

September 22, 2015

Mr. Brian Hart Turnpike Redevelopment Group, LLC 302 Washington Avenue Ext. Albany, New York 12203

Re: Phase II Environmental Site Assessment Former K-mart Department Store 164 Columbia Turnpiek East Greenbush, New York Evergreen Project Number: ETE-15-65

Dear Mr. Hart:

Submitted herewith is the report for a Phase II Environmental Site Assessment (ESA) completed at the above-referenced property. The attached report, as noted therein, has been prepared in general accordance Federal, State and local regulations.

Information accumulated for this evaluation will be retained with your project file. The report and information in your file is considered confidential and will not be released without your written authorization.

We appreciate the opportunity to complete these services. Please call me at (518)266-0310, if you have questions regarding this information or If I can be of further assistance.

Very truly yours, Evergreen Testing & Environmental Services, Inc.

Olivia R. Burns Environmental Technician

594 Broadway Watervliet, NY 12189 Voice 518-266-0310 Fax 518-266-9238

PHASE II ENVIRONMENTAL SITE ASSESSMENT Former K-mart Department Store 164 Columbia Turnpiek Town of East Greenbush, Rensselaer County, NY ETE-15-65

Prepared for

Turnpike Redevelopment Group, LLC 302 Washington Avenue Ext. Albany, New York 12203

Prepared By:

Evergreen Testing & Environmental Services, Inc. 594 Broadway Watervliet, New York 12189 (518) 266-0310

September 2015

PHASE II ENVIRONMENTAL SITE ASSESSMENT

for

Former K-mart Department Store 164 Columbia Turnpiek Town of East Greenbush, Rensselaer County, NY

ETE-15-65

Prepared for

Turnpike Redevelopment Group, LLC 302 Washington Avenue Ext. Albany, New York 12203

Prepared By:

Evergreen Testing & Environmental Services, Inc. 594 Broadway Watervliet, New York 12189 (518) 266-0310

> Olivia R. Burns Environmental Technician

Don Abrams Reviewer

September 2015

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1
	1.1	Background	2
	1.2	Recognized Environmental Conditions Identified in the Phase I	3
	1.3	Recommendations from the Phase I ESA	6
2.0	FIELI	DACTIVITIES	7
	2.1	General	7
	2.2	Pre-Field Work	8
3.0	ANAI	YTICAL RESULTS	15
4.0	FIND	INGS, CONCLUSIONS AND RECOMMENDATIONS	20
	4.1	Findings	20
	4.2	Conclusions	21
	4.3	Recommendations	22

APPENDICES

Α.	Site Plan Map
В.	Report Limitations and Objectives
C.	Laboratory Reports

- Generalized Test Boring Logs Ground Penetrating Radar Survey Sketches Site Photographs D. E. F.

PHASE II ENVIRONMENTAL SITE ASSESSMENT

Former K-mart Department Store 164 Columbia Turnpike Town of East Greenbush, Rensselaer County, New York

Evergreen Project No. ETE-15-65

1.0 INTRODUCTION

In accordance with the agreement between Evergreen Testing & Environmental Services, Inc. (Evergreen) and Turnpike Redevelopment Group, LLC (TRG), Evergreen completed a Phase II Environmental Site Assessment (ESA) report for the above-referenced property (hereinafter, the subject property). This Phase II ESA report was completed based on the recognized environmental conditions (RECs) identified on the subject property during a Phase I ESA completed in March, 2015. This Phase II ESA is limited to the environmental concerns identified in the Phase I ESA report. This report includes a Site Plan Maps presented in Appendix A, Report Limitations and Objectives in Appendix B, Laboratory Reports in Appendix C, Soil Test Boring Logs in Appendix D, Ground Penetrating Radar Sketches in Appendix E, and Photographs in Appendix F.

The Phase II ESA was completed in accordance with generally accepted practices of the profession undertaken in similar studies at the same time and in the same geographical area, and Evergreen observed that degree of care and skill generally exercised by the profession under similar circumstances and conditions.

This Phase II ESA report is site and time specific and has been prepared on behalf of, and for the exclusive use of TRG, solely for their reliance in the Phase II evaluation of this site. TRG is the only party to which Evergreen has explained the risks involved and which has been involved in shaping of the scope of services needed to satisfactorily manage those risks, if any, from TRG's point of view. Accordingly, reliance on this report by any other party may involve assumptions whose extent and nature lead to a distorted

594 Broadway Watervliet, NY 12189 Voice 518-266-0310 Fax 518-266-9238

meaning and impact of the findings and opinions related herein. Evergreen's findings and opinions related in this report may not be relied upon by any party except for TRG.

Third party reliance letters may, at Evergreen's discretion, be issued provided Evergreen receives permission from the client to issue such third party reliance letters and <u>all</u> third parties relying on Evergreen's reports, by such reliance, explicitly agree to be bound by Evergreen's proposal, Evergreen's General Conditions, and the same limiting conditions presented in the report. No reliance by any party is permitted without such agreement, regardless of the content of the reliance letter itself.

1.1 Background

The subject property is currently occupied by a building approximately 151,000 square feet in size. The larger, approximately 124,000 square foot portion of the building was formerly occupied by a K-Mart Department Store (K-Mart), while the remaining 27,000 square foot portion of the building is currently occupied by a Big Lots Department Store (Big Lots). The building has a concrete block and steel frame construction with a slab on grade and flat roof (a partial mansard roof is present at the former K-Mart entrance). Both the K-Mart entrance and Big Lots entrance are also faced with porticos. The exterior of the building is finished in stamped concrete. The building was originally constructed in 1974 as a K-Mart and adjoining supermarket (in the space now occupied by Big Lots). The ceiling height within the one-story building is 19 feet, though retail spaces contain drop-grid ceilings that are about 15 feet in height.

The K-Mart portion of the building is generally composed of a main retail space (open floor plan) with interior structural steel support columns. Perimeter spaces surrounding the main retail space include security hallways and mezzanine levels, bathrooms, changing/fitting rooms, offices, utility rooms, storage spaces (some mezzanine), a garden center space, and former automotive repair spaces. Interior finishes within the main retail space include soft tile flooring, painted gypsum board walls, and a drop-grid ceiling. The majority of this portion of the building is empty with the exception of a conveyor belt that transported merchandise to a mezzanine storage area and a supply of fluorescent light bulbs. Several overhead doors are present at the rear of the building and along its south side in the area of the former automotive center.

The smaller portion of the building, which is occupied by Big Lots, is composed of a large main retail space with storage, an electrical room, bathrooms, offices, and a break room at the rear of the building. Loading docks are also present to the rear of this portion of the building with corresponding overhead doors. As this portion of the building is currently in operation, the main retail space is occupied by rows and displays of various household goods including furniture, cleaning supplies, stationary, food, etc. The rear storage area is occupied by merchandise as well, which limited close observation of floor surface conditions. Interior finishes are similar to that observed in the former K-Mart portion of the subject building.

The exterior area on the east side of the subject building is occupied by asphalt paved parking lots and entranceway (via Columbia Turnpike). Parking lot lighting and landscape islands are present throughout this area. An asphalt paved access road circles the subject building. The rear (west) side of the building is bordered by chain-link fencing.

Vacant land portions of the property are present along the western border of the subject property (west side of the chain link fence) which extends south to Ridge Road, and in the south central area of the subject property, which also extends south the Ridge Road. The site slopes gently down toward the west. A power line easement (owned by Niagara Mohawk Power Corporation) traverses the property in an east to west direction along the property's southern side, then makes a 90 degree turn and extends north along the property's west side before turning again and extending to the west.

The subject property was first developed prior to 1893 with at least one (1) small building fronting Columbia Turnpike. By 1928 several additional buildings were present along Columbia Turnpike, and railroad lines traversed the site in an east/west direction. While these lines were not depicted in the 1950 historic topography map, a path with a similar position was observed in the 1952 aerial photograph (maps and aerial photographs attached in the Phase I ESA). In 1973-1974 the subject building and adjoining parking lots and access ways were constructed to house a K-Mart Department Store in the larger portion of the building and a grocery store in the smaller part of the building (currently occupied by Big Lots). While the tenant for the smaller portion of the building has changed since the building has been vacant since that time.

1.2 <u>Recognized Environmental Conditions Identified in the Phase I ESA</u>

The Phase I ESA, prepared by Evergreen in March of 2015, identified the following recognized environmental conditions (RECs) in connection with the property:

- REC #1) According to historic street directory listings from the Phase I ESA, adjoining properties were identified as residences and commercial businesses including a travel agent, dentist, tobacco store, variety store, carpet retail store, a bike shop, a shoe repair shop, and a barber shop. From about 1970 to about 1975 United One-Hour Dry Cleaners is identified as being located at 170 Columbia Turnpike (which is also identified in the EDR database report, discussed in Section 7 of the Phase I ESA). In the 1960 street directory the same business is listed, though no numbered addresses are present. The presence of a dry cleaning facility for several years at an up gradient adjoining location **represents a REC in connection with the subject property.**
- REC #2) At the time of the site reconnaissance in February of 2015 Evergreen was informed that a 10,000 gallon underground storage tank holding fuel oil (used to heat the subject building) is present on the rear (west) side of the building. This tank was installed in 1974 at the time of the construction of the building. The fuel fill pipe and concrete pad indicating the location of the tank was noted in this area. The 10,000 gallon underground storage tank has been located on the subject property for about 41 years. The typical life span for an underground storage tank is 20 to 30 years. As this UST has exceeded that time period, there is a chance it may be beginning to rust or pit, allowing its contents to leach into the subsurface at the subject property. As such, the presence of this tank **represents a REC in connection with the subject property**.

- REC #3) As none of the tanks (identified in the Phase I ESA) reported to be present or historically present on the subject property were registered with the NYSDEC, it is unknown if there are or were additional unknown underground or above ground storage tanks present. There is a chance more tanks may be present on the subject property, and as such, this **represents a REC in connection with the subject property**.
- REC #4) Manholes at the exterior of the automotive potion of the subject building indicate the presence of a storage tank or oil/water separator. It is unknown exactly what this structure is, how large it is, what it may hold, or when or if it was ever emptied. As very little information is known about this structure, it cannot be determined whether or not the structure may have a significant environmental impact on the subject property. More information is needed about this structure and as such, it **represents a REC in connection with the subject property**.
- REC #5) Floor drains were also noted within the automotive portion of the former K-Mart area of the subject building at the time of the site reconnaissance for the Phase I ESA. Typically, with similar types of buildings, floor drains in these areas would outlet first to an oil/water separator to allow any sludgetype materials to settle while thinner, more fluid materials continued on to the sewer lines. This would limit clogging within sewer lines and also allow the direct extraction and proper disposal of any petroleum or chemical sludge material from the oil/water separator. While it appears an oil/water separator may be present just outside the automotive portion of the subject building, this information needs to be verified. As such, the presence of floor drains within the former automotive area of the subject building **represents a REC in connection with the subject property.**
- REC #6) At the time of the site reconnaissance what appeared to be four (4) underground lifts (along with a metal plate covering that may or may not be over a lift) were observed in the former automotive portion of the subject building at the time of the original site reconnaissance. It is unknown how long these lifts have been in the ground. As it is possible the lifts have been in the ground since the construction of the subject building in 1974, there is a chance they may have leached hydraulic oil into the subsurface of the subject property. As such, the presence of the underground lifts within the former automotive portion of the subject building **represents a REC in connection with the subject property**.
- REC #7) One (1) Spills case was identified on the subject property at the time of the database review, as discussed in Section 6 of the Phase I ESA. The Spills case (ID No. 9008971) on the subject property was identified as occurring at the Kmart Columbia Turnpike, and was reported in November of 1990. This spill was reported when contaminated soil was found during the removal of a 1,000 gallon underground storage tank holding waste oil. The soil was noted as removed and staged on poly (plastic) in order to be tested. While no other details are given about this spill, it is listed as being closed in

January of 1991 with a clean up that meets NYSDEC standards, indicating that no further action was required. While at that time the NYSDEC indicated that no further action was required, regulations at that time were significantly less stringent than standards put forth today for a tank closure. No information was found to indicate that the tank was closed according to regulation including the collection and analytical testing of soil and groundwater samples. It is unknown whether or not residual contamination is still present in the area of the tank, and as such this spill **represents a REC in connection with the subject property**.

- REC #8) Diamond plate access doors were noted along the rear wall of the Big Lots portion of the building at the time of the site reconnaissance. It appears these doors may be additional access to loading docks that are located just outside the subject building in these areas. However, as these areas were inaccessible at the time of the site reconnaissance, this could not be confirmed. As it cannot be determined whether or not these areas pose an environmental threat to the subject property, the access doors **represent a REC in connection with the subject property** until the interior areas can be viewed.
- REC #9) While not listed in the Phase I ESA database report, an additional Spill case (ID No. 9707148) was identified on the original NYSDEC Spill Report Form acquired by Evergreen for the Spill 90008971. According to information acquired by the NYSDEC this spill was reported in September of 1997 when contaminated soil was found at the time of a 3,000 gallon underground storage tank removal. The site was listed as a Price Chopper (adjacent to K-Mart) on Route 20 (Columbia Turnpike) and the spilled material was listed as #2 fuel oil. No PBS number is identified associated with the site, and the NYSDEC notes indicate the only registered Price Chopper facility in that area is at a different location. Contaminated soil and a "little bit" of free product was noted on top of "water that was in the hole". Approximately 50 tons of impacted soil was removed from the site and closure soil samples were collected. The contaminated soil was disposed of at ESMI of New York, located in Fort Edward, New York. According to the descriptions on the laboratory results (testing completed by Adirondack Environmental Services) closure samples were collected from the bottom of the tank excavation (east and west sides), and each of the side walls. According to the results of the testing, no contaminants were found above lab detection limits, and the Spills case was closed in November of 1998. Groundwater samples do not appear to have been collected at the time of the tank pull. As there is no indication where this tank was located, no groundwater testing, and no photographs, it cannot be determined if residual contamination is still present on the site due to the tank and subsequent spill. As such, this Spills case represents a REC in connection with the subject property.
- REC #10) According to the Phase I ESA database report an automobile repair facility was previously present at 154 Columbia Turnpike, which appears to have existed on what is currently the subject property. The auto repair business

was identified as Chuck's Auto Repair Garage, and dated 1965. However, according to historic street directories (Section 4), the property was listed as a residence at that time. As the exact former use of this property cannot be determined through corroborated historical sources, this possible former auto repair garage located on a portion of the subject property **represents a REC** in connection with the subject property.

1.3 <u>Recommendations from the Phase I ESA</u>

In this context, in the opinion of Evergreen, a Phase II Environmental Site Assessment of ASTM recognized environmental conditions is judged warranted at this time. A Phase II ESA would consist of a ground penetrating radar (GPR) survey across the subject property to determine if any underground storage tanks are present on the site. Inspections and dye testing is recommended to determine the outlet of the automotive area floor drains, to determine whether or not an oil/water separator is present on the site, and to determine whether or not spaces below the diamond plate doors at the rear of the subject building pose an environmental concern.

Evergreen also recommends the collection and analytical testing of soil and groundwater in the areas of underground lifts, known storage tanks, possible oil/water separator, the former dry cleaners on the adjoining property, the possible former auto repair business located on a portion of the subject property, and any anomalies found at the time of the GPR survey to determine whether or not these features have caused subsurface contamination on the subject property and to allow planning for the removal of unused underground lifts and oil/water separator (if present). General soil and groundwater sampling is also recommended surrounding the subject building as the former locations of storage tanks which are reported to have been previously removed are unknown.

Evergreen recommends any existing storage tanks on the subject property be properly registered and any formerly present storage tanks be properly registered and closed in accordance with the NYSDEC regulations.

2.0 FIELD ACTIVITIES

2.1 General

Evergreen completed the field work on the subject property between August 6th and August 12th of 2015. As discussed below, the field work consisted of completing a ground penetrating radar survey across certain areas of the subject property to investigate the possible presence of underground storage tanks, installing soil test borings, including soil and groundwater sampling, to determine possible subsurface petroleum and chemical contamination, the observation of unknown structures, and pipeline tracking. Site location plans outlining survey areas and soil test boring locations are attached in Appendix A. Generalized soil testing boring logs are attached in Appendix D, and photographs of the site are attached in Appendix F. The ground penetrating radar survey was completed by Cardno, of Syracuse, New York, while soil test boring drilling was completed by Acme Boring Company of Cohoes, New York. Both of these companies were retained by Evergreen at the time of the field work. Evergreen also contacted Dig Safely New York to identify any underground utilities prior to soil drilling.

At each of the soil boring locations the boreholes were advanced using a rotary drilling rig with hollow stem augers. Representative soil samples were collected using a split spoon sampler, which, prior to sampling, was pre-cleaned in an alconox solution. A portion of each of these collected soil samples was stored in a sterilized glass sample jar within a cooler on ice in anticipation for return to Evergreen's office and subsequent transfer to a New York State Department of Health (NYSDOH) approved analytical testing laboratory. Prior to drilling the areas were scanned with ground penetrating radar to assess the presence of underground utilities and minimize the potential that the utilities would be damaged. Each of the collected soil samples were scanned with a Photo-Ionization Detector (PID), which detects volatile organic chemical compounds within the soil.

Temporary groundwater monitoring wells were also installed in a select number of the soil borings. Each temporary monitoring well was installed by drilling at least five feet below the top of the groundwater table when possible (the point at which the collected soil samples became wet). A number 10 slotted PVC well screen was placed into the test boring and topped with riser pipe to the surface. Representative groundwater samples were extracted from each well using a pre-cleaned, plastic hand bailer, employing good sampling hygiene methods to prevent cross-contamination (disposable vinyl gloves, disposable nylon cord, disposable single use bailers, etc.). About 3 to 5 well volumes of water were removed from each well prior to collecting representative groundwater samples. Each of these samples was carefully placed into laboratory provided sample jars for analytical testing. The groundwater samples were stored in a cooler, away from sunlight, on ice packs in preparation for delivery to the NYSDOH certified analytical testing laboratory.

Upon completion of the soil test borings and groundwater monitoring wells, each of the boreholes were backfilled with site soils and patched with asphalt patch in asphalt covered areas and grouted concrete cores in concrete covered areas. Lawn areas were backfilled with site soils.

2.2 Field Work

<u>REC #1 - Former Dry Cleaners on a South Adjoining Property</u>

In order to determine whether or not a former adjoining, up gradient dry cleaning facility (United One-Hour Dry Cleaners, present from at least about 1960 to about 1975) has had a significant environmental impact on the subject property, two (2) soil test borings (B-11 and B-12) were installed along the southern subject property line bordering the former dry cleaning site. As groundwater flow direction is estimated to be in a west/northwest direction (interpreted based on observed site topography and topographic maps), the soil test boring locations were positioned down gradient of the former dry cleaning facility and representative soil samples collected on August 7, 2015.

As noted on the generalized soil boring logs attached in Appendix D, organic chemical compounds were detected using the PID for soil boring B-12 within soil samples S-5 (9'-11'), S-6 (11'-13'), S-7 (13'-15'), S-8 (15'-17'), and S-9 (17'-19'), peaking at S-8. This sample was analytically tested for volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) via EPA methods 8260 (full list) and 8270 (STARS list), respectively. Another sample (B-11, S-7, 12'-14') was also submitted for testing though no organic compounds were detected using the PID equipment and no signs of petroleum or chemical type odors, discoloration, or staining was noted. According to results of the analytical testing (Appendix C) tetrachloroethene and trichloroethene were detected within soil sample S-8 in soil test boring B-12 in concentrations that exceed NYSDEC guidance values. In the soil sample at location B-11 cis-1,2-Dichloroethene was detected, though it was detected in concentrations well below the NYSDEC guidance values.

A temporary monitoring well was installed within soil test boring B-12 to allow the collection of a representative groundwater grab sample. On August 10, 2015, after well purging, a representative groundwater sample was extracted from the temporary well. The groundwater was analytically tested for VOCs (full list) and SVOCs (STARS list). According to the analytical results concentrations of tetrachloroethene, trichloroethene, and cis-1,2-Dichloroethene were found within the groundwater sample in concentrations above NYSDEC regulation values. Vinyl Chloride was also detected within the groundwater sample tested, though it was found in concentrations within allowable NYSDEC groundwater standard levels.

Due to the presence of dry cleaning contaminants within the soil and groundwater in this area of the subject property in concentrations above the NYSDEC guidance and regulation values, Evergreen notified the NYSDEC and they issued Spill ID No. 1505510. The NYSDEC will decide what, if any, action will be necessary as a result of this finding.

REC #2 - 10,000 Gallon Underground Storage Tank

On August 6, 2015 Evergreen installed four (4) soil test borings (B-1, -2, -3, and -4) around a 10,000 gallon capacity underground storage tank (UST) located on the west side (rear) of the subject building. This tank was installed in 1974, at the time the subject building was constructed, which exceeds the typical life expectancy (20-30 years) of a

UST. The soil test borings were installed in order to determine whether the storage tank has leached any fuel into the surrounding subsurface due to its age.

None of the soil samples collected displayed petroleum or chemical type odors, discoloration, or staining, and no organic compounds were detected when each sample was scanned with the PID equipment. As such, one sample (soil boring B-1, sample S-6) was collected and analytically tested for VOCs and SVOCs (STARS list for both) to document site conditions. This sample was collected as soil boring location B-1 was located in a down gradient position from the tank, and sample S-6 (11'-13') was located just below the water table.

A temporary monitoring well was installed within soil test boring B-1 to allow collection of a representative groundwater grab sample. On August 10, 2015 groundwater was extracted from the temporary well. The groundwater was analytically tested for VOCs (STARS list) and SVOCs (STARS list).

According to the analytical testing results no contaminants were found within the soil or groundwater samples at this location above lab detection limits. These results indicate that wide spread contamination due to the underground storage tank is not present in this area. However, in the opinion of Evergreen, further work in this area is warranted. While the underground storage tank does not appear to be leaching material into the subsurface of the subject property, its age does exceed the typical life span of an underground storage tank. It should be noted that tanks out of service for more than thirty (30) days must be registered and closed according to NYSDEC Petroleum Bulk Storage regulations, Section 613.9, Closure of Out-of-Service Tanks.

REC #3 - Possible Additional Underground Storage Tanks

As several documents found at the time of the Phase I ESA for the subject property indicated the presence or former presence of additional unknown underground storage tanks, Evergreen subcontracted Cardno to scan the general area surrounding the subject building using ground penetrating radar equipment. This equipment transmits radar signals into the subsurface and interprets return signals to identify objects in the ground. A number of anomalies, in varying shapes and sizes, were identified around the subject building at the time of the GPR survey. Each of these anomalies are identified on the site plan in Appendix A. Unless the areas of the anomalies are excavated it cannot be confirmed whether or not additional underground storage tanks are present.

Evergreen completed a number of soil test borings (B-6, -9, -10, -20, -21, -24, -26, -27 and -28) in these areas between August 6, 2015 and August 12, 2015 to determine whether or not the possible presence of underground storage tanks has impacted the subject property. Each of the soil samples was scanned with the PID equipment. None of the samples displayed signs of the presence of organic compounds, with the exception of sample S-9 (17'-19') in soil test boring B-27. A minimal amount of organic compounds were detected in this sample. This sample, along with sample S-6 (11'-13') in soil boring B-6, sample S-4 (7'-9') in soil boring B-9, sample S-5 (9'-11') in soil boring B-10, sample S-3 in soil boring B-20, and sample S-7 in soil boring B-24 were analytically tested for VOCs and SVOCs (STARS list of analytes for both). None of the soil samples displayed

petroleum or chemical type odors, discoloration, or staining, and were collected to document site conditions. None of the soil samples from the soil borings that were not collected for testing (samples from soil borings B-21, -26, and -28) displayed signs of petroleum or chemical odors, discoloration, or staining. The samples were tested for volatile and semi volatile organic compounds under the assumption that the underground storage tanks would have held petroleum chemicals, such as fuel oil, lubrication oil, or waste oil. According to the laboratory results no chemical compounds were detected above laboratory detection limits within the analyzed soil samples at each of these locations.

A temporary monitoring well was installed within soil test boring B-20 to allow collection of a representative groundwater grab sample. On August 11, 2015 groundwater was extracted from the temporary well. The groundwater was analytically tested for VOCs (STARS list) and SVOCs (STARS list). The analytical results indicated that one (1) compound, Naphthalene, was detected within the groundwater at location B-20. However, this compound was detected in concentrations well below the NYSDEC guidance values.

As such, while the possible presence of additional underground storage tanks cannot be confirmed, wide spread contamination due to the possible presence of tanks does not appear to be present along the rear (down gradient) portion of the subject property. However, in the opinion of Evergreen, this issue warrants further investigation. Excavations should be completed in the areas of the anomalies to determine whether the anomalies are underground tanks and/or identify the anomalies.

It should be noted that tanks out-of-service for more than thirty (30) days must registered and closed according to NYSDEC Petroleum Bulk Storage regulations, section 613.9, Closure of Out-of-Service Tanks.

REC #4 - Oil/Water Separator

In order to determine if the oil/water separator has negatively impacted the subsurface of the subject property three (3) soil borings (B-5, -7, and -8) were installed on August 6 and August 7, 2015 along the edges of the oil/water separator (as was delineated via GPR). None of the recovered soil samples displayed petroleum or chemical type odors, discoloration, or staining. Two (2) representative soil samples were collected from soil boring B-5, which is located in a down gradient position from the oil/water separator. One of the samples, S-4 (7'-9'), was analytically tested for PCBs, while the other sample, S-5 (9'-11'), was analytically tested for VOCs and SVOCs (STARS list of analytes). Both of these samples were collected from the area at or just below the groundwater table in order to intercept any potential contamination. It should be noted that sample S-4 was tested for PCBs because the oil/water separator collected waste from the automotive area, which included hydraulic oil (which typically contained PCBs) in the use of underground and likely above ground lifts.

A temporary monitoring well was installed within soil test boring B-5 on August 6, 2015 to allow collection of representative groundwater grab samples. On August 11, 2015 groundwater was extracted from the temporary well. The groundwater was analytically tested for VOCs (STARS list), SVOCs (STARS list), and PCBs.

According to the analytical results no chemical compounds were detected within the soil and groundwater samples collected for testing at this location. However, in the opinion of Evergreen, the presence of the oil/water separator warrants additional investigation. Evergreen cautions that while the oil/water separator does not appear to be leaching material into the subsurface of the subject property, its age does exceed the typical life span of an underground storage tank. It should be noted that tanks out-of-service for more than thirty (30) days must registered and closed according to NYSDEC Petroleum Bulk Storage regulations, section 613.9, Closure of Out-of-Service Tanks.

REC #5 - Floor Drains within the Former Automotive Area

To determine the destination and outlet of the floor drains within the automotive area of the subject building, the area was first scanned with the ground penetrating radar equipment. As shown in the site plan in Appendix A, each of the five (5) floor drains located in the automotive center combine into a single drain pipe that appeared to outlet to the oil/water separator. In order to confirm this, Evergreen completed a tracer dye test for one of the floor drains (the remaining drains appeared to be blocked). Tracer dye, diluted in water, was poured into the drain. Simultaneously the manhole covers from the oil/water separator were removed and the interior observed. As the tracer dye/water mixture that was poured into the drain was observed to empty into the oil/water separator, the outlet of the drain lines was confirmed. Photographs of the GPR detected lines and they tracer dye test are presented in Appendix C.

It should also be noted that two (2) soil borings installed in a down gradient position from the floor drains (B-22 and -23), as discussed below, did not detect the presence of petroleum or chemical compounds above lab detection limits when analytically tested for VOCs and SVOCs (STARS list of analytes). Because the floor drains are connected to the oil/water separator system, and because the associated floor drain piping does not appear to be leaching petroleum or chemical compounds into the subsurface of the subject property, this REC may be removed as a concern.

<u>REC #6 - Underground Lifts</u>

Evergreen installed two (2) soil test borings (B-22 and -23) within the automotive area of the subject building on August 11, 2015 down gradient from underground hydraulic lifts. A soil sample from each of the borings (B-22, S-6, 11'-13' and B-23, S-6, 11'-13') were analytically tested for PCBs. An additional sample from each of the borings (B-22, S-5, 9'-11' and B-23, S-5, 9'-11') were analyzed for VOCs and SVOCs (STARS list of analytes). As these soil borings were completed within the automotive area, which is an interior portion of the subject building, the achievable depths of soil borings in this area was limited. The soil test borings extended to a depth of 13 feet below the concrete floor, at which point the samples became wet, indicating the groundwater table. The PID equipment did not detect organic compounds within the soil samples, and no petroleum or chemical type odors, discoloration, or staining was noted. According to laboratory results no petroleum or chemical compound were detected within the analyzed soil samples above laboratory detection levels. As such, this REC may be removed as a concern.

A temporary monitoring well was installed within soil test boring B-23 on August 11, 2015 to allow collection of representative groundwater grab samples. On August 12, 2015 Evergreen attempted to collect a representative groundwater sample from this well, however, the well was dry.

It should be noted that at the time of soil drilling the cover was removed from one of the apparent underground lifts (which was encompassed in a long, narrow trench). What appeared to be free product was noted within the cylinder of the lift, which extended to approximately 7.4' below the ground surface.

While the subsurface around the lift(s) does not appear to be impacted, in the opinion of Evergreen, the presence of the lift(s) poses a risk and they should be removed. Further, the free product within one of the lifts represents a material threat of a release and should be property removed from the site as soon as possible.

If evidence of petroleum or chemical impaction are noted at the time of the removal, including odors, staining, discolorations, or sheens on water, the NYSDEC Spill Hotline (1-800-457-7362) should be immediately notified.

REC #7 and #9 - Onsite Spills Cases

As specific locations for past spills that occurred on the subject property were not identified, Evergreen advanced general soil test borings across the rear portion of the subject building (the down gradient position of the subject property). These soil borings (B-6, -9, -10, -20, -21, -24, -26, -27 and -28) were completed in conjunction with REC #3, which indicated the possible presence of additional underground storage tanks.

