15	D08
Dielhyl phthalate	ND		960	29	ug/kg dry	ND		66-126		15	D08
Dimelhyl phthalate	ND		960	25	ug/kg dry	ND		65-124		15	D08
Di-n-butyl phihalate	ND		960	330	ug/kg dry	ND		58-130		15	D08
Di-n-octyl phthalate	ND		960	22	ug/kg dry	ND		62-133		16	D08
Fluoranlhene	ND		960	14	ug/kg dry	ND		62-131		15	D08
Fluorene	ND	3780	960	22	ug/kg dry	4680	124	63-126	0.2	15	D08
Hexachlorobenzene	ND		960	48	ug/kg dry	ND		60-132		15	D08
Hexachlorobutadiene	ND		960	49	ug/kg dry	ND		45-120		44	D08
Hexachlorocyclopentadie ne	ND		960	290	ug/kg dry	ND		31-120		49	D08
Hexachloroelhane	ND	3780	960	74	ug/kg dry	2790	74	41-120	7	46	D08
Indeno(1,2,3-cd)pyrene	ND		960	26	ug/kg dry	ND		56-149		15	D08
tsophorone	ND		960	48	ug/kg dry	ND		56-120		17	D08
Naphlhalene	593		960	16	ug/kg dry	440		46-120	12	29	D08,J
Nitrobenzene	ND		960	42	ug/kg dry	ND		49-120		24	D08

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991
TestAmerica

THE LEADER IN LIVERCENTRE LEATING

GaiaTech Inc. 135 S. LaSalle S1, Chicago, IL 60603			Work Orc Project: F Project N	ler: RTK1123 Poestenkill, NY F umber: [nor	Rece Repo	ceived: 11/13. ported: 11/18		3/10 8/1 0 13:08			
			LA	BORATOR	Y QC DATA						
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC	% RPD	RPD Limit	Data Qualifiers
Semivolatile Organics by	GC/MS										
Matrix Spike Dup Analyze QC Source Sample: RTK1123-	ed: 1 t/16/1) 01	0 (Lab Nu	umber:10K1	500-MSD1, Ba	tch: 10K1500)						
N-Nitrosodi-n-propylamin e	ND	3780	960	76	ug/kg dry	3890	1 0 3	46-120	3	31	D08
N-Nitrosodiphenylamine	ND		960	52	ug/kg dry	ND		20-119		15	D08
Pentachlorophenot	ND	3780	1900	330	ug/kg dry	5020	133	33-136	10	35	D08
Phenanthrene	ND		960	20	ug/kg dry	ND		60-130		15	D08
Phenol	ND	3780	960	100	ug/kg dry	3480	92	36-120	3	35	D08
Pyrene	ND	3780	960	6.2	ug/kg dry	5020	133	51-133	5	35	D08
Tetraethyl-Lead	ND	3780	5700	92 0	ug/kg dry	2900	77	10-120	6	30	D08,J
Surrogate: 2,4,6-Tribromophenol					ug/kg dry		129	39-146			D08
Surrogate: 2-Ekvorabinhenvl					ug/kg dry		110	37-120			D08
Surrogate: 2-Fluorophenol					ug/kg dry		79	18-120			D08
Surrogale: Nitrobenzene-d5					ug/kg dry		9 8	34-132			D08
Surrogate: Phenol-d5					ug/kg dry		98	17-120			D08
Surrogate: p-Terphenyl-d14					ug/kg dry		719	58-147			D08

		•
I act /	ma	NNON
10017		71 K. (J.

NEL EVADER IN UNVECTIMENTAL DOTING

GaiaTech Inc. 135 S. LaSalle St .			Work O	der: RTK1123	, 			Rece	eived: orted:	11/13/ 11/18	(10 (10 13:08
Chicago, IL 60603			Project: Project I	Poestenkill, NY Number: [no	Project one]						
			L	ABORATOR	Y QC DATA						
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC	% RPD	RPD	Data Ouglifiere
Total Metals by SW 846	Series Met	hods									Generation
Blank Analyzed: 11/17/1	0 (Lab Nu	nber:10K1	1516-BLK1,	Batch: 10K15	16)						
Arsenic			2.0	0.4	ma/ka wet	ND					
Barium			0.499	0.110	ma/ka wet	ND					
Cadmium			0.200	0.030	ma/ka wet	ND					
Chromium			0.499	0.200	ma/ka wet	ND					
Lead			1.0	0.2	ma/ka wet	ND					
Selenium			4.0	0.6	ma/ka wet	ND					
Silver			0.499	0.200	ma/ka wet	ND					
Matrix Spike Analyzed: 1 QC Source Samplo: RTK1123	11/17/10 (L -01	ab Numbe	er:10K1516-	MS1, Batch: 1	0 K151 6)						
Arsenic	5.06	45 1	23	0.5	ma/ka day	46.8	62	76 196			
Barium	193	45.1	0.564	0.124	mg/kg dry	40.0	80	75-125			
Cadmium	0.204	45 1	0.226	0.034	mg/kg dry	42.4	00	75-120			MHA
Chromium	17.8	45.1	0.564	0.226	mg/kg dry	40.2	90	75 125			
Lead	14.6	45.1	1.1	0.3	mg/kg dry	65.0	90	75 125			
Selenium	1.06	45.1	4.5	0.6	mg/kg dry	43.7	04	70-120			
Silver	ND	11.3	0.564	0.226	mg/kg dry	10.3	54 0.1	75 125			
				0.000	inging diy	10.0	51	75-125			
Matrix Spike Dup Anatyz QC Source Sample: RTK1123	ed: 11/17/1 -01	0 (Lab Nu	Imber:10K1	516-MSD1, Ba	tch: 10K1516)						
Arsenic	5.06	45.1	2.3	0.5	mg/kg dry	45.9	90	75-125	2	20	
Barium	193	45. t	0.564	0.124	mg/kg dry	220	59	75-125	2	20	MHA
Cadmium	0.204	45.1	0.226	0.034	mg/kg dry	42.5	94	75-125	2	20	
Chromium	17.8	45.1	0.564	0.226	mg/kg dry	60.7	95	75-125	1	20	
Lead	14.6	45.1	1.1	0.3	mg/kg dry	66.7	116	75-125	t	20	
Selenium	t.06	45.1	4.5	0.6	mg/kg d ry	42.7	92	75-125	2	20	
Silver	ND	11,3	0.564	0.226	mg/kg dry	10.4	92	75-125	0.5	20	
Reference Analyzed: 11/	17/10 (Lab	Number:1	0K1516-SR	M1, Batch: 10	K1516)						
Arsenic		138	2.0	0.4	mg/kg wet	126	91	70.4-129. 7			
Barium		269	0.501	0.110	mg/kg wet	236	88	, 74-126.4			
Cadmium		71.1	0.200	0.030	mg/kg wet	70.2	99	73.2-126.			
Chromium		t05	0.501	0.200	mg/kg wet	98.1	93	8 69.3-130.			
Lead		144	1.0	0.2	mg/kg wet	t54	107	5 72.9-126.			
Selenium		200	4.0	0.6	mg/kg wet	189	94	4 68.5-131,			
Silver		45.2	0.501	0.200	mg/kg wet	41.0	91	5 66.3-133. 7			

BILL CABER IN THE REMARKARAC TRADES

GaiaTech Inc. 135 S. LaSalle St.	Work Order: RTK1123	der: RTK1123 Received: 11/13 Reported: 11/13 Poestenkill, NY Project						
Chicago, IL 60603	Project: Poestenkill, NY Project							
	Project Number: [none]							
Total Metals by SW 846 Series N	1ethods							
Blank Analyzed: 11/17/10 (Lab I	Number:10K1560-BLK1, Batch: 10K1560)							

Mercury		0.0190	0.0077	mg/kg wet	ND		
Reference Analyzed: 11/17/10	(Lab Number:1	0K1560-SF	RM1, Batch: 10	(1560)			
Mercury	2.96	0.178	0.0720	mg/kg wet	2.94	99	67.6-132. 8

THE LUADER IN UNVIRONMENTAL LEGING

GaiaTech Inc. 13 5 S . LaSalle S t.			Work Or	der: RTK1123				Rece	ived: 1	1/13/	10
Chicago, IL 60603			Project: I Project N	Project: Poestenkill, NY Project Project Number: [none]					ined: 1	1110	10 13.08
			LA	BORATORY	QC DATA						
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% F RPD i	(PD mit	Data Qualifiers
Dissolved Metals by SW 8	46 Series	Methods									
Blank Analyzed: 11/17/10	(Lab Num	ber:10K1	1510-BLK1.	Batch: 10K1510	4						
Arsenic	•		0.0100	0.0056	na/L	ND					67
Barium			0.0020	0.0005	ma/l						P7
Cadmium			0.0010	0.0003	ma/L	ND					F7
Chromium			0.0040	0.0009	mg/L	ND					F7
Lead			0.0050	0.0030	ma/L	ND					F7 D7
Selenium			0.0150	0.0087	mg/L	ND					P7
Silver			0.0030	0.0017	mg/L	ND					P7
LCS Analyzed: 11/17/10 (L	ab Numb	er:10K15	10-8\$1, Bat	ch: 10K1510)							
Arsenic		0.200	0.0100	0.0056	ma/L	0 205	102	80-120			D7
Barium		0.200	0.0020	0.0005	ma/L	0.193	97	80-120			Г7 D7
Cadmium		0.200	0.0010	0.0003	ma/L	0.199	100	80-120			F7 D7
Chromium		0.200	0.0040	0.0009	mg/L	0.200	100	80-120			P7
Lead		0.200	0.0050	0.0030	mg/L	0.205	102	80-120			P7
Selenium		0.200	0.0150	0.0087	۔ mg/L	0.213	107	80-120			P7
Silver		0.0500	0.0030	0.0 0 17	mg/L	0.0486	97	80-120			P7
Dissolved Metals by SW 84	6 Series I	<u>Methods</u>									
Blank Analyzed: 11/17/10(Lab Numl	ber:10K1	557-BLK1. E	latch: 10K1557)							
Mercury			0.0002	0.0001	mg/L	ND					
Blank Analyzed: 11/17/10(Lab Numi	per:10K1	557-BLK2, B	atch: 10K1557)							
Mercury			0.0002	0.0001	mg/L	ND					
LCS Analyzed: 11/17/10 (La	ab Numbe	r:10K155	i7-8S1, Bato	h: 10K1557)							
Mercury	I	0.00667	0.0002	0.0001	mg/L	0.0 0 702	105	80-120			

	E)	10.7036				Special Instructions Conditions of Heconot				Dissolved Monds	ANY RELATION TO THE RELATION OF	HAVE THE WEITHS	Netals				2854ec il sanpias Are recened Abj		11/12/10 2:11 pm	1.12.10 052	Divise Times		9-1177 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
stAmerica	EADER IN ENVIRONMENTAL TESTING	G [2] [1]	Leo Aumoer	Analysis (Attach list if nore space is needed)			3)7 3)7 2)70 2)70	X X X	XX	XXX	XX						Arthree For Arthree Arth		1. Au - 1	1 A Mer		24.0	
Temperature on Receipt	The Lower Yes Contrary Mord	maximum Kused	THEADER NUMBER THEAD CONTROL MENTON	Some and the contract	Caramitan put resmon	Mater Containers &	HORY 121-12 HOW KOSTH ROST	145 X 3	700 X 2 3	200 X 3 3	230 X 23	3LS X X 3	500 X 2 3				Urstmourn 🗌 Aren To Clevel 🕅 Chapasal By Lay	X Conse 3-DAY OC Fragmentine (Speech	111112 10 2.11 pm + Received EV	11112 1. 5 00 pr 2 According	Date Time 3 At sever By		1 the Sempler Artis - Free City
Chain of	Custody Record	OKI KTELH	1855 S Lainlle St.	Christen Sur Jacob 03	Project Name and (action (SUR))	Competences concluse No BILO21 4200	Samples (D. No., and Description (Computer for each strate may be compared or one may	(16-3 1-2) [1/14/10 [1/	TNI-1 [ulleluo]	69-1 11/2/10/1	GP-2 [11/2/10]	GP-3 [11/12/10]	69-4 [11/10]			Pression Astrant General Staton	Non-Wester C Fernander Skin trrient Procon B X	Then Accord Time Required 2 & Haury	1, nowned By	2. and the first of the second s	3 Nontrainered By	Cumminerity	DISTRABUTION: WAYIE - Renard to Cleak with Report, Caledary Slays we

Analytical Report

Work Order: RTK1150

Project Description Poestenkill, NY Project

For:

Rebecca Kusek GaiaTech Inc.

135 S. LaSalle St. Chicago, IL 60603

Ryan VanDette For Brian Fischer Project Manager ryan.vandette@testamericainc.com Friday, November 19, 2010

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

OUT STABES IN FAA BOXZRASAT TEGILAS

GaiaTech Inc. 135 S. LaSalle St. Chicago, IL 60603 Work Order: RTK1150

Received: 11/16/10 Reported: 11/19/10 11:56

Project: Poestenkill, NY Project Project Number: [none]

TestAmerica Buffalo Current Certifications

As of 08/16/2010

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	N Y0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-N Y044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP, SDWA, CWA, RCRA,	N Y455
New York*	NELAP, AIR, SDWA, CWA, RCRA	10026
North Dakota	CWA, RCRA	R-176
Oklahoma	CWA, RCRA	9421
Oregon*	CWA, RCRA	N Y200003
Pennsylvania*	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
Texas*	NELAP CWA, RCRA	T104704412-08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA, RCRA	252

*As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

THE CLADER IN THE REPORTCO ALL ESTING

GaiaTech Inc. 135 S. LaSalle St. Chicago, IL 60603 Work Order: RTK1150

Project: Poestenkill, NY Project Project Number: [none]

CASE NARRATIVE

According to 40CFR Part t36.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

A pertinent document is appended to this report, 1 page, is included and is an integral part of this report.

Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

11/16/10

11/19/10 11:56

Received:

Reported:

SHE MADER IN THE REMARKATING TRAINING

GaiaTech Inc. t35 S. LaSalle St. Chicago, IL 60603 Work Order: RTK1150

Project: Poestenkill, NY Project Project Number: [none]

DATA QUALIFIERS AND DEFINITIONS

в	Analyte was detected in the associated Method Blank.
---	--

D08 Dilution required due to high concentration of target analyte(s)

- J Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.
- M8 The MS and/or MSD were below the acceptance limits. See Blank Spike (LCS),
- P6 Sample received unpreserved, however the sample was analyzed within 7 days per EPA recommendation.
- R2 The RPD exceeded the acceptance limit.
- NR Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below the laboratory reporting limit.

ADDITIONAL COMMENTS

Results are reported on a wet weight basis unless otherwise noted.

Received: 11/16/10 Reported: 11/19/10 11:56

OF LEADER IN UNV ROMMENTAL (LOTING

GaiaTech Inc. 135 S. LaSalle St.			Work Order: R	TK1150				Rec Rep	eived: 11/	/16/1 0 /19/10 11:56
Chicago, IL 60603			Project: Poesle Project Numbe	nkill, NY P r: [non	roject ne]					
	·		Executive	Summa	ry - Detect	ions				·····
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTK1150-01 (GP-5 4-6 - S	olid)			Samp	led: 11	/13/10 08:30	Rec	vd: 11/16/1	10 08:40
Volatile Organic Compou	inds by EPA	8260B								
Acelone	120		27	4.5	uo/ka drv	1.00	11/17/10 13:38	R.I	10K1648	82608
Methylene Chloride	18	B	5.4	2.5	ua/ka dry	1.00	11/17/10 13:38	R.I	10K1648	82608
Irans-1,2-Dichloroelhene	5.7		5.4	0.55	ua/ka dry	1.00	11/17/10 13:38	R.I	101/1648	8260B
Trichloroethene	100		5.4	1.2	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	8260B
General Chemistry Paran	neters									
Percent Solids	88		0.010	NR	%	1.00	11/17/10 15:30	JRR	10K1663	Dry Weight
Sample ID: RTK1150-01R	E1 (GP-5 4-6	i - Solid)			Samp	led: 11,	/13/10 08:30	Rec	vd: 11/16/1	0 08:40
Volatile Organic Compou	nds by EPA	8260B								
1,2-Dichtoroethene, Total	900	D08	85	22	uo/ka.dor	1.00	11/17/10 17:54	БI	10//1649	9120D
cis-1,2-Dichloroethene	900	D08	43	5.4	ua/ka dry	1.00	11/17/10 17:54	R.J	10K1648	8260B
Sample ID: RTK1150-02 ((GP-6 7-8 - So	olid]			Samo	led: 11	(13/40.40-30	Dec	ud- 44/46/4	0.09.40
Volatile Organic Compou	ods by FPA	8260B			001110		10/10 10:00	Neu	/4. 11/10/1	0 00.40
1.2-Dichtoroelbene Total	4.8	1	11	20		1.00				
cis-1 2-Dichlorgelbene	4.8	J		2.9	ug/kg dry	1.00	11/1//10 14:03	RJ	10K1648	8260B
Methylene Chloride	18	s R	5.0	2.6	ug/kg ary	1.00	11/17/10 14:03	RJ	10K1648	8260B
Trichloroethene	48	D	56	1.2	ug/kg ary ug/ka dau	1.00	11/17/10 14:03	KJ D I	101/1648	8260B
General Chemistry Paran	atare				dg/ng diy		171710 14.00		10/(1040	02000
Percent Solids	QA		0.010	ND	0/	1.00	14474045.00			-
Sampia ID: PTK4450 02 (C		1	0.010	INIK	70	1.00	11/17/10 15:32	JRR	10K1663	Dry Weight
Sample ID: KTK1150-05 (C	5P-0 - WALL	1			Samp	led: 11/	13/10 09:30	Recy	/d: 11/16/10	0 08:40
Volatile Organic Compou	nds by EPA	8260B								
1,1,2-Trichloroethane	1.5		1.0	0.23	ug/L	1.00	11/17/1 0 06:09	NMD	10K1577	82608
Tetrachloroelhene	2.8		1.0	0.36	ug/L	1.00	11/17/10 06:09	NMD	10K1577	82608
vinyi chioride	1,4		1.0	0 .90	ug/L	1.00	11/17/10 06:09	NMD	10K1577	8260B
Semivolatile Organics by	GC/MS									
4-Methylphenol	0.52	J	9.9	0.36	uo/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
4-Nitroaniline	1.5	J	9.9	0.25	ug/L	1.00	11/17/10 20:20	JLG	10K1563	82700
Butyl benzyl phthalate	0.48	J, B	5.0	0.42	ua/L	1.00	11/17/10 20:20	JLG	10K1563	82700
Diethyl phthatate	0.70	J	5.0	0.22	ua/L	1.00	11/17/10 20:20	JLG	10K1563	82700
Di-n-bulyl phthalate	0.91	J	5.0	0.31	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Pentachtorophenol	14		9.9	2.2	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Sample ID: RTK1150-03RE	:1 (GP-5 - W	ater)			Sampi	ed: 11/	13/10 09:30	Recv	rd: 11/16/10	0 08:40
Volatile Organic Compour	nds by EPA	8260B								
1.2-Dichloroethene, Total	220	D08	80	28	ua/L	40.0	11/17/10 12:49	LH	10K1645	8260B
cis-1,2-Dichloroethene	220	D 08	40	32	ua/L.	40.0	11/17/10 12:49	LH	10K1645	82608
Trichloroethene	3800	D 08	40	18	ug/L	40.0	11/17/10 12:49	LH	10K1645	8260B
Sample ID: RTK1150-04 (G	P-6 - Water))			Sampt	ed: 11/	13/10 11:30	Recv	d: 11/16/ to	0 08:40
Volatile Organic Compour	nds by EPA	8260B			r.					
1,2-Dichloroethene, Total	65		2.0	0.70	uaA	1.00	11/17/10 08:32	NMD	10K1577	8260P
•	-			v	09'L					0400B

NAL CLADER IN LAN ROMARATAL COMPO

GaiaTech Inc. 135 S. LaSalle St.		٧	Vork Order: I	RTK1150				Rece Repo	ived: 1 orted: 1	1/16/10 1/19/10 11:56
Chicago, IL 60603		P	roject: Poes roject Numb	tenkill, NY Pro er: [no n e	oject [
			Executive	e Summar	y - Detect	ions				
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTK1150-04	(GP-6 - Wate	r) - cont.			Samj	pled: 11/	/ 13/10 11:30	Recy	/d: 11/16	/10 08:40
Volatile Organic Compo	ounds by EPA	8260B - cont	<u>t.</u>							
cis-1,2-Dichloroethene	65		1.0	0.81	ua/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
Vinyl chloride	5.1		1.0	0.90	uğ/L	1.00	11/17/10 06:32	NMD	10K1577	826 0 B
Sample ID: RTK1150-04	RE1 (GP-6 - V	later)			Samj	pled: 11/	/13/10 11:30	Recv	/d: 11/16	/10 08:40
Volatile Organic Compo	ounds by EPA	8260B								
Trichloroethene	210	D08, P6	4.0	1.8	ug/L	4.00	11/17/10 13:13	LH	10K1648	i 8260B

BULLLADER IN LAW ROOMBLATAL LUMPRO

GaiaTech Inc. 135 S. LaSalle St. Chicago, IL 60603

Work Order: RTK1150

Project: Poestenkill, NY Project Project Number: [none] Received: 11/16/10 Reported: 11/19/10 11:56

Sample Summary

Sample Identification	Lab Number	Client Matrix	Date/Time Sampled	Date/Time Received	Sample Qualifiers
GP-5 4-6	RTK1150-01	Solid	11/13/10 08:30	11/16/10 08:40	
GP-6 7-8	RTK1150-02	Solid	11/13/10 10:30	11/16/10 08:40	
GP-5	RTK1150-03	Water	11/13/10 09:30	11/16/10 08:40	
GP-6	RTK1150-04	Water	11/13/10 11:30	11/16/10 08:40	
TRIP BLANK	RTK1150-05	Water	11/13/10	11/16/10 08:40	

THE SUADER IN LINE REPARTMENTAL TECHNIC

GaiaTech Inc.			Work Order: I	RTK1150				Rece	vived: 11/	16/10
135 S. LaSalle St.								Rep	orted: 11/	19/10 11:56
Chicago, IL 60603			Project: Poes	tenkill, NY P	rojec1					
			Project Numb	er: [non	e]					
			A	nalytical	Report					
	Sample	Data		•	•	DiJ	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTK1150-01 (GP-5 4-6 - S	olid)			Samp	oled: 11.	/13/10 08:30	Recv	/d: 11/16/1	0 08:40
Volatile Organic Compou	inds by EPA	8260B								
1,1,1-Trichloroethane	ND		5.4	0.39	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	8260B
1,1,2,2-Tetrachloroethane	ND		5.4	0.87	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	8260B
1,1,2-Trichloroethane	ND		5.4	0.70	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	8260B
1,1,2-Trichlorotrifluoroeth	ND		5.4	1.2	ug/kg dry	1.00	11/17/10 13:38	RĴ	10K1 6 48	8260B
ane										
1,1-Dichloroethane	ND		5.4	0.65	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	8260B
1,1-Dichloroethene	ND		5.4	0.66	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	8260B
1,2,4-Trichlorobenzene	ND		5.4	0.33	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	8260B
1,2-Dibromo-3-chloroprop	ND		5.4	2.7	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	82 6 0B
ane					•					
1,2-Dibromoethane	ND		5.4	0.69	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	82 6 0B
(EDB)										
1,2-Dichlorobenzene	ND		5.4	0.42	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	8260B
1,2-Dichloroe1hane	ND		5.4	0.27	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	8260B
1,2-Dichloropropane	ND		5.4	2.7	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1 6 48	8260B
1,3-Dichlorobenzene	ND		5.4	0.28	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	8260B
1,4-Dichlorobenzene	ND		5.4	0.75	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1 6 48	8260B
2-Butanone (MEK)	ND		27	2,0	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	82 6 0B
2-Hexanone	ND		27	2.7	ug/kg dry	1,00	11/17/10 13:38	RJ	10K1648	8260B
4-Methyl-2-pentanone	ND		27	1,8	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	8260B
(MIBK) Acetone	120		37	4.5	ualka day	1.00	11/17/10 12:29	D (101/10 40	0000
Benzene	ND		21 6 A	4.5	ug/kg ury	1.00	11/17/10 13:38	RJ DJ	101/1048	82008
Bromodichlaromothano	ND		5.4 64	0.26	ug/kg dry	1.00	11/17/10 13:38	KJ Ol	10K1648	82608
Bromotornoromeinane	ND		5.4	0.72	ug/kg ary	1.00	11/1//10 13:38	KJ	10K1648	82608
Bromonothene	ND		5.4	2.7	ug/kg ary	1.00	11/17/10 13:38	кJ	10K1648	82608
Bromomemane Codece disulfide	ND		5.4	0,48	ug/kg ary	1.00	11/17/10 13:38	кJ	10K1648	8260B
Carbon distinue			5.4	2.7	ug/kg ary	1.00	11/17/10 13:38	кJ	10K1648	82608
	ND		5.4	0.52	ug/kg ary	1.00	11/1//10 13:38	кJ	10K1648	8260B
Chloroditise settlere	ND		5.4	0.71	ug/kg ary	1.00	11/17/10 13:38	кJ	10K1648	8260B
	ND		5.4	0.69	ug/kg dry	1,00	11/17/10 13:38	кJ	10K1648	8260B
Chlorofinane	ND		5.4	1.2	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	8260B
Chlorotorm			5.4	0.33	ug/kg ary	1.00	11/17/10 13:38	кJ	10K1648	8260B
chioromemane	ND		5.4	0.32	ug/kg ary	1,00	11/17/10 13:38	кJ	10K1648	8260B
cis-1,3-Dichloropropene	ND		5.4	0.77	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	82 6 0B
Cyclonexane	ND		5.4	0.75	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	8260B
Dichtorodificoromeinane	ND		5.4	0.44	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1 6 48	8260B
Einyidenzene	ND		5.4	0.37	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	8260B
Isopropylbenzene	ND		5.4	0.81	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	8260B
Methyl Acetate	ND		5.4	1.0	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	8260B
Meinyi tert-Butyi Einer	ND		5.4	0.53	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	8260B
Methylcyclohexane	ND	-	5.4	0.81	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	8260B
Methylene Chloride	18	8	5.4	2.5	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	8260B
Styrene	ND		5.4	0.27	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	8260B
Tetrachloroethene	ND		5.4	0,72	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	8260B
Toluene	ND		5.4	0.40	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	8260B
1rans-1,2-Dichloroethene	5.7		5.4	0.55	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	8260B
1rans-1,3-Dichloropropen	ND		5.4	2.4	ug/kg dry	1,00	11/17/10 13:38	RJ	10K1648	8260B
e			_							
Trichloroethene	1 0 0		5.4	1.2	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	8260B
Trichlorofluoromethane	ND		5.4	0.51	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	8260B
Vinyl chloride	ND		5.4	0. 6 5	ug/kg dry	1.00	11/17/10 13:38	RJ	10K1648	8260B

TestAmerica Buffalo - t0 Hazelwood Drive Amherst, NY 1422B tel 716-691-2600 fax 716-691-7991

THE FIADER IN TWO NORMENTAL FRAMES

GaiaTech Inc.			Work Order	RTK1150				Rec	eived: 11/	16/10
135 S. LaSalle St.								Ren	orted: 11/	19/10 11:56
Chicago, IL 60603			Project: Poe	stenkill, NY F	roject			Top		13/10/11.30
			Project Nurr	iber: [noi	ne]					
			,	Analytica	Report					
	Sample	Data		-	•	Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTK1150-01	(GP-5 4-6 - Se	olid) - cont.			Sam	pled: 11	/13/10 08:30	Rec	vd: 11/16/1	0.08:40
Volatile Organic Compo	unde hv EÖA	8260B	n t							8 00,40
Xylenes, total	ND	02000 - 00	11	0.90	ualka dev	1.00	11/17/10 12:20	C 1	10//10/10	
1 2-Dicbloroetbane-d4	115.0/		Current invites	(64 4000()	uging ury	1.00	1017/10 13.38	KJ	10K1648	8260B
4-Bromofluorohenzene	11378		Sur Limits:	(64-126%)			11/17/10 13:38	RJ	10K1648	8260B
Toluene-d8	100 %		Sur Limits: Sur Limite:	(71-125%)			11/17/10 13:38	RJ	10K1648	8260B
			ouri Emina.	(71-12076)			11/17/10 13:38	RJ	IUK1648	8260 <i>B</i>
Semivolatile Organics b	<u>y GC/MS</u>									
2,4,5-Trichlorophenol	ND		190	42	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
2,4,0-Trichlorophenol	ND		190	13	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
2,4-Dichlorophenol	ND		190	10	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
2 A-Dinikoobenol	ND		190	52	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
2 4-Dinitrotoluege			380	67	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270 C
2.6-Dinitrotoluene	ND		190	30	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
2-Chloronanhthalene	ND		190	4/	ug/kg ary	1.00	11/16/10 21:13	MAF	10K1500	8270C
2-Chlorophenol	ND		190	13	ug/kg ary	1.00	11/16/10 21:13	MAF	10K1500	8270C
2-Methylnaphibalene			190	9.0	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
2-Methylobenol	ND		190	2.3	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
2-Nitroaniline	ND		390	5.9 60	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
2-Nilrophenol	ND		100	02	ug/kg ury	1.00	11/16/10 21:13	MAF	10K1500	8270C
3.3'-Dichlorobenzidine	ND		190	0.0	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
3-Niroaniline	ND		380	170	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
4,6-Dinilro-2-methylphen	NÐ		380	66	ug/kg dry ug/kg dry	1.00	11/16/10 21:13		10K1500	8270C
ol			- • -			1.00	10/10/10 21:15		1011300	62700
4-Bromophenyl phenyl ether	ND		190	61	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
4-Chioro-3-methylobedol	ND		100	7.0	and the states					
4-Chloroaniline	ND		190	7.9	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
4-Chlorophanyl phonyl	ND		190	26	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
elher	NO		190	4,1	ug/kg ary	1.00	11/16/10 21:13	MAF	10K1500	8270C
4-Methylphenol	ND		380	11	ua/ka drv	1.00	11/16/10 21:13	MAE	1061500	92700
4-Nilroaniline	ND		380	21	ua/ka drv	1.00	11/16/10 21:13	MAF	10K1500	82700
4-Nitrophenol	ND		380	47	ua/ka dry	1.00	11/16/10 21:13	MAF	10K1500	82700
Acenaphihene	NO		190	2.3	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
Acenaphthylene	ND		190	1.6	ug/kg dry	1.00	11/16/10 21:13	MAF	1081500	82700
Acelophenone	ND		190	9.9	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	82700
Anthracene	ND		190	4,9	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	82700
Alrazine	ND		190	8.6	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
Benzaldehyde	ND		190	21	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
Benzo(a)anthracene	ND		190	3.3	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
Benzo(a)pyrene	ND		190	4.6	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
Benzo(b)fluoran/hene	ND		190	3.7	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
Benzo(ghi)perylene	ND		190	2.3	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
Denzo(K)Iluoranihene	ND		190	2.1	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
Biprieny:	ND		190	12	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
Bis(2-chloroethoxy)metha	ND		190	10	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
Bis(2-chloroethyl)ether	ND		190	17	ua/ka drv	1.00	11/16/10 21/19	MAE	10K1500	80700
2,2'-Oxybis(1-Chloroprop	ND		190	20	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	02700 82700
ane) Dia (2. athult an 15			10-	_						02100
bis(z-einyinexyi) phihalate	ND		190	62	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C

THE ELADER IN THY BONNENTAL ILD THIS

GaiaTech Inc. 135 S. LaSalle St.	Work Order: RTK1150								vived: 11	/16/10
Chicago, IL 60603			Project: Poe Project Num	stenkill, NY Pri ber: [non	roject e]			napi	5/16Q.	
				Analytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dij Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTK1150-01	(GP-5 4-6 - S	olid) - cont.			Samp	led: 11/	13/10 08:30	Recy	/d: 11/16/	10 08:40
Semivolatile Organics h	w GC/MS - co	net.								
Butyl benzyl obtbalate	ND ND	<u>, , , , , , , , , , , , , , , , , , , </u>	100	62	ualka dau	1.00	11/16/10 21/12	MAC	101/1500	80700
Caprolactam	ND		190	52	ug/kg dry	1.00	11/10/10/21:13	MAP	10K1500	82700
Carbazolo	ND		190	22	ug/kg ury	1.00	11/10/10/21.13	MAP	10K1500	82700
Chrysene	ND		190	2.2	ug/kg dry	1.00	11/16/10 21:13	MAP	10K1500	82700
Dibenzo/a blantbracene			190	1.9	ug/kg dry	1.00	11/10/10 21:13	MAP	10K1500	82700
Dibenzoturan			190	2.3	ug/kg ary	1.00	11/16/10/21:13	MAF	10K1500	82700
Diothyl phthalato			190	2.0	ug/kg ory	1.00	11/16/10 21:13	MAP	10K1500	82700
Dignative photoloto			190	5.8	ug/kg ary	1.00	11/16/10 21:13	MAP	10K1500	8270C
Dimensy printinge			190	5.0	ug/kg ary	1.00	11/16/10 21:13	MAP	10K1500	8270C
Di-n-butyi phinatale	ND		190	66	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
Di-n-octyl primalate	ND		190	4.5	ug/kg ary	1.00	11/16/10 21:13	MAF	10K1500	8270C
Fluoranciaene	ND		190	2.8	ug/kg ary	1.00	11/16/10 21:13	MAF	10K1500	8270C
Huorene	ND		190	4.4	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
Hexachiorobenzene	ND		190	9.6	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
Hexachiorobutadiene	ND		190	9.8	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
Hexachlorocyclopentadie	ND		190	58	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
ne										
Hexachioroethane	ND		190	15	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
Indeno(1,2,3-cd)pyrene	ND		190	5.3	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
Isophorone	ND		190	9.6	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
Naphihalene	ND		190	3.2	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
Nitrobenzene	ND		190	8.5	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
N-Nitrosodi-n-propylamin	ND		190	15	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
e										
N-Nilrosodiphenylamine	ND		190	11	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
Pentachlorophenol	ND		380	66	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
Phenanthrene	ND		190	4.0	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
Phenol	ND		190	20	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
Pyrene	ND		190	1.2	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
Tetraelhyl-Lead	ND		1100	180	ug/kg dry	1.00	11/16/10 21:13	MAF	10K1500	8270C
2,4,6-Tribromophenol	90 %		Surr Limits:	(39-146%)			11/16/10 21:13	MAF	10K1500	8270C
2-Fluorobiphenyl	76 %		Sur Limits:	(37-120%)			11/16/10 21:13	MAF	10K1500	8270C
2-Fluorophenol	62 %		Sur Limits:	(18-120%)			11/16/10 21:13	MAF	10K1500	8270C
Nitrobenzene-d5	67 %		Surr Limits:	(34-132%)			11/16/10 21:13	MAF	10K1500	82700
Phenol-d5	71%		Sur Limits:	(11-120%)			11/16/10 21:13	MAF	10K1500	8270C
p-Terphenyl-d14	76 %		Surr Limits:	(58-147%)			11/16/10 21:13	MAF	10K1500	8270C
General Chemistry Para	meters									
Percent Solids	88		0.010	NR	%	1.00	11/17/10 15:30	JRR	10K1663	Dry Weight

AND STADES IN TWO SOURCESSOR TO ALMO

GaiaTech Inc. 135 S. LaSalle St. Chicago, IL 60603	Work Order: RTK1150 Project: Poestenkill, NY Project Project Number: [none]							Rece Repo	ived: orted:	11/16/10 11/19/10 11:56
			A	nalytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTK1150-01R	E1 (GP-5 4-0	6 - Solid)			Samp	ed: 11	(13/10 08:30	Recv	/d: t1/t8	5/10 08:40
Votatile Organic Compo	unds by EPA	8260B								
1,2-Dichloroethene, Total	900	D0 8	85	22	ug/kg dry	1.00	11/17/10 17:54	RJ	10K164	8 8260B
cis-1,2-Dichloroethene	900	D08	43	5.4	ug/kg dry	1.00	11/17/10 17:54	RJ	10K164	8 8260B
1,2-Dichloroethane-d4	89 %	D08	Surr Limits:	(64-126%)			11/17/10 17:54	RJ	10K164	8 8260B
4-Bromofluorobenzene	102 %	D08	Surt Limits:	(72-126%)			11/17/10 17:54	RJ	10K164	8 8260B
Toluene-d8	105 %	D08	Surt Limils:	(71-125%)			11/17/10 17:54	RJ	10K164	8 8260B

OR LEADER IN THE REMODALINE CORPUS

GaiaTech Inc.		1	Work Order: I	RTK1150				Rece	aived: 11/	16/10
135 S. LaSalle St.								Rep	orted: 11/	19/10 11:56
Chicago, IL 60603		I	Project: Poes	tenkill, NY P	roject					
			Project Numb	er: [non	e]					
			А	nalytical	Report					
8 walvela	Sample	Data	Dr			Dil	Date	Lab		
Analyte	Result	Qualifiers	KL		Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTK1150-02 (G	9 P-6 7- 8 - Se	olid)			Samp	oled: 11/	/13/10 10:3 0	Recy	/d: 11/16/1	0 08 :4 0
Volatile Organic Compour	nds by EPA	8260B								
1,1,1-Trichloroethane	ND		5.6	0.40	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
1,1,2,2-Tetrachloroethane	ND		5.6	0.90	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
1,1,2-Trichloroethane	ND		5.6	0.72	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
1,1,2-Trichlorotrifluoroeth	ND		5.6	1.3	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
ane										
1,1-Dichloroeinane	ND		5.6	0.68	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
1, 1-Dichloroethene			5.6	0.68	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
1,2,4-Trichlorobenzene	ND		5.6	0.34	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
1,2-Dibromo-3-chloroprop	ND		5.6	2.8	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
ane 1,2-Dibromoethane	ND		5.6	0.72	ug/kg dry	1.00	11/17/10 14:03	ŔJ	10K1648	8260B
(EDB)										
1,2-Dichlorobenzene	ND		5.6	0.44	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
1,2-Dichloroethane	ND		5.6	0.28	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260 B
1,2-Dichloroethene, Total	4.8	J	11	2.9	ug/kg dry	1.00	11/17/10 14:03	ŔJ	10K1648	8260B
1,2-Dichloropropane	ND		5.6	2.8	ug/kg dry	1.00	11/17/10 14:03	ŔJ	10K1648	8260B
1,3-Dichlorobenzene	ND		5.6	0.29	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
1,4-Dichlorobenzene	ND		5.6	0.78	ug/kg dry	1.00	11/17/10 14:03	ŔJ	10K1648	8260B
2-Bulanone (MEK)	ND		28	2.0	ug/kg dry	1.00	11/17/10 14:03	ŔJ	10K1648	8260B
2-Hexanone	ND		28	2.8	ug/kg dry	1.00	11/17/10 14:03	ŔĴ	10K1648	8260B
4-Methyl-2-pentanone (MIBK)	ND		28	1.8	ug/kg d ry	1.00	11/17/10 14:03	ŔJ	10K1648	8260B
Àcetone	ND		28	4.7	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
Benzene	ND		5.6	0.27	ug/kg dry	1.00	11/17/10 14:03	ŔĴ	10K1648	8260B
Bromodichloromethane	ND		5.6	0.75	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
Bromoform	ND		5.6	2.8	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
Bromomethane	ND		5.6	0.50	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
Carbon disulfide	ND		5.6	2.8	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
Carbon Tetrachtoride	ND		5.6	0.54	ug/kg dry	1.00	11/17/10 14:03	ŔJ	10K1648	8260B
Chlorobenzene	ND		5.6	0.74	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
Chlorodibromomethane	ND		5.6	0.71	ug/kg dry	1.00	11/17/10 14:03	ŔJ	10K1648	8260B
Chloroethane	ND		5.6	1.3	ug/kg dry	1.00	11/17/10 14:03	ŔJ	10K1648	8260B
Chloroform	ND		5.6	0.34	ug/kg dry	1.00	11/17/10 14:03	ŔJ	10K1648	8260B
Chloromethane	ND		5.6	0.34	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
cis-1,2-Dichloroethene	4.8	J	5.6	0.71	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
cis-1,3-Dichloropropene	ND		5.6	0.80	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
Cyclohexane	ND		5.6	0.78	ug/kg dry	1.00	11/17/1 0 14:03	ŔJ	10K1648	8260B
Dichlorodifluoromethane	ND		5.6	0.46	ug/kg dry	1.00	11/17/10 14:03	ŔJ	10K1648	8260B
Ethylbenzene	ND		5. 6	0.38	ug/kg dry	1.00	11/17/10 14:03	ŔJ	10K1648	8260B
Isopropylbenzene	ND		5.6	0.84	ug/kg dry	1.00	11/17/10 14:03	ŔJ	10K1648	8260B
Methyl Acetate	ND		5.6	1.0	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
Methyl fert-Butyl Ether	ND		5. 6	0.55	ug/kg dry	1.00	11/17/10 14:03	ŔJ	10K1648	8260B
Methylcyclohexane	ND		5.6	0.85	ug/kg dry	1.00	11/17/10 14:03	ŔJ	10K1648	8260B
Methylene Chloride	18	B	5.6	2.6	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
Styrene	ND		5.6	0.28	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
Tetrachtoroethene	ND		5.6	0.75	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
Toluene	ND		5.6	0.42	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
trans-1,2-Dichloroethene	ND		5.6	0.58	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
trans-1,3-Dichloropropen	ND		5.6	2.5	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
Trichloroethene	48		5.6	1.2	ug/kg dry	1.00	11/17/1 0 14:03	ŔJ	10K1648	8260B

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN LIVE REMURANTACING THE

GaiaTech Inc. 135 S. L aS alle St. Chicago, IL 60603			Work Drder: Project: Poer Project Num	RTK1150 stenkill, NY Pr ber: [non	roje c i ej			Rece Repo	eived: 11/ prted: 11/	16/10 19/10 11:56
				nalyfical	Report					
	Samole	Data	-	(naiy tica)	report	Dil	Date	lah		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTK1150-02 (G P-6 7-8 - Se	olid) - cont.			Samp	led: 11/	13/10 10:30	Recy	/d: 11/16/1	0 08:40
Volatile Organic Compo	unds by EPA	8260B - co	nt.							
Trichlorofluoromethane	ND		5.6	0.53	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
Vinyl chloride	ND		5.6	0.68	ug/kg dry	1.00	11/17/10 14:03	RJ	10K1648	8260B
Xylenes, total	ND		11	0.94	ug/kg dry	1.00	11/17/10 14:0 3	RJ	10K1648	8260B
1,2-Dichloroethane-d4	110 %		Surr Limits:	(64-126%)			11/17/10 14:03	RJ	10K1648	8260B
4-Bromofluorobenzene	105 %		Sur Limits:	(72-126%)			11/17/10 14:03	RJ	10K1648	8260B
To/uene-d8	107 %		Surr Limits:	(71-125%)			<i>11/17/</i> 10 14:03	RJ	10K1648	8260B
Semivolatile Organics by	GC/MS									
2,4,5-Trichlorophenol	ND		190	41	ua/ka dry	1.00	11/16/10 21:36	MAF	10K1500	8270C
2,4,6-Trichlorophenol	ND		190	12	ug/kg dry	1.00	11/16/10 21:36	MAF	10K1500	8270C
2,4-Dichlorophenol	ND		190	9.8	ug/kg dry	1.00	11/16/10 21:36	MAF	10K1500	8270C
2,4-Dimethylphenol	ND		190	50	ug/kg dry	1.00	11/16/10 21:36	MAF	10K1500	8270C
2,4-Dinitrophenol	ND		360	65	ug/kg dry	1.00	11/16/10 21:36	MAF	10K1500	8270C
2,4-Dinitrototuene	ND		190	29	ug/kg dry	1.00	11/16/10 21:36	MAF	10K1500	8270C
2,6-Dinifrotoluene	ND		190	46	ug/kg dry	1.00	11/16/10 21:36	MAF	10K1500	8270C
2-Chloronaphthalene	ND		190	12	ug/kg dry	1.00	11/16/10 21:36	MAF	10K1500	8270C
2-Chlorophenol	ND		190	9.5	ug/kg dry	1.00	11/16/10 21:36	MAF	10K1500	8270C
2-Melhylnaphthalene	ND		190	2.3	ug/kg dry	1.00	11/16/10 21:36	MAF	10K1500	8270C
2-Methylphenol	ND		190	5.7	ug/kg dry	1.00	11/16/10 21:36	MAF	10K1500	8270C
2-Nitronhanal			360	60 6.5	ug/kg ary	1.00	11/16/10 21:36	MAF	10K1500	8270C
3 3' Dichlorobonzidino			190	8.5	ug/kg dry ug/kg day	1.00	11/16/10 21:36	MAF	10K1500	8270C
3. Nitroanilina	ND		190	100	ug/kg dry	1.00	11/10/10/21:30		10K1500	82700
4.6 Dipitra 2 mathulahan			360	43	ug/kg dry ug/kg day	1.00	11/10/10 21:30	MAE	10K1500	82700
al	ND		300	04	ug/kg ury	1.00	11/10/10/21:30	where	101/1000	82700
4-Bromophenyl phenyl	ND		190	59	ua/ka drv	1.00	11/16/10 21:36	MAF	10K1500	8270C
elher					- a- 1 3 - 17					02.00
4-Chloro-3-methylphenol	ND		190	7.7	ug/kg dry	1.00	11/16/10 21:36	MAF	10K1500	8270C
4-Chloroaniline	ND		190	55	ug/kg dry	1.00	11/16/10 21:36	MAF	10K1500	8270C
4-Chlorophenyt phenyl	ND		190	4.0	ug/kg dry	1.00	11/16/10 21:36	MAF	10K1500	8270C
ether										
4-Methylphenol	ND		360	10	ug/kg dry	1.00	11/16/10 21:36	MAF	10K1500	8270C
4-Nitroaniline	ND		360	21	ug/kg dry	1.00	11/16/10 21:36	MAF	10K1 5 00	8270C
4-Nitrophenol	ND		360	45	ug/kg dry	1.00	11/16/10 21:36	MAF	10K1500	8270C
Acenaphinene	ND		190	2.2	ug/kg dry	1.00	11/16/10 21:36	MAF	10K1500	8270C
Acenaphinylene	ND		190	1.5	ug/kg ary	1.00	11/16/10 21:36	MAF	10K1500	8270C
Acetoprienone	ND		190	9.6	ug/kg dry	1.00	11/16/10 21:36	MAF	10K1500	8270C
Annacene	ND		190	4.8	ug/kg ary	1.00	11/16/10 21:36	MAF	10K1500	8270C
Renzaldobudo	ND		190	0.3	ug/kg ary	1.00	11/10/10 21:30	MAF	10K1500	82700
Benzalgenyde	ND		190	20	ug/kg dry	1.00	11/16/10 21:36	MAF	10K1500	82700
Benzo(a)pyrepe	ND		190	3.Z	ug/kg ary	1.00	11/10/10/21:30	MAF	101(1500	82700
Benzo(b)fluoranlbene			100	6. 1 1 C	ug/kg dry ug/kg dev	1.00	11/16/10 21:30	MAE	10K1500	92700
Benzo(abi)nerviene			100	5.0 2.2	ug/kg dry	1.00	11/16/10 21:30	MAC	101/1500	92700
Benzo(k)/Juoranthene			190	2.2	ug/kg dry ug/kg dry	1.00	11/16/10 21:30	MAE	10K1600	82700
Biphenyl	ND		190	12	ug/kg dry	1.00	11/16/10 21.30	MAE	10/(1500	82700
Bis(2-chloroethoxy)metha	ND		190	10	ua/ka dav	1.00	11/16/10 21:30	MAE	10K1500	82700
ne			,		cana or		10101021.00			UL TUU
Bis(2-chloroethyl)ether	ND		190	16	ug/ka drv	1.00	11/16/10 21:36	MAF	10K1500	8270C
2,2'-Oxybis(1-Chloroprop	ND		190	19	ug/kg drv	1.00	11/16/10 21:36	MAF	10K1500	8270C
ane)					/					

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

OF ECARES IN THAIRCRAFT FRAME

GaiaTech Inc. 135 S. La S alle S I.	Work Order: RTK1150								eived: 11 orted: 11	/16/10 /19/10 11:56
Chicago, IL 60603			Project: Poe Project Nun	estenkill, NY P nber: (nor	roje c t ne(·		
				Analytical	Report					
Analyte	Sample Result	Data Qualifiere	RI	MOL	Unite	Dil	Date	Lab	Detab	
Sample (D: RTK1150-02 ((GP-6 7-8 - S	olid) - cont.			Same	oted: 11	/13/10 10:30	Rec	vd: 11/16/	Metriod
Semivolatile Organics b	v GC/MS - co	int.			;					
Big(2 othulborsul)			100	~~	the state of the s	4.00	1110100 01 00			
obthalate	ND.		190	60	ug/kg dry	1.00	11/16/10 21:36	MAF	10K1500	8270C
Bulyi benzyi obihalate	ND		100	60	uo luo do i	1 00	111040.04.00		4044500	44744
Canrolactam	ND		190	50	ug/kg dry	1.00	11/10/10 21:30	MAF	10K1500	8270C
Carbazole	ND		190	2.2	ug/kg ury	1.00	11/10/10/21:30		10K1500	82700
Chrysene	ND		100	10	ug/kg ury	1.00	11/10/10 21:30		10K1500	82700
Dibenzo(a,b)anthracene	ND		190	22	ug/kg diy	1.00	11/10/10/21:30	MAE	10/(1500	82700
Dibenzofuran	ND		190	4.4 10	ug/kg ury	1.00	11/10/10/21.30	MAP	10/(1500	82700
Diethyl phthalate	ND		190	5.6	ug/kg dry	1.00	11/16/10 21:30		10/(1500	82700
Dimethyl obthalate	ND		190	3.0 A Q	ug/kg diy	1.00	11/10/10/21.30	MAE	10/(1500	82700
Di-p-butyl obihalate	ND		190	-4.5	ug/kg day	1.00	11/10/10 21:30	MAP	10K1500	82700
Di-n-octyl ohthalate	ND		100	44	ug/kg day	1.00	11/16/10 21:30	MAE	10//1500	82700
Eluoranthene	ND		190	27	ug/kg doy	1.00	11/10/10 21:30	MAE	10/1500	02700
Fluorene	ND		190	43	ug/kg dry	1.00	11/16/10 21:30	MAE	10/(1500	82700
Hexachlorohenzene	ND		190	0.2	ug/kg dry	1.00	11/16/10 21:30	MAE	10/(1500	02700
Hexachlorobuladiene	ND		190	9.2	ug/kg dry	1.00	11/16/10 21:30	MAE	10/(1500	82700
Hexachtorocyclopentadie	ND		190	56	Ha/ka day	1.00	11/16/10 21:30		10/(1500	82700
ne			100	50	aging ary	1.00	11/10/10 21.50	WAF	101/1000	02700
Hexachloroethane	ND		190	14	ualka day	1.00	11/16/10 21:38	MAE	1061500	82700
Indeno(1,2,3-cd)pyrene	ND		190	51	uaika dry	1 00	11/16/10 21:36	MAE	101(1500	9270C
Isophorone	ND		190	9.3	ua/ka drv	1.00	11/16/10 21:36	MAE	10K1500	82700
Naphthalene	ND		190	3.1	ua/ka diry	1.00	11/16/10 21:36	MAE	101(1500	8270C
Nitrobenzene	ND		190	8.3	Ua/ka dry	1.00	11/16/10 21:36	MAE	10/(1500	82700
N-Nifrosodi-n-propylamin	ND		190	15	ua/ka dry	1.00	11/16/10 21:36	MAE	10K1500	82700
e					-39		111101021000		101(1000	02100
N-Nilrosodiphenylamine	ND		190	10	uq/ka drv	1.00	11/16/10 21:36	MAF	10K1500	82700
Pentachlorophenol	ND		360	64	ug/kg dry	1.00	11/16/10 21:36	MAF	10K1500	8270C
Phenanthrene	ND		190	3.9	ug/kg dry	1.00	11/16/10 21:36	MAF	10K1500	8270C
Phenol	ND		190	20	ug/kg dry	1.00	11/16/10 21:36	MAF	10K1500	8270C
Pyrene	ND		190	1,2	ug/kg dry	1.00	11/16/10 21:36	MAF	10K1500	8270C
Teiraethyl-Lead	ND		1100	180	ug/kg dry	1.00	11/16/10 21:36	MAF	10K1500	8270C
2,4,6-Tribromopheno/	95 %		Sur Limits:	(39-146%)			11/16/10 21:36	MAF	10K1500	8270C
2-Fluorobiphenyl	73 %		Surr Limits:	(37-120%)			11/16/10 21:36	MAF	10K1500	8270C
2-Fluorophenol	62 %		Surr Limils:	(18-120%)			11/16/10 21:36	MAF	10K1500	8270C
Ni/robenzene-d5	67 %		Surr Limits:	(34-132%)			11/16/10 21:36	MAF	10K1500	82700
Phenol-d5	69 %		Surr Limils:	(11-120%)			11/16/10 21:36	MAF	10K1500	8270C
p-Terphenyl-d14	82 %		Surr Limits:	(58-147%)			11/16/10 21:36	MAF	10K1500	8270C
General Chemistry Paran	neters			-						
Percent Solids	 90		0.010	ND	0/	1.00	14147140 48.00	100	101/1000	0
	~~		0.010	INT	70	1.00	0/17/10 15:32	JKK	10K1663	Dry weight

