

October 4, 2012

New York State Department of Environmental Conservation 1130 N. Westcott Road Schenectady, New York 12306 Attn: Mr. Howard Brezner

RE: Remedial Design Work Plan, Phase 2, Operable Unit Number 2, for the Congress Street Facility of SI Group, Inc. NYSDEC Site Code: HW447007 CHA Project #: 15091.5007.44000

Dear Mr. Brezner:

On behalf of SI Group, enclosed is the Remedial Design Work Plan for Phase 2, Operable Unit Number 2 at the Congress Street Facility of SI Group, Inc. The Remedial Design Work Plan has been prepared in compliance with the Record of Decision that was approved by the New York State Department of Environmental Conservation (NYSDEC) on December 21, 2010.

Electronic copies of the Remedial Design Work Plan are being provided on the enclosed CDs. Hard copies of the Remedial Design Work Plan can be provided upon request.

If you have any questions, please call me at (518) 453-2897.

Sincerely,

Lany Kelighaur

Laury Bibighaus Associate

cc: Chief USEPA NY Section, RCRA Program Branch 290 Broadway New York, NY 10007 ecc: Mr. Howard Brezner, NYSDEC Region 4, <u>hsbrezne@gw.dec.state.ny.us</u> Mr. Charles Post, NYSDEC Region 4, <u>chpost@gw.dec.state.ny.us</u> Mr. Robert Cozzy, NYSDEC, <u>rjcozzy@gw.dec.state.ny.us</u> Mr. Christopher M. Doroski, NYSDOH, <u>cmd16@health.state.ny.us</u> Mr. Charles Gardner, SI Group, <u>chuck.gardner@siigroup.com</u> Mr. Kevin Kogut, SI Group, <u>kevin.kogut@siigroup.com</u> Mr. Mark Normandin, SI Group, <u>mark.normandin@siigroup.com</u> Mr. Andy Barrett, SI Group, <u>andy.barrett@siigroup.com</u> Mr. Keith Cowan, CHA, <u>kcowan@chacompanies.com</u>

Remedial Design Work Plan

Phase 2 Operable Unit No. 2

SI Group Congress Street Facility Site No. 447007

CHA Project Number: 15091

Prepared for:

SI Group, Inc. 1000 Main Street, Route 5S Rotterdam Junction, New York

Prepared by:

III Winners Circle Albany, New York 12205 (518) 453-4500 (518) 453-4773 - Fax

September 2012

V:\Projects\ANY\CivData\15091\CS\Phase 2 Design\5007 Phase II\Report\Phase II Remedial Design Work Plan.docx

CERTIFICATION

I, the undersigned, certify that I am currently a NYS registered professional engineer and that the Remedial Design Work Plan was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

For Clough Harbour & Associates LLP:

Richard M. Loewenstein Jr., P.E.

Printed Name of Certifying Engineer

10 2

Date of Certification

069787

Registration Number

New York

Registration State

CHA Consulting Inc.

Company

Senior Vice President

Title

Signature of Certifying Engineer

TABLE OF CONTENTS

1.0	INTRODUCTION1							
	1.1	Background						
		1.1.1	-	ory				
		1.1.2	1.1.2 Summary of Past Investigations & Studies					
		1.1.3		y of Remedial Activities				
	1.2	Purpo	Purpose of the Phase 2 Remedial Design Work Plan					
	1.3							
2.0	PHASE 2 REMEDIAL DESIGN1							
	2.1		e Preparation					
		2.1.1 Stormwater Pollution Prevention						
		2.1.2 Monitoring Well Abandonment						
		2.1.3		ervices				
	2.2	Enhanced Soil Vapor Extraction System						
		2.2.1		or Extraction Pre-Design Investigation				
		2.2.2		tem Design Parameters				
			2.2.2.1	Extraction Well Spacing				
			2.2.2.2	SVE System Air Flow Rate				
		2.2.3	System (Components				
			2.2.3.1	SVE Wells	17			
			2.2.3.2	SVE Piping Network	19			
			2.2.3.3	Blower System	20			
			2.2.3.4	Air Flow Control	21			
			2.2.3.5	Air Treatment System	22			
			2.2.3.6	Equipment Enclosure				
	2.3	Dewa	tering by (Groundwater Extraction				
		2.3.1	Groundw	vater Extraction Pre-Design Investigation	24			
		2.3.2		vater Extraction System Design Parameters				
			2.3.2.1	Groundwater Extraction Well Spacing	25			
			2.3.2.2	Groundwater Extraction Rates	26			
			2.3.2.3	Flow & Contaminant Loadings to Existing Treatment Pla	ant 26			
		2.3.3 Groundwater Extraction System Components						
			2.3.3.1	Dual Phase Extraction Wells	27			
			2.3.3.2	Groundwater Extraction Piping System	27			
			2.3.3.3	Groundwater Extraction Pumps				
			2.3.3.4	Compressed Air System				
			2.3.3.5	Equipment Enclosure				
	2.4	Cond	uctive Soil	Heating Wells	30			

CHA

		2.4.1 Conductive Soil Heating System Design Parameters	30			
		2.4.2 Conductive Soil Heating System Components	31			
		2.4.2.1 Conductive Soil Heating Wells	31			
		2.4.2.2 Reverse Return Header System	32			
		2.4.2.3 Heat Transfer Fluid	32			
		2.4.2.4 Boiler System	32			
		2.4.2.5 Equipment Enclosure	33			
	2.5	Bioventing	33			
	2.6	Site Access, Security and Work Zones	34			
	2.7 Storm water and Wastewater Management					
	2.8	Transportation of Contaminated Materials				
	2.9	Air Monitoring During Remedy Implementation	36			
	2.10	Community and Environmental Response Plan				
	2.11	Required Permits and Other Authorizations	37			
	2.12	"As-Built" Plans and Certification	38			
	2.13	Green Remediation	38			
3.0	SITE MANAGEMENT PLAN					
	3.1	Institutional and Engineering Control Plan				
		3.1.1 Institutional Controls				
		3.1.2 Engineering Controls	44			
	3.2	Monitoring Plan				
	3.3	Operation and Maintenance Plan				
4.0	SCHE	SCHEDULE				

LIST OF FIGURES

Site Location Map Figure 1 Figure 2 Site Plan

APPENDICES

- Phase 2 Detail Design Drawings Appendix A
- Appendix B NYSDEC Record of Decision
- Appendix C Pre-Design Investigation Report for Phase 2
- In-Situ Treatment Calculation Package Appendix D
- Soil and Stormwater Management Plan Appendix E
- Health & Safety Plan Appendix F
- Appendix G Community Air Monitoring Plan
- Appendix H Community and Environmental Response Plan

LIST OF ACRONYMS & ABBREVIATIONS

bgs CAMP cf cfm CERP CHA DER EPA FS GAC gpd gpm HDPE ID LNAPL NCP NTU NY NYCRR NYSDEC NYSDOH O&M OU PID PPM PRAP PSI PVC RDWP RI ROD ROI SMP SVE	Below the Ground Surface Community Air Monitoring Plan Cubic Feet Cubic Feet Per Minute Community & Environmental Response Plan Clough Harbour & Associates LLP Division of Environmental Remediation Environmental Protection Agency Feasibility Study Granular Activated Carbon Gallon per Day Gallon per Minute High Density Polyethylene Inside Diameter Light Non-Aqueous Phase Liquid National Contingency Plan Nephelometric Turbidity Unit New York New York Code, Rules & Regulations New York State Department of Environmental Conservation New York State Department of Health Operation & Maintenance Operable Unit Photoionization Detector Parts per Million Proposed Remedial Action Plan Pounds Per Square Inch Polyvinyl Chloride Remedial Design Work Plan Remedial Investigation Record of Decision Radius of Influence Site Management Plan Soil Vapor Extraction
	0
-	
SVE	
SVI	Soil Vapor Intrusion
SVOC	Semivolatile Organic Compound
TAGM	Technical & Administrative Guidance Memorandum
US	United States
USACE	United States Army Corps of Engineers
VFD	Variable Frequency Drive
VOC	Volatile Organic Compound

1.0 INTRODUCTION

1.1 BACKGROUND

1.1.1 Site History

SI Group, Inc. (SI Group) owned and operated a chemical manufacturing facility located in Schenectady, New York at Congress Street and Tenth Avenue that is herein referred to as the Congress Street facility (Figure 1). The Congress Street facility (Site) began operations in 1910 and expanded operations over the years by adding buildings and developing the Site. In 1996, the facility was producing wire enamels for electrical insulation, insulating varnishes for electrical motors, industrial enamels, and others resins for coatings and adhesives. In addition, the Site served as the corporate headquarters for SI Group's domestic and international operations.

During the facility's more than 85 years of operation, a number of spills occurred at the Site which resulted in chemical releases to the environment. During the period of 1984 through late 1995, when the facility was still in operation, a number of investigations were completed with the objective of defining the extent of environmental impacts at the Site.

1.1.2 Summary of Past Investigations & Studies

In 1994/1995, SI Group conducted a Remedial Investigation/Feasibility Study (RI/FS) of the Congress Street facility. The results of the RI were presented in the report entitled "Remedial Investigation Report" (RI Report) and dated January 16, 1996. The RI Report was approved by New York State Department of Environmental Conservation (NYSDEC) in their letter dated March 5, 1996.

Based on the results of the RI Report, a FS was conducted that evaluated a number of general response actions, technologies and process options for remediation at the Site. Remedial alternatives for the Site were assembled using the general response actions, technologies and process options retained from the initial screening. In total, seven remedial alternatives were retained for detailed analysis.

The results of the Feasibility Study were presented in the report entitled "Feasibility Study Report" (FS Report) that was submitted to NYSDEC on July 5, 1996. Based on a review of Site conditions and the remedial alternatives, NYSDEC decided to split the remediation of the Site into two separate programs or operable units. The first operable unit (OU1) was established to address the potential migration of contamination off-site. The RI indicated that contaminated groundwater was leaving the Site and discharging to the Cowhorn Creek. To address the migration of contaminated groundwater off-site, NYSDEC approved one of the selected remedial options detailed in the FS Report which would contain and treat the impacted groundwater. The remedial system consisted of a "french drain" with a number of vertical wells to assure capture of contaminated groundwater leaving the Site. The "french drain" is located along the southern end of the Site. The collected groundwater and contaminants consisting of light non-aqueous phase liquid (LNAPL) would be treated either on-Site or off-site. Institutional controls would also be implemented that would involve the continued maintenance of the security fence around the perimeter of the Site and the implementation of appropriate deed restrictions on the property. NYSDEC's determination was recorded in a "Record of Decision" (ROD) that was issued in March 1998. The collection trench and treatment plant are still active at the Site.

The second operable unit (OU2) represented the Site and the contaminated soils that are present on-Site. In 1996, the Congress Street facility was in operation with most of the Site covered in buildings, roads, utilities, and other structures that significantly restricted access to the contaminated soils at that time. It was agreed to with NYSDEC that potential remedial options would be evaluated for the remediation of the contaminated soils. The results of the evaluation were submitted to NYSDEC as an addendum to the Feasibility Study Report in January 1997 (Supplemental FS). Due to the inaccessibility of the soils, SI Group agreed to re-evaluate potential remedial options on an annual basis to determine if new remedial technologies had become available that could be used or if Site conditions had changed that would allow remediation of the Site. Annual updates to the Supplemental FS, which reviewed new remedial technologies and Site conditions, were submitted to NYSDEC until 2007, when work was initiated to update the RI and FS for the Site. Production at the Site ceased in 1997, and in 2004, SI Group removed all the aboveground process equipment, storage tanks, piping and buildings remaining on-Site except for a small building used to house the groundwater treatment system (Figure 3). With the buildings removed, Site conditions changed, resulting in the on-Site soils becoming accessible and, thereby, allowing investigation of the entire Site and evaluation of potential remedial alternatives to address OU2. A "Work Plan to Update the Remedial Investigation/Feasibility Study" (Work Plan) was prepared in August 2007 describing the work to be performed to update the Remedial Investigation and Supplemental Feasibility Study (RI/FS) for the Congress Street Site. The Work Plan was approved by NYSDEC in a letter dated August 16, 2007.

The field activities to update the RI were conducted in accordance with the approved Work Plan from September 2007 to December 2007. The results of the investigation were presented in the "Updated Remedial Investigation Report" dated February 22, 2008 (Updated RI Report). Comments from the NYSDEC and the New York State Department of Health (NYSDOH) were received on May 29, 2008. SI Group submitted a revised Updated RI Report in response to those comments on September 16, 2008.

In addition to minor revisions to the Updated RI Report, NYSDOH required SI Group to complete a Soil Vapor Intrusion (SVI) Investigation along the property's boundaries. This investigation was completed in December 2008. Additional comments were received from NYSDEC and NYSDOH on December 8, 2008 based on a preliminary review of the SVI Report. On January 8, 2009, the final Updated RI Report, along with the SVI Report and responses to NYSDEC comments, were submitted to NYSDEC. The Updated RI Report was approved by NYSDEC in a letter dated February 1, 2009.

Based on NYSDEC's acceptance of the Updated RI, an Updated Supplemental Feasibility Study (FS), dated March 2010, was prepared to identify the remedial alternative, or alternatives, which will address the on-Site environmental conditions associated with the Congress Street Site. The remedial alternative evaluation presented in this Updated Supplemental FS was conducted in accordance with Title 6 of the New York Codes, Rules and Regulations, Part 375 (6 NYCRR Part 375), the National Contingency Plan (NCP), the United States (US) Environmental

Protection Agency (EPA) guidance document entitled "Guidance for Conducting Remedial Investigation and Feasibility Studies Under CERCLA" (EPA/540/G-89/004) (EPA RI/FS Guidance) dated October 1988, the NYSDEC Technical and Administrative Memorandum (TAGM) entitled "Selection of Remedial Actions at Inactive Hazardous Waste Sites" (HWR-90-4030) dated May 15, 1990 (TAGM 4043), and the NYSDEC Draft DER-10 Technical Guidance for Site Investigation and Remediation (DER-10).

The remedial alternatives analysis that was presented in the Updated Supplemental FS was utilized by NYSDEC to prepare a Proposed Remedial Action Plan (PRAP) for OU2. The PRAP was issued for public review and comment on September 15, 2010. As a result of the RI and FS actions, as well as comments received on the PRAP, NYSDEC issued a Record of Decision (ROD) on December 21, 2010 that identified the selected remedy for OU2.

1.1.3 Summary of Remedial Activities

Due to distinct soil and engineering concerns, as well as the nature and distribution of contamination, the Site is divided into two areas for remediation purposes. These areas include the Fill Area and the Process Area, as shown in Figure 2. In general, the selected remedy for the Fill Area included the installation of a permeable cap combined with natural attenuation, whereas the selected remedy for the Process Area included product removal via excavation combined with thermally-enhanced soil vapor extraction followed by bioventing. The selected remedy for each area also required the continued operation of the existing groundwater collection and treatment system (installed to address OU1) to provide continued hydraulic containment of contaminated groundwater. The nature and extent of contamination associated with the Fill Area and the Process Area, as well as a summary of the selected remedial alternative for each area is summarized in the December 2010 NYSDEC ROD, which is included in Appendix B.

Due to the current conditions at the Site and the fact that the selected remedial alternative has the multiple components, the remediation of the Congress Street site was divided into two separate phases. The two-phase approach allowed for initial site preparation activities to be completed in 2011 along with a limited pre-design investigation during the Spring 2012 prior to the design of

the more complex portions of the remediation program, including the thermally-enhanced soil vapor extraction (SVE) system.

Details associated with the Phase 1 Site Preparation of OU2 activities are summarized in the *Pre-Design Investigation Report for Phase 2* (CHA, August 2012) and *Construction Completion Report for Phase 1 Site Preparation* (CHA, August 2012) and generally included the following activities:

Preparation of the Process Area

Preparation of the Process Area for the installation of the thermally-enhanced SVE system included the following elements:

- Removal of all concrete slabs and asphalt pavement to the full depth encountered in the limits of work. The concrete slabs and asphalt pavement which extended beyond the limits of work were saw cut to provide a clean, straight edge.
- Removal of all concrete foundations, walls and vertical structures to a depth of 1 foot below existing grade.
- Removal of any obstructions including trees, shrubs, stumps, roots, grass and other vegetation within the work area.
- Removal of a rail siding located within the limits of work.
- Disconnection and sealing or capping all remaining underground sewer lines not servicing the facility.
- Installation of a non-woven geotextile fabric over the existing Site subgrade following removals to serve as a demarcation layer.
- Removal of 481 tons of highly contaminated soil located beneath the concrete slabs and asphalt pavement. These grossly contaminated soils were disposed off-site at a permitted facility.
- Re-use of concrete removed as part of the demolition activities as fill material by crushing on-Site. Reinforcing steel was removed and sent off-site for recycling. All concrete was cleaned of grossly contaminated soil prior to crushing.
- Importation of additional clean fill, as needed, to establish the specified final grades.

- Fertilization, seeding and installation of an erosion control blanket over soil cover areas.
- Disposal of all asphalt removed at an off-site location.
- Installation of a toe drain and sump for the collection of surface water. The sump is connected to the groundwater treatment system.
- Installation of an asphalt cap over the Process Area.

Preparation of the Fill Area

Preparation of the Fill Area for the installation of the permeable cover included the following elements:

- Removal of all concrete slabs, loading dock and other surface obstructions in the limits of work.
- Re-grading of the subgrade adjacent to the groundwater treatment building for the installation of the permeable cover system.
- Disconnection and sealing or capping all remaining underground sewer lines not servicing the facility.
- Removal of less than 1 cubic yard of white colored contaminated soil. The contaminated soil was disposed off-site at a permitted facility based on the characterization of the material.
- Installation of a non-woven geotextile fabric to serve as a demarcation layer.
- Re-use of concrete removed as part of the demolition activities as fill material by crushing on-Site. Reinforcing steel was removed and sent off-site for recycling. All concrete was cleaned of grossly contaminated soil prior to crushing.
- Disposal of all asphalt removed at an off-site location.
- Installation of a stormwater retention basin to the south of the groundwater treatment building.
- Importation of additional clean fill, as needed, to establish the specified grades.
- Fertilization, seeding and installation of an erosion control blanket over soil cover areas.

Fill Area Permeable Cover Installation

Upon completion of the Fill Area preparation activities, a permeable cover consisting of either a gravel cover or a seeded soil cover was installed. In areas where vehicle traffic was anticipated, a twelve (12) inch thick gravel cover was installed over a non-woven geotextile fabric demarcation barrier. All remaining areas of the Fill Area were finished with a non-woven geotextile fabric demarcation barrier and a minimum of twelve (12) inches of soil cover, with the upper six (6) inches of soil consisting of topsoil.

Pre-Design Investigation

A pre-design investigation was conducted to obtain additional Site data for the design of the Phase 2 Remedial Design. Investigation activities included the following:

- Installation of groundwater extraction wells, SVE wells and piezometers.
- Determination of the maximum sustainable rate of groundwater extraction that is achievable to lower the water table in the Treatment Area and increase the treatment depth of the SVE system.
- Determination of the radius of influence (ROI) for the groundwater extraction wells and the SVE wells.
- Installation of soil borings for the collection of soil samples along the rail spur alignment and surrounding Process Area

An electronic copy of the *Pre-Design Investigation Report for Phase 2* is provided in Appendix C.

1.2 PURPOSE OF THE PHASE 2 REMEDIAL DESIGN WORK PLAN

The remedial action(s) for the Site has been selected to eliminate or mitigate the threat that the property presents to public health and the environment in accordance with the ROD issued by the NYSDEC on December 21, 2010. As noted previously, the remediation of the Congress Street site will be completed in two phases. The first phase, already completed in 2011 and 2012, was to prepare the Process Area for installation of the thermally-enhanced SVE system, obtain the necessary design information to complete the design of the treatment system, and install the

permeable cap for the Fill Area. The second phase will be the installation and operation of the thermally-enhanced SVE system to treat the volatile organic compounds (VOCs) in Site soil followed by bioventing to promote the natural biodegradation of semi-volatile organic compounds (SVOCs) in Site soil.

The purpose of this Phase 2 Remedial Design Work Plan (RDWP) is to present the detailed design for the in-situ remediation system to be installed within the Process Area.

1.3 SCOPE OF THE PHASE 2 REMEDIAL DESIGN

The Phase 2 detailed design is in accordance with the conceptual design as described in the ROD for OU2. The following are the specific elements of the Phase 2 Remedial Design:

Technical Design Elements:

- Site Preparation Design to allow for the installation of the in-situ remediation system. The Site Preparation design includes control of runoff from the Process Area asphalt cap during installation of design components (sediment control measures) and soil handling procedures.
- Remedial Design Systems:
 - 1. Soil Vapor Extraction (SVE) Wells to allow for the collection of soil vapors generated during soil heating activities via the conductive soil heating wells. The design includes the installation of SVE wells, associated cyclonic moisture separator, blower system, piping, gauges and a soil vapor treatment system.
 - 2. Groundwater Extraction to allow for dewatering of the Treatment Area, consisting of Area A and the remaining Rail Siding Area, by approximately 2 feet below static water levels. The design includes the installation of groundwater dewatering wells and associated piping, equipment, pumps, etc.
 - 3. Conductive Soil Heating Wells to allow for the heating of Treatment Area soils to a temperature between 85 degrees Fahrenheit (°F) and 95°F. The design includes the installation of conductive soil heating wells and the associated hot water system, equipment, piping, gauges, insulation, etc.
 - 4. Bioventing to introduce oxygen to subsurface soils within the Treatment Area to enhance in-situ bioremediation of residual VOCs and SVOCs. The SVE system will be modified to a bioventing system following the removal of VOCs within

the soil to a point where biological activities within the soil are active and the SVE system is no longer efficiently removing VOCs. The design includes modification procedures to the SVE system.

Design Support Elements:

- Site access, security and work zones;
- Stormwater and wastewater management;
- Soil and stormwater management plan;
- Transportation of contaminated materials;
- Community Air Monitoring Plan;
- Community and Environmental Response Plan;
- Site Health and Safety Plan;
- Required permits and other authorizations;
- "As-Built" plans and certification
- Green remediation
- Site Management Plan necessary for operation, maintenance and monitoring activities; procedures and protocols to be implemented after remediation construction has been completed; and
- Schedule for Phase 2 construction elements.

2.0 PHASE 2 REMEDIAL DESIGN

The Phase 2 Remedial Design includes the detailed design for in-situ treatment of the Treatment Area (Area A and the remaining Rail Siding Area) using thermally enhanced SVE and bioventing at the Congress Street Site. The associated design plans and specifications, which are signed and stamped by a professional engineer licensed to practice in New York State, will be used to procure a contractor, install the remediation design components (e.g., wells, treatment systems, etc.), operate the remedial systems in the Treatment Area under monitoring performed by an engineer/scientist, and the dismantling/demobilization of equipment following the completion of the active remediation phase. Abandonment of the well network and off-site deposition of disposable materials will be addressed in the Site Management Plan (SMP).

The Phase 2 Remedial Design for the Process Area is shown in the design drawings enclosed in Appendix A. Construction documents will be prepared subsequent to the NYSDEC's approval of the Work Plan and prior to soliciting bids from contractors. Support calculations for design basis are located in Appendix D. The design for the Phase 2 Remedial Design activities to be completed in the Treatment Area includes the following major components, which will be discussed in more detail in subsequent sections of the RDWP:

- Installation of a soil vapor extraction (SVE) system to remove the most significant VOC contaminants within the Treatment Area. The SVE system will eventually reversed to inject air into the Treatment Area as a bioventing system and enhance the natural biodegradation of residual VOCs and the SVOCs within the Treatment Area.
- Installation of a groundwater extraction well system to lower the groundwater table within the Treatment Area to enhance the operation of the SVE system in the capillary fringe area immediately above the static water level and within the zone of water table fluctuation.
- Installation of a conductive heating system to heat the subsurface soil temperature to a level that will both enhance the efficiency of the SVE system by increasing the volatilization of VOC contaminants, increase efficiency of the SVE system by evaporating moisture in the soil pore space, and enhancing natural biodegradation rates within the Treatment Area.
- Management and off-site disposal of soil cuttings for the subsurface well installation. Additionally, contaminated water generated from well development and/or decontamination activities will be managed and treated on-Site.

Installation and operation of the Remedial Design components will occur on a phased approach as shown on the Drawings in Appendix A. It is anticipated that the Remedial Design components will be installed within two (2) to three (3) years of initiation of construction. Upon completion of each phase, that portion of the in-situ Remedial Design will be placed into operation per the Site Management Plan. It is anticipated that the in-situ Remedial Design components will not operate during the winter months due to freeze/thaw issues. The system will likely operate from March through December each year, but will be adjusted based on field conditions encountered.

2.1 SITE PREPARATION

2.1.1 Stormwater Pollution Prevention

Prior to initiating any site work, sediment and erosion control measures will be implemented, as necessary, to control stormwater runoff from the Process Area asphalt cap. Currently, all work associated with the Phase 2 Remedial Design will be conducted on the asphalt cap. While a number of holes will be cored through the pavement as part of the remedial construction, the area of the disturbance will be minimal and the pavement will patched around each well location. Additionally, the silt fence installed along the down-gradient side of the Site installed as part of the Phase 1 Site preparation activities will be maintained throughout the Phase 2 intrusive activities.

In the instance where land disturbance is necessary, such as those required for subsurface utility installations, temporary seeding or mulching will be used in areas which will be exposed for more than fourteen (14) days. Permanent stabilization will be performed as soon as possible after completion of work. After the entire project area is stabilized, the accumulated sediment shall be removed and managed in compliance with the Soil and Stormwater Management Plan enclosed in Appendix E. Erosion control devices will remain in place until disturbed areas are permanently stabilized. The soil stabilization measures selected will be in conformance with the most current version of the technical standard, New York Standards and Specifications for Erosion and Sediment Control.

2.1.2 Monitoring Well Abandonment

There are a number of existing monitoring wells located within the Treatment Area, and where possible, these wells will be protected from disturbance during the remedial activities. However, based upon the number of wells that will be installed for the Phase 2 remediation activities, some existing monitoring well locations are in conflict with the SVE wells or the conductive heating wells, and therefore, will require abandonment. All wells will be abandoned in accordance with NYSDEC's *CP-43: Groundwater Monitoring Well Decommissioning Policy*.

2.1.3 Utility Services

A number of utilities are required to implement the proposed Phase 2 remediation activities, including the following:

- Electric service: Most of the equipment utilized for the remediation will require electrical service to operate, including items such as the blower for the SVE system, the air compressor system associated with the groundwater extraction system, the circulation pumps in the conductive heating system, transfer pumps, controls for all systems, lighting inside the equipment enclosures, etc.
- Natural gas service: The boilers used for the conductive heating system will be operated on natural gas.
- Water service: A potable water service will be required to supply water for decontamination activities, potentially as part of the heating fluid in the conductive heating system, etc.

The electrical service will be installed overhead with the installation of new utility poles as required and all other utilities will be installed in the subsurface. Prior to issuing the design documents for the solicitation of bids, coordination with the utility owners will be completed. Specifically, CHA will coordinate obtaining a water service with the City of Schenectady Water Department and National Grid for the electrical and natural gas services. To minimize the disturbance to the Site, the subsurface utility services will likely be installed via directional drilling.

2.2 ENHANCED SOIL VAPOR EXTRACTION SYSTEM

As previously indicated, thermally-enhanced SVE followed by bioventing to promote biodegradation was selected as the remedial design technology for the Treatment Area. In order to design the SVE system, Site specific information was obtained as part of the Phase 1 Pre-Design Investigation completed in the Spring of 2012. As part of the pre-design investigation a series of SVE wells were installed within the Treatment Area. Information obtained from the Phase 1 Pre-Design Investigation is summarized in subsequent sections along with remedial design details for the SVE wells and treatment system. An electronic copy of the *Pre-Design Investigation Report* is contained in Appendix C.

SVE is an in-situ remediation technique that uses induced air flow via a vacuum system to extract volatile and some semivolatile organic contaminants from the vadose zone soils. The extracted air stream is then treated to remove the contaminants prior to discharge to the atmosphere. For this Site, the system will also include an existing asphalt cap over the Treatment Area and air vents that can provide makeup air so that the SVE system can maintain sufficient air flow.

Dual phase extraction is the use of two systems within the same well to withdraw contaminants from the soil, thereby reducing the number of extraction points within the Treatment Area. For this Site the dual phase extraction systems include the SVE and groundwater dewatering systems within the same well. Some dual phase extraction systems use a single pumping system to remove the soil vapor and groundwater; however, two separate pumping systems will be used for the dual phase extract system at the Congress Street site. As discussed in more detail in subsequent systems, a "two pump" has been designed for this Site, including a series of groundwater extraction pumps and a separate blower system to extract the soil vapors.

2.2.1 Soil Vapor Extraction Pre-Design Investigation

The Pre-Design Investigation involved the installation of three vapor extraction wells (SVE 1 through SVE 3) to a depth between 15 and 20 feet below the ground surface (bgs). Adjacent to

the vapor extraction wells, vacuum well clusters were installed to measure the response to lowering the pressure in the vapor extraction wells. Vacuum well clusters were installed at distances of 5 and 10 feet from the vapor extraction well. Each vacuum well cluster consisted of three wells installed in a single borehole creating a shallow, intermediate and deep monitoring point.

SVE testing was conducted using a mobile pilot test unit consisting of a regenerative blower (7.5 horsepower) in conjunction with a cyclonic knockout unit, a moisture separator with transfer pump, and two, 55-gallon, vapor phase carbon vessels connected in series. The pilot test unit was connected to each well head and the blower was operated at three different rates of withdrawal for a total of five to six hours. The three rates of withdrawal were maintained for approximately one to two hours each in order to ensure that the system of wells was able to maintain a steady reduced pressure and collection of soil vapor was established.

Real time monitoring of the transducer data was not available with the equipment utilized for the testing. The analog pressure gauge installed at the SVE well was used to determine the amount of pressure reduction applied and verify that the pressure remained steady at the test well. The wells involved in the testing and monitoring remained sealed during the testing. The data collected during the test was downloaded from the transducers following completion of the test. The results of the testing was not available until after the testing was completed, and therefore, the measured pressure effect in the soil could not be used as an indicator concerning the effect of decreasing the pressure in the test well, or if the effect of the testing had reached a particular distance from the test well. These limitations were managed by running the test for a significant amount of time at each pressure, and using the minimum pressure available as the final testing step.

The pressure transducers operated within the range of pressure used during the test, which in this case was -60 inches of water column. The testing was conducted at three steps of pressure reduction, -20 inches of water column, -35 inches of water column, and -50 inches of water column. The test system was able to achieve and maintain the reduction in pressure attempted to complete the testing. An Omega HHF42 hot wire anemometer was utilized to collect periodic

velocity readings in the 2-inch diameter polyvinyl chloride (PVC) pipe connecting the test well to the blower. Readings collected were between 400 and 1,040 feet per minute, with an average of 700 feet per minute which is equivalent to a flow rate of approximately 15 cubic feet per minute (cfm).

2.2.2 SVE System Design Parameters

2.2.2.1 Extraction Well Spacing

Utilizing the results of the Pre-Design Investigation for the field SVE testing, it was first required to determine the maximum radius of influence for the SVE system. In the 1990s, the EPA had designed a program for SVE design based on a paper by P.C. Johnson that was published in the Spring 1990 issue of *Ground Water Monitoring Review* and is referenced in the calculations. This paper was used in the determination of the ROI for the Treatment Area. The radius of influence for the SVE system is the distance at which the induced vacuum from the SVE would create a minimum vacuum of $0.1 \text{ inH}_2\text{O}$.

During the pre-design investigation, induced vacuum at the extraction well was compared against vacuum observed in monitoring wells located 5 and 10 feet away from the extraction well. Comparisons of the collected data were used to calculate the radii of influence. The ROI for each monitoring well observation was plotted on a chart against the induced vacuum at the extraction well and each data set was fit with a best-fit exponential curve. After the trend lines were established, the ROI at -80 inH₂O was estimated from the trend lines for each data set. The estimated ROI were averaged to determine that the maximum ROI for the SVE system at 15.7 feet, which is greater than the 15-foot ROI for the groundwater dewatering system. As discussed in Section 2.3.2, the ROI of the SVE system is greater than that of the groundwater dewatering system. Thus, the spacing for the groundwater extraction system may be duplicated with the SVE system and dual phase extraction is feasible.

2.2.2.2 SVE System Air Flow Rate

The maximum air flow of the wells was determined using the United States Army Corps of Engineers (USACE) reference on Soil Vapor Extraction and Bioventing (EM 1110-1-4001). Frist, to determine the maximum system flow, the maximum volumetric flow at each well was determined. Second, the maximum flow rate per well was expanded to determine the maximum flow rate of the system. Lastly, the maximum air flow rate was used to choose an appropriate blower for the system.

The maximum flow rate at the individual well is limited by the induced vacuum at the extraction well of -80 inH₂O, the nodal point of 15 feet as determined by the groundwater dewatering system and a minimum required vacuum of $0.1 \text{ inH}_2\text{O}$ at the nodal point.

The pore volume is the volume of the air space within the soil area to be treated and is directly related to soil saturation and the porosity of the soil. At this Site, the total Treatment Area pore volume is approximately 70,000 cubic feet (cf). The system flow required, at existing soil conditions, to exchange one pore volume over one day is 49 cfm and is equivalent to approximately 0.6 cfm at each of the 81 individual SVE wells.

Determining the maximum flow rate at the wells required establishing parameters for fluid flow through the soil and the volume of soil around the well. The intrinsic permeability of the soil is required and is based on the hydraulic permeability. The hydraulic permeability was determined during the pump tests conducted during the pre-design investigation completed at the Site. The relation of hydraulic permeability to intrinsic permeability is detailed in Appendix D. In addition, the evaluation requires the dynamic viscosity of air. The air is assumed to be at standard temperature and atmospheric conditions during SVE extraction. The temperature increase due to the conductive soil heating will increase the dynamic viscosity from 3.82×10^{-7} lb-s/ft by 3.1% and not have a significant impact on the maximum flow at the well. Lastly, the nodal point determined from the groundwater system of 15 feet was defined as the end of the zone of interest for the calculation to maintain a minimum pressure of 0.1 inH₂O vacuum. These parameters, combined with the soil and site parameters required for pore volume determination

and the radius of the 4-inch well were used to determine the maximum flow rate at the well to be 6.2 cfm per well, resulting in an approximate maximum system flow rate for 81 wells as 500 cfm, which represents approximately of 10.4 pore volumes per day.

The studies completed by USACE show air flow rates resulting in the exchange of up to 10 pore volumes per day will result in the treatment of an area within 2 years. As the system is operated, the moisture content of the soil in the vadose zone will decrease due to the increased evaporation of the water contained in the soil due to the increased air flow from the SVE system and the temperature increase from the conductive soil heating, which will result in a larger system pore volume. Though the pore exchanges per day will decrease during system operations, the change in the number of pore volumes being withdrawn should not be significant. Therefore, the parameters to size the blower are the required vacuum of -80 inH₂O and maximum volumetric flow rate of 500 cfm. As a second approach, the estimated flow rate to extract one pore volume from each well is 0.6 cfm/well. To extract 10 pore volumes per day from 81 extraction wells, a minimum of 486 cfm would be required. Thus, the flow rate of 500 cfm was the selected design value for the SVE system.

2.2.3 System Components

2.2.3.1 SVE Wells

As previously indicated, dual phase extraction wells will be installed throughout the Treatment area for the removal of soil vapor and groundwater, as shown on the details on Drawing D-02 in Appendix A. While the groundwater extraction system will be discussed in further detail in Section 2.3, the well construction details for the SVE system and groundwater extraction system are identical. The only difference between the wells is that those wells utilized in the groundwater extraction system will also be equipped with a pneumatic pump to evacuate groundwater from the same well, thus making such locations classified as dual phase extraction wells.

There are eighty-one (81) total SVE wells including sixty four (64) dual phase extraction and seventeen (17) SVE wells that will be installed within the Treatment Area as shown on the Drawings. Each extraction well will be installed at either 20- or 30-foot on center intervals based on the groundwater extraction requirements outlined in Section 2.3.2. The majority of the 20 foot-on-center wells will be in the northeast side of the Site, up-gradient of the contamination to reduce the amount of groundwater entering the Site to maintain the depressed groundwater table. The 30 foot-on-center wells are typically located in the center of the Treatment Area and represent the maximum radius of influence for the dual phase extraction system. Each borehole will be advanced to a maximum depth of 22 feet bgs using sonic drilling methods.

Prior to commencing with the drilling activities at each well, a 4-foot by 8-foot sheet of plywood with a pre-drilled hole in the center will be installed around the well to minimize the potential for the soil cuttings to come into contact with the existing asphalt surface. Following the completion of each borehole, the cuttings will be collected and placed into a covered roll-off container for characterization and off-site disposal. By avoiding contact of the soil cuttings onto the asphalt surface, the asphalt will not be contaminated, and thus, any stormwater runoff from the asphalt pad will not need to be collected and treated.

Each extraction well will be constructed using a fifteen (15)-foot section of factory slotted, four (4)-inch diameter, 0.010-inch (10 slot) polyvinyl chloride (PVC) well screen and the requisite length of flush threaded 4-inch diameter PVC riser. The well screens will be set at an interval of five (5) to twenty (20) feet bgs and the PVC riser will extend approximately one (1) to two (2) feet above ground surface. Additionally, a two (2)-foot flush threaded PVC sump will be installed beneath each well screen at an interval of twenty (20) to twenty-two (22) feet bgs. The sump will allow for some accumulation of silt at the bottom without interference to the pump, but will also allow the pump to be set partially below the screened interval to facilitate additional drawdown of the groundwater table. All well installation materials will be new and will remain covered or sealed until installation.

A sand pack consisting of No. 0 Morie sand will be installed within the annular space between the well screen and the borehole wall from the bottom of the borehole to two (2) feet above the top of the well screen. A 2.5-foot thick bentonite seal will then be placed above the sand pack. The remaining top 6-inches of the annulus will be sealed at the surface with asphalt cold patch to keep the hydrated bentonite material off of the surface of existing asphalt pad.

All of the 64 dual phase extraction wells will be properly developed in order to remove suspended fines. Well development is not required for the 17 SVE wells unless it is determined that pumps will be added to those wells after field observations of the groundwater table depression, in which case the wells would be developed as outlined. The well development will be completed as soon as possible after installation; however, no development will be conducted until the well bentonite surface seal has had sufficient time to hydrate. Well development will be conducted with several cycles of surging and pumping, using a PVC surge block and a submersible pump and/or air lift pumping methods. Every effort will be made to minimize the introduction of water into the formation during development. All water generated during the well development process will be collected and pump into a temporary holding tank. The decanted water will be pumped to the on-Site groundwater treatment plant for treatment and the remaining sediment will be characterized for off-site disposal. Well development will continue until it has been determined in the field that the turbidity level is 50 Nephelometric turbidity units (NTUs) or less for a maximum period of two (2) hours.

Before drilling at the initial location and after drilling at the last location, the drilling rig and all drilling equipment will be cleaned in accordance with the protocols established in the Health and Safety Plan included as Appendix F.

2.2.3.2 SVE Piping Network

The SVE wells will be connected to a PVC piping network and header system that will be connected to the suction side of a blower system. The induced vacuum from the blower will create air flow towards the SVE wells where it will be extracted and treated on-Site. The proposed piping network is shown on the Drawings and has been sized to minimize pressure losses within the system. To avoid disturbance to Site soils and the existing asphalt pad, all of the piping network will be located above grade. All of the pipes will be pitched toward the SVE

wells to promote drainage of condensate by supporting the piping on height adjustable pipe pedestals/stands. Most condensate is expected to form within a relatively short distance after the air stream passes from the well head in to the surface piping network due to the differential between the subsurface and atmospheric temperatures.

Each SVE well will be equipped at the surface with a ball valve and vacuum gauge so that the flow and vacuum applied at each well can be adjusted in the field to balance the system and control the VOC loading the carbon treatment system. To monitor the VOC loading at each SVE well, a sample port will be included at each well head to facilitate the collection of the grab samples for field analysis with a photoionization detector (PID).

2.2.3.3 Blower System

The blower system will provide the induced vacuum within the system. As previously indicated, the blower was selected to meet the design criteria of 500 cfm of air flow at -80 inH₂O. However, since the maximum flow rate will not be required throughout the entire remediation phase, a positive displacement blower equipped with a variable frequency drive (VFD) to throttle operation has been selected. Regenerative blowers were considered first for this application given the relatively low air flow rates and vacuum requirements; however, the positive displacement blower was ultimately selected to maximize the energy savings that can be realized by using a VFD to control the system.

The SVE system will be brought online in phases. During startup, the blower will be operated at a reduced capacity and the VFD will reduce the power consumption of the system while the full capacity of the blower is not required. The full capacity of the blower will also not be required as certain sections of the Site are remediated and some zones of the SVE system are shutdown. The use of a VFD will provide flexibility of the blower system throughout the remediation activities.

While most condensate is expected to form in relatively close proximity to the wellheads, some moisture could still reach the blower system. Therefore, the vapor extracted from the SVE wells

will first pass through a cyclonic moisture separator before the blower system to ensure that the blower system is not damaged. The condensate collected in the separator will be discharged to the temporary polyethylene equalization tank (discussed further in Section 2.3.3.2) via a small transfer pump.

Finally, flexible expansion joints will be placed on both the inlet and discharge sides of the blower to reduce the potential for pipe damage resulting from vibration and/or thermal expansion/contraction in the rigid piping system.

2.2.3.4 Air Flow Control

One concern in the design of a SVE system is short-circuiting where air in the atmosphere gets pulled into the extraction wells preferentially rather than the soil vapor in the pore spaces of the soil. Short-circuiting is generally reduced by placing some sort of cap or cover system over the treatment zone. At the Congress Street site, there is already an existing asphalt pad over the Treatment Area that will serve this purpose. However, given that the Treatment Area is covered with an asphalt pad, it will be necessary to provide an air intake system to allow the SVE system to draw the desired air flow from each well. Rather than installing a separate system of air intake wells, some of the SVE wells will be used periodically as air intake wells. This will be accomplished by closing the valve to the vacuum system at the wellhead and opening the 1-inch valve on top of the wellhead to the atmosphere.

The number of wellheads opened to the atmosphere at one time will be based upon a balance of flow rates and contaminant loading, which is expected to vary throughout the treatment area. Initially, the VOC loading rates to the SVE system will be high and the flow rates will be adjusted in the field to minimize the potential of exceeding the adsorption capacity of the carbon treatment system. The wells that are used for air intake will be alternated as certain areas show declining levels of VOCs removal.

2.2.3.5 Air Treatment System

The exhaust from the blower system will be sent to a granular active carbon (GAC) treatment system prior to discharge to the atmosphere. The contaminant loading on the carbon filter system is controlled by the capacity of the carbon filter units. The size of the carbon filter unit is based on the maximum flow rate through the filter and the potential amount of contaminants to be removed. The minimum requirements at this Site are met by Calgon Carbon Vapor Phase Adsorption Equipment units such as the ProtectTM V Series which has a maximum flow rate of up to 750 cfm per the manufacturer specifications. The SVE extraction rates will be managed in the field based on recovery of contaminants during start-up and based on field measurements as outlined in the Site Management Plan.

During the Remedial Investigation and Feasibility Study, soil samples were taken to determine contaminant concentrations. The concentration of the contaminants were averaged together to develop an approximate total tonnage of VOCs in the soil at the Site. The total amount of VOCs was determined to be approximately 16,000 pounds as reported in the Updated Feasibility Study and inclusion of the rail siding area. To remove the VOCs within 2 years, operating 10 months per year, the system will have to remove on average approximately 30 pounds of VOCs per day.

Based upon the document *Activated Carbon Adsorption for Treatment of VOC Emissions*, prepared by CARBTROL Corporation in May of 2011, the relative adsorption rate for the primary VOC contaminants of concern at the Site is approximately 20 percent. Thus, to remove 16,000 pound of VOCs, a total of approximately 80,000 pounds of GAC will be required for the project. With 5,000 pounds of carbon is placed into each GAC vessel, a total of 16 vessels would be required. Assuming two GAC vessels are in active use at all times, a total of 8 GAC change outs or reactivations will be required during the project, which over the course of two years of operation should result in approximately one change out per quarter.

As indicated on the Drawings, the design includes a total of three GAC vessels on-Site at all times. These vessels will be described as a lead, lag or standby vessel. Specifically, the "lead" vessel will be the primary treatment vessel to remove the VOCs from the air stream while the

"lag" vessel is backup system in case there is some breakthrough in the "lead" vessel. As described in the SMP, sample ports will be installed after the lead vessel so that grab samples can be analyzed for VOCs in the field with a PID to monitor for such breakthrough and know when it is time to take the lead vessel offline. When the lead vessel's adsorption capacity is depleted, the lag vessel will then become the lead vessel and the standby vessel will be placed into the lag position. Finally removed from the lead vessel and new or reactivated GAC will be placed into the vessel which will become the new standby vessel.

All vessels will be connected using flexible hose, the spent carbon will be s and camlock connections to minimize the effort to reconfigure the GAC vessels. The discharge stack will be constructed of rigid pipe and will be connected to the equipment enclosure (e.g. intermodal container). The point of discharge will be at a minimum height of ten (10) feet above the ground surface to ensure that it is above all equipment on-Site and the breathing zone of on-Site personnel.

2.2.3.6 Equipment Enclosure

The cyclonic moisture separator and blower system will be installed within a temporary enclosure (e.g. intermodal container) located along the northern side of the Treatment Area as shown on the Drawings. The enclosure will have a Class 1, Division 2 hazardous area rating.

2.3 DEWATERING BY GROUNDWATER EXTRACTION

In order to facilitate effective SVE, drawdown of the groundwater table within the Treatment Area by approximately two (2) feet was determined to be necessary to ensure efficient VOC removal in the capillary fringe area. Key information associated with the groundwater extraction system was obtained during implementation of the pre-design investigation specified in the Phase 1 Work Plan during the Spring of 2012. As part of the pre-design investigation a series of dewatering wells, monitoring wells and piezometers were installed within the Treatment Area. Information obtained from the Phase 1 Pre-Design Investigation is summarized in subsequent sections along with remedial design details for the groundwater extraction wells, the pumping

system and groundwater management. An electronic copy of the *Pre-Design Investigation Report* is contained in Appendix C.

2.3.1 Groundwater Extraction Pre-Design Investigation

The Pre-Design Investigation relative to the depression of groundwater in the Process Area involved the installation of two test well arrays. At each test array, one well was pumped while the groundwater elevations in the surrounding wells were monitored. During development activities associated with these wells, it was determined that the maximum sustainable pumping rate of the extraction wells was approximately 0.75 gallons per minute (gpm). The depth to groundwater was measured in the monitoring wells surrounding the extraction well and stabilized after a short period of pumping, approximately 90 minutes.

Groundwater extraction design plans were adjusted from those provided in the *Phase 1 Site Remedial Design Work Plan* in response to these observations. The necessity of conducting step rate and long duration pumping events was determined to be unnecessary based upon actual field conditions encountered. The goal of the groundwater extraction testing was to provide enough drawdown to expose contaminated soil that is within the zone of typical static groundwater elevation fluctuation or area of capillary fringe. The design goal is to achieve approximately two (2) feet of drawdown across the Treatment Area allowing the SVE system to effectively remove contaminants from the soil in that zone.

Groundwater extraction testing was conducted at two locations (EW-3 and EW-4). A network of transducers were installed in the extraction well and the surrounding monitoring wells and/or piezometers. The transducers were programmed to measure the height of the water column above the instrument every 30 seconds. Depth to groundwater measurements were collected using an electronic water level meter at the initiation of pumping and periodically during the pump testing.

The extraction wells were evacuated fully within approximately 5 minutes following the initiation of pumping. The depth to groundwater in each extraction well was maintained with a

pumping rate of less than an average 0.5 gpm, the minimum flow rate. The extraction wells were able to recharge enough at this rate of pumping to allow a slug of water to discharge, and then a 30 second to 1 minute period of recharge was necessary.

The groundwater extraction test was continued until depth to water measurements in the furthest piezometer stabilized. The groundwater level depressed an average of 8 inches, 7 inches and 2.5 inches feet as observed in monitoring wells located 10, 20 and 30 feet away from the pumping well, respectively over the test period outlined previously. The stabilization of the water depth in the piezometers and maintaining the extraction well groundwater depth at the pump inlet indicated that continued testing was not necessary. Following stabilization, pumping was terminated and manual depth to water measurements and transducer readings were continued until the groundwater elevations had recovered to near the pre-testing condition.

2.3.2 Groundwater Extraction System Design Parameters

2.3.2.1 Groundwater Extraction Well Spacing

The ROI for the groundwater extraction is the maximum distance at which the desired drawdown can be achieved. A desired groundwater drawdown of approximately two (2) feet below the existing groundwater table has been specified to provide a greater area for the SVE system to treat the maximum ROI. Based on this requirement, the groundwater extraction well ROI was determined to be 15 feet, or a maximum well spacing of approximately 30 feet. The calculations used to determine the ROI are included in Appendix D.

As previously indicated in Section 2.2, the ROI for the groundwater extraction system is less than the ROI for the SVE system. Therefore, the 15-foot ROI for the groundwater extraction wells is the limiting variable when using a dual phase extraction system. Of the eighty-one (81) SVE wells proposed to be installed at the Site, sixty-four (64) will be constructed as dual phase extraction wells. Approximately 30 of these wells will be located up-gradient of the treatment area, at the northeast side of the Site. These wells are being spaced at approximately 20 foot-oncenter to extract the majority of the water entering the Site that would cause an increase in the groundwater table. The remaining 34 wells are distributed throughout the treatment area at either 20 or 30 foot-on-center spacing to maintain the depressed groundwater table for SVE extraction.

2.3.2.2 Groundwater Extraction Rates

Based upon the results of the Pre-Design Investigation previously described, the maximum yield of each extraction well has been estimated to be approximately 0.5 gpm. The groundwater extraction well spacing was based on a maximum radius of influence (ROI) of 15 feet, and therefore, a total of 64 extraction wells were needed to provide the dewatering of the Treatment Area, as shown on the Drawings.

While it is highly unlikely that all 64 wells will operate simultaneously, the design accounts for this condition as a conservative approach and the piping network was sized based upon these flow conditions. With 64 wells pumping at 0.5 gpm, it is anticipated that the maximum discharge to the existing treatment system from these wells is 32 gpm or approximately 46,000 gallons per day (gpd). Higher pumping rates are anticipated at system startup; however, it is expected that the actual flow rates will be well below the maximum design pump rate as the dewatering system approaches equilibrium.

2.3.2.3 Flow & Contaminant Loadings to Existing Treatment Plant

The resultant concentrations of contaminants within the extracted groundwater should not cause an increase of contaminant loading to the treatment system. The existing groundwater collection trench is located down-gradient of the Treatment Area. The collection trench drains to a wet well on Site where the groundwater is pumped to the treatment system. The depression of the groundwater in the treatment area should reduce the amount of groundwater collected in the groundwater collection trench.

In the long term, the amount of groundwater removed by the groundwater extraction wells should be approximately equivalent to the reduction in groundwater being collected in the groundwater collection trench. In addition, the majority of the groundwater extraction wells are located up-gradient of the Treatment Area and the ground water should contain less contamination. Therefore, the amount of groundwater added to the groundwater treatment system should be about the same amount of groundwater presently being treated and the contaminant loading should be less.

While the estimated potential maximum discharge from the groundwater extraction system is 46,000 gpd, the anticipated flow rate is expected to be less. The groundwater flow rate from the groundwater collection trench, which is intercepting the groundwater down gradient from the Process Area, is approximately 20,000 to 30,000 gpd. The extraction wells, which are located up gradient of the Process Area, will be intercepting the groundwater prior to the groundwater flowing through the Process Area to the groundwater collection trench. Therefore, the amount of groundwater removed by the extraction wells should be equivalent to the amount of groundwater presently being collected in the collection trench from the treatment area in the Process Area.

2.3.3 Groundwater Extraction System Components

2.3.3.1 Dual Phase Extraction Wells

In order to depress the groundwater in the Treatment Area, sixty-four (64) dual phase extraction wells will be installed that will be used for both the extraction of groundwater and soil vapor. These wells will be installed as previously described in Section 2.2.3.1. However, the dual phase extraction wells will also be equipped with submersible pumps to evacuate the water from the wells. The pumps will be installed approximately 1 to 1.5 feet above the bottom of the well to maximize the amount of drawdown, but still leave sufficient sump area for the accumulation of fines.

2.3.3.2 Groundwater Extraction Piping System

Each pump discharge will be routed to a fusion-welded high density polyethylene (HDPE) piping network. All of the piping will be placed on top of the existing asphalt pad to minimize

disturbance; however, the pitch of groundwater piping is not critical since it is part of a pressurized system. Sufficient slack will be placed throughout the piping network during installation to allow for sufficient thermal expansion and contraction of the HDPE piping. Additionally, any pipe stands utilized for the pipe will not be rigidly fastened to the pipe to allow for thermal expansion and contraction of the pipe.

The proposed piping network is shown on the Drawings and has been sized to minimize pressure losses within the system. Each discharge tube from the pumps will include a check valve to prevent backflow into the wells and a ball valve so that the discharge from individual pumps can be controlled. The individual discharge lines will then be connected to a larger header pipe which will discharge into an approximately 2,000 gallon temporary polyethylene storage tank for equalization of flow. At a maximum inflow rate of 32 gpm, the tank will provide sufficient storage for approximately 62 minutes of storage. However, the actual inflow rate is anticipated to decrease as the pumping system reaches the targeted drawdown levels. The fluid level within the temporary equalization is tank will be controlled with a pressure transducer and a transfer pump will be utilized to pump the water in the tank to the existing on-Site groundwater treatment plant.

2.3.3.3 Groundwater Extraction Pumps

Given the relatively large number of groundwater dewatering wells required for this project, pneumatic pumps have been selected as the preferred type of pump for this application. Specifically, AP4+ Series pneumatic pumps, as manufactured by QED Environmental Systems have been selected as the preferred pumps for this project. These pneumatic pumps are automatic pumps that operate by regulated compressed air as opposed to traditional submersible pumps that require an electrical source and potentially complex control systems to operate.

The AP4+ fills and empties automatically as well as controls the fluid level in a well automatically. The pump fills when fluid enters the bottom check valve. As the fluid level in the pump raises a float inside the pump, the air in the pump chamber exists through an exhaust valve. When the float reaches to top of the chamber, a valve mechanism is engaged that causes

the exhaust air valve to close and the air inlet valve to open. As compressed air enters the pump, the fluid within the pump is evacuated. Once the fluid level drops, the valve mechanism is reversed and the cycle starts again.

There will be a total of three tubes connected to each of the pneumatic pumps. The first tube connected to the pump will provide the compressed air to operate the pump. The second tube is for the air exhaust as the pump chamber fills. The discharge point will be maintained inside the well riser pipe given that the wells are design as dual-phase extraction wells and will also be under vacuum. Finally, each pump will be equipped with a groundwater discharge line. The air supply line and the pump discharge will be connected to each well head through a sanitary well seal to ensure that the desired vacuum is maintained in the wells. The air intake lines will be equipped with an pressure gauge to monitor air pressure at each pump and help balance the system, a filter/regulator to ensure clean air is delivered to the pump and adjust the air pressure to each pump, and a cycle counter to monitor the approximately discharge rate from each pump. The cycle counters will be placed in a plastic enclosure to provide some additional protection to weather.

2.3.3.4 Compressed Air System

As previously indicated, the pneumatic pumps will operate on compressed air. Per the calculations in Appendix D, CHA has estimated that the maximum total air consumption for all sixty-four (64) of the pneumatic pumps to operate simultaneously will be approximately 20 cfm at a pressure of 125 pounds per square inch (PSI). While many rotary screw compressors are rated for full-time duty, a design operation rate of approximately 50 percent was utilized for design purposes. Specifically, CHA selected an Ingersoll Rand UP6-10TAS-125 rotary screw compressor that can deliver up to 38 cfm and a pressure of 125 PSI. The air compressor system will also include a storage tank to reduce cycling and an air dryer.

2.3.3.5 Equipment Enclosure

The air compressor along with the conductive heating system equipment (see Section 2.4) will be placed in a separate, unclassified enclosure adjacent to the SVE blower system enclosure.

2.4 CONDUCTIVE SOIL HEATING WELLS

Conductive soil heating wells will be installed within the Treatment area to thermally heat the subsurface soils. The heating of the subsurface soils will:

- Increase volatilization rates of VOCs and some SVOCs to improve efficiency of the SVE system.
- Reduce moisture rates and improve air flows in subsurface soils in the deeper zones of the Treatment Area by evaporating the remaining water.
- By heating the soils to an average temperature between 85 degrees Fahrenheit (°F) and 95°F as opposed to heating the soils to a level to ensure thermal destruction of the contaminants, the heat will enhance the natural biodegradation of residual levels of contaminants by enhancing the reproduction rates of indigenous bacteria at the Site.

2.4.1 Conductive Soil Heating System Design Parameters

To thermally heat the soils within the Treatment Area, conductive soil heating wells will be installed and hot water will be circulated through piping that is installed in the wells. The soil at the nodes furthest from the conductive soil heating wells will be heated to an average temperature between 85 degrees Fahrenheit (°F) and 95°F. Details associated with the conductive soil heating wells are summarized in the following section. The hot water will be heated by two natural gas boilers. A piping system will be installed between the wells and the boilers to allow the continued circulation of hot water through the wells and boiler system.

2.4.2 Conductive Soil Heating System Components

2.4.2.1 Conductive Soil Heating Wells

Two-hundred and five (205), six (6)-inch inside diameter (ID) conductive soil heating wells will be installed throughout the Treatment Area as shown on the Drawings, although the well locations may be adjusted slightly during installation based upon field conditions encountered. Each well will be installed at a well spacing of 14.25-feet. A ROI of 7.5-feet has been estimated based on using hot water at 140°F and heating the soils to the required temperature within 90days. Although the water will be heated to 140°F, it anticipated that the temperature at each heating well will be approximately 120°F at a distance of six (6) inches away from the center point of each well and that the temperature will decrease to the target temperature of 85°F to 95°F at the ROI limit.

Each borehole will be advanced to a depth of 15 feet bgs using the sonic drilling methods with a 4.5-inch ID drilling stem. A 0.75-inch HDPE tube will be place in each well with a "U"-shaped bend at the bottom of the well to allow circulation of the hot water through the well. A thermally enhanced grout having a minimum thermal conductivity 1.0 will be injected within the annular space between the well and the HDPE tubing. The grout will be injected in the well to within approximately three (3) feet of the ground surface. The HPDE tubing will then be insulated for the top three (3) feet. Cold patch asphalt will be tamped by hand into the void space between the asphalt cap and the insulation around the HDPE tubing to restrict surface water infiltration at each borehole.

Before drilling at the initial location and after drilling at the last location, the drilling rig and all drilling equipment will be decontaminated in accordance with the protocols established in the Health and Safety Plan included as Appendix F.

2.4.2.2 Reverse Return Header System

The piping network used to thermally heat the surface will setup as a reverse return header system. All of the piping will consist of fusion welded HDPE pipe insulated with closed-cell foam insulation. In the early spring and fall months, the piping network will be bedded in approximately three (3) inches of loose straw and covered with concrete curing blankets to provide additional thermal protection. The layout of the header system is shown on the Drawings and has been designed to create a "self-balancing" system. In other words, the pump connected closet to the boiler system on the inlet will be connected furthest away from the boiler system on the outlet side and vice versa. Approximately ten (10) wells will be connected to each secondary header and approximately five (5) to six (6) secondary header pipes will be connected to each of the primary headers. It is currently anticipated that there will be two (2) primary headers with one (1) on each side of the equipment containers.

The heated fluid will circulate through the conductive soil heating wells and return to the boilers for reheating and recirculation back to the wells. The amount of hot water circulated through the wells will be adjusted based on the temperature of the soil at the node. Once the soil reaches the desired temperature, the amount of heat required to maintain the required soil temperature decreases.

2.4.2.3 Heat Transfer Fluid

The exact fluid mixture utilized for heat transfer and distributed throughout the heating system will be determined based upon Site conditions and anticipated heat transfer efficiencies, but will include a mixture of potable water and glycol.

2.4.2.4 Boiler System

The fluid within the conductive heating system will be heated by two boilers operating in parallel. The boilers will heat the fluid to 140°F and will be operated using natural gas as a fuel

source. Circulation pumps will be utilized to physically move the fluid within the heating system.

2.4.2.5 Equipment Enclosure

The boilers, circulation pumps and associated control system will be installed in an unclassified enclosure along with the air compressor system utilizing for the groundwater extraction system.

2.5 **BIOVENTING**

As asymptotic conditions are reached and the mass of VOCs being removed by the SVE system decreases to minimal levels, the SVE wells will be transitioned to a bioventing system by reversing the plumbing on the blower system to inject air into the SVE wells on an as needed basis. The goal of the bioventing operation is to promote the natural biodegradation of any residual VOCs along with the heavier SVOCs. Unlike the SVE system, the goal of the bioventing operation is provide oxygen to promote biodegradation of the remaining contaminants rather than remove contaminants through volatilization.

The basis for determining the extent of bioventing required at the Site will be detailed in the SMP, but will be based upon field evidence of biodegradation (e.g. monitoring of oxygen uptake and the generation of carbon dioxide and methane) and the need for supplemental oxygen to maintain such biodegradation. Soil samples will be collected from specific areas in the Process Area to evaluate the general health of the microbial population and to determine if the specific microbial species present are capable of degrading the contaminants remaining. The total heterotrophic microorganisms and specific degrader microorganism populations will be evaluated using plate count procedures. A plate count of 10^5 colony forming units per gram of soil should be present for bioventing. In addition, analyses will be completed to determine the availability of soluble nitrogen and phosphorous containing nutrients such as ammonium, nitrates and phosphates. Based on the analysis, nutrients may be added to the soils along with the oxygen

being blown into the soil. Specific microbial species may be injected into the soils to supplement the natural microbial population that is present.

Monitoring of oxygen and carbon dioxide levels beneath the asphalt cap in spring of 2012 indicated that indigenous bacteria capable or degrading the site contaminants are present at the Site. The duration and flow rate of the blower operation will be determined based upon field conditions observed following the cessation of the SVE system, but is anticipated to be a lower flow rate and for smaller durations compared to the SVE system. The variable frequency drive (VFD) on the blower system will allow the flow rates to be reduced to appropriate levels during the bioventing phase of the remediation.

2.6 SITE ACCESS, SECURITY AND WORK ZONES

The Congress Street site is currently secured with chain link fencing on all sides. Security cameras have been installed on the Site to allow the monitoring of the Site. The Congress Street site is monitored from the Rotterdam Junction guard house that is manned 24 hours a day, 7 days a week.

Two gates provide access to the Site, with one gate located near the northeast corner of the Site near the intersection of Oak Street and Tenth Avenue and the second gate is located on the southeast corner of the Site on Tenth Avenue. The gate on Tenth Avenue will be the main gate used in moving materials on and off-site in support of remedial activities. The gate on Congress Street will be used to provide access to SI Group personnel who maintain the groundwater treatment system and other support personnel. Since the in-situ remedial treatment system, including an extensive piping network, will be installed on top of the existing asphalt pad, travel across the Treatment Area will be limited. Therefore, both gates will be used to access the Treatment Area depending on the activity of where the work will be completed.

The contractor performing the in-situ work will provide a Site-Specific Site Health and Safety Plan(s) for the installation and operation of the remedial system.

2.7 STORM WATER AND WASTEWATER MANAGEMENT

SI Group maintains a SPDES Permit (NY-0260525) for the operation of the groundwater treatment system, the discharge of the treated groundwater, and the discharge of storm water at the Congress Street site. There are two permitted outfalls at the Site. Outfall 001 is permitted to discharge treated groundwater and storm water to Cowhorn Creek. Outfall 002 is only permitted to discharge storm water. The SPDES permit does not allow the discharge of any contaminated storm water from the Congress Street site.

It is anticipated that contaminated storm water will not be generated during Phase 2 remedial activities due to the asphalt cap over the Process Area, the type of drilling methods (i.e., sonic) expected to be implemented, and the procedures to be implemented to manage soils. Through the use of sonic drilling methods, contaminated soil will be generated in a sleeve and directly transferred to a waste disposal container (e.g., 55-gallon drum or roll-off container). Therefore, contaminated soil should not come into contact with the asphalt cap in the Process Area. Additionally, a 4-foot by 8-foot sheet of plywood with a pre-drilled hole in the center will be placed around each well location prior to the commencement of the drilling activities to capture any cuttings that may drop around the borehole and keep the asphalt surface clean. Furthermore, the asphalt pavement around each well penetration will be sealed with asphaltic cold patch or concrete to ensure that stormwater running across the pad does not come into contact with the contaminated soils beneath the asphalt.

If contaminated storm water is generated, it will be managed in accordance with the Soil and Stormwater Management Plan contained in Appendix E. In addition, any contaminated wastewater generated from the remedial activities will be contained and either sent off-site for treatment or sent to the on-Site ground water treatment system depending on the approval of NYSDEC.

2.8 TRANSPORTATION OF CONTAMINATED MATERIALS

It is anticipated that contaminated soil and waste materials will be transported off-site as part of the work completed to install the in-situ treatment system. The contaminated soil and waste materials will be characterized for proper disposal. The potentially contaminated soils will be place in containers until the soils are characterized, profiled and disposed off-site at a properly permitted facility. The containers will be covered to prevent exposure to storm water and to reduce the potential release of organic vapor contaminants. Any trucks or equipment leaving the Treatment Area that has been potentially in contact with contaminated soils will be decontaminated and cleaned to avoid tracking of potential contamination onto the adjacent areas, properties and roadways. All trucks hauling contaminated waste materials off-site will be covered with a canvas cover or similar material and have an appropriate Part 364 permit.

2.9 AIR MONITORING DURING REMEDY IMPLEMENTATION

Given that the only intrusive activities planned for Phase 2 of the project includes drilling relatively small diameter boreholes through the existing asphalt pad, the potential for vapor emissions and dust is greatly reduced compared to the Phase 1 Site preparation activities. Nevertheless, air monitoring will be performed throughout the installation of all wells at the Site. Specifically, a PID will be used to measure the concentration of volatile vapors in the exclusion zone during all intrusive activities in accordance with the remedial contractor's HASP.

Contaminant monitoring, as specified in the Community Air Monitoring Plan (CAMP), will be required for ground intrusive activity if:

- Increased particulate levels are observed in the work area;
- Organic vapors are detected in the exclusion zone at concentrations of 5 parts per million (ppm) above background for over 15 minutes; or
- Increased odor levels are detected in the work area for over 15 minutes.

If the CAMP is implemented, air monitoring will be performed during the remaining intrusive remedial activities in accordance with the NYSDOH's *Generic Community Air Monitoring Plan* (CAMP). The full CAMP is provided in Appendix G.

2.10 COMMUNITY AND ENVIRONMENTAL RESPONSE PLAN

A Community and Environmental Response Plan (CERP) has been prepared to monitor and address potential short-term impacts on the surrounding community and environmental resources. The CERP is provided in Appendix H and contains the following elements:

- Summary of the CAMP;
- Temporary measures;
- Odor management plan;
- Noise and vibration mitigation;
- Site security;
- Sediment and erosion control measures;
- Waste management measures;
- Water management and treatment measures;
- Traffic control and Site access plans;
- Decontamination of trucks and equipment; and,
- Off-site trucking routes and emergency procedures.

2.11 REQUIRED PERMITS AND OTHER AUTHORIZATIONS

The remedial activities to be completed under Phase 2 will impact the SPDES Permit (NY-0260525) presently in effect at the Congress Street facility. Based on NYSDEC approval, these activities will include the treatment of groundwater extracted from the dewatering of the Treatment Area, wastewater generated from the treatment system including the moisture

collected in the SVE system, and wastewater generated during installation of the in-situ treatment system, which will primarily be water associated with decontamination processes.

In addition, NYSDEC approval will be required for the vapor control system that will be installed on the SVE system. The control system will consist of a granular activated carbon (GAC) system that will remove the contaminants that are contained in the soil vapor prior to discharge to the atmosphere.

2.12 "AS-BUILT" PLANS AND CERTIFICATION

SI Group will provide adequate on-Site engineering and construction observation reports that are completed under the direction of a professional engineer licensed to practice in New York State during all remedial activities. Full-time construction observation will be provided during installation of the groundwater extraction, conductive soil heating and soil vapor extraction wells; and the installation of the SVE treatment system.

Following the installation of the treatment system, part-time construction observation will be provided during the startup and diagnostic testing of the remedial systems. The level of oversight is anticipated to decrease with time as the system reaches optimum operating conditions. However, the remedial contractor will be on-Site regularly to operate and maintain the system. Additionally, an engineer or scientist will visit the Site periodically to verify continued operation of the system and collect appropriate samples.

Upon completion of Phase 2 remedial activities, a certification report that is signed and stamped by a New York State Licensed Professional Engineer documenting that the remedial activities have been completed, including "as-built" plans, will be prepared and submitted to NYSDEC.

2.13 GREEN REMEDIATION

The NYSDEC Division of Environmental Remediation (DER) developed an approach to remediating sites in the context of the larger environment, a concept known as green remediation, and presented this approach in DEC Program Policy "DER-31 – Green Remediation". The document provides concepts and techniques of green remediation and guidance on how to apply them to remedial programs.

The concepts of green remediation have been evaluated to determine the resources that would be expended to complete the Phase 2 of the Congress Street remediation and to highlight those techniques that will be employed. An evaluation of the resources required to complete the remediation is provided as follows:

- Energy Usage: The installation and operation of the groundwater extraction wells, conductive soil heating wells, SVE wells and SVE treatment system will involve the consumption of natural gas, electricity, and gasoline or diesel fuel for the equipment used to install these wells and/or treatment systems. In addition, energy will be consumed in the operation of the pumps, blowers, equipment and treatment system during the remedial activities. Electricity will also be consumed indirectly during the manufacturing of any new materials used during the Phase 2 activities. Operation of the conductive soil heating wells in the target range of 85-95°F and the use of in-situ bioremediation as part of the remediation activities will consume significantly less energy in comparison to soil excavation and off-site disposal activities. Additionally, the blower system will include a variable frequency drive (VFD) to minimize energy consumption when the blower does not need to be operated at full capacity.
- Air Emissions: The on-Site activities discussed above will also result in minor air emissions from the vehicles. In addition, it is expected that vapor extracted during the SVE phase would represent an air emission; however, the extracted vapors will be treated with a carbon filtration unit, thereby eliminating or reducing that source of air emissions. Minimal fugitive air emissions will occur during the intrusive activities (e.g., well installation) that will be completed. The impact from these air emissions will be monitored and controls will be implemented, if necessary, to minimize their impact on the surrounding area. The emissions associated with ex-situ treatment or off-site disposal.
- Water Needs and Impact on Water Resources: The decontamination of on-site equipment/trucks is expected to consume relatively small amounts of water. In addition, relatively small amounts of water will be consumed during the installation of the wells that will include the decontamination of drilling and sampling equipment (as necessary).
- **Impacts on Land and Ecosystems:** The Phase 2 activities are expected to impact the Site; however, these impacts are not expected to extend off-site with the possible exception of noise. On-site impacts include minimal disturbance of the subsurface during well installation, temporary lowering of the groundwater table during operation of the

SVE system, generation of waste materials that may require temporary storage on-site, and possible disturbance of any existing on-site ecosystems. However, it is noted that the Site is currently fenced and much of the Site is covered by either asphalt or gravel; as such, minimal ecosystem disturbance is expected. In addition, controls such as stormwater management, reduction of vehicle idling, etc. will be used to further limit the potential off-site impacts.

- Material Consumption and Waste Generation: The Phase 2 activities will require materials such as PVC pipe, fittings, and well construction materials to be brought to the Site for the installation of groundwater extraction wells, conductive soil heating wells, SVE wells and piezometers. Some potentially contaminated soil and decontamination water is expected to be generated during the Phase 2 activities which will require off-site disposal.
- Impacts on Long-term Stewardship of the Site: The long term use of the property has not been determined at this time; however, SI Group is committed to remediation of the Site that is effective and protective of human health and the environment. The operation of the groundwater collection and treatment system, installed as the chosen remedy associated with operable unit 1 (OU1), is ongoing and will continue as long as contamination above groundwater standards is present at the Site. The chosen remedy for OU2 was specifically selected due to its long-term effectiveness and permanence. Furthermore, SI Group is committed to the implementation of Site Management Plan, which will include institutional and engineering controls, an operation and maintenance plan, and a monitoring plan to ensure that the remedy remains effective and protective of human health and the environment.

Based on the evaluation of required resources as provided above, several recommendations in DER-31 were considered in the design of the Site preparation activities. The specific concepts or techniques that have been incorporated in the Phase I Design include:

- Reduce Vehicle Idling
 - All vehicles, both on and off road (including construction equipment) will be shut off when not in use for more than 5 minutes, consistent with 6 NYCRR Part 217 Motor Vehicle Emissions, Subpart 217-3 Idling Prohibition For Heavy Duty Vehicles.
- Cover Systems
 - The existing cover systems will remain in place and require minimal maintenance (e.g. less mowing), limits the infiltration of storm water, and is an integrate part of the in-situ treatment system.

- Low Energy Alternatives
 - In-situ bioremediation, including bioventing will be utilized within the Treatment Area for the degradation of SVOCs.
- Renewable Energy
 - Conductive soil heating wells will be utilized for heating of the soil within the Treatment Area.
- Reduction of Long-Term Operation and Maintenance
 - The remedial systems (conductive soil heating wells, SVE system and bioventing) will be utilized within the Treatment Area for the destruction of VOCs and SVOCs within the subsurface soils. This approach will reduce the long-term operation and maintenance of the conductive soil heating wells, SVE system and bioventing operations.
- Adaptable Systems
 - The SVE system will be designed and installed to allow for a phased start-up within the Treatment Area. The system will also allow for the segregation of portions of the Treatment Area during operation to improve SVE efficiency. In addition, the SVE wells will be modified during remedial activities (as indicated in Section 3.3) to operate as a bioventing system.

3.0 SITE MANAGEMENT PLAN

Since the selected remedial action will result in contamination remaining at the Site, a Site Management Plan (SMP) will be prepared to manage the remaining contamination at the Site including the monitoring, operation and maintenance of the in-situ remedial system. The SMP will be prepared in accordance with:

- the requirements outlined in NYSDEC "DER-10: Technical Guidance for Site Investigation and Remediation" (May 2010)
- the Record of Decision dated December 21, 2010
- the guidance provided by NYSDEC

The SMP will include an Institutional and Engineering Control Plan, Monitoring Plan, and an Operational and Maintenance Plan. The implementation of the SMP should allow for the safe use of the Site. The post-remediation SMP will be submitted to the NYSDEC for review ninety (90) days following the submission of the Phase 2 Remedial Design Work Plan. If necessary, the SMP will be modified following the completion of the Phase 2 remedial activities to account for Site-specific conditions that arise during the remediation.

3.1 INSTITUTIONAL AND ENGINEERING CONTROL PLAN

Since contaminated soil will remain beneath the Site following the remedial activities, Engineering and Institutional Controls will be implemented to protect human health and the environment. An Engineering and Institutional Control Plan will be prepared as part of the SMP describing the procedures for implementation and management of all Engineering and Institutional Controls at the Site.

The Plan will include:

• A description, including the basic implementation and intended role, of each Engineering and Institutional Control;

- A description of the provisions of the environmental easement, including any land use and groundwater use restrictions;
- Provisions for the management and inspection of the identified engineering controls;
- A Soil Management Plan detailing the provisions for management of future excavations in areas of remaining contamination;
- Provisions for maintaining Site access controls and NYSDEC notification; and
- Procedure for the periodic review and certification of the Engineering and Institutional Controls.

3.1.1 Institutional Controls

A series of Institutional Controls is required by the ROD in the form of an environmental easement that:

- Requires SI Group to complete and submit to NYSDEC an Institutional Control/Engineering Controls certification on a periodic basis as determined by NYSDEC.
- Limit the use and development of the property to industrial uses only.
- Restrict use of groundwater as a source of potable or process water without necessary water quality treatment as determined by NYSDEC, NYSDOH, and the Schenectady County Public Health Administration.
- Prohibit use of the Site for agriculture or vegetable gardens.
- Require SI Group to prepare, submit and comply with a NYSDEC-approved Site Management Plan.

Adherence to these Institutional Controls in the form of an environmental easement will be implemented under the SMP.

3.1.2 Engineering Controls

In accordance with the ROD, a Site cover will be installed in areas not addressed by the permeable cap to allow for industrial use of the Site. The cover will consist either of the structures such as buildings, pavement, sidewalks comprising the Site development or a soil cover in areas where the upper one foot of exposed surface soil exceeds the industrial soil cleanup objectives. Where the soil cover is required it will be a minimum of one foot of soil, meeting the soil cleanup objectives for cover material specified in 6 NYCRR Part 375-6.8(d). The soil cover would be placed over a demarcation layer. The upper six inches of the soil would be of sufficient quality to maintain a vegetation layer. Non-vegetated areas (buildings, roadways, parking lots, etc.) will be covered by either a paving system or concrete at least 6 inches thick.

3.2 MONITORING PLAN

A Monitoring Plan will be prepared as part of the SMP to describe the measures to be implemented to monitor the performance and effectiveness of the remedial actions completed at the Site. The Monitoring Plan will include:

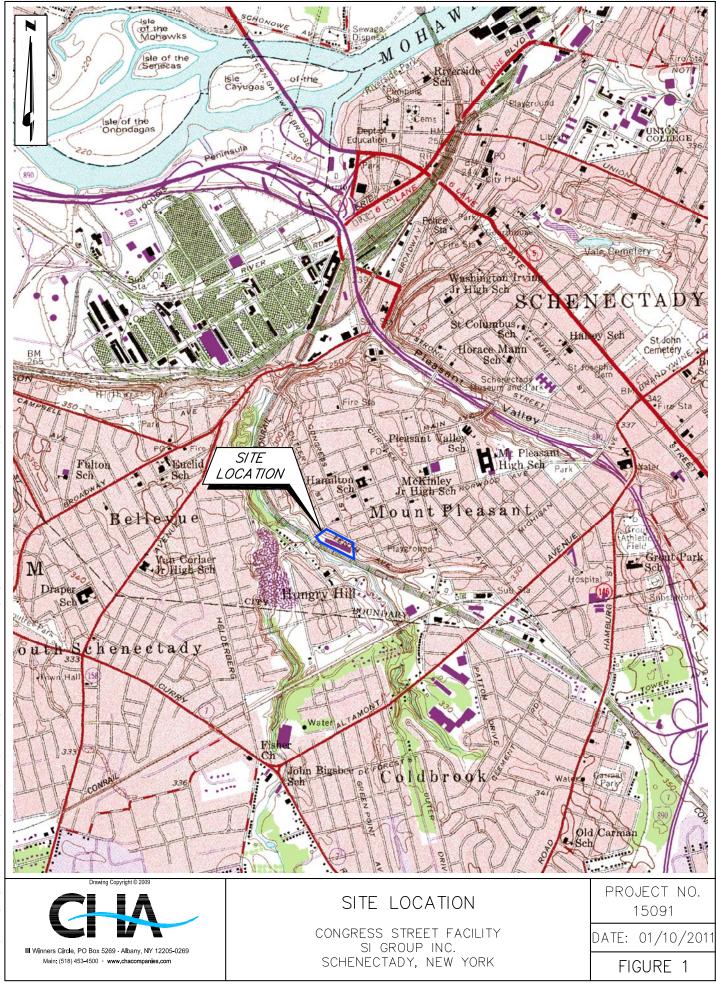
- Groundwater monitoring program;
- Schedule of monitoring;
- Reporting of monitoring results to NYSDEC;
- Provision to evaluate the potential for vapor intrusion for any buildings developed on the Site, including provisions for mitigation of any impacts identified; and
- Provision to evaluate the potential for soil vapor intrusion for existing buildings if building use changes significantly or if a vacant building becomes occupied.

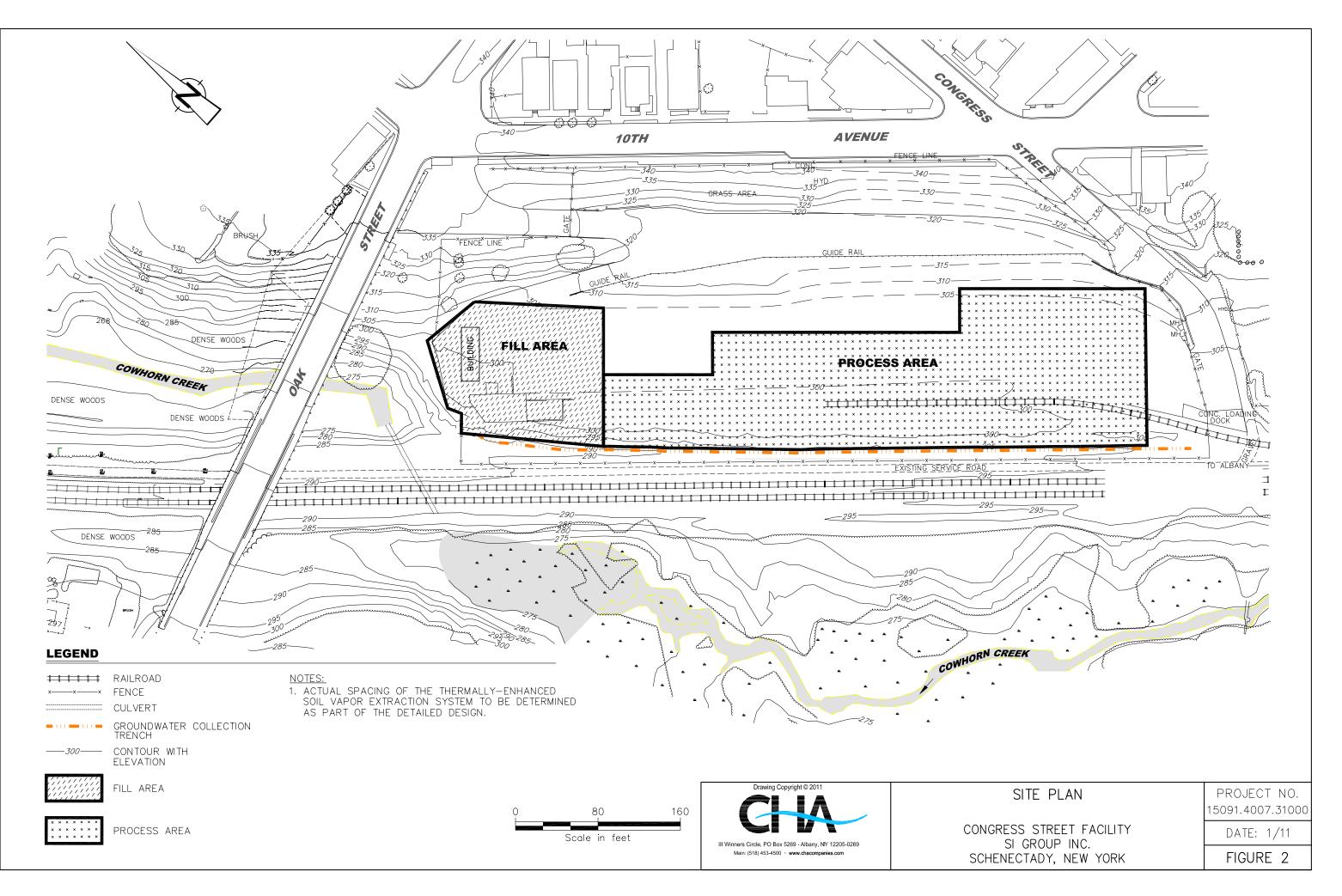
3.3 OPERATION AND MAINTENANCE PLAN

The Operation and Maintenance (O&M) Plan will be prepared as part of the SMP describing the measures necessary to operate, monitor and maintain the in-situ treatment system being installed at the Site. The O&M Plan will include:

- The operation procedures that would allow individuals unfamiliar with the Site to operate and maintain the systems;
- Operation, maintenance and monitoring of the in-situ treatment system including the operation of the groundwater dewatering system, operation of the SVE system, transition of the SVE system to bioventing, operation of the bioventing system, the termination of the bioventing system, and the monitoring of the system during each phase of operation;
- Compliance monitoring requirements of the in-situ treatment systems as required by permit or permit equivalent reporting as specified by NYSDEC;
- Maintenance of Site access controls;
- Notification requirements for NYSDEC;
- Procedures for providing NYSDEC access to the Site; and
- Procedures for providing NYSDEC O&M Reports.

4.0 SCHEDULE


The following provides a proposed schedule for the completion of Phase 2 Remedial Activities specified in the Work Plan:

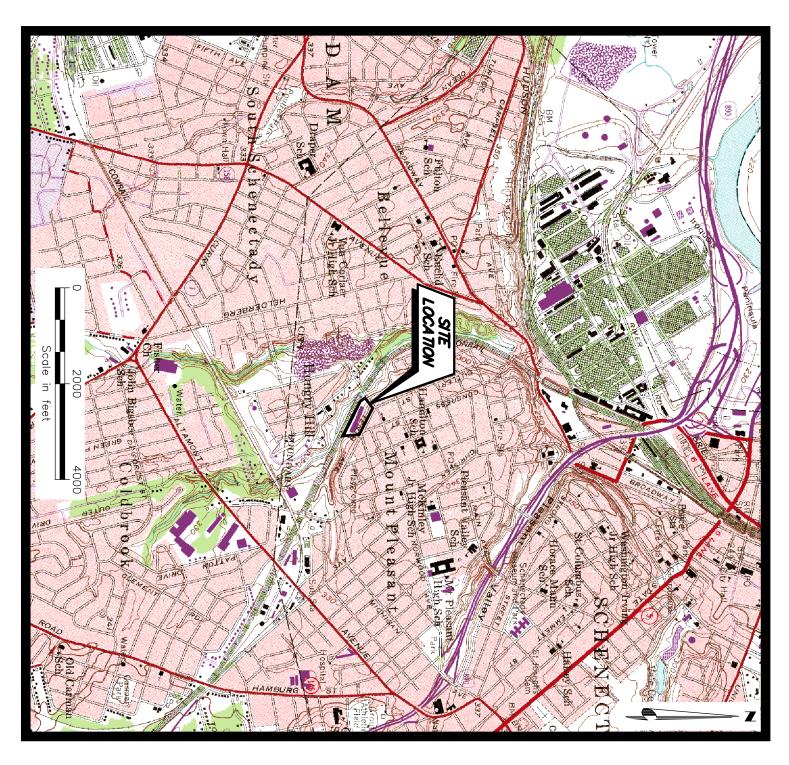

Milestone	Anticipated Schedule
Submission of a Remedial Design Work Plan, Phase 2	August 31, 2012
Submission of a Site Management Plan	90 Days from Submittal of Remedial Design Work Plan, Phase 2
Selection of Contractor	60 Days from Approval of Phase 2 Remedial Design Work Plan
Initiation of Work	60 Days from Selection of Contractor
Completion of the Installation of the first phase of the In-Situ Treatment System	90 Days from Initiation of Work
Completion of the Installation of the Overall In-Situ Treatment System	Two (2) Years from Initiation of Work
Operation of In-Situ Treatment System	Two (2) to Three (3) Years from Initiation of Work
Submission of a Final Engineering Design Report for Phase 2	90 Days from Completion of the Installation of the In-Situ Treatment System & Achieving Remedial Goals

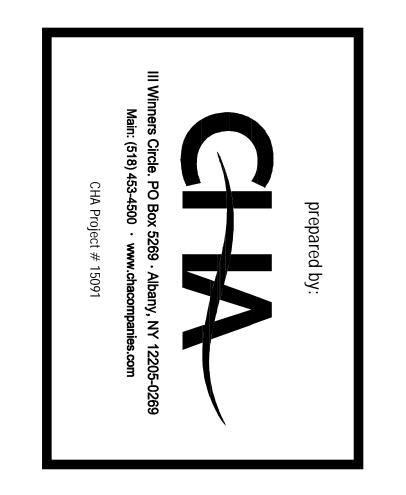
The overall progress of the project will be dependent upon a number of factors including, but not limited to: time of year at which the final design documents are approved, weather conditions at the time of construction, progress monitoring results, etc.

The NYSDEC will be notified at least 7 days prior to the initiation of any field activities conducted in support of the remedial design and 30 days prior to initiating the remedial design installation activities described herein.

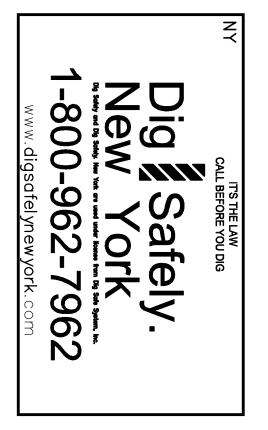
FIGURES

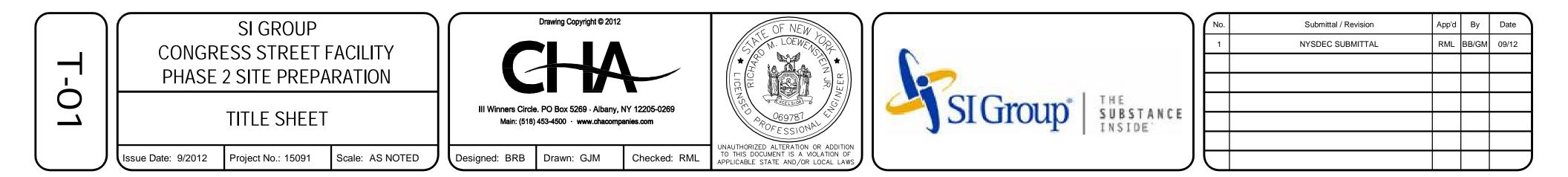
APPENDIX A


Phase 2 Design Drawings


SRESS STREE SITE NO. HW447007 RENEDIATION FAC

SI GROUP, INC. 1000 MAIN STREET ROTTERDAM JCT, NY 12150


File: M:\15091\CS\PHASE 2 DESIGN\5007 PHASE II\ACAD_SHEET_FILES\15091_T-01_PHASE2.DWG Saved: 9/27/2012 10:04:16 AM Plotted: 9/28/2012 7:37:27 AM User: Blaydes, Bryon


CITY OF SCHENECTADY SCHENECTADY COUNTY, NEW YORK

SEPTEMBER 2012

G Π Ζ Π フ \triangleright Ζ 0 Π S

<u>GENERAL</u> NOTES:

- . THIS PROJECT SITE IS A NEW YORK STATE LISTED HAZARDOUS WASTE SITE. ALL CONTRACTOR PERSONNEL ARE REQUIRED TO BE PROPERLY TRAINED PURSUANT TO THE HAZARDOUS WASTE OPERATIONS AND EMERGENCY RESPONSE STANDARD (HAZWOPER); 40 CFR 1910.120 AND SI GROUP TRAINING PRIOR TO SITE ENTRY.
- 2 ALL WORK SHALL BE DONE IN STRICT COMPLIANCE WITH ALL APPLICABLE NATIONAL, STATE AND LOCAL CODES, STANDARDS, ORDINANCES, RULES, REGULATIONS. AND
- Ч CONTRACTOR SHALL VERIFY ALL UTILITIES WITH PROPER AUTHORITIES PRIOR TO DRILLING. A MINIMUM OF 48 HOURS BEFORE DRILLING, CONTRACTOR MUST CALL DIG SAFELY NEW YORK/U.F.P.O. AT 1-800-962-7962 FOR UTILITY STAKEOUT.
- 4. THE OWNER, OWNER'S REPRESENTATIVE AND NYSDEC RESERVE THE RIGHT TO EXAMINE ANY WORK DONE ON THIS PROJECT AT ANY TIME TO EVALUATE THE CONTRACTOR'S CONFORMANCE WITH THE REQUIREMENTS OF THE CONTRACT DOCUMENTS.
- Ģ THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROVIDING ALL FIELD LAYOUT. ALL UNDERGROUND UTILITIES ENCOUNTERED SHALL BE REVIEWED BY THE OWNER AND OWNER'S REPRESENTATIVE FOR DETERMINATION OF REQUIREMENTS AND/OR PROCEDURES FOR ABANDONMENT OF SUCH UTILITIES.
- ნ. ALL OPEN BORINGS SHALL BE PROPERLY SEALED OR COVERED EACH DAY. A THE END ရှ
- .7 ALL IMPORTED MATERIALS SHALL BE IN ACCORDANCE TO SPECIFICATIONS UNLESS NOTED OTHERWISE.
- œ THE CONTRACTOR SHALL RESTORE LAWNS, DRIVEWAYS, CULVERTS, SIGNS, AND OTHER PUBLIC OR PRIVATE PROPERTY OUTSIDE THE WORK LIMITS THAT IS DAMAGED OR REMOVED DURING THE COURSE OF CONSTRUCTION TO AT LEAST AS GOOD AS CONDITION AS BEFORE BEING DISTURBED. AS DETERMINED BY THE OWNER'S REPRESENTATIVE, THESE ITEMS SHALL BE REPLACE AT THE CONTRACTOR'S EXPENSE.
- 9. ALL PUBLIC ROADS ACCESSING THE SITE SHALL BE KEPT CLEAN OF TRACKING, AND DEBRIS AT ALL TIMES. MUD,
- 10. MATERIALS, EQUIPMENT AND VEHICLES ARE NOT TO BE STORED OR PARKED WITHIN ANY ROADWAY RIGHT-OF-WAY.
- .≓ THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING AND INCURRING THE COST OF ALL REQUIRED PERMITS SUCH AS, BUT NOT LIMITED TO BUILDING PERMIT, DEMOLITION PERMITS, INSPECTIONS, CERTIFICATES, ETC. THE OWNER WILL BE RESPONSIBLE FOR OBTAINING THE NECESSARY PERMITS FROM NYSDEC INCLUDING MODIFICATIONS TO THE SITE SPDES PERMIT TO MANAGE GROUNDWATER AND WASTEWATER. THE CONTRACTOR SHALL COMPLY WITH ALL REQUIRED PERMITS. ŦĦĔ
- 12 THE CONTRACTOR SHALL PROTECT EXISTING PROPERTY LINE MONUMENTATION. ANY MONUMENTATION DISTURBED OR DESTROYED, AS JUDGED BY THE ENGINEER OR OWNER, SHALL BE REPLACED AT THE CONTRACTOR'S EXPENSE UNDER THE SUPERVISION OF A NEW YORK STATE LICENSED LAND SURVEYOR.
- 13. CONTRACTOR SHALL BE RESPONSIBLE FOR DEWATERING AND THE MAINTENANCE OF SURFACE DRAINAGE DURING THE COURSE OF WORK IN ACCORDANCE WITH THE SPECIFICATIONS AND/OR OWNER APPROVAL.
- 14. MAINTAIN FLOW FOR ALL EXISTING UTILITIES, CULVERTS, AND DITCHES.
- ភ្ PRIOR TO BIDDING PROJECT, THE CONTRACTOR SHALL VISIT THE SITE EXISTING CONDITIONS. TO VERIFY
- 16. ALL PHYSICAL FEATURES, INDIVIDUAL TREES, LANDSCAPING OR UTILITY LOCATIONS COULD NOT BE POSSIBLY SHOWN ON THE CONTRACT DRAWINGS. EACH BIDDER IS ENCOURAGED TO PERSONALLY INSPECT ALL AREAS OF PROPOSED WORK, IN ORDER TO ENSURE THAT HE IS FAMILIAR WITH THE PHYSICAL LAYOUT OF THE AREA AND THE REQUIREMENTS OF THE WORK.
- 17. PROPERTY LINES ARE APPROXIMATE AS INTERPOLATED AND ARE SHOWN FOR REFERENCE ONLY. SEE LIST OF IFURTHER INFORMATION. FROM EXISTING MAPPING MAP REFERENCES FOR
- 18. ALL PROPOSED WORK MAY BE VARIED IN THE FIELD REPRESENTATIVE TO MEET EXISTING CONDITIONS. ВΥ ΞË OWNER OR OWNER
- 19. WHERE PRACTICAL, ALL EROSION CONTROL MEASURES PLACE PRIOR TO BEGINNING CONSTRUCTION. SHALL BE PUT INTO

INDEX DA

NOTES:

<u>ADDITIONAL</u>

. `

₽.

THE CONTRACTOR SHALL: . VERIFY ALL CO AND NOTIFY T CONDITIONS IN THE FIELD PRIOR TO COMMENCEMENT OF WORK THE OWNER OF ANY DISCREPANCIES. ALL

EXAMINE THE SITE AND INCLUDE IN HIS/HER WORK THE EFFECT OF EXISTING CONDITIONS ON THE WORK.

ACCORDANCE INSTALL ALL MATERIALS AND PERFORM ALL WORK IN WITH RECOGNIZED GOOD STANDARD PRACTICE.

ALL SOIL CUTTINGS SHALL BE MANAGED IN ACCORDANCE WITH THE SOIL MANAGEMENT PLANS. HOLD THE OWNER HARMLESS AGAINST ANY AND ALL CLAIMS ARISING FROM WORK DONE BY THE CONTRACTOR ON SITE.

MANAGEMENT OF CONTAMINATED SOILS/MEDIUM SHALL BE COMPLETED IN A MANNER THAT DOES NOT CONTAMINATE CLEAN AREAS OF THE SITE INCLUDING THE EXISTING ASPHALT PAD. ANY REMEDIATION OF CLEAN AREAS SUBSEQUENTLY CONTAMINATED WILL BE THE RESPONSIBILITY OF THE CONTRACTOR AT NO COST TO THE OWNER. NO WASTE MATERIALS (e.g. SOIL CUTTINGS) SHALL BE LEFT EXPOSED OVERNIGHT.

З

Ņ

<u>.</u>

?

Β

DISPOSAL OF DRILL CUTTINGS AND OTHER WASTE MATERIALS SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR.

ITEMS SHALL BE IN ACCORDANCE WITH THE CONTRACT

D-06

Ģ

-07

COMPRESSED

AIR SYSTEM DETAILS

D-05

D-04 D-03 D-02

D-01

M-06

M-05

M-04

M-03

M-02

M-01

G-02

G-01

I-03

1-02

1-01

S

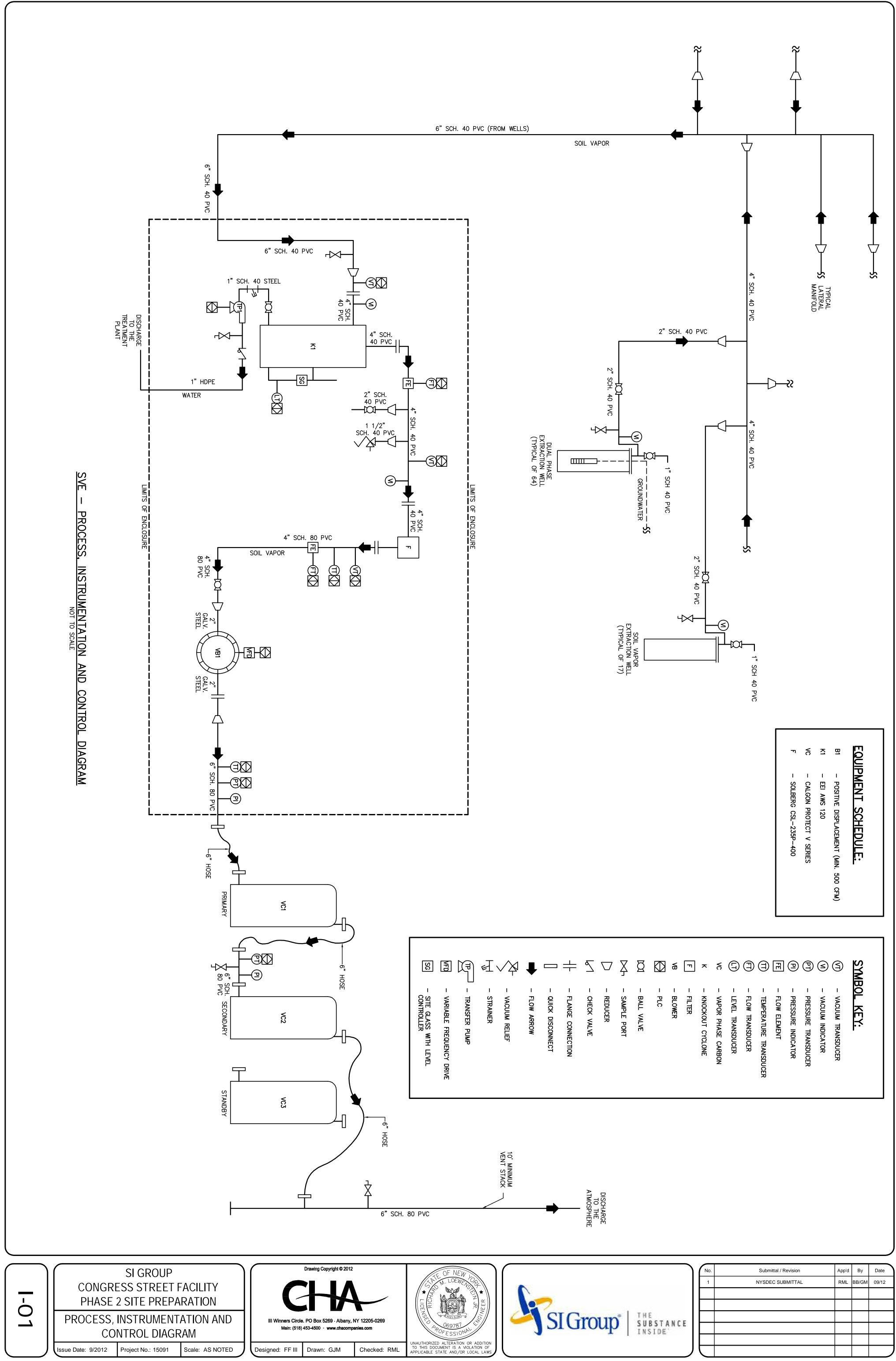
REMOVAL OF DOCUMENTS.

4

SHEET TIT

DWG. NO.

T-01


L-01

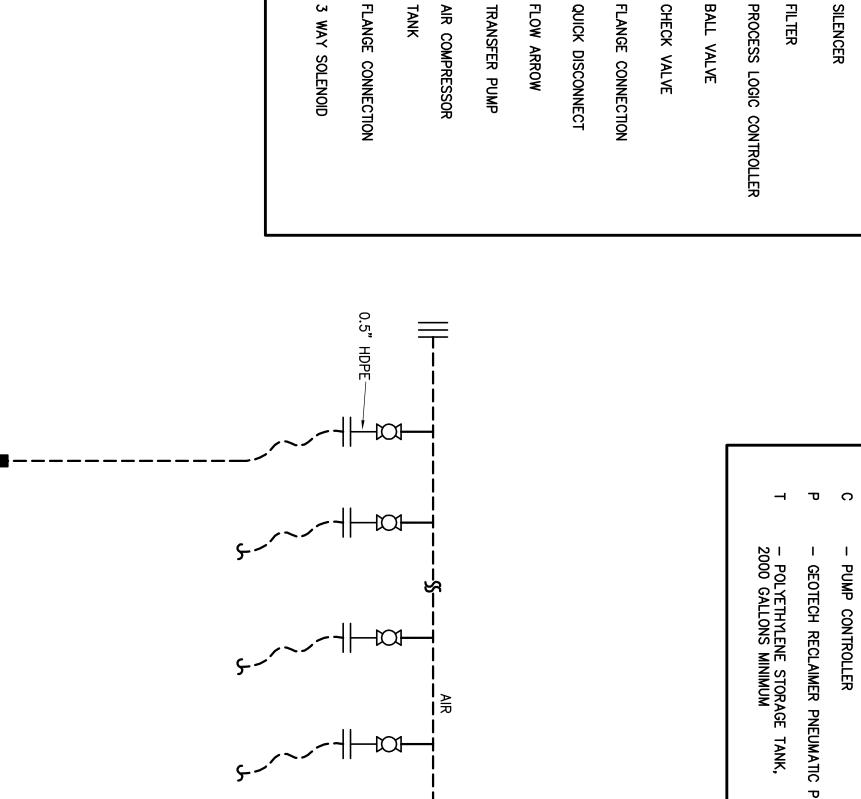
GROUNDWATER EXTRACTION MANIFOLD GROUNDWATER EXTRACTION COMPRES: SOIL VAPOR EXTRACTION SYSTEM MAI CONDUCTIVE SOIL HEATING SYSTEM PI PROCESS, DEWATERING SYSTEM DETAILS MONITORING SYSTEM PLAN PROCESS, SYSTEM PLAN AND DETAILS GEOTHERMAL SYSTEM DETAILS SOIL VAPOR EXTRACTION SYSTEM WELL SCHEDULES OVERALL WELL EXISTING CONDITIONS PLAN SYSTEM COMPONENT DETAILS SITE PREPARATION PLAN PROCESS, LEGEND, TITLE SHEET 3, GENERAL NOTES AND INDEX SS, INSTRUMENTATION AND CO SS, INSTRUMENTATION AND CO SYSTEMS PLAN

	<
	G
	$\overline{\mathbf{O}}$
Į	

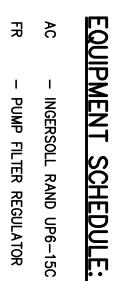
μ.	SHEET NO.
	<u> </u>
EX OF DRAWINGS	2
CONTROL DIAGRAM	Ŋ
CONTROL DIAGRAM	4
CONTROL DIAGRAM	ഗ
	თ
	7
	00
DLD PLAN	9
ESSED AIR SYSTEM PLAN	10
MANIFOLD PLAN	11
PLAN	12
	13
	14
	1ភ
DETAILS	16
	17
	18
	19
	20

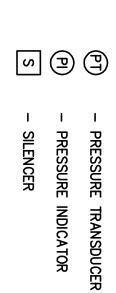
Drawing Copyright © 2012 **SI GROUP** Submittal / Revision App'd By Date RML BB/GM NYSDEC SUBMITTAL 09/12 **CONGRESS STREET FACILITY** PHASE 2 SITE PREPARATION \mathbf{C} SIGroup THE SUBSTANCE INSIDE LEGEND, GENERAL NOTES AND III Winners Circle. PO Box 5269 · Albany, NY 12205-0269 ____ Main: (518) 453-4500 · www.chacompanies.com **INDEX OF DRAWINGS** UNAUTHORIZED ALTERATION OR ADDITION TO THIS DOCUMENT IS A VIOLATION OF APPLICABLE STATE AND/OR LOCAL LAWS Project No.: 15091 Scale: AS NOTED ssue Date: 9/2012 Designed: GJM Drawn: GJM Checked: RML

=


FR

ဂ


+


Designed: BRB

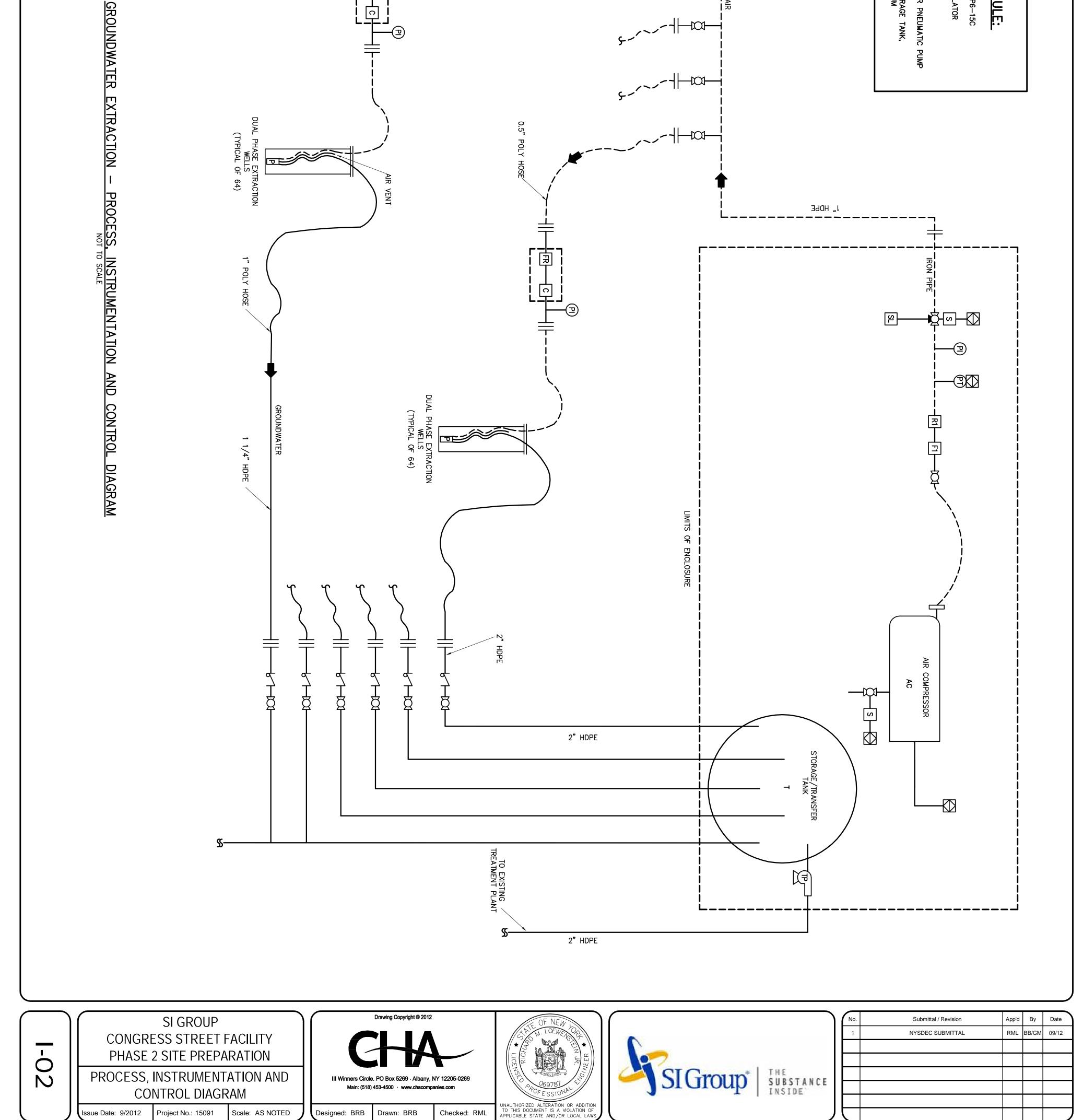
Checked: RML

- INGERSOLL RAND UP6-15C
- PUMP FILTER REGULATOR
- PUMP CONTROLLER
- GEOTECH RECLAIMER PNEUMATIC PUMP
- POLYETHYLENE STORAGE TANK,
 2000 GALLONS MINIMUM

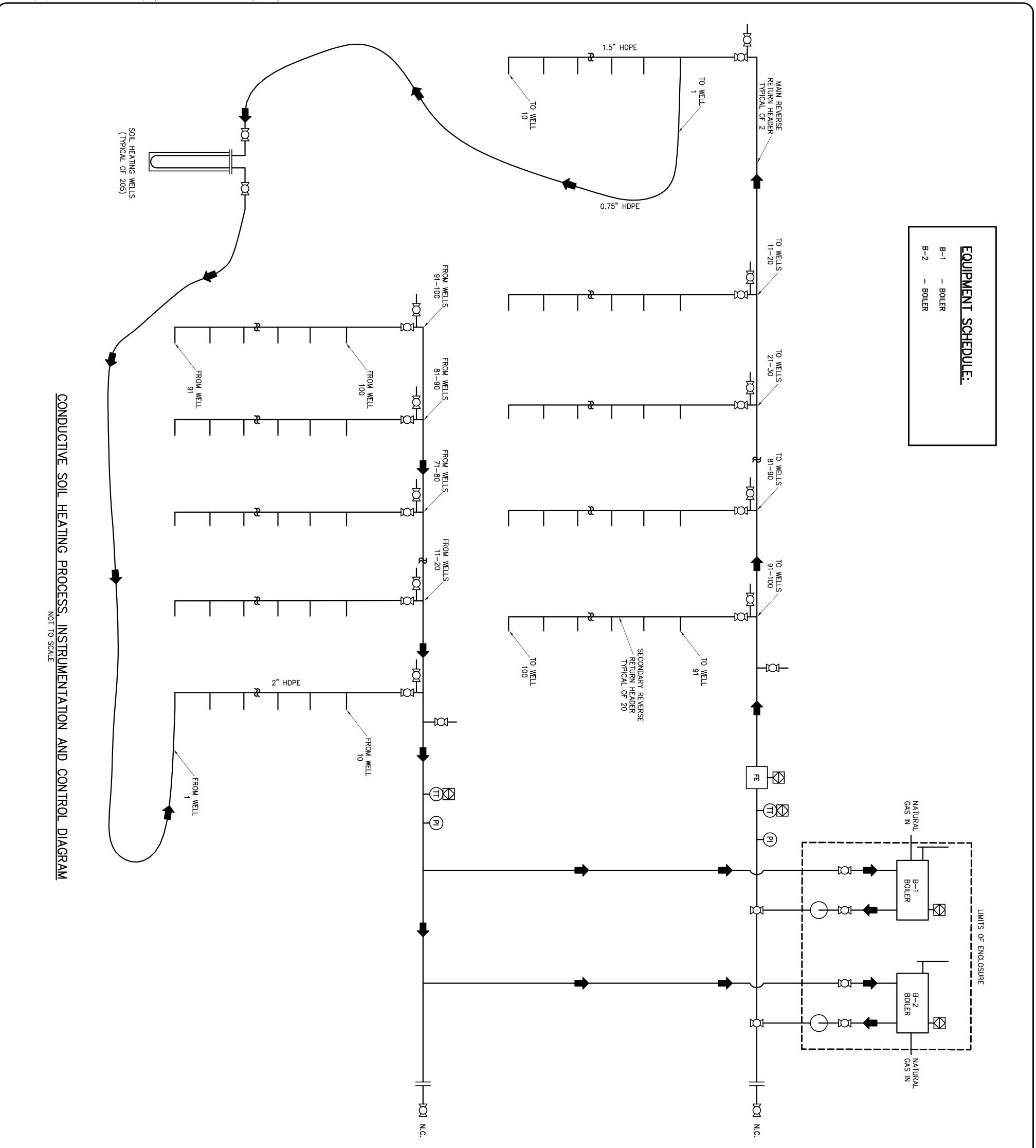
SYMBOL KEY:

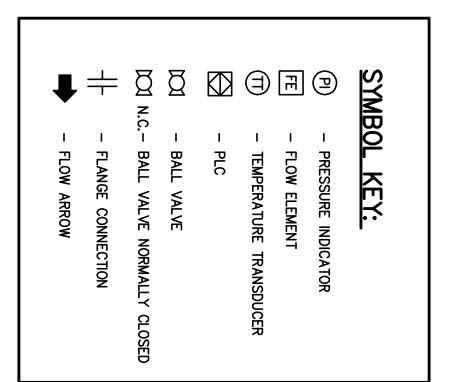
- FILTER

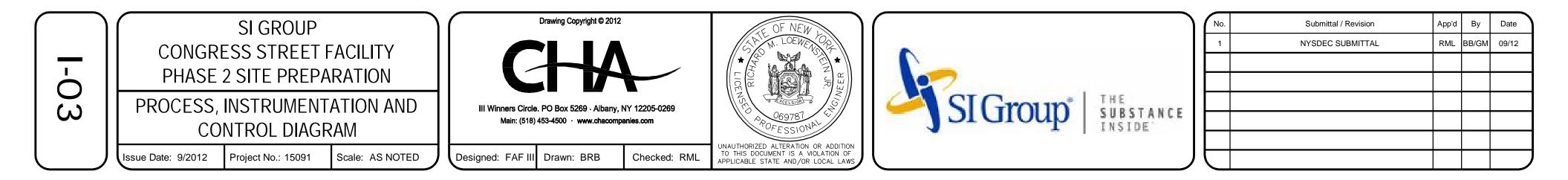
п

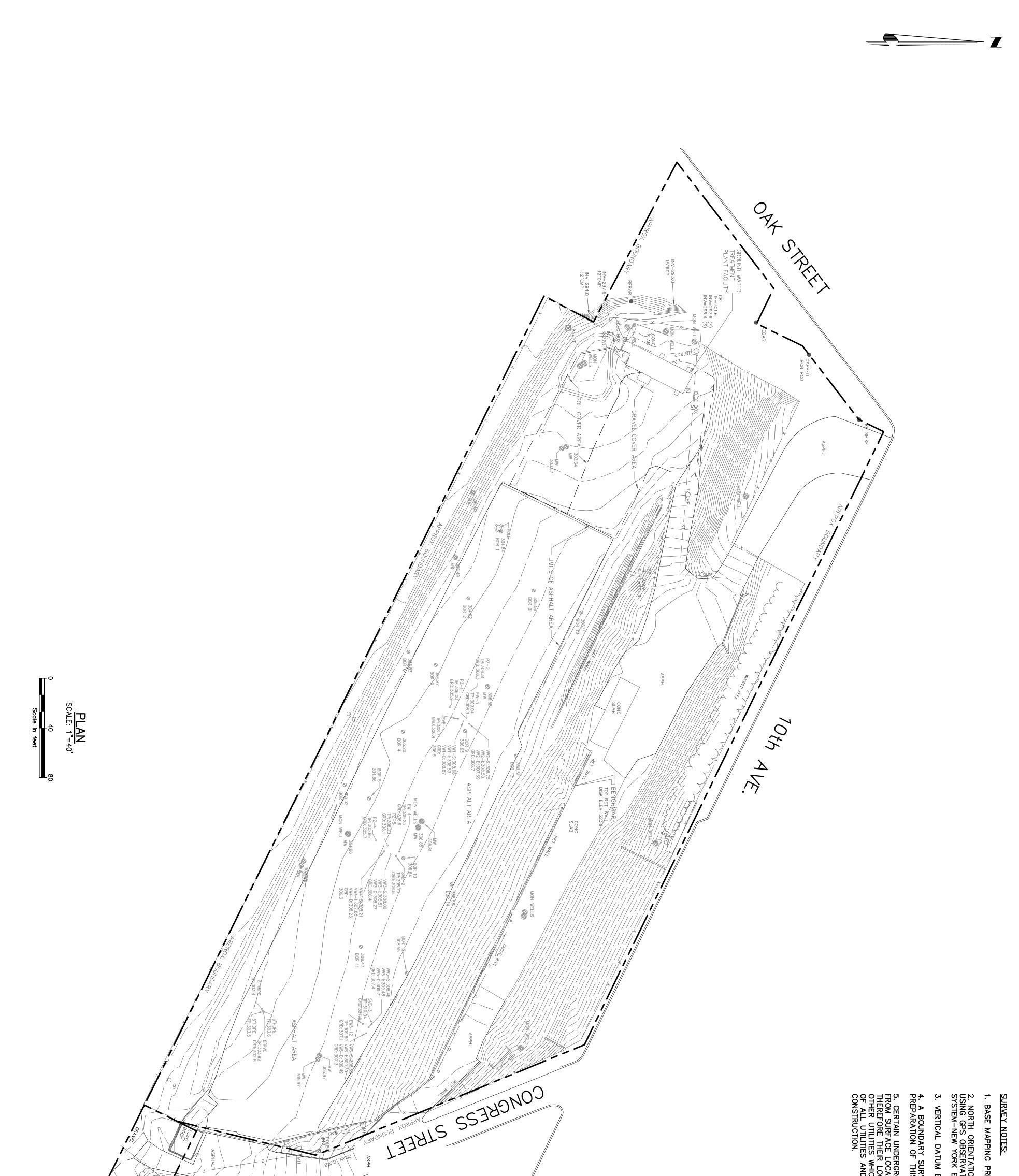

- PROCESS LOGIC CONTROLLER

 \square

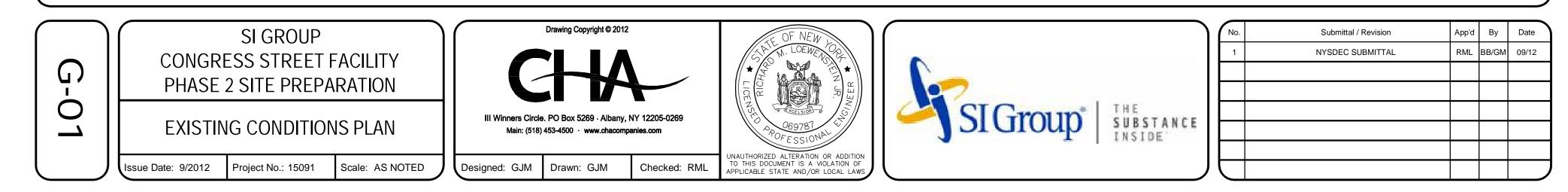

- BALL VALVE

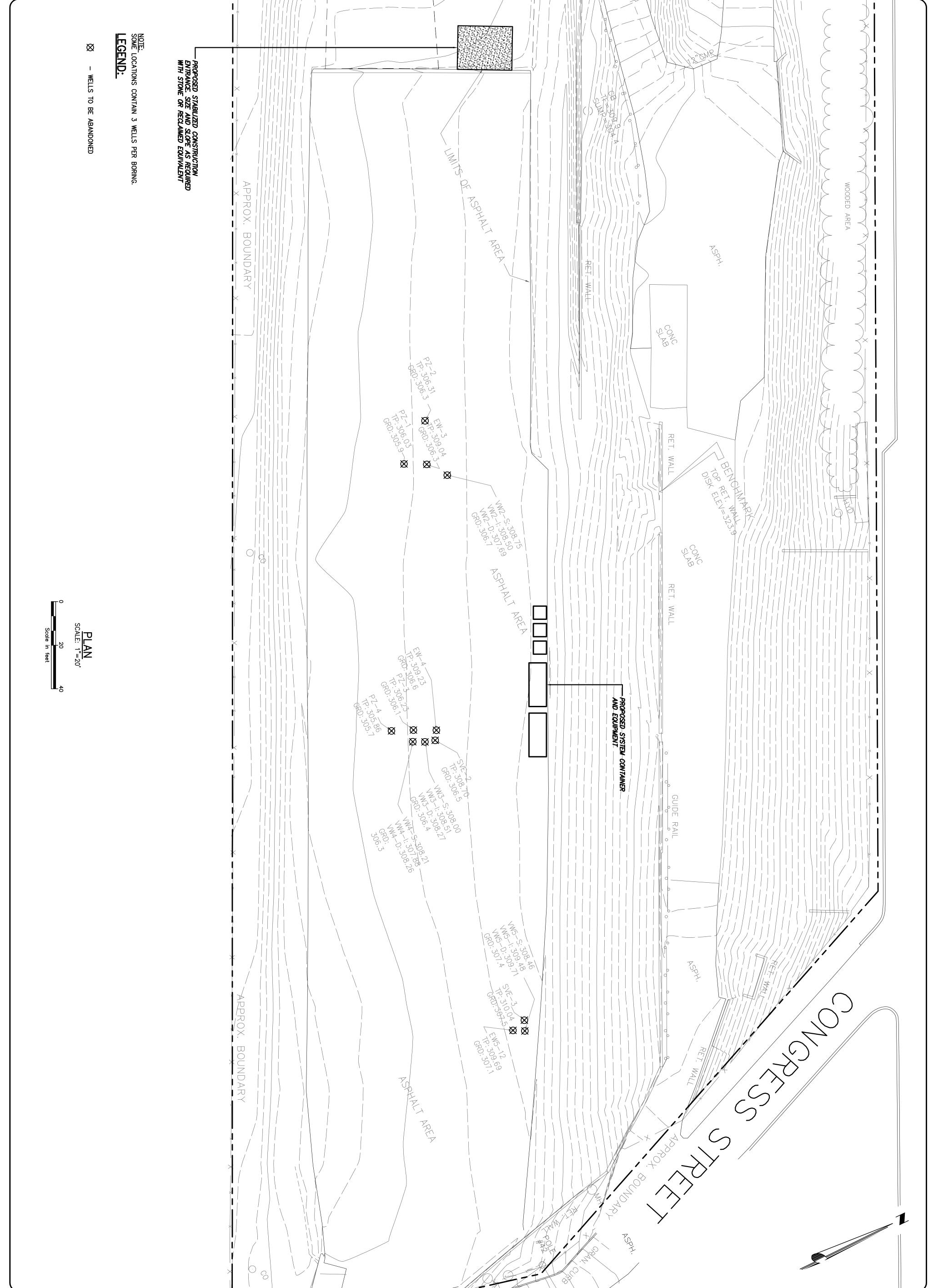

- CHECK VALVE
- FLANGE CONNECTION
- ≽ ဩ ♣ ┿ ∑ ً ¤ QUICK DISCONNECT
 - FLOW ARROW
 - TRANSFER PUMP
 - AIR COMPRESSOR
- TANK
- Ø FLANGE CONNECTION

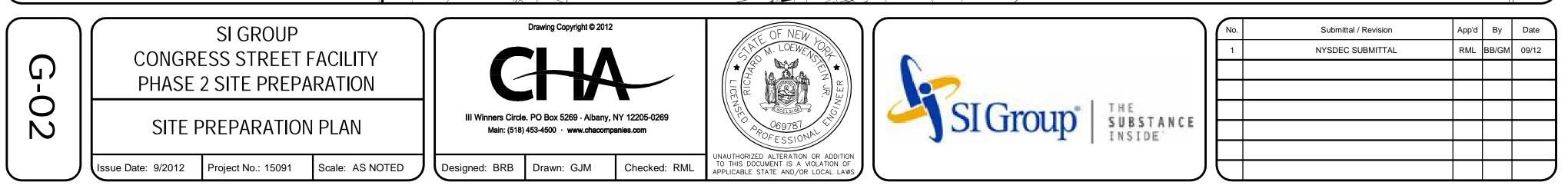

File: M:\15091\CS\PHASE 2 DESIGN\5007 PHASE II\ACAD_SHEET_FILES\15091_I-02_PHASE2.DWG Saved: 9/28/2012 10:41:52 AM Plotted: 9/28/2012 10:42:05 AM User: Blaydes, Bryon

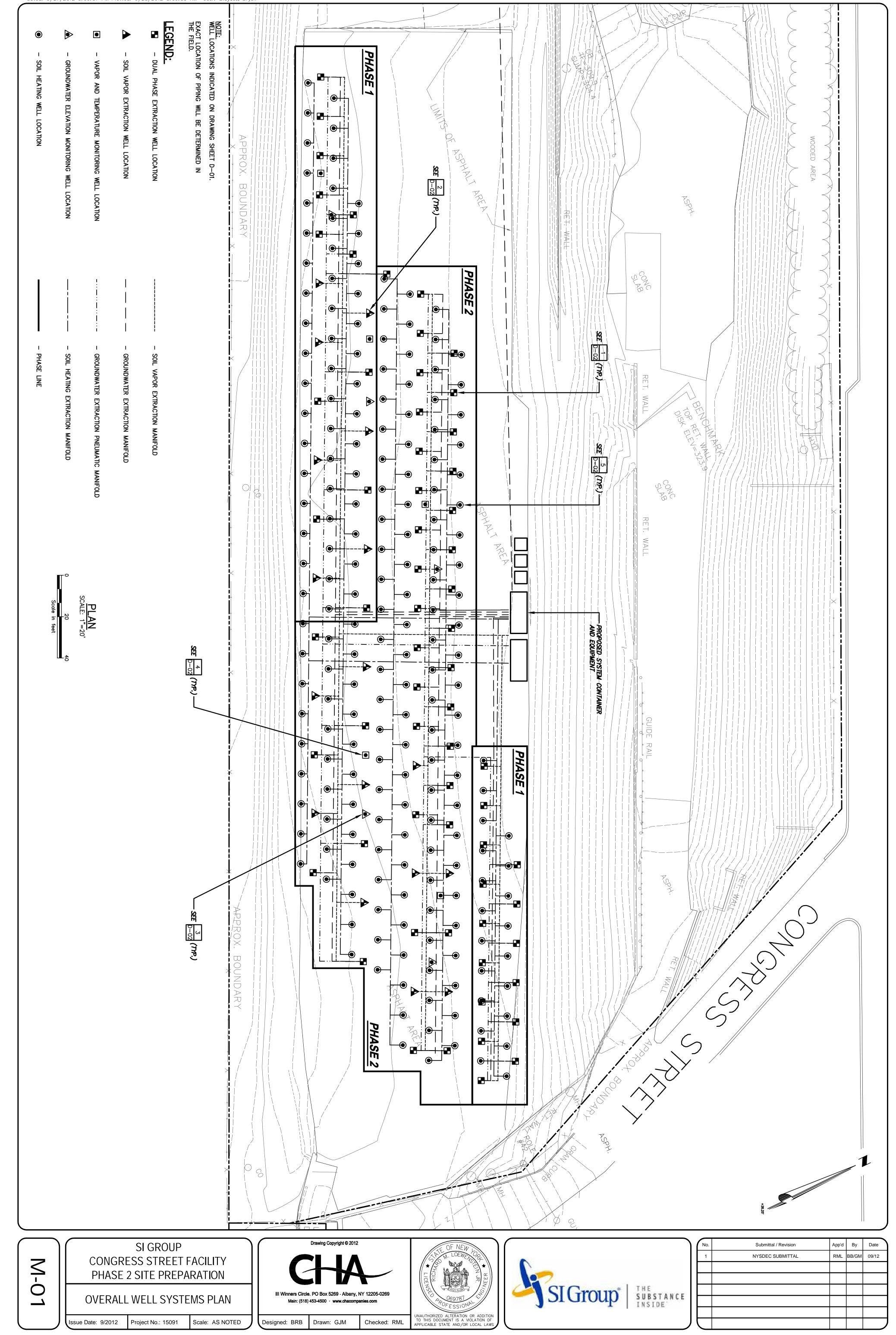


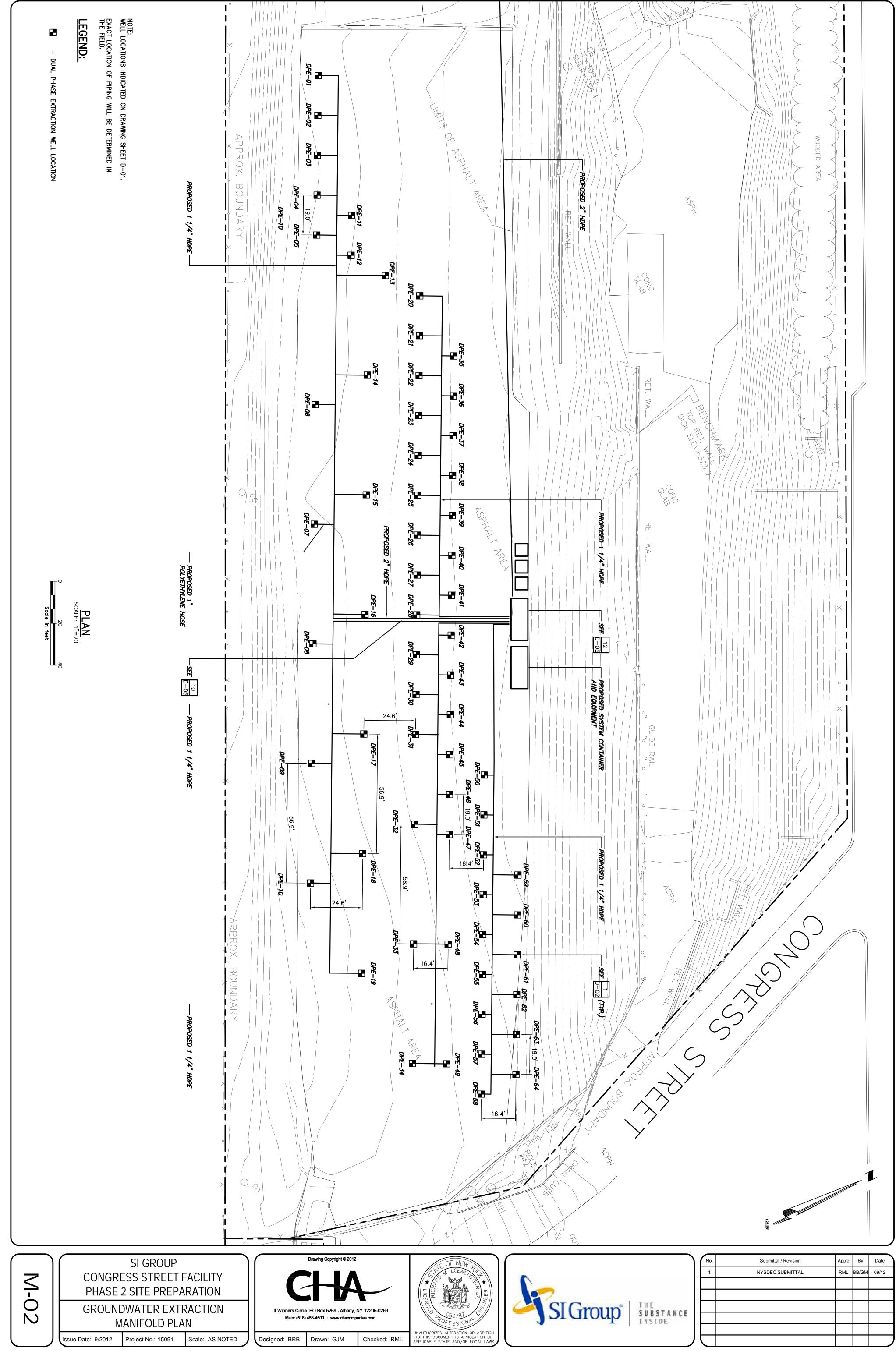
File: M:\15091\CS\PHASE 2 DESIGN\5007 PHASE II\ACAD_SHEET_FILES\15091_I-03_PHASE2.DWG Saved: 9/28/2012 10:48:02 AM Plotted: 9/28/2012 10:48:52 AM User: Blaydes, Bryon

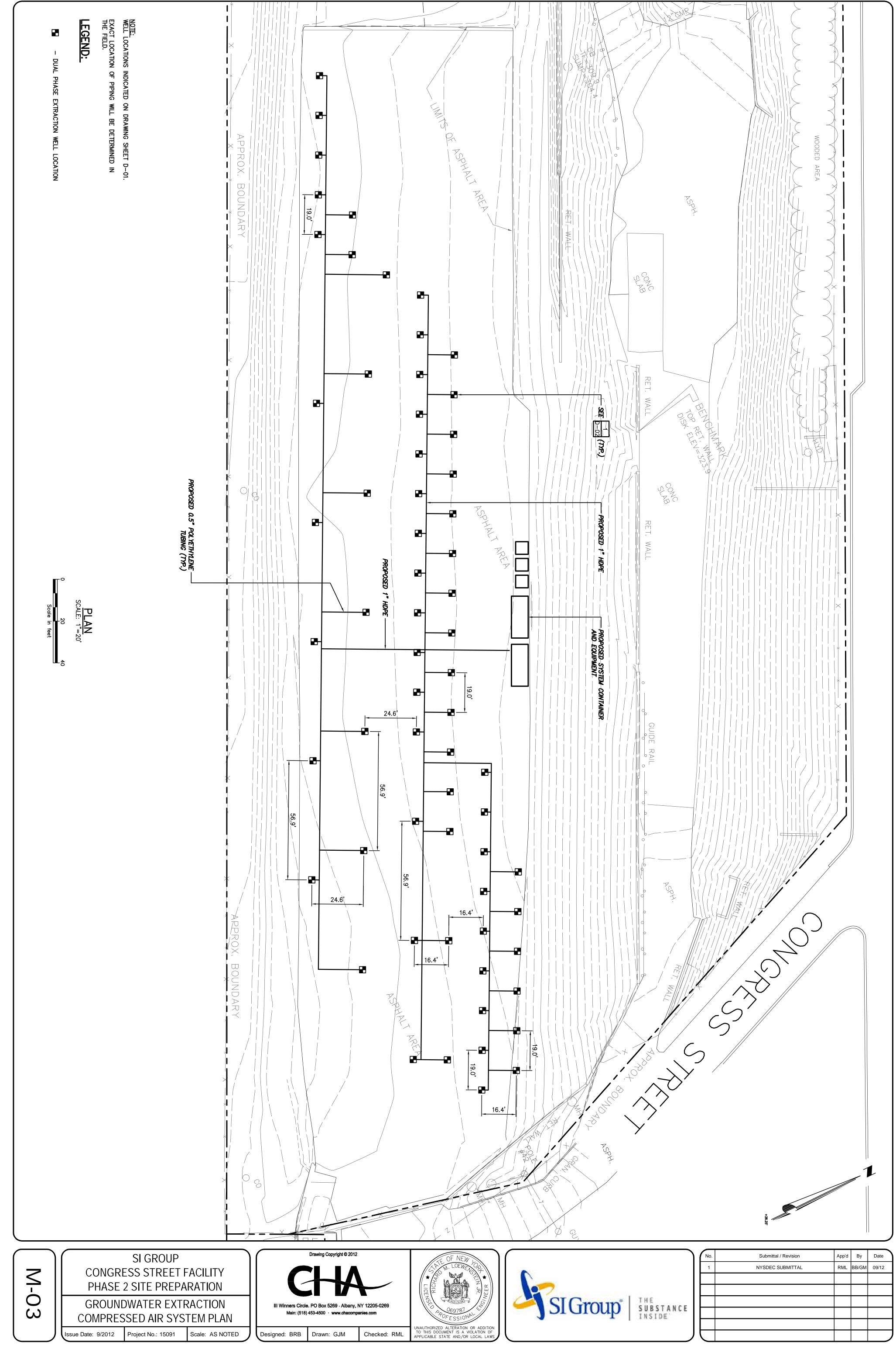



 BASE MAPPING PREPARED BY CHA FROM A MAY 2012 FIELD SURVEY.
 NORTH ORIENTATION IS BASED ON EXISTING SITE CONTROL ESTABLISHED BY CHA USING GPS OBSERVATIONS. MAPPING PREPARED ON NAD83 STATE PLANE COORDINATE SYSTEM-NEW YORK EAST ZONE.

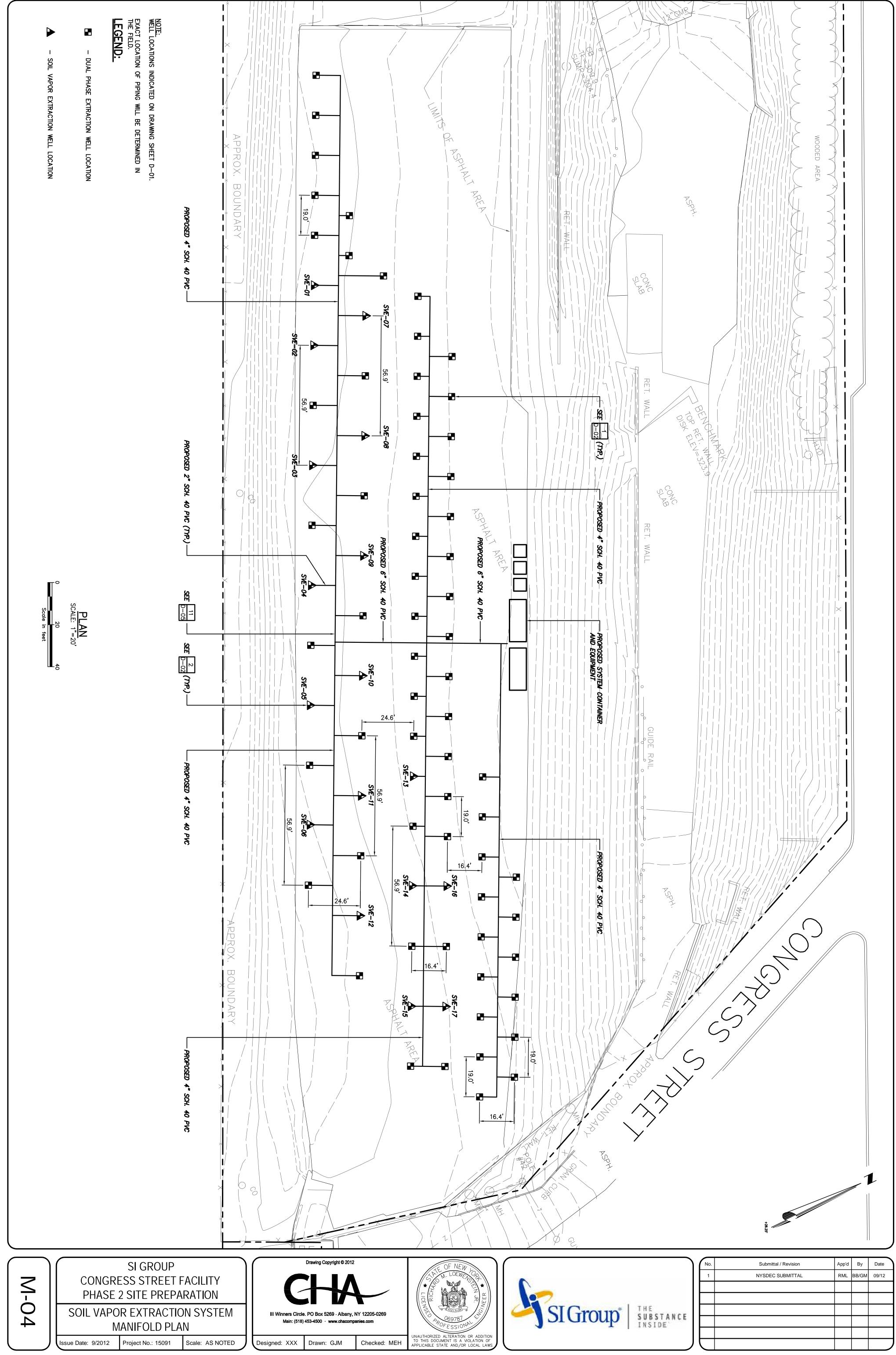

VERTICAL DATUM BASED ON RECORD MAPPING ELEVATIONS PROVIDED BY THE CLIENT. A BOUNDARY SURVEY WAS NOT PERFORMED BY CHA IN CONJUNCTION WITH THE REPARATION OF THIS SITE.


5. CERTAIN UNDERGROUND UTILITIES, STRUCTURES AND FACILITIES HAVE BEEN SHOWN FROM SURFACE LOCATIONS AND MEASUREMENTS OBTAINED FROM A FIELD SURVEY, THEREFORE THEIR LOCATIONS MUST BE CONSIDERED APPROXIMATE ONLY. THERE MAY BE OTHER UTILITIES WHICH THE EXISTENCE OF ARE NOT KNOWN. SIZE, TYPE AND LOCATION OF ALL UTILITIES AND STRUCTURES MUST BE VERIFIED PRIOR TO ANY AND ALL CONSTRUCTION.

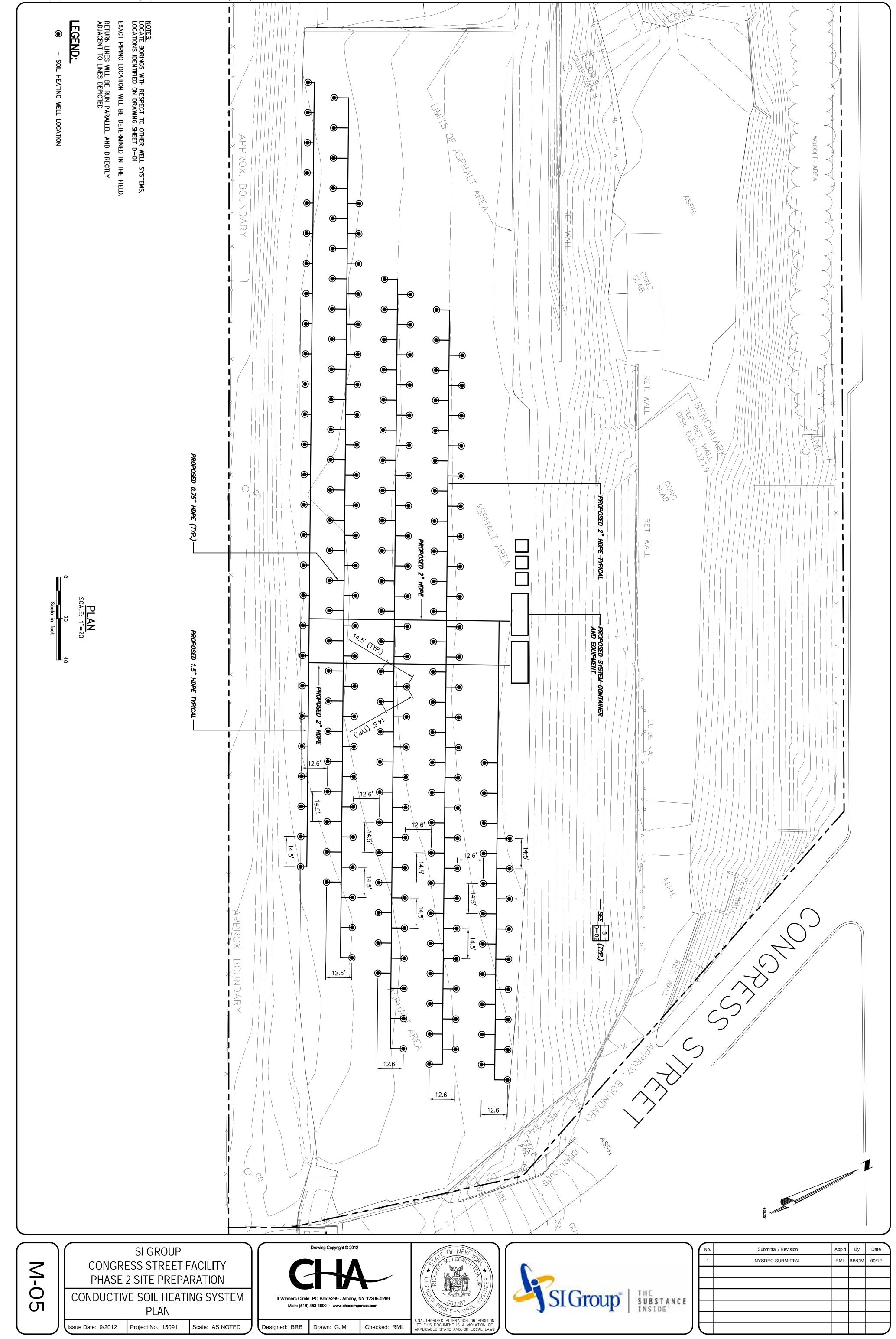




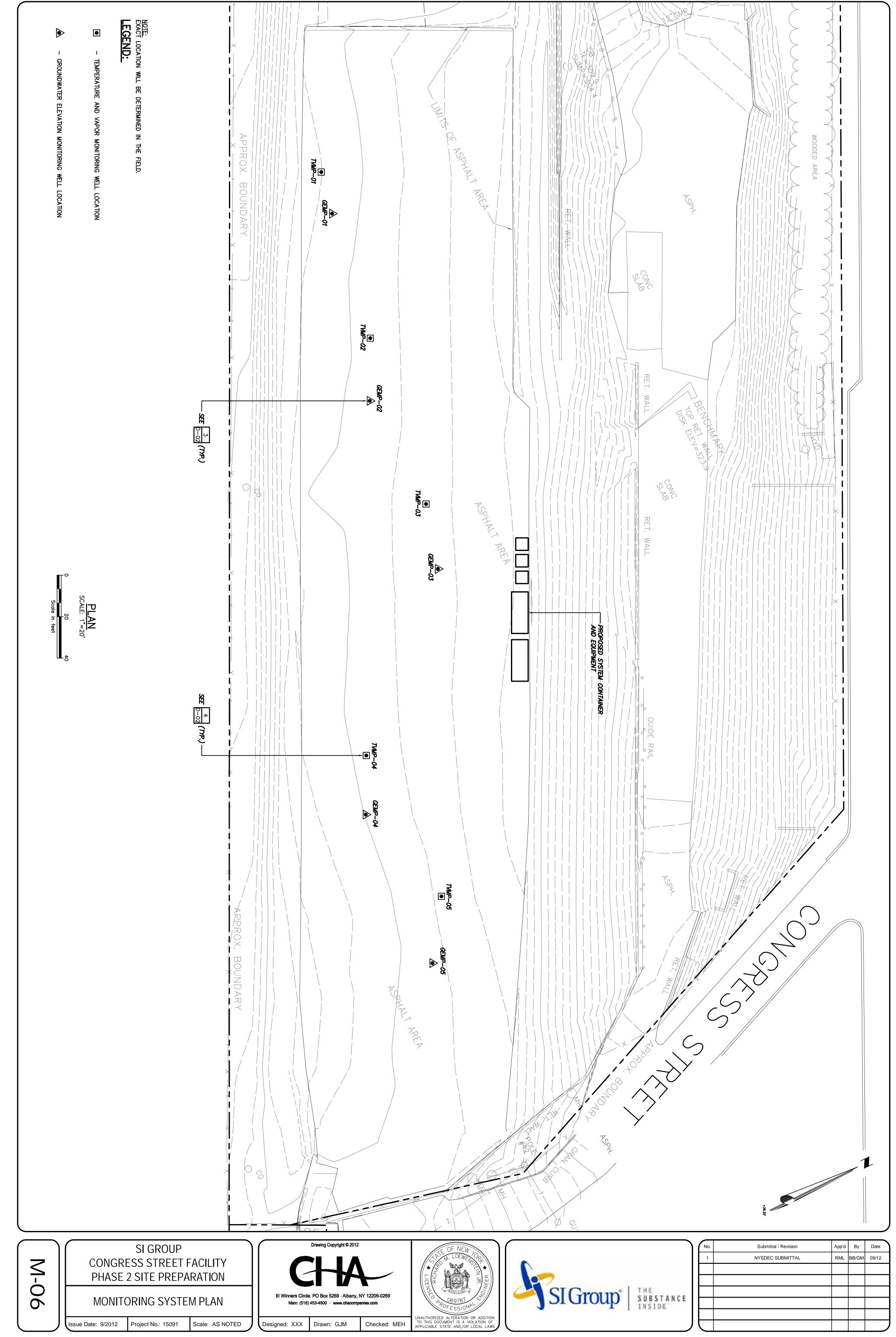
File: M:\15091\CS\PHASE 2 DESIGN\5007 PHASE II\ACAD_SHEET_FILES\15091_M-01_PHASE2.DWG Saved: 9/27/2012 3:06:57 PM Plotted: 9/28/2012 8:06:53 AM User: Blaydes, Bryon


File: M:\15091\CS\PHASE 2 DESIGN\5007 PHASE II\ACAD_SHEET_FILES\15091_M-02_PHASE2.DWG Saved: 9/27/2012 2:54:59 PM Plotted: 9/28/2012 8:08:33 AM User: Blaydes, Bryon

File: M:\15091\CS\PHASE 2 DESIGN\5007 PHASE II\ACAD_SHEET_FILES\15091_M-03_PHASE2.DWG Saved: 9/27/2012 1:15:24 PM Plotted: 9/28/2012 8:10:04 AM User: Blaydes, Bryon



File: M:\15091\CS\PHASE 2 DESIGN\5007 PHASE II\ACAD_SHEET_FILES\15091_M-04_PHASE2.DWG Saved: 9/27/2012 1:14:18 PM Plotted: 9/28/2012 8:11:28 AM User: Blaydes, Bryon



File: M:\15091\CS\PHASE 2 DESIGN\5007 PHASE II\ACAD_SHEET_FILES\15091_M-05_PHASE2.DWG Saved: 9/27/2012 12:45:40 PM Plotted: 9/28/2012 8:13:25 AM User: Blaydes, Bryon

File: M:\15091\CS\PHASE 2 DESIGN\5007 PHASE II\ACAD_SHEET_FILES\15091_M-06_PHASE2.DWG Saved: 9/26/2012 7:01:24 AM Plotted: 9/28/2012 8:15:25 AM User: Blaydes, Bryon

SOIL	
VAP(
OR E	
XTR,	
ACTIO	
$\boldsymbol{\angle}$	

WELL #	NORTHING	EASTING	GROUND ELEV.	TOP SCREEN ELEV.	BOTTOM SCREEN ELEV.
SVE-01	1442894.43	639319.83	304.50'	299.50'	284.50'
SVE-02	1442881.60	639345.22	304.50'	299.50'	284.50'
SVE-03	1442855.94	639396.00	304.75'	299.75'	284.75'
SVE-04	1442830.28	639446.78	304.25'	299.25'	284.25'
SVE-05	1442804.62	639397.56	304.25'	299.25'	284.25'
SVE-06	1442779.51	639548.36	304.00'	299.00'	284.00'
SVE-07	1442909.96	639343.58	305.50'	300.50'	285.50'
SVE-08	1442884.35	639394.41	305.50'	300.50'	285.50'
SVE-09	1442858.68	639445.18	305.50'	300.50'	285.50'
SVE-10	1442833.03	639395.97	305.50'	300.50'	285.50'
SVE-11	1442807.37	639446.74	305.25'	300.25'	285.25'
SVE-12	1442781.70	639597.51	304.50'	299.50'	284.50'
SVE-13	1442833.59	639549.36	306.25'	301.25'	286.25'
SVE-14	1442810.18	639595.72	305.75'	300.75'	285.75'
SVE-15	1442784.43	639646.69	305.50'	300.50'	285.50'
SVE-16	1442724.82	639603.11	306.50'	301.50'	286.50'
SVE-17	1442799.08	639654.09	306.00'	301.00'	286.00'

MONITORING POINT

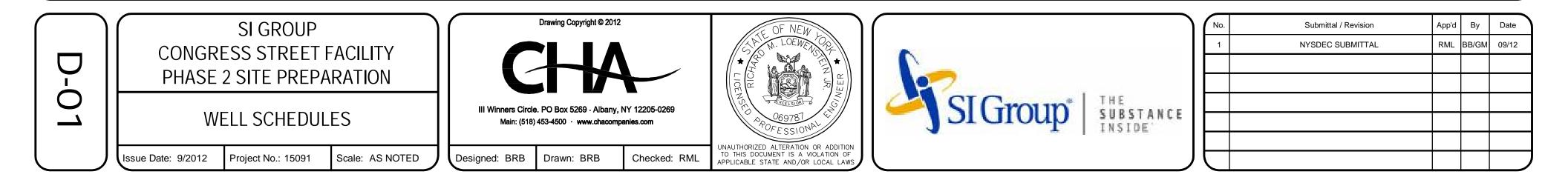
WELL #	NORTHING	EASTING	GROUND ELEV.	TOP SCREEN ELEV.	BOTTOM SCREEN ELEV.
TVMP-01	1442918.73	639272.60	304.50'	NA	NA
GEMP-01	1442914.51	639292.85	304.50'	299.50'	284.50'
TVMP-02	1442904.51	639354.76	304.50'	NA	NA
GEMP-02	1442890.94	639381.72	304.75'	299.75'	284.75'
TVMP-03	1442813.97	639534.05	304.75'	NA	NA
GEMP-03	1442801.16	639559.45	304.25'	299.25'	284.25'
TVMP-04	1442893.30	639438.20	304.25'	NA	NA
GEMP-04	1442884.59	639468.77	304.25'	299.25'	284.25'
TVMP-05	1442816.44	639610.86	304.25'	NA	NA
GEMP-05	1442798.32	639637.78	304.00'	299.00'	284.00'

Fil	le: M	:\15091\CS	\PHASE 2 I	DESIGN\500	7 PHASE II	\ACAD_SHEI	ET_FILES\15091_D-01	I_PHASE2.DWG
Sc	aved:	9/26/2012	2:43:59 P	M Plotted:	9/28/2012	2 8:19:40 AM	User: Blaydes, Bryd	n

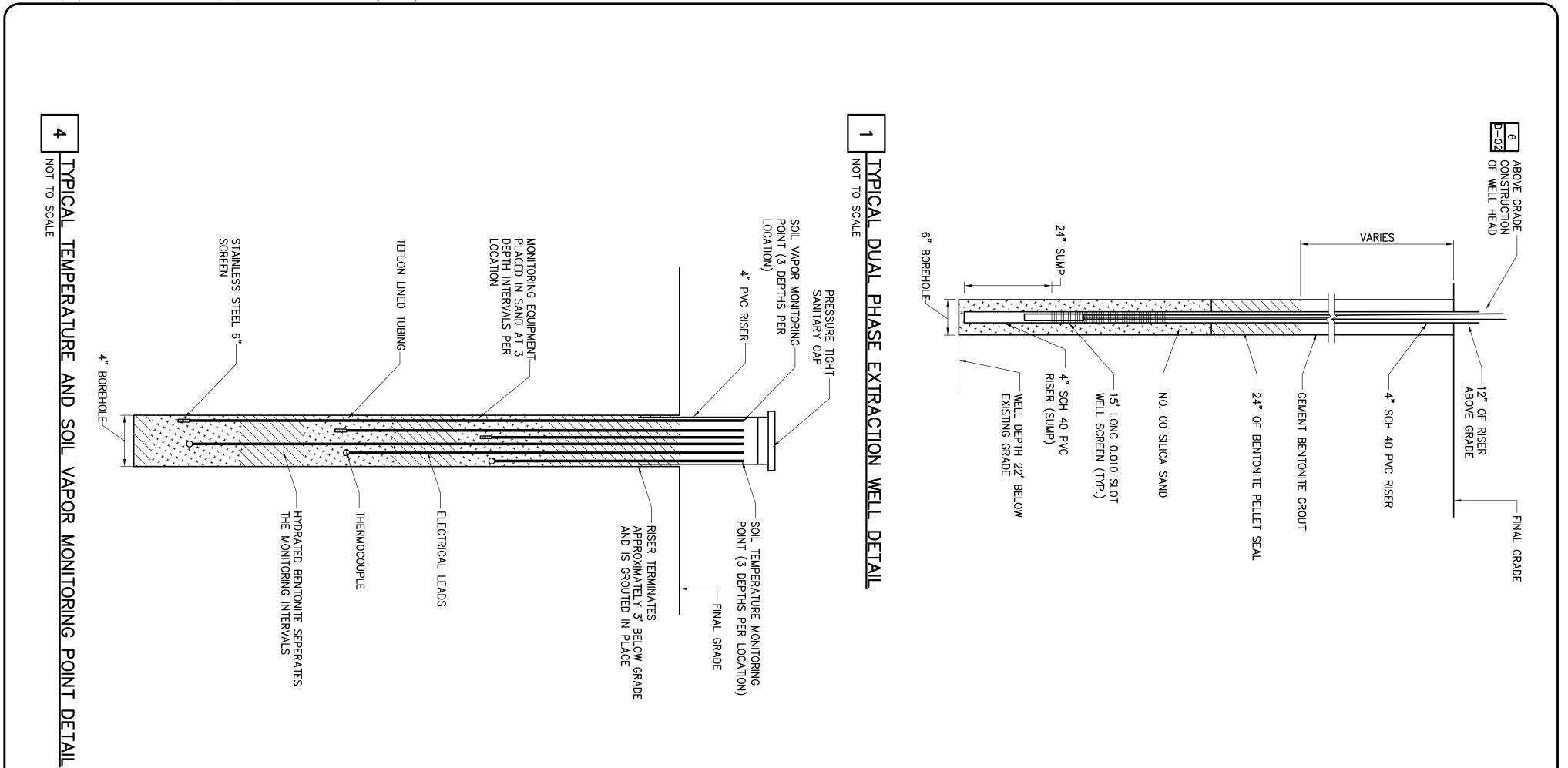
ALL SHOWN ELEVATIONS AND DEPTHS SHALL BE CONSIDERED APPROXIMATE, SUBJECT TO FIELD VERIFICATION. LOCATIONS AND ELEVATIONS FOR EACH OF THE CONDUCTIVE SOIL HEATING BORINGS WILL NOT BE SHOWN THE BORINGS WILL BE LOCATED IN THE FIELD USING THE ESTABLISHED OFFSET INDICATED ON SHEET M-06.

NOTES:

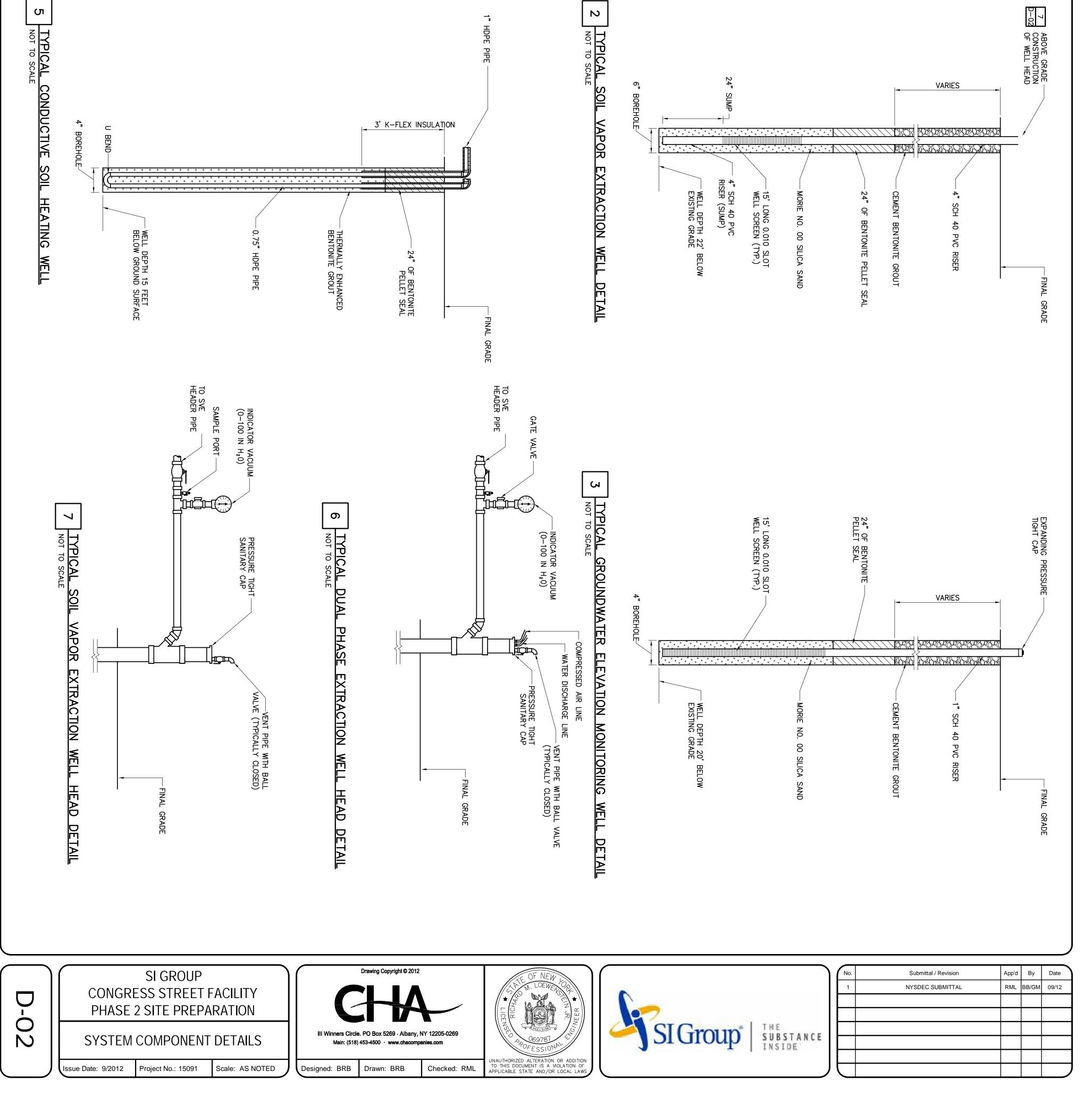
. `

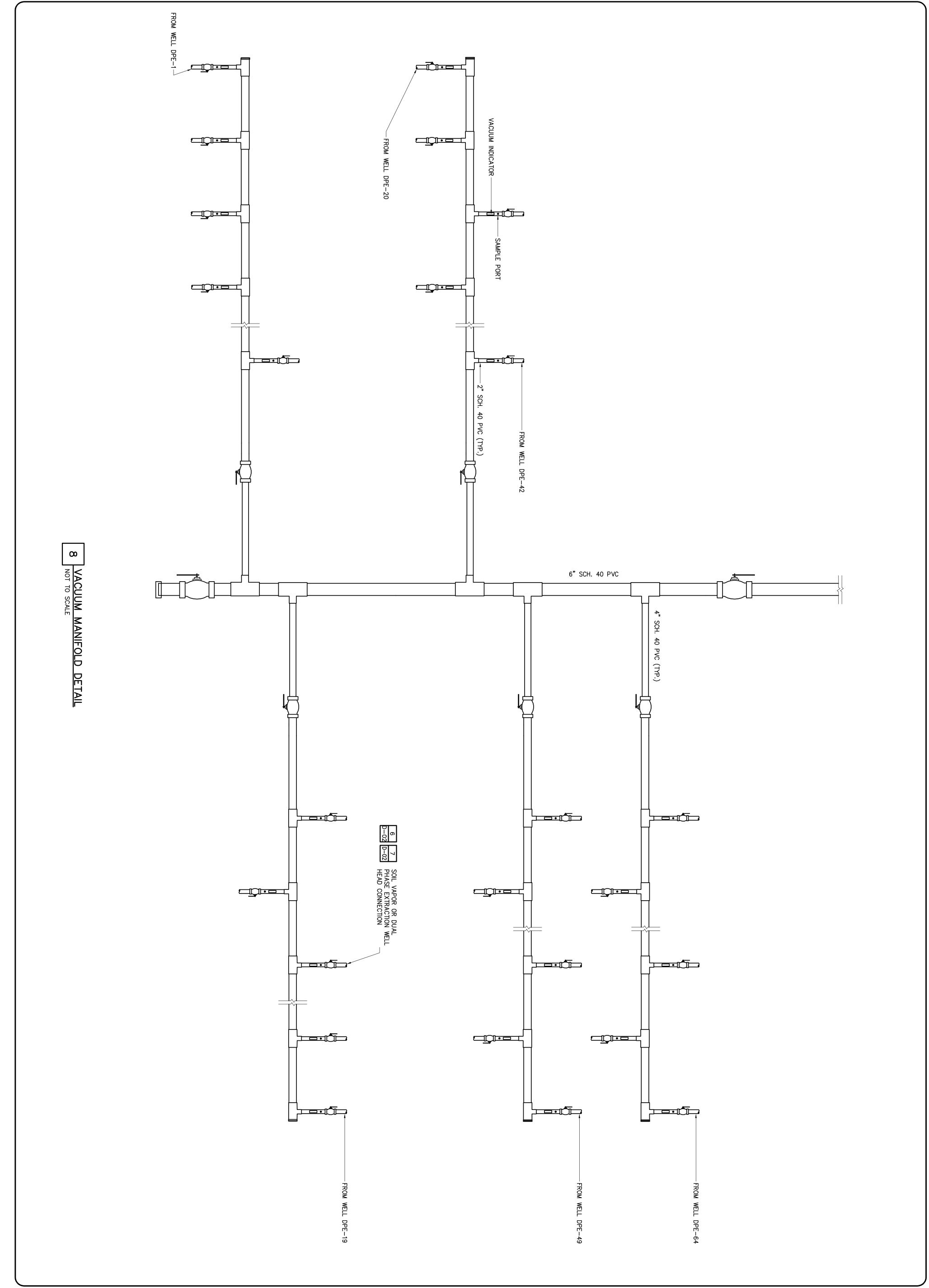

2.