Each of the collected soil samples was scanned with the PID equipment. None of the samples displayed signs of the presence of organic compounds, with the exception of sample S-9 (17'-19') in soil test boring B-27 (at 3 parts per billion). This sample, along with sample S-6 (11'-13') in soil boring B-6, sample S-4 (7'-9') in soil boring B-9, sample S-5 (9'-11') in soil boring B-10, sample S-3 in soil boring B-20, and sample S-7 in soil boring B-24 were analytically tested for VOCs and SVOCs (STARS list of analytes for both). The soil samples were tested for petroleum compounds as former known spilled material was identified as waste oil and #2 fuel oil. None of the soil samples displayed petroleum or chemical type odors, discoloration, or staining, and were collected to document site conditions. None of the soil samples from the soil borings that were not collected for testing (samples from soil borings B-21, -26, and -28) displayed signs of petroleum or chemical odors, discoloration, or staining. According to the laboratory results no chemical compounds were detected above laboratory detection limits within the analyzed soil samples at each of these locations.

A temporary monitoring well was installed within soil test boring B-20 to allow collection of a representative groundwater grab sample. On August 11, 2015 groundwater was extracted from the temporary well. The groundwater was analytically tested for VOCs (STARS list) and SVOCs (STARS list). The analytical results indicated that one (1) compound, Naphthalene, was detected within the groundwater at location B-20. However, this compound was detected in concentrations well below the NYSDEC regulation values.

Wide spread contamination does not appear to be present along the rear side of the subject building, which is located in a down gradient position from the subject building. It should be noted that smaller pockets of contamination may be present in areas of the subject property not explored with soil test borings.

REC #8 - Diamond Plate Access Doors

On August 11, 2015, Evergreen accessed the existing Big Lots department store portion of the subject building (which is currently in use) in order to determine the purpose or function of diamond plate metal access doors located on the floor at the rear of the store at the time of the original Phase I ESA. While several pairs of the access doors were inaccessible, Evergreen removed the diamond plate doors located in the break room of the Big Lots store. A pit, about 5-6 feet deep and measuring about 4 feet by 4 feet, was located beneath the doors. A wash sink was present within the pit, with a larger diameter (6"-8") pipe extending from the northwest side of the building. Another smaller diameter pipe extended from below the sink and turned 90 degrees, extending through the wall of the pit toward the interior portion of the building. The wash sink was filled with what appeared to be a rust colored liquid. No petroleum or chemical type odors were present in the vicinity of the wash sink.

Evergreen attempted to use tracer dye diluted in water to track the starting point of the larger pipe that emptied into the wash sink. The tracer dye was poured down both an adjacent interior floor drain and an adjacent AC unit drain. Neither of these structures outletted into the wash sink.

It was noted on August 11, 2015, which was a rainy day, that the pipe slowly dripped what appeared to be water into the wash sink. The following day, August 12, 2015, which was a sunny day, the pipe was observed to be dry, indicating the pipe may be an outlet for a roofing drain. However, this could not be confirmed. The destination of the outlet sink pipe could also not be confirmed, as it extended back into the interior of the subject building, and its direction beyond the pit could not be seen.

Additional diamond plate doors were noted on the exterior sides of the building's rear wall in this area, however, the doors have been welded shut and were therefore inaccessible.

As more information could not be obtained to identify the source and outlet of the pipes entering and exiting the wash sink within the pit found below the diamond plate metal doors at the rear side of the Big Lots store, Evergreen recommends further investigation of the areas beneath the diamond plates and the plumbing they protect be conducted.

REC #10 - Former Auto Repair Business at 154 Columbia Turnpike

In order to determine whether or not gasoline tanks associated with a former gasoline service station that had possibly been located adjacent to Columbia Turnpike are still present on the subject property, Carndo completed a GPR survey along the front portion of the subject property adjacent to Columbia Turnpike. While the possible former

gasoline surface station has a known address, 154 Columbia Turnpike, it is unclear exactly where this property was located. It is assumed that the building or buildings and gasoline tanks occupying this property was formerly adjacent to Columbia Turnpike rather than toward the rear of the property. Several anomalies were identified during this scan, as show in the site plan attached in Appendix A.

Between August 7 and August 10, 2015 Evergreen installed several test borings (B-13, -14, -15, -16, -17, -18, and -19) generally across this area, and adjacent to anomalies found at the time of the GPR survey. Several representative soil samples (B-14, S-5, 9'-11', B-16, S-8, 14'-16', B-17, S-5, 9'-11', and B-19, S-8, 15'-17') were collected and analytically tested for VOCs and SVOCs (STARS list of analytes). None of the recovered soil samples displayed petroleum or chemical type odors, discoloration, or staining, and no organic compounds were detected in any of the soil samples by the PID equipment.

A temporary monitoring well was installed within soil test boring B-19 to allow collection of a representative groundwater grab sample. On August 10, 2015 groundwater was extracted from the temporary well. The groundwater was analytically tested for VOCs (STARS list) and SVOCs (STARS list).

No petroleum or chemical compounds were detected within the tested soil and groundwater samples collected from these areas of the site. It should be noted that an additional anomaly was found in the vicinity of B-19, however, due to unknown utility lines in this area (which could not be accurately identified by the GPR equipment) soil borings could not be completed down gradient of this anomaly to determine whether or not its presence has had an environmental impact on the subject property. As such, in the opinion of Evergreen, further work is warranted. Excavations should be completed in the areas of the anomalies to determine whether the anomalies are underground tanks.

3.0 ANALYTICAL TEST RESULTS

The analytical testing results obtained for the collected soil samples were evaluated with respect to the NYSDEC's Unrestricted Use Soil Cleanup Objectives, while the groundwater samples were evaluated with respect to the New York State Ambient Water Quality Standards and Guidance Values (June 1998). Sample results shaded in gray indicate concentrations above the guidance and regulation values.

REC #1 - Former Dry Cleaners

Soil Samples Summary of Analytical Test Results Detected 8260/8270 Compounds in Soil Concentrations ug/kg (parts per billion)

COMPOUNDS	SAMPLE R	NYSDEC SCGs FOR UNRESTRICTED	
	B-12, S-8	B-11, S-7	SITES (ppb)
Tetrachloroethene	120,000	-	1,300
Trichloroethene	10,000	-	470
cis-1,2-Dichloroethene	-	8.6	250

notes: "-" denotes the compound was not detected.

Monitoring Well Samples Summary of Analytical Test Results Detected 8260/8270 Compounds in Groundwater Concentrations ug/L (parts per billion)

	SAMPLE RESULTS	NYS Groundwater
COMPOUNDS	B-12	Effluent Limitations (ppb)
Tetrachloroethene	820	5
Trichloroethene	180	5
cis-1,2-Dichloroethene	38	5
Vinyl Chloride	1.6	2

REC #2 - 10,000 Gallon Underground Storage Tanks

Soil Samples Summary of Analytical Test Results Detected 8260/8270 Compounds in Soil Concentrations ug/kg (parts per billion)

COMPOUNDS	SAMPLE RESULTS	NYSDEC SCGs FOR UNRESTRICTED			
	B-1, S-6	SITES (ppb)			
NO COMPOUNDS DETECTED					

Monitoring Well Samples Summary of Analytical Test Results Detected 8260/8270 Compounds in Groundwater Concentrations ug/L (parts per billion)

	SAMPLE RESULTS	NYS Groundwater
COMPOUNDS	B-1	Effluent Limitations (ppb)

<u>REC #3 - Possible Additional Underground Storage Tanks & REC #7 & #9 - Onsite</u> <u>Spills Cases</u>

Soil Samples Summary of Analytical Test Results Detected 8260/8270 Compounds in Soil Concentrations ug/kg (parts per billion)

COM-POUNDS	SAMPLE RESULTS					NYSDEC SCGs FOR	
	B-6, S-6	B-9, S-4	B-10, S-5	B-20, S-3	B-24, S-7	B-27, S-9	UNRESTRIC-TED SITES (ppb)
NO COMPOUNDS DETECTED							

Monitoring Well Samples Summary of Analytical Test Results Detected 8260/8270 Compounds in Groundwater Concentrations ug/L (parts per billion)

COMPOUNDS	SAMPLE RESULTS	NYS Groundwater
COMPOUNDS	B-20	Effluent Limitations (ppb)
Naphthalene	0.22	10

REC #4 - Oil/Water Separator

Soil Samples Summary of Analytical Test Results Detected 8260/8270 Compounds in Soil Concentrations ug/kg (parts per billion)

COMPOUNDS	SAMPLE RESULTS	NYSDEC SCGs FOR UNRESTRICTED		
	B-5, S-5	SITES (ppb)		
NO COMPOUNDS DETECTED				

Soil Samples Summary of Analytical Test Results Detected PCB Compounds in Soil Concentrations ug/kg (parts per billion)

COMPOUNDS	SAMPLE RESULTS	NYSDEC SCGs FOR UNRESTRICTED			
	B-5, S-4	SITES (ppb)			
NO COMPOUNDS DETECTED					

Monitoring Well Samples Summary of Analytical Test Results Detected 8260/8270 and PCB Compounds in Groundwater Concentrations ug/L (parts per billion)

COMPOUNDS	SAMPLE RESULTS	NYS Groundwater
COMPOUNDS	B-5	Effluent Limitations (ppb)

<u>REC #5 - Floor Drains within the Former Automotive Are & REC #6 - Underground</u> <u>Lifts</u>

Soil Samples Summary of Analytical Test Results Detected 8260/8270 Compounds in Soil Concentrations ug/kg (parts per billion)

COMPOUNDS	SAMPLE R	NYSDEC SCGs FOR UNRESTRICTED				
	B-22, S-5	B-23, S-5	SITES (ppb)			
NO COMPOUNDS DETECTED						

Soil Samples Summary of Analytical Test Results Detected PCB Compounds in Soil Concentrations ug/kg (parts per billion)

COMPOUNDS	SAMPLE R	NYSDEC SCGs FOR UNRESTRICTED				
	B-22, S-6	B-23, S-6	SITES (ppb)			
NO COMPOUNDS DETECTED						

REC #10 - Former Auto Repair Business at 154 Columbia Turnpike

Soil Samples Summary of Analytical Test Results Detected 8260/8270 Compounds in Soil Concentrations ug/kg (parts per billion)

COMPOUNDS	SAMPLE RESULTS				NYSDEC SCGs FOR UNRESTRICTED	
	B-14, S-5	B-16, S-8	B-17, S-9	B-19, S-8	SITES (ppb)	
NO COMPOUNDS DETECTED						

Monitoring Well Samples Summary of Analytical Test Results Detected 8260/8270 Compounds in Groundwater Concentrations ug/L (parts per billion)

COMPOUNDS	SAMPLE RESULTS	NYS Groundwater Effluent Limitations (ppb)
	B-19	

4.0 FINDINGS, CONCLUSIONS AND RECOMMENDATIONS

Based on the scope of services for this Phase II ESA, the relevant observations and findings are summarized below:

4.1 <u>Findings</u>

- The Phase I ESA report that initiated this Phase II investigation identified the possible presence of petroleum and/or chemical compounds in the subsurface due to the current presence of a 10,000 gallon storage tank, oil/water separator, underground vehicle lifts, floor drains within the former automotive area, and inaccessible areas under diamond plate doors. Also identified was the former presence of an adjacent dry cleaning facility, possible former vehicle repair/service station, former underground storage tanks, and former Spills cases on the subject property. These concerns were investigated in this Phase II report.
- Evergreen subcontracted Cardno of Syracuse, New York to completed a Ground Penetrating Radar survey of the front and rear portions of the site, along with the interior of the former automotive area in order to identify the edges of the known 10,000 gallon storage tank and oil/water separator, to identify floor drain lines, to identify any underground utilities in areas planned for soil drilling (as a preventative method), and to identify any anomalies that may be consistent with underground storage tanks.
- In order to determine if any of these concerns have impacted the subsurface of the subject property soil test borings were installed in the area around the 10,000 gallon tank, oil/water separator, floor drains, underground lifts, adjacent to a number of the anomalies delineated by the GPR survey (generally across the rear portion of the subject property), along the front portion of the subjection property (both generally placed and adjacent to anomalies), and along the southern property line adjacent to the former dry cleaning facility.
- Representative soil and groundwater samples were collected from all of the areas of concern. Samples collected adjacent to the oil/water separator, floor drains, and underground lifts were analytically tested for petroleum contaminants and PCBs, as hydraulic oil used in the underground lifts typically contained PCBs. The samples collected down gradient from the area of the former dry cleaning facility were tested for a wide range of petroleum contaminants that included tetrachloroethene ("perc"), which is usually the most prominent chemical compound used in the dry cleaning process. The remaining samples were analytically tested for the STARS list (short list) of petroleum contaminants.
- Dry cleaning contaminants were found within the soil and groundwater samples adjacent to the former dry cleaning facility (B-11 and B-12) in concentrations above the NYSDEC regulation values, and as such, the NYSDEC was notified, and Spills ID No. 1505510 was issued.

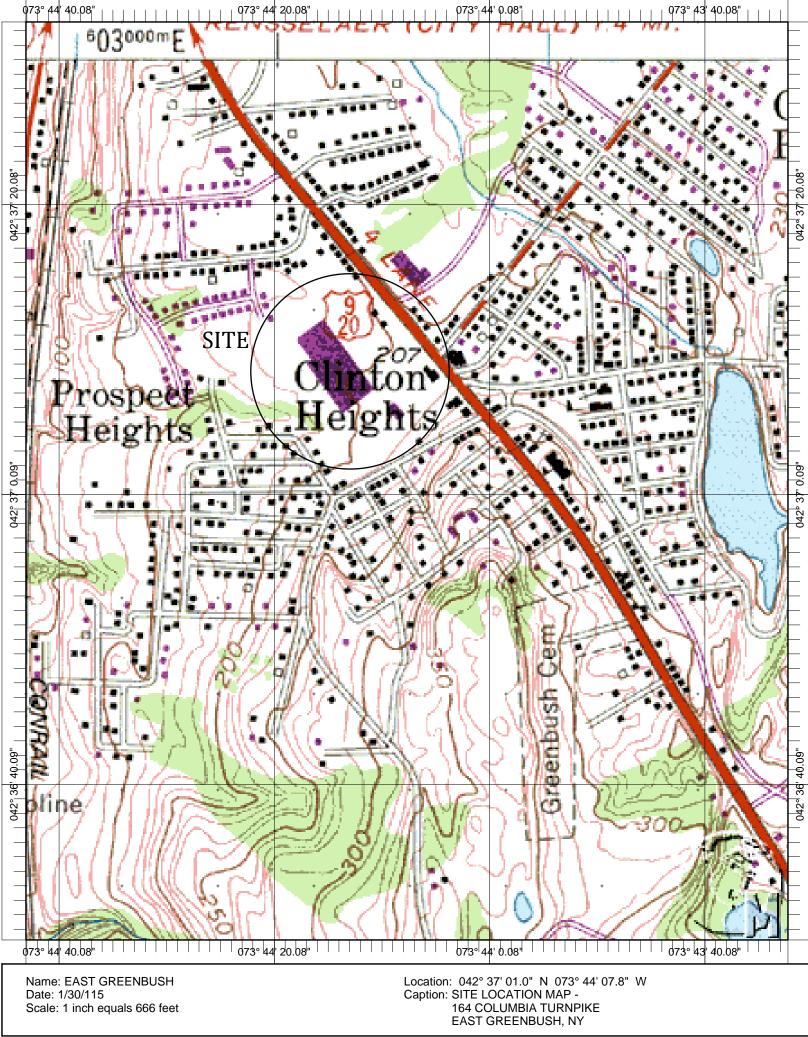
- A petroleum contaminant, Naphthalene, which is identified as both a volatile and semi-volatile organic compound, was identified within the groundwater at soil test boring B-20. However, the contaminant was identified in concentrations below the NYSDEC guidance values, and is therefore not expected to be an environmental concern.
- No other chemical compounds were detected (above lab detection levels) in any of the remaining soil and groundwater samples collected from the subject property.
- Tracer dye, in addition to ground penetrating radar, was utilized to investigate the outlets of the floor drains within the former automotive area of the subject building. The dye test and GPR results indicated that the floor drains within the former automotive area outlet to the oil/water separator.
- Evergreen attempted to investigate the purpose of several sets of diamond plated metal floor access doors located at the rear of the Big Lots portion of the subject building. While the majority of the doors were inaccessible (inventory stored on top of them), one set of doors located in the break room were removed, revealing an approximately 6' deep pit. A wash sink was located within the pit with one pipe emptying into the sink, and another pipe, to which the sink drained, extending into the central area of the subject building. Neither of the pipes could be traced. Associated exterior access doors are welded shut.
- What appeared to be hydraulic oil was noted within one of the hydraulic lift cylinders in the former automotive area of the subject building. While the free product does not currently appear to have had a significant environmental impact on the subject property, it does represent a material threat of a release, and should be removed from the cylinder and disposed of off site according to proper regulations.

4.2 Conclusions

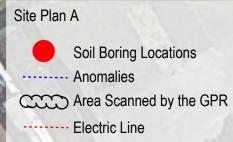
On the basis of the results of this Phase II ESA it is the opinion of Evergreen that there is evidence of a significant amount of residual contamination located adjacent to the former dry cleaning facility, which was located on the south adjoining property at 170 Columbia Turnpike. However, there does not appear to be significant impaction in the areas of the site occupied by the 10,000 gallon underground storage tank, oil/water separator, underground hydraulic lifts, or floor drains within the former automotive area of the subject building. No wide spread contamination was found to be present along the paved area at the west (rear) of the subject building nor along the eastern site boundaries adjacent to Columbia Turnpike.

A large portion of the subject property (central area of the parking lot and rear vegetated areas) was not scanned by the GPR equipment and no representative soil or groundwater samples were collected. Evergreen makes no comment on the condition of the subsurface in these areas.

4.3 <u>Recommendations</u>


Based on the findings of this investigation, in the opinion of Evergreen further action is recommended. As the site has been assigned a NYSDEC Spills ID number, further investigation will be in conjunction and under the supervision of the NYSDEC.

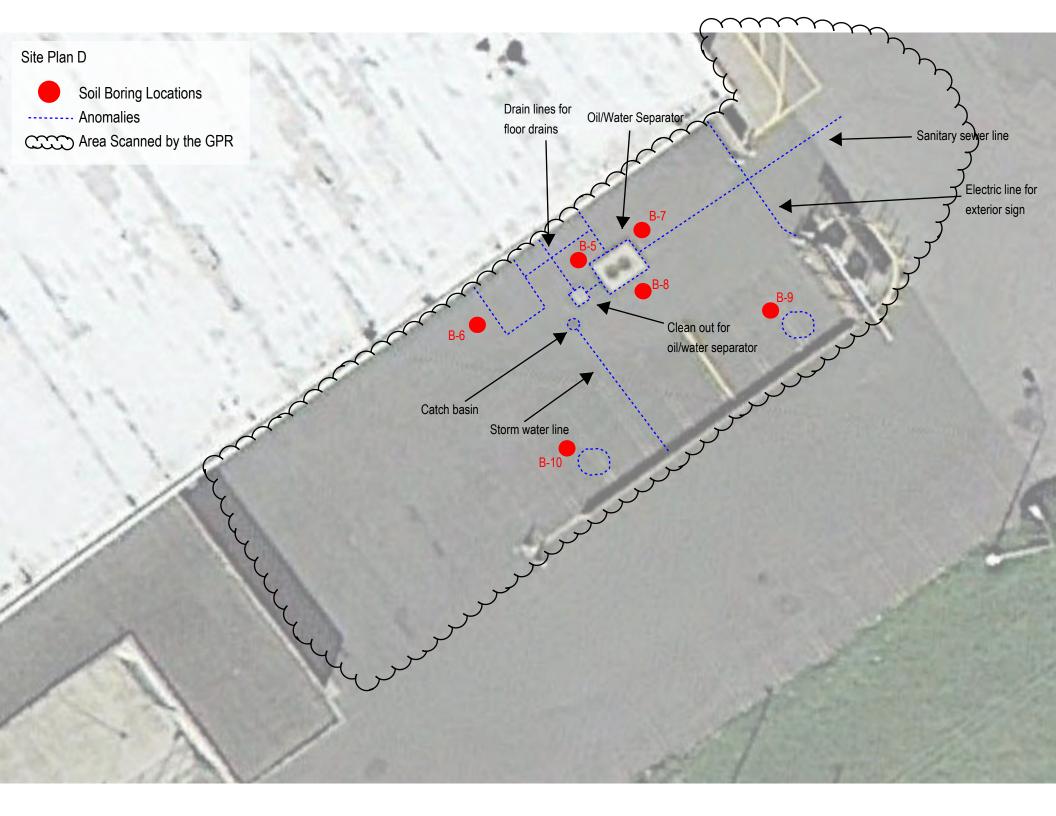
As more information could not be obtained to identify the source and outlet of the pipes entering and exiting the wash sink within the pit found below the diamond plate metal doors at the rear side of the Big Lots store, Evergreen recommends further investigation of the areas beneath the diamond plates and the plumbing they protect.

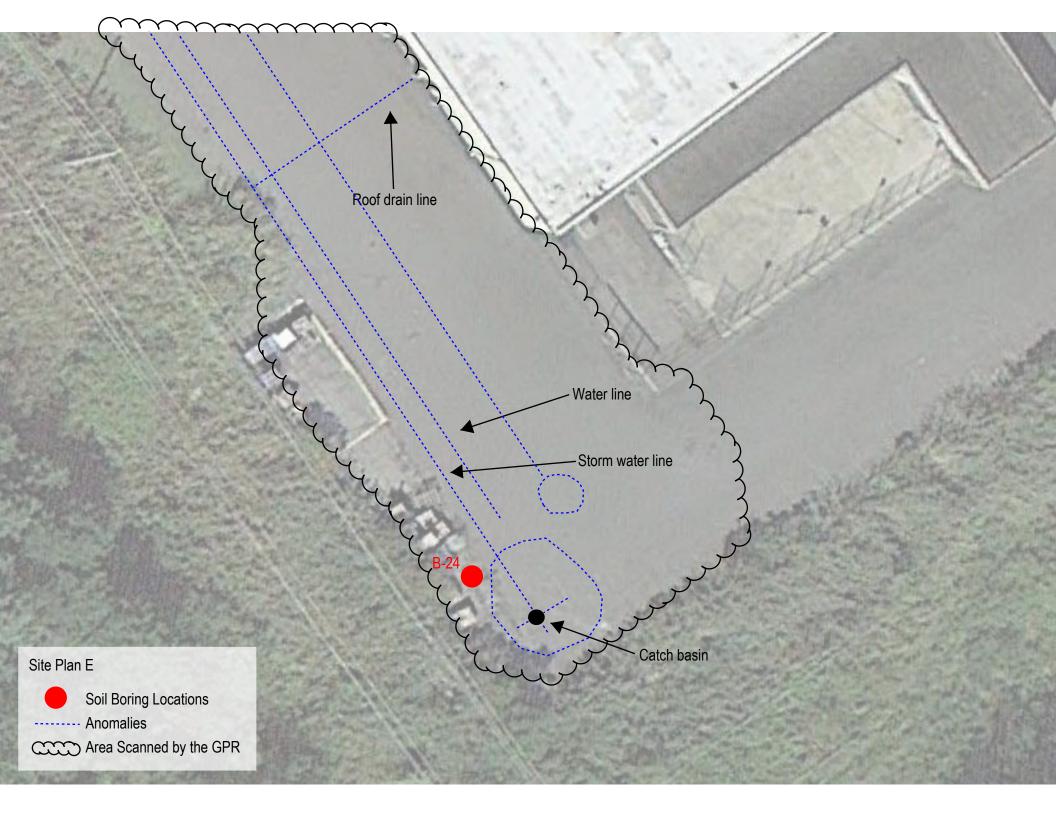

Excavations should be completed in the areas of detected anomalies to determine whether or not underground storage tanks are present on the site in these areas. If present each of the underground storage tanks should be closed and removed from the subject property according to NYSDEC regulations.

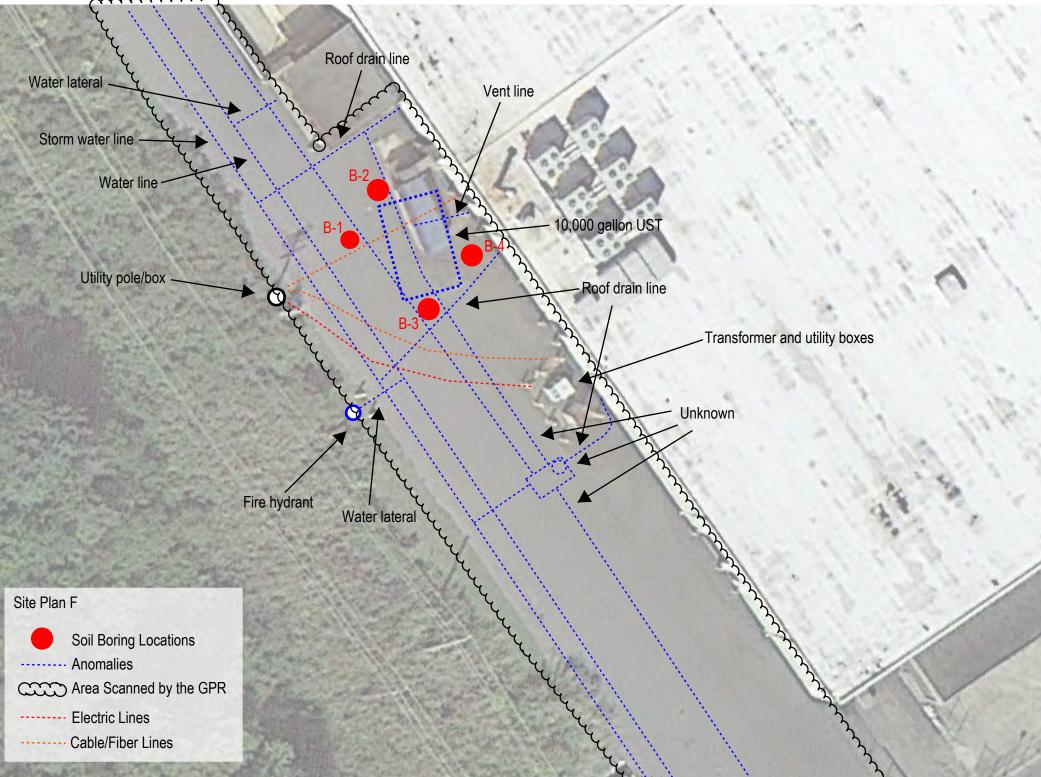
Evergreen recommends that all of the underground lifts and oil/water separator, along with associated piping, be removed from the former automotive area of the subject building and property as they represent a material threat of a release. Evergreen also recommends that the 10,000 gallon underground storage tank be registered and closed in accordance with NYSDEC regulations.

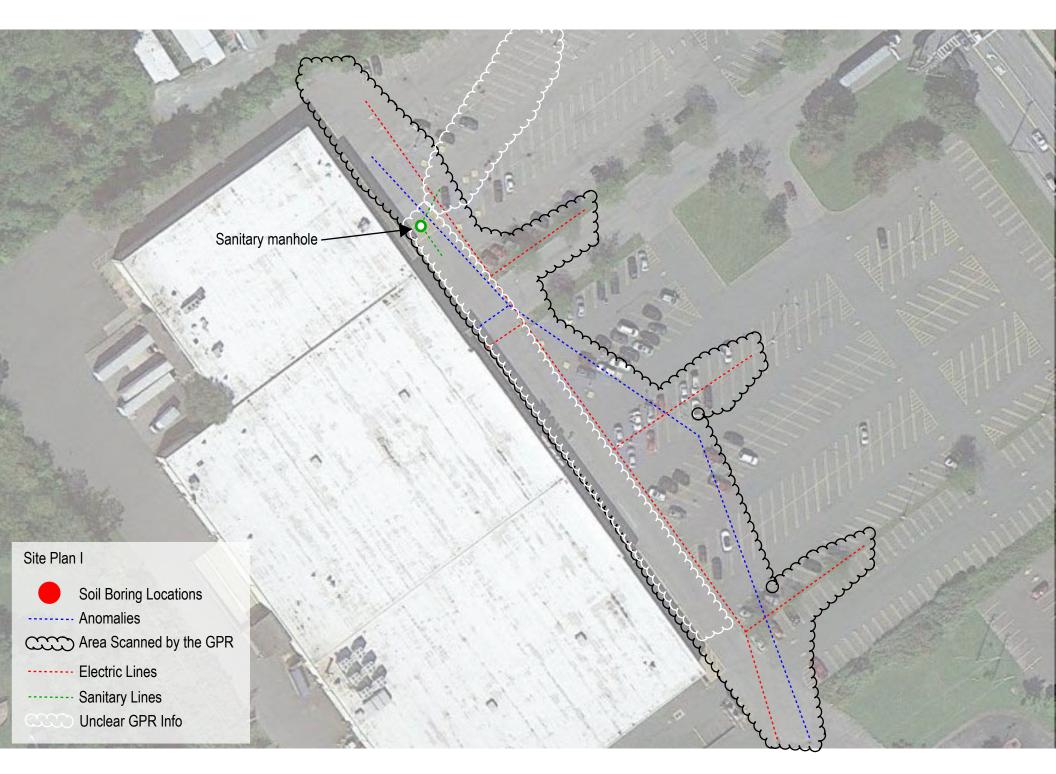
APPENDIX A

Could not install any soil borings adjacent to this anomaly due to unidentified utilities in the area


B-1


B-18


B-19



APPENDIX B

OBJECTIVES AND LIMITATIONS OF ASSESSMENT

Evergreen Testing & Environmental Services, Inc. (Evergreen) has endeavored to meet what it believes is the applicable standard of care for the services completed and, in doing so, is obliged to advise the client of the Phase II Environmental Site Assessment (ESA) limitations. Evergreen believes that providing information about limitations is essential to help clients identify and thereby manage risks. These risks can be mitigated, but not eliminated, through additional research. Evergreen will, upon request, advise the client of the additional research opportunities available and associated costs.

This ESA did not include any inquiry with respect to non-REC issues identified in the previous Phase I ESA report or other services or potential conditions or features not specifically identified and discussed herein. In those instances where additional services or service enhancements are included in the report as requested or authorized by the client, specific limitations attendant to those services are presented in the text of the report.

The findings and opinions conveyed via this ESA report are based upon information obtained at a particular date from a variety of sources enumerated herein, and which Evergreen believes are reliable. Nonetheless, Evergreen cannot and does not warrant the authenticity or reliability of the information sources or laboratories it has relied upon.