ALL CLADER RELIAN RELATION OF LEGISLO

GaiaTech Inc.			Work Order: F	RTK1150				Rece	eived: 11/	16/10
135 S. LaSalle St.								Rep	orted: 11/	19/10 11:56
Chicago, IL 60603			Project: Poest	lenkill, NY Pr	oject					
			Project Numb	er: (none	2]					
			Δι	nalvtical i	Renort					
	Sample	Data		naiyeloari	(choir	Dil	Data	Lab		
Analyte	Result	Qualifiers	RL	MOL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTK1150-03 (C	GP-5 - Water)			Sam	pled: 11/	13/t0 09:30	Rec	/d: 11/16/1	0 08:40
Volatile Organic Compou	nds by EPA	8260B								
1,1,1-Trichloroethane	ND		1,0	0.82	ua/L	1.00	11/17/10 06:09	NMD	10K1577	8260B
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L	1.00	11/17/10 06:09	NMD	10K1577	8260B
1,1,2-Trichloroethane	1.5		1.0	0.23	ug/L	1.00	11/17/10 06:09	NMD	10K1577	8260B
1,1,2-Trichlorotrifluoroeth	ND		1.0	0.31	ug/L	1.00	11/17/10 06:09	NMD	10K1577	8260B
ane										
1,1-Dichloroethane	ND		1.0	0.38	ug/L	1.00	11/17/10 06:09	NMD	10K1577	8260B
1.1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	11/17/10 06:09	NMD	10K1577	8260B
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L	1.00	11/17/10 06:09	NMD	10K1577	8260B
1,2-Dibromo-3-chloroprop	ND		1.0	0.39	ug/L	1.00	11/17/10 06:09	NMD	10K1577	8260B
ane 1.2-Dibromoethane	ND		1,0	0.73	ua/L	1.00	11/17/10 06:09	NMD	10K1577	8260B
(EDB)					0					
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L	1.00	11/17/10 06:09	NMD	10K1577	8260B
1,2-Dichloroethane	ND		1.0	0.21	ug/L	1.00	11/17/10 06:09	NMD	10K1577	8260B
1,2-Dichloropropane	ND		1.0	0.72	ug/L	1.00	11/17/10 06:09	NMD	10K1577	8260B
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L	1.00	11/17/10 06:09	NMD	10K1577	8260B
1,4-Dichlorobenzene	ND		1.0	0. 8 4	ug/L	1.00	11/17/10 06:09	NMD	10K1577	8260B
2-Butanone (MEK)	ND		10	1.3	ug/L	1.00	11/17/10 06:09	NMD	10K1577	8260B
2-Hexanone	ND		5.0	1.2	ug/L	1.00	11/17/10 06:09	NMD	10K1577	8260B
4-Methyl-2-pentanone	ND		5.0	2.1	ug/L	1.00	11/17/10 06:09	NMD	10K1577	8260B
(MIBK) Acctono	ND		10	20	I	1.00	444740.00.00		40144577	00000
Renzene	ND		10	3.0	ug/L	1.00	11/17/10 06:09	NMD	10K1577	82608
Biomodiableromethane	ND		1.0	0.41	ug/L	1.00	11/17/10 06:09	NMD	10K1577	82608
Bromoform	ND		1.0	0.39	ug/L	1.00	11/17/10 06:09	NIVIU	10K1577	8260B
Bromomethane	ND		1.0	0.20	ug/L	1.00	11/17/10 06:09		101(1577	8260B
Cerbon disulfide	ND		1.0	0.69	ugit	1.00	11/17/10 05:09	NWD	10K15/7	8260B
Carbon Tatrachlorida	ND		1.0	0.19	ugit.	1.00	11/17/10 06:09	NIVID	101(1577	82608
Chlorobanzana	ND		1.0	0.27	ug/L	1.00	11/17/10 06:09	NMO	10K1577	8260B
Chlorodibromomethane	ND		1.0	0.75	ug/L	1.00	11/17/10 00:09	NMD	101/10/7	02006
Chloroethane	ND		1.0	0.32	ugre	1.00	11/17/10 00:09	NMO	101(1577	0200B
Chloroform	ND		1.0	0.34	ug/L	1.00	11/17/10 06:09	NMD	10/(1577	82600
Chloromethane	ND		1.0	0.34	പപ്പ	1.00	11/17/10 08:00	NMD	10/(1577	0200B
cis-1 3-Dicbloropropepe	ND		1.0	0.36	ugre ugre	1.00	11/17/10 06:00	NIMO	10/(10/7	02000
Cyclobexane	ND		1.0	0.18	ug/L	1.00	11/17/10 06:00	NMO	10/(1577	82600
Dicblorodifluoromethane	ND		1.0	0.68	uall	1.00	11/17/10 06:09	NMO	10/(1577	82600
Elhylbenzene	ND		1.0	0.00	uali	1.00	11/17/10 06:09	NMO	10/(1577	82608
Isopropylbenzene	ND		10	0.79	ua/l	1.00	11/17/10 06:09	NMD	10/(1577	82608
Methyl Acetate	ND		1.0	0.50	ual	1.00	11/17/10 06:09	NMO	10K1577	82608
Methyl tert-Butyl Ether	ND		10	0.16	uai	1.00	11/17/10 06:09	NMO	101(1577	8260B
Methylcyclohexane	ND		1.0	0.16	ug/L	1.00	11/17/10 06:09	NMD	10/(1577	8260B
Methylene Chloride	ND		1.0	0.44	ц <u>аў</u> , с.	1.00	11/17/10 06:09	NMD	10K1577	8260B
Styrene	ND		1.0	0.73	uo/l	1.00	11/17/10 06:09	NMD	10K1577	8260B
Tetrachlo/oethene	2.8		1.0	0.36	ч <u>э</u> ua/L	1.00	11/17/10 06:09	NMD	10K1577	8260B
Toluene	ND		1.0	0.51	uo/L	1.00	11/17/10 06:09	NMD	10K1577	8260B
trans-1,2-Dichloroethene	ND		1.0	0.90	ua/l	1.00	11/17/10 06:00	NMD	10K1577	82608
trans-1.3-Dichloropropen	ND		1.0	0.37	uo/)	1 00	11/17/10 06:09	NMD	10K1577	82608
e										02000
Trichlorofluoromethane	ND		1.0	0.88	ug/L	1.00	11/17/10 06:09	NMD	10K1577	8260B
Vinyl chloride	1.4		1.0	0.90	ug/L	1.00	11/17/10 06:09	NMD	10K1577	8260B
Xylenes, total	ND		2.0	0.66	ug/L	1.00	11/17/10 06:09	NMD	10K1577	8260B

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE SLABER IN INV ROMMENTAL LETTING

GaiaTech Inc. 135 S. LaSalle St.			Work Drder:	RTK1150				Rece	eived: 11/1	6/10 19/10 11:56
Chicago, IL 60603			Project: Poe	stenkill, NY Pro	oje ct			ιτομι	,	
-			Project Num	ber: [none]					
			Þ	Analytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MOL	Units	Dij Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTK1150-03 (GP-5 - Water	r) - cont.			Sam	pled: 11/	13/10 09:30	Recv	/d: 11/16/10	0 08:40
Volatile Organic Compou	inds by EPA	8260B - cor	1 t.			•				
1.2-Dichlomelhane-d4	113 %		Sur Limits:	(66-137%)			11/17/10 06:09		1061577	8260B
4-Bromofluorobenzene Toluene-d8	101 % 110 %		Surr Limils: Surr Limils:	(73-120%) (71-126%)			11/17/10 06:09 11/17/10 06:09	NMD NMD	10K1577 10K1577	8260B 8260B
Semivolatile Organics by	GC/MS									
2,4,5-Trichlorophenol	ND		5.0	0.48	ua/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
2,4,6-Trichlorophenol	ND		5.0	0.60	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
2,4-Dichlorophenol	ND		5.0	0.50	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
2,4-Dimethylphenol	ND		5.0	0.50	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
2,4-Dinitrophenol	ND		9.9	2.2	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
2,4-Dinitrotoluene	ND		5.0	0.44	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
2,6-Dinitrotoluene	ND		5.0	0.40	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
2-Chloronaphthalene	ND		5.0	0.46	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
2-Chlorophenol	ND		5.0	0.52	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
2-Methylnaphthalene	ND		5.0	0.59	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
2-Methylphenol	ND		5.0	0.40	ug/L	1,00	11/17/10 20:20	JLG	10K1563	8270 C
2-Nitroaniline	ND		9.9	0.42	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270 C
2-Nilrophenol	ND		5.0	0.48	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
3,3'-Dichlorobenzidine	ND		5.0	0.40	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
3-Nifroaniline	ND		9.9	0.48	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
4.6-Dinifro-2-methylphen ol	NU		9,9	2.2	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
4-Bromophenyl phenyl ether	ND		5.0	0.45	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
4-Chloro-3-methylphenol	ND		5.0	0.45	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
4-Chloroaniline	ND		5.0	0.58	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
4-Chlorophenyl phenyl elber	ND		5.0	0.35	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
4-Methylphenol	0.52	J	9.9	0.36	ua/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
4-Nitroaniline	1.5	J	9.9	0.25	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
4-Nitrophenot	ND		9.9	1.5	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Acenaphthene	ND		5.0	0.41	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Acenaphthylene	ND		5.0	0.38	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Acetophenone	ND		5.0	0.53	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Anthracene	ND		5.0	0.28	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Afrazine	ND		5.0	0.46	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Benzaldehyde	ND		5.0	0.26	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Benzo(a)anthracene	ND		5.0	0.36	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Benzo(a)pyrene	ND		5.0	0.47	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Benzo(b)fluoranthene	ND		5.0	0.34	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Benzo(ghi)perylene	ND		5.0	0.35	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Benzo(k)fluoranthene	ND		5.0	0.72	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Biphenyi	ND		5.0	0.65	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Bis(2-chloroethoxy)metha	ND		5.0	0.35	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Bis(2-chloroethvi)ether	ND		5.0	0.40	ua/l	1.00	11/17/10 20:20	JLG	10K1563	8270C
2,2'-Oxybis(1-Chloroprop	ND		5.0	0.51	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
ane) Bis(2-ethylhexyl)	ND		5.0	1.8	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
phihalale Butyl benzyl phihalale	0.48	J, B	5.0	0.42	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

BULLERADER IN LIVE ROMALWINE LEGITING

GaiaTech Inc. 135 S . LaSalle St.	Work Order: RTK1150						Rece	eived: 1 orted: 1	1/16/10 1/19/10 11:56	
Chicago, IL 60603			Project: Poe Project Num	stenkill, NY Pr ber: [none]	oject 9]			•		
				Analytical I	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTK1150-03 [GP-5 - Wate	r) - cont.			Sam	pled: 11	/13/10 09:30	Recy	/d: 11/16/	10 0 8:4 0
Semivolatile Organics b	v GC/MS - co	ont.								
Caprolactam	ND		5.0	2.2	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Carbazole	ND		5.0	0.30	ua/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Chrysene	ND		5.0	0.33	ug/L	1.00	11/17/10 20:20	JLG	10K1563	82700
Dibenzo(a,h)anthracene	ND		5.0	0.42	ug/L	1.00	11/17/10 20:20	JIG	10K1563	82700
Dibenzofuran	ND		9.9	0.50	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Diethyl phthalate	0.70	J	5.0	0.22	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Dimethyl phthalate	ND		5.0	0.36	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Di-n-butyl phthalate	0.91	j	5.0	0.31	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Di-n-octyl phthalate	ND		5,0	0.47	ug/L	1.00	11/17/10 20:20	JIG	10K1563	82700
Fluoranthene	ND		5.0	0.40	ua/L	1.00	11/17/10 20:20	JIG	10K1563	82700
Fluorene	ND		5.0	0.36	ua/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Hexachlorobenzene	ND		5.0	0.50	ua/L	1.00	11/17/10 20:20	.II G	10K1563	8270C
Hexachtorobutadiene	ND		5.0	0.67	uo/L	1.00	11/17/10 20:20	.II G	10K1563	8270C
Hexachlorocyclopentadie	ND		5.0	0.58	ua/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
ne									,	02,00
Hexachloroethane	ND		5.0	0.58	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Indeno(1,2,3-cd)pyrene	ND		5.0	0.47	ug/L	1.00	11/17/10 20:20	JIG	10K1563	8270C
Isophorone	ND		5.0	0.43	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Naphthalene	ND		5.0	0.75	ua/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Nitrobenzene	ND		5.0	0.29	ua/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
N-Nitrosodi-n-propylamin	ND		5.0	0.53	uğ/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
e					· ·					
N-Nitrosodiphenytamine	ND		5.0	0.50	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Pentachlorophenol	14		9.9	2.2	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Phenanthrene	ND		5.0	0.44	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Phenol	ND		5.0	0.39	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
Pyrene	ND		5.0	0.34	ug/L	1.00	11/17/10 20:20	JLG	10K1563	8270C
2,4,6-Tribromopheno/	101 %		Surr Limits:	(52-132%)			11/17/10 20:20	JIG	10/(1563	8270C
2-Fluorobiphenyl	87 %		Surr Limits:	(48-120%)			11/17/10 20:20	JEG	10/(1562	82700
2-Fluorophenol	48 %		Surr Limits	(20-120%)			11/17/10 20:20	JIG	101/1562	82700
Nitrobenzene-d5	84 %		Surr Lim#s:	(46-120%)			11/17/10 20:20	11.6	101(1562	82700
Phenol-d5	36 %		Sur Limits	(16-120%)			11/17/10 20:20	11 G	101(1562	82700
p-Terphenyl-d14	62 %		Sur Limits	(24-136%)			11/17/10 20:20	110	101(1562	82700
			a arr umrity,	(2,1,00,0)			5 // 10 20.20	920	10/1003	02100

NAL CLADER IN THA BORNEASACH FRAMAS

GaiaTech Inc.			Work Order:	RTK1150				Rece	ived: 1	1/16/10
135 S. Lasalle SI. Chicago, IL 60603			Project: Poes Project Num	stenkill, NY Pro ber: Inone	oject I			Керс	orted: 1	1/19/10 11:56
			۵	nalytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTK1150-03R	E1 (GP-5 - V	Vater)			Sam	pled: 11/	13/10 09:30	Recv	d: 11/16	10 08:40
Volatile Organic Compou	inds by EPA	8260B								
1,2-Dichloroethene, Tolal	220	D08	80	28	ug/L	40.0	11/17/10 12:49	LH	10K1645	8260B
cis-1,2-Dichloroethene	220	D08	40	32	ug/L	40.0	11/17/10 12:49	LH	10K1645	8260B
Trichloroethene	3800	D0 8	40	18	ug/L	40.0	11/17/10 12:49	LH	10K1645	8260B
1,2-Dichloroethane-d4	110 %	D0 8	Surr Limits:	(66-137%)			11/17/10 12:49	LH	10K1645	8 260B
4-Bromofluorobenzene	97 %	D0 8	Surr Limits:	(73-120%)			11/17/10 12:49	LH	10K1645	8 260B
Toluene-d8	107 %	D08	Surr Limits:	(71-126%)			11/17/10 12:49	UН	10K1645	8 260B

THE LEADER IN LAW RORNENTAL COMMO

GaiaTech Inc.			Work Order: R	TK1150				Rec	eived 11/	/16/10
135 S. LaSalle St.								Rer	norted: 11	/19/10 11:56
Chicago, IL 60603			Project: Poeste	enkill, NY P	roject					
			Project Numbe	r: (non	ie)					
			An	alytical	Report					
	Sampte	Data				Dij	Date	Lab		
Analyle	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTK1150-04 (GP-6 - Water)			Sam	pled: 11	/13/10 11:30	Rec	vd: 11/16/1	0 08:40
Volatile Organic Compou	inds by EPA	8260B								
1,1,1-Trichloroethane	ND		1.0	0.82	ua/l	1.00	11/17/10 06:32	NIMO	10/(1577	82600
1,1,2,2-Tetrachloroethane	NÐ		1.0	0.21	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
1,1,2-Trichtorotrifluoroeth	ND		1.0	0.31	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
ane 1.4 Diabtasasthasas				- ·						
1,1-Dichloroeinane	ND		1.0	0.38	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
1.2.4-Trichlorobenzene	ND		1.0	0.29	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
1.2. Dibroma 3-chloroprop	ND		1.0	0.41	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
ape	ND		1.0	0.39	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
1.2-Dibromoethane	ND		10	0.73	ua/l	1.00	11/17/10 08:90	NIMO	40124677	00000
(EDB)			1.0	0.75	ug/L	1.00	11/1/10/00:32	NIVID	108(1577	8260B
1,2-Dichlorobenzene	ND		1.0	0.79	ua/L	1.00	11/17/10 06:32	NMO	1081577	8260B
1,2-Dichloroethane	ND		1.0	0.21	ua/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
1,2-Dichloroethene, Total	65		2.0	0.70	ug/L	1.00	11/17/10 06:32	NMD	10K1577	82608
1,2-Dichloropropane	ND		1.0	0.72	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
2-Butanone (MEK)	ND		10	1.3	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
2-Hexanone	ND		5.0	1.2	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
4-Meihyl-2 -pe ntanone (MIBK)	ND		5.0	2.1	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
Acetone	ND		10	3.0	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
Benzene	ND		1.0	0.41	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
Bromodichloromethane	ND		1.0	0.39	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
Bromotorm	ND		1.0	0.26	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
Bromomethane	ND		1.0	0.69	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
Carbon disulfide	ND		1.0	0.19	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
Carpon Tetrachioride	ND		1.0	0.27	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
Chlorodibromometheme	ND		1.0	0.75	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
Chloroothana	ND		1.0	0.32	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
Chloroform			1.0	0.32	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
Chloromethane			1.0	0.34	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
cis-1 2-Dichloroethene	65		1.0	0.35	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
cis-1 3-Dicbloropropage	ND		1.0	0.01	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
Cyclohexape			1.0	0.30	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
Dichlorodifluoromethane			1.0	0.10	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
Ethylbenzene	ND		1.0	0.00	ug/L	1.00	11/17/10/06:32	NMD	10K1577	8260B
Isopropylbenzene	ND		1.0	0.74	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
Methyl Acetale	ND		1.0	0.75	ug/L ug/l	1.00	11/17/10 00:32	NMD	10K1577	8260B
Methyl tert-Butyl Ether	ND		1.0	0.00	ug/L Ha/l	1.00	11/17/10 00:32		10K1577	8260B
Methylcyclohexane	ND		1.0	0.16	ug/L	1.00	11/17/10 00:32	NMO	101/15/7	8260B
Methylene Chloride	ND		1.0	0.44	ug/L	1.00	11/17/10 06:32		1011577	82605
Styrene	ND		1.0	0.73	ug/L	1.00	11/17/10 06:32	NMD	101(1577	82600
Tetrachloroethene	ND		1.0	0.36	ua/L	1.00	11/17/10 06:32	NMD	10/(1577	82600
Toluene	ND		1.0	0.51	ua/L	1.00	11/17/10 08:32	NMO	10K1577	82608
trans-1,2-Dichloroethene	ND		1.0	0.90	ua/L	1.00	11/17/10 06:32	NMD	10K1577	82608
trans-1,3-Dichloropropen	ND		1.0	0.37	ug/L	1.00	11/17/10 06-32	NMD	10K1577	82608
e					0					OLOGO
Trichlorofluoromethane	ND		1.0	88.0	ug/L	1.00	11/17/10 06:32	NMD	10K1577	8260B

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN LAW ROPARDATAL LIGHTIG

GaiaTech Inc. 135 S. LaSalle SI. Chicago, IL 6 060 3			Rece Rep	ived: 1 orted: 1	1/16/1 0 1/19/10 11:56					
			A	Analytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTK1150-04	(GP-6 - Wate	r) - cont.			Sam	pled: 11	/13/10 11:30	Reco	rd: 11/16	/10 08:40
Volatile Organic Compo	ounds by EPA	8260B - co	<u>nt.</u>							
Vinyl chloride	5.1		1.0	0.90	ug/L	1.00	11/17/10 06:32	NMD	10K1577	82608
Xylenes, total	ND		2.0	0.66	uğ/L	1.00	11/17/10 06:32	NMD	10K1577	8260B
1,2-Dich/oroethane-d4	114 %		Surr Limits:	(66-137%)			11/17/10 06:32	NMD	10K1577	8260B
4-Bromofluorobenzene	92 %		Surr Limils:	(73-120%)			11/17/10 06:32	NMD	10K1577	8260B
Toluene-d8	103 %		Surr Limits:	(71-126%)			11/17/10 06:32	NMD	10K1577	8260B

THE LEADER IN THE REAMENINE LEADERS

GaiaTech Inc. 135 S. L a Salle St.			Work Order:	RTK115 0				Rece Repo	ived: prted:	11/16/1 0 11/19/10 11:56
Project: Poestenkili, NY Project Project Number: Inonel										
			A	nalytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTK1150-04	RE1 (GP-6 - V	Vater)			Sam	pled: 11/	13/10 11:30	Recv	/d: 11/10	5/10 08:40
Volatile Organic Compo	unds by EPA	8260B								
Trichloroethene	210	D08, P6	4.0	1.8	ug/L	4.00	11/17/10 13:13	LH	10K164	5 8260B
1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8	111 % 98 % 109 %	D08, P6 D08, P6 D08, P6	Surr Limits: Surr Limits: Surr Limits:	(66-137%) (73-120%) (71-126%)			11/17/10 13:13 11/17/10 13:13 11/17/10 13:13	LH LH LH	10K164 1 0 K164 10K164	5 8260B 5 8260B 5 8260B

OUL CLADER IN LAW RONAUMAL LOTING

GaiaTech Inc.		Ŵ	ork Order: I	RTK1150				Rece	eived: 11	/16/10
135 S. LaSalle Si.								Rep	orted: 11	/19/10 11:56
Chicago, IL 60603		Pi	roject: Poes	tenkill, NY Pr	oject					
•		Pi	roject Numb	er: [none						
			A	nalvtical I	Report					
	Sample	Data		nung tiour i	(cpoir	Dil	Date	Lah		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTK1150-05		(- Water)			Sam	pled: 11/	13/10	Recy	vd: 11/16/1	0 08:40
Maladia Orașula Orașa		00000				•				
1.1.1 Trichlereethere		02000	10	0.02	ual	1.00	11/17/10 08-55	NIMES	10//1577	8260B
1, 1, 1-11 Child Delinane			1.0	0.82	ug/L	1.00	11/17/10 00:00	NMD	10//1577	82600
1, 1, 2, 2-1 ell'achioroethane			1.0	0.21	ug/L.	1.00	11/17/10 00:55		10/(1577	0200B 9260B
1, 1, 2- Trichlorotrifluorooth	ND		1.0	0.23	ug/L	1.00	11/17/10 00:55		10//1577	82600
1,1,2-menorounidordeur	ND		1.0	0.51	ugre	1.00	11/1/10/00.55	NIMU	101/10/17	02008
ane 1 1-Dichloroethane	ND		10	0.38	uo/I	1.00	11/17/10 08:55		1081577	82608
1.1 Dichloroethane	ND		1.0	0.30	ug/L	1.00	11/17/10 00:55	NMD	1011577	0200B
1.2.4 Trichlorobonzona			1.0	0.29	ug/E	1.00	11/17/10 00:55	NMD	10/(1577	02000
1.2.4- Incluoiobenzene			1.0	0.41	ug/E	1.00	11/17/10 00:55	NMD	10/(1577	82600
1,2-Dibromo-3-chloroprop	NU		1.0	0.59	ugri	1.00	11/17/10 00.55	NMD	101/10/17	020UB
1 2 Dibromoothano	ND		1.0	0.73	100/6	1.00	11/17/10 06/55		1061577	82608
	RU		1.0	0.75	ugic	1.00	11/17/10 00:00	NIND	101(1077	02000
(EDD) 1.2-Dichlorobenzene	ND		1.0	0.79	un/l	1.00	11/17/10 06:55		10K1577	82608
1.2-Dichloroethane	ND		1.0	0.21	ug/L	1.00	11/17/10 06:55	NIME	101(1577	8260B
1.2-Dichloroethene Total	ND		2.0	0.21	ugit	1.00	11/17/10 06:55	NMD	101(1577	82608
1.2-Dichloropropapa	ND		1.0	0.72	ug/L	1.00	11/17/10 06:55	NMD	101(1577	82608
1 3-Dichlorohenzene	ND		1.0	0.72	ug/L	1.00	11/17/10 06:55	NMD	10K1577	82608
1 4-Dichlorobenzene	ND		1.0	0.84	ug/L	1.00	11/17/10 06:55	NMD	10/(1577	82608
2 Butanone (MEK)	ND		1.0	12	ugit	1.00	11/17/10 00:55	NMD	101(1577	0200B
			50	1.0	ug/L	1.00	11/17/10 00:55	NMD	101(1577	02000
4 Method 2 peotension	ND		5.0	21	ug/L	1.00	11/17/10 00:55	NMD	10/(1577	0200B
4-Methyl-2-pentanone	NU		5.0	2.1	ugre	1.00	11/17/10 00.55	NIMO	101/1077	0200B
	٨D		10	3.0	0.07	1.00	11/17/10 06:55		1061577	8260B
Renzene			10	0.41	ug/E	1.00	11/17/10 08:55	NMD	101(1577	8260B
Bromodichloromothana	ND		1.0	0.30	ug/L	1.00	11/17/10 06:55	NMD	10/(1577	82600
Bromoform	ND		1.0	0.05	ug/L	1.00	11/17/10 06:55	NMD	10K1577	8260B
Bromomethane	ND		1.0	0.20	ug/L	1.00	11/17/10 06:55	NMD	10/(1577	82600
Carbon digulado	ND		1.0	0.09	ugit	1.00	11/17/10 00:55	NMD	10/(1577	92600
Carbon Lisuide			1.0	0.19	ug/E	1.00	11/17/10 00:55	NMD	1011077	0200B
Carbon reliaciónde	ND		1.0	0.27	ug/E	1.00	11/17/10 00.00		101/10/7	82600
Chiorodibromomotheno			1.0	0.73	ug/L	1.00	11/17/10 00:55	NIMD	101/10/7	02000
Chlorodoromomernane			1.0	0.32	ugre	1.00	11/17/10 06:55		10K1577	8260B
Chloroform	ND		1.0	0.32	ug/E	1.00	11/17/10 00:55		101/15/7	02000
Chioronom			1.0	0.34	ug/E	1.00	11/1/10 00.00		101(1577	8200B
chiorometriane			1.0	0.30	ug/E	1.00	11/17/10 00:55	NIMD	101/10/7	82600
cis-1,2-Dichloroeinene			1.0	0.61	ug/L	1.00	11/17/10 06:55		10K1577	8260B
cis-1,3-Dichloropropene	UN ND		1.0	0.36	ug/E	1.00	11/1//10 06:55		10K1577	82608
	UM		1.0	0.18	ug/L	1.00	11/1//10 06:55	NMU	10K1577	8260B
Dicniorodifluoromethane	ND		1.0	0.68	ug/L	1.00	11/17/10 06:55	NMD	10K1577	8260B
Etnyibenzene	UM		1.0	0.74	ug/L	1.00	11/1//10 06:55		10K1577	8260B
Isopropylbenzene	ND		1.0	0.79	ug/L	1.00	11/17/10 06:55	NMD	10K1577	8260B
Methyl Acetate	NU		1.0	0.50	ug/L	1.00	11/17/10 06:55	NMD	10K1577	8260B
Methyl tert-Butyl Ether	ND		1.0	0.16	ug/L	1.00	11/17/10 06:55	NMD	10K1577	8260B
Methylcyclohexane	ND		1.0	0.16	ug/L	1.00	11/17/10 06:55	NMD	10K1577	8260B
Methylene Chloride	ND		1.0	0.44	ug/L	1.00	11/17/10 06:55	NMD	10K1577	8260B
Styrene	ND		1.0	0.73	ug/L	1.00	11/17/10 06:55	NMD	10K1577	8260B
Tetrachloroethene	ND		1.0	0.36	ug/L	1.00	11/17/10 06:55	NMD	10K1577	8260B
loluene	ND		1.0	0.51	ug/L	1.00	11/17/10 06:55	NMD	10K1577	8260B
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L	1.00	11/17/10 06:55	NMD	10K1577	8260B
trans-1,3-Dichloropropen	ND		1.0	0.37	ug/L	1.00	11/17/10 06:55	NMD	10K1577	8260B
e				_						
Trichloroethene	ND		1.0	0.46	ug/L	1.00	11/17/10 06:55	NMD	10K1577	8260B
Trichlorofluoromethane	ND		1.0	0.88	ug/L	1.00	11/17/10 06:55	NMD	10K1577	8260B
TestAmerica Buffalo - 1	10 Hazelwood	Drive Amhers	st, NY 142	28 tel 7 t6-6	591-2600 fa	ax 716-69	t-7991			

THE LOADER IN THE REPORTED AND THE REPORT

GaiaTech Inc. 135 S. LaSalle St. Chicago, IL 60603) 	Rece Repo	ived: orted:	11/16/10 11/19/10 11:56					
			A	nalytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTK1150-05	(TRIP BLAN	(- Water) - co	ont.		Samj	oled: 11	13/10	Recv	/d: 11/10	6/1 0 08:40
Volatile Organic Compo	ounds by EPA	4 8260B - con	<u>t.</u>							
Vinyl chloride Xylenes, total	ND ND		1.0 2.0	0.90 0.66	ug/L ug/L	1.00 1.00	11/17/10 06:55 11/17/10 06:55	NMD NMO	10K157 1 0 K157	7 8260B 7 8260B
1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8	113 % 98 % 109 %		Surr Limits: Surr Limits: Surr Limits:	(66-137%) (73-120%) (71-126%)			1 1/17/10 0 6 :55 1 1/17/10 06:55 1 1/17/10 06:55	NMD NMD NMD	10K157 10K157 10K157	7 8260B 7 8260B 7 8260B

TestAmerica

OF FERSER IN THE BOARDARY TRAINS

GaiaTech Inc. 135 S. LaSalle St. Chicago, IL 60603 Work Order: RTK1150

Received: 11/16/10 Reported: 11/19/10 t1:56

Project: Poestenkill, NY Project Project Number: [none]

SAMPLE EXTRACTION DATA

December	Detek	tab Nyasha -	Wt/Vol	():!a	Extract	1.1+11+	Data Deserved	Lab	Talas Car Mathad
Parameter	Baich	Lap Number	EXILOUIG	Unus	VOIUNE	Units	Date Prepareo	rech	Extraction Method
General Chemistry Parameters									
Dry Weight	10K1663	RTK1150-01	10.00	g	10.00	g	11/17/10 11:36	JRR	Dry Weight
Dry Weight	10K (663	RTK (150-02	10.00	g	10.00	g	11/17/10 11:36	JRR	Dry Weight
Semivolatile Organics by GC/MS									
8270C	10K1563	RTK (150-03	1,010.00	mL	1.00	mL	11/16/10 17:00	BWM	3510C MB
8270C	10K (500	RTK (150-01	30.04	g	1.00	mL	t t/16/10 09:00	CXM	3550B MB
8270C	10K (500	RTK1150-02	30.38	g	1.00	mL	11/16/10 09:00	CXM	3550B MB
Volatile Organic Compounds by E	PA 8260B								
8260B	10K1645	RTK1150-03RE*	5.00	mL	5.00	mL	t1/17/10 09:48	LCH	5030B MS
8260B	10K1645	RTK1150-04RE1	5.00	mL	5.00	mL	t1/t7/10 09:48	LCH	5030B M S
8260B	10K1577	RTK1150-03	5.00	mL	5.00	mL	11/16/10 18:05	NMD	5030B MS
8260B	10K1577	RTK1150-04	5.00	mL	5.00	mL	11/16/10 18:05	NMD	5030B MS
8260B	10K1577	RTK1150-05	5.00	mL	5.00	mL	t t/t6/t0 18:05	NMD	5030B MS
8260B	10K1648	RTK1150-01RE*	0.67	g	5.00	mL	t1/t7/t0_t0:00	RMJ	5030B MS
8260B	l0K1648	RTK1150-02	5.01	g	5.00	mL	t1/t7/10_10:00	RMJ	5030B M S
8260B	10K1648	RTK1150-01	5.33	g	5.00	mL	11/17/10 t0:00	RMJ	5030B MS

THE LEADER IN THE ROOMENING COMPANY

GaiaTech Inc. 135 S. LaSalle St.			Work Orde	er: RTK115	50				Rece	ived:	11/16/	10
Chicago, IL 60603			Project: Po Project Nu	oestenkill, i Imber:	NY Project [none]				керс	nteo:	1419	10 11:56
			LAI	BORAT	ORY QC	DATA						
Analyte	Source Result	Spike Level	RL	MDL		Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
Volatile Organic Compour	nds by EP.	A 8260B										
Blank Analyzed: 11/16/10	[Lab Num	ber:10K15	77-BLK1, B	atch: 10K	(1577)							
t,1,1-Trichloroethane			1.0	0.82	,	ug/L	ND					
1,1,2,2-Tetrachtoroethane			t.0	0.2 t		ug/L	ND					
1,1,2-Trichloroethane			1.0	0.23		ug/L	ND					
1,1,2-Trichlorotrifluoroeth ane			1.0	0.31		ug/L	ND					
t,1-Dichloroethane			t.0	0.38		ug/L	ND					
1,1-Dichloroethene			t.0	0.29		ug/L	ND					
1,2,4-Trichlorobenzene			1.0	0.41		ug/L	ND					
1,2-Dibromo-3-chloroprop ane			1.0	0.39		ug/L	ND					
1,2-Dibromoethane (EDB)			1.0	0.73		ug/L	ND					
1,2-Dichtorobenzene			1.0	0.79		ug/L	ND					
1,2-Dichloroethane			1.0	0.21		ug/L	ND					
t,2-Dichloroethene, Total			2.0	0.70		ug/L	ND					
1,2-Dichloropropane			1.0	0.72		ug/L	ND					
1,3-Dichlorobenzene			1.0	0.78		ug/L	ND					
1,4-Dichlorobenzene			1.0	0.84		ug/L	ND					
2-Butanone (MEK)			10	1.3		ug/L	ND					
2-riexanone			5.0	1.2		ug/L	ND					
4-ivietnyi-2-pentanone (MIBK)			5.0	2.1		ug/L	ND					
Acetone			10	3.0		ug/L	ND					
Benzene			1.0	0.41		ug/L	ND					
Bromodichloromethane			1.0	0.39		ug/L	ND					
Bromoform			t.0	0.26		ug/L	ND					
Bromomethane			1.0	0.69		ug/L	ND					
Carbon disulfide			t.0	0.19		ug/L	ND					
Carbon Tetrachloride			t.0	0.27		ug/L	ND					
Chlorobenzene			1.0	0.75		ug/L	ND					
Chlorodibromomethane			1.0	0.32		ug/L	ND					
Chloroethane			1.0	0.32		ug/L	ND					
Chlorotorm			t.0	0.34		ug/L	ND					
Chioromethane			1.0	0.35		ug/L	ND					
cis-1,2-Dichloroethene			1.0	0.81		ug/L	ND					
cis-1,3-Dichloropropene			1.0	0.36		ug/L	ND					
Cyclonexane Diablass diffuses			t,0	0,18		ug/L	ND					
Ethylberrett			1.0	0.68		ug/L	ND					
⊏inyipenzene			1.0	0,74		ug/L	ND					

SHELLADER IN LAW PORMUMAL TESTING

GaiaTech Inc.			Work Ord	ler: RTK1150				Rece	ived:	11/16/	10
135 S. LaSalle SI. Chicago, IL 60603			Project: F Project N	Poestenkill, NY Pr umber: [none	rojeci e)			Repo	rted:	11/19	/10 11:56
- <u> </u>			LA	BORATORY	QC DATA						
Analyte	Source Result	Spike Level	RL	MOL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
Volatile Organic Compou	nds by EP	A 8260B									
Blank Analyzed: 11/16/10	(Lab Num	ber:10K15	77-BLK1. F	Batch: 10K1577	'n						
Isopropylbenzene	,		1.0	0.79	, ug/L	ND					
Methyl Acetate			1.0	0.50	ug/L	ND					
Methyl tert-Bulyl Ether			1.0	0.16	ug/L	ND					
Methylcyclohexane			1.0	0.16	ug/L	ND					
Methylene Chloride			1.0	0.44	ug/L	ND					
Styrene			1.0	0.73	ug/L	ND					
Tetrachloroethene			1.0	0.36	ug/L	ND					
Toluene			1.0	0.51	ug/L	ND					
trans-1,2-Dichloroethene			1.0	0.90	ug/L	ND					
frans-1,3-Dichloropropen			1.0	0.37	ug/L	ND					
Trichloroethene			1.0	0,46	ug/L	ND					
Trichlorofluoromethane			1.0	0.88	ug/L	ND					
Vinyl chloride			1.0	0.90	ug/L	ND					
Xylenes, total			2.0	0.66	ug/L	ND					
Surrogate: 1.2-Dictriornethane-rt4					ug/L		110	66-137			
Surrogate: 4-Bromofluorobenzene					ug/L		102	73-120			
Surrogate: Toluene-d8					ug/L		106	71-126			
LCS Analyzed: 11/16/10 (Lab Numb	er:10K157	7 -B\$1, B ate	ch: 10K1577)							
1,1,1-Trichloroethane			1.0	0.82	ug/L	ND		73-126			
1,1,2,2-Tetrachloroethane			1.0	0.21	ug/L	ND		70-126			
1,1,2-Trichloroethane			1.0	0.23	ug/L	ND		76-122			
1,1,2-Trichlorofrifluoroeth ane			1.0	0.31	ug/L	ND		60-140			
1,1-Dichloroethane		25.0	1.0	0.38	ug/L	23.8	95	71-129			
1,1-Dichloroethene		25.0	1.0	0.29	ug/L	21.7	87	65-13 8			
1,2,4-Trichlorobenzene			1.0	0.41	ug/L	ND		70-122			
1,2-Dibromo-3-chloroprop ane			1.0	0.39	ug/L	ND		56-134			
1,2-Dibromoethane (EDB)			1.0	0.73	ug/L	NĎ		77-120			
1,2-Dichlorobenzene		25.0	1.0	0.79	ug/L	25.9	104	77-120			
1,2-Dichloroethane		25.0	1.0	0.21	ug/L	23.6	94	75-127			
1.2-Dichloroethene, Total			2.0	0.70	ug/L	47.7		72-124			
1,2-Dichloropropane			1,0	0.72	ug/L	ND		76-120			
1,3-Dichlorobenzene			1.0	0.78	ug/L	ND		77-120			
1,4-Dichlorobenzene			1.0	0.84	ug/L	ND		75-120			
2-Butanone (MEK)			10	1.3	ug/L	ND		57-140			

THE ECADER IN ENVIRONMENTAL LENGT

GaiaTech Inc. 135 S. LaSalle Si.			Work Or	Received: 11/16/10			/10				
Chicago, IL 60603			Project: Project N	Poeslenkill, NY P lumber: [non	roject e]			Reported: 11/19/10 11:56			/10 11:56
			L	BORATORY	QC DATA						
Analyte	Source Result	Spike Level	RL	MDL	llaite	Recult	% REC	% REC	% Ppn	RPD	Data
Volatile Organic Compou	inds by EP	A 8260B			0///2	(Cesuit		LINIUS			Quaimers
LCS Analyzed: 11/16/10	(Lab Numb	er:10K157	7-BS1, Bai	tch: 10K1577)							
2-Hexanone			5.0	1.2	ug/L	ND		65-127			
4-Methyl-2-pentanone (MIBK)			5.0	2.1	ug/L	ND		71-125			
Acejone			10	3.0	ug/L	ND		56-142			
Benzene		25.0	1.0	0.41	ug/L	24.6	98	71-124			
Bromodichloromethane			1.0	0.39	ug/L	ND		80-122			
Bromoform			1.0	0.26	ug/L	ND		66-128			
Bromomethane			1.0	0.69	ug/L	ND		36-150			
Carbon disulfide			1.0	0.19	ug/L	ND		59-134			
Carbon Telrachloride			1.0	0.27	ug/L	ND		72-134			
Chlorobenzene		25.0	1.0	0.75	ug/L	26.0	104	72-120			
Chtorodibromomelhane			1.0	0.32	ug/L	ND		75-125			
Chloroethane			1.0	0.32	ug/L	ND		69-136			
Chloroform			1.0	0.34	ug/L	ND		73-127			
Chloromelhane			1.0	0.35	ug/L	ND		49-142			
cis-1,2-Dichloroethene		25.0	1.0	0.81	ug/L	23.9	96	74-124			
cis-1,3-Dichloropropene			1.0	0.36	ug/L	ND		74-124			
Cyclohexane			t.0	0.18	ug/L	ND		70-130			
Dichlorodifluoromethane			1.0	0.68	ug/L	ND		33-157			
Ethylbenzene		25.0	1.0	0.74	ug/L	26.3	105	77-123			
Isopropylbenzene			1.0	0.79	ug/L	ND		77-122			
Methyl Acelale			1.0	0.50	ug/L	ND		60-140			
Methyl Jert-Bulyl Ether		25.0	1.0	0.16	ug/L	19.2	77	64-127			
Methylcyclohexane			1.0	0.16	ug/L	ND		60-140			
Methylene Chloride			1.0	0.44	ug/L	NÐ		57-132			
Styrene			1.0	0.73	ug/L	ND		70-130			
Teirachloroeihene		25.0	1.0	0.36	ug/L	26.7	107	74-122			
Toluene		25.0	1.0	0.51	ug/L	25.0	100	70-122			
trans-1,2-Dichloroethene		25.0	1.0	0.90	ug/L	23.8	95	73-127			
Irans-1,3-Dichloropropen e			1.0	0.37	ug/L	ND		72-123			
Trichloroeihene		25.0	1.0	0.46	ug/L	24.8	99	74-123			
Trichlorofluo/omelhane			1.0	0.88	ug/L	ND		62-152			
Vinyl chloride			1.0	0.90	ug/L	ND		65-133			
Xylenes, tolal		75.0	2.0	0.66	ug/L	77.7	104	76-122			
Surrogate: 1,2-Dichloroelhane-d4					ug/L		99	66-137			
Surrogate: 4-Bromofluorobenzene					ug/L		102	73-120			
Surrogale: Tolvene-d8 TestAmerica Buffalo - 10 H	lazelwood	Drive Amh	ierst, NY 1	4228 iel 716-6	ug/L 91-2600 fax 716	3-691-7991	107	71-126			

ANT CONTRACTOR NOTIFICATIVE FRAME

GaiaTech Inc. 135 S. LaSalle St. Chicago, IL 60603 Work Order: RTK1150

Received: 11/16/10 Reported: 11/19/10.11:56

Project: Poestenkill, NY Project Project Number: [none]

Volatile Organic Compounds by EPA 8260B

LCS Analyzed: 11/16/10 (Lab Number:10K1577-BS1, Batch: 10K1577)

Volatile Organic Compounds by EPA 8260B

Blank Analyzed: 11/17/10 (Lab Number:10K1645-BLK1, Batch: 10K1645)

t,1,1-Trichloroethane	1.0	0.82	ug/L	ND
t,1,2,2-Tetrachloroethane	1.0	0.21	ug/L	ND
t,1,2-Trichloroethane	1.0	0.23	ug/L	ND
t,1,2-Trichlorotrifluoroeth ane	1.0	0.31	ug/L	ND
1,1-Dichloroethane	t.0	0.38	ug/L	ND
1,1-Dichloroethene	t.0	0.29	ug/L	ND
1,2,4-Trichlorobenzene	t.0	0.4 t	ug/L	ND
1,2-Dibromo-3-chloroprop ane	t.0	0.39	ug/L	ND
1,2-Dibromoethane (EDB)	1.0	0.73	ug/L	ND
t,2-Dichlorobenzene	1.0	0.79	ug/L	ND
t,2-Dichloroethane	1.0	0.21	ug/L	ND
t,2-Dichloroethene, Total	2.0	0.70	ug/L	ND
t,2-Dichloropropane	t.0	0.72	ug/L	ND
t,3-Dichlorobenzene	t.0	0.78	ug/L	ND
1,4-Dichlorobenzene	t.0	0.84	ug/L	ND
2-Butanone (MEK)	10	1.3	ug/L	ND
2-Hexanone	5.0	1.2	ug/L	ND
4-Methyl-2-pentanone (MIBK)	5.0	2.1	սց/Լ	ND
Acetone	tO	3.0	ug/L	ND
Benzene	t.0	0.41	ug/L	ND
Bromodichloromethane	1.0	0.39	ug/L	ND
Bromoform	1.0	0.26	ug/L	ND
Bromomethane	1.0	0.69	ug/L	ND
Carbon disulfide	1.0	0. t9	ug/L	ND
Carbon Tetrachloride	1.0	0.27	ug/L	ND
Chlorobenzene	1.0	0.75	ug/L	ND
Chlorodibromomethane	1.0	0.32	ug/L	ND
Chloroethane	1.0	0.32	ug/L	ND
Chloroform	1.0	0.34	ug/L	ND
Chloromethane	t.0	0.35	ug/L	ND
cis-1,2-Dichloroethene	t.0	0.81	ug/L	ND
cis-1,3-Dichloropropene	t.0	0.36	ug/L	ND
Cyclohexane	t.0	0,18	ug/L	ND
Dichlorodifluoromethane	t.0	0.68	ug/L	ND
Ethylbenzene	t.0	0.74	ug/L	ND

HALLCADED IN THIS BOUNDARY LEGISLA

GaiaTech Inc. 135 S . LaSatle St.			Work Order: RTK1150				Rece	Received: Reported:		10 11:56	
Chicago, IL 60603			Project: P Project Ni	oestenkill, NY P umber: (non	roject ie]			T CP			
			LA	BORATORY	QC DATA						
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC	% RPD	RPD	Data Qualifiom
Volatile Organic Compou	inds by EP/	A 8260B						Linnes		Linne	wuanneis
Blank Analyzed: 11/17/10	Lab Num	ber:10K16	45-BLK1. P	atch: 10K1644	5)						
tsopropylbenzene	,		1.0	0.79	ua/L	ND					
Methyl Acetate			1.0	0.50	ug/L	ND					
Methyl tert-Butyl Ether			t.0	0.16	ug/L	ND					
Methylcyclohexane			1.0	0. t6	ug/L	ND					
Methylene Chloride			1.0	0.44	ug/L	ND					
Styrene			t.0	0.73	ug/L	ND					
Tetrachloroethene			1.0	0.36	ug/L	ND					
Toluene			1.0	0.51	ug/L	ND					
trans-t,2-Dichtoroethene			1.0	0.90	ug/L	ND					
trans-1,3-Dichloropropen e			1.0	0.37	ug/L	ND					
Trichloroethene			1.0	0.46	ua/L	ND					
Trichlorofluoromethane			1.0	0.88	ua/L	ND					
Vinyl chloride			1.0	0.90	ua/L	ND					
Xylenes, total			2.0	0.66	ug/L	ND					
Surrogate: 1.2-Dichlomethane-d4					ug/L		109	66-137		·····	
Surrogate: 4-Bromofluorobenzene					ugA_		<i>10</i> 0	73-120			
Surrogate: Toluene-d8					ug/L		109	71-126			
LCS Analyzed: 11/17/10 (Lab Numbe	r:10K1645	-BS1, Batc	h: 10K1645)							
1, t, 1-Trichloroethane			1.0	0.82	ug/L	ND		73-126			
1, t,2,2-Tetrachloroethane			1.0	0.21	ug/L	ND		70-126			
1,1,2-Trichloroethane			1.0	0.23	ug/L	ND		76-122			
1,1,2-Trichlorotrifluoroeth ane			t.0	0.31	ug/L	ND		60-140			
1, t-Dichloroethane		25.0	1.0	0.38	ug/L	23.7	95	71-129			
1,1-Dichloroethene		25.0	1.0	0.29	ug/L	22.5	90	65-138			
1.2,4-Trichlorobenzene			1.0	0.41	ug/L	ND		70-122			
1,2-Dibromo-3-chloroprop ane			1.0	0.39	ug/L	ND		56-134			
1,2-Dibromoethane (EDB)			1.0	0.73	ug/L	ND		77-120			
1,2-Dichlorobenzene		25.0	1.0	0.79	ug/L	25.6	103	77-120			
1,2-Dichtoroethane		25.0	1.0	0.21	ug/L	26.3	105	75-127			
1,2-Dichloroethene, Total			2.0	0.70	ug/L	47.9		72-124			
t,2-Dichloropropane			1.0	0.72	ug/L	ND		76-120			
1,3-Dichlorobenzene			t.0	0.78	ug/L	ND		77-t20			
1,4-Dichlorobenzene			t.0	0.84	ug/L	ND		75-120			
2-Butanone (MEK)			10	1.3	ug/L	ND		57-140			

THE CLADER IN LYVIRG/UDENTAL LEGIDIC

GaiaTech Inc.			Work Order: RTK1150					Rece	ived: 11/16/	11/16/10	
135 S. LaSalle St.								Repo	orted: 11/19/	10 11:56	
Chicago, IL 60603			Project: Poe	stenkill, N	Y Project						
			појессман	ider. [nonej						
			LAB	ORATO	RY QC DATA						
Analyte	Source Result	Spike Level	RL	MDL	llaite	Result	% REC	% REC	% RPD RPD Limit	Data Qualifiere	
Volatile Organic Compou	nds by EP	4 8260B			0000	Roduit	NEV.	Linito		securitera	
LCS Acaburadi 11/17/10	(Lab Numb			- 4017464	E)						
2-Hexanone	Lad Numo	er:10K1645	5.0	1.2	o) uo/L	ND		65-127			
4-Methyl-2-pentanone			5.0	2.1	ug/L	ND		71-125			
(MIBK)					ũ						
Acetone			10	3.0	ug/L	ND		56-142			
Benzene		25.0	1.0	0.41	ug/L	24.1	96	71-124			
Bromodichloromethane			1.0	0.39	ug/L	ND		80-122			
Bromoform			1.0	0.26	ug/L	ND		66-128			
Bromomethane			1.0	0.69	ug/L	ND		36-150			
Carbon disulfide			1.0	0.19	ug/L	ND		59-134			
Carbon Tetrachloride			1.0	0.27	ug/L	ND		72-134			
Chlorobenzene		25.0	1.0	0.75	ug/L	25.6	102	72-120			
Chlorodibromomethane			1.0	0.32	ug/L	ND		75-125			
Chloroethane			1.0	0.32	ug/L	ND		69-136			
Chloroform			1.0	0.34	ug/L	ND		73-127			
Chloromethane			1.0	0.35	ug/L	ND		49-142			
cis-1,2-Dichloroethene		25.0	1.0	0.81	ug/L	23.9	9 6	74-124			
cis-1,3-Dichloropropene			1.0	0.36	ug/L	ND		74-124			
Cyclohexane			1.0	0.18	ug/L	ND		70-130			
Dichlo/odifluoromethane			1.0	0. 6 8	ug/L	ND		33-157			
Ethylbenzene		25.0	1.0	0.74	ug/L	25.5	102	77-123			
Isop/opylbenzene			1.0	0.79	ug/L	ND		77-122			
Methyl Acetate			1.0	0.50	ug/L	ND		60-140			
Methyl tert-Bulyl Ether		25.0	1.0	0.1 6	ug/L	20.1	81	64-127			
Methylcyclohexane			1.0	0.1 6	ug/L	ND		60-140			
Methylene Chloride			1.0	0.44	ug/L	0.840		57-132		J	
Styrene			1.0	0.73	ug/L	ND		70-130			
Tetrachloroethene		25.0	1.0	0.3 6	ug/L	25.1	101	74-122			
Toluene		25.0	1.0	0.51	ug/L	24.2	97	70-122			
frans-1,2-Dichloroethene		25.0	1.0	0.90	ug/L	24.0	96	73-127			
1rans-1,3-Dichloropropen			1.0	0.37	ug/L	ND		72-123			
- Trichloroethene		25.0	1.0	0.46	ug/L	25.6	102	74-123			
Trichlorofluoromethane			1.0	0.88	ug/L	ND		62-152			
Vinyl chloride			1.0	0.90	ug/L	ND		65-133			
Xylenes, total		75.0	2.0	0.66	ug/L	75.2	100	76-122			
Surrogate:					ug/L		112	66-137			
1,2-Dichloroe/hane-d4 Surroga/e:					ua/L		102	73-120			
4-Bromofluorobenzene					-3		106	74 406			
TootAmorico Puttolo 10	Hazabuaaa	Drive Ami		000 del 7	uy/L AR ROA DROD for 7:	40 004 700	100	11-120			

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 7 t6-691-7991

THE SUBDER IN UNV RORALENANCE LOADING

GaiaTech Inc.