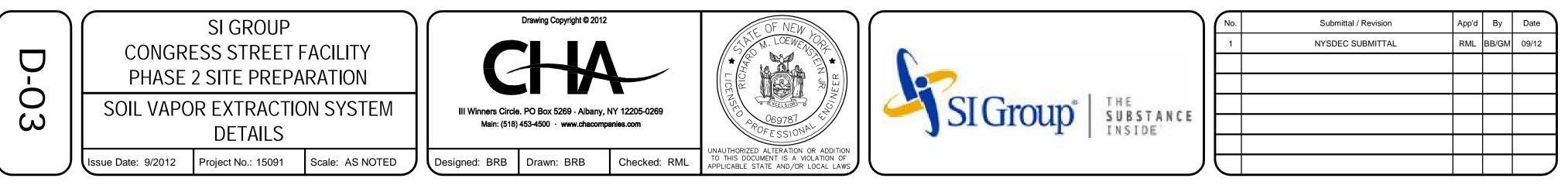
WELL SCHEDULE

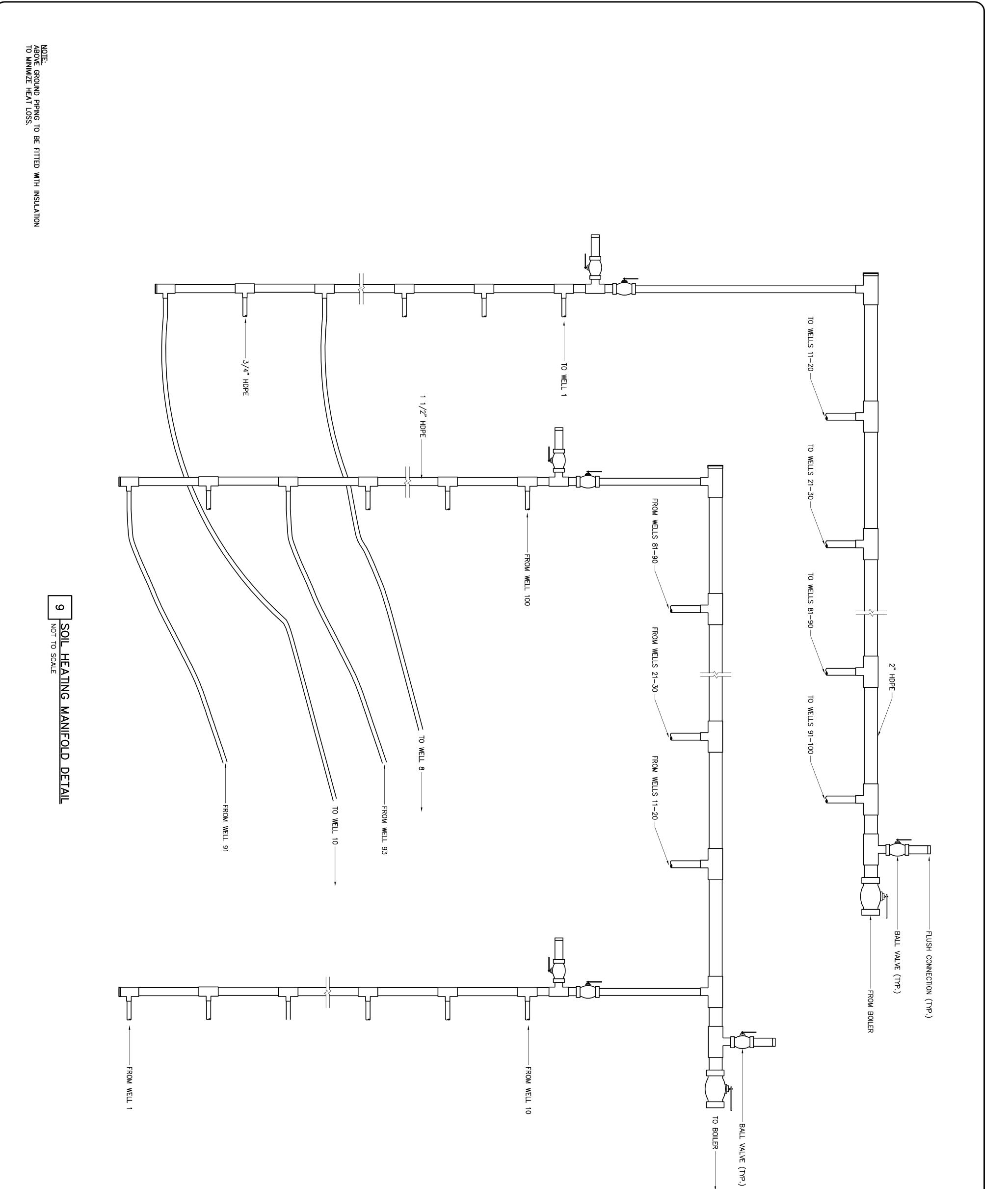

WELL SCHEDULE

DUAL PHASE EXTRACTION WELL SCHEDULE

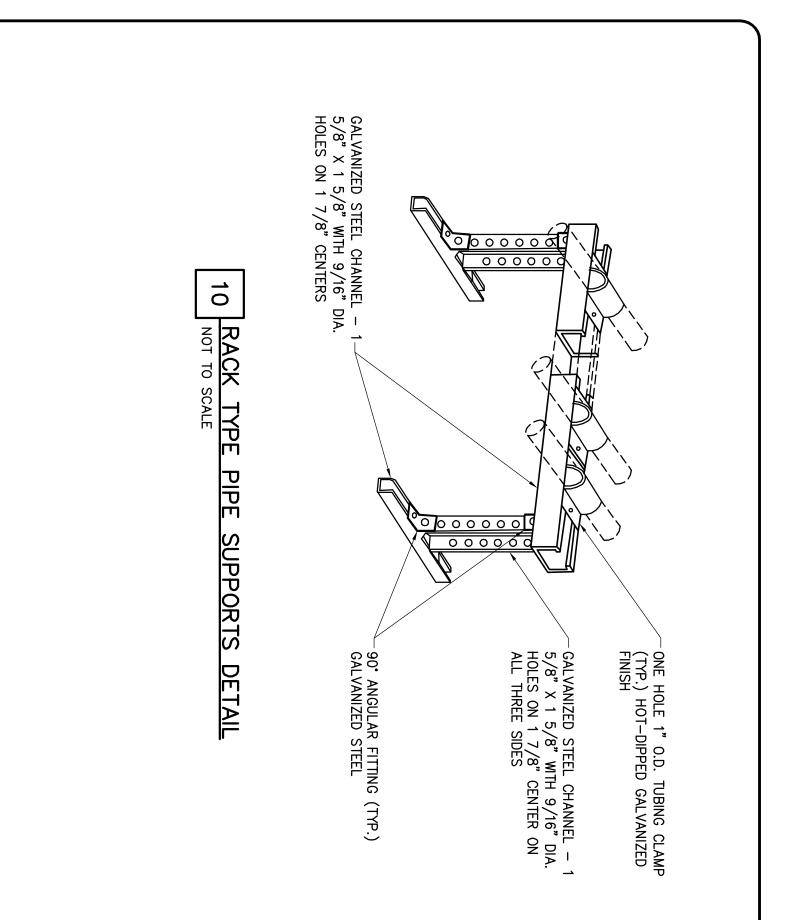

639443.86 639447.79 639464.72 639481.65 639481.65 639532.43 639532.43 639570.53 639621.30 639672.09 639672.09 639672.09 639672.09 639672.09 639672.09 639570.53 639672.09 639570.53 639672.09 639570.53 639446.73 639548.05 639548.05 639548.30 639548.10 639548.10 639548.10 639548.10 639548.10 639548.10 639548.10 639548.10 639548.10 639548.10 639548.10 639548.10 639548.10 639548.10 639548.10 639548.10 639548.20 639648.82 639648.82 639648.82 639648.82 639648.82 639648.82	7.79 4.72 4.72 4.72 4.72 1.65 1.65 2.43 2.43 2.43 2.43 2.43 2.43 2.09 2.16 9.80 9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43 <t< th=""><th>3.93$306.50'$$7.79$$306.50'$$7.79$$306.50'$$306.50'$$306.50'$$4.72$$306.50'$$4.72$$306.50'$$8.57$$306.50'$$3.65$$306.50'$$2.43$$306.50'$$2.43$$306.50'$$2.67$$306.50'$$2.09$$305.50'$$2.09$$306.25'$$9.01$$306.00'$$1.30$$305.50'$$2.09$$305.50'$$2.09$$305.50'$$2.16$$307.00'$$5.23$$307.00'$$4.44$$307.00'$$7.51$$307.00'$$4.77$$307.00'$$7.51$$307.00'$$7.51$$307.00'$$8.70$$307.00'$$8.803$$307.00'$$8.82$$307.50'$$8.82$$306.75'$$5.75$$306.50'$$5.75$$306.50'$$9.60$$306.50'$$3.90$$308.25'$</th></t<>	3.93 $306.50'$ 7.79 $306.50'$ 7.79 $306.50'$ $306.50'$ $306.50'$ 4.72 $306.50'$ 4.72 $306.50'$ 8.57 $306.50'$ 3.65 $306.50'$ 2.43 $306.50'$ 2.43 $306.50'$ 2.67 $306.50'$ 2.09 $305.50'$ 2.09 $306.25'$ 9.01 $306.00'$ 1.30 $305.50'$ 2.09 $305.50'$ 2.09 $305.50'$ 2.16 $307.00'$ 5.23 $307.00'$ 4.44 $307.00'$ 7.51 $307.00'$ 4.77 $307.00'$ 7.51 $307.00'$ 7.51 $307.00'$ 8.70 $307.00'$ 8.803 $307.00'$ 8.82 $307.50'$ 8.82 $306.75'$ 5.75 $306.50'$ 5.75 $306.50'$ 9.60 $306.50'$ 3.90 $308.25'$
639413.93 639430.86 639447.79 639464.72 639481.65 639481.65 639498.57 639570.53 639570.53 639570.53 639672.09 639672.09 639463.66 639429.80 639465.23 6395480.59 639548.59 639582.16 639565.23 639565.23 639582.10 639581.10 639581.10 639631.89 639648.82 639648.82		306.50' 307.00' 307.50' 307.50' 307.25' 307.00' 307.25' 307.00' <td< td=""></td<>
639413.93 639447.79 639464.72 639481.65 639498.57 6395570.53 639570.53 639672.09 639672.09 639463.66 639446.73 639463.66 639446.73 6395429.80 639548.59 639565.23 639565.23 639565.23 639565.23 639565.23 639565.23 639565.23 639565.21 639565.23 639565.23 639564.17 639564.17 639582.16 639564.17 639582.10		
639413.93 639430.86 639447.79 639464.72 639481.65 639498.57 639570.53 639570.53 639672.09 639672.09 639412.87 639463.66 639480.59 639463.66 639480.59 639581.44 639581.44 639582.16 639582.16 639582.16 639582.10 639581.10 639598.03		
639413.93 639430.86 639447.79 639464.72 639481.65 639481.65 639498.57 639570.53 639570.53 639672.09 639672.09 639463.66 639429.80 639429.80 639446.73 639429.80 639446.73 639446.73 639446.73 639446.73 639514.44 639531.37 639531.37 639565.23 639582.16 639582.16 639679.43 639582.10		306.50' 306.50' 306.50' 306.50' 306.50' 306.50' 306.50' 306.50' 306.50' 306.50' 306.50' 306.50' 306.50' 306.50' 306.50' 306.50' 306.25' 307.00' 307.50' 305.75' 307.50'
639413.93 639430.86 639447.79 639464.72 639481.65 639498.57 639570.53 639570.53 639621.30 639672.09 639672.09 639429.80 639429.80 639446.73 639446.73 639446.73 639446.73 639446.73 639446.73 639446.73 639531.37 639531.37 639531.37 639531.37 639548.30 639548.30 639548.30 639548.30 639548.71 639548.30		
639413.93 639430.86 639447.79 639464.72 639481.65 639498.57 639570.53 639570.53 639621.30 639672.09 639672.09 639412.87 639429.80 639446.73 639446.73 639446.73 639429.80 639446.73 639497.51 639497.51 639514.44 639531.37 639531.37 639531.37		
639413.93 639430.86 639447.79 639464.72 639481.65 639498.57 639570.53 639570.53 639672.09 639672.09 639672.09 639472.01 639480.59 639446.73 639480.59 639480.59 639480.59 639514.44 639531.37 639565.23		
639413.93 639430.86 639447.79 639464.72 639481.65 639498.57 639570.53 639570.53 639621.30 639621.30 639672.09 639672.09 639472.09 639429.80 639446.73 639446.73 639446.73 639446.751 639463.66 639463.66 639497.51 639514.44		
639413.93 639430.86 639447.79 639464.72 639481.65 639498.57 639570.53 639570.53 639621.30 639621.30 639472.09 639412.87 639412.87 639412.87 639446.73 639446.73 639480.59 639497.51 639514.44		
639413.93 639430.86 639447.79 639464.72 639481.65 639498.57 639570.53 639570.53 639672.09 639672.09 639472.01 639472.87 639446.73 639446.73 639480.59 639497.51		
639413.93 639430.86 639447.79 639464.72 639481.65 639498.57 639532.43 639570.53 639672.09 639672.09 639672.09 639472.87 639412.87 639446.73 639463.66 639480.59		
639413.93 639430.86 639447.79 639464.72 639481.65 639498.57 639532.43 639570.53 639621.30 639672.09 639672.09 639672.09 639472.87 639446.73 639446.73		
639413.93 639430.86 639447.79 639464.72 639481.65 639498.57 639515.50 639570.53 639672.09 639672.09 639379.01 639379.01 639412.87 639412.87		306.50' 306.50' 306.50' 306.50' 306.50' 306.50' 306.25' 305.25' 307.00' 307.00'
639413.93 639430.86 639447.79 639464.72 639481.65 639498.57 639515.50 639570.53 639570.53 639672.09 639379.01 639379.01 639395.94		306.50' 306.50' 306.50' 306.50' 306.50' 306.50' 306.25' 305.25' 307.00' 307.00'
639413.93 639430.86 639447.79 639464.72 639481.65 639498.57 639515.50 639532.43 639570.53 639570.53 639672.09 639379.01		306.50' 306.50' 306.50' 306.50' 306.50' 306.25' 305.25' 305.25' 307.00'
639413.93 639430.86 639447.79 639464.72 639481.65 639498.57 639515.50 639570.53 639570.53 639621.30 639672.09		306.50' 306.50' 306.50' 306.50' 306.50' 306.25' 305.25' 305.25'
639413.93 639430.86 639447.79 639464.72 639481.65 639498.57 639515.50 639532.43 639570.53 639621.30		306.50' 306.50' 306.50' 306.50' 306.50' 306.25' 306.25'
639413.93 639430.86 639447.79 639464.72 639481.65 639498.57 639515.50 639532.43 639570.53		306.50' 306.50' 306.50' 306.50' 306.50' 306.25'
639413.93 639430.86 639447.79 639464.72 639481.65 639498.57 639515.50 639532.43		306.50' 306.50' 306.50' 306.50' 306.50' 306.25'
639413.93 639430.86 639447.79 639464.72 639481.65 639498.57 639498.57		306.50' 306.50' 306.50' 306.50'
639413.93 639430.86 639447.79 639464.72 639481.65		306.50' 306.50' 306.50'
639413.93 639430.86 639447.79 639464.72		306.50' 306.50' 306.50'
639413.93 639430.86 639447.79		306.50'
639413.93 6.394.30 86	-	306 50'
C 7 C 11 7 C 7		
639397.00		306.50'
639380.07		306.50'
639363.14		306.50'
639622.91		304.25'
639572.14		304.75'
639521.35		305.50'
639470.57		305.50'
639369.02		305.50'
639330.34		305.75'
639314.47		305.00'
639573.72		304.75'
639297.54		303.50'
639522.95		304.25'
639421.39 630473 17		304.50'
639370.61		304.50'
639298.60		304.25'
639281.67		304.00'
639264.75		304.25 304.00'
639230.89 639247 82	+	304.50'
EASTING		ELEV.

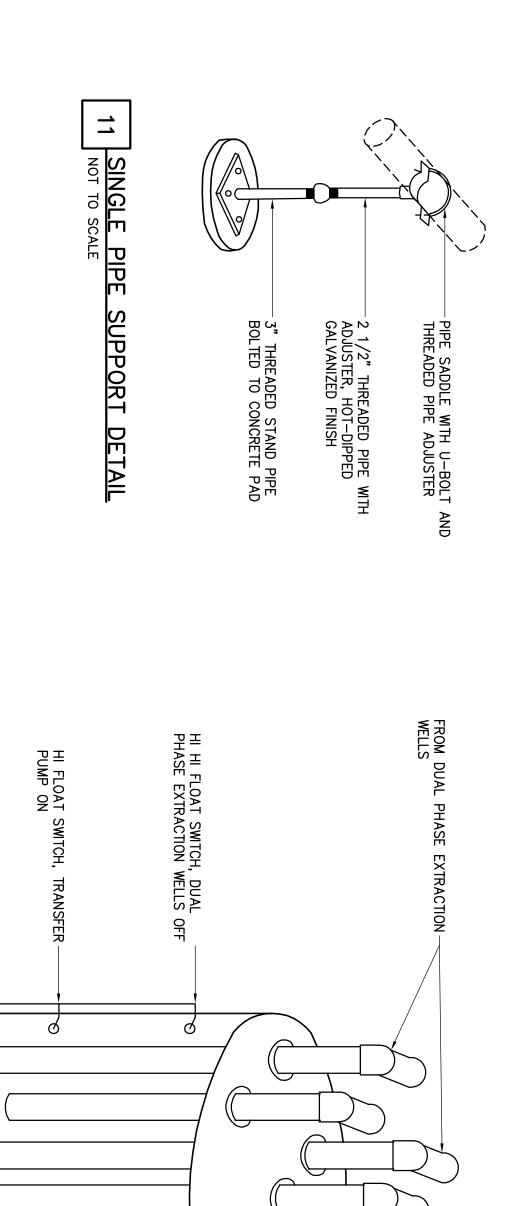






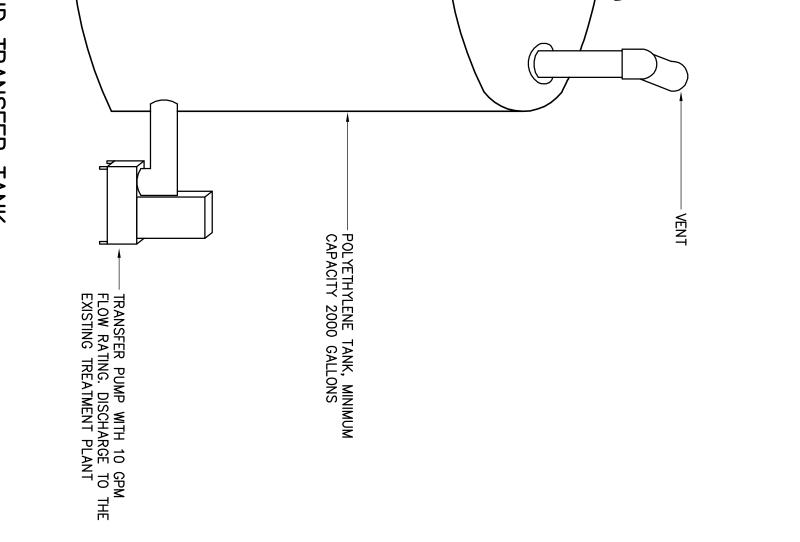
File: M:\15091\CS\PHASE 2 DESIGN\5007 PHASE II\ACAD_SHEET_FILES\15091_D-03_PHASE2.DWG Saved: 9/26/2012 8:58:41 AM Plotted: 9/28/2012 8:23:23 AM User: Blaydes, Bryon

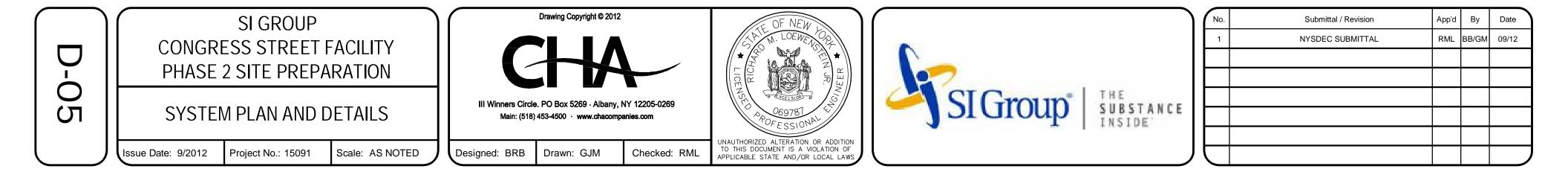




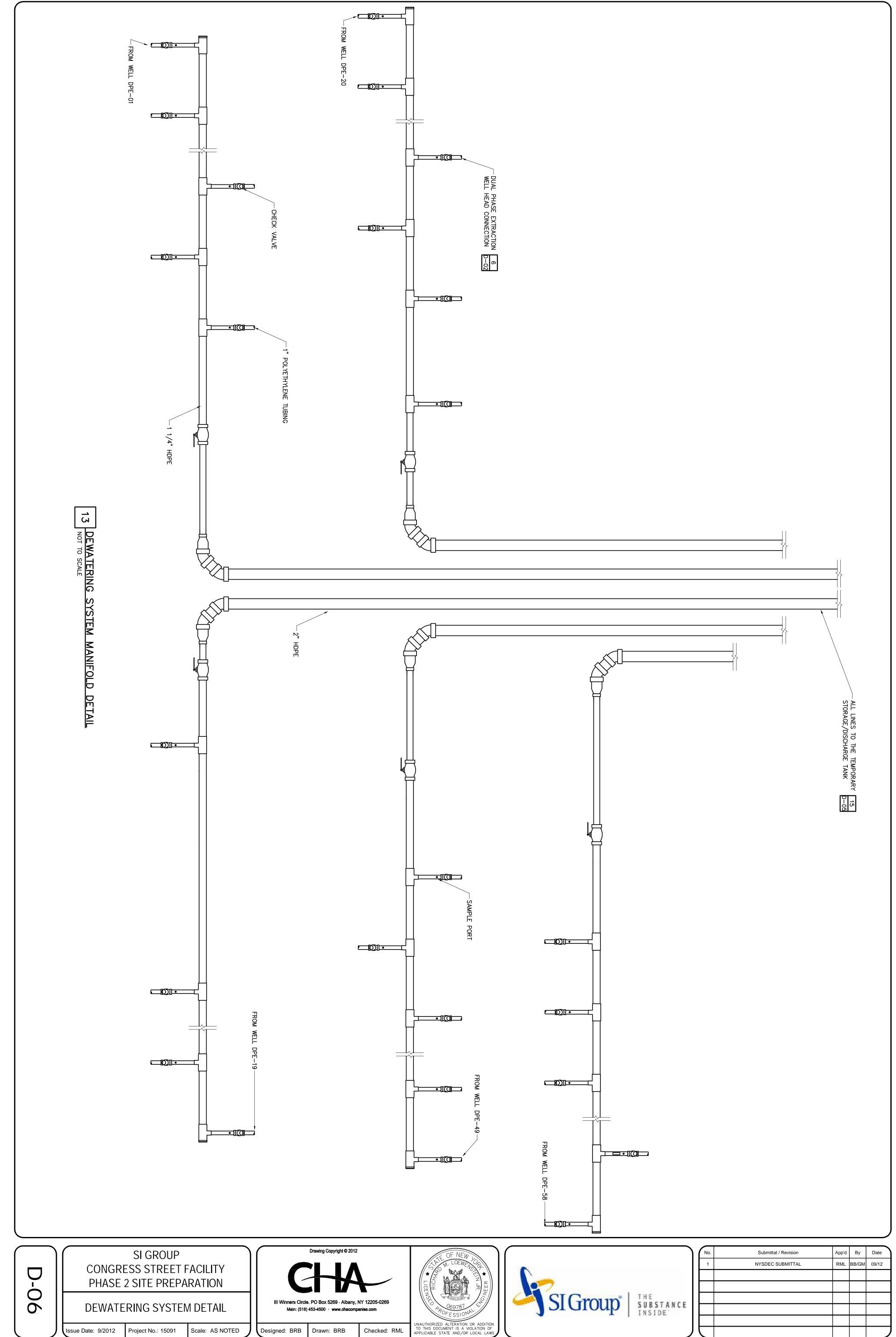
File: M:\15091\CS\PHASE 2 DESIGN\5007 PHASE II\ACAD_SHEET_FILES\15091_D-04_PHASE2.DWG Saved: 9/27/2012 3:53:21 PM Plotted: 9/28/2012 8:25:08 AM User: Blaydes, Bryon

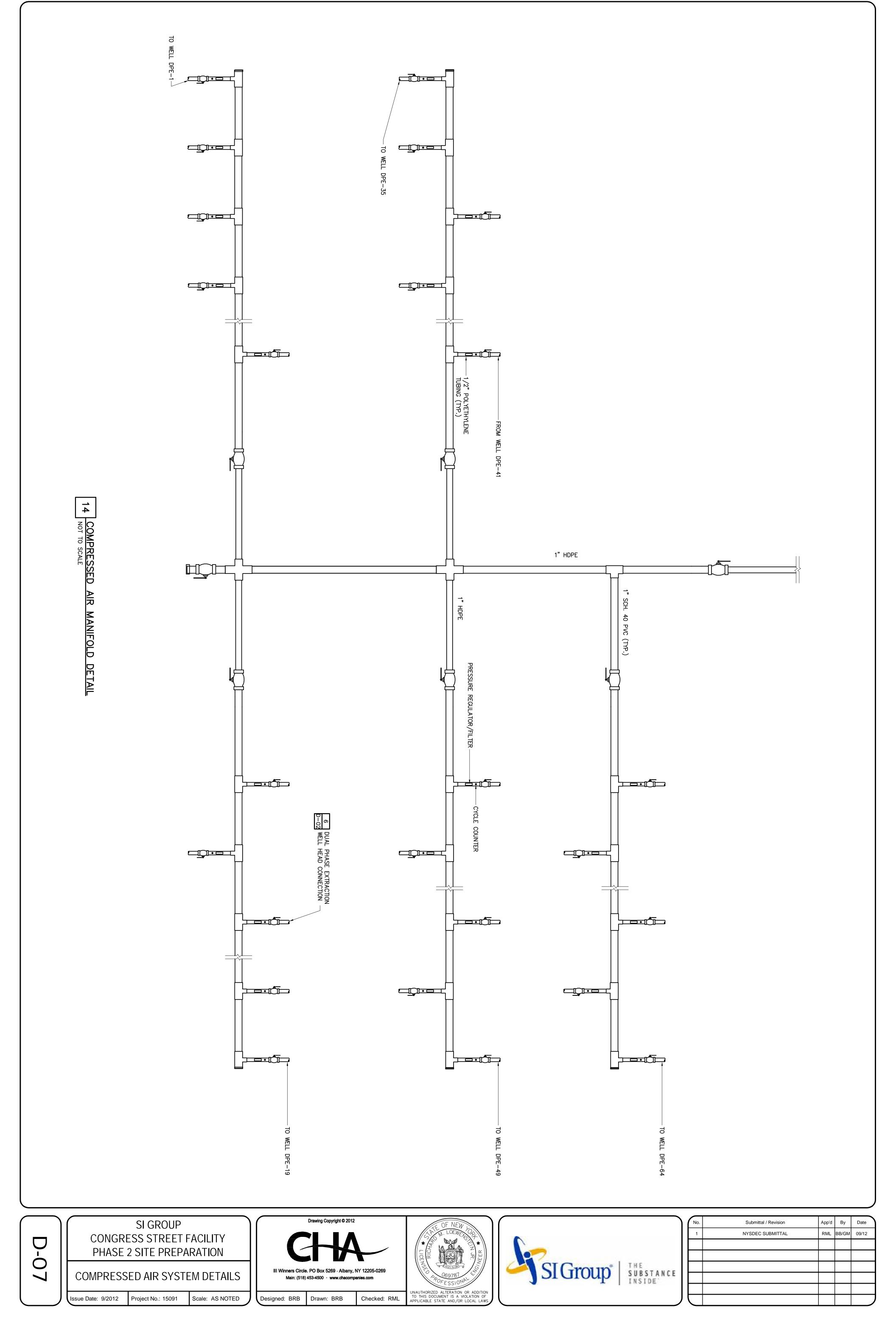
	SI GROUP CONGRESS STREET FACILITY PHASE 2 SITE PREPARATION	Drawing Copyright © 2012	COF NEW LOOPT + N. LOEWERS FIN JR. LICEN		No.	Submittal / Revision NYSDEC SUBMITTAL	App'd By RML BB/GM	Date // 09/12
04	SOIL HEATING SYSTEM DETAILS Issue Date: 9/2012 Project No.: 15091 Scale: AS NOTED	III Winners Circle. PO Box 5269 · Albany, NY 12205-0269 Main: (518) 453-4500 · www.chacompanies.com Designed: FF III Drawn: BRB Checked: RML	UNAUTHORIZED ALTERATION OR ADDITION TO THIS DOCUMENT IS A VIOLATION OF APPLICABLE STATE AND/OR LOCAL LAWS	SIGroup* SUBSTANCE				




12 GROUNDWATER STORAGE

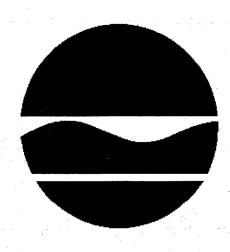
LOW FLOAT SWITCH TRANSFER PUMP OFF


ଏ



File: M:\15091\CS\PHASE 2 DESIGN\5007 PHASE II\ACAD_SHEET_FILES\15091_D-06_PHASE2.DWG Saved: 9/27/2012 3:58:27 PM Plotted: 9/28/2012 8:28:16 AM User: Blaydes, Bryon

File: M:\15091\CS\PHASE 2 DESIGN\5007 PHASE II\ACAD_SHEET_FILES\15091_D-07_PHASE2.DWG Saved: 9/27/2012 4:02:10 PM Plotted: 9/28/2012 8:29:29 AM User: Blaydes, Bryon



APPENDIX B

NYSDEC Record of Decision

RECORD OF DECISION

Schenectady International -10th St Plant Operable Unit Numbers: 02 State Superfund Project Schenectady, Schenectady County Site No. 447007 December 2010

Prepared by Division of Environmental Remediation New York State Department of Environmental Conservation

DECLARATION STATEMENT - RECORD OF DECISION

Schenectady International -10th St Plant Operable Unit Number 02 State Superfund Project Schenectady, Schenectady County Site No. 447007 December 2010

Statement of Purpose and Basis

This document presents the remedy for Operable Unit Number 02 of the Schenectady International -10th St Plant site, a Class 2 inactive hazardous waste disposal site. The remedial program was chosen in accordance with the New York State Environmental Conservation Law, 6 NYCRR Part 375, and is not inconsistent with the National Oil and Hazardous Substances Pollution Contingency Plan of March 8, 1990 (40CFR300), as amended.

This decision is based on the Administrative Record of the New York State Department of Environmental Conservation (the Department) for Operable Unit Number 02 of the Schenectady International -10th St Plant and the public's input to the proposed remedy presented by the Department. A listing of the documents included as a part of the Administrative Record is included in Appendix B of the ROD.

Description of Selected Remedy

The estimated present worth cost to implement the remedy for the Process Area Alternative P-5A) is \$3,790,000.00. The cost to construct the remedy is estimated to be \$3,790,000.00 and the estimated average annual cost is \$0.00. The annual cost is \$0.00 because this cost is part of the remedy for Operational Unit Number 1.

The estimated present worth cost to implement the remedy for the Fill Area (Alternative F-3) is \$500,000.00. The cost to construct the remedy is estimated to be \$500,000.00 and the estimated average annual cost is \$0.00. The annual cost is \$0.00 because this cost is part of the remedy for Operational Unit Number 1.

The elements of the proposed remedy are as follows:

Process Area Alternative P-5A (Thermally-Enhanced SVE):

 A remedial design program will be implemented to provide the details necessary for the construction, operation, maintenance and monitoring of the remedial program.
 Selection of the soil heating technology will be made with the approval of the Department based on its effectiveness. If the heating technology is not effective, thermal desorption (Alternative P-7A) will be implemented. 2. In order to facilitate in-situ treatment of impacted soils on the Site, it will be necessary to first remove existing surface slabs, building footings, and other surface obstructions present in the Process Area. The portion of concrete is estimated to be on the order of 170 cubic yards of concrete.

- 3. In order to backfill areas where concrete and associated soil is removed, approximately 2,500 tons of clean fill will be imported to the Process Area. Backfill material imported to the site will meet the requirements for commercial use as set forth in 6NYCRR part 375-6.7(d).
- 4. Thermally enhanced SVE using conduction or convective technology will be installed using Geoprobe[™] or conventional drilling techniques. SVE units will be installed to a minimum depth of 12 feet and will likely be extended an additional two to three feet into the groundwater.
- 5. A dewatering system will be required to lower the water level 2 to 3 feet to maximize the total column of unsaturated soil and allow treatment of the total area.
- 6. It is also anticipated that after an initial period of continuous heating and vacuum extraction, the system will be modified to cyclic pulsing of alternating extraction and injection (biosparging) to optimize for bioremediation of SVOCs.
- 7. A thermally-enhanced SVE system will require treatment of VOCs in the air/off-gases emitted from the SVE system. Carbon adsorption or equivalent technology, in which pollutants are removed from the soil vapor extracted from the ground, has been used for estimating purposes and will require additional piping and treatment units on-site during remedial activities.
- 8. The level of cleanup will be monitored. Based on the success of remediation, SI Group may be able to request termination of the groundwater collection in the Process Area. It has been estimated that the Groundwater Collection System (GWCS) will remain in operation for approximately fifteen years following remediation. However, it will not terminate until protection of groundwater SCOs are achieved.
- 9. Figure 7 lays out the boundaries of the area to be subject to in-situ treatment..

Fill Area Alternative F-3 (Permeable Cap and Natural Attenuation):

- 10. In order to facilitate the implementation of this alternative, it will be necessary to first remove existing surface slabs, the loading dock and other surface obstructions present in the Fill Area. Product or other man made materials will be removed, tested and disposed of off-site.
- 11. In order to backfill areas where concrete is removed, approximately 50 yd³ of clean fill will need to be imported to the Fill Area.

- 12. A permeable cover system will be installed over the Fill Area to further contain the contamination present in the waste mass while also encouraging the maximum amount of surface water to flow through the waste mass to the GWCS. The cap will be installed to tie into the existing Fill Area features (i.e. the Treatment Facility) and topography to the extent possible. Following the installation of the cover system, it will be necessary to modify existing monitoring/pumping wells.
- 13. It is expected that monitoring wells will be used to monitor the attenuation of the residual contamination; however, the contaminant concentrations are not expected to reach the cleanup goals for a minimum of 30 years across the entire Fill Area.
- 14. Figure 7 lays out the boundaries of the permeable cap.

The following applies to the entire site:

- 15. A site cover will be installed in areas not addressed by the permeable cap to allow for industrial use of the site. The cover will consist either of the structures such as buildings, pavement, sidewalks comprising the site development or a soil cover in areas where the upper one foot of exposed surface soil exceeds the industrial soil cleanup objectives (SCOs). Where the soil cover is required it will be a minimum of one foot of soil, meeting the SCOs for cover material as set forth in 6 NYCRR Part 375-6.7(d). The soil cover will be placed over a demarcation layer. The upper six inches of the soil will be of sufficient quality to maintain a vegetation layer. Nonvegetated areas (buildings, roadways, parking lots, etc.) will be covered by either a paving system or concrete at least 6 inches thick
- 16. The operation of the components of the remedy will continue until the remedial objectives have been achieved, or until the Department determines that continued operation is technically impracticable or not feasible.
- 17. To maximize the net environmental benefit, green remediation and sustainability efforts will be considered in the design and implementation of the remedy to the extent practicable, including:
 - energy efficiency
 - reducing green house gas emissions
 - encouraging low carbon technologies
 - conserve natural resources
 - increase recycling and reuse of clean materials.
 - preserve open space and working landscapes
 - design cover systems to be usable for habitat or recreation
- 18. The Department will impose institutional controls in the form of an environmental easement that:

(a) requires the remedial party or site owner to complete and submit to the Department a periodic certification of institutional and engineering controls in accordance with Part 375-1.8 (h)(3).

(b) land use is subject to local zoning laws, the remedy allows the use and development of the controlled property for industrial use only.

(c) restricts the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the Department, NYSDOH or County DOH;

(d) prohibits agriculture or vegetable gardens on the controlled property;

(e) requires compliance with the Department approved Site Management Plan;

19. Since the remedy results in contamination remaining at the site that does not allow for unrestricted use, a Site Management Plan is required, which includes the following:

(a) an Institutional and Engineering Control Plan that identifies all use restrictions and engineering controls for the site and details the steps and media-specific requirements necessary to assure the following institutional and/or engineering controls remain in place and effective:

Institutional Controls:

The Environmental Easement discussed in Paragraph 19 above.

Engineering Controls:

The soil cover discussed in Paragraph 16.

This plan includes, but may not be limited to:

- (i) Excavation Plan which details the provisions for management of future excavations in areas of remaining contamination;
- (ii) descriptions of the provisions of the environmental easement including any land use, and groundwater use restrictions;
- (iii) provisions for the management and inspection of the identified engineering controls;
- (iv) maintaining site access controls and Department notification; and
- (v) the steps necessary for the periodic reviews and certification of the institutional and/or engineering controls;
- (b) a Monitoring Plan to assess the performance and effectiveness of the remedy. The plan includes, but is not limited to:

RECORD OF DECISION Schenectady International -10th St Plant, Site No. 447007

- (i) monitoring of groundwater to assess the performance and effectiveness of the remedy and the attenuation of the residual contamination;
 - (ii) schedule of monitoring and frequency of submittals to the Department; and
 - (iii) provision to evaluate the potential for soil vapor intrusion for existing buildings if building use changes significantly or if a vacant building become occupied and for any buildings developed on the site, including provision for mitigation of any impacts identified.

an Operation and Maintenance Plan to assure continued operation, maintenance, monitoring, inspection, and reporting of for any mechanical or physical components of the remedy. The plan includes, but is not limited to:

(i) compliance monitoring of treatment systems to assure proper O&M as well as providing the data for any necessary permit or permit equivalent reporting;

(ii) maintaining site access controls and Department notification; and

(iii) providing the Department access to the site and O&M records.

New York State Department of Health Acceptance

The New York State Department of Health (NYSDOH) concurs that the remedy for this site is protective of human health.

Declaration

Date

The selected remedy is protective of human health and the environment, complies with State and Federal requirements that are legally applicable or relevant and appropriate to the remedial action to the extent practicable, and is cost effective. This remedy utilizes permanent solutions and alternative treatment or resource recovery technologies, to the maximum extent practicable, and satisfies the preference for remedies that reduce toxicity, mobility, or volume as a principal element.

DEC 2 1 2010

(c)

Dale A. Desnoyers, Director Division of Environmental Remediation

RECORD OF DECISION Schenectady International -10th St Plant, Site No. 447007

RECORD OF DECISION

Schenectady International -10th St Plant Schenectady, Schenectady County Site No. 447007 October 2010

SECTION 1: SUMMARY AND PURPOSE

The New York State Department of Environmental Conservation (the Department), in consultation with the New York State Department of Health (NYSDOH), has selected a remedy for the above referenced site. The disposal of contaminants at the site has resulted in threats to public health and the environment that will be addressed by the remedy. The disposal or release of contaminants at this site, as more fully described in this document, has contaminated various environmental media. Contaminants include hazardous waste and/or petroleum.

The New York State Inactive Hazardous Waste Disposal Site Remedial Program (also known as the State Superfund Program) is an enforcement program, the mission of which is to identify and characterize suspected inactive hazardous waste disposal sites and to investigate and remediate those sites found to pose a significant threat to public health and environment.

The Department has issued this document in accordance with the requirements of New York State Environmental Conservation Law and Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York, 6 NYCRR Part 375. This document is a summary of the information that can be found in the site-related reports and documents.

SECTION 2: SITE DESCRIPTION AND HISTORY

The SI Group plant at Congress Street and Tenth Avenue is a former chemical manufacturing facility located at this location since 1910 in the City of Schenectady, Schenectady County. It is Site No. 447007 on the NYS Registry of Inactive Hazardous Waste Sites (Registry). The site is approximately 7.0 acres in size and is located southwest of the intersection of 10th Street and Congress Street. Residences in a suburban neighborhood are 400 feet to the north and east of the site. The facility sits on a steep embankment. At the bottom of this embankment is Cowhorn Creek, a Class C stream (suitable for fish survival and propagation). Railroad tracks and a service road lie south of the site and outside of the security fence. A spur from the railroad and an area that previously contained tanks are uphill (partly up the embankment) from the swale and inside the security fence. In July 1996, the Department made the decision to split the site into two operable units. An operable unit represents a portion of the site remedy that for technical or administrative reasons can be addressed separately to eliminate or mitigate a release, threat of release or exposure pathway resulting from the site contamination. The first operable unit, (OU1), addressed terminating the pathways by which the contaminants were being released offsite. The ROD for OU1, issued in March 1998, required the installation of groundwater

extraction wells and a treatment system. The system is currently active. Operable Unit (OU) No. 2 consists of the Fill area that is an area in the southwest corner of the facility where materials from the operations were placed, and the Process area that is the area on-site that was historically used for chemical processing, storage and handling. From the early 1900's to 1997, SI Group manufactured insulating coatings and other chemical products at their Congress Street facility. Spills, ranging from a few gallons to a few hundred gallons, over the period of operation have contaminated a significant volume of soils. Contaminated soils are beneath the former process buildings, in transportation areas, southwest of the process buildings and up to the "swale area" between the facility and the railroad tracks.

Operable Unit (OU) Number 02, which is the subject of this document, consists of the Fill area that is an area in the southwest corner of the facility where materials from the operations were placed, and the Process area that is the area on-site that was historically used for chemical processing, storage and handling.

A site location map is attached as Figure 1.

SECTION 3: LAND USE AND PHYSICAL SETTING

The Department may consider the current, intended, and reasonable anticipated future land use of the site and its surroundings when assessing the nature and extent of contamination. For this site, alternatives that may restrict the use of the site to criteria as described in Part 375-1.8(g) were evaluated in addition to unrestricted SCGs.

A comparison of the appropriate SCGs for the identified land use against the unrestricted use SCGs for the site contaminants is available in the RI/FS.

SECTION 4: ENFORCEMENT STATUS

Potentially Responsible parties (PRPs) are those who may be legally liable for contamination at a site. This may include past or present owners and operators, waste generators, and haulers.

The PRP for the site, documented to date, is SI Group Inc.

The Department and SI Group entered into a Consent Order (#R-0888-90-12) in August 22, 1997. The Order obligates the responsible parties to implement a full remedial program.

SECTION 5: SITE CONTAMINATION

5.1: Summary of the Remedial Investigation

A Remedial Investigation (RI) has been conducted. The purpose of the RI was to define the nature and extent of any contamination resulting from previous activities at the site. The field activities and findings of the investigation are described in the RI Report.

The following general activities are conducted during an RI:

RECORD OF DECISION Schenectady International -10th St Plant, Site No. 447007 Research of historical information,

Survey of residential water supply wells,

Geophysical survey to determine the lateral extent of wastes,

- Test pits, soil borings, and monitoring well installations,
- Sampling of waste, surface and subsurface soils, groundwater and soil vapor,
- Sampling of surface water and sediment, groundwater,

Ecological and Human Health Exposure Assessments.

5.1.1: Standards, Criteria, and Guidance (SCGs)

The remedy must conform with promulgated standards and criteria that are directly applicable, or that are relevant and appropriate. The selection of a remedy must also take into consideration guidance, as appropriate. Standards, Criteria and Guidance are hereafter called SCGs.

To determine whether the contaminants identified in various media are present at levels of concern, the data from the RI were compared to media-specific SCGs. The Department has developed SCGs for groundwater, surface water, sediments, and soil. The NYSDOH has developed SCGs for drinking water and soil vapor intrusion. The tables found in Exhibit A list the applicable SCG in the footnotes. For a full listing of all SCGs see: http://www.dec.ny.gov/regulations/2393.html

5.1.2: RI Information

The analytical data collected on this site includes data for:

- groundwater
- surface water
- soil
- sediment
- soil vapor

The data has identified contaminants of concern. A "contaminant of concern" is a hazardous waste that is sufficiently present in frequency and concentration in the environment to require evaluation for remedial action. Not all contaminants identified on the property are contaminants of concern. The nature and extent of contamination and environmental media requiring action are summarized in section 5.4. Additionally, the RI Report contains a full discussion of the data. The contaminant(s) of concern identified at this site is/are:

spent non-halogenated solvents

RECORD OF DECISION -Schenectady International -10th St Plant, Site No. 447007

total cresols and acrylic acid) (F004) xylene, acetone and ethylbenzene (F003) phenols (U188) naphthalene based compounds (U165)

As illustrated in Exhibit A, the contaminant(s) of concern exceed the applicable standards, criteria and guidance for:

- groundwater

- soil

5.2: Interim Remedial Measures

An interim remedial measure (IRM) is conducted at a site when a source of contamination or exposure pathway can be effectively addressed before issuance of the Record of Decision.

Product (a mixture of naphthalene, xylene and toluene) floating on the groundwater table was found in several groundwater monitoring wells. This Light Non-Aqueous Phase Liquid (LNAPL) originated from releases that had occurred in the Process area including a tank spill circa 1974. Beginning in July 2008, extraction by bailer was conducted on a weekly, then monthly and now on a quarterly basis to remove as much LNAPL as possible before a final remedy for OU2 is implemented.

5.3: <u>Summary of Human Exposure Pathways</u>

This section describes the current or potential human exposures to persons at or around the site that may result from the contamination. A more detailed discussion of the human exposure pathways can be found in the RI Report (or appropriate document) available at the document repository. An exposure pathway describes the means by which an individual may be exposed to contaminants originating from a site. An exposure pathway has five elements: [1] a contaminant source, [2] contaminant release and transport mechanisms, [3] a point of exposure, [4] a route of exposure, and [5] a receptor population.

Contaminant release and transport mechanisms carry contaminants from the source to a point where people may be exposed. The exposure point is a location where actual or potential human contact with a contaminated medium may occur. The route of exposure is the manner in which a contaminant actually enters or contacts the body (e.g., ingestion, inhalation, or direct contact). The receptor population is the people who are, or may be, exposed to contaminants at a point of exposure.

An exposure pathway is complete when all five elements of an exposure pathway exist. An exposure pathway is considered a potential pathway when one or more of the elements currently does not exist, but could in the future.

Contaminated surface water in a ditch which receives runoff from the site was accessible to local residents. A fence has been installed around this area. The Cowhorn Creek, which receives the ditch outfall, is not contaminated. Groundwater contamination has been confirmed. However,

ingestion of contaminated groundwater is not expected because residents in the area are served by a public water supply source.

5.4: Summary of Environmental Assessment

This section summarizes the assessment of existing and potential future environmental impacts presented by the site. Environmental impacts may include existing and potential future exposure pathways to fish and wildlife receptors, wetlands, groundwater resources, and surface water. The Fish and Wildlife Impact Analysis (FWIA), which is included in the RI report, presents a detailed discussion of the existing and potential impacts from the site to fish and wildlife receptors.

Soils are contaminated with various organic compounds. A report received in March 1988 confirmed ethylbenzene, xylene, naphthalene, and phenolic contamination in groundwater.

A Remedial Investigation/ Feasibility Study (RI/FS) for Operable Unit 1 was completed in 1998, and a Record of Decision (ROD) was signed in March 1999. The ROD required: installation of a groundwater collection trench, installation of groundwater recovery wells (in areas outside the capture zone of the collection trench), and construction of a groundwater pump and treat (p&t) system for the collected groundwater.

Cowhorn Creek is located along the southern and western boundaries of the SI Group Congress Street facility and represents the primary receptor for contaminants migrating from the site (Figure 2). The Groundwater Collection System (OU1) addresses the migration of contaminants offsite and is monitored daily and evaluated quarterly to assure that the system is operating as designed.

The extent of contaminated soils under the buildings (which have been demolished) have been addressed by a supplemental RI to fill in the data gaps. The final results of a pilot test (at the RJ facility) have determined that a thermally enhanced SVE system is a viable technology for these remaining soils.

SECTION 6: SUMMARY OF THE EVALUATION OF ALTERNATIVES

To be selected the remedy must be protective of human health and the environment, be costeffective, comply with other statutory requirements, and utilize permanent solutions, alternative technologies or resource recovery technologies to the maximum extent practicable. Potential remedial alternatives for the Site were identified, screened and evaluated.

A summary of the remedial alternatives that were considered for this site is presented in Exhibit B. Cost information is presented in the form of present worth, which represents the amount of money invested in the current year that will be sufficient to cover all present and future costs associated with the alternative. This enables the costs of remedial alternatives to be compared on a common basis. As a convention, a time frame of 30 years is used to evaluate present worth costs for alternatives with an indefinite duration. This does not imply that operation, maintenance, or monitoring will cease after 30 years if remediation goals are not achieved.

6.1: Evaluation of Remedial Alternatives

The criteria to which potential remedial alternatives are compared are defined in 6 NYCRR Part 375. A detailed discussion of the evaluation criteria and comparative analysis is included in the Feasibility Study report.

The first two evaluation criteria are termed "threshold criteria" and must be satisfied in order for an alternative to be considered for selection.

1. <u>Protection of Human Health and the Environment.</u> This criterion is an overall evaluation of each alternative's ability to protect public health and the environment.

2. <u>Compliance with New York State Standards, Criteria, and Guidance (SCGs)</u>. Compliance with SCGs addresses whether a remedy will meet environmental laws, regulations, and other standards and criteria. In addition, this criterion includes the consideration of guidance which the Department has determined to be applicable on a case-specific basis.

The next six "primary balancing criteria" are used to compare the positive and negative aspects of each of the remedial strategies.

3. <u>Long-term Effectiveness and Permanence</u>. This criterion evaluates the long-term effectiveness of the remedial alternatives after implementation. If wastes or treated residuals remain on-site after the selected remedy has been implemented, the following items are evaluated: 1) the magnitude of the remaining risks, 2) the adequacy of the engineering and/or institutional controls intended to limit the risk, and 3) the reliability of these controls.

4. <u>Reduction of Toxicity, Mobility or Volume</u>. Preference is given to alternatives that permanently and significantly reduce the toxicity, mobility or volume of the wastes at the site.

5. <u>Short-term Impacts and Effectiveness.</u> The potential short-term adverse impacts of the remedial action upon the community, the workers, and the environment during the construction and/or implementation are evaluated. The length of time needed to achieve the remedial objectives is also estimated and compared against the other alternatives.

6. <u>Implementability</u>. The technical and administrative feasibility of implementing each alternative are evaluated. Technical feasibility includes the difficulties associated with the construction of the remedy and the ability to monitor its effectiveness. For administrative feasibility, the availability of the necessary personnel and materials is evaluated along with potential difficulties in obtaining specific operating approvals, access for construction, institutional controls, and so forth.

7. <u>Cost-Effectiveness</u>. Capital costs and annual operation, maintenance, and monitoring costs are estimated for each alternative and compared on a present worth basis. Although cost-effectiveness is the last balancing criterion evaluated, where two or more alternatives have met the requirements of the other criteria, it can be used as the basis for the final decision.

8. <u>Land Use.</u> When cleanup to pre-disposal conditions is determined to be infeasible, the Department may consider the current, intended, and reasonable anticipated future land use of the site and its surroundings in the selection of the soil remedy. The final criterion, Community Acceptance, is considered a "modifying criterion" and is taken into account after evaluating those above. It is evaluated after public comments on the Proposed Remedial Action Plan have been received.

9. <u>Community Acceptance</u>. Concerns of the community regarding the investigation, the evaluation of alternatives, and the PRAP are evaluated. A responsiveness summary will be prepared that describes public comments received and the manner in which the Department will address the concerns raised. If the selected remedy differs significantly from the proposed remedy, notices to the public will be issued describing the differences and reasons for the changes.

6.2: <u>Elements of the Remedy</u>

The basis for the Department's remedy is set forth at Exhibit E.

The estimated present worth cost to implement the remedy for the Process Area (Alternative P-5A) is \$3,790,000.00. The cost to construct the remedy is estimated to be \$3,790,000.00 and the estimated average annual cost is \$0.00. The annual cost is \$0.00 because this cost is part of the remedy for Operational Unit Number 1.

The estimated present worth cost to implement the remedy for the Fill Area (Alternative F-3) is \$500,000.00. The cost to construct the remedy is estimated to be \$500,000.00 and the estimated average annual cost is \$0.00. The annual cost is \$0.00 because this cost is part of the remedy for Operational Unit Number 1.

The elements of the selected remedy are as follows:

Process Area Alternative P-5A (Thermally-Enhanced SVE):

- A remedial design program will be implemented to provide the details necessary for the construction, operation, maintenance and monitoring of the remedial program. Selection of the soil heating technology will be made with the approval of the Department based on its effectiveness. If the heating technology is not effective, thermal desorption (Alternative P-7A) will be implemented.
- 2. In order to facilitate in-situ treatment of impacted soils on the Site, it will be necessary to first remove existing surface slabs, building footings, and other surface obstructions present in the Process Area. The portion of concrete is estimated to be on the order of 170 cubic yards of concrete.
- 3. In order to backfill areas where concrete and associated soil is removed, approximately 2,500 tons of clean fill will be imported to the Process Area. Backfill

material imported to the site will meet the requirements for commercial use as set forth in 6NYCRR part 375-6.7(d).

- 4. Thermally enhanced SVE using conduction or convective technology will be installed using Geoprobe[™] or conventional drilling techniques. SVE units will be installed to a minimum depth of 12 feet and will likely be extended an additional two to three feet into the groundwater.
- 5. A dewatering system will be required to lower the water level 2 to 3 feet to maximize the total column of unsaturated soil and allow treatment of the total area.
- 6. It is also anticipated that after an initial period of continuous heating and vacuum extraction, the system will be modified to cyclic pulsing of alternating extraction and injection (biosparging) to optimize for bioremediation of SVOCs.
- 7. A thermally-enhanced SVE system will require treatment of VOCs in the air/offgases emitted from the SVE system. Carbon adsorption or equivalent technology, in which pollutants are removed from the soil vapor extracted from the ground, has been used for estimating purposes and will require additional piping and treatment units on-site during remedial activities.
- 8. The level of cleanup will be monitored. Based on the success of remediation, SI Group may be able to request termination of the groundwater collection in the Process Area. It has been estimated that the Groundwater Collection System (GWCS) will remain in operation for approximately fifteen years following remediation. However, it will not terminate until protection of groundwater SCOs are achieved.
- 9. Figure 7 lays out the boundaries of the area to be subject to in-situ treatment..

Fill Area Alternative F-3 (Permeable Cap and Natural Attenuation):

- 10. In order to facilitate the implementation of this alternative, it will be necessary to first remove existing surface slabs, the loading dock and other surface obstructions present in the Fill Area. Product or other man made materials will be removed, tested and disposed of off-site.
- 11. In order to backfill areas where concrete is removed, approximately 50 yd³ of clean fill will need to be imported to the Fill Area.
- 12. A permeable cover system will be installed over the Fill Area to further contain the contamination present in the waste mass while also encouraging the maximum amount of surface water to flow through the waste mass to the GWCS. The cap will be installed to tie into the existing Fill Area features (i.e. the Treatment Facility) and topography to the extent possible. Following the installation of the cover system, it will be necessary to modify existing monitoring/pumping wells.

- 13. It is expected that monitoring wells will be used to monitor the attenuation of the residual contamination; however, the contaminant concentrations are not expected to reach the cleanup goals for a minimum of 30 years across the entire Fill Area.
- 14. Figure 7 lays out the boundaries of the permeable cap.

The following applies to the entire site:

- 15. A site cover will be installed in areas not addressed by the permeable cap to allow for industrial use of the site. The cover will consist either of the structures such as buildings, pavement, sidewalks comprising the site development or a soil cover in areas where the upper one foot of exposed surface soil exceeds the industrial soil cleanup objectives (SCOs). Where the soil cover is required it will be a minimum of one foot of soil, meeting the SCOs for cover material as set forth in 6 NYCRR Part 375-6.7(d). The soil cover will be placed over a demarcation layer. The upper six inches of the soil will be of sufficient quality to maintain a vegetation layer. Nonvegetated areas (buildings, roadways, parking lots, etc.) will be covered by either a paving system or concrete at least 6 inches thick
- 16. The operation of the components of the remedy will continue until the remedial objectives have been achieved, or until the Department determines that continued operation is technically impracticable or not feasible.
- 17. To maximize the net environmental benefit, green remediation and sustainability efforts will be considered in the design and implementation of the remedy to the extent practicable, including:
 - energy efficiency
 - reducing green house gas emissions
 - encouraging low carbon technologies
 - conserve natural resources
 - increase recycling and reuse of clean materials
 - preserve open space and working landscapes
 - design cover systems to be usable for habitat or recreation
- 18. The Department will impose institutional controls in the form of an environmental easement that:
 - (a) requires the remedial party or site owner to complete and submit to the Department a periodic certification of institutional and engineering controls in accordance with Part 375-1.8 (h)(3).
 - (b) land use is subject to local zoning laws, the remedy allows the use and development of the controlled property for industrial use only.

- restricts the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the Department, NYSDOH or County DOH;
- (d) prohibits agriculture or vegetable gardens on the controlled property;
- (e) requires compliance with the Department approved Site Management Plan;

19. Since the remedy results in contamination remaining at the site that does not allow for unrestricted use, a Site Management Plan is required, which includes the following:

(a) an Institutional and Engineering Control Plan that identifies all use restrictions and engineering controls for the site and details the steps and media-specific requirements necessary to assure the following institutional and/or engineering controls remain in place and effective:

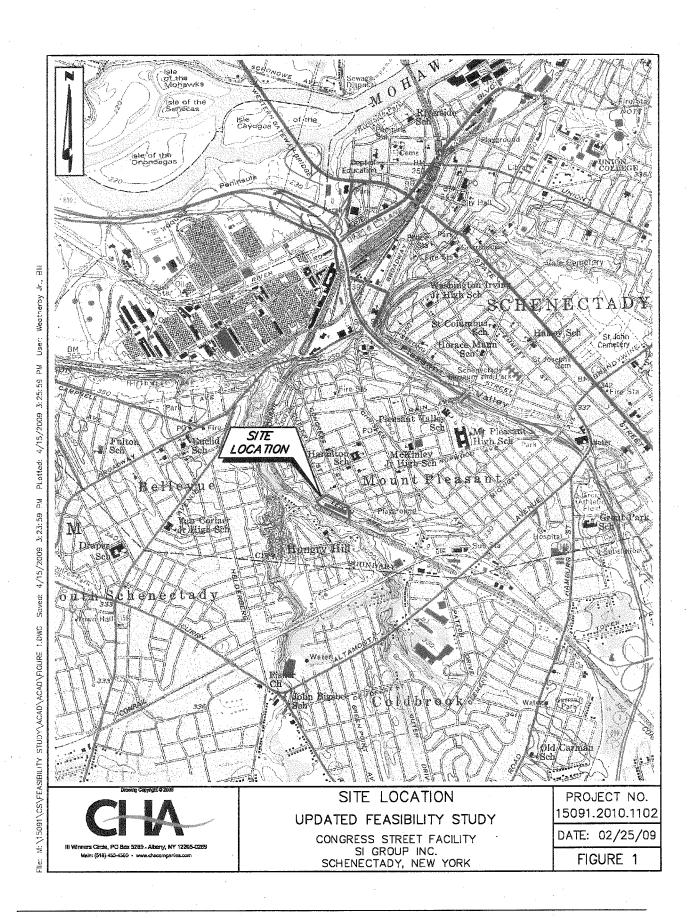
Institutional Controls:

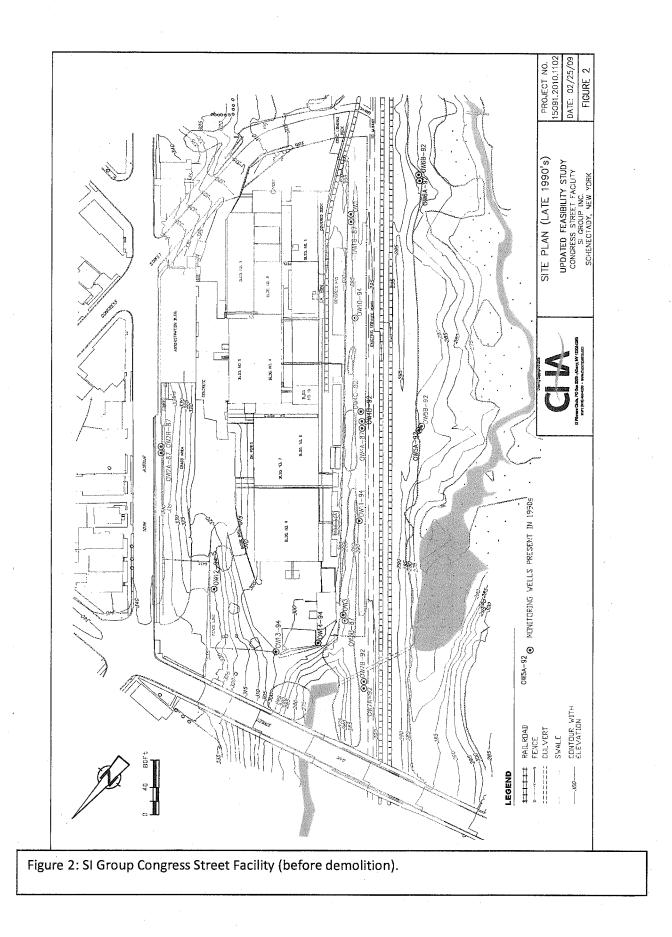
(c)

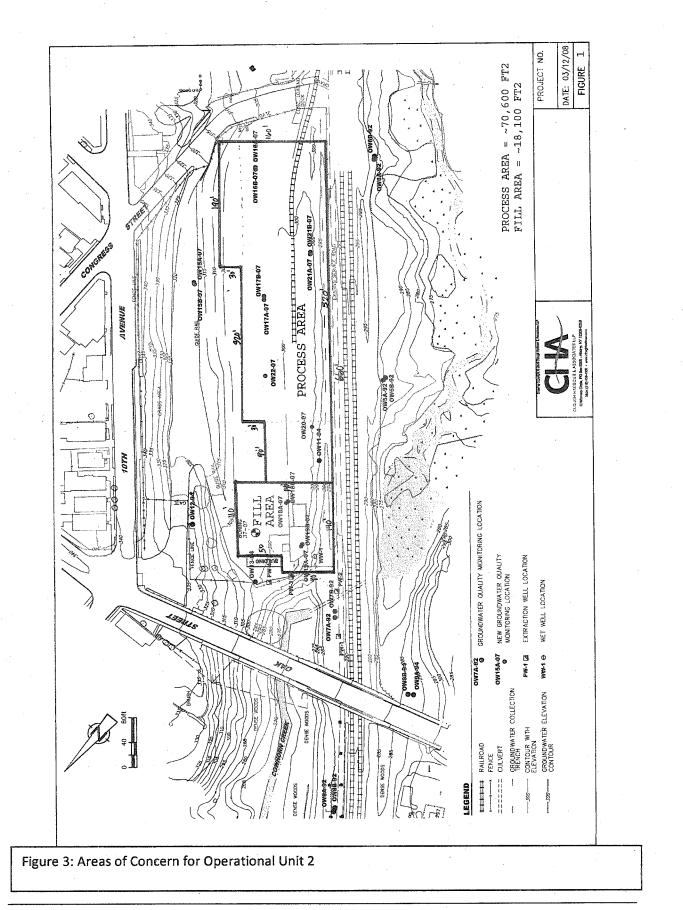
The Environmental Easement discussed in Paragraph 19 above.

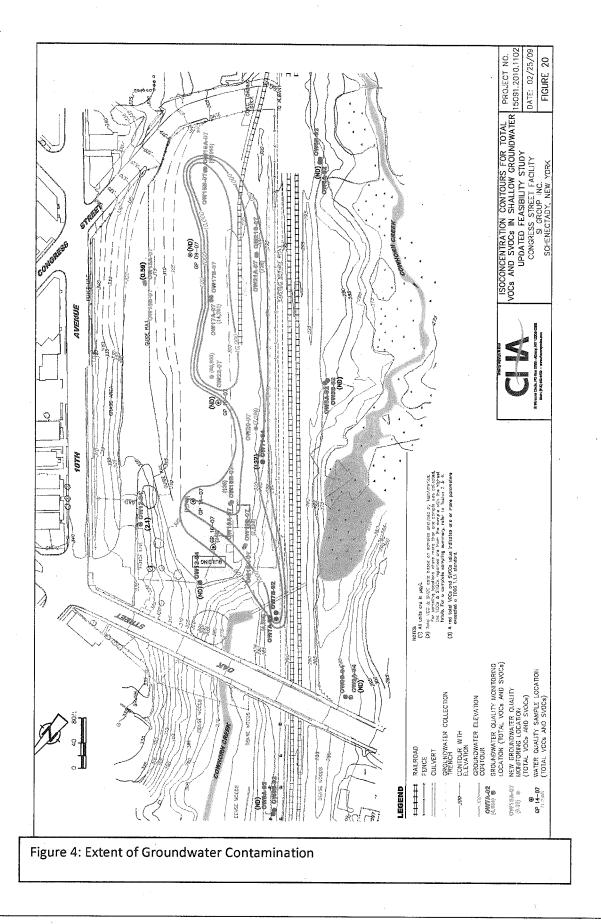
Engineering Controls:

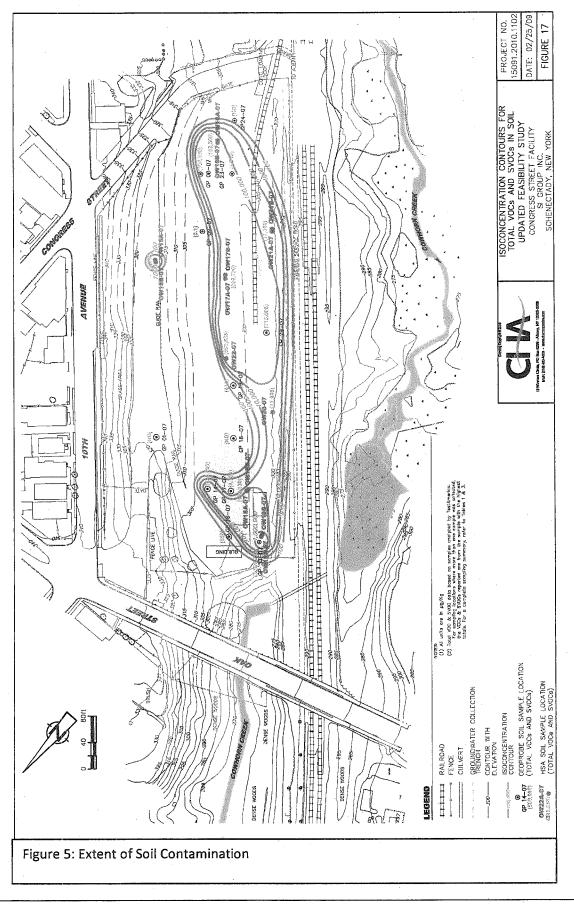
The soil cover discussed in Paragraph 16.

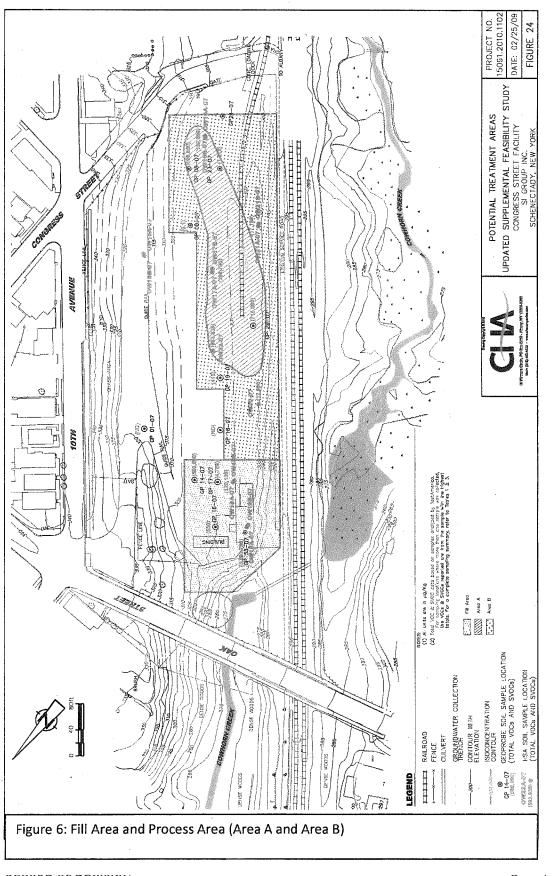

This plan includes, but may not be limited to:

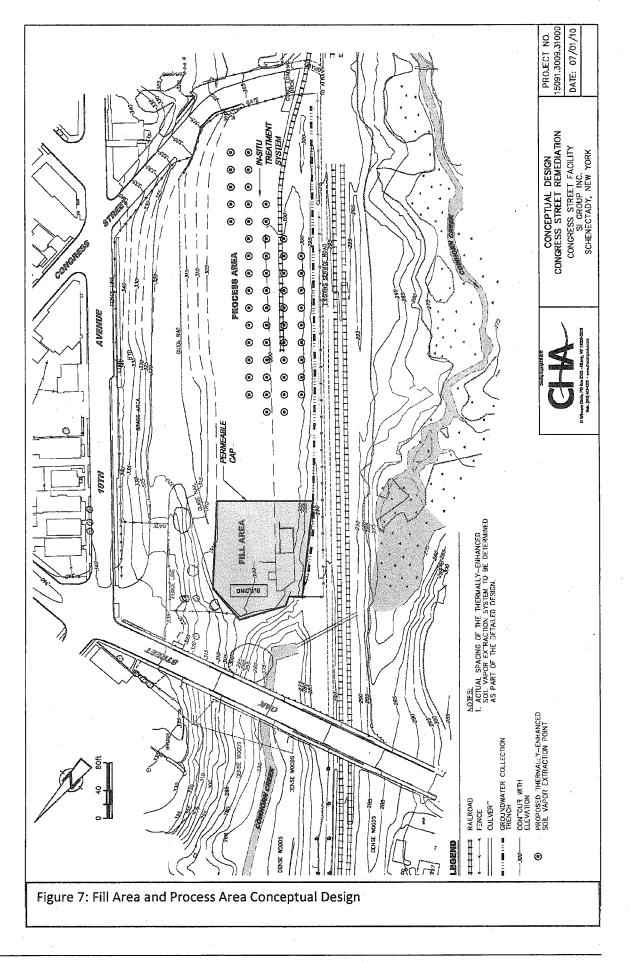

- (i) Excavation Plan which details the provisions for management of future excavations in areas of remaining contamination;
- (ii) descriptions of the provisions of the environmental easement including any land use, and groundwater use restrictions;
- (iii) provisions for the management and inspection of the identified engineering controls;
- (iv) maintaining site access controls and Department notification; and
- (v) the steps necessary for the periodic reviews and certification of the institutional and/or engineering controls;
- a Monitoring Plan to assess the performance and effectiveness of the remedy. The plan includes, but is not limited to:
 - (i) monitoring of groundwater to assess the performance and effectiveness of the remedy and the attenuation of the residual contamination;


(ii) schedule of monitoring and frequency of submittals to the Department; and


(b)


- (iii) provision to evaluate the potential for soil vapor intrusion for existing buildings if building use changes significantly or if a vacant building become occupied and for any buildings developed on the site, including provision for mitigation of any impacts identified.
- (c) an Operation and Maintenance Plan to assure continued operation, maintenance, monitoring, inspection, and reporting of for any mechanical or physical components of the remedy. The plan includes, but is not limited to:
 - (i) compliance monitoring of treatment systems to assure proper O&M as well as providing the data for any necessary permit or permit equivalent reporting;
 - (ii) maintaining site access controls and Department notification; and
 - (iii) providing the Department access to the site and O&M records.





RECORD OF DECISION Schenectady International -10th St Plant, Site No. 447007

ί

Exhibit A

Nature and Extent of Contamination

This section describes the findings of the Remedial investigation. As described in the RI report, waste/ source materials were identified at the site and are impacting groundwater, and soil.

Waste/Source Areas

Wastes are defined in 6 NYCRR Part 375-1.2 (aw) and include solid, industrial and/or hazardous wastes. Source Areas are defined in 6 NYCRR Part 375 (au). Source areas are areas of concern at a site were substantial quantities of contaminants are found which can migrate and release significant levels of contaminants to another environmental medium. Wastes and Source areas were identified at the site include product (a mixture of naphthalene, xylene and toluene) floating on the groundwater table in the Process area; and a black tar-like material (cresols) found in the subsurface of the Fill area and under and between concrete slabs in the Process area (Figure 2).

Certain of the waste/source areas identified at the site were addressed by the IRM(s) described in Section 5.2. The remaining waste/source area(s) identified during the RI will be addressed in the remedy selection process.

This section describes the findings for all environmental media that were evaluated. As described in the RI report, groundwater, soil, and soil vapor intrusion samples were collected to characterize the nature and extent of contamination.

For each media, a table summarizes the findings of the investigation. The tables present the range of contamination found at the site in the media and compares the data with the applicable SCGs for the site. The contaminants are arranged into four categories; volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), pesticides/ polychlorinated biphenyls (PCBs), and inorganics (metals). For comparison purposes the SCGs are provided for each medium that allows for unrestricted use. For soil, if applicable, the Restricted Use SCG identified in Section 3 are also presented.

Groundwater

Groundwater samples were collected from monitoring wells and the direct push/Geoprobe® drilling program. The samples were collected to assess groundwater conditions onsite for the purpose of selecting a remedy for OU2. Contaminants detected above the groundwater standards are shown in Table #1.

	Table #1 - Groundwater					
Detected Constituents	Concentration Range Detected (ppb) ^a	SCG ^b (ppb)	Frequency Exceeding SCG			
VÖCs						
Benzene	.35-31		8 of 45			
Ethylbenzene	3.8-14,000	5	17 of 45			
Toluene	.77-10,000	5	12 of 45			
Total Xylenes	.59-45,000	5	19 of 45			
SVOCs						
2,4-Dimethyphenol	1.8-990	1	15 of 45			
Methylnapthalene	1.4-1700	50	4 of 45			
2-Methylphenol	1.9-420	1	9 of 45			
4-Methylphenol	.46-2500	1	12 of 45			
Acenaphthene	.63-190	20	4 of 45			
Benzo(A)Anthracen e	36	.002	1 of 45			
Di-N-Butylphthalate	1000	50	1 of 45			
Fluoranthene	52	50	1 of 45			
Fluorene	1.2-120	50	1 of 45			
Napthalene	.65-3100	10	12 of 45			
Phenanthrene	1.9-200	50	1 of 45			
Phenol	.89-150	1	8 of 45			
Pyrene	63.3	50	1 of 45			

a - ppb: parts per billion, which is equivalent to micrograms per liter, ug/L, in water.

b- SCG: Standard Criteria or Guidance - Ambient Water Quality Standards and Guidance Values (TOGs 1.1.1), 6 NYCRR Part 703, Surface water and Groundwater Quality Standards, and Part 5 of the New York State Sanitary Code (10 NYCRR Part 5).

The primary groundwater contaminants are benzene, toluene, xylene, naphthalene and phenol. The extent of the shallow groundwater contamination (above 15 feet) is shown in Figure 4. There is little deep groundwater contamination (below 15 feet).

Based on the findings of the Updated RI, the disposal of hazardous waste (spills) has resulted in the contamination of groundwater. Migration of contaminated groundwater offsite is controlled by the Groundwater Extraction System installed as part of the remedy for OU1.

<u>Soil</u>

Soil samples were collected from the surface down to the water table throughout the site during the RI. Little to no contamination was detected below the water table. Contaminants detected above the unrestricted SCG's are shown in Table #2. There were no exceedences of metal SCOs.

Table #2 - Soil						
Detected Constituents	Concentration Range Detected (ppm) ^a	Unrestricted SCG ^b (ppm)	Restricted Industrial Use SCG ^c (ppm)	Frequency Exceeding Unrestricted SCG		
VOCs						
Acetone	0.01-2.8	0.05	1000	5 of 24		
Benzene	0.003-0.89	0.06	89	3 of 24		
Ethylbenzene	0.002-190	1	780	7 of 24		
Methylene Chloride	0.004-0.220	0.05	1000	1 of 24		
Toluene	2-240	0.7	1000	5 of 24		
Total Xylenes	0.12-710	0. 26	1000	10 of 24		
SVOCs		· · · · · · · · · · · · · · · · · · ·				
2-Methylnapthalene	0.073-63	36.4		1 of 24		
2-Methylphenol	0.11-100	0.1		4 of 24		
2-Nitroaniline	130	0.4		1 of 24		
4-Methylphenol	0.057-580	0.5		4 of 24		
Benzo(A)Anthracene	0.12-6.1	1		2 of 24		
Benzo(A)Pyrene	0.096-4.1	1		6 of 24		
Benzo(B)Fluoranthene	0.13-7.1	1		1 of 24		
Benzo(K)Fluoranthene	0.078-2.8	0.8		1 of 24		
Dibenzo(A,H)	0.072-2.3	0.33		4 of 24		

Schenectady International -10th St Plant PROPOSED REMEDIAL ACTION PLAN EXHIBITS A THROUGH E October 2010 PAGE 3

		Table #2 - Soil		
Detected Constituents	Concentration Range Detected (ppm) ^a	Unrestricted SCG ^b (ppm)	Restricted Industrial Use SCG ^c (ppm)	Frequency Exceeding Unrestricted SCG
Anthracene				
Di-N-Butylphthalate	0.35-120-	8.1		2 of 24
Indeno(1,2,3- Cd)Pyrene	0.074-7	0.5		1 of 24
Napthalene	0.086-180	. 12		5 of 24
Phenol	0.12-210	0.33		5 of 24

a - ppm: parts per million, which is equivalent to milligrams per kilogram, mg/kg, in soil;

b - SCG: Part 375-6.8(a), Unrestricted Soil Cleanup Objectives.

c - SCG: Part 375-6.8(b), Restricted Industrial Use Soil Cleanup Objectives; For the compounds that do not have a listed soil cleanup objective, the Department may develop cleanup standards using the Technical Support Document.

The primary soil contaminants are benzene, ethylbenzene, toluene, xylene, naphthalene and phenols. Figure 5 shows the extent of the contamination. The majority of the soil contamination in the Fill area is phenols located below 15 feet in contrast to the Process area where the contamination is benzene, ethylbenzene, toluene, xylene, naphthalene located above 15 feet. Comparing the soil contamination to the groundwater contamination we have concluded that the phenols in the Fill area located below 15 feet minimally contribute to the site's total groundwater contamination. The Process area soil contamination therefore contributes most of the groundwater contamination.

Based on the findings of the Remedial Investigation, the disposal of hazardous waste has resulted in the contamination of soil.

Soil Vapor Intrusion

The evaluation of the potential for soil vapor intrusion resulting from the presence of site related soil and groundwater contamination was evaluated by the sampling of soil vapor. At this site no buildings were present in impacted areas, so only soil vapor was evaluated.

Based on the soil vapor results, contaminated soil vapor does not appear to be migrating from the site to off-site locations at levels requiring further investigations. However, there is a potential for exposures via soil vapor intrusion if buildings are constructed on-site in the future.

A site management plan developed for the site shall include an evaluation for the potential that

Schenectady International -10th St Plant PROPOSED REMEDIAL ACTION PLAN EXHIBITS A THROUGH E soil vapor intrusion might occur in any buildings constructed on-site in the future. (See Section 6.2).

. مەنتۇرىمىدىدار . كۈرىمىدىدىدى

Schenectady International -10th St Plant PROPOSED REMEDIAL ACTION PLAN EXHIBITS A THROUGH E

Exhibit B

SUMMARY OF THE REMEDIATION OBJECTIVES

The objectives for the remedial program have been established through the remedy selection process stated in 6 NYCRR Part 375. The goal for the remedial program is to restore the site to pre-disposal conditions to the extent feasible. At a minimum, the remedy shall eliminate or mitigate all significant threats to public health and the environment presented by the contamination identified at the site through the proper application of scientific and engineering principles.

The remedial objectives for this site are:

Public Health Protection

Groundwater

- Prevent people from drinking groundwater with contaminant levels exceeding drinking water standards.
- Prevent contact with contaminated groundwater.
- Prevent inhalation of contaminants from groundwater.

Soil

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of contaminants volatilizing from the soil.

Environmental Protection

Groundwater

- Restore the groundwater aquifer to meet ambient groundwater quality criteria, to the extent feasible.
- Prevent discharge of contaminated groundwater to surface water.

Soil

- Prevent migration of contaminants that will result in groundwater or surface water contamination.
- Prevent impacts to biota from ingestion/direct contact with soil causing toxicity or impacts from bioaccumulation through the terrestrial food chain.

Exhibit C

Description of Remedial Alternatives

The following alternatives were considered based on the remedial action objectives (see Exhibit B) to address the contaminated media identified at the site as describe in Section 5:

Due to distinct soil and engineering concerns the site is divided into two areas for remediation purposes: Process and Fill Areas (Figure 3). Alternatives are presented for each area and designated with "P" for Process Area and "F" for Fill Area.

*Note: For all the remedial alternatives the Groundwater Collection System (OU1) will continue to operate, providing hydraulic containment of the contaminated groundwater. The annual cost for OU1 is \$194,000 and the present worth assuming 30 years of operation and a 5% discount rate is \$2,980,000 (Table 20 of Updated FS). The annual costs (if any) for OU2 are included in the Capital Cost for each alternative.

The following alternatives were considered to address the contaminated media identified for the Process Area:

Alternative P-1: No Further Action

The No Further Action Alternative recognizes the remediation of the site completed by the IRM(s) described in Section 5.2. This alternative leaves the site in its present condition and does not provide any additional protection of the environment.

Alternative P-2: Permeable Soil Cover with Site Management

This alternative will include:

· Installation of a Permeable Soil Cover over the Process Area

- Institutional/Engineering Controls
- Natural Attenuation
- Surface Water and Groundwater Monitoring

• Site Management Plan

This alternative consists of the excavation of all concrete slabs and footings and installation of a one foot thick permeable soil cover system across the Process Area. Natural attenuation of the contaminated soils will occur in conjunction with the Groundwater Collection System (OU1).

This alternative is expected to achieve industrial SCOs for the Process Area.

	\$1,426,000*
Capital Cost:	
Annual Costs:	

Schenectady International -10th St Plant PROPOSED REMEDIAL ACTION PLAN EXHIBITS A THROUGH E October 2010 PAGE 7 Alternative P-3: Excavation (Restoration to Pre-Disposal or Unrestricted Conditions) This alternative achieves all of the SCGs discussed in Section 5.1.1 and soil meets the unrestricted soil clean objectives listed in Part 375-6.8 (a). This alternative will include:

Excavation of Impacted Soils in Process Area, Off-site Disposal
Institutional/Engineering Controls

institutional/Engineering Controls

Under this alternative all on-site debris and soils located in the vadose zone (above the water table) of the Process Area, which exceed the unrestrictive SCOs will be excavated and transported off-site for disposal. Approximately 91,500 cubic yards of soil and debris will be removed. Clean fill will then be brought in to replace the excavated soil and establish the designed grades at the site. There is no contamination below the vadose zone.

This alternative is expected to achieve unrestricted SCOs and protection of groundwater SCOs for the Process Area.

Capital Cost: \$56,290,000

Alternative P-4: Limited Excavation

This alternative will include:

• Limited Excavation of Impacted Soils in Process Area, Off-site Disposal

- Institutional/Engineering Controls
- Surface Water and Groundwater Monitoring
- Site Management Plan

Under this alternative the most contaminated debris and soils located in the vadose zone (above the water table) of the Process Area, which exceed the unrestricted SCOs will be excavated and transported off-site for disposal. Approximately 14,570 cubic yards of soil and debris will be removed. Clean fill will then be brought in to replace the excavated soil and establish the designed grades at the site. Approximately 96% of the contamination will be removed with the remainder of the soil remediated by natural attenuation during the operational period of the Groundwater Collection System (OU1).

This alternative is expected to achieve unrestricted SCOs for the Process Area.

Present Worth:	· • • • • • • • • • • • • • • • • • • •	···		\$12,160,000*
Capital Cost:				\$12.160.000
Annual Costs:	en e		ta ta sa	\$0*
				φ.

Alternative P-5: Thermally-Enhanced Soil Vapor Extraction

Schenectady International -10th St Plant PROPOSED REMEDIAL ACTION PLAN EXHIBITS A THROUGH E This alternative will include:

- In-Situ Treatment in Process Area Using Thermally-Enhanced SVE
- Bioventing/Biosparging
- Removal of Slabs, Surface Obstructions and Building Footings
- Institutional/Engineering Controls
- Surface Water and Groundwater Monitoring
- Site Management Plan

Soil vapor extraction (SVE) is an in-situ technology used to treat volatile organic compounds (VOCs) in soil. The process physically removes contaminants from the soil by applying a vacuum to a SVE well that has been installed into the vadose zone (the area below the ground but above the water table). The vacuum draws air through the soil matrix which carries the VOCs from the soil to the SVE well. The air extracted from the SVE wells is then run through an activated carbon treatment canister or equivalent system to remove the VOCs before the air is discharged to the atmosphere.

Thermally enhanced SVE uses conduction (e.g., using hot water in pipes) or convection (e.g., hot-air injection) to transmit heat through the unsaturated zone to increase the volatilization rate of both volatiles and semi-volatiles and to facilitate extraction. Both heating technologies were tested at SI Group's Rotterdam Junction facility (RJ) for two years and found to be equally effective. Since the soils and contamination at Rotterdam Junction are similar to that at SI Group's Congress Street facility, the results of this study are being used in this document.

Using the extraction wells already in place, SVE is followed by bioventing or biosparging to promote natural biodegradation of semi-volatile organics (SVOCs), which are not as effectively removed by SVE as volatiles. Bioventing provides oxygen to stimulate naturally occurring soil microorganisms to degrade compounds in unsaturated zones. Biosparging is the cyclic pulsing of alternating air extraction and injection to optimize for the bioremediation of SVOCs.

Cost estimates for the treatment of two different areas have been prepared for the Process Area (Figure 6). Alternative P-5A treats only Area A (26,260 ft2) and is expected to address approximately 96% of the contaminant mass in the Process Area. Alternative P-5B treats Areas A and B of the designated Process Area and is expected to address approximately 98% of the contamination in the Process Area. These variations were prepared to enable the comparison with both Alternative 4, which treats a limited area, and Alternative 3, which addresses the entire Process Area. The relative costs to treat the additional area will also be applicable to Alternatives P-6 and P-7.

This alternative is expected to achieve industrial SCOs for the Process Area.

Alternative P-5A

A MENTINGER OF A				
Present Worth:	 		 \$3.79	*000.00
Capital Cost:				
+- <i>T</i>				

Schenectady International -10th St Plant PROPOSED REMEDIAL ACTION PLAN EXHIBITS A THROUGH E October 2010 PAGE 9

1	101001	Conta					
\mathcal{A}	nnuai	Costs	2		2	2	

Alternative P-5B			na gran Alexandra († 1975) 1970 - Statistica Statistica († 1976)
Present Worth:	••••••		\$7,050,000*
Capital Cost:			
Annual Costs:			

Alternative P-6: Multi-Phase Extraction

This alternative will include:

- In-Situ Treatment in Process Area Using Multi-Phase Extraction
- Bioventing/Biosparging
- · Removal of Slabs, Surface Obstructions and Building Footings
- Institutional/Engineering Controls
- Surface Water and Groundwater Monitoring
- Site Management Plan

Multi-phase extraction (MPE) involves removal of contaminated groundwater, free-phase product contamination, and soil vapors from a common extraction well under vacuum conditions. Essentially, MPE is the coupling of soil vapor extraction (SVE) and groundwater pump and treat. Groundwater recovery is achieved by pumping at or below the water table. The applied vacuum extracts soil vapor and enhances groundwater recovery.

A network of SVE/dewatering wells will be installed to a minimum depth of 12 feet and will likely be extended an additional 2 to 3 feet below the groundwater. In order to effectively remove contaminant mass, the groundwater will be lowered 2 to 3 feet to allow the remediation of the entire area by SVE. It is anticipated that a dual-pump multi-phase extraction unit will be used. This method of remediation will allow for removal of the VOCs and an appreciable fraction of the SVOCs. The enhanced air flow through the subsurface will increase the volume and percentage of oxygen available in the subsurface to aid in biodegradation of the organics that are not removed. It is anticipated that the system will operate continuously for up to two years. After this, it is expected that vapor concentrations may decline to a level that post extraction treatment is not necessary. At that time, it is anticipated that the system will be modified to a cyclic pulsing of alternating air extraction and injection to optimize for bioremediation of SVOCs or to passive bioventing.

This system is expected to achieve the restricted industrial SCOs for the Process Area.

Alternative P-6A (Area	A)	•		
Present Worth:			 	\$3,480,000*
Capital Cost:				
Annual Costs:			 	 \$0*

Schenectady International -10th St Plant PROPOSED REMEDIAL ACTION PLAN EXHIBITS A THROUGH E October 2010 PAGE 10 \$0*

Alternative P-6B (Area	A and B)	 a da	<u></u>		an a
Present Worth:		 		•••••	\$6,750,000*
Capital Cost:					, ,
Annual Costs:					\$0*
	· · · · · · · · · · · · · · · · · · ·				····· • •

Alternative P-7: In-Situ Treatment Using ISTD

This alternative will include:

• In-Situ Treatment Using in-situ thermal desorption (ISTD)

· Removal of Slabs, Surface Obstructions and Building Footings

• Institutional/ Engineering Controls

• Surface Water and Groundwater Monitoring

• Site Management Plan

Soils and waste containing VOCs and SVOCs will be remediated by in-situ thermal desorption (ISTD). In ISTD, soil is heated in-situ to higher temperatures than typically used for thermallyenhanced SVE (Alternative P5). Volatile and semi-volatile contaminants are vaporized and rise to the unsaturated zone where they are removed by vacuum extraction and then run through an activated carbon treatment canister or equivalent system to remove the VOCs before the air is discharged to the atmosphere.

Benefits of ISTD include the ability to treat and/or destroy a wide range of contaminants. In addition, ISTD can treat free product in the form of LNAPL. However, costs associated with this technology are high due to the energy required and extensive operation and maintenance costs. Furthermore, SVOCs are not as readily treated as VOCs.

Alternative P-7 includes installation of vertical ISTD heaters at approximately 12 ft spacing for a total of approximately 250 heater-only wells for Area A and 640 for Areas A and B (Figure 6). Vapors will be extracted from approximately 50 or 125 vertical multi-phase extraction wells, respectively. The heaters will extend to a minimum depth of 12 feet and will likely be extended an additional two to three feet into the groundwater. Off-gas treatment will include an un-heated vapor collection manifold, a condensing front end prior to vapor treatment, and liquid separation with granular-activated carbon (GAC) for condensate and groundwater treatment. The non-condensable vapors will be treated by a thermal oxidizer.

These alternatives are expected to achieve the restricted industrial SCOs for the Process Area.

Alternative P-7A (Ar	ea A)		• •	
Present Worth:		 		\$6,220,000*
Capital Cost:		 		
- 1				

Schenectady International -10th St Plant PROPOSED REMEDIAL ACTION PLAN EXHIBITS A THROUGH E October 2010 PAGE 11 Annual Costs:....

Alternative P-7B (Area A and B)	an an the second se	
Alternative P-7B (Area A and B) Present Worth:		
Capital Cost:		
Annual Costs:		
an a		

The following alternatives were considered to address the contaminated media identified for the Fill Area:

Alternative F-1: No Further Action

The No Further Action Alternative recognizes the remediation of the site completed by the IRM(s) described in Section 5.2. This alternative leaves the site in its present condition and does not provide any additional protection of the environment.

Alternative F-2: Capping with Site Management

This alternative includes:

• Installation of an Impervious Cap over the Fill Area

and the second second

and the second second

• Institutional/Engineering Controls

· Long-Term Groundwater Hydraulic Containment, On-site Treatment

• Surface Water and Groundwater Monitoring

• Site Management Plan

The installation of an impermeable cap, with continued operation of the GWCS, will reduce the current level of risk to human health and the environment associated with the Fill Area by further isolating the waste mass and associated contamination. The cap will restrict the infiltration of precipitation and surface water and will be installed over most existing concrete slabs and asphalt. Based on the known presence of landfill materials (construction/demolition debris, etc.) as well as the tar-like contamination identified during the Updated RI, it is anticipated that restricting the infiltration of surface water will reduce the leaching of contaminants into the groundwater.

This alternative is expected to achieve industrial restricted SCOs for the Fill area.

Present Worth:	· · · · · · · · · · · · · · · · · · ·		\$280.000*
Capital Cost:			
Annual Costs:			
			ϕ o

Alternative F-3: Permeable Cap and Natural Attenuation

Schenectady International -10th St Plant PROPOSED REMEDIAL ACTION PLAN EXHIBITS A THROUGH E . \$0*

This alternative includes:

- Natural Attenuation
- Institutional/Engineering Controls
- Installation of a Permeable Cap over the Fill Area
- · Long-Term Groundwater Hydraulic Containment, On-site Treatment
- Surface Water and Groundwater Monitoring
- Site Management Plan

Natural attenuation is a remedial method that reduces the mass and concentration of contaminants in the environment without human intervention. Long-term monitoring of the site conditions is needed to confirm whether or not the contaminants are being degraded at reasonable rates to ensure protection of human health and the environment. Site data should clearly indicate whether concentrations of contaminated media are being adequately reduced without active remediation.

The installation of a permeable cap, with continued operation of the GWCS, will reduce the current level of risk to human health and the environment associated with the Fill Area by further isolating the waste mass and associated contamination. The permeable cap will promote the infiltration of precipitation and surface water, enhancing natural soil flushing and thus removing contaminants at a higher rate. Based on the known presence of landfill materials (construction/demolition debris, etc.) as well as the black tar-like contamination identified during the Updated RI, it is anticipated that enhancing the infiltration of surface water will increase the leaching of contaminants into the groundwater, which will then be removed and treated by the GWCS.

This alternative is expected to achieve industrial restricted SCOs for the Fill area.

Present Worth:		. \$500,000*
Capital Cost	a ser a Notae	\$500,000
Annual Costs:		

Alternative F-4: Restoration to Pre-Disposal or Unrestricted Conditions.

This alternative will include:

- Excavation of Impacted Soils in Fill Area, Off-site Disposal
- Relocation of Treatment Facility
- Institutional/Engineering Controls
- · Surface Water and Groundwater Monitoring

Under this alternative all on-site soils located in the vadose zone (above the water table) of the Fill area which exceed Unrestricted SCOs will be excavated and transported off-site for disposal. Approximately 40,400 cubic yards of soil and debris will be removed. Clean fill will then be brought in to replace the excavated soil and establish the designed grades at the site.

Engineering and institutional controls will be used during remediation of the Fill Area. The GWCS will continue to be operated until the groundwater meets the RAOs. An extensive stabilization system will need to be implemented to facilitate waste and soil excavation given the inherent slope instability.

This alternative is expected to achieve unrestrictive SCOs and protection of groundwater SCOs for the Fill Area.

Capital Cost:.....

..... \$29,810,000

Alternative F-5: Limited Excavation

This alternative includes:

• Limited Excavation of Impacted Soils in Fill Area, Off-site Disposal

- Installation of a Permeable Cap over the Fill Area
- Institutional/Engineering Controls
- Surface Water and Groundwater Monitoring
- Site Management Plan

Alternative F-5 is the partial excavation and removal of the contaminated material above unrestricted SCOs in the Fill Area. The excavation will use conventional benching and shoring techniques. Upon completion of the excavation, a permeable cap will be placed over the waste mass remaining in place. Engineering and institutional controls will be used to restrict disturbance of the Fill Area. The GWCS will continue to be operated in the long-term to control groundwater migration from the area. A long-term groundwater and surface water monitoring program will be maintained to ensure containment of the Fill Area. Alternative F-5 is similar to Alternative F-4, but will not remove all of waste mass in the Fill Area.

This alternative is expected to achieve unrestricted SCOs for the Fill area.

Present Worth:		
Capital Cost:	 the second se	and a second
Annual Costs:		

Alternative F-6: Soil Vapor Extraction and Capping

This alternative includes:

• In-Situ Treatment in Fill Area Using Conventional SVE

- Bioventing/Biosparging
- Installation of a Permeable Cap over the Fill Area

• Removal of Slabs, Surface Obstructions and Building Footings (excepting Treatment Facility)

- Institutional/Engineering Controls
- Surface Water and Groundwater Monitoring

Site Management Plan

Alternative F-6 is the in-situ treatment of the Fill Area using conventional soil vapor extraction (SVE) technology (see Alternative P-5). Following removal of the VOCs, the system will be converted to biosparging to promote bioremediation of the waste mass. A permeable cap (see Alternative F-3) will be placed over the Fill Area since the SVE system will only remove a small component of the waste mass. Engineering and institutional controls will be used to restrict disturbance of the Fill Area since contamination and solid waste materials will remain. The GWCS will continue to be operated in the long term to control groundwater migration from the area and to remove contaminated groundwater from the Fill Area. A groundwater and surface water monitoring program will be maintained to ensure containment of the Fill Area. In addition, Alternative F-6 includes the removal of surface slabs, the loading dock, and other surface obstructions as well as in-situ treatment using conventional SVE and biosparging.

This technology will not address contamination present within the black tar-like material observed in the Fill Area, as demonstrated during the treatability analyses conducted by SI Group (see Section 2.7.3.1 of the Updated FS), nor will it address solid waste materials. Therefore, while the technology will remove some contamination in the short term, the GWCS will need to continue operating in order to remove and treat contaminated groundwater.

This alternative is expected to achieve industrial restricted SCOs for the Fill Area.

Present Worth:		 	 	\$6,040.000*
Capital Cost:				
▲ · ·		and the second		\$0*

Alternative F-7: Thermally-Enhanced In-Situ Treatment

This alternative includes:

- In-Situ Treatment in Fill Area Using Thermally-Enhanced SVE
- Bioventing/Biosparging
- Installation of Permeable Cap over the Fill Area
- Removal of Slabs, Surface Obstructions and Building Footings (excepting Treatment Facility)
- Institutional/Engineering Controls
- · Surface Water and Groundwater Monitoring
- Site Management Plan

Alternative F-7 is the in-situ treatment of some contamination in the Fill Area using thermallyenhanced SVE followed by biosparging (see Alternative P-5). A permeable cap will be placed over the Fill Area since the SVE system will only remove a small portion of the waste mass.

Engineering and institutional controls will be used to restrict disturbance of the Fill Area since contamination and solid waste materials will remain. The GWCS will continue to be operated in the long term to control groundwater migration from the area and to remove contaminated groundwater from the Fill Area. A long term groundwater and surface water monitoring program will be maintained to ensure containment of the Fill Area.

This technology will not address contamination present within the black tar-like material observed in the Fill Area, as demonstrated during the treatability analyses conducted by SI Group (see Section 2.7.3.1), nor will it address solid waste materials. Therefore, while the technology will remove some additional contamination in the short-term, the GWCS will need to continue operating in order to remove and treat contaminated groundwater.

This alternative is expected to achieve industrial restricted SCOs for the Fill Area.

Present Worth:	•••••••••		\$6,600,000*
Capital Cost:		•	
Annual Costs:			

Alternative F-8: Multi-Phase Extraction

This alternative includes:

- In-Situ Treatment in Fill Area Using Multi-Phase Extraction
- Bioventing/Biosparging
- Installation of Permeable Cap over the Fill Area
- Removal of Slabs, Surface Obstructions and Building Footings (excepting Treatment Facility)
- Institutional/Engineering Controls
- Surface Water and Groundwater Monitoring
- Site Management Plan

Alternative F-8 includes the in-situ treatment of some contamination in the Fill Area using multiphase extraction technology (see Alternative P-6).

Following removal of the VOCs, the system will be converted to biosparging to promote bioremediation of the waste mass. A permeable cap will be placed over the Fill Area since the MPE system will only remove a small portion of the contamination in the waste mass. Engineering and institutional controls will be used to restrict disturbance of the Fill Area since contamination and solid waste materials will remain.

A network of SVE/dewatering wells will be installed to depths ranging from 15 to 28 feet depending on location within the Fill Area. Wells will be installed on a 25-foot grid to maximize

Schenectady International -10th St Plant PROPOSED REMEDIAL ACTION PLAN EXHIBITS A THROUGH E efficiency of the system. This method of remediation will allow for removal of the volatile organic compounds. The enhanced air flow through the subsurface will increase the volume and percentage of oxygen available in the subsurface to aid in biodegradation of the waste. Lowering the groundwater will increase the area available for treatment.

This technology will not address contamination present within the black tar-like material observed in the Fill Area, as demonstrated during the treatability analyses conducted by SI Group (see Section 2.7.3.1 of RI), nor will it address solid waste materials. Therefore, while the technology will remove some contamination in the short-term, the GWCS will continue to operate, removing and treating contaminated groundwater. The majority of contamination, as well as the solid waste materials, will remain in the Fill Area and will thus require that a permeable cover system be installed. It is expected that the monitoring program will continue to monitor the reduction in contaminant levels in the Fill Area.

This alternative is expected to achieve industrial restricted SCOs for the Fill Area.

Present Worth:		\$6.070.000*
Capital Cost:		
Annual Costs:		

Exhibit D

Table 3Remedial Alternative CostsProcess Area Remedial Alternative Costs

in an in the second second

Remedial Alternative	Capital Cost (\$)	Annual Costs (\$)	Total Present Worth (\$)
P-1: No Action	0	<i>\$</i> 0*	<i>\$</i> 0*
P-2: Capping	1,426,000	<i>\$</i> 0*	1,426,000*
P-3: Excavation	55,420,000	\$0*	55,420,000*
P-4: Limited Excavation	12,160,000	\$0*	12,160,000*
P-5A: Thermal SVE Area A	3,790,000	\$0*	3,790,000*
P-5B: Thermal SVE Area A and B	7,050,000	\$0*	7,050,000*
P-6A: Multi-Phase Area A	3,480,000	<i>\$</i> 0*	3,480,000*
P-6B: Multi-Phase Area A and B	6,750,000	\$0*	6,750,000*
P-7A: ISTD Area A	6,220,000	\$0*	6,220,000*
P-7B: ISTD Area A and B	10,430,000	\$0*	10,430,000*

Table 4Fill Area Remedial Alternative Costs

Remedial Alternative	Capital Cost (\$)	Annual Costs (\$)	Total Present Worth (\$)
F-1: No Action	0	<i>\$</i> 0*	\$0*
F-2: Capping	280,000	\$0*	280,000*
F-3: Permeable Cap and Natural Attenuation	500,000	\$0*	500,000*
F-4: Excavation	28,940,000	<i>\$</i> 0*	28,940,000*
F-5: Limited Excavation	6,690,000	\$0*	6,690,000*
F-6: Conventional SVE	6,040,000	\$0*	6,040,000*
F-7: Thermal SVE	6,600,000	\$0*	6,600,000*
F-8: Multi-Phase	6,070,000	<i>\$</i> 0*	6,070,000*

Schenectady International -10th St Plant PROPOSED REMEDIAL ACTION PLAN EXHIBITS A THROUGH E October 2010 PAGE 18

Exhibit E

SUMMARY OF THE PROPOSED REMEDY

The Department is proposing Alternative F-3 (Permeable Cap) for the Fill Area and for the Process area P-5A (In-Situ Treatment of Area A Using Enhanced Soil Vapor Extraction and Biosparging and Natural Attenuation of Area B of the Process Area) with Alternative P-7A as a contingency if the results from P-5A are deemed unsatisfactory by the Department. The elements of each remedy are described in section 6.2.

Basis for Selection

The proposed remedies are based on the results of the RI and the evaluation of alternatives.

Process Area:

<u>Threshold criteria</u> - Alternative P-1 (No Further Action) provides no additional protection to public health and the environment and will not be evaluated further. All of the other alternatives for the process area meet these criteria.

<u>Long-term Effectiveness and Permanence</u> – Alternative P-2 (Physical Containment via a Permeable Cap) does not remove any waste and relies on natural attenuation; thus, this alternative does not have much long-term effectiveness or permanence. Alternative P-3 has the most effectiveness and permanence, since it calls for the complete removal of the contamination. Alternatives P-4 through P-7 will not remove all of the contamination, but the magnitude of remaining risks will be low, the engineering controls will limit the risks and the reliability of the controls is good.

<u>Reduction of Toxicity, Mobility or Volume</u> – Alternative P-2 does not remove any waste and relies on natural attenuation; thus, the reduction of toxicity or volume of contamination will be minimal, while the mobility of the contamination could potentially increase. Alternative P-3 (Excavation) will result in the greatest reduction of toxicity, mobility and volume, since it calls for the complete removal of the contamination. Alternatives P-4 through P-7 will not remove all of the contamination, but will permanently and significantly reduce in varying degrees the toxicity, mobility and volume of the current contamination; at a minimum, all of these alternatives will reduce the contamination down to at least industrial soil SCOs.

<u>Short-term Impacts and Effectiveness</u> – Alternative P-2 will have a minimal short-term impact and will only take a few months to complete. Alternative P-3 will have a large short-term impact because of the amount of material to be removed and the number of trucks needed to remove that soil; this alternative will last only a few months. Alternative P-4 (Partial Excavation) is similar to the impacts and time of Alternative P-3, but will have smaller impacts and take less time. Alternatives P-5 through P-7 will have small short-term impacts because the small amount of soil to be removed and the control of any air emissions, but could take several years to complete. <u>Implementability</u> - All of the Alternatives should have little technical or administrative difficulties, although Alternative P-3 will require a large amount of removal equipment and trucks.

<u>Cost-Effectiveness</u> – The costs for each Alternative are laid out in Table 3 above. Of all of the Alternatives, Alternative P-5A (Treatment of Area A and Natural Attenuation of Area B) is the most cost effective because it is less expensive; will have significant long-term effectiveness and permanence through the removal of approximately 96% of the contamination in the Process Area and the remediation of the remaining contamination through pump & treat and natural attenuation; will have little short-term impact; and is easily implemented.

<u>Land Use</u> – Other than Alternative P-3, the unrestricted SCOs may not be achieved. Current zoning of the property will only allow industrial use . It is expected that Alternatives P-2, and P-4 through P-7 will clean up the soils to industrial SCOs.

<u>Community Acceptance</u> – The community appears to accept this proposed remedy with some minor comments.

Fill Area:

<u>Threshold criteria</u> - Alternative F-1 (No Further Action) provides no additional protection to public health and the environment and will not be evaluated further. All of the other alternatives for the process area meet these criteria.

Long-term Effectiveness and Permanence – Alternative F-2 (Impervious Cap) does not remove any waste and relies on natural attenuation; thus, this alternative does not have much long-term effectiveness or permanence. Alternative F-3 (Pervious Cap) has some long-term effectiveness/permanence because it does allow precipitation to penetrate the cap and mobilize the contaminants, so that they can be removed by the groundwater pump and treat system of OU1. Alternative F-4 (Excavation) has the most effectiveness and permanence, since it calls for the complete removal of the contamination. Alternatives F-5 through F-8 will not remove all of the contamination, but the magnitude of remaining risks will be low, the controls will limit the risks and the reliability of the controls is good.

<u>Reduction of Toxicity, Mobility or Volume</u> – Alternative F-2 does not remove any waste and relies on natural attenuation; thus, the reduction of toxicity or volume of contamination will be minimal, while the mobility of the contamination could potentially increase. Alternative F-3 does not remove any waste, but, since it will allow the penetration of precipitation and will funnel the contaminants to the groundwater pump and treat system, it will reduce the toxicity and volume of waste. Alternative F-4 will result in the greatest reduction of toxicity, mobility and volume, since it calls for the complete removal of the contamination. Alternatives F-5 through F-8 will not remove all of the contamination, but will permanently and significantly reduce in varying degrees the toxicity, mobility and volume of the current contamination; at a minimum, all of these alternatives will reduce the contamination down to at least industrial soil SCOs.

<u>Short-term Impacts and Effectiveness</u> – Alternatives F-2 and F-3 will have a minimum shortterm impact and will only take a few months to complete. Alternative F-4 will have a large short-term impact because of the amount of material to be removed and the number of trucks needed to remove that soil; this alternative will last only a few months. Alternative F-5 (Limited excavation) is similar to the impacts and time of Alternative F-4, but smaller impacts and less time. Alternatives F-6 through F-8 will have small short-term impacts because the small amount of soil to be removed and the control of any air emissions, but could take several years to complete.

<u>Implementability</u> - Alternatives F-2, F-3 and F-6 through F-8 should have little technical or administrative difficulties. Alternatives F-4 and F-5 will require a large amount of specialized removal equipment because the contaminants are located 15 feet below ground; a large number of trucks because the amount of material to be removed is large; and be difficult to accomplish because it impact on the nearby structure.

<u>Cost-Effectiveness</u> – The costs for each Alternative are laid out in Table 4 above. Of all of the Alternatives, Alternative F-3 (Installation of a Permeable Cap and Natural Attenuation) is the most cost effective because it is less expensive; will have long-term effectiveness and permanence by funneling the contamination to the pump & treat where they will be removed and natural attenuation; will have little short-term impact; and is easily implemented.

<u>Land Use</u> – Other than Alternative F-4, the unrestricted SCOs may not be achieved. SIG has indicated that they want the property to be used only for industrial purposes. It is expected that Alternatives F-2 through F-7 will clean up the soils to industrial SCOs.

<u>Community Acceptance</u> – The community appears to accept this proposed remedy with some minor comments.

ىمىن ئەشتەر بىلە ئەجەمەر بەيەمىيە يەن ئوشرى<u>غىلىكە كۈرىمى بىيە بەرىپىدە يىرىدىرىدە بىدىدە ب</u>ىدىدە ب and a second and a second

وواردهم الأوروزيوي ومحاربته الأراد أشتبيه وتروي والمراكب ومحمو والمعام وأجد والحصيصة والماري والمتعاد شعه

and a strength of the strength of the second s alah tarihi sa katika <u>katika katika sa sa</u> sakat katikat na taki falalar sa katika katika sa katika katika katika (1997).

konstanti anta serienza de sistema de

والمتحيل معيمهم والالا

와 · 명종

Haristera dal

وتحاوره الرارية وتحاذ أفقاط والمعجد الأتراماتية

APPENDIX A

Responsiveness Summary

and the second second

RESPONSIVENESS SUMMARY

Schenectady International – 10th St. Plant Operable Unit No. 2 State Superfund Project City of Schenectady, Schenectady County, New York Site No. 447007

The Proposed Remedial Action Plan (PRAP) for the Schenectady International -10th St Plant site, was prepared by the New York State Department of Environmental Conservation (the Department) in consultation with the New York State Department of Health (NYSDOH) and was issued to the document repositories on September 15, 2010. The PRAP outlined the remedial measure proposed for the contaminated soil, and groundwater at the Schenectady International - 10th St Plant - 10th St Plant site.

The release of the PRAP was announced by sending a notice to the public contact list, informing the public of the opportunity to comment on the proposed remedy. A public meeting was held on September 29, 2010, which included a presentation of the remedial investigation and feasibility study (RI/FS) for the Schenectady International -10th St Plant as well as a discussion of the proposed remedy. The meeting provided an opportunity for citizens to discuss their concerns, ask questions and comment on the proposed remedy. These comments have become part of the Administrative Record for this site. The public comment period for the PRAP ended on October 15, 2010.

This responsiveness summary responds to all questions and comments raised during the public comment period. The following are the comments received, with the Department's responses:

COMMENT 1: Why can't we excavate and remove all the contamination regardless of cost?

RESPONSE 1:

Excavation to remove the bulk of the contamination was evaluated by the Feasibility Study and it was determined that this is not the best option. Excavation has impacts beyond the monetary cost. Short term impacts such as increased truck traffic and noise would be greatly increased for an extended period of time to implement the removal alternative. The risk for nuisance odors is also increased because an open excavation of contaminated soil would be exposed for an extended time. Also, the full removal would require significant shoring and bracing of existing buildings and measures to maintain the stability of the slopes in the area to be excavated. The in-situ treatment remedy selected will achieve similar cleanup levels resulting in a comparable degree of protection of public health and the environment without these impacts.

Schenectady International -10th St Plant RECORD OF DECISION ADMINISTRATIVE RECORD

December 2010 PAGE A-1

COMMENT 2:

Why hurry the cleanup? Why not let nature take its course?

RESPONSE 2:

Some of the contamination will be remediated using "natural" attenuation and the existing groundwater treatment system. However for the most heavily contaminated soils use of in-situ treatment will speed up the cleanup of the site significantly, allowing groundwater and soil to meet applicable SCGs in a more timely manner. The Department believes that the selected remedy will achieve the cleanup goals while achieving the best balance of costs, effectiveness, implementability, and reduction of toxicity, mobility, and volume of the hazardous wastes.

COMMENT 3: Why didn't some of the people near SI Group's facility receive the fact sheet and the notice for this meeting?

RESPONSE 3:

QUESTION 4:

The mailing list that was used for this PRAP was the one prepared for the PRAP for OU1 which includes nearby residents. Based on this comment, the Department will modify this list to ensure that all attendees are added.

Is there or was there any contamination going into our neighborhood?

RESPONSE 4: The residences along 10th Avenue and Congress Street are located upgradient of the groundwater flow direction and therefore we do not expect contamination from the site to migrate toward homes or other buildings on these streets. Soil vapor points on the perimeter of the site nearest 10th Avenue were also sampled and did not indicate the presence of contaminated soil vapor that could represent a health concern or warrant further investigations.

OUESTION 5:

Is the excavation and off-site removal of contaminated soil not being considered because it is too hazardous/dangerous for the surrounding community?

RESPONSE 5:

No. The selected remedy of limited excavation, capping and treatment of soils in place (in situ) using a combination of heating and vacuum extraction of soil gases and natural biological biodegredation will require similar measures to minimize the off-site migration of site related contaminants to the nearby community. Such measures, at a minimum, will include monitoring of air and dust at the site's perimeter, utilizing odor and dust suppression techniques, covering truck beds of trucks transporting contaminated soil off-site, and if needed washing of truck tires before trucks exit the site. If the soil excavation for off-site disposal was the selected remedy, similar measures would also be taken to ensure that the surrounding community is protected, however the added volume of excavation would add significant additional time for these measures to

Schenectady International -10th St Plant RECORD OF DECISION ADMINISTRATIVE RECORD December 2010 PAGE A-2

be in place with limited additional protection as a result of these short term impacts (also see Response 1). **QUESTION 6:** How do you know that this remedy will work? **RESPONSE 6:** The in-situ treatment component of the remedy is expected to work based on lab scale and pilot testing. However, should it not prove successful, the ROD includes a contingent remedy which could then be implemented. **QUESTION 7:** Why didn't I know that this was a contaminated site? I have lived right next door for nine years. **RESPONSE 7:** The contamination is not readily apparent at the surface of the site, rather it is located below ground and was only discovered after collecting and analyzing groundwater and soil samples from below the surface. Residents are notified when a site is identified and at decision points as a site is cleaned up. In this case residents were notified in 2001 when the initial cleanup was done and in 2010 for the current cleanup. At no time has there been an immediate threat to the surrounding community due to the presence of the site. Is SI Group responsible for the cleanup at the site? How do we know they **QUESTION 8:** will do it right? Do they make all the final decisions on what needs to be done here? Will SI Group do the cleanup themselves? **RESPONSE 8:** SI Group is responsible for cleaning up this site. However, they are not responsible for deciding how to clean up the site. They have proposed several alternative ways of cleaning up this site and it is the Department, after evaluating these alternatives using the criteria listed in the PRAP. which decides which technologies to use to clean up this site. The Department will be approving the design of the remedy and overseeing the clean-up activities SI Group will conduct. The Department oversight will ensure that the cleanup is done in accordance with the approved plans. In addition, SI Group will have to submit a certification to the Department that states that the cleanup was done in accordance with the approved plans. SI Group will be using contractors to do the actual cleanup. Who is responsible for trash dumped along the street (that goes behind the **QUESTION 9:** site?) **RESPONSE 9:** Trash dumped on the road or in the public right-of-way is beyond the scope of this ROD

Schenectady International -10th St Plant RECORD OF DECISION ADMINISTRATIVE RECORD December 2010 PAGE A-3

APPENDIX B

Administrative Record

÷.

antan il Mana

 $z \stackrel{r}{=} \tilde{r} \tilde{c} \tilde{z}$

Administrative Record Schenectady International – 10th St. Plant Operable Unit No. 2 State Superfund Project City of Schenectady, Schenectady County, New York Site No. 447007

• Order on Consent, Index No., between the Department and {Schenectady Chemicals, Inc., executed on August 1987.

an in the state in the state of the state of

- Hydrogeologic Investigation Report, March 1988
- NYSDEC signed a multi-media pollution prevention (M2P2) Consent Order (C. O.) with SIG that required SIG to conduct a RI/FS, August 1993.
- M2P2 C.O. was modified to require SIG to conduct additional remedial activities necessary for the 10th Street plant, September 1994.
- Remedial Investigation (RI) was submitted to the NYSDEC, January 1996.
- Feasibility Study (FS) was submitted to the NYSDEC, July 1996.
- ROD for OU1 approved by NYSDEC, March 1998
- Work Plan to update the RI and FS submitted to NYSDEC, July 2007
- Work Plan to update the RI and FS approved by NYSDEC, August 2007
- Updated Remedial Investigation Report submitted to NYSDEC, January 2009
- Updated Remedial Investigation Report approved by NYSDEC, February 2009
- Updated Feasibility Study for the Site approved by NYSDEC, March 2010
- Proposed Remedial Action Plan for the Schenectady International -10th St Plant site, Operable Unit No. 2 dated September 2010, prepared by the Department.
- CP Plan Developed, September 2010

Schenectady International -10th St Plant RECORD OF DECISION ADMINISTRATIVE RECORD October 2010 PAGE B-1

APPENDIX C

Pre-Design Investigation Report for Phase 2

Pre-Design Investigation Report

Phase 2 Remedial Design Operable Unit No. 2 Congress Street and Tenth Avenue, Schenectady NY

Site No.447007

CHA Project Number: 15091.5007.41000

Prepared for: SI Group, Inc. 1000 Main Street, Route 5S Rotterdam Junction, New York, 12150

Prepared by:

III Winners Circle P.O. Box 5269 Albany, New York, 12205 Phone: (518) 453-4500 Fax: (518) 458-1735

August 2012

M:\15091\CS\Reports\31000 Rpt Template Congress Street Supplemental.doc

TABLE OF CONTENTS

1.0	BACK	GROUNE)	1
2.0	Wori	k Plan S	UMMARY	3
	2.1	Pre-de	sign Investigation	3
	2.2		emental Soil Investigation	
3.0	INVES	STIGATIO	N ACTIVITIES	5
	3.1	Pre-de	sign Investigation	5
		3.1.1		
			3.1.1.1 Test Well Installation	6
			3.1.1.2 Test Process	7
		3.1.2	Soil Vapor Extraction Testing	
			3.1.2.1 Test Well Installation	8
			3.1.2.2 Test Process	
	3.2	Supple	emental Soil Investigation1	
		3.2.1	Rail Siding1	
		3.2.2	Process Area1	
		3.2.3	Soil Analysis1	
	3.3		ontrols1	
		3.3.1	Decontamination1	
		3.3.2	Fugitive Dust/VOC Monitoring1	
		3.3.3	Waste Handling and Storage1	2
4.0	RESU	lts/Fini	DINGS1	4
	4.1	Pre-de	sign Investigation1	4
		4.1.1	Groundwater Extraction	
		4.1.2	Soil Vapor Extraction1	5
	4.2	Supple	emental Soil Investigation1	
		4.2.1	Rail Siding1	
		4.2.2	Process Area1	6

LIST OF TABLES

Table 4-1. T	O-15 Analysis Results	15	5
--------------	-----------------------	----	---

LIST OF FIGURES

Figure 1	Site Location Map
----------	-------------------

- Figure 2 Site Layout
- Figure 3 Phase 2 Pre-Design Investigation
- Figure 4 Soil Sample Results

LIST OF APPENDICES

- Pre-Design Investigation Work Plan Supplement Appendix A
- Soil Boring Logs Appendix B
- Appendix C Well Installation Diagrams
- Appendix D Soil Sample Logs
- Groundwater Extraction Test Results Appendix E
- Appendix F **SVE** Test Results
- Appendix G **TO-15** Analytical Results
- Soil Sample Results Summary Table Soil Sample Analytical Report Appendix H
- Appendix I

1.0 BACKGROUND

SI Group, Inc. (SI Group) owned and operated a chemical manufacturing facility located in Schenectady, New York at Congress Street and Tenth Avenue that is referred to as the Congress Street Facility. The Congress Street Facility (Site) encompasses 7 acres with approximately 5.1 acres having been developed. The Site location is shown on the Site Location Map included as Figure 1.

The Site is bounded by Congress Street to the east, Tenth Avenue to the north, Oak Street to the west, and the CSX railroad to the south. Light Industrial properties surround the site to the south and west. Commercial properties are located east and northwest surrounding the site. Residential properties surround the site to the north and northeast.

The Site is secured with chain link fencing on all sides and will be maintained in that manner throughout the remediation process. Security cameras are installed on the site and are monitored from the SI Group Rotterdam Junction Facility guard house which is manned 24 hours a day, 7 days a week. Two gates provide access to the Site, one gate is located near the northwest corner of the site near the intersection of Oak Street and Tenth Avenue and the second gate is located on the southeast corner of the site on Congress Street. The gate on Tenth Avenue is utilized by SI Group personnel and contractors involved in maintenance of the groundwater treatment system. The gate on Congress Street is the gate used to provide access for investigation and remedial activities.

The Site is located on a steep slope that was developed over many years of operation at the Site. Buildings were constructed such that the lower portion of the buildings acted as retaining structures for the upper slope area. The relief across the Site from South to North is approximately 45 feet.

The facility began operation in 1910 and expanded over the years with additional buildings and infrastructure. In 1997, production ceased at the site and in 2004, SI Group removed all the process equipment, storage tanks, piping and buildings remaining on-site except for a small building which remains in use housing a groundwater treatment system. A number of spills occurred at the Site while operational which resulted in chemical releases to the environment. New York State Department of Environmental Conservation (NYSDEC) identified the site as a Class 2 Inactive Hazardous Waste Disposal Site under the State Superfund Program. Classification 2 indicates that the site has identified historical hazardous waste disposal that threatens human health or the environment, and requires remediation.

In 1994/1995, SI Group conducted a Remedial Investigation/Feasibility Study (RI/FS) to determine the nature and extent of contamination present. The RI/FS identified contamination present in two distinct areas that would be most effectively addressed separately. In 1996, NYSDEC decided to split the Site into two operable units providing for separate remedial activities monitoring and goals. The first operable unit, (OU1), addressed eliminating the pathways which allowed contaminants to be released off-site. Following issuance of a Record of Decision (ROD) for OU1 in 1998, SI Group installed a groundwater collection and treatment system to address OU1. The second operable unit (OU2) was identified as the Site and the contaminated soils that are present on –site.

A number of investigations were completed on-site between1984 and 2008 that defined the environmental concerns at the Site. Based on the investigations, a Feasibility Study (FS) was prepared for OU2 identifying the potential remedial options available and submitted the FS to NYSDEC in 2009, which was approved in March 2010. In December 2010, NYSDEC issued a ROD for OU2 defining the selected remedial options and program details. OU2 consists of two areas requiring remediation. These areas are shown on Figure 2 and are identified as the Fill Area and the Process Area. The Fill Area is a historical fill area located in the southwest corner of the Site that encompasses approximately 0.5 acres. The Process Area consists of the area of the site that was used for chemical processing, storage, and handling. The Process Area is located east of the Fill Area on the lower tier of the site, north of the rail line. The selected remedial action to be completed in the Process Area is thermally enhanced Soil Vapor Extraction (SVE), which will remediate the area by withdrawing soil vapor contaminants followed by bioventing to enhance the biologic degradation of the remaining contaminants.

A Remedial Design Work Plan for the Phase I, Site Preparation of OU2 was submitted to NYSDEC in February 2011 and approved in June 2011 following a number of revisions to address NYSDEC comments.. The Work Plan contained a Pre-Design Investigation Work Plan to obtain the necessary data to design the in-situ treatment system that will be used in the Process Area.

Following site preparation work in the Process Area, a supplemental soil investigation was proposed to and accepted by the NYSDEC as a part of the Pre-Design Investigation Work Plan Supplement submitted in January 2012. The additional soil sampling was to investigate areas in the Process Area that were identified during the Site preparation work that may not have been adequately characterized.

2.0 WORK PLAN SUMMARY

Thermally enhanced SVE followed by bioventing has been selected as the remedial design technology for the Process Area. Prior to beginning the Phase 2 Remedial Design for the Process Area, a pre-design investigation was proposed and approved as part of the Phase 1 Remedial Design Work Plan for OU2. This pre-design investigation was needed to gather data to be used during the design of the thermally enhanced SVE system.

The remedial work to be completed under Phase 1 was preparation of the Process Area for installation of the thermally enhanced SVE system, obtaining additional information for the treatment system design, and installation of a permeable cap over the Fill Area. During site preparation of the Process Area, unexpected soil conditions were encountered that required further investigation, as a result a supplement to the pre-design investigation was proposed. The additional investigation included characterization of the contamination present in the rail siding area and further characterization of the shallow soil contamination in the Process Area.

As previously indicated, adjustments to the pre-design investigation work plan were also proposed in order to tailor the test well arrays to the understanding of the most current site information. A work plan to complete additional soil sampling that would further characterize the soil contamination in the rail siding area and investigate the shallow soil contamination in the Process Area was presented as a supplement to the Phase I work plan. This work plan also contained a revised pre-design investigation well location plan. The Pre-Design Investigation Work Plan Supplement dated January 20, 2012 was approved by the NYSDEC prior to implementation. The Pre-Design Investigation Work Plan Supplement is included as Appendix A.

2.1 **PRE-DESIGN INVESTIGATION**

The application of an SVE system at the subject site requires first the ability to reduce the pore pressure in the soil surrounding the vapor extraction wells and second, the ability to remove contaminants in the unsaturated zones and in the shallow water table. Groundwater will also be extracted to lower the groundwater table allowing the SVE system to be applied to those soils, and effectively remove contaminants that were previously contained within the shallow groundwater table. The information obtained during the pre-design investigation will be used to determine the radius of influence (ROI) for both the dewatering wells and the vapor extraction wells that will ultimately be utilized during the design and operation of the SVE system.

To reduce the pore pressure in the soil, a blower system will be connected to a series of extraction wells. The blower will be used to create a negative pressure in the extraction wells by removing air from the wells while the wells remain sealed. The reduction in pressure creates a pressure gradient in the soils surrounding the extraction wells that will induce flow of the soil vapor to the extraction wells. The distance that the reduced pressure will be established in the soil, and the rate at which gas and vapors will flow through the soil is dependent on soil properties. Flow rates and the resulting partial vacuum will be controlled through the blower operation to produce the optimum collection of contaminated soil vapor for site-specific soil conditions. SVE is effective at removing vapors from the unsaturated soils; however, contaminant removal can also occur from the surface of the groundwater as the soil vapor above the water table is removed.

In order to obtain pre-design information, a series of dewatering wells, monitoring wells, piezometers, vapor extraction wells and vacuum wells were installed. Field tests, described in detail in subsequent sections, were used to determine the ROI for both the dewatering and the soil vapor extraction systems. The results of the testing are to be used to determine the systems design and operational requirements during the Phase 2 Design.

The pre-design investigation was conducted over a period of March 20, 2012 to March 27, 2012 for well installation, and April 11, 2012 to April 18, 2012 for testing. Well installation included construction of three arrays of wells to complete testing in three separate areas across the site. Testing conducted at the three arrays of wells included, groundwater extraction and concurrent groundwater extraction and soil vapor extraction.

2.2 SUPPLEMENTAL SOIL INVESTIGATION

Soil sampling in the rail siding area and the shallow soils in the Process Area was completed on April 2nd 2012. One or two soil samples were collected from each of the fifteen borings completed. The samples were submitted for analytical testing of VOC and SVOC compounds, and disposal characterization. The samples were collected and analyzed according to the details in the Pre-design Investigation Work Plan Supplement.

3.0 INVESTIGATION ACTIVITIES

3.1 PRE-DESIGN INVESTIGATION

As discussed in Section 2.0, the pre-design investigation consisted of both groundwater extraction and soil vapor extraction. The wells required for testing were installed in three locations as shown on Figure 3. The results from the testing will be utilized during the Phase 2 design process to determine the system design and operational requirements. Two test locations (EW-3 and EW-04) were chosen spaced across the site in a manner that would test the range of soil conditions that may be expected to be encountered during the remediation process.

Testing was conducted in two phases, groundwater extraction testing followed by SVE testing concurrent with groundwater extraction. Groundwater extraction testing was initiated to determine the maximum sustainable rate of groundwater withdrawal that is achievable. Three groundwater/SVE test locations were installed to allow for testing of a range of conditions expected to be encountered at the Site and provide design information for those conditions.

Aztech Technologies, Inc. of Ballston Spa, NY (Aztech) provided the well installation and soil boring services under the direction of CHA.

3.1.1 Groundwater Extraction Testing

The groundwater extraction testing involved the installation of two test well arrays, followed by the extraction of the groundwater during which time the groundwater elevations in the surrounding wells was monitored. During development of the wells installed for this testing, it became apparent that the maximum sustainable pumping rate of the extraction wells was very low, less than the discharge rate of the pump being used to develop the wells, (approximately 0.75 gallons per minute (gpm)). The depth to groundwater was measured in the monitoring wells surrounding the extraction well. During development, the depth to groundwater in the surrounding monitoring wells stabilized after a short period of pumping, approximately 90 minutes.

Groundwater extraction testing plans were adjusted from those provided in the Phase 1 Site Remedial Design Work Plan in response to these observations. The necessity of conducting step rate, and long duration pumping events was determined to be unnecessary based upon actual field conditions encountered. The goal of the groundwater extraction testing is to provide enough drawdown to expose contaminated soil that is within the zone of typical static groundwater elevation fluctuation. The design goal was to achieve 2 to 3 feet of drawdown across the treatment area allowing the SVE system to effectively remove contaminants from the soil in that zone.

3.1.1.1 Test Well Installation

A Geoprobe[®] drill rig equipped with a MacroCore[®] sampler was used to install the wells. Continuous soil cores were collected from each planned well location extending to the total depth of the well. Boring logs for each well installed are contained in Appendix B.

The subsurface soils described on the boring logs were based upon visual and physical observations conducted during the drilling activities. Additionally, a MiniRAE® Photoionization Detector (PID) was utilized to screen for contaminant concentrations in the soil cores by placing soil into a resealable plastic bag and analyzing the headspace. The majority of the wells were installed using hollow stem augers with a plug in the lead auger, the augers were drilled to depth and the well was assembled in the augers. The four piezometers were installed using the Geoprobe® MacroCore® sampler with an expendable point placed in the lead rod, the MacroCore® was pushed to depth and the well was assembled inside the hollow rods. Well completion diagrams are included in Appendix C.

Groundwater extraction wells were installed to a depth of 20 feet below the ground surface (bgs), with a screen interval extending from 5 feet bgs to 20 feet bgs. The wells are constructed of 6-inch diameter PVC with V wire wrapped screen; well construction diagrams for all wells are included in Appendix C. A groundwater extraction well EW-5 was added near SVE-3 in response to the depth to water measured in SVE-3 at the time of completion. EW-5 was installed to a depth of 20 feet bgs with a screen interval extending from 5 feet bgs to 20 feet bgs. This well was constructed of 4-inch diameter PVC with 10 slot screen, (0.01 inch slot width). EW-5 was only used for dewatering during SVE testing.

Adjacent to extraction wells EW-3 and EW-4, piezometers were installed at distances of 5 and 10 feet. The screen interval of the piezometers was 5 feet bgs to 20 feet bgs. The piezometers were constructed of 1-inch diameter PVC with 10 slot screen, (0.01 inch slot width). The piezometers were installed to allow measurement of the response of the groundwater elevation to pumping at different distances from the extraction well. Where available nearby monitoring wells were also used to measure the response of the groundwater elevation to pumping at the extraction well at a greater distance of 30 feet.

3.1.1.2 Test Process

Groundwater extraction testing was conducted using two 0.75-horsepower submersible pumps plumbed to a manifold with in-line digital flow meters and valves to control the flow rate. The pumps were powered by a generator wired to a circuit breaker panel allowing each pump to be operated independently and activated/deactivated from a central location.. The equipment was centrally located near the EW-4 well location and plumbing and power distribution was extended to the remaining two locations. The discharge pipe for the groundwater extraction system consisted of 1-inch diameter high density polyethylene (HDPE) piping. A 12,000 gallon storage tank was placed on the process area to contain all of the groundwater collected during testing.

Groundwater extraction testing was conducted at each of the two locations (EW-3 and EW-4). A network of transducers were installed in the extraction well and the surrounding piezometers. The transducers were programmed to measure the height of the water column above the instrument at an interval of 30 seconds between readings. The transducers were installed and programmed to begin collecting readings prior to the initiation of pumping. Depth to groundwater measurements were collected using an electronic water level meter at the initiation of pumping and periodically during the pump testing. The pump discharge rate was controlled by partially closing the valve installed at the discharge manifold. The pump utilized in the testing was capable of extracting water at a much higher rate than the aquifer being tested could yield. The pump discharge rate was manually reduced to as best as possible to match the recharge rate of the well being tested.

The extraction wells were evacuated fully within approximately 5 minutes following the initiation of pumping. The depth to groundwater in each extraction well was maintained at the pump inlet with a pumping rate of approximately 0.5 gallons per minute. The valve controlling the pump discharge rate was near fully closed to maintain this rate. The extraction wells were able to recharge at the rate of pumping. The wells would recharge enough to allow a slug of water to discharge, and then a 30 second to 1 minute period of recharge was necessary.

The groundwater extraction test was continued until depth to water measurements in the furthest piezometer stabilized. The stabilization of the water depth in the piezometers and maintaining the extraction well groundwater depth at the pump inlet indicated that continued testing was not necessary. Following stabilization, pumping was terminated and manual depth to water measurements and transducer readings were continued until the groundwater elevations had recovered to near the pre-testing condition.

3.1.2 Soil Vapor Extraction Testing

SVE testing involved the installation of three vapor extraction wells to a depth of 15 feet bgs. Adjacent to the vapor extraction wells, vacuum well clusters were installed to measure the response to lowering the pressure in the vapor extraction wells. The vacuum well clusters consisted of three test well that installed at different elevations. SVE testing was conducted using a mobile pilot test unit consisting of a blower and off-gas treatment system. The pilot test unit was connected to each well head and the blower was operated at three different rates of withdrawal for three to four hours. Pressure transducers were placed in each of the wells in the well clusters and measured the pressure established in the well during each test. Based on these measurements, the ROI was determined at each elevation and flow rate.

3.1.2.1 Test Well Installation

The SVE well installation process was similar to that described in Section 3.1.1 with the boring logs contained in Appendix B and the well construction diagrams contained in Appendix C.

Soil vapor extraction wells SVE 1 and SVE 3 were installed to a depth of 15 feet bgs, with a screen interval extending from 5 feet bgs to 15 feet bgs. Soil vapor extraction well SVE 2 was installed to a depth of 20 feet bgs with a screen interval extending from 5 feet bgs to 20 feet bgs. The SVE wells are constructed of 4-inch diameter PVC, with 10 slot screen, (0.01 inch width slots).. Adjacent to the three SVE wells, vacuum well clusters were installed to measure the response to lowering the pressure in the SVE well. Vacuum well clusters were installed at distances of 5 and 10 feet from the test well. Each vacuum well cluster consists of three wells installed in a single borehole creating a shallow, intermediate and deep monitoring point. The shallow monitoring point has a screen interval from 3 to 5 feet bgs, the intermediate monitoring point has a screen interval from 8 to 10 feet bgs, and the deep monitoring point has a screen interval between 13 to 15 feet bgs. The three screen intervals are separated by installation of a hydrated bentonite seal that is approximately 2 feet thick.. The vacuum well clusters are constructed of 1-inch diameter PVC with 10 slot screen, (0.01 inch slot width) in a sand pack.

3.1.2.2 Test Process

The wells were sealed using either expanding well caps or tight fitting slip caps sealed with polytetraflouroethylene (PTFE) tape. Sealing the wells to the atmosphere is necessary in order to conduct SVE testing and minimize the potential for short-circuiting. Necessary penetrations into the

well risers or caps to install transducers were sealed by tapping threaded holes into the PVC and fitting each penetration with a cord protector that pressure seals when screwed together.

The SVE testing was conducted using a mobile pilot testing system provided by Aztech. The system consists of a regenerative blower (7.5 horsepower) in conjunction with a cyclonic knockout unit, a moisture separator with discharge pump, and two 55 gallon vapor phase carbon vessels connected in series. The plumbing for the SVE testing consisted of 2-inch diameter PVC.

The mobile pilot test unit was plumbed toeach SVE wellhead and operated at three different rates of withdrawal to complete testing over a period of three to four hours. The three rates of withdrawal were maintained for roughly one hour each in order to ensure that the system of wells was able to maintain a steady reduced pressure and collection of soil vapor was established. Groundwater extraction was conducted for approximately 90 minutes prior to initiation of the SVE test in order to effectively dewater the testing area. The rate and duration of dewatering was determined during the groundwater extraction testing to have provided significant depression of the groundwater, continued extraction beyond that time would cause groundwater depression at a much slower rate with minimal impact on the test. Groundwater extraction was continued through the SVE testing in order to maintain the depressed groundwater condition within the testing zone.

Real time monitoring of the transducer data was not available with the equipment utilized for the testing. The analog pressure gauge installed at the SVE well was used to determine the amount of pressure reduction applied and verify that the pressure remained steady at the test well. The wells involved in the testing and monitoring remained sealed during the testing. The data collected during the test was downloaded from the transducers following completion of the test. The effect of the testing on the soil was not known until the testing was completed, and therefore, the measured effect could be used as an indicator of when to decrease the pressure in the test well, or if the effect of the testing had reached a particular distance from the test well. These limitations were managed by running the test for a significant amount of time at each pressure, and using the minimum pressure available as the final testing step.

The pressure transducers operated within the range of pressure used during the test, which in this case was -60 inches of water column. The testing was conducted at three steps of pressure reduction, -20 inches of water column, -35 inches of water column, and -50 inches of water column. The test system was able to achieve and maintain the reduction in pressure attempted to complete the testing. An Omega HHF42 hot wire anemometer was utilized to collect periodic flow readings in the 2-inch

diameter PVC pipe connecting the test well to the blower. Readings collected were between 400 and 1,040 feet per minute, with an average of 700 feet per minute.

Samples of the soil vapors were collected into 1- liter Summa canisters during the testing in order to determine the content, and concentrations of the VOCs being collected during testing. The Summa canisters were delivered from the laboratory under high partial vacuum and equipped with flow controllers that were set to allow vapors to enter the canister slowly. The laboratory indicated that typical collection times extend beyond the duration of the testing completed, and therefore, the sample collection should continue until the canister had reached a partial vacuum of approximately 3 inches of Hg column. The duration of the sample collection was approximately 15 minutes and the pressure gauge on the canister was monitored during that time to ensure that sample collection was terminated as the laboratory had directed.

An air sample from SVE 2 was collected, which is located in the central portion of the Site, after the test had been progressing for approximately 3 hours. Samples SVE3 and SVE 3A were collected from the testing array located in the easternmost portion of the site. Sample SVE3 was collected after the testing had been progressing for approximately 0.5 hours while sample SVE 3A was collected after the testing had been progressing for approximately 4 hours. Table 4-1 provides a summary of the total VOCs concentrations collected. A summary of the detected compounds and their concentrations is included in Appendix D.

3.2 SUPPLEMENTAL SOIL INVESTIGATION

Soil samples from fifteen boring locations were collected to further characterize the nature and extent of contamination present in shallow soil across the Process Area and along the rail siding. Samples were collected from specific intervals of the soils targeting particular zones of interest to identify contamination present that may require expansion of the treatment system. Samples were collected for laboratory analysis of VOCs and SVOCs, and two composite samples were collected from the rail siding for disposal characterization.

3.2.1 Rail Siding

Soil samples were collected along the west end of the rail siding beginning approximately 60 feet east of the termination of the line and continuing west for roughly 240 feet. Five boring locations (SB 01-12 through SB 05-12) as shown in Figure 3 were completed at a spacing of approximately 60 feet between borings. The borings were completed to a depth of 5 feet bgs using a Geoprobe Systems® direct push MacroCore® sampler. Recovery of soil was typically three feet of the available five feet. The crushed stone that had been placed to create a base for the asphalt cap limited the recovery in this interval, as it tends to compress the underlying soil until sufficient backpressure is achieved to force the stone/soil into the sampling device. The recovery was sufficient to obtain the required samples from the shallow soil overlying the bottom of the rail bed grade which was determined to be approximately 4 feet bgs during the excavations completed as part of the site preparation. Samples were collected from the soil interval that appeared to contain the greatest contaminant concentration based on PID measurements, and visual and olfactory screening. The soil sampling boring logs are included in Appendix D.

3.2.2 Process Area

Soil samples were collected from the Process Area with the intent of characterizing the contamination present in the shallow soil. Ten boring locations (SB 06-12 through SB 15-12) as shown on Figure 4 were installed covering a substantial portion of the Process Area outside of the rail siding. The borings were completed to a depth of 5 feet bgs using a Geoprobe Systems® direct push MacroCore® sampler. Recovery of soil was typically three feet of the available five feet. The partial recovery was due to similar soil conditions as describe in Section 3.2.1. The recovery was sufficient to obtain the required samples of the soil immediately below the crushed stone asphalt subgrade and the upper portion of the first silt encountered. Boring Logs are provided in Appendix D.

3.2.3 Soil Analysis

The soil samples collected from these borings were submitted to Test America Laboratories of Buffalo, a Environmental Laboratory Accreditation Program (ELAP) certified analytical laboratory accredited for analysis of samples collected from sites of environmental contamination. Samples were collected based on the target intervals and the interval showing the greatest concentration of contaminants based on PID measurements, and visual and olfactory examination. The samples were collected from the MacroCore® liner into laboratory provided glassware, labeled and logged onto a chain of custody. The samples were stored temporarily during collection in a cooler partially filled with ice in order to maintain an environment of approximately 4 degrees Celsius as preservation prior to analysis.

Samples were transported to and relinquished at the Test America service center in Albany, New York for transportation to the analytical facility in Buffalo, New York. The samples were analyzed for volatile organic compounds (VOC) by EPA Method 8260B, and semi-volatile organic compounds (SVOC) by EPA Method 8270, which represent the contaminants of concern identified

in the ROD. A total of 20 sets of samples were collected for analysis. A high sample density was collected in order to refine the area targeted for remedial action. The results of the sample analysis are presented on Figure 4 and discussed in Section 4.2.

3.3 SITE CONTROLS

3.3.1 Decontamination

A temporary decontamination pad was constructed of polyethylene sheeting and lumber to form a basin. Equipment that came into contact with soil or groundwater was taken to this location for decontamination. The decontamination was completed using a steam cleaner with a pressure washer nozzle. The water from the cleaning was allowed to evaporate from the decontamination pad, and the remaining soil and polyethylene sheeting was containerized in a drum with soil. Disposable sampling equipment was used to complete these tasks, and disposed of with the soil.

3.3.2 Fugitive Dust/VOC Monitoring

In accordance with the Community Air Monitoring Plan (CAMP) and the Health and Safety Plan (HASP), fugitive dust monitoring is required during all ground intrusive activities such as concrete slab removals, concrete crushing, and contaminated soil excavations. The activities that were conducted in order to prepare for and complete the testing described in this document, did not disturb significant areas of the asphalt cap, or involve activities that cause significant fugitive dust to be generated. Therefore, the CAMP was not implemented during the investigation activities detailed in this report.

Continuous monitoring for VOCs using a MiniRAE® PID was performed during well installation and soil sampling. The PID was used for monitoring in the immediate vicinity of the work zone or downwind of the activities. The PID was set to alarm in the event that the action level of 5 parts per million (ppm) was exceeded over a 15-minute time weighted average during the site activities.

CHA had staff on-site for all ground intrusive activities during the activities and no readings in excess of the air monitoring safety thresholds were noted.

3.3.3 Waste Handling and Storage

Soil cuttings and purge water from well development and testing were generated during the activities conducted and contained on Site. The following information details the waste streams, quantity of

material, the containment, and temporary storage of the waste:

- Purge Water: Approximately 1,100 gallons was generated and stored in a FRAC Tank with a capacity of 20,000 gallons. The purge water was generated during well development and testing. The tank remains on the asphalt cap in the process area and is undergoing sampling and laboratory analysis to determine appropriate disposition.
- Non-Hazardous Contaminated Soil: Twenty one, 55 gallon drums of soil cuttings from well installation and sampling were generated and temporarily staged on the asphalt cap of the Process Area for removal and disposal. Precision Industrial Maintenance of Schenectady, New York removed the drums and soil cuttings. The soil cuttings were transferred into a 20 yard roll off box and transported to Waste Management High Acres Landfill in Fairport, New York for disposal as a non-hazardous waste. The drums were scraped clean, crushed and scrapped for recycling.

4.0 **RESULTS/FINDINGS**

4.1 PRE-DESIGN INVESTIGATION

The testing was conducted in order to determine the viability of applying thermally enhanced SVE at the site to effectively remediate the contaminants present within the requirements of the ROD and directives of 6 NYCRR Part 375. The objectives of the remediation program are to remove the contaminants at the site to the greatest extent possible within the capability of the prescribed remedy. The prescribed remedy includes three components;

- Soil Vapor Extraction,
- Groundwater depression, and
- Thermal Enhancement.

The SVE will remove the volatile contaminants that are present in the soil vapor, groundwater depression will expose more soil to vapor extraction, and thermal enhancement will both increase the vaporization of the volatile contaminants and increase biologic activity. Microbes will consume the contaminants that are not of sufficient volatility and the biological activity converts the contaminants into compounds that are non-toxic. The testing was necessary in order to determine that the soil conditions at the site are such that groundwater could be extracted and airflow could be induced in the treatment area. The ability to apply groundwater extraction and induce airflow will allow a system to be installed and operated successfully.

The data collected from the site specific testing confirmed that the two necessary conditions can be met and provides the necessary information to determine system design characteristics. Thermal enhancement can be achieved through a number of available technologies. Thermal enhancement was not included in the testing.

4.1.1 Groundwater Extraction

The groundwater testing confirmed that the extraction wells could be evacuated while continuing to produce water at less than 0.5 gallons per minute. The flow rate and total volume of groundwater extracted from each well tested was difficult to determine accurately because of the equipment utilized to collect the measurements. Digital totalizer flow meters were used in each discharge line to collect flow data from the extraction wells during pumping, however the instruments only function

properly when a consistent flow of water is maintained at rate of at least 0.5 gallons per minute. The instruments were not able to collect valid and accurate data because the wells were pulsing groundwater as the fully evacuated well would recover to above the pump inlet. The recovery period for the wells was very short, indicating that the rate of groundwater flowing into the well was nearly the rate of groundwater flowing out of the well, which was less than 0.5 gallons per minute.

An instantaneous flow measurement was made during the test, which involved discharging the flow into a graduated container and measuring the time required to fill the container. This measurement showed a flow of approximately 0.4 gallons per minute.

The pump test results for EW-3 and EW-4 are presented on a series of charts that are included in Appendix E. The charts show the depression of the groundwater 10, 20 and 30 feet from the extraction wells at an extraction rate of less than 0.5 gallons per minute.

4.1.2 Soil Vapor Extraction

The soil vapor extraction testing confirmed that reducing the pressure in extraction wells SVE1, SVE2 and SVE3 reduced the pore pressure in the surrounding soil indicated by measurable reduced pressure in the monitoring wells. The soil vapor extraction test results are presented on a series of charts that are included in Appendix F. The charts show the change in pressure at 5 and 10 feet from the SVE well at three different soil intervals, and three difference levels of vacuum in the extraction wells.

The soil vapor extraction testing confirmed that the reduced pressure in the extraction wells also induced flow of vapors from the surrounding soil. Samples of the vapors being collected were submitted for analysis of VOCs in order to verify that contaminants were being collected by the system. The results of those samples are summarized in Table 4-1 with the analytical report from Test America in Appendix G.

	Analysis Results	
Sample Identification	Test Operating	Sample Result
	Time	Total VOCs
Soil Vapor Extraction Well 2	3.0 Hours	99.9 μg/L
Soil Vapor Extraction Well 3A	0.5 Hours	353 µg/L
Soil Vapor Extraction Well 3B	4.0 Hours	5,576 μg/L

 Table 4-1.
 TO-15 Analysis Results

Note: Test America, Inc. Burlington Vermont conducted the analysis.

The samples were collected from two different areas of contamination. The results showed that the area containing higher levels of contamination yielded higher contaminant concentrations in the soil vapor than the area containing lower levels of contamination. The soil vapor samples, Soil Vapor Extraction Well 3A and 3B, were collected at different operating pressures and times during the testing to determine if the concentration of VOCs would increase in response to the change in pressure. The concentration of VOCs extracted from SVE3 while testing at -50 inches of water (Soil Vapor Extraction Well 3B) was significantly greater than the concentration extracted at -20 inches of water (Soil Vapor Extraction Well 3A).

4.2 SUPPLEMENTAL SOIL INVESTIGATION

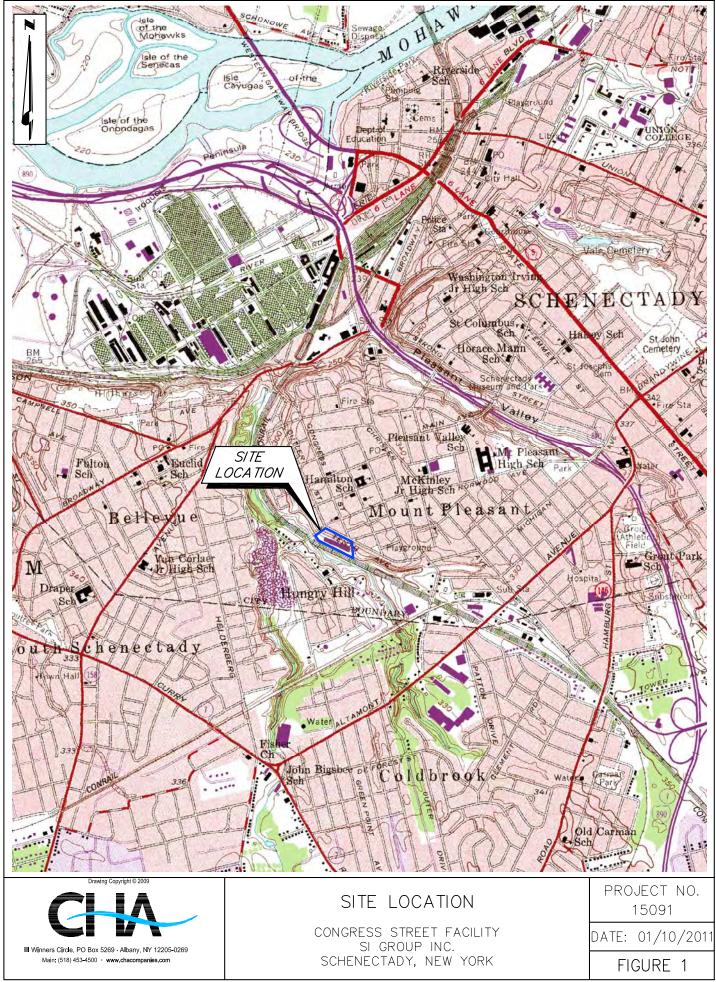
A summary of the detected compounds and concentrations is presented in Appendix H. A copy of the laboratory report containing the sample results is contained in Appendix E.

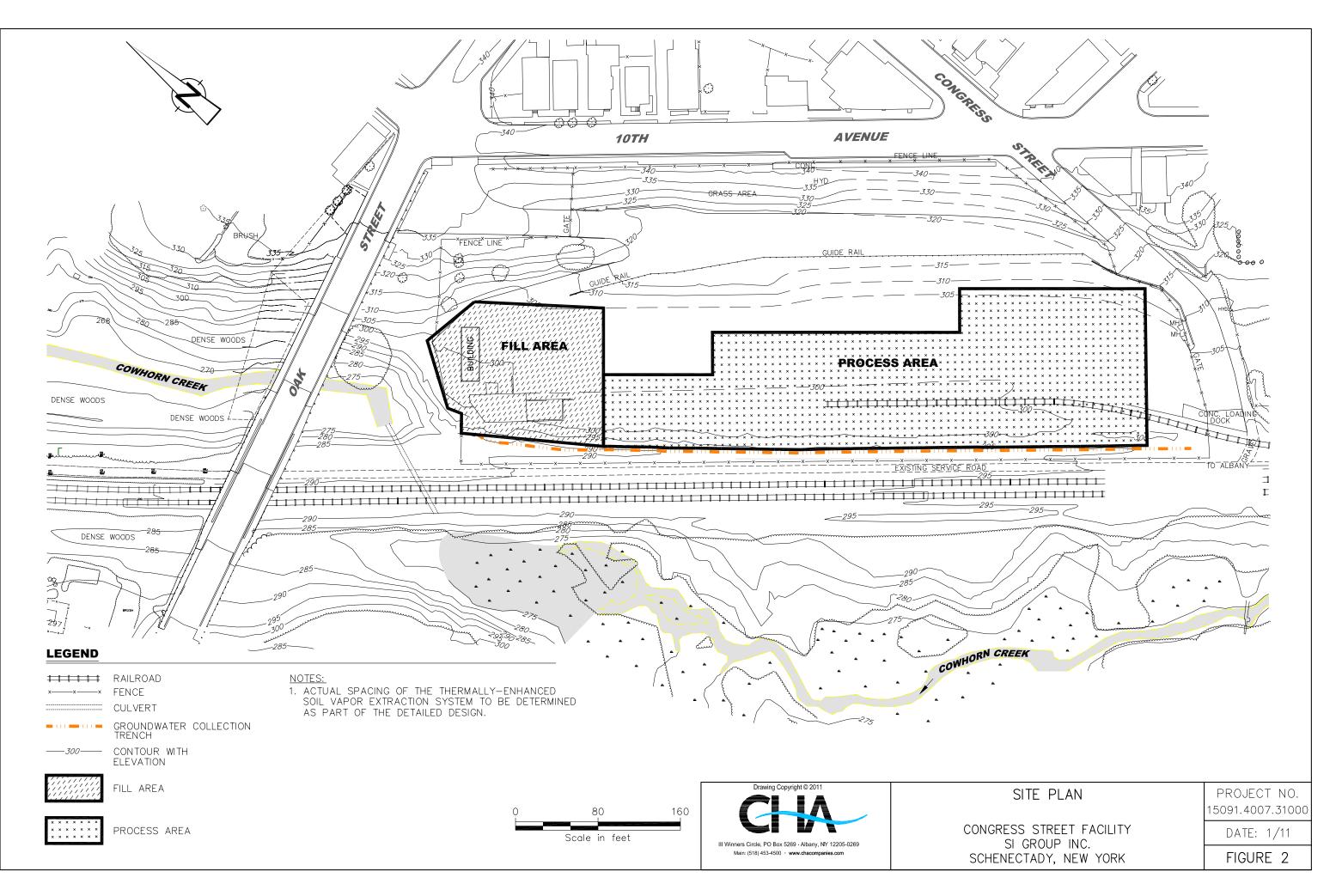
4.2.1 Rail Siding

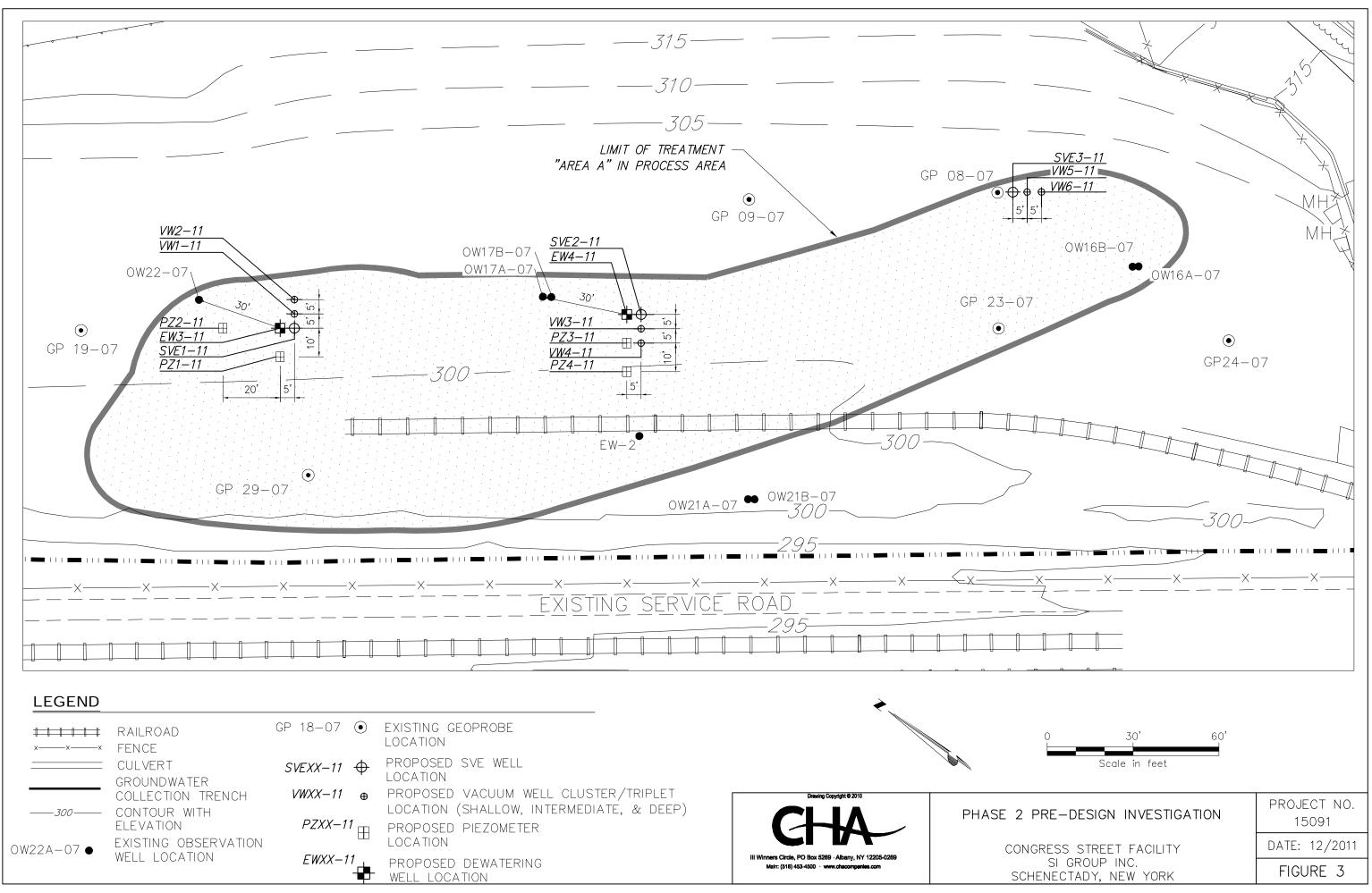
As shown on Figure 4, the greatest contaminant concentrations were encountered in the central portion of the rail siding area, (SB 02-12, SB 03-12, and SB 04-12). The samples collected in this area were reported to contain high concentrations of both VOCs and SVOCs. The samples were collected from the interval of soil that was disturbed during construction of the rail siding, which lies directly atop an interval of undisturbed soil consisting mainly of silt.

The extent of significant contamination along the rail siding is limited to the central portion of the area and is present above the native silt deposit that is found at approximately 4 to 6 feet bgs. The samples collected from borings SB 01-12 and SB 05-12 contained substantially less contamination than the borings between those locations.

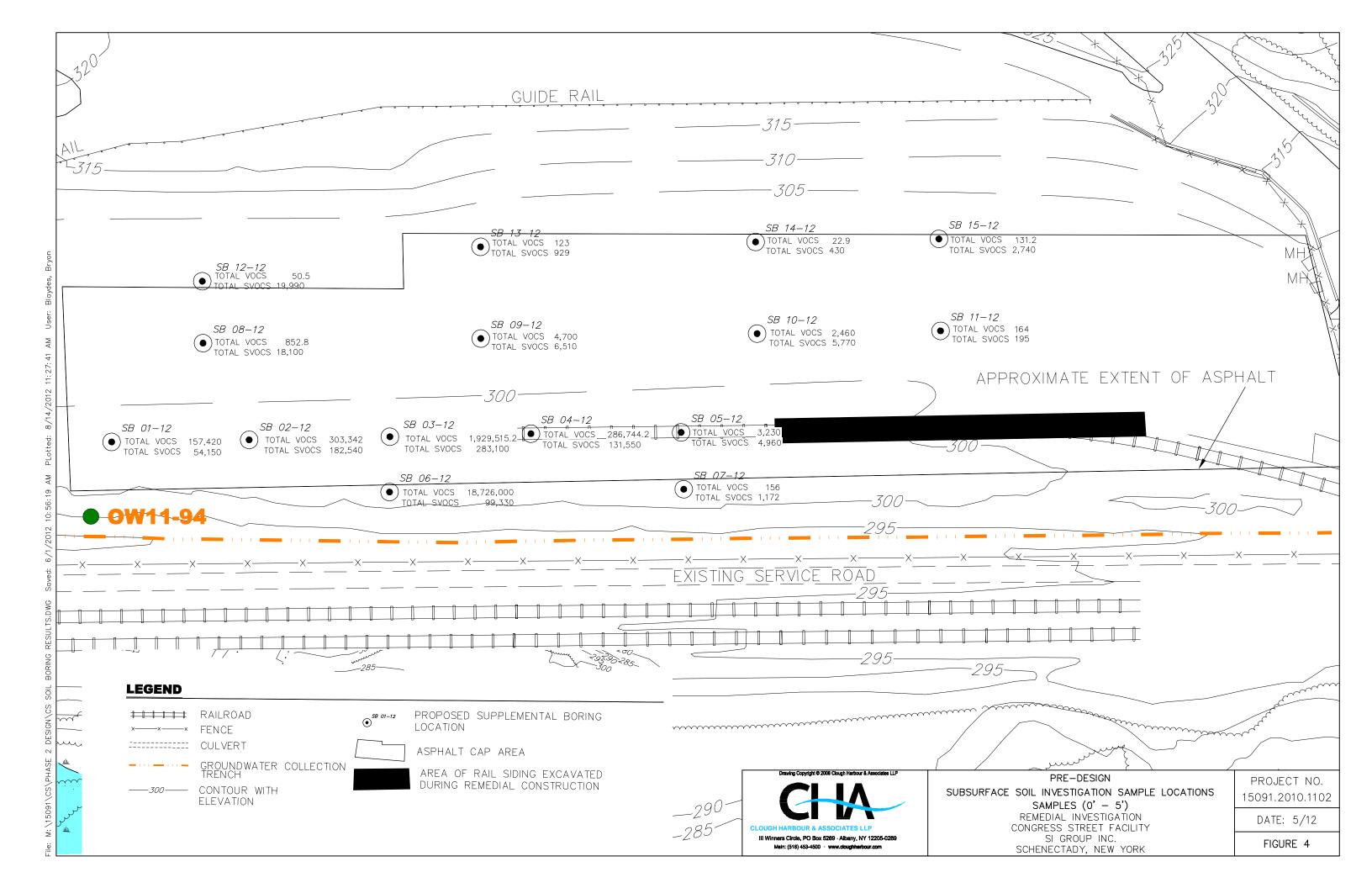
The detected compounds consist mainly of toluene, ethylbenzene and xylene with xylene as the primary contaminant. The samples also contain significant concentrations of SVOCs, with naphthalene as the primary contaminant. No samples collected from this area contained product. The similarity in the nature of the contamination indicates that the planned remediation should be effective in this area.