This report represents Evergreen's service to the client as of the report date. In that regard, the report constitutes Evergreen's final document, and the text of the report may not be altered in any manner after final issuance of the same. Opinions relative to environmental conditions given in this report are based upon information derived from the most recent site reconnaissance date and from other activities described herein. The client is herewith advised that the conditions observed by Evergreen are subject to change. Certain indicators of the presence of hazardous materials may have been latent or not present at the time of the most recent site reconnaissance and may have subsequently become observable. Accordingly, it is possible that Evergreen's research, while fully appropriate for a Phase II ESA and in compliance with the scope of service, may not include other important information sources. Assuming such sources exist, their information could not have been considered in the formulation of our findings and conclusions.

This report is not a comprehensive site characterization or regulatory compliance audit and should not be construed as such. The opinions presented in this report are based upon findings derived from a site reconnaissance, a review of specified records and sources, comments made by interviewees, comments made by the client and the results of specific sampling locations and intervals. Specifically, Evergreen does not and cannot represent that the site contains no hazardous or toxic materials, products, or other latent conditions beyond that observed by Evergreen during its site assessment and other unforseen conditions may exist in unassessed portions of the site. Further, the services herein shall in no way be construed, designed or intended to be relied upon as legal interpretation or advice.

APPENDIX C

Monday, August 17, 2015

Attn: Ms Olivia Burns Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

Project ID: K-MART Sample ID#s: BJ71794 - BJ71802

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

 $\lambda - \mu$

Phyllis Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

SDG Comments

August 17, 2015

SDG I.D.: GBJ71794

BJ71794 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.
BJ71796 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.
BJ71797 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.
BJ71798 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.
BJ71799 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.
BJ71800 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.
BJ71801 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.
BJ71802 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.

Analysis Report

Project ID:

Client ID:

FOR: Attn: Ms Olivia Burns Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

August 17, 2015

K-MART B-1 S-6

Sample Information **Custody Information** <u>Time</u> Date SOIL Collected by: 08/06/15 10:00 Matrix: **EVERGRN** Received by: 08/10/15 17:18 Location Code: LB Rush Request: Standard Analyzed by: see "By" below P.O.#:

Laboratory Data

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Falameter	Result	FQL		Dilution	Dale/Time	Бу	Reference
Percent Solid	76		%		08/11/15	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				08/12/15	BJ/NH	SW3545A
Volatiles- STARS/CP-5	51						
1,2,4-Trimethylbenzene	ND	2.6	ug/Kg	1	08/14/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	2.6	ug/Kg	1	08/14/15	JLI	SW8260C
Benzene	ND	1.3	ug/Kg	1	08/14/15	JLI	SW8260C
Ethylbenzene	ND	1.3	ug/Kg	1	08/14/15	JLI	SW8260C
Isopropylbenzene	ND	2.6	ug/Kg	1	08/14/15	JLI	SW8260C
m&p-Xylene	ND	2.6	ug/Kg	1	08/14/15	JLI	SW8260C
Methyl t-Butyl Ether (MTBE)	ND	1.3	ug/Kg	1	08/14/15	JLI	SW8260C
Naphthalene	ND	2.6	ug/Kg	1	08/14/15	JLI	SW8260C
n-Butylbenzene	ND	2.6	ug/Kg	1	08/14/15	JLI	SW8260C
n-Propylbenzene	ND	2.6	ug/Kg	1	08/14/15	JLI	SW8260C
o-Xylene	ND	2.6	ug/Kg	1	08/14/15	JLI	SW8260C
p-Isopropyltoluene	ND	2.6	ug/Kg	1	08/14/15	JLI	SW8260C
sec-Butylbenzene	ND	2.6	ug/Kg	1	08/14/15	JLI	SW8260C
tert-Butylbenzene	ND	2.6	ug/Kg	1	08/14/15	JLI	SW8260C
Toluene	ND	1.3	ug/Kg	1	08/14/15	JLI	SW8260C
Total Xylenes	ND	2.6	ug/Kg	1	08/14/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-Dichlorobenzene-d4	118		%	1	08/14/15	JLI	70 - 130 %
% Bromofluorobenzene	90		%	1	08/14/15	JLI	70 - 130 %
% Dibromofluoromethane	105		%	1	08/14/15	JLI	70 - 130 %
% Toluene-d8	101		%	1	08/14/15	JLI	70 - 130 %
Semivolatiles-STARS/	<u>CP-51</u>						
Acenaphthene	ND	300	ug/Kg	1	08/13/15	DD	SW8270D

Project ID: K-MART Client ID: B-1 S-6

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Acenaphthylene	ND	300	ug/Kg	1	08/13/15	DD	SW8270D
Anthracene	ND	300	ug/Kg	1	08/13/15	DD	SW8270D
Benz(a)anthracene	ND	300	ug/Kg	1	08/13/15	DD	SW8270D
Benzo(a)pyrene	ND	300	ug/Kg	1	08/13/15	DD	SW8270D
Benzo(b)fluoranthene	ND	300	ug/Kg	1	08/13/15	DD	SW8270D
Benzo(ghi)perylene	ND	300	ug/Kg	1	08/13/15	DD	SW8270D
Benzo(k)fluoranthene	ND	300	ug/Kg	1	08/13/15	DD	SW8270D
Chrysene	ND	300	ug/Kg	1	08/13/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	300	ug/Kg	1	08/13/15	DD	SW8270D
Fluoranthene	ND	300	ug/Kg	1	08/13/15	DD	SW8270D
Fluorene	ND	300	ug/Kg	1	08/13/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	300	ug/Kg	1	08/13/15	DD	SW8270D
Naphthalene	ND	300	ug/Kg	1	08/13/15	DD	SW8270D
Phenanthrene	ND	300	ug/Kg	1	08/13/15	DD	SW8270D
Pyrene	ND	300	ug/Kg	1	08/13/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	46		%	1	08/13/15	DD	30 - 130 %
% Nitrobenzene-d5	43		%	1	08/13/15	DD	30 - 130 %
% Terphenyl-d14	61		%	1	08/13/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director August 17, 2015 Reviewed and Released by: Bobbi Aloisa, Vice President

Analysis Report

Project ID:

Client ID:

FOR: Attn: Ms Olivia Burns Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

August 17, 2015

K-MART

B-5 S-4

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOIL	Collected by:		08/06/15	13:00
Location Code:	EVERGRN	Received by:	LB	08/10/15	17:18
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:			Data		GB 17170

Laboratory Data

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Soil Extraction for PCB	Completed				08/11/15	BB/H	SW3545A
Polychlorinated Biph	enyls						
PCB-1016	ND	330	ug/Kg	10	08/12/15	AW	SW8082A
PCB-1221	ND	330	ug/Kg	10	08/12/15	AW	SW8082A
PCB-1232	ND	330	ug/Kg	10	08/12/15	AW	SW8082A
PCB-1242	ND	330	ug/Kg	10	08/12/15	AW	SW8082A
PCB-1248	ND	330	ug/Kg	10	08/12/15	AW	SW8082A
PCB-1254	ND	330	ug/Kg	10	08/12/15	AW	SW8082A
PCB-1260	ND	330	ug/Kg	10	08/12/15	AW	SW8082A
PCB-1262	ND	330	ug/Kg	10	08/12/15	AW	SW8082A
PCB-1268	ND	330	ug/Kg	10	08/12/15	AW	SW8082A
QA/QC Surrogates							
% DCBP	105		%	10	08/12/15	AW	30 - 150 %
% TCMX	101		%	10	08/12/15	AW	30 - 150 %

Project ID: K-MART					Pł	noeni	x I.D.: BJ71795
Client ID: B-5 S-4							
		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

Phyllis Shiller, Laboratory Director August 17, 2015 Reviewed and Released by: Bobbi Aloisa, Vice President

Analysis Report

Project ID:

Client ID:

FOR: Attn: Ms Olivia Burns Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

August 17, 2015

K-MART B-5 S-5

Custody Information Sample Information <u>Time</u> Date Matrix: SOIL Collected by: 08/06/15 13:00 Location Code: **EVERGRN** Received by: 08/10/15 17:18 LB Rush Request: Standard Analyzed by: see "By" below P.O.#:

Laboratory Data

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	83		%		08/11/15	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				08/11/15	JJ/NH	SW3545A
Volatiles- STARS/CP-5	<u>1</u>						
1,2,4-Trimethylbenzene	ND	120	ug/Kg	50	08/15/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	120	ug/Kg	50	08/15/15	JLI	SW8260C
Benzene	ND	1.2	ug/Kg	1	08/15/15	JLI	SW8260C
Ethylbenzene	ND	1.2	ug/Kg	1	08/15/15	JLI	SW8260C
Isopropylbenzene	ND	120	ug/Kg	50	08/15/15	JLI	SW8260C
m&p-Xylene	ND	2.5	ug/Kg	1	08/15/15	JLI	SW8260C
Methyl t-Butyl Ether (MTBE)	ND	1.2	ug/Kg	1	08/15/15	JLI	SW8260C
Naphthalene	ND	120	ug/Kg	50	08/15/15	JLI	SW8260C
n-Butylbenzene	ND	120	ug/Kg	50	08/15/15	JLI	SW8260C
n-Propylbenzene	ND	120	ug/Kg	50	08/15/15	JLI	SW8260C
o-Xylene	ND	2.5	ug/Kg	1	08/15/15	JLI	SW8260C
p-Isopropyltoluene	ND	120	ug/Kg	50	08/15/15	JLI	SW8260C
sec-Butylbenzene	ND	120	ug/Kg	50	08/15/15	JLI	SW8260C
tert-Butylbenzene	ND	120	ug/Kg	50	08/15/15	JLI	SW8260C
Toluene	ND	1.2	ug/Kg	1	08/15/15	JLI	SW8260C
Total Xylenes	ND	2.5	ug/Kg	1	08/15/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-Dichlorobenzene-d4	98		%	50	08/15/15	JLI	70 - 130 %
% Bromofluorobenzene	99		%	50	08/15/15	JLI	70 - 130 %
% Dibromofluoromethane	125		%	1	08/15/15	JLI	70 - 130 %
% Toluene-d8	89		%	1	08/15/15	JLI	70 - 130 %
Semivolatiles-STARS/C	<u> 2P-51</u>						
Acenaphthene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D

Project ID: K-MART Client ID: B-5 S-5

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Acenaphthylene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Anthracene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Benz(a)anthracene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(a)pyrene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(b)fluoranthene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(ghi)perylene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(k)fluoranthene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Chrysene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Fluoranthene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Fluorene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Naphthalene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Phenanthrene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Pyrene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	51		%	1	08/12/15	DD	30 - 130 %
% Nitrobenzene-d5	49		%	1	08/12/15	DD	30 - 130 %
% Terphenyl-d14	61		%	1	08/12/15	DD	30 - 130 %

DI /

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

Volatile Comment:

There was a suppression of the last internal standard in the low level analysis, all affected compounds are reported from the methanol preserved high level analysis which did not exhibit this interference.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis, Shiller, Laboratory Director August 17, 2015 Reviewed and Released by: Bobbi Aloisa, Vice President

<u>Time</u>

13:30

Analysis Report

August 17, 2015

FOR: Attn: Ms Olivia Burns Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

/	'gu	01	,	20	•

Sample Information

Project ID:

Client ID:

Matrix:	SOIL
Location Code:	EVERGRN
Rush Request:	Standard
P.O.#:	

K-MART

B-6 S-6

Collected by:	
Received by:	
Analyzed by:	

Custody Information

LB see "By" below 08/10/15 17:18

<u>Date</u>

08/06/15

Laboratory Data

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Percent Solid	79		%		08/11/15	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				08/11/15	JJ/NH	SW3545A
Volatiles- STARS/CP-51							
1,2,4-Trimethylbenzene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
Benzene	ND	1.2	ug/Kg	1	08/14/15	JLI	SW8260C
Ethylbenzene	ND	1.2	ug/Kg	1	08/14/15	JLI	SW8260C
Isopropylbenzene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
m&p-Xylene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
Methyl t-Butyl Ether (MTBE)	ND	1.2	ug/Kg	1	08/14/15	JLI	SW8260C
Naphthalene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
n-Butylbenzene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
n-Propylbenzene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
o-Xylene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
p-Isopropyltoluene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
sec-Butylbenzene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
tert-Butylbenzene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
Toluene	ND	1.2	ug/Kg	1	08/14/15	JLI	SW8260C
Total Xylenes	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-Dichlorobenzene-d4	97		%	1	08/14/15	JLI	70 - 130 %
% Bromofluorobenzene	99		%	1	08/14/15	JLI	70 - 130 %
% Dibromofluoromethane	98		%	1	08/14/15	JLI	70 - 130 %
% Toluene-d8	99		%	1	08/14/15	JLI	70 - 130 %
Semivolatiles-STARS/C	P-51						
Acenaphthene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D

Project ID: K-MART Client ID: B-6 S-6

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Acenaphthylene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Anthracene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Benz(a)anthracene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(a)pyrene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(b)fluoranthene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(ghi)perylene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(k)fluoranthene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Chrysene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Fluoranthene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Fluorene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Naphthalene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Phenanthrene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Pyrene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	53		%	1	08/12/15	DD	30 - 130 %
% Nitrobenzene-d5	52		%	1	08/12/15	DD	30 - 130 %
% Terphenyl-d14	69		%	1	08/12/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director August 17, 2015 Reviewed and Released by: Bobbi Aloisa, Vice President

Analysis Report

Project ID:

Client ID:

FOR: Attn: Ms Olivia Burns Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

August 17, 2015

K-MART

B-9 S-4

Sample Informa	ation	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:		08/06/15	14:00
Location Code:	EVERGRN	Received by:	LB	08/10/15	17:18
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:		I shanatan			

Laboratory Data

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	80		%		08/11/15	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				08/11/15	JJ/NH	SW3545A
Volatiles- STARS/CP-5	<u>1</u>						
1,2,4-Trimethylbenzene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
Benzene	ND	1.2	ug/Kg	1	08/14/15	JLI	SW8260C
Ethylbenzene	ND	1.2	ug/Kg	1	08/14/15	JLI	SW8260C
Isopropylbenzene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
m&p-Xylene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
Methyl t-Butyl Ether (MTBE)	ND	1.2	ug/Kg	1	08/14/15	JLI	SW8260C
Naphthalene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
n-Butylbenzene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
n-Propylbenzene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
o-Xylene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
p-Isopropyltoluene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
sec-Butylbenzene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
tert-Butylbenzene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
Toluene	ND	1.2	ug/Kg	1	08/14/15	JLI	SW8260C
Total Xylenes	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-Dichlorobenzene-d4	100		%	1	08/14/15	JLI	70 - 130 %
% Bromofluorobenzene	98		%	1	08/14/15	JLI	70 - 130 %
% Dibromofluoromethane	96		%	1	08/14/15	JLI	70 - 130 %
% Toluene-d8	96		%	1	08/14/15	JLI	70 - 130 %
Semivolatiles-STARS/C	CP-51						
Acenaphthene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D

Project ID: K-MART Client ID: B-9 S-4

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Acenaphthylene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Anthracene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Benz(a)anthracene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(a)pyrene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(b)fluoranthene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(ghi)perylene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(k)fluoranthene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Chrysene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Fluoranthene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Fluorene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Naphthalene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Phenanthrene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Pyrene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	34		%	1	08/12/15	DD	30 - 130 %
% Nitrobenzene-d5	35		%	1	08/12/15	DD	30 - 130 %
% Terphenyl-d14	45		%	1	08/12/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director August 17, 2015 Reviewed and Released by: Bobbi Aloisa, Vice President

Analysis Report

August 17, 2015

K-MART B-10 S-5

FOR: Attn: Ms Olivia Burns Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

Project ID:

Client ID:

Custody Information Sample Information <u>Time</u> Date Matrix: SOIL Collected by: 08/06/15 15:00 Location Code: **EVERGRN** Received by: 08/10/15 17:18 LB Rush Request: Standard Analyzed by: see "By" below P.O.#:

Laboratory Data

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	79		%		08/11/15	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				08/11/15	JJ/NH	SW3545A
Volatiles- STARS/CP-51							
1,2,4-Trimethylbenzene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
Benzene	ND	1.3	ug/Kg	1	08/14/15	JLI	SW8260C
Ethylbenzene	ND	1.3	ug/Kg	1	08/14/15	JLI	SW8260C
lsopropylbenzene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
m&p-Xylene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
Methyl t-Butyl Ether (MTBE)	ND	1.3	ug/Kg	1	08/14/15	JLI	SW8260C
Naphthalene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
n-Butylbenzene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
n-Propylbenzene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
o-Xylene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
p-Isopropyltoluene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
sec-Butylbenzene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
tert-Butylbenzene	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
Toluene	ND	1.3	ug/Kg	1	08/14/15	JLI	SW8260C
Total Xylenes	ND	2.5	ug/Kg	1	08/14/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-Dichlorobenzene-d4	99		%	1	08/14/15	JLI	70 - 130 %
% Bromofluorobenzene	98		%	1	08/14/15	JLI	70 - 130 %
% Dibromofluoromethane	98		%	1	08/14/15	JLI	70 - 130 %
% Toluene-d8	97		%	1	08/14/15	JLI	70 - 130 %
Semivolatiles-STARS/CI	P- <u>51</u>						
Acenaphthene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D

Project ID: K-MART Client ID: B-10 S-5

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Acenaphthylene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Anthracene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Benz(a)anthracene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(a)pyrene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(b)fluoranthene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(ghi)perylene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(k)fluoranthene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Chrysene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Fluoranthene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Fluorene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Naphthalene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Phenanthrene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
Pyrene	ND	290	ug/Kg	1	08/12/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	61		%	1	08/12/15	DD	30 - 130 %
% Nitrobenzene-d5	52		%	1	08/12/15	DD	30 - 130 %
% Terphenyl-d14	68		%	1	08/12/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director August 17, 2015 Reviewed and Released by: Bobbi Aloisa, Vice President

Analysis Report

Rush Request:

Project ID:

Client ID:

P.O.#:

August 17, 2015

Standard

K-MART

B-12 S-8

FOR: Attn: Ms Olivia Burns Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

Sample Informa	<u>tion</u>	Custody Information
Matrix:	SOIL	Collected by:
Location Code:	EVERGRN	Received by: LB

DateTime08/06/1515:3008/10/1517:18

Analyzed by: see "By" below
Laboratory Data

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Percent Solid	76		%		08/11/15	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed		70		08/11/15		SW3545A
	·						
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
1,1,1-Trichloroethane	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
1,1,2-Trichloroethane	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
1,1-Dichloroethane	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
1,1-Dichloroethene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
1,1-Dichloropropene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
1,2,3-Trichloropropane	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
1,2-Dibromoethane	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
1,2-Dichlorobenzene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
1,2-Dichloroethane	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
1,2-Dichloropropane	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
1,3-Dichlorobenzene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
1,3-Dichloropropane	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
1,4-Dichlorobenzene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
2,2-Dichloropropane	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
2-Chlorotoluene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
2-Hexanone	ND	1600	ug/Kg	50	08/14/15	JLI	SW8260C
2-Isopropyltoluene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C 1

Project ID: K-MART Client ID: B-12 S-8

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
4-Chlorotoluene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
4-Methyl-2-pentanone	ND	1600	ug/Kg	50	08/14/15	JLI	SW8260C
Acetone	ND	1600	ug/Kg	50	08/14/15	JLI	SW8260C
Acrylonitrile	ND	650	ug/Kg	50	08/14/15	JLI	SW8260C
Benzene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
Bromobenzene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
Bromochloromethane	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
Bromodichloromethane	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
Bromoform	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
Bromomethane	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
Carbon Disulfide	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
Carbon tetrachloride	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
Chlorobenzene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
Chloroethane	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
Chloroform	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
Chloromethane	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
is-1,2-Dichloroethene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
is-1,3-Dichloropropene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
Dibromochloromethane	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
Dibromomethane	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
Dichlorodifluoromethane	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
thylbenzene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
lexachlorobutadiene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
sopropylbenzene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
1&p-Xylene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
lethyl Ethyl Ketone	ND	1600	ug/Kg	50	08/14/15	JLI	SW8260C
Aethyl t-butyl ether (MTBE)	ND	650	ug/Kg	50	08/14/15	JLI	SW8260C
Aethylene chloride	ND	330	ug/Kg	50 50	08/14/15	JLI	SW8260C
laphthalene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
-	ND	330	ug/Kg	50 50	08/14/15	JLI	SW8260C
-Butylbenzene	ND	330	ug/Kg ug/Kg	50 50	08/14/15	JLI	SW8260C
-Propylbenzene	ND	330		50 50	08/14/15	JLI	SW8260C
	ND	330	ug/Kg ug/Kg	50 50	08/14/15	JLI	SW8260C
-Isopropyltoluene	ND	330 330					SW8260C SW8260C
ec-Butylbenzene			ug/Kg	50 50	08/14/15	JLI	
Styrene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
ert-Butylbenzene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
etrachloroethene	120000	3300	ug/Kg	500	08/15/15	JLI	SW8260C
etrahydrofuran (THF)	ND	650	ug/Kg	50	08/14/15	JLI	SW8260C
oluene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
otal Xylenes	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
ans-1,2-Dichloroethene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
ans-1,3-Dichloropropene	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
ans-1,4-dichloro-2-butene	ND	650	ug/Kg	50	08/14/15	JLI	SW8260C
richloroethene	10000	3300	ug/Kg	500	08/15/15	JLI	SW8260C
richlorofluoromethane	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
richlorotrifluoroethane	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
/inyl chloride	ND	330	ug/Kg	50	08/14/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	98		%	50	08/14/15	JLI	70 - 130 %

Project ID: K-MART Client ID: B-12 S-8

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
% Bromofluorobenzene	102		%	50	08/14/15	JLI	70 - 130 %
% Dibromofluoromethane	87		%	50	08/14/15	JLI	70 - 130 %
% Toluene-d8	98		%	50	08/14/15	JLI	70 - 130 %
Semivolatiles-STARS/	<u>CP-51</u>						
Acenaphthene	ND	310	ug/Kg	1	08/12/15	DD	SW8270D
Acenaphthylene	ND	310	ug/Kg	1	08/12/15	DD	SW8270D
Anthracene	ND	310	ug/Kg	1	08/12/15	DD	SW8270D
Benz(a)anthracene	ND	310	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(a)pyrene	ND	310	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(b)fluoranthene	ND	310	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(ghi)perylene	ND	310	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(k)fluoranthene	ND	310	ug/Kg	1	08/12/15	DD	SW8270D
Chrysene	ND	310	ug/Kg	1	08/12/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	310	ug/Kg	1	08/12/15	DD	SW8270D
Fluoranthene	ND	310	ug/Kg	1	08/12/15	DD	SW8270D
Fluorene	ND	310	ug/Kg	1	08/12/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	310	ug/Kg	1	08/12/15	DD	SW8270D
Naphthalene	ND	310	ug/Kg	1	08/12/15	DD	SW8270D
Phenanthrene	ND	310	ug/Kg	1	08/12/15	DD	SW8270D
Pyrene	ND	310	ug/Kg	1	08/12/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	61		%	1	08/12/15	DD	30 - 130 %
% Nitrobenzene-d5	59		%	1	08/12/15	DD	30 - 130 %
% Terphenyl-d14	77		%	1	08/12/15	DD	30 - 130 %

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

Volatile Comment:

Elevated reporting limits for volatiles due to the presence of target and/or non-target compounds.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director August 17, 2015 Reviewed and Released by: Bobbi Aloisa, Vice President

Analysis Report

Project ID:

Client ID:

FOR: Attn: Ms Olivia Burns Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

August 17, 2015

K-MART B-14 S-5

Custody Information Sample Information <u>Time</u> Date Matrix: SOIL Collected by: 08/06/15 16:00 Location Code: **EVERGRN** Received by: 08/10/15 17:18 LB Rush Request: Standard Analyzed by: see "By" below P.O.#:

Laboratory Data

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	82		%		08/11/15	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				08/11/15	JJ/NH	SW3545A
Volatiles- STARS/CP-5	1						
1,2,4-Trimethylbenzene	ND	2.4	ug/Kg	1	08/14/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	2.4	ug/Kg	1	08/14/15	JLI	SW8260C
Benzene	ND	1.2	ug/Kg	1	08/14/15	JLI	SW8260C
Ethylbenzene	ND	1.2	ug/Kg	1	08/14/15	JLI	SW8260C
Isopropylbenzene	ND	2.4	ug/Kg	1	08/14/15	JLI	SW8260C
m&p-Xylene	ND	2.4	ug/Kg	1	08/14/15	JLI	SW8260C
Methyl t-Butyl Ether (MTBE)	ND	1.2	ug/Kg	1	08/14/15	JLI	SW8260C
Naphthalene	ND	2.4	ug/Kg	1	08/14/15	JLI	SW8260C
n-Butylbenzene	ND	2.4	ug/Kg	1	08/14/15	JLI	SW8260C
n-Propylbenzene	ND	2.4	ug/Kg	1	08/14/15	JLI	SW8260C
o-Xylene	ND	2.4	ug/Kg	1	08/14/15	JLI	SW8260C
p-Isopropyltoluene	ND	2.4	ug/Kg	1	08/14/15	JLI	SW8260C
sec-Butylbenzene	ND	2.4	ug/Kg	1	08/14/15	JLI	SW8260C
tert-Butylbenzene	ND	2.4	ug/Kg	1	08/14/15	JLI	SW8260C
Toluene	ND	1.2	ug/Kg	1	08/14/15	JLI	SW8260C
Total Xylenes	ND	2.4	ug/Kg	1	08/14/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-Dichlorobenzene-d4	97		%	1	08/14/15	JLI	70 - 130 %
% Bromofluorobenzene	99		%	1	08/14/15	JLI	70 - 130 %
% Dibromofluoromethane	94		%	1	08/14/15	JLI	70 - 130 %
% Toluene-d8	97		%	1	08/14/15	JLI	70 - 130 %
Semivolatiles-STARS/C	CP-51						
Acenaphthene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D

Project ID: K-MART Client ID: B-14 S-5

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Acenaphthylene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Anthracene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Benz(a)anthracene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(a)pyrene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(b)fluoranthene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(ghi)perylene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(k)fluoranthene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Chrysene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Fluoranthene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Fluorene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Naphthalene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Phenanthrene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
Pyrene	ND	280	ug/Kg	1	08/12/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	62		%	1	08/12/15	DD	30 - 130 %
% Nitrobenzene-d5	61		%	1	08/12/15	DD	30 - 130 %
% Terphenyl-d14	69		%	1	08/12/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director August 17, 2015 Reviewed and Released by: Bobbi Aloisa, Vice President

Analysis Report

Project ID:

Client ID:

August 17, 2015

K-MART

B-11 S-7

FOR: Attn: Ms Olivia Burns Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

Sample Informa	ation	Custody Inforn	nation	Date	<u>Time</u>
Matrix:	SOIL	Collected by:		08/06/15	15:30
Location Code:	EVERGRN	Received by:	LB	08/10/15	17:18
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:		Laborator	Data		GB 17170

Laboratory Data

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Percent Solid	66		%		08/11/15	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed		,0		08/11/15		SW3545A
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
1,1,1-Trichloroethane	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
1,1,2-Trichloroethane	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
1,1-Dichloroethane	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
1,1-Dichloroethene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
1,1-Dichloropropene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
1,2,3-Trichloropropane	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
1,2-Dibromoethane	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
1,2-Dichlorobenzene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
1,2-Dichloroethane	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
1,2-Dichloropropane	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
1,3-Dichlorobenzene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
1,3-Dichloropropane	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
1,4-Dichlorobenzene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
2,2-Dichloropropane	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
2-Chlorotoluene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
2-Hexanone	ND	38	ug/Kg	1	08/14/15	JLI	SW8260C
2-Isopropyltoluene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C 1

Project ID: K-MART Client ID: B-11 S-7

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
4-Chlorotoluene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
4-Methyl-2-pentanone	ND	38	ug/Kg	1	08/14/15	JLI	SW8260C
Acetone	ND	38	ug/Kg	1	08/14/15	JLI	SW8260C
Acrylonitrile	ND	15	ug/Kg	1	08/14/15	JLI	SW8260C
Benzene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
Bromobenzene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
Bromochloromethane	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
Bromodichloromethane	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
Bromoform	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
Bromomethane	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
Carbon Disulfide	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
Carbon tetrachloride	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
Chlorobenzene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
Chloroethane	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
Chloroform	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
Chloromethane	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
cis-1,2-Dichloroethene	8.6	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
cis-1,3-Dichloropropene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
Dibromochloromethane	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
Dibromomethane	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
Dichlorodifluoromethane	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
Ethylbenzene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
Hexachlorobutadiene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
Isopropylbenzene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
m&p-Xylene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
Methyl Ethyl Ketone	ND	38	ug/Kg	1	08/14/15	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	15	ug/Kg	1	08/14/15	JLI	SW8260C
Methylene chloride	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
Naphthalene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
n-Butylbenzene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
n-Propylbenzene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
o-Xylene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
p-Isopropyltoluene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
sec-Butylbenzene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
Styrene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
tert-Butylbenzene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
Tetrachloroethene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
Tetrahydrofuran (THF)	ND	15	ug/Kg	1	08/14/15	JLI	SW8260C
Toluene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
Total Xylenes	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
trans-1,2-Dichloroethene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
trans-1,3-Dichloropropene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	15	ug/Kg	1	08/14/15	JLI	SW8260C
Trichloroethene	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
Trichlorofluoromethane	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
Trichlorotrifluoroethane	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
Vinyl chloride	ND	7.6	ug/Kg	1	08/14/15	JLI	SW8260C
QA/QC Surrogates		1.0	ug/1\g		00,17,10		51102000
% 1,2-dichlorobenzene-d4	97		%	1	08/14/15	JLI	70 - 130 %

Project ID: K-MART Client ID: B-11 S-7

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
% Bromofluorobenzene	100		%	1	08/14/15	JLI	70 - 130 %
% Dibromofluoromethane	95		%	1	08/14/15	JLI	70 - 130 %
% Toluene-d8	98		%	1	08/14/15	JLI	70 - 130 %
Semivolatiles-STARS/	CP-51						
Acenaphthene	ND	350	ug/Kg	1	08/12/15	DD	SW8270D
Acenaphthylene	ND	350	ug/Kg	1	08/12/15	DD	SW8270D
Anthracene	ND	350	ug/Kg	1	08/12/15	DD	SW8270D
Benz(a)anthracene	ND	350	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(a)pyrene	ND	350	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(b)fluoranthene	ND	350	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(ghi)perylene	ND	350	ug/Kg	1	08/12/15	DD	SW8270D
Benzo(k)fluoranthene	ND	350	ug/Kg	1	08/12/15	DD	SW8270D
Chrysene	ND	350	ug/Kg	1	08/12/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	350	ug/Kg	1	08/12/15	DD	SW8270D
Fluoranthene	ND	350	ug/Kg	1	08/12/15	DD	SW8270D
Fluorene	ND	350	ug/Kg	1	08/12/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	350	ug/Kg	1	08/12/15	DD	SW8270D
Naphthalene	ND	350	ug/Kg	1	08/12/15	DD	SW8270D
Phenanthrene	ND	350	ug/Kg	1	08/12/15	DD	SW8270D
Pyrene	ND	350	ug/Kg	1	08/12/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	55		%	1	08/12/15	DD	30 - 130 %
% Nitrobenzene-d5	52		%	1	08/12/15	DD	30 - 130 %
% Terphenyl-d14	72		%	1	08/12/15	DD	30 - 130 %

