ENVIRONMENTAL RESTORATION PROGRAM

FINAL

SUPPLEMENTAL DATA COLLECTION TECHNICAL MEMORANDUM SITE 6

109th AIRLIFT WING NEW YORK AIR NATIONAL GUARD SCHENECTADY AIR NATIONAL GUARD BASE SCOTIA, NEW YORK

AUGUST 2003

VOLUME I OF II

Prepared For

AIR NATIONAL GUARD READINESS CENTER ANDREWS AFB, MARYLAND 20762-5157

ENVIRONMENTAL RESTORATION PROGRAM

FINAL

SUPPLEMENTAL DATA COLLECTION TECHNICAL MEMORANDUM SITE 6

109th AIRLIFT WING NEW YORK AIR NATIONAL GUARD SCHENECTADY AIR NATIONAL GUARD BASE SCOTIA, NEW YORK

AUGUST 2003

VOLUME I OF II

Prepared For

AIR NATIONAL GUARD READINESS CENTER ANDREWS AFB, MARYLAND 20762-5157

Prepared By ANEPTEK CORPORATION

408 Pleasant Street Worcester, Massachusetts 01609

TABLE OF CONTENTS

LISTO	OFFIGU	RES	. iii
LISTO	OFTABI	LES	. iv
LISTO)FACR(ONYMS	,,
EXEC	UTIVE	SUMMARY	ES-1
1.0	INTRO	ODUCTION	1-1
2.0	PROJE 2.1 2.2 2.3	Project Objectives and Scope. Investigative Approach Report Structure	2-1 2-1 2-1 2-1
3.0	FACIL 3.1 3.2 3.3 3.4 3.5 3.6	Base Description and History. Site Description Previous Investigations 3.3.1 Remedial Investigation 3.3.1.1 Groundwater Sampling GC Screening Results 3.3.1.2 Groundwater Sampling Analytical Results 3.3.1.3 Soil Sampling GC Screening Results 3.3.1.4 Soil Sampling Analytical Results 3.3.1.5 Surficial Geology 3.3.1.6 Bedrock Geology 3.3.1.7 Hydrogeology Summary and Conclusions Removal Action Data Gaps	. 3-1 . 3-3 . 3-3 . 3-7 . 3-13 3-18 . 3-18 . 3-19 . 3-20
4.0	APPLI 4.1	ICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS Methodology	
5.0	FIELD 5.1 5.2 5.3	PROGRAM summary Deviations from the Work Plan Investigative Activities 5.3.1 Soil Borings 5.3.2 Temporary Wells	5-1 . 5- 5-

		5.3.3 Monitoring Wells 5-2	
		5.3.4 Screening Sampling	
		5.3.4.1 Field Screening-Soil	
		5.3.4.2 Laboratory Screening-Groundwater	
	5.4	Groundwater Elevation Survey 5-7	
	5.5	Confirmatory Sampling 5-7	
		5.5.1 Confirmatory Sampling-Soil 5-7	
		5.5.2 Confirmatory Sampling-Groundwater	
	5.6	Surveying	
	5.7	Borehole/Well Abandonment	;
	5.8	Investigative Derived Waste	
6.0	INVES	STIGATIVE FINDINGS6-1	L
	6.1	Groundwater Elevation Survey 6-1	L
		6.1.1 Groundwater Flow Direction-Site 6 6-1	
		6.1.2 Geology/Hydrogeology-Site 6	L
•	6.2	Screening Sampling 6-8	
		6.2.1 Field Screening Results-Soil	
		6.2.2 Field Screening Results-Groundwater 6-8	3
	6.3	Confirmatory Sampling 6-10)
		6.3.1 Confirmatory Sampling Results-Soil 6-10)
	•	6.3.2 Confirmatory Sampling Results-Groundwater 6-15	
		6.3.2.1 June 2002 Results	5
		6.3.2.2 August 2002 Results 6-23	3
	6.4	Extent of Contamination-Site 6)
		6.4.1 Extent of Soil Contamination)
		6.4.2 Extent of Groundwater Contamination-Site 6 6-35	Ś
7.0	CONC	ELUSIONS/RECOMMENDATIONS	l
8.0	REFE	RENCES 8-1	l
VOLU	JME II	of II - APPENDICES	
		A: SDC Data Validation Reports/Laboratory Data	
		3: SDC Chain of Custody	
		C: SDC Boring Logs	
APPE	NDIX I	2: SDC Monitoring Well Construction Diagrams	

LIST OF FIGURES

<u>FIGU</u>	<u>PAGE</u>
3-1	Location of NY ANG 3-2
3-2	ERP Site Locations
3-3	Remedial Investigation Soil Boring/Monitoring Well Locations 3-5
3-4	Remedial Investigation Temporary Well/Microwell Locations
3-5	Areas of Excavation-Site 6 Time Critical Removal Action (TCRA)
3-6	TCRA Confirmatory Sampling Results-Area A
3-7	TCRA Confirmatory Sampling Results-Area B
3-8	TCRA Confirmatory Sampling Results-Area C
3-6	TCRA Confirmatory Sampling Results-Area A
5-1	SDC Temporary Well Locations
5-2	SDC Monitoring Well Locations
5-3	SDC Confirmatory Soil Sampling Locations 5-9
5-4	SDC Confirmatory Groundwater Sampling Locations 5-10
6-1	Groundwater Flow Direction-August 12, 2002 6-3
6-2	Location of Hydrogeologic Cross Sections 6-4
6-3	Hydrogeologic Cross Section A-A' 6-5
6-4	Hydrogeologic Cross Section B-B' 6-6
6-5	Hydrogeologic Cross Section C-C' 6-7
6-6	SDC Groundwater GC Screening Results 6-14
6-7	SDC Soil Sampling Analytical Summary 6-22
6-8	SDC Groundwater Sampling Analytical Summary-June 2002 6-28
6-9	SDC Groundwater Sampling Analytical Summary-August 2002 6-34
6-10	Extent of Soil Contamination-Site 6 6-36
6-11	Extent of Groundwater Contamination-Site 6 6-37
7-1	Data Points

LIST OF TABLES

TABL	<u> </u>	<u>PAGE</u>
3-1	RI Groundwater GC Screening Results	38
3-2	RI Groundwater Analytical Results - First Round	
3-3	RI Groundwater Analytical Results - Second Round	
3-4	RI Soil Sampling GC Screening Results	3-14
3-5	RI Soil Sampling Analytical Results	3-15
3-6	TCRA Confirmatory Sampling Analytical Results	3-22
4-1	Potential Chemical-Specific ARARs-Site 6	
4-2	Potential Location-Specific ARARs-Site 6	4-4
4-3	Other Criteria, Advisories and Guidance To-Be-Considered (TBCs)	
4-4	Potential Chemical-Specific ARARs / TBCs at Site 6 - Soil/Sediment	4-6
5-1	SDC Planned and Executed Field Program-Site 6	5-2
5-2	Monitoring Well Construction Summary-Site 6	5-6
6-l	Groundwater Elevation Summary-April 26/August 12, 2002	6-2
6-2	Field Screening Results-Soil	6-9
6-3	GC Screening Results-Groundwater	6-11
6-4	Soil Sampling Analytical Results	6-16
6-5	Groundwater Sampling Analytical Results-June 2002	6-24
6-6	Groundwater Sampling Analytical Results-August 2002	6-30

LIST OF ACRONYMS

ABB Environmental Services, Inc.

AW Airlift Wing

ANG Air National Guard

ANGRC Air National Guard Readiness Center

Aneptek Aneptek Corporation

ARARs Applicable or Relevant and Appropriate Requirements

AWQC Ambient Water Quality Criteria

BDL below detection limit bgs below ground surface

CERCLA Comprehensive Environmental Response, Compensation, and Liability

Act

cis 1,2-DCE cis 1,2-Dichloroethene

CFR Code of Federal Regulations
COC Contaminant of Concern

COR Contracting Officer Representative

CWA Clean Water Act DCE Dichloroethene

DERP Defense Environmental Restoration Program

DOD Department of Defense

DOT Department of Transportation

DQO Data Quality Objective

DWQS Drinking Water Quality Standards

EM Environmental Manager

ERP Environmental Restoration Program EPA Environmental Protection Agency

°F degrees Fahrenheit FS Feasibility Study

ft feet

GC Gas Chromatograph HASP Health and Safety Plan

HI Hazard Index

IDW Investigation Derived Waste

IRIS Integrated Risk Information System

MCL Maximum Contaminant Level

MDL Method Detection Limit mg/kg milligram per kilogram

MIS Management Information System

ml milliliter

LIST OF ACRONYMS/ABBREVIATIONS (Cont.)

MS/MSD Matrix Spike/Matrix Spike Duplicate

ND Not Detected

NGB National Guard Bureau

NYANG New York Air National Guard NYCRR New York Code, Rules, Regulations

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health PAH Polynuclear Aromatic Hydrocarbons

PCB Polychlorinated Biphynels

PCE Tetrachloroethene

PID Photoionization Detector

PPE Personal Protective Equipment PQL Practical Quantitation Limit

P/S Project/Site Manager RI Remedial Investigation

SARA Superfunds Amendments and Reauthorization Act

SB Soil boring

SDC Supplemental Data Collection STL Severen Trent Laboratory

SVOC Semivolatile Organic Compound

TAL Target Analyte List

TCRA Time Critical Removal Action

TBC To Be Considered TCE Trichloroethene

TIC Tentatively Identified Compounds

TM Technical Memorandum

TPH Total Petroleum Hydrocarbons

trans 1,2-DCE trans 1,2,-Dichloroethene
SOP Standard Operating Procedure

SSO Site Safety Officer

QA\QC Quality Control\Quality Assurance

ug/Kg Microgram per Kilogram ug/L Microgram per Liter

VOC Volatile Organic Compound

EXECUTIVE SUMMARY

This Technical Memorandum presents the results of the Supplemental Data Collection sampling program conducted at Environmental Restoration Program Site 6-Suspected Spill Area (Site 6), at the 109th Airlift Wing, New York Air National Guard, Schenectady Air National Guard Base, Scotia, New York. The Supplemental Data Collection was performed at the 109th Airlift Wing to address data gaps identified after the completion of a Remedial Investigation performed at Site 6 by Aneptek Corporation, and to facilitate the completion of a Feasibility Study.

Field activities at Site 6 included the installation of temporary wells, permanent monitoring wells, the advancement of soil borings, the collection of soil and groundwater samples for screening purposes, and the collection of confirmatory soil and groundwater samples. All confirmatory samples were submitted to an off-site laboratory for analysis for volatile organic compounds, semivolatile organic compounds, and metals. During the initial stages of the field program, groundwater samples were collected from seven existing temporary wells, four permanent wells, and two microwells, as well as from thirty, newly installed temporary wells. These samples were submitted to an off-site laboratory for screening for volatile organic compounds by gas chromatograph. Based on the screening results, eleven permanent monitoring wells were installed. Subsequent to the installation of the new wells, two rounds of confirmatory groundwater sampling events were performed. Samples were collected from four existing wells and the eleven newly installed wells. Twelve soil borings were advanced during the field program to facilitate subsurface soil sampling. Borings were advanced from ground surface to refusal, typically between six to eight feet below ground surface. Samples were collected continuously and screened in the field using a photoionization detector. Based on the field screening results, one subsurface confirmatory soil sample was collected from each boring and submitted for laboratory analysis.

Confirmatory soil sampling results indicate that the majority of Site 6 soils are generally free of contaminants of concern, however, sample results did confirm two areas of soil contamination which contain chlorinated volatile organic compounds in excess of state regulatory cleanup standards. One area is located in the southwest corner of Site 6, and a smaller, isolated area is located in the southeastern portion of Site 6. Both locations are in close proximity to areas excavated during the performance of a Time Critical Removal Action conducted in April of 2002. Additionally, when incorporating confirmatory soil sampling results from the SDC with confirmatory sampling and field screening results from the Remedial Investigation, it is apparent that there are two additional areas of residual soil contamination also located in the southeastern portion of Site 6. These areas may be responsible for the continued detection of chlorinated volatile organic compounds in groundwater samples collected from monitoring well 6MW-03.

Of the twelve soil samples collected during the field program, three contained volatile organic compounds (trichloroethene and /or tetrachloroethene) at concentrations above their respective clean up standards. Numerous inorganic analytes were detected at concentrations above their respective soil clean up objectives. Of these, nickel, potassium, and iron were the most prevalent. For the

majority of samples collected, exceedances reported for inorganics were reported at concentrations just above the regulatory clean up standard or site specific background values. However, although concentrations exceeded the regulatory clean up standards, results were within the range of established Eastern United States/New York State background concentrations.

Results from the groundwater sampling reported chlorinated volatile organic compounds, mainly cis1,2-Dichloroethene, trichloroethene, and tetrachloroethene, in five of the wells sampled at
concentrations exceeding state regulatory drinking water standards. Vinyl chloride was also detected
in one of the wells sampled exceeding its respective drinking water quality standard. One
semivolatile organic compound, bis(2-Ethylhexyl) phthalate, was detected in four of the wells
sampled at low concentrations not exceeding its respective drinking water standard. Numerous
inorganic analytes were detected above their respective drinking water standards in each of the wells
sampled, most notably iron, sodium, and manganese.

Based on the results of the field program conducted during the SDC, and incorporating results from the TCRA and RI, it is concluded that residual VOC contaminated soils persist in two areas of Site 6. As previously stated, these areas lie in the southwestern and southeastern portions of Site 6. Although these areas are relatively small in size, the concentrations of the contaminants (tetrachloroethene and trichloroethene) are relatively high. Groundwater samples collected in proximity to these areas mirror the contamination concentrations found in the soils. Based on this conclusion, additional remedial measures are recommended for Site 6 soils and groundwater.

SECTION 1.0

1.0 INTRODUCTION

This Technical Memorandum (TM) presents the results of a Supplemental Data Collection (SDC) conducted at Environmental Restoration Program (ERP) Site 6 (Site 6), at the 109" Airlift Wing (AW), New York Air National Guard (NYANG) Schenectady Air National Guard Base (the Base) located at Schenectady County Airport, Scotia, New York. The SDC at Site 6 was performed by Aneptek Corporation (Aneptek) for the Aii National Guard (ANG/CEVR) pursuant to the ERP, under National Guard Bureau (NGB) Contract No. DAHA90-97-D-0011, Delivery Order No. 19. The SDC was performed under the authority of the Comprehensive Environmental Response, Compensation, and Liabilities Act (CERCLA), and the Superfund Amendments and Reauthorization Act (SARA).

This SDC was implemented based on the results of a Remedial Investigation (RI) performed by Aneptek at the 109th AW during 1998 and 1999 and on the findings of a Draft Final Feasibility Study (FS) (Draft Final Feasibility Study, Aneptek, March, 2001). The results of the RI indicated the presence of volatile organic compound (VOC) contaminated soil and groundwater, and petroleum contaminated soil at Site 6. Based on the recommendations of the RI, a FS was developed for Site 6 soils which recommended excavation and off-site disposal of the contaminated soils. Based on this recommendation, contaminated soils were excavated and disposed of under the performance of a Time Critical Removal Action (TCRA). The TCRA was conducted at Site 6 from April 22 to April 25, 2002. The FS also stated that further investigative measures were needed to complete the FS with regards to delineation of Site 6 groundwater contamination, and to confii that the TCRA had been successful in removing contaminated soils from Site 6. These investigative measures were conducted during the SDC.

SECTION 2.0

2.0 PROJECT OBJECTIVES AND SCOPE

2.1 Project Objectives and Scope

The objectives and scope of this project was the performance of an SDC at Site 6 at the 109th AW. The SDC included activities necessary to further characterize the nature and extent of soil and groundwater contamination at Site 6, and to obtain sufficient data to determine the need for possible site remediation. The results of the SDC will be included in the Final Feasibility Study, at which point options for remedial activities, including the option of No Further Action, will be detailed and numerically rated. One option will then be rated as the most effective with regards to both cost and remedial effectiveness.

2.2 Investigative Approach

The general investigative approach for the SDC includes the collection of subsurface soil samples, groundwater samples, and groundwater elevation data necessary for site characterization. Soil and groundwater data collected during this SDC will be compared to current New York State Department of Environmental Conservation (NYSDEC) Clean-Up Objectives (soil) and Drinking Water Quality Standards (DWQS) and Guidance Values (groundwater). Based on these comparisons, further site remediation may or may not be warranted at Site 6.

2.3 Report Structure

This TM is presented in 15 sections. Section 1.0 provides an introduction to this report. Section 2.0 describes the project objectives and scope. Section 3.0 presents a description of the Schenectady ANG Base and of Site 6, and presents the results of the RI, including sample results, geological and hydrogeological findings, and conclusions. Section 4.0 presents a brief discussion of the Applicable or Relevant and Appropriate Requirements (ARARs) for the Base. Section 5.0 describes the investigative approach used during the SDC, Section 6.0 reports the investigative findings. Section 7.0 provides the conclusions of the field program and recommendations, while Section 8.0 provides a list of the references used in preparation of this TM.

C:/finsdctmrep.wpd 2-1

SECTION 3.0

3.0 FACILITY BACKGROUND INFORMATION

This section presents brief background summaries of the Base (Section 3.1), Site 6 (Section 3.2), results from the Remedial Investigation, including the performance of a Removal Action (Section 3.3), Summary and Conclusions of RI Report (Section 3.4), and the identification of Data Gaps (Section 3.5).

3.1 Base Description and History

The 109th Airlift Wing is located on the eastern and southern portions of the Schenectady County Airport in Scotia, New York (Figure 3-l). The Base comprises approximately 106 acres. The land to the north, east, and west of the Base is agricultural and residential. South of the Base is the Mohawk River, a railway, commercial and residential properties. Prior to construction of the Base, the property was utilized as agricultural land. The ANG authorized the formation of the 139th fighter squadron of the New York National Guard in November 1948. The unit was first located at the Scotia Naval Depot, which is about three miles to the west of the current base. The first aircraft for the new unit, the P-47 "Thunderbolt", arrived in 1949, along with an assortment of support aircraft including the T-6, B-26 and the C-47.


By September of 1950, the permanent facilities for the unit were completed at the Schenectady County Airport. These facilities consisted of the present administration building, aircraft hanger, vehicle maintenance, and various supply buildings. In 1951, The P-47's were replaced by the P-51 "Mustang." By 1954, the Base had received the F-94 "Stat-fire" jets. In order to accommodate the new aircraft, a 7,000 foot runway with overruns was constructed.

By 1960, the unit was redesignated the 109th Tactical Airlift Group and acquired the four-engine C-97A "Stratocrusier". In October 1961, the 109th Tactical Airlift Group was called to active duty in support of the Berlin Airlift. The unit was deactivated and resumed guard status on August 31, 1962. At that time, the aging C-97A aircraft were replaced with the C-97G model.

A new mission was undertaken by the unit in 1971 with the replacement to the C-97G by the C-130 "Hercules" turboprop transport. In 1972, The C-130A models were converted to the C-130D by Lockheed Aircraft Company to facilitate the use of skis on the Greenland Polar Ice Cap. In 1984, the 109th Tactical Airlift Group received its first C-130H aircraft, which replaced the older C-130D model. In 1991, the unit's name changed from the "109th Tactical Airlift Group" to the "109th Airlift Wing".

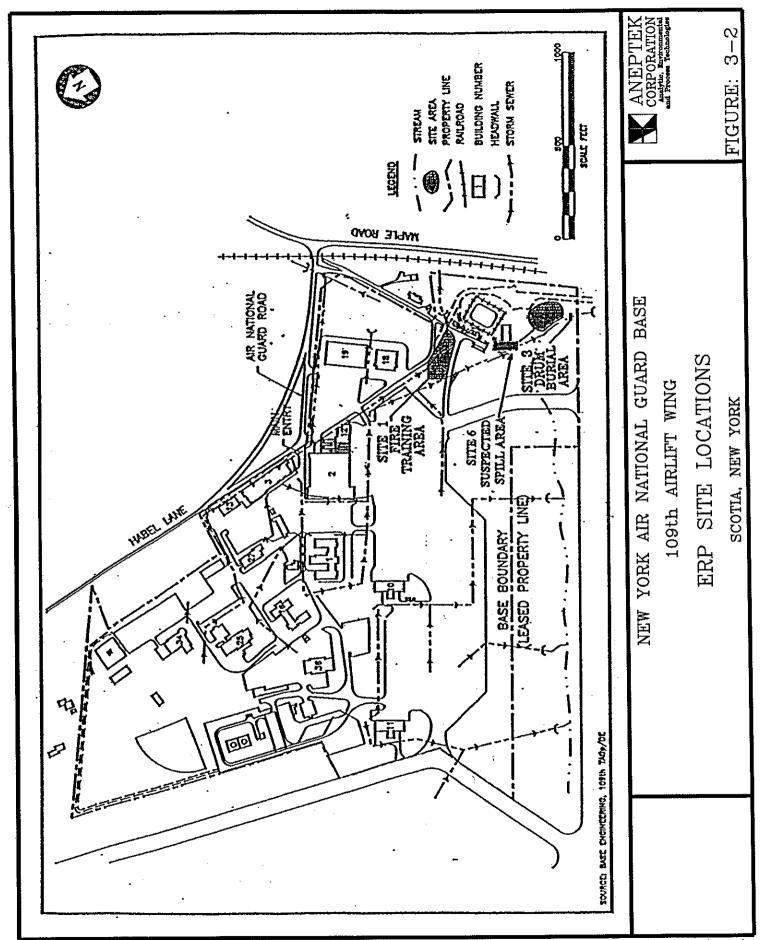
3.2 Site Description

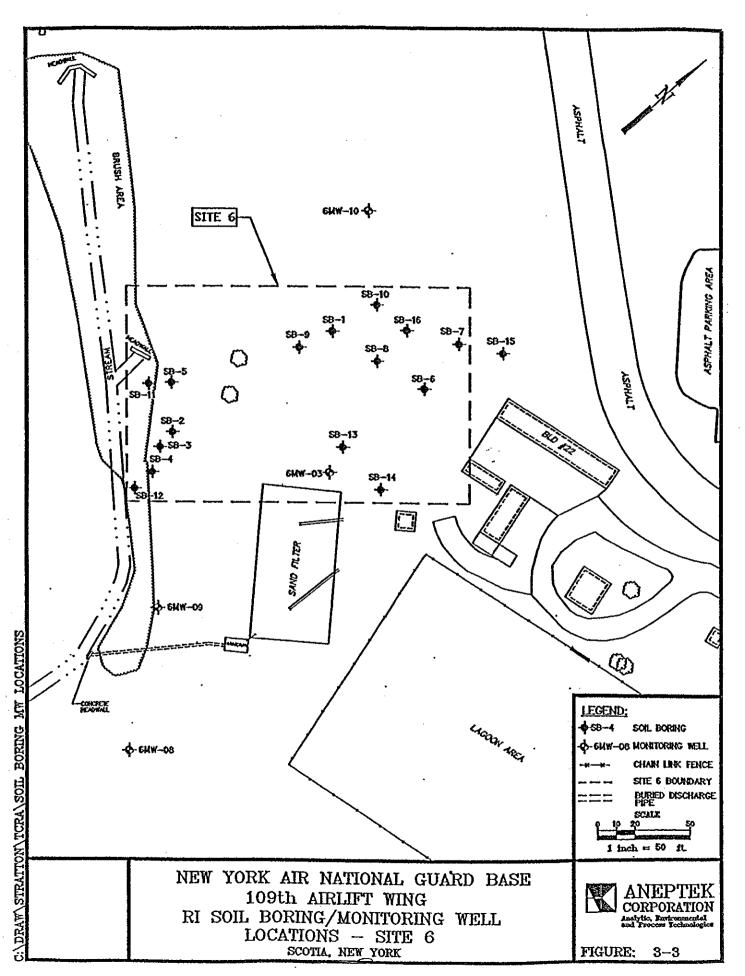
Site 6 was not originally included as part of the ERP program. It was included during the RI after sample results from Site 3, which is adjacent and downgradient of Site 6, indicated soil and groundwater contamination present in this previously unknown area. The contaminants consisted of chlorinated compounds (mainly cis-1,2-Dichloroethene [cis-1,2-DCE] and vinyl chloride), plus additional soil contamination from petroleum compounds (xylenes). Initially, given the close

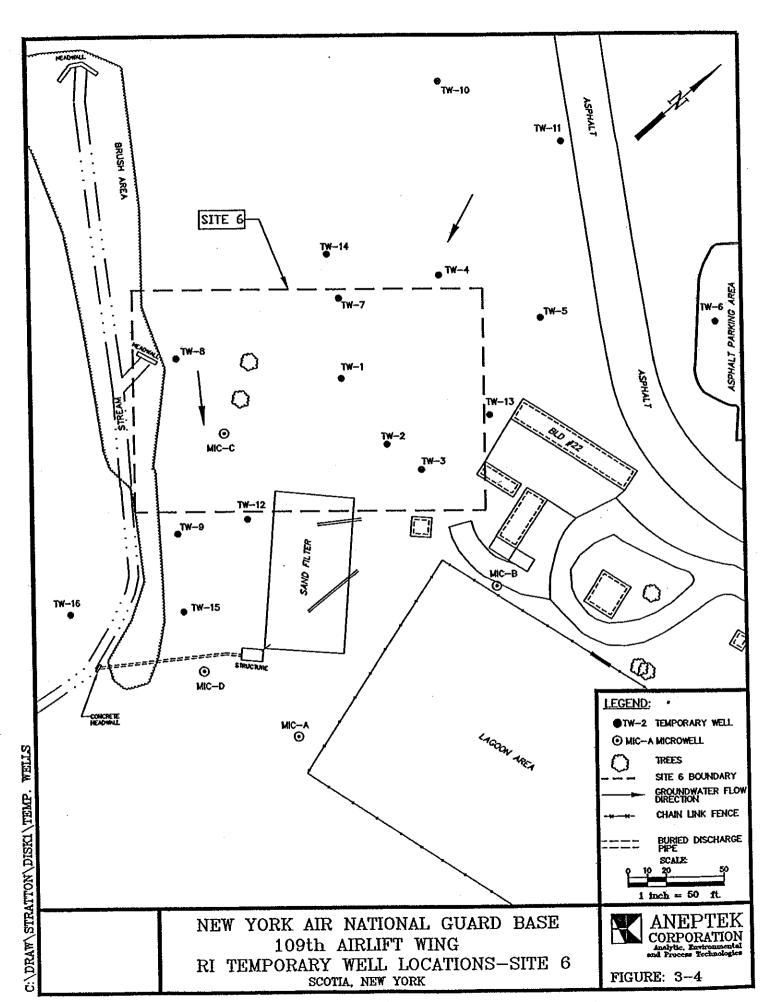
proximity of this area to other designated ERP sites (Site 1, investigated in 1996 [Final SI Report, ABB, October, 1996], and Site 3), it was thought this area was somehow related to either one or both of them. However, based on the nature of contamination found in this area (analytes other than at Site 1 or 3), the potential association of previous activities being conducted within the same time frame and in this same general area (but at different locations), it is evident that this area should be treated as a separate site, designated as such, and included in the ERP program. Figure 3-2 presents the location of Site 1, Site 3, and Site 6.

3.3 Previous Investigations

The following section presents a summary of the results of the RI performed at Site 6. The RI has been the only investigative activity conducted at Site 6. For more detailed information on these activities and the environmental setting at Site 6, please refer to the **Final** RI Report, Vol. I (Aneptek, September, 2000).


3.3.1 Remedial Investigation


The RI field program was conducted by Aneptek from July of 1998 to June of 1999. A total of three sites, Site 2, Site 3, and Site 6, were investigated during the RI. This TM will only detail results from Site 6.


Field activities conducted at Site 6 during the RI included the installation of two permanent groundwater monitoring wells, conducting in-situ hydraulic conductivity "slug" testing on the two new wells plus a previously existing well (installed during the initial stages of the RI), the installation of 16 temporary wells, the advancement of 16 soil borings, and the advancement of one bedrock boring to a depth of 109 feet below ground surface (bgs), to facilitate the installation of a bedrock monitoring well. No water was evident in bedrock to this depth, and the well was abandoned. Two rounds of groundwater samples were collected from the newly installed wells. Groundwater samples collected from the temporary wells were screened by a gas chromatograph (GC) using a modified Environmental Protection Agency (EPA) Method 8021. Although 16 soil borings were advanced at Site 6, not every boring was sampled. Soil samples from selected borings were screened using the GC or sent to an off-site laboratory for full analysis. Soil boring and monitoring well locations are presented in Figure 3-3, temporary wells are presented in Figure 3-4. To review RI monitoring well construction logs, boring logs, and rock coring logs, please refer to the Final RI Report, Vol. II (Aneptek, 2000). The results of the RI conducted at Site 6 are discussed below.

3.3.1.1 RI Groundwater Sampling GC Screening Results

Groundwater samples were collected from 16 temporary wells and from one permanent well (6MW-03) for GC screening. All samples were screened using a modified EPA Method 8021 for trans-1,2,-dichloroethene (trans-1,2-DCE), cis-1,2-DCE, tetrachloroethene (PCE), trichloroethene (TCE), and vinyl chloride. In the samples collected from the temporary wells, cis-1,2-DCE was the only compound which was detected above the NYSDEC drinking water standard of 5 μ g/L. The sample collected from TW-9 had the highest concentration of cis-1,2-DCE at 50.1 μ g/L. Other compounds detected in this sample were PCE at 3.3 μ g/L, TCE at 1.14 μ g/L, and vinyl chloride at 1.01 μ g/L.

NYSDEC driimg water standards for these three compounds are 5 μ g/L, 5 μ g/L, and 2 μ g/L, respectively. TW-12 had the next highest concentration of cis-1,2-DCE at 34.2 μ g/L. TCE was also detected in this sample at 2.72 μ g/L. In the sample from TW-7, only cis-1,2-DCE was detected at a concentration of 6.87 μ g/L, In sample TW-15, cis-1,2-DCE was detected at 1.14 μ g/L and PCE at 4.71 μ g/L, both below NYSDEC drinking water standards. Temporary wells TW-2 and TW-10 were screened for VOCs using a full EPA Method 8021. The reported results for TW10 were non-detect for all compounds. The sample collected from TW-2 reported only 1,3,5-trimethylbenzene at 1.33 μ g/L. Results from these two temporary wells are also presented in Table 3-1.

3.3.1.2 RI Groundwater Sampling Analytical Results

Two groundwater monitoring wells installed at Site 6 were sampled in accordance with the approved RI Work Plan (Aneptek, 1998). Groundwater samples were submitted to an off-site laboratory for the following analyses: VOCs by EPA Method 8260, semi volatile organic compounds (SVOCs) by EPA Method 8270, target analyte list (TAL) metals (total and dissolved inorganics) by EPA Method 6010, chlorinated herbicides by EPA Method 81.50, cyanide by EPA Method 9010, propylene glycol by EPA Method 8015, and pesticides/Polychlorinated Biphynels (Pest/PCBs) by EPA Method 8081.

Two rounds of groundwater sampling were performed at monitoring wells 6MW-08 and 6MW-09 in May and June, 1999. Tables 3-2 and 3-3 present the analytical results for round one and two, respectively. Additionally, the groundwater sample analytical results from monitoring well 6MW-03, collected in October and December, 1998, are included in the Site 6 data set. In summary, the analyses for pesticides, PCBs, herbicides, cyanide and propylene glycol were all reported as not detected above the laboratory reported Practical Quantitaion Limit (PQL) or less than the NYSDEC groundwater standards. The remaining analytical results for VOCs, SVOCs, and inorganics are summarized as follows:

VOCs. Several VOCs in exceedance of the NYSDEC standards were detected in the Site 6 groundwater samples. These VOCs included cis-1,2-DCE, vinyl chloride, and PCE. Cis-1,2-DCE was detected in 6MW-03 and 6MW-09 during the second round, and at it highest recorded concentration of 120 μ g/L in 6MW-03 in the first round. Vinyl chloride was detected in both rounds at 6MW-03 at a concentration of 16 μ g/L (first round) and 2.7 μ g/L (second round). PCE was detected in 6MW-09 at a concentration of 16 μ g/L in the second round. The laboratory did not report any significant VOC Tentatively Identified Compounds (TICs).

SVOCs. Several SVOCs in exceedance of the NYSDEC groundwater standards were detected in the Site 6 groundwater samples. These included the PAHs acenaphthene and 2-methylnapthalene, and the phenolic compounds 2,4-dinitrophenol, 4-nitrophenol, and phenol. Acenaphthene and 2-methylnapthalene were detected in the first round at 6MW-09 at concentrations of 40 μ g/L and 3.5 μ g/L, respectively. The phenolic compounds were detected in the second round at 6MW-08 and 6MW-09, with the highest combined concentration of 54 μ g/L at 6MW-09. No significant TICs were reported by the laboratory.

TABLE 3-1
TEMPORARY WELL GROUNDWATER SAMPLE RESULTS
GC SCREENING
SCHENECTADY ANGB - SITE 6
SCOTIA, NEW YORK

	DETECTION	,	NY STATE				SAMPLE NUMBERS	TUMBERS			
ANALYTE	LIMITS	FEDERAL MCL	DWQS ³	TW-1	TW-2	TW-3	TW-4	TW-5	9-ML	TW-7	LW.8
VOCs (ug/L)											
1,3,5-Trimethylbenzene	-	NA	5	£	1.33	Ð	S	Ð	Q	Ð	Ð
cis-1,2-Dichloroethene		70	5	1.86	Q	2	£	Ð	Q	6.87	S
Tetrachoroethene	1	NA	S	£	£	R	Ð	Ð	Q	Ð	g
Trichloroethene	1	55	5	Ð	£	S	S	Ð	Q	£	2
Vinyl Chloride	-	2	2	40.1	Ê	R	Q.	Ð	Q	g	Ŕ

	DETECTION		NY STATE				SAM	SAMPLE NUMBERS	ERS			
ANALYTE	LIMITS	FEDERAL MCL2		6-ML	TW-10	TW-11	TW-112	TW-13	TW-14	TW-15	TW-16	6MW-03 ⁴
VOCs (ug/L)												
1,3,5-Trimethylbenzene		NA	5	2	Q	SN	Ð	9	Ð	£	Ð	Ð
cis-1,2-Dichloroethene	1	70	5	50.1	2	SN	34.2	QN	Q.	1.14	Q.	8.56
Tetrachoroethene	,	NA	S	3.3	2	SN	QN	ON.	QN	4.71	S	£
Trichloroethene		'n	S	1.14	£	NS	2.72	Q	QN	Ð	Q.	Q
Vinyl Chloride	1	2	7	1.01	QN QN	SN	2	2	g	Ð	£	2
ABBREVIATIONS: ug/L- micrograms per liter DWQS - Drinking Water Quality Sids. MCL - Maximum Contaminant Level MW - Monitoring Well NA - Not Applicable ND - Not Detected NS - Not Sampled			NOTES. 1) Contract Required Detection Limit for Organics (CDRL) 2) US EPA Drinking Water Regulations and Health Advisories EPA 822-R-007, May 1994. 3) NYSDEC Water Quality Standards and Guidance Values, June 1998. Samples screened only for the compounds listed. 4) 6MW-3 is a permanent groundwater monitoring well which was sampled for GC screening.	ES. Contract Required Detection Limit for O. S EPA Drinking Water Regulations and May 1994. YSDEC Water Quality Standards and G screened only for the compounds listed. MW-3 is a permanent groundwater moni GC screening.	Organics (CDRI nd Health Advisc Guidance Value ed.	.) ories EPA 822R. s, June 1998. Sa rich was sampled	.007, mples for		<u>PATA OUALIFIERS.</u> ndtea or F	DATA QUALIFIERS: 192 Indicates concentration that exceeds State or Federal regulatory limits.	tration that exce	eds State
NYSDEC - New York State Dept. of Environm'l Conservation	vironm1 Conservation											

*Temporary Well-11 was not sampled.

TW - Temporary Well
VOCs - Volatile Organic Compounds

CAD\SharedFiles\RI Sample result tables (revised)\rev RI table 6-23 (3-1)

TABLE 3-2 GROUND WATER SAMPLING RESULTS - FIRST ROUND SITE 6 SCHENECTADY ANGB SCOTIA, NEW YORK

ANALYTE VOCs (ug/kg) Tetrachoroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Trichloroethene Vinyl Chloride Methylene Chloride Toluene	1 1 1 1 1	MCL ² 5 70 100	DWQS ³	CON	C.⁴	6MW-	-03	6MW-	-08	6MW	-09	6MW	195
Tetrachoroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Trichloroethene Vinyl Chloride Methylene Chloride	1 1 1	70											
cis-1,2-Dichloroethene trans-1,2-Dichloroethene Trichloroethene Vinyl Chloride Methylene Chloride	1 1 1	70				II		l					
trans-1,2-Dichloroethene Trichloroethene Vinyl Chloride Methylene Chloride	1 1			1	U	1	U	1	U	1	j	1.2	
Trichloroethene Vinyl Chloride Methylene Chloride	1	100	5ª	1	U	120	J	1	U	1	U	1	U
Vinyl Chloride Methylene Chloride	- 1	100	5*	1	U	0.7	J	1	U	1	U	1	U
Methylene Chloride	1	5	5ª	1	U	1.4		1	U	1	U	1	U
l) -		2	2	1	U	16		1	U	1	U	1	Ü
l) -	1	NA	5ª	1	Ū	1	U	1	Ŭ	1	Ŭ	1	Ŭ
	1	1,000	5ª	1	Ŭ	î	Ŭ	1	U	î .	Ü	1	Ü
SVOCs (ug/L)													
bis (2-Ethylhexyl) phthalate	10	NA	5	12		11	U	10	U	10	U	10	U
Diethylphthalate	10	NA	NA	10	บ	11	Ū	10	Ū	10	J	10	Ü
Di-n-butylphthalate	10	NA	50	1	J	11	Ü	10	Ü	10	Ü	10	Ŭ
2-Methylphenol	10	NA	NA	10	U	11	Ü	10	U	1	J	10	U
Naphthalene	10	NA	10	10	บ	11	Ü	10	U	3	1	10	U
2-Methylnaphthalene	10	NA	4.7°	10	Ü	11	U	10	U		**************************************		
Acenaphthene	10	NA NA				ll .				35	J	10	UJ
Dibenzofuran			20	10	U	11	U	10	U	40	J	10	U
	10	NA	NA 505	10	U	11	U	10	U	30	1	10	U
Fluorene	10	NA	50°	10	U	11	U	10	υ	18	J	10	UJ
Phenanthrene	10	NA	50°	10	U	11	U	10	U	8	J	10	U
Anthracene	10	NA	50°	10	U	11	U	10	U	2	J	10	U
Phenol	10	NA	1ª	10	U	10	U	10	U	10	U	10	U
2,4-Dinithrophenol	10	NA	10°/1°	10	U	10	U	10	U	10	U	10	U
4-Nitrophenol	10	NA	1 4	10	υ	10	U	10	U	10	U	10	U
PEST/PCBs (ug/L)													
4,4'-DDD	0.1	NA	0.3	0.1	U	0.01	U	0.01	U	0.01	Ū	0.01	U
4,4'-DDT	0.1	NA	0.2	0.1	Ŭ	0.01	Ü	0.01	Ū	0.01	Ü	0.01	U
HERBICIDES (ug/L)													
2,4,5-TP (Silvex)	0.5	50	NA	0.05	7.77	0.05	***	0.05	***	0.05	***	0.05	***
Pentachlorophenol (PCP)	0.1	1	1ª	0.05	ni n	0.05	UJ	0.05	UJ .	0.05	UJ	0.05	UJ
			1 1 a	0.1	R	0.1		0.1	R	0.1	R	0.1	R
Dinoseb	0.1	7		0.1	UJ	0.1		0.1	UJ	0.1	UJ	0.1	UJ
Picloram	0.04	500	50	0.04	UJ	0.05	J	0.04	UJ	0.04	UJ	0.04	UJ
2,4-D	0.05	70	50	0.05	U	0.05	U	0.05	U	0.05	U	0.05	U
CYANIDE, Total (mg/L)	10	200	200	10	Ū	0.01	U	10	U	10	U	10	U
PROPYLENE, GLYCOL (mg/L)	1 .	NA	NA	1	U	1	U	1	U	1	U	1	U
DISSOLVED INORGANICS (ug/L)													
Aluminum	200	NA	NA	10.2	UJ	200	U	10.2	UJ	15.9	J	10.2	UJ
Antimony	2.8	6	3	2.6	UJ	6	U	5.9	U	2.8	U	2.4	U
Arsenic	10	50	25	2,6	UJ	1.7	U	6.4	Ü	5	U	5.4	Ū
Barium	200	2.000	1,000	78.8	J	154	j	80.8	J	167	J	162	J
Beryllium	5	4	3°	0.4	J	0.2	U	0.1	Ü	0.1	บ	0.1	Ü
Cadmium	5	5	5	0.4	ı	0.3	Ü	0.2	Ü	0.2	U	0.1	Ü
Calcium	5.000	NA	NA.	71,900	'	133,000	J	126,000	U	92,700	U	95,900	U
Chromium	10	100											
			50	14		0.5	U	0.6	U	0.6	υ	0.6	U
Cobalt	50	NA 1 222	5	0.6	U	0.8	U	0.7	J	0.6	U	0.6	U
Copper	25	1,300	200	0.5	UJ	2.7	U	0.5	UJ	0.5	UJ	0.5	UJ
Iron	100	NA	300	1.3	υ	12.7	В	1.3	U	1.3	U	1.3	U
Lead	3	15	25	1,1	U	3	UJ .	2.9	J	1.1	U	1.1	U
Magnesium	5,000	NA	35,000°	18,600	J	32,200	J	51,700	J	35,600	J	36,600	J
Manganese	15	NA	300	85	J	15	U ·	684	J	528	J.	533	J
Nickel	40	100	100	3.8	J	3.1	U	6	BJ	2	j	1.7	J
Potassium	5,000	NA	NA	3,360	j	10,900	J	6,830	J	9,270	J	9,590	j
Silver	10	NA	50	10	Ü	10	UJ	10	Ū	10	Ü	10	Ü
Sodium	5,000	NA	20,000	6,870	j	55,600	J	66,500	Ĵ	68,000	Ĵ	63,600	J
Thallium	10	2	0.5°	1.1	Ü	A STATE OF THE STA	1100277051	Transfer Carrent Contract Cont	grant desired by being	A THE STREET OF THE PARTY OF		1216240X036022C003EX936	
Vanadium	50					10	U	1.1	U	1.1	U	1.1	U
Zinc	20	NA NA	NA 2000°	1.2	U	50	U	1.2	U	1.2	U	1,2	Ü
zant.	20	NA	2000	9.2	J	20	U	4.4	J	1	j	2.4	J

TABLE 3-2 (Cont.) GROUND WATER SAMPLING RESULTS - FIRST ROUND SITE 6 SCHENECTADY ANGB SCOTIA, NEW YORK

ANALYTE	DETECTION	FEDERAL	NY STATE	BACKGI	ROUND			SA	MPLE	NUMBERS			
ANALITE	LIMIT ¹	MCL ²	DWQS ³	CON	C.⁴	6MW	-03	6MW	-08	6MW	-09	6MW	-19 ⁵
TOTAL INORGANICS (ug/L)				··							•		
Aluminum	200	NA	NA	7,050	J	107	j	3,280	j	4,620	J	6,830	J
Antimony	2.3	6	3	2.3	υ	6	U	2.3	U	3.5	U	2.3	U
Arsenic	10	50	25	6.8	υ	7.3	U	2.2	U	3	U	7.9	U
Barium	200	2,000	1,000	198	J	143	J	141	J	200		224	
Beryllium	5	4	3°	0.4	J	0.2	U	0.1	U	0.2	j	0.9	J
Cadmium	5	5	5	0.4	J	0.3	U	0.1	U	0.2	J	0.9	J
Calcium	5,000	NA	NA	71,800		110,000	J	120,000		93,200		94,100	
Chromium	10	100	50	14		10	U	4.3	U	8.9	J	15.5	
Cobalt	50	NA	5	8.8	J	1.2	U	3	J	3.7	J	6.2	J
Copper	25	1,300	200	13.6	J	4.8	U	5.8	J	8.7	J	19.8	J
Iron	100	NA	300	15,200		386	J	5,900		9,910	J	15,700	J
Lead	3	15	25	6.7	J	3	UJ	5.2	J	7.7	J	9.7	J
Magnesium	5,000	NA	35,000°	21,000		27,600	J	48,300		36,600		37,700	
Manganese	15	NA	300	607		866		676		606	184001003811002	612	
Nickel	40	100	100	20.4	J	4.1	J	10.7	J	11.3	J	16.7	:::::::::::::::::::::::::::::::::::::
Potassium	5,000	NA	NA	4,680	J	9,200	J	5,530	J	6.840	J	7,350	J
Silver	10	NA	50	ND		10	ບາ	10	บ	10	U	10	U
Sodium	5,000	NA	20,000	8,190		37,600	J	67,100		63,200		65,000	
Thallium	10	2	0.5°	10	U	4.2	J	10	U	10	Ü	10	U
Vanadium	50	NA	NA	17.4	J	0.8	umuntainisii J	7.1	j	11.6	j	17.5	J
Zinc	20	NA	2000	62.1		9.9	j	66.6	-	29.8	j	45.9	1

ABBREVIATIONS:

ug/L - micrograms per liter mg/L - milligrams per liter

DWQS - Drinking Water Quality Stds.

IDL - Instrument Detection Limit

MCL - Maximum Contaminant Level

NA - Not Applicable

NYSDEC - New York State Dept. of

Environmental Conservation

PCBs - Polychlorinated Biphenyls SVOCs - Semi-Volatile Organic Compounds

NOTES:

- 1) Contract Required Detection Limit (CRDL)
- 2) US EPA Drinking Water Regulations and Health Advisories EPA 822-R-007, May 1994.
- 3) NYSDEC Water Quality Standards and Guidance Values, June 1998. Unless otherwise noted, the value listed is the State promulgated standard for the protection of drinking water from a groundwater
- 4) Background sample collected from 6MW-10
- 5) 6MW-19 is a duplicate sample of 6MW-9
 - The value listed is a guidance for the protection of drinking water from a groundwater source.
 - b) The value listed represents the maximum allowable concentration of phenolic compounds. Sum of all phenolic compounds may not exceed 1.0 ppb.
 - c) The value listed is a guidance for the protection of drinking water from a groundwater source.
 - d) The value listed represents the maximum allowable concentration of phenolic compounds. Total phenolic compounds may not exceed 1.0 ppb.

DATA QUALIFIERS:

- B Value is less than CRDL but greater than IDL,
- J The analyte was positively identified; the associated value is the approx. concentration of analyte in the sample
- R The analyte was rejected due to inability to meet quality control criteria.
- U Compound was analyzed for, but not detected
- UJ The analyte was not detected above the reported sample quantitation limit. However the reported quantitation limit is approximate and may or may not precisely measure the analyte of the sample.
- 107 Indicates concentration that exceeds either State or Federal regulatory limits.

TABLE 3-3 GROUND WATER SAMPLING RESULTS - SECOND ROUND SITE 6 SCHENECTADY ANGB SCOTIA, NEW YORK

ANALYTE	DETECTION	FEDERAL	NY STATE	BACKGE				SA	MPLE N	UMBERS	•		
ANADITE	LIMIT'	MCL ²	DWQS ³	CON	c.•	6MW-	-03	6МW	-08	6MW	-09	6MW	-29 ⁵
VOCs (ug/kg)			-2			De l'Engran Metri Telle L'Alli	nucumorene			AND RECEIPT ANGELS AND	BOOK STREET, WATER		
cis-1,2-Dichloroethene	1	70	5°	1	U	34	430503	1	U	- recollege of the street of the		-:18	
trans-1,2-Dichloroethene	1	100	5ª	1	U	1	U	1	U	1	U	1	U
Trichloroethene	1	5	5ª	1	บ	0.6	J	1	U	8.1		1.6	U
Vinyl Chloride	i	2	2	1 -	U	2.7	J	1	U	1	U	1	U
Methylene Chloride	1	NA	5"	1	ับ	1	U	1	U	1	U	1	U
Toluene	1	1,000	5*	1	ប	1	U	1	U	1	U	1	U
Tetrachloroethene	1	5	5"	1	U	1	U	1	U	16		15	
SVOCs (ug/L)													
Phenol	10	NA	1°	10	U	10	U	9	J	2	1	10	U
2,4-Dinithrophenol	10	NA	10°/1°	10	Ū	10	Ū	11	U	26	ŪJ	25	ŪJ
Diethylphthalate	ii	NA	NA	10	ŭ	ii	Ŭ	10	Ü	10	U	10	U
4-Nitrophenol	10	NA	10	10	ŭ	10	Ü	26	cedenosas desperantes	26	Ŭ J	25	ÚJ
Di-n-butylphthalate	10	NA NA	50	1	ĭ		U	abded waterday by the loss of	(2000)	*************	Ü	10	U
					'	11		111	Ū	11		1	
bis (2-Ethylhexyl) phthalate	10	NA	5	12	١ ,, ١	11	U	1	J	11	U	1	J
Naphthalene	10	NA	10	10	U	10	U	10	U	10	U	10	U
2-Methylphenol	10	NA	4.7°	10	U	10	U	10	U	10	U	10	U
Acenaphthene	10	NA	20	10	U	10	U	10	U	10	U	10	U
Dibenzofuran	10	NA	NA	10	U	10	U	10	U	10	U	10	U
Fluorene	10	NA	50°	10	u l	10	U	10	U	10	U	10	U
Phenanthrene	10	NA.	50°	10	Ü	10	Ü	10	U	10	Ü	10	U
Anthracene	10	NA	50°	10	ŭ	10	Ü	10	Ü	10	Ü	10	Ü
PEST/PCBs (ug/L)													
4,4'-DDD	0.1	NA	0.3	0.1	U	0.1	U	0.1	U	1.0	U	0.1	U
4.4'-DDT	0.1	NA NA	0.2	0.1	Ü	0.1	U	0.1	U	1.0	U	0.1	Ü
4,4 -DD 1	01	, MA	0.2	0.1	٠ ا	0.1	U	0.1	U	0.1	U	0.1	·
HERBICIDES (ug/L) 2,4,5-TP (Silvex)	0.5	NA NA	NA	0.05	uj	0.1	U	0.05	UJ	0.05	UJ	0.05	711
	1		1ª		- 1	ı		1					UJ
Pentachlorophenol (PCP)	0.1	i		0.1	R	0.1	U	0.1	R	0.1	R	0.1	R
Dinoseb	0.1	7	1°	0.1	UJ	0.1	U	0.1	UJ	0.1	UJ	0.1	UJ
Picloram	0.04	500	50	0.04	UJ [0.04	U	0.04	UJ	0.04	UJ	0.04	UJ
2,4-D	0.05	70	50	0.05	U	0.05	IJ	0.05	U	0.05	U	0.05	U
CYANIDE, Total (mg/L)	10	200	200	10	ט	0.01	UJ	10	U	10	U	10	U
PROPYLENE, GLYCOL (mg/L)	1	NA	NA	1	υ	1	υ	1	U	1	U	1	U
DISSOLVED INORGANICS (ug/L)													
Aluminum	200	NA	NA	10.2	UJ	9.5	U	40.8	נ	19.2	U	56.2	J
Antimony	6	6	3	2.6	UJ	1.6	UJ	6	Ü	6	Ü	6	Ü
Arsenic	10	50	25	2.6	UJ	4.9	U	10	Ü	10	Ü	10	Ü
Barium	200	2,000	1,000	78.8	J	147	J	75.2	J	145	J	152	J
Beryllium	5		3°	0.1	υ	0.2	Ü		Ü	0.1	Ü	1	Ü
		4			- 1	1		0.1			_	0.1	
Cadmium	5	5	5	0.2	U	0.3	U	0.3	U	0.4	U	0.3	·U
Calcium	5,000	NA	NA.	71,900	_	174,000	J	113,300		120,000	_	124,000	
Cobalt	50	NA	5	0.6	บ	1.1	U	1.3	J	1.3	U	1.3	U
Copper	25	1,300	200	0.5	ΩJ	0.5	U	1.5	J	1.2	J	2.1	J
Iron	100	NA	300	1.3	U	8.9	U	ND		ND		ND	
Lead	3	15	25	1,1	U	1.5	U	ND		ND		ND	
Magnesium	5,000	NA	35,000°	18,600	J	37,600	J	43,000	J	37,500		38,600	
Manganese	15	NA	300	85	j	1,080	Ĵ	627	Ī	659	J	623	
Potassium	5,000	NA	NA.	3,360	Ĵ	7,820		2,470	J	6,840	ment to accomp	6,830	estratures est
Silver	10	NA NA	50	10			717		J				
Sodium					U	3.8	UJ	ND		ND		ND	200000044
Thallium	5,000	NA 2	20,000	6,870	J	63,400	Ţ	86,300	J	76,500		79,400	J
I Inclines	10	2	0.5°	1.1	U	1.5	U	3.9	UJ	4.6	J	3.9	UJ
						l .					274254224		atteates es
Vanadium Zinc	50 20	NA NA	NA 2,000°	1.2 9.2	U J	0.4 4.6	U U	ND 7.2	J	ND 24.5		ND 31.7	P\$C0#1-60; 0101

TABLE 3-3 (Cont.) GROUND WATER SAMPLING RESULTS - SECOND ROUND SITE 6 SHCENECTADY ANGB

SCOTIA, NEW YORK

ANALYTE	DETECTION	FEDERAL	NY STATE	BACKG	ROUND			SA	MPLE	NUMBERS	;		
ANALITE	LIMIT ¹	MCL ²	DWQS ³	CON	iC.	6MW	-03	6MW	-08	6MW	-09	6MW	-29 ⁵
TOTAL INORGANICS (ug/L)	Ĭ												
Aluminum	200	NA	NA	7,050	UJ	927		799		96.8	J	109	J
Antimony	6	6	3	2.3	U	1.6	UJ	6	U	6	U	6	U
Arsenic] 10	50	25	6.8	U	3,4	J	ND		ND		ND	
Barium	200	2,000	1,000	198	1	146	В	7.9	J	160	J	156	J
Beryllium	5	4	3°	0.4	J	0.2	U	5	U	5	Ü	5	Ū
Cadmium	5	5	5	0.4	J	0.3	U	5	U	5	U	5	Ū
Calcium	5,000	NA	NA.	71,800	_	143,000		103,200		122,000	•	119,300	Ū
Chromium	10	100	50	14		1.1		10	U	10	U	10	U
Cobalt	50	NA	5	8.8	J	1.6		2.2	j	1.3	Ü	1.3	Ü
Copper	25	1,300	200	13.6	j	3	J	3.4	Ī	2.4	J	3.1	J
Iron	100	NA	300	15,200	_	2,160	-	1,490	-	309	•	372	-
Lead] 3	15	25	6.7	J	2		3	U	3	U	3	U
Magnesium	5,000	NA	35,000°	21,000	J	32,600		39,500	j	38,300	(CM) 163	37,700	
Manganese	15	NA	300	607	j			599	anvance)	#XX5535559V543732939		648	
Nickel	40	100	100	20.4	j	5.1	12322318233333 I	3.9	U	3.1	ionianian L1	3	umanun U
Potassium	5,000	NA	NA	4,680	j	7,180	•	2,610	J	6.890		6.740	Ü
Selenium	5	50	10	5	IJ	5	U	2,4	UJ	2.4	UI	2.9	ŲJ
Silver	10	NA	50	10	U	3.8	ÚJ	10	U	10	IJ	10	U
Sodium	5,000	NA	20,000	8,190	- 1		J	112,000		81.300	. . .	78,300	J
Thallium	10	2	0.5	10	υ	1.5	U	3.9	ÚJ	6.3	j	3.9	Ů.
Vanadium	50	NA	NA	17.4	Ī	2.9	J	1.9	en 75 de I	1.1	IJ	1.1	II
Zinc	20	NA	2,000	62.1	- 1	71	U	18.7	j	27.8	J	31.1	ĭ
1	-*		-,500	"	i	'1	J	10.7	-	~	•	711	

ABBREVIATIONS:

ug/L - micrograms per liter

mg/L - milligrams per liter CRDL - Contract Required Detection Limit

DWQS - Drinking Water Quality Stds.

IDL - Instrument Detection Limit

MCL - Maximum Contaminant Level

NA - Not Applicable NYSDEC - New York State Dept, of

Environmental Conservation

PCBs - Polychlorinated Biphenyls

SVOCs - Semi-Volatile Organic Compounds

VOCs - Volatile Organic Compounds

NOTES:

- 1) Contract Required Detection Limit (CRDL)
- US EPA Drinking Water Regulations and Health Advisories EPA 822-R-007, May 1994.
- 3) NYSDEC Water Quality Standards and Guidance Values, June 1998. Unless otherwise noted, the value listed is the State promulgated standard for the protection of drinking water from a
- 4) Background sample collected from 6MW-10
- 5) 6MW-29 is a duplicate sample of 6MW-09
 - a) The value listed is the NYSDEC standard for the protection of drinking water from a surface water source. The value listed is also the groundwater standard through reference as a Principal Organic Contaminant (POC).
 - b) The value listed is the Principal Organic Contaminant (POC) standard for the protection of drinking water from a groundwater
 - c) The value listed is a guidance for the protection of drinking water from a groundwater source.
 - d) The value listed represents the maximum allowable concentration of phenolic compounds. Total phenolic compounds may not exceed 1.0 ppb.

DATA QUALIFIERS:

- B Value is less than CRDL but greater than IDL.
- J The analyte was positively identified; the associated value is the approx. concentration of analyte in the sample
- R The analyte was rejected due to inability to meet quality control criteria.
- U Compound was analyzed for, but not detected
- UJ The analyte was not detected above the reported sample quantitation limit. However the reported quantitation limit is approximate and may or may not precisely measure the analyte of the sample.
- 107 Indicates concentration that exceeds either State or Federal regulatory limits.

Inorganics. Several inorganic constituents were reported in exceedance of the NYSDEC groundwater standards and the Site 6 groundwater background. These inorganics included the essential nutrient elements magnesium, manganese and sodium; and thallium. The concentration of thallium detected in the Site 6 groundwater slightly exceeded the NYSDEC guidance value of 0.5 µg/L. A promulgated NYSDEC groundwater standard for thallium is not currently available.

3.3.1.3 RI Soil Sampling GC Screening Results

At soil boring locations SB-I, SB-2, SB-4, SB-5, SB-7, and SB-9, samples were collected and sent to an off-site laboratory for GC screening analysis for VOCs using EPA Method 8021. A sample was also collected from the location of TW-2. Screening results are presented in Table 3-4. A summary of the screening results are as follows:

- SB-1, collected from 8 to 8.6 feet bgs, contained the heavy-end gasoline fuel components 1,2,4-trimethylbenzene (828 μg/Kg); 1,3,5-trimethylbenzene (254 μg/Kg); 4-isopropyltoluene (2200 μg/Kg); isopropylbenzene (468 μg/Kg); n-butylbenzene (252 μg/Kg); n-propylbenzene (180 μg/Kg); set-butylbenzene (1980 μg/Kg); and tert-butylbenzene (441 μg/Kg). Additionally, the chlorinated VOCs cis-1,2-DCE (2600 μg/Kg) and TCE (2940 μg/Kg) were also detected. TCE was in exceedance of the NYSDEC cleanup concentration of 700 μg/Kg.
- SB-2, collected from 4 to 6 feet bgs, contained PCE at 140,000 µg/Kg. This exceeds the NYSDEC cleanup concentration of 1,400 µg/Kg.
- SB-4, collected from 4 to 4.7 feet bgs, contained PCE at 8480 μg/Kg. This exceeds the NYSDEC cleanup concentration of 1,400 μg/Kg.
- SB-5, collected from 3.4 to 4 feet bgs, contained PCE at 217 μg/Kg.
- SB-9, collected from 4 to 6 feet bgs, contained TCE at 32.2 µg/Kg.
- SB-7, collected from 5 to 6 feet bgs, was nondetect for all of the previously identified contaminants, at a practical quantitation limit (PQL) of 27.7 μ g/Kg.

Sample TW-2, collected from 3.5 to 4 feet bgs, contained 1,2,4-trimethylbenzene (3310 μ g/Kg); 1,3,5-trimethylbenzene (2900 μ g/Kg); 4-isopropyltoluene (1630 μ g/Kg); ethylbenzene (622 μ g/Kg); isopropylbenzene (3900 μ g/Kg); n-butylbenzene (604 μ g/Kg); n-propylbenzene (1220 μ g/Kg); secbutylbenzene (785 μ g/Kg); tert-butylbenzene (491 μ g/Kg); and total xylenes (1668 μ g/Kg). The xylene result was the only VOC detected in exceedance of NYSDEC cleanup concentrations. These above listed compounds are typical heavy-end, gasoline fuel components.

3.3.1.4 RI Soil Sampling Analytical Results

A total of ten soil samples were collected from various soil borings and submitted for laboratory analysis for VOCs, SVOCs, Pest/PCBs, herbicides, total cyanide, and TAL metals. The analytical results are presented in Table 3-5. A summary of the analytical findings is presented below:

TABLE 3-4
SOIL BORING SAMPLE RESULTS
GC SCREENING
SCHENECTADY ANGB - SITE 6
SCOTIA, NEW YORK

		NYSDEC				SAN	SAMPLE NUMBERS / SAMPLE INTERVALS	ERS / SAMP	LE INTERV	ALS			
ANALYTE	BKGRND		SB-1	SB-2	E-gs	TW-2	SB-4	SB-5	SB-6	SB-7	SB-8	SB-9	SB-10
		CONC.	8-8.6'	4-6'		3.5-4'	4.4-4.7	3.4-4'		2-6,		4-5'	
VOCs (ug/kg)													
1,2,4-Trimethylbenzene	Q.	Ϋ́	828	Ð	SN	3,310	£	S	SN	Q.	SN	Ð	SN
1,3,5-Trimethylbenzene	2	NA	254	QN QN	SN	2,900	ę	e R	SN	Q.	SN	ΩŽ	SN
4-Isopropyltoluene	Q	NA	2,200	Q	SN	1,630	£	£	SN	Ð	SN	Q.	NS
cis-1,2-Dichloroethene	Ð	NA	2,600	£	SN	Q	S	Q.	SN	Q	NS	Q	SN
Ethylbenzene	QN	5,500	QN	Q	SN	622	Ð	S	SN	Q	SN	Q	NS
Isopropyl benzene	Q	ΝΑ	468	Ą	SN	3,900	Ð	QX	SN	Q	NS	Ð	SN
m,p-Xylene	Q	1,200	£	Ð	SN	1,490	Ð	Q	SN	Ð	SN	Q.	SN
n-Butylbenzene	g	ΝΑ	252	Ð	SN	604	ð	Ð	SN	Ð	SN	ΩN	SN
n-Propylbenzene	Ð	ΝΑ	180	g	SN	1,220	Q.	£	SN	Ą	SN	Q N	NS
O Xylene	Q.	ΑN	QN	£	NS	178	g	Ð	SN	Ð	SN	<u>R</u>	NS
sec-Butylbenzene	ę	NA	1,980	ĝ	SN	785	Ð	Q.	SN	Ð	NS	Q N	NS
tert-Butylbenzene	Q	AN	441	£	SN	491	Ð	QN	SN	Q	SN	Q.	NS
Tetrachoroethene	g	1,400	QV.	140,000	SN	Ą	8,480	217	SN	Q	NS	ΩN	SN
Trichloroethene	Ð	700	2,940	Ð	SN	QN	Ð	Q	NS	S	SN	32.2	SN

ABBREVIATIONS:

ug/kg - micrograms per kilogram MCL - Maximum Contaminant Level MW - Monitoring Well

NA - Not Applicable ND - Not Detected

NYSDEC - New York State Dept. of Environm'l Conservation NS - Not Sampled

SB - Soil Boring

TOC - Total Organic Carbon

TW - Temporary Well VOCs - Volatile Organic Compounds

NOTES: 1) NYSDEC TAGM HWR-94-4046 J anuary 24, 1994, adjusted for TOC content. 2) TW-2 represents a soil sample collected during installation of a temporary well.

Indicates concentration that exceeds State regulatory limits. DATA OUALIFIERS:

CAD\SharedFiles\RI Sample result tables (revised)\table 6-25

TABLE 3-5 SOIL SAMPLE RESULTS SCHENECTADY ANGB - SITE 6 SCOTIA, NEW YORK

	<u> </u>		NYSDEC	<u> </u>			s	AMPLE N	UMBER	us			
ANALYTE	DETECTION LIMIT ¹	BCKGRND CONC.	CLEANUP CONC.2	SB 4-		TW 3-4		TW-		SB-1 2-4		SB-1 2-4	
VOCs (ug/kg)	 						-	-		~ ,			
cis-1,2-Dichloroethene	6	ND	NA.	17		6	U	6	υ	1	บ	200	J
tert-Butylbenzene	6	ND	NA NA	6	U	6	U	12		1	U	1	U
Trichloroethene Ethylbenzene	6	ND	700*	14		6	U	1	Ū	1	U	95	
Isopropyl benzene	6	ND ND	5,500*	6	U	10	1	17	J	1	ŭ	1	ซ
4-Isopropyltoluene	6	ND	NA NA	6	U	69	J	150	J	1	U	!	U
n-Propylbenzene	6	ND	NA.	6	บ	52 84	1	140 220	J	1	U	1 1	U U
1,1,1,2-Tetrachloroethane	6	ND	NA.	7.1	٠	6	Ü	5.6	Ü	1	บ	1	U
1,3,5-Trimethylbenzene	6	ND	NA.	6	บ	110	Ĵ	380	J	1	ซ	1	Ü
1,2,4-Trimethylbenzene	6	ND	NA	6	Ü	170	ĵ	600	j	i	Ū	î	Ü
Tetrachloroethene	6	ND	1,400*	8,600	Ĵ	7	. 3	6	ÚJ	4	U	520	J
m,p-Xylene	6	ND	1,200*	6	U	49	ij	140	J	1	U	1	U
trans-1,2-Dichlorofluromethane	1 1	ND	NA.	6	U	6	U	6	U	1	U	6.2	
Toluene	1	5.4	1,500*	6	ប	6	U	6	U	1	ับ	1.4	J
Trichlorofluromethane	1 1	ND	NA NA	6	υ	6	U	6	U	1	UJ	1	U
EVOC. (/I)													
SVOCs (ug/kg) Fluoranthene	390	340	50,000**	390	γ, Ι			l	,	30	,	300	
Benzo (b) fluoranthene	390	340	1100	390	U	44 390	UJ UJ	68 370	IJ	38 370	n 1	390 390	U U
2,2'oxibis (I Chloropane)	390	ND	NA	390	Ω1	390 390	UJ	370	UJ	370 370	บ	390 390	U
Pentachlorophenol	980	ND	1,000 or MDL	980	R	970	R.	930	R	940	บ	970	Ü
n-Nitrosodimethylamine	390	330	NA NA	390	Û	390	IJ	370	Ū	370	Ü	390	บ
Ругене	390	ND	50,000**	390	Ü	390	UJ	55	J	41	j	390	U
2-Methylnaphthalene	390	ND	36,400	390	ŭ	88	J	370	Ŭ	370	Ū	390	Ü
Naphthalene	390	ND	13,000	390	Ū	110	j	370	ŬJ	370	Ū	390	Ü
Hexachlorocyclopentadiene	390	ND	NA -	390	UJ	390	UJ	370	U	370	UJ	390	UJ
2,4-Dinitrophenol	390	ND	NA	390	บ	390	U	370	U	940	UJ	970	UJ
bis (2-Ethylhexyl) phthalate	390	ND	50,000**	390	U	390	U	370	ับ	370	ប	110	J
Benzo (a) anthracene	390	180	224 or MDL	390	U	390	U	370	U	370	ប	390	U
Chrysene	390	250	400	390	U	390	U	370	U	370	υ	390	U
Вепло (а) ругепе	390	210	61 or MDL	390	U	390	U	370	U	370	U	390	U
DEST TO COME (1)			;					1		l			
PEST/PCBs (ug/kg) 4,4'-DDD	3.9	6	2 100	,,	.,	2.0	.,	1		١.,	••	***	••
4,4'-DDT	3.7	3	2,100 2,100	3.9 3.9	U	3.9 3.9	U	3.7 3.7	U	3.8 3.8	U U	3.9 3.9	บ บ
.,	3	Ĭ	2,100],		3.9	U	3.7	ь	ه.د ا	U	3.9	U
HERBICIDES (ug/kg)										l			
2,4-D	0.6	ND	500	0.58	R	0.58	R	0.56	R	0.6	R	0.6	R
2,4,5-TP (Silvex)	0.6	0.24	700	0.58	UJ	0.58	U	0.56	U	0,6	UJ	0.6	IJ
Dinoseb	1,1	ND	NA NA	1.2	UJ	1,2	U	1.1	U	1,1	R	1.2	R
Picloram	0.5	ND	NA.	0.47	UJ	0.46	UJ	0.44	UJ	0.4	UJ	0.5	UJ
	1			l				l]			
CYANIDE, Total (mg/kg)	0.5	ND	ND	ND		ND		ND		ND		ND	
INORGANICS (mg/kg)													
Aluminum	200	15,321	SB	14,200		14,200	ĵ	18,800	•	13,100	J	10,200	J
Antimony	60	17	SB	1,1	U	0.5	ŭ	10,000	Ü	2.7	U	1.4	n '
Arsenic	2	8	7.5 or SB	16.4		7.6	3	6.8	J	112		5.4	U
Barium	200	97	300 or SB	115	Secretary	90.3	j	156	j	75.4	J	66.2	J
Beryllium	1 1	0.81	.16 or SB	0.9	J	0.6	j	100	. j	0.7	J	0.5	j
Cadmium	1 1	ND	1 or SB	1.1	ĵ	0.7	j	0.7	J	0.2	J	0.3	J
Calcium	5,000	11,383	SB	2,070	J	3,360		1,840		2,860	j	5,060	ĵ
Chromium	2	23	10 or SB	245		16.7		21.6		17.7		14	
Cobalt	50	16	30 or SB	25.9		11.6	J	13.8	3	14.2	J	9	J
Copper	25	42	25 or SB	48		24.5		24		32.2		21.1	
Iron	100	33,876	2,000 or SB	40,500	MARCHARICHE AND THE	23,200		31,800		30,800	1	19,000	J
Lead	3	45	SB	25.6	J	15.9	J	10	J	20.2		12.3	
Magnesium Mauganese	5,000	8,120	SB	6,690	Daniel Company	4,420		4,990		4,600		4,480	J
Nickel	15	855	SB	888		464		363		535	J	205	J
Potassium	40 5 000	29	13 or SB	59.7		21,4	_	24.6	_	30	J		
Silver	5,000 2	1,930	SB		В.	1,370	J	1,910	J	1,760	j	1,590	_
Sodium	5,000	ND 380	SB	0.6		0.6	U	0.7	U	1.3	J	1	J
Thallium	10	ND	SB SB	232		192	U	39.3	U	67	U	66	U
	50	30		0.5		1.1 21.9	U	0.5	U	1.8	U	0.9 20.9	\mathbf{u}
li Vanadium													
Vanadium Zinc	20	116	150 or SB 20 or SB	25.2 132	30 m	75.2		32.8 75.4		28 75.35	J	56.3	j

TABLE 3-5 (Cont.) SOIL SAMPLE RESULTS **SCHENECTADY ANGB - SITE 6** SCOTIA, NEW YORK

ANALYTE	DETECTION	BCKGRND	NYSDEC				S	AMPLE N	UMBER	RS			
	LIMIT ¹	CONC.	CLEANUP	SB	-13	SB-		SB-		SB-	554	SB-	16
VOCs (ug/kg)													
cis-1,2-Dichloroethene	6	ND	NA.	1	U	1	U	ī	U	1	U	1	U
tert-Butylbenzene	6	ND	NA	1	U	1	U	1	U	1	ប	1	U
Trichloroethene	6	ND	700*	1	U	1	U	i	U	1	U	1	U
Ethylbenzene	6	ND	5,500*	1	U	1	Ū	1	U	1	ប	1	U
Isopropyl benzene	6	ND	NA	1	U	1	U	1	ប	1	U	1	U
4-Isopropyltoluene	6	ND	NA	I	U	1	U	1	บ	1	U	í	U
n-Propylbenzene 1,1,1,2-Tetrachloroethane	6	ND ·	NA	1	U	1	Ū	1	ซ	1	U	1	U
1,3,5-Trimethylbenzene	6	ND	NA NA	1	U	1	U	1	U	1	U	1	U
1,2,4-Trimethylbenzene	6	ND	NA.	1 1	U	1	U	1	U	1	U	1	บ
Tetrachloroethene	6	ND ND	NA 1,400*	1 1	U	1	บ	1	U	1	U	1	υ
m,p-Xylene	6	ND	1,400*	1	U	1 1	IJ	1	U	1	U	1	U
trans-1,2-Dichlorof luromethane	1	ND	1,200* NA	1 1	U U	1 1	Ū	1	U	1	U	1	U
Toluene	l î l	5.4	1,500*	1	Ū	1 1	U	1	U	1	U	1	U
Trichlorofluromethane	i	ND	NA	1 1	U	1 1	U	1	U U	0.8 1	U	1	U
SVOCs (ng/kg)							_	_	-	-	_	-	~
Fluoranthene	390	340	50,000**			l			_				
Benzo (b) fluoranthene	390	340	50,000**	410	U	390	U	60	J	410	U	94	J
2,2'oxibis (I Chloropane)	390	ND	1,100	410	U	390	ប	55	J	410	U	78	J
Pentachlorophenol	980	ND	NA 1 000 - 1 001	410	U	390	U	370	U	410	U	390	U
n-Nitrosodimethy lamine	390	330	1,000 or MDL	1,000	Ū	970	U	920	U	1,000	ប	970	U
Pyrene Pyrene	390	ND	NA 50,000**	410	U	390	Ū	370	U	410	U	390	U
2-Methylnaphthalene	390	ND	50,000** 36,400	410 410	U U	48	j.	70	J	410	U	98	J
Naphthalene	390	ND	13,000	410	U	390	Ü	370	U	410	Ü	390	υ
Hexachlorocyclopentadiene	390	ND	15,000 NA	410	UJ	390	ŭ	370	U	410	U	390	U
2,4-Dinitrophenol	390	ND	NA NA	1,000	Ü	390 390	U	370 920	U U	410	U	390	U
bis (2-Ethylhexyf) phthalate	390	ND	50,000**	410	Ū	390	บ	370	UJ	1,000 410	ប្រ ប	390 390	U
Benzo (a) anthracene	390	180	224 or MDL	410	Ū	54	J	370	Ü	410	ย	390 45	U
Chrysene	390	250	400	410	Ü	390	Ü	370	Ü	410	U	45	l l
Benzo (a) pyrene	390	210	61 or MDL	410	Ü	39	J	40	J	410	U	52	j
PEST/PCBs (ug/kg)			ŀ										
4,4'-DDD	3.9	6	2,100	4	U	0.7	U	2,8	J	2.1	U	3.9	U
4,4'-DDT	3.7	3	2,100	4	Ü	3.9	บ	0.9	j	4.1	U	3.9	ប
HEDDICYDES (#>			Į. I			1							
HERBICIDES (ug/kg) 2,4-D		3775			_	ł						1	
	0.6	ND	500	0.6	R	0.6	R	0,5	R	0.6	R	0.6	R
2,4,5-TP (Silvex) Pentachlorophenol (P CP)	0.6	0.24	700	0.6	UJ	0.6	UJ	0.5	ໜ	0.6	R	0.6	UJ
Dinoseb	1.1 1.1	ND	1,000 or MDL	1.2	R	1.2	R	1,1	R	1.2	R	1.2	R
Picloram	0.5	ND	NA NA	1.2	R	1.2	R	1.1	R	1.2	R	1.2	R
1 Iciosam	V.3	ND	NA .	0.5	W	0.5	UJ	0.4	ເນ	0.5	UJ	0.5	UJ
CYANIDE, Total (mg/kg)	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
INORGANICS (mg/kg)													
Aluminum	200	15,321	SB	14,600	J.	14,000	J	17,400	1	19,800	1	11.000	J
Antimony	60	17	SB	2.9	Ü	2.8	Ü	2.6	U	2.9	U	1.4	U
Arsenic	2	8	7.5 or SB	8	J	10.4	Ĭ	8.7	Ī	9.2		6.2	·
Barium .	200	97	300 or SB	93.6	Ţ	65.5	J	116	J	124	J	80	J
Beryllium	1	0.81	.16 or SB	0.8	J	0.7	j				1.2	27	j
Cadmium	1	ND	1 or SB	0.1	Ū	0.2	j	0.5	J	0.9	J	0.2	j
Calcium	5,000	11,383	SB	2,250	J	1,590	j	7,020	j	6,010	ĭ	5,210	J
Chromium	2	23	10 or SB	17.4		21,8	-	19.4		22.5	•	13.5	•
Cobalt	50	16	30 or SB	9.5	J	15.6	ŗ	9.4	J	10.6	J	10.2	1
Copper	25	42	25 or \$B	24		31.7		22.8		24.2		20	
Iron	100	33,876	2,000 or SB	27,900	J	24,000	J	32,100	J	33,600	J	22,200	ĭ
Lead	3	45	SB	16.0	J	18.4	Ĵ	18.4	J	22.3		14.1	
Magnesium	5,000	8,120	SB	3,940	J	5,930	J	6,440	J	5,610	3	3,870	J
Manganese	15	855	SB	421	J	661	J	418	3	551	J	522	J
Nickel	40	29	13 or SB	23.0		35		21.5		23.5	J	15.6	
Potassium	5,000	1,930	SB	1,710	J	2,150	ĵ	1,520	J	1,890	J	1,380	
Silver	2	ND	SB	1.4	U	1.3	U	1.6	J	1.7	J	i	J
Sodium	5,000	380	SB	72.2	U	69.2	U	64	U	72	U	33.8	U
/mt 141													U
Thallium	10	ND	SB	1.9	U	1.8	U	1.7	U	1.9	U	0.9	U
Thallium Vanadium Zinc	10 50 20	30 116	150 or SB 20 or SB	29.8 78.2	J	25.7 76.3	U J	1.7 35 56	J	1.9 38 64.9	U J	0.9 24 48	J

ABBREVIATIONS:

ug/kg - micrograms per kilogram mg/kg - milligrams per kilogram DWQS - Drinking Water Quality Stds.

IDL - Instrument Detection Limit MDL - Method Detection Limit

MDL - Method Detection Limit

NA - Not Applicable

3) TW-22 is a duplicate sample of TW-2

ND - Not Detected

4) SB-55 is a duplicate sample of SB-15

NYSDEC - NewYorkStateDept.ofEnviroConserva

5) As per TAGM #4046, total VOCs < 10 ppm.

- NOTES:

 1) Contract Required Detection Limit (CRDL)

 2) NYSDEC TAGM HWR-94-4046, Jan 24, 1994. Where applicable, the soil cleanup objectives were corrected for TOC levels. Where the GW based Soil Cleanup Objectives differed from the Recommended Soil Cleanup Objectives, the more stringent value was used.

VOCs - Volatile Organic Compounds
CAD\SharedFiles\RI Sample result tables (revised)\table 6-26

DATA QUALIFIERS:

- B Value is less than CRDL but greater than IDL,
- J The analyte was positively identified; the associated value is the approx. concentration of analyte in the sample
- R The analyte was rejected due to inability to meet quality control criteria.
- U Compound was analyzed for, but not detected
- UI The analyte was not detected above the reported sample quantitation limit. However the reported quantitation limit is approximate and may or may not precisely measure the analyte of the sample.

HIZ: Indicates concentration that exceeds either State or Federal regulatory limits.

9/19/02 9:34 AM

- SB-2. Sample collected from 4 to 6 feet bgs. VOCs detected included cis-1,2-DCE (17 μg/Kg); TCE (14 μg/Kg); 1,1,1,2-tetrachloroethane (7.1 μg/Kg); and PCE (8,600 μg/Kg), of which only PCE was in excess of the NYSDEC cleanup standard (1,400 μg/Kg). No significant VOC TICs were reported by the laboratory. No significant SVOCs were reported by the laboratory. Trace amounts of several polynuclear aromatic hydrocarbons (PAH) near the PQL were recorded. The laboratory did not report the presence of any pesticides, herbicides, PCBs or cyanides. Significant inorganics detected above the NYSDEC cleanup criteria included arsenic (16.4 mg/Kg), beryllium (0.9 mg/Kg), cadmium (1.1 mg/Kg), chromium (24.5 mg/Kg), cobalt (25.9 mg/Kg), copper (48.8 mg/Kg), nickel (59.7 mg/Kg) and zinc (132 mg/Kg). Iron (40,500 mg/Kg), manganese (888 mg/Kg), and potassium, (2,280 mg/Kg) were also detected above NYSDEC cleanup criteria.
- TW-2. Sample was collected from a depth of 3 to 4 feet bgs. A duplicate sample of TW-2, TW-22, was also collected from this same depth. Although no VOCs were detected above available background or NYSDEC cleanup standards, several heavy end petroleum related compounds were detected in TW-2 and TW-22 at elevated levels relative to the other sample results. N-propylbenzene (84 to 220 µg/Kg), 1,3,5-trimethylbenzene (110 to 380 µg/Kg) and 1,2,4-trimethylbenzene (170 to 600 µg/Kg) had the highest concentrations. Only two inorganics, aluminum, detected at 18,000 µg/Kg, and beryllium, detected at 1.0 µg/Kg, exceeded NYSDEC cleanup standards (15,321 µg/Kg and 0.81 µg/Kg, respectively). These were detected in the duplicate sample, TW-22. Although the sample results for the same compounds from TW-2 were comparable, they did not exceed either of these standards. The laboratory did not report the presence of any pesticides, herbicides, PCBs or cyanides.
- SB-11. Sample collected from 2 to 4 feet bgs. was found to be relatively free of organic contamination. No significant VOCs, SVOCs, pesticides, herbicides, PCBs, or cyanide were reported. Two inorganic compounds which only slightly exceeded NYSDEC cleanup criteria were arsenic at 11.2 mg/Kg and nickel at 30 mg/Kg. The cleanup standards for these two compounds are 8 mg/Kg and 29 mg/Kg, respectively.
- SB-12. Sample collected from 2 to 4 feet bgs. VOCs detected in this sample included cis-1,2-DCE (200 μg/Kg); trans-1,2-dichlorofluromethane (6.2 μg/Kg); TCE (95 μg/Kg); PCE (520 μg/Kg); and toluene (1.4 μg/Kg), all of which are less than the NYSDEC cleanup standards. No significant VOCs TICs were reported by the laboratory, nor were there any SVOCs, pesticides, herbicides, PCBs, or cyanide reported. No inorganic compounds were detected above NYSDEC cleanup criteria.
- SB-13. Sample collected from 2 to 4 feet bgs. No significant VOCs, SVOCs, pesticides, herbicides, PCBs, or cyanide were reported. No inorganic compounds were detected above NYSDEC cleanup criteria.
- SB-14. Sample collected from 2 to 4 feet bgs. No significant VOCs, SVOCs, pesticides, herbicides, PCBs or cyanides were reported. Inorganics detected at concentrations slightly above the NYSDEC cleanup criteria included arsenic (10.4 mg/Kg), nickel (35 mg/Kg), and potassium (2,150 mg/Kg).
- SB-15. Sample collected from 2 to 4 feet bgs. No significant VOCs, SVOCs, pesticides,

herbicides, PCBs or cyanides were reported. A duplicate sample of SB-15, SB-55, was also collected from this same depth. Inorganics detected at concentrations slightly above the NYSDEC cleanup criteria included aluminum (17,400 mg/Kg), arsenic (8.7 mg/Kg), barium (116 mg/Kg), beryllium (1 mg/Kg), and vanadium (35 mg/Kg). Sample results from the duplicate sample, SB-55, were almost identical to the results from the original sample.

• SB-16. Sample collected from 2 to 4 feet bgs. No significant VOCs, SVOCs, pesticides, herbicides, PCBs or cyanides were reported. Of the inorganic compounds analyzed for, only beryllium, at 1.0 mg/Kg, was detected above the NYSDEC cleanup criteria of 0.81 mg/Kg.

3.3.1.5 Surficial Geology

The overburden material at Site 6 consists mainly of a brownish to dark gray inorganic clayey silt with some fine to medium sand. The material was dry and fairly loose but could be rolled into 1/4-inch threads when wet. The thickness of the overburden ranged from between four and eight feet bgs throughout the majority of the northern section of Site 6. Following surficial topography, the overburden becomes increasingly shallower towards the southern edge of the site.

3.3.1.6 Bedrock Geology

During the advancement of soil borings to facilitate the installation of groundwater monitoring wells at Site 6, bedrock was encountered at between four and eight feet bgs. Split spoon samples recovered from the point of refusal typically had 3 to 7 inches of fractured, weathered shale in the nose of the sampler. This shale was typically dark gray to bluish black and highly fractured. Due to the fact that the bedrock was highly fractured, rock coring or the use of a roller bit was not required. The borings were advanced with the use of hollow stem augers (HSA). The fractured shale was pulverized into a fine powder and brought to the surface as a fine powder. Boring logs are presented in Appendix D.

3.3.1.7 Hydrogeology

Groundwater at Site 6 was consistently encountered at depths ranging from 5 to 7 feet bgs. Groundwater flows along the overburden/bedrock interface and within the first few feet of the fractured, weathered bedrock. Hydraulic gradients were calculated for Site 6 using groundwater elevation data obtained from monitoring wells 6MW-08, 6MW-09, and 6MW-10 measured on May 17, 1999. Hydraulic gradients ranged from 0.03 ft/ft (measured between 6MW-08 and 6MW09) to 0.42 ft/ft (measured between 6MW-09 and 6MW-10), with an average gradient of 0.037 ft/ft.

Hydraulic conductivity (K) was estimated from in-situ hydraulic conductivity tests performed on monitoring wells 6MW-03, 6MW-08, 6MW-09, and 6MW-10. Hydraulic conductivity values ranged from 8.46X10⁻⁶ cm/sec measured at 6MW-08 to 2.72x10⁻⁴ measured at 6MW-10. Groundwater flow velocity at Site 6 was calculated using a lower hydraulic gradient (I) of 0.03 ft/ft (measured between 6MW-08 and 6MW-09) and an upper gradient of 0.42 ft/ft (measured between 6MW-09 and 6MW-10), a K value of 2.12x10⁻³ cm/sec, and an estimated effective porosity of 15%. A groundwater flow velocity of 0.015 ft/day (5.5 ft/yr) was calculated using the shallower gradient of 0.03 ft/ft. A flow velocity of 0.022 ft/day (7.9 ft/yr) was calculated using the steeper gradient of

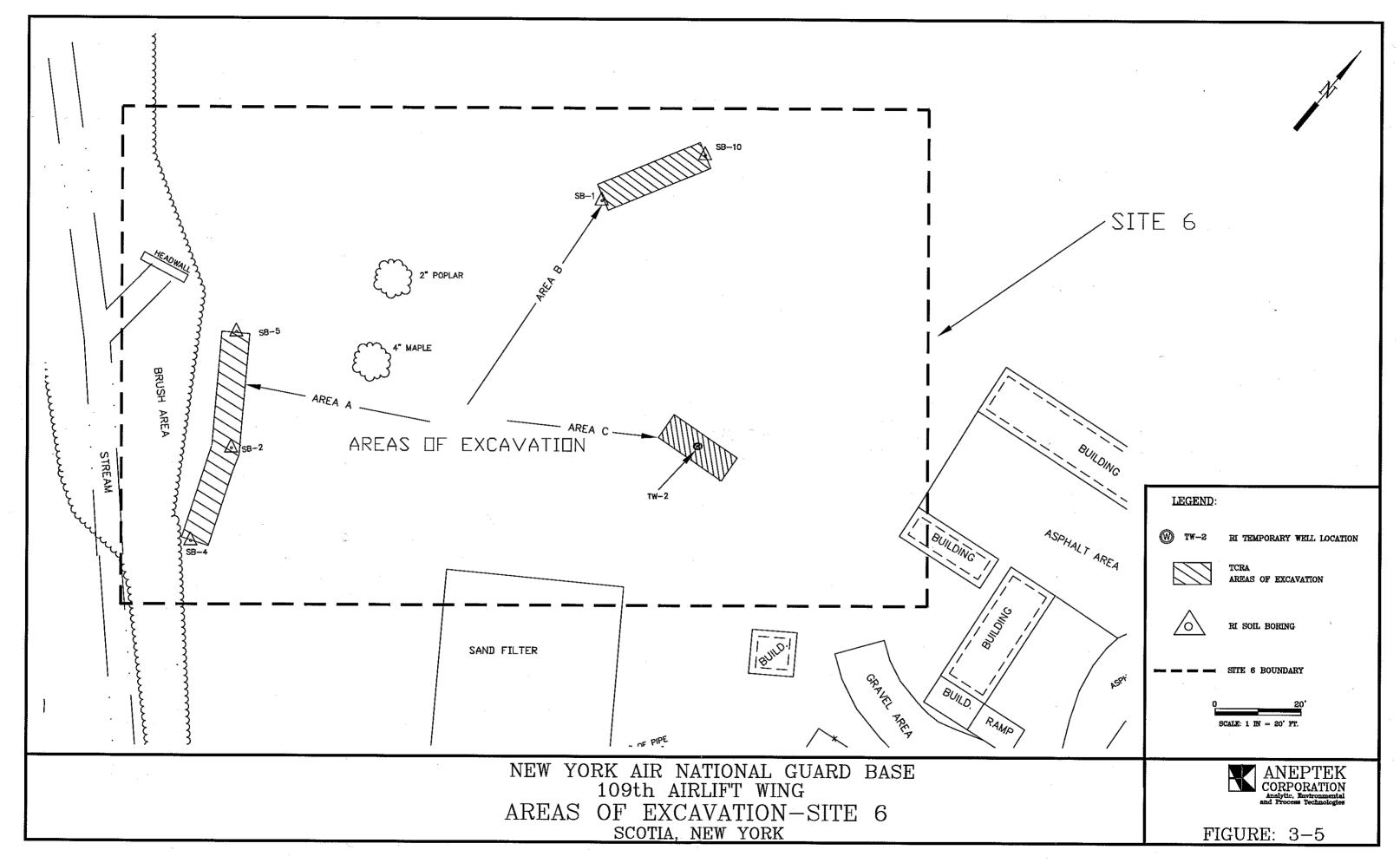
3.4 Summary and Conclusions

Within Site 6, the RI revealed three apparently separate and distinct soil contaminant locations. The dominant Contaminants of Concern (COCs) within these three areas volatile organic compounds and, to lesser degree, inorganics. These areas were designated as Area A, Area B, and Area C. Their specific soil contaminants and relative locations are described as follows:

- <u>Area A</u>-Tetrachloroethene (a.k.a. perchloroethene, PCE): Area A is centered near soil boring location SB-2, with diminished levels extending northwest to SB-5 and southeast to SB-4. The concentration of PCE is above the NYSDEC criteria for soil based on laboratory analytical results.
- <u>Area B-Trichloroethene</u> (TCE): Area B is approximately 100 feet north (up gradient) from the PCE location. This area extends in a northeast direction from soil boring SB-1 to SB-10. The concentration of TCE is above the NYSDEC criteria for soil based on laboratory screening data.
- <u>Area C</u>-Weathered Fuel Constituents (heavy-end residual): This contaminant location is centered near TW-2, and possesses trace amounts (7 ug/kg, estimated) of PCE. The fuel is significantly weathered and is void of its lighter-end components, including benzene, ethylbenzene, and toluene. With the exception of a single laboratory screening result for xylenes, all soil contaminants were detected below the NYSDEC soil criteria at this location.

Downgradient of the above referenced locations, where PCE and TCE were detected in soil, the more mobile and soluble degradation product, cis-1,2-DCE, was detected in groundwater. In (down gradient) monitoring well 6MW-09, both cis-1,2-DCE and PCE were detected above the NYSDEC criteria for groundwater. In two (down gradient) temporary wells, (near the Site 6/Site 3 boundary), TW-9 and TW-12, cis-1,2-DCE was also detected above the NYSDEC criteria for groundwater. Vinyl chloride was also detected in TW-9 and TW-12, but at levels slightly below the NYSDEC criteria. In temporary monitoring well TW-1, cis-1,2-DCE was detected in the groundwater at a concentration below the NYSDEC criteria. Monitoring well 6MW-08 and microwells MIC-A and MIC-D (located down gradient from Site 6) did not possess any chlorinated VOC contaminants. Cis-1,2-DCE and vinyl chloride were detected in 6MW-03 at concentrations that exceeded the NYSDEC criteria for groundwater quality. The presence of cis-1,2-DCE and vinyl chloride at 6MW-03 may have resulted from the degradation of the PCE and TCE in soils situated upgradient. During headspace screening, RI soil borings field screening samples collected from the 4-6 ft interval in SB-6 and SB-8 reported readings of 200 and 300 ppm, respectively. These borings are located upgradient of 6MW-03.

The soil contamination detected near TW-2 does not appear to be impacting the groundwater. A groundwater sample collected from TW-2 possessed 1,3,5-Trimethylbenzene at a concentration of 1.33µg/L, below the NYSDEC drinking water standard of 5µg/L. In monitoring well 6MW-03 (located directly down gradient from TW-2) gasoline fuel constituents were not detected during the RI.


3.5 Removal Action

Based on the results of the RI, three Areas of Concern (AOC), Areas A, B, and C, were identified. Excavation and off-site disposal were chosen as the remedial action. Aneptek was contracted by the ANG to conduct a Time Critical Removal Action (TCRA) at Site 6. The TCRA was conducted on April 22 to April 25, 2002. The areas of excavation were between SB-4 and SB-5 (Area A), between SB-1 and SB-10 (Area B), and centering on TW-2 (Area C). Excavated areas are shown in Figure 3-5. Soils were excavated from the ground surface to a depth of approximately 8 feet bgs. Approximately 173 cubic yards of soil were removed. Soils were transported to EMS1 in Hudson Falls, New York, for disposal by incineration. Confirmatory soil samples were collected from the sidewalls and floor of each excavation and submitted to an off-site laboratory for VOC analysis by EPA Method 8260B. Sample results are presented in Table 3-6. Confirmatory sampling locations and results for Areas A, B, and C are summarized in Figures 3-6, 3-7, and 3-8, respectively.

3.6 Data Gaps

As stated in Section 3.2 of this TM, Site 6 was not originally identified as an ERP Site to be investigated during the RI. Based on results from the RI activities conducted at ERP Site 3, it became apparent that groundwater at Site 3 was being impacted from point sources located upgradient and adjacent to Site 3. As this was realized near the end of the RI field program, the scope of work conducted at Site 6 was limited in nature. This resulted in a limited number of soil and groundwater sampling points with corresponding limited information about site contamination, contributing to a number of data gaps relating the to the vertical and horizontal extent of soil and groundwater contamination. The objective of the SDC was to address existing data gaps to facilitate the completion of the FS at Site 6.

C:/finsdctmrep.wpd 3-20

Jeff\SharedFiles\Schenectady\DFT TCRA Confirm Result Table

CONFIRMATORY SOIL SAMPLING ANALYTICAL RESULTS
SCHENECTADY ANGB - SITE 6 TCRA
SCOTIA, NEW YORK

			NYSDEC		:		SAM	SAMPLE IDENTIFICATION	TIFICATIO	NC			
ANALYTE	DETECTION LIMIT ¹	BCKGRND CONC. ²	CLEANUP CONC. ³	EX-A-W-Sidewall	ldewall	EX-A-N-Bottom	Bottom	EX-A-N-Sidewall	idewall	EX-A-E-Sidewall	idewall	EX-A-S-Bottom	Bottom.
VOCs (ug/kg)						,	ı	;	ı	,	ı		!
Dichlorodifluoromethane	1.1	2	Ę	Ξ	F,	==	片	1:1	1	1.2		7.	CF
cis-1.2-Dichloroethene	1:1	£	Ę	3,9	ŏ	:	Þ	1:1	Þ	7.3	-	17	Þ
Chloroform		Q	岌	1.1	Þ	1:1	D	1.1	Þ	17	Þ	1.2	n
Trichloroethene	7	2	700	2.7	g	1.1	Þ	1.1	g	3.7	ğ	1.2	Þ
Benzene	-	Q	뉥	13	ğ	2.1	Š	1.9	ō,	1.2	ğ	1.2	ď
Tetrachoroethene	1:1	Ð	1400	2000		130		400		00.1		36	
Toluene	1	5,4	1500	2.5	g	5.5		3,1	Š.	1.7	ğ	3.8	g
m.p-Xylene	1.1	Ð	1200	1:1	Þ	1.3	g	Ξ:	Þ	1.2	n	8.0	g
4-Isopropyltoluene		Ð	ž	1:1	Þ	1.1	Þ	1:1	Þ	1.2	Þ	1.2	Þ
1.2.4-Trichlorobenzene	1.1	æ	뉟	1.	D	=	Þ	::	₽	1.2	ם	17	ם
Naphthalene	1:1	Ð	13,000	11	D	=	D	1.1	Þ	17	Þ	1.2	Þ

			NYSDEC				SAM	SAMPLE IDENT	TIFICATION	NO			
ANALYTE	DETECTION LIMIT ¹	BCKGRND CONC. ²	CLEANUP	EX-AS-Sidewall	ldewall	EX-B-N-Bottom	3ottom	EX-B-S-D-Bottom	-Bottom	EX-B-N-Sidewall	idewall	EX.B-E-Sidewall	Sidewall
			2000										
Cs (ug/kg)	•	Ş	IIX	-	=	1,2	F	2	Ħ		Н	1.2	П
Dichlorodifluoromethane		2	727	:	;	ļ	?	! :	1	: :	! :		,
cis-1.2-Dichloroethene		£	뉟	:: _	þ	13	g	2.8	Ę,	[]	-	4. V.	ζ,
Cultura forms	=	Ę	Þ	17	Ω	1.2	Þ	1.2	Þ	Ι.:	Þ	1.2	Þ
CHOLOROLLI	-	9 5	2 5		2	۲.	<u>o</u>	8.6	H	1.1	n	2.6	JO, JM
Trentoroemene	-	2 !	3		· ·	:	<u>'</u> =	-	2	-	Ξ	_	2
Benzene	1:1	QZ.	ž	7.7	~	7:1	>	-	Ņ		> ;	::	' :
Termohomosthene		Ę	1400	240		77	Þ	1.2	Þ	1.7	Þ	1.2	⊋
Totaviloromicilo	: -	4.4	1500	13		1.2	n	5.6	ō.	1.2	ď	3,4	Ю, Ж
Toluene		; ;	1200	: :	ш	12	n	1.2	'n	1:1	D	1.2	Þ
m,p-Xylene	7	2 9	707	1 -	- -	; ;	· =	2	=	<u></u>	Þ	2.3	ರ್ಷ
4-Isopropyltoluene	1:1	ב	ב ב	1:7		7) ;	! :	;	: ;	:	•	<u> </u>
1.2.4-Trichlorobenzene	1.1	£	Ę	1:1	Þ	1.2	 ->	7.7	- i	7.7	;	- c	į (
Naphthalene	1.1	£	13,000	1:1	Þ	1.2	Þ	23	Š.	T	-	C7	ž
•			_										

TABLE 3-6 (Cont) CONFIRMATORY SOIL SAMPLING ANALYTICAL RESULTS SCHENECTADY ANGB - SITE 6 TCRA SCOTIA, NEW YORK

			NYSDEC				SAM	SAMPLE IDENTIFICATION	TFICATION	N.C			
ANALYTE	DETECTION LIMIT ¹	BCKGRND CONC. ²	CLEANUP CONC.3	EX-B-S-Sidewall	ewall	EX-B-S-Bottom	tottom	EX-B-W-Sidewall	idewall	EX-C-E-Bottom	Sottom	EX-C-S-Sidewall	idewall
(-0000000000000-							T						
VOCS (ug/kg) Dicklorodifluoromethane	=	Ē	Ż	1.2	7	1.2	J,	1.2	ц	1.1	11	1.2	님
nis. 12.Dichlomothene	=======================================	9	Þ	1.2	Þ	20	Ħ	1.2	D	5.8		1.2	ם
Chloroform		2	ż	17	Þ	1.2	D	1.2	n	1.1	Þ	1.2	Þ
Trichloroethene		2	2007	1.2	Þ	30	Ħ	1.2	n	20		1.3	ď
Benzene		Q	ž	1.2	Þ	1.2	õ	1.2	ם	4.9	ğ	1.2	ğ
Tetrachoroethene	1	Q	1400	1.2	ם	1.2	ח	1.2	Þ	1:1	D	1.2	Þ
Toluene	111	5.4	1,500	1.2	n	1.2	ם	1.2	Þ	1.1	Ħ	1.7	g
m.p-Xvlene	=======================================	Q	1200	1,2	ח	1.2	ם	1.2	Þ	1.1	Þ	1.2	Þ
4-Isopropyltoluene	1:	Ð	ž	17	n	7	Þ	1.2	Þ	1:1	Þ	1.2	⇒
1.2.4-Trichlorobenzene	=======================================	£	ĸ	1.2	Þ	1.2	Þ	1.2	Þ	1:1	Þ	17	Þ
Naphthalene	17	QN	13,000	1.2	n	1.2	'n	1.2	D	1.1	Þ	1.2	Þ

		-											
			NXSDEC				SAM	SAMPLE IDEN IL ICALION	TYST T	5			
ANALYTE	DETECTION	BCKGRND	CLEANUP	Tew Cldowall	dowall	FY-C-E-D-Rottom	Rottom	EX-C-E-Sidewell	Idewall	EX-C-W-Bottom	Bottom	EX-C-N-Sidewall	ldewall
	TTWIT	CONC.	CONC.3										
VOCs (ug/kg)									į			,	ı
Dichlorodifluoromethane		2	ĸ	1.1	그	1:1	ı	Ξ	님	1.2	1	1.2	-
cis-1.2-Dichlomethene	1.1	2	Z	46		3.6	ğ	1.3	ď	6.9		1.2	g
Chloroform		2	z	1:1	Þ	1.1	Þ	1:1	Þ	17	Þ	1.2	Þ
Trichloroethene		2	200	16		13		5.8		61		12	
Benzene		2	Z	2.9	0	5.3	g	7	ď	2.5	ğ	1.2	ğ
Totachomethene	===	Ę	1400	1.1	' D	1,9	ō	0.7	9	1.2	n	1.2	Þ
Teliano	-	5.4	1500	m	2	21	' E	ç	Q	2.5	S,	1.3	ğ
Tolucia 	::	Ę	1200	- 17	′ Þ	1.1	Þ	<u>:</u> :	Þ	1.2	D	1.2	Þ
A Termonitation	: :	Ş	Z	===	, 1	1.1	D	1:1	n	1.2	D	1.2	Þ
4-1sopiopynoinene	: -	9 5	2		=	1.1	n	1:1	ם	1.2	Þ	1.2	Þ
1,2,4-1 nemorobenzene	1:1	2	}	: :	;	:	;	-	1.1		1	1,	Ė
Naphthalene	1:1	2	13,000	1:1	<u> </u>	77		:	>	7.)	1)
						Committee							

MDL - Method Detection Limit

NYSDEC - New York State Dept. of Environm! Conservation MS(D) - Matrix Spike (Duplicate) NL - Not Listed

VOC's . Volatile Organic Compounds RPD - Relative Percent Difference RI - Remedial Investigation

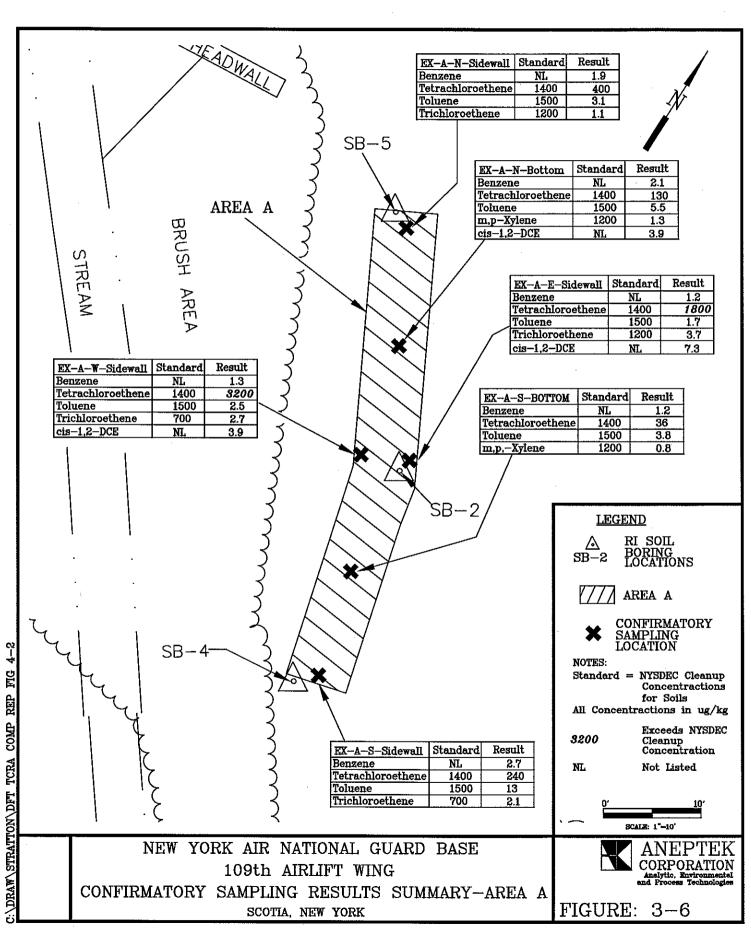
D - Duplicate Sample

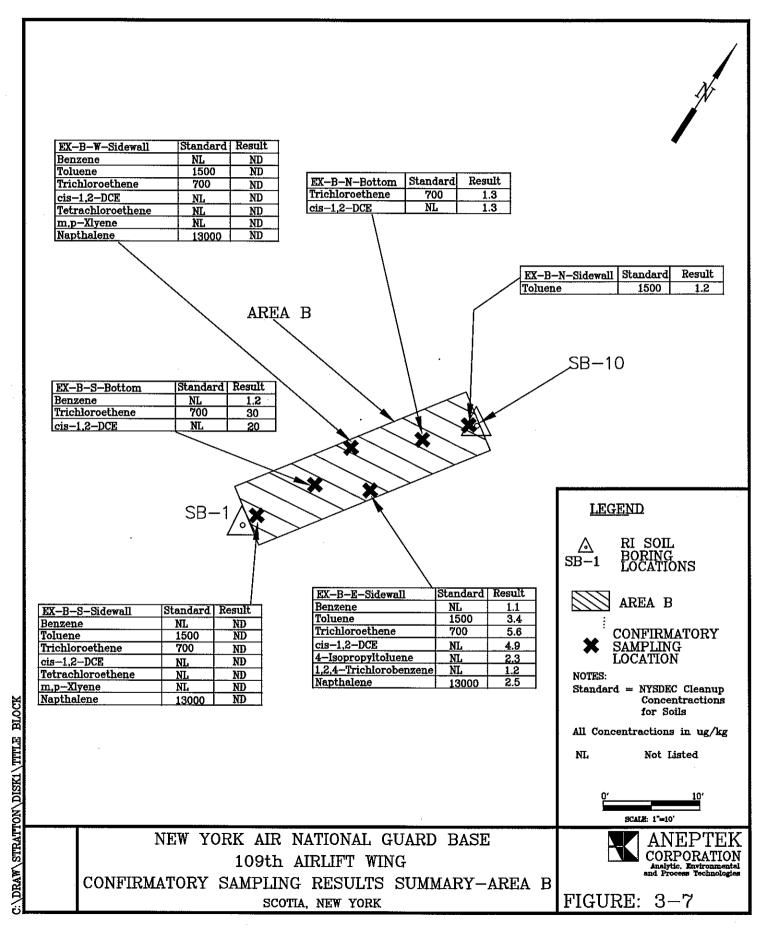
1) Contract Required Detection Limit (CRDL) 2) RI Background Sample Results

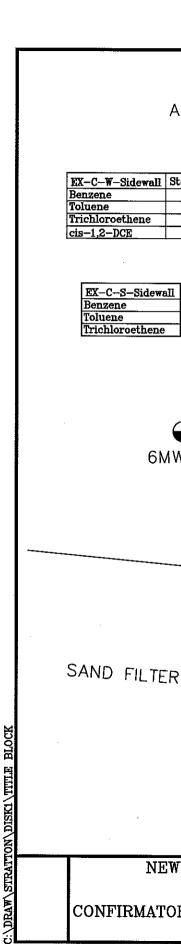
NOTES:

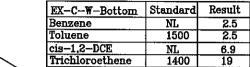
J. The analyte was positively identified; the associated value is the approx. concentration of analyte in the sample DATA QUALIFIERS:

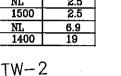
JF - Field duplicate %RPD was high (greather than 50% for soils) for this compound

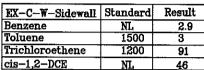

IL - The blank spike and/or blank spike duplicate % recoveries were not within the control limits of 60-140% for organics


3) NYSDEC TAGM HWR-94-4046, Jan 24, 1994. Where sipficable, the sail cleanup objectives were corrected for TOC levels. Where the GW based Soil Cleanup Objectives differed from the Recommended Soil Cleanup Objectives, the more stringent value was used.