4.2.2 Process Area


As shown on Figure 4, the greatest contaminant concentrations were encountered west of the rail siding in the Process Area. Generally high concentrations of contaminants were reported in the


central portion of the site, and generally low concentrations of contaminants were reported in the peripheral samples. The contaminant distribution, in the shallow interval sampled, indicates greater contaminant concentrations increasing toward SB 06-12, and decreasing rapidly toward the east and southeast.

The contamination identified throughout the process area confirms the formerly identified treatment area is adequate. The detected compounds consist mainly of toluene, ethylbenzene and xylene with xylene as the primary contaminant. The samples also contain significant concentrations of SVOCs, with naphthalene as the primary contaminant. No samples collected from this area contained product. The results of the sampling in this area showed that treatment will be necessary but the shallow soils did not show a significant source of contamination. The similarity in the nature of the contamination indicates that the planned remediation should be effective in this area.


FIGURES

ഫ്

APPENDIX A

Pre-Design Investigation Work Plan Supplement

PRE-DESIGN INVESTIGATION WORK PLAN SUPPLEMENT SI Group Congress Street Facility

1.0 INTRODUCTION

A pre-design investigation work plan was proposed as part of the Remedial Design Work Plan for the Congress Street facility of SI Group that was submitted to New York State Department of Environmental Conservation (NYSDEC) in January 2011 and approved on June 20, 2011. The purpose of the pre-design investigation is to gather sufficient data to design the remedial alternative selected in the Record of Decision. Based on a continued review of site conditions, the following modifications to the Pre-design Investigation Work Plan are proposed:

- Minor changes to the soil vapor extraction (SVE) and groundwater extraction wells to be installed as part of the pre-design investigation;
- Characterization of contamination present in the Rail Siding Area; and
- Further characterization of the shallow soil contamination in the Process Area

2.0 <u>MODIFICATION OF SVE AND GROUNDWATER EXTRACTION</u> <u>WELL DESIGN FOR THE PRE-DESIGN INVESTIGATION</u>

The following modifications are proposed to the SVE and groundwater extraction well design.

Based on further review of existing groundwater analytical data, contamination generally does not extend to the previously proposed depth of the extraction wells as shown in Table 1, i.e. 30 feet below ground surface (bgs). In order to prevent contamination from migrating downward to clean soils within the annular space of the proposed monitoring wells, the maximum depth of the proposed extraction wells is proposed to be reduced to 20 feet bgs.

In addition, the extraction well system has been reconfigured in order to better utilize the existing monitoring well network and to reduce the number of new wells to be installed, as shown on Figure 1.

The screened interval of the piezometers to be used in evaluating the groundwater elevation depression caused by the extraction wells is proposed to be raised to shallower depths in order to evaluate the perched groundwater interval that was observed during the Phase I remedial activities. The proposed change in screened interval is shown in Table 1.

The number of vacuum monitoring well clusters intended to determine the radius of influence of the soil vapor extraction wells, is proposed to be reduced from three (3)

triplet wells per location to two (2), as shown on Figure 1. The data generated from these locations has been determined to be sufficient to determine the spacing that will be utilized in the final system design.

The well cluster locations are proposed to be installed within a single hollow stem auger boring to complete the installation rather than each well being installed in an individual direct push boring. The proposed installation will provide higher quality data by reducing the distance between the individual wells in each cluster and more closely replicating the ideal condition of collecting the data from a single point.

The changes proposed above are summarized in the following table:

DESIGN ITEM	ORIGINAL DESIGN	PROPOSED CHANGE
Extraction Well Depth	Max. depth of 30 feet bgs	Max. depth of 20 feet bgs
Extraction Well Screen Interval	Top of water table to 15 feet below	5 feet to 20 feet bgs
Number of Piezometers	6 total	4 total – Please note that the locations of the EWs have been changed in order to utilize pre-existing wells as the third piezometer for each EW location
Piezometer Depth	Max. depth of 30 feet bgs	Max. depth of 20 feet bgs
Piezometer Screen Length	10 feet	15 feet
Piezometer Screen Interval	Set to straddle the water table	5 feet to 20 feet bgs
Number of Vacuum Monitoring Wells	3 clusters (triplets) per SVE well	2 clusters (triplets) per SVE well
Installation of Vacuum Monitoring Wells	Each monitoring well in the cluster (triplet) was to be installed in its own Geoprobe [™] borehole approximately 2 feet apart	All three monitoring wells in each cluster (triplet) will be installed together in a 4.25" Hollow Stem Auger borehole

Table 1

3.0 <u>CHARACTERIZATION OF CONTAMINATION PRESENT IN THE</u> <u>RAIL SIDING AREA</u>

During the Phase 1 remedial activities, the area where the rail siding was located was identified as containing highly contaminated soil. The highly contaminated soil in the rail siding area from approximately the east side of the Process Area adjacent to the site boundary to EW2 was removed. Due weather conditions and the need to secure the site for winter, further excavation of the rail siding was terminated.

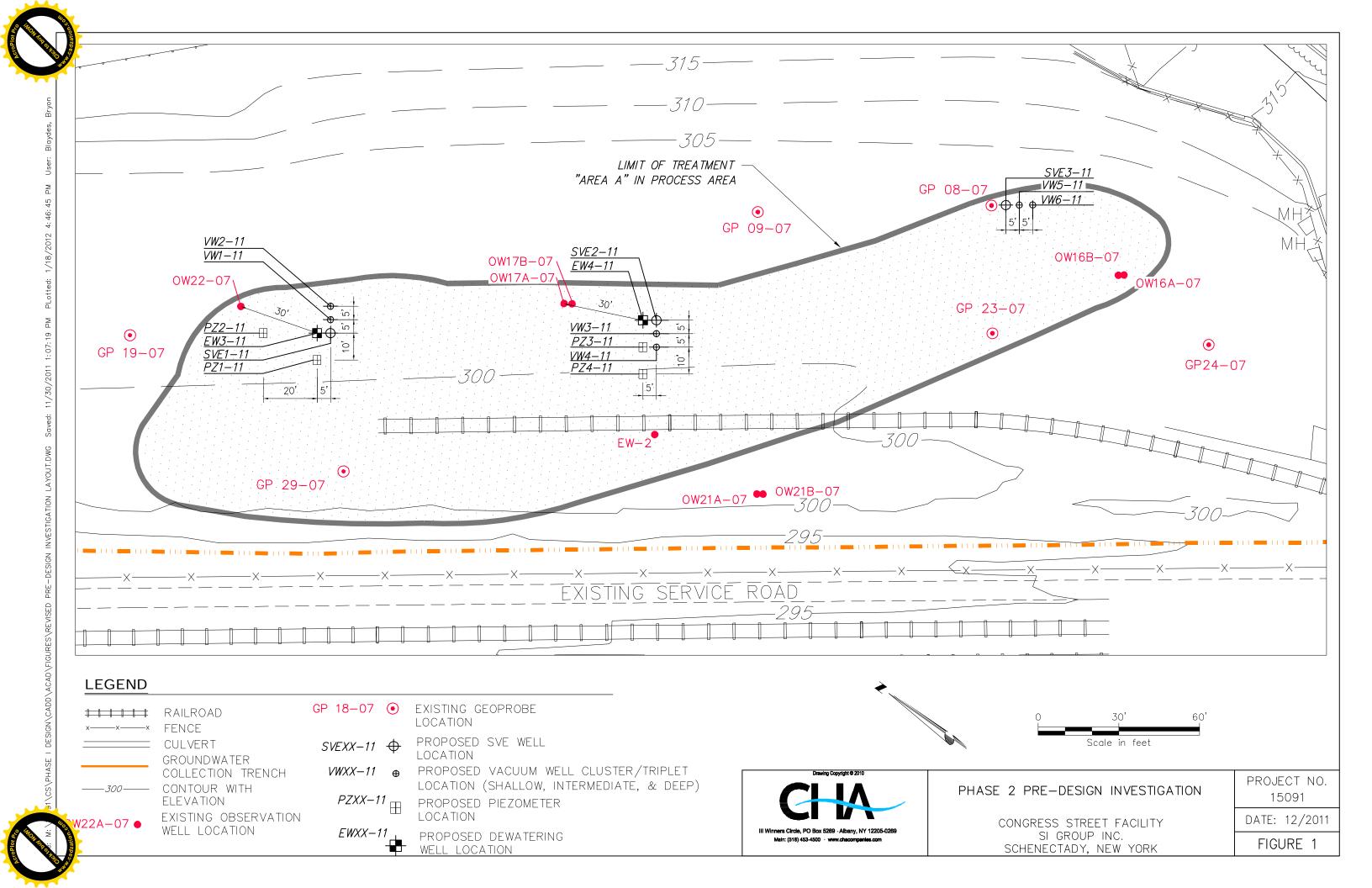
In order to further characterize the nature and extent of soil contamination remaining in the area, five (5) soil borings, GP 01-12 through GP 05-12, in the rail siding area are proposed to be completed as shown on Figure 2. The borings will be terminated at the bottom of the ballast in the rail siding, which is estimated to be approximately four (4) feet bgs and is generally identified by a silt layer.

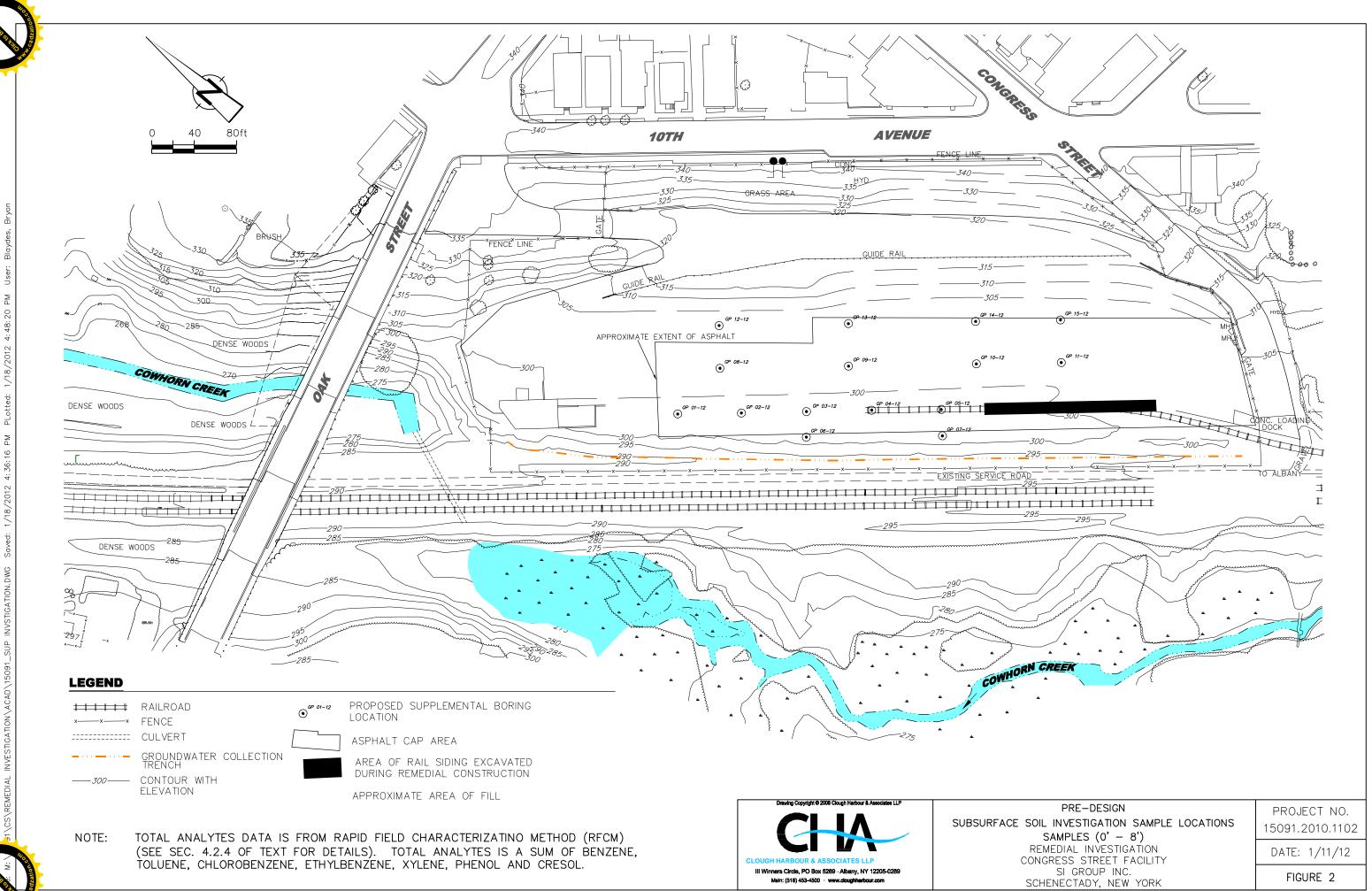
Each soil boring will be advanced using direct push drilling techniques. Continuous soil samples will be collected throughout the depth of each borehole and characterized for soil description and apparent contamination by a qualified field geologist or engineer. The soil samples upon retrieval will be contained in a clear acetate liner that will be screened upon retrieval for evidence of contamination in the form of photoionization detector (PID) response, visual and olfactory indications. The soils collected in the sampling apparatus will be described in detail, including grain size and distribution, moisture content, recovered volume, color, apparent contacts, and additional distinguishing characteristics.

Based on the screening results, one (1) soil sample will be collected from each boring location and submitted to a qualified laboratory for analysis. Samples will be analyzed for volatile organic compounds (VOCs) via EPA method 8260 and semi-volatile organic compounds (SVOCs) via EPA method 8270. The portion of the soil collected for VOC analysis will be from the six (6) inch interval showing the greatest level of contamination. The remaining portion of the soil will be composited to collect the sample volume to be analyzed as indicated above. Each soil sample will be submitted to a laboratory certified under the New York State Department of Health (NYSDOH) Environmental Laboratory Accreditation Program (ELAP) following proper chain of custody protocol.

Two (2) of the five (5) borings will be chosen to have additional samples collected for disposal characterization as required by the disposal facility. A waste stream characterization of the material has been completed during previous remediation activities; this material will be analyzed to verify compatibility with the existing waste stream profile. Disposal characterization will include the following analyses; polychlorinated biphenyls (PCBs) (method 8082), TCLP Mercury (method SW7470A), TCLP RCRA 8 Metals (method SW1311), TCLP SVOCs (method SW3510), TCLP VOCs (method SW1311), Flash Point (method SW1010), pH (method SW9045B), Moisture content (method D2216), Reactive Sulfide (method SW7.3.4.2), and Reactivity (method SW846 7.3.3.

Upon completion, each borehole will be backfilled utilizing bentonite chips to approximately three (3) feet bgs, a concrete bentonite slurry to approximately one (1) foot bgs, sand to approximately six (6) inches bgs, then the asphalt surface restored to ensure proper drainage.


4.0 <u>CHARACTERIZATION OF SHALLOW SOIL CONTAMINATION IN</u> <u>THE PROCESS AREA</u>


An area of soil contamination in the Process Area was identified during the Phase 1 remedial activities that appeared to be present in the shallow interval from the ground surface to above a silt layer that was typically observed at one (1) to two (2) feet bgs. The contamination became apparent after removal of the concrete associated with the buildings when moderate to heavy rainfall created puddles of discolored rainwater. The discoloration of the surface water appeared to be unnatural and samples collected from the shallow pools were submitted for analysis which confirmed that contamination was leaching from the soil into the water when the soils became saturated. A toe drain was installed in the area where the rail siding was removed from the east side of the Process Area to EW2 The toe drain was connected to the groundwater collection system. An asphalt cover was placed over the Process Area to limit the amount of storm water that would infiltrate into the area.

A total of ten (10) soil borings will be completed in the Process Area to further characterize the nature and extent of this area of shallow soil contamination. The proposed soil boring locations (GP 06-12 to GP 15-12) are shown on Figure 2. Each soil boring will be advanced using direct push drilling techniques. Continuous soil samples will be collected throughout the depth of each borehole and characterized for soil description and apparent contamination by a qualified field geologist or engineer. The soil samples upon retrieval will be contained in a clear acetate liner that will be screened upon retrieval for evidence of contaminations. The soils collected in the sampling apparatus will be described in detail, including grain size and distribution, moisture content, recovered volume, color, apparent contacts, and additional distinguishing characteristics.

Soil borings will be advanced to a depth of approximately five (5) feet bgs. Based on the field screening results, two (2) soil samples will be collected from each boring location and submitted to a qualified laboratory for analysis. One (1) sample will be collected from the first foot of soil encountered beneath the crushed concrete and the second will be collected from the interval exhibiting the greatest potential contamination, or the uppermost portion of the underlying silt as appropriate based on screening results and observations. The samples will be placed directly into the appropriate laboratory supplied containers. The soil samples will be analyzed for VOCs via EPA method 8260 and SVOCs via EPA method 8270.

Upon completion, each borehole will be abandoned utilizing bentonite chips to approximately three (3) feet bgs, a concrete bentonite slurry to approximately one (1) foot bgs, sand to approximately six (6) inches bgs, then the asphalt surface restored to ensure proper drainage.

APPENDIX B

SOIL BORING LOGS

PRU	JECT	NUM	BER: 15091.1	000.3	31000		5/7/12			HOLE N				Pag	e 1 of 1
LOC	ATIO	N: S	chenectady, N	lew Y	ork			DRILL FLUID: NO	one	1	DRILLI	NG METHO			1
CLIE	NT:	SI G	roup						DATE	TIME		ADING IYPE	DEPTH	CASING	Ивотто
CON	TRAC	CTOR	Aztech						3-20-12	9:30 AM		imated	(ft) 2.5	(ft)	(ft) 20
		Ray					Blaydes	WATER LEVEL OBSERVATIONS	• =• • =						
			nd TIME: 3/20/												
	SH DA FACE		nd TIME: 3/20/2	2012 9	9:30:00 /	٩M									
ELE\	/:				CHECKED	BY: S	. Fowler			<u> </u>					
SAMP./CORE NUMBER	SAMP. ADV. (ft) LEN. CORE (ft)	RECOVERY (ft)	Blows Per 6" on Split Spoon Sampler	"N" Value or RQD%	SAMPLE DEPTH (Feet)	GRAPHICS	DESCR	RIPTION AND CLAS	SIFICATIC	DN	ELEVATION (Feet)	Cha Drilli	marks on aracter of ng, Water turn, etc.		WATER LEVELS AND/OF ELL DA
1	5	4		-	- - - 5		f. Gravel, Sor loose, dry (FI <u>f. SAND</u> , Sor subrounded, <u>SILT</u> , Some f moist (ML) <u>f. SAND</u> , Sor subrounded,	ne m. Sand, trace medium compact, Sand, trace clay, ne m. Sand, trace medium compact, Silt, trace f. Sand	lack, ang silt, brown moist (SF brown, h silt, brown wet (SP)	ular, n,) ard, n,		Low plasti Groundwa estimated based on content in Medium p	ater is at 2.5 fee moisture soil samp		Ţ
2	5	5			-		green mottling SILT, Some (hard, saturate	little f. sand, grey	grey/gree	en,		Medium p Medium p	2		
3	5	5			10 - -		grey, rounded <u>m. SAND</u> , litt	ML) e silt, trace m. sand d, loose, saturated le f. sand, trace sil unded, loose, satu	(SM) t, trace cla	ay,					
4	5	5		-	- 15 - -			e m. sand, trace si loose, saturated (S				Slight hyd	rocarbon o	odor	
					- 20			le f. sand, trace sil ided, medium com g at 20 ft							

PRO	JECT	NUM	BER: 15091.1	000.3	1000		5/7/12					ER EW4	•	P	age 1 of 1
LOC	ATIO	N: S	chenectady, N	lew Y	ork			DRILL FLUID: N	one	1	DRILLI	NG METHC		-	
			Group						DATE	TIME		ADING TYPE	DEPTH	BOTT	NG HOLE
CON	ITRAC	CTOR	Aztech						3-20-12	10:20 AM		imated	(ft) 7	(ft)	(ft) 20
DRIL	LER:	Ra	y		INSPECTO	DR: B.	Blaydes	WATER LEVEL OBSERVATIONS	0 20 12	10.207		iniated			20
			nd TIME: 3/20/2												
	SH DA FACE		nd TIME: 3/20/2	2012	10:20:00	AM									
ELE	V:			_	CHECKED	by: S	. Fowler								
SAMP./CORE NUMBER	SAMP. ADV. (ft) LEN. CORE (ft)	RECOVERY (ft)	Blows Per 6" on Split Spoon Sampler	"N" Value or RQD%	DEPTH (Feet)	GRAPHICS		RIPTION AND CLAS			ELEVATION (Feet)	Cha Drilli Re	marks on aracter of ng, Water turn, etc.		WATER LEVELS AND/OR WELL DA
					2		f. Gravel, Sor loose, dry (Fl	·	lack, ang	ular,		Wet at the		e soil	
1	5	2.5					SILT, Some (orange/ with g (ML)	Clay, trace f. sand grey/green mottlin	, trace cin g, hard, m 	aers, noist		Low plasti	city		
				-	-		\subrounded,	le f. sand, trace si loose, wet (SP)				Hydrocarb 16.3ppm Strong hyd			
					6 -		angular, med Clayey SILT, hard, moist (I	Some c. Sand, tra ium compact, moi , trace f. sand, bro ML) Clay, trace f. sand	st (GP) wn/grey n	nottled,		PID = 64. Low plasti	i city ater is		$\bar{\Sigma}$
2	5	5			-8		mottled, soft,	wet (ML)	grey/bro	, , , , , , , , , , , , , , , , , , ,		estimated based on content in Medium p	moisture soil samp		
				-			becomes satu	urated (ML) æ m. sand, trace s	ilt, grey,						
2	-	-			- 			loose, saturated (\$				Slight hyd PID = 18.7		odor,	
3	5	5			- 14		subangular, r	le f. sand, trace si nedium compact, s	saturated	(SP)					
				-			subrounded, <u>f. SAND</u> , trac	e silt, trace clay, li loose, saturated (\$ e m. sand, trace s nded, medium con	SP) silt, trace o	clay, urated					
,		_			- 16 -		(SP)								
4	5	5			- 18		Similar Soil	(SP)							

PRO	JECT	NUM	BER: 15091.1	000.	31000		5/7/12						5	Pag	je 1 of 1
LOC	ATIO	N: S	chenectady, N	Vew Y	/ork			DRILL FLUID: NO	one		DRILLI	NG METHO			1
			roup						DATE	TIME		ADING TYPE	DEPTH	BOTTO	
			Aztech						3-23-12	1:10 PM		timated	(ft) 14	(ft)	(ft) 20
		Ray			INSPECTO		Blaydes	WATER LEVEL OBSERVATIONS							
			nd TIME: 3/23												
SUR	FACE		nd TIME: 3/23/2	2012											
ELE\					CHECKED	BY: S	. Fowler			 					
SAMP./CORE NUMBER	SAMP. ADV. (fl LEN. CORE (ft	RECOVERY (ft)	Blows Per 6" on Split Spoon Sampler	"N" Value or RQD%	SAMPLE DEPTH (Feet)	GRAPHICS	DESCR	IPTION AND CLAS	SIFICATIC	Ν	ELEVATION (Feet)	Cha Drilli	marks on aracter of ing, Water turn, etc.	r	WATER LEVELS AND/OR 'ELL DA ⁻
					-		Augered dow	n to 14 feet, no sa	mpling						
					-2										
					-4										
					-6										
					- 8										
					- 10										
					- 12										
1	2	1.5	2-4-5-6	9	14		subrounded,	em. sand, trace sil saturated (SP) sand, trace clay, <u>c</u>		moint		Groundwa estimated based on content in	at 14.0 fe moisture		Ţ
					16		(ML) <u>f. SAND</u> , little	sand, trace clay, g 		, moist 			P		
2	2	2	6-4-4-6	8			<u>SILT</u> , trace f. (ML)	sand, trace clay, ç	jrey, hard	, moist		Low plasti	icity		

End of Boring at 20 ft

			BER: 15091.1				5/7/12			HOLE N	-				ge 1 of 1
			chenectady, N	lew Y	′ork			DRILL FLUID: NO	one		DRILLI	NG METHC			
CLIENT			•						DATE	TIME		ADING TYPE	WATER DEPTH (ft)		G HOLE MBOTTO (ft)
			Aztech						3-21-12	9:30 AM	Est	imated	2		20
DRILLEI					INSPECTO		Blaydes	WATER LEVEL OBSERVATIONS							
			nd TIME: 3/21/2												
FINISH SURFA		ſE ar	nd TIME: 3/21/2	2012											
ELEV:					CHECKED	вү: S	. Fowler							<u> </u>	
SAMP./CORE NUMBER SAMP. ADV. (ft)	LEN. CORE (ft)	KECUVERY (ft)	Blows Per 6" on Split Spoon Sampler	"N" Value or RQD%	SAMPLE DEPTH (Feet)	GRAPHICS	DESCR	RIPTION AND CLAS	SIFICATIC	DN	ELEVATION (Feet)	Cha Drilli	marks on aracter of ng, Water turn, etc.		WATER LEVELS AND/OR VELL DA
1 5		4			- -2 - -4		c. Sand, Som trace clay, gre <u>m. SAND</u> , litt subrounded, <u>SILT</u> , Some f brown, hard, <u>m. SAND</u> , litt subrounded,	le f. sand, little silt, medium compact, . Sand, trace m. s	n. sand, lit moist (FI t, brown, and, trace brown, wet (SM)	tle silt, LL)		Low plasti Groundwa estimated based on content in	iter is at 2.0 fee moisture		Ţ
2 5	5	4			6 - 8 -		subrounded, c. SAND, trac compact, dry SILT, trace f. moist (ML) f. SAND, trac subangular, lo SILT, trace f. (ML) m. SAND, litt subrounded, SILT, trace f. (ML)	sand, trace clay, t e m. sand, trace s pose, wet (SP) sand, trace clay, g le f. sand, trace sil loose, saturated (S sand, trace clay, g	wet (SM) angular, m prown, ha ilt, brown, grey, hard t, grey, SP) grey, hard	rd, , moist , moist /		Low plasti Hydrocarb 18.2ppm Low plasti Low plasti	oon Odor, I city	PID =	
3 5	5	5			- - 12 - - 14		<u>f. SAND</u> , little saturated (SM		unded, lo	ose,					
4 5	5	5			- 16 - - 18		subrounded,	me f. Sand, trace medium compact, silt, trace clay, gri red (SM)	saturated						

PROJECT NU	MBER: 15091.1	000.3 ⁻	1000		5/7/12					ER PZ2		Pag	je 1 of 1
LOCATION:	Schenectady, N	lew Yo	ork			DRILL FLUID: NO	one	1	DRILLI	NG METHC			1
CLIENT: SI	Group						DATE	TIME		ADING TYPE		BOTTO	Ивоттс
CONTRACTO	R: Aztech						3-21-12	10:15 AM		timated	(ft) 3	(ft)	(ft) 20
DRILLER: R	ау	I	NSPECTO	R: B.	Blaydes	WATER LEVEL OBSERVATIONS	5-21-12	10.107.00		inated	Ŭ		20
	and TIME: 3/21/2					OBOLINATIONO							
FINISH DATE	and TIME: 3/21/2	2012 1	0:15:00	AM									
ELEV:		0	CHECKED	BY: S	. Fowler					1			
SAMP./CORE NUMBER SAMP. ADV. (ft) LEN. CORE (ft) RECOVERY	Blows Per 6" on Split Spoon Sampler	"N" Value or RQD% SAMDIF	DEPTH (Feet)	GRAPHICS	DESCR	IPTION AND CLAS	SIFICATIC	N	ELEVATION (Feet)	Cha Drilli	marks on aracter of ng, Water turn, etc.	·	WATER LEVELS AND/OF ELL DA
1 5 3 2 5 4 3 5 5 4 5 5			-2 -2 -4 -6 -8 -10 -12 -12 -14 -16 -18		c. Sand, little grey, angular, <u>m. SAND</u> , tra imedium comp <u>f. SAND</u> , Son subrounded, <u>SILT</u> , trace f. moist (ML) <u>f. SAND</u> , little subrounded, I <u>SILT</u> , trace f. and green mo <u>m. SAND</u> , little subrounded, I <u>SILT</u> , trace f. and green mo <u>m. SAND</u> , little subrounded, I <u>SILT</u> , trace f. and green mo <u>m. SAND</u> , little subrounded, I <u>SILT</u> , trace f. and green mo <u>m. SAND</u> , little subrounded, I <u>SILT</u> , trace f. and green mo <u>m. SAND</u> , little subrounded, I <u>SILT</u> , trace f. and green mo <u>m. SAND</u> , little subrounded, I <u>f. SAND</u> , little compact, satu	ce f. sand, brown, bact, moist (SP) ne Silt, trace clay, compact, moist (S sand, trace clay, I e c. sand, trace clay, I e c. sand, trace clay, I e c. sand, trace clay, I sand, trace clay, br medium compact, sand, trace clay, gr e silt, trace clay, gr dttling, hard, moist e f. sand, trace sil pose, saturated (S and, trace clay, gr e silt, grey, subrour silt (SP) silt (SP) silt, grey, subrour rated (SM)	sand, tra- subangu dark brow M) t brown, h sand, broc wet (SP) prown, ha own, saturated prey/ with (ML) t, grey, P) rey, hard, 	ce silt, lar, 		Low plasti Groundwa estimated based on PID = 2.5p Low plasti Low plasti	city		Ţ

PRO	JECT	NUM	BER: 15091.1	000.3	1000		5/7/12					ER PZ3		Р	age 1 of 1
			chenectady, N	lew Y	ork			DRILL FLUID: NO	one		DRILLI	NG METHC	-		
			iroup						DATE	TIME		ADING TYPE	DEPTH	BOTT	
			: Aztech						3-21-12	2:15 PM		timated	(ft) 5	(ft)	(ft) 20
		Ray	•		INSPECTO		Blaydes	WATER LEVEL OBSERVATIONS							
			nd TIME: 3/21/2												
	SH DA FACE		nd TIME: 3/21/2												
ELE\	/:					BY: S	. Fowler					1			
SAMP./CORE NUMBER	SAMP. ADV. (ft) LEN. CORE (ft)	RECOVERY (ft)	Blows Per 6" on Split Spoon Sampler	"N" Value or RQD%	SAMPLE DEPTH (Feet)	GRAPHICS	DESCR	RIPTION AND CLAS	SIFICATIC	DN	ELEVATION (Feet)	Cha Drilli	marks on aracter of ng, Water turn, etc.		WATER LEVELS AND/OR WELL DA ⁻
1	5	2.5			2		f. Gravel, Son dry (FILL)	nd CRUSHED CO ne c. Sand, grey, a sand, trace clay, or	angular, Ic	oose,		Low plasti	city		
				-	-4 -6		- √brown, angula	ittle silt, trace f. sa ar, loose, moist (G sand, trace clay, b	M)			Groundwa estimated based on content in Medium p	at 5.0 feet moisture soil samp		Ţ
2	5	4.5			-8							Hydrocarb 32.5ppm	on odor, F	PID =	
3	5	5		-	- 		subangular, n <u>Similar Soil</u> <u>f. SAND</u> , trac	le f. sand, trace si nedium compact, v (SP) le silt, trace clay, g loose, saturated (S	wet (SP) rey,			Hydrocarb 41.8ppm	on odor, F	PID =	
				-	- 14		subrounded,	ome f. Sand, trace loose, saturated (s e m. sand, trace s	SP)	n,					
4	5	4			16 18		subrounded,	compact, saturate	d (SP)						
					-							Discrete s collected 3			

PROJ	IECT	NUM	BER: 15091.1	000.3	1000		5/7/12			HOLE N		ER PZ4	•	Pa	ige 1 of 1
LOCA		N: S	chenectady, N	lew Yo	ork			DRILL FLUID: N	one	I	DRILLI	NG METHO			
			iroup						DATE	TIME		ADING TYPE	DEPTH	BOTTC	G HOLE
CONT	FRAC	TOR	Aztech						3-21-12	1:20 PM		timated	(ft) 5	(ft)	(ft) 20
DRILL							Blaydes	WATER LEVEL OBSERVATIONS	0-21-12	1.201 1		inated			20
STAR	T DA	TE ar	nd TIME: 3/21/2	2012	12:45:0	0 PM		Oboentinition							
FINIS SURF			nd TIME: 3/21/2	2012 1	:20:00	PM		-							
ELEV	:				CHECKED) BY: S	. Fowler					1			
SAMP./CORE NUMBER	SAMP. ADV. (ft) LEN. CORE (ft)	RECOVERY (ft)	Blows Per 6" on Split Spoon Sampler	"N" Value or RQD%	DEPTH (Feet)	GRAPHICS	DESCR	RIPTION AND CLAS	SIFICATIC)N	ELEVATION (Feet)	Cha Drilli	marks on aracter of ng, Water turn, etc.		WATER LEVELS AND/OF VELL DA
					2		f. Gravel, Sor dry (FILL)	nd CRUSHED CO me c. Sand, grey, a sand, trace clay, o	angular, Ic	oose,		Low plast	icity		
1	5	2.5			- 4		moist (MIL)								
					-6		- brown, angula	ittle silt, trace f. sa ar, loose, moist (G sand, trace clay, b	iM)	A		based on	at 5.0 feet moisture		$\overline{\Delta}$
2	5	5					(ML)					Medium p	soil samp lasticity oon Odor, I		
					ŀ		m. SAND, litt	le f. sand, trace si	lt, black,			20.6ppm	oon Odor, I		
					10 -			nedium compact, v e silt, trace clay, g ?)) ,		13.1ppm			
3	5	5			- 12 -		subrounded,	le f. sand, trace si loose, saturated (\$ silt, trace clay, br	SP)						
					- 14		subrounded,	loose, saturated (\$	SM)						
					-16			e m. sand, trace si compact, saturate							
4	5	5			- 18										
					F							Discrete s			

SI Group, Congress Street SUBSURFACE LOG

HOLE NUMBER SVE1

PROJE	ECT	NUM	BER: 15091.1	000.3	1000		5/7/12		Г	IOLE N			I	Р	age 1 of
LOCA	TIO	N: S	chenectady, N	lew Y	ork			drill fluid: No	one	1	DRILLI	NG METHO			
CLIEN	IT:	SI G	iroup						DATE	TIME		ading Type		BOTT	ОМВОТТС
CONT	RAC	TOR	: Aztech					-	3-20-12	3:10 AM		timated	(ft) 5	(ft)	(ft) 15
DRILLI		-					Blaydes	WATER LEVEL OBSERVATIONS	0 20 12			linatea			
			nd TIME: 3/20/												
FINISH			nd TIME: 3/20/2	2012 (3:10:0) AM		-							
ELEV:				_	CHECK	ED BY: S	6. Fowler					1			
SAMP./CUKE NUMBER	LEN. CORE (ft)	RECOVERY (ft)	Blows Per 6" on Split Spoon Sampler	"N" Value or RQD%	SAMPLE	GRAPHICS	DESCF	RIPTION AND CLAS	SIFICATIC	ON	ELEVATION (Feet)	Cha Drilli	marks on aracter of ng, Water turn, etc.		WATEF LEVELS AND/OF WELL DA
					-		c. Sand, little	CONCRETE and A f. gravel, little f. sa ey, angular, loose,	and, little	silt,		PID Read at 1' interv unless oth	/als = 0.0 l	PPM	
1	5	3			-2		m. SAND, So subrounded,	ome f. Sand, trace medium compact,	silt, brow moist (SF	n, ')					
					-4										$\overline{\Delta}$
					-6			ce f. gravel, trace s pact, moist (SP) f. Sand, trace clay,		ck		Groundwa estimated based on content in	at 5.0 fee moisture soil samp		-
2	5	4						/cl (IVIL)				Low plasti PID = 3.5 PID = 4.9 Hydrocart	ppm ppm		
					-		subangular, r	le f. sand, trace si medium compact,	saturated	• •		PID = 6.2			
				-	1C		f. SAND, little	e silt, trace clay, br medium compact,	own,						
3	5	4			- 12		subrounded,	ome f. Sand, trace medium compact,	saturated	(SP)					
5	5	-			- 14		f. SAND, little subrounded,	e silt, trace clay, br loose, saturated (\$	own, S M)						
					- 16	<u>s (Al</u> s	End of Boring	g at 15 ft							
					- 18										

PROJEC	T NUN	MBER: 15091.1	000.3	1000		5/7/12			IOLE NU			_	Р	age 1 of 1
LOCATIC	DN: S	Schenectady, N	lew Y	ork			drill fluid: No	one		DRILLI	NG METHO			
CLIENT:		-					4	DATE	TIME		ADING TYPE		BOTT	ОМВОТТО
CONTRA	CTOF	R: Aztech						3-20-12	11:00 AM		imated	(ft) 5	(ft)	(ft) 15
DRILLER		•				3. Blaydes	WATER LEVEL OBSERVATIONS							
		and TIME: 3/20/												
FINISH D SURFAC		ind TIME: 3/20/2					-							
ELEV:	_		-	CHECKE	D BY:	S. Fowler					1			
SAMP./CORE NUMBER SAMP. ADV. (ft) I FN_CORF (ft)		Blows Per 6" on Split Spoon Sampler	"N" Value or RQD%	SAMPLE DEPTH (Feet)	GRAPHICS		RIPTION AND CLAS			ELEVATION (Feet)	Cha Drilli	marks on aracter of ng, Water turn, etc.		WATER LEVELS AND/OR WELL DA ⁻
1 5	2.5			2		f. Gravel, So loose, dry (F <u>SILT</u> , Some	CONCRETE and A me c. Sand, grey/b LL) Clay, trace f. sand grey/green mottling	lack, ang	ular, ders,		Low plasti Hydrocart sample st PID = 23.6	oon odor ir artig at 2.0		
2 5	4.5		-	-4 -6 - -8		brown/black,	c. Sand, trace f. sa hard, moist (ML) , Some f. Sand, br t (ML)				Groundwa estimated based on content in Low plasti medium p hydrocarb sample fro PID = 50.1	at 5.0 fee moisture soil samp icity lasticity, on odor in om 6-9.25	les.	Ţ
3 5	5		-	- 		subrounded, Similar Soil <u>f. SAND</u> , trad	ace f. sand, trace s loose, wet (SP) (SP) e silt, trace clay, s aturated (SP)		d,					
				-14 -16 - -18		m. SAND, litt subangular, l	le f. sand, trace si oose, saturated (S g at 15 ft	it, brown, P)			PID = 45.8 borehole v augers fro Sheen pre cuttings a liberated f cuttings.	while extra om ground esent on nd in wate	Ū	

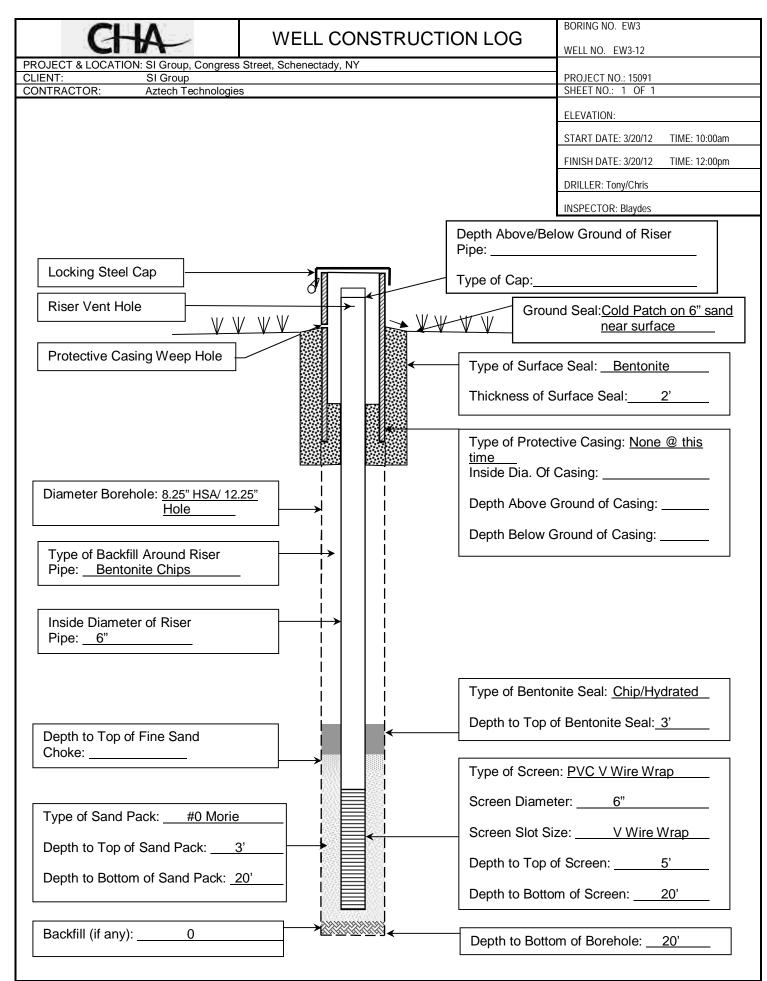
PROJEC	CT NU	MBEF	a: 15091.1	000.3	3100	00		5/7/12		I				3	Pa	ige 1 of 1
LOCATIO	ON:	Sche	enectady, N	lew Y	ork				DRILL FLUID: NO	one		DRILLI	NG METHO			
CLIENT:	SI	Grou	р							DATE	TIME		ADING TYPE	DEPTH	BOTTO	
CONTRA	АСТО	R: A	ztech							3-22-12	10:30 AM		timated	(ft) 10	(ft)	(ft) 15
DRILLER	א: R	ay			INS	PECTO	r: B.	Blaydes	WATER LEVEL OBSERVATIONS	0-22-12	10.007.00		inated			
			IME: 3/22/2						OBOLINATIONO							
FINISH D		and T	IME: 3/22/2	2012	10:3	30:00	AM									
ELEV:				1	CHE	ECKED	BY: S	6. Fowler					1			
SAMP./CORE NUMBER SAMP. ADV. (ft)	RECOVERY	€ on	lows Per 6" Split Spoon Sampler	"N" Value or RQD%	SAMPLE	DEPTH (Feet)	GRAPHICS	DESCR	IPTION AND CLAS	SIFICATIC	N	ELEVATION (Feet)	Cha Drilli	marks on aracter of ing, Water turn, etc.		WATER LEVELS AND/OR VELL DAT
1 5						-2		gravel, grey, a <u>f. SAND</u> , little brown, subro CRUSHED C	ONCRETE, Some angular, loose, dry c. sand, little silt, unded, loose, mois ONCRETE, Some ar, loose, dry (FILI	(FILL) trace f. gr st (FILL) c. Sand,	ravel,					
2 5	1					-4 -6		<u>SILT</u> , Some (— — — —			Low plasti PID = 20.4 PID = 50.2 PID = 60.8	4 ppm 2 ppm		
						- 10		Similar Soil m. SAND, litt subrounded,	(ML) le f. sand, trace sil medium compact,	t, grey, saturated	i (SP)		Groundwa estimated based on content in PID = 1.1	at 10.0 fe moisture soil samp		Ţ
3 5	5					- 14		brown, mediu	silt, trace m. sand m compact, satura				PID readir headspac bags.			
					-	-16		End of Boring	j at 15 ft							
					_	-18										

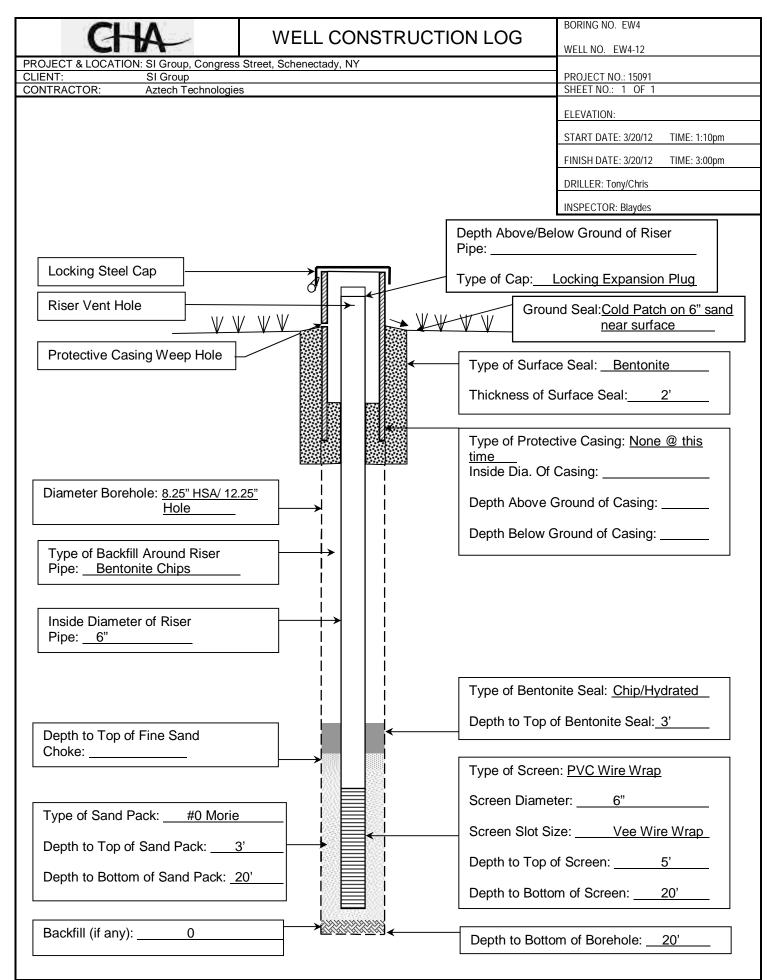
PRU	JECT	NUM	BER: 15091.1	000.3	31000		5/7/12					=R VW	1	Pag	je 1 of 1	
LOCATION: Schenectady, New York CLIENT: SI Group								DRILL FLUID: N	one		DRILLI	NG METHC				
CLIE	NT:	SI G	iroup						DATE	TIME		ADING TYPE	DEPTH	CASING	Ивотто	
CON	TRAC	TOR	Aztech						3-20-12	2:45 PM		timated	(ft) 6	(ft)	(ft) 15	
DRIL	LER:	Ray	ý		INSPEC1	OR: B.	Blaydes	WATER LEVEL OBSERVATIONS	0 20 12	2.1011		inated				
			nd TIME: 3/20/					oboentinition								
	SH DA FACE		nd TIME: 3/20/2	2012	2:45:00	PM										
ELE\	/:			_	CHECKE	d by: S	. Fowler									
SAMP./CURE NUMBER	SAMP. ADV. (ft) LEN. CORE (ft)	RECOVERY (ft)	Blows Per 6" on Split Spoon Sampler	"N" Value or RQD%	SAMPLE DEPTH (Feet)	GRAPHICS	DESCR	IPTION AND CLAS	SIFICATIC	ON	ELEVATION (Feet)	Cha Drilli	marks on aracter of ng, Water turn, etc.		WATER LEVELS AND/OF ELL DA	
					-		c. Sand, Som grey, angular <u>m. SAND</u> , So	ONCRETE and A le f. Gravel, little f. , medium compac	sand, tra t, dry (FIL silt, brow	ce silt, L) n,						
1	5	3			-2		subrounded,	medium compact,	moist (SF	?)						
					-4		Similar Soil	(SP)								
					-6 -		<u>SILT</u> , Some f (ML)	. Sand, trace clay,	grey, har	d, wet		Groundwa estimated based on content in	at 6.0 fee moisture		Ţ	
2	5	4			-8		<u>m. SAND</u> , litt	e f. sand, trace si	t, grey,							
							<u>f. SAND</u> , little	silt, trace clay, br	own,	·						
3	5	5			- 12		m SAND litt	le f. sand, trace si	t brown							
					- 14		subrounded, <u>f. SAND</u> , little	silt, trace clay, br medium compact,	saturated							
					-16		End of Boring) at 15 ft								
					-											

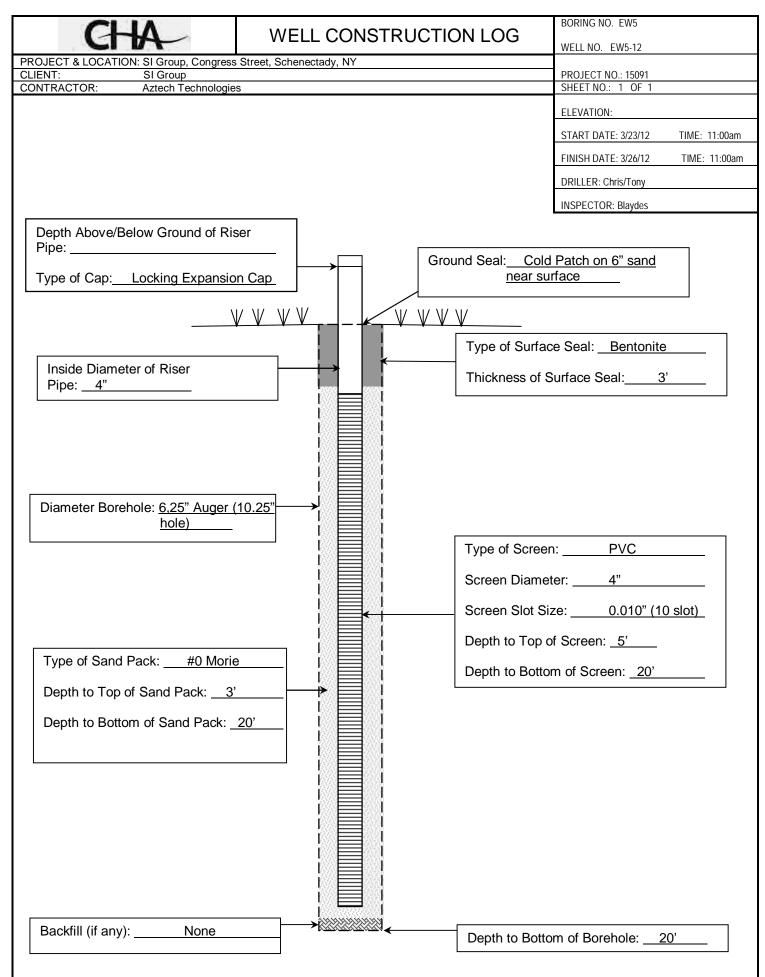
PROJ	JECT	NUM	BER: 15091.1	000.3	31000		5/7/12		I	HOLE N			<u> </u>	Pa	ge 1 of 1
LOCA		N: S	chenectady, N	lew Y	′ork			DRILL FLUID: NO	one		DRILLI	NG METHO			
CLIEI	NT:	SI G	iroup						DATE	TIME		ADING IYPE		BOTTO	MBOTTO
CON	TRAC	TOR	Aztech						3 20 12	2:30 AM		imated	(ft) 6	(ft)	(ft) 15
DRILL	ER:	Ray	/		INSPECT	OR: B.	Blaydes	WATER LEVEL OBSERVATIONS	J-20-12	2.50 AM	LSI	Inaleu			15
STAR	RT DA	TE a	nd TIME: 3/20/	2012	2:15:00	AM		OBOLIVATIONO							
FINIS SURF			nd TIME: 3/20/2	2012	2:30:00	AM									
ELEV	:				CHECKE	DBY: S	. Fowler								
SAMP./CORE NUMBER	SAMP. ADV. (ft) LEN. CORE (ft)	RECOVERY (ft)	Blows Per 6" on Split Spoon Sampler	"N" Value or RQD%	SAMPLE DEPTH (Feet)	GRAPHICS	DESCR	RIPTION AND CLAS	SIFICATIC	DN	ELEVATION (Feet)	Cha Drilli	marks on aracter of ng, Water turn, etc.		WATER LEVELS AND/OR VELL DAT
1	5	3.5			2		c. Sand, Som grey, angular <u>m. SAND</u> , So	te f. Gravel, little f. , medium compact ome f. Sand, trace medium compact,	sand, tra , dry (FIL silt, brow	ce silt, L)					
2	5	5			-4 -6 - -8		subrounded, <u>f. SAND</u> , little medium com	ome f. Sand, trace medium compact, silt, trace clay, gri pact, wet (SM)	moist (SF ey, subro	') unded,		Groundwa estimated based on content in medium p Hydrocart PID = 52.	at 6.0 fee moisture soil samp lasticity oon odor		Ţ
3	5	5			- - - - - - - 12 - - - 14		subrounded, Similar Soil <u>f. SAND</u> , little medium com <u>f. SAND</u> , Sor	ice f. sand, trace s medium compact, (SP) silt, trace clay, gr pact, saturated (SI ne Silt, trace clay, medium compact,	wet (SP) ey, subroi M) brown,						
					- 16 - 18		End of Boring	g at 15 ft							

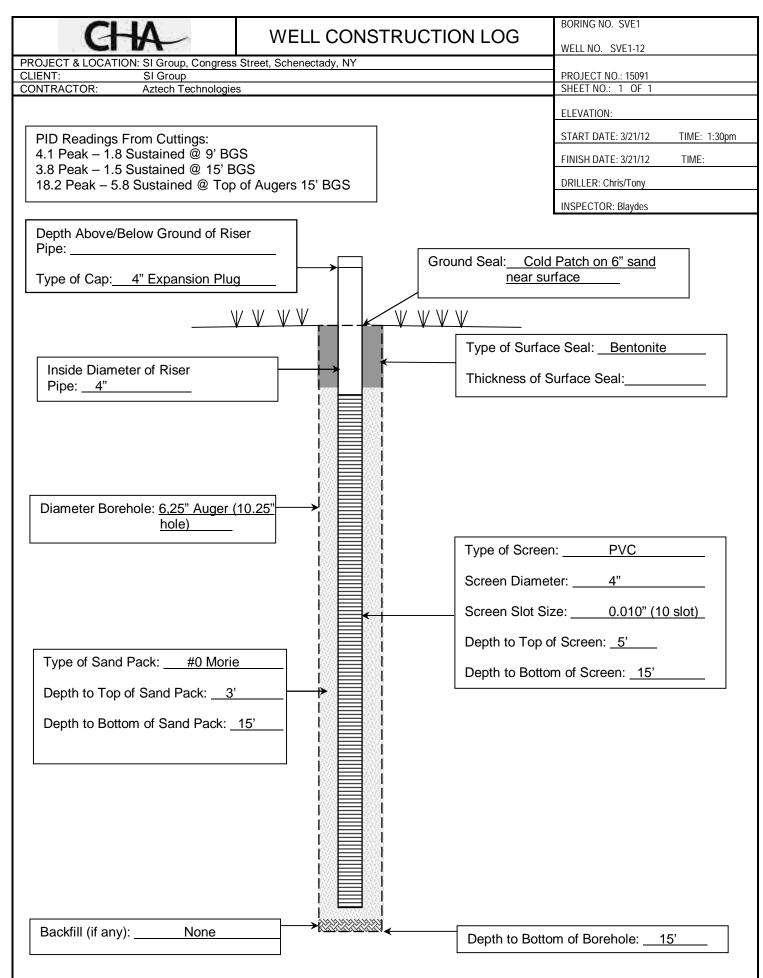
PRO	JECT	NUM	BER: 15091.1	000.3	310	00		5/7/12			HOLE N			0	Pa	age 1 d	of
			chenectady, N	lew)	/ork				DRILL FLUID: N	one	1	DRILLI	NG METHC				
			iroup							DATE	TIME		ading Type	WATER DEPTH (ft)	BOTT((ft)	омвот	OLI FT((ft)
			Aztech							3-20-12	11:15 AM	Est	timated	6			15
	LER:		/					Blaydes	WATER LEVEL OBSERVATIONS								
			nd TIME: 3/20/														
SUR	FACE		nd TIME: 3/20/2	2012													
ELE	V:				CHE	ECKED	by: S	. Fowler					1				
SAMP./CORE NUMBER	SAMP. ADV. (ft) LEN. CORE (ft)	RECOVERY (ft)	Blows Per 6" on Split Spoon Sampler	"N" Value or RQD%	SAMPLE	DEPTH (Feet)	GRAPHICS		RIPTION AND CLAS			ELEVATION (Feet)	Cha Drilli	marks on aracter of ng, Water turn, etc.		WAT LEVE AND/ WELL [EL O
1	5	2.5				-2 -4		f. Gravel, Sor loose, dry (Fl <u>SILT</u> , Some (orange/black	Clay, trace f. sand stain, hard, moist (FILL) sand, trace clay, b	lack, ang trace cin (FILL)	ular, 		Low plasti Hydrocarb 58.4ppm Groundwa estimated based on content in Low plasti	ion odor, F ater is at 6.0 fee moisture soil samp	t	Ň	7_
2	5	4.5			-	- 8 - 10 - 12		subangular, lo <u>Similar Soil</u> <u>f. SAND</u> , little	le f. sand, trace sil pose, wet (SP) (SP) e silt, trace m. sand nded, loose, satura	d, trace cl	ay,		Hydrocarb 23.6ppm	oon Odor, I			
3	5	5			-	-14		m. SAND, littl brown, suban (SM) End of Boring	le silt, trace c. san Igular, medium co g at 15 ft	d, trace c mpact, sa	lay, turated						
						- 18											

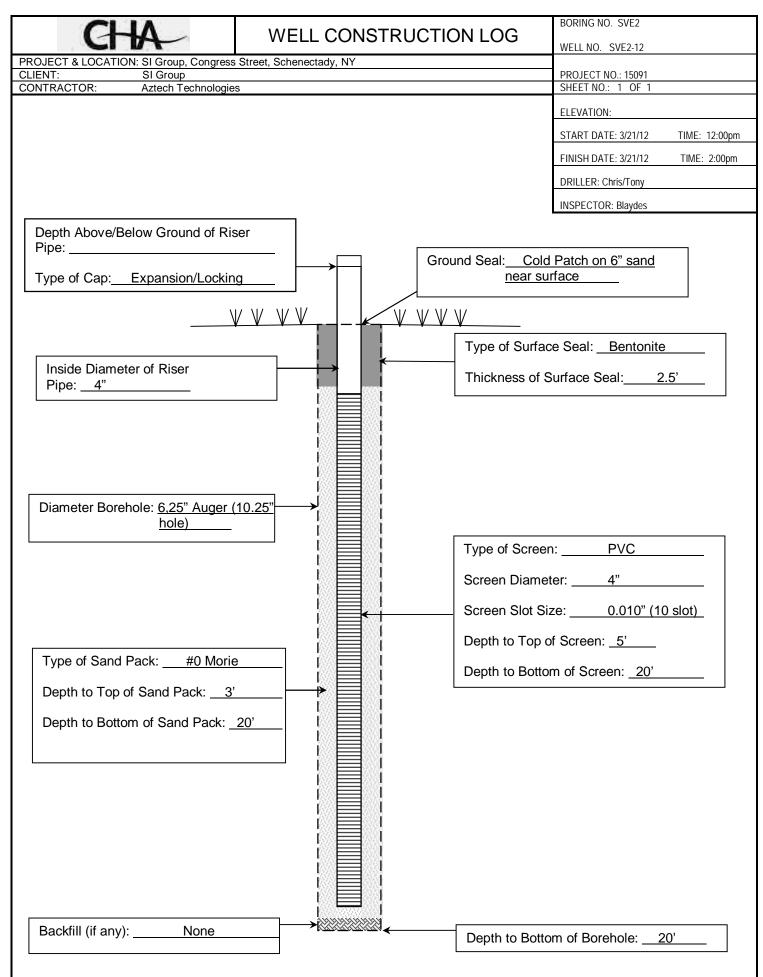
PRO	JECT	NUM	BER: 15091.1	000.3	310	000		5/7/12		[HOLE N			+	Р	age 1 of ²
			chenectady, N	lew Y	′orl	k			DRILL FLUID: NO	one	1	DRILLI	NG METHC			
			Group							DATE	TIME	RE	ading Type		BOTT	ОМ <mark>ВОТТС</mark>
CON	TRAC	TOR	Aztech							3-20-12	11:35 AM		timated	(ft) 6	(ft)	(ft) 15
	LER:							Blaydes	WATER LEVEL OBSERVATIONS							
			nd TIME: 3/20/													
	SH DA		nd TIME: 3/20/2													
ELE\	/:				CH	IECKED	BY: S	5. Fowler			<u> </u>		1			
SAMP./CORE NUMBER	SAMP. ADV. (ft) LEN. CORE (ft)	RECOVERY (ft)	Blows Per 6" on Split Spoon Sampler	"N" Value or RQD%	SAMPLE	DEPTH (Feet)	GRAPHICS		RIPTION AND CLAS			ELEVATION (Feet)	Cha Drilli	marks on aracter of ng, Water turn, etc.		WATER LEVELS AND/OF WELL DA
								ASPHALT ar Some c. San	d, grey, angular, lo	ome f. Gr	avel, FILL)					
1	5	3			-	- 2		>	and, trace clay, o				Low plasti	city		
				_		-4		<u>SILT</u> , little c.	sand, trace clay, tr	race f. sar	nd,		Low plasti	city		
2	5	4				-6		orange, hard, SILT, little f. s mottle grey/b (ML)	moist (ML) sand, trace m. san rown with black sta	d, trace c aining, ha	lay, rd, wet		Groundwa estimated based on content in Hydrocarb 38.6ppm	at 6.0 fee moisture soil samp	les	Ā
						-8							Medium p	lasticity		
								<u>f. SAND</u> , trac subrounded,	e m. sand, trace s loose, saturated (\$	ilt, grey, S P)						
3 5		5	5						le f. sand, trace sil bose, saturated (S							
						- 14		<u>SILT</u> , little f. s brown, hard,	sand, trace m. san moist (ML)	-	lay,		Low plasti	city		
						-16		End of Boring	g at 15 ft							
						-18										
					-	-										

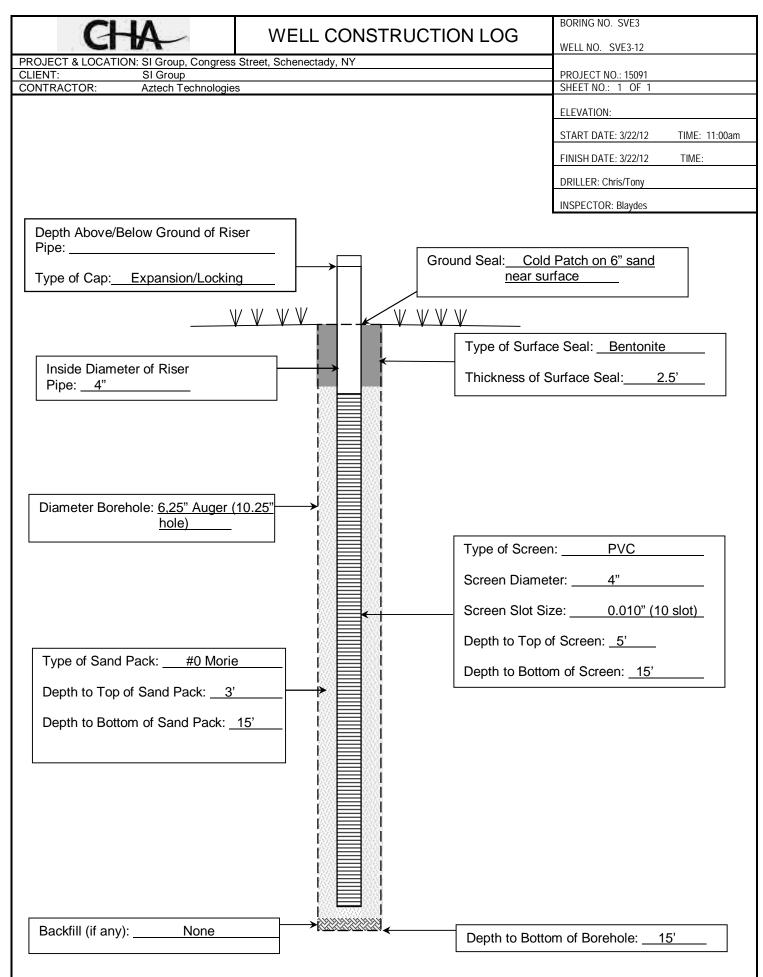

PRO	JECT	NUM	BER: 15091.1	000.3	310	000		5/7/12		Г	HOLE N			5	Р	age 1 of
LOC	ATIO	N: S	chenectady, N	Vew Y	/or	k			DRILL FLUID: No	one	1	DRILLI	NG METHC	-	-	
CLIE	NT:	SI G	Group							DATE	TIME		ADING IYPE		BOTT	
CON	TRAC	TOR	: Aztech							3 20 12	9:30 AM		imated	(ft) 9.5	(ft)	(ft) 15
DRIL	LER:	Ra	y		IN	SPECTC	R: B.	Blaydes	WATER LEVEL OBSERVATIONS	5-20-12	9.50 AW	LSI	inateu	0.0		15
STA	RT DA	ATE a	nd TIME: 3/20/	2012	9:	15:00 /	٩M		OBSERVATIONS							
	SH DA FACE		nd TIME: 3/20/2	2012	9:3	30:00 A	M									
ELE\	/:			_	С⊦	IECKED	BY: S	. Fowler								
SAMP./CORE NUMBER	SAMP. ADV. (ft) LEN. CORE (ft)	RECOVERY (ft)	Blows Per 6" on Split Spoon Sampler	"N" Value or RQD%	SAMPLE	DEPTH (Feet)	GRAPHICS	DESCR	RIPTION AND CLAS	SIFICATIC	N	ELEVATION (Feet)	Cha Drilli	marks on aracter of ng, Water turn, etc.		WATEF LEVELS AND/OF WELL DA
						_		f. Gravel, little dry (FILL)	ONCRETE and A e.c. sand, grey, an	gular, con	npact,					
1	5	2.5				-2		<u>m. SAND</u> , tra subrounded,	ice f. sand, trace s medium compact,	ilt, brown, moist (SF	')					
						-4		Similar Soil	(CD)				PID readir		ed	
						-6		Similar Soil SILT, Some (staining, hard	Clay, little f. sand,	grey/black	<		from head off of soils collected i PID = 4.9p	space rea samples in plastic b	dings	
2	5	4				-8							PID = 14.8	3ppm		
						- 10 -		<u>SILT</u> , Some (saturated (MI	Clay, trace f. sand -)	, brown, s	oft,		PID = 14.7 Groundwa estimated based on content in medium p PID = 11.0	ater is at 9.5 fee moisture soil samp lasticity		Ţ
3	5	5				- 12							PID = 121			
						-14		subrounded,	ne Silt, trace clay, medium compact,	brown, wet (SM)			PID = 121 PID = 121 PID = 13.5	.0ppm		
						-16		End of Boring	g at 15 ft							
						- 										
						_										

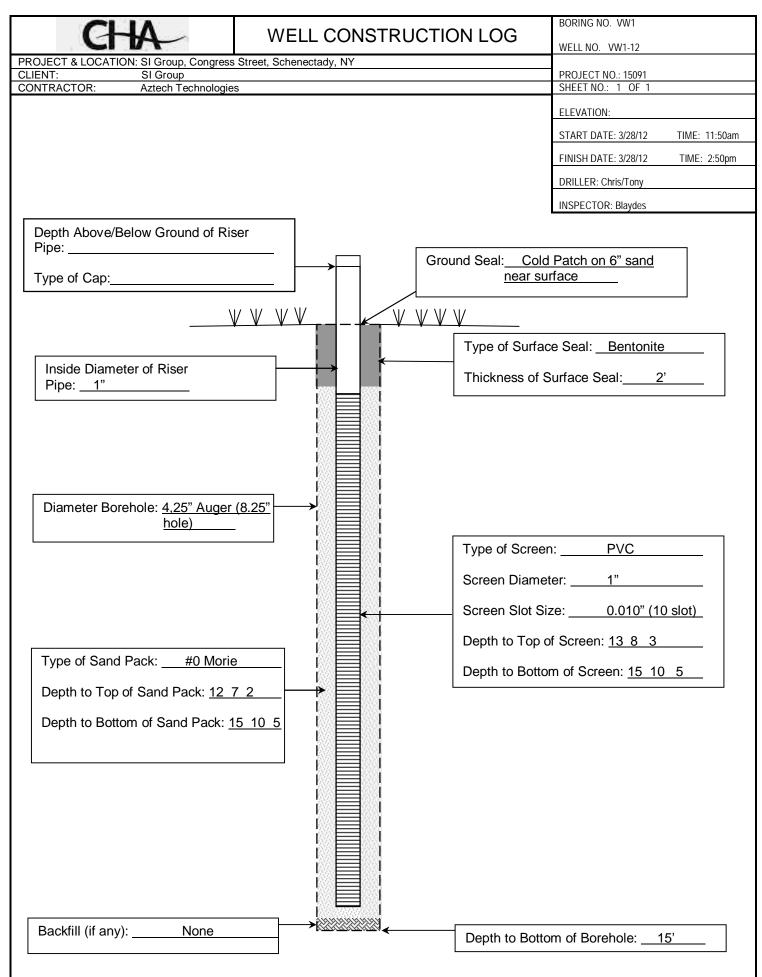


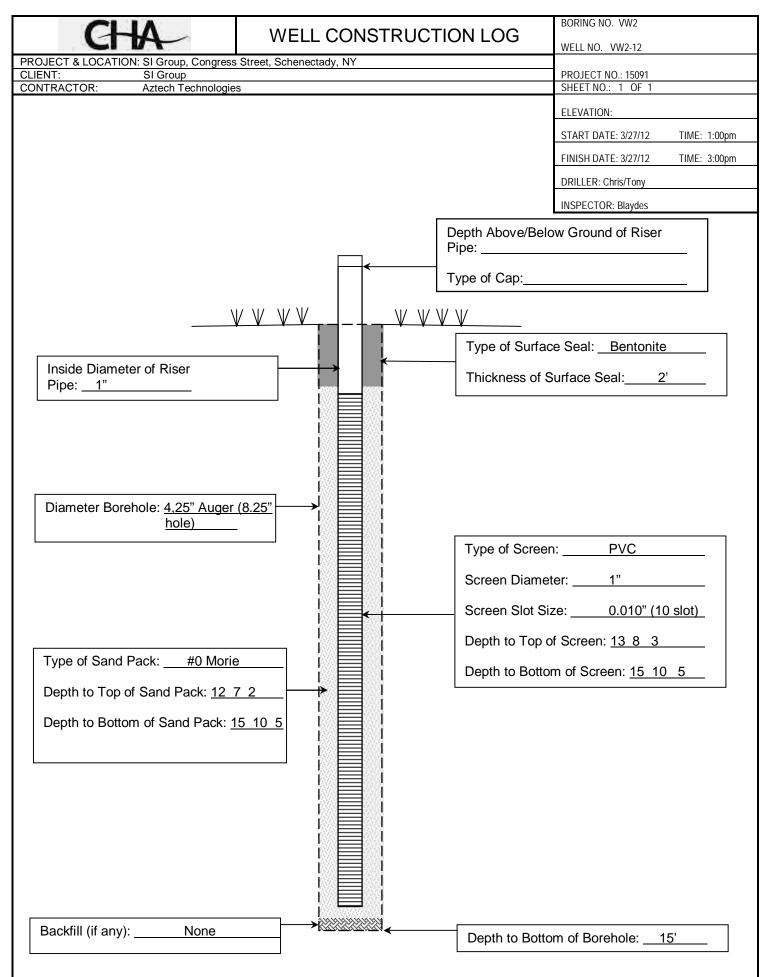

PROJECT NUMBER	: 15091.1000	0.310	00		5/7/12		Γ		UNB)	Pa	ge 1 of 1
LOCATION: Sche	nectady, New	York	[DRILL FLUID: NO	one		DRILLI	NG METHC			
CLIENT: SI Grou	р						DATE	TIME		ADING YPE		BOTTO	Мвоттс
CONTRACTOR: A	ztech						3-20-12	9:15 AM		imated	(ft) 5	(ft)	(ft) 15
DRILLER: Ray		INS	PECTOR	а: В.	Blaydes	WATER LEVEL OBSERVATIONS	0-20-12	0.107.00		inaccu			
START DATE and T						obolition							
FINISH DATE and TI SURFACE	ME: 3/20/2012	2 9:1	5:00 Al	M									
ELEV:		CHE	ECKED E	BY: S	. Fowler							<u> </u>	
SELSON	lows Per 6" Split Spoon Sampler	or RQD% SAMPLE	DEPTH (Feet)	GRAPHICS	DESCR	IPTION AND CLAS	SIFICATIC	N	ELEVATION (Feet)	Cha Drilli	marks on aracter of ng, Water turn, etc.		WATER LEVELS AND/OF VELL DA
1 5 2.5			-2 -4 -6		. Gravel, little (FILL) <u>m. SAND</u> , littl ∖silt, brown, su <u>SILT</u> , Some f grey, hard, m	little f. sand, grey	gular, loos gravel, tra SP) nd, trace	se, dry		PID readir from head off of soil s collected i Hydrocarb 40.3ppm Groundwa estimated based on content in Medium p Hydrocarb 5.6ppm	ngs collect space rea samples n plastic b on Odor, tter is at 5.0 fee moisture soil samp lasticity	dings pags. PID = t les.	Ā
3 5 5			- 10 - 12 - 14 - 16 - 18		<u>subrounded</u> , I <u>f. SAND</u> , little subrounded, I <u>Clayey SILT</u> , saturated (ML	e f. sand, trace sil nedium compact, silt, trace m. sand oose, saturated (S trace f. sand, bro) silt, trace clay, br urated (SM)	saturated d, brown, 5M) wn, soft,			Hydrocarb 4.3ppm Hydrocarb 31.2ppm Medium pi	on Odor,		

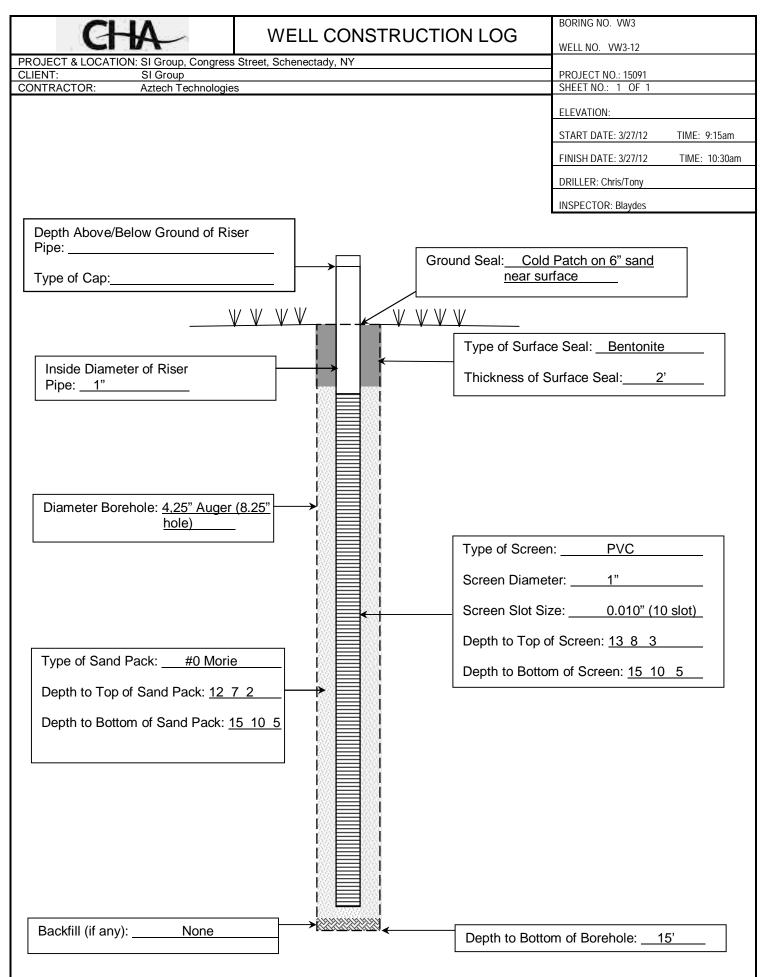

APPENDIX C

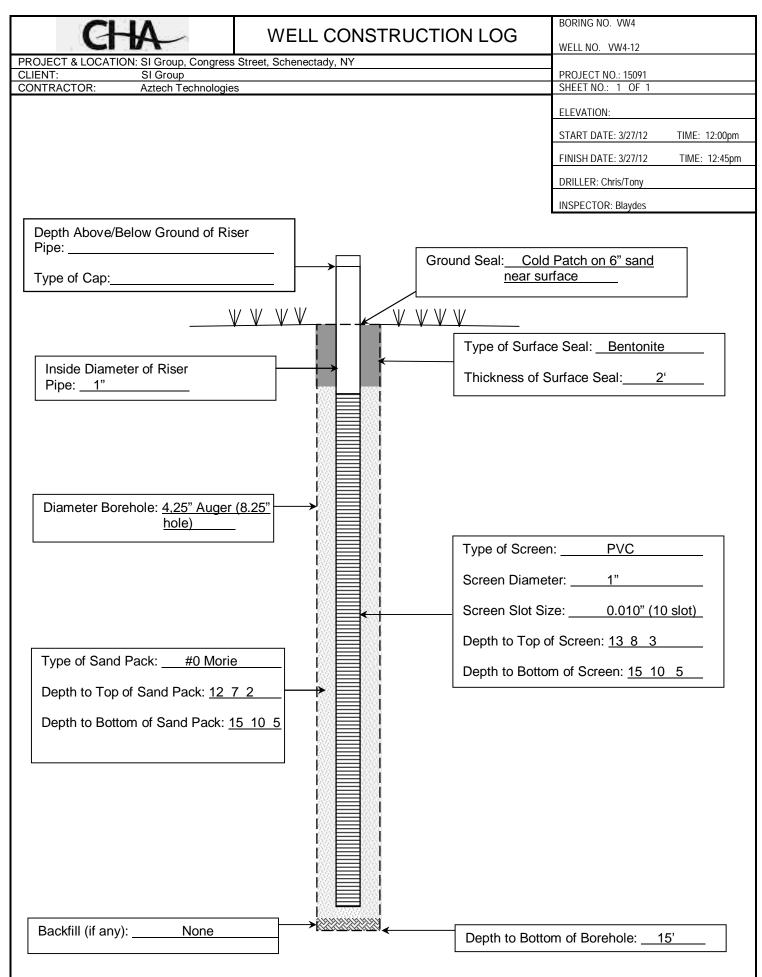

WELL INSTALLATION DIAGRAMS

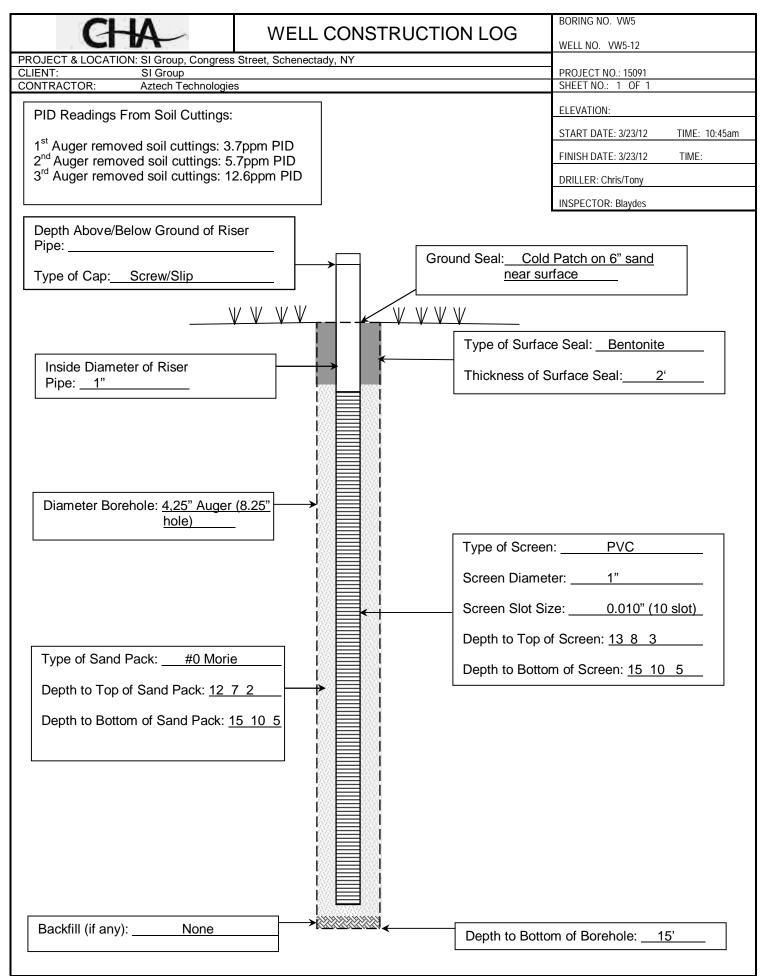


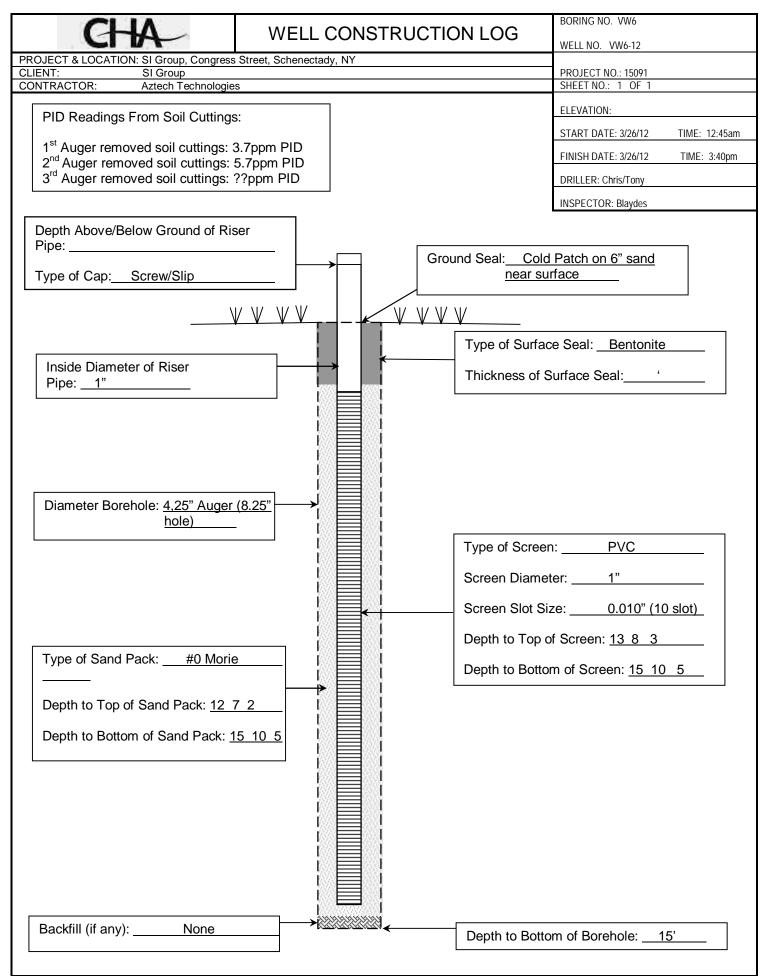












APPENDIX D

SOIL SAMPLING LOGS

PROJECT NUI	MBER: 15091.100	00.31	000		5/7/12		I	IOLE N		EK 360	Į	Pa	age 1 of 1
LOCATION:	Schenectady, Nev	w Yo	ork			DRILL FLUID: NO	one		DRILLI	NG METHC			
CLIENT: SI	Group						DATE	TIME		ADING	WATER DEPTH	BOTTO	G HOLE
CONTRACTO	R: Aztech						4.0.40	10.04 414		IYPE	(ft)	(ft)	(ft) 5
DRILLER: Ra	ау	IN	NSPECTO	R: B.	Blaydes	WATER LEVEL	4-2-12	10:04 AM	EST	imated	None		5
START DATE	and TIME: 4/2/201	12 9:′	15:00 A	Μ		OBSERVATIONS							
	and TIME: 4/2/2012	2 10:	:04:00 A	M									
SURFACE ELEV:		С	HECKED	BY: S	. Fowler								
SAMP./CORE NUMBER SAMP. ADV. (ft) LEN. CORE (ft) RECOVERY	Blows Per 6" on Split Spoon Sampler	or RQD% SAMPLE	DEPTH (Feet)	GRAPHICS		IPTION AND CLAS			ELEVATION (Feet)	Cha Drilli	marks on aracter of ng, Water turn, etc.		WATER LEVELS AND/OR WELL DAT
S1 3 3					m.c. Sand, litt angular, med <u>m. SAND</u> , littl silt, trace cind	ONCRETE and A le f. sand, grey, po ium compact, dry (e c. sand, trace f. ers, brown, poorly medium compact, rery at 3 Ft.	orly grad (FILL) gravel, tra graded,	led, ace		Soil samp 9:15am fr PID = 418 headspac bag.	om 2-3 fee ppm from	et.	

PRC	JECT	NUM	BER: 15091.10	000.	310	000		5/7/12		Г	IOLE N		EK 300	2	P	age 1 of 1
LOC	CATIO	N: S	chenectady, N	lew \	Yor	k			DRILL FLUID: NO	one		DRILLI	NG METHC	D: Geo	probe	
CLIE	ENT:	SI G	Group							DATE	TIME	RE	ADING	WATER DEPTH	CASII BOTT	NG HOLE
CON	ITRA	CTOR	Aztech											(ft)	(ft)	(ft)
DRII	LLER:	Ra	у		IN	SPECTC	R: B .	Blaydes	WATER LEVEL	4-2-12	10:30 AM	Est	timated	1		5
STA	RT DA	ATE a	nd TIME: 4/2/20	012	10:	04:00	AM		OBSERVATIONS							
			nd TIME: 4/2/20)12 1	10:3	30:00 A	٨M									
ELE					CF	IECKED	BY: S	. Fowler								
SAMP./CORE NUMBER	SAMP. ADV. (ft) LEN. CORE (ft)	RECOVERY (ft)	Blows Per 6" on Split Spoon Sampler	"N" Value or RQD%	SAMPLE	DEPTH (Feet)	GRAPHICS		RIPTION AND CLAS			ELEVATION (Feet)	Cha Drilli	marks on aracter of ng, Water turn, etc.		WATER LEVELS AND/OR WELL DATA
								c. Sand, little	ONCRETE and A f.m. sand, trace si lar, medium comp	ilt, grey, p	oorly		Groundwa		t	$\overline{\nabla}$
S1	3	3				-2		<u>m. SAND</u> , litt graded, suba	le f. sand, trace sil ngular, medium cc	t, brown, ompact, w	poorly et (SP)		based on content in black stair sample Soil samp 10:04am f PID = 524	soil samp at top of le collecte rom 2-3 fe ppm from	ed at eet.	<u> </u>
						- 4		End of Recov	very at 3 Ft.				headspace bag. Silty and d sample sle	Iry in tip of		
						- 6										
						-										
						-8										
						_										
						-10										
						_										
						-12										
						-										
						- 14										

PROJECT NUMBER: 15091.1000.	31000 5/7/12		Г	IOLE N	UNBE	ER 380	3	Pa	age 1 of 1
LOCATION: Schenectady, New	York	DRILL FLUID: NO	one		DRILLI	NG METHC			
CLIENT: SI Group			DATE	TIME	RE	ADING	WATER	CASIN	G HOLE MBOTTOM
CONTRACTOR: Aztech						TYPE	(ft)	(ft)	(ft)
DRILLER: Ray	INSPECTOR: B. Blaydes	WATER LEVEL	4-2-12	10:45 AM	Est	imated	None		5
START DATE and TIME: 4/2/2012	10:30:00 AM	OBSERVATIONS							
FINISH DATE and TIME: 4/2/2012 1	10:45:00 AM								
SURFACE ELEV:	CHECKED BY: S. Fowler								
SAMP./CORE NUIMBER SAMP.ADV. (ft) LEN.CORE (ft) (ft) RECOVERY (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)		IPTION AND CLASS			ELEVATION (Feet)	Cha Drilli	marks on aracter of ng, Water turn, etc.		WATER LEVELS AND/OR WELL DATA
S1 3 3 Image: S1 3 3	- 2 gravel, little m dry (FILL) <u>m. SAND</u> , little stain, subrour (SP)	ONCRETE, Some h. sand, grey, angu le c. sand, trace sil hded, medium com sand, trace clay, n e, compact, moist (very at 3 Ft.	lar, comp t, brown/l pact, mo nottled	olack		Strong Od Soil samp 10:30am f Low plasti PID = 628 headspac bag.	le collecte rom 1-2 fe city ppm from	et.	

PR	OJE	ЕСТ	NUM	BER: 15091.1	000.	310	000		5/7/12		F	IOLE N	JINBE	EK 2804	4	F	age 1	of 1
LO	CA	TION	1: S	chenectady, N	lew \	٢or	k			DRILL FLUID: NO	one		DRILLI	NG METHC				
CL	IEN	T:	SI G	iroup							DATE	TIME	RE	ADING	WATER DEPTH	CASII BOTT	NG H OMBC	HOLE
со	ΝΤΙ	RAC	TOR	Aztech										TYPE	(ft)	(ft)		(ft)
DR	ILLE	ER:	Ra	y		IN	SPECTC	R: B.	Blaydes	WATER LEVEL	4-2-12	11:15 AM	Est	timated	None			5
ST	ART	ΓDA	TE a	nd TIME: 4/2/2	012	10:	45:00	AM		OBSERVATIONS								
FIN	lis⊦	I DA	TE ar	nd TIME: 4/2/20)12 1	1:1	15:00 A	M										
SU ELI	RFA EV:	ACE				С⊦	IECKED	BY: S	. Fowler									
			7				-			ļ			7					
SAMP./CORE		LEN. CORE	RECOVERY (ft)	Blows Per 6" on Split Spoon Sampler	"N" Value or RQD%	SAMPLE	DEPTH (Feet)	GRAPHICS		RIPTION AND CLAS			ELEVATION (Feet)	Cha Drilli	marks on aracter of ng, Water turn, etc.	-	LE\ ANI	TER /ELS D/OR . DATA
		2	2				- -2 -4 		Some c. San trace silt, grey		ace m. sa act, dry (F l	nd, I LL)		Soil samp 10:45am f PID = 486 headspac bag. Strong Od Low plasti	rom 1-2 fe ppm from e in soil sa or	eet. 1		

	NUM	BER: 15091.1	000.3	1000		5/7/12			-		R 380	<u> </u>	Pa	ge 1 of 1
LOCATIO	N: S	chenectady, N	lew Y	ork			DRILL FLUID: NO	one	1	DRILLI	NG METHO			
CLIENT:								DATE	TIME		ADING YPE	DEPTH	BOTTO	G HOLE
CONTRAC	CTOR	Aztech						4-2-12	12:00 PM		imated	(ft) None	(ft)	(ft) 5
DRILLER:	Ray	/		INSPECTO	DR: B .	Blaydes	WATER LEVEL OBSERVATIONS	4-2-12	12.001 1	Loi	inaleu	None		
START DA	ATE ar	nd TIME: 4/2/2	012 1	1:15:00	AM		OBOLIVATIONO							
FINISH DA		nd TIME: 4/2/20)12 12	2:00:00 F	PM									
ELEV:			_	CHECKED	BY: S	. Fowler								
SAMP./CORE NUMBER SAMP. ADV. (ft) LEN. CORE (ft)	RECOVERY (ft)	Blows Per 6" on Split Spoon Sampler	"N" Value or RQD%	SAMPLE DEPTH (Feet)	GRAPHICS		IPTION AND CLAS			ELEVATION (Feet)	Cha Drilli	marks on aracter of ng, Water turn, etc.	v	WATER LEVELS AND/OR VELL DA
S1 3	3					m. sand, trace medium comp <u>SILT</u> , Some f compact, moi	trace f. sand, gre	lt, grey, a sand, bro	ngular, own,		Soil samp 11:15am f PID = 233 headspac bag. Low plasti Black stai cinders at silty/sand odor in bla	le collecte rom 1-2 fe ppm from e in soil sa city ning and bottom of layer. Stro	d at eet. ample	

PRO	DJEC.		IBER: 15091.10	000.	310	000		5/7/12		Г	IOLE N			0	P	age 1 of	f 1
LO	CATIC	N: S	chenectady, N	lew `	Yor	k			DRILL FLUID: NO	one		DRILLI	NG METHC				
CLI	ENT:	SI G	Group							DATE	TIME		ADING	WATER DEPTH	CASIN	IG HOL MBOTT	
со	NTRA	CTOR	: Aztech							10.40	40:45 DM		TYPE	(ft) 1.2	(ft)	(ft	t)
DRI	LLER	Ra	у		IN	SPECTC	R: B.	Blaydes	WATER LEVEL	4-2-12	12:15 PM	ESI	timated	1.2		5)
STA	RT D	ATE a	nd TIME: 4/2/20	012	12:	00:00 I	РМ		OBSERVATIONS								
			nd TIME: 4/2/20)12 1	2:1	15:00 F	PM										
SUF					С⊦	IECKED	BY: S	. Fowler									
SAMP./CORE NI IMBER	SAMP. ADV. (ft)	RECOVERY (ft)	Blows Per 6" on Split Spoon Sampler	"N" Value or RQD%	SAMPLE	DEPTH (Feet)	GRAPHICS		RIPTION AND CLAS		DN	ELEVATION (Feet)	Cha Drilli	marks on aracter of ng, Water turn, etc.		WATE LEVEL AND/O WELL D	_S)R
	4	4				-2 -4 -6 -8 -10 -12 -12 -14		Subrounded, CLAY, Some (CL) <u>f.m. SAND</u> , tr wet (SP) <u>SILT</u> , little f. s	Silt, brown, very o race silt, brown, su sand, trace clay, m e, compact, moist (compact, o ubangular	/		Soil samp 12:00pm f 3-4 feet re medium p noted, stro Strong Od PID = 47 p respective headspace bags. Groundwa 1.25 feet is water in th above the	rom 1-2 fe spectively lasticity, rr ong odor lor opm/ 9999 ly from e in soil sa tter noted s likely pe le sand so	eet/ pots ppm ample @ rched		

PRO	JECT	NUM	BER: 15091.1	000.3	31000		5/7/12		I			ER SB0	1	P	age 1 of ²
LOC	ATIO	N: S	chenectady, N	lew Y	ork			DRILL FLUID: NO	one		DRILLI	NG METHO			
			roup						DATE	TIME		ading Type	DEPTH	BOTT	
CON	TRAC	CTOR	Aztech						4-2-12	1:30 PM		timated	(ft) None	(ft)	(ft) 5
DRIL	LER:	Ray	/		INSPECTO	DR: B.	Blaydes	WATER LEVEL OBSERVATIONS	7-2-12	1.001 M		linalea			5
			nd TIME: 4/2/2					OBOLINATIONO							
	SH DA FACE		nd TIME: 4/2/20)12 1	:30:00 P	М									
ELE\	/:				CHECKED	BY: S	. Fowler					1			
SAMP./CUKE NUMBER	SAMP. ADV. (ft) LEN. CORE (ft)	RECOVERY (ft)	Blows Per 6" on Split Spoon Sampler	"N" Value or RQD%	SAMPLE DEPTH (Feet)	GRAPHICS	DESCR	RIPTION AND CLAS	SIFICATIC	ON	ELEVATION (Feet)	Ch Drill	marks on aracter of ng, Water turn, etc.		WATEF LEVELS AND/OF WELL DA
							trace roots, b (SM)	e silt, trace m. sand rown, subrounded	, loose, m	ioist					
~ 4							<u>Clayey SILT</u> moist (ML)	, little f. sand, brow	n, compa	ict,		12:15pm	les collect from 1-2 fe espectively	et &	
S1	4	4			-2							Odor note			
					-							Low plast	icity siit 1ppm/ 38.8	3 nnm	
												respective headspace	ly from		
				-	4		End of Recov	verv at 4 Et				bags.			
					-										
					-6										
					-										
					-8										
					-10										
					-										
					-14										

PROJECT NUMBER: 15091.1000	0.31000	5/7/12		1	IOLE N			0	Pa	ge 1 of 1
LOCATION: Schenectady, New	York		DRILL FLUID: NO	one		DRILLI	NG METHC			
CLIENT: SI Group				DATE	TIME	RE	ADING TYPE	DEPTH	BOTTO	G HOLE MBOTTON
CONTRACTOR: Aztech				4-2-12	2:15 PM		imated	(ft) 1	(ft)	(ft) 5
DRILLER: Ray	INSPECTOR	B. Blaydes	WATER LEVEL OBSERVATIONS	4-2-12	2.13 FM	ESI	Indleu	'		5
START DATE and TIME: 4/2/2012	2 1:30:00 PM	l	OBSERVATIONS							
FINISH DATE and TIME: 4/2/2012	2:15:00 PM									
SURFACE ELEV:	CHECKED B	Y: S. Fowler								
SAMP JCORE SAMP JCORE SAMP JCORE (1) RECOVERY (1) RECOVERY (1) RECOVERY (1) RECOVERY (1) N" Value	or RQD% SAMPLE DEPTH (Feet)	GRA	IPTION AND CLAS			ELEVATION (Feet)	Cha Drilli	marks on aracter of ng, Water turn, etc.		WATER LEVELS AND/OR VELL DATA
S1 3 3	-2 -4 -6 -8 -10 -12 -12 -14	m. sand, trace loose, dry (Fil	ne Silt, trace m. sa ngular, medium co	ubangular	,		Groundwa estimated based on content in Soil samp 1:30pm fro 2-3 feet re PID = 16.5 respective headspac bags.	at 1.0 foo moisture soil samp les collect om 1-2 fee spectively 5ppm/ 10.2	eles. ed at et & 2 ppm	Ţ

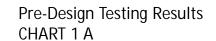
PR	OJEC	CT N	IUME	BER: 15091.10	000.3	310	000		5/7/12		1	IOLE N			9	P	age	1 of 1
LO	CATI	ION:	So	chenectady, N	ew ۱	٢or	k			DRILL FLUID: NO	one		DRILLI	NG METHO				
CL	ENT	: S	SI G	roup							DATE	TIME	RE	ADING TYPE	WATER DEPTH	BOTT	OM	HOLE BOTTOM
со	NTR/	ACT	OR:	Aztech							4.0.40	10:20 DM			(ft)	(ft)	-	(ft)
DR	ILLEF	R: I	Ray	1		IN	SPECTC	R: B.	Blaydes	WATER LEVEL	4-2-12	12:30 PM	Cor	npletion	None			5
ST	ART I	DAT	Ean	d TIME: 4/2/20)12 ⁻	12:	15:00 I	РМ		OBSERVATIONS								
			E an	d TIME: 4/2/20	12 1	2:3	30:00 F	PM										
SU ELE	RFAC EV:					С⊦	IECKED	BY: S	. Fowler									
SAMP./CORE	SAMP. ADV. (ft)	LEN. CORE (ft) RECOVERV	(ft)	Blows Per 6" on Split Spoon Sampler	"N" Value or RQD%	SAMPLE	DEPTH (Feet)	GRAPHICS		RIPTION AND CLAS			ELEVATION (Feet)	Cha Drilli	marks on aracter of ng, Water turn, etc.		LI	/ATER EVELS ND/OR LL DATA
									CRUSHED C m. sand, trac compact, dry	ONCRETE, Some e f. gravel, trace si (FILL)	c. Sand, ilt, grey, n	little nedium						
							-		<u>f. SAND</u> , Sor	ne m. Sand, little s	silt, trace o	C. ,		Soil samp 1:45pm fro	les collect	ed at		
									moist (SM)	subrounded, med	ium comp	act,		3-4 feet re				
S1	4	•	4				-2											
							_							PID = 9.3	nn/6 Enr			
														respective headspac	ly from			
							-4		End of Recov	ion i ot 4 Et				bags.				
										lery al 4 Fl.								
							_											
							-6											
							-											
							-8											
							-											
/11/12																		
105							-10											
CHA.C																		
DATED							-											
S.G.							-12											
1 LOG																		
1509							_											
E LOG																		
SUBSURFACE LOG 15091 LOGS.GPJ UPDATEDCHA.GDT 5/1/12							-14											
UBSU																		
٥.																		

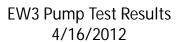
PR	DJEC ⁻	ΓΝυΜ	IBER: 15091.1	000.3	310	000		5/7/12		Г	IOLE N	UNB	ER SBI	0	P	age	1 of 1
			chenectady, N						DRILL FLUID: NO	one		DRILLI	NG METHO		probe		
CLI	ENT:	SI G	Group							DATE	TIME	RE	ADING	WATER DEPTH	CASI BOTT	NG Ome	HOLE BOTTOM
со	NTRA	CTOR	: Aztech								40.45 514			(ft)	(ft)		(ft)
DR	LLER	Ra	у		INS	SPECTC	R: B.	Blaydes	WATER LEVEL	4-2-12	12:45 PM	Est	timated	None			5
STA	RT D	ATE a	nd TIME: 4/2/2	012 ⁻	12:	30:00	PM		OBSERVATIONS								
			nd TIME: 4/2/20)12 1	2:4	45:00 F	PM										
SUI ELE	RFAC				C⊦	IECKED	BY: S	. Fowler									
SAMP./CORE	SAMP. ADV. (ft)	RECOVERY (ft)	Blows Per 6" on Split Spoon Sampler	"N" Value or RQD%	SAMPLE	DEPTH (Feet)	GRAPHICS	DESCR	RIPTION AND CLAS	SIFICATIC	N	ELEVATION (Feet)	Cha Drilli	marks on aracter of ng, Water turn, etc.		LE Al	ATER Evels ND/OR LL DATA
	3	3				-2 -2 -4 -6 -8 -10 -12 -12 -12 -14		f. gravel, trac compact, moi	and, trace clay, o	angular,			Soil samp 12:30pm f PID = 14.6 headspac bag.	from 1-2 fe Sppm from	eet.		

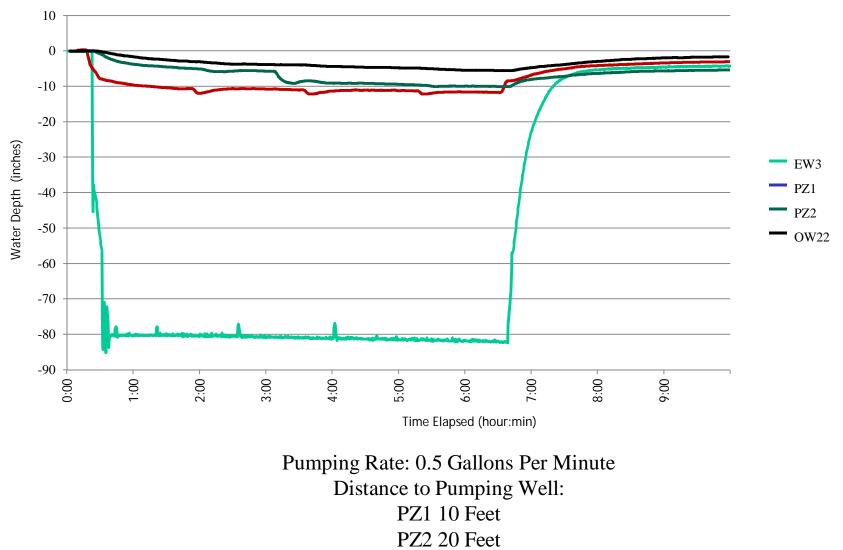
PRO	JECT	NUM	BER: 15091.1	000.3	31000		5/7/12		I			-R 281	1	Pa	age 1 of 1
LOC	ATIO	N: S0	chenectady, N	lew Y	/ork			DRILL FLUID: NO	one	1	DRILLI	NG METHO			I
			roup						DATE	TIME	RE	ADING IYPE	DEPTH	BOTTO	G HOLE
CON	TRAC	CTOR:	Aztech						4-2-12	1:00 PM		imated	(ft) None	(ft)	(ft) 5
DRIL	LER:	Ray	/		INSPEC1	OR: B.	Blaydes	WATER LEVEL OBSERVATIONS	4-2-12	1.00 FIM	ESI	Indleu	None		5
STAF	RT DA	TE ar	nd TIME: 4/2/2	012 ′	12:45:00	PM		OBSERVATIONS							
			nd TIME: 4/2/20)12 1	:00:00 F	PM									
ELE\	FACE /:				CHECKE	d by: S	. Fowler								
SAMP./CORE NUMBER	SAMP. ADV. (ft) LEN. CORE (ft)	RECOVERY (ft)	Blows Per 6" on Split Spoon Sampler	"N" Value or RQD%	SAMPLE DEPTH (Feet)	GRAPHICS		RIPTION AND CLAS			ELEVATION (Feet)	Ch: Drilli	marks on aracter of ing, Water turn, etc.	. ,	WATER LEVELS AND/OR WELL DAT
S1	3	3			-		CRUSHED C f.m.c. sand, tr compact, dry	ONCRETE, Some race silt, grey, ang (FILL)	f. Gravel ular, med	, little lium					
					-2		SILT, little f. s brown, hard, End of Recov		d, trace c	lay,		Soil samp 12:45pm 1 PID = 13. headspac bag.	from 2-3 fe 1ppm from e in soil sa	eet.	
					-4							Low/No p	lasticity		
					_										
					-6										
					-8										
					_										
					-10										
					- 12										
					_										
					- 14										

PRO	JECT	NUM	BER: 15091.1	000.3	3100	0		5/7/12										
LOC	ATIO	N: S	chenectady, N	lew Y	/ork				DRILL FLUID: NO	one	DRILLI							
CLIE	NT:	SI G	roup							DATE	TIME	READING TYPE		WATER CA DEPTH BO		DMBOTTON		
CON	ITRAC	TOR	Aztech							4-2-12	2:25 PM		imated	(ft) None	(ft)	(ft)		
DRIL	LER:	Ray	/		INSP	ECTO	R: B.	Blaydes	WATER LEVEL OBSERVATIONS		2.25 FW	ESI	Imated	NONE		5		
STA	rt da	TE a	nd TIME: 4/2/2	0122	2:00:	00 PN	Л		OBSERVATIONS									
			nd TIME: 4/2/20)12 2	:25:0	00 PN	1											
ELE\					CHE	CKED	by: S	. Fowler										
SAMP./CORE NUMBER	SAMP. ADV. (ft) LEN. CORE (ft)	RECOVERY (ft)	Blows Per 6" on Split Spoon Sampler	"N" Value or RQD%	SAMPLE	DEPTH (Feet)	GRAPHICS		IPTION AND CLAS			ELEVATION (Feet)	Cha Drilli Re	marks on aracter of ing, Water turn, etc.	ŗ	WATER LEVELS AND/OR WELL DAT		
S1	3	3				2		f. gravel, trace	ne m. Sand, little d e c. sand, brown, s bact, moist (SM) /ery at 3 Ft.	clayey silt,	trace ed,		Soil samples collected a 2:00pm from 0-1 feet and 2-3 feet. PID = 3.0ppm from headspace in soil sampl bag from sample from 1-2 feet.		et and ample			
					-	6												
					_	0												
						10												
						12												
						14												

FRO	JECT	NUM	BER: 15091.1	000.3	1000		5/7/12									
LOC	ATIO	N: So	chenectady, N	lew Y	ork			DRILL FLUID: NO	DRILLI	NG METHO						
CLIE	NT:	SI G	roup						DATE	TIME	RE	ADING IYPE			MBOTTON	
CON	TRAC	CTOR:	Aztech					-	4-2-12	1:55 PM		imated	(ft) 2	(ft)	(ft) 5	
DRIL	LER:	Ray	/		INSPECTO	R: B.	Blaydes	WATER LEVEL OBSERVATIONS	7-2-12	1.001 M		inated	-			
STA	RT DA	TE ar	nd TIME: 4/2/2	012 1	:15:00 P	М		Obolition								
	SH DA		d TIME: 4/2/20)12 1:	55:00 PI	M										
ELE\	/:			,	CHECKED	BY: S	. Fowler									
SAMP./CORE NUMBER	SAMP. ADV. (ft) LEN. CORE (ft)	RECOVERY (ft)	Blows Per 6" on Split Spoon Sampler	"N" Value or RQD%	SAMPLE DEPTH (Feet)	GRAPHICS	DESCR	IPTION AND CLAS	SIFICATIO	ЭN	ELEVATION (Feet)	Ch: Drilli	marks on aracter of ing, Water turn, etc.	v	WATER LEVELS AND/OR VELL DAT	
					-			ONCRETE, Some Silt, little f. c. sand, trace clay, brown, very ist (FILL)				Fine grain low plastic Soil samp	city			
S1	3	3			-2		<u>f. SAND</u> , Sor subrounded,	ne Silt, trace c. sa oose, wet (SM)	ind, browi	n,		2:00pm fr 2-3 feet. PID = 4.7 headspac bag in sar feet.	om 1-2 fee ppm from e in soil sa	ample		
				1	-4	<u></u>	End of Recov	ecovery at 3 Ft.			Groundwater is estimated at 2.0 feet based on moisture content in soil samples.					
					-											
					-6											
					-8											
					- 10											
					-											
					-12											
					-14											

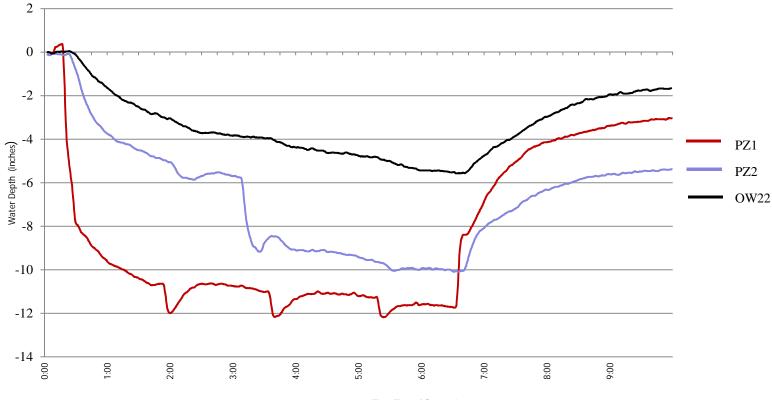

PRO	DJEC	ΓΝυΜ	IBER: 15091.1	000.	310	000		5/7/12		Г	IOLE N			4	F	Page	1 of 1
			chenectady, N						DRILL FLUID: NO	one	DRILLI	probe	;				
CLI	ENT:	SI G	Group							DATE	TIME	RE	ADING	WATER DEPTH	CASI	NG OMB	HOLE
col	NTRA	CTOR	: Aztech										TYPE	(ft)	(ft)		(ft)
DRI	LLER	Ra	у		INS	SPECTO	R: B.	Blaydes	WATER LEVEL	4-2-12	1:15 PM	Est	timated	None			5
STA	RT D	ATE a	nd TIME: 4/2/2	012 ⁻	1:0	0:00 Pl	М		OBSERVATIONS								
			nd TIME: 4/2/20)12 1	:15	5:00 PN	Λ										
SUF ELE	RFACI				C⊦	IECKED	BY: S	. Fowler									
SAMP./CORE NUMBER	SAMP. ADV. (ft) I FN_CORF (ft)						DESCR	RIPTION AND CLAS	SIFICATIC	ON	ELEVATION (Feet)	Cha Drilli	marks on aracter of ng, Water turn, etc.		WATER LEVELS AND/OF WELL DA		
S1	3	3				- 2 4		compact, dry SILT, little f. s moist (ML)	sand, trace c. sand	d, brown, l	hard,		Soil samp 1:00pm fr 2-3 feet. PID = 3.6 headspac bag in sar feet. Low plasti	om 1-2 fee ppm from e in soil sa nple taken	et and ample		
סספטמראכבבטס ומפו בטפטיטים מרמא בבטראיפטן מידוו ב																	




PF	roj	ЕСТ	NUM	BER: 15091.10	000.	310	000		5/7/12	HOLE NUMBER SB15								of 1	
LC	DCA		I: S	chenectady, N	lew `	Yor	k			DRILL FLUID: NO	one	DRILLI							
CL	IEN	NT:	SI G	iroup							DATE	TIME	READING				ING HOLE		
С	ОNT	RAC	TOR	Aztech										TYPE	(ft)	(ft)		(ft)	
DRILLER: Ray INSPECTOR: B. Blaydes										WATER LEVEL	4-2-12	2:45 PM	Est	imated	3			5	
ST	AR	T DA	TE ai	nd TIME: 4/2/20	012	2:3	0:00 PI	М		OBSERVATIONS									
				nd TIME: 4/2/20)12 2	2:45	5:00 PN	Л											
SL EL	EV:					CH	IECKED	BY: S	. Fowler					-					
SAMP./CORE	NUMBER	LEN. CORE (ft)	원 Blows Per 6" 이유 이 문 도 없이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이						IPTION AND CLAS		ELEVATION (Feet)	Cha Drilli	marks on aracter of ng, Water turn, etc.		WATER LEVELS AND/OR WELL DATA				
		4	4				-2 -4 -6 -8 -10 -12 -12 -14		gravel, little si compact, dry <u>m. SAND</u> , littl	e f. sand, brown, s bact, wet (SP)	, medium			Soil samp 1:00pm fro 3-4 feet. PID = 4.2r headspace bag in sam feet. Groundwa estimated based on content in	om 1-2 fee opm from e in soil sa nple taken tter is at 3.0 fee moisture	ample @ 2 t	<u>,</u>		

APPENDIX E

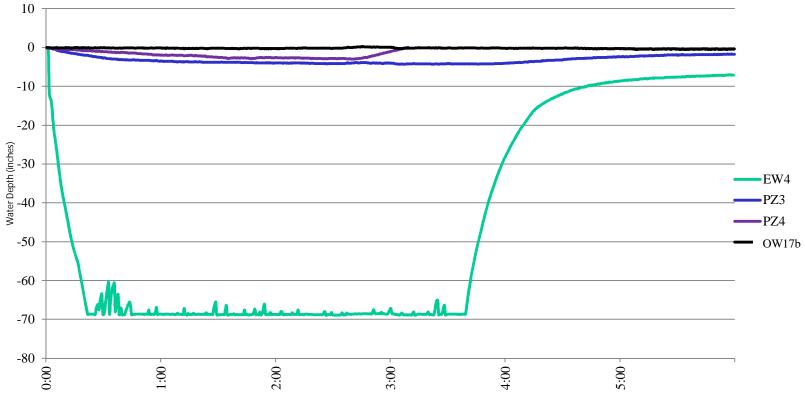
GROUNDWATER EXTRACTION TEST RESULTS



OW22 30 Feet

Pre-Design Testing Results CHART 1 B

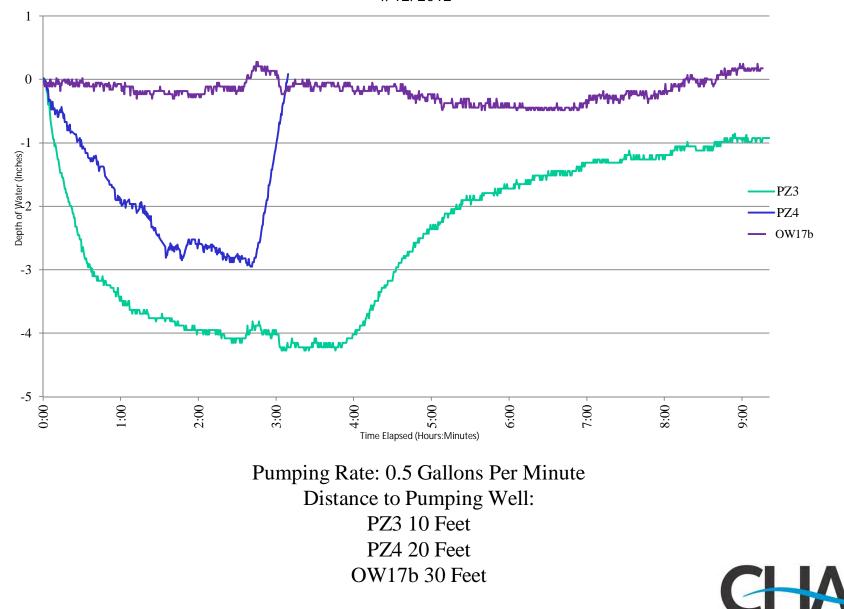
EW3 Pump Test Response Summary 4/16/2012


Time Elapsed (hour:min)

Pumping Rate: 0.5 Gallons Per Minute Distance to Pumping Well: PZ1 10 Feet PZ2 20 Feet OW22 30 Feet

Pre-Design Testing Results CHART 2 A

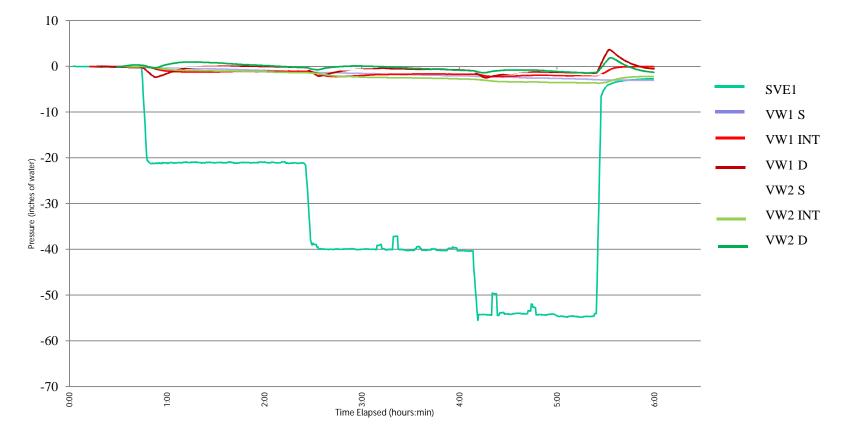
EW4 Pump Test Results 4/12/2012


Time Elapsed (hours:min)

Pumping Rate: 0.5 Gallons Per Minute Distance to Pumping Well: PZ3 10 Feet PZ4 20 Feet OW17b 30 Feet

Pre-Design Testing Results CHART 2 B

EW4 Pump Test Response Summary 4/12/2012

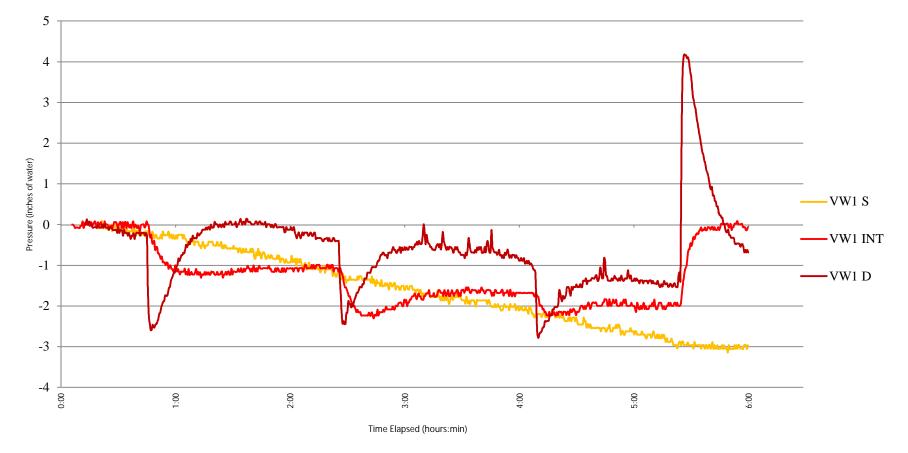


APPENDIX F

SVE TEST RESULTS

Pre-Design Testing Results CHART 3 A

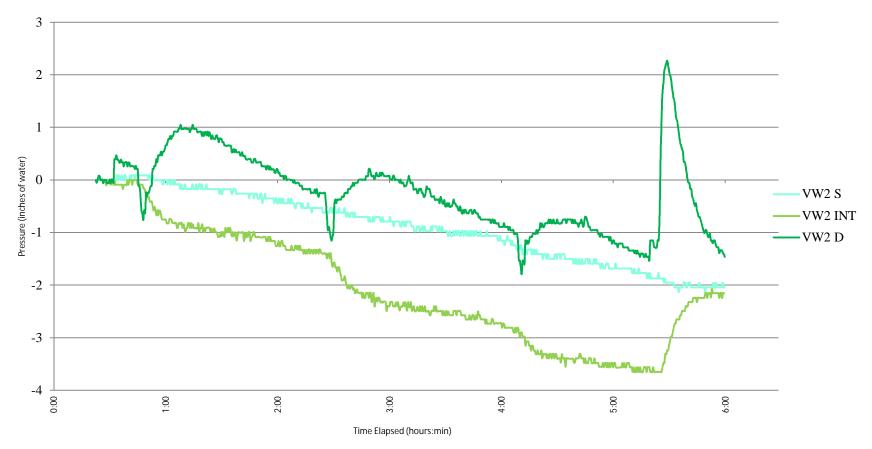
SVE 1 Vacuum Response Summary 4/16/2012



Vacuum Applied: -20, -40, -53 Inches of Water Distance to Pumping Well: VW1 5 Feet VW2 10 Feet OW22 30 Feet

Pre-Design Testing Results CHART 3 B

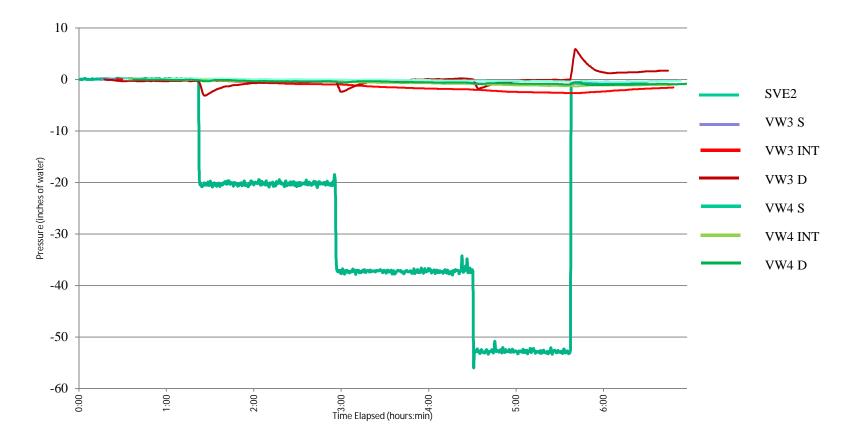
VW1 Vacuum Response Summary 6/16/2012



Vacuum Applied: -20, -40, -53 Inches of Water Distance to Pumping Well: VW1 5 Feet VW1S Open Interval 3-5 Ft Below Ground Surface VW1Int Open Interval 8-10 Ft Below Ground Surface VW1D Open Interval 13-15 Ft Below Ground Surface

Pre-Design Testing Results CHART 3 C

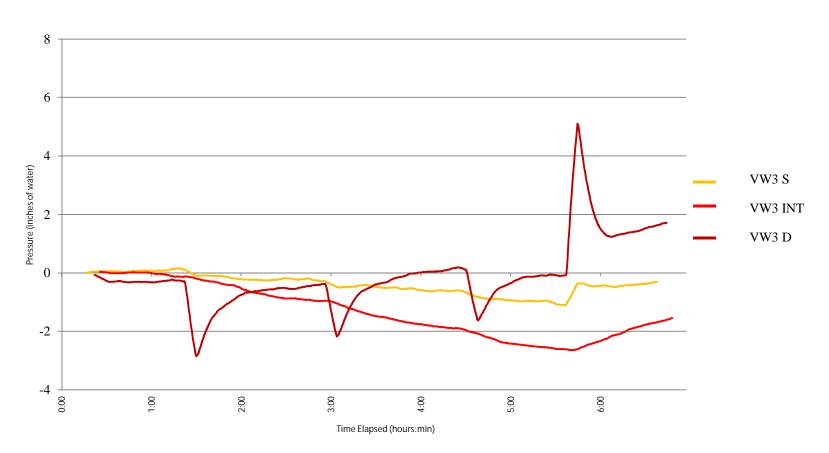
VW2 Vacuum Response Summary 6/16/2012



Vacuum Applied: -20, -40, -53 Inches of Water Distance to Pumping Well: SVE1 10 Feet VW2S Open Interval 3-5 Ft Below Ground Surface VW2Int Open Interval 8-10 Ft Below Ground Surface VW2D Open Interval 13-15 Ft Below Ground Surface

Pre-Design Testing Results CHART 4 A

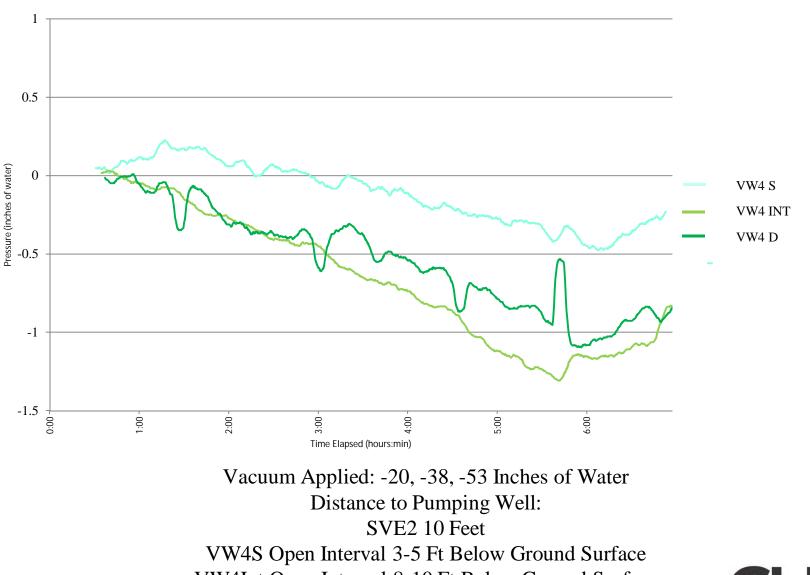
SVE2 Vacuum Response Summary 4/17/2012



Vacuum Applied: -20, -38, -53 Inches of Water Distance to Pumping Well: VW3 5 Feet VW4 10 Feet

Pre-Design Testing Results CHART 4 B

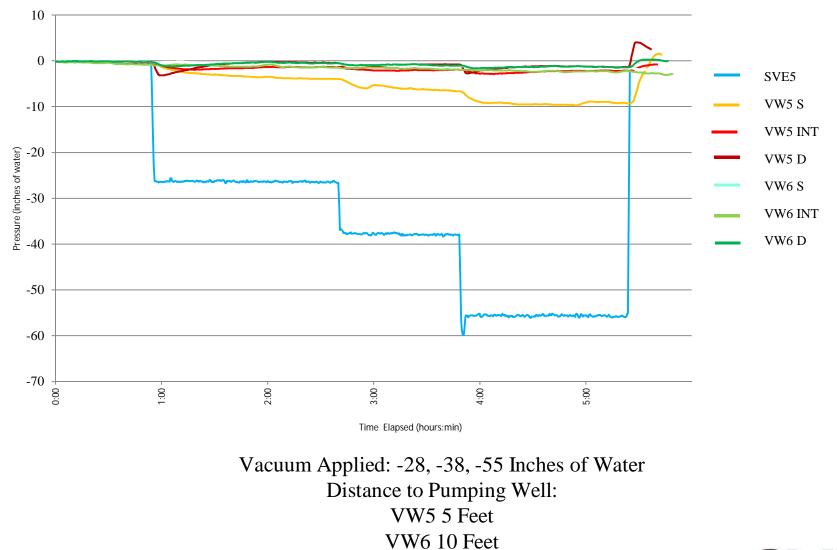
VW3 Vacuum Response Summary 4/17/2012



Vacuum Applied: -20, -38, -53 Inches of Water Distance to Pumping Well: SVE2 5 Feet VW3S Open Interval 3-5 Ft Below Ground Surface VW3Int Open Interval 8-10 Ft Below Ground Surface VW3D Open Interval 13-15 Ft Below Ground Surface

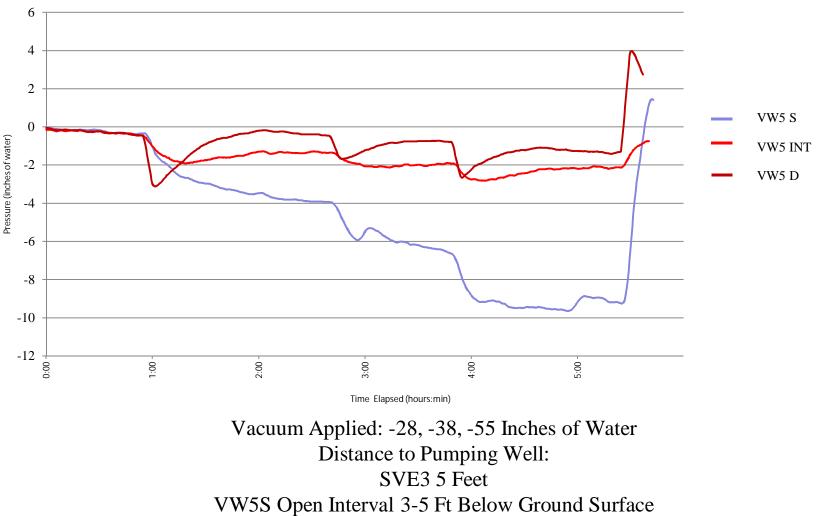
Pre-Design Testing Results CHART 4 C

VW4 Vacuum Response Summary 4/17/2012



VW4Int Open Interval 8-10 Ft Below Ground Surface VW4D Open Interval 13-15 Ft Below Ground Surface

Pre-Design Testing Results CHART 5 A


SVE3 Vacuum Response Summary 4/18/2012

Pre-Design Testing Results CHART 5 B

VW 5 Vacuum Response Summary 4/18/2012

VW5Int Open Interval 8-10 Ft Below Ground Surface VW5D Open Interval 13-15 Ft Below Ground Surface

Pre-Design Testing Results CHART 5 C

VW6 Vacuum Response Summary 4/18/2012

Vacuum Applied: -28, -38, -55 Inches of Water Distance to Pumping Well: SVE3 10 Feet VW6S Open Interval 3-5 Ft Below Ground Surface VW6Int Open Interval 8-10 Ft Below Ground Surface VW6D Open Interval 13-15 Ft Below Ground Surface

APPENDIX G

TO-15 ANALYTICAL REPORT

(ON CD)

ANALYTICAL REPORT

Job Number: 200-10443-1 SDG Number: 200-10443 Job Description: Congress Street

For: CHA Inc 3 Winners Circle PO BOX 5269 Albany, NY 12205-0269 Attention: Mr. Bryon Blaydes

Approved for release. Sara S Goff Project Manager I 4/30/2012 1:48 PM

Designee for Don C Dawicki Customer Service Manager don.dawicki@testamericainc.com 04/30/2012

The test results in this report relate only to sample(s) as received by the laboratory. These test results were derived under a quality system that adheres to the requirements of NELAC. Pursuant to NELAC, this report may not be produced in full without written approval from the laboratory

TestAmerica Laboratories, Inc. TestAmerica Burlington 30 Community Drive, Suite 11, South Burlington, VT 05403 Tel (802) 660-1990 Fax (802) 660-1919 www.testamericainc.com

Table of Contents

Cover Title Page	1
Data Summaries	4
Report Narrative	4
Manual Integration Summary	5
Sample Summary	7
Executive Summary	8
Method Summary	10
Method / Analyst Summary	11
Sample Datasheets	12
QC Data Summary	24
Data Qualifiers	30
QC Association Summary	31
Lab Chronicle	32
Certification Summary	33
Organic Sample Data	34
Air - GC/MS VOA	34
Method TO15	34
Method TO15 QC Summary	35
Method TO15 Sample Data	42
Standards Data	91
Method TO15 ICAL Data	91
Method TO15 CCAL Data	135
Raw QC Data	149
Method TO15 Tune Data	149
Method TO15 Blank Data	157
Method TO15 LCS/LCSD Data	167

Table of Contents

Method TO15 Run Logs	174
Method TO15 Prep Data	179
Air Canister Dilution	180
Pre-shipment Certification	181
LCS Data	183
Blank Data	187
Tune Data	205
IS/RT Data	209
Clean Canister Data	213
ICAL Data	227
ICV/CCV Data	247
Run Logs	259
Shipping and Receiving Documents	268
Client Chain of Custody	269
Sample Receipt Checklist	271

CASE NARRATIVE

Client: CHA Inc

Project: Congress Street

Report Number: 200-10443-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 04/20/2012; the samples arrived in good condition. The container label for the following sample(s) did not match the information listed on the Chain-of-Custody (COC): SVE 2. The container labels list a collection time of 1440. The COC lists the collection stop time as 1140, which was used for login. The container label for the following sample(s) did not match the information listed on the Chain-of-Custody (COC): SVE 3A, SVE 3B. The container labels list only the collection start time. The collection stop time from the COC was used for login.

VOLATILE ORGANIC COMPOUNDS

Samples SVE 2, SVE 3A and SVE 3B were analyzed for Volatile Organic Compounds in accordance with EPA Method TO-15. The samples were analyzed on 04/26/2012.

Sample SVE 3B[20X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No difficulties were encountered during the VOC analyses.

All quality control parameters were within the acceptance limits.

AIR - GC/MS VOA MANUAL INTEGRATION SUMMARY

Lab Name: TestAmerica Burlington Job No.: 200-10443-1							
SDG No.: 200-10	0443						
Instrument ID:	B.i	Analys	is Batch Number: <u>37514</u>				
Lab Sample ID:	IC 200-37514/4	Client	Sample ID:				
Date Analyzed:	04/23/12 19:07	Lab Fi	le ID: <u>bkm004.d</u>	GC Columr	n: RTX-624	ID:	0.32(mm)
COM	IPOUND NAME	RETENTION	MANUAL INTE	GRATION]	
		TIME	REASON	ANALYST	DATE		
Methyl tert-bu	ethyl tert-butyl ether 7.25 Peak not system		Peak not found by the data system	klp	04/25/12 14:16		
Lab Sample ID:	IC 200-37514/10	Client	Sample ID:				
Date Analyzed:	04/24/12 00:20	Lab Fi	le ID: <u>bkm010.d</u>	GC Columr	RTX-624	ID:	0.32 (mm)
COMPOUND NAME RET		RETENTION	TENTION MANUAL INTEG		'EGRATION		
		TIME	REASON	ANALYST	DATE]	
Benzene		10.01 Baseline event klp 04/25/12 14:12					

AIR - GC/MS VOA MANUAL INTEGRATION SUMMARY

Lab Name: Test	America Burlington	Job No	.: 200-10443-1			
SDG No.: 200-1	0443					
Instrument ID:	B.i	Analys	is Batch Number: <u>37718</u>			
Lab Sample ID:	200-10443-3	Client	Sample ID: <u>SVE 3B</u>			
Date Analyzed:	04/26/12 19:38	Lab Fi	le ID: <u>bkmc007.d</u>	GC Columr	n: RTX-624	ID: 0.32(mm)
COI	MPOUND NAME	RETENTION	MANUAL INT	EGRATION		
		TIME	REASON	ANALYST	DATE	

16.53 Analyte misidentified by the

data system

04/26/12 20:38

ahk

4-Ethyltoluene

SAMPLE SUMMARY

Client: CHA Inc

Job Number: 200-10443-1 Sdg Number: 200-10443

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
200-10443-1	SVE 2	Air	04/17/2012 1140	04/20/2012 1015
200-10443-2	SVE 3A	Air	04/18/2012 1147	04/20/2012 1015
200-10443-3	SVE 3B	Air	04/18/2012 1315	04/20/2012 1015

EXECUTIVE SUMMARY - Detections

Client: CHA Inc

Job Number: 200-10443-1 Sdg Number: 200-10443

Lab Sample ID Client Sample ID			Reporting		
Analyte	Result	Qualifier	Limit	Units	Method
200-10443-1 SVE 2					
n-Butane	5.6		5.0	ppb v/v	TO-15
n-Butane	13		12	ug/m3	TO-15
n-Hexane	2.9		2.0	ppb v/v	TO-15
n-Hexane	10		7.0	ug/m3	TO-15
Cyclohexane	5.2		2.0	ppb v/v	TO-15
Cyclohexane	18		6.9	ug/m3	TO-15
2,2,4-Trimethylpentane	2.4		2.0	ppb v/v	TO-15
2,2,4-Trimethylpentane	11		9.3	ug/m3	TO-15
n-Heptane	2.4		2.0	ppb v/v	TO-15
n-Heptane	9.9		8.2	ug/m3	TO-15
Toluene	3.0		2.0	ppb v/v	TO-15
Toluene	11		7.5	ug/m3	TO-15
Ethylbenzene	2.8		2.0	ppb v/v	TO-15
Ethylbenzene	12		8.7	ug/m3	TO-15
Xylene (total)	3.4		2.0	ppb v/v	TO-15
Xylene (total)	15		8.7	ug/m3	TO-15
200-10443-2 SVE 3A					
Ethylbenzene	21		2.0	ppb v/v	TO-15
Ethylbenzene	92		8.7	ug/m3	TO-15
m,p-Xylene	58		5.0	ppb v/v	TO-15
m,p-Xylene	250		22	ug/m3	TO-15
Xylene (total)	59		2.0	ppb v/v	TO-15
Xylene (total)	250		8.7	ug/m3	TO-15
Cumene	2.1		2.0	ppb v/v	TO-15
Cumene	11		9.8	ug/m3	TO-15

EXECUTIVE SUMMARY - Detections

Client: CHA Inc

Job Number: 200-10443-1 Sdg Number: 200-10443

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method	
200-10443-3	SVE 3B						
Cyclohexane		4.5		4.0	ppb v/v	TO-15	
Cyclohexane		16		14	ug/m3	TO-15	
n-Heptane		12		4.0	ppb v/v	TO-15	
n-Heptane		48		16	ug/m3	TO-15	
Ethylbenzene		300		4.0	ppb v/v	TO-15	
Ethylbenzene		1300		17	ug/m3	TO-15	
m,p-Xylene		930		9.9	ppb v/v	TO-15	
m,p-Xylene		4000		43	ug/m3	TO-15	
Xylene (total)		930		4.0	ppb v/v	TO-15	
Xylene (total)		4000		17	ug/m3	TO-15	
Cumene		27		4.0	ppb v/v	TO-15	
Cumene		130		19	ug/m3	TO-15	
n-Propylbenzene		6.8		4.0	ppb v/v	TO-15	
n-Propylbenzene		33		19	ug/m3	TO-15	
1,3,5-Trimethylben	izene	5.6		4.0	ppb v/v	TO-15	
1,3,5-Trimethylben	izene	28		19	ug/m3	TO-15	
1,2,4-Trimethylben	izene	4.2		4.0	ppb v/v	TO-15	
1,2,4-Trimethylben	izene	21		19	ug/m3	TO-15	

METHOD SUMMARY

Client: CHA Inc			Job Number: 200-10443-1 Sdg Number: 200-10443
Description	Lab Location	Method	Preparation Method
Matrix Air			
Volatile Organic Compounds in Ambient Air Collection via Summa Canister	TAL BUR TAL BUR	EPA TO-15	Summa Canister
Lab References:			
TAL BUR = TestAmerica Burlington			
Method References:			

EPA = US Environmental Protection Agency

METHOD / ANALYST SUMMARY

Client: CHA Inc

Job Number: 200-10443-1 Sdg Number: 200-10443

MethodAnalystAnalyst IDEPA TO-15Keene, Angela HAHK

Sdg Number: 200-10443 **Client Sample ID:** SVE 2 Lab Sample ID: 200-10443-1 Date Sampled: 04/17/2012 1140 **Client Matrix:** Date Received: 04/20/2012 1015 Air TO-15 Volatile Organic Compounds in Ambient Air TO-15 200-37718 Analysis Method: Analysis Batch: Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkmc005.d Dilution: 10 Initial Weight/Volume: 20 mL 04/26/2012 1753 Analysis Date: Final Weight/Volume: 200 mL Prep Date: 04/26/2012 1753 Injection Volume: 200 mL Result (ppb v/v) Qualifier RL Analyte Dichlorodifluoromethane 5.0 U 5.0 U Freon 22 5.0 5.0 1,2-Dichlorotetrafluoroethane 2.0 U 2.0 5.0 U 5.0 Chloromethane n-Butane 5.6 5.0 U 2.0 2.0 Vinyl chloride U 1,3-Butadiene 2.0 2.0 Bromomethane 2.0 U 2.0 Chloroethane 5.0 U 5.0 Bromoethene(Vinyl Bromide) 2.0 U 2.0 Trichlorofluoromethane 2.0 U 2.0 U Freon TF 2.0 2.0 U 1,1-Dichloroethene 2.0 2.0 50 U 50 Acetone Isopropyl alcohol 50 U 50 Carbon disulfide 5.0 U 5.0 3-Chloropropene 5.0 U 5.0 Methylene Chloride 5.0 U 5.0 tert-Butyl alcohol 50 U 50 2.0 U 2.0 Methyl tert-butyl ether trans-1,2-Dichloroethene 2.0 U 2.0 29 20 n-Hexane U 1,1-Dichloroethane 2.0 2.0 Methyl Ethyl Ketone 5.0 U 5.0 2.0 U 2.0 cis-1,2-Dichloroethene U 1,2-Dichloroethene, Total 2.0 2.0 U 2.0 Chloroform 2.0 U 50 Tetrahydrofuran 50 1,1,1-Trichloroethane 2.0 U 2.0 Cyclohexane 5.2 2.0 U Carbon tetrachloride 2.0 2.0 2,2,4-Trimethylpentane 2.4 2.0 2.0 U 2.0 Benzene 1,2-Dichloroethane 2.0 U 2.0 n-Heptane 2.4 2.0 Trichloroethene 2.0 U 2.0

Methyl methacrylate

1,2-Dichloropropane

Bromodichloromethane

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

methyl isobutyl ketone

1,1,2-Trichloroethane

Tetrachloroethene

1,4-Dioxane

Toluene

5.0

2.0

50

2.0

2.0

5.0

3.0

2.0 2.0

2.0

U

U

U

U

U

U

U

U

U

Analytical Data

Job Number: 200-10443-1

5.0

2.0

50

2.0

2.0

5.0

2.0

2.0

2.0

2.0

Client: CHA Inc

Client: CHA Inc Client Sample ID: SVE 2 Lab Sample ID: 200-10443-1 Client Matrix: Air TO-15 Volatile Organic Compounds in Ambient Air 200-37718 B.i Analysis Method: TO-15 Analysis Batch: Instrument ID: Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkmc005.d Dilution: Initial Weight/Volume: 20 mL 10 04/26/2012 1753 Analysis Date: Final Weight/Volume: 200 mL Prep Date: 04/26/2012 1753 Injection Volume: 200 mL Qualifier RL Analyte Result (ppb v/v) 5.0 Methyl Butyl Ketone (2-Hexanone) 5.0 υ U Dibromochloromethane 2.0 2.0 U 1,2-Dibromoethane 2.0 2.0 U Chlorobenzene 2.0 2.0

Ethylbenzene	2.8		2.0
m,p-Xylene	5.0	U	5.0
Xylene, o-	2.0	U	2.0
Xylene (total)	3.4		2.0
Styrene	2.0	U	2.0
Bromoform	2.0	U	2.0
Cumene	2.0	U	2.0
1,1,2,2-Tetrachloroethane	2.0	U	2.0
n-Propylbenzene	2.0	U	2.0
4-Ethyltoluene	2.0	U	2.0
1,3,5-Trimethylbenzene	2.0	U	2.0
2-Chlorotoluene	2.0	U	2.0
tert-Butylbenzene	2.0	U	2.0
1,2,4-Trimethylbenzene	2.0	U	2.0
sec-Butylbenzene	2.0	U	2.0
4-Isopropyltoluene	2.0	U	2.0
1,3-Dichlorobenzene	2.0	U	2.0
1,4-Dichlorobenzene	2.0	U	2.0
Benzyl chloride	2.0	U	2.0
n-Butylbenzene	2.0	U	2.0
1,2-Dichlorobenzene	2.0	U	2.0
1,2,4-Trichlorobenzene	5.0	U	5.0
Hexachlorobutadiene	2.0	U	2.0
Naphthalene	5.0	U	5.0

Analyte	Result (ug/m3)	Qualifier	RL
Dichlorodifluoromethane	25	U	25
Freon 22	18	U	18
1,2-Dichlorotetrafluoroethane	14	U	14
Chloromethane	10	U	10
n-Butane	13		12
Vinyl chloride	5.1	U	5.1
1,3-Butadiene	4.4	U	4.4
Bromomethane	7.8	U	7.8
Chloroethane	13	U	13
Bromoethene(Vinyl Bromide)	8.7	U	8.7
Trichlorofluoromethane	11	U	11
Freon TF	15	U	15
1,1-Dichloroethene	7.9	U	7.9
Acetone	120	U	120
Isopropyl alcohol	120	U	120
Carbon disulfide	16	U	16

Analytical Data

Job Number: 200-10443-1 Sdg Number: 200-10443

Date Sampled: 04/17/2012 1140 Date Received: 04/20/2012 1015

Client: CHA Inc						Job Number: 200-10443 Sdg Number: 200-104	
Client Sample ID:	SVE 2						
Lab Sample ID: Client Matrix:	200-10443-1 Air					Date Sampled: 04/17/2012 11 Date Received: 04/20/2012 10	
		TO-15 Volatile Organic	Compounds i	n Ambi	ient Air		_
Analysis Method:	TO-15	Analysis Batch:	200-37718		Instrument ID:	B.i	
Prep Method:	Summa Canister	Prep Batch:	N/A		Lab File ID:	bkmc005.d	
Dilution:	10	·			Initial Weight/Volur		
Analysis Date:	04/26/2012 1753				Final Weight/Volun		
Prep Date:	04/26/2012 1753				Injection Volume:	200 mL	
Top Date.					injoeden velanie.	200 112	
Analyte		Result (u	g/m3)	Qualif	fier	RL	
3-Chloropropene		16		U		16	
Methylene Chloride	9	17		U		17	
tert-Butyl alcohol		150		U		150	
Methyl tert-butyl et		7.2		U		7.2	
trans-1,2-Dichloroe	ethene	7.9		U		7.9	
n-Hexane		10				7.0	
1,1-Dichloroethane		8.1		U		8.1	
Methyl Ethyl Keton		15		U		15	
cis-1,2-Dichloroeth		7.9		U		7.9	
1,2-Dichloroethene	e, Total	7.9		U		7.9	
Chloroform		9.8		U		9.8	
Tetrahydrofuran		150		U		150	
1,1,1-Trichloroetha	ine	11		U		11	
Cyclohexane		18				6.9	
Carbon tetrachlorid		13		U		13	
2,2,4-Trimethylpen	tane	11				9.3	
Benzene		6.4		U		6.4	
1,2-Dichloroethane)	8.1		U		8.1	
n-Heptane		9.9				8.2	
Trichloroethene		11		U		11	
Methyl methacrylat		20		U		20	
1,2-Dichloropropan	16	9.2		U		9.2	
1,4-Dioxane		180		U		180	
Bromodichlorometh		13		U		13	
cis-1,3-Dichloropro	ppene	9.1		U		9.1	

20

11

9.1

11

14

20

17

15

9.2

12

22

8.7

15

8.5

21

9.8

14

9.8

9.8

9.8

10

20

7.5

9.1

11

14

20

17

15

9.2

8.7

22

8.7

8.7

8.5

21

9.8

14

9.8

9.8

9.8

10

1,1,2,2-Tetrachloroethane

1,3,5-Trimethylbenzene

methyl isobutyl ketone

1,1,2-Trichloroethane

Dibromochloromethane

Tetrachloroethene

1,2-Dibromoethane

Chlorobenzene

Ethylbenzene

Xylene (total)

Bromoform

n-Propylbenzene

4-Ethyltoluene

2-Chlorotoluene

m,p-Xylene

Xylene, o-

Styrene

Cumene

trans-1,3-Dichloropropene

Methyl Butyl Ketone (2-Hexanone)

Toluene

υ

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

Client: CHA Inc					J	ob Number: 200-10443-1 Sdg Number: 200-10443
Client Sample ID:	SVE 2					
Lab Sample ID: Client Matrix:	200-10443-1 Air					e Sampled: 04/17/2012 1140 e Received: 04/20/2012 1015
		TO-15 Volatile Organic	Compounds	in Ambie	nt Air	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 10 04/26/2012 1753 04/26/2012 1753	Analysis Batch: Prep Batch:	200-37718 N/A		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	B.i bkmc005.d 20 mL 200 mL 200 mL
Analyte		Result (u	g/m3)	Qualifie	er	RL
tert-Butylbenzene		11		U		11
1,2,4-Trimethylbenz	zene	9.8		U		9.8
sec-Butylbenzene		11		U		11
4-Isopropyltoluene 1,3-Dichlorobenzen	۵	11 12		U U		11 12
1,4-Dichlorobenzen		12		U		12
Benzyl chloride	-	10		U		10
n-Butylbenzene		11		U		11

12

37

21

26

U

U

U

υ

Analytical Data

12

37

21

26

1,2-Dichlorobenzene

Hexachlorobutadiene

Naphthalene

1,2,4-Trichlorobenzene

Client: CHA Inc Client Sample ID: SVE 3A Lab Sample ID: 200-10443-2 Client Matrix: Air

Analytical Data

Job Number: 200-10443-1 Sdg Number: 200-10443

Date Sampled: 04/18/2012 1147 Date Received: 04/20/2012 1015

TO-15 Volatile Organic Compounds in Ambient Air							
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 10 04/26/2012 1846 04/26/2012 1846	Analysis Batch: Prep Batch:	200-37718 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	B.i bkmc006.d 20 mL 200 mL 200 mL		
Analyte		Result (p	pb v/v)	Qualifier	RL		
Dichlorodifluoromet	thane	5.0		U	5.0		
Freon 22		5.0	I	U	5.0		
1,2-Dichlorotetraflu	oroethane	2.0	I	U	2.0		
Chloromethane		5.0	I	U	5.0		
n-Butane		5.0	I	U	5.0		
Vinyl chloride		2.0	1	U	2.0		
1,3-Butadiene		2.0	1	U	2.0		
Bromomethane		2.0	I	U	2.0		
Chloroethane		5.0	1	U	5.0		
Bromoethene(Vinyl		2.0	I	U	2.0		
Trichlorofluorometh	ane	2.0	I	U	2.0		
Freon TF		2.0	I	U	2.0		
1,1-Dichloroethene		2.0	I	U	2.0		
Acetone		50	I	U	50		
Isopropyl alcohol		50	I	U	50		
Carbon disulfide		5.0	I	U	5.0		
3-Chloropropene		5.0	I	U	5.0		
Methylene Chloride	:	5.0	I	U	5.0		
tert-Butyl alcohol		50	I	U	50		
Methyl tert-butyl eth	ner	2.0	I	U	2.0		
trans-1,2-Dichloroe	thene	2.0	I	U	2.0		
n-Hexane		2.0	I	U	2.0		
1,1-Dichloroethane		2.0	I	U	2.0		
Methyl Ethyl Ketone	e	5.0	I	U	5.0		
cis-1,2-Dichloroethe	ene	2.0	I	U	2.0		
1,2-Dichloroethene	, Total	2.0	I	U	2.0		
Chloroform		2.0	I	U	2.0		
Tetrahydrofuran		50	I	U	50		
1,1,1-Trichloroetha	ne	2.0	I	U	2.0		
Cyclohexane		2.0	I	U	2.0		
Carbon tetrachlorid	e	2.0	I	U	2.0		
2,2,4-Trimethylpent	tane	2.0	I	U	2.0		
Benzene		2.0	1	U	2.0		
1,2-Dichloroethane		2.0	I	U	2.0		
n-Heptane		2.0	I	U	2.0		
Trichloroethene		2.0	1	U	2.0		
Methyl methacrylate	e	5.0	1	U	5.0		
1,2-Dichloropropan	e	2.0	1	U	2.0		
1,4-Dioxane		50	I	U	50		
Bromodichlorometh	ane	2.0	1	U	2.0		
cis-1,3-Dichloropro		2.0	I	U	2.0		
methyl isobutyl keto		5.0	1	U	5.0		
Toluene		2.0	1	U	2.0		
trans-1,3-Dichlorop	ropene	2.0	I	U	2.0		
1,1,2-Trichloroetha		2.0	I	U	2.0		
Tetrachloroethene		2.0	1	U	2.0		
					-		

Client: CHA Inc Client Sample ID: SVE 3A

Analytical Data

Job Number: 200-10443-1 Sdg Number: 200-10443

Date Sampled: 04/18/2012 1147 Date Received: 04/20/2012 1015

Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 10 04/26/2012 1846 04/26/2012 1846	Analysis Batch: Prep Batch:	200-37718 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	B.i bkmc006.d 20 mL 200 mL 200 mL
Thep Date.	0.120.2012 1010			injection volume.	200 mL
Analyte		Result (p	pb v/v)	Qualifier	RL
Methyl Butyl Ketone	e (2-Hexanone)	5.0		U	5.0
Dibromochlorometh	nane	2.0		U	2.0
1,2-Dibromoethane		2.0		U	2.0
Chlorobenzene		2.0		U	2.0
Ethylbenzene		21			2.0
m,p-Xylene		58			5.0
Xylene, o-		2.0		U	2.0
Xylene (total)		59			2.0
Styrene		2.0		U	2.0
Bromoform		2.0		U	2.0
Cumene		2.1			2.0
1,1,2,2-Tetrachloro	ethane	2.0		U	2.0
n-Propylbenzene		2.0		U	2.0
4-Ethyltoluene		2.0		U	2.0
1,3,5-Trimethylbenz	zene	2.0		U	2.0
2-Chlorotoluene		2.0		U	2.0
tert-Butylbenzene		2.0		U	2.0
1,2,4-Trimethylbenz	zene	2.0		U	2.0
sec-Butylbenzene		2.0		U	2.0
4-Isopropyltoluene		2.0		U	2.0
1,3-Dichlorobenzen	ie	2.0		U	2.0
1,4-Dichlorobenzen	ie	2.0		U	2.0
Benzyl chloride		2.0		U	2.0
n-Butylbenzene		2.0		U	2.0
1,2-Dichlorobenzen	ie	2.0		U	2.0
1,2,4-Trichlorobenz	ene	5.0		U	5.0
Hexachlorobutadier	ne	2.0		U	2.0
Naphthalene		5.0		U	5.0
Analyte		Result (u	a/m3)	Qualifier	RL
Dichlorodifluoromet	hane	25	9,110)	U	25
Freon 22		18		U	18
1,2-Dichlorotetraflu	oroethane	14		U	14
Chloromethane	ordernane	10		U	10
n-Butane		12		U	12
Vinyl chloride		5.1		U	5.1
1,3-Butadiene		4.4		U	4.4
Bromomethane		7.8		U	7.8
Chloroethane		13		U	13
Bromoethene(Vinyl	Bromide)	8.7		U	8.7
Trichlorofluorometh		11		U	11
Freon TF		15		U	15
1,1-Dichloroethene		7.9		U	7.9
Acetone		120		U	120
Isopropyl alcohol		120		U	120
Carbon disulfide		16		U	16
Testamonica D. "			17 of 271		-

TO-15 Volatile Organic Compounds in Ambient Air

TestAmerica Burlington

Client: CHA Inc Client Sample ID: SVE 3A Lab Sample ID: 200-10443-2 Date Sampled: 04/18/2012 1147 Client Matrix: Date Received: 04/20/2012 1015 Air TO-15 Volatile Organic Compounds in Ambient Air Analysis Method: TO-15 200-37718 Analysis Batch: Instrument ID: Prep Method: Summa Canister Prep Batch: N/A Lab File ID: Dilution: 10 Initial Weight/Volume:

Dilution.	10		initial weight/volume.	20 IIIL	
Analysis Date:	04/26/2012 1846		Final Weight/Volume:	200 mL	
Prep Date:	04/26/2012 1846		Injection Volume:	200 mL	
Analyte		Result (ug/m3)	Qualifier	RL	
3-Chloropropene		16	U	16	
Methylene Chlorid	e	17	U	17	
tert-Butyl alcohol		150	U	150	
Methyl tert-butyl e	ther	7.2	U	7.2	
trans-1,2-Dichloro	ethene	7.9	U	7.9	
n-Hexane		7.0	U	7.0	
1,1-Dichloroethan	e	8.1	U	8.1	
Methyl Ethyl Ketor	ne	15	U	15	
cis-1,2-Dichloroeth	nene	7.9	U	7.9	
1,2-Dichloroethen	e, Total	7.9	U	7.9	
Chloroform		9.8	U	9.8	
Tetrahydrofuran		150	U	150	
1,1,1-Trichloroetha	ane	11	U	11	
Cyclohexane		6.9	U	6.9	
Carbon tetrachlori	de	13	U	13	
2,2,4-Trimethylper	ntane	9.3	U	9.3	
Benzene		6.4	U	6.4	
1,2-Dichloroethan	е	8.1	U	8.1	
n-Heptane		8.2	U	8.2	
Trichloroethene		11	U	11	
Methyl methacryla	ite	20	U	20	
1,2-Dichloropropa		9.2	U	9.2	
1,4-Dioxane		180	U	180	
Bromodichloromet	thane	13	U	13	
cis-1,3-Dichloropro		9.1	U	9.1	
methyl isobutyl ke		20	U	20	
Toluene		7.5	U	7.5	
trans-1,3-Dichloro	propene	9.1	U	9.1	
1,1,2-Trichloroetha		11	U	11	
Tetrachloroethene		14	U	14	
Methyl Butyl Ketor		20	U	20	
Dibromochloromet		17	U	17	
1,2-Dibromoethan		15	U	15	
Chlorobenzene	-	9.2	U	9.2	
Ethylbenzene		92	-	8.7	
m,p-Xylene		250		22	
Xylene, o-		8.7	U	8.7	
Xylene (total)		250	-	8.7	
Styrene		8.5	U	8.5	
Bromoform		21	U	21	
Cumene		11	5	9.8	
1,1,2,2-Tetrachlor	oethane	14	U	14	
n-Propylbenzene	ochano	9.8	U	9.8	
4-Ethyltoluene		9.8	U	9.8	
1,3,5-Trimethylber	nzene	9.8	U	9.8	
2-Chlorotoluene		9.8 10	U	10	
		10	J	10	

Job Number: 200-10443-1 Sdg Number: 200-10443

B.i

bkmc006.d

20 mL

Client: CHA Inc Sdg Number: 200-10443 Client Sample ID: SVE 3A 200-10443-2 Lab Sample ID: Date Sampled: 04/18/2012 1147 Client Matrix: Air Date Received: 04/20/2012 1015 TO-15 Volatile Organic Compounds in Ambient Air Analysis Method: TO-15 Analysis Batch: 200-37718 Instrument ID: B.i Prep Method: Prep Batch: Lab File ID: bkmc006.d Summa Canister N/A Dilution: Initial Weight/Volume: 20 mL 10 04/26/2012 1846 Analysis Date: Final Weight/Volume: 200 mL Prep Date: 04/26/2012 1846 Injection Volume: 200 mL Analyte Result (ug/m3) Qualifier RL tert-Butylbenzene U 11 11 U 1,2,4-Trimethylbenzene 9.8 9.8 U sec-Butylbenzene 11 11 4-Isopropyltoluene 11 U 11 1,3-Dichlorobenzene 12 U 12 1,4-Dichlorobenzene 12 U 12 υ 10 10 Benzyl chloride U n-Butylbenzene 11 11

U

U

υ

U

12

37

21

26

Analytical Data

Job Number: 200-10443-1

12

37

21

26

1,2-Dichlorobenzene

Hexachlorobutadiene

Naphthalene

1,2,4-Trichlorobenzene

Client: CHA Inc Client Sample ID: SVE 3B Lab Sample ID: 200-10443-3 **Client Matrix:** Air TO-15 Volatile Organic Compounds in Ambient Air Analysis Method: TO-15 Analysis Batch: 200-37718 Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkmc007.d Dilution: Initial Weight/Volume: 47 mL 19.8 04/26/2012 1938 Analysis Date: Final Weight/Volume: 200 mL Prep Date: 04/26/2012 1938 Injection Volume: 200 mL Qualifier Analyte Result (ppb v/v) RL Dichlorodifluoromethane 9.9 υ 9.9 U Freon 22 9.9 9.9 U 1,2-Dichlorotetrafluoroethane 4.0 4.0 U 99 99 Chloromethane

	TestAmerica Burlington	Page 20 of 271		
	Tetrachloroethene	4.0	U	4.0
	1,1,2-Trichloroethane	4.0	U	4.0
t	trans-1,3-Dichloropropene	4.0	U	4.0
	Toluene	4.0	U	4.0
	methyl isobutyl ketone	9.9	U	9.9
	cis-1,3-Dichloropropene	4.0	U	4.0
	Bromodichloromethane	4.0	U	4.0
	1,4-Dioxane	99	U	99
	1,2-Dichloropropane	4.0	U	4.0
	Methyl methacrylate		U	9.9
	Trichloroethene	4.0	U	4.0
	n-Heptane	12		4.0
	1,2-Dichloroethane	4.0	U	4.0
	Benzene	4.0	U	4.0
2	2,2,4-Trimethylpentane	4.0	U	4.0
	Carbon tetrachloride	4.0	U	4.0
	Cyclohexane	4.5		4.0
	1,1,1-Trichloroethane	4.0	U	4.0
	Tetrahydrofuran	99	U	99
	Chloroform	4.0	U	4.0
	1,2-Dichloroethene, Total	4.0	U	4.0
	cis-1,2-Dichloroethene	4.0	U	4.0
	Methyl Ethyl Ketone	9.9	U	9.9
	1,1-Dichloroethane	4.0	U	4.0
	n-Hexane	4.0	U	4.0
	trans-1,2-Dichloroethene	4.0	U	4.0
	Methyl tert-butyl ether	4.0	U	4.0
	tert-Butyl alcohol	99	U	99
	Methylene Chloride		U	9.9
	3-Chloropropene	9.9	U	9.9
	Carbon disulfide	9.9	U	9.9
	Isopropyl alcohol		U	99
	Acetone	99	U	99
	1,1-Dichloroethene	4.0	U	4.0
	Freon TF	4.0	U	4.0
	Trichlorofluoromethane	4.0	U	4.0
	Bromoethene(Vinyl Bromide)	4.0	U	4.0
	Chloroethane	9.9	U	9.9
	Bromomethane	4.0	U	4.0
	1,3-Butadiene	4.0	U	4.0
	Vinyl chloride	4.0	U	4.0
I	n-Butane	9.9	U	9.9
	Chloromethane	9.9	U	9.9

Analytical Data

Job Number: 200-10443-1 Sdg Number: 200-10443

Date Sampled: 04/18/2012 1315 Date Received: 04/20/2012 1015

Client: CHA Inc Client Sample ID: SVE 3B Lab Sample ID: 200-10443-3 Client Matrix: Air

TO-15 Volatile Organic Compounds in Ambient Air Analysis Method: TO-15 Analysis Batch: 200-37718 Instrument ID: B.i bkmc007.d Prep Method: Summa Canister Prep Batch: N/A Lab File ID: Dilution: 19.8 Initial Weight/Volume: 47 mL 04/26/2012 1938 Analysis Date: Final Weight/Volume: 200 mL Prep Date: 04/26/2012 1938 Injection Volume: 200 mL Analyte Result (ppb v/v) Qualifier RL U 9.9 Methyl Butyl Ketone (2-Hexanone) 9.9 U 4.0 Dibromochloromethane 4.0 1,2-Dibromoethane 4.0 U 4.0 Chlorobenzene 4.0 U 4.0 4.0 Ethylbenzene 300 9.9 930 m,p-Xylene U Xylene, o-4.0 4.0 Xylene (total) 930 4.0 U Styrene 4.0 4.0 U Bromoform 4.0 4.0 27 4.0 Cumene U 1,1,2,2-Tetrachloroethane 4.0 4.0 n-Propylbenzene 6.8 4.0 4-Ethyltoluene 4.0 U 4.0 1,3,5-Trimethylbenzene 5.6 4.0 2-Chlorotoluene 4.0 U 4.0 U tert-Butylbenzene 4.0 4.0 1,2,4-Trimethylbenzene 4.2 4.0 U sec-Butylbenzene 4.0 4.0 4-Isopropyltoluene 4.0 U 4.0 U 1,3-Dichlorobenzene 4.0 4.0 4.0 U 4.0 1,4-Dichlorobenzene U Benzyl chloride 4.0 4.0 U n-Butylbenzene 4.0 4.0 1,2-Dichlorobenzene 4.0 U 4.0 1.2.4-Trichlorobenzene 9.9 U 9.9 Hexachlorobutadiene 4.0 U 4.0 U Naphthalene 9.9 9.9 Analyta Posult (ug/m3) וח Qualifian

Analyte	Result (ug/m3)	Qualifier	RL
Dichlorodifluoromethane	49	U	49
Freon 22	35	U	35
1,2-Dichlorotetrafluoroethane	28	U	28
Chloromethane	20	U	20
n-Butane	24	U	24
Vinyl chloride	10	U	10
1,3-Butadiene	8.8	U	8.8
Bromomethane	15	U	15
Chloroethane	26	U	26
Bromoethene(Vinyl Bromide)	17	U	17
Trichlorofluoromethane	22	U	22
Freon TF	30	U	30
1,1-Dichloroethene	16	U	16
Acetone	240	U	240
Isopropyl alcohol	240	U	240
Carbon disulfide	31	U	31

Analytical Data

Job Number: 200-10443-1 Sdg Number: 200-10443

Date Sampled: 04/18/2012 1315 Date Received: 04/20/2012 1015

Client Sample ID:	SVE 3B				Sdg Number: 200-104
Lab Sample ID:	200-10443-3			Date	e Sampled: 04/18/2012 13
Client Matrix:	Air			Date	e Received: 04/20/2012 10
		TO-15 Volatile Organic	Compounds in Amb	bient Air	
Analysis Method:	TO-15	Analysis Batch:	200-37718	Instrument ID:	B.i
Prep Method:	Summa Canister	Prep Batch:	N/A	Lab File ID:	bkmc007.d
Dilution:	19.8			Initial Weight/Volume:	47 mL
Analysis Date:	04/26/2012 1938			Final Weight/Volume:	200 mL
Prep Date:	04/26/2012 1938			Injection Volume:	200 mL
Analyte		Result (u		ifier	RL
3-Chloropropene		31	U		31
Methylene Chloride		34	U		34
ert-Butyl alcohol		300	U		300
Methyl tert-butyl eth		14	U		14
rans-1,2-Dichloroet	hene	16	U		16
n-Hexane		14	U		14
1,1-Dichloroethane		16	U		16
Methyl Ethyl Ketone		29	U		29
cis-1,2-Dichloroethe		16	U		16
I,2-Dichloroethene,	Total	16	U		16
Chloroform		19	U		19
Fetrahydrofuran		290	U		290
1,1,1-Trichloroethan	ie	22	U		22
Cyclohexane		16			14
Carbon tetrachloride	9	25	U		25
2,2,4-Trimethylpenta	ane	19	U		19
Benzene		13	U		13
,2-Dichloroethane		16	U		16
n-Heptane		48			16
Frichloroethene		21	U		21
Methyl methacrylate)	41	U		41
1,2-Dichloropropane	9	18	U		18
1,4-Dioxane		360	U		360
Bromodichlorometha	ane	27	U		27
cis-1,3-Dichloroprop	bene	18	U		18
nethyl isobutyl keto	ne	41	U		41
Toluene		15	U		15
rans-1,3-Dichloropr	opene	18	U		18
1,1,2-Trichloroethan	ie	22	U		22
Tetrachloroethene		27	U		27
Methyl Butyl Ketone	e (2-Hexanone)	41	U		41
Dibromochlorometh		34	U		34
1,2-Dibromoethane		30	U		30
Chlorobenzene		18	U		18
Ethylbenzene		1300			17
n,p-Xylene		4000			43
(ylene, o-		17	U		17
(ylene (total)		4000			17
Styrene		17	U		17
Bromoform		41	U		41
Cumene		130			19
I,1,2,2-Tetrachloroe	ethane	27	U		27
n-Propylbenzene		33	-		19
4-Ethyltoluene		19	U		19
1,3,5-Trimethylbenz	ene	28	-		19
2-Chlorotoluene		21	U		21

Client: CHA Inc

TestAmerica Burlington

Analytical Data

Job Number: 200-10443-1 3

Client: CHA Inc Job Number: 200-10443- Sdg Number: 200-10443							
Client Sample ID:	SVE 3B						
Lab Sample ID:	200-10443-3				ſ	Date Sampled	1: 04/18/2012 1315
Client Matrix:	Air]	Date Receive	d: 04/20/2012 1015
		TO-15 Volatile Organic	Compounds i	in Ambie	ent Air		
Analysis Method:	TO-15	Analysis Batch:	200-37718		Instrument ID:	B.i	
Prep Method:	Summa Canister	Prep Batch:	N/A		Lab File ID:	bkmc()07.d
Dilution:	19.8				Initial Weight/Volum	ne: 47 m	L
Analysis Date:	04/26/2012 1938				Final Weight/Volum	e: 200 i	mL
Prep Date:	04/26/2012 1938				Injection Volume:	200	mL
Analyte		Result (u	g/m3)	Qualifie	er	F	RL
tert-Butylbenzene		22		U		2	2
1,2,4-Trimethylbenz	zene	21				1	9
sec-Butylbenzene		22		U		2	2
4-Isopropyltoluene		22		U			2
1,3-Dichlorobenzen		24		U			24
1,4-Dichlorobenzen	е	24		U			24
Benzyl chloride		21		U			21
n-Butylbenzene		22		U		2	2

U

U U

U

24

73

42

52

Analytical Data

24 73

42

52

1,2-Dichlorobenzene

Hexachlorobutadiene

Naphthalene

1,2,4-Trichlorobenzene

TestAmerica Burlington

Job Number: 200-10443-1 Sdg Number: 200-10443

Method: TO-15 Preparation: Summa Canister

B.i

bkmc004.d

200 mL

200 mL

200 mL

Instrument ID:

Initial Weight/Volume:

Final Weight/Volume:

Injection Volume:

Lab File ID:

0.50 0.50 0.20	U U	0.50
0.20	U	0 50
0.20		0.50
	U	0.20
0.50	U	0.50
0.50	U	0.50
	U	0.20
	U	0.20
	U	0.20
	Ŭ	0.50
		0.20
		0.20
		0.20
	-	0.20
		5.0
	-	5.0
		0.50
		0.50
		0.50
		5.0
	-	0.20
	-	0.20
	-	0.20
		0.20
		0.50 0.20
	-	
	-	0.20
	-	0.20
		5.0
		0.20
		0.20
	-	0.20
		0.20
	-	0.20
	-	0.20
		0.20
		0.20
		0.50
		0.20
	U	5.0
0.20	U	0.20
0.20	U	0.20
0.50	U	0.50
0.20	U	0.20
0.20	U	0.20
0.20	U	0.20
	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 5.0 5.0 5.0 0.50 0.50 0.50 0.20	0.20U0.20U0.20U0.20U0.20U0.20U0.20U0.20U5.0U5.0U0.50U0.50U0.50U0.20U0.50U0.50U0.50U0.20U </td

Page 24 of 271

Method Blank - Batch: 200-37718

MB 200-37718/4

04/26/2012 1701

04/26/2012 1701

Air

1.0

N/A

Analysis Batch:

Prep Batch:

Units:

Leach Batch:

200-37718

N/A

N/A

ppb v/v

Client: CHA Inc

Lab Sample ID:

Client Matrix:

Analysis Date:

Prep Date:

Leach Date:

Dilution:

TestAmerica Burlington

Quality Control Results

Job Number: 200-10443-1 Sdg Number: 200-10443

0.20

0.20

0.20

0.20 0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.50

0.20

0.50

Method: TO-15 Preparation: Summa Canister

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 200-37718/4 Air 1.0 04/26/2012 1701 04/26/2012 1701 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	200-37718 N/A N/A ppb v/v	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	
Analyte		Res	ult	Qual	RL
Tetrachloroethene		0.20)	U	0.20
Methyl Butyl Keton	e (2-Hexanone)	0.50)	U	0.50
Dibromochloromet	hane	0.20)	U	0.20
1,2-Dibromoethane	9	0.20)	U	0.20
Chlorobenzene		0.20)	U	0.20
Ethylbenzene		0.20)	U	0.20
m,p-Xylene		0.50)	U	0.50
Xylene, o-		0.20)	U	0.20
Xylene (total)		0.20)	U	0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.50

0.20

0.50

υ

υ

U

U

U

υ

U

U

U

U

U

υ

υ

U

U

υ

U

U

U

U

Method Blank - Batch:	200-37718

Client: CHA Inc

Styrene

Cumene

Bromoform

n-Propylbenzene

4-Ethyltoluene

2-Chlorotoluene

tert-Butylbenzene

sec-Butylbenzene

4-Isopropyltoluene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

Hexachlorobutadiene

1,2,4-Trichlorobenzene

Benzyl chloride

n-Butylbenzene

Naphthalene

1,1,2,2-Tetrachloroethane

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

TestAmerica Burlington

Quality Control Results

Job Number: 200-10443-1 Sdg Number: 200-10443

Method: TO-15 **Preparation: Summa Canister**

Lab Sample ID:MB 200-37718/4Analysis Batch:Client Matrix:AirPrep Batch:Dilution:1.0Leach Batch:Analysis Date:04/26/2012 1701Units:Prep Date:04/26/2012 1701Leach Date:N/AN/A	N/A N/A ug/m3	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	B.i bkmc004.d 200 mL 200 mL 200 mL
Analyte Res	ult Qu	Jal	RL
Dichlorodifluoromethane2.5Freon 221.81,2-Dichlorotetrafluoroethane1.4Chloromethane1.0	U U U U		2.5 1.8 1.4 1.0
n-Butane 1.2 Vinyl chloride 0.5°	U I U		1.2 0.51
1,3-Butadiene0.44Bromomethane0.78Chloroethane1.3			0.44 0.78 1.3
Bromoethene(Vinyl Bromide)0.87Trichlorofluoromethane1.1	7 U U		0.87 1.1
Freon TF1.51,1-Dichloroethene0.75Acetone12	U 9 U U		1.5 0.79 12
Isopropyl alcohol12Carbon disulfide1.6	U U		12 1.6
3-Chloropropene1.6Methylene Chloride1.7tert-Butyl alcohol15	U U U		1.6 1.7 15
Methyl tert-butyl ether0.72trans-1,2-Dichloroethene0.79n-Hexane0.70) U		0.72 0.79 0.70
1,1-Dichloroethane0.8Methyl Ethyl Ketone1.5	U U		0.81 1.5
cis-1,2-Dichloroethene 0.75 1,2-Dichloroethene, Total 0.75 Chloroform 0.98) U		0.79 0.79 0.98
Tetrahydrofuran151,1,1-Trichloroethane1.1	U U		15 1.1
Cyclohexane0.69Carbon tetrachloride1.32,2,4-Trimethylpentane0.93	U		0.69 1.3 0.93
Benzene0.641,2-Dichloroethane0.81	4 U I U		0.64 0.81
n-Heptane0.82Trichloroethene1.1Methyl methacrylate2.0	2 U U U		0.82 1.1 2.0
1,2-Dichloropropane0.921,4-Dioxane18Bromodichloromethane1.3	U		0.92 18 1.3
cis-1,3-Dichloropropene 0.9° methyl isobutyl ketone 2.0	U I U U		0.91 2.0
Toluene0.75trans-1,3-Dichloropropene0.9'1,1,2-Trichloroethane1.1			0.75 0.91 1.1

Page 26 of 271

Client: CHA Inc

Method Blank - Batch: 200-37718

TestAmerica Burlington

Quality Control Results

Job Number: 200-10443-1 Sdg Number: 200-10443

Method: TO-15 Preparation: Summa Canister

B.i

bkmc004.d

Instrument ID:

Lab File ID:

Dilution: Analysis Date: Prep Date: Leach Date:	1.0 04/26/2012 1701 04/26/2012 1701 N/A	Leach Batch: Units:	N/A ug/m3	Initial Weight/Volume: Final Weight/Volume: Injection Volume:	200 200 200	mL
Analyte		Res	sult Q	ual		RL
Tetrachloroethene	;	1.4	U			1.4
Methyl Butyl Ketor	ne (2-Hexanone)	2.0	U			2.0
Dibromochlorome		1.7	U			1.7
1,2-Dibromoethan	e	1.5	U			1.5
Chlorobenzene		0.92				0.92
Ethylbenzene		0.8	7 U			0.87
m,p-Xylene		2.2	U			2.2
Xylene, o-		0.8				0.87
Xylene (total)		0.8				0.87
Styrene		0.8	5 U			0.85
Bromoform		2.1	U			2.1
Cumene		0.98	3 U			0.98
1,1,2,2-Tetrachlor	oethane	1.4	U			1.4
n-Propylbenzene		0.98				0.98
4-Ethyltoluene		0.98				0.98
1,3,5-Trimethylber	nzene	0.98	3 U			0.98
2-Chlorotoluene		1.0	U			1.0
tert-Butylbenzene		1.1	U			1.1
1,2,4-Trimethylber		0.98	3 U			0.98
sec-Butylbenzene		1.1	U			1.1
4-Isopropyltoluene	e	1.1	U			1.1
1,3-Dichlorobenze		1.2	U			1.2
1,4-Dichlorobenze	ene	1.2	U			1.2
Benzyl chloride		1.0	U			1.0
n-Butylbenzene		1.1	U			1.1
1,2-Dichlorobenze		1.2	U			1.2
1,2,4-Trichloroben		3.7	U			3.7
Hexachlorobutadie	ene	2.1	U			2.1
Naphthalene		2.6	U			2.6

Analysis Batch:

Prep Batch:

200-37718

N/A

Client: CHA Inc

Lab Sample ID:

Client Matrix:

Method Blank - Batch: 200-37718

Air

MB 200-37718/4

Client: CHA Inc

Quality Control Results

Job Number: 200-10443-1 Sdg Number: 200-10443

Lab Control Sample - Batch: 200-37718

Method: TO-15 Preparation: Summa Canister

Lab Sample ID:	LCS 200-37718/3	Analysis Batch:	200-37718	Instrument		B.i	
Client Matrix:	Air	Prep Batch:	N/A	Lab File ID:		bkmc003.d	
Dilution:	1.0	Leach Batch:	N/A	Initial Weigh	nt/Volume:	200 mL	
Analysis Date:	04/26/2012 1612	Units:	ppb v/v	Final Weigh		200 mL	
Prep Date:	04/26/2012 1612			Injection Vo	lume:	200 mL	
Leach Date:	N/A						
Apoluto		Crike Amount	Decult	% Doo	Lincit		Qual
Analyte		Spike Amount	Result	% Rec.	Limit		Qual
Dichlorodifluorome	thane	10.0	9.84	98	70 -		
Freon 22		10.0	9.90	99	70 -		
1,2-Dichlorotetraflu	loroethane	10.0	9.94	99	70 -		
Chloromethane		10.0	10.4	104	70 -		
n-Butane		10.0	10.0	100	70 -		
Vinyl chloride		10.0	10.3	103	70 -		
1,3-Butadiene		10.0	11.0	110	70 -		
Bromomethane		10.0	10.0	100	70 -		
Chloroethane		10.0	10.3	103	70 -		
Bromoethene(Viny		10.0	10.6	106	70 -		
Trichlorofluorometh	nane	10.0	10.1	101	70 -		
Freon TF		10.0	11.2	112	70 -		
1,1-Dichloroethene	2	10.0	11.6	116	70 -		
Acetone		10.0	10.4	104	70 -		
Isopropyl alcohol		10.0	10.2	102	70 -		
Carbon disulfide		10.0	10.7	107	70 -		
3-Chloropropene		10.0	10.9	109	70 -		
Methylene Chloride	9	10.0	10.9	109	70 -		
tert-Butyl alcohol		10.0	10.1	101	70 -		
Methyl tert-butyl etl		10.0	10.8	108	70 -		
trans-1,2-Dichloroe	etnene	10.0	10.7	107	70 -		
n-Hexane		10.0	10.7	107	70 -		
1,1-Dichloroethane		10.0	10.5	105	70 -		
Methyl Ethyl Keton		10.0	9.93	99	70 -		
cis-1,2-Dichloroeth	ene	10.0	10.8	108	70 - 70 -		
Chloroform		10.0	10.2	102			
Tetrahydrofuran	20	10.0 10.0	10.5	105 104	70 - 70 -		
1,1,1-Trichloroetha	lite	10.0	10.4		70 - 70 -		
Cyclohexane Carbon tetrachlorid	10	10.0	10.5 10.1	105 101	70 - 70 -		
		10.0	10.1	101	70 - 70 -		
2,2,4-Trimethylpen Benzene	lane	10.0	10.5	105	70 - 70 -		
1,2-Dichloroethane		10.0	10.1	103	70 - 70 -		
n-Heptane	;	10.0	10.2	103	70 - 70 -		
Trichloroethene		10.0	9.99	100	70 -		
Methyl methacrylat	<u>م</u>	10.0	10.3	103	70 -		
1,2-Dichloropropan		10.0	10.5	103	70 -		
1,4-Dioxane		10.0	9.86	99	70 -		
Bromodichlorometh	nane	10.0	10.6	106	70 -		
cis-1,3-Dichloropro		10.0	10.0	102	70 - 70 -		
methyl isobutyl ket	•	10.0	10.2	105	70 - 70 -		
Toluene		10.0	10.4	103	70 -		
trans-1,3-Dichlorop	propene	10.0	10.1	104	70 - 70 -		
1,1,2-Trichloroetha		10.0	9.74	97	70 - 70 -		
Tetrachloroethene		10.0	10.1	101	70 - 70 -		
Methyl Butyl Keton	e (2-Hexanone)	10.0	10.7	107	70 - 70 -		
weary bary NetOI		10.0	10.7	107	70-		

TestAmerica Burlington

Lab Control Sample - Batch: 200-37718

Quality Control Results

Job Number: 200-10443-1 Sdg Number: 200-10443

Method: TO-15 Preparation: Summa Canister

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	LCS 200-37718/3 Air 1.0 04/26/2012 1612 04/26/2012 1612 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	200-37718 N/A N/A ppb v/v	Instrument Lab File ID: Initial Weigh Final Weigh Injection Vo	bkmc0 nt/Volume: 200 nt/Volume: 200	mL mL
Analyte		Spike Amount	Result	% Rec.	Limit	Qual
Dibromochloromet	thane	10.0	10.9	109	70 - 130	
1,2-Dibromoethan	e	10.0	10.1	101	70 - 130	
Chlorobenzene		10.0	9.93	99	70 - 130	
Ethylbenzene		10.0	10.1	102	70 - 130	
m,p-Xylene		20.0	20.4	102	70 - 130	
Xylene, o-		10.0	10.2	102	70 - 130	
Styrene		10.0	10.7	108	70 - 130	
Bromoform		10.0	11.2	112	70 - 130	
Cumene		10.0	10.5	105	70 - 130	
1,1,2,2-Tetrachlor	oethane	10.0	10.2	102	70 - 130	
n-Propylbenzene		10.0	10.5	105	70 - 130	
4-Ethyltoluene		10.0	10.7	107	70 - 130	
1,3,5-Trimethylber	nzene	10.0	10.4	104	70 - 130	
2-Chlorotoluene		10.0	10.5	105	70 - 130	
tert-Butylbenzene		10.0	10.5	105	70 - 130	
1,2,4-Trimethylber	nzene	10.0	10.2	102	70 - 130	
sec-Butylbenzene		10.0	10.5	105	70 - 130	
4-Isopropyltoluene		10.0	10.8	108	70 - 130	
1,3-Dichlorobenze		10.0	10.0	100	70 - 130	
1,4-Dichlorobenze	ene	10.0	10.1	101	70 - 130	
Benzyl chloride		10.0	11.8	118	70 - 130	
n-Butylbenzene		10.0	10.8	108	70 - 130	
1,2-Dichlorobenze		10.0	9.73	97	70 - 130	
1,2,4-Trichloroben		10.0	10.6	106	70 - 130	
Hexachlorobutadie	ene	10.0	9.92	99	70 - 130	
Naphthalene		10.0	11.2	112	70 - 130	

DATA REPORTING QUALIFIERS

Client: CHA Inc

Job Number: 200-10443-1 Sdg Number: 200-10443

Lab Section	Qualifier	Description
Air - GC/MS VOA		
	U	Indicates the analyte was analyzed for but not detected.