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director August 17, 2015 Reviewed and Released by: Bobbi Aloisa, Vice President

QA/QC Report August 17, 2015

QA/QC Data

SDG I.D.: GBJ71794

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 316646 (ug/kg) BJ71802)), QC Samp	ole No: BJ71511 (BJ71794, BJ7	1796, E	3J71797	, BJ717	98, BJ	71799,	BJ718	00, BJ7 ⁻	1801,
Polynuclear Aromatic H	IC - Soil									
Acenaphthene	ND	230	77	71	8.1	64			30 - 130	30
Acenaphthylene	ND	230	74	68	8.5	62			30 - 130	30
Anthracene	ND	230	84	78	7.4	72			30 - 130	30
Benz(a)anthracene	ND	230	87	83	4.7	78			30 - 130	30
Benzo(a)pyrene	ND	230	88	85	3.5	76			30 - 130	30
Benzo(b)fluoranthene	ND	230	87	83	4.7	76			30 - 130	30
Benzo(ghi)perylene	ND	230	88	82	7.1	76			30 - 130	30
Benzo(k)fluoranthene	ND	230	83	79	4.9	70			30 - 130	30
Chrysene	ND	230	91	87	4.5	78			30 - 130	30
Dibenz(a,h)anthracene	ND	230	74	72	2.7	66			30 - 130	30
Fluoranthene	ND	230	86	82	4.8	84			30 - 130	30
Fluorene	ND	230	78	74	5.3	70			30 - 130	30
Indeno(1,2,3-cd)pyrene	ND	230	91	87	4.5	82			30 - 130	30
Naphthalene	ND	230	66	60	9.5	53			30 - 130	30
Phenanthrene	ND	230	83	78	6.2	75			30 - 130	30
Pyrene	ND	230	86	81	6.0	80			30 - 130	30
% 2-Fluorobiphenyl	65	%	71	64	10.4	56			30 - 130	30
% Nitrobenzene-d5	58	%	56	55	1.8	54			30 - 130	30
% Terphenyl-d14	80	%	80	77	3.8	67			30 - 130	30
QA/QC Batch 316763 (ug/Kg), QC Sam	ple No: BJ72144 2X (BJ71795)								
Polychlorinated Biphen	<u>yls - Soil</u>									
PCB-1016	ND	33	83	95	13.5	82	98	17.8	40 - 140	30
PCB-1221	ND	33							40 - 140	30
PCB-1232	ND	33							40 - 140	30
PCB-1242	ND	33							40 - 140	30
PCB-1248	ND	33							40 - 140	30
PCB-1254	ND	33							40 - 140	30
PCB-1260	ND	33	95	101	6.1	88	104	16.7	40 - 140	30
PCB-1262	ND	33							40 - 140	30
PCB-1268	ND	33							40 - 140	30
% DCBP (Surrogate Rec)	33	%	107	111	3.7	94	111	16.6	30 - 150	30
% TCMX (Surrogate Rec)	33	%	95	108	12.8	92	112	19.6	30 - 150	30
QA/QC Batch 317233 (ug/kg)), QC Samp	ole No: BJ72802 (BJ71794, BJ7	1797, E	3J71798	, BJ717	99, BJ	71800 ((50X),	BJ7180	1)
Volatiles - Soil										
1,1,1,2-Tetrachloroethane	ND	5.0	90	101	11.5	101	106	4.8	70 - 130	30
1,1,1-Trichloroethane	ND	5.0	89	100	11.6	100	106	5.8	70 - 130	
1,1,2,2-Tetrachloroethane	ND	3.0	93	104	11.2	103	101	2.0	70 - 130	
1,1,2-Trichloroethane	ND	5.0	87	97	10.9	98	103	5.0	70 - 130	
1,1-Dichloroethane	ND	5.0	87	96	9.8	98	102	4.0	70 - 130	

QA/QC Data

SDG I.D.: GBJ71794

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
1,1-Dichloroethene	ND	5.0	88	98	10.8	95	100	5.1	70 - 130	30	
1,1-Dichloropropene	ND	5.0	90	99	9.5	99	104	4.9	70 - 130	30	
1,2,3-Trichlorobenzene	ND	5.0	83	95	13.5	70	86	20.5	70 - 130	30	
1,2,3-Trichloropropane	ND	5.0	89	99	10.6	104	105	1.0	70 - 130	30	
1,2,4-Trichlorobenzene	ND	5.0	81	92	12.7	72	85	16.6	70 - 130	30	
1,2,4-Trimethylbenzene	ND	1.0	86	95	9.9	97	100	3.0	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	5.0	84	97	14.4	96	105	9.0	70 - 130	30	
1,2-Dibromoethane	ND	5.0	89	99	10.6	102	106	3.8	70 - 130	30	
1,2-Dichlorobenzene	ND	5.0	88	98	10.8	92	99	7.3	70 - 130	30	
1,2-Dichloroethane	ND	5.0	88	98	10.8	98	102	4.0	70 - 130	30	
1,2-Dichloropropane	ND	5.0	89	99	10.6	102	104	1.9	70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	90	100	10.5	100	103	3.0	70 - 130	30	
1,3-Dichlorobenzene	ND	5.0	87	96	9.8	92	98	6.3	70 - 130	30	
1,3-Dichloropropane	ND	5.0	89	98	9.6	101	104	2.9	70 - 130	30	
1,4-Dichlorobenzene	ND	5.0	86	96	11.0	93	99	6.3	70 - 130	30	
2,2-Dichloropropane	ND	5.0	87	96	9.8	96	101	5.1	70 - 130	30	
2-Chlorotoluene	ND	5.0	90	98	8.5	99	102	3.0	70 - 130	30	
2-Hexanone	ND	25	64	73	13.1	55	65	16.7	70 - 130	30	l,m
2-Isopropyltoluene	ND	5.0	91	101	10.4	97	102	5.0	70 - 130	30	
4-Chlorotoluene	ND	5.0	87	95	8.8	97	100	3.0	70 - 130	30	
4-Methyl-2-pentanone	ND	25	81	92	12.7	78	91	15.4	70 - 130	30	
Acetone	ND	10	60	55	8.7	55	59	7.0	70 - 130	30	l,m
Acrylonitrile	ND	5.0	84	98	15.4	82	98	17.8	70 - 130	30	
Benzene	ND	1.0	90	100	10.5	100	104	3.9	70 - 130	30	
Bromobenzene	ND	5.0	91	100	9.4	103	102	1.0	70 - 130	30	
Bromochloromethane	ND	5.0	85	97	13.2	96	102	6.1	70 - 130	30	
Bromodichloromethane	ND	5.0	92	104	12.2	100	104	3.9	70 - 130	30	
Bromoform	ND	5.0	84	99	16.4	91	102	11.4	70 - 130	30	
Bromomethane	ND	5.0	81	98	19.0	82	103	22.7	70 - 130	30	
Carbon Disulfide	ND	5.0	90	100	10.5	92	99	7.3	70 - 130	30	
Carbon tetrachloride	ND	5.0	90	102	12.5	101	107	5.8	70 - 130	30	
Chlorobenzene	ND	5.0	88	98	10.8	98	103	5.0	70 - 130	30	
Chloroethane	ND	5.0	83	96	14.5	92	103	11.3	70 - 130	30	
Chloroform	ND	5.0	87	97	10.9	97	101	4.0	70 - 130	30	
Chloromethane	ND	5.0	84	95	12.3	83	92	10.3	70 - 130	30	
cis-1,2-Dichloroethene	ND	5.0	89	99	10.6	101	103	2.0	70 - 130	30	
cis-1,3-Dichloropropene	ND	5.0	90	101	11.5	95	101	6.1	70 - 130	30	
Dibromochloromethane	ND	3.0	94	108	13.9	104	109	4.7	70 - 130	30	
Dibromomethane	ND	5.0	87	99	12.9	99	102	3.0	70 - 130	30	
Dichlorodifluoromethane	ND	5.0	92	103	11.3	74	80	7.8	70 - 130	30	
Ethylbenzene	ND	1.0	90	100	10.5	99	102	3.0	70 - 130	30	
Hexachlorobutadiene	ND	5.0	90	101	11.5	71	82	14.4	70 - 130	30	
Isopropylbenzene	ND	1.0	92	101	9.3	104	105	1.0	70 - 130	30	
m&p-Xylene	ND	2.0	89	98	9.6	98	103	5.0	70 - 130	30	
Methyl ethyl ketone	ND	5.0	62	68	9.2	63	74	16.1	70 - 130	30	l,m
Methyl t-butyl ether (MTBE)	ND	1.0	94	106	12.0	104	108	3.8	70 - 130	30	
Methylene chloride	ND	5.0	84	94	11.2	92	98	6.3	70 - 130	30	
Naphthalene	ND	5.0	84	98	15.4	72	80	10.5	70 - 130	30	
n-Butylbenzene	ND	1.0	88	97	9.7	89	95	6.5	70 - 130	30	
n-Propylbenzene	ND	1.0	86	95	9.9	101	101	0.0	70 - 130	30	
o-Xylene	ND	2.0	88	97	9.7	99	103	4.0	70 - 130	30	
p-Isopropyltoluene	ND	1.0	90	99	9.5	94	100	6.2	70 - 130	30	
sec-Butylbenzene	ND	1.0	93	102	9.2	95	99	4.1	70 - 130	30	

QA/QC Data

SDG I.D.: GBJ71794

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
Styrene	ND	5.0	85	95	11.1	87	95	8.8	70 - 130	30
tert-Butylbenzene	ND	1.0	90	99	9.5	100	102	2.0	70 - 130	30
Tetrahydrofuran (THF)	ND	5.0	82	93	12.6	91	98	7.4	70 - 130	30
Toluene	ND	1.0	88	97	9.7	98	101	3.0	70 - 130	30
trans-1,2-Dichloroethene	ND	5.0	90	100	10.5	98	103	5.0	70 - 130	30
trans-1,3-Dichloropropene	ND	5.0	91	102	11.4	95	101	6.1	70 - 130	30
trans-1,4-dichloro-2-butene	ND	5.0	87	100	13.9	93	101	8.2	70 - 130	30
Trichlorofluoromethane	ND	5.0	88	98	10.8	95	102	7.1	70 - 130	30
Trichlorotrifluoroethane	ND	5.0	90	100	10.5	98	104	5.9	70 - 130	30
Vinyl chloride	ND	5.0	90	99	9.5	91	98	7.4	70 - 130	30
% 1,2-dichlorobenzene-d4	98	%	101	100	1.0	99	101	2.0	70 - 130	30
% Bromofluorobenzene	100	%	97	97	0.0	95	98	3.1	70 - 130	30
% Dibromofluoromethane	98	%	95	96	1.0	94	96	2.1	70 - 130	30
% Toluene-d8	96	%	100	100	0.0	98	99	1.0	70 - 130	30
Comment:										

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QA/QC Batch 317379 (ug/kg), QC Sample No: BJ75188 (BJ71796 (1X, 50X) , BJ71800 (500X))

Vo	latiles	- So	il
VU	latiles	- 30	IJ

1,2,4-Trimethylbenzene	ND	1.0	96	97	1.0	104	106	1.9	70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	100	101	1.0	113	114	0.9	70 - 130	30	
Benzene	ND	1.0	102	102	0.0	107	111	3.7	70 - 130	30	
Ethylbenzene	ND	1.0	102	102	0.0	109	113	3.6	70 - 130	30	
Isopropylbenzene	ND	1.0	98	102	4.0	115	115	0.0	70 - 130	30	
m&p-Xylene	ND	2.0	100	100	0.0	107	110	2.8	70 - 130	30	
Methyl t-butyl ether (MTBE)	ND	1.0	110	108	1.8	108	112	3.6	70 - 130	30	
Naphthalene	ND	5.0	101	100	1.0	95	99	4.1	70 - 130	30	
n-Butylbenzene	ND	1.0	98	98	0.0	103	106	2.9	70 - 130	30	
n-Propylbenzene	ND	1.0	93	96	3.2	107	107	0.0	70 - 130	30	
o-Xylene	ND	2.0	100	100	0.0	106	110	3.7	70 - 130	30	
p-Isopropyltoluene	ND	1.0	99	100	1.0	111	113	1.8	70 - 130	30	
sec-Butylbenzene	ND	1.0	102	103	1.0	116	118	1.7	70 - 130	30	
tert-Butylbenzene	ND	1.0	98	101	3.0	114	116	1.7	70 - 130	30	
Tetrachloroethene	ND	5.0	100	99	1.0	107	111	3.7	70 - 130	30	
Toluene	ND	1.0	100	99	1.0	105	108	2.8	70 - 130	30	
Trichloroethene	ND	5.0	104	102	1.9	108	112	3.6	70 - 130	30	
% 1,2-dichlorobenzene-d4	99	%	100	101	1.0	101	102	1.0	70 - 130	30	
% Bromofluorobenzene	102	%	100	98	2.0	96	97	1.0	70 - 130	30	
% Dibromofluoromethane	101	%	97	96	1.0	92	97	5.3	70 - 130	30	
% Toluene-d8	99	%	100	99	1.0	99	100	1.0	70 - 130	30	
Comment:											

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

I = This parameter is outside laboratory lcs/lcsd specified recovery limits.

m = This parameter is outside laboratory ms/msd specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director August 17, 2015

Monday, Au	ugust 17, 2015		Sample Crite	eria Exceedences Report				Page 1 of 1
Criteria:	None		•	SJ71794 - EVERGRN				
State:	NY						RL	Analvsis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
*** NIE Dete	L. D'andau ttt							

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

NY Temperature Narration

August 17, 2015

SDG I.D.: GBJ71794

The samples in this delivery group were received at 4°C. (Note acceptance criteria is above freezing up to 6° C)

<u><u> </u></u>	1 1 1 1	<u> </u>	
Temp HC ? Pg of Data Delivery: Eax # T Fax # M Email: Olivia@evergreentesting.cdm	Project P.O: Phone #: 518-266-0310 Fax #: 518-266-9238		Vertification
CHAIN OF CUSTODY RECORD 587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726	Project: <u>K-Maw†</u> Report to: <u>Olivia Burns</u> Invoice to:	Analysis Request	X X X X X X X X X X X X X X X X X X X
Inc.	Evergreen Testing 594 Broadway Watervliet, New York 12189	Client Sample - Information - Identification Date: 8 10 15 WW=wastewater S=soil/solid O=oil SL=sludge A=air X=other	
PHOENIX Environmental Laboratories,	Customer: Everg Address: 594 Wate	Sampler's Client Sample - Info Signature Mut Matrix Code: DW=drinking water WW=wastewater GW=groundwater SL=shudge	Custom Latent Custom Custom Custom Custom Custom B-1 5 8 8-1 5 5 5 8 8-1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Lori - Phoenixlabs

Samples for K-Mart	Subject:
'OLIVIA@EVERGREENTESTING.COM'	:oT
Monday, August 10, 2015 04:04 PM	:tuə2
<mos.zdalxin9ohq@i1ol> zdalxin9oh9 - i1oJ</mos.zdalxin9ohq@i1ol>	From:

, 6ivilO iH

Today, we are receiving 9 soil samples for the above mentioned project. Unfortunately, there is no analysis written on the chain. Please let me know what you would like for us to run.

Thanks, Lori

Lori Bailey Phoenix Environmental Labs

HOLIL 199

Lori - Phoenixlabs

20150811133554.pdf	:stnemtastA
Chain of Custody	Subject:
'OLIVIA@EVERGREENTESTING.COM'	:оТ
MA 95:90 ZIOS ,II tsuguA ,YabsauT	:tnə2
<mos.edsixin9ohq@inol> 2dsixin9ohq - inol</mos.edsixin9ohq@inol>	From:

Good morning Olivia,

Can you please just look over this chain and make sure the analysis for each sample is correct, and let me know. I went by what was listed on the jars, but our label covered some of the analysis.

Lori Thanks,

Lori Bailey Phoenix Environmental Labs

Friday, August 21, 2015

Attn: Ms Olivia Burns Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

Project ID: K-MART Sample ID#s: BJ75381 - BJ75396

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

 $\lambda - \mu$

Phyllis Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

SDG Comments

August 21, 2015

SDG I.D.: GBJ75381

BJ75381 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.
BJ75382 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.
BJ75383 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.
BJ75384 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.
BJ75385 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.
BJ75387 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.
BJ75389 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.
BJ75390 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.

Analysis Report

Project ID:

Client ID:

FOR: Attn: Ms Olivia Burns Evergreen Testing & 594 Broadway

Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

August 21, 2015

K-MART

B-16, S-8

Sample Information		Custody Inform	Custody Information				
Matrix:	SOIL	Collected by:		08/10/15	9:00		
Location Code:	EVERGRN	Received by:	LB	08/14/15	18:45		
Rush Request:	Standard	Analyzed by:	see "By" below				
P.O.#:			_		001		

Laboratory Data

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Percent Solid	72		%		08/15/15		SW846-%Solid
Soil Extraction SVOA PAH	Completed		70		08/14/15	JJ/VH	SW3545A
Volatiles- STARS/CP-51							
1,2,4-Trimethylbenzene	ND	2.8	ug/Kg	1	08/20/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	2.8	ug/Kg	1	08/20/15	JLI	SW8260C
Benzene	ND	1.4	ug/Kg	1	08/20/15	JLI	SW8260C
Ethylbenzene	ND	1.4	ug/Kg	1	08/20/15	JLI	SW8260C
Isopropylbenzene	ND	2.8	ug/Kg	1	08/20/15	JLI	SW8260C
m&p-Xylene	ND	2.8	ug/Kg	1	08/20/15	JLI	SW8260C
Methyl t-Butyl Ether (MTBE)	ND	1.4	ug/Kg	1	08/20/15	JLI	SW8260C
Naphthalene	ND	2.8	ug/Kg	1	08/20/15	JLI	SW8260C
n-Butylbenzene	ND	2.8	ug/Kg	1	08/20/15	JLI	SW8260C
n-Propylbenzene	ND	2.8	ug/Kg	1	08/20/15	JLI	SW8260C
o-Xylene	ND	2.8	ug/Kg	1	08/20/15	JLI	SW8260C
p-Isopropyltoluene	ND	2.8	ug/Kg	1	08/20/15	JLI	SW8260C
sec-Butylbenzene	ND	2.8	ug/Kg	1	08/20/15	JLI	SW8260C
tert-Butylbenzene	ND	2.8	ug/Kg	1	08/20/15	JLI	SW8260C
Toluene	ND	1.4	ug/Kg	1	08/20/15	JLI	SW8260C
Total Xylenes	ND	2.8	ug/Kg	1	08/20/15	JLI	SW8260C
QA/QC Surrogates			0 0				
% 1,2-Dichlorobenzene-d4	93		%	1	08/20/15	JLI	70 - 130 %
% Bromofluorobenzene	98		%	1	08/20/15	JLI	70 - 130 %
% Dibromofluoromethane	99		%	1	08/20/15	JLI	70 - 130 %
% Toluene-d8	90		%	1	08/20/15	JLI	70 - 130 %
Semivolatiles-STARS/C	P-51						
Acenaphthene	ND	320	ug/Kg	1	08/15/15	DD	SW8270D

Project ID: K-MART Client ID: B-16, S-8

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Acenaphthylene	ND	320	ug/Kg	1	08/15/15	DD	SW8270D
Anthracene	ND	320	ug/Kg	1	08/15/15	DD	SW8270D
Benz(a)anthracene	ND	320	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(a)pyrene	ND	320	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(b)fluoranthene	ND	320	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(ghi)perylene	ND	320	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(k)fluoranthene	ND	320	ug/Kg	1	08/15/15	DD	SW8270D
Chrysene	ND	320	ug/Kg	1	08/15/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	320	ug/Kg	1	08/15/15	DD	SW8270D
Fluoranthene	ND	320	ug/Kg	1	08/15/15	DD	SW8270D
Fluorene	ND	320	ug/Kg	1	08/15/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	320	ug/Kg	1	08/15/15	DD	SW8270D
Naphthalene	ND	320	ug/Kg	1	08/15/15	DD	SW8270D
Phenanthrene	ND	320	ug/Kg	1	08/15/15	DD	SW8270D
Pyrene	ND	320	ug/Kg	1	08/15/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	57		%	1	08/15/15	DD	30 - 130 %
% Nitrobenzene-d5	51		%	1	08/15/15	DD	30 - 130 %
% Terphenyl-d14	78		%	1	08/15/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director August 21, 2015 Reviewed and Released by: Bobbi Aloisa, Vice President

Analysis Report

August 21, 2015

K-MART

B-17, S-5

FOR: Attn: Ms Olivia Burns Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

•	

Project ID:

Client ID:

Sample Informa	<u>ition</u>	Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOIL	Collected by:		08/10/15	10:00
Location Code:	EVERGRN	Received by:	LB	08/14/15	18:45
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:		Laboratory	Data		CB 17538

Laboratory Data

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
		r QL		Dilution		,	
Percent Solid	78		%		08/15/15	1	SW846-%Solid
Soil Extraction SVOA PAH	Completed				08/14/15	JJ/VH	SW3545A
Volatiles- STARS/CP-5	1						
1,2,4-Trimethylbenzene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
Benzene	ND	1.3	ug/Kg	1	08/20/15	JLI	SW8260C
Ethylbenzene	ND	1.3	ug/Kg	1	08/20/15	JLI	SW8260C
Isopropylbenzene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
m&p-Xylene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
Methyl t-Butyl Ether (MTBE)	ND	1.3	ug/Kg	1	08/20/15	JLI	SW8260C
Naphthalene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
n-Butylbenzene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
n-Propylbenzene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
o-Xylene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
p-Isopropyltoluene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
sec-Butylbenzene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
tert-Butylbenzene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
Toluene	ND	1.3	ug/Kg	1	08/20/15	JLI	SW8260C
Total Xylenes	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-Dichlorobenzene-d4	95		%	1	08/20/15	JLI	70 - 130 %
% Bromofluorobenzene	99		%	1	08/20/15	JLI	70 - 130 %
% Dibromofluoromethane	109		%	1	08/20/15	JLI	70 - 130 %
% Toluene-d8	91		%	1	08/20/15	JLI	70 - 130 %
Semivolatiles-STARS/0	<u>CP-51</u>						
Acenaphthene	ND	300	ug/Kg	1	08/15/15	DD	SW8270D

Project ID: K-MART Client ID: B-17, S-5

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Acenaphthylene	ND	300	ug/Kg	1	08/15/15	DD	SW8270D
Anthracene	ND	300	ug/Kg	1	08/15/15	DD	SW8270D
Benz(a)anthracene	ND	300	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(a)pyrene	ND	300	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(b)fluoranthene	ND	300	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(ghi)perylene	ND	300	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(k)fluoranthene	ND	300	ug/Kg	1	08/15/15	DD	SW8270D
Chrysene	ND	300	ug/Kg	1	08/15/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	300	ug/Kg	1	08/15/15	DD	SW8270D
Fluoranthene	ND	300	ug/Kg	1	08/15/15	DD	SW8270D
Fluorene	ND	300	ug/Kg	1	08/15/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	300	ug/Kg	1	08/15/15	DD	SW8270D
Naphthalene	ND	300	ug/Kg	1	08/15/15	DD	SW8270D
Phenanthrene	ND	300	ug/Kg	1	08/15/15	DD	SW8270D
Pyrene	ND	300	ug/Kg	1	08/15/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	56		%	1	08/15/15	DD	30 - 130 %
% Nitrobenzene-d5	49		%	1	08/15/15	DD	30 - 130 %
% Terphenyl-d14	68		%	1	08/15/15	DD	30 - 130 %
· •							

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director August 21, 2015 Reviewed and Released by: Bobbi Aloisa, Vice President

Analysis Report

Project ID:

Client ID:

FOR: Attn: Ms Olivia Burns Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

August 21, 2015

K-MART

B-19, S-8

Sample Information Cus		Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOIL	Collected by:		08/10/15	15:00
Location Code:	EVERGRN	Received by:	LB	08/14/15	18:45
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:		l als avatam	Data		

Laboratory Data

Devenueten	Decult	RL/	1.1	Dilution	Data /Tima	D	Deferrer
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Percent Solid	80		%		08/15/15	I	SW846-%Solid
Soil Extraction SVOA PAH	Completed				08/14/15	JJ/VH	SW3545A
Volatiles- STARS/CP-5	<u>51</u>						
1,2,4-Trimethylbenzene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
Benzene	ND	1.2	ug/Kg	1	08/20/15	JLI	SW8260C
Ethylbenzene	ND	1.2	ug/Kg	1	08/20/15	JLI	SW8260C
Isopropylbenzene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
m&p-Xylene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
Methyl t-Butyl Ether (MTBE)	ND	1.2	ug/Kg	1	08/20/15	JLI	SW8260C
Naphthalene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
n-Butylbenzene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
n-Propylbenzene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
o-Xylene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
p-Isopropyltoluene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
sec-Butylbenzene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
tert-Butylbenzene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
Toluene	ND	1.2	ug/Kg	1	08/20/15	JLI	SW8260C
Total Xylenes	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-Dichlorobenzene-d4	110		%	1	08/20/15	JLI	70 - 130 %
% Bromofluorobenzene	81		%	1	08/20/15	JLI	70 - 130 %
% Dibromofluoromethane	106		%	1	08/20/15	JLI	70 - 130 %
% Toluene-d8	88		%	1	08/20/15	JLI	70 - 130 %
Semivolatiles-STARS/	CP-51						
Acenaphthene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D

Project ID: K-MART Client ID: B-19, S-8

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Acenaphthylene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Anthracene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Benz(a)anthracene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(a)pyrene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(b)fluoranthene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(ghi)perylene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(k)fluoranthene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Chrysene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Fluoranthene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Fluorene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Naphthalene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Phenanthrene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Pyrene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	65		%	1	08/15/15	DD	30 - 130 %
% Nitrobenzene-d5	63		%	1	08/15/15	DD	30 - 130 %
% Terphenyl-d14	72		%	1	08/15/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis, Shiller, Laboratory Director August 21, 2015 Reviewed and Released by: Bobbi Aloisa, Vice President

Analysis Report

Project ID:

Client ID:

FOR: Attn: Ms Olivia Burns Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

August 21, 2015

K-MART

B-20, S-3

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOIL	Collected by:		08/10/15	16:00
Location Code:	EVERGRN	Received by:	LB	08/14/15	18:45
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:		I shanatan			

Laboratory Data

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Percent Solid	83		%		08/15/15	Ι	SW846-%Solid
Soil Extraction SVOA PAH	Completed				08/14/15	JJ/VH	SW3545A
Volatiles- STARS/CP-5 ²	<u>1</u>						
1,2,4-Trimethylbenzene	ND	2.4	ug/Kg	1	08/20/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	2.4	ug/Kg	1	08/20/15	JLI	SW8260C
Benzene	ND	1.2	ug/Kg	1	08/20/15	JLI	SW8260C
Ethylbenzene	ND	1.2	ug/Kg	1	08/20/15	JLI	SW8260C
Isopropylbenzene	ND	2.4	ug/Kg	1	08/20/15	JLI	SW8260C
m&p-Xylene	ND	2.4	ug/Kg	1	08/20/15	JLI	SW8260C
Methyl t-Butyl Ether (MTBE)	ND	1.2	ug/Kg	1	08/20/15	JLI	SW8260C
Naphthalene	ND	2.4	ug/Kg	1	08/20/15	JLI	SW8260C
n-Butylbenzene	ND	2.4	ug/Kg	1	08/20/15	JLI	SW8260C
n-Propylbenzene	ND	2.4	ug/Kg	1	08/20/15	JLI	SW8260C
o-Xylene	ND	2.4	ug/Kg	1	08/20/15	JLI	SW8260C
p-Isopropyltoluene	ND	2.4	ug/Kg	1	08/20/15	JLI	SW8260C
sec-Butylbenzene	ND	2.4	ug/Kg	1	08/20/15	JLI	SW8260C
tert-Butylbenzene	ND	2.4	ug/Kg	1	08/20/15	JLI	SW8260C
Toluene	ND	1.2	ug/Kg	1	08/20/15	JLI	SW8260C
Total Xylenes	ND	2.4	ug/Kg	1	08/20/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-Dichlorobenzene-d4	96		%	1	08/20/15	JLI	70 - 130 %
% Bromofluorobenzene	86		%	1	08/20/15	JLI	70 - 130 %
% Dibromofluoromethane	102		%	1	08/20/15	JLI	70 - 130 %
% Toluene-d8	87		%	1	08/20/15	JLI	70 - 130 %
Semivolatiles-STARS/C	<u>P-51</u>						
Acenaphthene	ND	270	ug/Kg	1	08/15/15	DD	SW8270D

Project ID: K-MART Client ID: B-20, S-3

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Acenaphthylene	ND	270	ug/Kg	1	08/15/15	DD	SW8270D
Anthracene	ND	270	ug/Kg	1	08/15/15	DD	SW8270D
Benz(a)anthracene	ND	270	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(a)pyrene	ND	270	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(b)fluoranthene	ND	270	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(ghi)perylene	ND	270	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(k)fluoranthene	ND	270	ug/Kg	1	08/15/15	DD	SW8270D
Chrysene	ND	270	ug/Kg	1	08/15/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	270	ug/Kg	1	08/15/15	DD	SW8270D
Fluoranthene	ND	270	ug/Kg	1	08/15/15	DD	SW8270D
Fluorene	ND	270	ug/Kg	1	08/15/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	270	ug/Kg	1	08/15/15	DD	SW8270D
Naphthalene	ND	270	ug/Kg	1	08/15/15	DD	SW8270D
Phenanthrene	ND	270	ug/Kg	1	08/15/15	DD	SW8270D
Pyrene	ND	270	ug/Kg	1	08/15/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	69		%	1	08/15/15	DD	30 - 130 %
% Nitrobenzene-d5	67		%	1	08/15/15	DD	30 - 130 %
% Terphenyl-d14	76		%	1	08/15/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director August 21, 2015 Reviewed and Released by: Bobbi Aloisa, Vice President