JM - The MS and/or MSD % recoveries were not within the control limits for this compound JQ . Estimate due to detection level below lowest calibration standard


U - Compound was analyzed for, but not detected


Jeff/SharedFiles/Schenectady/DFT TCRA Confirm Result Table



AREA C

EX-C-N-Sidewall	Standard	Result
Benzene	NL	1.2
Toluene	1500	1.3
cis-1,2-DCE	NL	1.2
Tetrachloroethene	1400	0.7

EX-C-S-Sidewall	Standard	Result
Benzene	NL	1.2
Toluene	1500	1.7
Trichloroethene	1200	1.3

EX-C-E-Bottom	Standard	Result	_
Benzene	NL	4.9	
Toluene	1500	1.1	
Trichloroethene	1200	20	
cis-1.2-DCE	NL	5.8	

	\	
EX-C-E-Sidewall	Standard	Result
Benzene	NL	2
Toluene	1500	5
Trichloroethene	1200	5.8
cis-1,2-DCE	NL	1.3
Tetrachloroethene	1400	በማ

6MW-03

LEGEND

0 TW-2 RI TEMPORARY WELL

AREA C

CONFIRMATORY SAMPLING LOCATION

MONITORING WELL

NOTES:

Standard = NYSDEC Cleanup Concentractions for Soils

All Concentractions in ug/kg

NL

Not Listed

NEW YORK AIR NATIONAL GUARD BASE 109th AIRLIFT WING CONFIRMATORY SAMPLING RESULTS SUMMARY-AREA C SCOTIA, NEW YORK

CORPORATION
Analytic, Environmental
and Process Technologies

FIGURE: 3-8

4.1 APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

This section presents a preliminary analysis of Federal and State ARARs and additional criteria To-Be-Considered (TBC). Applicable requirements are those cleanup standards, standards of control, or other substantive environmental protection requirements, criteria or limitation promulgated under Federal or State law which specifically address a hazardous substance, pollutant, contaminant, remedial action, location or other circumstances at a CERCLA site. Relevant and appropriate requirements are those Federal and/or State requirements that, while not "applicable" to a hazardous substance, pollutant, contaminant, remedial action, location or other circumstance at a CERCLA site, address problems or situations sufficiently similar to those encountered at a CERCLA site that their use is well suited to the particular site. TBC criteria are non-promulgated advisories or guidance issued by federal or state agencies that, although not legally binding, can be used in determining the level of clean-up for protection of health and the environment.

4.1 Methodology

The determination of ARARs/TBCs for the SDC is based on a review of: (1) the types, quantities and extent of contaminants potentially present at the site, (2) local considerations of the site, and (3) the types of actions being considered to mitigate the public health and environmental threats posed by the release of contaminants from the site. Following this, the universe of Federal and State requirements is examined and all chemical-specific, location-specific and action-specific ARARs pertinent to current or potential future conditions at the site are determined. Also identified are the additional State or Federal criteria and guidance (TBCs) which may be used during the CERCLA remedial response process. This analysis gives consideration to the requirements of the "CERCLA Compliance with other Laws Manual" (EPA, 1988b) as well as the "Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA" (EPA, 1988a).

The Chemical-specific ARARs for the SDC are presented in Table 4-1. The Location-specific ARARs pertinent to the SDC are initially evaluated in Table 4-2. Other criteria, advisories, and guidance to-be-considered are presented in Table 4-3. A general listing of chemical-specific ARAR and TBC concentration values are provided in Table 4-4 for water and Table 4-5 for soils/sediment.

TABLE 4-1

POTENTIAL CHEMICAL-SPECIFIC ARARS FOR SITE 6

	SYNOPSIS
Federal ARARs	
1. Clean Water Act (CWA) Ambient Water Quality Criteria (AWQC); CWA Section 304	Federal AWQC are health-based criteria that have been developed for 95 carcinogenic and non-carcinogenic compounds. AWQC for the protection of human health provides levels for exposure both from drinking the water and
	consumption of aquatic organisms (i.e. fish), and from consumption of tish alone. AWQC for the protection of aquatic life includes acute and chronic levels for freshwater and marine organisms. Remedial actions involving contaminated surface water or groundwater must consider water uses and the circumstances of the release or threatened release.
2. Safe Drinking Water Act (SDWA) National Drinking Water Regulation (40 CFR 141)	Local wells use groundwater for drinking water supplies; therefore, the SDWA MCLs and Maximum Contaminant Level Goals (MCLGs) are potential ARARs for the aquifer. MCLs are legally enforceable federal drinking water standards, and MCLGs are nonenforceable health goals established by USEPA.
3. Clean Air Act	Any remedial action at the PPBA may generate air emissions. If so, the Clean Air Act requirements for emissions must be met. Clean Air Act standards include both Ambient Air Quality Standards (AAQS) and National Emissions of the formal of the Pollutants (NESHAPS).
	Standards for tracativous rate a cardinal description

TABLE 4-1 (Cont.) POTENTIAL CHEMICAL-SPECIFIC ARARS AT SITE 6

ARARS	SYNORAIS
State ARARs	
1. New York State Rules for Inactive Hazardous Waste Sites 6 NYCRR Subpart 375	This regulation includes the New York State regulations for inactive hazardous waste sites.
2. New York State water quality regulations 6 NYCRR Chapter X	This regulation establishes the requirements for the State Pollutant Discharge Elimination System (SPDES) program. This program provides the standards for surface water and drinking
	water to protect human health and the environment. 6 NYCRR Parts 701 and 702 include surface water standards and 6 NYCRR Part 703 includes groundwater standards.
3. New York State Hazardous Waste Regulations 6 NYCRR Part 373	This regulation includes the standards for groundwater monitoring for releases from solid waste management units.
4. New York State Drinking Water Regulations 10 NYCRR Part 5; NYSDEC TOGS 1.1.1	This regulation provides the New York State Department of Health drinking water quality standards. These regulations would apply to groundwaters used as drinking water supplies. Specific
	standards and guideline values are included in the guidance document TOGS 1.1.1.
5. New York Air Quality Regulations 6 NYCRR Parts 256 and 257	These regulations include the New York State requirements for air quality. 6 NYCRR Part 256 describes the State Air Quality Classification System. 6 NYCRR Part 257 includes ambient air
	quality standards. These requirements would be ARARs if a remedial action is implemented.

TABLE 4-2 POTENTIAL LOCATION-SPECIFIC ARARS AT SITE 6

)	SYNOPSIS
Federal ARARs Federal ARARs Federal Arational Environmental Policy Act	Appendix A of 40 CFR 6 sets forth policy for carring out provisions of Profession of Wetlands Executive Order. Under this order, federal agencies are
(NEPA) (40 CFR 6, Appendix A); Protection of Wedands, (EO 11990),	required to minimize the degredation, loss, or destruction of wetlands, and to preserve the natural and beneficial values of wetlands. Appendix A requires
	that no remedial alternative adversely ancer a wordant is another from alternative is available. If no alternative is available, impacts from implementing the chosen alternative must be mitigated. During the FS process,
	the identification and evaluation of each afternative's impact on any wetlands identified at or near the PPBA.
2. Endangered Species Act of 1973, 16 USC 1531 et seq. (50 CFR 81, 225, 402)	Directs the state to establish programs for the protection of endangered or protected species in the state's jurisdiction. The states can apply for federal protection by stiling an amplication with the Federal Government and entering
·	into a cooperative agreement. In complying with the requirements of Section 404, the New York Department of Fish and Wildlife should be contacted to determine if any threatened or endangered species exist in the vicinity of the
3. Migratory Bird Treaty Act of 1972	work area. The Migratory Bird Treaty Act of 1972 implements many treaties involving
	U.S. from unregulated "take" which can include poisoning at hazardous waste sites. The Act is a primary tool of the U.S. Fish and Wildlife Service and sites.
	other Federal agencies in managing interaction with

TABLE 4-3 OTHER CRITERIA, ADVISORIES, AND GUIDANCE TO-BE CONSIDERED

	SINDONAN
CRITERIA	
Federal TBC's	They are
1. Environmental Protection Agency (BPA) Reference Doses (RfDs)	EPA RfDs are dose levels developed for non-carcinogene careers are considered levels unlikely to cause significant adverse health effects associated with a threshold mechanism of action in human exposure for a lifetime. RfDs are used to characterize risks of groundwater contaminant exposure.
2. EPA Carcinogen Assessment Group - Potency Factors (CAGs)	BPA CAGs were developed from Health Effects Assessments (HEAs), or evaluations by the Carcinogen Assessment Group, and present the most up-to date cancer risk potency information. CAGs complete the individual incremental cancer risk resulting from exposure to contaminants.
3. Acceptable Intake- Chronic (AIC) and Subchronic (AIS) - EPA Health Assessment Documents	BPA developed these two guidance documents for assessing risks and determining contaminant transport and fate. The AIC and AIS BPA Health Assessment Documents provide values developed for the RfDs and HEAs for non-carcinogenic compounds. AIC and AIS values characterize the risks from these contaminants.
4. BPA Health Advisories (Office of Drinking Water)	EPA Health Advisories are estimates of risks due to consumption of contaminated drinking water. The advisories consider non-carcinogenic effects only, and should be considered for contaminants in groundwater used for drinking water.
State TBCs 1. NYSDEC TAGM HWR-94-4046	This guidance document provides cleanup standards for soils in New York State. These criteria are not promulgated standards but may be used to establish site-specific cleanup goals.
2. NYSDEC Air Guide 1	This document provides guidance for the control of toxic ambient air concentrations in New York State, and would be useful in establishing the allowable air emissions from a remedial action.

TABLE 4-4
POTENTIAL CHEMICAL-SPECIFIC ARARS AND TBCs AT SITE 6
SOIL/SEDIMENT

Parameters	Soil Criteria (a)	Sediment Criteria (b)									
				Human Health		Wildlife Residue						
Metals (mg/kg)												
Aluminum	SB											
Antimony	SB			 -								
Arsenic	7.5 or SB		5			-						
Barium	300 or SB			 		 						
Beryllium	0.16 or SB			 -		-						
Cadmium	1 or SB		0.8	 		 						
Chromium	10 or SB		26	 			·					
Copper	25 or SB		19	 -								
Iron	2000 or SB		2.4 %									
Lead	SB		27	↓ 		 						
Manganese	SB		428	1-1		┨						
Mercury	0.1		0.11	1		 						
Nickel	13 or SB		22	1								
Selenium	2 or SB			1								
Silver	SB											
Thallium	SB											
Vanadium	150 or SB											
Zinc	20 or SB		85	-		- 						
- i i ii O - i o (malka)						1						
Semivolatile Organics (mg/kg)	50	c,e	7.3	С								
Acenaphthene	50	c,e		1								
Anthracene	0.224 or MDL	c,e			0.007	С						
Benz(a)anthracene	1.1	.c,e			0.007	С						
Benzo(b)fluoranthene	1.1	. <u>.,,,,,</u>			0.007	С	:					
Benzo(k)fluoranthene	50	c,e				7						
Benzo(g,h,i)perylene	0.061 or MDL	c,e	 	1-	0.007	C						
Benzo(a)pyrene	0.001 01 MDL	c,e	 	 	0.007	С						
Chrysene	0.014 or MDL	c,e	1			1						
Dibenz(a,h)anthracene	6.2	c,e		1								
Dibenzofuran	50	c,e		_								
Fluoranthene	50	c,e		_	<u> </u>							
Fluorene	3.2	c,e	+		0.007	С						
Indeno(1,2,3-c,d)pyrene		c,e	 		1	1	1					
2-Methylnaphthalene	36.4		 			1						
Naphthalene	13	c,e c,e	1.39	c	 							
Phenanthrene Pyrene	50 50	c,e		- -								

TABLE 4-4 (Cont.) POTENTIAL CHEMICAL-SPECIFIC ARARS AND TBCs AT SITE 6 SOIL/SEDIMENT

Parameters	Soll Criteria (a)	Sediment Criteria (b)									
			Aquatic Toxicity		Human Health		Wildlife Residue				
Volatile Organics (mg/kg)					0.006			+			
Benzene	0.06	c,d		44	0.006	С		╁╾			
Chlorobenzene	1.7	c,d	0.035	C				┼			
Ethylbenzene	5.5	c,d				<u> </u>		┼			
Toluene	1.5	c,d	i 	<u> </u>				╄			
Xylenes (total)	1.2	c,d			·			4			
1,2-Dichlorobenzene	7.9	c,d	0.12	С				1			
1,3-Dichlorobenzene	1.6	c,d	0.12	C			l	1_			
1,3-Didition obelizere	8.5	c,d	0.12	С				丄			
1,4-Dichlorobenzene 1,2,4-Trichlorobenzene	3.4	c,d	0.91	С				<u> </u>			

Notes:

SB = Site Background

MDL = Method Detection Limit

mg/kg = milligrams per kilogram

ug/L = micrograms per liter.

- (a) NYSDEC TAGM HWR-94-4046, January 24, 1994.
- (b) NYSDEC Sediment Criteria, December, 1989.
- (c) Values are TOC dependent. Values presented in this table assume a TOC of 1%.
- (d) Total VOCs in soil should not exceed 10 mg/kg.
- (e) Total SVOCs in soil should not exceed 500 mg/kg.

5.0 FIELD PROGRAM

5.1 Summary

The field program conducted during the SDC included the advancement of soil borings, the installation of both temporary and permanent monitoring wells, the collection of subsurface soil and groundwater samples, and the performance of a groundwater elevation survey to further define groundwater flow direction at Site 6. All field activities (sample collection, well installation, well development and purging, etc..) were conducted in accordance with the Final SDC Work Plan (Aneptek, May, 2002).

5.2 Deviations from the Work Plan

All of the tasks outlined in the Final SDC Work Plan (Aneptek, May 2002) were completed as planned with the following exceptions:

- Twelve soil samples were collected for laboratory analysis instead of the planned ten.
- · Eleven permanent groundwater monitoring wells were installed instead of the planned ten.
- Twenty three temporary monitoring wells were installed instead of the planned twenty.

The summary of the planned and executed field program for the SDC is outlined in Table 5-l.

5.3 Investigative Activities

The following sections outline the investigative activities performed during the SDC.

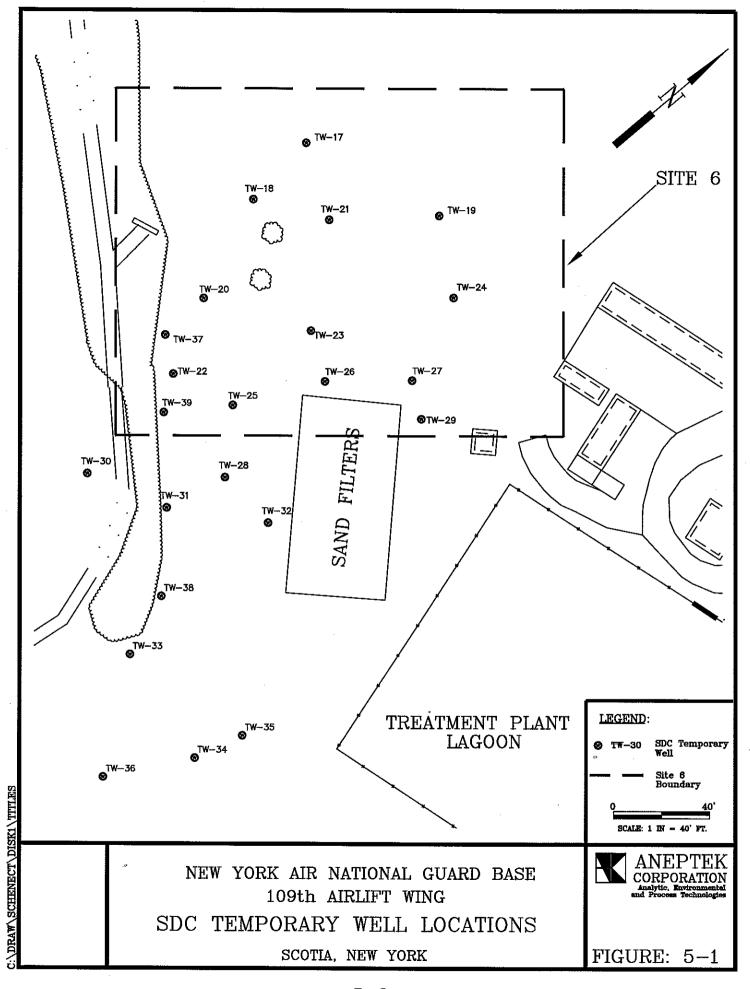
5.3.1 Soil Borings

A total of 47 soil borings were advanced during the SDC field program. Twelve borings were advanced to facilitate the collection of soil samples, eleven were advanced to facilitate the installation of permanent groundwater monitoring wells, and twenty three were advanced to facilitate the installation of temporary wells. All borings were advanced using a "Mobile Drill" Model 61 drill rig equipped with 8.25 outer diameter (OD) HSAs. For the collection of soil samples, borings were advanced to refusal (bedrock) using HSA's. For the installation of temporary and permanent monitoring wells, borings were advanced to refusal using HSAs at which point drilling methods were switched to air hammer to advance through bedrock to the desired depth.

5.3.2 Temporary Wells

A total of twenty three temporary wells were installed to facilitate the collection of groundwater samples for GC screening analysis by EPA Method 8260. Temporary wells were completed using a 5-ft PVC screen with 0.01 slot size and PVC riser. No filter sand pack or other materials were placed in the annular space. After completion of the borehole to the desired depth, the screen and riser were immediately placed into the borehole. An expandable, locking cap was placed on the top of the riser until a sample could be collected. Temporary well locations are shown in Figure 5-l.

Table 5-1
Planned and Executed Field Program - Site 6


Location	Planned Activities	Executed Activities
	Advance up to 20 soil borings to bedrock using direct push (Geoprobe®)methods. Install temporary well-points to facilitate the collection of groundwater samples for GC screening for VOC's.	Advanced 23 soil borings, installed 23 temporary well points using HSAs. GC screening samples collected as planned.
Site 6	Advance up to 10 soil borings to collect confirmatory soil samples. Perform analysis for VOC's, SVOC's, and TAL Metals	Advanced 12 soil borings, collected 12 soil samples. Performed analysis as planned.
	Install 3 stream staff gauges, conduct groundwater elevation survey using existing monitoring wells, microwells, temporary wells, and stream gauges.	Stream gauges installed and measured as planned. Groundwater elevations measured at 6 permanent wells, 11 temporary wells, and 2 microwells.
	Install up to 10 overburden groundwater monitoring wells. Conduct 2 rounds of groundwater sampling (new wells plus four previously installed wells). Perform analysis for VOC's, SVOC's, and TAL Metals.	Installed 11 permanent monitoring wells. Sampling conducted as planned.

5.3.3 Monitoring Wells

Based on the results of the groundwater GC screening analysis, eleven groundwater monitoring wells were installed at Site 6. Wells installed during the SDC were identified as 6MW-11 through 6MW-21.

All wells were installed at the overburden/bedrock interface with the wells screened to intersect the water table. Groundwater was typically found at the overburden/bedrock interface at a depth of between 4 to 6 feet bgs. Total depths of the wells were typically 14 to 15 feet bgs. Except where noted in the well construction diagrams, all wells were completed in the following manner.

All monitoring wells were finished with a concrete pad and, depending on location, either a protective, flush mounted road box installed at the ground surface or a protective steel stick-up riser. All monitoring wells were constructed of 2-inch I.D., Schedule 40 poly-vinyl chloride (PVC) pipe containing a lo-foot screen at the base. Screen slot size is 0.01 inches. Connections were threaded and no PVC glue was used. The monitoring wells were installed through 8.25-inch OD augers. Clean, #0 silica sand was placed in the annular space around the screen section and extended two feet above the top of the screen. Immediately on top of the #0 silica sand, a one-foot layer of #00 silica sand was added.

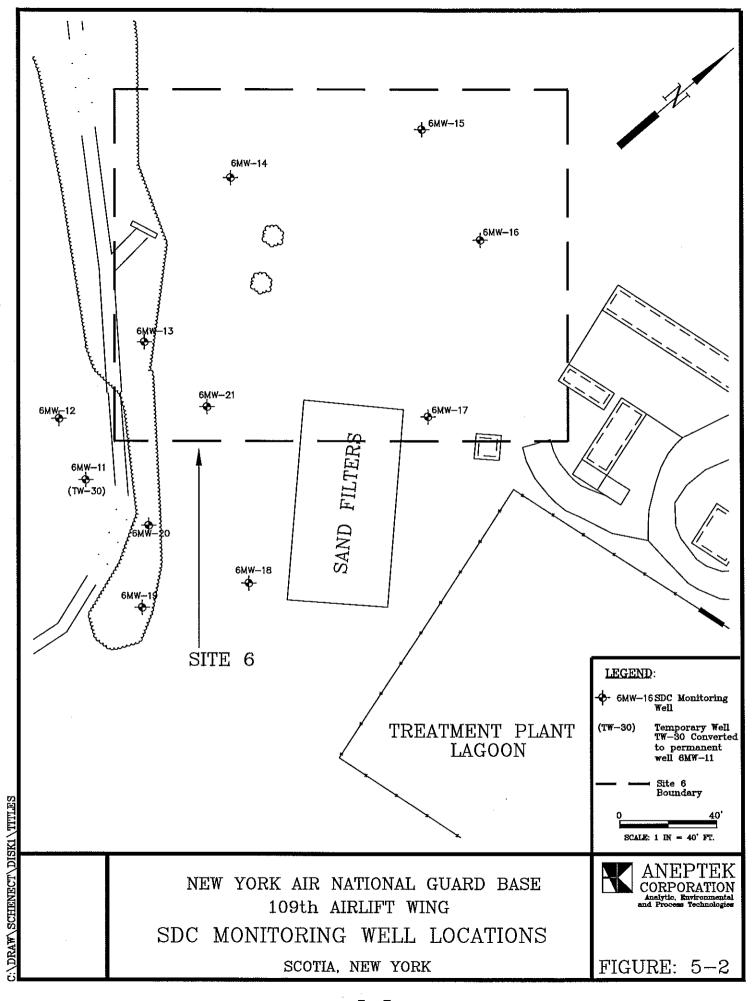
Next, a 2-foot layer of bentonite chips was added to seal the sand layers, the bentonite layer being hydrated with potable water. Grout, a mixture of cement and bentonite, was then added above the bentonite layer and extended to two feet below the ground surface. The flush mount road box/protective steel riser was then placed around the top of the PVC riser and a concrete pad poured to surface level. All monitoring wells were equipped with a locking, vented well cap. After installation, all monitoring wells were developed in accordance with Standard Operating Procedure (SOP) No. 6 in Appendix C of the Final Work Plan (Aneptek, May, 2002). Locations of wells installed during this SDC are shown in Figure 5-2, well construction details are provided in Table 5-2, well construction diagrams are provided in Appendix C.

5.3.4 Screening Sampling

Both soil and groundwater samples were collected for screening analysis. Soil samples were screened in the field using a PID, groundwater samples were collected for off-site laboratory GC screening. Each phase of sample screening is discussed below.

5.3.4.1 Field Screening - Soil

Soils were screened in the field during the installation of temporary wells, permanent monitoring wells, and during the collection of soil samples for laboratory analysis. All soils were screened using a Photovac® HL2000 MircoTIP PID equipped with a 11.7 eV lamp. The PID was calibrated at the beginning of each work day according to manufacturers specifications. During the installation of temporary wells, HSAs were used to advance the soil boring to refusal. Soil cuttings brought to the surface by the HSAs were screened as they emerged at the top of the borehole. If a reading of 10 ppm or greater was registered, the soils were drummed.


During the installation of permanent monitoring wells and when collecting soil samples for laboratory analysis, samples were collected continuously from the ground surface to refusal using two-inch ID steel split spoons. Upon retrieval of the sample interval, the sampler was opened and the tip of the PID probe was immediately passed slowly over the length of the sample. If winds were above 10 miles per hour (mph) during field screening, the sampler was moved to an enclosed area prior to opening. The tip of the probe was held as close to the sample surface as possible without coming into contact with the sample. PID readings were noted in the logbook along with that portion of the sample interval which produced the readings. Soils were screened during the installation of permanent wells to ensure that a well would not be located in an area of soil contamination. If contamination was indicated during well installation, the borehole was abandoned and grouted to the surface. The well was then re-located and the process repeated.

During the advancement of soil borings for the purpose of collecting soil samples for laboratory analysis, the sample interval which registered the highest reading when screened was submitted for analysis. If none of the sample intervals indicated the presence of contamination, the sample interval from just above the water table was collected and submitted for analysis.

5.3.4.2 Laboratory Screening • Groundwater

A total of 36 groundwater samples were collected and submitted to Northeast Analytical Laboratories, Schenectady, New York, for GC screening per EPA Method 8260. Sample locations were comprised of 23 temporary wells installed during this SDC and 13 sample locations (four

C:/finsdctmrep.wpd 5-4

TABLE 5-2 WELL CONSTRUCTION SUMMARY - SITE 6 STRATTON ANGB SCOTIA, NEW YORK

LENGTH OF SCREEN (ft)		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
TOTAL DEPTH OF BORING	(ft bgs)	14.8	14.8	16	16	16	15.5	15.5	15.5	15.5	14.5	15.5	14.5	17.5	17.5	15.5	17.1
ELEVATION CENTER OF SCREEN	(ft msl)	298.2	298.2	292.4	294.1	303.7	293.27	293.75	295.58	300.8	303.09	301.11	299.39	292.92	290.71	292.95	294,24
BOTTOM OF CENTER OF SCREEN SCREEN	(ft msl)	293.2	293.2	287.4	289.1	298.7	288.27	288.75	290.58	295.8	298.09	296.11	294.39	287.92	285.71	287.95	289.24
BOTTOM OF BOTTOM OF SCREEN	(ft bgs)	13.5	13.5	15	15	15	15	15	15	15	14	15	14	17	17	15	16.6
DEPTH TO ELEVATION TOP OF TOP OF SCREEN SCREEN	(ft msl)	303.2	303.2	297.4	299.1	308.7	298.27	298.75	300.58	305.8	308.09	306.11	304.39	297.92	295.71	297.95	299.24
DEPTH TO TOP OF SCREEN	(pgs)	3.5	3.5	5	5	5	5	5	5	5	4	5	4	7	7	5	9.9
RISER HEIGHT ABOVE GROUND SURFACE	(ft)	Flush Mount	1.51	2.6	3.32	Flush Mount	2.65	2.49	Flush Mount								
REFERENCE POINT ELEVATION	(ft msl)	305.95	305.97	302.22	304.06	313.56	304.78	306.35	308.9	310.64	311.85	310.99	308.23	304.78	305.36	305.44	305.53
GROUND REFERENCE SURFACE POINT ELEVATION ELEVATION	(ft msl)	306.7	306.7	302.4	304.1	313.7	303.27	303.75	305.58	310.8	312.09	311.11	308.39	304.92	302.71	302.95	305.84
REFERENCE POINT		Top Of PVC	Top Of PVC	Top Of PVC	Top Of PVC	Top Of PVC	Top Of PVC	Top Of PVC	Top Of PVC	Top Of PVC	Top Of PVC	Top Of PVC	Top Of PVC				
WELL DESIGNATION		6MW-03	6MW-04	80-WM9	6MW-09	6MW-10	6MW-11	6MW-12	6MW-13	6MW-14	6MW-15	6MW-16	6MW-17	6MW-18	6MW-19	6MW-20	6MW-21

ABBREVIATIONS:
bgs - below ground surface
ft - feet
msl - mean sea level

permanent monitoring wells, seven temporary wells, and two microwells) which were previously installed as part of the field program during the RI. All wells were purged of static water prior to sampling. All samples were collected using clean, dedicated bailers.

5.4 Groundwater Elevation Survey

During the SDC field program, two groundwater elevation surveys were conducted to further define groundwater flow direction at Site 6. As part of this survey, three staff gauges were installed in a stream which abuts the western edge of Site 6. One gauge was installed slightly upstream of Site 6, one at the mid-point of Site 6, and one slightly downstream of Site 6. The locations of the gauges were surveyed and elevations established. The gauges were graduated to provide surface water level readings accurate to 0.01 feet. The first survey was conducted on April 26, 2002 at the start of the SDC field program. Groundwater elevations were measured at 5 existing monitoring wells (6MW-03, 6MW-04, 6MW-08, 6MW-09, and 6MW-10), 11 temporary wells (TW's-1, 3, 4, 5, 8, 9, 11, 12, 14, 15, and 16), and 2 microwells (MIC-C and MIC-D [Figure 3-4]) which were installed during the RI, plus the newly installed staff stream gauges (SG-I, SG-2, and SG-3). The second survey was conducted on August 12, 2002 incorporating all previously existing RI monitoring wells, the newly installed SDC monitoring wells, and the stream gauges.

All data points used in this survey were located and elevations established by ABD Surveyors and Engineers of Schenectady, New York. During each survey, groundwater elevations at all data points were recorded within the same 8 hour period. All wells were opened and allowed to equilibrate for approximately 30 minutes prior to measurements being recorded. All groundwater elevations were measured from the top of the PVC well riser. All groundwater and stream gauge elevations were measured to the nearest 0.01 feet.

5.5 Confirmatory Sampling

Both confirmatory soil and groundwater samples were collected and submitted to Sevem Trent Laboratories (STL), Newburgh, New York, for analysis for Target Compound List (TCL) VOCs (EPA Method 8260), SVOCs (EPA Method 8270), and Target Analyte List (TAL) metals (EPA Method 6010). Fourteen confliatory soil samples were collected. In addition to the soil samples, two rounds of confirmatory groundwater samples were collected from the 11 monitoring wells installed during this SDC plus four monitoring wells installed during the RI. Groundwater samples collected for metals analysis were not filtered prior to analysis. Quality control (QC) samples incorporated in addition to the confirmatory samples included duplicate samples, equipment decontamination rinsates, field blanks, matrix spike/matrix spike duplicate (MS/MSD) samples, and trip blanks. Groundwater sampling analytical results were compared to NYSDEC Drinking Water Quality Standards (DWQS [Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June, 19891). Soil sampling analytical results were compared to NYSDEC Soil Cleanup Objectives (TAGM, January 24, 1994). Soil and groundwater confiiatory sampling is discussed below.

5.5.1 Confirmatory Sampling - Soil

A total of 14 confirmatory soil samples were collected. This number includes two duplicate samples. Samples were collected continuously from the ground surface to refusal using 24 inch by two inch OD steel split spoons. The split spoons were advanced using a 140 lb drop weight. Blow counts

C:/finsdctmrep.wpd 5-7

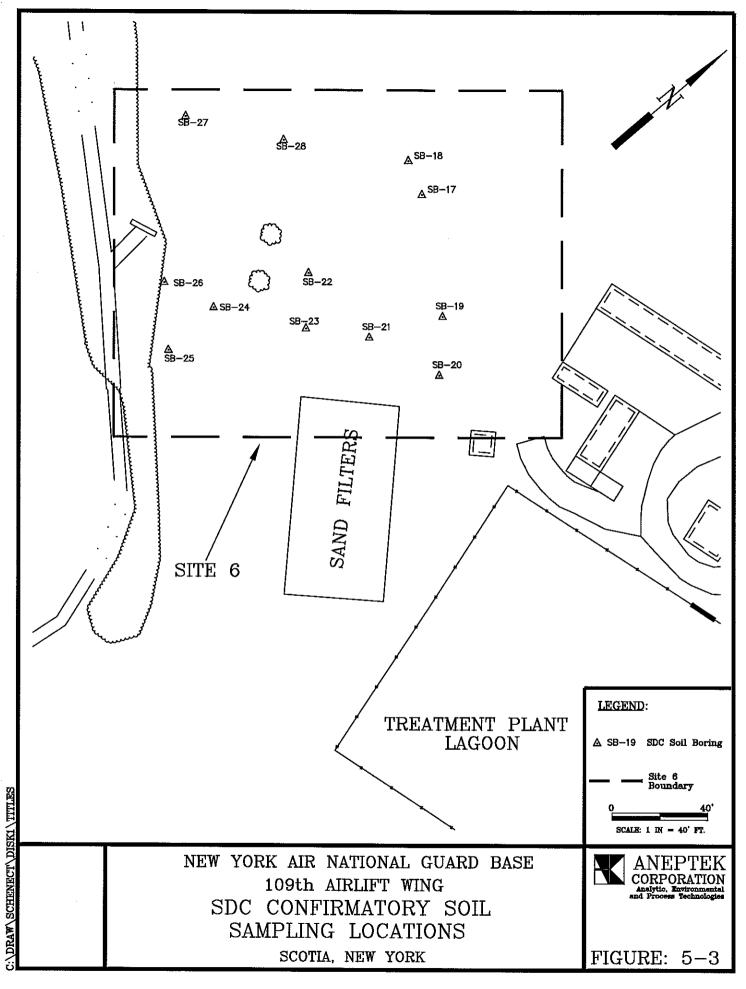
were noted for each 6 inches advanced and entered on the boring log. Samples were collected from those soil boring intervals which exhibited the highest concentration of contamination when screened with a PID. If none of the sample intervals indicated the presence of contamination, the sample interval from just above the water table was collected and submitted for analysis. These samples were then submitted to STL for full analysis for VOCs, SVOCs, and TAL metals. All samples were collected in accordance with SOP No.4, Appendix D, of the Final SDC Work Plan (Aneptek, May 2002). Confirmatory soil sampling locations are shown in Figure 5-3.

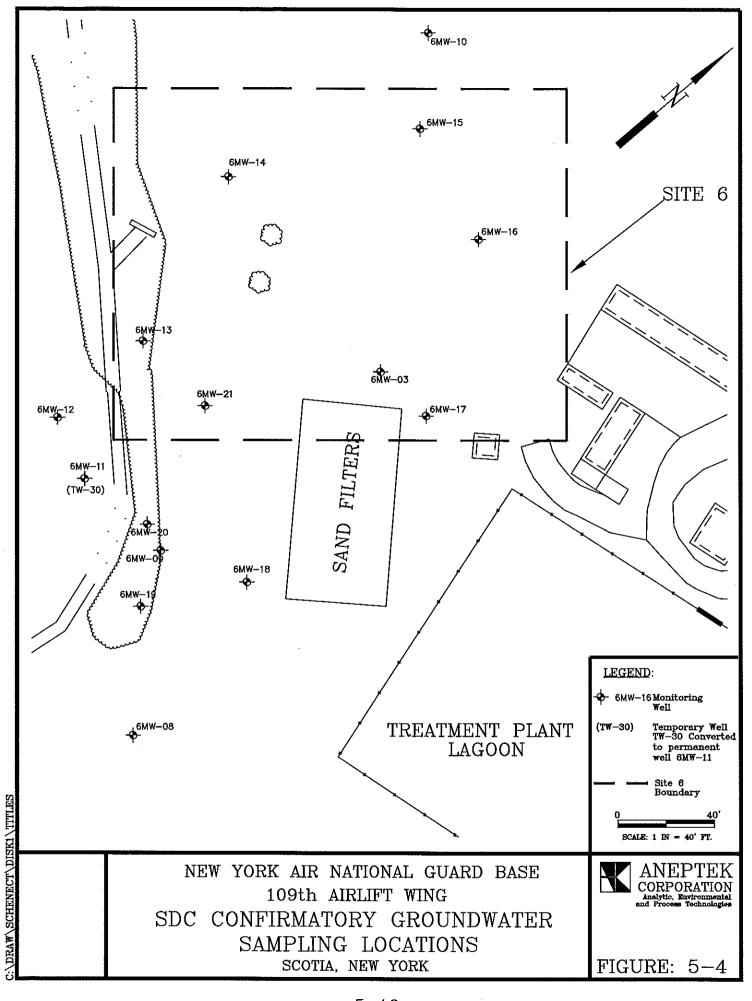
5.5.2 Confirmatory Sampling - Groundwater

Two rounds of confiiatory groundwater samples were collected from the eleven monitoring wells installed during this SDC plus four monitoring wells installed during the RI. The first round was conducted in June of 2002, the second in August of 2002. These samples were then submitted to STL for full analysis for VOCs, SVOCs, and TAL metals (total). All samples were collected with clean, dedicated bailers. All wells were sampled in accordance with SOP No. 6, Appendix D, of the Final SDC Work Plan (Aneptek, May 2002). Confirmatory groundwater sampling locations are shown in Figure 5-4.

5.6 Surveying

All soil borings, monitoring wells, temporary wells, and stream gauges installed during the SDC were surveyed by a ABD Surveyors and Engineers of Schenectady, New York, a registered New York land surveyor. All data points were located and northing and easting coordinates established. Elevations relative to Mean Sea Level (MSL) were established. A topographical map of Site 6 was developed showing the locations of all monitoring wells, temporary wells, soil borings, and stream gauges, as well as elevations for each surveyed point. Other pertinent structures within Site 6 were also surveyed.


5.7 Borehole/Well Abandonment


Upon completion of the field program, PVC well materials from all temporary wells and microwells were removed and properly disposed of. All temporary wells, microwells, and all boreholes were then grouted to the surface using a standard cement/bentonite mixture mixed in accordance with NYSDEC requirements. The grout mixture consisting of one 94-pound bag of type I Portland cement, approximately 6 pounds of powdered bentonite, and 9 gallons of potable water. Each borehole was filled from the bottom up using a 1 inch diameter tremie pipe.

5.8 Investigative Derived Waste

Investigative Derived Waste (IDW) generated during the SDC consisted of well development and purge water, de-contamination fluids, and soils from drill cuttings. Following completion of the field program, samples were collected from each matrix and submitted for laboratory analysis for VOCs, SVOCs, and TAL metals. Based on the results of the analysis and with NYSDEC approval, all IDW was disposed of on the ground at Site 6.

C:/finsdctmrep.wpd 5-8

6.0 INVESTIGATIVE FINDINGS

This section details the investigative findings of the SDC field program.

6.1 Groundwater Elevation Survey

An initial groundwater elevation survey was conducted using existing permanent and temporary monitoring wells and microwells that were installed during performance of the RI, plus the newly installed stream gauges. This initial survey was conducted on April 26, 2002. A second round of groundwater elevation measurements were taken on August 12, 2002, using both the RI monitoring wells and wells installed during the SDC. Groundwater elevation data for the April and August measurements are presented in Table 6-1, general groundwater flow direction, based on the August 12 measurements, is shown in Figure 6-1.

6.1.1 Groundwater Flow Direction-Site 6

Groundwater flow direction was calculated using the results of the August 12 measurements in which all available permanent monitoring wells were used plus the stream gauges. Based on these measurments, general groundwater flow direction is to the south-southeast with slight local variations in flow direction. This direction is consistent with findings presented in the RI report (Aneptek, September, 2000), and, to a lesser extent, as reported during a Site Investigation (ABB, 1996) conducted at Site 3 (adjacent to and downgradient of Site 6). Groundwater flow generally follows site topography with a slightly steeper gradient in the areas above the sand filters to a flatter terrain with less gradient in the sand filter area. Below the sand filter area to the east of monitoring well 6MW-08, site topography again reverts to a steeper gradient.

6.1.2 Geology/Hydrogeology-Site 6

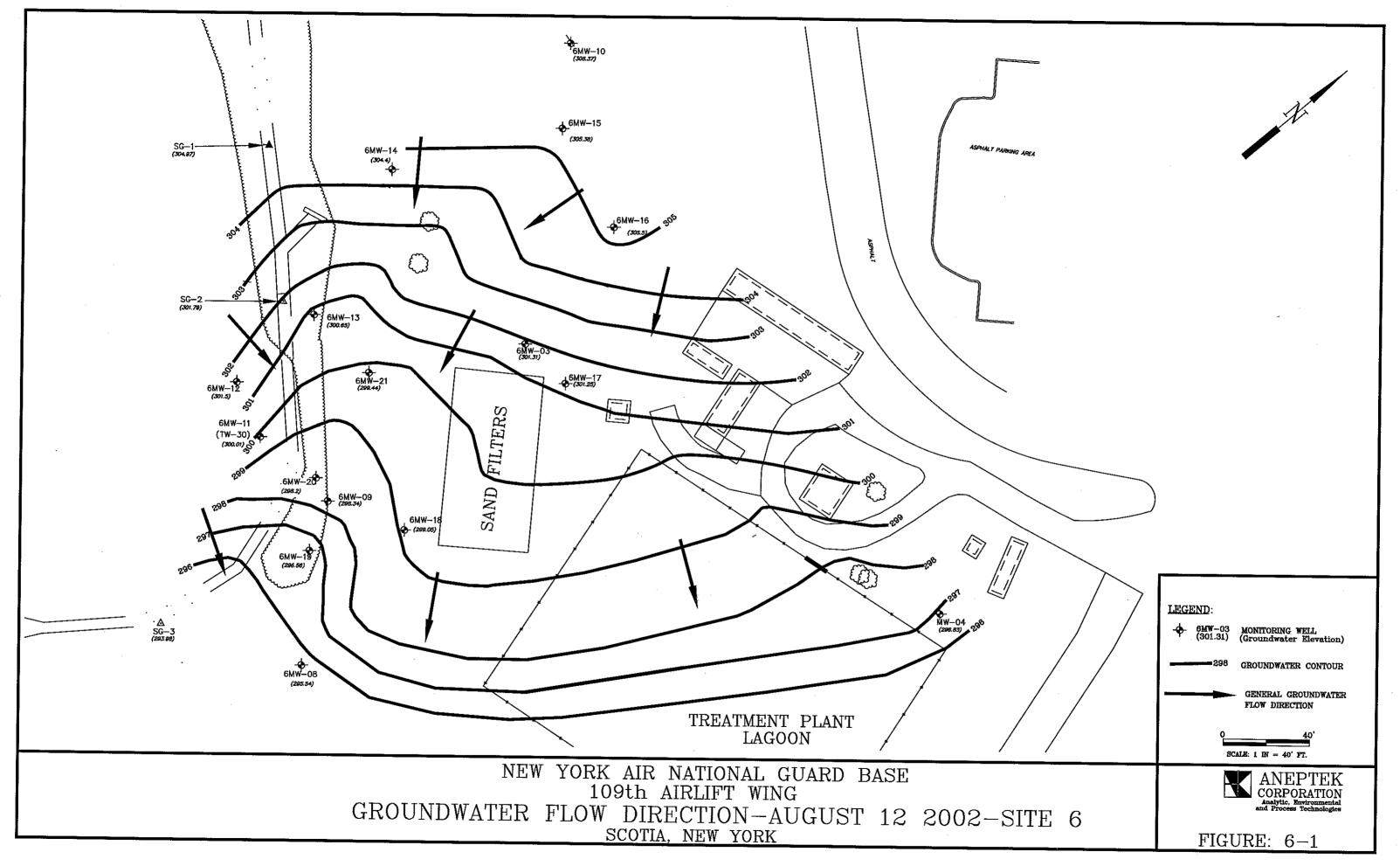
Site 6 geologic and hydrogeologic conditions, based *on* results from the RI, are presented in Section 3.3, Previous Investigations [Sections 3.3.1.5 thru 3.3.1.7]) in this TM. Due to the relatively small size and homogeneous nature of Site 6, geologic and hydrogeologic conditions encountered during the performance of the SDC were generally the same as those encountered during performance of the RI. A brief summary of these conditions is presented below, for a more detailed description please refer to the abovementioned sections in this TM. Additional site hydrogeologic cross sections were developed using the newly installed SDC monitoring wells. The location of these cross sections is shown in Figure 6-2. Cross sections A-A', B-B', and C-C', are presented in Figures 6-3, 6-4, and 6-5, respectively.

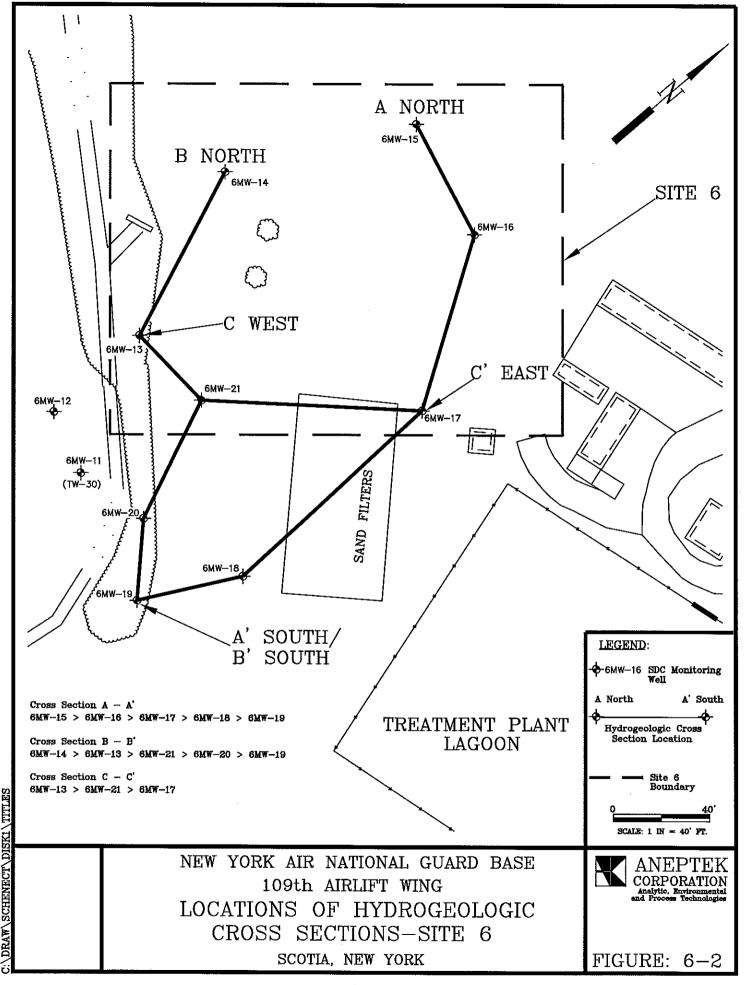
Overburden material at Site 6 consists mainly of a brownish to dark gray inorganic clayey silt with some fine to medium sand. The material was dry and fairly loose. The thickness of the overburden ranged from between four and eight feet bgs throughout the majority of the northern section of Site 6. Bedrock was encountered at between four and eight feet bgs. Split spoon samples recovered from the point of refusal typically had 3 to 7 inches of fractured, weathered shale in the nose of the sampler. This shale was typically dark gray to bluish black and highly fractured.

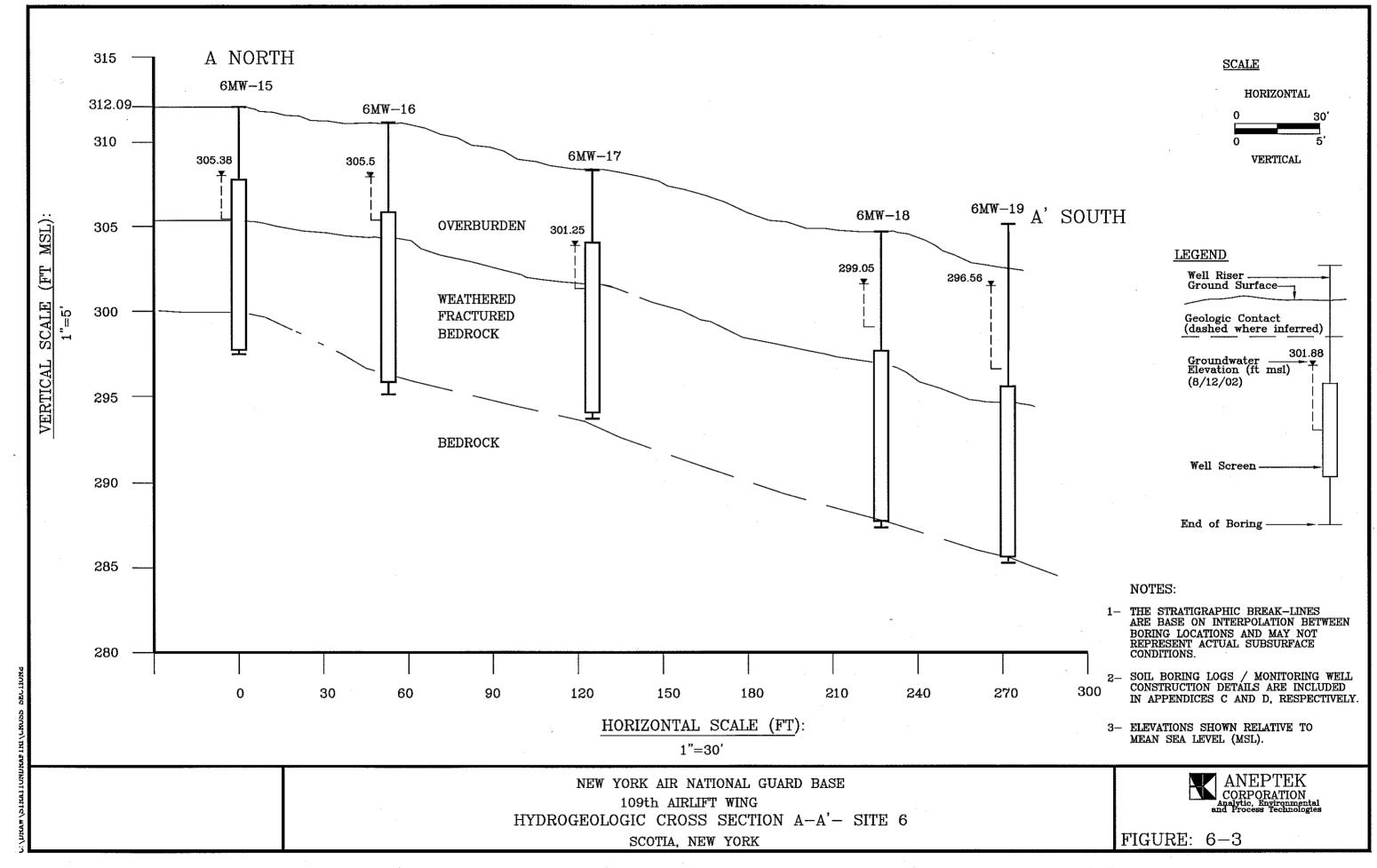
Table 6-1 Groundwater Elevations-April 26, 2002

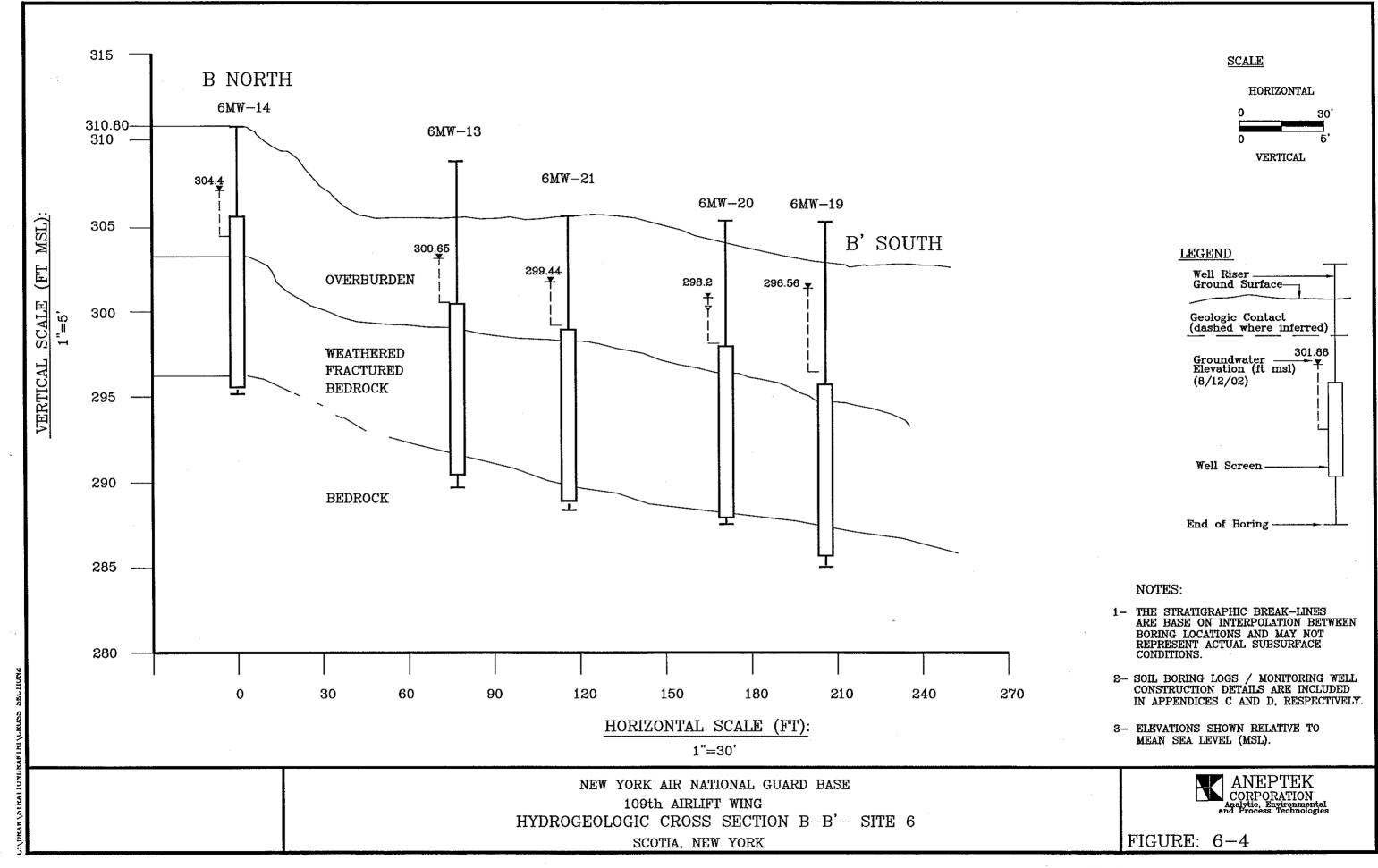
Point	Top PVC MSL	GW Elev. 4/26/02	GW Elev. MSL
6MW-03	305.95	3.88	302.07
MW-04	305.97	8.7	297.27
6MW-08	302.22	5.96	296,26
6MW-09	304.06	5.23	298.83
6MW-10	313.62	4.56	309.06
TW-1	310.29	4.66	305.63
TW-3	310.19	5.99	304.2
TW-4	314.26	7.84	306.42
TW-5	313.07	6.03	307.04
TW-8	310.74	7.07	303.67
TW-9	306.58	7.15	299.43
TW-11	318.71	7.14	311.57
TW-12	306.78	7.07	299.71
TW-14	314.19	8.61	305.58
TW-15	305.3	6.28	299.02
TW-16	303.34	5.31	298.03
SG-1	306.85	0.35	305.14
SG-2	303.67	0.34	301.95
SG-3	295.65	0.62	294.21

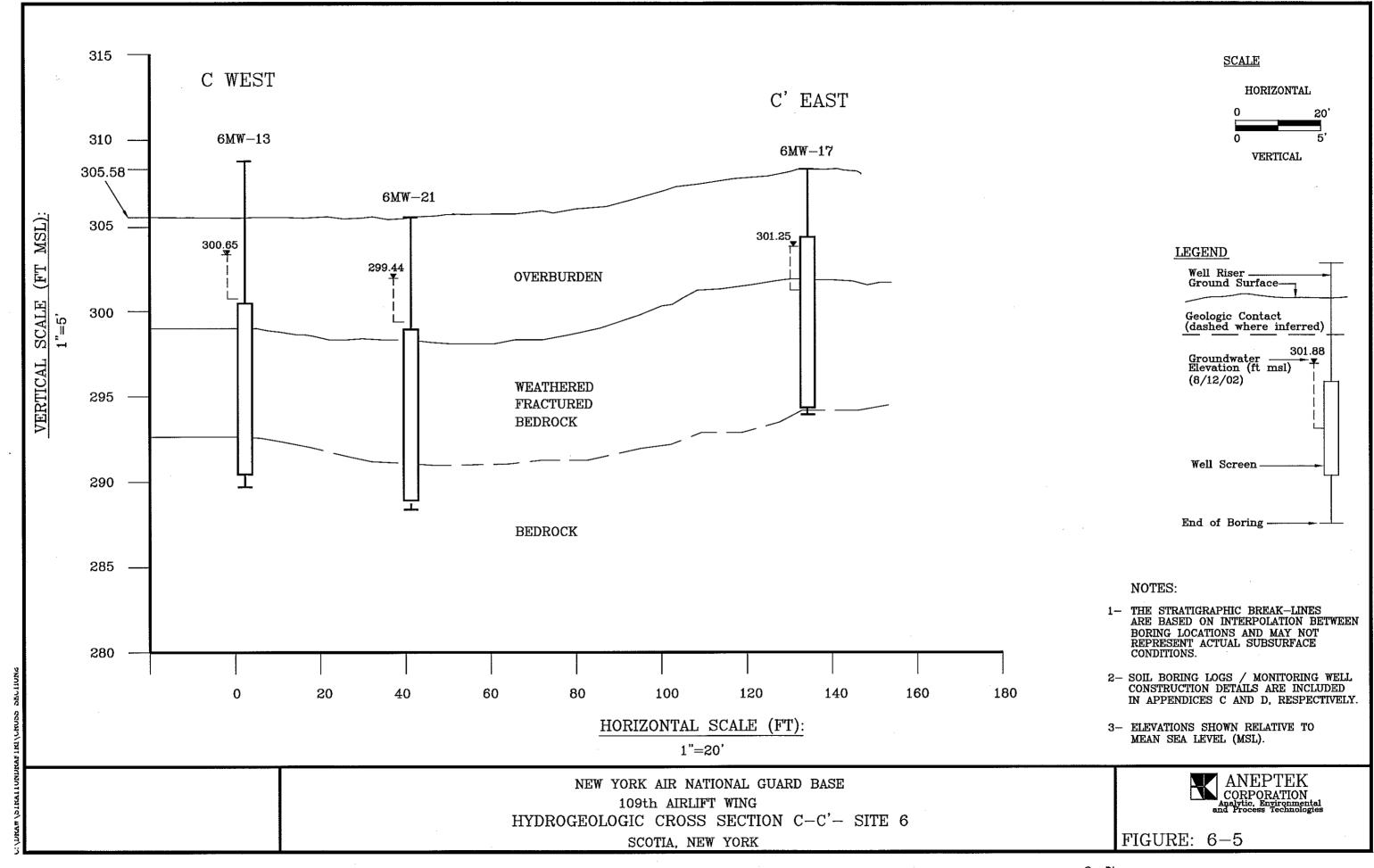
Groundwater Elevations-August 12, 2002


Point	Top PVC MSL	GW Elev. 8/12/02	GW Elev. MSL
01.014.00			
6MW-03	305.95	4.64	301.31
MW-04	305.97	9.14	296.83
6MW-08	302.22	6.68	295.54
6MW-09	304.06	5.72	298.34
6MW-10	313.62	5.25	308.37
6MW-11	304.78	4.77	300.01
6MW-12	306.35	4.85	301.5
6MW-13	308.9	8.25	300.65
6MW-14	310.64	6.24	304.4
6MW-15	311.85	6.47	305.38
6MW-16	310.99	5.49	305.5
6MW-17	308.23	6.98	301.25
6MW-18	304.78	5.73	299.05
6MW-19	305.36	8.8	296.56
6MW-20	305.44	7.24	298.2
6MW-21	305.53	6.09	299.44
SG-1	306.85	0.18	304.97
SG-2	303.67	0.18	301.79
SG-3	295.65	0.39	293.98


ABBREVIATIONS:


msl - mean sea level


SG-stream gauge


GW Elev.-groundwater elevation

Groundwater at Site 6 was consistently encountered at depths ranging from 5 to 7 feet bgs. Groundwater flows along the overburden/bedrock interface and within the first few feet of the fractured, weathered bedrock. Hydraulic gradients were calculated for Site 6 using groundwater elevation data obtained from monitoring wells 6MW-08, 6MW-09, and 6MW-10 (Figure 3-3). Hydraulic gradients ranged from 0.03 ft/ft (measured between 6MW-08 and 6MW-09) to 0.42 ft/ft (measured between 6MW-09 and 6MW-10), with an average gradient of 0.037 ft/ft.

Hydraulic conductivity (K) was estimated from in-situ hydraulic conductivity tests performed on monitoring wells 6MW-03, 6MW-08, 6MW-09, and 6MW-10 (Figure 3-3). Hydraulic conductivity values ranged from 8.46X10⁻⁶ cm/sec measured at 6MW-08 to 2.72x10⁻⁴ measured at 6MW-10. Groundwater flow velocity at Site 6 was calculated using a lower hydraulic gradient (I) of 0.03 ft/ft (measured between 6MW-08 and 6MW-09) and an upper gradient of 0.42 ft/ft (measured between 6MW-09 and 6MW-10), a K value of 2.12x10⁻³ cm/sec, and an estimated effective porosity of 15%. A groundwater flow velocity of 0.015 ft/day (5.5 ft/yr) was calculated using the shallower gradient of 0.03 ft/ft. A flow velocity of 0.022 ft/day (7.9 ft/yr) was calculated using the steeper gradient of 0.042 ft/ft (Final RI report Aneptek, September, 2000).

6.2 Screening Sampling

Both soil and groundwater samples were collected for screening analysis. Soil samples were screened in the field using a PID, groundwater samples were collected for off-site laboratory GC screening. Results of each phase of screening is discussed below.

6.2.1 Field Screening Results-Soil

Out of the 23 temporary wells installed, six (TW-17, TW-23, TW-25, TW-28, TW-34, and TW-39) contained soils which registered above 10 ppm when screened at the top of the borehole. Concentrations ranged from 19.5 ppm at TW-25 **to** >9999 ppm at TW-23. Soils which registered above 10 ppm when screened were believed to originate at depths of between 2 to 5 feet bgs, however, as no samples were being collected, these depths can only be approximated.

Of the 12 soil borings advanced, only four, SB-17, SB-18, SB-21, and SB-26, contained soils which registered above background levels. Soil collected from the 5 to 6 ft bgs interval from SB-17 registered 85 ppm when screened. Soil collected from the 2 to 4 ft bgs interval from SB-18 registered 2.5 ppm. Soil collected from SB-21 from the 7-8 ft bgs registered 14 ppm, and soil collected from the 5 to 6 ft bgs interval from SB-26 registered 14 ppm when screened. None of the soil samples collected during the advancement of soil borings for the purpose of installing permanent monitoring wells registered any readings above background levels. PID screening results are presented in Table 6-2.

6.2.2 Laboratory Screening Results-Groundwater

A total of 36 groundwater samples were collected and submitted to an off-site laboratory for GC screening. Samples were screened for VOCs using EPA Method 8260. Twenty three of these samples were collected from temporary well points which were installed during this SDC. The remaining thirteen samples were collected from sampling points which were installed as part of the

6-8

Table 6-2 Field Screening Results-Soil-Site 6 SDC Schenectady ANGB Scotia, New York

Sample Location	Sample Interval/ft bgs	Result (ppm)
SB-17	5-6	85
SB-18	2-4	4.5
SB-19	7-8	0
SB-20	4.5-5.5	0
SB-21	7-8	14
SB-22	5-6	0
SB-23	6-7	0
SB-24	4.5-5.5	0
SB-25	5-6	0
SB-26	5-6	14
SB-27	6-7.5	0
SB-28	7-8	0

ABBREVIATIONS:

SB- Soil Boring

ft bgs-feet below ground surface

ppm- parts per million

field program during the RI. The RI locations included four groundwater monitoring wells, 6MW-03, 6MW-09, and 6MW-10, seven temporary wells, TW-1, TW-3, TW-7, TW-9, TW-12, TW-15, and TW-16, and two microwells, MIC-C, and MIC-D.

Of the 36 samples collected, 19 contained one or more VOCs which exceeded its respective NYSDEC drinking water standard. The pre-dominant compounds detected included cis-1,2-DCE, PCE, and TCE. Vinyl chloride was detected above its respective regulatory standard in 5 of the samples collected. Concentrations of cis-1,2-DCE ranged from 16.2 μ g/L detected in TW-24 to 812 μ g/L detected in TW-22. The NYSDEC drinking water standard for cis-1,2-DCE is 5 μ g/L. Concentrations of PCE ranged from 28.1 μ g/L detected in TW-15 to 560 μ g/L detected in TW-22. The drinking water standard for PCE is 5 μ g/L. Concentrations of TCE ranged from 7.6 μ g/L in TW-24 to 378 μ g/L in TW-22. Vinyl chloride was detected in TW-17, TW-21, TW-23, TW-25, and TW-27, at concentrations ranging from 4.41 in TW-17 to 40.3 in TW-25. The NYSDEC drinking water standard for vinyl chloride is 2 μ g/L. Hexachlorobutadiene was detected in two samples, TW-29 and TW-31, at concentrations of 1.61 μ g/L and 2.92 μ g/L, respectively. The NYSDEC driiig water standard for hexachlorobutadiene is 0.5 μ g/L. Hexachlorobutadiene is used as a solvent, to make lubricants, as a heat transfer liquid, and as a hydraulic fluid. This compound had not been previously detected at Site 6.

Other compounds detected at concentrations below their respective drinking water standards include 1,2,3-Trichlorobenzene, 1,2,4-Trichlorobenzene, acetone, trans-1,2-DCE, and naphthalene. All groundwater GC screening results are presented in Table 6-3 and summarized in Figure 6-6.

6.3 Confirmatory Sampling

Confirmatory samples collected during this SDC included both subsurface soil and groundwater samples. All confirmatory soil and groundwater samples were submitted for laboratory analysis for VOCs, SVOCs, and TAL metals (total, aqueous samples). All confirmatory sampling data was submitted for third party data validation. Soil and groundwater confirmatory sampling results are discussed below.

6.3.1 Confirmatory Sampling Results - Soil

A total of fourteen confirmatory subsurface soil samples were submitted for laboratory analysis. Two of the fourteen samples were duplicate samples (SB-23D and SB-27D). Samples were selected for laboratory analysis based on field screening results as described in Section 5.3.4.1. Samples are identified by the soil boring from which they were collected followed by the depth of the sample interval bgs.

Of the fourteen samples collected, three contained chlorinated VOCs at concentrations exceeding their respective NYSDEC Cleanup Concentrations. TCE was detected in SB-19 7-8 at a concentration of 2,800 μ g/kg, above the cleanup concentration of 700 μ g/kg. PCE was detected in SB-25 5-6 and SB-26 5-6 at concentrations of 14,000 μ g/kg and 20,000 μ g/kg, respectively. The cleanup concentration for PCE is 1,400 μ g/kg. These compounds were also detected at low concentrations in several other samples.

A number of petroleum related VOCs were also detected at concentrations below their respective cleanup concentrations. Toluene was detected in twelve of the samples collected with concentrations

SDC TW GC SCREENING RESULTS(newest)

TABLE - 6-3
GROUNDWATER SAMPLE RESULTS-SITE 6 SDC
GC SCREENING
SCHENECTADY ANGB

ANALYTE	DETECTION	NY STATE			SA	SAMPLE NUMBERS	ERS		
	\mathbf{LIMITS}^{1}	$DWQS^2$	TW-1	£-WT	7-WT	6*MJ	TW-12	TW-15	TW-16
OCs (ug/L)									
cis-1,2,-Dichloroethene	'n	5	4.9	Œ	1.61	278	9.19	22.1	Ð
Tetrachloroethene	5	S	Q	Ð	R	335	4.09	28.1	N Q
trans-1,2-Dichloroethene	5	'n	Ð	ďΝ	R	1.79		2	Ð
Trichloroethene	55	જ	1.22	QN	ND	45	12.7	3.06	N
Vinyl Chloride	'n	2	Ð	Q	ON	1.09	2	Ą	N
		-							

ANALYTE	DETECTION	NY STATE			SAN	SAMPLE NUMBERS	ERS		
	LIMITS ¹	$DWQS^2$	TW-17	TW-18	61-WT	TW-20	TW-21	TW-22	TW-23
/OCs (ug/L)									
1,2,3-Trichlorobenzene	5	Ŋ	Ð	N N	1.16	Ð	Ð	QX	ND
1,2-Dichlorobenzene	s	en	£	S	QN	Ω	Q	S	1.22
cis-1,2,-Dichloroethene	5	٠,	28.6	4.37	23.4	1.12	139	812	227
Naphthalene	5	10	Ð	R	1.28	Q.	QN	QN	ND
Tetrachloroethene	S	'n	QX	S	QX	QN Q	Q	560	QN
trans-1,2-Dichloroethene	5	Ŋ	Ð	Q		Ą	Ð	3.23	1.26
Trichloroethene	5	'n	Q	QN Q	5	QN	3.03	378	1.89
Vinyl Chloride	5	5	4.41	S	QX	S	11	QN	7.08

SDC TW GC SCREENING RESULTS(newest)

TABLE -6-3 (CONT)
GROUNDWATER SAMPLE RESULTS-SITE 6 SDC
GC SCREENING
SCHENECTADY ANGB
SCOTIA, NEW YORK

ANALYTE	DETECTION	NY STATE			SA	SAMPLE NUMBERS	IRS		
	$LIMITS^1$	$DWOS^2$	TW-24	TW-25	TW-26	TW-27	TW-28	TW-29	
VOCs (ug/L)									
1,2,3-Trichlorobenzene	5	5	Q	ND ON	Q.	1.09	Q	2.23	
1,2,4-Trichlorobenzene	5	5	QN	Q	Q	Ð	QV.	2.04	
4-Isopropyltoluene	5.	4	Q	Ω	R	Ð	R	1.25	
Acetone	5	Z Z	Ŋ	ND	ND	ΩÑ	Ð	19.8	
cis-1,2,-Dichloroethene	5	5	16.2	20.3	34.6	51.9	R	ΩN	
Hexachlorobutadiene	5	0.5	2	Q.	Q	ΩN	S	2,92	
n-Butylbenzene	5	5	Ð	QN	Q	Ð	ΩŽ	1.56	
Naphthalene	S	10	QN	QN	Q.	1.15	8	2.31	
sec-Butylbenzene	ۍ	5	ND	Q	Q	Ð	Q	1.59	
Trichloroethene	ν.	55	7.6	QN	Q	3.53	R	QN	
Vinyl Chloride	S	2	2	40.3	Q.	15.2	QN	QN	

ANALYTE	DETECTION	NY STATE			SAN	SAMPLE NUMBERS	ERS		
	LIMITS	DWQS ²	TW-30	TW-31	TW-32	TW-33	TW-34	TW-35	TW-36
VOCs (ug/L)									
cis-1,2,-Dichloroethene	5	5	2	1.41	12.3	Q	QN	Q	£
Hexachlorobutadiene	2	0.5	<u>R</u>	1,61	Ð	Q.	QN	QN	S
Naphthalene	5	10	1.86	1.22	1.21	Ð	ΩN	QN	Ω

GROUNDWATER SAMPLE RESULTS-SITE 6 SDC **TABLE - 6-3 (CONT)** GC SCREENING

SCHENECTADY ANGB SCOTIA, NEW YORK

ANALYTE	DETECTION	NY STATE			SAA	SAMPLE NUMBERS	IRS		
	$LIMITS^1$	$DWQS^2$	7K-WT	TW-38	45-WT	6MW-03	80-MW9	60-WM9 80-WM9 60-WM9	6MW-10
VOCs (ug/L)									
cis-1,2,-Dichloroethene	5	5	21.6	ND	107	31.3	Q.	36.7	Q
Tetrachloroethene	5	S	63	Q	336	Q.	R	44.7	Q
trans-1,2-Dichloroethene	5	જ	Q	S	1.09	Q.	S	Q	QN N
Trichloroethene	5	5	43.6	ND	36.7	Q	Q	3.83	QN QN

ANALYTE	DETECTION	NY STATE	SAMPLE	SAMPLE NUMBERS
	LIMITS	DWQS ³	MIC.C	MIC-D
VOCs (ug/L)				
cis-1,2,-Dichloroethene	'n	ς,	2.25	Q

ABBREVIATIONS:

ug/L- micrograms per liter

DWQS - Drinking Water Quality Standards

NL - Not Listed

ND - Not Detected

TW - Temporary Well

Sample screened only for the compunds listed.

² NYSDEC Water Quality Standards and

Guidance Values, June 1998.

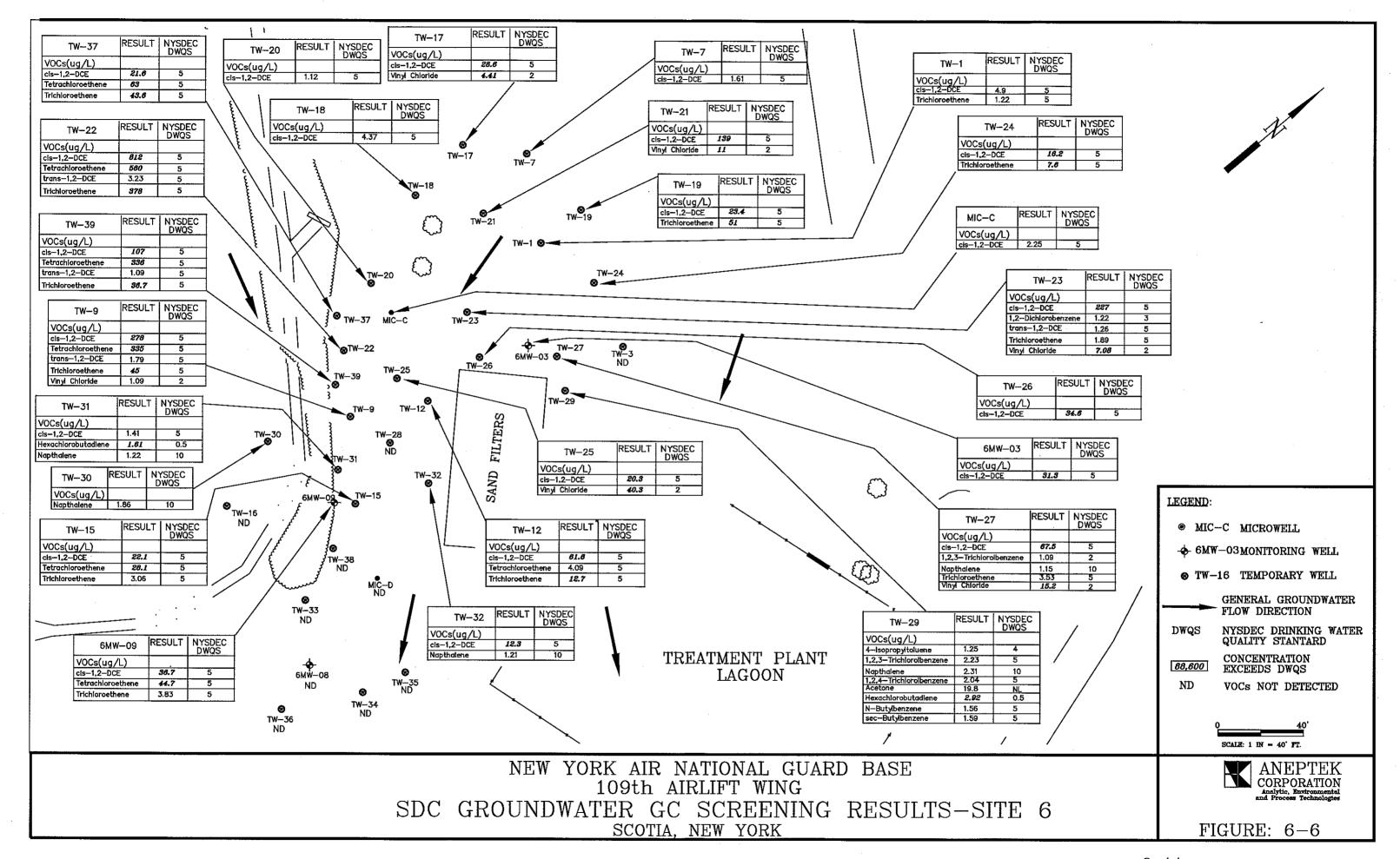
¹ Contract Required Detection Limit

for Organics (CDRL)

MW - Monitoring Well

MCL - Maximum Contaminant Level

NYSDEC - New York State Department


of Environmental Conservation

VOC's - Volatile Organic Compounds

DATA QUALIFIERS:

335 Indicates concentation that exceeds

State or Federal regulatory limits.

ranging from 1.1 μ g/kg in SB-21 7-8 to 14 μ g/kg in SB-26 5-6. The cleanup concentration for toluene is 1,500 @kg. A number of other petroleum constituents were detected at low concentrations in sample SB-17 5-6, including isopropylbenzene (35 μ g/kg), n-propylbenzene (29 μ g/kg), 1,3,5-trimethylbenzene (8 μ g/kg), 1,2,4-trimethylbenzene (12 @kg), 4 isopropyltoluene (180 μ g/kg), and 1,2-dichlorobenzene (6.6 @kg). The remaining samples were generally free of VOC contamination.

SVOCs were detected in only one sample. Sample SB-22 5-6 reported concentrations of 1,3-dichlorobenzene, 1,4-dichlorobenzene, and 1,2-dichlorobenzene at concentrations of 100 μ g/kg, 94 μ g/kg, and 590 μ g/kg, respectively. There is no cleanup concentration listed for these compounds. Three samples, SB-25 5-6, SB-26 5-6, and SB-27 5-6, had rejected results for 2,4,dinitrophenol and 4-nitrophenol due to low response factors during instrument calibration.

Several inorganic analytes were detected above their respective cleanup concentrations. Arsenic was detected in eleven of the samples with concentrations ranging from 8.2 mg/kg in SB-23 6-7 to 15.3 mg/kg in SB-28 7-8. The cleanup concentration for arsenic is 7.5 or site background (8 mg/kg). Chromium was detected in six of the samples collected with concentrations ranging from 23.3 mgikg in SB-25 5-6 to 32.6 mg/kg in SB-18 2-4, exceeding the cleanup concentration of 10 mg/kg or site background (23 mg/kg). Chromium was also detected in the remaining eight samples at concentrations above 10 mg/kg but below the site background level of 23 mg/kg. Iron, nickel, and potassium were detected in several samples above their respective cleanup concentrations. Beryllium was detected in nine of the samples collected with concentrations ranging from 0.81 mg/kg in SB-27D 6-7.5 to 1.5 mgikg detected in SB-18 2-4, exceeding the regulatory standard of 0.16 mg/kg or site background (0.81 mg/kg). It should be noted that SB-27D 6-7.5 is a duplicate sample of SB-27 6-7.5, beryllium was detected in SB-27 6-7.5 at a concentration of 0.7 mg/kg. All confirmatory soil sampling results are presented in Table 6-4 and summarized in Figure 6-7.

6.3.2 Confirmatory Sampling Results - Groundwater

Two rounds of confiiatory groundwater samples were collected. The first round was collected in June of 2002, the second in August of 2002. During each sampling event a total of 17 samples were collected, this number includes two duplicate samples per round (6MW-121 and 6MW-181 in the first round, 6MW133 and 6MW-201 in the second round). It should be noted that monitoring well 6MW-11 is a converted temporary well (TW-30). It was converted into permanent well after the original well location did not recharge with adequate amounts of water to facilitate sample collection. Attempts were made to install an adequate sand pack around the well screen, however as this was not done during well installation, the effectiveness of the sand pack to filter out particulates from the groundwater was compromised. As a result, samples collected from 6MW-11 had a higher degree of turbidity than other samples collected. This is the probable cause for the increased detections of inorganics in the 6MW-11 sample results. The results for each round are discussed below.

6.3.2.1 June 2002 Results

Of the 17 samples collected, six contained VOCs above their respective NYSDEC DWQS. Vinyl chloride was detected in sample 6MW-03 at a concentration of 2.1 μ g/L, slightly above the drinking water standard of 2.0 μ g/L. Cis-1,2-DCE was detected in four of the samples collected with concentrations ranging from 16 μ g/L in 6MW-09 to 41 μ g/L in 6MW-03. Two other samples

TABLE 6-4 SOIL SAMPLING ANALYTICAL RESULTS

SITE 6 SDC SCHENECTADY ANGB SCOTIA, NEW YORK

DETECTION	TION	NY STATE	BACKGROUND				S	SAMPLE NUMBERS	ABERS			
CLEAN UP CONC.			C.3	SB-17 5-6	7 5-6	SB-18 2-4	32-4	SB-19 7-8	7-8	SB-20 4.5-5.5	.5-5.5	SB-21 7-8
-	-											
		7	Ð	1.4	Ją	1.2	n	8.5		1.1	D	3.3
1.1 200	200		£	1.1	Þ	1.2	n	1.1	Ω	1.1	Ω	1.2
	300		Q.	6.0	Jq	1.2	n	1.1	n	1.1	D	1.2
1.1 NL	Ŋ		Q.	2.7	Ją	1.2	n	110		10		22
1.1 700*	*002		Q.	S	J.	1.2	Þ	2800		54		14
	09		R	1,1	Ω	1.2	n	1.1	⊃	1:1	Ω	1.2
1.1 1400*	1400*		Q	2.1	Jq	1.2	Ω	1.1	D	1.4	Jd	3
	1500		5.4	1.3	Ъ	1.2	n	1.1	n	4.4	Тq	1.1
1.1 1700	1700		Ð	1.1	Þ	1.2	n	1.1	Þ	1.1	D	1.2
	ğ		£	35		1.2	Ω	1.1	D	1.1	Ω	1.2
	Ŋ		Q.	53		1.2	Ω	1.1	n	1.1	Ω	1.2
	N.		Q.	∞		1.2	n	1.1	Ω	0.8	ρſ	1.2
-	N		Q	12		1.2	n	1.1	ם	1.1	Þ	1.2
	1600		Q	1.1	n	1.2	D	1.1	D	1.1	n	1.2
	Z,		R	180		1.2	D	1:1	D	1.1	Þ	1.2
	8200		Q	1.1	Þ	1.2	Ω	1.1	n	1.1	D	1,2
	7900		Q.	9.9		1.2	Ω	1.1	n	1:1	D	1.2
1.1 13,000	13,000		2	1.6	Jď	1.2	n	1.1	D	1.1	Þ	1.2
	Ŋ		QN	430	Þ	440	n	370	n	370	n	390
330 NL	N		NO NO	430	B	440	'n	370	m	370	B	390
330 NL	N		CN CN	430	D	. 044	n	370	D	370	n	390
800 200 or MDL	200 or MDL		ę.	1100	Ħ	1100	m	940	n	940	ñ	086
800 100 or MDL	100 or MDL		Ð	1100	Б	1100	m	940	m	940	m	086
330 50,000**	**000'05		Ð	430	n	440	n	370	Þ	370	n	390
					Ţ							

TABLE 6-4 (Cont.) SOIL SAMPLING ANALYTICAL RESULTS

SITE 6 SDC SCHENECTADY ANGB SCOTIA, NEW YORK

					7S	SAMPLE NUMBERS	ERS		
ANALYTE	DETECTION LIMIT ¹	NY STATE CLEAN UP CONC. ²	BACKGROUND CONC.3	SB-17 5-6	SB-18 2-4	SB-19 7-8	SB-20 4.5-5.5	SB-21 7-8	7-8
NORGANICS (mg/Kg)	40	as	15 201		OURIEC	14100	13000	13400	
Antimony	12	SB SB	12,211	1.4	1.4	1.2	1.2	13400	H
Arsenic	2	7.5 or SB	; ∞		8.5 Jb		12.8 Jb	6.3	e 4
Barium	40	300 or SB	16					101	
Beryllium		.16 or SB	0.81		1.5	6.0	0.85	28.0	
Cadmium		1 or SB	Ð	0.66 Jb	0.69 Jb	0.7 Jb	0.64 Jb	0.34	Ъ
Calcium	1000	SB	11,383	591	1880			12.2	Ω
Chromium	2	10 or SB	23	26.6	32.6	24.8	23.8	19.5	
Cobalt	10	30 or SB	16	16.4	6.6	22	23.1	9.1	
Copper	25	25 or SB	42	33.9	30	48.3	42.8	35.8	
Iron	20	2,000 or SB	33,876	37000	40500	38500	37300	24800	
Lead	9:0	SB	45	12,4	12.1	22.8	19.9	13.3	-
Magnesium	1000	SB	8,120	2800	0289	7080	6490	3460	
Manganese	က	SB	855	999	215	783	887	751	
Mercury	0.1	0.1	0.38		0.13 U		0.11 U	0.12	n
Nickel	∞	13 or SB	29	38.3	39.4	5.0.5	42,7	30.1	
Potassium	1000	SB	1,930			2050		62CV 632	
Selenium	1	2 or SB	Q.			0.45			D
Silver	7	SB	QN QN		0.41 UJ		0.35 U		m
Sodium	1000	SB	380			93.3			Um, UJ
Thallium	7	SB	S			0.82			n
Vanadium	10	150 or SB	30	35.7					
Zinc	4	20 or SB	116	85.9	96.2	109	91.2	9.89	

TABLE 6-4 (Cont.) SOIL SAMPLING ANALYTICAL RESULTS SITE 6 SDC SCHENECTADY ANGB SCOTIA, NEW YORK

	55-6		n	Ü	U			Ω			D	n	D	U	Ω	Û	U	n	n	n		Ω	u, uj	ב	Rc	Rc	Ω
	SB-25 5-6		=	1.1	1.1	21	17	1.1	14000	12	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1		370	370	370			370
	SB-24 4.5-5.5		n	n	n		Jm	n	Jq	Jm, Jq	n	n	n	n	n	n	n	n	n	n		U	m	n	n	m	n
S	SB-24		1.2	1.2	1.2	18	11	1.2		1.3	1.2	1.2	1.2	1,2	1.2	1.2	1.2	1.2	1.2	1.2		390	390	390	026	026	390
SAMPLE NUMBERS	SB-23D 6-7		Ω	Jť		Jf	Jq	Jq	Ω	Jq	Jť	n	D	Ŋ	n	Jq	D	Jq	Um	Ω		D	ß	Ω	m	m	Ω
SAMPLE	SB-2		1.2	39	3.2	110	9	6.0	1.2	2.6	51	1.2	1.2	1.2	1.2	3.4	1.2	3.2	91	1.2		420	420	420	1000	1000	420
,	SB-23 6-7		Ω	Jf, Jq	n	Jf		n	Ω	λ	Jf	n	n	n	n	D	D	Ω	Um	Þ		Þ	m	U	m	m	D
	SB-2		1.2	4.5	1.2	330	8.2	1.2	1.2	4.5	26	1.2	1.2	1.2	1.2	1.2	1.2	1.2	7.1	1.2		400	400	400	1000	1000	400
	SB-22 5-6		n	D				n	Ωm	Jq	D	n	U	U	n	Jq	D	Jq		U		Уq	JI, Jq		ſ'n	Б	Ją
	SB-2		1.2	1.2	1.2	28	22	1.2	2.3	2.9	1.2	1.2	1.2	1.2	1.2	1.3	1.2	1.2	6.7	1.2	···	100	94	290	086	086	57
BACKGROUND	CONC.3		QN	QN	QN	QN	ND	ND	QN	5.4	ND	QN	QN	ND	ND	QN	ND	QN	ND	QN		QN QN	QN	QN	ND	ND	QN
NY STATE	CLEAN UP CONC. ²		Ŋ,	200	300	Ŗ	*002	09	1400*	1500	1700	N	N	NL	N	1600	NL	8500	7900	13,000		Ŕ	덮	뒫	200 or MDL	100 or MDL	**000,05
DETECTION	LIMIT		1.1	1.1	1.1	1.1	1:1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1		330	330	330	800	800	330
	ANALYTE	VOCs (ug/kg)	Chloromethane	Vinyl Chloride	trans-1,2-Dichloroethylene	cis-1,2-Dichloroethene	Trichloroethene	Benzene	Tetrachoroethene	Toluene	Chlorobenzene	Isopropylbenzene	n-Propylbenzene	1,3,5-Trimethylbenzene	1,2,4-Trimethylbenzene	1,3-Dichlorobenzene	4-Isopropyltoluene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	Naphthalene	SVOCs (ug/Kg)	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	2,4-Dinitrophenol	4-Nitrophenol	bis(2-Ethylhexyl)phthalate

TABLE 6-4 (Cont.) SOIL SAMPLING ANALYTICAL RESULTS SITE 6 SDC SCHENECTADY ANGB SCOTIA, NEW YORK

	DETECTION	NY STATE	RACKCROTIND				SA	SAMPLE NUMBERS	UMBE	RS			
ANALYTE	LIMIT	CLEAN UP CONC. ²	CONC.3	SB-22 5-6	2-6	SB-23 6-7	2-9	SB-23D 6-7	2-9 (SB-24	SB-24 4.5-5.5	SB-25 5-6	55-6
INORGANICS (mg/Kg)													
Aluminum	40	SB	15,321	14000		13100	•	14600		14100		14200	
Antimony	12	SB	17	1.3	a	1.3	n	1.3	n	1.2	m	1.2	Ω
Arsenic	2	7.5 or SB	8	7.8	Jb	8.2	æ	4.5		15	Jb	14.5	Jb
Barium	40	300 or SB	76	2.66		89.2		114		94.3		92	A STATE OF THE STA
Beryllium	ı	.16 or SB	0.81	92.0		0.76		0.78		98.0		0.89	
Cadmium	1	1 or SB	S	0.55	Jb	0.51	Jb	0.46		0.78	JP	0.82	Jb
Calcium	1000	SB	11,383	1290		2130	Jť	629	Jf	901	Um	204	
Chromium	7	10 or SB	23	19.6		19.3		20.3		23.5		23.3	
Cobalt	10	30 or SB	16	17		12.5		13.1		23.6		23.4	
Copper	Š	25 or SB	42	33		28.4		17.7		54.7		53.3	
Iron	70	2,000 or SB	33,876	27600		27400		22100		38500		37600	
Lead	9.0	SB	45	13.3		13.1		16.7		23.6		21	
Magnesium	1000	SB	8,120	5290		2090		3730		6280		6320	
Manganese	3	SB	855	501		507		464		1030		1060	
Mercury	0.1	0.1	0.38	0.11	n	0.11	Þ	0.12	D	0.12	Þ	0.11	Εſ
Nickel	∞	13 or SB	29	37.1		29.4		22.9		8.89		76.5	
Potassium	1000	SB	1,930	2120		1920		1610		2330		2170	
Selenium	1	2 or SB	QN		Ja, Jq		Уq	0.5	n	0.46	Þ	0.45	ם
Silver	2	SB	QN		m		ñ	0.39	Ω	0.36	ñ	0.35	ſΩ
Sodium	1000	SB	380		Jm, UJ	_	Jm, UJ	647	Ωŧ	106	Um, UI	97.5	Um, UJ
Thallium	2	SB	QN		'n		n	0.91	Þ	3.1	Um, UJ	0.82	D
Vanadium	10	150 or SB	30	23.7		24.5		28.9		21.8		21.8	
Zinc	4	20 or SB	116	76.1		5.69		73.7		108		118	
	T	T			1								

TABLE 6-4 (Cont.)
SOIL SAMPLING ANALYTICAL RESULTS
SITE 6 SDC
SCHENECTADY ANGB
SCOTIA, NEW YORK

	DETECTION	NY STATE	BACKGROTIND			S	AMPLE D	SAMPLE NUMBERS	3		
ANALYTE	LIMIT	CLEAN UP CONC. ²	CONC.3	SB-26 5-6	5-6	SB-27 6-7.5	6-7.5	SB-27D 6-7.5	6-7.5	SB-28 7-8	8 7-8
VOCs (ug/kg)	,	1		;	;	•	***	,	,		
Chloromethane	1.1	Z :	2	1.1	D ;	1.2	5 :	vo (Jf, Jq	8.1	ļ
Vinyl Chloride		200	Q	1.1	Þ	1.2	Þ	1.2	Þ	1:1	D D
trans-1,2-Dichloroethylene	1.1	300	Ð	1.1	n	1.2	n	1.2	n	1:1	n
cis-1,2-Dichloroethene	1.1	ŊĹ	Ð	99		1.2	h	1.2	n	35	
Trichloroethene	1.1	*00	Ð	65		1.2	Þ	1.2	n	8.4	
Benzene	1:1	09	S	1.1	n	1.2	Þ	1.2	Ω	1.1	Þ
Tetrachoroethene	1.1	1400*	Q	20000		1.2	n	1.2	n	9.0	Jq
Toluene	1.1	1500	5.4	14		5.9	Ją	2.7	Jď	7	Ją
Chlorobenzene	1.1	1700	Ð	1.1	Þ	1.2	Þ	1.2	Þ	1.1	U
Isopropylbenzene	1.1	님	Ð	1:1	Þ	1.2	Ω	1.2	D	1.1	U
n-Propylbenzene	1.1	N	S	1.1	D	1.2	n	1.2	Þ	1.1	U
1,3,5-Trimethylbenzene	1.1	Ŋ	Ð	1.1	n	1.2	Ω	1.2	ם	1.1	n
1,2,4-Trimethylbenzene	1.1	Ŋ	8	1.1	n	1.2	n	1.2	Þ	1.1	n
1,3-Dichlorobenzene	1.1	1600	QX	1.1	n	1.2	n	1.2	D	1.1	n
4-Isopropyltoluene	1.1	Ŋ	Ð	1.1	n	1.2	Ω	1.2	n	1.1	n
1,4-Dichlorobenzene	1.1	8500	S	1.1	D	1.2	n	1.2	Ω	1.1	n
1,2-Dichlorobenzene	1.1	7900	£	1.1	n	1.2	D	1.2	n	1.1	ņ
Naphthalene	1.1	13,000	QN O	1.1	n	1.2	n	1.2	n	1.1	n
SVOCs (ug/Kg)											•
1,3-Dichlorobenzene	330	N.	QN ON	370	ņ	400	n	410	D	380	D
1,4-Dichlorobenzene	330	ŊĽ	Q	370	n	400	u, uj	410	m	380	n
1,2-Dichlorobenzene	330	Ŋ	Q.	370	n	400	n	410	n	380	D
2,4-Dinitrophenol	800	200 or MDL	Q		Rc		Rc	1000	n	96	B
4-Nitrophenol	800	100 or MDL	Ð		Rc		Rc	1000	n	96	ñ
bis(2-Ethylhexyl)phthalate	330	**000'05	Ð	370	D	400	n	410	n	380	n
	·										

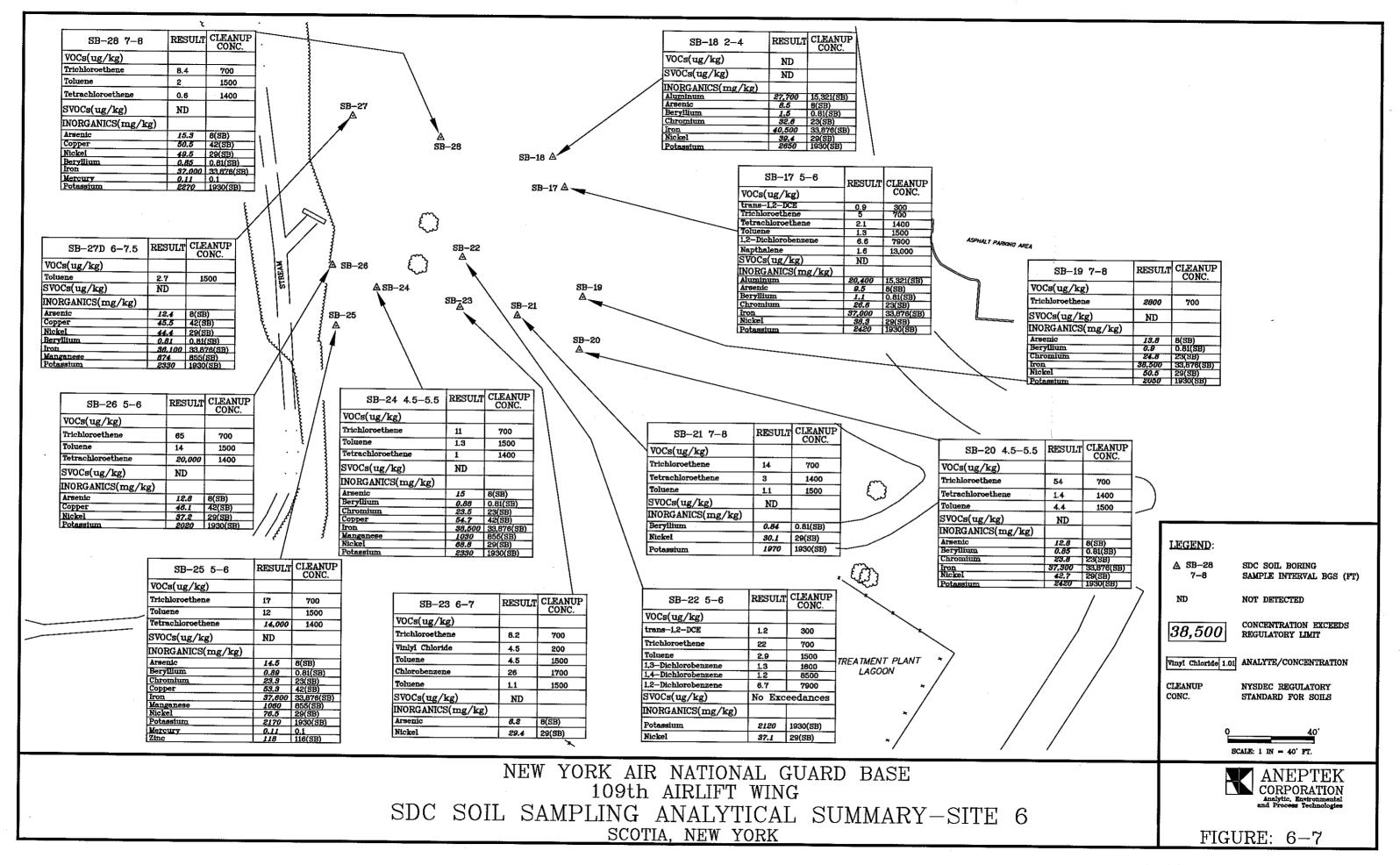
TABLE 6-4 (Cont.) SOIL SAMPLING ANALYTICAL RESULTS SITE 6 SDC SCHENECTADY ANGB SCOTIA, NEW YORK

	MOTHOGENERA		aratoa o a o a			SA	WPLE !	SAMPLE NUMBERS	RS		
ANALYTE	LIMIT ¹	NY STATE CLEAN UP CONC. ²	CONC.3	SB-26 5-6	ب	SB-27 6-7.5	7.5	SB-27D 6-7.5	6-7.5	SB-2	SB-28 7-8
INORGANICS (mg/Kg)											
Aluminum	40	SB	15,321	11900		1500	-	12500		13200	
Antimony	12	SB	17					1.3	5	1.2	Ē
Arsenic	7	7.5 or SB	∞		e e		J.	12.4	æ	15.3	JP
Barium	40	300 or SB	26					77.6		79.2	
Beryllium	-	.16 or SB	0.81	0.7		0.7		18:0		0.85	
Cadmium		1 or SB	Q		- Q	0.53	ð	0.61	e e	69.0	ď
Calcium	1000	SB	11,383	198		390		414		346	
Chromium	7	10 or SB	23	20.5		6.61		22.3		22.9	
Cobalt	10	30 or SB	16	12.3		9.91		19.3		6.61	
Copper	5	25 or SB	42	46.1		673		45.5		50.5	
Iron	20	2,000 or SB	33,876	32300	3	2800	Ī	36100	********	37000	
Lead	9.0	SB	45	17.7		15.3		17.4		22.4	
Magnesium	1000	SB	8,120	2500	4)	1250		5810		6180	
Manganese	ო	SB	855	358		089		874 4		644	
Mercury	0.1	0.1	0.38		n	0.11	D	0.12	Б	0.11	Jq, Jm
Nickel	∞	13 or SB	29	4		202		44.4		49.5	
Potassium	1000	SB	1,930	2020		2150		2330		2270	
Selenium	_	2 or SB	Q						Jď	0.46	n
Silver	7	SB	Q						ñ	0.36	5
Sodium	1000	SB	380	_	Jm, UJ		Jm, UJ	_	Um, UI	109	Um, UJ
Thallium	7	SB	Ð						'n	0.83	n
Vanadium	10	150 or SB	30	19.8		19.7		21.7		21	
Zinc	4	20 or SB	116	85.7		31.5		91.1		8.06	

ABBREVIATIONS:	NOTES:
ushg - micrograms per kilogam	 Contract Required Detection Limit (CRDL)
mg/kg - milligrams per kilogam	2) NYSDEC TAGM HWR-94 4046, Jan 24, 1994. Where applicable, the soil
MDE Method Detection Limit	cleanup objectives were corrected for TOC levels. Where the GW based Soil
NYSDEC - New York State Dept. of	Cleanup Objectives differed from the Recommended Soil Cleanup
Environmental Conservation	Objectives, the more stringent value was used.
NA - Not Applicable	Background concentrations from RI.
ND - Not Detected	*) As per TAGM #4046, total VOCs < 10 ppm.

^{**)} As per TAGM #4046, total VOCs < 10 ppm, total SVOCs < 500 ppm, and individual SVOCs < 50 ppm must be maintained for the listed NYSDEC concentrations to apply. NL - Not Listed RI - Remedial Envestigation RPD - Relative Percent Difference SB - Soil Boring

VOC's - Volatile Organic Compounds


DATA QUALIFIERS.

U. Compound was analyzed for, but not detected
U. The sample was analyzed for, but not detected
U. The sample was not detected above the reported sample quantitution limit.
U. Sample result was lots that the etions level of SX the maximum concentration found in any blank and has been qualified as nondesceted.
J. The analyte was positively identified, the associated value is the approx.
concentration of snalyte in the sample.

Ja - The result of the furnace analytical spike was outside of criteria. Positive and for nondetect sample results are estimated dependant on the recovery.

The ICS recovery of an element is outside of criteria or positive or mondeted interference was detected in the ICSA marlysis.
 The initial or continuing cultivation verification standard was outside of control limits of 90-1109.
 Field duplished #RPD was high for this compound.
 The recovery for the throughout CRDL standard was outside the costrol limits of 80-120%.
 The positive and/or non-detected results are estimated dependent on the recovery.

SVOCs - Semi-Volatile Organic Compounds TAGM - Technical and Administrative Guidance Memorandum

reporting cis-1,2-DCE were 6MW-13 and 6MW-20, each at a concentration of 28 μ g/L. The drinking water standard for cis-1,2-DCE is 5 μ g/L. TCE was detected in samples 6MW-13 and 6MW-21 at a concentration of 18 μ g/L, and in 6MW-121 (duplicate of sample 6MW-21), at a concentration of 17 μ g/L. PCE was detected in sample 6MW-13 at a concentration of 3,700 μ g/L. PCE was also detected in sample 6MW-09 at a concentration of 24 μ g/L and in 6MW-21 and 6MW-121 at a concentration of 260 μ g/L, respectively. The drinking water standard for PCE is 5 μ g/L.

These compounds were also detected at concentrations below their respective drinking water standards in numerous samples. Cis-1,2,-DCE was detected in 6MW-18 and 6MW-181 (duplicate of 6MW-18) at a concentration of 18 μ g/L. TCE was detected in samples 6MW-03, 6MW-09, and 6MW-20, at concentrations of 1.3 μ g/L, 2.4 μ g/L, and 1.3 μ g/L, respectively. PCE was detected in 6MW-12, 6MW-14, 6MW-15, and 6MW20, at concentrations of 2.4 μ g/L, 1.4 μ g/L, 0.5 μ g/L, and 1.3 μ g/L, respectively.

No SVOCs were detected in exceedance of NYSDEC DWQS. Only one SVOC was detected. Bis (2-Ethylhexyl)phthalate was detected in samples 6MW-17, 6MW-18, and 6MW-19 at concentrations of 4 μ g/L, 1 μ g/L, and 2 μ g/L, respectively. The drinking water standard for bis (2-Ethylhexyl)phthalate is 5 μ g/L. No other SVOCs were detected in any of the samples collected.

Several inorganics were detected at concentrations exceeding their respective NYSDEC DWQS. Of these analytes, iron and sodium were the most prevalent. Iron was detected in 12 of the 17 samples collected at concentrations ranging from 310 μ g/L in 6MW-09 to 13,300 μ g/L in 6MW17, exceeding the water quality standard of 300 μ g/L. Sodium was detected in 14 of the samples collected at concentrations exceeding the water quality standard of 20,000 μ g/L. Concentrations ranged from 23,300 μ g/L detected in 6MW-16 to 162,000 μ g/L detected in 6MW-19. Magnesium was detected in seven of the samples collected at concentrations ranging from 41,500 μ g/L in 6MW-121 to 63,900 μ g/L detected in 6MW-15. The water quality standard for magnesium is 35,000 μ g/L. Manganese was detected in eleven of the samples collected above its respective water quality standard of 300 μ g/L. Cobalt was detected in four of the samples collected exceeding the water quality standard of 5 μ g/L. Antimony was detected in 6MW-17 and 6MW-18 1 at concentrations of 13.4 μ g/L and 11 μ g/L, respectively, exceeding the water quality standard of 5 μ g/L. Analytical results from the June sampling event are presented in Table 6-5 and summarized in Figure 6-8.

6.3.2.2 August 2002 Results

Of the 17 samples collected during the second round of sampling, six contained VOCs above their respective NYSDEC DWQS. Vinyl chloride was detected in sample 6MW-03 at a concentration of 6.51 μ g/L, exceeding the drinking water standard of 2.0 μ g/L. Cis-1,2-DCE was detected in five of the samples collected. Concentrations ranged from 12 μ g/L in 6MW-09 to 120 μ g/L in 6MW-133 (duplicate sample of 6MW-13). Cis-1,2-DCE was also detected in 6MW-03, 6MW-13, and 6MW-21 at concentrations of 46 μ g/L, 98 μ g/L, and 71 μ g/L, respectively. The driiing water standard for cis-1,2-DCE is 5 μ g/L. TCE was detected in samples 6MW-13, 6MW-21, and 6MW-133 at concentrations of 48 μ g/L, 16 μ g/L and 48 μ g/L, respectively, above the drinking water standard of 5 μ g/L. PCE was detected in samples 6MW-09, 6MW-13, 6MW-21, and 6MW-133 at concentrations of 16 μ g/L, 570 μ g/L, 300 μ g/L, and 740 μ g/L, respectively. The driiing water standard for PCE is 5 μ g/L.