Quality Control Results

Client: CHA Inc

Job Number: 200-10443-1 Sdg Number: 200-10443

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
Air - GC/MS VOA					
Analysis Batch:200-377	718				
LCS 200-37718/3	Lab Control Sample	Т	Air	TO-15	
MB 200-37718/4	Method Blank	Т	Air	TO-15	
200-10443-1	SVE 2	Т	Air	TO-15	
200-10443-2	SVE 3A	Т	Air	TO-15	
200-10443-3	SVE 3B	Т	Air	TO-15	

Report Basis

T = Total

Client: CHA Inc

Laboratory Chronicle

Lab ID:	200-104	43-1	Client ID): SVE 2					
			Sample	Date/Time:	04/17/2012 11:40	Received Date/	Time:	04/20/2012 10):15
				Analysis		Date Prepared /			
Method		Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:Summa Canister		200-10443-A-1		200-37718		04/26/2012 17:53	10	TAL BUR	AHK
A:TO-15		200-10443-A-1		200-37718		04/26/2012 17:53	10	TAL BUR	AHK
Lab ID:	200-104	43-2	Client ID	: SVE 3A					
			Sample	Date/Time:	04/18/2012 11:47	Received Date/	/Time:	04/20/2012 10):15
				Analysis		Date Prepared /			
Method		Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:Summa Canister		200-10443-A-2		200-37718		04/26/2012 18:46	10	TAL BUR	AHK
A:TO-15		200-10443-A-2		200-37718		04/26/2012 18:46	10	TAL BUR	AHK
Lab ID:	200-104	43-3	Client ID): SVE 3B					
			Sample	Date/Time:	04/18/2012 13:15	Received Date/	/Time:	04/20/2012 10):15
				Analysis		Date Prepared /			
Method		Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:Summa Canister		200-10443-A-3		200-37718		04/26/2012 19:38	19.8	TAL BUR	AHK
A:TO-15		200-10443-A-3		200-37718		04/26/2012 19:38	19.8	TAL BUR	AHK
Lab ID:	MB		Client ID): N/A					
			Sample	Date/Time:	N/A	Received Date/	/Time:	N/A	
				Analysis		Date Prepared /			
Method		Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:Summa Canister		MB 200-37718/4		200-37718		04/26/2012 17:01	1	TAL BUR	AHK
A:TO-15		MB 200-37718/4		200-37718		04/26/2012 17:01	1	TAL BUR	AHK
Lab ID:	LCS		Client ID): N/A					
			Sample	Date/Time:	N/A	Received Date/	/Time:	N/A	
				Analysis		Date Prepared /			
Method		Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
		LCS 200-37718/3		200-37718		04/26/2012 16:12	1	TAL BUR	AHK
P:Summa Canister		200-37710/3		200-37710		04/26/2012 16:12	·		

Lab References:

TAL BUR = TestAmerica Burlington

Certification Summary

Client: CHA Inc Project/Site: Congress Street

aboratory	Authority	Program	EPA Region	Certification ID
estAmerica Burlington	ACLASS	DoD ELAP		ADE-1492
estAmerica Burlington	Connecticut	State Program	1	PH-0751
estAmerica Burlington	DE Haz. Subst. Cleanup Act	State Program	3	NA
estAmerica Burlington	Florida	NELAC	4	E87467
estAmerica Burlington	Louisiana	NELAC	6	176292
estAmerica Burlington	Maine	State Program	1	VT00008
estAmerica Burlington	Minnesota	NELAC	5	050-999-436
estAmerica Burlington	New Hampshire	NELAC	1	200610
estAmerica Burlington	New Jersey	NELAC	2	VT972
estAmerica Burlington	New York	NELAC	2	10391
estAmerica Burlington	Rhode Island	State Program	1	LAO00298
estAmerica Burlington	USDA	Federal		P330-11-00093
estAmerica Burlington	Vermont	State Program	1	VT-4000
estAmerica Burlington	Virginia	NELAC	3	460209

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Method TO15

Volatile Organic Compounds (GC/MS) by Method TO15

Shipping and Receiving Documents

Suite 11	SOUTH DUTINGTON, VI UDAUS
	Suite 11 Court Burdianton VT CEACO

Canister Samples Chain of Custody Record

TestAmenca Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples.

Client Contact Information	Project Manager:		Sirt Coultar	>		Samples Collected Bv: PUNT0 8	lected Bv:	502	\$34 4			ۍ ا	۲ ۲	cocs			
Company: Oth CONSULTING INC.	Phone: 57	8453	3752				7				1_						
VINNERS CARCLE	Email: K	EXHAN (Q, CHAC	CHACOMPANIES	S. com					_				· 		-	
<u>A-1</u>				>		<u> </u>						(vo					(uo
Phone:フ(ダ 42を) ちじえ/シー FAX:	TA Contact: D D (1000 H	44055									pas					iloes
Project Name: CONCRESS STREET		Analvsis	Analysis Turnaround Time	1d-Time								sətol					səto
Site:	N N	Standard (Sp	(Specify) 🗸									a uş A					u i ni h
PO#	3		ify)	1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -								10.035					çibəq
	Sample	5		Canister Vacuum in Field, "Hg	۲ <u>۶</u> ۳	Flow		91-0	PA 3C	PA 25C	9461-0 MT2	ther (Please s	ample Type	nbient Air	ssə lio	ese liibne	ther (Please s
· CVED	ci /i ~/i ~			(1995) 2 2 2	Idme)	n prop	Canister ID いのんり	I ×			V	<u>- 1 44</u>			s >		0
	- // //		5	2)	131				_				_			
5VE,3A	54/1 2 /12	1130	しんり	-30	2-	4630	4865	×							×		
SVE3B	64/18/12	300	1315	-29	90 1	4975	996 h	\times							\times		
												i i territori I i i i i i i i i i i i i i i i i i i					
									<u> </u>	-							Γ
				Temperatur	Temperature (Fahrenheit)											1	Г
		Interior		Ambient													
	Start																
	Stop			-													
				Pressure (in	Pressure (inches of Hg)												
		Interior		Ambient													
	Start																
1000000	Stop																
Special Instructions/QC Requirements & Comments:	ents:																
					~	\langle											
1 1000						/ //											
Samples Shipped by:	Date/Time:	112 1	610		Samples	Received by:	21/20/	と	(12 iol	Y O	4	5					
Samples Relinquished by:	Date/Time				Received by:	by:	11				, ,	ļ	1				
Relinquished by:	Date/Time:				Received by:	by:											
				1 pered		Condition.											
Lao Use Umy and an an on pper name and an				Openea by:		Condition:											

and the second	
Express US Airbill . Retty 8600 7030 11.	「「「「「「「」」」「「「」」」「「「」」「「」」「「」」「「」」「「」」」「」」「「」」」「」」」「」」」「」」」」
1 From This portion can be removed for Recipitant's records. U Date U FedEx Tracking Number Sender's \$	4a Express Package Service Packages up to 150 lbs. FedEx Priority Overnight Net business moting 'form unses SAUSDAY Delivery INOT averable. FedEx First Overnight Standay Delivery INOT averable.
Name 17784-22 Phone 28 Phone 2	FedEx 2Day Second burress day: Thurday Second burress day: Second burress day Second burress day: Second Second burress day: Second burress day Second burress day: Second burress Second burress day: Second burress Second burress day: Second burress
Address 1.1.5 ULANANDO	PedEx 10ay Freight* Predby: Midry witheres SAUBOARD Observy selected Predex 20ay Freight Second burness dyn, with the detweed on Monday witheres SAUBOARD Observy selected Predex 20ay Freight Second burness dyn, with the detweed on Monday Predex 20ay Freight Second burness dyn, with the detweed on Monday Predex 20ay Freight Second burness dyn, with the detweed on Monday Predex 20ay Freight Second burness dyn, with the detweed on Monday Predex 20ay Freight Second burness dyn, with the detweed on Monday Predex 20ay Freight Second burness dyn, with the detweed on Monday Predex 20ay Freight Second burness dyn, with the detweed on Monday Predex 20ay Freight Second burness dyn, with the detweed on Monday Predex 20ay Freight Second burness dyn, with the detweed on Monday Predex 20ay Freight Second burness dyn, with the detweed on Monday Predex 20ay Freight Second burness dyn, with the detweed on Monday Predex 20ay Freight Second burness dyn, with the detweed on Monday Predex 20ay Freight Second burness dyn, with the detweed on Monday Predex 20ay Freight Second burness dyn, with the detweed on Monday Predex 20ay Freight Second burness dyn, with the detweed on Monday Predex 20ay Freight Second burness SAUBARD Burness
2 Your Internal Billing Reference	- EdEx Envelope* Envelope* FedEx Pak* FedEx Envelope*
Recipient's Name Phone 102 [11]	6 Special Handling SATURDAY Delivery Netwiskie for the contain dangerous goods? Does this shipment contain dangerous goods?
Recipients Address Address We cannot deliver to P.O. boxes of P.D. 21P codes. DepuRportSuitaRoom DepuRportSuitaRoom	No Yes Dry Ice Stoper strated Stoper strated Origonal Dargenus goods (netuding dry ice) cannot be shipped in free Expectaging Cargo Alice at UNISUS 1 Palyment Bill to:
Address To request a procise to hold as a speeche Foota location, print Feota address hore. City C	
0257542119	Total Packages Total Weight Total Charges Total Weight Total Charges Tot
8600 7030 1112	8 NEW Residential Delivery Signature Options Wyouregions signature Oeck Orector Indirect Signature No Signature Required Direct Signature workstoring of the service of
	Rev Data 11/25-Prot 1152019-DIBH-2005 FeetborPRATED IN U.S.A-585

;

Login Sample Receipt Checklist

Client: CHA Inc

Login Number: 10443 List Number: 1 Creator: Kirchner, Benjamin

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	AMBIENT
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	False	Refer to Job Narrative for details.
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	Check done at department level as required.

Job Number: 200-10443-1 SDG Number: 200-10443

List Source: TestAmerica Burlington

APPENDIX H

SOIL SAMPLE RESULTS SUMMARY TABLE

SUMMARY OF SOIL SAMPLE RESULTS

						SB01	SB02	SB03	SB04	SB05	SB		SBO		SBO	
Part 375 Industrial	Part 375 Residential	Part 375 Unrestricted	Method	CAS-RN	Analyte	SB01 SS (2-3) 040212	SB02 SS (2-3) 040212	SB03 SS (1-2) 040212	SB04 SS (2-3) 040212	SB05 SS (1-2) 040212	SB06 SS (1-2) 040212	SB06 SS (3-4) 040212	SB07 SS (1-2) 040212	SB07 SS (3-4) 040212	SB08 SS (1-2) 040212	SB08 SS (2-3) 040212
1,000,000	100,000	1,100	SW8260B	95-50-1	1,2-Dichlorobenzene		3,600	220	2,100							
1,000,000	100,000	120	SW8260B	78-93-3	2-Butanone	8.5 J		89	77	9.6 J					64	
			SW8260B	591-78-6	2-Hexanone	2,600 J										
			SW8260B	108-10-1	4-Methyl-2-Pentanone				4,800							
1,000,000	100,000	50	SW8260B	67-64-1	Acetone	180		140	150	420				10 J	720	
89,000	2,900	60	SW8260B	71-43-2	Benzene	1.5 J	82 J	17	2.3 J	1.1 J						
			SW8260B	98-82-8	Cumene	1,900	3,600	29,000	5,600	7 J		13,000				
			SW8260B	110-82-7	Cyclohexane	530 J		3.2 J								
780,000	30,000	1,000	SW8260B	100-41-4	Ethylbenzene	11,000	71,000	270,000	38,000	38	2.4 J	3,500,000	13 B	6.4 B	8.8	3.3 .
			SW8260B		Methyl Acetate				25,000							
			SW8260B	108-87-2	Methylcyclohexane	19,000	660	26	4.9 J							
			SW8260B		Styrene			240	110			83,000				
1,000,000	100,000		SW8260B	108-88-3	Toluene	2,200	90,000	630,000	63,000	54		130,000	3 J	14	26	3.1 .
1,000,000	100,000	260	SW8260B	1330-20-7	Xylenes, Total	120,000	140,000	1,000,000	150,000	2,700 B	0.95 J	15,000,000	140 B	25 B	34 B	11
			SW8270C	92-52-4	1,1'-Biphenyl		2,300 J	7,700 J	6,700 J			2,800	22 J	87 J		
			SW8270C	105-67-9	2,4-Dimethylphenol			67,000	23,000							
			SW8270C	91-57-6	2-Methylnaphthalene		32,000			640 J		32,000	94 J	430		
1,000,000	34,000		SW8270C	106-44-5	4-Methylphenol											
1,000,000	100,000		SW8270C	83-32-9	Acenaphthene	100 J	2,800 J			160 J			5.9 J			
1,000,000	100,000	100,000	SW8270C	208-96-8	Acenaphthylene				650 J							
			SW8270C	98-86-2	Acetophenone	15,000	36,000		14,000 J			13,000				
1,000,000	100,000		SW8270C	120-12-7	Anthracene	350 J	840 J	8,200 J	2,300 J			200 J		15 J		
11,000	1,000		SW8270C	56-55-3	Benzo(a)Anthracene	3,100 J	2,700 J	8,800 J	3,300 J	220 J	140 J	130 J	14 J	18 J	3,200 J	68 .
1,100	1,000		SW8270C	50-32-8	Benzo(a)Pyrene	2,000 J	1,600 J							9.4 J	2,200 J	110 .
11,000	1,000		SW8270C	205-99-2	Benzo(b)Fluoranthene	4,900	3,300 J	8,800 J	2,900 J				16 J	19 J		110
1,000,000	100,000		SW8270C	191-24-2	Benzo(G,H,I)Perylene	2,500 J		3,200 J								
11,000	1,000	800	SW8270C	207-08-9	Benzo(k)Fluoranthene	2,100 JB	1,400 JB	4,900 JB	1,700 J							48 .
			SW8270C	117-81-7	Bis(2-Ethylhexyl) Phthalate		7,900 J	23,000 J					110 J	120 J		
11,000	1,000		SW8270C	218-01-9	Chrysene	3,500 JB	2,400 JB	8,600 JB	3,000 JB	320 JB	74 J		14 JB	19 JB	3,700 JB	86 .
1,100	330		SW8270C	53-70-3	Dibenzo(A,H)Anthracene	3,000 J										
1,000,000	14,000		SW8270C	132-64-9	Dibenzofuran		2,300 J		3,300 J			1,200 J		42 J		
1,000,000	100,000		SW8270C	206-44-0	Fluoranthene	6,000	5,900 J	22,000 J	7,500 J			250 J	15 J	41 J	4,400 J	63 .
1,000,000	100,000		SW8270C	86-73-7	Fluorene			5,900 J	2,200 J			610 J	10 J	31 J		
11,000	500		SW8270C	193-39-5	Indeno(1,2,3-Cd)Pyrene	2,300 J	1,500 J		1,200 J							75 .
1,000,000	100,000		SW8270C	91-20-3	Naphthalene	1,900 J	59,000	63,000	42,000	520 J		48,000	63 J	230		
1,000,000	100,000		SW8270C	85-01-8	Phenanthrene	1,600 J	5,300 J	35,000 J	12,000 J	400 J		930 J	26 J	84 J		
1,000,000	100,000		SW8270C	108-95-2	Phenol		11,000 J			2,700 J						
1,000,000	100,000	100,000	SW8270C	129-00-0	Pyrene	5,800	4,300 J	17,000 J	5,800 J			210 J		27 J	4,600 J	84 J
				Total VOC		157,420	305,342	1,929,515.2	286,744.2	3,230	3.4	18,726,000	156	55.4	852.8	17.4
				Total SVOC		54,150	182,540	283,100	131.550	4,960	214	99.330	390	1.172	18,100	644
				10101 3100		54,150	102,540	200,100	131,330	4,700	214	77,550	570	1,172	10,100	044

					SBO)9	SE	310	SB11	SB	12	SI	313	SB	314	SB	15
Part 375 Industrial	Part 375 Residential	Part 375 Unrestricted Method	CAS-RN	Analyte	SB09 SS (1-2) 040212	SB09 SS (3-4) 040212	SB10 SS (1-2) 040212	SB10 SS (3-4) 040212	SB11 SS (2-3) 040212	SB12 SS (0-1) 040212	SB12 SS (2-3) 040212	SB13 SS (1-2) 040212	SB13 SS (2-3) 040212	SB14 SS (1-2) 040212	SB14 SS (2-3) 040212	SB15 SS (1-2) 040212	SB15 SS (3-4) 040212
1,000,000	100,000	1,100 SW8260B	95-50-1	1,2-Dichlorobenzene	230												
1,000,000	100,000	120 SW8260B	78-93-3	2-Butanone													12 J
		SW8260B	591-78-6	2-Hexanone	420 J												
		SW8260B	108-10-1	4-Methyl-2-Pentanone													
1,000,000	100,000	50 SW8260B	67-64-1	Acetone					42				32				81
89,000	2,900	60 SW8260B	71-43-2	Benzene													
		SW8260B		Cumene	520						1 J						
		SW8260B	110-82-7	Cyclohexane													
780,000	30,000	1,000 SW8260B		Ethylbenzene	300	0.97 J	220		16	2.7 J	3.8 J	4.5 J	13	1.4 J	5.3	6	5.2 J
		SW8260B		Methyl Acetate													
		SW8260B	108-87-2	Methylcyclohexane	950												
			100-42-5	Styrene													
1,000,000	100,000			Toluene	110 J	3 J	140	42 J	41	5.1 J	3.7 J	12	33		4.6 J	5.6	17
1,000,000	100,000			Xylenes, Total	2,400	2.7 JB	2,100	91 J	65 B	7 JB	42 B	15 B	45 B	8.6 JB	13 B	16	16
			92-52-4	1,1'-Biphenyl													
		SW8270C	105-67-9	2,4-Dimethylphenol													
		SW8270C		2-Methylnaphthalene							860 J						
1,000,000	34,000			4-Methylphenol										47 J			
1,000,000	100,000			Acenaphthene							200 J						
1,000,000	100,000	100,000 SW8270C		Acenaphthylene													
		SW8270C		Acetophenone							2,800 J						
1,000,000	100,000			Anthracene	290 J						420 J						
11,000	1,000			Benzo(a)Anthracene	680 J	47 J	470 J		12 J	63 J	930 J	76 J	140 J	29 J	15 J	62 J	210 J
1,100	1,000			Benzo(a)Pyrene			320 J		12 J		590 J		69 J	27 J	11 J		160 J
11,000	1,000			Benzo(b)Fluoranthene	410 J		670 J		19 J		710 J			24 J	17 J		220 J
1,000,000	100,000			Benzo(G,H,I)Perylene							190 J			17 J			
11,000	1,000			Benzo(k)Fluoranthene	520 JB		280 JB				440 JB			35 JB	11 JB		140 J
				Bis(2-Ethylhexyl) Phthalate		1,100 J	1,900 J		98 J					100 J			1,000 J
11,000	1,000	.,		Chrysene	590 JB		490 JB		18 JB	72 JB	750 JB	52 JB	190 JB	34 JB	17 JB		200 J
1,100	330			Dibenzo(A,H)Anthracene							2,200 J						
1,000,000	14,000			Dibenzofuran													
1,000,000	100,000			Fluoranthene	1,200 J		700 J		21 J	69 J	1,600 J			48 J	17 J		300 J
1,000,000	100,000	30,000 SW8270C		Fluorene													
11,000	500			Indeno(1,2,3-Cd)Pyrene							300 J			16 J			
1,000,000	100,000			Naphthalene							5,600						
1,000,000	100,000	100,000 SW8270C		Phenanthrene	1,200 J		380 J				1,200 J		270 J	16 J	8.1 J		210 J
1,000,000	100,000			Phenol													
1,000,000	100,000	<i>100,000</i> SW8270C	129-00-0	Pyrene	910 J		560 J	42 J	15 J		1,200 J		260 J	37 J	14 J		300 J
			Total VOC		4,700	6.7	2,460	133	164	14.8	50.5	31.5	123	10	22.9	27.6	131.2
			Total SVOC		6,510	1.147	5,770	42	195	204	19,990	128	929	430	110	62	2.740
					0,010	.,	5,,,,5			207	,	.20				02	2,0

APPENDIX I

SOIL SAMPLE ANALYTICAL REPORT

(ON CD)

ANALYTICAL REPORT

Job Number: 480-18049-1 Job Description: Congress Street Phase I - SI Group

> For: CHA Inc 111 Winner Circle PO BOX 5269 Albany, NY 12205-0269 Attention: Mr. Scott Rosecrans

Peggy Gray - Eromann

Approved for release. Peggy Gray-Erdmann Project Manager II 4/13/2012 4:12 PM

Peggy Gray-Erdmann Project Manager II peggy.gray-erdmann@testamericainc.com 04/13/2012

cc: Mr. Keith Cowan Katie E Flood

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project Manager who has signed this report.

TestAmerica Buffalo NELAC Certifications: CADPH 01169CA, FLDOH E87672, ILEPA 200003, KSDOH E-10187, LADEQ 30708, MDH 036-999-337, NHELAP 2973, NJDEP NY455, NHDOH 10026, ORELAP NY200003, PADEP 68-00281, TXCEQ T-104704412-10-1

Table of Contents

Cover Title Page	1
Data Summaries	5
Report Narrative	5
Manual Integration Summary	8
Sample Summary	19
Executive Summary	20
Method Summary	32
Method / Analyst Summary	33
Sample Datasheets	34
Surrogate Summary	175
QC Data Summary	182
Data Qualifiers	214
QC Association Summary	215
Lab Chronicle	225
Certification Summary	236
Organic Sample Data	237
GC/MS VOA	237
Method 8260B	237
Method 8260B QC Summary	238
Method 8260B Sample Data	272
Standards Data	604
Method 8260B ICAL Data	604
Method 8260B CCAL Data	696
Raw QC Data	738
Method 8260B Tune Data	738
Method 8260B Blank Data	765

Table of Contents

Method 8260B LCS/LCSD Data	814
Method 8260B Run Logs	835
Method 8260B Prep Data	844
GC/MS Semi VOA	849
Method 8270C	849
Method 8270C QC Summary	850
Method 8270C Sample Data	879
Standards Data	1273
Method 8270C ICAL Data	1273
Method 8270C CCAL Data	1380
Raw QC Data	1458
Method 8270C Tune Data	1458
Method 8270C Blank Data	1482
Method 8270C LCS/LCSD Data	1516
Method 8270C Run Logs	1550
Method 8270C Prep Data	1556
Inorganic Sample Data	1563
Metals Data	1563
Met Cover Page	1564
Met Sample Data	1565
Met QC Data	1567
Met ICV/CCV	1567
Met CRQL	1570
Met Blanks	1572
Met ICSA/ICSAB	1578
Met MS/MSD/PDS	1580

Table of Contents

Met LCS/LCSD	1583
Met Serial Dilution	1585
Met MDL	1587
Met IECF	1591
Met Linear Ranges	1597
Met Preparation Log	1599
Met Analysis Run Log	1601
Met Raw Data	1604
Met Prep Data	1863
General Chemistry Data	1869
Gen Chem Cover Page	1870
Gen Chem Sample Data	1871
Gen Chem QC Data	1875
Gen Chem ICV/CCV	1875
Gen Chem Blanks	1879
Gen Chem Duplicates	1880
Gen Chem LCS/LCSD	1881
Gen Chem MDL	1882
Gen Chem Preparation Log	1892
Gen Chem Analysis Run Log	1894
Gen Chem Raw Data	1900
Gen Chem Prep Data	1927
Shipping and Receiving Documents	1935
Client Chain of Custody	1936
Sample Receipt Checklist	1939

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

Method(s) 8260B: The following sample(s) was analyzed at less than 1.0 gram due to the abundance of target analytes: SB05 SS (1-2) 040212 DL (480-18049-6 DL). Elevated reporting limits (RLs) are provided.

Method(s) 8260B: The method blank for batch 58395 contained total xylenes above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-analysis of samples was not performed.

Method(s) 8260B: The following sample(s) was diluted due to the abundance of target analytes: SB06 SS (3-4) 040212 (480-18049-8). Elevated reporting limits (RLs) are provided.

Method(s) 8260B: The following samples were diluted due to the abundance of target analytes: SB01 SS (2-3) 040212 DL (480-18049-1 DL), SB02 SS (2-3) 040212 DL (480-18049-2 DL), SB04 SS (2-3) 040212 DL (480-18049-5 DL). Elevated reporting limits (RLs) are provided.

Method(s) 8260B: The following samples were diluted due to the nature of the TCLP sample matrix: (LB 480-58276/1-A), SB02 SS (0-3) 040212 (480-18049-3), SB05 SS (0-3) 040212 (480-18049-7). Elevated reporting limits (RLs) are provided.

Method(s) 8260B: The following samples was diluted due to the abundance of target analytes: SB03 SS (1-2) 040212 DL (480-18049-4 DL), SB06 SS (3-4) 040212 DL (480-18049-8 DL). Elevated reporting limits (RLs) are provided.

Method(s) 8260B: Due to the level of dilution required for the following sample, surrogate recoveries are not usable data: SB03 SS (1-2) 040212 DL (480-18049-4 DL), SB06 SS (3-4) 040212 DL (480-18049-8 DL).

Method(s) 8260B: The following compounds were outside control limits in the continuing calibration verification (CCV) associated with batch 58568: Cyclohexane and Methylcyclohexane. These compounds are not classified as Calibration Check Compounds (CCCs) in the reference method, and the laboratory defaults to in-house and/or project-specific criteria for evaluation. Due to the large number of analytes contained in the CCV, the laboratory's SOP allows for six analytes to be outside limits; therefore, the data have been reported.

Method(s) 8260B: The method blank for batch 58251 contained Ethylbenzene and Xylenes, Total above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 8260B: The following compounds were outside control limits in the continuing calibration verification (CCV) associated with batch 58389: Cyclohexane, Methylcyclohexane and trans-1,4-Dichloro-2-butene. These compounds are not classified as Calibration Check Compounds (CCCs) in the reference method, and the laboratory defaults to in-house and/or project-specific criteria for evaluation. Due to the large number of analytes contained in the CCV, the laboratory's SOP allows for six analytes to be outside limits; therefore, the data have been reported.

Method(s) 8260B: The following compounds were outside control limits in the continuing calibration verification (CCV) associated with batch 58481: Carbon disulfide. These compounds are not classified as Calibration Check Compounds (CCCs) in the reference method, and the laboratory defaults to in-house and/or project-specific criteria for evaluation. Due to the large number of analytes contained in the CCV, the laboratory's SOP allows for six analytes to be outside limits; therefore, the data have been reported.

Method(s) 8260B: The following sample(s) was analyzed medium level due to the nature of the sample matrix: SB10 SS (3-4) 040212 (480-18049-12). Elevated reporting limits (RLs) are provided.

Method(s) 8260B: The following samples were analyzed medium level due to the abundance of target analytes: SB02 SS (2-3) 040212 (480-18049-2), SB10 SS (1-2) 040212 (480-18049-11), SB09 SS (1-2) 040212 (480-18049-22). Elevated reporting limits (RLs) are provided.

Method(s) 8260B: Internal standard responses were outside of acceptance limits for the following sample dilution: SB01 SS (2-3) 040212 DL (480-18049-1 DL). The sample shows evidence of matrix interference.

No other analytical or quality issues were noted.

GC/MS Semi VOA

Method(s) 8270C: The following samples were diluted due to viscosity: SB06 SS (1-2) 040212 (480-18049-26), SB09 SS (3-4) 040212

(480-18049-23), SB15 SS (1-2) 040212 (480-18049-24), SB15 SS (3-4) 040212 (480-18049-25). Elevated reporting limits (RL) are provided.

Method(s) 8270C: The following sample contained one acid surrogate outside acceptance limits: SB15 SS (3-4) 040212 (480-18049-25). The laboratory's SOP allows one acid surrogate to be outside acceptance limits; therefore, re-extraction/re-analysis was not performed. This result has been reported and qualified.

Method(s) 8270C: The following sample was diluted due to the abundance of target analytes: SB02 SS (0-3) 040212 DL (480-18049-3 DL). Elevated reporting limits (RLs) are provided.

Method(s) 8270C: The following samples were diluted due to viscosity: SB01 SS (2-3) 040212 (480-18049-1), SB02 SS (2-3) 040212 (480-18049-2), SB03 SS (1-2) 040212 (480-18049-4), SB04 SS (2-3) 040212 (480-18049-5), SB05 SS (1-2 040212 (480-18049-6), SB10 SS (1-2) 040212 (480-18049-11). Elevated reporting limits (RL) are provided.

Method(s) 8270C: The method blank for preparation batch 480-58238 contained several analytes above the method detection limit. These target analyte concentrations were less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 8270C: The laboratory control sample duplicate (LCSD) for preparation batch 480-58238 exceeded control limits for the following analytes: N-Nitrosodiphenylamine and 2,4-Dinitrotoluene. These analytes were biased high in the LCSD and were not detected in the associated samples; therefore, the data have been reported.

Method(s) 8270C: The %RPD of the laboratory control standard duplicate (LCSD) for preparation batch 480-58238 exceeded control limits for the following analyte: Benzaldehyde.

Method(s) 8270C: Due to the level of dilution required for the following samples, surrogate recoveries are not reported: SB03 SS (1-2) 040212 (480-18049-4), SB04 SS (2-3) 040212 (480-18049-5) SB05 SS (1-2) 040212 (480-18049-6).

Method(s) 8270C: The following samples were diluted due to viscosity: SB06 SS (3-4) 040212 (480-18049-8), SB08 SS (1-2) 040212 (480-18049-18), SB08 SS (2-3) 040212 (480-18049-19), SB09 SS (1-2) 040212 (480-18049-22), SB12 SS (0-1) 040212 (480-18049-20), SB12 SS (2-3) 040212 (480-18049-21), SB13 SS (1-2) 040212 (480-18049-16), SB13 SS (2-3) 040212 (480-18049-17). Elevated reporting limits (RL) are provided.

Method(s) 8270C: Due to the level of dilution required for the following sample, surrogate recoveries are not reported: SB08 SS (1-2) 040212 (480-18049-18).

Method(s) 8270C: The following compounds were outside control limits in the continuing calibration verification (CCV) associated with batch 58695: 4-Chloroaniline, 3,3'-Dichlorobenzidine. These compounds are not classified as Calibration Check Compounds (CCC's) in the reference method. Due to the large number of analytes contained in the CCV, the laboratory's SOP allows for four analytes to be outside limits; therefore, the data have been reported.

Method(s) 8270C: The following compound was outside control limits in the continuing calibration verification (CCV) associated with batch 58601: 4-Nitrophenol. This compound is not classified as a Calibration Check Compound (CCC) in the reference method. Due to the large number of analytes contained in the CCV, the laboratory's SOP allows for four analytes to be outside limits; therefore, the data have been reported.

Method(s) 8270C: The analytes 3-Methylphenol and 4-Methylphenol co-elute and can not be analytical separated. The reported concentrations for these analytes are therefore a total rather than individual quantitated value. Since these analytes co-elute, only 4-Methylphenol was calibrated for in the calibration data.

No other analytical or quality issues were noted.

Metals

Method(s) 6010B: The TCLP Extractor Blank, LB 480-58275, contained total chromium above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples SB02 SS (0-3) 040212 (480-18049-3), SB05 SS (0-3) 040212 (480-18049-7) was not performed.

Method(s) 6010B: The TCLP Extractor Blank, LB 480-58275, contained total barium above the reporting limit (RL). The associated samples SB02 SS (0-3) 040212 (480-18049-3), SB05 SS (0-3) 040212 (480-18049-7) contained detects for this analyte at concentrations greater than 10X the value found in the TCLP Extractor Blank; therefore, re-extraction and/or re-analysis of the samples was not performed.

No other analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

Organic Prep

Method(s) 3550B: Due to the matrix, the following samples could not be concentrated to the final method required volume: SB02 SS (2-3) 040212 (480-18049-2), SB03 SS (1-2) 040212 (480-18049-4), SB04 SS (2-3) 040212 (480-18049-5), SB08 SS (1-2) 040212 (480-18049-18). The reporting limits (RLs) are elevated proportionately.

No other analytical or quality issues were noted.

Lab Name: Test	America Buffalo	Job No	.: 480-18049-1				
SDG No.:							
Instrument ID:	HP5973F	Analys	is Batch Number: 58043				
Lab Sample ID:	480-18049-4	Client	Sample ID: <u>SB03 SS (1-2) 040212</u>				
Date Analyzed:	04/04/12 15:29	Lab Fi	le ID: <u>F7756.D</u>	GC Column	n: <u>ZB-624 (60)</u>	ID: 0.25(mm)	
COM	IPOUND NAME	RETENTION	MANUAL INTEGRATION]	
		TIME	REASON	ANALYST	DATE		
Toluene		7.14	Split Peak	cwiklinc	04/04/12 17:23		
m-Xylene & p-X	ylene	8.72	Wrong peak	cwiklinc	04/04/12 17:23		
Lab Sample ID:	480-18049-5	Client	Sample ID: <u>SB04 SS (2-3) 040212</u>				
Date Analyzed:	04/04/12 15:54	Lab Fi	le ID: <u>F7757.D</u>	GC Colum	n: <u>ZB-624 (60)</u>	ID: 0.25(mm)	
COMPOUND NAME RE		RETENTION	MANUAL INTE	GRATION	GRATION		
		TIME	REASON	ANALYST	DATE		
Toluene		7.13	Missed Peak	cwiklinc	04/04/12 17:26	-	

Lab Name: TestAmerica Buffalo	Job No	.: 480-18049-1			
SDG No.:					
Instrument ID: HP5973G	Analys	is Batch Number: 56586			
Lab Sample ID: STD 480-56586/3 IC	Client	Sample ID:			
Date Analyzed: 03/24/12 01:37	Lab Fi	le ID: G10250.D	GC Colum	n: <u>ZB-624 (60)</u>	ID: 0.25(mm)
COMPOUND NAME	RETENTION	MANUAL	INTEGRATION]
	TIME	REASON	ANALYST	DATE	
Vinyl chloride	1.49	Split Peak	coderd	03/24/12 09:56	
Bromomethane	1.75	Assign Peak	coderd	03/24/12 09:59	-
Chloroethane	1.84	Assign Peak	coderd	03/24/12 09:56	-
Trichlorofluoromethane	2.05	Split Peak	coderd	03/24/12 09:56	-
1,1,2-Trichloro-1,2,2-trifluoroet hane	2.55	Assign Peak	coderd	03/24/12 09:56	-
1,1-Dichloroethene	2.56	Split Peak	coderd	03/24/12 09:56	
Iodomethane	2.72	Split Peak	coderd	03/24/12 09:56	
Carbon disulfide	2.75	Split Peak	coderd	03/24/12 09:56	
Methylene Chloride	3.07	Split Peak	coderd	03/24/12 09:56	
Lab Sample ID: STD 480-56586/4 IC Date Analyzed: 03/24/12 01:59		Sample ID: le ID: <u>G10251.D</u>	GC Colum	n: <u>ZB-624 (60)</u>	ID: 0.25(mm)
COMPOUND NAME	RETENTION	MANUAL	INTEGRATION		7
	TIME	REASON	ANALYST	DATE	
1,1,2-Trichloro-1,2,2-trifluoroet hane	2.52	Split Peak	coderd	03/24/12 09:57	
1,1-Dichloroethene	2.55	Split Peak	coderd	03/24/12 09:57	
Iodomethane	2.71	Split Peak	coderd	03/24/12 09:57	
Lab Sample ID: STD 480-56586/5 IC	Client	Sample ID:		•	-
Date Analyzed: 03/24/12 02:21	Lab Fi	le ID: <u>G10252.D</u>	GC Colum	n: <u>ZB-624 (60)</u>	ID: 0.25(mm)
COMPOUND NAME	RETENTION	MANUAL	INTEGRATION]
	TIME	REASON	ANALYST	DATE	1
1,1,2-Trichloro-1,2,2-trifluoroet]
hane	2.52	Split Peak	coderd	03/24/12 09:58	
	2.52	Split Peak Split Peak	coderd	03/24/12 09:58	-
hane		-			-
hane 1,1-Dichloroethene	2.55	Split Peak	coderd	03/24/12 09:57	-

Lab Name: Test	America Buffalo	Job No	.: 480-18049-1				
SDG No.:							
Instrument ID:	HP5973G	Analys	is Batch Number: 56	586			
Lab Sample ID:	STD 480-56586/6 ICIS	Client	Sample ID:				
Date Analyzed:	03/24/12 02:43	Lab Fi	le ID: G10253.D		GC Column	a: ZB-624 (60)	ID: 0.25(mm)
COM	IPOUND NAME	RETENTION		MANUAL INTEGF	RATION]
		TIME	REASON		ANALYST	DATE	-
Chloroethane		1.91	Assign Peak	(coderd	03/24/12 09:53	
1,1,2-Trichlor hane	o-1,2,2-trifluoroet	2.53	Assign Peak	(coderd	03/24/12 09:53	
Iodomethane		2.72	Split Peak	(coderd	03/24/12 10:01	
Lab Sample ID:	STD 480-56586/7 IC	Client	Sample ID:				-
Date Analyzed:	03/24/12 03:05	Lab Fi	le ID: <u>G10254.D</u>		GC Column	a: ZB-624 (60)	ID: 0.25(mm)
COM	IPOUND NAME	RETENTION		MANUAL INTEGF	RATION]
		TIME	REASON		ANALYST	DATE	
1,1,2-Trichlor hane	o-1,2,2-trifluoroet	2.53	Split Peak	(coderd	03/24/12 09:59	-
1,1-Dichloroet	hene	2.55	Split Peak	(coderd	03/24/12 09:59	
Iodomethane		2.72	Split Peak	(coderd	03/24/12 09:59]
Lab Sample ID:	STD 480-56586/8 IC	Client	Sample ID:				
Date Analyzed:	03/24/12 03:26	Lab Fi	le ID: <u>G10255.D</u>		GC Column	a: ZB-624 (60)	ID: 0.25(mm)
COM	COMPOUND NAME			MANUAL INTEGR	RATION]
		TIME	REASON		ANALYST	DATE]
1,1,2-Trichlor hane	o-1,2,2-trifluoroet	2.53	Split Peak		coderd	03/24/12 10:00	
Iodomethane		2.72	Split Peak	(coderd	03/24/12 10:00]

Lab Name: TestAmerica Buffalo		Job No	Job No.: <u>480-18049-1</u>				
SDG No.:							
Instrument ID:	HP5973V	Analys	is Batch Number:	53870			
Lab Sample ID:	IC 480-53870/8	Client	Sample ID:				
Date Analyzed:	03/05/12 14:58	Lab Fi	le ID: <u>V7103.D</u>		GC Column:	RXI-5Sil MS	ID: 0.25(mm)
CO	MPOUND NAME	RETENTION		MANUAL INTEGF	RATION		

COMPOUND NAME	RETENTION	MANUAL INTE	GRATION	
	TIME	REASON	ANALYST	DATE
Caprolactam	8.25	Assign Peak	pfenderk	03/05/12 16:38

Lab Name: Test	America Buffalo	Job No	.: 480-18049-1				
SDG No.:							
Instrument ID:	HP5973V	Analys	is Batch Number: <u>56937</u>				
Lab Sample ID:	IC 480-56937/2	Client	Sample ID:				
Date Analyzed:	03/27/12 17:22	Lab Fi	le ID:	GC Colum	n: RXI-5Sil MS	ID: 0.25(mm)	
COM	IPOUND NAME	RETENTION	MANUAL IN	ITEGRATION			
		TIME	REASON	ANALYST	DATE		
N-Nitrosodimet	hylamine	2.74	Assign Peak	lyh	03/28/12 08:37		
Pyridine		2.81	Assign Peak	lyh	03/28/12 08:37		
2,4-Dinitrophe	nol	10.04	Assign Peak	lyh	03/28/12 08:37		
4-Nitrophenol		10.13	Assign Peak	lyh	03/28/12 08:37		
Pentachlorophe	nol	11.44	Assign Peak	lyh	03/28/12 08:47		
Benzo(g,h,i)pe	rylene	17.12	Assign Peak	lyh	03/28/12 08:37		
Lab Sample ID:	IC 480-56937/3	Client	Sample ID:				
Date Analyzed:	03/27/12 17:47	Lab Fi	le ID:	GC Colum	n: RXI-5Sil MS	ID: 0.25(mm)	
COM	IPOUND NAME	RETENTION	MANUAL IN	ITEGRATION	EGRATION		
		TIME	REASON	ANALYST	DATE]	
Pentachlorophe	nol	11.44	Assign Peak	lyh	03/28/12 08:47		

Lab Name: Test	America Buffalo	Job No	.: 480-18049-1				
SDG No.:							
Instrument ID:	HP5973V	Analys	is Batch Number: <u>58452</u>				
Lab Sample ID:	CCVIS 480-58452/2	Client	Sample ID:				
Date Analyzed:	04/06/12 11:19	Lab Fi	le ID: <u>V8603.D</u>	GC Colum	n: RXI-5Sil MS	ID: <u>0</u> .	25(mm)
COM	IPOUND NAME	RETENTION	MANUAL INT]		
		TIME	REASON	ANALYST	DATE	-	
N-Nitrosodimet	hylamine	2.75	Assign Peak	lyh	04/06/12 12:03		
Pyridine		2.81	Assign Peak	lyh	04/06/12 14:22		
Lab Sample ID:	480-18049-26	Client	Sample ID: <u>SB06 SS (1-2) 040212</u>	2			
Date Analyzed:	04/06/12 17:20	Lab Fi	le ID: <u>V8618.D</u>	GC Colum	n: RXI-5Sil MS	ID: <u>0</u> .	25(mm)
COM	IPOUND NAME	RETENTION	MANUAL INT	EGRATION	GRATION		
		TIME	REASON	ANALYST	DATE]	
Benzo(a)anthra	cene	14.11	Assign Peak	lyh	04/07/12 12:30	-	
Chrysene		14.14	Assign Peak	lyh	04/07/12 12:30]	

Lab Name: Test	America Buffalo	Job No	.: 480-18049-1				
SDG No.:							
Instrument ID:	HP5973V	Analys	is Batch Number: 58601				
Lab Sample ID:	CCVIS 480-58601/2	Client	Sample ID:				
Date Analyzed:	04/07/12 13:15	Lab Fi	le ID:	GC Colum	n: RXI-5Sil MS	ID:	0.25(mm)
COM	IPOUND NAME	RETENTION	MANUAL IN	TEGRATION]	
		TIME	REASON	ANALYST	DATE		
N-Nitrosodimet	hylamine	2.74	Assign Peak	lyh	04/07/12 13:37		
Pyridine		2.80	Assign Peak	lyh	04/07/12 13:37		
2-Fluorophenol	-	4.32	Assign Peak	lyh	04/07/12 13:37		
Lab Sample ID:	LCS 480-58531/2-A	Client	Sample ID:				
Date Analyzed:	04/07/12 15:41	Lab Fi	le ID:	GC Colum	n: RXI-5Sil MS	ID:	0.25(mm)
COM	IPOUND NAME	RETENTION	MANUAL IN	TEGRATION]	
		TIME	REASON	ANALYST	DATE]	
Pyridine		2.79	Assign Peak	lyh	04/09/12 09:35		
Lab Sample ID:	LCSD 480-58531/3-A	Client	Sample ID:				
Date Analyzed:	04/07/12 16:05	Lab Fi	le ID: <u>V8645.D</u>	GC Colum	n: RXI-5Sil MS	ID:	0.25(mm)
COM	COMPOUND NAME		MANUAL IN	TEGRATION]	
		TIME	REASON	ANALYST	DATE]	
Pyridine		2.79	Assign Peak	lyh	04/09/12 09:37		
· · · · · · · · · · · · · · · · · · ·						-	

Lab Name: TestAmerica Buffalo	Job No	.: 480-18049-1			
SDG No.:					
Instrument ID: HP5973V	Analys	is Batch Number: 58695			
Lab Sample ID: <u>IC 480-58695/2</u>	Client	Sample ID:			
Date Analyzed: 04/09/12 14:10	Lab Fi	le ID:	GC Colum	n: RXI-5Sil MS	ID: 0.25(mm)
COMPOUND NAME	RETENTION	MANUA	L INTEGRATION]
	TIME	REASON	ANALYST	DATE	-
N-Nitrosodimethylamine	2.77	Assign Peak	lyh	04/09/12 15:30	
Pyridine	2.83	Assign Peak	lyh	04/09/12 15:30	
2,4,5-Trichlorophenol	9.04	Assign Peak	lyh	04/09/12 15:30	-
2-Nitroaniline	9.38	Assign Peak	lyh	04/09/12 15:30	-
3-Nitroaniline	9.94	Assign Peak	lyh	04/09/12 15:30	
2,4-Dinitrophenol	10.09	Assign Peak	lyh	04/09/12 15:30	
4-Nitrophenol	10.21	Assign Peak	lyh	04/09/12 16:40	
4-Nitroaniline	10.67	Assign Peak	lyh	04/09/12 15:30	
Pentachlorophenol	11.45	Assign Peak	lyh	04/09/12 15:30	
3,3'-Dichlorobenzidine	14.09	Assign Peak	lyh	04/09/12 15:30	
Benzo(k)fluoranthene	15.13	Assign Peak	lyh	04/09/12 15:30	
Indeno(1,2,3-cd)pyrene	16.78	Assign Peak	lyh	04/09/12 15:30	
Dibenz(a,h)anthracene	16.81	Assign Peak	lyh	04/09/12 15:30	
Lab Sample ID: <u>IC 480-58695/3</u>	Client	Sample ID:			
Date Analyzed: 04/09/12 14:38	Lab Fi	le ID:	GC Colum	n: RXI-5Sil MS	ID: 0.25(mm)
COMPOUND NAME	RETENTION	MANUA	L INTEGRATION]
	TIME	REASON	ANALYST	DATE	
Pyridine	2.82	Assign Peak	lyh	04/09/12 15:33	1
2,4-Dinitrophenol	10.06	Assign Peak	lyh	04/09/12 15:33]
Lab Sample ID: ICIS 480-58695/4	Client	Sample ID:			-
Date Analyzed: 04/09/12 15:02	Lab Fi	le ID:	GC Colum	n: <u>RXI-5Sil MS</u>	ID: 0.25(mm)
COMPOUND NAME	RETENTION	MANUA	L INTEGRATION]
	TIME	REASON	ANALYST	DATE]
Pyridine	2.02	Assign Peak	lyh	04/09/12 15:24	1

Lab Name: Test	America Buffalo	Job No	.: 480-18049-1				
SDG No.:							
Instrument ID:	HP5973V	Analys	is Batch Number: <u>58695</u>				
Lab Sample ID:	IC 480-58695/5	Client	Sample ID:				
Date Analyzed:	04/09/12 15:27	Lab Fi	le ID: <u>V8761.D</u>	GC Colum	n: RXI-5Sil MS	ID:	0.25(mm)
COM	COMPOUND NAME RETENTION MANUAL INTEGRATION]		
		TIME	REASON	ANALYST	DATE		
Pyridine		2.83	Assign Peak	lyh	04/09/12 16:32]	
Lab Sample ID:	CCVIS 480-58695/10	Client	Sample ID:				
Date Analyzed:	04/09/12 17:27	Lab Fi	le ID:	GC Colum	n: RXI-5Sil MS	ID:	0.25(mm)
COM	IPOUND NAME	RETENTION	MANUAL INT	EGRATION]	
		TIME	REASON	ANALYST	DATE		
N-Nitrosodimet	hylamine	2.75	Assign Peak	lyh	04/09/12 17:47	-	
Pyridine		2.83	Assign Peak	lyh	04/09/12 17:47]	
Lab Sample ID:	LCS 480-58238/2-A	Client	Sample ID:				
Date Analyzed:	04/09/12 19:52	Lab Fi	le ID: <u>V8772.D</u>	GC Colum	n: RXI-5Sil MS	ID:	0.25(mm)
COMPOUND NAME		RETENTION MANUAL INTEGRATION]		
		TIME	REASON	ANALYST	DATE		
Caprolactam		8.29	Assign Peak	lyh	04/10/12 10:59	1	
Lab Sample ID:	480-18049-1	Client	Sample ID: SB01 SS (2-3) 04021	2			
Date Analyzed:	04/09/12 20:40	Lab Fi	le ID: <u>V8774.D</u>	GC Colum	n: RXI-5Sil MS	ID:	0.25(mm)
COMPOUND NAME		RETENTION MANUAL INTEGRATION]		
		TIME	REASON	ANALYST	DATE		
Benzo(k)fluora	nthene	15.12	Assign Peak	lyh	04/10/12 11:05		
Lab Sample ID:	480-18049-2	Client	Sample ID: <u>SB02 SS (2-3) 04021</u>	2			
Date Analyzed:	04/09/12 21:04	Lab Fi	le ID:	GC Colum	n: RXI-5Sil MS	ID:	0.25(mm)
COM	IPOUND NAME	RETENTION	MANUAL INT	EGRATION]	
		TIME	REASON	ANALYST	DATE]	
2-Fluorophenol		4.32	Assign Peak	lyh	04/10/12 11:08	1	
Indeno(1,2,3-c	d)pyrene	16.75	Assign Peak	lyh	04/10/12 11:08]	

Lab Name: Test	America Buffalo	Job No	.: 480-18049-1				
SDG No.:							
Instrument ID:	HP5973V	Analys	is Batch Number: 58695				
Lab Sample ID:	480-18049-4	Client	Sample ID: SB03 SS (1-2) 040212				
Date Analyzed:	04/09/12 21:28	Lab Fi	le ID:	GC Colum	n: RXI-5Sil MS	_ ID:	0.25(mm)
COM	IPOUND NAME	RETENTION	MANUAL INTE	GRATION		٦	
		TIME	REASON	ANALYST	DATE	1	
Nitrobenzene-d	5	6.74	Assign Peak	lyh	04/10/12 11:11	1	
Lab Sample ID:	480-18049-5	Client	Sample ID: SB04 SS (2-3) 040212				
Date Analyzed:	04/09/12 21:52	Lab Fi	le ID: <u>V8777.D</u>	GC Colum	n: RXI-5Sil MS	_ ID:	0.25(mm)
COM	IPOUND NAME	RETENTION	MANUAL INTE	GRATION		7	
		TIME	REASON	ANALYST	DATE	1	
Indeno(1,2,3-c	d)pyrene	16.76	Assign Peak	lyh	04/10/12 11:14	1	
Lab Sample ID:	480-18049-9	Client	Sample ID: SB07 SS (1-2) 040212		•		
Date Analyzed:	04/09/12 23:04	Lab Fi	le ID: <u>V8780.D</u>	GC Colum	n: RXI-5Sil MS	_ ID:	0.25(mm)
COM	IPOUND NAME	RETENTION	MANUAL INTE	GRATION		7	
		TIME	REASON	ANALYST	DATE	1	
Chrysene		14.14	Assign Peak	lyh	04/10/12 11:26]	
Lab Sample ID:	480-18049-10	Client	Sample ID: SB07 SS (3-4) 040212				
Date Analyzed:	04/09/12 23:28	Lab Fi	le ID: <u>V8781.D</u>	GC Colum	n: RXI-5Sil MS	_ ID:	0.25(mm)
COMPOUND NAME RET		RETENTION	MANUAL INTE	GRATION		7	
		TIME	REASON	ANALYST	DATE	1	
Benzo(a)anthra	cene	14.11	Assign Peak	lyh	04/10/12 11:29	7	
Chrysene		14.14	Assign Peak	lyh	04/10/12 11:29	1	
Benzo(b)fluora	nthene	15.10	Assign Peak	lyh	04/10/12 11:29	1	
Lab Sample ID:	480-18049-13	Client	Sample ID: SB11 SS (2-3) 040212		•		
Date Analyzed:	04/10/12 00:41	Lab Fi	le ID: <u>V8784.D</u>	GC Colum	n: RXI-5Sil MS	_ ID:	0.25(mm)
COM	IPOUND NAME	RETENTION	MANUAL INTE	GRATION		7	
		TIME	REASON	ANALYST	DATE	1	
Benzo(a)pyrene		15.43	Assign Peak	lyh	04/10/12 12:21	Ē	

Lab Name: Test	America Buffalo	Job No	Job No.: 480-18049-1					
SDG No.:								
Instrument ID:	HP5973V	Analys	is Batch Num	ber: 58886				
Lab Sample ID:	480-18049-19	Client	Sample ID:	SB08 SS (2-3) 040212				
Date Analyzed:	D4/10/12 12:31 Lab File ID: V8812.D			GC Colum	n: RXI-5Sil MS	ID:	0.25(mm)	
COM	IPOUND NAME	RETENTION MANUAL INTEG			GRATION]	
		TIME		REASON	ANALYST	DATE	1	
Benzo(k)fluora	nthene	15.13	Assign Peal	٢	lyh	04/10/12 13:12	-	
Lab Sample ID:	480-18049-21	Client	Sample ID:	SB12 SS (2-3)040212				
Date Analyzed:	04/10/12 13:20	Lab Fi	le ID: <u>V881</u>	4.D	GC Colum	n: RXI-5Sil MS	ID:	0.25(mm)
COMPOUND NAME		RETENTION	NTION MANUAL INTEGRATION]	
		TIME		REASON	ANALYST	DATE	-	
2-Fluorophenol		4.32	Assign Peal	٢	lyh	04/10/12 13:54	1	
Benzo(b)fluora	Inthene	15.10	Coelution		lyh	04/10/12 13:54	1	
Benzo(k)fluora	inthene	15.12	Coelution		lyh	04/10/12 13:54	1	
Lab Sample ID:	480-18049-22	Client	Sample ID:	SB09 SS (1-2) 040212				
Date Analyzed:	04/10/12 13:44	Lab Fi	le ID: <u>V881</u>	5.D	GC Colum	n: RXI-5Sil MS	ID:	0.25(mm)
COMPOUND NAME		RETENTION		MANUAL INTE	GRATION]	
		TIME		REASON	ANALYST	DATE	_	
Benzo(k)fluora	nthene	15.12	Assign Peal	٢	lyh	04/10/12 14:24		
Lab Sample ID:	480-18049-14	Client	Sample ID:	SB14 SS (1-2)040212				
Date Analyzed:	04/10/12 14:08	Lab Fi	le ID: <u>V881</u>	6.D	GC Colum	n: RXI-5Sil MS	ID:	0.25(mm)
COM	IPOUND NAME	RETENTION		MANUAL INTE	GRATION]	
		TIME		REASON	ANALYST	DATE	1	
Benzo(k)fluora	inthene	15.11	Assign Peal	٢	lyh	04/10/12 14:54	-	

Client: CHA Inc

Job Number: 480-18049-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
			04/02/2012 0915	04/04/2012 0900
480-18049-1	SB01 SS (2-3) 040212	Solid		
480-18049-2	SB02 SS (2-3) 040212	Solid	04/02/2012 1004	04/04/2012 0900
480-18049-3	SB02 SS (0-3) 040212	Solid	04/02/2012 1004	04/04/2012 0900
480-18049-4	SB03 SS (1-2) 040212	Solid	04/02/2012 1030	04/04/2012 0900
480-18049-5	SB04 SS (2-3) 040212	Solid	04/02/2012 1045	04/04/2012 0900
480-18049-6	SB05 SS (1-2 040212	Solid	04/02/2012 1115	04/04/2012 0900
480-18049-7	SB05 SS (0-3) 040212	Solid	04/02/2012 1115	04/04/2012 0900
480-18049-8	SB06 SS (3-4) 040212	Solid	04/02/2012 1200	04/04/2012 0900
480-18049-9	SB07 SS (1-2) 040212	Solid	04/02/2012 1215	04/04/2012 0900
480-18049-10	SB07 SS (3-4) 040212	Solid	04/02/2012 1215	04/04/2012 0900
480-18049-11	SB10 SS (1-2) 040212	Solid	04/02/2012 1230	04/04/2012 0900
480-18049-12	SB10 SS (3-4) 040212	Solid	04/02/2012 1230	04/04/2012 0900
480-18049-13	SB11 SS (2-3) 040212	Solid	04/02/2012 1245	04/04/2012 0900
480-18049-14	SB14 SS (1-2)040212	Solid	04/02/2012 1300	04/04/2012 0900
480-18049-15	SB14 SS (2-3) 040212	Solid	04/02/2012 1300	04/04/2012 0900
480-18049-16	SB13 SS (1-2) 040212	Solid	04/02/2012 1315	04/04/2012 0900
480-18049-17	SB13 SS (2-3) 040212	Solid	04/02/2012 1315	04/04/2012 0900
480-18049-18	SB08 SS (1-2) 040212	Solid	04/02/2012 1330	04/04/2012 0900
480-18049-19	SB08 SS (2-3) 040212	Solid	04/02/2012 1330	04/04/2012 0900
480-18049-20	SB12 SS (0-1) 040212	Solid	04/02/2012 1400	04/04/2012 0900
480-18049-21	SB12 SS (2-3)040212	Solid	04/02/2012 1400	04/04/2012 0900
480-18049-22	SB09 SS (1-2) 040212	Solid	04/02/2012 1415	04/04/2012 0900
480-18049-23	SB09 SS (3-4) 040212	Solid	04/02/2012 1415	04/04/2012 0900
480-18049-24	SB15 SS (1-2) 040212	Solid	04/02/2012 1430	04/04/2012 0900
480-18049-25	SB15 SS (3-4) 040212	Solid	04/02/2012 1430	04/04/2012 0900
480-18049-26	SB06 SS (1-2) 040212	Solid	04/02/2012 1200	04/04/2012 0900

EXECUTIVE SUMMARY - Detections

Client: CHA Inc

480-18049-1 SB01 SS (2-3) 040212 2-Hexanone 2600 J 2800 ug/Kg 8260B 2-Butanone (MEK) 8.5 J 28 ug/Kg 8260B 2-Butanone (MEK) 8.5 J 28 ug/Kg 8260B Benzene 1.5 J 5.7 ug/Kg 8260B Cyclohexane 12 5.7 ug/Kg 8260B Cyclohexane 530 J 550 ug/Kg 8260B Ethylbenzene 640 E 5.7 ug/Kg 8260B Isopropylbenzene 54 5.7 ug/Kg 8260B Isopropylbenzene 1900 550 ug/Kg 8260B Toluene 230 E 5.7 ug/Kg 8260B Toluene 230 E 5.7 ug/Kg 8260B Xylenes, Total 3700 E 11 ug/Kg 8260B Xylenes, Total 120000 1100 ug/Kg 8260B	Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method	
2-Hexanone2600J2800ug/Kg8260B2-Butanone (MEK)8.5J28ug/Kg8260BAcetone18028ug/Kg8260BBenzene1.5J5.7ug/Kg8260BCyclohexane125.7ug/Kg8260BCyclohexane530J550ug/Kg8260BEthylbenzene640E5.7ug/Kg8260BEthylbenzene11000550ug/Kg8260BIsopropylbenzene545.7ug/Kg8260BIsopropylbenzene1900550ug/Kg8260BMethylcyclohexane1900550ug/Kg8260BMethylcyclohexane260E5.7ug/Kg8260BMethylcyclohexane1900550ug/Kg8260BToluene230E5.7ug/Kg8260BYelnes, Total3700E110ug/Kg8260BXylenes, Total12000110ug/Kg8260BAcenaphthene100J3800ug/Kg8270CAcetophenone150013800ug/Kg8270CBenzo(a)ntracene3100J3800ug/Kg8270CBenzo(b)fuoranthene200J3800ug/Kg8270CBenzo(b)fuoranthene49003800ug/Kg8270CBenzo(b)fuoranthene200J3800ug/Kg8270C							
2-Hexanone2600J2800ug/Kg8260B2-Butanone (MEK)8.5J28ug/Kg8260BAcetone18028ug/Kg8260BBenzene1.5J5.7ug/Kg8260BCyclohexane125.7ug/Kg8260BCyclohexane530J550ug/Kg8260BEthylbenzene640E5.7ug/Kg8260BEthylbenzene11000550ug/Kg8260BIsopropylbenzene545.7ug/Kg8260BIsopropylbenzene1900550ug/Kg8260BMethylcyclohexane1900550ug/Kg8260BMethylcyclohexane260E5.7ug/Kg8260BMethylcyclohexane1900550ug/Kg8260BToluene230E5.7ug/Kg8260BYelnes, Total3700E110ug/Kg8260BXylenes, Total12000110ug/Kg8260BAcenaphthene100J3800ug/Kg8270CAcetophenone150013800ug/Kg8270CBenzo(a)ntracene3100J3800ug/Kg8270CBenzo(b)fuoranthene200J3800ug/Kg8270CBenzo(b)fuoranthene49003800ug/Kg8270CBenzo(b)fuoranthene200J3800ug/Kg8270C		0040					
2-Butanone (MEK)8.5J28ug/Kg8260BAcetone18028ug/Kg8260BBenzene1.5J5.7ug/Kg8260BCyclohexane125.7ug/Kg8260BCyclohexane530J550ug/Kg8260BEthylbenzene640E5.7ug/Kg8260BEthylbenzene11000550ug/Kg8260BIsopropylbenzene545.7ug/Kg8260BIsopropylbenzene1900550ug/Kg8260BIsopropylbenzene260E5.7ug/Kg8260BIsopropylbenzene260E5.7ug/Kg8260BToluene230550ug/Kg8260BToluene200550ug/Kg8260BXylenes, Total3700E1100ug/Kg8260BXylenes, Total120001100ug/Kg8260BAcetophenone100J8800ug/Kg8270CAnthracene350J8800ug/Kg8270CBenzo(a)anthracene3100J8800ug/Kg8270CBenzo(a)pyrene2000J8800ug/Kg8270CBenzo(a)pyrene300J8800ug/Kg8270CBenzo(a)pyrene2000J8800ug/Kg8270CBenzo(a)pyrene300J8800ug/Kg8270CBenzo(b)fluoranthene300J8800 <td></td> <td></td> <td></td> <td>2800</td> <td>ua/Ka</td> <td>8260B</td> <td></td>				2800	ua/Ka	8260B	
Acetone18028ug/Kg8260BBenzene1.5J5.7ug/Kg8260BCyclohexane125.7ug/Kg8260BCyclohexane530J550ug/Kg8260BEthylbenzene640E5.7ug/Kg8260BEthylbenzene11000550ug/Kg8260BIsopropylbenzene545.7ug/Kg8260BIsopropylbenzene1900550ug/Kg8260BMethylcyclohexane260E5.7ug/Kg8260BMethylcyclohexane280E5.7ug/Kg8260BToluene230E5.7ug/Kg8260BToluene2200550ug/Kg8260BXylenes, Total3700E11ug/Kg8260BXylenes, Total100J3800ug/Kg8270CAcetophenone1500J3800ug/Kg8270CAnthracene350J3800ug/Kg8270CBenzo(a)privene2000J3800ug/Kg8270CBenzo(b)fluoranthene2000J3800ug/Kg8270CBenzo(b)fluoranthene400J3800ug/Kg8270CBenzo(b)fluoranthene2000J3800ug/Kg8270CBenzo(b)fluoranthene2000J3800ug/Kg8270CBenzo(b)fluoranthene400J3800ug/Kg8270CBenzo(b)fl							
Benzene1.5J5.7ug/Kg8260BCyclohexane125.7ug/Kg8260BCyclohexane530J550ug/Kg8260BEthylbenzene640E5.7ug/Kg8260BEthylbenzene11000550ug/Kg8260BIsopropylbenzene545.7ug/Kg8260BIsopropylbenzene1900550ug/Kg8260BMethylcyclohexane260E5.7ug/Kg8260BMethylcyclohexane260E5.7ug/Kg8260BToluene230E5.7ug/Kg8260BXylenes, Total3700E11ug/Kg8260BXylenes, Total1200011ug/Kg8260BAcetophenone100J3800ug/Kg8270CAcetophenone350J3800ug/Kg8270CBenzo(a)anthracene300J3800ug/Kg8270CBenzo(a)prene200J3800ug/Kg8270CBenzo(a)prene200J3800ug/Kg8270CBenzo(a)prene2000J3800ug/Kg8270CBenzo(b)fluoranthene4900-3800ug/Kg8270CBenzo(b)fluoranthene4900-3800ug/Kg8270CBenzo(a)prene2000J3800ug/Kg8270CBenzo(a)prene2000J3800ug/Kg8270CBe	(, , , , , , , , , , , , , , , , , , ,		5				
Cyclohexane 12 5.7 ug/Kg 8260B Cyclohexane 530 J 550 ug/Kg 8260B Ethylbenzene 640 E 5.7 ug/Kg 8260B Ethylbenzene 11000 - 550 ug/Kg 8260B Isopropylbenzene 11000 - 550 ug/Kg 8260B Isopropylbenzene 900 - 550 ug/Kg 8260B Methylcyclohexane 260 E 5.7 ug/Kg 8260B Methylcyclohexane 260 E 5.7 ug/Kg 8260B Toluene 230 E 5.7 ug/Kg 8260B Toluene 2200 - 550 ug/Kg 8260B Xylenes, Total 3700 E 110 ug/Kg 8260B Xylenes, Total 120000 1100 ug/Kg 8270C Acetophenone 1500 3800 ug/Kg 8270C Anthracene 350			1				
Cyclohexane 530 J 550 ug/Kg 8260B Ethylbenzene 640 E 5.7 ug/Kg 8260B Ethylbenzene 11000 550 ug/Kg 8260B Isopropylbenzene 54 5.7 ug/Kg 8260B Isopropylbenzene 1900 550 ug/Kg 8260B Methylcyclohexane 260 E 5.7 ug/Kg 8260B Methylcyclohexane 260 E 5.7 ug/Kg 8260B Toluene 230 E 5.7 ug/Kg 8260B Yulenes, Total 3700 E 550 ug/Kg 8260B Xylenes, Total 3700 E 110 ug/Kg 8260B Xylenes, Total 120000 1100 ug/Kg 8260B Acetophenone 1500 3800 ug/Kg 8270C Acetophenone 15000 3800 ug/Kg 8270C Anthracene 350 J 3800			J				
Ethylbenzene 640 E 5.7 u/Kg 8260B Ethylbenzene 11000 550 ug/Kg 8260B Isopropylbenzene 54 5.7 ug/Kg 8260B Isopropylbenzene 1900 550 ug/Kg 8260B Methylcyclohexane 260 E 5.7 ug/Kg 8260B Methylcyclohexane 1900 550 ug/Kg 8260B Toluene 230 E 5.7 ug/Kg 8260B Toluene 230 E 5.7 ug/Kg 8260B Xylenes, Total 3700 E 11 ug/Kg 8260B Xylenes, Total 12000 1100 ug/Kg 8260B Acenaphthene 100 J 3800 ug/Kg 8270C Acetophenone 350 J 3800 ug/Kg 8270C Benzo(a)anthracene 3100 J 3800 ug/Kg 8270C Benzo(b)fluoranthene 4900 X </td <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>			1				
Ethylbenzene 11000 50 ug/Kg 8260B Isopropylbenzene 54 5.7 ug/Kg 8260B Isopropylbenzene 1900 550 ug/Kg 8260B Methylcyclohexane 260 E 5.7 ug/Kg 8260B Methylcyclohexane 19000 550 ug/Kg 8260B Toluene 230 E 5.7 ug/Kg 8260B Toluene 230 E 5.7 ug/Kg 8260B Xylenes, Total 3700 E 11 ug/Kg 8260B Xylenes, Total 120000 110 ug/Kg 8260B Acenaphthene 100 J 8200 8270C Acetophenone 15000 J 8200 8270C Anthracene 350 J 8200 8270C Benzo(a)anthracene 3100 J 3800 ug/Kg 8270C Benzo(b)fluoranthene 4900 3800 ug/Kg 8270C <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-						
Soropylbenzene 54 5.7 ug/Kg 8260B Isopropylbenzene 1900 550 ug/Kg 8260B Methylcyclohexane 260 E 5.7 ug/Kg 8260B Methylcyclohexane 1900 550 ug/Kg 8260B Methylcyclohexane 1900 550 ug/Kg 8260B Toluene 230 E 5.7 ug/Kg 8260B Toluene 2200 550 ug/Kg 8260B Xylenes, Total 3700 E 11 ug/Kg 8260B Xylenes, Total 12000 1100 ug/Kg 8260B Xylenes, Total 12000 1100 ug/Kg 8260B Acenaphthene 100 J 3800 ug/Kg 8270C Acetophenone 1500 J 3800 ug/Kg 8270C Anthracene 3100 J 3800 ug/Kg 8270C Benzo(a)prene 2000 J 3800 ug/Kg	-		L				
Isopoylbenzene 1900 550 ug/Kg 8260B Methylcyclohexane 260 E 5.7 ug/Kg 8260B Methylcyclohexane 19000 550 ug/Kg 8260B Toluene 230 E 5.7 ug/Kg 8260B Toluene 230 E 5.7 ug/Kg 8260B Toluene 2200 550 ug/Kg 8260B Xylenes, Total 3700 E 11 ug/Kg 8260B Xylenes, Total 120000 1100 ug/Kg 8260B Acenaphthene 100 J 3800 ug/Kg 8260B Acetophenone 15000 J 3800 ug/Kg 8270C Anthracene 350 J 3800 ug/Kg 8270C Benzo(a)anthracene 3100 J 3800 ug/Kg 8270C Benzo(a)pyrene 2000 J 3800 ug/Kg 8270C Benzo(b)fluoranthene 4900	-						
Methylcyclohexane 260 E 5.7 ug/Kg 8260B Methylcyclohexane 19000 550 ug/Kg 8260B Toluene 230 E 5.7 ug/Kg 8260B Toluene 230 E 5.7 ug/Kg 8260B Toluene 2200 550 ug/Kg 8260B Xylenes, Total 3700 E 11 ug/Kg 8260B Xylenes, Total 120000 I 1100 ug/Kg 8260B Acenaphthene 100 J 3800 ug/Kg 8270C Acetophenone 1500 J 3800 ug/Kg 8270C Anthracene 350 J 3800 ug/Kg 8270C Benzo(a)anthracene 3100 J 3800 ug/Kg 8270C Benzo(b)fluoranthene 4900 I 3800 ug/Kg 8270C Benzo(b)fluoranthene 4900 I 3800 ug/Kg 8270C							
Methylcyclohexane 19000 550 ug/Kg 8260B Toluene 230 E 5.7 ug/Kg 8260B Toluene 2200 550 ug/Kg 8260B Xylenes, Total 3700 E 11 ug/Kg 8260B Xylenes, Total 120000 I 1100 ug/Kg 8260B Acenaphthene 100 J 3800 ug/Kg 8270C Acetophenone 15000 J 3800 ug/Kg 8270C Anthracene 350 J 3800 ug/Kg 8270C Benzo(a)anthracene 3100 J 3800 ug/Kg 8270C Benzo(b)fluoranthene 4900 J 3800 ug/Kg 8270C			F				
Toluene230E5.7ug/Kg8260BToluene2200550ug/Kg8260BXylenes, Total3700E11ug/Kg8260BXylenes, Total1200001100ug/Kg8260BAcenaphthene100J3800ug/Kg8270CAcetophenone15000J3800ug/Kg8270CAnthracene350J3800ug/Kg8270CBenzo(a)anthracene3100J3800ug/Kg8270CBenzo(b)fluoranthene4900J3800ug/Kg8270CBenzo(b)fluoranthene4900J3800ug/Kg8270C	, ,		L				
Toluene2200550ug/Kg8260BXylenes, Total3700E11ug/Kg8260BXylenes, Total1200001100ug/Kg8260BAcenaphthene100J3800ug/Kg8270CAcetophenone15000J3800ug/Kg8270CAnthracene350J3800ug/Kg8270CBenzo(a)anthracene3100J3800ug/Kg8270CBenzo(a)pyrene2000J3800ug/Kg8270CBenzo(b)fluoranthene4900-3800ug/Kg8270C	5 5		F				
Xylenes, Total 3700 E 11 ug/Kg 8260B Xylenes, Total 120000 1100 ug/Kg 8260B Acenaphthene 100 J 3800 ug/Kg 8270C Acetophenone 15000 3800 ug/Kg 8270C Anthracene 350 J 3800 ug/Kg 8270C Benzo(a)anthracene 3100 J 3800 ug/Kg 8270C Benzo(a)pyrene 2000 J 3800 ug/Kg 8270C Benzo(b)fluoranthene 4900 - 3800 ug/Kg 8270C			L				
Xylenes, Total 120000 1100 ug/Kg 8260B Acenaphthene 100 J 3800 ug/Kg 8270C Acetophenone 15000 3800 ug/Kg 8270C Anthracene 350 J 3800 ug/Kg 8270C Benzo(a)anthracene 3100 J 3800 ug/Kg 8270C Benzo(a)pyrene 2000 J 3800 ug/Kg 8270C Benzo(b)fluoranthene 4900 J 3800 ug/Kg 8270C			F				
Acenaphthene 100 J 3800 ug/Kg 8270C Acetophenone 15000 3800 ug/Kg 8270C Anthracene 350 J 3800 ug/Kg 8270C Benzo(a)anthracene 3100 J 3800 ug/Kg 8270C Benzo(a)pyrene 2000 J 3800 ug/Kg 8270C Benzo(b)fluoranthene 4900 3800 ug/Kg 8270C	-		L				
Acetophenone 15000 3800 ug/Kg 8270C Anthracene 350 J 3800 ug/Kg 8270C Benzo(a)anthracene 3100 J 3800 ug/Kg 8270C Benzo(a)pyrene 2000 J 3800 ug/Kg 8270C Benzo(a)pyrene 2000 J 3800 ug/Kg 8270C Benzo(b)fluoranthene 4900 3800 ug/Kg 8270C	-		.I				
Anthracene 350 J 3800 ug/Kg 8270C Benzo(a)anthracene 3100 J 3800 ug/Kg 8270C Benzo(a)pyrene 2000 J 3800 ug/Kg 8270C Benzo(b)fluoranthene 4900 J 3800 ug/Kg 8270C			0				
Benzo(a)anthracene 3100 J 3800 ug/Kg 8270C Benzo(a)pyrene 2000 J 3800 ug/Kg 8270C Benzo(b)fluoranthene 4900 3800 ug/Kg 8270C			.1				
Benzo(a)pyrene 2000 J 3800 ug/Kg 8270C Benzo(b)fluoranthene 4900 3800 ug/Kg 8270C							
Benzo(b)fluoranthene 4900 3800 ug/Kg 8270C							
			0				
			J				
Benzo(k)fluoranthene 2100 J B 3800 ug/Kg 8270C							
Chrysene 3500 J B 3800 ug/Kg 8270C							
Dibenz(a,h)anthracene 3000 J 3800 ug/Kg 8270C	,						
Fluoranthene 6000 3800 ug/Kg 8270C	()	6000				8270C	
Indeno(1,2,3-cd)pyrene 2300 J 3800 ug/Kg 8270C	Indeno(1.2.3-cd)pyrene	2300	J	3800		8270C	
Naphthalene 1900 J 3800 ug/Kg 8270C							
Phenanthrene 1600 J 3800 ug/Kg 8270C							
Pyrene 5800 3800 ug/Kg 8270C	Pyrene						
Percent Moisture 11 0.10 % Moisture	-						
Percent Solids 89 0.10 % Moisture	Percent Solids	89				Moisture	

EXECUTIVE SUMMARY - Detections

Client: CHA Inc

Lab Sample ID C Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
480-18049-2	SB02 SS (2-3) 040212					
1,2-Dichlorobenzene		3600		110	ug/Kg	8260B
Benzene		82	J	110	ug/Kg	8260B
Ethylbenzene		71000		1100	ug/Kg	8260B
Isopropylbenzene		3600		110	ug/Kg	8260B
Methylcyclohexane		660		110	ug/Kg	8260B
Toluene		90000		1100	ug/Kg	8260B
Xylenes, Total		140000		2200	ug/Kg	8260B
Biphenyl		2300	J	12000	ug/Kg	8270C
2-Methylnaphthalene		32000		12000	ug/Kg	8270C
Acenaphthene		2800	J	12000	ug/Kg	8270C
Acetophenone		36000		12000	ug/Kg	8270C
Anthracene		840	J	12000	ug/Kg	8270C
Benzo(a)anthracene		2700	J	12000	ug/Kg	8270C
Benzo(a)pyrene		1600	J	12000	ug/Kg	8270C
Benzo(b)fluoranthene		3300	J	12000	ug/Kg	8270C
Benzo(k)fluoranthene		1400	JB	12000	ug/Kg	8270C
Bis(2-ethylhexyl) phtha	alate	7900	J	12000	ug/Kg	8270C
Chrysene		2400	JB	12000	ug/Kg	8270C
Dibenzofuran		2300	J	12000	ug/Kg	8270C
Fluoranthene		5900	J	12000	ug/Kg	8270C
Indeno(1,2,3-cd)pyrene		1500	J	12000	ug/Kg	8270C
Naphthalene		59000	Ū	12000	ug/Kg	8270C
Phenanthrene		5300	J	12000	ug/Kg	8270C
Phenol		11000	J	12000	ug/Kg	8270C
Pyrene		4300	J	12000	ug/Kg	8270C
Percent Moisture		13	Ū	0.10	%	Moisture
Percent Solids		87		0.10	%	Moisture
480-18049-3	SB02 SS (0-3) 040212					
Flashpoint		>176.0		50.0	Degrees F	1010
pH		7.33		0.100	SU	9045C
Percent Moisture		8.8		0.10	%	Moisture
Percent Solids		91		0.10	%	Moisture
TCLP						
3-Methylphenol		0.89		0.050	mg/L	8270C
2-Methylphenol		0.12		0.0050	mg/L	8270C
4-Methylphenol		0.89		0.050	mg/L	8270C
Barium		0.33	В	0.0020	mg/L	6010B
Cadmium		0.0016		0.0010	mg/L	6010B
Chromium		0.0086	В	0.0040	mg/L	6010B
Lead		0.036		0.0050	mg/L	6010B

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method
480-18049-4 SB03 SS (1-2) 040212					
1,2-Dichlorobenzene	220		6.2	ug/Kg	8260B
2-Butanone (MEK)	89		31	ug/Kg	8260B
Acetone	140		31	ug/Kg	8260B
Benzene	17		6.2	ug/Kg	8260B
Cyclohexane	3.2	J	6.2	ug/Kg	8260B
Ethylbenzene	1900	E	6.2	ug/Kg	8260B
Ethylbenzene	270000		24000	ug/Kg	8260B
Isopropylbenzene	770	E	6.2	ug/Kg	8260B
Isopropylbenzene	29000		24000	ug/Kg	8260B
Methylcyclohexane	26		6.2	ug/Kg	8260B
Styrene	240		6.2	ug/Kg	8260B
Toluene	3900	E	6.2	ug/Kg	8260B
Toluene	630000		24000	ug/Kg	8260B
Xylenes, Total	6700	E	12	ug/Kg	8260B
Xylenes, Total	1000000		49000	ug/Kg	8260B
Biphenyl	7700	J	43000	ug/Kg	8270C
2,4-Dimethylphenol	67000		43000	ug/Kg	8270C
Anthracene	8200	J	43000	ug/Kg	8270C
Benzo(a)anthracene	8800	J	43000	ug/Kg	8270C
Benzo(b)fluoranthene	8800	J	43000	ug/Kg	8270C
Benzo(g,h,i)perylene	3200	J	43000	ug/Kg	8270C
Benzo(k)fluoranthene	4900	JB	43000	ug/Kg	8270C
Bis(2-ethylhexyl) phthalate	23000	J	43000	ug/Kg	8270C
Chrysene	8600	JB	43000	ug/Kg	8270C
Fluoranthene	22000	J	43000	ug/Kg	8270C
Fluorene	5900	J	43000	ug/Kg	8270C
Naphthalene	63000		43000	ug/Kg	8270C
Phenanthrene	35000	J	43000	ug/Kg	8270C
Pyrene	17000	J	43000	ug/Kg	8270C
Percent Moisture	21		0.10	%	Moisture
Percent Solids	80		0.10	%	Moisture

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method
480-18049-5 SB04 SS (2-3) 040212					
1,2-Dichlorobenzene	59		6.0	ug/Kg	8260B
1,2-Dichlorobenzene	2100		880	ug/Kg	8260B
2-Butanone (MEK)	77		30	ug/Kg	8260B
4-Methyl-2-pentanone (MIBK)	12	J	30	ug/Kg	8260B
4-Methyl-2-pentanone (MIBK)	4800		4400	ug/Kg	8260B
Acetone	150		30	ug/Kg	8260B
Benzene	2.3	J	6.0	ug/Kg	8260B
Ethylbenzene	1100	E	6.0	ug/Kg	8260B
Ethylbenzene	38000		880	ug/Kg	8260B
Isopropylbenzene	200		6.0	ug/Kg	8260B
Isopropylbenzene	5600		880	ug/Kg	8260B
Methyl acetate	1.2	J	6.0	ug/Kg	8260B
Methyl acetate	25000		880	ug/Kg	8260B
Methylcyclohexane	4.9	J	6.0	ug/Kg	8260B
Styrene	110		6.0	ug/Kg	8260B
Toluene	2200	E	6.0	ug/Kg	8260B
Toluene	63000		880	ug/Kg	8260B
Xylenes, Total	3600	E	12	ug/Kg	8260B
Xylenes, Total	150000		1800	ug/Kg	8260B
Biphenyl	6700	J	19000	ug/Kg	8270C
2,4-Dimethylphenol	23000		19000	ug/Kg	8270C
Acenaphthylene	650	J	19000	ug/Kg	8270C
Acetophenone	14000	J	19000	ug/Kg	8270C
Anthracene	2300	J	19000	ug/Kg	8270C
Benzo(a)anthracene	3300	J	19000	ug/Kg	8270C
Benzo(b)fluoranthene	2900	J	19000	ug/Kg	8270C
Benzo(k)fluoranthene	1700	JB	19000	ug/Kg	8270C
Chrysene	3000	JB	19000	ug/Kg	8270C
Dibenzofuran	3300	J	19000	ug/Kg	8270C
Fluoranthene	7500	J	19000	ug/Kg	8270C
Fluorene	2200	J	19000	ug/Kg	8270C
Indeno(1,2,3-cd)pyrene	1200	J	19000	ug/Kg	8270C
Naphthalene	42000		19000	ug/Kg	8270C
Phenanthrene	12000	J	19000	ug/Kg	8270C
Pyrene	5800	J	19000	ug/Kg	8270C
Percent Moisture	13		0.10	%	Moisture
Percent Solids	87		0.10	%	Moisture

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
480-18049-6	SB05 SS (1-2 040212					
2-Butanone (MEK)		9.6	J	29	ug/Kg	8260B
Acetone		420		29	ug/Kg	8260B
Benzene		1.1	J	5.8	ug/Kg	8260B
Ethylbenzene		38	В	5.8	ug/Kg	8260B
Isopropylbenzene		7.3		5.8	ug/Kg	8260B
Toluene		54		5.8	ug/Kg	8260B
Xylenes, Total		2700	В	79	ug/Kg	8260B
2-Methylnaphthalene	9	640	J	4000	ug/Kg	8270C
Acenaphthene		160	J	4000	ug/Kg	8270C
Benzo(a)anthracene		220	J	4000	ug/Kg	8270C
Chrysene		320	JB	4000	ug/Kg	8270C
Naphthalene		520	J	4000	ug/Kg	8270C
Phenanthrene		400	J	4000	ug/Kg	8270C
Phenol		2700	J	4000	ug/Kg	8270C
Percent Moisture		16		0.10	%	Moisture
Percent Solids		84		0.10	%	Moisture
480-18049-7	SB05 SS (0-3) 040212					
Flashpoint		>176.0		50.0	Degrees F	1010
рН		10.5		0.100	SU	9045C
Percent Moisture		19		0.10	%	Moisture
Percent Solids		81		0.10	%	Moisture
TCLP						
3-Methylphenol		0.050		0.010	mg/L	8270C
4-Methylphenol		0.050		0.010	mg/L	8270C
Arsenic		0.0082	J	0.010	mg/L	6010B
Barium		0.54	В	0.0020	mg/L	6010B
Cadmium		0.0019		0.0010	mg/L	6010B
Chromium		0.0041	В	0.0040	mg/L	6010B
Lead		0.020		0.0050	mg/L	6010B

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method
480-18049-8 SB06 SS (3-4) 040212					
Ethylbenzene	3500000		250000	ug/Kg	8260B
Isopropylbenzene	13000		6200	ug/Kg	8260B
Styrene	83000		6200	ug/Kg	8260B
Toluene	130000		6200	ug/Kg	8260B
Xylenes, Total	15000000		490000	ug/Kg	8260B
Biphenyl	2800		2100	ug/Kg	8270C
2-Methylnaphthalene	32000		2100	ug/Kg	8270C
Acetophenone	13000		2100	ug/Kg	8270C
Anthracene	200	J	2100	ug/Kg	8270C
Benzo(a)anthracene	130	J	2100	ug/Kg	8270C
Dibenzofuran	1200	J	2100	ug/Kg	8270C
Fluoranthene	250	J	2100	ug/Kg	8270C
Fluorene	610	J	2100	ug/Kg	8270C
Naphthalene	48000		2100	ug/Kg	8270C
Phenanthrene	930	J	2100	ug/Kg	8270C
Pyrene	210	J	2100	ug/Kg	8270C
Percent Moisture	21		0.10	%	Moisture
Percent Solids	79		0.10	%	Moisture
480-18049-9 SB07 SS (1-2) 040212					
Ethylbenzene	13	В	6.4	ug/Kg	8260B
Toluene	3.0	J	6.4	ug/Kg	8260B
Xylenes, Total	140	В	13	ug/Kg	8260B
Biphenyl	22	J	220	ug/Kg	8270C
2-Methylnaphthalene	94	J	220	ug/Kg	8270C
Acenaphthene	5.9	J	220	ug/Kg	8270C
Benzo(a)anthracene	14	J	220	ug/Kg	8270C
Benzo(b)fluoranthene	16	J	220	ug/Kg	8270C
Bis(2-ethylhexyl) phthalate	110	J	220	ug/Kg	8270C
Chrysene	14	JВ	220	ug/Kg	8270C
Fluoranthene	15	J	220	ug/Kg	8270C
Fluorene	10	J	220	ug/Kg	8270C
Naphthalene	63	J	220	ug/Kg	8270C
Phenanthrene	26	J	220	ug/Kg	8270C
Percent Moisture	23		0.10	%	Moisture
Percent Solids	77		0.10	%	Moisture

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method
480-18049-10 SB07 SS (3-4) 04	0212				
Acetone	10	J	30	ug/Kg	8260B
Ethylbenzene	6.4	В	6.1	ug/Kg	8260B
Toluene	14		6.1	ug/Kg	8260B
Xylenes, Total	25	В	12	ug/Kg	8260B
Biphenyl	87	J	220	ug/Kg	8270C
2-Methylnaphthalene	430		220	ug/Kg	8270C
Anthracene	15	J	220	ug/Kg	8270C
Benzo(a)anthracene	18	J	220	ug/Kg	8270C
Benzo(a)pyrene	9.4	J	220	ug/Kg	8270C
Benzo(b)fluoranthene	19	J	220	ug/Kg	8270C
Bis(2-ethylhexyl) phthalate	120	J	220	ug/Kg	8270C
Chrysene	19	JВ	220	ug/Kg	8270C
Dibenzofuran	42	J	220	ug/Kg	8270C
Fluoranthene	41	J	220	ug/Kg	8270C
Fluorene	31	J	220	ug/Kg	8270C
Naphthalene	230		220	ug/Kg	8270C
Phenanthrene	84	J	220	ug/Kg	8270C
Pyrene	27	J	220	ug/Kg	8270C
Percent Moisture	23		0.10	%	Moisture
Percent Solids	77		0.10	%	Moisture
480-18049-11 SB10 SS (1-2) 04					
Ethylbenzene	220		110	ug/Kg	8260B
Toluene	140		110	ug/Kg	8260B
Xylenes, Total	2100		220	ug/Kg	8260B
Benzo(a)anthracene	470	J	3900	ug/Kg	8270C
Benzo(a)pyrene	320	J	3900	ug/Kg	8270C
Benzo(b)fluoranthene	670	J	3900	ug/Kg	8270C
Benzo(k)fluoranthene	280	JΒ	3900	ug/Kg	8270C
Bis(2-ethylhexyl) phthalate	1900	J	3900	ug/Kg	8270C
Chrysene	490	JΒ	3900	ug/Kg	8270C
Fluoranthene	700	J	3900	ug/Kg	8270C
Phenanthrene	380	J	3900	ug/Kg	8270C
Pyrene	560	J	3900	ug/Kg	8270C
Percent Moisture	13		0.10	%	Moisture
Percent Solids	87		0.10	%	Moisture
480-18049-12 SB10 SS (3-4) 04	0212				
Toluene	42	1	120	ug/Kg	8260B
		J			8260B 8260B
Xylenes, Total	91	J	240	ug/Kg	
Pyrene	42	J	200	ug/Kg	8270C
Percent Moisture	19		0.10	%	Moisture
Percent Solids	81		0.10	%	Moisture

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method
480-18049-13 SB11 SS (2-3) 040212					
Acetone	42		31	ug/Kg	8260B
Ethylbenzene	16		6.1	ug/Kg	8260B
Toluene	41		6.1	ug/Kg	8260B
Xylenes, Total	65	В	12	ug/Kg	8260B
Benzo(a)anthracene	12	J	190	ug/Kg	8270C
Benzo(a)pyrene	12	J	190	ug/Kg	8270C
Benzo(b)fluoranthene	19	J	190	ug/Kg	8270C
Bis(2-ethylhexyl) phthalate	98	J	190	ug/Kg	8270C
Chrysene	18	JВ	190	ug/Kg	8270C
Fluoranthene	21	J	190	ug/Kg	8270C
Pyrene	15	J	190	ug/Kg	8270C
Percent Moisture	11		0.10	%	Moisture
Percent Solids	89		0.10	%	Moisture
480-18049-14 SB14 SS (1-2)040212					
Ethylbenzene	1.4	J	5.9	ug/Kg	8260B
Xylenes, Total	8.6	JB	12	ug/Kg	8260B
4-Methylphenol	47	J	370	ug/Kg	8270C
Benzo(a)anthracene	29	J	190	ug/Kg	8270C
Benzo(a)pyrene	27	J	190	ug/Kg	8270C
Benzo(b)fluoranthene	24	J	190	ug/Kg	8270C
Benzo(g,h,i)perylene	17	J	190	ug/Kg	8270C
Benzo(k)fluoranthene	35	JВ	190	ug/Kg	8270C
Bis(2-ethylhexyl) phthalate	100	J	190	ug/Kg	8270C
Chrysene	34	JB	190	ug/Kg	8270C
Fluoranthene	48	J	190	ug/Kg	8270C
Indeno(1,2,3-cd)pyrene	16	J	190	ug/Kg	8270C
Phenanthrene	16	J	190	ug/Kg	8270C
Pyrene	37	J	190	ug/Kg	8270C
Percent Moisture	13		0.10	%	Moisture
Percent Solids	87		0.10	%	Moisture

Ethylbenzene 5.3 ug/Kg 8260B Toluene 4.6 J 5.3 ug/Kg 8260B Benzo(a)anthracene 13 B 11 ug/Kg 8270C Benzo(a)anthracene 15 J 190 ug/Kg 8270C Benzo(b)fuoranthene 17 J 190 ug/Kg 8270C Benzo(b)fuoranthene 17 JB 190 ug/Kg 8270C Benzo(b)fuoranthene 17 JB 190 ug/Kg 8270C Privame 17 JB 190 ug/Kg 8270C Phenanthrene 17 JB 190 ug/Kg 8270C Privart 14 J 190 ug/Kg 8270C Percent Noisture 87 0.10 % Moisture Percent Solids 87 0.10 % Moisture Percent Moisture 12 5.6 ug/Kg 8260B Sup/Soliganthracene 52 J	Lab Sample ID Cli Analyte	ient Sample ID	Result	Qualifier	Reporting Limit	Units	Method
Ethylbenzene 5.3 ug/Kg 8260B Toluene 4.6 J 5.3 ug/Kg 8260B Benzo(a)anthracene 13 B 11 ug/Kg 8270C Benzo(a)anthracene 15 J 190 ug/Kg 8270C Benzo(b)fuoranthene 17 J 190 ug/Kg 8270C Benzo(b)fuoranthene 17 JB 190 ug/Kg 8270C Benzo(b)fuoranthene 17 JB 190 ug/Kg 8270C Prenentbinene 17 JB 190 ug/Kg 8270C Phrenanthrene 8.1 J 190 ug/Kg 8270C Percent foisture 87 0.10 % Moisture Percent foisture 14 J 190 ug/Kg 8260B Toluene 12 5.6 ug/Kg 8260B Statuse 15 B 11 ug/Kg 8260B Statuse 15 B							
Toluene 4.6 J 5.3 ug/Kg 8260B Xylenes, Total 13 B 11 ug/Kg 8270C Benzo(a)pyrene 15 J 190 ug/Kg 8270C Benzo(b)fluoranthene 17 J 190 ug/Kg 8270C Benzo(b)fluoranthene 17 J 190 ug/Kg 8270C Benzo(b)fluoranthene 17 J 190 ug/Kg 8270C Phoranthene 17 J 190 ug/Kg 8270C Phoranthene 8.1 J 190 ug/Kg 8270C Pyrene 14 J 190 ug/Kg 8270C Percent Noisture 87 0.10 % Moisture Percent Solids 87 J 5.6 ug/Kg 8260B Toluene 12 5.6 ug/Kg 8260B J Sylenes, Total 15 B 11 ug/Kg 8260B Chrysene<	480-18049-15	SB14 SS (2-3) 040212					
Xylenes, Total13B11ug/Kg8260BBenzo(a)anthracene15J190ug/Kg8270CBenzo(b)fluoranthene17J190ug/Kg8270CBenzo(k)fluoranthene17JB190ug/Kg8270CBenzo(k)fluoranthene11JB190ug/Kg8270CChrysene17JB190ug/Kg8270CFluoranthene17JB190ug/Kg8270CFluoranthene17J190ug/Kg8270CPrenathrene8.1J190ug/Kg8270CPercent Moisture130.10%MoisturePercent Solids870.10%MoisturePercent Solids813 SS (1-2) 0402125.6ug/Kg8260BToluene125.6ug/Kg8260BToluene15B11ug/Kg8260BSenzo(a)anthracene76J1900ug/Kg8270CChrysene76J1900ug/Kg8270CPercent Moisture900.10%MoisturePercent Solids900.10%MoisturePercent Solids821 SS (2-3) 0402125.7ug/Kg8260BChrysene135.7ug/Kg8260BEthylbenzene135.7ug/Kg8260BStal SS (2-3) 0402125.7ug/Kg8260BChrysene135.7ug/Kg8260B<	Ethylbenzene						
Denzo(a)anthracene15J190ug/Kg8270CBenzo(a)pyrene11J190ug/Kg8270CBenzo(k)fluoranthene17J190ug/Kg8270CBenzo(k)fluoranthene17JB190ug/Kg8270CChrysene17JB190ug/Kg8270CPioranthene17J190ug/Kg8270CPhenanthrene8.1J190ug/Kg8270CPrenet Moisture130.10%MoisturePercent Moisture130.10%MoisturePercent Solids871 5.6ug/Kg8260BToluene125.6ug/Kg8260BToluene125.6ug/Kg8260BPercent Moisture76J1900ug/Kg8270CPercent Moisture76J1900ug/Kg8270CPercent Moisture76J1900ug/Kg8260BChrysene52J B1900ug/Kg8270CPercent Moisture900.10%MoisturePercent Solids92763185.7ug/Kg8260BEthylbenzene325.7ug/Kg8260B3270CPercent Solids900.10%MoisturePercent Solids925.7ug/Kg8260BChrysene135.7ug/Kg8260BEthylbenzene135.7ug/K	Toluene		4.6		5.3	ug/Kg	8260B
Benzo(a)pyrene 11 J J 190 ug/Kg 8270C Benzo(k)fluoranthene 17 J 190 ug/Kg 8270C Chrysene 17 J B 190 ug/Kg 8270C Chrysene 17 J B 190 ug/Kg 8270C Fluoranthene 17 J B 190 ug/Kg 8270C Precent Moisture 13 J 190 ug/Kg 8270C Precent Moisture 13 J 190 ug/Kg 8270C Percent Moisture 13 J 190 ug/Kg 8270C Percent Moisture 13 J 190 ug/Kg 8270C Benzo(a)mlracene 13 J 100 ug/Kg 8270C SB13 SS (1-2) 040212 Benzo(a)mlracene 13 J 100 ug/Kg 8260B Benzo(a)mlracene 12 J 5.6 ug/Kg 8260B Benzo(a)mlracene 76 J 100 ug/Kg 8260B Benzo(a)mlracene 76 J 100 ug/Kg 8270C Chrysene 52 J B 1900 ug/Kg 8270C Chrysene 52 J B 1900 ug/Kg 8270C Chrysene 52 J B 1900 ug/Kg 8270C Percent Moisture 76 J 100 ug/Kg 8270C Chrysene 52 J B 1900 ug/Kg 8270C Chrysene 10 J 10 % Moisture Benzo(a)anthracene 12 J 5.7 ug/Kg 8260B S11 ug/Kg 8260B S200B Chrysene 13 J 5.7 ug/Kg 8260B S200B Chrysene 13 J 5.7 ug/Kg 8260B S270C Chrysene 140 J 1900 ug/Kg 8270C Chrysene 140 J 1900 ug/Kg 8270C Chrysene 140 J 1900 ug/Kg 8270C Chrysene 190 J B 1900 ug/Kg 8270C Chrysene 190 J B 1900 ug/Kg 8270C Chrysene 190 J B 1900 ug/Kg 8270C	Xylenes, Total		13		11		8260B
Benzo(b)fluoranthene17J190ug/Kg8270CBenzo(k)fluoranthene11JB190ug/Kg8270CChrysene17JB190ug/Kg8270CFluoranthene17J190ug/Kg8270CPhenanthrene17J190ug/Kg8270CPyrene14J190ug/Kg8270CPercent Moisture870.10%MoisturePercent Solids870.10%MoistureEthylbenzene4.5J5.6ug/Kg8260BZylenes, Total15B11ug/Kg8260BBenzo(a)anthracene76J1900ug/Kg8270CPercent Moisture900.10%MoisturePercent Solids900.10%MoisturePercent Solids900.10%MoisturePercent Solids900.10%MoistureEthylbenzene3228Unysene5.7ug/Kg8260BChrysene325.7ug/Kg8260BToluene335.7ug/Kg8260BToluene335.7ug/Kg8260BToluene335.7ug/Kg8260BToluene341900ug/Kg8270CSylence, Total45B11ug/Kg8260BBenzo(a)pryene69J1900ug/Kg8270C	Benzo(a)anthracene		15	J	190	ug/Kg	8270C
Benzo(k)fluoranthene 11 J B 190 ug/Kg 8270C Chrysene 17 J B 190 ug/Kg 8270C Pivene 17 J 190 ug/Kg 8270C Pyrene 14 J 190 ug/Kg 8270C Pyrene 14 J 190 ug/Kg 8270C Pyrene 14 J 0.10 % Moisture Percent Moisture 87 0.10 % Moisture Percent Solids SB13 SS (1-2) 040212 Ethylbenzene 4.5 J 5.6 ug/Kg 8260B Toluene 12 5.6 ug/Kg 8260B Toluene 12 5.6 ug/Kg 8260B SB13 SS (1-2) 040212 Ethylbenzene 76 J 1900 ug/Kg 8270C Chrysene 52 JB 1900 ug/Kg 8270C Percent Moisture 90 0.10 % Moisture Percent Solids 881 SS (1-2) 040212 Ethylbenzene 12 5.6 ug/Kg 8260B SB13 SS (1-2) 040212 Ethylbenzene 76 J 1900 ug/Kg 8270C Chrysene 52 JB 1900 ug/Kg 8270C Percent Moisture 10 0.10 % Moisture Percent Solids 90 0.10 % Moisture Percent Solids 22 70 C Percent Moisture 90 0.10 % Moisture Percent Solids 22 70 C Percent Moisture 13 5.7 ug/Kg 8260B Enzo(a)anthracene 13 5.7 ug/Kg 8260B Enzo(a)anthracene 140 J 1900 ug/Kg 8270C Percent Moisture 140 J 1900 ug/Kg 8270C Percent Moisture 91 900 ug/Kg 8270C Phenanthrene 190 J 1900 ug/Kg 8270C	Benzo(a)pyrene		11	J	190	ug/Kg	8270C
Chrysene17J B190ug/Kg8270CFluoranthene17J190ug/Kg8270CPhenanthrene8.1J190ug/Kg8270CPyrene14J190ug/Kg8270CPercent Moisture130.10%MoisturePercent Solids870.10%Moisturethylbenzene4.5J5.6ug/Kg8260BToluene125.6ug/Kg8260BToluene125.6ug/Kg8260BToluene76J1900ug/Kg8270CChrysene52J B1900ug/Kg8270CPercent Moisture100.10%MoisturePercent Solids900.10%Moisturethylenzenethylenzene100.10%MoisturePercent Solids900.10%Moisturethylenzene135.7ug/Kg8260Bthylenzene135.7ug/Kg8260BToluene325.7ug/Kg8260BToluene335.7ug/Kg8260BToluene335.7ug/Kg8260BSenze(a)anthracene141900ug/Kg8270CPremet Moisture1900ug/Kg8270CPremet Moisture1900ug/Kg8270C<	Benzo(b)fluoranthene		17	J	190	ug/Kg	8270C
Fluoranthrene17J190ug/Kg8270CPhenanthrene8.1J190ug/Kg8270CPyrene14J190ug/Kg8270CPyrene130.10%MoisturePercent Moisture870.10%MoisturePercent Solids870.10%Moisture#40-18049-16SB13 SS (1-2) 0402125.6ug/Kg8260BEthylbenzene4.5J5.6ug/Kg8260BToluene125.6ug/Kg8260BSenzo(a)anthracene76J1900ug/Kg8270CChrysene52JB1900ug/Kg8270CPercent Moisture100.10%MoisturePercent Solids900.10%MoisturePercent Solids900.10%MoisturePercent Solids900.10%MoisturePercent Solids900.10%MoisturePercent Solids900.10%MoisturePercent Solids905.7ug/Kg8260BEthylbenzene135.7ug/Kg8260BToluene335.7ug/Kg8260BSupersolaphthracene190ug/Kg8270CBenzo(a)aptracene14900ug/Kg8270CPrenet Moisture1900ug/Kg8270CPercent Moisture1900ug/Kg8270CPercent Mois	Benzo(k)fluoranthene		11	JB	190	ug/Kg	8270C
Phenanthrene8.1J190ug/Kg8270CPyrene14J190ug/Kg8270CPercent Moisture130.10%MoisturePercent Solids870.10%MoistureSB13 SS (1-2) 040212Ethylbenzene4.5J5.6ug/Kg8260BToluene125.6ug/Kg8260BSuids15B11ug/Kg8270CColspan="4">Colspan="4"Colspan="4"Colspan="4"Colspan="4"Co	Chrysene		17	JB	190	ug/Kg	8270C
Pyrene14J190ug/Kg8270CPercent Moisture130.10%MoisturePercent Solids870.10%MoisturePercent Solids870.10%Moisture480-18049-16SB13 SS (1-2) 040212Ethylbenzene4.5J5.6ug/Kg8260BToluene125.6ug/Kg8260BXylenes, Total15B11ug/Kg8260BBenzo(a)anthracene76J1900ug/Kg8270CChysene52J B1900ug/Kg8270CPercent Moisture100.10%MoisturePercent Solids900.10%Moisture480-18049-17SB13 SS (2-3) 04021228ug/Kg8260BAcetone3228ug/Kg8260BEthylbenzene135.7ug/Kg8260BToluene335.7ug/Kg8260BXylenes, Total45B11ug/Kg8260BBenzo(a)anthracene140J1900ug/Kg8270CBenzo(a)anthracene190J B1900ug/Kg8270CChysene190J B1900ug/Kg8270CPrenent Moisture190J B1900ug/Kg8270CPrenent Moisture190J B1900ug/Kg8270CPrenent Moisture190Ug/Kg8270CPrenent Moistur	Fluoranthene		17	J	190	ug/Kg	8270C
Percent Moisture 13 0.10 % Moisture Percent Solids 87 0.10 % Moisture 480-18049-16 SB13 SS (1-2) 040212 Ethylbenzene 4.5 J 5.6 ug/Kg 8260B Toluene 12 5.6 ug/Kg 8260B Senzo(a)anthracene 76 J 1900 ug/Kg 8270C Chrysene 52 J B 1900 ug/Kg 8270C Percent Moisture 10 0.10 % Moisture Percent Solids 90 0.10 % Moisture Percent Solids 90 0.10 % Moisture Vertent Solids 90 0.10 % Moisture 480-1804-17 SB13	Phenanthrene		8.1	J	190	ug/Kg	8270C
Percent Solids 87 0.10 % Moisture 480-18049-16 SB13 SS (1-2) 040212 -	Pyrene		14	J	190	ug/Kg	8270C
480-18049-16SB13 SS (1-2) 0402125.6ug/Kg8260BEthylbenzene125.6ug/Kg8260BToluene125.6ug/Kg8260BXylenes, Total15B11ug/Kg8260CBenzo(a)anthracene76J1900ug/Kg8270CChrysene52J B1900ug/Kg8270CPercent Moisture100.10%MoisturePercent Solids000.10%MoistureAcetoneSB13 SS (2-3) 040212228ug/Kg8260BSturpe3228ug/Kg8260BEthylbenzene135.7ug/Kg8260BToluene335.7ug/Kg8260BXylenes, Total45B11ug/Kg8260BStylenes, Total45B11ug/Kg8270CSylenes, Total140J1900ug/Kg8270CPryene190J B1900ug/Kg8270CPryene190J B1900ug/Kg8270CPryene260J1900ug/Kg8270CPryene260J1900ug/Kg8270CPrecent Moisture141000ug/Kg8270C	Percent Moisture		13		0.10	%	Moisture
Ethylbenzene 4.5 J 5.6 ug/Kg 8260B Toluene 12 5.6 ug/Kg 8260B Xylenes, Total 15 B 11 ug/Kg 8260B Benzo(a)anthracene 76 J 1900 ug/Kg 8270C Chrysene 52 J B 1900 ug/Kg 8270C Percent Moisture 10 0.10 % Moisture Percent Solids 90 0.10 % Moisture 480-18049-17 SB13 SS (2-3) 040212 - 0.10 % Moisture Acetone 32 28 ug/Kg 8260B Ethylbenzene 13 5.7 ug/Kg 8260B Toluene 33 5.7 ug/Kg 8260B Xylenes, Total 45 B 11 ug/Kg 8260B Benzo(a)anthracene 190 J 1900 ug/Kg 8270C Benzo(a)apyrene 69 J 1900 <td< td=""><td>Percent Solids</td><td></td><td>87</td><td></td><td>0.10</td><td>%</td><td>Moisture</td></td<>	Percent Solids		87		0.10	%	Moisture
Ethylbenzene 4.5 J 5.6 ug/Kg 8260B Toluene 12 5.6 ug/Kg 8260B Xylenes, Total 15 B 11 ug/Kg 8260B Benzo(a)anthracene 76 J 1900 ug/Kg 8270C Chrysene 52 J B 1900 ug/Kg 8270C Percent Moisture 10 0.10 % Moisture Percent Solids 90 0.10 % Moisture 480-18049-17 SB13 SS (2-3) 040212 - 0.10 % Moisture Acetone 32 28 ug/Kg 8260B Ethylbenzene 13 5.7 ug/Kg 8260B Toluene 33 5.7 ug/Kg 8260B Xylenes, Total 45 B 11 ug/Kg 8260B Benzo(a)anthracene 190 J 1900 ug/Kg 8270C Benzo(a)apyrene 69 J 1900 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
Toluene125.6ug/Kg8260BXylenes, Total15B11ug/Kg8260BBenzo(a)anthracene76J1900ug/Kg8270CChrysene52J B1900ug/Kg8270CPercent Moisture100.10%MoisturePercent Solids900.10%MoisturePercent Solids900.10%MoisturePercent Solids900.10%MoisturePercent Solids900.10%MoisturePercent Solids900.10%MoisturePercent Solids900.10%MoisturePercent Solids905.7ug/Kg8260BEthylbenzene135.7ug/Kg8260BToluene335.7ug/Kg8260BSylenes, Total45B11ug/Kg8270CBenzo(a)anthracene140J1900ug/Kg8270CPhenanthrane270J1900ug/Kg8270CPhenanthrene270J1900ug/Kg8270CPhenanthrene270J1900ug/Kg8270CPhenanthrene270J1900ug/Kg8270CPhenanthrene260J1900ug/Kg8270CPercent Moisture140.10%Moisture	480-18049-16	SB13 SS (1-2) 040212					
Xylenes, Total 15 B 11 ug/Kg 8260B Benzo(a)anthracene 76 J 1900 ug/Kg 8270C Chrysene 52 J B 1900 ug/Kg 8270C Percent Moisture 10 0.10 % Moisture Percent Solids 90 0.10 % Moisture Percent Solids 90 0.10 % Moisture Acetone 32 28 ug/Kg 8260B Ethylbenzene 13 5.7 ug/Kg 8260B Toluene 33 5.7 ug/Kg 8260B Xylenes, Total 45 B 11 ug/Kg 8260B Benzo(a)anthracene 140 J 1900 ug/Kg 8270C Benzo(a)pyrene 69 J 1900 ug/Kg 8270C Chrysene 190 J B 1900 ug/Kg 8270C Phenanthrene 270 J 1900 ug/Kg 8270C Pyrene 260 J 1900 ug/Kg <t< td=""><td>•</td><td></td><td></td><td>J</td><td></td><td></td><td></td></t<>	•			J			
Benzo(a)anthracene76J1900ug/kg8270CChrysene52J B1900ug/Kg8270CPercent Moisture100.10%MoisturePercent Solids900.10%Moisture 480-18049-17 SB13 SS (2-3) 040212Acetone3228ug/Kg8260BEthylbenzene325.7ug/Kg8260BToluene335.7ug/Kg8260BXylenes, Total45B11ug/Kg8260BBenzo(a)anthracene140J1900ug/Kg8270CChrysene190J B1900ug/Kg8270CPhenanthrene270J1900ug/Kg8270CPhenanthrene270J1900ug/Kg8270CPyrene260J1900ug/Kg8270CPyrene260J1900ug/Kg8270CPyrene260J1900ug/Kg8270CPyrene260J1900ug/Kg8270CPyrene260J1900ug/Kg8270C						0 0	
Chrysene 52 J B 1900 ug/Kg 8270C Percent Moisture 10 0.10 % Moisture Percent Solids 90 0.10 % Moisture 480-18049-17 SB13 SS (2-3) 040212 Acetone 32 28 ug/Kg 8260B Ethylbenzene 13 5.7 ug/Kg 8260B Toluene 33 5.7 ug/Kg 8260B Xylenes, Total 45 B 11 ug/Kg 8260B Benzo(a)anthracene 140 J 1900 ug/Kg 8270C Chrysene 190 J B 1900 ug/Kg 8270C Phenanthrene 270 J 1900 ug/Kg 8270C Pyrene 260 J 1900 ug/Kg 8270C Pyrene 260 </td <td>Xylenes, Total</td> <td></td> <td></td> <td></td> <td>11</td> <td>ug/Kg</td> <td></td>	Xylenes, Total				11	ug/Kg	
Percent Moisture100.10%MoisturePercent Solids900.10%Moisture 480-18049-17SB13 SS (2-3) 040212 </td <td>Benzo(a)anthracene</td> <td></td> <td>76</td> <td>J</td> <td>1900</td> <td></td> <td>8270C</td>	Benzo(a)anthracene		76	J	1900		8270C
Percent Solids900.10%Moisture480-18049-17SB13 SS (2-3) 040212778480-18049-17SB13 SS (2-3) 040212228Ug/Kg8260BAcetone325.7Ug/Kg8260BEthylbenzene135.7Ug/Kg8260BToluene335.7Ug/Kg8260BXylenes, Total45B11Ug/Kg8260BBenzo(a)anthracene140J1900Ug/Kg8270CBenzo(a)pyrene69J1900Ug/Kg8270CChrysene190J B1900Ug/Kg8270CPhenanthrene270J1900Ug/Kg8270CPyrene260J1900Ug/Kg8270CPyrene14-0.10%Moisture	Chrysene		52	JB	1900	ug/Kg	8270C
480-18049-17SB13 SS (2-3) 040212Acetone3228ug/Kg8260BEthylbenzene135.7ug/Kg8260BToluene335.7ug/Kg8260BXylenes, Total45B11ug/Kg8260BBenzo(a)anthracene140J1900ug/Kg8270CBenzo(a)pyrene69J1900ug/Kg8270CChrysene190J B1900ug/Kg8270CPyrene260J1900ug/Kg8270CPyrene141900ug/Kg8270CPercent Moisture141900ug/Kg8270C	Percent Moisture		10		0.10		Moisture
Acetone 32 28 ug/Kg 8260B Ethylbenzene 13 5.7 ug/Kg 8260B Toluene 33 5.7 ug/Kg 8260B Xylenes, Total 45 B 11 ug/Kg 8260B Benzo(a)anthracene 140 J 1900 ug/Kg 8270C Benzo(a)pyrene 69 J 1900 ug/Kg 8270C Chrysene 190 JB 1900 ug/Kg 8270C Phenanthrene 270 J 1900 ug/Kg 8270C Pyrene 260 J 1900 ug/Kg 8270C Pyrene 200 J 1900 ug/Kg 8270C Pyrene 260 J 1900 ug/Kg 8270C Pyrene 14 0.10 % Moisture	Percent Solids		90		0.10	%	Moisture
Acetone 32 28 ug/Kg 8260B Ethylbenzene 13 5.7 ug/Kg 8260B Toluene 33 5.7 ug/Kg 8260B Xylenes, Total 45 B 11 ug/Kg 8260B Benzo(a)anthracene 140 J 1900 ug/Kg 8270C Benzo(a)pyrene 69 J 1900 ug/Kg 8270C Chrysene 190 JB 1900 ug/Kg 8270C Phenanthrene 270 J 1900 ug/Kg 8270C Pyrene 260 J 1900 ug/Kg 8270C Pyrene 200 J 1900 ug/Kg 8270C Pyrene 260 J 1900 ug/Kg 8270C Pyrene 14 0.10 % Moisture							
Ethylbenzene 13 5.7 ug/Kg 8260B Toluene 33 5.7 ug/Kg 8260B Xylenes, Total 45 B 11 ug/Kg 8260B Benzo(a)anthracene 140 J 1900 ug/Kg 8270C Benzo(a)pyrene 69 J 1900 ug/Kg 8270C Chrysene 190 J B 1900 ug/Kg 8270C Phenanthrene 270 J B 1900 ug/Kg 8270C Pyrene 260 J 1900 ug/Kg 8270C Pyrene 14 0.10 % Moisture		SB13 SS (2-3) 040212					00005
Toluene 33 5.7 ug/Kg 8260B Xylenes, Total 45 B 11 ug/Kg 8260B Benzo(a)anthracene 140 J 1900 ug/Kg 8270C Benzo(a)pyrene 69 J 1900 ug/Kg 8270C Chrysene 190 J B 1900 ug/Kg 8270C Phenanthrene 270 J B 1900 ug/Kg 8270C Pyrene 260 J 1900 ug/Kg 8270C Percent Moisture 14 . 0.10 % Moisture						0 0	
Xylenes, Total 45 B 11 ug/Kg 8260B Benzo(a)anthracene 140 J 1900 ug/Kg 8270C Benzo(a)pyrene 69 J 1900 ug/Kg 8270C Chrysene 190 J B 1900 ug/Kg 8270C Phenanthrene 270 J B 1900 ug/Kg 8270C Pyrene 260 J 1900 ug/Kg 8270C Percent Moisture 14 0.10 % Moisture	,						
Benzo(a)anthracene 140 J 1900 ug/Kg 8270C Benzo(a)pyrene 69 J 1900 ug/Kg 8270C Chrysene 190 J B 1900 ug/Kg 8270C Phenanthrene 270 J B 1900 ug/Kg 8270C Pyrene 260 J 1900 ug/Kg 8270C Percent Moisture 14 0.10 % Moisture							
Benzo(a)pyrene 69 J 1900 ug/Kg 8270C Chrysene 190 J B 1900 ug/Kg 8270C Phenanthrene 270 J 1900 ug/Kg 8270C Pyrene 260 J 1900 ug/Kg 8270C Percent Moisture 14 0.10 % Moisture	-						
Chrysene 190 J B 1900 ug/Kg 8270C Phenanthrene 270 J 1900 ug/Kg 8270C Pyrene 260 J 1900 ug/Kg 8270C Percent Moisture 14 0.10 % Moisture	Benzo(a)anthracene						
Phenanthrene 270 J 1900 ug/Kg 8270C Pyrene 260 J 1900 ug/Kg 8270C Percent Moisture 14 0.10 % Moisture	Benzo(a)pyrene						
Pyrene260J1900ug/Kg8270CPercent Moisture140.10%Moisture	Chrysene						
Percent Moisture 14 0.10 % Moisture	Phenanthrene		270		1900		
	Pyrene		260	J	1900	ug/Kg	8270C
Percent Solids 86 0.10 % Moisture	Percent Moisture		14		0.10	%	Moisture
	Percent Solids		86		0.10	%	Moisture

Lab Sample ID Cli Analyte	ient Sample ID	Result	Qualifier	Reporting Limit	Units	Method
480-18049-18	SB08 SS (1-2) 040212					
2-Butanone (MEK)		64		34	ug/Kg	8260B
Acetone		720		34	ug/Kg	8260B
Ethylbenzene		8.8		6.7	ug/Kg	8260B
Toluene		26		6.7	ug/Kg	8260B
Xylenes, Total		34	В	13	ug/Kg	8260B
Benzo(a)anthracene		3200	J	46000	ug/Kg	8270C
Benzo(a)pyrene		2200	J	46000	ug/Kg	8270C
Chrysene		3700	JВ	46000	ug/Kg	8270C
Fluoranthene		4400	J	46000	ug/Kg	8270C
Pyrene		4600	J	46000	ug/Kg	8270C
Percent Moisture		26		0.10	%	Moisture
Percent Solids		74		0.10	%	Moisture
480-18049-19	SB08 SS (2-3) 040212					
Ethylbenzene		3.3	J	5.4	ug/Kg	8260B
Toluene		3.1	J	5.4	ug/Kg	8260B
Xylenes, Total		11	В	11	ug/Kg	8260B
Benzo(a)anthracene		68	J	1000	ug/Kg	8270C
Benzo(a)pyrene		110	J	1000	ug/Kg	8270C
Benzo(b)fluoranthene		110	J	1000	ug/Kg	8270C
Benzo(k)fluoranthene		48	JВ	1000	ug/Kg	8270C
Chrysene		86	JB	1000	ug/Kg	8270C
Fluoranthene		63	J	1000	ug/Kg	8270C
Indeno(1,2,3-cd)pyrene		75	J	1000	ug/Kg	8270C
Pyrene		84	J	1000	ug/Kg	8270C
Percent Moisture		17	-	0.10	%	Moisture
Percent Solids		83		0.10	%	Moisture
480-18049-20	SB12 SS (0-1) 040212					
Ethylbenzene		2.7	J	5.2	ug/Kg	8260B
Toluene		5.1	J	5.2	ug/Kg	8260B
Xylenes, Total		7.0	JB	10	ug/Kg	8260B
Benzo(a)anthracene		63	J	960	ug/Kg	8270C
Chrysene		72	JB	960	ug/Kg	8270C
Fluoranthene		69	J	960	ug/Kg	8270C
Percent Moisture		12		0.10	%	Moisture
Percent Solids		88		0.10	%	Moisture

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method
480-18049-21 SB12 SS (2-3)040212					00000
Ethylbenzene	3.8	J	4.6	ug/Kg	8260B
Isopropylbenzene	1.0	J	4.6	ug/Kg	8260B
Toluene	3.7	J	4.6	ug/Kg	8260B
Xylenes, Total	42	В	9.3	ug/Kg	8260B
2-Methylnaphthalene	860	J	3700	ug/Kg	8270C
Acenaphthene	200	J	3700	ug/Kg	8270C
Acetophenone	2800	J	3700	ug/Kg	8270C
Anthracene	420	J	3700	ug/Kg	8270C
Benzo(a)anthracene	930	J	3700	ug/Kg	8270C
Benzo(a)pyrene	590	J	3700	ug/Kg	8270C
Benzo(b)fluoranthene	710	J	3700	ug/Kg	8270C
Benzo(g,h,i)perylene	190	J	3700	ug/Kg	8270C
Benzo(k)fluoranthene	440	JB	3700	ug/Kg	8270C
Chrysene	750	JB	3700	ug/Kg	8270C
Dibenz(a,h)anthracene	2200	J	3700	ug/Kg	8270C
Fluoranthene	1600	J	3700	ug/Kg	8270C
Indeno(1,2,3-cd)pyrene	300	J	3700	ug/Kg	8270C
Naphthalene	5600		3700	ug/Kg	8270C
Phenanthrene	1200	J	3700	ug/Kg	8270C
Pyrene	1200	J	3700	ug/Kg	8270C
Percent Moisture	7.9		0.10	%	Moisture
Percent Solids	92		0.10	%	Moisture
480-18049-22 SB09 SS (1-2) 040212					
1,2-Dichlorobenzene	230		120	ug/Kg	8260B
2-Hexanone	420	J	580	ug/Kg	8260B
Ethylbenzene	300		120	ug/Kg	8260B
Isopropylbenzene	520		120	ug/Kg	8260B
Methylcyclohexane	950		120	ug/Kg	8260B
Toluene	110	J	120	ug/Kg	8260B
Xylenes, Total	2400		230	ug/Kg	8260B
Biphenyl	330	J	4000	ug/Kg	8270C
Anthracene	290	J	4000	ug/Kg	8270C
Benzo(a)anthracene	680	J	4000	ug/Kg	8270C
Benzo(a)pyrene	380	J	4000	ug/Kg	8270C
Benzo(b)fluoranthene	410	J	4000	ug/Kg	8270C
Benzo(k)fluoranthene	520	JВ	4000	ug/Kg	8270C
Chrysene	590	JB	4000	ug/Kg	8270C
Fluoranthene	1200	J	4000	ug/Kg	8270C
Phenanthrene	1200	J	4000	ug/Kg	8270C
Pyrene	910	J	4000	ug/Kg	8270C
Percent Moisture	15		0.10	%	Moisture
Percent Solids	85		0.10	%	Moisture

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method
480-18049-23 SB09 SS (3-4) 040212					
Ethylbenzene	0.97	J	4.9	ug/Kg	8260B
Toluene	3.0	J	4.9	ug/Kg	8260B
Xylenes, Total	2.7	JВ	9.8	ug/Kg	8260B
Benzo(a)anthracene	47	J	1900	ug/Kg	8270C
Bis(2-ethylhexyl) phthalate	1100	J	1900	ug/Kg	8270C
Percent Moisture	12		0.10	%	Moisture
Percent Solids	88		0.10	%	Moisture
480-18049-24 SB15 SS (1-2) 040212					
Ethylbenzene	6.0		5.3	ug/Kg	8260B
Toluene	5.6		5.3	ug/Kg	8260B
Xylenes, Total	16		11	ug/Kg	8260B
Benzo(a)anthracene	62	J	1900	ug/Kg	8270C
Percent Moisture	14		0.10	%	Moisture
Percent Solids	86		0.10	%	Moisture
480-18049-25 SB15 SS (3-4) 040212					
2-Butanone (MEK)	12	J	28	ug/Kg	8260B
Acetone	81		28	ug/Kg	8260B
Ethylbenzene	5.2	J	5.6	ug/Kg	8260B
Toluene	17		5.6	ug/Kg	8260B
Xylenes, Total	16		11	ug/Kg	8260B
Benzo(a)anthracene	210	J	1800	ug/Kg	8270C
Benzo(a)pyrene	160	J	1800	ug/Kg	8270C
Benzo(b)fluoranthene	220	J	1800	ug/Kg	8270C
Benzo(k)fluoranthene	140	J	1800	ug/Kg	8270C
Bis(2-ethylhexyl) phthalate	1000	J	1800	ug/Kg	8270C
Chrysene	200	J	1800	ug/Kg	8270C
Fluoranthene	300	J	1800	ug/Kg	8270C
Phenanthrene	210	J	1800	ug/Kg	8270C
Pyrene	300	J	1800	ug/Kg	8270C
Percent Moisture	10		0.10	%	Moisture
Percent Solids	90		0.10	%	Moisture
480-18049-26 SB06 SS (1-2) 040212					
Ethylbenzene	2.4	J	5.4	ug/Kg	8260B
Xylenes, Total	0.95	J	11	ug/Kg	8260B
Benzo(a)anthracene	140	J	3800	ug/Kg	8270C
Chrysene	74	J	3800	ug/Kg	8270C
Percent Moisture	11		0.10	%	Moisture
Percent Solids	89		0.10	%	Moisture

METHOD SUMMARY

Client: CHA Inc

Description	Lab Location	Method	Preparation Method
Matrix Solid			
Volatile Organic Compounds (GC/MS)	TAL BUF	SW846 8260B	
Closed System Purge and Trap	TAL BUF		SW846 5035
Volatile Organic Compounds (GC/MS)	TAL BUF	SW846 8260B	
Purge and Trap	TAL BUF		SW846 5035
Volatile Organic Compounds (GC/MS)	TAL BUF	SW846 8260B	
TCLP Extraction	TAL BUF		SW846 1311
Purge and Trap	TAL BUF		SW846 5030B
Semivolatile Organic Compounds (GC/MS)	TAL BUF	SW846 8270C	
Ultrasonic Extraction	TAL BUF		SW846 3550B
Semivolatile Organic Compounds (GC/MS)	TAL BUF	SW846 8270C	
TCLP Extraction	TAL BUF		SW846 1311
Liquid-Liquid Extraction (Separatory Funnel)	TAL BUF		SW846 3510C
Metals (ICP)	TAL BUF	SW846 6010B	
TCLP Extraction	TAL BUF		SW846 1311
Preparation, Total Metals	TAL BUF		SW846 3010A
Mercury (CVAA)	TAL BUF	SW846 7470A	
TCLP Extraction	TAL BUF		SW846 1311
Preparation, Mercury	TAL BUF		SW846 7470A
Ignitability, Pensky-Martens Closed-Cup Method	TAL BUF	SW846 1010	
Cyanide, Reactive	TAL BUF	SW846 9012	
Cyanide, Reactive	TAL BUF		SW846 7.3.3
Sulfide, Reactive	TAL BUF	SW846 9034	
Sulfide, Reactive	TAL BUF		SW846 7.3.4
pH	TAL BUF	SW846 9045C	
Percent Moisture	TAL BUF	EPA Moisture	

Lab References:

TAL BUF = TestAmerica Buffalo

Method References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

SW846 8260B Byrnes, Jennifer M JMB	
SW846 8260B Coder, David DC	
SW846 8260B Cwiklinski, Charles D CDC	
SW846 8260B Larson, Renee RL	
SW846 8270C Ly, Hau T HTL	
SW846 6010B Hanks, Lisa LH	
SW846 7470A Kacalski, Jason JRK	
SW846 1010 Shantz, Katelyn KS	
SW846 9012 Rojecki, James JR	
SW846 9034 Rojecki, James JR	
SW846 9045C Nyznyk, Elizabeth G EGN	
EPA Moisture Robitaille, Zach L ZLR	

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID: Lab Sample ID:	SB01 SS (2-3) 040212 480-18049-1					Date Sampled: 04/02	/2012 091
Client Matrix:	Solid	% Moisture	: 10.8			Date Received: 04/04	/2012 0900
	8	260B Volatile Orgar	nic Compoun	ds (GC/M	S)		
Analysis Method: Prep Method: Dilution:	8260B 5035 1.0	Analysis Batch: Prep Batch:	480-58043 480-58091		Instrument ID: Lab File ID: Initial Weight/Volu	HP5973F F7754.D	
Analysis Date:	04/04/2012 1438				Final Weight/Volu	•	
Prep Date:	04/04/2012 1404					inc. 5 me	
Analyte	DryWt Corrected: Y	Result (ug	J/Kg)	Qualifie	r MDL	RL	
1,1,1-Trichloroethan	e	ND			0.41	5.7	
1,1,2,2-Tetrachloroe	thane	ND			0.92	5.7	
1,1,2-Trichloroethan	e	ND			0.74	5.7	
1,1,2-Trichloro-1,2,2	-trifluoroethane	ND			1.3	5.7	
1,1-Dichloroethane		ND			0.69	5.7	
1,1-Dichloroethene		ND			0.69	5.7	
1,2,4-Trichlorobenze	ne	ND			0.35	5.7	
1,2-Dibromo-3-Chlor	opropane	ND			2.8	5.7	
1,2-Dibromoethane		ND			0.73	5.7	
1,2-Dichlorobenzene	9	ND			0.44	5.7	
1,2-Dichloroethane		ND			0.28	5.7	
1,2-Dichloropropane		ND			2.8	5.7	
1,3-Dichlorobenzene		ND			0.29	5.7	
1,4-Dichlorobenzene		ND			0.79	5.7	
2-Hexanone		ND			2.8	28	
2-Butanone (MEK)		8.5		J	2.1	28	
4-Methyl-2-pentanor	ne (MIBK)	ND			1.9	28	
Acetone		180			4.8	28	
Benzene		1.5		J	0.28	5.7	
Bromodichlorometha	ine	ND		•	0.76	5.7	
Bromoform		ND			2.8	5.7	
Bromomethane		ND			0.51	5.7	
Carbon disulfide		ND			2.8	5.7	
Carbon tetrachloride		ND			0.55	5.7	
Chlorobenzene		ND			0.00	5.7	
Dibromochlorometha		ND			0.73	5.7	
Chloroethane		ND			1.3	5.7	
Chloroform		ND			0.35	5.7	
Chloromethane		ND			0.35	5.7	
	20	ND			0.34	5.7	
cis-1,2-Dichloroethe					0.73	5.7	
cis-1,3-Dichloroprop	ene	ND					
Cyclohexane	1000	12 ND			0.79	5.7	
Dichlorodifluorometh	lane	ND		F	0.47	5.7	
Ethylbenzene		640		Е	0.39	5.7	
Isopropylbenzene		54			0.86	5.7	
Methyl acetate		ND			1.1	5.7	
Methyl tert-butyl ethe	31	ND		-	0.56	5.7	
Methylcyclohexane		260		E	0.86	5.7	
Methylene Chloride		ND			2.6	5.7	
Styrene		ND			0.28	5.7	
Tetrachloroethene		ND		_	0.76	5.7	
Toluene		230		E	0.43	5.7	
trans-1,2-Dichloroeth		ND			0.59	5.7	
trans-1,3-Dichloropro	opene	ND			2.5	5.7	
Trichloroethene		ND			1.2	5.7	
Trichlorofluorometha		ND			0.54	5.7	

Client: CHA Inc

Client Sample ID:	SB01 SS (2-3) 040212					
Lab Sample ID: Client Matrix:	480-18049-1 Solid	% Moisture	: 10.8			Sampled: 04/02/2012 0915 Received: 04/04/2012 0900
		8260B Volatile Orga	nic Compoun	ds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 1.0 04/04/2012 1438 04/04/2012 1404	Analysis Batch: Prep Batch:	480-58043 480-58091	Lab Initia	ument ID: File ID: al Weight/Volume: I Weight/Volume:	HP5973F F7754.D 4.94 g 5 mL
Analyte	DryWt Corrected: Y	C Result (up)	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			0.69	5.7
Xylenes, Total		3700		E	0.95	11
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
1,2-Dichloroethane-	d4 (Surr)	118			64 - 126	
Toluene-d8 (Surr)		110			71 - 125	
4-Bromofluorobenze	ene (Surr)	105			72 - 126	