135 S. LaSalle St.

Chicago, IL 60603

Work Drder: RTK1150 Project: Poestenkill, NY Project Project Number: [none]

Volatile Organic Compounds by EPA 8260B

LCS Analyzed: 11/17/10 (Lab Number:10K1645-BS1, Batch: 10K1645)

Matrix Spike Analyzed: 11/17/10 (Lab Number:10K1645-MS1, Batch: 10K1645) QC Source Sample: RTK1150-03RE1

1.1.1-Trichloroethane ND 40 33 ND 73-126 D08 ug/L 1,1,2,2-Tetrachloroethane ND 40 8.5 ND 70-126 D08 ug/L 1.1.2-Trichloroethane ND 40 9.2 ug/L ND 76-122 D08 ND 40 12 ND 60-140 D08 1,1,2-Trichlorofrifluoroeth ug/L ane 1,1-Dichloroethane ND 1000 40 15 ug/L 967 97 71-129 D08 1,1-Dichloroethene ND 40 12 ug/L 884 88 65-138 D08 1000 1,2,4-Trichlorobenzene ND 40 16 ND 70-122 D08 ug/L ND 40 16 ND 56-134 D08 1,2-Dibromo-3-chloroprop ug/L ane ND 40 29 ND 77-120 1,2-Dibromoethane ug/L D08 (EDB) 1,2-Dichtorobenzene ND 40 32 ug/L 1030 103 77-120 D08 1000 1.2-Dichloroethane ND 40 8.6 ug/L 1070 107 75-127 D08 1000 1.2-Dichloroethene, Total 215 80 28 ug/L 2080 72-124 D08 ug/L 1,2-Dichloropropane ND 40 29 ND 76-120 D08 ug/L 1,3-Dichlorobenzene ND 40 31 ND 77-120 D08 1,4-Dichlorobenzene ND 40 34 ND 75-120 ug/L D08 400 2-Bulanone (MEK) ND 53 ug/L ND 57-140 D08 2-Hexanone ND 200 50 ug/L ND 65-127 D08 ND 4-Methyl-2-pentanone 200 84 ug/L ND 71-125 D08 (MIBK) Acetone ND 400 120 ug/L ND 56-142 D08 Benzene ND 1000 40 16 ug/L 988 99 71-124 D08 Bromodichloromethane 40 15 80-122 ND ug/L ND D08 Bromoform ND 40 10 ug/L ND 66-128 D08 Bromomethane ND 40 28 ND 36-150 D08 ug/L Carbon disulfide ND 40 7.8 ND ug/L 59-134 D08 Carbon Tetrachloride ND 40 11 ug/L ND 72-134 D08 Chlorobenzene ND 40 30 105 ug/L 1050 72-120 D08 1000 Chlorodibromomethane ND 40 13 ND ug/L 75-125 D08 Chloroethane ND 40 ND 13 ug/L 69-136 D08 Chloroform ND 40 13 ug/L ND 73-127 D08 Chloromethane ND 40 14 ug/L ND 49-142 D08 cis-1,2-Dichtoroethene 215 1000 40 32 ug/L 1110 89 74-124 D08 cis-1,3-Dichloropropene ND 40 14 ug/L ND 74-124 D08 40 Cyclohexane ND 7.2 ug/L ND 70-130 D08 Dichlorodifluoromethane ND 40 27 ND ug/L 33-157 D08 Ethylbenzene ND 40 30 1000 ug/L 1050 105 77-123 D08 ND Isopropylbenzene 40 32 ND 77-122 ug/L D08

TestAmerica Buffalo - 10 Hazetwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

11/16/10

Received: 11/19/10 11:56 Reported:

NE TABLE IN THAR BORRENING TRADES

GaiaTech Inc. 135 S. LaSalle S I			Work Order: RTK1150					Rec	eived: 11/16/10		/10
Chicago, IL 60603			Project: Project N	Poeslenkill, NY F Number: Inoi	Project			Rep	orted:	11/19	/10 11:56
			1.4								
	Source	Spike	r	LONAION	QU DATA		•				
Analyte	Result	Level	RL	MDL	Units	Result	% REC	% REC	8 RPC	RPD	Data
Volatile Organic Compo	unds by El	A 8260B				. to dare	11100	Linita		LITTLE	Quanners
Matrix Spike Analyzed: 1 QC Source Sample: RTK1150	11/17/10 (L -03RE1	ab Numbe	r:10K1645-	MS1, Batch: 10	K1645)						
Melhyl Acelale	ND		40	20	ua/L	ND		60.140			500
Melhyl tert-Butyl Ether	ND	1000	40	6.4	ug/L	768	77	64-127			008
Melhylcyclohexane	ND		40	6.4	ug/L	ND	~	60.140			D08
Melhylene Chloride	ND		40	18	ug/L	36.8		57,132			D08
Styrene	ND		40	29	ua/L	ND		70,130			008,3
Tetrachloroelhene	ND	1000	40	15	ua/L	994	99	74-122			008
Toluene	ND	1000	40	20	ua/L	965	96	70-122			008
Irans-1,2-Dichloroelhene	ND	1000	40	36	ua/L	976	98	73-127			D08
trans-1,3-Dichloropropen	ND		40	15	ug/L	ND		72-123			D00
e Trichloroethene	3770	1000	40		-						000
Trichlorofluoromelhane	ND	1000	40	18	ug/L	3780	!	74-123			D08,M8
Vinvl chloride	ND		40	30	ug/L	ND		62-152			D08
Xylenes, total	ND	2000	90	30	ug/L	ND		65-133			D08
Sumaata		3000		20	ug/L	3270	109	76-122			D08
1,2-Dichloroethane-d4					ug/L		115	66-137			D08
Surrogale:					ug/L		98	73-120			008
4-Bromolluorobenzene Surrogale: Toluene-d8											200
					ug/L		105	71-126			D08
QC Source Sample: RTK1150-C	ed: 11/17/1()3RE1) (Lab Nun	nber:10K16	45-MSD1, Bate	:h: 10K1645}						
1,1,1-Trichloroelhane	ND		40	33	ug/L	ND		73-126		15	D08
1,1,2,2-Telrachloroethane	ND		40	8.5	ug/L	NÐ		70-126		15	D08
1,1,2-Trichloroethane	ND		40	9.2	ug/L	ND		76-122		15	D08
1,1,2-Trichlorolrifluoroeth	ND		40	12	ug/L	ND		60-140		20	D08
ane 1.1-Dichloroelhane	ND	1000	40	15							000
1.1-Dichloroelhene	ND	1000	40	15	ug/L	996	100	71-129	3	20	D08
1.2.4-Trichlorobenzene	ND	1000	40	12	ug/L	973	97	65-138	10	16	D08
1.2-Dibrome-3-chloroprop	ND		40	16	ug/L	ND		70-12 2		20	D08
ane			40	10	ug/L	ND		56-134		15	D08
1,2-Dibromoelhane (EDB)	ND		40	29	ug/L	ND		77-120		15	D08
1.2-Dichlorobenzene	ND	1000	40	32	ug/L	1060	106	77-120	3	20	D08
1,2-Dichloroelhane	ND	1000	40	8.6	ug/L	1080	108	75-127	0.5	20	D08
1,2-Dichloroelhene, Tolal	215		80	28	ug/L	2170		72-124	4	20	D08
1,2-Dichloropropane	ND		40	29	ug/L	ND		76-120		20	D08
1.3-Dichlorobenzene	ND		40	31	ug/L	ND		77-120		20	D08
1,4-Dichlorobenzene	ND		40	34	ug/L	ND		75-120		20	D08

TestAmerica

NAL CONDER IN THE REMAINSAGE OF GRAME

GaiaTech Inc. 135 S. LaSalle St.			Work Order: RTK1150					Received: Reported:		11/16/10 ; t t/19/10 11:56	
Chicago, IL 60603			Project: Poes Project Numb	tenkill, NY Projec ver: [none]							
			LABC	RATORY Q	DATA						
A 1 6	Source	Spike	DI	MO			%	% REC	%	RPD	Data
Analyte Volatile Organic Compour	ds by EPA	8260B		MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Matrix Spike Dup Analyzed QC Source Sample: RTK1150-03	d: 11/17/10 BRE1	(Lab Num	ber:10K1645	-MSD1, Balch:	10 K1645)						
2-Butanone (MEK)	ND		400	53	ug/L	ND		57-140		20	D08
2-Hexanone	ND		200	50	ug/L	ND		65-127		15	D08
4-Methyl-2-pentanone (MIBK]	ND		200	84	ug/L	ND		71-125		35	D08
Acetone	ND		400	120	ug/L	ND		56-142		t5	D08
Benzene	ND	1000	40	t6	ug/L	1020	102	71-124	3	13	D08
Bromodichloromethane	ND		40	15	ug/L	ND		80-122		15	D08
Bromoform	ND		40	10	ug/L	ND		66-128		15	D08
Bromomelhane	ND		40	28	ug/L	ND		36-150		15	D08
Carbon disulfide	ND		40	7.8	ug/L	ND		59-134		15	D08
Carbon Tetrachloride	ND		40	11	ug/L	ND		72-134		15	D08
Chlorobenzene	ND	1000	40	30	ug/L	1070	107	72-120	2	25	D08
Chlorodibromomethane	ND		40	13	ug/L	ND		75-125		15	D08
Chloroethane	ND		40	13	ug/L	ND		69-136		15	D08
Chloroform	ND		40	13	ug/L	ND		73-127		20	D08
Chloromethane	ND		40	t4	ug/L	ND		49-142		15	D08
cis-1,2-Dichloroethene	215	t000	40	32	ug/L	1150	93	74-124	3	15	D08
cis-1,3-Dichloropropene	ND		40	14	ug/L	ND		74-124		t5	D08
Cyclohexane	ND		40	7.2	ug/L	ND		70-130		20	D08
	ND		40	27	ug/L	ND		33-157		20	D08
Ethylbenzene	ND	t000	40	30	ug/L	1080	108	77-123	3	15	D08
Isopropylbenzene	ND		40	32	ug/L	ND		77-122		20	D08
Methyl Acetate	ND		40	20	ug/L	ND		60-140		20	D08
Methyl tert-Butyl Einer	ND	1000	40	6.4	ug/L	778	78	64-127	1	37	D08
Methylcyclonexane	ND		40	0.4	ug/L	ND		60-140	~ -	20	D08
Meinviene Chionae			40	10	ug/L	25.2		57-132	37	15	D08'1
Siyrene		1000	40	29	ug/L	NU 1050	105	70-130	~	20	008
Teluano		1000	40	10	ug/L	1000	105	79-122	6	20	D08
trans 1.2. Diabloroathana		1000	40	20	ugre	1030	103	70-122	٥ ۴	15	008
trans-1,2-Dichloroemene		1000	40 40	30	ug/L		102	73-127	Ð	45	
е	HD.		-v-	10	uyrt			12-123		10	000
Trichloroethene	3770	1000	40	18	ug/L	3830	6	74-123	1	16	D08,M8
Trichlorofluoromethane	ND		40	35	ug/L	ND		62-152		20	D08
Vinyl chloride	ND		40	36	ug/L	ND		65-133		15	D08
Xylenes, tolal	ND	3000	80	26	ug/L	3190	106	76-122	2	t6	D08
Surrogate:	······				ug/L		113	66-137			D08

1,2-Dich/oroethane-d4

USE CRADER IN THE REPART OF LEFT

GaiaTech Inc. 135 S. LaSalle St. Chicago, IL 60603			Work Order: RTK1150 Project: Poestenkill, NY Project Project Number: [none]					Rece Repo	ived: orted:	1: t1/16/10 1: t1/t9/10 11:56		
			Project i	Number: [nor	ne]							
			L	ABORATORY	QC DATA							
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers	
Volatile Organic Compou	nds by EP/	A 8260B										
Matrix Spike Dup Analyze QC Source Sample: RTK1150-0	d: 11/17/10 3RE1) (Lab Nun	nber:10K [,]	1645-MSD1, Bai	tch: 10K1645)							
Surrogate: 4-Bromofluorobenzene					ug/L		102	73-120			D08	
Surrogate: Toluene-d8					ug/L		108	71-126			D08	
Volatile Organic Compou	nds by EPA	4 8260B										
Blank Analyzed: 11/17/10	(Lab Num	ber:t0K16	48-BLK1,	Batch: 10K164	8)							
1,1,1-Trichloroethane			5.0	0.36	ug/kg wet	ND						
1,1,2,2-Tetrachloroethane			5.0	0.81	ug/kg wet	ND						
1,1,2-Trichloroethane			5.0	0.65	ug/kg wet	ND						
1,1,2-Trichlorotrifluoroeth ane			5.0	1. t	ug/kg wet	ND						
1, t-Dichloroethane			5.0	0.61	ug/kg wet	ND						
1, t-Dichloroethene			5.0	0.61	ug/kg wet	ND						
1,2,4-Trichlorobenzene			5.0	0.30	ug/kg wet	ND						
t,2-Dibromo-3-chloroprop ane			5.0	2.5	ug/kg wet	ND						
1,2-Dibromoethane (EDB)			5.0	0.64	ug/kg wet	ND						
1,2-Dichlorobenzene			5.0	0.39	ug/kg wet	ND						
1,2-Dichloroethane			5.0	0.25	ug/kg wet	ND						
1,2-Dichloroethene, Total			10	2.6	ug/kg wet	ND						
1,2-Dichloropropane			5.0	2.5	ug/kg wet	ND						
t,3-Dichlorobenzene			5.0	0.26	ug/kg wet	ND						
1,4-Dichlorobenzene			5.0	0.70	ug/kg wet	ND						
2-Butanone (MEK)			25	1.8	ug/kg wet	ND						
2-Hexanone			25	2.5	ug/kg wet	ND						
4-Methyl-2-pentanone (MIBK)			25	1.6	ug/kg wet	ND						
Acetone			25	4.2	ug/kg wet	ND						
Benzene			5.0	0.24	ug/kg wet	ND						
Bromodichloromethane			5.0	0.67	ug/kg wet	ND						
Bromoform			5.0	2.5	ug/kg wet	ND						
Bromomethane			5.0	0.45	ug/kg wet	ND						
Carbon disulfide			5.0	2.5	ug/kg wet	ND						
Carbon Tetrachloride			5.0	0.48	ug/kg wet	ND						
Chlorobenzene			5.0	0.66	ug/kg wet	ND						
Chlorodibromomethane			5.0	0.64	ug/kg wet	NĎ						
Chloroethane			5.0	1. t	ug/kg wet	ND						
Chloroform			5.0	0.31	ug/kg wet	ND						

OULLAGER BUIND PONMUNIAL LUNNE

GaiaTech tnc. 135 S. LaSalle St.			Work Order: RTK1150					Received: Reported:		I: 11/16/10 I: 11/19/10 11:5	
Chicago, IL 60603			Project: Project	Poestenkill, NY F Number: [nor	Project ne]						
			L	ABORATOR	Y QC DATA						•
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
Volatile Organic Compou	nds by EP/	4 8260B									
Blank Analyzed: 11/17/10	(Lab Num	ber:10K16	48-BLK1	Batch: 10K164	8)						
Chloromethane	(5.0	0.30	ug/kg wet	ND					
cis-t,2-Dichloroethene			5.0	0.64	ug/kg wet	ND					
cis-1,3-Dichloropropene			5.0	0.72	ug/kg wet	ND					
Cyclohexane			5.0	0.70	ug/kg wet	ND					
Dichlorodifluoromethane			5.0	0.41	ug/kg wet	ND					
Ethylbenzene			5.0	0.34	ug/kg wet	ND					
Isopropylbenzene			5.0	0.75	ug/kg wet	ND					
Methyl Acetate			5.0	0.93	ug/kg wet	ND					
Methyl tert-Butyl Ether			5.0	0.49	ug/kg wet	ND					
Methylcyclohexane			5.0	0.76	ug/kg wet	ND					
Methylene Chloride			5.0	2.3	ug/kg wet	12					
Styrene			5.0	0.25	ug/kg wet	ND					
Tetrachloroethene			5.0	0.67	ug/kg wet	ND					
Toluene			5.0	0.38	ug/kg wet	ND					
trans-1,2-Dichloroethene			5.0	0.52	ug/kg wet	ND					
trans-1,3-Dichloropropen			5.0	2.2	ug/kg wet	ND					
Trichloroethene			5.0	1. t	ug/kg wet	ND					
Trichlorofluoromethane			5.0	0.47	ug/kg wet	ND					
Vinyl chloride			5.0	0.61	ug/kg wet	ND					
Xylenes, total			10	0.84	ug/kg wet	ND					
Surrogate:					ug/kg wet		107	64-126			
1,2-LACINGroethane-d4 Surrogate: 4. Representations one					ug/kg wet		t04	72-126			
Surrogate: Toluene-d8					ug/kg wet		107	71-125			
LCS Analyzed: 11/17/10 (Lab Numbe	er:10K1648	3-8 S1, Ba	tch: 10K1648)							
1,1,1-Trichloroethane			5.0	0.36	ug/kg wet	ND		77-121			
1,1,2,2-Tetrachloroethane			5.0	0.81	ug/kg wet	ND		80-120			
1,1,2-Trichloroethane			5.0	0.65	ug/kg wet	ND		7 8- 122			
1,1,2-Trichlorotrifluoroeth ane			5.0	1.1	ug/kg wet	ND		60-140			
1,1-Dichloroethane		50.0	5.0	0.61	ug/kg wet	50.3	101	79-126			
1,1-Dichloroethene		50.0	5.0	0.61	ug/kg wet	53.3	107	65-153			
1,2,4-Trichlorobenzene			5.0	0.30	ug/kg wet	ND		64-120			
1,2-Dibromo-3-chloroprop ane			5.0	2.5	ug/kg wet	ND		63-124			
1,2-Dibromoethane (EDB)			5.0	0.64	ug/kg wet	ND		78-120			
1,2-Dichlorobenzene		50.0	5.0	0.39	ug/kg wet	45.3	91	75-120			

<u>TestAmerica</u>

BRETARENIK TAA KOAMPANE - FOULKO

GaiaTech Inc.			Work Order: RTK1150					Rece	ived:	11/16/	10
135 S. LaSalle St.					Repo	nted:	11/19	/10 11:56			
Chicago, IL 60603			Project: Project N	Poestenkill, NY P lumber: [nor	roject 1e]						
			LA	BORATOR	QC DATA						
	Source	Spike	Di				%	% REC	%	RPD	Data
Analyte Valatile Organic Compo	Result	Level	RE	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Volatile Organic Compo	unas by Er	A 8260B									
LCS Analyzed: 11/17/10	(Lab Numb	er:10 K164	8-BS1, Bal	ch: 10K1648)							
t,2-Dichloroethane		50.0	5.0	0.25	ug/kg wet	47.7	95	77-122			
t,2-Dichloroethene, Total			10	2,6	ug/kg wet	104		82-120			
1,2-Dichloropropane			5.0	2.5	ug/kg wet	ND		75-124			
1,3-Dichlorobenzene			5.0	0.26	ug/kg wet	ND		74-120			
t,4-Dichlorobenzene			5.0	0.70	ug/kg wet	ND		73-120			
2-Bulanone (MEK)			25	1.8	ug/kg wet	ND		70-134			
2-Hexanone			25	2.5	ug/kg wet	ND		59-130			
4-Methyt-2-pentanone (MIBK)			25	1.6	ug/kg wet	ND		65-133			
Acetone			25	4,2	ug/kg wet	ND		61-137			
Benzene		50.0	5.0	0.24	ug/kg wet	50.8	102	79-127			
Bromodichtoromethane			5.0	0.67	ug/kg wet	ND		80-122			
Bromolorm			5.0	2.5	ug/kg wet	ND		68-126			
Bromomethane			5.0	0.45	ug/kg wet	ND		37-149			
Carbon disulfide			5.0	2.5	ug/kg wet	ND		64-131			
Carbon Tetrachloride			5.0	0.48	ug/kg wet	ND		75-135			
Chlorobenzene		50.0	5.0	0.66	ug/kg wet	50.2	100	76-124			
Chlorodibromomethane			5.0	0.64	ug/kg wet	ND		76-125			
Chloroethane			5.0	1. t	ug/kg wet	ND		69-135			
Chlorolorm			5.0	0.31	ug/kg wet	ND		80-118			
Chloromethane			5.0	0.30	ug/kg wet	ND		63-127			
cis-1,2-Dichloroethene		50.0	5.0	0.64	ug/kg wet	51.0	102	81-117			
cis-1,3-Dichloropropene			5.0	0.72	ug/kg wet	ND		82-120			
Cyclohexane			5.0	0.70	ug/kg wet	ND		70-130			
Dichlorodifluoromethane			5.0	0.41	ug/kg wet	ND		57-142			
Ethylbenzene		50.0	5.0	0.34	ug/kg wet	50.0	100	80-120			
Isopropylbenzene			5.0	0.75	ug/kg wet	ND		72-120			
Methyt Acetate			5.0	0.93	ug/kg wet	ND		60-140			
Methyl tert-Butyl Ether		50.0	5.0	0.49	ug/kg wet	45.2	90	63-125			
Methylcyclohexane			5.0	0.76	ug/kg wet	ND		60-140			
Methylene Chloride			5.0	2.3	ug/kg wet	6.40		61-127			в
Styrene			5.0	0.25	ug/kg wet	ND		80-120			
Tetrachloroethene		50.0	5.0	0.67	ug/kg wet	53.5	107	74-122			
Toluene		50.0	5.0	0.38	ug/kg wet	46.2	92	74-128			
trans-1,2-Dichloroethene		50.0	5.0	0.52	ug/kg wet	52.6	105	78-126			
trans-1,3-Dichloropropen e			5.0	2.2	ug/kg wet	ND		73-123			
Trichloroethene		50.0	5.0	t.t	ug/kg wet	50.3	101	77-129			
Trichlorofluoromethane			5.0	0.47	ug/kg wet	ND		6 5-146			

14. LEADER IN THY ROMARDONE LIGHNY

GaiaTech Inc. 135 S. LaSalle St		Work Order: RTK1 150						Received:			10
Chicago, IL 60603			Project Project	: Poestenkill, NY P Number: [no n	roject e]			Repo	orted:	1/19	10 t t:56
			L	ABORATORY	QC DATA						
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
Volatile Organic Compo	unds by EP								Quamers		
LCS Analyzed: 11/17/10	(Lab Numb	er:10K164	8-BS1, B	atch: 10K1648)							
Vinyl chloride			5.0	0.61	ug/kg wet	ND		61-133			
Xylenes, total		150	10	0.84	ug/kg wet	t5 t	101	80-120			
Surrogate: 1,2-Dichtoroethane-d4					ug/kg wet		97	64-12 6			
Surrogate: 4-Bromofluorobenzene					ug/kg wet		10 6	72-126			
Surrogale: Toluene-d8					ug/kg wet		10 6	71-125			

THE CLARGE IN UNVERTIMENTAL LOTTED

GaiaTech Inc. 135 S. LaSalle St.			Work Order: RTK1150					Rece	ived:	t1/t6/* 1 t/19/	10
Chicago, IL 60603			Project Project	: Poestenkill, N Number: [t	Y Project none]			Керс	atçu.	101101	10 11.00
	•		L	ABORATO	RY QC DATA						
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
Semivolatile Organics by	GC/MS										
Blank Analyzed: 11/16/10	(Lab Num	ber:10K15	00-BLK1	, Batch: 10K1	500)						
2,4,5-Trichlorophenol			170	36	ug/kg wet	ND					
2,4,6-Trichlorophenol			t70	11	ug/kg wet	ND					
2,4-Dichlorophenol			170	8.7	ug/kg wet	ND					
2,4-Dimethylphenol			170	45	ug/kg wet	ND					
2,4-Dinitrophenol			330	58	ug/kg wet	ND					
2,4-Dinitrotoluene			170	26	ug/kg wet	ND					
2,6-Dinitrotoluene			170	41	ug/kg wet	ND					
2-Chlo/onaphthalene			170	11	ug/kg wet	ND					
2-Chlorophenol			170	8.5	ug/kg wet	ND					
2-Methylnaphthalene			170	2.0	ug/kg wet	ND					
2-Methylphenol			170	5. t	ug/kg wet	ND					
2-Nitroaniline			330	53	ug/kg wet	ND					
2-Nitrophenol			170	7.6	ug/kg wet	ND					
3,3'-Dichtorobenzidine			t70	t50	ug/kg wet	ND					
3-Nitroaniline			330	38	ug/kg wet	ND					
4,6-Dinitro-2-methylphen ol			330	57	ug/kg wet	ND					
4-Bromophenyl phenyl ether			170	53	ug/kg wet	ND					
4-Chloro-3-methylphenol			170	6.8	ug/kg wet	ND					
4-Chloroaniline			170	49	ug/kg wet	ND					
4-Chlorophenyl phenyl ether			170	3.5	ug/kg wet	ND					
4-Methylphenol			330	9.3	ug/kg wet	ND					
4-Nitroaniline			330	19	ug/kg wet	ND					
4-Nitrophenol			330	40	ug/kg wet	ND					
Acenaphthene			170	2.0	ug/kg wet	ND					
Acenaphthylene			170	t.4	ug/kg wet	ND					
Acetophenone			170	8.5	ug/kg wet	ND					
Anthracene			170	4.3	ug/kg wet	ND					
Atrazine			170	7.4	ug/kg wet	ND					
Benzaldehyde			t70	t8	ug/kg wet	ND					
Benzo(a)anthracene			170	2.9	ug/kg wet	ND					
Benzo(a)pyrene			t70	4.0	ug/kg wet	ND					
Benzo(b)fluoranthene			170	3.2	ug/kg wet	ND					
Benzo(ghi)perylene			170	2.0	ug/kg wet	ND					
Benzo(k)fluoranthene			170	t.8	ug/kg wet	ND					
Biphenyl			170	tO	ug/kg wet	ND					

ORE ELABER IN LINE REINSTALL LEGING

GaiaTech Inc. 135 S . LaSalle St.			Work Order: RTK1150 Received: 11/16/10					10			
Chicago, IL 60603			Proje Proje	ct: Poestenkill, ct Number:	NY Project [none]			Repo	orted:	11/19	(10 t1:56
				LABORAT	ORY QC DATA						
Analyte	Source Result	Spike Level	RL	MDL	linite	Decult	% PEC	% REC	%	RPD	Data
Semivolatile Organics b	y GC/MS				0.11(3	Result	<u>REO</u>	Lunus	RFU	Limit	Quaimers
Blank Analyzed: 11/16/10) (Lab Num	ber:10K15	00-RI K	1 Ratch 10k	(4500)						
Bis(2-chloroethoxy)metha			170	9.0	ua/ka wet	ND					
ne Start and a											
Bis(2-chloroethyl)ether			170	14	ug/kg wet	ND					
2,2-Oxybis(1-Chloroprop ane)			170	17	ug/kg wet	ND					
Bis(2-ethylhexyl) phthalate			170	54	ug/kg wet	ND					
Butyl benzyl phthalate			170	45	ug/kg wet	ND					
Caprolactam			170	72	ug/kg wet	ND					
Carbazole			170	1.9	ug/kg wet	ND					
Chrysene			170	t.7	ug/kg wet	ND					
Dibenzo(a,h)anthracene			170	2.0	ug/kg wet	ND					
Dibenzofuran			170	1.7	ug/kg wet	ND					
Diethyl phthalate			170	5.0	ug/kg wet	ND					
Dimethyl phthalate			170	4.3	ug/kg wet	ND					
Di-n-butyl phthalate			170	58	ug/kg wet	ND					
Di-n-octyl phthalate			170	3.9	ug/kg wet	ND					
Fluoranthene			t70	2.4	ug/kg wet	ND					
Fluorene			170	3.8	ug/kg wet	ND					
Hexachlorobenzene			t70	8.3	ug/kg wet	ND					
Hexachlorobutadiene			t70	8.5	ug/kg wet	ND					
Hexachlorocyclopentadie ne			170	50	ug/kg wet	ND					
Hexachioroennane			170	13	ug/kg wet	ND					
Indeno(1,2,3-cd)pyrene			170	4.6	ug/kg wet	ND					
Nophloge			170	8.3	ug/kg wet	ND					
Naphinalene			170	2.8	ug/kg wet	ND					
			170	7.4	ug/kg wet	ND					
e			170	13	ug/kg wet	ND					
N-Nitrosodiphenylamine			t70	9.1	ua/ka wet	ND					
Pentachlorophenol			330	57	ug/kg wet	ND					
Phenanthrene			t70	3.5	uq/kg wet	ND					
Phenol			170	18	ug/kg wet	ND					
Pyrene			170	1.1	ug/kg wet	ND					
Tetraethyl-Lead			990	160	ug/kg wet	ND					
Surrogate; 2.4.6-Tribromonbenol					ug/kg wet		87	39-146			
Surrogale: 2-Fluorobiphenyl					ug/kg wet		59	37-120			

HALLADER DULAV ROMBINIAL LIVEPIG

GaiaTech Inc.			Work Order: RTK1150					Rece	ived:	t1/t6/	10
135 S. LaSalle St.								Repo	orted:	1 t/19/	10 11:56
Chicago, IL 60603			Project: P Project Nu	oestenkill, NY F umber: [nor	roject ne[
			LA	BORATOR	Y QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Semivolatile Organics by	GC/MS										
Blank Analyzed: 11/16/10) (Lab Num	ber:10K16	500-BLK1, E	Batch: 10K150	0)						
Surrogale: 2-Flu o rophenol					ug/kg wet		49	18-120			
Surrogate: Nitrobenzene-d5					ug/kg wet		54	34-132			
Surrogate: Phenol-d5					ug/kg wet		57	11-120			
Surrogate: p-Terphenyl-d14					ug/kg wet		80	58-147			
LCS Analyzed: 11/16/10	(Lab Numb	er:10K150	0-BS1, Bato	:h: 10K1500)							
1,2,4-Trichlorobenzene		3260	320	4.7	ug/kg wet	1740	53	39-120			
1,2-Dichlorobenzene			320	3.2	ug/kg wet	ND		18-120			
1.3-Dichlorobenzene			320	2.9	ug/kg wet	ND		14-120			
1,4-Dichlorobenzene		3260	320	2.2	ug/kg wet	1520	47	34-120			
1,4-Dioxane		3260	200	37	ug/kg wet	ND		1 t-120			
2,4,5-Trichlorophenol			170	36	ug/kg wet	ND		59-126			
2,4,6-Trichlorophenol			170	11	ug/kg wet	ND		59-123			
2,4-Dichlorophenol			170	8.6	ug/kg wet	ND		52-120			
2,4-Dimethylphenol			170	45	ug/kg wet	ND		36-12 0			
2,4-Dinitrophenot			320	58	ug/kg wet	ND		35-146			
2,4-Dinitrotoluene		3260	170	26	ug/kg wet	2250	69	55-t25			
2,6-Dinitrotoluene			170	40	ug/kg wet	ND		66-t28			
2-Chloronaphthalene			170	11	ug/kg wet	ND		57-t20			
2-Chlorophenal		3260	170	8.4	ug/kg wet	1770	54	38-t20			
2-Methylnaphthalene			170	2,0	ug/kg wet	ND		47-t20			
2-Methylphenol			170	5.1	ug/kg wet	ND		48-t20			
2-Nitroaniline			320	53	ug/kg wet	NÐ		61-13 0			
2-Nitrophenol			t70	7.5	ug/kg wet	ND		50-t20			
3,3'-Dichlorobenzidine			t70	140	ug/kg wet	ND		48-t26			
3-Nitroaníline			320	38	ug/kg wet	ND		61-127			
4,6-Dinitro-2-methylphen ol			320	57	ug/kg wet	ND		49-t55			
4-Bromophenyl phenyl ether			170	52	ug/kg wet	ND		58-131			
4-Chloro-3-methylphenol		3260	t70	6.8	ug/kg wet	2080	64	49- t25			
4-Chloroaniline			170	48	ug/kg wet	ND		49-t20			
4-Chlorophenyl phenyl ether			170	3.5	ug/kg wet	ND		63-t24			
4-Methylphenol			320	9.2	ug/kg wet	ND		5 0-119			
4-Nitroaniline			320	18	ug/kg wet	ND		63-128			
4-Nitrophenol		3260	320	40	ug/kg wet	2540	78	43-137			
Acenaphthene		3260	170	1.9	ug/kg wet	t990	61	53-12 0			

THE EXADER IN LAW REMARKING LOTTING

GaiaTech Inc.	W			Work Order: RTK1150					ived:	11/16/	10
135 S. LaSalle St.								Repo	rted:	11/19/	10 11:56
Chicago, IL 60603			Project: f	Poestenkill, NY f	Project						
			Flojectiv								
			LA	BORATOR	Y QC DATA						
Analute	Source Result	Spike Level	RL	MDE	Hoite	Desult	% 850	% REC	% PD D	RPD	Data
Semivolatile Organics by	GC/MS				Units	Result	KEU	Linns	NEU	Limit	Quaimers
LCS Analyzed: 11/16/10 Acepanbibulana	(Lab Numb	er:10K150	0-BS1, Bat	ch: 10K1500)	the line states			50 404			
Acetaphanyiene			170	1.3	ug/kg wet	ND		58-121			
Actioprienone			170	8.5	ug/kg wet	ND		66-120			
Attoring			170	4.2	ug/kg wet	ND		62-129			
Atrazine			170	7.3	ug/kg wet	ND		73-133			
Benzaldenyde			170	18	ug/kg wet	ND		21-120			
Benzo(a)anthracene			170	2.8	ug/kg wet	ND		65-133			
Benzo(a)pyrene			170	4.0	ug/kg wet	ND		64-127			
Benzo(b)fluoranthene			170	3.2	ug/kg wet	ND		64-135			
Benzo(ghi)perylene			170	2.0	ug/kg wet	ND		50-152			
Benzo(k)fluoranthene			170	t.8	ug/kg wet	ND		58-138			
Biphenyl			170	10	ug/kg wet	ND		7 t-120			
Bis(2-chloroethoxy)metha ne			170	9.0	ug/kg wet	ND		61-133			
Bis(2-chtoroethyl)ether			170	14	ug/kg wet	ND		45-120			
2,2'-Oxybis(1-Chloroprop ane)			170	17	ug/kg wet	ND		44-120			
Bis(2-ethylhexyl) phthalate		3260	170	53	ug/kg wet	2480	76	61-133			
Butyl benzyl phthalate			170	44	ug/kg wet	ND		6t-129			
Caprolactam			170	71	ug/kg wet	ND		54-t33			
Carbazole			170	1.9	ug/kg wet	ND		59-t29			
Chrysene			170	1.6	ug/kg wet	ND		64-131			
Dibenzo(a,h)anthracene			170	1.9	ug/kg wet	ND		54-t48			
Dibenzofuran			170	1.7	ug/kg wet	ND		56-120			
Diethyl phthalate			170	5.0	ug/kg wet	ND		66-126			
Dimethyl phthalate			170	4.3	ug/kg wet	ND		65-124			
Di-n-butyt phthalate			170	57	ug/kg wet	ND		58-130			
Di-n-octyl phthalate			170	3.9	ug/kg wet	ND		62-133			
Fluoranthene			170	2.4	ug/kg wet	ND		62-13 t			
Fluorene		3260	170	3.8	ua/ka wet	2200	68	63-126			
Hexachlorobenzene			170	8.2	ua/ka wet	ND		60-132			
Hexachlorobutadiene			170	8.4	ua/ka wet	ND		45-120			
Hexachlorocyclopentadie			170	50	ug/kg wet	ND		31-120			
Hexachloroethane		3260	170	13	ug/ka wet	1460	45	41-120			
Indeno(1,2,3-cd)pyrene		•	170	4.6	ug/kg wet	ND	-	56-149			
Isophorone			170	8.2	ua/ka wet	ND		56-120			
Naphthalene			170	2.7	ug/ka wet	ND		46-120			
Nitrobenzene			170	7.3	ug/ko wet	ND		49.120			
								-10-120			

TestAmerica

WE LEADER IN THA RONALWAY, 1/2 UNO

GaiaTech Inc. 135 S. LaSalle St.			Work Order: RTK t150					Rece Repo	ived: rted:	: 11/16/10 ; 11/19/10 11:50	
Chicago, IL 60603			Project: F Project N	Poestenkill, N lumber: [Y Project none)						
			LA	BORATO	RY QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Semivolatile Organics by	GC/M5										
LCS Analyzed: 11/16/10	[Lab Numb	er:10K150	0-BS1, Bat	ch: 10K150	0}						
N-Nitrosodi-n-propylamin		3260	t70	13	ug/kg wet	t970	61	46-120			
e N-Nitrosodiphenylamine			170	9.0	ug/kg wet	ND		20-1 t9			
Pentachlorophenol		3260	320	57	ug/kg wet	2590	80	33-136			
Phenanthrene			170	3.5	ug/kg wet	ND		60-130			
Phenol		3260	170	17	ug/kg wet	1690	52	36-120			
Pyrene		3260	170	1.1	ug/kg wet	2500	77	51-133			
Tetraethyl-Lead		3260	980	160	ug/kg wet	932	29	10-120			J
Surrogate:					ug/kg wel		79	39-146			
2,4,6-Thbromophenol Surrogate:					ug/kg wet		59	37-120			
2-Fluorobiphenyi Surrogate:					ug/kg wet		51	18-120			
2-Fillorophenoi Surrogate:					ug/kg wet		57	34-132			
Surrogate: Phenol-d5					ug/kg wet		58	11-120			
Surrogate: p-Terpheny/-d14					ug/kg wel		72	58-147			
Semivolatile Organics by	GC/MS										
Blank Analyzed: 11/17/10	(Lab Num	ber:10K15	63-BLK1, I	Batch: 10K1	563)						
2,4,5-Trichlorophenol	•		5.0	0.48	ug/L	ND					
2,4,6-Trichlorophenol			5.0	0.61	ug/L	ND					
2,4-Dichlorophenol			5.0	0.51	ug/L	ND					
2,4-Dimethylphenol			5.0	0.50	ug/L	ND					
2,4-Dinitrophenol			10	2.2	ug/L	ND					
2,4-Dinitrototuene			5.0	0.45	ug/L	ND					
2,6-Dinitrototuene			5.0	0.40	ug/L	ND					
2-Chloronaphthalene			5.0	0.46	ug/L	ND					
2-Chlorophenol			5.0	0.53	ug/L	ND					
2-Methylnaphthalene			5.0	0.60	ug/L	ND					
2-Methylphenol			5.0	0.40	ug/L	ND					
2-Nitroaniline			10	0.42	ug/L	ND					
2-Nitrophenol			5.0	0.48	ugℓ∟	ND					
3,3'-Dichlorobenzidine			5.0	0.40	ugℓ∟	ND					
3-Nitroaniline			10	0.48	ug/L	ND					
4,6-Dinitro-2-methylphen ol			10	2.2	ug/L	ND					
4-Bromophenyl phenyl ether			5.0	0.45	ug/L	ND					

OR SCADEN IN LAV ROBARCHING TERING

GaiaTech Inc. 135 S. LaSalle St.			Work Order: RTK1150					Received: Reported:		t t/16/* 11/19/	10 10 1 1:56
Chicago, IL 60603			Project: F Project N	Poestenkill, NY Pr umber: [none	roject e]			(opc	100.		
			LA	BORATORY	QC DATA						·
Analvte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
Semivolatile Organics by	GC/MS										
Blank Analyzed: 11/17/1() (Lab Num	1ber:10 K 15	63-BLK1.	Batch: 10K1563	5)						
4-Chloro-3-methylphenol			5.0	0.45	ug/L	NĎ					
4-Chloroaniline			5.0	0.59	ug/L	NĎ					
4-Chlorophenyl phenyl ether			5.0	0.35	ug/L	NĎ					
4-Methylphenol			10	0.36	ug/L	ND					
4-Nitroaniline			10	0.25	ug/L	ND					
4-Nitrophenol			10	1.5	ug/L	NĎ					
Acenaphthene			5.0	0,41	ug/L	NĎ					
Acenaphthylene			5.0	0.38	ug/L	NĎ					
Acetophenone			5.0	0.54	ug/L	ND					
Anthracene			5.0	0.28	ug/L	ND					
Atrazine			5.0	0.46	ug/L	ND					
Benzaldehyde			5.0	0.27	ug/L	ND					
Benzo(a)anthracene			5.0	0.36	ug/L	ND					
Benzo(a)pyrene			5.0	0.47	ug/L	ND					
Benzo(b)fluorantnene			5.0	0.34	ug/L	ND					
Benzo(gni)perviene			5.0	0.35	ug/L	ND					
Benzo(K)nuoraninene			5.0	0.73	ug/L	ND					
Biptienyi			5.0	0.65	ug/L	ND					
ne			5.0	0.35	ug/L						
Bis(2-chloroethyl)ether			5.0	0.40	ug/L	ND					
2,2'-Oxybis(1-Chloroprop ane)			5.0	0.52	ug/L	ND					
Bis(2-ethylhexyl) phthalate			5.0	1,8	ug/L	ND					
Butyl benzyl phthalate			5.0	0.42	ug/L	0.62					J
Caprolactam			5.0	2.2	ug/L	ND					
Carbazole			5.0	0.30	ug/L	ND					
Chrysene Dibaration bandharaana			5.0	0.33	ug/L	ND					
Dibenzo(a,n)aninracene			5.0	0.42	ug/L	ND					
Diperizoturan			10	0.51	ug/L	ND					
Dietnyi phihalate			5.0	0.22	ug/L	ND					
Dimethyl phinalale			5.0	0.36	ug/L						
Di-n-putyi phinalate			5.0	0.31	ug/L	ND 2.2					F
Di-n-octyl primalate			5.U 6.0	0.47	ug/L	2,2					J
Fluoranmene			5.U E (1	0.40	ug/L						
			5,0	0.30	ug/L	ND					
nexachioropenzene			0.0	0.51	ug/L	ND					

TH LADER NUMBER AND READER

GaiaTech Inc. t35 S . LaSalle St.			Work Ore	ler: RTK1150				Rece	ived: orted:	t 1/16/ t 1/ t 9	10 10 11:56
Chicago, IL 6060 3			Project: P Project N	Poestenkill, NY Pr umber: [non:	oject e[
			L۵	BORATORY	QC DATA						
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
Semivolatile Organics b	γ GC/MS										
Blank Analyzed: 11/17/1	0 (Lab Num	ber:10K1	563-BLK1. I	Batch: 10K1563	3)						
Hexachlorobutadiene	- (·· ··		5.0	0.68	ug/L	ND					
Hexachlorocyclopentadie			5.0	0.59	ug/L	ND					
n e Hexachlaroethane			60	0.60	ualt	ND					
Indeno(1.2.3.cd)pyrene			5.0	0.33	ug/c uo/l	ND					
Isophorone			5.0	0.43	uo/L	ND					
Naphthalene			5.0	0.76	ua/L	ND					
Nitrobenzene			5.0	0.29	ua/L	ND					
N-Nitrosodi-n-propylamin			5.0	0.54	ug/L	ND					
e					Ť						
N-Nitrosodiphenylamine			5.0	0.51	ug/L	ND					
Pentachlorophenol			10	2.2	ug/L	ND					
Phenanthrene			5.0	0.44	ug/L	ND					
Phenol			5.0	0.39	ug/L	ND					
Pyrene			5.0	0.34	ug/L	ND					
Surrogate:					ug/L		102	52-132			
2,4,6-11bromophenor Surrogate:					ug/L		84	48-120			
2-Fluorobiphenyl							40	00 400			
Surrogate: 2-Fluorophenol					ug/L		48	20+120			
Surrogale:					ug/L.		<i>8</i> 5	46-120			
Nitrobenzene-d5 Surrogale: Phenol-d5					ua/L		35	16-120			
Surrogale:					ug/L		92	24-136			
p-Terphenyl-d14											
LCS Analyzed: 11/17/10	(Lab Numb	er:10K156	3-BS1, Bat	ch: 10K1563)							
1,2,4-Trichlo/obenzene		t00	10	0.44	ug/L	71.3	7 t	40-t20			
1,2-Dichlo/obenzene			10	0.40	ug/L	ND		33- t20			
1,3-Dichlorobenzene			10	0.48	ug/L	ND		28-t20			
2,4,5-Trichlo/ophenol			5.0	0.48	ug/L	ND		65-t26			
2,4,6-Trichlorophenol			5.0	0.61	ug/L	ND		64-120			
2,4-Dichlorophenol			5.0	0.51	ug/L	ND		64-120			
2,4-Dimethylphenol			5.0	0.50	ug/L	ND		57- t20			
2,4-Dinitrophenol			10	2.2	ug/L	ND		42-153			
2,4-Dinitrotoluene		100	5.0	0.45	ug/L	104	104	59- t25			
2,6-Dinitrotoluene			5.0	0.40	ug/L	ND		74-134			
2-Chloronaphthalene			5.0	0.46	ug/L	ND		52-t20			
2-Chlorophenol		100	5.0	0.53	ug/L	71.7	72	48-120			
2-Methylnaphthalene			5.0	0.60	ug/L	ND		48-120			
∠-ivietnyipnenol			5.0	U,40	ug/L	ND		39-120			

THE CLADER IN 1922 REPARTNENE TESTING

GaiaTech Inc.			Work Ord	er: RTK1150				Rece	ived:	11/16/	10
135 S. LaSalle St. Chicago II, 60603			Project: P	oestenkill NY	Project			Repo	orted:	11/19/	10 11:56
			Project N	umber: (n	one]						
			LA	BORATOF	RY QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	KL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Semivolatile Organics by	<u>/ GC/MS</u>										
LCS Analyzed: 11/17/10	(Lab Numb	er:10K156	i3-BS1, Bat	:h: 10K1563))						
2-Nitroaniline			t0	0.42	ug/L	ND		67-136			
2-Nitrophenol			5.0	0.48	ug/L	ND		59-120			
3,3'-Dichlorobenzidine			5.0	0.40	ug/L	ND		33-140			
3-Nitroaniline			10	0.48	ug/L	ND		69-129			
4,6-Dinitro-2-methylphen ol			10	2.2	ug/L	ND		64-159			
4-Bromophenyl phenyl ether			5.0	0.45	ug/L	ND		71-126			
4-Chloro-3-methylphenol		t00	5.0	0.45	ug/L	94.3	94	64-120			
4-Chtoroaniline			5.0	0.59	ug/Ł	ND		60-124			
4-Chlorophenyl phenyl ether			5.0	0.35	ug/L	ND		71-122			
4-Methylphenol			10	0.36	ug/L	ND		36-120			
4-Nitroaniline			10	0.25	ug/L	ND		64-135			
4-Nitrophenol		100	tO	1.5	ug/L	38.4	38	16-120			
Acenaphthene		t00	5.0	0.41	ug/L	86.3	86	60-120			
Acenaphthylene			5.0	0.38	ug/L	ND		63-120			
Acetophenone			5.0	0.54	ug/L	ND		45-120			
Anthracene			5.0	0.28	ug/L	ND		69-131			
Atrazine			5.0	0.46	ug/L	ND		70-129			
Benzaldehyde			5.0	0.27	ug/L	ND		30-t40			
Benzo(a)anthracene			5.0	0.36	ug/L	ND		73-138			
Benzo(a)pyrene			5.0	0.47	ug/L	ND		74-126			
Benzo(b)fluoranthene			5.0	0.34	ug/L	ND		75-133			
Benzo(ghi)perylene			5.0	0.35	ug/L	ND		66-152			
Benzo(k)fluoranthene			5.0	0.73	ug/L	ND		75-133			
Biphenyl			5.0	0.65	ug/L	ND		30-140			
Bis(2-chloroethoxy)metha			5.0	0.35	ug/L	ND		62-120			
Bis(2-chloroethyl)ether			5.0	0.40	ug/L	ND		51-120			
2,2'-Oxybis(1-Chloroprop ane)			5.0	0.52	ug/L	ND		47-120			
Bis(2-ethylhexyl) phthalate		100	5.0	1.8	ug/L	97.8	98	69-136			
Butyl benzyl phthalate			5.0	0.42	ug/L	ND		62-149			
Caprolaciam			5.0	2.2	ug/L	ND		30-140			
Carbazole			5.0	0.30	ug/L	ND		68-133			
Chrysene			5.0	0.33	ug/L	ND		69-140			
Dibenzo(a,h)anthracene			5.0	0.42	ug/L	ND		67-144			
Dibenzofuran			tO	0.51	ug/L	ND		66-120			

THE LADER IN 14V RODMENTAL (ES 1983

GaiaTech Inc.			Work Order:	RTK1150				Rece	ived:	11/16/	t0
135 S. LaSalle St.								Repo	rted:	t1/t9/	10 11:56
Chicago, IL 60603			Project: Poes Project Num	stenkill, NY Project her: [pone]	t						
			LAB	DRATORY QC	DATA						
Apolista	Source Result	Spike	RI	8401	•• ••	. .	%	% REC	%	RPD	Data
Semivolatile Organics by	GC/MS	2010)			Units	Result	REC	Limits	RPD	Limit	Qualifiers
LCS Analyzed: 11/17/10 (I Dielbyl obtinalate	Lab Numb	er:10K1563	-BS1, Batch:	10K1563)	ual			70 400			
Dimethyl phthalate			5.0	0.36	ug/L	ND		73 128			
Di-n-butyl phthalate			5.0	0.31	ug/L	ND		87 137			
Di-n-octyl phthalate			5.0	0.47	ug/L	ND		72-145			
Fluoranthene			5.0	0.40	ug/L	1 27		67-133			1
Fluorene		too	5.0	0.36	uall	91.6	92	66-120			4
Hexachlorobenzene		100	5.0	0.51	uall	ND	52	38-131			
Hexachlorobutadiene			5.0	0.68	ug/L	סא		30-120			
Hexachlorocyclopentadie			5.0	0.59	ug/L	ND		23-120			
ne Hexachloroethane		100	50	0.59	uali	64.0	64	26 120			
Indeno(1,2,3-cd)pyrene		100	5.0	0.47	ug/L	ND	04	20-120 60 146			
Isophorone			5.0	0.43	ug/L			64 120			
Naphihalene			5.0	0.76	ugre			48.120			
Nilrobenzene			5.0	0.29	ug/L			52-120			
N-Nitrosodi-n-propylamin		100	5.0	0.54	ug/L	80.7	81	56-120			
e N-Nitros odinhopularnino			ΕÔ	0.64							
Rentachlaranhanal		100	5.0	0.51	ug/L	ND		25-125			
Phononthreno		100	50	2.2	ug/L	106	106	39-136			
Phonoi		400	5.V 6.0	0.44	ug/L			67-130			
Pirono		100	5.0	0.39	ug/L	33.8	34	17-120			
ryiele		100	5.0	0.34	ug/L	99.9	100	58-136			<u>_</u>
Surrogate: 2,4,6-Tribromophenol					ug/L		98	52-132			
Surrogate:					ug/L		78	48-120			
Surrogate:					ug/L		43	20-120			
2-Fluoropheno/ Surrogate: Nitrahannana dS					ug/L		77	46-12 0			
Surrogate: Phenol-d5					ua/L		32	16-120			
Surrogate:					ug/L		89	24-136			
Matrix Spike Analyzed: 11/ OC Source Sample: 87K1150.03	17 /10 (Lal	> Number:1	0K1563-MS1	, Batch: 10K156	3)						
1,2,4-Trichlorobenzene	ND	t92	t9	0.85	ue/l	154	80	40-120			
1,2-Dichlorobenzene	ND		19	0.77	ua/L	ND	~~	33-120			
t,3-Dichlorobenzene	ND		19	0.92	ua/L	ND		28-120			
2,4,5-Trichlorophenot	ND		9.6	0.92	ua/l	ND		65-126			
2,4,6-Trichlorophenol	ND		9.6	t.2	ua/L	ND		64-120			
2,4-Dichlorophenot	ND		9.6	0.98	uo/L	ND		64-120			
					- 21 -			01.120			