These compounds were also detected at levels below their respective driiing water standards in samples 6MW-09 (TCE at 1.7 μ g/L), 6MW-20 (cis-1,2-DCE at 2.7 μ g/L), and 6MW-201 (cis-1,2-DCE at 4.1 μ g/L). Trans-1,2,-DCE was detected in 6MW-133 at a concentration of 1.2 μ g/L. The

TABLE 6-5 GROUND WATER SAMPLING RESULTS - FIRST ROUND-JUNE 2002 SITE 6 SDC SCHENECTADY ANGB SCOTIA, NEW YORK

	DETECTION	NY	DACE	GROUND				SAI	MPLE N	UMJ	BERS			
ANALYTE	z n cml	STATE DWQS ²	00	NC.3	6MW	-03	6MW-	-08	6MW-	09	6MV	V-10	6MW	-11
VOCs (ug/L)						aran cuma cu								
Vinyl Chloride	1.0	2	ND		2.1	, J	1	U	1	U	1	U	1	U
trans-1,2-Dichloroethylene	1.0	5	ND		1	U	1	U	1	U	1	U	1	U
cis-1,2-Dichloroethene	1.0	5	ND		41	Ä	1 '		. 16		1	U	1	U
Trichloroethene	1.0	5	ND		1.3	J	1	U	2.4	J	1	U	1	U
Tetrachloroethene	1.0	5	ND		1	U	1	U	24		1	U	1	U
SVOCs (ug/L)														
bis (2-Ethylhexyl) phthalate	10		12		11	U	10	U	11	U	11	U	11	U
INORGANICS (ug/L)							1							
Aluminum	200	NL	10.2	UJ	69	Jm	202	Jm	175	Jm	1030	Jm	5380	Jm
Antimony	60	3	2.6	UJ	5.3	U	5.3	U	5,3	U	5.3	U	5.3	U
Arsenic	10	25	2.6	UJ	3.6	Jq	2,6	U	2,6	U	2.6	U	2.6	U
Barium	200	1000	78.8	J	153	Jm	67.7	Jт	98.4	Jm	42.1	Jm	129	Jm
Beryllium	5	3°	0.4	J	0.23	IJ	0.23	U	0.23	U	0.23	U	0.23	U
Cadmium	5	5	0.4	J	0.48	Ū	0.48	Ū	0.48	Ū	0.48	Ū	0.48	Ū
Calcium	5000	NL	####		68700		138000	-	74100		####		175000	
Chromium	10	50	14		0.83	U	0.83	U	0.83	U	0.88	Jq,Jm	5.9	Jm
Cobalt	50	5	0.6	U	2.5	U	2.5	U	2.5	U	2.5	Ü	5.2	
Copper	25	200	0.5	UJ	6.9	U	6.9	U	6.9	U	6.9	U	10.2	Jq,Jm
Iron	100	300	1.3	U	2250	Jm	3020	Jm	310	Jm	1770	Jm	8180	Ĵm
Lead	3	25	1.1	U	2.9	UJ	2.9	UJ	2.9	UJ	2.9	UJ	6	Jg
Magnesium	5000	35000°	####	J	20300		45900	62. (3). (3)	22300		####		50300	_
Manganese	15	300	85	J	425	2	1140	W. W	66.9		235		1120	
Mercury	0.2	0.7	0.2	Ü	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U
Nickel	40	100	3.8	J	29.6	íq, Jn	15.2	U	15.2	U	15.2	U	15.2	U.
Potassium	5000	NL	3360	J	7230	Ĵр	4570	Jр	9620	Jр	1880	Jр	8960	Jр
Selenium	2	10	2	U	2	Ū	2	Û	2	Ú	2	Û	2	Û
Silver	10	50	10	U	1.6	UJ	1.6	UJ	1.6	UJ	1.6	UJ	1.6	UJ
Sodium	5000	20000	6870	J	75600		64400		77800		5320		23500	3
Thallium	10	0.5°	1.1	U	3.6	U	3.6	U	3.6	ับ	3.6	U	3.6	, U
Vanadium	50	NL	1.2	Ü	3.7	Ŭ	3.7	U	3.7	U	3.7	Ū	9.1	
Zinc	20	2000°	9.2	J	17.8	U	17.8	U	17.8	U	17.8	U	23.4	Jq
:														

TABLE 6-5 (Cont.) GROUND WATER SAMPLING RESULTS - FIRST ROUND-JUNE 2002 SITE 6 SDC SCHENECTADY ANGB SCOTIA, NEW YORK

	DETECTION	NY	DACE	GROUND				AM	PLE NU	MBE	ERS			
ANALYTE	LIMIT ¹	STATE DWQS ²		ONC.3	6MW-	12	6MW-	13	6MW-	14	6MW	15	6MW	-16
VOCs (ug/L)														
Vinyl Chloride	1.0	2	ND		1	U	1	U	1	U	1	U	1	U
trans-1,2-Dichloroethylene	1.0	5	ND		1	U	1	U	1	U	1	U	1	U
cis-1,2-Dichloroethene	1.0	5	ND		1	U	28	J	1	U	1	U	1	U
Trichloroethene	1.0	5	ND		1	U	18	J	i	U	1	U.	1	U
Tetrachloroethene	1.0	5	ND		2.4	J	3700	J	1.4	J	0.5	J	1	U
SVOCs (ug/L)														
bis (2-Ethylhexyl) phthalate	10		12		11	U	10	U	10	U	11	U	10	U
INORGANICS (ug/L)													•	
Aluminum	200	NL	10.2	UJ	113	Jm	109	Jm	764	Jm	422	Jm	272	Jm
Antimony	60	3	2.6	UJ	5.3	U	5.3	U	5.3	U	5.3	UJ	5.3	U
Arsenic	10	25	2.6	UJ	2.6	U	2.6	U	2.6	U	2.6	UJ	2.6	U
Barium	200	1000	78.8	J	80.3	Jm	121	Jm	84.9	Jm	66.5	Jm	168	Jm
Beryllium	5	3°	0.4	J	0.23	U	0.23	U	0.23	U	0.23	U	0.23	U
Cadmium	5	5	0.4	J	0.48	Ū	0.48	Ū	0.48	Ū	0.48	Ū	0.48	Ū
Calcium	5000	NL	71900		173000	-	107000	-	29200		266000		74600	
Chromium	10	50	14		0.83	U	0.83	U	0.83	U	0.83	U	0.83	U
Cobalt	50	5	0.6	U	3.1	Jq	2.5	U	2.5	U	2.5	U	2.5	U
Соррег	25	200	0.5	UJ	6.9	Ú	6.9	U	6.9	U	6.9	U	6.9	U
Iron	100	300	1.3	U	71.9	Jm	124	Jm	1020	Ĵm	581	Jm	354	Jm
Lead	3	25	1.1	U	2.9	UJ	2,9	UJ	2.9	UJ	2.9	UJ	2.9	UJ
Magnesium	5000	35000°	18600	j	58500	5	32700		9960		63900		25000	
Manganese	15	300	85	J	2600		1640		269		88	•	1150	ì
Mercury	0.2	0.7	0.2	Ū	0.2	ับ	0.2	U	0.2	U	0.2	U	0.2	Ű
Nickel	40	100	3.8	J	15.2	U	15.2	U	15.2	U	15.2	U	15.2	U
Potassium	5000	NL	3360	U	4690	Jр	4520	Jр	5090	Jp	9360	Jp	9530	Jр
Selenium	2	10	2	U	2	Û	2	Ú	2	ΰ	2	Û	2	Ū
Silver	10	50		U	1.6	UJ	1.6	UJ	1.6	UJ	1.6	UJ	1.6	UJ
Sodium	5000	20000	6870	J	6410		19300		93800		100000		23300	
Thallium	10	0.5°	1.1	U	3.6	U	3.6	U	3.6	U	3.6	U	3.6	U
Vanadium	50	NL	1.2	Ŭ	3.7	U	3.7	Ü	3.7	Ü	3.7	Ü	3.7	Ü
Zinc	20	2000°	9.2	J	17.8	U	17.8	U	17.8	U	17.8	Ū	17.8	Ū

TABLE 6-5 (Cont.) GROUND WATER SAMPLING RESULTS - FIRST ROUND-JUNE 2002 SITE 6 SDC SCHENECTADY ANGB SCOTIA, NEW YORK

	DETECTION	NY	BACKG	DOLDE			,	SAM	PLE NU	MB	ERS			
ANALYTE	LIMIT ¹	STATE DWQS ²		NC.3	6MW	-17	6MW	-18	6MW-	19	6MW	-20	6MV	V-21
VOCs (ug/L)														
Vinyl Chloride	1.0	2	ND		1	U	1	ប	1	U	1	U	1	U
trans-1,2-Dichloroethylene	1.0	5	ND		1	U	1	U	1	U	1	U	1.2	J
cis-1,2-Dichloroethene	1.0	5	ND		ī	U	0.8	J	1	U	28		1	υ
Trichloroethene	1.0	5	ND		1	U	1	U	1	U	1	J	18	
Tetrachloroethene	1.0	5	ND		1	U	1	U	1	U	- 1.3	J	260	
SVOCs (ug/L)														
bis (2-Ethylhexyl) phthalate	10	5	12		4	J	1	J	2	J	10	U	10	บ
INORGANICS (ug/L)														
Aluminum	200	NL	10.2	UJ	7220	Jm	73.7	Jm, Jf	449	Jm	248	Jm	3040	Jm
Antimony	60	3	2.6	UJ	13.4		5.3	Ü	5.3	U	5.3	U	5.3	U
Arsenic	10	25	2.6	ប្រ	6.8		2.6	Ü	2.6	U	2.6	U	4.8	Jq
Barium	200	1000	78.8	J	377	Jm	145	Jm	493	Jm	224	Jm	188	Jm
Beryllium	5	3 ^e	0.4	J	0.31	Jq	0.23	U	0.23	U	0.23	U	0.23	U
Cadmium	5	5	0.4	J	0.48	Ú	0.48	U	0.48	U	0.48	U	0.48	U
Calcium	5000	NL	71900		61700		84200		50800		90800		157000	
Chromium	10	50	14		10.1	Jm	0.83	U	0.83	U	0.83	U	2.8	Jm
Cobalt	50	5	0.6	U	6.9		2.5	U	2.5	U	2.5	U	7	
Copper	25	200	0.5	UJ	18.1	Jm	6.9	U	6.9	U	6.9	Jg, Jm		Jq, Jm
Iron	100	300	1.3	U	13300	Jm	107	Jm, Jf	654	Jm	219	Jm	5960	Jm
Lead	3	25	1.1	U	7.2	Jg	2.9	UJ	2.9	UJ	2.9	UJ	4.9	Jq, Jg
Magnesium	5000	35000°	18600	J	28900	_	22600		20900		38000		44200	
Manganese	15	300	85	J	462		2710		244		694		-1230	
Mercury	0.2	0.7	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	υ
Nickel	40	100	3.8	J	21.7	Jq, Jm	15.2	U	15.2	υ	15.2	U	16.6	Jq, Jm
Potassium	5000	NL	3360	U	17800	Jр	12900	Jр	11700	Jр	9920	Jp	9050	Jр
Selenium	2	10	2	J	2	Ù	2	ບໍ່	2	Ū	2	Û	2	ΰ
Silver	10	50		U	1.6	UJ	1.6	UJ	1.6	UJ	1.6	UJ	1.6	UJ
Sodium	5000	20000	6870	J	110000		79300		162000		82700		36900	
Thallium	10	0.5°	1.1	U	3.6	U	3.6	U	3.6	U	3.6	U	3.6	U
Vanadium	50	NL	1.2	Ū	12.1	-	3,7	Ū	3.7	Ū	3.7	Ū	5.5	Jq
Zinc	20	2000°	9.2	J	39.8		17.8	U	17.8	Ū	17.8	U	23.2	Jq
									1					

TABLE 6-5 (Cont.)

GROUND WATER SAMPLING RESULTS - FIRST ROUND-JUNE 2002

SITE 6 SDC

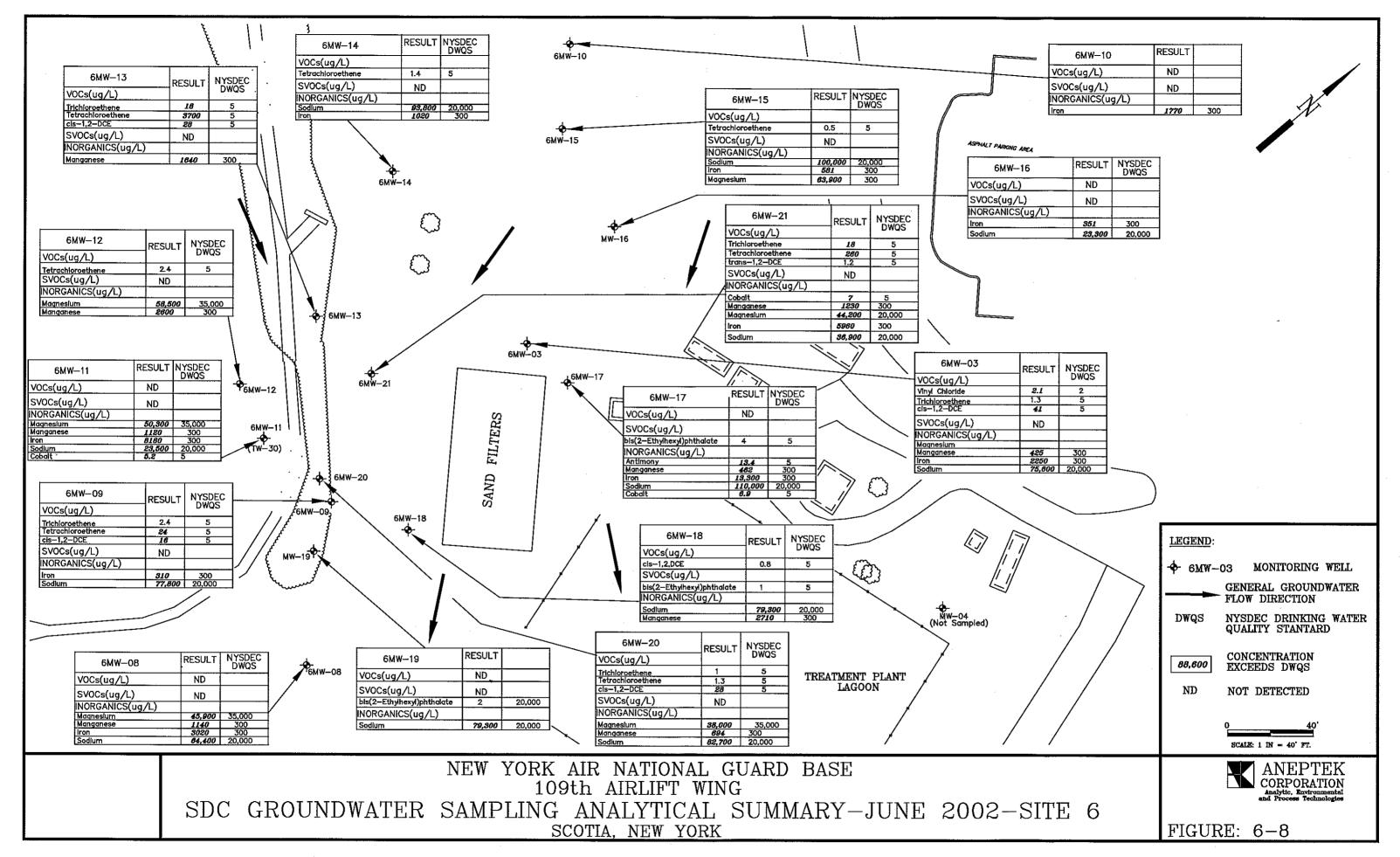
SCHENECTADY ANGB SCOTIA, NEW YORK

	DETECTION	NY	D.A.C.IZ	GROUND	SA	MPLE N	UMBERS	,
ANALYTE	LIMIT ¹	STATE DWQS ²	1	ONC.3	6MW-	121 ⁴	6MW	·181 ⁵
VOCs (ug/L)								
Vinyl Chloride	. 1.0	2	ND		1	U	1	U
trans-1,2-Dichloroethylene	1.0	5	ND		0.7	J	1	U
cis-1,2-Dichloroethene	1.0	5	ND		1	U	0.8	J
Trichloroethene	1.0	5	ND		17		1	U
Tetrachloroethene	1.0	5	ND		260		1	U
SVOCs (ug/L)								
bis (2-Ethylhexyl) phthalate	10	5	12		11	U	11	U
INORGANICS (ug/L)								
Aluminum	200	NL	10.2	UJ	2840	Jm	815	Jm, Jf
Antimony	60	3	2.6	UJ	5.3	U	11	
Arsenic	10	25	2.6	UJ	4.7	Jq	2.6	U
Barium	200	1000	78.8	J	178	Jm	185	Jm
Beryllium	5	3 ^c	0.4	J	0.23	U	0.23	U
Cadmium	5	5	0.4	J	0.48	U	0.48	U
Calcium	5000	NL	71900		148000		95300	
Chromium	10	50	14		3	Jm	0.83	U
Cobalt	50	5	0.6	U	- 8		2.5	U
Copper	25	200	0.5	UJ	10.8	Jq, Jm	9.4	Jq, Jm
Iron	100	300	1.3	U	5800	Jm	1450	Jm, Jf
Lead	3	25	1.1	U	7.1	Jg	2.9	UJ
Magnesium	5000	35000°	18600	J	41500		28000	
Manganese	15	300	85	J	1280		3120	
Mercury	0.2	0.7	0.2	U	0.2	U	0.2	U
Nickel	40	100	3.8	J	17.3	Jq, Jm	15.2	U
Potassium	5000	NL	3360	U	9680	Jр	14500	Jp
Selenium	2	10	2	U	2	Ū	2	Ū
Silver	10	50	2	U	1.9	Um, UJ	1.6	UJ
Sodium	5000	20000	6870	J	34200		92500	
Thallium	10	0.5 ^c	1.1	U	3.6	U	3.6	U
Vanadium	50	NL	1.2	U	5.4	Jq	3.7	U
Zinc	20	2000°	9.2	J	26.2	Jq	17.8	U
<u> </u>			1					

ABBREVIATIONS:

- ug/L micrograms per liter
- CRDL Contract Required Detection Limit
- $DWQS Drinking\ Water\ Quality\ Stds.$
- IDL Instrument Detection Limit
- MCL Maximum Contaminant Level
- MS(D) Matrix Spike (Duplicate)
- ND Not Detected
- NL Not Listed
- NYSDEC New York State Dept. of Environmental Conservation
- RI Remedial Investigation
- RPD Relative Percent Difference
- SVOCs Semi-Volatile Organic Compounds
- VOCs Volatile Organic Compounds

NOTES:


- 1) Contract Required Detection Limit (CRDL)
- NYSDEC Ambient Water Quality Standards and Guidance Values, June 1998.
- Background concentrations from RI (Aneptek, Sept.2002)
- 4) 6MW-121 is a duplicate sample of 6MW-21.
- 5) 6MW-181 is a duplicate sample of 6MW-18.
- c) The value listed is a guidance for the protection of drinking water from a groundwater source.

DATA QUALIFIERS:

- U Compound was analyzed for, but not detected
- UJ The analyte was not detected above the reported sample quantitation limit.

DATA QUALIFIERS:

- J The analyte was positively identified; the associated value is the approx. concentration of analyte in the sample.
- Jf Field duplicate %RPD was high for this compound
- Jg The recovery for the inorganic CRDL standard was ouside the control limits of 80-120%. The positive and/or non-detected results are estimated dependent on the recovery.
- Jm The MS and/or MSD % recoveries were not within the control limits for this compound
- ${f Jp}$ The results of the ICP Serial Dilution analysis were outside of criteria. Positive sample results are estimated.
- Jq For inorganics, the result is estimated as the level less than 2X the instrument detection limit. For organics, the result is estimated as the level less than the lowest calibration standard.
- 107 Indicates concentration that exceeds either State or Federal regulatory limits.

No SVOCs were detected in exceedance of NYSDEC DWQS. Only one SVOC was detected. Bis (2-Ethylhexyl)phthalate was detected in samples 6MW-11 and 6MW-15 at a concentration of 1 μ g/L, and in 6MW-17 at 4 μ g/L, respectively. The drinking water standard for bis (2-Ethylhexyl)phthalate is 5 μ g/L. No other SVOCs were detected in any of the samples collected.

Inorganic results for the August sampling event generally mirrored the results from the June event. Iron and sodium were again detected above their respective water quality standards in the majority of samples collected. Iron being detected in 12 of the 15 samples collected at concentrations ranging from 421 μ g/L in 6MW-15 to 78,000 μ g/L in 6MW-11, exceeding the water quality standard of 300 μg/L. Sodium was detected in 15 of the samples collected at concentrations ranging from 22,200 μ g/L detected in 6MW-11 to 141,000 μ g/L detected in 6MW-19. The water quality standard for sodium is 20,000 μ g/L. Magnesium was detected in six of the samples collected at concentrations ranging from 35,500 μ g/L in 6MW-201 to 68,400 μ g/L detected in 6MW-11, exceeding the water quality standard of 35,000 μ g/L. Manganese was detected in fifteen of the samples collected above its respective water quality standard of 300 µg/L with concentrations ranging from 378 µg/L in 6MW-19 to 5,290 μ g/L detected in 6MW-18. Antimony was detected in six samples, with concentrations ranging from 5.5 µg/L detected in 6MW-13 to 13.7 µg/L in 6MW-08.exceeding the water quality standard of 3 μ g/L. Cobalt was detected in six of the samples collected exceeding the water quality standard of 5 μ g/L. Concentrations ranged from 5.1 μ g/L in 6MW-20 to 57.6 μ g/L in 6MW-11. Arsenic and chromium were detected in 6MW-11 at concentrations of 26.8 µg/L and 55.7 μ g/L, respectively. The driling water quality standards for these analytes are 25 μ g/L and 50 μ g/L, respectively. Analytical results from the August sampling event are presented in Table 6-6 and summarized in Figure 6-9.

6.4 Extent of Contamination-Site 6

The following section presents a summary of the extent of soil and groundwater contamination present at Site 6. Information obtained during the performance of the RI and the TCRA was incorporated with information from the SDC in formulating the extent of contamination.

6.4.1 Extent of Soil Contamination

The extent of soil contamination at Site 6 is based on confirmatory subsurface soil sampling results as described in section 6.3.1, confirmatory sample results from the TCRA conducted at Site 6 prior to the implementation of the SDC (Section 3.5), and confirmatory and soil screening sampling results from the RI (Section 3.3.1). Sampling results indicate that while the majority of Site 6 is generally free of soil contamination, isolated areas of VOC contamination above regulatory clean up standards were identified. Sample results from soil borings SB-19, SB-25, and SB-26, all reported elevated levels of chlorinated VOCs, Sample SB-19, collected from the 7-8 ft bgs interval, contained TCE at a concentration of 2,800 ug/kg, exceeding the cleanup concentration of 700 ug/kg. Samples SB-25 and SB-26, both collected from the 5 to 6 ft bgs interval, contained PCE at concentrations of 14,000 and 20,000 ug/kg, respectively. These concentrations are an order of magnitude greater than the cleanup concentration of 1,400 ug/kg. In addition, borings SB-25 and SB-26 are located just to the east and west of the limits of excavation conducted at Area A during the TCRA (Section 3.5). Confirmatory soil samples collected from the east and west sidewalls at Area A during the TCRA also contained PCE at levels of 1,800 and 3,200 ug/kg, respectively (Figure 3-6). Boring SB-19 is located to the just northwest limit of excavation at TCRA Area C, although confirmatory sample results from Area C were all below regulatory cleanup standards.

TABLE 6-6
GROUND WATER SAMPLING RESULTS - SECOND ROUND-AUGUST 2002
SITE 6 SDC
SCHENECTADY ANGB
SCOTIA, NEW YORK

							SAM	IPLE NU	ME	BERS			
DETECTION LIMIT ¹	NY STATE DWQS ²			6MW-	03	6MW-0)8	6MW-0	19	6MW-1	0	6MW-1	11
1.0	2	ND		6.5		1	υ	1	U	1	U	i	U
1.0	5	ND		1	U	1	U	1	U	1	U	1	U
1.0	5	ND		46	13601430	1	U	12	Contraction of the contraction o	1	U	1	U
1.0	5	ND		1	U	1	U	1.7	Jq	1	U	1	U
1.0	5	ND		1	U	1	U	16		1	U	1.	U
10	5	12		10	U	10	U	10	Ü	10	U	1	J
200	NL	10.2	UJ	65.3		198	Je	306	Je	1910		37800	
60	3	2.6	UJ	12.3		13.7	200	5.3	U	5.3	U	5.3	U
10	25	2.6	UJ	6.1	teritori edila	2.6	U	2.6	U	2.6	U	26.8	
200	1000	78.8	J	149		68.8		114		63.5		674	к
5	3c	0.4	J	0.23	U	0.23	U	0.23	U	0.23	U	2.7	
5	5	0.4	J	0.48	U	0.48	U	0.48	U	0.48	U	1.5	
5000	NL	71900		64200		116000		95900		51000		206000	
10	50	14		0.83	U	0.83	U	0.83	U	2.4		55.7	opulario de la composición della composición del
50	5	0.6	U	2.5	U	2.5	U	2.5	U	2.5	U	57.6	
25	200	0.5	UJ	6.9	U	6.9	U	6.9	U	6.9	U	107	
100	300	1.3	U	1120		3020		672		2510		78000	
3	25	1.1	U	2.9	UJ	2.9	U	2.9	υ	2.9	U	50.1	
5000	35000c	18600	J	17700		41100		29700		14200		68400	
15	300	85	J	451		784	100	91.7		57.9		5150	
0.2	0.7	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	Jq
40	100	3.8	J	15.2	U	15.2	U	15.2	U	15.2	U	130	0
5000	NL	3360	J	6930	Jр	5030	Jp	9620	Jp	2280	Jp	16700	Jp
2	10	2	U	3.4	Jm	2.4	Ja	2	U	2	U	2	UJ
10	50	10	U	1.6	UJ	1.6	UJ	1.6	UJ	1.6	UJ	1.6	, UJ
5000	20000	6870	J	88600		92400		82200		5880		22200	
10	0.5c	1.1	U	3.6	U	3.6	U	3.6	U	3.6	U	3.6	U
50	NL	1.2	U	3.7	U	3.7	U	3.7	U	3.7	U	66.7	
20	2000c	9.2	J	17.8	U	34.5	Jq	17.8	U	17.8	U	243	
	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 2 1.0 5 1.0	1.0	DETECTION LIMIT	DETECTION LIMIT DWQS CONC. C	1.0	DETECTION LIMIT¹ DWQS² BACKGROUND CONC.³ 6MW-03 6MW-04	DETECTION LIMIT¹ DWQS² BACKGROUND CONC.³ 6MW-03 6MW-08	DETECTION LIMIT¹	DETECTION LIMIT DWQS STATE DWQS DWQ	STATE DWQS SACKGOOND CONC. SMW-03 SMW-08 SMW-09 SMW-04 SMW-09 SMW-04 SMW-05 S	DETECTION LIMIT	Detection Limit

TABLE 6-6 (Cont.) GROUND WATER SAMPLING RESULTS - SECOND ROUND-AUGUST 2002 SITE 6 SDC SCHENECTADY ANGB SCOTIA, NEW YORK

	DETECTION	NY	BACKO	ROUND				SAM	PLE NU	MBE	RS			
ANALYTE	LIMIT ¹	STATE DWQS ²		NC.3	6MW-1	12	6MW-	13	6MW	-14	6MW-	-15	6MW	-16
VOCs (ug/L)					:	-								
Vinyl Chloride	1.0	2	ND		1.0	U	1.0	U	1.0	U	1.0	U	1.0	ι
trans-1,2-Dichloroethylene	1.0	5	ND		1.0	U	1.0	U	1.0	U	1.0	U	1.0	Ţ
cis-1,2-Dichloroethene	1.0	5	ND		1.0	U	98		1.0	U	1.0	U	1.0	ι
Trichloroethene	1.0	5	ND		1.0	Ü	48		1.0	U	1.0	U	1.0	ι
Tetrachloroethene	1.0	5	ND		1.0	U	570		1.0	U	1.0	U	1.0	Į
SVOCs (ug/L)														
bis (2-Ethylhexyl) phthalate	10	5	12		10	U	10	U	10	U	1	Jq	10	ζ
INORGANICS (ug/L)									i					
Aluminum	200	NL	10.2	UJ	493	В	479	Jf	726		179		1320	
Antimony	60	3	2.6	UJ	5.3	U	5.5	Jq	5.3	U	5.3	U	10.2	j
Arsenic	10	25	2.6	UJ	2.6	U	2.6	U	2.6	U	2.6	U	20.8	
Barium	200	1000	78.8	J	72.8		161	В	163	В	84.8	Jc	237	J
Beryllium	5	3 ^e	0.4	J	0.23	U	0.23	U	0.23	U	0.23	U	0.23	ι
Cadmium	5	5	0.4	Ţ	0.48	U	0.64	Jq	0.48	U	0.48	U	0.48	τ
Calcium	5000	NL	71900		152000		132000		23600		118000		92700	
Chromium	10	50	14		1.2	Jq	0.83	U	0.83	U	0.83	U	0.83	
Cobalt	50	5	0.6	U	9,2		3.6	Jq	3.5	Jq	3.5	jq	11.6	
Соррег	25	200	0.5	UJ	6.9	U	6.9	U	6.9	U	6.9	U	6.9	Į
Iron	100	300	1.3	U	972		829	Jſ	1280		421		2620	
Lead	3	25	1.1	U	2.9	U	2.9	UJ	2.9	UJ	2.9	Ujg	2.9	τ
Magnesium	5000	35000°	18600	J	53500		35900		6760		33400	nanorano.	29600	12
Manganese	15	300	85	J	3070		1560		908		1210		4510	
Mercury				J	0.2	U	0.2	U	0.2	U	0.2	U	0.2	1
Nickel	40	100	3.8	J	15.2	U	15.2	U	15.2	U	15.2	U	20.5	J
Potassium	5000	NL	3360	U	3080	Jp	4940	Jp	4780	Jр	9340	Jp	9230	1
Selenium			10	j	2	U	2	UJ	2	UJ	2	UJ	2	Į
Silver	10	50		U	1.6	UJ	1.6	UJ	1.6	UJ	1.6	Ujm	1.6	Į
Sodium	5000	20000	6870	J	5490		25600		130000		64700		40200	
Thallium	10	0.5°	1.1	U	3.6	U	3.6	U	3.6	U	3.6	U	3.6	1
Vanadium	50	NL	1.2	U	3.7	U	3.7	U	3.7	U	3.7	U	3.7	1
Zinc	20	2000°	9.2	J	17.8	Ų	17.8	U	17.8	U	17.8	U	28.4	

TABLE 6-6 (Cont.) GROUND WATER SAMPLING RESULTS - SECOND ROUND-AUGUST 2002 SITE 6 SDC SCHENECTADY ANGB SCOTIA, NEW YORK

A NI A T SUPPL	DETECTION	NY STATE		ROUND				SAM	PLE NU	MBEF	RS			
ANALYTE	LIMIT ¹	DWQS ³	со	NC.3	6MW	-17	6MW	-18	6MW	-19	6MW	-20	6MW-2	21
VOCs (ug/L)													****	
Vinyl Chloride	1.0	2	ND		1.0	U	1.0	U	1.0	U	1.0	U	1.0	τ
trans-1,2-Dichloroethylene	1.0	5	ND		1.0	U	1.0	U	1.0	U	1.0	U	1.0	ι
cis-1,2-Dichloroethene	1.0	5	ND		1.0	U	1.0	U	1.0	U	2.7		71	
Trichloroethene	1.0	5	ND		1.0	U	1.0	U	1.0	U	1.0	U	16	
Tetrachloroethene	1.0	5	ND		1.0	U	1.0	U	1.0	U	1.0	U	300	
SVOCs (ug/L)														
bis (2-Ethylhexyl) phthalate	10	5	12		4	Jq	10	U	10	U	10	U	10	τ
INORGANICS (ug/L)														
Aluminum	200	NL	10.2	UJ	155		61	Je, Jq	1660		629	Jf	3540	
Antimony	60	3	2.6	UJ	11.5		5.3	U	5.3	υ	6.7	Jq	5.3	τ
Arsenic	10	25	2.6	UJ	8.4		2.6	· U	2.6	U	5.2	Jq	2.6	١
Barium	200	1000	78.8	J	344		171		494		204	Jc	151	J
Beryllium	5	3 ^e	0.4	J	0.23	U	0.23	U	0.23	υ	0.23	U	0.23	τ
Cadmium	5	5	0.4	J	0.48	U	0.48	U	0.48	U	0.48	U	0.48	Ţ
Calcium	. 5000	NL	71900		80600		92300		53700		93900		123000	
Chromium	10	50	14		0.83	U	0.83	U	2.1		0.83	U	4.3	
Cobalt	50	5	0.6	U	3.3	Jq	3.4	Jq	2.8	Jq	5.1		5.5	
Copper	25	200	0.5	UJ	6.9	U	8.1	Jq	6.9	U	6.9	U	13.7	J
Iron	100	300	1.3	U	202		233		3940		1160	Jſ	6590	
Lead	3	25	1.1	U	2.9	UJ	2.9	U	2.9	U	2.9	U	6.3	J
Magnesium	5000	35000°	18600	J	28400		24900		21000		37000	200	34100	
Manganese	15	300	85	J	783		5290		378		1500		645	
Mercury			1	J	0.2	U	0.2	U	0.2	U	0.2	U	0.2	τ
Nickel	40	100	3.8	J	15.2	U	15.2	U	15.2	U	15.2	U	15.2	ı
Potassium	5000	NL	3360	U	9630	Jр	11000	Jp	8750	Jp	9130	Jp	7490	J
Selenium			10	J	2	UJ	2	U	2	U	2	U	2	ı
Silver	10	50		U	1.6	UJ	1.6	UJ	1.6	UJ	1.6	UJ	1.6	ι
Sodium	5000	20000	6870	J	88000		79000		141000		72900		46100	
Thallium	10	0.5°	1.1	U	3.6	U	3.6	υ	3.6	U	3.6	Ų	3.6	1
Vanadium	50	NL	1.2	U	3.7	Ü	3.7	U	3.7	U	3.7	U	6.7	
Zinc	20	2000°	9.2	J	17.8	U	17.8	U	17.8	IJ	28	Jq	58.2	

TABLE 6-6 (Cont.) GROUND WATER SAMPLING RESULTS - SECOND ROUND-AUGUST 2002 SITE 6 SDC SCHENECTADY ANGB SCOTIA, NEW YORK

	DETECTION	NY STATE	BACKG	ROUND		SAN	APLE NUMBERS	3
ANALYTE	LIMIT ¹	DWQS ²	CONC.3		6MW-133 ⁴		6MW-201 ⁵	
VOCs (ug/L)								
Vinyl Chloride	1.0	2	ND		1.0	U	1.0	U
trans-1,2-Dichloroethylene	1.0	5	ND		1.2	Jq	1.0	U
cis-1,2-Dichloroethene	1.0	5	ND		120	_	4.1	Jq
Trichloroethene	1.0	5	ND		48		1.0	Ū
Tetrachloroethene	1.0	5	ND		740		1.0	U
SVOCs (ug/L)								
bis (2-Ethylhexyl) phthalate	10	5	12		10	U	10	U
INORGANICS (ug/L)								
Aluminum	200	NL	10.2	UJ	1140	Jf	1640	Jf
Antimony	60	3	2.6	UJ	6.9	Jq	5.3	U
Arsenic	10	25	2.6	UJ	3.1	Jq	4.5	Jq
Barium	200	1000	78.8	J	170	•	217	Jс
Beryllium	5	3c	0.4	J	0.23	U	0.23	U
Cadmium	5	5	0.4	J	0.85	Jq	0.48	U
Calcium	5000	NL	71900		123000	_	89600	
Chromium	10	50	14		0.83	U	2.2	
Cobalt	50	5	0.6	U	3.6	Jq	6.1	
Copper	25	200	0.5	UJ	6.9	U	7.2	Jq Jf
Iron	100	300	1.3	U	1830	Jf	3470	Jſ
Lead	3	25	1.1	U	2.9	UJ	3.3	Jg, Jq
Magnesium	5000	35000c	18600	J	33800		35500	
Manganese	15	300	85	J	1440		1450	
Mercury	0.2	0.7	0.2	U	0.2	U	0.2	U
Nickel	40	100	3.8	J	15.2	U	15.2	U
Potassium	5000	NL	3360	U	4970	Jp	9230	Jp
Selenium	2	10	2	U	2	UJ	2.2	Ja, Jq
Silver	10	50		U	1.6	UJ	1.6	UJ
Sodium	5000	20000	6870	J	23900		69200	
Thallium	10	0.5c	1.1	U	3.6	U	3.6	U
Vanadium	50	NA	1.2	U	3.7	U	4.7	Jq
Zinc	20	2000c	9.2	J	17.8	U	35.3	Jq
		1	1		1		1	

ABBREVIATIONS:

ug/L - micrograms per liter

CRDL - Contract Required Detection Limit

DWQS - Drinking Water Quality Stds. IDL - Instrument Detection Limit

MCL - Maximum Contaminant Level

MS(D) - Matrix Spike (Duplicate)

ND - Not Detected

NL - Not Listed

NYSDEC - New York State Dept. of Environmental Conservation

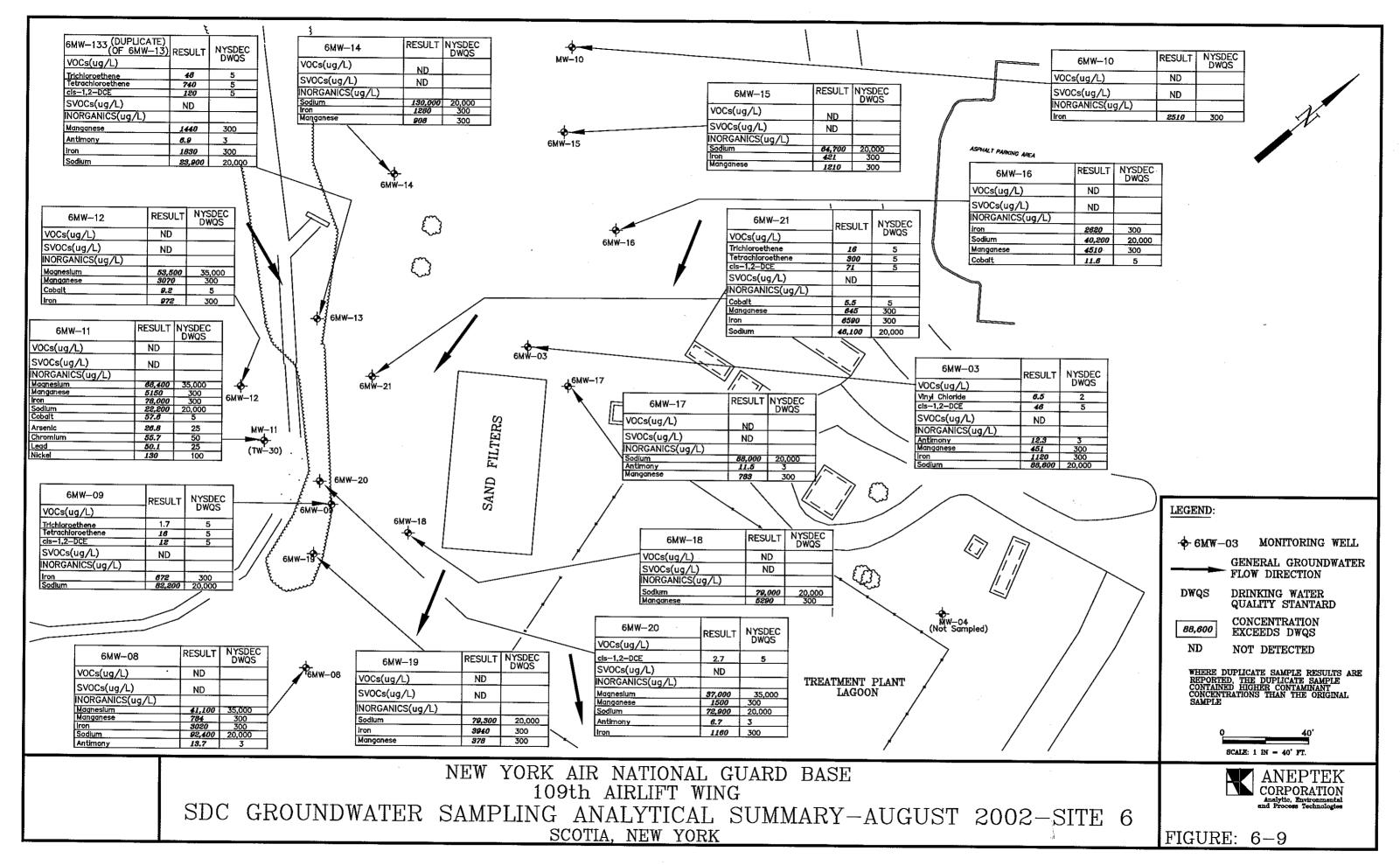
RI - Remedial Investigation

RPD - Relative Percent Difference

SVOCs - Semi-Volatile Organic Compounds

VOCs - Volatile Organic Compounds

- NOTES:
 1) Contract Required Detection Limit (CRDL)
- 2) NYSDEC Ambient Water Quality Standards and Guidance Values, June 1998.
- 3) Background concentrations from RI (Aneptek, Sept.2002)
- 4) 6MW-133 is a duolicate sample of 6MW-13.
- 5) 6MW-201 is a duplicate sample of 6MW-20.
- c) The value listed is a guidance for the protection of drinking water from a groundwater source.

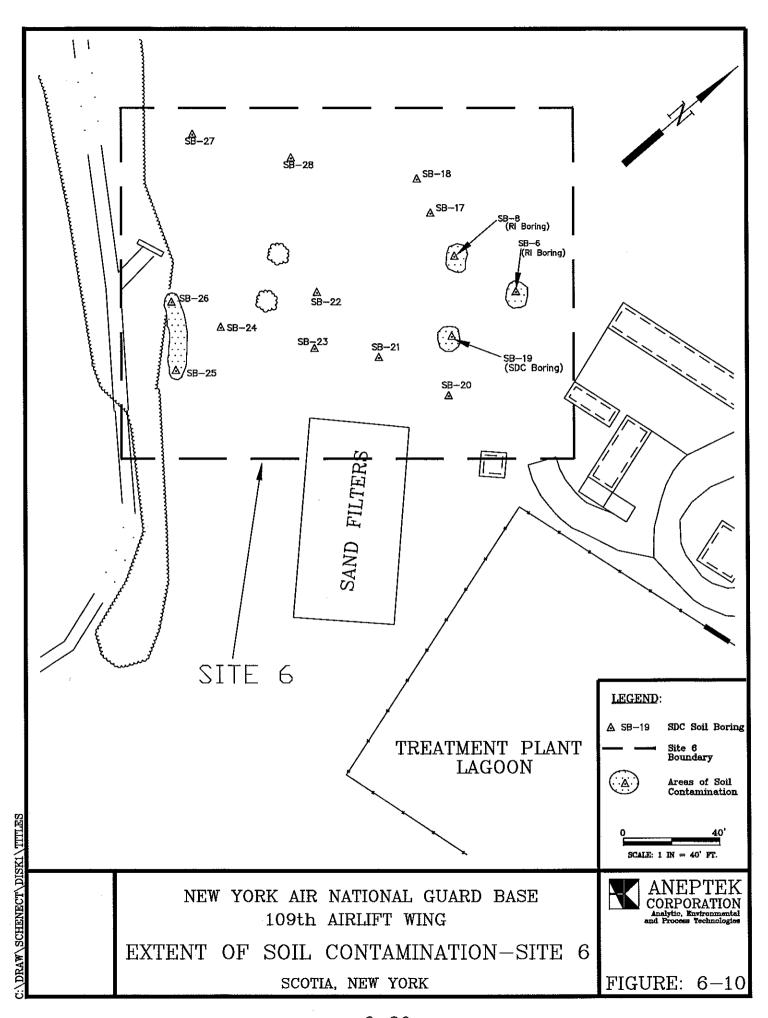

DATA QUALIFIERS:

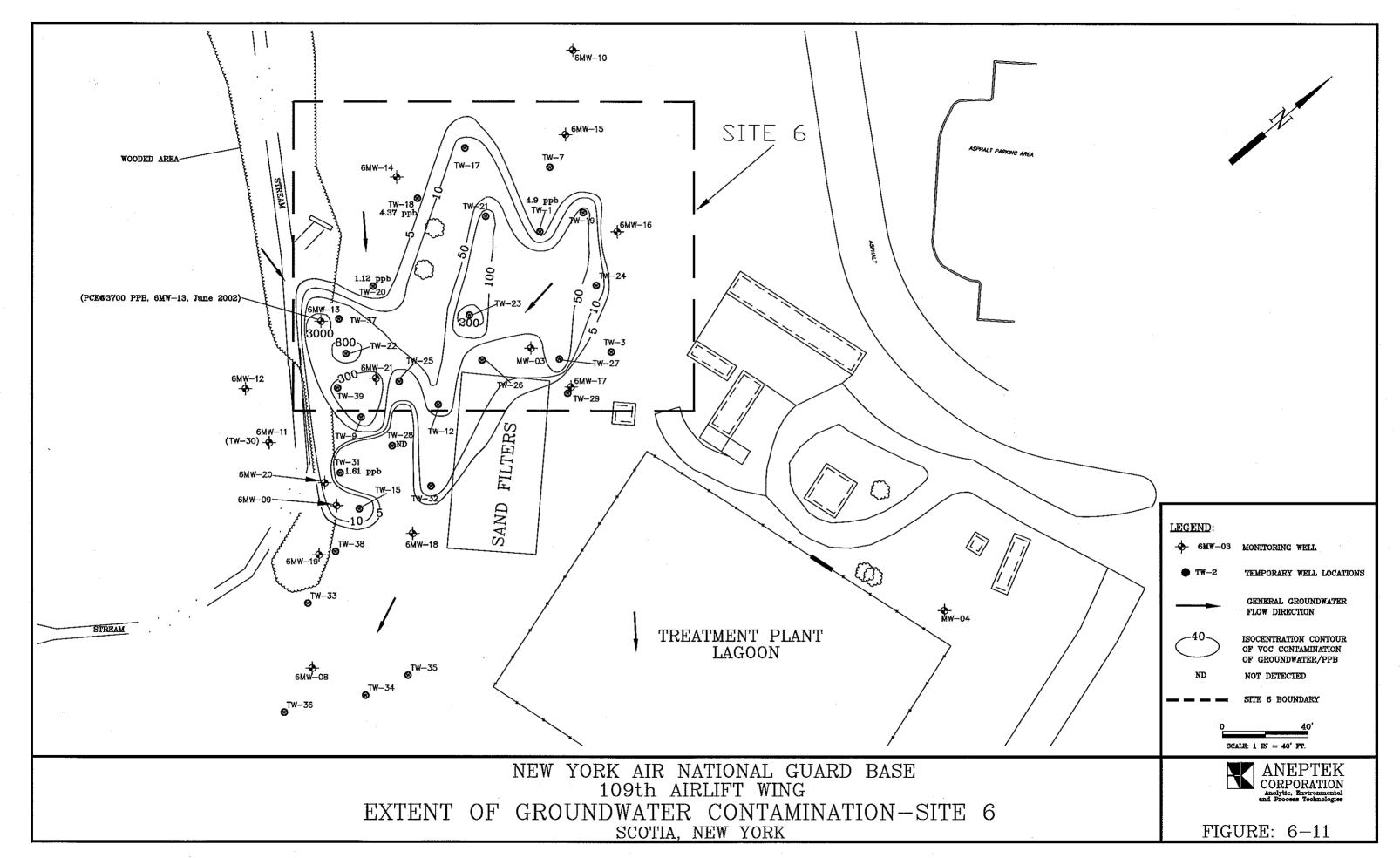
- U Compound was analyzed for, but not detected
- UJ The analyte was not detected above the reported sample quantitation limit.

DATA QUALIFIERS:

- J The analyte was positively identified; the associated value is the approx. concentration of analyte in the sample.
- If Field duplicate %RPD was high for this compound
- Jg The recovery for the inorganic CRDL standard was ouside the control limits of 80-120%. The positive and/or non-detected results are estimated dependent on the recovery.
- Jm The MS and/or MSD % recoveries were not within the control limits for this compound
- Jp The results of the ICP Serial Dilution analysis were outside of criteria. Positive sample results are estimated.
- Jq For inorganics, the result is estimated as the level less than 2X the instrument detection limit. For organics, the result is estimated as the level less than the lowest calibration standard.

107 Indicates concentration that exceeds either State or Federal regulatory limits.




In addition, during performance of the RI, PID field screening headspace results reported a reading of 200 ppm from the 4-6 foot bgs interval from SB-6, and a reading of 300 ppm in the 4-6 foot interval of SB-8. Analytical results from SDC soil boring SB-17, located approximately 20 feet to the north west of SB-8, reported low levels of contamination and no exceedances of cleanup concentrations. RI analytical results from soil borings SB-15 and SB-16, located 40 to 50 feet north of SB-6 reported non-detect for VOCs. GC screening results from RI soil boring SB-7, located between SB-15 and SB-16, were non-detect for VOCs. SDC groundwater sampling results for 6MW-16 were non-detect for VOCs. The extent of soil contamination at Site 6, based on the confirmatory sampling results from the SDC and TCRA and confirmatory soil sampling and field screening results from the RI, is summarized in Figure 6-10.

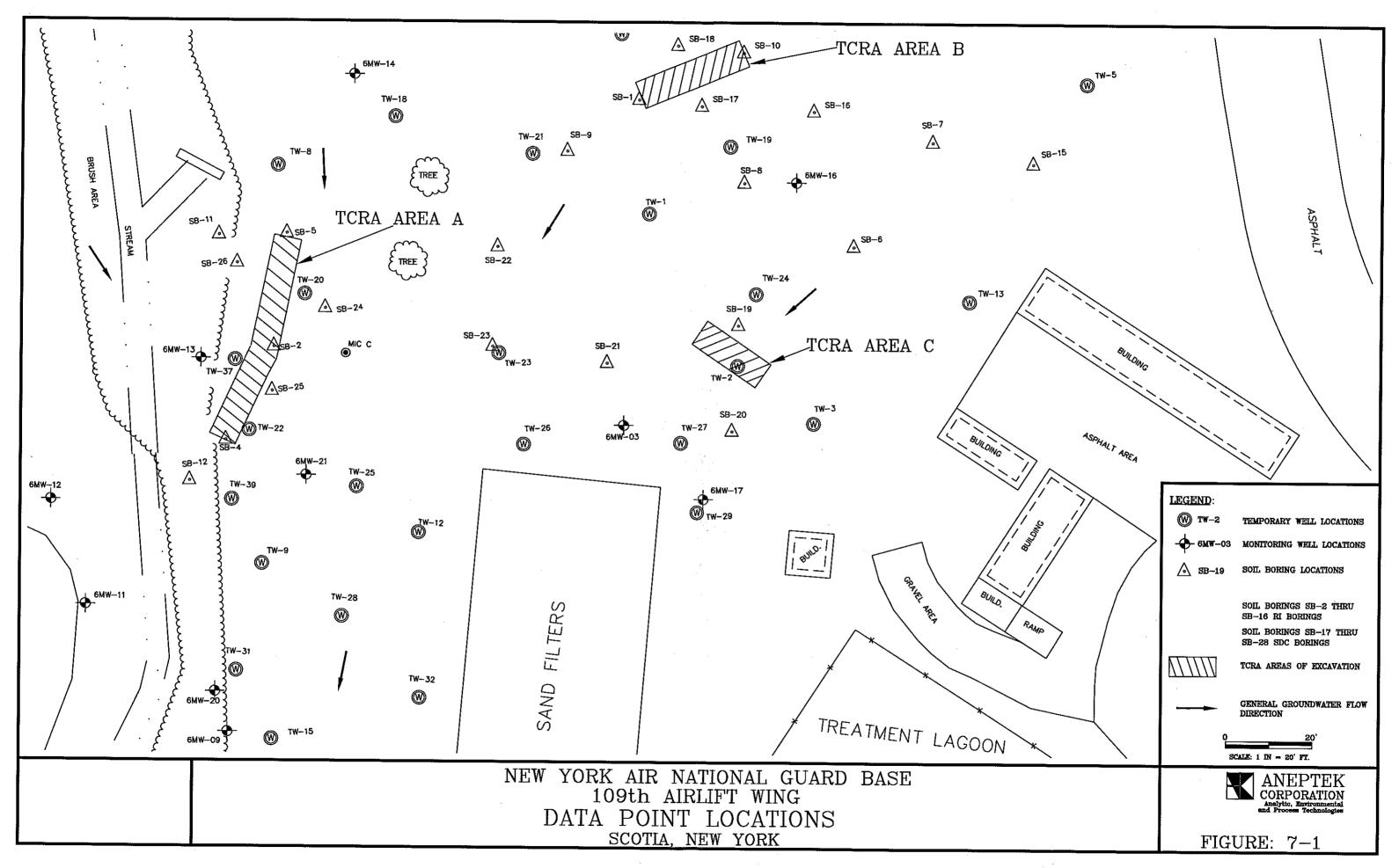
6.4.2 Extent of Groundwater Contamination

The extent of groundwater contamination at Site 6 is based on the results of the groundwater GC screening as described in Section 6.2.2 and confirmatory groundwater sampling results as described in Section 6.3.2. In review of these results, there appears to be a central, localized area within which levels of groundwater contamination are, at a minimum, at least 5 μ g/L. This is the regulatory drinking water standard for the majority of the chlorinated VOCs detected. Based on data gathered to date, the dimensions of this area are approximately 200 feet long and between 100 to 140 feet wide. This area extends north to south from TW-17 and TW-19 to 6MW-09, and west to east from 6MW-13 to TW-27. Located within this central area are pockets of isolated contamination with concentrations ranging from a miniium of 50 μ g/L to a maximum of greater than 3000 μ g/L (3700 μ g/L, 6MW-13, June 2002 sampling event). The highest concentrations were detected in the south southwest corner of Site 6, ranging from 6MW-13 to the west to TW-9 and TW-12 to the east, although localized groundwater "hot spots" were detected throughout the site. The extent of groundwater contamination is summarized in Figure 6-1 1.

C:/finsdctmrep.wpd **6-35**

SECTION 7.0

7.0 CONCLUSIONS AND RECOMMENDATIONS


Based on the results of field data gathered up to this date, the following discussion summarizes the conclusions and recommendations for Site 6 soils and groundwater. Locations of data points used in the formulation of these conclusions and recommendations are shown in Figure 7-1.

Conclusions

The majority of Site 6 soils are generally free of contaminants of concern, however, an area of chlorinated VOC soil contamination persists in the southwest comer of Site 6, and, to a lesser extent, three isolated areas located in the southeastern portion of Site 6. The southwest location is in the proximity to TCRA excavation Area A, the southeastern locations are in proximity to TCRA excavation Area C. Subsequently, groundwater samples associated with these areas reported comparable chlorinated VOC contamination.

This conclusion is based on confirmatory soil and groundwater sampling results from the SDC, confiiatory soil sampling results from the TCRA, and field screening and confirmatory sampling results from the RI. These results, when reviewed in conjunction with a more defined site groundwater flow direction, indicate residual areas of soil contamination not removed during the TCRA continue to impact Site 6 soils and groundwater. Soil sampling results from SDC soil borings SB-25 and SB-26 reported levels of PCE an order of magnitude above the NYSDEC Cleanup Concentration of 1,400 ug/kg (14,000 and 20,000 ug/kg, respectively). These borings are located just outside the extent of the TCRA excavation at Area A. Groundwater samples collected from 6MW-13 during the June and August 2002 SDC sampling events reported levels of PCE a minimum of two orders of magnitude above the NYSDEC DWQS of 5 μ g/L (3,700 and 740 μ g/L, respectively) Monitoring well 6MW-13 is located approximately 25 feet downgradient and to the west of SB-26. Groundwater samples collected from monitoring well 6MW-21 reported levels of PCE at concentrations of 260 and 300 µg/L, respectively. Monitoring well 6MW-21 is located approximately 20 and 50 feet downgradient from SB-25 and SB-26, respectively. GC screening results from samples collected from SDC temporary wells TW-22, TW-39, and TW-9 all reported high concentrations of PCE (560, 336, and 335 μ g/L, respectively). These wells are all located downgradient from SB-25 and SB-26 and TCRA Area A. In addition, confirmatory soil samples collected during the TCRA from the east and west sidewalls of the Area A excavation reported PCE at levels of 3,200 and 1,800 ug/kg, respectively. Elevated levels of TCE and cis-1,2-DCE, reported breakdown products of PCE, were also in evidence in other soil and groundwater samples collected during the SDC at downgradient locations.

In addition, soil sampling results from sample SB-19, located in the southeast portion of Site 6, reported TCE at a concentration of 2,800 ug/kg, exceeding the regulatory cleanup concentration of 700 ug/kg. Boring SB-19 is located just to the west of the extent of the excavation at TCRA Area C. Although Area C confirmatory soil sampling results did not report any VOCs in exceedance, the sample collected from the west sidewall did report TCE at 91 ug/kg. Groundwater samples collected from temporary wells TW-23, TW-26, and TW-27, and monitoring well 6MW-03 all contained cis-1,2-DCE at levels of 227 μ g/L, 34.6 μ g/L, 67.5 μ g/L, and 31.3 μ g/L, respectively, above the DWQS

of 5 µg/L. These locations are in a downgradient direction from SB-19. GC screening results from TW-19 and TW-24 reported cis-1,2,DCE at concentrations of 23.4 and 16.2 µg/L, respectively. These two temporary wells are located upgradient to the north northwest of SB-19, indicating an additional source(s) of soil contamination may be present in these areas. This additional source of contamination is most likely in a triangle shaped area consisting of three points of reference, SDC soil boring SB-19 and RI soil borings SB-6 and SB-8 (Figure 7-1). During the RI, PID field screening headspace results reported a reading of 200 ppm from the 4-6 foot bgs interval from SB-6, and a reading of 300 ppm in the 4-6 foot interval of SB-8. Analytical results from SDC soil boring SB-17, located approximately 20 feet to the north west of SB-8, reported low levels of contamination and no exceedances of cleanup concentrations. RI analytical results from soil borings SB-15 and SB-16, located 40 to 50 feet north of SB-6 reported non-detect for VOCs. GC screening results from RI soil boring SB-7, located between SB-15 and SB-16, were non-detect for VOCs. SDC groundwater sampling results for 6MW-16 were non-detect for VOCs.

Recommendations

Additional remedial measures are recommended for Site 6 soils and groundwater. Based on the results of the SDC field program, it is apparent that residual, chlorinated VOC soil contamination is present at Site 6 and that site groundwater will continue to be impacted as long as this residual soil contamination is in place. Incorporating the results of the RI, TCRA, and SDC, it is believed that the extent of soil contamination has been defined. Remedial measures may include additional soil removal in conjunction with groundwater treatment, such as the introduction of Hydrogen Release Compounds (HRC), which case studies have shown to be effective in reducing/eliminating chlorinated VOCs in groundwater. Additional groundwater monitoring to gauge the effectiveness of any such treatment would also be necessary. Remedial options, including the option of No Further Action, will be included for consideration and ranked numerically for effectiveness in a Fmal Feasibility Study.

SECTION 8.0

8.0 REFERENCES

ABB Environmental Services, 1996. Site Investigation Report, Volume 1, 109th Airlift Wing, Schenectady County Airport, Scotia, New York.

Aneptek Corporation, April,1998, Remedial Investigation/Feasibility Study Work Plan. 109th Airlift Wing, Stratton Air National Guard Base, Scotia, New York.

Aneptek Corporation, September, 2000. Final Remedial Investigation/Feasibility Report. 109th Airlift Wing, Stratton Aii National Guard Base, Scotia, New York.

Aneptek Corporation, March, 2001. Draft Final Feasibility Study. 109th Airlift Wing, Stratton Air National Guard Base, Scotia, New York.

Aneptek Corporation, January 2003, Final TCRA Completion Report. 109th Airlift Wing, Stratton Air National Guard Base, Scotia, New York.

NYSDEC, 1991. Water Quality Standards and Guidance Values. November, 1991.

NYSDEC, 1994. Fish and Wildlife Impact Analysis of Inactive Hazardous Waste Sites. October, 1994.

NYSDEC, August, 1992. STARS Memo #1, Petroleum Contaminated Soil Guidance Policy, Division of Construction Management, Bureau of Spill Prevention an Response.

U.S Geological Survey, (USGS), 1980. USGS Topographic Quadrangle, 7.5 minute series: Schenectady Quadrangle, Schenectady, New York.

American Society for Testing and Materials (ASTM) 1998. *Standard Provisional Guidance* **for** *Risk-based Corrective Action*. PS 104-98.

United States Environmental Protection Agency (EPA) 1989. Risk Assessment Guidance **for** Superfund, Volume 1. Part A., OSWER Directive 9285.7-01a.

EPA. 1999b. EPA Soil Screening Levels. http://www.epa.gov/superfund/programs/risk/tooltrad.htm#dbsw, Accessed August 1999.

New York State Division of Environmental Conservation (NYSDEC) 1998a. *Technical and Administrative Guidance Memorandum # 4046: Determination of Soil Cleanup Objectives and Cleanup Levels.* July 1998.

NYSDEC 1998b. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998.

ENVIRONMENTAL RESTORATION PROGRAM

FINAL

SUPPLEMENTAL DATA COLLECTION TECHNICAL MEMORANDUM SITE 6

109th AIRLIFT WING NEW YORK AIR NATIONAL GUARD SCHENECTADY AIR NATIONAL GUARD BASE SCOTIA, NEW YORK

AUGUST 2003

VOLUME II OF II APPENDICES

Prepared For

AIR NATIONAL GUARD READINESS CENTER ANDREWS AFB, MARYLAND 20762-5157

ENVIRONMENTAL RESTORATION PROGRAM

FINAL

SUPPLEMENTAL DATA COLLECTION TECHNICAL MEMORANDUM SITE 6

109th AIRLIFT WING NEW YORK AIR NATIONAL GUARD SCHENECTADY AIR NATIONAL GUARD BASE SCOTIA, NEW YORK

AUGUST 2003

VOLUME II OF II APPENDICES

Prepared For

AIR NATIONAL GUARD READINESS CENTER ANDREWS AFB, MARYLAND 20762-5157

Prepared By
ANEPTEK CORPORATION

408 Pleasant Street

Worcester, Massachusetts 01609

APPENDIX A LABORATORY DATA VALIDATION REPORTS

Project:

Stratton ANG Base

Laboratory:

Severn Trent Laboratories, Newburgh, NY

Report No.:

213350

Reviewer:

Lorie MacKinnon

Date:

December 10, 2002

Samples Reviewed

Volatiles:

19/Groundwaters/

6MW-1762602, 6MW-1162602, 6MW-1262602,

6MW-1362602, 6MW-1462602, 6MW-1562602, 6MW-1662602, 6MW-1862602, 6MW-18162602, 6MW-1962602, 6MW-2062602, 6MW-2162602, 6MW-0362602, 6MW-0862602, 6MW-0962602, 6MW-1062602, SW-162702, SW-262702, 6MW-

12162602

(Field duplicate pairs: 6MW-1862602/6MW-18162602

and 6MW-2162602/6MW-12162602)

1/Equipment Blank/

1/Trip Blank/

FB-PW-62602 TB-62602

Semivolatiles:

17/Groundwaters/

6MW-1762602, 6MW-1162602, 6MW-1262602,

6MW-1362602, 6MW-1462602, 6MW-1562602, 6MW-1662602, 6MW-1862602, 6MW-18162602, 6MW-1962602, 6MW-2062602, 6MW-2162602, 6MW-0362602, 6MW-0862602, 6MW-0962602, 6MW-1062602, SW-162702, SW-262702, 6MW-

12162602

(Field duplicate pairs: 6MW-1862602/6MW-18162602

and 6MW-2162602/6MW-12162602)

1/Equipment Blank/ FB-PW-62602

The above-listed samples were analyzed for volatile organic compounds (VOCs) by SW-846 method 8260B and semivolatile organic compounds (SVOCs) by SW-846 method 8270C. The data validation was based on the National Functional Guidelines for Evaluating Organic Analyses, EPA 540/R-99/008, dated October 1999.

The organic data were evaluated based on the following parameters:

- Holding Times and Sample Preservation
 - Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
 - Initial and Continuing Calibrations
 - Blanks
 - Surrogate Recoveries
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results

- Internal Standards
 - Laboratory Control Sample (LCS) Results
- Field Duplicate Results
 - Sample Quantitation and Data Assessment
 - Tentatively Identified Compounds
- * All criteria were met.

All results were found to be usable with the exception the SVOC acid compounds in samples 6MW-1262602, FB-PW-62602, and 6MW-2162602 due to surrogate recoveries <10, the result for pentachlorophenol in sample 6MW-1562602 due to matrix spike recovery <10, and 4-nitrophenol in all samples due to LCS recovery <10.

The organic validation recommendations were based on the following information.

Holding Times and Sample Preservation

All criteria were met for the VOC and SVOC analyses.

GC/MS Tunes

All criteria were met for the VOC and SVOC analyses.

Initial and Continuing Calibrations

All criteria were met in the VOC initial and continuing calibrations.

Compounds that did not meet criteria in the SVOC initial and continuing calibrations are summarized in the following tables.

Instrument ID 5972-2 Compound	IC 7/10/02	EC 7/16/02	CC 7/17/02	CC 7/18/02
2,4-dinitrophenol	X (44.1%)			
4-nitrophenol	X (46.1%)			
pentachlorophenol	X (38.3%)			XX (32.5%)
3-nitroaniline		XX (35.3%)	XX (27.3%)	
4-nitroaniline		XX (38.6%)		
3,3'-dichlorobenzidine		XX (32.4%)		XX (25.9%)
4-nitrophenol				XX (51.8%) + (0.042)
benzo(k)fluoranthene				XX (25.4%)

Instrument ID 5972-2 Compound	I€ 7/10/02	CC 7/16/02	CC 7/17/02	CC 7/18/02
Samples Affected	All samples	6MW-17, 6MW-11, 6MW-12, 6MW-13, 6MW-14, 6MW-15, 6MW-16, 6MW-18, 6MW-181, 6MW-19	FB-PW, 6MW-03, 6MW- 08, 6MW-09, 6MW-10, 6MW-21, 6MW-121, 6MW-20, 6MW-12RE, FB-PWRE	6MW-21RE

X = Initial calibration (IC) relative standard deviation (%RSD) > 30; estimate (Jc) positive and (UJc) blank-qualified nondetect results.

The following positive and/or nondetect results were qualified as estimated (J/UJc) due to continuing calibration nonconformances: 3-nitroaniline, 4-nitroaniline, and 3,3'-dichlorobenzidine in samples 6MW-17, 6MW-11, 6MW-12, 6MW-13, 6MW-14, 6MW-15, 6MW-16, 6MW-18, 6MW-181, and 6MW-19 and 3-nitroaniline in samples FB-PW, 6MW-03, 6MW-08, 6MW-09, 6MW-10, 6MW-21, 6MW-121, and 6MW-20. The direction of the bias cannot be determined from these nonconformances.

Validation actions were not required for 2,4-dinitrophenol, 4-nitrophenol, and pentachlorophenol in all samples due to initial calibration nonconformances as all results were nondetect. Validation actions were not required for 4-nitrophenol, pentachlorophenol, 3,3'-dichlorobenzidine, and benzo(k)fluoranthene in sample 6MW-21RE due to continuing calibration nonconformances as the reanalysis was not reported for the sample. Validation actions were not required for 3-nitroaniline in samples 6MW-12RE and FB-PWRE as the initial analyses for the samples were reported.

Blanks

Target analytes were not detected in the VOC and SVOC method blanks.

The following table summarizes the VOC blank contamination detected in the field blank sample FB-PW-62602. Target analytes were not detected in the SVOC field blank sample or VOC trip blank.

Compound	Type of Blank	Associated Samples	Maximum Concentration	Blank Action Level
Chloroform	Field blank	All samples	2.5 ug/L	12.5 ug/L
Bromodichlorome hane	Field blank	All samples	2.2 ug/L	11.0 ug/L
Dibromochlorome hane	Field blank	All samples	1.8 ug/L	9.0 ug/L

Blank Actions

If the sample concentration \leq QL and \leq blank action level, qualify the result as not detected (Um) at the QL. If the sample concentration > QL and \leq blank action level, qualify the result as not detected (Um) at the reported value.

XX = Continuing calibration (CC) percent difference (%D) > 25; estimate (J/UJc) positive and nondetect results.

⁺⁼ Response factor (RRF) < 0.05; Estimate (Jc) positive results and reject (Rc) nondetect results.

Project:

Stratton ANG Base

Laboratory:

Severn Trent Laboratories, Newburgh, NY

Report No.:

213350

Reviewer:

Lorie MacKinnon

Date:

December 10, 2002

Samples Reviewed

Metals:

17/Groundwaters/

6MW-1762602, 6MW-1162602, 6MW-1262602, 6MW-

1362602, 6MW-1462602, 6MW-1562602, 6MW-1662602, 6MW-1862602, 6MW-18162602, 6MW-1962602, 6MW-2062602, 6MW-2162602, 6MW-0362602, 6MW-0862602, 6MW-0962602, 6MW-1062602, SW-162702, SW-262702,

6MW-12162602

(Groundwater field duplicate pairs: 6MW-1862602/6MW-

18162602 and 6MW-2162602/6MW-12162602)

1/Equipment Blank/ FB-PW-62602

The above-listed samples were analyzed for TAL metals by SW-846 method 6010B/7000 series. The data validation was performed based on the National Functional Guidelines for Evaluating

Inorganic Analyses, EPA 540/R-94/012, dated February 1994.

The inorganic data were evaluated based on the following parameters:

- * Holding Times and Sample Preservation
- * Instrument Calibration

Contract Required Detection Limit (CRDL) Standard Analysis

Blank Analysis Results

Inductively Coupled Plasma (ICP) Interference Check Sample Results

Matrix Spike (MS) Results

Laboratory Duplicate Results

Field Duplicate Results

Laboratory Control Sample (LCS) Results

ICP Serial Dilution Results

Furnace AA results

Detection Limit Results

- * Sample Quantitation
- * All criteria were met for this parameter.

All results were found to be usable. The validation recommendations were based on the following information.

Holding Times and Sample Preservation

All criteria were met.

Instrument Calibration

All criteria were met.

CRDL Standard Analysis

The following table lists the analytes which exhibited recoveries outside of the control limits in the CRDL standard analysis. Sample results which were less than 1.5x the standard amount analyzed were qualified as estimated.

Lead	6 ug/L	46.2	All samples	Estimate (J/UJg) the positive and nondetect results for lead (<9 ug/L) in all samples; possible low bias.
Analyte	Standard Level	Recovery	Associated Samples	Actions

Blank Results

The following table summarizes the blank contaminants detected in the laboratory blanks associated with the samples, associated action levels, and validation actions applied.

Analyte	Action Level (ug/L)	Validation Actions
Calcium	498 -1458	Validation actions were not required.
Potassium	1044	Validation actions were not required.
Silver	9.0	Qualify positive result for thallium in sample 6MW-12162602 as nondetect (Um).
Sodium	2801	Validation actions were not required.

Qualification of the data was performed as follows:

For positive contamination.

If the positive sample value was > the instrument detection limit (IDL) and < the Action Level, qualify the result as a nondetect (Um) at the reported concentration.

If the positive sample value was > the IDL and > the Action Level, report the value unqualified.

For negative contamination,

For positive results < the Action Level and nondetect results, qualify the result as a estimated (J/UJe) at the reported concentration. The result may be biased low.

If the positive sample value was > the Action Level, report the value unqualified.

The following table summarizes the blank contaminants detected in the field blank sample FB-PW-62602 and the associated action levels. Validation actions were not applied based on these action levels as dedicated bailers were used for all wells, therefore sample equipment was required to be cleaned and rinsed between wells.

Analyte	Level Detected (ug/L)	Action Level (ug/L)
Barium	18.8	94
Calcium	45,300	226,500
Copper	141	705
Magnesium	11,500	57,500
Potassium	1,980	9,900
Sodium	20,700	103,500

Interference Check Sample Results

All analyte recoveries were within control limits in the ICSAB sample.

Positive results were observed for cadmium, chromium, potassium, and thallium and negative results were observed for arsenic, manganese, silver, and antimony in the ICSA solution analysis associated with the ground water samples. The levels of interferents in the associated samples were reviewed. Calcium was present in sample 6MW-1562602 (50%) at greater than 50% that of the level in the ICSA solution. The following table lists the calculated possible interferences and the resulting validation actions. Professional judgement was used to accept results in which the estimated interference was less than 10% of the analyte level detected or in which the estimated negative interference for a nondetect result was less than one-half the QL.

Sample	Aralyte	San ple Re ult (ug L)	Estimated Interference (ug/L)	Actions
6MW- 1562602	Arsenic Cacmium	2.€U	-6.0	Estimate (UJb) the nondetect result for arsenic; possible low bias.
1302002		0.4°U	4.0	No validation action required; nondetect result not affected by potential high bias.
	Chromium	U©3.0	2.5	No validation action required; nondetect result not affected by potential high bias.
	Marganese	83	-5.0	No validation action required; interference <10% sample level.
lf .	Potassium	9360	149	No validation action required; interference <10% sample level.
	Silver	1.6U	-4.0	Estimate (UJb) the nondetect result for silver; possible low bias.
	Thallium	3.€U	7.5	No validation action required; nondetect result not affected by potential high bias.
	Anomony	5.ລຸ້ປ	-6.5	Estimate (UJb) the nondetect result for antimony; possible low bias.

Matrix Spike Results

A matrix spike was performed on sample 6MW-1862602 for the metals analysis. A matrix spike was performed on sample 6MW-1762602 for the mercury analysis. The following table lists the analyte recoveries found outside of recovery control limits of 75-125% and the resultant actions.

Analyte	Recovery (%)	Actions Actions	
Aluminum	169.7	Estimate (Jm) the positive results for aluminum in all samples with the exception of FB-PW-62602; possible high bias.	
Barium	133.8	Estimate (Jm) the positive results for barium in all samples; possible high bias.	
Chromium	125.9	Estimate (Jm) the positive results for chromium in samples 6MW-6MW-11, 6MW-21, 6MW-121, and 6MW-10; possible high bia	
Copper	131.2	Estimate (Jm) the positive results for copper in samples 6MW-6MW-11, 6MW-181, 6MW-20, 6MW-21, 6MW-121, and FB-162602; possible high bias.	
Iron	129.8	Estimate (Jm) the positive results for iron in all samples with the exception of FB-PW-62602; possible high bias.	
Nickel	125.5	Estimate (Jm) the positive results for nickel in samples 6MW-17, 6MW-21, 6MW-121, and 6MW-03; possible high bias.	
Silver	48.8	Estimate (J/UJm) the positive and nondetect results for silver in all samples; possible low bias.	

The recovery for manganese was also outside of the control limits of 75 - 125 in the MS performed on sample 6MW-1862602; however, since the sample level was greater than four times the spiking level, no validation action was required.

Laboratory Duplicate Results

A laboratory duplicate analysis was performed on sample 6MW-1862602 for the metals analysis. A laboratory duplicate analysis was performed on sample 6MW-1762602 for the mercury analysis. All criteria were met.

Field Duplicate Results

Samples 6MW-2162602 and 6MW-12162602 were identified as field duplicate samples. All criteria were met.

Samples 6MW-1862602 and 6MW-18162602 were identified as field duplicate samples. The following table lists the %RPDs found outside of the control limit of 30% or within 2xQL (quantitation limit) for sample levels <5xQL. The direction of the bias cannot be determined by this

nonconformance.

Analyte	6MW- 1862602 (ug/L)	6MW- 18162602 (ug/L)	RPD (%)	Actions
Aluminum	73.7	815	166.8	Estimate (Jf) the positive results for aluminum in samples 6MW-1862602 and 6MW-18162602.
Iron	107	1450	172.5	Estimate (Jf) the positive results for iron in samples 6MW-1862602 and 6MW-18162602.

LCS Results

The recovery for silver (70.5) was below the control limits in the LCS analysis. The positive and nondetect silver results in all samples were qualified as estimated (J/UJ_L) . These results may be biased low.

ICP Serial Dilution Results

An ICP serial dilution analysis was performed on sample 6MW-1862602. The percent difference (%D) for potassium (27.6%) was outside of the control limits. The positive results for potassium in all samples were qualified as estimated (J_p) .

Furnace AA Results

The following table lists the analyte recoveries found outside of the control limits of 85-115% for the furnace analytical spikes and the resultant actions.

Sample	Analyte	Recovery (%)	Actions
6MW-1762602	Selenium	118	Validation action was not required. The selenium result for sample 6MW-1762602 was nondetect and therefore not
	<u> </u>		affected by the potential high bias.

Detection Limit Results

Although not a requirement of the National Functional Validation Guidelines, positive results which were $\leq 2x$ the instrument detection limit (IDL) were qualified as estimated (J_Q) due to uncertainty at the low end of calibration. The following results were affected by this qualification: arsenic in samples 6MW-2162602, 6MW-0362602, and 6MW-12162602, beryllium in sample 6MW-1762602, chromium in sample 6MW-1062602, cobalt in sample 6MW-1262602, copper in samples 6MW-1162602, 6MW-18162602, 6MW-2062602, 6MW-2162602, and 6MW-12162602, lead in sample 6MW-2162602, nickel in samples 6MW-1762602, 6MW-2162602, 6MW-0362602, and 6MW-12162602, vanadium in samples 6MW-2162602 and 6MW-12162602, and zinc in samples 6MW-12162602.

1162602, 6MW-2162602, and 6MW-12162602.

Sample Quantitation

Sample calculations were spot-checked; there were no errors noted.

Project:

Stratton ANG Base

Laboratory:

Severn Trent Laboratories, Newburgh, NY

Report No.:

215065

Reviewer:

Lorie MacKinnon

Date:

December 10, 2002

Samples Reviewed

Volatiles:

10/Groundwaters/

6MW-0881402, 6MW-0981402, 6MW-1081402, 6MW-

1181402, 6MW-1281402, 6MW-1881402, 6MW-1981402,

6MW-2081402, 6MW-2181402, 6MW-20181402 (Field duplicate pair: 6MW-2081402/6MW-20181402)

1/Trip Blank/

TB-81402

Semivolatiles: 10/Groundwaters/

6MW-0881402, 6MW-0981402, 6MW-1081402, 6MW-

1181402, 6MW-1281402, 6MW-1881402, 6MW-1981402,

6MW-2081402, 6MW-2181402, 6MW-20181402 (Field duplicate pair: 6MW-2081402/6MW-20181402)

The above-listed samples were analyzed for volatile organic compounds (VOCs) by SW-846 method 8260B and semivolatile organic compounds (SVOCs) by SW-846 method 8270C. The data validation was based on the National Functional Guidelines for Evaluating Organic Analyses, EPA 540/R-99/008, dated October 1999.

The organic data were evaluated based on the following parameters:

- Holding Times and Sample Preservation
 - Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
 - Initial and Continuing Calibrations
- * Blanks
 - Surrogate Recoveries
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Internal Standards
 - Laboratory Control Sample (LCS) Results
- Field Duplicate Results
 - Sample Quantitation and Data Assessment
 - Tentatively Identified Compounds
- * All criteria were met.

All results were found to be usable with the exception of 3-nitroaniline in all samples due to low response factor seen in the initial and continuing calibration.

The organic validation recommendations were based on the following information.

Holding Times and Sample Preservation

All criteria were met for the VOC and SVOC analyses.

GC/MS Tunes

All criteria were met for the VOC and SVOC analyses.

Initial and Continuing Calibrations

All criteria were met in the VOC initial and continuing calibrations.

Compounds that did not meet criteria in the SVOC initial and continuing calibrations are summarized in the following tables.

Instrument ID 5972-2	IC	CC.
Compound	8/23/02	7/18/02
3-nitroaniline	X (49.9%) + (0.030)	XX (34.7%) + (0.041)
Samples Affected	All samples	All samples

X = Initial calibration (IC) relative standard deviation (%RSD) > 30; estimate (Jc) positive and (UJc) blank-qualified nondetect results.

+= Response factor (RRF) < 0.05; Estimate (Jc) positive results and reject (Rc) nondetect results.

The nondetect results for 3-nitroaniline were rejected (Rc) in all samples due to low response factors seen in the initial and continuing calibrations.

Blanks

Target analytes were not detected in the VOC and SVOC method blanks. Target analytes were not detected in the VOC trip blank sample.

Surrogate Recoveries

All criteria were met in the VOC and SVOC analyses.

MS/MSD Results

An MS/MSD was performed on sample 6MW-1881402 for the VOC and SVOC analyses. All criteria were met for the VOC and SVOC analyses.

XX = Continuing calibration (CC) percent difference (%D) > 25; estimate (J/UJc) positive and nondetect results.

Internal Standards

All criteria were met in the VOC and SVOC analyses.

LCS Results

All criteria were met in the VOC analyses.

The following table lists the compound recoveries found outside of the validation control limits of 60 - 140% or laboratory established control limit (if tighter) in the SVOC analyses and the resultant actions.

Compourd	Recovery	Control Limits	Associated Samples	Actions
Phenol	27	60-140	All samples	Estimate (UJ _L) the nondetect results for phenol in the associated samples; results may be biased low.
1,4-dichlorobenzene	48	60-140	All samples	Estimate (UJ _L) the nondetect results for 1,4-dichlorobenzene in the associated samples; results may be biased low.
1,2,4-trichlorol enzene	36	60-140	All samples	Estimate (UJ _L) the nondetect results for 1,2,4-trichlorobenzene in the associated samples; results may be biased low.
4-nitrophe ol	28	60-140	All samples	Estimate (UJ _L) the nondetect results for 4- nitrophenol in the associated samples; results may be biased low.

Field Duplicate Results

 $Samples\,6MW-2081402\ and\ 6MW-20181402\ were\ identified\ as\ the\ field\ duplicate\ pair.\ All\ criteria\ were\ met.$

Sample Quantitation and Data Assessment

Sample calculations were spot-checked; there were no errors noted.

Results were reported which were below the lowest calibration standard level but greater than the method detection limit (MDL) in the VOC and SVOC analyses. These results were qualified as estimated (J_Q) .

The following table lists the sample dilutions performed due to high levels of target compounds and analyte results reported.

Sample	Analyses	Results Reported
6MW-2181492	Voc	Report the result for tetrachloroethene from the diluted (10-fold)
		analysis. Report all other analytes from undiluted analysis.

Tentatively Identified Compounds

TIC results were qualified as estimated (J_T, JN_T) as compound specific response factors are not used for the compound quantitation.

Project:

Stratton ANG Base

Laboratory:

Severn Trent Laboratories, Newburgh, NY

Report No.:

215065

Reviewer:

Lorie MacKinnon

Date:

December 10, 2002

Samples Reviewed

Metals:

10/Groundwaters/

6MW-0881402, 6MW-0981402, 6MW-1081402, 6MW-

1181402, 6MW-1281402, 6MW-1881402, 6MW-1981402,

6MW-2081402, 6MW-2181402, 6MW-20181402 (Field duplicate pair: 6MW-2081402/6MW-20181402)

The above-listed samples were analyzed for TAL metals by SW-846 method 6010B/7000 series. The data validation was performed based on the National Functional Guidelines for Evaluating Inorganic Analyses, EPA 540/R-94/012, dated February 1994.

The inorganic data were evaluated based on the following parameters:

* Holding Times and Sample Preservation

Instrument Calibration

Contract Required Detection Limit (CRDL) Standard Analysis

Blank Analysis Results

Inductively Coupled Plasma (ICP) Interference Check Sample Results

Matrix Spike (MS) Results

* Laboratory Duplicate Results

Field Duplicate Results

* Laboratory Control Sample (LCS) Results

ICP Serial Dilution Results

Furnace AA results

Detection Limit Results

- * Sample Quantitation
- * All criteria were met for this parameter.

All results were found to be usable. The validation recommendations were based on the following information.

Holding Times and Sample Preservation

All criteria were met.

Instrument Calibration

The following table lists the analytes which exhibited recoveries outside of the control limits in the continuing calibration verification (CCV) samples.

Analyte	Standard	Recovery (%)	Associated Samples	Actions
Barium	CCV4	111.4	6MW-2081402, 6MW-2181402, 6MW-20181402	Estimate (Jc) the positive results for barium in the associated samples; possible high bias.

CRDL Standard Analysis

The following table lists the analytes which exhibited recoveries outside of the control limits in the CRDL standard analysis. Sample results which were less than 1.5x the standard amount analyzed were qualified as estimated.

Analyte	Standard Level	Recovery (%)	Associated Samples	Actions
Lead	6 ug/L	39.7, 66.0	QC samples only	Validation actions were not required.
Lead	6 ug/L	120.2	All samples	Estimate (Jg) the positive results for lead (<9 ug/L) in samples 6MW-2181402 and 6MW-20181402; possible high bias.

Blank Results

The following table summarizes the blank contaminants detected in the laboratory blanks associated with the samples, associated action levels, and validation actions applied.

Analyte	Action Level (ug/L)	Validation Actions
Aluminum	-316	Qualify the positive results for aluminum in samples 6MW-0881402, 6MW-0981402, and 6MW-1881402 as estimated (Je); results may be biased low.
Barium	8.0	Validation actions were not required.
Calcium	1634	Validation actions were not required.
Potassium	1004	Validation actions were not required.
Silver	8.5	Validation actions were not required.
Sodium	3354	Validation actions were not required.

Qualification of the data was performed as follows:

For positive contamination,

If the positive sample value was > the instrument detection limit (IDL) and < the Action Level, qualify the result as a nondetect (Um) at the reported concentration.

If the positive sample value was > the IDL and > the Action Level, report the value unqualified.

For negative contamination,

For positive results < the Action Level and nondetect results, qualify the result as a estimated (J/UJe) at the reported concentration. The result may be biased low.

If the positive sample value was > the Action Level, report the value unqualified.

Interference Check Sample Results

All analyte recoveries were within control limits in the ICSAB sample.

Positive results were observed for barium, cadmium, chromium, potassium, sodium, and thallium and negative results were observed for arsenic, manganese, and silver in the ICSA solution analysis associated with the groundwater samples. The levels of interferents in the associated samples were reviewed. Validation actions were not required as sample interferent levels were less than 50% those of the ICSA solution.

Matrix Spike Results

A matrix spike was performed on sample 6MW-1881402 for the metals analysis. The following table lists the analyte recoveries found outside of recovery control limits of 75-125% and the resultant actions.

Analyte	Recovery (%)	Actions
Silver	64.0	Estimate (J/UJm) the positive and nondetect results for silver in all samples; possible low bias.

Laboratory Daplicate Results

A laboratory deplicate analysis was performed on sample 6MW-1881402 for the metals analysis. All criteria were met.

Field Duplicate Results

Samples 6MW-2081402 and 6MW-20181402 were identified as field duplicate samples. The following table lists the %RPDs found outside of the control limit of 30% or within 2xQL (quantitation limit) for sample levels <5xQL. The direction of the bias cannot be determined by this nonconformance.

Analyte	6MW- 2081402 (ug/L)	6MW- 20181402 (ug/L)	RPD (%)	Actions
Aluminum	629	1640	89.1	Estimate (Jf) the positive results for aluminum in samples 6MW-2081402 and 6MW-20181402.
Iron	1160	3470	99.8	Estimate (Jf) the positive results for iron in samples 6MW-2081402 and 6MW-20181402.

LCS Results

All criteria were met in the LCS analyses.

ICP Serial Dilution Results

An ICP serial dilution analysis was performed on sample 6MW-1881402. The percent difference (%D) for potassium (15.5%) was outside of the control limits. The positive results for potassium in all samples were qualified as estimated (J_p) .

Furnace AA Results

The following table lists the analyte recoveries found outside of the control limits of 85-115% for the furnace analytical spikes and the resultant actions.

Sample	Analyte	Recovery (%)	Actions
6MW-0881402	Selenium	71	Estimate (Ja) the positive result for selenium in sample 6MW-0881402; potential low bias.
6MW-1181402	Selenium	71	Estimate (UJa) the nondetect result for selenium in sample 6MW-1181402; potential low bias.
6MW-2181402	Selenium	80	Estimate (Ja) the positive result for selenium in sample 6MW-21881402; potential low bias.
6MW-20181402	Selenium	77	Estimate (Ja) the positive result for selenium in sample 6MW-20181402; potential low bias.

Detection Limit Results

Although not a requirement of the National Functional Validation Guidelines, positive results which were $\leq 2x$ the instrument detection limit (IDL) were qualified as estimated (J_Q) due to uncertainty at the low end of calibration. The following results were affected by this qualification: aluminum in sample 6MW-1881402, antimony in sample 6MW-2081402, arsenic in samples 6MW-2081402 and 6MW-20181402, chromium in sample 6MW-1281402, cobalt in samples 6MW-1881402 and 6MW-1981402, copper in samples 6MW-1881402, 6MW-2181402, and 6MW-20181402, lead in sample 6MW-20181402, mercury in sample 6MW-1181402, selenium in samples 6MW-0881402, 6MW-0881402,

 $2181402, and \, 6MW-20181402, vanadium \, in \, samples \, 6MW-2181402 \, and \, 6MW-20181402, and \, zinc \, in \, samples \, 6MW-0881402, \, 6MW-20181402, \, and \, 6MW-20181402.$

Sample Quantitation

Sample calculations were spot-checked; there were no errors noted.

Project:

Stratton ANG Base

Laboratory:

Severn Trent Laboratories, Newburgh, NY

Report No.:

215067

Reviewer:

Lorie MacKinnon

Date:

December 10, 2002

Samples Reviewed

Volatiles:

7/Groundwaters/

6MW-0381302, 6MW-1381302, 6MW-1481302, 6MW-

1581302, 6MW-1681302, 6MW-1781302, 6MW-

13381302

(Field duplicate pair: 6MW-1381302/6MW-13381302)

Semivolatiles: 7/Groundwaters/

6MW-0381302, 6MW-1381302, 6MW-1481302, 6MW-

1581302, 6MW-1681302, 6MW-1781302, 6MW-

13381302

(Field duplicate pair: 6MW-1381302/6MW-13381302)

The above-listed samples were analyzed for volatile organic compounds (VOCs) by SW-846 method 8260B and semivolatile organic compounds (SVOCs) by SW-846 method 8270C. The data validation was based on the National Functional Guidelines for Evaluating Organic Analyses, EPA 540/R-99/008, dated October 1999.

The organic data were evaluated based on the following parameters:

- Holding Times and Sample Preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
 - Initial and Continuing Calibrations
- * Blanks
- * Surrogate Recoveries
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Internal Standards
 - Laboratory Control Sample (LCS) Results
- Field Duplicate Results
 - Sample Quantitation and Data Assessment
 - Tentatively Identified Compounds
- * All criteria were met.

All results were found to be usable with the exception of 3-nitroaniline in all samples due to low response factor seen in the initial and continuing calibration.

The organic validation recommendations were based on the following information.

Holding Times and Sample Preservation

All criteria were met for the VOC and SVOC analyses.

GC/MS Tunes

All criteria were met for the VOC and SVOC analyses.

Initial and Continuing Calibrations

All criteria were met in the VOC initial and continuing calibrations.

Compounds that did not meet criteria in the SVOC initial and continuing calibrations are summarized in the following tables.

Instrument ID 5972-2 Compound	IC 8/23/02	CC 8/28/02	EC 8/29/02
3-nitroaniline	X (49.9%) + (0.030)	XX (65.5%)	XX (34.7%) + (0.041)
Samples Affected	All samples	All samples	QC samples only

X = Initial calibration (IC) relative standard deviation (%RSD) > 30; estimate (Jc) positive and (UJc) blank-qualified nondetect results.

The nondetect results for 3-nitroaniline were rejected (Rc) in all samples due to low response factor seen in the initial calibration.

Blanks

Target analytes were not detected in the VOC and SVOC method blanks.

Surrogate Recoveries

All criteria were met in the VOC and SVOC analyses.

MS/MSD Results

An associated MS/MSD was performed on sample 6MW-1881402 for the VOC and SVOC analyses and reported in 215065. All criteria were met for the VOC and SVOC analyses.

XX = Continuing calibration (CC) percent difference (%D) > 25; estimate (J/UJc) positive and nondetect results.

⁺⁼ Response factor (RRF) < 0.05; Estimate (Jc) positive results and reject (Rc) nondetect results.

Internal Standards

All criteria were met in the VOC and SVOC analyses.

LCS Results

All criteria were met in the VOC analyses.

The following table lists the compound recoveries found outside of the validation control limits of 60 - 140% or laboratory established control limit (if tighter) in the SVOC analyses and the resultant actions.

Compound	Recovery (%)	Control Limits	Associated Samples	Actions
Phenol	29	60-140	All samples	Estimate (UJ _L) the nondetect results for phenol in the associated samples; results may be biased low.
1,4-dichlorobenzene	54	60-140	All samples	Estimate (UJ _L) the nondetect results for 1,4-dichlorobenzene in the associated samples; results may be biased low.
4-nitrophenol	37	60-140	All samples	Estimate (UJ _L) the nondetect results for 4- nitrophenol in the associated samples; results may be biased low.

Field Duplicate Results

Samples 6MW-1381302 and 6MW-13381302 were identified as the field duplicate pair. All criteria were met.

Sample Quantitation and Data Assessment

Sample calculations were spot-checked; there were no errors noted.

Results were reported which were below the lowest calibration standard level but greater than the method detection limit (MDL) in the VOC and SVOC analyses. These results were qualified as estimated (J_Q) .

The following table lists the sample dilutions performed due to high levels of target compounds and analyte results reported.

Sample	Analyses	Results Reported
6MW-1381302	VOC	Report the result for tetrachloroethene from the diluted (10-fold)
		analysis. Report all other analytes from undiluted analysis.

Sample	Analyses	Results Reported
6MW-13381302	VOC	Report the result for tetrachloroethene from the diluted (10-fold)
		analysis. Report all other analytes from undiluted analysis.

Tentatively Identified Compounds

TIC results were qualified as estimated (J_T, JN_T) as compound specific response factors are not used for the compound quantitation.

Project:

Stratton ANG Base

Laboratory:

Severn Trent Laboratories, Newburgh, NY

Report No.:

215067

Reviewer:

Lorie MacKinnon

Date:

December 10, 2002

Samples Reviewed

Metals:

7/Groundwaters/

6MW-0381302, 6MW-1381302, 6MW-1481302, 6MW-

1581302, 6MW-1681302, 6MW-1781302, 6MW-

13381302

(Field duplicate pair: 6MW-1381302/6MW-13381302)

The above listed samples were analyzed for TAL metals by SW-846 method 6010B/7000 series. The data validation was performed based on the National Functional Guidelines for Evaluating Inorganic Analyses, EPA 540/R-94/012, dated February 1994.

The inorganic data were evaluated based on the following parameters:

* Holding Times and Sample Preservation

Instrument Calibration

Contract Required Detection Limit (CRDL) Standard Analysis

Blank Analysis Results

Inductively Coupled Plasma (ICP) Interference Check Sample Results

Matrix Spike (MS) Results

Laboratory Duplicate Results

Field Duplicate Results

* Laboratory Control Sample (LCS) Results

ICP Serial Dilution Results

Furnace AA results

Detection Limit Results

- * Sample Quantitation
- * All criteria were met for this parameter.

All results were found to be usable. The validation recommendations were based on the following information.

Holding Times and Sample Preservation

All criteria were met.

Instrument Calibration

The following table lists the analytes which exhibited recoveries outside of the control limits in the continuing calibration verification (CCV) samples.

Analyte	Standard	Recovery (%)	Associated Samples	Actions
Barium	CCV4	111.4	No associated samples	Validation actions were not required.
Barium	CCV5	110.4	6MW-1581302, 6MW-1681302	Estimate (Jc) the positive results for barium in the associated samples; possible high bias.

CRDL Standard Analysis

The following table lists the analytes which exhibited recoveries outside of the control limits in the CRDL standard analysis. Sample results which were less than 1.5x the standard amount analyzed were qualified as estimated.

Analyte	Standard Level	Recovery (%)	Associated Samples	Actions
Lead	6 ug/L	39.7, 63	All samples	Estimate (UJg) the nondetect results for lead (<9 ug/L) in all samples; possible low bias.

Blank Results

The following table summarizes the blank contaminants detected in the laboratory blanks associated with the samples, associated action levels, and validation actions applied.

Analyte	Action Level (ug/L)	Validation Actions		
Barium	8.0	Validation actions were not required.		
Calcium	1842	Validation actions were not required.		
Iron	74.0	Validation actions were not required.		
Potassium	1016	Validation actions were not required.		
Silver	14.5	Validation actions were not required.		
Sodium	3213	Validation actions were not required.		

Qualification of the data was performed as follows:

For positive contamination,

If the positive sample value was > the instrument detection limit (IDL) and < the Action Level, qualify the result as a nondetect (Um) at the reported concentration.

If the positive sample value was > the IDL and > the Action Level, report the value unqualified.

Interference Check Sample Results

All analyte recoveries were within control limits in the ICSAB sample.

Positive results were observed for barium, cadmium, chromium, potassium, sodium, and thallium and negative results were observed for arsenic, manganese, and silver in the ICSA solution analysis associated with the groundwater samples. The levels of interferents in the associated samples were reviewed. Validation actions were not required as sample interferent levels were less than 50% those of the ICSA solution.

Matrix Spike Results

A matrix spike was performed on sample 6MW-0381302 for the metals analysis. The following table lists the analyte recoveries found outside of recovery control limits of 75-125% and the resultant actions.

Analyte	Recovery (%)	Actions
Selenium	44.0	Estimate (J/UJm) the positive and nondetect results for selenium in all samples; possible low bias.
Silver	54.2	Estimate (J/UJm) the positive and nondetect results for silver in all samples; possible low bias.

Laboratory Duplicate Results

A laboratory duplicate analysis was performed on sample 6MW-0381302 for the metals analysis. A laboratory duplicate analysis was performed on sample 6MW-181402 for the mercury analysis. All criteria were met.

Field Duplicate Results

Samples 6MW-1381302 and 6MW-13381302 were identified as field duplicate samples. The following table lists the %RPDs found outside of the control limit of 30% or within 2xQL (quantitation limit) for sample levels <5xQL. The direction of the bias cannot be determined by this nonconformance.

Analyte	5MW-1381302 (ug/L)	6MW-13381302 (ug/L)	RPD (%)	Actions
Aluminum	479	1140	81.7	Estimate (Jf) the positive results for aluminum in samples 6MW-1381302 and 6MW-13381302.

Analyte	6MW-1381302 (ug/L)	6MW-13381302 (ug/L)	RPD (%)	Actions
Iron	829	1830	75.3	Estimate (Jf) the positive results for iron in samples 6MW-1381302 and 6MW-1381302.

LCS Results

All criteria were met in the LCS analyses.

ICP Serial Dilution Results

An ICP serial dilution analysis was performed on sample 6MW-0381302. The percent difference (%D) for potassium (20.2%) was outside of the control limits. The positive results for potassium in all samples were qualified as estimated (J_p) .

Furnace AA Results

The following table lists the analyte recoveries found outside of the control limits of 85-115% for the furnace analytical spikes and the resultant actions.

Sample	Analyte	Recovery	Actions
6MW-0381302	Selenium	81	Estimate (UJa) the nondetect result for selenium in sample 6MW-0381302; potential low bias.
6MW-13381302	Selenium	84	Estimate (UJa) the nondetect result for selenium in sample 6MW-13381302; potential low bias.

Detection Limit Results

Although not a requirement of the National Functional Validation Guidelines, positive results which were $\leq 2x$ the instrument detection limit (IDL) were qualified as estimated (J_Q) due to uncertainty at the low end of calibration. The following results were affected by this qualification: antimony in sample 6MW-1381302, 6MW-1681302, and 6MW-13381302, arsenic in sample 6MW-1381302 and 6MW-13381302, cobalt in samples 6MW-1381302, 6MW-1481302, 6MW-1581302, 6MW-1781302, and 6MW-13381302, nickel in sample 6MW-1681302, selenium in sample 6MW-0381302, and zinc in sample 6MW-1681302.

Sample Quantitation

Sample calculations were spot-checked; there were no errors noted.

Project:

Stratton ANG Base

Laboratory:

Severn Trent Laboratories, Newburgh, NY

Report No.:

212860

Reviewer:

Lorie MacKinnon

Date:

November 13, 2002

Samples Reviewed

Volatiles:

14/Sediment/

SB-27-61302 6-7.5 FT, SB-27D-61302 6-7.5 FT, SB-28-61302 7-8 FT, SB-23-61302 6-7 FT, SB-24-61302 4.5-5.5 FT, SB-23D-61302 6-7 FT,

SB-21-61402 7-8 FT, SB-22-61402 5-6 FT, SB-25-61402 5-6 FT, SB-26-61402 5-6 FT, SB-18-61402 2-4 FT, SB-17-61402 5-6 FT, SB-19-61402

7-8 FT, SB-20-61402 4.5-5.5 FT,

(Soil field duplicate pairs: SB-27-61302 6-7.5 FT/SB-27D-61302 6-7.5 FT and

SB-23-61302 6-7 FT/SB-23D-61302 6-7 FT)

2/Equipment Blank/

RB-SB-61302, RB-SB-61402

Semivolatiles:

14/Sediment/

SB-27-61302 6-7.5 FT, SB-27D-61302 6-7.5 FT, SB-28-61302 7-8 FT,

SB-23-61302 6-7 FT, SB-24-61302 4.5-5.5 FT, SB-23D-61302 6-7 FT, SB-21-61402 7-8 FT, SB-22-61402 5-6 FT, SB-25-61402 5-6 FT, SB-18-61402 2-4 FT, SB-17-61402 5-6 FT, SB-19-61402

7-8 FT, SB-20-61402 4.5-5.5 FT,

(Soil field duplicate pairs: SB-27-61302 6-7.5 FT/SB-27D-61302 6-7.5 FT and

SB-23-61302 6-7 FT/SB-23D-61302 6-7 FT)

2/Equipment Blank/

RB-SB-61302, RB-SB-61402

The above listed samples were analyzed for volatile organic compounds (VOCs) by SW-846 method 8260B and semivolatile organic compounds (SVOCs) by SW-846 method 8270C. The data validation was based on the National Functional Guidelines for Evaluating Organic Analyses, EPA 540/R-99/008, dated October 1999.

The organic data were evaluated based on the following parameters:

- Holding Times and Sample Preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
- Initial and Continuing Calibrations
- Blanks
- Surrogate Recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results

- Internal Standards
- Laboratory Control Sample (LCS) Results
- Field Duplicate Results
- Sample Quantitation and Data Assessment
- Tentatively Identified Compounds
- All criteria were met.

All results were found to be usable with the exception of 2,4-dinitrophenol, 4-nitrophenol, and pentachlorophenol in samples SB-27RE, SB-25RE, and SB-26 due to poor response factors and the acid compounds in samples RB-SB-61302 and RB-SB-61402 due to surrogate recoveries less than 10.

The organic validation recommendations were based on the following information.

Holding Times and Sample Preservation

All criteria were met for the VOC analyses.

The extraction of SVOC sample RB-SB-61302 took place one day outside of the required holding time. The base-neutral results for sample RB-SB-61302 were qualified as estimated (UJh) due to holding time exceedance. Validation action was not required for the acid compounds as these results were subsequently rejected due to surrogate recoveries.

The re-extraction of SVOC samples SB-27-61302 6-7.5 FT and SB-25-61402 5-6 FT took place four days outside of the required holding time. The reanalysis results of these samples were reported due to poor surrogate recoveries in the initial analysis. The positive and nondetect SVOC results for samples SB-27-61302 6-7.5 FT and SB-25-61402 5-6 FT were qualified as estimated (J/UJh) due to the holding time exceedances.

GC/MS Tunes

All criteria were met for the VOC and SVOC analyses.

Initial and Continuing Calibrations

Compounds that did not meet criteria in the VOC and SVOC initial and continuing calibrations are summarized in the following tables.

Instrument ID MSD Compound	CC 6/23/02
1,1,2,2-tetrachloroethane	XX (32.0%)
Samples Affected	SB-25–61402 5-6 FT DL, SB-26-61402 5-6 FT DL, SB-19-61402 7-8 FT DL

Instrumen: ID 5972-1 Compound	1C 6/7/02	CC 6/25/02	CC 6/26/02	CC 6/26/02
hexachlorocyclopentadiene	X (48.5%)	XX (36.0%)	XX (84.5%)	
3-nitroaniline	X (41.0%)	XX (43.3%)		
2,4-dinitrophenol	X (34.7%)	XX (60.8%)	XX (63.3%)	
4-chloroaniline		XX (37.4%)		
4-nitrophenol		XX (39.7%)	XX (34.2%)	
4,6-dinitro-2-methylphenol		XX (30.2%)	XX (41.4%)	
pentachlorophenol		XX (35.3%)	XX (35.9%)	
3,3'-dichlorobenzidine		XX (34.3%)		XX (52.8%)
di-n-octylph@halate		XX (36.6%)		
dibenz(a,h)anthracene		XX (27.4%)		
Samples Affected	All samples	RB-SB-61302, RB-SB-61402	RB-SB-61302RE, RB-SB-61402RE	SB-27D, SB24, SB22

Instrumer: ID 5972-i Comporad	CC 6/28/02	CC 7/02/02
hexachlorocyclopentadiene	X (37.3%)	XX (28.5%)
3-nitroaniline	X (47.4%)	
2,4-dinitrophenol	X (51.7%)	XX (40.9%) +(0.049)
4-chloroaniline	X (26.0%)	
4-nitroph⊕nol	X (42.4%)	XX (25.8%) +(0.048)
4,6-dinitro-2-methylphenol	X (25.7%)	
pentachlorophenol	X (34.6%)	XX (25.6%) +(0.046)
di-n-octylphthalate	X (34.9%)	
Samples Affected	SB-27, SB-28, SB-17, SB- 19, SB-25, SB-23, SB-23D, SB-21, SB-18, SB-20	SB-27RE, SB-25RE, SB-26

X = Initial calibration (IC) relative standard deviation (%RSD) > 30; estimate (Jc) positive and (UJc) blank-qualified nondetect results.

+= Response factor (RRF) < 0.05; Estimate (Jc) positive results and reject (Rc) nondetect results.

XX = Continuing calibration (CC) percent difference (%D) > 25; estimate (J/UJc) positive and nondetect results.

The following positive and/or nondetect results were qualified as estimated (J/UJc) due to continuing calibration nonconformances: 4-chloroaniline, hexachlorocyclopentadiene, 3-nitroaniline, 3,3'-dichlorobenzidine, di-n-octylphthalate, and dibenz(ah)anthracene in samples RB-SB-61302 and RB-SB-61402; 3,3'-dichlorobenzidine in samples SB-27D, SB-24, and SB-22; 4-chloroaniline, hexachlorocyclopentadiene, 3-nitroaniline, 2,4-dinitrophenol, 4-nitrophenol, 4,6-dinitro-2-methylphenol, pentachlorophenol, and di-n-octylphthalate in samples SB-28, SB-17, SB-19, SB-23, SB-23D, SB-21, SB-18, and SB-20; and hexachlorocyclopentadiene in samples SB-27RE, SB-25RE, and SB-26. The direction of the bias cannot be determined from these nonconformances. The nondetect results for 2,4-dinitrophenol, 4-nitrophenol, and pentachlorophenol in samples SB-27RE, SB-25RE, and SB-26 were rejected (Rc) due to low response factors in the continuing calibration.

Validation actions were not required for 1,1,2,2-tetrachloroethane in samples SB-25–61402 5-6 FT DL, SB-26-61402 5-6 FT DL, SB-19-61402 7-8 FT DL due to continuing calibration nonconformances as this compound was not reported from the diluted analysis. Validation actions were not required for hexachlorocyclopentadiene, 3-nitroaniline, and 2,4-dinitrophenol in all samples due to initial calibration nonconformances as all results were nondetect. Validation actions were not required for 2,4-dinitrophenol, 4-nitrophenol, 4,6-dinitro-2-methylphenol, and pentachlorophenol in samples RB-SB-61302 and RB-SB-61402 due to continuing calibration nonconformances as these results were subsequently rejected due to low surrogate recoveries. Validation actions were not required for hexachlorocyclopentadiene, 2,4-dinitrophenol, 4-nitrophenol, 4,6-dinitro-2-methylphenol, and pentachlorophenol in samples RB-SB-61302RE and RB-SB-61402RE due to continuing calibration nonconformances as the reanalyses were not reported. Validation actions were not required for 4-chloroaniline, hexachlorocyclopentadiene, 3-nitroaniline, 2,4-dinitrophenol, 4-nitrophenol, 4,6-dinitro-2-methylphenol, pentachlorophenol, and di-n-octylphthalate in samples SB-27 and SB-25 due to continuing calibration nonconformances as the reanalyses of these samples were reported.

Blanks

Target analytes were not detected in the SVOC method blanks.

The following table summarizes the method blank contamination in the VOC analyses.

Compound	Type of Blank	Associated Samples	Maximum Concentration	Blank Action Level
tetrachloroethene	Soil Method Blank	All samples	0.9 ug/kg	4.5 ug/kg

Blank Actions

If the sample concentration \leq QL and \leq blank action level, qualify the result as not detected (Um) at the QL. If the sample concentration > QL and \leq blank action level, qualify the result as not detected (Um) at the reported value. If the sample concentration > blank action level, report the value unqualified.

Based on the action levels determined, the tetrachloroethene results in sample SB-22 was qualified as nondetect (Um) at the reported values due to method blank contamination.

Target analytes were not detected in the VOC and SVOC field blank samples RB-SB-61302 and RB-SB-61402 and VOC trip blank sample TB-61302.

Sample TIC results less than 10 times the levels detected in the associated blank samples were rejected (Rm).

Surrogate Recoveries

All surrogate recovery criteria were met for the VOC samples.