Analysis Report

Project ID:

Client ID:

FOR: Attn: Ms Olivia Burns Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

August 21, 2015

K-MART

B-22, S-5

Sample Informa	ation	Custody Inform	Custody Information				
Matrix:	SOIL	Collected by:		08/11/15	14:00		
Location Code:	EVERGRN	Received by:	LB	08/14/15	18:45		
Rush Request:	Standard	Analyzed by:	see "By" below				
P.O.#:		l ab anatam	Data		CD 17520		

Laboratory Data

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	80		%		08/15/15	Ι	SW846-%Solid
Soil Extraction SVOA PAH	Completed				08/14/15	JJ/VH	SW3545A
Volatiles- STARS/CP-5	1						
1,2,4-Trimethylbenzene	ND	2.6	ug/Kg	1	08/20/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	2.6	ug/Kg	1	08/20/15	JLI	SW8260C
Benzene	ND	1.3	ug/Kg	1	08/20/15	JLI	SW8260C
Ethylbenzene	ND	1.3	ug/Kg	1	08/20/15	JLI	SW8260C
Isopropylbenzene	ND	2.6	ug/Kg	1	08/20/15	JLI	SW8260C
m&p-Xylene	ND	2.6	ug/Kg	1	08/20/15	JLI	SW8260C
Methyl t-Butyl Ether (MTBE)	ND	1.3	ug/Kg	1	08/20/15	JLI	SW8260C
Naphthalene	ND	2.6	ug/Kg	1	08/20/15	JLI	SW8260C
n-Butylbenzene	ND	2.6	ug/Kg	1	08/20/15	JLI	SW8260C
n-Propylbenzene	ND	2.6	ug/Kg	1	08/20/15	JLI	SW8260C
o-Xylene	ND	2.6	ug/Kg	1	08/20/15	JLI	SW8260C
p-Isopropyltoluene	ND	2.6	ug/Kg	1	08/20/15	JLI	SW8260C
sec-Butylbenzene	ND	2.6	ug/Kg	1	08/20/15	JLI	SW8260C
tert-Butylbenzene	ND	2.6	ug/Kg	1	08/20/15	JLI	SW8260C
Toluene	ND	1.3	ug/Kg	1	08/20/15	JLI	SW8260C
Total Xylenes	ND	2.6	ug/Kg	1	08/20/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-Dichlorobenzene-d4	95		%	1	08/20/15	JLI	70 - 130 %
% Bromofluorobenzene	94		%	1	08/20/15	JLI	70 - 130 %
% Dibromofluoromethane	103		%	1	08/20/15	JLI	70 - 130 %
% Toluene-d8	89		%	1	08/20/15	JLI	70 - 130 %
Semivolatiles-STARS/C	CP-51						
Acenaphthene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D

Project ID: K-MART Client ID: B-22, S-5

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Acenaphthylene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Anthracene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Benz(a)anthracene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(a)pyrene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(b)fluoranthene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(ghi)perylene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(k)fluoranthene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Chrysene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Fluoranthene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Fluorene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Naphthalene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Phenanthrene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Pyrene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	46		%	1	08/15/15	DD	30 - 130 %
% Nitrobenzene-d5	44		%	1	08/15/15	DD	30 - 130 %
% Terphenyl-d14	55		%	1	08/15/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis, Shiller, Laboratory Director August 21, 2015 Reviewed and Released by: Bobbi Aloisa, Vice President

Analysis Report

Project ID:

Client ID:

FOR: Attn: Ms Olivia Burns Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

August 21, 2015

K-MART

B-22, S-6

Sample Information		Custody Inform	Custody Information				
Matrix:	SOIL	Collected by:		08/11/15	14:00		
Location Code:	EVERGRN	Received by:	LB	08/14/15	18:45		
Rush Request:	Standard	Analyzed by:	see "By" below				
P.O.#:							

Laboratory Data

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	77		%		08/15/15	I	SW846-%Solid
Soil Extraction for PCB	Completed				08/14/15	NC/H	SW3545A
Polychlorinated Biph	enyls						
PCB-1016	ND	430	ug/Kg	10	08/15/15	AW	SW8082A
PCB-1221	ND	430	ug/Kg	10	08/15/15	AW	SW8082A
PCB-1232	ND	430	ug/Kg	10	08/15/15	AW	SW8082A
PCB-1242	ND	430	ug/Kg	10	08/15/15	AW	SW8082A
PCB-1248	ND	430	ug/Kg	10	08/15/15	AW	SW8082A
PCB-1254	ND	430	ug/Kg	10	08/15/15	AW	SW8082A
PCB-1260	ND	430	ug/Kg	10	08/15/15	AW	SW8082A
PCB-1262	ND	430	ug/Kg	10	08/15/15	AW	SW8082A
PCB-1268	ND	430	ug/Kg	10	08/15/15	AW	SW8082A
QA/QC Surrogates							
% DCBP	103		%	10	08/15/15	AW	30 - 150 %
% TCMX	89		%	10	08/15/15	AW	30 - 150 %

Project ID: K-MART					Phoenix I.D.: BJ7538			
Client ID: B-22, S-6								
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director August 21, 2015 Reviewed and Released by: Bobbi Aloisa, Vice President

Analysis Report

FOR: Attn: Ms Olivia Burns Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

August 21, 2015

Sample Information **Custody Information** <u>Time</u> Date SOIL Collected by: 08/11/15 15:00 Matrix: **EVERGRN** Received by: 08/14/15 Location Code: LB 18:45 Rush Request: Standard Analyzed by: see "By" below P.O.#:

Laboratory Data

Project ID:	K-MART
Client ID:	B-23, S-5

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	79		%		08/15/15	I	SW846-%Solid
Soil Extraction SVOA PAH	Completed				08/14/15	JJ/VH	SW3545A
Volatiles- STARS/CP-5	51						
1,2,4-Trimethylbenzene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
Benzene	ND	1.3	ug/Kg	1	08/20/15	JLI	SW8260C
Ethylbenzene	ND	1.3	ug/Kg	1	08/20/15	JLI	SW8260C
Isopropylbenzene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
m&p-Xylene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
Methyl t-Butyl Ether (MTBE)	ND	1.3	ug/Kg	1	08/20/15	JLI	SW8260C
Naphthalene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
n-Butylbenzene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
n-Propylbenzene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
o-Xylene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
p-Isopropyltoluene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
sec-Butylbenzene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
tert-Butylbenzene	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
Toluene	ND	1.3	ug/Kg	1	08/20/15	JLI	SW8260C
Total Xylenes	ND	2.5	ug/Kg	1	08/20/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-Dichlorobenzene-d4	97		%	1	08/20/15	JLI	70 - 130 %
% Bromofluorobenzene	99		%	1	08/20/15	JLI	70 - 130 %
% Dibromofluoromethane	103		%	1	08/20/15	JLI	70 - 130 %
% Toluene-d8	89		%	1	08/20/15	JLI	70 - 130 %
Semivolatiles-STARS/	CP-51						
Acenaphthene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
			Dago 12 of 22				Vor 1

Project ID: K-MART Client ID: B-23, S-5

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Acenaphthylene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Anthracene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Benz(a)anthracene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(a)pyrene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(b)fluoranthene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(ghi)perylene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(k)fluoranthene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Chrysene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Fluoranthene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Fluorene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Naphthalene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Phenanthrene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
Pyrene	ND	290	ug/Kg	1	08/15/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	62		%	1	08/15/15	DD	30 - 130 %
% Nitrobenzene-d5	65		%	1	08/15/15	DD	30 - 130 %
% Terphenyl-d14	71		%	1	08/15/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director August 21, 2015 Reviewed and Released by: Bobbi Aloisa, Vice President

Analysis Report

Project ID:

Client ID:

FOR: Attn: Ms Olivia Burns Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

August 21, 2015

K-MART

B-23, S-6

Sample Information		Custody Inform	Custody Information				
Matrix:	SOIL	Collected by:		08/11/15	15:00		
Location Code:	EVERGRN	Received by:	LB	08/14/15	18:45		
Rush Request:	Standard	Analyzed by:	see "By" below				
P.O.#:							

Laboratory Data

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	79		%		08/15/15	I	SW846-%Solid
Soil Extraction for PCB	Completed				08/14/15	NC/H	SW3545A
Polychlorinated Biph	enyls						
PCB-1016	ND	410	ug/Kg	10	08/15/15	AW	SW8082A
PCB-1221	ND	410	ug/Kg	10	08/15/15	AW	SW8082A
PCB-1232	ND	410	ug/Kg	10	08/15/15	AW	SW8082A
PCB-1242	ND	410	ug/Kg	10	08/15/15	AW	SW8082A
PCB-1248	ND	410	ug/Kg	10	08/15/15	AW	SW8082A
PCB-1254	ND	410	ug/Kg	10	08/15/15	AW	SW8082A
PCB-1260	ND	410	ug/Kg	10	08/15/15	AW	SW8082A
PCB-1262	ND	410	ug/Kg	10	08/15/15	AW	SW8082A
PCB-1268	ND	410	ug/Kg	10	08/15/15	AW	SW8082A
QA/QC Surrogates							
% DCBP	101		%	10	08/15/15	AW	30 - 150 %
% TCMX	87		%	10	08/15/15	AW	30 - 150 %

Project ID: K-MART					Pł	noenix	x I.D.: BJ75388
Client ID: B-23, S-6							
		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director August 21, 2015 Reviewed and Released by: Bobbi Aloisa, Vice President

Analysis Report

Project ID:

Client ID:

FOR: Attn: Ms Olivia Burns Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

August 21, 2015

K-MART B-24, S-7

Sample Information **Custody Information** Date <u>Time</u> Matrix: SOIL Collected by: 08/11/15 16:00 Location Code: **EVERGRN** Received by: LB 08/14/15 18:45 Rush Request: Standard Analyzed by: see "By" below P.O.#:

Laboratory Data

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Percent Solid	67		%		08/15/15		SW846-%Solid
Soil Extraction SVOA PAH	Completed		70		08/14/15	.l.I/VH	SW3545A
	Completed				00,11,10	00, 111	
Volatiles- STARS/CP-5	<u>51</u>						
1,2,4-Trimethylbenzene	ND	3.0	ug/Kg	1	08/20/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	3.0	ug/Kg	1	08/20/15	JLI	SW8260C
Benzene	ND	1.5	ug/Kg	1	08/20/15	JLI	SW8260C
Ethylbenzene	ND	1.5	ug/Kg	1	08/20/15	JLI	SW8260C
Isopropylbenzene	ND	3.0	ug/Kg	1	08/20/15	JLI	SW8260C
m&p-Xylene	ND	3.0	ug/Kg	1	08/20/15	JLI	SW8260C
Methyl t-Butyl Ether (MTBE)	ND	1.5	ug/Kg	1	08/20/15	JLI	SW8260C
Naphthalene	ND	3.0	ug/Kg	1	08/20/15	JLI	SW8260C
n-Butylbenzene	ND	3.0	ug/Kg	1	08/20/15	JLI	SW8260C
n-Propylbenzene	ND	3.0	ug/Kg	1	08/20/15	JLI	SW8260C
o-Xylene	ND	3.0	ug/Kg	1	08/20/15	JLI	SW8260C
p-Isopropyltoluene	ND	3.0	ug/Kg	1	08/20/15	JLI	SW8260C
sec-Butylbenzene	ND	3.0	ug/Kg	1	08/20/15	JLI	SW8260C
tert-Butylbenzene	ND	3.0	ug/Kg	1	08/20/15	JLI	SW8260C
Toluene	ND	1.5	ug/Kg	1	08/20/15	JLI	SW8260C
Total Xylenes	ND	3.0	ug/Kg	1	08/20/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-Dichlorobenzene-d4	97		%	1	08/20/15	JLI	70 - 130 %
% Bromofluorobenzene	99		%	1	08/20/15	JLI	70 - 130 %
% Dibromofluoromethane	100		%	1	08/20/15	JLI	70 - 130 %
% Toluene-d8	89		%	1	08/20/15	JLI	70 - 130 %
Semivolatiles-STARS/	CP-51						
Acenaphthene	ND	340	ug/Kg	1	08/15/15	DD	SW8270D
		2.0	~5,9	•	20, 10, 10		
			Page 17 of 33				

Project ID: K-MART Client ID: B-24, S-7

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Acenaphthylene	ND	340	ug/Kg	1	08/15/15	DD	SW8270D
Anthracene	ND	340	ug/Kg	1	08/15/15	DD	SW8270D
Benz(a)anthracene	ND	340	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(a)pyrene	ND	340	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(b)fluoranthene	ND	340	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(ghi)perylene	ND	340	ug/Kg	1	08/15/15	DD	SW8270D
Benzo(k)fluoranthene	ND	340	ug/Kg	1	08/15/15	DD	SW8270D
Chrysene	ND	340	ug/Kg	1	08/15/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	340	ug/Kg	1	08/15/15	DD	SW8270D
Fluoranthene	ND	340	ug/Kg	1	08/15/15	DD	SW8270D
Fluorene	ND	340	ug/Kg	1	08/15/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	340	ug/Kg	1	08/15/15	DD	SW8270D
Naphthalene	ND	340	ug/Kg	1	08/15/15	DD	SW8270D
Phenanthrene	ND	340	ug/Kg	1	08/15/15	DD	SW8270D
Pyrene	ND	340	ug/Kg	1	08/15/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	59		%	1	08/15/15	DD	30 - 130 %
% Nitrobenzene-d5	54		%	1	08/15/15	DD	30 - 130 %
% Terphenyl-d14	70		%	1	08/15/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis, Shiller, Laboratory Director August 21, 2015 Reviewed and Released by: Bobbi Aloisa, Vice President

<u>Time</u>

14:00 18:45

Analysis Report

K-MART

B-27, S-9

Project ID:

Client ID:

August 21, 2015

FOR: Attn: Ms Olivia Burns Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

Sample Informa	ation	Custody Informa	ation	Date
Matrix:	SOIL	Collected by:		08/12/15
Location Code:	EVERGRN	Received by:	LB	08/14/15
Rush Request:	Standard	Analyzed by:	see "By" below	
P.O.#:				

Laboratory Data

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Percent Solid	81		%		08/15/15		SW846-%Solid
Soil Extraction SVOA PAH	Completed		70		08/17/15	•	SW3545A
	Completed				00/11/10	B0/ VII	01100-10/1
Volatiles- STARS/CP-5 ²	<u>1</u>						
1,2,4-Trimethylbenzene	ND	2.8	ug/Kg	1	08/20/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	2.8	ug/Kg	1	08/20/15	JLI	SW8260C
Benzene	ND	1.4	ug/Kg	1	08/20/15	JLI	SW8260C
Ethylbenzene	ND	1.4	ug/Kg	1	08/20/15	JLI	SW8260C
sopropylbenzene	ND	2.8	ug/Kg	1	08/20/15	JLI	SW8260C
m&p-Xylene	ND	2.8	ug/Kg	1	08/20/15	JLI	SW8260C
Methyl t-Butyl Ether (MTBE)	ND	1.4	ug/Kg	1	08/20/15	JLI	SW8260C
Naphthalene	ND	2.8	ug/Kg	1	08/20/15	JLI	SW8260C
n-Butylbenzene	ND	2.8	ug/Kg	1	08/20/15	JLI	SW8260C
n-Propylbenzene	ND	2.8	ug/Kg	1	08/20/15	JLI	SW8260C
p-Xylene	ND	2.8	ug/Kg	1	08/20/15	JLI	SW8260C
o-Isopropyltoluene	ND	2.8	ug/Kg	1	08/20/15	JLI	SW8260C
sec-Butylbenzene	ND	2.8	ug/Kg	1	08/20/15	JLI	SW8260C
ert-Butylbenzene	ND	2.8	ug/Kg	1	08/20/15	JLI	SW8260C
Toluene	ND	1.4	ug/Kg	1	08/20/15	JLI	SW8260C
Total Xylenes	ND	2.8	ug/Kg	1	08/20/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-Dichlorobenzene-d4	96		%	1	08/20/15	JLI	70 - 130 %
% Bromofluorobenzene	97		%	1	08/20/15	JLI	70 - 130 %
% Dibromofluoromethane	99		%	1	08/20/15	JLI	70 - 130 %
% Toluene-d8	91		%	1	08/20/15	JLI	70 - 130 %
Semivolatiles-STARS/C	D 51						
Acenaphthene	ND	280	ug/Kg	1	08/18/15	DD	SW8270D

Project ID: K-MART Client ID: B-27, S-9

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Acenaphthylene	ND	280	ug/Kg	1	08/18/15	DD	SW8270D
Anthracene	ND	280	ug/Kg	1	08/18/15	DD	SW8270D
Benz(a)anthracene	ND	280	ug/Kg	1	08/18/15	DD	SW8270D
Benzo(a)pyrene	ND	280	ug/Kg	1	08/18/15	DD	SW8270D
Benzo(b)fluoranthene	ND	280	ug/Kg	1	08/18/15	DD	SW8270D
Benzo(ghi)perylene	ND	280	ug/Kg	1	08/18/15	DD	SW8270D
Benzo(k)fluoranthene	ND	280	ug/Kg	1	08/18/15	DD	SW8270D
Chrysene	ND	280	ug/Kg	1	08/18/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	280	ug/Kg	1	08/18/15	DD	SW8270D
Fluoranthene	ND	280	ug/Kg	1	08/18/15	DD	SW8270D
Fluorene	ND	280	ug/Kg	1	08/18/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	280	ug/Kg	1	08/18/15	DD	SW8270D
Naphthalene	ND	280	ug/Kg	1	08/18/15	DD	SW8270D
Phenanthrene	ND	280	ug/Kg	1	08/18/15	DD	SW8270D
Pyrene	ND	280	ug/Kg	1	08/18/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	59		%	1	08/18/15	DD	30 - 130 %
% Nitrobenzene-d5	54		%	1	08/18/15	DD	30 - 130 %
% Terphenyl-d14	62		%	1	08/18/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis, Shiller, Laboratory Director August 21, 2015 Reviewed and Released by: Bobbi Aloisa, Vice President

Analysis Report

FOR: Attn: Ms Olivia Burns Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

August 21, 2015

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	GROUND WATER	Collected by:		08/10/15	16:00
Location Code:	EVERGRN	Received by:	LB	08/14/15	18:45
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:					

Laboratory Data

RL/

Project ID:	K-MART
Client ID:	B-1

Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Semi-Volatile Extraction	Completed				08/14/15	E/K	SW3520C
Volatiles- Stars/CP-51							
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
Benzene	ND	0.70	ug/L	1	08/15/15	RM	SW8260C
Ethylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
Isopropylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
m&p-Xylene	ND	2.0	ug/L	1	08/15/15	RM	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
Naphthalene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
n-Butylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
n-Propylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
o-Xylene	ND	2.0	ug/L	1	08/15/15	RM	SW8260C
p-Isopropyltoluene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
sec-Butylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
tert-Butylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
Toluene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
Total Xylenes	ND	2.0	ug/L	1	08/15/15	RM	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	100		%	1	08/15/15	RM	70 - 130 %
% Bromofluorobenzene	98		%	1	08/15/15	RM	70 - 130 %
% Dibromofluoromethane	98		%	1	08/15/15	RM	70 - 130 %
% Toluene-d8	100		%	1	08/15/15	RM	70 - 130 %
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Acenaphthene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
· · · · · · · · · · · · · · · ·			- U				()

Project ID: K-MART Client ID: B-1

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Acenaphthylene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Anthracene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Benz(a)anthracene	ND	0.02	ug/L	1	08/17/15	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	0.02	ug/L	1	08/17/15	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	0.02	ug/L	1	08/17/15	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.02	ug/L	1	08/17/15	DD	SW8270D (SIM)
Chrysene	ND	0.02	ug/L	1	08/17/15	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	0.01	ug/L	1	08/17/15	DD	SW8270D (SIM)
Fluoranthene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Fluorene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.02	ug/L	1	08/17/15	DD	SW8270D (SIM)
Naphthalene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Phenanthrene	ND	0.07	ug/L	1	08/17/15	DD	SW8270D (SIM)
Pyrene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	76		%	1	08/17/15	DD	30 - 130 %
% Nitrobenzene-d5	68		%	1	08/17/15	DD	30 - 130 %
% Terphenyl-d14	80		%	1	08/17/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

Phyllis Shiller, Laboratory Director August 21, 2015 Reviewed and Released by: Bobbi Aloisa, Vice President

NY # 11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

FOR: Attn: Ms Olivia Burns Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

August	21,	2015

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	GROUND WATER	Collected by:		08/11/15	15:00
Location Code:	EVERGRN	Received by:	LB	08/14/15	18:45
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:		Laboratory	Data	SDG ID.	GBJ7538

Laboratory Data

Project ID:	K-MART
Client ID:	B-5

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
PCB Extraction (2 Liter)	Completed					08/14/15	Т	SW3510C
Semi-Volatile Extraction	Completed					08/14/15	E/K	SW3520C
Polychlorinated Biph	enyls							
PCB-1016	ND	0.050	0.050	ug/L	1	08/17/15	AW	E608/SW8082A
PCB-1221	ND	0.050	0.050	ug/L	1	08/17/15	AW	E608/SW8082A
PCB-1232	ND	0.050	0.050	ug/L	1	08/17/15	AW	E608/SW8082A
PCB-1242	ND	0.050	0.050	ug/L	1	08/17/15	AW	E608/SW8082A
PCB-1248	ND	0.050	0.050	ug/L	1	08/17/15	AW	E608/SW8082A
PCB-1254	ND	0.050	0.050	ug/L	1	08/17/15	AW	E608/SW8082A
PCB-1260	ND	0.050	0.050	ug/L	1	08/17/15	AW	E608/SW8082A
PCB-1262	ND	0.050	0.050	ug/L	1	08/17/15	AW	E608/SW8082A
PCB-1268	ND	0.050	0.050	ug/L	1	08/17/15	AW	E608/SW8082A
QA/QC Surrogates								
% DCBP	41			%	1	08/17/15	AW	30 - 150 %
% TCMX	71			%	1	08/17/15	AW	30 - 150 %
Semivolatiles by SIM								
2-Methylnaphthalene	ND	0.10		ug/L	1	08/17/15	DD	SW8270D (SIM)
Acenaphthene	ND	0.10		ug/L	1	08/17/15	DD	SW8270D (SIM)
Acenaphthylene	ND	0.10		ug/L	1	08/17/15	DD	SW8270D (SIM)
Anthracene	ND	0.10		ug/L	1	08/17/15	DD	SW8270D (SIM)
Benz(a)anthracene	ND	0.02		ug/L	1	08/17/15	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	0.02		ug/L	1	08/17/15	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	0.02		ug/L	1	08/17/15	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	0.10		ug/L	1	08/17/15	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.02		ug/L	1	08/17/15	DD	SW8270D (SIM)
Chrysene	ND	0.02		ug/L	1	08/17/15	DD	SW8270D (SIM)
				-				. ,

Project ID: K-MART Client ID: B-5

_		RL/	LOD/				_	
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	By	Reference
Dibenz(a,h)anthracene	ND	0.01		ug/L	1	08/17/15	DD	SW8270D (SIM)
Fluoranthene	ND	0.10		ug/L	1	08/17/15	DD	SW8270D (SIM)
Fluorene	ND	0.10		ug/L	1	08/17/15	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.02		ug/L	1	08/17/15	DD	SW8270D (SIM)
Naphthalene	ND	0.10		ug/L	1	08/17/15	DD	SW8270D (SIM)
Phenanthrene	ND	0.07		ug/L	1	08/17/15	DD	SW8270D (SIM)
Pyrene	ND	0.10		ug/L	1	08/17/15	DD	SW8270D (SIM)
QA/QC Surrogates								
% 2-Fluorobiphenyl	64			%	1	08/17/15	DD	30 - 130 %
% Nitrobenzene-d5	56			%	1	08/17/15	DD	30 - 130 %
% Terphenyl-d14	60			%	1	08/17/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit

Comments:

Phyllis, Shiller, Laboratory Director August 21, 2015 Reviewed and Released by: Bobbi Aloisa, Vice President

IN ACCORDA 40ITED

> <u>Time</u> 14:00

18:45

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

Project ID:

Client ID:

Parameter

2-Isopropyltoluene

4-Chlorotoluene

FOR: Attn: Ms Olivia Burns Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

August 21, 2015

K-MART B-12

P.O.#:			Data	
Rush Request:	Standard	Analyzed by:	see "By" below	
Location Code:	EVERGRN	Received by:	LB	08/14/15
Matrix:	GROUND WATER	Collected by:		08/10/15
Sample Information		Custody Inforn	nation	<u>Date</u>

RL/

PQL

Result

ND

ND

1.0

1.0

Laboratory Data

Units

Dilution

1

1

08/15/15

08/15/15

Date/Time

SDG ID: GBJ75381 Phoenix ID: BJ75393

Reference

By

Semi-Volatile Extraction	Completed				08/14/15	E/K	SW3520C
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
1,1,1-Trichloroethane	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	08/15/15	MH	SW8260C
1,1,2-Trichloroethane	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
1,1-Dichloroethane	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
1,1-Dichloroethene	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
1,1-Dichloropropene	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
1,2,3-Trichloropropane	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
1,2-Dibromoethane	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
1,2-Dichlorobenzene	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
1,2-Dichloroethane	ND	0.60	ug/L	1	08/15/15	MH	SW8260C
1,2-Dichloropropane	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
1,3-Dichlorobenzene	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
1,3-Dichloropropane	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
1,4-Dichlorobenzene	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
2,2-Dichloropropane	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
2-Chlorotoluene	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
2-Hexanone	ND	5.0	ug/L	1	08/15/15	MH	SW8260C

ug/L

ug/L

1

SW8260C

SW8260C

MH

MH

Project ID: K-MART Client ID: B-12

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
4-Methyl-2-pentanone	ND	5.0	ug/L	1	08/15/15	MH	SW8260C
Acetone	ND	25	ug/L	1	08/15/15	MH	SW8260C
Acrylonitrile	ND	5.0	ug/L	1	08/15/15	MH	SW8260C
Benzene	ND	0.70	ug/L	1	08/15/15	MH	SW8260C
Bromobenzene	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
Bromochloromethane	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
Bromodichloromethane	ND	0.50	ug/L	1	08/15/15	MH	SW8260C
Bromoform	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
Bromomethane	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
Carbon Disulfide	ND	5.0	ug/L	1	08/15/15	MH	SW8260C
Carbon tetrachloride	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
Chlorobenzene	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
Chloroethane	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
Chloroform	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
Chloromethane	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
cis-1,2-Dichloroethene	38	5.0	ug/L	5	08/17/15	MH	SW8260C
sis-1,3-Dichloropropene	ND	0.40	ug/L	1	08/15/15	MH	SW8260C
Dibromochloromethane	ND	0.50	ug/L	1	08/15/15	MH	SW8260C
Dibromomethane	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
Dichlorodifluoromethane	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
thylbenzene	ND	1.0	ug/L	1	08/15/15	МН	SW8260C
lexachlorobutadiene	ND	0.40	ug/L	1	08/15/15	МН	SW8260C
sopropylbenzene	ND	1.0	ug/L	1	08/15/15	МН	SW8260C
n&p-Xylene	ND	1.0	ug/L	1	08/15/15	МН	SW8260C
lethyl ethyl ketone	ND	5.0	ug/L	1	08/15/15	MH	SW8260C
Nethyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
lethylene chloride	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
laphthalene	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
-Butylbenzene	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
n-Propylbenzene	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
p-Xylene	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
p-Isopropyltoluene	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
sec-Butylbenzene	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
Styrene	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
ert-Butylbenzene Fetrachloroethene	820	1.0	ug/∟ ug/L	100	08/15/15	MH	SW8260C
	ND	2.5	-	100	08/15/15	MH	SW8260C SW8260C
Fetrahydrofuran (THF)			ug/L	-			SW8260C
	ND	1.0	ug/L	1	08/15/15	MH	
otal Xylenes	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
rans-1,2-Dichloroethene	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
rans-1,3-Dichloropropene	ND	0.40	ug/L	1	08/15/15	MH	SW8260C
ans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	08/15/15	MH	SW8260C
richloroethene	180	100	ug/L	100	08/15/15	MH	SW8260C
richlorofluoromethane	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
Trichlorotrifluoroethane	ND	1.0	ug/L	1	08/15/15	MH	SW8260C
/inyl chloride	1.6	1.0	ug/L	1	08/15/15	MH	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	102		%	1	08/15/15	MH	70 - 130 %
% Bromofluorobenzene	99		%	1	08/15/15	MH	70 - 130 %

Project ID: K-MART Client ID: B-12

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
% Dibromofluoromethane	102		%	1	08/15/15	MH	70 - 130 %
% Toluene-d8	104		%	1	08/15/15	MH	70 - 130 %
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Acenaphthene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Acenaphthylene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Anthracene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Benz(a)anthracene	ND	0.02	ug/L	1	08/17/15	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	0.02	ug/L	1	08/17/15	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	0.02	ug/L	1	08/17/15	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.02	ug/L	1	08/17/15	DD	SW8270D (SIM)
Chrysene	ND	0.02	ug/L	1	08/17/15	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	0.01	ug/L	1	08/17/15	DD	SW8270D (SIM)
Fluoranthene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Fluorene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.02	ug/L	1	08/17/15	DD	SW8270D (SIM)
Naphthalene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Phenanthrene	ND	0.07	ug/L	1	08/17/15	DD	SW8270D (SIM)
Pyrene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	77		%	1	08/17/15	DD	30 - 130 %
% Nitrobenzene-d5	78		%	1	08/17/15	DD	30 - 130 %
% Terphenyl-d14	78		%	1	08/17/15	DD	30 - 130 %

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

Phyllis Shiller, Laboratory Director August 21, 2015 Reviewed and Released by: Bobbi Aloisa, Vice President

Analysis Report

Project ID:

Client ID:

FOR: Attn: Ms Olivia Burns Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

August 21, 2015

K-MART

B-19

Sample Informa	<u>ition</u>	Custody Inform	nation	Date	<u>Time</u>
Matrix:	GROUND WATER	Collected by:		08/10/15	15:00
Location Code:	EVERGRN	Received by:	LB	08/14/15	18:45
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:		Laboratory	Data		GB 17538