-	1 L	•
$1 \sim c^{-1}$	rΛrm	NOROO

DALELARCH IN ENV ROMALMAC LEMPO

GaiaTech Inc. 135 S. LaSalle SI.			Work Order:	RTK1150				Recei Repo	ived: rted:	11/16/ 11/19/	10 10 11:56
Chicago, IL 60603			Project: Poes Project Numb	tenkill, NY Project er: [none]							
			LABO	RATORY QC	DATA						
	Source	Spike	-				%	% REC	%	RPD	Data
Analyte Semivolatile Organics by I	Result GC/MS	Level	KL	MEDL,	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Semironative Organics by	<u>aa/iii3</u>										
Matrix Spike Analyzed: 11 QC Source Sample: RTK1150-03	/17/10 (La 3	b Number:'	I0K1563-MS1	, Batch: 10K156	3)						
2,4-Dimethylphenol	ND		9.6	0.96	ug/L	ND		57-120			
2,4-Dinitrophenol	ND		19	4.3	ug/L	ND		42-153			
2,4-Dinitrololuene	ND	192	9.6	0.86	ug/L	204	106	59-125			
2,6-Dinifrotoluene	ND		9.6	0.77	ug/L	ND		74-134			
2-Chloronaphthalene	ND		9.6	0.88	ug/L	ND		52-120			
2-Chlorophenol	ND	192	9.6	1.0	ug/L	152	79	48-120			
2-Melhylnaphlhalene	ND		9.6	1.2	ug/L	ND		48-120			
2-Melhylphenol	ND		9.6	0.77	ug/L	ND		39-120			
2-Nitroaniline	ND		19	0.81	ug/L	ND		67 -136			
2-Nilrophenol	ND		9.6	0.92	ug/L	ND		59-120			
3,3'-Dichlorobenzidine	ND		9.6	0.77	ug/L	ND		33-140			
3-Nitroaniline	ND		19	0.92	ug/L	ND		69-129			
4,6-Dinilro-2-melhylphen ol	ND		19	4.2	ug/L	ND		64-159			
4-Bromophenyl phenyl elher	ND		9.6	0.87	ug/L	ND		71-126			
4-Chloro-3-methylphenol	ND	192	9.6	0.87	ug/L	170	88	64-120			
4-Chloroaniline	ND		9.6	1.1	ug/L	1.83		60-124			ſ
4-Chlorophenyl phenyl ether	ND		9.6	0.67	ug/L	ND		71-122			
4-Melhylphenol	0.525		19	0.69	ug/L	ND		36-120			
4-Nilroaniline	1.53		19	0.48	ug/L	3.19		64-135			ſ
4-Nitrophenol	ND	192	19	2.9	ug/L	138	72	1 6- 120			
AcenaphIhene	ND	192	9.6	0.79	ug/L	173	90	60-120			
Acenaphthylene	ND		9.6	0.73	ug/L	ND		63-120			
Acelophenone	ND		9.6	1.0	ug/L	ND		45-120			
Anthracene	ND		9.6	0.54	ug/L	ND		69-131			
Alrazine	ND		9.6	0.88	ug/L	ND		70-129			
Benzaldehyde	ND		9.6	0.51	ug/L	ND		30-140			
Benzo(a)anlhracene	ND		9.6	0. 6 9	ug/L	ND		73-138			
Benzo(a)pyrene	ND		9.6	0.90	ug/L	ND		74-126			
Benzo(b)fluoran/hene	ND		9.6	0.65	ug/L	ND		75-133			
Benzo(ghi)perylene	ND		9.6	0.67	ug/L	ND		66-152			
Benzo(k)fluoran/hene	ND		9.6	1.4	ug/L	ND		75-133			
Biphenyl	ND		9.6	1.3	ug/L	ND		30-140			
Bis(2-chloroethoxy)metha ne	ND		9.6	0.67	ug/L	ND		62-120			
Bis(2-chloroelhyl)elher	ND		9.6	0.77	ug/L	ND		51-120			

THE ELADER IN THE RESERVENTIAL REGIME

GaiaTech Inc. 135 S. LaSalte St.			Work Or	der: RTK1150				Rece	ived: 11/16/	/10
Chicago, IL 60603			Project: Project i	Poestenkill, NY F Number: [nor	roject ne]			Керс	orted: 11/19.	/10 11:56
			L	BORATOR	QC DATA					
Analyte	Source Result	Spike Level	RL	Mitur			%	% REC	% RPD	Data
Semivolatite Organics b	GC/MS				Units	Result	REC	Limits	RPD Limit	Qualifiers
Matrix Spike Analyzed: 1 QC Source Sample: RTK1150-	1/17/10 (La 03	ab Numbe	r:10K1563-	MS1, Batch: 10	K1563)					
2,2'-Oxybis(1- C hloroprop ane)	ND		9.6	1.0	ug/L	ND		47-120		
Bis(2-ethylhexyl) phthalate	ND	192	9.6	3.5	ug/L	124	64	69-136		M8
Butyt benzyt phihalate	0.475		9.6	0.81	ug/L	ND		62-149		
Caprolactam	ND		9.6	4.2	ug/L	ND		30-140		
Carbazole	ND		9.6	0.58	ug/L	ND		68-133		
Chrysene	ND		9.6	0.63	ug/L	ND		69-140		
Dibenzo(a,h)anthracene	ND		9.6	0.81	ug/L	ND		67-144		
Dibenzofuran	ND		19	0.98	ug/L	ND		66-120		
Diethyl phthalate	0.703		9.6	0.42	ug/L	ND		78-128		
Dimethyl phthalate	ND		9.6	0.69	ug/L	ND		73-127		
Di-n-butyl phthalate	0.911		9.6	0.60	ug/L	0.788		67-132		4
Di-n-octyl phihalate	ND		9.6	0.90	ug/L	ND		72-145		J
Fluoranthene	ND		9.6	0.77	ug/L	2.25		67-133		4
Fluorene	ND	192	9.6	0.69	ug/L	185	96	66-129		J
Hexachlorobenzene	ND		9.6	0.98	ug/L	ND		38-131		
Hexachlorobutadiene	ND		9.6	1.3	ug/L	ND		30-120		
Hexachlorocyclopentadie ne	ND		9.6	1.1	ug/L	ND		23-120		
Hexachloroethane	ND	192	9.6	1.1	ug/L	145	75	25-120		
Indeno(1,2,3-cd)pyrene	ND		9.6	0.90	ug/L	ND		69-146		
Isophorone	ND		9.6	0.83	ug/L	ND		64-120		
Naphihalene	ND		9.6	1.5	ug/L	ND		48-120		
Nitrobenzene	ND		9.6	0.56	ug/L	ND		52-120		
N-Nilrosodi-n-propylamin e	ND	192	9.6	1.0	ug/L	175	91	56-120		
N-Nitrosodiphenylamine	NO		9.6	0.98	ug/L	ND		25-125		
Pentachlorophenol	14.2	192	19	4,2	ug/L	211	102	39-136		
Phenanthrene	ND		9.6	0.85	ug/L	ND		67-130		
Phenol	ND	192	9.6	0.75	ug/L	109	56	17-120		
Pyrene	ND	192	9.6	0.65	ug/L	166	86	58-136		
Surrogate: 2,4,6-Tribromophenol			<u> </u>		ug/L	<u></u>	88	52-132		
Surrogate: 2-Fluorobipheny/ Surrogato:					ug/L		86	48-120		
Surrogare: 2-Fluorophenol Surrogale:					ug/L		62	20-120		
Nilrobenzene-d5 Surrogate: Phenol-d5					ug/L		87 56	46-120		
TestAmerica Buffalo - 10 k	dezelwood f	Trivo Ame		1000 1 1 740 04	uyr		90	10-720		

TestAmerica Burrato - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 /ax 716-691-7991

www.testamericainc.com

GaiaTech Inc.			Work Ore	der: RTK1150				Rece	ived:	11/16/	10
135 S. LaSalle St. Chicago, IL 60603	Project: F Project N			Repo	11/19/10						
			L.A	BORATORY	QC DATA						
Analyte	Source Result	Spike Level	RL.	MDL.	Units	Result	% REC	% REC	% RPD	RPD Limit	0
Semivolatile Organic:	s by GC/MS					(NGGGIL	10420	Lanta		1.11111L	<u>u</u>

Matrix Spike Dup Analyzed: 11/17/10 (Lab Number:10K1563-MSD1, Batch: 10K1563) QC Source Sample: RTK1150-03

de avaies camples service av											
1,2,4-Trichlorobenzene	ND	192	19	0.85	ug/L	155	80	40-120	0.6	30	
1,2-Dichlorobenzene	ND		19	0.77	ug/L	ND		33-120		29	
1,3-Dichlorobenzene	ND		19	0.92	ug/L	ND		28-120		37	
2,4,5-Trichlorophenol	ND		9.6	0.92	ug/L	ND		65-126		18	
2,4,6-Trichlorophenol	ND		9.6	1.2	ug/L	ND		64-120		19	
2,4-Dichlorophenol	ND		9.6	0.98	ug/L	ND		64-120		19	
2,4-Dimethylphenol	ND		9.6	0.96	ug/L	ND		57-120		42	
2,4-Dinitrophenol	ND		19	4.3	ug/L	ND		42-153		22	
2,4-Dinitrotoluene	ND	192	9.6	0.86	ug/L	212	110	59-125	4	20	
2,6-Dinitrotoluene	ND		9.6	0.77	ug/L	ND		74-134		15	
2-Chloronaphthalene	ND		9.6	0.88	ug/L	ND		52-120		21	
2-Chlorophenol	ND	192	9.6	1.0	ug/L	160	83	48-120	5	25	
2-Methytnaphthalene	ND		9.6	1.2	ug/L	ND		48-120		21	
2-Methylphenol	ND		9.6	0.77	ug/L	ND		39-120		27	
2-Nitroaniline	ND		19	0.81	ug/L	ND		67-136		15	
2-Nitrophenol	NØ		9.6	0.92	ug/L	ND		59-120		18	
3,3'-Dichlorobenzidine	ND		9.6	0.77	ug/L	ND		33-140		25	
3-Nitroaniline	ND		19	0.92	ug/L	ND		69-129		19	
4,6-Dinitro-2-methylphen ol	ND		19	4.2	ug/L	ND		64-159		15	
4-Bromophenyl phenyt ether	ND		9.6	0.87	ug/L	ND		71-126		15	
4-Chloro-3-methylphenol	ND	192	9.6	0.87	ug/L	196	102	64-120	14	27	
4-Chloroaniline	ND		9.6	1.1	ug/L	ND		60-124		22	
4-Chlorophenyl phenyl ether	ND		9.6	0.67	ug/L	ND		71-122		16	
4-Methylphenol	0.525		19	0.69	ug/L	0.712		36-12 0		24	
4-Nitroaniline	1.53		19	0.48	ug/L	ND		64-1 3 5		24	
4-Nitrophenol	ND	192	19	2.9	ug/L	129	67	16-120	7	48	
Acenaphthene	ND	192	9.6	0.79	ug/L	181	94	60-12 0	5	24	
AcenaphIhylene	ND		9.6	0.7 3	ug/L	ND		6 3 -120		18	
Acetophenone	ND		9.6	1.0	ug/L	ND		45-120		20	
Anthracene	ND		9.6	0.54	ug/L	ND		69-131		15	
Afrazine	DN		9.6	0.88	ug/L	ND		70-129		20	

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

J

11/19/10 11:56

RPD Limit Qualifiers

Data

<u>TestAmerica</u>

THE CLARENIN LYPPICAL MARKE LIGHT

GaiaTech Inc.			Work On	der: RTK1150				Rece	ived:	11/16/	10 10 L1:56
Chicago, IL 60603			Project: I Project N	Poestenkill, NY Pi lumber: [non	oject e}			nepe			
			LA	BORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Leve]	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Semivolatile Organics by	GC/MS										
Matrix Spike Dup Analyze QC Source Sample: RTK1150-0	ed: 11/17/10 3	(Lab Nun	nber:10K1	563-MSD1, Bat	ch: 10K1563)						
Benzaldehyde	ND		9.6	0.51	ug/L	ND		30-140		20	
Benzo[a)anthracene	ND		9.6	0.69	ug/L	ND		73-138		15	
Benzo(a)pyrene	ND		9.6	0.90	ug/L	ND		74-126		15	
Benzo(b)fluoranthene	ND		9.6	0.65	ug/L	ND		75-133		15	
Benzo(ghi)perylene	ND		9.6	0.67	ug/L	ND		66-152		15	
Benzo(k)fluoranthene	ND		9.6	1.4	ug/L	ND		75-133		22	
Biphenyl	ND		9.6	1.3	ug/L	ND		30-140		20	
Bis(2-chloroethoxy)metha ne	ND		9.6	0.67	ug/L	ND		62-120		17	
Bis(2-chloroethyl)ether	ND		9.6	0.77	ug/L	ND		5t-120		21	
2,2'-Oxybis(1-Chloroprop ane)	ND		9.6	1.0	ug/L	ND		47-120		24	
Bis(2-ethylhexyl) phthalate	ND	192	9.6	3.5	ug/L	184	95	69-136	39	t5	R2
Butyl benzyl phihalate	0.475		9.6	0.81	ug/L	ND		62-149		16	
Caprolaciam	ND		9.6	4.2	ug/L	ND		30-140		20	
Carbazole	ND		9.6	0.58	ug/L	ND		68-133		20	
Chrysene	ND		9.6	0.63	ug/L	ND		69-140		t5	
Dibenzo(a,h)anthracene	ND		9.6	0.81	ug/L	ND		67-144		t5	
Dibenzofuran	ND		19	0.98	ug/L	ND		66-120		t5	
Diethyl phthalate	0.703		9.6	0.42	ug/L	0.788		78-128		t5	J
Dimethyl phthalate	ND		9.6	0.69	ug/L	ND		73-127		t5	
Di-n-bulyl phthalate	0.911		9.6	0.60	ug/L	t.17		67-132	39	t5	J
Di-n-octyl phthalate	ND		9.6	0.90	ug/L	ND		72-145		16	
Fluoranthene	ND		9.6	0.77	ug/L	2.63		67-133	t6	t5	J
Fluorene	ND	192	9.6	0.69	ug/L	190	99	66-129	3	t5	
Hexachlorobenzene	ND		9.6	0.98	ug/L	ND		38-131		15	
Hexachlorobutadiene	ND		9.6	1.3	ug/L	ND		30-120		44	
Hexachlorocyclopentadie ne	ND		9.6	1.1	ug/L	ND		23-120		49	
Hexachloroethane	ND	192	9.6	1.1	ug/L	142	74	25-120	2	46	
Indeno(1,2,3-cd)pyrene	ND		9.6	0.90	ug/L	ND		69-146		15	
Isophorone	ND		9.6	0.83	ug/L	ND		64-120		17	
Naphthalene	ND		9.6	1.5	ug/L	ND		48-120		29	
Nilrobenzene	ND		9.6	0.56	ug/L	ND		52-t20		24	
N-Nitrosodi-n-propylamin e	ND	192	9.6	1.0	սց/Լ	175	91	56-120	0.2	31	
N-Nitrosodiphenylamine	ND		9.6	0.98	ug/L	ND		25-t25		15	
Pentachlorophenol	14.2	192	19	4.2	ug/L	227	111	39-136	7	37	

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

THE SCARLER INV REPORTAL LEADING

GaiaTech Inc. 135 S. LaSalie S i			Work On	der: RTK1150				Rece	ived:	11/16/	10
Chicago, IL 60603			Project: I Project N	Poestenkill, NY Pi lumber: [non	roject e[Nepe	/		10 1100
			LA	BORATORY	QC DATA						
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
Semivolatile Organics	by GC/MS					•••					
Matrix Spike Dup Anal QC Source Sample: RTK11	lyzed: 11/17/18 50-03	0 (Lab Nu	mber:10K1	563-MSD1, Bat	ch: 10K1563)						
Phenanihrene	ND		9.6	0.85	ug/L	ND		67-130		15	
Phenol	ND	192	9.6	0.75	ug/L	106	55	17-120	3	34	
Pyrene	ND	192	9.6	0.65	ug/L	197	103	58-136	17	19	
Surrogate:					ug/L		104	52-132		·	
2,4,6-1 nbromophenol Surrogate: 2-Eluorobinhenvl					ug/L		88	48-120			
Surrogate:					ug/L		63	20-120			
2-radiophenor Surrogate: Nitrobenzene-d5					ug/L		87	46-120			
Surrogate: Phenol-d5					ug/L		53	16-120			
Surrogate: p-Terphenyl-d14					ug/L		88	24-136			

Chain of	Temperature on Receip		stAmerica	Ì
Custody Hecord	Drinking Water? Yes [лық тне ц	EADER IN ENVIRONMENTAL TESTING)
Calent Calent Gard ATTE-CH	Project Manager	Lusek	Date / 13 / 10	Chain of Custody Number 167836
Address S. La Sadle St.	Telephono Number (Area Coo	the instantion	Lab Number	Page / of /
Cly 24 Code	3 Sile Contact	Lieb Contact RITTAN FISCHOR	Analysis (Attach list if more space is needed)	
Bling Home and Location (State) Project North St 1 North States	Carrier/May/oll Number			Special Instructions/
ContractPurchase Growthoote No.	Matrix	Containers & Preservatives	· 70.	Conditions of Receipt
Sample 1.D. No. and Description Containers for each sample may be combined on one line) Date	1105 1285 17885 114 114 114	HORN PWUZ HORN IOH ECNH FOSEH Soudun	Λ.S ² 2/λ	
GP-5 4-61 11/13/4	Q 5:30 X	2	XX IIIIIIIIIIX	
GP-67-81 11/13	10 10:30 X	7	× X	
GP-5 [W13/	@ 9:30 X	2		
GP-6 [11]	X 0611 @	2 3	XX	SUDA ANXHSID
				Mr. REQUIRED M
				Vaune Valerues.
				(0,1)
Possible hazard (dentification	B X Unknown Clampia Disposal	n X Disposel By Let	Archive For Months torger than 1 mon	ssed il samples arc retained h)
Turn Around Time Required	21 Days 🔲 Otther	OC Hoquitements (Specif		-
1. Presimation Can VIIII	11113/10 117:3	5 1. Received By	a M. atm	11 13 10 1235
2 Roy Mished Py MU Dress	Date 1/15/10 (70	A Happhiere 2	rt aver	Date Turo 11-16-10 0840
3, Kalinglistiet By	Date Time	3. Raceived By		Date
Conments			2.20	
DISTRIBUTION: WillTE - Returned to Clean with Report; CANARY - 5	Stays will the Sampley, PHVK - Field Cop,			

Appendix C

Supplemental Phase II Laboratory Analytical Report

فالمكافأة المتعلقة فللتك فأولائهم وتقافلهما وال

ANALYTICAL REPORT

Job Number: 460-20639-1 Job Description: DSI, Poestenkill NY

> For: GaiaTech Inc. 135 South LaSalle Street Suite 3500 Chicago, IL 60603 Attention: Mike Duet

Omayra Pinas

Approved for release. Ornayra Penas Project Manager II \$2/14/2050 4:05 PM

Designee for Sherree Baker Project Manager II sherree.baker@testamericainc.com 12/14/2010

The test results in this report meet all NELAP requirements unless specified within the case narrative. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Edison Project Manager.

TestAmerica Edison Certifications and Approvals: Connecticut: CTDOH #PH-0200, New Jersey: NJDEP (NELAP) #12028, New York: NYDOH (NELAP) #11452, NYDOH (ELAP) #11452, Pennsylvania: PADEP (NELAP) 68-00522 and Rhode Island: RIDOH LAO00132

TestAmerica Laboratories, Inc. TestAmerica Edison 777 New Durham Road, Edison, NJ 08817 Tel (732) 549-3900 Fax (732) 549-3679 www.testamerica.inc.com

CASE NARRATIVE

Client: GaiaTech Inc.

Project: DSI, Poestenkill NY

Report Number: 460-20639-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on t2/03/2010; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 5.6 C.

The following sample(s) was received outside of holding time: Trip Blank sample date on container 11/16/10

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples 460-20639-1 through 460-20639-7 were analyzed for volatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were prepared on 12/03/2010 and analyzed on 12/06/2010.

The matrix spike (MS) recovery for m & p xylene in batch 57626 was outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

Acetone and Methylene Chloride were detected in method blank LB3 460-57540/t-A at levels that were above the method detection limit but below the reporting limit. The values should be considered estimates, and have been flagged "J". If the associated sample reported a result above the MDL and/or RL, the result has been "B" flagged. Refer to the QC report for details.

No other difficulties were encountered during the volatiles analyses.

All other quality control parameters were within the acceptance limits.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples 460-20639-8 through 460-20639-11 were analyzed for volatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 12/06/2010.

No difficulties were encountered during the volatiles analyses.

All quality control parameters were within the acceptance limits.

PERCENT SOLIDS

Samples 460-20639-1 through 460-20639-7 were analyzed for percent solids in accordance with ASTM D2974-87 Modified. The samples were analyzed on 12/03/2010.

No difficulties were encountered during the % solids analyses.

All quality control parameters were within the acceptance limits.

EXECUTIVE SUMMARY - Detections

Client: GaiaTech Inc.

Lab Sample ID CI Analyte	ient Sample ID	Result / C	lualifier	Reporting Limit	Units	Method	
460 20620 4	C10U 4 (2 40)						
400-20039-1	GMW-1 (8-10)						
Methylene Chloride		0.61	JB	0.94	ug/Kg	8260B	
Acetone		4.0	18	9.4	ug/Kg	82608	
Trichloroethene		1.8		0.94	ug/Kg	82608	
Percent Moisture		7.6		1.0	%	Moisture	
Percent Solids		92.4		t.Q	%	Moisture	
460-20639-2	TMW-3 (6-7)						
Methylene Chloride		0.64	JB	0.95	ua/Ka	8260B	
Acetone		9.2	JB	9.5	ua/Ka	82608	
Percent Moisture		10.6		1.0	%	Moisture	
Percent Solids		89.4		1.0	%	Moisture	
460-20639-3	TMW-2 (7-8)						
Methylene Chloride		0 74	.18	11	ualKa	82608	
Acetone		4.1	18	t1	ua/Ka	82608	
Percent Moisture		10.4	•••	1.0	%	Moisture	
Percent Solids		89.6		1.0	%	Moisture	
460-20639-4	GMW-3 (15-16)						
Methylene Chloride		077	.18	11	uo/Ko	8260B	
Acetone		4.6	18	11	ug/Kg	8260B	
cis-1,2-Dichloroethene		0.65	3	1.1	uo/Ko	82608	
Trichloroethene		150		1.1	ua/Ka	82608	
Percent Moisture		9.6		1,0	%	Moisture	
Percent Solids		90.4		1.0	%	Moisture	
460-20639-5	TMW-1 (13-14)						
Melhviene Chlorida		0.93	iP	1.2	ua/Ka	97600	
Acetone		0.00 5 A	3 B 1 B	1.2	ug/Ng	02000 92600	
Trichloroethene		5. 4 te	J D	12	ndika	92600	
Percent Moisture		18.6		1.2	oč růtvů	Moieturo	
Percent Solids		81.4		1.0	0 <u>4</u>	Moleturo	
		71.7		1.0	70	avoisiure	

EXECUTIVE SUMMARY - Detections

Client: GalaTech Inc.

Lab Sample ID (Analyte	Client Sample ID	Result / C	lualifier	Reporting Limit	Units	Method
460-20639-6	GMW-4 (10-11)					
Methylene Chloride		0.62	JB	1,1	ua/Ka	8260B
Acelone		5.7	JB	11	ua/Ka	8260B
Carbon disulfide		0.55	J	1.1	ua/Ka	8260B
Percent Moisture		18.2		1.0	%	Moisture
Percent Solids		81.8		1.0	%	Moisture
460-20639-7	GMW-5 (10-11)					
Methylene Chloride		0.80	JB	0.91	ua/Ka	8260B
Acelone		4.2	JB	9.1	ua/Ka	8260B
Percent Moisture		5.5		1.0	%	Moislure
Percent Solids		94.5		1.0	%	Moisture
460-20639-8	TMW-1					
Vinyl chloride		1.3		1.0	ua/L	8260B
cis-1,2-Dichloroethene	3	12		1.0	ug/L	8260B
Irans-1,2-Dichloroelhe	ne	0.43	J	1.0	ua/L	8260B
Trichloroethene		29		1.0	ug/L	8260B
Benzene		0.31	J	1.0	ug/L	8260B
Toluene		1.7		1.0	ug/L	8260B
Ethylbenzene		0.43	J	1.0	ug/L	8260B
Xylenes, Total		1.5	J	3.0	ug/L	8260B
460-20639-9	TMW-2					
Trichloroelhene		2.3		t.0	uo/L	8260B
Benzene		0.27	L	1.0	ua/L	8260B
Toluene		1.9		1.0	ug/L	8260B
Elhylbenzene		0.51	J	1.0	ug/L	8260B
Xylenes, Total		1.7	J	3.0	ug/L	8260B
460-20639-10	TMW-3					
Trichloroelhene		1.9		10	tio/l	82608
Toluene		2.0		1.0	ug/L	8280B
Elhylbenzene		0.47	L	1.0	ug/L	82608
Xylenes, Tolal		1.5	Ĵ	3.0	ua/L	82608

METHOD SUMMARY

Client: GaiaTech Inc.

Job Number: 460-20639-1

Description	Lab Location	Method	Preparation Method
Matrix: Solid			
Volatile Organic Compounds (GC/MS)	TAL EDI	SW846 8260B	
Closed System Purge and Trap	TAL EDI		SW846 5035
Percent Moisture	TAL EDI	EPA Moisture	
Matrix: Water			
Volatile Organic Compounds (GC/MS)	TAL EDI	SW846 8260B	
Purge and Trap	TAL EDI		SW846 5030B

Lab References:

TAL EDI = TestAmerica Edison

Method References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: GaiaTech Inc.

Method	Analyst	Analyst ID
SW846 8260B SW846 8260B	Moroney, Christopher J Tupayachi, Audberto	CJM AT
EPA Moisture	Dave, Virendra	VD

SAMPLE SUMMARY

Client: GaiaTech Inc.

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
460-20639-1	GMW-1 (8-10)	Solid	12/02/2010 0830	12/03/2010 1000
460-20639-2	TMW-3 (6-7)	Solid	12/02/2010 0915	12/03/2010 1000
460-20639-3	TMW-2 (7-8)	Solid	12/02/2010 0945	12/03/2010 1000
460-20639-4	GMW-3 (15-16)	Solid	12/02/2010 1120	12/03/2010 1000
460-20639-5	TMW-1 (13-14)	Solid	12/02/2010 1020	12/03/2010 1000
460-20639-6	GMW-4 (10-11)	Solid	12/02/2010 1235	12/03/2010 1000
460-20639-7	GMW-5 (10-11)	Solid	12/02/2010 1345	12/03/2010 1000
460-20639-8	TMW-1	Water	12/02/2010 1435	12/03/2010 1000
460-20639-9	TMW-2	Water	12/02/2010 1430	12/03/2010 1000
460-20639-10	TMW-3	Water	12/02/2010 1425	12/03/2010 1000
460-20639-11TB	тв	Water	11/16/2010 0000	12/03/2010 1000

SAMPLE RESULTS

Client: GaiaTech Inc.

TestAmerica Edison

Analytical Data

12/14/2010

Job Number: 460-20639-1

Client Sample ID:	GMW-1 (8-10)				
Lab Sample ID:	460-20639-1				Date Sampled: 12/02/2010 0830
Client Matrix:	Solid	% Moisture:	7.6		Date Received: 12/03/2010 1000
	8	260B Votatile Organic	Compounds (GC/I	MS)	
Method:	8260B	Analysis Batch: 460-5	7634	Instrument ID:	VOAMS2
Preparation:	5035	Pren Batch: 460-5754	10 10	ah File ID [.]	b3 1226 d
Dilution:	10			Initial MeightA/alu	me: 5.73 a
Date Analyzed:	12/06/2010 0725			Final MaightA /oku	me: 5 mt
Date Prepared:	12/03/2010 2209			Final Weight Volu	are. 5 m∟
Analida	Double Corrected: Y	Popult (up//) Ouelf	ing MDI	
Dicblorodifluoromett	hane	n oz		0.28	RL 0.94
Chloromethane		0.94		0.30	0.94
Bromomethane		0.94	1	0.00	0.94
Vinyl chloride		0.04		0.39	0.54
Chloroethane		0.54		0.22	0.94
Trichlorofluoromethy	ana	0.04	0	0.30	0.94
Freen TE		0.94	0	0.25	0.94
Methylana Chlorida		0.94	U	0.45	0.94
Acetone		0.01	JB	0.44	0.94
Acelone Carbon disulfido		4.0	<u>ј</u> В	3.5	9.4
Carbon disuniqe		0.94	0	0.44	0.94
1 1 Dieblessethere		0.94	0	0.84	0.94
1,1-Dichloroethere		0.94	0	0.35	0.94
i, i-Dignioroethane		0.94	U 	0.24	0.94
cis-1,2-Dichloroeine	ne	0.94	0	0.22	0.94
trans-1,2-Dicnioroea	nene	0.94	0	0.27	0.94
WIBE Obtained		0.94	U	0.32	0.94
Chloroform		0.94	0	0.22	0.94
1,2-Dichloroethane		0.94	U	0.37	0.94
2-Bulanone		9.4	U	0.54	9.4
t,1,1-Trichloroethan	e	0.94	U	0.18	0.94
Cyclonexane		0.94	U	0.21	0.94
Carbon tetrachlonde	1	0.94	U	0.095	0.94
Bromodichlorometha	ane	0.94	U	0.29	0.94
1,2-Dichloropropane		0.94	U	0.30	0.94
cis-1,3-Dichloroprop	ene	0.94	U	0.19	0.94
Trichloroethene		1.8		0.34	0.94
Methylcyclohexane		0.94	U	0.26	0.94
Dibromochlorometha	ane	0.94	U	0.53	0.94
1, t,2-Trichloroethan	e	0.94	U	0.56	0.94
Benzene		0.94	U	0.70	0.94
trans-1,3-Dichloropro	opene	0.94	U	0.21	0.94
Bromoform		0.94	U	0.66	0.94
Isopropylbenzene		0.94	U	0.24	0.94
4-Methyl-2-pentanor	he	9.4	U	0.68	9,4
2-Hexanone		9.4	U	t.6	9.4
Tetrachtoroethene		0.94	U	0.31	0.94
Toluene		0.94	U	0.28	0.94
1.1,2.2-Tetrachloroe	thane	0.94	U	0.72	0.94
Chlorobenzene		0.94	U	0.46	0.94
Ethylbenzene		0.94	U	0.18	0.94
Xylenes, Total		2.8	U	0.74	2.8
Styrene		0.94	U	0.33	0.94
t,2-Dibromo-3-Chlor	ropropane	0.94	U	0.58	0.94
t,3-Dichlorobenzene	•	0.94	U	0.46	0.94
t,4-Dichlorobenzene	3	0.94	U	0.67	0.94
1,2-Dichlorobenzene	9	0.94	U	0.60	0.94

Page 10 of 59

Analytical Data

Client: GaiaTech Inc.

Client Sample ID:	GMW-1 (8-10)					
Lab Sample ID: Client Matrix:	460-20639-1 Solid	% Moisture:	7.6		Date Sampled: 12/0 Date Received: 12/0)2/2010 0830)3/2010 1000
	8	260B Volatile Organic C	ompounds (GC/I	MS)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	82608 5035 1.0 12/06/2010 0725 12/03/2010 2209	Analysis Batch: 460-57 Prep Batch: 460-57540	'634)	Instrument ID: Lab File ID: Initial Weight/Vol Final Weight/Volu	VOAMS2 b31226.d ume: 5.73 g ume: 5 mL	
Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifi	ier MDL	RL	
1,2,4-Trichlorobenz	ene	0.94	U	0.51	0.94	
1,2-Dibromoethane		0.94	U	0.49	0.94	
Surrogate		%Rec	Qualifi	ier Ac	ceptance Limits	
1,2-Dichloroethane-	d4 (Surr)	96	***************************************	70) - 138	
Toluene-d8 (Surr)		92		66	i - 126	
Bromofluorobenzen	e	88		72	- 132	

Client: GaiaTech Inc.

Analytical Data

Client Sample ID:	TMW-3 (6-7)				
Lab Sample ID:	460-20639-2			Dat	e Sampled: 12/02/2010 0915
Client Matrix:	Solid	% Moisture: t	0.6	Dat	e Received: 12/03/2010 1000
	8	2608 Volatite Organic Co	mpounds (GC/N	fS)	
Method:	8260B	Analysis Batch: 460-576	34	Instrument ID:	VOAMS2
Preparation:	5035	Prep Batch: 460-57540		Lab File ID	h31227 đ
Dilution	10			Initiat Meight Volume:	5.86 a
Data Analiczad:	12/06/2010 0748			Final Maiabt/ /aluma	5.50 g
Date Prepared:	12/03/2010 2212			Final weight volume;	5 100
oolo Proparoa.					
Analyle	DryWt Corrected: Y	Result (ug/Kg)	Qualifie	er MDL	RL
Dichlorodifluorometi	hane	0.95	U	0.39	0.95
Chloromethane		0.95	U	0.61	0.95
Bromomethane		0.95	U	0.39	0.95
Vinyl chloride		0.95	U	0.22	0.95
Chloroethane		0.95	U	0.38	0.95
Trichlorofluorometh	ane	0.95	U	0.25	0.95
Freon TF		0.95	U	0.45	0.95
Melhylene Chloride		0.64	JB	0.45	0.95
Acetone		9.2	18	3.5	9.5
Carbon disulfide		0.95	U	0.44	0.95
Methyl acetate		0.95	U	0.85	0.95
1,1-Dichloroethene		0.95	U	0.35	0.95
1,1-Dichloroethane		0.95	U	0.24	0.95
cis-1,2-Dichloroethe	ine	0.95	U	0.23	0.95
trans-1,2-Dichloroet	hene	0.95	U	0.27	0.95
MTBE		0.95	U	0.33	0.95
Chloroform		0.95	U	0.23	0.95
1,2-Dichloroethane		0.95	U	0.37	0.95
2-Butanone		9.5	U	0.54	9.5
1,1,1-Trichloroethan	ю	0.95	U	0.18	0.95
Cyclohexane		0.95	U	0.21	0.95
Carbon tetrachloride	9	0.95	U	0.096	0.95
Bromodichlorometha	ane	0.95	Ű	0.29	0.95
1.2-Dichloropropane		0.95	Ũ	0.30	0.95
cis-1.3-Dichloroprop	ene	0.95	ŭ	0.19	0.95
Trichloroethene		0.95	й И	0.35	0.95
Melhylcyclohexane		0.95	й	0.00	0.95
Dibromochlorometh	ane	0.95	н	0.53	0.00
1.1.2-Trichloroethan	e	0.00	11	0.00	0.95
Benzepe		0.00	Н	0.57	0.95
Irane_1 3-Dichlorone	onana	0.85	U U	0.71	0.95
Bromoform	opene	0.85	0	0.21	0.95
leonropylhonzono		0.95	0	0.07	0.95
A Motbul 2 nontano	20	0.95	0	0.25	0.95
4-ivietnyr-z-pentanor		9.5	0	0.68	9.5
Z-mexanone		9.5	U	1.6	9.5
Telesconoroethene		0.95	U	0.31	0.95
Toluene		0.95	U	0.29	0.95
1,1,2,2-Tetrachioroe	sinane	0.95	U	0.73	0.95
Uniorobenzene		0.95	U	0.46	0.95
Einylbenzene		0.95	U	0.18	0.95
Xytenes, Total		2.9	U	0.75	2,9
Styrene		0.95	U	0.33	0.95
1,2-Dibromo-3-Chlo	ropropane	0.95	U	0.58	0.95
1,3-Dichlorobenzen	e	0.95	U	0.46	0.95
1,4-Dichlorobenzene	e	0.95	U	0.68	0.95
1,2-Dichlorobenzene	e	0.95	U	0.61	0.95
r,z-oknorobenzent	5	0.90	U	0.61	0.95

Analytical Data

Client: GaiaTech Inc.

Ctient Sample ID:	TMW-3 (6-7)					
Lab Sample ID:	460-20639-2				Date Sampled:	12/02/2010 09 15
Client Matrix:	Solid	% Moisture:	10.6	Dale Received: 12/03/2010 1		
	ŧ	3260B Volatile Organic (Compounds (GC/M	S)		
Method:	8260B	Analysis Batch: 460-5	7634	Instrument ID:	VOAM	52
Preparation:	5035	Prep Batch: 460-5754	0	Lab File ID:	b3t227	.d
Dilution:	t.Q			Initial Weight/Vo	lume: 5.86 g	ļ
Date Anatyzed:	12/06/2010 0748			Final Weight/Vol	ume: 5 mL	
Date Prepared:	12/03/2010 2212					
Analyte	DryWt Corrected: Y	Result (ug/Kg) Qualifie	r MDL	RI	-
1,2,4-Trichlorobenz	ene	0.95	U	0.5t	0.9	95
t,2-Dibromoethane		0.95	U	0.49	0.1	95
Surrogate		%Rec	Qualifie	r A	cceptance Limits	
t,2-Dichloroethane-	d4 (Surr)	98		7	0 - 138	
Toluene-d8 (Surr)		90		6	6 - 126	
Bromofluorobenzen	e	90		7	2 - 132	

Client: GaiaTech Inc.

Analytical Data

Cilent Sample ID:	TMW-2 (7-8)				
Lab Sample ID:	460-20639-3			D	ate Sampled: 12/02/2010 0945
Client Matrix:	Solid	% Moisture:	10.4	Ē	ale Received: 12/03/2010 1000
	8	260B Volatile Organic C	Compounds (GC/I	MS)	
Method:	82608	Analysis Batch: 460-57	7634	instrument iD:	VOAMS2
Prenaration:	5035	Pren Batch: 460-5754(1 1	Lah Filo (Dr	531228 d
Diution:	10	r iep baton, 400-07.040	,	Laut rend.	531228.0
Diduori.	10/00/2010 0014			millar weight volum	e: 5.16 g
Date Analyzed:				Finai weight/volume	a: 5 mL
Date Prepared:	12/03/2010 2215				
Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifi	er MDL	RL
Dichlorodifluorometh	ane	1.1	U	0.44	1.1
Chioromethane		1.1	U	0.68	1.1
Bromomethane		1,1	U	0,44	1.1
Vinyl chloride		1.1	U	0.25	1.1
Chloroethane		1.1	U	0.43	1.1
Trichlorofluorometha	ne	1.1	U	0,28	1.1
Freon TF		1.1	U	0.51	1.1
Methylene Chloride		0.74	JB	0.51	1.1
Acelone		4.1	JB	4.0	11
Carbon disulfide		1.1	U	0.50	1.1
Methyl acetate		1.1	U	0.96	1.1
1.1-Dichloroethene		1.1	Ū	0.40	1.1
1.1-Dichloroethane		1.1	U	0.27	1.1
cis-1.2-Dichloroether	1e	1.1	ŭ	0.25	1.1
Irans-1.2-Dichloroell	- nene	1.1	ŭ	0.30	11
MTBE		11	ŭ	0.37	1.1
Chioroform		11	ŭ	0.26	11
1.2-Dichloroethane		11	ŭ	0.42	11
2-Butanone		11	Ŭ	0.61	11
1 1 1-Trichloroethane	2	11	U U	0.01	11
Cyclobexane	-	1.1	U U	0.24	1.1
Carbon tetrachioride		1.1	0	0.24	1.1
Bromorlichtorometha	ne	1.1	0	0.11	1.1
1.2-Dichloronronane		1.1	1	0.33	1.1
cie_1 3-Dichloropropend	ane	1.1	0	0.34	1.1
Trichloroethere	5110	1.1	0	0.22	1.1
Methylevelohovano		1.1	0	0.39	1,1
Disconochloromothe	20	1.1	0	0.29	1.1
1.1.2 Trichloroolban		1.1	0	0,00	1.1
Panzana	2	1.1	0	0.04	1,1
		1.1	U	0.80	
Deemotorm	pene	1.1	U	0.24	1.1
Biomolorm		1.1	U	0.76	1.1
isopropyidenzene	_	1.1	U	0.28	1.1
4-meiny-2-pemanon	e	11	U	0.77	11
2-Hexanone		11	0	1,8	11
Tetrachioroethene		1.1	U	0.36	1.1
loiuene		1.1	U	0.32	1.1
1,1,2,2-Tetrachioroel	nane	1.1	U	0.82	1.1
Chlorobenzene		1.1	U	0.52	1.1
Elhylbenzene		1.1	U	0.21	1.1
Xylenes, Tolal		3.2	U	0.85	3.2
Styrene		1.1	U	0.37	1.1
1,2-Dibromo-3-Chlor	opropane	1.1	U	0.66	1.1
1,3-Dichlorobenzene		1.1	U	0.52	1.1
1,4-Dichlorobenzene		1.1	U	0.77	1.1
1,2-Dichlorobenzene		1.1	U	0.69	1,1
Client: GaiaTech Inc.

Client Sample ID:	TMW-2 (7-8)						
Lab Sample ID: Client Matrix:	460-20639-3 Solid	% Moisture:	10.4		ם ס	ate Sampled: 12/02/2/ ate Received: 12/03/2/	010 0945 010 1000
	٤	260B Volatile Organic	Compounds	s (GC/MS)		·	
Method:	8260B	Analysis Balch: 460-5	57634	Inst	rument ID:	VOAMS2	
Preparation:	5035	Prep Batch: 460-5754	40	Lab	File ID:	b31228.d	
Dilution:	1.0			Initi	al Weight/Volume	e: 5.18 g	
Date Analyzed:	12/06/2010 0811			Fina	al Weight/Volume	s 5 mL	
Date Prepared:	12/03/2010 2215						
Analyte	DryWt Corrected: Y	Result (ug/Kg	3)	Qualifier	MDL	RL	
1,2,4-Trichlorobenz	ene	1.1	····· •· •·,· ···· ·· ,···,· ,··,· , •	U	0.58	1.1	
1,2-Dibromoethane		1.1		U	0.56	1.1	
Surrogate		%Rec		Qualifier	Accep	stance Limits	
1,2-Dichloroethane-	d4 (Surr)	96			70 - 1	38	
Toluene-d8 (Surr)		92			66 - 1	26	
Bromofluorobenzen	e	89			72 - 1	32	

Analytical Data

Client Sample ID:	GMW-3 (15-16)				
Lab Sample ID:	460-20639-4			Date	e Sampled: 12/02/2010 1120
Client Matrix:	Solid	% Moisture: 9.6		Date	e Received: 12/03/2010 1000
		32608 Volatile Organic Compo	unds (GC/M	IS)	
Method:	8260B	Analysis Batch: 460-57634	,	Instrument (D)	VOAME2
Preparation:	5035	Prep Batch: 460 57540		Lob Ella 1D:	*UAW32
Dilution:	1.0	Flep Balch, 400-57540			D31229.0
Deter Anter A	1.0			Initial Weight/Volume:	5.26 g
Dale Analyzed:	12/06/2010 0835			Final Weight/Volume:	5 mL
Date Prepared:	12/03/2010 2218				
Analyle	DryWt Corrected: Y	Result (ug/Kg)	Qualifie	r MDL	RL
Dichlorodifluoromet	hane	1.1	E E	0.43	11
Chloromethane		1.1	н	0.67	11
Bromomethane		11	ŭ	0.43	1 1
Vinvl chloride		11	Ū.	0.40	1.1
Chloroethane		1.1	Ŭ	0.20	1.1
Trichlorofluorometh	ana	1.7	ň	0.92	1.1
Frenn TE	and	1.1	0	0.27	1.1
Melbulana Oblanda		1.1	0	0.50	1.1
Accient		0.77	JR	0.50	1.1
Aceione		4.6	JB	3.9	11
Carbon disultide		1.1	U	0.49	1.1
Melnyl acetate		1.1	U	0.94	1.1
1,1-Dichloroethene		1.1	U	0.39	1.1
1,1-Dichloroethane		1.1	U	0.26	1.1
cis-1,2-Dichloroethe	ene	0.65	J	0.25	1.1
trans-1,2-Dichloroet	hene	1.1	U	0.30	1,1
MTBE		1.1	U	0.36	1.1
Chloroform		1.1	U	0.25	1.1
1,2-Dichloroethane		1.1	U	0.41	1,1
2-Bulanone		11	U	0.60	11
1,1,1-Trichloroethar	ie	1.1	U	0.20	1.1
Cyclohexane		1.1	U	0.23	1.1
Carbon tetrachloride	3	1.1	Ū	0.11	1 1
Bromodichlorometh	ane	1.1	Ũ	0.32	1.1
1.2-Dichloropropane	2	11	Ũ	0.33	1.1
cis-1.3-Dichloropror	ene	11	ũ	0.00	1.7
Trichloroethene		150	0	0.21	1.1
Melhylcyclobexane		100	1 F	0.38	1.1
Dibromochlorometh	ana	1.7	ň	0.29	1.1
1.1.2-Tricblorootbar		1.1		0.59	1.1
Renzene		1.1		0.62	1.1
Irane 1 3 Diebleren		1.1	0	0.78	1.1
Beemoform	opene	1.1	U	0.23	1.1
Bromoioim		1.1	U	0.74	1.1
isopropyidenzene		1.1	U	0.27	1.1
4-Melnyl-2-pentanol	ne	11	U	0.75	11
2-Hexanone		11	U	1.8	11
Tetrachloroethene		1.1	U	0.35	1,1
Toluene		1.1	U	0.31	1.1
1,1,2,2-Tetrachloroe	elhane	1.1	U	0.80	1.1
Chlorobenzene		1.1	U	0.51	1.1
Ethylbenzene		1.1	U	0.20	1.1
Xylenes, Total		3.2	U	0.83	3.2
Styrene		1,1	U	0.36	1.1
1,2-Dibromo-3-Chlo	ropropane	1.1	Ū	0.64	11
1,3-Dichlorobenzene	8	1,1	Ū	0.51	11
1,4-Dichlorobenzen	9	1.1	Ŭ	0.75	11
1.2-Dichlorobenzen		1.1	Ŭ	0.75	1.1
	~	1.1	0	0.07	1,1

Analytical Data

JUD MUMDEL 400-20038-1	Job	Number:	460-20639-1
------------------------	-----	---------	-------------

Client Sample ID:	GMW-3 (15-16)					
Lab Sample ID: Client Matrix:	460-20639-4 Solid	% Moisture: 9.6		Date Dale	Sampled: 12/02/2(Received: 12/03/20	010 1120 010 1000
	8	260B Volatile Organic Compo	ounds (GC/MS)			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5035 1.0 12/06/2010 0835 12/03/2010 2218	Analysis Batch: 460-57634 Prep Batch: 460-57540	Inst Lab Initi Fina	trument ID: > File ID: ial Weight/Volume: al Weight/Volume:	VOAMS2 b31229.d 5.26 g 5 mL	
Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL	
1.2,4-Trichlorobenze	ene	1.1	U	0.56	t. t	
1,2-Dibromoethane		1, t	U	0.54	1. t	
Surrogate		%Rec	Qualifier	Acceptan	ce Limils	
t,2-Dichloroethane-	d4 (Surr)	99		70 - 138		· · · · · · · · · · · · · · · · · · ·
Toluene-d8 (Surr)		92		66 - 126		
Bromofluorobenzen	e	89		72 - t32		

Analytical Data

Client Sample ID:	TMW-1 (13-14)				
Lab Sample ID:	460-20639-5			Da	ale Sampled: 12/02/2010 1020
Client Matrix:	Solid	% Moisture: 1	8.6	Da	ate Received: 12/03/2010 1000
		8260B Volatile Organic Co	mpounds (GC/M	IS)	
Method:	8260B	Analysis Batch: 460-576	34	Instrument ID:	VOAMS2
Prenaration	5035	Pren Batch: 460-57640		Lob File ID:	VOANI32
Dilution:	10	Prep Baton. 400-07.040			031230.0
Dete Analyzadi	12/06/2010 0859			Initial weight/volume	s 5.30 g
Date Analyzed:	12/06/2010 0858			Final Weight/Volume:	: 5 mL
Date Prepared:	12/03/2010 2221				
Analyte	DryWl Corrected: Y	Result (ug/Kg)	Qualifie	r MDL	RL
Dichlorodifluoromet	hane	1.2	U	<u>0 47</u>	12
Chloromethane		1.2	ũ	0.73	10
Bromomethane		12	ŭ	0.47	1.2
Vinvl chloride		12	ŭ	0.27	1.2
Chloroethane		12	ŭ	0.27	1.2
Trichlorofluorometh	ane	1.2	U U	0.40	1.2
Freen TE		1.2	0	0,30	1.2
Melbylene Chlorida		1.2	U LO	0.55	1.2
Acolono		0.83	JB	0.55	1.2
Acelone Comparation distribute		5.4	JB	4,3	12
Carbon disunde		1.2	U	0.54	1.2
weinyt acetate		1.2	U	1.0	1.2
1,1-Dichloroethene		1.2	U	0.43	1.2
1,1-Dichloroethane		1.2	U	0.29	1.2
cis-1,2-Dichloroethe	ne	1.2	U	0.27	1.2
Irans-1,2-Dichloroet	hene	1.2	U	0.33	1.2
MTBE		1.2	U	0.40	1.2
Chloroform		1.2	U	0.27	1.2
1,2-Dichloroelhane		1.2	U	0.45	1.2
2-Butanone		12	U	0.66	12
1,1,1-Trichloroethan	e	1.2	U	0.22	1.2
Cyclohexane		1.2	U	0.26	12
Carbon telrachloride	3	1.2	Ū.	0.12	12
Bromodichlorometha	ane	1.2	Ŭ	0.35	12
1,2-Dichloropropane	2	1.2	й	0.37	12
cis-1.3-Dichloroprop	ene	12	ů.	0.07	1.2
Trichloroethene		16	Ŭ	0.20	1.2
Methylcyclohexape		12		0.42	1.2
Dibromochlorometh:	ate	1.2	0	0.52	1.2
1.1.2-Trichloroelban		1.2	0	0.65	1.2
Retizene		1.2	0	0.69	1.2
franc 1.3 Dieblarane	00000	1.2	0	0.86	1.2
Bromoform	opene	1.2	U	0.26	1.2
bi unuuun		1.2	U	0.81	1.2
isopropyidenzene		1.2	U	0.30	1.2
4-Melnyl-2-pentanor	ne	12	U	0.83	12
2-Hexanone		12	U	1.9	12
Tetrachloroethene		1,2	U	0.38	1.2
Toluene		1.2	U	0.35	1.2
1,1,2,2-Tetrachloroe	lhane	1.2	U	0.88	1.2
Chlorobenzene		1.2	U	0.56	1.2
Ethylbenzene		1.2	U	0.22	1.2
Xylenes, Total		3.5	Ų	0.91	3.5
Styrene		1.2	U	0.40	1.2
1,2-Dibromo-3-Chlor	ropropane	1.2	U	0.71	12
1,3-Dichlorobenzene	2	1.2	Ū	0.56	12
1,4-Dichlorobenzene	9	1.2	Ŭ	0.82	12
1.2-Dichlorobenzene	3	12		0.74	1.2
	-	<u>ے</u> , ۱	5	U./4	1.2

Client: GalaTech Inc.