The following table summarizes the surrogate recoveries that failed to meet the acceptance criteria in the SVOC analyses which were not performed on dilutions:

Sample ID			Percent R	ссочету			Action
	2-FP 21-160	Phenol-d5 24-113	TBP 20-130	NBZ 23-120	2-FBP 30-115	TP-d14 21-117	
RB-SB-61302	4%	<u>.</u>	16%	-	-	-	Reject (Rs) the nondetect results for all acid compounds in sample RB-SB-61302.
RB-SB- 61302RE	4%	-	17%	•	ı	•	Validation action not required; original analysis reported.
RB-SB-61402	5%	•	12%	-	•		Reject (Rs) the nondetect results for all acid compounds in sample RB-SB-61402.
RB-SB- 61402RE	5%	-	13%		-	•	Validation action not required; original analysis reported.
SB-27	19%	18%	-	18%	25%	•	Validation action not required; reanalysis reported.
SB-25	8%	7%	5%	6%	13%	-	Validation action not required; reanalysis reported.

⁻ Within control limits

2-FP - 2-Fluorophenol

TBP - 2,4,6-Tribromophenol

NBZ - Nitrobenzene-d5

2-FBP - 2-Fluorobiphenyl

TP-d14 - Terphenyl-d14

MS/MSD Results

An MS/MSD was performed on sample SB-24-61302-4.5-5.5 FT for the VOC and SVOC analyses. The following table lists the enalyte MS/MSD recoveries and/or %RPDs which were outside of the

laboratory established control limits in the VOC and SVOC analyses.

Compound	MS %R	MSD %R	RPD %	QC Limits	Action
1,4-dichlorobenzene	18	19	-	28-104/27	Estimate (UJm) the nondetect result for 1,4-dichlorobenzene in sample SB-24; result may be biased low.
n-Nitroso-di-n- propylamine	35	-	••	41-126/38	Estimate (UJm) the nondetect result for n-Nitroso-di-n-propylamine in sample SB-24; result may be biased low.
1,2,4-trichlorobenzene	28	30	-	38-107/23	Estimate (UJm) the nondetect result for 1,2,4-trichlorobenzene in sample SB-24; result may be biased low.
trichloroethene	157	-	-	64-136/24	Estimate (Jm) the positive result for trichloroethene in sample SB-24; result may be biased high.
toluene	126	126	-	76-124/21	Estimate (Jm) the positive result for toluene in sample SB-24; result may be biased high.

⁻within control limits

Internal Standards

The following table lists the internal standard areas found outside of the validation control limits.

Sample	Internal Standard	Recovery (%)	Action
SB-25-61402 5-6 FT	1,4-dichlorobenzene-d4 naphthalene-d8 acenaphthene-d10 phenanthrene-d10 chrysene-d12 perylene-d12	20.7 22.3 21.3 19.6 10.2 0	Validation action was not required. Internal areas were acceptable in the reanalysis. Reanalysis results were reported for this sample.

LCS Results

The following table lists the compound recoveries found outside of the validation control limits of 60 - 140% or laboratory established control limit (if tighter) in the VOC and SVOC analyses and the resultant actions.

			Associated Samples	Actions
dichlorodifluoromethane	36	60-140	All samples	Estimate (UJ _L) the nondetect results for dichlorodifluoromethane in all samples; results may be biased low.

Compound	Recovery (%)	Control Limits	Associated Samples	Actions
Phenol	32	60-140	All Equipment blank samples	No validation actions required. Nondetect results were previously rejected due to low surrogate recoveries.
4-nitrophenol	21	60-140	All Equipment blank samples	No validation actions required. Nondetect results were previously rejected due to low surrogate recoveries.
Phenol	48	60-140	SB-27RE and SB-25RE	Estimate (UJ _L) the nondetect results for phenol in the associated samples; results may be biased low.
2-chlorophenol	48	60-140	SB-27RE and SB-25RE	Estimate (UJ _L) the nondetect results for 2-chlorophenol in the associated samples; results may be biased low.
1,4-dichlorobenzene	36	60-140	SB-27RE and SB-25RE	Estimate (UJ _L) the nondetect results for 1,4-dichlorobenzene in the associated samples; results may be biased low.
N-nitroso-di-n- propylamine	47	60-140	SB-27RE and SB-25RE	Estimate (UJ _L) the nondetect results for N-nitroso-di-n-propylamine in the associated samples; results may be biased low.
1,2,4-trichlorobenzene	49	60-140	SB-27RE and SB-25RE	Estimate (UJ _L) the nondetect results for 1,2,4-trichlorobenzene in the associated samples; results may be biased low.
4-chloro-3-methylphenol	52	60-140	SB-27RE and SB-25RE	Estimate (UJ _L) the nondetect results for 4-chloro-3-methylphenol in the associated samples; results may be biased low.
Acenaphthene	58	60-140	SB-27RE and SB-25RE	Estimate (UJ _L) the nondetect results for acenaphthene in the associated samples; results may be biased low.
2,4-dinitrotoluene	49	60-140	SB-27RE and SB-25RE	Estimate (UJ _L) the nondetect results for 2,4-dinitrotoluene in the associated samples; results may be biased low.
Phenol	48	60-140	All soil samples with the exception of SB- 27 and SB-25	Estimate (UJ _L) the nondetect results for phenol in the associated samples; results may be biased low.
2-chlorophenol	48	60-140	All soil samples with the exception of SB- 27 and SB-25	Estimate (UJ_1) the nondetect results for 2-chlorophenol in the associated samples; results may be biased low.

Compound	Recovery	Control	Associated	Actions
reside to exemple, but their	(%)	Limits	Samples	
1,4-dichlorobenzene	28	60-140	All soil samples with the exception of SB- 27 and SB-25	Estimate (J/UJ _L) the positive and/or nondetect results for 1,4-dichlorobenzene in the associated samples; results may be biased low.
n-nitroso-di-n- propylamine	44	60-140	All soil samples with the exception of SB- 27 and SB-25	Estimate (UJ _L) the nondetect results for n-nitroso-di-n-propylamine in the associated samples; results may be biased low.
1,2,4-trichlorobenzene	41	60-140	All soil samples with the exception of SB- 27 and SB-25	Estimate (UJ _L) the nondetect results for 1,2,4-trichlorobenzene in the associated samples; results may be biased low.
4-chloro-3-methylphenol	48	60-140	All soil samples with the exception of SB- 27 and SB-25	Estimate (UJ _L) the nondetect results for 4-chloro-3-methylphenol in the associated samples; results may be biased low.
acenaphthene	54	60-140	All soil samples with the exception of SB- 27 and SB-25	Estimate (UJ _L) the nondetect results for acenaphthene in the associated samples; results may be biased low.
2,4-dintrotoluene	41	60-140	All soil samples with the exception of SB- 27 and SB-25	Estimate (UJ _L) the nondetect results for 2,4-dinitrotoluene in the associated samples; results may be biased low.
4-nitrophenol	44	60-140	All soil samples with the exception of SB- 27 and SB-25	Estimate (UJ _L) the nondetect results for 4-nitrophenol in the associated samples; results may be biased low.
pentachlorophenol	56	60-140	All soil samples with the exception of SB- 27 and SB-25	Estimate (UJ _L) the nondetect results for pentachlorophenol in the associated samples; results may be biased low.

Validation actions were not required for 4-nitrophenol and pentachlorophenol in sample SB26 due to LCS recoveries as the results were previously rejected due to low response factors.

Field Duplicate Results

Samples SB-27-61302 6-7.5 FT and SB-27D-61302 6-7.5 FT were identified as the field duplicate pair. The following table lists the %RPDs found outside of the control limit of 50% or 100% for sample levels <5xQL (quantitation limit). The direction of the bias cannot be determined by this nonconformance.

Analyte	SB-27-61302 6-7.5 FT (mg/kg)	SB-27D-61302 6-7.5 FT (mg/kg)	RPD (%)	Actions
Chloromethane	1.2U	5.0	200	Estimate (Jf/UJf) the positive and nondetect results for chloromethane in samples SB-27-61302 6-7.5 FT and SB-27D-61302 6-7.5 FT.

Samples SB-23-61302 6-7 FT and SB-23D-61302 6-7 FT were identified as the field duplicate pair. The following table lists the %RPDs found outside of the control limit of 50% or 100% for sample levels <5xQL (quantitation limit). The direction of the bias cannot be determined by this nonconformance.

Analyte	SB-23-61302 6-7 FT (mg/kg)	SB-23D-61302 6-7 FT (mg/kg)	RPD (%)	Actions
Vinyl Chloride	4.5	39	158.6	Estimate (Jf) the positive results for vinyl chloride in samples SB-23-61302 6-7 FT and SB-23D-61302 6-7 FT.
cis-1,2-dichloroethene	330	110	100	Estimate (Jf) the positive results for cis- 1,2-dichloroethene in samples SB-23- 61302 6-7 FT and SB-23D-61302 6-7 FT.
Chlorobenzene	26	51	64.9	Estimate (Jf) the positive results for chlorobenzene in samples SB-23-61302 6-7 FT and SB-23D-61302 6-7 FT.

Sample Quantitation and Data Assessment

Results were reported which were below the lowest calibration standard level but greater than the method detection limit (MDL) in the VOC and SVOC analyses. These results were qualified as estimated (J_0) .

The following table lists the sample dilutions performed due to high levels of target compounds and analyte results reported.

Sample	Analyses	Results Reported
SB-23-61302 6-7 FT	VOC	Report the result for cis-1,2-dichloroethene, chlorobenzene, and 1,2-dichlorobenzene from the diluted (1 gram) analysis. Report all other analytes from undiluted analysis.
SB-25-61402 5-6 FT	VOC	Report the result for tetrachloroethene from the medium level analysis. Report all other analytes from the low level analysis.
SB-26-61402 5-6 FT	VOC	Report the result for tetrachloroethene from the medium level analysis. Report all other analytes from the low level analysis.

Sample	Analyses	Results Reported
SB-17-61402 5-6 FT	VOC	Report the result for 4-isopropyltoluene from the diluted (1 gram) analysis. Report all other analytes from undiluted analysis.
SB-19-61402 7-8 FT	VOC	Report the result for trichloroethene from the medium level analysis. Report all other analytes from the low level analysis.

Samples were reanalyzed due to poor surrogate and/or internal standard areas. The following table lists the analyses which were reported.

Sample	Analyses	Results Reported
RB-SB-61302/RE	SVOC	Poor surrogate recoveries in both analyses. Report original analysis.
RB-SB-61402/RE	SVOC	Poor surrogate recoveries in both analyses. Report original analysis.
SB-25-61402 5-6 FT/RE	svoc	Poor surrogate recoveries and IS areas in original analysis. Report reanalysis results with acceptable surrogate recoveries and IS areas.
SB-27-61302 6-7.5 FT/RE	SVOC	Poor surrogate recoveries in original analysis. Report reanalysis results with acceptable surrogate recoveries.

Tentatively Identified Compounds

TIC results were qualified as estimated (J_T, JN_T) as compound specific response factors are not used for the compound quantitation.

NATIONAL FUNCTIONAL VALIDATION GUIDELINES FOOTNOTES

Compound was present in the associated field blank. Organic results greater than the reported detection limit but lower than the action level: report the sample concentration followed by "U". For inorganics, the analyte was present in the associated blank. The sample result was less than the action level of 5X the maximum concentration found in any blank and has been qualified as nondetected.

Um

Compound was present in the associated laboratory blank. For organic results greater than the reported detection limit but lower than the action level; report the sample concentration followed

compound was present in the associated laboratory blank. For organic results greater than the reported detection limit but lower than the action level: report the sample concentration followed by "U". For inorganics, the analyte was present in the associated blank. The sample result was less than the action level of 5X the maximum concentration found in any blank and has been qualified as nondetected.

The result of the furnace analytical spike was outside of criteria. Positive and/or nondetect sample results are estimated dependant on the recovery.

The ICS recovery of an element is outside of criteria or positive or nondetect interference was detected in the ICSA analysis. The reported result or detection limit is estimated or rejected based on the recovery or estimated interference.

The initial %RSD was greater than 30% for semivolatile and volatiles or greater than 20% for pesticide/PCB or the continuing calibration %D was greater than 25%; estimate positive results and non-detects. For inorganics, the initial or continuing calibration verification standard was outside of control limits of 90 - 110% for metals, 80 - 120% for Mercury or 85 - 115% for Cyanide. The positive or non-detected results are estimated dependent on the recovery.

The RPD for laboratory duplicate sample analysis results exceeded 20% (35% for soils) for this analyte. The reported results are estimated.

Field duplicate %RPD was high (greater than 50% for soils or greater than 30% for waters) for this compound: estimate positive results for this compound in the sample and duplicate. For results less than 5XQL, field duplicate precision is evaluated with control limit of 100%RPD.

Holding times have been exceeded or samples were improperly preserved; estimate positive results and non-detects or reject results if holding times were grossly exceeded.

One or more of the Internal standard (IS) areas were not within the required control limits: estimate positive results and/or non-detects for all compounds quantitated from that IS dependent on the area, or if one or more IS areas were grossly low: estimate positive results and reject non-detects for all compounds quantitated from that IS.

The blank spike and/or blank spike duplicate % recoveries were not within the control limits of 60 - 140% for organics or 80 - 120% for inorganics for this analyte: estimate positive and/or non-detected results in the unspiked sample dependent on the recovery. The BS and/or BSD % recoveries were less than 10% (for organics) or less than 30% (for inorganics) for this analyte: estimate positive results and reject non-detects.

The matrix spike (MS) and/or matrix spike duplicate (MSD) % recoveries were not within the control limits for this compound: estimate positive and/or non-detected results in the unspiked sample dependent on the recovery. The MS and/or MSD % recoveries were less than 10% (for organics) or less than 30% (for inorganics) for this analyte: estimate positive results in the unspiked sample and reject non-detects.

The results of the ICP Serial Dilution analysis were outside of criteria. Positive sample results are

J/UJa

J/UJb

J/UJc

J/UJd

J/UJf

J/UJ/Rh

J/UJ/R_I

J/UJ/R_L

J/UJ/Rm

Jр

estimated.

 J_Q

For inorganics, the result is estimated as the level is less than 2X the instrument detection limit and for organics, the result is estimated as the level is less than the lowest calibration standard; uncertainty is present at the low end of calibration. Pesticide compounds which have concentration values differing by greater than 25% in its two analyses. Estimate positive results for the compounds.

J/UJ/Rs

One or more of the surrogate standard % recoveries was found outside of established control limits: estimate positive and/or non-detected results dependent on recovery. For surrogate recoveries less than 10%, estimate positive results and reject non-detects. For semi-volatile samples 2 or more surrogates were outside of control limits within one fraction.

J/JN_T

The TIC result is estimated as a compound specific response factor is not used for the quantitation.

Project:

Stratton ANG Base

Laboratory:

Severn Trent Laboratories, Newburgh, NY

Report No.:

212860

Reviewer:

Lorie MacKinnon

Date:

November 12, 2002

Samples Reviewed

Metals:

14/Sediment/

SB-27-61302 6-7.5 FT, SB-27D-61302 6-7.5 FT, SB-28-61302 7-8 FT, SB-23-61302 6-7 FT, SB-24-61302 4.5-5.5 FT, SB-23D-61302 6-7 FT, SB-21-61402 7-8 FT, SB-22-61402 5-6 FT, SB-25-61402 5-6 FT, SB-26-61402 5-6 FT, SB-18-61402 2-4 FT, SB-17-61402 5-6 FT, SB-19-61402

7-8 FT. SB-20-61402 4.5-5.5 FT.

(Soil field duplicate pairs: SB-27-61302 6-7.5 FT/SB-27D-61302 6-7.5 FT and

SB-23-61302 6-7 FT/SB-23D-61302 6-7 FT)

2/Equipment Blank/ RB-SB-61302, RB-SB-61402

The above listed samples were analyzed for TAL metals by SW-846 method 6010B/7000 series. The data validation was performed based on the National Functional Guidelines for Evaluating Inorganic Analyses, EPA 540/R-94/012, dated February 1994.

The inorganic data were evaluated based on the following parameters:

Holding Times and Sample Preservation

Instrument Calibration

Contract Required Detection Limit (CRDL) Standard Analysis

Blank Analysis Results

Inductively Coupled Plasma (ICP) Interference Check Sample Results

Matrix Spike (MS) Results

Laboratory Duplicate Results

Field Duplicate Results

- Laboratory Control Sample (LCS) Results
- ICP Serial Dilution Results

Furnace AA results

Detection Limit Results

- Sample Quantitation
- All criteria were met for this parameter.

All results were found to be usable. The validation recommendations were based on the following information.

Holding Times and Sample Preservation

The mercury analysis for sample SB-27D-61302 6-7.5 FT took place one day outside of the required holding time. The mercury result for sample SB-27D-61302 6-7.5 FT was qualified as estimated (Jh). The result may be biased low.

Instrument Calibration

The following table lists the analytes which exhibited recoveries outside of the control limits in the continuing calibration.

Analyte	Standard	Recovery (%)	Associated Samples	Actions
Arsenic	7/30/02 CCV5	89.9	No associated samples	Validation actions were not required, samples were not bracketed by this standard.
Selenium	07/24/02 CCV1	110.4	SB-27-61302 6- 7.5 FT	Estimate (Jc) the positive result for selenium in sample SB-27; possible high bias.

CCV - continuing calibration verification

CRDL Standard Analysis

All criteria were met.

Blank Results

The following table summarizes the blank contaminants detected in the laboratory blanks associated with the soil samples, associated action levels, and validation actions applied.

Analyte	Action Level (mg/kg)	Validation Actions
Barium	1.8	Validation actions were not required
Calcium	152.5	Qualify positive result for calcium in sample SB-24 as nondetect (Um).
Chromium	1.0	Validation actions were not required.
Iron	14.0	Validation actions were not required.
Manganese	2.0	Validation actions were not required.
Potassium	240.7	Validation actions were not required.
Silver	-3.3	Estimate (UJe) the nondetect results for silver for all soils samples; possible low bias.

Sodium	339	Qualify positive results for sodium in samples SB-27, SB-27D, SB-28, SB-23, SB-24, SB-21, SB-22, SB-25, SB-26, SB-18, SB-17, SB-19, and SB-20 as nondetect (Um).
Thallium	5.5	Qualify positive result for thallium in sample SB-24 as nondetect (Um).

Qualification of the data was performed as follows:

For positive contamination,

If the positive sample value was > the instrument detection limit (IDL) and < the Action Level, qualify the result as a nondetect (Um) at the reported concentration.

If the positive sample value was > the IDL and > the Action Level, report the value unqualified.

For negative contamination,

For positive results < the Action Level and nondetect results, qualify the result as a estimated (J/UJe) at the reported concentration. The result may be biased low.

If the positive sample value was > the Action Level, report the value unqualified.

The following table summarizes the blank contaminants detected in the field blank sample RB-SB-61302 (associated with 6/13/02 samples), the associated action levels, and validation actions applied.

Analyte	Leval Detected/ Equivalent Soil level	Action Level (mg/kg)	Validation Actions
Calcium	242 ug/L/48.4 mg/kg	242	Validation actions were not required.
Chromium	5.3 ug/L/1.06 mg/kg	5.3	Validation actions were not required.
Iron	80.2 ug/L/16 mg/kg	80.2	Validation actions were not required.
Magnesium	19.4 u _. J/L/3.88 mg/kg	19.4	Validation actions were not required.
Manganese	6.0 ug/L/1.2 mg/kg	6.0	Validation actions were not required.
Potassium	255 ug/L/51 mg/kg	255	Validation actions were not required.
Sodium	Sodium 2440 ug/L/488 mg/kg		Qualify positive result for sodium in sample SB-23D as nondetect (Uf).
Thallium	5.5 ug/L/1.1 mg/kg	5.5	Validation actions were not required.

The following table summarizes the blank contaminants detected in the field blank sample RB-SB-61402 (associated with 6/14/02 samples), the associated action levels, and validation actions applied.

Analyte	Level Detected/ Equivalent Soil level	Action Level (mg/kg)	Validation Actions
Iron	42.7 ug/L/8.5 mg/kg	42.7	Validation actions were not required.
Magnesium	20.8 ug/L/4.16 mg/kg	20.8	Validation actions were not required.
Manganese	1.9 ug/L/0.38 mg/kg	1.9	Validation actions were not required.
Potassium	255 ug/L/51 mg/kg	255	Validation actions were not required.

Interference Check Sample Results

All analyte recoveries were within control limits in the ICSAB sample.

Positive results were observed for barium, cadmium, chromium, potassium, sodium, and thallium and negative results were observed for arsenic, manganese, and silver in the ICSA solution analysis associated with the soil samples. The levels of interferents in the associated samples were reviewed. Iron was present in samples SB-27 (70%), SB-27D (75%), SB-28 (81%), SB-23 (57%), SB-24 (83%), SB-21 (53%), SB-22 (59%), SB-25 (84%), SB-26 (73%), SB-18 (77%), SB-17 (73%), SB-19 (86%), and SB-20 (84%) at greater than 50% that of the level in the ICSA solution. The following table lists the calculated possible interferences and the resulting validation actions. Professional judgement was used to accept results in which the estimated interference was less than 10% of the analyte level detected or in which the estimated negative interference for a nondetect result was less than one-half the QL.

Sample	Analyte	Sample Wet Weight Result (mg/kg)	Estimated Interference (mg/kg)	Actions
SB-27- 61302 6- 7.5 FT	Arsenic Barium Cadmium Chromium Manganese Potassium Silver Sodium Thallium	9.96 59.8 0.45 16.8 573.9 1815 0.31 U 75.6 Um	-1.26 0.28 1.12 0.56 -1.4 48.9 -1.7 43.5	Estimate (Jb) the positive result for arsenic; possible low bias. No validation action required; interference <10% sample level. Estimate (Jb) the positive result for cadmium; possible high bias. No validation action required; interference <10% sample level. No validation action required; interference <10% sample level. No validation action required; interference <10% sample level. Estimate (UJb) the nondetect result for silver; possible low bias. Estimate (UJb) the blank-qualified result for sodium; possible high bias. No validation action required; nondetect result not affected by potential high bias.

Sample	Analyte	Sample Wet Weight Result (mg/kg)	Estimated Interference (mg/kg)	Actions
SB-27D- 61302 6- 7.5 FT	Arsenic Barium Cadmium Chromium Manganese Potassium Silver Sodium Thallium	10.2 64.0 0.50 18.4 721 1922 0.31 U 76.8 Um	-1.35 0.30 1.2 0.60 -1.5 52.3 -1.8 46.7	Estimate (Jb) the positive result for arsenic; possible low bias. No validation action required; interference <10% sample level. Estimate (Jb) the positive result for cadmium; possible high bias. No validation action required; interference <10% sample level. No validation action required; interference <10% sample level. No validation action required; interference <10% sample level. Estimate (UJb) the nondetect result for silver; possible low bias. Estimate (UJb) the blank-qualified result for sodium; possible high bias. No validation action required; nondetect result not affected by
SB-28- 61302 7/8 FT	Arsenic Barium Cadmium Chromium Manganese Potassium Silver Sodium Thallium	13.4 69.14 0.60 20.0 562.2 1981.7 0.31 U 95 Um 0.72 U	-1.46 0.32 1.30 0.65 -1.62 56.5 -1.94 50.4	Estimate (Jb) the positive result for arsenic; possible low bias. No validation action required; interference <10% sample level. Estimate (Jb) the positive result for cadmium; possible high bias. No validation action required; interference <10% sample level. No validation action required; interference <10% sample level. No validation action required; interference <10% sample level. Estimate (UJb) the nondetect result for silver; possible low bias. Estimate (UJb) the blank-qualified result for sodium; possible high bias. No validation action required; nondetect result not affected by potential high bias.
SB-23- 61302 6- 7 FT	Arsenic Barium Cadmium Chromium Mariganese Potassium Silver Sodium Thallium	6.85 74.5 0.43 16.1 423.3 1603 0.31 U 90.2 Um 0.73 U	-1.0 0.23 0.91 0.46 -1.14 39.8 -1.4 35.5	Estimate (Jb) the positive result for arsenic; possible low bias. No validation action required; interference <10% sample level. Estimate (Jb) the positive result for cadmium; possible high bias. No validation action required; interference <10% sample level. No validation action required; interference <10% sample level. No validation action required; interference <10% sample level. Estimate (UJb) the nondetect result for silver; possible low bias. Estimate (UJb) the blank-qualified result for sodium; possible high bias. No validation action required; nondetect result not affected by potential high bias.
SB-24- 61302 4.5-5.5 FT	Arsenic Barium Cadmium Chromium Manganese Potassium Silver Sedium Thallium	12.9 81.3 0.67 20.3 887.9 2009 0.31 U 91.4 Um 2.67 Um	-1.49 0.33 1.33 0.66 -1.66 57.9 -2.0 51.6	Estimate (Jb) the positive result for arsenic; possible low bias. No validation action required; interference <10% sample level. Estimate (Jb) the positive result for cadmium; possible high bias. No validation action required; interference <10% sample level. No validation action required; interference <10% sample level. No validation action required; interference <10% sample level. Estimate (UJb) the nondetect result for silver; possible low bias. Estimate (UJb) the blank-qualified result for sodium; possible high bias. Estimate (UJb) the blank-qualified result for thallium; possible high bias.

Sample	Analyte	Sample Wet Weight Result (mg/kg)	Estimated Interference (mg/kg)	Actions Actions
SB-21- 61402 7- 8 FT	Arsenic Barium Cadmium Chromium Manganese Potassium Silver Sodium	5.34 53.3 0.29 16.5 636.8 1670.6 0.31 U 84.7 Um	-0.95 0.21 0.84 0.42 -1.06 36.85 -1.27 32.8	Estimate (Jb) the positive result for arsenic; possible low bias. No validation action required; interference <10% sample level. Estimate (Jb) the positive result for cadmium; possible high bias. No validation action required; interference <10% sample level. No validation action required; interference <10% sample level. No validation action required; interference <10% sample level. Estimate (UJb) the nondetect result for silver; possible low bias. Estimate (UJb) the blank-qualified result for sodium; possible high bias.
	Thallium	0.73 U	1.69	No validation action required; nondetect result not affected by potential high bias.
SB-22- 61402 5- 6 FT	Arsenic Barium Cadmium Chromium Manganese Potassium Silver Sodium Thallium	6.6 84.5 0.47 16.6 424.8 1798 0.31 U 102.6Um	-1.06 0.24 0.94 0.47 -1.18 41.2 -1.42 36.7	Estimate (Jb) the positive result for arsenic; possible low bias. No validation action required; interference <10% sample level. Estimate (Jb) the positive result for cadmium; possible high bias. No validation action required; interference <10% sample level. No validation action required; interference <10% sample level. No validation action required; interference <10% sample level. Estimate (UJb) the nondetect result for silver; possible low bias. Estimate (UJb) the blank-qualified result for sodium; possible high bias. No validation action required; nondetect result not affected by potential high bias.
SB-25- 61402 5- 6 FT	Arsenic Barium Cadmium Chromium Manganese Potassium Silver Sodium Thallium	12.9 81.9 0.73 20.7 943 1931 0.31 U 86.8 Um	-1.5 0.34 1.34 0.67 -1.68 58.6 -2.0 52.2 2.69	Estimate (Jb) the positive result for arsenic; possible low bias. No validation action required; interference <10% sample level. Estimate (Jb) the positive result for cadmium; possible high bias. No validation action required; interference <10% sample level. No validation action required; interference <10% sample level. No validation action required; interference <10% sample level. Estimate (UJb) the nondetect result for silver; possible low bias. Estimate (UJb) the blank-qualified result for sodium; possible high bias. No validation action required; nondetect result not affected by potential high bias.
SB-26- 61402 5- 6 FT	Arsenic Barium Cadmium Chromium Manganese Potassium Silver Sodium Thallium	11.5 60.3 0.45 18.4 321.8 1816 0.31 U 83.3 Um	-1.31 0.29 1.17 0.58 -1.46 51.0 -1.75 45.4	Estimate (Jb) the positive result for arsenic; possible low bias. No validation action required; interference <10% sample level. Estimate (Jb) the positive result for cadmium; possible high bias. No validation action required; interference <10% sample level. No validation action required; interference <10% sample level. No validation action required; interference <10% sample level. Estimate (UJb) the nondetect result for silver; possible low bias. Estimate (UJb) the blank-qualified result for sodium; possible high bias. No validation action required; nondetect result not affected by potential high bias.

.

Sample	Analyte	Sample Wet Weight Resulf (mg/kg)	Estimated Interference (mg/kg)	Actions
SB-18- 61402 2- 4 FT	Arsenic Barium Cadmium Chromium Manganese Potassium Silver Sodium Thallium	6.46 217.4 0.52 24.8 163 2014 0.31 U 167 Um	-1.39 0.31 1.23 0.62 -1.54 53.7 -1.85 47.9	Estimate (Jb) the positive result for arsenic; possible low bias. No validation action required; interference <10% sample level. Estimate (Jb) the positive result for cadmium; possible high bias. No validation action required; interference <10% sample level. No validation action required; interference <10% sample level. No validation action required; interference <10% sample level. Estimate (UJb) the nondetect result for silver; possible low bias. Estimate (UJb) the blank-qualified result for sodium; possible high bias. No validation action required; nondetect result not affected by potential high bias.
SB-17- 61402 5- 6 FT	Arsenic Barium Cadmium Chromium Manganese Potassium Silver Sodium Thallium	7.42 115.6 0.52 20.8 520 1890 0.31 U 151 Um	-1.31 0.29 1.17 0.58 -1.46 51.0 -1.75 45.4	Estimate (Jb) the positive result for arsenic; possible low bias. No validation action required; interference <10% sample level. Estimate (Jb) the positive result for cadmium; possible high bias. No validation action required; interference <10% sample level. No validation action required; interference <10% sample level. No validation action required; interference <10% sample level. Estimate (UJb) the nondetect result for silver; possible low bias. Estimate (UJb) the blank-qualified result for sodium; possible high bias. No validation action required; nondetect result not affected by potential high bias.
SB-19- 61402 7- 8 FT	Arsenic Barium Cadmium Chromium Manganese Potassium Silver Sodium Thallium	12.2 65.7 0.62 22.0 693.7 1816 0.31 U 82.7 Um	-1.55 0.34 1.4 0.69 -1.72 60.0 -2.06 53.5	Estimate (Jb) the positive result for arsenic; possible low bias. No validation action required; interference <10% sample level. Estimate (Jb) the positive result for cadmium; possible high bias. No validation action required; interference <10% sample level. No validation action required; interference <10% sample level. No validation action required; interference <10% sample level. Estimate (UJb) the nondetect result for silver; possible low bias. Estimate (UJb) the blank-qualified result for sodium; possible high bias. No validation action required; nondetect result not affected by potential high bias.
SB-20- 61402 4.5 -5.5 FT	Arsenic Barium Cadmium Chromium Manganese Potassium Silver Sodium Thallium	11.43 66.3 0.57 21.2 792.1 2161 0.31 U 129 Um 0.72 U	-1.5 0.34 1.34 0.67 -1.68 58.6 -2.0 52.2 2.7	Estimate (Jb) the positive result for arsenic; possible low bias. No validation action required; interference <10% sample level. Estimate (Jb) the positive result for cadmium; possible high bias. No validation action required; interference <10% sample level. No validation action required; interference <10% sample level. No validation action required; interference <10% sample level. Estimate (UJb) the nondetect result for silver; possible low bias. Estimate (UJb) the blank-qualified result for sodium; possible high bias. No validation action required; nondetect result not affected by potential high bias.

Matrix Spike Results

A matrix spike was performed on sample SB-24-61302 4.5-5.5 FT for the metals analysis. The following table lists the analyte recoveries found outside of recovery control limits of 75-125% and the resultant actions.

Analyte	Recovery (%)	Actions,
Mercury	171.6	Estimate (Jm) the positive results for mercury in samples SB28-61302 7-8 FT and SB25-61402 5-6 FT; possible high bias.
Antimony	53.1	Estimate (J/UJm) the positive and/or nondetect results for antimony in all soil samples; possible low bias.
Silver	57.6	Estimate (J/UJm) the positive and/or nondetect results for silver in all soil samples; possible low bias.

The recovery for manganese was outside of the control limits of 75 - 125% in the MS performed on sample SB-24; however, since the sample level was greater than four times the spiking level, no validation action was required.

A matrix spike was also performed on sample SB27D-61302 for the mercury analysis. The recovery for mercury (153.6%) exceeded the control limits in this analysis. No further validation action was required.

Laboratory Duplicate Results

A laboratory duplicate analysis was performed on sample SB-24-61302 4.5-5.5 FT for the metals analysis. All criteria were met.

LCS Results

All criteria were met.

ICP Serial Dilution Results

An ICP serial dilution analysis was performed on sample SB-24-61302 4.5-5.5 FT. All criteria were met.

Field Duplicate Results

Samples SB-27-61302 6-7.5 FT and SB-27D-61302 6-7.5 FT were identified as field duplicate samples. All criteria were met.

Samples SB-23-61302 6-7 FT and SB-23D-61302 6-7 FT were identified as the field duplicate pair. The following table lists the %RPDs found outside of the control limit of 50% or 100% for sample

levels <5xQL (quantitation limit). The direction of the bias cannot be determined by this nonconformance.

Analyte	SB-23-61302 6-7 FT (mg/kg)	SB-23D-61302 6-7 FT (mg/kg)	RPD (%)	Actions.
Calcium	2130	659	105.5	Estimate (Jf) the positive results for calcium in samples SB-23-61302 6-7 FT
				and SB-23D-61302 6-7 FT.

Furnace AA Results

The following table lists the analyte recoveries found outside of the control limits of 85-115% for the furnace analytical spikes and the resultant actions.

Sample	Analyte	Recovery (%)	Actions
SB-28-61302 7-8 FT	Selenium	120	Validation action was not required. The selenium result for sample SB-28 was nondetect and therefore not affected by the potential high bias.
SB-22-61402 5-6 FT	Selenium	80	Estimate (Ja) the positive result for selenium in sample SB-22; potential low bias.

Detection Limit Results

Although not a requirement of the National Functional Validation Guidelines, positive results which were ≤2x the IDL were qualified as estimated (J5) due to uncertainty at the low end of calibration. The following results were affected by this qualification: selenium in samples SB-22, SB-27, SB-27D, and SB-23, mercury in sample SB-28, thallium in sample RB-SB-61302, magnesium in samples RB-SB-61302 and RB-SB-61402, and manganese in sample RB-SB-61402.

NATIONAL FUNCTIONAL VALIDATION GUIDELINES FOOTNOTES

Compound was present in the associated field blank. Organic results greater than the reported detection limit but lower than the action level: report the sample concentration followed by "U". For inorganics, the analyte was present in the associated blank. The sample result was less than the action level of 5X the maximum concentration found in any blank and has been qualified as nondetected.

Compound was present in the associated laboratory blank. For organic results greater than the reported detection limit but lower than the action level: report the sample concentration followed by "U". For inorganics, the analyte was present in the associated blank. The sample result was less than the action level of 5X the maximum concentration found in any blank and has been qualified as nondetected.

The result of the furnace analytical spike was outside of criteria. Positive and/or nondetect sample results are estimated dependant on the recovery.

The ICS recovery of an element is outside of criteria or positive or nondetect interference was detected in the ICSA analysis. The reported result or detection limit is estimated or rejected based on the recovery or estimated interference.

The initial %RSD was greater than 30% for semivolatile and volatiles or greater than 20% for pesticide/PCB or the continuing calibration %D was greater than 25%; estimate positive results and non-detects. For inorganics, the initial or continuing calibration verification standard was outside of control limits of 90 - 110% for metals, 80 - 120% for Mercury or 85 - 115% for Cyanide. The positive or non-detected results are estimated dependent on the recovery.

The RPD for laboratory duplicate sample analysis results exceeded 20% (35% for soils) for this analyte. The reported results are estimated.

Field duplicate %RPD was high (greater than 50% for soils or greater than 30% for waters) for this compound: estimate positive results for this compound in the sample and duplicate. For results less than 5XQL, field duplicate precision is evaluated with control limit of 100%RPD.

Holding times have been exceeded or samples were improperly preserved; estimate positive results and non-detects or reject results if holding times were grossly exceeded.

One or more of the Internal standard (IS) areas were not within the required control limits: estimate positive results and/or non-detects for all compounds quantitated from that IS dependent on the area, or if one or more IS areas were grossly low: estimate positive results and reject non-detects for all compounds quantitated from that IS.

The blank spike and/or blank spike duplicate % recoveries were not within the control limits of 60 - 140% for organics or 80 - 120% for inorganics for this analyte: estimate positive and/or non-detected results in the unspiked sample dependent on the recovery. The BS and/or BSD % recoveries were less than 10% (for organics) or less than 30% (for inorganics) for this analyte: estimate positive results and reject non-detects.

The matrix spike (MS) and/or matrix spike duplicate (MSD) % recoveries were not within the control limits for this compound: estimate positive and/or non-detected results in the unspiked sample dependent on the recovery. The MS and/or MSD % recoveries were less than 10% (for organics) or less than 30% (for inorganics) for this analyte: estimate positive results in the unspiked sample and reject non-detects.

The results of the ICP Serial Dilution analysis were outside of criteria. Positive sample results are

J/UJa

Um

J/UJb

J/UJc

J/UJd

J/UJf

J/UJ/Rh

J/UJ/R_i

J/UJ/R_L

J/UJ/Rm

Jp

estimated.

 $\boldsymbol{J}_{\boldsymbol{Q}}$

For inorganics, the result is estimated as the level is less than 2X the instrument detection limit and for organics, the result is estimated as the level is less than the lowest calibration standard; uncertainty is present at the low end of calibration. Pesticide compounds which have concentration values differing by greater than 25% in its two analyses. Estimate positive results for the compounds.

J/UJ/Rs

One or more of the surrogate standard % recoveries was found outside of established control limits: estimate positive and/or non-detected results dependent on recovery. For surrogate recoveries less than 10%, estimate positive results and reject non-detects. For semi-volatile samples 2 or more surrogates were outside of control limits within one fraction.

 J/JN_T

The TIC result is estimated as a compound specific response factor is not used for the quantitation.

GROUNDWATER SAMPLING ANALYTICAL RESULTS JUNE, 2002

COMPOUND

VOLATILE ORGANICS ANALYSIS DATA SHEET

	SAMPL	
-		F 100 1
L		

6MW-0362602

Q

Lab Name:	STL Nev	wburgh		Contract:	01012.01		
Lab Code:	10142	Case	e No.:	SAS No	o.: 8	SDG No.: 213350	
Matrix: (soil/w	/ater)	WATER		Lai	b Sample ID:	213350-016	
Sample wt/vo	d:	5.0	(g/ml) ML	Lal	b File ID:	V3368.D	
Level: (low/m	ned)	LOW		Da	te Received:	06/28/02	
% Moisture: n	ot dec.			Da	te Analyzed:	07/07/02	
GC Column:	DB-624	ID: <u>0.5</u> 3	3_ (mm)	Dil	ution Factor:	1.0	*.
Soil Extract V	olume:		(uL)	So	il Aliquot Volu	ume:	(uL

CONCENTRATION UNITS:

UG/L

(ug/L or ug/Kg)

Ono No.	(ug/L of ug/Ng)		G.
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	Ū
74-83-9	Bromomethane	1.0	Ü
75-01-4	Vinyl Chloride	2.1	Jo
75-00-3	Chloroethane	1.0	Ü
75-69-4	Trichlorofluoromethane	1.0	Ü
75-09-2	Methylene Chloride	1.0	Ü
75-35-4	1,1-Dichloroethene	1.0	Ū
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	41	
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	Ų .
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	Ü
79-01-6	Trichloroethene	1.3	JO
71-43-2	Benzene	1.0	Ū
142-28-9	1,3-Dichloropropane	1.0	U
124-48-1	Dibromochloromethane	1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U.
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	1.0	U
127-18-4	Tetrachloroethene	1.0	C
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
100-42-5	Styrene	1.0	U
108-38-3	m,p-Xylene	1.0	U
95-47-6	o-Xylene	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	U

000181

CAS NO.

STL Newburgh is a part of Severn Trent Laboratories, Inc. FORM I VOA

PA 68-378

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

			-				CRANAL	Aneneno.	, I
_ab Name:	STL Ne	wburgh		Contract:	010	012.01	_ loww-	0362602	<u>′</u>
Lab Code:	10142	Cas	e No.:	SAS No	o.: _	s	SDG No.:	213350	
Matrix: (soil/\	water)	WATER		La	b Sa	mple ID:	213350-	-016	
Sample wt/ve	oi:	5.0	(g/ml) ML	La	b Fil	e ID:	V3368.)	
Level: (low/r	ned)	LOW		Da	te R	eceived:	06/28/0	2	
% Moisture:	not dec.			Da	ite A	nalyzed:	07/07/0	2	
GC Column:	DB-624	ID: <u>0.5</u>	3 (mm)	Dil	utior	n Factor:	1.0		
Soil Extract \	/olume:		_ (uL)	So	il Ali	quot Volu	ıme:		(uL
				CONCENTRAT	TION	I UNITS:			
CAS NO	O.	COMPO	UND	(ug/L or ug/Kg)	•	UG/L	<u> </u>	Q	
98-82-	-8	Isopro	pylbenzene				1.0	U	
108-86	6-1		benzene				1.0	U	

98-82-8	Isopropylbenzene	1.0	U
108-86-1	Bromobenzene	1.0	U
103-65-1	n-Propylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
98-06-6	tert-Butylbenzene	1.0	Ú
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	IJ
541-73-1	1,3-Dichlorobenzene	1.0	U
99-87-6	4-Isopropyitoluene	1.0	J
106-46-7	1,4-Dichlorobenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	J
104-51-8	n-Butylbenzene	1.0	υ
96-12-8	1,2-Dibromo-3-chloropropane	1.0	Ü
87-68-3	Hexachlorobutadiene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
91-20-3	Naphthalene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U

000182

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-0362602

Lab Name:	STL Ne	wburgh	Contract: 01012.01		
Lab Code:	10142	Case No.:	SAS No.:	SDG No.: 213	350
Matrix: (soil/	water)	WATER	Lab Sample I	D: 213350-016	
Sample wt/vo	ol:	5.0 (g/mi) ML	Lab File ID:	<u>V3368.D</u>	
Level: (low/r	ned)	LOW	Date Receive	ed: 06/28/02	
% Moisture:	not dec.	•	Date Analyze	ed: 07/07/02	
GC Column:	DB-624	ID: <u>0.53</u> (mm)	Dilution Facto	or: <u>1.0</u>	·
Soil Extract \	/olume:	(uL)	Soil Aliquot V	olume:	(uL)
			CONCENTRATION UNIT		
Number TICs	s found:	0	(ug/L or ug/Kg) UG/L	·	
CAS NO.		COMPOUND NAME	RT	EST. CONC.	Q

EPA NY049

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-08626	602
-----------	-----

Lab Name:	STL Nev	wburgh			Contract:	01012.01		2002
Lab Code:	10142	Ca:	se No.:		_ SAS No).;	SDG No.: 213	350
Matrix: (soil/w	vater)	WATER	-		La	b Sample ID	: 213350-017	
Sample wt/vo	d:	5.0	(g/ml)	ML	La	b File ID:	V3355.D	
Level: (low/m	ned)	LOW	_		Da	te Received	: 06/28/02	
% Moisture: r	not dec.		<u></u>		Da	te Analyzed:	: 07/05/02	· · · · · ·
GC Column:	DB-624	ID: 0.5	<u>53</u> (m	m)	Dil	ution Factor:	: 1.0	
Soil Extract V	olume:		(uL)		So	il Aliquot Vol	lume:	(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	Ų
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	υ
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	1.0	U
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	1.0	U
71-43-2	Benzene	1.0	υ
142-28-9	1,3-Dichloropropane	1.0	U
124-48-1	Dibromochloromethane	1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	1.0	U
127-18-4	Tetrachloroethene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	Ų
100-41-4	Ethylbenzene	1.0	U
100-42-5	Styrene	1.0	υ
108-38-3	m,p-Xylene	1.0	U
95-47-6	o-Xylene	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	U

STL Newburgh is a part of Severn Trent Laboratories, Inc. FORM I VOA

3/90

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

00190

VOLATILE ORGANICS ANALYSIS DATA SHEET

			NO

Lab Name:	STL Nev	wburgh		Contract:	01012.01	_	<u>'</u>
Lab Code:	10142	Cas	e No.:	SAS No	o.: S	DG No.: 213350)
Matrix: (soil/w	ater)	WATER		Lal	o Sample ID:	213350-017	
Sample wt/vol	l:	5.0	(g/ml) ML	Lal	File ID:	V3355.D	
Level: (low/m	ied)	LOW	•	Da	te Received:	06/28/02	
% Moisture: n	ot dec.			Da	te Analyzed:	07/05/02	
GC Column: J	DB-624	ID: <u>0.5</u>	3 (mm)	Dil	ution Factor:	1.0	
Soil Extract Vo	olume:		(uL)	So	il Aliquot Volu	ıme:	(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	<u>UG/L</u>	Q
98-82-8	Isopropylbenzene	1.0	U
108-86-1	Bromobenzene	1.0	U
103-65-1	n-Propylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U .
99-87-6	4-Isopropyltoluene	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	Ü
104-51-8	n-Butylbenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
91-20-3	Naphthalene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U

000191

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-0862602 Lab Name: STL Newburgh Contract: 01012.01 SAS No.: SDG No.: 213350 Lab Code: 10142 Case No.: Lab Sample ID: 213350-017 Matrix: (soil/water) WATER 5.0 Lab File ID: V3355.D Sample wt/vol: (g/ml) ML Date Received: 06/28/02 Level: (low/med) LOW Date Analyzed: 07/05/02 % Moisture: not dec. ID: 0.53 Dilution Factor: 1.0 GC Column: DB-624 Soil Aliquot Volume: (uL) Soil Extract Volume: CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Number TICs found: Q CAS NO. **COMPOUND NAME RT** EST. CONC.

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-0962602

Lab Name:	STL Nev	vburgh	Contract: <u>01012.01</u>		_
Lab Code:	10142	Case No.:	SAS No.: S	DG No.: 213350	-
Matrix: (soil/w	ater)	WATER	Lab Sample ID:	213350-018	-
Sample wt/vo	l:	5.0 (g/ml) ML	Lab File ID:	V3356.D	
Level: (low/m	ied)	LOW	Date Received:	06/28/02	
% Moisture: n	ot dec.		Date Analyzed:	07/05/02	
GC Column:	DB-624	ID: <u>0.53</u> (mm)	Dilution Factor:	1.0	
Soil Extract V	olume:	(uL)	Soil Aliquot Volu	ıme: (u	L

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	υ
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	Ų
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	16	
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	Ü
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	2.4	Ja
71-43-2	Benzene	1.0	Ũ
142-28-9	1,3-Dichloropropane	1.0	Ų
124-48-1	Dibromochloromethane	1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	1.0	U
127-18-4	Tetrachloroethene	24	
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
100-42-5	Styrene	1.0	U
108-38-3	m,p-Xylene	1.0	U_
95-47-6	o-Xylene	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	U

000197

STL Newburgh is a part of Severn Trent Laboratories, Inc. FORM I VOA

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

_ab Name:	STL Ne	wburgh		Contract:		01012.01	6MW-	0962602	
_ab Code:	10142	Cas	e No.:	SAS N	lo.:	ss	DG No.:	213350	
Matrix: (soil/v	water)	WATER	_	La	ab	Sample ID:	213350-	018	
Sample wt/vo	ol:	5.0	(g/ml) ML	La	ab	File ID:	V3356.E)	
Level: (low/r	ned)	LOW	_	Da	ate	Received:	06/28/02	2	
% Moisture:	not dec.			Da	ate	e Analyzed:	07/05/02	2	
GC Column:	DB-624	ID: <u>0.5</u>	3 (mm)	Di	ilu	tion Factor:	1.0		
Soil Extract \	Volume:	****	(uL)	So	oil	Aliquot Volu	me:		(uL
				CONCENTRA	λTI	ON UNITS:			
CAS NO	O.	COMPO	DUND	(ug/L or ug/Kg	3)	UG/L		Q	

CAS NO.	COMPOUND (ag/L or ag/ng)	JUIL	· ·
98-82-8	Isopropylbenzene	1.0	U
108-86-1	Bromobenzene	1.0	U
103-65-1	n-Propylbenzene	1.0	<u>U</u>
79-34-5	1,1,2,2-Tetrachloroethane	1.0	·U
95-49-8	2-Chlorotoluene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	· U
95-50-1	1,2-Dichlorobenzene	1.0	U
104-51-8	n-Butylbenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
87-68-3	Hexachlorobutadiene	1.0	<u> </u>
120-82-1	1,2,4-Trichlorobenzene	1.0	U
91-20-3	Naphthalene	1.0	· U
87-61-6	1,2,3-Trichlorobenzene	1.0	·U

M-NY049

EPA NY049

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAME	٦Ľ	ł	Ξ	N	0

6MW-0962602 Contract: 01012.01 STL Newburgh Lab Name: SAS No.: SDG No.: 213350 10142 Case No.: Lab Code: WATER Lab Sample ID: 213350-018 Matrix: (soil/water) V3356.D Sample wt/vol: 5.0 (g/ml) ML Lab File ID: Date Received: 06/28/02 Level: (low/med) LOW Date Analyzed: 07/05/02 % Moisture: not dec. Dilution Factor: 1.0 ID: 0.53 GC Column: DB-624 (uL) Soil Aliquot Volume: Soil Extract Volume: **CONCENTRATION UNITS:** (ug/L or ug/Kg) UG/L Number TICs found: RT EST. CONC. Q COMPOUND NAME CAS NO.

Fax (845) 562-0841

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-1062602

Lab Name:	STL Nev	wburgh		 Contract:	01012.01		02002	
Lab Code:	10142	Cas	e No.:	 SAS No	.:	SDG No.: 2	13350	
Matrix: (soil/w	vater)	WATER		Lat	Sample ID	: 213350-01	9	
Sample wt/vo	ol:	5.0	(g/ml) ML	 Lat	File ID:	V3370.D		
Level: (low/m	ned)	LOW		Da	te Received	l: <u>06/28/02</u>		
% Moisture: r	not dec.		· ·	Da	te Analyzed	: 07/08/02		
GC Column:	DB-624	ID: <u>0.5</u>	3 (mm)	Dife	ution Factor	: 1.0		
Soil Extract V	olume:		_ (uL)	Soi	il Aliquot Vo	lume:		(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	· U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	1.0	U
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	Ü
56-23-5	Carbon Tetrachloride	1.0	U
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	Ū
79-01-6	Trichloroethene	1.0	U
71-43-2	Benzene	1.0	U
142-28-9	1,3-Dichloropropane	1.0	· U
124-48-1	Dibromochloromethane	1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	1.0	U
127-18-4	Tetrachloroethene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	Ū
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	Ū
100-41-4	Ethylbenzene	1.0	Ū
100-42-5	Styrene	1.0	UJm
108-38-3	m,p-Xylene	1.0	U
95-47-6	o-Xylene	1.0	Ü
96-18-4	1,2,3-Trichloropropane	1.0	Ü
	STI Newbyrd is a part of Cause Treat		

STL Newburgh is a part of Severn Trent Laboratories, Inc. FORM I VOA

3/90

3(5 Fille to), Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name:	STL Nev	wburgh			Contract:	01012.01	61/17/-1062602	
Lab Code:	10142	Ca	se No.:		_ SAS No	.: s	SDG No.: 213350	
Matrix: (soil/w	ater)	WATER			Lal	Sample ID:	213350-019	
Sample wt/vol	l :	5.0	(g/ml) <u>ML</u>	_	Lal	File ID:	V3370.D	
Level: (low/m	ed)	LOW	<u>.</u>		Da	te Received:	06/28/02	
% Moisture: n	ot dec				Da	te Analyzed:	07/08/02	
GC Column: I	DB-624	ID: <u>0</u> .	53 (mm)	7.4	Dil	ution Factor:	1.0	
Soil Extract Vo	olume:		(uL)		So	il Aliquot Volu	ume:	(uL
				001		TONE LINETO		

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
98-82-8	Isopropylbenzene	1.0	U
108-86-1	Bromobenzene	1.0	U
103-65-1	n-Propylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachioroethane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	UJm
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U
104-51-8	n-Butylbenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	υ
91-20-3	Naphthalene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U

EPA NY049

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1062602

Lab Name:	STL Ne	wburgh	Contract:	01012.0)1		
Lab Code:	10142	Case No.:	SAS N	o.:	_ SDG No.:	21335	0
Matrix: (soil/v	water)	WATER	La	ab Sample	ID: <u>213350-</u>	019	
Sample wt/vo	ol:	5.0 (g/ml) ML	_ L:	ab File ID:	V3370.D	l	
Level: (low/r	ned)	LOW .	Þ	ate Receiv	red: 06/28/02)	
% Moisture:	not dec.	· · · · · · · · · · · · · · · · · · ·	, D	ate Analyz	ed: <u>07/08/02</u>	!	
GC Column:	DB-624	ID: <u>0.53</u> (mm)	Ď	ilution Fac	tor: <u>1.0</u>		_
Soil Extract \	/olume:	(uL)	s	oil Aliquot	Volume:		_ (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Number TICs found: 0							
CAS NO.		COMPOUND NAME		RT	EST. CONC	۵.	Q

PA 68-378

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-116260

Lab Name: STL Nev Lab Code: 10142		ewburgh Case No.:			_ Contract:	01012.01			
					SAS No.:S		DG No.:		
Matrix: (soil/w	/ater)	WATER	_		Lal	Sample ID:	213350	002	
Sample wt/vo	ıl:	5.0	(g/ml)	ML	_ Lal	File ID:	V3333.E)	
Level: (low/m	ned)	LOW			Da	te Received:	06/28/02	2	
% Moisture: r	not dec.				Da	te Analyzed:	07/03/02	2	
GC Column:	DB-624	ID: <u>0.5</u>	<u>53</u> (m	ım)	Dil	ution Factor:	1.0		
Soil Extract V	olume:	<u> </u>	_ (uL)		So	il Aliquot Volu	ıme:		(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	Ū
74-83-9	Bromomethane	1.0	Ü
75-01-4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	Ü
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	1.0	U
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	· U
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	1.0	U.
71-43-2	Benzene	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
124-48-1	Dibromochloromethane	1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	ט
106-93-4	1,2-Dibromoethane	1.0	J
75-25-2	Bromoform	1.0	U
127-18-4	Tetrachloroethene	1.0	J
630-20-6	1,1,1,2-Tetrachloroethane	1.0	J
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
100-42-5	Styrene	1.0	U
108-38-3	m,p-Xylene	1.0	U
95-47-6	o-Xylene	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	U

STL Newburgh is a part of Severn Trent Laboratories, Inc. FORM I VOA

3/90

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-1162602

(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/	L or ug/Kg)	UG/L		Q
98-82-8	Isopropylbenzene			1.0	U
108-86-1	Bromobenzene			1.0	U
103-65-1	n-Propylbenzene			1.0	U
79-34-5	1,1,2,2-Tetrachloroetha	ne		1.0	U
95-49-8	2-Chlorotoluene			1.0	U
106-43-4	4-Chlorotoluene			1.0	U
108-67-8	1,3,5-Trimethylbenzene)		1.0	U
98-06-6	tert-Butylbenzene			1.0	U
95-63-6	1,2,4-Trimethylbenzene		·	1.0	U
135-98-8	sec-Butylbenzene			1.0	U
541-73-1	1,3-Dichlorobenzene			1.0	U
99-87-6	4-isopropyltoluene			1.0	U
106-46-7	1,4-Dichlorobenzene			1.0	Ü
95-50-1	1,2-Dichlorobenzene			1.0	U
104-51-8	n-Butylbenzene		,	1.0	U
96-12-8	1,2-Dibromo-3-chloropr	opane		1.0	U
87-68-3	Hexachlorobutadiene			1.0	U
120-82-1	1,2,4-Trichlorobenzene			1.0	U
91-20-3	Naphthalene			1.0	U
87-61-6	1,2,3-Trichlorobenzene			1.0	U

(00048

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1162602 Lab Name: STL Newburgh Contract: 01012.01 SDG No.: 213350 Lab Code: 10142 Case No.: SAS No.: Matrix: (soil/water) WATER Lab Sample ID: 213350-002 Sample wt/vol: 5.0 (g/ml) ML Lab File ID: V3333.D Level: (low/med) LOW Date Received: 06/28/02 % Moisture: not dec. Date Analyzed: 07/03/02 GC Column: DB-624 ID: 0.53 Dilution Factor: 1.0 Soil Extract Volume: Soil Aliquot Volume: **CONCENTRATION UNITS:** (ug/L or ug/Kg) UG/L Number TICs found: RT CAS NO. COMPOUND NAME EST. CONC. Q

Fax (845) 562-0841

PA 68-378

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-1262602

Lab Name: STL Ne	wburgh	Contract: 01012.01	
Lab Code: 10142	Case No.:	SAS No.: S	DG No.: 213350
Matrix: (soil/water)	WATER	Lab Sample ID:	213350-003
Sample wt/vol:	5.0 (g/ml) ML	_ Lab File ID:	V3335.D
Level: (low/med)	LOW	Date Received:	06/28/02
% Moisture: not dec.		Date Analyzed:	07/03/02
GC Column: DB-624	ID: <u>0.53</u> (mm)	Dilution Factor:	1.0
Soil Extract Volume:	(uL)	Soil Aliquot Voiu	me: (uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoro	methane	1.	0 U
74-87-3	Chloromethane	mod actio	1.	
74-83-9	Bromomethane		1.	
75-01-4	Vinyl Chloride		1.	
75-00-3	Chloroethane		1.	
75-69-4	Trichlorofluorom	ethane	1.	
75-09-2	Methylene Chlor		1.	
75-35-4	1,1-Dichloroethe		1.	
75-34-4	1,1-Dichloroetha		. 1.	
590-20-7	2,2-Dichloroprop		1.	
156-60-5	trans-1,2-Dichlo		1.	
540-59-0	cis-1,2-Dichloro		1.	
67-66-3	Chloroform		1.	
563-58-6	1,1-Dichloroprop	pene	1.	
107-06-2	1,2-Dichloroetha		1.	
74-97-5	Bromochlorome		1.	
71-55-6	1,1,1-Trichloroe		1.	
56-23-5	Carbon Tetrachi		1.	
74-95-3	Dibromomethan		1.	
75-27-4	Bromodichlorom		1.	
78-87-5	1,2-Dichloroprop		1.	
10061-01-5	cis-1,3-Dichloro		1.	
79-01-6	Trichloroethene		1,	
71-43-2	Benzene			.0. U
142-28-9	1,3-Dichloroprop	pane	1.	.0 U
124-48-1	Dibromochlorom		1.	.0 U
10061-02-6	trans-1,3-Dichlo	ropropene	1.	.0 U
79-00-5	1,1,2-Trichloroe	thane	1.	.0 U
106-93-4	1,2-Dibromoetha	ane	1.	0 U
75-25-2	Bromoform		1.	0 U
127-18-4	Tetrachioroethe	ne	2.	4 Jo
630-20-6	1,1,1,2-Tetrachl	oroethane	1.	.o U
108-88-3	Toluene		1.	.0 U
108-90-7	Chlorobenzene	. **	1.	.0 U
100-41-4	Ethylbenzene		1.	.0 U
100-42-5	Styrene			.0 U
108-38-3	m,p-Xylene		1	.0 U
95-47-6	o-Xylene			.0 U
96-18-4	1,2,3-Trichlorop	ropane	1	.0 U

STL Newburgh is a part of Severn Trent Laboratories, Inc

3/90

M-NY049

315 Fullerton Avanue Newburgh, NY 12550 Tei (845) 562-0890 Fax (845) 562-0841

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Contract:	01012.01	.	6MW-	1262602	
SAS No.	: sr)(3 No.:	213350	
Lab	Sample ID:	2	13350-	003	
Lab	File ID:	V	3335.E)	
Dat	e Received:	0	6/28/02	2	
Dat	e Analyzed:	0	7/03/02	2	

% Moisture: not dec.

GC Column: DB-624

Matrix: (soil/water)

Sample wt/vol:

Level: (low/med)

Lab Name:

Lab Code:

ID: 0.53

WATER

5.0

LOW

Case No.:

(mm)

(g/ml) ML

Dilution Factor: 1.0 Soil Aliquot Volume:

(uL)

Soil Extract Volume: (uL)

STL Newburgh

10142

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
98-82-8	Isopropylbenzene	1.0	U
108-86-1	Bromobenzene	1.0	U
103-65-1	n-Propylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
98-06-6	tert-Butylbenzene	1.0	Ū
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	ប
104-51-8	n-Butylbenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
91-20-3	Naphthalene	1.0	Ų
87-61-6	1,2,3-Trichlorobenzene	1.0_	U

Fax (845) 562-0841

CTDOHS PH-0554

PA 68-378

3/90

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1262602

Lab Name:	STL Ne	wburgh			Contrac	ct:	01012.0	1		12020		
Lab Code:	10142	Ca:	se No.:		SAS	No.	• •	s	DG No.:	2133	50	_
Matrix: (soil/v	water)	WATER	_			Lab	Sample	ID:	213350-	003		_
Sample wt/vo	ol:	5.0	(g/ml)	ML		Lab	File ID:		V3335.D)	_	
Level: (low/r	ned)	LOW	_			Dat	e Receiv	ed:	06/28/02	<u> </u>		
% Moisture:	not dec.					Dat	e Analyz	ed:	07/03/02	2		
GC Column:	DB-624	ID: <u>0.</u>	<u>53</u> (m	m)		Dilu	ıtion Fact	or:	1.0			
Soil Extract Volume: (uL)				Soi	l Aliquot \	/olu	me:		(u	ıL)		
					CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L							
CAS NO.		COMPOU	IND NAI	ИE			RT	ES	ST. CONC) .	Q	

EPA NY049

VOLATILE ORGANICS ANALYSIS DATA SHEET

_	_ ^	\sim	MP	_	
-	w	~ //		1	N11 I
_	_		NIVIE		IV.

6MW-1	362602

Lab Name:	STL Nev	wburgh		Contract: <u>01012.01</u>		لــــــا
Lab Code:	10142	Case No.:		SAS No.:	SDG No.: 213350	1
Matrix: (soil/v	vater)	WATER		Lab Sample ID	D: <u>213350-004</u>	
Sample wt/vc	ol:	5.0 (g/ml)	ML	_ Lab File ID:	V3336.D	
Level: (low/n	ned)	LOW		Date Received	1: 06/28/02	
% Moisture: r	not dec.			Date Analyzed	i: <u>07/03/02</u>	
GC Column:	DB-624	ID: <u>0.53</u> (m	nm)	Dilution Factor	: 1.0	
Soil Extract V	/olume:	(uL)		Soil Aliquot Vo	olume:	(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoro	methane	1.0	UJ
74-87-3	Chloromethane		1.0	Ui
74-83-9	Bromomethane		1.0	U
75-01-4	Vinyl Chloride		1.0	U
75-00-3	Chloroethane		1.0	U
75-69-4	Trichlorofluorom	ethane	1.0	U
75-09-2	Methylene Chlor	ide	1.0	U
75-35-4	1,1-Dichloroethe		1.0	U
75-34-4	1,1-Dichloroetha	ne	1.0	U
590-20-7	2,2-Dichloroprop		1.0	U.
156-60-5	trans-1,2-Dichlo		1.0	UJ:
540-59-0	cis-1,2-Dichloro		28	<i>3</i> 's
67-66-3	Chloroform		1.0	UJ.
563-58-6	1,1-Dichloroprop	pene	1.0	. U i
107-06-2	1,2-Dichloroetha		1.0	U
74-97-5	Bromochlorome		1.0	U
71-55-6	1,1,1-Trichloroel		1.0	Ū
56-23-5	Carbon Tetrachi		1.0	U
74-95-3	Dibromomethan		1.0	Ü
75-27-4	Bromodichlorom		1.0	Ū
78-87-5	1,2-Dichloroprop		1.0	U
10061-01-5	cis-1,3-Dichloro		1.0	UT
79-01-6	Trichloroethene		18	$J_{\mathcal{S}}$
71-43-2	Benzene		1.0	UJ.
142-28-9	1,3-Dichloroprop	pane	1.0	Ui
124-48-1	Dibromochlorom		1.0	U
10061-02-6	trans-1,3-Dichlo	ropropene	1.0	U
79-00-5	1,1,2-Trichloroet		1.0	U
106-93-4	1,2-Dibromoetha		1.0	U.
75-25-2	Bromoform		1.0	U√s
127-18-4	Tetrachloroether	ne	3700Jc4100	E
630-20-6	1,1,1,2-Tetrachic		1.0	UJ;
108-88-3	Toluene		1.0	Uì
108-90-7	Chlorobenzene		1.0	Ū
100-41-4	Ethylbenzene		1.0	Ü
100-42-5	Styrene		1.0	U
108-38-3	m,p-Xylene		1.0	T U
95-47-6	o-Xylene		1.0	U J
96-18-4	1,2,3-Trichloropi	ronane	1.0	UJ.

000062

STL Newburgh is a part of Severn Trent Laboratories, Inc. FORM I VOA

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-1362602

Lab Name:	STL Nev	vburgh			Contract:	01012.01			
Lab Code:	10142	Cas	e No.:		SAS No).:	SDG No.:	213350	
Matrix: (soil/w	vater)	WATER			La	b Sample ID	: <u>213350</u> -	-004	
Sample wt/vo	ol:	5.0	(g/ml)	ML	La	b File ID:	V3336.E	2	
Level: (low/m	ned)	LOW			Da	ite Received	: 06/28/02	2	
% Moisture: r	not dec.		<u>.</u>		Da	ite Analyzed	: 07/03/0	2	
GC Column:	DB-624	ID: <u>0.5</u>	<u>3</u> (m	m)	Dil	ution Factor:	1.0		
Soil Extract V	olume:		_ (uL)		So	il Aliquot Vol	lume:		(uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
98-82-8	Isopropylbenzene	1.0	UJs
108-86-1	Bromobenzene	1.0	U
103-65-1	n-Propylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U
104-51-8	n-Butylbenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
91-20-3	Naphthalene	1.0	U↓
87-61-6	1,2,3-Trichlorobenzene	1.0	UJ≤

00006:

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1362602 Lab Name: STL Newburgh Contract: 01012.01 SAS No.: SDG No.: 213350 Lab Code: 10142 Case No.: WATER Lab Sample ID: 213350-004 Matrix: (soil/water) Sample wt/vol: 5.0 (g/ml) ML Lab File ID: V3336.D LOW Date Received: 06/28/02 Level: (low/med) Date Analyzed: 07/03/02 % Moisture: not dec. GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume: Soil Aliquot Volume: (uL) CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Number TICs found: CAS NO. COMPOUND NAME RT EST. CONC. Q

Fax (845) 562-0841

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	CA	NADI		NO
EPA	DΑ	IVIEL	.⊏	IVU

Lab Name: §	STL Nev	vburgh		Contract:	01012.01	010100-1402002	
Lab Code: 1	10142	C	ase No.:	SAS No	o.:	SDG No.: 213350	
Matrix: (soil/wa	ater)	WATER		La	b Sample ID	: 213350-005	
Sample wt/vol:	;	5.0	(g/ml) ML	La	b File ID:	V3337.D	
Level: (low/me	ed)	LOW		Da	te Received	: 06/28/02	
% Moisture: no	ot dec.			Da	te Analyzed	: 07/03/02	
GC Column: E	DB-624	iD: 0	.53 (mm)	Dil	ution Factor	: 1.0	
Soil Extract Vo	lume:		(uL)	So	il Aliquot Vo	lume:	(uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	1.0	U
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	Ų
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
74-95-3	Dibromomethane	1.0	υ
75-27-4	Bromodichloromethane	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	1.0	U
71-43-2	Benzene	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
124-48-1	Dibromochloromethane	1.0	· U
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	1.0	U
127-18-4	Tetrachloroethene	1.4	70
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
100-42-5	Styrene	1.0	U
108-38-3	m,p-Xylene	1.0	U
95-47-6	o-Xylene	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	U

0007

STL Newburgh is a part of Severn Trent Laboratories, Inc. FORM I VOA

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-1462602

Lab Name:	STL Ne	wburgh		Contra	act:	01012.01		
Lab Code:	10142	Ca	se No.:	SAS	S No	o.: \$	SDG No.: 21335	0
Matrix: (soil/w	vater)	WATER	· 		La	b Sample ID:	213350-005	
Sample wt/vo	ol:	5.0	(g/ml) ML		Lal	b File ID:	V3337.D	_
Level: (low/m	ned)	LOW	=		Da	ite Received:	06/28/02	_
% Moisture: r	not dec.				Da	ite Analyzed:	07/03/02	_
GC Column:	DB-624	ID: <u>0.</u>	53 (mm)		Dil	ution Factor:	1.0	
Soil Extract V	olume:		_ (uL)		So	il Aliquot Vol	ume:	_ (uL

CONCENTRATION UNITS:

		CONCENTION	NA CIALIO.	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
98-82-8	Isopropylbenze	ne	1.0	U
108-86-1	Bromobenzene		1.0	U
103-65-1	n-Propylbenzer	e	1.0	U
79-34-5	1,1,2,2-Tetrach		1.0	U
95-49-8	2-Chlorotoluene)	1.0	U
106-43-4	4-Chlorotoluene	·	1.0	U
108-67-8	1,3,5-Trimethyll	penzene	1.0	U
98-06-6		tert-Butylbenzene		U
95-63-6	1,2,4-Trimethyll	1,2,4-Trimethylbenzene		U
135-98-8		sec-Butylbenzene		U
541-73-1	1,3-Dichlorober		1.0	U
99-87-6	4-Isopropyltolue		1.0	U
106-46-7	1,4-Dichlorober		1.0	U
95-50-1	1,2-Dichlorober		1.0	U
104-51-8	n-Butylbenzene		1.0	U _
96-12-8	1,2-Dibromo-3-		1.0	U
87-68-3	Hexachlorobuta	diene	1.0	U
120-82-1	1,2,4-Trichlorob	enzene	1.0	U
91-20-3	Naphthalene		1.0	U
87-61-6	1,2,3-Trichlorob	enzene	1.0	U

315 Fullenton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO

6MW-1462602

Lab Name:	STL Ne	wburgh		Contract:	01012.0	1	_		<u>~</u>
Lab Code:	10142	Case No.:		SAS No	·.:	_ s	DG No.:	2133	50
Matrix: (soil/v	vater)	WATER		Lat	Sample	ID:	213350-	005	
Sample wt/vo	ol:	5.0 (g/ml)	ML	_ Lat	File ID:		V3337.E)	
Level: (low/n	ned)	LOW		Dat	te Receiv	ed:	06/28/02	<u> </u>	
% Moisture: r	not dec.			Dat	te Analyz	ed:	07/03/02	2	
GC Column:	DB-624	ID: <u>0.53</u> (r	nm)	Dile	ution Fac	tor:	1.0		
Soil Extract V	/olume:	(uL)		Soi	l Aliquot	Volu	me:		(uL)
			CON	NCENTRAT	ION UNI	TS:			
Number TICs	found:	0	(ug/l	L or ug/Kg)	<u>UG/</u>	L	<u>.</u>		
CAS NO.		COMPOUND NA	ME		RT	ES	ST. CONC).	Q

PA 68-378

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPL	LE NO
-----	-------	-------

6MW-1562602

Lab Name:	STL Nev	wburgh		_ Contract:	01012.01	_	
Lab Code:	10142	Case No.:		SAS No	o S	DG No.: 213350)
Matrix: (soil/w	rater)	WATER		La	b Sample ID:	213350-006	
Sample wt/vo	l:	5.0 (g/ml)) <u>ML</u>	Lai	b File ID:	V3338.D	_
Level: (low/m	ned)	LOW		Da	te Received:	06/28/02	_
% Moisture: n	ot dec.			Da	te Analyzed:	07/03/02	-
GC Column:	DB-624	ID: <u>0.53</u> (ı	mm)	Dil	ution Factor:	1.0	- .
Soil Extract V	olume:	(uL)		So	il Aliquot Volu	ıme:	(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	Ü
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	1.0	U
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	Ų
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	1.0	U
71-43-2	Benzene	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
124-48-1	Dibromochloromethane	1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	1.0	U
127-18-4	Tetrachloroethene	0.5	Ja
630-20-6	1,1,1,2-Tetrachioroethane	1.0	U
108-88-3	Toluene	1.0	Ū
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
100-42-5	Styrene	1.0	UJm
108-38-3	m,p-Xylene	1.0	U
95-47-6	o-Xylene	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	U

STL Newburgh is a part of Severn Trent Laboratories, Inc. FORM I VOA

3/90

\$15 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-1562602

Lab Name:	STL Ne	wburgh	Contract: 01012.01	000002
Lab Code:	10142	Case No.:	SAS No.: SI	DG No.: 213350
Matrix: (soil/w	vater)	WATER	Lab Sample ID:	213350-006
Sample wt/vo	ol:	5.0 (g/ml) ML	Lab File ID:	V3338.D
Level: (low/n	ned)	LOW	Date Received:	06/28/02
% Moisture: r	not dec.		Date Analyzed:	07/03/02
GC Column:	DB-624	ID: <u>0.53</u> (mm)	Dilution Factor:	1.0
Soil Extract V	olume:	(uL)	Soil Aliquot Volu	me: (ul

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	<u>UG/L</u>	Q
98-82-8	Isopropyibenzene	1.0	U
108-86-1	Bromobenzene	1.0	U
103-65-1	n-Propylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
106-43-4	4-Chiorotoluene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	σ UU
135-98-8	sec-Butylbenzene	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U.
104-51-8	n-Butylbenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
91-20-3	Naphthalene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U

000086

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMP	LE NO.
-----	------	--------

6MW-1562602 Lab Name: STL Newburgh Contract: 01012.01 Lab Code: 10142 SAS No.: SDG No.: 213350 Case No.: Matrix: (soil/water) WATER Lab Sample ID: 213350-006 Sample wt/vol: 5.0 (g/ml) ML Lab File ID: V3338.D Level: (low/med) LOW Date Received: 06/28/02 % Moisture: not dec. Date Analyzed: 07/03/02 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume: Soil Aliquot Volume: (uL) **CONCENTRATION UNITS:** (ug/L or ug/Kg) UG/L Number TICs found:

RT

EST, CONC.

Q

COMPOUND NAME

CAS NO.

PA 68-378

VOLATILE ORGANICS ANALYSIS DATA SHEET

EDA	SAMP	⊨ N	\cap
$-\Gamma$		' ' '	\sim

01	6MW-1662602	
U 1		

Lab Name:	STL Nev	wburgh	Contract: 01012.01	_
Lab Code:	10142	Case No.:	SAS No.: S	DG No.: 213350
Matrix: (soil/w	vater)	WATER	Lab Sample ID:	213350-007
Sample wt/vo	ol:	5.0 (g/ml) ML	Lab File ID:	V3339.D
Level: (low/m	ned)	LOW	Date Received:	06/28/02
% Moisture: r	not dec.		Date Analyzed:	07/03/02
GC Column:	DB-624	ID: <u>0.53</u> (mm)	Dilution Factor:	1.0
Soil Extract V	olume:	(uL)	Soil Aliquot Volu	ıme: (uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	1.0	U
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	1.0	U
71-43-2	Benzene	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
124-48-1	Dibromochloromethane	1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	1.0	U
127-18-4	Tetrachloroethene	1.0	υ
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	υ
100-41-4	Ethylbenzene	1.0	U
100-42-5	Styrene	1.0	U
108-38-3	m,p-Xylene	1.0	U
95-47-6	o-Xylene	1.0	٠U
96-18-4	1,2,3-Trichloropropane	1.0	U

STL Newburgh is a part of Severn Trent Laboratories, Inc. FORM I VOA

3/90

M-NY049

315 Fullenton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

EPA NY049

(uL)

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

(uL)

6MW-1662602 STL Newburgh Contract: 01012.01 Lab Name: SDG No.: 213350 Lab Code: 10142 Case No.: SAS No.: Lab Sample ID: 213350-007 Matrix: (soil/water) WATER 5.0 Lab File ID: V3339.D Sample wt/vol: (g/ml) ML Date Received: 06/28/02 Level: (low/med) LOW Date Analyzed: 07/03/02 % Moisture: not dec. GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0

CONCENTRATION UNITS:

Soil Aliquot Volume:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
98-82-8	isopropylbenzene	1.0	U
108-86-1	Bromobenzene	1.0	U
103-65-1	n-Propylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U
104-51-8	n-Butylbenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
91-20-3	Naphthalene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U

Soil Extract Volume:

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1662602 Lab Name: STL Newburgh Contract: 01012.01 Case No.: SAS No.: SDG No.: 213350 Lab Code: 10142 Lab Sample ID: 213350-007 Matrix: (soil/water) WATER Lab File ID: V3339.D Sample wt/vol: 5.0 (g/ml) ML Date Received: 06/28/02 Level: (low/med) LOW Date Analyzed: 07/03/02 % Moisture: not dec. GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume: Soil Aliquot Volume: (uL) **CONCENTRATION UNITS:** (ug/L or ug/Kg) UG/L Number TICs found: CAS NO. **COMPOUND NAME** RT EST. CONC. Q

Fax (845) 562-0841

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-1762602

Lab Name:	STL Ne	wburgh	Contract: 01012.01	010100-17-02002
Lab Code:	10142	Case No.:	SAS No.: SI	OG No.: 213350
Matrix: (soil/v	vater)	WATER	Lab Sample ID:	213350-001
Sample wt/vo	ol:	5.0 (g/ml) ML	Lab File ID:	V3332.D
Levei: (low/n	ned)	LOW	Date Received:	06/28/02
% Moisture: r	not dec.		Date Analyzed:	07/03/02
GC Column:	DB-624	ID: <u>0.53</u> (mm)	Dilution Factor:	1.0
Soil Extract V	/olume:	(uL)	Soil Aliquot Volur	me: (ul

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
74-83-9	Bromomethane	1.0	Ų
75-01-4	Vinyl Chloride	1.0	Ū
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	Ų
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	1.0	U
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	Ū
107-06-2	1,2-Dichloroethane	1.0	· U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	1.0	U
71-43-2	Benzene	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
124-48-1	Dibromochloromethane	1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	Ū
75-25-2	Bromoform	1.0	U
127-18-4	Tetrachloroethene	1.0	υ
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	Ū
100-41-4	Ethylbenzene	1.0	U
100-42-5	Styrene	1.0	Ū
108-38-3	m,p-Xylene	1.0	U
95-47-6	o-Xylene	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	Ū

000040

STL Newburgh is a part of Severn Trent Laboratories, Inc. FORM I VOA

3/90

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-1762602

Lab Code: 10142 Case No.: SAS No.: SDG No.: 213350 Matrix: (soil/water) WATER Lab Sample ID: 213350-001	Lab Name:	STL Ne	wburgh		Contract:	01012.01		
Matrix: (soil/water) WATER Lab Sample ID: 213350-001	Lab Code:	10142	Cas	se No.:	SAS No	o: S	SDG No.: 213350	
	Matrix: (soil/v	water)	WATER	_	Lal	b Sample ID:	213350-001	
Sample wt/vol: 5.0 (g/ml) ML Lab File ID: V3332.D	Sample wt/vo	ol:	5.0	(g/ml) ML	Lal	b File ID:	V3332.D	
Level: (low/med) LOW Date Received: 06/28/02	Level: (low/n	ned)	LOW	_	Da	te Received:	06/28/02	
% Moisture: not dec Date Analyzed: 07/03/02	% Moisture: ı	not dec.			Da	te Analyzed:	07/03/02	
GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0	GC Column:	DB-624	ID: <u>0.</u>	53 (mm)	Dil	ution Factor:	1.0	
Soil Extract Volume: (uL) Soil Aliquot Volume:	Soil Extract V	/olume:		_ (uL)	So	il Aliquot Volu	ıme:	(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
98-82-8	Isopropylbenzene	1.0	U
108-86-1	Bromobenzene	1.0	U
103-65-1	n-Propylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
106-43-4	4-Chlorotoluene	1,0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	Ü
104-51-8	n-Butylbenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
91-20-3	Naphthalene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tei (845) 562-0890 Fax (845) 562-0841

000041

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1762602

Lab Name:	STL Ne	wburgh ·			Contrac	t:	01012.0	1	_ L		
Lab Code:	10142	Cas	se No.:		SAS	No.		_ s	DG No.:	2133	350
Matrix: (soil/v	water)	WATER			I	Lab	Sample	ID:	213350-	-001	
Sample wt/vo	ol:	5.0	(g/mi) ML	·	. !	Lab	File ID:		V3332.E)	
Level: (low/r	ned)	LOW			į	Dat	e Receiv	ed:	06/28/02	2	
% Moisture:	not dec.				1	Dat	e Analyz	ed:	07/03/02	2	·
GC Column:	DB-624	ID: <u>0.5</u>	(mm)		I	Dilu	ition Fact	tor:	1.0		
Soil Extract \	/olume:		_ (uL)		;	Soil	Aliquot \	√olu	me:		(uL)
Number TICs	s found:	0			ICENTR . or ug/K		ION UNI UG/				
CAS NO.		COMPOU	ND NAME				RT	ES	ST. CON	Э.	Q

COMPOUND

VOLATILE ORGANICS ANALYSIS DATA SHEET

			_	
EPA	\sim	K A D I	_	NIC
$-\nu$	~~	N/IPI	_	UM I

Q

	6MW-1862602
2.01	-

Lab Name:	STL Ne	wburgh	Contract: <u>01012.01</u>		
Lab Code:	10142	Case No.:	SAS No.:S	DG No.: 213350	
Matrix: (soil/v	vater)	WATER	Lab Sample ID:	213350-008	
Sample wt/vo	ol:	5.0 (g/ml) ML	Lab File ID:	V3340.D	
Level: (low/n	ned)	LOW	Date Received:	06/28/02	
% Moisture: r	not dec.		Date Analyzed:	07/03/02	
GC Column:	DB-624	ID: <u>0.53</u> (mm)	Dilution Factor:	1.0	
Soil Extract V	/olume:	(uL)	Soil Aliquot Volu	ume:	(u

CONCENTRATION UNITS:

UG/L

(ug/L or ug/Kg)

UAU NO.	COMI COME (agree or agring)		_
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	0.8	Jo
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	1.0	U
71-43-2	Benzene	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
124-48-1	Dibromochloromethane	1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	1.0	Ū
127-18-4	Tetrachloroethene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
100-42-5	Styrene	1.0	Ų
108-38-3	m,p-Xylene	1.0	U
95-47-6	o-Xylene	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	Ū

000100

CAS NO.

STL Newburgh is a part of Severn Trent Laboratories, Inc. FORM I VOA

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-1862602

Lab Name:	STL Ne	wburgh		_ Contract:	01012.01		
Lab Code:	10142	Case No.:		_ SAS No	o.: S	DG No.: 2133	50
Matrix: (soil/v	vater)	WATER		Lal	b Sample ID:	213350-008	
Sample wt/vo	ol:	5.0- (g/ml)	ML ML	_ La	b File ID:	V3340.D	
Level: (low/n	ned)	LOW		Da	ite Received:	06/28/02	
% Moisture: ı	not dec.			Da	ite Analyzed:	07/03/02	
GC Column:	DB-624	ID: <u>0.53</u> (r	mm)	Dil	ution Factor:	1.0	
Soil Extract V	/olume:	(uL)		So	il Aliquot Volu	ıme:	(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
98-82-8	Isopropylbenzene	1.0	U
108-86-1	Bromobenzene	1.0	U
103-65-1	n-Propylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachioroethane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
106-43-4	4-Chlorotoluene	1.0	· U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U
104-51-8	n-Butylbenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
91-20-3	Naphthalene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U

000101

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1862602 Lab Name: STL Newburgh Contract: 01012.01 SAS No.: SDG No.: 213350 Lab Code: 10142 Case No.: Matrix: (soil/water) WATER Lab Sample ID: 213350-008 Sample wt/vol: 5.0 (g/ml) ML Lab File ID: V3340.D Level: (low/med) LOW Date Received: 06/28/02 Date Analyzed: 07/03/02 % Moisture: not dec. GC Column: DB-624 ID: 0.53 Dilution Factor: 1.0 (uL) Soil Extract Volume: Soil Aliquot Volume: **CONCENTRATION UNITS:** (ug/L or ug/Kg) UG/L Number TICs found:

RT

EST. CONC.

Q

COMPOUND NAME

Fax (845) 562-0841

CAS NO.

COMPOUND

VOLATILE ORGANICS ANALYSIS DATA SHEET

			_	
EPA	CVI	MDI.	⊏	NIC
	- Omi	VII- L	_ L	IVO

Q

Lab Name:	STL Ne	wburgh		Contract:	01012.01	610100-1962602	
Lab Code:	10142	Cas	se No.:	SAS No	; S	DG No.: 213350)
Matrix: (soil/wa	ater)	WATER	_	Lal	Sample ID:	213350-010	
Sample wt/vol	:	5.0	(g/ml) ML	Lal	o File ID:	V3342.D	
Level: (low/m	ed)	LOW	· · ·	Da	te Received:	06/28/02	-
% Moisture: ne	ot dec.			Da	te Analyzed:	07/03/02	<u>.</u>
GC Column: [DB-624	ID: <u>0.5</u>	53 (mm)	Dil	ution Factor:	1.0	
Soil Extract Vo	olume:		(uL)	So	il Aliquot Volu	ıme:	(uL)

CONCENTRATION UNITS:

UG/L

(ug/L or ug/Kg)

75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	· U
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	1.0	U
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	1.0	U
71-43-2	Benzene	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
124-48-1	Dibromochloromethane	1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	1.0	U
127-18-4	Tetrachloroethene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
100-42-5	Styrene	1.0	U
108-38-3	m,p-Xylene	1.0	U
0= 4= 0		4.0	5 1

96-18-4

95-47-6

CAS NO.

STL Newburgh is a part of Severn Trent Laboratories, Inc. FORM ! VOA

3/90

U

315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

o-Xylene

1,2,3-Trichloropropane

1.0

1.0

Case No.:

(g/ml) ML

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

(uL)

ontract:	01012.01	6MW-	1962602
SAS No.:	SI	OG No.:	213350
Lab	Sample ID:	213350	-010
Lab	File ID:	V3342.[<u> </u>
Date	Received:	06/28/0	2

% Moisture: not dec. GC Column: DB-624 ID: 0.53

5.0

LOW

WATER

Dilution Factor: 1.0

Date Analyzed: 07/03/02

Soil Extract Volume: (uL)

STL Newburgh

10142

Lab Name:

Lab Code:

Matrix: (soil/water) Sample wt/vol:

Level: (low/med)

Soil Aliquot Volume:

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q ·
98-82-8	Isopropylbenzene	1.0	U
108-86-1	Bromobenzene	1.0	U
103-65-1	n-Propylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	Ü
99-87-6	4-Isopropyltoluene	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U
104-51-8	n-Butylbenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
87-68-3	Hexachlorobutadiene	1.0	.U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
91-20-3	Naphthalene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U

000117

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1962602 Lab Name: STL Newburgh Contract: 01012.01 Case No.: Lab Code: 10142 SAS No.: SDG No.: 213350 WATER Matrix: (soil/water) Lab Sample ID: 213350-010 Sample wt/vol: 5.0 (g/ml) ML Lab File ID: V3342.D Level: (low/med) LOW Date Received: 06/28/02 % Moisture: not dec. Date Analyzed: 07/03/02 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume: Soil Aliquot Volume: (uL) **CONCENTRATION UNITS:** (ug/L or ug/Kg) UG/L Number TICs found: CAS NO. COMPOUND NAME RT EST. CONC. Q

STL Newburgh is a part of Severn Trent Laboratories, Inc. FORM I VOA-TIC

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-2062602

Lab Name:	STL Nev	wburgh			Contract:	01012.01	010100-2002002	
Lab Code:	10142	Cas	se No.:		SAS No	o:S	DG No.: 213350	
Matrix: (soil/w	vater)	WATER	_		Lai	b Sample ID:	213350-011	
Sample wt/vo	ol:	5.0	(g/ml)	ML	Lal	b File ID:	V3343.D	
Level: (low/m	ned)	LOW			Da	te Received:	06/28/02	
% Moisture: r	not dec.		<u>.</u>		Da	te Analyzed:	07/04/02	
GC Column:	DB-624	ID: <u>0.</u> 8	<u>53</u> (m	ım)	Dil	ution Factor:	1.0	
Soil Extract V	olume:		_ (uL)		So	il Aliquot Volu	ume:	(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	. U
75-35-4	1,1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	Ü
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	28	
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	1.0	Jq
71-43-2	Benzene	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
124-48-1	Dibromochloromethane	1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	1.0	U
127-18-4	Tetrachloroethene	1.3	Ja
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U`
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
100-42-5	Styrene	1.0	U
108-38-3	m,p-Xylene	1.0	U
95-47-6	o-Xylene	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	U

000123

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-2062602

Lab Name:	STL Ne	wburgh		Contract:	01012.01		-
Lab Code:	10142	Case No.:		_ SAS No	.:s	SDG No.: 213350	<u> </u>
Matrix: (soil/v	vater)	WATER		Lat	Sample ID:	213350-011	
Sample wt/vo	ol:	5.0 (g/ml) <u>ML</u>	_ Lat	File ID:	V3343.D	
Level: (low/n	ned)	LOW		Dat	te Received:	06/28/02	
% Moisture: r	not dec.			Dat	te Analyzed:	07/04/02	
GC Column:	DB-624	ID: <u>0.53</u> (mm)	Dik	ution Factor:	1.0	
Soil Extract V	/olume:	(uL)		Soi	il Aliquot Volu	ume:	(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or u	g/Kg) <u>UG/L</u>	Q
98-82-8	Isopropylbenzene	1.0	U
108-86-1	Bromobenzene	1.0	υ
103-65-1	n-Propylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U
104-51-8	n-Butylbenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
91-20-3	Naphthalene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U

000124

PA 68-378

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-2062602 Lab Name: STL Newburgh Contract: 01012.01 SDG No.: 213350 Lab Code: 10142 Case No.: SAS No.: WATER Lab Sample ID: 213350-011 Matrix: (soil/water) Sample wt/vol: 5.0 (g/ml) ML Lab File ID: V3343.D Level: (low/med) LOW Date Received: 06/28/02 % Moisture: not dec. Date Analyzed: 07/04/02 GC Column: DB-624 ID: 0.53 Dilution Factor: 1.0 (mm) Soil Extract Volume: Soil Aliquot Volume: (uL) **CONCENTRATION UNITS:** (ug/L or ug/Kg) UG/L Number TICs found: CAS NO. COMPOUND NAME RT EST. CONC. Q

Fax (845) 562-0841

PA 68-378

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-2162602

Lab Name:	STL Ne	wburgh	Contract: 01012.01	
Lab Code:	10142	Case No.:	SAS No.: S	DG No.: 213350
Matrix: (soil/w	ater)	WATER	Lab Sample ID:	213350-012
Sample wt/vol	:	5.0 (g/ml) ML	Lab File ID:	V3344.D
Levei: (low/m	ed)	LOW	Date Received:	06/28/02
% Moisture: n	ot dec.		Date Analyzed:	07/04/02
GC Column:	DB-624	ID: <u>0.53</u> (mm)	Dilution Factor:	1.0
Soil Extract V	olume:	(uL)	Soil Aliquot Volu	ıme: (L

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.2	JQ
540-59-0	cis-1,2-Dichloroethene	77	
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	18	
71-43-2	Benzene	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
124-48-1	Dibromochloromethane	1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	1.0	U
127-18-4	Tetrachloroethene	260 240	E
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
100-42-5	Styrene	1.0	U
108-38-3	m,p-Xylene	1.0	υ
95-47-6	o-Xylene	1.0	U
96-18-4	1,2,3-Trichioropropane	1.0	U

00013;

VOLATILE ORGANICS ANALYSIS DATA SHEET

	MADI	E NO
 ·	NIVII L	

6MW-2162602	6MW-2162602
-------------	-------------

Lab Name:	STL Nev	wburgh		Contract:	01012.01		
Lab Code:	10142	Cas	se No.:	SAS No	o.: S	SDG No.: 213350	
Matrix: (soil/v	vater)	WATER	_	La	b Sample ID:	213350-012	
Sample wt/vo	ol:	5.0	(g/ml) ML	La	b File ID:	V3344.D	
Level: (low/n	ned)	LOW	_	Da	te Received:	06/28/02	
% Moisture: r	not dec.			Da	ite Analyzed:	07/04/02	
GC Column:	DB-624	ID: 0.5	53 (mm)	Dil	ution Factor:	1.0	
Soil Extract V	/olume:		_ (uL)	So	il Aliquot Vol	ume:	(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
98-82-8	Isopropylbenzene			1.0	U
108-86-1	Bromobenzene			1.0	U
103-65-1	n-Propylbenzene			1.0	U
79-34-5	1,1,2,2-Tetrachloroe	ethane		1.0	U
95-49-8	2-Chlorotoluene			1.0	U
106-43-4	4-Chlorotoluene			1.0	U
108-67-8	1,3,5-Trimethylbenz	ene		1.0	U
98-06-6	tert-Butylbenzene	· · · · · · · · · · · · · · · · · · ·			U
95-63-6	1,2,4-Trimethylbenz	ene		1.0	U
135-98-8	sec-Butylbenzene				υ
541-73-1	1,3-Dichlorobenzen	е		1.0	U
99-87-6	4-Isopropyltoluene			1.0	U
106-46-7	1,4-Dichlorobenzen	е		1.0	U
95-50-1	1,2-Dichlorobenzen	е		1.0	U
104-51-8	n-Butylbenzene			1.0	<u>U</u> .
96-12-8	1,2-Dibromo-3-chlo	ropropane		1.0	υ
87-68-3	Hexachlorobutadier			1.0	U
120-82-1	1,2,4-Trichlorobenz	ene		1.0	<u> </u>
91-20-3	Naphthalene			1.0	U .
87-61-6	1,2,3-Trichlorobenz	ene		1.0	U

3/90 M-NY049 STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

000133

EPA NY049

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMPL	E NO.
-----	-------	-------

6MW-2162602 Contract: 01012.01 Lab Name: STL Newburgh SDG No.: 213350 SAS No.: 10142 Case No.: Lab Code: Lab Sample ID: 213350-012 Matrix: (soil/water) WATER (g/ml) ML Lab File ID: V3344.D Sample wt/vol: 5.0 LOW Date Received: 06/28/02 Level: (low/med) % Moisture: not dec. Date Analyzed: 07/04/02 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 (uL) Soil Extract Volume: Soil Aliquot Volume: **CONCENTRATION UNITS:** (ug/L or ug/Kg) UG/L Number TICs found: COMPOUND NAME RT EST. CONC. Q CAS NO.

Fax (845) 562-0841

VOLATILE ORGANICS ANALYSIS DATA SHEET

$FD\Delta$	SAM	IPLE	NO
$\Box \Gamma \wedge$			140.

6MW12162602

Lab Name:	STL Nev	wburgh	-	_ Contract: 01012.0	1	
Lab Code:	10142	Cas	se No.:	SAS No.:	SDG No.: 213350	
Matrix: (soil/w	ater)	WATER	<u>.</u>	Lab Sample	ID: 213350-013	
Sample wt/vol	l:	5.0	(g/ml) ML	Lab File ID:	V3350.D	
Level: (low/m	ed)	LOW	_	Date Receive	ed: 06/28/02	
% Moisture: n	ot dec.			Date Analyzo	ed: <u>07/05/02</u>	
GC Column: 1	DB-624	ID: <u>0.5</u>	53 (mm)	Dilution Fact	tor: <u>1.0</u>	
Soil Extract V	olume:		_ (uL)	Soil Aliquot	Volume:	(uL)

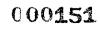
CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	U
75-35-4	1.1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	0.7	JQ
540-59-0	cis-1,2-Dichloroethene	70	
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	٦
74-97-5	Bromochloromethane	1.0	٦
71-55-6	1,1,1-Trichloroethane	1.0	Ü
56-23-5	Carbon Tetrachloride	1.0	U
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	17	
71-43-2	Benzene	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
124-48-1	Dibromochloromethane	1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	1.0	U
127-18-4	Tetrachloroethene	260 -280	Ε_
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	υ
100-42-5	Styrene	1.0	U
108-38-3	m,p-Xylene	1.0	U
95-47-6	o-Xylene	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	U

000150

M-NY049

VOLATILE ORGANICS ANALYSIS DATA SHEET


EPA SAMPLE NO.

6MW12162602

Lab Name:	STL Nev	wburgh		· · ·	Contract:	01012.01		'2
Lab Code:	10142	Cas	se No.:	· .	SAS No	o.: S	SDG No.: 213350)
Matrix: (soil/wa	ater)	WATER	_		Lal	o Sample ID:	213350-013	
Sample wt/vol	:	5.0	(g/ml)	ML	Lal	b File ID:	V3350.D	_
Level: (low/m	ed)	LOW	_		Da	te Received:	06/28/02	_
% Moisture: no	ot dec.				Da	te Analyzed:	07/05/02	_
GC Column: [DB-624	ID: <u>0.</u>	53 (m	ım)	Dil	ution Factor:	1.0	_
Soil Extract Vo	olume:		_ (uL)		So	il Aliquot Volu	ume:	_ (uL
				The second secon				

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
98-82-8	Isopropylbenzene			1.0	U
108-86-1	Bromobenzene			1.0	U
103-65-1	n-Propyibenzene			1.0	U
79-34-5	1,1,2,2-Tetrachlor	oethane		1.0	U
95-49-8	2-Chlorotoluene			1.0	U
106-43-4	4-Chlorotoluene			1.0	U
108-67-8	1,3,5-Trimethylber	nzene	<u> </u>	1.0	U
98-06-6	tert-Butylbenzene			1.0	U
95-63-6	1,2,4-Trimethylber	nzene		1.0	U
135-98-8	sec-Butylbenzene			1.0	· U
541-73-1	1,3-Dichlorobenze	ene		1.0	U
99-87-6	4-Isopropyitoluene	}		1.0	Ü
106-46-7	1,4-Dichlorobenze	ene		1.0	U
95-50-1	1,2-Dichlorobenze	ene	•	1.0	U
104-51-8	n-Butylbenzene			1.0	U
96-12-8	1,2-Dibromo-3-chi	oropropane		1.0	U
87-68-3	Hexachlorobutadie	ene		1.0	U
120-82-1	1,2,4-Trichloroben	zene		1.0	U
91-20-3	Naphthalene			1.0	U
87-61-6	1,2,3-Trichloroben	zene		1.0	U

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW12162602

Lab Name:	STL Ne	wburgh	Contract: 01012.01		
Lab Code:	10142	Case No.:	SAS No.:	SDG No.: 2133	50
Matrix: (soil/v	vater)	WATER	Lab Sample ID	213350-013	
Sample wt/vo	ol:	5.0 (g/ml) ML	Lab File ID:	V3350.D	
Level: (low/n	ned)	LOW	Date Received	06/28/02	•
% Moisture: r	not dec.		Date Analyzed:	07/05/02	
GC Column:	DB-624	ID: <u>0.53</u> (mm)	Dilution Factor:	1.0	
Soil Extract V	/olume:	(uL)	Soil Aliquot Vol	ume:	(uL)
		C	ONCENTRATION UNITS	:	
Number TiCs	s found:	(u	g/L or ug/Kg) UG/L		
CAS NO.		COMPOUND NAME	RT E	ST. CONC.	Q

PA 68-378

(uL)

Soil Extract Volume:

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-18162602 March

(uL)

Lab Name:	STL Ne	wburgh	Contract: <u>01012.01</u>	
Lab Code:	10142	Case No.:	SAS No.: S	DG No.: 213350
Matrix: (soil/v	vater)	WATER	Lab Sample ID:	213350-009
Sample wt/vo	ol:	5.0 (g/ml) ML	Lab File ID:	V3341.D
Level: (low/n	ned)	LOW	Date Received:	06/28/02
% Moisture: ı	not dec.		Date Analyzed:	07/03/02
GC Column:	DB-624	ID: <u>0.53</u> (mm)	Dilution Factor:	1.0

CONCENTRATION UNITS:

Soil Aliquot Volume:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	0.8	Ja
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	1.0	U
71-43-2	Benzene	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
124-48-1	Dibromochloromethane	1 <u>.0</u>	U
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	1.0	U
127-18-4	Tetrachloroethene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
100-42-5	Styrene	1.0	U
108-38-3	m,p-Xylene	1.0	U
95-47-6	o-Xylene	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	U

000108

STL Newburgh is a part of Severn Trent Laboratories, Inc. FORM ! VOA

3/90

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Mg26107

Lab Name:	STL Nev	wburgh			Contract:	01012.01		
Lab Code:	10142	Ca	se No.:		SAS No	o.: ;	SDG No.: 21335	<u>)</u>
Matrix: (soil/w	ater)	WATER	_		Lai	b Sample ID	: 213350-009	
Sample wt/vol	l:	5.0	(g/ml)	ML	Lai	b File ID:	V3341.D	_
Level: (low/m	ed)	LOW	_		Da	te Received	: 06/28/02	_
% Moisture: n	ot dec.	·			Da	te Analyzed:	: 07/03/02	_
GC Column: 1	DB-624	iD: <u>0.</u>	53 (m	ım)	Dil	ution Factor:	: 1.0	_
Soil Extract Ve	olume:		(uL)		So	il Aliquot Vol	lume:	(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
98-82-8	Isopropylbenzene	1.0	U
108-86-1	Bromobenzene	1.0	U
103-65-1	n-Propylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
99-87-6	4-Isopropyitoluene	1.0	Ù
106-46-7	1,4-Dichlorobenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U
104-51-8	n-Butylbenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
91-20-3	Naphthalene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U ·

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1816260Z

Lab Name:	STL Ne	wburgh		Contrac	:t: <u>0</u>	1012.01		. ,	
Lab Code:	10142	Cas	e No.:	SAS	No.:		SDG No	.: <u>2133</u>	350
Matrix: (soil/v	vater)	WATER		1	Lab S	Sample II	D: <u>21335</u>	0-009	
Sample wt/vo	ol:	5.0	(g/ml) ML		Lab F	File ID:	V3341	.D	
Level: (low/n	ned)	LOW		· · i	Date	Received	d: <u>06/28/</u>	02	
% Moisture: r	not dec.			1	Date	Analyzed	d: <u>07/03/</u>	02	
GC Column:	DB-624	ID: <u>0.5</u>	3 (mm)	I	Diluti	on Factor	r: 1.0		~
Soil Extract V	/olume:		_ (uL)	;	Soil A	Aliquot Vo	olume:		(uL)
				CONCENTR		ON UNITS UG/L	3:		
Number TICs	found:	0	_	(ug/L or ug/N	.y <i>)</i>	<u>00/L</u>			
CAS NO.		COMPOU	ND NAME		ı	RT	EST. CO	NC.	Q

PA 68-378

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMP	LE NO
------------	------	-------

FB-PW-62602	
-------------	--

Lab Name:	STL Nev	vburgh			Contract:	01012.01		
Lab Code:	10142	Ca	se No.:		SAS No	.: s	DG No.: 213350)
Matrix: (soil/w	ater)	WATER	<u>.</u>		Lal	Sample ID:	213350-014	
Sample wt/vo	l:	5.0	(g/ml)	ML	Lai	File ID:	V3384.D	
Level: (low/m	ned)	LOW	_		Da	te Received:	06/28/02	-
% Moisture: n	ot dec.		·		Da	te Analyzed:	07/08/02	
GC Column:	DB-624	ID: <u>0.</u>	<u>53</u> (m	ım)	Dil	ution Factor:	1.0	
Soil Extract V	olume:	···	(uL)		So	il Aliquot Volu	ıme:	(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
75-71 - 8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
74-83-9	Bromomethane	1.0	U
75-01 - 4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	1.0	U
67-66-3	Chloroform	2.5	Jo
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	Ú
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	IJ
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	2.2	JQ
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	1.0	Ų
71-43-2	Benzene	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
124-48-1	Dibromochloromethane	1.8	Jo
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0 _	U
75-25-2	Bromoform	1.0	U
127-18-4	Tetrachloroethene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
108-88-3	Toluene	1.0	U
108-90-7	Chiorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
100-42-5	Styrene	1.0	U
108-38-3	m,p-Xylene	1.0	U
95-47-6	o-Xylene	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	U

STL Newburgh is a part of Severn Trent Laboratories, Inc. FORM I VOA

3/90

000165 STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

VOLATILE ORGANICS ANALYSIS DATA SHEET

FB-PW-62602	
-------------	--

Lab Name: §	STL Nev	vburgh	·	Contract:	01012.01	1 5-1 77-02002	
Lab Code: 10142		Case No.:		SAS No	o.: S	SDG No.: <u>213350</u>	ı
Matrix: (soil/wa	ater)	WATER	<u>.</u>	La	b Sample ID	213350-014	
Sample wt/vol:	:	5.0	(g/ml) ML	La	b File ID:	V3384.D	
Level: (low/me	∋d)	LOW	_	Da	ite Received:	: 06/28/02	
% Moisture: no	ot dec.			Da	te Analyzed:	07/08/02	
GC Column: E	DB-624	ID: 0.5	3 (mm)	Dil	ution Factor:	1.0	
Soil Extract Vo	olume:		_ (uL)	So	il Aliquot Vol	ume:	(uL
				CONCENTRA	TION UNITS		

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
98-82-8	Isopropylbenzene	1.0	U
108-86-1	Bromobenzene	1.0	U
103-65-1	n-Propylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U
104-51-8	n-Butylbenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
91-20-3	Naphthalene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U

STL Newburgh is a part of Severn Trent Laboratories, Inc. FORM I VOA

3/90

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Ε	PA	SA	MPI	_E	NO.