Laboratory Data

Semi-Volatile Extraction			Units	Dilution	Date/Time	By	Reference
	Completed				08/14/15	E/K	SW3520C
Volatiles- Stars/CP-51							
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
Benzene	ND	0.70	ug/L	1	08/15/15	RM	SW8260C
Ethylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
Isopropylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
m&p-Xylene	ND	2.0	ug/L	1	08/15/15	RM	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
Naphthalene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
n-Butylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
n-Propylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
o-Xylene	ND	2.0	ug/L	1	08/15/15	RM	SW8260C
p-lsopropyltoluene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
sec-Butylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
tert-Butylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
Toluene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
Total Xylenes	ND	2.0	ug/L	1	08/15/15	RM	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	100		%	1	08/15/15	RM	70 - 130 %
% Bromofluorobenzene	97		%	1	08/15/15	RM	70 - 130 %
% Dibromofluoromethane	96		%	1	08/15/15	RM	70 - 130 %
% Toluene-d8	102		%	1	08/15/15	RM	70 - 130 %
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Acenaphthene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)

Project ID: K-MART Client ID: B-19

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
				<i>j</i>			
Acenaphthylene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Anthracene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Benz(a)anthracene	ND	0.02	ug/L	1	08/17/15	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	0.02	ug/L	1	08/17/15	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	0.02	ug/L	1	08/17/15	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.02	ug/L	1	08/17/15	DD	SW8270D (SIM)
Chrysene	ND	0.02	ug/L	1	08/17/15	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	0.01	ug/L	1	08/17/15	DD	SW8270D (SIM)
Fluoranthene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Fluorene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.02	ug/L	1	08/17/15	DD	SW8270D (SIM)
Naphthalene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Phenanthrene	ND	0.07	ug/L	1	08/17/15	DD	SW8270D (SIM)
Pyrene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	81		%	1	08/17/15	DD	30 - 130 %
% Nitrobenzene-d5	78		%	1	08/17/15	DD	30 - 130 %
% Terphenyl-d14	69		%	1	08/17/15	DD	30 - 130 %
	-			1 1			

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

Phyllis Shiller, Laboratory Director August 21, 2015 Reviewed and Released by: Bobbi Aloisa, Vice President

<u>Time</u>

Analysis Report

FOR: Attn: Ms Olivia Burns Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

August 21, 2015

Sample Informa	ation	Custody Inform	nation	<u>Date</u>
Matrix:	GROUND WATER	Collected by:		08/11/1
Location Code:	EVERGRN	Received by:	LB	08/14/1
Rush Request:	Standard	Analyzed by:	see "By" below	

RL/

08/11/15 16:00 08/14/15 18:45

<u>_aboratory Data</u>

SDG ID: GBJ75381 Phoenix ID: BJ75395

Project ID:	K-MART
Client ID:	B-20

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Semi-Volatile Extraction	Completed				08/14/15	E/K	SW3520C
Volatiles- Stars/CP-51							
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
Benzene	ND	0.70	ug/L	1	08/15/15	RM	SW8260C
Ethylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
Isopropylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
m&p-Xylene	ND	2.0	ug/L	1	08/15/15	RM	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
Naphthalene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
n-Butylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
n-Propylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
o-Xylene	ND	2.0	ug/L	1	08/15/15	RM	SW8260C
p-Isopropyltoluene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
sec-Butylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
tert-Butylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
Toluene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
Total Xylenes	ND	2.0	ug/L	1	08/15/15	RM	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	101		%	1	08/15/15	RM	70 - 130 %
% Bromofluorobenzene	98		%	1	08/15/15	RM	70 - 130 %
% Dibromofluoromethane	97		%	1	08/15/15	RM	70 - 130 %
% Toluene-d8	100		%	1	08/15/15	RM	70 - 130 %
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Acenaphthene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)

Project ID: K-MART Client ID: B-20

		RL/				_	_ /
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Acenaphthylene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Anthracene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Benz(a)anthracene	ND	0.02	ug/L	1	08/17/15	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	0.02	ug/L	1	08/17/15	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	0.02	ug/L	1	08/17/15	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.02	ug/L	1	08/17/15	DD	SW8270D (SIM)
Chrysene	ND	0.02	ug/L	1	08/17/15	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	0.01	ug/L	1	08/17/15	DD	SW8270D (SIM)
Fluoranthene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Fluorene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.02	ug/L	1	08/17/15	DD	SW8270D (SIM)
Naphthalene	0.22	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
Phenanthrene	ND	0.07	ug/L	1	08/17/15	DD	SW8270D (SIM)
Pyrene	ND	0.10	ug/L	1	08/17/15	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	72		%	1	08/17/15	DD	30 - 130 %
% Nitrobenzene-d5	75		%	1	08/17/15	DD	30 - 130 %
% Terphenyl-d14	67		%	1	08/17/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

Phyllis Shiller, Laboratory Director August 21, 2015 Reviewed and Released by: Bobbi Aloisa, Vice President

Analysis Report

Project ID:

Client ID:

FOR: Attn: Ms Olivia Burns Evergreen Testing & Env. Services, Inc 594 Broadway Watervliet, NY 12189

August 21, 2015

K-MART B-5

Sample Information Custody Information <u>Time</u> Date Matrix: **GROUND WATER** Collected by: 08/11/15 15:00 **EVERGRN** Received by: 08/14/15 Location Code: LB 18:45 Rush Request: Standard Analyzed by: see "By" below P.O.#:

Laboratory Data

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
l'alameter	Result	I QL	Offit3	Dilution	Date/Time	Dy	Reference
Volatiles- Stars/CP-51							
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
Benzene	ND	0.70	ug/L	1	08/15/15	RM	SW8260C
Ethylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
Isopropylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
m&p-Xylene	ND	2.0	ug/L	1	08/15/15	RM	SW8260C
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
Naphthalene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
n-Butylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
n-Propylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
o-Xylene	ND	2.0	ug/L	1	08/15/15	RM	SW8260C
p-Isopropyltoluene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
sec-Butylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
tert-Butylbenzene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
Toluene	ND	1.0	ug/L	1	08/15/15	RM	SW8260C
Total Xylenes	ND	2.0	ug/L	1	08/15/15	RM	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	100		%	1	08/15/15	RM	70 - 130 %
% Bromofluorobenzene	99		%	1	08/15/15	RM	70 - 130 %
% Dibromofluoromethane	94		%	1	08/15/15	RM	70 - 130 %
% Toluene-d8	99		%	1	08/15/15	RM	70 - 130 %

Project ID: K-MART					Pł	noeni	x I.D.: BJ75396
Client ID: B-5							
		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

Phyllis Shiller, Laboratory Director August 21, 2015 Reviewed and Released by: Bobbi Aloisa, Vice President

QA/QC Report

August 21, 2015

QA/QC Data

SDG I.D.: GBJ75381

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 317125 (ug/L),	QC Samp	le No: BJ73734 (BJ75392)									
Polychlorinated Bipheny	<u>/ls - Gro</u>	und Water									
PCB-1016	ND	0.050	111	133	18.0				40 - 140	20	
PCB-1221	ND	0.050							40 - 140	20	
PCB-1232	ND	0.050							40 - 140	20	
PCB-1242	ND	0.050							40 - 140	20	
PCB-1248	ND	0.050							40 - 140	20	
PCB-1254	ND	0.050							40 - 140	20	
PCB-1260	ND	0.050	126	139	9.8				40 - 140	20	
PCB-1262	ND	0.050							40 - 140	20	
PCB-1268	ND	0.050							40 - 140	20	
% DCBP (Surrogate Rec)	87	%	89	94	5.5				30 - 150	20	
% TCMX (Surrogate Rec)	61	%	68	94	32.1				30 - 150	20	r
Comment:											

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

QA/QC Batch 317257 (ug/L), QC Sample No: BJ74530 (BJ75391, BJ75392, BJ75393, BJ75394, BJ75395)

Semivolatiles by SIM - Ground Water

Schivolatiles by Shv		value					
2-Methylnaphthalene	ND	0.02	80	60	28.6	30 -	130
Acenaphthene	ND	0.02	84	67	22.5	30 -	130
Acenaphthylene	ND	0.02	86	70	20.5	30 -	130
Anthracene	ND	0.02	94	87	7.7	30 -	130
Benz(a)anthracene	ND	0.02	86	82	4.8	30 -	130
Benzo(a)pyrene	ND	0.02	87	84	3.5	30 -	130
Benzo(b)fluoranthene	ND	0.02	97	92	5.3	30 -	130
Benzo(ghi)perylene	ND	0.02	81	71	13.2	30 -	130
Benzo(k)fluoranthene	ND	0.02	100	92	8.3	30 -	130
Chrysene	ND	0.02	84	79	6.1	30 -	130
Dibenz(a,h)anthracene	ND	0.01	83	73	12.8	30 -	130
Fluoranthene	ND	0.02	91	85	6.8	30 -	130
Fluorene	ND	0.02	84	78	7.4	30 -	130
Indeno(1,2,3-cd)pyrene	ND	0.02	69	63	9.1	30 -	130
Naphthalene	ND	0.02	76	56	30.3	30 -	130
Phenanthrene	ND	0.02	90	83	8.1	30 -	130
Pyrene	ND	0.02	94	85	10.1	30 -	130
% 2-Fluorobiphenyl	65	%	76	49	43.2	30 -	130
% Nitrobenzene-d5	54	%	66	51	25.6	30 -	130
% Terphenyl-d14	64	%	79	74	6.5	30 -	130
Comment:							

Additional 8270 criteria:20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QA/QC Data

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 317386 (ug/L), C	2C Samp	le No: BJ74533 (BJ753)	93 (1X, 100X))							
Volatiles - Ground Water		·								
1,1,1,2-Tetrachloroethane	ND	1.0	118	113	4.3				70 - 130	30
1,1,1-Trichloroethane	ND	1.0	110	113	6.8				70 - 130	30
1,1,2,2-Tetrachloroethane	ND	0.50	121	103	1.0				70 - 130	30
1,1,2-Trichloroethane	ND	1.0	107	103	3.8				70 - 130	30
1,1-Dichloroethane	ND	1.0	106	101	4.8				70 - 130	30
1,1-Dichloroethene	ND	1.0	115	107	7.2				70 - 130	30
1,1-Dichloropropene	ND	1.0	115	107	7.2				70 - 130	30
1,2,3-Trichlorobenzene	ND	1.0	114	110	3.6				70 - 130	30
1,2,3-Trichloropropane	ND	1.0	101	106	4.8				70 - 130	30
1,2,4-Trichlorobenzene	ND	1.0	110	108	1.8				70 - 130	30
1,2,4-Trimethylbenzene	ND	1.0	108	103	4.7				70 - 130	30
1,2-Dibromo-3-chloropropane	ND	1.0	120	108	10.5				70 - 130	30
1,2-Dibromoethane	ND	1.0	107	104	2.8				70 - 130	30
1,2-Dichlorobenzene	ND	1.0	105	103	1.9				70 - 130	30
1,2-Dichloroethane	ND	1.0	122	118	3.3				70 - 130	30
1,2-Dichloropropane	ND	1.0	105	103	1.9				70 - 130	30
1,3,5-Trimethylbenzene	ND	1.0	111	106	4.6				70 - 130	30
1,3-Dichlorobenzene	ND	1.0	106	102	3.8				70 - 130	30
1,3-Dichloropropane	ND	1.0	109	103	5.7				70 - 130	30
1,4-Dichlorobenzene	ND	1.0	103	100	3.0				70 - 130	30
2,2-Dichloropropane	ND	1.0	118	111	6.1				70 - 130	30
2-Chlorotoluene	ND	1.0	104	102	1.9				70 - 130	30
2-Hexanone	ND	5.0	113	112	0.9				70 - 130	30
2-Isopropyltoluene	ND	1.0	111	104	6.5				70 - 130	30
4-Chlorotoluene	ND	1.0	105	102	2.9				70 - 130	30
4-Methyl-2-pentanone	ND	5.0	109	107	1.9				70 - 130	30
Acetone	ND	5.0	99	92	7.3				70 - 130	30
Acrylonitrile	ND	5.0	99	99	0.0				70 - 130	30
Benzene	ND	0.70	106	102	3.8				70 - 130	30
Bromobenzene	ND	1.0	104	100	3.9				70 - 130	30
Bromochloromethane	ND	1.0	105	105	0.0				70 - 130	30
Bromodichloromethane	ND	0.50	125	115	8.3				70 - 130	30
Bromoform	ND	1.0	125	116	7.5				70 - 130	30
Bromomethane	ND	1.0	158	149	5.9				70 - 130	30 I
Carbon Disulfide	ND	1.0	116	109	6.2				70 - 130	30
Carbon tetrachloride	ND	1.0	123	114	7.6				70 - 130	30
Chlorobenzene	ND	1.0	106	100	5.8				70 - 130	30
Chloroethane	ND	1.0	113	109	3.6				70 - 130	30
Chloroform	ND	1.0	112	107	4.6				70 - 130	30
Chloromethane	ND	1.0	118	111	6.1				70 - 130	30
cis-1,3-Dichloropropene	ND	0.40	118	112	5.2				70 - 130	30
Dibromochloromethane	ND	0.50	125	118	5.8				70 - 130	30
Dibromomethane	ND	1.0	110	106	3.7				70 - 130	30
Dichlorodifluoromethane	ND	1.0	145	139	4.2				70 - 130	30 I
Ethylbenzene	ND	1.0	110	104	5.6				70 - 130	30
Hexachlorobutadiene	ND	0.40	110	107	2.8				70 - 130	30
Isopropylbenzene	ND	1.0	108	104	3.8				70 - 130	30
m&p-Xylene	ND	1.0	109	103	5.7				70 - 130	30
Methyl ethyl ketone	ND	5.0	96	93	3.2				70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0	117	113	3.5				70 - 130	30

QA/QC Data

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
Methylene chloride	ND	1.0	101	97	4.0				70 - 130	30
Naphthalene	ND	1.0	117	116	0.9				70 - 130	30
n-Butylbenzene	ND	1.0	108	103	4.7				70 - 130	30
n-Propylbenzene	ND	1.0	101	96	5.1				70 - 130	30
o-Xylene	ND	1.0	113	106	6.4				70 - 130	30
p-Isopropyltoluene	ND	1.0	111	105	5.6				70 - 130	30
sec-Butylbenzene	ND	1.0	111	106	4.6				70 - 130	30
Styrene	ND	1.0	113	108	4.5				70 - 130	30
tert-Butylbenzene	ND	1.0	111	106	4.6				70 - 130	30
Tetrachloroethene	ND	1.0	113	103	9.3				70 - 130	30
Tetrahydrofuran (THF)	ND	2.5	100	107	6.8				70 - 130	30
Toluene	ND	1.0	106	102	3.8				70 - 130	30
trans-1,2-Dichloroethene	ND	1.0	110	104	5.6				70 - 130	30
trans-1,3-Dichloropropene	ND	0.40	127	119	6.5				70 - 130	30
trans-1,4-dichloro-2-butene	ND	5.0	115	110	4.4				70 - 130	30
Trichloroethene	ND	1.0	109	105	3.7				70 - 130	30
Trichlorofluoromethane	ND	1.0	125	121	3.3				70 - 130	30
Trichlorotrifluoroethane	ND	1.0	113	109	3.6				70 - 130	30
Vinyl chloride	ND	1.0	112	108	3.6				70 - 130	30
% 1,2-dichlorobenzene-d4	104	%	101	102	1.0				70 - 130	30
% Bromofluorobenzene	98	%	107	106	0.9				70 - 130	30
% Dibromofluoromethane	102	%	91	96	5.3				70 - 130	30
% Toluene-d8 Comment:	103	%	99	101	2.0				70 - 130	30

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QA/QC Batch 317278 (ug/kg), QC Sample No: BJ75184 (BJ75381, BJ75382, BJ75383, BJ75384, BJ75385, BJ75387, BJ75389) Polynuclear Aromatic HC - Soil

Polynuclear Aromatic HC -	2011										
Acenaphthene	ND	230	62	62	0.0	54	61	12.2	30 - 130	30	
Acenaphthylene	ND	230	62	61	1.6	54	60	10.5	30 - 130	30	
Anthracene	ND	230	67	67	0.0	56	63	11.8	30 - 130	30	
Benz(a)anthracene	ND	230	68	67	1.5	45	52	14.4	30 - 130	30	
Benzo(a)pyrene	ND	230	67	67	0.0	46	52	12.2	30 - 130	30	
Benzo(b)fluoranthene	ND	230	71	70	1.4	48	56	15.4	30 - 130	30	
Benzo(ghi)perylene	ND	230	85	87	2.3	66	68	3.0	30 - 130	30	
Benzo(k)fluoranthene	ND	230	67	65	3.0	50	54	7.7	30 - 130	30	
Chrysene	ND	230	71	71	0.0	47	56	17.5	30 - 130	30	
Dibenz(a,h)anthracene	ND	230	75	74	1.3	64	69	7.5	30 - 130	30	
Fluoranthene	ND	230	69	68	1.5	33	44	28.6	30 - 130	30	
Fluorene	ND	230	66	67	1.5	54	61	12.2	30 - 130	30	
Indeno(1,2,3-cd)pyrene	ND	230	77	77	0.0	61	62	1.6	30 - 130	30	
Naphthalene	ND	230	58	61	5.0	49	54	9.7	30 - 130	30	
Phenanthrene	ND	230	67	68	1.5	43	53	20.8	30 - 130	30	
Pyrene	ND	230	69	68	1.5	38	46	19.0	30 - 130	30	
% 2-Fluorobiphenyl	33	%	60	59	1.7	51	58	12.8	30 - 130	30	
% Nitrobenzene-d5	32	%	52	58	10.9	48	49	2.1	30 - 130	30	
% Terphenyl-d14	34	%	65	63	3.1	57	62	8.4	30 - 130	30	
QA/QC Batch 317377 (ug/L), QC	Sample	e No: BJ75194 (BJ75391, BJ753	94, BJ7	75395, I	BJ75396	5)					
Volatiles - Ground Water											
1,2,4-Trimethylbenzene	ND	1.0	94	95	1.1				70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	98	100	2.0				70 - 130	30	

QA/QC Data

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
Benzene	ND	0.70	99	99	0.0				70 - 130	30
Ethylbenzene	ND	1.0	98	99	1.0				70 - 130	30
Isopropylbenzene	ND	1.0	95	99	4.1				70 - 130	30
m&p-Xylene	ND	1.0	95	99	4.1				70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0	100	98	2.0				70 - 130	30
Naphthalene	ND	1.0	103	102	1.0				70 - 130	30
n-Butylbenzene	ND	1.0	96	99	3.1				70 - 130	30
n-Propylbenzene	ND	1.0	92	94	2.2				70 - 130	30
o-Xylene	ND	1.0	96	99	3.1				70 - 130	30
p-Isopropyltoluene	ND	1.0	97	99	2.0				70 - 130	30
sec-Butylbenzene	ND	1.0	99	102	3.0				70 - 130	30
tert-Butylbenzene	ND	1.0	95	98	3.1				70 - 130	30
Toluene	ND	1.0	96	98	2.1				70 - 130	30
% 1,2-dichlorobenzene-d4	101	%	101	101	0.0				70 - 130	30
% Bromofluorobenzene	98	%	98	101	3.0				70 - 130	30
% Dibromofluoromethane	98	%	98	97	1.0				70 - 130	30
% Toluene-d8 Comment:	102	%	100	101	1.0				70 - 130	30

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QA/QC Batch 317980 (ug/kg), QC Sample No: BJ75390 (BJ75381, BJ75382, BJ75383, BJ75384, BJ75385, BJ75387, BJ75389, BJ75390)

Volatiles - Soil

Volatiles - Soli										
1,2,4-Trimethylbenzene	ND	1.0	94	93	1.1	90	91	1.1	70 - 130	30
1,3,5-Trimethylbenzene	ND	1.0	96	95	1.0	94	95	1.1	70 - 130	30
Benzene	ND	1.0	100	102	2.0	97	98	1.0	70 - 130	30
Ethylbenzene	ND	1.0	99	100	1.0	95	99	4.1	70 - 130	30
Isopropylbenzene	ND	1.0	99	102	3.0	97	98	1.0	70 - 130	30
m&p-Xylene	ND	2.0	99	99	0.0	95	95	0.0	70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0	99	100	1.0	91	91	0.0	70 - 130	30
Naphthalene	ND	5.0	101	103	2.0	84	86	2.4	70 - 130	30
n-Butylbenzene	ND	1.0	100	96	4.1	96	98	2.1	70 - 130	30
n-Propylbenzene	ND	1.0	96	94	2.1	92	92	0.0	70 - 130	30
o-Xylene	ND	2.0	98	99	1.0	95	96	1.0	70 - 130	30
p-Isopropyltoluene	ND	1.0	98	97	1.0	97	96	1.0	70 - 130	30
sec-Butylbenzene	ND	1.0	100	101	1.0	99	100	1.0	70 - 130	30
tert-Butylbenzene	ND	1.0	99	99	0.0	98	98	0.0	70 - 130	30
Toluene	ND	1.0	103	103	0.0	98	100	2.0	70 - 130	30
% 1,2-dichlorobenzene-d4	95	%	101	104	2.9	99	101	2.0	70 - 130	30
% Bromofluorobenzene	98	%	103	103	0.0	102	103	1.0	70 - 130	30
% Dibromofluoromethane	105	%	99	101	2.0	102	99	3.0	70 - 130	30
% Toluene-d8	91	%	104	102	1.9	102	101	1.0	70 - 130	30
Comment:										

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QA/QC Batch 317279 (ug/Kg), QC Sample No: BJ75449 2X (BJ75386, BJ75388)

Polychlorinated Biphenyls - Sc	il									
PCB-1016 ND	33	3	81	82	1.2	87	84	3.5	40 - 140	30
PCB-1221 ND	33	3							40 - 140	30
PCB-1232 ND	33	3							40 - 140	30
PCB-1242 ND	33	3							40 - 140	30
PCB-1248 ND	33	3							40 - 140	30

QA/QC Data

SDG I.D.: GBJ75381

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
PCB-1254	ND	33							40 - 140	30
PCB-1260	ND	33	76	80	5.1	82	79	3.7	40 - 140	30
PCB-1262	ND	33							40 - 140	30
PCB-1268	ND	33							40 - 140	30
% DCBP (Surrogate Rec)	95	%	94	97	3.1	96	92	4.3	30 - 150	30
% TCMX (Surrogate Rec)	86	%	88	88	0.0	91	87	4.5	30 - 150	30
QA/QC Batch 317544 (ug/L), C Volatiles - Ground Water		e No: BJ75553 (BJ75393 (5X))							
cis-1,2-Dichloroethene Comment:	ND	1.0	106	105	0.9				70 - 130	30

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QA/QC Batch 317417 (ug/kg), QC Sample No: BJ75570 (BJ75390)

Polv	/nuclear	Aromatic	HC -	Soil
	naoioai	/		001

<u>r orynacical Aromatic rio</u>	501						
Acenaphthene	ND	230	64	64	0.0	30 - 130	30
Acenaphthylene	ND	230	64	65	1.6	30 - 130	30
Anthracene	ND	230	72	73	1.4	30 - 130	30
Benz(a)anthracene	ND	230	77	80	3.8	30 - 130	30
Benzo(a)pyrene	ND	230	76	79	3.9	30 - 130	30
Benzo(b)fluoranthene	ND	230	78	82	5.0	30 - 130	30
Benzo(ghi)perylene	ND	230	75	80	6.5	30 - 130	30
Benzo(k)fluoranthene	ND	230	74	76	2.7	30 - 130	30
Chrysene	ND	230	74	79	6.5	30 - 130	30
Dibenz(a,h)anthracene	ND	230	81	84	3.6	30 - 130	30
Fluoranthene	ND	230	72	75	4.1	30 - 130	30
Fluorene	ND	230	67	69	2.9	30 - 130	30
Indeno(1,2,3-cd)pyrene	ND	230	85	90	5.7	30 - 130	30
Naphthalene	ND	230	60	57	5.1	30 - 130	30
Phenanthrene	ND	230	70	72	2.8	30 - 130	30
Pyrene	ND	230	71	73	2.8	30 - 130	30
% 2-Fluorobiphenyl	42	%	62	63	1.6	30 - 130	30
% Nitrobenzene-d5	41	%	56	54	3.6	30 - 130	30
% Terphenyl-d14	44	%	65	68	4.5	30 - 130	30

 ${\sf I} = {\sf This \ parameter \ is \ outside \ laboratory \ lcs/lcsd \ specified \ recovery \ limits.} \\ {\sf r} = {\sf This \ parameter \ is \ outside \ laboratory \ rpd \ specified \ recovery \ limits.}$

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director August 21, 2015

Friday, Augu	ust 21, 2015		Sample Criteria E	xceedences Report				Page 1 of 1
Criteria:	None		•	I - EVERGRN				
State:	NY						RL	Analvsis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

August 21, 2015

SDG I.D.: GBJ75381

The samples in this delivery group were received at 3° C. (Note acceptance criteria is above freezing up to 6° C)

PHOENIX S	Inc.	587	CHAIN 587 East Middle Email: info	CHAIN OF CUSTODY RECO East Middle Tumpike, P.O. Box 370, Manchester, Email: info@phoenixlabs.com Fax (860) 645- Client Services (860) 645-8726	CHAIN OF CUSTODY RECORD ast Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixtabs.com Fax (860) 645-0823 Client Services (860) 645-8726	Temp Data Delivery: Fax # Email: <u>Oliv</u>	Temp Study Pols 2 Delivery: Study Pols 2 Fax #:	<u><u> </u></u>
Customer: Evergreen Testing Address: 594 Broadway Watervliet, New York	ork 12189		Project: Report to Invoice t	 	Luc	Project P.O. Phone #: Fax #:	0: 518-266-0310 518-266-9238]
Sampler's Signature Device Dev	- Identification Date:	8/12/15	Analysis Request	sis			1992 - 10 1992 - 10 1995 -	
Matrix Code: DW=drinking water WW=wastewater S=soll/solid GW=groundwater SL=sludge A=air	olid O=oil X=other		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ALL STATES		S States	1005 HUGE	
Phoenix Customer Sample Sample # Identification	Sample Date Matrix Sampled	Time d Sampled	23	617 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		201 00 00 00 00 00 00 00 00 00 00 00 00 0	A STATE A STAT	
B-16 S	S & 10	+				••••		
75383 8-19 5-5	0 8 10 S 8 10	3 ph	× × × ×			*4 \$54	*	
2 08-8 1	01 & S	Hom	++			***		<u>г г</u>
75385 8-22, 5-5		ZPW	× ×	×		**		
B -23	5 8 11	3 pm	х×			**		
-23		3 pm		×		*		
75390 8-27.599	S 8/12	2 2 2	× × × ×			*		
75391 × B-1	GW 8 10	40 17	× .			r N S		
8-1	GW 8/10	Home	X			*		,
Relinentished by: Accepted by:	NA LIN	Date:	12/02/5		50	MA MCP Certification	Data Format	
Guy Allante 1					2 Days* GW Protect 3 Days* GA Mobility CB Mobility	GW-1 GW-2	GIS/Key	
Commente Anerial Beruitsments or Beruitstions	(hr	100	1/15	1845 Ba	Cother SW Protection		Other	
	ė			NC *	* SURCHARGE Ind. Vol. APPLIES Res. Criteria	C S S S S S S S S S S S S S S S S S S S	Data Package ASP-A	
					State where samples were collected:	ollected: NY	U Hazsite EDD Phoenix Std Report Other	
								7

		5																 				
Temport Pg 2 of 2	Data Delivery	🗙 Email: <u>olivia@evergreentes</u> ting.com	Project P.O:	Phone #: 518-266-0310	Fax #: 518-266-9238	Lago Contraction (Contraction)		20 34 34 34 37 00 100 40 40 100 100 100 100 100 100 10		**	1	×	X	X	2	8		MA Data Format	MCP Certification GW-1	GW-2 CISIKey GW-3 CISIKey C-1 CINSC	Dati RA eSMART	cted: N Dther
CHAIN OF CUSTODY RECORD	587 East Middle Turnpike, P.O. Box 370, Manchester, CT 06040	cmail: into@phoenixiabs.com Fax (860) 645-9823 Client Services (860) 645-8726	Project: K- Mart) ;;			A CONTRACT OF CONTRACT.			×	X	×	X			X		Time.	1 Day* CP Cert Days* OW Protect	1845 K		State where samples were collected:
	587 E					on Date: 8/12/15		Date Time Sampled Sampled	3 pm	8 1 3 pm					8/11 L) Pm	8/11 H Pm	8/11 3 pm		USUL IN ANY	6 8/10		
V (s, Inc.	рд		York 12189	n - Identification	l/solid O=oil X=other	Sample I Matrix Sa	A S	GV 8	S NO					GW 8	8 V P		any fue	00 / 10	ons:	
		Environmental Laboratories,	Evergreen Testing	594 Broadway	Watervliet. New York 12189	Glient Sample - Information - Identification	• WW=wastewater S=soil/solid SL=sludge A=air	Customer Sample Identification	1 8-5	B -5	6-12	B-12	B - [9	- 8 - 19	B - 20	B-20	8-5	Accented by:	the form		Comments, Special Requirements or Regulations:	
	DHC	Environme	Customer:	Address:	- •	Sampler's Signature	<u>Matrix Code:</u> DW=drinking water GW=groundwater	Phoenix Sample #	75392		75393		753971		75395		75396	Relindations	\square	Surgent &	Comments, Special	

APPENDIX D

INTERPRETATION OF SUBSURFACE LOGS

The Subsurface Logs present observations and the results of tests performed in the field by the Driller, Technicians, Geologists and Geotechnical Engineers as noted. Soil/Rock Classifications are made visually, unless otherwise noted, on a portion of the materials recovered through the sampling process and may not necessarily be representative of the materials between sampling intervals or locations.

The following defines some of the terms utilized in the preparation of the Subsurface Logs.

SOIL CLASSIFICATIONS

Soil Classifications are visual descriptions on the basis of the Unified Soil Classification ASTM D-2487 and USBR, 1973 with additional comments by weight of constituents by BUHRMASTER. The soil density or consistency is based on the penetration resistance determined by ASTM METHOD D1586. Soil Moisture of the recovered materials is described as DRY, MOIST, WET or SATURATED.