Client Sample ID:	TMW-1 (13-14)						
Lab Sample ID: Client Matrix:	460-20639-5 Solid	% Moisture:	18.6		Da Da	te Sampled: 12/02/20 the Received: 12/03/20	to to20
<u></u>	8	2608 Volatile Organic (Compound	s (GC/MS)			
Method:	8260B	Analysis Batch: 460-5	7634	Instr	ument ID:	VOAMS2	
Preparation:	5035	Prep Batch: 460-5754	0	Labl	File ID:	b31230.d	
Dilution:	1.0			Initia	I Weight/Volume:	: 5.30 g	
Date Analyzed:	12/06/2010 0858			Final	Weight/Volume:	5 mL	
Date Prepared:	12/03/2010 2221						
Analyle	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL	
1,2,4-Trichlorobenz	ene	1.2	····· ···· ···· ···· ···· ···· ···· ····	U	0.62	t.2	·
1,2-Dibromoethane		1.2		U	0.60	1.2	
Surrogate		%Rec		Qualifier	Accept	tance Limits	
1,2-Dichloroethane-	d4 (Surr)	98			70 - 13	38	
Toluene-d8 (Surr)		93			66 - 12	26	
Bromofluorobenzen	é	90			7 2 - 1 3	32	

Analytical Data

Client Sample ID:	GMW-4 (10-11)					
Lab Sample ID:	460-20639-6			(Date Sampled: 12/02/2010) 1235
Client Matrix:	Solid	% Moisture:	18.2	l	Date Received: 12/03/2010) 1000
	~	1600 Malatila Oscaria (12		
	0	2008 Volanie Organic (compounds (GC/N	//S}		
Melhod:	8260B	Analysis Batch: 460-5	7634	Instrument ID:	VOAMS2	
Preparation:	5035	Prep Batch: 460-5754	0	Lab File ID:	b31231.d	
Dilution:	1.0			Initial Weight/Volum	te: 5.55 g	
Dale Analyzed:	12/06/2010 0921			Final Weight/Volum	e: 5 mL	
Dale Prepared:	12/03/2010 2224			-		
Analvie	DrvWt Corrected: Y	Result (uo/Ko) Qualifie	er MDi	BI	
Dichlorodifluoromell	ane	11		n 45	11	·· ./.·
Chloromethane		1.1	Ŭ	0.40	1.1	
Bromomethane		1.1		0.70	1.1	
Vinul chlorida		1.1	0	0.40	1.1	
Chloroalbona		1.1	0	0.26	1.1	
Trichloroftuoromethy		1.1	0	0.44	1,1	
Thene TC	ine	1.1	U	0.29	1.1	
Freon IF		1.1	U	0.52	1.1	
Melhylene Chlonde		0.62	JB	0.52	1.1	
Acelone		5.7	JB	4.1	11	
Carbon disulfide		0.55	J	0.51	1.1	
Methyl acelate		1.1	U	0.99	1.1	
1,1-Dichloroelhene		1.1	U	0.41	1.1	
1,1-Dichloroethane		1.1	U	0.28	1.1	
cis-1,2-Dichloroelhe	ne	1.1	U	0.26	1.1	
trans-1,2-Dichloroet	hene	1.1	U	0.31	1.1	
MTBE		1,1	U	0.38	1.1	
Chloroform		1.1	U	0.26	1.1	
1.2-Dichloroethane		1.1	Ū	0.43	1.1	
2-Bulanone		11	U	0.63	11	
1.1.1-Trichloroelhan	e	1.1	ũ	0.21	11	
Cyclobexane	-	11	Ŭ	0.24	1.1	
Carbon tetrachloride	•	1.1	Ű	0.11	1.1	
Bromodichlorometh:	ane	1.1	U U	0.11	1.1	
1.2-Dichloropropage		1.1	0	0.00	1.1	
rie-1 3-Dichloropropane	-	1.1	0	0.00	1.1	
Trichlorophono	eile	1.1	0	0.22		
Medbulevelahevene		1,1	U	0.40	1.1	
Methylcyclonexane		1.1	U	0.30	1.1	
Dibromocnioromeina	ane	1.1	U	0.62	1.1	
1,1,2-Trichloroethan	e	1,1	U	0.65	1.1	
Benzene		1.1	U	0.81	1.1	
trans-1,3-Dichloroph	opene	1.1	U	0.24	1.1	
Bromoform		1.1	U	0.77	1.1	
Isopropylbenzene		1.1	U	0.29	1.1	
4-Methyl-2-pentanor	1e	11	U	0.79	11	
2-Hexanone		11	U	1.8	11	
Tetrachloroethene		1.1	U	0.36	1.1	
Toluene		1,1	U	0.33	1,1	
1.1.2.2-Tetrachloroe	Ihane	1.1	Ū	0.84	11	
Chlorobenzene		1.1	ц Ц	0.53	11	
Fihylbenzene		1 1	ц Ц	0.21	1 1	
Xulenes Total		<i>4 3</i>		0.21	1.1	
Shrana		11		0.07	0.0 4 4	
alyichic 4 3 Olbrama 3 Obla		1.1	U	0.38	[.]	
	opropane	I.]	U	0.67	1.1	
	-	1.1	Ų	0.53	1.1	
1,4-Dichlorobenzene	2	1,1	U	0.78	1.1	
1,2-Dichlorobenzene	•	1.1	U	0.70	1.1	

Client: GaiaTech Inc.

Client Sample ID:	GMW-4 (10-11)					
Lab Sample ID:	460-20639-6				Da	ate Sampled: t2/02/2010 1235
Client Matrix:	Solid	% Moisture:	18.2		Da	ate Received: 12/03/2010 1000
	8	260B Volatile Organic	Compoun	ds (GC/MS)		
Method:	8260B	Analysis Batch: 460-5	7634	Instr	ument ID:	VOAMS2
Preparation:	5035	Prep Batch: 460-5754	0	Lab	File ID:	b31231.d
Dilution:	1.0			Initia	il Weight/Volume	: 5.55 g
Date Analyzed:	12/06/2010 0921			Fina	Weight/Volume:	5 mL
Date Prepared:	t2/03/2010 2224					
Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
1,2,4-Trichlorobenze	ene	1.1	··· ·	U	0.59	1. t
1,2-Dibromoethane		1.1		U	0.57	1. t
Surrogate		%Rec		Qualifier	Accep	tance Limits
1,2-Dichloroethane-	d4 (Surr)	100			70 - 1:	38
Toluene-d8 (Surr)		92			66 - t;	26
Bromofluorobenzen	e	87			72 - 1:	32

Analytical Data

Client Sample ID:	GMW-5 (10-11)				
Lab Sample ID:	460-20639-7			C	ate Sampled: 12/02/2010 1345
Client Matrix:	Solid	% Moisture: 5.5		C	ate Received: 12/03/2010 1000
	8	260B Volatile Organic Comp	ounds (GC/M	S)	
Method:	8260B	Analysis Batch: 460-57634		Instrument ID:	VOAMS2
Preparation:	5035	Prep Batch: 460-57540		l ah File ID [,]	b31232 d
Dilution	10			Initial Moight Volum	5 94 g
Data Apolyzadi	12/06/2010 0044			filmar vvergrib v orum	e. 5.64 y
Date Analyzeu.	12/00/2010 0544			rinai weighi volume	e: 5 mL
Date Prepared:	12/03/2010 2227				
Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Dichlorodifluorometh	ane	0.91	U	0.37	0.91
Chloromethane		0.91	U	0.57	0.91
Bromomethane		0.91	U	0.37	0.91
Vinyl chloride		0.91	U	0.21	0,91
Chloroethane		0.9 t	U	0.36	0.91
Trichlorofluorometha	ine	0,91	U	0.24	0.91
Freon TF		0.91	Ū	0.43	0.91
Methylene Chloride		0.80	JB	0.43	0.91
Acetone		42	↓ B	3.3	9.1
Carbon disulfide		0.91	ů.	0.42	0.91
Methyl acetate		0.91	U U	0.81	0.01
1.1-Dichloroethene		0.91	Ŭ	0.01	0.01
1.1-Dichloroethane		0.01	Ŭ	0.00	0.91
ris-1.2-Dichloroatha	ne	0.91	0	0.23	0.91
trans, 1.2. Dichloroett		0.91	0	0.21	0.91
MTDC		0.91	0	0.20	0.91
		0.91	0	0.31	0.91
		0.91	U U	0.21	0.91
1,2-Dichloroethane		0,91	0	0.35	0.91
2-Butanone		9.1	0	0.52	9.1
1,1,1-Irichloroethan	e	0.91	U	0.17	0.91
Cyclohexane		0.91	0	0.20	0.91
Carbon tetrachtonde		0.91	U	0.091	0,91
Bromodichlorometha	ine	0.91	U	0.28	0.91
1,2-Dichloropropane		0.91	U	0.29	0.91
cis-1,3-Dichloroprop	ene	0,91	U	0.18	0.91
Trichloroethene		0.91	U	0.33	0.91
Methylcyclohexane		0.91	U	0.25	0.91
Dibromochlorometha	ine	0.91	U	0.51	0.91
1,1,2-Trichloroethan	6	0.91	U	0.54	0,91
Benzene		0.91	U	0.67	0.91
trans-1,3-Dichloropro	opene	0.91	U	0.20	0.91
Bromoform		0,91	U	0.63	0.91
Isopropylbenzene		0.91	U	0.23	0.91
4-Methyl-2-pentanon	e	9. t	U	0.65	9.1
2-Hexanone		9. t	U	1.5	9.1
Tetrachtoroethene		0.91	U	0.30	0.91
Toluene		0.91	Ū	0.27	0.91
1.1.2.2-Tetrachloroe	thane	0.91	Ū	0.69	0 9 t
Chlorobenzene		0.91	Ũ	0.44	0.91
Ethylbenzene		0.91	Ŭ	0.17	0.91
Xvienes Total		27	Ŭ	0.74	27
Sivrene		0.01	П	0.71	4.1 0.0t
t 2.Dibromo 3 Chlor	00100300	0.01		0.31	0.51
1.3-Dichlorobenzeog	optopane i	0.01	0	0,00	0.91
1.4 Dichlorohonzene		0.91	0	0,44	0.91
1,4-Dichlorobenzene		0.04		0.64	0.91
r,z-picilioropenzene	5	Ú.9.1	U	0.58	0.91

Client: GaiaTech Inc.

Client Sample ID:	GMW-5 (10-11)					
Lab Sample ID:	460-20639-7			Da	te Sampled: 12/02/2	010 1345
Client Matrix:	Solid	% Moisture:	5.5	Da	te Received: 12/03/2	010 1000
· · · · · ·	٤	3260B Volatile Organic C	ompounds (GC/MS	5)		
Method:	8260B	Analysis Balch: 460-57	7634	Instrument ID:	VOAMS2	
Preparation:	5035	Prep Batch: 460-57540) (Lab File ID:	b31232.d	
Dilution:	1.0		!	Initial Weight/Volume:	5.84 g	
Dale Analyzed:	12/06/2010 0944		I	Final Weight/Volume:	5 mL	
Date Prepared:	12/03/2010 2227					
Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL.	RL	
1,2,4-Trichlorobenz	ene	0.91	U	0.48	0.91	
1,2-Dibromoethane)	0.91	U	0.47	0.91	
Surrogate		%Rec	Qualifier	Accept	ance Limits	
1,2-Dichloroethane	-d4 (Surr)	100		70 - 13	8	
Toluene-d8 (Surr)		92		66 - 12	6	
Bromofluorobenzer	ne	90		72 - 13	2	

Analytical Data

Client Sampte tD:	TMW-1				
Lab Sampte ID:	460-20639-8			Dat	e Sampled: 12/02/2010 1435
Ctient Matrix:	Water			Dat	e Received: 12/03/2010 1000
		8260B Volatile Organic Compo	unds (GC/M	S)	
Method:	8260B	Analysis Batch: 460-57626		Instrument ID:	VOMMEN
Preparation:	5030B	· · · · · · · · · · · · · · · · · · ·			
Dilution:	10				a59029.d
Date Analyzed:	12/06/2010 1422			Initial Weight/Volume:	5 mL
Date Propared:	12/06/2010 1422			Final Weight/Volume:	5 mL
Date Flepaleu;	12/00/2010 14/22				
Analyte		Result (ug/L)	Qualifie	r MDL	RL
Dichlorodifluoromet	hane	1.0	U	0.29	10
Chloromethane		1.0	U	0.21	10
Bromomethane		1.0	U	0.31	10
Vinyl chloride		1.3		0.13	10
Chloroethane		1.0	ы	0.45	1.0
Trichlorofluorometh	ane	1.0	Ū	0.16	1.0
Freon TF		1.0	Ũ	0.78	1.0
Methylene Chloride		1.0	ц Ц	0.20	1.0
Acetone		10	- U	2.6	10
Carbon disulfide		10	ŭ	2.5	10
Methyl acetate		20	ŭ	0.15	1.0
1,1-Dichloroethene		10		0.33	2.0
1,1-Dichloroethane		10	1	0,14	1.0
cis-1.2-Dichloroethe	ne	12	0	0,10	1.0
frans-1.2-Dichloroet	hene	0.43		0.20	1.0
MTBE		10	5 11	0.14	1.0
Chloroform		10	0	0.18	1.0
1.2-Dicbloroetbane		10	0	0.15	1.0
2-Butanone		10	0	0.24	1.0
1.1.1-Trichloroethan	ie.	10	0	0.82	10
Cyclohexane	φ.	1.0	0	0.25	1.0
Carbon tetrachloride	2	1.0	0	0.13	1.0
Bromodichloromoth	900	1.0	U	0.19	1.0
1.2-Dichloropropage	2010 <u>-</u>	1.0	0	0.093	1.0
cis-1 3-Dichloroprop	'	1.0	U	0.090	1.0
Trichtoroethene		1.0	0	0.11	1.0
Methylovclobevane		29		0.18	1.0
Dibromochlorometh	200	1.0	U	0.090	1.0
1.1.2-Trichloroethan		1.0	U	0.11	1.0
Renzene	c	1.0	U	0.10	1.0
trang-1 2-Dichloropr		0.31	J	0.13	1.0
Bromoform	opene	1.0	U	0.12	1.0
leopropylbanzene		1.0	U	0.10	1.0
A Methyl Disputance		1.0	υ	0.21	1.0
4-Memory-z-pentanor	1¢	10	ប	0.68	10
Z-Hexanone		10	U	0.55	10
retrachioroethene		1.0	U	0.20	1.0
loluene		1.7		0.090	1.0
1,1,2,2-Tetrachloroe	Ihane	1.0	U	0.090	1.0
Uniorobenzene		1.0	U	0.16	1.0
Ethylbenzene		0.43	J	0.25	1.0
Xylenes, Total		1.5	J	0.43	3.0
Styrene		1.0	U	0.13	1.0
1,2-Dibromo-3-Chlor	opropane	1.0	U	0.15	1.0
1,3-Dichtorobenzene	1	1.0	U	0.22	1.0
1,4-Dichlorobenzene	•	1.0	υ	0.15	1.0
1,2-Dichlorobenzene		1.0	U	0.16	1.0

Client: GaiaTech Inc.

Client Sample ID:	TMW-1					
Lab Sample ID: Client Matrix:	460-20639-8 Water			Date Date	e Sampled: 12/02/20 e Received: 12/03/20	10 1435 10 1000
		8260B Volatile Organic Compo.	inds (GC/MS)			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5030B 1.0 12/06/2010 1422 12/06/2010 1422	Analysis Batch: 460-57626	Instr Lab Initia Fina	ument ID: File ID: Il Weight/Volume: I Weight/Volume:	VOAMS1 a59029.d 5 mL 5 mL	
Analyte		Result (ug/L)	Qualifier	MDL	RL	
1,2,4-Trichlorobenz	ene	1.0	U	0.44	t.0	·····
t,2-Dibromoethane		1.0	U	0.090	1.0	
Surrogate		%Rec	Qualifier	Accepta	nce Limits	
1,2-Dichloroethane-	d4 (Surr)	t09		70 - 122	·····	
Toluene-d8 (Surr)		93		69 - 125		
Bromofluorobenzen	e	92		69 - 135		

Analytical Data

Client Sample ID:	TMW-2					
Lab Sample ID: Client Matrix:	460-20639-9 Waler			Dat Dat	e Sampled: 12/02/201 e Received: 12/03/201	0 1430 0 1000
		8260B Volațile Organic Compos	inds (GC/M	S)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5030B 1.0 12/06/2010 1442 12/06/2010 1442	Analysis Batch: 460-57626		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	VOAMS1 a59030.d 5 mL 5 mL	
Analyte		Posult (up/i)	Oualifia	r MDI	ot	
Diablacadifluoromal	lhann		Quaime			
Chloromothana	mane	1.0	0	0.29	1.0	
Bromomothane		1.0	0	0.21	1.0	
Vinyl chloride		1.0	Ц	0.31	1.0	
Chloroelhane		1.0		0.13	1.0	
Tricblorofluorometh	ane	1.0	11	0.40	1.0	
Freen TE		1.0		0.10	1.0	
Methylene Chloride	4	1.0		0.28	1.0	
Acelone	,	10		0.15	1.0	
Carbon disulfide		10	11	2.5	10	
Melbyl acetate		2.0	0	0.13	2.0	
1.1.Dichlornelhene		10	0	0.35	2.0	
1,1-Dichloroethane		1.0	0	0.14	1.0	
cis-12-Dichloroeth	200	1.0	0	0.10	1.0	
Irans-1 2-Dichloroe	ihene	1.0	0	0.20	1.0	
MTRE	inche	1.0	0	0.14	1.0	
Chloroform		10	0	0.16	1.0	
1.2-Dicblornelbane		1.0	0	0.15	1.0	
2.Rutanone		10	0	0.24	10	
1 I 1. Trichloroether	ne	10	0	0.02	10	
Cyclobexane		1.0	1	0.20	1.0	
Carbon tetrachlorid	8	1.0	0	0.10	1.0	
Bromodichlorometh		10		0.13	1.0	
1.2-Dicbloronconan	A	10		0.000	1.0	
cis-1.3-Dicbloroprop	u nene	1.0		0.090	1.0	
Trichlomethene	pono.	23	Ų	0.11	1.0	
Methylcycinbexane		1.0	11	0,10	1.0	
Dibromochlorometh	ane	10	1	0.050	1.0	
1.1.2-Tricbloroethar	ne	10	U U	0.10	1.0	
Renzene		0.27	1	0.10	1.0	
Irans-1 3-Dicbloron	ronene	10	0	0.10	1.0	
Bromoform		10	U U	0.12	1.0	
Isopropylhenzene		10	н	0.10	1.0	
4-Methyl-2-pentano	ne	10	н	0.68	10	
2-Hevanone		10	Н	0.00	10	
Tetrachloroethene		10	н	0.00	10	
Toluene		1.0	0	0.20	1.0	
1.1.2.2-Tetrachlorov	ethane	1.9	11	0.030	1.0	
Chlorobenzene	chidric	10	11	0.090	1.0	
Fihvlbenzene		0.51	1	0.10	1.0	
Xvienee Total		4.7	J	0.20	2 D	
Shirono		1.0	J	0.43	3.0	
1.2-Dibromo 2.CMa	rootoogoo	10	0	0.13	1.0	
1.2-Dioblarahaanaa	nopropane	1.0	0	0.15	1.0	
1.3-Dichlorobenzen		1.0	U	0.22	1.0	
1,4-Dichlorobenzen	e	1.0	U G	0.15	1.0	
1,2-Dichloroben2en	e	1.0	U	0.16	1.0	

Analytical Data

Client Sample ID:	TMW-2					
Lab Sample ID: Client Matrix:	460-20639-9 Water		Date Date	Date Sampled: 12/02/2010 1430 Date Received: 12/03/2010 1000		
		8260B Votatile Organic Compou	inds (GC/MS)			<u>مسمندن</u>
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5030B 1.0 12/06/2010 1442 12/06/2010 1442	Analysis Batch: 460-57626	Instr Lab Initia Fina	ument ID: File ID: Il Weight/Volume: I Weight/Volume:	VOAMS1 a59030.d 5 mL 5 mL	
Analyte		Result (ug/L)	Qualifier	MDI	PI	
1.2,4-Trichlorobenz	ene	1.0	U	0.44	10	
1,2-Dibromoethane		1.0	U	0.090	1.0	
Surrogate		%Rec	Qualifier	Accepta	ice Limits	
1,2-Dichloroethane-	d4 (Surr)	109	· · · · · · · · · · · · · · · · · · ·	70 - 122	·····	
Toluene-d8 (Surr)		91	69 - 125			
Bromofiuorobenzene		91	69 - 135			

Analytical Data

Client Sample ID:	TMW-3					
Lab Sample ID:	460-20639-10			Da	e Sampled: 12/02/20	10 1425
Client Matrix:	Water			Da	le Received: 12/03/20	10 1000
		8260B Volatile Organic Comp	ounds (GC/M	S)		
Method:	8260B	Analysis Batch: 460-57626		Instrument ID:	VOAMS1	
Preparation:	5030B			Lab File ID:	a59031.d	
Dilution:	1.0			Initial Weight/Volume:	5 mL	
Date Analyzed:	12/06/2010 1502			Final Weight/Volume:	5 mL	
Date Prepared:	12/06/2010 1502			Ū ·		
Analyte		Result (ug/L)	Qualifie	r MDL	RL	
Dichlorodifluoromet	hane	1.0	U	0,29	1.0	
Chloromethane		1.0	U	0.21	1.0	
Bromomethane		1.0	U	0.31	1.0	
Vinyl chloride		1.0	U	0.13	10	
Chloroethane		1.0	U	0.45	10	
Trichlorofluorometh	ane	1.0	U	0.16	10	
Freon TF		1.0	U	0.28	10	
Methylene Chloride	1	1.0	Ū	0.19	1.0	
Acelone		10	Ŭ	25	10	
Carbon disulfide		10	н	0.16	10	
Methyl acetate		20	1	0.10	1.0	
1,1-Dichloroethene		10	1	0.00	2.0	
1.1-Dichloroethane		10	0	0.14	1.0	
cis-1.2-Dichloroethe	ne	10	0	0.10	1.0	
Irans-1 2-Dichloroet	hene	1.0	0	0.20	1.0	
MTRE		10	0	U. 14	1.0	
Chloroform		1.0		0.18	1.0	
1 2-Dichloroethane		1.0	U	0.15	1.0	
2-Bulanone		1.0	U	0.24	1.0	
1 1 1 Trichloroethar	10	10	U	0.82	10	
	16	1.0	U	0.25	1.0	
Carbon tetrachlands		1.0	0	0.13	1.0	
Bromodiablors math		1.0	U	0.19	1.0	
1.2 Dichlaron ron and		1.0	U	0.093	1.0	
ria 1.2 DiaManana	2	1.0	Ų	0.090	1.0	
Triching others	ene	1.0	U	0.11	1.0	
Methodelinene		1.9		0.18	1,0	
Meinvicycionexane		1.0	U	0.090	1.0	
Dibromochiorometh	ane	1.0	U	0.11	1.0	
1,1,2-1 richloroethan	e	1.0	U	0.10	1.0	
Benzene		1.0	U	0.13	1.0	
Irans-1,3-Dichloropr	opene	1.0	U	0.12	1.0	
Bromoform		1.0	U	0.10	1.0	
Isopropylbenzene		1.0	U	0.21	1.0	
4-Methyl-2-pentanor	ne	10	ប	0.68	10	
2-Hexanone		10	U	0.55	10	
Tetrachloroethene		1.0	U	0.20	1.0	
Toluene		2.0		0.090	1.0	
1,1,2,2-Tetrachloroe	lhane	1.0	U	0.090	1.0	
Chlorobenzene		1.0	ប	0.16	1.0	
Ethylbenzene		0.47	J	0.25	1 0	
Xylenes, Total		1.5	-	0.43	3.0	
Styrene		1.0	ŭ	0.13	10	
1,2-Dibromo-3-Chlor	ropropane	1.0	11	0.15	1.0	
1,3-Dichlorobenzene	<u>}</u>	10	Ŭ.	0.10	1.0	
1.4-Dichlorobenzene	•	1.0	1	0.22	1.0	
1.2-Dichlorobenzene	•	1.0	0	0.10	1.0	
.,		1.0	U	0.10	1.0	

Client: GaiaTech Inc.

Ctient Sample tD:	TMW-3					
Lab Sample ID: Client Matrix:	460-20639-10 Water		Sampled: 12/02/20 Received: 12/03/20	110 1425 110 1000		
·		8260B Volatile Organic Compou	inds (GC/MS)			
Method: Preparation; Dilution; Date Analyzed: Date Prepared;	8260B 5030B t.0 12/06/2010 1502 12/06/2010 1502	Analysis Balch: 460-57626	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:		VOAMS1 a59031.d 5 mL 5 mL	
Analyte		Result (ug/L)	Qualifier	MDL	RL	
1,2,4-Trichlorobenz	zene	1.0	U	0.44	1.0	·····
1,2-Dibromoethane	1	1.0	U	0.090	1.0	
Surrogate		%Rec	Qualifier	Acceptar	nce Limits	
1,2-Dichloroethane	-d4 (Surr)	110		70 - 122		
Toluene-d8 (Surr)		90		69 - 125		
Bromofluorobenzer	ne	90		69 - 135		

Analytical Data

Client Sample ID:	TB				
Lab Sample ID: Client Matrix:	460-20639-1 1TB Water			I	Date Sampled: 11/16/2010 0000
		8260B Votatile Organic Compo	unds (GC/M	15)	
Method; Preparation: Dilution; Date Analyzed;	8260B 5030B 1.0 12/06/2010, 1402	Analysis Batch: 460-57626		Instrument ID: Lab File ID: Initial Weight/Volum	VOAMS1 a59028.d ne: 5 mL
Date Prepared:	12/06/2010 1402			Final Weight/Volum	ne: 5 mL
Analyte		Result (ug/L)	Qualifie	r MDL	RL
Dichlorodifluorometh	ane	1.0	UH	0.29	1.0
Chloromethane		1.0	UН	0.21	1.0
Bromomethane		1.0	UН	0.31	1.0
Vinyl chloride		1.0	UН	0.13	10
Chloroethane		1.0	UН	0.45	10
Trichlorofluorometha	ne	1.0	UН	0.16	1.0
Freon TF		1.0	UH	0.28	1.0
Methylene Chloride		1.0	uн	0.19	1.0
Acetone		10	Ūн	2.5	10
Carbon disulfide		1,0	UН	0.15	10
Methyt acetate		2.0	UH UH	0.15	1.0
1,1-Dichloroethene		1.0	បម	0.55	2.0
1,1-Dichloroethane		1.0	ЦΗ	0.14	1.0
cis-1,2-Dichloroether	ie	1.0	ин	0.10	1.0
frans-1,2-Dichloroeth	ene	1.0	011	0.20	1.0
MTBE		10	11.11	0.14	1.0
Chloroform		10	011	0.16	1.0
1.2-Dichloroethane		10	011	0.15	1.0
2-Butanone		10	00	0.24	1.0
1,1,1-Trichloroethane		10	UM 1111	0.82	10
Cyclohexane		1.0	υп	0.25	1.0
Carbon tetrachloride		1.0		0.13	1.0
Bromodichloromethar	1A	1.0	UH	0.19	1.0
1.2-Dichloropropane		1.0	UH	0.093	1.0
cis-1.3-Dichloroprope	ne	1.0	UH	0.090	1.0
Trichloroethene		1.0	UH	0.11	1.0
Methylcyclobexane		1.0	UH	0.18	1.0
Dibromochlorometha	na	1.0	UH	0.090	1.0
1.1.2-Trichloroethana		1.0	UH	0.11	1.0
Benzene		1.0	UH	0.10	1.0
Irans-1.3-Dichloroproj	papa	1.0	UH	0.13	1.0
Bromoform	pene	1.0	UH	0.12	1.0
Isonronylbenzene		1.0	UH	0.10	1.0
4-Methyl-2-nentanone		1.0	UН	0.21	1.0
2-Hevanono	-	10	UH	0.68	10
Teirachloroathono		10	UН	0.55	10
Toluano		1.0	UН	0.20	1.0
1 1 2 2 Totrachiereath		1.0	UН	0.090	1.0
Chlorobenzone	ane	1.0	UH	0.090	1.0
Ethylbonzono		1.0	UН	0.16	1.0
Eurybenzene Vylonor Tetet		1.0	UН	0.25	1.0
Aylenes, Total		3.0	UH	0.43	3.0
olylene 1.9 Discus 6 or :		1.0	UH	0.13	1.0
1,2-Dipromo-3-Chloro	propane	1.0	UН	0.15	1.0
1,3-Dichlorobenzene		1.0	UН	0.22	1.0
1,4-Dichlorobenzene		1.0	UН	0.15	1.0
1,2-Dichlorobenzene		1.0	UН	0.16	1.0

Client: GaiaTech Inc.

Client Sample ID:	тв						
Lab Sample ID: Client Matrix:	460-20639- t1TB Water			Date Oate	Date Sampled: 11/16/2010 0000 Date Received: 12/03/2010 1000		
		8260B Volatile Organic Compou	inds (GC/MS)				
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5030B 1.0 12/06/2010 1402 12/06/2010 1402	Analysis Batch: 460-57626	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:		VOAMS1 a59028.d 5 mL 5 mL		
Analyte		Result (ug/L)	Qualifier	MDL	RL		
1,2,4-Trichlorobenz	ene	1,0	UH	0.44	1.0		
1,2-Dibromoethane		1.0	UΗ	0.090	1.0		
Surrogate		%Rec	Qualifier	Accepta	nce Limits		
1.2-Dichloroethane	-d4 (Surr)	109	70 - 122		· · · · · · · · · · · · · · · · · · ·		
Toluene-d8 (Surr)		95	69 - 125				
Bromofluorobenzene		94	69 - 135				

Client: GalaTech Inc.

General Chemistry										
Client Sample ID:	GMW-1 (8-10)									
Lab Sample ID: Client Matrix:	460-20639-1 Solid					Date Sampled Date Received	: 12/02/2010 0830 I: 12/03/2010 1000			
Analyte	Resul	t Qual	Units	RL	RL	Dil.	Melbod			
Percent Moislure	7.6 Analysis Batch: 460-57526	Date Analyzed:	% 12/03/201	1.0 10 1801	1.0	1.0 C	Moisiure hywt Corrected: N			
Percent Solids	92.4 Analysis Balch: 460-57526	Date Analyzed:	% 12/03/201	1.0 1801	t.0	1.0 E	Moisture ryWt Corrected: N			

Client: GaiaTech Inc.

General Chemistry									
Client Sample ID:	TMW-3 (6-7)								
Lab Sample ID:	460-20639-2					Date Sample	d: t2/02/2010 0915		
Client Matrix:	Solid					Date Receive	ed: 12/03/2010 1000		
Analyte	Resul	t Qual	Units	RL	RL	Dil	Method		
Percent Moisture	10.6		%	1.0	1.0	t.0	Moisture		
	Analysis Batch: 460-57526	460-57526 Date Analyzed: 12/03/2010 1801					DryWt Corrected: N		
Percent Solids	89.4		%	1.0	1.0	1.0	Moisture		
	Analysis Batch: 460-57526	Date Analyzed:	12/03/20	10 1801			DryWt Corrected: N		

Client: GaiaTech Inc.

General Chemistry										
Client Sample ID:	TMW-2 (7-8)									
Lab Sample ID:	460-20639-3					Date Sampled:	12/02/2010 0945			
Client Matrix:	Solid					Dale Received:	12/03/2010 1000			
Analyte	Resu	t Qual	Units	RL	RL	Dil	Method			
Percent Moisture	10.4		%	1.0	1.0	1.0	Moisture			
	Analysis Batch: 460-57526	Date Analyzed:	d: 12/03/2010 1801			Dr	yWt Corrected: N			
Percent Solids	89.6		%	t.0	1.0	1.0	Moisture			
	Analysis Batch: 460-57526	Date Analyzed:	12/03/20	t0 t801		Dr	yWt Corrected: N			

Client: GaiaTech Inc.

General Chemistry										
Ctient Sample ID;	GMW-3 (15-16)									
Lab Sample ID: Client Matrix:	460-20639-4 Solid					Date Sample Date Receive	d: 12/02/2010 1120 ed: 12/03/2010 1000			
Analyte	Result	Qual	Units	RL	RI	انم	Method			
Percent Moisture	9.6 Analysis Batch: 460-57526	Date Analyzed:	% 12/03/20 ⁻	1.0 10 †801	1.0	t.0	Moisture DryWt Corrected: N			
Percent Solids	90.4 Analysis Batch: 460-57526	Date Analyzed:	% 12/03/201	1.0 10 180†	1.0	1.0	Moisture DryWt Corrected: N			

Client: GaiaTech Inc.

	General Chemistry										
Client Sample ID:	TMW-1 (13-14)										
Lab Sample tD:	460-20639-5					Date Sampled	1: 12/02/2010 1020				
Client Matrix:	Solid					Date Receive	d: 12/03/2010 1000				
Analyte	Result	Qual	Units	RL	RL	Dil	Method				
Percent Moisture	18.6		%	1.0	1.0	1.0	Moisture				
	Analysis Batch: 460-57526	Date Analyzed:	12/03/20	10 1801		1	DryWt Corrected: N				
Percent Solids	81,4		%	1.0	1.0	1.0	Moisture				
	Analysis Batch: 460-57526	Date Analyzed:	12/03/20	10 1801		I	DryWt Corrected: N				

Client: GaiaTech Inc.

General Chemistry									
Client Sample ID:	GMW-4 (10-11)								
Lab Sample ID:	460-20639-6					Date Sampled	d: 12/02/20 t0 1235		
Client Matrix:	Solid					Date Receive	d: 12/03/2010 1000		
Analyte	Resul	Qual	Units	RL	RL	Dil	Method		
Percent Moisture	t8.2	***************************************	%	1.0	1.0	1.0	Moisture		
	Analysis Batch: 460-57526	Date Analyzed	: 12/03/ 2 0	10 1801			DryWt Corrected: N		
Percent Solids	81.8		%	t.0	t.0	t,0	Moisture		
	Analysis Batch: 460-57526	Date Analyzed:	: 12/03/20	t0 t80t			DryWt Corrected: N		

Client: GaiaTech Inc.

General Chemistry							
Client Sample ID:	GMW-5 (10-11)						
Lab Sample ID:	460-20639-7					Date Sampler	i: t2/02/2010 1345
Client Matrix:	Solid					Dale Receive	d: 12/03/2010 1000
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	5.5		%	t.0	1.0	1.0	Moisture
	Analysis Batch: 460-57526	Date Analyzed:	12/03/201	0 1801		:	DryWt Corrected: N
Percent Solids	94.5		%	1.0	1.0	t.0	Moisture
	Analysis Batch: 460-57526	Date Analyzed:	12/03/201	0 t801		:	DryWt Corrected: N

DATA REPORTING QUALIFIERS

Client: GaiaTech Inc.

Lab Section	Qualifier	Description
GC/M S VOA		
	В	Compound was found in the blank and sample.
	U	Indicates the analyte was analyzed for but not detected.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
	Н	Sample was prepped or analyzed beyond the specified holding time

QUALITY CONTROL RESULTS

Client: GaiaTech Inc.

Job Number: 460-20639-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample IO	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Prep Batch: 460-57540					
LB3 460-57540/1-A	Neutral Leach or MeOH Extraction Blank	Т	Solid	5035	
460-20639- t	GMW-1 (8-10)	т	Solid	5035	
460-20639-2	TMW-3 (6-7)	Т	Solid	5035	
460-20639-3	TMW-2 (7-8)	т	Solid	5035	
460-20639-4	GMW-3 (15-16)	Т	Solid	5035	
460-20639-5	TMW-1 (13-14)	Т	Solid	5035	
460-20639-6	GMW-4 (10-11)	Т	Solid	5035	
460-20639-7	GMW-5 (10-11)	Т	Solid	5035	
Analysis Batch:460-5762	6				
LCS 460-57626/3	Lab Control Sampte	т	Water	8260B	
MB 460-57626/4	Method Blank	Т	Water	8260B	
460-20639-8	TMW-1	Т	Water	8260B	
460-20639-9	TMW-2	т	Water	8260B	
460-20639-10	TMW-3	т	Water	8260B	
460-20639-11TB	TB	т	Water	8260B	
460-20650-B-33 MS	Matrix Spike	Т	Water	8260B	
460-20650-B-33 MSD	Matrix Spike Duplicate	т	Water	8260B	
Analysis Batch:460-5763	4				
LCS 460-57634/3	Lab Control Sample	т	Solid	8260B	
LCSD 460-57634/4	Lab Control Sample Duplicate	Т	Solid	8260B	
MB 460-57634/5	Method Blank	T	Solid	8260B	
LB3 460-57540/1-A	Neutral Leach or MeOH Extraction Blank	т	Solid	8260B	460-57540
460-20639-1	GMW-1 (8-10)	т	Solid	8260B	460-57540
460-20639-2	TMW-3 (6-7)	т	Solid	8260B	460-57540
460-20639-3	TMW-2 (7-8)	Т	Solid	8260B	460-57540
460-20639-4	GMW-3 (15-16)	т	Solid	8260B	460-57540
460-20639-5	TMW-1 (13-14)	Т	Solid	8260B	460-57540
460-20639-6	GMW-4 (10-11)	Т	Solid	8260B	460-57540
460-20639-7	GMW-5 (10-11)	Т	Solid	8260B	460-57540

Report Basis

T = Total

Client: GaiaTech Inc.

Job Number: 460-20639-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Preo Batch
General Chemistry					
Analysis Batch:460-57	526				
460-20639-1	GMW-1 (8-10)	Т	Solid	Moisture	
460-20639-2	TMW-3 (6-7)	Т	Solid	Moisture	
460-20639-3	TMW-2 (7-8)	т	Solid	Moisture	
460-20639-4	GMW-3 (15-16)	Т	Solid	Moisture	
460-20639-5	TMW-1 (13-14)	Т	Solid	Moisture	
460-20639-6	GMW-4 (10-11)	Т	Solid	Moisture	
460-20639-7	GMW-5 (10-11)	Т	Solid	Moisture	
460-20645-A-6 DU	Duplicate	Т	Solid	Moisture	

Report Basis

T = Toial

Client: GaiaTech Inc.

Job Number: 460-20639-t

Surrogate Recovery Report

8260B Volatile Organic Compounds (GC/MS)

Client Matrix: Solid

		DCA	TOL	BFB
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec
460-20639-1	GMW-1 (8-10)	96	92	88
460-20639-2	TMW-3 (6-7)	98	90	90
460-20639-3	TMW-2 (7-8)	96	92	89
460-20639-4	GMW-3 (15-16)	99	92	89
460-20639-5	TMW-1 (13-14)	98	93	90
4 6 0-20639-6	GMW-4 (10-11)	t00	92	87
460-20639-7	GMW-5 (10-11)	100	92	90
MB 460-57634/5		100	91	88
LB3 460-57540/1-A		97	92	88
LCS 460-57634/3		93	97	94
LCSD 460-57634/4		94	95	97

Surrogate	Acceptance Limits
DCA = 1,2-Dichtoroethane-d4 (Surr)	70-138
TOL = Toluene-d8 (Surr)	66-126
BFB = Bromofluorobenzene	72-132

Client: GaiaTech Inc.

Job Number: 460-20639-1

Surrogate Recovery Report

8260B Volatile Organic Compounds (GC/MS)

Client Matrix: Water

		DCA	TOL	8F8
Lab Sample (D	Client Sample ID	%Rec	%Rec	%Rec
460-20639-8	TMW-1	109	93	92
460-20639-9	TMW-2	109	91	91
460-20639-10	TMW-3	110	90	90
460-20639-11	тв	109	95	94
MB 460-57626/4		108	97	95
LCS 460-57626/3		101	100	101
460-20650-B-33 MS		101	101	100
460-20650-8-33 MSD		101	100	99

Surrogate	Acceptance Limits
DCA = 1,2-Dichloroethane-d4 (Surr)	70-122
TOL = Toluene-d8 (Surr)	69-125
BFB = Bromofluorobenzene	69-135

Client: GaiaTech Inc.

Job Number: 460-20639-1

Neutral Leach or MeOH Extraction Blank - Batch: 460-57540

Method: 8260B Preparation: 5035

Lab Sample ID:	LB3 460-57540/1-A	Analysis Batch: 460-57634	Instrument ID: VOAMS2	
Client Matrix:	Solid	Prep Batch: 460-57540	Lab File ID: b31225.d	
Dilution:	1.0	Units: ug/Kg	Initial Weight/Volume: 5 g	
Date Analyzed:	12/06/2010 0702	• •	Final Weight/Volume: 5 ml	
Date Prepared:	12/03/2010 2205		inter traight folditie. 5 mil	-

Analyte	Result	Qual	MDL	RL
Dichlorodifluoromethane	1.0	U	0.41	10
Chloromethane	1.0	U	0.63	1.0
Bromomethane	1.0	U	0.41	1.0
Vinyl chloride	1.0	U	0.23	1.0
Chloroethane	1.0	U	0.40	1.0
Trichlorofluoromethane	1.0	U	0.26	1.0
Freon TF	1.0	U	0.48	1.0
Methylene Chloride	0.786	J	0.47	1.0
Acetone	3.81	J	3.7	10
Carbon disulfide	1.0	U	0.46	1.0
Methyl acetate	1.0	U	0.90	1.0
1,1-Dichloroethene	1.0	U	0.37	1.0
1,1-Dichloroethane	1.0	U	0.25	1.0
cis-1,2-Dichtoroethene	1.0	U	0.24	1.0
trans-1,2-Dichloroethene	1.0	U	0.28	1.0
MTBE	1.0	U	0.34	1.0
Chloroform	1.0	U	0.24	1.0
1,2-Dichloroethane	1.0	U	0.39	1.0
2-Butanone	10	U	0.57	10
1,1,1-Trichloroethane	1.0	U	0.19	1.0
Cyclohexane	1.0	U	0.22	1.0
Carbon tetrachloride	1.0	U	0.10	1.0
Bromodichloromethane	1.0	U	0.30	1.0
1,2-Dichloropropane	1.0	U	0.32	1.0
cis-1,3-Dichloropropene	1.0	U	0.20	1.0
Trichloroethene	1.0	U	0.36	1.0
Methylcyclohexane	1.0	U	0.27	1.0
Dibromochloromethane	1.0	U	0.56	1.0
1,1,2-Trichloroethane	1.0	U	0.59	1.0
Benzene	1.0	U	0.74	1.0
trans-1,3-Dichloropropene	1.0	U	0.22	1.0
Bromoform	1.0	U	0.70	1.0
Isopropylbenzene	1.0	U	0.26	1.0
4-Methyl-2-pentanone	10	U	0.72	10
2-Hexanone	10	U	1.7	10
Tetrachloroethene	1.0	U	0.33	1.0
Toluene	1.0	U	0.30	1.0
1,1,2,2-Tetrachloroethane	1.0	U	0.76	1.0
Chlorobenzene	1.0	U	0.48	1.0
Ethylbenzene	1.0	U	0.19	1,0
Xylenes, Total	3.0	U	0.79	3.0
Styrene	1.0	U	0.35	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	0.61	1.0

Client: GaiaTech Inc.

Neutral Leach	k - Batch: 460-57540		Method: 8260B Preparation: 5035			
Lab Sample ID:	LB3 460-57540/t-A	Analysis Batch: 460-57634		Instrument ID: VOAMS2		
Client Matrix:	Solid	Prep Batch: 460-57540		Lab File ID: b31225.d		
Dilution:	1.0	Units: ug/Kg		Initial Weight/Volume: 5 g		
Date Analyzed:	12/06/2010 0702			Final Weight/Volume: 5 mL		
Date Prepared:	12/03/2010 2205			-		
Analyte		Posult	Oual	MOI DI		

			MB C		
1,3-Dichlorobenzene	1.0	υ	0.48	t.0	
1,4-Dichtorobenzene	1.0	υ	0.71	1.0	
1,2-Dichlorobenzene	1.0	υ	0.64	t.0	
1,2,4-Trichlorobenzene	1.0	υ	0.54	1.0	
t,2-Dibromoethane	1.0	U	0.52	1.0	
Surrogate	% Rec		Acceptance Limits		
1,2-Dichloroethane-d4 (Surr)	97		70 - 138		
Toluene-d8 (Surr)	92		66 - 126		
Bromofluorobenzene	88		72 - t32		

Client: GaiaTech Inc.

Method Blank - Batch: 460-57626

Job Number: 460-20639-1

Lab Sample ID:	MB 460-57626/4	Analysis Batch: 460-57626	Instrument ID:	VOAMS	1	
Client Matrix:	Water	Prep Batch: N/A	Lab File ID: a	a59014.0	đ	
Dilution:	1.0	Units: ug/L	Initial Weight/Voli	ume:	5	mL
Date Analyzed:	12/06/2010 0833		Final Weight/Volu	ume:	5	mL
Date Prepared:	12/06/2010 0833		•			

Analyte	Result	Qual	MDL	RL	
Dichlorodifluoromethane	1.0	U	0.29	1.0	
Chloromethane	1.0	U	0.21	1.0	
Bromomethane	1.0	U	0.31	1.0	
Vinyl chloride	1.0	U	0.13	1.0	
Chloroethane	1.0	U	0.45	1.0	
Trichlorofluoromethane	1.0	U	0.16	1.0	
Freon TF	1.0	U	0.28	1.0	
Methylene Chloride	1.0	U	0.19	1.0	
Acetone	10	U	2.5	10	
Carbon disulfide	1.0	U	0.15	1.0	
Methyl acetate	2.0	U	0.33	2.0	
1,1-Dichloroethene	1.0	U	0.14	1.0	
1,1-Dichloroethane	1.0	U	0.10	1.0	
cis-1,2-Dichtoroethene	1.0	U	0.20	1.0	
trans-1,2-Dichloroethene	1.0	U	0.14	1.0	
MTBE	1.0	U	0.18	1.0	
Chloroform	1.0	U	0.15	1.0	
1,2-Dichloroethane	1.0	U	0.24	1.0	
2-Butanone	10	U	0.82	10	
1, 1, 1-Trichloroethane	1.0	U	0.25	1.0	
Cyclohexane	1.0	U	0.13	1.0	
Carbon tetrachloride	1.0	U	0.19	1.0	
Bromodichloromethane	1.0	U	0.093	1.0	
1,2-Dichloropropane	1.0	U	0.090	1.0	
cis-1,3-Dichloropropene	1.0	U	0.11	1.0	
Trichloroethene	1.0	U	0.18	1.0	
Methylcyclohexane	1.0	U	0.090	1.0	
Dibromochloromethane	1.0	U	0.11	1,0	
1,1,2-Trichloroethane	1.0	U	0.10	1,0	
Benzene	1.0	U	0.13	1.0	
trans-1,3-Dichloropropene	1.0	U	0.12	1.0	
Bromoform	1,0	U	0.10	1.0	
Isopropylbenzene	1.0	U	0.21	1.0	
4-Methyl-2-pentanone	10	U	0.68	10	
2-Hexanone	10	U	0.55	10	
Tetrachloroethene	1.0	U	0.20	1.0	
Toluene	1.0	U	0.090	1.0	
1,1,2,2-Tetrachloroethane	1.0	U	0.090	1.0	
Chlorobenzene	1.0	U	0.16	1.0	
Ethylbenzene	1.0	U	0.25	1.0	
Xylenes, Total	3.0	U	0.43	3.0	
Styrene	1.0	U	0.13	1.0	
1,2-Dibromo-3-Chloropropane	1.0	U	0.15	1.0	

Client: GaiaTech Inc.

Job Number: 460-20639-1

Method Blank - Batch: 460-57626

Lab Sample ID: Client Matrix:	MB 460-57626/4 Water	Analysis Batch: 460-57626 Prep Batch: N/A	Instrument ID: VO Lab File ID: a59) 9014.d		
Dilution: Date Analyzed: Date Prepared:	1.0 12/06/2010 0833 12/06/2010 0 8 3 3	Units: ug/L	Initial Weight/Volum Final Weight/Volum	1e: 5 1e: 5	n n	ıL ıL

Analyte	Result	Qual	MDL	RL
t,3-Dichlorobenzene	1.0	U	0.22	10
1,4-Dichlorobenzene	1.0	ū	0.22	10
1,2-Dichlorobenzene	1.0	ū	0.16	10
t,2,4-Trichlorobenzene	1.0	Ŭ	0.44	10
1,2-Dibromoethane	1.0	ū	0.090	1.0
Surrogate	% Rec		Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	108		70 - 122	
Toluene-d8 (Surr)	97		69 - 125	
Bromofluorobenzene	95		69 - 135	

Client: GaiaTech Inc.

Client Matrix: Water

Ditution:

Lab Control Sample - Batch: 460-57626

Lab Sample ID: LCS 460-57626/3

1.0 Date Analyzed: 12/06/2010 0724 Date Prepared: 12/06/2010 0724 Job Number: 460-20639-1

Analysis Batch: 460-57626	Instrument ID: VOAMS1
Prep Batch: N/A	Lab File ID: a5901 t.d
Units: ug/L	Initial Weight/Volume: 5 mL
	Final Weight/Volume: 5 mL

Analyle	Spike Amount	Result	% Rec.	Limit	Qual
Dichlorodifluoromethane	20,0	22.7	113	46 - 1 4 5	
Chloromethane	20.0	20.5	103	58 - 146	
Bromomethane	20.0	19.5	97	55 - 153	
Vinyl chloride	20.0	21. 8	109	61 - 144	
Chloroethane	20.0	21.4	107	69 - 145	
Trichlorofluoromethane	20.0	22.4	112	69 - 147	
Freon TF	20.0	22.8	114	47 - 139	
Methylene Chloride	20.0	23.1	116	79 - 119	
Acetone	20.0	22.4	112	45 - 156	
Carbon disulfide	20.0	22.1	111	58 - 139	
Methyl acetale	20.0	20.9	105	50 - 151	
1,1-Dichloroethene	20.0	22.0	110	56 - 139	
1,1-Dichloroethane	20.0	21.8	109	78 - 122	
cis-1,2-Dichloroethene	20.0	21.6	108	80 - 120	
trans-1,2-Dichloroethene	20.0	21.5	107	75 - 122	
MTBE	20.0	21.7	109	71 - 115	
Chlorotorm	20.0	21.7	109	82 - 123	
1,2-Dichloroethane	20.0	21.8	109	74 - 118	
2-Bulanone	20.0	22.6	113	65 - 114	
1,1,1-Trichloroethane	20.0	22.0	110	74 - 128	
Cyclohexane	20.0	20.1	101	58 - 133	
Carbon letrachtoride	20.0	22.9	114	73 - 120	
Bromodichloromethane	20.0	21.9	109	79 - 119	
1,2-Dichloropropane	20.0	21.7	108	80 - 120	
cis-1,3-Dichloropropene	20.0	21.6	108	80 - 120	
Trichtoroethene	20.0	21.6	108	78 - 119	
Methytcyclohexane	20.0	19.7	99	61 - 129	
Dibromochloromethane	20.0	21.7	109	80 - 120	
1,1,2-Trichloroethane	20.0	21.8	109	79 - 119	
Benzene	20.0	22.1	110	83 - 124	
trans-1,3-Dichloropropene	20.0	21.3	106	78 - 118	
Bromoform	20.0	23.2	116	73 - 123	
Isopropylbenzene	20.0	22.7	113	80 - 125	
4-Methyl-2-penlanone	20.0	21.0	105	53 - 120	
2-Hexanone	20.0	15.6	78	5 3 - 121	
Tetrachloroethene	20.0	22.3	111	68 - 139	
Toluene	20.0	21.0	105	80 - 120	
1,1,2,2-Tetrachloroethane	20.0	22.0	110	74 - 126	
Chlorobenzene	20.0	21.2	106	81 - 121	
Ethylbenzene	20.0	22.3	112	79 - 126	
Xylenes, Totat	60.0	68.1	114	76 - 121	
Styrene	20.0	20.5	103	69 - 112	
1,2-Dibromo-3-Chloropropane	20.0	21.0	105	70 - 116	

Job Number: 460-20639-1

Qual

Client: GaiaTech Inc.

Lab Control Sample - Batch: 460-57626

Lab Sample ID:	LCS 460-57626/3	Analysis Balch:	4 60- 57626	Instrum	ent ID: VOAM	S1	
Dilution:	vvaler 1.0 12/06/2010_0724	Prep Batch: N/A Units: ug/L		Lab File Initial V Sincl M	e ID: a5901 Veight/Volume:	1.d 5 5	ու
Date Prepared:	12/06/2010 0724				eigni/volume.	5	111
Analyte		Spike Amount	Result	% Rec.	Limit		
1,3-Dichlorobenz	tene	20.0	21.9	110	81 - 126		

1,4-Dichlorobenzene	20.0	21.7	108	83 - 12 3	
1,2-Dichlorobenzene	20.0	21.3	107	82 - 122	
1,2,4-Trichlorobenzene	20.0	20.8	104	66 - 120	
1,2-Dibromoethane	20.0	21.4	107	78 - 11 8	
Surrogate		% Rec		Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)		101		70 - 122	
Toluene-d8 (Surr)		100		69 - 125	
Client: GaiaTech Inc.