FB-PW-62602 Lab Name: STL Newburgh Contract: 01012.01 SDG No.: 213350 SAS No.: Lab Code: 10142 Case No.: Lab Sample ID: 213350-014 WATER Matrix: (soil/water) Lab File ID: V3384.D Sample wt/vol: 5.0 (g/ml) ML LOW Date Received: 06/28/02 Level: (low/med) % Moisture: not dec. Date Analyzed: 07/08/02 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 (uL) Soil Extract Volume: Soil Aliquot Volume: CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Number TICs found: RT EST. CONC. Q CAS NO. COMPOUND NAME

Fax (845) 562-0841

EPA NY049

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMP	PLE	NO.
-----------------	-----	-----

Lab Name:	STL Nev	wburgh		Contract:	01012.01	1B-62602	
Lab Code:	10142	42 Case No.:		SAS No	o.: S	SDG No.: 213350	
Matrix: (soil/v	vater)	WATER		. La	b Sample ID:	213350-015	
Sample wt/vo	ol:	5.0	(g/ml) ML	La	b File ID:	V3353.D	
Level: (low/n	ned)	LOW		Da	te Received:	06/28/02	
% Moisture: r	not dec.			Da	te Analyzed:	07/05/02	
GC Column:	DB-624	ID: <u>0.5</u>	3 (mm)	Dil	ution Factor:	1.0	
Soil Extract V	/olume:		_ (uL)	So	il Aliquot Volu	ıme:	(uL

CONCENTRATION UNITS:

CAS NO.	and the second s	ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluorometh	iane	1.0	U
74-87-3	Chloromethane	-	1.0	C
74-83-9	Bromomethane		1.0	U
75-01-4	Vinyl Chloride		1.0	U
75-00-3	Chloroethane		1.0	U
75-69-4	Trichlorofluorometha	ine	1.0	U
75-09-2	Methylene Chloride		1.0	U
75-35-4	1,1-Dichloroethene		1.0	Ų
75-34-4	1,1-Dichloroethane		1.0	U
590-20-7	2,2-Dichloropropane		1.0	U
156-60-5	trans-1,2-Dichloroet	nylene	1.0	U
540-59-0	cis-1,2-Dichloroethe		1.0	U
67-66-3	Chloroform		1.0	U
563-58-6	1,1-Dichloropropens	1	1.0	U
107-06-2	1,2-Dichloroethane		1.0	U
74-97-5	Bromochloromethan	е	1.0	U
71-55-6	1,1,1-Trichloroethan	e	1.0	U
56-23-5	Carbon Tetrachlorid	9	1.0	U
74-95-3	Dibromomethane		1.0	υ
75-27-4	Bromodichlorometha	ane	1.0	υ
78-87-5	1,2-Dichloropropane		1.0	U
10061-01-5	cis-1,3-Dichloroprop	ene	1.0	U
79-01-6	Trichloroethene		1.0	U
71-43-2	Benzene		1.0	U
142-28-9	1,3-Dichloropropane	,	1.0	U
124-48-1	Dibromochlorometha	ane	1.0	U
10061-02-6	trans-1,3-Dichloropr	opene	1.0	U
79-00-5	1,1,2-Trichloroethan	е	1.0	U
106-93-4	1,2-Dibromoethane		1.0	U
75-25-2	Bromoform		1.0	U
127-18-4	Tetrachloroethene		1.0	U
630-20-6	1,1,1,2-Tetrachloroe	thane	1.0	U
108-88-3	Toluene		1.0	U
108-90-7	Chlorobenzene	-	1.0	U
100-41-4	Ethylbenzene		1.0	U
100-42-5	Styrene		1.0	U
108-38-3	m,p-Xylene		1.0	U
95-47-6	o-Xylene		1.0	U_
96-18-4	1,2,3-Trichloropropa	ine	1.0	U

STL Newburgh is a part of Severn Trent Laboratories, Inc. FORM I VOA

OO4 74 STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841 3/90 NYSDOH 10142 NJDEP 73015 CTDOHS PH-0554 EPA NY049 PA 68-378 M-NY049

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPL	E NO
-----	-------	------

Lab Name:	STL Newburgh			_ Contract:	01012.01	1B-62602		
Lab Code:	10142	0142 Case No.:			SAS No.: S		DG No.: 213350	
Matrix: (soil/wa	ater)	WATER			Lai	b Sample ID:	213350-015	
Sample wt/vol	:	5.0	(g/ml)	ML	Lal	b File ID:	V3353.D	
Level: (low/me	ed)	LOW	÷		Da	te Received:	06/28/02	
% Moisture: no	ot dec.		· · · · · · · · · · · · · · · · · · ·		Da	te Analyzed:	07/05/02	
GC Column: [DB-624	ID: <u>0.5</u>	<u>3</u> (m	nm)	Dil	ution Factor:	1.0	
Soil Extract Vo	olume:		(uL)	-	So	il Aliquot Volu	ume:	(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
98-82-8	Isopropylbenzene	1.0	U
108-86-1	Bromobenzene	1.0	U
103-65-1	n-Propylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
95-49-8	2-Chiorotoluene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U
104-51-8	n-Butylbenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
91-20-3	Naphthalene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U

000175

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	STL Ne	whurah		Contrac	et 010	12.01	1B-62	502	
Lab Hame.							_		
Lab Code:	10142	Cas	se No.:	SAS	No.:		DG No.:	21335	<u>i0</u>
Matrix: (soil/v	vater)	WATER	-		Lab San	nple ID:	213350-	015	
Sample wt/vo	ol:	5.0	(g/ml) ML		Lab File	ID:	V3353.D	ı .	_
Level: (low/n	ned)	LOW	:		Date Re	ceived:	06/28/02		_
% Moisture:	not dec.		, 		Date An	alyzed:	07/05/02		
GC Column:	DB-624	ID: <u>0.5</u>	3 (mm)		Dilution :	Factor:	1.0		_
Soil Extract \	/olume:		_ (uL)		Soil Aliq	uot Volu	ıme:		_ (uL)
Number TICs	s found:	0.	_	CONCENTR (ug/L or ug/h		UNITS: UG/L			
CAS NO.		COMPOU	ND NAME		RT	ES	ST. CONC	;.	Q

EPA NY049

1B

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name:	STL Ne	wburgh	Co	ntract: <u>01012.0</u>	11
Lab Code:	10142	Case No.:		SAS No.:	SDG No.: 213350
Matrix: (soil/v	vater)	WATER		Lab Sample	ID: 213350-016
Sample wt/vo	ol:	950.0 (g/ml) ML		Lab File ID:	S27821.D
Level: (low/r	ned)	LOW		Date Receiv	red: 6/28/02
% Moisture:		decanted:(Y/N)	N	Date Extrac	ted: <u>7/3/02</u>
Concentrated	Extract	Volume: 1000 (uL)		Date Analyz	red: 7/17/02
Injection Volu	ume: 2	2.0 (uL)		Dilution Fac	tor: 1.0
GPC Cleanu	p: (Y/ N)	<u>N</u> pH:	physical and the second and the seco		

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
111-44-4	bis(2-Chloroethyl)ether		11	U
108-95-2	Phenol		11	UJL
95-57-8	2-Chlorophenol		1 1	U
541-73-1	1,3-Dichlorobenzene		11	Ų_
			4.4	

108-95-2	Pnenoi		0.5 L
95-57-8	2-Chlorophenol	<u>1</u> 1	U
541-73-1	1,3-Dichlorobenzene	11	U
106-46-7	1,4-Dichlorobenzene	11	UJL
95-50-1	1,2-Dichlorobenzene	11	U
100-51-6	Benzyl alcohol	11	U.
108-60-1	2,2'-oxybis(1-Chloropropane)	11	U
95-48-7	2-Methylphenol	11	U
67-72-1	Hexachloroethane	11	U
621-64-7	N-Nitroso-di-n-propylamine	11	UJL
106-44-5	4-Methylphenol	11	U
98-95-3	Nitrobenzene	11	UU
78-59-1	Isophorone	11	U
88-75-5	2-Nitrophenol	11	U
105-67-9	2,4-Dimethylphenol	11	U
111-91-1	bis(2-Chloroethoxy)methane	11	U
120-83-2	2,4-Dichlorophenol	11	U
120-82-1	1,2,4-Trichlorobenzene	11	ՍՄև
91-20-3	Naphthalene	11	U
106-47-8	4-Chloroaniline	11	U
87-68-3	Hexachlorobutadiene	11	U
59-50-7	4-Chloro-3-methylphenol	11	ՍՄև
91-57-6	2-Methylnaphthalene	11	U
77-47-4	Hexachlorocyclopentadiene	11	U
88-06-2	2,4,6-Trichlorophenol	11	U
95-95-4	2,4,5-Trichlorophenol	11	U
91-58-7	2-Chloronaphthalene	11	U
88-74-4	2-Nitroaniline	26	U
208-96-8	Acenaphthylene	11	U
131-11-3	Dimethylphthalate	11	U
606-20-2	2,6-Dinitrotoluene	11	U
83-32-9	Acenaphthene	11	U
99-09-2	3-Nitroaniline	26	UJc
51-28-5	2,4-Dinitrophenol	26	U
132-64-9	Dibenzofuran	11	U
121-14-2	2.4-Dinitrotoluene	11	U

000543

3/90

M-NY049

STL Newburgh is a part of Severn Trent Laboratories, Inc.

1C

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

	0.T. N.		•	_) t t-	04040 0	4	6MW-036	2602
Lab Name:	SIL New	burgh		(contract:	01012.0	<u> </u>	L	
Lab Code:	10142	Ca	se No.:		SAS No).: <u> </u>	_ SD	G No.: 21	3350
Matrix: (soil/v	vater) \	NATER	<u>.</u>		Lai	o Sample	ID: 2	213350-016	}
Sample wt/vo	ol:	950.0	(g/ml) ML	·	Lal	o File ID:	5	S27821.D	
Level: (low/n	ned) <u>l</u>	_OW	_		Da	te Receiv	ed: 6	3/28/02	
% Moisture:		de	canted:(Y/N)	N	Da	te Extract	ed: 7	7/3/02	
Concentrated	d Extract V	olume:	1000 (uL)		Da	te Analyz	ed: 7	7/17/02	
Injection Volu	ıme: <u>2.0</u>	(uL)			Dil	ution Fact	or: _	1.0	
GPC Cleanu	p: (Y/N) _	N	pH:						
					CONC	ENTRATI	ON U	JNITS:	
CAS NO) .	COMP	OUND		(ug/L·c	or ug/Kg)	<u>UG/</u>	<u>/L</u>	Q
100-02	2-7	4-Nit	ronhenol					26	U RL

100-02-7	4-Nitrophenol	26 —	U RL
86-73-7	Fluorene	11	Ų
7005-72-3	4-Chlorophenyl-phenylether	11	U
84-66-2	Diethylphthalate	11	Ų
100-01-6	4-Nitroaniline	26	U
534-52-1	4,6-Dinitro-2-methylphenol	26	U
86-30-6	n-Nitrosodiphenylamine (1)	11	U
101-55-3	4-Bromophenyl-phenylether	11	U
118-74-1	Hexachlorobenzene	11	U
87-86-5	Pentachlorophenol	26	U
85-01-8	Phenanthrene	11	U
120-12-7	Anthracene	11	Ú
84-74-2	Di-n-butylphthalate	11	U
206-44-0	Fluoranthene	11	U
129-00-0	Pyrene	11	U _
85-68-7	Butyibenzylphthalate	11	U
91-94-1	3,3'-Dichlorobenzidine	21	U
56-55-3	Benzo(a)anthracene	11	Ü
218-01-9	Chrysene	11	U
117-81-7	bis(2-Ethylhexyl)phthalate	11	U
117-84-0	Di-n-octylphthalate	11	U
205-99-2	Benzo(b)fluoranthene	11	U
207-08-9	Benzo(k)fluoranthene	11	U
50-32-8	Benzo(a)pyrene	11	U
193-39-5	Indeno(1,2,3-cd)pyrene	11	U
62-75-9	N-Nitrosodimethylamine	11	U
53-70-3	Dibenz(a,h)anthracene	11	U
191-24-2	Benzo(g,h,i)perylene	11	U_

000544

3/90

M-NY049

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-0362602

Lab Name:	STL Ne	wburgh	Contrac	t: <u>01012.01</u>		
Lab Code:	10142	Case No.:	SAS	No.:	SDG No.: 213	350
Matrix: (soil/	water)	WATER	j	_ab Sample I	D: <u>213350-016</u>	
Sample wt/ve	ol:	950 (g/ml) ML	l	_ab File ID:	S27821.D	
Level: (low/r	med)	LOW	·	Date Receive	d: 6/28/02	
% Moisture:		decanted: (Y/N) _	N I	Date Extracte	d: 7/3/02	
Concentrate	d Extract	Volume: 1000 (uL)	. [Date Analyze	d: <u>7/17/02</u>	
Injection Vol	ume: <u>2.</u>	<u>0</u> (uL)	i	Dilution Facto	or: 1.0	
GPC Cleanu	p: (Y/N)	pH:				
			CONCE	NTRATION L	INITS:	
Number TIC:	s found:	1	(ug/L or	ug/Kg) <u>L</u>	JG/L	
CAS NUME	3ER	COMPOUND NAME		RT .	EST. CONC.	Q
1. 00133	0-91-2	Phthalic acid, dilsooctyl e	ster	21.03	5	JN

NJDEP 73015

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-0862602

Lab Name:	STL Nev	wburgh			_ Contra	ict:	01012.01		
Lab Code:	10142	Ca	se No.: _		_ SAS	No.	.: S	DG No.: 213350)
Matrix: (soil/v	water)	WATER	· · ·			Lab	Sample ID:	213350-017	
Sample wt/vo	ol:	960.0	(g/ml)	ML	<u> </u>	Lab	File ID:	S27822.D	_
Level: (low/n	ned)	LOW	_			Dat	e Received:	6/28/02	_
% Moisture:		de	canted:(Y	/N)	N	Dat	e Extracted:	7/3/02	-
Concentrated	d Extract	Volume:	1000 ((uL)	•	Dat	e Analyzed:	7/17/02	-
Injection Volu	ıme: <u>2</u> .	0 (uL)			٠	Dilu	ution Factor:	1.0	_
GPC Cleanu	p: (Y/N)	<u>N</u>	рН:						

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L. or to	ıg/Kg) <u>UG/L</u>	Q
111-44-4	bis(2-Chloroethyl)ether	10	Ü
108-95-2	Phenol	10	UJL
95-57-8	2-Chlorophenol	10	U
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	UJi
95-50-1	1,2-Dichlorobenzene	10	Ü
100-51-6	Benzyl alcohol	10	U
108-60-1	2,2'-oxybis(1-Chloropropane)	10	U
95-48-7	2-Methylphenol	10	U
67-72-1	Hexachloroethane	10	U
621-64-7	N-Nitroso-di-n-propylamine	10	UJL
106-44-5	4-Methylphenol	10	U
98-95-3	Nitrobenzene	10	U
78-59-1	Isophorone	10	Ų
88-75-5	2-Nitrophenol	10	U
105-67-9	2,4-Dimethylphenol	10	U
111-91-1	bis(2-Chloroethoxy)methane	10	U
120-83-2	2,4-Dichlorophenol	10	U
120-82-1	1,2,4-Trichlorobenzene	10	UJL
91-20-3	Naphthalene	10	U
106-47-8	4-Chloroaniline	10	U
87-68-3	Hexachlorobutadiene	10.	Ų
59-50-7	4-Chloro-3-methylphenol	10	UJL
91-57-6	2-Methylnaphthalene	10	Ü
77-47-4	Hexachiorocyclopentadiene	10	U
88-06-2	2,4,6-Trichlorophenol	10	บ
95-95-4	2,4,5-Trichlorophenol	10	U
91-58-7	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	26	U
208-96-8	Acenaphthylene	10	U
131-11-3	Dimethylphthalate	10	·U
606-20-2	2,6-Dinitrotoluene	10	U
83-32-9	Acenaphthene	10	U
99-09-2	3-Nitroaniline	26	Щc
51-28-5	2,4-Dinitrophenol	26	U
132-64-9	Dibenzofuran	10	U
121-14-2	2,4-Dinitrotoluene	10	U

NYSDOH 10142

NJDEP 73015

STL Newburgh is a part of Severn Trent Laboratories, Inc.

315 Fullerton Avenue Newburgh, NY 12550 Tei (845) 562-0890 Fax (845) 562-0841 3/90 EORMJ SV-1 CTDOHS PH-0554 EPA NY049 PA 68-378 M-NY049

1C

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

			O continue of	04040-04	6MW-0862602	
_ab Name:	STL Ne	wburgh	Contract:	01012.01		
_ab Code:	10142	Case No.:	SAS No.: SDG No.: 2133			
Matrix: (soil/\	water)	WATER	La	b Sample ID:	213350-017	
Sample wt/vo	ol:	960.0 (g/ml) ML	La	b File ID:	S27822.D	
_evel: (low/r	ned)	LOW	Da	te Received:	6/28/02	
% Moisture:		decanted:(Y/N)	N Da	te Extracted:	7/3/02	
Concentrated	d Extract	Volume: <u>1000</u> (uL)	Da	te Analyzed:	7/17/02	
njection Vol	ume: 2	.0 (uL)	Dil	ution Factor:	1.0	

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q

100-02-7	4-Nitrophenol	-26	- URL
86-73-7	Fluorene	10	U
7005-72-3	4-Chlorophenyl-phenylether	10	U
84-66-2	Diethylphthalate	10	U
100-01-6	4-Nitroaniline	26	U
534-52-1	4,6-Dinitro-2-methylphenol	26	U
86-30-6	n-Nitrosodiphenylamine (1)	10	U
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	U
87-86-5	Pentachlorophenol	26	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	21	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
117-81-7	bis(2-Ethylhexyl)phthalate	10	U
117-84-0	Di-n-octylphthalate	10	U
205-99-2	Benzo(b)fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
62-75-9	N-Nitrosodimethylamine	10	U
53-70-3	Dibenz(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

00552

GPC Cleanup: (Y/N)

Ν

pH:

PA 68-378

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-0862602

Lab Name:	STL Ne	wburgh	Contrac	t: <u>01012.0</u>	1	
Lab Code:	10142	Case No.:	SAS	No.:	SDG No.: 213	350
Matrix: (soil/	water)	WATER	1	Lab Sample	ID: <u>213350-017</u>	
Sample wt/vo	ol:	960 (g/ml) ML	!	_ab File ID:	S27822.D	
Level: (low/r	ned)	LOW	ı	Date Receiv	red: 6/28/02	<u></u>
% Moisture:	·	decanted: (Y/N)	N Date Ex		ted: 7/3/02	
Concentrated	d Extract	Volume: <u>1000</u> (uL)	Date Analyzed: 7/17/02			
Injection Volu	ıme: <u>2.0</u>	<u>0</u> (uL)	Dilution Factor: 1.0			
GPC Cleanu	p: (Y/N)	NpH:				
			CONCE	NTRATION	UNITS:	
Number TICs found: 3 (ug/L or ug/Kg) UG/L						
CAS NUME	BER	COMPOUND NAME		RT	EST. CONC.	Q
1.		Unknown CnH2n+2		22.05	4	Jy

Unknown CnH2n+2

Unknown CnH2n+2

2. 3. 22.65

23.23

M-NY049

1B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPL	E NO.
------------	-------	-------

6MW-0962602

Lab Name:	STL Ne	wburgh		(Contract:	01012.01	_	
Lab Code:	10142 Case No.:				SAS No	o.: S	DG No.: 213350	
Matrix: (soil/v	water)	WATER	·		La	b Sample ID:	213350-018	
Sample wt/vo	ol:	940.0	(g/ml) ML		La	b File ID:	S27823.D	
Level: (low/n	ned)	LOW			Da	ite Received:	6/28/02	
% Moisture:		de	canted:(Y/N) _	N	Da	ate Extracted:	7/3/02	
Concentrated	d Extract	Volume:	1000 (uL)		Da	ate Analyzed:	7/17/02	
Injection Volu	ume: <u>2</u>	.0 (uL)			Dil	lution Factor:	1.0	
GPC Cleanu	p: (Y/N)	N	рН:	_				

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q

111-44-4	bis(2-Chloroethyl)ether	11	U
108-95-2	Phenol	11	UJL
95-57-8	2-Chlorophenol	11	U
541-73-1	1,3-Dichlorobenzene	11	U
106-46-7	1,4-Dichlorobenzene	11	UJL
95-50-1	1,2-Dichlorobenzene	11	U
100-51-6	Benzyl alcohol	11	U
108-60-1	2,2'-oxybis(1-Chloropropane)	11	U
95-48-7	2-Methylphenol	11	U
67-72-1	Hexachloroethane	11	U
621-64-7	N-Nitroso-di-n-propylamine	11	UJL
106-44-5	4-Methylphenol	11	Ū
98-95-3	Nitrobenzene	11	U
78-59-1	Isophorone	11	U
88-75-5	2-Nitrophenol	11	U
105-67-9	2,4-Dimethylphenol	11	U
111-91-1	bis(2-Chloroethoxy)methane	11	U
120-83-2	2,4-Dichlorophenol	11	U
120-82-1	1,2,4-Trichlorobenzene	11	UJL
91-20-3	Naphthalene	11	Ų
106-47-8	4-Chloroaniline	11	U
87-68-3	Hexachlorobutadiene	11	U
59-50-7	4-Chloro-3-methylphenol	11	UJL
91-57-6	2-Methylnaphthalene	11	U
77-47-4	Hexachlorocyclopentadiene	11	U
88-06-2	2,4,6-Trichlorophenol	11	U
95-95-4	2,4,5-Trichlorophenol	11	U
91-58-7	2-Chloronaphthalene	11	U
88-74-4	2-Nitroaniline	27	U.
208-96-8	Acenaphthylene	11	U
131-11-3	Dimethylphthalate	11	U
606-20-2	2,6-Dinitrotoluene	11	U
83-32-9	Acenaphthene	11	U
99-09-2	3-Nitroaniline	27	UJر
51-28-5	2,4-Dinitrophenol	27	U
132-64-9	Dibenzofuran	11	U
121-14-2	2,4-Dinitrotoluene	11	U

STL Newburgh is a part of Severn Trent Laboratories, Inc.

315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

1C

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET										
_ab Name: STL Newburgh								6MW-0962602		
			se No.:					G No ·	213350	
Lab Code.	10142	Ca	36 NO	`						
Matrix: (soil/v	water)	WATER	_		La	b Samp	le ID: 2	213350-0)18	
Sample wt/vo	ol:	940.0	(g/ml) ML		La	b File II	D: §	327823.[<u> </u>	
Level: (low/r	ned)	LOW			Da	ite Rece	eived: 6	6/28/02		
% Moisture:		de	- canted:(Y/N)	N	Da	ite Extra	acted:	7/3/02		
			1000 (uL)					7/17/02		
Injection Volu	ume: 2.	0 (uL)	1		Dil	ution F	actor:	1.0		
-			pH:				_	····	_	
•. • • • • • • • • • • • • • • • • • •										
					CONC	ENTRA	TION L	INITS:		
CAS NO	D .	COMP	OUND		(ug/L c	or ug/Kg) UG	/L	Q	
100-0	2-7	4-Nit	rophenol					27	-U Ri	
86-73-	-7	Fluor						11	U	
7005-	72-3	4-Ch	lorophenyl-phe	nylethe	r			11	U	
84-66-	-2	Dieth	ylphthalate					11	U	
100-0	1-6	4-Nit	roaniline					27	U	
534-5	2-1	4,6-E	initro-2-methyl	phenol				27	U	
86-30-	-6	n-Nit	rosodiphenylan	nine (1)				11 .	U	
101-5	5-3	4-Bro	omophenyl-phe	nylethe	r			11	U	
118-7	4 -1	Hexa	chlorobenzene	;				11	U	
87-86	-5	Pent	achlorophenol					27	U	
85-01		Phen	anthrene					11	U	
120-1	2-7	Anth	racene					11_	U_	
84-74	-2	Di-n-	butylphthalate					11	U	

3/90

M-NY049

206-44-0

129-00-0

85-68-7

91-94-1

56-55-3

218-01-9

117-81-7

117-84-0

205-99-2

207-08-9

50-32-8

193-39-5

62-75-9

53-70-3

191-24-2

000562

11

11

11

21

11

11

11

11

11

11

11

11

11

11

11

U

U

Ū

U

U

Ū

U

Ü

U

U

U

U

Ü

U

Fluoranthene

Butylbenzylphthalate

Benzo(a)anthracene

Di-n-octylphthalate

Benzo(a)pyrene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

N-Nitrosodimethylamine

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

3,3'-Dichlorobenzidine

bis(2-Ethylhexyl)phthalate

Pyrene

Chrysene

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	STL Ne	wburgh	·	Contract:	01012.01	6MW-0962602	
Lab Code:	ab Code: 10142 Case No.:			SAS N	o.: S	DG No.: 213350	
Matrix: (soil/v	water)	WATER	_	Lá	b Sample ID:	213350-018	
Sample wt/vo	ol:	940	(g/ml) <u>ML</u>	La	b File ID:	S27823.D	
Level: (low/r	ned)	LOW		D	ate Received:	6/28/02	
% Moisture:		de	canted: (Y/N)	N D	ate Extracted:	7/3/02	
Concentrated	d Extract	Volume:	1000 (uL)	. D:	ate Analyzed:	7/17/02	
Injection Volu	ume: 2.0	0 (uL)	•	D	lution Factor:	1.0	
GPC Cleanus	n: (Y/N)	N	nH·				

CONCENTRATION UNITS:

22.05

22.65

23.23

UG/L

(ug/L or ug/Kg)

					
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	
1.	Unknown CnH2n+2	19.42	3	JT	
2.	Unknown CnH2n+2	20.11	7	J_{T}	
3.	Unknown CnH2n+2	20.78	11	J_{T}	
4.	Unknown CnH2n+2	21.43	11	Jr	

Unknown CnH2n+2 Unknown CnH2n+2

Unknown CnH2n+2

NJDEP 73015

Number TICs found:

5.

6. 7. $J_{\underline{\tau}}$

11

12

10

Q

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-1062602

Lab Name:	STL Ne	wburgh	C	ontract: 01012	2.01	
Lab Code:	10142	Case No.:		SAS No.:	SDG No.: 213	350
Matrix: (soil/\	water)	WATER		Lab Samp	ole ID: 213350-019	
Sample wt/vo	ol:	940.0 (g/ml) ML		Lab File II	D: S27824.D	
Level: (low/r	ned)	LOW		Date Rec	eived: 6/28/02	
% Moisture:		decanted:(Y/N)	N	Date Extra	acted: 7/3/02	
Concentrated	d Extract	Volume: 1000 (uL)		Date Anal	lyzed: <u>7/17/02</u>	
Injection Vol	ume: <u>2</u>	.0 (uL)		Dilution F	actor: 1.0	
GPC Cleanu	ıp: (Y/N)	NpH:	_	•		

COMPOUND

CAS NO.

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

111-44-4	bis(2-Chloroethyl)ether	11	U
108-95-2	Phenol	11	Սմև
95-57-8	2-Chlorophenol	11	U
541-73-1	1,3-Dichlorobenzene	11	U
106-46-7	1,4-Dichlorobenzene	11	UJL
95-50-1	1,2-Dichlorobenzene	11	U
100-51-6	Benzyl alcohol	11	U
108-60-1	2,2'-oxybis(1-Chloropropane)	11	U
95-48-7	2-Methylphenol	11	U
67-72-1	Hexachloroethane	11	U
621-64-7	N-Nitroso-di-n-propylamine	11	UJu
106-44-5	4-Methylphenol	11	U
98-95-3	Nitrobenzene	11	U
78-59-1	Isophorone	11	U
88-75-5	2-Nitrophenol	11	U _
105-67-9	2,4-Dimethylphenol	11	U
111-91-1	bis(2-Chloroethoxy)methane	11	U
120-83-2	2,4-Dichlorophenol	11	U
120-82-1	1,2,4-Trichlorobenzene	11	UJʻı
91-20-3	Naphthalene	11	U
106-47-8	4-Chloroaniline	11	U
87-68-3	Hexachlorobutadiene	11	U
59-50-7	4-Chloro-3-methylphenol	11	UJı
91-57-6	2-Methylnaphthalene	11	U
77-47-4	Hexachlorocyclopentadiene	11	U
88-06-2	2,4,6-Trichlorophenol	11	U
95-95-4	2,4,5-Trichlorophenol	11	U
91-58-7	2-Chloronaphthalene	11	U
88-74-4	2-Nitroaniline	27	U
208-96-8	Acenaphthylene	11	U
131-11-3	Dimethylphthalate	11	U
606-20-2	2,6-Dinitrotoluene	11	U
83-32-9	Acenaphthene	11	U
99-09-2	3-Nitroaniline	27	UJc
51-28-5	2,4-Dinitrophenol	27	U
132-64-9	Dibenzofuran	11	Ų
121-14-2	2,4-Dinitrotoluene	11	Ū

STL Newburgh is a part of Severn Trent Laboratories, Inc.

3/90

M-NY049

NJDEP 73015

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-1062602

Lab Name:	STL Ne	wburgh		C	Contract:	01012.01	010100-1002002
Lab Code:	10142	c	ase No.:		SAS No	o.: S	DG No.: 213350
Matrix: (soil/v	water)	WATER	··	-	Lal	o Sample ID:	213350-019
Sample wt/vo	ol:	940.0	(g/ml) <u>ML</u>		Lai	b File ID:	S27824.D
Level: (low/n	ned)	LOW			Da	te Received:	6/28/02
% Moisture:		de	ecanted:(Y/N)	N	Da	te Extracted:	7/3/02
Concentrated	d Extract	Volume:	1000 (uL)		Da	te Analyzed:	7/17/02
Injection Volu	ume: 2	.0 (uL)			Dil	ution Factor:	1.0
GPC Cleanu	p: (Y/N)	N	pH:				
					CONC	ENTRATION	UNITS:

CAS NO.	COMPOUND (I	ug/L or ug/Kg)	UG/L	Q
100-02-7	4-Nitrophenol		27	U RL
86-73-7	Fluorene		11	U
7005-72-3	4-Chlorophenyl-phenylether		11	U
84-66-2	Diethylphthalate		11 .	U
100-01-6	4-Nitroaniline		27	U
534-52-1	4,6-Dinitro-2-methylphenol		27	U
86-30-6	n-Nitrosodiphenylamine (1)		11	υ
101-55-3	4-Bromophenyl-phenylether		11	U
118-74-1	Hexachlorobenzene		11	U
87-86-5	Pentachiorophenol		27	U
85-01-8	Phenanthrene		11	U
120-12-7	Anthracene		11	U
84-74-2	Di-n-butylphthalate		11	U
206-44-0	Fluoranthene		11	U
129-00-0	Pyrene		11	U
85-68-7	Butylbenzylphthalate		11	U
91-94-1	3,3'-Dichlorobenzidine		21	U
56-55-3	Benzo(a)anthracene		11	U
218-01-9	Chrysene		11	U
117-81-7	bis(2-Ethylhexyl)phthalate		11	U
117-84-0	Di-n-octylphthalate		11	U
205-99-2	Benzo(b)fluoranthene		11	U
207-08-9	Benzo(k)fluoranthene		11	U
50-32-8	Benzo(a)pyrene		11	U
193-39-5	Indeno(1,2,3-cd)pyrene		11	U
62-75-9	N-Nitrosodimethylamine		11	U
53-70-3	Dibenz(a,h)anthracene		11	U
191-24-2	Benzo(g,h,i)perylene		11	U

NJDEP 73015

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1062602

Lab Name:	STL Nev	<i>w</i> burgh		Contract:	01012.01	
Lab Code:	10142	Ca	ase No.:	SAS No	.: S	SDG No.: 213350
Matrix: (soil/v	vater)	WATER	_	Lab	Sample ID:	213350-019
Sample wt/vo	ol:	940	_ (g/mi) ML	Lab	File ID:	S27824.D
Level: (low/n	ned)	LOW	_ _	Dat	te Received:	6/28/02
% Moisture:		ded	canted: (Y/N)	N Dat	te Extracted:	7/3/02
Concentrated	I Extract '	Volume:	1000 (uL)	Dat	te Analyzed:	7/17/02
Injection Volu	ıme: 2.0	(uL)		Dilu	ution Factor:	1.0
GPC Cleanur	o: (Y/N)	<u>N</u>	pH:			
				CONCENT	RATION UN	iTS:
Number TICs	found:	4		(ug/L or ug/	Kg) UG	/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	Unknown CnH2n+2	20.78	3	JŢ
2.	Unknown CnH2n+2	21.43	3	JT
3. 000112-95-8	Eicosane	22.05	3	JNT
4.	Unknown CnH2n+2	22.65	2	J٢

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-1162602

Lab Name: STL Newburgh				Contra	ict:	01012.01	
Lab Code:	10142	C	SAS No.:		o.: S	DG No.: 213350	
Matrix: (soil/v	vater)	WATER			Lat	Sample ID:	213350-002
Sample wt/vo	ol:	950.0	(g/ml) <u>ML</u>		Lal	File ID:	S27803.D
Level: (low/n	ned)	LOW			Da	te Received:	6/28/02
% Moisture:		de	ecanted:(Y/N) _	N	Da	te Extracted:	7/3/02
Concentrated	d Extract	Volume:	1000 (uL)		Da	te Analyzed:	7/16/02
Injection Volu	ıme: 2	.0 (uL)			Dil	ution Factor:	1.0
GPC Cleanu	p: (Y/N)	N	pH:	<u> </u>			•

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/K	g) <u>UG/L</u>	Q
111-44-4	bis(2-Chloroethyl)eth	ner	11	U
108-95-2	Phenol		11	UJL
95-57-8	2-Chlorophenol		11	U
541-73-1	1,3-Dichlorobenzene	e	11	U
106-46-7	1,4-Dichlorobenzene		11	በፓር
95-50-1	1,2-Dichlorobenzene	9	11	U
100-51-6	Benzyl alcohol		11	U
108-60-1	2,2'-oxybis(1-Chioro	propane)	11	Ü
95-48-7	2-Methylphenol		11	U
67-72-1	Hexachloroethane		11	U
621-64-7	N-Nitroso-di-n-propy	/lamine	11	UJL
106-44-5	4-Methylphenol		11	U
98-95-3	Nitrobenzene		11	U
78-59-1	Isophorone		11	U
88-75-5	2-Nitrophenol		11	U
105-67-9	2,4-Dimethylphenol		11	U
111-91-1	bis(2-Chloroethoxy)r	methane	11	U
120-83-2	2,4-Dichlorophenol		11	U
120-82-1	1,2,4-Trichlorobenze	ene	11	UJi
91-20-3	Naphthalene		11	U
106-47-8	4-Chloroaniline		11	U
87-68-3	Hexachlorobutadien	е	11	U
59-50-7	4-Chloro-3-methylph	nenol	11	UJ,
91-57-6	2-Methylnaphthalene	е .	11	U
77-47-4	Hexachlorocyclopen	tadiene	11	U
88-06-2	2,4,6-Trichloropheno	oll	11	U
95-95-4	2,4,5-Trichloropheno	ol	11	U
91-58-7	2-Chloronaphthalene	е	11	<u>U_</u>
88-74-4	2-Nitroaniline		26	Ū
208-96-8	Acenaphthylene		11	U
131-11-3	Dimethylphthalate		11	U
606-20-2	2,6-Dinitrotoluene		11	U
83-32-9	Acenaphthene		11	U
99-09-2	3-Nitroaniline		26	UJc
51-28-5	2,4-Dinitrophenol		26	U
132-64-9	Dibenzofuran		11	U
121-14-2	2,4-Dinitrotoluene		11	U

STL Newburgh is a part of Severn Trent Laboratories, Inc.

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

3/90

M-NY049

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-1162602

Lab Name:	STL Ne	ewburgh	Contract: 01012.01	
Lab Code:	10142	Case No.:	SAS No.: SE	DG No.: 213350
Matrix: (soil/\	water)	WATER	Lab Sample ID:	213350-002
Sample wt/ve	ol:	950.0 (g/ml) ML	Lab File ID:	S27803.D
Level: (low/r	med)	LOW	Date Received:	6/28/02
% Moisture:		decanted:(Y/N)	N Date Extracted:	7/3/02
Concentrate	d Extract	Volume: 1000 (uL)	Date Analyzed:	7/16/02
Injection Vol	ume: 2	2.0 (uL)	Dilution Factor:	1.0
GPC Cleanu	ıp: (Y/N)	NpH:		

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
100-02-7	4-Nitrophenol		26	- U Ri
86-73-7	Fluorene		11	U
7005-72-3	4-Chlorophenyl-phenylethe	r	11	U
84-66-2	Diethylphthalate		11	U
100-01-6	4-Nitroaniline		26	UJc
534-52-1	4,6-Dinitro-2-methylphenol		26	U
86-30-6	n-Nitrosodiphenylamine (1))	11	U
101-55-3	4-Bromophenyl-phenylethe	r	11	<u> </u>
118-74-1	Hexachlorobenzene		<u>11</u>	U
87-86-5	Pentachiorophenol		26	U
85-01-8	Phenanthrene		11	U
120-12-7	Anthracene		11	U
84-74-2	Di-n-butylphthalate		11	U
206-44-0	Fluoranthene		11	U
129-00-0	Pyrene		11	U
85-68-7	Butylbenzylphthalate		11	U
91-94-1	3,3'-Dichlorobenzidine		21	UJc
56-55-3	Benzo(a)anthracene		11	U
218-01-9	Chrysene		11	U
117-81-7	bis(2-Ethylhexyl)phthalate		11	U
117-84-0	Di-n-octylphthalate		11	U
205-99-2	Benzo(b)fluoranthene		11	U
207-08-9	Benzo(k)fluoranthene		11	U
50-32-8	Benzo(a)pyrene		11	U
193-39-5	Indeno(1,2,3-cd)pyrene		11	U
62-75-9	N-Nitrosodimethylamine		11	U
53-70-3	Dibenz(a,h)anthracene		11	U
191-24-2	Benzo(g,h,i)perylene		11	U

000374

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO. 6MW-1162602

Lab Name:	STL Ne	wburgh	<u> </u>	Contract:	01012.0)1		
Lab Code:	10142	Case No.:		SASN	o.:	_ s	DG No.: 213	350
Matrix: (soil/v	water)	WATER		La	ab Sample	ID:	213350-002	
Sample wt/vo	ol:	950 (g/ml)	ML	_ La	b File ID:		S27803.D	· · ·
Level: (low/n	ned)	LOW		D	ate Receiv	/ed:	6/28/02	
% Moisture:		decanted: (Y	/N) <u> </u>	1 D	ate Extrac	ted:	7/3/02	
Concentrated	d Extract	Volume: <u>1000</u>	(uL)	D	ate Analyz	zed:	7/16/02	
Injection Volu	ume: <u>2.0</u>) (uL)		D	ilution Fac	tor:	1.0	
GPC Cleanu	p: (Y/N)	N pH:						
	·			CONCEN	TRATION	UNI	TS:	
Number TICs	s found:	0		(ug/L or u	g/Kg)	UG/	<u>'L</u>	
CAS NUME	BER	COMPOUND NAM	ИE		RT	ES	ST. CONC.	Q

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-1262602

Lab Name:	STL Ne	wburgh		Contract:	01012.01	_
Lab Code:	10142	Case No.:		SAS No	o: S	DG No.: 213350
Matrix: (soil/v	water)	WATER		La	o Sample ID:	213350-003
Sample wt/vo	ol:	950.0 (g/ml) M	L.	La	b File ID:	S27804.D
Level: (low/n	ned)	LOW		Da	te Received:	6/28/02
% Moisture:		decanted:(Y/N	l) <u>N</u>	Da	te Extracted:	7/3/02
Concentrated	d Extract	Volume: 1000 (ul	L.)	Da	te Analyzed:	7/16/02
Injection Volu	ume: 2	2.0 (uL)		Dil	ution Factor:	1.0
GPC Cleanu	p: (Y/N)	N pH:				

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
111-44-4	bis(2-Chloroethyl)eth	ner	11	U
108-95-2	Phenol		11	U Rs
95-57-8	2-Chlorophenol		.11	— U Rs
541-73-1	1,3-Dichlorobenzene		11	U
106-46-7	1,4-Dichlorobenzene		11	UJL
95-50-1	1,2-Dichlorobenzene		11	U
100-51-6	Benzyl alcohol		11	U
108-60-1	2,2'-oxybis(1-Chioro	oropane)	11	U
95-48-7	2-Methylphenol		11-	—URs
67-72-1	Hexachloroethane		11	U
621-64-7	N-Nitroso-di-n-propy	lamine	11	UJL
106-44-5	4-Methylphenol		-11	U Rs
98-95-3	Nitrobenzene		11	U
78-59-1	Isophorone		11	U
88-75-5	2-Nitrophenol		11	U Rs
105-67-9	2,4-Dimethylphenol		11	U Rs
111-91-1	bis(2-Chloroethoxy)r	nethane	. 11	Ų
120-83-2	2,4-Dichlorophenol		11	U Rs
120-82-1	1,2,4-Trichlorobenze	ne	11	UJL
91-20-3	Naphthalene		11	U
106-47-8	4-Chloroaniline		11	U
87-68-3	Hexachlorobutadien	Э	11	U
59-50-7	4-Chloro-3-methylph	enol	11	- U Rs
91-57-6	2-Methylnaphthalene	}	11	U
77-47-4	Hexachlorocyclopen	tadiene	11	U
88-06-2	2,4,6-Trichloropheno)	11	U Rs
95-95-4	2,4,5-Trichloropheno		41	─U Rs
91-58-7	2-Chloronaphthalene		11	U
88-74-4	2-Nitroaniline		26	U
208-96-8	Acenaphthylene		11	U
131-11-3	Dimethylphthalate		11	U
606-20-2	2,6-Dinitrotoluene		11	U
83-32-9	Acenaphthene		11	U
99-09-2	3-Nitroaniline		26	UJc_
51-28-5	2,4-Dinitrophenol		26	U Rs
132-64-9	Dibenzofuran		11	U
121-14-2	2,4-Dinitrotoluene		11	U

SEVERN TRENT SERVICES STL Newburgh is a part of Severn Trent Laboratories, Inc.

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6M/M-1262602

Lab Name:	STL Ne	wburgh		_ Contract:	01012.01	010100-1202002
Lab Code:	10142	Case	• No.:	SAS No	o.: SI	DG No.: 213350
Matrix: (soil/	water)	WATER	·	Lal	b Sample ID:	213350-003
Sample wt/ve	ol:	950.0	(g/ml) ML	Lal	b File ID:	S27804.D
Level: (low/r	ned)	LOW	•	Da	te Received:	6/28/02
% Moisture:		deca	nted:(Y/N)	N Da	te Extracted:	7/3/02
Concentrate	d Extract	Volume: 10	00 (uL)	Da	te Analyzed:	7/16/02
Injection Vol	ume: 2	.0 (uL)	•	Dil	ution Factor:	1.0
GPC Cleanu	p: (Y/N)	<u>N</u> 1	оH:			
•				CONC	ENTRATION	UNITS:

CAS NO. COMPOUND		(ug/L or ug/Kg)	UG/L	Q
100-02-7	4-Nitrophenol		26	U Rs
86-73-7	Fluorene		11	U
7005-72-3	4-Chlorophenyl-phenyle	ether	11	U
84-66-2	Diethylphthalate		11	U
100-01-6	4-Nitroaniline		26	UJC
534-52-1	4,6-Dinitro-2-methylphe	nol	-26	U Rs
86-30-6	n-Nitrosodiphenylamine	(1)	11	U
101-55-3	4-Bromophenyl-phenyle	ther	11	U
118-74-1	Hexachlorobenzene		11	U
87-86-5	Pentachlorophenol		-26	₩ Rs
85-01-8	Phenanthrene		11	U
120-12-7	Anthracene		11	U
84-74-2	Di-n-butylphthalate		11	Ų
206-44-0	Fluoranthene		11	U
129-00-0	Pyrene		11	U
85-68-7	Butylbenzylphthalate		- 11	U
91-94-1	3,3'-Dichlorobenzidine		21	UJc
56-55-3	Benzo(a)anthracene		11	U
218-01-9	Chrysene		11	· U
117-81-7	bis(2-Ethylhexyl)phthala	ate	11	U
117-84-0	Di-n-octylphthalate		11	U
205-99-2	Benzo(b)fluoranthene		11	U
207-08-9	Benzo(k)fluoranthene		11	U
50-32-8	Benzo(a)pyrene		11	U
193-39-5	Indeno(1,2,3-cd)pyrene		11	U
62-75-9	N-Nitrosodimethylamine)	11	U
53-70-3	Dibenz(a,h)anthracene		11	U
191-24-2	Benzo(g,h,i)perylene		11	U

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1262602 STL Newburgh Contract: 01012.01 Lab Name: SAS No.: SDG No.: 213350 Lab Code: 10142 Case No.: Lab Sample ID: 213350-003 Matrix: (soil/water) WATER S27804.D (g/ml) ML Lab File ID: 950 Sample wt/vol: LOW Date Received: 6/28/02 Level: (low/med) Date Extracted: 7/3/02 decanted: (Y/N) % Moisture: Date Analyzed: 7/16/02 Concentrated Extract Volume: 1000 (uL) Dilution Factor: 1.0 Injection Volume: 2.0 (uL)

CONCENTRATION UNITS:

UG/L (ug/L or ug/Kg) Number TICs found: EST. CONC. Q CAS NUMBER COMPOUND NAME RT

N pH:

GPC Cleanup: (Y/N)

M-NY049

PA 68-378

1B

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-1362602

Lab Name:	STL Nev	wburgh		C	ontract:	01012.01		_
Lab Code:	10142	Ca	se No.:		SAS No	o.: S	SDG No.: 213350	
Matrix: (soil/v	vater)	WATER			Lal	b Sample ID:	213350-004	
Sample wt/vo	ol:	970.0	(g/ml) ML		Lal	b File ID:	S27805.D	
Level: (low/n	ned)	LOW			Da	te Received:	6/28/02	
% Moisture:		de	canted:(Y/N)	N	Da	te Extracted:	7/3/02	
Concentrated	d Extract	Volume:	1000 (uL)		Da	te Analyzed:	7/16/02	
Injection Volu	ıme: <u>2</u>	.0 (uL)			Dil	ution Factor:	1.0	
GPC Cleanup	p: (Y/N)	N	pH:	_			·	

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
111-44-4	bis(2-Chloroethyl)eth	пег	10	U
108-95-2	Phenol		10	UJL
95-57-8	2-Chlorophenol		10	U
541-73-1	1,3-Dichlorobenzene)	10	U
106-46-7	1,4-Dichlorobenzene		10	Սյլ
95-50-1	1,2-Dichlorobenzene		10	U
100-51-6	Benzyl alcohol		10	Ų
108-60-1	2,2'-oxybis(1-Chloro	propane)	10	U
95-48-7	2-Methylphenol		10	U
67-72-1	Hexachloroethane		10	U
621-64-7	N-Nitroso-di-n-propy	lamine	10	UJL
106-44-5	4-Methylphenol		10	U
98-95-3	Nitrobenzene		10	U
78-59-1	Isophorone		10	U
88-75-5	2-Nitrophenol		10	U
105-67-9	2,4-Dimethylphenol		10	U
	bis(2-Chloroethoxy)r	nethane	10	U
120-83-2	2,4-Dichlorophenol		10	U
120-82-1	1,2,4-Trichlorobenze	ne	10	UJL
91-20-3	Naphthalene		10	U
106-47-8	4-Chloroaniline		10	U
87-68-3	Hexachlorobutadiene	9	10	U
59-50-7	4-Chloro-3-methylph	enol	10	UJL
91-57-6	2-Methylnaphthalene		10	U
77-47-4	Hexachlorocyclopen	tadiene	10	U
88-06-2	2,4,6-Trichloropheno		10	U
95-95-4	2,4,5-Trichloropheno	ol l	10	U
91-58-7	2-Chloronaphthalene)	10	U
88-74-4	2-Nitroaniline		26	U
208-96-8	Acenaphthylene		10	U
131-11-3	Dimethylphthalate		10	U
606-20-2	2,6-Dinitrotoluene		10	U
83-32-9	Acenaphthene		10	U
99-09-2	3-Nitroaniline		26	UJc
51-28-5	2,4-Dinitrophenol		26	U
132-64-9	Dibenzofuran		10	U
121-14-2	2,4-Dinitrotoluene		10	U

STL Newburgh is a part of Severn Trent Laboratories, Inc.

315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-1362602

Lab Name: STL N		wburgh	Co	ntract: <u>01012.</u>	.01
Lab Code:	10142	Case No.:		SAS No.:	SDG No.: 213350
Matrix: (soil/v	vater)	WATER		Lab Sampl	le ID: 213350-004
Sample wt/vo	ol:	970.0 (g/ml) ML		Lab File ID): S27805.D
Level: (low/n	ned)	LOW		Date Rece	ived: <u>6/28/02</u>
% Moisture:		decanted:(Y/N)	. N	Date Extra	acted: 7/3/02
Concentrated	Extract	Volume: <u>1000</u> (uL)		Date Analy	yzed: <u>7/16/02</u>
Injection Volu	ıme: <u>2</u>	.0 (uL.)	•	Dilution Fa	actor: 1.0
GPC Cleanup	p: (Y/N)	N pH:			

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or	rug/Kg) <u>UG/L</u>	Q
100-02-7	4-Nitrophenol	-26	U RL
86-73-7	Fluorene	10	U
7005-72-3	4-Chlorophenyl-phenylether	10	U
84-66-2	Diethylphthalate	10	U
100-01-6	4-Nitroaniline	26	UJc
534-52-1	4,6-Dinitro-2-methylphenol	26	U
86-30-6	n-Nitrosodiphenylamine (1)	10	U
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	U
87-86-5	Pentachlorophenol	26	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	21	<u>UJc</u>
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
117-81-7	bis(2-Ethylhexyl)phthalate	10	U
117-84-0	Di-n-octylphthalate	10	<u> </u>
205-99-2	Benzo(b)fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
62-75-9	N-Nitrosodimethylamine	10	U
53-70-3	Dibenz(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

000405 STL Newburgh

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1362602

Lab Name:	STL Nev	vburgh		Contract:	01012.0)1.			
Lab Code:	10142	Case N	lo.:	SAS N	o.:	_ SE	OG No.:	21335	50
Matrix: (soil/v	vater)	WATER		La	ab Sample	ID:	213350-	004	
Sample wt/vo	ol:	970 (g	/ml) <u>ML</u>	La	b File ID:		S27805.	.D	_
Level: (low/n	ned)	LOW		Da	ate Receiv	/ed:	6/28/02		
% Moisture:		decante	d: (Y/N)	N Da	ate Extrac	ted:	7/3/02		
Concentrated	Extract \	Volume: 1000	(uL)	Da	ate Analyz	ed:	7/16/02		
Injection Volu	me: <u>2.0</u>	(uL)		Di	lution Fac	tor:	1.0		_
GPC Cleanup	o: (Y/N)	<u>N</u> pH:							
				CONCENT	TRATION	UNIT	īs:		
Number TICs	found:	6		(ug/L or uç	g/Kg)	UG/L	<u> </u>		
	1								

CAS NUI	MBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 000	105-60-2	Caprolactam	10.06	19	JN⊤
2.		Unknown CnH2n+2	20.80	3	J_{T}
3.		Unknown CnH2n+2	21.44	4	JT
4.		Unknown CnH2n+2	22.06	3	J
5.		Unknown CnH2n+2	22.67	4	J۳
6.		Unknown	23.24	3	J _T

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-1462602

Lab Name:	STL Ne	wburgh		C	ontract: <u>01012</u>	.01		
Lab Code:	10142 Case No.:				SAS No.:	sd	DG No.: 213350	
Matrix: (soil/v	vater)	WATER			Lab Sampl	e ID: 2	213350-005	
Sample wt/vo	ol:	980.0	(g/ml) <u>ML</u>		Lab File ID):	S27806.D	
Level: (low/n	ned)	LOW			Date Rece	ived:	6/28/02	
% Moisture:		de	canted:(Y/N)	N	_ Date Extra	cted:	7/3/02	
Concentrated	l Extract	Volume:	1000 (uL)		Date Analy	/zed:]	7/16/02	
Injection Volu	ıme: <u>2</u>	.0 (uL)			Dilution Fa	ctor: _	1.0	
GPC Cleanur	o: (Y/N)	N	pH:	_				

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
111-44-4	bis(2-Chloroethyl)ethe	er	10	U
108-95-2	Phenol		10	UJL
95-57-8	2-Chlorophenol		10	U
541-73-1	1,3-Dichlorobenzene		10	U
106-46-7	1,4-Dichlorobenzene		10	<u>በ</u> ፲፫
95-50-1	1,2-Dichlorobenzene		10	U
100-51-6	Benzyl alcohol		10	U
108-60-1	2,2'-oxybis(1-Chlorop	ropane)	. 10	U
95-48-7	2-Methylphenol		10	U
67-72-1	Hexachloroethane		10	U
621-64-7	N-Nitroso-di-n-propyla	amine	10	UJL
106-44-5	4-Methylphenol		10	U
98-95-3	Nitrobenzene		10	U
78-59-1	Isophorone		10	.U
88-75-5	2-Nitrophenol		10	U
105-67-9	2,4-Dimethylphenol		10	U
111-91-1	bis(2-Chloroethoxy)m	nethane	10	U
120-83-2	2,4-Dichlorophenol		10	U
120-82-1	1,2,4-Trichlorobenzer	пе	10	ՍՄՎ
91-20-3	Naphthalene		10	U
106-47-8	4-Chloroaniline		10	U
87-68-3	Hexachlorobutadiene		10	Ų
59-50-7	4-Chloro-3-methylphe	enol	10	UJυ
91-57-6	2-Methylnaphthalene		10	U
77-47-4	Hexachlorocyclopent	adiene	10	U
88-06-2	2,4,6-Trichlorophenol		10	U
95-95-4	2,4,5-Trichlorophenol		10	U
91-58-7	2-Chloronaphthalene		10	U
88-74-4	2-Nitroaniline		26	U
208-96-8	Acenaphthylene		10	U
131-11-3	Dimethylphthalate		10	U
606-20-2	2,6-Dinitrotoluene		10	U
83-32-9	Acenaphthene		10	U
99-09-2	3-Nitroaniline		26	UJc
51-28-5	2,4-Dinitrophenol		26	U
132-64-9	Dibenzofuran		10	U_
121-14-2	2,4-Dinitrotoluene		10	U

STL Newburgh is a part of Severn Trent Laboratories, Inc.

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

3/90

M-NY049

EPA SAMPLE NO.

Q

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-1462602

Lab Name:	STL Ne	wburgh		c	ontract:	01012.01		
Lab Code:	10142	10142 Case No.:			SAS No	o S	DG No.: 213350	
Matrix: (soil/v	water)	WATER	_		Lat	Sample ID:	213350-005	
Sample wt/vo	ol:	980.0	(g/ml) ML		Lat	b File ID:	S27806.D	
Level: (low/n	ned)	LOW	_		Da	te Received:	6/28/02	
% Moisture:		de	canted:(Y/N) _	N	Da	te Extracted:	7/3/02	
Concentrated	d Extract	Volume:	1000 (uL)		Da	te Analyzed:	7/16/02	
Injection Volu	ume: <u>2</u>	.0 (uL)			Dile	ution Factor:	1.0	
GPC Cleanu	p: (Y/N)	N	рН:	-				

COMPOUND

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

100-02-7	4-Nitrophenol	26	
86-73-7	Fluorene	10	U
7005-72-3	4-Chlorophenyl-phenylether	10	U
84-66-2	Diethylphthalate	10	U
100-01-6	4-Nitroaniline	26	UJc
534-52-1	4,6-Dinitro-2-methylphenol	26	U
86-30-6	n-Nitrosodiphenylamine (1)	10	U
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	U
87-86-5	Pentachlorophenol	26	Ŋ.
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	C
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	20	UJc
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
117-81-7	bis(2-Ethylhexyl)phthalate	10	U
117-84-0	Di-n-octylphthalate	10	U
205-99-2	Benzo(b)fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U

CAS NO.

50-32-8

62-75-9

53-70-3

191-24-2

193-39-5

000418

10

10

10

10

10

PA 68-378

U

U

Ū

U

Benzo(a)pyrene

Indeno(1,2,3-cd)pyrene

N-Nitrosodimethylamine

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1462602

Lab Name:	STL Nev	wburgh		Contrac	t: <u>01012.0</u>	1		
Lab Code:	10142	Case No.:		_ SASI	No.:	_ SI	DG No.: 213	350
Matrix: (soil/v	vater)	WATER		L	ab Sample	ID:	213350-005	
Sample wt/vo	of:	980 (g/ml	ML	_ : t	ab File ID:		S27806.D	
Level: (low/n	ned)	LOW		r	Date Receiv	/ed:	6/28/02	<u>.</u>
% Moisture:		decanted: ((Y/N)	<u>N</u> [Date Extrac	ted:	7/3/02	
Concentrated Extract Volume: 1000 (uL)			(uL)	Date Analyzed:			7/16/02	
Injection Volu	ıme: <u>2.0</u>) (uL)		Dilution Factor:			1.0	
GPC Cleanup	p: (Y/N)	NpH:						
				CONCE	NTRATION	UNIT	rs:	
Number TICs	found:	0		(ug/L or t	ıg/Kg)	UG/L	-	
CAS NUME	BER	COMPOUND NA	ME		RT	ES	T. CONC.	Q

EPA NY048

1B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

ヒシハ	$\sim \Lambda \Lambda \Lambda D I$	- NIC 1
	SAMPL	_E. IVO.

Lab Name:	STL Nev	wburah			Contract:	01012.01	6MW-1562602
Lab Code:	10142		ase No.:		SAS No	•	DG No.: 213350
Matrix: (soil/v	vater)	WATER	_		La	b Sample ID:	213350-006
Sample wt/vo	ol:	950.0	(g/ml) <u>ML</u>		La	b File ID:	S27807.D
Level: (low/n	ned)	LOW			Da	te Received:	6/28/02
% Moisture:		de	canted:(Y/N)	N	Da	ite Extracted:	7/3/02
Concentrated	i Extract	Volume:	1000 (uL)		Da	ite Analyzed:	7/16/02
Injection Volu	ıme: <u>2</u>	0 (uL)			Dil	ution Factor:	1.0
GPC Cleanur	o: (Y/N)	N	pH:				

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
111-44-4	bis(2-Chloroethyl)eth	er	11	U
108-95-2	Phenol		11	UJL
95-57-8	2-Chlorophenol		11	U
541-73-1	1,3-Dichlorobenzene		11	U
106-46-7	1,4-Dichlorobenzene		11	UJL
95-50-1	1,2-Dichlorobenzene		11	U
100-51-6	Benzyl alcohol		11	U
108-60-1	2,2'-oxybis(1-Chlorop	ropane)	11	U
95-48-7	2-Methylphenol		11	U
67-72-1	Hexachloroethane		11	U.
621-64-7	N-Nitroso-di-n-propyl	amine	11	UJL
106-44-5	4-Methylphenol		11	U
98-95-3	Nitrobenzene	ľ	11	U
78-59-1	Isophorone		11	U
88-75-5	2-Nitrophenol		11	Ü
105-67-9	2,4-Dimethylphenol		11	U
111-91-1	bis(2-Chloroethoxy)m	nethane	11	U
120-83-2	2,4-Dichlorophenol		11	U
120-82-1	1,2,4-Trichlorobenzer	ne	11	UJՆ
91-20-3	Naphthalene		11	Ų
106-47-8	4-Chloroaniline		11	U
87-68-3	Hexachlorobutadiene		11	U
59-50-7	4-Chloro-3-methylphe	enol	11	UJL
91-57-6	2-Methylnaphthalene		11	U
77-47-4	Hexachlorocyclopent	adiene	11	U
88-06-2	2,4,6-Trichlorophenol		11	U
95-95-4	2,4,5-Trichlorophenol		11	U
91-58-7	2-Chloronaphthalene		11	U
88-74-4	2-Nitroaniline		26	U
208-96-8	Acenaphthylene		11	U
131-11-3	Dimethylphthalate		11	U
606-20-2	2,6-Dinitrotoluene		11	U
83-32-9	Acenaphthene		11	U
99-09-2	3-Nitroaniline		26	UJC
51-28-5	2,4-Dinitrophenol		26	U
132-64-9	Dibenzofuran		11	U
121-14-2	2,4-Dinitrotoluene		11	U

NYSDOH 10142

STL Newburgh is a part of Severn Trent Laboratories, Inc.

STL Newburgh 315 Fullenton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

NJDEP 73015

RL

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-1562602

Lab Name:	STL Ne	wburgh	•	(Contract: 01012.01	
Lab Code:	10142	Ca	se No.:		SAS No.: S	SDG No.: 213350
Matrix: (soil/v	vater)	WATER	_		Lab Sample ID:	213350-006
Sample wt/vo	ol:	950.0	(g/ml) ML		Lab File ID:	S27807.D
Level: (low/n	ned)	LOW			Date Received:	6/28/02
% Moisture:		ded	canted:(Y/N)	N	Date Extracted:	7/3/02
Concentrated	Extract	Volume: _	1000 (uL)		Date Analyzed:	7/16/02
Injection Volu	ıme: <u>2</u>	.0 (uL)			Dilution Factor:	1.0
GPC Cleanup	p: (Y/N)	<u> </u>	pH:			

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
---------	----------	----------------------	---

100-02-7 4-Nitrophenol -26 86-73-7 Fluorene 11 7005-72-3 4-Chlorophenyl-phenylether 11 84-66-2 Diethylphthalate 11 100-01-6 4-Nitroaniline 26 534-52-1 4,6-Dinitro-2-methylphenol 26 86-30-6 n-Nitrosodiphenylamine (1) 11 101-55-3 4-Bromophenyl-phenylether 11 118-74-1 Hexachiorobenzene 11 87-86-5 Pentachlorophenol -26 85-01-8 Phenanthrene 11 120-12-7 Anthracene 11 84-74-2 Di-n-butylphthalate 11 206-44-0 Fluoranthene 11	3 UJm
7005-72-3 4-Chlorophenyl-phenylether 11 84-66-2 Diethylphthalate 11 100-01-6 4-Nitroaniline 26 534-52-1 4,6-Dinitro-2-methylphenol 26 86-30-6 n-Nitrosodiphenylamine (1) 11 101-55-3 4-Bromophenyl-phenylether 11 118-74-1 Hexachlorobenzene 11 87-86-5 Pentachlorophenol -26 85-01-8 Phenanthrene 11 120-12-7 Anthracene 11 84-74-2 Di-n-butylphthalate 11 206-44-0 Fluoranthene 11	1 U
84-66-2 Diethylphthalate 11 100-01-6 4-Nitroaniline 26 534-52-1 4,6-Dinitro-2-methylphenol 26 86-30-6 n-Nitrosodiphenylamine (1) 11 101-55-3 4-Bromophenyl-phenylether 11 118-74-1 Hexachlorobenzene 11 87-86-5 Pentachlorophenol -26 85-01-8 Phenanthrene 11 120-12-7 Anthracene 11 84-74-2 Di-n-butylphthalate 11 206-44-0 Fluoranthene 11	
100-01-6 4-Nitroaniline 26 534-52-1 4,6-Dinitro-2-methylphenol 26 86-30-6 n-Nitrosodiphenylamine (1) 11 101-55-3 4-Bromophenyl-phenylether 11 118-74-1 Hexachlorobenzene 11 87-86-5 Pentachlorophenol -26 85-01-8 Phenanthrene 11 120-12-7 Anthracene 11 84-74-2 Di-n-butylphthalate 11 206-44-0 Fluoranthene 11	
534-52-1 4,6-Dinitro-2-methylphenol 26 86-30-6 n-Nitrosodiphenylamine (1) 11 101-55-3 4-Bromophenyl-phenylether 11 118-74-1 Hexachlorobenzene 11 87-86-5 Pentachlorophenol -26 85-01-8 Phenanthrene 11 120-12-7 Anthracene 11 84-74-2 Di-n-butylphthalate 11 206-44-0 Fluoranthene 11	
86-30-6 n-Nitrosodiphenylamine (1) 11 101-55-3 4-Bromophenyl-phenylether 11 118-74-1 Hexachlorobenzene 11 87-86-5 Pentachlorophenol -26 85-01-8 Phenanthrene 11 120-12-7 Anthracene 11 84-74-2 Di-n-butylphthalate 11 206-44-0 Fluoranthene 11	
101-55-3 4-Bromophenyl-phenylether 11 118-74-1 Hexachlorobenzene 11 87-86-5 Pentachlorophenol 26 85-01-8 Phenanthrene 11 120-12-7 Anthracene 11 84-74-2 Di-n-butylphthalate 11 206-44-0 Fluoranthene 11	
118-74-1 Hexachlorobenzene 11 87-86-5 Pentachlorophenol -26 85-01-8 Phenanthrene 11 120-12-7 Anthracene 11 84-74-2 Di-n-butylphthalate 11 206-44-0 Fluoranthene 11	
87-86-5 Pentachlorophenol -26 85-01-8 Phenanthrene 11 120-12-7 Anthracene 11 84-74-2 Di-n-butylphthalate 11 206-44-0 Fluoranthene 11	
85-01-8 Phenanthrene 11 120-12-7 Anthracene 11 84-74-2 Di-n-butylphthalate 11 206-44-0 Fluoranthene 11	
120-12-7 Anthracene 11 84-74-2 Di-n-butylphthalate 11 206-44-0 Fluoranthene 11	
84-74-2 Di-n-butylphthalate 11 206-44-0 Fluoranthene 11	
206-44-0 Fluoranthene 11	i U
)	1 U
129-00-0 Pyrene 11	1 U
85-68-7 Butylbenzylphthalate 11	1 U
91-94-1 3,3'-Dichlorobenzidine 21	1 UJc
56-55-3 Benzo(a)anthracene 11	1 U
218-01-9 Chrysene 11	1 U
117-81-7 bis(2-Ethylhexyl)phthalate 11	1 U
117-84-0 Di-n-octylphthalate 11	1 U
205-99-2 Benzo(b)fluoranthene 11	1 U
207-08-9 Benzo(k)fluoranthene 11	1 U
50-32-8 Benzo(a)pyrene 11	1 U
193-39-5 Indeno(1,2,3-cd)pyrene 11	1 U
62-75-9 N-Nitrosodimethylamine 11	1 U
53-70-3 Dibenz(a,h)anthracene 11	
191-24-2 Benzo(g,h,i)perylene 11	1 U

STL Newburgh is a part of Severn Trent Laboratories, Inc.

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMPLE	NO.

6MW-1562602 Contract: 01012.01 STL Newburgh Lab Name: SDG No.: 213350 10142 Case No.: SAS No.: Lab Code: Lab Sample ID: 213350-006 Matrix: (soil/water) WATER Lab File ID: S27807.D Sample wt/vol: 950 (g/ml) ML LOW Date Received: 6/28/02 Level: (low/med) Date Extracted: 7/3/02 decanted: (Y/N) % Moisture: Date Analyzed: 7/16/02 Concentrated Extract Volume: 1000 (uL) Dilution Factor: 1.0 Injection Volume: 2.0 (uL) GPC Cleanup: (Y/N) N pH: CONCENTRATION UNITS: Number TICs found: (ug/L or ug/Kg) UG/L Q EST, CONC. CAS NUMBER COMPOUND NAME RT

1B

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-1662602

Lab Name:	STL Ne	wburgh	<u> </u>	Contract:	01012.01		
Lab Code:	10142	Case No.:		SAS No	o.: S	SDG No.: 213350	
Matrix: (soil/v	water)	WATER		La	b Sample ID:	213350-007	
Sample wt/vo	ol:	970.0 (g/ml) MI	<u>L</u>	La	b File ID:	S27808.D	
Level: (low/r	ned)	LOW		Da	ite Received:	6/28/02	
% Moisture:		decanted:(Y/N) <u>N</u>	Da	ite Extracted:	7/3/02	
Concentrated	d Extract	Volume: 1000 (uL	.)	Da	ite Analyzed:	7/16/02	
Injection Volu	ume: <u>2</u>	.0 (uL)		Dil	ution Factor:	1.0	
GPC Cleanu	p: (Y/N)	<u>N</u> pH:				:	

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L o	or ug/Kg) <u>UG/L</u>	Q
111-44-4	bis(2-Chloroethyl)ether	10	U
108-95-2	Phenol	10	UJL
95-57 - 8	2-Chlorophenol	10	U
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	UJL
95-50-1	1,2-Dichlorobenzene	10	U
100-51-6	Benzyl alcohol	10	Ų
108-60-1	2,2'-oxybis(1-Chloropropane)	10	U
95-48-7	2-Methylphenol	10	U
67-72-1	Hexachloroethane	10	Ü
621-64-7	N-Nitroso-di-n-propylamine	10	UJL
106-44-5	4-Methylphenol	10	U
98-95-3	Nitrobenzene	10	U
78-59-1	Isophorone	10	U
88-75-5	2-Nitrophenol	10	U
105-67-9	2,4-Dimethylphenol	10	Ų
111-91-1	bis(2-Chloroethoxy)methane	10	U
120-83-2	2,4-Dichlorophenol	10	U
120-82-1	1,2,4-Trichlorobenzene	10	UJL
91-20-3	Naphthalene	10	U
106-47-8	4-Chloroaniline	10	U
87-68-3	Hexachlorobutadiene	10	U
59-50-7	4-Chloro-3-methylphenol	10	UJL
91-57-6	2-Methylnaphthalene	10	U
77-47-4	Hexachlorocyclopentadiene	10	U
88-06-2	2,4,6-Trichlorophenol	10	U
95-95-4	2,4,5-Trichlorophenol	10	U
91-58-7	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	26	U
208-96-8	Acenaphthylene	10	U
131-11-3	Dimethylphthalate	10	U
606-20-2	2,6-Dinitrotoluene	10	U
83-32-9	Acenaphthene	10	U
99-09-2	3-Nitroaniline	26	UJc
51-28-5	2,4-Dinitrophenol	26	U
132-64-9	Dibenzofuran	10	U
121-14-2	2,4-Dinitrotoluene	10	Ū

000431

STL Newburgh is a part of Severn Trent Laboratories, Inc.

EPA NY049

3/90

EPA SAMPLE NO.

		_						
SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET							6MW-1662602	
Lab Name:	STL Newb	urgh		Contract:	01012.01		<u>.</u>	
Lab Code:	10142	_ Case No.:		_ SAS No		SDO	3 No.:	213350
Matrix: (soil/\	water) <u>W</u>	ATER		Lat	Sample ID): <u>2</u>	13350-	007
Sample wt/vo	ol: <u>97</u>	70.0 (g/ml) <u>ML</u>	_ Lat	File ID:	<u>s</u>	27808.	D
Level: (low/r	ned) <u>L</u> (DW		Da	te Received	i: <u>6</u>	/28/02	<u> </u>
% Moisture:		decanted:	(Y/N)I	N Da	te Extracted	d: <u>7</u>	/3/02	<u> </u>
Concentrated	d Extract Vo	iume: <u>1000</u>	_ (uL)	Da	te Analyzed	l: <u>7</u>	/16/02	
Injection Vol	ume: <u>2.0</u>	_ (uL)		Dile	ution Factor	: <u>1</u>	.0	
GPC Cleanu	p: (Y/N) _	N pH:	 					
				CONC	ENTRATIO	N UI	VITS:	
CAS NO). D.	COMPOUND			r ug/Kg)			Q
<u> </u>								-
100-02	2-7	4-Nitropheno	ol				-26	- + Ru
86-73-	-7	Fluorene					10	U
7005-1	72-3	4-Chlorophe	nyl-phenyl	ether			10	U
84-66-	-2	Diethylphtha					10	U
100-0	1-6	4-Nitroanilin	e				26	UJc
534-5	2-1	4,6-Dinitro-2					26	U
86-30-	-6	n-Nitrosodip	henylamine	∋ (1)			10	U
101-5	5-3	4-Bromophe	nyl-phenyl	ether			10	U
118-74	4-1	Hexachlorob	enzene				10	U
87-86-	-5	Pentachloro	phenol				26	U
85-01-	-8	Phenanthrer	ne				10	U
120-12	2-7	Anthracene					10	U
84-74-	-2	Di-n-butylph	thalate				10	Ü

84-66-2	Diethylphthalate	10	U
100-01-6	4-Nitroaniline	26	UJc
534-52-1	4,6-Dinitro-2-methylphenol	26	U
86-30-6	n-Nitrosodiphenylamine (1)	10	U
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	U
87-86-5	Pentachlorophenol	26	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	21	U∄c
56-55-3	Benzo(a)anthracene	10	, · U
218-01-9	Chrysene	10	U
117-81-7	bis(2-Ethylhexyl)phthalate	10	U
117-84-0	Di-n-octylphthalate	10	U
205-99-2	Benzo(b)fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	indeno(1,2,3-cd)pyrene	10	U
62-75-9	N-Nitrosodimethylamine	10	U
E0 30 0	B2 (1) 41	40	11

53-70-3

191-24-2

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

Ū

10

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

ISMW-1662602

4

3

J-T

Lab Name:	STL Ne	wburgh		Contract:	01012.01	
Lab Code:	10142	Ca	ase No.:	SAS N	o.: S	SDG No.: 213350
Matrix: (soil/v	water)	WATER		La	ab Sample ID:	213350-007
Sample wt/vo	ol:	970	(g/ml) ML	La	ab File ID:	S27808.D
Level: (low/n	ned)	LOW		D	ate Received:	6/28/02
% Moisture:		ded	canted: (Y/N)	N Da	ate Extracted:	7/3/02
Concentrated	d Extract	Volume:	1000 (uL)	. Da	ate Analyzed:	7/16/02
Injection Volu	ume: <u>2.</u>	0 (uL)		Di	lution Factor:	1.0
GPC Cleanu	p: (Y/N)	N	pH:	·		

CONCENTRATION UNITS:

20.12 20.79

21.44

22.06

UG/L

(ug/L or ug/Kg)

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	Unknown	9.61	4	JT
2.	Unknown	9.88	4	Jτ
3.	Unknown	9.92	4	Jт
4.	Unknown	10.00	3	JŢ
5.	Unknown	10.11	3	Jт
6	Linknown	10.20	Q.	1

M-NY049

Number TICs found:

8.

9.

10.

10

Unknown

Unknown

Unknown

Unknown

1B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Q

6MW-1762602

Lab Name:	STL Nev	wburgh	(Contract:	01012.01	
Lab Code: 10142 Case No.: SAS No.: S					DG No.: 213350	
Matrix: (soil/v	vater)	WATER		La	b Sample ID:	213350-001
Sample wt/vo	ol:	930.0 (g/ml) ML		Lai	b File ID:	S27802.D
Level: (low/n	ned)	LOW		Da	te Received:	6/28/02
% Moisture:		decanted:(Y/N)	N	Da	te Extracted:	7/3/02
Concentrated	d Extract	Volume: <u>1000</u> (uL)		Da	te Analyzed:	7/16/02
Injection Volu	ıme: <u>2</u> .	.0 (uL)		Dil	ution Factor:	1.0
GPC Cleanu	p: (Y/N)	NpH:				• •

COMPOUND

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

	, ,		
111-44-4	bis(2-Chloroethyl)ether	11	U
108-95-2	Phenol	11	UJL
95-57-8	2-Chlorophenol	11	U
541-73-1	1,3-Dichlorobenzene	11	U
106-46-7	1,4-Dichlorobenzene	11	UJ∟
95-50-1	1,2-Dichlorobenzene	11	U
100-51-6	Benzyl alcohol	11	U
108-60-1	2,2'-oxybis(1-Chloropropane)	11	U
95-48-7	2-Methylphenol	11	U
67-72-1	Hexachioroethane	11	U
621-64-7	N-Nitroso-di-n-propylamine	11	UJL
106-44-5	4-Methylphenol	11	U
98-95-3	Nitrobenzene	11	U
78-59-1	Isophorone	11	U
88-75-5	2-Nitrophenol	11	U
105-67-9	2,4-Dimethylphenol	11	Ų
111-91-1	bis(2-Chloroethoxy)methane	11	U
120-83-2	2,4-Dichlorophenol	11	U
120-82-1	1,2,4-Trichlorobenzene	11	UJL
91-20-3	Naphthalene	11	U
106-47-8	4-Chloroaniline	11	Ū
87-68-3	Hexachlorobutadiene	11	U
59-50-7	4-Chloro-3-methylphenol	11	UTL
91-57-6	2-Methylnaphthalene	11	U
77-47-4	Hexachlorocyclopentadiene	11	U
88-06-2	2,4,6-Trichlorophenol	11	U
95-95-4	2,4,5-Trichlorophenol	11	Ų
91-58-7	2-Chloronaphthalene	11	U
88-74-4	2-Nitroaniline	27	U
208-96-8	Acenaphthylene	11	Ū
131-11-3	Dimethylphthalate	11	U
606-20-2	2,6-Dinitrotoluene	11	Ų
83-32-9	Acenaphthene	11	U
99-09-2	3-Nitroaniline	27	UJc
51-28-5	2,4-Dinitrophenol	27	U
132-64-9	Dibenzofuran	11	U
121-14-2	2,4-Dinitrotoluene	11	Ū
	CTI Nouth with it a part of Course Trant i abo	<u> </u>	

CAS NO.

STL Newburgh is a part of Severn Trent Laboratories, Inc.

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name:	STL Nev	wburgh		Contract:	01012.01	_	
Lab Code:	10142	0142 Case No.:		SAS No.: S		SDG No.: 213350	
Matrix: (soil/v	vater)	WATER		Lal	b Sample ID:	213350-001	
Sample wt/vo	ol:	930.0 (g/ml) ML		Lal	b File ID:	S27802.D	
Level: (low/m	ned)	LOW		Da	te Received:	6/28/02	
% Moisture:		decanted:(Y/N)	N	Da	te Extracted:	7/3/02	
Concentrated	i Extract	Volume: 1000 (uL)		Da	te Analyzed:	7/16/02	
Injection Volu	ıme: <u>2</u>	.0 (uL)		Dil	ution Factor:	1.0	
GPC Cleanu	p: (Y/N)	NpH:					

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or t	ıg/Kg) <u>UG/L</u>	Q
100-02-7	4-Nitrophenol	27	U RL
86-73-7	Fluorene	11	U
7005-72-3	4-Chlorophenyl-phenylether	11	U
84-66-2	Diethylphthalate	11	U
100-01-6	4-Nitroaniline	27	UJc
534-52-1	4,6-Dinitro-2-methylphenol	27	U
86-30-6	n-Nitrosodiphenylamine (1)	11	U
101-55-3	4-Bromophenyl-phenylether	11	Ù
118-74-1	Hexachlorobenzene	11	U
87-86-5	Pentachlorophenol	27	U
85-01-8	Phenanthrene	11	U .
120-12-7	Anthracene	11	U
84-74-2	Di-n-butylphthalate	11	U
206-44-0	Fluoranthene	11	U
129-00-0	Pyrene	11	U
85-68-7	Butylbenzylphthalate	11	U
91-94-1	3,3'-Dichlorobenzidine	22	UJC
56-55-3	Benzo(a)anthracene	11	U
218-01-9	Chrysene	11	U
117-81-7	bis(2-Ethylhexyl)phthalate	4	JQ
117-84-0	Di-n-octylphthalate	11	Ų.
205-99-2	Benzo(b)fluoranthene	11	U
207-08-9	Benzo(k)fluoranthene	11	<u> U </u>
50-32-8	Benzo(a)pyrene	11	U
193-39-5	Indeno(1,2,3-cd)pyrene	11	U
62-75-9	N-Nitrosodimethylamine	11	U
53-70-3	Dibenz(a,h)anthracene	11	U
191-24-2	Benzo(g,h,i)perylene	11	U

000358

PA 68-378

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	STL Ne	ewburah	Contract: 01012.	.01 6MW-1762602
Lab Code:	10142	Case No.:	SAS No.:	SDG No.: 213350
Matrix: (soil/	water)	WATER	Lab Sampl	e ID: 213350-001

(g/ml) ML Lab File ID: S27802.D Sample wt/vol: 930 Date Received: 6/28/02 Level: (low/med) LOW Date Extracted: 7/3/02 decanted: (Y/N) % Moisture: Date Analyzed: 7/16/02 Concentrated Extract Volume: 1000 (uL)

Dilution Factor: 1.0 Injection Volume: 2.0

GPC Cleanup: (Y/N) pH:

8

Number TICs found:

CONCENTRATION UNITS:

(ug/L or ug/Kg)

UG/L

<u> </u>			<u> </u>	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	Unknown	19.29	13	JT
2. 000921-47-1	Hexane, 2,3,4-trimethyl-	19.43	2	JNT
3. 000629-78-7	Heptadecane	20.13	3	JN ₇
4	Halmour Call 2n+2	20.70	1 1	جار ا

CAS NUMBER	COMPOUND NAME	RT	EST, CONC.	Q
1.	Unknown	19.29	13	J۲
2. 000921-47-1	Hexane, 2,3,4-trimethyl-	19.43	2	JNT
3. 000629-78-7	Heptadecane	20.13	3	JN ₇
4.	Unknown CnH2n+2	20.79	4	J ₇
5.	Unknown CnH2n+2	21.45	4	JT
6. 000085-60-9	Phenol, 4,4'-butylidenebis[2-(1,1-	21.95	36	JNT
7.	Unknown CnH2n+2	22.06	44	JT
8. 000000-00-0	4,4-Dimethylcyclooctene	22.66	3	JNT

Q

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-1862602

Lab Name:	STL Ne	STL Newburgh			tract: 01012.01	
Lab Code:	10142 Case No.:		s	AS No.:	SDG No.: 213350	
Matrix: (soil/\	water)	WATER			Lab Sample l	D: 213350-008
Sample wt/vo	ol:	980.0	(g/ml) ML	·	Lab File ID:	S27809.D
Level: (low/r	ned)	LOW			Date Receive	ed: 6/28/02
% Moisture:		de	canted:(Y/N)	N	Date Extracte	ed: <u>7/3/02</u>
Concentrated	d Extract	Volume:	1000 (uL)		Date Analyze	ed: <u>7/16/02</u>
Injection Vol	ume: <u>2</u>	.0 (uL)			Dilution Factor	or: 1.0
GPC Cleanu	p: (Y/N)	N	pH:	-	•	

COMPOUND

CONCENTRATION UNITS:

UG/L

(ug/L or ug/Kg)

	J,	
bis(2-Chloroethyl)ether	10	U
Phenol	10	ሀፓር
2-Chlorophenol	10	U
1,3-Dichlorobenzene	10	U
1,4-Dichlorobenzene	10	UJ
1,2-Dichlorobenzene	10	U
Benzyl alcohol	10	U
2,2'-oxybis(1-Chloropropane)	10	Ū
2-Methylphenol	10	U
Hexachloroethane	10	U
N-Nitroso-di-n-propylamine	10	UJL
4-Methylphenol	10	U
Nitrobenzene	10	U
Isophorone	10	U
2-Nitrophenol	10	U
2,4-Dimethylphenol	10	U
bis(2-Chloroethoxy)methane	10	U
2,4-Dichlorophenol	10	U
1,2,4-Trichlorobenzene	10	UJL
Naphthalene	10	U
4-Chloroaniline	10	U
Hexachlorobutadiene	10	U
4-Chloro-3-methylphenol	10	UJL
2-Methylnaphthalene	10	U
Hexachlorocyclopentadiene	10	U
2,4,6-Trichlorophenol	10	U
2,4,5-Trichlorophenol	10	U
2-Chloronaphthalene	10	U
2-Nitroaniline	26	U
Acenaphthylene	10	U
Dimethylphthalate	10	U
2,6-Dinitrotoluene	10	U
Acenaphthene	10	U
3-Nitroaniline	26	UJc
2,4-Dinitrophenol	26	U
Dibenzofuran	10	U
2,4-Dinitrotoluene	10	U
	bis(2-Chloroethyl)ether Phenol 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Benzyl alcohol 2,2'-oxybis(1-Chloropropane) 2-Methylphenol Hexachloroethane N-Nitroso-di-n-propylamine 4-Methylphenol Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene 4-Chloro-1-methylphenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2-Methylnaphthalene 2-Methylnaphthalene 2-Methylnaphthalene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 3-Nitroaniline Acenaphthylene Dimethylphthalate 2,6-Dinitrotoluene Acenaphthene 3-Nitroaniline 2,4-Dinitrophenol Dibenzofuran	Phenol 10 2-Chlorophenol 10 1,3-Dichlorobenzene 10 1,4-Dichlorobenzene 10 1,2-Dichlorobenzene 10 Benzyl alcohol 10 2,2'-oxybis(1-Chloropropane) 10 2-Methylphenol 10 Hexachloroethane 10 N-Nitroso-di-n-propylamine 10 4-Methylphenol 10 Nitrobenzene 10 Isophorone 10 2-Nitrophenol 10 2,4-Dimethylphenol 10 2,4-Dimethylphenol 10 2,4-Dichlorophenol 10 1,2,4-Trichlorophenol 10 1,2,4-Trichlorophenol 10 Naphthalene 10 4-Chloro-3-methylphenol 10 2-Methylnaphthalene 10 4-Chloro-3-methylphenol 10 2,4,6-Trichlorophenol 10 2,4,5-Trichlorophenol 10 2,4,5-Trichlorophenol 10 2,-Koronaphthylene 10 2,-Chlo

CAS NO.

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tei (845) 562-0890 Fax (845) 562-0841

3/90

M-NY049

EPA SAMPLE NO.

SEMIV	3MW-18	162602			
_ab Name: STL Newbu	rgh	Contract: 0101	2.01		02002
_ab Code: 10142	Case No.:	SAS No.:	SDG	No.: 2	13350
Matrix: (soil/water) WA	ATER	Lab Sam	nple ID: 21	3350-00)8
Sample wt/vol: 986	0.0 (g/ml) ML	Lab File	ID: S2	7809.D	•
_evel: (low/med) LO	W	- Date Re	ceived: 6/2	28/02	
-	decanted:(Y/N)	N Date Ext	racted: 7/3	3/02	
Concentrated Extract Volu			 alyzed: 7/ <i>*</i>	16/02	
njection Volume: 2.0		Dilution I	Factor: 1.0) .	
GPC Cleanup: (Y/N)	•				
	<u> </u>		A TIÔN I I IN	uro.	•
		CONCENTR	ATION UN	115:	
CAS NO.	COMPOUND	(ug/L or ug/K	(g) <u>UG/L</u>		Q
100-02-7	4-Nitrophenol			26	— U-RL
86-73-7	Fluorene			10	U
7005-72-3	4-Chlorophenyl-phenyle	ether		10	U
84-66-2	Diethylphthalate			10	U
100-01-6	4-Nitroaniline			26	UJc
534-52-1	4,6-Dinitro-2-methylphe	nol	<u> </u>	26	U
86-30-6	n-Nitrosodiphenylamine			10	U
101-55-3	4-Bromophenyl-phenyle			10	U
118-74-1	Hexachlorobenzene			10	U
87-86-5	Pentachlorophenol			26	U
85-01-8	Phenanthrene	•		10	U
120-12-7	Anthracene			10	U
84-74-2	Di-n-butylphthalate			10	U
206-44-0	Fluoranthene			10	U
120_00_0	Pyrene			10	11

000449

Butylbenzylphthalate

Benzo(a)anthracene

Di-n-octylphthalate

Benzo(a)pyrene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

N-Nitrosodimethylamine

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

Chrysene

3,3'-Dichlorobenzidine

bis(2-Ethylhexyl)phthalate

85-68-7

91-94-1

56-55-3

218-01-9

117-81-7

117-84-0

205-99-2

207-08-9

50-32-8

193-39-5

62-75-9

53-70-3

191-24-2

10

20

10

10

1

10

10

10

10

10

10

10

10

U

U

U

U

Ū

U

U

U

U

U

U

Jω

Ujc

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1862602

Lab Name:	STL Nev	wburgh	Contrac	t: <u>01012.0</u>	1 [
Lab Code:	10142	Case No.:	SAS	No.:	_ SDG	No.: 213	350
Matrix: (soil/v	vater)	WATER	İ	_ab Sample	ID: <u>21</u>	3350-008	·
Sample wt/vo	ol:	980 (g/ml) ML	1	_ab File ID:	<u>S2</u>	7809.D	
Level: (low/n	ned)	LOW	·	Date Receiv	/ed: <u>6/2</u>	8/02	
% Moisture:		decanted: (Y/N)	N	Date Extrac	ted: <u>7/3</u>	/02	
Concentrated	d Extract	Volume: <u>1000</u> (uL)	· į i	Date Analyz	zed: <u>7/1</u>	6/02	
Injection Volu	ıme: <u>2.0</u>	<u>)</u> (uL)	İ	Dilution Fac	tor: <u>1.0</u>	<u> </u>	
GPC Cleanup	p: (Y/N)	pH:					
Number TICs	s found:	6	CONCE! (ug/L or	NTRATION ug/Kg)	UNITS: UG/L		
CAS NUME	BER	COMPOUND NAME	-	RT	EST.	CONC.	Q

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q.
1.	Unknown CnH2n+2O	17.86	10	JT
2.	Unknown	19.42	13	JT
3.	Unknown CnH2n	20.12	2	JT
4.	Unknown CnH2n+2	20.79	10	J _T
5.	Unknown CnH2n+2	21.44	4	JT
6.	Unknown	22.06	2	<u> </u>

1B

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-1962602

Lab Name:	STL Nev	vburgh			_ C	ontract	: <u>01012.01</u>		
Lab Code:	10142	C:	ase No.:			SAS N	lo.:	SDG No.: 213350	
Matrix: (soil/v	water)	WATER	_			L	ab Sample ID): <u>213350-010</u>	
Sample wt/vo	ol:	950.0	_ (g/ml)	ML		L	ab File ID:	S27811.D	
Level: (low/n	ned)	LOW				D	ate Received	d: <u>6/28/02</u>	
% Moisture:		de	ecanted:(Y/N)	N		ate Extracted	d: <u>7/2/02</u>	
Concentrated	d Extract	Volume:	1000	(uL)		D	ate Analyzed	l: <u>7/16/02</u>	
Injection Volu	ıme: <u>2</u> .	0 (uL)				С	ilution Factor	: 1.0	
GPC Cleanu _l	p: (Y/N)	N	. pH:	· · · · · ·					

CONCENTRATION UNITS:

COMPOUND	(ug/L or ug/Kg)	UG/L	Q
bis(2-Chloroethyl)eth	er	11	U
Phenol		11	ՍՄև
2-Chlorophenol		11	U
1,3-Dichlorobenzene		11	U
1,4-Dichlorobenzene		11	UJL
		11	Ü
		11	U
	ropane)	11	U
		11	Ū
		11	U
	amine	11	UJL
		11	Ü
		11	U
		11	· U
		11	U
		11	U
	nethane	11	Ū
		11	· U
	ne	11	UJL
		11	U
		11	U
		11	U
		11	UJL
		11	U
		11	· U
		11	U
		11	U
1		11	U
		26	U
		11	Ü
		11	Ų
		11	U
		11	U
		26	UJc
		26	Ų
		11	U
	*	11	U
	bis(2-Chloroethyl)ether Phenol 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Benzyl alcohol 2,2'-oxybis(1-Chlorop 2-Methylphenol Hexachloroethane N-Nitroso-di-n-propyl 4-Methylphenol Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy)m 2,4-Dichlorophenol 1,2,4-Trichlorobenzen Naphthalene 4-Chloro-3-methylphe 2-Methylnaphthalene Hexachlorocyclopent 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol	bis(2-Chloroethyl)ether Phenol 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Benzyl alcohol 2,2'-oxybis(1-Chloropropane) 2-Methylphenol Hexachloroethane N-Nitroso-di-n-propylamine 4-Methylphenol Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene Dimethylphthalate 2,6-Dinitrotoluene Acenaphthene 3-Nitroaniline Acenaphthene 3-Nitroaniline 2,4-Dinitrophenol Dibenzofuran	bis(2-Chloroethyl)ether

STL Newburgh is a part of Severn Trent Laboratories, Inc.

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

NYSDOH 10142

3/90

	SEN	MIVOLATILE ORGANICS	SANALYSIS	DA	TA SHEET	6MW-1	062602
Lab Name:	STL Nev	vburgh	Contra	ct:	01012.01	OIVIVV-1.	302002
Lab Code:	10142	-	and the second s			SDG No.: 2	213350
Matrix: (soil/					Sample ID:		
Sample wt/v	ol.	950.0 (g/ml) ML		Lab	File ID:	S27811.E) -
•					e Received:		
Level: (low/r							
% Moisture:		decanted:(Y/N)	N	Dat	e Extracted:	7/2/02	
Concentrate	d Extract \	Volume: 1000 (uL)		Dat	e Analyzed:	7/16/02	
Injection Vol	ume: 2.	0 (uL)		Dilu	ution Factor:	1.0	
GPC Cleanu	 ip: (Y/N)	N pH:	-				
		•					
			CO	NC	ENTRATION	UNITS:	
CAS NO) . •	COMPOUND	(ug	/L o	r ug/Kg) <u>U</u>	G/L	Q
100-0	2-7	4-Nitrophenol	.=-			-26	U RL
86-73		Fluorene				11	U
7005-		4-Chlorophenyl-phe	envlether			11	U
84-66		Diethylphthalate				.11	U
100-0		4-Nitroaniline				26	UJc
534-5		4,6-Dinitro-2-methy	/lphenol			26	Ų
86-30		n-Nitrosodiphenyla				11	U
	5-3	4-Bromophenyl-phe				11	U
118-7		Hexachlorobenzen				11	U
	-5	Pentachlorophenol			1	26	U
85-01		Phenanthrene				11	U
120-1		Anthracene				11	U
84-74		Di-n-butylphthalate	:			11	U
206-4		Fluoranthene				11	U
129-0		Pyrene				11	U
85-68		Butylbenzylphthala	ite			11	U
91-94		3,3'-Dichlorobenzio				21	UJc
56-55		Benzo(a)anthracer		***************************************		11	U
218-0		Chrysene				11	U
117-8		bis(2-Ethylhexyl)ph	nthalate			2	JQ
117-8		Di-n-octylphthalate				11	U

205-99-2

207-08-9

50-32-8

193-39-5

62-75-9

53-70-3

191-24-2

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

N-Nitrosodimethylamine

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

Benzo(a)pyrene

PA 68-378

11

11

11

11

11

11

υ

U

U

U

U

U

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

6MW-1962602

Lab Name:	STL Ne	wburgh	Contrac	t: <u>01012.0</u>)1		002
Lab Code:	10142	Case No.:	SAS	No.:	_ s	DG No.: 213	350
Matrix: (soil/w	vater)	WATER		_ab Sample	ID:	213350-010	
Sample wt/vo	ol:	950 (g/ml) ML		_ab File ID:		S27811.D	
Level: (low/n	ned)	LOW	1	Date Receiv	/ed:	6/28/02	
% Moisture:		decanted; (Y/N)	N I	Date Extrac	ted:	7/2/02	
Concentrated	i Extract	Volume: 1000 (uL)		Date Analyz	zed:	7/16/02	
Injection Volu	ıme: <u>2.</u>	0 (uL)	1	Dilution Fac	tor:	1.0	 .
GPC Cleanup	o: (Y/N)	<u>N</u> pH:			,		
			CONCE	NTRATION	UNI	TS:	÷
Number TICs	found:	4	(ug/L or	ug/Kg)	UG/	L	
CAS NUME	BER	COMPOUND NAME		ŔŢ	ES	ST, CONC.	Q
		11.1		10.42	1	. 6	l 1_

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	Unknown	19.42	6	Jr
2.	C9H20 isomer	20.78	3	J _T
3.	Unknown CnH2n+2	21.44	3	JŢ
4.	Unknown	22.06	3	J _T

NJDEP 73015

PA 68-378

Q

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-2062602

Lab Name:	STL Ne	wburgh		C	ontract:	01012.01	_
Lab Code:	10142	C	ase No.:		SAS No	o.: S	DG No.: 213350
Matrix: (soil/v	vater)	WATER	<u></u>		La	b Sample ID:	213350-011
Sample wt/vo	ol:	970.0	(g/ml) <u>ML</u>		La	b File ID:	S27829.D
Level: (low/n	ned)	LOW			Da	te Received:	6/28/02
% Moisture:	***************************************	de	canted:(Y/N)	N	_ Da	ite Extracted:	7/3/02
Concentrated	d Extract	Volume:	1000 (uL)		Da	te Analyzed:	7/17/02
Injection Volu	ıme: <u>2</u>	.0 (uL)			Dil	ution Factor:	1.0
GPC Cleanu	p: (Y/N)	<u>N</u>	pH:	_			

COMPOUND

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

111-44-4	bis(2-Chloroethyl)ether	10	U
108-95-2	Phenol	10	UJL
95-57-8	2-Chlorophenol	10	U
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	UJL
95-50-1	1,2-Dichlorobenzene	10	U
100-51-6	Benzyl alcohol	10	U
108-60-1	2,2'-oxybis(1-Chloropropane)	. 10	U
95-48-7	2-Methylphenol	10	U
67-72-1	Hexachloroethane	10	U
621-64-7	N-Nitroso-di-n-propylamine	10	UJL
106-44-5	4-Methylphenol	10	U
98-95-3	Nitrobenzene	10	U
78-59-1	Isophorone	10	U
88-75-5	2-Nitrophenol	10	U
105-67-9	2,4-Dimethylphenol	10	U
111-91-1	bis(2-Chloroethoxy)methane	10	U
120-83-2	2,4-Dichlorophenol	10	U
120-82-1	1,2,4-Trichlorobenzene	10	UJ
91-20-3	Naphthalene	10	U
106-47-8	4-Chloroaniline	10	U
87-68-3	Hexachlorobutadiene	10	U
59-50-7	4-Chloro-3-methylphenol	10	UJL
91-57-6	2-Methylnaphthalene	10	U
77-47-4	Hexachlorocyclopentadiene	10	U
88-06-2	2,4,6-Trichlorophenol	10	U
95-95-4	2,4,5-Trichlorophenol	10	U
91-58-7	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	26	U
208-96-8	Acenaphthylene	10	U
131-11-3	Dimethylphthalate	10	U _.
606-20-2	2.6-Dinitrotoluene	10	υ
83-32-9	Acenaphthene	10	U
99-09-2	3-Nitroaniline	26	UJc
51-28-5	2,4-Dinitrophenol	26	U
132-64-9	Dibenzofuran	10	U
121-14-2	2,4-Dinitrotoluene	10	U

00486

CAS NO.

STL Newburgh is a part of Severn Trent Laboratories, Inc.

PA 68-378

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

	Op.,	022	,,	6MW-2062602
Lab Name:	STL Nev	wburgh	Contract: 01012.01	010100-2002002
Lab Code:	10142	Case No.:	SAS No.: SD	OG No.: 213350
Matrix: (soil/v	water)	WATER	Lab Sample ID: 2	213350-011
Sample wt/vo	ol:	970.0 (g/ml) ML	Lab File ID:	S27829.D
Level: (low/n	ned)	LOW	Date Received:	6/28/02
% Moisture:		decanted:(Y/N)	N Date Extracted:	7/3/02
Concentrated	d Extract \	Volume: <u>1000</u> (uL)	Date Analyzed:	7/17/02
Injection Volu	.me: <u>2.</u>	0 (uL)	Dilution Factor:	1.0
GPC Cleanu	p: (Y/N)	NpH:	<u> </u>	
			CONCENTRATION	JNITS:
CAS NO) .	COMPOUND	(ug/L or ug/Kg) UG/	<u>/L.</u> Q
100-02	2-7	4-Nitrophenol		26 U RL
00.70		Fluerone		10 11

	1		
100-02-7	4-Nitrophenol	26	- U RL
86-73-7	Fluorene	10	U
7005-72-3	4-Chlorophenyl-phenylether	10	U
84-66-2	Diethylphthalate	10	U
100-01-6	4-Nitroaniline	26	U
534-52-1	4,6-Dinitro-2-methylphenol	26	U
86-30-6	n-Nitrosodiphenylamine (1)	10	U
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	U
87-86-5	Pentachlorophenol	26	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U -
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	21	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
117-81-7	bis(2-Ethylhexyl)phthalate	10	U
117-84-0	Di-n-octylphthalate	10	U
205-99-2	Benzo(b)fluoranthene	10	υ
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	indeno(1,2,3-cd)pyrene	10	U
62-75-9	N-Nitrosodimethylamine	10	U
53-70-3	Dibenz(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

(00487

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-2062602

Lab Name:	STL Nev	vburgh		-	Contract:	01012.0	1	
Lab Code:	10142	Ca	se No.: _		SAS No	o.:	_ SI	OG No.: 213350
Matrix: (soil/v	vater)	WATER			La	b Sample	ID:	213350-011
Sample wt/vo	ol:	970	_ (g/ml)	ML	La	b File ID:		S27829.D
Level: (low/n	ned)	LOW		•	Da	ite Receiv	ed:	6/28/02
% Moisture:		dec	canted: (Y	/N)1	1 Da	ite Extrac	ted:	7/3/02
Concentrated	i Extract	Volume:	1000 ((uL)	Da	ite Analyz	ed:	7/17/02
Injection Volu	ıme: <u>2.0</u>	(uL)			. Dil	ution Fac	tor:	1.0
GPC Cleanup	p: (Y/N)	N	pH:					
					CONCENT	RATION	UNI	TS:
Number TICs	found:	7			(ug/L or ug	/Kg)	UG/l	-

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	Unknown	19.42	4	JŢ
2.	Unknown CnH2n+2	20,11	2	JŢ
3.	Unknown CnH2n+2	20.78	4	Jτ
4.	Unknown CnH2n+2	21.42	5	7 ل
5.	Unknown CnH2n+2	22.05	5	Jτ
6.	Unknown CnH2n+2	22.65	4	J٣
7.	Unknown	23.23	3	Jτ

PA 68-378

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-2162602

Lab Name:	STL Ne	wburgh			Contract:	01012.01	
Lab Code:	10142	Ca	ase No.:		SAS No	o.: S	DG No.: 213350
Matrix: (soil/v	vater)	WATER	_		La	b Sample ID:	213350-012
Sample wt/vo	ol:	960.0	_ (g/ml)	ML	La	b File ID:	S27827.D
Level: (low/n	ned)	LOW			Da	ate Received:	6/28/02
% Moisture:		de	canted:(`	Y/N)1	N Da	ate Extracted:	7/3/02
Concentrated	d Extract	Volume:	1000	(uL)	Da	ate Analyzed:	7/17/02
Injection Volu	ume: <u>2</u>	.0 (uL)			Di	lution Factor:	1.0
GPC Cleanu	p: (Y/N)	N	pH: _				

CONCENTRATION UNITS:

108-95-2 Pheno 95-57-8 2-Chlo 541-73-1 1,3-D	Chloroethyl)ether ol orophenol ichlorobenzene ichlorobenzene ichlorobenzene	10 10 10 10 10 10	U U Rs U Rs
95-57-8 2-Chlo 541-73-1 1,3-D	orophenol ichlorobenzene ichlorobenzene ichlorobenzene	10 10 10	U Rs
541-73-1 1,3-D	ichlorobenzene ichlorobenzene ichlorobenzene	10 10	U
	chlorobenzene ichlorobenzene	10	U
106-46-7 1.4-D	chlorobenzene		UJL
	chlorobenzene	10	
	/l alcohol		· U
100-51-6 Benzy		10	U
108-60-1 2,2'-0	xybis(1-Chloropropane)	10	U
95-48-7 2-Met	hylphenol	10-	
67-72-1 Hexag	chloroethane	10	U
621-64-7 N-Nitr	oso-di-n-propylamine	10	UJL
	hylphenol	-10	- U Rs
98-95-3 Nitrob	enzene	10	U
78-59-1 Isoph	orone	10	U
88-75-5 2-Nitr	ophenol	10-	₩ Rs
105-67-9 2,4-D	imethylphenol	10-	—U Rs
111-91-1 bis(2-	Chloroethoxy)methane	10	U
	ichlorophenol	10-	— U Rs
120-82-1 1,2,4-	Trichlorobenzene	10	UJL
91-20-3 Naph	halene	10	U
106-47-8 4-Chl	oroaniline	10	U
87-68-3 Hexae	chlorobutadiene	10	U
59-50-7 4-Chl	oro-3-methylphenol	10	— U Rs
91-57-6 2-Met	hylnaphthalene	10	U
77-47-4 Hexa	chlorocyclopentadiene	10	U
88-06-2 2,4,6-	Trichlorophenol	10	— U Rs
95-95-4 2,4,5-	Trichlorophenol	40	— U−Rs
91-58-7 2-Chl	oronaphthalene	10	U
88-74-4 2-Nitr	oaniline	26	U
208-96-8 Acen	aphthylene	10	U
131-11-3 Dime	thylphthalate	10	U
606-20-2 2,6-D	initrotoluene	10	υ
83-32-9 Acen	aphthene	10	U
99-09-2 3-Nitr	oaniline	26	UJc
	initrophenol	26 —	- U Rs
132-64-9 Diber	zofuran	10	U
121-14-2 2,4-D	initrotoluene	10	U

STL Newburgh is a part of Severn Trent Laboratories, Inc.

3/90

EPA SAMPLE NO.

Q

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-2162602

Lab Name:	STL Ne	wburgh		c	ontract:	01012.01	
Lab Code:	10142	Ca	se No.:	******	SAS No	o.: S	DG No.: 213350
Matrix: (soil/v	vater)	WATER			La	b Sample ID:	213350-012
Sample wt/vo	ol:	960.0	(g/ml) ML		La	b File ID:	S27827.D
Level: (low/n	ned)	LOW	-		Da	te Received:	6/28/02
% Moisture:		de	canted:(Y/N) _	N	Da	te Extracted:	7/3/02
Concentrated	d Extract	Volume:	1000 (uL)		Da	te Analyzed:	7/17/02
Injection Volu	ume: 2	.0 (uL)			Dil	ution Factor:	1.0
GPC Cleanu	p: (Y/N)	N	pH:	.		•	
4.0							

COMPOUND

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

100-02-7	4-Nitrophenol	-26	U Rs
86-73-7	Fluorene	10	U
7005-72-3	4-Chlorophenyl-phenylether	10	U
84-66-2	Diethylphthalate	10	Ų
100-01-6	4-Nitroaniline	26	U
534-52-1	4,6-Dinitro-2-methylphenol	-26	 U Rs
86-30-6	n-Nitrosodiphenylamine (1)	10	U
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachiorobenzene	10	U
87-86-5	Pentachlorophenol	26	- U Rs
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	21	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
117-81-7	bis(2-Ethylhexyl)phthalate	10	U
117-84-0	Di-n-octylphthalate	10	U
205-99-2	Benzo(b)fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
62-75-9	N-Nitrosodimethylamine	10	U
53-70-3	Dibenz(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

CAS NO.

STL Newburgh is a part of Severn Trent Laboratories, Inc.

PA 68-378

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-2162602 Contract: 01012.01 Lab Name: STL Newburgh SDG No.: 213350 SAS No.: Lab Code: 10142 Case No.: WATER Lab Sample ID: 213350-012 Matrix: (soil/water) (g/ml) ML S27827.D Sample wt/voi: 960 Lab File ID: Level: (low/med) LOW Date Received: 6/28/02 decanted: (Y/N) N Date Extracted: 7/3/02 % Moisture: Date Analyzed: 7/17/02 Concentrated Extract Volume: 1000 (uL) Injection Volume: 2.0 Dilution Factor: 1.0 (uL) GPC Cleanup: (Y/N) pH: Ν CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Number TICs found: CAS NUMBER COMPOUND NAME RT EST. CONC. Q

1.