SIZE DES	CRIPTION	RELATI	VE DENSITY/CONSIS	STENCY (basis ASTM	D1586)
SOIL TYPE	PARTICLE SIZE	GRANUL	AR SOIL	COHESI	VE SOIL
BOULDER	> 12	DENSITY	BLOWS/FT.	CONSISTENCY	BLOWS/FT.
COBBLE	3" - 12"	LOOSE	< 10	VERY SOFT	< 3
GRAVEL-COARSE	3" - 3/4"	FIRM	11 - 30	SOFT	4 - 5
GRAVEL - FINE	3/4" - #4	COMPACT	31 - 50	MEDIUM	6 - 15
SAND - COARSE	#4 - #10	VERY COMPACT	50 +	STIFF	16 - 25
SAND - MEDIUM	#10 - #40			HARD	25 +
SAND - FINE	#40 - #200				
SILT/NONPLASTIC	< #200				
CLAY/PLASTIC	< #200				

SOIL ST	RUCTURE	RELATIVE PROPORTION OF SOIL TYPES			
STRUCTURE	DESCRIPTION	DESCRIPTION	% OF SAMPLE BY WEIGHT		
LAYER	6" THICK OR GREATER	AND	35 - 50		
SEAM	6" THICK OR LESS	SOME	20 - 35		
PARTING	LESS THAN 1/4" THICK	LITTLE	10 - 20		
VARVED	UNIFORM HORIZONTAL PARTINGS OR SEAMS	TRACE	LESS THAN 10		

Note that the classification of soils or soil like materials is subject to the limitations imposed by the size of the sampler, the size of the sample and its degree of disturbance and moisture.

ROCK CLASSIFICATIONS

Rock Classifications are visual descriptions on the basis of the Driller's, Technician's, Geologist's or Geotechnical Engineer's observations of the coring activity and the recovered samples applying the following classifications.

CLASSIFICATION TERM	DESCRIPTION
VERY HARD	NOT SCRATCHED BY KNIFE
HARD	SCRATCHED WITH DIFFICULTY
MEDIUM HARD	SCRATCHED EASILY
SOFT	SCRATCHED WITH FINGERNAIL
VERY WEATHERED	DISINTEGRATED WITH NUMEROUS SOIL SEAM
WEATHERED	SLIGHT DISINTEGRATION, STAINING, NO SEAMS
SOUND	NO EVIDENCE OF ABOVE
MASSIVE	ROCK LAYER GREATER THAN 36" THICK
THICK BEDDED	ROCK LAYER 12" - 36"
BEDDED	ROCK LAYER 4" - 12"
THIN BEDDED	ROCK LAYER 1" - 4"
LAMINATED	ROCK LAYER LESS THAN 1"
FRACTURES	NATURAL BREAKS AT SOME ANGLE TO BEDS

Core sample recovery is expressed as percent recovered of total sampled. The ROCK QUALITY DESIGNATION (RQD) is the total length of core sample pieces exceeding 4" length divided by the total core sample length for N size cored.

GENERAL

- Soil and Rock classifications are made visually on samples recovered. The presence of Gravel, Cobbles and Boulders will influence sample recovery classification density/consistency determination.
- Groundwater, if encountered, was measured and its depth recorded at the time and under the conditions as noted.
- Topsoil or pavements, if present, were measured and recorded at the time and under the conditions as noted.
- Stratification Lines are approximate boundaries between soil types. These transitions may be gradual or distinct and are approximated.

	-	EEN IMEN	-			, INC.	SUBSURFACE LOG B-1
PRO	JECT:	Forme	r K-Ma	rt Phas	e II ES	A	DATE START: 8/6/15 FINISH: 8/6/15
LOC	ATION	: East (Greenb	ush, Ne	ew Yorł	<	METHODS: 3 1/4" Hollow Stem Augers
CLIEI	NT: Tur	npike F	Redeve	lopmen	t Group	with ASTM D1586 Drilling Methods	
JOB	NUMBE	ER: ET	E-15-65	5		SURFACE ELEVATION:	
DRIL	L TYPE	: CME	45C			INSPECTION: ORB	
SAM	PLE		BL	OWS ON	SAMPLE	R	CLASSIFICATION / OBSERVATIONS
DEPTH	#	6"	12"	18"	24"	PID	+/- 8" Asphalt, +/- 4" Base
-	1	5	5			0	FILL: Gray Crushed STONE, Grades to Brown
				6	7		F-C SAND, SILT & GRAVEL (MOIST)
	2	8	7			0	Brown/Gray Mottled SILT and CLAY
5' _				6	8		Ora das Dasura
-	3	4	4	7	8	0	Grades Brown
-	4	10	10	'	0	0	Similar with (WET) Sand and Silt Bands
-				10	10	-	(MOIST AND WET)
10'	5	5	6			0	Brown SILT, Little Fine Sand and Sandy Bands
				8	6		Grades Some Clay
	6	4	6			0	(WET)
│ _	-	4/40		3	2		Gray SILT and CLAY, Some Fine Sand
15'	7	1/12		2	1	0	Similar with Silt Bands, trace fine sand (WET)
15 -				2	1		(WET)
							End of boring 15.0' depth.
-							Installed groundwater monitoring well at 15.0'
							depth.
20'							
-							
-							
-							
25' -				ļ			
-							
<u> </u>							
30'							

	ERGR /IRON					INC.	SUBSURFACE LOG B-2
PRO	JECT:	Forme	er K-Ma	rt Phas	e II ES.	A	DATE START: 8/6/15 FINISH: 8/6/15
LOC	ATION	: East (Greenb	ush, Ne	ew Yorł	ĸ	METHODS: 3 1/4" Hollow Stem Augers
CLIE	NT: Tur	npike F	Redeve	lopmen	t Group	with ASTM D1586 Drilling Methods	
JOB	NUMB	ER: ETI	E-15-65	5		SURFACE ELEVATION:	
DRIL	L TYPE	: CME	45C				INSPECTION: ORB
SAM	PLE		BL	OWS ON	SAMPLE	R	CLASSIFICATION / OBSERVATIONS
DEPTH	#	6"	12"	18"	24"	PID	+/- 6" Asphalt, +/- 5" Base
_	1	4	5			0	FILL: Gray Crushed STONE, Grades Fine
_				3	5		SAND, Grades to SILT, Little Sand and Gravel
_	2	5	5			0	trace organics (MOIST)
5' _				5	8		Brown Mottled SILT, Little Clay
_	3	4	5	6	8	0	Grades Brown SILT
_	4	8	6	0	0	0	Grades Bands of Fine Sand and Clay (WET)
_				6	5		
10'	5	1	2			0	
_				4	4		
_	6	4	3	1	2	0	(MOIST TO WET) Grades to Gray SILT and CLAY
_	7	WH	2		2	0	Grades to Brown
15'				5	4		(WET)
_							End of boring 15.0' depth.
-							
20'							
∥ –							
25'							
<u> </u>							
 _							
30'							

	Ergr Viron					INC.	SUBSURFACE LOG B-3
PRC	JECT:	Forme	er K-Ma	rt Phas	e II ES.	A	DATE START: 8/6/15 FINISH: 8/6/15
LOC	ATION	: East (Greenb	ush, Ne	ew York	METHODS: 3 1/4" Hollow Stem Augers	
CLIE	NT: Tur	npike F	Redevel	lopmen	t Group	with ASTM D1586 Drilling Methods	
JOB	NUMB	ER: ETI	E-15-65	5		SURFACE ELEVATION:	
DRIL	L TYPE	: CME	45C				INSPECTION: ORB
SAM	PLE		BL	ows on	SAMPLE	R	CLASSIFICATION / OBSERVATIONS
DEPTH	#	6"	12"	18"	24"	PID	+/- 7" Asphalt, +/- 2" Base
	1	6	6			0	POSSIBLE FILL: Brown Fine SAND, trace to
 _				6	6		Some Silt
5'	2	6	6	5	4	0	Grades Brown Fine SAND, trace silt
5 -	3	1	2	5	4	0	Grades Brown/Gray F-C SAND, SILT, and
-				2	1		GRAVEL
	4	2	1			0	Grade Brown Fine SAND, trace silt
				1	1		
10' _	5	1/12		1	1	0	(MOIST) Brown SILT and CLAY (WET)
-	6	1	1	1	1	0	Grades to Gray
-				1	1		
	7	1/12				0	
15' _				1	1		
	8	WH	1/18		1	0	(WET)
-							
							End of boring 17.0' depth.
20'							
-							
-							
25'							
_							
-							
30'							

	ergr Viron					INC.	SUBSURFACE LOG B-4
PRO	DJECT:	Forme	er K-Ma	rt Phas	e II ES	A	DATE START: 8/6/15 FINISH: 8/6/15
LOC		: East	Greenb	ush, Ne	ew Yorł	METHODS: 3 1/4" Hollow Stem Augers	
CLIE	NT: Tu	npike F	Redeve	lopmen	t Group	with ASTM D1586 Drilling Methods	
JOB	NUMB	ER: ET	E-15-68	5		SURFACE ELEVATION:	
DRIL	L TYPE	: CME	45C				INSPECTION: ORB
SAN	IPLE		BL	OWS ON	SAMPLE	R	CLASSIFICATION / OBSERVATIONS
DEPTH	I #	6"	12"	18"	24"	PID	+/- 3.5" Asphalt, +/- 6" Base
-	1	4	5			0	FILL: Gray Mottled SILT and CLAY, Little F-C
-				4	3		Sand and Crushed Stone (MOIST)
	2	5	5			0	Brown SILT and CLAY
5' -	3	4	4	8	8	0	Similar with Fine Sand and Silt Seams
-	5	-	-	5	7	0	(MOIST)
-	4	5	8	-		0	Brown Fine SAND
-				8	9		(WET)
10'	5	2	2			0	Brown SILT, trace fine sand, Occasional Clay
. –				5	4		Seams
-	6	3	3	0		0	
-	7	WH	WH	3	3	0	Gray SILT and CLAY with trace fine to coarse sand and fine gravel (MOIST)
15'		~~~	VVII	WH	2	0	Brown SILT (WET)
							End of boring 15.0' depth.
					ļ		
20'							
-							
-							
-							
25'							
-							
-							
-							
30'							

				ING & SERV		INC.	SUBSURFACE LOG B-5
PRO	JECT:	Forme	er K-Ma	rt Phas	e II ES	A	DATE START: 8/6/15 FINISH: 8/6/15
				oush, Ne Iopmen			METHODS: 3 1/4" Hollow Stem Augers with ASTM D1586 Drilling Methods
	NUMBE				•	SURFACE ELEVATION:	
DRIL	L TYPE	: CME	45C				INSPECTION: ORB
SAMI	PLE		BL	OWS ON	SAMPLE	R	CLASSIFICATION / OBSERVATIONS
DEPTH	#	6"	12"	18"	24"	PID	+/- 6" Asphalt, +/- 4" Base
-	1	2	2	4	5	0	Brown SILT and CLAY (MOIST)
5'	2	8	8	4	5	0	Similar with (WET) Silt Bands (MOIST AND WET)
	3	1	4			0	Gray SILT, Little Mottling
_	4	7	14	7	6	0	Grades Brown SILT (WET)
10' -	5	4	5	14	12	0	Grades Brown and Gray Bands
-	5	4	5	8	8	0	(MOIST TO WET)
-	6	10	10			0	Brown to Gray F-C SAND and SILT
				14	14		(WET)
15'	7	20	29	50/.2		0	TILL: Brown/Gray F-C SAND, SILT, and GRAVEL (WET)
_ _ _ _							End of boring 14.2' depth with split spoon refusal. Installed groundwater monitoring well at 14.2'
^{20'} – –							depth.
25'							
30'							

	ERGR /IRON					, INC.	SUBSURFACE LOG B-6
PRO	JECT:	Forme	er K-Ma	rt Phas	e II ES	A	DATE START: 8/6/15 FINISH: 8/6/15
LOC	ATION	: East (Greenb	ush, Ne	ew Yorł	METHODS: 3 1/4" Hollow Stem Augers	
CLIE	NT: Tur	npike F	Redeve	lopmen	t Group	with ASTM D1586 Drilling Methods	
JOB	NUMB	ER: ETI	E-15-65	5		SURFACE ELEVATION:	
DRIL	L TYPE	: CME	45C				INSPECTION: ORB
SAM	PLE		BL	ows on	SAMPLE	R	CLASSIFICATION / OBSERVATIONS
DEPTH	#	6"	12"	18"	24"	PID	+/- 4" Asphalt, +/- 4" Base
-	1	3	3			0	Brown Mottled SILT and CLAY (MOIST)
_				5	6		
5'	2	6	8	9	12	0	Grades Brown
5 –	3	3	4	9	12	0	Similar with (WET) Silt Bands
				5	7		(MOIST AND WET)
	4	6	7			0	Brown Banded SILT, SAND, and CLAY
4.01	5	7	0	9	11	0	
10'	5	7	8	8	9	0	Grades (WET) (MOIST TO WET)
-	6	8	8		Ŭ	0	Brown to Gray SILT
				8	10		
	7	7	6			0	Grades Brown to Gray
15'				6	6		(WET)
							End of boring 15.0' depth.
20' _							
-							
-							
25'							
-							
-				ļ			
-							
30'							

	ERGR /IRON					INC.	SUBSURFACE LOG B-7
PRO	JECT:	Forme	er K-Ma	rt Phas	e II ES	A	DATE START: 8/7/15 FINISH: 8/7/15
						METHODS: 3 1/4" Hollow Stem Augers	
	NT: Tur				t Group	with ASTM D1586 Drilling Methods	
	NUMBE L TYPE)		SURFACE ELEVATION: INSPECTION: ORB	
SAMI DEPTH		6"	BL 12"	0WS ON 18"	SAMPLE	PID	CLASSIFICATION / OBSERVATIONS
	"	Ű	12	10	27		+/- 5" Asphalt, +/- 5" Base
	1	2	3			0	FILL: Brown Fine SAND, Little Silt and Clay
 _				3	2		(MOIST)
5'	2	1	1	1	1	0	Brown SILT with Occasional Sand and Clay Seams (WET)
	3	WH	1/12	1	1	0	Grades Brown Mottle SILT
_					2		
	4	3	3			0	Grades trace clay
				6	5		
10'	5	2	3			0	Brown SILT with Fine Sand Bands
_	6	2	6	3	3	0	(MOIST TO WET) Brown to Gray Banded SAND, SILT and CLAY
_		2	0	12	42		Till noted at 12.5' depth (WET)
_							
15'							End of boring 13.0' depth.
 _							
_							
-							
20'							
_							
25'							
-						<u> </u>	
30'							

			TEST TAL S			SUBSURFACE LOG B-8	
PRO	JECT:	Forme	er K-Ma	rt Phas	e II ES	A	DATE START: 8/7/15 FINISH: 8/7/15
			Greenb Redevel			METHODS: 3 1/4" Hollow Stem Augers with ASTM D1586 Drilling Methods	
JOB	NUMBE	ER: ET	E-15-65	5			SURFACE ELEVATION:
DRIL	L TYPE	: CME	45C				INSPECTION: ORB
SAME	PLE		BL	OWS ON	SAMPLE	R	CLASSIFICATION / OBSERVATIONS
DEPTH	#	6"	12"	18"	24"	PID	+/- 4.5" Asphalt, +/- 4" Base
-	1	3	3	3	4	0	Brown SILT and CLAY (MOIST) Brown SILT (MOIST)
	2	4	5			0	Brown Banded SILT, CLAY, and Fine SAND
5' _	3	4	3	8	8	0	(MOIST AND WET) Brown Fine SAND and SILT
_	0	-	0	6	6	0	
	4	6	6			0	(MOIST)
				7	6		
10'	5	2	4	4	5	0	Gray SILT and CLAY (WET)
_	6		50/.2	4	5	0	sample (WET)
							End of boring 11.7' depth with split spoon refusal.
20'							
 25'							
30'							

				ING & SERV		, INC.	SUBSURFACE LOG B-9
PRO	JECT:	Forme	er K-Ma	rt Phas	e II ES.	A	DATE START: 8/7/15 FINISH: 8/7/15
LOC	ATION	: East (Greenb	ush, Ne	ew York	METHODS: 3 1/4" Hollow Stem Augers	
CLIE	NT: Tur	npike F	Redeve	lopmen	t Group	with ASTM D1586 Drilling Methods	
JOB I	NUMBE	ER: ET	E-15-6	5		SURFACE ELEVATION:	
DRILI	L TYPE	: CME	45C				INSPECTION: ORB
SAMF	PLE		BL	OWS ON	SAMPLE	R	CLASSIFICATION / OBSERVATIONS
DEPTH	#	6"	12"	18"	24"	PID	+/- 4" Asphalt, +/- 6" Base
_	1	1	3			0	Brown SILT, Some Clay (MOIST)
				4	4		
5'	2	10	8	0	10	0	Grades Little Gray Mottling, trace fine sand
5 —	3	6	10	8	10	0	(MOIST) Brown Fine SAND and SILT
_	-			15	15		(MOIST)
	4	12	12			0	Brown SILT with Sand Bands and Clay Partings
				10	13		(WET)
10'	5	4	14	50/.4		0	Gray SILT (WET) TILL: Brown F-C SAND, SILT, and GRAVEL
-				30/.4			(WET)
							End of boring 10.4' depth with split spoon
15'							refusal.
20'							
25'							
-							
30'							

		EEN ⁻ IMEN				, INC.	SUBSURFACE LOG B-10
PRO	JECT:	Forme	er K-Ma	rt Phas	e II ES	A	DATE START: 8/7/15 FINISH: 8/7/15
LOC	ATION	: East (Greenb	ush, Ne	ew Yorł	METHODS: 3 1/4" Hollow Stem Augers	
CLIE	NT: Tur	npike F	Redeve	lopmen	t Group	with ASTM D1586 Drilling Methods	
JOB I	NUMBE	ER: ETI	E-15-65	5		SURFACE ELEVATION:	
DRILI	_ TYPE	: CME	45C				INSPECTION: ORB
SAMF	PLE		BL	OWS ON	SAMPLE	R	CLASSIFICATION / OBSERVATIONS
DEPTH	#	6"	12"	18"	24"	PID	+/- 4.5" Asphalt, +/- 6" Base
_	1	1	4			0	Brown SILT and CLAY (MOIST)
				6	8		
	2	12	11			0	
5'	3	4	5	10	10	0	(MOIST)
	5			7	8	0	Brown SILT, Little Gray Mottling
_	4	8	8			0	Grades Some Fine Sand and Silt Bands
				9	10		
10'	5	5	9			0	Grades (WET)
	6	7	5	7	8	0	(MOIST TO WET) Grades Gray SILT and CLAY
_	0	'	5	4	4	0	
	7	1	1			0	(WET)
15'				4	6		Brown to Gray F-C SAND, Some SILT
_							(WET)
							End of boring 15.0' depth.
20'							
25'							
-							
-							
30']

	RGRI IRON					INC.	SUBSURFACE LOG B-11
PRO	JECT:	Forme	r K-Ma	rt Phas	e II ES	A	DATE START: 8/7/15 FINISH: 8/7/15
LOC		: East (Greenb	ush, Ne	ew Yorł	METHODS: 3 1/4" Hollow Stem Augers	
CLIE	NT: Tur	npike F	Redeve	lopmen	t Group)	with ASTM D1586 Drilling Methods
JOB I	NUMBE	R: ETI	E-15-65	5			SURFACE ELEVATION:
DRILI	_ TYPE	: CME	45C				INSPECTION: ORB
SAMF	PLE		BL	OWS ON	SAMPLE	R	CLASSIFICATION / OBSERVATIONS
DEPTH	#	6"	12"	18"	24"	PID	
	1	3	9		0	0	FILL: Brown F-C SAND, SILT, and GRAVEL,
	2	3	3	6	3	0	(MOIST) Grades to Brown SILT
	2	5	5	4	5	0	(MOIST)
5'	3	2	4			0	Brown SILT and CLAY
				7	8		
	4	10	10			0	Similar with Silt Partings, Little Gray Mottling
				11	13		
	5	4	7			0	Grades Brown/Gray Mottled SILT and CLAY
10'				9	10		
	6	4	9	-		0	Grades Banded
	7	8	6	5	6	0	Grades (WET)
	1	0	0	4	5	0	(MOIST TO WET)
15'	8	2	3			0	
				5	8		Gray SILT (MOIST)
	9	10	7			0	Similar with (WET) Seams
				12	18		(MOIST AND WET)
20'							End of boring 18.0' depth.
25'				<u> </u>			
_							
30'							

			TEST TAL S		, ICES,	INC.	SUBSURFACE LOG B-12
PRO	JECT:	Forme	er K-Ma	rt Phas	e II ES.	DATE START: 8/7/15 FINISH: 8/7/15	
LOC	ATION	: East (Greenb	ush, Ne	ew Yorł	METHODS: 3 1/4" Hollow Stem Augers	
CLIEN	NT: Tur	npike F	Redevel	opmen	t Group)	with ASTM D1586 Drilling Methods
JOB I	NUMBE	R: ETI	E-15-65	5			SURFACE ELEVATION:
DRILI	_ TYPE	: CME	45C				INSPECTION: ORB
SAMF	PLE		BL	OWS ON	SAMPLE	R	CLASSIFICATION / OBSERVATIONS
DEPTH	#	6"	12"	18"	24"	PID	+/- 4" Asphalt, +/- 4" Base
	1	1	4			0	FILL: Brown/Gray Mottled SILT, Little Asphalt
				3	3		(MOIST)
	2	6	6			0	Brown/Gray SILT and CLAY
5'				8	8		
	3	2	5	7	0	0	Similar with Silt Partings, trace gravel
	4	9	14	1	9	0	
	'			14	14		(MOIST)
10'	5	2	5			1	
				8	12		Brown SILT
	6	18	16			2	(MOIST)
	7	1	1	10	9	9	Brown Mottled SILT and CLAY (WET)
15'	,	-	-	3	5	5	Gray SILT and CLAY (WET)
	8	1	4			16.5	Brown to Gray Fine SAND and SILT
				7	11		(WET)
	9	12	16		<u> </u>	1.5	Brown SILT, Some Fine Sand
20'	10	9	14	20	24	0	Grades Brown SILT
	10	3		10	14		
	11	8	8			0	Similar with Sandy Seams
				6	2		(WET)
25'						End of boring 23.0' depth. Installed groundwater monitoring well at 23.0'	
							depth.
30'							

	ERGR /IRON					, INC.	SUBSURFACE LOG B-13
PRC	JECT:	Forme	er K-Ma	rt Phas	e II ES	DATE START: 8/7/15 FINISH: 8/7/15	
LOC	ATION	: East (Greenb	ush, Ne	ew Yorł	METHODS: 3 1/4" Hollow Stem Augers	
CLIE	NT: Tur	npike F	Redeve	lopmen	t Group	D	with ASTM D1586 Drilling Methods
JOB	NUMBE	ER: ET	E-15-65	5			SURFACE ELEVATION:
DRIL	L TYPE	: CME	45C				INSPECTION: ORB
SAM	PLE		BL	OWS ON	SAMPLE	R	CLASSIFICATION / OBSERVATIONS
DEPTH	#	6"	12"	18"	24"	PID	+/- 5" Asphalt, +/- 5" Base
-	1	3	2			0	Brown Mottled to Gray Mottled SILT and CLAY
-				3	5		(MOIST)
	2	8	7			0	NO RECOVERY
5'	2	2	F	8	8	0	Provin/Crow Mottled SILT and CLAY
-	3	2	5	6	8	0	Brown/Gray Mottled SILT and CLAY
-	4	9	10	<u> </u>		0	Similar with Silt Seams
				11	11		
10'	5	3	2			0	
-	6	8	8	5	6	0	
-	0	0	0	8	8	0	
-	7	1	1			0	Similar with Occasional Gray Fine Sand
15'				1	3		Partings (MOIST)
 –							End of boring 15.0' depth.
-							
-							
20'							
-							
-							
25'							
-							
-							
-							
30'							

	ERGR /IRON					INC.	SUBSURFACE LOG B-14
PRO	JECT:	Forme	er K-Ma	rt Phas	e II ES	DATE START: 8/7/15 FINISH: 8/7/15	
LOC	ATION	: East (Greenb	ush, Ne	ew Yorł	METHODS: 3 1/4" Hollow Stem Augers	
CLIE	NT: Tur	npike F	Redeve	lopmen	t Group)	with ASTM D1586 Drilling Methods
JOB	NUMBE	R: ETI	E-15-65	5			SURFACE ELEVATION:
DRILI	L TYPE	: CME	45C				INSPECTION: ORB
SAME	PLE		BL	OWS ON	SAMPLE	R	CLASSIFICATION / OBSERVATIONS
DEPTH	#	6"	12"	18"	24"	PID	
_	1	2	3			0	FILL: Gray Mottled F-C SAND, SILT, CLAY,
_				4	7		and GRAVEL (MOIST)
	2	6	5			0	Dark Brown SILT (MOIST)
5'				5	7		Brown/Gray Mottled SILT and CLAY
	3	2	6			0	Similar with Silt Seams
	4	10	10	7	8	0	
	4	12	12	12	11	0	
10'	5	3	5	12		0	Grades Brown SILT and CLAY
				6	8		
	6	7	8			0	Grades Brown/Gray Mottled
				6	9		
	7	2	3			0	
15'	8	1	5	6	6	0	TILL : Brown F-C SAND, SILT, and CLAY, Little Gravel, Grades Some Silt and Clay Bands
	0	1	5	3	4	0	(MOIST)
							End of boring 15.0' depth.
20'							
				ļ			
-							
25'							
_]
30'							

	ERGR /IRON					INC.	SUBSURFACE LOG B-15
PRC	JECT:	Forme	er K-Ma	rt Phas	e II ES	DATE START: 8/10/15 FINISH: 8/10/15	
LOC	ATION	: East	Greenb	ush, N	ew York	METHODS: 3 1/4" Hollow Stem Augers	
CLIE	NT: Tur	npike F	Redeve	lopmen	it Group)	with ASTM D1586 Drilling Methods
JOB	NUMBE	ER: ET	E-15-68	5			SURFACE ELEVATION:
DRIL	L TYPE	: CME	45C				INSPECTION: ORB
SAM	PLE		BL	OWS ON	SAMPLE	R	CLASSIFICATION / OBSERVATIONS
DEPTH	#	6"	12"	18"	24"	PID	+/- 5" Asphalt, +/- 5" Base
-	1	3	3			0	FILL: Brown/Gray F-C SAND, SILT, and CLAY,
				4	4		Little Gravel, Grades to Brown SILT (MOIST)
	2	6	6			0	Brown/Gray Mottled SILT and CLAY, rootlets
5' _				6	6		noted
	3	5	6	8	8	0	Similar with (WET) Silt Seams
	4	7	8	0	0	0	
_		1	0	9	8	0	
10'	5	2	4			0	Similar with Fine Sand Partings, trace gravel
				4	5		
_	6	6	6			0	(MOIST AND WET)
_				5	50/.3		
15'							End of boring 12.8' depth with split spoon
-							refusal.
20' _							
-							
						ļ	
25'	1						
_							
l _							
30'							

	ERGR /IRON					, INC.	SUBSURFACE LOG B-16		
PRO	JECT:	Forme	r K-Ma	rt Phas	e II ES	DATE START: 8/10/15 FINISH: 8/10/15			
LOC	ATION	: East (Greenb	ush, Ne	ew Yorl	METHODS: 3 1/4" Hollow Stem Augers			
CLIE	NT: Tur	npike F	Redevel	opmen	t Group	C	with ASTM D1586 Drilling Methods		
JOB	NUMBE	ER: ETI	E-15-65	5			SURFACE ELEVATION:		
DRIL	L TYPE	: CME	45C				INSPECTION: ORB		
SAM	PLE		BL	OWS ON	SAMPLE	R	CLASSIFICATION / OBSERVATIONS		
DEPTH	#	6"	12"	18"	24"	PID			
	1	2	4			0	FILL: Brown F-C SAND, Some Silt and Gravel		
∥ _				6	20		(MOIST)		
∥ _	2	45	10			0	Grades Some Concrete, trace cinders		
				6	4		(MOIST)		
5' _	3	2	4			0	Brown SILT and CLAY, Little Gray Mottling		
				6	7				
-	4	10	14			0			
-				14	13				
	5	3	8			0	Similar with Fine Sand Parting		
10'				9	11				
-	6	3	5	7	10	0			
-	7	12	11	/	10	0			
-	1	12	11	12	12	0			
	8	2	3	12	12	0	Similar with Fine Sand and Silt Partings (WET)		
-	0	2	5	3	6	0			
∦ −	9	4	4	5	0	0	Similar with Silt Bands		
-			т	5	5		(MOIST TO WET)		
20'							End of boring 18.0' depth.		
-							1		
-						1	1		
∥ –									
25'									
∥ −									
-]		
∥ –]		
]		
30'									

	ergr Viron					SUBSURFACE LOG B-17	
PRC	DJECT	Forme	er K-Ma	rt Phas	e II ES	DATE START: 8/10/15 FINISH: 8/10/15	
LOC		: East	Greenb	ush, Ne	ew Yorł	METHODS: 3 1/4" Hollow Stem Augers	
CLIE	NT: Tu	mpike F	Redeve	lopmen	t Group)	with ASTM D1586 Drilling Methods
JOB	NUMB	ER: ET	E-15-68	5			SURFACE ELEVATION:
DRIL	L TYPE	: CME	45C				INSPECTION: ORB
SAM	IPLE		BL	ows on	SAMPLE	R	CLASSIFICATION / OBSERVATIONS
DEPTH	#	6"	12"	18"	24"	PID	+/- 5" Asphalt, +/- 4" Base
-	1	4	4			0	FILL: Brown/Gray Mottled SILT and CLAY
-				4	6		(MOIST)
	2	5	4			0	Dark Brown/Gray SILT
5' _				4	3		(MOIST)
-	3	1	4			0	Brown/Gray Mottled SILT and CLAY, rootlets
_	4	8	12	5	6	0	noted Grades Little Gray Mottling
-	4	0	12	12	14	0	Grades Little Gray Wotting
10'	5	4	6	12		0	
-				9	11		
_	6	14	12			0	
_				12			
_	7	3	5			0	
15' _				6	6		(MOIST)
-							End of boring 15.0' depth.
_							
20'							
-							
-							
-							
25'							
_							
-							
-							
30'							