Job Number: 460-20639-1

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 460-57626

Method: 8260B Preparation: 5030B

MS Lab Sample ID: Client Matrix:	460-20650-B-33 MS Water	Analysis Batch: 460-57626 Prep Batch: N/A	Instrument ID: VOAN Lab File ID: a590	VIS1 18.d
Dilution: Date Analyzed:	5.0 12/06/2010 1031		Initial Weight/Volume: Final Weight/Volume:	5 mL 5 mL
Date Prepared:	12/06/2010 1031			
MSD Lab Sample ID:	460-20650-B-33 MSD	Analysis Batch: 460-57626	Instrument ID: VOAMS	S1
Client Matrix:	Water	Prep Batch: N/A	Lab File ID: a59019).d
Dilution:	5.0		Initial Weight/Volume:	5 mL
Date Analyzed: Date Prepared:	12/06/2010 1050 12/06/2010 1050		Final Weight/Volume:	5 mL

45						
	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
12	112	46 - 145	1	30		
01	102	58 - 146	1	30		
4	103	55 - 153	9	30		
10	110	61 - 144	0	30		
06	107	69 - 145	1	30		
12	115	69 - 147	3	30		
19	121	47 - 139	2	30		
04	113	79 - 119	9	30		
07	100	45 - 156	6	30		
9	97	58 - 139	2	30		
6	93	50 - 151	3	30		
17	118	56 - 139	1	30		
12	109	78 - 122	3	30		
12	112	80 - 120	1	30		
10	109	75 - 122	1	30		
09	110	71 - 115	1	30		
12	108	82 - 123	4	30		
09	107	74 - 118	2	30		
10	106	65 - 114	4	30		
12	112	74 - 128	0	30		
03	105	58 - 133	2	30		
16	114	73 - 120	2	30		
07	102	79 - 119	5	30		
09	108	80 - 120	1	30		
04	102	80 - 120	2	30		
11	110	78 - 119	1	30		
05	105	61 - 129	0	30		
02	98	80 - 120	4	30		
12	107	79 - 119	5	30		
14	112	83 - 124	1	30		
	12 12 01 4 10 06 12 19 04 07 9 6 17 12 10 09 12 10 09 10 12 09 10 12 09 10 12 09 10 12 19 04 07 9 6 17 12 10 09 12 19 04 07 9 6 17 12 10 09 12 10 09 12 10 09 12 10 09 12 10 09 12 10 09 12 10 09 12 10 09 12 10 09 10 12 10 09 10 12 10 09 10 12 10 09 10 12 10 09 10 12 10 09 10 12 10 09 10 12 09 10 12 09 10 12 09 10 12 09 10 12 09 10 12 09 10 12 09 10 12 09 10 12 09 10 12 09 10 12 09 10 12 09 10 12 09 10 12 09 10 12 09 10 12 09 10 11 12 03 16 07 09 12 12 12 13 14 15 12 12 12 12 13 16 07 09 11 11 12 12 11 12 12 13 16 07 12 12 11 11 12 13 16 07 12 12 12 11 11 12 12 11 11 11	12 112 12 112 01 102 4 103 10 110 06 107 12 115 19 121 04 113 07 100 9 97 6 93 17 118 12 109 12 112 10 109 09 107 10 106 12 112 10 106 12 112 03 105 16 114 07 102 09 108 04 102 11 110 05 105 02 98 12 107 14 112	12 112 46 - 145 112 112 46 - 145 01 102 58 - 146 4 103 55 - 153 10 110 61 - 144 06 107 69 - 145 12 115 69 - 147 19 121 47 - 139 04 113 79 - 119 07 100 45 - 156 9 97 58 - 139 6 93 50 - 151 17 118 56 - 139 12 109 78 - 122 12 109 78 - 122 12 109 75 - 122 09 110 71 - 115 12 108 82 - 123 09 107 74 - 118 10 106 65 - 114 12 112 74 - 128 03 105 58 - 133 16 114 73 - 120 07 102 79 - 119 09 108 80 - 120 11	12 112 46 - 145 1 12 112 46 - 145 1 01 102 58 - 146 1 4 103 55 - 153 9 10 110 61 - 144 0 06 107 69 - 145 1 12 115 69 - 147 3 19 121 47 - 139 2 04 113 79 - 119 9 07 100 45 - 156 6 9 97 58 - 139 2 6 93 50 - 151 3 17 118 56 - 139 1 12 109 78 - 122 3 12 109 75 - 122 1 09 107 74 - 118 2 10 106 65 - 114 4 12 108 82 - 123 4 09 107 74 - 118 2 10 106 65 - 114 4 12 102 79 - 119 5	1211214141301211246 - 1451300110258 - 1461301011061 - 1440300610769 - 1451301211569 - 1473301912147 - 1392300411379 - 1199300710045 - 15663099758 - 13923069350 - 1513301711856 - 1391301210978 - 1223301210975 - 1221301010975 - 12213011210882 - 1234301211274 - 11823011210779 - 1195300310558 - 1332301611473 - 1202300710279 - 1195300910880 - 1201300510561 - 1290300510561 - 1290300510561 - 1290300510561 - 1290300510561 - 1290301210779 - 1195301411283 - 124130 <td>1211246 - 1451301211246 - 1451300110258 - 146130410355 - 1539301011061 - 1440300610769 - 1451301211569 - 1473301912147 - 1392300411379 - 1199300710045 - 15663099758 - 13923069350 - 1513301711856 - 1391301210978 - 1223301210978 - 1221301210975 - 1221301010975 - 1221301210882 - 1234301210882 - 1234301210882 - 1234301210882 - 1234301210882 - 1234301210882 - 1234301211274 - 1280300310558 - 1332301611473 - 1202300710279 - 1195300910880 - 1201300510561 - 12903005<!--</td--></td>	1211246 - 1451301211246 - 1451300110258 - 146130410355 - 1539301011061 - 1440300610769 - 1451301211569 - 1473301912147 - 1392300411379 - 1199300710045 - 15663099758 - 13923069350 - 1513301711856 - 1391301210978 - 1223301210978 - 1221301210975 - 1221301010975 - 1221301210882 - 1234301210882 - 1234301210882 - 1234301210882 - 1234301210882 - 1234301210882 - 1234301211274 - 1280300310558 - 1332301611473 - 1202300710279 - 1195300910880 - 1201300510561 - 12903005 </td

Client: GaiaTech Inc.

Job Number: 460-20639-1

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 460-57626

Method: 8260B Preparation: 5030B

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	460-20650-8-33 MS Water 5.0 12/06/2010 1031 12/06/2010 1031	Analysis Batch: 460-57626 Prep Batch: N/A	Instrument ID: VOAMS1 Lab File ID: a59018.d Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	460-20650-B-33 MSD Water 5.0 12/06/2010 1050 12/06/2010 1050	Analysis Batch: 460-57626 Prep Batch: N/A	Instrument ID: VOAMS1 Lab File ID: a59019.d Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

<u>% Rec.</u>							
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
trans-1,3-Dichloropropene	104	102	78 - 118	2	30		
Bromoform	104	97	73 - 123	7	30		
lsopropylbenzene	118	118	80 - 125	0	30		
4-Methyl-2-pentanone	110	111	53 - 120	1	30		
2-Hexanone	82	82	53 - 121	0	30		
Tetrachloroethene	118	117	68 - 139	1	30		
Toluene	108	107	80 - 120	2	30		
1,1,2,2-Tetrachloroethane	110	110	74 - 12 6	0	30		
Chlorobenzene	108	108	81 - 121	0	30		
Ethylbenzene	116	112	79 - 126	3	30		
Xylenes, Total	118	116	76 - 121	2	30		
Slyrene	106	102	69 - 112	4	30		
1,2-Dibromo-3-Chloropropane	101	105	70 - 116	4	30		
1,3-Dichlorobenzene	111	113	81 - 126	2	30		
1,4-Dichlorobenzene	108	110	83 - 123	2	30		
1,2-Dichlorobenzene	108	108	82 - 122	0	30		
1,2,4-Trichlorobenzene	98	112	66 - 120	14	30		
1,2-Dibromoethane	109	110	78 - 118	1	30		
Surrogate		MS % Rec	MSD 9	% Rec	Acce	ptance Limits	
1,2-Dichloroethane-d4 (Surr)		101	101		7	0 - 122	
Toluene-d8 (Surr)		101	100		6	9 - 125	
Bromofluorobenzene		100	99		6	9 - 135	

Job Number: 460-20639-1

Client: GaiaTech Inc.

Method Blank - Batch: 460-57634

Method: 8260B Preparation: N/A

Lab Sample ID:	MB 460-57634/5	Analysis Batch: 460-57634	Instrument ID: N	VOAMS:	2	
Client Matrix:	Solid	Prep Batch: N/A	Lab File ID: 1	31224.0	d	
Dilution:	1.0	Units: ug/Kg	Initial Weight/Volu	ume:	5	mL
Date Analyzed:	12/06/2010 0639		Final Weight/Volu	ime:	5	mL
Date Prepared:	N/A					

Analyte	Result	Qual	MDL	RL
Dichlorodifluoromethane	1,0	U	0.41	1.0
Chloromethane	1.0	U	0.63	1.0
Bromomethane	1.0	U	0.41	t.0
Vinyl chloride	1.0	U	0.23	1.0
Chloroethane	1.0	U	0.40	1.0
Trichlorofluoromethane	1.0	U	0.26	1.0
Freon TF	1.0	U	0.48	1.0
Methylene Chloride	1.0	U	0.47	1.0
Acetone	10	U	3.7	10
Carbon disulfide	1.0	U	0.46	1.0
Methyl acetate	1.0	U	0.90	1.0
1,1-Dichloroethene	1.0	U	0.37	t.0
1,1-Dichloroethane	1.0	U	0.25	1.0
cis-1,2-Dichloroethene	1.0	U	0.24	1.0
trans-1,2-Dichloroethene	1.0	U	0.28	1.0
MTBE	1.0	U	0.34	1.0
Chloroform	1.0	U	0.24	1.0
1,2-Dichtoroethane	1.0	U	0.39	t.0
2-Butanone	10	U	0.57	10
1,1,1-Trichloroethane	1.0	U	0.19	1.0
Cyclohexane	t.0	U	0.22	1.0
Carbon tetrachloride	1.0	U	0.10	1.0
Bromodichloromethane	1.0	U	0.30	1.0
1,2-Dichloropropane	1.0	U	0.32	1.0
cis-1,3-Dichloropropene	1.0	U	0.20	1.0
Trichloroethene	1.0	U	0.36	1.0
Methylcyclohexane	1.0	U	0.27	1.0
Dibromochloromethane	1.0	U	0.56	1.0
1,1,2-Trichloroethane	1.0	U	0.59	1.0
Benzene	1.0	U	0.74	1.0
trans-1,3-Dichloropropene	1.0	U	0.22	1.0
Bromoform	1.0	U	0.70	1.0
tsopropylbenzene	1.0	U	0.26	1.0
4-Methyl-2-pentanone	10	U	0.72	10
2-Hexanone	10	U	1.7	10
Tetrachloroethene	1.0	U	0.33	t.0
Toluene	1.0	U	0.30	t.0
1,1,2,2-Tetrachloroethane	1.0	U	0.76	1.0
Chlorobenzene	1.0	U	0.48	1.0
Ethylbenzene	t.0	U	0.19	1.0
Xylenes, Total	3.0	U	0.79	3.0
Styrene	1.0	U	0.35	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	0.61	1.0

Job Number: 460-20639-1

Client: GaiaTech Inc.

Method Blank - Batch: 460-57634

Method: 8260B Preparation: N/A

Lab Sample ID:	MB 460-57634/5	Analysis Batch: 460-57634	Instrument ID: VOAMS2
Client Matrix:	Solid	Prep Batch: N/A	Lab File ID: b31224.d
Dilution:	1.0	Units: ug/Kg	Initial Weight/Volume: 5 mL
Date Analyzed:	12/06/20 t0 0639		Final Weight/Volume: 5 mL
Date Prepared:	N/A		•

Analyte	Result	Qual	MDL	RL	
1,3-Dichlorobenzene	1.0	U	0.48	1.0	
1,4-Dichlorobenzene	1.0	U	0.7 t	1.0	
t,2-Dichlorobenzene	1.0	U	0.64	1.0	
1,2,4-Trichlorobenzene	1.0	U	0.54	1.0	
1,2-Dibromoethane	1.0	U	0.52	1.0	
Surrogate	% Rec		Acceptance Limits		
t,2-Dichloroethane-d4 (Surr)	100		70 - 138		
Toluene-d8 (Surr)	91		6 6 - 126		
Bromofluorobenzene	88		72 - 132		

Client: GaiaTech Inc.

Job Number: 460-20639-1

Lab Control Sample/

Lab Control Sample Duplicate Recovery Report - Batch: 460-57634

Method: 8260B Preparation: N/A

LCS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	LCS 460-57634/3 Solid 1.0 12/06/2010 0501 N/A	Analysis Batch: 460-57634 Prep Batch: N/A Units: ug/Kg	Instrument ID: Lab File ID: Initial Weight/Vol Final Weight/Vole	VOAMS2 b31221.d lume: 5 mL ume: 5 mL	
LCSD Lab Sample ID:	LCSD 460-57634/4	Analysis Batch: 460-57634	Instrument ID:	VOAMS2	

Solid
1.0
12/06/2010 0537
N/A

Analysi	is Batch:	460-5763
Prep B	alch: N/A	
Units:	ug/Kg	

Instrument ID:	VOAN	AS2	2
Lab File ID:	b31222.d	ļ	
Initial Weight/Ve	olume:	5	тL
Final Weight/Vo	olume:	5	тL

		<u>% Rec.</u>					
Anatyle	LCS	LCSD	Limit	RP D	RPD Limit	LCS Qual	LCSD Qual
Dichlorodifluoromethane	78	86	52 - 144		30	·······	
Chloromethane	90	92	50 - 151	2	30		
Bromomethane	87	100	54 - 142	13	30		
Vinyl chloride	90	92	67 - 133	1	30		
Chloroethane	89	96	56 - 146	7	30		
Trichlorofluoromethane	90	90	61 - 139	0	30		
Freon TF	86	84	73 - 123	2	30		
Methylene Chloride	97	94	74 - 137	3	30		
Acetone	136	126	27 - 164	8	30		
Carbon disulfide	103	99	72 - 128	3	30		
Methyl acetate	111	104	73 - 137	7	30		
1,1-Dichloroethene	97	97	71 - 126	1	30		
1,1-Dichloroethane	100	96	76 - 125	4	30		
cis-1,2-Dichloroethene	99	97	80 - 120	3	30		
trans-1,2-Dichloroethene	100	96	75 - 122	4	30		
МТВЕ	84	80	78 - 120	4	30		
Chloroform	99	96	77 - 120	3	30		
1,2-Dichloroethane	96	93	76 - 118	3	30		
2-Bulanone	94	84	77 - 117	11	30		
1,1,1-Trichloroethane	103	98	78 - 117	5	30		
Cyclohexane	83	81	80 - 121	3	30		
Carbon tetrachloride	103	101	79 - 118	2	30		
Bromodichloromethane	101	96	79 - 119	5	30		
1,2-Dichloropropane	100	92	82 - 122	9	30		
cis-1,3-Dichloropropene	102	94	80 - 123	7	30		
Trichloroethene	95	91	79 - 119	5	30		
Methylcyclohexane	87	82	78 - 118	6	30		
Dibromochloromethane	106	99	68 - 120	7	30		
1,1,2-Trichloroelhane	98	93	7 3 - 118	5	30		
Benzene	96	92	77 - 117	4	30		
trans-1,3-Dichloropropene	104	95	67 - 121	9	30		
Bromotorm	87	84	59 - 125	4	30		
Isopropylbenzene	99	93	65 - 129	6	30		

Client: GaiaTech Inc.

Job Number: 460-20639-1

Lab Control Sample/

Dilution:

Date Analyzed:

1.0

12/06/2010 0537

Lab Control Sample Duplicate Recovery Report - Batch: 460-57634

Method: 8260B Preparation: N/A

Initial Weight/Volume: 5 mL

Final Weight/Volume: 5 mL

LCS Lab Sample ID:	LCS 460-57634/3	Analysis Batch: 460-57634	Instrument ID:	VOAMS2
Client Matrix:	Solid	Prep Batch: N/A	Lab File ID:	b3t221.d
Dilution:	t.0	Units: ug/Kg	Initial Weight/Vol	ume: 5 mL
Date Anatyzed:	t2/06/2010 0501		Final Weight/Vol	ume: 5 mL
Date Prepared:	N/A			
LCSD Lab Sample ID:	LCSD 460-57634/4	Analysis Batch: 460-57634	Instrument ID:	VOAMS2
Client Matrix:	Solid	Prep Batch: N/A	Lab File ID:	b3 t222.d

Units: ug/Kg

Date Prepared: N/A					Ū		
	c	<u>% Rec.</u>					
Analyte	LCS	LCSD	Limit	RPD	RPO Limit	LCS Quat	LCSD Qual
4-Methyl-2-pentanone	97	88	68 - 120	9	30	·· -··· ····	,
2-Hexanone	97	91	70 - 122	7	30		
Tetrachloroethene	97	94	80 - 120	4	30		
Toluene	93	89	75 - 115	5	30		
1,1,2,2-Tetrachloroethane	95	90	79 - 122	5	30		
Chlorobenzene	101	96	80 - 120	5	30		
Ethylbenzene	99	95	81 - 121	4	30		
Xylenes, Total	99	94	82 - 122	5	30		
Styrene	103	96	82 - 122	7	30		
1,2-Dibromo-3-Chloropropane	88	86	74 - 118	2	30		
1,3-Dichlorobenzene	96	94	8 0 - 120	3	30		
1,4-Dichlorobenzene	98	94	80 - 120	4	30		
1,2-Dichlorobenzene	93	88	80 - 120	6	30		
1,2,4-Trichlorobenzene	116	t08	80 - 120	8	30		
1,2-Dibromoethane	100	95	75 - 117	6	30		
Surrogate	<u> </u>	CS % Rec	LCSD %	Rec	Accep	tance Limits	
1,2-Dichloroelhane-d4 (Surr)	9	3	94		7	0 - 1 3 8	
Toluene-d8 (Surr)	9	7	95		6	6 - 126	
Bromofluorobenzene	9	4	97		7	2 - 132	

Job Number: 460-20639-1

Client: GaiaTech Inc.

Percent Solids

Duplicate - Batch: 460-57526

Method: Moisture Preparation: N/A

14

20

Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	460-20645-A-6 DU Solid 1.0 t2/03/2010 1801 N/A	Analysis Batch: 460-57526 Prep Balch: N/A Units: %	Analysis Batch: 460-57526 Prep Balch: N/A Units: %			t Assigned
Analyte Percent Moisture		Sample Result/Qual	Result	RPD 17	Limit 20	Qual

58.9

5t.0

	οτο	Z/∳]	1/21	1	11		. 14		1	I	6 ا	s ₹	08	រទ ៖	bea	L	J	1	ı	1	ł	1	13	1	1 💣	le.	
			Chein of Custody Number	Page 1 of		Samela lander verteren	Conditions of Receip	1007		N	M	7	s	9	-	8	8	01	/		ssassed if samplas are retained onthj		12/2/10 16 45	Data	1 Date Time	266 72 h	RUSI
America		N ENVIRONMENTAL TESTING	Date 12/2/10	Lab Number	Analysis (Attach lisl if more space is needed)																V hfonths isnger than 1 m		Stew		G. 6	CS 2 8372	
Tect /		THE LEADER IN	67	2-541-0340			ainers &	HOPW SWZ HOEN IOH	X	×	X	X	X	×	×	XIIX	X X	XI X			sal By Leb 🔲 Archive Fo	Wernents (Specify)	- IVY	EV			
	e on Receipt	ater? Yes No 🕼	" MINEDU	162-4365/31	EDUET LED Contact	i Number	Matrix Con	EONH POSEH '201dun 105 '205 '205	XX	XX	XXX	X X	X X	XX	V X I						ipie Disposei Return To Chent 👿 Dispo	44 (724R) ^{CC Reg}	N/ 2691 0	1706 2 Accel	$ \frac{1mo}{ c,rc } = \frac{3}{7}$		NK - Field Copy
1	lemperatur	Drinking Wa	Project Manag	SDD Islephone Nu	03 500 MIK	Carrier/Waytol		ete 24	2/16 0830	2/10 0915	2/10 0945	1/10 /120	c/10 1020	1/0 1235	2/10 1395	2/10 (435)	2//0 1430 S	2/10 1425 X	10		on B 🗌 Unknown 🔲 .	21 Days 12 Other 30	1210271	12/2/1	0010 Devoj		 Steys with the Sampley Pli
			· • • • •	GULE , JUITE 3	State 24 Code	1/2/2(Ny)		cription mbined on one line) Dr	12/0 (01	7) 12/4	-8) 12/0-	16) 12/02	14) 12/21	12/02	11) 11/2/0	/ iz/0:	12/0:	0/21	11/10		🗌 Skin tmtænt 📃 Poist	Days D 14 Days		Y CC			Clisari with Report; CANAAY
Chain of	Custody Record	TAL-4125 [1007]	CHATECL	ADDIESS JE SUTH LA	CHICA60	Project Namo and Location (Sizile) DST, POESTE	ContractPurchesse OrdenOurse No.	Sample (.D. No. and Des (Containers for coch sample may be co	-8/ T-MWS	-9/ E-MW1	TMW-2 (7-	GMW-3 (15-	TMW-1/13-	GMW-4/10-1	6MW-5 /10-	T.M.w-1	TMW-2	TMW-3	glaced 7.13	a/61	Possible Hazard Kenditication 🗙 Non-Hazard 🔲 Filammable	Tum Arcund Time Required	1. Resinquished By Nich Dif	2. Rollary groat By M. C.	3. Ablarquished by	Connrents	DISTRIBUTION: WHITE - Returned to
																			1. 4	6							

Login Sample Receipt Check List

Client: GaiaTech Inc.

Job Number: 460-20639-1

Login Number: 20639 Creator: Meyers, Gary			List Source: TestAmerica Edison
List Number: 1			
Question	T / F/ NA	Comment	
Radioactivity either was not measured or, if measured, is at or below background	N/A		
The cooler's custody seal, if present, is intact.	True	837266	
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True	5.6° C IR #50	
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		
There are no discrepancies between the sample IDs on the containers and the COC.	True		
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection datefumes are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True		
If necessary, staff have been informed of any short hold time or quick TAT needs	True		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing,	True		

الفكان المتلك المتلك المقاطين المتصفية المتلج المتلك

್ಷಣ್ಣಿ

ANALYTICAL REPORT

Job Number: 460-20728-1 Job Description: DSI, Poestenkill NY

> For: GaiaTech Inc. 135 South LaSalle Street Suite 3500 Chicago, IL 60603 Attention: Mike Duet

Omayra Pinas,

Approved for release. Omayra Penas Project Manager II 12/14/2010 4:43 PM

and the second secon

and the second second

Designee for Sherree Baker Project Manager II sherree.baker@testamericainc.com 12/14/2010

The test results in this report meet all NELAP requirements unless specified within the case narrative. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Edison Project Manager.

TestAmerica Edison Certifications and Approvals: Connecticut: CTDOH #PH-0200, New Jersey: NJDEP (NELAP) #12028, New York: NYDOH (NELAP) #11452, NYDOH (ELAP) #11452, Pennsylvania: PADEP (NELAP) 68-00522 and Rhode Island: RIDOH LAO00132

TestAmerica Laboratories, Inc. TestAmerica Edison 777 New Durham Road, Edison, NJ 08817 Tel (732) 549-3900 Fax (732) 549-3679 www.testamericainc.com

Table of Contents

Cover Title Page	1
Data Summaries	4
Report Narrative	4
Sample Summary	5
Executive Summary	6
Method Summary	8
Method / Analyst Summary	9
Sample Datasheets	10
Surrogate Summary	28
QC Data Summary	30
Data Qualifiers	47
QC Association Summary	48
Lab Chronicle	49
Organic Sample Data	52
GC/MS VOA	52
Method 8260B	52
Method 8260B QC Summary	53
Method 8260B Sample Data	73
Standards Data	154
Method 8260B ICAL Data	154
Method 8260B CCAL Data	177
Raw QC Data	183
Method 8260B Tune Data	183
Method 8260B Btank Data	199
Method 8260B LCS/LCSD Data	211
Method 8260B MS/MSD Data	231

Table of Contents

Method 8260B Run Logs	235
Method 8260B Prep Data	239
Inorganic Sample Data	240
General Chemistry Data	240
Gen Chem Cover Page	241
Gen Chem MDL	242
Gen Chem Analysis Run Log	244
Gen Chem Prep Data	249
Shipping and Receiving Documents	255
Client Chain of Custody	256
Sample Receipt Checklist	257

CASE NARRATIVE

Client: GalaTech Inc.

Project: DSI, Poestenkill NY

Report Number: 460-20728-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on t2/06/2010; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 2.1 C.

The following sample(s) was received outside of holding time: Trip Blank received over holding time.

Note: All samples which require themal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as amval on ice, etc.

VOLATILE ORGANIC COMPOUNOS (GC-MS)

Samples 460-20728-1 and 460-20728-2 were analyzed for volatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were prepared and analyzed on 12/07/2010.

No difficulties were encountered during the volatiles analyses.

All quality control parameters were within the acceptance limits.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples 460-20728-3 through 460-20728-8 were analyzed for volatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 12/08/2010.

The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 57841 were outside control limits for Trichloroethene. The associated laboratory control sample (LCS) recovery met acceptance criteria.

Refer to the QC report for details.

No other difficulties were encountered during the volatiles analyses.

All other quality control parameters were within the acceptance limits.

PERCENT SOLIDS

Samples 460-20728-1 and 460-20728-2 were analyzed for percent solids in accordance with ASTM D2974-87 Modified. The samples were analyzed on 12/06/2010.

No difficulties were encountered during the % solids analyses.

All guality control parameters were within the acceptance limits.

SAMPLE SUMMARY

Client: GaiaTech Inc.

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
460-20728-1	GMW-2 (8-10)	Solid	12/03/2010 1025	12/06/2010 1201
460-20728-2	GMW-2 (10-12)	Solid	12/03/2010 1030	12/06/2010 1201
460-20728-3	GMW-2	Water	12/03/20 t0 1245	12/06/2010 1201
460-20728-4	GMW-5	Water	12/04/2010 1120	12/06/2010 1201
460-20728-5	GMW-3	Water	12/04/2010 1250	12/06/2010 1201
460-20728-6	GMW-4	Waler	12/04/2010 1340	12/06/2010 1201
460-20728-7	GMW-1	Water	12/05/2010 0945	12/06/2010 1201
460-20728-8	TB	Water	11/16/2010 0000	12/06/2010 1201

EXECUTIVE SUMMARY - Detections

Client: GaiaTech Inc.

Lab Sample ID Cli Anatyte	ient Sample ID	Result / C	lualifier	Reporting Limit	Units	Method	
460-20728-1	GMW-2 (8-10)						
Helter trans Other State	Giller-2 (8-10)						
Methylene Chloride		0.71	J	1.0	ug/Kg	8260B	
Acelone		6.4	J	10	ug/Kg	8260B	
Methyl acetate		0.97	Ŀ	1.0	ug/Kg	8260B	
I richioroethene		5.8		1.0	ug/Kg	8260B	
Percent Moisture		8.8		1.0	%	Moisture	
Percent Solids		91.2		1.0	%	Moisture	
460-20728-2	GMW-2 (10-12)						
Acetone		5.6	J	11	ua/Ka	8260B	
cis-1.2-Dichloroethene		0.55	J	1.1	ua/Ka	8260B	
Trichloroethene		5.0	-	1.1	ua/Ka	8260B	
Percent Moisture		10.6		1.0	%	Moisture	
Percent Solids		89.4		1.0	%	Moisture	
460-20728-3	GMW-2						
cia t 2 Disblaroothene		29		1.0	um/l	80600	
trans 1.2 Dichloroethere	<u>^</u>	20	,	1.0	ug/L	02008	
Triphloraothono	e	0.00	J	1.0	ug/L	02000	
Toluono		0.20	,	1.0	ug/L	8200B 8000D	
Toldene		0.30	J	1.0	ugru	020UB	
460-20728-4	GMW-5						
Benzene		0.22	J	1.0	ua/L	8260B	
Toluene		0.47	J	1.0	ug/L	8260B	
460-20728-5	GMW-3						
View oblacido		10		1.0	un li	00600	
Anotono		1.9		1.0	ug/L	820UB 8000D	
4 1 Disbloreethone		21	,	10	ug/L	02005	
r, t-Dichloroeinene		0.35	J	1.0	ug/L	82008	
trans. t.2. Disblarasthan	<u>^</u>	20	,	1.0	ug/L	8200B 8000D	
MTRC	e	0.41	J	1.0	ug/L	02008	
WHEE Trightersethere		1.2		1.0	Ug/L	0200D	
Pennene		370	,	1.0	ug/L	8260B	
A Mothud 2 nontenana		U.44 4 0	J	1.0	ug/L	8200B 8060D	
4-weinyi-z-pentanone		1.0	J	10	ug/L	0200B	
Z-mexanone		1.5	J	10	ug/L	0200B	
Tetrachioroethene		0.39	J	1.0	ug/L	82005	
roidene Vulenen Total		0.58	J	1.0	ug/L	82008	
Aylenes, rotat		0.62	J	3.0	ug/L	8200B	

EXECUTIVE SUMMARY - Detections

Client: GaiaTech Inc.

Lab Sample ID (Analyte	Client Sample ID	Result / C	Qualifier	Reporting Limit	Units	Method	
460-20728-6	GMW-4						
Carbon disulfide		1.9		1.0	ug/J	8260B	
cis-1,2-Dichloroethene	9	0.98	J	1.0	ug/i	8260B	
MTBE		0.20	Ĵ	1.0	ug/i	8260B	
Trichloroe1hene		17		1.0	uali	8260B	
Tetrachioroethene		0.41	j.	1.0	ug/L	82608	
Toluene		0.57	J	1.0	ug/L	82608	
Xylenes, Total		0.78	J	3.0	ug/L	8260B	
460-20728-7	GMW-1						
Acetone		31		10	uoli	0000D	
2-Butanone		15		10	ug/L	82000	
Trichloroethene		0.27	.I	10	ug/L	0200B	
Benzene		0.21	, L	1.0	ugit	92600	
4-Methyl-2-pentanone		1.6	J	10	uoli	82000	
2-Hexanone		5,1	J	10	ug/L	2000 22600	
Toluene		0.55	.1	10	ug/c	2000	
Xytenes, Total		0.48	Ĵ	3.0	ug/L	8260B	

METHOD SUMMARY

Client: GaiaTech Inc.

Job Number: 460-20728-1

Description	Lab Location	Method	Preparation Method
Matrix: Solid			
Volatile Organic Compounds (GC/MS)	TAL ED!	SW846 8260B	
Closed System Purge and Trap	TAL EDI		SW846 5035
Percent Moisture	TAL EDI	EPA Moisture	
Matrîx: Water			
Volatile Organic Compounds (GC/MS)	TAL EDt	SW846 8260B	
Purge and Trap	TAL EDI		SW846 5030B

Lab References:

TAL EDI = TestAmerica Edison

Method References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: GaiaTech Inc.

Method	Analyst	Analyst ID
SW846 8260B	Martinez, Eddie	EM
EPA Moisture	Hall, Alonzo	ah

Analytical Data

Client Sample ID:	GMW-2 (8-10)					
Lab Sample ID:	460-20728-1				Date Sampled: 12/03/2010 1	025
Client Matrix:	Solid	% Moisture:	8.8		Date Received: 12/06/2010 1	201
	8	260B Volatile Organic C	ompounds (GC/M	AS)		
Method:	8260B	Analysis Batch: 460-57	829	Instrument ID:	VOAMS2	
Preparation:	5035	Prep Batch: 460-57757		Lab File ID:	b31265.d	
Dilution:	1.0			Initial Weight/Volum	ne: 5.34 g	
Date Analyzed:	12/07/2010 1950			Final Weight/Volun	າe: 5 mL	
Date Prepared:	12/07/2010 0929					
Analyte	DrvWt Corrected: Y	Result (uo/Ko)	Oualifi	er MDL	RL	
Dichlorodifluoromet	hane	10	1	0.42	10	··· ··· ·
Chloromethane		10	Ű	0.5	1.0	
Bromomethane		1.0	ŭ	0.42	1.0	
Vinvl chloride		1.0	ŭ	0.24	10	
Chloroelbane		10	ŭ	0.24 0.41	1.0	
Tricblorofluoromethy	ane	10	ŭ	0.27	1.0	
Freon TF		10	, i	0.20	1.0	
Methylene Obloride		0.71		0.43	1.0	
Acetone		64	1	3.9	10	
Carbon digulfide		10	5 H	0.0	10	
Mathul acatata		0.07	1	0.70	1.0	
1 1-Dicblorootheno		0.97	11	0.92	1.0	
1.1 Dichloroethane		1.0	- U	0.36	1.0	
cie 1.2 Dichlorootho	100	1.0	11	0.20	1.0	
trans 4.2 Diablocost		1.0	- U	0.24	1.0	
MTDE	helle	1.0	0	0.29	1.0	
VII DE Chloroform		1.0	0	0.35	1.0	
		1.0	0	0.24	1.0	
2 Dudenane		1.0	0	0.40	1.0	
2-Bulanone		10	0	0.58	10	
1,1,1-Inchloroeinan	ie	1.0	U	0.19	1.0	
Cyclonexane		1.0	U	0.23	1.0	
Carbon tetrachiorioe	2	1.0	U	0.10	1.0	
Bromodichloromethi	ane	1.0	U	0.31	1.0	
t,2-Dichloropropane	5	1.0	U	0.33	1.0	
cis-1,3-Dichloroprop	bene	1.0	U	0.21	1.0	
Trichloroethene		5.8		0.37	1.0	
Melhylcyclohexane		1.0	U	0.28	1.0	
Dibromochlorometh	ane	1.0	U	0.57	1.0	
1,1,2-Trichloroethan	1e	1.0	U	0.61	1.0	
Benzene		1.0	U	0.76	1.0	
frans-1,3-Dichloropr	opene	1.0	U	0.23	1.0	
Bromoform		1.0	U	0.72	1.0	
Isopropylbenzene		1.0	U	0.27	1.0	
4-Methyl-2-pentanor	ne	10	U	0.73	10	
2-Hexanone		10	U	1.7	10	
Tetrachloroethene		1.0	U	0.34	1.0	
Toluene		1.0	U	0.31	1.0	
1,1,2,2-Tetrachloroe	alhane	1.0	U	0.78	1.0	
Chlorobenzene		1.0	U	0.49	1.0	
Ethylbenzene		1.0	U	0.20	1.0	
Xylenes, Total		3.1	U	0.81	3.1	
Styrene		1.0	U	0.36	1.0	
1,2-Dibromo-3-Chto	ropropane	1.0	U	0.63	1.0	
1,3-Dichlorobenzene	e	1.0	U	0.50	1.0	
1,4-Dichlorobenzene	e	1.0	U	0.73	1.0	
1,2-Dichlorobenzene	e	1.0	U	0.65	1.0	

Client: GaiaTech Inc.

Client Sample ID:	GMW-2 (8-10)						
Lab Sample ID:	460-20728-t				Dat	e Sampled: 12/03/2	010 1025
Client Matrix:	Solid	% Moisture:	8.8		Dat	e Received: 12/06/2	010 1201
	8	260B Volatile Organic (Compounds	(GC/MS)			
Method:	8260B	Analysis Batch: 460-5	7829	Instru	ument ID:	VOAMS2	
Preparation:	5035	Prep Batch: 460-5775	7	Lab I	File ID:	b31265.d	
Dilution:	1.0			Initia	Weight/Volume:	5.34 g	
Date Analyzed:	t2/07/2010 1950			Final	Weight/Volume:	5 mL	
Date Prepared:	12/07/2010 0929						
Analyte	DryWt Corrected: Y	Result (ug/Kg) (Qualifier	MDL	RL	
1,2,4-Trichlorobenz	ene	1.0	Ļ	, ,	0.55	1.0	
1,2-Dibromoethane		t.0	L	J	0.53	1.0	
Surrogate		%Rec	C	Qualifier	Accepta	ance Limits	
1,2-Dichloroethane-	d4 (Sun)	102			70 - t38	3	
Toluene-d8 (Surr)		91			66 - 120	ò	
Bromofluorobenzen	e	88			72 - 132	2	

Analytical Data

Ctient Sample ID:	GMW-2 (10-12)				
Lab Sample ID:	460-20728-2			E	ale Sampled: 12/03/2010 1030
Client Matrix:	Solid	% Moisture: 10.6		Ε	Date Received: 12/06/2010 1201
	8	260B Volatile Organic Compo	ounds (GC/M	S)	
Method:	82608	Analysis Batch: 460-57829		Instrument ID:	VOAMS2
Preparation	5035	Pren Batch: 460-57757		Lab File ID'	b31266 d
Dilution:	1.0	Thep Daten. 400-011-01		Lab inc it.	504 g
Date Analyzadi	12/07/2010 2012			minar weight/volum	.e. 5.24 g
Date Analyzed:	12/07/2010 2013			Final Weight/Volum	a: 5 mL
Dale Prepared:	12/07/2010 0933				
Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifie	r MDL	RL
Dichlorodifluorometh	ane	1.1	U	0.43	1.1
Chloromethane		1.1	U	0.68	1.1
Bromomethane		1.1	U	0.44	1.1
Vinyl chloride		1.1	U	0.25	1.1
Chloroethane		1.1	U	0.43	1.1
Trichlorofluorometha	ne	1.1	Ū	0.28	11
Freon TF		1.1	Ū	0.51	1 1
Methylene Chloride		11	ŭ	0.50	1 1
Acetone		56	ĩ	30	1.1
Carbon disulfide		1.1		0.50	11
Methul aretate		1.1		0.50	1.1
1.1 Dichlereethope		1.1	0	0.96	3.1
1,1-Dichloroghana		1.1	0	0.39	1,1
		1.1	0	0.27	1.1
cis-1,2-Dichloroether	he	0.55	J	0.25	1.1
Trans-1,2-Dichloroetr	iene	1.1	U	0.30	1,1
MIBE		1.1	U	0.37	1.1
Chloroform		1.1	U	0.25	1.1
1,2-Dichloroethane		1.1	U	0.42	1.1
2-Butanone		11	U	0.61	11
1,1,1-Trichloroethane	e	1.1	U	0.20	1.1
Cyclohexane		1.1	U	0.24	1.1
Carbon tetrachloride		1.1	U	0.11	1.1
Bromodichlorometha	ine	1.1	U	0.32	1.1
1,2-Dichloropropane		1.1	U	0.34	1.1
cis-1,3-Dichloroprope	ene	1.1	U	0.21	1.1
Trichloroethene		5.0		0.39	1.1
Methylcyclohexane		1,1	U	0.29	1.1
Dibromochlorometha	ine	1.1	U	0.60	1.1
1,1,2-Trichloroethane	e	1.1	Ū	0.63	11
Benzene		1.1	Ū	0.79	1.1
trans-1.3-Dichloropro	pene	1.1	Ū	0.24	11
Bromoform		1 1	ŭ	0.75	11
Isopronylhenzene		11		0.29	1.1
A-Methyl-2-nentanon	A	1.7	0	0.28	1.1
2-Weinys-z-penianun 2-Weinigs-z-penianun	6	11	0	0.76	11
Zericzshlowethese			0	1.8	11
		1.1	U	0.35	1,1
toluene		1.1	U	0.32	1.1
1,1,2,2-1etrachioroet	nane	1.1	U	0.81	1.1
Uniorobenzene		1.1	U	0.51	1.1
Elhylbenzene		1.1	U	0.20	1,1
Xylenes, Total		3.2	U	0.84	3.2
Styrene		1.1	U	0.37	1.1
1,2-Dibromo-3-Chlor	opropane	1.1	U	0.65	1.1
1,3-Dichlorobenzene		1.1	U	0.52	1.1
1,4-Dichlorobenzene		1.1	U	0.76	1,1
1,2-Dichlorobenzene		1.1	U	0.68	1,1
			-		

Client: GaiaTech Inc.

Client Sample ID:	GMW-2 (10-12)						
Lab Sample ID: Client Matrix:	460-20728-2 Solid	% Moisture:	t0.6		Da Da	ate Sampled: 12/03/20 ate Received: 12/06/20	10 1030 10 1201
		260B Volatile Organic	Compound	s (GC/MS)			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	82608 5035 1.0 12/07/2010 2013 12/07/2010 0933	Analysis Batch: 460-5 Prep Batch: 460-5775	57829 57	Instr Lab Initia Fina	rument ID: File ID: al Weight/Volume I Weight/Volume:	VOAMS2 b31266.d : 5.24 g 5 mL	
Analyle	DryWt Corrected: Y	Result (ug/Kç])	Qualifier	MDL	RL	
1,2,4-Trichlorobenz	ene	1.1		U	0.57	1.1	
1,2-Dibromoethane		1.1		U	0.55	1.1	
Surrogate		%Rec		Qualifier	Accep	tance Limits	
1,2-Dichloroethane-	d4 (Surr)	100			70 - 13	38	
Toluene-d8 (Sum)		90			66 - 12	26	
Bromofluorobenzen	e	89			72 - 13	32	

Analytical Data

Client Sample ID:	GMW-2					
Lab Sample ID:	460-20728-3			D	ate Sampled: 12/03/2010	1245
Client Matrix:	Water			D	ale Received: 12/06/2010	1201
		8260B Volatile Organic Compo	unds (GC/M	S)		
Method: Preparation:	8260B 5030B	Analysis Batch: 460-57841		Instrument ID: Lab File ID:	VOAMS8 j95987.d	
				initial weight/volume	: 5 mL	
Date Analyzed:	12/08/2010 0027			Final Weight/Volume	: 5 mL	
Date Prepared:	12/08/2010 0027					
Analyte		Resull (ug/L)	Qualifie	r MDL	RL	
Dichlorodifluoromet	hane	1.0	U	0.29	1.0	
Chloromethane		1.0	U	0.21	1.0	
Bromomethane		1.0	U	0.31	1.0	
Vinyl chloride		1.0	U	0.13	1.0	
Chloroethane		1.0	U	0.45	1.0	
Trichlorofluorometh	ane	1.0	U	0.16	1.0	
Freon TF		1.0	U	0,28	1.0	
Methylene Chloride	1	1.0	U	0.19	1.0	
Acetone		10	U	2.5	10	
Carbon disulfide		1.0	Ų	0.15	1.0	
Methyl acetate		2.0	U	0.33	2.0	
1,1-Dichloroethene		1.0	U	0.14	1.0	
1,1-Dichloroethane		1.0	Ų	0.10	1.0	
cis-1,2-Dichloroethe	ene	28		0.20	1.0	
Irans-1,2-Dichloroe	thene	0.56	J	0.14	1.0	
MTBE		1.0	U	0.18	1.0	
Chloroform		1.0	U	0.15	1.0	
1,2-Dichloroethane		1.0	U	0.24	1.0	
2-Butanone		10	U	0.82	10	
1,1,1-Trichloroethau	ne	1.0	Ų	0.25	1.0	
Cyclohexane		1.0	Ų	0.13	1.0	
Carbon tetrachlorid	e	1.0	U	0.19	1.0	
Bromodichlorometh	ane	1.0	U	0.093	1.0	
1,2-Dichloropropan	e	1.0	U	0.090	1.0	
cis-1,3-Dichloroprop	pene	1.0	U	0.11	1.0	
Trichloroethene		160		0,18	1.0	
Methylcyclohexane		1.0	U	0.090	1.0	
Dibromochlorometh	ane	1.0	U	0.11	1.0	
1,1,2-Trichloroetha	ne	1.0	U	0.10	1.0	
Benzene		1.0	U	0.13	1.0	
frans-1,3-Dichlorop	ropene	1.0	U	0.12	1.0	
Bromoform		1.0	U	0.10	1.0	
Isopropylbenzene		1.0	U	0.21	1.0	
4-Methyl-2-pentano	ne	10	U	0.68	10	
2-Hexanone		10	U	0.55	10	
Tetrachloroethene		1.0	Ų	0.20	1.0	
Toluene		0.30	J	0.090	1.0	
1,1,2,2-Tetrachloro	ethane	1.0	U	0.090	1.0	
Chlorobenzene		1.0	Ų	0.16	1.0	
Elhylbenzene		1.0	U	0.25	1.0	
Xylenes, Total		3.0	U	0.43	3.0	
Styrene		1.0	U	0.13	1.0	
1,2-Dibromo-3-Chlo	propropane	1.0	U	0.15	1.0	
1,3-Dichlorobenzen	ė	1.0	U	0.22	1.0	
1,4-Dichlorobenzen	e	1.0	U	0.15	1.0	
1,2-Dichlorobenzen	e	1.0	Ų	0.16	1.0	

Client: GaiaTech Inc.

Client Sample ID:	GMW-2					
Lab Sample ID: Client Matery	460-20728-3			Date	Sampled: 12/03/20 Baseburge: 12/06/20	10 1245
Cheminikautx.	YYalei			Date	Received: 12/06/20	10 1201
		8260B Volatile Organic Compou	inds (GC/MS)			
Method:	82608	Analysis Batch: 460-57841	Instrument ID: VOAMS8			
Preparation:	5030B		Lab	File ID:	j95987.d	
Ditution:	1.0		Initia	I Weight/Votume:	5 mL	
Date Analyzed:	12/08/2010 0027		Final	Weight/Volume:	5 mL	
Date Prepared:	t2/08/2010 0027					
Analyte		Result (ug/L)	Qualifier	MDL	RL	
1,2,4-Trichlorobenz	ene	1.0	U	0.44	1.0	
1,2-Dibromoethane		1,0	U	0.090	1.0	
Surrogate		%Rec	Qualifier	Acceptar	ice Limils	
1,2-Dichloroethane	-d4 (Surr)	t08		70 - 122		
Toluene-d8 (Surr)		102		69 - 125		
Bromofluorobenzen	e	1 t0		69 - 135		

Analytical Data

Cliem Sample ID:	GMW-5				
Lab Sample ID: Client Matrix:	460-20728-4 Water			Di Di	ate Sampled: 12/04/2010 1120 ate Received: 12/06/2010 1201
		8260B Volatile Organic Compo	unds (GC/M	S)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5030B 1.0 12/08/2010 0052 12/08/2010 0052	Anatysis Batch: 460-57841		Instrument ID: Lab Fite ID: Initial Weight/Volume Final Weight/Volume	VOAMS8 j95988.d e: 5 mL : 5 mL
Analyte		Result (ug/L)	Qualifie	r MDL	RL
Dichlorodifluoromet	thane	1.0	U	0.29	1.0
Chloromethane		1.0	U	0.21	1.0
Bromomethane		1.0	Ū	0.31	1.0
Vinyl chloride		1.0	Ū	0.13	1.0
Chloroethane		1.0	Ū	0.45	1.0
Trichlorofluorometh	ane	1.0	Ū	0.16	10
Freon TF		10	Ū	0.28	10
Methylene Chloride	2	10	U.	0.19	1.0
Acetone	•	10		2.5	10
Carbon digutido		10		0.15	10
Mothyl acotato		2.0		0.13	2.0
1 1 Dichloroothono		10		0.55	2.0
1,1-Dichloroethene		1.0	U U	0.14	1.0
ais 1.2 Disblorestby		1.0	0	0.10	1.0
tropp 1.2 Disblaras	thene	1.0	U U	0.20	1.0
MTDC	ulene	1.0	0	0.14	1.0
Chlessform		1.0	U U	0.10	1.0
		1.0	U U	0.15	1.0
1,2-Dichloroelnane		1.0	U U	0.24	1.0
z-Butanone		10	U U	0.82	10
1,1,1- (richtoroethai	ne	1.0	U 	0.25	t.u
Cyclonexane		1.0	U	0.13	1.0
Carbon tetrachlond	e	1.0	U	0.19	t.0
Bromodichlorometh	nane	1.0	U	0.093	t.0
1,2-Dichloropropan	e	1.0	U	0.090	1.0
cis-1,3-Dichloropro	pene	1.0	U	0.11	1.0
Trichloroethene		1.0	U	0.18	1.0
Methylcyclohexane	•	1.0	U	0.090	t.0
Dibromochlorometh	hane	1.0	U	0.11	1.0
1,1,2-Trichloroetha	ne	1.0	U	0. t0	1.0
Benzene		0.22	J	0.13	1.0
trans-1,3-Dichtorop	ropene	1.0	U	0.12	1.0
Bromoform		1.0	U	0.10	1.0
Isopropylbenzene		1.0	U	0.21	1.0
4-Methyt-2-pentano	ne	10	U	0.68	10
2-Hexanone		10	U	0.55	10
Tetrachloroethene		1.0	U	0.20	1.0
Toluene		0.47	J	0.090	1.0
1, t,2,2-Tetrachloro	elhane	1.0	U	0.090	1.0
Chlorobenzene		1.0	U	0.16	1.0
Ethylbenzene		1.0	U	0.25	1.0
Xylenes, Total		3.0	Ū	0.43	3.0
Styrene		1.0	- U	0.13	1.0
1.2-Dibromo-3-Chir	propropane	10	Ц	0.15	10
1.3-Dichlorobenzen	10 	10	U U	0.15	10
1 4-Dicblorobonzon		10	U II	0.22	10
1.2-Dicblorabonzon		10	U H	0.10	10
1,2-010100100CH2CH	· ·	1.0	Ų	0.10	LV

Client: GaiaTech Inc.

Client Sample ID:	GMW-5					
Lab Sample ID: Client Matrix:	460-20728-4 Water			Date Date	Sampled: 12/04/20 Received: 12/06/20	010 1120
	, idio,					
		8260B Volatile Organic Compou	inds (GC/MS)			
Method:	8260B	Analysis Batch: 460-57841	Instrument ID: VOAMS8		VOAMS8	
Preparation:	5030B		Lab	File ID:	j95988.d	
Dilution:	1.0		Initia	1 Weight/Volume:	5 mL	
Date Analyzed:	12/08/2010 0052		Fina	I Weight/Volume:	5 mL	
Date Prepared:	12/08/2010 0052					
Analyte		Result (ug/L)	Qualifier	MDL	RL	
1,2,4-Trichlorobenz	ene	1.0	U	0.44	1.0	· ·
1,2-Dibromoethane		1.0	U	0.090	1.0	
Surrogate		%Rec	Qualifier	Acceptar	ice Limits	
1,2-Dichloroethane	-d4 (Surr)	104		70 - 122		
Toluene-d8 (Surr)		91		69 - 125		
Bromofluorobenzen	e	99		69 - 135		

Analytical Data

Client Sample ID:	GMW-3					
Lab Sample ID:	460-20728-5			Date	Sampled: 12/04/201	0 1250
Client Matrix:	Water			Date	Received: 12/06/201	0 1201
		8260B Volatile Organic Compo	unds (GC/M	S)		
Method:	8260 B	Analysis Batch: 460-57841		Instrument ID:	VOAMS8	
Prenaration:	5030B			Lah File ID:	i95992 d	
Dilution:	10			Lob File ID.	jauaa.u	
Data Apolyzodi	12/09/2010 0222			Final Weight Volume.		
Date Analyzed.	12/00/2010 0232			Final weigh/volume:	5 ML	
Date Prepared:	12/08/2010 0232					
Analyte		Result (ug/L)	Qualifie	r MDL	RL	
Dichlorodifluorometh	nane	1.0	U	0,29	1.0	AA
Chloromethane		1.0	U	0.21	1,0	
Bromomethane		1.0	U	0.31	t.0	
Vinyl chloride		1.9		0.13	1.0	
Chloroethane		1.0	U	0.45	1.0	
Trichlorofluorometha	ane	1.0	U	0.16	t.0	
Freon TF		1.0	U	0.28	1.0	
Melhylene Chloride		1.0	U	0.19	t.0	
Acetone		21		2.5	10	
Carbon disulfide		1.0	U	0.15	1.0	
Methyl acetate		2.0	EI	0.33	2.0	
1.1-Dichloroethene		0.35	J	0.14	1.0	
1.1-Dichloroethane		1.0	ย	0.10	1.0	
cis-1.2-Dichloroethe	ne	28	-	0.20	10	
trans-1.2-Dichloroet	hene	0.41	.I	0.14	1.0	
MTBE		12	Ū	0.18	10	
Chlorotorm		10	ŧJ	0.15	1.0	
1 2-Dichloroethane		10	Ű	0.24	10	
2-Butanone		10	÷.	0.24	10	
1.1.1-Trichlomethan	e	10	÷.	0.25	10	
Ovclobexage		10	1	0.13	1.0	
Carbon tetrachloride	5	10	1	0.15	1.0	
Bromodichloromethy	ano	1.0	1	0.19	1.0	
1.2-Dichloronronana	1	1.0	1	0.000	1.0	
ris_1.3.Diebtoropropane		1.0	1	0.050	10	
Trichloroothono		270	0	0.11	1.0	
Motivicuelobavana		10	۶I	0.10	1.0	
Dibromochloromatio	200	1.0	0	0.050	10	
1.1.2.Trichlocorthan		1.0	0	0.11	10	
Ponzene	l¢	0.44	5	0.10	1.0	
trane 1.2 Dichlorope	0000	10	5	0.13	10	
Bromoform	opene	1.0	0	0.12	10	
Incorrectulbengene		1.0	U U	0.10	10	
A Melloul 2 nanianor	n a	10	0	0.21	1.0	
4-Metriyi-z-pentarior	ie -	1.0	J	0.00	10	
Z-mexanone		1.5	J	0.00	10	
Tetrachioroethene		0.39	J	0.20	1.0	
1 digene		0.56	J	0,090	1.0	
1, 1,Z,Z-TEURCONOFOE	anane	1.0	0	0,090	7,0	
Unioropenzene		1.0	0	0.16	LU	
Einyidenzene		1.0	0	0.25	1.0	
Aylenes, 101al		0.62	J	0.43	3.0	
Styrene		1.0	0	0.13	1.0	
T,Z-Dibromo-3-Chloi	ropropane	1.0	U	0.15	1.0	
1,3-Dichlorobenzena	3	1.0	0	0.22	LO	
1,4-Dichlorobenzene	Ģ	1.0	0	0.15	1.0	
t,2-Dichlorobenzene	<u>þ</u>	1.0	U	0.16	1.0	

Client: GaiaTech Inc.