Client: CHA Inc

Job Number: 480-18049-1

Atalysis Method: 8260B Volatile Organic Compounds (GC/MS) Analysis Method: 8260B Analysis Batch: 480-58304 Instrument ID: HP5973G Prep Method: 5035 Prep Batch: 480-58304 Lab File ID: G10723.D Initial Weight/Volume: 5.0 Initial Weight/Volume: 5.0 g g Analysis Date: 04/06/2012 1323 Run Type: DL Final Weight/Volume: 10 mL Prep Date: 04/05/2012 1045 ND S50 S50 1.1,2.2.7 ND S50 1.1,1.Trichloroethane ND ND 150 S50 1.1,2.2.7 ND 120 S50 1.1,2.7.1richloroethane ND 120 S50 1.1,2.1richloroethane ND 170 S50 1.1.2.1richloroethane ND 170 S50 1.2.0ichloroethane ND 280 S50 1.2.0ichloroethane ND 210 S50 1.2.0ichloropopane ND 210 S50 1.2.0ichloropopane ND 150 S50 <	Client Sample ID:	SB01 SS (2-3) 040212							
Client dataSold% Marker:10.8Disk Perview: 04/04/2012 0000Analysis Bath:400-5201Analysis Bath:400-5201Instrument ID:HorsonPrep Method:503Prep Bath:400-5201Lab File IC:G10723 DDiution:5.0Prep Bath:400-5201210.4File IC:G10723 DPrep Date:04/05/201210.4File IC:File IC:G10723 DPrep Date:DyWt Corrected: YRest/Ug/RVQuafierMDLRL1.1.2 Crichtoron:NDVIIIS50S501.1.2 Crichtoron:NDVIIIIS50S501.1.2 Crichtoron:NDVIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Lab Sample ID:	480-18049-1				ſ	Date Sampled: 04/02/2012 0915		
Analysis Method: B260B Analysis Batch: 400-58481 Instrument ID: HP5973G Prep Method: 5.0 Initial Weight/Volume: 5.0 Analysis Date: 04/06/2012 1223 Run Type: DL Final Weight/Volume: 10 mL Analysis Date: 04/06/2012 1243 Run Type: DL Final Weight/Volume: 10 mL Analysis Transmitted ND 150 550 Analysis Method: DryWt Corrected: ND 150 550 1,1,2:Trichforcethane ND 120 550 1,1,2:Trichforcethane ND 190 550 1,1,2:Trichforcethane ND 190 550 1,1,2:Trichforcethane ND 280 550 1,1,2:Trichforcethane ND 280 550 1,2:Dichorcethane ND 280 550 1,2:Dichorcethane ND 280 550 1,2:Dichorcethane ND 140 550 1,2:Dichorcethane ND 280 550 1,2:Dichorcethane ND 180 550	Client Matrix:	Solid	% Moisture:	10.8					
Prep Prep Batch: 480-58304 Lan File ID: G10723 D Diuluion: 50 mital WeightVolume: 50.9 g Analysis Dair 0406/2012 1323 Run Type: DL Final WeightVolume: 50 Analyse DryWT Corrected: Y Result (ug/Kg) Qualifier MDL RL 1,12-Trichtorot-12-tratachloroethane ND 89 550 1,12-Trichtoroethane ND 280 550 1,2-Dichtoroethane ND 280 550 1,2-Dichtoroethane ND 280 550 1,2-Dichtoroethane ND 160 2800 1,2-Dichtoroethane ND 280 550 1,2-Dichoroethane ND <td colspan="9">8260B Volatile Organic Compounds (GC/MS)</td>	8260B Volatile Organic Compounds (GC/MS)								
Dution: 5.0 nution: 5.0 0.0 Analysis Date: 0.405/2012 1045 DL Initial WeightVolume: 10 mL Analysis Date: 0.405/2012 1045 DL Initial WeightVolume: 10 mL Analysis Date: DrWt Corrected: Y Result (up/Kg) Qualifier MD RL 1.1.1: Trichtorocthane ND 150 550 1.1.2.2: Trichtorocthane ND 120 550 1.1.2: Trichtorocthane ND 210 550 1.2.0: Informedene ND 210 550 1.2.0: Informedene ND 210 550 1.2.0: Informedene ND 200 550 1.2.0: Informedene ND 160 550<	Analysis Method:	8260B	Analysis Batch:	480-58481		Instrument ID:	HP5973G		
Dution: 5.0 nution: 5.0 0.0 Analysis Date: 0.405/2012 1045 DL Initial WeightVolume: 10 mL Analysis Date: 0.405/2012 1045 DL Initial WeightVolume: 10 mL Analysis Date: DrWt Corrected: Y Result (up/Kg) Qualifier MD RL 1.1.1: Trichtorocthane ND 150 550 1.1.2.2: Trichtorocthane ND 120 550 1.1.2: Trichtorocthane ND 210 550 1.2.0: Informedene ND 210 550 1.2.0: Informedene ND 210 550 1.2.0: Informedene ND 200 550 1.2.0: Informedene ND 160 550<	Prep Method:	5035	-	480-58304		Lab File ID:	G10723.D		
Analysis Date: 04/05/2012 123 045 Run Type: DL Final Weight/Volume: 10 nL Analyce DryW1 Corrected: Y Result (ug/Kg) Qualifier MDL RL Analyce DryW1 Corrected: Y Result (ug/Kg) Qualifier MDL RL 1,1.2.Trichtorocethane ND 86 550 1,1.2.Trichtorocethane ND 280 550 1,1.2.Trichtorocethane ND 100 550 1,1.2.Trichtorocethane ND 210 550 1,2.4.Trichtorocethane ND 210 550 1,2.4.Trichtorocethane ND 210 550 1.2.4.Trichtorocethane ND 210 550 1.2.4.Trichtorocethane ND 210 550 1.2.4.Trichtorocethane ND 210 550 1.2.4.Trichtorocethane ND 230 550 1.2.4.Trichtorocethane ND 230 260 1.2.0.Diolorophane ND 150 550 1.2.						Initial Weight/Volum	ne: 5.09 a		
Prep Date: 04/05/2012 1045 Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MD RL 1.1,1-Tichloroethane ND 150 550 1,1.2.2-fital/oroethane ND 280 550 1,1.2.Tichloroethane ND 280 550 1,1.2-Tichloroethane ND 280 550 1,1.2-Tichloroethane ND 280 550 1,1.2-Tichloroethane ND 280 550 1,2.4-Tichlorobenzene ND 280 550 1.2-Dibromo-Chloropopane ND 280 550 1.2-Dibromo-Chane ND 200 550 1.2-Dibromo-Chane ND 200 550 1.2-Dibromo-Chane ND 200 550 1.2-Dibromo-Chane ND 150 550 1.2-Dibromo-Chane ND 150 550 1.2-Dibromo-Chane ND 1600 2800 1.2-Dibromo-Chane ND 160 280			Run Type [.]	DI		-	-		
1,1,1-Tichloroethane ND 150 550 1,1,2,2-Terkachloroethane ND 120 550 1,1,2,2-Trichloroethane ND 120 550 1,1,2-Trichloroethane ND 120 550 1,1,2-Trichloroethane ND 170 550 1,1,2-Trichloroethane ND 170 550 1,1-Dichlorethane ND 170 550 1,1-Dichloroethane ND 120 550 1,2-Dichlorobenzene ND 280 550 1,2-Dichlorophonzene ND 140 550 1,2-Dichlorophonzene ND 160 560 1,2-Dichlorophonzene ND 77 550 1,2-Dichlorophonzene ND 160 2800 1,3-Dichlorophonzene ND 160 2800 2-Hexanone 2600 J 1100 2800 2-Haxinone ND 180 2800 2800 2-Haxinone ND 180 2800	Prep Date:								
11,1-Tickloroethane ND 150 560 1,1,2-Tickloroethane ND 120 550 1,1,2-Tickloroethane ND 120 550 1,1,2-Tickloroethane ND 170 550 1,1,2-Tickloroethane ND 170 550 1,1,2-Tickloroethane ND 170 550 1,1-Dickloreethane ND 170 550 1,2-Dickloroethane ND 210 550 1,2-Dickloroethane ND 140 550 1,2-Dickloroethane ND 140 550 1,2-Dickloroethane ND 140 550 1,2-Dickloroethane ND 77 550 1,2-Dickloroethane ND 170 2800 1,2-Dickloroethane ND 160 2800 2-Baraone 2600 J 1100 2800 2-Baraone ND 180 2800 280 2-Baraone ND 180 280 550	Analyte	DryWt Corrected: Y	Result (ug	/Kg)	Qualifie	er MDL	RL		
1,1,2-TrichiorosthaneND1205501,1,2-TrichiorosthaneND2805501,1-DichiorosthaneND1705501,1-DichiorosthaneND2105501,2-DichiorosthaneND2105501,2-DichiorosthaneND2105501,2-DichiorosthaneND2105501,2-DichiorosthaneND2105501,2-DichiorosthaneND2005501,2-DichiorosthaneND895501,2-DichiorosthaneND775501,2-DichiorosthaneND775501,2-DichiorosthaneND160028001,3-DichiorosthaneND160028001,4-DichiorosthaneND18028002-HexanoneND18028002-HexanoneND18028002-HexanoneND1805502-HexanoneND1805502-HexanoneND1005502-HexanoneND1005502-HexanoneND1005502-HexanoneND1005502-HexanoneND1305502-HexanoneND1305502-HexanoneND1305502-HexanoneND1305502-HexanoneND1305502-HexanoneND1305502-HoxanoneND1305502-Hoxanone	1,1,1-Trichloroethar	-				150	550		
1,1-2-Inchioro-1,2.2-trilurorethaneND2005501,1-DichioroethaneND1905501,2-4-TrichiorobenzeneND2105501,2-Dichoroc-SchoropropaneND2805501,2-Dichoroc-SchoropropaneND2105501,2-Dichoroc-SchoropropaneND2305501,2-Dichoroc-SchoropropaneND2305501,2-Dichoroc-SchoropropaneND1505501,2-Dichoroc-SchoropropaneND1505501,2-Dichoroc-SchoropropaneND1505501,3-DichorobenzeneND160028002-HexanoneND160028002-HexanoneND160028002-HexanoneND230028002-HexanoneND230028002-HexanoneND100550BromodichoromethaneND100550BromodichoromethaneND100550BromodichoromethaneND100550Carbon disulfideND100550Carbon disulfideND100550ChioroethaneND100550ChioroethaneND100550ChioroethaneND100550ChioroethaneND100550ChioroethaneND100550ChioroethaneND100550ChioroethaneND100550ChioroethaneND100 <td>1,1,2,2-Tetrachloroe</td> <td>ethane</td> <td>ND</td> <td></td> <td></td> <td>89</td> <td>550</td>	1,1,2,2-Tetrachloroe	ethane	ND			89	550		
1,1-2-Inchioro-1,2.2-trilurorethaneND2005501,1-DichioroethaneND1905501,2-4-TrichiorobenzeneND2105501,2-Dichoroc-SchoropropaneND2805501,2-Dichoroc-SchoropropaneND2105501,2-Dichoroc-SchoropropaneND2305501,2-Dichoroc-SchoropropaneND2305501,2-Dichoroc-SchoropropaneND1505501,2-Dichoroc-SchoropropaneND1505501,2-Dichoroc-SchoropropaneND1505501,3-DichorobenzeneND160028002-HexanoneND160028002-HexanoneND160028002-HexanoneND230028002-HexanoneND230028002-HexanoneND100550BromodichoromethaneND100550BromodichoromethaneND100550BromodichoromethaneND100550Carbon disulfideND100550Carbon disulfideND100550ChioroethaneND100550ChioroethaneND100550ChioroethaneND100550ChioroethaneND100550ChioroethaneND100550ChioroethaneND100550ChioroethaneND100550ChioroethaneND100 <td>1,1,2-Trichloroethar</td> <td>ne</td> <td>ND</td> <td></td> <td></td> <td>120</td> <td>550</td>	1,1,2-Trichloroethar	ne	ND			120	550		
1.1-DichloroethaneND1705501.1-DichloroethaneND1905501.2-DichloroberzeneND2105501.2-DichloroethaneND2105501.2-DichloroethaneND2105501.2-DichloroethaneND2305501.2-DichloroethaneND2305501.2-DichloroethaneND5505501.2-DichloroethaneND775501.2-DichloroethaneND775501.2-DichloroethaneND160028002-HaxanoneS60J160028002-Haxanone (MEK)ND18028002-Haxanone (MEK)ND18028002-Haxanone (MIBK)ND2805502-Haxanone (MIBK)ND2805502-Haxanone (MIBK)ND2805502-Haxanone (MIBK)ND2805502-Haxanone (MIBK)ND2805502-Haxanone (MIBK)ND1005502-Haxanone (MIBK)ND1005502-Haxanone (MIBK)ND1005502-Haxanone (MIBK)ND1305502-Haxanone (MIBK)ND1305502-Haxanoe (MIBK)ND1305502-Haxanoe (MIBK)ND1305502-Haxanoe (MIBK)ND1305502-Haxanoe (MIBK)ND1305502-Haxanoe (MIBK)ND130550						280	550		
1,1-DichoroetheneND1905001,2-A-TrichloroberzeneND2105001,2-DichoromethaneND2105001,2-DichoroethaneND1405001,2-DichoroethaneND2305501,2-DichoroethaneND1505001,2-DichoroethaneND1505001,2-DichoroethaneND1505001,2-DichoroethaneND1505001,4-DichoroethaneND16028002-HexanoneND160028002-HexanoneND18028002-HexanoneND18028002-HexanoneND18028002-HexanoneND280028002-HexanoneND28005002-HexanoneND1005002-Buranone (MIBK)ND100500BromodichoromethaneND120550BromodichoromethaneND120550Carbon disulfideND73550Carbon disulfideND130550ChioroethaneND130550ChioroethaneND130550ChioroethaneND130550ChioroethaneND130550ChioroethaneND130550ChioroethaneND130550ChioroethaneND140550ChioroethaneND150550Chi									
1.2.4-TrichiorobenzeneND2105501.2.0-biromesthaneND2405501.2-DichiorobenzeneND2405501.2-DichiorobenzeneND2805501.2-DichiorobenzeneND895501.3-DichiorobenzeneND775501.4-DichiorobenzeneND775502-Hexanone2800J110028002-Butanone (MEK)ND18028004-Methyl-2-pentanone (MIBK)ND1802800AcetoneND280550BromodichioromethaneND280550BromodichioromethaneND1802800AcetoneND280550BromodichioromethaneND280550BromodichioromethaneND280550BromodichioromethaneND280550BromodichioromethaneND100550BromodichioromethaneND100550Carbon terzcholorideND130550ChiorobenzeneND130550DibromochioromethaneND130550ChiorobenzeneND130550ChiorobenzeneND130550ChiorobenzeneND130550ChiorobenzeneND130550ChiorobenzeneND130550ChiorobenzeneND130550ChiorobenzeneND130550<									
1.2-DibromoethaneND2805501.2-DibromoethaneND14.05501.2-DichorobenzeneND2305501.2-DichorobenzeneND895501.2-DichorobenzeneND1505501.3-DichorobenzeneND775502-Hexanone2600J100028002-HexanoneND160028002-HexanoneND160028002-HexanoneND280028002-HexanoneND280028002-HexanoneND280028002-HexanoneND2800550BromodichloromethaneND100550BromodichloromethaneND280550BromodichloromethaneND120550DichoroberzeneND120550Carbon distlifeND100550ChoromethaneND100550ChoromethaneND100550ChoromethaneND100550ChoromethaneND100550ChoromethaneND100550ChoromethaneND120550ChoromethaneND120550ChoromethaneND130550ChoromethaneND120550ChoromethaneND120550ChoromethaneND130550ChoromethaneND120550Chorome		ene							
1.2.Dibromoethane ND 21 550 1.2.Dichlorobenzene ND 140 550 1.2.Dichloropopane ND 89 550 1.2.Dichloropopane ND 89 550 1.2.Dichloropopane ND 150 550 1.4.Dichlorobenzene ND 77 550 1.4.Dichlorobenzene ND 1600 2800 2.4Butanone (MEK) ND 1600 2800 2.4Butanone (MEK) ND 160 2800 2.4Butanone (MEK) ND 200 2800 Benzene ND 200 2800 Benzene ND 110 550 Bromodichloromethane ND 120 550 Bromodethane ND 120 550 Carbon tetrachoide ND 73 550 Dibromochhoromethane ND 100 550 Chorobenzene ND 100 550 Dibromochoromethane ND 100 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1.2.DichlorobenzeneND14.05501.2.DichloropopaneND2905501.3.DichlorobenzeneND1505501.4.DichlorobenzeneND775502.Hexanone (MEK)ND100028002.Hexanone (MEK)ND160028002.Hexanone (MEK)ND2002800AcetoneND23002800AcetoneND2002800BenzeneND2002800BromodichloromethaneND200550BromodichloromethaneND280550BromodichloromethaneND280550BromodichloromethaneND260550BromodichloromethaneND260550DichorobenzeneND140550Carbon disulfideND100550Carbon disulfideND100550ChlorobenzeneND130550ChlorobenzeneND130550ChlorobenzeneND130550ChlorobenzeneND100550ChlorobenzeneND100550ChlorobenzeneND100550ChlorobenzeneND100550ChlorobenzeneND100550ChlorobenzeneND100550ChlorobenzeneND100550ChlorobenzeneND100550ChlorobenzeneND100550 </td <td></td> <td>opiopalio</td> <td></td> <td></td> <td></td> <td></td> <td></td>		opiopalio							
1.2-DichloropropaneND2305501.2-DichloropropaneND895501.3-DichlorophezeneND1505501.4-DichlorobenzeneND775502-Hexanone2600J110028002-Butanone (MEK)ND160028004-Methyl-2-pentanone (MEK)ND23002800AcetoneND23002800BenzeneND280550BromodichloromethaneND110550BromodichloromethaneND280550BromodichloromethaneND280550BromodichloromethaneND280550BromodichloromethaneND280550Carbon disulfideND280550Carbon disulfideND73550Carbon disulfideND73550ChlorobenzeneND380550ChlorobenzeneND130550ChlorobethaneND130550ChlorobethaneND130550ChlorobethaneND140550ChlorobethaneND130550ChlorobethaneND130550ChlorobethaneND160550ChlorobethaneND240550ChlorobethaneND260550ChlorobethaneND160550ChlorobethaneND160550ChlorobethaneND <t< td=""><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td></t<>		2							
1.2-DichloropropaneND895501.3-DichlorobenzeneND1505501.4-DichlorobenzeneND775502-Hexanone2800J110028002-Butanone (MEK)ND160028004-Methyl-2-pentanone (MIBK)ND23002800AcetoneND23002800BenzeneND23002800BromodichloromethaneND110550BromodichloromethaneND110550BromodichloromethaneND120550Carbon disulfideND140550Carbon disulfideND140550Carbon disulfideND100550Carbon disulfideND100550ChloroberaneND100550ChloroberthaneND130550ChloroberthaneND130550ChloroberthaneND130550ChloroberthaneND130550ChloroberthaneND130550ChloroberthaneND100550ChloroberthaneND100550ChloroberthaneND100550ChloroberthaneND100550ChloroberthaneND100550ChloroberthaneND100550ChloroberthaneND100550ChloroberthaneND200550ChloroberthaneND<		e							
1.3-DichlorobenzeneND1505501.4-DichlorobenzeneND776502-Hexanone2600J110028002-Butanone (MEK)ND160028002-Butanone (MIBK)ND23002800AcetoneND23002800BenzeneND23002800BromoforhormethaneND110550BromoforhorND280550BromoforhorND280550Carbon tisulfideND120550Carbon tisulfideND140550ChlorobenzeneND73550ChlorobenzeneND73550ChlorobenzeneND100550ChlorobenzeneND130550ChlorobenzeneND130550ChlorobenzeneND130550ChlorobenzeneND130550ChlorobenzeneND130550ChlorobenzeneND130550ChlorobenzeneND130550ChlorobenzeneND240550ChlorobenzeneND200550ChlorobenzeneND130550ChlorobenzeneND200550ChlorobenzeneND200550ChlorobenzeneND200550ChlorobenzeneND200550ChlorobenzeneND200550Chlorobenzene <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
1.4-DichlorobenzeneND775502-Hexanone2600J110028002-Butanone (MIBK)ND160028004.Methyl-2-pentanone (MIBK)ND23002800AcetoneND23002800BenzeneND266550BromodichloromethaneND266550BromodichloromethaneND110550BromodichloromethaneND280550BromodichloromethaneND250550Carbon disulfideND250550Carbon disulfideND270550ChoromethaneND270550DibromochloromethaneND110550ChoromethaneND270550ChloromethaneND130550ChloromethaneND130550ChloromethaneND130550ChloromethaneND130550ChloromethaneND120550DichlorodifluoromethaneND120550DichlorodifluoromethaneND260550Ethylbenzene100083550Methyl zetateND260550Methyl zetateND110550Methyl zetateND260550Methyl zetateND260550Methyl zetateND100550Methyl zetateND260550Methyl zetateND									
2-Hexanone2600J110028002-Butanone (MEK)ND16002800AcetoneND23002800AcetoneND23002800BenzeneND26550BromodichloromethaneND110550BromodichloromethaneND280550BromodichloromethaneND280550Carbon disulfideND280550Carbon disulfideND140550Carbon disulfideND73550DibromochloromethaneND73550ChlorobenzeneND73550DibromochloromethaneND110550ChloroethaneND110550ChloroethaneND130550ChloroethaneND130550CyclohexaneS30J120550DichloroptippeneND130550Cyclohexane100063550Ethylbenzene11000160550EthylbenzeneND260550Methyl cectateND260550Methyl cectateND100550Methyl cectateND100550Methyl cectateND100550Methyl cectateND100550Methyl cectateND100550Methyl cectateND100550Methyl cectateND100550 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
2-Butanone (MEK)ND160028004-Methyl-2-pentanone (MIBK)ND28002800AcetoneND2002800BenzeneND260550BromodichloromethaneND110550BromodichloromethaneND2800550BromodichloromethaneND2800550Carbon disulfideND2800550Carbon disulfideND120550Carbon disulfideND73550ChlorobenzeneND73550DibromochloromethaneND73550ChlorobenzeneND100550ChlorobenzeneND380550ChlorobethaneND130550ChlorobethaneND130550ChlorobethaneND130550ChlorobethaneND130550ChlorobethaneND140550ChlorobethaneND100550ChlorobethaneND240550DichloroffluoromethaneND260550Ethylbenzene100063550Ethylbenzene100063550Methyl actateND100550Methyl actateND100550Methyl actateND100550Methyl actateND100550Methyl actateND100550Methyl actateND100550 <t< td=""><td></td><td>e</td><td></td><td></td><td></td><td></td><td></td></t<>		e							
4-Methyl-2-pentanone (MIBK)ND1802800AcetoneND23002800BenzeneND26550BromodichloromethaneND280550BromodichloromethaneND280550BromodichloromethaneND280550Carbon disulfideND280550Carbon disulfideND120550Carbon disulfideND73550ChlorobenzeneND73550DibromochloromethaneND73550ChlorothaneND110550ChlorothaneND380550ChlorothaneND130550ChlorothaneND130550ChlorothaneND130550ChlorothaneND130550ChlorothaneND140550ChlorothaneND130550ChlorothaneND130550ChlorothaneND240550ChlorothaneND260550Ibhylorazene190083550IbhylorazeneND260550IbhylorazeneND130550StyreneND130550StyreneND130550Methyler-ChlorideND130550Methyler-ChlorideND130550StyreneND130550TetrachlorotheneND130 <t< td=""><td></td><td></td><td></td><td></td><td>J</td><td></td><td></td></t<>					J				
ActonND23002800BenzeneND26550BromodichloromethaneND26550BromodichloromethaneND280550BromomethaneND120550Carbon disulfideND250550Carbon disulfideND140550ChlorobenzeneND73550DibromochloromethaneND73550ChlorothaneND100550ChlorothaneND100550ChlorothaneND130550ChlorothaneND130550ChlorothaneND130550ChlorothaneND130550ChlorothaneND130550ChlorothaneND130550ChlorothaneND130550Cyclohexane530J120550Cyclohexane100060550Isopropylbenzene100083550Methyl cetateND260550Methyl chlorothene130550Methyl chlorotheneND130550StyreneND130550StyreneND130550TetrachlorotheneND130550StyreneND130550TetrachlorotheneND130550StyreneND130550TetrachlorotheneND130550 <trr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></trr<>									
BenzeneND26550BromodichloromethaneND110550BromodichloromethaneND280550BromomethaneND120550Carbon disulfideND250550Carbon disulfideND250550Carbon tetrachiorideND73550ChlorobenzeneND73550DibromochloromethaneND270550ChloroethaneND380550ChloroethaneND380550ChloroethaneND300550cis-1,2-DichloroetheneND130550cis-1,2-DichloroetheneND130550CyclohexaneS30J120550Ethylbenzene11000600550Ethylbenzene1000600550Methyl acetateND200550MethylacetateND200550MethylenchloroetheneND100550StyreneND100550TetrachloroetheneND100550MethylenchlorideND100550MethylenchlorideND100550StyreneND100550TetrachloroetheneND100550MethylenchlorideND100550MethylenchlorideND100550TetrachloroetheneND100550TetrachloroetheneND100		ne (MIBK)							
BromodichloromethaneND110550BromooformND280550BromoethaneND120550Carbon isulfideND250550Carbon isulfideND140550Carbon tetrachlorideND73550ChlorobenzeneND270550ChlorotethaneND110550ChlorotethaneND380550ChlorotethaneND380550ChlorotethaneND130550ChlorotethaneND130550ChlorotethaneS30J20550ChlorotetheneS30J20550ChlorotethaneND240550ChlorotethaneND240550DichlorotetheneND240550Ethylbenzene1100083550EthylbenzeneND210550Methyl acetateND210550Methyl acetateND210550Methyl cethorideND100550Methyl cethorideND100550StyreneND130550TetrachloroetheneND130550TetrachloroetheneND130550TotueneND130550Methyl cethorideND130550Methyl cethorideND130550TotueneND130550Totuene									
BromoformND280550BromomethaneND120550Carbon disulfideND250550Carbon disulfideND140550ChlorobenzeneND73550DibromochloromethaneND73550ChlorobethaneND110550ChloroformND380550ChloroformND130550ChloroformND150550ChloroformND130550Cis-1,2-DichloroetheneND150550CyclohexaneS30J120550DichoroffluoromethaneND240550DichlorodifluoromethaneND83550Ethylbenzene11000550550Bethyl kert-butyl etherND260550Methyl actateND210550Methyl kert-butyl etherND260550MethylechlorideND130550StyreneND130550TetrachloroetheneND130550TetrachloroetheneND130550Toluene2200550550Toluene2200550550Trans-1,2-DichloropropeneND150550Trans-1,2-DichloropropeneND150550TrichloroetheneND150550TrichloroetheneND150550Toluene2005505									
BromomethaneND120550Carbon disulfideND250550Carbon tetrachlorideND140550ChlorobenzeneND73550DibromochloromethaneND270550ChloroethaneND110550ChloroethaneND380550ChloroethaneND130550ChloroethaneND130550ChloroethaneND130550ChloroethaneND130550cis-1,2-DichloroetheneND120550cis-1,3-DichloroptopeneND120550Cyclohexane530J240550DichlorodifluoromethaneND160550Ethylbenzene1100083550Biothyl etr-butyl etherND260550Methyl acetateND100550Methyl etr-butyl etherND100550StyreneND110550StyreneND130550Tolene220050550Tolene2200150550Tolene220550550Tolene220550550Tolene200550550Tolene200550550Tolene200550550Tolene200550550Tolene200550550Tolene200550550		ane							
Carbon disulfideND250550Carbon tetrachlorideND140550ChlorobenzeneND73550DibromochloromethaneND270550ChlorothaneND110550ChlorothaneND380550ChlorothaneND130550ChlorothaneND150550ChlorothaneND130550ChlorothaneND130550ChlorothaneND130550ChlorothaneND130550Cyclohexane530J120550DichlorothaneND140550Stopropylbenzene190083550EthylbenzeneND260550Methyl acetateND260550MethylcyclohexaneND130550StyreneND130550StyreneND130550TetrachloroetheneND130550ToleneND130550ToleneND130550ToleneND130550ToleneND130550ToleneND130550ToleneND130550Tolene200150550ToleneND130550Tolene200150550Tolene200150550Tolene130550 <t< td=""><td>Bromoform</td><td></td><td></td><td></td><td></td><td></td><td>550</td></t<>	Bromoform						550		
Carbon tetrachlorideND140550ChlorobenzeneND73550DibromochloromethaneND270550ChlorotethaneND110550ChloroformND380550ChloromethaneND130550ChloroformND130550cis-1,2-DichloropteneND130550cis-1,3-DichloropropeneND130550CyclohexaneND120550DichlorodifluoromethaneND240550Cyclohexane11000160550Isopropylbenzene1100083550Isopropylbenzene1900260550Methyl acetateND210550Methyl et-butyl etherND100550StyreneND100550StyreneND130550TetrachloroetheneND130550TetrachloroetheneND130550TetrachloroetheneND130550TetrachloroetheneND130550TetrachloroetheneND130550TetrachloroetheneND130550TetrachloroetheneND130550TetrachloroetheneND130550TetrachloroetheneND130550TetrachloroetheneND130550TetrachloroetheneND150550TetrachloroetheneND <td>Bromomethane</td> <td></td> <td>ND</td> <td></td> <td></td> <td>120</td> <td>550</td>	Bromomethane		ND			120	550		
ChlorobenzeneND73550DibromochloromethaneND270550ChloroethaneND110550ChloroothaneND380550ChloromethaneND130550cis-1,2-DichloroetheneND130550cis-1,3-DichloroppeneND130550Cyclohexane530J120550DichlorodifluoromethaneND240550Ethylbenzene11000160550Isopropylbenzene190083550Methyl acetateND210550Methylenc ChlorideND210550StyreneND210550StyreneND130550TetachloroetheneND130550Toluene220050550Tans-1,2-DichloroptopeneND130550Trans-1,3-DichloropropeneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND	Carbon disulfide		ND			250	550		
DibromochloromethaneND270550ChloroethaneND110550ChloroformND380550ChloromethaneND130550cis-1,2-DichloropteneND130550CyclohexaneS30J120550CyclohexaneND240550DichlorodifluoromethaneND240550Ethylbenzene11000160550Isoproylbenzene190083550Methyl acetateND260550Methylenc ChlorideND260550StyreneND110550StyreneND130550TetachloroetheneND130550StyreneND130550TetachloroetheneND130550StyreneND130550TetachloroetheneND74550TetachloroetheneND130550TetachloroetheneND130550TetachloroetheneND130550TetachloroetheneND130550TetachloroetheneND130550TetachloroetheneND130550TetachloroetheneND130550TetachloroetheneND130550TetachloroetheneND130550TetachloroetheneND130550TetachloroetheneND130550 <t< td=""><td>Carbon tetrachloride</td><td>9</td><td>ND</td><td></td><td></td><td>140</td><td>550</td></t<>	Carbon tetrachloride	9	ND			140	550		
ChloroethaneND110550ChloroformND380550ChloromethaneND130550cis-1,2-DichloroetheneND130550cis-1,3-DichloropropeneND130550Cyclohexane530J120550DichlorodifluoromethaneND240550Ethylbenzene11000160550Isopropylbenzene190083550Methyl acetateND260550Methylene ChlorideND210550Styrene1900260550StyreneND130550TetrachloroetheneND130550StyreneND130550Toluene2200150550Trans-1,2-DichloroetheneND130550Trans-1,3-DichloropropeneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130 <td>Chlorobenzene</td> <td></td> <td>ND</td> <td></td> <td></td> <td>73</td> <td>550</td>	Chlorobenzene		ND			73	550		
ChloroformND380550ChloromethaneND130550cis-1,2-DichloroetheneND130550cis-1,3-DichloropropeneND130550Cyclohexane530J120550DichlorodifluoromethaneND240550Ethylbenzene11000660550Isopropylbenzene190083550Methyl acetateND260550Methyl tert-butyl etherND260550Methylene ChlorideND110550StyreneND130550TetrachloroetheneND130550Tetras-l,2-DichloroetheneND130550Trans-1,2-DichloroetheneND130550Trans-1,3-DichloropropeneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND150550TrichloroetheneND150550TrichloroetheneND150550TrichloroetheneND150550TrichloroetheneND150550	Dibromochlorometh	ane	ND			270	550		
ChloromethaneND130550cis-1,2-DichloroetheneND150550cis-1,3-DichloropropeneND120550Cyclohexane530J120550DichlorodifluoromethaneND240550Ethylbenzene11000160550Isopropylbenzene190083550Methyl acetateND260550Methyl tert-butyl etherND210550Methylcyclohexane1900260550MethylcyclohexaneND110550Methyl terbutyl etherND100550Methylene ChlorideND100550TetrachloroetheneND130550Toluene2200150550Trans-1,2-DichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND150550TrichloroetheneND150550TrichloroetheneND150550T	Chloroethane		ND			110	550		
cis-1,2-DichloroetheneND150550cis-1,3-DichloropropeneND130550Cyclohexane530J120550DichlorodifluoromethaneND240550Ethylbenzene11000160550Isopropylbenzene90083550Methyl acetateND260550Methyl detherND210550Methyl cyclohexane900210550Methyl detherND260550Methyl detherND260550Methylene ChlorideND110550StyreneND130550TetrachloroetheneND74550Toluene2200150550trans-1,2-DichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND150550TrichloroetheneND150550TrichloroetheneND150550TrichloroetheneND150550TrichloroetheneND	Chloroform		ND			380	550		
cis-1,2-DichloroetheneND150550cis-1,3-DichloropropeneND130550Cyclohexane530J120550DichlorodifluoromethaneND240550Ethylbenzene11000160550Isopropylbenzene90083550Methyl acetateND260550Methyl detherND210550Methyl cyclohexane900210550Methyl detherND260550Methyl detherND260550Methylene ChlorideND110550StyreneND130550TetrachloroetheneND74550Toluene2200150550trans-1,2-DichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND150550TrichloroetheneND150550TrichloroetheneND150550TrichloroetheneND150550TrichloroetheneND	Chloromethane		ND			130	550		
cis-1,3-DichloropropeneND130550Cyclohexane530J120550DichlorodifluoromethaneND240550Ethylbenzene11000160550Isopropylbenzene90083550Methyl acetateND260550Methyl detherND210550Methyl dether9000260550Methylene ChlorideND110550StyreneND130550TetrachloroetheneND74550Toluene2200150550trans-1,2-DichloroptopeneND130550TrichloroetheneND260550TrichloroetheneND550550TrichloroetheneND550550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND150550TrichloroetheneND150550TrichloroetheneND550550TrichloroetheneND550550TrichloroetheneND550550TrichloroetheneND550550TrichloroetheneND550550TrichloroetheneND550550TrichloroetheneND55	cis-1,2-Dichloroethe	ene	ND			150	550		
Cyclohexane 530 J 120 550 Dichlorodifluoromethane ND 240 550 Ethylbenzene 11000 160 550 Isopropylbenzene 1900 83 550 Methyl acetate ND 260 550 Methyl tert-butyl ether ND 210 550 Methyl gether 19000 260 550 Methyl gether ND 260 550 Methylene Chloride ND 110 550 Styrene ND 130 550 Toluene 2200 150 550 trans-1,2-Dichloropthene ND 130 550 trans-1,3-Dichloropropene ND 26 550 Trichloroethene ND 500 550			ND			130	550		
DichlorodifluoromethaneND240550Ethylbenzene11000160550Isopropylbenzene190083550Methyl acetateND260550Methyl tert-butyl etherND210550Methylcyclohexane19000260550Methylene ChlorideND260550StyreneND110550TetrachloroetheneND130550Toluene2200150550trans-1,2-DichloropropeneND130550TrichloroetheneND26550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND26550TrichloroetheneND150550TrichloroetheneND550550TrichloroetheneND550550TrichloroetheneND550550TrichloroetheneND550550TrichloroetheneND550550TrichloroetheneND550550Trichloroethene550550550Trichloroethene550550550Trichloroethene550550550Trichloroethene550550550Trichloroethene550550550Trichloroethene550					J				
Ethylbenzene11000160550Isopropylbenzene190083550Methyl acetateND260550Methyl tert-butyl ether19000260550Methylene ChlorideND260550StyreneND110550TetrachloroetheneND130550Toluene2200150550trans-1,2-DichloropropeneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND130550TrichloroetheneND550550TrichloroetheneND550550TrichloroetheneND550550TrichloroetheneND550550TrichloroetheneND550550TrichloroetheneND550550TrichloroetheneND550550TrichloroetheneND550550TrichloroetheneND550550TrichloroetheneND550550TrichloroetheneND550550TrichloroetheneND550550TrichloroetheneND550550Trichloroethene550550550Trichloroethene550550550Trichloroethene550550550Trichloroethene550550 <td></td> <td>hane</td> <td></td> <td></td> <td></td> <td></td> <td></td>		hane							
Isopropylbenzene 1900 83 550 Methyl acetate ND 260 550 Methyl tert-butyl ether ND 210 550 Methyl cyclohexane 19000 260 550 Methylene Chloride ND 260 550 Styrene ND 110 550 Tetrachloroethene ND 130 550 Toluene 2200 74 550 trans-1,2-Dichloroethene ND 130 550 trans-1,3-Dichloropropene ND 130 550 Trichloroethene ND 130 550									
Methyl acetate ND 260 550 Methyl tert-butyl ether ND 210 550 Methylcyclohexane 19000 260 550 Methylene Chloride ND 110 550 Styrene ND 130 550 Tetrachloroethene ND 74 550 Toluene 2200 150 550 trans-1,2-Dichloroethene ND 300 550 trans-1,3-Dichloropropene ND 260 550 Trichloroethene ND 550 550									
Methyl tert-butyl ether ND 210 550 Methylcyclohexane 19000 260 550 Methylene Chloride ND 110 550 Styrene ND 130 550 Tetrachloroethene ND 74 550 Toluene 2200 150 550 trans-1,2-Dichloroethene ND 330 550 trans-1,3-Dichloropropene ND 26 550 Trichloroethene ND 550 550									
Methylcyclohexane 19000 260 550 Methylene Chloride ND 110 550 Styrene ND 130 550 Tetrachloroethene ND 74 550 Toluene 2200 150 550 trans-1,2-Dichloroethene ND 130 550 trans-1,3-Dichloropropene ND 26 550 Trichloroethene ND 26 550	-	er							
Methylene Chloride ND 110 550 Styrene ND 130 550 Tetrachloroethene ND 74 550 Toluene 2200 150 550 trans-1,2-Dichloroethene ND 130 550 trans-1,3-Dichloropropene ND 26 550 Trichloroethene ND 150 550		-							
Styrene ND 130 550 Tetrachloroethene ND 74 550 Toluene 2200 150 550 trans-1,2-Dichloroethene ND 130 550 trans-1,3-Dichloropropene ND 26 550 Trichloroethene ND 150 550									
Tetrachloroethene ND 74 550 Toluene 2200 150 550 trans-1,2-Dichloroethene ND 130 550 trans-1,3-Dichloropropene ND 26 550 Trichloroethene ND 150 550	-								
Toluene 2200 150 550 trans-1,2-Dichloroethene ND 130 550 trans-1,3-Dichloropropene ND 26 550 Trichloroethene ND 150 550									
trans-1,2-Dichloroethene ND 130 550 trans-1,3-Dichloropropene ND 26 550 Trichloroethene ND 150 550									
trans-1,3-DichloropropeneND26550TrichloroetheneND150550		hene							
Trichloroethene ND 150 550									
		opene							
Inchioronuoromethane ND 260 550									
	inchiorofluorometha	ane	ND			260	550		

Client: CHA Inc

Client Sample ID:	SB01 SS (2-3) 040212					
Lab Sample ID: Client Matrix:	480-18049-1 Solid	% Moisture	: 10.8			Sampled: 04/02/2012 0915 Received: 04/04/2012 0900
		8260B Volatile Orga	nic Compoun	ds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 5.0 04/06/2012 1323 04/05/2012 1045	Analysis Batch: Prep Batch: Run Type:	480-58481 480-58304 DL	Lab I Initia	ument ID: File ID: I Weight/Volume: Weight/Volume:	HP5973G G10723.D 5.09 g 10 mL
Analyte	DryWt Corrected: \	Y Result (u	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			180	550
Xylenes, Total		120000 % Dec		Qualifier	93	1100
Surrogate 1,2-Dichloroethane Toluene-d8 (Surr)	d4 (Surr)	%Rec 114 53		Qualifier	53 - 146 50 - 149	nce Limits
4-Bromofluorobenz	ene (Surr)	53			49 - 148	

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB02 SS (2-3) 040212							
Lab Sample ID:	480-18049-2					Date Sampled: 04/02/2012 1004		
Client Matrix:	Solid	% Moisture:	13.3			Date Received: 04/04/2012 0900		
8260B Volatile Organic Compounds (GC/MS)								
Analysia Mathadi		-	-					
Analysis Method:	8260B	Analysis Batch:	480-58389		Instrument ID:	HP5973G		
Prep Method:	5035	Prep Batch:	480-58304		Lab File ID:	G10708.D		
Dilution:	1.0				Initial Weight/Volur	-		
Analysis Date:	04/06/2012 0615				Final Weight/Volun	ne: 10 mL		
Prep Date:	04/05/2012 1045							
Analyte	DryWt Corrected: Y	Result (ug	/Kg)	Qualifie	er MDL	RL		
1,1,1-Trichloroethar	ne	ND			31	110		
1,1,2,2-Tetrachloroe	ethane	ND			18	110		
1,1,2-Trichloroethar	ne	ND			23	110		
1,1,2-Trichloro-1,2,2	2-trifluoroethane	ND			56	110		
1,1-Dichloroethane		ND			35	110		
1,1-Dichloroethene		ND			39	110		
1,2,4-Trichlorobenze	ene	ND			42	110		
1,2-Dibromo-3-Chlo	ropropane	ND			56	110		
1,2-Dibromoethane		ND			4.2	110		
1,2-Dichlorobenzen	e	3600			28	110		
1,2-Dichloroethane		ND			46	110		
1,2-Dichloropropane	2	ND			18	110		
1,3-Dichlorobenzen		ND			30	110		
1,4-Dichlorobenzen		ND			16	110		
2-Hexanone	6	ND			230	560		
2-Butanone (MEK)		ND			330	560		
. ,	no (MIRK)	ND			36	560		
4-Methyl-2-pentano		ND			30 460	560		
Benzene		82			400 5.4	110		
Bromodichlorometh	202	ND		J	5.4 22	110		
	ane							
Bromoform		ND			56	110		
Bromomethane		ND			25	110		
Carbon disulfide		ND			51	110		
Carbon tetrachloride	9	ND			28	110		
Chlorobenzene		ND			15	110		
Dibromochlorometh	ane	ND			54	110		
Chloroethane		ND			23	110		
Chloroform		ND			77	110		
Chloromethane		ND			27	110		
cis-1,2-Dichloroethe		ND			31	110		
cis-1,3-Dichloroprop	bene	ND			27	110		
Cyclohexane		ND			25	110		
Dichlorodifluoromet	hane	ND			49	110		
Ethylbenzene		41000		Е	33	110		
Isopropylbenzene		3600			17	110		
Methyl acetate		ND			53	110		
Methyl tert-butyl eth	er	ND			42	110		
Methylcyclohexane		660			52	110		
Methylene Chloride		ND			22	110		
Styrene		ND			27	110		
Tetrachloroethene		ND			15	110		
Toluene		56000		Е	30	110		
trans-1,2-Dichloroet	hene	ND			26	110		
trans-1,3-Dichloropr		ND			5.4	110		
Trichloroethene		ND			31	110		
Trichlorofluorometha	ane	ND			52	110		
					52	110		

Client: CHA Inc

Client Sample ID:	SB02 SS (2-3) 040212					
Lab Sample ID: Client Matrix:	480-18049-2 Solid	% Moisture	: 13.3			Sampled: 04/02/2012 1004 Received: 04/04/2012 0900
		8260B Volatile Orga	nic Compound	ls (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 1.0 04/06/2012 0615 04/05/2012 1045	Analysis Batch: Prep Batch:	480-58389 480-58304	Lab I Initia	ument ID: File ID: I Weight/Volume: I Weight/Volume:	HP5973G G10708.D 5.16 g 10 mL
Analyte	DryWt Corrected	I: Y Result (u	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			37	110
Xylenes, Total		110000		E	19	220
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
1,2-Dichloroethane-	d4 (Surr)	119			53 - 146	
Toluene-d8 (Surr)		109			50 - 149	
4-Bromofluorobenze	ene (Surr)	120			49 - 148	

Client: CHA Inc

Analytical Data Job Number: 480-18049-1

Client Sample ID:	SB02 SS (2-3) 040212				F	Data Complete 04/00/004	10 400
Lab Sample ID: Client Matrix:	480-18049-2 Solid	% Moisture	e: 13.3			Date Sampled: 04/02/201 Date Received: 04/04/201	
	٤	260B Volatile Orga	nic Compoun	ds (GC/MS)			
Analysis Method:	8260B	Analysis Batch:	480-58481	Instr	ument ID:	HP5973G	
Prep Method:	5035	Prep Batch:	480-58304	Lab	File ID:	G10724.D	
Dilution:	10			Initia	al Weight/Volum	ie: 5.16 g	
Analysis Date:	04/06/2012 1346	Run Type:	DL		I Weight/Volum		
Prep Date:	04/05/2012 1045				Ū		
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifier	MDL	RL	
1,1,1-Trichloroethan	le	ND			310	1100	
1,1,2,2-Tetrachloroe	ethane	ND			180	1100	
1,1,2-Trichloroethan	e	ND			230	1100	
1,1,2-Trichloro-1,2,2	2-trifluoroethane	ND			560	1100	
1,1-Dichloroethane		ND			350	1100	
1,1-Dichloroethene		ND			390	1100	
1,2,4-Trichlorobenze	ene	ND			420	1100	
1,2-Dibromo-3-Chlo	ropropane	ND			560	1100	
1,2-Dibromoethane		ND			42	1100	
1,2-Dichlorobenzen	e	3500			280	1100	
1,2-Dichloroethane		ND			460	1100	
1,2-Dichloropropane	9	ND			180	1100	
1,3-Dichlorobenzen		ND			300	1100	
1,4-Dichlorobenzen		ND			160	1100	
2-Hexanone	-	ND			2300	5600	
2-Butanone (MEK)		ND			3300	5600	
4-Methyl-2-pentanoi	ne (MIBK)	ND			360	5600	
Acetone		ND			4600	5600	
Benzene		ND			54	1100	
Bromodichlorometha	ane	ND			220	1100	
Bromoform		ND			560	1100	
Bromomethane		ND			250	1100	
Carbon disulfide		ND			510	1100	
Carbon tetrachloride		ND			280	1100	
	;	ND			280 150	1100	
Chlorobenzene		ND			150 540	1100	
Dibromochlorometh	ane						
Chloroethane Chloroform		ND			230	1100	
		ND			770	1100	
Chloromethane		ND			270	1100	
cis-1,2-Dichloroethe		ND			310	1100	
cis-1,3-Dichloroprop	ene	ND			270	1100	
Cyclohexane		ND			250	1100	
Dichlorodifluoromet	nane	ND			490	1100	
Ethylbenzene		71000			330	1100	
Isopropylbenzene		2700			170	1100	
Methyl acetate		ND			530	1100	
Methyl tert-butyl eth	er	ND			420	1100	
Methylcyclohexane		550		J	520	1100	
Methylene Chloride		ND			220	1100	
Styrene		ND			270	1100	
Tetrachloroethene		ND			150	1100	
Toluene		90000			300	1100	
trans-1,2-Dichloroet	hene	ND			260	1100	
trans-1,3-Dichloropr	opene	ND			54	1100	
Trichloroethene		ND			310	1100	
					520		

Client: CHA Inc

Client Sample ID:	SB02 SS (2-3) 040212					
Lab Sample ID: Client Matrix:	480-18049-2 Solid	% Moisture	e: 13.3			e Sampled: 04/02/2012 1004 e Received: 04/04/2012 0900
		8260B Volatile Orga	nic Compoun	ds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 10 04/06/2012 1346 04/05/2012 1045	Analysis Batch: Prep Batch: Run Type:	480-58481 480-58304 DL	Lab I Initia	ument ID: File ID: I Weight/Volume: I Weight/Volume:	HP5973G G10724.D 5.16 g 10 mL
Analyte	DryWt Corrected: \	Y Result (u	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			370	1100
Xylenes, Total		140000			190	2200
Surrogate		%Rec		Qualifier	Accepta	nce Limits
1,2-Dichloroethane-	d4 (Surr)	112			53 - 146	
Toluene-d8 (Surr) 4-Bromofluorobenze	ene (Surr)	116 119			50 - 149 49 - 148	

Client:	CHA	Inc
Uncrit.		IIIC.

Client Sample ID:	SB02 SS (0-3) 040212					
Lab Sample ID: Client Matrix:	480-18049-3 Solid					Date Sampled: 04/02/2012 1004 Date Received: 04/04/2012 0900
	8260	0B Volatile Organic	Compounds	(GC/MS)-1	TCLP	
Analysis Method:	8260B	Analysis Batch:	480-58568		Instrument ID:	HP5973G
Prep Method:	5030B	Prep Batch:	N/A		Lab File ID:	G10758.D
Dilution:	10	Leach Batch:	480-58276		Initial Weight/Volun	ne: 5 mL
Analysis Date:	04/07/2012 0322				Final Weight/Volum	ne: 5 mL
Prep Date:	04/07/2012 0322					
Leach Date:	04/05/2012 1014					
Analyte	DryWt Corrected: N	Result (n	ng/L)	Qualifie	r MDL	RL

Analyte	DryWt Corrected: N	Result (mg/L)	Qualifier	MDL	RL	
Benzene		ND		0.0041	0.010	
Carbon tetrachloride		ND		0.0027	0.010	
Chlorobenzene		ND		0.0075	0.010	
Chloroform		ND		0.0034	0.010	
1,2-Dichloroethane		ND		0.0021	0.010	
1,1-Dichloroethene		ND		0.0029	0.010	
2-Butanone (MEK)		ND		0.013	0.050	
Tetrachloroethene		ND		0.0036	0.010	
Trichloroethene		ND		0.0046	0.010	
Vinyl chloride		ND		0.0090	0.010	
Surrogate		%Rec	Qualifier	Acceptar	nce Limits	
1,2-Dichloroethane-d4 (Surr)		99		66 - 137		
Toluene-d8 (Surr)		107		71 - 126		
4-Bromofluorobenzene (Surr)		108		73 - 120		

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB03 SS (1-2) 040212							
Lab Sample ID:	480-18049-4				D	ate Sampled: 04/02/2012 1030		
Client Matrix:	Solid	% Moisture:	20.5			Date Received: 04/04/2012 0900		
8260B Volatile Organic Compounds (GC/MS)								
Analysis Method:	8260B	Analysis Batch:	480-58043		Instrument ID:	HP5973F		
Prep Method:	5035	Prep Batch:	480-58091		Lab File ID:	F7756.D		
Dilution:	1.0	Thep Bateri.	400-30031		Initial Weight/Volum			
	04/04/2012 1529				•	•		
Analysis Date:					Final Weight/Volume	e: 5 mL		
Prep Date:	04/04/2012 1404							
Analyte	DryWt Corrected: Y	Result (ug	/Kg)	Qualifie		RL		
1,1,1-Trichloroethan		ND			0.45	6.2		
1,1,2,2-Tetrachloroe	ethane	ND			1.0	6.2		
1,1,2-Trichloroethan		ND			0.81	6.2		
1,1,2-Trichloro-1,2,2	2-trifluoroethane	ND			1.4	6.2		
1,1-Dichloroethane		ND			0.76	6.2		
1,1-Dichloroethene		ND			0.76	6.2		
1,2,4-Trichlorobenze	ene	ND			0.38	6.2		
1,2-Dibromo-3-Chlo	ropropane	ND			3.1	6.2		
1,2-Dibromoethane		ND			0.80	6.2		
1,2-Dichlorobenzene	e	220			0.49	6.2		
1,2-Dichloroethane		ND			0.31	6.2		
1,2-Dichloropropane	9	ND			3.1	6.2		
1,3-Dichlorobenzene	e	ND			0.32	6.2		
1,4-Dichlorobenzene	е	ND			0.87	6.2		
2-Hexanone		ND			3.1	31		
2-Butanone (MEK)		89			2.3	31		
4-Methyl-2-pentanor	ne (MIBK)	ND			2.0	31		
Acetone	(, ,	140			5.2	31		
Benzene		17			0.31	6.2		
Bromodichlorometha	ane	ND			0.83	6.2		
Bromoform		ND			3.1	6.2		
Bromomethane		ND			0.56	6.2		
Carbon disulfide		ND			3.1	6.2		
Carbon tetrachloride	2	ND			0.60	6.2		
Chlorobenzene	-	ND			0.82	6.2		
Dibromochlorometha	ane	ND			0.80	6.2		
Chloroethane		ND			1.4	6.2		
Chloroform		ND			0.38	6.2		
Chloromethane		ND			0.38	6.2		
cis-1,2-Dichloroethe	ne	ND			0.80	6.2		
cis-1,3-Dichloroprop		ND			0.90	6.2		
Cyclohexane		3.2		J	0.87	6.2		
Dichlorodifluorometh	hane	ND		0	0.51	6.2		
Ethylbenzene		1900		Е	0.43	6.2		
Isopropylbenzene		770		E	0.94	6.2		
Methyl acetate		ND		L	1.2	6.2		
Methyl tert-butyl eth	or	ND			0.61	6.2		
• •	ei	26			0.95	6.2		
Methylcyclohexane Methylene Chloride		ND			2.9	6.2		
-		240			0.31	6.2		
Styrene Tetrachloroethene					0.31			
		ND		F		6.2		
Toluene	hana	3900		E	0.47	6.2		
trans-1,2-Dichloroet		ND			0.64	6.2		
trans-1,3-Dichloropr	opene	ND			2.7	6.2		
Trichloroethene		ND			1.4	6.2		
Trichlorofluorometha		ND			0.59	6.2		

Client: CHA Inc

Client Sample ID:	SB03 SS (1-2) 040212					
Lab Sample ID: Client Matrix:	480-18049-4 Solid	% Moisture	: 20.5			Sampled: 04/02/2012 1030 Received: 04/04/2012 0900
		8260B Volatile Orga	nic Compound	ds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 1.0 04/04/2012 1529 04/04/2012 1404	Analysis Batch: Prep Batch:	480-58043 480-58091	Lab Initia	rument ID: File ID: al Weight/Volume: I Weight/Volume:	HP5973F F7756.D 5.05 g 5 mL
Analyte	DryWt Corrected: \	C Result (up)	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			0.76	6.2
Xylenes, Total		6700		E	1.0	12
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
1,2-Dichloroethane-d4 (Surr)		109			64 - 126	
Toluene-d8 (Surr)		104			71 - 125	
4-Bromofluorobenze	ene (Surr)	96			72 - 126	

Client: CHA Inc

Analytical Data

Client Sample ID:	SB03 SS (1-2) 040212					
Lab Sample ID:	480-18049-4				ſ	Date Sampled: 04/02/2012 1030
Client Matrix:	Solid	% Moisture:	20.5		I	Date Received: 04/04/2012 0900
	8	260B Volatile Organ	ic Compoun	ds (GC/M	S)	
Analysis Method:	8260B	Analysis Batch:	480-58568		Instrument ID:	HP5973G
Prep Method:	5035	Prep Batch:	480-58304		Lab File ID:	G10770.D
Dilution:	200	•			Initial Weight/Volum	ne: 5.18 g
Analysis Date:	04/07/2012 0754	Run Type:	DL		Final Weight/Volum	-
Prep Date:	04/05/2012 1045	Kun type.	DL			
Analyte	DryWt Corrected: Y	Result (ug	/Kg)	Qualifie	r MDL	RL
1,1,1-Trichloroethar	•	ND	0,		6700	24000
1,1,2,2-Tetrachloro		ND			3900	24000
1,1,2-Trichloroethar		ND			5100	24000
1,1,2-Trichloro-1,2,2		ND			12000	24000
1,1-Dichloroethane		ND			7500	24000
1,1-Dichloroethene		ND			8400	24000
1,2,4-Trichlorobenz	ene	ND			9200	24000
					9200 12000	
1,2-Dibromo-3-Chlo		ND				24000
1,2-Dibromoethane		ND			920	24000
1,2-Dichlorobenzen	e	ND			6200	24000
1,2-Dichloroethane		ND			9900	24000
1,2-Dichloropropan		ND			3900	24000
1,3-Dichlorobenzen	e	ND			6500	24000
1,4-Dichlorobenzen	e	ND			3400	24000
2-Hexanone		ND			50000	120000
2-Butanone (MEK)		ND			72000	120000
4-Methyl-2-pentano	ne (MIBK)	ND			7800	120000
Acetone		ND			100000	120000
Benzene		ND			1200	24000
Bromodichlorometh	ane	ND			4900	24000
Bromoform		ND			12000	24000
Bromomethane		ND			5300	24000
Carbon disulfide		ND			11000	24000
Carbon tetrachlorid	8	ND			6200	24000
Chlorobenzene	6	ND			3200	24000
Dibromochlorometh	200	ND			12000	24000
	lane					
Chloroethane		ND			5100	24000
Chloroform		ND			17000	24000
Chloromethane		ND			5800	24000
cis-1,2-Dichloroethe		ND			6700	24000
cis-1,3-Dichloroprop	pene	ND			5800	24000
Cyclohexane		ND			5400	24000
Dichlorodifluoromet	hane	ND			11000	24000
Ethylbenzene		270000			7100	24000
Isopropylbenzene		29000			3600	24000
Methyl acetate		ND			12000	24000
Methyl tert-butyl eth	ner	ND			9200	24000
Methylcyclohexane		ND			11000	24000
Methylene Chloride		ND			4800	24000
Styrene		ND			5900	24000
Tetrachloroethene		ND			3300	24000
Toluene		630000			6500	24000
trans-1,2-Dichloroe	thene	ND			5700	24000
trans-1,3-Dichlorop		ND			1200	24000
Trichloroethene		ND			6800	24000
Trichlorofluorometh	ane	ND			11000	24000
The more than the more					11000	27000

Client: CHA Inc

Client Sample ID:	SB03 SS (1-2) 040212					
Lab Sample ID: Client Matrix:	480-18049-4 Solid	% Moisture	20.5			Sampled: 04/02/2012 1030 Received: 04/04/2012 0900
		8260B Volatile Orga	nic Compoun	ds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 200 04/07/2012 0754 04/05/2012 1045	Analysis Batch: Prep Batch: Run Type:	480-58568 480-58304 DL	Lab I Initia	ument ID: File ID: I Weight/Volume: Weight/Volume:	HP5973G G10770.D 5.18 g 10 mL
Analyte	DryWt Corrected: `	Y Result (u	g/Kg)	Qualifier	MDL	RL
Vinyl chloride Xylenes, Total		ND 1000000			8100 4100	24000 49000
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
1,2-Dichloroethane	d4 (Surr)	0		Х	53 - 146	
Toluene-d8 (Surr) 4-Bromofluorobenz	ene (Surr)	0 0		X X	50 - 149 49 - 148	

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB04 SS (2-3) 040212							
Lab Sample ID:	480-18049-5					Date Sampled: 04/02/2012	2 1045	
Client Matrix:	Solid	% Moisture:	13.1			Date Received: 04/04/2012		
	8260B Volatile Organic Compounds (GC/MS)							
Analysis Method:	8260B	Analysis Batch:	480-58043		Instrument ID:	HP5973F		
Prep Method:	5035	Prep Batch:	480-58091		Lab File ID:	F7757.D		
Dilution:	1.0				Initial Weight/Volu	me: 4.82 g		
Analysis Date:	04/04/2012 1554				Final Weight/Volu	me: 5 mL		
Prep Date:	04/04/2012 1404							
Analyte	DryWt Corrected: Y	Result (ug	/Kg)	Qualifie	er MDL	RL		
1,1,1-Trichloroethar	ie	ND			0.43	6.0		
1,1,2,2-Tetrachloroe	ethane	ND			0.97	6.0		
1,1,2-Trichloroethar	ie	ND			0.78	6.0		
1,1,2-Trichloro-1,2,2	2-trifluoroethane	ND			1.4	6.0		
1,1-Dichloroethane		ND			0.73	6.0		
1,1-Dichloroethene		ND			0.73	6.0		
1,2,4-Trichlorobenze	ene	ND			0.36	6.0		
1,2-Dibromo-3-Chlo	ropropane	ND			3.0	6.0		
1,2-Dibromoethane		ND			0.77	6.0		
1,2-Dichlorobenzen	6	59			0.47	6.0		
1,2-Dichloroethane		ND			0.30	6.0		
1,2-Dichloropropane	2	ND			3.0	6.0		
1,3-Dichlorobenzen		ND			0.31	6.0		
1,4-Dichlorobenzen		ND			0.84	6.0		
2-Hexanone	-	ND			3.0	30		
2-Butanone (MEK)		77			2.2	30		
4-Methyl-2-pentano	ne (MIBK)	12		J	2.0	30		
Acetone		150			5.0	30		
Benzene		2.3		J	0.29	6.0		
Bromodichlorometh	ane	ND			0.80	6.0		
Bromoform		ND			3.0	6.0		
Bromomethane		ND			0.54	6.0		
Carbon disulfide		ND			3.0	6.0		
Carbon tetrachloride	2	ND			0.58	6.0		
Chlorobenzene	-	ND			0.79	6.0		
Dibromochlorometh	ane	ND			0.76	6.0		
Chloroethane		ND			1.3	6.0		
Chloroform		ND			0.37	6.0		
Chloromethane		ND			0.36	6.0		
cis-1,2-Dichloroethe	ne	ND			0.76	6.0		
cis-1,3-Dichloroprop		ND			0.86	6.0		
Cyclohexane		ND			0.84	6.0		
Dichlorodifluoromet	hane	ND			0.49	6.0		
Ethylbenzene		1100		Е	0.40	6.0		
Isopropylbenzene		200		-	0.90	6.0		
Methyl acetate		1.2		J	1.1	6.0		
Methyl tert-butyl eth	er	ND		U	0.59	6.0		
Methylcyclohexane		4.9		J	0.91	6.0		
Methylene Chloride		ND		-	2.7	6.0		
Styrene		110			0.30	6.0		
Tetrachloroethene		ND			0.80	6.0		
Toluene		2200		Е	0.45	6.0		
trans-1,2-Dichloroet	hene	ND		-	0.43	6.0		
trans-1,3-Dichloropr		ND			2.6	6.0		
Trichloroethene	0,000	ND			1.3	6.0		
Trichlorofluorometha	ane	ND			0.56	6.0		
. nonoronaoronietti					0.00	0.0		

Client: CHA Inc

Client Sample ID:	SB04 SS (2-3) 040212					
Lab Sample ID: Client Matrix:	480-18049-5 Solid	% Moisture	: 13.1			Sampled: 04/02/2012 1045 Received: 04/04/2012 0900
	٤	8260B Volatile Orga	nic Compound	ds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 1.0 04/04/2012 1554 04/04/2012 1404	Analysis Batch: Prep Batch:	480-58043 480-58091	Lab	rument ID: File ID: al Weight/Volume: I Weight/Volume:	HP5973F F7757.D 4.82 g 5 mL
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			0.73	6.0
Xylenes, Total		3600		E	1.0	12
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
1,2-Dichloroethane-	d4 (Surr)	108			64 - 126	
Toluene-d8 (Surr)		100			71 - 125	
4-Bromofluorobenze	ene (Surr)	98			72 - 126	

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB04 SS (2-3) 040212							
Lab Sample ID:	480-18049-5				Date Sampled: 04/02/2012 1045			
Client Matrix:	Solid	% Moisture:	: 13.1		Date Received: 04/04/2012 0900			
8260B Volatile Organic Compounds (GC/MS)								
Analysis Method:	8260B	Analysis Batch:	480-58481	Instrument ID:	HP5973G			
Prep Method:	5035	Prep Batch:	480-58304	Lab File ID:	G10726.D			
Dilution:	8.0	. top Datom		Initial Weight/V				
Analysis Date:	04/06/2012 1432	Run Type:	DL	Final Weight/Ve	-			
•	04/05/2012 1045	Run Type.	DL					
Prep Date:	04/03/2012 1043							
Analyte	DryWt Corrected: Y	Result (ug	J/Kg)	Qualifier MDL				
1,1,1-Trichloroethan		ND		240	880			
1,1,2,2-Tetrachloroe		ND		140	880			
1,1,2-Trichloroethan		ND		190	880			
1,1,2-Trichloro-1,2,2	-trifluoroethane	ND		440	880			
1,1-Dichloroethane		ND		270	880			
1,1-Dichloroethene		ND		310	880			
1,2,4-Trichlorobenze	ene	ND		330	880			
1,2-Dibromo-3-Chlor	ropropane	ND		440	880			
1,2-Dibromoethane		ND		34	880			
1,2-Dichlorobenzene	e	2100		220	880			
1,2-Dichloroethane		ND		360	880			
1,2-Dichloropropane		ND		140	880			
1,3-Dichlorobenzene		ND		240	880			
1,4-Dichlorobenzene		ND		120	880			
2-Hexanone		ND		1800				
2-Butanone (MEK)		ND		2600				
4-Methyl-2-pentanor	e (MIRK)	4800		2800	4400			
Acetone		4800 ND		3600				
Benzene		ND		42	880			
Bromodichlorometha		ND		42	880			
Bromoform		ND		440	880			
Bromomethane		ND		190	880			
Carbon disulfide		ND		400	880			
Carbon tetrachloride		ND		220	880			
Chlorobenzene		ND		120	880			
Dibromochlorometha	ane	ND		430	880			
Chloroethane		ND		180	880			
Chloroform		ND		600	880			
Chloromethane		ND		210	880			
cis-1,2-Dichloroethe	ne	ND		240	880			
cis-1,3-Dichloroprop	ene	ND		210	880			
Cyclohexane		ND		200	880			
Dichlorodifluorometh	nane	ND		380	880			
Ethylbenzene		38000		260	880			
Isopropylbenzene		5600		130	880			
Methyl acetate		25000		420	880			
Methyl tert-butyl ethe	er	ND		330	880			
Methylcyclohexane		ND		410	880			
Methylene Chloride		ND		170	880			
Styrene		ND		210	880			
Tetrachloroethene		ND		120	880			
Toluene		63000		240	880			
trans-1,2-Dichloroet	hene	ND		240	880			
trans-1,3-Dichloropro		ND		42	880			
Trichloroethene	opone	ND		42 250	880			
Trichlorofluorometha	220			250 410				
nenioronuorometha		ND		410	880			

Client: CHA Inc

Client Sample ID:	SB04 SS (2-3) 040212					
Lab Sample ID: Client Matrix:	480-18049-5 Solid	% Moisture	: 13.1			e Sampled: 04/02/2012 1045 e Received: 04/04/2012 0900
		8260B Volatile Orga	nic Compoun	ds (GC/MS)		
Analysis Method: Prep Method: Dilution:	8260B 5035 8.0	Analysis Batch: Prep Batch:	480-58481 480-58304	Lab	rument ID:) File ID: al Weight/Volume:	HP5973G G10726.D 5.22 g
Analysis Date: Prep Date:	04/06/2012 1432 04/05/2012 1045	Run Type:	DL	Fina	al Weight/Volume:	10 mL
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			300	880
Xylenes, Total		150000			150	1800
Surrogate		%Rec		Qualifier	Accepta	nce Limits
1,2-Dichloroethane-d4 (Surr)		123			53 - 146	i
Toluene-d8 (Surr)		129			50 - 149	
4-Bromofluorobenze	ene (Surr)	129			49 - 148	

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB05 SS (1-2 040212						
Lab Sample ID:	480-18049-6					Date Sampled: 04/02/2012 1	
Client Matrix:	Solid	% Moisture:	16.1			Date Received: 04/04/2012 0	
8260B Volatile Organic Compounds (GC/MS)							
Analysis Method:	8260B	Analysis Batch:	480-58251		Instrument ID:	HP5973F	
Prep Method:	5035	Prep Batch:	480-58266		Lab File ID:	F7811.D	
Dilution:	1.0				Initial Weight/Volu	me: 5.1 g	
Analysis Date:	04/05/2012 1617				Final Weight/Volu		
Prep Date:	04/05/2012 0923						
Analyte	DryWt Corrected: Y	Result (ug	/Kg)	Qualifie	er MDL	RL	
1,1,1-Trichloroethar	-	ND	0,		0.42	5.8	
1,1,2,2-Tetrachloroe		ND			0.95	5.8	
1,1,2-Trichloroethar		ND			0.76	5.8	
1,1,2-Trichloro-1,2,2		ND			1.3	5.8	
1,1-Dichloroethane		ND			0.71	5.8	
1,1-Dichloroethene		ND			0.72	5.8	
1,2,4-Trichlorobenzo	ene	ND			0.36	5.8	
1,2-Dibromo-3-Chlo		ND			2.9	5.8	
1,2-Dibromoethane	opiopulio	ND			0.75	5.8	
1,2-Dichlorobenzen	2	ND			0.46	5.8	
1,2-Dichloroethane	e	ND			0.40	5.8	
		ND			2.9	5.8	
1,2-Dichloropropane					2.9 0.30	5.8	
1,3-Dichlorobenzen		ND					
1,4-Dichlorobenzen	e	ND			0.82	5.8	
2-Hexanone		ND			2.9	29	
2-Butanone (MEK)		9.6		J	2.1	29	
4-Methyl-2-pentano	ne (MIBK)	ND			1.9	29	
Acetone		420			4.9	29	
Benzene		1.1		J	0.29	5.8	
Bromodichlorometh	ane	ND			0.78	5.8	
Bromoform		ND			2.9	5.8	
Bromomethane		ND			0.53	5.8	
Carbon disulfide		ND			2.9	5.8	
Carbon tetrachloride	e	ND			0.57	5.8	
Chlorobenzene		ND			0.77	5.8	
Dibromochlorometh	ane	ND			0.75	5.8	
Chloroethane		ND			1.3	5.8	
Chloroform		ND			0.36	5.8	
Chloromethane		ND			0.35	5.8	
cis-1,2-Dichloroethe	ene	ND			0.75	5.8	
cis-1,3-Dichloroprop	bene	ND			0.84	5.8	
Cyclohexane		ND			0.82	5.8	
Dichlorodifluoromet	hane	ND			0.48	5.8	
Ethylbenzene		38		В	0.40	5.8	
Isopropylbenzene		7.3			0.88	5.8	
Methyl acetate		ND			1.1	5.8	
Methyl tert-butyl eth	er	ND			0.57	5.8	
Methylcyclohexane		ND			0.89	5.8	
Methylene Chloride		ND			2.7	5.8	
Styrene		ND			0.29	5.8	
Tetrachloroethene		ND			0.78	5.8	
Toluene		54			0.44	5.8	
trans-1,2-Dichloroet	hene	ND			0.44	5.8	
		ND			2.6	5.8	
trans-1,3-Dichloropr Trichloroethene	opene	ND			2.6	5.8 5.8	
Trichlorofluorometha	222						
menioronuorometha		ND			0.55	5.8	

Client: CHA Inc

Client Sample ID:	SB05 SS (1-2 040212					
Lab Sample ID: Client Matrix:	480-18049-6 Solid	% Moisture	: 16.1			Sampled: 04/02/2012 1115 Received: 04/04/2012 0900
		8260B Volatile Orga	nic Compoun	ds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 1.0 04/05/2012 1617 04/05/2012 0923	Analysis Batch: Prep Batch:	480-58251 480-58266	Lab Initia	rument ID: File ID: al Weight/Volume: I Weight/Volume:	HP5973F F7811.D 5.1 g 5 mL
Analyte	DryWt Corrected: \	A Result (u)	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			0.71	5.8
Xylenes, Total		730		ΒE	0.98	12
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
1,2-Dichloroethane-	d4 (Surr)	98			64 - 126	
Toluene-d8 (Surr)		100			71 - 125	
4-Bromofluorobenze	ene (Surr)	100			72 - 126	

Client: CHA Inc

Job Number: 480-18049-1

B260B Volatile Organic Compounds (GC/MS) Analysis Method: 8260B Analysis Batch: 480-58395 Instrument ID: HP5973F Prep Method: 5035 Prep Batch: 480-58266 Lab File ID: F7827.D Dilution: 1.0 Initial Weight/Volume: 0.75 g Analysis Date: 04/05/2012 2304 Run Type: DL Final Weight/Volume: 5 mL Prep Date: 04/05/2012 2214 ND 2.9 40 1,1,1-Trichioroethane ND 0.4 40 1,1,2.2-Tetrachloroethane ND 5.2 40 1,1.2-Trichioroethane ND 9.1 40 1,1.2-Trichioroethane ND 9.1 40 1,1.2-Trichioroethane ND 2.4 40 1,1.2-Trichioroethane ND 2.4 40 1,1.2-Trichioroethane ND 2.4 40 1,2-Dichioroethane ND 2.0 40 1,2-Dichioroethane ND 2.0 40 1,2-Dichioroethane ND 2.0 40 1,2-Dichioroethane ND </th <th>Client Sample ID:</th> <th>SB05 SS (1-2 040212</th> <th></th> <th></th> <th></th> <th></th> <th></th>	Client Sample ID:	SB05 SS (1-2 040212							
Client MatrixSolid% Moisture16.1Date Received: 04/04/2012 0000Analysis Method:8260BAnalysis Batch:480-58266Instrument ID:HP5973FPrep Method:0035Prep Batch:480-58266Lab File D:F7827.DAnalysis Date:04/05/2012 2304Run Type:DLFinal Weight/Volume:5 mLPrep Date:04/05/2012 2214Run Type:DLFinal Weight/Volume:5 mLAnalysis Date:04/05/2012 2214ND2.9401.1,1-TrichtonorethareND2.9401.1,2-TrichtonorethareND2.9401.1,2-TrichtonorethareND5.2401.1,2-TrichtonorethareND5.2401.1,2-TrichtonorethareND4.8401.1,2-TrichtonorethareND2.0401.1,2-TrichtonorethareND2.0401.1,2-TrichtonorethareND2.0401.1,2-TrichtonorethareND2.0401.1,2-TrichtonorethareND2.0401.2-UbintomodethareND2.0401.2-UbintomodethareND2.0401.2-UbintomodethareND2.0401.2-UbintomodethareND2.0401.2-UbintomodethareND2.0401.2-UbintomodethareND132002-UbintomodethareND2.0401.3-UbintomodethareND2.0401.3-Ubinto	Lab Sample ID:	480-18049-6				D	ate Sampled: 04/02/2012 1115		
Analysis Method: 8260B Analysis Batch: 480-58395 Instrument ID: HP5973F Prep Method: 5035 Prep Batch: 480-58266 Lab File ID: F7827.D Dilution: 1.0 Analysis Date 0405/2012 2304 Run Type: DL Initial Weight/Volume: 0.75 g Analysis Date 0405/2012 2214 Run Type: DL Pren Weight/Volume: 5 mL Analysis Date 0405/2012 2214 Run Type: DL Run Run 2.9 40 1.1,1-Trichoroethane ND 6.4 40 40 1.1,2.7 40 1.1,2.2-Tetrichoroethane ND 9.1 40 40 1.1,2.2-Tetrichoroethane ND 4.8 40 1.1,2.4-Trichoroethane ND 2.4 40 1.1,2-Tetrichoroethane ND 2.0 40 1.2-Dichoroethane ND 2.0 40 1.2-Dichoroethane ND 2.0 40 1.2-Dichoroethane ND 2.0 40 1.2-Dichoroethane ND 2.0 40 <td< th=""><th>Client Matrix:</th><th>Solid</th><th>% Moisture</th><th>: 16.1</th><th></th><th></th><th></th></td<>	Client Matrix:	Solid	% Moisture	: 16.1					
Prep Method:5035Prep Batch:480-58266Lab File ID:F7827.DDiution:1.0Initial WeightVolume:5 mLAnalysis Date:04/05/2012 2304Run Type:DLFinal WeightVolume:5 mLPrep Date:04/05/2012 2314ND2.9401.1.1-TrichioroethaneND6.4401.1.2-TrichioroethaneND5.2401.1.2-TrichioroethaneND5.2401.1.2-TrichioroethaneND4.8401.1.2-TrichioroethaneND4.8401.1.2-TrichioroethaneND2.4401.1.2-TrichioroethaneND2.4401.1.2-TrichioroethaneND2.4401.1.2-DichiorobezneND3.1401.2-DichiorobezneND3.1401.2-DichiorobezneND3.1401.2-DichiorobezneND2.0401.2-DichiorobezneND2.0401.2-DichiorobezneND2.0401.2-DichiorobezneND3.1401.2-DichiorobezneND3.32002-Bukanone (MEK)ND132002-Bukanoe (MEK)ND3.8401.4-DichiorobezneND3.6402-Bukanoe (MEK)ND3.8402-Bukanoe (MEK)ND3.8402-Bukanoe (MEK)ND3.6402-Bukanoe (MEK)ND3.6402-Buka	8260B Volatile Organic Compounds (GC/MS)								
Prep Method:5035Prep Batch:480-58266Lab File ID:F7827.DDiution:1.0Initial WeightVolume:5 mLAnalysis Date:04/05/2012 2304Run Type:DLFinal WeightVolume:5 mLPrep Date:04/05/2012 2314ND2.9401.1.1-TrichioroethaneND6.4401.1.2-TrichioroethaneND5.2401.1.2-TrichioroethaneND5.2401.1.2-TrichioroethaneND4.8401.1.2-TrichioroethaneND4.8401.1.2-TrichioroethaneND2.4401.1.2-TrichioroethaneND2.4401.1.2-TrichioroethaneND2.4401.1.2-DichiorobezneND3.1401.2-DichiorobezneND3.1401.2-DichiorobezneND3.1401.2-DichiorobezneND2.0401.2-DichiorobezneND2.0401.2-DichiorobezneND2.0401.2-DichiorobezneND3.1401.2-DichiorobezneND3.32002-Bukanone (MEK)ND132002-Bukanoe (MEK)ND3.8401.4-DichiorobezneND3.6402-Bukanoe (MEK)ND3.8402-Bukanoe (MEK)ND3.8402-Bukanoe (MEK)ND3.6402-Bukanoe (MEK)ND3.6402-Buka	Analysis Method:	8260B	Analysis Batch:	480-58395		Instrument ID:	HP5973F		
Diution: 1.0 Initial Weight/Volume: 0.75 g Analysis Date: 04/05/2012 2304 Run Type: DL Final Weight/Volume: 5 mL Prep Date: 04/05/2012 2214 Final Weight/Volume: 5 mL Analysis Date: 04/05/2012 2314 Result (ug/Kg) Qualifier MDL RL Analysis Date: 04/05/2012 2314 ND 2.9 40 1.1.2.7.trichioroethane ND 2.9 40 1.1.2.7.trichioroethane ND 5.2 40 1.1.2.7.trichioroethane ND 4.8 40 1.1.2.1.trichioroethane ND 2.4 40 1.2.4.Trichioroethane ND 2.0 40 1.2.4.Trichioroethane ND 2.0 40 1.2.Dichorobenzene ND 2.0 40 1.2.Dichorobenzene ND 2.0 40 1.2.Dichorobenzene ND 2.0 40 1.2.Dichorobenzene ND 13 200 2.4bearone	•					Lab File ID:	F7827.D		
Analysis Date: 04/05/2012 2304 Run Type: DL Final Weight/Volume: 5 mL Prep Date: 04/05/2012 2214 Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL 1.1.1-Trichoroethane ND 6.4 40 1.1.2-Tertichoroethane ND 5.2 40 1.1.2-Trichoroethane ND 4.8 40 1.1-Dichloroethane ND 2.4 40 1.1-Dichloroethane ND 2.0 40 1.2-Dichlorobenzene ND 2.0 40 1.2-Dichlorobenzene ND 3.1 40 1.2-Dichloropenzene ND 2.0 40 1.2-Dichloropenzene ND 2.0 40 1.2-Dichloropenzene ND 2.0 40 1.2-Dichloropenzene ND 3.1 40 1.2-Dichloropenzene ND 3.3 200 2-Butanone (MEK) ND 13 200 2-Butanone (MEK)									
Prep Date: 04/05/2012 2214 Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL 1.1,1-Trichloroethane ND 2.9 40 1.1,2-Zrichloroethane ND 5.2 40 1.1,2-Trichloroethane ND 5.1 40 1.1,2-Trichloroethane ND 4.8 40 1.1,1-Dichloroethane ND 4.9 40 1.2,2-Trichloroethane ND 4.9 40 1.2,2-Trichloroethane ND 2.4 40 1.2,2-Trichloroethane ND 2.0 40 1.2,2-Dibroroethane ND 2.0 40 1.2-Dibroroethane ND 2.0 40 1.2-Dichloroethane ND 2.0 40 1.2-Dichloroethane ND 2.0 40 1.2-Dichloroethane ND 2.0 40 1.2-Dichloroethane ND 3.1 40 1.2-Dichloroethane ND 13 200			Run Type:	וח		-	-		
Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL 1,1.1-frichloroethane ND 6.4 40 40 1,1.2-frichloroethane ND 5.2 40 1,1.2-frichloroethane ND 9.1 40 1,1.2-frichloroethane ND 4.8 40 1,1-Dichloroethane ND 4.9 40 1,2-dichloroethane ND 2.4 40 1,2-Dichloroethane ND 2.4 40 1,2-Dichloroethane ND 2.1 40 1,2-Dichloroethane ND 2.0 40 1,2-Dichloroethane ND 2.0 40 1,2-Dichloroethane ND 2.0 40 1,2-Dichloroethane ND 2.0 40 1,2-Dichloroethane ND 13 200 2-Bitamone (MEK) ND 13 200 4-Methyl-	-		Run Type.	DL			5. 5 ME		
1,1,1-Trichloroethane ND 2,9 40 1,1,2,2-Tetrachloroethane ND 6,4 40 1,1,2-Trichloroethane ND 5,2 40 1,1-2-Trichloroethane ND 9,1 40 1,1-2-Trichloroethane ND 4,8 40 1,1-Dichloroethane ND 4,8 40 1,1-Dichloroethane ND 2,4 40 1,2-Dichloroethane ND 2,0 40 1,2-Dichloroethane ND 5,1 40 1,2-Dichloroethane ND 3,1 40 1,2-Dichloroptane ND 2,0 40 1,3-Dichloroptane ND 1,3 200 2-Hexanone ND 1,3 200 Acetone 5,3 <t< td=""><td>Prep Date:</td><td>04/05/2012 2214</td><td></td><td></td><td></td><td></td><td></td></t<>	Prep Date:	04/05/2012 2214							
1,1,2,2-TetrachloroethaneND6.4401,1,2-TrichloroethaneND5.2401,1,2-TrichloroethaneND4.8401,1-DichloroethaneND4.8401,1-DichloroethaneND4.9401,2-Trichloros-2-ChloropropaneND2.4401,2-DichloroethaneND2.4401,2-DichloroethaneND2.4401,2-DichloroethaneND3.1401,2-DichloropopaneND2.0401,2-DichloropopaneND2.0401,2-DichloropopaneND2.0401,2-DichloropopaneND2.0401,2-DichloropopaneND2.0401,3-DichlorobenzeneND5.6402-HexanoneND152002-HexanoneND132002-HexanoneND132002-HexanoneND19402-HexanoneND5.3402-MonomethaneND3.6402-RomoformND3.6402-RomoformND3.6402-RomoformND3.6402-RomoformND3.6402-RomoformND3.6402-RomoformND3.6402-RomoformND5.1402-RomoformND5.1402-RomoformND5.1402-RomoformND<	Analyte	-		J/Kg)	Qualifie				
1,1,2-Trichloroethane ND 5.2 40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 9,1 40 1,1-Dichloroethane ND 4.8 40 1,1-Dichloroethane ND 2.4 40 1,2-Trichloroberzene ND 2.0 40 1,2-Dibrono-S-Chloropropane ND 5.1 40 1,2-Dichorob-S-Chloropropane ND 3.1 40 1,2-Dichoroberzene ND 2.0 40 1,4-Dichoroberzene ND 2.0 40 1,4-Dichoroberzene ND 2.0 20 2-Hexanone ND 15 200 2-Hexanone ND 13 200 2-Hexanone ND 13 200 2-Hexanone ND 13 200 2-Hexanone ND 13 200 2-Hexanone ND 5.3 40 Bromodichloromethane ND 5.3 40 Bromodichloromet									
1,1,2-Trichloro-1,2,2-trifluoroethaneND9,1401,1-DichloroethaneND4.8401,1-DichloroethaneND2.4401,2-DichoroethaneND2.4401,2-DichoroethaneND5.1401,2-DichoroethaneND3.1401,2-DichoroethaneND2.0401,2-DichoroethaneND2.0401,2-DichoroethaneND2.0401,2-DichoroethaneND2.0401,3-DichoroethaneND2.0401,3-DichoroethaneND2.0401,3-DichoroethaneND2.0401,3-DichoroethaneND2.0401,3-DichoroethaneND2.02002-HexanoneND152002-Hexanone (MEK)ND132002-Butanone (MEK)ND132002-Berzene (MEK)ND1.940BromodichloromethaneND3.640BromodichloromethaneND3.640Carbon disulfideND3.640Carbon disulfideND5.140ChloroethaneND5.140ChloroethaneND5.140ChloroethaneND5.140ChloroethaneND5.140ChloroethaneND5.140ChloroethaneND5.140ChloroethaneND5.6 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
1,1-DichloroethaneND4.8401,1-DichloroethaneND4.9401,2-DichlorobenzeneND2.0401,2-DichlorobenzeneND5.1401,2-DichlorobenzeneND3.1401,2-DichlorobenzeneND2.0401,2-DichlorobenzeneND2.0401,2-DichlorobenzeneND2.0401,2-DichlorobenzeneND2.0401,2-DichlorobenzeneND2.0401,3-DichlorobenzeneND2.0401,3-DichlorobenzeneND5.6402-HexanoneND5.6402-Butanone (MEK)ND132002-Butanone (MEK)ND132002-Butanone (MIBK)ND1940BenzeneND5.340BromodichloromethaneND5.340BromodichloromethaneND3.840ChlorobenzeneND3.840ChlorobenzeneND5.140ChlorobethaneND5.140ChlorobethaneND5.140ChlorobethaneND5.140ChlorobethaneND5.140ChlorobethaneND5.140ChlorobethaneND5.140ChlorobethaneND5.140ChlorobethaneND5.140ChlorobethaneND5.140 <trr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></trr<>									
1.1-DichloroetheneND4.9401.2.4-TrichlorobenzeneND2.4401.2-Dibrono-3-ChloropropaneND20401.2-DibronoethaneND5.1401.2-DichlorobenzeneND3.1401.2-DichloropropaneND2.0401.2-DichloropropaneND2.0401.2-DichloropropaneND2.0401.2-DichloropropaneND2.0401.2-DichloropropaneND2.0401.2-DichlorobenzeneND2.0401.4-DichlorobenzeneND2.0402-HexanoneND2.02002-HexanoneND1.52002-Hexanone (MIBK)ND1.32002-Hexanone (MIBK)ND1.32002-Hexanone (MIBK)ND1.940BromodichloromethaneND5.340BromodichloromethaneND3.640BromodichloromethaneND3.640Carbon tetrachlorideND3.640ChloropenzeneND5.140ChloropenzeneND5.140ChloropenzeneND5.140ChloropenzeneND2.540ChloropenzeneND5.140ChloropenzeneND5.140ChloropenzeneND5.140ChloropenzeneND5.140ChloropenzeneND <td></td> <td>2-trifluoroethane</td> <td></td> <td></td> <td></td> <td></td> <td></td>		2-trifluoroethane							
1.2.4-Trichlorobenzene ND 2.4 40 1.2-Dibromo-3-Chloropropane ND 20 40 1.2-Diblorobenzene ND 5.1 40 1.2-Dichlorobenzene ND 2.0 40 1.2-Dichlorobenzene ND 2.0 40 1.2-Dichlorobenzene ND 2.0 40 1.2-Dichlorobenzene ND 2.0 40 1.3-Dichlorobenzene ND 2.0 40 1.3-Dichlorobenzene ND 2.0 40 1.4-Dichlorobenzene ND 2.0 40 1.4-Dichlorobenzene ND 2.0 40 2-Hexanone ND 2.0 200 2-Hexanone ND 13 200 2-Hexanone (MEK) ND 13 200 Acetone 580 33 200 Bromodichloromethane ND 19 40 Bromodichloromethane ND 2.0 40 Bromodichloromethane ND 3.6 40 Carbon tetrachloride ND 3.8 40 Chlorobenzene ND 5.2 40 Dibromothoromethane ND 5.2 40 Chloroftane	1,1-Dichloroethane		ND			4.8	40		
1.2-Dibromo-3-Chloropropane ND 20 40 1.2-Dibromoethane ND 5.1 40 1.2-Dichlorobenzene ND 3.1 40 1.2-Dichloropropane ND 20 40 1.2-Dichlorobenzene ND 20 40 1.3-Dichlorobenzene ND 2.0 40 1.4-Dichlorobenzene ND 2.0 40 1.4-Dichlorobenzene ND 2.0 200 2-Hexanone ND 2.0 200 2-Hexanone ND 15 200 2-Hexanone (MEK) ND 13 200 Acetone 580 33 200 Acetone ND 5.3 40 Bromoform ND 5.3 40 Bromoform ND 2.0 40 Bromoform ND 2.0 40 Carbon tetrachloride ND 3.6 40 Chlorobenzene ND 3.6 40 Chlorobenzene ND 5.2 40 Bromoform ND 5.2 40 Chlorobenzene ND 5.1 40 Chlorobenzene ND 5.1 40 <	1,1-Dichloroethene		ND			4.9	40		
1.2-Dibromoethane ND 5.1 40 1.2-Dichlorobenzene ND 3.1 40 1.2-Dichloropethane ND 2.0 40 1.2-Dichloropethane ND 2.0 40 1.2-Dichloropethane ND 2.0 40 1.2-Dichloropenpen ND 2.0 40 1.3-Dichlorobenzene ND 2.0 40 1.4-Dichlorobenzene ND 2.0 40 2-Hexanone ND 2.0 200 2-Butanone (MEK) ND 13 200 4-Methyl-2-pentanone (MIBK) ND 13 200 4-Methyl-2-pentanone (MIBK) ND 13 200 4-Methyl-2-pentanone (MIBK) ND 13 200 Acetone 580 33 200 Benzene ND 19 40 Bromoform ND 20 40 Bromoform ND 3.6 40 Carbon disulfide ND 5.1 40 Chlorobenzene ND 5.1 40 <tr< td=""><td>1,2,4-Trichlorobenz</td><td>ene</td><td>ND</td><td></td><td></td><td>2.4</td><td>40</td></tr<>	1,2,4-Trichlorobenz	ene	ND			2.4	40		
1,2-DichlorobenzeneND3.1401,2-DichlorobenzeneND2.0401,3-DichlorobenzeneND2.0401,3-DichlorobenzeneND5.6402-HexanoneND2.02002-Butanone (MEK)ND152004-Methyl-2-pentanone (MIBK)ND13200Acetone58033200BenzeneND1.940BromodichloromethaneND5.340BromodichloromethaneND5.340BromodichloromethaneND3.640Carbon disulfideND3.640ChlorobenzeneND5.240DibromochloromethaneND5.240ChloroformND5.240ChloroformND5.140ChloroformND2.540ChloroformND2.540ChloroformND5.140ChloroformND5.740ChloroformND5.740ChlorofornND5.740ChlorofiloronethaneND5.640ChlorofornND5.740ChloroformND5.640ChloroformND5.640ChloroformND5.740ChloroformND5.640ChloroformND5.640ChlorofornND5.740 <tr< td=""><td>1,2-Dibromo-3-Chlo</td><td>ropropane</td><td>ND</td><td></td><td></td><td>20</td><td>40</td></tr<>	1,2-Dibromo-3-Chlo	ropropane	ND			20	40		
1.2-DichloroethaneND2.0401.2-DichloropropaneND2.0401.3-DichlorobenzeneND2.0401.4-DichlorobenzeneND5.6402-HexanoneND202002-Butanone (MEK)ND152004-Methyl-2-pentanone (MIBK)ND13200Acetone58033200BenzeneND1.940BromodichloromethaneND5.340BromodichloromethaneND5.340BromodichloromethaneND2.040Carbon disulfideND3.640ChlorobenzeneND3.840ChloroformND5.140ChloroformND5.140ChloroformND5.140ChloroformND5.140ChloroformND5.140ChloroformND5.140ChloroformND5.140ChloroformND5.140ChloroformND5.140ChloroformND5.140ChloroformND5.740ChloroformND5.640ChlorodifluromethaneND5.640ChlorodifluromethaneND5.640ChlorodifluromethaneND5.640ChlorodifluromethaneND5.640ChlorodifluromethaneND <t< td=""><td>1,2-Dibromoethane</td><td></td><td>ND</td><td></td><td></td><td>5.1</td><td>40</td></t<>	1,2-Dibromoethane		ND			5.1	40		
1,2-Dichloropropane ND 20 40 1,3-Dichlorobenzene ND 2.0 40 1,4-Dichlorobenzene ND 5.6 40 2-Hexanone ND 20 200 2-Hexanone (MEK) ND 15 200 4-Methyl-2-pentanone (MIBK) ND 13 200 Acetone 580 33 200 Benzene ND 5.3 40 Bromodichloromethane ND 5.3 40 Bromodichloromethane ND 5.3 40 Bromodichloromethane ND 20 40 Bromodichloromethane ND 2.0 40 Bromodichloromethane ND 3.6 40 Carbon tetrachloride ND 3.8 40 Chlorobenzene ND 5.1 40 Dibromochloromethane ND 5.1 40 Chlorobenzene ND 5.1 40 Chlorobenzene ND 5.1 40 Chlorobenzene ND 5.1 40	1,2-Dichlorobenzen	e	ND			3.1	40		
1,3-DichlorobenzeneND2.0401,4-DichlorobenzeneND5.6402-HexanoneND202002-Butanone (MEK)ND152004-Methyl-2-pentanone (MIBK)ND13200Acetone58033200BenzeneND1.940BromoformND5.340BromoformND2.040BromoformND3.640Carbon disulfideND3.640Carbon disulfideND5.240ChlorobenzeneND5.140ChlorobenzeneND5.140ChlorobenzeneND5.140ChlorobenzeneND5.140ChlorobenzeneND5.140ChlorobenzeneND5.140ChlorobenzeneND5.140ChlorobenzeneND5.140ChlorobenzeneND5.140ChlorobenzeneND5.140ChlorobenzeneND5.140ChlorobenzeneND5.740ChlorobenzeneND5.640CyclohexaneND5.640DichlorodifluoromethaneND5.640CyclohexaneND5.640Dichlorodifluoromethane13.340Cyclohexane2.740Sproprylbenzene32J6.0 <td>1,2-Dichloroethane</td> <td></td> <td>ND</td> <td></td> <td></td> <td>2.0</td> <td>40</td>	1,2-Dichloroethane		ND			2.0	40		
1.4-Dichlorobenzene ND 5.6 40 2-Hexanone ND 20 200 2-Butanone (MEK) ND 15 200 4-Methyl-2-pentanone (MIBK) ND 13 200 Acetone 580 33 200 Benzene ND 1.9 40 Bromodichloromethane ND 5.3 40 Bromoform ND 20 40 Bromoform ND 3.6 40 Bromoform ND 3.6 40 Carbon disulfide ND 3.8 40 Carbon disulfide ND 3.8 40 Chlorobenzene ND 5.2 40 Dibromochloromethane ND 5.1 40 Chlorobenzene ND 5.1 40 Chloroform ND 5.1 40 Chloroform ND 5.1 40 Chloroform ND 5.1 40 Chloroform ND 5.1 40 Chloroforu ND 5.1	1,2-Dichloropropane	e	ND			20	40		
2-Hexanone ND 20 200 2-Butanone (MEK) ND 15 200 4-Methyl-2-pentanone (MIBK) ND 13 200 Acetone 580 33 200 Benzene ND 1.9 40 Bromodichloromethane ND 20 40 Bromodichloromethane ND 20 40 Bromoform ND 20 40 Bromotorm ND 20 40 Carbon disulfide ND 20 40 Carbon disulfide ND 3.6 40 Chlorobenzene ND 3.8 40 Chlorobenzene ND 5.1 40 Chloroform ND 5.1 40 Chloroform ND 2.5 40 Chloroform ND 2.5 40 Chloroform ND 2.5 40 Chloroform ND 5.1 40 Chloroform ND 5.1 40 Chloroform ND 5.1 40 Chloroform ND 5.1 40 Chloroform ND 5.7 40 Chloroforentene ND <td< td=""><td>1,3-Dichlorobenzen</td><td>e</td><td>ND</td><td></td><td></td><td>2.0</td><td>40</td></td<>	1,3-Dichlorobenzen	e	ND			2.0	40		
2-Butanone (MEK)ND152004-Methyl-2-pentanone (MIBK)ND13200Acetone58033200BenzeneND1.940BromodichloromethaneND5.340BromoformND2040BromoformND3.640BromothaneND2040Carbon disulfideND3.640Carbon tetrachlorideND3.840ChlorobenzeneND3.840ChlorobenzeneND5.140DibromochloromethaneND5.140ChlorobenzeneND5.140ChlorobenzeneND2.540ChlorobenzeneND5.140ChlorothaneND2.540ChlorothaneND5.140ChlorothaneND5.140ChlorothaneND5.140ChlorothaneND5.140ChlorothaneND5.740CyclohexaneND5.740CyclohexaneND5.640DichlorodifluoromethaneND5.640DichlorodifluoromethaneND5.340CyclohexaneND5.340CyclohexaneND5.340CyclohexaneS.340Dichlorodifluoromethane1202.740Sopropylbenzene1202.740			ND			5.6	40		
4-Methyl-2-pentanone (MIBK) ND 13 200 Acetone 580 33 200 Benzene ND 1.9 40 Bromodichloromethane ND 5.3 40 Bromoform ND 20 40 Bromoform ND 3.6 40 Bromothane ND 20 40 Carbon disulfide ND 3.8 40 Chlorobenzene ND 5.2 40 Chlorobenzene ND 5.1 40 Chloroform ND 9.0 40 Chloroform ND 2.5 40 Chloroform ND 5.1 40 Chloroform ND 5.1 40 Chloroform ND 5.1 40 Cis-1,2-Dichloroptene ND 5.7 40 Cyclohexane ND 5.6	2-Hexanone		ND			20	200		
4-Methyl-2-pentanone (MIBK) ND 13 200 Acetone 580 33 200 Benzene ND 1.9 40 Bromodichloromethane ND 5.3 40 Bromoform ND 20 40 Bromoform ND 3.6 40 Bromothane ND 20 40 Carbon disulfide ND 3.8 40 Chlorobenzene ND 5.2 40 Chlorobenzene ND 5.1 40 Chloroform ND 9.0 40 Chloroform ND 2.5 40 Chloroform ND 5.1 40 Chloroform ND 5.1 40 Chloroform ND 5.1 40 Cis-1,2-Dichloroptene ND 5.7 40 Cyclohexane ND 5.6	2-Butanone (MEK)		ND			15	200		
Acetone 580 33 200 Benzene ND 1.9 40 Bromodichloromethane ND 5.3 40 Bromoform ND 20 40 Bromodichloromethane ND 3.6 40 Bromoform ND 3.6 40 Bromomethane ND 20 40 Carbon disulfide ND 3.6 40 Carbon disulfide ND 3.8 40 Chlorobenzene ND 5.1 40 Dibromochloromethane ND 5.1 40 Chlorobetnane ND 2.5 40 Chloroform ND 2.5 40 Chlorobethane ND 2.5 40 Chloroform ND 5.1 40 Chloropthane ND 5.1 40 Chloroform ND 5.1 40 Cis-1,2-Dichloroptopene ND 5.6 40 Cyclohexane		ne (MIBK)	ND				200		
BenzeneND1.940BromodichloromethaneND5.340BromoformND2040BromomethaneND3.640Carbon disulfideND2040Carbon disulfideND3.840ChlorobenzeneND5.240DibromochloromethaneND5.140ChloroethaneND5.140ChloroethaneND2.540ChloroethaneND2.540ChloroformND2.440ChloroethaneND5.140ChloroethaneND5.140ChloroethaneND5.140ChloroethaneND5.140ChloroethaneND5.740ChloroethaneND5.740ChloroethaneND5.640CyclohexaneND5.640DichlorodifluoromethaneND3.340Ethylbenzene1202.740	Acetone						200		
BromodichloromethaneND5.340BromoformND2040BromomethaneND3.640Carbon disulfideND2040Carbon tetrachlorideND3.840ChlorobenzeneND5.240DibromochloromethaneND5.140ChloroethaneND9.040ChloroformND2.540ChloromethaneND2.540ChloromethaneND2.540ChloromethaneND5.140ChloromethaneND5.140ChloromethaneND5.140cis-1,2-DichloropropeneND5.740CyclohexaneND5.640DichlorodifluoromethaneND3.340Ethylbenzene1202.740Sopropylbenzene32J6.040	Benzene								
BromoformND2040BromomethaneND3.640Carbon disulfideND2040Carbon tetrachlorideND3.840ChlorobenzeneND5.240DibromochloromethaneND5.140ChloroethaneND9.040ChloroformND2.540ChloromethaneND2.540ChloromethaneND2.440ChloromethaneND5.140ChloromethaneND5.140ChloromethaneND5.140ChloromethaneND5.140cis-1,2-DichloropropeneND5.740CyclohexaneND5.640DichlorodifluoromethaneND3.340Ethylbenzene1202.740Isopropylbenzene32J6.040	Bromodichlorometh	ane							
BromomethaneND3.640Carbon disulfideND2040Carbon tetrachlorideND3.840ChlorobenzeneND5.240DibromochloromethaneND5.140ChloroethaneND9.040ChloroformND2.540ChloromethaneND2.440ChloromethaneND5.140ChloromethaneND5.140ChloromethaneND5.140cis-1,2-DichloroetheneND5.740cis-1,3-DichloropropeneND5.640DichlorodifluoromethaneND3.340Ethylbenzene1202.740Isopropylbenzene32J6.040	Bromoform						40		
Carbon disulfideND2040Carbon tetrachlorideND3.840ChlorobenzeneND5.240DibromochloromethaneND5.140ChloroethaneND9.040ChloroformND2.540ChloromethaneND2.440ChloromethaneND5.140ChloromethaneND5.140ChloromethaneND5.140cis-1,2-DichloroetheneND5.140cis-1,3-DichloropropeneND5.740CyclohexaneND5.640DichlorodifluoromethaneND3.340Ethylbenzene1202.740Isopropylbenzene32J6.040									
Carbon tetrachlorideND3.840ChlorobenzeneND5.240DibromochloromethaneND5.140ChloroethaneND9.040ChloroformND2.540ChloromethaneND2.440cis-1,2-DichloroetheneND5.140cis-1,3-DichloroptopeneND5.740CyclohexaneND5.640DichlorodifluoromethaneND5.640DichlorodifluoromethaneND3.340Ethylbenzene1202.740Isopropylbenzene32J6.040									
ChlorobenzeneND5.240DibromochloromethaneND5.140ChloroethaneND9.040ChloroformND2.540ChloromethaneND2.440cis-1,2-DichloroetheneND5.140cis-1,3-DichloropropeneND5.740CyclohexaneND5.640DichlorodifluoromethaneND5.640DichlorodifluoromethaneND5.640DichlorodifluoromethaneND3.340Ethylbenzene1202.740Isopropylbenzene32J6.040		9							
DibromochloromethaneND5.140ChloroethaneND9.040ChloroformND2.540ChloromethaneND2.440cis-1,2-DichloroetheneND5.140cis-1,3-DichloropropeneND5.740CyclohexaneND5.640DichlorodifluoromethaneND5.640DichlorodifluoromethaneND3.340Ethylbenzene1202.740Isopropylbenzene32J6.040									
ChloroethaneND9.040ChloroformND2.540ChloromethaneND2.440cis-1,2-DichloroetheneND5.140cis-1,3-DichloropropeneND5.740CyclohexaneND5.640DichlorodifluoromethaneND3.340Ethylbenzene1202.740Isopropylbenzene32J6.040		ane							
ChloroformND2.540ChloromethaneND2.440cis-1,2-DichloroetheneND5.140cis-1,3-DichloropropeneND5.740CyclohexaneND5.640DichlorodifluoromethaneND3.340Ethylbenzene1202.740Isopropylbenzene32J6.040									
ChloromethaneND2.440cis-1,2-DichloroetheneND5.140cis-1,3-DichloropropeneND5.740CyclohexaneND5.640DichlorodifluoromethaneND3.340Ethylbenzene1202.740Isopropylbenzene32J6.040									
cis-1,2-DichloroetheneND5.140cis-1,3-DichloropropeneND5.740CyclohexaneND5.640DichlorodifluoromethaneND3.340Ethylbenzene1202.740Isopropylbenzene32J6.040									
cis-1,3-Dichloropropene ND 5.7 40 Cyclohexane ND 5.6 40 Dichlorodifluoromethane ND 3.3 40 Ethylbenzene 120 2.7 40 Isopropylbenzene 32 J 6.0 40		ne							
CyclohexaneND5.640DichlorodifluoromethaneND3.340Ethylbenzene1202.740Isopropylbenzene32J6.040									
Dichlorodifluoromethane ND 3.3 40 Ethylbenzene 120 2.7 40 Isopropylbenzene 32 J 6.0 40									
Ethylbenzene 120 2.7 40 Isopropylbenzene 32 J 6.0 40		hane							
Isopropylbenzene 32 J 6.0 40		nane							
					0				
,	•	hor							
Methylene Chloride ND 6.0 40 Methylene Chloride ND 18 40	Methylcyclohexane								
•									
,	Styrene Tetrachloroethene								
Toluene 130 3.0 40 trans 1.2 Disblaracthone ND 4.1 40		thene							
trans-1,2-Dichloroethene ND 4.1 40									
trans-1,3-Dichloropropene ND 17 40		ropene							
	Trichloroethene								
Trichlorofluoromethane ND 3.8 40	richlorofluorometh	ane	ND			3.8	40		

Client: CHA Inc

Client Sample ID:	SB05 SS (1-2 040212					
Lab Sample ID: Client Matrix:	480-18049-6 Solid	% Moisture	e: 16.1			Sampled: 04/02/2012 1115 Received: 04/04/2012 0900
		8260B Volatile Orga	nic Compoun	ds (GC/MS)		
Analysis Method: Prep Method: Dilution:	8260B 5035 1.0	Analysis Batch: Prep Batch:	480-58395 480-58266	Lab	rument ID: File ID: al Weight/Volume:	HP5973F F7827.D 0.75 g
Analysis Date: Prep Date:	04/05/2012 2304 04/05/2012 2214	Run Type:	DL		al Weight/Volume:	5 mL
Analyte	DryWt Corrected: \	Y Result (u	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			4.8	40
Xylenes, Total		2700		В	6.7	79
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
1,2-Dichloroethane-	d4 (Surr)	100			64 - 126	
Toluene-d8 (Surr)		104			71 - 125	
4-Bromofluorobenzo	ene (Surr)	102			72 - 126	

Job Number: 480-18049-1

Analytical Data

Client Sample ID:	SB05 SS (0-3) 040212					
Lab Sample ID: Client Matrix:	480-18049-7 Solid	Date Sampled: 04/02/2012 1115 Date Received: 04/04/2012 0900				
8260B Volatile Organic Compounds (GC/MS)-TCLP						

Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date: Leach Date:	8260B 5030B 10 04/07/2012 04/07/2012 04/05/2012	0345	Analysis Bat Prep Batch: Leach Batch	N/A				G1 5	5973G 0759.D mL mL
Analyte	C	DryWt Corrected: N	Res	ult (mg/L)	Qualifie	er	MDL		RL
Benzene			ND				0.0041		0.010
Carbon tetrachloride			ND				0.0027		0.010
Chlorobenzene			ND				0.0075		0.010
Chloroform			ND				0.0034		0.010
1,2-Dichloroethane			ND				0.0021		0.010
1,1-Dichloroethene			ND				0.0029		0.010
2-Butanone (MEK)			ND				0.013		0.050
Tetrachloroethene			ND				0.0036		0.010
Trichloroethene			ND				0.0046		0.010
Vinyl chloride			ND				0.0090		0.010
Surrogate			%Re	ec	Qualifie	er	Accepta	nce Lir	nits
1,2-Dichloroethane-d4 (Surr)			102		66 - 137				
Toluene-d8 (Surr)			108	108 71 - 126					
4-Bromofluorobenzer	ne (Surr)		109				73 - 120		

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB06 SS (3-4) 040212								
Lab Sample ID:	480-18049-8					Date Samp	oled: 04/02/2012 1200		
Client Matrix:	Solid	% Moisture:	20.6				ived: 04/04/2012 0900		
8260B Volatile Organic Compounds (GC/MS)									
Analysis Method:	8260B	Analysis Batch:	480-58389		Instrument ID:	HP	5973G		
Prep Method:	5035	Prep Batch:	480-58304		Lab File ID:		0711.D		
Dilution:	50				Initial Weight/Volu		1 g		
Analysis Date:	04/06/2012 0723				Final Weight/Volu		mL		
Prep Date:	04/05/2012 1045					inc. 10	III C		
				0 115					
Analyte 1,1,1-Trichloroethar	DryWt Corrected: Y	Result (ug ND	/Kg)	Qualifie	r MDL 1700		RL 6200		
1,1,2,2-Tetrachloroe		ND			1000		6200		
1,1,2-Trichloroethar		ND			1300		6200		
1,1,2-Trichloro-1,2,2		ND			3100		6200		
1,1-Dichloroethane		ND			1900		6200		
1,1-Dichloroethene		ND			2100		6200		
,									
1,2,4-Trichlorobenz		ND			2300		6200		
1,2-Dibromo-3-Chlo	ropropane	ND			3100		6200		
1,2-Dibromoethane		ND			230		6200		
1,2-Dichlorobenzen	e	ND			1600		6200		
1,2-Dichloroethane		ND			2500		6200		
1,2-Dichloropropane		ND			1000		6200		
1,3-Dichlorobenzen		ND			1600		6200		
1,4-Dichlorobenzen	e	ND			860		6200		
2-Hexanone		ND			13000		31000		
2-Butanone (MEK)		ND			18000		31000		
4-Methyl-2-pentano	ne (MIBK)	ND			2000		31000		
Acetone		ND			25000		31000		
Benzene		ND			300		6200		
Bromodichlorometh	ane	ND			1200		6200		
Bromoform		ND			3100		6200		
Bromomethane		ND			1400		6200		
Carbon disulfide		ND			2800		6200		
Carbon tetrachloride	e	ND			1600		6200		
Chlorobenzene		ND			810		6200		
Dibromochlorometh	ane	ND			3000		6200		
Chloroethane		ND			1300		6200		
Chloroform		ND			4200		6200		
Chloromethane		ND			1500		6200		
cis-1,2-Dichloroethe	ene	ND			1700		6200		
cis-1,3-Dichloroprop	bene	ND			1500		6200		
Cyclohexane		ND			1400		6200		
Dichlorodifluoromet	hane	ND			2700		6200		
Ethylbenzene		2400000		E	1800		6200		
Isopropylbenzene		13000			920		6200		
Methyl acetate		ND			2900		6200		
Methyl tert-butyl eth	er	ND			2300		6200		
Methylcyclohexane		ND			2900		6200		
Methylene Chloride		ND			1200		6200		
Styrene		83000			1500		6200		
Tetrachloroethene		ND			830		6200		
Toluene		130000			1700		6200		
trans-1,2-Dichloroet	hene	ND			1500		6200		
trans-1,3-Dichloropr		ND			300		6200		
Trichloroethene	•	ND			1700		6200		
Trichlorofluorometh	ane	ND			2900		6200		

Client: CHA Inc

Client Sample ID:	SB06 SS (3-4) 040212					
Lab Sample ID: Client Matrix:	480-18049-8 Solid	% Moisture	: 20.6			Sampled: 04/02/2012 1200 Received: 04/04/2012 0900
		8260B Volatile Orga	nic Compoun	ds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 50 04/06/2012 0723 04/05/2012 1045	Analysis Batch: Prep Batch:	480-58389 480-58304	Lab Initia	ument ID: File ID: Il Weight/Volume: I Weight/Volume:	HP5973G G10711.D 5.11 g 10 mL
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			2100	6200
Xylenes, Total		9100000		E	1000	12000
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
1,2-Dichloroethane-d4 (Surr)		96	96		53 - 146	
Toluene-d8 (Surr)	117	117		50 - 149		
4-Bromofluorobenze	ene (Surr)	137			49 - 148	

Client: CHA Inc

Analytical Data

Job Number: 480-18049-1

Client Sample ID:	SB06 SS (3-4) 040212								
Lab Sample ID:	480-18049-8				Date Sampled: 04/02/2012 12				
Client Matrix:	Solid	% Moisture:	20.6		Date Received: 04/04/2012 09				
8260B Volatile Organic Compounds (GC/MS)									
Analysis Method:	8260B	Analysis Batch:	480-58568	Instrument ID:	HP5973G				
Prep Method:	5035	Prep Batch:	480-58304	Lab File ID:	G10771.D				
Dilution:	2000			Initial Weight/Vo	blume: 5.11 g				
Analysis Date:	04/07/2012 0817	Run Type:	DL	Final Weight/Vo	•				
Prep Date:	04/05/2012 1045	i an i ypo.	DE	i indi trongiti ro					
Analyte	DryWt Corrected: Y	Result (ug	ı/Kg)	Qualifier MDL	RL				
,1,1-Trichloroethan	e	ND	,	68000	250000				
1,1,2,2-Tetrachloroe	thane	ND		40000	250000				
1,1,2-Trichloroethan		ND		52000	250000				
1,1,2-Trichloro-1,2,2		ND		12000					
1,1-Dichloroethane		ND		76000					
1.1-Dichloroethene		ND		85000					
,				93000					
1,2,4-Trichlorobenze		ND							
1,2-Dibromo-3-Chlor	opiopane	ND		12000					
1,2-Dibromoethane		ND		9400	250000				
1,2-Dichlorobenzene	9	ND		63000					
1,2-Dichloroethane		ND		10000					
1,2-Dichloropropane	2	ND		40000					
,3-Dichlorobenzene	9	ND		66000	250000				
,4-Dichlorobenzene	9	ND		35000	250000				
2-Hexanone		ND		51000	1200000				
2-Butanone (MEK)		ND		73000	1200000				
1-Methyl-2-pentanor	ne (MIBK)	ND		79000	1200000				
Acetone	· · · · ·	ND		10000	1200000				
Benzene		ND		12000					
Bromodichlorometha	ane	ND		49000					
Bromoform		ND		12000					
Bromomethane		ND		54000					
Carbon disulfide		ND		11000					
Carbon tetrachloride	2	ND		63000					
Chlorobenzene		ND		33000					
Dibromochlorometha	ane	ND		12000					
Chloroethane		ND		51000					
Chloroform		ND		17000					
Chloromethane		ND		59000					
cis-1,2-Dichloroethe	ne	ND		68000	250000				
cis-1,3-Dichloroprop	ene	ND		59000	250000				
Cyclohexane		ND		55000	250000				
Dichlorodifluorometh	nane	ND		11000	00 250000				
Ethylbenzene		3500000		72000	250000				
sopropylbenzene		ND		37000	250000				
Methyl acetate		ND		12000					
Nethyl tert-butyl ethe	er	ND		93000					
Vethylcyclohexane		ND		12000					
Aethylene Chloride		ND		49000					
Styrene		ND		59000					
Tetrachloroethene		ND		33000					
		130000		J 66000					
trans-1,2-Dichloroet		ND		58000					
rans-1,3-Dichloropro	opene	ND		12000					
Trichloroethene		ND		69000	250000				
Trichlorofluorometha		ND		12000					

Client: CHA Inc

Client Sample ID:	SB06 SS (3-4) 040212					
Lab Sample ID: Client Matrix:	480-18049-8 Solid	% Moisture	e: 20.6			Sampled: 04/02/2012 1200 Received: 04/04/2012 0900
		8260B Volatile Orga	nic Compoun	ds (GC/MS)		
Analysis Method: Prep Method:	8260B 5035	Analysis Batch: Prep Batch:	480-58568 480-58304		ument ID: File ID:	HP5973G G10771.D
Dilution: Analysis Date:	2000 04/07/2012 0817	Run Type:	DL		al Weight/Volume: I Weight/Volume:	5.11 g 10 mL
Prep Date:	04/05/2012 1045					
Analyte	DryWt Corrected: Y	/ Result (u	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			83000	250000
Xylenes, Total		1500000	0		41000	490000
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
1,2-Dichloroethane-	d4 (Surr)	0		Х	53 - 146	
Toluene-d8 (Surr)		0		Х	50 - 149	
4-Bromofluorobenze	ene (Surr)	0		Х	49 - 148	

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB07 SS (1-2) 040212								
Lab Sample ID:	480-18049-9				Dat	te Sampled: 04/02/2012 1215			
Client Matrix:	Solid	% Moisture:	23.3			te Received: 04/04/2012 0900			
8260B Volatile Organic Compounds (GC/MS)									
Analysis Method:	8260B	Analysis Batch:	480-58251		Instrument ID:	HP5973F			
Prep Method:	5035	Prep Batch:	480-58266		Lab File ID:	F7812.D			
Dilution:	1.0				Initial Weight/Volume:				
Analysis Date:	04/05/2012 1643				Final Weight/Volume:	5 mL			
Prep Date:	04/05/2012 0923					0 1112			
Analyte	DryWt Corrected: Y	Result (ug	/Ka)	Qualifier	MDL	RL			
1,1,1-Trichloroethar	-	ND	,	Quantor	0.46	6.4			
1,1,2,2-Tetrachloroe		ND			1.0	6.4			
1,1,2-Trichloroethar		ND			0.83	6.4			
1,1,2-Trichloro-1,2,2		ND			1.4	6.4			
1,1-Dichloroethane		ND			0.78	6.4			
1,1-Dichloroethene		ND			0.78	6.4			
1,2,4-Trichlorobenz	ene	ND			0.39	6.4			
1,2-Dibromo-3-Chlo		ND			3.2	6.4			
1,2-Dibromoethane		ND			0.82	6.4			
1,2-Dichlorobenzen		ND			0.50	6.4			
1,2-Dichloroethane	e	ND			0.32	6.4			
,					3.2	6.4			
1,2-Dichloropropane 1,3-Dichlorobenzen		ND ND			0.33	6.4			
1,4-Dichlorobenzen	e	ND			0.89	6.4			
2-Hexanone		ND			3.2	32			
2-Butanone (MEK)		ND			2.3 2.1	32			
4-Methyl-2-pentano	ne (MIBK)	ND				32			
Acetone		ND			5.4	32			
Benzene		ND			0.31	6.4			
Bromodichlorometh	ane	ND			0.85	6.4			
Bromoform		ND			3.2	6.4			
Bromomethane		ND			0.57	6.4			
Carbon disulfide		ND			3.2	6.4			
Carbon tetrachloride	9	ND			0.62	6.4			
Chlorobenzene		ND			0.84	6.4			
Dibromochlorometh	ane	ND			0.81	6.4			
Chloroethane		ND			1.4	6.4			
Chloroform		ND			0.39	6.4			
Chloromethane		ND			0.38	6.4			
cis-1,2-Dichloroethe		ND			0.81	6.4			
cis-1,3-Dichloroprop	bene	ND			0.92	6.4			
Cyclohexane		ND			0.89	6.4			
Dichlorodifluoromet	hane	ND			0.52	6.4			
Ethylbenzene		13		В	0.44	6.4			
Isopropylbenzene		ND			0.96	6.4			
Methyl acetate		ND			1.2	6.4			
Methyl tert-butyl eth		ND			0.62	6.4			
Methylcyclohexane		ND			0.97	6.4			
Methylene Chloride		ND			2.9	6.4			
Styrene		ND			0.32	6.4			
Tetrachloroethene		ND			0.85	6.4			
Toluene		3.0		J	0.48	6.4			
trans-1,2-Dichloroet	thene	ND			0.66	6.4			
trans-1,3-Dichloropr	ropene	ND			2.8	6.4			
Trichloroethene		ND			1.4	6.4			
Trichlorofluorometh	ane	ND			0.60	6.4			

Client: CHA Inc

Client Sample ID:	SB07 SS (1-2) 040212					
Lab Sample ID: Client Matrix:	480-18049-9 Solid	% Moisture	: 23.3			Sampled: 04/02/2012 1215 Received: 04/04/2012 0900
		8260B Volatile Orga	nic Compoun	ds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 1.0 04/05/2012 1643 04/05/2012 0923	Analysis Batch: Prep Batch:	480-58251 480-58266	Lab Initia	rument ID: File ID: al Weight/Volume: I Weight/Volume:	HP5973F F7812.D 5.13 g 5 mL
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			0.78	6.4
Xylenes, Total		140		В	1.1	13
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
1,2-Dichloroethane-	d4 (Surr)	99			64 - 126	
Toluene-d8 (Surr)		109			71 - 125	
4-Bromofluorobenze	ene (Surr)	109			72 - 126	

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB07 SS (3-4) 040212								
Lab Sample ID:	480-18049-10				Dat	e Sampled: 04/02/2012 1215			
Client Matrix:	Solid	% Moisture:	23.1			e Received: 04/04/2012 0900			
8260B Volatile Organic Compounds (GC/MS)									
Analysis Method:	8260B	Analysis Batch:	480-58251		Instrument ID:	HP5973F			
Prep Method:	5035	Prep Batch:	480-58266		Lab File ID:	F7813.D			
Dilution:	1.0				Initial Weight/Volume:	5.37 g			
Analysis Date:	04/05/2012 1708				Final Weight/Volume:	5 mL			
Prep Date:	04/05/2012 0923				i inal troigine tonamor	•			
	Dr. Wt Corrected: V	Deput (up		Qualifia	er MDL	RL			
Analyte 1,1,1-Trichloroethar	DryWt Corrected: Y	Result (ug ND	/rg)	Qualifie	0.44	6.1			
1,1,2,2-Tetrachloroe		ND			0.98	6.1			
1,1,2-Trichloroethar		ND			0.98	6.1			
1,1,2-Trichloro-1,2,2		ND			1.4	6.1			
	2-tilliuoloetilaile				0.74	6.1			
1,1-Dichloroethane		ND							
1,1-Dichloroethene		ND			0.74	6.1			
1,2,4-Trichlorobenzo		ND			0.37	6.1			
1,2-Dibromo-3-Chlo	ropropane	ND			3.0	6.1			
1,2-Dibromoethane		ND			0.78	6.1			
1,2-Dichlorobenzen	e	ND			0.47	6.1			
1,2-Dichloroethane		ND			0.30	6.1			
1,2-Dichloropropane		ND			3.0	6.1			
1,3-Dichlorobenzen	e	ND			0.31	6.1			
1,4-Dichlorobenzen	e	ND			0.85	6.1			
2-Hexanone		ND			3.0	30			
2-Butanone (MEK)		ND			2.2	30			
4-Methyl-2-pentano	ne (MIBK)	ND			2.0	30			
Acetone		10		J	5.1	30			
Benzene		ND			0.30	6.1			
Bromodichlorometha	ane	ND			0.81	6.1			
Bromoform		ND			3.0	6.1			
Bromomethane		ND			0.54	6.1			
Carbon disulfide		ND			3.0	6.1			
Carbon tetrachloride	9	ND			0.59	6.1			
Chlorobenzene	-	ND			0.80	6.1			
Dibromochlorometh	ane	ND			0.77	6.1			
Chloroethane		ND			1.4	6.1			
Chloroform		ND			0.37	6.1			
Chloromethane		ND			0.37	6.1			
cis-1,2-Dichloroethe		ND			0.77	6.1			
		ND			0.87	6.1			
cis-1,3-Dichloroprop	bene	ND			0.85				
Cyclohexane	h					6.1			
Dichlorodifluoromet	nane	ND			0.50	6.1			
Ethylbenzene		6.4		В	0.42	6.1			
Isopropylbenzene		ND			0.91	6.1			
Methyl acetate		ND			1.1	6.1			
Methyl tert-butyl eth	er	ND			0.59	6.1			
Methylcyclohexane		ND			0.92	6.1			
Methylene Chloride		ND			2.8	6.1			
Styrene		ND			0.30	6.1			
Tetrachloroethene		ND			0.81	6.1			
Toluene		14			0.46	6.1			
trans-1,2-Dichloroet	hene	ND			0.62	6.1			
trans-1,3-Dichloropr	ropene	ND			2.7	6.1			
Trichloroethene		ND			1.3	6.1			
Trichlorofluorometha	ane	ND			0.57	6.1			

Client: CHA Inc

Client Sample ID:	SB07 SS (3-4) 040212					
Lab Sample ID: Client Matrix:	480-18049-10 Solid	% Moisture	: 23.1			Sampled: 04/02/2012 1215 Received: 04/04/2012 0900
	8	8260B Volatile Orga	nic Compoun	ds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 1.0 04/05/2012 1708 04/05/2012 0923	Analysis Batch: Prep Batch:	480-58251 480-58266	Lab	rument ID: File ID: al Weight/Volume: al Weight/Volume:	HP5973F F7813.D 5.37 g 5 mL
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			0.74	6.1
Xylenes, Total		25		В	1.0	12
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
1,2-Dichloroethane-	d4 (Surr)	104			64 - 126	
Toluene-d8 (Surr)		112			71 - 125	
4-Bromofluorobenze	ene (Surr)	114			72 - 126	

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB10 SS (1-2) 040212								
Lab Sample ID:	480-18049-11					Date Sa	ampled: 04/02/	2012 1230	
Client Matrix:	Solid	% Moisture:	12.6				eceived: 04/04/		
8260B Volatile Organic Compounds (GC/MS)									
Analysis Method:	8260B	Analysis Batch:	480-58481		Instrument ID:		HP5973G		
Prep Method:	5035	Prep Batch:	480-58304		Lab File ID:		G10728.D		
Dilution:	1.0	Thep baten.	400-30304			umo:	5.17 g		
	04/06/2012 1518				Initial Weight/Vol		-		
Analysis Date:					Final Weight/Volu	ime:	10 mL		
Prep Date:	04/05/2012 1045								
Analyte	DryWt Corrected: Y	Result (ug	/Kg)	Qualifie	er MDL		RL		
1,1,1-Trichloroethar	ne	ND			31		110		
1,1,2,2-Tetrachloroe	ethane	ND			18		110		
1,1,2-Trichloroethar	ie	ND			23		110		
1,1,2-Trichloro-1,2,2	2-trifluoroethane	ND			55		110		
1,1-Dichloroethane		ND			34		110		
1,1-Dichloroethene		ND			38		110		
1,2,4-Trichlorobenzo	ene	ND			42		110		
1,2-Dibromo-3-Chlo		ND			55		110		
1,2-Dibromoethane	ropropune	ND			4.2		110		
1,2-Dichlorobenzen	2	ND			28		110		
1,2-Dichloroethane	6	ND			45		110		
					18		110		
1,2-Dichloropropane		ND			30		110		
1,3-Dichlorobenzen		ND							
1,4-Dichlorobenzen	e	ND			15		110		
2-Hexanone		ND			230		550		
2-Butanone (MEK)		ND			330		550		
4-Methyl-2-pentano	ne (MIBK)	ND			35		550		
Acetone		ND			450		550		
Benzene		ND			5.3		110		
Bromodichlorometh	ane	ND			22		110		
Bromoform		ND			55		110		
Bromomethane		ND			24		110		
Carbon disulfide		ND			50		110		
Carbon tetrachloride	e	ND			28		110		
Chlorobenzene		ND			15		110		
Dibromochlorometh	ane	ND			54		110		
Chloroethane		ND			23		110		
Chloroform		ND			76		110		
Chloromethane		ND			26		110		
cis-1,2-Dichloroethe	ene	ND			31		110		
cis-1,3-Dichloroprop	bene	ND			26		110		
Cyclohexane		ND			25		110		
Dichlorodifluoromet	hane	ND			48		110		
Ethylbenzene		220			32		110		
Isopropylbenzene		ND			17		110		
Methyl acetate		ND			53		110		
Methyl tert-butyl eth	er	ND			42		110		
Methylcyclohexane		ND			52		110		
Methylene Chloride		ND			22		110		
Styrene		ND			27		110		
Tetrachloroethene		ND			15		110		
					30		110		
Toluene	hana	140 ND							
trans-1,2-Dichloroet		ND			26		110		
trans-1,3-Dichloropr	opene	ND			5.3		110		
Trichloroethene		ND			31		110		
Trichlorofluorometha	ane	ND			52		110		

Client: CHA Inc

Client Sample ID:	SB10 SS (1-2) 040212							
Lab Sample ID: Client Matrix:	480-18049-11 Solid	% Moisture	: 12.6			Sampled: 04/02/2012 1230 Received: 04/04/2012 0900		
8260B Volatile Organic Compounds (GC/MS)								
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 1.0 04/06/2012 1518 04/05/2012 1045	Analysis Batch: Prep Batch:	480-58481 480-58304	Lab I Initia	ument ID: File ID: I Weight/Volume: I Weight/Volume:	HP5973G G10728.D 5.17 g 10 mL		
Analyte	DryWt Corrected: \	C Result (up)	g/Kg)	Qualifier	MDL	RL		
Vinyl chloride		ND			37	110		
Xylenes, Total		2100			19	220		
Surrogate		%Rec		Qualifier	Acceptar	nce Limits		
1,2-Dichloroethane-	d4 (Surr)	126			53 - 146			
Toluene-d8 (Surr)		131			50 - 149			
4-Bromofluorobenze	ene (Surr)	133			49 - 148			

Client: CHA Inc

Client Sample ID:	SB10 SS (3-4) 040212								
Lab Sample ID:	480-18049-12					Date Sampled	I: 04/02/2012 1230		
Client Matrix:	Solid	% Moisture:	19.1				d: 04/04/2012 0900		
8260B Volatile Organic Compounds (GC/MS)									
Analysis Method:	8260B	Analysis Batch:	480-58481		Instrument ID:	HP59	73G		
Prep Method:	5035	Prep Batch:	480-58304		Lab File ID:	G1072			
Dilution:	1.0				Initial Weight/Volu				
Analysis Date:	04/06/2012 1541				-		•		
-	04/05/2012 1045				Final Weight/Volu	ine. 10 fi	IL		
Prep Date:	04/05/2012 1045								
Analyte	DryWt Corrected: Y	Result (ug	/Kg)	Qualifie			RL		
1,1,1-Trichloroethar		ND			34		20		
1,1,2,2-Tetrachloroe		ND			20		20		
1,1,2-Trichloroethar		ND			26		20		
1,1,2-Trichloro-1,2,2	2-trifluoroethane	ND			61		20		
1,1-Dichloroethane		ND			38		20		
1,1-Dichloroethene		ND			42	1	20		
1,2,4-Trichlorobenz	ene	ND			46	1	20		
1,2-Dibromo-3-Chlo	ropropane	ND			61	1	20		
1,2-Dibromoethane		ND			4.6	1	20		
1,2-Dichlorobenzen	e	ND			31	1	20		
1,2-Dichloroethane		ND			50	1	20		
1,2-Dichloropropane	e	ND			20	1	20		
1,3-Dichlorobenzen		ND			32	1	20		
1,4-Dichlorobenzen		ND			17		20		
2-Hexanone	-	ND			250		510		
2-Butanone (MEK)		ND			360		510		
4-Methyl-2-pentano	ne (MIBK)	ND			39		510		
Acetone		ND			500		510		
Benzene		ND			5.8		20		
Bromodichlorometh	ane	ND			24		20		
Bromoform		ND			61		20		
Bromomethane		ND			27		20		
					55		20		
Carbon disulfide		ND ND			31				
Carbon tetrachloride	3						20		
Chlorobenzene		ND			16		20		
Dibromochlorometh	ane	ND			59		20		
Chloroethane		ND			25		20		
Chloroform		ND			83		20		
Chloromethane		ND			29		20		
cis-1,2-Dichloroethe		ND			34		20		
cis-1,3-Dichloroprop	bene	ND			29		20		
Cyclohexane		ND			27		20		
Dichlorodifluoromet	hane	ND			53		20		
Ethylbenzene		ND			35		20		
Isopropylbenzene		ND			18		20		
Methyl acetate		ND			58		20		
Methyl tert-butyl eth	er	ND			46	1	20		
Methylcyclohexane		ND			57		20		
Methylene Chloride		ND			24	1	20		
Styrene		ND			29	1	20		
Tetrachloroethene		ND			16	1	20		
Toluene		42		J	33	1	20		
trans-1,2-Dichloroet	hene	ND			29		20		
trans-1,3-Dichloropr		ND			5.8		20		
Trichloroethene		ND			34		20		
Trichlorofluorometh	ane	ND			57		20		
					51				

Client: CHA Inc

Client Sample ID:	SB10 SS (3-4) 040212					
Lab Sample ID: Client Matrix:	480-18049-12 Solid	% Moisture	e: 19.1			Sampled: 04/02/2012 1230 Received: 04/04/2012 0900
		8260B Volatile Orga	nic Compoun	ds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 1.0 04/06/2012 1541 04/05/2012 1045	Analysis Batch: Prep Batch:	480-58481 480-58304	Lab I Initia	ument ID: File ID: I Weight/Volume: I Weight/Volume:	HP5973G G10729.D 5.09 g 10 mL
Analyte	DryWt Corrected: Y	Result (up)	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			41	120
Xylenes, Total		91		J	20	240
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
1,2-Dichloroethane-	d4 (Surr)	122			53 - 146	
Toluene-d8 (Surr)		126			50 - 149	
4-Bromofluorobenze	ene (Surr)	127			49 - 148	

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB11 SS (2-3) 040212								
Lab Sample ID:	480-18049-13				Date Sampled: 04/02/2012 1				
Client Matrix:	Solid	% Moisture:	10.7		Date Received: 04/04/2012 0				
8260B Volatile Organic Compounds (GC/MS)									
Analysis Method:	8260B	Analysis Batch:	480-58395	Instrument ID:	HP5973F				
Prep Method:	5035	Prep Batch:	480-58091	Lab File ID:	F7828.D				
Dilution:	1.0			Initial Weight/V	olume: 4.58 g				
Analysis Date:	04/05/2012 2330			Final Weight/Ve	-				
Prep Date:	04/04/2012 1404			i indi Weight W	Sume. O me				
Analyte	DryWt Corrected: Y	Result (ug	/Ka)	Qualifier MDL	RL				
1,1,1-Trichloroethar		ND	5/	0.44	6.1				
1,1,2,2-Tetrachloroe		ND		0.99	6.1				
1,1,2-Trichloroethar		ND		0.79	6.1				
1,1,2-Trichloro-1,2,2		ND		1.4	6.1				
1,1-Dichloroethane		ND		0.75	6.1				
1,1-Dichloroethene		ND		0.75	6.1				
1,2,4-Trichlorobenz	ene	ND		0.37	6.1				
1,2-Dibromo-3-Chlo		ND		3.1	6.1				
1,2-Dibromoethane	i opi opanio	ND		0.79	6.1				
1,2-Dichlorobenzen	2	ND		0.48	6.1				
	e			0.48	6.1				
1,2-Dichloroethane	_	ND							
1,2-Dichloropropane		ND		3.1	6.1				
1,3-Dichlorobenzen		ND		0.31	6.1				
1,4-Dichlorobenzen	e	ND		0.86	6.1				
2-Hexanone		ND		3.1	31				
2-Butanone (MEK)		ND		2.2	31				
4-Methyl-2-pentano	ne (MIBK)	ND		2.0	31				
Acetone		42		5.1	31				
Benzene		ND		0.30	6.1				
Bromodichlorometh	ane	ND		0.82	6.1				
Bromoform		ND		3.1	6.1				
Bromomethane		ND		0.55	6.1				
Carbon disulfide		ND		3.1	6.1				
Carbon tetrachloride	e	ND		0.59	6.1				
Chlorobenzene		ND		0.81	6.1				
Dibromochlorometh	ane	ND		0.78	6.1				
Chloroethane		ND		1.4	6.1				
Chloroform		ND		0.38	6.1				
Chloromethane		ND		0.37	6.1				
cis-1,2-Dichloroethe	ene	ND		0.78	6.1				
cis-1,3-Dichloroprop		ND		0.88	6.1				
Cyclohexane		ND		0.86	6.1				
Dichlorodifluoromet	hane	ND		0.51	6.1				
Ethylbenzene	hanc	16		0.42	6.1				
Isopropylbenzene		ND		0.92	6.1				
		ND		1.1	6.1				
Methyl acetate	or.								
Methyl tert-butyl eth		ND		0.60	6.1				
Methylcyclohexane		ND		0.93	6.1				
Methylene Chloride		ND		2.8	6.1				
Styrene		ND		0.31	6.1				
Tetrachloroethene		ND		0.82	6.1				
Toluene		41		0.46	6.1				
trans-1,2-Dichloroet		ND		0.63	6.1				
trans-1,3-Dichloropr	ropene	ND		2.7	6.1				
Trichloroethene		ND		1.3	6.1				
Trichlorofluorometha	ane	ND		0.58	6.1				

Client: CHA Inc

Client Sample ID:	SB11 SS (2-3) 040212					
Lab Sample ID: Client Matrix:	480-18049-13 Solid	% Moisture	: 10.7			Sampled: 04/02/2012 1245 Received: 04/04/2012 0900
		8260B Volatile Orga	nic Compoun	ds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 1.0 04/05/2012 2330 04/04/2012 1404	Analysis Batch: Prep Batch:	480-58395 480-58091	Lab	rument ID: File ID: al Weight/Volume: Il Weight/Volume:	HP5973F F7828.D 4.58 g 5 mL
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			0.75	6.1
Xylenes, Total		65		В	1.0	12
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
1,2-Dichloroethane-	d4 (Surr)	99			64 - 126	
Toluene-d8 (Surr)		105			71 - 125	
4-Bromofluorobenze	ene (Surr)	105			72 - 126	

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB14 SS (1-2)040212						
Lab Sample ID:	480-18049-14					Date Sam	pled: 04/02/2012 1300
Client Matrix:	Solid	% Moisture:	12.9				eived: 04/04/2012 0900
	8	260B Volatile Organ	ic Compoun	ds (GC/M	IS)		
Analysis Method:	8260B	Analysis Batch:	480-58395		Instrument ID:	н	P5973F
Prep Method:	5035	Prep Batch:	480-58091		Lab File ID:		7829.D
Dilution:	1.0	Trop Bateri.	400-00001		Initial Weight/Volu		9 g
	04/05/2012 2355				-		mL
Analysis Date:					Final Weight/Volu	me. o	
Prep Date:	04/04/2012 1404						
Analyte	DryWt Corrected: Y	Result (ug	/Kg)	Qualifie			RL
1,1,1-Trichloroethar	ne	ND			0.43		5.9
1,1,2,2-Tetrachloroe	ethane	ND			0.95		5.9
1,1,2-Trichloroethar	ne	ND			0.76		5.9
1,1,2-Trichloro-1,2,2	2-trifluoroethane	ND			1.3		5.9
1,1-Dichloroethane		ND			0.71		5.9
1,1-Dichloroethene		ND			0.72		5.9
1,2,4-Trichlorobenz	ene	ND			0.36		5.9
1,2-Dibromo-3-Chlo	propropane	ND			2.9		5.9
1,2-Dibromoethane		ND			0.75		5.9
1,2-Dichlorobenzen	e	ND			0.46		5.9
1,2-Dichloroethane		ND			0.29		5.9
1,2-Dichloropropane	a	ND			2.9		5.9
1,3-Dichlorobenzen		ND			0.30		5.9
1,4-Dichlorobenzen		ND			0.82		5.9
2-Hexanone	0	ND			2.9		29
2-Butanone (MEK)		ND			2.0		29
4-Methyl-2-pentano	ne (MIBK)	ND			1.9		29
Acetone		ND			4.9		29
Benzene		ND			4.9 0.29		29 5.9
Bromodichlorometh	222	ND			0.29		5.9
Bromoform	ane				2.9		5.9
		ND					
Bromomethane		ND			0.53		5.9
Carbon disulfide	_	ND			2.9		5.9
Carbon tetrachloride	9	ND			0.57		5.9
Chlorobenzene		ND			0.77		5.9
Dibromochlorometh	ane	ND			0.75		5.9
Chloroethane		ND			1.3		5.9
Chloroform		ND			0.36		5.9
Chloromethane		ND			0.35		5.9
cis-1,2-Dichloroethe	ene	ND			0.75		5.9
cis-1,3-Dichloroprop	bene	ND			0.84		5.9
Cyclohexane		ND			0.82		5.9
Dichlorodifluoromet	hane	ND			0.48		5.9
Ethylbenzene		1.4		J	0.40		5.9
Isopropylbenzene		ND			0.88		5.9
Methyl acetate		ND			1.1		5.9
Methyl tert-butyl eth	ier	ND			0.58		5.9
Methylcyclohexane		ND			0.89		5.9
Methylene Chloride		ND			2.7		5.9
Styrene		ND			0.29		5.9
Tetrachloroethene		ND			0.79		5.9
Toluene		ND			0.44		5.9
trans-1,2-Dichloroet	thene	ND			0.60		5.9
trans-1,3-Dichloropr		ND			2.6		5.9
Trichloroethene		ND			1.3		5.9
Trichlorofluorometh	ane	ND			0.55		5.9
monoronaoroneun					0.00		0.0

Client: CHA Inc

Client Sample ID:	SB14 SS (1-2)040212					
Lab Sample ID: Client Matrix:	480-18049-14 Solid	% Moisture	: 12.9			Sampled: 04/02/2012 1300 Received: 04/04/2012 0900
		8260B Volatile Orga	nic Compound	ds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 1.0 04/05/2012 2355 04/04/2012 1404	Analysis Batch: Prep Batch:	480-58395 480-58091	Lab Initia	ument ID: File ID: Il Weight/Volume: I Weight/Volume:	HP5973F F7829.D 4.9 g 5 mL
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			0.71	5.9
Xylenes, Total		8.6		JB	0.98	12
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
1,2-Dichloroethane-	d4 (Surr)	100			64 - 126	
Toluene-d8 (Surr)		107			71 - 125	
4-Bromofluorobenze	ene (Surr)	106			72 - 126	

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB14 SS (2-3) 040212							
Lab Sample ID:	480-18049-15					Date Sa	ampled: 04/02/20	12 1300
Client Matrix:	Solid	% Moisture:	13.5				eceived: 04/04/20	
	8	260B Volatile Orgar	ic Compoun	ds (GC/M	S)			
Analysis Method:	8260B	Analysis Batch:	480-58395		Instrument ID:		HP5973F	
Prep Method:	5035	Prep Batch:	480-58091		Lab File ID:		F7830.D	
Dilution:	1.0	•			Initial Weight/Volu	ime:	5.48 g	
Analysis Date:	04/06/2012 0021				Final Weight/Volu		5 mL	
Prep Date:	04/04/2012 1404						0 1112	
Analyte	DryWt Corrected: Y	Result (ug	/Kq)	Qualifier	r MDL		RL	
1,1,1-Trichloroethar	•	ND	5/		0.38		5.3	
1,1,2,2-Tetrachloroe		ND			0.86		5.3	
1,1,2-Trichloroethar		ND			0.69		5.3	
1,1,2-Trichloro-1,2,2		ND			1.2		5.3	
1,1-Dichloroethane		ND			0.64		5.3	
1,1-Dichloroethene		ND			0.65		5.3	
1,2,4-Trichlorobenz	ene	ND			0.00		5.3	
1,2-Dibromo-3-Chlo		ND			2.6		5.3	
1,2-Dibromoethane	lopioparie	ND			0.68		5.3	
		ND			0.08		5.3	
1,2-Dichlorobenzen	e							
1,2-Dichloroethane	_	ND			0.26		5.3	
1,2-Dichloropropane		ND			2.6		5.3	
1,3-Dichlorobenzen		ND			0.27		5.3	
1,4-Dichlorobenzen	e	ND			0.74		5.3	
2-Hexanone		ND			2.6		26	
2-Butanone (MEK)		ND			1.9		26	
4-Methyl-2-pentano	ne (MIBK)	ND			1.7		26	
Acetone		ND			4.4		26	
Benzene		ND			0.26		5.3	
Bromodichlorometh	ane	ND			0.71		5.3	
Bromoform		ND			2.6		5.3	
Bromomethane		ND			0.47		5.3	
Carbon disulfide		ND			2.6		5.3	
Carbon tetrachloride	e	ND			0.51		5.3	
Chlorobenzene		ND			0.70		5.3	
Dibromochlorometh	ane	ND			0.67		5.3	
Chloroethane		ND			1.2		5.3	
Chloroform		ND			0.33		5.3	
Chloromethane		ND			0.32		5.3	
cis-1,2-Dichloroethe	ne	ND			0.67		5.3	
cis-1,3-Dichloroprop		ND			0.76		5.3	
Cyclohexane	bene	ND			0.76		5.3	
Dichlorodifluoromet	hana				0.74			
	nane	ND			0.44		5.3	
Ethylbenzene		5.3					5.3	
Isopropylbenzene		ND			0.80		5.3	
Methyl acetate		ND			0.98		5.3	
Methyl tert-butyl eth	er	ND			0.52		5.3	
Methylcyclohexane		ND			0.80		5.3	
Methylene Chloride		ND			2.4		5.3	
Styrene		ND			0.26		5.3	
Tetrachloroethene		ND			0.71		5.3	
Toluene		4.6		J	0.40		5.3	
trans-1,2-Dichloroet	hene	ND			0.54		5.3	
trans-1,3-Dichloropr	ropene	ND			2.3		5.3	
Trichloroethene		ND			1.2		5.3	
Trichlorofluorometh	ane	ND			0.50		5.3	

Client: CHA Inc

Client Sample ID:	SB14 SS (2-3) 040212					
Lab Sample ID: Client Matrix:	480-18049-15 Solid	% Moisture	e: 13.5			Sampled: 04/02/2012 1300 Received: 04/04/2012 0900
		8260B Volatile Orga	nic Compoun	ds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 1.0 04/06/2012 0021 04/04/2012 1404	Analysis Batch: Prep Batch:	480-58395 480-58091	Lab Initia	ument ID: File ID: Il Weight/Volume: I Weight/Volume:	HP5973F F7830.D 5.48 g 5 mL
Analyte	DryWt Corrected: \	Y Result (u	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			0.64	5.3
Xylenes, Total		13		В	0.89	11
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
1,2-Dichloroethane-	d4 (Surr)	100			64 - 126	
Toluene-d8 (Surr)		107			71 - 125	
4-Bromofluorobenze	ene (Surr)	105			72 - 126	

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB13 SS (1-2) 040212						
Lab Sample ID:	480-18049-16					Date Samp	led: 04/02/2012 1315
Client Matrix:	Solid	% Moisture:	10.3				ved: 04/04/2012 0900
	8	260B Volatile Orgar	ic Compound	ds (GC/MS	6)		
Analysis Method:	8260B	Analysis Batch:	480-58395		Instrument ID:	HP	5973F
Prep Method:	5035	Prep Batch:	480-58091		Lab File ID:		331.D
Dilution:	1.0				Initial Weight/Volu		5 g
Analysis Date:	04/06/2012 0046				Final Weight/Volur		-
Prep Date:	04/04/2012 1404					ne. J	· · · ∟
Flep Date.	04/04/2012 1404						
Analyte	DryWt Corrected: Y	Result (ug	/Kg)	Qualifier			RL
1,1,1-Trichloroethar		ND			0.41		5.6
1,1,2,2-Tetrachloroe		ND			0.91		5.6
1,1,2-Trichloroethar		ND			0.73		5.6
1,1,2-Trichloro-1,2,2	2-trifluoroethane	ND			1.3		5.6
1,1-Dichloroethane		ND			0.69		5.6
1,1-Dichloroethene		ND			0.69		5.6
1,2,4-Trichlorobenze	ene	ND			0.34		5.6
1,2-Dibromo-3-Chlo	ropropane	ND			2.8		5.6
1,2-Dibromoethane		ND			0.72		5.6
1,2-Dichlorobenzen	e	ND			0.44		5.6
1,2-Dichloroethane		ND			0.28		5.6
1,2-Dichloropropane	e	ND			2.8		5.6
1,3-Dichlorobenzen		ND			0.29		5.6
1,4-Dichlorobenzen	е	ND			0.79		5.6
2-Hexanone		ND			2.8		28
2-Butanone (MEK)		ND			2.1		28
4-Methyl-2-pentano	ne (MIBK)	ND			1.8		28
Acetone		ND			4.7		28
Benzene		ND			0.28		5.6
Bromodichlorometh	ane	ND			0.75		5.6
Bromoform		ND			2.8		5.6
Bromomethane		ND			0.51		5.6
Carbon disulfide		ND			2.8		5.6
Carbon tetrachloride		ND			0.55		5.6
Chlorobenzene	5	ND			0.55		5.6
Dibromochlorometh	200	ND			0.74		5.6
	alle						
Chloroethane Chloroform		ND			1.3		5.6
Chloromethane		ND			0.35		5.6
		ND			0.34		5.6
cis-1,2-Dichloroethe		ND			0.72		5.6
cis-1,3-Dichloroprop	bene	ND			0.81		5.6
Cyclohexane		ND			0.79		5.6
Dichlorodifluoromet	nane	ND			0.47		5.6
Ethylbenzene		4.5		J	0.39		5.6
Isopropylbenzene		ND			0.85		5.6
Methyl acetate		ND			1.0		5.6
Methyl tert-butyl eth	er	ND			0.55		5.6
Methylcyclohexane		ND			0.86		5.6
Methylene Chloride		ND			2.6		5.6
Styrene		ND			0.28		5.6
Tetrachloroethene		ND			0.76		5.6
Toluene		12			0.43		5.6
trans-1,2-Dichloroet	hene	ND			0.58		5.6
trans-1,3-Dichloropr	opene	ND			2.5		5.6
Trichloroethene		ND			1.2		5.6
Trichlorofluorometha	ane	ND			0.53		5.6

Client: CHA Inc

Client Sample ID:	SB13 SS (1-2) 040212					
Lab Sample ID: Client Matrix:	480-18049-16 Solid	% Moisture	: 10.3			Sampled: 04/02/2012 1315 Received: 04/04/2012 0900
		8260B Volatile Orga	nic Compoun	ds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 1.0 04/06/2012 0046 04/04/2012 1404	Analysis Batch: Prep Batch:	480-58395 480-58091	Lab Initia	ument ID: File ID: al Weight/Volume: I Weight/Volume:	HP5973F F7831.D 4.95 g 5 mL
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			0.69	5.6
Xylenes, Total		15		В	0.95	11
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
1,2-Dichloroethane-	d4 (Surr)	99			64 - 126	
Toluene-d8 (Surr)		106			71 - 125	
4-Bromofluorobenze	ene (Surr)	104			72 - 126	

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB13 SS (2-3) 040212					
Lab Sample ID:	480-18049-17				C	Date Sampled: 04/02/2012 1315
Client Matrix:	Solid	% Moisture:	13.6			Date Received: 04/04/2012 0900
	8	260B Volatile Organ	ic Compound	ds (GC/M	IS)	
Analysis Method:	8260B	Analysis Batch:	480-58395		Instrument ID:	HP5973F
Prep Method:	5035	Prep Batch:	480-58091		Lab File ID:	F7832.D
Dilution:	1.0				Initial Weight/Volum	ne: 5.11 g
Analysis Date:	04/06/2012 0112				Final Weight/Volume	-
Prep Date:	04/04/2012 1404					
Analyte	DryWt Corrected: Y	Result (ug	/Ka)	Qualifie	r MDL	RL
1,1,1-Trichloroethar	-	ND			0.41	5.7
1,1,2,2-Tetrachloroe		ND			0.92	5.7
1,1,2-Trichloroethar		ND			0.74	5.7
1,1,2-Trichloro-1,2,2		ND			1.3	5.7
1,1-Dichloroethane		ND			0.69	5.7
1.1-Dichloroethene		ND			0.69	5.7
1,2,4-Trichlorobenz	ene	ND			0.34	5.7
1,2-Dibromo-3-Chlo		ND			2.8	5.7
1,2-Dibromoethane	lopioparie	ND			0.73	5.7
1,2-Dichlorobenzen	2	ND			0.44	5.7
1,2-Dichloroethane	e	ND			0.44	5.7
1,2-Dichloropropane		ND			2.8	5.7
1,3-Dichlorobenzen		ND			0.29	5.7
					0.29	5.7
1,4-Dichlorobenzen	e	ND				28
2-Hexanone		ND ND			2.8 2.1	28
2-Butanone (MEK)						
4-Methyl-2-pentano	ne (MIBK)	ND			1.9	28
Acetone		32			4.8	28
Benzene		ND			0.28	5.7
Bromodichlorometh	ane	ND			0.76	5.7
Bromoform		ND			2.8	5.7
Bromomethane		ND			0.51	5.7
Carbon disulfide	_	ND			2.8	5.7
Carbon tetrachloride	9	ND			0.55	5.7
Chlorobenzene		ND			0.75	5.7
Dibromochlorometh	ane	ND			0.72	5.7
Chloroethane		ND			1.3	5.7
Chloroform		ND			0.35	5.7
Chloromethane		ND			0.34	5.7
cis-1,2-Dichloroethe		ND			0.72	5.7
cis-1,3-Dichloroprop	bene	ND			0.82	5.7
Cyclohexane		ND			0.79	5.7
Dichlorodifluoromet	hane	ND			0.47	5.7
Ethylbenzene		13			0.39	5.7
Isopropylbenzene		ND			0.85	5.7
Methyl acetate		ND			1.1	5.7
Methyl tert-butyl eth	er	ND			0.56	5.7
Methylcyclohexane		ND			0.86	5.7
Methylene Chloride		ND			2.6	5.7
Styrene		ND			0.28	5.7
Tetrachloroethene		ND			0.76	5.7
Toluene		33			0.43	5.7
trans-1,2-Dichloroet		ND			0.58	5.7
trans-1,3-Dichloropr	ropene	ND			2.5	5.7
Trichloroethene		ND			1.2	5.7
Trichlorofluorometh	ane	ND			0.54	5.7

Client: CHA Inc

Client Sample ID:	SB13 SS (2-3) 040212					
Lab Sample ID: Client Matrix:	480-18049-17 Solid	% Moisture	e: 13.6			Sampled: 04/02/2012 1315 Received: 04/04/2012 0900
		8260B Volatile Orga	nic Compoun	ds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 1.0 04/06/2012 0112 04/04/2012 1404	Analysis Batch: Prep Batch:	480-58395 480-58091	Lab I Initia	ument ID: File ID: I Weight/Volume: Weight/Volume:	HP5973F F7832.D 5.11 g 5 mL
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			0.69	5.7
Xylenes, Total		45		В	0.95	11
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
1,2-Dichloroethane-	d4 (Surr)	101			64 - 126	
Toluene-d8 (Surr)		107			71 - 125	
4-Bromofluorobenze	ene (Surr)	107			72 - 126	

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB08 SS (1-2) 040212					
Lab Sample ID:	480-18049-18				C	Date Sampled: 04/02/2012 1330
Client Matrix:	Solid	% Moisture:	26.2			Date Received: 04/04/2012 0900
	8	260B Volatile Organ	ic Compoun	ds (GC/M	IS)	
Analysis Method:	8260B	Analysis Batch:	480-58395		Instrument ID:	HP5973F
Prep Method:	5035	Prep Batch:	480-58091		Lab File ID:	F7833.D
Dilution:	1.0				Initial Weight/Volum	
Analysis Date:	04/06/2012 0137				Final Weight/Volume	-
Prep Date:	04/04/2012 1404					
The Date.						
Analyte	DryWt Corrected: Y	Result (ug	/Kg)	Qualifie		RL
1,1,1-Trichloroethar		ND			0.49	6.7
1,1,2,2-Tetrachloroe		ND			1.1	6.7
1,1,2-Trichloroethar		ND			0.88	6.7
1,1,2-Trichloro-1,2,2	2-trifluoroethane	ND			1.5	6.7
1,1-Dichloroethane		ND			0.82	6.7
1,1-Dichloroethene		ND			0.82	6.7
1,2,4-Trichlorobenz	ene	ND			0.41	6.7
1,2-Dibromo-3-Chlo	ropropane	ND			3.4	6.7
1,2-Dibromoethane		ND			0.86	6.7
1,2-Dichlorobenzen	e	ND			0.53	6.7
1,2-Dichloroethane		ND			0.34	6.7
1,2-Dichloropropane	e	ND			3.4	6.7
1,3-Dichlorobenzen		ND			0.35	6.7
1,4-Dichlorobenzen	e	ND			0.94	6.7
2-Hexanone		ND			3.4	34
2-Butanone (MEK)		64			2.5	34
4-Methyl-2-pentano	ne (MIBK)	ND			2.2	34
Acetone		720			5.7	34
Benzene		ND			0.33	6.7
Bromodichlorometh	ane	ND			0.90	6.7
Bromoform		ND			3.4	6.7
Bromomethane		ND			0.61	6.7
Carbon disulfide		ND			3.4	6.7
Carbon tetrachloride	2	ND			0.65	6.7
Chlorobenzene	0	ND			0.89	6.7
Dibromochlorometh	ane	ND			0.86	6.7
Chloroethane		ND			1.5	6.7
Chloroform		ND			0.42	6.7
Chloromethane		ND			0.42	6.7
cis-1,2-Dichloroethe		ND			0.41	6.7
cis-1,3-Dichloroprop	bene	ND			0.97	6.7
Cyclohexane Dichlorodifluoromet	hana	ND			0.94	6.7
	nane	ND			0.56	6.7
Ethylbenzene		8.8			0.46	6.7
Isopropylbenzene		ND			1.0	6.7
Methyl acetate		ND			1.3	6.7
Methyl tert-butyl eth		ND			0.66	6.7
Methylcyclohexane		ND			1.0	6.7
Methylene Chloride		ND			3.1	6.7
Styrene		ND			0.34	6.7
Tetrachloroethene		ND			0.90	6.7
Toluene		26			0.51	6.7
trans-1,2-Dichloroet		ND			0.69	6.7
trans-1,3-Dichloropr	ropene	ND			3.0	6.7
Trichloroethene		ND			1.5	6.7
Trichlorofluorometh	ane	ND			0.64	6.7

Client: CHA Inc

Client Sample ID:	SB08 SS (1-2) 040212					
Lab Sample ID: Client Matrix:	480-18049-18 Solid	% Moisture	: 26.2			Sampled: 04/02/2012 1330 Received: 04/04/2012 0900
		8260B Volatile Orga	nic Compoun	ds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 1.0 04/06/2012 0137 04/04/2012 1404	Analysis Batch: Prep Batch:	480-58395 480-58091	Lab	rument ID: File ID: al Weight/Volume: al Weight/Volume:	HP5973F F7833.D 5.03 g 5 mL
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			0.82	6.7
Xylenes, Total		34		В	1.1	13
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
1,2-Dichloroethane-	d4 (Surr)	98			64 - 126	
Toluene-d8 (Surr)		107			71 - 125	
4-Bromofluorobenze	ene (Surr)	103			72 - 126	

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB08 SS (2-3) 040212					
Lab Sample ID:	480-18049-19				D	ate Sampled: 04/02/2012 1330
Client Matrix:	Solid	% Moisture:	16.8			Date Received: 04/04/2012 0900
	8	260B Volatile Organ	ic Compoun	ds (GC/N	1S)	
Analysis Method:	8260B	Analysis Batch:	480-58395		Instrument ID:	HP5973F
Prep Method:	5035	Prep Batch:	480-58091		Lab File ID:	F7834.D
Dilution:	1.0	Thep Bateri.	400-00001		Initial Weight/Volum	
Analysis Date:	04/06/2012 0203				-	
•					Final Weight/Volume	e: 5 mL
Prep Date:	04/04/2012 1404					
Analyte	DryWt Corrected: Y	Result (ug	/Kg)	Qualifie	er MDL	RL
1,1,1-Trichloroethar	ne	ND			0.39	5.4
1,1,2,2-Tetrachloroe	ethane	ND			0.88	5.4
1,1,2-Trichloroethar	ne	ND			0.70	5.4
1,1,2-Trichloro-1,2,2	2-trifluoroethane	ND			1.2	5.4
1,1-Dichloroethane		ND			0.66	5.4
1,1-Dichloroethene		ND			0.66	5.4
1,2,4-Trichlorobenz	ene	ND			0.33	5.4
1,2-Dibromo-3-Chlo	ropropane	ND			2.7	5.4
1,2-Dibromoethane		ND			0.70	5.4
1,2-Dichlorobenzen	e	ND			0.42	5.4
1,2-Dichloroethane		ND			0.27	5.4
1,2-Dichloropropane	e	ND			2.7	5.4
1,3-Dichlorobenzen	e	ND			0.28	5.4
1,4-Dichlorobenzen	e	ND			0.76	5.4
2-Hexanone		ND			2.7	27
2-Butanone (MEK)		ND			2.0	27
4-Methyl-2-pentano	ne (MIBK)	ND			1.8	27
Acetone		ND			4.6	27
Benzene		ND			0.27	5.4
Bromodichlorometh	ane	ND			0.73	5.4
Bromoform		ND			2.7	5.4
Bromomethane		ND			0.49	5.4
Carbon disulfide		ND			2.7	5.4
Carbon tetrachloride	e	ND			0.52	5.4
Chlorobenzene		ND			0.71	5.4
Dibromochlorometh	ane	ND			0.69	5.4
Chloroethane		ND			1.2	5.4
Chloroform		ND			0.33	5.4
Chloromethane		ND			0.33	5.4
cis-1,2-Dichloroethe	ene	ND			0.69	5.4
cis-1,3-Dichloroprop		ND			0.78	5.4
Cyclohexane		ND			0.76	5.4
Dichlorodifluoromet	hane	ND			0.45	5.4
Ethylbenzene		3.3		J	0.37	5.4
Isopropylbenzene		ND			0.82	5.4
Methyl acetate		ND			1.0	5.4
Methyl tert-butyl eth	ier	ND			0.53	5.4
Methylcyclohexane		ND			0.82	5.4
Methylene Chloride		ND			2.5	5.4
Styrene		ND			0.27	5.4
Tetrachloroethene		ND			0.73	5.4
Toluene		3.1		J	0.41	5.4
trans-1,2-Dichloroet	thene	ND		-	0.56	5.4
trans-1,3-Dichloropr		ND			2.4	5.4
Trichloroethene		ND			1.2	5.4
Trichlorofluorometh	ane	ND			0.51	5.4
					0.0.	