Unknown

19.42

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-12162602

Lab Name:	STL Ne	wburgh		(Contract:	01012.01	
Lab Code:	10142	Ca	ase No.:		SAS No	s.: S	SDG No.: <u>213350</u>
Matrix: (soil/v	water)	WATER			Lal	b Sample ID:	213350-013
Sample wt/vo	ol:	950.0	(g/ml) ML	•	Lal	b File ID:	S27828.D
Level: (low/r	ned)	LOW			Da	ite Received:	6/28/02
% Moisture:	· · · · · · · · · · · · · · · · · · ·	de	canted:(Y/N)	_ , N	Da	ite Extracted:	7/3/02
Concentrated	d Extract	Volume:	1000 (uL)		Da	ite Analyzed:	7/17/02
Injection Vol	ume: 2	2.0 (uL)	•		Dil	ution Factor:	1.0
GPC Cleanu	p: (Y/N)	N	pH:				

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
111-44-4	bis(2-Chloroethyl)eth	er	11	U
108-95-2	Phenol		11	UJL
95-57-8	2-Chlorophenol		11	U
541-73-1	1,3-Dichlorobenzene		11	U
106-46-7	1,4-Dichlorobenzene		11	UJL
95-50-1	1,2-Dichlorobenzene		11	Ū
100-51-6	Benzyl alcohol		11	U
108-60-1	2,2'-oxybis(1-Chloro	oropane)	11	U
95-48-7	2-Methylphenol		11	U
67-72-1	Hexachloroethane		11	U
621-64-7	N-Nitroso-di-n-propy	lamine	11	UJi
106-44-5	4-Methylphenol		11	U
98-95-3	Nitrobenzene		11	U
78-59-1	Isophorone		11	Ų
88-75-5	2-Nitrophenol		11	U
105-67-9	2,4-Dimethylphenol		11	U
111-91-1	bis(2-Chloroethoxy)r	nethane	11	U
120-83-2	2,4-Dichlorophenol		11	U
120-82-1	1,2,4-Trichlorobenze	ne	11	UJ.
91-20-3	Naphthalene		11	U
106-47-8	4-Chloroaniline		11	U
87-68-3	Hexachlorobutadiene	9	11	U
59-50-7	4-Chloro-3-methylph	enol	11	UJ
91-57-6	2-Methylnaphthalene)	11	U
77-47-4	Hexachlorocyclopen	tadiene	11	U
88-06-2	2,4,6-Trichloropheno	l .	11	U
95-95-4	2,4,5-Trichloropheno		11	U
91-58-7	2-Chloronaphthalene)	11	U
88-74-4	2-Nitroaniline		26	U
208-96-8	Acenaphthylene		11	U
131-11-3	Dimethylphthalate		11	U
606-20-2	2,6-Dinitrotoluene		11	U
83-32-9	Acenaphthene		11	U
99-09-2	3-Nitroaniline		26	UJc
51-28-5	2,4-Dinitrophenol		26	U
132-64-9	Dibenzofuran		11	U
121-14-2	2,4-Dinitrotoluene		11	U

STL Newburgh is a part of Severn Trent Laboratories, Inc.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-12162602

Lab Name:	STL Ne	wburgh	(Contract: 01012.01	
Lab Code:	10142	Case No.:		SAS No.:	SDG No.: 213350
Matrix: (soil/v	water)	WATER		Lab Sample ID	: 213350-013
Sample wt/vo	ol:	950.0 (g/ml) ML		Lab File ID:	S27828.D
Level: (low/n	ned)	LOW		Date Received	6/28/02
% Moisture:	Person	decanted:(Y/N)	· N	Date Extracted	: <u>7/3/02</u>
Concentrated	d Extract	Volume: <u>1000</u> (uL)		Date Analyzed	7/17/02
Injection Volu	ıme: <u>2</u>	.0 (uL)		Dilution Factor:	1.0
GPC Cleanu	p: (Y/N)	NpH:	_		

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
100-02-7	4-Nitrophenol		-26	—U RL
86-73-7	Fluorene		11	U
7005-72-3	4-Chlorophenyl-phenyleth	er	11	U
84-66-2	Diethylphthalate		11	U
100-01-6	4-Nitroaniline		26	U
534-52-1	4,6-Dinitro-2-methylpheno	ol	26	U
86-30-6	n-Nitrosodiphenylamine (1)	11	U
101-55-3	4-Bromophenyl-phenyleth	er	11	U
118-74-1	Hexachlorobenzene		11	U
87-86-5	Pentachlorophenol		26	U
85-01-8	Phenanthrene		11	U
120-12-7	Anthracene		11	U
84-74-2	Di-n-butylphthalate		11	U
206-44-0	Fluoranthene		11	U
129-00-0	Pyrene		11	U
85-68-7	Butylbenzylphthalate		11	U
91-94-1	3,3'-Dichlorobenzidine		21	U
56-55-3	Benzo(a)anthracene		11	U
218-01-9	Chrysene		11	U
117-81-7	bis(2-Ethylhexyl)phthalate)	11	U
117-84-0	Di-n-octylphthalate		11	U
205-99-2	Benzo(b)fluoranthene		11	U
207-08-9	Benzo(k)fluoranthene		11	U
50-32-8	Benzo(a)pyrene		11	U
193-39-5	Indeno(1,2,3-cd)pyrene		11	U
62-75-9	N-Nitrosodimethylamine		11	U
53-70-3	Dibenz(a,h)anthracene		11	U
191-24-2	Benzo(g,h,i)perylene		11	U

STL Newburgh 315 Fulierton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

000517

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-12162602

Lab Name:	STL Ne	wburgh	Contrac	t: <u>01012.0</u>	01	_	
Lab Code:	10142	Case No.:	SAS	No.:	_ s	DG No.: 213	350
Matrix: (soil/v	water)	WATER		Lab Sample	e ID:	213350-013	
Sample wt/vo	ol:	950 (g/ml) ML		Lab File ID:		S27828.D	
Level: (low/n	ned)	LOW		Date Receiv	ved:	6/28/02	<u></u>
% Moisture:		decanted: (Y/N) _	N	Date Extrac	cted:	7/3/02	
Concentrated	d Extract	Volume: 1000 (uL)	ļ	Date Analyz	zed:	7/17/02	
Injection Volu	ıme: <u>2.</u>	0 (uL)		Dilution Fac	ctor:	1.0	
GPC Cleanu	p: (Y/N)	<u>N</u> pH:					
Number TICs	s found:	5	CONCE (ug/L or	NTRATION ug/Kg)	UNI UG/		,
CAS NUME	BER	COMPOUND, NAME		RT	ES	ST. CONC.	Q

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	Unknown CnH2n+2	19.41	3	J₁r
2. 000112-95-8	Eicosane	20.77	3	JNT
3.	Unknown CnH2n+2	21.43	3	JΤ
4. 000112-95- 8	Eicosane Unknown Cn Hzn+2 un	22.05	3	JM JT
5.	Unknown CnH2n+2	22.64	4	J-

3/90

M-NY049

PA 68-378

1B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-18162602	Marylo
10.020	to a

Q

Lab Name:	STL Nev	wburgh			Contract:	01012.01	10102002
Lab Code:	10142	c	ase No.:		SAS No	o.: S	DG No.: 213350
Matrix: (soil/v	vater)	WATER			Lal	b Sample ID:	213350-009
Sample wt/vo	ol:	950.0	(g/ml) <u>N</u>	IL	Lal	b File ID:	S27810.D
Level: (low/n	ned)	LOW			Da	te Received:	6/28/02
% Moisture:		d	ecanted:(Y/N	1) _ 1	N Da	te Extracted:	7/3/02
Concentrated	l Extract	Volume:	<u>1000</u> (u	L)	Da	te Analyzed:	7/16/02
Injection Volu	ıme: <u>2</u>	.0 (uL)			Dil	ution Factor:	1.0
GPC Cleanup	p: (Y/N)	N	_ pH:		•		

COMPOUND

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

CAS NO.	CONTROCTOR (agreer ag	9/1/9/ 00/12	•
111-44-4	bis(2-Chloroethyl)ether	11	U
108-95-2	Phenoi	11	UJL
95-57-8	2-Chlorophenol	11	U
541-73-1	1,3-Dichlorobenzene	11	U
106-46-7	1,4-Dichlorobenzene	11	UJi
95-50-1	1,2-Dichlorobenzene	11	U
100-51-6	Benzyl alcohol	11	U
108-60-1	2,2'-oxybis(1-Chloropropane)	11	U
95-48-7	2-Methylphenol	11	U
67-72-1	Hexachloroethane	11	U
621-64-7	N-Nitroso-di-n-propylamine	11	UJL
106-44-5	4-Methylphenol	11	U
98-95-3	Nitrobenzene	11	U
78-59-1	Isophorone	11	U
88-75-5	2-Nitrophenol	11	U
105-67-9	2,4-Dimethylphenol	11	U
111-91-1	bis(2-Chloroethoxy)methane	11	U .
120-83-2	2,4-Dichlorophenol	11	Ū
120-82-1	1,2,4-Trichlorobenzene	. 11	Սյլ
91-20-3	Naphthalene	11	U
106-47-8	4-Chloroaniline	11	U
87-68-3	Hexachlorobutadiene	11	U
59-50-7	4-Chloro-3-methylphenol	11	ՍՄև
91-57-6	2-Methylnaphthalene	11	U
77-47-4	Hexachlorocyclopentadiene	11	U
88-06-2	2,4,6-Trichlorophenol	11	U
95-95-4	2,4,5-Trichlorophenol	11	U
91-58-7	2-Chloronaphthalene	11	U
88-74-4	2-Nitroaniline	26	U
208-96-8	Acenaphthylene	11	U
131-11-3	Dimethylphthalate	11	IJ
606-20-2	2,6-Dinitrotoluene	11	U
83-32-9	Acenaphthene	11	U
99-09-2	3-Nitroaniline	26	UJc
51-28-5	2,4-Dinitrophenol	26	U
132-64-9	Dibenzofuran	11	U
121-14-2	2,4-Dinitrotoluene	11	U

000462

CAS NO.

STL Newburgh is a part of Severn Trent Laboratories, Inc.

PA 68-378

1C

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-18162602 Policion

Q

Lab Name:	STL Ne	wburgh		Contrac	ct: <u>01</u>	012.01	_	
Lab Code:	10142	Ca	se No.:	SAS	No.: _	s	DG No.: 2	13350
Matrix: (soil/v	water)	WATER			Lab Sa	ample ID:	213350-00)9
Sample wt/vo	ol:	950.0	(g/ml) ML		Lab Fi	le ID:	S27810.D	
Level: (low/r	med)	LOW	_		Date F	Received:	6/28/02	
% Moisture:		ded	canted:(Y/N)	N	Date E	Extracted:	7/3/02	
Concentrate	d Extract	Volume: 1	1000 (uL)		Date A	Analyzed:	7/16/02	
Injection Volu	ume: <u>2</u>	.0 (uL)	•		Dilutio	n Factor:	1.0	
GPC Cleanu	p: (Y/N)	<u>N</u>	pH:		-			

COMPOUND

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

	"		
100-02-7	4-Nitrophenol	- 26	- URL
86-73-7	Fluorene	11	U
7005-72-3	4-Chlorophenyl-phenylether	. 11	U
84-66-2	Diethylphthalate	11	U
100-01-6	4-Nitroaniline	. 26	UJc
534-52-1	4,6-Dinitro-2-methylphenol	26	U
86-30-6	n-Nitrosodiphenylamine (1)	11	U
101-55-3	4-Bromophenyl-phenylether	11	U
118-74-1	Hexachlorobenzene	11	U
87-86-5	Pentachlorophenol	26	U
85-01-8	Phenanthrene	11	U
120-12-7	Anthracene	11	U
84-74-2	Di-n-butylphthalate	11	U
206-44-0	Fluoranthene	11	U
129-00-0	Pyrene	11	U
85-68-7	Butylbenzylphthalate	11	U
91-94-1	3,3'-Dichlorobenzidine	21	UJc
56-55-3	Benzo(a)anthracene	11	U
218-01-9	Chrysene	11	U
117-81-7	bis(2-Ethylhexyl)phthalate	11	U
117-84-0	Di-n-octylphthalate	11	U
205-99-2	Benzo(b)fluoranthene	11	U
207-08-9	Benzo(k)fluoranthene	11	U
50-32-8	Benzo(a)pyrene	11	U
193-39-5	Indeno(1,2,3-cd)pyrene	11	U
62-75-9	N-Nitrosodimethylamine	11	U
53-70-3	Dibenz(a,h)anthracene	11	U
			1

CAS NO.

000463

191-24-2

Benzo(g,h,i)perylene

11

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

2

2

Jr

JT

1 marion

Lab Name:	STL Ne	wburgh	Contrac	et: 01012.0	1	2002
Lab Code:	10142	Case No.:	SAS	No.:	SDG No.: 213	350
Matrix: (soil/v	water)	WATER		Lab Sample	ID: 213350-009	
Sample wt/vo	ol:	950 (g/ml) ML		Lab File ID:	S27810.D	
Level: (low/m	ned)	LOW		Date Receiv	red: 6/28/02	
% Moisture:		decanted: (Y/N) _	N	Date Extrac	ted: 7/3/02	
Concentrated	d Extract	Volume: <u>1000</u> (uL)		Date Analyz	ed: 7/16/02	
Injection Volu	ıme: <u>2.</u>	0 (uL)		Dilution Fac	tor: <u>1.0</u>	
GPC Cleanup	p: (Y/N)	<u>N</u> pH:				
				•		
			CONCE	NTRATION	UNITS:	
Number TICs	found:	5	(ug/L or	ug/Kg)	UG/L	
CAS NUMB	BER	COMPOUND NAME		RT	EST. CONC.	Q
1.		Unknown		19.42	5	JT

2.

3.

4.

5.

Unknown

Unknown CnH2n+2

Unknown CnH2n

C9H20 isomer

20.79

21.44

22.06

22.66

1B

Case No.:

COMPOUND

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Q

FB-PW-62602 Contract: 01012.01 SAS No.: SDG No.: 213350

Matrix: (soil/water) WATER Lab Sample ID: 213350-014 Sample wt/vol: 930.0 (g/ml) ML Lab File ID: S27820.D Level: (low/med) LOW Date Received: 6/28/02

% Moisture: decanted:(Y/N) N Date Extracted: 7/3/02

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 7/17/02

Injection Volume: 2.0 Dilution Factor: 1.0

GPC Cleanup: (Y/N) pH:

STL Newburgh

10142

Lab Name:

Lab Code:

CAS NO.

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

OAO NO.	CONII COND (ag/2 or c	igritg) <u>OG/L</u>	Œ
111-44-4	bis(2-Chloroethyl)ether	11	U
108-95-2	Phenol	41	U Rs
95-57-8	2-Chiorophenol	11	-U Rs
541-73-1	1,3-Dichlorobenzene	11	U
106-46-7	1,4-Dichlorobenzene	11	UJL
95-50-1	1,2-Dichlorobenzene	11	U
100-51-6	Benzyl alcohol	11	U
108-60-1	2,2'-oxybis(1-Chloropropane)	11	U
95-48-7	2-Methylphenol	11	−t Rs
67-72-1	Hexachloroethane	11	U
621-64-7	N-Nitroso-di-n-propylamine	11	UJL
106-44-5	4-Methylphenol	-11	-U-Rs
98-95-3	Nitrobenzene	11	U
78-59-1	Isophorone	11	U
88-75-5	2-Nitrophenol	11	U
105-67-9	2,4-Dimethylphenol	41	-URS
111-91-1	bis(2-Chloroethoxy)methane	11	U
120-83-2	2,4-Dichlorophenol	41	-URs
120-82-1	1,2,4-Trichlorobenzene	11	UJL
91-20-3	Naphthalene	11	U
106-47-8	4-Chloroaniline	11	U
87-68-3	Hexachlorobutadiene	11	U
59-50-7	4-Chloro-3-methylphenol	11-	-U Rs
91-57-6	2-Methylnaphthalene	11	U .
77-47-4	Hexachlorocyclopentadiene	11	Ü
88-06-2	2,4,6-Trichlorophenol	41	U Rs
95-95-4	2,4,5-Trichlorophenol	41	−th Rs
91-58-7	2-Chloronaphthalene	11	U
88-74-4	2-Nitroaniline	27	U
208-96-8	Acenaphthylene	11	U
131-11-3	Dimethylphthalate	11	U
606-20-2	2,6-Dinitrotoluene	11	U
83-32-9	Acenaphthene	11	U
99-09-2	3-Nitroaniline	27	UJc
51-28-5	2,4-Dinitrophenol	27	-U Rs
132-64-9	Dibenzofuran	11	U
121-14-2	2,4-Dinitrotoluene	11	U

STL Newburgh is a part of Severn Trent Laboratories, Inc.

315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

1C

EPA SAMPLE NO.

	SEIVIIV	OLATILE ORGANICS AI	VALTOIS DATE	SHEET	FB-PW-	ล้วลกว
Lab Name:	STL Newbu	ırgh	Contract: 0	1012.01	FD-FVV-	
Lab Code:	10142	Case No.:	SAS No.:	SD	G No.: 2	13350
Matrix: (soil/	water) W	ATER	Lab S	Sample ID:	213350- 01	4
Sample wt/v	ol: 93	0.0 (g/ml) ML	Lab F	ile ID:	S27820.D	
Level: (low/r	med) LC)W	Date	Received:	6/28/02	
% Moisture:		decanted:(Y/N)	N Date	Extracted:	7/3/02	
Concentrate	d Extract Vol	ume: 1000 (uL)	Date .	Analyzed:	7/17/02	
Injection Vol	lume: 2.0	(uL)	Dilutio	on Factor:	1.0	
GPC Cleanu	.p: (Y/N)					
			CONCEN	ITRATION U	JNITS;	
CAS N	O.	COMPOUND	(ug/L or u	ıg/Kg) <u>UG</u>	/L	Q
100-0	12.7	4-Nitrophenol			-27	t Rs
86-73		Fluorene			11	<u> </u>
7005-		4-Chlorophenyl-pheny	lether		11	Ū
84-66		Diethylphthalate			11	Ū
1 04-00)= <i>L</i> .,	Dictifyipititialate		 		

100-02-7	4-Nitrophenol	27	TU Rs
86-73-7	Fluorene	11	U'
7005-72-3	4-Chlorophenyl-phenylether	11	U
84-66-2	Diethylphthalate	11	<u> </u>
100-01-6	4-Nitroaniline	27	U
534-52-1	4,6-Dinitro-2-methylphenol	-27	—URS
86-30-6	n-Nitrosodiphenylamine (1)	11	U
101-55-3	4-Bromophenyl-phenylether	11	U
118-74-1	Hexachiorobenzene	11	U
87-86-5	Pentachlorophenol	-27	U Rs
85-01-8	Phenanthrene	11	U
120-12-7	Anthracene	11	U
84-74-2	Di-n-butylphthalate	11	U
206-44-0	Fluoranthene	11	U
129-00-0	Pyrene	11	U
85-68-7	Butylbenzylphthalate	11	U
91-94-1	3,3'-Dichlorobenzidine	22	U
56-55-3	Benzo(a)anthracene	11	U
218-01-9	Chrysene	11	U
117-81-7	bis(2-Ethylhexyl)phthalate	11	U
117-84-0	Di-n-octylphthalate	11	U
205-99-2	Benzo(b)fluoranthene	11	U
207-08-9	Benzo(k)fluoranthene	11	U
50-32-8	Benzo(a)pyrene	11	U
193-39-5	Indeno(1,2,3-cd)pyrene	11	U
62-75-9	N-Nitrosodimethylamine	11	U
53-70-3	Dibenz(a,h)anthracene	11	U
191-24-2	Benzo(g,h,i)perylene	11	U

00529

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE	NO	
FR-PW-62602		_

Lab Name:	STL Ne	wburgh	Contra	ct:	01012.0	1		302
Lab Code:	10142	Case No.:	SAS	No.	·	_ s	DG No.: 213	350
Matrix: (soil/v	vater)	WATER		Lab	Sample	ID:	213350-014	
Sample wt/vo	ol:	930 (g/ml) ML	_	Lab	File ID:		S27820.D	
Level: (low/n	ned)	LOW		Date	e Receiv	ed:	6/28/02	
% Moisture:		decanted: (Y/N)	1	Date	e Extract	ed:	7/3/02	
Concentrated	Extract	Volume: 1000 (uL)		Date	e Analyz	ed:	7/17/02	
Injection Volu	ıme: <u>2.</u> 0	0 (uL)		Dilu	tion Fact	or:	1.0	<u>_</u>
GPC Cleanu	p: (Y/N)	N pH:						
			CONCE	NTF	RATION	UNI	TS:	
Number TICs	s found:	0	(ug/L or	ug/l	<g) _<="" td=""><td>UG/</td><td>L</td><td></td></g)>	UG/	L	
CAS NUME	BER	COMPOUND NAME			RT	ES	ST. CONC.	Q

3/90

			TECH	LINC	r L	mad	mad	mad	ם ה ה ה	D O		mad	Dag Had	шад	E E	mad	Dell	Dad	mad	5		
	/an		DATE	07/25/02	07/08/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	201010		
Date: 08/26/2002	ATTN: Jeff Donovan		DNITS DI	1/Bn	ng/L	ug/L	ug/L	ug/t	1/6n	1/6n	ug/L	ng/L	ug/L ug/L	ng/L	ug/L	ug/L	1/60	T/Bn	ng/L	1 /8		
		. :	DILUTION									- ,				.						
Ġ		: 213350-16 : 06/28/2002 : 12:55	RL I	5.0	0.20	500	0.09	2002	0 0	2005	10.0	52.0	0.09	200	10.0	500	2002	10.0	50.0	0.02		
RESULT	NGB SITE 6	Laboratory Sample ID: Date Received: Time Received:	IDL	2.0	0.20	31.1	5.3	9.0	0.23	51.7	0.83	6.9	6.6	15.1	15.2	35.4	0 7 22	3.6	3.7			
E S	STRATTON ANGE SITE	Labor Date I	FLAGS			. 12		×			*	25	×	•	- 		2	-				
ABORATORY	PROJECT: ST		SAMPLE RESULT Q	2.0 U	0.20	69.0 Jm	<u> </u>	153 Jan			0.83 U		2250 Jm.		425 29.6 %	1	1.0 LGm W	9	3.7 U			_
			PTION																			
Job Number: 213350	rporation	Customer Sample ID: 6MW-0362602 Date Sampled: 06/26/2002 Time Sampled: 11:15 Sample Matrix: Water	PARAMETER/TEST DESCRIPTION	Selenium (Se)	Mercury (Hg)	Metals Analysis (ICP)	Antimony (Sb)	Arsenic (As) Barium (Ba)	Beryllium (Be)	Cadmium (Cd) Calcium (Ca)	Chromium (Cr)	cobalt (co)	(Fe)	read (15) Magnesium (Mg)	Manganese (Mn) Nickal (Ni)	Potassium (K)	Silver (Ag)	Socium (Na)	Vanadium (V)	(Zu)		
IN GOL	heptek Col	Customer Sample ID: Date Sampled: Time Sampled: Sample Matrix:	6	Selen	Mercu	Metal	Antim	Arsen	Bery	Calci	Chrom	Coppe	Iron (Fe)	Magne	Manga	Potas	Silve	Sodiu	Vanad	Zinc (Zn)		
	CUSTOMER: Aneptek Corporation	Custon Date : Time ! Sample	TEST METHOD	EPA 270.2	EPA 245.1	EPA 200.7							٠									

Page 16

	L Job Number: 213350	ABORA	TEST RES	SULTS		Date: 08/26/2002		
CustoMER: Arep Customer Date Sam Time Sample M:	CUSTOWER: Aneptek Corporation Customer Sample ID: 6MW-0862602 Date Sampled: 06/26/2002 Time Sampled: 12:00 Sample Matrix: Water	HADDECK I	Laboratory Sample ID: Date Received	ample ID: 213350-17 1: 06/28/2002 d: 12:55				
TEST METHOD	PARAMETER/TEST: DESCRIPTION	SAMPLE RESULT C	G FLAGS 1DL	RL	DILUTION	UNITS	DT DATE	TECH
EPA 270.2	Selenium (Se)	2.0 U		2.0 5.0		ng/L	07/25/02	rmc
EPA 245.1	Mercury (Hg)	0.20		0.20 0.20	<u> </u>	ng/L	07/08/02	5
EPA 200.7	Metals Analysis (ICP) Altuminum (Al) Antimony (Sb) Artimony (Sb) Arsenic (As) Barium (Ba) Barium (Ba) Barium (Ca) Cadmium (Cd) Calcium (Ca) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Magnesium (Mg) Manganese (Mn) Nickel (Ni) Potassium (K) Silver (Ag) Sodium (Na) Thallium (Tl) Vanadium (V) Zinc (Zn)	202 Jm. 5.3 U 5.3 U 6.7.7 Jm. 8 U 6.23 U 6.83 U 6.9 U	A B B ME ME	200 5.3 2.6 0.66 0.48 5.0 0.48 5.0 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9		7/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1	07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02	mad mad mad mad mad mad mad mad mad mad

* In Description = Dry Wgt.

		,,, ,	TECH	h jg	ت ت		
	ran		DATE	07/29/02	07/08/02	07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02	
Date: 08/26/2002	ATTN: Jeff Benovan		TO STIND	ng/L	.1/Bn	7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n	
			DILUTION	·	ç. <u>-</u>		
s L		ID: 213350-18 : 06/28/2002 : 12:55	RL	5.0	0.20	200 60.0 7.0 5.0 5.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	
TRESUL	STRATION ANGB SITE 6	Laboratory Sample I Date Received Time Received	101	2.0	07.0	31.1 2.5.6 0.06 0.08 0.08 2.5.7 33.4 33.4 33.7 33.7	-
T E S	STRATTON	Labo Date Time	FLAGS			* * * * * * * * * * * * * * * * * * *	Page 18
ABORATORY	PROJECT:		SAMPLE RESULT 0	2.0	0.20	7.5 Jm 8 5.3 2.6 98.4 Jm 8 0.48 0.48 0.48 0.83 0.83 2.5 0.83 2.5 0.83 2.5 0.83 1.6 Jm 9 1.6 Um 9 1.6 Um 9 1.6 Um 9 1.6 Um 9 1.6 Um 9 1.6 Um 9 1.7 Um 9 1.	Pa
		62 602 2002	PARAMETER/TEST DESCRIPTION			(CP)	* In Description = Dry Wgt.
Job Number: 213350	CLISTOMER: Aneptek Corporation	Customer Sample ID: 6MW-0962602 Date Sampled: 06/26/2002 Time Sampled: 12:30 Sample Matrix: Water	PARAMETI	Selenium (Se)	Mercury (Hg)	Metals Analysis (ICP) Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba) Barium (Ba) Cadrium (Cd) Calcium (Cd) Calcium (Cd) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Maganesium (Mg) Manganese (Mn) Nickel (Ni) Silver (Ag) Sodium (Na) Thallium (Tl) Vanadium (V) Zinc (Zn)	* In Descript
•	CUSTOMER: Anep	Customer Date Sam Time Sam Sample Ma	TEST METHOD	EPA 270.2	EPA 245.1	EPA 200.7	

_	L Job Number: 213350	LABORATORY	E S E	RESULT	S		Date:08/26/2002		4.
CUSTOMER: Anep	CUSTOWER: Anepték Corporation	PROJECT:	STRATTON ANGE	B SITE 6			ATTN: Jeff Danovan	ovan	
Customer Sample Date Sampled Time Sampled Sample Matrix	Customer Sample ID: 6MW-1062602 Date Sampled: 06/26/2002 Time Sampled: 11:00 Sample Matrix: Water		Laborat Date Re Time Re	Laboratory Sample ID: Date Received Time Received:	: 213350-19 : 06/28/2002 : 12:55				
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT 0	FLAGS	1DL	RL	DIFUTION	UNITS	DT DATE	TECH
EPA 270.2	Selenium (Se)	2.0 U		2.0	5.0	-	ng/L	07/29/02	hjg
EPA 245.1	Mercury (Hg)	0.20		0,20	0.20		ng/L	07/08/02	ņ
EPA 200.7	Metals Analysis (ICP) Aluminum (Al)		23	31.1	200	ç ,	ng/L	07/31/02	mad
	Antimony (Sb) Arsenic (As)	5.3 2.6 42.1 Tm B	**	2.6 0.66	60.0 10.0 200		1/6n n8/r	07/31/02 07/31/02 07/31/02	mad mad mad
	Beryllim (Be) Cadmium (Cd)	0.23 U		0.23	0.0.0		7/6n 1/6n	07/31/02 07/31/02 07/31/02	mad
	Calcrum (Ca) Chromium (Cr) Cobalt (Co)	4.0100 0.88 J公, 即 2.5 0.88 J公, 即	. Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε	2.5	50.0 50.0	- + + +	1/6n 1/7	07/31/02 07/31/02 07/31/02	mad mad
	Copper (Lu) Iron (Fe) Mannesium (Mq)	1770 5m 2.9 UJg W		72.9 2.9 2.1	60.0 5.0 500		1/6n 1/6n	07/31/02 07/31/02 07/31/02	mad mad
	Manganese (Mn) Nickel (Ni) Potassium (K)	235 15.2 U 1880 Jp	X 131 X	35.2	10.0 40.0 500		1/6n 1/6n 1/6n	07/31/02 07/31/02 07/31/02 07/31/02	mad mad mad
	Sodium (Na) Thallium (Tl) Vanadium (V)	5320 0 3.6		33.4	500 10.0 50.0		1/6n 1/6n	07/31/02 07/31/02 07/31/02 07/31/02	mad mad mad
	Zinc (Zn)			2	5		ı Ç		
							BY 18 18 18 18 18 18 18 18 18 18 18 18 18		

* In Description = Dry Wgt.

U	
۲	-
_	
=	,
u	
U	
۵	2
۲	-
U)
Ц	J
_	
·	
>	_
۵	
-	
۳	-
•	-
_	٠.
۵	_
۵	۷
0	2
0	2
0	

CUSTOMER: Aneptek Corporation

Job Number: 213350

PROJECT: STRATTON ANGB SITE 6

TON ANGB SITE 6

Date:08/26/2002

ATTN: Jeff Donovan

Customer Sample ID: 6MW-1162602
Date Sampled.....: 06/26/2002
Time Sampled.....: 07:30
Sample Matrix....: Water

Laboratory Sample ID: 213350-2
Date Received.....: 06/28/2002
Time Received.....: 12:55

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	SDV14 0	IDL	RL	DILUTION	UNITS DI	r DATE	ТЕСН
EPA 270.2	Selenium (Se)	2.0	n	2.0	5.0		1/6n	07/25/02	JII.
EPA 245.1	Mercury (Hg)	0.20		0.20	0.20	-	ng/L	07/08/02	Ü
EPA 200.7	Metals Analysis (ICP) Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba) Beryllium (Be) Cadmium (Cd) Calcium (Ca)	5380 Jm. 5.3 2.6 129 Jm. 0.23 0.48 175000	2 2 X	31.1 5.3 2.6 0.66 0.23 0.48	200 60.0 10.0 200 5.0 5.0 500	٠	7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n	07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02	mad mad mad mad mad mad mad
	Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb)		E	2 6 6 2 7	50.0 25.0 60.0 5.0		7/8n 7/8n 7/8n 7/8n	07/31/02 07/31/02 07/31/02 07/31/02	mad mad mad mad
	nagnes (Mn) Manganese (Mn) Nicke! (Ni) Potassium (K) Silver (Ag)	1120 15.2 8960 JP 1.6 UJni	е с жжж С	70.8	10.0 40.0 1000 10.0		1/5n 1/5n 1/5n 1/5n	07/31/02 07/31/02 07/31/02 07/31/02	mad mad mad
	Sodium (Na) Thallium (Tl) Vanadium (V) Zinc (Zn)	23500 3.6 9.1 23.4 Jo	⊃ 6 8	33.4 3.7 17.8	200 20.0 20.0		7/6n 7/6n 7/6n	07/31/02 07/31/02 07/31/02 07/31/02	mad

* In Description = Dry Wgt.

		TECH		ប	mad mad		Tand and and and and and and and and and								_		
	£	DATE	07/25/02	07/08/05	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	7		
Date: 08/26/2002	ATTN: Jeff Donovah	UNITS DI	ng/L	ng/L	ug/L	7/6n 1/6n	7/6n	1/6n 1/5n	1/6n 1/7n	1/60 09/L	7/60 1/60	7/60	7/5n ng/r	1/6n	7/60	- 30	
		DITUTION				- 		:									
s	213350-3 06/28/2002 11:55	RL	5.0	0.20	200	10.0 200	5.0	500 10-0	25.0	5.0	10.0	500	70°0 500	20.0 20.0	20.0		
T RESULI	STRATION ANGE SITE 6 Laboratory Sample ID: Date Received	TOT	2.0	0.20	31.1	2.6	0.23	51.7	2,0	2 6 9	. 6. 1 6. 1	35.4	33.4	v, v,	17.8		
வ	STRATTON Labo Date Time	FLAGS			**	351		75	3 5, 1			X Pri	× ১	22			Page 4
ABORAŤORY	PROJECT: S	SAMPLE RESULT Q	2.0 U	0.20 U		5,3 2,6 80,3 J. 9	0.23 0.48 U		3.13©.	71.9 Jm . 2.9 UJg W			1.6 UJm W	3.6			Pe
7 7		RIPTION					·					,					at.
Job Number: 213350	Corporation mple ID: 6MW-1262602 ad 06/26/2002		Selenium (Se)	Mercury (Hg)	Metals Analysis (ICP) Aluminum (Al)	Antimony (Sb) Arsenic (As)	Beryllium (Be) Cadmium (Cd)	Calcium (Ca) Chromium (Cr)	Cobalt (Co) Copper (Cu)	Iron (Fe) Lead (Pb)	Magnesium (Mg) Manganese (Mn)	Nickel (Ni)	Silver (Ag)	Thattium (Tt)	Zinc (Zn)		* In Description = Dry Wat.
qor	CUSTOMER: Aneptek Corporation Customer Sample ID: 6MW Date Sampled 06/	TEST METHOD	EPA 270.2 Se	EPA 245.1 Me	EPA 200.7 Me	A	<u> </u>	<u> </u>	<u> </u>	<u> </u>	×××	: Z å	. w u	o ⊢ >	• <u>N</u>		

_	Jak 11.mbon 212250		LABORATORY	⊢ S	T RESUL	٦ <u>٢</u>		Date:08/26/2002		,
	OCCULT TIME									
Anept	USTOWER: Aneptek Corporation		PROJECT:	STRATTON ANGE	ANGB SITE 6			ATIN: Jeff Donovah	van	
Customer Sample Date Sampled Time Sampled Sample Matrix	Customer Sample ID: 6MN-1362602 Date Sampled: 06/26/2002 Time Sampled: 08:00 Sample Matrix: Water			Labor Date Time	atory Sample Received Received	e ID: 213350-4 : 06/28/2002 : 12:55				
	EUGEN TITE	Patron	THISE DECINE	O FI AGS	701	RL	DIEUTION	UNITS	DI DATE	TECH
TEST METHOD	PARAMETER/TEST DESCRIPTION	MOTILI	2.0		2.0	5.0	1	ng/L	07/25/02	LINC
EPA 245.1	Mercury (Hg)		0.20	=	0.20	0.20		ng/L	07/08/02	៦
EPA 200.7	Metals Analysis (ICP) Aluminm (Al)		109 Jm.	*	31.1	200		ug/L ug/i.	07/31/02 07/31/02	mad
	Antinony (sb.) Arsenic (As.) Barium (Ba.) Baryi lium (Re.)		2.6 121 Jm. 0.23	5	2.6 0.66 0.23	10.0 200 5.0		ug/L ug/L ug/L	07/31/02 07/31/02 07/31/02	mad mad mad
	Cadmium (Cd) Calcium (Ca) Chromium (Cr)		0.48 107000 0.83	>	0.48 51.7 0.83	500 500 10.0		1/6n 1/6n	07/31/02 07/31/02 07/31/02 07/31/02	mad
	Cobalt (Co) Copper (Cu) Iron (Fe)		2.5 6.9 124.3m -		7 9 9 0	25.0 60.0		1/6n 1/6n	07/31/02 07/31/02 07/31/02	mad mad
	Lead (Pb) Magnesium (Mg) Manganese (Mn) Nickel (Ni)		32700 32700 1640 15.2	s ⊃	15.1	500 10.0 40.0	<u> </u>	1/6n 1/6n 1/7	07/31/02 07/31/02 07/31/02	mad mad mad
	NICKEL (NI) Potassium (K) Silver (Ag) Sodium (Na)		4520 JP. 1.6 UJm 19300		35.4 33.4 33.4	500 10.0		1/6n 1/6n	07/31/02 07/31/02 07/31/02	mad
	Thallium (Tl) Vanadium (V) Zinc (Zn)		3.7	222	3.7	20.0 20.0 20.0		7/8n 7/8n	07/31/02 07/31/02 07/31/02	mad
					-				,	

* In Description = Dry Wgt.

L .

·			- 23	U			"	-	ם מ			.	י ס				.						0	0		
			TE	SE.	r D		mad	реш	Dag E	Bac	mad	mad	Bad		mad	mad	Ë	E I	Mad Mad	mad		Deal	mad	mad		
			ш	1,02	1/05		705	705	36	707	1/02	79	702	70/	705	1/05	705	705	70/	70/	707	20	707	1/05		
			DATE	07/25/02	07/08/02		07/31/02	07/31/02	07/51/02 07/31/02	07/31/02	07/31/02	07/31	07/31/02	27/15//0 07/31/02	07/31/02	07/31/02	07/31/02	20/13//02	70/15//0	20/15//0 50/12/20	20/15/10	07/31/02	07/31/02	07/31/02		
	wan		10																							
2002	Jeff Donovan																				-					
Date: 08/26/2002	Jeff	5.	UNITS		1		_1		_1	1 . 1					1 _1	_			. 1.							
ite:08	ATTN:		S	ng/L	ng/L		ug/L	₽ Të	765	i bh	ug/L	l gu	Bn :	5 5	9 9	- g	/gn	/gn	<u> </u>	6n :	9))	/bn	/gn		
Q	T.W																	-								
		·	8					-																		
			DILUTION																							
		N	-	<u> </u>				- 1	<u> </u>		_	- -		- +												
		213350-5 06/28/2002 12:55	RL	5.0	07.0		9	0.0	70.0	ים ס	2.0	و	0.0	Š č	0	5.0	2	0.0	٠ • •	2 9	0.0	2 2	0.0	0.0		
		213350-5 06/28/20 12:55	Α.				20	νο ,	2	į		Σ.	— L	nη	. vo		8		7 ;	χ,	- 1	ี "	- ц	· IV		
⊢														<u></u>			•									
n s	9	Laboratory Sample ID: Date Received: Time Received:		0	0.20		ę	M.	۶ م	3 23	87	~ "	83.	n o	· vo	٥	_	۰ ۵	~ ·	4、	٥ -	4 ~	· _	. εο		
ъ. m	SITE	atory Sampl Received Received	101	2.0	ő		31.1	יען נ	9.6		0	7.	o ,	vi v	9	Ċ	<u>π</u>	-	Ţ.	5	- [, r	M	12		
;- .	ANGB	rator Rece Rece																			d					
М С	TON	Labor Date Time	s.				<u> </u>														<u>ا</u> د					
-	STRATTON ANGB		FLAGS				=		-52	_			4		* *	· 			Z , 1		2					
≻ ∝	cr:		0	-				<u> </u>		<u>.</u> ⊃			<u> </u>	<u> </u>		CTo.™	`		<u> </u>		E E		2 =		•• •••••	
0 T 0	PROJECT:		RESULT	2.0	0.20		Jm	5.3	2 6 7w.	0.23	0.48	_	83.	C 0	1020 Jm	0			15.2	5090 Jp	٥	٧,) <u> </u>	17.8		
O R A					٥		764	L 11	2	5	Ü	29200	٠.		1020		0966	569	<u></u>	508	- <u> </u>	7380	, 1	-		
A B			SAMPLE																							
_		•																								
			2																							
			PT10						٠																	
		•	SCRI																							
			ST																							
		52602 2002	R/TE			(9)	i																			
3350	ш	6MW-140 06/26/3 08:15 Water	PARAMETER/TEST DESCRIPTION			Metals Analysis (ICP)		_		~			_				=	5		_		_	_			
r: 21	ratic	20 30 32 32 32 32 32 32 32 32 32 32 32 32 32	PAR	(Se)	(Hg)	sylet	\ <u>\</u>	(qs)	(As)] (Be	(Cd)	(ca)	5	66	E	. ~	Ĕ	<u>₹</u>	Z	ξ.	ф:	Na)	3	}		
падшл	orpoi)le II		Selenium (Se)	Mercury (Hg)	A A	Aluminum (Al)	Antimony (Sb)	Arsenic (As) Rarium (Ba)	Bervilium (Be)	Cadmium (Cd)	Calcium (Ca)	Chromium (Cr)	Cobalt (Co)	ropper (Fe)	ead (Pb)	Magnesium (Mg)	Manganese (Mn)	Nickel (Ni)	Potassium (K)	Silver (Ag)	Sodium (Na)	Wabadinm (V)	Zinc (Zn)		
Job Number: 213350	tek C	Customer Sample ID: 6MW-1462602 Date Sampled: 06/26/2002 Time Sampled: 08:15 Sample Matrix: Water		Sele	Merc	M C	Alun	Anti	Arse	Ber	Cadi	Calc	ဂ ် ၁	Copy	2 2	Leac	Magr	Manc	N C	Pot	: : : : : : : : : : : : : : : : : : :	Sod	Van	Zinc		
	Anepi	omer Samt Samt	8			_ 		_					_	_												
	Ę.	Cust Date Time Samp	TEST METHOD	EPA 270.2	EPA 245.1	FPA 200.7																				
	CUSTOMER: Aneptek Corporation	·	TEST	EPA	EPA	F PA	; i ·	•																		
			1	1																						

Page 6

* In Description = Dry Wgt.

	Job Number: 213350	LABORATORY	E S H	RESULT	S		Date:08/26/2002		
USTOMER: Anep	CUSTONER: Aneptek Corporation	PROJECT: 1	STRATTON ANGB	B SITE 6			ATTN: Jeff Donovan	an	
Customer Date San Time San Sample M	Customer Sample ID: 6MW-1562602 Date Sampled: 06/26/2002 Time Sampled: 08:30 Sample Matrix: Water		Laborat Date Re Time Re	Laboratory Sample ID: Date Received	: 213350-6 : 06/28/2002 : 12:55				
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT Q	FLAGS	TOT	RL	DILUTION	DI		TECH
EPA 270.2	Selenium (Se)	2.0		2.0	5.0	-	ng/L	07/25/02	rilic Lilic
EPA 245.1	Mercury (Hg)	0.20		0.20	0.20		ng/L	07/08/02	5
EPA 200.7	Metals Analysis (ICP) Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba) Barium (Ba) Barium (Cd) Calcium (Ca) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Iron (Fe) Iron (Fe) Iron (Fe) Angnesium (Mg) Manganese (Mn) Nickel (Ni) Potassium (K) Silver (Ag) Sodium (Na) Thallium (Il) Vanadium (V) Zinc (Zn)	422 Jm. 5.3 UJb W 66.5 Jm B 0.23 U 0.23 U 0.83 U 0.	# # # ## ### # # # ### #### D	31.1 5.2 5.6 0.66 0.23 0.23 51.7 51.7 5.9 6.9 6.6 70.8 3.6 3.6 3.6 3.7	200 60.0 10.0 5.0 5.0 50.0 50.0 10.0 10.0 10.		7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n	07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02	mad mad

* In Description = Dry Wgt.

			TECH	Ë	5	mad mad mad mad mad mad mad mad mad mad
	U		DATE	07/25/02	07/08/02	07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02
02	Donovan		±α			
Date:08/26/2002	ATTN; Jeff D		SLING	1/6n	ug/L	7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n
			DILUTION	_	_	
s L		D: 213350-7 .: 06/28/2002 .: 12:55	RL 1	5.0	0.20	200 60.0 10.0 200 500 50.0 50.0 500 10.0 500 500 50.0
T RESUL	ANGB SITE 6	Laboratory Sample ID: Date Received	10T	2.0	0.20	31.1 2.5 0.066 0.083 0.083 0.083 15.2 15.2 33.4 33.4
ក ភា ឧ	STRATTON ANGB	Labor Date Time	FLAGS			E & E SE FRS
>-	B20000001		œ.	· D		כבכ בכב בכב בב
ABORATOR	PROJECT:		SAMPLE RESULT	2.0	0.20	272 Jm. 2.6 168 Jm. 168 Jm. 168 Jm. 168 Jm. 16.9 10.23 10.23 10.23 10.23 10.25
<u> </u>		•	PTION			
			DESCRI			
		.2002 .2002	PARAMETER/TEST DESCRIPTION			(1CP)
Job Number: 213350	CUSTOMER: Aneptek Corporation	Customer Sample ID: 6MW-1662602 Date Sampled: 06/26/2002 Time Sampled: 09:00 Sample Matrix: Water	PARAMET	Selenium (Se)	Mercury (Hg)	Metals Analysis (ICP) Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba) Barium (Bd) Calcium (Cd) Chomium (Cl) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Magnesium (Mg) Manganese (Mn) Nickel (Ni) Potassium (K) Silver (Ag) Sodium (Na) Thallium (IL) Vanadium (V)
	CUSTOMER: Anep	Customer Sample Date Sampled Time Sampled Sample Matrix	TEST METHOD	EPA 270.2	EPA 245.1	EPA 200.7

Page 8

* In Description = Dry Wgt.

	L Job Number: 213350	ABORATORY	# S #	RESULT	Ø		Date:08/26/2002		
CUSTOMER: Anép	CUSTOMER: Aneptek Corporation	PRDJECT:	STRATTON ANGE	38 SITE 6			ATTN: Jeff Donovan	ran	
Customer Sample Date Sampled Time Sampled Sample Matrix	Customer Sample ID: 6MW-1762602 Date Sampled: 06/26/2002 Time Sampled: 07:15 Sample Matrix: Water		Labora Date R Time R	Laboratory Sample ID Date Received	: 213350-1 : 06/28/2002 : 12:55				
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT G	Q FLAGS	101	RL	DILUTION	DNITS DT	r DATE	TECH
EPA 270.2	Setenium (Se)	2.0	, 3 , D	2.0	5.0	1	ng/L	07/25/02	rinc
EPA 245.1	Mercury (Hg)	0.20		0.20	0.20		ng/L	07/08/05	ភ
	(0)1								
EPA 200.	Metals Analysis (ILP) Aluminum (Al)	. ٤	- 22	31.1	200		ng/L	07/31/02	mad
	Antimony (Sb)		80 80	2,5	10.0		ug/r ug/l	07/31/02	Tage .
٠	Barium (Ba)		32. (0	0.66	200	- -	1/gn	07/31/02	mad mad
	Beryllium (Be) Cadmium (Cd)	.∂r 16 78	2 0	87.0	0.00		1/8n 1/8/1	07/31/02	mad
	Calcium (Ca)	61700 10.1 Jm	**	51.7	10.0	_ +-	1/6n	07/31/02	pell .
	cobalt (Co)	6.9	•	2,7	50.0	<u> </u>	ng/k	07/31/02	mad
	Copper (Cu)	13300 J.m	Z Z	6.6	0.09		1/6n	07/31/02	mad
·		7.2 Jg		2.9	50.0		1/6n	07/31/02	mad
٠	Magnesium (Mg) Mangabese (Mn)	462		1.9	10.0	- 6	1/6n	07/31/02	mad
	Nickel (Ni)	Ö	E 2	15.2	40.0	د- ز	1/Bn	07/31/02	mad
	Potassium (K)	1		6.07	10.0	7-	ng/L	07/31/02	mad
	Silver (Ag) Sodium (Na)	£ 3		33.4	500	· •	ng/L	07/31/02	mad
	Thallium (Tl)	3.6		3,7	50.0		1/6n	07/31/02	D D
	Variation (V)			17.8	20.0		1/6n	07/31/02	Dem
	-			· · · · · · · · · · · · · · · · · · ·					

* In Description = Dry Wgt.

Page 2

			#	U	*	<u> </u>
		•	TECH	L LINC	2	mad mad mad mad mad mad mad mad mad mad
			DATE	07/25/02	07/08/02	07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02
	ovan		DT	-		000000000000000000000000000000000000000
6/2002	Jeff Donovan	•				
Date:08/26/2002	ATTN: Je		UNITS	ng/L	ug/L	7/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1
Da	AT					
			DILUTION		-	000
		Q.	10	-	_	
		213350-8 06/28/2002 12:55	RL	5.0	0.20	200 60.0 10.0 50.0 50.0 50.0 50.0 50.0 10.0 1
S		ID: 213				
s u L	E 6	63		2.0	0.20	71.1 2.5.2 5.0 5.0 5.0 6.0 6.0 6.0 7.2 7.2 7.3 7.4 8.5 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3
ж ш	TIS 851	Laboratory Sample Date Received Time Received	701		J	Marros of the contract of the
s F	STRATTON ANGE	Labora Date P Time B	S			
- -	10000000001		Q FLAGS	<u>ח</u>	ח	
٦ 8	PROJECT:		RESULT	2.0	0.20	73.7 7m. B 5.3 U 2.6 U 0.23 U 0.48 U 0.83 U
0 % A			SAMPLE RI	72.	0	73.7.7. 5.3 2.6 145.7m 0.23 0.83 2.5 6.9 2710 2710 2710 2710 17.2 12900 JP 79300 3.6 3.7 17.8
L A B			ΨS			
			NOI			
•			PARAMETER/TEST DESCRIPTION			
		8 4	EST DE			
220		6MW-1862602 06/26/2002 09:15 Water	IETER/T			(1CP)
.: 2133	ation		PARAN	(Se)	(Hg)	(A1) (Sb) (A2) (A2) (A3) (A3) (A3) (Cc) (Cc) (Cc) (Cc) (Cc) (Cr) (Cr) (Cr) (Cr) (Cr) (Cr) (Cr) (Cr
Job Number: 213350	Corpor	mple II d		Selenium (Se)	Mercury (Hg)	Metals Analysis (ICP) Aluminum (Al) Antimory (Sb) Arsenic (As) Barium (Ba) Beryllium (Be) Cacmium (Cd) Calcium (Ca) Copper (Cu) Iron (Fe) Iron (Fe) Iron (Fe) Magnesium (Mg) Manganese (Mn) Nickel (Ni) Potassium (K) Silver (Ag) Sodium (Na) Thallium (Tl) Vanadium (V) Zinc (Zn)
dol	CUSTOMER: Aneptek Corporation	Customer Sample ID: Date Sampled Time Sampled Sample Matrix:	0	Se	. ¥	A A A A A A A A A A A A A A A A A A A
	MER: A	Custo Date Time Sampl	TEST METHOD	EPA 270.2	EPA 245.1	EPA 200.7
	CUSTO		TEST	EPA	EPA	ЕРА

* In Description = Dry Wgt.

			# <u>TE</u> C	rmc	CL.	mad mad mad mad mad mad mad mad mad mad
	ua.			07/25/02	07/08/02	07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02
Date:08/26/2002	ATTN: Jeff Donovan		UNITS DT	1/6n	1/6n	1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n
-			DITUTION	,_	çon.	
s	100000000000000000000000000000000000000	213530-10 06/28/2002 12:55	RL	5.0	0.20	200 60.0 10.0 200 5.0 500 10.0 50.0 500 10.0 500 10.0 500 25.0
RESULT	8 SITE 6	Laboratory Sample iv: Date Recéived	101	2.0	0.20	31.1 2.3 2.6 0.66 0.03 5.7 7.7 7.8 3.6 3.6 3.7 1.8
н С	STRAT	Laborat Date Re Time Re	Q FLAGS		-	
ABORATORY	PROJECT:		SAMPLE RESULT (2.0	0.20	449 Jm. 5.3 493 Jm. 692 Jm. 60.23 60.83 2.5 6.9 6.9 6.9 2000 244 15.2 11700 Jp. 162000 3.6 17.8
- L			N			
-	-		PARAMETER/IEST DESCRIPTION			
Job Number: 213350	k Corporation	ample ID: 6MW-1962602 ed: 06/26/2002 ed: 10:00 rix: Water	PARAMETER/TE	Selenium (Se)	Mercury (Hg)	Metals Analysis (ICP) Aluminum (AL) Antimony (Sb) Arsenic (As) Barium (Ba) Barium (Ba) Beryllium (Bc) Calcium (Ca) Chromium (CC) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Magnesium (Mg) Manganese (Mn) Nickel (Ni) Potassium (K) Silver (Ag) Sodium (Na) Thallium (IL) Vanadium (V) Zinc (Zn)
of	CLISTOMER: Aneptek Corporation	Customer Sample ID: Date Sampled Time Sampled	TEST METHOD	EPA 270.2 S	EPA 245.1	EPA 200.7

-	Job Number: 213350	7	ABORATORY	TEST	TIUS	S		Date: 08/26/2002	Van	
Customer Sample Date Sampled Time Sampled	CUSTOWER: Aneptek Corporation Customer Sample ID: 6MW-2062602 Date Sampled: 10:15 Sample Matrix: Water			Laboratory Samp Date Received Time Received	aboratory Sample ID: Jate Received:	213350-11 06/28/2002 12:55				
TEST METHOD	PARAMETER/TEST DESCRIPTION	SCRIPTION	SAMPLE RESULT 0	FLAGS	l Jai	RL	DILUTION	DNITS DT	T DATE	TECH
EPA 270.2	Selenium (Se)		2.0 U		2.0	2.0	-	ng/L	07/25/02	SIIC
EPA 245.1	Mercury (Hg)		0.20 U		0.20	0.20		ng/L	07/08/02	ັບ
EPA 200.7	Metals Analysis (ICP) Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba) Barium (Cd) Calcium (Cd) Chomium (Cd) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Magnesium (Mg) Manganese (Mn) Nickel (Ni) Potassium (K) Silver (Ag) Sodium (Na) Thallium (Tl) Vanadium (V) Zinc (Zn)		248 Jm 5.3 0 2.6 0 0.23 0 0.48 0 0.48 0 0.48 0 0.48 0 0.83		31.1 5.3 0.66 0.23 0.23 5.1.4 6.9 6.9 7.5.8 33.4 33.4 33.4	200 60.0 10.0 200 5.0 50.0 50.0 50.0 10.0 10.0 10.0 50.0 20.0	2.000	7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n	07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02	Mad

Page 12

* In Description = Dry Wgt.

ß	
—	
_	
_	
S	
ш	
22	
-	
-	
S	
ш	
ب ـــ	
>	
2	
0	
_	
~	
œ	
0	
8	
4	
_	

PROJECT: STRATTON ANGB SITE 6

Job Number: 213350

215350-12	06/28/2002	12:55
Laboratory Sample ID:	Date Received	Time Received:

ATTN: Jeff Donovan

Date:08/26/2002

TECH	JIIC	5		mad	mad	mad	mad	mad	mad	mad	mad	mad	mad	Шас	шас	шас	шас	шад	mad	22	De l	Dag E	mad	Delli I	
DATE	07/25/02	07/08/02		07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/51/02	20/15/70	0//31/02	07/31/02	07/31/02	
DI	•																								
CINITS	1/6n	1/6n		ng/L	ng/L	ng/L	ug/L	ng/L	ng/L	ng/L	ug/L	ug/L	ug/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/l	ng/L	1/gn	ug/L	
DILUTION	_	· •		-	-	_	_	-	_	_	_	-	-	,	-	_		ζ	2.000	_	-	_	<u></u>	£	
RL	5.0	0.20		- 500 ·	0.09	10.0	200	5.0	5.0	200	10.0	50.0	25.0	0.09	5.0	200	10.0	0.04	1000	10-0	200	10.0	20.0	20.0	
701	2.0	0.20		31.1	5.3	2,6	99.0	0,23	0.48	51.7	0.83	2.5	6.9	9.9	5.9	15.1	1.9	15.2	70.8	,	33.4	3.6	3.7	17.8	
a FLAGS				=	i		*			_	×		E J.	*	Ę	<u> </u>		الم الم	ш			_	20.		
SAMPLE RESULT 0	2.0	0.20		3040 J.m.	L.	4.8 TA: B	188 188	0 23	0.48	157000	2,8 Jm.	7.0	10.8 18.	5960 Jm	Ó	44200	1230	16.6.70.	9050 Jp	1.6 July	36900	3.6	5.5 Ja	23.2 J Q	
PARAMETER/TEST DESCRIPTION	Selenium (Se)	Mercury (Hg)		Metals Analysis (107)	Antimony (Sb)	Arcenic (As)	Ranium (Ra)	Beryllism (Be)			Chromitm (Cr)	Cobalt (Co)		Tron (Fe)	lead (Pb)	Magnesium (Mg)	(で) (で) (本) (本) (本) (本) (本) (本) (本) (本) (本) (本	Nickel (Ni)	Potassium (K)	Silver (Ag)	Sodium (Na)	Thalliem (TI)	Vanadium (V)	Zinc (Zn)	
TEST METHOD	EPA 270.2	EPA 245.1	000	EPA ZUU.									-									-		-	

* In Description = Dry Wgt.

			TECH	riic	CL		шас	mad	mad	lac lac	Dad Da	шас	∭ac	mad	E De	mad	шас	lad I	llad llad	mad	mad	mad		
	Jh.	·	DATE	07/25/02	07/08/02		07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	07/31/02	0//21/05
005	Jeff Bonovan		DI																					
Date:08/26/2002	ATTN: Jeff I		UNITS	ng/L	ng/L		1/211	ng/t ng/t	ng/L	T/gn	7) (n) (n)	1/6n 1/6n	1/6n	ng/L		ng/l	ng/L	ng/r	ug/L	ng/L	ng/L	ng/L	ng/L	ng/L
			DILLITON	-	-	•				 +			-							. ,-		_	•	
		D: 213350-13 .: 06/28/2002 .: 12:55	RL	5.0	07.50		000	60.0	10.0	200	o c	2005	10.0	50.0	0.09	5.0	200	10.0	0.04	10.01	200	10.0	50.0	20.0
	PROJECT: STRATTON ANGB SITE 6	Laboratory Sample ID: Date Received: Time Received:	TQ1	2.0	0.20			5.3	2.6	99.0	77.0	51.7	0.83	2,5	6.4	2.9	15.1	1.9	15.2	Ĺ	ر اد	3.6	3.7	17.8
	RATTON	Labor Date Time	FLAGS				4	z		**			~	ļ	۳ ک	ξ.		. !	E J.	, ;	2			
	T: SI		ø	⇒	<u> </u>			_ <u>=</u>		129.				69 1	-				20	c .	7		<u>a</u>	
	PROJEC		SAMPLE RESULT	2.0	0.20		70,000	5.3	4.736	178 Jm.	0.23	148000	3.0 Jm.	800	10.8 J	7,130		1280	17.3 Jo	0000	26200		5.4 79	26.250
Job Number: 213350	CUSTOWER: Aneptek Corporation	Customer Sample ID: 6MW-12162602 Date Sampled: 06/26/2002 Time Sampled: 10:45 Sample Matrix: Water	PARAMETER/IEST DESCRIPTION	Selenium (Se)	Mercury (Hg)		Metals Analysis (ICP)	Aluminum (Al)	Arsenic (As)	Barium (Ba)	Beryllium (Be)	Cadmitm (Cd)	Chromium (Cr)	Cobalt (Co)	Copper (Cu)	Iron (Fe)	Magnesium (Mg)		Nickel (Ni)	Potassium (K)	Silver (Ag)	Sociuli (Na)	Vanadium (V)	Zinc (Zn)
-	CUSTOMER: Anep	Customer Date Sam Time Sam Sample M	TEST METHOD	EPA 270.2	EPA 245.1		EPA 200.7																	

RESULTS

E S T

<u>-</u>

LABORATORY

Page 14

* In Description = Dry Wgt.

			1ECH	<u></u>	ភ	Mad Mad
	van		DT DATE	07/25/02	07/08/05	07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02 07/31/02
Date:08/28/2002	ATIN: Jeff Donovan		DN1TS D	ug/L	ng/L	7/6n 7/6n 1/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7
			DILUTION	_	-	
S		0; 213350-9 .: 06/28/2002 .: 12:55	RL	5.0	0.20	200 60.0 10.0 200 5.0 500 10.0 60.0 60.0 60.0 10.0 10.0 500 10.0 500 10.0
r RESUL.	ANGB SITE 6	Laboratory Sample ID: Date Received: Time Received:	IDL	2.0	0.20	31.1 25.3 25.6 0.23 0.48 51.7 51.7 70.8 70.8 33.4 33.4 17.8
ъ ш ×	STRATTON	Labo Date Time	FLAGS			
ABORATORY	PROJECT: S		SAMPLE RESULT Q	2.0 U	0.20	815 Jm, JF 11.0 2.6 0.23 0.23 0.23 0.83 0.83 0.83 1450 Jm, JF 2.5 2.5 2.5 2.5 2.9 2.9 UT 9 6 15.2 16.0 Jp 16.0 Jp 16.0 Jp 16.0 Jp 16.0 Jp 17.0 U
Job Number: 213350	CUSTOWER: Aneptek Corporation	Customer Sample ID: 6MW-18162602 Date Sampled: 06/26/2002 Time Sampled: 09:30 Sample Matrix: Water	PARAMETER/TEST: DESCRIPTION	Selenium (Se)	Mercury (Hg)	Metals Analysis (ICP) Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba) Beryllium (Be) Cadmium (Cd) Calcium (Ca) Chromium (Cr) Cobalt (CO) Copper (Cu) Iron (Fe) Lead (Pb) Magnesium (Mg) Manganese (Mn) Nickel (Ni) Potassium (K) Silver (Ag) Sodium (Na) Thallium (Tl) Vanadium (V)
	CUSTOMER: Anep	Customer Date Sam Time Sam Sample M	TEST METHOD	EPA 270.2	EPA 245.1	EPA 200.7

GROUNDWATER SAMPLING ANALYTICAL RESULTS AUGUST, 2002

1A

COMPOUND

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Q

6MW-0381302 STL Newburgh Lab Name: Contract: 01012.01 Lab Code: 10142 Case No.: SAS No.: SDG No.: 215065 Matrix: (soil/water) WATER Lab Sample ID: 215067-001 Sample wt/voi: 5.0 (g/ml) ML Lab File ID: W8380.D Level: (low/med) LOW Date Received: 8/16/2002 % Moisture: not dec. Date Analyzed: 8/21/2002 GC Column: DB-624 ID: 0.53 Dilution Factor: 1.0 (mm) Soil Extract Volume: Soil Aliquot Volume:

CONCENTRATION UNITS:

UG/L

(ug/L or ug/Kg)

	(43.4 0. 43.10)		- -
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	6.5	
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	46	
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
74-95-3	Dibromomethane	1.0	Ū
75-27-4	Bromodichloromethane	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	1.0	U
71-43-2	Benzene	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
124-48-1	Dibromochloromethane	1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	1.0	U
127-18-4	Tetrachloroethene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
100-42-5	Styrene	1.0	U
108-38-3	m,p-Xylene	1.0	Ū
95-47-6	o-Xvlene	1.0	Ū
96-18-4	1,2,3-Trichloropropane	1.0	Ü

TRENT SERVICES

CAS NO.

EORM L VOA

3/90__

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

PA 68-378

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-0381302

Lab Name:	STL Ne	wburgh	Contract: 01012.01	
Lab Code:	10142	Case No.:	SAS No.: S	DG No.: 215065
Matrix: (soil/v	water)	WATER	Lab Sample ID:	215067-001
Sample wt/vo	ol:	5.0 (g/ml) ML	Lab File ID:	W8380.D
Level: (low/n	ned)	LOW	Date Received:	8/16/2002
% Moisture:	not dec.		Date Analyzed:	8/21/2002
GC Column:	DB-624	ID: 0.53 (mm)	Dilution Factor:	1.0
Soil Extract \	/olume:	(uL)	Soil Aliquot Volu	ıme: (ul

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
98-82-8	Isopropylbenzene	1.0	U
108-86-1	Bromobenzene	1.0	U
103-65-1	n-Propylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	<u> </u>
95-49-8	2-Chlorotoluene	1.0	U
106-43-4	4-Chiorotoluene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	<u>1.0</u>	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	<u> </u>
106-46-7	1,4-Dichlorobenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U
104-51-8	n-Butylbenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
91-20-3	Naphthalene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U

1Ε

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAM	ר⊏ N	O.

6MW-0381302

Lab Name:	STL Ne	wburgh		Contract:	01012.0	1_			
Lab Code:	10142	Ca	se No.:	SAS N	o.:	_ s	DG No.:	2150	65
Matrix: (soil/	water)	WATER	_	La	ab Sample	ID:	215067-	-001	
Sample wt/vo	ol:	5.0	(g/ml) ML	La	ab File ID:		W8380.	D	±~—
Level: (low/r	ned)	LOW	_	D	ate Receiv	ed:	8/16/20	02	_
% Moisture:	not dec.			Đ	ate Analyz	ed:	8/21/20	02	_
GC Column:	DB-624	ID: <u>0.</u>	53_ (mm)	D	ilution Fac	tor.	1.0		
Soil Extract \	/olume:	-	_ (uL)	· S	oil Aliquot	Volu	ıme:		(uL)
				CONCENTRA	•				
Number TIC	s found:	0	-	(ug/L or ug/Kg	g) <u>UG</u> /	/L			
CAS NO.		COMPOL	JND NAME		RT	E	ST. CON	c.	Q

NJDEP 73015

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name:	STL Ne	wburgh			Contract:	01012.01		000 1402
Lab Code:	10142	Cas	e No.:	٠.	SAS No	: s	DG No.:	215065
Matrix: (soil/w	ater)	WATER			Lal	Sample ID:	215065-	001
Sample wt/vo	l :	5.0	(g/ml)	ML	Lal	o File ID:	W8387.	<u> </u>
Level: (low/m	ed)	LOW			Da	te Received:	8/16/200)2
% Moisture: n	ot dec.				Da	te Analyzed:	8/21/200)2
GC Column:	DB-624	ID: 0.5	<u>3</u> (m	ım)	Dile	ution Factor:	1.0	
Soil Extract V	olume:		_ (uL)		So	il Aliquot Volu	ıme:	(
				CO	NOENTRAT			

CAS NO.	COMPOUND (ug/L or ug/Kg) L	IG/L	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	<u> </u>
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	1.0	U
67-66-3	Chloroform	1.0	U_
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
78-87-5	1,2-Dichloropropane	1.0	Ų
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	1.0	U
71-43-2	Benzene	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
124-48-1	Dibromochloromethane	1.0	Ū
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	1.0	Ü
127-18-4	Tetrachloroethene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	Ų
100-42-5	Styrene	1.0	U
108-38-3	m,p-Xylene	1.0	U
95-47 - 6	o-Xylene	1.0	U
96-18-4	1,2,3-Trichloropropane		U

3/90

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-0881402

Lab Name:	STL Ne	wburgh			Contract:	01012.01	010100-0001	402
Lab Code:	10142	Cas	se No.:		SAS No	.: s	SDG No.: 2150	065
Matrix: (soil/w	vater)	WATER	<u>.</u>		Lal	Sample ID:	215065-001	
Sample wt/vo	ol:	5.0	(g/ml) <u>M</u>	IL .	Lal	File ID:	W8387.D	
Level: (low/m	ned)	LOW	_		Da	te Received:	8/16/2002	
% Moisture: r	ot dec.				Da	te Analyzed:	8/21/2002	
GC Column:	DB-624	ID: <u>0.</u>	53 (mm))	Dil	ution Factor:	1.0	
Soil Extract V	olume:		_ (uL)		So	il Aliquot Volu	ıme:	(uL
040 NO		COMP	OLUMB.		ICENTRAT	TON UNITS:		0

CAS NO.	COMPOUND (ug/L or ug/kg)	UG/L	Q
98-82-8	Isopropylbenzene	1.0	U
108-86-1	Bromobenzene	1.0	U
103-65-1	n-Propylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U
104-51-8	n-Butylbenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
91-20-3	Naphthalene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U

3/90

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-0881402 Contract: 01012.01 STL Newburgh Lab Name: SDG No.: 215065 SAS No.: Lab Code: 10142 Case No.: Lab Sample ID: 215065-001 Matrix: (soil/water) WATER 5.0 Lab File ID: W8387.D Sample wt/vol: (g/ml) ML LOW Date Received: 8/16/2002 Level: (low/med) % Moisture: not dec. Date Analyzed: 8/21/2002 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) **CONCENTRATION UNITS:** (ug/L or ug/Kg) UG/L Number TICs found: CAS NO. **COMPOUND NAME** RT EST. CONC. Q

EPA NY049

COMPOUND

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Q

6MW-0981402

Lab Name:	STL Ne	wburgh	Contract:	01012.01		
Lab Code:	10142	Case No.: _	SAS No	o.: S	DG No.: 215065	
Matrix: (soil/w	ater)	WATER	La	b Sample ID:	215065-002	
Sample wt/vo	!:	5.0 (g/ml) <u>I</u>	MLLa	b File ID:	W8388.D	٠
Level: (low/m	ned)	LOW	Da	te Received:	8/16/2002	
% Moisture: n	ot dec.		Da	ite Analyzed:	8/21/2002	
GC Column:	DB-624	ID: <u>0.53</u> (mn	m) Dil	ution Factor:	1.0	•
Soil Extract V	olume:	(uL)	So	il Aliquot Volu	ıme:	(uL

CONCENTRATION UNITS:

UG/L

(ug/L or ug/Kg)

ONO NO.	(49.20.49,19)		_
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U_
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	<u> </u>
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	12	
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	1.7	$J_{\mathfrak{Q}}$
71-43-2	Benzene	1.0	<u> </u>
142-28-9	1,3-Dichloropropane	1.0	U
124-48-1	Dibromochloromethane	1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	כ
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	1.0	J
127-18-4	Tetrachloroethene	16	
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
100-42-5	Styrene	1.0	U
108-38-3	m,p-Xylene	1.0	U
95-47-6	o-Xylene	1.0	U
96-18-4	1,2,3-Trichloropropane		U

CAS NO.

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-0981402

Q

Contract: 01012.01 Lab Name: STL Newburgh Case No.: Lab Code: 10142 SAS No.: SDG No.: 215065 WATER Lab Sample ID: 215065-002 Matrix: (soil/water) Sample wt/vol: 5.0 Lab File ID: W8388.D (g/ml) ML LOW Date Received: 8/16/2002 Level: (low/med) % Moisture: not dec. Date Analyzed: 8/21/2002 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: Soil Extract Volume: (uL) (uL)

COMPOUND

CONCENTRATION UNITS:

UG/L

(ug/L or ug/Kg)

98-82-8	Isopropylbenzene	1.0	U
108-86-1	Bromobenzene	1.0	U
103-65-1	n-Propylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	Ų
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	<u>U</u>
541-73-1	1,3-Dichlorobenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U
104-51-8	n-Butylbenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
91-20-3	Naphthalene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U

CAS NO.

NJDEP 73015

EPA NY049

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-0981402

Lab Name:	STL Ne	wburgh	Contrac	t: <u>01012.0</u>	<u> 1 </u>	
Lab Code:	10142	Case No.:	SAS I	No.:	SDG No.: 2150	65
Matrix: (soil/v	water)	WATER	·	_ab Sample	ID: 215065-002	
Sample wt/vo	ol:	5.0 (g/ml) ML	<u> </u>	ab File ID:	W8388.D	
Level: (low/n	ned)	LOW		Date Receiv	ed: <u>8/16/2002</u>	
% Moisture: i	not dec.		[Date Analyze	ed: <u>8/21/2002</u>	
GC Column:	DB-624	ID: <u>0.53</u> (mm)		Dilution Fact	or: 1.0	·
Soil Extract Volume:		(uL)	8	Soil Aliquot \	Volume:	(uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L						
CAS NO.		COMPOUND NAME		RT	EST. CONC.	Q

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-1081402

Lab Name:	SILNE	wburgn		Contract: U1012.01		
Lab Code:	10142	Cas	se No.:	SAS No.:	SDG No.: 21506	5
Matrix: (soil/w	ater)	WATER	•	Lab Sample I	D: <u>215065-003</u>	
Sample wt/vo	l:	5.0	(g/ml) ML	Lab File ID:	W8389.D	_
Level: (low/m	ed)	LOW	_	Date Received	d: 8/16/2002	_
% Moisture: n	ot dec.	·	· ·	Date Analyzed	1: 8/21/2002	_
GC Column:	DB-624	ID: 0.5	53 (mm)	Dilution Factor	r: <u>1.0</u>	
Soil Extract V	olume:		(uL)	Soil Aliquot Vo	olume: 🧵	_ (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	Ų
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	1.0	Ü
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	· U
56-23-5	Carbon Tetrachloride	1.0	U
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	Ū
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	1.0	U
71-43-2	Benzene	1.0	U
142-28-9	1,3-Dichloropropane	1.0	Ū
124-48-1	Dibromochloromethane	1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	1.0	U
127-18-4	Tetrachloroethene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	Ū
108-88-3	Toluene	1.0	Ū
108-90-7	Chlorobenzene	1.0	Ū
100-41-4	Ethylbenzene	1.0	Ü
100-42-5	Styrene	1.0	Ū
108-38-3	m,p-Xylene	1.0	Ū
95-47-6	o-Xylene	1.0	Ü
95-47-0 96-18-4	1,2,3-Trichloropropane		Ü

315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

EPA NY049

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-1081402

Lab Name:	STL Nev	vburgh			Contract:	01012.01		
Lab Code:	10142	Cas	e No.:		SAS No	o.: S	SDG No.: 2	15065
Matrix: (soil/w	ater)	WATER			La	b Sample ID:	215065-00	03
Sample wt/vol	:	5.0	(g/ml)	ML	La	b File ID:	W8389.D	
Level: (low/m	ed)	LOW			Da	te Received:	8/16/2002	·
% Moisture: n	ot dec.			2	Da	te Analyzed:	8/21/2002	
GC Column: <u>Լ</u>	DB-624	ID: <u>0.5</u>	<u>3</u> (m	ım)	Dil	ution Factor:	1.0	
Soil Extract Vo	olume: ၂		_ (uL)		So	il Aliquot Vol	ume:	(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
98-82-8	Isopropylbenzene	1.0	U
108-86-1	Bromobenzene	1.0	U
103-65-1	n-Propylbenzene	1.0	Ū
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
98-06-6	tert-Butylbenzene	1.0	Ų
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
99-87-6	4-isopropyltoluene	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U
104-51-8	n-Butylbenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
91-20-3	Naphthalene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U

1F

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1081402 Contract: 01012.01 Lab Name: STL Newburgh 10142 Case No.: SAS No.: SDG No.: 215065 Lab Code: WATER Lab Sample ID: 215065-003 Matrix: (soil/water) Sample wt/vol: 5.0 (g/ml) ML Lab File ID: W8389.D Date Received: 8/16/2002 Level: (low/med) LOW Date Analyzed: 8/21/2002 % Moisture: not dec. ID: 0.53 (mm) GC Column: DB-624 Dilution Factor: 1.0 (uL) Soil Aliquot Volume: Soil Extract Volume: **CONCENTRATION UNITS:** (ug/L or ug/Kg) UG/L Number TICs found: COMPOUND NAME RT EST. CONC. Q CAS NO.

Tel (845) 562-0890 Fax (845) 562-0841

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-1181402

Lab Name:	STL Ne	wburgh	Contract: 01012.01	
Lab Code:	10142	Case No.:	SAS No.: S	DG No.: 215065
Matrix: (soil/w	vater)	WATER	Lab Sample ID:	215065-004
Sample wt/vo	ol:	5.0 (g/ml) ML	Lab File ID:	W8390.D
Level: (low/m	ned)	LOW	Date Received:	8/16/2002
% Moisture: r	not dec.	· .	Date Analyzed:	8/21/2002
GC Column:	DB-624	ID: <u>0.53</u> (mm)	Dilution Factor:	1.0
Soil Extract V	olume:	(uL)	Soil Aliquot Volu	ıme: (ul

CONCENTRATION UNITS:

	•	CONCENTRATIO	NA OIMITO.	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoro	methane	1.0	U
74-87-3	Chloromethane		1.0	C
74-83-9	Bromomethane		1.0	C
75-01-4	Vinyl Chloride		1.0	Ú
75-00-3	Chloroethane		1.0	Ü
75-69-4	Trichlorofluoron	nethane	1.0	U
75-09-2	Methylene Chlo		1.0	כ
75-35-4	1,1-Dichloroeth		1.0	U
75-34-4	1,1-Dichloroeth		1.0	U
590-20-7	2,2-Dichloropro		1.0	U
156-60-5	trans-1,2-Dichlo		1.0	U
540-59-0	cis-1,2-Dichloro		1.0	U
67-66-3	Chloroform		1.0	U
563-58-6	1,1-Dichloropro	pene	1.0	U
107-06-2	1,2-Dichloroeth		1.0	U
74-97-5	Bromochlorome		1.0	U
71-55-6	1,1,1-Trichloroe		1.0	U
56-23-5	Carbon Tetrach		1.0	U
74-95-3	Dibromomethar		1.0	U
75-27-4	Bromodichloron		1.0	U
78-87-5	1,2-Dichloropro		1.0	U
10061-01-5	cis-1,3-Dichloro		1.0	U
79-01-6	Trichloroethene		1.0	U
71-43-2	Benzene		1.0	U
142-28-9	1,3-Dichloropro	pane	1.0	U
124-48-1	Dibromochloror		1.0	U
10061-02-6	trans-1,3-Dichlo	огоргорепе	1.0	U
79-00-5	1,1,2-Trichloroe		1.0	U
106-93-4	1,2-Dibromoeth		1.0	U
75-25-2	Bromoform		1.0	U
127-18-4	Tetrachloroethe	ene	1.0	U
630-20-6	1,1,1,2-Tetrach		1.0	U
108-88-3	Toluene		1.0	U
108-90-7	Chlorobenzene		1.0	U
100-41-4	Ethylbenzene		1.0	U
100-42-5	Styrene		1.0	U
108-38-3	m,p-Xylene		1.0	U
95-47-6	o-Xylene		1.0	U
96-18-4		oropane urgin is a part of Severn Trent		U

TRENT

FORMLVOA

3/90

PA 68-378

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-1181402

Lab Name:	STL Ne	wburgh	Contract: 01012.01	
Lab Code:	10142	Case No.:	SAS No.: SDG No.: 21506	35
Matrix: (soil/w	/ater)	WATER	Lab Sample ID: 215065-004	
Sample wt/vo	l:	5.0 (g/ml) <u>N</u>	ML Lab File ID: W8390.D	
Level: (low/m	ned)	LOW	Date Received: 8/16/2002	_
% Moisture: r	not dec.		Date Analyzed: 8/21/2002	_
GC Column:	DB-624	ID: <u>0.53</u> (mm	n) Dilution Factor: 1.0	_
Soil Extract V	olume:	(uL)	Soil Aliquot Volume:	_ (uL

CONCENTRATION UNITS:

		+ +			
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	·	Q ,
98-82-8	Isopropylbenzei	ne		1.0	U
108-86-1	Bromobenzene			1.0	U
103-65-1	n-Propylbenzen	e .		1.0	U
79-34-5	1,1,2,2-Tetrach	oroethane		1.0	U
95-49-8	2-Chlorotoluene)		1.0	U
106-43-4	4-Chlorotoluene)		1.0	U
108-67-8	1,3,5-Trimethylt	penzene		1.0	U
98-06-6	tert-Butylbenzer			1.0	U
95-63-6	1,2,4-Trimethylt			1.0	U
135-98-8	sec-Butylbenze			1.0	U
541-73-1	1,3-Dichloroben			1.0	U
99-87-6	4-Isopropyltolue			1.0	Ų
106-46-7	1,4-Dichloroben			1.0	U
95-50-1	1,2-Dichlorober			1.0	U
104-51-8	n-Butylbenzene			1.0	U
96-12-8	1,2-Dibromo-3-			1.0	U
87-68-3	Hexachlorobuta			1.0	U
120-82-1	1,2,4-Trichlorob			1.0	U
91-20-3	Naphthalene			1.0	U
87-61-6	1,2,3-Trichlorob	enzene		1.0	U

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

	SAMF	~ .	B 1 00
ᄮᄓᄼ	CANAL	,, F	K II Y
	- JAIVIE		1 74 ()
	·		

6MW-1181402

Lab Name:	STL Ne	wburgh			Contrac	ct:	01012.0	1	_		
Lab Code:	10142	Ca	se No.:		SAS	No	.:	_ S	DG No.:	2150	65
Matrix: (soil/	water)	WATER				Lat	o Sample	ID:	215065	-004	
Sample wt/vo	ol:	5.0	(g/ml) <u>M</u> l	L	_	Lal	File ID:		W8390.	D	
Level: (low/r	ned)	LOW	_			Da	te Receiv	ed:	8/16/200	02	
% Moisture:	not dec.					Da	te Analyz	ed:	8/21/200	02	
GC Column:	DB-624	ID: <u>0.</u>	53_ (mm)			Dilu	ution Fact	or:	1.0		_
Soil Extract \	/olume:		(uL)			Soi	il Aliquot \	√olu	me:		(uL)
Number TIC	s found:	0			NCENTF L or ug/l		ION UNI UG/				
CAS NO.		COMPOL	JND NAME				RT	ES	T. CON	C.	Q

EPA NY049

EPA SAMPLE NO.

Lab Name:	STL Nev	wburgh			Contract:	01012.01	010100-1201402	
Lab Code:	10142	Cas	e No.:	<u>.</u>	SAS No	o.: S	SDG No.: 215065	
Matrix: (soil/wa	ater)	WATER			La	b Sample ID:	215065-005	
Sample wt/vol	:	5.0	(g/ml) ML	•	Lai	b File ID:	W8391.D	
Level: (low/m	ed)	LOW			Da	te Received:	8/16/2002	,
% Moisture: no	ot dec.				Da	te Analyzed:	8/21/2002	
GC Column: [DB-624	ID: <u>0.5</u>	3 (mm)		Dil	ution Factor:	1.0	
Soil Extract Vo	olume:		_ (uL)		So	il Aliquot Volu	ıme:	(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	Ū
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	Ü
75-35-4	1,1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	Ū
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	1.0	Ū
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	Ū
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	Ü
74-95-3	Dibromomethane	1.0	Ū
75-27-4	Bromodichloromethane	1.0	Ū
78-87-5	1,2-Dichloropropane	1.0	Ū
10061-01-5	cis-1,3-Dichloropropene	1.0	Ū
79-01-6	Trichloroethene	1.0	Ŭ
71-43-2	Benzene	1.0	Ū
142-28-9	1,3-Dichloropropane	1.0	Ü
124-48-1	Dibromochloromethane	1.0	Ū
10061-02-6	trans-1,3-Dichloropropene	1.0	Ü
79-00-5	1,1,2-Trichloroethane	1.0	Ū
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	1.0	Ū
127-18-4	Tetrachloroethene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	Ü
108-88-3	Toluene	1.0	Ū
108-90-7	Chlorobenzene	1.0	Ū
100-41-4	Ethylbenzene	1.0	Ū
100-42-5	Styrene	1.0	Ü
108-38-3	m,p-Xylene	1.0	Ü
95-47-6	o-Xylene	1.0	Ŭ
96-18-4	1,2,3-Trichloropropane	1.0	Ü

EPA NY049

PA 68-378

1/

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-1281402 Lab Name: STL Newburgh Contract: 01012.01 10142 Case No.: SAS No.: SDG No.: 215065 Lab Code: WATER Matrix: (soil/water) Lab Sample ID: 215065-005 (g/ml) ML Sample wt/vol: 5.0 Lab File ID: W8391.D LOW Level: (low/med) Date Received: 8/16/2002 % Moisture: not dec. Date Analyzed: 8/21/2002 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 (uL) Soil Extract Volume: Soil Aliquot Volume:

CONCENTRATION UNITS:

CAS NO.	COMPOUND (u	g/L or ug/Kg)	UG/L		Q
98-82-8	Isopropylbenzene			1.0	U
108-86-1	Bromobenzene			1.0	U
103-65-1	n-Propylbenzene			1.0	IJ
79-34-5	1,1,2,2-Tetrachloroeth	nane	·	1.0	Ų
95-49-8	2-Chlorotoluene			1.0	C
106-43-4	4-Chlorotoluene			1.0	Ü
108-67-8	1,3,5-Trimethylbenzer	ìe .		1.0	U
98-06-6	tert-Butylbenzene			1.0	U .
95-63-6	1,2,4-Trimethylbenzer	ne		1.0	٦
135-98-8	sec-Butylbenzene			1.0	U
541-73-1	1,3-Dichlorobenzene			1.0	U
99-87-6	4-Isopropyltoluene			1.0	Ü
106-46-7	1,4-Dichlorobenzene			1.0	U
95-50-1	1,2-Dichlorobenzene			1.0	ט
104-51-8	n-Butylbenzene	· · ·		1.0	Ų
96-12-8	1,2-Dibromo-3-chlorop	oropane		1.0	Ū
87-68-3	Hexachlorobutadiene	-		1.0	U
120-82-1	1,2,4-Trichlorobenzen	е		1.0	U
91-20-3	Naphthalene			1.0	U
87-61-6	1,2,3-Trichlorobenzen	е		1.0	U

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1281402 Lab Name: STL Newburgh Contract: 01012.01 SAS No.: SDG No.: 215065 Lab Code: 10142 Case No.: Lab Sample ID: 215065-005 WATER Matrix: (soil/water) Lab File ID: W8391.D Sample wt/vol: 5.0 (g/ml) ML LOW Date Received: 8/16/2002 Level: (low/med) Date Analyzed: 8/21/2002 % Moisture: not dec. GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) **CONCENTRATION UNITS:** (ug/L or ug/Kg) UG/L Number TICs found: COMPOUND NAME RT EST. CONC. Q CAS NO.

COMPOUND

EPA SAMPLE NO.

Q

VOLATILE ORGANICS ANALYSIS DATA SHEET

ı	6MW-1381302
ı	010100-1301302

Lab Name:	STL Nev	. Newburgh			Contract:	01012.01			
Lab Code: 10142		Case No.:		-	SAS No.: S		SDG No.: <u>2150</u>	65	
Matrix: (soil/w	/ater)	WATER			Lal	b Sample ID	215067-002		
Sample wt/vo	ol:	5.0	(g/ml) ML		Lal	b File ID:	W8381.D		
Level: (low/m	ned)	LOW	-		Da	te Received	8/16/2002		
% Moisture: r	not dec.				Da	ite Analyzed:	8/21/2002		
GC Column:	DB-624	ID: <u>0.</u>	53 (mm)	-	Dil	ution Factor:	1.0		
Soil Extract V	olume:	au-	(uL)		So	il Aliquot Vol	ume:	(uL)	
% Moisture: not dec. GC Column: DB-624 Soil Extract Volume:		ID: <u>0.</u>			Dil	ution Factor:	1.0	 (uL	

CONCENTRATION UNITS:

UG/L

(ug/L or ug/Kg)

75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
74-83-9	Bromomethane	1.0	<u>U</u>
75-01-4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	<u>U</u>
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	98	
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	U_
71-55-6	1,1,1-Trichloroethane	1.0	· U
56-23-5	Carbon Tetrachloride	1.0	U
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	48	
71-43-2	Benzene	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
124-48-1	Dibromochloromethane	1.0	U_
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	1.0	U_
127-18-4	Tetrachloroethene	570 530	ΞE
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
108-88-3	Toluene	1.0	υ
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
100-42-5	Styrene	1.0	U
108-38-3	m,p-Xylene	1.0	U
05.47.6	o-Xylene	1.0	U
95-47-0 96-18-4	1,2,3-Trichloropropane	1.0	U

T R E N T

CAS NO.

ORM LVOA.....

3/90___

STL Newburgh 315 Fullerton Avenua Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

EPA SAMPLE NO.

U

U

U

Ū

U

U

U

U

Ū

U

U

U

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

v Lab Name: STL Ne				Contract:	01012.01	6MW-1	381302	
Lab Code:			se No.:	—— SAS No		DG No.: 2	215065	
Matrix: (soil/	water)	WATER		La	b Sample ID:	215067-0	02	
Sample wt/v		5.0	(g/ml) ML	La	b File ID:	W8381.D) 	
Level: (low/		LOW		 Da	te Received:	8/16/2002	2	
% Moisture:	·		-	Da	ite Analyzed:	8/21/2002	2	
GC Column		ID: 0.5	 53 (mm)	Dil	ution Factor:	1.0		
Soil Extract Volume:			(uL) Soil Aliquot Volum		ıme:		(uL)	
				CONCENTRA	TION UNITS:		٠	
CAS N	O.	COMP	DUND	(ug/L or ug/Kg) UG/L	-	Q	
98-82	2-8	Isopro	pylbenzene			1.0	U	
108-8			obenzene			1.0	U	
103-6		n-Pro	pylbenzene			1.0	U	
79-34			2-Tetrachlor	oethane		1.0	U	
95-49			orotoluene			1.0	U	_
106~		4-Chl	orotoluene			1.0	U	
108-6		1,3,5-	Trimethylber	rzene		1.0	U	

tert-Butylbenzene

sec-Butylbenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

Hexachlorobutadiene

1,2,4-Trichlorobenzene

1,2,3-Trichlorobenzene

1,2-Dibromo-3-chloropropane

n-Butylbenzene

Naphthalene

4-isopropyltoluene

1,2,4-Trimethylbenzene

SEVERN	
TRENT	
SERVICES	#

98-06-6

95-63-6

135-98-8

541-73-1

99-87-6

95-50-1

106-46-7

104-51-8

96-12-8

87-68-3

120-82-1

91-20-3

87-61-6

3/90

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1381302 STL Newburgh Contract: 01012.01 Lab Name: SAS No.: SDG No.: 215065 Case No.: Lab Code: 10142 Lab Sample ID: 215067-002 Matrix: (soil/water) WATER Sample wt/vol: 5.0 (g/ml) ML Lab File ID: W8381.D Date Received: 8/16/2002 Level: (low/med) LOW Date Analyzed: 8/21/2002 % Moisture: not dec. Dilution Factor: 1.0 ID: 0.53 (mm) GC Column: DB-624 Soil Aliquot Volume: (uL) Soil Extract Volume: **CONCENTRATION UNITS:** UG/L (ug/L or ug/Kg) Number TICs found: EST. CONC. Q COMPOUND NAME RT CAS NO.

PA 68-378

COMPOUND

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-1481302

Q

Lab Name:	STL Ne	wburgh	Contract: 01012.01	
Lab Code: 10142		Case No.:	SAS No.: S	DG No.: 215065
Matrix: (soil/\	water)	WATER	Lab Sample ID:	215067-003
Sample wt/vo	ol:	5.0 (g/ml) ML	Lab File ID:	W8382.D
Level: (low/r	med)	LOW	Date Received:	8/16/2002
% Moisture:	not dec.		Date Analyzed:	8/21/2002
GC Column:	DB-624	ID: <u>0.53</u> (mm)	Dilution Factor:	1.0
Soil Extract Volume: _		(uL)	Soil Aliquot Volu	me: (uL
% Moisture: GC Column:	not dec. DB-624	ID: <u>0.53</u> (mm)	Date Analyzed: Dilution Factor:	8/21/2002 1.0

CONCENTRATION UNITS:

UG/L

(ug/L or ug/Kg)

75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	<u> </u>
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	1.0	U
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochioromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U·
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	1.0	U
71-43-2	Benzene	1.0	Ū
142-28-9	1,3-Dichloropropane	1.0	U
124-48-1	Dibromochloromethane	1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	1.0	<u>U</u>
127-18-4	Tetrachloroethene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
100-42-5	Styrene	1.0	U
108-38-3	m,p-Xylene	1.0	U
95-47-6	o-Xviene	1.0	Ü
96-18-4	1,2,3-Trichloropropane	1.0	U

SEVERN

CAS NO.

FORM I VOA CTDOHS PH-0554

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

EPA NY049

(uL)

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

(uL)

6MW-1481302 Contract: 01012.01 Lab Name: STL Newburgh SDG No.: 215065 SAS No.: Case No.: Lab Code: 10142 Lab Sample ID: 215067-003 Matrix: (soil/water) WATER Lab File ID: W8382.D (g/ml) ML Sample wt/vol: 5.0 LOW Date Received: 8/16/2002 Level: (low/med) Date Analyzed: 8/21/2002 % Moisture: not dec. Dilution Factor: 1.0 GC Column: DB-624 ID: 0.53 (mm)

CONCENTRATION UNITS:

Soil Aliquot Volume:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
98-82-8	Isopropylbenzene	1.0	U
108-86-1	Bromobenzene	1.0	U
103-65-1	n-Propylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U.
106-46-7	1,4-Dichlorobenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U
104-51-8	n-Butylbenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	· U
87-68-3	Hexachlorobutadiene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
91-20-3	Naphthalene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U

NJDEP 73015

Soil Extract Volume:

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1481302

Lab Name:	STL Ne	wburgh		Contrac	t: <u>0101</u> 2	2.01	_		
Lab Code:	10142	Ca	se No.:	SAS	No.:	s	DG No.:	2150	65
Matrix: (soil/v	vater)	WATER	_		Lab Samı	ole ID:	215067-	-003 .	
Sample wt/vo	ol:	5.0	(g/ml) ML	<u> </u>	Lab File I	D:	W8382.	D	_
Level: (low/n	ned)	LOW			Date Rec	eived:	8/16/200	02	_
% Moisture:	not dec.				Date Ana	lyzed:	8/21/200	02	
GC Column:	DB-624	ID: <u>0.</u>	53 (mm)		Dilution F	actor:	1.0		· ——
Soil Extract \	/olume:	(uL)			Soil Aliquot Volume:				(uL)
Number TICs	s found:	0		CONCENTR (ug/L or ug/ł		INITS:			
CAS NO.		COMPOL	JND NAME		RT	E	ST. CON	S.	Q

COMPOUND

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Q

6MW-1581302 Lab Name: STL Newburgh Contract: 01012.01 Lab Code: 10142 Case No.: SAS No.: SDG No.: 215065 Matrix: (soil/water) WATER Lab Sample ID: 215067-004 Sample wt/vol: 5.0 (g/ml) ML Lab File ID: W8383.D Level: (low/med) LOW Date Received: 8/16/2002 % Moisture: not dec. Date Analyzed: 8/21/2002 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

UG/L

(ug/L or ug/Kg)

75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	<u>U</u>
75-01-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	Ü
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-34 - 4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	Ü
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	1.0	Ü
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	Ü
56-23-5	Carbon Tetrachloride	1.0	Ü
74-95-3	Dibromomethane	1.0	Ū
75-27-4	Bromodichloromethane	1.0	Ü
78-87-5	1,2-Dichloropropane	1.0	Ü
10061-01-5	cis-1,3-Dichloropropene	1.0	Ü
79-01-6	Trichloroethene	1.0	Ū
71-43-2	Benzene	1.0	Ŭ
142-28-9	1,3-Dichloropropane	1.0	Ū
124-48-1	Dibromochloromethane	1.0	Ū
10061-02-6	trans-1,3-Dichloropropene	1.0	Ü
79-00-5	1,1,2-Trichloroethane	1.0	Ŭ
106-93-4	1,2-Dibromoethane	1.0	Ŭ
75-25-2	Bromoform	1.0	Ū
127-18-4	Tetrachloroethene	1.0	Ü
630-20-6	1,1,1,2-Tetrachloroethane	1.0	Ü
108-88-3	Toluene	1.0	Ū
108-90-7	Chlorobenzene	1.0	Ū
100-41-4	Ethylbenzene	1.0	Ū
100-42-5	Styrene	1.0	Ū
108-38-3	m,p-Xylene	1.0	Ū
95-47-6	o-Xylene	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	Ū

TRENT
SERVICES

CAS NO.

FORM I VOA CTDOHS PH-0554

315 Ful 3/90 Newbur M-NY049 Tel (8

315 Fullerton Avenue Newburgh, NY 12550 Tel (846)-562-0890 Fax (845) 562-0841

STL Newburgh

EPA SAMPLE NO.

6M\A/_1581302

Lab Name: STL Ne Lab Code: 10142		Newburgh 2 Case No.:		Contract:	01012.01	010100-1001002	
				SAS No	D.:	SDG No.: 215065	
Matrix: (soil/v	vater)	WATER	· _	La	b Sample ID	215067-004	
Sample wt/vo	ol:	5.0	(g/ml) ML	La	b File ID:	W8383.D	
Level: (low/n	ned)	LOW	_	Da	ite Received	: 8/16/2002	-
% Moisture: ı	not dec.			Da	ite Analyzed	8/21/2002	
GC Column:	DB-624	ID: <u>0.</u>	53 (mm)	Dil	ution Factor	: 1.0	
Soil Extract Volume:		ne: (uL)		So	il Aliquot Vo	lume:	(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
98-82-8	isopropylbenzene	1.1	0 U
108-86-1	Bromobenzene	1.1	0 U
103-65-1	n-Propylbenzene	1.	0 U
79-34-5	1,1,2,2-Tetrachloroethane	1.	0 U
95-49-8	2-Chlorotoluene	1.	0 <u>U</u>
106-43-4	4-Chlorotoluene	1,	0 <u>U</u>
108-67-8	1,3,5-Trimethylbenzene	1.	0 U
98-06-6	tert-Butylbenzene	1.	0 U
95-63-6	1,2,4-Trimethylbenzene	1.	0 U
135-98-8	sec-Butylbenzene	1.	
541-73-1	1,3-Dichlorobenzene	1.	0 U
99-87-6	4-Isopropyltoluene	1.	0 <u>U</u>
106-46-7	1,4-Dichlorobenzene	1.	
95-50-1	1,2-Dichlorobenzene	1.	0 <u>U</u>
104-51-8	n-Butylbenzene	1.	0 U
96-12-8	1,2-Dibromo-3-chloropropane	1.	0 <u>U</u>
87-68-3	Hexachlorobutadiene	1.	
120-82-1	1,2,4-Trichlorobenzene	1.	
91-20-3	Naphthalene	1.	0 <u>U</u>
87-61-6	1,2,3-Trichlorobenzene	1.	0 U

NJDEP 73015

3/90.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMP	LE	NO.

6MW-1581302 Contract: 01012.01 STL Newburgh Lab Name: SDG No.: 215065 Case No.: SAS No.: Lab Code: 10142 Lab Sample ID: 215067-004 Matrix: (soil/water) WATER W8383 D Lab File ID: Sample wt/vol: 5.0 (g/ml) ML Date Received: 8/16/2002 Level: (low/med) LOW Date Analyzed: 8/21/2002 % Moisture: not dec. Dilution Factor: 1.0 GC Column: DB-624 ID: 0.53 (mm) (uL) Soil Aliquot Volume: Soil Extract Volume: CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Number TICs found: EST. CONC. Q RT COMPOUND NAME CAS NO.

STL Newburgh is a part of Severn Trent Laboratories, Inc.

EPA SAMPLE NO.

	•					6MW-1	681302	
Lab Name:	STL Ne	wburgh		Contract:	01012.01	_		
Lab Code:	10142	Cas	se No.:	SAS No	o.: S	SDG No.:	215065	
Matrix: (soil/	water)	WATER		La	b Sample ID:	215067-0	005	
Sample wt/v	ol:	5.0	(g/ml) ML	La	b File ID:	W8384.E)	
Level: (low/r	med)	LOW		Da	ite Received:	8/16/200	2	
% Moisture:	not dec.			Da	ate Analyzed:	8/21/200	2	٠
GC Column:	DB-624	ID: 0.5	53 (mm)	. Di	lution Factor:	1.0		
Soil Extract	Volume:		(uL)	Sc	oil Aliquot Vol	ume:		(uL)
				CONCENTRA	TION UNITS	:		
CAS N	Ο.	COMP	OUND	(ug/L or ug/Kg) <u>UG/L</u>		Q	
98-82	 !-8	Isopro	pylbenzene			1.0	U	
108-8			obenzene			1.0	U	
103.6			nylhenzene			1.0	υ	İ

98-82-8	Isopropylbenzene	1.0	<u> </u>
108-86-1	Bromobenzene	1.0_	U
103-65-1	n-Propylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
95-49-8	2-Chlorotoluene	1.0	<u> </u>
106-43-4	4-Chlorotoluene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0_	U
135-98-8	sec-Butylbenzene	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
99-87-6	4-Isopropyitoluene	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	<u>U</u>
104-51-8	n-Butylbenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
91-20-3	Naphthalene	1.0	U _
87-61-6	1,2,3-Trichlorobenzene	1.0	U

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAN	/IPL	E NO.

6MW-1681302 Contract: 01012.01 STL Newburgh Lab Name: SDG No.: 215065 SAS No.: Lab Code: 10142 Case No.: Lab Sample ID: 215067-005 Matrix: (soil/water) **WATER** W8384.D Lab File ID: 5.0 (g/ml) ML Sample wt/vol: Date Received: 8/16/2002 Level: (low/med) LOW Date Analyzed: 8/21/2002 % Moisture: not dec. Dilution Factor: 1.0 GC Column: DB-624 ID: 0.53 (mm) Soil Aliquot Volume: (uL) Soil Extract Volume: **CONCENTRATION UNITS:** UG/L (ug/L or ug/Kg) Number TICs found: COMPOUND NAME RT EST. CONC. Q CAS NO.

EPA NY049

COMPOUND

CAS NO.

EPA SAMPLE NO.

Q

VOLATILE ORGANICS ANALYSIS DATA SHEET

ŀ	-
6MW-1	781302

Lab Name:	STL Nev	vburgh		Contract:	01012.01	_	
Lab Code:	10142	Ca	se No.:	SAS No	o.: S	DG No.: 215065	5
Matrix: (soil/w	ater)	WATER	_	La	b Sample ID:	215067-006	
Sample wt/vo	i:	5.0	(g/ml) ML	La	ıb File ID:	W8385.D	_
Level: (low/m	ned)	LOW	_	Da	ate Received:	8/16/2002	_
% Moisture: r	ot dec.			Da	ate Analyzed:	8/21/2002	-
GC Column:	DB-624	ID: <u>0.</u>	53 (mm)	Di	lution Factor:	1.0	
Soil Extract V	'olume:		_ (uL)	Sc	oil Aliquot Volu	ıme:	_ (uL

CONCENTRATION UNITS:

UG/L

(ug/L or ug/Kg)

75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	1.0	U
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U.
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	1.0	U -
71-43-2	Benzene	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
124-48-1	Dibromochloromethane	1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	Ü
75-25-2	Bromoform	1.0	U
127-18-4	Tetrachloroethene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
100-42-5	Styrene	1.0	U
108-38-3	m,p-Xylene	1.0	U
95-47-6	o-Xylene	1.0	U
96-18-4 N	1,2,3-Trichloropropage	bergteries Inc. 1.0	U

FORM I VOA CTDOHS PH-0554

PA 68-378 M-NY049 STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

EPA SAMPLE NO.

Lab Name:	STL Ne	wburgh		Contract:	01012.01	6MW-1	781302	
Lab Code:	10142	Cas	se No.:	SAS No	o.: §	SDG No.: 2	215065	
Matrix: (soil/	water)	WATER	_	La	b Sample ID:	215067-0	06	
Sample wt/v	ol:	5.0	(g/mi) ML	La	b File ID:	W8385.D		
Level: (low/	med)	LOW		Da	ite Received:	8/16/2002	2	
% Moisture:	not dec.			Da	ite Analyzed:	8/21/2002	2	
GC Column:	DB-624	ID: <u>0.8</u>	3 (mm)	Dil	ution Factor:	1.0	<u>.</u>	
Soil Extract	Volume:		_ (uL)	- Sc	il Aliquot Vol	ume:		(uL)
5 *			*.	CONCENTRA	TION UNITS	:		
CAS N	Ο.	COMP	DUND	(ug/L or ug/Kg)	UG/L		Q	
98-82	-8	Isopro	pylbenzene			1.0	U	
108-8			henzene			1.0	U	

98-82-8	Isopropylbenzene	1.0	U
108-86-1	Bromobenzene	1.0	<u> </u>
103-65-1	n-Propylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
95-49-8	2-Chiorotoluene	1.0	<u> </u>
106-43-4	4-Chlorotoluene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	Ü
135-98-8	sec-Butylbenzene	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	· U
95-50-1	1,2-Dichlorobenzene	1.0	U
104-51-8	n-Butylbenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
91-20-3	Naphthalene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U

PA 68-378

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1781302

Lab Name:	STL Ne	wburgh		Contrac	t: <u>01012.</u>	01			
Lab Code:	10142	Cas	e No.:	SAS	No.:	SI	OG No.:	21506	35
Matrix: (soil/	water)	WATER		1	_ab Sample	e ID:	215067-	-006	
Sample wt/vo	ol:	5.0	(g/ml) ML		_ab File ID:		W8385.	D	_
Level: (low/r	ned)	LOW		1	Date Recei	ved:	8/16/200	02	_
% Moisture:	not dec.			. 1	Date Analy:	zed:	8/21/200	02	all-law.
GC Column:	DB-624	ID: <u>0.5</u>	3 (mm)		Dilution Fac	ctor:	1.0		
Soil Extract \	√olume:		_ (uL)	;	Soil Aliquot	Volu	me:		_ (uL)
Number TIC	s found:	0		CONCENTR (ug/L or ug/k					
CAS NO.		COMPOU	ND NAME		RT	ES	T. CON	Э.	Q

EPA SAMPLE NO.

6MW-1881402 STL Newburgh Contract: 01012.01

SAS No.: SDG No.: 215065 Lab Code: 10142 Case No.: WATER Lab Sample ID: 215065-006 Matrix: (soil/water)

W8396.D Sample wt/vol: 5.0 (g/ml) ML Lab File ID:

LOW Date Received: 8/16/2002 Level: (low/med) Date Analyzed: 8/22/2002 % Moisture: not dec.

GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Aliquot Volume: (uL) Soil Extract Volume: (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg	J) <u>UG/L</u>	-	Q
75-71-8	Dichlorodifluoromethane		1.0	U
74-87-3	Chloromethane		1.0	U
74-83-9	Bromomethane		1.0	U
75-01-4	Vinyl Chloride		1.0	U
75-00-3	Chloroethane		1.0	U
75-69-4	Trichlorofluoromethane		1.0	U
75-09-2	Methylene Chloride		1.0	U
75-35-4	1,1-Dichloroethene		1.0	U
75-34-4	1,1-Dichloroethane		1.0	U
590-20-7	2,2-Dichloropropane		1.0	U
156-60-5	trans-1,2-Dichloroethylene		1.0	U
540-59-0	cis-1,2-Dichloroethene		1.0	υ
67-66-3	Chloroform		1.0	U
563-58-6	1,1-Dichloropropene		1.0	U
107-06-2	1,2-Dichloroethane		1.0	U
74-97-5	Bromochloromethane		1.0	U
71-55-6	1,1,1-Trichloroethane		1.0	U
56-23-5	Carbon Tetrachloride		1.0	U
74-95-3	Dibromomethane		1.0	U
75-27-4	Bromodichloromethane		1.0	U
78-87-5	1,2-Dichloropropane		1.0	U
10061-01-5	cis-1,3-Dichloropropene		1.0	U
79-01-6	Trichloroethene		1.0	U
71-43-2	Benzene		1.0	U
142-28-9	1,3-Dichloropropane		1.0	U
124-48-1	Dibromochloromethane		1.0	U
10061-02-6	trans-1,3-Dichloropropene		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	U
106-93-4	1,2-Dibromoethane		1.0	U
75-25-2	Bromoform		1.0	U
127-18-4	Tetrachloroethene		1.0	U
630-20-6	1,1,1,2-Tetrachloroethane		1.0	U
108-88-3	Toluene		1.0	U
108-90-7	Chlorobenzene		1.0	U
100-41-4	Ethylbenzene		1.0	U
100-42-5	Styrene		1.0	U
108-38-3	m,p-Xylene		1.0	U
95-47-6	o-Xylene		1.0	U
96-18-4	1,2,3-Trichloropropane		1.0	U

Lab Name:

M-NY049

315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

STL Newburgh

EPA SAMPLE NO.

Lab Name:	STL Nev	wburgh		·····	Contract:	01012.01		31402
Lab Code:	10142	C	ase No.: _		SAS No	.:	SDG No.: 21	5065
Matrix: (soil/w	/ater)	WATER	. · 		Lal	Sample ID	215065-006	3
Sample wt/vo	d:	5.0	_ (g/ml) <u>[</u>	VIL	Lal	File ID:	W8396.D	
Level: (low/m	ned)	LOW	***		Da	te Received:	8/16/2002	
% Moisture: n	ot dec.				Da	te Analyzed:	8/22/2002	
GC Column:	DB-624	ID: 0	.53 (mn	n)	Dile	ution Factor:	1.0	
Soil Extract Volume:			(uL)		Soi	l Aliquot Vol	ume:	(ul
				CON	ICENTRAT	TON UNITS	:	
CAS NO		COME	POUND	(ug/l	or ug/Kg)	UG/L		Q

	(5 5 5)		
98-82-8	Isopropylbenzene	1.0	Ų
108-86-1	Bromobenzene	1.0	U
103-65-1	n-Propylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U
104-51-8	n-Butylbenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
91-20-3	Naphthalene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U

NJDEP 73015

3/90

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1881402

Lab Name: S	TL New	burgh		Contract:	01012.0	1		
Lab Code: 10	0142	Cas	e No.:	SAS No	o.:	SI	DG No.: 215	065
Matrix: (soil/wat	ter) \	WATER		La	b Sample	ID:	215065-006	
Sample wt/vol:	5	5.0	(g/ml) ML	La	b File ID:		W8396.D	·
Level: (low/med	d) <u>i</u>	_OW		Da	ite Receiv	/ed:	8/16/2002	
% Moisture: not	t dec.			Da	ite Analyz	ed:	8/22/2002	
GC Column: DI	B-624	ID: <u>0.5</u>	3 (mm)	Dil	ution Fac	tor:	1.0	
Soil Extract Vol	ume:	•	_ (uL)	Sc	il Aliquot	Volu	me:	(uL)
Number TICs fo	ound: _	0	- -	CONCENTRA' (ug/L or ug/Kg)			· 	
CAS NO.		COMPOU	ND NAME		RT	ES	T. CONC.	Q

14

VOLATILE ORGANICS ANALYSIS DATA SHEET

	O A B	401	_	NIO.
EPA	SAN	ハヒ	.=	NU.

6MW-1981402

Lab Name:	STL Ne	wburgh	Contract: 01012.01	_
Lab Code:	10142	Case No.:	SAS No.: S	DG No.: 215065
Matrix: (soil/w	/ater)	WATER	Lab Sample ID:	215065-007
Sample wt/vo	ıl:	5.0 (g/ml) ML	Lab File ID:	W8397.D
Level: (low/m	ned)	LOW	Date Received:	8/16/2002
% Moisture: r	ot dec.		Date Analyzed:	8/22/2002
GC Column:	DB-624	ID: <u>0.53</u> (mm)	Dilution Factor:	1.0
Soil Extract V	olume:	(uL)	Soil Aliquot Volu	me: (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	1.0	U
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon Tetrachloride	1,0	U.
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	Ŭ
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	1.0	U
71-43-2	Benzene	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
124-48-1	Dibromochloromethane	1.0	Ų
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	J
75-25-2	Bromoform	1.0	IJ
127-18-4	Tetrachloroethene	1.0	כ
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
100-42-5	Styrene	1.0	U
108-38-3	m,p-Xylene	1.0	U
95-47-6	o-Xvlene	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	U

TRENT

NYSDOH 10142

NJDEP 73015

FORMI VOA CTDOHS PH-0564

EPA NY049

EPA SAMPLE NO.