Job Number: 460-20728-1

Client Sample ID:	GMW-3					
Lab Sample ID: Client Matrix:	460-20728-5 Water			Date Date	Sampled: 12/04/20 Received: 12/06/20	10 1250 10 1201
		8260B Volatile Organic Compou	nds (GC/MS)			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5030B 1.0 12/08/2010 0232 12/08/2010 0232	Analysis Batch: 460-57841	Insir Lab Inilia Final	ument ID: File ID: I Weight/Volume: I Weight/Volume:	VOAMS8 j95992.d 5 mL 5 mL	
Analyte		Result (ug/L)	Qualifier	MDL	RL	
1,2,4-Trichlorobenz	ene	1.0	U	0.44	1.0	
1,2-Dibromoethane		1.0	U	0.090	1.0	
Surrogate		%Rec	Qualifier	Acceptar	ce Limits	
1,2-Dichloroethane-	d4 (Surr)	92	••••••	70 - 122		
Toluene-d8 (Surr)		85		69 - 125		
Bromofluorobenzen	e	89		69 - 135		

-

Analytical Data

Client Sample ID:	GMW-4					
Lab Sample ID: Client Matrix;	460-20728-6 Water			Da Da	ate Sampled: 12/04/2 ate Received: 12/06/2	010 1340 010 1201
		8260B Votatile Organic Compo	ounds (GC/M	S)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5030B 1.0 12/08/2010 0117 12/08/2010 0117	Analysis Batch: 460-57841		Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume:	VOAMS8 j95989.d : 5 mL : 5 mL	
Analyte		Result (ug/L)	Qualifie	r MDL	RL	
Dichlorodifluorome	ihane	1.0	Ű	0.29	1.0	
Chloromethane		1.0	U	0.21	1.0	
8romomethane		1.0	U	0.31	t.0	
Vinyl chloride		1.0	U	0.13	1.0	
Chloroethane		1.0	U	0.45	1.0	
Trichlorofluorometh	ane	1.0	U	0.16	1.0	
Freon TF		1.0	U	0.28	1.0	
Methylene Chloride	9	1.0	U	0.19	1.0	
Acetone		10	U	2.5	10	
Carbon disulfide		1,9		0.15	1.0	
Methyl acetate		2.0	U	0.33	2.0	
1, t-Dichloroethene		1.0	U	0.14	1.0	
1,1-Dichloroethane		1.0	U	0.10	1.0	
cis-1,2-Dichloroethi	ene	0.98	J	0.20	1.0	
trans-1,2-Dichloroe	Ihene	1.0	U	0.14	1.0	
MTBE		0.20	J	0.18	1.0	
Chloroform		t.0	U	0.15	t.0	
1,2-Dichloroethane		1.0	U	0.24	1.0	
2-Butanone		10	U	0.82	10	
1,1,1-Trichloroetha	ne	t.0	U	0.25	1.0	
Cyclohexane		1.0	U	0.13	1.0	
Carbon tetrachlorid	e	1.0	U	0.19	1.0	
Bromodichlorometh	nane	1.0	U	0.093	1.0	
1,2-Dichloropropan	e	1.0	U	0.090	t.0	
cis-1,3-Dichloropro	pene	1.0	U	0.11	1.0	
Trichloroethene		17		0.18	1.0	
Methylcyclohexane	•	1.0	U	0.090	t.0	
Dibromochlorometh	nane	1.0	U	0.11	t.0	
1,1,2-Trichloroetha	ne	1.0	U	0.10	1.0	
Benzene		1.0	U	0.13	t.0	
frans-1,3-Dichlorop	ropene	1.0	U	0.12	t.0	
Bromoform		1.0	U	0.10	1.0	
Isopropylbenzene		1.0	U	0.2 t	1.0	
4-Methyl-2-pentano	ne	10	U	0.68	10	
2-Hexanone		10	Ų	0.55	tO	
Tetrachloroethene		0.41	J	0.20	1.0	
Toluene		0.57	J	0.090	1.0	
1,1,2,2-Tetrachloro	ethane	1.0	U	0.090	1.0	
Chlorobenzene		1.0	U	0.16	1.0	
Ethylbenzene		1.0	U	0.25	1.0	
Xylenes, Total		0.78	J	0.43	3.0	
Styrene		t.0	U	0.13	1.0	
1.2-Dibromo-3-Chlo	propropane	t.0	U	0.15	1.0	
1,3-Dichlorobenzen	ie	t.0	U	0.22	1.0	
t,4-Dichlorobenzen	e	1.0	U	0.15	1.0	
1,2-Dichlorobenzen	e	1.0	U	0.16	1.0	

Client: GaiaTech Inc.

Client Sample ID:	GMW-4					
Lab Sample tD: Client Matrix:	460-20728-6 Water			Date Date	Sampled: 12/04/2010 1340 Received: 12/06/2010 1201	
		8260B Volatile Organic Compou	inds (GC/MS)			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5030B 1.0 12/08/2010 0117 12/08/2010 0117	Analysis Balch: 460-57841	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:		VOAMS8 j95989.d 5 mL 5 mL	
Analyte		Result (ug/L)	Qualifier	MDL	RL	
1,2,4-Trichlorobenz	ene	1.0	U	0.44	t.0	
t,2-Dibromoethane		1.0	U	0.090	1.0	
Surrogate		%Rec	Qualifier	Acceptar	ice Limits	
t,2-Dichloroethane-d4 (Surr)		88	70 - 122			
Toluene-d8 (Surr)		91	69 - 125			
Bromofluorobenzen	e	91		69 - t35		

Analytical Data

Client Sample ID:	GMW-1				
Lab Sample ID: Client Matrix:	460-20728-7 Water			Date Date	Sampled: 12/05/2010 0945 Received: 12/06/2010 1201
		8260B Volatile Organic Compo	unds (GC/M	S)	
Method: Preparation: Ditution: Date Analyzed: Date Prepared:	8260B 5030B 1.0 12/08/2010 0142 12/08/2010 0142	Analysis Batch: 460-57841		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	VOAM S 8 j95990.d 5 mL 5 mL
Analyle		Result (uo/L)	Qualifie	r MDI	RI
Dicblorodifluoromet	hane	10	11		10
Chloromethane		1.0	U U	0.29	1.0
Bromomelbane		1.0	U U	0.21	1.0
Viewl chloride		1.0	ŭ	0.31	1.0
Chloroethane		1.0	U U	0.15	1.0
Trichlorofluorometh	ane	1.0	U U	0.45	1.0
Freon TF		1.0	U U	0.10	1.0
Methylene Chloride		10	П	0.20	1.0
Acelone		31	U	25	10
Carbon disulfide		10	11	0.15	10
Methyl acetate		2.0		0.13	20
1.1-Dichloroethene		1.0	ŭ	0.05	1.0
1,1-Dichloroethane		1.0	Ŭ	0.10	1.0
cis-1,2-Dichloroethe	ne	1.0	Ŭ	0.20	10
trans-1,2-Dichloroet	hene	1.0	Ŭ	0.14	10
MTBE		1.0	Ū	0.18	10
Chloroform		1.0	Ū	0.15	10
1,2-Dichloroethane		1.0	ŭ	0.24	1.0
2-Bulanone		15	-	0.82	10
1,1,1-Trichloroethan	e	1.0	U	0.25	10
Cyclohexane		1,0	U	0.13	1.0
Carbon tetrachloride	2	1,0	U	0,19	1.0
Bromodichlorometha	ane	1,0	U	0.093	1.0
1,2-Dichloropropane)	1.0	U	0.090	1.0
cis-1,3-Dichloroprop	ene	1.0	U	0.11	1.0
Trichloroethene		0.27	J	0.18	1.0
Methylcyclohexane		1.0	U	0.090	1.0
Dibromochlorometha	ane	1.0	U	0.11	1.0
1,1,2-Trichloroethan	e	1.0	U	0.10	1.0
Benzene		0.21	J	0.13	1.0
trans-1,3-Dichloropr	opene	1.0	U	0.12	1.0
Bromoform		1.0	U	0.10	1.0
Isopropylbenzene		1.0	U	0.21	1.0
4-Methyl-2-pentanor	ne	1.6	ال ا	0.68	10
2-Hexanone		5.1	ال ا	0.55	10
Tetrachloroethene		1.0	U	0.20	1.0
Toluene		0.55	J	0.090	1.0
1,1,2,2-Tetrachloroe	Ihane	1.0	U	0.090	1.0
Chlorobenzene		1.0	U	0.16	1.0
Elhylbenzene		1.0	U	0.25	1.0
Xylenes, Total		0.48	J	0.43	3.0
Styrene		1.0	U	0.13	1.0
1,2-Dibromo-3-Chlor	ropropane	1.0	U	0.15	1.0
1,3-Dichlorobenzene	9	1.0	U	0.22	1.0
1.4-Dichlorobenzene	5	1.0	U	0.15	1.0
1,2-Dichlorobenzene)	1.0	U	0.16	1.0

Client: GaiaTech Inc.

Ctient Sample ID:	GMW-1						
Lab Sample ID:	460-20728-7			Date	Sampled: 12/05/20)10 0945	
Client Matrix:	Water			Date	Received: 12/06/20)10 1201	
		8260B Volatile Organic Compou	inds (GC/MS)				
Method:	8260B	Analysis Batch: 460-57841	Instrument ID:		VOAMS8		
Preparation:	5030B		Lab	File ID:	j95990.d	1	
Dilution:	1.0		Initia	I Weight/Volume:	5 mL.		
Date Analyzed:	12/08/2010 0142		Fina	l Weight/Volume:	5 mL.		
Date Prepared:	12/08/2010 0142						
Analyte		Result (ug/L)	Qualifier	MDL	RL		
1,2,4-Trichlorobenz	ene	1.0	U	0.44	1.0		
1,2-Dibromoethane		1.0	U	0.090	1.0		
Surrogate		%Rec	Qualifier	Acceptar	nce Limits		
1,2-Dichloroethane-d4 (Surr)		9 9	70 - 122				
Toluene-d8 (Surr)		86	69 - 125				
Bromofluorobenzene		97	69 - 135				

Analytical Data

Client Sample ID:	TB					
Lab Sample ID: Client Matrix:	460-20728-8 Water			Da	te Sampled: 11/16/20 Ite Received: 12/06/20	10 0000 10 1201
		8260B Valatila Organia Compo	unde (GC/M	C)		
1 F - 4 1		ozoob volane organic compo	unus (ocim	o)		
Melhod:	8260B	Analysis Batch: 460-57841		Instrument ID:	VOAMS8	
Preparation:	50308				J95986.0	
Dilution:	1.0			initial vveignt/volume:	: 5 mL	
Date Analyzed:	12/08/2010 0002			Final Weight/Volume:	5 mL	
Date Prepared:	12/08/2010 0002					
Analyte		Result (ug/L)	Qualifie	r MDL	RL	
Dichlorodifluorome	thane	1.0	ŲΗ	0,29	1.0	
Chloromethane		1.0	UН	0.21	1.0	
Bromomethane		1.0	UΗ	0.31	1.0	
Vinyl chloride		1.0	UΗ	0.13	1.0	
Chloroethane		1.0	UΗ	0.45	1.0	
Trichlorofluorometh	lane	1.0	UΗ	0.16	1.0	
Freon TF		1.0	UН	0.28	1.0	
Methylene Chloride	•	1.0	Uн	0.19	1.0	
Acetone		10	UH	2.5	10	
Carbon disulfide		1.0	UΗ	0.15	1.0	
Methyl acetate		2.0	UН	0.33	2.0	
1,1-Dichloroethene		1.0	UΗ	0.14	1.0	
1, t-Dichloroethane		1.0	UΗ	0.10	1.0	
cis-1,2-Dichloroeth	ene	1.0	UН	0.20	1.0	
trans-1,2-Dichloroethene		1,0	UΗ	0.14	1.0	
MTBE		t.0	UΗ	0.18	1.0	
Chlorotorm		1.0	Uн	0.15	1.0	
1,2-Dichloroethane		1.0	UН	0,24	1.0	
2-Butanone		tO	UН	0.82	10	
1,1,1-Trichloroethane		1.0	Uн	0.25	1.0	
Cyclohexane		1.0	UΗ	0.13	1.0	
Carbon tetrachlorid	e	1.0	UН	0.19	1.0	
Bromodichlorometh	nane	1.0	Uн	0.093	1.0	
1,2-Dichloropropan	e	1.0	UH	0.090	1.0	
cis-1,3-Dichloropro	pene	1.0	UН	0.11	1.0	
Trichloroethene		t.0	UH	0,18	1.0	
Methylcydohexane	•	1.0	UН	0.090	1.0	
Dibromochlorometh	nane	1.0	UΗ	0.11	1.0	
1,1,2-Trichloroetha	ne	1.0	UΗ	0.10	1.0	
Benzene		1.0	UН	0.13	1.0	
trans-1,3-Dichlorop	ropene	1.0	UΗ	0.12	1.0	
Bromoform		1.0	UΗ	0.10	1.0	
Isopropylbenzene		1.0	UН	0.21	1,0	
4-Methyl-2-pentanc	ne	10	UН	0.68	10	
2-Hexanone		10	UН	0.55	10	
Tetrachloroethene		1.0	UН	0.20	1.0	
Toluene		1.0	UН	0.090	1.0	
1,1,2,2-Tetrachloro	ethane	1.0	ИΗ	0.090	1.0	
Chlorobenzene		1.0	UН	0.16	1.0	
Ethylbenzene		1.0	UH	0.25	1.0	
Xylenes, Total		3.0	UН	0.43	3.0	
Styrene		1.0	UН	0.13	1.0	
1,2-Dibromo-3-Chlo	propropane	1.0	UН	0.15	1.0	
1,3-Dichlorobenzer	1e	1.0	UН	0.22	1.0	
1,4-Dichlorobenzer	1e	1,0	UН	0.15	1.0	
1.2-Dichlorobenzer	ie	1.0	UН	0.16	1.0	
			÷ ••	3,,0		

Analytical Data

Job Number: 460-20728-1

Client Sample ID:	тв						
Lab Sample ID: Client Matrix:	460-20728-8 Water			Dai Dat	e Sampled: 11/16/2010 0000 e Received: 12/06/2010 120t		
		8260B Volatile Organic Compou	unds (GC/MS)				
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5030B 1.0 12/08/2010 0002 12/08/2010 0002	Analysis Batch: 460-57841	Insti Lab Initia Fina	rument ID; File ID; al Weight/Volume; I Weight/Volume;	VOAM\$8 j95986.d 5 mL 5 mL		
Analyte		Result (ug/L)	Qualifier	МОІ	DI		
1,2,4-Trichlorobenze	ene	1.0	UH	0.44	4 0		
1,2-Dibromoethane		1.0	UН	0.090	1.0		
Surrogale		%Rec	Qualifier	Accenta	nce Limite		
1.2-Dichloroethane-d4 (Surr)		98	70 - 122				
Toluene-d8 (Surr)		100	69 - 125				
Bromotivorobenzene		103		69 - 135			

.

Client: GaiaTech Inc.

General Chemistry								
Client Sample ID:	GMW-2 (8-t0)							
Lab Sample ID:	460-20728-1						Date Sampled	I: 12/03/2010 1025
Client Matrix:	Solid						Date Receive	d: 12/06/2010 1201
Analyte	R	lesult	Qual	Units	RL	RL	Dil	Method
Percent Moisture	8.	.8		%	1.0	1.0	1.0	Moisture
	Analysis Batch: 460-5771	19 C	Date Analyzed:	12/06/20	10 2 1 5 4		I	DryWt Corrected: N
Percent Solids	9	1.2		%	1.0	1.0	t.0	Moisture
	Analysis Batch: 460-5771	19 C	ate Analyzed:	t2/06/20	10 2154			DryWt Corrected: N

Client: GalaTech Inc.

		Gen	eral Chem	istry			
Client Sample ID;	GMW-2 (10-12)						
Lab Sample ID:	460-20728-2					Date Sampled	I: 12/03/2010 1030
Client Matrix:	Solid					Date Receive	d: 12/06/2010 1201
Analyte	Result	Quat	Units	RL	RL	Dit	Method
Percent Moisture	10.6		%	1.0	1.0	1.0	Moislure
	Analysis Batch: 460-57719	Date Analyzed:	12/06/201	10 2154		ſ	DryWt Corrected: N
Percent Solids	89.4		%	1.0	1.0	1.0	Moisture
	Analysis Batch: 460-57719	Date Analyzed:	12/06/201	10 2154		E	DryWt Corrected: N
Client: GaiaTech Inc.

Job Number: 460-20728-1

Surrogate Recovery Report

8260B Volatile Organic Compounds (GC/MS)

Client Matrix: Solid

Lab Sample ID	Client Sample ID	DCA %Rec	TOL %Rec	BFB %Rec
460-20728-1	GMW-2 (8-10)	t02	91	88
460-20728-2	GMW-2 (10-12)	100	90	89
MB 460-57829/5		101	93	90
LB3 460-57757/1-A		102	92	87
LCS 460-57829/3		97	98	97
LCSD 460-57829/4		95	98	9 6

Surrogate	Acceptance Limits
DCA = t,2-Dichloroethane-d4 (Surr)	70-138
TOL = Toluene-d8 (Surr)	66-12 6
BFB = Bromofluorobenzene	72-132

Client: GaiaTech Inc.

Job Number: 460-20728-1

Surrogate Recovery Report

8260B Volatile Organic Compounds (GC/MS)

Client Matrix: Water

Lab Sample ID	Client Sample ID	DCA %Rec	TOL %Rec	BFB %Rec
460-20728-3	GMW-2	108	102	110
460-2072 8-4	GMW-5	104	91	99
460-20728-5	GMW-3	92	85	89
460-2072 8 -6	GMW-4	88	91	91
460-20728-7	GMW-1	99	86	97
460-20728-8	TB	98	100	103
MB 460-57841/4		103	101	106
LCS 460-57841/3		96	97	93
460-20728-3 MS	GMW-2 MS	92	93	90
460-20728-3 MSD	GMW-2 MSD	93	94	91

Surrogate	Acceptance Limits
DCA = 1,2-Dichloroethane-d4 (Surr)	70-122
TOL = Toluene-d8 (Surr)	69-125
BFB = Bromofluorobenzene	69-135

Job Number: 460-20728-1

Client: GaiaTech Inc.

Neutral Leach or MeOH Extraction Blank - Batch: 460-57757

Method: 8260B Preparation: 5035

Lab Sample ID:	LB3 460-57757/1-A	Analysis Batch: 460-57829	Instrument ID: VO	AMS2	
Client Matrix:	Solid	Prep Batch: 460-57757	Lab File ID: b31	268.d	
Dilution:	1.0	Units: ug/Kg	Initial Weight/Volume	e: 5	g
Date Analyzed:	12/07/2010 205 9		Final Weight/Volume	e: 5	mL
Date Prepared:	12/07/2010 0926				

Analyte	Result	Qual	MDL	RL
Dichlorodifluoromelhane	1.0	U	0.41	1.0
Chloromethane	1.0	U	0.63	1.0
Bromomethane	1.0	U	0.41	1.0
Vinyl chloride	1.0	U	0.23	1.0
Chloroelhane	1.0	U	0.40	1.0
Trichlorofluoromethane	1.0	U	0.26	1.0
Freon TF	1.0	U	0.48	1.0
Melhytene Chloride	1.0	U	0.47	1.0
Acetone	10	U	3.7	10
Carbon disulfide	1.0	U	0.46	1.0
Methyt acetate	1.0	U	0.90	1.0
1,1-Dichloroethene	1.0	U	0.37	1.0
1,1-Dichloroethane	1.0	U	0.25	1.0
cis-1,2-Dichloroethene	1.0	U	0.24	1.0
trans-1,2-Dichloroethene	1.0	U	0.28	1.0
MTBE	1.0	U	0.34	1.0
Chloroform	1.0	U	0.24	1.0
1,2-Dichloroethane	1.0	U	0.39	1.0
2-Bulanone	10	U	0.57	10
1,1,t-Trichloroethane	1.0	U	0.19	1.0
Cyclohexane	1.0	U	0.22	1.0
Carbon tetrachloride	1.0	U	0. t0	1.0
Bromodichloromethane	1.0	U	0.30	1.0
1,2-Dichloropropane	1.0	U	0.32	1.0
cis-1,3-Dichloropropene	1.0	U	0.20	1.0
Trichloroethene	1.0	U	0.36	1.0
Methylcyclohexane	1.0	U	0.27	1.0
Dibromochloromethane	1.0	U	0.5 6	1.0
1,1,2-Trichloroethane	1.0	U	0.59	1.0
Benzene	1.0	U	0.74	1.0
trans-1,3-Dichloropropene	1.0	U	0.22	1.0
Bromoform	1.0	U	0.70	1.0
lsopropylbenzene	1.0	U	0.26	1.0
4-Methyl-2-pentanone	10	U	0.72	10
2-Hexanone	10	U	1.7	10
Tetrachloroethene	1.0	U	0.33	1.0
Toluene	1.0	U	0.30	1.0
1,1,2,2-Tetrachloroethane	1.0	U	0.76	1.0
Chlorobenzene	1.0	U	0.48	1.0
Ethylbenzene	1.0	U	0.19	1.0
Xylenes, Total	3.0	U	0.79	3.0
Styrene	1.0	U	0.35	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	0.61	1.0

Job Number: 460-20728-1

Client: GaiaTech Inc.

Neutral Leach or MeOH Extraction Blank - Batch: 460-57757		ık - Batch:	Method: 8260B Preparation: 5035
Lab Sample ID:	LB3 460-57757/1-A	Analysis Batch: 460-57829	Instrument ID: VOAMS2

Client Matrix:	Solid	Prep Balch: 460-57757		Lab File ID: b31268	.d	
Dilution:	1.0	Units: ug/Kg		Initial Weight/Volume:	5 g	
Date Anatyzed:	12/07/2010 2059			Final Weight/Volume:	5 mL	
Dale Prepared:	12/07/2010 0926			5		
Analyte		Result	Qual	MDL	RL	
1,3-Dichlorobenze	ene	I.0	U	0.48	1.0	
1,4-Dichtorobenze	ene	1.0	U	0.71	1.0	
1,2-Dichlorobenze	ene	1.0	U	0.64	1.0	
1,2,4-Trichlorober	nzene	1.0	U	0.54	1.0	
1,2-Dibromoethar	ne	1.0	U	0.52	1.0	

Surrogate	% Rec	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	102	70 - 138
Toluene-d8 (Surr)	92	66 - 126
Bromofluorobenzene	87	72 - 132

Job Number: 460-20728-1

Client: GaiaTech Inc.

Client Matrix:

Date Prepared: N/A

Dilution:

Method Blank - Batch: 460-57829

Lab Sample ID: MB 460-57829/5

Date Analyzed: 12/07/2010 1927

Solid

1.0

Method: 8260B Preparation: N/A

Instrument ID:	VOAM	S2	
Lab File ID:	b31264	I.d	
Initial Weight/V	olume:	5	mL
Final Weight/Vo	olume:	5	mL

Analyte	Result	Qual	MDL	RL
Dichlorodifluoromethane	1.0	U	0.41	1.0
Chloromethane	1.0	U	0.63	1.0
Bromomethane	1.0	U	0.41	1.0
Vinyl chloride	1.0	U	0.23	1.0
Chloroethane	1.0	U	0.40	1.0
Trichlorofluoromethane	1.0	υ	0.26	1.0
Freon TF	1.0	υ	0.48	1.0
Methylene Chloride	1.0	υ	0.47	1.0
Acetone	10	U	3.7	10
Carbon disulfide	1.0	ប	0.46	1.0
Methyl acetate	1.0	ប	0.90	1.0
1,1-Dichloroethene	1.0	ប	0.37	1.0
1,1-Dichloroethane	1.0	ប	0.25	1.0
cis-1,2-Dichloroethene	1.0	ប	0.24	t.0
trans-1,2-Dichloroethene	1.0	ប	0.28	1.0
MTBE	1.0	ប	0.34	1.0
Chloroform	1.0	U	0.24	t.0
1,2-Dichloroethane	1.0	ប	0.39	1.0
2-Butanone	10	ប	0.57	10
1,1,1-Trichloroethane	1.0	ប	0.19	1.0
Cyclohexane	1.0	ប	0.22	1.0
Carbon tetrachloride	1.0	ប	0.10	1.0
Bromodichloromethane	1.0	ប	0.30	1.0
1,2-Dichloropropane	1.0	ប	0.32	1.0
cis-1,3-Dichloropropene	1.0	ប	0.20	1.0
Trichloroethene	1.0	ប	0.36	1.0
Melhylcyclohexane	1.0	ប	0.27	1.0
Dibromochloromethane	1.0	ប	0.56	1.0
1,1,2-Trichloroethane	1.0	ប	0.5 9	1.0
Benzene	1.0	U	0.74	1.0
trans-1,3-Dichloropropene	1.0	Ų	0.22	t.0
Bromoform	1.0	U	0.70	1.0
Isopropylbenzene	1.0	U	0.26	1.0
4-Methyl-2-pentanone	10	U	0.72	10
2-Hexanone	10	U	1.7	10
Tetrachloroethene	1.0	U	0.33	1.0
Toluene	1.0	U	0.30	1.0
1,1,2,2-Tetrachloroethane	1.0	U	0.76	1.0
Chlorobenzene	1.0	U	0.48	1.0
Ethylbenzene	1.0	U	0.19	1.0
Xylenes, Total	3.0	U	0.79	3.0
Styrene	1.0	U	0.35	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	0.61	1.0

Analysis Batch: 460-57829

Prep Batch: N/A

Units: ug/Kg

Job Number: 460-20728-1

1.0

·······

Client: GaiaTech Inc.

1,2-Dichlorobenzene

Method Blank - Batch: 460-57829

Method: 8260B Preparation: N/A

0.64

Lab Sample ID:	MB 460-57829/5	Analys	is Batch: 460-578	29 1	nstrument ID: VOAN	182
Client Matrix:	Solid	Prep B	latch: N/A	l	ab File ID: b3126	i4.d
Dilution:	1.0	Units:	ug/Kg	1	nitial Weight/Volume:	5 mL
Date Analyzed:	12/07/2010 1927			F	Final Weight/Volume:	5 mL
Date Prepared:	N/A					
Analyle			Result	Qual	MDL	RL
1,3-Dichlorobenz	ene		1.0	U	0.48	1.0
1,4-Dichlorobenz	ene		1.0	U	0.71	1.0

1.0

1,2,4-Trichlorobenzene	1.0	U	0.54	1.0
t.2-Dibromoethane	1.0	U	0.52	1.0
Surrogate	% Rec	Accep	tance Limits	
1,2-Dichloroethane-d4 (Surr)	101	7	0 - 138	
Toluene-d8 (Surr)	93	6	6 - 126	
Bromofluorobenzene	90	7	2 - 132	

Ų

Client: GaiaTech Inc.

Job Number: 460-20728-1

Lab Control Sample/

Dilution:

Date Analyzed:

Date Prepared:

1.0

N/A

12/07/2010 1816

Lab Control Sample Duplicate Recovery Report - Batch: 460-57829

Method: 8260B Preparation: N/A

Initial Weight/Volume: 5 mL

Final Weight/Volume: 5 mL

LCS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	LCS 460-57829/3 Solid 1.0 12/07/2010 1753 N/A	Analysis Batch: 460-57829 Prep Batch: N/A Units: ug/Kg	Instrument tD: VOAMS2 Lab File ID: b31260.d Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL		
LCSD Lab S ample ID:	LCSD 460-57829/4	Analysis Balch: 460-57829	Instrument ID: VOAM	S2	
Client Matrix:	Solid	Prep Batch: N/A	Lab File ID: b3126	1.d	

Units: ug/Kg

	9/ Dec								
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual		
Dichlorodifluoromethane	74	81	52 - 144	9	30	.,,,,,,,,,,,,,,			
Chloromethane	90	89	50 - 151	1	30				
Bromomethane	80	82	54 - 142	3	30				
Vinyl chloride	92	93	67 - 133	0	30				
Chloroethane	86	94	56 - 146	9	30				
Trichlorofluoromethane	87	8 t	61 - 139	7	30				
Freon TF	83	82	73 - 123	1	30				
Methylene Chloride	96	94	74 - 137	2	30				
Acetone	139	133	27 - 164	5	30				
Carbon disulfide	95	92	72 - 128	3	30				
Methyl acetate	91	88	73 - 137	4	30				
t, t-Dichloroethene	94	96	71 - 12 6	з	30				
1,1-Dichloroethane	98	95	76 - 125	2	30				
cis-1,2-Dichloroethene	91	91	80 - 120	0	30				
trans-1,2-Dichloroethene	93	93	75 - 122	0	30				
МТВЕ	85	82	78 - 120	4	30				
Chloroform	99	97	77 - 120	2	30				
1,2-Dichloroethane	101	101	76 - 118	0	30				
2-Butanone	94	93	77 - 117	2	30				
1,1,1-Trichloroethane	96	92	78 - 117	4	30				
Cyclohexane	80	80	80 - 121	t	30				
Carbon tetrachloride	96	95	79 - 118	1	30				
Bromodichloromethane	101	97	79 - 119	4	30				
1,2-Dichloropropane	98	9 6	82 - 122	2	30				
cis-1,3-Dichloropropene	95	92	80 - 123	3	30				
Trichloroethene	93	90	7 9 - 119	3	30				
Methylcyclohexane	79	79	78 - 118	1	30				
Dibromochloromethane	105	t00	68 - 120	4	30				
1,1,2-Trichloroethane	102	97	73 - 118	5	30				
Benzene	95	94	77 - 117	1	30				
trans-1,3-Dichloropropene	102	100	67 - 121	2	30				
Bromoform	85	82	59 - 125	3	30				
Isopropylbenzene	101	101	65 - 129	1	30				
4-Methyl-2-pentanone	97	92	68 - 120	5	30				

Client: GaiaTech Inc.

Dilution:

Date Analyzed: Date Prepared: 1.0

N/A

12/07/2010 1816

Job Number: 460-20728-1

Initial Weight/Volume: 5 mL

Final Weight/Volume: 5 mL

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 460-57829			Method: 8260B Preparation: N/A
LCS Lab Sample ID:	L CS 4 60-57829/3	Analysis Batch: 460-57829	Instrument ID: VOAMS2
Client Matrix:	Solid	Prep Batch: N/A	Lab File ID: b31260.d
Dilution:	1.0	Units: ug/Kg	Initial Weight/Volume: 5 mL
Date Analyzed:	12/07/2010 1753		Final Weight/Volume: 5 mL
Date Prepared:	N/A		
LCSD Lab Sample ID:	LCSD 460-57829/4	Analysis Batch: 460-57829	Instrument ID: VOAMS2
Client Matrix:	Solid	Prep Batch: N/A	Lab File ID: b31261.d

Units: ug/Kg

	<u>% Rec.</u>						
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LC S Qual	LCSD Qual
2-Hexanone	101	90	70 - 122	11	30		
Tetrachloroethene	96	95	80 - 120	0	30		
Toluene	95	94	75 - 115	1	30		
1,1,2,2-Tetrachloroethane	100	96	79 - 122	4	30		
Chlorobenzene	98	97	80 - 120	2	30		
Ethylbenzene	95	94	81 - 121	t	30		
Xylenes, Total	94	94	82 - 122	0	30		
Styrene	96	96	82 - 122	0	30		
1,2-Dibromo-3-Chloropropane	103	92	74 - 118	11	30		
1,3-Dichlorobenzene	96	95	80 - 120	1	30		
1,4-Dichlorobenzene	98	96	80 - 120	2	30		
1,2-Dichlorobenzene	92	92	80 - 120	0	30		
1,2,4-Trichlorobenzene	112	115	80 - 120	3	30		
1,2-Dibromoethane	101	98	75 - 117	3	30		
Surrogate	L	CS % Rec	LCSD %	Rec	Accept	ance Limits	
1,2-Dichloroethane-d4 (Surr)	9	7	95		70	- 138	
Toluene-d8 (Surr)	g	8	98		66	- 126	
Bromofluorobenzene	g	7	96		72	- 132	

Client: GaiaTech Inc.

Job Number: 460-20728-1

Laboratory Control/	Method: 8260B		
Laboratory Duplicate Data Report - Batch: 460-57829	Preparation: N/A		

LCS Lab Sample ID:	LCS 460-57829/3	Unils:	ug/K g	LCSD Lab Sample ID:	LCSD 460-57829/4
Client Malrix:	Solid			Client Matrix:	Solid
Dilution:	1.0			Dilution:	1.0
Dale Analyzed:	12/07/2010 1753			Date Analyzed:	12/07/2010 1816
Date Prepared:	N/A			Dale Prepared:	N/A

Analyle	LCS Spike Amoun!	LCSD Spike Amounl	LCS Result/Qual	LCSD Result/Qu a l
Dichlorodifluoromelhane	20.0	20.0	14.7	16.1
Chloromelhane	20.0	20,0	18.0	17.9
Bromomethane	20.0	20.0	15.9	16.4
Vinyl chloride	20.0	20.0	18.5	18.6
Chloroelhane	20.0	20.0	17.2	18.8
Trichlorofluoromethane	20.0	20.0	17,4	16.3
Freon TF	20.0	20.0	16.6	16.4
Melhylene Chloride	20.0	20,0	19.2	18.9
Acelone	20.0	20.0	27.8	26.6
Carbon disulfide	20.0	20.0	19.0	18.3
Melhyl acelale	20.0	20.0	18.3	17.6
1,1-Dichloroethene	20.0	20.0	18,8	19.3
1,1-Dichloroelhane	20.0	20.0	19.5	19.1
cis-1,2-Dichloroelhene	20.0	20.0	18.3	18.2
Irans-1,2-Dichloroethene	20.0	20.0	18.6	18.5
MTBE	20.0	20.0	17.1	16.3
Chloroform	20.0	20.0	19.9	19.5
1,2-Dichloroethane	20.0	20.0	20.3	20.3
2-Butanone	20.0	20.0	18.9	18.5
1,1,1-Trichloroelhane	20.0	20.0	19.2	18.4
Cyclohexane	20.0	20.0	16.1	15.9
Carbon letrachloride	20.0	20.0	19.2	19.0
Bromodichloromelhane	20.0	20.0	20.1	19.4
1,2-Dichloropropane	20.0	20.0	19.6	19.2
cis-1,3-Dichloropropene	20.0	20.0	19.0	18.4
Trichloroelhene	20.0	20.0	18.5	18.1
Melhylcyclohexane	20.0	20.0	15.8	15.7
Dibromochloromethane	20.0	20.0	20.9	20.0
1,1,2-Trichloroethane	20.0	20.0	20.4	19.5
Benzene	20.0	20.0	18.9	18.8
Irans-1,3-Dichloropropene	20.0	20.0	20.3	19.9
Bromoform	20.0	20.0	17.0	16.5
Isopropylbenzene	20.0	20.0	20.3	20.1
4-Melhyl-2-penlanone	20.0	20.0	19.5	18.5
2-Hexanone	20.0	20.0	20.1	18.1
Telrachloroethene	20.0	20.0	19.1	19.1
Toluene	20.0	20.0	19.0	18. 8
1,1,2,2-Tetrachloroethane	20.0	20.0	20,1	19.2
Chlorobenzene	20.0	20.0	19.7	19.3
Elhylbenzene	20.0	20.0	19.0	18.9
Xylenes, Total	60.0	60.0	56.6	56.6

TestAmerica Edison

Job Number: 460-20728-1

Client: GaiaTech Inc.

Laboratory Control/Method: 8260BLaboratory Duplicate Data Report - Batch: 460-57829Preparation: N/A

LCS Lab Sample ID:	LCS 460-57829/3 Solid	Units:	ug/Kg	LCSD Lab Sample ID: Client Matrix:	LCSD 460-57829/4
Dilution:	1.0 12/07/2010 1753			Dilution:	1.0
Date Prepared:	N/A			Date Prepared:	N/A

Analyte	LCS Spike Amount	LCSD Spik e Amount	LCS Result/Qual	LCSD Result/Qual
Styrene	20.0	20.0	t9. t	19.1
1,2-Dibromo-3-Chloropropane	20.0	20.0	20.7	t8.5
1,3-Dichlorobenzene	20.0	20.0	19.2	19.0
1,4-Dichlorobenzene	20.0	20.0	t9.5	19.2
1,2-Dichlorobenzene	20.0	20.0	18.4	18.4
1,2,4-Trichlorobenzene	20.0	20.0	22.4	23.0
1,2-Dibromoelhane	20.0	20.0	20.2	19.6

Job Number: 460-20728-1

Client: GaiaTech Inc.

Method Blank - Batch: 460-57841

Lab Sample ID:	MB 460-57841/4	Analysis Batch: 460-57841	Instrument ID:	VOAMS	8	
Client Matrix:	Water	Prep Batch: N/A	Lab File ID:	j95984.c	1	
Dilution:	1.0	Units: ug/L	Initial Weight/Vol	lume:	5	mL
Date Analyzed:	12/07/2010 2 3 12		Final Weight/Vol	ume:	5	mL
Date Prepared:	12/07/2010 2312					

Analyte	Result	Qual	MDL	RL
Dichlorodifluoromethane	1.0	U	0.29	1.0
Chloromethane	1.0	U	0.21	1.0
Bromomethane	1.0	U	0.31	1.0
Vinyt chloride	1.0	U	0.13	1.0
Chloroethane	1.0	U	0.45	t.0
Trichlorofluoromethane	1.0	U	0.16	1.0
Freon TF	1.0	U	0.28	1.0
Methylene Chloride	1.0	U	0.19	1.0
Acetone	10	U	2.5	10
Carbon disulfide	1.0	U	0.15	1.0
Methyl acetate	2.0	U	0.33	2.0
1,1-Dichloroethene	1.0	U	0.14	1.0
1, t-Dichloroethane	1.0	U	0.10	1.0
cis-1,2-Dichloroethene	1.0	U	0.20	t.0
trans-1,2-Dichloroethene	1.0	U	0.14	1.0
МТВЕ	1.0	U	0.18	1.0
Chloroform	1.0	U	0.15	t.0
1,2-Dichloroethane	1.0	U	0.24	1.0
2-Butanone	10	U	0.82	10
1,1,1-Trichloroethane	1.0	U	0.25	1.0
Cyclohexane	t.0	U	0.13	1.0
Carbon tetrachtoride	1.0	U	0.19	1.0
Bromodichloromethane	1.0	U	0.093	1.0
1,2-Dichloropropane	t.0	U	0.090	1.0
cis-1,3-Dichloropropene	1.0	U	0.11	1.0
Trichloroethene	1.0	U	0.18	1.0
Methylcyclohexane	1.0	U	0.090	1.0
Dibromochloromethane	1.0	U	0.11	1.0
1,1,2-Trichloroethane	1.0	U	0.10	1.0
Benzene	1.0	U	0.13	1.0
trans-1,3-Dichloropropene	1.0	U	0.12	1.0
Bromoform	1.0	U	0.10	1.0
Isopropylbenzene	1.0	U	0.21	1.0
4-Methyl-2-pentanone	10	U	0.68	10
2-Hexanone	10	U	0.55	10
Tetrachloroethene	1.0	U	0.20	1.0
Toluene	1.0	U	0.090	1.0
1,1,2,2-Tetrachloroethane	1.0	U	0.090	1.0
Chlorobenzene	1.0	U	0.16	1.0
Ethylbenzene	1.0	U	0.25	1.0
Xylenes, Total	3.0	U	0.43	3.0
Styrene	1.0	U	0.13	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	0.15	1.0

Job Number: 460-20728-1

Client: GaiaTech Inc.

Method Blank - Batch: 460-57841

Lab Sample ID:	MB 460-57841/4	Analysis Batch: 460-57841	Instrument ID: \	VOAMS8	
Client Matrix:	Water	Prep Batch: N/A	Lab File ID: j	95984.d	
Dilution:	1.0	Units: ug/L	Initial Weight/Volu	ume: 5	mL
Date Analyzed:	12/07/2010 2312		Final Weight/Volu	ime: 5	mL
Date Prepared:	t2/07/2010 2312		-		

Analyte	Result	Qual	MDL	RL
1,3-Dichlorobenzene	1.0	U	0.22	1.0
1,4-Dichlorobenzene	1.0	U	0.15	1.0
1,2-Dichlorobenzene	1.0	U	0.16	t.0
1,2,4-Trichlorobenzene	1.0	U	0.44	t.0
1,2-Dibromoethane	t.0	U	0.090	1.0
Surrogate	% Rec	Accept	ance Limits	
1,2-Dichloroethane-d4 (Surr)	103	70	- 122	
Toluene-d8 (Surr)	t01	69	- 125	
Bromofluorobenzene	106	69	- 135	

Job Number: 460-20728-1

Client: GaiaTech Inc.

Lab Control Sample - Batch: 460-57841

Lab Sample ID:	LCS 460-57841/3
Client Matrix:	Water
Dilution:	1.0
Date Analyzed:	12/07/2010 2222
Date Prepared:	12/07/2010 2222

Analysis Batch: 460-57841 Prep Batch: N/A Units: ug/L

Method: 8260B Preparation: 5030B

Instrument ID:VOAMS8Lab File ID:j95982.dInitial Weight/Volume:5Final Weight/Volume:5mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Dichlorodifluoromethane	20.0	15.2	76	46 - 145	
Chloromethane	20.0	16. t	80	58 - 146	
Bromomethane	20.0	18.2	91	55 - 153	
Vinyl chloride	20.0	17.8	89	61 - 144	
Chloroethane	20.0	21.0	105	69 - 145	
Trichlorofluoromethane	20.0	18.5	92	69 - 147	
Freon TF	20.0	18.6	93	47 - 139	
Methylene Chloride	20.0	18.8	94	79 - 119	
Acelone	20.0	19.5	97	45 - 156	
Carbon disulfide	20.0	19.0	95	58 - 139	
Methyl acetate	20.0	17.0	85	50 - 151	
1,1-Dichloroethene	20.0	19.7	98	56 - 139	
1,1-Dichloroethane	20.0	19.1	95	78 - 12 2	
cis-1,2-Dichloroethene	20.0	19.2	96	80 - 120	
trans-1,2-Dichloroethene	20.0	19.4	97	75 - 122	
MTBE	20.0	18.9	94	71 - 115	
Chloroform	20.0	18.8	94	82 - 123	
1,2-Dichloroethane	20.0	17.9	90	74 - 118	
2-Butanone	20.0	18. 3	92	65 - 114	
1,1,1-Trichloroethane	20.0	19.0	95	74 - 128	
Cyclohexane	20.0	20.0	100	58 - 133	
Carbon tetrachtoride	20,0	19.2	96	73 - 120	
Bromodichloromethane	20.0	19.3	96	79 - 119	
1,2-Dichloropropane	20.0	19.4	97	80 - 120	
cis-1,3-Dichloropropene	20.0	19.6	98	80 - 120	
Trichloroethene	20.0	19.1	95	78 - 119	
Methylcyclohexane	20.0	19.5	98	61 - 129	
Dibromochloromethane	20.0	20.1	101	80 - 120	
1,1,2-Trichloroethane	20,0	19.2	96	79 - 119	
Benzene	20.0	19.7	98	83 - 124	
Irans-1,3-Dichloropropene	20.0	19.3	97	78 - 118	
Bromoform	20.0	20.4	102	73 - 123	
Isopropylbenzene	20,0	21.1	106	80 - 125	
4-Methyl-2-pentanone	20.0	19.7	99	53 - 120	
2-Hexanone	20.0	17.9	90	53 - 121	
Tetrachloroethene	20.0	21.1	105	68 - 139	
Toluene	20.0	19.2	96	80 - 120	
1,1,2,2-Tetrachloroethane	20.0	24.4	122	74 - 126	
Chlorobenzene	20.0	18.5	93	81 - 121	
Elhylbenzene	20.0	19.7	98	79 - 126	
Xylenes, Total	60,0	60.4	101	76 - 121	
Styrene	20.0	20.0	100	69 - 112	
1,2-Dibromo-3-Chloropropane	20.0	16.5	83	70 - 116	
1,3-Dichlorobenzene	20.0	19.9	99	81 - 126	

Job Number: 460-20728-1

Client: GaiaTech Inc.

Lab Control Sample - Batch: 460-57841

Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	LCS 460-57841/3 Water 1.0 12/07/2010 2222 t2/07/2010 2222	Analysis Batch: - Prep Batch: N/A Units: ug/L	460-57 84 1	instrun Lab Fil Initial V Final V	nent ID: VOAM le ID: j95982 Neight/Volume: Veight/Volume:	1S8 2.d 5 mL 5 mL
Analyte		Spike Amount	Result	% Rec.	Limit	

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,4-Dichlorobenzene	20.0	20.0	100	83 - 123	
1,2-Dichlorobenzene	20.0	18.5	92	82 - 122	
1,2,4-Trichlorobenzene	20.0	20.0	100	66 - 120	
1,2-Dibromoethane	20.0	19.7	99	78 - 118	
Surrogate	%	% Rec		cceptance Limits	
1,2-Dichloroethane-d4 (Surr)	Ş	16	70 - 122		
Toluene-d8 (Surr)	Ş	17	69 - 125		
Bromofluorobenzene	93				

Client: GaiaTech Inc.

Job Number: 460-20728-1

Method: 8260B

Preparation: 5030B

Matrix Spike/

Date Prepared:

Matrix Spike Duplicate Recovery Report - Batch: 460-57841

12/08/2010 0322

MS Lab Sample ID:	460-20728-3	Analysis Batch: 460-57841	Instrument ID: V	/OAMS8		
Client Matrix:	Water	Prep Batch: N/A	Lab File ID: j9	95993.d		
Dilution:	10		Initial Weight/Volu	ime: 5	n	nL
Date Analyzed:	12/08/2010 0257		Final Weight/Volu	me:	5	mL
Date Prepared:	t2/08/2010 0257					
MSD Lab Sample ID:	460-20728-3	Analysis Batch: 460-57841	Instrument ID: V	/OAMS8		
Client Matrix:	Water	Prep Batch: N/A	Lab File (D: (9	95994.d		
Dilution:	tO		Initial Weight/Volu	ime:	5	mL
Date Analyzed:	12/08/2010 0322		Final Weight/Volu	me:	5	mL

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Dichtorodifluoromethane	81	78	46 - 145	3	30	,	ی ب _ر سیر سید
Chloromethane	90	92	58 - 146	2	30		
Bromomethane	98	95	55 - 153	3	30		
Vinyl chloride	100	95	61 - 144	5	30		
Chloroethane	121	110	69 - 145	10	30		
Trichlorofluoromethane	104	99	69 - 147	5	30		
Freon TF	104	92	47 - 139	12	30		
Methylene Chloride	99	94	79 - 119	5	30		
Acetone	104	89	45 - 156	16	30		
Carbon disulfide	73	70	58 - 139	5	30		
Methyl acetate	89	86	50 - 151	3	30		
1,1-Dichloroethene	111	100	56 - 139	10	30		
1,1-Dichloroethane	t01	97	78 - 122	3	30		
cis-1,2-Dichloroethene	94	92	80 - 120	2	30		
trans-1,2-Dichloroethene	97	94	75 - 122	3	30		
МТВЕ	98	94	71 - 115	5	30		
Chloroform	96	94	82 - 123	3	30		
1,2-Dichloroethane	92	88	74 - 118	4	30		
2-Butanone	91	92	65 - 114	2	30		
1,1,1-Trichloroethane	99	96	74 - 128	3	30		
Cyclohexane	102	95	58 - 133	7	30		
Carbon tetrachloride	91	86	73 - 120	5	30		
Bromodichloromethane	94	89	79 - 119	6	30		
1,2-Dichloropropane	101	98	80 - 120	2	30		
cis-1,3-Dichloropropene	85	85	80 - 120	0	30		
Trichloroethene	73	66	78 - 119	5	30	F	F
Methylcyclohexane	10 t	89	61 - 129	12	30		
Dibromochloromethane	88	92	80 - 120	4	30		
1,1,2-Trichloroethane	100	99	79 - 119	0	30		
Benzene	101	97	8 3 - 124	4	30		
trans-1,3-Dichloropropene	84	88	78 - 118	5	30		
Bromoform	82	85	73 - 123	3	30		

Client: GaiaTech Inc.

Job Number: 460-20728-t

Matrix Spike/

Date Prepared:

Matrix Spike Duplicate Recovery Report - Batch: 460-57841

12/08/2010 0322

MS Lab Sample ID:	460-20728-3	Analysis Batch: 460-57841	Instrument ID: VOAMS8
Client Matrix:	Water	Prep Batch: N/A	Lab File ID: j95993.d
Dilution:	10		Initial Weight/Volume: 5 mL
Date Analyzed:	12/08/2010 0257		Final Weight/Volume: 5 mL
Date Prepared:	12/08/2010 0257		
MSD Lab Sample ID:	460-20728-3	Analysis Batch: 460-5784 t	Instrument ID: VOAMS8
Client Matrix:	Water	Prep Batch: N/A	Lab File ID: j95994.d
Dilution:	10		Initial Weight/Volume: 5 mL
Date Analyzed:	t2/08/2010 0322		Final Weight/Volume: 5 mL

	2	<u>% Rec.</u>					
Analyte	MS	MSD	Límit	RPD	RPD Limit	MS Qual	MSD Qual
Isopropylbenzene	t08	106	80 - 125	2	30		
4-Methyl-2-pentanone	100	99	53 - 120	1	30		
2-Hexanone	94	96	53 - 121	2	30		
Tetrachloroethene	102	t00	68 - 139	2	30		
Toluene	96	94	80 - 120	2	30		
1,1,2,2-Tetrachloroethane	121	120	74 - 126	1	30		
Chlorobenzene	93	92	81 - 121	0	30		
Ethylbenzene	106	98	79 - 126	8	30		
Xylenes, Total	101	99	76 - 121	2	30		
Styrene	101	98	69 - 112	3	30		
1,2-Dibromo-3-Chloropropane	77	78	70 - 116	1	30		
1,3-Dichlorobenzene	96	97	81 - 126	1	30		
1,4-Dichlorobenzene	99	93	83 - 123	6	30		
t,2-Dichlorobenzene	100	93	82 - 122	7	30		
1,2,4-Trichlorobenzene	85	84	66 - 120	1	30		
t,2-Dibromoethane	98	99	78 - 118	1	30		
Surrogate		MS % Rec	MSD S	% Rec	Acc	eptance Limits	5
t,2-Dichloroethane-d4 (Surr)		92	93			70 - 122	· · · · · · · · · · · · · · · · · · ·
Totuene-d8 (Surr)		93	94		(69 - 125	
Bromofluorobenzene		90	91		(39 - t35	

Client: GaiaTech Inc.