Client: CHA Inc

Client Sample ID:	SB08 SS (2-3) 040212					
Lab Sample ID: Client Matrix:	480-18049-19 Solid	% Moisture	: 16.8			Sampled: 04/02/2012 1330 Received: 04/04/2012 0900
		8260B Volatile Orga	nic Compoun	ds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 1.0 04/06/2012 0203 04/04/2012 1404	Analysis Batch: Prep Batch:	480-58395 480-58091	Lab Initia	ument ID: File ID: Il Weight/Volume: I Weight/Volume:	HP5973F F7834.D 5.55 g 5 mL
Analyte	DryWt Corrected: `	Y Result (u	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			0.66	5.4
Xylenes, Total		11		В	0.91	11
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
1,2-Dichloroethane-	d4 (Surr)	104			64 - 126	
Toluene-d8 (Surr)		112			71 - 125	
4-Bromofluorobenze	ene (Surr)	111			72 - 126	

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB12 SS (0-1) 040212									
Lab Sample ID:	480-18049-20					Date Sampled: 04	/02/2012 1400			
Client Matrix:	Solid	% Moisture:	12.0			Date Received: 04				
8260B Volatile Organic Compounds (GC/MS)										
Analysis Method:	8260B	Analysis Batch:	480-58395		Instrument ID:	HP5973F				
Prep Method:	5035	Prep Batch:	480-58091		Lab File ID:	F7835.D				
Dilution:	1.0				Initial Weight/Volu	ıme: 5.43 g				
Analysis Date:	04/06/2012 0228				Final Weight/Volu	-				
Prep Date:	04/04/2012 1404				·					
Analyte	DryWt Corrected: Y	Result (ug	/Kg)	Qualifie		RL				
1,1,1-Trichloroethar		ND			0.38	5.2				
1,1,2,2-Tetrachloroe		ND			0.85	5.2				
1,1,2-Trichloroethar		ND			0.68	5.2				
1,1,2-Trichloro-1,2,2	2-trifluoroethane	ND			1.2	5.2				
1,1-Dichloroethane		ND			0.64	5.2				
1,1-Dichloroethene		ND			0.64	5.2				
1,2,4-Trichlorobenz		ND			0.32	5.2				
1,2-Dibromo-3-Chlo	ropropane	ND			2.6	5.2				
1,2-Dibromoethane		ND			0.67	5.2				
1,2-Dichlorobenzen	e	ND			0.41	5.2				
1,2-Dichloroethane		ND			0.26	5.2				
1,2-Dichloropropane	e	ND			2.6	5.2				
1,3-Dichlorobenzen	e	ND			0.27	5.2				
1,4-Dichlorobenzen	e	ND			0.73	5.2				
2-Hexanone		ND			2.6	26				
2-Butanone (MEK)		ND			1.9	26				
4-Methyl-2-pentano	ne (MIBK)	ND			1.7	26				
Acetone		ND			4.4	26				
Benzene		ND			0.26	5.2				
Bromodichlorometh	ane	ND			0.70	5.2				
Bromoform		ND			2.6	5.2				
Bromomethane		ND			0.47	5.2				
Carbon disulfide		ND			2.6	5.2				
Carbon tetrachloride	9	ND			0.51	5.2				
Chlorobenzene		ND			0.69	5.2				
Dibromochlorometh	ane	ND			0.67	5.2				
Chloroethane		ND			1.2	5.2				
Chloroform		ND			0.32	5.2				
Chloromethane		ND			0.32	5.2				
cis-1,2-Dichloroethe		ND			0.67	5.2				
		ND			0.75	5.2				
cis-1,3-Dichloroprop Cyclohexane		ND			0.73	5.2 5.2				
Dichlorodifluoromet	hane	ND			0.73	5.2				
						5.2 5.2				
Ethylbenzene		2.7		J	0.36 0.79	5.2 5.2				
Isopropylbenzene		ND								
Methyl acetate	or.	ND			0.97	5.2				
Methyl tert-butyl eth		ND			0.51	5.2				
Methylcyclohexane		ND			0.79	5.2				
Methylene Chloride		ND			2.4	5.2				
Styrene		ND			0.26	5.2				
Tetrachloroethene		ND			0.70	5.2				
Toluene		5.1		J	0.40	5.2				
trans-1,2-Dichloroet		ND			0.54	5.2				
trans-1,3-Dichloropr	ropene	ND			2.3	5.2				
Trichloroethene		ND			1.2	5.2				
Trichlorofluorometh	ane	ND			0.49	5.2				

Client: CHA Inc

Client Sample ID:	SB12 SS (0-1) 040212					
Lab Sample ID: Client Matrix:	480-18049-20 Solid	% Moisture	: 12.0			Sampled: 04/02/2012 1400 Received: 04/04/2012 0900
		8260B Volatile Orga	nic Compoun	ds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 1.0 04/06/2012 0228 04/04/2012 1404	Analysis Batch: Prep Batch:	480-58395 480-58091	Lab Initia	ument ID: File ID: Il Weight/Volume: I Weight/Volume:	HP5973F F7835.D 5.43 g 5 mL
Analyte	DryWt Corrected: \	Y Result (u	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			0.64	5.2
Xylenes, Total		7.0		JB	0.88	10
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
1,2-Dichloroethane-	d4 (Surr)	98			64 - 126	
Toluene-d8 (Surr)		107			71 - 125	
4-Bromofluorobenze	ene (Surr)	105			72 - 126	

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB12 SS (2-3)040212									
Lab Sample ID:	480-18049-21				D	ate Sampled: 04/02/2012 1400				
Client Matrix:	Solid	% Moisture:	7.9			ate Received: 04/04/2012 0900				
8260B Volatile Organic Compounds (GC/MS)										
Analysis Method:	8260B	Analysis Batch:	480-58395		Instrument ID:	HP5973F				
Prep Method:	5035	Prep Batch:	480-58091		Lab File ID:	F7836.D				
Dilution:	1.0				Initial Weight/Volume					
Analysis Date:	04/06/2012 0254				Final Weight/Volume	-				
Prep Date:	04/04/2012 1404					a. J IIIL				
Top Date.										
Analyte	DryWt Corrected: Y	Result (ug	/Kg)	Qualifie		RL				
1,1,1-Trichloroethar		ND			0.34	4.6				
1,1,2,2-Tetrachloroe		ND			0.75	4.6				
1,1,2-Trichloroethar		ND			0.60	4.6				
1,1,2-Trichloro-1,2,2	2-trifluoroethane	ND			1.1	4.6				
1,1-Dichloroethane		ND			0.56	4.6				
1,1-Dichloroethene		ND			0.57	4.6				
1,2,4-Trichlorobenze		ND			0.28	4.6				
1,2-Dibromo-3-Chlo	ropropane	ND			2.3	4.6				
1,2-Dibromoethane		ND			0.59	4.6				
1,2-Dichlorobenzen	e	ND			0.36	4.6				
1,2-Dichloroethane		ND			0.23	4.6				
1,2-Dichloropropane	9	ND			2.3	4.6				
1,3-Dichlorobenzen	e	ND			0.24	4.6				
1,4-Dichlorobenzen	e	ND			0.65	4.6				
2-Hexanone		ND			2.3	23				
2-Butanone (MEK)		ND			1.7	23				
4-Methyl-2-pentano	ne (MIBK)	ND			1.5	23				
Acetone		ND			3.9	23				
Benzene		ND			0.23	4.6				
Bromodichlorometh	ane	ND			0.62	4.6				
Bromoform		ND			2.3	4.6				
Bromomethane		ND			0.42	4.6				
Carbon disulfide		ND			2.3	4.6				
Carbon tetrachloride		ND			0.45	4.6				
	5	ND			0.45					
Chlorobenzene						4.6				
Dibromochlorometh	ane	ND			0.59	4.6				
Chloroethane		ND			1.0	4.6				
Chloroform		ND			0.29	4.6				
Chloromethane		ND			0.28	4.6				
cis-1,2-Dichloroethe		ND			0.59	4.6				
cis-1,3-Dichloroprop	bene	ND			0.67	4.6				
Cyclohexane		ND			0.65	4.6				
Dichlorodifluoromet	hane	ND			0.38	4.6				
Ethylbenzene		3.8		J	0.32	4.6				
Isopropylbenzene		1.0		J	0.70	4.6				
Methyl acetate		ND			0.86	4.6				
Methyl tert-butyl eth	er	ND			0.45	4.6				
Methylcyclohexane		ND			0.70	4.6				
Methylene Chloride		ND			2.1	4.6				
Styrene		ND			0.23	4.6				
Tetrachloroethene		ND			0.62	4.6				
Toluene		3.7		J	0.35	4.6				
trans-1,2-Dichloroet	hene	ND		-	0.48	4.6				
trans-1,3-Dichloropr		ND			2.0	4.6				
Trichloroethene		ND			1.0	4.6				
Trichlorofluorometha	ane	ND			0.44	4.6				
					0.77	- T. U				

Client: CHA Inc

Client Sample ID:	SB12 SS (2-3)040212					
Lab Sample ID:	480-18049-21					Sampled: 04/02/2012 1400
Client Matrix:	Solid	% Moisture	: 7.9		Date	Received: 04/04/2012 0900
	٤	3260B Volatile Orga	nic Compound	ds (GC/MS)		
Analysis Method:	8260B	Analysis Batch:	480-58395	Instr	rument ID:	HP5973F
Prep Method:	5035	Prep Batch:	480-58091	Lab	File ID:	F7836.D
Dilution:	1.0			Initia	al Weight/Volume:	5.87 g
Analysis Date:	04/06/2012 0254			Fina	I Weight/Volume:	5 mL
Prep Date:	04/04/2012 1404					
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			0.56	4.6
Xylenes, Total		42		В	0.78	9.3
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
1,2-Dichloroethane-	d4 (Surr)	101			64 - 126	
Toluene-d8 (Surr)		106			71 - 125	
4-Bromofluorobenze	ene (Surr)	107			72 - 126	

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB09 SS (1-2) 040212									
Lab Sample ID:	480-18049-22					Date Sampled: 04/02/20	12 1415			
Client Matrix:	Solid	% Moisture:	15.2			Date Received: 04/04/20				
8260B Volatile Organic Compounds (GC/MS)										
Analysis Method:	8260B	Analysis Batch:	480-58389		Instrument ID:	HP5973G				
Prep Method:	5035	Prep Batch:	480-58304		Lab File ID:	G10714.D				
Dilution:	1.0	Thep Baton.	400 00004		Initial Weight/Volu					
Analysis Date:	04/06/2012 0830				Final Weight/Volur					
	04/05/2012 1045					ne. to nil				
Prep Date:	04/03/2012 1043									
Analyte	DryWt Corrected: Y	Result (ug	/Kg)	Qualifie		RL				
1,1,1-Trichloroethan		ND			32	120				
1,1,2,2-Tetrachloroe		ND			19	120				
1,1,2-Trichloroethan		ND			24	120				
1,1,2-Trichloro-1,2,2	-trifluoroethane	ND			58	120				
1,1-Dichloroethane		ND			36	120				
1,1-Dichloroethene		ND			40	120				
1,2,4-Trichlorobenze	ene	ND			44	120				
1,2-Dibromo-3-Chlor	ropropane	ND			58	120				
1,2-Dibromoethane		ND			4.4	120				
1,2-Dichlorobenzene	9	230			29	120				
1,2-Dichloroethane		ND			47	120				
1,2-Dichloropropane		ND			19	120				
1,3-Dichlorobenzene	9	ND			31	120				
1,4-Dichlorobenzene		ND			16	120				
2-Hexanone		420		J	240	580				
2-Butanone (MEK)		ND			340	580				
4-Methyl-2-pentanor	ne (MIBK)	ND			37	580				
Acetone	× ,	ND			470	580				
Benzene		ND			5.5	120				
Bromodichlorometha	ane	ND			23	120				
Bromoform		ND			58	120				
Bromomethane		ND			25	120				
Carbon disulfide		ND			52	120				
Carbon tetrachloride		ND			29	120				
Chlorobenzene		ND			15	120				
Dibromochlorometha	ane	ND			56	120				
Chloroethane		ND			24	120				
Chloroform		ND			79	120				
Chloromethane		ND			27	120				
cis-1,2-Dichloroethe	ne	ND			32	120				
cis-1,3-Dichloroprop		ND			28	120				
Cyclohexane	ene	ND			26	120				
Dichlorodifluorometh	220	ND			50	120				
Ethylbenzene	laile	300			34	120				
Isopropylbenzene		520			17	120				
		ND			55	120				
Methyl acetate	or and the second se	ND			55 44	120				
Methyl tert-butyl ethe Methylcyclohexane		950			44 54	120				
		950 ND			23	120				
Methylene Chloride		ND			23					
Styrene Tetrachloroethene		ND			28 16	120 120				
						120				
Toluene		110 ND		J	31	120				
trans-1,2-Dichloroet		ND			27	120				
trans-1,3-Dichloropro	opene	ND			5.5	120				
Trichloroethene		ND			32	120				
Trichlorofluorometha	ane	ND			54	120				

Client: CHA Inc

Client Sample ID:	SB09 SS (1-2) 040212					
Lab Sample ID: Client Matrix:	480-18049-22 Solid	% Moisture	:: 15.2			Sampled: 04/02/2012 1415 Received: 04/04/2012 0900
		8260B Volatile Orga	nic Compoun	ds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 1.0 04/06/2012 0830 04/05/2012 1045	Analysis Batch: Prep Batch:	480-58389 480-58304	Lab Initia	ument ID: File ID: Il Weight/Volume: I Weight/Volume:	HP5973G G10714.D 5.11 g 10 mL
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			39	120
Xylenes, Total		2400			19	230
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
1,2-Dichloroethane-	d4 (Surr)	117			53 - 146	
Toluene-d8 (Surr)		97			50 - 149	
4-Bromofluorobenze	ene (Surr)	99			49 - 148	

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB09 SS (3-4) 040212					
Lab Sample ID:	480-18049-23				Da	ate Sampled: 04/02/2012 1415
Client Matrix:	Solid	% Moisture:	12.4			ate Received: 04/04/2012 0900
	8	260B Volatile Organ	nic Compound	ds (GC/M	S)	
Analysis Method:	8260B	Analysis Batch:	480-58395		Instrument ID:	HP5973F
Prep Method:	5035	Prep Batch:	480-58091		Lab File ID:	F7837.D
Dilution:	1.0				Initial Weight/Volume	: 5.8 g
Analysis Date:	04/06/2012 0320				Final Weight/Volume:	-
Prep Date:	04/04/2012 1404				i inal weight volume.	JIIL
Thep Date.						
Analyte	DryWt Corrected: Y	Result (ug	/Kg)	Qualifie		RL
1,1,1-Trichloroethane		ND			0.36	4.9
1,1,2,2-Tetrachloroet		ND			0.80	4.9
1,1,2-Trichloroethane		ND			0.64	4.9
1,1,2-Trichloro-1,2,2-	-trifluoroethane	ND			1.1	4.9
1,1-Dichloroethane		ND			0.60	4.9
1,1-Dichloroethene		ND			0.60	4.9
1,2,4-Trichlorobenze	ne	ND			0.30	4.9
1,2-Dibromo-3-Chlor	opropane	ND			2.5	4.9
1,2-Dibromoethane		ND			0.63	4.9
1,2-Dichlorobenzene	•	ND			0.38	4.9
1,2-Dichloroethane		ND			0.25	4.9
1,2-Dichloropropane		ND			2.5	4.9
1,3-Dichlorobenzene		ND			0.25	4.9
1,4-Dichlorobenzene		ND			0.69	4.9
2-Hexanone		ND			2.5	25
2-Butanone (MEK)		ND			1.8	25
4-Methyl-2-pentanon	e (MIBK)	ND			1.6	25
Acetone		ND			4.1	25
Benzene		ND			0.24	4.9
Bromodichlorometha		ND			0.66	4.9
Bromoform		ND			2.5	4.9
Bromomethane					0.44	4.9
		ND				
Carbon disulfide		ND			2.5	4.9
Carbon tetrachloride		ND			0.48	4.9
Chlorobenzene		ND			0.65	4.9
Dibromochlorometha	ine	ND			0.63	4.9
Chloroethane		ND			1.1	4.9
Chloroform		ND			0.30	4.9
Chloromethane		ND			0.30	4.9
cis-1,2-Dichloroether	ne	ND			0.63	4.9
cis-1,3-Dichloroprope	ene	ND			0.71	4.9
Cyclohexane		ND			0.69	4.9
Dichlorodifluorometh	ane	ND			0.41	4.9
Ethylbenzene		0.97		J	0.34	4.9
Isopropylbenzene		ND			0.74	4.9
Methyl acetate		ND			0.92	4.9
Methyl tert-butyl ethe	er	ND			0.48	4.9
Methylcyclohexane		ND			0.75	4.9
Methylene Chloride		ND			2.3	4.9
Styrene		ND			0.25	4.9
Tetrachloroethene		ND			0.66	4.9
Toluene		3.0		J	0.37	4.9
trans-1,2-Dichloroeth	ana	ND		0	0.51	4.9
					2.2	
trans-1,3-Dichloropro	ррепе	ND				4.9
Trichloroethene	20	ND			1.1	4.9
Trichlorofluorometha		ND			0.47	4.9

Client: CHA Inc

Client Sample ID:	SB09 SS (3-4) 040212					
Lab Sample ID: Client Matrix:	480-18049-23 Solid	% Moisture	: 12.4			Sampled: 04/02/2012 1415 Received: 04/04/2012 0900
		8260B Volatile Orga	nic Compoun	ds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 1.0 04/06/2012 0320 04/04/2012 1404	Analysis Batch: Prep Batch:	480-58395 480-58091	Lab Initia	ument ID: File ID: I Weight/Volume: I Weight/Volume:	HP5973F F7837.D 5.8 g 5 mL
Analyte	DryWt Corrected: `	Y Result (u	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			0.60	4.9
Xylenes, Total		2.7		JB	0.83	9.8
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
1,2-Dichloroethane-	d4 (Surr)	101			64 - 126	
Toluene-d8 (Surr)		107			71 - 125	
4-Bromofluorobenze	ene (Surr)	106			72 - 126	

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB15 SS (1-2) 040212									
Lab Sample ID:	480-18049-24					Date Sa	mpled: 04/02/2012 14			
Client Matrix:	Solid	% Moisture:	13.5				ceived: 04/04/2012 09			
8260B Volatile Organic Compounds (GC/MS)										
Analysis Method:	8260B	Analysis Batch:	480-58428		Instrument ID:		HP5973F			
	5035	Prep Batch:	480-58091		Lab File ID:		-7855.D			
Prep Method:		Fiep batch.	400-50091							
Dilution:	1.0				Initial Weight/Volu		5.42 g			
Analysis Date:	04/06/2012 1114				Final Weight/Volu	ime: t	5 mL			
Prep Date:	04/04/2012 1404									
Analyte	DryWt Corrected: Y	Result (ug	/Kg)	Qualifie	er MDL		RL			
1,1,1-Trichloroethar	ne	ND			0.39		5.3			
1,1,2,2-Tetrachloroe	ethane	ND			0.86		5.3			
1,1,2-Trichloroethar	ne	ND			0.69		5.3			
1,1,2-Trichloro-1,2,2	2-trifluoroethane	ND			1.2		5.3			
1,1-Dichloroethane		ND			0.65		5.3			
1,1-Dichloroethene		ND			0.65		5.3			
1,2,4-Trichlorobenz	ene	ND			0.32		5.3			
1,2-Dibromo-3-Chlo		ND			2.7		5.3			
1,2-Dibromoethane	- Friedmann	ND			0.68		5.3			
1,2-Dichlorobenzen	٩	ND			0.42		5.3			
1,2-Dichloroethane	0	ND			0.27		5.3			
1,2-Dichloropropane	2	ND			2.7		5.3			
1,3-Dichlorobenzen		ND			0.27		5.3			
					0.27		5.3			
1,4-Dichlorobenzen	e	ND			2.7		5.5 27			
2-Hexanone		ND								
2-Butanone (MEK)		ND			2.0		27			
4-Methyl-2-pentano	ne (MIBK)	ND			1.7		27			
Acetone		ND			4.5		27			
Benzene		ND			0.26		5.3			
Bromodichlorometh	ane	ND			0.71		5.3			
Bromoform		ND			2.7		5.3			
Bromomethane		ND			0.48		5.3			
Carbon disulfide		ND			2.7		5.3			
Carbon tetrachloride	e	ND			0.52		5.3			
Chlorobenzene		ND			0.70		5.3			
Dibromochlorometh	ane	ND			0.68		5.3			
Chloroethane		ND			1.2		5.3			
Chloroform		ND			0.33		5.3			
Chloromethane		ND			0.32		5.3			
cis-1,2-Dichloroethe	ene	ND			0.68		5.3			
cis-1,3-Dichloroprop	bene	ND			0.77		5.3			
Cyclohexane		ND			0.75		5.3			
Dichlorodifluoromet	hane	ND			0.44		5.3			
Ethylbenzene		6.0			0.37		5.3			
Isopropylbenzene		ND			0.80		5.3			
Methyl acetate		ND			0.99		5.3			
Methyl tert-butyl eth	er	ND			0.52		5.3			
Methylcyclohexane	-	ND			0.81		5.3			
Methylene Chloride		ND			2.5		5.3			
Styrene		ND			0.27		5.3			
Tetrachloroethene		ND			0.27		5.3			
		ND 5.6			0.72		5.3 5.3			
Toluene	hana									
trans-1,2-Dichloroet		ND			0.55		5.3			
trans-1,3-Dichlorop	ropene	ND			2.3		5.3			
Trichloroethene		ND			1.2		5.3			
Trichlorofluorometh	ane	ND			0.50		5.3			

Client: CHA Inc

Client Sample ID:	SB15 SS (1-2) 040212					
Lab Sample ID: Client Matrix:	480-18049-24 Solid	% Moisture	e: 13.5			Sampled: 04/02/2012 1430 Received: 04/04/2012 0900
		8260B Volatile Orga	nic Compoun	ds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 1.0 04/06/2012 1114 04/04/2012 1404	Analysis Batch: Prep Batch:	480-58428 480-58091	Lab Initia	ument ID: File ID: Il Weight/Volume: I Weight/Volume:	HP5973F F7855.D 5.42 g 5 mL
Analyte	DryWt Corrected: `	Y Result (u	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			0.65	5.3
Xylenes, Total		16			0.90	11
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
1,2-Dichloroethane-	d4 (Surr)	102			64 - 126	
Toluene-d8 (Surr)		107			71 - 125	
4-Bromofluorobenze	ene (Surr)	106			72 - 126	

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB15 SS (3-4) 040212									
Lab Sample ID:	480-18049-25				Dat	e Sampled: 04/02/2012 1430				
Client Matrix:	Solid	% Moisture:	10.0			e Received: 04/04/2012 0900				
8260B Volatile Organic Compounds (GC/MS)										
Analysis Method:	8260B	Analysis Batch:	480-58428		Instrument ID:	HP5973F				
Prep Method:	5035	Prep Batch:	480-58091		Lab File ID:	F7856.D				
Dilution:	1.0				Initial Weight/Volume:	4.97 g				
Analysis Date:	04/06/2012 1139				Final Weight/Volume:	5 mL				
Prep Date:	04/04/2012 1404									
Analyte	DryWt Corrected: Y	Result (ug	/Ka)	Qualifie	er MDL	RL				
1,1,1-Trichloroethar		ND			0.41	5.6				
1,1,2,2-Tetrachloroe		ND			0.91	5.6				
1,1,2-Trichloroethar		ND			0.73	5.6				
1,1,2-Trichloro-1,2,2		ND			1.3	5.6				
1,1-Dichloroethane		ND			0.68	5.6				
1.1-Dichloroethene		ND			0.68	5.6				
1,2,4-Trichlorobenz	ene	ND			0.34	5.6				
1,2-Dibromo-3-Chlo		ND			2.8	5.6				
1,2-Dibromoethane	. cp. opuno	ND			0.72	5.6				
1,2-Dichlorobenzen	9	ND			0.44	5.6				
1,2-Dichloroethane		ND			0.28	5.6				
1,2-Dichloropropane		ND			2.8	5.6				
1,3-Dichlorobenzen		ND			0.29	5.6				
1,4-Dichlorobenzen		ND			0.78	5.6				
2-Hexanone	6	ND			2.8	28				
2-Butanone (MEK)		12		J	2.0	28				
4-Methyl-2-pentano	no (MIRK)	ND		J	1.8	28				
Acetone		81			4.7	28				
Benzene		ND			0.27	5.6				
Bromodichlorometh	200	ND			0.75	5.6				
Bromoform	alle	ND			2.8	5.6				
Bromomethane		ND			0.50	5.6				
					2.8	5.6				
Carbon disulfide Carbon tetrachloride		ND ND			2.8 0.54	5.6				
Chlorobenzene	5				0.54	5.6				
Dibromochlorometh	222	ND ND			0.74	5.6				
	alle									
Chloroethane		ND			1.3	5.6				
Chloroform Chloromethane		ND			0.35 0.34	5.6				
		ND			0.34	5.6				
cis-1,2-Dichloroethe		ND				5.6				
cis-1,3-Dichloroprop	bene	ND			0.80	5.6				
Cyclohexane Dichlorodifluoromet	h	ND			0.78	5.6				
	nane	ND			0.46	5.6				
Ethylbenzene		5.2		J	0.39	5.6				
Isopropylbenzene		ND			0.84	5.6				
Methyl acetate		ND			1.0	5.6				
Methyl tert-butyl eth	ei	ND			0.55	5.6				
Methylcyclohexane		ND			0.85	5.6				
Methylene Chloride		ND			2.6	5.6				
Styrene		ND			0.28	5.6				
Tetrachloroethene		ND			0.75	5.6				
Toluene	hana	17			0.42	5.6				
trans-1,2-Dichloroet		ND			0.58	5.6				
trans-1,3-Dichloropr	opene	ND			2.5	5.6				
Trichloroethene		ND			1.2	5.6				
Trichlorofluorometh	ane	ND			0.53	5.6				

Client: CHA Inc

Client Sample ID:	SB15 SS (3-4) 040212					
Lab Sample ID: Client Matrix:	480-18049-25 Solid	% Moisture	:: 10.0			Sampled: 04/02/2012 1430 Received: 04/04/2012 0900
	;	8260B Volatile Orga	nic Compoun	ds (GC/MS)		
Analysis Method:	8260B	Analysis Batch:	480-58428	Instr	ument ID:	HP5973F
Prep Method:	5035	Prep Batch:	480-58091	Lab	File ID:	F7856.D
Dilution:	1.0			Initia	I Weight/Volume:	4.97 g
Analysis Date:	04/06/2012 1139			Fina	Weight/Volume:	5 mL
Prep Date:	04/04/2012 1404					
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			0.68	5.6
Xylenes, Total		16			0.94	11
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
1,2-Dichloroethane-	d4 (Surr)	99			64 - 126	
Toluene-d8 (Surr)		106			71 - 125	
4-Bromofluorobenze	ene (Surr)	105			72 - 126	

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB06 SS (1-2) 040212						
Lab Sample ID:	480-18049-26				Γ	Date Sampled: 04/02/2	012 1200
Client Matrix:	Solid	% Moisture:	11.4			Date Received: 04/04/2	
	8	260B Volatile Orgar	nic Compound	ds (GC/MS	6)		
Analysis Method:	8260B	Analysis Batch:	480-58428		Instrument ID:	HP5973F	
Prep Method:	5035	Prep Batch:	480-58091		Lab File ID:	F7857.D	
Dilution:	1.0				Initial Weight/Volum		
Analysis Date:	04/06/2012 1205				Final Weight/Volum	•	
Prep Date:	04/04/2012 1404						
		De suit (us		Qualifian			
Analyte 1,1,1-Trichloroethar	DryWt Corrected: Y	Result (ug ND	/Kg)	Qualifier	MDL 0.39	RL5.4	
1,1,2,2-Tetrachloroe		ND			0.88	5.4	
		ND				5.4	
1,1,2-Trichloroethar		ND			0.70 1.2	5.4 5.4	
1,1,2-Trichloro-1,2,2	z-timuoroetnane						
1,1-Dichloroethane		ND			0.66	5.4	
1,1-Dichloroethene		ND			0.66	5.4	
1,2,4-Trichlorobenz		ND			0.33	5.4	
1,2-Dibromo-3-Chlo	propropane	ND			2.7	5.4	
1,2-Dibromoethane		ND			0.70	5.4	
1,2-Dichlorobenzen	e	ND			0.42	5.4	
1,2-Dichloroethane		ND			0.27	5.4	
1,2-Dichloropropane	e	ND			2.7	5.4	
1,3-Dichlorobenzen	e	ND			0.28	5.4	
1,4-Dichlorobenzen	e	ND			0.76	5.4	
2-Hexanone		ND			2.7	27	
2-Butanone (MEK)		ND			2.0	27	
4-Methyl-2-pentano	ne (MIBK)	ND			1.8	27	
Acetone		ND			4.6	27	
Benzene		ND			0.27	5.4	
Bromodichlorometh	ane	ND			0.73	5.4	
Bromoform		ND			2.7	5.4	
Bromomethane		ND			0.49	5.4	
Carbon disulfide		ND			2.7	5.4	
Carbon tetrachloride	2	ND			0.52	5.4	
Chlorobenzene	6	ND			0.72	5.4	
Dibromochlorometh	200	ND			0.69	5.4	
	ane						
Chloroethane		ND			1.2	5.4	
Chloroform		ND			0.33	5.4	
Chloromethane		ND			0.33	5.4	
cis-1,2-Dichloroethe		ND			0.69	5.4	
cis-1,3-Dichloroprop	bene	ND			0.78	5.4	
Cyclohexane		ND			0.76	5.4	
Dichlorodifluoromet	hane	ND			0.45	5.4	
Ethylbenzene		2.4		J	0.37	5.4	
Isopropylbenzene		ND			0.82	5.4	
Methyl acetate		ND			1.0	5.4	
Methyl tert-butyl eth	ier	ND			0.53	5.4	
Methylcyclohexane		ND			0.82	5.4	
Methylene Chloride		ND			2.5	5.4	
Styrene		ND			0.27	5.4	
Tetrachloroethene		ND			0.73	5.4	
Toluene		ND			0.41	5.4	
trans-1,2-Dichloroet	thene	ND			0.56	5.4	
trans-1,3-Dichloropr		ND			2.4	5.4	
Trichloroethene		ND			1.2	5.4	
Trichlorofluorometh	ane	ND			0.51	5.4	
						••••	

Client: CHA Inc

Client Sample ID:	SB06 SS (1-2) 040212					
Lab Sample ID: Client Matrix:	480-18049-26 Solid	% Moisture	: 11.4			Sampled: 04/02/2012 1200 Received: 04/04/2012 0900
		8260B Volatile Orga	nic Compoun	ds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 1.0 04/06/2012 1205 04/04/2012 1404	Analysis Batch: Prep Batch:	480-58428 480-58091	Lab Initia	ument ID: File ID: I Weight/Volume: I Weight/Volume:	HP5973F F7857.D 5.21 g 5 mL
Analyte	DryWt Corrected: `	Y Result (u	g/Kg)	Qualifier	MDL	RL
Vinyl chloride		ND			0.66	5.4
Xylenes, Total		0.95		J	0.91	11
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
1,2-Dichloroethane-	d4 (Surr)	99			64 - 126	
Toluene-d8 (Surr)		108			71 - 125	
4-Bromofluorobenze	ene (Surr)	106			72 - 126	

Analytical Data

Job Number: 480-18049-1

Client Sample ID:	SB01 SS (2-3) 040212					
Lab Sample ID:	480-18049-1					Date Sampled: 04/02/2012 0
Client Matrix:	Solid	% Moisture	: 10.8			Date Received: 04/04/2012 0
	827	0C Semivolatile Org	ganic Compou	unds (GC	C/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58695		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8774.D
Dilution:	20				Initial Weight/Volu	me: +30.10 g
Analysis Date:	04/09/2012 2040				Final Weight/Volur	-
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Analyte	DryWt Corrected: Y	Result (uç	ı/Kg)	Qualifie	er MDL	RL
Biphenyl	,	ND	, ,,		240	3800
bis (2-chloroisoprop	oyl) ether	ND			390	3800
2,4,5-Trichlorophen		ND			820	3800
2,4,6-Trichlorophen		ND			250	3800
2,4-Dichlorophenol	-	ND			200	3800
2,4-Dimethylphenol		ND			1000	3800
2,4-Dinitrophenol		ND			1300	7400
2,4-Dinitrotoluene		ND		*	580	3800
2,6-Dinitrotoluene		ND			920	
,		ND			920 250	3800 3800
2-Chloronaphthalen	le					
2-Chlorophenol		ND			190	3800
2-Methylnaphthalen	le	ND			46	3800
2-Methylphenol		ND			120	3800
2-Nitroaniline		ND			1200	7400
2-Nitrophenol		ND			170	3800
3,3'-Dichlorobenzidi	ine	ND			3300	3800
3-Nitroaniline		ND			870	7400
4,6-Dinitro-2-methy	lphenol	ND			1300	7400
4-Bromophenyl phe	enyl ether	ND			1200	3800
4-Chloro-3-methylpl	henol	ND			160	3800
4-Chloroaniline		ND			1100	3800
4-Chlorophenyl phe	enyl ether	ND			80	3800
4-Methylphenol		ND			210	7400
4-Nitroaniline		ND			420	7400
4-Nitrophenol		ND			910	7400
Acenaphthene		100		J	44	3800
Acenaphthylene		ND			31	3800
Acetophenone		15000			190	3800
Anthracene		350		J	97	3800
Atrazine		ND		0	170	3800
Benzaldehyde		ND		*	410	3800
Benzo(a)anthracene	8	3100		J	65	3800
Benzo(a)pyrene		2000		J	91	3800
	ne	4900		5	73	3800
Benzo(b)fluoranthe					73 45	
Benzo(g,h,i)perylen		2500		J		3800
Benzo(k)fluoranther		2100		JΒ	42	3800
Bis(2-chloroethoxy)		ND			210	3800
Bis(2-chloroethyl)et		ND			330	3800
Bis(2-ethylhexyl) ph		ND			1200	3800
Butyl benzyl phthala	ate	ND			1000	3800
Caprolactam		ND			1600	3800
Carbazole		ND			44	3800
Chrysene		3500		JΒ	38	3800
Di-n-butyl phthalate		ND			1300	3800
Di-n-octyl phthalate		ND			88	3800
Dibenz(a,h)anthrace	ene	3000		J	44	3800

Client: CHA Inc

Client Sample ID:	SB01 SS (2-3) 040212					
Lab Sample ID:	480-18049-1					Date Sampled: 04/02/2012 0915
Client Matrix:	Solid	% Moisture	: 10.8			Date Received: 04/04/2012 0900
	827	0C Semivolatile Or	ganic Compo	unds (GC	/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58695		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8774.D
Dilution:	20				Initial Weight/Volu	me: +30.10 g
Analysis Date:	04/09/2012 2040				Final Weight/Volur	ne: 1 mL
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifie	r MDL	RL
Dibenzofuran		ND			39	3800
Diethyl phthalate		ND			110	3800
Dimethyl phthalate		ND			98	3800
Fluoranthene		6000			55	3800
Fluorene		ND			87	3800
Hexachlorobenzene		ND			190	3800
Hexachlorobutadien	ie	ND			190	3800
Hexachlorocycloper	ntadiene	ND			1100	3800
Hexachloroethane		ND			290	3800
Indeno(1,2,3-cd)pyr	ene	2300		J	100	3800
Isophorone		ND			190	3800
N-Nitrosodi-n-propy		ND			300	3800
N-Nitrosodiphenylar	nine	ND		*	210	3800
Naphthalene		1900		J	63	3800
Nitrobenzene		ND			170	3800
Pentachlorophenol		ND			1300	7400
Phenanthrene		1600		J	79	3800
Phenol		ND			400	3800
Pyrene		5800			24	3800
Surrogate		%Rec		Qualifie		ceptance Limits
2,4,6-Tribromophen	ol	93				- 146
2-Fluorobiphenyl		89				- 120
2-Fluorophenol		63				- 120
Nitrobenzene-d5		71				- 132
p-Terphenyl-d14		100				- 153
Phenol-d5		71			11	- 120

Analytical Data

Job Number: 480-18049-1

Client Sample ID:	SB02 SS (2-3) 040212					
Lab Sample ID:	480-18049-2					Date Sampled: 04/02/2012 100
Client Matrix:	Solid	% Moisture:	13.3			Date Received: 04/04/2012 090
	827	0C Semivolatile Org	anic Compo	unds (GC	C/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58695		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8775.D
Dilution:	10				Initial Weight/Volur	ne: +30.47 g
Analysis Date:	04/09/2012 2104				Final Weight/Volun	
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Flep Dale.	04/03/2012 0020				injection volume.	I UL
Analyte	DryWt Corrected: Y	Result (ug	/Kg)	Qualifie		RL
Biphenyl		2300		J	720	12000
bis (2-chloroisopropy	ıl) ether	ND			1200	12000
2,4,5-Trichloropheno	l	ND			2500	12000
2,4,6-Trichloropheno	ł	ND			760	12000
2,4-Dichlorophenol		ND			600	12000
2,4-Dimethylphenol		ND			3100	12000
2,4-Dinitrophenol		ND			4000	22000
2,4-Dinitrotoluene		ND		*	1800	12000
2,6-Dinitrotoluene		ND			2800	12000
2-Chloronaphthalene		ND			770	12000
2-Chlorophenol		ND			590	12000
2-Methylnaphthalene		32000			140	12000
2-Methylphenol		ND			350	12000
2-Nitroaniline		ND			3700	22000
		ND			530	12000
2-Nitrophenol					10000	
3,3'-Dichlorobenzidin	le	ND ND			2600	12000
3-Nitroaniline	la a va a l					22000
4,6-Dinitro-2-methylp		ND			4000	22000
4-Bromophenyl phen	-	ND			3700	12000
4-Chloro-3-methylph	enol	ND			470	12000
4-Chloroaniline		ND			3400	12000
4-Chlorophenyl phen	iyl ether	ND			250	12000
4-Methylphenol		ND			640	22000
4-Nitroaniline		ND			1300	22000
4-Nitrophenol		ND			2800	22000
Acenaphthene		2800		J	140	12000
Acenaphthylene		ND			94	12000
Acetophenone		36000			590	12000
Anthracene		840		J	290	12000
Atrazine		ND			510	12000
Benzaldehyde		ND		*	1300	12000
Benzo(a)anthracene		2700		J	200	12000
Benzo(a)pyrene		1600		J	280	12000
Benzo(b)fluoranthen	e	3300		J	220	12000
Benzo(g,h,i)perylene		ND		~	140	12000
Benzo(k)fluoranthene		1400		JВ	130	12000
Bis(2-chloroethoxy)m		ND		00	630	12000
		ND			990	12000
Bis(2-chloroethyl)eth						
Bis(2-ethylhexyl) pht		7900		J	3700	12000
Butyl benzyl phthalat	e	ND			3100	12000
Caprolactam		ND			5000	12000
Carbazole		ND			130	12000
Chrysene		2400		JΒ	110	12000
Di-n-butyl phthalate		ND			4000	12000
Di-n-octyl phthalate		ND			270	12000
Dibenz(a,h)anthrace		ND			140	12000

Client: CHA Inc

Client Sample ID:	SB02 SS (2-3) 040212					
Lab Sample ID:	480-18049-2					Date Sampled: 04/02/2012 1004
Client Matrix:	Solid	% Moisture	e: 13.3			Date Received: 04/04/2012 0900
	827	0C Semivolatile Or	ganic Compo	unds (GC	:/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58695		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8775.D
Dilution:	10				Initial Weight/Volu	me: +30.47 g
Analysis Date:	04/09/2012 2104				Final Weight/Volu	me: 6 mL
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifie	er MDL	RL
Dibenzofuran		2300		J	120	12000
Diethyl phthalate		ND			350	12000
Dimethyl phthalate		ND			300	12000
Fluoranthene		5900		J	170	12000
Fluorene		ND			260	12000
Hexachlorobenzene		ND			570	12000
Hexachlorobutadien	e	ND			590	12000
Hexachlorocycloper	Itadiene	ND			3500	12000
Hexachloroethane		ND			890	12000
Indeno(1,2,3-cd)pyr	ene	1500		J	320	12000
Isophorone		ND			570	12000
N-Nitrosodi-n-propy	lamine	ND			910	12000
N-Nitrosodiphenylar	nine	ND		*	630	12000
Naphthalene		59000			190	12000
Nitrobenzene		ND			510	12000
Pentachlorophenol		ND			3900	22000
Phenanthrene		5300		J	240	12000
Phenol		11000		J	1200	12000
Pyrene		4300		J	74	12000
Surrogate		%Rec		Qualifie	er Aco	ceptance Limits
2,4,6-Tribromophen	ol	103			39	- 146
2-Fluorobiphenyl		106			37	- 120
2-Fluorophenol		77				- 120
Nitrobenzene-d5		113				- 132
p-Terphenyl-d14		116				- 153
Phenol-d5		94			11	- 120

Analytical Data

Client Sample ID:	SB02 SS (0-3) 040212	
Lab Sample ID: Client Matrix:	480-18049-3 Solid	Date Sampled: 04/02/2012 1004 Date Received: 04/04/2012 0900

	8270C	Semivolatile Organ	nic Compound	s (GC/MS)-TC	CLP	
Analysis Method:	8270C	Analysis Batch:	480-58601	Inst	rument ID:	HP5973V
Prep Method:	3510C	Prep Batch:	480-58531	Lab	File ID:	V8647.D
Dilution:	1.0	Leach Batch:	480-58275	Initi	al Weight/Volume:	250 mL
Analysis Date:	04/07/2012 1653			Fina	al Weight/Volume:	1 mL
Prep Date:	04/06/2012 1352			Inje	ction Volume:	1 uL
Leach Date:	04/05/2012 1009					
Analyte	DryWt Corrected: N	Result (m	ıg/L)	Qualifier	MDL	RL
1,4-Dichlorobenzen	e	ND			0.00046	0.010
2,4-Dinitrotoluene		ND			0.00045	0.0050
Hexachlorobenzene		ND			0.00051	0.0050
Hexachlorobutadier	ne	ND			0.00068	0.0050
Hexachloroethane		ND			0.00059	0.0050
3-Methylphenol		0.85		E	0.00040	0.010
2-Methylphenol		0.12			0.00040	0.0050
4-Methylphenol		0.85		E	0.00036	0.010
Nitrobenzene		ND			0.00029	0.0050
Pentachlorophenol		ND			0.0022	0.010
Pyridine		ND			0.00041	0.025
2,4,5-Trichlorophen		ND			0.00048	0.0050
2,4,6-Trichlorophen	ol	ND			0.00061	0.0050
Surrogate		%Rec		Qualifier	Acceptar	ce Limits
2,4,6-Tribromophen	ol	106			52 - 132	
2-Fluorobiphenyl		87			48 - 120	
2-Fluorophenol		43			20 - 120	
Nitrobenzene-d5		71			46 - 120	
p-Terphenyl-d14		119			67 - 150	
Phenol-d5		28			16 - 120	

Analytical Data

Client Sample ID:	SB02 SS (0-3) 040212	
Lab Sample ID: Client Matrix:	480-18049-3 Solid	Date Sampled: 04/02/2012 1004 Date Received: 04/04/2012 0900

8270C Semivolatile	Organic	Compounds	(GC/MS)-TCLP	

Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date: Leach Date:	8270C 3510C 5.0 04/09/2012 1816 04/06/2012 1352 04/05/2012 1009	Analysi Prep Ba Leach I Run Ty	Batch:	480-58695 480-58531 480-58275 DL): ght/Volume: ght/Volume:	HP5973V V8768.D 250 mL 1 mL 1 uL	
Analyte	DryWt C	orrected: N	Result (mg	/L)	Qualifie	r l	MDL	RL	
1,4-Dichlorobenzen	e		ND				0.0023	0.050	
2,4-Dinitrotoluene			ND				0.0022	0.025	
Hexachlorobenzene	;		ND				0.0026	0.025	
Hexachlorobutadier	ie		ND				0.0034	0.025	
Hexachloroethane			ND				0.0030	0.025	
3-Methylphenol			0.89				0.0020	0.050	
2-Methylphenol			0.13				0.0020	0.025	
4-Methylphenol			0.89				0.0018	0.050	
Nitrobenzene			ND				0.0015	0.025	
Pentachlorophenol			ND				0.011	0.050	
Pyridine			ND				0.0021	0.13	
2,4,5-Trichlorophen	ol		ND				0.0024	0.025	
2,4,6-Trichlorophen	ol		ND				0.0031	0.025	
Surrogate			%Rec		Qualifie	r	Accepta	nce Limits	
2,4,6-Tribromophen	ol		82				52 - 132	•	
2-Fluorobiphenyl			91				48 - 120)	
2-Fluorophenol			44				20 - 120)	
Nitrobenzene-d5			81				46 - 120)	
p-Terphenyl-d14			112				67 - 150)	
Phenol-d5			27				16 - 120)	

Analytical Data

Job Number: 480-18049-1

Client Sample ID:	SB03 SS (1-2) 040212					
Lab Sample ID:	480-18049-4					Date Sampled: 04/02/2012 1030
Client Matrix:	Solid	% Moisture:	20.5			Date Received: 04/04/2012 0900
	827	0C Semivolatile Org	anic Compo	unds (GC	C/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58695		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8776.D
Dilution:	20				Initial Weight/Volu	me: +30.18 g
Analysis Date:	04/09/2012 2128				Final Weight/Volu	=
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Flep Date.	04/03/2012 0020				injection volume.	i uL
Analyte	DryWt Corrected: Y	Result (ug	/Kg)	Qualifie		RL
Biphenyl		7700		J	2600	43000
bis (2-chloroisopropy	I) ether	ND			4400	43000
2,4,5-Trichloropheno	l	ND			9200	43000
2,4,6-Trichloropheno	I	ND			2800	43000
2,4-Dichlorophenol		ND			2200	43000
2,4-Dimethylphenol		67000			11000	43000
2,4-Dinitrophenol		ND			15000	83000
2,4-Dinitrotoluene		ND		*	6500	43000
2,6-Dinitrotoluene		ND			10000	43000
2-Chloronaphthalene		ND			2800	43000
2-Chlorophenol		ND			2100	43000
2-Methylnaphthalene		ND			510	43000
2-Methylphenol		ND			1300	43000
2-Nitroaniline		ND			14000	83000
					14000	
2-Nitrophenol	-	ND				43000
3,3'-Dichlorobenzidin	e	ND			37000	43000
3-Nitroaniline		ND			9700	83000
4,6-Dinitro-2-methylp		ND			15000	83000
4-Bromophenyl phen	-	ND			13000	43000
4-Chloro-3-methylph	enol	ND			1700	43000
4-Chloroaniline		ND			12000	43000
4-Chlorophenyl phen	yl ether	ND			900	43000
4-Methylphenol		ND			2400	83000
4-Nitroaniline		ND			4700	83000
4-Nitrophenol		ND			10000	83000
Acenaphthene		ND			500	43000
Acenaphthylene		ND			350	43000
Acetophenone		ND			2200	43000
Anthracene		8200		J	1100	43000
Atrazine		ND			1900	43000
Benzaldehyde		ND		*	4600	43000
Benzo(a)anthracene		8800		J	730	43000
Benzo(a)pyrene		ND		-	1000	43000
Benzo(b)fluoranthene	9	8800		J	820	43000
Benzo(g,h,i)perylene		3200		J	510	43000
Benzo(k)fluoranthene		4900		JB	460	43000
Bis(2-chloroethoxy)m		4900 ND		00	2300	43000
		ND			3600	43000
Bis(2-chloroethyl)eth		23000			14000	43000
Bis(2-ethylhexyl) pht				J		
Butyl benzyl phthalat	e	ND			11000	43000
Caprolactam		ND			18000	43000
Carbazole		ND		. –	490	43000
Chrysene		8600		JΒ	420	43000
Di-n-butyl phthalate		ND			15000	43000
Di-n-octyl phthalate		ND			990	43000
		ND			500	

Client: CHA Inc

Client Sample ID:	SB03 SS (1-2) 040212					
Lab Sample ID:	480-18049-4					Date Sampled: 04/02/2012 1030
Client Matrix:	Solid	% Moisture	e: 20.5			Date Received: 04/04/2012 0900
	827	0C Semivolatile Or	ganic Compo	unds (GC	/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58695		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8776.D
Dilution:	20				Initial Weight/Volu	
Analysis Date:	04/09/2012 2128				Final Weight/Volu	
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifie	r MDL	RL
Dibenzofuran		ND			440	43000
Diethyl phthalate		ND			1300	43000
Dimethyl phthalate		ND			1100	43000
Fluoranthene		22000		J	610	43000
Fluorene		5900		J	970	43000
Hexachlorobenzene	2	ND			2100	43000
Hexachlorobutadier	ie	ND			2200	43000
Hexachlorocycloper	ntadiene	ND			13000	43000
Hexachloroethane		ND			3300	43000
Indeno(1,2,3-cd)pyr	ene	ND			1200	43000
Isophorone		ND			2100	43000
N-Nitrosodi-n-propy	lamine	ND			3300	43000
N-Nitrosodiphenylar	nine	ND		*	2300	43000
Naphthalene		63000			700	43000
Nitrobenzene		ND			1900	43000
Pentachlorophenol		ND			14000	83000
Phenanthrene		35000		J	890	43000
Phenol		ND			4400	43000
Pyrene		17000		J	270	43000
Surrogate		%Rec		Qualifie	r Ac	ceptance Limits
2,4,6-Tribromophen	ol	0		Х	39	- 146
2-Fluorobiphenyl		90			37	- 120
2-Fluorophenol		0		Х	18	- 120
Nitrobenzene-d5		73			34	- 132
p-Terphenyl-d14		118			65	- 153
Phenol-d5		0		Х	11	- 120

Analytical Data

Client Matrix: Solid % Moisture: 13.1 Date Received B270C Semivolatile Organic Compounds (GC/MS) Analysis Method: 8270C Analysis Batch: 480-58695 Instrument ID: HP590 Prep Method: 3550B Prep Batch: 480-58238 Lab File ID: V8777 Dilution: 20 Initial Weight/Volume: + 30.58 Analysis Date: 04/09/2012 2152 Final Weight/Volume: 5 mL Prep Date: 04/05/2012 0828 Final Weight/Volume: 5 mL Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL Final Weight/Volume: 1 uL Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL Final Weight/Volume: 1 uL Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL Final Weight/Volume: 1 uL Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL Final Weight/Volume: 1 0 1 0 1 1 0 1 1 1 4.6.6.6.6	
8270C Semivolatile Organic Compounds (GC/MS) Analysis Method: 8270C Analysis Batch: 480-58695 Instrument ID: HP597 Prep Method: 3550B Prep Batch: 480-58238 Lab File ID: V8777 Dilution: 20 Initial Weight/Volume: +30.52 Analysis Date: 04/09/2012 2152 Final Weight/Volume: 5 mL Prep Date: 04/05/2012 0828 Injection Volume: 1 uL Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL F Biphenyl 6700 J 1200 1 bis (2-chloroisopropyl) ether ND 2000 1 2,4,5-Trichlorophenol ND 1300 1 2,4-Dichlorophenol ND 1300 1 2,4-Dinitrophenol ND 6700 3 2,4-Dinitrophenol ND 4700 1 2,4-Dinitrophenol ND 4700 1 2,4-Dinitrophenol ND 4700 1 2,4-Dinitrotoluene ND 4700 1 2	I: 04/02/2012 1045
Analysis Method:8270CAnalysis Batch:480-58695Instrument ID:HP593Prep Method:3550BPrep Batch:480-58238Lab File ID:V8777Dilution:20Initial Weight/Volume:+30.58Analysis Date:04/09/2012 2152Final Weight/Volume:5 mLPrep Date:04/05/2012 0828Ingettion Volume:1 uLAnalyteDryWt Corrected: YResult (ug/Kg)QualifierMDLFBiphenyl6700J12001bis (2-chloroisopropyl) etherND200012,4,5-TrichlorophenolND420012,4-DichlorophenolND130012,4-DinitrophenolND670032,4-DinitrophenolND470012,6-DinitrotolueneND470012,6-DinitrotolueneND130012,ChloronaphthaleneND97012-ChlorophenolND97012-ChlorophenolND97012-ChlorophenolND97012-ChlorophenolND97012-ChlorophenolND97012-ChlorophenolND97012-ChlorophenolND97012-ChlorophenolND97012-ChlorophenolND97012-ChlorophenolND97012-ChlorophenolND97012-ChlorophenolND970 </th <th>d: 04/04/2012 0900</th>	d: 04/04/2012 0900
Prep Method: 3550B Prep Batch: 480-58238 Lab File ID: V8777 Dilution: 20 Initial Weight/Volume: +30.55 Analysis Date: 04/09/2012 2152 Final Weight/Volume: 5 mL Prep Date: 04/05/2012 0828 Final Weight/Volume: 5 mL Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL Final Weight/Volume: 1 uL Biphenyl 6700 J 1200 1 bis (2-chloroisopropyl) ether ND 2000 1 2,4,5-Trichlorophenol ND 4200 1 2,4-Dichlorophenol ND 1300 1 2,4-Dichlorophenol ND 5200 1 2,4-Dinitrophenol ND 6700 3 2,4-Dinitrophenol ND 4700 1 2,4-Dinitrophenol ND 4700 1 2,4-Dinitrophenol ND 4700 1 2,6-Dinitrotoluene ND 4700 1 <td></td>	
Dilution:20Initial Weight/Volume:+30.52Analysis Date:04/09/2012 2152Final Weight/Volume:5mLPrep Date:04/05/2012 0828Injection Volume:1uLAnalyteDryWt Corrected: YResult (ug/Kg)QualifierMDLFBiphenyl6700J12001bis (2-chloroisopropyl) etherND200012,4,5-TrichlorophenolND420012,4,6-TrichlorophenolND130012,4-DinthrophenolND670032,4-DinitrophenolND470012,4-DinitrotolueneND*30002,4-DinitrotolueneND470012-ChlorophenolND30012-ChlorophenolND30012,4-DinitrotolueneND470012-ChlorophenolND300012-ChlorophenolND30012-ChlorophenolND5901	73V
Analysis Date:04/09/2012 2152Final Weight/Volume:5mLPrep Date:04/05/2012 0828Injection Volume:1uLAnalyteDryWt Corrected: YResult (ug/Kg)QualifierMDLFBiphenyl6700J12001bis (2-chloroisopropyl) etherND200012,4,5-TrichlorophenolND420012,4,6-TrichlorophenolND100012,4-Dinterbylphenol23000520012,4-DinterbylphenolND670032,4-DinitrotolueneND470012,6-DinitrotolueneND130012-ChlorophenolND330012-ChlorophenolND300012,4-DinitrotolueneND470012,6-DinitrotolueneND330012-ChlorophenolND330012-ChlorophenolND5901	7.D
Analysis Date: 04/09/2012 2152 Final Weight/Volume: 5 mL Prep Date: 04/05/2012 0828 Injection Volume: 1 uL Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL F Biphenyl 6700 J 1200 1 bis (2-chloroisopropyl) ether ND 2000 1 2,4,5-Trichlorophenol ND 4200 1 2,4,6-Trichlorophenol ND 1300 1 2,4-Dichlorophenol ND 1000 1 2,4-Dichlorophenol ND 6700 3 2,4-Dinitrophenol ND 6700 3 2,4-Dinitrophenol ND 6700 3 2,4-Dinitrotoluene ND 4700 1 2,6-Dinitrotoluene ND 4700 1 2,6-Dinitrotoluene ND 3000 1 2,6-Dinitrotoluene ND 970 1 2,6-Dinitrotoluene ND 3000 1 2,6-Dinitrotoluene ND 970 1 2,6-Dinitrotoluene<	5 g
Prep Date:04/05/2012 0828Injection Volume:1 uLAnalyteDryWt Corrected: YResult (ug/Kg)QualifierMDLFBiphenyl6700J12001bis (2-chloroisopropyl) etherND200012,4,5-TrichlorophenolND420012,4,6-TrichlorophenolND130012,4-DichlorophenolND100012,4-Dinterbylphenol23000520012,4-DinterbylphenolND670032,4-DinitrotolueneND*300012,6-DinitrotolueneND*300012,ChlorophenolND130012,ChlorophenolND23012,6-DinitrotolueneND300012,6-DinitrotolueneND300012,6-DinitrotolueneND30012,6-DinitrotolueneND30012,6-DinitrotolueneND30012,6-DinitrotolueneND30012,6-DinitrotolueneND30012,6-DinitrotolueneND30012,6-DinitrotolueneND30012,6-DinitrotolueneND30012,6-DinitrotolueneND30012,6-DinitrotolueneND30012,6-DinitrotolueneND30012,6-DinitrotolueneND30012,6-DinitrotolueneND3001	
Biphenyl 6700 J 1200 1 bis (2-chloroisopropyl) ether ND 2000 1 2,4,5-Trichlorophenol ND 4200 1 2,4,6-Trichlorophenol ND 1300 1 2,4,6-Trichlorophenol ND 1000 1 2,4-Dichlorophenol ND 1000 1 2,4-Dinterbylphenol 23000 5200 1 2,4-Dinitrophenol ND 6700 3 2,4-Dinitrotoluene ND 6700 3 2,4-Dinitrotoluene ND 4700 1 2,6-Dinitrotoluene ND 4700 1 2,6-Dinitrotoluene ND 1300 1 2,6-Dinitrotoluene ND 970 1 2-Chloronaphthalene ND 970 1 2-Chlorophenol ND 230 1 2-Methylnaphthalene ND 590 1	
Biphenyl 6700 J 1200 1 bis (2-chloroisopropyl) ether ND 2000 1 2,4,5-Trichlorophenol ND 4200 1 2,4,5-Trichlorophenol ND 1300 1 2,4,6-Trichlorophenol ND 1300 1 2,4-Dirklorophenol ND 1000 1 2,4-Dirklorophenol ND 1000 1 2,4-Dinitrophenol ND 6700 3 2,4-Dinitrophenol ND 6700 3 2,4-Dinitrotoluene ND 4700 1 2,6-Dinitrotoluene ND 4700 1 2,6-Dinitrotoluene ND 970 1 2-Chloronaphthalene ND 970 1 2-Chlorophenol ND 230 1 2-Methylnaphthalene ND 230 1 2-Methylphenol ND 590 1	RL
bis (2-chloroisopropyl) ether ND 2000 1 2,4,5-Trichlorophenol ND 4200 1 2,4,6-Trichlorophenol ND 1300 1 2,4,6-Trichlorophenol ND 1000 1 2,4-Dichlorophenol ND 1000 1 2,4-Dinterbylphenol 23000 5200 1 2,4-Dinitrophenol ND 6700 3 2,4-Dinitrophenol ND 4700 1 2,4-Dinitrotoluene ND 4700 1 2,6-Dinitrotoluene ND 4700 1 2,6-Dinitrotoluene ND 970 1 2-Chloronaphthalene ND 970 1 2-Chlorophenol ND 2300 1 2-Methylnaphthalene ND 590 1	9000
2,4,5-Trichlorophenol ND 4200 1 2,4,6-Trichlorophenol ND 1300 1 2,4-Dinklorophenol ND 1000 1 2,4-Dinklorophenol 23000 5200 1 2,4-Dimethylphenol 23000 5200 1 2,4-Dinitrophenol ND 6700 3 2,4-Dinitrotoluene ND 4700 1 2,6-Dinitrotoluene ND 4700 1 2,6-Dinitrotoluene ND 1300 1 2,6-Dinitrotoluene ND 970 1 2,6-Dinitrotoluene ND 3000 1 2,6-Dinitrotoluene ND 300 1 2,6-Dinitrotoluene ND 1300 1 2,6-Dinitrotoluene ND 970 1 2,Chlorophenol ND 970 1 2,Methylphenol ND 590 1	9000
2,4,6-Trichlorophenol ND 1300 1 2,4-Dinhlorophenol ND 1000 1 2,4-Dinhlorophenol 23000 5200 1 2,4-Dinhlorophenol ND 6700 3 2,4-Dinhlorophenol ND 4700 1 2,4-Dinhlorophenol ND * 3000 1 2,6-Dinhlorophenol ND * 3000 1 2,6-Dinhlorophenol ND 4700 1 2-Chloronaphthalene ND 970 1 2-Chlorophenol ND 970 1 2-Methylnaphthalene ND 230 1 2-Methylphenol ND 590 1	9000
2,4-Dichlorophenol ND 1000 1 2,4-Dimethylphenol 23000 5200 1 2,4-Dinitrophenol ND 6700 3 2,4-Dinitrophenol ND * 3000 1 2,4-Dinitrophenol ND * 3000 1 2,4-Dinitrotoluene ND * 3000 1 2,6-Dinitrotoluene ND 4700 1 2-Chloronaphthalene ND 1300 1 2-Chlorophenol ND 970 1 2-Methylnaphthalene ND 230 1 2-Methylphenol ND 590 1	9000
2,4-Dimethylphenol 23000 5200 1 2,4-Dinitrophenol ND 6700 3 2,4-Dinitrotoluene ND * 3000 1 2,6-Dinitrotoluene ND * 3000 1 2,6-Dinitrotoluene ND * 3000 1 2-Chloronaphthalene ND 1300 1 2-Chlorophenol ND 970 1 2-Methylnaphthalene ND 230 1 2-Methylphenol ND 590 1	9000
2,4-Dinitrophenol ND 6700 3 2,4-Dinitrotoluene ND * 3000 1 2,6-Dinitrotoluene ND 4700 1 2,6-Dinitrotoluene ND 1300 1 2-Chloronaphthalene ND 970 1 2-Chlorophenol ND 970 1 2-Methylnaphthalene ND 230 1 2-Methylphenol ND 590 1	9000
2,4-Dinitrotoluene ND * 3000 1 2,6-Dinitrotoluene ND 4700 1 2-Chloronaphthalene ND 1300 1 2-Chlorophenol ND 970 1 2-Methylnaphthalene ND 230 1 2-Methylphenol ND 590 1	
2,6-Dinitrotoluene ND 4700 1 2-Chloronaphthalene ND 1300 1 2-Chlorophenol ND 970 1 2-Methylnaphthalene ND 230 1 2-Methylphenol ND 590 1	7000
2-Chloronaphthalene ND 1300 1 2-Chlorophenol ND 970 1 2-Methylnaphthalene ND 230 1 2-Methylphenol ND 590 1	9000
2-Chlorophenol ND 970 1 2-Methylnaphthalene ND 230 1 2-Methylphenol ND 590 1	9000
2-Methylnaphthalene ND 230 1 2-Methylphenol ND 590 1	9000
2-Methylphenol ND 590 1	9000
51	9000
2 Nitrophilips C100 2	9000
2-Nitroaniline ND 6100 3	7000
2-Nitrophenol ND 870 1	9000
3,3'-Dichlorobenzidine ND 17000 1	9000
	7000
	7000
	9000
	9000
	9000
	9000
	7000
51	57000
	7000
	9000
	9000
·	9000
	9000
	9000
	9000
	9000
	9000
Benzo(b)fluoranthene 2900 J 370 1	9000
Benzo(g,h,i)perylene ND 230 1	9000
Benzo(k)fluoranthene 1700 J B 210 1	9000
	9000
	9000
	9000
	9000
	9000
	9000
	9000
•	
	9000 9000
	MIN 11 1
Dibenz(a,h)anthracene ND 220 1	9000

Client: CHA Inc

Client Sample ID:	SB04 SS (2-3) 040212					
Lab Sample ID:	480-18049-5					Date Sampled: 04/02/2012 1045
Client Matrix:	Solid	% Moisture	e: 13.1			Date Received: 04/04/2012 0900
	8	270C Semivolatile Or	ganic Compo	unds (GC	/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58695		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8777.D
Dilution:	20				Initial Weight/Volu	me: +30.55 g
Analysis Date:	04/09/2012 2152				Final Weight/Volu	me: 5 mL
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifie	r MDL	RL
Dibenzofuran		3300		J	200	19000
Diethyl phthalate		ND			580	19000
Dimethyl phthalate		ND			500	19000
Fluoranthene		7500		J	280	19000
Fluorene		2200		J	440	19000
Hexachlorobenzene	•	ND			950	19000
Hexachlorobutadien	e	ND			980	19000
Hexachlorocyclopen	ntadiene	ND			5800	19000
Hexachloroethane		ND			1500	19000
Indeno(1,2,3-cd)pyre	ene	1200		J	530	19000
Isophorone		ND			950	19000
N-Nitrosodi-n-propyl	lamine	ND			1500	19000
N-Nitrosodiphenylar	nine	ND		*	1000	19000
Naphthalene		42000			320	19000
Nitrobenzene		ND			850	19000
Pentachlorophenol		ND			6500	37000
Phenanthrene		12000		J	400	19000
Phenol		ND			2000	19000
Pyrene		5800		J	120	19000
Surrogate		%Rec		Qualifie	r Aco	ceptance Limits
2,4,6-Tribromophen	ol	0		Х	39	- 146
2-Fluorobiphenyl		105			37	- 120
2-Fluorophenol		52			18	- 120
Nitrobenzene-d5		105			34	- 132
p-Terphenyl-d14		119			65	- 153
Phenol-d5		69			11	- 120

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB05 SS (1-2 040212					
Lab Sample ID:	480-18049-6					Date Sampled: 04/02/2012 1115
Client Matrix:	Solid	% Moisture:	16.1			Date Received: 04/04/2012 0900
	827	0C Semivolatile Org	ganic Compou	unds (GC	:/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58695		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8778.D
Dilution:	20	•			Initial Weight/Volu	me: +30.40 g
Analysis Date:	04/09/2012 2216				Final Weight/Volur	0
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
				0 15	-	
Analyte Biphenyl	DryWt Corrected: Y	Result (ug ND	/Kg)	Qualifie	er MDL 250	RL 4000
bis (2-chloroisoprop	v() other	ND			420	4000
		ND			870	4000
2,4,5-Trichlorophen 2,4,6-Trichlorophen		ND			260	4000
	0I				200	
2,4-Dichlorophenol		ND				4000
2,4-Dimethylphenol		ND			1100	4000
2,4-Dinitrophenol		ND			1400	7800
2,4-Dinitrotoluene		ND		*	610	4000
2,6-Dinitrotoluene		ND			970	4000
2-Chloronaphthalen	e	ND			270	4000
2-Chlorophenol		ND			200	4000
2-Methylnaphthalen	e	640		J	48	4000
2-Methylphenol		ND			120	4000
2-Nitroaniline		ND			1300	7800
2-Nitrophenol		ND			180	4000
3,3'-Dichlorobenzidi	ne	ND			3500	4000
3-Nitroaniline		ND			910	7800
4,6-Dinitro-2-methyl	phenol	ND			1400	7800
4-Bromophenyl phe		ND			1300	4000
4-Chloro-3-methylpl	-	ND			160	4000
4-Chloroaniline		ND			1200	4000
4-Chlorophenyl phe	nyl ether	ND			85	4000
4-Methylphenol		ND			220	7800
4-Nitroaniline		ND			440	7800
		ND			960	
4-Nitrophenol						7800
Acenaphthene		160		J	47	4000
Acenaphthylene		ND			32	4000
Acetophenone		ND			200	4000
Anthracene		ND			100	4000
Atrazine		ND			180	4000
Benzaldehyde		ND		*	440	4000
Benzo(a)anthracene	e	220		J	69	4000
Benzo(a)pyrene		ND			96	4000
Benzo(b)fluoranther	ne	ND			77	4000
Benzo(g,h,i)perylen	e	ND			48	4000
Benzo(k)fluoranther	ne	ND			44	4000
Bis(2-chloroethoxy)	methane	ND			220	4000
Bis(2-chloroethyl)et	her	ND			340	4000
Bis(2-ethylhexyl) ph		ND			1300	4000
Butyl benzyl phthala		ND			1100	4000
Caprolactam		ND			1700	4000
Carbazole		ND			46	4000
Chrysene		320		JВ	40	4000
Di-n-butyl phthalate		ND			1400	4000
Di-n-octyl phthalate		ND			93	4000
Dibenz(a,h)anthrace		ND			93 47	4000
					+/	-000

Client: CHA Inc

Client Sample ID:	SB05 SS (1-2 040212					
Lab Sample ID:	480-18049-6					Date Sampled: 04/02/2012 111
Client Matrix:	Solid	% Moisture	e: 16.1			Date Received: 04/04/2012 090
	82	270C Semivolatile Or	ganic Compo	unds (GC	/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58695		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8778.D
Dilution:	20				Initial Weight/Volu	me: +30.40 g
Analysis Date:	04/09/2012 2216				Final Weight/Volur	_
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Analyte	DryWt Corrected: `	Y Result (u	g/Kg)	Qualifie	r MDL	RL
Dibenzofuran		ND			41	4000
Diethyl phthalate		ND			120	4000
Dimethyl phthalate		ND			100	4000
Fluoranthene		ND			58	4000
Fluorene		ND			92	4000
Hexachlorobenzene		ND			200	4000
Hexachlorobutadien	e	ND			200	4000
Hexachlorocycloper	Itadiene	ND			1200	4000
Hexachloroethane		ND			310	4000
Indeno(1,2,3-cd)pyr	ene	ND			110	4000
Isophorone		ND			200	4000
N-Nitrosodi-n-propy	lamine	ND			310	4000
N-Nitrosodiphenylar	nine	ND		*	220	4000
Naphthalene		520		J	66	4000
Nitrobenzene		ND			180	4000
Pentachlorophenol		ND			1400	7800
Phenanthrene		400		J	83	4000
Phenol		2700		J	420	4000
Pyrene		ND			26	4000
Surrogate		%Rec		Qualifie	r Acc	ceptance Limits
2,4,6-Tribromophen	ol	0		Х	39	- 146
2-Fluorobiphenyl		10		Х	37	- 120
2-Fluorophenol		0		Х	18	- 120
Nitrobenzene-d5		0		Х	34	- 132
p-Terphenyl-d14		0		Х	65	- 153
Phenol-d5		0		х	11	- 120

Analytical Data

Client Sample ID:	SB05 SS (0-3) 040212	
Lab Sample ID: Client Matrix:	480-18049-7 Solid	Date Sampled: 04/02/2012 1115 Date Received: 04/04/2012 0900
	8270C Semivolatile Organic Compounds (GC/MS)-TCLP	

	82700	Semivolatile Organ	ne compound	S (GC/INIS)-TCLP	
Analysis Method:	8270C	Analysis Batch:	480-58601		Instrument ID:	HP5973V
Prep Method:	3510C	Prep Batch:	480-58531		Lab File ID:	V8648.D
Dilution:	1.0	Leach Batch:	480-58275		Initial Weight/Volume:	250 mL
Analysis Date:	04/07/2012 1717				Final Weight/Volume:	1 mL
Prep Date:	04/06/2012 1352				Injection Volume:	1 uL
Leach Date:	04/05/2012 1009					
Analyte	DryWt Corrected: N	Result (m	ng/L)	Qualifier		RL
1,4-Dichlorobenzen	e	ND			0.00046	0.010
2,4-Dinitrotoluene		ND			0.00045	0.0050
Hexachlorobenzene		ND			0.00051	0.0050
Hexachlorobutadien	e	ND			0.00068	0.0050
Hexachloroethane		ND			0.00059	0.0050
3-Methylphenol		0.050			0.00040	0.010
2-Methylphenol		ND			0.00040	0.0050
4-Methylphenol		0.050			0.00036	0.010
Nitrobenzene		ND			0.00029	0.0050
Pentachlorophenol		ND			0.0022	0.010
Pyridine		ND			0.00041	0.025
2,4,5-Trichlorophene	ol	ND			0.00048	0.0050
2,4,6-Trichlorophene	ol	ND			0.00061	0.0050
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
2,4,6-Tribromophen	ol	111			52 - 132	
2-Fluorobiphenyl		94			48 - 120	
2-Fluorophenol		44			20 - 120	
Nitrobenzene-d5		76			46 - 120	
p-Terphenyl-d14		112			67 - 150	
Phenol-d5		28			16 - 120	

Analytical Data

Client Sample ID:	SB06 SS (3-4) 040212					
Lab Sample ID:	480-18049-8					Date Sampled: 04/02/2012 1200
Client Matrix:	Solid	% Moisture	: 20.6			Date Received: 04/04/2012 0900
	823	70C Semivolatile Org	ganic Compo	unds (GC	C/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58886		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8808.D
Dilution:	10				Initial Weight/Volu	me: +30.23 g
Analysis Date:	04/10/2012 1056				Final Weight/Volur	
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Analyte	DryWt Corrected: Y	/ Result (ug	J/Kg)	Qualifie	er MDL	RL
Biphenyl		2800			130	2100
bis (2-chloroisopropy	/l) ether	ND			220	2100
2,4,5-Trichlorophenc		ND			460	2100
2,4,6-Trichlorophenc		ND			140	2100
2,4-Dichlorophenol		ND			110	2100
2,4-Dimethylphenol		ND			570	2100
2,4-Dinitrophenol		ND			740	4100
2,4-Dinitrotoluene		ND		*	330	2100
2,6-Dinitrotoluene		ND			520	2100
2-Chloronaphthalene	2	ND			140	2100
2-Chlorophenol	5	ND			140	2100
		32000				2100
2-Methylnaphthalene	3				26 65	
2-Methylphenol		ND				2100
2-Nitroaniline		ND			680	4100
2-Nitrophenol		ND			96	2100
3,3'-Dichlorobenzidir	1e	ND			1900	2100
3-Nitroaniline		ND			490	4100
4,6-Dinitro-2-methylp		ND			730	4100
4-Bromophenyl pher		ND			670	2100
4-Chloro-3-methylph	enol	ND			87	2100
4-Chloroaniline		ND			620	2100
4-Chlorophenyl pher	nyl ether	ND			45	2100
4-Methylphenol		ND			120	4100
4-Nitroaniline		ND			240	4100
4-Nitrophenol		ND			510	4100
Acenaphthene		ND			25	2100
Acenaphthylene		ND			17	2100
Acetophenone		13000			110	2100
Anthracene		200		J	54	2100
Atrazine		ND			94	2100
Benzaldehyde		ND		*	230	2100
Benzo(a)anthracene		130		J	36	2100
Benzo(a)pyrene		ND			51	2100
Benzo(b)fluoranthen	e	ND			41	2100
Benzo(g,h,i)perylene		ND			25	2100
Benzo(k)fluoranthen		ND			23	2100
Bis(2-chloroethoxy)n		ND			110	2100
Bis(2-chloroethyl)eth		ND			180	2100
Bis(2-ethylhexyl) pht		ND			680	2100
		ND			570	2100
Butyl benzyl phthala	IC I					
Caprolactam		ND			910	2100
Carbazole		ND			24	2100
Chrysene		ND			21	2100
Di-n-butyl phthalate		ND			730	2100
Di-n-octyl phthalate		ND			49	2100
Dibenz(a,h)anthrace	20	ND			25	2100

Client: CHA Inc

Client Sample ID:	SB06 SS (3-4) 040212					
Lab Sample ID:	480-18049-8					Date Sampled: 04/02/2012 1200
Client Matrix:	Solid	% Moisture	e: 20.6			Date Received: 04/04/2012 0900
	82	70C Semivolatile Or	ganic Compo	unds (GC	/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58886		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8808.D
Dilution:	10				Initial Weight/Volu	me: +30.23 g
Analysis Date:	04/10/2012 1056				Final Weight/Volu	me: 1 mL
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifie	r MDL	RL
Dibenzofuran		1200		J	22	2100
Diethyl phthalate		ND			64	2100
Dimethyl phthalate		ND			55	2100
Fluoranthene		250		J	31	2100
Fluorene		610		J	49	2100
Hexachlorobenzene		ND			100	2100
Hexachlorobutadien	e	ND			110	2100
Hexachlorocyclopen	tadiene	ND			640	2100
Hexachloroethane		ND			160	2100
Indeno(1,2,3-cd)pyre	ene	ND			58	2100
Isophorone		ND			110	2100
N-Nitrosodi-n-propyl	amine	ND			170	2100
N-Nitrosodiphenylan	nine	ND		*	120	2100
Naphthalene		48000			35	2100
Nitrobenzene		ND			94	2100
Pentachlorophenol		ND			720	4100
Phenanthrene		930		J	44	2100
Phenol		ND			220	2100
Pyrene		210		J	14	2100
Surrogate		%Rec		Qualifie	r Aco	ceptance Limits
2,4,6-Tribromophen	ol	87			39	- 146
2-Fluorobiphenyl		97			37	- 120
2-Fluorophenol		78			18	- 120
Nitrobenzene-d5		78			34	- 132
p-Terphenyl-d14		101			65	- 153
Phenol-d5		78			11	- 120

Analytical Data

Job Number: 480-18049-1

Client Sample ID:	SB07 SS (1-2) 040212					
Lab Sample ID:	480-18049-9					ate Sampled: 04/02/2012 12
Client Matrix:	Solid	% Moisture	23.3		D	ate Received: 04/04/2012 09
	827	0C Semivolatile Org	ganic Compou	unds (GC	/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58695		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8780.D
Dilution:	1.0				Initial Weight/Volume	e: +30.65 g
Analysis Date:	04/09/2012 2304				Final Weight/Volume	-
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Analyte	DryWt Corrected: Y	Result (ug	J/Kg)	Qualifie	r MDL	RL
Biphenyl		22		J	13	220
bis (2-chloroisopropy	'I) ether	ND			23	220
2,4,5-Trichloropheno	I	ND			47	220
2,4,6-Trichloropheno		ND			14	220
2,4-Dichlorophenol		ND			11	220
2,4-Dimethylphenol		ND			58	220
2,4-Dinitrophenol		ND			75	420
2,4-Dinitrotoluene		ND		*	33	220
,						
2,6-Dinitrotoluene		ND			53	220
2-Chloronaphthalene		ND			14	220
2-Chlorophenol		ND			11	220
2-Methylnaphthalene	2	94		J	2.6	220
2-Methylphenol		ND			6.6	220
2-Nitroaniline		ND			69	420
2-Nitrophenol		ND			9.8	220
3,3'-Dichlorobenzidin	e	ND			190	220
3-Nitroaniline		ND			50	420
4,6-Dinitro-2-methylp	henol	ND			74	420
4-Bromophenyl phen		ND			69	220
4-Chloro-3-methylph		ND			8.9	220
4-Chloroaniline		ND			63	220
4-Chlorophenyl phen	vlether	ND			4.6	220
	lyr ether				4.0	420
4-Methylphenol		ND				
4-Nitroaniline		ND			24	420
4-Nitrophenol		ND			52	420
Acenaphthene		5.9		J	2.5	220
Acenaphthylene		ND			1.8	220
Acetophenone		ND			11	220
Anthracene		ND			5.5	220
Atrazine		ND			9.6	220
Benzaldehyde		ND		*	24	220
Benzo(a)anthracene		14		J	3.7	220
Benzo(a)pyrene		ND			5.2	220
Benzo(b)fluoranthen	е	16		J	4.2	220
Benzo(g,h,i)perylene		ND			2.6	220
Benzo(k)fluoranthene		ND			2.4	220
Bis(2-chloroethoxy)m		ND			12	220
Bis(2-chloroethyl)eth		ND			12	220
		110			69	220
Bis(2-ethylhexyl) pht				J		
Butyl benzyl phthalat	е	ND			58	220
Caprolactam		ND			93	220
Carbazole		ND			2.5	220
Chrysene		14		JΒ	2.2	220
Di-n-butyl phthalate		ND			74	220
Di-n-octyl phthalate		ND			5.0	220
Di-n-octyr pritialate					0.0	220

Client: CHA Inc

Client Sample ID:	SB07 SS (1-2) 040212					
Lab Sample ID:	480-18049-9					Date Sampled: 04/02/2012 1215
Client Matrix:	Solid	% Moisture	23.3			Date Received: 04/04/2012 0900
	827	0C Semivolatile Org	ganic Compo	unds (GC	:/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58695		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8780.D
Dilution:	1.0				Initial Weight/Volu	me: +30.65 g
Analysis Date:	04/09/2012 2304				Final Weight/Volu	me: 1 mL
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Analyte	DryWt Corrected: Y	Result (ug	J/Kg)	Qualifie	r MDL	RL
Dibenzofuran		ND	,		2.2	220
Diethyl phthalate		ND			6.5	220
Dimethyl phthalate		ND			5.6	220
Fluoranthene		15		J	3.1	220
Fluorene		10		J	5.0	220
Hexachlorobenzene		ND			11	220
Hexachlorobutadien	e	ND			11	220
Hexachlorocyclopen	itadiene	ND			65	220
Hexachloroethane		ND			17	220
Indeno(1,2,3-cd)pyre	ene	ND			6.0	220
Isophorone		ND			11	220
N-Nitrosodi-n-propyl		ND			17	220
N-Nitrosodiphenylan	nine	ND		*	12	220
Naphthalene		63		J	3.6	220
Nitrobenzene		ND			9.6	220
Pentachlorophenol		ND			74	420
Phenanthrene		26		J	4.5	220
Phenol		ND			23	220
Pyrene		ND			1.4	220
Surrogate		%Rec		Qualifie	r Ac	ceptance Limits
2,4,6-Tribromophen	ol	110			39	- 146
2-Fluorobiphenyl		91			37	- 120
2-Fluorophenol		69				- 120
Nitrobenzene-d5		78				- 132
p-Terphenyl-d14		109				- 153
Phenol-d5		75			11	- 120

Analytical Data

Job Number: 480-18049-1

Client Sample ID:	SB07 SS (3-4) 040212					
Lab Sample ID:	480-18049-10				C	ate Sampled: 04/02/2012 12
Client Matrix:	Solid	% Moisture:	23.1		C	Date Received: 04/04/2012 09
	8270	0C Semivolatile Org	anic Compou	unds (GC	/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58695		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8781.D
Dilution:	1.0				Initial Weight/Volum	e: +30.40 g
Analysis Date:	04/09/2012 2328				Final Weight/Volume	•
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
					njeeden velane.	
Analyte	DryWt Corrected: Y	Result (ug	/Kg)	Qualifie		RL
Biphenyl	N II	87		J	13	220
bis (2-chloroisopropy		ND			23	220
2,4,5-Trichloropheno		ND			47	220
2,4,6-Trichloropheno	I	ND			14	220
2,4-Dichlorophenol		ND			11	220
2,4-Dimethylphenol		ND			58	220
2,4-Dinitrophenol		ND			76	420
2,4-Dinitrotoluene		ND		*	34	220
2,6-Dinitrotoluene		ND			53	220
2-Chloronaphthalene		ND			15	220
2-Chlorophenol		ND			11	220
2-Methylnaphthalene		430			2.6	220
2-Methylphenol		ND			6.7	220
2-Nitroaniline		ND			69	420
2-Nitrophenol		ND			9.9	220
3,3'-Dichlorobenzidin	e	ND			190	220
3-Nitroaniline		ND			50	420
4,6-Dinitro-2-methylp	henol	ND			75	420
4-Bromophenyl phen	yl ether	ND			69	220
4-Chloro-3-methylph	enol	ND			8.9	220
4-Chloroaniline		ND			64	220
4-Chlorophenyl phen	yl ether	ND			4.6	220
4-Methylphenol		ND			12	420
4-Nitroaniline		ND			24	420
4-Nitrophenol		ND			52	420
Acenaphthene		ND			2.5	220
•		ND			1.8	220
Acenaphthylene						
Acetophenone		ND			11	220
Anthracene		15		J	5.5	220
Atrazine		ND			9.6	220
Benzaldehyde		ND		*	24	220
Benzo(a)anthracene		18		J	3.7	220
Benzo(a)pyrene		9.4		J	5.2	220
Benzo(b)fluoranthen		19		J	4.2	220
Benzo(g,h,i)perylene		ND			2.6	220
Benzo(k)fluoranthene	e	ND			2.4	220
Bis(2-chloroethoxy)m		ND			12	220
Bis(2-chloroethyl)eth		ND			19	220
Bis(2-ethylhexyl) pht		120		J	70	220
Butyl benzyl phthalat		ND		-	58	220
Caprolactam		ND			94	220
Carbazole		ND			2.5	220
Chrysene		19 ND		JΒ	2.2	220
Di-n-butyl phthalate		ND			75	220
IN postul phtholoto		ND			5.1	220
Di-n-octyl phthalate Dibenz(a,h)anthrace		ND			2.5	220

Client: CHA Inc

Client Sample ID:	SB07 SS (3-4) 040212					
Lab Sample ID: Client Matrix:	480-18049-10 Solid	% Moisture	23.1			Date Sampled: 04/02/2012 1215 Date Received: 04/04/2012 0900
	827	0C Semivolatile Org	ganic Compo	unds (GC	/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58695		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8781.D
Dilution:	1.0				Initial Weight/Volu	ime: +30.40 g
Analysis Date:	04/09/2012 2328				Final Weight/Volu	me: 1 mL
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Analyte	DryWt Corrected: Y	Result (ug	ı/Kg)	Qualifie	r MDL	RL
Dibenzofuran		42		J	2.3	220
Diethyl phthalate		ND			6.5	220
Dimethyl phthalate		ND			5.6	220
Fluoranthene		41		J	3.1	220
Fluorene		31		J	5.0	220
Hexachlorobenzene		ND			11	220
Hexachlorobutadien	e	ND			11	220
Hexachlorocyclopen	tadiene	ND			65	220
Hexachloroethane		ND			17	220
Indeno(1,2,3-cd)pyre	ene	ND			6.0	220
Isophorone		ND			11	220
N-Nitrosodi-n-propyl		ND			17	220
N-Nitrosodiphenylan	nine	ND		*	12	220
Naphthalene		230			3.6	220
Nitrobenzene		ND			9.6	220
Pentachlorophenol		ND			74	420
Phenanthrene		84		J	4.5	220
Phenol		ND			23	220
Pyrene		27		J	1.4	220
Surrogate		%Rec		Qualifie	-	ceptance Limits
2,4,6-Tribromophen	ol	125			39	- 146
2-Fluorobiphenyl		97				- 120
2-Fluorophenol		80				- 120
Nitrobenzene-d5		88				- 132
p-Terphenyl-d14		118				- 153
Phenol-d5		87			11	- 120

Analytical Data

Job Number: 480-18049-1

Client Sample ID:	SB10 SS (1-2) 040212									
Lab Sample ID:	480-18049-11				Da	ate Sampled: 04/02/2012 1230				
Client Matrix:	Solid	% Moisture	: 12.6		Da	ate Received: 04/04/2012 0900				
8270C Semivolatile Organic Compounds (GC/MS)										
Analysis Method:	8270C	Analysis Batch:	480-58695		Instrument ID:	HP5973V				
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8782.D				
Dilution:	20				Initial Weight/Volume	e: +30.13 g				
Analysis Date:	04/09/2012 2353				Final Weight/Volume					
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL				
Analyte	DryWt Corrected: Y	Result (ug	J/Kg)	Qualifie	er MDL	RL				
Biphenyl		ND			240	3900				
bis (2-chloroisoprop	oyl) ether	ND			400	3900				
2,4,5-Trichlorophen		ND			840	3900				
2,4,6-Trichlorophen		ND			250	3900				
2,4-Dichlorophenol		ND			200	3900				
2,4-Dimethylphenol		ND			1000	3900				
2,4-Dinitrophenol		ND			1300	7500				
2,4-Dinitrotoluene		ND		*	600	3900				
2,6-Dinitrotoluene		ND			940	3900				
2-Chloronaphthalen	ne l	ND			260	3900				
2-Chlorophenol		ND			200	3900				
2-Methylnaphthalen		ND			47	3900				
2-Methylphenol		ND			120	3900				
2-Nitroaniline		ND			1200	7500				
2-Nitrophenol		ND			1200	3900				
3,3'-Dichlorobenzidi	ino	ND			3400	3900				
3-Nitroaniline		ND			880	7500				
	Inhanal	ND			1300	7500				
4,6-Dinitro-2-methy		ND			1200	3900				
4-Bromophenyl phe	-	ND			160	3900				
4-Chloro-3-methylpl	nenoi									
4-Chloroaniline		ND			1100	3900				
4-Chlorophenyl phe	enyi ether	ND			82	3900				
4-Methylphenol		ND			210	7500				
4-Nitroaniline		ND			430	7500				
4-Nitrophenol		ND			930	7500				
Acenaphthene		ND			45	3900				
Acenaphthylene		ND			31	3900				
Acetophenone		ND			200	3900				
Anthracene		ND			98	3900				
Atrazine		ND			170	3900				
Benzaldehyde		ND		*	420	3900				
Benzo(a)anthracene	е	470		J	66	3900				
Benzo(a)pyrene		320		J	93	3900				
Benzo(b)fluoranthei		670		J	75	3900				
Benzo(g,h,i)perylen		ND			46	3900				
Benzo(k)fluoranther		280		JΒ	42	3900				
Bis(2-chloroethoxy)		ND			210	3900				
Bis(2-chloroethyl)et		ND			330	3900				
Bis(2-ethylhexyl) ph		1900		J	1200	3900				
Butyl benzyl phthala	ate	ND			1000	3900				
Caprolactam		ND			1700	3900				
Carbazole		ND			44	3900				
Chrysene		490		JΒ	38	3900				
Di-n-butyl phthalate		ND			1300	3900				
Di-n-octyl phthalate		ND			90	3900				
Dibenz(a,h)anthrace		ND			45	3900				
					-					

Client: CHA Inc

Client Sample ID:	SB10 SS (1-2) 040212					
Lab Sample ID:	480-18049-11					Date Sampled: 04/02/2012 1230
Client Matrix:	Solid	% Moisture	: 12.6			Date Received: 04/04/2012 0900
	827	0C Semivolatile Or	ganic Compo	unds (GC	/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58695		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8782.D
Dilution:	20		100 00200		Initial Weight/Volu	
Analysis Date:	04/09/2012 2353				Final Weight/Volu	0
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Thep Date.	0 1100/2012 0020				injection volume.	
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifie	r MDL	RL
Dibenzofuran		ND			40	3900
Diethyl phthalate		ND			120	3900
Dimethyl phthalate		ND			100	3900
Fluoranthene		700		J	56	3900
Fluorene		ND			89	3900
Hexachlorobenzene		ND			190	3900
Hexachlorobutadien		ND			200	3900
Hexachlorocyclopen	ntadiene	ND			1200	3900
Hexachloroethane		ND			300	3900
Indeno(1,2,3-cd)pyre	ene	ND			110	3900
Isophorone		ND			190	3900
N-Nitrosodi-n-propyl		ND			300	3900
N-Nitrosodiphenylar	nine	ND		*	210	3900
Naphthalene		ND			64	3900
Nitrobenzene		ND			170	3900
Pentachlorophenol		ND			1300	7500
Phenanthrene		380		J	81	3900
Phenol		ND			400	3900
Pyrene		560		J	25	3900
Surrogate		%Rec		Qualifie	r Ac	ceptance Limits
2,4,6-Tribromophen	ol	66			39	- 146
2-Fluorobiphenyl		77			37	- 120
2-Fluorophenol		66			18	- 120
Nitrobenzene-d5		61			34	- 132
p-Terphenyl-d14		101			65	- 153
Phenol-d5		63			11	- 120

Client: CHA Inc

Job Number: 480-18049-1

Lab Sample ID: 2014 2014 Date Samples' 04/02/2012 0202 Cliner Matrix Sold 9 Ministure 10.1 Date Receive: 04/04/2012 0203 Analysis Metrix 8270C Amalysis Battix 480-58026 Instrument ID: HF5973V Prop Metrix 30.500 Prop Batch: 480-58028 Instrument ID: HF5973V Prop Metrix 0.40052012 0203 Prop Batch: 480-58026 Lab File ID: V////////////////////////////////////	Client Sample ID:	SB10 SS (3-4) 040212									
Client MatrixSolid% Matsize9.1Die Review: 04/04/2012 0000Prep Method:35558Preg Batch480-582895Instrument ID: Lab File IC: Verf73.0V9773.0Prep Date:04/10/2012 0017Infial Weight/Volume: Instrument ID: Infial Weight/Volume:4.08.759.07Prep Date:04/10/2012 0017Infial Weight/Volume: Instrument ID: Instrument ID: Ins	Lab Sample ID:	480-18049-12				Da	ate Sampled: 04/02/2012 1230				
Analysis Method: 3270C Analysis Batch: 480-5808 Instrument ID: IPE973V Prep Method: 3550B Prep Batch: 480-5828 Lab File ID. V3783.D Analysis Date: 04/10/2012 0017 Final Weight/Volume: 1 Int Analysis Date: 04/05/2012 0828 Final Weight/Volume: 1 IL Analysis Date: 04/05/2012 0828 ND Qualifier MDL RL Biphenyl DryWt Corrected: Y Result (upKg) Qualifier MDL RL Z.4.5 Trichtorophenol ND 13 200 2.4.5 Trichtorophenol ND 55 200 2.4.0bitrophenol ND 50 2000 2.4.0bitrophenol ND 14 200 2.4.0bitrophenol ND 55 200 2.00 2.00 2.00 2.4.0bitrophenol ND 10 200 2.00 2.00 2.00 2.4.0bitrophenol ND 65 400 2.00 2.00 2.00 2.4.0			% Moisture	: 19.1							
PrepPrepBatch:480-58238La File D:V878.3.DDiution:11Initial Weight/volume:1Initial Weight/volume:1Analysis Date:04/10/2012 0017File Weight/volume:1ILPrep Date:Dr.Wtt Corrected: YResult (ugrKg)QualifierMDLRLAnalyse Biptery!ND0.018/100RL20024.6 Trichforophero>ND132002.4.6 Trichforophero>ND132002.4.6 Trichforophero>ND552002.4.0 Entrophon>ND552002.4.0 Entrophon>ND552002.4.0 Entrophon>ND142002.4.0 Entrophon>ND142002.4.0 Entrophon>ND142002.4.0 Entrophon>ND142002.4.0 Entrophon>ND102002.4.0 Entrophon>ND142002.4.0 Entrophon>ND622002.4.0 Entrophon>ND102002.4.0 Entrophon>ND622002.4.0 Entrophon>ND622002.4.0 Entrophon>ND622002.4.0 Entrophon>ND622002.4.0 Entrophon>ND622002.4.0 Entrophon>ND622002.4.0 Entrophon>ND622002.4.0 Entrophon>ND622002.4.0 Entrophon>ND62<	8270C Semivolatile Organic Compounds (GC/MS)										
PrepPrepBatch:480-58238La File D:V878.3.DDiution:11Initial Weight/volume:1Initial Weight/volume:1Analysis Date:04/10/2012 0017File Weight/volume:1ILPrep Date:Dr.Wtt Corrected: YResult (ugrKg)QualifierMDLRLAnalyse Biptery!ND0.018/100RL20024.6 Trichforophero>ND132002.4.6 Trichforophero>ND132002.4.6 Trichforophero>ND552002.4.0 Entrophon>ND552002.4.0 Entrophon>ND552002.4.0 Entrophon>ND142002.4.0 Entrophon>ND142002.4.0 Entrophon>ND142002.4.0 Entrophon>ND142002.4.0 Entrophon>ND102002.4.0 Entrophon>ND142002.4.0 Entrophon>ND622002.4.0 Entrophon>ND102002.4.0 Entrophon>ND622002.4.0 Entrophon>ND622002.4.0 Entrophon>ND622002.4.0 Entrophon>ND622002.4.0 Entrophon>ND622002.4.0 Entrophon>ND622002.4.0 Entrophon>ND622002.4.0 Entrophon>ND622002.4.0 Entrophon>ND62<	Analysis Method:	8270C	Analysis Batch [.]	480-58695		Instrument ID:	HP5973V				
Diution: 10 Analysis Date: 04/10/2012 007 Prep Date: 04/05/2012 0028 biolognamic programmeter in ution in the interpreter in the interpreter in the interpreter in the interpreter interpreter in the interpreter interpret	•		-								
Analysis Date: 04/05/2012 0928 Final WeightVolume: 1 mL Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MD RL Biphenyl ND 21 200 bis (2-bibroisopropyl) ether ND 21 200 2.4.5-frichtorophenol ND 11 200 2.4.5-frichtorophenol ND 13 200 2.4.5-frichtorophenol ND 11 200 2.4.5-frichtorophenol ND 55 200 2.4-Dinitrobulene ND 51 200 2.4-Dinitrobulene ND 14 200 2.4-Dinitrobulene ND 65 400 2.4-Dinitrobulene ND 65 400 2.4Methylphenol ND 65 400 2.4Nethylphenol ND 65 400 2.4Nethylphenol ND 65 400 2.Nitrobaline ND 65 400 2.Nitrobaline ND 65			Fiep Batch.	400-30230							
Prep Date: 04/05/2012 0828 Injection Volume: 1 uL Analyte DyWt Corrected: Y Result (ug/kg) Qualifier ND 13 200 Biphenyi ND 13 200 200 24.5 Trichtorophenol ND 44 200 2.4,5 Trichtorophenol ND 13 200 2.4,6 Trichtorophenol ND 13 200 2.4,0 Trichtorophenol ND 11 200 2.4 Districtyohenol ND 71 4000 2.4 Districtyohenol ND 71 400 2.4 Districtyohenol ND 14 200 2.4 Districtyohenol ND 2.5 200 2.4 Districtyohenol ND 3.3 200 2.4 Districtyohenol ND 3.3 200 3.3'Districtyohenol ND						-	=				
Analyse DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL Bipheryl ND 13 200 bis (2-shloroisopropyl) ether ND 21 200 2.4.5 Trichlorophenol ND 44 200 2.4.5 Trichlorophenol ND 11 200 2.4.0 Entrophenol ND 11 200 2.4.0 Entrophenol ND 71 400 2.4.0 Entrophenol ND 71 400 2.4.0 Entrophenol ND 10 200 2.4.0 Entrophenol ND 12 200 2.4.0 Entrophenol ND 13 200 2.4.0 Entrophenol ND 62 200 2.4.0 Entrophenol ND 62 200 2.4.0 Entrophenol ND 63 200 2.4.0 Entrophenol ND 63 200 2.4.0 Entrophenol ND 83 200 2.4.0 Entrophenol ND 83 200						-					
Biphenyl ND 13 200 big (2-blorisoproph) ether ND 21 200 2.4,5-Trichlorophenol ND 13 200 2.4,5-Trichlorophenol ND 13 200 2.4-Dichlorophenol ND 11 200 2.4-Dichlorophenol ND 71 400 2.4-Dichlorophenol ND 55 200 2.4-Dichlorophenol ND 50 200 2.4-Dichlorophenol ND 14 200 2.4-Dichlorophenol ND 10 200 2.4-Dichlorophenol ND 6.2 200 2-Chlorophenol ND 8.3 200 2-Mitrophinenol ND 9.3 200 2-Nitrophenol ND 47 400 2-Nitrophenol ND 74 400 2-Nitrophenol ND 65 200 2-Nitrophenol ND 43 200 3-StiChichorobezizine ND 43	Prep Date:	04/05/2012 0828				Injection Volume:	1 uL				
bic C-indrospropy) etherND212002.4.5-TrichicorphenolND132002.4-DichicorphenolND132002.4-DichicorphenolND552002.4-DichicorphenolND552002.4-DinicorphenolND312002.4-DinicorphenolND142002.4-DinicorphenolND102002.4-DinicorphenolND102002.4-DinicorphenolND102002.4-DinicorphenolND6.22002.4-DinicorphenolND6.22002.4-DinicorphenolND6.22002.4-MitryinaphthaleneND6.22002.4-MitryinaphthaleneND6.32002.4-MitryinaphthaleneND6.32002.4-NitrophenolND704002.4-NitrophenolND6.32002.4-NitrophenolND6.32002.4-DinorobenzidineND6.32002.4-DinorobenzidineND8.32002.4-DinorobenzidineND9.32002.4-DinorobenzidineND114004.4-DinorobenzidineND132004.4-DinorobenzidineND132004.4-DinorobenzidineND142004.5-DinorobenzidineND142004.6-DinorobenzidineND102004.1-DinorobenzidineND10 <td< td=""><td>Analyte</td><td>DryWt Corrected: Y</td><td>Result (ug</td><td>g/Kg)</td><td>Qualifier</td><td>n MDL</td><td>RL</td></td<>	Analyte	DryWt Corrected: Y	Result (ug	g/Kg)	Qualifier	n MDL	RL				
2.4.5-frichlorophenolND4.42002.4.6-frichlorophenolND112002.4.0-intorophenolND112002.4.0-intorophenolND552002.4.0-intorophenolND714002.4.0-intorophenolND102002.4.0-intorophenolND142002.6.0-intorotolueneND142002.ChicorophenolND102002.ChicorophenolND654002.ChicorophenolND654002.NitroanilineND654002.NitroanilineND9.32003.NitroanilineND9.32003.NitroanilineND652004.Bromophenyl phenyl etherND652004.ChicorophenolND602002.NitroanilineND632003.NitroanilineND632003.NitroanilineND632004.Chicoraphenyl phenyl etherND632004.Chicoraphenyl phenyl etherND114004.NitroanilineND134004.NitroanilineND132004.NitroanilineND142004.NitroanilineND132004.NitroanilineND142004.NitroanilineND10200AcenaphthyleneND13200AcenaphthyleneND	Biphenyl										
2.4.5. richicrophenolND132002.4-DichicrophenolND552002.4-DintryphenolND714002.4-DintryphenolND312002.4-DintryphenolND142002.6-DintroblueneND102002.6-DintroblueneND102002.6-DintroblueneND102002.6-DintroblueneND102002.4-DintryphenolND6.22002.4-MetryphenolND6.22002.4-MetryphenolND9.32002.4-MetryphenolND9.32002.4-NitrophenolND9.32003.3-DichlorobenzidineND1802003.3-DichlorobenzidineND652004.6-Dintro-Z-metryphenolND632004.6-Dintro-Z-metryphenolND632004.Chloro-S-metryphenolND432004.Chloro-S-metryphenolND114004.Chloro-S-metryphenolND234004.Chloro-S-metryphenolND242004.Chloro-S-metryphenolND102004.Chloro-SendryphenolND352004.Chloro-SendryphenolND362004.Chloro-SendryphenolND242004.Chloro-SendryphenolND352004.Chloro-SendryphenolND35200AcenaphthylencND49	bis (2-chloroisoprop	yl) ether	ND			21	200				
2.4-DinkrophenolND112002.4-DinkrophenolND714002.4-DinkrophenolND714002.4-DinkrophenolND502002.6-DinkrotokueneND502002.ChoropaphthaleneND142002.ChoropaphthaleneND102002.ChoropaphthaleneND102002.MethyliphenolND654002.MethyliphenolND654002.NitroanlineND1802003.NitroanlineND1802003.NitroanlineND652004.Gronophenyl phenyl etherND652004.Gronophenyl phenyl etherND602004.ChoropathyliphenolND612004.Chorophenyl phenyl etherND602004.Chorophenyl phenyl etherND632004.Chorophenyl phenyl etherND132004.Chorophenyl phenyl etherND132004.Chorophenyl phenyl etherND172004.NitrophenolND17200AcenaphthyleneND17200AcenaphthyleneND132004.NitrophenolND142004.NitrophenolND17200AcenaphthyleneND16200AntraceneND12200BenzellehyleeND14200Benzellehyl	2,4,5-Trichlorophene	ol	ND			44	200				
2.4-DinitroblemolND562002.4-DinitroblemolND312002.4-DinitroblemonND502002.6-DinitroblemonND142002.ChoronaphithaleneND102002.MethylinaphithaleneND6.22002.MethylinaphithaleneND6.22002.MethylinaphithaleneND6.22002.NitrophenolND9.32002.NitrophenolND9.32003.3-DichorobenzidineND1802003.3-DichorobenzidineND704004.6-Dintro-Z-methyliphenolND704004.6-Dintro-Z-methyliphenolND8.32004.Choro-S-methyliphenolND8.32004.Choro-S-methyliphenolND8.32004.Choro-S-methyliphenolND8.32004.Choro-S-methyliphenolND8.32004.Choro-S-methyliphenolND8.32004.Choro-S-methyliphenolND114004.NitrophenolND132004.Choro-S-methyliphenolND132004.NitrophenolND132004.NitrophenolND142004.NitrophenolND10200AcenaphthylieneND10200AcenaphthyliphenolND12200AcenaphthyliphenolND24200Benzo(a)lipureneND <td>2,4,6-Trichlorophene</td> <td>ol</td> <td>ND</td> <td></td> <td></td> <td>13</td> <td>200</td>	2,4,6-Trichlorophene	ol	ND			13	200				
2.4-DinitrophenolND714002.4-DinitrotolueneND502002.ChoronaphthaleneND142002.ChoronaphthaleneND102002.ChoronaphthaleneND2.52002.MethylnaphthaleneND2.52002.MethylnaphthaleneND6.22002.MethylnaphthaleneND6.22002.NitrosnilineND6.22002.NitrosnilineND9.32003.3-DichorobenzidineND4.74004.6-Dintro-2-methylphenolND7.74004.74.53.32004.8-Dintro-2-methylphenolND6.52004.6-Dintro-2-methylphenolND6.32004.Chorophenyl phenyl etherND4.32004.Chorophenyl phenyl etherND4.32004.Chorophenyl phenyl etherND4.32004.NitrosnilineND2.34.004.NitrosnilineND2.32004.NitrosnilineND1.14004.NitrosnilineND1.3200AntroceneND2.4200AcenaphtheneND2.4200AntroceneND3.9200Benzol(hjuorantheneND3.9200Benzol(hjuorantheneND2.4200Benzol(hjuorantheneND2.4200Benzol(hjuorantheneND1.4200<	2,4-Dichlorophenol		ND			11	200				
2.4-DinitizationND*312002.6-DinitizationND502002.ChicronghthaleneND102002.ChicronghthaleneND102002.MethylaphthaleneND6.22002.MethylaphthaleneND6.22002.NitroanilineND9.32002.NitroanilineND9.32003.3'-DichlorobenzidineND1802003.3'-DichlorobenzidineND704004.6-Dinitro-2-methylphenolND652004.Chicro-3-methylphenolND602004.Chicro-3-methylphenolND602004.Chicro-3-methylphenolND602004.Chicro-3-methylphenolND114004.Chicro-3-methylphenolND114004.Chicro-3-methylphenolND114004.Chicro-3-methylphenolND114004.Chicro-3-methylphenolND122004.Chicro-3-methylphenolND102004.Chicro-3-methylphenolND102004.Chicro-3-methylphenolND102004.NitrophenolND10200AcenaphtheneND10200AcenaphtheneND4.2200AcenaphtheneND4.2200Benzo(a)lpreveND4.9200Benzo(a)lpreveND4.9200Benzo(a)lpreve	2,4-Dimethylphenol		ND			55	200				
2.4-DinitrotolueneND*312002.6-DinitrotolueneND502002.ChicronphthaleneND102002.ChicronphthaleneND102002.MethylaphthaleneND6.22002.MethylaphthaleneND6.22002.NitroanilineND9.32002.NitroanilineND9.32002.NitroanilineND1802003.3'DichlorobenzidineND1802004.6:Dinitro-2-methylphenolND704004.6:Dinitro-2-methylphenolND652004.Chicro-3-methylphenolND602004.Chicro-3-methylphenolND602004.Chicro-3-methylphenolND114004.Chicro-3-methylphenolND114004.Chicro-AmethylphenolND114004.Chicro-AmethylphenolND114004.NitroanilineND102004.NitroanilineND10200AcenaphtheneND5.2200AcenaphtheneND10200AcenaphtheneND4.9200AcenaphtheneND4.9200AcenaphtheneND4.9200Benzo(a)lpreveND4.9200Benzo(a)lpreveND4.9200Benzo(a)lpreveND4.9200Benzo(a)lpreveND4.9200 <tr< td=""><td>2,4-Dinitrophenol</td><td></td><td>ND</td><td></td><td></td><td>71</td><td>400</td></tr<>	2,4-Dinitrophenol		ND			71	400				
2.6-DiritrotolueneND502002.ChiorophthaleneND142002.ChiorophenolND2.52002.MethylphaphthaleneND6.54002.MethylphenolND6.54002.NitroanilineND9.32003.VibchorobenzidineND1802003.VibchorobenzidineND474003.VibchorobenzidineND652003.VibchorobenzidineND652004.Gronophenyl phenyl etherND8.32004.Chioro-3-methylphenolND8.32004.Chioro-3-methylphenolND8.32004.Chioro-3-methylphenolND8.32004.Chiorophenyl phenyl etherND4.32004.Chiorophenyl phenyl etherND114004.NitroanilineND2.4200AcenaphthyleneND1.72004.NitroanilineND1.7200AcenaphthyleneND9.0200AcenaphthyleneND3.5200Benzol(a)ntraceneND3.5200Benzol(a)ntraceneND4.9200Benzol(a)ntraceneND4.9200Benzol(a)ntraceneND3.5200Benzol(a)ntraceneND4.9200Benzol(a)ntraceneND1.1200Benzol(a)ntraceneND1.2200Benzol(a)ntraceneND1.2<			ND		*	31	200				
2-ChioronphthaleneND142002-ChioronphthaleneND102002-MetryinphthaleneND2.52002-MetryinphthaleneND6.22002-NitropanilineND9.32002-NitropanilineND9.32003.3'-DichlorobenzidineND1802003.3'-DichlorobenzidineND704004.6-Dinitro-2-methylphenolND704004.6-Dinitro-2-methylphenolND652004-Chioro-3-methylphenolND602004-Chioro-anitrophenyl etherND602004-Chioro-anitrophenyl phenyl etherND4.32004-Chioro-anitrophenyl phenyl etherND4.32004-Chioro-anitrophenyl phenyl etherND4.32004-NitrophenolND114004-NitrophenolND2.42004-NitrophenolND1.7200AcenaphthyleneND5.2200AnthraceneND3.5200AnthraceneND4.9200BenzaldayhraceneND4.9200BenzaldayhraceneND4.9200BenzaldayhraceneND4.9200BenzaldayhraceneND4.9200BenzaldayhraceneND4.9200BenzaldayhraceneND4.9200BenzaldayhraceneND5.2200Benzaldayhracene <td></td> <td></td> <td>ND</td> <td></td> <td></td> <td>50</td> <td>200</td>			ND			50	200				
2-ChirophenolND102002-MethylphenolND6.22002-NitrophenolND6.22002-NitrophenolND9.32003-NitcohrobenzidineND1802003-NitrophenolND474004.6-Dinitro-2-methylphenolND704004-Bromophenyl phenyl etherND652004-Chioro-3-methylphenolND8.32004-Chioro-3-methylphenolND602004-Chioro-3-methylphenolND4.32004-Chioro-3-methylphenolND4.32004-Chioro-3-methylphenolND4.32004-Chioro-3-methylphenolND4.32004-Chiorophenyl phenyl etherND4.32004-NitroanilineND114004-NitroanilineND2.4200AcenaphthylphenolND1.7200AcenaphthylphenolND1.7200AcenaphthylphenolND3.5200AcenaphthylphenolND3.5200AcenaphthylphenolND3.5200Benzo(a)proneND3.5200Benzo(a)proneND2.4200Benzo(a)proneND2.4200Benzo(a)proneND2.4200Benzo(a)proneND2.4200Benzo(a)proneND2.4200Benzo(a)proneND3.5200<	2-Chloronaphthalen	e	ND			14	200				
2-MethylphenolND2.52002-MethylphenolND6.22002-NitroanilineND9.32003.3'-DichlorobenzidineND18.02003.3'-DichlorobenzidineND704004.6-Dinitro-2-methylphenolND704004.6-Dinitro-2-methylphenolND652004-Chloro-3-methylphenolND6.32004-Chloro-3-methylphenolND6.32004-Chloro-3-methylphenolND6.32004-Chloro-3-methylphenolND114004-Chlorophenyl phenyl etherND2.34004-Chlorophenyl phenyl etherND2.42004-NitroanilineND1.14004-NitroanilineND1.7200AcenaphthyleneolND1.7200AcenaphthyleneolND5.2200AcenaphthyleneND5.2200ArbirozeneND5.2200ArbirozeneND3.5200Benza(a)phyleneND3.5200Benza(a)phyleneND2.4200Benza(a)phyleneND2.4200Benza(a)phyleneND3.5200Benza(a)phyleneND2.4200Benza(b)phyleneND2.4200Benza(b)phyleneND2.4200Benza(b)phyleneND2.4200Benza(b)phyleneND3.5200<			ND			10	200				
2AttriphenolND6.22002.NitrophineND654002.NitrophineND9.32003.3'-DichlorobenzidineND1802003.3'-DichlorobenzidineND474004.6-Dinito-2-methylphenolND652004.Chioro-3-methylphenolND8.32004.Chioro-3-methylphenolND8.32004.Chioro-3-methylphenolND602004.Chioro-3-methylphenolND114004.Chiorophenyl phenyl etherND114004.NitrophenolND114004.NitrophenolND24200AcchaphtheneND114004.NitrophenolND24200AccenaphtheneND1.7200AccenaphthylphenolND5.2200AnthraceneND5.2200AnthraceneND5.2200AnthraceneND3.9200Benzo(a)proteneND3.9200Benzo(a)proteneND3.9200Benzo(a)proteneND3.9200Benzo(a)proteneND11200Benzo(a)proteneND3.9200Benzo(a)proteneND3.9200Benzo(a)proteneND3.8200Benzo(a)proteneND3.8200Benzo(a)proteneND3.9200Benzo(b)fluorantheneND </td <td></td> <td>e</td> <td></td> <td></td> <td></td> <td>2.5</td> <td>200</td>		e				2.5	200				
2-NitroanilineND654002-NitrophenolND9.32003-NichorobezidineND1802003-NichorobezidineND474004.6-Dinitro-2-methylphenolND704004-Bromophenyl phenyl etherND652004-Chloro-3-methylphenolND8.32004-Chloro-3-methylphenolND602004-Chloro-3-methylphenolND602004-Chloro-3-methylphenolND114004-NitroanilineND234004-NitroanilineND234004-NitroanilineND242004-NitroanilineND242004-NitroanilineND2.4200AcenaphthyleneND10200AcenaphthyleneND10200AcenaphthyleneND5.2200ArtarizeneND9.0200Benzo(a)uthraceneND3.5200Benzo(a)uthraceneND3.5200Benzo(a)uthraceneND3.5200Benzo(b)fuorantheneND11200Benzo(b)fuorantheneND11200Bis/2-chloroethylenerND13200Bis/2-chloroethylenerND14200Bis/2-chloroethylenerND14200Bis/2-chloroethylenerND18200Bis/2-chloroethylenerND18200			ND				200				
2-NitrophenolND9.32003.3-IbchorobenzidineND1802003.3-DichorobenzidineND474004.6-Dinitro-2-methylphenolND652004-Chioro-amethylphenolND632004-Chioro-amethylphenolND602004-Chioro-amethylphenolND602004-Chioro-amethylphenolND4.32004-MethylphenolND114004-MethylphenolND234004-NitroanilineND234004-NitrophenolND1.7200AcenaphtheneND1.7200AcenaphthyleneND1.7200AcenaphthyleneND9.0200ActophenoneND5.2200AntriaceneND3.9200Benza(alphraceneND3.9200Benza(alphraceneND3.9200Benza(bljuorantheneND2.4200Benza(bljuorantheneND2.4200Benza(bljuorantheneND2.4200Benza(bljuorantheneND2.4200Benza(bljuorantheneND2.4200Benza(bljuorantheneND2.4200Benza(bljuorantheneND2.4200Benza(bljuorantheneND2.4200Benza(bljuorantheneND2.4200Bis(2-chloroethylphenziND5.4200			ND				400				
3.3'DehlorobenzidineND1802003-NiroanlineND474004.6-Diniro-2-methylphenolND652004-Chloro-3-methylphenolND8.32004-ChloroanlineND602004-Chlorophenyl phenyl etherND4.32004-Chlorophenyl phenyl etherND4.32004-MethylphenolND114004-NitroanlineND114004-NitroanlineND234004-NitrophenolND24200AcenaphthylenolND24200AcenaphtheneND1.7200AcenaphthylenoND1.7200AcetophenoneND9.0200AnthraceneND5.2200AnthraceneND3.5200Benza(a)nthraceneND3.5200Benza(a)nthraceneND3.9200Benza(a)nthraceneND2.4200Benza(a)nthraceneND3.9200Benza(b)fluorantheneND2.4200Benza(b)fluorantheneND2.4200Benza(b)fluorantheneND2.4200Benza(b)fluorantheneND2.4200Benza(b)fluorantheneND2.4200Benza(b)fluorantheneND3.5200Benza(b)fluorantheneND4.6200Bis(2-choroethyl)etherND65200 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
3-NitroanilineND474004.6-Dinitro-2-methylphenolND704004-Bromophenyl phenyl etherND652004-Chioro-3-methylphenolND602004-Chioro-anilineND602004-Chioro-anilineND4.32004-MethylphenolND114004-NitroanilineND234004-NitrophenolND234004-NitrophenolND10200AcenaphthyleneND1.7200AcenaphthyleneND10200AcetophenoneND10200ActapicaND5.2200ArtazineND9.0200BenzaldehydeND3.5200BenzaldehydeND3.5200Benzol(piturantheneND3.9200Benzol(piturantheneND3.9200Benzol(piturantheneND2.4200Benzol(piturantheneND3.5200Benzol(piturantheneND3.9200Benzol(piturantheneND11200Bis(2-choroethylymethaneND12200Bis(2-choroethylymethaneND13200Bis(2-choroethylymethaneND14200Bis(2-choroethylymethaneND14200Bis(2-choroethylymethaneND54200Bis(2-choroethylymethaneND54200 <t< td=""><td></td><td>ne</td><td></td><td></td><td></td><td></td><td></td></t<>		ne									
4.6-Dinitro-2-methylphenolND704004-Bromophenyl phenyl etherND652004-Chloro-3-methylphenolND8.32004-Chloro-3-methylphenolND4.32004-Chlorophenyl phenyl etherND4.32004-MethylphenolND114004-NitroanlineND234004-NitroanlineND242004-NitroanlineND24200AcenaphthylphenolND10200AcenaphthylphenolND10200AcenaphthylphenolND10200AcetophenoneND10200ArthracneND5.2200ArtazineND3.5200BenzoldehydeND3.5200BenzoldphydenND3.5200BenzoldphydenND2.4200BenzoldphydeND3.5200BenzoldphydeND3.5200BenzoldphydeND2.4200BenzoldphydeND2.4200BenzoldphydeND3.5200BenzoldphydeND3.5200BenzoldphydeneND4.9200BenzoldphydeneND3.5200BenzoldphydeneND4.9200BenzoldphydeneND4.9200BenzoldphydeneND5.4200BenzoldphydeneND5.4200 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
4-Bromophenyl phenyl etherND652004-Chloro-3-methylphenolND8.32004-Chlorophenyl phenyl etherND602004-Chlorophenyl phenyl etherND114004-Chlorophenyl phenyl etherND114004-NitrophenolND234004-NitrophenolND24200AccenaphthyleneND24200AccenaphthyleneND1.7200AccenaphthyleneND1.7200AccenaphthyleneND5.2200AtrazineND5.2200AtrazineND3.5200Benzo(a)pyreneND3.5200Benzo(a)pyreneND3.9200Benzo(a)pyreneND2.4200Benzo(a),hijperyleneND3.9200Benzo(a),hijperyleneND2.4200Benzo(a),hijperyleneND2.4200Benzo(a),hijperyleneND3.9200Benzo(a),hiperyleneND2.2200Bis(2-chloroethoxy)methaneND1200Bis(2-chloroethoxy)methaneND54200Bis(2-chloroethoxy)phthalateND54200CarbazoleND2.3200ChryseneND2.3200Di-n-octyl phthalateND2.3200Di-n-octyl phthalateND2.3200Di-n-octyl phthalateND2.3 <td></td> <td>phenol</td> <td></td> <td></td> <td></td> <td></td> <td></td>		phenol									
4-Chloro-3-methylphenol ND 8.3 200 4-Chloroaniline ND 60 200 4-Chlorophenyl phenyl ether ND 4.3 200 4-Methylphenol ND 11 400 4-Nitroaniline ND 23 400 4-Nitrophenol ND 24 200 Acenaphthene ND 24 200 Acenaphthylene ND 17 200 Acetophenone ND 10 200 Anthracene ND 5.2 200 Artazine ND * 22 200 Benzo(a)pyrene ND * 22 200 Benzo(a)pyrene ND * 22 200 Benzo(b)fluoranthene ND 3.5 200 Benzo(c)(b)fluoranthene ND 2.4 200 Benzo(b)fluoranthene ND 2.4 200 Bis(2-chloroethyl)pethalate ND 55 200 Bis(2-chloroet											
4-Chlorophenyl phenyl ether ND 60 200 4-Chlorophenyl phenyl ether ND 4.3 200 4-Methylphenol ND 11 400 4-Nitroaniline ND 23 400 4-Nitrophenol ND 24 200 Acenaphthene ND 24 200 Acenaphthylene ND 1.7 200 Acetophenone ND 1.7 200 Acetophenone ND 1.0 200 Anthracene ND 5.2 200 Artazine ND 5.2 200 Benzo(a)purene ND 3.5 200 Benzo(a)purene ND 3.5 200 Benzo(a)purene ND 2.2 200 Benzo(a)purene ND 2.2 200 Benzo(b)fluoranthene ND 2.4 200 Benzo(c)(nuoranthene ND 2.2 200 Bis(2-chloroethoxy)methane ND 5.4 2		-									
4-Chlorophenyl phenyl etherND4.32004-MethylphenolND114004-NitrophenolND234004-NitrophenolND49400AcenaphtheneND2.4200AcenaphtheneND1.7200AcenaphtheneND5.2200AcetaphenoneND5.2200AnthraceneND5.2200AnthraceneND3.5200Benzo(a)anthraceneND3.5200Benzo(a)anthraceneND3.5200Benzo(a)pyreneND3.9200Benzo(b)fluorantheneND2.4200Benzo(b)fluorantheneND3.9200Bis(2-chloroethoxy)methaneND11200Bis(2-chloroethyl)etherND18200Bis(2-chloroethyl)etherND54200Bis(2-chloroethyl)etherND54200CarbazoleND54200CarbazoleND54200CarbazoleND54200CarbazoleND54200CarbazoleND54200CarbazoleND53200ChryseneND54200CarbazoleND54200CarbazoleND53200ChryseneND54200ChryseneND2.0200ChryseneND2.02											
4-Methylphenol ND 11 400 4-Nitroaniline ND 23 400 4-Nitrophenol ND 23 400 Acenaphthone ND 49 400 Acenaphthylene ND 2.4 200 Acenaphthylene ND 10 200 Acetophenone ND 10 200 Actazine ND 5.2 200 Benzaldehyde ND 9.0 200 Benzaldehyde ND 3.5 200 Benzaldehyde ND 3.5 200 Benzo(a)anthracene ND 3.5 200 Benzo(b)fluoranthene ND 3.9 200 Benzo(b)fluoranthene ND 2.4 200 Benzo(b)fluoranthene ND 11 200 Bis(2-chloroethoxy)methane ND 12 200 Bis(2-chloroethoxy)methane ND 54 200 Bis(2-chloroethoxy)methane ND 54 <t< td=""><td></td><td>nyl ether</td><td></td><td></td><td></td><td></td><td></td></t<>		nyl ether									
4-NitrophenolND234004-NitrophenolND49400AcenaphtheneND2.4200AcenaphthyleneND1.7200AcetophenoneND0200AnthraceneND5.2200AtrazineND9.0200Benza(a)pyreneND3.5200Benzo(a)pyreneND3.9200Benzo(b)fluorantheneND3.9200Benzo(b)fluorantheneND2.4200Benzo(b)fluorantheneND3.9200Benzo(b)fluorantheneND2.4200Benzo(b)fluorantheneND2.4200Benzo(b)fluorantheneND2.4200Benzo(b)fluorantheneND3.9200Benzo(b)fluorantheneND11200Bis(2-chloroethy)methaneND18200Bis(2-chloroethy)methaneND54200Bis(2-chloroethy)hthalateND54200CarprolactamND2.3200ChryseneND2.0200Di-n-butyl phthalateND2.0200Di-n-butyl phthalateND2.0200Di-n-butyl phthalateND2.0200Di-n-butyl phthalateND2.0200Di-n-butyl phthalateND2.0200Di-n-butyl phthalateND2.0200Di-n-butyl phthalateND2.0200 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
4-NitrophenolND49400AcenaphtheneND2.4200AcenaphthyleneND1.7200AcetophenoneND10200AnthraceneND5.2200AttrazineND20200BenzaldehydeND3.5200BenzaldehydeND3.5200BenzaldehydeND3.5200BenzaldehydeND3.9200BenzaldehydeND2.4200BenzaldehydeND3.9200BenzaldehydeND2.4200BenzaldehydeND2.4200BenzaldehydeND3.9200BenzaldyhurantheneND2.2200BenzaldyhurantheneND11200Bisl2-chloroethoxylmethaneND18200Bisl2-chloroethoxylmethaneND54200Bisl2-chloroethylletherND88200CarbazoleND2.3200CarbazoleND2.0200ChryseneND2.0200Di-n-butyl phthalateND2.0200Di-n-butyl phthalateND2.0200Di-n-butyl phthalateND2.0200Di-n-butyl phthalateND2.0200Di-n-butyl phthalateND2.0200Di-n-butyl phthalateND2.0200Di-n-butyl phthalateND2.0200											
AcenaphtheneND2.4200AcenaphthyleneND1.7200AcetophenoneND10200AntraceneND5.2200AtrazineND9.0200BenzaldehydeND22200Benzo(a)anthraceneND3.5200Benzo(a)anthraceneND3.9200Benzo(a)pyreneND3.9200Benzo(b)fluorantheneND2.4200Benzo(b)fluorantheneND2.4200Benzo(b)fluorantheneND2.4200Benzo(b)fluorantheneND2.4200Benzo(b)fluorantheneND2.4200Bis(2-chloroethynymethaneND11200Bis(2-chloroethynymethaneND18200Bis(2-chloroethynymethaneND54200Bis(2-chloroethynymethaneND54200CarbazoleND2.0200Diruburyl phthalateND2.0200CarbazoleND2.0200ChryseneND2.0200Di-n-butyl phthalateND2.0200Di-n-butyl phthalateND2.0200Di-n-butyl phthalateND70200Di-n-butyl phthalateND70200Di-n-butyl phthalateND4.7200											
AcenaphthyleneND1.7200AcetophenoneND10200AnthraceneND5.2200AtrazineND9.0200BenzaldehydeND3.5200Benzo(a)anthraceneND3.5200Benzo(a)anthraceneND3.9200Benzo(a)pyreneND3.9200Benzo(a)hilperyleneND2.4200Benzo(k)fluorantheneND2.4200Benzo(k)fluorantheneND11200Bis(2-chloroethoxy)methaneND18200Bis(2-chloroethyl)etherND18200Bis(2-chloroethyl)pthalateND54200CarbazoleND88200CarbazoleND2.3200ChryseneND2.0200Di-n-otyl phthalateND2.0200Di-n-otyl phthalateND2.0200Di-n-otyl phthalateND2.0200Di-n-otyl phthalateND2.0200Di-n-otyl phthalateND2.0200Di-n-otyl phthalateND2.0200Di-notyl phthalateND2.0200Di-notyl phthalateND2.0200Di-notyl phthalateND2.0200Di-notyl phthalateND2.0200Di-notyl phthalateND2.0200Di-notyl phthalateND2.0200Di-notyl ph											
AcetophenoneND10200AnthraceneND5.2200AtrazineND9.0200BenzaldehydeND22200Benzo(a)anthraceneND3.5200Benzo(a)anthraceneND3.5200Benzo(a)pyreneND4.9200Benzo(b)fluorantheneND3.9200Benzo(b)fluorantheneND2.4200Benzo(k)fluorantheneND2.2200Bis(2-chloroethoxy)methaneND11200Bis(2-chloroethyl)etherND18200Bis(2-chloroethyl)pthalateND54200CarpolactamND54200CarpolactamND2.3200ChryseneND2.0200Di-n-otyl phthalateND2.0200Di-n-otyl phthalateND2.0200 <tr< td=""><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	•										
AnthraceneND5.2200AtrazineND9.0200BenzaldehydeND22200Benzo(a)anthraceneND3.5200Benzo(a)pyreneND4.9200Benzo(b)fluorantheneND3.9200Benzo(g), h.j)peryleneND2.4200Benzo(k)fluorantheneND2.2200Bis(2-chloroethoxy)methaneND11200Bis(2-chloroethyl)etherND18200Bis(2-chloroethyl)pthalateND65200Butyl benzyl phthalateND54200CarpolactamND2.3200ChryseneND2.0200Di-n-butyl phthalateND2.0200Di-n-butyl phthalateND2.0200Di-n-octyl phthalateND											
AtrazineND9.0200BenzaldehydeND22200Benzo(a)anthraceneND3.5200Benzo(a)pyreneND4.9200Benzo(b)fluorantheneND3.9200Benzo(g,h,i)peryleneND2.4200Benzo(k)fluorantheneND2.2200Bis(2-chloroethoxy)methaneND11200Bis(2-chloroethyl)etherND18200Bis(2-chloroethyl)etherND65200Butyl benzyl phthalateND54200CaprolactamND88200CarbazoleND2.3200Din-butyl phthalateND2.0200Din-butyl phthalateND2.	•										
Benzaldehyde ND * 22 200 Benzo(a)anthracene ND 3.5 200 Benzo(a)pyrene ND 4.9 200 Benzo(b)fluoranthene ND 3.9 200 Benzo(g,h,i)perylene ND 2.4 200 Benzo(k)fluoranthene ND 2.2 200 Benzo(k)fluoranthene ND 2.2 200 Benzo(k)fluoranthene ND 2.2 200 Bis(2-chloroethoxy)methane ND 11 200 Bis(2-chloroethyl)ether ND 18 200 Bis(2-chloroethyl)phthalate ND 54 200 Bis(2-ethylhexyl) phthalate ND 88 200 Carbazole ND 2.3 200 Carbazole ND 2.0 200 Chrysene ND 2.0 200 Di-n-butyl phthalate ND 2.0 200 Di-n-octyl phthalate ND 70 200											
Benzo(a)anthraceneND3.5200Benzo(a)pyreneND4.9200Benzo(b)fluorantheneND3.9200Benzo(g,h,i)peryleneND2.4200Benzo(k)fluorantheneND2.2200Bis(2-chloroethoxy)methaneND11200Bis(2-chloroethyl)etherND18200Bis(2-chloroethyl)phthalateND65200Bis(2-ethylhexyl) phthalateND54200CaprolactamND88200CarbazoleND2.3200ChryseneND2.0200Di-n-butyl phthalateND70200Di-n-octyl phthalateND4.7200					*						
Benzo(a)pyreneND4.9200Benzo(b)fluorantheneND3.9200Benzo(g,h,i)peryleneND2.4200Benzo(k)fluorantheneND2.2200Bis(2-chloroethoxy)methaneND11200Bis(2-chloroethyl)etherND18200Bis(2-chloroethyl)etherND65200Bis(2-ethylhexyl) phthalateND54200Butyl benzyl phthalateND88200CaprolactamND2.3200ChryseneND2.0200Di-n-butyl phthalateND70200Di-n-octyl phthalateND4.7200	,										
Benzo(b)luorantheneND3.9200Benzo(g,h,i)peryleneND2.4200Benzo(k)fluorantheneND2.2200Bis(2-chloroethoxy)methaneND11200Bis(2-chloroethyl)etherND18200Bis(2-ethylhexyl) phthalateND65200Butyl benzyl phthalateND54200CaprolactamND88200CarbazoleND2.3200ChryseneND2.0200Di-n-butyl phthalateND70200Di-n-octyl phthalateND4.7200	. ,	5									
Benzo(g,h,i)peryleneND2.4200Benzo(k)fluorantheneND2.2200Bis(2-chloroethoxy)methaneND11200Bis(2-chloroethyl)etherND18200Bis(2-ethylhexyl) phthalateND65200Butyl benzyl phthalateND54200CaprolactamND88200CarbazoleND2.3200ChryseneND2.0200Di-n-butyl phthalateND70200Di-n-octyl phthalateND4.7200											
Benzo(k)fluorantheneND2.2200Bis(2-chloroethoxy)methaneND11200Bis(2-chloroethyl)etherND18200Bis(2-ethylhexyl) phthalateND65200Butyl benzyl phthalateND54200CaprolactamND88200CarbazoleND2.3200ChryseneND2.0200Di-n-butyl phthalateND70200Di-n-octyl phthalateND4.7200											
Bis(2-chloroethoxy)methaneND11200Bis(2-chloroethyl)etherND18200Bis(2-ethylhexyl) phthalateND65200Butyl benzyl phthalateND54200CaprolactamND88200CarbazoleND2.3200ChryseneND2.0200Di-n-butyl phthalateND70200Di-n-octyl phthalateND4.7200											
Bis(2-chloroethyl)etherND18200Bis(2-ethylhexyl) phthalateND65200Butyl benzyl phthalateND54200CaprolactamND88200CarbazoleND2.3200ChryseneND2.0200Di-n-butyl phthalateND70200Di-n-octyl phthalateND4.7200	ι,										
Bis(2-ethylhexyl) phthalate ND 65 200 Butyl benzyl phthalate ND 54 200 Caprolactam ND 88 200 Carbazole ND 2.3 200 Chrysene ND 2.0 200 Di-n-butyl phthalate ND 70 200 Di-n-octyl phthalate ND 4.7 200											
Butyl benzyl phthalateND54200CaprolactamND88200CarbazoleND2.3200ChryseneND2.0200Di-n-butyl phthalateND70200Di-n-octyl phthalateND4.7200											
Caprolactam ND 88 200 Carbazole ND 2.3 200 Chrysene ND 2.0 200 Di-n-butyl phthalate ND 70 200 Di-n-octyl phthalate ND 4.7 200											
Carbazole ND 2.3 200 Chrysene ND 2.0 200 Di-n-butyl phthalate ND 70 200 Di-n-octyl phthalate ND 4.7 200		ne									
Chrysene ND 2.0 200 Di-n-butyl phthalate ND 70 200 Di-n-octyl phthalate ND 4.7 200											
Di-n-butyl phthalateND70200Di-n-octyl phthalateND4.7200											
Di-n-octyl phthalate ND 4.7 200											
Dibenz(a,h)anthracene ND 2.4 200											
	Dibenz(a,h)anthrace	ene	ND			2.4	200				

Client: CHA Inc

Client Sample ID:	SB10 SS (3-4) 040212					
Lab Sample ID:	480-18049-12					Date Sampled: 04/02/2012 1230
Client Matrix:	Solid	% Moisture	: 19.1			Date Received: 04/04/2012 0900
	827	0C Semivolatile Org	ganic Compo	unds (GC	/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58695		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8783.D
Dilution:	1.0				Initial Weight/Volu	ıme: +30.87 g
Analysis Date:	04/10/2012 0017				Final Weight/Volu	me: 1 mL
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Analyte	DryWt Corrected: Y	Result (u	J/Kg)	Qualifie	r MDL	RL
Dibenzofuran		ND			2.1	200
Diethyl phthalate		ND			6.1	200
Dimethyl phthalate		ND			5.3	200
Fluoranthene		ND			2.9	200
Fluorene		ND			4.7	200
Hexachlorobenzene		ND			10	200
Hexachlorobutadien	e	ND			10	200
Hexachlorocyclopen	tadiene	ND			61	200
Hexachloroethane		ND			16	200
Indeno(1,2,3-cd)pyre	ene	ND			5.6	200
Isophorone		ND			10	200
N-Nitrosodi-n-propyl		ND			16	200
N-Nitrosodiphenylar	nine	ND		*	11	200
Naphthalene		ND			3.4	200
Nitrobenzene		ND			9.0	200
Pentachlorophenol		ND			70	400
Phenanthrene		ND			4.3	200
Phenol		ND			21	200
Pyrene		42		J	1.3	200
Surrogate		%Rec		Qualifie	r Ac	ceptance Limits
2,4,6-Tribromophen	ol	123			39	- 146
2-Fluorobiphenyl		97				- 120
2-Fluorophenol		80			18	- 120
Nitrobenzene-d5		96			34	- 132
p-Terphenyl-d14		121			65	- 153
Phenol-d5		84			11	- 120

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB11 SS (2-3) 040212									
Lab Sample ID:	480-18049-13				Ľ	Date Sampled: 04/02/2012 1245				
Client Matrix:	Solid	% Moisture	: 10.7		Ε	Date Received: 04/04/2012 0900				
8270C Semivolatile Organic Compounds (GC/MS)										
Analysis Method:	8270C	Analysis Batch:	480-58695		Instrument ID:	HP5973V				
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8784.D				
Dilution:	1.0	Thep Daten.	400-30230		Initial Weight/Volum					
	04/10/2012 0041				-	•				
Analysis Date:					Final Weight/Volum					
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL				
Analyte	DryWt Corrected: Y	Result (ug	g/Kg)	Qualifie	er MDL	RL				
Biphenyl		ND			12	190				
bis (2-chloroisoprop	yl) ether	ND			19	190				
2,4,5-Trichlorophene	ol	ND			40	190				
2,4,6-Trichlorophene	ol	ND			12	190				
2,4-Dichlorophenol		ND			9.7	190				
2,4-Dimethylphenol		ND			50	190				
2,4-Dinitrophenol		ND			65	360				
2,4-Dinitrotoluene		ND		*	29	190				
2,6-Dinitrotoluene		ND			45	190				
2-Chloronaphthalen	e	ND			12	190				
2-Chlorophenol	0	ND			9.4	190				
2-Methylnaphthalen	<u>م</u>	ND			2.2	190				
2-Methylphenol		ND			5.7	190				
2-Nitroaniline		ND			59	360				
					59 8.5	190				
2-Nitrophenol		ND								
3,3'-Dichlorobenzidi	ne	ND			160	190				
3-Nitroaniline		ND			43	360				
4,6-Dinitro-2-methyl		ND			64	360				
4-Bromophenyl pher		ND			59	190				
4-Chloro-3-methylph	nenol	ND			7.6	190				
4-Chloroaniline		ND			54	190				
4-Chlorophenyl pher	nyl ether	ND			3.9	190				
4-Methylphenol		ND			10	360				
4-Nitroaniline		ND			21	360				
4-Nitrophenol		ND			45	360				
Acenaphthene		ND			2.2	190				
Acenaphthylene		ND			1.5	190				
Acetophenone		ND			9.5	190				
Anthracene		ND			4.7	190				
Atrazine		ND			8.2	190				
Benzaldehyde		ND		*	20	190				
Benzo(a)anthracene	2	12		J	3.2	190				
Benzo(a)pyrene		12		J	4.5	190				
Benzo(b)fluoranther	1e	19		J	3.6	190				
Benzo(g,h,i)perylene		ND		U	2.2	190				
Benzo(k)fluoranther		ND			2.0	190				
Bis(2-chloroethoxy)r		ND			10	190				
• • •		ND			16	190				
Bis(2-chloroethyl)eth		98								
Bis(2-ethylhexyl) ph				J	60 50	190				
Butyl benzyl phthala	lie	ND			50	190				
Caprolactam		ND			80	190				
Carbazole		ND			2.1	190				
Chrysene		18		JΒ	1.9	190				
Di-n-butyl phthalate		ND			64	190				
Di-n-octyl phthalate		ND			4.3	190				
Dibenz(a,h)anthrace	ene	ND			2.2	190				

Client: CHA Inc

Client Sample ID:	SB11 SS (2-3) 040212					
Lab Sample ID: Client Matrix:	480-18049-13 Solid	% Moisture	e: 10.7			Date Sampled: 04/02/2012 1245 Date Received: 04/04/2012 0900
	82	70C Semivolatile Or	ganic Compo	unds (GC	/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58695		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8784.D
Dilution:	1.0				Initial Weight/Volur	me: +30.66 g
Analysis Date:	04/10/2012 0041				Final Weight/Volun	
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Analyte	DryWt Corrected: Y	' Result (u	g/Kg)	Qualifie	r MDL	RL
Dibenzofuran		ND			1.9	190
Diethyl phthalate		ND			5.6	190
Dimethyl phthalate		ND			4.8	190
Fluoranthene		21		J	2.7	190
Fluorene		ND			4.3	190
Hexachlorobenzene		ND			9.2	190
Hexachlorobutadien	e	ND			9.5	190
Hexachlorocyclopen	Itadiene	ND			56	190
Hexachloroethane		ND			14	190
Indeno(1,2,3-cd)pyre	ene	ND			5.1	190
Isophorone		ND			9.2	190
N-Nitrosodi-n-propyl	amine	ND			15	190
N-Nitrosodiphenylar	nine	ND		*	10	190
Naphthalene		ND			3.1	190
Nitrobenzene		ND			8.2	190
Pentachlorophenol		ND			63	360
Phenanthrene		ND			3.9	190
Phenol		ND			19	190
Pyrene		15		J	1.2	190
Surrogate		%Rec		Qualifie	r Acc	eptance Limits
2,4,6-Tribromophen	ol	136			39 -	- 146
2-Fluorobiphenyl		104			37 -	- 120
2-Fluorophenol		95				· 120
Nitrobenzene-d5		97			34 -	- 132
p-Terphenyl-d14		125				· 153
Phenol-d5		96			11 -	· 120

Analytical Data

Job Number: 480-18049-1

Client Sample ID:	SB14 SS (1-2)040212									
Lab Sample ID:	480-18049-14				D	ate Sampled: 04/02/2012 1300				
Client Matrix:	Solid	% Moisture	: 12.9		D	ate Received: 04/04/2012 0900				
8270C Semivolatile Organic Compounds (GC/MS)										
Analysis Method:	8270C	Analysis Batch:	480-58886		Instrument ID:	HP5973V				
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8816.D				
Dilution:	1.0				Initial Weight/Volume	e: +30.66 g				
Analysis Date:	04/10/2012 1408				Final Weight/Volume					
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL				
Analyte	DryWt Corrected: Y	Result (u	a/Kg)	Qualifie	er MDL	RL				
Biphenyl		ND	, ,,		12	190				
bis (2-chloroisoprop	vl) ether	ND			20	190				
2,4,5-Trichlorophen		ND			41	190				
2,4,6-Trichlorophen		ND			13	190				
2,4-Dichlorophenol		ND			9.9	190				
2,4-Dimethylphenol		ND			51	190				
2,4-Dinitrophenol		ND			66	370				
2,4-Dinitrotoluene		ND		*	29	190				
2,6-Dinitrotoluene		ND			29 46	190				
		ND			13	190				
2-Chloronaphthalen	e	ND			9.7	190				
2-Chlorophenol	-									
2-Methylnaphthalen	е	ND			2.3	190				
2-Methylphenol		ND			5.8	190				
2-Nitroaniline		ND			61	370				
2-Nitrophenol		ND			8.7	190				
3,3'-Dichlorobenzidi	ne	ND			170	190				
3-Nitroaniline		ND			44	370				
4,6-Dinitro-2-methyl		ND			65	370				
4-Bromophenyl phe	-	ND			60	190				
4-Chloro-3-methylpl	nenol	ND			7.8	190				
4-Chloroaniline		ND			56	190				
4-Chlorophenyl phe	nyl ether	ND			4.0	190				
4-Methylphenol		47		J	11	370				
4-Nitroaniline		ND			21	370				
4-Nitrophenol		ND			46	370				
Acenaphthene		ND			2.2	190				
Acenaphthylene		ND			1.6	190				
Acetophenone		ND			9.7	190				
Anthracene		ND			4.9	190				
Atrazine		ND			8.4	190				
Benzaldehyde		ND		*	21	190				
Benzo(a)anthracene	2	29		J	3.3	190				
Benzo(a)pyrene		27		J	4.6	190				
Benzo(b)fluoranther	ne	24		J	3.7	190				
Benzo(g,h,i)perylen		17		J	2.3	190				
Benzo(k)fluoranther		35		JВ	2.1	190				
Bis(2-chloroethoxy)		ND			10	190				
Bis(2-chloroethyl)et		ND			16	190				
Bis(2-ethylhexyl) ph		100		J	61	190				
Butyl benzyl phthala		ND		U	51	190				
		ND			82	190				
Caprolactam										
Carbazole		ND		ID	2.2	190				
Chrysene		34		JΒ	1.9	190				
Di-n-butyl phthalate		ND			66	190				
Di-n-octyl phthalate		ND			4.4	190				
Dibenz(a,h)anthrace	ene	ND			2.2	190				

Client: CHA Inc

Client Sample ID:	SB14 SS (1-2)040212					
Lab Sample ID:	480-18049-14					Date Sampled: 04/02/2012 1300
Client Matrix:	Solid	% Moisture	e: 12.9			Date Received: 04/04/2012 0900
	927	0C Semivolatile Or	ganic Compo	unde (CC	/MC)	
				unus (GC		
Analysis Method:	8270C	Analysis Batch:	480-58886		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8816.D
Dilution:	1.0				Initial Weight/Volu	-
Analysis Date:	04/10/2012 1408				Final Weight/Volu	me: 1 mL
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifie	r MDL	RL
Dibenzofuran		ND			2.0	190
Diethyl phthalate		ND			5.7	190
Dimethyl phthalate		ND			4.9	190
Fluoranthene		48		J	2.7	190
Fluorene		ND			4.4	190
Hexachlorobenzene		ND			9.4	190
Hexachlorobutadien	e	ND			9.7	190
Hexachlorocyclopen	ntadiene	ND			57	190
Hexachloroethane		ND			15	190
Indeno(1,2,3-cd)pyre	ene	16		J	5.2	190
Isophorone		ND			9.5	190
N-Nitrosodi-n-propyl		ND			15	190
N-Nitrosodiphenylar	nine	ND		*	10	190
Naphthalene		ND			3.2	190
Nitrobenzene		ND			8.4	190
Pentachlorophenol		ND			65	370
Phenanthrene		16		J	4.0	190
Phenol		ND			20	190
Pyrene		37		J	1.2	190
Surrogate		%Rec		Qualifie		ceptance Limits
2,4,6-Tribromophen	ol	69			39	- 146
2-Fluorobiphenyl		58				- 120
2-Fluorophenol		42				- 120
Nitrobenzene-d5		49				- 132
p-Terphenyl-d14		71			65	- 153
Phenol-d5		50			11	- 120

Analytical Data

Job Number: 480-18049-1

Client Sample ID:	SB14 SS (2-3) 040212					
Lab Sample ID:	480-18049-15				Da	te Sampled: 04/02/2012 1300
Client Matrix:	Solid	% Moisture	: 13.5		Da	te Received: 04/04/2012 0900
		8270C Semivolatile Or	ganic Compou	unds (GC	/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58695		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8786.D
Dilution:	1.0				Initial Weight/Volume:	+30.51 g
Analysis Date:	04/10/2012 0129				Final Weight/Volume:	1 mL
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Analyte	DryWt Corrected	l: Y Result (u	g/Kg)	Qualifie	r MDL	RL
Biphenyl		ND			12	190
bis (2-chloroisoprop	yl) ether	ND			20	190
2,4,5-Trichlorophen	ol	ND			42	190
2,4,6-Trichlorophen	ol	ND			13	190
2,4-Dichlorophenol		ND			10	190
2,4-Dimethylphenol		ND			52	190
2,4-Dinitrophenol		ND			67	380
2.4-Dinitrotoluene		ND		*	30	190
2,6-Dinitrotoluene		ND			47	190
2-Chloronaphthalen	IE .	ND			13	190
2-Chlorophenol		ND			9.8	190
2-Methylnaphthalen		ND			2.3	190
2-Methylphenol		ND			5.9	190
2-Nitroaniline		ND			62	380
2-Nitrophenol		ND			8.8	190
3,3'-Dichlorobenzidi	ino	ND			170	190
3-Nitroaniline		ND			44	380
	Inhonol	ND			66	380
4,6-Dinitro-2-methyl		ND			61	190
4-Bromophenyl phe	-	ND			7.9	190
4-Chloro-3-methylpl	nenoi					
4-Chloroaniline		ND			56	190
4-Chlorophenyl phe	anyi ether	ND			4.1	190
4-Methylphenol		ND			11	380
4-Nitroaniline		ND			21	380
4-Nitrophenol		ND			47	380
Acenaphthene		ND			2.3	190
Acenaphthylene		ND			1.6	190
Acetophenone		ND			9.8	190
Anthracene		ND			4.9	190
Atrazine		ND			8.5	190
Benzaldehyde		ND		*	21	190
Benzo(a)anthracene	e	15		J	3.3	190
Benzo(a)pyrene		11		J	4.6	190
Benzo(b)fluoranther		17		J	3.7	190
Benzo(g,h,i)perylen		ND			2.3	190
Benzo(k)fluoranther	ne	11		JВ	2.1	190
Bis(2-chloroethoxy)	methane	ND			10	190
Bis(2-chloroethyl)et	her	ND			17	190
Bis(2-ethylhexyl) ph	thalate	ND			62	190
Butyl benzyl phthala	ate	ND			52	190
Caprolactam		ND			83	190
Carbazole		ND			2.2	190
Chrysene		17		JВ	1.9	190
Di-n-butyl phthalate		ND			66	190
Di-n-octyl phthalate		ND			4.5	190
Dibenz(a,h)anthrace		ND			2.3	190
					2.0	

Client: CHA Inc

Client Sample ID:	SB14 SS (2-3) 040212					
Lab Sample ID: Client Matrix:	480-18049-15 Solid	% Moisture	: 13.5			Date Sampled: 04/02/2012 1300 Date Received: 04/04/2012 0900
	827	0C Semivolatile Or	ganic Compo	unds (GC	/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58695		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8786.D
Dilution:	1.0				Initial Weight/Volu	me: +30.51 g
Analysis Date:	04/10/2012 0129				Final Weight/Volur	ne: 1 mL
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifie	r MDL	RL
Dibenzofuran		ND			2.0	190
Diethyl phthalate		ND			5.8	190
Dimethyl phthalate		ND			5.0	190
Fluoranthene		17		J	2.8	190
Fluorene		ND			4.4	190
Hexachlorobenzene		ND			9.5	190
Hexachlorobutadiene		ND			9.8	190
Hexachlorocyclopent	tadiene	ND			58	190
Hexachloroethane		ND			15	190
Indeno(1,2,3-cd)pyre	ene	ND			5.3	190
Isophorone		ND			9.6	190
N-Nitrosodi-n-propyla		ND		*	15	190
N-Nitrosodiphenylam	line	ND		*	10	190
Naphthalene		ND			3.2	190
Nitrobenzene		ND			8.5	190
Pentachlorophenol		ND			66	380
Phenanthrene Phenol		8.1 ND		J	4.0	190
Pyrene		ND 14		J	20 1.2	190 190
Surrogate		%Rec		Qualifie	r Acc	ceptance Limits
2,4,6-Tribromopheno	51	128		2.44110		- 146
2-Fluorobiphenyl		102				- 120
2-Fluorophenol		90				- 120
Nitrobenzene-d5		93				- 132
p-Terphenyl-d14		119				- 153
Phenol-d5		91				- 120

Analytical Data

Job Number: 480-18049-1

Client Sample ID:	SB13 SS (1-2) 040212									
Lab Sample ID:	480-18049-16				Da	ate Sampled: 04/02/2012 1315				
Client Matrix:	Solid	% Moisture:	: 10.3		Di	ate Received: 04/04/2012 0900				
8270C Semivolatile Organic Compounds (GC/MS)										
Analysis Method:	8270C	Analysis Batch:	480-58886		Instrument ID:	HP5973V				
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8809.D				
Dilution:	10				Initial Weight/Volume	e: +30.26 g				
Analysis Date:	04/10/2012 1120				Final Weight/Volume	-				
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL				
Analyte	DryWt Corrected: Y	Result (ug	ı/Ka)	Qualifie	er MDL	RL				
Biphenyl		ND			120	1900				
bis (2-chloroisoprop	ovl) ether	ND			190	1900				
2,4,5-Trichlorophen		ND			410	1900				
2,4,6-Trichlorophen		ND			120	1900				
2,4-Dichlorophenol		ND			98	1900				
2,4-Dimethylphenol		ND			500	1900				
		ND			650	3600				
2,4-Dinitrophenol				*						
2,4-Dinitrotoluene		ND			290	1900				
2,6-Dinitrotoluene		ND			460	1900				
2-Chloronaphthaler	le	ND			130	1900				
2-Chlorophenol		ND			95	1900				
2-Methylnaphthaler	ne	ND			23	1900				
2-Methylphenol		ND			57	1900				
2-Nitroaniline		ND			600	3600				
2-Nitrophenol		ND			85	1900				
3,3'-Dichlorobenzid	ine	ND			1600	1900				
3-Nitroaniline		ND			430	3600				
4,6-Dinitro-2-methy		ND			640	3600				
4-Bromophenyl phe	enyl ether	ND			590	1900				
4-Chloro-3-methylp	henol	ND			77	1900				
4-Chloroaniline		ND			550	1900				
4-Chlorophenyl phe	enyl ether	ND			40	1900				
4-Methylphenol		ND			100	3600				
4-Nitroaniline		ND			210	3600				
4-Nitrophenol		ND			450	3600				
Acenaphthene		ND			22	1900				
Acenaphthylene		ND			15	1900				
Acetophenone		ND			96	1900				
Anthracene		ND			48	1900				
Atrazine		ND			83	1900				
Benzaldehyde		ND		*	200	1900				
Benzo(a)anthracen	8	76		J	32	1900				
Benzo(a)pyrene	<u> </u>	ND		0	45	1900				
Benzo(b)fluoranthe	ne	ND			45 36	1900				
Benzo(g,h,i)perylen		ND			22	1900				
					22					
Benzo(k)fluoranther		ND ND			100	1900				
Bis(2-chloroethoxy)						1900				
Bis(2-chloroethyl)et		ND			160	1900				
Bis(2-ethylhexyl) ph		ND			600	1900				
Butyl benzyl phthala	ate	ND			500	1900				
Caprolactam		ND			810	1900				
Carbazole		ND			22	1900				
Chrysene		52		JΒ	19	1900				
Di-n-butyl phthalate		ND			640	1900				
Di-n-octyl phthalate		ND			44	1900				
Dibenz(a,h)anthrac	ene	ND			22	1900				

Client: CHA Inc

Client Sample ID:	SB13 SS (1-2) 040212					
Lab Sample ID: Client Matrix:	480-18049-16 Solid	% Moisture	e: 10.3			ate Sampled: 04/02/2012 1315 ate Received: 04/04/2012 0900
		,,			_	
	82	70C Semivolatile O	ganic Compo	unds (GC/	MS)	
Analysis Method:	8270C	Analysis Batch:	480-58886		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8809.D
Dilution:	10				Initial Weight/Volume	e: +30.26 g
Analysis Date:	04/10/2012 1120				Final Weight/Volume	e: 1 mL
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Analyte	DryWt Corrected: \	Result (u	g/Kg)	Qualifier	MDL	RL
Dibenzofuran		ND			19	1900
Diethyl phthalate		ND			56	1900
Dimethyl phthalate		ND			49	1900
Fluoranthene		ND			27	1900
Fluorene		ND			43	1900
Hexachlorobenzene	9	ND			93	1900
Hexachlorobutadier	ne	ND			95	1900
Hexachlorocyclope	ntadiene	ND			560	1900
Hexachloroethane		ND			140	1900
Indeno(1,2,3-cd)pyr	ene	ND			52	1900
Isophorone		ND			93	1900
N-Nitrosodi-n-propy	lamine	ND			150	1900
N-Nitrosodiphenyla	mine	ND		*	100	1900
Naphthalene		ND			31	1900
Nitrobenzene		ND			83	1900
Pentachlorophenol		ND			640	3600
Phenanthrene		ND			39	1900
Phenol		ND			200	1900
Pyrene		ND			12	1900
Surrogate		%Rec		Qualifier	Accep	ptance Limits
2,4,6-Tribromopher	ol	89			39 - 1	46
2-Fluorobiphenyl		91			37 - 1	20
2-Fluorophenol		77			18 - 1	20
Nitrobenzene-d5		74			34 - 1	32
p-Terphenyl-d14		122			65 - 1	53
Phenol-d5		79			11 - 1	20

Analytical Data

Job Number: 480-18049-1

Client Sample ID:	SB13 SS (2-3) 040212					
Lab Sample ID:	480-18049-17				I	Date Sampled: 04/02/2012 1315
Client Matrix:	Solid	% Moisture	: 13.6			Date Received: 04/04/2012 0900
	82	70C Semivolatile Or	ganic Compou	unds (GC	C/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58886		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8810.D
Dilution:	10				Initial Weight/Volun	ne: +30.43 g
Analysis Date:	04/10/2012 1144				Final Weight/Volum	
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Analyte	DryWt Corrected: \	Y Result (u	g/Kg)	Qualifie	er MDL	RL
Biphenyl		ND	/		120	1900
bis (2-chloroisoprop	oyl) ether	ND			200	1900
2,4,5-Trichlorophen		ND			420	1900
2,4,6-Trichlorophen		ND			130	1900
2,4-Dichlorophenol		ND			100	1900
2,4-Dimethylphenol		ND			520	1900
2,4-Dinitrophenol		ND			670	3800
2.4-Dinitrotoluene		ND		*	300	1900
2,6-Dinitrotoluene		ND			470	1900
		ND			130	1900
2-Chloronaphthalen	le	ND			98	1900
2-Chlorophenol						
2-Methylnaphthalen	le	ND			23	1900
2-Methylphenol		ND			59	1900
2-Nitroaniline		ND			620	3800
2-Nitrophenol		ND			88	1900
3,3'-Dichlorobenzidi	ine	ND			1700	1900
3-Nitroaniline		ND			440	3800
4,6-Dinitro-2-methy	lphenol	ND			660	3800
4-Bromophenyl phe	nyl ether	ND			610	1900
4-Chloro-3-methylpl	henol	ND			79	1900
4-Chloroaniline		ND			570	1900
4-Chlorophenyl phe	nyl ether	ND			41	1900
4-Methylphenol	-	ND			110	3800
4-Nitroaniline		ND			220	3800
4-Nitrophenol		ND			470	3800
Acenaphthene		ND			23	1900
Acenaphthylene		ND			16	1900
Acetophenone		ND			99	1900
Anthracene		ND			49	1900
Atrazine		ND			49 86	1900
				*		
Benzaldehyde	_	ND			210	1900
Benzo(a)anthracene	e de la constante de	140		J	33	1900
Benzo(a)pyrene		69		J	46	1900
Benzo(b)fluoranthe		ND			37	1900
Benzo(g,h,i)perylen		ND			23	1900
Benzo(k)fluoranther		ND			21	1900
Bis(2-chloroethoxy)		ND			100	1900
Bis(2-chloroethyl)et		ND			170	1900
Bis(2-ethylhexyl) ph	thalate	ND			620	1900
Butyl benzyl phthala	ate	ND			520	1900
Caprolactam		ND			830	1900
Carbazole		ND			22	1900
Chrysene		190		JВ	19	1900
Di-n-butyl phthalate		ND			670	1900
Di-n-octyl phthalate		ND			45	1900
Dibenz(a,h)anthrace		ND			23	1900
		ND .			20	1900

Client: CHA Inc

Client Sample ID:	SB13 SS (2-3) 040212					
Lab Sample ID:	480-18049-17					Date Sampled: 04/02/2012 1315
Client Matrix:	Solid	% Moisture	: 13.6			Date Received: 04/04/2012 0900
	827	0C Semivolatile Or	ganic Compo	unds (GC	/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58886		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8810.D
Dilution:	10				Initial Weight/Volur	me: +30.43 g
Analysis Date:	04/10/2012 1144				Final Weight/Volum	ne: 1 mL
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifie	r MDL	RL
Dibenzofuran	-	ND			20	1900
Diethyl phthalate		ND			58	1900
Dimethyl phthalate		ND			50	1900
Fluoranthene		ND			28	1900
Fluorene		ND			44	1900
Hexachlorobenzene		ND			96	1900
Hexachlorobutadien	e	ND			99	1900
Hexachlorocycloper	itadiene	ND			580	1900
Hexachloroethane		ND			150	1900
Indeno(1,2,3-cd)pyr	ene	ND			53	1900
Isophorone		ND			96	1900
N-Nitrosodi-n-propy		ND			150	1900
N-Nitrosodiphenylar	nine	ND		*	110	1900
Naphthalene		ND			32	1900
Nitrobenzene		ND			85	1900
Pentachlorophenol		ND			660	3800
Phenanthrene		270		J	40	1900
Phenol		ND			200	1900
Pyrene		260		J	12	1900
Surrogate		%Rec		Qualifie		eptance Limits
2,4,6-Tribromophen	ol	74				- 146
2-Fluorobiphenyl		88				- 120
2-Fluorophenol		83				- 120
Nitrobenzene-d5		70				- 132
p-Terphenyl-d14		121				- 153
Phenol-d5		79			11 -	- 120

Analytical Data

Job Number: 480-18049-1

Client Sample ID:	SB08 SS (1-2) 040212					
Lab Sample ID:	480-18049-18					Date Sampled: 04/02/2012 1330
Client Matrix:	Solid	% Moisture:	26.2			Date Received: 04/04/2012 0900
	827	0C Semivolatile Org	janic Compo	unds (GC	:/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58886		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8811.D
Dilution:	20				Initial Weight/Volur	me: +30.14 g
Analysis Date:	04/10/2012 1208				Final Weight/Volum	-
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Analyte	DryWt Corrected: Y	Result (ug	/Kg)	Qualifie	r MDL	RL
Biphenyl	,	ND	0,		2800	46000
bis (2-chloroisoprop	ovl) ether	ND			4800	46000
2,4,5-Trichlorophen		ND			9900	46000
2,4,6-Trichlorophen		ND			3000	46000
2,4-Dichlorophenol	-	ND			2400	46000
2,4-Dimethylphenol		ND			12000	46000
2,4-Dinitrophenol		ND			12000	89000
2,4-Dinitrotoluene		ND		*	7000	46000
					11000	
2,6-Dinitrotoluene		ND				46000
2-Chloronaphthalen	le	ND			3100	46000
2-Chlorophenol		ND			2300	46000
2-Methylnaphthalen	le	ND			550	46000
2-Methylphenol		ND			1400	46000
2-Nitroaniline		ND			15000	89000
2-Nitrophenol		ND			2100	46000
3,3'-Dichlorobenzidi	ine	ND			40000	46000
3-Nitroaniline		ND			10000	89000
4,6-Dinitro-2-methy	lphenol	ND			16000	89000
4-Bromophenyl phe	nyl ether	ND			14000	46000
4-Chloro-3-methylpl	henol	ND			1900	46000
4-Chloroaniline		ND			13000	46000
4-Chlorophenyl phe	nyl ether	ND			970	46000
4-Methylphenol		ND			2500	89000
4-Nitroaniline		ND			5100	89000
4-Nitrophenol		ND			11000	89000
Acenaphthene		ND			540	46000
Acenaphthylene		ND			370	46000
Acetophenone		ND			2300	46000
Anthracene		ND			1200	46000
Atrazine		ND		*	2000	46000
Benzaldehyde	_	ND			5000	46000
Benzo(a)anthracene	e de la companya de l	3200		J	790	46000
Benzo(a)pyrene		2200		J	1100	46000
Benzo(b)fluoranthe		ND			880	46000
Benzo(g,h,i)perylen		ND			550	46000
Benzo(k)fluoranther		ND			500	46000
Bis(2-chloroethoxy)		ND			2500	46000
Bis(2-chloroethyl)et		ND			3900	46000
Bis(2-ethylhexyl) ph	thalate	ND			15000	46000
Butyl benzyl phthala	ate	ND			12000	46000
Caprolactam		ND			20000	46000
Carbazole		ND			530	46000
Chrysene		3700		JВ	460	46000
Di-n-butyl phthalate		ND			16000	46000
Di-n-octyl phthalate		ND			1100	46000
Dibenz(a,h)anthrace		ND			540	46000
		ND			040	+0000

Client: CHA Inc

Client Sample ID:	SB08 SS (1-2) 040212					
Lab Sample ID:	480-18049-18					Date Sampled: 04/02/2012 133
Client Matrix:	Solid	% Moisture	: 26.2			Date Received: 04/04/2012 090
	827	0C Semivolatile Org	ganic Compo	unds (GC/	MS)	
Analysis Method:	8270C	Analysis Batch:	480-58886		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8811.D
Dilution:	20				Initial Weight/Volu	me: +30.14 g
Analysis Date:	04/10/2012 1208				Final Weight/Volur	me: 10 mL
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifier	MDL	RL
Dibenzofuran		ND			470	46000
Diethyl phthalate		ND			1400	46000
Dimethyl phthalate		ND			1200	46000
Fluoranthene		4400		J	660	46000
Fluorene		ND			1000	46000
Hexachlorobenzene		ND			2300	46000
Hexachlorobutadier	ie	ND			2300	46000
Hexachlorocycloper	ntadiene	ND			14000	46000
Hexachloroethane		ND			3500	46000
Indeno(1,2,3-cd)pyr	ene	ND			1300	46000
Isophorone		ND			2300	46000
N-Nitrosodi-n-propy		ND			3600	46000
N-Nitrosodiphenylar	mine	ND		*	2500	46000
Naphthalene		ND			760	46000
Nitrobenzene		ND			2000	46000
Pentachlorophenol		ND			16000	89000
Phenanthrene		ND			960	46000
Phenol		ND			4800	46000
Pyrene		4600		J	290	46000
Surrogate		%Rec		Qualifier	- Acc	ceptance Limits
2,4,6-Tribromophen	ol	0		Х	39	- 146
2-Fluorobiphenyl		64			37	- 120
2-Fluorophenol		0		Х	18	- 120
Nitrobenzene-d5		0		Х	34	- 132
p-Terphenyl-d14		0		Х	65	- 153
Phenol-d5		0		Х	11	- 120

Client: CHA Inc

Analytical Data

Job Number: 480-18049-1

Client Sample ID:	SB08 SS (2-3) 040212					
Lab Sample ID:	480-18049-19				Da	ate Sampled: 04/02/2012 1330
Client Matrix:	Solid	% Moisture	: 16.8		D	ate Received: 04/04/2012 0900
	827	OC Semivolatile Org	ganic Compou	unds (GC	:/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58886		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8812.D
Dilution:	5.0				Initial Weight/Volume	e: +30.46 g
Analysis Date:	04/10/2012 1231				Final Weight/Volume	: 1 mL
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifie	er MDL	RL
Biphenyl		ND			62	1000
bis (2-chloroisoprop	yl) ether	ND			100	1000
2,4,5-Trichlorophen	ol	ND			220	1000
2,4,6-Trichlorophen		ND			66	1000
2,4-Dichlorophenol		ND			52	1000
2,4-Dimethylphenol		ND			270	1000
2,4-Dinitrophenol		ND			350	2000
2,4-Dinitrotoluene		ND		*	150	1000
2,6-Dinitrotoluene		ND			240	1000
2-Chloronaphthaler		ND			67	1000
		ND			51	1000
2-Chlorophenol	_					
2-Methylnaphthaler	le	ND			12	1000
2-Methylphenol		ND			31	1000
2-Nitroaniline		ND			320	2000
2-Nitrophenol		ND			46	1000
3,3'-Dichlorobenzid	ine	ND			880	1000
3-Nitroaniline		ND			230	2000
4,6-Dinitro-2-methy	lphenol	ND			340	2000
4-Bromophenyl phe	nyl ether	ND			320	1000
4-Chloro-3-methylp	henol	ND			41	1000
4-Chloroaniline		ND			290	1000
4-Chlorophenyl phe	nyl ether	ND			21	1000
4-Methylphenol	-	ND			56	2000
4-Nitroaniline		ND			110	2000
4-Nitrophenol		ND			240	2000
Acenaphthene		ND			12	1000
Acenaphthylene		ND			8.2	1000
Acetophenone		ND			51	1000
Anthracene		ND			26	1000
Atrazine		ND			44	1000
		ND		*	110	1000
Benzaldehyde	2					
Benzo(a)anthracene	E	68		J	17	1000
Benzo(a)pyrene		110		J	24	1000
Benzo(b)fluoranthe		110		J	19	1000
Benzo(g,h,i)perylen		ND			12	1000
Benzo(k)fluoranthe		48		JВ	11	1000
Bis(2-chloroethoxy)		ND			54	1000
Bis(2-chloroethyl)et		ND			86	1000
Bis(2-ethylhexyl) ph		ND			320	1000
Butyl benzyl phthala	ate	ND			270	1000
Caprolactam		ND			430	1000
Carbazole		ND			12	1000
Chrysene		86		JВ	10	1000
Di-n-butyl phthalate		ND			350	1000
Di-n-octyl phthalate		ND			23	1000
Dibenz(a,h)anthrac		ND			12	1000
(,.)						