6MW-1981402

Lab Name:	STL Nev	wburgh		Contract:	01012.01		
Lab Code:	10142	Case	No.:	SAS No	o.: S	DG No.: 21506	5
Matrix: (soil/w	vater)	WATER		La	b Sample ID:	215065-007	
Sample wt/vo	ol:	5.0	(g/ml) ML	Lal	b File ID:	W8397.D	
Level: (low/m	ned)	LOW		Da	te Received:	8/16/2002	_
% Moisture: r	not dec.			Da	te Analyzed:	8/22/2002	_
GC Column:	DB-624	ID: <u>0.53</u>	(mm)	Dil	ution Factor:	1.0	_
Soil Extract V	olume:		(uL)	So	il Aliquot Volu	me:	_ (uL

CONCENTRATION UNITS:

	CONCENTRATION UNITS.					
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q		
98-82-8	Isopropylbenzer	ne	1.0	U		
108-86-1	Bromobenzene		1.0	U		
103-65-1	n-Propylbenzen	e	1.0	U		
79-34-5	1,1,2,2-Tetrach	oroethane	1.0	U		
95-49-8	2-Chlorotoluene)	1.0	U		
106-43-4	4-Chlorotoluene		1.0	U		
108-67-8	1,3,5-Trimethylt	enzene	1.0	U		
98-06-6	tert-Butylbenzer	tert-Butylbenzene		U		
95-63-6	1,2,4-Trimethylk	1,2,4-Trimethylbenzene		U		
135-98-8	sec-Butylbenzei	sec-Butylbenzene		U		
541-73-1	1,3-Dichloroben	1,3-Dichlorobenzene		U		
99-87-6	4-Isopropyltolue	ne	1.0	U		
106-46-7	1,4-Dichloroben	zene	1.0	U		
95-50-1	1,2-Dichloroben	zene	1.0	Ų		
104-51-8	n-Butylbenzene		1.0	U		
96-12-8	1,2-Dibromo-3-0		1.0	U		
87-68-3	Hexachlorobuta		1.0	U		
120-82-1	1,2,4-Trichlorob		1.0	U		
91-20-3	Naphthalene		1.0	U		
87-61-6	1,2,3-Trichlorob	enzene	1.0	U		

PA 68-378

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1981402 Lab Name: STL Newburgh Contract: 01012.01 SDG No.: 215065 SAS No.: Lab Code: 10142 Case No.: Lab Sample ID: 215065-007 Matrix: (soil/water) WATER Lab File ID: W8397.D Sample wt/vol: 5.0 (g/ml) ML Date Received: 8/16/2002 LOW Level: (low/med) % Moisture: not dec. Date Analyzed: 8/22/2002 GC Column: DB-624 ID: 0.53 Dilution Factor: 1.0 Soil Aliquot Volume: Soil Extract Volume: (uL) **CONCENTRATION UNITS:** (ug/L or ug/Kg) UG/L Number TICs found: RT EST. CONC. Q CAS NO. COMPOUND NAME

EPA NY049

Fax (845) 562-0841

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-2081402

Lab Name: STL N		wburgh	Contract: 01012.01	
Lab Code:	10142	Case No.:	SAS No.: S	DG No.: 215065
Matrix: (soil/v	vater)	WATER	Lab Sample ID:	215065-008
Sample wt/vo	ol:	5.0 (g/ml) ML	Lab File ID:	W8398.D
Level: (low/n	ned)	LOW	Date Received:	8/16/2002
% Moisture: r	not dec.		Date Analyzed:	8/22/2002
GC Column:	DB-624	ID: <u>0.53</u> (mm)	Dilution Factor:	1.0
Soil Extract V	/olume:	(uL)	Soil Aliquot Volu	me: (uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q .
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	Ų
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	2.7	Jo
67-66-3	Chloroform	1.0	Ú
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	1.0	U
71-43-2	Benzene	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
124-48-1	Dibromochloromethane	1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	. 1.0	U
127-18-4	Tetrachloroethene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
100-42-5	Styrene	1.0	U
108-38-3	m,p-Xylene	1.0	· U
95-47-6	o-Xylene	1.0	Ū
96-18-4 R N	1,2,3-Trishloropropage art of Severn Trent		U

TRENT

FORM LVOA

PA 68-378 M-N

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-2081402

Lab Name: STL Nev		wburgh	Contract: 01012.01	013111 2001 102
Lab Code:	10142	Case No.:	SAS No.: S	DG No.: 215065
Matrix: (soil/v	vater)	WATER	Lab Sample ID:	215065-008
Sample wt/vo	ol:	5.0 (g/ml) ML	Lab File ID:	W8398.D
Level: (low/m	ned)	LOW	Date Received:	8/16/2002
% Moisture: r	not dec.		Date Analyzed:	8/22/2002
GC Column:	DB-624	ID: <u>0.53</u> (mm)	Dilution Factor:	1.0
Soil Extract V	olume:	(uL)	Soil Aliquot Volu	ıme: (uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q ·
98-82-8	Isopropylbenzene			1.0	U
108-86-1	Bromobenzene			1.0	U
103-65-1	n-Propylbenzene			1.0	U
79-34-5	1,1,2,2-Tetrachloro	ethane		1.0	U
95-49-8	2-Chlorotoluene			1.0	U
106-43-4	4-Chlorotoluene			1.0	U
108-67-8	1,3,5-Trimethylben:	zene		1.0	U
98-06-6	tert-Butylbenzene			1.0	U
95-63-6	1,2,4-Trimethylben:	zene		1.0	U
135-98-8	sec-Butylbenzene			1.0	U
541-73-1	1,3-Dichlorobenzer	е		1.0	U
99-87-6	4-Isopropyltoluene			1.0	U
106-46-7	1,4-Dichlorobenzer	е		1.0	U
95-50-1	1,2-Dichlorobenzer	e		1.0	U
104-51-8	n-Butylbenzene			1.0	U
96-12-8	1,2-Dibromo-3-chlo	ropropane	-	1.0	U
87-68-3		Hexachlorobutadiene		1.0	U
120-82-1	1,2,4-Trichlorobenz	1,2,4-Trichlorobenzene			U
91-20-3	Naphthalene			1.0	U
87-61-6	1,2,3-Trichlorobenz	ene		1.0	U

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-2081402

Lab Name:	STL Nev	wburgh		Contrac	t: <u>01012.0</u>)1		
Lab Code:	10142	Cas	se No.:	SAS I	No.:	_ SD	G No.: 215	065
Matrix: (soil/w	vater)	WATER	•	Į	.ab Sample	iD:	215065-008	
Sample wt/vo	ol:	5.0	(g/mi) ML		_ab File ID:		W8398.D	
Level: (low/m	ned)	LOW	_]	Date Receiv	ved:	8/16/2002	
% Moisture: r	not dec.			[Date Analyz	zed:	8/22/2002	
GC Column:	DB-624	ID: <u>0.5</u>	3 (mm)		Dilution Fac	tor:	1.0	
Soil Extract V	olume:		_ (uL)	5	Soil Aliquot	Volun	ne:	(uL)
	1		•	CONCENTR				·
Number TICs	found:	0	_	(ug/L or ug/K	g) <u>UG</u>	/L		
CAS NO.		COMPOU	ND NAME		RT	ES	Γ. CONC.	Q

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VOLATILL O	INCOMINED AIN	ALIOIO DAIA	OHELH	1
•				6MW-2181402
STL Newburgh		Contract:	01012.01	

Lab Code:	10142	Case No.:	SAS No.:	SDG No.: 215065

Lab Sample ID: 215065-009 Matrix: (soil/water) WATER

Sample wt/vol: 5.0 (g/mi) ML Lab File ID: W8399.D LOW Level: (low/med) Date Received: 8/16/2002

% Moisture: not dec. Date Analyzed: 8/22/2002

GC Column: DB-624 ID: 0.53 (mm): Dilution Factor: 1.0

(uL) (uL) Soil Extract Volume: Soil Aliquot Volume:

CONCENTRATION UNITS:

AS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	υ
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	71	
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	16	
71-43-2	Benzene	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
124-48-1	Dibromochloromethane	1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	1.0	Ų
127-18-4	Tetrachloroethene	300 290	E_
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
100-42-5	Styrene	1.0	Ų
108-38-3	m,p-Xylene	1.0	U
95-47-6	o-Xylene	1.0	U
96-18-4	1,2,3-Trishloropropage and of Severn Trent L		U

Lab Name:

FORM LVOA

M-NY049

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

EPA SAMPLE NO.

	•	0220				CRANALO	404400	. [
Lab Name:	STL Ne	wburgh		Contract:	01012.01	6MW-2	181402	
Lab Code:	10142	Cas	e No.:	SAS No	o.: S	DG No.: 2	215065	
Matrix: (soil	/water)	WATER		La	b Sample ID:	215065-0	09	
Sample wt/\	voi:	5.0	(g/ml) ML	La	b File ID:	W8399.D		
Level: (low	/med)	LOW		Da	ite Received:	8/16/2002	2	
% Moisture:	not dec.			Da	ite Analyzed:	8/22/2002	2	
GC Column	: DB-624	ID: 0.5	3(mm)	Dil	ution Factor:	1.0		
Soil Extract	Volume:		_ (uL)	So	il Aliquot Volu	ıme:		(uL
			•	CONCENTRA	TION HAITS:			
CAS N	10.	COMPO	UND	(ug/L or ug/Kg)	·		Q	
98-82	2-8	Isopro	pylbenzene			1.0	U	
108-8	86-1		benzene			1.0	U	
103-6	35-1	n-Prop	ylbenzene			1.0	U	
79-34	4-5	1,1,2,2	-Tetrachlor	oethane		1.0	U	
95-49	9-8	2-Chlo	rotoluene			1.0	U	
106-4	43-4	4-Chlo	rotoluene			1.0	U.	
108-6	67-8		<u>Frimethylbe</u>			1.0	U	
98-06	6-6	tert-Bu	tylbenzene			1.0	U	
95-6	3-6	124-7	Frimethylbe	nzene		1.0	· U	- 1

sec-Butylbenzene

4-isopropyltoluene

n-Butylbenzene

Naphthalene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

Hexachlorobutadiene

1,2,4-Trichlorobenzene

1,2,3-Trichlorobenzene

1,2-Dibromo-3-chloropropane

135-98-8

541-73-1

99-87-6

106-46-7

95-50-1

104-51-8

96-12-8

87-68-3

120-82-1

91-20-3

87-61-6

1.0

1.0

1.0

1.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

U

U

U

U

U

U U

Ú

U

Ú

U

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-2181402

Lab Name:	STL Ne	wburgh	Contract	: 01012.0	1	1402
Lab Code:	10142	Case No.:	SAS	No.:	_ SDG No.: 21	5065
Matrix: (soil/v	water)	WATER	L.	ab Sample	ID: <u>215065-009</u>	l
Sample wt/vo	ol:	5.0 (g/ml) ML	L	ab File ID:	W8399.D	
Level: (low/n	ned)	LOW		ate Receiv	ed: 8/16/2002	<u>.</u>
% Moisture:	not dec.		ם	ate Analyz	ed: 8/22/2002	
GC Column:	DB-624	ID: <u>0.53</u> (mm)	. [ilution Fact	tor: 1.0	·
Soil Extract \	/olume:	(uL)	S	oil Aliquot	Volume:	(uL)
Number TICs	s found:	0	CONCENTRA (ug/L or ug/Ko			
CAS NO.	: ''	COMPOUND NAME	-	RT -	EST. CONC.	Q

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-13381302

rap Name:	2 IT NE	wburgn			Contract.	01012.01	_		—
Lab Code:	10142	Ca	se No.:		SAS No	.: S	DG No.:	215065	
Matrix: (soil/w	ater)	WATER	_		Lal	Sample ID:	215067-0	007	
Sample wt/vol	:	5.0	(g/ml)	ML	Lal	File ID:	W8386.E	<u> </u>	
Level: (low/m	ed)	LOW	_		Da	te Received:	8/16/200	2	
% Moisture: n	ot dec.				Da	te Analyzed:	8/21/200	2	
GC Column: J	DB-624	ID: 0.	53 (mr	m)	Dile	ution Factor:	1.0		
Soil Extract Vo	olume:		(uL)		So	il Aliquot Volu	ime:		(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug	/Kg) <u></u>	JG/L		Q
75-71-8	Dichlorodifluoromethane		-	1.0	U
74-87-3	Chloromethane			1.0	<u>U_</u>
74-83-9	Bromomethane			1.0	U
75-01-4	Vinyl Chloride			1.0	U
75-00-3	Chloroethane			1.0	U
75-69-4	Trichlorofluoromethane			1.0	U
75-09-2	Methylene Chloride			1.0	U
75-35-4	1,1-Dichloroethene			1:0	U_
75-34-4	1,1-Dichloroethane			1.0	U
590-20-7	2,2-Dichloropropane			1.0	U
156-60-5	trans-1,2-Dichloroethylene			1.2	Jo
540-59-0	cis-1,2-Dichloroethene		120	-100	- E-
67-66-3	Chloroform			1.0	U
563-58-6	1,1-Dichloropropene			1.0	U
107-06-2	1,2-Dichloroethane			1.0	U
74-97-5	Bromochloromethane			1.0	U_
71-55-6	1,1,1-Trichloroethane			1.0	U
56-23-5	Carbon Tetrachloride	****		1.0	U
74-95-3	Dibromomethane			1.0	U
75-27-4	Bromodichloromethane	·		1.0	U
78-87 - 5	1,2-Dichloropropane			1.0	U
10061-01-5	cis-1,3-Dichloropropene			1.0	U_
79-01-6	Trichloroethene			48	
71-43-2	Benzene			1.0	U
142-28-9	1,3-Dichloropropane			1.0	U
124-48-1	Dibromochloromethane			1.0	U_
10061-02-6	trans-1,3-Dichloropropene			1.0	U
79-00-5	1,1,2-Trichloroethane			1.0	U_
106-93-4	1,2-Dibromoethane			1.0	U
75-25-2	Bromoform			1.0	U_
127-18-4	Tetrachloroethene	740	740	- 530	E
630-20-6	1,1,1,2-Tetrachloroethane			1.0	U
108-88-3	Toluene			1.0	U
108-90-7	Chlorobenzene			1.0	U_
100-41-4	Ethylbenzene			1.0	U
100-42-5	Styrene			1.0	U_
108-38-3	m,p-Xylene			1.0	U
95-47-6	o-Xylene			1.0	U
96-18-4	1,2,3-Trichioropropane			1.0	U

FORM L VOA CTDOHS PH-0554

EPA NY049

3/90

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

	v	OLATILE O	NOAINOU A	WILLOW DITT	0.122.		CRANAL	1338130	ا _د ر
Lab Name:	STL Ne	wburgh	V - 12 11 11 11 11 11 11 11 11 11 11 11 11	Contract:	01012.01		OIVIVV-	1330130	12
Lab Code:	10142	Cas	se No.:	SAS No	D.:	_ SC	G No.:	215065	
Matrix: (soil/\	water)	WATER	_	La	b Sample	D:	215067-	007	
Sample wt/vo	ol:	5.0	(g/ml) ML	La	b File ID:	-	W8386.I	<u> </u>	
Level: (low/r	ned)	LOW	_	Da	ate Receive	ed: ˌ	8/16/200	02	
% Moisture:	not dec.		· .	Da	ate Analyze	ed:	8/21/200)2	
GC Column:	DB-624	ID: 0.5	53_ (mm)	Dil	lution Fact	or:	1.0		
Soil Extract \	Volume:		_ (uL)	So	oil Aliquot ∖	/olur	ne:		(uL
				CONCENTRA	TION UNIT	ľS:			
CAS NO	Ο.	COMP	DUND	(ug/L or ug/Kg)				Q	
98-82	-8	Isopro	pylbenzene				1.0	U	
108-8			obenzene				1.0	U	

98-82-8	Isopropylbenzene	1.0	U
108-86-1	Bromobenzene	1.0	<u> U </u>
103-65-1	n-Propylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
95-49-8	2-Chiorotoluene	1.0	<u> </u>
106-43-4	4-Chlorotoluene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U_
98-06-6	tert-Butylbenzene	1.0	<u> </u>
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	<u>U</u>
541-73-1	1,3-Dichlorobenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U
104-51-8	n-Butylbenzene	1.0	U_
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
91-20-3	Naphthalene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U

3/90

M-NY049

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-13381302

Lab Name:	STL Ne	wburgh			Contract	: 01012.0)1			
Lab Code:	10142	Cas	se No.:		SAS	lo.:	_ s	DG No.:	2150	65
Matrix: (soil/	water)	WATER	_		L	ab Sample	D:	215067-	007	
Sample wt/vo	ol:	5.0	(g/ml) Mi	L	_ L	ab File ID:		W8386.	D	
Level: (low/r	ned)	LOW	-		È	ate Receiv	/ed:	8/16/200	02	
% Moisture:	not dec.				, 0	ate Analyz	ed:	8/21/200)2	
GC Column:	DB-624	ID: <u>0.8</u>	53_ (mm)			ilution Fac	tor:	1.0		
Soil Extract \	/olume:		_ (uL)		S	oil Aliquot	Volu	me:		(uL)
				-		ATION UN				
Number TICs	s found:	0		(ug/i	or ug/K	g) <u>UG</u>	/L			
CAS NO.		COMPOL	IND NAME			RT	ES	ST. CON	C.	Q

M-NY049

1A

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name:	STL Nev	wburgh		Contract:	01012.01	010100-201	01702
Lab Code:	10142	Case	No.:	SAS No	: S	DG No.: 21	5065
Matrix: (soil/w	vater)	WATER	-	Lai	o Sample ID:	215065-010	•
Sample wt/vo	oli:	5.0 (g/ml) ML	Lal	b File ID:	W8400.D	~~~
Level: (low/n	ned)	LOW		Da	te Received:	8/16/2002	
% Moisture: r	not dec.			Da	te Analyzed:	8/22/2002	·
GC Column:	DB-624	ID: <u>0.53</u>	(mm)	Dile	ution Factor:	1.0	
Soil Extract V	olume:		(uL)	So	il Aliquot Volu	ıme:	(u
•		•		CONCENTRAT	ION UNITS:		-
CAS NO),	COMPOL	IND	(ug/L or ug/Kg)			Q

	(8 6)		
75-71 - 8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	υ
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	4.1	Jq
67-66-3	Chloroform	1.0	Ú
563-58-6	1,1-Dichloropropene	1.0	٦
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	C
56-23-5	Carbon Tetrachloride	1.0	د
74-95-3	Dibromomethane	. 1.0	J
75-27-4	Bromodichloromethane	1.0	J
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	1.0	U
71-43-2	Benzene	1.0	U
142-28-9	1,3-Dichloropropane	1.0	٦
124-48-1	Dibromochloromethane	1.0	Ú
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	1.0	U
127-18-4	Tetrachloroethene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	Ū
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	Ú
100-42-5	Styrene	1.0	U
108-38-3	m,p-Xylene	1.0	U
95-47 - 6	o-Xylene	1.0	U
96-18-4	1,2,3-Trichloropropane		U

FORM LVOA

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

l oh t	Jama:	STL Ne	whirah	Confract	01012.01	6MW-2	018140	2
•				· .				
Lab (Code:	10142	Case No.:	SAS No	.: Ş	DG No.: 2	215065	
Matri	x: (soil/\	vater)	WATER	Lai	Sample ID:	215065-0	10	
Samı	pie wt/vo	ol:	5.0 (g/ml) ML	Lal	File ID:	W8400.D	<u> </u>	
Leve	l: (low/r	ned)	LOW	Da	te Received:	8/16/2002	·	
% Mo	oisture:	not dec.		Da	te Analyzed:	8/22/2002		•
GC C	Column:	DB-624	ID: 0.53 (mm)	Dil	ution Factor:	1.0		
Soil E	Extract \	/olume:	(uL)	· So	il Aliquot Volu	me:		(uL
	CAS NO) .	COMPOUND	CONCENTRAT			Q	
[98-82-	-8	Isopropylbenzene			1.0	Ū	\neg
Ī	108-86		Bromobenzene			1.0	U	\neg
	103-6		n-Propylbenzene			1.0	U	_
•	79-34-		1,1,2,2-Tetrachlord	ethane		1.0	U	
	95-49-		2-Chlorotoluene			1.0	U	
	106-4	3-4	4-Chlorotoluene			1.0	כ	
	108-6	7-8	1,3,5-Trimethylben	zene		1.0	U	
	98-06-	-6	tert-Butylbenzene			1.0	U	
	95-63-	-6	1,2,4-Trimethylben	zene		1.0	U	
	135-98	3-8	sec-Butylbenzene			1.0	U	
Ī	541-73	3-1	1,3-Dichlorobenze	ne		1.0	U	
	99-87-	-6	4-isopropyltoluene			1.0	U	_
j	106-46	3-7	1,4-Dichlorobenze	ne		1.0	U	
. [95-50-	-1	1,2-Dichlorobenze	ne		1.0	U U	_
	104-5	1-8	n-Butylbenzene			1.0	U	
. [96-12	Ω	1.2-Dibromo-3-chi	oronronana	ĺ	1.0	(1

Hexachlorobutadiene

Naphthalene

1,2,4-Trichlorobenzene

1,2,3-Trichlorobenzene

1.0

1.0 1.0

1.0

U

U

Ū

87-68-3

91-20-3

87-61-6

120-82-1

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-20181402 Lab Name: STL Newburgh Contract: 01012.01 Lab Code: Case No.: SAS No.: SDG No.: 215065 10142 Matrix: (soil/water) WATER Lab Sample ID: 215065-010 Sample wt/vol: 5.0 (g/ml) ML Lab File ID: W8400.D Level: (low/med) LOW Date Received: 8/16/2002 % Moisture: not dec. Date Analyzed: 8/22/2002 GC Column: DB-624 ID: 0.53 Dilution Factor: 1.0 (mm) Soil Extract Volume: Soil Aliquot Volume: (uL) **CONCENTRATION UNITS:** (ug/L or ug/Kg) UG/L Number TICs found: CAS NO. COMPOUND NAME RT EST. CONC. Q

Fax (845) 562-0841

M-NY049

EPA NY049

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name:	STL Ne	wburgh			Contract:	01012.01	TB-81402	
Lab Code:	10142	Cas	e No.:	. 1	_ SAS No	o.: S	DG No.: 215065	
Matrix: (soil/w	ater)	WATER			Lal	b Sample ID:	215065-011	
Sample wt/voi	:	5.0	(g/ml)	ML	_ Lal	b File ID:	W8409.D	
Level: (low/m	ed)	LOW			Da	te Received:	8/16/2002	
% Moisture: n	ot dec.				Da	te Analyzed:	8/23/2002	
GC Column: J	DB-624	ID: <u>0.5</u>	3 (m	ım)	Dil	ution Factor:	1.0	
Soil Extract Vo	olume:		_ (uL)		So	il Aliquot Volu	ıme:	(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	Ū
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	1.0	U
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U
74-95-3	Dibromomethane	1.0	U.
75-27-4	Bromodichloromethane	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	1.0	· U
71-43-2	Benzene	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
124-48-1	Dibromochloromethane	1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	1.0	U
127-18-4	Tetrachloroethene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	Ŭ
100-41-4	Ethylbenzene	1.0	IJ
100-42-5	Styrene	1.0	U
108-38-3	m,p-Xylene	1.0	U
95-47-6	o-Xylene	1.0	U
96-18-4 N	1,2,3-Trichloropropane	1.0	Ŭ

FORM I VOA CTDOHS PH-0554

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

EPA SAMPLE NO.

E ORGANICS ANALYSIS DATA	SHEET		
•		TB-81402	
Contract:	01012.01	,	

Lau Naille.	OIL NE	wbulgii		Contract, O1012.01	_	
Lab Code:	10142	Cas	se No.:	SAS No.:S	DG No.: 215065	5
Matrix: (soil/w	vater)	WATER	_	Lab Sample ID:	215065-011	
Sample wt/vo	ol:	5.0	(g/ml) ML	Lab File ID:	W8409.D	_
Level: (low/m	ned)	LOW	-	Date Received:	8/16/2002	
% Moisture: r	not dec.			Date Analyzed:	8/23/2002	.
GC Column:	DB-624	ID: <u>0.5</u>	53_ (mm)	Dilution Factor:	1.0	_
Soil Extract V	olume:		(uL)	Soil Aliquot Volu	ıme:	(uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg	g) <u>UG/L</u>	Q
98-82-8	Isopropylbenzene	1.0	U
108-86-1	Bromobenzene	1.0	U
103-65-1	n-Propylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
99-87 - 6	4-Isopropyltoluene	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U
104-51-8	n-Butylbenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
91-20-3	Naphthalene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

TB-81402 Contract: 01012.01 Lab Name: STL Newburgh SAS No.: SDG No.: 215065 Lab Code: 10142 Case No.: Lab Sample ID: 215065-011 Matrix: (soil/water) WATER Lab File ID: W8409.D Sample wt/vol: 5.0 (g/ml) ML Date Received: 8/16/2002 LOW Level: (low/med) Date Analyzed: 8/23/2002 % Moisture: not dec. Dilution Factor: 1.0 GC Column: DB-624 ID: 0.53 (mm) Soil Aliquot Volume: Soil Extract Volume: **CONCENTRATION UNITS:** UG/L (ug/L or ug/Kg) Number TICs found: COMPOUND NAME RT EST, CONC. Q CAS NO.

1B

FPA	SAMPL	E NO.

			-				
		MIVOLATILE ORG	ANICS ANA	ALYSIS DA Contract:		6MW	/-0381302
_ab Name:	SILNE	wburgn					
_ab Code:	10142	Case No.	:	SAS No).:	SDG No.:	: <u>215067</u>
Matrix: (soil/	water)	WATER		La	b Sample	D: 215067	7-001
		970.0 (g/m	i) ML	La	b File ID:	S2827	8.D
Level: (low/r				Da	te Receive	ed: <u>08/16/</u> 0	02
-		decanted	:(Y/N) <u>N</u>	<u>I</u> Da	te Extracte	ed: <u>08/20/</u> 0	02
		Volume: 1000			te Analyze	ed: <u>08/28/</u> 0	02
Injection Vol	ume: 2	.0 (uL)		Dil	ution Fact	or: <u>1.0</u>	
GPC Cleanu	ıp: (Y/N)	N pH:					
				CONC	ENTRATION	ON UNITS:	
CAS NO	Э.	COMPOUND)	(ug/L o	r ug/Kg)	UG/L	Q
111-4	4-4	bis(2-Chlore	oethyl)ether			10	U
108-9		Phenol				10	UJL
95-57		2-Chloroph	enol			10	U
541-7		1,3-Dichlord				<u>10</u>	
106-4		1,4-Dichlore				10	
95-50		1,2-Dichlore				10	
100-5		Benzyl alco	hol			<u>10</u>	U

	·		
111-44-4	bis(2-Chloroethyl)ether	10	U
108-95-2	Phenol	10	UJL
95-57-8	2-Chlorophenol	10	U
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	UJL
95-50-1	1,2-Dichlorobenzene	10	U
100-51-6	Benzyl alcohol	10	U
108-60-1	2,2'-oxybis(1-Chloropropane)	10	U
95-48-7	2-Methylphenol	10	U
67-72-1	Hexachloroethane	10	U
621-64-7	N-Nitroso-dì-n-propylamine	10	U
106-44-5	4-Methylphenol	10	U
98-95-3	Nitrobenzene	10	U
78-59-1	Isophorone	10	U
88-75-5	2-Nitrophenol	10	U
105-67-9	2,4-Dimethylphenol	10	U
111-91-1	bis(2-Chloroethoxy)methane	10	. U
120-83-2	2,4-Dichlorophenol	10	U
120-82-1	1,2,4-Trichlorobenzene	10	<u> </u>
91-20-3	Naphthalene	10	U
106-47-8	4-Chloroaniline	10	U
87-68-3	Hexachlorobutadiene	10	U
59-50-7	4-Chloro-3-methylphenol	10	U
91-57-6	2-Methylnaphthalene	10	U
77-47-4	Hexachlorocyclopentadiene	10	<u> </u>
88-06-2	2,4,6-Trichlorophenol	10	ປ
95-95-4	2,4,5-Trichlorophenol	10	U
91-58-7	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	26	U
208-96-8	Acenaphthylene	10	U
131-11-3	Dimethylphthalate	10	U
606-20-2	2,6-Dinitrotoluene	10	U
83-32-9	Acenaphthene	10	U
99-09-2	3-Nitroaniline	-26	U R
51-28-5	2,4-Dinitrophenol	26	U
132-64-9	Dibenzofuran	10	U
121-14-2	2,4-Dinitrotoluene	10	U

STL Newburgh is a part of Severn Trent Laboratories, Inc.

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (846) 562-0890 Fax (845) 562-0841

PA 68-378

1C

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPL	E NO
------------	-------	------

l ah N	lame: STL	Newbur	rah	Contract:	01012.01	6MW-03	81302
			.=	 •		DG No · 2	15067
Lab C	ode: 1014	42	Case No.:				
Matrix	c: (soil/water)) <u>W</u> A	ATER	Lal	b Sample ID:	215067-00)1 .
Samo	ele wt/vol:	970	0.0 (g/ml) ML	. Lai	b File ID:	S28278.D	
	: (low/med)				te Received:	08/16/02	
	-			N Da	te Extracted:	08/20/02	
		ract Volu	ıme: 1000 (uL)	Da	te Analyzed:	08/28/02	
	ion Volume:				ution Factor:		
•			, ,				
GPC	Cleanup: (Y/	/N)	N pH:				
				CONC	ENTRATION	UNITS:	
	0.4.0. NO		COMPOUND		rug/Kg) U		Q
(CAS NO.		COMPOUND	(ug/L c	ug/kg/ <u>o</u>	<u> </u>	~
Γ	100-02-7		4-Nitrophenol			26	UJ⊾
ŀ	86-73-7		Fluorene			10	Ų
}	7005-72-3		4-Chlorophenyl-ph	enviether		10	U
-	84-66-2		Diethylphthalate			10	U
	100-01-6		4-Nitroaniline			26	U
}	534-52-1		4,6-Dinitro-2-methy	vlohenol		26	U
	86-30-6		n-Nitrosodiphenyla			10	U
ŀ	101-55-3		4-Bromophenyl-ph			10	U
Ļ	118-74-1		Hexachlorobenzen			10	U
. }	87-86-5		Pentachioropheno			26	U
ŀ	85-01-8		Phenanthrene	·		10	U
ļ	120-12-7		Anthracene			10	U
ŀ	84-74-2		Di-n-butylphthalate	<u> </u>		10	U
ŀ	206-44-0		Fluoranthene			10	U
ļ	129-00-0		Pyrene			10	U
Ī	85-68-7		Butylbenzylphthala	ate		10	U
}	91-94-1		3,3'-Dichlorobenzio			21	U
ļ	56-55-3	<u> </u>	Benzo(a)anthrace			10	U
	218-01-9		Chrysene			10	U
	117-81-7		bis(2-Ethylhexyl)pl	hthalate		10	U
	117-84-0		Di-n-octylphthalate)		10	U
	205-99-2		Benzo(b)fluoranth			10	U
;	207-08-9		Benzo(k)fluoranthe			10	U
	50-32-8		Benzo(a)pyrene			10	U
	193-39-5		Indeno(1,2,3-cd)p	yrene		10	U
	62-75-9		N-Nitrosodimethyl			10	U

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

NJDEP 73015

10

10

53-70-3

191-24-2

M-NY049

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-0381302 Lab Name: STL Newburgh Contract: 01012.01 SDG No.: 215067 Lab Code: 10142 Case No.: SAS No.: **WATER** Lab Sample ID: 215067-001 Matrix: (soil/water) Sample wt/vol: 970 (g/ml) ML Lab File ID: S28278.D Date Received: 08/16/02 Level: (low/med) LOW Date Extracted: 08/20/02 % Moisture: decanted: (Y/N) Concentrated Extract Volume: 1000 (uL) Date Analyzed: 08/28/02 Dilution Factor: 1.0 Injection Volume: 2.0 (uL) GPC Cleanup: (Y/N) pH: CONCENTRATION UNITS: Number TICs found: (ug/L or ug/Kg) UG/L CAS NUMBER COMPOUND NAME RT EST. CONC. Q

PA 68-378

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-0881402

Lab Name:	STL Ne	wburgh		Contra	act:	01012.01	
Lab Code:	10142	Cas	se No.:	SAS	3 No.:	SI	OG No.: 215065
Matrix: (soil/v	vater)	WATER	-		Lab	Sample ID:	215065-001
Sample wt/vo	ol:	970.0	(g/ml) ML	<u>. </u>	Lab	File ID:	S28293.D
Level: (low/n	ned)	LOW			Date	Received:	08/16/02
% Moisture:		dec	anted:(Y/N)	N	Date	Extracted:	08/21/02
Concentrated	Extract	Volume: 1	000 (uL)		Date	Analyzed:	08/29/02
Injection Volu	ıme: <u>2</u>	.0 (uL)		•	Dilut	tion Factor:	1.0
GPC Cleanu	o: (Y/N)	<u>N</u>	pH:	_			

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
111-44-4	bis(2-Chloroethyl)eth	er	10	U
108-95-2	Phenol		10	UJL
95-57-8	2-Chiorophenol		10	U
541-73-1	1,3-Dichlorobenzene		10	U
106-46-7	1,4-Dichlorobenzene		10	UJL
95-50-1	1,2-Dichlorobenzene		- 10	U
100-51-6	Benzyl alcohol		10	U
108-60-1	2,2'-oxybis(1-Chlorop	propane)	10	U
95-48-7	2-Methylphenol		10	U
67-72-1	Hexachloroethane		10	U
621-64-7	N-Nitroso-di-n-propyl	amine	10	U
106-44-5	4-Methylphenol		10	U
98-95-3	Nitrobenzene		10	U
78-59-1	Isophorone		10	U
88-75-5	2-Nitrophenol		10	U
105-67-9	2,4-Dimethylphenol		10	U
111-91-1	bis(2-Chloroethoxy)n	nethane	10	U
120-83-2	2,4-Dichlorophenol		10	U
120-82-1	1,2,4-Trichlorobenze	ne	10	ՍՄև
91-20-3	Naphthalene		10	U
106-47-8	4-Chloroaniline		10	U
87-68-3	Hexachlorobutadiene		10	U
59-50-7	4-Chloro-3-methylph	enol	10	U
91-57-6	2-Methylnaphthalene		10	U
77-47-4	Hexachlorocyclopent	adiene	10	U
88-06-2	2,4,6-Trichloropheno		10	U
95-95-4	2,4,5-Trichloropheno		10	U
91-58-7	2-Chloronaphthalene		10	U
88-74-4	2-Nitroaniline		26	U
208-96-8	Acenaphthylene		10	U
131-11-3	Dimethylphthalate		10	U
606-20-2	2,6-Dinitrotoluene		10	U
83-32-9	Acenaphthene		10	U
99-09-2	3-Nitroaniline		2 6	U R
51-28-5	2,4-Dinitrophenol		26	U
132-64-9	Dibenzofuran		10	<u> </u>
121-14-2	2,4-Dinitrotoluene		10	U

STL Newburgh is a part of Severn Trent Laboratories, Inc.

M-NY049

1C

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name:	STL Ne	wburgh			Contract:	01012.01	01/1/1/-000 1402
Lab Code:	10142	с	ase No.:		SAS No	o.: S	DG No.: 215065
Matrix: (soil/	water)	WATER			La	b Sample ID:	215065-001
Sample wt/v	ol:	970.0	(g/ml) <u>I</u> V	1L	La	b File ID:	S28293.D
Level: (low/i	med)	LOW			Da	te Received:	08/16/02
% Moisture:		de	ecanted:(Y/N	N) <u>N</u>	Da	te Extracted:	08/21/02
Concentrate	d Extract	Volume:	1000 (u	L)	Da	ite Analyzed:	08/29/02
Injection Vol	ume: <u>2</u>	2.0 (uL)			Dil	ution Factor:	1.0
GPC Cleanu	ıp: (Y/N)	N	pH:				
		•			00110		LINITO

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug	g/Kg) <u>UG/L</u>	Q
100-02-7	4-Nitrophenol	26	UJL
86-73-7	Fluorene	10	U
7005-72-3	4-Chlorophenyl-phenylether	10	U
84-66-2	Diethylphthalate	10	U
100-01-6	4-Nitroaniline	26	U
534-52-1	4,6-Dinitro-2-methylphenol	26	U
86-30-6	n-Nitrosodiphenylamine (1)	10	<u>U</u>
101-55-3	4-Bromophenyl-phenylether	10	<u> </u>
118-74-1	Hexachlorobenzene	10	U
87-86-5	Pentachiorophenol	26	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	21	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
117-81-7	bis(2-Ethylhexyl)phthalate	10	U
117-84-0	Di-n-octylphthalate	10	U
205-99-2	Benzo(b)fluoranthene	10	<u>U</u>
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
62-75-9	N-Nitrosodimethylamine	10	U
53-70-3	Dibenz(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-0881402

Lab Name:	STL Ne	wburgh	Contra	ct: 01012.0	1	
Lab Code:	10142	Case No.:	SAS	No.:	_ SDG No.: <u>215</u>	065
Matrix: (soil/	water)	WATER		Lab Sample	ID: 215065-001	
Sample wt/ve	ol:	970 (g/ml) ML		Lab File ID:	S28293.D	
Level: (low/r	ned)	LOW		Date Receive	ed: 08/16/02	
% Moisture:		decanted: (Y/N)	N	Date Extract	ed: 08/21/02	
Concentrate	d Extract	Volume: 1000 (uL)		Date Analyze	ed: 08/29/02	
Injection Vol	ume: <u>2.</u>	0 (uL)		Dilution Fact	or: 1.0	·
GPC Cleanu	p: (Y/N)	NpH:				
· · ·						
•		•	CONC	ENTRATION	UNITS:	
Number TIC	s found:	1	(ug/L o	r ug/Kg)	UG/L	
CAS NUMI	3ER	COMPOUND NAME	-	RT	EST. CONC.	Q
1.		Unknown CnH2n+2O		5.99	3	J۳

M-NY049.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-0981402

Lab Name:	STL Ne	wburgh		c	ontract:	01012.01	
Lab Code:	10142	Ca	ase No.:		SAS No	o.: S	DG No.: 215065
Matrix: (soil/w	vater)	WATER			La	b Sample ID:	215065-002
Sample wt/vo	d:	920.0	(g/ml) ML	·	La	b File ID:	S28294.D
Level: (low/m	ned)	LOW			Da	te Received:	08/16/02
% Moisture:		de	canted:(Y/N)	N	Da	te Extracted:	08/21/02
Concentrated	Extract	Volume:	1000 (uL)		Da	te Analyzed:	08/29/02
Injection Volu	ıme: 2	0 (uL)			Dil	ution Factor:	1.0
GPC Cleanup	o: (Y/N)	N	pH:	-			

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
111-44-4	bis(2-Chloroethyl)eth	er	11	U
108-95-2	Phenol		11	UJL
95-57-8	2-Chlorophenol		11	U
541-73-1	1,3-Dichlorobenzene		11	U
106-46-7	1.4-Dichlorobenzene		11	UJL
95-50-1	1,2-Dichlorobenzene		11	U
100-51-6	Benzyl alcohol		11	U
108-60-1	2,2'-oxybis(1-Chlorop	oropane)	11	U
95-48-7	2-Methylphenol		11	U
67-72-1	Hexachloroethane		11	U
621-64-7	N-Nitroso-di-n-propyl	amine	11	U
106-44-5	4-Methylphenol		11	U
98-95-3	Nitrobenzene		11	U
78-59-1	Isophorone		11	<u>U</u>
88-75-5	2-Nitrophenol		11	<u> </u>
105-67-9	2,4-Dimethylphenol		11	U
111-91-1	bis(2-Chloroethoxy)n	nethane	11	U
120-83-2	2,4-Dichlorophenol		11	U
120-82-1	1,2,4-Trichlorobenze	ne	11	UJL
91-20-3	Naphthalene		11	U
106-47-8	4-Chloroaniline		11	·U
87-68-3	Hexachlorobutadiene		11	U
59-50-7	4-Chloro-3-methylphe	enol	11	U
91-57-6	2-Methylnaphthalene)	11	U
77-47-4	Hexachlorocyclopent	tadiene	11	U
88-06-2	2,4,6-Trichloropheno		11	U
95-95-4	2,4,5-Trichloropheno	1	11	U
91-58-7	2-Chloronaphthalene)	11	U
88-74-4	2-Nitroaniline		27	U
208-96-8	Acenaphthylene		11	U
131-11-3	Dimethylphthalate		11	U
606-20-2	2,6-Dinitrotoluene		11	U
83-32-9	Acenaphthene		11	U
99-09-2	3-Nitroaniline		27	-U Rc
51-28-5	2,4-Dinitrophenol		27	U
132-64-9	Dibenzofuran		11	U
121-14-2	2,4-Dinitrotoluene		11	U

STL Newburgh is a part of Severn Trent Laboratories, Inc.

	SEN	MIVOLATILE ORGAN	IICS ANAL	rsis da	IASHEEI	01.514.	004400
Lab Name:	STL Nev	wburgh	c	ontract:	01012.01	6MVV-C	981402
Lab Code:	10142	Case No.:		SAS No	.: s	DG No.:	215065
Matrix: (soil/	water)	WATER		Lai	Sample ID:	215065-0	002
Sample wt/v	ol:	920.0 (g/ml)	ML	Lai	File ID:	S28294.I	<u> </u>
Level: (low/	med)	LOW	-	Da	te Received:	08/16/02	
% Moisture:		decanted:(Y/	/N) <u>N</u>	_ Da	te Extracted:	08/21/02	<u> </u>
Concentrate	d Extract	Volume: 1000 (uL)	Da	te Analyzed:	08/29/02	
Injection Vol	ume: <u>2</u>	.0 (uL)		Dil	ution Factor:	1.0	
GPC Cleanu	ıp: (Y/N)	N pH:					
				CONC	ENTRATION	UNITS:	
CAS N	0.	COMPOUND	<i>:</i>	(ug/L o	r ug/Kg) <u>U</u> (G/L	_ · Q
100-0	2-7	4-Nitrophenol				27	UJL
86-73	-7	Fluorene				11	U
7005-	72-3	4-Chloropheny	l-phenylethe	er	. [<u> </u>	U
84-66	-2	Diethylphthalat				11	U
100-0	1-6	4-Nitroaniline				27	U
534-5	2-1	4,6-Dinitro-2-m	ethylpheno			27	U
86-30	-6	n-Nitrosodiphe	nylamine (1)		11	U
101-5	5-3	4-Bromopheny	i-phenylethe	er		11	U
110.7	1 4	Hoveeblereber	ממכנ		l	11	1 11 1

100-02-7	4-Nitrophenol	21	UJL
86-73-7	Fluorene	11	U
7005-72-3	4-Chlorophenyl-phenylether	11	U
84-66-2	Diethylphthalate	11	<u> </u>
100-01-6	4-Nitroaniline	27	U
534-52-1	4,6-Dinitro-2-methylphenol	27	U
86-30-6	n-Nitrosodiphenylamine (1)	11	U
101-55-3	4-Bromophenyl-phenylether	11	U
118-74-1	Hexachlorobenzene	11	U
87-86-5	Pentachlorophenol	27	IJ
85-01-8	Phenanthrene	11	U
120-12-7	Anthracene	11	U
84-74-2	Di-n-butylphthalate	11	U
206-44-0	Fluoranthene	11	U
129-00-0	Pyrene	11	U
85-68-7	Butylbenzylphthalate	11	U
91-94-1	3,3'-Dichlorobenzidine	22	U
56-55-3	Benzo(a)anthracene	11	U
218-01-9	Chrysene	11	U
117-81-7	bis(2-Ethylhexyl)phthalate	11	U
117-84-0	Di-n-octylphthalate	11	U
205-99-2	Benzo(b)fluoranthene	11	U
207-08-9	Benzo(k)fluoranthene	11	U
50-32-8	Benzo(a)pyrene	11	U
193-39-5	Indeno(1,2,3-cd)pyrene	11	U
62-75-9	N-Nitrosodimethylamine	11	U
53-70-3	Dibenz(a,h)anthracene	11	U
191-24-2	Benzo(g.h.i)pervlene	11	U

EPA NY049

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-0981402

Lab Name:	STL Ne	wburgh		Contract	t: <u>01012.</u> 0	01		
Lab Code:	10142	Case No.	:	_ SAS I	No.:	s	DG No.: 215	065
Matrix: (soil/v	water)	WATER	-	L	ab Sample	e ID:	215065-002	
Sample wt/vo	ol:	920 (g/m	i) <u>ML</u>	_ L	ab File ID:		S28294.D	<u></u>
Level: (low/n	ned)	LOW		Γ	Date Recei	ved:	08/16/02	<u>.</u>
% Moisture:		decanted:	(Y/N) <u> </u>	N	Date Extrac	ted:	08/21/02	
Concentrated	d Extract	Volume: 1000	_ (uL)	[Date Analyz	zed:	08/29/02	
Injection Volu	ume: <u>2.</u>	0 (uL)		Ε	Dilution Fac	ctor:	1.0	
GPC Cleanu	p: (Y/N)	NpH:	· · · · · · · · · · · · · · · · · · ·					٠
•				CONCE	NTRATION	I UNI	ITS:	
Number TICs	s found:	0		(ug/L or t	ug/Kg)	UG	/L	
CAS NUME	BER	COMPOUND N	AME		RT	E	ST. CONC.	Q

M-NY049

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-1081402

Lab Name:	STL Ne	wburgh		0	Contract:	01012.01			
Lab Code:	b Code: 10142 Case No.:).: _.	SDG No.: 21506	G No.: 215065	
Matrix: (soil/v	vater)	WATER			La	b Sample ID	215065-003		
Sample wt/vc	ol:	970.0	(g/ml) ML		La	b File ID:	S28295.D		
Levei: (low/n	ned)	LOW	_	٠	Da	te Received:	08/16/02		
% Moisture:		de	ecanted:(Y/N)	N	Da	te Extracted	: 08/21/02		
Concentrated	i Extract	Volume:	1000 (uL)		Da	te Analyzed:	08/29/02	_	
Injection Volu	ıme: <u>2</u>	0 (uL)		٠	Dil	ution Factor:	1.0	_	
GPC Cleanu	o: (Y/N)	N	pH:						

•		CONCENTRATI	ON UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
111-44-4	bis(2-Chloroethyl)ethe	er	10	U
108-95-2	Phenol		10	UJL
95-57-8	2-Chlorophenol		10	U ·
541-73-1	1,3-Dichlorobenzene		10	U
106-46-7	1,4-Dichlorobenzene		10	UJL
95-50-1	1,2-Dichlorobenzene		10	U
100-51-6	Benzyl alcohol		10	U
108-60-1	2,2'-oxybis(1-Chlorop	ropane)	10	U
95-48-7	2-Methylphenol		10	<u>U</u>
67-72-1	Hexachloroethane		10	U
621-64-7	N-Nitroso-di-n-propyla	amine	10	U
106-44-5	4-Methylphenol		10	U
98-95-3	Nitrobenzene		- 10	U
78-59-1	Isophorone	•	10	U
88-75-5	2-Nitrophenol		10	<u>U</u>
105-67 - 9	2,4-Dimethylphenol		10	U
111-91-1	bis(2-Chloroethoxy)m	ethane	10	U
120-83-2	2,4-Dichlorophenol		10	U
120-82-1	1,2,4-Trichlorobenzer	ne	10	Սյլ
91-20-3	Naphthalene	•	10	<u> </u>
106-47-8	4-Chloroaniline		10	U
87-68-3	Hexachlorobutadiene		10	U
59-50-7	4-Chloro-3-methylphe	enol	10	U
91-57-6	2-Methylnaphthalene		10	U
77-47-4	Hexachlorocyclopenta		10	U ·
88-06-2	2,4,6-Trichlorophenol		10	U
95-95-4	2,4,5-Trichlorophenol		10	U
91-58-7	2-Chloronaphthalene		10	U
88-74-4	2-Nitroaniline		26	U
208-96-8	Acenaphthylene		10	U
131-11-3	Dimethylphthalate		10	U
606-20-2	2,6-Dinitrotoluene		10	U
83-32-9	Acenaphthene		10	U
99-09-2	3-Nitroaniline		26 —	— ⊎ R
51-28-5	2,4-Dinitrophenol		26	U
132-64-9	Dibenzofuran		10	U
121-14-2	2,4-Dinitrotoluene		10	U

STL Newburgh is a part of Severn Trent Laboratories, Inc.

NJDEP 73015

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-1	081402

Lab Name:	STL Ne	wburgh		c	ontract:	01012.01	_
Lab Code:	10142	Ca		SAS No	o.: S	DG No.: 215065	
Matrix: (soil/v	vater)	WATER			La	b Sample ID:	215065-003
Sample wt/vo	ol:	970.0	(g/ml) ML		La	b File ID:	S28295.D
Level: (low/med)		LOW	 .		Da	ite Received:	08/16/02
% Moisture:		de	canted:(Y/N) _	N	_ Da	ite Extracted:	08/21/02
Concentrated	d Extract	Volume:	1000 (uL)		Da	ite Analyzed:	08/29/02
Injection Volu	ume: <u>2</u>	.0 (uL)	•	: .	Dil	ution Factor:	1.0
GPC Cleanu	p: (Y/N)	N	pH:	- ,	, .	•	· · · · · · · · · · · · · · · · · · ·

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
100-02-7	4-Nitrophenol		26	UJL
86-73-7	Fluorene		10	U
7005-72-3	4-Chlorophenyl-phenylether		10	<u> </u>
84-66-2	Diethylphthalate		10	U
100-01-6	4-Nitroaniline		26	U
534-52-1	4,6-Dinitro-2-methylphenol		26	U
86-30-6	n-Nitrosodiphenylamine (1)		10 .	U
101-55-3	4-Bromophenyl-phenylether		10	U
118-74-1	Hexachlorobenzene		10	U
87-86-5	Pentachiorophenol		26	U
85-01-8	Phenanthrene		10	U
120-12-7	Anthracene		10	U
84-74-2	Di-n-butylphthalate		10	U
206-44-0	Fluoranthene		10	U
129-00-0	Pyrene		10	U
85-68-7	Butylbenzylphthalate		10	U
91-94-1	3,3'-Dichlorobenzidine		21	U
56-55-3	Benzo(a)anthracene		10	U
218-01-9	Chrysene		10	U
117-81-7	bis(2-Ethylhexyl)phthalate		10	U
117-84-0	Di-n-octylphthalate		10	U
205-99-2	Benzo(b)fluoranthene		10	U
207-08-9	Benzo(k)fluoranthene		10	U
50-32-8	Benzo(a)pyrene		10	U
193-39-5	Indeno(1,2,3-cd)pyrene		10	U
62-75-9	N-Nitrosodimethylamine		10	Ų
53-70-3	Dibenz(a,h)anthracene		10	υ
191-24-2	Benzo(g,h,i)perylene		10	U

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1081402

Lab Name:	STL Ne	wburgh	<u></u>		Contract:	01012.0	1			
Lab Code:	10142	Ca	se No.:		SAS No	o.:	_ s	DG No.:	2150	65
Matrix: (soil/v	vater)	WATER			La	b Sample	ID:	215065-	003	
Sample wt/vo	ol:	970	(g/ml) ML		La	b File ID:		S28295.	D	
Level: (low/n	ned)	LOW	_	-	Da	ite Receiv	ed:	08/16/02	!	
% Moisture:		dec	anted: (Y/N)	N	Da	ite Extract	ted:	08/21/02		
Concentrated	d Extract	Volume:	1000 (uL)		Da	ite Analyz	ed:	08/29/02	<u>;</u>	
Injection Volu	ume: <u>2.</u> 0	<u>)</u> (uL)		•	Dil	ution Fac	tor:	1.0	<u>.</u>	
GPC Cleanu	p: (Y/N)	N	pH:	_						
Number TICs	s found:	0			CONCENT		UNI UG/			
CAS NUME	BER	COMPOL	JND NAME			RT	ES	ST. CONC) .	Q

1B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Ε	PΑ	SAN	/IPL	E	NO.
---	----	-----	------	---	-----

Lab Name:	STL Ne	wburgh			C	ontract:	01012.01	010100-1101402
Lab Code:	10142	10142 Case No.:				SAS No	.:	SDG No.: 215065
Matrix: (soil/v	water)	WATER	_			Lai	Sample ID	215065-004
Sample wt/vo	ol:	965.0	(g/ml)	ML		Lai	File ID:	S28296.D
Level: (low/med) l		LOW	_	, ~.		Da	te Received	l: 08/16/02
% Moisture:		ded	canted:(\	//N)	N	Da	te Extracted	1: 08/21/02
Concentrated	d Extract	Volume:	1000	(uL)		Da	te Analyzed	: 08/29/02
injection Volu	ume: 2	.0 (uL)				Dili	ution Factor	: 1.0

CONCENTRATION UNITS:

		CONCENTRAT	•	Q	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	(ug/L or ug/Kg) <u>UG/L</u>		
111-44-4	bis(2-Chloroethyl)eth	er	10	Ū	
108-95-2	Phenol		10	UJL	
95-57-8	2-Chlorophenol		10	U	
541-73-1	1,3-Dichlorobenzene		10	U_	
106-46-7	1,4-Dichlorobenzene		10	UJL	
95-50-1	1,2-Dichlorobenzene		10	U	
100-51-6	Benzyl alcohol		10	U	
108-60-1	2,2'-oxybis(1-Chlorop	ropane)	10	U	
95-48-7	2-Methylphenol		10	U	
67-72-1	Hexachloroethane		10	U	
621-64-7	N-Nitroso-di-n-propyl	amine	10	U	
106-44-5	4-Methylphenol		10	U	
98-95-3	Nitrobenzene		10	U	
78-59-1	Isophorone		10	U	
88-75-5	2-Nitrophenol		10	U	
105-67-9	2,4-Dimethylphenol		10	U	
111-91-1	bis(2-Chloroethoxy)n	nethane	10	U	
120-83-2	2,4-Dichlorophenol	· ·	10	U	
120-82-1	1,2,4-Trichlorobenze	ne	10	UJi	
91-20-3	Naphthalene		10	U	
106-47-8	4-Chloroaniline		10	Ų	
87-68-3	Hexachlorobutadiene		10	U	
59-50-7	4-Chloro-3-methylphe		10	U	
91-57-6	2-Methylnaphthalene		10	U	
77-47-4	Hexachlorocyclopent		10	U	
88-06-2	2,4,6-Trichloropheno		10	· U	
95-95-4	2,4,5-Trichloropheno		10	U	
91-58-7	2-Chloronaphthalene		10	U	
88-74-4	2-Nitroaniline		26	U	
208-96-8	Acenaphthylene		10	U	
131-11-3	Dimethylphthalate		10	U	
606-20-2	2,6-Dinitrotoluene		10	U	
83-32-9	Acenaphthene		10	U	
99-09-2	3-Nitroaniline		-26	— U 6	
51-28-5	2,4-Dinitrophenol		26	U	
132-64-9	Dibenzofuran	,	10	U	
121-14-2	2,4-Dinitrotoluene		10	U	

STL Newburgh is a part of Severn Trent Laboratories, Inc.

GPC Cleanup: (Y/N)

N

pH:

1C

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Newburgh Contract: 01012 01

Lab Name:	STL Nev	wburgh			. Contract:	01012.01	_	
Lab Code:	10142	C	ase No.: _		SAS No	o.: s	DG No.: 2	15065
Matrix: (soil/v	vater)	WATER			La	b Sample ID:	215065-00	04
Sample wt/vo	ol:	965.0	<u>(g</u> /ml) <u> </u>	ML	La	b File ID:	S28296.D	
Level: (low/m	ned)	LOW		•	Da	te Received:	08/16/02	
% Moisture:		de	canted:(Y/	N) - 1	<u>v</u> Da	te Extracted:	08/21/02	
Concentrated	i Extract	Volume:	1000 (uL)	Da	ite Analyzed:	08/29/02	· · · · ·
Injection Volu	ıme: <u>2</u>	.0 (uL)	•		Dil	ution Factor:	1.0	· · · · · · · · · · · · · · · · · · ·
GPC Cleanur	b: (Y/N)	N	pH.					

COMPOUND

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

100-02-7	4-Nitrophenol	26	UJL
86-73-7	Fluorene	10	U
7005-72-3	4-Chlorophenyl-phenylether	10	Ü
84-66-2	Diethylphthalate	10	U
100-01-6	4-Nitroaniline	26	U
534-52-1	4,6-Dinitro-2-methylphenol	26	U
86-30-6	n-Nitrosodiphenylamine (1)	10	U
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	U
87-86-5	Pentachlorophenol	26	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	21	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
117-81-7	bis(2-Ethylhexyl)phthalate	1	Jø
117-84-0	Di-n-octylphthalate	10	U
205-99-2	Benzo(b)fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
62-75-9	N-Nitrosodimethylamine	10	U
53-70-3	Dibenz(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

CAS NO.

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

JΤ JNT

Lab Name: STL Ne	ewburgh	Contrac	t: 01012.0	01 6MW	-1181	402
Lab Code: 10142	Case No.:	SAS	No.:	SDG No.:	215	065
Matrix: (soil/water)	WATER	Ī	ab Sample	eID: <u>215065</u>	-004	
Sample wt/vol:	965 (g/ml) ML		ab File ID:	S28296	5.D	-
Level: (low/med)	LOW	·	Date Received:		08/16/02	
% Moisture:	decanted: (Y/N)	_ N I	N Date Extracted:		i: 08/21/02	
Concentrated Extract	t Volume: 1000 (uL)		Date Analyz	zed: <u>08/29/0</u>	2	
Injection Volume: 2	.0 (uL)	Dilution Factor: 1.0				· ·
GPC Cleanup: (Y/N)	N _. pH:	. •				
		CONOTI	UTD A TION	LIMITO	-	٠
	•		NTRATION			
Number TICs found:	8	(ug/L or	ug/Kg)	UG/L		
CAS NUMBER	COMPOUND NAME		RT	EST. CON	C.	Q
1. 000629-59-4	Tetradecane	-	11.97		3	$JN_{\mathcal{T}}$
2. 000544-76-3	Hexadecane		14.07		6	JN_T
3. 000629-78-7	Heptadecane		15.03		12	JNT
4. 000593-45-3	Octadecane		15.95		8	JN_{T}
5. 000629-92-5	Nonadecane		16.82		7	JNT
6. 000112-95-8	Eicosane		17.65		5	JNT

Unknown CnH2n+2

Eicosane

18.44

19.21

000112-95-8

1B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name:	STL Ne	wburgh		Co	ontract:	01012.01	
Lab Code:	10142	C	ase No.:		SAS No	.: s	DG No.: 215065
Matrix: (soil/	water)	WATER			Lal	Sample ID:	215065-005
Sample wt/vo	ol:	965.0	_ (g/ml) <u>ML</u>		La	o File ID:	S28297.D
Level: (low/r	med)	LOW			Da	te Received:	08/16/02
% Moisture:		de	ecanted:(Y/N)	N	Da	te Extracted:	08/21/02
Concentrated	d Extract	Volume:	1000 (uL)		Da	te Analyzed:	08/29/02
Injection Vol	ume: <u>2</u>	2.0 (uL)		•	Dil	ution Factor:	1.0
GPC Cleanu	p: (Y/N)	<u> </u>	pH:	<u></u>			

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
111-44-4	bis(2-Chloroethyl)eth	er	10	U
108-95-2	Phenol		10	UĴι
95-57-8	2-Chlorophenol		10	U
541-73-1	1,3-Dichlorobenzene		10	U
106-46-7	1,4-Dichlorobenzene		10	UJL
95-50-1	1,2-Dichlorobenzene		10	U
100-51-6	Benzyl alcohol	_	10	U
108-60-1	2,2'-oxybis(1-Chlorop	oropane)	10	U
95-48-7	2-Methylphenol		10	U
67-72-1	Hexachloroethane		10	U
621-64-7	N-Nitroso-di-n-propyl	amine	10	U_
106-44-5	4-Methylphenol		10	U
98-95-3	Nitrobenzene		10	U
78-59-1	Isophorone		10	· U
88-75-5	2-Nitrophenol		10	U
105-67-9	2,4-Dimethylphenol		10	U
111-91-1	bis(2-Chloroethoxy)n	nethane	10	U
120-83-2	2,4-Dichlorophenol		10	U
120-82-1	1,2,4-Trichlorobenze	ne	10	UJL
91-20-3	Naphthalene		10	U
106-47-8	4-Chloroaniline		10	U
87-68-3	Hexachlorobutadiene)	10	U
59-50-7	4-Chloro-3-methylph	enol	10	U
91-57-6	2-Methylnaphthalene		10	·U
77-47-4	Hexachlorocyclopent	adiene	10	U
88-06-2	2,4,6-Trichloropheno		10	U
95-95-4	2,4,5-Trichloropheno		10	U
91-58-7	2-Chloronaphthalene		10	U
88-74-4	2-Nitroaniline		26	<u>U</u>
208-96-8	Acenaphthylene		10	U
131-11-3	Dimethylphthalate		10	U
606-20-2	2,6-Dinitrotoluene		10	<u> </u>
83-32-9	Acenaphthene		10	U
99-09-2	3-Nitroaniline		-26	URC
51-28-5	2,4-Dinitrophenol		26	U
132-64-9	Dibenzofuran		10	U
121-14-2	2,4-Dinitrotoluene		10	U

STL Newburgh is a part of Severn Trent Laboratories, Inc.

PA 68-378

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-1281402

Lab Name:	STL Ne	wburgh		C	ontract:	01012.01	_
Lab Code:	10142	c	ase No.:		SAS No	o.: S	DG No.: 215065
Matrix: (soil/w	vater)	WATER	· -		La	b Sample ID:	215065-005
Sample wt/vo	ol:	965.0	(g/ml) ML		La	b File ID:	S28297.D
Level: (low/m	ned)	LOW	·		Da	te Received:	08/16/02
% Moisture:		d	ecanted:(Y/N)	N	_ Da	ite Extracted:	08/21/02
Concentrated	Extract	Volume:	1000 (uL)		Da	ite Analyzed:	08/29/02
Injection Volu	ime: 2	.0 (uL)			Dil	ution Factor:	1.0
GPC Cleanur	o: (Y/N)	N	_ pH:	<u> </u>	•	•	

	CONCENTRATION UNITS:							
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q				
100-02-7	4-Nitrophenol		26	Սյլ				
86-73-7	Fluorene		10	U				
7005-72-3	4-Chlorophenyl-phenyl	ether	10	U				
84-66-2	Diethylphthalate		10	U				
100-01-6	4-Nitroaniline		26	U				
534-52-1	4,6-Dinitro-2-methylphe	enol	26	U				
86-30-6	n-Nitrosodiphenylamine	e (1)	10	U				
101-55-3	4-Bromophenyl-phenyl	ether	10	U				
118-74-1	Hexachlorobenzene		10	U				
87-86-5	Pentachlorophenol	·	26	U				
85-01-8	Phenanthrene		10	U				
120-12-7	Anthracene		10	U				
84-74-2	Di-n-butylphthalate		10	U				
206-44-0	Fluoranthene		10	Ų				
129-00-0	Pyrene		10	U				
85-68-7	Butylbenzylphthalate		10	U				
91-94-1	3,3'-Dichlorobenzidine		21	U				
56-55-3	Benzo(a)anthracene		10	U				
218-01-9	Chrysene		10	U				
117-81-7	bis(2-Ethylhexyl)phthal	ate	10	U				
117-84-0	Di-n-octylphthalate		10	U				
205-99-2	Benzo(b)fluoranthene		10	U				
207-08-9	Benzo(k)fluoranthene		10	U				
50-32-8	Benzo(a)pyrene		10	U				
193-39-5	Indeno(1,2,3-cd)pyrene	9	10	U				
62-75-9	N-Nitrosodimethylamin	e	10	U				
53-70-3	Dibenz(a,h)anthracene)	10	U				
191-24-2	Benzo(g,h,i)perylene		10	U				

EPA NY049

NJDEP 73015

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	STL Nev	wburgh	Contract	: <u>01012</u> .	01	_	.0 1402
Lab Code:	10142	Case No.:	SAS N	lo.:	s	DG No.: 2	15065
Matrix: (soil/v	water)	WATER	L	ab Sampl	e ID:	215065-00)5
Sample wt/vo	ol:	965 (g/ml) ML	L	ab File ID	:	S28297.D	
Level: (low/r	ned)	LOW		ate Recei	ived:	08/16/02	·
% Moisture:	<u></u>	decanted: (Y/N) _	N E	oate Extra	cted:	08/21/02	·
Concentrated	d Extract	Volume: 1000 (uL)	. [Date Analy	zed:	08/29/02	
Injection Volu	ume: 2.0	0 (uL)		Dilution Fa	ctor:	1.0	
GPC Cleanu	p: (Y/N)	N pH:			-		
			CONCEN	ITRATION	ı UNI	TS:	
Number TIC:	s found:	<u> </u>	(ug/L or ι	ıg/Kg)	UG/	L	
CAS NUME	BER	COMPOUND NAME		RT	ES	ST. CONC.	Q
1.		C6H4Br3N isomer		16.20		3	jτ

M-NY049

1B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-1381302 Lab Name: STL Newburgh Contract: 01012.01 Lab Code: 10142 SAS No.: Case No.: SDG No.: 215067 Matrix: (soil/water) WATER Lab Sample ID: 215067-002 Sample wt/vol: 970.0 (g/ml) ML Lab File ID: S28279.D Level: (low/med) LOW Date Received: 08/16/02 % Moisture: Date Extracted: 08/20/02 decanted:(Y/N) 1000 Concentrated Extract Volume: (uL) Date Analyzed: 08/28/02 Injection Volume: 2.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) pH:

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
111-44-4	bis(2-Chloroethyl)ether	.10	U
108-95-2	Phenoi	10	UJL
95-57-8	2-Chlorophenol	10	U
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	UJi
95-50-1	1,2-Dichlorobenzene	10	U
100-51-6	Benzyl alcohol	10	U
108-60-1	2,2'-oxybis(1-Chloropropane)	10	U
95-48-7	2-Methylphenol	10	U
67-72-1	Hexachloroethane	10	U
621-64-7	N-Nitroso-di-n-propylamine	10	U
106-44-5	4-Methylphenol	10	U
98-95-3	Nitrobenzene	10	U
78-59-1	Isophorone	10	U
88-75-5	2-Nitrophenol	10	U
105-67-9	2,4-Dimethylphenol	10	U
111-91-1	bis(2-Chloroethoxy)methane	10	U
120-83-2	2,4-Dichlorophenol	10	U
120-82-1	1,2,4-Trichlorobenzene	10	Ü
91-20-3	Naphthalene	10	U
106-47-8	4-Chloroaniline	10	U
87-68-3	Hexachlorobutadiene	10	U
59-50-7	4-Chloro-3-methylphenol	10	U
91-57-6	2-Methylnaphthalene	10	U
77-47-4	Hexachiorocyclopentadiene	10	U
88-06-2	2,4,6-Trichlorophenol	10	U
95-95-4	2,4,5-Trichlorophenol	10	U
91-58-7	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	26	Ū
208-96-8	Acenaphthylene	10	U
131-11-3	Dimethylphthalate	10	U
606-20-2	2,6-Dinitrotoluene	10	U
83-32-9	Acenaphthene	10	U
99-09-2	3-Nitroaniline	26	U Rc
51-28-5	2,4-Dinitrophenol	26	U
132-64-9	Dibenzofuran	10	Ü
121-14-2	2,4-Dinitrotoluene	10	U

STL Newburgh is a part of Severn Trent Laboratories, Inc.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-1381302

Lab Name:	STL Nev	wburgh		c	ontract:	01012.01	
Lab Code:	10142	Ca	se No.:		SAS No	o.: 8	SDG No.: 215067
Matrix: (soil/\	water)	WATER	_		Lal	b Sample ID:	215067-002
Sample wt/vo	ol:	970.0	(g/ml) ML		Lal	b File ID:	S28279.D
Level: (low/med)		LOW			Da	te Received:	08/16/02
% Moisture:		de	canted:(Y/N)	N	Da	te Extracted:	08/20/02
Concentrate	d Extract	Volume:	1000 (uL)		Da	te Analyzed:	08/28/02
Injection Vol	ume: <u>2</u>	.0 (uL)			Dil	ution Factor:	1.0
GPC Cleanu	ıp: (Y/N)	N	pH:			,	
<i>t</i>					CONC	ENTRATION	LUNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
100-02-7	4-Nitrophenol		26	UJ⊾
86-73-7	Fluorene		10	<u>U</u>
7005-72-3	4-Chlorophenyl-phenylether		10	U
84-66-2	Diethylphthalate		10	U
100-01-6	4-Nitroaniline	·	26	U
534-52-1	4,6-Dinitro-2-methylphenol		26	U
86-30-6	n-Nitrosodiphenylamine (1)		10	U
101-55-3	4-Bromophenyl-phenylether		10	U
118-74-1	Hexachlorobenzene		10	U
87-86-5	Pentachlorophenol		26	<u>U</u>
85-01-8	Phenanthrene		10	UU
120-12-7	Anthracene		10	U.
84-74-2	Di-n-butylphthalate		10	U
206-44-0	Fluoranthene		10	U
129-00-0	Pyrene		10	U
85-68-7	Butylbenzylphthalate		10	U
91-94-1	3,3'-Dichlorobenzidine		21	U
56-55-3	Benzo(a)anthracene		10	<u>U</u>
218-01-9	Chrysene		10	U
117-81-7	bis(2-Ethylhexyl)phthalate	and the second	10	U
117-84-0	Di-n-octylphthalate		10	U
205-99-2	Benzo(b)fluoranthene		. 10	U
207-08-9	Benzo(k)fluoranthene		10	U
50-32-8	Benzo(a)pyrene		10	U
193-39-5	Indeno(1,2,3-cd)pyrene		10	U
62-75-9	N-Nitrosodimethylamine		10	Ü
53-70-3	Dibenz(a,h)anthracene		10	<u> </u>
191-24-2	Benzo(g,h,i)perylene		10	U

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1381302

Lab Name:	STL Ne	wburgh	Contrac	t: <u>01012.01</u>				
Lab Code:	10142	Case No.:	SAS	No.:	SDG No.: 2150)67		
Matrix: (soil/	water)	WATER	I	Lab Sample I	D: 215067-002			
Sample wt/vo	ol:	970 (g/ml) ML		Lab File ID:	S28279.D			
Level: (low/r	ned)	LOW	ı	Date Receive	ed: 08/16/02			
% Moisture:		decanted: (Y/N)	N I	Date Extracte	ed: <u>08/20/02</u>	<u> </u>		
Concentrate	d Extract	Volume: 1000 (uL)		Date Analyze	d: <u>08/28/02</u>	<u> </u>		
Injection Vol	ume: <u>2.</u>	<u>0</u> (uL)	ļ	Dilution Facto	or: 1.0			
GPC Cleanu	p: (Y/N)	N pH:	•					
CONCENTRATION UNITS: Number TICs found: 1 (ug/L or ug/Kg) UG/L								
CAS NUMI	3ER	COMPOUND NAME		RT	EST. CONC.	Q		
1		C6H4Br3N isomer		16.20	5	Jт		

NJDEP 73015

1B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-1481302

Lab Name:	STL Nev	vburgh		Co	ntract:	01012.01	<u> </u>
Lab Code:	10142	Ca	se No.:	;	SAS No	.: S	DG No.: 215067
Matrix: (soil/w	<i>r</i> ater)	WATER	_		Lat	Sample ID:	215067-003
Sample wt/vo	ot:	970.0	(g/ml) ML		Lat	File ID:	S28280.D
Level: (low/n	ned)	LOW	· <u></u>		Da	te Received:	08/16/02
% Moisture:		de	canted:(Y/N)	N	Da	te Extracted:	08/20/02
Concentrated	l Extract '	Volume:	1000 (uL)		Da	te Analyzed:	08/28/02
Injection Volu	ıme: 2.	0 (uL)			Dile	ution Factor:	1.0
GPC Cleanu	o: (Y/N)	<u>N</u>	рН:	- •	-		

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug	g/Kg) <u>UG/L</u>	Q
111-44-4	bis(2-Chloroethyl)ether	10	U
108-95-2	Phenol	10	UJL
95-57-8	2-Chlorophenol	10	U
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	UJL
95-50-1	1,2-Dichlorobenzene	10	U
100-51-6	Benzyl alcohol	10	U
108-60-1	2,2'-oxybis(1-Chloropropane)	10	U
95-48-7	2-Methylphenol	10	U
67-72-1	Hexachloroethane	10	U
621-64-7	N-Nitroso-di-n-propylamine	10	U
106-44-5	4-Methylphenol	10	U
98-95-3	Nitrobenzene	10	IJ
78-59-1	Isophorone	10	U
88-75-5	2-Nitrophenol	10	U
105-67-9	2,4-Dimethylphenol	10	U
111-91-1	bis(2-Chloroethoxy)methane	10	U
120-83-2	2,4-Dichlorophenol	10	U
120-82-1	1,2,4-Trichlorobenzene	10	U
91-20-3	Naphthalene	10	U
106-47-8	4-Chloroaniline	10	U
87-68-3	Hexachlorobutadiene	10	Ų
59-50-7	4-Chloro-3-methylphenol	10	U
91-57-6	2-Methylnaphthalene	10	U
77-47-4	Hexachlorocyclopentadiene	10	U
88-06-2	2,4,6-Trichlorophenol	10	U
95-95-4	2,4,5-Trichlorophenol	10	U
91-58-7	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	26	U
208-96-8	Acenaphthylene	10	U
131-11-3	Dimethylphthalate	10	U
606-20-2	2,6-Dinitrotoluene	10	U
83-32-9	Acenaphthene	10	U
99-09-2	3-Nitroaniline	26 –	—+ Rc
51-28-5	2,4-Dinitrophenol	26	Ü
132-64-9	Dibenzofuran	10	U
121-14-2	2,4-Dinitrotoluene	10	U

STL Newburgh is a part of Severn Trent Laboratories, Inc.

NYSDOH 10142

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

					6MW-1	481302
Lab Name:	STL Ne		· .	01012.01		
Lab Code:	10142	Case No.:	SAS No).: S	DG No.: 2	215067
Matrix: (soil/	water)	WATER	La	b Sample ID:	215067-0	003
Sample wt/vo	ol:	970.0 (g/ml) ML	La	b File ID:	S28280.E)
Level: (low/r	ned)	LOW	 Da	te Received:	08/16/02	
		decanted:(Y/N)	N Da	te Extracted:	08/20/02	
		Volume: 1000 (uL)		te Analyzed:		
				-		
Injection Vol			Dil	ution Factor:	1.0	
GPC Cleanu	p: (Y/N)	NpH:				
	•		CÓNO	ENTRATION	UNITS	
CAS NO		COMPOUND		rug/Kg) U		
CAS NO	J.	COMPOUND	(ug/L (i ug/kg) <u>o</u>	O/L	
100-0	2-7	4-Nitrophenol			26	UJL
86-73		Fluorene		·	10	U .
7005-		4-Chlorophenyl-phe	enylether		10	U
84-66	-2	Diethylphthalate	·		10	U U
100-0		4-Nitroaniline			26	U
534-5		4,6-Dinitro-2-methy	Iphenol		26	U
86-30		n-Nitrosodiphenylar	mine (1)		10	U
	5-3	4-Bromophenyl-phe	enylether		10	U
118-7		Hexachlorobenzene	9		10	U
87-86		Pentachlorophenol			26	U
85-01		Phenanthrene			10	U
120-1		Anthracene			10	U
84-74		Di-n-butylphthalate			10	U
206-4		Fluoranthene			10	U
129-0		Pyrene			10	U
85-68		Butylbenzylphthalat	te .		10	U
91-94		3,3'-Dichlorobenzid			21	U
56-55		Benzo(a)anthracen			10	U
218-0		Chrysene			10	U
117-8		bis(2-Ethylhexyl)ph	thalate		10	U
117-8		Di-n-octylphthalate			10	U
205-9		Benzo(b)fluoranthe			10	U
207-0		Benzo(k)fluoranthe			10	U
50.22		Ponzo(a)nyrene			10	Ш

3/90

M-NY049

Indeno(1,2,3-cd)pyrene

N-Nitrosodimethylamine

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

10

10

10

10

U

Ų

U

193-39-5

62-75-9

53-70-3

191-24-2

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1481302 Lab Name: STL Newburgh Contract: 01012.01 Lab Code: 10142 Case No.: SAS No.: SDG No.: 215067 WATER Lab Sample ID: 215067-003 Matrix: (soil/water) Sample wt/vol: 970 Lab File ID: S28280.D (g/ml) ML LOW Level: (low/med) Date Received: 08/16/02 Date Extracted: 08/20/02 % Moisture: decanted: (Y/N) Concentrated Extract Volume: 1000 (uL) Date Analyzed: 08/28/02 Injection Volume: 2.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) pH: CONCENTRATION UNITS: Number TICs found: (ug/L or ug/Kg) CAS NUMBER COMPOUND NAME RT EST. CONC. Q C6H4Br3N isomer 16.20 5

EPA NY049

1B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-1581302

Lab Name:	SILNE	wburgn			ontract. 01012.0	<u> </u>
Lab Code:	10142	Ca	ase No.:		SAS No.:	SDG No.: 215067
Matrix: (soil/	water)	WATER			Lab Sample	ID: 215067-004
Sample wt/v	ol:	900.0	_ (g/ml) <u>ML</u> _		Lab File ID:	S28281.D
Level: (low/r	med)	LOW			Date Receive	ed: 08/16/02
% Moisture:		de	ecanted:(Y/N)	Ň	Date Extract	ed: <u>08/20/02</u>
Concentrate	d Extract	Volume:	1000 (uL)		Date Analyze	ed: 08/28/02
injection Vol	ume: <u>2</u>	2.0 (uL)			Dilution Fact	or: <u>1.0</u>
GPC Cleanu	ip: (Y/N)	N	рН:			

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
111-44-4	bis(2-Chloroethyl)eth	er	11	U
108-95-2	Phenol		11	UJL
95-57-8	2-Chlorophenol		11	U
541-73-1	1,3-Dichlorobenzene		11	U
106-46-7	1,4-Dichlorobenzene		11	UJL
95-50-1	1,2-Dichlorobenzene		11	Ų
100-51-6	Benzyl alcohol		11	U
108-60-1	2,2'-oxybis(1-Chloro	propane)	11	U
95-48-7	2-Methylphenol		11	U
67-72-1	Hexachloroethane		11	U
621-64-7	N-Nitroso-di-n-propy	lamine	11	U
106-44-5	4-Methylphenol		11	U
98-95-3	Nitrobenzene		11	U
78-59-1	Isophorone		11	U
88-75-5	2-Nitrophenol		11	U
105-67-9	2,4-Dimethylphenol	·	11	U
111-91-1	bis(2-Chloroethoxy)r	nethane	11	U
120-83-2	2,4-Dichlorophenol	<u> </u>	11	U
120-82-1	1,2,4-Trichlorobenze	ne	11	U
91-20-3	Naphthalene		11	U.
106-47-8	4-Chloroaniline		11	U
87-68-3	Hexachlorobutadien	e	11	U
59-50-7	4-Chloro-3-methylph	enoi	11	U
91-57-6	2-Methylnaphthalene)	11	U
77-47-4	Hexachlorocyclopen	tadiene	11	U
88-06-2	2,4,6-Trichloropheno		11	U
95-95-4	2,4,5-Trichloropheno		11	U
91-58-7	2-Chloronaphthalene)	11	U
88-74-4	2-Nitroaniline		28	U
208-96-8	Acenaphthylene		11	U
131-11-3	Dimethylphthalate		11	U
606-20-2	2,6-Dinitrotoluene		11	U
83-32-9	Acenaphthene		11	U
99-09-2	3-Nitroaniline		28	- 4 ارد
51- <u>28-5</u>	2,4-Dinitrophenol		28	U
132-64-9	Dibenzofuran		11	U
121-14-2	2,4-Dinitrotoluene		11	U

STL Newburgh is a part of Severn Trent Laboratories, Inc.

M-NY049

NYSDOH 10142

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-1581302

Lab Name:	STL Ne	wburgh:			_ c	Contract:	01012.01		
Lab Code:	10142	Ca	ase No.:			SAS No	o.: \$	SDG No.:	215067
Matrix: (soil/\	water)	WATER				La	b Sample ID:	: <u>215067</u> -	004
Sample wt/vo	ol:	900.0	_ (g/ml)	ML		La	b File ID:	S28281	.D
Level: (low/r	med)	LOW				Da	te Received:	08/16/02	2
% Moisture:		de	canted:(Y/N)	N	Da	te Extracted	: 08/20/02	2
Concentrated	d Extract	Volume:	1000	(uL)		Da	te Analyzed:	08/28/02	2
Injection Vol	ume: 2	.0 (uL)				Dil	ution Factor:	1.0	
GPC Cleanu	p: (Y/N)	N	pH:						
						CONC	ENTRATION	LUNITS:	

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
100-02-7	4-Nitrophenol		28	UJι
86-73-7	Fluorene	-	11	U
7005-72-3	4-Chlorophenyl-phenylethe	r	11	U
84-66-2	Diethylphthalate		11	U
100-01-6	4-Nitroaniline		28	U
534-52-1	4,6-Dinitro-2-methylphenol		28	U.
86-30-6	n-Nitrosodiphenylamine (1)		11	U
101-55-3	4-Bromophenyl-phenylethe	r l	11	U
118-74-1	Hexachlorobenzene		11	U
87-86-5	Pentachlorophenol	-	28	U
85-01-8	Phenanthrene		11	U
120-12-7	Anthracene		11	U
84-74-2	Di-n-butylphthalate		11	U
206-44-0	Fluoranthene		11	U
129-00-0	Pyrene		11	U
85-68-7	Butylbenzylphthalate		11	. U
91-94-1	3,3'-Dichlorobenzidine		22	U
56-55-3	Benzo(a)anthracene		11	U
218-01-9	Chrysene		11	U
117-81-7	bis(2-Ethylhexyl)phthalate		1	JQ
117-84-0	Di-n-octylphthalate		11	U
205-99-2	Benzo(b)fluoranthene		11	U
207-08-9	Benzo(k)fluoranthene		11	U
50-32-8	Benzo(a)pyrene		11	U
193-39-5	Indeno(1,2,3-cd)pyrene		11	U
62-75-9	N-Nitrosodimethylamine		11	U
53-70-3	Dibenz(a,h)anthracene		11	U
191-24-2	Benzo(g,h,i)perylene		11	U

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1581302 Contract: 01012.01 Lab Name: STL Newburgh SDG No.: 215067 SAS No.: Lab Code: 10142 Case No.: Lab Sample ID: 215067-004 WATER Matrix: (soil/water) S28281.D Lab File ID: Sample wt/vol: 900 (g/ml) ML LOW Date Received: 08/16/02 Level: (low/med) decanted: (Y/N) Date Extracted: 08/20/02 % Moisture: Date Analyzed: 08/28/02 Concentrated Extract Volume: 1000 Dilution Factor: 1.0 Injection Volume: 2.0 (uL) GPC Cleanup: (Y/N) pH: **CONCENTRATION UNITS:** Number TICs found: (ug/L or ug/Kg) UG/L RT EST, CONC. Q CAS NUMBER COMPOUND NAME

PA 68-378

1B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-1681302

Lab Name:	SILINE	wburgn			`	Jonuaci	. 01012.0	1	. L	
Lab Code:	10142	C	ase No.:			SASN	lo.:	_ si	DG No.: 215067	
Matrix: (soil/	water)	WATER	_			L	ab Sample	ID:	215067-005	
Sample wt/v	ol:	910.0	_ (g/ml)	ML		L	ab File ID:		S28282.D	
Level: (low/r	med)	LOW	<u>. </u>			. Д	ate Receiv	ed:	08/16/02	
% Moisture:		de	canted:(Y/N)	N	_ D	ate Extract	ed:	08/20/02	
Concentrate	d Extract	Volume:	1000	(uL)		D	ate Analyze	ed:	08/28/02	
Injection Vol	ume: <u>2</u>	.0 (uL)				D	ilution Fact	ог:	1.0	
GPC Cleanu	p: (Y/N)	N	pH:							

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
111-44-4	bis(2-Chloroethyl)ethe	er	11	U
108-95-2	Phenol		11	UJL
95-57-8	2-Chlorophenol		11	U
541-73-1	1,3-Dichlorobenzene		11	U
106-46-7	1,4-Dichlorobenzene		11	UJL
95-50-1	1,2-Dichlorobenzene		11	U
100-51-6	Benzyl alcohol		11	U
108-60-1	2,2'-oxybis(1-Chloropi	opane)	11	U
95-48-7	2-Methylphenol		11	U
67-72-1	Hexachloroethane		11	U.
621-64-7	N-Nitroso-di-n-propyla	ımine	11	U
106-44-5	4-Methylphenol		11	Ų
98-95-3	Nitrobenzene		11	U
78-59-1	Isophorone		11	U
88-75-5	2-Nitrophenol		11	U
105-67-9	2,4-Dimethylphenol		11	U
111-91-1	bis(2-Chloroethoxy)m	ethane	11	· U
120-83-2	2,4-Dichlorophenol		11	U
120-82-1	1,2,4-Trichlorobenzen	e	11	U
91-20-3	Naphthalene		11 .	U
106-47-8	4-Chloroaniline		11	U
87-68-3	Hexachlorobutadiene		11	U
59-50-7	4-Chloro-3-methylphe	nol	11	<u> </u>
91-57-6	2-Methylnaphthalene		11	U
77-47-4	Hexachlorocyclopenta	adiene	11	U
88-06-2	2,4,6-Trichlorophenol		11	U
95-95-4	2,4,5-Trichlorophenol	:	11	U
91-58-7	2-Chloronaphthalene		11	· U
88-74-4	2-Nitroaniline		27	U
208-96-8	Acenaphthylene		11	U
131-11-3	Dimethylphthalate		11	U
606-20-2	2,6-Dinitrotoluene		11	U
83-32-9	Acenaphthene		11	U
99-09-2	3-Nitroaniline	-	-27	- U Rc
51-28-5	2,4-Dinitrophenol		27	U
132-64-9	Dibenzofuran		11	U
121-14-2	2,4-Dinitrotoluene		11	Ü

STL Newburgh is a part of Severn Trent Laboratories, Inc.

M-NY049

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-1681302

Lab Name:	STL Ne	wburgh		C	ontract:	01012.01	G 700.700.2
Lab Code:	10142	· C	ase No.:		SAS No	o.: S	DG No.: 215067
Matrix: (soil/w	vater)	WATER	<u> </u>		La	b Sample ID:	215067-005
Sample wt/vc	ol:	910.0	(g/ml) ML		Lai	b File ID:	S28282.D
Level: (low/m	ned)	LOW			Da	te Received:	08/16/02
% Moisture:		de	ecanted:(Y/N)	N	Da	te Extracted:	08/20/02
Concentrated	l Extract	Volume:	1000 (uL)		Da	te Analyzed:	08/28/02
Injection Volu	ıme: <u>2</u>	.0 (uL)		*	Dil	ution Factor:	1.0
GPC Cleanup	o: (Y/N)	N	pH:				

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
100-02-7	4-Nitrophenol		27	UJL
86-73-7	Fluorene		11	U
7005-72-3	4-Chlorophenyl-phenylether		11	U
84-66-2	Diethylphthalate	•	11	U
100-01-6	4-Nitroaniline		27	U
534-52-1	4,6-Dinitro-2-methylphenol		27	U
86-30-6	n-Nitrosodiphenylamine (1)		11	U
101-55-3	4-Bromophenyl-phenylether		11	· U
118-74-1	Hexachlorobenzene		11	U
87-86-5	Pentachlorophenol	**	. 27	U
85-01-8	Phenanthrene		11	Ü
120-12-7	Anthracene		11	U
84-74-2	Di-n-butylphthalate		11	Ü
206-44-0	Fluoranthene		11	U
129-00-0	Pyrene		11	U
85-68-7	Butylbenzylphthalate		11	U
91-94-1	3,3'-Dichlorobenzidine		22	U
56-55-3	Benzo(a)anthracene		11	U
218-01-9	Chrysene		11	· U
117-81-7	bis(2-Ethylhexyl)phthalate	·	11	U
117-84-0	Di-n-octylphthalate		11	U
205-99-2	Benzo(b)fluoranthene		11	U
207-08-9	Benzo(k)fluoranthene		- 11	U
50-32-8	Benzo(a)pyrene		11	U
193-39-5	Indeno(1,2,3-cd)pyrene		11	U
62-75-9	N-Nitrosodimethylamine		11	U
53-70-3	Dibenz(a,h)anthracene		11	U
191-24-2	Benzo(g,h,i)perylene		11	U

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

O

6MW-1681302 Lab Name: STL Newburgh Contract: 01012.01 Lab Code: 10142 Case No.: SAS No.: SDG No.: 215067 Matrix: (soil/water) **WATER** Lab Sample ID: 215067-005 Sample wt/vol: 910 Lab File ID: S28282.D (g/ml) ML Level: (low/med) LOW Date Received: 08/16/02 decanted: (Y/N) Date Extracted: 08/20/02 % Moisture: Concentrated Extract Volume: 1000 (uL) Date Analyzed: 08/28/02

GPC Cleanup: (Y/N) pH:

Injection Volume: 2.0

CAS NUMBER

CONCENTRATION UNITS:

RT

Dilution Factor: 1.0

Number TICs found: (ug/L or ug/Kg) UG/L **COMPOUND NAME** EST. CONC.

1B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-1781302 Contract: 01012.01 Lab Name: STL Newburgh Lab Code: 10142 Case No.: SAS No.: SDG No.: 215067 WATER Matrix: (soil/water) Lab Sample ID: 215067-006 Sample wt/vol: 970.0 Lab File ID: (g/ml) ML S28283.D Level: (low/med) LOW Date Received: 08/16/02 % Moisture: decanted:(Y/N) Ν Date Extracted: 08/20/02 Concentrated Extract Volume: 1000 Date Analyzed: 08/28/02 Injection Volume: 2.0 Dilution Factor: 1.0 (uL) GPC Cleanup: (Y/N) pH:

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or t	ug/Kg)	UG/L.	Q
111-44-4	bis(2-Chloroethyl)ether		10	U
108-95-2	Phenol		10	UJL
95-57-8	2-Chlorophenol		10	U
541-73-1	1,3-Dichlorobenzene		10	U
106-46-7	1,4-Dichlorobenzene		10	UJL
95-50-1	1,2-Dichlorobenzene		10	U
100-51-6	Benzyl alcohol		10	U
108-60-1	2,2'-oxybis(1-Chloropropane)		10	U
95-48-7	2-Methylphenol		10	U
67-72-1	Hexachloroethane		10	U
621-64-7	N-Nitroso-di-n-propylamine	-	10	U
106-44-5	4-Methylphenol		10	U
98-95-3	Nitrobenzene		10	U
78-59-1	Isophorone		10	U
88-75-5	2-Nitrophenol		10	U
105-67-9	2,4-Dimethylphenol		10	U
111-91-1	bis(2-Chloroethoxy)methane		10	U
120-83-2	2,4-Dichlorophenol		10	U
120-82-1	1,2,4-Trichlorobenzene		10	U
91-20-3	Naphthalene		10	U
106-47-8	4-Chloroaniline		10	U
87-68-3	Hexachlorobutadiene		10	U
59-50-7	4-Chloro-3-methylphenol		10	U
91-57-6	2-Methylnaphthalene		10	U
77-47-4	Hexachlorocyclopentadiene		10	U
88-06-2	2,4,6-Trichlorophenol		10	U
95-95-4	2,4,5-Trichlorophenol		10	U
91-58-7	2-Chloronaphthalene		10	U
88-74-4	2-Nitroaniline		26	U
208-96-8	Acenaphthylene		10	U
131-11-3	Dimethylphthalate		10	U
606-20-2	2,6-Dinitrotoluene		10	U
83-32-9	Acenaphthene		10	U
99-09-2	3-Nitroaniline		-26	U Rc
51-28-5	2,4-Dinitrophenol		26	U
132-64-9	Dibenzofuran		10	U
121-14-2	2,4-Dinitrotoluene		10	U

STL Newburgh is a part of Severn Trent Laboratories, Inc.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-1781302

Lab Name:	STL Ne	wburgh			c	contract:	01012.01	
Lab Code:	10142	C	ase No.:			SAS No	o.:	SDG No.: 215067
Matrix: (soil/	water)	WATER				La	b Sample ID	215067-006
Sample wt/ve	ol:	970.0	_ (g/ml)	<u>ML</u>		La	b File ID:	S28283.D
Level: (low/r	med)	LOW				Da	ite Received	: 08/16/02
% Moisture:		de	ecanted:	(Y/N)	N	Da	ite Extracted	: 08/20/02
Concentrate	d Extract	Volume:	1000	(uL)		Da	ite Analyzed:	08/28/02
Injection Vol	ume: <u>2</u>	.0 (uL)	•			Dil	ution Factor:	1.0
GPC Cleanu	ıp: (Y/N)	N	pH:		_			
						CONC	ENTRATION	LINITS

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
100-02-7	4-Nitrophenol		26	UJL
86-73-7	Fluorene		10	U
7005-72-3	4-Chlorophenyl-phenyl	ether	10	U
84-66-2	Diethylphthalate		10	U
100-01-6	4-Nitroaniline		26	U
534-52-1	4,6-Dinitro-2-methylphe	enol	26	U
86-30-6	n-Nitrosodiphenylamin	e (1)	10	U
101-55-3	4-Bromophenyl-phenyl	ether	10	U
118-74-1	Hexachlorobenzene		10	U
87-86-5	Pentachlorophenol		26	U
85-01-8	Phenanthrene		10	U
120-12-7	Anthracene		10	U
84-74-2	Di-n-butylphthalate		10	U
206-44-0	Fluoranthene		10	U
129-00-0	Pyrene		10	U
85-68-7	Butylbenzylphthalate		10	U
91-94-1	3,3'-Dichlorobenzidine		21	U
56-55-3	Benzo(a)anthracene		10	U
218-01-9	Chrysene		10	U
117-81-7	bis(2-Ethylhexyl)phthal	ate	4	JQ
117-84-0	Di-n-octylphthalate		10	Ų
205-99-2	Benzo(b)fluoranthene		<u>10</u>	U
207-08-9	Benzo(k)fluoranthene		10	U
50-32-8	Benzo(a)pyrene		10	U
193-39-5	Indeno(1,2,3-cd)pyren	e	10	U
62-75-9	N-Nitrosodimethylamir		10	U
53-70-3	Dibenz(a,h)anthracene		10	U _
191-24-2	Benzo(g,h,i)perylene		10	U

NJDEP 73015

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1781302

Lab Name:	STL Nev	wburgh		Contract	: <u>01012.0</u>	1	
Lab Code:	10142	Case No.:		SAS	lo.:	SDG No.: 2150	067
Matrix: (soil/w	vater)	WATER		L	ab Sample	ID: <u>215067-006</u>	·
Sample wt/vo	ol:	970 (g/ml) <u>ML</u>	_ L	ab File ID:	S28283.D	
Level: (low/n	ned)	LOW			ate Receiv	red: 08/16/02	
% Moisture:		decanted:	(Y/N)1	<u>/</u>	ate Extract	ted: 08/20/02	
Concentrated	d Extract	Volume: 1000	_ (uL)		ate Analyz	ed: <u>08/28/02</u>	.
Injection Volu	ıme: <u>2.0</u>) (uL)			ilution Fact	tor: 1.0	,
GPC Cleanu	p: (Y/N)	NpH:				•	
	,			CONCEN	ITRATION	UNITS:	
Number TICs	s found:	0		(ug/L or u	ıg/Kg)	UG/L	
CAS NUME	BER	COMPOUND NA	AME		RT	EST. CONC.	Q

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-1881402

Lab Name:	STL Nev	wburgh		(Contract;	01012.01		
Lab Code:	10142	C	ase No.:		SAS No	o.: S	DG No.: <u>215065</u>	
Matrix: (soil/v	vater)	WATER			La	b Sample ID:	215065-006	
Sample wt/vc	ol:	965.0	(g/ml) ML		La	b File ID:	S28298.D	
Level: (low/n	ned)	LOW	<u>.</u>		Da	ite Received:	08/16/02	
% Moisture:		de	canted:(Y/N)	N	Da	ite Extracted:	08/21/02	
Concentrated	Extract	Volume:	1000 (uL)		Da	te Analyzed:	08/29/02	
Injection Volu	ıme: <u>2</u>	.0 (uL)			Dil	ution Factor:	1.0	
GPC Cleanup	o: (Y/N)	<u>N</u>	pH:	<u>.</u>				

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/l	Kg) <u>UG/L</u>	Q
111-44-4	bis(2-Chloroethyl)ether	10	U
108-95-2	Phenol	10	UJL
95-57-8	2-Chlorophenol	10	U
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	UJL
95-50-1	1,2-Dichlorobenzene	10	U
100-51-6	Benzyl alcohol	10	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	10	Ü
95-48-7	2-Methylphenol	10	U
67-72-1	Hexachloroethane	10	U
621-64-7	N-Nitroso-di-n-propylamine	10	U
106-44-5	4-Methylphenol	10	U
98-95-3	Nitrobenzene	10	Ú
78-59-1	Isophorone	10	U
88-75-5	2-Nitrophenol	10	U
105-67-9	2,4-Dimethylphenol	10	Ŭ
111-91-1	bis(2-Chloroethoxy)methane	10	U
120-83-2	2,4-Dichlorophenol	10	U
120-82-1	1,2,4-Trichlorobenzene	10	UJL
91-20-3	Naphthalene	10	U
106-47-8	4-Chloroaniline	10	U
87-68-3	Hexachlorobutadiene	10	U
59-50-7	4-Chloro-3-methylphenol	10	U
91-57-6	2-Methylnaphthalene	10	U
77-47-4	Hexachlorocyclopentadiene	10	U
88-06-2	2,4,6-Trichlorophenol	10	U
95-95-4	2,4,5-Trichlorophenol	10	U
91-58-7	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	26	U
208-96-8	Acenaphthylene	10	Ų
131-11-3	Dimethylphthalate	10	U
606-20-2	2,6-Dinitrotoluene	10	U
83-32-9	Acenaphthene	10	U
99-09-2	3-Nitroaniline	26	— U Rc
51-28-5	2,4-Dinitrophenol	26	υ
132-64-9	Dibenzofuran	10	U
121-14-2	2,4-Dinitrotoluene	10	U

STL Newburgh is a part of Severn Trent Laboratories, Inc.

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

								6MW-1	881 <i>4</i> 02
Lab Name:	STL Ne	wburgh		(Contract:	01012.0	1	010104	001702
Lab Code:	10142	Ca	ase No.:		SAS No).:	SE	OG No.:	215065
Matrix: (soil/\	water)	WATER	<u> </u>		La	b Sample	ID:	215065-0	06
Sample wt/vo	ol:	965.0	(g/ml) ML		La	b File ID:	-	S28298.E)
Level: (low/r	med)	LOW			Da	te Receiv	ed:	08/16/02	· .
% Moisture:		de	canted:(Y/N)	N	Da	te Extrac	ted:	08/21/02	
Concentrated	d Extract	Volume:	1000 (uL)		 Da	te Analyz	ed:	08/29/02	
Injection Volu	ume: <u>2</u>	.0 (uL)			Dil	ution Fac	tor:	1.0	
GPC Cleanu	p: (Y/N)	N	pH:	_					
	•				CONC	ENTRATI	ON L	JNITS:	
CAS NO	D .	COMP	OUND		(ug/L o	r ug/Kg)	UG	/L	Q

100-02-7	4-Nitrophenol	26	Սյւ
86-73-7	Fluorene	10	U
7005-72-3	4-Chlorophenyl-phenylether	10	Ū
84-66-2	Diethylphthalate	10	U
100-01-6	4-Nitroaniline	26	U
534-52-1	4,6-Dinitro-2-methylphenol	26	U
86-30-6	n-Nitrosodiphenylamine (1)	10	Ų
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	U
87-86-5	Pentachlorophenol	26	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	21	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
117-81-7	bis(2-Ethylhexyl)phthalate	10	U
117-84-0	Di-n-octylphthalate	10	U
205-99-2	Benzo(b)fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
62-75-9	N-Nitrosodimethylamine	10	U
53-70-3	Dibenz(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

PA 68-378

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-1881402 Lab Name: STL Newburgh Contract: 01012.01 Lab Code: 10142 Case No.: SAS No.: SDG No.: 215065 WATER Lab Sample ID: 215065-006 Matrix: (soil/water) Sample wt/voi: 965 Lab File ID: S28298.D (g/mi) ML LOW Level: (low/med) Date Received: 08/16/02 decanted: (Y/N) Date Extracted: 08/21/02 % Moisture: Ν 1000 (uL) Concentrated Extract Volume: Date Analyzed: 08/29/02 Injection Volume: 2.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) pH: **CONCENTRATION UNITS:** Number TICs found: (ug/L or ug/Kg) UG/L

RT

EST. CONC.

Q

COMPOUND NAME

EPA NY049

CAS NUMBER

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SMM-1081402

Lab Name:	STL Ne	wburgh		Co	ntract: (01012.01	010100-1901-102	
Lab Code:	10142 Case No.:			SAS No.: S			DG No.: 215065	
Matrix: (soil/v	water)	WATER	<u> </u>		Lab	Sample ID:	215065-007	
Sample wt/vo	ol:	930.0	(g/ml) ML		Lab l	File ID:	S28299.D	
Level: (low/n	ned)	LOW			Date	Received:	08/16/02	
% Moisture:		de	canted:(Y/N)	N	Date	Extracted:	08/21/02	
Concentrated	d Extract	Volume:	1000 (uL)		Date	Analyzed:	08/29/02	
Injection Volu	ume: 2	2.0 (uL)			Dilut	ion Factor:	1.0	
GPC Cleanu	p: (Y/N)	<u> </u>	pH:					

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
111-44-4	bis(2-Chloroethyl)eth	er	11	U
108-95-2	Phenol		11	UJL
95-57-8	2-Chlorophenol		11	U
541-73-1	1,3-Dichlorobenzene		11	U
106-46-7	1,4-Dichlorobenzene		11	ՄՄև
95-50-1	1,2-Dichlorobenzene		11	U
100-51-6	Benzyl alcohol		11	U
108-60-1	2,2'-oxybis(1-Chlorog	propane)	11	U
95-48-7	2-Methylphenol		11	U
67-72-1	Hexachloroethane		11	Ū
621-64-7	N-Nitroso-di-n-propyl	amine	11	U
106-44-5	4-Methylphenol		11	U
98-95-3	Nitrobenzene		11	U
78-59-1	Isophorone		11	U
88-75-5	2-Nitrophenol		11	U
105-67-9	2,4-Dimethylphenol		11	Ū
111-91-1	bis(2-Chloroethoxy)n	nethane	11	Ū
120-83-2	2,4-Dichlorophenol		11	Û
120-82-1	1,2,4-Trichlorobenze	ne	11	ÜΪι
91-20-3	Naphthalene		11	U
106-47-8	4-Chloroaniline		11	U
87-68-3	Hexachlorobutadiene)	11	U
59-50-7	4-Chloro-3-methylpho	enol	11	U
91-57-6	2-Methylnaphthalene		11	U
77-47-4	Hexachlorocyclopent	adiene	11	U
88-06-2	2,4,6-Trichloropheno		11	U
95-95-4	2,4,5-Trichloropheno		11	U
91-58-7	2-Chloronaphthalene		11	U
88-74-4	2-Nitroaniline		27	U
208-96-8	Acenaphthylene	-	11	U
131-11-3	Dimethylphthalate		11	Ū
606-20-2	2,6-Dinitrotoluene		11	U
83-32-9	Acenaphthene		11	U
99-09-2	3-Nitroaniline		-27	⊌ R
51-28-5	2,4-Dinitrophenol		27	U
132-64-9	Dibenzofuran		11	Ü
121-14-2	2,4-Dinitrotoluene		11	Ü

STL Newburgh is a part of Severn Trent Laboratories, Inc.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

_ab Name:	STL Ne	wburgh			_ Co	ontrac	t:	01012.01	6MVV-1981402
ab Code:	10142	Ca	se No.:			SAS	No.	:S	DG No.: 215065
vlatrix: (soil/v	water)	WATER				I	_ab	Sample ID:	215065-007
Sample wt/vo	ol:	930.0	_ (g/ml)	ML		l	_ab	File ID:	S28299.D
_evel: (low/n	ned)	LOW	_	•		1	Date	e Received:	08/16/02
% Moisture:		de	canted:(Y/N) _	N	_ [Date	e Extracted:	08/21/02
Concentrated	d Extract	Volume:	1000	(uL)		. [Date	e Analyzed:	08/29/02
njection Volu	ıme: <u>2</u>	.0 (uL)				. [Dilu	tion Factor:	1.0
GPC Cleanu	p: (Y/N)	<u>N</u>	pH:						

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
100-02-7	4-Nitrophenol		27	UJĻ
86-73-7	Fluorene		11	U
7005-72-3	4-Chlorophenyl-phenyleth	er	11	U
84-66-2	Diethylphthalate		11	U
100-01-6	4-Nitroaniline		27	U
534-52-1	4,6-Dinitro-2-methylpheno	ol .	27	U
86-30-6	n-Nitrosodiphenylamine (1	1)	11	U
101-55-3	4-Bromophenyl-phenyleth	er	11	U
118-74-1	Hexachlorobenzene		11	U
87-86-5	Pentachlorophenol		27	U
85-01-8	Phenanthrene		11	U
120-12-7	Anthracene		11	U
84-74-2	Di-n-butylphthalate		11	U
206-44-0	Fluoranthene		11	U
129-00-0	Pyrene		11	U
85 - 68-7	Butylbenzylphthalate		11	U
91-94-1	3,3'-Dichlorobenzidine		22	U
56-55-3	Benzo(a)anthracene		11	U
218-01-9	Chrysene		11	U
117-81-7	bis(2-Ethylhexyl)phthalate		11	U
117-84-0	Di-n-octylphthalate		11	U
205-99-2	Benzo(b)fluoranthene		11	U
207-08-9	Benzo(k)fluoranthene		11	U
50-32-8	Benzo(a)pyrene		11	U
193-39-5	Indeno(1,2,3-cd)pyrene		11	U
62-75-9	N-Nitrosodimethylamine		11	U
53-70-3	Dibenz(a,h)anthracene		11	U
191-24-2	Benzo(g,h,i)perylene		11	U

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	STL Nev	wburgh		Contract:	01012.0)1	- OIVIVV-18	10 1402
Lab Code:	10142	Case No.: _		_ SAS N	o.:	_ S	DG No.: 2	15065
Matrix: (soil/v	vater)	WATER	٠	La	b Sample	ID:	215065-00)7
Sample wt/vo	ol:	930 (g/ml)	ML	_ · La	b File ID:		S28299.D	· .
Level: (low/n	ned)	LOW		Da	ate Receiv	/ed:	08/16/02	-
% Moisture:	-	decanted: (Y/	(N)	N Da	ate Extrac	ted:	08/21/02	
Concentrated Extract Volume: 1000 (uL)				Date Analyzed: 08/29/02				
Injection Volume: 2.0 (uL)				Di	lution Fac	tor:	1.0	·
GPC Cleanu	o: (Y/N)	NpH:						
			•	CONCEN	TRATION	UNI	TS:	·
Number TICs	s found:	1		(ug/L or ug	g/Kg)	UG/	<u> </u>	
CAS NUME	BER	COMPOUND NAM	E		RT	ES	T. CONC.	Q
1		C6H4Br3N isomer			16.20		4	Jτ

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

6MW-2081402

Lab Name:	STL Ne	wburgh			c	ontract:	01012.01		
Lab Code:	10142	C	ase No.:			SAS N	o.: S	DG No.: 215	065
Matrix: (soil/w	/ater)	WATER				La	b Sample ID:	215065-008	
Sample wt/vo	ol:	940.0	_ (g/ml)	ML_		La	ıb File ID:	S28300.D	
Level: (low/m	ned)	LOW	-			Da	ate Received:	08/16/02	
% Moisture:		de	ecanted:(\	//N) _	N	_ Da	ate Extracted:	08/21/02	
Concentrated	Extract	Volume:	1000	(uL)		Da	ate Analyzed:	08/29/02	
Injection Volu	me: <u>2</u>	.0 (uL)				Di	lution Factor:	1.0	
GPC Cleanup	o: (Y/N)	N	pH: _				4 \$. "	

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
111-44-4	bis(2-Chloroethyl)eth	er	11	U
108-95-2	Phenol		11	IJŢĹ
95-57-8	2-Chlorophenoi		11	Ú
541-73-1	1,3-Dichlorobenzene		11	נ
106-46-7	1,4-Dichlorobenzene		11	UJL
95-50-1	1,2-Dichlorobenzene		11	U
100-51-6	Benzyl alcohol		11	د
108-60-1	2,2'-oxybis(1-Chloror	propane)	11	J
95-48-7	2-Methylphenol		11	U
67-72-1	Hexachloroethane		11	U
621-64-7	N-Nitroso-di-n-propyl	amine	11	U
106-44-5	4-Methylphenol		11	U
98-95-3	Nitrobenzene		11	U
78-59-1	Isophorone		11	U
88-75-5	2-Nitrophenol		11	U.
105-67-9	2,4-Dimethylphenol		11	U
111-91-1	bis(2-Chloroethoxy)n	nethane	11	U
120-83-2	2,4-Dichlorophenol		11	U
120-82-1	1,2,4-Trichlorobenze	ne	11	UJi
91-20-3	Naphthalene		11	Ų
106-47-8	4-Chloroaniline		11	U
87-68-3	Hexachlorobutadiene)	11	U
59-50-7	4-Chloro-3-methylpho	enol	11	U
91-57-6	2-Methylnaphthalene		11	U
77-47-4	Hexachlorocyclopent	adiene	11	U
88-06-2	2,4,6-Trichloropheno		11	U
95-95-4	2,4,5-Trichloropheno	[11	U
91-58-7	2-Chloronaphthalene		11	U
88-74-4	2-Nitroaniline		27	U
208-96-8	Acenaphthylene		11	Ų
131-11 - 3	Dimethylphthalate		11	U
606-20-2	2,6-Dinitrotoluene		11	U
83-32-9	Acenaphthene		11	U
99-09-2	3-Nitroaniline		-27	 U Ra
51-28-5	2,4-Dinitrophenol		27	U
132-64-9	Dibenzofuran		11	Ū
121-14-2	2,4-Dinitrotoluene		11	U

EPA SAMPLE NO.