Job Number: 460-20728-1

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 460-57841

MS Lab Sample ID:	460-20728-3	Units: ug/L	MSD Lab Sample ID): 460-20728-3
Client Matrix:	Water		Client Matrix:	Water
Dilution:	10		Dilution:	10
Date Analyzed:	12/08/2010 0257		Date Analyzed:	12/08/2010 0322
Date Prepared:	12/08/2010 0257		Date Prepared:	12/08/2010 0322

	Sample		MS Spike	MSD S pike	MS		MSD	
Analyte	Result/C	lual	Amount	Amount	Result/Qu	al	Result/Qua	al
Dichlorodifluoromethane	1.0	U	200	200	162		157	·····
Chloromethane	1.0	U	200	200	181		183	
Bromomethane	1.0	U	200	200	196		190	
Vinyl chloride	1.0	U	200	200	201		191	
Chloroethane	1.0	U	200	200	242		220	
Trichlorofluoromethane	1.0	U	200	200	208		198	
Freon TF	1.0	U	200	200	209		185	
Methylene Chloride	1.0	U	200	200	199		188	
Acelone	10	U	200	200	208		178	
Carbon disulfide	1.0	U	200	200	147		140	
Methyl acetate	2.0	U	200	200	179		172	
1,1-Dichloroethene	1.0	U	200	200	221		201	
1,1-Dichloroethane	1.0	U	200	200	202		195	
cis-1,2-Dichloroethene	28		200	200	216		211	
trans-1,2-Dichloroethene	0.56	ل	200	200	195		189	
MTBE	1.0	U	200	200	197		188	
Chloroform	1.0	U	200	200	193		187	
1,2-Dichloroethane	1.0	U	200	200	184		176	
2-Butanone	10	U	200	200	181		184	
1,1,1-Trichloroethane	1.0	U	200	200	198		193	
Cyclohexane	1.0	U	200	200	204		190	
Carbon tetrachloride	1.0	υ	200	200	181		172	
Bromodichloromethane	1.0	U	200	200	188		178	
1,2-Dichloropropane	1.0	U	200	200	201		196	
cis-1,3-Dichloropropene	1.0	U	200	200	170		170	
Trichloroethene	160		200	200	303	F	289	F
Methylcyclohexane	1.0	U	200	200	202		178	•
Dibromochloromethane	1.0	U	200	200	176		183	
1,1,2-Trichloroelhane	1.0	U	200	200	200		199	
Benzene	1.0	U	200	200	202		194	
trans-1,3-Dichloropropene	1.0	U	200	200	168		177	
Bramoform	1.0	U	200	200	163		169	
Isopropylbenzene	1.0	U	200	200	217		212	
4-Methyl-2-pentanone	10	U	200	200	199		198	
2-Hexanone	10	U	200	200	189		193	
Tetrachloroethene	1.0	U	200	200	204		199	
Toluene	0.30	J	200	200	192		188	
1,1,2,2-Tetrachloroethane	1.0	U	200	200	242		240	
Chlorobenzene	1.0	U	200	200	185		185	
Ethylbenzene	1.0	Ū	200	200	212		195	
Xylenes, Total	3.0	Ū	600	6 00	606		591	

Job Number: 460-20728-1

Client: GalaTech Inc.

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 460-57841

MS Lab Sample ID:	460-20728- 3	Units: ug/L	MSD Lab Sample ID	: 460-20728-3
Client Matrix:	Water		Client Matrix:	Water
Dilution:	10		Dilution:	10
Dale Analyzed:	12/08/2010 0257		Dale Analyzed:	12/08/2010 0322
Date Prepared:	12/08/2010 0257		Date Prepared:	12/08/2010 0322

	Sample		MS Spike MSD Spike		MS	MSD
Analyte	Result/Qual	Result/Qual Amo		Amount	Result/Qual	Result/Qual
Styrene	1.0	U	200	200	202	197
1,2-Dibromo-3-Chloropropane	1.0	U	200	200	155	156
1,3-Dichlorobenzene	1.0	U	200	200	192	193
1,4-Dichlorobenzene	1.0	U	200	200	198	186
1,2-Dichlorobenzene	1.0	U	200	200	201	186
1,2,4-Trichlorobenzene	1.0	U	200	200	170	169
1,2-Dibromoethane	1.0	U	200	200	196	198

Job Number: 460-20728-1

Client: GaiaTech Inc.

Duplicate - Batch: 460-57719

Method: Moisture Preparation: N/A

Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	460-20739-A-4 DU Solid 1.0 12/06/2010 2154 N/A	Analysis Batch: 460-57719 Prep Batch: N/A Units: %		Instrument ID: Lab File ID: Initial Weight/V Final Weight/Vc	No Equipment N/A Diume: Jume:	Assigned
Analyte		Sample Result/Qual	Result	RPD	Limit	Qual
Percent Moisture		16.8	17.2	2	20	
Percent Solids		83.2	82.8	0.5	20	

DATA REPORTING QUALIFIERS

Client: GaiaTech Inc.

Job Number: 460-20728-1

Lab Section	Qualifier	Description
GC/MS VOA		
	U	Indicates the analyte was analyzed for but not detected.
	F	MS/MSD Recovery or RPD exceeds the control limits
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
	н	Sample was prepped or analyzed beyond the specified holding time

Client: GaiaTech Inc.

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VDA					
Prep Batch: 460-57757					
LB3 460-57757/1-A	Neutral Leach or MeOH Extraction Blank	Т	Solid	5035	
460-20728-1	GMW-2 (8-t0)	Т	Solid	5035	
460-20728-2	GMW-2 (10-12)	Т	Solid	5035	
Analysis Batch:460-57829					
LCS 460-57829/3	Lab Control Sample	т	Solid	8260B	
LCSD 460-57829/4	Lab Control Sample Duplicate	Т	Solid	8260B	
MB 460-57829/5	Method Blank	т	Solid	8260B	
LB3 460-57757/1-A	Neutral Leach or MeOH Extraction	Т	Solid	8260B	460-57757
460-20728- t	GMW-2 (8-10)	Т	Solid	8260B	460-57757
460-20728-2	GMW-2 (10-12)	Т	Solid	8260B	460-57757
Analysis Batch:460-57841					
LCS 460-57841/3	Lab Control Sample	Т	Water	8260B	
MB 460-5784 t/4	Method Blank	Т	Water	8260B	
460-20728-3	GMW-2	Т	Water	8260B	
460-20728-3MS	Matrix Spike	т	Water	8260B	
460-20728-3MSD	Matrix Spike Duplicate	т	Water	8260B	
460-20728-4	GMW-5	Т	Water	8260B	
460-20728-5	GMW-3	Т	Water	8260B	
460-20728-6	GMW-4	Т	Water	8260B	
460-20728-7	GMW-1	ĩ	Water	8260B	
460-20728-8	ТВ	Т	Water	8260B	

Report Basis

† = Total

General Chemistry

Analysis Batch:460-5771	9			
460-20728-1	GMW-2 (8-10)	Т	Solid	Moisture
460-20728-2	GMW-2 (10-12)	Т	Solid	Moisture
460-20739-A-4 DU	Duplicate	Т	Solid	Moisture

....

<u>Report Basis</u> T = Tolai

.....

Client: GaiaTech Inc.

Job Number: 460-20728-1

Laboratory Chronicle

Lab ID:	460-20728-1	Client ID): GMW-2 ((8-10)				
		Sample	Date/Time:	12/03/2010 10:25	Received Date	/Time:	12/06/2010 1	2:01
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analys1
P:5035	460-20728-A-1-B		460-57829	460-57757	12/07/2010 09:29	1	TAL EDI	MY
A:8260B	460-20728-A-1-B		460-57829	460-57757	12/07/2010 19:50	1	TAL EDI	EM
A:Moisture	e 460-20728-A-1		460-57719		12/06/2010 21:54	1	TAL EDI	ah
Lab ID;	460-20728-2	Clien1 II): GMW-2 ((10-12)				
		Sample	Date/Time:	12/03/2010 10:30	Received Date	/Time:	12/06/2010 1	2:01
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Balch	Analyzed	Dil	Lab	Analyst
P-5035	460-20728-A-2-B		460-57829	460-57757	12/07/2010 09:33	1		MY
A:8260B	460-20728-A-2-B		460-57829	460-57757	12/07/2010 20:13	1		EM
A:Moisture	e 460-20728-A-2		460-57719		12/06/2010 21:54	1	TAL EDI	ah
Lah ID:	460-20728-3	Cliest IF). GMW-2					
		0	D. (. (7))	10/02/0010 10:45		()	1010010010 1	0.04
		Sample	Date/Time:	12/03/2010 12:45	Received Dale	nme:	12/06/2010 1	2:01
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Balch	Prep Batch	Analyzed	Dif	Lab	Analyst
P:5030B	460-20728-B-3		460-57841		12/08/2010 00:27	1	TAL EDI	EM
A:8260B	460-20728-B-3		460-57841		12/08/2010 00:27		TAL EDI	ЕM
Lab ID:	460-20728-3 MS	Client ID): GMW-2					
		Sample	Date/Time:	12/03/2010 12:45	Received Date	/Time:	12/06/2010 1	2:01
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Balch	Analyzed	Dil	Lab	Analyst
P:5030B	460-20728-B-3 MS		460-57841	•	12/08/2010 02:57	10	TAL EDI	EM
A:8260B	460-20728-B-3 MS		460-57841		12/08/2010 02:57	10	TAL EDI	EM
	420 00700 3 MOD	Ciliand IC						
	400-20720-3 MR3D	Chemite	7: Givive-2	4010210040 40.45		-	10/00/00 10	• • •
		Sample	Date/Time:	12/03/2010 12:45	Received Date	Time:	12/06/2010 1	2:01
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Balch	Prep Batch	Analyzed	Dil	Lab	Analys1
P:5030B	460-20728-B-3 MSD		460-57841		12/08/2010 03:22	10	TAL EDI	EM
A:8260B	460-20728-B-3 MSD		460-57841		12/08/2010 03:22	10	TAL EDI	EM
Lab ID:	460-20728-4	Clien1 IE): GMW-5					
		Sample	Date/Time:	12/04/2010 11:20	Received Dates	Time:	12/06/2010 1	2:01
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030B	460-20728-B-4		460-57841		12/08/2010 00:52	1	TAL EDI	EM
A:8260B	460-20728-B-4		460-57841		12/08/2010 00:52	1	TAL EDI	EM
							and the second s	

A = Analytical Method P = Prep Method

Client: GaiaTech Inc.

Job Number: 460-20728-1

Laboratory Chronicle

Lab ID:	460-20728-5	Client II	D: GMW-3					
		Sample	Date/Time:	t2/04/2010 12:50	Received Date	/Time:	t2/06/2010 t	2:01
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030B	460-20728-B-5		460-5784 t		12/08/2010 02:32	1	TAL EDI	EM
A:8260B	460-20728-B-5		460-57841		12/08/2010 02:32	1	TAL EDI	EM
Lab ID:	460-20728-6	Client I	D: GMW-4					
		Sample	Dale/Time:	t2/04/20 t0 t3:40	Received Date	/Time:	12/06/2010 1	2:01
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030B	460-20728-B-6		460-57841		12/08/2010 01:17	1	TAL EDI	FM
A:8260B	460-20728-B-6		460-5784 t		t2/08/2010 01:17	1	TAL EDI	EM
Lab ID:	460-20728-7	Client IC): GMW-t					
		Sample	Date/Time:	12/05/2010 09:45	Received Date	/Time:	12/06/2010 1	2:01
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030B	460-20728-B-7		460-57841		12/08/2010 01:42	t	TAL EDI	EM
A:8260B	460-20728-B-7		460-5784 t	······ ·····	t2/08/2010 01:42	t	TAL EDI	EM
Lab ID:	460-20728-8	Client II): TB					
		Sample	Date/Time:	t t/ t6/20 t0 00:00	Received Date.	/Time:	12/06/20 t0 t	2:0 t
			Analysi s		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030B	460-20728-A-8		460-57841		12/08/2010 00:02	1	TAL EDI	EM
A:8260B	460-20728-A-8		460-57841		12/08/2010 00:02	t	TAL EDI	EM
Lab ID:	MB	Client IE): N/A					
		Sample	Date/Time:	N/A	Received Date	/Time:	N/A	
		_	Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
A:8260B	MB 460-57829/5		460-57829		12/07/2010 19:27	1	TAL EDI	EM
P:5030B	MB 460-57841/4		460-5784 t		12/07/2010 23:12	1	TAL EDI	EM
A:8260B	MB 460-57841/4		460-57841		12/07/2010 23:12	1	TAL EDI	EM
Lab ID:	LB3	Client IE): N/A					
		Sample	Dale/Time:	N/A	Received Date.	/Time:	N/A	
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5035	LB3 460-57757/1-A		460-57829	460-57757	12/07/2010 09:26	1	TAL EDI	MY
A:8260B	LB3 460-57757/1-A		460-57829	460-57757	12/07/2010 20:59	1	TAL EDI	FM

Client: GaiaTech Inc.

Job Number: 460-20728-1

Laboratory Chronicle

Lab ID:	LCS		Client IC): N/A					
			Sample	Dale/Time:	N/A	Received Date/	Time:	N/A	
				Analysis		Date Prepared /			
Method		Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
A:8260B		LCS 460-57829/3		460-57829		12/07/2010 17:53	1	TAL EDI	EM
P:5030B		LCS 460-57841/3		460-57841		12/07/2010 22:22	1	TAL EDI	EM
A:8260B		LCS 460-57841/3		460-57841		12/07/2010 22:22	1	TAL EDI	EM
Lab ID:	LCSD		Client ID); N/A					
			Sample	Date/Time:	N/A	Received Date/	Time:	N/A	
				Analysis		Date Prepared /			
Method		Bottle ID	Run	Batch	Prep Batch	Anatyzed	Dil	Lab	Analyst
A:8260B		LCSD 460-57829/4		460-57829		12/07/2010 t8:16	1	TAL EDI	EM
Lab ID:	DU		Client ID): N/A					
			Sample	Date/Time:	11/30/2010 10:40	Received Date/	Time:	12/06/2010 1	0:00
				Analysis		Date Prepared /			
Method		Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
A:Moisture	3	460-20739-A-4 DU		460-57719		12/06/2010 21:54	1	TAL EDI	ab

Lab References:

TAL EDI = TestAmerica Edison

Shipping and Receiving Documents

Chain of A ik.	60	Tomnersture o	n Raraint		Tes	HAme	rica		(
Custody Record	, /.			a market for the second se					στο
TAL-4124 (1007)	ł	Drinking Wate	r Yes 🗆	No the	THE LEAD!	er in Environmer	ATAL TESTING	20 26	८/₽1
CHARTETH	2	Project Manager	A IKe	500T		0ate 12	1/10	Chain of Custody	208 08
135 Sound LA Shall Sulte 350	R	Telectone Number	- 4365 /	312-541	- 0340	Leo Mu	itter	Page 1	of
City CH10460 1 Statio Za Casto		Sie Coofact	DUET La	b Contact		Analysis (At more space i	tach list if s neaded)		
Propert Name and Location (State)		CarrierWaydill Nu	imber					Snecia	Instructions/
Contractifeuchase Order Ouxe No.		Ne.	atrix	Containers Preservativ	<u>م ر</u> ې ه ه			Conditio	ns of Receipt
Sample J.D. No. and Description (Containors for each sample may be combined on one line)	Date	monty M M	saidun 105 105	HOWN IDH EONH FOSTH	HOEW				
GMin-2 (8-18) [121	1/ a/(co/	12.5	XX		X			78457	41
-GMW-2 (10-12) 12,	103/10 11	230	X X		X		4	- 48	in 747
GM/W-2 32/	10410 11	245 X		X	X		m	48	x 747 x
GMW-5 121	104/0 1	120 X		X	X		4	18	# H7 2
GAMW - 3 12/	107/10 1	250 X	······	X	Ň		<u> </u>	48	张海丁。
6140-4	1 0/160/	340 X		,SX	X			48	11 N N N N
-GMW-1	 ه/ /ه/	X		×	×	1200		4	× [47 &
(こ) (15)	105/100	345 X		X	X		64	V	171/484/177
LT B	01/011						B		())
LA COSTER Not ad COC									
CNN IN/UNS			· · ·						
									42 hr
Possibie Hazerd Upentification 🔀 Non-Hazard 🛛 Flemmeble 🔤 Scin Imitent 🗍 Pc	Doison B	Unknown	, Disposal wm To Client	🗴 Disposal By L	#0 🗌 Acch	ive For kloniti	A fee may be a m 1 mant regnot a	ssassed if samples a	
Turn Acount Time Required 2 044 48 44 144 78 78 01	055758	in one	म	OC Requiremen	s (seed) N 6	Ng			HOUNA
1. Relinquished By L. N. T.		Dep John	1740	1. Received By	1 10 20			Date	Time
2. Rolinquished By		Date UV IV	Time	2 Roceived By	WKX WW			116-0-10	1- 4-1 1400
				/					
is newspace of		AIDU	AUM	י הפכבויינים שא				Care	BURI
Contraction and the second									

DISTRIBUTION: WHITE - Returned to Citent with Report, CAVARY - Steys with the Sampley, PINK - Field Copy

Login Sample Receipt Check List

Client: GaiaTech Inc.

Job Number: 460-20728-1

List Source: TestAmerica Edison

Login Number: 20728 Creator: Meyers, Gary List Number: 1

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.1 °C IR #50
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labets.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Venified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

APPENDIX B Workplan Schedule

Dynamic Systems Inc. Site Charaterization Workplan Schedule

Task		Product	10/31/12		1 11/30/12		12/30/]		1/3	31/12	2	/1/12
Task 1	1.1 Phase I and Limited Phase II Investigation	Investigation Reports									Τ	
Project Initiation												
Task 2	2.1 Prepare Draft Site Characterization (SC) Work Plan	Draft Site Characterization (SC) Work Plan										
Development of	2.1a Submit to NYSDEC for Approval	Approved SC Work Plan									Π	
Characterization	2.1b Quality Assurance/Quality Control Plan	Identify Data Validation Subcontractor									Π	
Work Plan											\square	
	3.1 Breakup and remove concrete from Degreaser Pit	Soil from degreaser pit exposed for evaluation										
Task 3.0	3.2 Evaluate soils and groundwater from pit for removal											
	3.3 Collect groundwater samples	Groundwater samples									Π	
Implement SC Work Plan	3.4 Collect soil samples from side walls and bottom.	Collect soil samples										
WOLK FIAI	3.5 Submit to NYS Certified Laboratory	Sampling Report										
	3.6 Validate Data	Validated Results										
											\square	
	4.1 Sample Monitoring Well Network										Ш	
Task 4.0	4.2 Submit to NYS Certified Laboratory	Sampling Report										
Groundwater Sampling	4.3 Validate Data	Validated Results										
Task 5.0 Report	5.1 Evaluate data and report results	Final report on Site Characterization										
Findings	5.2 Submit findings to NYSDEC										\square	

APPENDIX C NESHAP SOLVENTS REPORTS 2004-2009

HALOGENATED SOLVENT CLEANER NESHAP:

Complying with the Alternative Standard

PART ONE - General Information

Person Preparing Report		Ferguson	David	David E.		1/25/10		
		Last Name,	First Name,	Middle Initial				
Company Name	ne Dynamic Systems Inc.							
Mailing Address	P. O. I	Box 1234	Poestenl	kill NY	12140	12140		
	Numb	er, Street,	, City/Tov	wn, State	e, Zip C	ode		
Equipment	323	Rt. 35	5 Poestenl	kill NY	12140)		
Location Address	Numl	ber, Street,	, City/Tov	wn, State	e, Zip C	ode		

Cleaning Machine Summary

Identification Number Degreaser <u>Description</u> Vapor degreaser in machine shop.

1/25/10

HALOGENATED SOLVENT CLEANER NESHAP:

Annual Report

PART TWO - Information Required per Machine

Cleaner Identification Number: <u>Degreaser</u>									
Check compliance option chosen and fill out appropriate report requirements.									
Control Options	· · · · ·								
All operators of solvent cleaning machines and their con	All operators of solvent cleaning machines have received training on the proper operation of solvent cleaning machines and their control devices sufficient to pass the required operator test.								
S	ignature	Date							
Previous Year's Solvent consumption	kg/yr (for lb/yr).							
X Alternative Standard									
Cleaning machine size									
Solvent-air interface area	10 ft ²								
Or									
Solvent cleaning capacity	m ³ (or ft ³)								
Average monthly solvent consumption	159 lb.								

1/25/10

HALOGENATED SOLVENT CLEANER NESHAP:

Annual Report

PART TWO (continued) - Information Required per Machine

Three month rolling	1.	16.1	1b.	From	11/08	То	1/09
average emission estimates:					Date		Date
(calculations attached)	2.	17.1	lb.	From	12/08	То	2/09
			****		Date		Date
	3.	18.6	lb.	From	1/09	То	3/09
					Date		Date
	4.	18.4	lb.	From	2/09	То	4/09
					Date		Date
	5.	16.9	lb.	From	3/09	То	5/09
		2794295295295999995260598	DAGAS		Date	çini întereș	Date
	6.	14.5	lb.	From	4/09	То	6/09
		BIDERIS BUCCHISTORY	kind		Date	n (m (tř	Date
	7.	11.3	lb.	From	5/09	То	7/09
					Date		Date
	8.	15.4	lb.	From	6/09	То	8/09
		SELACIER CONTRACTOR STREET	a fit		Date		Date
	9.	16.9	lb.	From	7/09	То	9/09
					Date		Date
	10	19.3	lb.	From	8/09	То	10/09
					Date		Date
	11.	13.5	lb.	From	9/09	То	11/09
					Date		Date
	12.	13.2	lb.	From	10/09	То	12/09
			and a second		Date	1257774210	Date

1/25/10

HALOGENATED SOLVENT CLEANER NESHAP:

OVERALL EMISSIONS LIMIT MONTHLY EMISSIONS RECORDKEEPING FORM

(For Machines That Have a solvent-Air Interface Area)

Cleaner Identification Number: Degreaser

(Make dates next year) Month/Year	SA (1)	LSR (2)	SSR (3)	AREA (4)	Monthly Emissions (<u>(1) - [(2) + (3)]</u> 4
1/09	184	0	0	10	18.4
2/09	194	0	0	10	19.4
3/09	18.2	0	0	10	18.2
4/09	176	0	0	10	17.6
5/09	148	0	0	10	14.8
6/09	112	0	0	10	11.2
7/09	74	0	0	10	7.4
8/09	276	0	0	10	27.6
9/09	157	0	0	10	15.7
10/09	146	0	0	10	14.6
11/09	102	0	0	10	10.2
12/09	148	0	0	10	14.8

SA = Amount of halogenated solvent added (pounds of solvent added) that month.

LSR

SR = Amount of halogenated solvent removed (pounds of solvent removed) that month.

SSR = Amount of halogenated solvent removed from the cleaning machine in solid waste (pounds of solvent removed) that month.

AREA = Area of machine air-solvent interface.

HALOGENATED SOLVENT CLEANER NESHAP:

OVERALL EMISSIONS LIMIT 3-MONTH ROLLING AVERAGE MONTHLY EMISSIONS RECORDKEEPING FORM

Cleaner Identification Number: Degreaser

(Make dates next year)				3-Month Rolling Average Monthly Emissions
	E_1	E_2	E ₃	(1) + (2) + (3)
Month/Year	(1)	(2)	(3)	3
1/09	18.4	13.4	16.7	16.1
2/09	19.4	18.4	13.4	17.1
3/09	18.2	19.4	18.4	18.6
4/09	17.6	18.2	19.4	18.4
5/09	14.8	17.6	18.2	16.9
6/09	11.2	14.8	17.6	14.5
7/09	7.4	11.2	14.8	11.3
8/09	27.6	7.4	11.2	15.4
9/09	15.7	27.6	7.4	16.9
10/09	14.6	15.7	27.6	19.3
11/09	10.2	14.6	15.7	13.5
12/09	14.8	10.2	14.6	13.2

 E_1 = Monthly emissions (pounds per square foot) for the current month.

 E_2 = Monthly emissions (pounds per square foot) from the previous month.

 E_3 = Monthly emissions (pounds per square foot) from two months prior.

1/25/10

HALOGENATED SOLVENT CLEANER NESHAP:

Complying with the Alternative Standard

PART ONE - General Information

Person Preparing Report		Ferguson	David E.			Date:	1/14/09
		Last Name,	First Name,	Middle Init	tial		<u></u>
Company Name	Dynan	nic Systems Inc	C.	15474		ýk keze a na na svensku kezer svensku kezer	
Mailing Address	P. O. I	Box 1234	Poestenkill		Y	12140	
	Numb	er, Street,	, City/To	wn, S	tate,	Zip C	ode
Equipment	323	Rt. 35	5 Poesten	kill N	Y	12140)
Location Address	Num	ber, Street	, City/To	wn, S	tate,	Zip C	ode

Cleaning Machine Summary

Identification Number Degreaser <u>Description</u> Vapor degreaser in machine shop.

Guidance document/als.118
1/14/09

HALOGENATED SOLVENT CLEANER NESHAP:

Annual Report

PART TWO - Information Required per Machine

Cleaner Identification Number: <u>Degreaser</u>
Check compliance option chosen and fill out appropriate report requirements.
Control Options All operators of solvent cleaning machines have received training on the proper operation of solvent cleaning machines and their control devices sufficient to pass the required operator test.
Signature Date
Previous Year's Solvent consumptionkg/yr (or lb/yr).
X Alternative Standard
Cleaning machine size
Solvent-air interface area 10 ft ²
OT
Solvent cleaning capacity m ³ (or ft ³)
Average monthly solvent consumption 153 lb.

1/14/09

Annual Report

PART TWO (continued) - Information Required per Machine

Three month rolling	1.	15.1	lb.	From	11/07	То	1/08
average emission estimates:					Date		Date
(calculations attached)	2.	11.5	lb.	From	12/07	То	2/08
					Date		Date
	3.	12.8	lb.	From	1/08	To	3/08
					Date		Date
	4.	13.4	lb.	From	2/08	То	4/08
					Date		Date
	5.	15.0	lb.	From	3/08	То	5/08
			Append .		Date		Date
	6.	14.8	lb.	From	4/08	То	6/08
					Date		Date
	7.	17.9	lb.	From	5/08	То	7/08
					Date		Date
	8.	16.6	lb.	From	6/08	То	8/08
					Date		Date
	9.	17.0	lb.	From	7/08	То	9/08
					Date	CALCELOCUM.	Date
	10	15.3	lb.	From	8/08	То	10/08
					Date		Date
	11.	16.3	lb.	From	9/08	То	11/08
					Date	(), (), (), (), (), (), (), (), (), (),	Date
	12.	16.6	lb.	From	10/08	То	12/08
					Date	operative a conf	Date

1/14/09

OVERALL EMISSIONS LIMIT MONTHLY EMISSIONS RECORDKEEPING FORM

(For Machines That Have a solvent-Air Interface Area)

Cleaner Identification Number: Degreaser

(Make dates next year) Month/Year	SA (1)	LSR (2)	SSR (3)	AREA (4)	Monthly Emissions (<u>1) - [(2) + (3)]</u> 4
1/08	135	0	0	10	13.5
2/08	130	0	0	10	13.0
3/08	118	0	0	10	11.8
4/08	155	0	0	10	15.5
5/08	176	0	0	10	17.6
6/08	114	0	0	10	11.4
7/08	247	0	0	10	24.7
8/08	137	0	0	10	13.7
9/08	125	0	0	10	12.5
10/08	196	0	0	10	19.6
11/08	167	0	0	10	16.7
12/08	134	0	0	10	13.4

SA -Amount of halogenated solvent added (pounds of solvent added) that month. -----

LSR

Amount of halogenated solvent removed (pounds of solvent removed) that month. ===

Amount of halogenated solvent removed from the cleaning machine in solid waste SSR _ (pounds of solvent removed) that month.

Area of machine air-solvent interface. AREA -----

1/14/09

HALOGENATED SOLVENT CLEANER NESHAP:

OVERALL EMISSIONS LIMIT 3-MONTH ROLLING AVERAGE MONTHLY EMISSIONS RECORDKEEPING FORM

Cleaner Identification Number: <u>Degreaser</u>

(Make dates				3-Month Rolling Average Monthly Emissions
meat yeary	E ₁	E_2	E_3	(1) + (2) + (3)
Month/Year	(1)	(2)	(3)	3
1/08	13.5	8.1	23.6	15.1
2/08	13.0	13.5	8.1	11.5
3/08	11.8	13.0	13.5	12.8
4/08	15.5	11.8	13.0	13.4
5/08	17.6	15.5	11.8	15.0
6/08	11.4	17.6	15.5	14.8
7/08	24.7	11.4	17.6	17.9
8/08	13.7	24.7	11.4	16.6
9/08	12.5	13.7	24.7	17.0
10/08	19.6	12.5	13.7	15.3
11/08	16.7	19.6	12.5	16.3
12/08	13.4	16.7	19.6	16.6

 E_1 = Monthly emissions (pounds per square foot) for the current month.

 E_2 = Monthly emissions (pounds per square foot) from the previous month.

 E_3 = Monthly emissions (pounds per square foot) from two months prior.

1/8/08

Complying with the Alternative Standard

PART ONE - General Information

Person Preparing Report		Ferguson	David	E.	Date:	1/8/08		
		Last Name,	First Name,	Middle Initial	and the product of the second			
Company Name	Dynamic Systems Inc.							
Mailing Address	P. O. J	Box 1234	Poesten	kill NY	12140			
	Numb	er, Street	, City/To	wn, State,	Zip Co	ode		
Equipment	323	Rt. 35	5 Poesten	kill NY	12140			
Location Address	Num	ber, Street	, City/To	wn, State,	, Zip Co	ode		

Cleaning Machine Summary

Identification Number Degreaser <u>Description</u> Vapor degreaser in machine shop.

Guidance document/als.118

1/8/08

Annual Report

PART TWO - Information Required per Machine

Cleaner Identification Number: Degreaser							
Check compliance option chosen and fill out appropriate report requirements.							
Control Options							
All operators of solvent cleaning machines have received training on the solvent cleaning machines and their control devices sufficient to pass the re	e proper operation of quired operator test.						
Signature	Date						
Previous Year's Solvent consumptionkg/yr (or lb/yr).							
X Alternative Standard							
Cleaning machine size							
Solvent-air interface area 10 ft^2							
or							
Solvent cleaning capacity m ³ (or ft ³)							
WE IN A CONTRACT OF A							
Average monthly solvent consumption 162 lb.							

1/8/08

HALOGENATED SOLVENT CLEANER NESHAP:

Annual Report

PART TWO (continued) - Information Required per Machine

Three month rolling	1.	17.1	lb.	From	11/06	То	1/07
average emission estimates:					Date	******	Date
(calculations attached)	2.	16.8	lb.	From	12/06	То	2/07
		<u> 1944) (- 1944) - 1947) - 1947</u>			Date	<u>And and and and and and and and and and a</u>	Date
	3.	16.4	lb.	From	1/07	То	3/07
					Date		Date
	4.	15.5	lb.	From	2/07	To	4/07
					Date		Date
	5.	13.7	lb.	From	3/07	То	5/07
					Date		Date
	6.	16.2	lb.	From	4/07	То	6/07
					Date		Date
	7.	16.5	lb.	From	5/07	To	7/07
					Date		Date
	8.	17.9	lb.	From	6/07	То	8/07
					Date		Date
	9.	16.5	lb.	From	7/07	То	9/07
			600		Date		Date
	10	15.4	lb.	From	8/07	То	10/07
					Date		Date
	11.	17.9	lb.	From	9/07	То	11/07
					Date		Date
	12.	14.9	lb.	From	10/07	То	12/07
		THEORY CONTRACTORS	DINE		Date		Date

OVERALL EMISSIONS LIMIT MONTHLY EMISSIONS RECORDKEEPING FORM

(For Machines That Have a solvent-Air Interface Area)

Cleaner Identification Number: Degreaser

(Make dates next year) Month/Year	SA (1)	LSR (2)	SSR (3)	AREA (4)	Monthly Emissions (1) - [(2) + (3)] 4
1/07	179	0	0	10	17.9
2/07	174	0	0	10	17.4
3/07	140	0	0	10	14.0
4/07	152	0	0	10	15.2
5/07	119	0	0	10	11.9
6/07	214	0	0	10	21.4
7/07	163	0	0	10	16.3
8/07	160	0	0	10	16.0
9/07	173	0	0	10	17.3
10/07	130	0	0	10	13.0
11/07	236	0	0	10	23.6
12/07	81	0	0	10	8.1

SA = Amount of halogenated solvent added (pounds of solvent added) that month.

LSR

SR = Amount of halogenated solvent removed (pounds of solvent removed) that month.

SSR = Amount of halogenated solvent removed from the cleaning machine in solid waste (pounds of solvent removed) that month.

AREA = Area of machine air-solvent interface.

1/8/08

1/8/08

OVERALL EMISSIONS LIMIT 3-MONTH ROLLING AVERAGE MONTHLY EMISSIONS RECORDKEEPING FORM

Cleaner Identification Number: Degreaser

(Make dates				3-Month Rolling Average Monthly Emissions
next youry	E ₁	E ₂	E ₃	(1) + (2) + (3)
Month/Year	(1)	(2)	(3)	3
1/07	17.9	15.0	18.3	17.1
2/07	17.4	17.9	15.0	16.8
3/07	14.0	17.4	17.9	16.4
4/07	15.2	14.0	17.4	15.5
5/07	11.9	15.2	14.0	13.7
6/07	21.4	11.9	15.2	16.2
7/07	16.3	21.4	11.9	16.5
8/07	16.0	16.3	21.4	17.9
9/07	17.3	16.0	16.3	16.5
10/07	13.0	17.3	16.0	15.4
11/07	23.6	13.0	17.3	17.9
12/07	8.1	23.6	13.0	14.9

 E_1 = Monthly emissions (pounds per square foot) for the current month.

 E_2 = Monthly emissions (pounds per square foot) from the previous month.

 E_3 = Monthly emissions (pounds per square foot) from two months prior.

Guidance document/als.118

HALOGENATED SOLVENT CLEANER NESHAP:

Complying with the Alternative Standard

PART ONE - General Information

Person Preparing Report		Ferguson	David	E.	Date:	1/3/07		
		Last Name,	First Name,	Middle Initial				
Company Name	Dynamic Systems Inc.							
Mailing Address	P. O. J	Box 1234	Poesten	kill NY	1214	0		
	Numb	er, Street	, City/To	wn, Stat	e, Zip C	Code		
Equipment	323	Rt. 35	5 Poesten	kill NY	1214	0		
Location Address	Num	ber, Street	, City/To	wn, Stat	e, Zip C	Code		

Cleaning Machine Summary

Identification Number Degreaser <u>Description</u> Vapor degreaser in machine shop.

HALOGENATED SOLVENT CLEANER NESHAP:

Annual Report

PART TWO - Information Required per Machine

Cleaner Identification Number: Degreaser							
Check compliance option chosen and fill out appropriate report requirements.							
Control Options							
All operators of solvent cleaning machines have received training on the solvent cleaning machines and their control devices sufficient to pass the received	proper operation of uired operator test.						
Signature Date							
Previous Year's Solvent consumptionkg/yr (or lb/yr).							
X Alternative Standard							
Cleaning machine size							
Solvent-air interface area 10 ft ²							
OT							
Solvent cleaning capacity m ³ (or ft ³)							
Average monthly solvent consumption 155 lb.							

HALOGENATED SOLVENT CLEANER NESHAP:

Annual Report

PART TWO (continued) - Information Required per Machine

Three month rolling	1.	12.6	lb.	From	11/05	То	1/06
average emission estimates:					Date		Date
(calculations attached)	2.	8.8	lb.	From	12/05	То	2/06
		<u></u>			Date	JUNCUE.	Date
	3.	14.2	lb.	From	1/06	То	3/06
					Date		Date
	4.	13.7	lb.	From	2/06	То	4/06
					Date		Date
	5.	15.9	lb.	From	3/06	То	5/06
					Date		Date
	6.	16.4	lb.	From	4/06	То	6/06
					Date		Date
	7.	16.5	lb.	From	5/06	To	7/06
					Date		Date
	8.	15.8	lb.	From	6/06	То	8/06
					Date		Date
	9.	15.4	lb.	From	7/06	То	9/06
					Date		Date
	10	15.2	lb.	From	8/06	То	10/06
					Date	11 (10) 1	Date
	11.	16.4	1b.	From	9/06	То	11/06
			coronal		Date		Date
	12.	15.9	lb.	From	10/06	То	12/06
					Date		Date

1/3/07

OVERALL EMISSIONS LIMIT MONTHLY EMISSIONS RECORDKEEPING FORM

(For Machines That Have a solvent-Air Interface Area)

Cleaner Identification Number: Degreaser

(Make dates next year) Month/Year	SA (1)	LSR (2)	SSR (3)	AREA (4)	Monthly Emissions (1) - [(2) + (3)] 4
1/06	164	0	0	10	16.4
2/06	101	0	0	10	10.1
3/06	160	0	0	10	16.0
4/06	150	0	0	10	15.0
5/06	166	0	0	10	16.6
6/06	176	0	0	10	17.6
7/06	152	0	0	10	15.2
8/06	147	0	0	10	14.7
9/06	163	0	0	10	16.3
10/06	145	0	0	10	14.5
11/06	183	0	0	10	18.3
12/06	150	0	0	10	15.0

SA Amount of halogenated solvent added (pounds of solvent added) that month. ----

LSR

Amount of halogenated solvent removed (pounds of solvent removed) that month. ____

SSR _ Amount of halogenated solvent removed from the cleaning machine in solid waste (pounds of solvent removed) that month.

Area of machine air-solvent interface. AREA ____

HALOGENATED SOLVENT CLEANER NESHAP:

OVERALL EMISSIONS LIMIT 3-MONTH ROLLING AVERAGE MONTHLY EMISSIONS RECORDKEEPING FORM

Cleaner Identification Number: Degreaser

(Make dates next year)	Ε.	Έ.	E.	3-Month Rolling Average Monthly Emissions (1) + (2) + (3)
Month/Year	(1)	(2)	(3)	$\frac{11}{3}$
1/06	16.4	0	21.3	12.6
2/06	10.1	16.4	0	8.8
3/06	16.0	10.1	16.4	14.2
4/06	15.0	16.0	10.1	13.7
5/06	16.6	15.0	16.0	15.9
6/06	17.6	16.6	15.0	16.4
7/06	15.2	17.6	16.6	16.5
8/06	14.7	15.2	17.6	15.8
9/06	16.3	14.7	15.2	15.4
10/06	14.5	16.3	14.7	15.2
11/06	18.3	14.5	16.3	16.4
12/06	15.0	18.3	14.5	15.9

 E_1 = Monthly emissions (pounds per square foot) for the current month.

 E_2 = Monthly emissions (pounds per square foot) from the previous month.

 E_3 = Monthly emissions (pounds per square foot) from two months prior.

Complying with the Alternative Standard

PART ONE - General Information

Person Preparing Report		Ferguson David E.		E.		Date:	1/26/06	
		Last Name,	First Name,	Middle I	nitial			
Company Name Dynamic Systems Inc.								
Mailing Address	P. O. I	Box 1234	Poesten	kill	NY	1214)	
	Numb	er, Street	, City/To	wn,	State,	Zip C	ode	
Equipment	323	Rt. 35	55 Poesten	kill	NY	1214	0	
Location Address	Num	ber, Street	t, City/To	wn,	State,	Zip C	lode	

Cleaning Machine Summary

Identification Number Degreaser <u>Description</u> Vapor degreaser in machine shop.

Guidance document/als.118

1/20/06

Annual Report

PART TWO - Information Required per Machine

Cleaner Identification Number: Degrease	er						
Check compliance option chosen and fill out appropriate report requirements.							
Control Options All operators of solvent cleaning machines have received training on the proper operation of solvent cleaning machines and their control devices sufficient to pass the required operator test.							
-	Signature	nen en	Date				
Previous Year's Solvent consumption		kg/yr (or lb/yr).					
X Alternative Standard							
Cleaning machine size							
Solvent-air interface area	10	ft²					
or							
Solvent cleaning capacity		m ³ (or ft ³)					
Average monthly solvent consumption	1 l	44 lb.					

Annual Report

PART TWO (continued) - Information Required per Machine

Three month rolling	1.	17.2	lb.	From	1/05	To	11/04
average emission estimates:			uparto de		Date		Date
(calculations attached)	2.	140	lb.	From	2/05	To	12/04
			1044		Date		Date
	3.	14.2	lb.	From	3/05	То	1/05
					Date		Date
	4.	15.3	lb.	From	4/05	To	2/05
					Date		Date
	5.	18.4	lb.	From	5/05	То	3/05
					Date	(nyaniyan)	Date
	6.	18.3	lb.	From	6/05	То	4/05
					Date		Date
	7.	15.1	lb.	From	7/05	То	5/05
					Date		Date
	8.	14.9	lb.	From	8/05	То	6/05
		1			Date		Date
	9.	13.8	lb.	From	9/05	То	7/05
					Date		Date
	10	12.7	lb.	From	10/05	То	8/05
		LISCOUCHIACOMON			Date		Date
	11.	15.8	lb.	From	11/05	То	9/05
			*****		Date	weati	Date
	12.	11.5	lb.	From	12/05	То	10/05
			200 1		Date		Date

1/26/06

1/26/06

OVERALL EMISSIONS LIMIT MONTHLY EMISSIONS RECORDKEEPING FORM

(For Machines That Have a solvent-Air Interface Area)

Cleaner Identification Number: Degreaser

(Make dates next year) Month/Year	SA (1)	LSR (2)	SSR (3)	AREA (4)	Monthly Emissions (<u>1) - [(2) + (3)]</u> 4
1/05	213	0	0	10	21.3
2/05	50	0	0	10	5.0
3/05	164	0	0	10	16.4
4/05	261	0	0	10	26.1
5/05	128	0	0	10	12.8
6/05	161	0	0	10	16.1
7/05	163	0	0	10	16.3
8/05	122	0	0	10	12.2
9/05	128	0	0	10	12.8
10/05	132	647	0	10	13.2
11/05	213	0	0	10	21.3
12/05	0	0	0	10	0

Amount of halogenated solvent added (pounds of solvent added) that month. SA -----

LSR

Amount of halogenated solvent removed (pounds of solvent removed) that month. -----

SSR = Amount of halogenated solvent removed from the cleaning machine in solid waste (pounds of solvent removed) that month.

Area of machine air-solvent interface. AREA -----

1/26/06

HALOGENATED SOLVENT CLEANER NESHAP:

OVERALL EMISSIONS LIMIT 3-MONTH ROLLING AVERAGE MONTHLY EMISSIONS RECORDKEEPING FORM

Cleaner Identification Number: Degreaser

(Make dates next year)				3-Month Rolling Average Monthly Emissions
U	E ₁	E_2	E ₃	(1) + (2) + (3)
Month/Year	(1)	(2)	(3)	3
1/05	21.3	15.7	14.8	17.2
2/05	5.0	21.3	15.7	14.0
3/05	16.4	5.0	21.3	14.2
4/05	26.1	16.4	5.0	15.8
5/05	12.8	26.1	16.4	18.4
6/05	16.1	12.8	26.1	18.3
7/05	16.3	16.1	12.8	15.1
8/05	12.2	16.3	16.1	14.9
9/05	12.8	12.2	16.3	13.8
10/05	13.2	12.8	12.2	12.7
11/05	21.3	13.2	12.8	15.8
12/05	0	21.3	13.2	11.5

 E_1 = Monthly emissions (pounds per square foot) for the current month.

 E_2 = Monthly emissions (pounds per square foot) from the previous month.

 E_3 = Monthly emissions (pounds per square foot) from two months prior.

Complying with the Alternative Standard

PART ONE - General Information

Person Preparing Report		Ferguson	n David E.			Date: 1/4/05		
		Last Name,	First Name,	Middle Ini	itial			
Company Name Dynamic Systems Inc.								
Mailing Address	P. O. J	Box 1234	Poesten	kill N	ΝY	12140)	
	Numb	er, Stree	t, City/To	wn, S	State,	Zip C	ode	
Equipment	323	Rt. 3	55 Poesten	kill l	١Y	12140)	
Location Address	Num	ber, Stree	t, City/To	wn, S	State,	Zip C	ode	

Cleaning Machine Summary

Identification Number Degreaser <u>Description</u> Vapor degreaser in machine shop.

Annual Report

PART TWO - Information Required per Machine

Cleaner Identification Number: Degreaser								
Check compliance option chosen and fill out appropriate report requirements.								
Control Options								
All operators of solvent cleaning machines have received training on the proper operation of solvent cleaning machines and their control devices sufficient to pass the required operator test.								
	Signature	Date						
Previous Year's Solvent consumption		kg/yr (or lb/yr).						
X Alternative Standard								
Cleaning machine size								
Solvent-air interface area	10 f	t ²						
or	Normann, ann an Anna Anna Anna Anna Anna Ann							
Solvent cleaning capacity	Ľ	n^3 (or ft^3)						
Average monthly solvent consumption	ı 15'	9 lb.						

1/4/05

Annual Report

PART TWO (continued) - Information Required per Machine

Three month rolling	1.	16.6	lb.	From	1/04	То	11/03	
(calculations attached)					Date		Date	
	2.	19.4	lb.	From	2/04	То	12/03	
		EXAMPLE ROOM FOR THE PROPERTY OF T	294222		Date		Date	
	3.	17.9	lb.	From	3/04	То	1/04	
					Date		Date	
	4.	13.2	lb.	From	4/04	То	2/04	
					Date		Date	
	5.	12.7	lb.	From	5/04	То	3/04	
		And the second			Date		Date	
	6.	14.3	lb.	From	6/04	То	4/04	
					Date		Date	
	7.	16.9	lb.	From	7/04	То	5/04	
					Date		Date	
	8.	16.5	lb.	From	8/04	То	6/04	
		Distant Concerns			Date		Date	
	9.	16.2	lb.	From	9/04	То	7/04	
					Date		Date	
	10	14.8	lb.	From	10/04	То	8/04	
		********			Date		Date	
	11.	16.1	lb.	From	11/04	То	9/04	
		#-0 <u>+04</u>			Date		Date	
	12.	15.0	lb.	From	12/04	То	10/04	
			uter and the second		Date		Date	

1/4/05

OVERALL EMISSIONS LIMIT MONTHLY EMISSIONS RECORDKEEPING FORM

(For Machines That Have a solvent-Air Interface Area)

Cleaner Identification Number: Degreaser

(Make dates next year) Month/Year	SA (1)	LSR (2)	SSR (3)	AREA (4)	Monthly Emissions <u>(1) - [(2) + (3)]</u> 4
1/04	253	0	0	10	25.3
2/04	134	0	0	10	13.4
3/04	152	0	0	10	15.2
4/04	110	0	0	10	11.0
5/04	120	0	0	10	12.0
6/04	200	0	0	10	20.0
7/04	188	0	0	10	18.8
8/04	108	0	0	10	10.8
9/04	191	0	0	10	19.1
10/04	145	647	0	10	14.5
11/04	148	0	0	10	14.8
12/04	157	0	0	10	15.7

SA = Amount of halogenated solvent added (pounds of solvent added) that month.

LSR

R = Amount of halogenated solvent removed (pounds of solvent removed) that month.

SSR = Amount of halogenated solvent removed from the cleaning machine in solid waste (pounds of solvent removed) that month.

AREA = Area of machine air-solvent interface.

1/4/05

HALOGENATED SOLVENT CLEANER NESHAP:

OVERALL EMISSIONS LIMIT 3-MONTH ROLLING AVERAGE MONTHLY EMISSIONS RECORDKEEPING FORM

Cleaner Identification Number: Degreaser

(Make dates next year)	F.	Fa	E2	3-Month Rolling Average Monthly Emissions (1) + (2) + (3)
Month/Year	(1)	(2)	(3)	3
1/04	25.3	19.5	5.1	16.6
2/04	13.4	25.3	19.5	19.4
3/04	15.2	13.4	25.3	17.9
4/04	11.0	15.2	13.4	13.2
5/04	12.0	11.0	15.2	12.7
6/04	20.0	12.0	11.0	14.3
7/04	18.8	20.0	12.0	16.9
8/04	10.8	18.8	20.0	16.5
9/04	19.1	10.8	18.8	16.2
10/04	14.5	19.1	10.8	14.8
11/04	14.8	14.5	19.1	16.1
12/04	15.7	14.8	14.5	15.0

 E_1 = Monthly emissions (pounds per square foot) for the current month.

 E_2 = Monthly emissions (pounds per square foot) from the previous month.

 E_3 = Monthly emissions (pounds per square foot) from two months prior.

1/19/04

HALOGENATED SOLVENT CLEANER NESHAP:

Complying with the Alternative Standard

PART ONE - General Information

Person Preparing Report		Ferguson	David E.			Date:	1/19/04
		Last Name,	First Name,	Middle In	itial		
Company Name Dynamic Systems Inc.							
Mailing Address	P. O. I	Box 1234	Poesten	kill 3	NY	12140	
	Numb	er, Street,	, City/To	wn,	State,	Zip Co	ode
Equipment	323	Rt. 35	5 Poesten	kill 3	NY	12140	
Location Address	Num	ber, Street	, City/To	wn,	State,	Zip Co	ode

Cleaning Machine Summary

Identification Number Degreaser

ς.

<u>Description</u> Vapor degreaser in machine shop.

Guidance document/als.118

1/19/04

Annual Report

PART TWO - Information Required per Machine

Cleaner Identification Number: Degreaser						
Check compliance option chosen and fill out appropriate report requirements.						
	Control Options All operators of solvent cleaning machines have received training on the proper operation of					
	solvent cleaning machines and their control	devices sufficient to pass the re	quired operator test.			
	Signature Date					
	Previous Year's Solvent consumptionkg/yr (or lb/yr).					
X	Alternative Standard					
	Cleaning machine size					
	Solvent-air interface area 10	ft²				
	or					
	Solvent cleaning capacity	m^3 (or ft^3)				
	Average monthly solvent consumption	174 lb.				

1/19/04

Annual Report

PART TWO (continued) - Information Required per Machine

Three month rolling	1	111	114	Enom	(Make d	lates next year)	
average emission estimates:	1.	11.1	10.	110111	Date	10	Date
(calculations attached)	2	10.2	116	From	2/02	Τo	12/02
	hu .	12.5	10.	FIOIII	Date	10	Date
			11	***	Date		1/01
	3.	15.5	lb.	From	3/03	10	1/01
					Date		Date
	4.	18.1	lb.	From	4/03	To	2/03
					Date		Date
	5.	19.5	lb.	From	5/03	То	3/03
			*****		Date		Date
	6.	23.2	lb.	From	6/03	То	4/03
					Date		Date
	7.	21.3	lb.	From	7/03	То	5/03
					Date		Date
	8.	21.3	lb.	From	8/03	To	6/03
					Date		Date
	9.	15.2	lb.	From	9/03	То	7/03
					Date	DASCENS.	Date
	10	17.5	lb.	From	10/03	То	8/03
			inite and a second s		Date		Date
	11.	12.8	lb.	From	11/03	То	9/03
					Date		Date
	12.	15.8	lb.	From	12/03	То	10/03
		<u></u>			Date		Date

1/19/04

OVERALL EMISSIONS LIMIT MONTHLY EMISSIONS RECORDKEEPING FORM

(For Machines That Have a solvent-Air Interface Area)

Cleaner Identification Number: <u>Degreaser</u>

(Make dates next year) Month/Year	SA (1)	LSR (2)	SSR (3)	AREA (4)	Monthly Emissions (<u>1) - [(2) + (3)]</u> 4
1/03	137	0	0	10	13.7
2/03	149	0 .	0	10	14.9
3/03	179	0	0	10	17.9
4/03	216	0	0	10	21.6
5/03	192	0	0	10	19.2
6/03	289	0	0	10	28.9
7/03	159	0	0	10	15.9
8/03	192	0	0	10	19.2
9/03	106	0	0	10	10.6
10/03	228	0	0	10	22.8
11/03	51	0	0	10	5.1
12/03	195	0	0	10	19.5

SA = Amount of halogenated solvent added (pounds of solvent added) that month.

LSR

SR = Amount of halogenated solvent removed (pounds of solvent removed) that month.

SSR = Amount of halogenated solvent removed from the cleaning machine in solid waste (pounds of solvent removed) that month.

AREA = Area of machine air-solvent interface.

1/19/04

OVERALL EMISSIONS LIMIT 3-MONTH ROLLING AVERAGE MONTHLY EMISSIONS RECORDKEEPING FORM

Cleaner Identification Number: <u>Degreaser</u>

(Make dates next year)	D.	E.	۳.	3-Month Rolling Average Monthly Emissions
Month/Year	(1)	(2)	(3)	$\frac{(1)+(2)+(3)}{3}$
1/03	13.7	8.35	11.25	11.1
2/03	14.9	13.7	8.35	12.3
3/03	17.9	14.9	13.7	15.5
4/03	21.6	17.9	14.9	18.1
5/03	19.2	21.6	17.9	19.5
6/03	28.9	19.2	21.6	23.2
7/03	15.9	28.9	19.2	21.3
8/03	19.2	15.9	28.9	21.3
9/03	10.6	19.2	15.9	15.2
10/03	22.8	10.6	19.2	17.5
11/03	5.1	22.8	10.6	12.8
12/03	19.5	5.1	22.8	15.8

 E_1 = Monthly emissions (pounds per square foot) for the current month.

 E_2 = Monthly emissions (pounds per square foot) from the previous month.

 E_3 = Monthly emissions (pounds per square foot) from two months prior.

APPENDIX D Degreaser Photos