Client: CHA Inc

Client Sample ID:	SB08 SS (2-3) 040212					
Lab Sample ID: Client Matrix:	480-18049-19 Solid	% Moisture	: 16.8			ate Sampled: 04/02/2012 1330 ate Received: 04/04/2012 0900
	82	70C Semivolatile Or	ganic Compo	unds (GC/	MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270C 3550B 5.0 04/10/2012 1231 04/05/2012 0828	Analysis Batch: Prep Batch:	480-58886 480-58238		Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume Injection Volume:	•
Analyte	DryWt Corrected: \	Result (ug	g/Kg)	Qualifier	MDL	RL
Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadier Hexachlorocycloper Hexachlorocycloper Hexachlorocycloper Hexachlorocycloper Nexachlorocycloper	e ne ntadiene ene lamine	ND ND ND 63 ND ND ND ND ND ND ND ND ND ND ND ND ND		J J *	10 30 26 14 23 50 51 300 77 28 50 79 55 17 44 340 21 110 6.5	1000 1000 1000 1000 1000 1000 1000 100
Surrogate 2,4,6-Tribromopher 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 p-Terphenyl-d14 Phenol-d5	ol	%Rec 88 82 63 66 102 70		Qualifier	Acce 39 - 1 37 - 1 18 - 1 34 - 1 65 - 1 11 - 1	20 20 32 53

Client: CHA Inc

Analytical Data

Job Number: 480-18049-1

Client Sample ID:	SB12 SS (0-1) 040212					
Lab Sample ID:	480-18049-20				Da	ate Sampled: 04/02/2012 1400
Client Matrix:	Solid	% Moisture	e: 12.0			ate Received: 04/04/2012 0900
	82	270C Semivolatile Or	ganic Compo	unds (GC	/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58886		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8813.D
Dilution:	5.0				Initial Weight/Volume	e: +30.29 g
Analysis Date:	04/10/2012 1256				Final Weight/Volume	=
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifie	r MDL	RL
Biphenyl		ND			59	960
bis (2-chloroisoprop	oyl) ether	ND			99	960
2,4,5-Trichlorophen	ol	ND			210	960
2,4,6-Trichlorophen	ol	ND			63	960
2,4-Dichlorophenol		ND			50	960
2,4-Dimethylphenol		ND			260	960
2,4-Dinitrophenol		ND			330	1900
2,4-Dinitrotoluene		ND		*	150	960
2,6-Dinitrotoluene		ND			230	960
2-Chloronaphthalen	e	ND			64	960
2-Chlorophenol		ND			48	960
2-Methylnaphthalen	ie	ND			12	960
2-Methylphenol		ND			29	960
2-Nitroaniline		ND			300	1900
2-Nitrophenol		ND			43	960
3,3'-Dichlorobenzidi	ine	ND			830	960
3-Nitroaniline		ND			220	1900
4,6-Dinitro-2-methyl	Inhenol	ND			330	1900
4-Bromophenyl phe		ND			300	960
4-Chloro-3-methylpl	-	ND			39	960
4-Chloroaniline		ND			280	960
4-Chlorophenyl phe	nvl ether	ND			200	960
4-Methylphenol		ND			53	1900
4-Nitroaniline		ND			110	1900
4-Nitrophenol		ND			230	1900
Acenaphthene		ND			11	960
Acenaphthylene		ND			7.8	960
Acetophenone		ND			49	960
Anthracene		ND			49 24	960
Atrazine		ND			42	960
Benzaldehyde		ND		*	100	960
Benzo(a)anthracene	۵	63		J	16	960
Benzo(a)pyrene	~	ND		0	23	960
Benzo(b)fluoranther	ne	ND			18	960
Benzo(g,h,i)perylen		ND			18	960
Benzo(k)fluoranther		ND			10	960
Bis(2-chloroethoxy)		ND			52	960
Bis(2-chloroethyl)et		ND			82	960
Bis(2-ethylhexyl) ph		ND			310	960
		ND			250	960
Butyl benzyl phthala		ND			250 410	960 960
Caprolactam						
Carbazole		ND 72			11	960
Chrysene		72 ND		JΒ	9.5	960
Di-n-butyl phthalate		ND			330	960
Di-n-octyl phthalate		ND			22	960
Dibenz(a,h)anthrace	ene	ND			11	960

Client: CHA Inc

Client Sample ID:	SB12 SS (0-1) 040212					
Lab Sample ID: Client Matrix:	480-18049-20 Solid	% Moisture	e: 12.0			Date Sampled: 04/02/2012 1400 Date Received: 04/04/2012 0900
	82	70C Semivolatile Or	ganic Compo	unds (GC	/MS)	
Analysia Mathady						
Analysis Method:	8270C	Analysis Batch:	480-58886		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8813.D
Dilution:	5.0				Initial Weight/Volu	-
Analysis Date:	04/10/2012 1256				Final Weight/Volur	
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifie	r MDL	RL
Dibenzofuran		ND			9.9	960
Diethyl phthalate		ND			29	960
Dimethyl phthalate		ND			25	960
Fluoranthene		69		J	14	960
Fluorene		ND			22	960
Hexachlorobenzene	9	ND			47	960
Hexachlorobutadier	ne	ND			49	960
Hexachlorocycloper	ntadiene	ND			290	960
Hexachloroethane		ND			73	960
Indeno(1,2,3-cd)pyr	ene	ND			26	960
Isophorone		ND			47	960
N-Nitrosodi-n-propy	lamine	ND			75	960
N-Nitrosodiphenylar	mine	ND		*	52	960
Naphthalene		ND			16	960
Nitrobenzene		ND			42	960
Pentachlorophenol		ND			330	1900
Phenanthrene		ND			20	960
Phenol		ND			100	960
Pyrene		ND			6.1	960
Surrogate		%Rec		Qualifie	r Aco	ceptance Limits
2,4,6-Tribromophen	ol	73			39	- 146
2-Fluorobiphenyl		82			37	- 120
2-Fluorophenol		69			18	- 120
Nitrobenzene-d5		67			34	- 132
p-Terphenyl-d14		98			65	- 153
Phenol-d5		70			11	- 120

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB12 SS (2-3)040212									
Lab Sample ID:	480-18049-21					Date Sampled: 04/02/2012 1400				
Client Matrix:	Solid	% Moisture	7.9			Date Received: 04/04/2012 0900				
8270C Semivolatile Organic Compounds (GC/MS)										
Analysis Method:	8270C	Analysis Batch:	480-58886		Instrument ID:	HP5973V				
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8814.D				
Dilution:	20	•			Initial Weight/Volu	me: +30.19 g				
Analysis Date:	04/10/2012 1320				Final Weight/Volur					
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL				
				Qualifia	-					
Analyte Biphenyl	DryWt Corrected: Y	Result (ug ND	j/Kg)	Qualifie	er MDL 230	RL 3700				
bis (2-chloroisoprop	vl) ether	ND			380	3700				
2,4,5-Trichlorophen		ND			790	3700				
		ND			240	3700				
2,4,6-Trichlorophene	0I	ND			190	3700				
2,4-Dichlorophenol										
2,4-Dimethylphenol		ND			980	3700				
2,4-Dinitrophenol		ND			1300	7100				
2,4-Dinitrotoluene		ND		*	560	3700				
2,6-Dinitrotoluene		ND			890	3700				
2-Chloronaphthalen	e	ND			240	3700				
2-Chlorophenol		ND			190	3700				
2-Methylnaphthalen	e	860		J	44	3700				
2-Methylphenol		ND			110	3700				
2-Nitroaniline		ND			1200	7100				
2-Nitrophenol		ND			170	3700				
3,3'-Dichlorobenzidi	ne	ND			3200	3700				
3-Nitroaniline		ND			840	7100				
4,6-Dinitro-2-methyl	phenol	ND			1300	7100				
4-Bromophenyl phe		ND			1200	3700				
4-Chloro-3-methylpl	-	ND			150	3700				
4-Chloroaniline		ND			1100	3700				
4-Chlorophenyl phe	nvl ether	ND			78	3700				
4-Methylphenol		ND			200	7100				
4-Nitroaniline		ND			410	7100				
		ND			880	7100				
4-Nitrophenol		200			43	3700				
Acenaphthene				J						
Acenaphthylene		ND			30	3700				
Acetophenone		2800		J	190	3700				
Anthracene		420		J	93	3700				
Atrazine		ND			160	3700				
Benzaldehyde		ND		*	400	3700				
Benzo(a)anthracene	e	930		J	63	3700				
Benzo(a)pyrene		590		J	88	3700				
Benzo(b)fluoranther		710		J	71	3700				
Benzo(g,h,i)perylen	e	190		J	44	3700				
Benzo(k)fluoranther		440		JВ	40	3700				
Bis(2-chloroethoxy)	methane	ND			200	3700				
Bis(2-chloroethyl)et	her	ND			310	3700				
Bis(2-ethylhexyl) ph		ND			1200	3700				
Butyl benzyl phthala		ND			980	3700				
Caprolactam		ND			1600	3700				
Carbazole		ND			42	3700				
Chrysene		750		JВ	36	3700				
Di-n-butyl phthalate		ND			1300	3700				
Di-n-octyl phthalate		ND			85	3700				
		2200			43	3700				
Dibenz(a,h)anthrace	5116	2200		J	40	3700				

Client: CHA Inc

Client Sample ID:	SB12 SS (2-3)040212	2				
Lab Sample ID:	480-18049-21				•	ed: 04/02/2012 1400
Client Matrix:	Solid	% Moisture:	7.9		Date Receiv	red: 04/04/2012 0900
		8270C Semivolatile Org	anic Compound	ds (GC/MS)		
Analysis Method:	8270C	Analysis Batch:	480-58886	Instrument ID	HP5	5973V
Prep Method:	3550B	Prep Batch:	480-58238	Lab File ID:	V88	14.D
Dilution:	20			Initial Weight/	Volume: +30	.19 g
Analysis Date:	04/10/2012 1320			Final Weight/		nL
Prep Date:	04/05/2012 0828			Injection Volu		ıL
Analyte	DryWt Correct	ed: Y Result (ug/	(Ka) C	Qualifier MD	l	RL
Dibenzofuran		ND	3/	38		3700
Diethyl phthalate		ND		110		3700
Dimethyl phthalate		ND		95		3700
Fluoranthene		1600	J	53		3700
Fluorene		ND		84		3700
Hexachlorobenzene		ND		180		3700
Hexachlorobutadien	e	ND		190		3700
Hexachlorocycloper	Itadiene	ND		110	0	3700
Hexachloroethane		ND		280		3700
Indeno(1,2,3-cd)pyre	ene	300	J	100		3700
Isophorone		ND		180		3700
N-Nitrosodi-n-propyl		ND		290		3700
N-Nitrosodiphenylar	nine	ND	*	200		3700
Naphthalene		5600		61		3700
Nitrobenzene		ND		160		3700
Pentachlorophenol		ND		120	0	7100
Phenanthrene		1200	J			3700
Phenol		ND		380		3700
Pyrene		1200	J	24		3700
Surrogate		%Rec	C	Qualifier	Acceptance Lim	iits
2,4,6-Tribromophen	ol	70			39 - 146	
2-Fluorobiphenyl		81			37 - 120	
2-Fluorophenol		64			18 - 120	
Nitrobenzene-d5		62			34 - 132	
p-Terphenyl-d14		95			65 - 153	
Phenol-d5		68			11 - 120	

Client: CHA Inc

Analytical Data

Job Number: 480-18049-1

Client Sample ID:	SB09 SS (1-2) 040212					
Lab Sample ID:	480-18049-22				[Date Sampled: 04/02/2012 141
Client Matrix:	Solid	% Moisture	: 15.2		[Date Received: 04/04/2012 090
	82	270C Semivolatile Or	ganic Compou	unds (GC	C/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58886		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8815.D
Dilution:	20				Initial Weight/Volum	ne: +30.24 g
Analysis Date:	04/10/2012 1344				Final Weight/Volum	•
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Analyte	DryWt Corrected:	Y Result (u	n/Ka)	Qualifie	er MDL	RL
Biphenyl	2.,	330		J	250	4000
bis (2-chloroisoprop	ovl) ether	ND		0	410	4000
2,4,5-Trichlorophen		ND			860	4000
2,4,6-Trichlorophen		ND			260	4000
2,4-Dichlorophenol	-	ND			210	4000
2,4-Dimethylphenol		ND			1100	4000
2,4-Dinitrophenol		ND			1400	7700
		ND		*	610	4000
2,4-Dinitrotoluene		ND ND			970	
2,6-Dinitrotoluene						4000
2-Chloronaphthalen	le	ND			260	4000
2-Chlorophenol		ND			200	4000
2-Methylnaphthalen	le	ND			48	4000
2-Methylphenol		ND			120	4000
2-Nitroaniline		ND			1300	7700
2-Nitrophenol		ND			180	4000
3,3'-Dichlorobenzidi	ine	ND			3500	4000
3-Nitroaniline		ND			910	7700
4,6-Dinitro-2-methyl	lphenol	ND			1400	7700
4-Bromophenyl phe	nyl ether	ND			1300	4000
4-Chloro-3-methylpl	henol	ND			160	4000
4-Chloroaniline		ND			1200	4000
4-Chlorophenyl phe	nyl ether	ND			84	4000
4-Methylphenol	-	ND			220	7700
4-Nitroaniline		ND			440	7700
4-Nitrophenol		ND			960	7700
Acenaphthene		ND			46	4000
Acenaphthylene		ND			32	4000
Acetophenone		ND			200	4000
Anthracene		290		J	100	4000
Atrazine		ND		•	180	4000
Benzaldehyde		ND		*	430	4000
Benzo(a)anthracene	e	680		J	68	4000
Benzo(a)pyrene	<u> </u>	380		J	95	4000
Benzo(b)fluoranther	ne	410		J	95 77	4000
Benzo(g,h,i)perylen		ND		0	47	4000
Benzo(k)fluoranther		520		JB	47 43	4000
. ,		520 ND		JD	43 210	
Bis(2-chloroethoxy)						4000
Bis(2-chloroethyl)et		ND			340	4000
Bis(2-ethylhexyl) ph		ND			1300	4000
Butyl benzyl phthala	ate	ND			1100	4000
Caprolactam		ND			1700	4000
Carbazole		ND			46	4000
Chrysene				JВ		
Di-n-butyl phthalate						4000
Di-n-octyl phthalate		ND			92	4000
Dibenz(a,h)anthrace	ene	ND			46	4000
Di-n-butyl phthalate Di-n-octyl phthalate				JΒ	39 1400 92 46	4000

Client: CHA Inc

Client Sample ID:	SB09 SS (1-2) 040212					
Lab Sample ID: Client Matrix:	480-18049-22 Solid	% Moisture	e: 15.2			Date Sampled: 04/02/2012 1415 Date Received: 04/04/2012 0900
	82	270C Semivolatile Or	ganic Compo	unds (GC	/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58886		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58238		Lab File ID:	V8815.D
Dilution:	20				Initial Weight/Volum	ne: +30.24 g
Analysis Date:	04/10/2012 1344				Final Weight/Volum	ie: 1 mL
Prep Date:	04/05/2012 0828				Injection Volume:	1 uL
Analyte	DryWt Corrected: `	Y Result (u	g/Kg)	Qualifie	r MDL	RL
Dibenzofuran		ND			41	4000
Diethyl phthalate		ND			120	4000
Dimethyl phthalate		ND			100	4000
Fluoranthene		1200		J	57	4000
Fluorene		ND			91	4000
Hexachlorobenzene	9	ND			200	4000
Hexachlorobutadier	ne	ND			200	4000
Hexachlorocycloper	ntadiene	ND			1200	4000
Hexachloroethane		ND			310	4000
Indeno(1,2,3-cd)pyr	rene	ND			110	4000
Isophorone		ND			200	4000
N-Nitrosodi-n-propy	lamine	ND			310	4000
N-Nitrosodiphenyla	mine	ND		*	220	4000
Naphthalene		ND			66	4000
Nitrobenzene		ND			180	4000
Pentachlorophenol		ND			1400	7700
Phenanthrene		1200		J	83	4000
Phenol		ND			420	4000
Pyrene		910		J	26	4000
Surrogate		%Rec		Qualifie		eptance Limits
2,4,6-Tribromophen	ol	42			39 -	146
2-Fluorobiphenyl		78			37 -	
2-Fluorophenol		58			18 -	120
Nitrobenzene-d5		53			34 -	
p-Terphenyl-d14		94			65 -	
Phenol-d5		60			11 -	120

Client: CHA Inc

Job Number: 480-18049-1

Client Sample ID:	SB09 SS (3-4) 040212								
Lab Sample ID:	480-18049-23					Date Sampled: 04/02/2012 141			
Client Matrix:	Solid	% Moisture	: 12.4			Date Received: 04/04/2012 090			
8270C Semivolatile Organic Compounds (GC/MS)									
Analysis Method:	8270C	Analysis Batch:	480-58452		Instrument ID:	HP5973V			
Prep Method:	3550B	Prep Batch:	480-58249		Lab File ID:	V8615.D			
Dilution:	10	Trop Daton.	400 00240		Initial Weight/Volu				
Analysis Date:	04/06/2012 1608				Final Weight/Volu	-			
-	04/05/2012 0837				-				
Prep Date:	04/05/2012 0037				Injection Volume:	1 uL			
Analyte	DryWt Corrected: Y		g/Kg)	Qualifie		RL			
Biphenyl		ND			120	1900			
bis (2-chloroisoprop		ND			200	1900			
2,4,5-Trichlorophene		ND			420	1900			
2,4,6-Trichlorophene	ol	ND			130	1900			
2,4-Dichlorophenol		ND			100	1900			
2,4-Dimethylphenol		ND			520	1900			
2,4-Dinitrophenol		ND			670	3700			
2,4-Dinitrotoluene		ND			300	1900			
2,6-Dinitrotoluene		ND			470	1900			
2-Chloronaphthalen	e	ND			130	1900			
2-Chlorophenol		ND			97	1900			
2-Methylnaphthalen	e	ND			23	1900			
2-Methylphenol	-	ND			59	1900			
2-Nitroaniline		ND			610	3700			
2-Nitrophenol		ND			87	1900			
3,3'-Dichlorobenzidi	ne	ND			1700	1900			
3-Nitroaniline		ND			440	3700			
4,6-Dinitro-2-methyl	nhenol	ND			660	3700			
4-Bromophenyl phei		ND			610	1900			
4-Chloro-3-methylph	-	ND			78	1900			
4-Chloroaniline	lenoi	ND			560	1900			
4-Chlorophenyl pher	nyl othor	ND			41	1900			
	nyi ether								
4-Methylphenol		ND			110	3700			
4-Nitroaniline		ND			210	3700			
4-Nitrophenol		ND			460	3700			
Acenaphthene		ND			22	1900			
Acenaphthylene		ND			16	1900			
Acetophenone		ND			98	1900			
Anthracene		ND			49	1900			
Atrazine		ND			85	1900			
Benzaldehyde		ND			210	1900			
Benzo(a)anthracene	9	47		J	33	1900			
Benzo(a)pyrene		ND			46	1900			
Benzo(b)fluoranther	ne	ND			37	1900			
Benzo(g,h,i)perylene	e	ND			23	1900			
Benzo(k)fluoranthen		ND			21	1900			
Bis(2-chloroethoxy)r	nethane	ND			100	1900			
Bis(2-chloroethyl)eth	ner	ND			160	1900			
Bis(2-ethylhexyl) phi	thalate	1100		J	610	1900			
Butyl benzyl phthala		ND			510	1900			
Caprolactam		ND			830	1900			
Carbazole		ND			22	1900			
Chrysene		ND			19	1900			
Di-n-butyl phthalate		ND			660	1900			
Di-n-octyl phthalate		ND			45	1900			
Dibenz(a,h)anthrace	ene	ND			22	1900			

Client: CHA Inc

Client Sample ID:	SB09 SS (3-4) 040212					
Lab Sample ID:	480-18049-23		40.4			ate Sampled: 04/02/2012 1415
Client Matrix:	Solid	% Moisture	e: 12.4		D	ate Received: 04/04/2012 0900
	82	70C Semivolatile Or	ganic Compo	unds (GC/N	IS)	
Analysis Method:	8270C	Analysis Batch:	480-58452	li	nstrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58249	L	ab File ID:	V8615.D
Dilution:	10			li	nitial Weight/Volume	e: +30.31 g
Analysis Date:	04/06/2012 1608			F	inal Weight/Volume	e: 1 mL
Prep Date:	04/05/2012 0837				njection Volume:	1 uL
Analyte	DryWt Corrected: \	Result (u	g/Kg)	Qualifier	MDL	RL
Dibenzofuran		ND			20	1900
Diethyl phthalate		ND			58	1900
Dimethyl phthalate		ND			50	1900
Fluoranthene		ND			28	1900
Fluorene		ND			44	1900
Hexachlorobenzene)	ND			95	1900
Hexachlorobutadier	ne	ND			98	1900
Hexachlorocycloper	ntadiene	ND			580	1900
Hexachloroethane		ND			150	1900
Indeno(1,2,3-cd)pyr	ene	ND			53	1900
Isophorone		ND			95	1900
N-Nitrosodi-n-propy	lamine	ND			150	1900
N-Nitrosodiphenylar	mine	ND			100	1900
Naphthalene		ND			32	1900
Nitrobenzene		ND			85	1900
Pentachlorophenol		ND			650	3700
Phenanthrene		ND			40	1900
Phenol		ND			200	1900
Pyrene		ND			12	1900
Surrogate		%Rec		Qualifier		ptance Limits
2,4,6-Tribromophen	ol	60			39 - 1	46
2-Fluorobiphenyl		80			37 - 1	
2-Fluorophenol		64			18 - 1	20
Nitrobenzene-d5		60			34 - 1	32
p-Terphenyl-d14		101			65 - 1	53
Phenol-d5		67			11 - 1	20

Client: CHA Inc

Analytical Data

Job Number: 480-18049-1

Client Sample ID:	SB15 SS (1-2) 040212					
Lab Sample ID:	480-18049-24				ſ	Date Sampled: 04/02/2012 1430
Client Matrix:	Solid	% Moisture	: 13.5		[Date Received: 04/04/2012 0900
	827	OC Semivolatile Org	ganic Compou	unds (GC	C/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58452		Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58249		Lab File ID:	V8616.D
Dilution:	10				Initial Weight/Volum	ne: +30.27 g
Analysis Date:	04/06/2012 1632				Final Weight/Volum	
Prep Date:	04/05/2012 0837				Injection Volume:	1 uL
Analyte	DryWt Corrected: Y	Result (uç	g/Kg)	Qualifie	er MDL	RL
Biphenyl		ND			120	1900
bis (2-chloroisoprop	yl) ether	ND			200	1900
2,4,5-Trichlorophen		ND			420	1900
2,4,6-Trichlorophen		ND			130	1900
2,4-Dichlorophenol		ND			100	1900
2,4-Dimethylphenol		ND			520	1900
2,4-Dinitrophenol		ND			680	3800
2,4-Dinitrotoluene		ND			300	1900
2,6-Dinitrotoluene		ND			470	1900
2-Chloronaphthalen	IP III III III III III III III III III	ND			130	1900
2-Chlorophenol		ND			98	1900
2-Methylnaphthalen	IP III III III III III III III III III	ND			23	1900
2-Methylphenol		ND			59	1900
2-Nitroaniline		ND			620	3800
2-Nitrophenol		ND			88	1900
3,3'-Dichlorobenzidi	ne	ND			1700	1900
3-Nitroaniline		ND			440	3800
4,6-Dinitro-2-methyl	nhenol	ND			670	3800
4-Bromophenyl phe		ND			620	1900
4-Chloro-3-methylpl	-	ND			80	1900
4-Chloroaniline	nenor	ND			570	1900
4-Chlorophenyl phe	nyl othor	ND			41	1900
4-Methylphenol		ND			110	3800
4-Nitroaniline		ND			220	3800
		ND			470	
4-Nitrophenol		ND			23	3800 1900
Acenaphthene						
Acenaphthylene		ND			16 99	1900
Acetophenone		ND				1900
Anthracene		ND ND			50 86	1900
Atrazine						1900
Benzaldehyde		ND			210	1900
Benzo(a)anthracene	5	62		J	33	1900
Benzo(a)pyrene		ND			47	1900
Benzo(b)fluoranther		ND			38	1900
Benzo(g,h,i)perylen		ND			23	1900
Benzo(k)fluoranther		ND			21	1900
Bis(2-chloroethoxy)		ND			110	1900
Bis(2-chloroethyl)et		ND			170	1900
Bis(2-ethylhexyl) ph		ND			620	1900
Butyl benzyl phthala	ale	ND			520	1900
Caprolactam		ND			840	1900
Carbazole		ND			22	1900
Chrysene		ND			19	1900
Di-n-butyl phthalate		ND			670	1900
Di-n-octyl phthalate		ND			45	1900
Dibenz(a,h)anthrace	ene	ND			23	1900

Client: CHA Inc

Client Sample ID:	SB15 SS (1-2) 040212						
Lab Sample ID:	480-18049-24				I	Date Sampled: 04/02/2012 1430	
Client Matrix:	Solid	% Moisture	: 13.5		I	Date Received: 04/04/2012 0900	
	827	0C Semivolatile Or	ganic Compo	unds (GC/I	MS)		
Analysis Method:	8270C	Analysis Batch:	480-58452	I	Instrument ID:	HP5973V	
Prep Method:	3550B	Prep Batch:	480-58249	l	Lab File ID:	V8616.D	
Dilution:	10			1	Initial Weight/Volum	ne: +30.27 g	
Analysis Date:	04/06/2012 1632				Final Weight/Volum		
Prep Date:	04/05/2012 0837			I	Injection Volume:	1 uL	
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifier	MDL	RL	
Dibenzofuran		ND			20	1900	
Diethyl phthalate		ND			58	1900	
Dimethyl phthalate		ND			50	1900	
Fluoranthene		ND			28	1900	
Fluorene		ND			45	1900	
Hexachlorobenzene		ND			96	1900	
Hexachlorobutadien	e	ND			99	1900	
Hexachlorocycloper	itadiene	ND			580	1900	
Hexachloroethane		ND			150	1900	
Indeno(1,2,3-cd)pyr	ene	ND			54	1900	
Isophorone		ND			97	1900	
N-Nitrosodi-n-propy	lamine	ND			150	1900	
N-Nitrosodiphenylar	nine	ND			110	1900	
Naphthalene		ND			32	1900	
Nitrobenzene		ND			86	1900	
Pentachlorophenol		ND			660	3800	
Phenanthrene		ND			41	1900	
Phenol		ND			200	1900	
Pyrene		ND			13	1900	
Surrogate		%Rec		Qualifier		eptance Limits	
2,4,6-Tribromophen	ol	71			39 -	146	
2-Fluorobiphenyl		81			37 -		
2-Fluorophenol	64	64			18 - 120		
Nitrobenzene-d5	60	60			34 - 132		
p-Terphenyl-d14		100			65 -	153	
Phenol-d5		62			11 -	120	

Client: CHA Inc

Analytical Data

Job Number: 480-18049-1

Client Sample ID:	SB15 SS (3-4) 040212						
Lab Sample ID:	480-18049-25					Date Sampled: 04/02/20	12 1430
Client Matrix:	Solid	% Moisture:	10.0			Date Received: 04/04/20	12 0900
	827	0C Semivolatile Orç	janic Compou	unds (GC	C/MS)		
Analysis Method:	8270C	Analysis Batch:	480-58452		Instrument ID:	HP5973V	
Prep Method:	3550B	Prep Batch:	480-58249		Lab File ID:	V8617.D	
Dilution:	10				Initial Weight/Volu	me: +30.87 g	
Analysis Date:	04/06/2012 1656				Final Weight/Volur	•	
Prep Date:	04/05/2012 0837				Injection Volume:	1 uL	
Analuto	Dr.W/t Corrocted: X	Booult (up	(Ka)	Qualifie	-	RL	
Analyte Biphenyl	DryWt Corrected: Y	Result (ug ND	/ry)	Quaime	110	1800	
bis (2-chloroisopropy	I) other	ND			190	1800	
2,4,5-Trichlorophenol		ND			400	1800	
2,4,6-Trichlorophenol	I	ND			120	1800	
2,4-Dichlorophenol		ND			96	1800	
2,4-Dimethylphenol		ND			490	1800	
2,4-Dinitrophenol		ND			640	3600	
2,4-Dinitrotoluene		ND			280	1800	
2,6-Dinitrotoluene		ND			450	1800	
2-Chloronaphthalene		ND			120	1800	
2-Chlorophenol		ND			93	1800	
2-Methylnaphthalene		ND			22	1800	
2-Methylphenol		ND			56	1800	
2-Nitroaniline		ND			580	3600	
		ND			83	1800	
2-Nitrophenol	_						
3,3'-Dichlorobenzidin	e	ND			1600	1800	
3-Nitroaniline		ND			420	3600	
4,6-Dinitro-2-methylp		ND			630	3600	
4-Bromophenyl phen	-	ND			580	1800	
4-Chloro-3-methylphe	enol	ND			75	1800	
4-Chloroaniline		ND			530	1800	
4-Chlorophenyl phen	yl ether	ND			39	1800	
4-Methylphenol	-	ND			100	3600	
4-Nitroaniline		ND			200	3600	
4-Nitrophenol		ND			440	3600	
Acenaphthene		ND			21	1800	
		ND					
Acenaphthylene					15 94	1800	
Acetophenone		ND				1800	
Anthracene		ND			47	1800	
Atrazine		ND			81	1800	
Benzaldehyde		ND			200	1800	
Benzo(a)anthracene		210		J	31	1800	
Benzo(a)pyrene		160		J	44	1800	
Benzo(b)fluoranthene	e	220		J	35	1800	
Benzo(g,h,i)perylene		ND			22	1800	
Benzo(k)fluoranthene		140		J	20	1800	
Bis(2-chloroethoxy)m		ND			99	1800	
Bis(2-chloroethyl)eth		ND			160	1800	
Bis(2-ethylhexyl) phth		1000		J	590	1800	
				0	490		
Butyl benzyl phthalat	e de la constante de	ND				1800	
Caprolactam		ND			790	1800	
Carbazole		ND			21	1800	
Chrysene		200		J	18	1800	
Di-n-butyl phthalate		ND			630	1800	
					40	1000	
Di-n-octyl phthalate		ND			43	1800	

Client: CHA Inc

Client Sample ID:	SB15 SS (3-4) 040212					
Lab Sample ID: Client Matrix:	480-18049-25 Solid	% Moisture	e: 10.0			Date Sampled: 04/02/2012 1430 Date Received: 04/04/2012 0900
	82	70C Semivolatile Or	ganic Compo	unds (GC	/MS)	
Analysis Method:	8270C	Analysis Batch:	480-58452	,	, Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58249		Lab File ID:	V8617.D
Dilution:	10	Thep Bateri.	400-30249		Initial Weight/Volu	
	04/06/2012 1656				-	-
Analysis Date:	04/05/2012 0837				Final Weight/Volu	
Prep Date:	04/05/2012 0657				Injection Volume:	1 uL
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifie	r MDL	RL
Dibenzofuran		ND			19	1800
Diethyl phthalate		ND			55	1800
Dimethyl phthalate		ND			48	1800
Fluoranthene		300		J	26	1800
Fluorene		ND			42	1800
Hexachlorobenzene		ND			91	1800
Hexachlorobutadien	e	ND			93	1800
Hexachlorocyclopen	tadiene	ND			550	1800
Hexachloroethane		ND			140	1800
Indeno(1,2,3-cd)pyre	ene	ND			50	1800
Isophorone		ND			91	1800
N-Nitrosodi-n-propyl	amine	ND			140	1800
N-Nitrosodiphenylan	nine	ND			100	1800
Naphthalene		ND			30	1800
Nitrobenzene		ND			81	1800
Pentachlorophenol		ND			630	3600
Phenanthrene		210		J	38	1800
Phenol		ND			190	1800
Pyrene		300		J	12	1800
Surrogate		%Rec		Qualifie	r Ac	ceptance Limits
2,4,6-Tribromophen	ol	16		Х	39	- 146
2-Fluorobiphenyl		83			37	- 120
2-Fluorophenol		42			18	- 120
Nitrobenzene-d5		66			34	- 132
p-Terphenyl-d14		98			65	- 153
Phenol-d5		63			11	- 120

Client: CHA Inc

Analytical Data

Job Number: 480-18049-1

Client Sample ID:	SB06 SS (1-2) 040212					
Lab Sample ID:	480-18049-26				D	ate Sampled: 04/02/2012 1200
Client Matrix:	Solid	% Moisture	e: 11.4		D	Date Received: 04/04/2012 0900
	82	270C Semivolatile Or	ganic Compo	unds (GC/MS)		
Analysis Method:	8270C	Analysis Batch:	480-58452	Instrur	ment ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58249	Lab Fi	le ID:	V8618.D
Dilution:	20			Initial	Weight/Volum	e: +30.63 g
Analysis Date:	04/06/2012 1720				Veight/Volume	
Prep Date:	04/05/2012 0837				on Volume:	1 uL
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifier	MDL	RL
Biphenyl		ND	,		230	3800
bis (2-chloroisoprop	oyl) ether	ND			390	3800
2,4,5-Trichlorophen	ol	ND			810	3800
2,4,6-Trichlorophen		ND			250	3800
2,4-Dichlorophenol		ND			200	3800
2,4-Dimethylphenol		ND			1000	3800
2,4-Dinitrophenol		ND			1300	7300
2,4-Dinitrotoluene		ND			580	3800
2,6-Dinitrotoluene		ND			910	3800
2-Chloronaphthaler		ND			250	3800
2-Chlorophenol		ND			190	3800
2-Methylnaphthaler		ND			45	3800
2-Methylphenol		ND			110	3800
2-Nitroaniline		ND			1200	7300
		ND			1200	3800
2-Nitrophenol	ine				3300	
3,3'-Dichlorobenzidi	ine	ND				3800
3-Nitroaniline	la la cara l	ND			860	7300
4,6-Dinitro-2-methy		ND			1300	7300
4-Bromophenyl phe	-	ND			1200	3800
4-Chloro-3-methylp	nenol	ND			150	3800
4-Chloroaniline		ND			1100	3800
4-Chlorophenyl phe	enyl ether	ND			80	3800
4-Methylphenol		ND			210	7300
4-Nitroaniline		ND			420	7300
4-Nitrophenol		ND			910	7300
Acenaphthene		ND			44	3800
Acenaphthylene		ND			31	3800
Acetophenone		ND			190	3800
Anthracene		ND			96	3800
Atrazine		ND			170	3800
Benzaldehyde		ND			410	3800
Benzo(a)anthracen	e	140		J	64	3800
Benzo(a)pyrene		ND			90	3800
Benzo(b)fluoranthe	ne	ND			72	3800
Benzo(g,h,i)perylen	e	ND			45	3800
Benzo(k)fluoranthei	ne	ND			41	3800
Bis(2-chloroethoxy)	methane	ND			200	3800
Bis(2-chloroethyl)et		ND			320	3800
Bis(2-ethylhexyl) ph		ND			1200	3800
Butyl benzyl phthala		ND			1000	3800
Caprolactam		ND			1600	3800
Carbazole		ND			43	3800
Chrysene		74		J	37	3800
Di-n-butyl phthalate		ND		5	1300	3800
Di-n-octyl phthalate		ND			87	3800
		ND			44	3800
Dibenz(a,h)anthrac	CIIC	UN			44	3000

Client: CHA Inc

Client Sample ID:	SB06 SS (1-2) 040212					
Lab Sample ID:	480-18049-26				Da	ate Sampled: 04/02/2012 1200
Client Matrix:	Solid	% Moisture	e: 11.4		D	ate Received: 04/04/2012 0900
	827	0C Semivolatile Or	ganic Compo	unds (GC/M	IS)	
Analysis Method:	8270C	Analysis Batch:	480-58452	Ir	nstrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-58249	L	ab File ID:	V8618.D
Dilution:	20			Ir	nitial Weight/Volume	e: +30.63 g
Analysis Date:	04/06/2012 1720			F	inal Weight/Volume	: 1 mL
Prep Date:	04/05/2012 0837			Ir	njection Volume:	1 uL
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifier	MDL	RL
Dibenzofuran		ND			39	3800
Diethyl phthalate		ND			110	3800
Dimethyl phthalate		ND			97	3800
Fluoranthene		ND			54	3800
Fluorene		ND			86	3800
Hexachlorobenzene		ND			190	3800
Hexachlorobutadiene		ND			190	3800
Hexachlorocycloper	ntadiene	ND			1100	3800
Hexachloroethane		ND			290	3800
Indeno(1,2,3-cd)pyr	ene	ND		100		3800
Isophorone		ND		190		3800
N-Nitrosodi-n-propy		ND			300	3800
N-Nitrosodiphenylar	nine	ND			200	3800
Naphthalene		ND			62	3800
Nitrobenzene		ND			170	3800
Pentachlorophenol		ND			1300	7300
Phenanthrene		ND			78	3800
Phenol		ND			390	3800
Pyrene		ND			24	3800
Surrogate		%Rec		Qualifier		otance Limits
2,4,6-Tribromophen	ol	41			39 - 1	
2-Fluorobiphenyl		77		37 - 120		
2-Fluorophenol		59			18 - 1	
Nitrobenzene-d5		54 34 - 132				
p-Terphenyl-d14		86			65 - 1	
Phenol-d5		61			11 - 1	20

Client Sample ID: Lab Sample ID: Client Matrix:	SB02 SS (0-3) 040212 480-18049-3 Solid						oled: 04/02/2012 1004 ived: 04/04/2012 0900
		6010B Me	tals (ICP)-TCL	P			
Analysis Method:	6010B	Analysis Batch:	480-58666		Instrument ID:	ICA	AP2
Prep Method:	3010A	Prep Batch:	480-58480	Lab File ID:		120	40612A-5.asc
Dilution:	1.0	Leach Batch:	480-58275		Initial Weight/Volu	ime: 50	mL
Analysis Date:	04/06/2012 1912				Final Weight/Volu	me: 50	mL
Prep Date:	04/06/2012 1050						
Leach Date:	04/05/2012 1009						
Analyte	DryWt Corrected: N	Result (m	ıg/L)	Qualifie	r MDL		RL
Arsenic		ND			0.0056		0.010
Barium		0.33		В	0.00070)	0.0020
Cadmium		0.0016			0.00050)	0.0010
Chromium		0.0086		В	0.0010		0.0040
Lead		0.036			0.0030		0.0050
Selenium		ND			0.0087		0.015
Silver		ND			0.0017		0.0030
		7470A Merc	ury (CVAA)-TC	CLP			
Analysis Method:	7470A	Analysis Batch:	480-58543		Instrument ID:	LE	EMAN2
Prep Method:	7470A	Prep Batch:	480-58479		Lab File ID:	HO	4062TC.PRN
Dilution:	1.0	Leach Batch:	480-58275		Initial Weight/Volu	ime: 30	mL
Analysis Date:	04/06/2012 1339				Final Weight/Volu		mL
Prep Date:	04/06/2012 1040				0		
Leach Date:	04/05/2012 1009						
Analyte	DryWt Corrected: N	Result (m	ıg/L)	Qualifie	r MDL		RL
Mercury		ND			0.00012	2	0.00020

TestAmerica Buffalo

Client: CHA Inc

Analytical Data

Client Sample ID: SB05 SS (0-3) 040212 Lab Sample ID: 480-18049-7 Date Sampled: 04/02/2012 1115 **Client Matrix:** Solid Date Received: 04/04/2012 0900 6010B Metals (ICP)-TCLP Analysis Method: 6010B Analysis Batch: 480-58666 Instrument ID: ICAP2 Prep Method: 3010A Prep Batch: 480-58480 Lab File ID: I2040612A-5.asc Leach Batch: Dilution: 1.0 480-58275 Initial Weight/Volume: 50 mL 04/06/2012 1923 Analysis Date: Final Weight/Volume: 50 mL 04/06/2012 1050 Prep Date: Leach Date: 04/05/2012 1009 DryWt Corrected: N Qualifier RL Analyte Result (mg/L) MDL 0.010 Arsenic 0.0082 0.0056 J Barium 0.54 В 0.00070 0.0020 Cadmium 0.0010 0.0019 0.00050 В 0.0040 Chromium 0.0041 0.0010 Lead 0.020 0.0030 0.0050 Selenium ND 0.0087 0.015 Silver ND 0.0017 0.0030 7470A Mercury (CVAA)-TCLP Analysis Method: Instrument ID: 7470A Analysis Batch: 480-58543 LEEMAN2 480-58479 Prep Method: 7470A Prep Batch: Lab File ID: H04062TC.PRN Dilution: Leach Batch: 480-58275 Initial Weight/Volume: 30 mL 1.0 04/06/2012 1346 Final Weight/Volume: Analysis Date: 50 mL 04/06/2012 1040 Prep Date: Leach Date: 04/05/2012 1009 Analyte DryWt Corrected: N Result (mg/L) Qualifier MDL RL 0.00012 0.00020 Mercury ND

Client: CHA Inc

Analytical Data

General Chemistry									
Client Sample ID:	SB01 SS (2-3) 040212								
Lab Sample ID: Client Matrix:	480-18049-1 Solid					•	ed: 04/02/2012 0915 /ed: 04/04/2012 0900		
Analyte	Result	Qual	Units	RL	RL	Dil	Method		
Percent Moisture	11 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		
Percent Solids	89 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		

General Chemistry									
Client Sample ID:	SB02 SS (2-3) 040212								
Lab Sample ID: Client Matrix:	480-18049-2 Solid					•	ed: 04/02/2012 1004 /ed: 04/04/2012 0900		
Analyte	Result	Qual	Units	RL	RL	Dil	Method		
Percent Moisture	13 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		
Percent Solids	87 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		

Client: CHA Inc

	General Chemistry								
Client Sample ID:	SB02 SS (0-3) 040212								
Lab Sample ID:	480-18049-3				C	Date Sample	ed: 04/02/2012 1004		
Client Matrix:	Solid				[Date Receiv	red: 04/04/2012 0900		
Analyte	Result	Qual	Units	MDL	RL	Dil	Method		
Cyanide, Reactive	ND		mg/Kg	0.0030	10.0	1.0	9012		
	Analysis Batch: 480-58611	Analysis Date:	04/07/2012 1	1053			DryWt Corrected: N		
	Prep Batch: 480-58610	Prep Date: 04/	06/2012 1500	D					
Sulfide, Reactive	ND		mg/Kg	0.57	10.0	1.0	9034		
	Analysis Batch: 480-58614	Analysis Date:	04/06/2012 1	1900			DryWt Corrected: N		
	Prep Batch: 480-58613	Prep Date: 04/	06/2012 1500	0					
Analyte	Result	Qual	Units	RL	RL	Dil	Method		
Flashpoint	>176.0		Degrees F	50.0	50.0	1.0	1010		
	Analysis Batch: 480-58632	Analysis Date:	04/07/2012 1	1416			DryWt Corrected: N		
pН	7.33		SU	0.100	0.100	1.0	9045C		
	Analysis Batch: 480-58572	Analysis Date:	04/06/2012 1	1950			DryWt Corrected: N		
Percent Moisture	8.8		%	0.10	0.10	1.0	Moisture		
	Analysis Batch: 480-58314	Analysis Date:	04/05/2012 1	1121			DryWt Corrected: N		
Percent Solids	91		%	0.10	0.10	1.0	Moisture		
	Analysis Batch: 480-58314	Analysis Date:	04/05/2012 1	1121			DryWt Corrected: N		

General Chemistry									
Client Sample ID:	SB03 SS (1-2) 040212								
Lab Sample ID: Client Matrix:	480-18049-4 Solid						ed: 04/02/2012 1030 red: 04/04/2012 0900		
Analyte	Resul	: Qual	Units	RL	RL	Dil	Method		
Percent Moisture	21 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		
Percent Solids	80 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		

General Chemistry									
Client Sample ID:	SB04 SS (2-3) 040212								
Lab Sample ID: Client Matrix:	480-18049-5 Solid					•	ed: 04/02/2012 1045 /ed: 04/04/2012 0900		
Analyte	Result	Qual	Units	RL	RL	Dil	Method		
Percent Moisture	13 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		
Percent Solids	87 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		

General Chemistry									
Client Sample ID:	SB05 SS (1-2 040212								
Lab Sample ID: Client Matrix:	480-18049-6 Solid					•	ed: 04/02/2012 1115 /ed: 04/04/2012 0900		
Analyte	Result	Qual	Units	RL	RL	Dil	Method		
Percent Moisture	16 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		
Percent Solids	84 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		

Client: CHA Inc

	General Chemistry									
Client Sample ID:	SB05 SS (0-3) 040212									
Lab Sample ID:	480-18049-7				C	Date Sample	ed: 04/02/2012 1115			
Client Matrix:	Solid				Ε	Date Receiv	red: 04/04/2012 0900			
Analyte	Result	Qual	Units	MDL	RL	Dil	Method			
Cyanide, Reactive	ND		mg/Kg	0.0030	10.0	1.0	9012			
	Analysis Batch: 480-58611	Analysis Date:	04/07/2012	1053			DryWt Corrected: N			
	Prep Batch: 480-58610	Prep Date: 04/	06/2012 150	0						
Sulfide, Reactive	ND		mg/Kg	0.57	10.0	1.0	9034			
	Analysis Batch: 480-58614	Analysis Date:	04/06/2012	1900			DryWt Corrected: N			
	Prep Batch: 480-58613	Prep Date: 04/	06/2012 1500	0						
Analyte	Result	Qual	Units	RL	RL	Dil	Method			
Flashpoint	>176.0		Degrees F	50.0	50.0	1.0	1010			
	Analysis Batch: 480-58632	Analysis Date:	04/07/2012	1459			DryWt Corrected: N			
рН	10.5		SU	0.100	0.100	1.0	9045C			
	Analysis Batch: 480-58572	Analysis Date:	04/06/2012	1950			DryWt Corrected: N			
Percent Moisture	19		%	0.10	0.10	1.0	Moisture			
	Analysis Batch: 480-58314	Analysis Date:	04/05/2012	1121			DryWt Corrected: N			
Percent Solids	81		%	0.10	0.10	1.0	Moisture			
	Analysis Batch: 480-58314	Analysis Date:	04/05/2012	1121			DryWt Corrected: N			

General Chemistry									
Client Sample ID:	SB06 SS (3-4) 040212								
Lab Sample ID: Client Matrix:	480-18049-8 Solid						ed: 04/02/2012 1200 ved: 04/04/2012 0900		
Analyte	Result	Qual	Units	RL	RL	Dil	Method		
Percent Moisture	21 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		
Percent Solids	79 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		

General Chemistry									
Client Sample ID:	SB07 SS (1-2) 040212								
Lab Sample ID: Client Matrix:	480-18049-9 Solid					•	ed: 04/02/2012 1215 /ed: 04/04/2012 0900		
Analyte	Result	Qual	Units	RL	RL	Dil	Method		
Percent Moisture	23 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		
Percent Solids	77 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		

General Chemistry									
Client Sample ID:	SB07 SS (3-4) 040212								
Lab Sample ID: Client Matrix:	480-18049-10 Solid					•	ed: 04/02/2012 1215 /ed: 04/04/2012 0900		
Analyte	Result	Qual	Units	RL	RL	Dil	Method		
Percent Moisture	23 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		
Percent Solids	77 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		

General Chemistry									
Client Sample ID:	SB10 SS (1-2) 040212								
Lab Sample ID: Client Matrix:	480-18049-11 Solid						ed: 04/02/2012 1230 /ed: 04/04/2012 0900		
Analyte	Result	Qual	Units	RL	RL	Dil	Method		
Percent Moisture	13 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		
Percent Solids	87 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		

General Chemistry									
Client Sample ID:	SB10 SS (3-4) 040212								
Lab Sample ID: Client Matrix:	480-18049-12 Solid					•	ed: 04/02/2012 1230 ved: 04/04/2012 0900		
Analyte	Result	Qual	Units	RL	RL	Dil	Method		
Percent Moisture	19 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		
Percent Solids	81 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		

General Chemistry									
Client Sample ID:	SB11 SS (2-3) 040212								
Lab Sample ID: Client Matrix:	480-18049-13 Solid					•	ed: 04/02/2012 1245 ved: 04/04/2012 0900		
Analyte	Resul	Qual	Units	RL	RL	Dil	Method		
Percent Moisture	11 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		
Percent Solids	89 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		

General Chemistry									
Client Sample ID:	SB14 SS (1-2)040212								
Lab Sample ID: Client Matrix:	480-18049-14 Solid						ed: 04/02/2012 1300 ved: 04/04/2012 0900		
Analyte	Result	Qual	Units	RL	RL	Dil	Method		
Percent Moisture	13 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		
Percent Solids	87 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		

General Chemistry									
Client Sample ID:	SB14 SS (2-3) 040212								
Lab Sample ID: Client Matrix:	480-18049-15 Solid					•	ed: 04/02/2012 1300 /ed: 04/04/2012 0900		
Analyte	Result	Qual	Units	RL	RL	Dil	Method		
Percent Moisture	13 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		
Percent Solids	87 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		

General Chemistry									
Client Sample ID:	SB13 SS (1-2) 040212								
Lab Sample ID: Client Matrix:	480-18049-16 Solid					•	ed: 04/02/2012 1315 /ed: 04/04/2012 0900		
Analyte	Result	Qual	Units	RL	RL	Dil	Method		
Percent Moisture	10		%	0.10	0.10	1.0	Moisture		
	Analysis Batch: 480-58314	Analysis Date:	04/05/2012	2 1121			DryWt Corrected: N		
Percent Solids	90		%	0.10	0.10	1.0	Moisture		
	Analysis Batch: 480-58314	Analysis Date:	04/05/2012	2 1121			DryWt Corrected: N		

General Chemistry									
Client Sample ID:	SB13 SS (2-3) 040212								
Lab Sample ID: Client Matrix:	480-18049-17 Solid					•	ed: 04/02/2012 1315 /ed: 04/04/2012 0900		
Analyte	Result	Qual	Units	RL	RL	Dil	Method		
Percent Moisture	14 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		
Percent Solids	86 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N		

General Chemistry							
Client Sample ID:	SB08 SS (1-2) 040212						
Lab Sample ID: Client Matrix:	480-18049-18 Solid						ed: 04/02/2012 1330 ved: 04/04/2012 0900
Analyte	Resu	lt Qual	Units	RL	RL	Dil	Method
Percent Moisture	26 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N
Percent Solids	74 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N

General Chemistry							
Client Sample ID:	SB08 SS (2-3) 040212						
Lab Sample ID: Client Matrix:	480-18049-19 Solid					•	ed: 04/02/2012 1330 /ed: 04/04/2012 0900
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	17 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N
Percent Solids	83 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N

General Chemistry							
Client Sample ID:	SB12 SS (0-1) 040212						
Lab Sample ID: Client Matrix:	480-18049-20 Solid						ed: 04/02/2012 1400 ved: 04/04/2012 0900
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	12 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N
Percent Solids	88 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N

General Chemistry							
Client Sample ID:	SB12 SS (2-3)040212						
Lab Sample ID: Client Matrix:	480-18049-21 Solid					•	ed: 04/02/2012 1400 ved: 04/04/2012 0900
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	7.9 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N
Percent Solids	92 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N

General Chemistry							
Client Sample ID:	SB09 SS (1-2) 040212						
Lab Sample ID: Client Matrix:	480-18049-22 Solid					•	ed: 04/02/2012 1415 /ed: 04/04/2012 0900
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	15 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N
Percent Solids	85 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N

General Chemistry							
Client Sample ID:	SB09 SS (3-4) 040212						
Lab Sample ID: Client Matrix:	480-18049-23 Solid					•	ed: 04/02/2012 1415 /ed: 04/04/2012 0900
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	12 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N
Percent Solids	88 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N

General Chemistry							
Client Sample ID:	SB15 SS (1-2) 040212						
Lab Sample ID: Client Matrix:	480-18049-24 Solid						ed: 04/02/2012 1430 ved: 04/04/2012 0900
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	14 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N
Percent Solids	86 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N

General Chemistry							
Client Sample ID:	SB15 SS (3-4) 040212						
Lab Sample ID: Client Matrix:	480-18049-25 Solid						ed: 04/02/2012 1430 ved: 04/04/2012 0900
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	10 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N
Percent Solids	90 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N

General Chemistry							
Client Sample ID:	SB06 SS (1-2) 040212						
Lab Sample ID: Client Matrix:	480-18049-26 Solid						ed: 04/02/2012 1200 ved: 04/04/2012 0900
Analyte	Resul	: Qual	Units	RL	RL	Dil	Method
Percent Moisture	11 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N
Percent Solids	89 Analysis Batch: 480-58314	Analysis Date:	% 04/05/2012	0.10 2 1121	0.10	1.0	Moisture DryWt Corrected: N

Job Number: 480-18049-1

Surrogate Recovery Report

8260B Volatile Organic Compounds (GC/MS)

		DCA	TOL	BFB
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec
480-18049-1	SB01 SS (2-3) 040212	118	110	105
480-18049-4	SB03 SS (1-2) 040212	109	104	96
480-18049-5	SB04 SS (2-3) 040212	108	100	98
480-18049-6	SB05 SS (1-2 040212	98	100	100
480-18049-6 DL	SB05 SS (1-2 040212 DL	100	104	102
480-18049-9	SB07 SS (1-2) 040212	99	109	109
480-18049-10	SB07 SS (3-4) 040212	104	112	114
480-18049-13	SB11 SS (2-3) 040212	99	105	105
480-18049-14	SB14 SS (1-2)040212	100	107	106
480-18049-15	SB14 SS (2-3) 040212	100	107	105
480-18049-16	SB13 SS (1-2) 040212	99	106	104
480-18049-17	SB13 SS (2-3) 040212	101	107	107
480-18049-18	SB08 SS (1-2) 040212	98	107	103
480-18049-19	SB08 SS (2-3) 040212	104	112	111
480-18049-20	SB12 SS (0-1) 040212	98	107	105
480-18049-21	SB12 SS (2-3)040212	101	106	107
480-18049-23	SB09 SS (3-4) 040212	101	107	106
480-18049-24	SB15 SS (1-2) 040212	102	107	106
480-18049-25	SB15 SS (3-4) 040212	99	106	105

Surrogate	Acceptance Limits
DCA = 1,2-Dichloroethane-d4 (Surr)	64-126
TOL = Toluene-d8 (Surr)	71-125
BFB = 4-Bromofluorobenzene (Surr)	72-126

Job Number: 480-18049-1

Surrogate Recovery Report

8260B Volatile Organic Compounds (GC/MS)

		DCA	TOL	BFB
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec
480-18049-26	SB06 SS (1-2) 040212	99	108	106
MB 480-58043/7		105	103	104
MB 480-58251/7		91	106	102
MB 480-58395/7		95	107	104
MB 480-58428/6		90	108	102
LCS 480-58043/6		108	101	104
LCS 480-58251/6		97	106	105
LCS 480-58395/6		92	107	105
LCS 480-58428/5		92	109	106

Surrogate	Acceptance Limits
DCA = 1,2-Dichloroethane-d4 (Surr)	64-126
TOL = Toluene-d8 (Surr)	71-125
BFB = 4-Bromofluorobenzene (Surr)	72-126

Job Number: 480-18049-1

Surrogate Recovery Report

8260B Volatile Organic Compounds (GC/MS)

		DCA	TOL	BFB
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec
480-18049-1 DL	SB01 SS (2-3) 040212 DL	114	53	53
480-18049-2	SB02 SS (2-3) 040212	119	109	120
480-18049-2 DL	SB02 SS (2-3) 040212 DL	112	116	119
480-18049-4 DL	SB03 SS (1-2) 040212 DL	0X	0X	0X
480-18049-5 DL	SB04 SS (2-3) 040212 DL	123	129	129
480-18049-8	SB06 SS (3-4) 040212	96	117	137
480-18049-8 DL	SB06 SS (3-4) 040212 DL	0X	0X	0X
480-18049-11	SB10 SS (1-2) 040212	126	131	133
480-18049-12	SB10 SS (3-4) 040212	122	126	127
480-18049-22	SB09 SS (1-2) 040212	117	97	99
MB 480-58304/2-A		113	136	129
LCS 480-58304/1-A		120	139	133

Surrogate	Acceptance Limits
DCA = 1,2-Dichloroethane-d4 (Surr)	53-146
TOL = Toluene-d8 (Surr)	50-149
BFB = 4-Bromofluorobenzene (Surr)	49-148

Job Number: 480-18049-1

Surrogate Recovery Report

8260B Volatile Organic Compounds (GC/MS)

Client Matrix: Solid TCLP

		DCA	TOL	BFB
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec
480-18049-3	SB02 SS (0-3) 040212	99	107	108
480-18049-7	SB05 SS (0-3) 040212	102	108	109
MB 480-58568/5		101	108	108
LB 480-58276/1-A		97	108	106
LCS 480-58568/4		100	109	108

Surrogate	Acceptance Limits
DCA = 1,2-Dichloroethane-d4 (Surr)	66-137
TOL = Toluene-d8 (Surr)	71-126
BFB = 4-Bromofluorobenzene (Surr)	73-120

Surrogate Recovery Report

8270C Semivolatile Organic Compounds (GC/MS)

Lab Sample ID	Client Sample ID	2FP %Rec	PHL %Rec	NBZ %Rec	FBP %Rec	TBP %Rec	TPH %Rec
480-18049-1	SB01 SS (2-3) 040212	63	71	71	89	93	100
480-18049-2	SB02 SS (2-3) 040212	77	94	113	106	103	116
480-18049-4	SB03 SS (1-2) 040212	0X	0X	73	90	0X	118
480-18049-5	SB04 SS (2-3) 040212	52	69	105	105	0X	119
480-18049-6	SB05 SS (1-2 040212	0X	0X	0X	10X	0X	0X
480-18049-8	SB06 SS (3-4) 040212	78	78	78	97	87	101
480-18049-9	SB07 SS (1-2) 040212	69	75	78	91	110	109
480-18049-10	SB07 SS (3-4) 040212	80	87	88	97	125	118
480-18049-11	SB10 SS (1-2) 040212	66	63	61	77	66	101
480-18049-12	SB10 SS (3-4) 040212	80	84	96	97	123	121
480-18049-13	SB11 SS (2-3) 040212	95	96	97	104	136	125
480-18049-14	SB14 SS (1-2)040212	42	50	49	58	69	71
480-18049-15	SB14 SS (2-3) 040212	90	91	93	102	128	119
480-18049-16	SB13 SS (1-2) 040212	77	79	74	91	89	122
480-18049-17	SB13 SS (2-3) 040212	83	79	70	88	74	121
480-18049-18	SB08 SS (1-2) 040212	0X	0X	0X	64	0X	0X
480-18049-19	SB08 SS (2-3) 040212	63	70	66	82	88	102
480-18049-20	SB12 SS (0-1) 040212	69	70	67	82	73	98
480-18049-21	SB12 SS (2-3)040212	64	68	62	81	70	95

Surrogate	Acceptance Limits
2FP = 2-Fluorophenol	18-120
PHL = Phenol-d5	11-120
NBZ = Nitrobenzene-d5	34-132
FBP = 2-Fluorobiphenyl	37-120
TBP = 2,4,6-Tribromophenol	39-146
TPH = p-Terphenyl-d14	65-153

Surrogate Recovery Report

8270C Semivolatile Organic Compounds (GC/MS)

		2FP	PHL	NBZ	FBP	TBP	TPH
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec	%Rec	%Rec	%Rec
480-18049-22	SB09 SS (1-2) 040212	58	60	53	78	42	94
480-18049-23	SB09 SS (3-4) 040212	64	67	60	80	60	101
480-18049-24	SB15 SS (1-2) 040212	64	62	60	81	71	100
480-18049-25	SB15 SS (3-4) 040212	42	63	66	83	16X	98
480-18049-26	SB06 SS (1-2) 040212	59	61	54	77	41	86
MB 480-58238/1-A		89	90	98	103	113	121
MB 480-58249/1-A		73	77	73	89	86	110
LCS 480-58238/2-A		90	93	98	101	124	117
LCS 480-58249/2-A		82	86	85	94	103	110
LCSD 480-58238/3-A		94	96	99	104	133	129

Surrogate	Acceptance Limits
2FP = 2-Fluorophenol	18-120
PHL = Phenol-d5	11-120
NBZ = Nitrobenzene-d5	34-132
FBP = 2-Fluorobiphenyl	37-120
TBP = 2,4,6-Tribromophenol	39-146
TPH = p-Terphenyl-d14	65-153

Surrogate Recovery Report

8270C Semivolatile Organic Compounds (GC/MS)

Client Matrix: Solid TCLP

		2FP	PHL	NBZ	FBP	TBP	TPH
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec	%Rec	%Rec	%Rec
480-18049-3	SB02 SS (0-3) 040212	43	28	71	87	106	119
480-18049-3 DL	SB02 SS (0-3) 040212 DL	44	27	81	91	82	112
480-18049-7	SB05 SS (0-3) 040212	44	28	76	94	111	112
MB 480-58531/1-A		41	27	65	81	93	112
LB 480-58275/13-D		39	27	75	89	98	120
LCS 480-58531/2-A		45	33	76	91	106	113
LCSD 480-58531/3-A		54	37	88	97	116	122

Surrogate	Acceptance Limits
2FP = 2-Fluorophenol	20-120
PHL = Phenol-d5	16-120
NBZ = Nitrobenzene-d5	46-120
FBP = 2-Fluorobiphenyl	48-120
TBP = 2,4,6-Tribromophenol	52-132
TPH = p-Terphenyl-d14	67-150

Method: 8260B Preparation: N/A

Client: CHA Inc

Method Blank - Batch: 480-58043

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 480-58043/7 Solid 1.0 04/04/2012 1137 N/A N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	480-58043 N/A N/A ug/Kg			HP59 F775 5 g 5 m	i0.D
Analyte		Res	ult	Qual	MDL		RL
1,1,1-Trichloroetha	ane	ND			0.36		5.0
1,1,2,2-Tetrachlore	oethane	ND			0.81		5.0

1,1,1-Trichloroethane	ND	0.36	5.0	
1,1,2,2-Tetrachloroethane	ND	0.81	5.0	
1,1,2-Trichloroethane	ND	0.65	5.0	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.1	5.0	
1,1-Dichloroethane	ND	0.61	5.0	
1,1-Dichloroethene	ND	0.61	5.0	
1,2,4-Trichlorobenzene	ND	0.30	5.0	
1,2-Dibromo-3-Chloropropane	ND	2.5	5.0	
1,2-Dibromoethane	ND	0.64	5.0	
1,2-Dichlorobenzene	ND	0.39	5.0	
1,2-Dichloroethane	ND	0.25	5.0	
1,2-Dichloropropane	ND	2.5	5.0	
1,3-Dichlorobenzene	ND	0.26	5.0	
1,4-Dichlorobenzene	ND	0.70	5.0	
2-Hexanone	ND	2.5	25	
2-Butanone (MEK)	ND	1.8	25	
4-Methyl-2-pentanone (MIBK)	ND	1.6	25	
Acetone	ND	4.2	25	
Benzene	ND	0.25	5.0	
Bromodichloromethane	ND	0.67	5.0	
Bromoform	ND	2.5	5.0	
Bromomethane	ND	0.45	5.0	
Carbon disulfide	ND	2.5	5.0	
Carbon tetrachloride	ND	0.48	5.0	
Chlorobenzene	ND	0.66	5.0	
Dibromochloromethane	ND	0.64	5.0	
Chloroethane	ND	1.1	5.0	
Chloroform	ND	0.31	5.0	
Chloromethane	ND	0.30	5.0	
cis-1,2-Dichloroethene	ND	0.64	5.0	
cis-1,3-Dichloropropene	ND	0.72	5.0	
Cyclohexane	ND	0.70	5.0	
Dichlorodifluoromethane	ND	0.41	5.0	
Ethylbenzene	ND	0.35	5.0	
Isopropylbenzene	ND	0.75	5.0	
Methyl acetate	ND	0.93	5.0	
Methyl tert-butyl ether	ND	0.49	5.0	
Methylcyclohexane	ND	0.76	5.0	
Methylene Chloride	ND	2.3	5.0	
Styrene	ND	0.25	5.0	
Tetrachloroethene	ND	0.67	5.0	
Toluene	ND	0.38	5.0	
trans-1,2-Dichloroethene	ND	0.52	5.0	
trans-1,3-Dichloropropene	ND	2.2	5.0	
Trichloroethene	ND	1.1	5.0	

Leach Date:

Job Number: 480-18049-1

Client: CHA Inc

Method Blank - Batch: 480-58043

Method: 8260B Preparation: N/A

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date:	MB 480-58043/7 Solid 1.0 04/04/2012 1137 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	480-58043 N/A N/A ug/Kg			HP5973F F7750.D 5 g 5 mL
Leach Date:	N/A					
Analyte		Res	ult	Qual	MDL	RL
Trichlorofluoromet	hane	ND			0.47	5.0
Vinyl chloride		ND			0.61	5.0
Xylenes, Total		ND			0.84	10
Surrogate		%	Rec		Acceptance Lim	nits
1,2-Dichloroethane	e-d4 (Surr)	1	05		64 - 126	
Toluene-d8 (Surr)		1	03		71 - 125	
4-Bromofluoroben:	zene (Surr)	1	04		72 - 126	

Lab Control Sample - Batch: 480-58043

N/A

Lab Sample ID:	LCS 480-58043/6	Analysis Batch:	480-58043	Instrument ID:	HP5973F
Client Matrix:	Solid	Prep Batch:	N/A	Lab File ID:	F7749.D
Dilution:	1.0	Leach Batch:	N/A	Initial Weight/Volume:	5 g
Analysis Date:	04/04/2012 1111	Units:	ug/Kg	Final Weight/Volume:	5 mL
Prep Date:	N/A				

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,1-Dichloroethane	50.0	52.7	105	79 - 126	
1,1-Dichloroethene	50.0	45.6	91	65 - 153	
1,2-Dichlorobenzene	50.0	42.8	86	75 - 120	
1,2-Dichloroethane	50.0	53.2	106	77 - 122	
Benzene	50.0	54.8	110	79 - 127	
Chlorobenzene	50.0	47.7	95	76 - 124	
cis-1,2-Dichloroethene	50.0	53.9	108	81 - 117	
Ethylbenzene	50.0	46.0	92	80 - 120	
Methyl tert-butyl ether	50.0	50.9	102	63 - 125	
Tetrachloroethene	50.0	47.5	95	74 - 122	
Toluene	50.0	46.6	93	74 - 128	
trans-1,2-Dichloroethene	50.0	54.6	109	78 - 126	
Trichloroethene	50.0	53.6	107	77 - 129	
Surrogate	%	% Rec Acceptance Limits		cceptance Limits	
1,2-Dichloroethane-d4 (Surr)	1	08		64 - 126	
Toluene-d8 (Surr)	1	01		71 - 125	
4-Bromofluorobenzene (Surr)	1	04	72 - 126		

Job Number: 480-18049-1

Client: CHA Inc

Method Blank - Batch: 480-58251

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 480-58251/7 Solid 1.0 04/05/2012 1219 N/A N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	480-58251 N/A N/A ug/Kg			HP5973F F7802.D 5 g 5 mL	
Analyte		Res	ult	Qual	MDL	RL	
1,1,1-Trichloroetha	ane	ND			0.36	5.0	
1,1,2,2-Tetrachlor	oethane	ND			0.81	5.0	
1,1,2-Trichloroetha	ane	ND			0.65	5.0	
1,1,2-Trichloro-1,2	2,2-trifluoroethane	ND			1.1	5.0	
1,1-Dichloroethan	e	ND			0.61	5.0	
1,1-Dichloroethen	e	ND			0.61	5.0	
1,2,4-Trichloroben	izene	ND			0.30	5.0	
1,2-Dibromo-3-Ch	loropropane	ND			2.5	5.0	
1,2-Dibromoethan	e	ND			0.64	5.0	
1,2-Dichlorobenze	ene	ND			0.39	5.0	
1,2-Dichloroethan	e	ND			0.25	5.0	
1,2-Dichloropropa	ne	ND			2.5	5.0	
1,3-Dichlorobenze	ene	ND			0.26	5.0	
1,4-Dichlorobenze	ene	ND			0.70	5.0	
2-Hexanone		ND			2.5	25	
2-Butanone (MEK)	ND			1.8	25	
4-Methyl-2-pentan	one (MIBK)	ND			1.6	25	
Acetone		ND			4.2	25	
Benzene		ND			0.25	5.0	

	ND		1.0	25
Acetone	ND		4.2	25
Benzene	ND		0.25	5.0
Bromodichloromethane	ND		0.67	5.0
Bromoform	ND		2.5	5.0
Bromomethane	ND		0.45	5.0
Carbon disulfide	ND		2.5	5.0
Carbon tetrachloride	ND		0.48	5.0
Chlorobenzene	ND		0.66	5.0
Dibromochloromethane	ND		0.64	5.0
Chloroethane	ND		1.1	5.0
Chloroform	ND		0.31	5.0
Chloromethane	ND		0.30	5.0
cis-1,2-Dichloroethene	ND		0.64	5.0
cis-1,3-Dichloropropene	ND		0.72	5.0
Cyclohexane	ND		0.70	5.0
Dichlorodifluoromethane	ND		0.41	5.0
Ethylbenzene	0.480	J	0.35	5.0
Isopropylbenzene	ND		0.75	5.0
Methyl acetate	ND		0.93	5.0
Methyl tert-butyl ether	ND		0.49	5.0
Methylcyclohexane	ND		0.76	5.0
Methylene Chloride	ND		2.3	5.0
Styrene	ND		0.25	5.0
Tetrachloroethene	ND		0.67	5.0
Toluene	ND		0.38	5.0
trans-1,2-Dichloroethene	ND		0.52	5.0
trans-1,3-Dichloropropene	ND		2.2	5.0
Trichloroethene	ND		1.1	5.0

Leach Date:

Job Number: 480-18049-1

Client: CHA Inc

Method Blank - Batch: 480-58251

Method: 8260B Preparation: N/A

Lab Sample ID:	MB 480-58251/7	Analysis Batch:	480-58251	Instrume	ent ID:	HP5973F	
Client Matrix:	Solid	Prep Batch:	N/A	Lab File	ID:	F7802.D	
Dilution:	1.0	Leach Batch:	N/A	Initial W	eight/Volume:	5 g	
Analysis Date:	04/05/2012 1219	Units:	ug/Kg	Final We	eight/Volume:	5 mL	
Prep Date:	N/A						
Leach Date:	N/A						
Analyte		Res	sult	Qual	MDL	RL	
Trichlorofluoromet	hane	ND			0.47	5.0	
Vinyl chloride		ND			0.61	5.0	
Xylenes, Total		1.74	1	J	0.84	10	
Surrogate		%	Rec		Acceptance Lim	lits	
1,2-Dichloroethane	e-d4 (Surr)	ç	91		64 - 126		
Toluene-d8 (Surr)		1	106		71 - 125		
4-Bromofluoroben	zene (Surr)	1	102	72 - 126			

Lab Control Sample - Batch: 480-58251

N/A

Lab Sample ID:	LCS 480-58251/6	Analysis Batch:	480-58251	Instrument ID:	HP5973F
Client Matrix:	Solid	Prep Batch:	N/A	Lab File ID:	F7801.D
Dilution:	1.0	Leach Batch:	N/A	Initial Weight/Volume:	5 g
Analysis Date:	04/05/2012 1153	Units:	ug/Kg	Final Weight/Volume:	5 mL
Prep Date:	N/A				

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,1-Dichloroethane	50.0	44.0	88	79 - 126	
1,1-Dichloroethene	50.0	44.4	89	65 - 153	
1,2-Dichlorobenzene	50.0	45.8	92	75 - 120	
1,2-Dichloroethane	50.0	42.3	85	77 - 122	
Benzene	50.0	44.6	89	79 - 127	
Chlorobenzene	50.0	45.4	91	76 - 124	
cis-1,2-Dichloroethene	50.0	45.6	91	81 - 117	
Ethylbenzene	50.0	45.4	91	80 - 120	
Methyl tert-butyl ether	50.0	43.9	88	63 - 125	
Tetrachloroethene	50.0	45.9	92	74 - 122	
Toluene	50.0	45.6	91	74 - 128	
trans-1,2-Dichloroethene	50.0	45.2	90	78 - 126	
Trichloroethene	50.0	43.9	88	77 - 129	
Surrogate	%	% Rec Acceptance Limits		cceptance Limits	
1,2-Dichloroethane-d4 (Surr)	g	7		64 - 126	
Toluene-d8 (Surr)	1	06		71 - 125	
4-Bromofluorobenzene (Surr)	1	105 72 - 126			

Method: 8260B Preparation: 5035

Client: CHA Inc

Method Blank - Batch: 480-58304

Analyte	Result	Qual	MDL	RL
1,1,1-Trichloroethane	ND		26	95
1,1,2,2-Tetrachloroethane	ND		15	95
1,1,2-Trichloroethane	ND		20	95
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		48	95
1,1-Dichloroethane	ND		29	95
1,1-Dichloroethene	ND		33	95
1,2,4-Trichlorobenzene	ND		36	95
1,2-Dibromo-3-Chloropropane	ND		48	95
1,2-Dibromoethane	ND		3.6	95
1,2-Dichlorobenzene	ND		24	95
1,2-Dichloroethane	ND		39	95
1,2-Dichloropropane	ND		15	95
1,3-Dichlorobenzene	ND		25	95
1,4-Dichlorobenzene	ND		13	95
2-Hexanone	ND		200	480
2-Butanone (MEK)	ND		280	480
4-Methyl-2-pentanone (MIBK)	ND		30	480
Acetone	ND		390	480
Benzene	ND		4.6	95
Bromodichloromethane	ND		19	95
Bromoform	ND		48	95
Bromomethane	ND		21	95
Carbon disulfide	ND		43	95
Carbon tetrachloride	ND		24	95
Chlorobenzene	ND		13	95
Dibromochloromethane	ND		46	95
Chloroethane	ND		20	95
Chloroform	ND		65	95
Chloromethane	ND		23	95
cis-1,2-Dichloroethene	ND		26	95
cis-1,3-Dichloropropene	ND		23	95
Cyclohexane	ND		21	95
Dichlorodifluoromethane	ND		42	95
Ethylbenzene	ND		28	95
Isopropylbenzene	ND		14	95
Methyl acetate	ND		45	95
Methyl tert-butyl ether	ND		36	95
Methylcyclohexane	ND		45	95
Methylene Chloride	ND		19	95
Styrene	ND		23	95
Tetrachloroethene	ND		13	95
Toluene	ND		26	95
trans-1,2-Dichloroethene	ND		22	95
trans-1,3-Dichloropropene	ND		4.6	95
Trichloroethene	ND		26	95
			20	00

TestAmerica Buffalo

Leach Date:

Job Number: 480-18049-1

Client: CHA Inc

Method Blank - Batch: 480-58304

Method: 8260B Preparation: 5035

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 480-58304/2-A Solid 1.0 04/06/2012 0529 04/05/2012 1045 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	480-58389 480-58304 N/A ug/Kg			HP5973G G10706.D 5.25 g 10 mL
Analyte		Res	ult	Qual	MDL	RL
Trichlorofluoromet	hane	ND			45	95
Vinyl chloride		ND			32	95
Xylenes, Total		ND			16	190
Surrogate		%	Rec		Acceptance Lim	nits
1,2-Dichloroethane	e-d4 (Surr)	1	13		53 - 146	
Toluene-d8 (Surr)	. ,	1	136		50 - 149	
4-Bromofluorobenz	zene (Surr)	1	129		49 - 148	

Lab Control Sample - Batch: 480-58304

N/A

Lab Sample ID:	LCS 480-58304/1-A	Analysis Batch:	480-58389	Instrument ID:	HP5973G
Client Matrix:	Solid	Prep Batch:	480-58304	Lab File ID:	G10705.D
Dilution: Analysis Date: Prep Date:	1.0 04/06/2012 0507 04/05/2012 1045	Leach Batch: Units:	N/A ug/Kg	Initial Weight/Volume: Final Weight/Volume:	5.03 g 10 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,1-Dichloroethane	2490	3380	136		
1,1-Dichloroethene	2490	1650	66	54 - 144	
1,2-Dichlorobenzene	2490	3140	126		
1,2-Dichloroethane	2490	2700	109		
Benzene	2490	3190	128	75 - 131	
Chlorobenzene	2490	3150	127	80 - 127	
cis-1,2-Dichloroethene	2490	3480	140		
Ethylbenzene	2490	3340	134		
Methyl tert-butyl ether	2490	2900	117		
Tetrachloroethene	2490	3320	134		
Toluene	2490	3240	130	76 - 133	
trans-1,2-Dichloroethene	2490	3130	126		
Trichloroethene	2490	3090	124	77 - 130	
Surrogate	%	Rec	А	cceptance Limits	
1,2-Dichloroethane-d4 (Surr)	1	20		53 - 146	
Toluene-d8 (Surr)	1	39		50 - 149	
4-Bromofluorobenzene (Surr)	1	33		49 - 148	

Client: CHA Inc

Method Blank - Batch: 480-58395

Lab Sample ID:	MB 480-58395/7	Analysis Batch:	480-58395	Instrume	nt ID:	HP5973	3F
Client Matrix:	Solid	Prep Batch:	N/A	Lab File	D:	F7826.[D
Dilution:	1.0	Leach Batch:	N/A	Initial We	ight/Volume:	5 g	
Analysis Date:	04/05/2012 2221	Units:	ug/Kg	Final We	ight/Volume:	5 mL	
Prep Date:	N/A						
Leach Date:	N/A						
Analyte		Res	ult	Qual	MDL		RL
1,1,1-Trichloroeth	ane	ND			0.36		5.0
1,1,2,2-Tetrachlor	oethane	ND			0.81		5.0
4 4 0 Trickland ath					0.05		F 0

-			
1,1,1-Trichloroethane	ND	0.36	5.0
1,1,2,2-Tetrachloroethane	ND	0.81	5.0
1,1,2-Trichloroethane	ND	0.65	5.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.1	5.0
I,1-Dichloroethane	ND	0.61	5.0
I,1-Dichloroethene	ND	0.61	5.0
I,2,4-Trichlorobenzene	ND	0.30	5.0
1,2-Dibromo-3-Chloropropane	ND	2.5	5.0
1,2-Dibromoethane	ND	0.64	5.0
I,2-Dichlorobenzene	ND	0.39	5.0
,2-Dichloroethane	ND	0.25	5.0
,2-Dichloropropane	ND	2.5	5.0
,3-Dichlorobenzene	ND	0.26	5.0
,4-Dichlorobenzene	ND	0.70	5.0
2-Hexanone	ND	2.5	25
2-Butanone (MEK)	ND	1.8	25
I-Methyl-2-pentanone (MIBK)	ND	1.6	25
Acetone	ND	4.2	25
Benzene	ND	0.25	5.0
Bromodichloromethane	ND	0.67	5.0
Bromoform	ND	2.5	5.0
Bromomethane	ND	0.45	5.0
Carbon disulfide	ND	2.5	5.0
Carbon tetrachloride	ND	0.48	5.0
Chlorobenzene	ND	0.66	5.0
Dibromochloromethane	ND	0.64	5.0
Chloroethane	ND	1.1	5.0
Chloroform	ND	0.31	5.0
Chloromethane	ND	0.30	5.0
sis-1,2-Dichloroethene	ND	0.64	5.0
is-1,3-Dichloropropene	ND	0.72	5.0
Cyclohexane	ND	0.70	5.0
Dichlorodifluoromethane	ND	0.41	5.0
Ethylbenzene	ND	0.35	5.0
sopropylbenzene	ND	0.75	5.0
Nethyl acetate	ND	0.93	5.0
Nethyl tert-butyl ether	ND	0.49	5.0
/lethylcyclohexane	ND	0.76	5.0
Nethylene Chloride	ND	2.3	5.0
Styrene	ND	0.25	5.0
Fetrachloroethene	ND	0.67	5.0
Foluene	ND	0.38	5.0
rans-1,2-Dichloroethene	ND	0.52	5.0
rans-1,3-Dichloropropene	ND	2.2	5.0
Frichloroethene	ND	1.1	5.0

Leach Date:

Job Number: 480-18049-1

Client: CHA Inc

Method Blank - Batch: 480-58395

Method: 8260B Preparation: N/A

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 480-58395/7 Solid 1.0 04/05/2012 2221 N/A N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	480-58395 N/A N/A ug/Kg			HP5973F F7826.D 5 g 5 mL	
Analyte		Res	ult	Qual	MDL	RL	
Trichlorofluoromet	hane	ND			0.47	5.0	
Vinyl chloride		ND			0.61	5.0	
Xylenes, Total		0.90)7	J	0.84	10	
Surrogate		%	Rec		Acceptance Lim	nits	
1,2-Dichloroethane	e-d4 (Surr)	ç	95		64 - 126		
Toluene-d8 (Surr)		1	07		71 - 125		
4-Bromofluoroben	zene (Surr)	1	04		72 - 126		

Lab Control Sample - Batch: 480-58395

N/A

Lab Sample ID:	LCS 480-58395/6	Analysis Batch:	480-58395	Instrument ID:	HP5973F
Client Matrix:	Solid	Prep Batch:	N/A	Lab File ID:	F7825.D
Dilution:	1.0	Leach Batch:	N/A	Initial Weight/Volume:	5 g
Analysis Date:	04/05/2012 2156	Units:	ug/Kg	Final Weight/Volume:	5 mL
Prep Date:	N/A				

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,1-Dichloroethane	50.0	46.2	92	79 - 126	
1,1-Dichloroethene	50.0	44.1	88	65 - 153	
1,2-Dichlorobenzene	50.0	49.2	98	75 - 120	
1,2-Dichloroethane	50.0	43.3	87	77 - 122	
Benzene	50.0	47.9	96	79 - 127	
Chlorobenzene	50.0	50.4	101	76 - 124	
cis-1,2-Dichloroethene	50.0	47.2	94	81 - 117	
Ethylbenzene	50.0	50.5	101	80 - 120	
Methyl tert-butyl ether	50.0	42.4	85	63 - 125	
Tetrachloroethene	50.0	53.4	107	74 - 122	
Toluene	50.0	50.1	100	74 - 128	
trans-1,2-Dichloroethene	50.0	49.9	100	78 - 126	
Trichloroethene	50.0	47.4	95	77 - 129	
Surrogate	%	Rec	А	cceptance Limits	
1,2-Dichloroethane-d4 (Surr)	g	2		64 - 126	
Toluene-d8 (Surr)	1	07		71 - 125	
4-Bromofluorobenzene (Surr)	1	05		72 - 126	

Trichloroethene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Job Number: 480-18049-1

HP5973F

F7854.D

5 g

Client: CHA Inc

Lab Sample ID:

Client Matrix:

Dilution:

Method Blank - Batch: 480-58428

MB 480-58428/6

Solid

1.0

Method: 8260B Preparation: N/A

Instrument ID:

Initial Weight/Volume:

Lab File ID:

Bliation.	1.0	Ecuon Buton.	1073	initial vv	eight volume.	U g	
Analysis Date:	04/06/2012 1032	Units:	ug/Kg	Final W	eight/Volume:	5 mL	
Prep Date:	N/A						
Leach Date:	N/A						
Analyte		F	Result	Qual	MDL	RL	
1,1,1-Trichloroeth		Ν	ID		0.36	5.0	
1,1,2,2-Tetrachlor	oethane	Ν	ID		0.81	5.0	
1,1,2-Trichloroeth	ane	Ν	ID		0.65	5.0	
1,1,2-Trichloro-1,2	2,2-trifluoroethane	N	ID		1.1	5.0	
1,1-Dichloroethan	e	N	ID		0.61	5.0	
1,1-Dichloroethen	e	Ν	ID		0.61	5.0	
1,2,4-Trichlorober	nzene	N	ID		0.30	5.0	
1,2-Dibromo-3-Ch	loropropane	Ν	ID		2.5	5.0	
1,2-Dibromoethar	ne	Ν	ID		0.64	5.0	
1,2-Dichlorobenze	ene	N	ID		0.39	5.0	
1,2-Dichloroethan	e	Ν	ID		0.25	5.0	
1,2-Dichloropropa	ine	N	ID		2.5	5.0	
1,3-Dichlorobenze	ene	Ν	ID		0.26	5.0	
1,4-Dichlorobenze	ene	N	ID		0.70	5.0	
2-Hexanone		N	ID		2.5	25	
2-Butanone (MEK	()	Ν	ID		1.8	25	
4-Methyl-2-pentar	none (MIBK)	N	ID		1.6	25	
Acetone		N	ID		4.2	25	
Benzene		N	ID		0.25	5.0	
Bromodichlorome	thane	N	ID		0.67	5.0	
Bromoform		Ν	ID		2.5	5.0	
Bromomethane		N	ID		0.45	5.0	
Carbon disulfide		Ν	ID		2.5	5.0	
Carbon tetrachlori	ide	N	ID		0.48	5.0	
Chlorobenzene		Ν	ID		0.66	5.0	
Dibromochlorome	thane	N	ID		0.64	5.0	
Chloroethane		Ν	ID		1.1	5.0	
Chloroform		Ν	ID		0.31	5.0	
Chloromethane		Ν	ID		0.30	5.0	
cis-1,2-Dichloroet	hene	N	ID		0.64	5.0	
cis-1,3-Dichloropr	opene	Ν	ID		0.72	5.0	
Cyclohexane		Ν	ID		0.70	5.0	
Dichlorodifluorom	ethane	Ν	ID		0.41	5.0	
Ethylbenzene		Ν	ID		0.35	5.0	
Isopropylbenzene		Ν	ID		0.75	5.0	
Methyl acetate			ID		0.93	5.0	
Methyl tert-butyl e	ether	Ν	ID		0.49	5.0	
Methylcyclohexan	e	Ν	ID		0.76	5.0	
Methylene Chlorid	le	Ν	ID		2.3	5.0	
Styrene		Ν	ID		0.25	5.0	
Tetrachloroethene	e	Ν	ID		0.67	5.0	
Toluene		Ν	ID		0.38	5.0	
1 10 5:					0.50	5.0	

Analysis Batch:

Prep Batch:

Leach Batch:

480-58428

N/A

N/A

5.0

5.0

5.0

0.52

2.2

1.1

ND

ND

ND

HP5973F

F7854.D

5 g

5 mL

RL

5.0

5.0

Method: 8260B Preparation: N/A

Instrument ID:

Initial Weight/Volume:

Final Weight/Volume:

Lab File ID:

Client: CHA Inc

Lab Sample ID:

Client Matrix:

Analysis Date:

Prep Date:

Dilution:

Method Blank - Batch: 480-58428

MB 480-58428/6

04/06/2012 1032

Solid

1.0

N/A

Trop Bato.	1.07.1					
Leach Date:	N/A					
Analyte		Res	sult	Qual	MDL	RL
Trichlorofluoromet	hane	ND			0.47	5.0
Vinyl chloride		ND			0.61	5.0
Xylenes, Total		ND			0.84	10
Surrogate		%	Rec	A	cceptance Lim	iits
1,2-Dichloroethane	e-d4 (Surr)	(90		64 - 126	
Toluene-d8 (Surr)		108 71 - 125		71 - 125		
4-Bromofluoroben:	fluorobenzene (Surr) 102			72 - 126		
Lab Control San	nple - Batch: 480-58428	3		Method: Preparat		
Lab Sample ID:	LCS 480-58428/5	Analysis Batch:	480-58428	Instrumen	t ID:	HP5973F
Client Matrix:	Solid	Prep Batch:	N/A	Lab File ID):	F7853.D
Dilution:	1.0	Leach Batch:	N/A	Initial Weig	ght/Volume:	5 g
Analysis Date:	04/06/2012 1005	Units:	ug/Kg		ht/Volume:	5 mL
Prep Date:	N/A		0 0			
Leach Date:	N/A					
Analyte		Spike Amount	Result	% Rec.	Limit	
1,1-Dichloroethan	е	50.0	43.7	87	79 -	126
1,1-Dichloroethen	е	50.0	40.4	81	65 -	153
1,2-Dichlorobenze	ne	50.0	47.6	95	75 -	120
1,2-Dichloroethan	е	50.0	41.7	83	77 -	122
Benzene		50.0	45.3	91	79 -	127
Chlorobenzene		50.0	48.2	96	76 -	124
cis-1,2-Dichloroeth	nene	50.0	45.0	90	81 -	117
Ethylbenzene		50.0	48.0	96	80 -	120
Methyl tert-butyl e	ther	50.0	39.8	80	63 -	125
Tetrachloroethene	•	50.0	49.9	100	74 -	122
Toluene		50.0	48.1	96	74 -	128
trans-1,2-Dichloro	ethene	50.0	47.3	95	78 -	126
Trichloroothono		50.0	11 1	80	77	120

Analysis Batch:

Prep Batch:

Leach Batch:

Units:

480-58428

N/A

N/A

ug/Kg

Trichloroethene	50.0	44.4	89	77 - 129
Surrogate	% Re	с	Ac	ceptance Limits
1,2-Dichloroethane-d4 (Surr)	92			64 - 126
Toluene-d8 (Surr)	109			71 - 125
4-Bromofluorobenzene (Surr)	106			72 - 126

Qual

Page 191 of 1939

TestAmerica Buffalo

Job Number: 480-18049-1

Client: CHA Inc

Method Blank - Batch: 480-58568

Method: 8260B Preparation: 5030B

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 480-58568/5 Water 1.0 04/07/2012 0026 04/07/2012 0026 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	480-58568 N/A N/A mg/L			HP5973G G10751.D 5 mL 5 mL
Analyte		Res	ult	Qual	MDL	RL
1,1-Dichloroethene	9	ND			0.00029	0.0010
1,2-Dichloroethane	e	ND			0.00021	0.0010
2-Butanone (MEK)	ND			0.0013	0.0050
Benzene		ND			0.00041	0.0010
Carbon tetrachlorie	de	ND			0.00027	0.0010
Chlorobenzene		ND			0.00075	0.0010
Chloroform		ND			0.00034	0.0010
Tetrachloroethene		ND			0.00036	0.0010
Trichloroethene		ND			0.00046	0.0010
Vinyl chloride		ND			0.00090	0.0010
Surrogate		%	Rec		Acceptance Limit	s
1,2-Dichloroethane	e-d4 (Surr)	1	101		66 - 137	
Toluene-d8 (Surr)		1	108		71 - 126	
4-Bromofluoroben	zene (Surr)	1	108		73 - 120	

TCLP SPLPE Leachate Blank - Batch: 480-58568

Method: 8260B Preparation: 5030B TCLP

Lab Sample ID:	LB 480-58276/1-A	Analysis Batch:	480-58568	Instrument ID:	HP5973G
Client Matrix:	Solid	Prep Batch:	N/A	Lab File ID:	G10757.D
Dilution:	10	Leach Batch:	480-58276	Initial Weight/Volume:	5 mL
Analysis Date:	04/07/2012 0259	Units:	mg/L	Final Weight/Volume:	5 mL
Prep Date:	04/07/2012 0259				
Leach Date:	04/05/2012 1014				

Analyte	Result	Qual	MDL	RL
1,1-Dichloroethene	ND		0.0029	0.010
1,2-Dichloroethane	ND		0.0021	0.010
2-Butanone (MEK)	ND		0.013	0.050
Benzene	ND		0.0041	0.010
Carbon tetrachloride	ND		0.0027	0.010
Chlorobenzene	ND		0.0075	0.010
Chloroform	ND		0.0034	0.010
Tetrachloroethene	ND		0.0036	0.010
Trichloroethene	ND		0.0046	0.010
Vinyl chloride	ND		0.0090	0.010
Surrogate	% Rec		Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	97		66 - 137	
Toluene-d8 (Surr)	108		71 - 126	
4-Bromofluorobenzene (Surr)	106		73 - 120	

Job Number: 480-18049-1

Client: CHA Inc

Lab Control Sample - Batch: 480-58568

Method: 8260B Preparation: 5030B

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	LCS 480-58568/4 Water 1.0 04/07/2012 0003 04/07/2012 0003 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	480-58568 N/A N/A mg/L	Instrument Lab File ID: Initial Weigl Final Weigh	nt/Volume:	G 5	IP5973G 310750.D mL mL	
Analyte		Spike Amount	Result	% Rec.	Limit			Qual
1,1-Dichloroethene	9	0.0250	0.0196	78	65 -	138	}	
1,2-Dichloroethane	9	0.0250	0.0230	92	75 -	127	,	
Benzene		0.0250	0.0252	101	71 -	124	ŀ	
Chlorobenzene		0.0250	0.0251	100	72 -	120)	
Tetrachloroethene		0.0250	0.0249	100	74 -	122	2	
Trichloroethene		0.0250	0.0246	98	74 -	123	3	
Surrogate		%	Rec	А	cceptance Li	mits	6	
1,2-Dichloroethane	e-d4 (Surr)		100		66 - 137			
Toluene-d8 (Surr)			109		71 - 126			
4-Bromofluorobenz	zene (Surr)		108		73 - 120			

Client: CHA Inc

Method Blank - Batch: 480-58238

Method: 8270C Preparation: 3550B

AnalyteResultOualMDLRLBiphenylND10170bis (2-chloroisoproyr) etherND171702-4-DintorophenolND8.61702-4-DintorophenolND441702-4-DintorophenolND583202-4-DintorophenolND441702-4-DintorophenolND401702-ChlorosphthaleneND401702-ChlorosphthaleneND8.41702-ChlorosphthaleneND361702-ChlorophenolND361702-ChlorophenolND361702-ChlorophenolND361702-ChlorophenolND1111702-MetryphenolND511702-MetryphenolND533202-MitroanilineND533202-NitroanilineND573202-NitroanilineND573202-OhlorophenolND481702-NitroanilineND481702-NitroanilineND573202-NitrophenolND583202-NitrophenolND583202-NitrophenolND481702-NitrophenolND573202-NitrophenolND583202-NitrophenolND481702-NitrophenolND481702-Nitrophen	Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 480-58238/1-A Solid 1.0 04/09/2012 1928 04/05/2012 0828 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	480-58695 480-58238 N/A ug/Kg	Final W		HP5973V V8771.D +30.75 g 1 mL 1 uL	
bis 2-c-blooksporppy) etherND171702.4-Dinktip/shenolND4.61702.4-Dinktip/shenolND583202.4-Dinktip/shenolND583202.4-DinktoblueneND401702.6-DinktoblueneND401702.6-DinktoblueneND8.41702.6-DinktoblueneND8.41702.4-SritchlorophenolND361702.4-SritchlorophenolND2.01702.4-SritchlorophenolND5.11702.4-SritchlorophenolND5.33202.4-MethylphenolND5.33202.NitrophenolND7.51703.3-DichlorobenzidineND7.51703.3-DichlorobenzidineND1401703.4-Bromphenyl phenyl etherND521704-Bromophenyl phenyl etherND521704-Choro-3-methylphenolND481704-Choro-3-methylphenolND9.23204-Bromophenyl phenyl etherND9.23204-Nitrophenyl phenyl etherND1.31704-Choro-3-methylphenolND1.31704-Choro-3-methylphenolND1.31704-Choro-3-methylphenolND1.31704-Choro-3-methylphenolND1.31704-Choro-3-methylphenolND1.31704-Choro-3-methylphenolND1.4 <td< th=""><th>Analyte</th><th></th><th>Res</th><th>ult</th><th>Qual</th><th>MDL</th><th>RL</th><th></th></td<>	Analyte		Res	ult	Qual	MDL	RL	
2.4-DichlorophenolND8.61702.4-DintroblenolND583202.4-DintroblueneND401702.6-DintroblueneND401702.ChlorophenolND841702.ChlorophenolND361702.ChlorophenolND361702.ChlorophenolND361702.At-STinchlorophenolND361702.At-STinchlorophenolND511702.At-STinchlorophenolND511702.At-STinchlorophenolND511702.At-STinchlorophenolND511702.At-STinchlorophenolND511702.At-STinchlorophenolND7.51702.NitrophenolND7.51703.3-DichlorobenzidineND573204.Forophenyl phenyl etherND573204.Forophenyl phenyl etherND521704.Chlorophenyl phenyl etherND481704.Chlorophenyl phenyl etherND481704.Chlorophenyl phenyl etherND131704.ChlorophenolND191704.ChlorophenolND403204.Chlorophenyl phenyl etherND131704.ChlorophenolND191704.ChlorophenolND131704.ChlorophenolND181704.ChlorophenolND19 <td>Biphenyl</td> <td></td> <td>ND</td> <td></td> <td></td> <td>10</td> <td>170</td> <td></td>	Biphenyl		ND			10	170	
2.4-DinitrophenolND441702.4-DinitroblueneND283202.6-DinitroblueneND401702.6-DinitroblueneND401702.6-DinitroblueneND111702.ChioroaphenolND8.41702.45-TrichiorophenolND2.01702.45-TrichiorophenolND2.01702.46-TrichiorophenolND5.11702.46-TrichiorophenolND5.11702.MitrophenolND5.33202.NitropanlineND7.51703.VoltoprobenzidineND7.51703.VoltoprobenzidineND7.51703.VoltoprobenzidineND3.83204.Bromophenyl phenyl etherND3.83204.Bromophenyl phenyl etherND5.21704.Chioro-anterbylphenolND5.21704.Chioro-anterbylphenolND9.23204.HitrophenolND9.23204.NitroantineND1.31704.ChioroantineND1.31704.NitroantineND1.31704.NitrophenolND1.31704.NitrophenolND1.31704.NitrophenolND1.31704.NitrophenolND1.31704.NitrophenolND1.31704.NitrophenolND1.31704.Nit	bis (2-chloroisopro	opyl) ether	ND			17	170	
2.4-DinitroplenolND583202.4-DinitroblueneND251702.6-DinitroblueneND401702.ChiorophthaleneND111702.ChiorophenolND361702.4.6-TrichlorophenolND2.01702.4.6-TrichlorophenolND5.11702.4.6-TrichlorophenolND5.11702.4.6-TrichlorophenolND5.11702.4.6-TrichlorophenolND5.33202.NitrophenolND7.51703.3-DichlorobenzidineND7.51703.3-DichlorobenzidineND573204.Bromophenyl phenyl etherND573204.Bromophenyl phenyl etherND6.81704.Chiorophenyl phenyl etherND83204.Chiorophenyl phenyl etherND9.23204.NitroanilineND9.23204.NitroanilineND1.31704.MethylphenolND9.23204.NitroanilineND1.31704.AecnaphtheneND1.31704.AecnaphtheneND1.3170AcenaphtheneND1.3170AcenaphtheneND1.3170AcenaphtheneND1.3170AcenaphtheneND1.3170BenzolephoneND1.3170BenzolephoneND1.3170 <t< td=""><td>2,4-Dichlorophend</td><td>bl</td><td>ND</td><td></td><td></td><td>8.6</td><td>170</td><td></td></t<>	2,4-Dichlorophend	bl	ND			8.6	170	
2.4-DinitroblueneND2.51702.6-DinitroblueneND401702.6-DinitroblueneND8.41702.ChloronghenalND8.41702.4.5-TrichlorophenalND2.01702.4.5-TrichlorophenalND2.01702.4.5-TrichlorophenalND2.01702.4.6-TrichlorophenalND5.11702.4.6-TrichlorophenalND5.33202.MethylphenalND5.33202.NitrophenalND7.51703NicharobenzidineND3.83204.ChiorobenzidineND3.83204.ChiorobenzidineND521704.ChiorobenzidineND521704.ChiorobenzidineND6.81704.ChiorobenzidineND3.51704.ChiorobenzidineND3.51704.ChiorobenzidineND1.83204.NitrophenolND1.31704.ChiorobenzidineND1.31704.ChiorobenzidineND1.31704.ChiorobenzidineND1.31704.ChiorobenzidineND1.31704.ChiorobenzidineND1.31704.ChiorobenzidineND1.31704.ChiorobenzidineND1.31704.ChiorobenzidineND1.31704.ChiorobenzidineND1.3170 <t< td=""><td>2,4-Dimethylphene</td><td>ol</td><td>ND</td><td></td><td></td><td>44</td><td>170</td><td></td></t<>	2,4-Dimethylphene	ol	ND			44	170	
2.6-DinitrotolueneND401702.ChlorophenolND111702.4.5-TrichlorophenolND361702.4.6-TrichlorophenolND2.01702.4.6-TrichlorophenolND5.11702.4.6-TrichlorophenolND5.11702.4.6-TrichlorophenolND5.11702.MethylphenolND5.33202.MitrophenolND7.51703.3-DichlorobenzidineND7.51703.3-DichlorobenzidineND573204.6-TrichlorophenolND573202.MitrophenolND573204.6-TrichlorophenolND573204.6-Dinitro-2-methylphenolND573204.6-Dinitro-2-methylphenolND521704.Chloros-amethylphenolND9.23204.NitrophenolND9.23204.NitrophenolND1.31704.Chloros-amethylphenolND1.31704.Chloros-amethylphenolND1.31704.CerophenoneND1.31704.NitrophenoND1.31704.NitrophenoneND2.81704.NitrophenoneND2.81704.NitrophenoneND3.21704.NitrophenoneND3.21704.NitrophenoneND3.21704.NitrophenoneND3.2170 </td <td>2,4-Dinitrophenol</td> <td></td> <td>ND</td> <td></td> <td></td> <td>58</td> <td>320</td> <td></td>	2,4-Dinitrophenol		ND			58	320	
2-ChioronphinaleneND111702-ChioronphinolND8.41702-Ad-5 TrichlorophenolND2.01702-MethylnaphthaleneND2.01702-MethylnaphthaleneND5.11702-MethylphenolND5.11702-MethylphenolND5.11702-MitrophenolND5.11702-NitrophenolND1401703-NitroanilineND1401703-NitroanilineND56.81704-Broinophenyl phenolND52.01704-Chioro-zmethylphenolND52.01704-Chioro-zmethylphenolND52.01704-Chioro-zmethylphenolND48.01704-Chioro-zmethylphenolND3.51704-Chioro-zmethylphenolND9.23204-NitrophenolND18.03204-NitrophenolND19.01704-NitrophenolND19.0170AcenaphthyleneND1.3170AcenaphthyleneND1.3170AcetophenoneND2.8170ArthraceneND3.2170AcetophenoneND3.2170ArthraceneND3.2170Benzo(a)nthraceneND3.2170Benzo(a)nthraceneND3.2170Benzo(a)nthraceneND1.8170Bis(2-chioroethyvy	2,4-Dinitrotoluene	1	ND			25	170	
2-ChirophenolND8.41702.4,5-TrichlorophenolND361702.4.6-TrichlorophenolND111702.4.6-TrichlorophenolND5.11702.MethyliphenolND5.11702.MitrophenolND5.11703.ViltrophenolND7.51703.S-DichlorobezidineND7.51703.S-DichlorobezidineND383204.Bronophenyl phenyl etherND521704.Choron-S-methylphenolND6.81704.Choron-S-methylphenolND481704.Choron-S-methylphenolND8.51704.Choron-S-methylphenolND9.23204.Choron-S-methylphenolND9.23204.Choron-S-methylphenolND9.23204.Choron-S-methylphenolND9.23204.Choron-S-methylphenolND9.23204.NitrophenolND9.23204.NitrophenolND1.31704.Choron-S-methylphenolND1.3170AcenaphthyleneND1.3170AcenaphthyleneND2.8170AcenaphthyleneND2.8170AcenaphthyleneND3.2170Berzo(s)lphuranteneND3.2170Berzo(s)lphuranteneND3.2170Berzo(s)lphuranteneND3.2170Berzo(s)lphurantene </td <td>2,6-Dinitrotoluene</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2,6-Dinitrotoluene	1						
2.4.5-TrichlorophenolND361702.MethylnaphthaleneND2.01702.4.6-TrichlorophenolND111702.MethylphenolND5.11702.NitrophenolND533202.NitrophenolND7.51703.3-DichlorobenzidineND1401703.4-NitroanilineND383204.6-Dinitro-2-methylphenolND573204-Bromophenyl phenyl etherND521704-Chloro-3-methylphenolND6.81704-Chloro-3-methylphenolND481704-Chloro-3-methylphenolND9.23204-Chloro-3-methylphenolND9.23204-Chloro-3-methylphenolND9.23204-Chloro-3-methylphenolND9.23204-Chloro-3-methylphenolND9.23204-Chloro-3-methylphenolND9.23204-Chloro-3-methylphenolND9.23204-NitroanilineND183204-NitrophenolND19170AcenaphthyleneND1.3170AcenaphthyleneND4.2170AcenaphthyleneND4.2170ArtazineND4.2170Benzo(a)preneND2.0170Benzo(a)preneND2.0170Benzo(a)preneND1.8170Benzo(a)preneND1.8<	2-Chloronaphthale	ene						
2-MethylphaphthaleneND2.01702.4.6.5.7 inchlorophanolND1.11702.4.MethylphanolND5.11702.MitrophenolND5.33202.NitrophenolND7.51703.7-DichlorobenzidineND1401703.4.ItroanilineND383204.6-Dinitro-2-methylphenolND573204.6-Dinitro-2-methylphenolND521704-Chloro-3-methylphenolND481704-Chloro-3-methylphenolND481704-Chloro-3-methylphenolND3.51704-Chlorophenyl phenyl etherND3.51704-Chlorophenyl phenyl etherND3.51704-MitrophenolND9.23204-NitrophenolND1.31704-AcenaphthyleneND1.3170AcenaphthyleneND1.3170AcenaphthyleneND3.5170AnthraceneND1.3170AnthraceneND3.2170Benzo(b)lyderND2.0170Benzo(b)lyderND2.0170Benzo(b)lyderND4.4170Bis(2-chloroethylyhtherND1.4170Bis(2-chloroethylyhtherND1.8170Bis(2-chloroethylyhthalateND1.4170Bis(2-chloroethylyhthalateND1.4170Bis(2-chloroethylyhthalate<								
2.4.6-TrichlorophenolND111702-MethylphenolND5,11702-MitroanilineND5,33202-NitrophenolND7,51703.3-DichlorobenzidineND1401703.3-DichlorobenzidineND383204.6-Dinitro-2-methylphenolND573204.6-Dinitro-2-methylphenolND573204.6-Choro-anethylphenolND521704-Choro-anethylphenolND481704-Chloro-anethylphenolND9,23204-NitroanilineND9,23204-NitroanilineND9,23204-NitroanilineND9,23204-NitroanilineND1,83204-NitroanilineND1,9170AcenaphthenolND1,9170AcenaphtheneND1,3170AcenaphtheneND4,2170AcenaphtheneND4,2170AcenaphtheneND4,3170Benzo(a)preneND4,0170Benzo(a)preneND2,0170Benzo(a)preneND3,2170Benzo(a)preneND1,1170Benzo(a)preneND1,1170Benzo(b)fluorantheneND1,1170Bis(2-chloroethyl)etherND1,4170Bis(2-chloroethyl)etherND1,4170Bis(2-chloroeth								
2-MethylphenolND5.11702-NitrophenolND533203,3'-DichlorobenzidineND1401703,3'-DichlorobenzidineND1401703,4'ItoanilineND383204,6-Dinitro-2-methylphenolND573204-Bromophenyl phenyl etherND521704-Chloro-3-methylphenolND6.81704-Chloro-3-methylphenolND351704-Chlorophenyl phenyl etherND351704-Chlorophenyl phenyl etherND351704-MitroanilineND9.23204-NitroanilineND183204-NitroanilineND19170AcenaphthylenolND19170AcenaphthylenolND1,3170AcenaphthylenoND1,3170AcetophenoneND1,3170AcetophenoneND4,2170AttrazineND2,8170Benzo(a)nthraceneND2,8170Benzo(a)nthraceneND2,0170Benzo(a)nthraceneND2,0170Benzo(a)nthraceneND2,0170Benzo(a)nthraceneND1,8170Benzo(b)lorantheneND1,8170Bis(2-chloroethyl)etherND1,8170Bis(2-chloroethyl)etherND1,8170Bis(2-chloroethyl)etherND1,8	• •							
2-NitroanilineND533202-NitrophenolND7.51703-3-DichtorobenzidineND383204-Bromophenyl phenyl phenolND573204-Bromophenyl phenyl etherND521704-Chloroa-3-methylphenolND6.81704-Chloroa-illineND8.83204-Chloroa-illineND3.51704-Chloroa-illineND3.51704-Chlorophyl phenyl etherND3.51704-MethylphenolND9.23204-NitrophenolND1.83204-NitroanilineND1.9170AcenaphthyleneND1.3170AcenaphthyleneND1.3170AcenaphthyleneND4.2170ArtazineND1.3170Benzo(a)pyreneND2.8170Benzo(a)pyreneND3.2170Benzo(a)pyreneND3.2170Benzo(a)pyreneND3.2170Benzo(b)fluorantheneND3.2170Benzo(b)fluorantheneND3.2170Bis(2-chloroethyl)etherND1.8170Bis(2-chloroethyl)etherND1.8170Bis(2-chloroethyl)etherND1.8170Bis(2-chloroethyl)etherND1.8170Bis(2-chloroethyl)etherND1.8170Bis(2-chloroethyl)etherND1.9 <td>•</td> <td>enol</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	•	enol						
2-NitrophenolND7.51703.3-DichlorobenzidineND1401703.NitroanilineND383204.6-Dinitro-2-methylphenolND521704-ChoroanilineND6.81704-ChloroanilineND6.81704-ChloroanilineND3.51704-MethylphenolND9.23204-NitroanilineND9.23204-Nitrophenyl phenyl etherND9.23204-NitrophenolND183204-NitrophenolND19170AcenaphtheneND1.3170AcetophenoneND1.3170AcetophenoneND8.5170ArtazineND8.5170AntrazeneND1.8170Benza(a)nthraceneND2.8170Benza(b)fluorantheneND2.0170Benza(b)fluorantheneND2.0170Benza(b)fluorantheneND2.0170Benza(b)fluorantheneND9.0170Bis(2-chloroethoxy)methaneND1.4170Bis(2-chloroethoxy)methaneND53170Bis(2-chloroethoxy)methaneND53170Bis(2-chloroethoxy)methaneND53170Bis(2-chloroethoxy)methaneND53170Bis(2-chloroethoxy)methaneND53170Bis(2-chloroethoxy)methaneND53 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
3,3'-DichlorobenzidineND1401703-NitroanlineND383204,6-Dinitro-2-methylphenolND573204-Bromophenyl phenyl etherND521704-Chloroa-3-methylphenolND6.81704-Chlorophenyl phenyl etherND481704-Chlorophenyl phenyl etherND3.51704-MethylphenolND9.23204-NitroanlineND9.23204-NitroanlineND9.23204-NitroanlineND183204-NitroanlineND183204-NitroanlineND1.9170AcenaphtheneND1.3170AcenaphtheneND1.3170AcenaphtheneND8.5170ActazineND8.5170AntrazeneND2.8170Benzo(a)antraceneND2.8170Benzo(b)fuorantheneND3.2170Benzo(b)fuorantheneND3.2170Benzo(b)fuorantheneND3.2170Benzo(b)fuorantheneND1.8170Benzo(b)fuorantheneND1.8170Bis(2-chloroethy)methaneND1.8170Bis(2-chloroethy)methaneND1.4170Bis(2-chloroethy)methaneND1.4170Bis(2-chloroethy)methaneND1.4170Bis(2-chloroethy)methaneND1.4								
3-NitroanilineND383204,6-Dintro-2-methylphenolND573204-Bromophenyl phenyl etherND521704-Chloro-3-methylphenolND6.81704-Chloro-3-methylphenolND481704-Chloro-3-methylphenolND3.51704-Chlorophenyl etherND9.23204-NitroanilineND9.23204-NitroanilineND183204-NitroanilineND19170AcenaphthenolND1.3170AcenaphtheneND1.3170AcenaphtheneND1.3170AcenaphtheneND1.3170AcenaphtheneND1.3170AcenaphtheneND3.2170AcenaphtheneND1.3170AcenaphtheneND1.3170AcenaphtheneND3.2170Benza(a)pyreneND1.8170Benza(a)pyreneND3.2170Benza(b)fluorantheneND3.2170Benza(b)fluorantheneND3.2170Benza(b)fluorantheneND1.8170Bis(2-chloroethxy)methaneND1.4170Bis(2-chloroethxy)methaneND1.4170Bis(2-chloroethxy)phthalateND1.4170Bis(2-chloroethxy)phthalateND1.4170Bis(2-chloroethxy)phthalateND1.4	•							
4.6-Dinitro-2-methylphenolND573204-Bromophenyl phenyl etherND521704-Chloro-3-methylphenolND6.81704-ChloroanilineND481704-Chlorophenyl phenyl etherND3.51704-MethylphenolND9.23204-NitroanilineND9.23204-NitroanilineND183204-NitroanilineND403204-NitroanilineND1.9170AcenaphtheneND1.3170AcenaphtheneND1.3170AcenaphthyleneND4.2170AcenaphthyleneND4.2170AcenaphthyleneND4.5170AcenaphthyleneND1.8170Benzo(a)anthraceneND1.8170Benzo(a)anthraceneND2.8170Benzo(a)pyreneND3.2170Benzo(b)fluorantheneND3.2170Benzo(b)fluorantheneND3.2170Benzo(b)fluorantheneND2.0170Benzo(b)fluorantheneND1.4170Bis(2-chloroethxy)methaneND1.4170Bis(2-chloroethxy)methaneND14170Bis(2-chloroethxy)methaneND1.9170Bis(2-chloroethxy)methaneND1.9170Bis(2-chloroethxy)methaneND1.9170Bis(2-chloroethxy)methane		laine						
4-Bromophenyl phenyl etherND521704-Chloro-3-methyl phenolND6.81704-Chlorophenyl phenyl etherND3.51704-Methyl phenolND9.23204-NitroanilineND9.23204-NitroanilineND183204-NitroanilineND19170AcenaphtheneND1.9170AcenaphtheneND1.3170AcenaphtheneND1.3170AcetophenoneND8.5170AntrazeneND8.5170ArtazineND18170Benza(a)anthraceneND18170Benza(a)pyreneND2.8170Benza(b)fluorantheneND3.2170Benza(b)fluorantheneND3.2170Benza(b)fluorantheneND2.0170Benza(b)fluorantheneND3.2170Benza(b)fluorantheneND3.2170Benza(b)fluorantheneND3.2170Benza(b)fluorantheneND5.3170Bis(2-chloroethyl)rethraND5.3170Bis(2-chloroethyl)rethraND5.3170Bis(2-chloroethyl)rethraND5.3170Bis(2-chloroethyl)rethraND5.3170Bis(2-chloroethyl)rethraND5.3170Bis(2-chloroethyl)rethraND5.3170Bis(2-chloroethyl)rethraND<		winhanal						
4-Chloroa-methylphenol ND 6.8 170 4-Chloroaniline ND 48 170 4-Chlorophyl phenyl ether ND 3.5 170 4-Methylphenol ND 9.2 320 4-Nitroaniline ND 18 320 4-Nitrophenol ND 40 320 Acenaphthylene ND 1.9 170 Acenaphthylene ND 1.3 170 Acenaphthylene ND 1.3 170 Acenaphthylene ND 8.5 170 Actophenone ND 4.2 170 Atrazine ND 4.2 170 Benzaldehyde ND 18 170 Benza(a)pyrene ND 2.8 170 Benzo(a)lituranthene ND 2.0 170 Benzo(a)hyrene ND 3.2 170 Benzo(a)hyrene ND 9.0 170 Benzo(a)hyrene ND 9.0 170 Benzo(a)hyrene ND 1.8 170 Benzo(a)hy								
4-Chlorophenyl phenyl ether ND 48 170 4-Chlorophenyl phenyl ether ND 3.5 170 4-Methylphenol ND 9.2 320 4-Nitroaniline ND 18 320 4-Nitroaniline ND 1.9 170 Acenaphthene ND 1.9 170 Acenaphthylene ND 1.3 170 Acenaphthylene ND 8.5 170 Acetophenone ND 8.5 170 Actophenone ND 7.3 170 Actophenone ND 1.8 170 Attrazine ND 7.3 170 Benza(a)anthracene ND 18 170 Benzo(a)aptrene ND 2.8 170 Benzo(a)prene ND 3.2 170 Benzo(a)fuoranthene ND 3.2 170 Benzo(b)fluoranthene ND 2.0 170 Benzo(b)fluoranthene ND 9.0 170 Bis(2-chloroethxy)methane ND 1.8 170		-						
4-Chlorophenyl phenyl etherND3.51704-MethylphenolND9.23204-NitroanilineND183204-NitrophenolND19170AcenaphtheneND1.9170AcenaphthyleneND1.3170AcenaphthyleneND4.2170ActarzineND4.2170AnthraceneND4.2170ArtazineND7.3170Benzo(a)anthraceneND7.3170Benzo(a)anthraceneND2.8170Benzo(a)pyreneND4.0170Benzo(a)phorantheneND2.0170Benzo(a)fluorantheneND2.0170Benzo(k)fluorantheneND2.0170Bis(2-chloroethyl)methaneND1.8170Bis(2-chloroethyl)methaneND53170Bis(2-chloroethyl)methaneND53170Bis(2-chloroethyl)methaneND53170Bis(2-chloroethyl)methaneND53170Bis(2-chloroethyl)methaneND53170Bis(2-chloroethyl)methaneND53170Bis(2-chloroethyl)methaneND1.4170CapolactamND53170Butyl benzyl phthalateND1.9170CapolactamND1.9170Chrysene6.18J1.6170Di-n-butyl phthalateND57 <t< td=""><td></td><td>iprierioi</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		iprierioi						
4-Methylphenol ND 9.2 320 4-Nitroaniline ND 18 320 4-Nitrophenol ND 40 320 4-kenaphthene ND 1.9 170 Acenaphthylene ND 1.3 170 Acenaphthylene ND 8.5 170 Acenaphthylene ND 8.5 170 Acenaphthylene ND 4.2 170 Acenaphthylene ND 7.3 170 Acenaphthylene ND 7.3 170 Anthracene ND 7.3 170 Benzo(a)anthracene ND 2.8 170 Benzo(a)apyrene ND 3.2 170 Benzo(j)prene ND 3.2 170 Benzo(j,hi)perylene ND 3.2 170 Benzo(j,hi)perylene ND 9.0 170 Benzo(j,hi)perylene ND 9.0 170 Bis(2-chloroethyny)methane ND 14 170 Bis(2-chloroethyl)phthalate ND 14 170 <		anyl other						
4-Nitroanline ND 18 320 4-Nitrophenol ND 40 320 Acenaphthene ND 1.9 170 Acenaphthylene ND 1.3 170 Acetophenone ND 8.5 170 Anthracene ND 4.2 170 Atrazine ND 7.3 170 Benzo(a)anthracene ND 18 170 Benzo(a)anthracene ND 2.8 170 Benzo(a)anthracene ND 2.8 170 Benzo(a)anthracene ND 3.2 170 Benzo(a)pyrene ND 3.2 170 Benzo(g),hi)perylene ND 3.2 170 Benzo(g),hillouranthene 4.53 J 1.8 170 Benzo(g),hillouranthene ND 2.0 170 Benzo(g),hillouranthene ND 2.0 170 Bis(2-chloroethynymethane ND 9.0 170 Bis(2-chloroethynymethane ND 14 170 Bis(2-chloroethynylphthalate ND		lenyi etnel						
4-NitrophenolND40320AcenaphtheneND1.9170AcenaphthyleneND1.3170AcetophenoneND8.5170AnthraceneND4.2170AtrazineND7.3170BenzaldehydeND18170Benzo(a)anthraceneND2.8170Benzo(a)anthraceneND2.8170Benzo(a)pyreneND2.8170Benzo(b)fluorantheneND3.2170Benzo(b,fluoranthene4.53J1.8170Bis(2-chloroethyl)etherND2.0170Bis(2-chloroethyl)etherND9.0170Bis(2-ethylhexyl) phthalateND53170Butyl benzyl phthalateND71170CarplactamND1.9170CarplactamND1.9170Chrysene6.18J1.6170Di-n-butyl phthalateND57170								
Acenaphthene ND 1.9 170 Acenaphthylene ND 1.3 170 Acetophenone ND 8.5 170 Anthracene ND 4.2 170 Anthracene ND 7.3 170 Atrazine ND 7.3 170 Benzaldehyde ND 18 170 Benzo(a)nthracene ND 2.8 170 Benzo(a)pyrene ND 2.8 170 Benzo(b)fluoranthene ND 3.2 170 Benzo(b)fluoranthene ND 3.2 170 Benzo(g,h,i)perylene ND 2.0 170 Benzo(g,h,i)perylene ND 9.0 170 Bis(2-chloroethoxy)methane ND 9.0 170 Bis(2-chloroethyl)ether ND 53 170 Bis(2-chloroethyl)phthalate ND 53 170 Biyl benzyl phthalate ND 14 170 Carozole ND 71								
Acenaphthylene ND 1.3 170 Acetophenone ND 8.5 170 Anthracene ND 4.2 170 Atrazine ND 7.3 170 Benzaldehyde ND 18 170 Benzo(a)anthracene ND 2.8 170 Benzo(a)anthracene ND 2.8 170 Benzo(a)anthracene ND 3.2 170 Benzo(b)fluoranthene ND 3.2 170 Benzo(b)fluoranthene ND 3.2 170 Benzo(k)fluoranthene ND 2.0 170 Benzo(k)fluoranthene ND 2.0 170 Benzo(k)fluoranthene ND 9.0 170 Bis(2-chloroethoxy)methane ND 9.0 170 Bis(2-chloroethyl)ether ND 14 170 Bis(2-chloroethyl)phthalate ND 14 170 Bityl benzyl phthalate ND 14 170 Carbazole ND 19 170 Carbazole ND 19 170<								
Acetophenone ND 8.5 170 Anthracene ND 4.2 170 Atrazine ND 7.3 170 Benzaldehyde ND 18 170 Benzo(a)anthracene ND 2.8 170 Benzo(a)apyrene ND 4.0 170 Benzo(a)pyrene ND 3.2 170 Benzo(b)fluoranthene ND 2.0 170 Benzo(k)fluoranthene 4.53 J 1.8 170 Benzo(k)fluoranthene ND 2.0 170 170 Benzo(k)fluoranthene ND 2.0 170 170 Benzo(k)fluoranthene ND 9.0 170 170 Benzo(k)fluoranthene ND 9.0 170 170 Bis(2-chloroethxy)methane ND 14 170 Bis(2-chloroethyl)ether ND 53 170 Bis(2-ethylhexyl) phthalate ND 44 170 Carbazole ND 1.9 170 Carbazole ND 1.9 170								
Anthracene ND 4.2 170 Atrazine ND 7.3 170 Benzaldehyde ND 18 170 Benzo(a)anthracene ND 2.8 170 Benzo(a)apyrene ND 4.0 170 Benzo(b)fluoranthene ND 3.2 170 Benzo(b)fluoranthene ND 2.0 170 Benzo(k)fluoranthene ND 9.0 170 Bis(2-chloroethoxy)methane ND 1.8 170 Bis(2-chloroethyl)ether ND 53 170 Bis(2-chlylhexyl) phthalate ND 44 170 Caprolactam ND 1.9 170 Carbazole ND 1.9 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Atrazine ND 7.3 170 Benzaldehyde ND 18 170 Benzo(a)anthracene ND 2.8 170 Benzo(a)pyrene ND 4.0 170 Benzo(a)pyrene ND 3.2 170 Benzo(b)fluoranthene ND 3.2 170 Benzo(g,h,i)perylene ND 2.0 170 Benzo(k)fluoranthene 4.53 J 1.8 170 Benzo(k)fluoranthene ND 9.0 170 Bis(2-chloroethoxy)methane ND 9.0 170 Bis(2-chloroethyl)ether ND 14 170 Bis(2-chloroethyl)phthalate ND 53 170 Bis(2-chloroethyl)phthalate ND 53 170 Bis(2-chloroethyl)phthalate ND 53 170 Caprolactam ND 71 170 Caprolactam ND 1.9 170 Chrysene 6.18 J 1.6 170 Di-n-butyl phthalate ND 57 170								
Benzaldehyde ND 18 170 Benzo(a)anthracene ND 2.8 170 Benzo(a)pyrene ND 4.0 170 Benzo(b)fluoranthene ND 3.2 170 Benzo(g,h,i)perylene ND 2.0 170 Benzo(k)fluoranthene 4.53 J 1.8 170 Benzo(k)fluoranthene 4.53 J 1.8 170 Benzo(k)fluoranthene ND 9.0 170 Bis(2-chloroethoxy)methane ND 9.0 170 Bis(2-chloroethyl)ether ND 14 170 Bis(2-ethylhexyl) phthalate ND 53 170 Butyl benzyl phthalate ND 44 170 Caprolactam ND 1.9 170 Carbazole ND 1.9 170 Chrysene 6.18 J 1.6 170 Di-n-butyl phthalate ND 57 170								
Benzo(a)pyrene ND 4.0 170 Benzo(b)fluoranthene ND 3.2 170 Benzo(g,h,i)perylene ND 2.0 170 Benzo(k)fluoranthene 4.53 J 1.8 170 Bis(2-chloroethoxy)methane ND 9.0 170 Bis(2-chloroethyl)ether ND 14 170 Bis(2-chloroethyl)ether ND 53 170 Bis(2-chloroethyl)ether ND 44 170 Bis(2-chloroethyl)ethalate ND 44 170 Butyl benzyl phthalate ND 71 170 Caprolactam ND 1.9 170 Carbazole ND 1.9 170 Chrysene 6.18 J 1.6 170 Di-n-butyl phthalate ND 57 170	Benzaldehyde							
Benzo(a)pyrene ND 4.0 170 Benzo(b)fluoranthene ND 3.2 170 Benzo(g,h,i)perylene ND 2.0 170 Benzo(k)fluoranthene 4.53 J 1.8 170 Bis(2-chloroethoxy)methane ND 9.0 170 Bis(2-chloroethyl)ether ND 14 170 Bis(2-chlyl)extliphthalate ND 53 170 Bis(2-chlyl)ether ND 44 170 Bis(2-chlylpexyl) phthalate ND 44 170 Butyl benzyl phthalate ND 71 170 Carbazole ND 1.9 170 Chrysene 6.18 J 1.6 170 Di-n-butyl phthalate ND 57 170	Benzo(a)anthrace	ne	ND			2.8	170	
Benzo(g,h,i)perylene ND 2.0 170 Benzo(k)fluoranthene 4.53 J 1.8 170 Bis(2-chloroethoxy)methane ND 9.0 170 Bis(2-chloroethyl)ether ND 14 170 Bis(2-chloroethyl)ether ND 53 170 Bis(2-ethylhexyl) phthalate ND 53 170 Butyl benzyl phthalate ND 44 170 Caprolactam ND 71 170 Carbazole ND 1.9 170 Chrysene 6.18 J 1.6 170 Di-n-butyl phthalate ND 57 170	Benzo(a)pyrene		ND			4.0	170	
Benzo(k)fluoranthene 4.53 J 1.8 170 Bis(2-chloroethoxy)methane ND 9.0 170 Bis(2-chloroethyl)ether ND 14 170 Bis(2-chloroethyl)ether ND 53 170 Bis(2-ethylhexyl) phthalate ND 53 170 Butyl benzyl phthalate ND 44 170 Caprolactam ND 71 170 Carbazole ND 1.9 170 Chrysene 6.18 J 1.6 170 Di-n-butyl phthalate ND 57 170	Benzo(b)fluoranth	ene	ND			3.2	170	
Bis(2-chloroethoxy)methaneND9.0170Bis(2-chloroethyl)etherND14170Bis(2-ethylhexyl) phthalateND53170Butyl benzyl phthalateND44170CaprolactamND71170CarbazoleND1.9170Chrysene6.18J1.6170Di-n-butyl phthalateND57170	Benzo(g,h,i)peryle	ene	ND			2.0	170	
Bis(2-chloroethyl)ether ND 14 170 Bis(2-ethylhexyl) phthalate ND 53 170 Butyl benzyl phthalate ND 44 170 Caprolactam ND 71 170 Carbazole ND 1.9 170 Chrysene 6.18 J 1.6 170 Di-n-butyl phthalate ND 57 170	Benzo(k)fluoranth	ene	4.53	3	J	1.8	170	
Bis(2-ethylhexyl) phthalate ND 53 170 Butyl benzyl phthalate ND 44 170 Caprolactam ND 71 170 Carbazole ND 1.9 170 Chrysene 6.18 J 1.6 170 Di-n-butyl phthalate ND 57 170	Bis(2-chloroethoxy	y)methane	ND			9.0	170	
Butyl benzyl phthalate ND 44 170 Caprolactam ND 71 170 Carbazole ND 1.9 170 Chrysene 6.18 J 1.6 170 Di-n-butyl phthalate ND 57 170	• •					14	170	
Caprolactam ND 71 170 Carbazole ND 1.9 170 Chrysene 6.18 J 1.6 170 Di-n-butyl phthalate ND 57 170								
Carbazole ND 1.9 170 Chrysene 6.18 J 1.6 170 Di-n-butyl phthalate ND 57 170	• • •	alate						
Chrysene 6.18 J 1.6 170 Di-n-butyl phthalate ND 57 170	•							
Di-n-butyl phthalate ND 57 170								
				3	J			
Di-n-octyl phthalate ND 3.9 170								
	Di-n-octyl phthalat	te	ND			3.9	170	

Phenol-d5

Job Number: 480-18049-1

Client: CHA Inc

Method Blank - Batch: 480-58238

Method: 8270C Preparation: 3550B

11 - 120

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 480-58238/1-A Solid 1.0 04/09/2012 1928 04/05/2012 0828 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	480-58695 480-58238 N/A ug/Kg	Final W		HP5973V V8771.D +30.75 g 1 mL 1 uL	
Leach Dale.	N/A						
Analyte		Res	ult	Qual	MDL	RL	
Dibenz(a,h)anthra	icene	ND			1.9	170	
Dibenzofuran		ND			1.7	170	
Diethyl phthalate		ND			5.0	170	
Dimethyl phthalate	e	ND			4.3	170	
Fluoranthene		ND			2.4	170	
Fluorene		ND			3.8	170	
Hexachlorobenze	ne	ND			8.2	170	
Hexachlorobutadiene		ND			8.4	170	
Hexachlorocyclop	Hexachlorocyclopentadiene		ND		50	170	
Hexachloroethane	Hexachloroethane		ND		13	170	
Indeno(1,2,3-cd)p	yrene	ND			4.6	170	
Isophorone		ND			8.2	170	
N-Nitrosodi-n-prop	oylamine	ND			13	170	
N-Nitrosodiphenyl	lamine	ND			9.0	170	
Naphthalene		ND			2.7	170	
Nitrobenzene		ND			7.3	170	
Pentachloropheno	bl	ND			56	320	
Phenanthrene		ND			3.5	170	
Phenol		ND			17	170	
Pyrene		ND			1.1	170	
Surrogate		%	Rec		Acceptance Lim	nits	
2,4,6-Tribromophe	enol	1	13		39 - 146		
2-Fluorobiphenyl		1	03		37 - 120		
2-Fluorophenol		8	9		18 - 120		
Nitrobenzene-d5			98		34 - 132		
p-Terphenyl-d14		1	21		65 - 153		
		-	-				

90

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 480-58238

Client: CHA Inc

Method: 8270C Preparation: 3550B

LCS Lab Sample ID Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	: LCS 480-58238/2-A Solid 1.0 04/09/2012 1952 04/05/2012 0828 N/A	Prep E	sis Batch: 3atch: Batch:	480-58695 480-58238 N/A ug/Kg		D: ight/Volume: ght/Volume:	HP5973V V8772.D +30.18 g 1 mL 1 uL	
LCSD Lab Sample I Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	D: LCSD 480-58238/3-A Solid 1.0 04/09/2012 2016 04/05/2012 0828 N/A	Prep E	sis Batch: 3atch: Batch:	480-58695 480-58238 N/A ug/Kg		D: ight/Volume: ght/Volume:	HP5973V V8773.D +30.74 g 1 mL 1 uL	
		0	<u>% Rec.</u>					
Analyte		LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
2,4-Dinitrotoluene		125	130	55 - 125	2	20		*
2-Chlorophenol		94	100	38 - 120	5	25		
4-Chloro-3-methylpl	nenol	112	115	49 - 125	1	27		
4-Nitrophenol		116	110	43 - 137	7	25		
Acenaphthene		112	111	53 - 120	3	35		
Bis(2-ethylhexyl) ph	thalate	116	127	61 - 133	7	15		
Fluorene		118	118	63 - 126	2	15		
Hexachloroethane		94	98	41 - 120	2	46		
N-Nitrosodi-n-propy	lamine	109	115	46 - 120	4	31		
Pentachlorophenol		119	120	33 - 136	1	35		
Phenol		99	100	36 - 120	0	35		
Pyrene		110	119	51 - 133	7	35		
Surrogate		L	CS % Rec	LCSD %	Rec	Accept	tance Limits	
2,4,6-Tribromophen	ol	1	24	133		3	9 - 146	
2-Fluorobiphenyl		1	01	104		3	7 - 120	
2-Fluorophenol		9	0	94		1	8 - 120	
Nitrobenzene-d5		9	8	99		34	4 - 132	
p-Terphenyl-d14			17	129			5 - 153	
Phenol-d5		9	3	96		1	1 - 120	

Job Number: 480-18049-1

Client: CHA Inc

Laboratory Control/ Laboratory Duplicate Data Report - Batch: 480-58238

Method: 8270C Preparation: 3550B

LCS Lab Sample ID:	LCS 480-58238/2-A	Units: ug/Kg	LCSD Lab Sample ID:	LCSD 480-58238/3-A
Client Matrix:	Solid		Client Matrix:	Solid
Dilution:	1.0		Dilution:	1.0
Analysis Date:	04/09/2012 1952		Analysis Date:	04/09/2012 2016
Prep Date:	04/05/2012 0828		Prep Date:	04/05/2012 0828
Leach Date:	N/A		Leach Date:	N/A

Analyte	LCS Spike Amount	LCSD Spike Amount	LCS Result/Qual	LCSD Result/Qual
2,4-Dinitrotoluene	3310	3250	4150	4220 *
2-Chlorophenol	3310	3250	3100	3250
I-Chloro-3-methylphenol	3310	3250	3700	3730
I-Nitrophenol	3310	3250	3830	3580
Acenaphthene	3310	3250	3720	3620
Bis(2-ethylhexyl) phthalate	3310	3250	3840	4140
luorene	3310	3250	3920	3840
lexachloroethane	3310	3250	3120	3190
I-Nitrosodi-n-propylamine	3310	3250	3610	3750
Pentachlorophenol	3310	3250	3940	3890
Phenol	3310	3250	3270	3260
Pyrene	3310	3250	3630	3880

Client: CHA Inc

Method Blank - Batch: 480-58249

Method: 8270C Preparation: 3550B

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 480-58249/1-A Solid 1.0 04/06/2012 1233 04/05/2012 0837 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	480-58452 480-58249 N/A ug/Kg	Final We		HP5973V V8606.D +30.75 g 1 mL 1 uL	
Analyte		Res	ult	Qual	MDL	RL	
Biphenyl		ND			10	170	
bis (2-chloroisopro	pyl) ether	ND			17	170	
2,4-Dichlorophenol	l	ND			8.6	170	
2,4-Dimethylpheno	bl	ND			44	170	
2,4-Dinitrophenol		ND			58	320	
2,4-Dinitrotoluene		ND			25	170	
2,6-Dinitrotoluene		ND			40	170	
2-Chloronaphthale	ne	ND			11	170	
2-Chlorophenol		ND			8.4	170	
2,4,5-Trichloropher	nol	ND			36	170	
2-Methylnaphthale	ne	ND			2.0	170	
2,4,6-Trichloropher	nol	ND			11	170	
2-Methylphenol		ND			5.1	170	
2-Nitroaniline		ND			53	320	
2-Nitrophenol		ND			7.5	170	
3,3'-Dichlorobenzio	dine	ND			140	170	
3-Nitroaniline		ND			38	320	
4,6-Dinitro-2-methy	ylphenol	ND			57	320	
4-Bromophenyl pho	enyl ether	ND			52	170	
4-Chloro-3-methylp	phenol	ND			6.8	170	
4-Chloroaniline		ND			48	170	
4-Chlorophenyl pho	enyl ether	ND			3.5	170	
4-Methylphenol		ND			9.2	320	
4-Nitroaniline		ND			18	320	
4-Nitrophenol		ND			40	320	
Acenaphthene		ND			1.9	170	
Acenaphthylene		ND			1.3	170	
Acetophenone		ND			8.5	170	
Anthracene		ND			4.2	170	
Atrazine		ND			7.3	170	
Benzaldehyde		ND			18	170	
Benzo(a)anthracer	ne	ND			2.8	170	
Benzo(a)pyrene		ND			4.0	170	
Benzo(b)fluoranthe	ene	ND			3.2	170	
Benzo(g,h,i)peryler		ND			2.0	170	
Benzo(k)fluoranthe		ND			1.8	170	
Bis(2-chloroethoxy		ND			9.0	170	
Bis(2-chloroethyl)e		ND			14	170	
Bis(2-ethylhexyl) p		ND			53	170	
Butyl benzyl phthal	late	ND			44	170	
Caprolactam		ND			71	170	
Carbazole		ND			1.9	170	
Chrysene		ND			1.6	170	
Di-n-butyl phthalate		ND			57	170	
Di-n-octyl phthalate	e	ND			3.9	170	

p-Terphenyl-d14

Phenol-d5

Job Number: 480-18049-1

Client: CHA Inc

Method Blank - Batch: 480-58249

Method: 8270C Preparation: 3550B

65 - 153

11 - 120

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date:	MB 480-58249/1-A Solid 1.0 04/06/2012 1233 04/05/2012 0837	Analysis Batch: Prep Batch: Leach Batch: Units:	480-58452 480-58249 N/A ug/Kg	Instrument ID: Lab File ID: Initial Weight/V Final Weight/V Injection Volun	′olume: olume:	HP5973V V8606.D +30.75 g 1 mL 1 uL	
Leach Date:	N/A						
Analyte		Resu	It	Qual	MDL	RL	
Dibenz(a,h)anthra	acene	ND			1.9	170	
Dibenzofuran		ND			1.7	170	
Diethyl phthalate		ND			5.0	170	
Dimethyl phthalate	e	ND			4.3	170	
Fluoranthene		ND			2.4	170	
Fluorene		ND			3.8	170	
Hexachlorobenzene		ND			8.2	170	
Hexachlorobutadiene		ND			8.4	170	
Hexachlorocyclopentadiene		ND			50	170	
Hexachloroethane	e	ND			13	170	
Indeno(1,2,3-cd)p	yrene	ND			4.6	170	
Isophorone		ND			8.2	170	
N-Nitrosodi-n-prop	pylamine	ND			13	170	
N-Nitrosodiphenyl	lamine	ND			9.0	170	
Naphthalene		ND			2.7	170	
Nitrobenzene		ND			7.3	170	
Pentachlorophenc	bl	ND			56	320	
Phenanthrene		ND			3.5	170	
Phenol		ND			17	170	
Pyrene		ND			1.1	170	
Surrogate		% F	Rec	Accep	tance Limits	;	
2,4,6-Tribromophe	enol	86		3	9 - 146		
2-Fluorobiphenyl		89	1	3	7 - 120		
2-Fluorophenol		73	i	1	8 - 120		
Nitrobenzene-d5		73		3	4 - 132		
			-				

110

77

Client: CHA Inc

Lab Control Sample - Batch: 480-58249

Method: 8270C Preparation: 3550B

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	LCS 480-58249/2-A Solid 1.0 04/06/2012 1257 04/05/2012 0837 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	480-58452 480-58249 N/A ug/Kg	Instrument Lab File ID: Initial Weigh Final Weigh Injection Vo	nt/Volume:	HP5973V V8607.D +30.32 g 1 mL 1 uL
Analyte		Spike Amount	Result	% Rec.	Limit	Qual
2,4-Dinitrotoluene		3300	3590	109	55 - 12	5
2-Chlorophenol		3300	2830	86	38 - 12	
4-Chloro-3-methylp	phenol	3300	3390	103	49 - 12	5
4-Nitrophenol		3300	2710	82	43 - 13	7
Acenaphthene		3300	3300	100	53 - 12	0
Bis(2-ethylhexyl) p	hthalate	3300	3560	108	61 - 13	3
Fluorene		3300	3550	108	63 - 12	6
Hexachloroethane		3300	2600	79	41 - 12	
N-Nitrosodi-n-prop	ylamine	3300	3110	94	46 - 12	0
Pentachlorophenol		3300	3080	93	33 - 13	
Phenol		3300	3010	91	36 - 12	
Pyrene		3300	3640	110	51 - 13	3
Surrogate		%	Rec	A	cceptance Limit	S
2,4,6-Tribromophe	nol		103		39 - 146	
2-Fluorobiphenyl		9	94		37 - 120	
2-Fluorophenol		:	82		18 - 120	
Nitrobenzene-d5			85		34 - 132	
p-Terphenyl-d14	enyl-d14 110 65 - 153		65 - 153			
Phenol-d5		;	86		11 - 120	

Page 200 of 1939

Client: CHA Inc

Method Blank - Batch: 480-58531

Method: 8270C Preparation: 3510C

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 480-58531/1-A Water 1.0 04/07/2012 1517 04/06/2012 1352 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	480-58601 480-58531 N/A mg/L	Final W		HP5973V V8643.D 1000 mL 1 mL 1 uL	
Analyte		Res	ult	Qual	MDL	RL	
1,4-Dichlorobenzer	ıe	ND			0.00012	0.0025	
3-Methylphenol		ND			0.00010	0.0025	
2,4-Dinitrotoluene		ND			0.00011	0.0013	
Pyridine		ND	ND			0.0063	
2,4,5-Trichloropher	lor	ND			0.00012	0.0013	
2,4,6-Trichloropher	lor	ND			0.00015 0.00010	0.0013	
2-Methylphenol	2-Methylphenol		ND			0.0013	
4-Methylphenol		ND				0.0025	
Hexachlorobenzen			ND			0.0013	
Hexachlorobutadie	ne	ND			0.00017 0.0013		
Hexachloroethane		ND			0.00015 0.0013		
Nitrobenzene		ND			0.000073		
Pentachlorophenol		ND			0.00055	0.0025	
Surrogate		%	Rec		Acceptance Limits	5	
2,4,6-Tribromopher	nol	ç	93		52 - 132		
2-Fluorobiphenyl		8	31		48 - 120		
2-Fluorophenol		2	1		20 - 120		
Nitrobenzene-d5		6	35		46 - 120		
p-Terphenyl-d14		1	112				
Phenol-d5		2	27		16 - 120		

Client: CHA Inc

TCLP SPLPE Leachate Blank - Batch: 480-58531

Method: 8270C Preparation: 3510C TCLP

Lab Sample ID:	LB 480-58275/13-D	Analysis Batch:	480-58601	Instrument ID:	HP5973V
Client Matrix:	Solid	Prep Batch:	480-58531	Lab File ID:	V8646.D
Dilution:	1.0	Leach Batch:	480-58275	Initial Weight/Volume:	250 mL
Analysis Date:	04/07/2012 1629	Units:	mg/L	Final Weight/Volume:	1 mL
Prep Date:	04/06/2012 1352			Injection Volume:	1 uL
Leach Date:	04/05/2012 1009				

Analyte	Result	Qual	MDL	RL
1,4-Dichlorobenzene	ND		0.00046	0.010
3-Methylphenol	ND		0.00040	0.010
2,4-Dinitrotoluene	ND		0.00045	0.0050
Pyridine	ND		0.00041	0.025
2,4,5-Trichlorophenol	ND		0.00048	0.0050
2,4,6-Trichlorophenol	ND		0.00061	0.0050
2-Methylphenol	ND		0.00040	0.0050
4-Methylphenol	ND		0.00036	0.010
Hexachlorobenzene	ND		0.00051	0.0050
Hexachlorobutadiene	ND		0.00068	0.0050
Hexachloroethane	ND		0.00059	0.0050
Nitrobenzene	ND		0.00029	0.0050
Pentachlorophenol	ND		0.0022	0.010
Surrogate	% Rec		Acceptance Limits	
2,4,6-Tribromophenol	98		52 - 132	
2-Fluorobiphenyl	89		48 - 120	
2-Fluorophenol	39		20 - 120	
Nitrobenzene-d5	75		46 - 120	
p-Terphenyl-d14	120		67 - 150	
Phenol-d5	27		16 - 120	

TestAmerica Buffalo

Client: CHA Inc

Lab Control Sample/

Job Number: 480-18049-1

HP5973V

V8644.D

1000 mL

1 mL

1 uL

LCS Lab Sample ID:	LCS 480-58531/2-A	Analysis Batch:	480-58601	Instrument ID:
Client Matrix:	Water	Prep Batch:	480-58531	Lab File ID:
Dilution:	1.0	Leach Batch:	N/A	Initial Weight/Volume
Analysis Date:	04/07/2012 1541	Units:	mg/L	Final Weight/Volume
Prep Date:	04/06/2012 1352			Injection Volume:
Leach Date:	N/A			

Lab Control Sample Duplicate Recovery Report - Batch: 480-58531

LCSD Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	e ID: LCSD 480-58531/3-A Water 1.0 04/07/2012 1605 04/06/2012 1352 N/A	Prep E	sis Batch: Batch: Batch:	480-58601 480-58531 N/A mg/L		D: ight/Volume: ght/Volume:	HP5973V V8645.D 1000 mL 1 mL 1 uL	
		0	<u> 6 Rec.</u>					
Analyte		LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
1,4-Dichlorobenze	ne	65	74	32 - 120	13	36		
2,4-Dinitrotoluene		112	112	59 - 125	0	20		
Hexachloroethane		57	70	25 - 120	19	46		
Pentachloropheno	I	98	110	39 - 136	11	37		

Surrogate	LCS % Rec	LCSD % Rec	Acceptance Limits
2,4,6-Tribromophenol	106	116	52 - 132
2-Fluorobiphenyl	91	97	48 - 120
2-Fluorophenol	45	54	20 - 120
Nitrobenzene-d5	76	88	46 - 120
p-Terphenyl-d14	113	122	67 - 150
Phenol-d5	33	37	16 - 120

Laboratory Control/ Laboratory Duplicate Data Report - Batch: 480-58531

LCS Lab Sample ID:LCS 480-58531/2-AUnits:mg/LClient Matrix:WaterDilution:1.0Analysis Date:04/07/2012 1541Prep Date:04/06/2012 1352Leach Date:N/A

Method: 8270C Preparation: 3510C

Method: 8270C

Preparation: 3510C

LCSD Lab Sample ID:	LCSD 480-58531/3-A
Client Matrix:	Water
Dilution:	1.0
Analysis Date:	04/07/2012 1605
Prep Date:	04/06/2012 1352
Leach Date:	N/A

Analyte	LCS Spike Amount	LCSD Spike Amount	LCS Result/Qual	LCSD Result/Qual
1,4-Dichlorobenzene	0.100	0.100	0.0645	0.0736
2,4-Dinitrotoluene	0.100	0.100	0.112	0.112
Hexachloroethane	0.100	0.100	0.0573	0.0696
Pentachlorophenol	0.100	0.100	0.0983	0.110

Client: CHA Inc

TCLP SPLPE Leachate Blank - Batch: 480-58480

Method: 6010B Preparation: 3010A TCLP

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	LB 480-58275/13-C Solid 1.0 04/06/2012 1901 04/06/2012 1050 04/05/2012 1009	Analysis Batch: Prep Batch: Leach Batch: Units:	480-58666 480-58480 480-58275 mg/L			ICAP2 I2040612A-5.asc 50 mL 50 mL
Analyte	04/03/2012 1003	Res	ult	Qual	MDL	RL
Arsenic		ND			0.0056	0.010
Barium		0.02	277		0.00070	0.0020
Cadmium		ND			0.00050	0.0010
Chromium		0.00)228	J	0.0010	0.0040
Lead		ND			0.0030	0.0050
Selenium		ND			0.0087	0.015
Silver		ND			0.0017	0.0030

Method Blank - Batch: 480-58480

Method: 6010B Preparation: 3010A

Lab Sample ID:	MB 480-58480/2-A	Analysis Batch:	480-58666	Instrument ID:	ICAP2
Client Matrix:	Water	Prep Batch:	480-58480	Lab File ID:	I2040612A-5.asc
Dilution:	1.0	Leach Batch:	N/A	Initial Weight/Volume:	50 mL
Analysis Date:	04/06/2012 1903	Units:	mg/L	Final Weight/Volume:	50 mL
Prep Date:	04/06/2012 1050				
Leach Date:	N/A				

Analyte	Result	Qual	MDL	RL	
Arsenic	ND		0.0056	0.010	
Barium	ND		0.00070	0.0020	
Cadmium	ND		0.00050	0.0010	
Chromium	ND		0.0010	0.0040	
Lead	ND		0.0030	0.0050	
Selenium	ND		0.0087	0.015	
Silver	ND		0.0017	0.0030	

Leach Date:

Job Number: 480-18049-1

Client: CHA Inc

Lab Control Sample - Batch: 480-58480

04/05/2012 1009

Method: 6010B Preparation: 3010A

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	LCS 480-58480/3-A Water 1.0 04/06/2012 1906 04/06/2012 1050 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	480-58666 480-58480 N/A mg/L	Instrument Lab File ID: Initial Weigl Final Weigh	ht/Volume:	ICAP2 I2040612 50 mL 50 mL	A-5.asc
Analyte		Spike Amount	Result	% Rec.	Limit		Qual
Arsenic		1.00	1.10	110	80 -	120	
Barium		1.00	1.05	105	80 -	120	
Cadmium		1.00	1.04	104	80 -	120	
Chromium		1.00	1.03	103	80 -	120	
Lead		1.00	1.03	103	80 -	120	
Selenium		1.00	1.08	108	80 -	120	
Silver		1.00	1.06	106	80 -	120	
Post Digestion	Spike - Batch: 480-58480)		Method: 6	010B		
9	•			Preparatio	on: 3010A		

TCLP Lab Sample ID: 480-18049-3 Analysis Batch: 480-58666 Instrument ID: ICAP2 Client Matrix: Solid Prep Batch: 480-58480 Lab File ID: I2040612A-5.asc Dilution: 1.0 Leach Batch: 480-58275 Initial Weight/Volume: 50 mL 04/06/2012 1916 Final Weight/Volume: Analysis Date: Units: 50 mL mg/L Prep Date: 04/06/2012 1050

Analyte	Sample Result/Qual	Spike Amount	Result	% Rec.	Limit	Qual
Arsenic	ND	1.00	1.11	111	75 - 125	
Barium	0.33	1.00	1.40	107	75 - 125	
Cadmium	0.0016	1.00	1.08	107	75 - 125	
Chromium	0.0086	1.00	1.05	104	75 - 125	
Lead	0.036	1.00	1.11	108	75 - 125	
Selenium	ND	1.00	1.11	111	75 - 125	
Silver	ND	1.00	1.09	109	75 - 125	

Job Number: 480-18049-1

Client: CHA Inc

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 480-58480

Method: 6010B Preparation: 3010A TCLP

MS Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	480-18049-3 Solid 1.0 04/06/2012 1919 04/06/2012 1050 04/05/2012 1009	Analysis Batch: Prep Batch: Leach Batch:	480-58666 480-58480 480-58275	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICAP2 I2040612A-5.asc 50 mL 50 mL
MSD Lab Sample IE Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	2: 480-18049-3 Solid 1.0 04/06/2012 1921 04/06/2012 1050 04/05/2012 1009	Analysis Batch: Prep Batch: Leach Batch:	480-58666 480-58480 480-58275	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICAP2 I2040612A-5.asc 50 mL 50 mL

	<u>%</u> F	<u>Rec.</u>					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Arsenic	109	108	75 - 125	1	20		
Barium	102	100	75 - 125	1	20		
Cadmium	104	103	75 - 125	1	20		
Chromium	101	100	75 - 125	1	20		
Lead	103	102	75 - 125	1	20		
Selenium	107	106	75 - 125	1	20		
Silver	107	106	75 - 125	1	20		

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 480-58480

MS Lab Sample ID:	480-18049-3	Units:	mg/L
Client Matrix:	Solid		
Dilution:	1.0		
Analysis Date:	04/06/2012 1919		
Prep Date:	04/06/2012 1050		
Leach Date:	04/05/2012 1009		

Method: 6010B Preparation: 3010A TCLP

MSD Lab Sample ID:	480-18049-3
Client Matrix:	Solid
Dilution:	1.0
Analysis Date:	04/06/2012 1921
Prep Date:	04/06/2012 1050
Leach Date:	04/05/2012 1009

	Sample	MS Spike	MSD Spike	MS	MSD
Analyte	Result/Qual	Amount	Amount	Result/Qual	Result/Qual
Arsenic	ND	1.00	1.00	1.09	1.08
Barium	0.33	1.00	1.00	1.35	1.33
Cadmium	0.0016	1.00	1.00	1.04	1.03
Chromium	0.0086	1.00	1.00	1.02	1.01
Lead	0.036	1.00	1.00	1.07	1.06
Selenium	ND	1.00	1.00	1.07	1.06
Silver	ND	1.00	1.00	1.07	1.06

Job Number: 480-18049-1

Client: CHA Inc

Serial Dilution - Batch: 480-58480

Method: 6010B Preparation: 3010A TCLP

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	480-18049-3 Solid 5.0 04/06/2012 1914 04/06/2012 1050 04/05/2012 1009	Analysis Batch: Prep Batch: Leach Batch: Units:	480-58666 480-58480 480-58275 mg/L		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICAP2 I2040612A 50 mL 50 mL	∿-5.asc
Analyte		Sample Result/	Qual	Result	%Diff	Limit	Qual
Arsenic		ND		ND	NC	10	
Barium		0.33		0.343	5.0	10	
Cadmium		0.0016		ND	NC	10	
Chromium		0.0086		0.0107	NC	10	J
Lead		0.036		0.0303	NC	10	
Selenium		ND		ND	NC	10	
Silver		ND		ND	NC	10	

LEEMAN2

30 mL

50 mL

LEEMAN2

30 mL

50 mL

H04062TC.PRN

H04062TC.PRN

RL

0.00020

Method: 7470A Preparation: 7470A

Client: CHA Inc

TCLP SPLPE Leachate Blank - Batch: 480-58479

				TCLP	
Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	LB 480-58275/13-B Solid 1.0 04/06/2012 1333 04/06/2012 1040 04/05/2012 1009	Analysis Batch: Prep Batch: Leach Batch: Units:	480-58543 480-58479 480-58275 mg/L		
Analyte		Res	ult	Qual	MDL
Mercury		ND			0.00012
Method Blank -	Batch: 480-58479				l: 7470A ation: 7470A
Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 480-58479/2-A Water 1.0 04/06/2012 1335 04/06/2012 1040 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	480-58543 480-58479 N/A mg/L		
		_			

Analyte		Res	ult	Qual	MDL	RL
Mercury		ND			0.00012	0.00020
Lab Control San	nple - Batch: 480-58479			Method: Preparat	7470A ion: 7470A	
Lab Sample ID: Client Matrix:	LCS 480-58479/3-A Water	Analysis Batch: Prep Batch:	480-58543 480-58479	Instrumen Lab File II		LEEMAN2 H04062TC.PRN
Dilution:	1.0	Leach Batch:	400-30473 N/A		, ght/Volume:	30 mL
Analysis Date: Prep Date:	04/06/2012 1337 04/06/2012 1040	Units:	mg/L	Final Weig	ht/Volume:	50 mL
Leach Date:	N/A					
Analyte		Spike Amount	Result	% Rec.	Limit	Qual
Mercury		0.00668	0.00598	90	80 - 1	120

TestAmerica Buffalo

Page 209 of 1939

04	/13	/20	12

Matrix Spike/ Matrix Spike Dup	licate Recovery Report	- Batch: 480-58479	1	Method: Prepara TCLP	: 7470A tion: 7470A		
MS Lab Sample ID:	480-18049-3	Analysis Batc	h: 480-58543	Instrume	nt ID:	LEEMAN2	
Client Matrix:	Solid	Prep Batch:	480-58479	Lab File I	D:	H04062TC	.PRN
Dilution:	1.0	Leach Batch:	480-58275	Initial We	ight/Volume:	30 mL	
Analysis Date:	04/06/2012 1343				ight/Volume:	50 mL	
Prep Date:	04/06/2012 1040						
Leach Date:	04/05/2012 1009						
MSD Lab Sample ID): 480-18049-3	Analysis Batc	h: 480-58543	Instrume	nt ID:	LEEMAN2	
Client Matrix:	Solid	Prep Batch:	480-58479	Lab File I	D:	H04062TC	.PRN
Dilution:	1.0	Leach Batch:	480-58275	Initial We	ight/Volume:	30 mL	
Analysis Date:	04/06/2012 1344			Final We	ight/Volume:	50 mL	
Prep Date:	04/06/2012 1040				-		
Leach Date:	04/05/2012 1009						
		<u>% Rec.</u>					
Analyte		MS MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qua
Mercury		99 98	75 - 125	1	20		
Matrix Spike/ Matrix Spike Dup	licate Recovery Report	- Batch: 480-58479	1	Method: 7 Preparati TCLP	7470A on: 7470A		
MS Lab Sample ID:	480-18049-3	Units: mg/	۲L	MSD Lab S	Sample ID:	480-18049-3	
Client Matrix:	Solid			Client Matr	ix:	Solid	
Dilution:	1.0			Dilution:		1.0	
Analysis Date:	04/06/2012 1343			Analysis D	ate:	04/06/2012 1	344
Prep Date:	04/06/2012 1040			Prep Date:		04/06/2012 1	040
Leach Date:	04/05/2012 1009			Leach Date	e:	04/05/2012 1	009
		Sample	MS Spike	MSD Spike	MS	MSI)
Analyte		Result/Qual	Amount	Amount	Result/Q		ult/Qual
Mercury		ND	0.00668	0.00668	0.00660	0.00	655
Serial Dilution - B	atch: 480-58479			Method: Prepara TCLP	: 7470A tion: 7470A		
Lab Sample ID:	480-18049-3	Analysis Batch:	480-58543	Instrume	nt ID:	LEEMAN2	
Client Matrix:	Solid	Prep Batch:	480-58479	Lab File I	D:	H04062TC	.PRN
Dilution:	5.0	Leach Batch:	480-58275	Initial We	ight/Volume:	30 mL	
Analysis Date:	04/06/2012 1341	Units:	mg/L	Final We	ight/Volume:	50 mL	
Prep Date:	04/06/2012 1040						
Leach Date:	04/05/2012 1009						
Analyte		Sample Result/	Qual F	Result	%Diff	Limit	Qual
Mercury		ND	١	ND	NC	10	

Client: CHA Inc

Matrix Spike/

Quality Control Results

Job Number: 480-18049-1

Method: 7470A

Job Number: 480-18049-1

Client: CHA Inc

Lab Control Sample - Batch: 480-58632

Method: 1010 Preparation: N/A

Lab Sample ID: Client Matrix: Dilution:	LCS 480-58632/1 Solid 1.0	Analysis Batch: Prep Batch: Leach Batch:	480-58632 N/A N/A	Instrument I Lab File ID: Initial Weigh		No Equipm N/A	ent
Analysis Date: Prep Date: Leach Date:	04/07/2012 1041 N/A N/A	Units:	Degrees F	Final Weigh		25 mL	
Analyte		Spike Amount	Result	% Rec.	Limit		Qual
Flashpoint		81.0	80.00	99	97.5	- 102.5	

04/13/2012

TestAmerica Buffalo

Job Number: 480-18049-1

Method: 9012 Preparation: 7.3.3

Client: CHA Inc

Method Blank - Batch: 480-58610

Lab Control San Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	nple - Batch: 480-58610 LCS 480-58610/2-A Solid 1.0 04/07/2012 1053 04/06/2012 1500 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	480-58611 480-58610 N/A mg/Kg	-	i on: 7.3.3 t ID:	No Equipment N/A 5 g 5 mL
Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date:	LCS 480-58610/2-A Solid 1.0 04/07/2012 1053 04/06/2012 1500	Prep Batch: Leach Batch:	480-58610 N/A	Preparati Instrument Lab File ID Initial Weig	t ID:): ght/Volume:	N/A 5 g
_ab Sample ID: Client Matrix: Dilution:	LCS 480-58610/2-A Solid 1.0 04/07/2012 1053	Prep Batch: Leach Batch:	480-58610 N/A	Preparati Instrument Lab File ID Initial Weig	t ID:): ght/Volume:	N/A 5 g
∟ab Sample ID: Client Matrix:	LCS 480-58610/2-A Solid	Prep Batch:	480-58610	Preparati Instrument Lab File ID	t ID:	N/A
_ab Sample ID:	LCS 480-58610/2-A	,		Preparati	i on: 7.3.3 t ID:	
		Analysis Batch:	480-58611	Preparati	ion: 7.3.3	No Equipment
Lab Control San	nple - Batch: 480-58610					
Lab Control San	nple - Batch: 480-58610					
Cyanide, Reactive		ND			0.0030	10.0
Analyte		Res	ult	Qual	MDL	RL
_each Date:	N/A					
Prep Date:	04/06/2012 1500					
Analysis Date:	04/07/2012 1053	Units:	mg/Kg	Final Weig	ht/Volume:	5 mL
Dilution:	1.0	Leach Batch:	N/A	Initial Weig	ght/Volume:	5 g
Client Matrix:	Solid	Prep Batch:	480-58610	Lab File ID):	N/A
Dilution:	1.0	Leach Batch:	N/A	Initial Weig): ght/Volume:	5 g

TestAmerica Buffalo

Quality Control Results

Job Number: 480-18049-1

Method: 9034 Preparation: 7.3.4

Client: CHA Inc

Method Blank - Batch: 480-58613

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 480-58613/1-A Solid 1.0 04/06/2012 1900 04/06/2012 1500 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	480-58614 480-58613 N/A mg/Kg		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	No Equipr N/A 100 g 100 mL	nent
Analyte		Res	ult	Qua	I MDL	R	L
Sulfide, Reactive		ND			0.57	10).0
Lab Control Sam	ple - Batch: 480-58613				Method: 9034 Preparation: 7.3.4		
Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	LCS 480-58613/2-A Solid 1.0 04/06/2012 1900 04/06/2012 1500 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	480-58614 480-58613 N/A mg/Kg		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	No Equipn N/A 100 g 100 mL	nent
Analyte		Spike Amount	Result	9	6 Rec. Limit	t	Qual
Sulfide, Reactive		1000	701.3		70 10	- 100	
Duplicate - Batcł	n: 480-58613				Method: 9034 Preparation: 7.3.4		
Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	480-18049-3 Solid 1.0 04/06/2012 1900 04/06/2012 1500 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	480-58614 480-58613 N/A mg/Kg		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	No Equipn N/A 100 g 100 mL	nent
Analyte		Sample Result/	Qual	Result	RPD	Limit	Qual
		ND		ND	NC	20	

Job Number: 480-18049-1

Client: CHA Inc

Lab Control Sample - Batch: 480-58572

Method: 9045C Preparation: N/A

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	LCS 480-58572/1 Solid 1.0 04/06/2012 1950 N/A N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	480-58572 N/A N/A SU	Instrument Lab File ID: Initial Weigl Final Weigh	nt/Volume:	No Equipi N/A 25 mL 25 mL	ment
Analyte		Spike Amount	Result	% Rec.	Limit		Qual
pН		7.00	6.960	99	99 -	101	

DATA REPORTING QUALIFIERS

Client: CHA Inc

Lab Section	Qualifier	Description
GC/MS VOA		
	В	Compound was found in the blank and sample.
	E	Result exceeded calibration range.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
	Х	Surrogate is outside control limits
GC/MS Semi VOA		
	В	Compound was found in the blank and sample.
	*	LCS or LCSD exceeds the control limits
	E	Result exceeded calibration range.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
	*	RPD of the LCS and LCSD exceeds the control limits
	Х	Surrogate is outside control limits
Metals		
	В	Compound was found in the blank and sample.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Client: CHA Inc

Job Number: 480-18049-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:480-58043					
LCS 480-58043/6	Lab Control Sample	т	Solid	8260B	
MB 480-58043/7	Method Blank	T	Solid	8260B	
480-18049-1	SB01 SS (2-3) 040212	T	Solid	8260B	480-58091
480-18049-4	SB03 SS (1-2) 040212	Т	Solid	8260B	480-58091
480-18049-5	SB04 SS (2-3) 040212	Т	Solid	8260B	480-58091
Prep Batch: 480-58091					
480-18049-1	SB01 SS (2-3) 040212	т	Solid	5035	
480-18049-4	SB03 SS (1-2) 040212	Т	Solid	5035	
480-18049-5	SB04 SS (2-3) 040212	Т	Solid	5035	
480-18049-13	SB11 SS (2-3) 040212	T	Solid	5035	
480-18049-14	SB14 SS (1-2)040212	Ť	Solid	5035	
480-18049-15	SB14 SS (2-3) 040212	T	Solid	5035	
480-18049-16	SB13 SS (1-2) 040212	Ť	Solid	5035	
480-18049-17	SB13 SS (2-3) 040212	Ť	Solid	5035	
480-18049-18	SB08 SS (1-2) 040212	Ť	Solid	5035	
480-18049-19	SB08 SS (2-3) 040212	T	Solid	5035	
480-18049-20	SB12 SS (0-1) 040212	Ť	Solid	5035	
480-18049-21	SB12 SS (2-3)040212	Ť	Solid	5035	
480-18049-23	SB09 SS (3-4) 040212	Ť	Solid	5035	
480-18049-24	SB15 SS (1-2) 040212	Ť	Solid	5035	
480-18049-25	SB15 SS (3-4) 040212	T	Solid	5035	
480-18049-26	SB06 SS (1-2) 040212	T	Solid	5035	
Analysis Batch:480-58251					
LCS 480-58251/6	Lab Control Sample	т	Solid	8260B	
MB 480-58251/7	Method Blank	Ť	Solid	8260B	
480-18049-6	SB05 SS (1-2 040212	Ť	Solid	8260B	480-58266
480-18049-9	SB07 SS (1-2) 040212	T	Solid	8260B	480-58266
480-18049-10	SB07 SS (3-4) 040212	Ť	Solid	8260B	480-58266
Prep Batch: 480-58266					
480-18049-6	SB05 SS (1-2 040212	Т	Solid	5035	
480-18049-6DL	SB05 SS (1-2 040212	Т	Solid	5035	
480-18049-9	SB07 SS (1-2) 040212	Т	Solid	5035	
480-18049-10	SB07 SS (3-4) 040212	Т	Solid	5035	
Prep Batch: 480-58276					
LB 480-58276/1-A	TCLP SPLPE Leachate Blank	Р	Solid	1311	
480-18049-3	SB02 SS (0-3) 040212	Р	Solid	1311	
480-18049-7	SB05 SS (0-3) 040212	Р	Solid	1311	

Client: CHA Inc

Job Number: 480-18049-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS VOA				method	
Prep Batch: 480-58304 LCS 480-58304/1-A	Lab Control Sample	т	Solid	5035	
MB 480-58304/2-A	Method Blank	T	Solid	5035	
480-18049-1DL	SB01 SS (2-3) 040212	T	Solid	5035	
480-18049-2	SB02 SS (2-3) 040212	Т	Solid	5035	
480-18049-2DL	SB02 SS (2-3) 040212 SB02 SS (2-3) 040212	T	Solid	5035	
480-18049-4DL	SB02 SS (2-3) 040212 SB03 SS (1-2) 040212	Т	Solid	5035	
480-18049-4DL 480-18049-5DL	SB03 SS (1-2) 040212 SB04 SS (2-3) 040212	T	Solid	5035	
	. ,	T	Solid	5035	
480-18049-8 480-18040-8DI	SB06 SS (3-4) 040212	T	Solid		
480-18049-8DL	SB06 SS (3-4) 040212	T		5035	
480-18049-11	SB10 SS (1-2) 040212	T	Solid	5035 5035	
480-18049-12	SB10 SS (3-4) 040212		Solid	5035	
480-18049-22	SB09 SS (1-2) 040212	Т	Solid	5035	
Analysis Batch:480-58389	9				
_CS 480-58304/1-A	Lab Control Sample	Т	Solid	8260B	480-58304
VB 480-58304/2-A	Method Blank	Т	Solid	8260B	480-58304
180-18049-2	SB02 SS (2-3) 040212	Т	Solid	8260B	480-58304
480-18049-8	SB06 SS (3-4) 040212	Т	Solid	8260B	480-58304
480-18049-22	SB09 SS (1-2) 040212	Т	Solid	8260B	480-58304
Analysis Batch:480-5839	5				
_CS 480-58395/6	Lab Control Sample	т	Solid	8260B	
VB 480-58395/7	Method Blank	т	Solid	8260B	
480-18049-6DL	SB05 SS (1-2 040212	Т	Solid	8260B	480-58266
480-18049-13	SB11 SS (2-3) 040212	T	Solid	8260B	480-58091
480-18049-14	SB14 SS (1-2)040212	Т	Solid	8260B	480-58091
480-18049-15	SB14 SS (2-3) 040212	T	Solid	8260B	480-58091
480-18049-16	SB13 SS (1-2) 040212	T	Solid	8260B	480-58091
480-18049-17	SB13 SS (2-3) 040212	T	Solid	8260B	480-58091
480-18049-18	SB08 SS (1-2) 040212	T	Solid	8260B	480-58091
480-18049-19	SB08 SS (2-3) 040212	T	Solid	8260B	480-58091
480-18049-20	SB12 SS (0-1) 040212	T	Solid	8260B	480-58091
480-18049-21	SB12 SS (0-1) 040212 SB12 SS (2-3)040212	Т	Solid	8260B	480-58091
480-18049-23	SB09 SS (3-4) 040212	Т	Solid	8260B	480-58091
100-100 - 75-25	000000000000000000000000000000000000000		Goliu	02000	-00-00091
Analysis Batch:480-58428					
_CS 480-58428/5	Lab Control Sample	Т	Solid	8260B	
MB 480-58428/6	Method Blank	Т	Solid	8260B	
480-18049-24	SB15 SS (1-2) 040212	Т	Solid	8260B	480-58091
480-18049-25	SB15 SS (3-4) 040212	Т	Solid	8260B	480-58091
480-18049-26	SB06 SS (1-2) 040212	Т	Solid	8260B	480-58091

Client: CHA Inc

QC Association Summary

	-				
		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:480-584	181				
480-18049-1DL	SB01 SS (2-3) 040212	Т	Solid	8260B	480-58304
480-18049-2DL	SB02 SS (2-3) 040212	Т	Solid	8260B	480-58304
480-18049-5DL	SB04 SS (2-3) 040212	Т	Solid	8260B	480-58304
480-18049-11	SB10 SS (1-2) 040212	Т	Solid	8260B	480-58304
480-18049-12	SB10 SS (3-4) 040212	Т	Solid	8260B	480-58304
Analysis Batch:480-58	568				
LB 480-58276/1-A	TCLP SPLPE Leachate Blank	Р	Solid	8260B	
LCS 480-58568/4	Lab Control Sample	Т	Water	8260B	
MB 480-58568/5	Method Blank	Т	Water	8260B	
480-18049-3	SB02 SS (0-3) 040212	Р	Solid	8260B	
480-18049-4DL	SB03 SS (1-2) 040212	Т	Solid	8260B	480-58304
480-18049-7	SB05 SS (0-3) 040212	Р	Solid	8260B	
480-18049-8DL	SB06 SS (3-4) 040212	Т	Solid	8260B	480-58304

Report Basis

P = TCLP

T = Total

Client: CHA Inc

Job Number: 480-18049-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS Semi VOA		20010		Method	Thep Bateri
Prep Batch: 480-58238	Lab Control Comple	Ŧ	Calid	25500	
_CS 480-58238/2-A	Lab Control Sample	T T	Solid	3550B	
_CSD 480-58238/3-A MB 480-58238/1-A	Lab Control Sample Duplicate Method Blank	T	Solid Solid	3550B 3550B	
		T			
480-18049-1	SB01 SS (2-3) 040212 SB02 SS (2-3) 040212	T	Solid Solid	3550B 3550B	
480-18049-2					
480-18049-4 180-18040 5	SB03 SS (1-2) 040212	T T	Solid	3550B	
480-18049-5	SB04 SS (2-3) 040212	T	Solid	3550B	
480-18049-6	SB05 SS (1-2 040212		Solid	3550B	
180-18049-8	SB06 SS (3-4) 040212	T	Solid	3550B	
180-18049-9	SB07 SS (1-2) 040212	T	Solid	3550B	
180-18049-10	SB07 SS (3-4) 040212	T	Solid	3550B	
180-18049-11	SB10 SS (1-2) 040212	T	Solid	3550B	
180-18049-12	SB10 SS (3-4) 040212	Т	Solid	3550B	
80-18049-13	SB11 SS (2-3) 040212	T	Solid	3550B	
80-18049-14	SB14 SS (1-2)040212	T	Solid	3550B	
80-18049-15	SB14 SS (2-3) 040212	T _	Solid	3550B	
80-18049-16	SB13 SS (1-2) 040212	T _	Solid	3550B	
80-18049-17	SB13 SS (2-3) 040212	Т	Solid	3550B	
80-18049-18	SB08 SS (1-2) 040212	Т	Solid	3550B	
80-18049-19	SB08 SS (2-3) 040212	Т	Solid	3550B	
80-18049-20	SB12 SS (0-1) 040212	Т	Solid	3550B	
80-18049-21	SB12 SS (2-3)040212	Т	Solid	3550B	
80-18049-22	SB09 SS (1-2) 040212	Т	Solid	3550B	
Prep Batch: 480-58249					
-CS 480-58249/2-A	Lab Control Sample	Т	Solid	3550B	
/IB 480-58249/1-A	Method Blank	Т	Solid	3550B	
80-18049-23	SB09 SS (3-4) 040212	Т	Solid	3550B	
80-18049-24	SB15 SS (1-2) 040212	Т	Solid	3550B	
80-18049-25	SB15 SS (3-4) 040212	Т	Solid	3550B	
80-18049-26	SB06 SS (1-2) 040212	Т	Solid	3550B	
Prep Batch: 480-58275					
B 480-58275/13-D	TCLP SPLPE Leachate Blank	Р	Solid	1311	
80-18049-3	SB02 SS (0-3) 040212	Р	Solid	1311	
80-18049-3DL	SB02 SS (0-3) 040212	Р	Solid	1311	
80-18049-7	SB05 SS (0-3) 040212	Р	Solid	1311	
Analysis Batch:480-58452					
CS 480-58249/2-A	Lab Control Sample	Т	Solid	8270C	480-58249
/IB 480-58249/1-A	Method Blank	Т	Solid	8270C	480-58249
80-18049-23	SB09 SS (3-4) 040212	Т	Solid	8270C	480-58249
80-18049-24	SB15 SS (1-2) 040212	Т	Solid	8270C	480-58249
80-18049-25	SB15 SS (3-4) 040212	Т	Solid	8270C	480-58249
80-18049-26	SB06 SS (1-2) 040212	Т	Solid	8270C	480-58249

Client: CHA Inc

QC Association Summary

I ab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
Lab Sample ID GC/MS Semi VOA		Dasis		Wethod	Fiep Batch
Prep Batch: 480-58531		_			
-CS 480-58531/2-A	Lab Control Sample	Т	Water	3510C	
_CSD 480-58531/3-A	Lab Control Sample Duplicate	Т	Water	3510C	
MB 480-58531/1-A	Method Blank	Т	Water	3510C	
_B 480-58275/13-D	TCLP SPLPE Leachate Blank	Р	Solid	3510C	480-58275
180-18049-3	SB02 SS (0-3) 040212	Р	Solid	3510C	480-58275
180-18049-3DL	SB02 SS (0-3) 040212	Р	Solid	3510C	480-58275
180-18049-7	SB05 SS (0-3) 040212	Р	Solid	3510C	480-58275
Analysis Batch:480-58601	I				
B 480-58275/13-D	TCLP SPLPE Leachate Blank	Р	Solid	8270C	480-58531
-CS 480-58531/2-A	Lab Control Sample	Т	Water	8270C	480-58531
_CSD 480-58531/3-A	Lab Control Sample Duplicate	Т	Water	8270C	480-58531
MB 480-58531/1-A	Method Blank	Т	Water	8270C	480-58531
180-18049-3	SB02 SS (0-3) 040212	Р	Solid	8270C	480-58531
180-18049-7	SB05 SS (0-3) 040212	Р	Solid	8270C	480-58531
Analysis Batch:480-58698	5				
_CS 480-58238/2-A	Lab Control Sample	Т	Solid	8270C	480-58238
_CSD 480-58238/3-A	Lab Control Sample Duplicate	Т	Solid	8270C	480-58238
MB 480-58238/1-A	Method Blank	Т	Solid	8270C	480-58238
180-18049-1	SB01 SS (2-3) 040212	Т	Solid	8270C	480-58238
180-18049-2	SB02 SS (2-3) 040212	Т	Solid	8270C	480-58238
180-18049-3DL	SB02 SS (0-3) 040212	Р	Solid	8270C	480-58531
180-18049-4	SB03 SS (1-2) 040212	Т	Solid	8270C	480-58238
180-18049-5	SB04 SS (2-3) 040212	Т	Solid	8270C	480-58238
180-18049-6	SB05 SS (1-2 040212	т	Solid	8270C	480-58238
180-18049-9	SB07 SS (1-2) 040212	т	Solid	8270C	480-58238
180-18049-10	SB07 SS (3-4) 040212	Т	Solid	8270C	480-58238
180-18049-11	SB10 SS (1-2) 040212	Т	Solid	8270C	480-58238
180-18049-12	SB10 SS (3-4) 040212	Т	Solid	8270C	480-58238
180-18049-13	SB11 SS (2-3) 040212	Т	Solid	8270C	480-58238
180-18049-15	SB14 SS (2-3) 040212	Т	Solid	8270C	480-58238
Analysis Batch:480-58886	3				
180-18049-8	, SB06 SS (3-4) 040212	т	Solid	8270C	480-58238
180-18049-14	SB14 SS (1-2)040212	Ť	Solid	8270C	480-58238
180-18049-16	SB13 SS (1-2) 040212	Т	Solid	8270C	480-58238
180-18049-17	SB13 SS (2-3) 040212	T	Solid	8270C	480-58238
180-18049-18	SB08 SS (1-2) 040212	T	Solid	8270C	480-58238
80-18049-19	SB08 SS (2-3) 040212	T	Solid	8270C	480-58238
180-18049-20	SB12 SS (0-1) 040212	T	Solid	8270C	480-58238
180-18049-21	SB12 SS (0-1) 040212 SB12 SS (2-3)040212	T	Solid	8270C	480-58238
180-18049-22	SB09 SS (1-2) 040212	T	Solid	8270C	480-58238