			TEST TAL S			INC.	SUBSURFACE LOG B-18
PRO	JECT:	Forme	er K-Ma	rt Phas	e II ES.	DATE START: 8/10/15 FINISH: 8/10/15	
LOCA	ATION	: East (Greenb	ush, Ne	ew Yorł	METHODS: 3 1/4" Hollow Stem Augers	
CLIEN	NT: Tur	npike F	Redevel	lopmen	t Group	D	with ASTM D1586 Drilling Methods
JOB	NUMBE	ER: ETI	E-15-65	5			SURFACE ELEVATION:
DRILI	_ TYPE	: CME	45C				INSPECTION: ORB
SAMF	PLE		BL	ows on	SAMPLE	R	CLASSIFICATION / OBSERVATIONS
DEPTH	#	6"	12"	18"	24"	PID	+/- 3" Asphalt, +/- 5" Base
_	1	1	3			0	Brown to Brown/Gray Mottled SILT and CLAY
				3	4		(MOIST)
_	2	4	8			0	
5'	3	2	3	10	5	0	
	3	2	3	4	4	0	
_	4	8	12			0	
				12	12		
10'	5	3	4			0	
_		- 10		7	8		(MOIST)
_	6	10	8	8	9	0	Brown SILT with Occasional Sandy Seams (WET)
_	7	2	4	0	3	0	Similar with Clay Bands
15'				3	6		(WET)
	8	2	2			0	Brown SILT and CLAY
_				3	3		(WET)
_							End of boring 17.0' depth.
20'							Ŭ Î
_							
25'				ļ			
				ļ			
30'							

			TEST TAL S		, ICES,	INC.	SUBSURFACE LOG B-19
PRO	JECT:	Forme	er K-Ma	rt Phas	e II ES.	DATE START: 8/10/15 FINISH: 8/10/15	
LOC	ATION	: East (Greenb	ush, Ne	ew Yorł	METHODS: 3 1/4" Hollow Stem Augers	
CLIE	NT: Tur	npike F	Redevel	lopmen	t Group)	with ASTM D1586 Drilling Methods
JOB I	NUMBE	ER: ETI	E-15-65	5			SURFACE ELEVATION:
DRILI	L TYPE	: CME	45C				INSPECTION: ORB
SAMF	PLE		BL	ows on	SAMPLE	R	CLASSIFICATION / OBSERVATIONS
DEPTH	#	6"	12"	18"	24"	PID	+/- 6" Asphalt, +/- 6" Base
_	1	3	4			0	FILL: Gray Mottled SILT and CLAY, Little
				3	4		Wood, trace brick (MOIST)
	2	6	5			0	POSSIBLE FILL: Brown/Gray Mottled SILT
5'				6	4		and CLAY, Little F-C Sand and Gravel
	3	1	2		0	0	
	4	6	8	2	2	0	(MOIST) Brown/Gray Mottled SILT and CLAY
	7	0	0	8	8	0	(MOIST)
10'	5	2	5	-	_	0	Brown SILT, Little Gray Mottling
				7	12		
	6	12	10			0	Similar with Clay Seams
				12	11		
15'	7	4	5	4	6	0	
15 -	8	2	2	4	0	0	(MOIST)
	-			4	2	-	Gray SILT and CLAY
	9	1	1			0	(MOIST)
				3	12		
20'							Brown Fine SAND, Some Silt (MOIST)
							End of boring 19.0' depth.
							Installed groundwater monitoring well at 19.0'
_							depth.
25'							
_							
30'							
							l

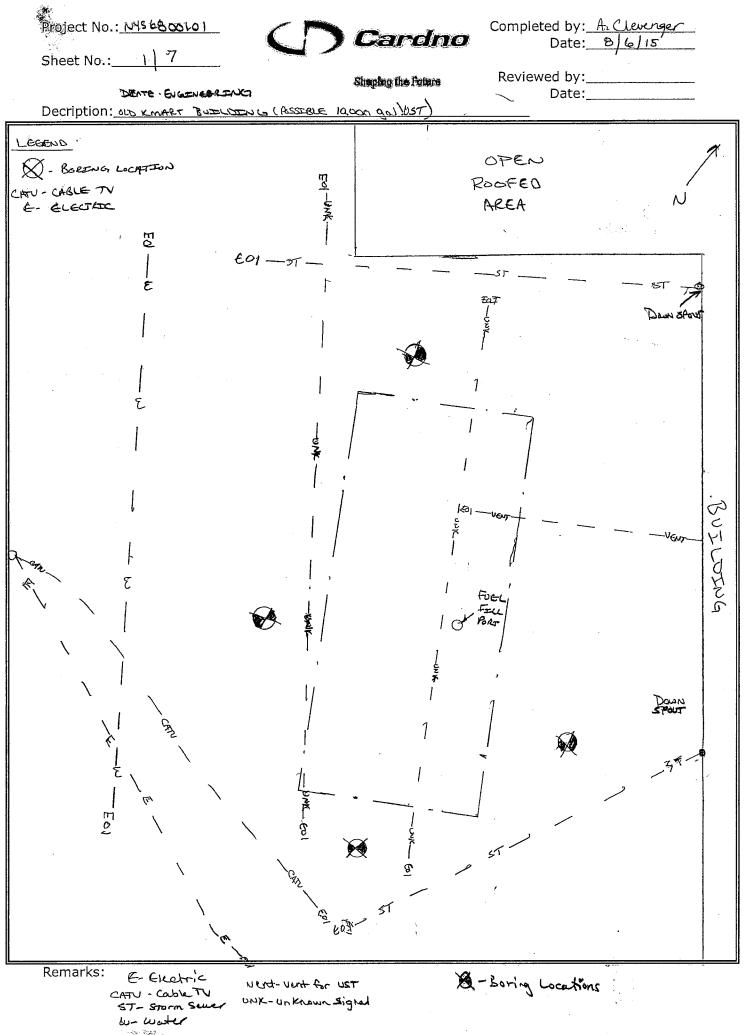
	ERGR /IRON					SUBSURFACE LOG B-20	
PRO	JECT:	Forme	er K-Ma	rt Phas	e II ES.	DATE START: 8/10/15 FINISH: 8/10/15	
LOC	ATION	: East (Greenb	ush, Ne	ew York	METHODS: 3 1/4" Hollow Stem Augers	
CLIE	NT: Tur	npike F	Redeve	lopmen	t Group)	with ASTM D1586 Drilling Methods
JOB	NUMBE	ER: ET	E-15-65	5			SURFACE ELEVATION:
DRIL	L TYPE	: CME	45C				INSPECTION: ORB
SAM	PLE		BL	OWS ON	SAMPLE	R	CLASSIFICATION / OBSERVATIONS
DEPTH	#	6"	12"	18"	24"	PID	+/- 5" Asphalt, +/- 5" Base
_	1	5	2			0	FILL: Gray Mottled SILT and CLAY, Little F-C
				2	3		Sand and Gravel (MOIST)
	2	6	6			0	Grades (WET)
5'				5	5		(MOIST AND WET)
_	3	1	1			0	Dark Brown/Gray SILT, rootlets noted (WET)
_				5	4		Gray Banded SILT, SAND, and CLAY to
_	4	6	8	10	10	0	Brown/Gray Mottled SILT and CLAY
10'	5	7	8	10	13	0	Grades Little Gray Mottling (MOIST)
				10	12		
	6	10	12			0	
				10	12		
_	7	3	4			0	
15'				7	8		
	8	1	5	7	0	0	Similar with Fine Sand Partings
-	9	9	10	7	8	0	Similar with Silt Bands
	3	9	10	10	11	0	(WET TO MOIST)
20'		ļ				ļ	
-		ļ		ļ		ļ	End of boring 19.0' depth.
-							Installed groundwater monitoring well at 19.0'
						depth.	
25'							
_							
30'							
00							

	ERGR /IRON					, INC.	SUBSURFACE LOG B-21
PRC	JECT:	Forme	er K-Ma	rt Phas	e II ES	DATE START: 8/10/15 FINISH: 8/10/15	
LOC	ATION	: East	Greenb	ush, Ne	ew Yorł	METHODS: 3 1/4" Hollow Stem Augers	
CLIE	NT: Tur	npike F	Redeve	lopmen	t Group	כ	with ASTM D1586 Drilling Methods
JOB	NUMBE	ER: ET	E-15-65	5			SURFACE ELEVATION:
DRIL	L TYPE	: CME	45C				INSPECTION: ORB
SAM	PLE		BL	ows on	SAMPLE	R	CLASSIFICATION / OBSERVATIONS
DEPTH	#	6"	12"	18"	24"	PID	+/- 7" Asphalt, +/- 6" Base
_	1	2	2			0	FILL: Brown Mottled SILT and CLAY, Little F-C
				3	4		Sand and Gravel
	2	8	6			0	(MOIST)
5' _		0	7	5	5		Dark Brown/Gray SILT, rootlets noted, Grades
	3	3	7	7	7	0	Some Sand and Gravel (MOIST)
	4	10	14	1	1	0	Grades Brown/Gray Mottled
	4	10	14	12	13	0	Grades brown/Gray Mottled
10'	5	4	5	12	10	0	
				7	10		
	6	9	6			0	Similar with Silt Seams and Gray Fine Sand
				7	9		Partings
	7	3	3			0	
15' _				5	6		(MOIST)
 							End of boring 15.0' depth.
_							
20'							
-							
-	1						
-	1						
25'							
_							
_							
30'							

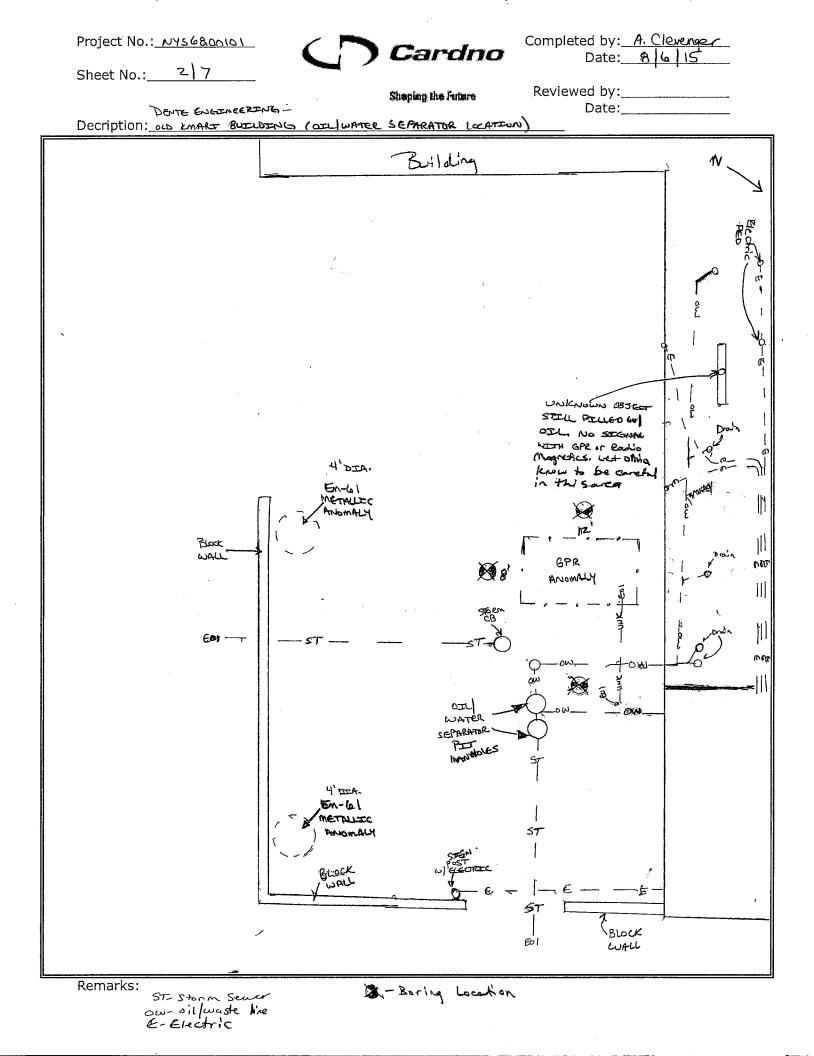
	Ergr /Iron					, INC.	SUBSURFACE LOG B-22
PRC	JECT:	Forme	er K-Ma	rt Phas	e II ES	DATE START: 8/11/15 FINISH: 8/11/15	
LOC	ATION	: East	Greenb	ush, Ne	ew Yorł	METHODS: 3 1/4" Hollow Stem Augers	
CLIE	NT: Tur	npike F	Redeve	lopmen	t Group)	with ASTM D1586 Drilling Methods
JOB	NUMB	ER: ET	E-15-65	5			SURFACE ELEVATION:
DRIL	L TYPE	: CME	45C				INSPECTION: ORB
SAM	PLE		BL	OWS ON	SAMPLE	R	CLASSIFICATION / OBSERVATIONS
DEPTH	#	6"	12"	18"	24"	PID	+/- 6.5" Concrete
∥ _							FILL: Brown F-M SAND (MOIST)
_	1	2	4			0	Brown SILT and CLAY, Little Gray Mottling
∥ _				5	7		
	2	8	10	10	40	0	
5' _	3	0	F	12	13	0	
	3	2	5	5	7	0	
	4	8	8	5	1	0	
-	-	0	0	7	7	0	(MOIST)
10'	5	7	7		•	0	Brown SILT with Occasional Fine Sand Bands
-	-			10	10		(MOIST)
_	6	14	14			0	Brown Fine SAND and SILT with Clay Bands
-				12			(WET)
_							
15'							End of boring 13.0' depth.
_							
┃ _							
20' _							
∥ –							
∦ –							
∥ -							
25'							
-							
-							
-							
30'							

		EEN ⁻ IMEN				SUBSURFACE LOG B-23	
PRO	JECT:	Forme	er K-Ma	rt Phas	e II ES	DATE START: 8/11/15 FINISH: 8/11/15	
CLIEN	NT: Tur	: East (mpike F	Redeve	lopmen		METHODS: 3 1/4" Hollow Stem Augers with ASTM D1586 Drilling Methods SURFACE ELEVATION:	
		ER: ET : CME)			INSPECTION: ORB
SAMF	PLE		BL	.ows on	SAMPLE	R	CLASSIFICATION / OBSERVATIONS
DEPTH	#	6"	12"	18"	24"	PID	+/- 8.5" Concrete
-	1	2	2	4	6	0	FILL: Brown F-C SAND (MOIST) Brown Mottled SILT and CLAY
5'	2	8	10	9	10	0	
	3	3	4	5		0	Similar with Silt Bands
	4	10	6	5	6	0	(MOIST) Brown SILT with Occasional Clay Bands
				6	8		(WET)
10'	5	5	6			0	Brown Banded SILT and CLAY with Occasional
_		10	10	7	14	0	Fine Sand Seams (WET) Brown SILT with Fine Sand Seams
	6	12	12	11	19	0	(WET)
15'							End of boring 13.0' depth. Installed groundwater monitoring well at 13.0' depth.
20'							
25'							
30'							

	ERGR /IRON					SUBSURFACE LOG B-24	
PRC	JECT:	Forme	er K-Ma	rt Phas	e II ES	DATE START: 8/11/15 FINISH: 8/11/15	
LOC	ATION	: East	Greenb	ush, Ne	ew Yorł	METHODS: 3 1/4" Hollow Stem Augers	
CLIE	NT: Tur	npike F	Redeve	lopmen	t Group	with ASTM D1586 Drilling Methods	
JOB	NUMB	ER: ET	E-15-68	5		SURFACE ELEVATION:	
DRIL	L TYPE	: CME	45C				INSPECTION: ORB
SAM	PLE		BL	OWS ON	SAMPLE	R	CLASSIFICATION / OBSERVATIONS
DEPTH	#	6"	12"	18"	24"	PID	+/- 3" Asphalt, +/- 6" Base
-	1	2	4			0	Gray Mottled to Brown/Gray Mottled SILT
_				4	6		and CLAY (MOIST)
	2	7	7			0	Similar with Silt Seams
5'				5	6		
	3	3	4	7	8	0	Grades Brown/Gray Mottled
_	4	8	8	1	0	0	
_				8	8		
10'	5	2	3			0	
_				5	7		
_	6	12	8	8	8	0	Grades (WET)
_	7	1	1	0	0	0	Similar with Fine Sand Partings
15'		-	-	2	4		(MOIST TO WET)
_							End of boring 15.0' depth.
–							
20'							
_							
∥ –							
25'							
- 25							
-							
30'							

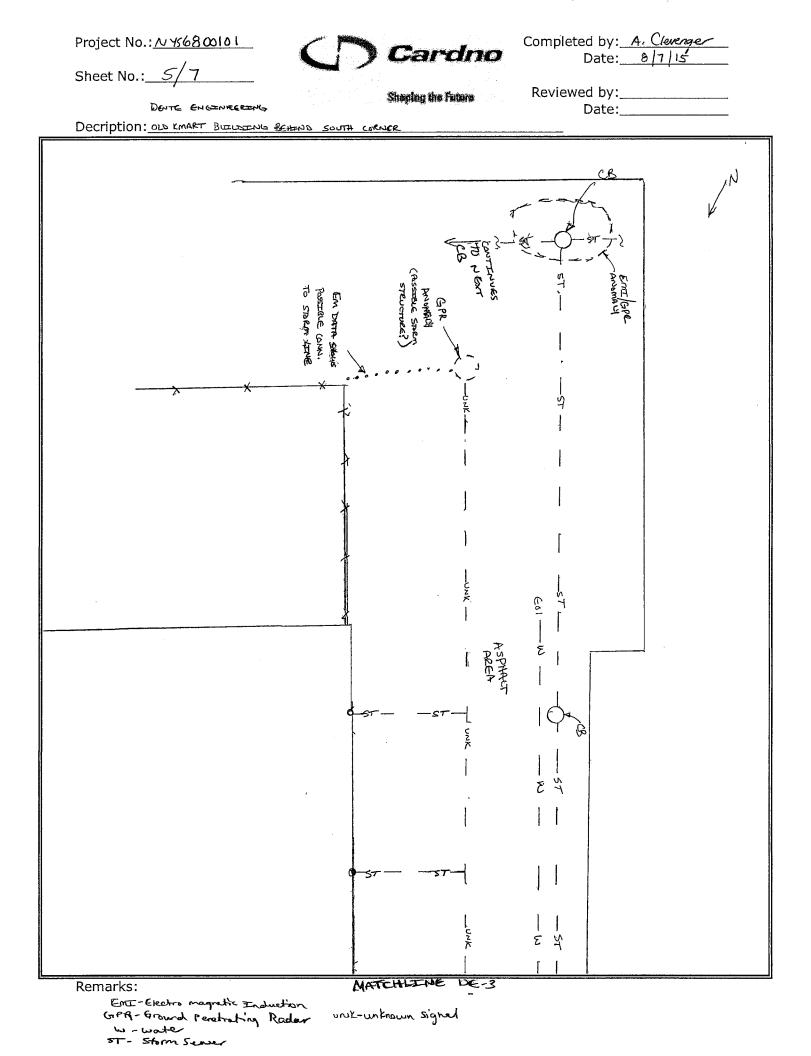

	ERGR /IRON					SUBSURFACE LOG B-25	
PRO	JECT:	Forme	er K-Ma	rt Phas	e II ES	DATE START: 8/11/15 FINISH: 8/11/15	
LOC	ATION	: East (Greenb	ush, Ne	ew York	METHODS: 3 1/4" Hollow Stem Augers	
CLIEI	NT: Tur	npike F	Redevel	opmen	t Group	D	with ASTM D1586 Drilling Methods
JOB	NUMBE	ER: ETI	E-15-65	5			SURFACE ELEVATION:
DRIL	L TYPE	: CME	45C				INSPECTION: ORB
SAMI	PLE		BL	OWS ON	SAMPLE	R	CLASSIFICATION / OBSERVATIONS
DEPTH	#	6"	12"	18"	24"	PID	+/- 6" Asphalt, +/- 3" Base
	1	6	4			0	FILL: Brown/Gray Mottled SILT and CLAY,
_				8	8		Some F-C Sand and Gravel (MOIST)
	2	8	8			0	Grades to Dark Brown and Gray (MOIST)
5'				6	7		Brown Mottled SILT and CLAY
_	3	3	5			0	
	4	5	11	9	9	0	
_	4	5		10	10	0	
10'	5	2	4		10	0	Similar with Silt Seams
				7	7		(MOIST)
	6	7	7			0	Brown SILT with Occasional Clay and Sand
				11	12		Seams
451	7	4	8	6	7	0	Grades (WET)
15'	8	1	3	6	7	0	Grades to Gray
	Ŭ		0	3	2		(MOIST TO WET)
							·
							End of boring 17.0' depth.
20'							
-							
25'							
_							
 _							
201 -							
30'							

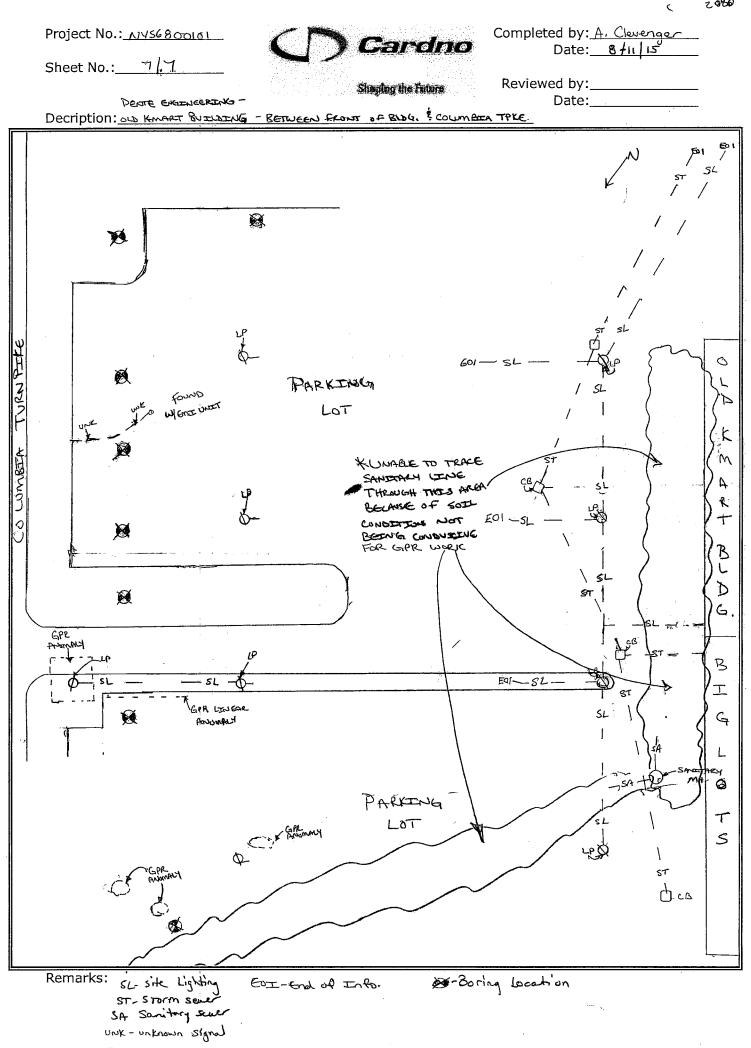
	ERGR /IRON					SUBSURFACE LOG B-26	
PRC	JECT:	Forme	er K-Ma	rt Phas	e II ES	DATE START: 8/12/15 FINISH: 8/12/15	
	ATION NT: Tur					METHODS: 3 1/4" Hollow Stem Augers with ASTM D1586 Drilling Methods	
JOB	NUMB	ER: ET	E-15-65	5		SURFACE ELEVATION:	
DRIL	L TYPE	: CME	45C				INSPECTION: ORB
SAM	PLE		BL	OWS ON	SAMPLE	R	CLASSIFICATION / OBSERVATIONS
DEPTH	#	6"	12"	18"	24"	PID	
	1	3	10	6		0	FILL: Gray SILT and CLAY, Little Stone and Wood (WET)
i –	2	6	4			0	Brown SILT and CLAY
5' _	3	4	8	6	6	0	Grades Little F-C Sand and Gravel, rootlets
_				12	10		
_	4	6	32	18		0	Brown Mottled F-C SAND, SILT, and GRAVEL
10'	5	11	17	10		0	(MOIST)
				15	16		
_	6	18	11	18	24	0	TILL: Brown to Gray F-C SAND, SILT, and GRAVEL (MOIST)
_				10	24		GRAVEL (MOIST)
15'							End of boring 13.0' depth.
_							
20' _							
25'							
∦ _							
30'							


	ERGR /IRON					SUBSURFACE LOG B-27							
PRO	JECT:	Forme	er K-Ma	rt Phas	e II ES	DATE START: 8/12/15 FINISH: 8/12/15							
LOC	ATION	: East (Greenb	ush, Ne	ew York	METHODS: 3 1/4" Hollow Stem Augers							
CLIE	NT: Tur	npike F	Redeve	lopmen	t Group	with ASTM D1586 Drilling Methods							
JOB	NUMBE	ER: ET	E-15-65	5		SURFACE ELEVATION:							
DRIL	L TYPE	: CME	45C			INSPECTION: ORB							
SAMPLE BLOWS ON SAMPLER							CLASSIFICATION / OBSERVATIONS						
DEPTH	#	6"	12"	18"	24"	PID							
	1	7	4	3	3	0	FILL: Gray Mottled SILT and CLAY, Little F-C Sand (MOIST)						
	2	7	7	5	5	0	Gray Mottled SILT, trace fine sand, rootlets						
5'				6	8		noted (MOIST)						
	3	4	5			0	Brown SILT and CLAY, Little Gray Mottling						
_				6	8								
_	4	10	12	12	14	0	Grades trace fine to coarse sand						
10'	5	4	5	12	14	0	Grades Brown/Gray Mottled SILT and CLAY						
				7	9								
_	6	12	10	10	10	0	Similar with Silt Seams						
_	7	3	3	10	12	0	Similar with Fine Sand Partings (WET)						
15'				7	8								
	8	1	4			0							
_				5	6								
-	9	10	10	14	8	3	TILL: Brown/Gray F-C SAND and SILT (WET)						
20'				14	0								
							End of boring 19.0' depth.						
_													
25'													
25 -													
-													
]						
30'													

	ERGR VIRON					SUBSURFACE LOG B-28							
PRO	OJECT:	Forme	er K-Ma	rt Phas	e II ES	DATE START: 8/12/15 FINISH: 8/12/15							
LOC		: East (Greenb	ush, Ne	ew Yorł	METHODS: 3 1/4" Hollow Stem Augers							
CLIE	NT: Tur	npike F	Redeve	lopmen	t Group	with ASTM D1586 Drilling Methods							
JOB	NUMBE	ER: ET	E-15-65	5		SURFACE ELEVATION:							
DRIL	L TYPE	: CME	45C			INSPECTION: ORB							
SAN	IPLE		BL	ows on	SAMPLE	R	CLASSIFICATION / OBSERVATIONS						
DEPTH	I #	6"	12"	18"	24"	PID	+/- 7" Asphalt, +/- 5" Base						
-	1	1	2			0	FILL: Brown/Gray Mottled SILT and CLAY						
				3	4								
5'	2	6	4	5	4	0	Grades to Dark Brown/Gray SILT, roots noted (MOIST)						
- T	3	1	4	5	-	0	Gray to Brown/Gray Mottled SILT and CLAY,						
-				5	6		rootlets noted						
-	4	12	12			0							
				15	12								
10'	5	3	4	6	6	0	Similar with Silt Seams (WET) (MOIST TO WET)						
-	6	4	4	0	0	0	Brown SILT, Little Clay and Fine Sand						
-				6	8								
-	7	2	3			0	Grades Brown Silt, Little Gray Mottling						
15' -				4	3								
-	8	1	2	3	3	0	Similar with Clay Seams (WET)						
-													
-							End of boring 17.0' depth.						
20'													
-													
-													
-													
25'													
-													
-													
30'													

APPENDIX E


- 131 VO47


Project No .: NYS6800101 Completed by: A. Clevenger Cardno Date: 8 7 15 41 Sheet No.:_ Reviewed by:___ Shaping the Fature Date:_____ DENTE ENGENEERENG-Decription: as kmart BUILDING -BEHAND BUILDING NEAR LOVER LOADING DOCK MATCHILINE DE-'S N, Ż È V GPR SA. FORMER HYDEANT ÷Χ E 2 స SHEET 1 SEE FOR INFORMATION 2 ц Г ñ ٤ 5 -CAN ST $|\rangle$ PUTCHO DOCK AREA UNK F \$ ε ST ST GPR/Ent ANAMALY Å ٤ SAT. DISH CA3 [BUTLOWIC CAN 524 ٤ Ŷ MATCHEENE DE-2 Remarks: ST-Storm Sever - Water CATV- Cable TV

CATV- Cable TV UNK-UNKnown signal

Project No.: <u>NYS 6800101</u> Sheet No.: <u>67</u> Devite Enconcertna- Decription: <u>OLD KMART BUELDENG - A</u>	Shaping the Faters	Completed by: <u>A.Clevenger</u> Date: <u>8/11/15</u> Reviewed by: Date:	
		}	N
	"BZG LO BUILDING	τs'	MATCHEANE DE-1
		GPR ANOMALY TEHAT APPEARS TO BE CHARAG TERISTIC OF CONCRETE SLAB W/REBAR UNDERNIENTH THE ASPHALT.	

		ł	R	J	e	2	r	٦	r	1	ĉ	1	I	-	ļ	Ċ	5	5	3	

APPENDIX F

Ground Penetrating Radar View north along the rear side of the subject building

View north toward an anomaly adjacent to Columbia Turnpike

View west toward an identified anomaly

Anomalies located at the rear of the subject building

REC#2 - 10,000 Gallon Underground Storage Tanks View east toward B-3

View east toward B-2

View north at B-1

View north toward the area of B-4

REC#3, 7, and 9 - Possible Additional Underground Storage Tanks, Onsite Spills Cases View south toward B-10 V

View east toward B-17

View northeast toward B-19 (foreground) and B-18 (background)

View south toward anomalies and B-24

REC #4 - Oil/Water Separator View east toward a sanitary sewer line extending east from the oil/water separator

View east toward B-5 (foreground) and B-7 and -8 (background) surrounding the oil/water separator

REC #5 and #6 - Floor Drains and Underground Lifts Drill rig located on B-22

Delineated floor drain lines

Underground lift cylinder and floor drains

Trench and lift cylinder with free product

REC #8 - Diamond Plate Access Doors


View of pit located under access doors within the Big Lots break room

Associated exterior diamond plate doors

Tracer Dye Test Drain in which tracer dye was poured

Tracer dye (green) outletting into the oil/water separator