Client: CHA Inc

Job Number: 480-18049-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch

Report Basis

P = TCLP T = Total Client: CHA Inc

QC Association Summary

		Report			Dury Datak
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
Metals					
Prep Batch: 480-58275					
LB 480-58275/13-B	TCLP SPLPE Leachate Blank	Р	Solid	1311	
LB 480-58275/13-C	TCLP SPLPE Leachate Blank	Р	Solid	1311	
480-18049-3	SB02 SS (0-3) 040212	Р	Solid	1311	
480-18049-3MS	Matrix Spike	Р	Solid	1311	
480-18049-3MSD	Matrix Spike Duplicate	Р	Solid	1311	
480-18049-7	SB05 SS (0-3) 040212	Р	Solid	1311	
Prep Batch: 480-58479					
_CS 480-58479/3-A	Lab Control Sample	Т	Water	7470A	
MB 480-58479/2-A	Method Blank	т	Water	7470A	
LB 480-58275/13-B	TCLP SPLPE Leachate Blank	Р	Solid	7470A	480-58275
480-18049-3	SB02 SS (0-3) 040212	Р	Solid	7470A	480-58275
480-18049-3MS	Matrix Spike	Р	Solid	7470A	480-58275
480-18049-3MSD	Matrix Spike Duplicate	Р	Solid	7470A	480-58275
480-18049-7	SB05 SS (0-3) 040212	Р	Solid	7470A	480-58275
Prep Batch: 480-58480					
LCS 480-58480/3-A	Lab Control Sample	т	Water	3010A	
VB 480-58480/2-A	Method Blank	т	Water	3010A	
_B 480-58275/13-C	TCLP SPLPE Leachate Blank	Р	Solid	3010A	480-58275
480-18049-3	SB02 SS (0-3) 040212	Р	Solid	3010A	480-58275
480-18049-3MS	Matrix Spike	Р	Solid	3010A	480-58275
480-18049-3MSD	Matrix Spike Duplicate	Р	Solid	3010A	480-58275
480-18049-7	SB05 SS (0-3) 040212	P	Solid	3010A	480-58275
Analysis Batch:480-58543					
LB 480-58275/13-B	TCLP SPLPE Leachate Blank	Р	Solid	7470A	480-58479
LCS 480-58479/3-A	Lab Control Sample	т	Water	7470A	480-58479
MB 480-58479/2-A	Method Blank	Т	Water	7470A	480-58479
480-18049-3	SB02 SS (0-3) 040212	Р	Solid	7470A	480-58479
480-18049-3MS	Matrix Spike	P	Solid	7470A	480-58479
480-18049-3MSD	Matrix Spike Duplicate	P	Solid	7470A	480-58479
480-18049-7	SB05 SS (0-3) 040212	Р	Solid	7470A	480-58479
Analysis Batch:480-58666					
LB 480-58275/13-C	TCLP SPLPE Leachate Blank	Р	Solid	6010B	480-58480
_CS 480-58480/3-A	Lab Control Sample	т	Water	6010B	480-58480
VIB 480-58480/2-A	Method Blank	т	Water	6010B	480-58480
480-18049-3	SB02 SS (0-3) 040212	Р	Solid	6010B	480-58480
480-18049-3MS	Matrix Spike	Р	Solid	6010B	480-58480
480-18049-3MSD	Matrix Spike Duplicate	P	Solid	6010B	480-58480
480-18049-7	SB05 SS (0-3) 040212	P	Solid	6010B	480-58480

Client: CHA Inc

Job Number: 480-18049-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch

Report Basis

P = TCLP T = Total

Client: CHA Inc

Job Number: 480-18049-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
General Chemistry					•
Analysis Batch:480-5831	4				
480-18049-1	SB01 SS (2-3) 040212	т	Solid	Moisture	
80-18049-2	SB02 SS (2-3) 040212	T	Solid	Moisture	
80-18049-3	SB02 SS (0-3) 040212	Т	Solid	Moisture	
80-18049-4	SB03 SS (1-2) 040212	Т	Solid	Moisture	
80-18049-5	SB04 SS (2-3) 040212	Т	Solid	Moisture	
80-18049-6	SB05 SS (1-2 040212	Т	Solid	Moisture	
80-18049-7	SB05 SS (0-3) 040212	Т	Solid	Moisture	
80-18049-8	SB06 SS (3-4) 040212	Т	Solid	Moisture	
80-18049-9	SB07 SS (1-2) 040212	T	Solid	Moisture	
80-18049-10	SB07 SS (3-4) 040212	T	Solid	Moisture	
80-18049-11	SB10 SS (1-2) 040212	T	Solid	Moisture	
80-18049-12	SB10 SS (3-4) 040212	T	Solid	Moisture	
80-18049-13	SB11 SS (2-3) 040212	Ť	Solid	Moisture	
180-18049-14	SB14 SS (1-2)040212	T	Solid	Moisture	
80-18049-15	SB14 SS (2-3) 040212	Ť	Solid	Moisture	
80-18049-16	SB13 SS (1-2) 040212	Ť	Solid	Moisture	
80-18049-17	SB13 SS (2-3) 040212	Ť	Solid	Moisture	
80-18049-18	SB08 SS (1-2) 040212	Ť	Solid	Moisture	
80-18049-19	SB08 SS (2-3) 040212	Ť	Solid	Moisture	
80-18049-20	SB12 SS (0-1) 040212	Ť	Solid	Moisture	
	SB12 SS (0-1) 040212 SB12 SS (2-3)040212	T	Solid	Moisture	
80-18049-21 80-18049-22	SB09 SS (1-2) 040212	T	Solid	Moisture	
		T	Solid	Moisture	
80-18049-23	SB09 SS (3-4) 040212	T	Solid		
80-18049-24	SB15 SS (1-2) 040212	T	Solid	Moisture	
180-18049-25	SB15 SS (3-4) 040212	T		Moisture	
80-18049-26	SB06 SS (1-2) 040212	I	Solid	Moisture	
Analysis Batch:480-5857					
CS 480-58572/1	Lab Control Sample	Т	Solid	9045C	
80-18049-3	SB02 SS (0-3) 040212	Т	Solid	9045C	
80-18049-7	SB05 SS (0-3) 040212	Т	Solid	9045C	
Prep Batch: 480-58610					
.CS 480-58610/2-A	Lab Control Sample	Т	Solid	7.3.3	
/IB 480-58610/1-A	Method Blank	Т	Solid	7.3.3	
80-18049-3	SB02 SS (0-3) 040212	Т	Solid	7.3.3	
80-18049-7	SB05 SS (0-3) 040212	Т	Solid	7.3.3	
Analysis Batch:480-5861	1				
.CS 480-58610/2-A	Lab Control Sample	т	Solid	9012	480-58610
//B 480-58610/1-A	Method Blank	T	Solid	9012	480-58610
80-18049-3	SB02 SS (0-3) 040212	Т	Solid	9012	480-58610
180-18049-7	SB05 SS (0-3) 040212	T	Solid	9012	480-58610

Client: CHA Inc

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
General Chemistry					
Prep Batch: 480-58613					
LCS 480-58613/2-A	Lab Control Sample	Т	Solid	7.3.4	
MB 480-58613/1-A	Method Blank	Т	Solid	7.3.4	
480-18049-3	SB02 SS (0-3) 040212	Т	Solid	7.3.4	
480-18049-3DU	Duplicate	Т	Solid	7.3.4	
480-18049-7	SB05 SS (0-3) 040212	Т	Solid	7.3.4	
Analysis Batch:480-586	514				
LCS 480-58613/2-A	Lab Control Sample	Т	Solid	9034	480-58613
MB 480-58613/1-A	Method Blank	Т	Solid	9034	480-58613
480-18049-3	SB02 SS (0-3) 040212	Т	Solid	9034	480-58613
480-18049-3DU	Duplicate	Т	Solid	9034	480-58613
480-18049-7	SB05 SS (0-3) 040212	Т	Solid	9034	480-58613
Analysis Batch:480-586	332				
LCS 480-58632/1	Lab Control Sample	Т	Solid	1010	
480-18049-3	SB02 SS (0-3) 040212	Т	Solid	1010	
480-18049-7	SB05 SS (0-3) 040212	т	Solid	1010	

Report Basis

T = Total

Client: CHA Inc

Laboratory Chronicle

Lab ID:	480-18049-1	Client II	D: SB01 SS	6 (2-3) 040212				
		Sample	Date/Time:	04/02/2012 09:15	Received Date/	Time:	04/04/2012 09	9:00
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5035	480-18049-C-1-A		480-58043	480-58091	04/04/2012 14:04	1	TAL BUF	JMB
A:8260B	480-18049-C-1-A		480-58043	480-58091	04/04/2012 14:38	1	TAL BUF	CDC
P:5035	480-18049-C-1-B	DL	480-58481	480-58304	04/05/2012 10:45	5	TAL BUF	DC
A:8260B	480-18049-C-1-B	DL	480-58481	480-58304	04/06/2012 13:23	5	TAL BUF	RL
P:3550B	480-18049-A-1-A		480-58695	480-58238	04/05/2012 08:28	20	TAL BUF	СМ
A:8270C	480-18049-A-1-A		480-58695	480-58238	04/09/2012 20:40	20	TAL BUF	HTL
A:Moisture	e 480-18049-A-1		480-58314		04/05/2012 11:21	1	TAL BUF	ZLR

Lab ID: 480-18049-2

Client ID: SB02 SS (2-3) 040212

04/02/2012 10:04 Sample Date/Time:

Received Date/Time:

04/04/2012 09:00

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5035	480-18049-C-2-B		480-58389	480-58304	04/05/2012 10:45	1	TAL BUF	DC
A:8260B	480-18049-C-2-B		480-58389	480-58304	04/06/2012 06:15	1	TAL BUF	DC
P:5035	480-18049-C-2-B	DL	480-58481	480-58304	04/05/2012 10:45	10	TAL BUF	DC
A:8260B	480-18049-C-2-B	DL	480-58481	480-58304	04/06/2012 13:46	10	TAL BUF	RL
P:3550B	480-18049-A-2-A		480-58695	480-58238	04/05/2012 08:28	10	TAL BUF	CM
A:8270C	480-18049-A-2-A		480-58695	480-58238	04/09/2012 21:04	10	TAL BUF	HTL
A:Moisture	480-18049-A-2		480-58314		04/05/2012 11:21	1	TAL BUF	ZLR

Lab ID: 480-18049-3

SB02 SS (0-3) 040212 Client ID:

Sample Date/Time:

04/02/2012 10:04 Received Date/Time:

04/04/2012 09:00

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030B	480-18049-C-3-B		480-58568		04/07/2012 03:22	10	TAL BUF	DC
A:8260B	480-18049-C-3-B		480-58568		04/07/2012 03:22	10	TAL BUF	DC
P:3510C	480-18049-C-3-I		480-58601	480-58531	04/06/2012 13:52	1	TAL BUF	DE
A:8270C	480-18049-C-3-I		480-58601	480-58531	04/07/2012 16:53	1	TAL BUF	HTL
P:3510C	480-18049-C-3-I	DL	480-58695	480-58531	04/06/2012 13:52	5	TAL BUF	DE
A:8270C	480-18049-C-3-I	DL	480-58695	480-58531	04/09/2012 18:16	5	TAL BUF	HTL
P:3010A	480-18049-C-3-F		480-58666	480-58480	04/06/2012 10:50	1	TAL BUF	SS
A:6010B	480-18049-C-3-F		480-58666	480-58480	04/06/2012 19:12	1	TAL BUF	LH
P:7470A	480-18049-C-3-C		480-58543	480-58479	04/06/2012 10:40	1	TAL BUF	JRK
A:7470A	480-18049-C-3-C		480-58543	480-58479	04/06/2012 13:39	1	TAL BUF	JRK
A:1010	480-18049-C-3		480-58632		04/07/2012 14:16	1	TAL BUF	KS
P:7.3.3	480-18049-B-3-A		480-58611	480-58610	04/06/2012 15:00	1	TAL BUF	JR
A:9012	480-18049-B-3-A		480-58611	480-58610	04/07/2012 10:53	1	TAL BUF	JR
P:7.3.4	480-18049-B-3-B		480-58614	480-58613	04/06/2012 15:00	1	TAL BUF	JR
A:9034	480-18049-B-3-B		480-58614	480-58613	04/06/2012 19:00	1	TAL BUF	JR
A:9045C	480-18049-D-3		480-58572		04/06/2012 19:50	1	TAL BUF	EGN
A:Moisture	480-18049-A-3		480-58314		04/05/2012 11:21	1	TAL BUF	ZLR

Client: CHA Inc

Lab ID:	480-18049-3 MS	Client ID:	SB02 SS	6 (0-3) 040212				
		Sample D	ate/Time:	04/02/2012 10:04	Received Date	/Time:	04/04/2012 09	9:00
			Analysis		Date Prepared /			
Method	Bottle ID		Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:3010A	480-18049-C-3-G MS		480-58666	480-58480	04/06/2012 10:50	1	TAL BUF	SS
A:6010B	480-18049-C-3-G MS		480-58666	480-58480	04/06/2012 19:19	1	TAL BUF	LH
P:7470A	480-18049-C-3-D MS		480-58543	480-58479	04/06/2012 10:40	1	TAL BUF	JRK
A:7470A	480-18049-C-3-D MS		480-58543	480-58479	04/06/2012 13:43	1	TAL BUF	JRK
Lab ID:	480-18049-3 MSD	Client ID:	SB02 SS	6 (0-3) 040212				
		Sample D	ate/Time:	04/02/2012 10:04	Received Date	/Time:	04/04/2012 09	9:00
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:3010A	480-18049-C-3-H MSD		480-58666	480-58480	04/06/2012 10:50	1	TAL BUF	SS
A:6010B	480-18049-C-3-H MSD		480-58666	480-58480	04/06/2012 19:21	1	TAL BUF	LH
P:7470A	480-18049-C-3-E MSD		480-58543	480-58479	04/06/2012 10:40	1	TAL BUF	JRK
A:7470A	480-18049-C-3-E MSD		480-58543	480-58479	04/06/2012 13:44	1	TAL BUF	JRK
Lab ID:	480-18049-3 DU	Client ID:	SB02 SS	6 (0-3) 040212				
		Sample D	ate/Time:	04/02/2012 10:04	Received Date	/Time:	04/04/2012 09	9:00
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:7.3.4	480-18049-B-3-B DU		480-58614	480-58613	04/06/2012 15:00	1	TAL BUF	JR
A:9034	480-18049-B-3-B DU		480-58614	480-58613	04/06/2012 19:00	1	TAL BUF	JR
Lab ID:	480-18049-3 SD	Client ID:	SB02 SS	6 (0-3) 040212				
		Sample D	ate/Time:	04/02/2012 10:04	Received Date	/Time:	04/04/2012 09	9:00
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:3010A	480-18049-C-3-F SD ^5		480-58666	480-58480	04/06/2012 10:50	5	TAL BUF	SS
A:6010B	480-18049-C-3-F SD ^5		480-58666	480-58480	04/06/2012 19:14	5	TAL BUF	LH
P:3010A	480-18049-C-3-F PDS		480-58666	480-58480	04/06/2012 10:50	1	TAL BUF	SS
A:6010B	480-18049-C-3-F PDS		480-58666	480-58480	04/06/2012 19:16	1	TAL BUF	LH
P:7470A	480-18049-C-3-C SD ^5		480-58543	480-58479	04/06/2012 10:40	5	TAL BUF	JRK
A:7470A	480-18049-C-3-C SD		480-58543	480-58479	04/06/2012 13:41	5	TAL BUF	JRK

Client: CHA Inc

Laboratory Chronicle

Lab ID:	480-18049-4	Client II	D: SB03 SS	6 (1-2) 040212				
		Sample	Date/Time:	04/02/2012 10:30	Received Date/	Time:	04/04/2012 09	9:00
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5035	480-18049-C-4-A		480-58043	480-58091	04/04/2012 14:04	1	TAL BUF	JMB
A:8260B	480-18049-C-4-A		480-58043	480-58091	04/04/2012 15:29	1	TAL BUF	CDC
P:5035	480-18049-C-4-B	DL	480-58568	480-58304	04/05/2012 10:45	200	TAL BUF	DC
A:8260B	480-18049-C-4-B	DL	480-58568	480-58304	04/07/2012 07:54	200	TAL BUF	DC
P:3550B	480-18049-A-4-A		480-58695	480-58238	04/05/2012 08:28	20	TAL BUF	СМ
A:8270C	480-18049-A-4-A		480-58695	480-58238	04/09/2012 21:28	20	TAL BUF	HTL
A:Moisture	e 480-18049-A-4		480-58314		04/05/2012 11:21	1	TAL BUF	ZLR

Lab ID: 480-18049-5

Client ID: SB04 SS (2-3) 040212

04/02/2012 10:45 Sample Date/Time:

Received Date/Time:

04/04/2012 09:00

		Analysis		Date Prepared /			
Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
480-18049-C-5-A		480-58043	480-58091	04/04/2012 14:04	1	TAL BUF	JMB
480-18049-C-5-A		480-58043	480-58091	04/04/2012 15:54	1	TAL BUF	CDC
480-18049-C-5-B	DL	480-58481	480-58304	04/05/2012 10:45	8	TAL BUF	DC
480-18049-C-5-B	DL	480-58481	480-58304	04/06/2012 14:32	8	TAL BUF	RL
480-18049-A-5-A		480-58695	480-58238	04/05/2012 08:28	20	TAL BUF	CM
480-18049-A-5-A		480-58695	480-58238	04/09/2012 21:52	20	TAL BUF	HTL
480-18049-A-5		480-58314		04/05/2012 11:21	1	TAL BUF	ZLR
-	480-18049-C-5-A 480-18049-C-5-A 480-18049-C-5-B 480-18049-C-5-B 480-18049-A-5-A 480-18049-A-5-A	480-18049-C-5-A 480-18049-C-5-A 480-18049-C-5-B DL 480-18049-C-5-B DL 480-18049-A-5-A 480-18049-A-5-A	Bottle IDRunBatch480-18049-C-5-A480-58043480-18049-C-5-A480-58043480-18049-C-5-BDL480-58481480-18049-C-5-BDL480-58481480-18049-A-5-A480-58695480-18049-A-5-A480-58695	Bottle IDRunBatchPrep Batch480-18049-C-5-A480-58043480-58091480-18049-C-5-A480-58043480-58091480-18049-C-5-BDL480-58481480-58304480-18049-C-5-BDL480-58481480-58304480-18049-A-5-A480-58695480-58238480-18049-A-5-A480-58695480-58238	Bottle IDRunBatchPrep BatchAnalyzed480-18049-C-5-A480-58043480-5809104/04/201214:04480-18049-C-5-A480-58043480-5809104/04/201215:54480-18049-C-5-BDL480-58481480-5830404/05/201210:45480-18049-C-5-BDL480-58481480-5830404/06/201214:32480-18049-A-5-AA80-58695480-5823804/05/201208:28480-18049-A-5-A480-58695480-5823804/09/201221:52	Bottle IDRunBatchPrep BatchAnalyzedDil480-18049-C-5-A480-58043480-5809104/04/2012 14:041480-18049-C-5-A480-58043480-5809104/04/2012 15:541480-18049-C-5-BDL480-58481480-5830404/05/2012 10:458480-18049-C-5-BDL480-58481480-5830404/06/2012 14:328480-18049-A-5-A480-58695480-5823804/05/2012 08:2820480-18049-A-5-A480-58695480-5823804/09/2012 21:5220	Bottle IDRunBatchPrep BatchAnalyzedDilLab480-18049-C-5-A480-58043480-5809104/04/2012 14:041TAL BUF480-18049-C-5-A480-58043480-5809104/04/2012 15:541TAL BUF480-18049-C-5-BDL480-58481480-5830404/05/2012 10:458TAL BUF480-18049-C-5-BDL480-58481480-5830404/06/2012 14:328TAL BUF480-18049-A-5-A480-58695480-5823804/05/2012 08:2820TAL BUF480-18049-A-5-A480-58695480-5823804/09/2012 21:5220TAL BUF

Lab ID: 480-18049-6

SB05 SS (1-2 040212 Client ID:

Sample Date/Time:

04/02/2012 11:15 Received Date/Time:

04/04/2012 09:00

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5035	480-18049-C-6-B		480-58251	480-58266	04/05/2012 09:23	1	TAL BUF	JMB
A:8260B	480-18049-C-6-B		480-58251	480-58266	04/05/2012 16:17	1	TAL BUF	CDC
P:5035	480-18049-C-6-C	DL	480-58395	480-58266	04/05/2012 22:14	1	TAL BUF	JMB
A:8260B	480-18049-C-6-C	DL	480-58395	480-58266	04/05/2012 23:04	1	TAL BUF	JMB
P:3550B	480-18049-A-6-A		480-58695	480-58238	04/05/2012 08:28	20	TAL BUF	CM
A:8270C	480-18049-A-6-A		480-58695	480-58238	04/09/2012 22:16	20	TAL BUF	HTL
A:Moisture	480-18049-A-6		480-58314		04/05/2012 11:21	1	TAL BUF	ZLR

Client: CHA Inc

Laboratory Chronicle

Lab ID:	480-18049-7	Client ID:	SB05 SS	6 (0-3) 040212				
		Sample Da	ite/Time:	04/02/2012 11:15	Received Date	e/Time:	04/04/2012 09	0:00
		ļ	Analysis		Date Prepared /			
Method	Bottle ID	Run E	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030B	480-18049-C-7-B	4	80-58568		04/07/2012 03:45	10	TAL BUF	DC
A:8260B	480-18049-C-7-B	4	80-58568		04/07/2012 03:45	10	TAL BUF	DC
P:3510C	480-18049-C-7-E	4	80-58601	480-58531	04/06/2012 13:52	1	TAL BUF	DE
A:8270C	480-18049-C-7-E	2	80-58601	480-58531	04/07/2012 17:17	1	TAL BUF	HTL
P:3010A	480-18049-C-7-D	4	80-58666	480-58480	04/06/2012 10:50	1	TAL BUF	SS
A:6010B	480-18049-C-7-D	2	80-58666	480-58480	04/06/2012 19:23	1	TAL BUF	LH
P:7470A	480-18049-C-7-C	4	80-58543	480-58479	04/06/2012 10:40	1	TAL BUF	JRK
A:7470A	480-18049-C-7-C	2	80-58543	480-58479	04/06/2012 13:46	1	TAL BUF	JRK
A:1010	480-18049-C-7	4	80-58632		04/07/2012 14:59	1	TAL BUF	KS
P:7.3.3	480-18049-B-7-A	4	80-58611	480-58610	04/06/2012 15:00	1	TAL BUF	JR
A:9012	480-18049-B-7-A	4	80-58611	480-58610	04/07/2012 10:53	1	TAL BUF	JR
P:7.3.4	480-18049-B-7-B	4	80-58614	480-58613	04/06/2012 15:00	1	TAL BUF	JR
A:9034	480-18049-B-7-B	4	80-58614	480-58613	04/06/2012 19:00	1	TAL BUF	JR
A:9045C	480-18049-D-7	4	80-58572		04/06/2012 19:50	1	TAL BUF	EGN
A:Moisture	e 480-18049-A-7	4	80-58314		04/05/2012 11:21	1	TAL BUF	ZLR

Lab ID: 480-18049-8

Client ID: SB06 SS (3-4) 040212

Sample Date/Time: 04

ime: 04/02/2012 12:00

Received Date/Time: 04/04/2012 09:00

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5035	480-18049-C-8-B		480-58389	480-58304	04/05/2012 10:45	50	TAL BUF	DC
A:8260B	480-18049-C-8-B		480-58389	480-58304	04/06/2012 07:23	50	TAL BUF	DC
P:5035	480-18049-C-8-B	DL	480-58568	480-58304	04/05/2012 10:45	2000	TAL BUF	DC
A:8260B	480-18049-C-8-B	DL	480-58568	480-58304	04/07/2012 08:17	2000	TAL BUF	DC
P:3550B	480-18049-A-8-A		480-58886	480-58238	04/05/2012 08:28	10	TAL BUF	CM
A:8270C	480-18049-A-8-A		480-58886	480-58238	04/10/2012 10:56	10	TAL BUF	HTL
A:Moisture	480-18049-A-8		480-58314		04/05/2012 11:21	1	TAL BUF	ZLR

Lab ID: 480-18049-9

Client ID: SB07 SS (1-2) 040212

Sample Date/Time: 04/0

04/02/2012 12:15 F

Received Date/Time: 04/04/2012 09:00

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5035	480-18049-C-9-B		480-58251	480-58266	04/05/2012 09:23	1	TAL BUF	JMB
A:8260B	480-18049-C-9-B		480-58251	480-58266	04/05/2012 16:43	1	TAL BUF	CDC
P:3550B	480-18049-A-9-A		480-58695	480-58238	04/05/2012 08:28	1	TAL BUF	CM
A:8270C	480-18049-A-9-A		480-58695	480-58238	04/09/2012 23:04	1	TAL BUF	HTL
A:Moisture	480-18049-A-9		480-58314		04/05/2012 11:21	1	TAL BUF	ZLR

Client: CHA Inc

		Sampla	Date/Time:	04/02/2012 12:15	Received Date/	Time	04/04/2012 09	9.00
		Gampie		•		nine.	0	
		_	Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analys
P:5035	480-18049-C-10-B		480-58251	480-58266	04/05/2012 09:23	1	TAL BUF	JMB
A:8260B	480-18049-C-10-B		480-58251	480-58266	04/05/2012 17:08	1	TAL BUF	CDC
P:3550B	480-18049-A-10-A		480-58695	480-58238	04/05/2012 08:28	1	TAL BUF	CM
A:8270C	480-18049-A-10-A		480-58695	480-58238	04/09/2012 23:28	1	TAL BUF	HTL
A:Moisture	e 480-18049-A-10		480-58314		04/05/2012 11:21	1	TAL BUF	ZLR
Lab ID:	480-18049-11	Client II	D: SB10 SS	6 (1-2) 040212				
		Sample	Date/Time:	04/02/2012 12:30	Received Date/	Time:	04/04/2012 09	9:00
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analys
P:5035	480-18049-C-11-B		480-58481	480-58304	04/05/2012 10:45	1	TAL BUF	DC
A:8260B	480-18049-C-11-B		480-58481	480-58304	04/06/2012 15:18	1	TAL BUF	RL
P:3550B	480-18049-A-11-A		480-58695	480-58238	04/05/2012 08:28	20	TAL BUF	СМ
A:8270C	480-18049-A-11-A		480-58695	480-58238	04/09/2012 23:53	20	TAL BUF	HTL
A:Moisture	e 480-18049-A-11		480-58314		04/05/2012 11:21	1	TAL BUF	ZLR
Lab ID:	480-18049-12	Client II	D: SB10 SS	6 (3-4) 040212				
		Sample	Date/Time:	04/02/2012 12:30	Received Date/	Time:	04/04/2012 09	9:00
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5035	480-18049-C-12-B		480-58481	480-58304	04/05/2012 10:45	1	TAL BUF	DC
A:8260B	480-18049-C-12-B		480-58481	480-58304	04/06/2012 15:41	1	TAL BUF	RL
P:3550B	480-18049-A-12-A		480-58695	480-58238	04/05/2012 08:28	1	TAL BUF	СМ
A:8270C	480-18049-A-12-A		480-58695	480-58238	04/10/2012 00:17	1	TAL BUF	HTL
A:Moisture	e 480-18049-A-12		480-58314		04/05/2012 11:21	1	TAL BUF	ZLR
Lab ID:	480-18049-13	Client II	D: SB11 SS	6 (2-3) 040212				
		Sample	Date/Time:	04/02/2012 12:45	Received Date/	Time:	04/04/2012 09	9:00
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analys

Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5035	480-18049-C-13-A		480-58395	480-58091	04/04/2012 14:04	1	TAL BUF	JMB
A:8260B	480-18049-C-13-A		480-58395	480-58091	04/05/2012 23:30	1	TAL BUF	JMB
P:3550B	480-18049-A-13-A		480-58695	480-58238	04/05/2012 08:28	1	TAL BUF	CM
A:8270C	480-18049-A-13-A		480-58695	480-58238	04/10/2012 00:41	1	TAL BUF	HTL
A:Moisture	480-18049-A-13		480-58314		04/05/2012 11:21	1	TAL BUF	ZLR

Client: CHA Inc

		Comme	Dete/Times	04/02/2012 13:00	Dessived Date/	T :	04/04/2012 09	0.00
		Sample	Date/Time:	04/02/2012 13.00	Received Date/	Time:	04/04/2012 08	9.00
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5035	480-18049-C-14-A		480-58395	480-58091	04/04/2012 14:04	1	TAL BUF	JMB
A:8260B	480-18049-C-14-A		480-58395	480-58091	04/05/2012 23:55	1	TAL BUF	JMB
P:3550B	480-18049-A-14-A		480-58886	480-58238	04/05/2012 08:28	1	TAL BUF	СМ
A:8270C	480-18049-A-14-A		480-58886	480-58238	04/10/2012 14:08	1	TAL BUF	HTL
A:Moisture	480-18049-A-14		480-58314		04/05/2012 11:21	1	TAL BUF	ZLR
Lab ID:	480-18049-15	Client ID): SB14 SS	6 (2-3) 040212				
		Sample	Date/Time:	04/02/2012 13:00	Received Date/	Time:	04/04/2012 09	9:00
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analys
P:5035	480-18049-C-15-A		480-58395	480-58091	04/04/2012 14:04	1	TAL BUF	JMB
A:8260B	480-18049-C-15-A		480-58395	480-58091	04/06/2012 00:21	1	TAL BUF	JMB
P:3550B	480-18049-A-15-A		480-58695	480-58238	04/05/2012 08:28	1	TAL BUF	CM
A:8270C	480-18049-A-15-A		480-58695	480-58238	04/10/2012 01:29	1	TAL BUF	HTL
A:Moisture	480-18049-A-15		480-58314		04/05/2012 11:21	1	TAL BUF	ZLR
Lab ID:	480-18049-16	Client ID): SB13 SS	6 (1-2) 040212				
		Sample	Date/Time:	04/02/2012 13:15	Received Date/	Time:	04/04/2012 09	9:00
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analysi
P:5035	480-18049-C-16-A		480-58395	480-58091	04/04/2012 14:04	1	TAL BUF	JMB
A:8260B	480-18049-C-16-A		480-58395	480-58091	04/06/2012 00:46	1	TAL BUF	JMB
P:3550B	480-18049-A-16-A		480-58886	480-58238	04/05/2012 08:28	10	TAL BUF	СМ
A:8270C	480-18049-A-16-A		480-58886	480-58238	04/10/2012 11:20	10	TAL BUF	HTL
A:Moisture	480-18049-A-16		480-58314		04/05/2012 11:21	1	TAL BUF	ZLR
Lab ID:	480-18049-17	Client ID): SB13 SS	6 (2-3) 040212				

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5035	480-18049-C-17-A		480-58395	480-58091	04/04/2012 14:04	1	TAL BUF	JMB
A:8260B	480-18049-C-17-A		480-58395	480-58091	04/06/2012 01:12	1	TAL BUF	JMB
P:3550B	480-18049-A-17-A		480-58886	480-58238	04/05/2012 08:28	10	TAL BUF	СМ
A:8270C	480-18049-A-17-A		480-58886	480-58238	04/10/2012 11:44	10	TAL BUF	HTL
A:Moisture	480-18049-A-17		480-58314		04/05/2012 11:21	1	TAL BUF	ZLR

Client: CHA Inc

Lab ID:	480-18049-18	Client ID:	SB08 SS	6 (1-2) 040212				
		Sample [Date/Time:	04/02/2012 13:30	Received Date/	Time:	04/04/2012 09	9:00
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5035	480-18049-C-18-A		480-58395	480-58091	04/04/2012 14:04	1	TAL BUF	JMB
A:8260B	480-18049-C-18-A		480-58395	480-58091	04/06/2012 01:37	1	TAL BUF	JMB
P:3550B	480-18049-A-18-A		480-58886	480-58238	04/05/2012 08:28	20	TAL BUF	CM
A:8270C	480-18049-A-18-A		480-58886	480-58238	04/10/2012 12:08	20	TAL BUF	HTL
A:Moisture	e 480-18049-A-18		480-58314		04/05/2012 11:21	1	TAL BUF	ZLR
Lab ID:	480-18049-19	Client ID:	: SB08 SS	6 (2-3) 040212				
		Sample [Date/Time:	04/02/2012 13:30	Received Date/	Time:	04/04/2012 09	9:00
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5035	480-18049-C-19-A		480-58395	480-58091	04/04/2012 14:04	1	TAL BUF	JMB
A:8260B	480-18049-C-19-A		480-58395	480-58091	04/06/2012 02:03	1	TAL BUF	JMB
P:3550B	480-18049-A-19-A		480-58886	480-58238	04/05/2012 08:28	5	TAL BUF	CM
A:8270C	480-18049-A-19-A		480-58886	480-58238	04/10/2012 12:31	5	TAL BUF	HTL
A:Moisture	e 480-18049-A-19		480-58314		04/05/2012 11:21	1	TAL BUF	ZLR
Lab ID:	480-18049-20	Client ID	: SB12 SS	6 (0-1) 040212				
		Sample [Date/Time:	04/02/2012 14:00	Received Date/	Time:	04/04/2012 09	9:00
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5035	480-18049-C-20-A		480-58395	480-58091	04/04/2012 14:04	1	TAL BUF	JMB
A:8260B	480-18049-C-20-A		480-58395	480-58091	04/06/2012 02:28	1	TAL BUF	JMB
P:3550B	480-18049-A-20-A		480-58886	480-58238	04/05/2012 08:28	5	TAL BUF	СМ
A:8270C	480-18049-A-20-A		480-58886	480-58238	04/10/2012 12:56	5	TAL BUF	HTL
A:Moisture	e 480-18049-A-20		480-58314		04/05/2012 11:21	1	TAL BUF	ZLR
Lab ID:	480-18049-21	Client ID	: SB12 SS	6 (2-3)040212				
		Sample [Date/Time:	04/02/2012 14:00	Received Date/	Time:	04/04/2012 09	9:00
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst

Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5035	480-18049-C-21-A		480-58395	480-58091	04/04/2012 14:04	1	TAL BUF	JMB
A:8260B	480-18049-C-21-A		480-58395	480-58091	04/06/2012 02:54	1	TAL BUF	JMB
P:3550B	480-18049-A-21-A		480-58886	480-58238	04/05/2012 08:28	20	TAL BUF	CM
A:8270C	480-18049-A-21-A		480-58886	480-58238	04/10/2012 13:20	20	TAL BUF	HTL
A:Moisture	480-18049-A-21		480-58314		04/05/2012 11:21	1	TAL BUF	ZLR
-								

Client: CHA Inc

Laboratory Chronicle

		Sample	Date/Time:	04/02/2012 14:15	Received Date/	Time:	04/04/2012 09	9:00
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5035	480-18049-C-22-B		480-58389	480-58304	04/05/2012 10:45	1	TAL BUF	DC
A:8260B	480-18049-C-22-B		480-58389	480-58304	04/06/2012 08:30	1	TAL BUF	DC
P:3550B	480-18049-A-22-A		480-58886	480-58238	04/05/2012 08:28	20	TAL BUF	СМ
A:8270C	480-18049-A-22-A		480-58886	480-58238	04/10/2012 13:44	20	TAL BUF	HTL
A:Moisture	480-18049-A-22		480-58314		04/05/2012 11:21	1	TAL BUF	ZLR
_ab ID:	480-18049-23	Client I): SB09 SS	6 (3-4) 040212				
		Sample	Date/Time:	04/02/2012 14:15	Received Date/	Time:	04/04/2012 09	9:00
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analys
P:5035	480-18049-C-23-A		480-58395	480-58091	04/04/2012 14:04	1	TAL BUF	JMB
A:8260B	480-18049-C-23-A		480-58395	480-58091	04/06/2012 03:20	1	TAL BUF	JMB
P:3550B	480-18049-A-23-A		480-58452	480-58249	04/05/2012 08:37	10	TAL BUF	CM
A:8270C	480-18049-A-23-A		480-58452	480-58249	04/06/2012 16:08	10	TAL BUF	HTL
A:Moisture	480-18049-A-23		480-58314		04/05/2012 11:21	1	TAL BUF	ZLR
Lab ID:	480-18049-24	Client II): SB15 SS	6 (1-2) 040212				
		Sample	Date/Time:	04/02/2012 14:30	Received Date/	Time:	04/04/2012 09	9:00
			Analysis		Date Prepared /			
Nethod	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analys
P:5035	480-18049-C-24-A		480-58428	480-58091	04/04/2012 14:04	1	TAL BUF	JMB
A:8260B	480-18049-C-24-A		480-58428	480-58091	04/06/2012 11:14	1	TAL BUF	CDC
P:3550B	480-18049-A-24-A		480-58452	480-58249	04/05/2012 08:37	10	TAL BUF	СМ
A:8270C	480-18049-A-24-A		480-58452	480-58249	04/06/2012 16:32	10	TAL BUF	HTL
A:Moisture	480-18049-A-24		480-58314		04/05/2012 11:21	1	TAL BUF	ZLR
	480-18049-25	Client II): SB15 SS	6 (3-4) 040212				
Lab ID:	400-10049-25							
_ab ID:	460-16049-25	Sample	Date/Time:	04/02/2012 14:30	Received Date/	Time:	04/04/2012 09	9:00
₋ab ID:	400-10049-20	Sample	Analysis	04/02/2012 14:30	Date Prepared /	Time:	04/04/2012 09	9:00
<i>l</i> lethod	Bottle ID	Sample Run	Analysis Batch	Prep Batch	Date Prepared / Analyzed	Time: Dil	Lab	Analys
Method 2:5035			Analysis		Date Prepared / Analyzed 04/04/2012 14:04			Analys JMB
Lab ID: Method P:5035 A:8260B	Bottle ID		Analysis Batch	Prep Batch	Date Prepared / Analyzed 04/04/2012 14:04 04/06/2012 11:39	Dil	Lab	Analys
Method D :5035	Bottle ID 480-18049-C-25-A		Analysis Batch 480-58428	Prep Batch 480-58091	Date Prepared / Analyzed 04/04/2012 14:04	Dil 1	Lab TAL BUF	Analys JMB

480-18049-A-25

A:Moisture

TAL BUF

1

04/05/2012 11:21

480-58314

ZLR

Client: CHA Inc

Laboratory Chronicle

Lab ID:	480-18049-26	Client ID:	SB06 SS	S (1-2) 040212				
		Sample D	ate/Time:	04/02/2012 12:00	Received Date	/Time:	04/04/2012 09	9:00
			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5035	480-18049-C-26-A		480-58428	480-58091	04/04/2012 14:04	1	TAL BUF	JMB
A:8260B	480-18049-C-26-A		480-58428	480-58091	04/06/2012 12:05	1	TAL BUF	CDC
P:3550B	480-18049-A-26-A		480-58452	480-58249	04/05/2012 08:37	20	TAL BUF	CM
A:8270C	480-18049-A-26-A		480-58452	480-58249	04/06/2012 17:20	20	TAL BUF	HTL
A:Moisture	e 480-18049-A-26		480-58314		04/05/2012 11:21	1	TAL BUF	ZLR
Lab ID:	МВ	Client ID:	N/A					
		Sample D	ate/Time:	N/A	Received Date	/Time:	N/A	
			Analysis		Date Prepared /			
Method	Bottle ID		Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
A:8260B	MB 480-58043/7		480-58043		04/04/2012 11:37	1	TAL BUF	CDC
A:8260B	MB 480-58251/7		480-58251		04/05/2012 12:19	1	TAL BUF	CDC
A:8260B	MB 480-58395/7		480-58395		04/05/2012 22:21	1	TAL BUF	JMB
P:5035	MB 480-58304/2-A		480-58389	480-58304	04/05/2012 10:45	1	TAL BUF	DC
A:8260B	MB 480-58304/2-A		480-58389	480-58304	04/06/2012 05:29	1	TAL BUF	DC
A:8260B	MB 480-58428/6		480-58428		04/06/2012 10:32	1	TAL BUF	CDC
P:5030B	MB 480-58568/5		480-58568		04/07/2012 00:26	1	TAL BUF	DC
A:8260B	MB 480-58568/5		480-58568		04/07/2012 00:26	1	TAL BUF	DC
P:3550B	MB 480-58249/1-A		480-58452	480-58249	04/05/2012 08:37	1	TAL BUF	CM
A:8270C	MB 480-58249/1-A		480-58452	480-58249	04/06/2012 12:33	1	TAL BUF	HTL
P:3510C	MB 480-58531/1-A		480-58601	480-58531	04/06/2012 13:52	1	TAL BUF	DE
A:8270C	MB 480-58531/1-A		480-58601	480-58531	04/07/2012 15:17	1	TAL BUF	HTL
P:3550B	MB 480-58238/1-A		480-58695	480-58238	04/05/2012 08:28	1	TAL BUF	CM
A:8270C	MB 480-58238/1-A		480-58695	480-58238	04/09/2012 19:28	1	TAL BUF	HTL
P:3010A	MB 480-58480/2-A		480-58666	480-58480	04/06/2012 10:50	1	TAL BUF	SS
A:6010B	MB 480-58480/2-A		480-58666	480-58480	04/06/2012 19:03	1	TAL BUF	LH
P:7470A	MB 480-58479/2-A		480-58543	480-58479	04/06/2012 10:40	1	TAL BUF	JRK
A:7470A	MB 480-58479/2-A		480-58543	480-58479	04/06/2012 13:35	1	TAL BUF	JRK
P:7.3.3	MB 480-58610/1-A		480-58611	480-58610	04/06/2012 15:00	1	TAL BUF	JR
A:9012	MB 480-58610/1-A		480-58611	480-58610	04/07/2012 10:53	1	TAL BUF	JR
P:7.3.4	MB 480-58613/1-A		480-58614	480-58613	04/06/2012 15:00	1	TAL BUF	JR
A:9034	MB 480-58613/1-A		480-58614	480-58613	04/06/2012 19:00	1	TAL BUF	JR

TestAmerica Buffalo

Client: CHA Inc

Laboratory Chronicle

Job Number: 480-18049-1

Lab ID:	LB		Client II	D: N/A					
			Sample	Date/Time:	N/A	Received Date/	Time:	N/A	
				Analysis		Date Prepared /			
Method		Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030B		LB 480-58276/1-A		480-58568		04/07/2012 02:59	10	TAL BUF	DC
A:8260B		LB 480-58276/1-A		480-58568		04/07/2012 02:59	10	TAL BUF	DC
P:3510C		LB 480-58275/13-D		480-58601	480-58531	04/06/2012 13:52	1	TAL BUF	DE
A:8270C		LB 480-58275/13-D		480-58601	480-58531	04/07/2012 16:29	1	TAL BUF	HTL
P:3010A		LB 480-58275/13-C		480-58666	480-58480	04/06/2012 10:50	1	TAL BUF	SS
A:6010B		LB 480-58275/13-C		480-58666	480-58480	04/06/2012 19:01	1	TAL BUF	LH
P:7470A		LB 480-58275/13-B		480-58543	480-58479	04/06/2012 10:40	1	TAL BUF	JRK
A:7470A		LB 480-58275/13-B		480-58543	480-58479	04/06/2012 13:33	1	TAL BUF	JRK
Lab ID:	LCS		Client II	D: N/A					
			Sample	Date/Time:	N/A	Received Date/	Time:	N/A	

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
A:8260B	LCS 480-58043/6		480-58043		04/04/2012 11:11	1	TAL BUF	CDC
A:8260B	LCS 480-58251/6		480-58251		04/05/2012 11:53	1	TAL BUF	CDC
A:8260B	LCS 480-58395/6		480-58395		04/05/2012 21:56	1	TAL BUF	JMB
P:5035	LCS 480-58304/1-A		480-58389	480-58304	04/05/2012 10:45	1	TAL BUF	DC
A:8260B	LCS 480-58304/1-A		480-58389	480-58304	04/06/2012 05:07	1	TAL BUF	DC
A:8260B	LCS 480-58428/5		480-58428		04/06/2012 10:05	1	TAL BUF	CDC
P:5030B	LCS 480-58568/4		480-58568		04/07/2012 00:03	1	TAL BUF	DC
A:8260B	LCS 480-58568/4		480-58568		04/07/2012 00:03	1	TAL BUF	DC
P:3550B	LCS 480-58249/2-A		480-58452	480-58249	04/05/2012 08:37	1	TAL BUF	СМ
A:8270C	LCS 480-58249/2-A		480-58452	480-58249	04/06/2012 12:57	1	TAL BUF	HTL
P:3510C	LCS 480-58531/2-A		480-58601	480-58531	04/06/2012 13:52	1	TAL BUF	DE
A:8270C	LCS 480-58531/2-A		480-58601	480-58531	04/07/2012 15:41	1	TAL BUF	HTL
P:3550B	LCS 480-58238/2-A		480-58695	480-58238	04/05/2012 08:28	1	TAL BUF	СМ
A:8270C	LCS 480-58238/2-A		480-58695	480-58238	04/09/2012 19:52	1	TAL BUF	HTL
P:3010A	LCS 480-58480/3-A		480-58666	480-58480	04/06/2012 10:50	1	TAL BUF	SS
A:6010B	LCS 480-58480/3-A		480-58666	480-58480	04/06/2012 19:06	1	TAL BUF	LH
P:7470A	LCS 480-58479/3-A		480-58543	480-58479	04/06/2012 10:40	1	TAL BUF	JRK
A:7470A	LCS 480-58479/3-A		480-58543	480-58479	04/06/2012 13:37	1	TAL BUF	JRK
A:1010	LCS 480-58632/1		480-58632		04/07/2012 10:41	1	TAL BUF	KS
P:7.3.3	LCS 480-58610/2-A		480-58611	480-58610	04/06/2012 15:00	1	TAL BUF	JR
A:9012	LCS 480-58610/2-A		480-58611	480-58610	04/07/2012 10:53	1	TAL BUF	JR
P:7.3.4	LCS 480-58613/2-A		480-58614	480-58613	04/06/2012 15:00	1	TAL BUF	JR
A:9034	LCS 480-58613/2-A		480-58614	480-58613	04/06/2012 19:00	1	TAL BUF	JR
A:9045C	LCS 480-58572/1		480-58572		04/06/2012 19:50	1	TAL BUF	EGN

Client: CHA Inc

Laboratory Chronicle

Job Number: 480-18049-1

Lab ID:	LCSD		Client II	D: N/A					
			Sample	Date/Time:	N/A	Received Date/	Time:	N/A	
				Analysis		Date Prepared /			
Method		Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:3510C		LCSD 480-58531/3-A		480-58601	480-58531	04/06/2012 13:52	1	TAL BUF	DE
A:8270C		LCSD 480-58531/3-A		480-58601	480-58531	04/07/2012 16:05	1	TAL BUF	HTL
P:3550B		LCSD 480-58238/3-A		480-58695	480-58238	04/05/2012 08:28	1	TAL BUF	СМ
A:8270C		LCSD 480-58238/3-A		480-58695	480-58238	04/09/2012 20:16	1	TAL BUF	HTL

Lab References:

TAL BUF = TestAmerica Buffalo

Certification Summary

Client: CHA Inc

Project/Site: Congress Street Phase I - SI Group

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Buffalo	Arkansas DEQ	State Program	6	88-0686
TestAmerica Buffalo	California	NELAC	9	1169CA
TestAmerica Buffalo	Connecticut	State Program	1	PH-0568
TestAmerica Buffalo	Florida	NELAC	4	E87672
TestAmerica Buffalo	Georgia	State Program	4	956
TestAmerica Buffalo	Georgia	State Program	4	N/A
TestAmerica Buffalo	Illinois	NELAC	5	100325 / 200003
TestAmerica Buffalo	lowa	State Program	7	374
TestAmerica Buffalo	Kansas	NELAC	7	E-10187
TestAmerica Buffalo	Kentucky	State Program	4	90029
TestAmerica Buffalo	Louisiana	NELAC	6	02031
TestAmerica Buffalo	Maine	State Program	1	NY0044
TestAmerica Buffalo	Maryland	State Program	3	294
FestAmerica Buffalo	Massachusetts	State Program	1	M-NY044
TestAmerica Buffalo	Michigan	State Program	5	9937
TestAmerica Buffalo	Minnesota	NELAC	5	036-999-337
FestAmerica Buffalo	New Hampshire	NELAC	1	2337
FestAmerica Buffalo	New Hampshire	NELAC	1	68-00281
TestAmerica Buffalo	New Jersey	NELAC	2	NY455
FestAmerica Buffalo	New York	NELAC	2	10026
FestAmerica Buffalo	North Dakota	State Program	8	R-176
TestAmerica Buffalo	Oklahoma	State Program	6	9421
TestAmerica Buffalo	Oregon	NELAC	10	NY200003
TestAmerica Buffalo	Pennsylvania	NELAC	3	68-00281
TestAmerica Buffalo	Tennessee	State Program	4	TN02970
TestAmerica Buffalo	Texas	NELAC	6	T104704412-08-TX
FestAmerica Buffalo	USDA	Federal		P330-08-00242
FestAmerica Buffalo	Virginia	NELAC	3	460185
FestAmerica Buffalo	Virginia	State Program	3	278
FestAmerica Buffalo	Washington	State Program	10	C1677
TestAmerica Buffalo	West Virginia DEP	State Program	3	252
TestAmerica Buffalo	Wisconsin	State Program	5	998310390

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

APPENDIX D

In-Situ Treatment Calculation Package

October/November 2007 Hydraulic Conductivity Data										
Well ID	Screen Interval (ft)	Ground Elevation (ft)	Total Depth (ft)	Hydraulic Conductivity (cm/sec)	Hydraulic Conductivity (ft/sec)			Hydraulic Conductivity (ft/sec)	Hydraulic Conductivity (ft/min)	
OW15A	10	320.35	20	2.23E-05	7.32E-07					
OW16A	10	305.43	18	2.54E-04	8.33E-06		Average	5.37E-06	3.22E-04	
OW17B	10	305.19	33	4.31E-04	1.41E-05	Screen depth below 20 ft	High - OW17B	1.41E-05	8.48E-04	
OW18A	10	304.18	30	9.05E-05	2.97E-06	Fill to 24 ft bgs	Low - OW15A	7.32E-07	4.39E-05	
OW19A	10	302.76	27	2.21E-04	7.25E-06	Fill to 28 ft bgs	Standard			
OW20	10	305.74	18	2.58E-04	8.46E-06		Deviation	3.22E-06	1.93E-04	
OW21A	10	303.53	18	1.58E-04	5.18E-06					
OW21B	10	303.67	33	1.46E-04	4.79E-06	Screen depth below 20 ft				
OW22	10	302.62	18.5	1.26E-04	4.13E-06					

Gray Wells are not used in Hydraulic Conductivity Calculations, explination to the right of the Hydraulic Conductivity column

	Screen		Screen +			Hydraulic				Hydraulic
	Interval	Riser	Sand Pack	Total Depth	Time to 37%	Conductivity			Hydraulic	Conductivity of
Well ID	(ft)	Radius (ft)	Radius (ft)	(ft)	recovery (sec)	(ft/sec)			Conductivity	EW3 & EW4
EW3	15	0.25	0.51	20.00	1185	5.94E-06			(ft/sec)	(ft/min)
PZ1	15	0.25	0.51	20.00	8385	8.40E-07		Average	2.51E-06	3.24E-04
PZ2	15	0.25	0.51	20.00	42000	1.68E-07		High - EW3	5.94E-06	
OW22	10	0.25	N/A	18.50	N/A	N/A	Drawdown less	Low - PZ3	7.79E-07	
EW4	15	0.25	0.51	20.00	1455	4.84E-06	then 5 inches	Standard		
PZ3	15	0.25	0.51	20.00	9045	7.79E-07		Deviation	2.68E-06	7.79861E-07
PZ4	15	0.25	0.51	20.00	1095	6.43E-06	Incomplete data			
OW17B	10	0.25	N/A	33.00	N/A	N/A	Drawdown less			
ray Wells	are not us	ed in Hydrau	lic Conductivit	y Calculations, e	explination to		then 6 inches			
he right o	f the Hydra	aulic Conduct	ivity column	-	-					

Equations used:	H = Water column height at static level	r = casing radius					
K = r^2 * Ln (L/R)/2*L*T _o	Ho = Water column height at t = 0 (lowest level)	L = screen length					
	h = water column height at t > 0	R = Borehole radius					
	T _o (Basic Time Lag Function) is time in seconds at (H-h)/(H-Ho) = .37						
	Data for T_o can be found at M:\15091\CS\Phase 2 Design\Pumping Well Spacing.xlsx, sheets EW3 and EW4 test results						
	Data is also represented at M:\15091\CS\Phase 2 Design\5007 Phase II\Report\Appendices\App B Pre-Design Investigation Report 8_14_12.pdf						

			CHA 15091			
Known Parameters			Average of EW3, EW4 Calculation	ns	Estimated Water Level Drawd	lown
	Ground Surface Elevation (ft asl)	302	Ground Surface Elevation (ft asl)	303.00	(2007 K value)	
	Static WL (ft)	290.12	Static WL (ft)	289.28		
	Aquifer Base (ft)	270.00	Aquifer Base (ft)	270.00	Distance (ft)	20
EW3	Water Column height (ft) Pumping WL (ft)	20.12	Pumping WL (ft)	283.15	Drawdown (ft)	6.14
	Pumping WL (ft)	283.43	Drawdown (ft)	6.14	Midpoint GW Level Over Aquifer	
	Drawdown (ft) (went dry)	6.69	WT Height over aq base (pumping) (ft)	13.15	Base (ft)	13.2354
	WT Height over aq base (pumping) (ft)	13.43	Static WL height over Aq Base(ft)	19.28	Midpoint Drawdown (ft)	5.93
	Pumping Rate (cft / min)	0.06684			Time to stabilization (days)	24.59
			Midpoint Water Level Values for Grou	ndwater		
	Ground Surface Elevation (ft asl)	304	Height over aq base (ft)			
	Static WL (ft)	288.44				
	Aquifer Base (ft)	270.00	2007 WL (ft)	16.02	Estimated Water Level Drawd	lown
EW4	Water Column height (ft)	18.44	Drawdown (ft)	2.99	(2012 K value)	
1	Pumping WL (ft)	282.86	adjusted according to Neuman			
	Drawdown (ft) (went dry)	5.58	2012 WL (ft)	16.01	Distance (ft)	20
	WT Height over aq base (pumping) (ft)	12.86	Drawdown (ft)	3.00	Drawdown (ft)	6.14
	Pumping Rate (cft / min)	0.06684			Midpoint GW Level Over Aquifer	
	Distance EW3 to EW4 (ft)	120	Well Funtion		Base (ft)	13.2351
	w (recharge rate (ft/min)	1.87E-06	2007 w(u)=	1.746	Midpoint Drawdown (ft)	5.93
	K (ft/min) - 2007 calculations	3.22E-04	2012 w(u)=	1.759	Time to stabilization (days)	25.60
	K (ft/min) - 2012 calcs	3.24E-04				
	Pumping Rate (cu ft/min)	0.13368	2007 u value	0.091	.06684 cft/min = .5 gal/min	
1	2007 Transmissivity (sq ft/min)	6.21E-03	2012 u value	0.087	.13368 cft/min = 1 gal/min	
1	2012 Transmissivity (sq ft/min)	6.24E-03	u values estimated from Theis Curve			
	Specific Yield	0.2				

Assumptions:

1. Recharge rate is correct, based on Moret, 2007, Annual Variations In Ground-Water Temperature As a Tracer of River-Aquifer Interactions: .3 m/yr of recharge.

2. Aquifer base is 270 ft asl. Figure used because of local characteristics of the subsurface (clay present in multiple well logs around 270 ft asl).

3. Pizeometer reading is taken from the bottom of the well (20 ft) rather then slightly above.

4. Aquifer characteristics (recharge, Transmissivity, etc) are uniform throughout test area.

5. Soil/subsurface is homogenous.

6. A 6.14 ft drawdown is assumed in each pumping well because the test pumping wells each went dry during pumping.

Radius of Influence Congress Street Remediation CHA 15091

Notes

1. Induced vacuums and spacing are based on Pre-Design Investigation completed by CHA in 2012

2. Equation is from the following paper: Johnson, P.C. et. al, A Practical Approach to the Design, Operation, and

Monitoring of In Situ Soil-Venting Systems. Ground Water Monitoring Review, 1990.

- 3. Calculations shown below were used as a calculator and can only show one case at a time.
- 4. Monitoring wells spaced 10 feet from the extraction well are the best representative of proposed conditions.

1

5. Visual of the chart is included as an attachment to this document.

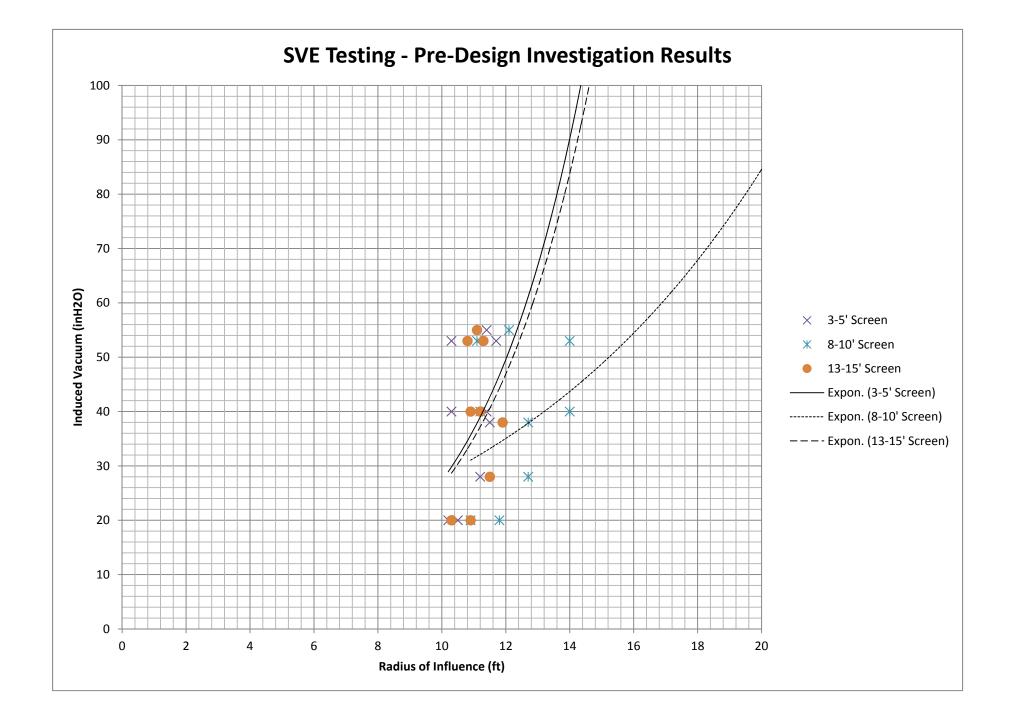
Equation 22

$$P(r) = P_{w} \left\{ 1 + \left[1 - \left(\frac{P_{atm}}{P_{w}} \right)^{2} \right] \frac{\ln \left(r/R_{w} \right)}{\ln \left(\frac{R_{w}}{R_{1}} \right)} \right\}^{\frac{1}{2}}$$

Key Input Value * Value det. From Investigation

Constant Inputs	Notes		
Absolute Atmospheric Pressure	Patm	2116 psf	
Radius of Observation*	r	10 ft	
Radius of Well*	Rw	0.17 ft	4" diameter well

Field Observation Summary


	Induced Vac - Pw	Observed	Observed Vacuum - P(r) (inH2O)				
Well	(inH2O)	3-5'	8-10'	13-15'			
	20	0.5	1.5	0.3			
VW-2	40	1.2	2.9	1.00			
>	53	1.8	3.8	1.40			
	20	0.1	0.4	0.4			
VW-4	40	0.25	1.0	0.75			
>	53	0.4	1.25	0.9			
	28	0.75	1.5	0.9			
0-WV	38	1.2	2.0	1.5			
>	55	1.6	2.25	1.3			

Radius of Influence Summary

-	Induced Vac - Pw		ROI - R1 (ft)	
Well	(inH2O)	3-5'	8-10'	13-15'
	20	10.5	11.8	10.3
VW-2	40	11.4	14.0	11.20
>	53	11.7	14.0	11.30
	20	10.2	10.9	10.9
VW-4	40	10.3	11.2	10.9
~	53	10.3	11.1	10.8
	28	11.2	12.7	11.5
VW-6	38	11.5	12.7	11.9
>	55	11.4	12.1	11.1

Results From Attached Chart

3-5' Screen ROI at 80inH2O	13.6 ft	
8-10' Screen ROI at 80 inH2O	13.9 ft	
13-15' Screen ROI at 80 inH2O	19.6 ft	
Average for Design	15.7 ft	

References

1. Holtz & Kovacs, <u>An Introduction to Geotechnical Engineering</u>. Prentice-Hall, 1981. p12-15

Bulk Volume			Notes	Key	
Treatment Area	Α	<mark>30700</mark> sf	Est. from Drawing G-01		Input Value
Depth of Treatment	b	15 ft	_ Depth to top of dewatered groundwater table	*	Det. From Field Tests
Total Treatment Vol.	Vt	460500 cf			
			_		
Soil Parameters			Reference 1 used for parameter relationships		
Total Soil Density	pt	110 pcf	Determined from boring logs		
Water Density	pw	62.4 pcf	Constant value		
Porosity - bulk	n	0.35	Determined from boring logs		
Water Content	w	<mark>35%</mark>	Determined from laboratory testing		
Saturation	S	57%			
Volume of Voids	Vv	161175 cf	Vv=n*Vt		
Volume of Water	Vw	91430.2 cf	Vw=S*Vv		
Porosity - air	na	0.15145	na=(Vv-Vw)/Vt		
Volume of Air	Va	69745 cf	Va=na*Vt, Equivalent to 1 pore volume		

Maximum Well System Flow Congress Street Remediation CHA 15091

References

1. USACE, EM 1110-1-4001 . June 1992.

Goal

1. Determine the maximum air flow for one well at induced vacuum of 80inH2O and maintaining minimum vacuum of 0.1 inH2O at 15feet.

Assumptions

- 1. Nodal point for system design is 15 feet based on groundwater extraction well spacing.
- 2. Minimum required vacuum at nodal point (NP) is 0.1 inH2O.
- 3. Pressure induced in the extraction well is approximately equal to the pressure observed at the radius of the well

Equation 2-20b

$$Q_w = \frac{(P^2 - P_i^2)\pi bk_a}{P^*\mu \ln\left(\frac{r}{r_i}\right)}$$

Key Input Value * Det. From Field Investigation

Parameters				Notes
Pressure at Radius of Well	Р	80	inH2O vac.	Induced well pressure
		1699	psf	
Minimum Req. Pressure	Pi	0.1	inH2O vac.	Assumption 2
		2114.84	psf	_
Absolute Pressure at Well	Ρ*	1699	psf	Assumption 3
Vadose Zone Thickness	b	15	ft	Depth to top of groundwater table
Air Viscosity	μ	3.82E-07	lb-s/ft	Based on temperature of 70°F
Intrinsic Permeability	ka	4.0E-12	ft ²	See below for calculation
Radius of Well	r	0.17	ft	4-inch diameter casing
Radius of Nodal Point	ri	15	ft	Assumption 1

Intrinsic Permeability

$k_{int} = k_a = \frac{k_w \mu_v}{\rho_w g}$	<u>w</u> 1		
Hydraulic Conductivity	kw	3.24E-04 ft/min	Determined from groundwater pumping tests
Water Viscosity	μw	1.49E-03 lb-s/ft	
Density of Water	pw	62.4 lb/cf	
Acceleration due to Gravit	y g	32.2 ft/s ²	
Intrinsic Permeability	k _{int}	4.0E-12 ft ²	kint=kw*uw/(pw*g)
Flow Rate			
Flow Rate per Well	Qw	6.17 cfm	
Flow Rate for System	Qt	500 cfm	81 SVE wells
One Pore Volume Exchang	e Qpv	48 cfm	Determined in "Pore Volume Determination" by CHA
Total Max Pore Vol.		10.4	

APPENDIX E

Soil and Stormwater Management Plan

Soil and Stormwater Management Plan – Phase 2 Remedial Activities

SI Group Congress Street Facility Operable Unit No. 2

> State Superfund Project Site No. 447007

> > CHA Project Number: 15091

Prepared for:

SI Group, Inc. 1000 Main Street, Route 5S Rotterdam Junction, New York

III Winners Circle Albany, New York 12205 (518) 453-4500 (518) 453-4773 - Fax

August 2012

V:\Projects\ANY\CivData\15091\CS\Phase 2 Design\5007 Phase II\Report\Appendices\Appendix C Soil and Stormwater Management Plan.docx

TABLE OF CONTENTS

1.0	INTRODUCTION							
	1.1	Site Description	1					
	1.2	Purpose of the Soil and Stormwater Management Plan						
2.0	DEFI	NITIONS	3					
3.0	STOR	MWATER MANAGEMENT	4					
	3.1	Existing Stormwater Systems	4					
	3.2	Weather						
4.0	INTRUSIVE ACTIVITIES							
	4.1	Sampling	6					
	4.2	Soil Generation						
	4.3	On-Site Re-Use of Soils	6					
	4.4	Soil Management						
	4.5	Asphalt Management	7					
	4.6	Waste Management						
	4.7	Transportation of Contaminated Material	8					
	4.8	Off-Site Disposal	9					
5.0	MOD	IFICATION OF PLAN	10					

LIST OF FIGURES

Figure 1	Site Location
----------	---------------

Figure 2	Site Plan
----------	-----------

Figure 3 SPDES Outfall Location Plan

1.0 INTRODUCTION

This Soil and Stormwater Management Plan has been prepared for the Congress Street facility, which is a former chemical manufacturing facility located in Schenectady, New York at Congress Street and Tenth Avenue. A site location map has been included as Figure 1. The Soil and Stormwater Management Plan will provide a basis for defining the procedures and requirements to be followed during the implementation of the Phase 2 remedial activities at the Congress Street Site. Due the nature and distribution of contamination, the Site has been divided into two areas for remediation. These two areas have been identified as the Fill Area and the Process Area, as shown in Figure 2.

1.1 SITE DESCRIPTION

The Congress Street facility (Site) encompasses an area approximately 7 acres in size with approximately 5.1 acres having been developed. The surrounding areas to the south and west of the Site consist of light industrial areas. Commercial facilities are located east and northwest while the areas to the north and northeast are mainly residential.

The Site is located on a steep slope that was developed over the years. Production ceased in 1997 and, in 2004, SI Group removed all the process equipment, storage tanks, piping and buildings remaining on the Site except for a small building used to house a groundwater treatment system. Some of the buildings were constructed such that the lower portion of the buildings acted as retaining structures for the upper slope area. The relief across the Site is approximately 45 feet, with several relatively flat surfaces where buildings once existing. The buildings structures that were located above ground were removed, with only the building foundations and concrete floor slabs left in place.

Based upon the remedial investigations completed on the Site, two areas were identified as requiring remediation. These areas as shown on Figure 2 are identified as the Fill Area and the Process Area. The Fill Area is an historical fill area located in the southeast corner of the Site that encompasses approximately 0.5 acres. The area is bordered on the north by the embankment leading up to 10th Avenue, to the west and south by the security fence, and to the east by the middle of the former Building No. 9. The area was used for the disposal of construction rubble and other material and debris generated on-site.

Borings completed in the Fill Area show a mix of ash, glass, bricks, burlap fabric and organic materials. The organic materials observed were a black tar-like material, a yellow crystalline material and a white powder. The black tar-like material (cresols) and the yellow crystalline material are representative of the insulating resins produced at the facility and the white powder is

representative of the raw materials used. The upper portion of the borings consisted of construction debris, which is representative of the houses that were disposed in the area prior to closure. Ash was also seen in a number of the boring at all depths.

The Process Area consists of the area of the Site that was historically used for chemical processing, storage and handling. This area is located east of the Fill Area on the lower level of the Site, just north of the rail line. The contamination that has been identified in this area is the result of releases that have occurred over the years. A layer of black tar-like material (cresols) has also been identified as being present under the concrete slabs.

The results of the remedial investigations that were completed in the each area are contained in the final submission of the "Updated Remedial Investigation Report" dated January 2009 and should be used as a reference when intrusive activities are conducted at the Congress Street site.

1.2 PURPOSE OF THE SOIL AND STORMWATER MANAGEMENT PLAN

The remedial activities proposed in Phase 2 will include minimally intrusive activities such as the installation of groundwater extraction wells, conductive soil heating wells and soil vapor extraction (SVE) wells in the Process Area, which currently consists of an approximate 3-inch thick asphalt cap. Currently, all work associated with the Phase 2 remedial activities will be conducted on the asphalt cap. The purpose this Soil and Stormwater Management Plan is to specify the procedures to be taken during:

- Installation of the groundwater extraction, conductive soil heating and SVE wells;
- Sampling and assessment of the waste materials generated (e.g., soil, water);
- Management of the waste materials;
- Disposition of waste materials; and
- Management of the site stormwater.

2.0 **DEFINITIONS**

The following definitions are being used in the Soil and Stormwater Management Plan:

- Clean soil soils that are not visually contaminated and organic vapor analyzer (OVA) readings are within 25 parts per million by volume (ppmv) of background levels.
- Contaminated soils soils that are visually contaminated and/or have OVA readings greater than 25 ppmv above background levels.
- Potentially contaminated stormwater any stormwater that comes in direct contact with the contaminated soils on site.

3.0 STORMWATER MANAGEMENT

The purpose of this section is to establish the appropriate protocol for site management of stormwater during the remedial activities that will be completed at the Congress Street Site.

3.1 EXISTING STORMWATER SYSTEMS

The Congress Street Site has two outfalls (001 and 002) that are permitted under the current SPDES Permit (NY 0260525). The SPDES Permit allows SI Group to discharge treated groundwater from the groundwater treatment system and storm water that is collected on-site. Outfall 001 is the discharge point located on the side of the hill that is connected to the storm sewer system, which collects the storm water along the plant road in the northwest corner of the Site as shown in Figure 3. The discharge from the groundwater treatment system is also discharged through Outfall 001.

Outfall 002 is a corrugated pipe located along the western side of the facility as shown in Figure 3. Outfall 002 discharges the storm water that accumulates in the sediment pond located adjacent to the groundwater treatment building. The outfall pipe from the sediment pond has been temporary plugged to prevent any discharged at this time. Stormwater runoff from the remaining areas of the facility either percolates into the ground or sheet flows into the surrounding area.

The SPDES Permit only allows SI Group to discharge stormwater runoff from these two outfalls and does not allow the discharge of any contaminated stormwater. In addition, the Permit has effluent limits that include the amount of suspended and dissolved solids contained in the stormwater.

It is anticipated that contaminated storm water will not be generated during Phase 2 remedial activities due to the asphalt cap over the Process Area and the type of drilling methods (i.e., sonic) expected to be implemented. Through the use of sonic drilling methods, contaminated soil will be generated in a sleeve and directly transferred to a waste disposal container (e.g., 55-gallon drum or roll-off container). Therefore, contaminated soil should not come into contact with the asphalt cap and stormwater runoff within the Process Area.

Stormwater runoff from the asphalt cap will be allowed to sheet flow off the asphalt and percolate into the site soils as is currently occurring. If stormwater runoff does come in contact with contaminated soil that would potentially flow off-site, it will be contained and collected in temporary on-site holding tanks. The potential contaminated stormwater will be either treated on-site via the groundwater treatment facility or sent off-site for treatment based on approval from NYSDEC and SI Group.

The SPDES Permit does not allow the discharge of any wastewater that may be generated as part of the Phase 2 remedial activities. Unless approval is obtained from NYSDEC by SI Group, wastewater that is generated as a result of remedial activities cannot be sent to the groundwater treatment system for treatment. All wastewater must be collected and sent to either the on-site treatment system following NYSDEC approval or sent off-site for treatment.

3.2 WEATHER

Weather conditions should continuously be monitored. Extreme weather conditions such as high wind conditions, high temperatures, and intense rainfalls should be specifically monitored. These conditions may limit site activities and as a last resort remedial activities may need to be suspended until weather conditions improve.

The following techniques should be considered to control the potential release of materials during extreme weather conditions:

- Monitor vehicle traffic leaving site to minimize material being track off-site;
- Monitor site conditions and stormwater runoff;
- Hauling materials in properly tarped or watertight containers; and
- Limiting site access and transport of material from the site.

4.0 INTRUSIVE ACTIVITIES

Phase 2 remedial activities will include the installation of groundwater extraction, conductive soil heating and SVE wells and associated equipment and apparatus within the Treatment Area of the Process Area. During well installation activities, grossly contaminated soils may be encountered in the Process Area that will require containerization and off-site disposal. In addition, wastewater generated during remedial activities may also require off-site transportation and disposal. The following procedures shall be followed in the characterization, management and disposal of the soils, water and other materials that may be generated as part of the remedial activities.

4.1 SAMPLING

During well installation activities, soils generated shall be screened for any field evidence of contamination (visual and olfactory). In addition, the soil shall be screened using an OVA or equivalent meter. The measurement shall be taken by passing the instrument directly over the surface of the soil, immediately following generation. Any soil that is determined to be potentially contaminated based on field observation should be placed in a 55-gallon drum or roll-off container. If no contamination is detected in the soil, the soil should be segregated as clean soil and temporarily stored in a container. The asphalt cap should not be used for the storage of any soil. Any soil that comes in contact with the asphalt pad should be cleaned up within a reasonable time period and placed in a container for future disposition.

Field notes shall be maintained including date, time and location of the measurements and visual observations.

4.2 SOIL GENERATION

The soils generated in support of other remedial activities shall be managed based on the visual screening and OVA readings collected during generation. Based on this screening, the generated soils shall be characterized as either clean soil or contaminated soil as defined in Section 2.0. The management and use of the excavated soils will be based on the classification of the soils as they are excavated.

4.3 ON-SITE RE-USE OF SOILS

Soils that are classified as clean soil can be placed within the Fill or Process Area, or back within an excavation following NYSDEC and SI Group approval.

4.4 SOIL MANAGEMENT

Any soil generated that is identified as being contaminated soil shall be segregated and managed using the following procedures:

- Contaminated soils shall be managed separately.
- Contaminated soils shall either be temporarily placed in covered roll off containers or 55gallon drums. Approval must be obtained from SI Group on the area to be used for the temporary staging of contaminated soil.
- The roll off or other type of container shall be covered when soil is not being added to or removed from the container.
- Containers of soil must be properly labeled with a unique identification number and the date(s) of accumulation.
- If soils from several locations are placed in the same container without segregation, the final disposition of the entire container contents shall be based upon the worst case classification.

4.5 ASPHALT MANAGEMENT

Asphalt and the associated sub-base material that is removed as part of the Phase 2 remedial activities should be handled as clean construction debris unless it is mixed with contaminated soils. Any asphalt or sub-base material that is mixed with contaminated soils shall be handled separately and disposed off-site at a permitted facility that is approved by SI Group.

Any contaminated asphalt shall be segregated and managed using the following procedures:

- Contaminated asphalt shall be placed in covered roll off containers, or other containers. Approval must be obtained from SI Group on the area to be used for the temporary staging of contaminated asphalt.
- The roll off or other type of container shall be covered when asphalt is not being added to or removed from the container.
- Containers of asphalt must be properly labeled with a unique identification number and the date(s) of accumulation.
- If asphalt from several locations is placed in the same container without segregation, the final disposition of the entire container contents shall be based upon the worst case classification.
- Contaminated asphalt shall be disposed off-site at a permitted facility approved by SI Group. Testing of the contaminated asphalt shall be based on the requirements of the approved disposal facility.

4.6 WASTE MANAGEMENT

Waste materials removed as part of the remedial activities shall be segregated and managed using the following procedures:

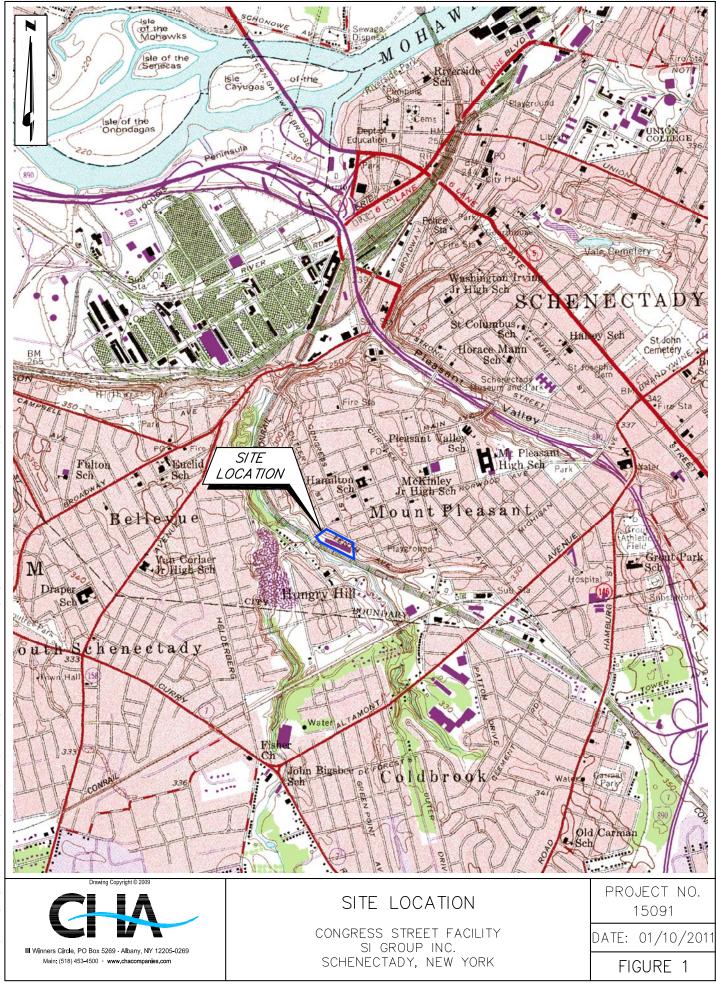
- Roll off containers, 55-gallon drums or other types of containers shall be used.
- The container(s) shall be securely covered when waste materials are not being added to container.
- The containers shall be properly labeled with a unique identification number and the date(s) of accumulation. A record shall be maintained describing the type of waste material that is placed in each container.
- The waste material shall be disposed off-site at a permitted facility based on the characterization of the waste. Testing of the waste material shall be based on the requirements of the permitted disposal facility.

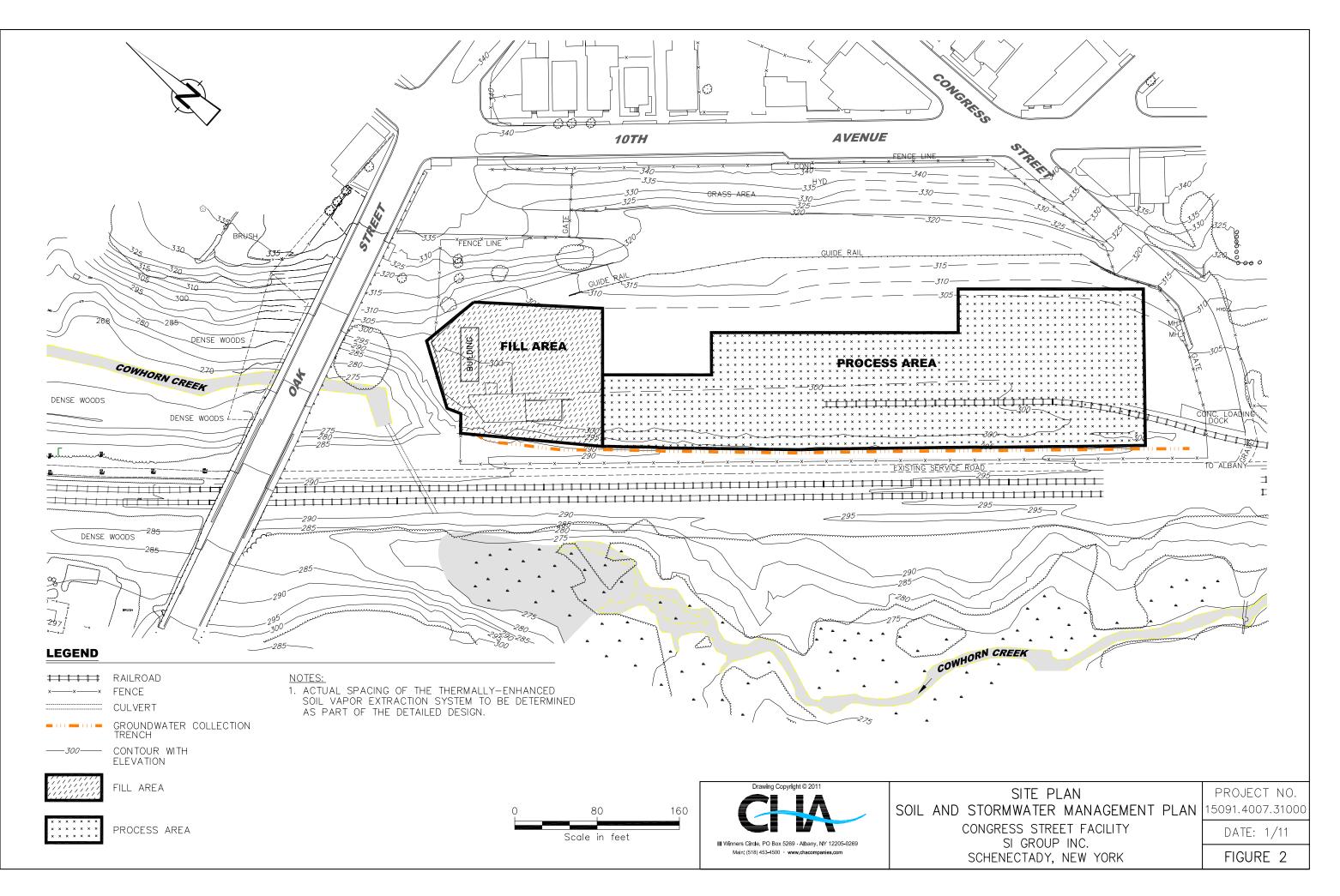
4.7 TRANSPORTATION OF CONTAMINATED MATERIAL

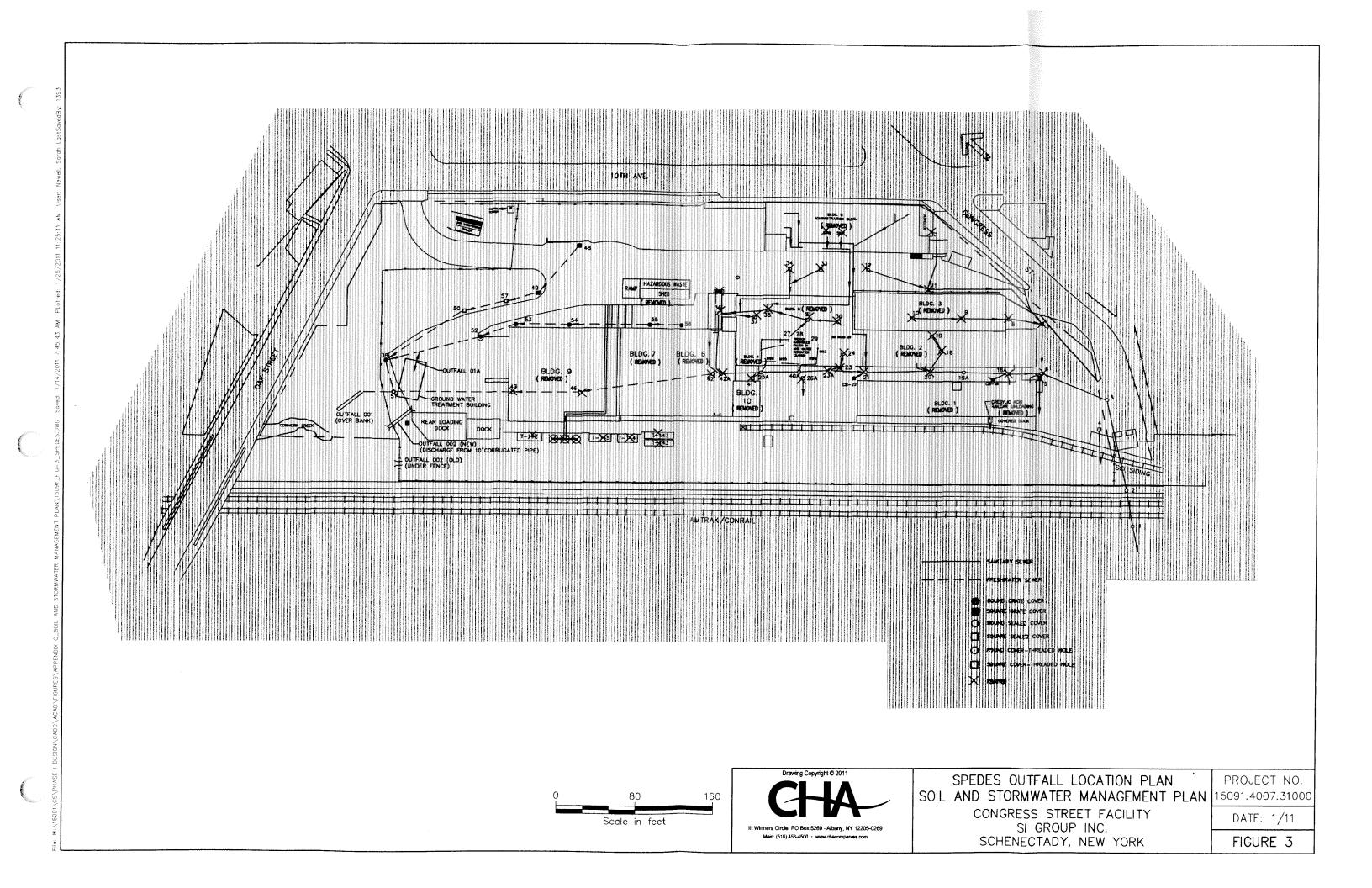
Contaminated soils and waste materials must comply with the following procedures. Following proper characterization, approval from SI Group, and approval from the permitted disposal facility, the contaminated soils and/or waste materials will be loaded into the appropriate transport containers and covered to prevent airborne migration of the contaminants when leaving the Site and during transportation. All waste will be transported in accordance with the New York State Department of Transportation (NYSDOT) requirements. All necessary waste documentation (e.g. waste manifests or bills of lading) will be supplied by the waste facility and submitted to SI Group for approval and record keeping purposes.

The remedial Contractor must comply with all federal, state, and local regulations regarding transportation and disposal of contaminated soils and waste materials. These include, but are not limited to, the following:

- 1. Trucks used for transportation of material for disposal off-site shall be permitted pursuant to 6 NYCRR Part 364.
- 2. Vehicle operator must possess a valid commercial driver's license with hazardous materials endorsement (if applicable).
- 3. Registration of the vehicle as a hazardous waste carrier (if applicable).


- 4. Utilization of shipping papers and/or hazardous waste manifests (6 NYCRR Part 372).
- 5. Proper marking and placarding of vehicles.
- 6. Placement of emergency response procedures and emergency telephone numbers in vehicle, and operator familiarity with emergency response procedures.
- 7. Compliance with load height and weight regulations.


4.8 **OFF-SITE DISPOSAL**


The use of any off-site disposal facility must be permitted to receive the waste material and must be approved by SI Group prior to being used. Documentation must be provided to SI Group of all waste shipments.

5.0 MODIFICATION OF PLAN

Any proposed change or deviations to the procedures specified in the Soil and Storm Water Management Plan must be initially approved by SI Group or their designated representative, and the on-site NYSDEC representative. Approval by SI Group and the on-site NYSDEC representative is required before any proposed change or deviation to the procedures is implemented. All changes or deviations to the procedures should be documented. FIGURES

APPENDIX F

Health & Safety Plan

Health and Safety Plan

Phase 2 Remedial Activities Operable Unit No. 2

SI Group Congress Street Facility Site No. 447007

CHA Project Number: 15091

Prepared for:

SI Group, Inc. 1000 Main Street, Route 5S Rotterdam Junction, New York

III Winners Circle Albany, New York 12205 (518) 453-4500 (518) 453-4773 - Fax

September 2012

V:\Projects\ANY\CivData\15091\CS\Phase 2 Design\5007 Phase II\Report\Appendices\Appendix G HASP.docx

TABLE OF CONTENTS

1.0	INTR	RODUCTION	1
2.0	PUR	POSE OF THE HEALTH AND SAFETY PLAN	2
3.0	EME	RGENCY CONTACTS	3
4.0	GEN	ERAL SITE INFORMATION	4
5.0	KEY	PERSONNEL	5
6.0	SITE 6.1 6.2	CHARACTERIZATION Site Description and History Project Overview	6
7.0	HEA 7.1 7.2 7.3 7.4 7.5 7.6	LTH AND SAFETY PROGRAM COMPONENTS Objectives Safety Meetings Safety Training Medical Surveillance Authorization Site Mapping	9 9 10 10
8.0	POTI 8.1 8.2 8.3 8.4	ENTIAL HAZARDS Chemical Hazards Airborne Hazards Physical Hazards Biological Hazards	11 11 12
9.0	HAZ 9.1 9.2	 ARD/TASK ANALYSIS AND CONTROLS. Chemical Hazards 9.1.1 Hazardous Materials Segregation/Stockpiling Hazards. 9.1.2 Decontamination Fluids and Calibration Gas Hazards Airborne Hazards 9.2.1 Chemical Hazards 	13 13 13 14 14
	9.3	 9.2.2 Dust Hazards Physical Hazards 9.3.1 Heavy Equipment Hazards 9.3.2 Noise Hazards 9.3.3 Electrical Hazards 9.3.4 Fire/Explosion Hazards 9.3.5 Traffic Hazards 9.3.6 Slip/Trip/Fall Hazards 	15 15 16 16 17
	9.4	Biological Hazards	

CHA-

	9.4.1 Insect/Animal-Related Hazards	17
	9.4.2 Heat-Related Hazards	18
	9.4.3 Cold Exposure Hazards	
	9.4.4 Irritant Plant Hazards	
10.0	AIR MONITORING AND ACTION LEVELS	
	10.1 Air Monitoring	
	10.1.1 Dust/Particulates	
	10.1.2 Organic Vapor	21
11.0	SITE CONTROL MEASURES	
	11.1 Work Zones	
	11.2 Site Security	
	11.3 Communication	.24
12.0	HAZARD COMMUNICATION	25
13.0	CONFINED SPACE	26
14.0	FIRST AID PROCEDURES	27
15.0	PERSONNEL PROTECTION	29
	15.1 General Guidelines	
	15.2 Air Monitoring	
	15.3 Personal Protective Equipment	
	15.4 Health and Safety Action Levels	.31
16.0	DECONTAMINATION	
	16.1 Personnel Decontamination	
	16.2 Personnel Decontamination Steps	
	16.3 Equipment Decontamination	34
17.0	EMERGENCY INFORMATION	
	17.1 General	
	17.2 Emergency Procedures for Contaminated Personnel	
	17.3 Physical Injuries	
	17.4 Safety Equipment	
	17.5 Spill Containment	.36
18.0	HEALTH AND SAFETY PLAN AGREEMENT	37

LIST OF FIGURES

Figure 1	Site Location
riguie i	She Location

Figure 2 Hospital Location Map

1.0 INTRODUCTION

This Health & Safety Plan (HASP) has been created for the protection of on-site personnel during the Phase 2 installation activities to be conducted at the Congress Street Facility (Site) of SI Group, Inc. located in the City of Schenectady, New York (Figure 1). This project's various assignments require on-site personnel to perform tasks where personal safety could be compromised due to chemical, physical, and/or biological hazards.

The requirements and guidelines in this HASP are based on a review of available information and an evaluation of potential hazards. This HASP will be discussed with site personnel and will be available at the Site for review while work is underway. All personnel will report to the Site Safety Officer (SSO) at the Site in matters of health and safety. The SSO is responsible for ensuring compliance with this Plan and stopping work when necessary, as well as implementing this Plan into daily site activities.

Non-intrusive activities such as installation of the piping, instrumentation and equipment are those that do not have the potential to jeopardize the health and safety of site workers, the public, or the environment with respect to site contaminants. Intrusive activities such as well installation are those that have the potential to cause health and safety concerns to site workers, the public, or the environment with respect to site contaminants. These activities and any non-intrusive activities conducted in an Exclusion Zone require training per 29 CFR 1910.120 which govern work on hazardous waste sites.

2.0 PURPOSE OF THE HEALTH AND SAFETY PLAN

The purpose of this HASP is to provide specific guidelines and establish procedures for the protection of on-site personnel during the activities conducted at the Site. This Plan is based upon previous studies and information available to date.

It is noted that the policies and procedures set forth by this Plan constitute a minimum level of protection for on-site workers. The Remedial Contractor performing the work will be required to prepare and implement a separate site-specific HASP that addresses the specific on-site activities to be conducted by the Remedial Contractor. All employees and subcontractors of the Remedial Contractor will be required to abide by **both** Remedial Contractor's site-specific HASP and the minimum requirements set forth in this HASP.

Additional personnel covered by this HASP include:

- CHA employees
- SI Group employees
- Remedial Contractor personnel
- Any subcontractors performing work at the Site related to the Remedial Activities
- New York State Department of Environmental Conservation (NYSDEC) personnel
- Other Site visitors directly involved with Phase 2 Remedial Activities

This HASP has been developed in accordance with the requirements set forth in 29 CFR 1910.120 Hazardous Waste Operations and Emergency Response; Final Rule.

3.0 EMERGENCY CONTACTS

Police Department:	911 or 518-382-5200	Hospital Directions:
Ambulance:	911 or 518-374-4401	• Start out going SOUTHEAST on 10TH AVE toward CONGRESS ST. (<0.1 miles)
Fire Department	911 or 518-382-5141	• Turn SLIGHT LEFT onto 9TH AVE. (0.2 miles)
Poison Control Center	(800) 252-5655	• Turn LEFT onto CRANE ST. (0.7 miles)
Dig Safe or One Call Center	1-800-DIG-SAFE	 CRANE ST becomes BROADWAY. (0.6 miles) Turn LEFT onto STATE ST / NY-5. (<0.1 miles)
SI Group, Inc.		 Turn RIGHT onto ERIE BLVD. (0.6 miles) Turn RIGHT onto NOTT ST. (0.8 miles)
General	518-347-4333	• Turn left at Lowell Road into Ellis Hospital
Emergency Contact	518- 347-4345	EntranceFollow Signs to Emergency Dept.
(Available 24 Hours/Day))	(See attached Hospital Location Map)
Hospital Name:	Ellis Hospital	
Address	1101 Nott Street	
	Schenectady, New York 12308	

4.0 GENERAL SITE INFORMATION

Project Number:	15091
Client:	SI Group, Inc.
Client Contact (give name and phone):	Mr. Chuck Gardner (518-347-4256) or Mr. Kevin Kogut (518- 347-4308)
Site/Property ID:	Congress Street Facility
Address:	Congress Street, Schenectady, Schenectady County, New York
Work Tasks:	 Installation of the in-situ site treatment system including groundwater extraction, soil vapor extraction (SVE) and conductive soil heating wells Install all piping, equipment, apparatus, etc. associated with the in-situ site treatment systems
Duration:	Anticipated four (4) months.
Will subcontractors be used?	Yes, a subcontractor for the installation of the systems associated with groundwater extraction, SVE and soil heating. Additional subcontractors may be required by the Remedial Contractor.

5.0 KEY PERSONNEL

The implementation of this HASP will be the coordinated effort of the CHA project team consisting of hydrogeologists, geologists, chemists, and engineers experienced with hazardous waste site characterization and remediation. The team will consist of a Project Manager, Site Safety Officer, as well as Task Leaders and additional staff as necessary. The following paragraphs identify the key CHA project personnel and briefly describe the health and safety designations and general responsibilities that will be used at this site.

PROJECT MANAGER	
PROJECI MANAGEK	The Project Manager (PM) is responsible for communicating any applicable information to the Health and Safety Manager so that when the HASP is written, all potential hazards have been evaluated. The PM is responsible for ensuring that the requirements stated in this HASP are complied with during all site activities. The PM is responsible for ensuring an adequate budget to cover the costs of air monitoring, personal protective equipment, and other health and safety supplies needed to perform work safely at the site. The PM is also responsible for ensuring that the Site Safety Officer is informed of any unexpected incidents that occur on the site.
SITE SAFETY OFFICER	The SSO is responsible for ensuring the procedures outlined in the HASP are followed by all on-site personnel at all times on a site. The SSO will also be responsible for conducting site safety meetings before the commencement of work to review the HASP with on-site personnel. In addition to these duties the SSO, or designee, is responsible for the following:
	 Determining or changing the levels of personal protection based on site observations; Conducting required air monitoring on this site; Stopping work, if required, to protect worker safety or where noncompliance with health and safety requirements is found; Informing personnel (other than team members) who want access to work areas of the potential hazards of the site; Updating health and safety equipment requirements or procedures based on new information gathered during the investigation; and, Monitoring compliance with the health and safety requirements and informing the Project Manager of any deficiencies.
	Any changes in site conditions that may require a modification to the HASP will be coordinated between the SSO and/or PM.

6.0 SITE CHARACTERIZATION

6.1 SITE DESCRIPTION AND HISTORY

The SI Group owned and operated a chemical manufacturing facility located in Schenectady, New York at Congress Street and Tenth Avenue that has been referred to as the Congress Street Facility. The facility encompasses an area approximately 7 acres in size with approximately 5.1 acres having been developed. The area south and west of the site consists of light industrial areas; commercial facilities are located east and northwest; and residential areas to the north and northeast. The site is located on a steep slope that has been developed over the years. Figure 2 shows the site as it was in the late 1990's with a number of buildings located on the site. Some of the buildings were constructed such that the lower portion of the buildings acted as retaining structures for the upper slope area. The Cowhorn Creek is located at the bottom of the slope. Between the Cowhorn Creek and the Site is an active rail line owned by CSX Transportation. The rail line serves as one of the main rail lines between Albany and western New York.

The facility was in operation from the early 1900's until 1997 when manufacturing operations ceased. The facility was registered with New York State Department of Environmental Conservation (NYSDEC) as an inactive hazardous waste site (Site Number 4-47-007). Site environmental investigations have been ongoing since 1994.

As a result of the previous investigations, it is concluded that the contamination remaining onsite is present primarily within the soils located under and west of the former manufacturing buildings. Although the RI has generated significant data from the site, due to the presence of the manufacturing buildings which limited access during the previous investigations the limits of the contamination have not yet been fully defined.

Since 1997, site conditions have changed significantly (i.e., the facility has been closed and the on-site buildings demolished) resulting in the on-site soils becoming accessible, thereby allowing investigation of the entire Site and evaluation of potential remedial alternatives. In addition, potential remedial technologies have been tested at the Rotterdam Junction facility of SI Group that could potentially be used at the Congress Street site.

As a result of these actions, a Remedial Investigation (RI) and Supplemental Feasibility Study were conducted for the Congress Street site. The investigation included a delineation of on-site conditions and an evaluation of potential remedial technologies for the site. Based on the results of the investigation and the evaluation, a remedial alternative to address on-site contamination was recommended in the Updated Supplemental Feasibility Study (FS) dated March 2010. The remedial alternatives analysis that was presented in the Updated Supplemental FS was utilized by NYSDEC to prepare a Proposed Remedial Action Plan (PRAP) for OU2. The PRAP was issued for public review and comment on September 15, 2010. As a result of the RI and FS actions, as well as comments received on the PRAP, NYSDEC issued a Record of Decision (ROD) on December 21, 2010 that identified the selected remedy for OU2.

Due to distinct soil and engineering concerns, as well as the nature and distribution of contamination, the Site is divided into two areas for remediation purposes. These areas include the Fill Area and the Process Area. In general, the selected remedy for the Fill Area includes the installation of a permeable cap combined with natural attenuation, whereas the selected remedy for the Process Area includes product removal via excavation combined with thermally-enhanced soil vapor extraction. Due to the current conditions at the Site and the fact that the selected remedial alternative has the multiple components, the remediation of the Congress Street site was divided into two separate phases. The two-phase approach allowed for initial site preparation activities to be completed along with a limited pre-design investigation prior to the design of the more complex portions of the remediation program, including the thermally-enhanced soil vapor extractor wells (SVE) system.

The first phase of the two-phase approach was completed in 2011 and the early portion of 2012. Phase 1 included preparation of the Process Area, installation of a permeable cover over the Fill Area, and completion of a pre-design investigation within the Process Area. Preparation of the Process Area included removal of existing concrete structures, foundations and rail sidings, decommissioning of existing utilities, removal of grossly contaminated soil located directly below the concrete slabs and asphalt pavement, and installation of an asphalt cap directly over the Process Area. The Fill Area was prepared in a similar manner as the Process Area with the removal of existing structures. A permeable cover was installed over the Fill Area consisting of either gravel or soil cover. Upon completion of site preparation work, a pre-design investigation was conducted. The investigation included installation of groundwater extraction wells, SVE and piezometers to determine the parameters required for the final system design of the in-situ treatment system.

6.2 **PROJECT OVERVIEW**

As noted previously, the remediation of the Congress Street site is to be completed in two phases. The first phase was completed during 2011 and the early portion of 2012. The second phase includes the design and installation of the in-situ site treatment system. The following are the activities to be conducted within the Process Area during Phase 2 Remedial Activities:

- Installation of in-situ site treatment wells, including:
 - Groundwater extraction wells
 - Soil vapor extraction (SVE) wells
 - Conductive soil heating wells
- Installation of treatment system piping
- Installation of mechanical and electrical equipment to operate the in-situ site treatment system

7.0 HEALTH AND SAFETY PROGRAM COMPONENTS7.1 OBJECTIVES

As discussed previously, activities to be conducted as part of Phase 2 Remedial Activities include the installation of groundwater extraction wells, SVE wells, conductive soil heating wells, an SVE treatment system and all associated piping, equipment and apparatus. This project's various assignments require personnel to perform tasks where personal safety could be compromised due to specific chemical, physical, and/or biological hazards associated with the site. As such, this Plan has been created for the protection of on-site personnel during the planned field activities.

It should be noted that this HASP is not intended to cover all aspects of Health and Safety associated with the project. The general work practices, including drilling, well installation, installation of piping, trucking, etc., will be governed by the Contractor's site-specific HASP.

All personnel working at the Congress Street Facility will be required to abide by the policies and procedures set forth by this Plan.

7.2 SAFETY MEETINGS

The Site Safety Officer (SSO) shall conduct an initial safety meeting prior to entering the site or engaging in remedial/investigative activities. To ensure that the HASP is being followed during the remedial activities, safety meetings shall be held before each work day or any time there is a change in site conditions.

7.3 SAFETY TRAINING

The SSO will confirm that personnel assigned to the field component of the project have received adequate training. CHA staff and Remedial Contractor personnel involved with this project shall have a minimum of a 40-hour initial Hazardous Waste Operations and Emergency Response training and a current annual 8-hour refresher course. All training will have been conducted and certified in accordance with OSHA regulations as outlined in 29 CFR 1910.120.

All personnel working on the site will also be required to participate in SI Group's Safety Training Program.

7.4 MEDICAL SURVEILLANCE

CHA staff and Remedial Contractor personnel will have had a medical surveillance physical consistent with OSHA regulations in 29 CFR 1910.120 and performed by a qualified occupational health physician. This program tracks the physical condition of employees in compliance with OSHA regulations. Medical examinations and consultations are generally completed prior to assignment, annually, upon termination, and in the event of injury and/or illness resulting from exposure at a work site.

7.5 AUTHORIZATION

All on-site personnel involved in Phase 2 Remedial Activities shall acknowledge and comply with the policies and procedures established in this HASP and SI Group's safety requirements.

If any site worker performs work in an unsafe manner and/or in violation of Federal, State, or local regulations, they are to notify the Site Safety Officer, and CHA's Project Manager or his designated representative. CHA's Project Manager or his designated representative is responsible to notify SI Group's Project Manager and the Remedial Contractor so that appropriate actions may be taken.

CHA personnel have the authority to shut down field operations at this site if work is not being conducted in accordance with the requirements of this HASP, or if site conditions are determined to be unsafe to continue operations. SI Group's Project Manager or his designated representative will be immediately notified of any shutdown or safety concern.

7.6 SITE MAPPING

Figure 1 illustrates the location of the subject Site. Figure 2 illustrates the route to the nearest hospital.

8.0 POTENTIAL HAZARDS

The following hazards have been specifically identified in relation to the activities to be performed at the Congress Street Facility.

Hazardous Material Types: Liquid <u>X</u> Solid <u>X</u> Sludge <u>Gas X</u>

8.1 CHEMICAL HAZARDS

The major contaminants identified at the Congress Street Site include toluene, xylene, naphthalene, cresols and phenolic compounds. The potential exposure mechanism that can transport these volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs), as well as particulates, from work areas to other areas of the site as well as beyond the boundaries of the site are:

- Contact with contaminated groundwater or soil,
- Projection of contaminated material in air,
- Failure to adhere to decontamination procedures.

8.2 AIRBORNE HAZARDS

The potential exposure mechanisms that can transport nuisance dust and/or chemical vapors from the areas of well installation to other areas of the site as well as beyond the boundaries of the site are:

- Contact with contaminated ground water or soil
- Projection of contaminated material in air
- Failure to adhere to decontamination procedures
- Transportation of waste materials

Nuisance dust can be a problem at any site that involves intrusive activities in potentially contaminated materials. Dust will be controlled to prevent the public from being unnecessarily concerned and to further reduce the nuisance dust hazard to Site personnel. Nuisance dust will be controlled by utilizing appropriate dust suppression techniques such as wetting down high traffic areas. The primary effect of nuisance dust is irritation of the eyes, nose, and throat when concentrations approach the OSHA exposure limits. Exposure limits will not be exceeded during

this project.

8.3 PHYSICAL HAZARDS

Physical hazards such as the following may be encountered during the project:

- Heavy equipment
- Noise
- Electrical
- Fire/explosion
- Traffic
- Slip/Trip/Fall
- Underground/Aboveground Utilities (electrical, gas, etc.)

8.4 BIOLOGICAL HAZARDS

Biological hazards such as the following may be encountered on site:

- Mosquitoes/Stinging Insects
- Deer Ticks
- Rodents
- Irritant plants
- Heat/cold stress

9.0 HAZARD/TASK ANALYSIS AND CONTROLS

The following is a summary of the project tasks and potential health hazards associated with anticipated activities to be conducted during the course of the project. In addition, hazard control procedures are outlined.

9.1 CHEMICAL HAZARDS

9.1.1 Hazardous Materials Segregation/Stockpiling Hazards

<u>Hazard Analysis</u> - During the course of site activities that may include physically handling generated waste, it is possible that site workers may come into contact with contaminated media. Potential contaminated media includes waste material, soil, and water. In accordance with the Soil and Stormwater Management Plan, contaminated media will be segregated for management and disposal by a qualified waste disposal contractor, as necessary.

<u>Hazard Control</u> – In general, site workers shall use practical sense to avoid contact when possible. This includes avoiding walking through puddles and contacting other potential sources of contaminants. In addition, site workers shall don the appropriate personal protective equipment (PPE) as described in Section 15.0. The level of PPE shall be dependent on the work activity being conducted.

In general, the following basic methods of protection shall be employed if there is a potential for contact:

- Wear safety glasses and nitrile gloves to prevent eye and skin contact.
- Wear vinyl boots over safety boots if free product is encountered.

Controls should also include repeated health and safety awareness meetings, decontamination stations, and other standard procedures.

The SSO will perform air monitoring in accordance with Section 10.0, which includes organic vapor and dust monitoring.

9.1.2 Decontamination Fluids and Calibration Gas Hazards

Hazard Analysis - Several chemicals (methanol, isobutylene, etc.) are required for use in

the equipment decontamination process and for equipment calibrations. It is possible that site workers may come into contact with these materials during the course of the project.

<u>Hazard Control</u> – Although the quantities to be used are minimal and will be used under controlled environments, site workers shall take additional precautions to prevent exposure. Chemicals used during field activities will be properly contained and labeled. Compressed gases shall be stored in a cool, dry place away from potential impact. Only trained personnel shall use these chemicals/gases. PPE should be used if there is a potential for dermal contact or respiratory exposure. Calibration gases should only be used in outdoors or in well-vented areas. Material safety data sheets (MSDS) will be maintained onsite for all decontamination fluids and calibration gases.

9.2 AIRBORNE HAZARDS

9.2.1 Chemical Hazards

<u>Hazard Analysis</u> - The potential for inhalation of VOCs (and to a lesser extent SVOCs) will be present during site activities. Intrusive activities may expose areas of contamination which could generate contaminated vapors. Personnel working in close proximity may be exposed.

<u>Hazard Control</u> – If exposure to contaminants in air is anticipated, workers should locate upwind of the work activity. Wind direction often changes abruptly and without warning, so personnel should always be prepared to reposition, if necessary. Site personnel should keep clear of areas where intrusive activities are taking place unless actively engaged in work activities. The SSO shall perform air monitoring in accordance with Section 10.0, which includes VOC monitoring.

9.2.2 Dust Hazards

<u>Hazard Analysis</u> – The potential for inhalation of contaminated dusts and other airborne particles will be present during intrusive activities. Inhalation hazards are particularly evident during warm and dry periods when there is a greater chance for airborne dusts to be generated. Workers may inadvertently ingest contaminants/waste materials that collect on hands and clothing in the form of dust during intrusive activities. Dust ingestion may also occur when workers take water/meal breaks, or after they have left the work area if established hygiene procedures (e.g. washing hands) are not followed.

<u>Hazard Control</u> – If exposure to dust emissions is anticipated, workers should locate upwind of the work activity. Wind direction often changes abruptly and without warning, so personnel should always be prepared to reposition, if necessary. Site personnel should keep clear of active intrusive areas unless actively engaged in work activities. Airborne dust levels will be minimized by wetting down surfaces, if necessary. Only very limited quantities of water will be used as necessary within the site limits to avoid the potential for increased surface water production. Controls may also include decontamination stations and other standard procedures for ensuring that dust is not ingested.

9.3 PHYSICAL HAZARDS

9.3.1 Heavy Equipment Hazards

<u>Hazard Analysis</u> - The use of heavy equipment (e.g., drill rigs, generators, etc.) may pose safety hazards to site workers.

<u>Hazard Control</u> - Heavy equipment work must be conducted only by trained, experienced personnel. Proper protective gear (hard-hats and steel-toed boots) will be worn at all times in the Exclusion Zone as defined in Section 11.1. If possible, personnel must remain outside the turning radius of large, moving equipment, with particular attention given to remaining within the line of sight of the operator and maintaining eye contact with the operator. When approaching operating equipment, the approach should be made from the front and within view of the operator, preferentially making eye contact. At a minimum, personnel must maintain visual contact with the equipment operator. Equipment shall be stabilized while operating and shall be equipped with back-up alarms. Wheels should be chocked as appropriate for equipment parked on a slope. Ensure that all equipment is in good operating condition and that proper maintenance checks have been done. The operation of heavy equipment shall only be conducted by trained Remedial Contractor personnel in accordance with the Contractor's HASP.

9.3.2 Noise Hazards

<u>Hazard Analysis</u> - Work around large equipment often creates excessive noise. Drilling and hauling equipment will be the primary source of noise encountered during the reclamation project. Noise can cause workers to be startled, annoyed, or distracted; can cause physical damage to the ear, pain, and temporary and/or permanent hearing loss; and can interfere with communication. <u>Hazard Control</u> - All equipment will be fitted with adequate muffler systems and intrusive activities will be limited to normal work hours, except as required by extenuating circumstances. During the field activities where workers are using heavy equipment (drill rigs, etc.) or working around other equipment that produces continuous noise (generators, etc.), hearing protection should be utilized at these times. Personnel shall wear hearing protection if it is necessary to shout to hear someone who is standing one foot or less away, or noise measurements show that OSHA permissible exposure levels are exceeded. Personnel shall not stand unnecessarily close to equipment when it is operating.

9.3.3 Electrical Hazards

<u>Hazard Analysis</u> - Overhead power lines, electrical wiring, electrical equipment (electrical generators), and buried cables pose risks to workers of electric shock, burns, muscle twitches, heart fibrillation, and other physical injuries, as well as fire and explosion hazards.

<u>Hazard Control</u> - Workers will take appropriate protective measures when working near live electrical parts, including inspection of the work area to identify potential spark sources, maintenance of a safe distance, proper illumination of the work areas, provision of barriers to prevent inadvertent contact, and use of nonconductive equipment. If overhead lines cannot be de-energized prior to the start of work, a 10-ft distance must be maintained between overhead energized power lines and elevated equipment parts. Equipment should not be moved with equipment parts elevated. In addition, equipment operators should take care not to excavate within 20 feet of overhead power lines. DigSafe will be utilized for the location of underground utilities prior to any excavation work. The use of a ground fault circuit interrupter (GFCI) will be required for all portable electrical devices.

9.3.4 Fire/Explosion Hazards

<u>Hazard Analysis</u> - The potential for fire and/or explosion emergencies is always present. It is important to take necessary precautions to identify a potential situation before it becomes a problem. Site workers should be alert for unexpected events, such as ignition of chemicals or sudden release of materials under pressure, and be prepared to act in these emergencies.

Hazard Control - Ignition sources shall be kept away from flammable materials and

atmospheres. Field vehicles will be equipped with a fire extinguisher. Large fires that cannot be controlled with a fire extinguisher should be handled by professionals. The proper authorities should be notified pursuant to Section 3.0 in these instances.

9.3.5 Traffic Hazards

<u>Hazard Analysis</u> – Due to the nature of the project, additional truck traffic associated with the project is anticipated and represents a potential hazard.

<u>Hazard Control</u> - Proper protective gear (hard-hats and safety vests for high visibility) will be worn on-site by all site workers. In addition, designated on-site roadways will be used when possible and on-site workers should keep clear of these areas. Vehicles travelling on-site should travel at low speeds that enable them to observe the surroundings and stop quickly if necessary. If possible, personnel must remain outside the turning radius of large, moving equipment, with particular attention given to remaining within the line of sight of the operator and maintaining eye contact with the operator. When approaching operating equipment, the approach should be made from the front and within view of the operator, preferentially making eye contact.

9.3.6 Slip/Trip/Fall Hazards

<u>Hazard Analysis</u> – Common slip, trip and fall hazards result from uneven walking surfaces, holes, slippery surfaces, changes in level, obstructions and accumulation of objects on the ground (e.g. hoses, cords, cables, debris, etc.), and work areas 30 inches or more above ground.

<u>Hazard Control</u> – Site personnel should avoid slippery surfaces whenever possible. Site workers should maintain a clean and orderly work area. Tools and other tripping hazards should be picked up daily. Personnel should know the location of other site workers at all times, especially before moving and/or starting up heavy equipment. Site workers should use three-point contact when mounting or dismounting elevated equipment.

9.4 **BIOLOGICAL HAZARDS**

9.4.1 Insect/Animal-Related Hazards

<u>Hazard Analysis</u> – There is the potential to come into contact with various insects, including bees and ticks, anytime site workers are outdoors, especially when in woods,

brush, bushes, or tall grasses. Contact with any of these shall be avoided if at all possible.

<u>Hazard Control</u> – During site activities, attention will be paid to biological hazards such as ticks, mosquitoes, and other biting insects. Be observant of possible insect nesting areas. Personnel will have commercial bug spray onsite to use if necessary. Personnel should wear light colored clothing, long sleeved shirts and long pants when possible, and tuck pant legs into boots or socks.

9.4.2 Heat-Related Hazards

<u>Hazard Analysis</u> - Effects of heat stress and illness are possible during the performance of field activities associated with Phase 2 Remedial Activities. Injury from excess exposure to high temperatures may occur to persons working outdoors. This is a major concern when personnel are working in PPE clothing. The body's principal means of cooling is through the evaporation of sweat. When personnel are working in PPE, sweat is trapped inside the clothing and cannot evaporate, thus raising the body's core temperature and resulting in a heat-related illness. The symptoms of heat-related illness include painful muscle spasms, dizziness, slurred speech, confusion, fainting, and cool, clammy skin.

<u>Hazard Control</u> - Site personnel should be familiar with these symptoms of heat-related illness and be prepared to administer first aid or to contact the appropriate emergency personnel. Site personnel should wear appropriate clothing and take frequent breaks during extreme weather conditions.

9.4.3 Cold Exposure Hazards

<u>Hazard Analysis</u> - Effects of cold exposure are possible during the performance of field activities associated with Phase 2 Remedial Activities. Injury from cold exposure may occur in persons working outdoors during a period when temperatures average below freezing. The extremities, such as fingers, toes, and ears, are the most susceptible to frostbite. Symptoms of cold stress include shivering, pain in the extremities, numbness, drowsiness, white or grayish skin, confusion, or fainting.

<u>Hazard Control</u> - To prevent cold stress, personnel should wear layers of loose-fitting clothing and head covering. Protection of the hands, feet, and head is particularly important because these are the areas most likely to be injured first by the cold. Bare skin contact with cold surfaces should be avoided. Personnel shall wear only dry clothing.

9.4.4 Irritant Plant Hazards

<u>Hazard Analysis</u> – There is the potential to come into contact with poison ivy, poison oak, poison sumac anytime site workers are outdoors, especially when in woods, brush, bushes, or tall grasses. Contact with any of these shall be avoided if at all possible.

<u>Hazard Control</u> – During site activities, attention will be paid to the presence of irritant plants such as poison ivy, oak, and sumac. If exposed, personnel should flush the area with soap and water. Personnel should wear long sleeved shirts and long pants when possible, and tuck pant legs into boots or socks.

10.0 AIR MONITORING AND ACTION LEVELS

10.1 AIR MONITORING

Air monitoring at the Congress Street Site will be performed during Phase 2 Remedial Activities. All air monitoring will be conducted on a real-time basis using both hand-held field instruments and visual monitoring. Air monitoring readings will be recorded in a logbook. The air monitoring plan developed for the project consists of two primary components: dust and organic vapor.

Continuous monitoring, as specified in the Community Air Monitoring Plan (Appendix G to the Phase 2 Remedial Design Work Plan), will be required for all ground intrusive activities if:

- Increased particulate levels are observed in the work area;
- Organic vapors are detected in the work area at concentrations of 5 parts per million (ppm) above background for over 15 minutes; or
- Increased odor levels are detected in the work area for over 15 minutes.

Monitoring instruments will be calibrated prior to each full day of equipment usage or more frequently in accordance with manufacturer's recommendations. Calibrations will be recorded on an Equipment Calibration Log.

10.1.1 Dust/Particulates

Dust emissions may occur at the project site during intrusive remedial activities and loading activities. Therefore, fugitive dust control measures will be implemented during all intrusive construction activities. Fugitive dust is described as discrete particles, liquid droplets or solids, which become airborne and contribute to air quality as a nuisance and threat to human health and the environment.

Particulate levels shall be visibly monitored within the exclusion zone. If it appears dust levels are increasing, a particulate meter shall be utilized following the manufacturer's recommendations. At the upwind and downwind perimeters of the exclusion zone, particulate monitoring will be conducted continuously using a real-time monitoring device capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment will be equipped with an audible alarm to indicate exceedance of the action levels.

The following action levels will be used:

- If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m³) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques will be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m³ above the upwind level and provided that no visible dust is migrating from the work area.
- If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m³ above the upwind level, work will be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m³ of the upwind level and in preventing visible dust migration.

All fifteen minute readings will be recorded and will be available onsite for personnel to review.

10.1.2 Organic Vapor

A photoionization detector (PID) shall be used to monitor for VOCs at both the immediate work area (e.g. exclusion zone) and the downwind perimeter of the exclusion zone (if necessary). The PID shall be calibrated on a daily basis following the manufacturer's recommendations. Calibration data shall be recorded in daily logs by the SSO. The monitoring schedule is provided below.

Frequency:

- 1. At start of each task.
- 2. Whenever obvious contamination is noted.
- 3. Every 30 minutes.
- 4. Whenever conditions change.

Location of Measurements:

- 1. In the breathing zone
- 2. Headspace readings as appropriate
- 3. Monitor at the exclusion zone boundary, particularly at downwind locations, if PID monitoring levels in the exclusion zone are consistently over 5 ppm.

Significant VOC readings are not anticipated for this project. However, the following action levels will be used for VOC monitoring at the Site:

- If PID readings exceed 5 ppm above background for any 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases as indicated by instantaneous PID readings to levels below 5 ppm above background, work activities can resume with continued monitoring.
- If readings remain elevated in excess of 5 ppm above background but less than 25 ppm, work activities must be halted, the source of the vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that total organic vapor levels in the exclusion zone are below 5 ppm over background for the 15-minute average.
- Upgrade to Level C when PID readings are consistently over 10 ppm over background in the exclusion zone.
- Upgrade to Level B when readings are consistently over 200 ppm over background in the exclusion zone notify Project Manager first.
- Level A is not anticipated for this project.

In the event the readings remain elevated during the 15 minute test, the Community Air Monitoring Plan (Appendix G to the Phase 2 Remedial Design Work Plan) will be implemented and continuous monitoring of VOCs will be performed at the downwind perimeter of the immediate work area or exclusion zone.

11.0 SITE CONTROL MEASURES

11.1 WORK ZONES

The purpose of site control is to minimize potential contamination of workers, protect the public from the site's hazards, and prevent vandalism. The degree of site control necessary depends on the site characteristics, site size, and the surrounding community. The restriction zones will be constructed of portable snow fencing and/or stakes and tapes, as necessary, to restrict public access. The restriction zones will have one point of entry/egress. Within the perimeter of the Congress Street site, work zones will be established and maintained during the Phase 2 remedial activities. The work zones will include:

- Exclusion Zone (EZ) The exclusion zone will be the area where contamination is most likely to be encountered. For most Phase 2 activities, the exclusion zone will be considered to be the actual area of well installation plus a 50 foot buffer zone. Flow of personnel and equipment into and out of the zone will be monitored during activities. Access will be controlled and the appropriate PPE will be used while in the exclusion zone.
- Contamination Reduction Zone (CRZ) The contamination reduction zone will be the area where decontamination procedures take place. It is the transition area between the Exclusion Zone and the Support Zone. The purpose of the Contamination Reduction Zone is to reduce the possibility that the Support Zone and surrounding area becomes contaminated or affected by the potential contamination in the Exclusion Zone.
- Support Zone (SZ) The Support Zone is the uncontaminated area where workers are unlikely to be exposed to hazardous substances or dangerous conditions. Because the Support Zone is free from contamination, personnel working within the area will wear normal work clothes. Any potentially contaminated clothing, equipment, and samples (outer containers) will remain inside the Contamination Reduction Zone or the Exclusion Zone. Designation of the Support Zone will be based on available site characterization data and will be located upwind from the Exclusion Zone. The Support Zone should be in an area that is known to be free of elevated (i.e., higher than background) concentrations of hazardous substances.

11.2 SITE SECURITY

The site is accessible via the main entrance from the Congress Street. General access to the

facility is restricted by fencing and a gated and locked entry into the interior of the fenced area. The site is also monitored with cameras at an off-site location. All visitors to the work areas will be required to check in with the SSO. Only those visitors employed by SI Group, Inc., or affiliated with the site owners or the project will be allowed to enter the on-site work areas.

Portable restriction zones may be constructed around each work area to further restrict public access if necessary. The restriction zones would be constructed of a series of cones and restrictive tape. There will be only one point of entry/egress in each restriction zone.

11.3 COMMUNICATION

Communication shall be accomplished by person to person verbal correspondence and through the use of cellular telephones. Communication procedures will be reviewed at the Safety Meeting before entering the work zone.

12.0 HAZARD COMMUNICATION

The SSO will conduct regularly scheduled safety meetings with site workers to discuss the planned activities, since these activities and workers may change over the duration of the project. The objective of instituting hazard communication is to ensure that hazards associated with the site and with chemicals brought on-site are evaluated, and that information concerning these hazards is transmitted to site personnel. Site personnel include Contractor and CHA employees, SI Group employees, local agency employees, and other workers who observe or perform services on-site. Employee awareness of chemical identities, health and physical hazards, properties, and characteristics is essential to safely handle chemicals and to minimize potential hazards.

In compliance with 29 CFR 1910.1200, any hazardous materials brought on site by any personnel (CHA, the Remedial Contractor, or sub-contractors) shall be accompanied with the material's MSDS. The SSO shall be responsible for maintaining the MSDSs on site, reviewing them for hazards that working personnel may be exposed to, and evaluating their use on site with respect to compatibility with other materials including personal protective equipment, and their hazards. Should the SSO deem the material too hazardous for use on the subject site, the party responsible for bringing the material on site will be required to remove it from the site.

Site workers and visitors will be informed of identified site hazards, the location of the chemical inventory, and the location of the MSDSs. Prior to site work or potential exposure to hazardous substances, the SSO will describe hazardous substances routinely used and provide information regarding:

- Nature of potential chemical hazards;
- Appropriate work practices;
- Appropriate control programs;
- Appropriate protective measures;
- Methods to detect presence or release of hazardous substances; and
- Emergency procedures.

13.0 CONFINED SPACE

During this project there are no anticipated confined space entries. If a confined space entry becomes necessary, all confined space entry procedures, techniques, and equipment shall be consistent with OSHA regulations in 29 CFR 1910.146. All entrants and attendants shall be trained in Confined Space Awareness training consistent with 29 CFR 1910.146.

14.0 FIRST AID PROCEDURES

Skin/Eye Contact:	Flush eyes and/or skin thoroughly with water for 15 minutes. Remove contaminated clothing. If skin was contacted with a dry material, brush it off first, and then flush with water. Seek medical attention if irritation develops.
Ingestion:	Do not induce vomiting. Call Poison Control Center. Tell them what was swallowed, if possible. Follow instructions. Bring victim to hospital or call ambulance.
Inhalation:	Remove person from contaminated environment without risking your own safety. DO NOT ENTER EXCLUSION ZONE UNLESS WEARING ONE LEVEL HIGHER OF PROTECTION THAN VICTIM IS WEARING. Administer CPR, if necessary. Bring victim to hospital or call ambulance.
Injuries:	Do not move a victim who may have a back injury. Cover them with coats, blankets, or other appropriate items to keep them warm. Call an ambulance.
	Apply pressure to bleeding wounds. If the victim is able, have the victim apply pressure to the wound. If they are not able, wear gloves to protect from exposure to blood. Put gauze bandages or other clean cloth over the wound. Do not remove blood-soaked bandages or cloth - instead put additional bandages or cloths over the blood-soaked bandages. Elevate the limb with the injury above the heart.
	Administer CPR if victim does not have a pulse and if you are currently certified in CPR. Have someone call for an ambulance immediately if there is any possibility that the victim is having or had a heart attack.
	Shock is likely to develop in any serious injury or illness. The following are signals of shock: restlessness or

Injuries, con't: irritability, altered consciousness; pale, cool, moist skin; rapid pulse. In the event of shock, do the following: Immediately have someone call for an ambulance; have the victim lie down; elevate legs 12 inches unless you suspect head, neck, or back injuries; if victim is cool, cover the victim to prevent chilling; do not give the victim anything to drink, even if thirsty.

15.0 PERSONNEL PROTECTION

15.1 GENERAL GUIDELINES

- 1. Construction activities shall be performed in compliance with all OSHA Construction Industry Standards/Regulations.
- 2. All work conducted on-site shall be coordinated through the Site Superintendent.
- 3. During any activity conducted on-site in which a potential exists for exposure to hazardous materials or, accident or injury, at least two persons shall be present who are in constant communication with each other.
- 4. Following the procedures, requirements, and provisions of this plan, all personnel who may be potentially exposed to hazardous materials or wastes shall be in compliance with federal/state regulations, OSHA 29 CFR 1910.120.
- 5. Any drum or tank discovered on-site shall <u>not</u> be sampled, opened, or handled until an appropriate task-specific plan for unknown drum/tank sampling has been implemented.
- 6. Samples from areas known, or suspected, to be contaminated with hazardous substances shall be handled with appropriate personal protective equipment.
- 7. All equipment used in site operations shall be properly cleaned and maintained in good working order. Equipment shall be inspected for signs of defect and/or contamination before and after use.
- 8. Eating, drinking, chewing gum, and smoking shall be prohibited while performing site activities and in work zones. Personnel shall wash thoroughly before initiating any of the aforementioned activities.
- 9. The discovery of any condition that would suggest the existence of a situation more hazardous than anticipated shall result in evacuation of site personnel and reevaluation of the hazards and the level of protection. Contact the Project Manager and the SI Group representative to determine the appropriate actions to take.

15.2 AIR MONITORING

Monitoring shall be performed within the work area on-site to detect the presence, and the

relative levels of toxic substances (i.e. photo-ionization detector readings). The data collected throughout monitoring shall be used to determine the appropriate levels of PPE. Monitoring shall be conducted to determine baseline data on potential hazards before entry in the work area, and periodically while conducting work on-site to evaluate any changes in conditions of the specific work area. Each work area must be screened for ambient levels of contamination before initiating work activities.

Periodic monitoring on the site will consist of initial monitoring, during changes in site conditions (i.e. drilling activities, opening of a monitoring well, sampling, etc.), and at regular intervals throughout the day as deemed necessary by the SSO, but at least once every 30 minutes.

It is noted that a Community Air Monitoring Plan has been established for Phase 2 Remedial Activities and is included as Appendix G to the Phase 2 Remedial Design Work Plan. This will be implemented only if PID readings exceed those outlined in Section 10.

15.3 PERSONAL PROTECTIVE EQUIPMENT

The purpose of personal protective clothing and equipment is to shield or isolate individuals from the chemical and physical hazards that may be encountered during work activities. The level of protection required must correspond to the level of hazard known, or suspected, in the specific work area.

There are four basic levels (A, B, C, and D) of personal protection as established by the U.S. Environmental Protection Agency (EPA). Level A provides the highest level of protection and Level D provides the lowest.

- *Level D* will consist of field clothes, outer gloves (if soil/water contact is likely), steel toe work boots, a hard hat and high-visibility safety vest.
- *Modified Level D* will consist of Tyvek coverall, safety glasses (for dust/splash hazards) outer gloves with disposable inner gloves, steel toe work boots, overboots if free product is encountered or as otherwise specified, and hearing protection.
- *Level C* will consist of the same equipment as listed for modified Level D with the addition of a full-faced air purifying cartridge equipped respirator. Level C is not anticipated for this project.

- *Level B* consists of the same equipment as listed for Level C with the substitution of a full-faced Self Contained Breathing Apparatus (SCBA) in place of a full-faced air purifying respirator. Level B is not anticipated for this project.
- *Level A* consists of the same equipment as listed for Level B with the substitution of a fully encapsulating suit. Level A is not anticipated for this project.

When wearing Level C, B, or A, all junctures between the chemical protective coverall (i.e., Tyvek suit) and boots, gloves, and respirator must be taped. The suit must be placed over the boots and gloves. When taping, remember to leave a tab for easy removal. Stress spots in the suit must also be taped, such as under the arms, down the zipper, and up or across the back.

PPE will be selected consistent with the hazards associated with the expected field activities. PPE is available in various sizes to provide a good fit for all personnel. PPE must be stored in a clean location with access by site workers. Site workers are responsible for maintenance and storage of equipment at the site.

It is anticipated that the maximum level of protection for this project will be modified Level D.

15.4 HEALTH AND SAFETY ACTION LEVELS

An action level is a point at which increased protection is required due to the concentration of contaminants in the work area or other environmental conditions. Each action level is determined by the concentration level (above background level) and the ability of the personal protective equipment to protect against that specific contaminant. The action levels are based on concentrations in the breathing zone.

If ambient levels are measured which exceed the action levels in areas accessible to the public or unprotected personnel, necessary site control measures (barricades, warning signs, and mitigative actions, etc.) must be implemented before commencing activities at the specific work site.

Personnel should also be able to upgrade or downgrade their level of protection with the concurrence of the SSO. Again, the maximum level of protection anticipated for this project is Level D.

Reasons to upgrade:

- Known or suspected presence of dermal hazards.
- Occurrence or likely occurrence of gas, vapor or dust emission.
- Change in work task that will increase the exposure or potential exposure with hazardous materials.

Reasons to downgrade:

- New information indicating that the situation is less hazardous than was originally suspected.
- Change in site conditions that decrease the potential hazard.
- Change in work task that will reduce exposure to hazardous materials.

16.0 DECONTAMINATION

16.1 PERSONNEL DECONTAMINATION

All PPE will be disposed or decontaminated at the conclusion of each work day. A container for Tyvek suits and other disposables will be designated on-site. Tyvek suits and other disposables (inner gloves) will be doffed at the conclusion of each work day and replaced with new equipment before commencing work on the following work day. Decontamination of personal protective equipment will consist of manual rinses of alconox/tap water, and/or tap water.

16.2 PERSONNEL DECONTAMINATION STEPS

Modified Level D

- Remove coveralls and protective equipment.
- Discard disposable garments.
- Containerize wash and decontamination waters for disposal, as necessary.

Level C

- Drop equipment off in a segregated area in the decontamination zone.
- Wash/rinse outer suit and boots.
- Wash/rinse outer gloves.
- Remove outer boots.
- Remove outer gloves.
- Deposit disposables in container for proper disposal.
- Remove suit.
- Remove respirator.
- Remove inner gloves.
- Containerize wash and decontamination waters for disposal, as necessary.

Level B

- Drop equipment off in a segregated area in the decontamination zone.
- Wash/rinse outer boots.
- Wash/rinse chemical resistant outer gloves.
- Wash/rinse air tank, hose, and protective suit.

- Remove duct tape from boots, gloves, and face piece and discard.
- Remove boot covers and outer gloves.
- Remove face piece, air line, and emergency respirator.
- Remove chemical resistant suit.
- Remove inner boots.
- Remove hard hat.
- Remove inner gloves and discard.
- Containerize wash and decontamination waters for disposal.

Level A

• Will not be used.

16.3 EQUIPMENT DECONTAMINATION

All equipment used during intrusive activities will be decontaminated by power washing on a portable decontamination pad before leaving the site. The tires of haul trucks leaving the site will be washed down to remove soil, if required. This will be performed in a designated area of the site. All drilling equipment will be decontaminated by steam cleaning.

All decontamination fluids, as necessary, will be allowed to percolate into the on-site soils or will be sent to the groundwater treatment system for treatment.

17.0 EMERGENCY INFORMATION

17.1 GENERAL

On-site emergencies can range in intensity from minor to serious conditions. Various procedures for responding to site emergencies are listed in this section. The designated SSO is responsible for contacting local emergency services in emergency situations (however, others must assume responsibility if the situation warrants). An injured person shall be accompanied by another worker at all times.

An emergency information sheet containing the hospital location, directions, phone access, and emergency service phone numbers shall be posted at each work area during site activities.

17.2 EMERGENCY PROCEDURES FOR CONTAMINATED PERSONNEL

Whenever possible, personnel should be decontaminated before administering first aid. In the Contamination Reduction Zone there will be a separate decontamination line for emergency use only to reduce the risk of exposure.

- Skin Contact: Remove contaminated clothing, wash immediately with water, and use soap if available.
- Inhalation: Remove from contaminated atmosphere; initiate artificial respiration; if necessary arrange for emergency transport to hospital.
- Ingestion: Remove from contaminated area; do not induce vomiting if the victim is unconscious; never induce vomiting when acids, alkalines, or petroleum products are suspected.
- If site personnel have unexplainably collapsed, all personnel must evacuate work area. Rescue personnel must don a level of protection higher than the victim was in before evacuating victim from work area. Confined space rescue always requires Level B protection. No one will re-enter the work area until the cause has been determined and the Site Safety Officer (SSO) has determined that the area is safe to re-enter.
- In case of fire, all personnel must evacuate work area and the SSO will contact local fire department.

17.3 PHYSICAL INJURIES

Horn blasts will be used as emergency signals. Two horn blasts indicate an injury has occurred. Three horn blasts followed by a continuous blast indicates that all personnel in the Exclusion Zone must immediately evacuate. Personnel will move to the predesignated, safe reassembly points. On-site activities will stop until the added risk is removed or minimized. Do not walk through a vapor cloud to go to the safe area. In the event that the number of site personnel is limited to two to four persons, verbal communications will suffice.

17.4 SAFETY EQUIPMENT

Safety and PPE will be kept in a dry and sanitary condition in a designated area in the support zone or designated site vehicle. The safety equipment available on-site is as follows: respiratory equipment, hard hats, Tyvek coveralls, safety glasses, gloves, boots, emergency eyewash, fire extinguisher, first aid kit, first aid manual, potable drinking water, portable radios, log books to record readings, and absorbent materials.

17.5 SPILL CONTAINMENT

If on-site work results in the accidental spill or release of oil or hazardous materials, containment to the extent possible will be required by on-site personnel (in proper PPE). Containment should include the use of absorbent pads or materials, diking with soils, covering and/or diverting spills from sewers, drains, surface water bodies, etc. For spills that cannot be controlled by on-site personnel or are above the reportable quantities, the SSO or designee will secure the area and notify the State Police, and the NYSDEC Oil and Chemical Spill Reporting Hotline (see Section 3) for all emergency contact information.

18.0 HEALTH AND SAFETY PLAN AGREEMENT

This agreement must be signed by all CHA employees, employees of the Remedial Contractor, subcontractors, and visitors before conducting field activities at this site and/or entering the exclusion or decontamination zones.

I have read this Health and Safety Plan and I understand the requirements of the Plan. I will conduct work at this site in accordance with the requirements of the Health and Safety Plan.

Signature	Date	Company
Signature	Date	Company

FIGURES

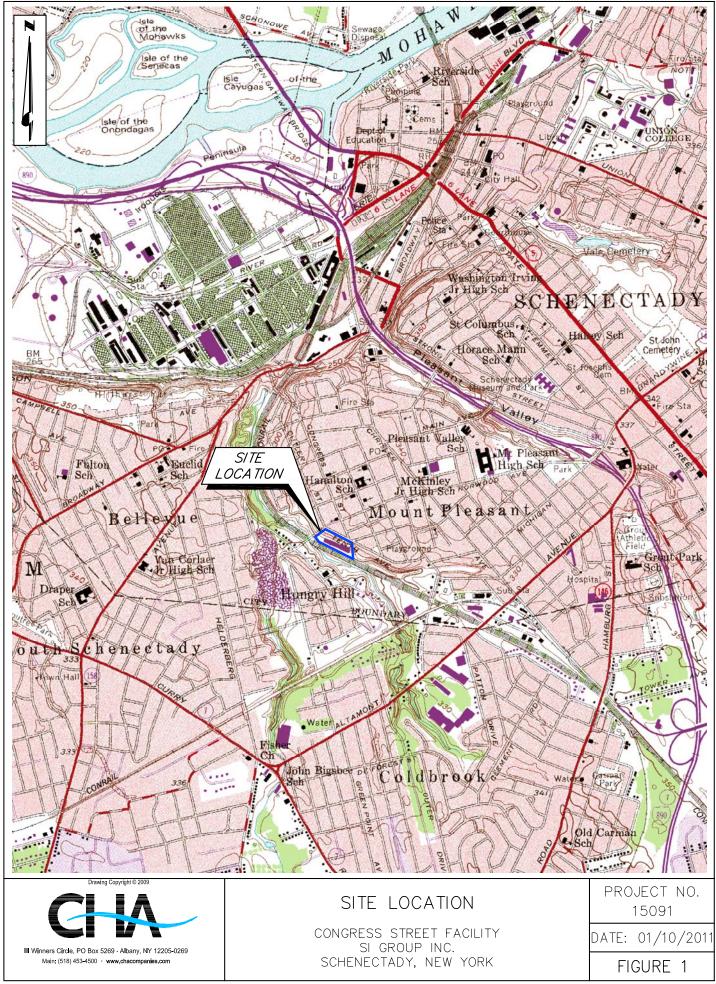
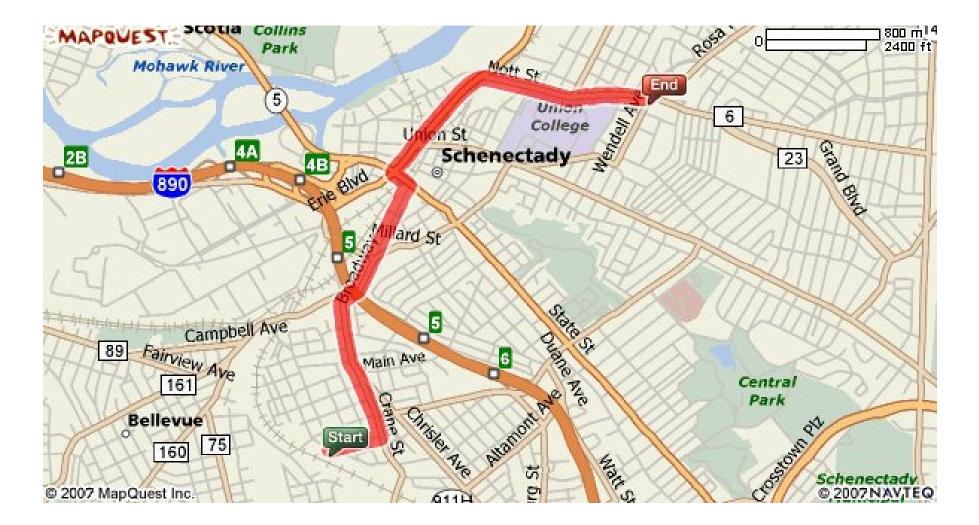



FIGURE 2 Hospital Route Map

APPENDIX G

Community Air Monitoring Plan

Community Air Monitoring Plan (CAMP)

Phase 2 Remedial Design Congress Street Facility SI Group, Inc.

The following Community Air Monitoring Plan (CAMP) will be implemented by SI Group or their designated representative for the Phase 2 Remedial Design Activities to be performed at the Congress Street facility. Air monitoring will be conducted in accordance with the New York State Department of Health (NYSDOH) *Generic Community Air Monitoring Plan (CAMP)*. All air monitoring will be conducted on a real-time basis using both hand-held field instruments and perimeter air monitoring stations. All air monitoring readings will be recorded in a logbook and made available for review. This CAMP consists of two primary components, a fugitive dust control plan and a vapor control plan. Air monitoring will be conducted both upwind and downwind of the construction areas and evaluated to assess if the construction activities are causing potential airborne migration of contaminants.

Continuous monitoring, as specified in the CAMP, will be required for all ground intrusive activities if:

- Increased particulate levels are observed in the work area;
- Organic vapors are detected in the work area at concentrations of 5 parts per million (ppm) above background for over 15 minutes; or
- Increased odor levels are detected in the work area for over 15 minutes.

Additional monitoring will be completed in response to specific site conditions where potential exposure to the surrounding community has been identified.

This CAMP is not intended for use in establishing action levels for worker respiratory protection that is described in the site-specific HASP prepared by the Contractor for the Congress Street Project. Rather, its intent is to provide a measure of protection for the downwind community (i.e. off site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of the proposed remedial design activities. Reliance on this CAMP should not preclude simple, commonsense measures to keep VOCs, dust, and odors at a minimum around the work areas. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, this CAMP will help prevent the remedial construction activities from spreading contamination off-site through the air.

Fugitive Dust Monitoring and Control

Dust emissions may occur at the project site during intrusive remedial design activities. Therefore, fugitive dust control measures will be implemented during all intrusive construction activities. Fugitive dust is described as discrete particles, liquid droplets or solids, which become airborne and contribute to air quality as a nuisance and threat to human health and the environment. Dust control measures implemented during the remedial construction will be in compliance with the aforementioned NYSDOH CAMP. Particulate levels shall be visibly monitored within the exclusion zone. If it appears dust levels are increasing, a particulate meter shall be utilized following the manufacturer's recommendations. At the upwind and downwind perimeters of the exclusion zone, particulate monitoring will be conducted continuously, if warranted, using a real-time monitoring device capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level.

The real-time particulate monitors used will meet the following minimum performance standards:

- Objects to be measured: Dust, mists or aerosols;
- Measurement Ranges: 0.001 to 400 mg/m³;
- Precision (2-sigma) at constant temperature: +/- 10 mg/m³ for one second averaging; and +/- 1.5 mg/m³ for sixty second averaging;
- Accuracy: +/- 5% of reading +/- precision (Referred to gravimetric calibration with SAE fine test dust (mmd = 2 to 3 μm, σ_g=2.5, as aerosolized)
- Resolution: 0.1% of reading or $1 \mu g/m^3$, whichever is larger;
- Particle Size Range of Maximum Response: 0.1 10;
- Total Number of Data Points in Memory: 10,000;
- Logged Data: Each data point with average concentration, time/date and data point number;
- Run Summary: overall average, maximum concentrations, time/date of maximum, total number of logged points, start time/date, total elapsed time (run duration), STEL concentration and time/date occurrence, averaging (logging) period, calibration factor, and tag number;
- Alarm Averaging Time (user selectable): real-time (1 60 seconds) or STEL (15 minutes), alarms required;
- Operating Time: 48 hours (fully charged NiCd battery); continuously with charger; and
- Operating Temperature: -10 to 50 °C (14 to 122 °F).

The monitoring equipment will be operated by a qualified person, the equipment will be periodically calibrated in accordance with the manufacturer recommendations, a daily instrument performance check will be completed, and a log will be maintained of the equipment.

The equipment will be equipped with an audible alarm to indicate exceedance of the action levels. The following action levels will be used:

• If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m³) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques will be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m³ above the upwind level and provided that no visible dust is migrating from the work area.

The following dust suppression techniques should be considered for controlling the generation and migration of dust during remedial activities:

- Applying water on haul roads;
- Wetting equipment and excavation faces;
- Spraying water on buckets during excavation and dumping;
- Hauling materials in properly tarped or watertight containers;
- Restricting vehicle speeds to 10 mph;
- Covering excavation areas and material after excavation activity ceases; and
- Reducing the excavation size and/or number of excavations.

When the dust suppression technique involves water application, care must be taken not to use excess water, which can result in unacceptably wet conditions.

• If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m³ above the upwind level, work will be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m³ of the upwind level and in preventing visible dust migration.

All fifteen minute readings will be recorded and will be available onsite for State (NYSDEC and NYSDOH) personnel to review.

Organic Vapor Monitoring and Control

Based on the nature of the Site contaminants, it is anticipated that organic vapors may be emitted during remedial activities at the Congress Street Site. If organic vapors are detected in the work area 5 parts per million (ppm) above background for over 15 minutes, organic vapors will then be monitored on a continuous basis. VOCs will be monitored at the downwind perimeter of the immediate work area (i.e. the exclusion zone). Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions.

The monitoring work will be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment will be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment will be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

- If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities will be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.
- If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but are less than 25 ppm, work activities will be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less but is no case less than 20 feet, is below 5 ppm over background for the 15-minute average.
- If the organic vapor level at the downwind perimeter of the work area or exclusion zone exceeds the upwind perimeter concentration by more than 25 ppm, the following actions will be taken:
 - 1. All work will be halted.
 - 2. Air monitoring will be conducted at 15 minute intervals at a 20-foot offset from the exclusion zone. If two successive readings are measured by the field

instrument and documented, the work may resume following the previously described monitoring plan.

All fifteen minute readings will be recorded and will be available onsite for State (NYSDEC and NYSDOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

Odor Monitoring and Control

The waste materials generated from the site may have low odor thresholds that will result in the generation of odors during intrusive activities. If increased odor levels are detected in the work area for over 15 minutes, an odor monitoring program will be implemented. The monitoring program will consist of:

- Monitoring of Site Perimeter for odors
 - At least twice per day, a designated representative of SI Group will walk around the property boundary for the purpose of odor identification.
 - At the four corners of the property and the mid points along the railroad track and 10^{th} Avenue, the designated representative will record the identification of any odor and the intensity of the odor.
 - The frequency of the daily monitoring events may vary depending on operations that are occurring on-site.
 - The points where conditions are recorded may vary depending on conditions observed.
- Data Collection and Reporting
 - During each monitoring event, weather conditions including sky conditions, precipitation, wind direction, wind speed, temperature, relative humidity and barometric pressure will be recorded.
- Identification of Odors
 - If an odor is identified, the potential source of the odor will be identified.

If the overall intensity or concentration of the odor identified at the Site boundary become offensive, or if odor complaints are received, Site conditions and the need to implement odor control measures will be evaluated.

The following odor control measures will potentially be used to control odors depending on the source:

- Limit the size of soil stockpiles.
- Reduce the speed of intrusive activities.
- Consider weather factors when planning daily activities (e.g. wind direction and temperature).
- Cover exposed odorous soils.

If odors develop during the remedial design activities that are offensive to the surrounding community and cannot be corrected, additional odor control measures will be implemented such as limiting the amount of intrusive activities completed in a day, sheltering the soil handling areas, removing the waste materials in a timely manner and stopping the remedial design activities until additional control measures can be implemented.

<u>Weather</u>

Weather conditions should continuously be monitored. Extreme weather conditions such as high wind conditions, high temperatures, and intense rainfalls should be specifically monitored. These conditions may limit site activities and as a last resort remedial activities may need to be suspended until weather conditions improve.

<u>Reporting</u>

If any monitoring results exceed the action levels specified in the CAMP, the following reporting shall be completed:

- The exceedance will either be reported immediately to the on-site Department representative if present; or within two hours by telephone call to the Department project manager when no Department representative is on-site; and
- Within two hours by telephone call to Maureen E. Schuck of the NYS Department of Health.

A weekly report summarizing the duration and action taken in response to any exceedance will be submitted the Department of Environmental Conservation Project Manager and Maureen E. Schuck at NYS Department of Health.

APPENDIX H

Community and Environmental Response Plan

Community and Environmental Response Plan

Phase 2 Remedial Activities Operable Unit No. 2

SI Group Congress Street Facility Site No. 447007

CHA Project Number: 15091

Prepared for:

SI Group, Inc. 1000 Main Street, Route 5S Rotterdam Junction, New York

III Winners Circle Albany, New York 12205 (518) 453-4500 (518) 453-4773 - Fax

September 2012

TABLE OF CONTENTS

1.0	INTRODUCTION1
	1.1 Site Description1
	1.2 Site Remediation1
	1.3Phase 2 Remedial Activities
2.0	COMMUNITY AIR MONITORING PLAN
3.0	TEMPORARY MEASURES5
4.0	ODOR MANAGEMENT PLAN
5.0	NOISE AND VIBRATION MITIGATION
6.0	SITE SECURITY9
7.0	EROSION AND SEDIMENT CONTROL MEASURES10
8.0	WASTE MANAGEMENT MEASURES11
9.0	WATER MANAGEMENT AND TREATMENT MEASURES12
10.0	TRAFFIC CONTROL AND SITE ACCESS PLANS
11.0	DECONTAMINATION OF TRUCKS AND EQUIPMENT14
12.0	OFF-SITE TRUCKING ROUTES AND EMERGENCY PROCEDURES15

LIST OF FIGURES

Figure 1 Site Location

1.0 INTRODUCTION

This Community and Environmental Response Plan (CERP) has been prepared to provide a summary of the controls, monitoring plans and work practices that will implemented to protect the community and ecological resources as part of the Phase 2 Remedial Activities to be completed at the Congress Street site of SI Group, Inc. (SI Group).

1.1 SITE DESCRIPTION

The Congress Street site is a former chemical manufacturing facility located in Schenectady, New York at Congress Street and Tenth Avenue (Figure 1). The Site encompasses an area approximately 7 acres in size, with approximately 5.1 acres having been developed. Based upon the remedial investigations completed on the Site, two areas were identified as requiring remediation. These areas, as shown on Figure 2, have been identified as the Fill Area and the Process Area.

The Fill Area is an historical fill area located in the southeast corner of the Site that encompasses approximately 0.5 acres. The area is bordered to the north by an embankment leading up to 10^{th} Avenue, to the west and south by a security fence, and to the east by the middle of the former Building No. 9. The area was reportedly used for the disposal of construction rubble and other material and debris generated on-site.

The Process Area consists of the area of the Site that was historically used for chemical processing, storage and handling. This area is located east of the Fill Area on the lower level of the Site, north of the rail line. The contamination that has been identified in this area is the result releases that have occurred over the years. A layer of black tar-like material (cresols) has also been identified as being present under the concrete slabs.

1.2 SITE REMEDIATION

A remedial investigation of the Congress Street site was conducted in 2007 with the results of the investigation presented in the *Updated Remedial Investigation Report* that was finalized in January 2009 and approved by the New York State Department of Environmental Conservation (NYSDEC) in February 2009. Based on the results of the remedial investigation, a Feasibility Study was prepared to evaluate the different remedial technologies that could be implemented at the Congress Street and was subsequently approved by NYSDEC on March 5, 2010. A Record of Decision (ROD) was issue on December 21, 2010 by NYSDEC directing SI Group to implement the selected remedy, which includes limited excavation, capping, treatment of the

soils in place using a combination of heating vacuum extraction of the soil gases, and natural biological degradation.

1.3 PHASE 2 REMEDIAL ACTIVITIES

Remediation of the Congress Street site is being completed in two phases. The first phase conducted in 2011 and 2012 prepared the Process Area for installation of a thermally-enhanced soil vapor extraction (SVE) system that will be used to treat in-situ soil and obtain the necessary design information to complete the design of the treatment system. In addition, a permeable cap was installed over the Fill Area during the Phase 1 activities.

The Phase 2 Remedial Activities involve the installation of the in-situ treatment system including groundwater extraction wells, soil vapor extraction wells, and conductive soil heating wells. In addition, the treatment system will include activated carbon units to treat the soil vapor and a hot water system that will be used to heat the soils.

The CERP summarizes the controls, monitoring plans and work practices that will be implemented to protect the community and ecological resources during installation of the in-situ treatment system.

2.0 COMMUNITY AIR MONITORING PLAN

A Community Air Monitoring Plan (CAMP) will be implemented to monitor fugitive dust, organic vapors and odors if conditions on-site could potentially result in exposures to the surrounding community during the Phase 2 remedial activities. Details on the air monitoring to be performed are provided in the CAMP, included as Appendix G to the Phase 2 Remedial Design Work Plan. In addition, an Odor Management Plan will be implemented as described in Section 4.0.

If organic vapors are detected in the work area at concentrations of 5 parts per million (ppm) above background for over 15 minutes, air monitoring will then be conducted both upwind and downwind of the work area and evaluated to assess potential impacts on the ambient air. The air monitoring would include volatile organic compounds (VOCs). Fugitive dust monitoring would be conducted during periods when increased particulate levels are observed within the work area. Air monitoring will be completed during installation of in-situ treatment system within the work area as part of the Health and Safety Plan (HASP).

If, during air monitoring, downwind particulate levels exceed 100 micrograms per cubic meter for a 15 minute period or if air borne dust is observed leaving the work area; dust suppression techniques will be implemented. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m³ above the upwind level and provided that no visible dust is migrating from the work areas. If after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m³ above the upwind level, work will be stopped and a re-evaluation of activities initiated.

If the ambient air concentration of total organic vapors at the downwind perimeter of the work area exceeds 5 parts per million (ppm) above background for a 15 minute period, work activities will be temporarily halted and site conditions evaluated. Based on the evaluation of site conditions, vapor control techniques may be implemented.

If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but are less than 25 ppm, work activities will be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less - but is no case less than 20 feet, is below 5 ppm over background for the 15-minute average.

If the organic vapor level at the downwind perimeter of the work area or exclusion zone exceeds the upwind perimeter concentration by more than 25 ppm, the following actions will be taken:

- 1. All work will be halted.
- 2. Air monitoring will be conducted at 15 minute intervals at a 20-foot offset from the exclusion zone. If two successive readings are measured by the field instrument and documented, the work may resume following the previously described monitoring plan.

The dust suppression and vapor control techniques that may be implemented include;

- Applying water on haul roads.
- Wetting equipment.
- Placing waste materials in properly tarped and watertight containers.
- Restricting vehicle speeds to ten miles per hour or less.

3.0 TEMPORARY MEASURES

Within the perimeter of the Congress Street site, work zones will be established and maintained during the Phase 2 activities concerning the installation of the in-situ treatment system. The work zones will include:

- Exclusion Zone (EZ) The exclusion zone will be the area where contamination is most likely to be encountered. The exclusion zone will be considered to be the area where the wells for the in-situ treatment system are being installed plus a 50 foot buffer zone. Flow of personnel and equipment into and out of the zone will be monitored during installation of the wells. Access will be controlled and the appropriate personal protective equipment will be used while in the exclusion zone.
- Contamination Reduction Zone (CRZ) The contamination reduction zone will be the area where decontamination procedures take place. It is the transition area between the Exclusion Zone and the Support Zone. The purpose of the Contamination Reduction Zone is to reduce the possibility that the Support Zone and surrounding area becomes contaminated or affected by the potential contamination in the Exclusion Zone.
- Support Zone (SZ) The Support Zone is the uncontaminated area where workers are unlikely to be exposed to hazardous substances or dangerous conditions. Because the Support Zone is free from contamination, personnel working within the area will wear normal work clothes. Any potentially contaminated clothing, equipment, and samples (outer containers) will remain inside the Contamination Reduction Zone or the Exclusion Zone. Designation of the Support Zone will be based on available site characterization data and will be located upwind from the Exclusion Zone. The Support Zone should be in an area that is known to be free of elevated (i.e., higher than background) concentrations of hazardous substances.

4.0 ODOR MANAGEMENT PLAN

An Odor Management Plan will be implemented during Phase 2 remedial activities. Installation of the wells may generate waste materials that have low odor thresholds. As a result an odor monitoring program will be implemented during periods when intrusive activities are occurring on-site and increased odor levels are detected in the work area for over 15 minutes. The monitoring program will consist of:

- Monitoring of Site Perimeter for odors
 - At least twice per day, a designated representative of SI Group will walk around the property boundary for the purpose of odor identification.
 - At the four corners of the property and the mid points along the railroad track and 10th Avenue, the designated representative will record the identification of any odor and the intensity of the odor.
 - The frequency of the daily monitoring event may vary depending on operations that are occurring on-site.
 - The points where conditions are recorded may vary depending on conditions observed.
- Data Collection and Reporting
 - During each monitoring event, weather conditions including sky conditions, precipitation, wind direction, wind speed, temperature, relative humidity and barometric pressure will be recorded.
- Identification of Odors
 - If an odor is identified, the potential source of the odor will be identified.

If the overall intensity or concentration of the odor identified at the Site boundary become offensive, or if odor complaints are received, Site conditions and the need to implement odor control measures will be evaluated.

The following odor control measures will potentially be used to control odors depending on the source:

- Limit the size of soil stockpiles.
- Reduce the speed of intrusive activities.
- Consider weather factors when planning daily activities (e.g. wind direction and temperature).
- Cover exposed odorous soils.

If odors develop during the remedial activities that are offensive to the surrounding community and cannot be corrected, additional odor control measures will be implemented such as limiting the amount of intrusive activities completed in a day, sheltering the soil handling areas, removing the waste materials in a timely manner and stopping the remedial activities until additional control measures can be implemented.

Prior to the start of remedial activities, an information sheet will be posted at key locations on the property fence providing contact information if there are any concerns regarding odor, noise, traffic, or other concerns with the project.

5.0 NOISE AND VIBRATION MITIGATION

Noise from well drilling and installation of the treatment system will be monitored for potential impact on the surrounding area. Work that will result in increased noise levels will only be completed during normal work hours. A noise level up to 75 dBA at the property line over an 8-hour period during day time hours is considered to be an acceptable level. If noise exceeds acceptable levels, the following mitigation measures will be evaluated:

- Limit the amount of work causing the increased levels of noise.
- Evaluated alternate methods to reduce the levels of noise.
- Relocate the activity away from the affected area.
- Install temporary noise barriers.

If levels cannot be mitigated to acceptable levels, work will be stopped until mitigation measures are identified that will allow the work to be completed within acceptable levels.

The proposed well drilling and installation of the in-situ treatment system should not result in any vibrations that could potentially impact the surrounding area. If vibration is noted, the potential impact will be evaluated.

6.0 SITE SECURITY

The Congress Street Site is currently secured with chain link fencing on all sides. Security cameras have been installed at strategic locations that allow the monitoring of the site 24 hours a day, 7 days a week by security personnel. The existing security system will be maintained during Phase 2 remedial activities. All gates will be locked and security fencing secured at the end of each workday.

Unauthorized personnel will not be allowed on-site.

7.0 EROSION AND SEDIMENT CONTROL MEASURES

Stormwater pollution prevention measures have been prepared as part of the Remedial Design Work Plan and will be implemented during installation of the in-situ treatment system. The work will be completed on the asphalt area that was previously installed with the only penetration of the asphalt being the installation of the wells. Temporary erosion and sediment control mitigation measures will be installed along the edge of the asphalt as required prior to the installation of any wells. Erosion control measures shall remain in place until the wells have been installed and the in-situ treatment is completed.

8.0 WASTE MANAGEMENT MEASURES

Any waste materials generated on-site will be contained and disposed off-site at a permitted facility. Any contaminated soils will be managed in accordance with the remedial Soil and Stormwater Management Plan (Appendix E to the Remedial Design Work Plan). The Soil and Stormwater Management Plan outlines the procedures to be used to characterize, manage, and disposed of any contaminated soils that are generated during remedial activities. Any contaminated soil or asphalt that is generated will be collected and stored in covered containers until the material is sent off-site for disposal.

Wastewater generated during remedial activities will be collected on-site in a temporary holding tank. The wastewater will either be sent to the on-site treatment system or sent off-site for treatment.

9.0 WATER MANAGEMENT AND TREATMENT MEASURES

Any wastewater generated on-site will be collected and treated on-site or sent off-site to a permitted treatment facility. Prior to treating any wastewater on-site, the wastewater will be characterized to ensure that the treatment system is capable of removing the potential contaminants contained in the wastewater. The existing treatment system is permitted by NYSDEC and will be operated in compliance with the existing permit.

As previously noted, sediment and erosion control measures will be implemented, as necessary, to control stormwater runoff from the Process Area asphalt cap prior to initiating any site work. Currently, all work associated with the Phase 2 remedial activities will be conducted on the asphalt cap. In the instance where land disturbance is necessary, temporary seeding or mulching will be used in areas which will be exposed for more than fourteen (14) days. Permanent stabilization will be performed as soon as possible after completion of work. After the entire project area is stabilized, the accumulated sediment shall be removed and managed in compliance with the Soil and Stormwater Management Plan. Erosion control mesures will remain in place until disturbed areas are permanently stabilized. The soil stabilization measures selected will be in conformance with the most current version of the technical standard, New York Standards and Specifications for Erosion and Sediment Control.

10.0 TRAFFIC CONTROL AND SITE ACCESS PLANS

Access to the site will be provided through the gate located on Congress Street and the gate on 10th Avenue. Deliveries and pick-up of materials will be scheduled to help control the number of trucks on-site. Queuing of trucks will be performed on-site in order to minimize off-site disturbance. Off-site queuing will be prohibited.

Only authorized vehicles will be permitted on-site.

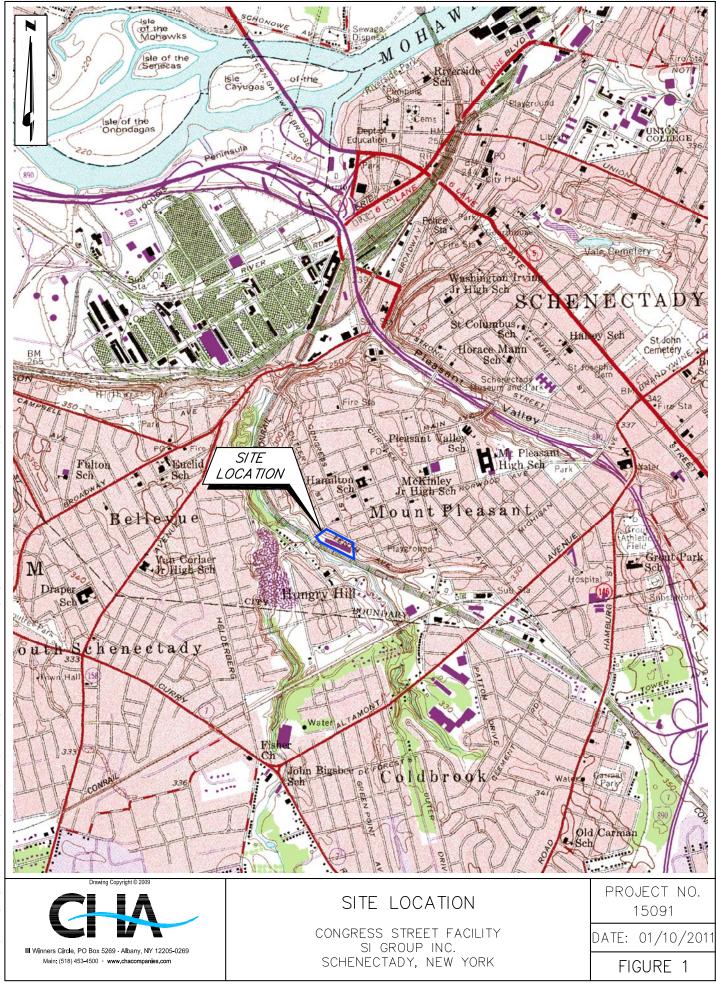
11.0 DECONTAMINATION OF TRUCKS AND EQUIPMENT

All trucks and equipment that are potentially exposed to contaminated material will be decontaminated as specified in the Contractor's required Health and Safety Plan (to be approved by the Engineer).

Material transported by trucks exiting the Site will be secured with tight-fitting covers. Loosefitting canvas-type truck covers or mesh/open weave type covers will be prohibited. If loads contain wet material capable of producing free liquid, truck liners will be used.

Egress points for truck and equipment transport from the Site will be kept clean of dirt and other materials during intrusive activities.

12.0 OFF-SITE TRUCKING ROUTES AND EMERGENCY PROCEDURES


The transport of materials will be performed by licensed haulers in accordance with appropriate local, State, and Federal regulations, including 6 NYCRR Part 364, as required. Haulers will be appropriately licensed and trucks properly registered and placarded. All haulers will maintain appropriate shipping papers and/or waste manifests (6 NYCRR Part 372) as required for the material being hauled.

Truckers will be encouraged to use the most appropriate routes as shown in Figure 2 and to take into account: (a) limiting transport through residential areas and past sensitive sites; (b) use of City-mapped truck routes; (c) prohibiting off-site queuing of trucks entering the facility; (d) limiting total distance to major highways; (e) promoting safety in access to highways; and (f) overall safety in transport; and (g) community input.

Trucks will be prohibited from stopping and idling in the neighborhood outside the project Site. Trucks operators will be encouraged to comply with all applicable regulations relative to idling engines in accordance with 6 NYCRR Subpart 217-3; however, under no circumstances shall truck engines be left idling on Site for more than 5 minutes.

In the event of an emergency, all operations will cease until the situation can be assessed. The procedures specified in the Health and Safety Plan (Appendix F to the Remedial Design Work Plan) will be followed as necessary.

FIGURE