	シニバ	MIVULATILE ORGAN	ICS ANALYSI	2 DATA	SHEET			
Lab Name:	STL Nev	wburgh	Cont	ract: 0	1012.01	6MW-2	081402	
Lab Code:	10142	Case No.:	SA	\S No.:	SI	DG No.: 2	215065	
Matrix: (soil/v	vater)	WATER		Lab S	Sample ID:	215065-0	08	
Sample wt/vo	ol:	940.0 (g/ml) N	1L	Lab F	ile ID:	S28300.E	<u> </u>	
Level: (low/n	ned)	LOW		Date	Received:	08/16/02		
% Moisture:		decanted:(Y/I	N) N	Date	Extracted:	08/21/02		
Concentrated	Concentrated Extract Volume: 1000 (uL) Date Analyzed: 08/29/02							
Injection Volu	ıme: <u>2</u> .	0 (uL)		Dilutio	on Factor:	1.0		
GPC Cleanu	p: (Y/N)	NpH:						
			С	ONCEN	TRATION	UNITS:		
CAS NC).	COMPOUND			g/Kg) <u>UG</u>		Q	
100-02	2-7	4-Nitrophenol				27	UJL	
86-73-	7	Fluorene				11	U	
7005-7	72-3	4-Chlorophenyi-	phenylether			11	U	
84-66-	2	Diethylphthalate			•	11	J	
100-01	I <i>-</i> 6	4-Nitroaniline				27	U	
534-52	2-1	4,6-Dinitro-2-me	thylphenol			27	U	
	_							

100-02-7	4-Nitrophenol	27	UJL
86-73-7	Fluorene	11	U
7005-72-3	4-Chlorophenyl-phenylether	11	U
84-66-2	Diethylphthalate	11	U
100-01-6	4-Nitroaniline	27	U
534-52-1	4,6-Dinitro-2-methylphenol	27	U
86-30-6	n-Nitrosodiphenylamine (1)	. 11	Ų
101-55-3	4-Bromophenyl-phenylether	11	U
118-74-1	Hexachlorobenzene	11	U
87-86-5	Pentachlorophenol	27	U
85-01-8	Phenanthrene	11	U
120-12-7	Anthracene	11	U
84-74-2	Di-n-butylphthalate	11	· U
206-44-0	Fluoranthene	11	U
129-00-0	Pyrene	11	U
85-68-7	Butylbenzylphthalate	11	Ų
91-94-1	3,3'-Dichlorobenzidine	21	U
56-55-3	Benzo(a)anthracene	11	U
218-01-9	Chrysene	- 11	Ų
117-81-7	bis(2-Ethylhexyl)phthalate	11	U
117-84-0	Di-n-octylphthalate	11	U
205-99-2	Benzo(b)fluoranthene	11	U
207-08- 9	Benzo(k)fluoranthene	11	U
50-32-8	Benzo(a)pyrene	11	U
193-39-5	Indeno(1,2,3-cd)pyrene	11	U
62-75-9	N-Nitrosodimethylamine	11	U
53-70-3	Dibenz(a,h)anthracene	11	U
191-24-2	Benzo(g,h,i)perylene	11	U

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET **TENTATIVELY IDENTIFIED COMPOUNDS**

EPA SAMPLE NO.

Lab Name:	STL Ne	wburgh	Contrac	ot: 01012.	01	6MW-208	1402
Lab Code:	10142	Case No.:	SAS	No.:	SD	G No.: 215	5065
Matrix: (soil/	water)	WATER	•	Lab Sample	e ID: 2	15065-008	
Sample wt/ve	ol:	940 (g/ml) ML		Lab File ID:	: 5	\$28300.D	
Level: (low/r	ned)	LOW		Date Recei	ved: <u>C</u>	8/16/02	
% Moisture:		decanted: (Y/N)	N	Date Extra	cted: 0	8/21/02	
Concentrate	d Extract	Volume: <u>1000</u> (uL)		Date Analy:	zed: <u>C</u>	8/29/02	·
Injection Vol	ume: <u>2.</u>	0 (uL)		Dilution Fac	ctor: 1	.0	
GPC Cleanu	p: (Y/N)	<u> </u>	_				
			CONCE	NTRATION	UNITS	3 :	
Number TIC:	s found:	1	(ug/L or	ug/Kg)	UG/L	-	*
CAS NUME	BER	COMPOUND NAME		RT	EST	CONC.	Q
1		Unknown		16.20	1	6	ŀŦ

1B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	~ 4 4	4	_	
$ \cup$ Δ	Y ZIN	/IUI	-	INII I

Lab Name:	STL Ne	wburgh		Contract:	01012.01	610100-2181402	
Lab Code:	10142 Case No.:			SAS No	DG No.: 215065		
Matrix: (soil/w	vater)	WATER		La	b Sample ID:	215065-009	
Sample wt/vc	ol:	930.0	(g/ml) ML	La	b File ID:	S28301.D	
Level: (low/m	ned)	LOW	<u>.</u>	Da	te Received:	08/16/02	
% Moisture:		de	canted:(Y/N)	N Da	te Extracted:	08/21/02	
Concentrated	i Extract	Volume:	1000 (uL)	Da	te Analyzed:	08/29/02	
Injection Volu	ıme: <u>2</u>	.0 (uL)		. Dil	ution Factor:	1.0	
GPC Cleanup	o: (Y/N)	<u>N</u>	pH:			· · · · · · · · · · · · · · · · ·	

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
111-44-4	bis(2-Chloroethyl)ether	,	. 11	U
108-95-2	Phenol		11	UJL
95-57-8	2-Chlorophenol		11	U
541-73-1	1,3-Dichlorobenzene		. 11	U
106-46-7	1,4-Dichlorobenzene		11	UJL
95-50-1	1,2-Dichlorobenzene		11	U
100-51-6	Benzyl alcohol		11	U
108-60-1	2,2'-oxybis(1-Chloropropane	9)	11	U
95-48-7	2-Methylphenol		11	U
67-72-1	Hexachloroethane		11	U
621-64-7	N-Nitroso-di-n-propylamine		11	U
106-44-5	4-Methylphenol		11	U
98-95-3	Nitrobenzene		11	U
78-59-1	Isophorone		11	U
88-75-5	2-Nitrophenol		11	U
105-67-9	2,4-Dimethylphenol		11	U
111-91-1	bis(2-Chloroethoxy)methane)	11	U
120-83-2	2,4-Dichlorophenol		11	U
120-82-1	1,2,4-Trichlorobenzene		11	UJL
91-20-3	Naphthalene		11	U
106-47-8	4-Chloroaniline		11	U
87-68-3	Hexachlorobutadiene		11	U
59-50-7	4-Chloro-3-methylphenol	-	11	U
91-57-6	2-Methylnaphthalene		11	U
77-47-4	Hexachlorocyclopentadiene		11	Ų
88-06-2	2,4,6-Trichlorophenol		11	U
95-95-4	2,4,5-Trichlorophenol		11	U
91-58-7	2-Chioronaphthalene		11	U
88-74-4	2-Nitroaniline		27	U
208-96-8	Acenaphthylene		11	U
131-11-3	Dimethylphthalate		11	U
606-20-2	2,6-Dinitrotoluene		11	U
83-32-9	Acenaphthene		11	U
99-09-2	3-Nitroaniline		-27	- URC
51-28-5	2,4-Dinitrophenol	·	27	U
132-64-9	Dibenzofuran		11	U
121-14-2	2,4-Dinitrotoluene		11	U
	STI Nowburgh is a part of 6			

STL Newburgh is a part of Severn Trent Laboratories, Inc.

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

6MW-2181402

Lab Name:	STL Nev	wburgh			Contract:	01012.01	511117 210:102
Lab Code:	10142	Ca	ise No.:		SAS No	o S	DG No.: 215065
Matrix: (soil/w	/ater)	WATER			La	b Sample ID:	215065-009
Sample wt/vo	ol;	930.0	(g/ml) ML		La	b File ID:	S28301.D
Level: (low/m	ned)	LOW	·		Da	te Received:	08/16/02
% Moisture:	<u> </u>	de	canted:(Y/N)	N	Da	te Extracted:	08/21/02
Concentrated	Extract	Volume:	1000 · (uL)		Da	te Analyzed:	08/29/02
Injection Volu	me: <u>2</u> .	0 (uL)			Dil	ution Factor:	1.0
GPC Cleanur	o: (Y/N)	<u> </u>	pH:				Y, a.e.

		CONCENTRATI	ON UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
100-02-7	4-Nitrophenol		27	UJL
86-73-7	Fluorene		11	Ų
7005-72-3	4-Chlorophenyl-pheny	/lether	11	U
84-66-2	Diethylphthalate		11	U
100-01-6	4-Nitroaniline		. 27	. U
534-52-1	4,6-Dinitro-2-methylpl	nenol	27	U
86-30-6	n-Nitrosodiphenylamii	ne (1)	11	U
101-55-3	4-Bromophenyl-pheny	lether	11	U
118-74-1	Hexachlorobenzene		11	U
87-86-5	Pentachlorophenol		27	U
85-01-8	Phenanthrene		11	U
120-12-7	Anthracene		11	U
84-74-2	Di-n-butylphthalate		11	U
206-44-0	Fluoranthene		11	U
129-00-0	Pyrene		11	Ū
85-68-7	Butylbenzylphthalate		11	U
91-94-1	3,3'-Dichlorobenzidine		22	U
56-55-3	Benzo(a)anthracene		11	Ŭ
218-01-9	Chrysene		11	U
117-81-7	bis(2-Ethylhexyl)phtha	alate	11	U
117-84-0	Di-n-octylphthalate		11	U
205-99-2	Benzo(b)fluoranthene		11	U
207-08-9	Benzo(k)fluoranthene		11	U
50-32-8	Benzo(a)pyrene		11	U
193-39-5	Indeno(1,2,3-cd)pyrer	ne	11	U
62-75-9	N-Nitrosodimethylami		11	U
53-70-3	Dibenz(a,h)anthracen		11	U

191-24-2

Benzo(g,h,i)perylene

EPA NY049

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	STL Nev	wburgh		Contrac	t: <u>0101</u>	2.01	_ [6MVV-218 ⁻	1402
Lab Code:	10142	Case No.:		SAS	No.:	s	DG No.: 215	065
Matrix: (soil/v	vater)	WATER		1	ab Sam	ple ID:	215065-009	· .
Sample wt/vo	ol:	930 (g/ml)	ML_	_ •	_ab File I	D:	S28301.D	
Level: (low/r	ned)	LOW		· [Date Rec	eived:	08/16/02	
% Moisture:		decanted: (Y/N)1	<u>N</u> [Date Extr	acted:	08/21/02	· .
Concentrated	d Extract	Volume: 1000	(uL)	1	Date Ana	lyzed:	08/29/02	· —
Injection Volu	ıme: <u>2.(</u>	<u>)</u> (uL)		I	Dilution F	actor:	1.0	
GPC Cleanu	p: (Y/N)	NpH:						
Number TiCs	s found:	0		CONCEI		UNI UNI		
CAS NUME	3ER	COMPOUND NA	ME		RT	ES	ST. CONC.	Q

M-NY049.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

•	0_,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- 01(0) 11(1)) () ((1)	ILI OIO DA	I/ OIILLI	01.01.004.04.400
Lab Name:	STL Nev	wburgh			Contract:	01012.01	6MW-20181402
Lab Code:	10142	Ca	se No.:		SAS No	S	DG No.: 215065
Matrix: (soil/w	vater)	WATER	-		Lal	Sample ID:	215065-010
Sample wt/vo	ol:	970.0	(g/ml) Mi	-	Lal	File ID:	S28302.D
Level: (low/m	ned)	LOW	_		Da	te Received:	08/16/02
% Moisture:		dec	anted:(Y/N) <u>N</u>	Da	te Extracted:	08/21/02
Concentrated	Extract	Volume: 1	000 (uL)	Da	te Analyzed:	08/29/02

CONCENTRATION UNITS:

Dilution Factor: 1.0

		CONCENTRAT	ION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
111-44-4	bis(2-Chloroethyl)eth	er	10	U
108-95-2	Phenol		10	UJL
95-57-8	2-Chlorophenol		10	U
541-73-1	1,3-Dichlorobenzene		10	U
106-46-7	1,4-Dichlorobenzene		10	UJL
95-50-1	1,2-Dichlorobenzene		10	U
100-51-6	Benzyl alcohol		10	U
108-60-1	2,2'-oxybis(1-Chlorop	ropane)	10	U
95-48-7	2-Methylphenol		.10	U
67-72-1	Hexachloroethane		10	U
621-64-7	N-Nitroso-di-n-propyla	amine	10	U
106-44-5	4-Methylphenol		10	U
98-95-3	Nitrobenzene		10	U
78-59-1	Isophorone		10	U
88-75-5	2-Nitrophenol		10	U
105-67-9	2,4-Dimethylphenol		10	U
111-91-1	bis(2-Chloroethoxy)m	ethane	10	U
120-83-2	2,4-Dichlorophenol		10	U
120-82-1	1,2,4-Trichlorobenzer	ie .	10	Սյւ
91-20-3	Naphthalene		10	U
106-47-8	4-Chloroaniline		10	U
87 - 68-3	Hexachlorobutadiene		10	U
59-50-7	4-Chloro-3-methylphe	enol	10	Ū
91-57-6	2-Methylnaphthalene		10	Ų
77-47-4	Hexachlorocyclopenta	adiene	10	Ç
88-06-2	2,4,6-Trichlorophenol		10	U
95-95-4	2,4,5-Trichlorophenol		10	U
91-58-7	2-Chloronaphthalene		10	U
88-74-4	2-Nitroaniline		26	Ū
208-96-8	Acenaphthylene		10	U
131-11-3	Dimethylphthalate		10	U
606-20-2	2,6-Dinitrotoluene		10	U
83-32-9	Acenaphthene		10	U
99-09-2	3-Nitroaniline		-26	U Ra
51-28-5	2,4-Dinitrophenol		26	U
132-64-9	Dibenzofuran		10	Ü
121-14-2	2,4-Dinitrotoluene		10	Ü

STL Newburgh is a part of Severn Trent Laboratories, Inc.

3/90

Injection Volume: 2.0 (uL)

GPC Cleanup: (Y/N) N pH:

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name:	STL Ne	wburgh		_ (Contract:	01012.01	6WVV-20181402
Lab Code:	10142	Ca	se No.:		SAS No	.: S	DG No.: 215065
Matrix: (soil/v	vater)	WATER	<u> </u>		Lai	Sample ID:	215065-010
Sample wt/vo	ol:	970.0	(g/ml) ML		Lat	File ID:	S28302.D
_evei: (low/m	ned)	LOW			Da	te Received:	08/16/02
% Moisture:		de	canted:(Y/N)	N	Da	te Extracted:	08/21/02
Concentrated	Extract	Volume:	1000 (uL)		Da	te Analyzed:	08/29/02
njection Volu	ime: 2	.0 (uL)			Dik	ution Factor:	1.0
GPC Cleanup	o: (Y/N)	N	pH:				

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
100-02-7	4-Nitrophenol		26	UJL
86-73-7	Fluorene		10	U
7005-72-3	4-Chlorophenyl-phenyl	ether	10	U
84-66-2	Diethylphthalate		10	Ū
100-01-6	4-Nitroaniline		26	U
534-52-1	4,6-Dinitro-2-methylphe	enol	26	U
86-30-6	n-Nitrosodiphenylamine	∋ (1)	10	Ü
101-55-3	4-Bromophenyl-phenyle	ether	10	U
118-74-1	Hexachlorobenzene		10	C
87-86-5	Pentachlorophenol		26	U
85-01-8	Phenanthrene		10	U
120-12-7	Anthracene		10	J
84-74-2	Di-n-butylphthalate		10	ט
206-44-0	Fluoranthene		10	د
129-00-0	Pyrene		10	U
85-68-7	Butylbenzylphthalate		10	U
91-94-1	3,3'-Dichlorobenzidine		21	U
56-55-3	Benzo(a)anthracene		10	U
218-01-9	Chrysene		10	U
117-81-7	bis(2-Ethylhexyl)phthala	ate	10	Ū
117-84-0	Di-n-octylphthalate		10	U
205-99-2	Benzo(b)fluoranthene		10	U
207-08-9	Benzo(k)fluoranthene		10	U
50-32-8	Benzo(a)pyrene		10	U
193-39-5	Indeno(1,2,3-cd)pyrene)	10	U
62-75-9	N-Nitrosodimethylamine		10	U
53-70-3	Dibenz(a,h)anthracene		10	U
191-24-2	Benzo(g,h,i)perylene		10	U

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	STL Ne	wburgh	Contrac	t: 01012.0)1	6MW-2018	31402
Lab Code:	10142	Case No.:	SAS !	No.:	SD	G No.: <u>215</u>	065
Matrix: (soil/	water)	WATER	I	ab Sample	ID: 2	15065-010	
Sample wt/v	ol:	970 (g/ml) ML	<u> </u>	ab File ID:	<u>s</u>	328302.D	
Level: (low/	med)	LOW		Date Receiv	/ed: <u>0</u>	8/16/02	****
% Moisture:		decanted: (Y/N)	<u>N</u> [oate Extrac	ted: 0	8/21/02	
Concentrate	d Extract	Volume: 1000 (uL)		oate Analyz	:ed: <u>0</u>	8/29/02	
Injection Vol	ume: <u>2.</u>	0 (uL)	Ε	Dilution Fac	tor: 1	.0	
GPC Cleanu	p: (Y/N)	N pH:	· —				
			CONCE	ITRATION	UNITS	S:	
Number TIC	s found:	1	(ug/L or ι	ıg/Kg)	UG/L	·	
CAS NUMI	3ER	COMPOUND NAME		RT	EST	CONC.	Q
1		Unknown		16 21		R	L.

PA 68-378

1B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

	CARADI	_	NIC
EFA	SAMPL	.⊏	NO.

	6MW-13381302
ı	O11111 1000 100-

	; - '		6MW-13	381302
Lab Name: STL Newbu	rgh	Contract: <u>01012.01</u>		
Lab Code: 10142	Case No.:	SAS No.:	SDG No.: 2	15067
Matrix: (soil/water) WA	ATER	Lab Sample ID): <u>215067-00</u>	7
Sample wt/vol: 950	0.0 (g/ml) ML	Lab File ID:	S28284.D	
Level: (low/med) LO	 W	Date Received	1: 08/16/02	
% Moisture:		Date Extracted	d: 08/20/02	
Concentrated Extract Volu		Date Analyzed		
Injection Volume: 2.0	(uL)	Dilution Factor	 r: 1.0	
GPC Cleanup: (Y/N)	•	-		
GPC Cleanup. (T/N)	N PII.			
		CONCENTRATIO	N UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
444 44 4	his/2 Chlaraethyl)other		11	U
111-44-4	bis(2-Chloroethyl)ether		11	UJL
108-95-2	Phenol 2-Chlorophenol		11	U
95-57-8	1,3-Dichlorobenzene		11	Ü
541-73-1	1,4-Dichlorobenzene		11	UJL
106-46-7	1,2-Dichlorobenzene		11	U
95-50-1 100-51-6	Benzyl alcohol		11	Ū
108-60-1	2,2'-oxybis(1-Chloropro	nane)	11	Ū
95-48-7	2-Methylphenol	parie	11	Ū
67-72-1	Hexachloroethane		11	U
621-64-7	N-Nitroso-di-n-propylan	nine	11	Ū
106-44-5	4-Methylphenol	III)C	11	U
98-95-3	Nitrobenzene		11	Ū
78-59-1	Isophorone		11	Ū
88-75-5	2-Nitrophenol		11	U
105-67-9	2,4-Dimethylphenol		11	U
111-91-1	bis(2-Chloroethoxy)met	hane	11	U
120-83-2	2,4-Dichlorophenol		11	U
120-82-1	1,2,4-Trichlorobenzene		11	U
91-20-3	Naphthalene		11	U
106-47-8	4-Chloroaniline		11	U
87-68-3	Hexachlorobutadiene		11	U
59-50-7	4-Chloro-3-methylphen	ol	11	U
91-57-6	2-Methylnaphthalene		11	U
77-47-4	Hexachlorocyclopentad	liene	11	U
88-06-2	2,4,6-Trichlorophenol		11	U
95-95-4	2,4,5-Trichlorophenol		11	U
91-58-7	2-Chloronaphthalene		11	U
88-74-4	2-Nitroaniline		26	U
208-96-8	Acenaphthylene		11	U
131-11-3	Dimethylphthalate		11	U
606-20-2	2,6-Dinitrotoluene		11	U
83-32-9	Acenaphthene		11	U
99-09-2	3-Nitroaniline		26	<u></u> ₩ Rc
51-28-5	2,4-Dinitrophenol		26	U
132-64-9	Dibenzofuran		11	U

STL Newburgh is a part of Severn Trent Laboratories, Inc.

FORM LSV-1 CTDOHS PH-0554 EPA NY049 3/90 PA 68-378 M-NY049

11

121-14-2

2,4-Dinitrotoluene

NJDEP 73015

EPA SAMPLE NO.

Lab Name:	STL Newburgh	TILE ORG		Contract:			6MW-	13381302	
Lab Name.	OIL MEMBRIGI	L	.	Contract.	01012.01				-
Lab Code:	10142	Case No.:	,	_ SAS No	v.:	SD	G No.:	215067	.,

Lab Sample ID: 215067-007 Matrix: (soil/water) WATER Lab File ID: S28284.D Sample wt/vol: 950.0 (g/ml) ML LOW Date Received: 08/16/02 Level: (low/med) Date Extracted: 08/20/02 % Moisture: decanted:(Y/N) Ν

Date Analyzed: 08/28/02 Concentrated Extract Volume: 1000 (uL)

Dilution Factor: 1.0 Injection Volume: 2.0 (uL)

GPC Cleanup: (Y/N) pH:

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
100-02-7	4-Nitrophenol		26	UJL
86-73-7	Fluorene		11	U
7005-72-3	4-Chlorophenyl-phenyle	ther	11	U
84-66-2	Diethylphthalate		11	U
100-01-6	4-Nitroaniline		26	U
534-52-1	4,6-Dinitro-2-methylphei	nol	26	U
86-30-6	n-Nitrosodiphenylamine	(1)	11	U_
101-55-3	4-Bromophenyl-phenyle	ther	11	U
118-74-1	Hexachlorobenzene		11	U
87-86-5	Pentachlorophenol		26	Ų
85-01-8	Phenanthrene		11	U
120-12-7	Anthracene		11	U
84-74-2	Di-n-butylphthalate		11	U
206-44-0	Fluoranthene		11	U ·
129-00-0	Pyrene		11	U
85-68-7	Butylbenzylphthalate		11	U
91-94-1	3,3'-Dichlorobenzidine		21	U
56-55-3	Benzo(a)anthracene		11	U
218-01-9	Chrysene		11	U
117-81-7	bis(2-Ethylhexyl)phthala	ite	11	U
117-84-0	Di-n-octylphthalate		11	U
205-99-2	Benzo(b)fluoranthene		11	U
207-08-9	Benzo(k)fluoranthene		11	U
50-32-8	Benzo(a)pyrene		11	U
193-39-5	Indeno(1,2,3-cd)pyrene		11	U
62-75-9	N-Nitrosodimethylamine)	11	U
53-70-3	Dibenz(a,h)anthracene		11	U
191-24-2	Benzo(g,h,i)perylene		11	<u> </u>

3/90

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6MW-13381302

Lab Name:	STL Nev	wburgh		Contrac	t: <u>01012.0</u>		-1000	002
Lab Code:	10142	Ca	se No.:	SAS	No.:	_ SDG No.:	2150	67
Matrix: (soil/v	vater)	WATER	_	l	_ab Sample	ID: <u>215067</u>	²-007	
Sample wt/vo	ol:	950	(g/ml) ML	<u>. </u>	_ab File ID:	S28284	4.D	
Level: (low/n	ned)	LOW	_	I	Date Receiv	ed: <u>08/16/0</u>)2	
% Moisture:		dec	anted: (Y/N)	<u>N</u> [Date Extract	ted: <u>08/20/0</u>)2	
Concentrated	d Extract	Volume.	1000 (uL)	I	Date Analyz	ed: <u>08/28/0</u>)2	
Injection Volu	ıme: <u>2.0</u>) (uL)		· [Dilution Fact	tor: <u>1.0</u>		
GPC Cleanu	p: (Y/N)	N	pH:				•	
				CONCE	NTRATION	UNITS:		
Number TICs	s found:	1		(ug/L or	ug/Kg)	UG/L		
CAS NUME	BER	COMPOU	JND NAME		RT	EST. CON	IC.	Q
1.		C6H4Br3N	l isomer		16.20		5	J۳

EPA NY049

	Job Number: 215067	LABORATORY TE	EST RESUL	S .	Date: 10/03/2002	202	
CUSTOMER: Anep	CUSTOMER: Aneptek Corporation	PROJECT: STRAT	STRATTON ANGE SITE6		ATTN: Jeff [Donovah	
Customer Date Sam Time Sam Sample M	Customer Sample ID: 6MW-0381302 Date Sampled: 08/13/2002 Time Sampled: 16:30 Sample Matrix: Water		Laboratory Sample ID: Date Received	D: 215067-1 : 08/16/2002 : 10:30			, , , , , , , , , , , , , , , , , , ,
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT Q FLAGS	701 S	RL DILL	DILUTION UNITS	DT DATE	TECH
EPA 270.2	Selenium (Se)	3.4 Jm; B W	WNJG, Ja: 2.0	5.0 1	1/Bn	09/11/02	b ja
EPA 245.1	Mercury (Hg)	0.20	07.50	0.20	ng/L	08/22/02	sm.
EPA 200.7	Metals Analysis (ICP) Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba) Barium (Ga) Calcium (Ga) Chromium (Cr) Cobalt (Co) Cobalt (Co) Iron (Fe) Iron (Fe) Ison (Fe) Ison (Al	65.3 8 6.1 12.3 6.1 14.9 0.23 0.48 0.48 0.83 0.6420 0.83 0.75 0.0 17.0 17.0 17.0 17.0 17.0 17.8 0.0 18.0 17.8 0.0 18.0 17.8 0.0 17.8 0.0 18.0 17.8 0.0 17.8	31.1 5.3 2.6 0.66 0.23 0.23 0.83 0.83 0.83 1.9 1.9 1.9 3.7 3.7 3.7	200 60.0 10.0 10.0 5.0 5.0 5.0 5.0 60.0 10.0 10.0 10.0 500 10.0	7/5n 7/5n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6	09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02	mad mad mad mad mad mad mad mad mad mad
	* In Description = Dry Wgt.	Page 2					

aneison.	Jpb Number: 215065			1	, ,		Date:09/30/2002		· · ·
CUSTOMER: Ane	CUSTOMER: Aneptek Corporation	PR0JECT:	STRATTON /	STRATION ANGE SITE#6			ATTN: Jeff Donovan	Wan	
Custome Date Sa Time Sa Sample	Customer Sample ID: 6MW-0881402 Date Sampled: 08/14/2002 Time Sampled: 08:00 Sample Matrix: Mater		Labor Date Time	Laboratory Sample ID: Date Received Time Received	ID: 215065-1 : 08/16/2002 : 10:30				
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	101	RL	NOTINITION	UNITS	DT DATE	TECH
EPA 270.2	Selenium (Se)	2.4 Ju	8 W J.c.	2.0	5.0	1	ng/L	09/05/02	h jg
EPA 245.1	Mercury (Hg)	07.0		0.20	0.20	—	ng/L	08/21/02	[ms
200.7 200.7	Metals Analysis (ICP) Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba) Baryllium (Be) Calcium (Cd) Calcium (Cd) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Magnesium (M) Manganese (Mn) Mickel (Ni) Potassium (K) Silver (Ag) Sodium (Na) Thallium (Tl) Vanadium (V)	198 Je. 13.7 2.6 68.8 68.8 0.23 0.48 116000 2.5 2.5 41100 784 15.2 5030 Jp 1.6 UJric 92400 3.6 3.7	בם כ כ ככ ככמכמם	31.1 5.3 6.6 0.23 0.48 10.48 15.2 15.1 17.2 33.4 33.4 17.8	200 60.0 70.0 50.0 50.0 50.0 50.0 500 10.0 500 500 500 500		7/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1	09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02	Bad
	* In Description = Dry Wgt.	<u> </u>	Page 2						

RESULTS

TEST

LABORATORY

OTTER STORY	Job Number: 215065		-) 1	- 1 3 3 1			Date: 09/30/2002		
CUSTOMER: Ane	CUSTOMER: Aneptek Corporation	PR0JECT:	PROJECT: STRATTON ANGE SITE#6	SiTE#6			ATTN: Jeff Donovan	van	
Custome Date Sa Time Sa Sample	Customer Sample ID: 6MW-0981402 Date Sampled: 08/14/2002 Time Sampled: 08:30 Sample Matrix: Water		Laborato Date Rec Time Rec	Laboratory Sample ID: Date Received	215065-2 08/16/2002 10:30			·	
TEST METHOD	PARAMETER/TEST DESERTEDION	SAMPLE RESULT G	FLAGS	101	RL	DILUTION	TO STIMI	T DATE	HECH
EPA 270.2	Selenium (Se)	2.0 U		2.0	5.0	-	1/6n	09/05/02	hjg
EPA 245.1	Mercury (Hg)	0.20		0.20	0.20	~	.1/6n	08/21/02	Ems.
EPA 200.7	Metals Analysis (ICP)	1							· · · ·
٠.	Atuminum (At)	41		21.1 1.2	200		ug/L	09/12/02	Dan G
	Arsenic (As)	2.6 U		5.6	10.0		1/60 ng/L	09/12/02	mad m
	Beryllium (Be)	0.23		0.23	5.0		1/6n	09/12/02	mad
-	Cadmium (Cd)	0.48 U		0.48	5.0		ng/L	09/12/02	mad
	Catcium (Ca)	_		192	500		1/6n	09/12/02	mad
	Cobalt (Co)	2.5 U		2.5	20.0		1/gn	09/12/02	шас
	Copper (Cu)			6.9	22.0		1/gn	09/12/02	mad
	Lead (Pb)	2.9 U		2.9	2.0		1/6n	09/08/02	mad
	Magnesium (Mg)	29700		15.1	500	· .	ng/L	09/12/02	mad
	Manganese (Mn)	15.2		7. 7.	0.04		1/6/I	09/12/02	Hac Last
	Potassium (K)		'193	8.07	1000	2.000	ng/L	09/12/02	шас
	Silver (Ag)	1.6 UJm U	3	1.6	10.0		T/Bn	09/12/02	mad.
	Sodium (Na)			3.4	10.0		ng/r	09/12/02	Dag E
	Vanadium (V)	3.7		3.7	50.0		ng/L	09/12/02	mad
₀	Zinc (Zn)			17.8	20.0		7/6n	09/12/02	mad
2									
* 1 - 3 	* In Description = Dry Wgt.	Pa	Page 3						

RESULTS

TEST

LABORATORY

CUSTOMER: Aner	CUSTOMER: Aneptek Corporation	PRDJECT:	STRATION	STRATION ANGE SITE#6			ATTN: Jeff Dohovah	ovan	
Customer Date San Time San Sample M	Customer Sample ID: 6MW-1081402 Date Sampled: 08/14/2002 Time Sampled: 10:00 Sample Matrix: Water		Labori Date I Time B	Laboratory Sample ID: Date Received: Time Received	ID: 215065-3 : 08/16/2002 : 10:30				
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	TOT	RL	DILUTION	UNITS	DT DATE	TECH
EPA 270.2	Selenium (Se)	2.0	a	2.0	5.0	-	1/8n	09/02/05	hjg
EPA 245.1	Mercury (Hg)	0.20	5	0.20	0.20		1/6n	08/21/02	
FPA 200.7	Metals Analysis (ICP)	-:					*		
	Alumirum (Al)	1910		31.1	200 -	, ,	ng/L	09/12/02	mad
1 42	Antimony (SD) Arsenic (As)			2.5	10.0		7/6n	09/12/02	mad
er Land	Barium (Ba)		. eq :	0.66	200 5	· v	1/60	09/12/02	IIIad
	berytinal (be) Cadmium (Cd)	0.48		0.48	0.0		1/6n	09/12/02	mad
	Calcium (Ca)			192	500	£ £-	ug/L	09/12/02	шаа
	Cobalt (Co)		• ¬	2.5	50.0		ng/L	09/12/02	mad mad
	Copper (Cu)		<u> </u>	6.9	25.0		ug/L	09/12/02	щас
	Lead (Pb)			2.9	5.0		ng/r ng/r	09/08/02	mad
	Magnesium (Mg)	14200		15.1	500		ng/L	09/12/02	mad
	naigaicse (rii)			15.2	0.04		1/6n	09/12/02	mad
	Potassium (K)	2280 Jp	194 S	35.4	500		ng/L	09/12/02	mad
	Silver (Ag)	1.0 C.J.m 5880	z	33.4	10°0 200		7/6n	09/12/02	llad llad
	Thallium (TL)	9.	<u> </u>	3.6	10.0	_	1/Bn	09/12/02	шас
	Vanadium (V)	3.7 17.8		7.7	50.0		1/6n	09/12/02	Illad
			,) •	2	•	1 /6	20/15/05	9
in the state of th									
and the second of the second o	* In Description = Dry Wgt.	d	Page 4						

Date: 09/30/2002

RESULTS

TEST

LABORATORY

Job Number: 215065

		TECH	702 hjg	702 lms	702 mad 702 mad 702 mad 702 mad 702 mad 702 mad 702 mad 702 mad 702 mad 702 mad 703 mad 703 mad 704 mad 705 mad 706 mad 707 mad 708 mad 709 mad 709 mad 709 mad 709 mad 709 mad 709 mad 709 mad	
novan		DT DATE	09/02/05	08/22/02	09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02	
ATTM: Jeff Donovan		UNITS	T/6n	1/6n	7/6n 7/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1	
		NOTENTEON	-	-	66666666666666666666666666666666666666	
	10: 215065-4 : 08/16/2002 : 10:30	RL	5.0	0.20	200 66.0 10.0 500 10.0 500 50.0 500 10.0 10.0	
PROJECT: STRATTON ANGE SITE#6	Laboratory Sample ID: Date Received	Tgi	2.0	0.20	31.1 2.5 2.6 0.66 0.23 0.83 0.83 2.5 1.5 1.5 3.4 3.4 1.6 3.7 1.8	
STRATTON	Lab Dat Tim	Q FLAGS	p≰ n			Page 2
PROJECT:		SAMPLE RESULT	2.0 UJa	0.26 JQ	37800 5.3 26.8 674 674 1.5 1.5 57.6 57.6 57.6 50.1 68400 5150 16700 JP 1.6 UJm IL 22200 66.7	
		SCRIPTION				Wgt.
CUSTOMER: Aneptek Corporation	Customer Sample ID: 6MW-1181402 Date Sampled: 08/14/2002 Time Sampled: 09:30 Sample Matrix: Water	PARAMETER/TEST DESCRIPTION	Selenium (Se)	Mercury (Hg)	Metals Analysis (ICP) Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba) Baryllium (Be) Cadmium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Magnesium (Mg) Manganese (Mn) Nickel (Ni) Nickel (Ni) Silver (Ag) Sodium (Na) Thallium (Tl) Vanadium (V) Zinc (Zn)	* In Description = Dry Wgt.
CUSTOMER: Anept	Customer Date Sam Time Sam Sample Me	TEST METHOD	EPA 270.2	EPA 245.1	EPA 200.7	

Date: 09/30/2002

RESULTS

TEST

LABORATORY

Job Number: 215065

			TECH	hjg	SE.	
	ran		r DATE	09/02/05	08/22/02	09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02
Date:09/30/2002	ATTN: Jeff Donovan		DI DI DI	ng/L	7/6n	7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n
			DILUTION		-	
vs ⊢		D: 215065-5 .: 08/16/2002 .: 10:30	RL	5.0	0.20	200 60.0 10.0 200 5.0 500 70.0 500 10.0 500 500 500 500 500
r Results	PROJECT: STRATION ANGE SITE#6	Laboratory Sample ID: Date Received: Time Received:	ĪĞĪ	2.0	0.20	31.1 5.2 0.26 0.23 0.23 0.83 0.83 15.2 15.2 3.4 17.2 17.8
	STRATTON	Labor Date Time	FLAGS			ы ж
×	ECT:		ø	ם	ב	20 10 10 10 10 10 10 10 10 10 10 10 10 10
LABORATORY	PRO.		SAMPLE RESULT	2.0	0.20	493 5.3 2.6 72.8 0.23 0.48 152000 1.2 Ja 972 6.9 972 2.9 3070 3070 15.2 3080 Jp. 15.2 3.6 3.7
Job Number: 215065	sk Corporation	Customer Sample ID: 6MW-1281402 Date Sampled: 08/14/2002 Time Sampled: 09:45 Sample Matrix: Water	PARAMETER/TEST DESCRIPTION	Selenium (Se)	Mercury (Hg)	Metals Analysis (ICP) Aluminum (Al) Antimony (Sb) Arsenic (As) Asseric (As) Barium (Ba) Beryllium (Be) Calcium (Cd) Calcium (Co) Copper (Cu) Iron (Fe) Iron (Fe) Iron (Fe) Iron (Fe) Salver (Ni) Nickel (Ni) Potassium (K) Silver (Ag) Sodium (Na) Thallium (Tl) Vanadium (V) Zinc (Zn)
Of Of	CUSTOMER: Aneptek Corporation	Customer S Date Sampl Time Sampl Sample Mat	TEST METHOD	EPA 270.2 Si	EPA 245.1 M	EPA 200.7

RESULTS

TEST

LABORATORY

7 0000

* In Description = Dry Wgt.

		· = 10	ТЕСН	þjg	SIII)	
	n		DATE T	09/11/02 h	08/22/02	09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02
Date:10/03/2002	AIIN: Jeff Donovan		UNITS DT	1/Bn	1/6n	1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n
			DILUTION	1		
s.		215067-2 08/16/2002 10:30	RL	5.0	0.20	200 60.0 10.0 200 5.0 10.0 500 10.0 500 25.0 500 10.0 50.0 20.0
RESULT	STRATION ANGE SITE6	Laboratory Sample ID: 215067-2 Date Received: 08/16/200 Time Received: 10:30	TQI	2.0	0.20	31.1 5.3 6.66 0.66 0.23 0.83 6.6 6.6 7.1 15.2 3.3.4 17.8
T E S T	TRATION A	Labor Date Time	FLAGS	35		#L T 74
BORATORY	PROJECT: S		SAMPLE RESULT Q	2.0 UJ w U	0.20 U	479 JF. 5.5 Jq. B 2.6 161 161 0.23 U 0.64 Jq. B 132000 35900 1560 1560 1560 1560 1560 1560 1560 15
LAB						
Job Number: 215067	k Corporation	Customer Sample ID: 6MW-1381302 Date Sampled: 08/13/2002 Time Sampled: 15:10 Sample Matrix: Water	PARAMETER/TEST DESCRIPTION	Selenium (Se)	Mercury (Hg)	Metals Analysis (ICP) Aluminum (Al) Arluminum (Al) Arramic (Sb) Arsenic (As) Barium (Ba) Beryllium (Be) Cadmium (Cd) Calcium (Cd) Cobalt (Co) Copper (Cu) Iron (Fe) Iron (Fe) Iron (Fe) Anaganese (Mn) Magnesium (Mg) Manganese (Mn) Nickel (Ni) Potassium (K) Silver (Ag) Sodium (Na) Thallium (Tl) Vanadium (V) Zinc (Zn)
, or	CUSTOMER: Aneptek Corporation	Customer Sample ID: Date Sampled: Time Sampled: Sample Matrix:	TEST METHOD	EPA 270.2 Se	EPA 245.1 Me	2

Seal	ER: Anepi	COSTONER: Michiek, corporation	PROJECT:		STRATTON ANGE SITE6			ATTN: Jetf Donovan	ovan	
Selentium (Se)	tomer e Samp e Samp	** ** ** **		Lak Dat Tin	oratory Sample Doratory Sample Doratory Seceived					
Selenium (Se)	THOO	PARAMETER/TEST DESCRIPTION	E RESULT		TQ1	RL	DILUTION	DMITS	DT DATE	TECH
Metals Analysis (ICP) Aluminum (Al) Aluminum (Al) Arsenic (As) Arsenic (As) Arsenic (As) Barium (Ba) Barium (Ba) Barium (Ca) Calcium (Ca) Calcium (Ca) Calcium (Ca) Chromium (Cr) Cobalt (Co) Cobalt (2.0	Selenium (Se)			2.0	5.0	1	1/6n	09/11/02	hjg
Metals Analysis (1CP) Aluminum (Al) Artimony (Sb) Arsenic (As) Barium (Ba) Cadeim (Ca) Cad		Mercury (Hg)			0.20	0.20		ug/l	08/22/02	[ms
17.8		Metals Analysis (1CP) Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba) Barylium (Be) Cadmium (Cd) Calcium (Ca) Chromium (Cr) Coper (Cu) Iron (Fe) Lead (Pb) Magnesium (Mg) Magnesium (K) Silver (Ag) Sodium (Na) Thallium (Tl) Vanadium (V)	o E	** *	31.1 5.3 2.6 0.66 0.23 0.48 192 6.9 6.9 6.9 1.5 1.9 1.6 33.4 33.4 33.4	200 60.0 70.0 5.0 5.0 50.0 50.0 50.0 50.0 50.	*	1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n	09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02	

Date: 10/03/2002

RESULTS

TEST

LABORATORY

Job Number: 215067

* In Description = Dry Wgt.

Page 4

	Job Number: 215067	ABGRATORY	н В	T RESUL	ω ⊢-		Date:10/03/2002		
CUSTOMER: Ane	CUSTOMER: Ameptek Corporation	PROJECT:	STRATTON	ANGB SITE6			ATIN: Jeff Donovan	lovan	
Custome Date Sa Time Sa Sample P	Customer Sample ID: 6MW-1581302 Date Sampled: 08/13/2002 Time Sampled: 15:45 Sample Matrix: Water		Labo Dato Time	Laboratory Sample ID: Date Received: Time Received	ID: 215067-4 : 08/16/2002 : 10:30				·
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT (Q FLAGS	701	RL	DILUTION	UNITS	DT DATE	TECH
EPA 270.2	Selenium (Se)	2.0 UJm	35.	2.0	5.0	-	ng/L	09/11/02	hjg
EPA 245.1	Mercury (Hg)	07.50		0.20	0.20	-	1/6n	08/22/02	SIII)
EPA 200.7	Metals Analysis (ICP) Aluminum (Al) Antimony (Sb) Ansenic (As) Barium (Ba) Barium (Ba) Cadrium (Cd) Calcium (Ca) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Magnaese (Mn) Nickel (Ni) Potassium (K) Silver (Ag) Sodium (Na) Thallium (Tl) Vanadium (V) Zinc (Zn)	179 2.3 2.4 84.8 Jc. 10 0.23 0.48 118000 3.5 Jo. 10 1210 15.2 9340 Jp. 16 17.8 17.8		21.1 2.5 2.6 0.23 0.23 0.83 0.83 2.75 2.75 2.75 2.75 2.75 2.75 2.75 2.75	200 60.0 10.0 200 50.0 50.0 50.0 50.0 10.0 10.0 10.0 20.0 20.0	2.000	7/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1	09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02	
	* In Description = Dry Wgt.	ď	Page 5						

			TECH	þjg	SEI]		
	an		DATE	09/11/02	08/22/02	09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02	
Date:10/03/2002	ATTN: Jeff Donovan		TO STENO	T/Bn	1/6n	7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n	
			DILUTION				
S		ID: 215067-5 : 08/16/2002 : 10:30	RL [1	5.0	0.20	200 200 200 200 500 500 500 500 500 500	
T RESUL	ANGB SITE6	Laboratory Sample I Date Received Time Received	1DF	2.0	07.0	1.12 2.00 2.00 2.00 2.00 2.00 2.00 2.00	
П	STRATION	Labo Date Time	FLAGS	盆		134 ME. *	9 e 6
ABORATORY	PROJECT: S		SAMPLE RESULT G	2.0 UJm U	0.20	1320 20.8 20.8 23.7 JC 0.48 92700 0.83 11.6 6.9 2620 2520 4510 20.5 Jo 4510 20.5 Jo 4510 4510 20.5 Jo 1.6 UT _m U 1.6 UT _m U 1.6 UT _m U	Page
L A Job Number: 215067	CUSTOMER: Aneptek Corporation	Customer Sample ID: 6MW-1681302 Date Sampled: 08/13/2002 Time Sampled: 16:00 Sample Matrix: Water	PARAMETER/JEST DESCRIPTION	Selenium (Se)	Mercury (Hg)	Metals Analysis (ICP) Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba) Barium (Ba) Baryllium (Cd) Calcium (Cd) Calcium (Cd) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Magnesium (Mg) Magnesium (Mg) Magnesium (K) Silver (Ag) Sodium (Na) Thallium (Tl) Vanadium (V) Zinc (Zn)	* In Description = Dry Wgt.
	CUSTOMER: Ane	Custome Date Sa Time Sa Sample P	TEST METHOD	EPA 270.2	EPA 245,1	EPA 200.7	

	Job Number: 215067	LABORATORY	S Ш	T RESULT	S		2 🔯		
TOMER: Ane	CUSTOMER: Aneptek Corporation	PROJECT:	STRATION	PROJECT: STRATTON ANGB SITES			ATTN: Jeff Donovan	ovan	
Custome Date Sa Time Sa Sample	Customer Sample ID: 6MW-1781302 Date Sampled: 08/13/2002 Time Sampled: 16:15 Sample Matrix: Water		Lak Dat Tin	Laboratory Sample ID: Date Received: Time Received:	3: 215067-6 3: 08/16/2002 1: 10:30				
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT (Q FLAGS	IDL	RL	DILUTION	UNITS	DT DATE	TECH
EPA 270.2	Selenium (Se)	2.0 UJm I	78.	2.0	5.0		ng/L	09/11/02	hjg
EPA 245.1	Mercury (Hg)	0.20	D D	0.20	0.20	-	T/Bn	08/22/02	E I
EPA 200.7	Metals Analysis (ICP)							;	
	Aluminum (Al)	155	00, čs	31.1 5.3	200 40 0		1/6n	09/12/02	mad mad
	Arsenic (As)	· 4		2.6	10.0	- - ,	ug/L	09/12/02	mad
	Barium (Ba)			0.66	200		1/6n	09/12/02	E E
	Cadmium (Cd)	184))	87.0	0.0		ng/L	09/12/02	Tage III
	Calcium (Ca)			192	500		ng/L	09/12/02	mad
	Chromium (cr) Cobalt (Co)	3,3 70) BQ	2.5	50.0	- ,	ng/r	09/12/02	
	Copper (Cu)	-		6.9	25.0	<u>-</u>	T/6n	09/12/02	mad
	Iron (Fe)	202		9.0	60.0 7.0		ug/L	09/12/02	ll ad
	Magnesium (Mg)	Ď,	· ·	15.1	200		7/6n	09/12/02	Bad
	Manganese (Mn)			2.1 0.1	0.0		1/gn	09/12/02	D TO
	Nickel (NI) Potassium (K)	9630 Jp		70.8	1000	2.000	1/6n	09/12/02	mad
	Silver (Ag)	1.6 UTmlu	35	1.6	10.0	τ.	1/8n	09/12/02	mad
	Sodium (Na) Thallium (Tl)			3.6	10.0	- ,-	1/6n	09/12/02	
	Vanadium (V)	33.7		3.7	50.0	.	ng/L	09/12/02	mad
	Zinc (Zn)		*	. 8	20.0	-	7/6n	09/12/02	mad
	* In Description = Dry Wgt.	4	Page 7						_

		TECH	02 hjg	.02 lms	0.02 mad 0.0	
GEVOOL		DI DATE	09/05/05	08/22/02	09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02	
ATIN: Jeff Donovah		UNITS	1/Bn	ng/L	7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n	
		DILUTION	-	-		
	ID: 215065-6 : 08/16/2002 : 10:30	RL	5.0	0.20	200 60.0 200 5.0 50.0 50.0 50.0 10.0 10.0 50.0 50.	-
PROJECT: STRATTON ANGE STIE#6	Laboratory Sample ID: Date Received	TŒ	2.0	0.20	31.1 2.6 0.66 0.23 0.83 0.83 2.5 70.8 3.4 3.4 3.7	
STRATION	Labo Date Tîme	q FLAGS	n			Page 7
PROJECT:		SAMPLE RESULT	2.0	0.20	61.0 Je 5.3 2.6 171 0.23 0.48 92300 0.83 3.4 Ja 8.1 Ja 233 2.9 24900 5290 15.2 11000 Jp 16.0Jm 7900 3.6 3.7	d
		CRIPTION				at.
Corporation	Customer Sample ID: 6MW-1881402 Date Sampled: 08/14/2002 Time Sampled: 07:45 Sample Matrix: Water	PARAMETER/TEST DESCRIPTION	Selenium (Se)	Mercury (Hg)	Metals Analysis (ICP) Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba) Barium (Ba) Cachnium (Cd) Cachium (Cd) Cobelt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Magnesium (M) Magnesium (K) Silver (Ag) Sodium (Na) Thallium (Tl) Vanadium (V) Zinc (Zn)	* In Description = Dry Wgt.
CUSTOMER: Aneptek Corporation	Customer Sample ID: Date Sampled Time Sampled: Sample Matrix:	TEST METHOD	EPA 270.2 Se	EPA 245.1 Me	EPA 200.7 Me An An An An An An An An An An An An An	

Date: 09/30/2002

RESULTS

TEST

LABORATORY

Job Number: 215065

	9065	- A B C A A - C A	ב א ב א ב א ב א ב א ב א ב א ב א ב א ב א	n -		Date:09/30/2002		
Custom Custom Date S Time S Sample	Customer Sample ID: 6MW-1981402 Date Sampled: 08/14/2002 Time Sampled: Water	PROJECT: STRA	PROJECT: STRAITON ANGE SITE#6 Laboratory Sample ID: Date Received Time Received	10: 215065-7 : 08/16/2002 : 10:30		ATIN: Jeff Donovan	E	
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT Q FLAGS	GS IDL	RL	DILUTION	UNITS DI	DATE	TECH
EPA 270.2	Selenium (Se)	2.0 U	2.0	5.0		1/6n	09/05/02	h jg
EPA 245.1	Mercury (Hg)	0.20	0.20	0.20		ug/l	08/22/02	S∭}
EPA 200.7	Metals Analysis (ICP) Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba) Barium (Ba) Barium (Cd) Calcium (Cd) Calcium (Co) Copper (Cu) Iron (Fe) Lead (Pb) Magnesium (Mg) Manganese (Mn) Nickel (Ni) Potassium (K) Silver (Ag) Sodium (Na) Thallium (IL) Vanadium (V)	1660 5.3 494 494 10.23 10	31.1 5.3 0.66 0.23 0.83 0.83 2.5 70.8 33.4 33.4 3.7	200 60.0 70.0 70.0 70.0 70.0 70.0 70.0 70		7/5n 7/5n 7/5n 7/5n 7/5n 7/5n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6	09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02	mad mad mad mad mad mad mad mad mad mad
- !	* In Description = Dry Wgt.	Page 8						

RESULTS

TEST

LABORATORY

			TECH	702 hjg	702 tms	702 mad 702 mad 703 mad 704 mad 705 mad 706 mad 707 mad 707 mad 708 mad 709 mad 709 mad 700 ma	
2	novan		DT DATE	09/05/02	08/22/05	09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02	
Date:09/30/2002	ATTN: Jeff Donovan		DNITS	T/6n	1/Bn	7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n	, description
			DILUTION	-			
S L		ID: 215065-8 : 08/16/2002 : 10:30	RL	0*5	0.20	200 60.0 10.0 5.0 50.0 50.0 50.0 10.0 10.0 50.0 5	
ST RESUL	PROJECT: STRATTON ANGE SITE#6	Laboratory Sample ID: Date Received: Time Received:	TOI	2.0	0.20	31.1 2.6 0.66 0.23 0.83 0.83 2.5 7.2 7.2 3.1.6 3.1.6	
T E 8	STRATTON	Lak Dat Tin	G FLAGS				Page 9
ABORATORY	PR0JECT:		SAMPLE RESULT C	2.0	0.20 U	629 JF. 5.7 JQ # 5.2 JQ # 204 JC. 0.23 U 0.83 U 0.83 U 0.83 U 1160 JF. 5.1 # 5.1 U 72900 1500 1	Pa
7							
		0.	PARAMETER/TEST DESCRIPTION				Dry Wgt.
Job Number: 215065	CUSTOMER: Aneptek Corporation	Customer Sample ID: 6MW-2081402 Date Sampled: 08/14/2002 Time Sampled: 08:45 Sample Matrix: Water	PARAMETER/TE	Selenium (Se)	Mercury (Hg)	Metals Analysis (ICP) Aluminum (Al) Artimony (Sb) Arsenic (As) Barium (Ba) Beryllium (Be) Cadmium (Cd) Calcium (Ca) Chromium (Cr) Cobalt (CO) Coper (Cu) Iron (Fe) Lead (Pb) Magnesium (Mg) Manganese (Mn) Nickel (Ni) Potassium (K) Silver (Ag) Sodium (Na) Thallium (Tl) Zinc (Zn)	* In Description = Dry Wgt.
	CUSTOMER: Anepi	Customer Date Sam Time Sam Sample Me	TEST METHOD	EPA 270.2	EPA 245.1	EPA 200.7	

	Job Number: 215065	LABORATORY	TEST RESUL	s 1		Date:09/30/2002		
CUSTOMER: Ane	CUSTOWER: Aneptek Corporation	PROJECT: STRA	STRATTON ANGE SITE#6			ATIN: Jeff Donovan	ovan	
Custome Date Sa Time Sa Sample P	Custoner Sample ID: 6MW-2181402 Date Sampled: 08/14/2002 Time Sampled: 09:15 Sample Matrix: Water		Laboratory Sample ID: Date Received	D; 215065-9 .: 08/16/2002 .: 10:30				
TEST METHOD	PARAMETER/TEST DESERIPTION	SAMPLE RESULT G FLAGS	GS IDL	RL	DILUTION	STIM!	DI PATE	i L
EPA 270.2	Selenium (Se)	2.6 Ja. 8 1	W.J.c. 2.0	5.0	-		8	hia
EPA 245.1	Mercury (Hg)	0.20	0.20	0.20	-	7/6n	08/22/02	SE SE
EPA 200.7	Metals Analysis (ICP) Aluminum (Al) Antimony (Sb) Artimony (Sb) Arsenic (As) Barium (Ba) Beryllium (Be) Cadmium (Cr) Calcium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Nickel (Ni) Potassium (K) Silver (Ag) Sodium (Na) Thallium (Tl) Vanadium (V)	3540 5.3 2.6 151 Tc 0.23 0.48 123000 4.3 8 6.57 6.37 6.57 15.2 15.2 16.57 16.5	31.1 2.6 2.6 0.66 0.83 0.83 15.2 35.4 33.4 33.4 17.8	200 200 200 500 500 500 500 500 500 500		7/6n 7/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1	09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02	Mad Mad
	* In Description = Dry Wgt.	Page 10	0					

CUSTOMER: ANG					6666				
Customer Date San Time San Sample M	Customer Sample 1D: 6MW-13381302 Date Sampled: 08/13/2002 Time Sampled: 15:15 Sample Matrix: Water		Labo Date Time	Laboratory Sample Date Received	1D: 215067-7 08/16/2002 10:30		-		
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT Q	FLAGS	IDE	RL	DILUTION	DILLE	DT DATE	TECH
EPA 270.2	Selenium (Se)	2.0 tJm, U	¥ W	2.0	5.0	-	1/Bn	09/11/02	hjg
EPA 245.1	Mercury (Hg)	0.20		0.20	0.20		1/6n	08/22/02	E .
EPA 200.7	Metals Analysis (ICP) Aluminum (Al) Antimoy (Sb) Arsenic (As) Barium (Ba) Barium (Cd) Cadmium (Cd) Calcium (Cc) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Magnesium (Mg) Magnesium (Mg) Manganese (Mn) Nickel (Ni) Potassium (K) Silver (Ag) Sodium (Na) Thallium (Tl) Vanadium (V)	1140 JF. 6.9 Jg. B 3.1 Jg. B 170 0.23 0.23 0.85 Jg. B 123000 3.6 Jg. B 1830 JF. 2.9 VJg. U 1850 1460 1460 1460 1460 1460 15.2 0 23900 3.6 0 23900 3.6 0 17.8	TSL 495 44	21.2 2.6 2.0 2.0 2.0 2.0 2.3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	200 60.0 10.0 200 500 500 500 500 10.0 500 500 500 500		7/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1	09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02	mad mad mad mad mad mad mad mad mad mad
	* In Description = Dry Wgt.	Pa	Page 8						

Date:10/03/2002

RESULTS

TEST

LABORATORY

Job Number: 215067

	Job Number: 215065	ABORATORY TE	ST RESUL	1 S		Date:09/30/2002		
CUSTOMER: Ane	CUSTOMER: Aneptek Corporation	PROJECT: STRATTO	STRATION ANGE SITE#6			ATIN: Jeff Donovan	ovan	
Custome Date Se Time Se Sample	Customer Sample ID: 6MW-20181402 Date Sampled: 08/14/2002 Time Sampled: 09:00 Sample Matrix: Water		Laboratory Sample ID: Date Received	D: 215065-10 : 08/16/2002 : 10:30				
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	IDI	RL	DILUTION	G STINU	DT DATE	TECH
EPA 270.2	Selenium (Se)	2.2 Jo. B WJQ	2.0	5.0	1	T/Bn	8	hjg
EPA 245.1	Mercury (Hg)	0.20	0.20	0.20	ç-	ng/L	08/22/02	t ms
EPA 200.7	Metals Analysis (ICP) Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba) Barium (Ba) Barytlium (Ba) Caclium (Ca) Caclium (Ca) Cobalt (Co) Copper (Cu) Iroper (Cu) Iroper (Ni) Magnesium (Mg) Manganese (Mn) Nickel (Ni) Potassium (K) Silver (Ag) Sodium (Na) Irhallium (IL) Vanadium (V) Zinc (Zn)	1640 JF 5.3 4.5 JQ B 217 JC 0.23 0.48 0.48 0.48 0.48 0.48 0.72 JQ B 3470 JF 3.3 JG B 15.2 1450 1450 1450 1450 1450 160 JQ B 3550 JQ B 150 JQ B 160 JQ B 170 JP B 170 JQ B 1	31.1 2.6 0.66 0.63 0.83 0.83 1.5.7 70.8 3.6 3.7 17.8	200 60.0 10.0 5.0 50.0 50.0 50.0 50.0 10.0 10	200000000000000000000000000000000000000	7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n	09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02 09/12/02	Mad
-	* In Description = Dry Wgt.	Page 11						

SOIL SAMPLING ANALYTICAL RESULTS JUNE, 2002

COMPOUND

CAS NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB-17-61402	5-	6FT
		-

Q

Lab Name:	STL Ne	wburgh	Contract: 01012.01	
Lab Code:	10142	Case No.:	SAS No.: S	DG No.: 212860
Matrix: (soil/w	/ater)	SOIL	Lab Sample ID:	212860-023
Sample wt/vo	i:	5.0 (g/ml) G	Lab File ID:	W7793.D
Level: (low/m	ned)	LOW	Date Received:	06/18/02
% Moisture: n	ot dec.	10.4	Date Analyzed:	06/21/02
GC Column:	DB-624	ID: <u>0.53</u> (mm)	Dilution Factor:	1.0
Soil Extract V	'olume:	(uL)	Soil Aliquot Volu	me: (uL)

CONCENTRATION UNITS:

UG/KG

(ug/L or ug/Kg)

	(ag/2 of ag/rtg)	00/10	
75-71-8	Dichlorodifluoromethane	1.1	UJL
74-87-3	Chloromethane	1.4	Jo
74-83-9	Bromomethane	1.1	U
75-01-4	Vinyl Chloride	1.1	Ū
75-00-3	Chloroethane	1.1	U
75-69-4	Trichlorofluoromethane	1.1	U
75-09-2	Methylene Chloride	1.1	U
75-35-4	1,1-Dichloroethene	1.1	U
75-34-4	1,1-Dichloroethane	1.1	U
590-20-7	2,2-Dichloropropane	1.1	U
156-60-5	trans-1,2-Dichloroethylene	0.9	Ja
540-59-0	cis-1,2-Dichloroethene	2.7	Jo
67-66-3	► Chloroform	1.1	U
563-58-6	1,1-Dichloropropene	1.1	Ų
107-06-2	1,2-Dichloroethane	1.1	U
74-97-5	Bromochloromethane	1.1	U
71-55-6	1,1,1-Trichloroethane	1.1	U
56-23-5	Carbon Tetrachloride	1.1	C
74-95-3	Dibromomethane	1.1	U
75-27-4	Bromodichloromethane	1.1	U
78-87-5	1,2-Dichloropropane	1.1	U
10061-01-5	cis-1,3-Dichloropropene	1.1	Ü
79-01-6	Trichloroethene	5.0	Jo
71-43-2	Benzene	1.1	U
142-28-9	1,3-Dichloropropane	1.1	U
124-48-1	Dibromochloromethane	1.1	U
10061-02-6	trans-1,3-Dichloropropene	1.1	Ü
79-00-5	1,1,2-Trichloroethane	1.1	U
106-93-4	1,2-Dibromoethane	1.1	U
75-25-2	Bromoform	1.1	U
127-18-4	Tetrachloroethene	2.1	Jφ
630-20-6	1,1,1,2-Tetrachloroethane	1.1	U
108-88-3	Toluene	1.3	Ja
108-90-7	Chlorobenzene	- 1.1	Ü
100-41-4	Ethylbenzene	1.1	U
100-42-5	Styrene	1.1	U
108-38-3	m,p-Xylene	1.1	U
95-47-6	o-Xylene	1.1	U
96-18-4	1,2,3-Trichloropropane STL Newborgh is a part of Severn Trent Lat		Ū

3/90 M-NY049 STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

PA 68-378

FΡΔ	SAMPLE	: NO
L., 1	OWINI FF	. 140

0=1
(

Lab Name:	STL Ne	wburgh	Contract: 01012.01	SB-17-61402	5-65
Lab Code:	10142	Case No.:	SAS No.: SI	OG No.: 212860	
Matrix: (soil/wa	ater)	SOIL	Lab Sample ID:	212860-023	
Sample wt/vol		5.0 (g/ml) G	Lab File ID:	W7793.D	
Level: (low/me	ed)	LOW	Date Received:	06/18/02	**
% Moisture: no	ot dec.	10.4	Date Analyzed:	06/21/02	
GC Column: E	DB-624	ID: <u>0.53</u> (mm)	Dilution Factor:	1.0	
Soil Extract Vo	olume:	(uL)	Soil Aliquot Volur	me:	(uL)
CAS NO.			ONCENTRATION UNITS: g/L or ug/Kg) UG/KG	Q	

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG		Q
98-82-8	Isopropylbenzene		35	
108-86-1	Bromobenzene		1.1	U
103-65-1	n-Propylbenzene		29	
79-34-5	1,1,2,2-Tetrachloroethane		1.1	U
95-49-8	2-Chlorotoluene		1.1	U
106-43-4	4-Chlorotoluene		1.1	U
108-67-8	1,3,5-Trimethylbenzene		8.0	
98-06-6	tert-Butylbenzene		1.1	U
95-63-6	1,2,4-Trimethylbenzene		12	
135-98-8	sec-Butylbenzene		1.1	U
541-73-1	1,3-Dichlorobenzene		1.1	U
99-87-6	4-Isopropyltoluene	180	-140	E-
106-46-7	1,4-Dichlorobenzene		1.1	U
95-50-1	1,2-Dichlorobenzene		6.6	
104-51-8	n-Butylbenzene	_	1.1	U
96-12-8	1,2-Dibromo-3-chloropropane		1.1	U
87-68-3	Hexachlorobutadiene		1.1	U
120-82-1	1,2,4-Trichlorobenzene		1.1	U
> 91-20-3	Naphthalene		1.6	Ja
87-61-6	1,2,3-Trichlorobenzene		1.1	U,

PA 68-378

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE	NO.	
SB-17-61402	5-	دے ہ

						ISB-17-61402	5-61
Lab Name:	STL Nev	wburgh		Contract:	01012.01		اھ ⁻ ت
Lab Code:	10142	<u>.</u>	Case No.:	SAS N	o.: ;	SDG No.: 21286	0
Matrix: (soil/v	vater)	SOIL		La	b Sample ID	212860-023	
Sample wt/vo	ol:	5.0	(g/ml) <u>G</u>	La	b File ID:	W7793.D	_
Level: (low/n	ned)	LOW		Da	ate Received:	: 06/18/02	_
% Moisture: ı	not dec.	10.4		Da	ate Analyzed:	06/21/02	 -
GC Column:	DB-624	ID:	<u>0.53</u> (mm)	Di	lution Factor:	1.0	_
Soil Extract \	/olume:		(uL)	Sc	oil Aliquot Vol	ume:	_ (uL)
Number TICs	s found:	19		CONCENTRA (ug/L or ug/Kg			

CAS NO.	COMPOUND NAME	RT	EST. CONC.	Q
1. 67-64-1	Acetone	5.32	38	
2. 78-93-3	2-Butanone	9.52	5	
3. 000111-84-2	Nonane	19.74	1200	JNT
4.	C19H18 isomer	20.35	750	JT
5.	C10H22 isomer	20.90	620	ا ل
6.	C10H22 isomer	21.86	1800	J
7.	Unknown CnH2n+2	22.11	1200	J
8. 622-96-8	p-Ethyltoluene	22.64	34	
9. 000589-90-2	Cyclohexane, 1,4-dimethyl-	22.78	530	JNT
10.	C10H22 isomer	22.99	3500	JT
11.	ethyl-methyl benzene isomer	23.30	690	JT
12.	Unknown CnH2n+2	24.07	1200	JT
13. 013151-35-4	Decane, 5-methyl-	24.68	540	JN⊤
14.	Unknown CnH2n	25.08	780	J_T
15.	Unknown CnH2n+2	25.86	1900	JΨ
16.	Methyl (1-methylethyl)benzene is	26.18	800	J _T
17.	Unknown	26.69	720	JT
18.	Tricyclo[3.3.1.13,7]decane isomer	26.90	620	J _T
19. 527-53-7	1,2,4,5-Tetramethylbenzene	27.30	340	

EPA NY049

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB-18-61402	2-	451

Lab Name:	STL Nev	wburgh	· · · · · · · · · · · · · · · · · · ·	Contract: 01012.01		
Lab Code:	10142	Ca	se No.:	SAS No.:	SDG No.: <u>212860</u>	<u></u>
Matrix: (soil/w	rater)	SOIL	_	Lab Sample ID	212860-021	·
Sample wt/vo	l:	5.0	(g/ml) G	Lab File ID:	W7786.D	
Level: (low/m	red)	LOW	_	Date Received	: 06/18/02	
% Moisture: n	ot dec.	18.8	<u> </u>	Date Analyzed:	06/21/02	
GC Column:	DB-624	ID: <u>0.</u>	53 (mm)	Dilution Factor:	1.0	
Soil Extract V	olume:		_ (uL)	Soil Aliquot Vol	ume:	(uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
75-71-8	Dichlorodifluoror	methane	1.2	U
74-87-3	Chloromethane		1.2	Ū
74-83-9	Bromomethane		1.2	U
75-01-4	Vinyl Chloride	· .	1.2	U
75-00-3	Chloroethane		1.2	U
75-69-4	Trichlorofluorom	ethane	1.2	U
75-09-2	Methylene Chlor	ide	1.2	U
75-35-4	1,1-Dichloroethe	ne	1.2	U
75-34-4	1,1-Dichloroetha	ine	1.2	U
590-20-7	2,2-Dichloroprop	ane	1.2	U
156-60-5	trans-1,2-Dichlor	roethylene	1.2	U
540-59-0	cis-1,2-Dichloroe	ethene	1.2	U
67-66-3	Chloroform		1.2	. U
563-58-6	1,1-Dichloroprop	ene	1.2	U
107-06-2	1,2-Dichloroetha	ine	1.2	U
74-97-5	Bromochloromet	thane	1.2	U
71-55-6	1,1,1-Trichloroet	hane	1.2	U
56-23-5	Carbon Tetrachi	oride	1.2	U
74-95-3	Dibromomethan	е	1.2	U
75-27-4	Bromodichlorom	ethane	1.2	U
78-87-5	1,2-Dichloroprop	ane	1.2	U
10061-01-5	cis-1,3-Dichloror		1.2	U
79-01-6	Trichloroethene		1.2	U
71-43-2	Benzene		1.2	U
142-28-9	1,3-Dichloroprop	ane	1.2	U
124-48-1	Dibromochlorom	ethane	1.2	U
10061-02-6	trans-1,3-Dichlor	ropropene	1.2	U
79-00-5	1,1,2-Trichloroet		1.2	U
106-93-4	1,2-Dibromoetha	ine	1.2	U
75-25-2	Bromoform		1.2	U
127-18-4	Tetrachloroether	ne	1.2	U
630-20-6	1,1,1,2-Tetrachic	oroethane	1.2	U
108-88-3	Toluene		1.2	Ü
108-90-7	Chlorobenzene		1.2	U
100-41-4	Ethylbenzene		1.2	U
100-42-5	Styrene		1.2	, U
108-38-3	m,p-Xylene		1.2	U
95-47-6	o-Xylene		1.2	U
96-18-4		ropane rgh is a part of Severn Trent I		U

FORM I VOA

3/90 M-NY049 STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: S	TL Newb	urgh		Contract:	01012.01	55-10	0-01402	2	,,
Lab Code: 1	0142	Case	No.:	SAS N	o.:	SDG No.:	212860		•
Matrix: (soil/wa	ter) <u>S</u>	OIL		La	b Sample II	D: 212860	-021		
Sample wt/vol:	5	.0	(g/ml) G	La	b File ID:	W7786.	D		
Level: (low/me	d) <u>L</u>	ow		Da	ate Received	d: <u>06/18/0</u>	2		
% Moisture: no	t dec. <u>1</u>	8.8		Ďa	ate Analyzed	d: <u>06/21/0</u>	2		
GC Column: D	B-624	ID: <u>0.53</u>	(mm)	Di	lution Factor	r: <u>1.0</u>			
Soil Extract Vol	lume:		(uL)	Sc	oil Aliquot Vo	olume:		(uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
98-82-8	Isopropylbenzene	9	1.2	U
108-86-1	Bromobenzene		1.2	U
103-65-1	n-Propylbenzene	1	1.2	U
79-34-5	1,1,2,2-Tetrachio	roethane	1.2	U
95-49-8	2-Chlorotoluene		1.2	U
106-43-4	4-Chlorotoluene		1.2	U
108-67-8	1,3,5-Trimethylbe	enzene	1.2	U
98-06-6	tert-Butylbenzene	€ .	1.2	U
95-63-6	1,2,4-Trimethylbe	enzene	1.2	U
135-98-8	sec-Butylbenzen	8	1.2	U
541-73-1	1,3-Dichlorobenz	ene	1.2	U
99-87-6	4-Isopropyltoluen	ie	1.2	U
106-46-7	1,4-Dichlorobenz	ene	1.2	U
95-50-1	1,2-Dichlorobenz	ene	1.2	U
104-51-8	n-Butylbenzene		1.2	U
96-12-8	1,2-Dibromo-3-ch	nloropropane	1.2	U
87-68-3	Hexachlorobutad		1.2	U
120-82-1	1,2,4-Trichlorobe	nzene	1.2	U
91-20-3	Naphthalene		1.2	U
87-61-6	1,2,3-Trichlorobe	nzene	1.2	U

3/90

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

JN-

SB-18-61402 2-Lab Name: STL Newburgh Contract: 01012.01 Lab Code: 10142 Case No.: SAS No.: SDG No.: 212860 Matrix: (soil/water) SOIL Lab Sample ID: 212860-021 Sample wt/vol: 5.0 (g/ml) G Lab File ID: W7786.D Level: (low/med) LOW Date Received: 06/18/02 % Moisture: not dec. 18.8 Date Analyzed: 06/21/02 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) **CONCENTRATION UNITS:** (ug/L or ug/Kg) UG/KG Number TICs found: COMPOUND NAME CAS NO. RT EST. CONC. O

8.49

Fax (845) 562-0841

NJDEP 73015

EPA NY049

000071-23-8

1-Propanol

COMPOUND

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMP	LE NO
-----	------	-------

		7-8FT
SB-19-61402		HET.
OD-13-01-02)	σ

Q

Lab Code: 10142 Case No.: SAS No.: SDG No.: 212	860
Lab Code: 10142	
Matrix: (soil/water) SOIL Lab Sample ID: 212860-025	
Sample wt/vol: 5.0 (g/ml) G Lab File ID: W7795.D	
Level: (low/med) LOW Date Received: 06/18/02	
% Moisture: not dec. 11.5 Date Analyzed: 06/21/02	
GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0	<u>.</u>
Soil Extract Volume: (uL) Soil Aliquot Volume:	(uL)

CONCENTRATION UNITS:

UG/KG

(ug/L or ug/Kg)

	75-71-8	Dichlorodifluoromethane		TANKS OF STREET, STREET, STATE OF STREET, STATE OF STREET, STR	UJE
	~ 74 - 87-3	- Chloromethane		8.5	
٠.	74-83-9	Bromomethane		1.1	U
	75-01-4	Vinyl Chloride		1.1	U
	75-00-3	Chloroethane	i	1.1	U
	75-69-4	Trichlorofluoromethane		1.1	U
٠.;	75-09-2	Methylene Chloride		1.1	U
	75-35-4	1,1-Dichloroethene		1.1	U
	75-34-4	1,1-Dichloroethane		1.1	U
.	590-20-7	2,2-Dichloropropane		1.1	U
	156-60-5	trans-1,2-Dichloroethylene		1.1	U
	540-59-0	cis-1,2-Dichloroethene	The same of the sa	110	
	67-66-3	Chloroform		1.1	Ū
	563-58-6	1,1-Dichloropropene		1.1	U
	107-06-2	1,2-Dichloroethane		1.1	U
	74-97-5	Bromochloromethane		1.1	U
	71-55-6	1,1,1-Trichloroethane		1.1	U
	56-23-5	Carbon Tetrachloride		1.1	U
	74-95-3	Dibromomethane		1.1	U
	75-27-4	Bromodichloromethane		1.1	U
	78-87-5	1,2-Dichloropropane		1.1	U
	10061-01-5	cis-1,3-Dichloropropene		1.1	U
7	79-01-6	Trichloroethene	2800	-28 0	E
Ċ	71-43-2	Benzene		1.1	U
	142-28-9	1,3-Dichloropropane		1.1	U
	124-48-1	Dibromochloromethane		1.1	U
	10061-02-6	trans-1,3-Dichloropropene		1.1	U
	79-00-5	1,1,2-Trichloroethane	,	1.1	U
	106-93-4	1,2-Dibromoethane		1.1	U
	75-25-2	Bromoform		1.1	U
	127-18-4	Tetrachloroethene	·	1.1	U
	630-20-6	1,1,1,2-Tetrachloroethane		1.1	U
	108-88-3	Toluene		1.1	U
	108-90-7	Chlorobenzene		1,1	
	100-41-4	Ethylbenzene	:	1.1	Ū
	100-42-5	Styrene		1.1	Ū
	108-38-3	m,p-Xylene		1.1	Ū
	95-47-6	o-Xylene		1.1	U

CAS NO.

FORM I VOA CTDOHS PH-0554

3-Trichloropropane STL Newburgh is a part of Severn

1.1

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

I		l
SB-19-61402	7-	8 F7

Lab Name:	STL Ne	wburgh		Contract: 010	12.01	SB-19-61402	<u> </u>
Lab Code:	10142		ase No.:	SAS No.:	SD	G No.: 212860	l
Matrix: (soil/v	vater)	SOIL	· · ·	Lab Sar	mple ID: 2	12860-025	
Sample wt/vo	ol:	5.0	(g/ml) <u>G</u>	Lab File	∍ ID: <u>\</u>	V7795.D	
Level: (low/n	ned)	LOW	<u>. </u>	Date Re	eceived: C	06/18/02	
% Moisture: r	not dec.	11.5		Date Ar	nalyzed: <u>C</u>	06/21/02	
GC Column:	DB-624	ID: (0.53 (mm)	Dilution	Factor: 1	.0	
Soil Extract V	/olume:		(uL)	Soil Alic	quot Volum	e:	(uL)
			С	ONCENTRATION	UNITS:		

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
98-82-8	Isopropylbenzer	 1e	1.1	U
108-86-1	Bromobenzene		1.1	U
103-65-1	n-Propylbenzene	3	1,1	U
79-34-5	1,1,2,2-Tetrachle	oroethane	1.1	U
95-49-8	2-Chlorotoluene		1.1	U
106-43-4	4-Chlorotoluene		1.1	U
108-67-8	1,3,5-Trimethylb	enzene	1.1	U
98-06-6	tert-Butylbenzen	е	1.1	U
95-63-6	1,2,4-Trimethylb	enzene	1.1	U
135-98-8	sec-Butylbenzer	ne .	1,1	U
541-73-1	1,3-Dichloroben:	zene	1.1	U
99-87-6	4-Isopropyltolue	ne	1.1	U
106-46-7	1,4-Dichlorobena	zene	1.1	U
95-50-1	1,2-Dichloroben:	zene	1.1	U
104-51-8	n-Butylbenzene		1.1	U
96-12-8	1,2-Dibromo-3-c	hloropropane	1.1	U
87-68-3	Hexachlorobutad	diene	1.1	U
120-82-1	1,2,4-Trichlorobe	enzene	1.1	U
91-20-3	Naphthalene		1.1	U
87-61-6	1,2,3-Trichlorobe	enzene	1.1	U

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	STL Ne	wburgh	Contract	: 01012.0	SB-19-61402	2 7-8 FT
Lab Code:	10142	Case No.:	SAS N	lo.:	SDG No.: 21286	30
Matrix: (soil/	water)	SOIL	. L	ab Sample	ID: <u>212860-025</u>	
Sample wt/v	ol:	5.0 (g/ml) <u>G</u>	L	ab File ID:	W7795.D	_
Level: (low/	med)	LOW		ate Receiv	/ed: 06/18/02	
% Moisture:	not dec.	11.5		ate Anaiyz	red: 06/21/02	
GC Column:	DB-624	ID: <u>0.53</u> (mm)		ilution Fac	tor: <u>1.0</u>	<u> </u>
Soil Extract	Volume:	(uL)	S	oil Aliquot	Volume:	(uL)
			CONCENTRA	ATION UNI	TS:	
Number TIC	s found:	1	(ug/L or ug/K	g) <u>UG</u>	/KG	
CAS NO.		COMPOUND NAME		RT	EST. CONC.	Q
4 00007	74 02 0	4 Drananal		0.54	40	iNI O

STL Newburgh is a part of Severn Trent Laboratories, Inc.

COMPOUND

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name:	STL Ne	wburgh		Contract: 0101	12.01		
Lab Code:	10142		Case No.:	SAS No.:	s	DG No.: 212860	
Matrix: (soil/w	/ater)	SOIL	,	Lab Sam	ple ID:	212860-027	·
Sample wt/vo	l:	5.0	(g/ml) <u>G</u>	Lab File	ID:	W7797.D	
Level: (low/m	ned)	LOW		Date Re	ceived:	06/18/02	
% Moisture: n	ot dec.	11.5		Date Ana	alyzed:	06/21/02	
GC Column:	DB-624	ID:	0.53 (mm)	Dilution I	actor:	1.0	:
Soil Extract V	olume:		(uL)	Soil Aliqu	uot Volu	ıme:	(uL)

CONCENTRATION UNITS:

UG/KG

(ug/L or ug/Kg)

75.74.0	District 10	.1	1.177
75-71-8	Dichlorodifluoromethane Dichlorodifluoromethane	1.1	UJ
74-87-3	Chloromethane	1.1	U
74-83-9	Bromomethane	1.1	U
75-01-4	Vinyl Chloride	1.1	U
75-00-3	Chloroethane	1.1	U
75-69-4	Trichlorofluoromethane	1.1	U
75-09-2	Methylene Chloride	1.1	U
75-35-4	1,1-Dichloroethene	1.1	U
75-34-4	1,1-Dichloroethane	1.1	U
590-20-7	2,2-Dichloropropane	1.1	U
156-60-5	trans-1,2-Dichloroethylene	1.1	U
540-59-0	cis-1,2-Dichloroethene	10	
67-66-3	Chloroform	1.1	U
563-58-6	1,1-Dichloropropene	1.1	U
107-06-2	1,2-Dichloroethane	1.1	U
74-97-5	Bromochloromethane	1.1	U
71-55-6	1,1,1-Trichloroethane	1.1	Ü
56-23-5	Carbon Tetrachloride	1.1	U
74-95-3	Dibromomethane	1.1	U
75-27-4	Bromodichloromethane	1.1	U
78-87-5	1,2-Dichloropropane	1.1	U
10061-01-5	cis-1,3-Dichloropropene	1.1	U
79-01-6	Trichloroethene	54	
71-43-2	Benzene	1.1	U
142-28-9	1,3-Dichloropropane	1.1	U
124-48-1	Dibromochloromethane	, 1.1	: U
10061-02-6	trans-1,3-Dichloropropene	1.1	U
79-00-5	1,1,2-Trichloroethane	1.1	i U
106-93-4	1,2-Dibromoethane	1.1	† - <u>-</u> -
75-25-2	Bromoform	1.1	Ū
127-18-4	Tetrachloroethene	1.4	Ja
630-20-6	1,1,1,2-Tetrachloroethane	1.1	U
108-88-3	Toluene	4.4	Jo
108-90-7	Chlorobenzene	1.1	Ü
100-41-4	Ethylbenzene	1.1	Ū
100-42-5	Styrene	1.1	Ü
108-38-3	m,p-Xylene	1.1	Ü
95-47-6	o-Xylene	1.1	U
<u>9</u> 6-18-4	1,2,3-Trichloropropane		U

FORM I VOA

3/90

315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

CAS NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB-20-61402	45	-5,5 F
SB-20-61402	47	-2.3 -

Lab Name:	STL Nev	wburgh		Contract:	01012.01	_	
Lab Code:	10142		Case No.:	SAS No	.: S	DG No.: 212860	
Matrix: (soil/w	ater)	SOIL		Lat	Sample ID:	212860-027	
Sample wt/vo	1:	5.0	(g/ml) <u>G</u>	Lat	File ID:	W7797.D	
Level: (low/m	ned)	LOW		Da	te Received:	06/18/02	
% Moisture: n	ot dec.	11.5	·	Da	te Analyzed:	06/21/02	
GC Column:	DB-624	ID:	<u>0.53</u> (mm)	Dilu	ution Factor:	1.0	
Soil Extract V	olume:		(uL)	Soi	il Aliquot Volu	ime:	(uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG	Q
98-82-8	Isopropylbenzene	1.1	U
108-86-1	Bromobenzene	1.1	U
103-65-1	n-Propylbenzene	1.1	U
79-34-5	1,1,2,2-Tetrachloroethane	1.1	Ü
95-49-8	2-Chlorotoluene	1.1	Ų
106-43-4	4-Chlorotoluene	1.1	Ü
108-67-8	1,3,5-Trimethylbenzene	1.1	Ú
98-06-6	tert-Butylbenzene	1.1	U
95-63-6	1,2,4-Trimethylbenzene	0.8	Jo
135-98-8	sec-Butylbenzene	1.1	U
541-73-1	1,3-Dichlorobenzene	1.1	U
99-87-6	4-Isopropyltoluene	1.1	U
106-46-7	1,4-Dichlorobenzene	1.1	U
95-50-1	1,2-Dichlorobenzene	1.1	U
104-51-8	n-Butylbenzene	1.1	U
96-12-8	1,2-Dibromo-3-chloropropane	1.1	U
87-68-3	Hexachlorobutadiene	1.1	U
120-82-1	1,2,4-Trichlorobenzene	1.1	U
91-20-3	Naphthalene	1.1	U
87-61-6	1,2,3-Trichlorobenzene	1.1	U

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMPLE	NO.

		TENTATIVEET IDENTIFIED COMPOUNDS				SB-20-61402		000	
Lab Name:	STL Ne	wburgh		Contract:	01012.0	01	SB-20-6140	2 4.5	-2,2
Lab Code:	10142	Ca	se No.:	SAS No		SD	G No.: 2128	60	
Matrix: (soil/w	vater)	SOIL	_	Lat	Sample	∍ ID: 2	12860-027		
Sample wt/vo	d:	5.0	(g/ml) G	Lat	File ID:	: <u>v</u>	V7797.D		
Level: (low/m	ned)	LOW	_	Dat	te Recei	ved: 0	6/18/02		* *.
% Moisture: r	not dec.	11.5		Dat	te Analy:	zed: 0	6/21/02		
GC Column:	DB-624	ID: <u>0</u> .	53 (mm)	Dilu	ution Fac	ctor: 1	.0		
Soil Extract V	olume:		_ (uL)	Soi	l Aliquot	Volum	e:	(uL)
				CONCENTRAT	ION UN	ITS:			÷
Number TICs	found:	2		(ug/L or ug/Kg)	UG	/KG	· ·		-
CAS NO.		COMPOL	IND NAME		RT	EST	CONC.	Q.	

7.68

8.49

Rm

JNT

JN-

-25

EPA NY049

000110-54-3

000071-23-8

2.

Hexane

1-Propanol

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPL	E	NO
_ , , ,	O/ 11 VII L		

SB-21-61402 7-8

Lab Name:	STL Ne	wburgh	Contract: 01012.01	_ 05-21-01-102	
Lab Code:	10142	Case No.:	SAS No.: S	DG No.: 212860	
Matrix: (soil/v	vater)	SOIL	Lab Sample ID:	212860-013	
Sample wt/vo	ol:	5.0 (g/ml) <u>G</u>	Lab File ID:	W7781.D	
Level: (low/n	ned)	LOW	Date Received:	06/18/02	
% Moisture: 1	not dec.	15.6	Date Analyzed:	06/20/02	
GC Column:	DB-624	ID: <u>0.53</u> (mm)	Dilution Factor:	1.0	
Soil Extract V	/olume:	(uL)	Soil Aliquot Volu	ıme:	(uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
75-71-8	Dichlorodifluoror	nethane	1.2	UJ
74-87-3	Chloromethane		3.3	Ja
74-83-9	Bromomethane		1.2	U
75-01-4	Vinyl Chloride		1.2	U
75-00-3	Chloroethane		1.2	U
75-69-4	Trichlorofluorom	ethane	1.2	U
75-09-2	Methylene Chlor		1.2	U
75-35-4	1,1-Dichloroethe		1.2	U
75-34-4	1,1-Dichloroetha	ne	1.2	U
590-20-7	2,2-Dichloroprop	ane	1.2	U
156-60-5	trans-1,2-Dichlor		1.2	U
540-59-0	cis-1,2-Dichloroe		22	
67-66-3	Chloroform		1.2	· U
563-58-6	1,1-Dichloroprop	ene	1.2	. U
107-06-2	1,2-Dichloroetha		1.2	U
74-97-5	Bromochloromet		1.2	U
71-55-6	1,1,1-Trichloroet		1.2	U
56-23-5	Carbon Tetrachle		1.2	U
74-95-3	Dibromomethane		1.2	U
75-27-4	Bromodichlorom		1.2	U
78-87-5	1,2-Dichloroprop		1.2	Ü
10061-01-5	cis-1,3-Dichlorop		1.2	U
79-01-6	Trichloroethene		14	
71-43-2	Benzene	•	1.2	U
142-28-9	1,3-Dichloroprop	ane	1.2	U
124-48-1	Dibromochlorom		1.2	U
10061-02-6	trans-1,3-Dichlor	opropene	1.2	U
79-00-5	1,1,2-Trichloroet		1.2	U
106-93-4	1,2-Dibromoetha	ine	1.2	U
75-25-2	Bromoform		1.2	U
127-18-4	Tetrachloroether	ne	3.0	Jo
630-20-6	1,1,1,2-Tetrachlo		1.2	U
108-88-3	Toluene		1.1	Ja
108-90-7	Chlorobenzene		1.2	U
100-41-4	Ethylbenzene		1.2	U
100-42-5	Styrene		1.2	U
108-38-3	m,p-Xylene		1.2	Ū
95-47-6	o-Xylene		1.2	U.
96-18-4	1.2.3-Trichloropr	opane ghis a part of Severn Trent L	1.2	Ū

FORM I VOA

3/90 M-NY049 STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

PA 68-378

EPA SAMPLE NO.

SB-21-61402 7-8FT

Lab Name: STL Newburg		wburgh		_ Contract: 01012.01		
Lab Code:	10142	Cas	e No.:	SAS No.:	SDG No.: 212860	
Matrix: (soil/w	vater)	SOIL	-	Lab Sample ID	212860-013	
Sample wt/vo	oi:	5.0	(g/ml) G	Lab File ID:	W7781.D	
Level: (low/m	ned)	LOW		Date Received	I: <u>06/18/02</u>	
% Moisture: r	not dec.	15.6		Date Analyzed	: 06/20/02	
GC Column:	DB-624	ID: <u>0.5</u>	3 (mm)	Dilution Factor	: 1.0	
Soil Extract V	olume:		_ (uL)	Soil Aliquot Vo	lume:	(uL)

CONCENTRATION UNITS:

4		CONCENTRATION UNITS:				
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG		Q	
98-82-8	Isopropylbenze	ne	. !	1.2	U	
108-86-1	Bromobenzene			1.2	U	
103-65-1	n-Propylbenzen	е		1.2	U	
79-34-5	1,1,2,2-Tetrach	oroethane		1.2	Ų	
95-49-8	2-Chlorotoluene)		1.2	U	
106-43-4	4-Chlorotoluene			1.2	U	
108-67-8	1,3,5-Trimethyll	enzene		1.2	U	
98-06-6	tert-Butylbenzei	те		1.2	U	
95-63-6	1,2,4-Trimethylt	penzene		1.2	U	
135-98-8	sec-Butylbenze	ne		1.2	U	
541-73-1	1,3-Dichloroben	zene		1.2	Ù	
99-87-6	4-Isopropyitolue	ene		1.2	U	
106-46-7	1,4-Dichloroben	zene		1.2	U	
95-50-1	1,2-Dichloroben			1.2	U	
104-51-8	n-Butylbenzene			1.2	U	
96-12-8	1,2-Dibromo-3-	chloropropane		1.2	U	
87-68-3	Hexachlorobuta	diene		1.2	U	
120-82-1	1,2,4-Trichlorob	enzene		1.2	Ü	
91-20-3	Naphthalene			1.2	υ	
87-61-6	1,2,3-Trichlorob	enzene		1.2	U	

3/90

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

6

J۳

Lab Name:	STL Ne	wburgh		Contract:	01012.01	1 36-21-0140) <u> </u>
Lab Code:	10142	Cas	e No.:	SAS No	o.:	SDG No.: 2128	360
Matrix: (soil/w	ater)	SOIL		La	b Sample l	ID: <u>212860-013</u>	
Sample wt/vo	l:	5.0	(g/ml) G	La	b File ID:	W7781.D	
Level: (low/m	ned)	LOW		Da	te Receive	ed: 06/18/02	
% Moisture: n	ot dec.	15.6	·	Da	te Analyze	ed: 06/20/02	
GC Column:	DB-624	ID: <u>0.5</u>	3_ (mm)	Dil	ution Facto	or: <u>1.0</u>	
Soil Extract V	olume:		_ (uL)	So	il Aliquot V	/olume:	(uL)
Number TICs	found:	2	_	CONCENTRAT		*	
CAS NO.		COMPOU	ND NAME		RT	EST. CONC.	Q
1. 000071	-23-8	1-Propanol			8.52	-7	JN-R

16.33

dimethylcyclohexane isomer

2.

EPA NY049

NJDEP 73015

COMPOUND

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	CAN	ΛDI	F	MO
CFA	O/41	VIIT L	.⊏	INC

Lab Name:	STL Nev	wburgh .		Contract: 01012.01	
Lab Code:	10142	Ca	ase No.:	SAS No.:	SDG No.: 212860
Matrix: (soil/w	rater)	SOIL	_	Lab Sample ID	: 212860-015
Sample wt/vo	d:	5.0	(g/mi) <u>G</u>	Lab File ID:	W7805.D
Level: (low/m	ned)	LOW		Date Received	: 06/18/02
% Moisture: r	not dec.	14.7		Date Analyzed	: 06/23/02
GC Column:	DB-624	ID: <u>0</u>	.53 (mm)	Dilution Factor	1.0
Soil Extract V	olume:		(uL)	Soil Aliquot Vo	ume: (uL)

CONCENTRATION UNITS:

UG/KG

(ug/L or ug/Kg)

CAS NO.	COMPOUND (ag/L of ag/kg)	UG/NG	Q
75-71-8	Dichlorodifluoromethane	1.2	UJL
74-87-3	Chloromethane	1.2	U _.
74-83-9	Bromomethane	1.2	U
75-01-4	Vinyl Chloride	1.2	U
75-00-3	Chloroethane	1.2	U
75-69-4	Trichlorofluoromethane	1.2	U
75-09-2	Methylene Chloride	1.2	U
75-35-4	1,1-Dichloroethene	1.2	U
75-34-4	1,1-Dichloroethane	1.2	U
590-20-7	2,2-Dichloropropane	1.2	U
156-60-5	trans-1,2-Dichloroethylene	1.2	U
540-59-0	cis-1,2-Dichloroethene	28	
67-66-3	Chloroform	1.2	U
563-58-6	1,1-Dichloropropene	1.2	U
107-06-2	1,2-Dichloroethane	1.2	U
74-97-5	Bromochloromethane	1.2	U
71-55-6	1,1,1-Trichloroethane	1.2	Ü
56-23-5	Carbon Tetrachloride	1.2	U
74-95-3	Dibromomethane	1.2	U
75-27-4	Bromodichloromethane	1.2	U
78-87-5	1,2-Dichloropropane	1.2	U
10061-01-5	cis-1,3-Dichloropropene	1.2	U
79-01-6	Trichloroethene	22	
71-43-2	Benzene	1.2	Ū
142-28-9	1,3-Dichloropropane	1,2	U
124-48-1	Dibromochloromethane	1.2	U
10061-02-6	trans-1,3-Dichloropropene	1.2	U .
79-00-5	1,1,2-Trichloroethane	1.2	U
106-93-4	1,2-Dibromoethane	1.2	U
75-25-2	Bromoform	1.2	U
127-18-4	Tetrachloroethene	2.3	₿ Um
630-20-6	1,1,1,2-Tetrachloroethane	1.2	Ú
108-88-3	Toluene	2.9	Jo
108-90-7	Chlorobenzene	1.2	Ū
100-41-4	Ethylbenzene	1.2	U
100-42-5	Styrene	1.2	Ü
108-38-3	m,p-Xylene	1.2	Ū
95-47-6	o-Xvlene	1.2	Ū
96-18-4	1,2,3-Trichloropropane	1.2	Ū

CAS NO.

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

3/90

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPL	E NO.
------------	-------	-------

SB-22-61402 5-6FT

Lab Name:	STL Ne	wburgh		Contract: 01012.01		
Lab Code:	10142	Ca	se No.:	SAS No.:	SDG No.: 212860	<u>-</u>
Matrix: (soil/v	vater)	SOIL	<u> </u>	Lab Sample ID	: 212860-015	
Sample wt/vo	ol:	5.0	(g/ml) G	Lab File ID:	W7805.D	
Level: (low/n	ned)	LOW		Date Received	: 06/18/02	
% Moisture: r	not dec.	14.7	· Promoto and wid Primondo anno	Date Analyzed	: 06/23/02	٠
GC Column:	DB-624	ID: <u>0.</u>	53 (mm)	Dilution Factor:	1.0	
Soil Extract V	/olume:		(uL)	Soil Aliquot Vo	lume:	(uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
98-82-8	Isopropylbenzer	ne	1.2	U
108-86-1	Bromobenzene		1.2	U
103-65-1	n-Propylbenzen	e ·	1.2	U
79-34-5	1,1,2,2-Tetrachl	oroethane	1.2	U
95-49-8	2-Chlorotoluene	!	1.2	U
106-43-4	4-Chlorotoluene		1.2	U
108-67-8	1,3,5-Trimethylb	enzene	1.2	U
98-06-6	tert-Butylbenzer	ne	1.2	U
95-63-6	1,2,4-Trimethylt	enzene	1.2	U
135-98-8	sec-Butylbenzer	sec-Butylbenzene		U
541-73-1	1,3-Dichloroben	1,3-Dichlorobenzene		Ja
99-87-6	4-Isopropyltolue	ne	1.2	U
106-46-7	1,4-Dichloroben	zene	1.2	Jდ
95-50-1	1,2-Dichloroben	zene	6.7	
104-51-8	n-Butylbenzene		1.2	U
96-12-8	1,2-Dibromo-3-c	chloropropane	1.2	U
87-68-3		Hexachlorobutadiene		Ü
120-82-1	1,2,4-Trichlorob	enzene	1.2	U
91-20-3	Naphthalene		1.2	U
87-61-6	1,2,3-Trichlorob	enzene	1.2	U

PA 68-378

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SA	/IVII	'LE	N	J.

Lab Name:	STL Ne	wburgh		Contract	: 01012.0)1	SB-22-6140	5-6-
Lab Code:	10142	Cas	e No.:	SAS N	lo.:	_ SD	G No.: 2128	860
Matrix: (soil/v	vater)	SOIL		L	ab Sample	ID:	212860-015	
Sample wt/vo	ol:	5.0	(g/ml) G	· L	ab File ID:	1	W7805.D	<u> </u>
Level: (low/n	ned)	LOW			ate Receiv	/ed: (06/18/02	
% Moisture: r	not dec.	14.7		E	ate Analyz	ed:	06/23/02	
GC Column:	DB-624	ID: <u>0.5</u>	3 (mm)		ilution Fac	tor.	1.0	
Soil Extract V	/olume:		(uL)	S	oil Aliquot	Volun	ne:	(uL)
Number TICs	s found:	0		CONCENTRA (ug/L or ug/K				
Trumber 1100	· iouiiu.					· · · · · ·		
CAS NO.		COMPOU	ND NAME		RT	ES	г. conc.	Q

COMPOUND

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB-23-61302	6-	FT
SB-23-61302	6-	

Q

Lab Name:	STL Nev	wburgh		Contráct:	01012.01		
Lab Code:	10142	C	ase No.:	SAS N	o.:	SDG No.: 212860	
Matrix: (soil/w	vater)	SOIL	<u> </u>	La	ab Sample II	D: 212860-007	<u> </u>
Sample wt/vo	ol:	5.0	(g/ml) <u>G</u>	La	ab File ID:	W7779.D	
Level: (low/m	ned)	LOW	<u>. </u>	Da	ate Received	d: <u>06/18/02</u>	
% Moisture: n	not dec.	15.6		Da	ate Analyzed	d: <u>06/20/02</u>	
GC Column:	DB-624	ID: 0	.53 (mm)	Di	lution Factor	r: <u>1.0</u>	
Soil Extract V	olume:		(uL)	Sc	oil Aliquot Vo	plume:	(uL)

CONCENTRATION UNITS:

UG/KG

(ug/L or ug/Kg)

75-71-8	Dichlorodifluoromethane	1.2	UJL
74-87-3	Chloromethane	1.2	U
74-83-9	Bromomethane	1.2	U
75-01-4	Vinyl Chloride	4.5	JF JO
75-00-3	Chloroethane	1.2	טי
75-69-4	Trichlorofluoromethane	1.2	U
75-09-2	Methylene Chloride	1.2	U
75-35-4	1,1-Dichloroethene	1.2	U
75-34-4	1,1-Dichloroethane	1.2	U
590-20-7	2,2-Dichloropropane	1.2	U
156-60-5	trans-1,2-Dichloroethylene	1.2	U
540-59-0	cis-1,2-Dichloroethene	330JF -230	+E
67-66-3	Chloroform	1.2	U
563-58-6	1,1-Dichloropropene	1.2	U
107-06-2	1,2-Dichloroethane	1.2	U
74-97-5	Bromochloromethane	1.2	U
71-55-6	1,1,1-Trichloroethane	1.2	U
56-23-5	Carbon Tetrachloride	1.2	U
74-95-3	Dibromomethane	1.2	U
75-27-4	Bromodichloromethane	1.2	; U
78-87-5	1,2-Dichloropropane	1.2	U
10061-01-5	cis-1,3-Dichloropropene	1.2	U
79-01-6	Trichloroethene	8.2	
71-43-2	Benzene	1.2	U
142-28-9	1,3-Dichloropropane	1.2	U
124-48-1	Dibromochloromethane	1.2	U
10061-02-6	trans-1,3-Dichloropropene	1.2	U
79-00-5	1,1,2-Trichloroethane	1.2	U
106-93-4	1,2-Dibromoethane	1.2	U
75-25-2	Bromoform	1.2	U
127-18-4	Tetrachloroethene	1.2	U
630-20-6	1,1,1,2-Tetrachioroethane	1.2	U
108-88-3	Toluene	4.5	JQ
108-90-7	Chlorobenzene	26 5.7	JF
100-41-4	Ethylbenzene	1.2	Ü
100-42-5	Styrene	1.2	U
108-38-3	m,p-Xylene	1.2	U
95-47-6	o-Xylene	1.2	Ū
96-18-4	1,2,3-Trichloropropane STL Newburgh is a part of Severn Tri		Ü

CAS NO.

3/90 M-NY049 STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

FT

		,						ep 22	-61302	1	- ,
Lab	Name:	STL Ne	wburgh		Contract:	01012.01		3D-23	-01302	<i>w</i> -]''
Lab	Code:	10142	Case N	o.:	SAS No	.:	SDG	No.:	212860		
Matr	ix: (soil/v	water)	SOIL		Lat	Sample I	D: <u>2</u>	12860-	007		
Sam	ple wt/vo	ol:	5.0 (g/	ml) G	Lat	File ID:	V	/7779.I)		
Leve	el: (low/n	ned)	LOW		 Da	te Receive	d: 06	3/18/02	2		
% M	oisture: ı	not dec.	15.6		Da	te Analyze	d: 06	3/20/02	<u> </u>		
GC (Column:	DB-624	ID: 0.53	— (mm)	Dilu	ution Facto	or: 1.	.0			
			 (u		Soi	il Aliquot V	olume			(uL	_)
						•				•	
			·	CO	NCENTRAT	TON UNIT	S:				
	CAS NO).	COMPOUN	D (ug	/L or ug/Kg)	UG/K	G		Q		
·	98-82-	-8	Isopropylb	enzene				1.2	U		
	108-86		Bromober	zene				1.2	U		
	103-65	5 -1	n-Propylbe	enzene				1.2	υ		
	79-34-	·5		trachloroetha	ane			1.2	U		
	95-49-	·8	2-Chloroto	oluene				1.2	U	_	
	106-43	3-4	4-Chloroto	oluene				1.2	U		
	108-67	7-8	1,3,5-Trim	ethylbenzene	9			1.2	U		
	98-06-	-6	tert-Butylb					1.2	U		
	95-63-	. 6	1,2,4-Trim	nethylbenzene	e	ĺ		1.2	· U	\neg	
	135-98	3-8	sec-Butylt	enzene				1.2	U		
	541-73	3-1		robenzene				1.2	U		
	99-87-	·6	4-Isopropy					1.2	U		
	106-46	6-7	1,4-Dichlo	robenzene				1.2	U		
	95-50-	-1	1,2-Dichlo	robenzene	;	٦.	1	-7.9 -	JF	Am	
	104-51	1-8	n-Butylber	nzene				1.2	U		
	96-12-	-8	1,2-Dibror	no-3-chloropi	ropane			1.2	U		

Hexachlorobutadiene

Naphthalene

1,2,4-Trichlorobenzene

1,2,3-Trichlorobenzene

3/90

M-NY049

1.2

1.2

1.2

1.2

U

U

U

U

87-68-3

120-82-1

91-20-3

87-61-6

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

		1
SB-23-61302	1	70

EPA SAMPLE NO.

Lab Name:	STL Ne	wburgh	Cont	act: 0	1012.01	SB-23-013	02 6-1
Lab Code:	10142	Case No.:	SA	S No.:	8	SDG No.: 212	860
Matrix: (soil/	water)	SOIL		Lab S	Sample ID:	212860-007	
Sample wt/vo	ol:	5.0 (g/ml) <u>G</u>		Lab F	File ID:	W7779.D	
Level: (low/r	med)	LOW		Date	Received:	06/18/02	
% Moisture:	not dec.	15.6		Date	Analyzed:	06/20/02	
GC Column:	DB-624	ID: <u>0.53</u> (mm)		Diluti	on Factor:	1.0	
Soil Extract \	Volume:	(uL)		Soil A	Aliquot Volu	ume:	(uL)
•			CONCEN	TRATIC	ON UNITS:	·	
Number TICs	s found:	1	(ug/L or u	g/Kg)	UG/KG	<u>.</u>	
CAS NO.		COMPOUND NAME			RT E	ST. CONC.	Q
4 00007	1 22 0	1 Propopol		i	9.40	12	

PA 68-378

EPA S	AMPL	·Ε	NO
-------	------	----	----

	1
SB-23D-61302 (,-7FT

Lab Name:	STL Ne	wburgh	_ Contract: 01012.01	
Lab Code:	10142	Case No.:	SAS No.: S	DG No.: 212860
Matrix: (soil/w	vater)	SOIL	Lab Sample ID:	212860-012
Sample wt/vo	ol:	5.0 (g/ml) G	Lab File ID:	W7780.D
Level: (low/n	ned)	LOW	Date Received:	06/18/02
% Moisture: r	not dec.	19.8	Date Analyzed:	06/20/02
GC Column:	DB-624	ID: <u>0.53</u> (mm)	Dilution Factor:	1.0
Soil Extract V	olume:	(uL)	Soil Aliquot Volu	me: (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG	Q
75-71-8	Dichlorodifluoromethane	1.2	UJL
74-87-3	Chloromethane	1.2	U
74-83-9	Bromomethane	1.2	U
75-01-4	Vinyl Chloride	39	JF
75-00-3	Chloroethane	1.2	Ū
75-69-4	Trichlorofluoromethane	1.2	U
75-09-2	Methylene Chloride	1.2	U
75-35-4	1,1-Dichloroethene	1,2	U
75-34-4	1,1-Dichloroethane	1.2	U
590-20-7	2,2-Dichloropropane	1.2	U
156-60-5	trans-1,2-Dichloroethylene	3/2	
540-59-0	cis-1,2-Dichloroethene	110	JF
67-66-3	Chloroform	1.2	Ü
563-58-6	1,1-Dichloropropene	1.2	U
107-06-2	1,2-Dichloroethane	1.2	U
74-97-5	Bromochloromethane	1.2	Ū
71-55-6	1,1,1-Trichloroethane	1.2	U
56-23-5	Carbon Tetrachloride	1.2	U
74-95-3	Dibromomethane	1.2	U
75-27-4	Bromodichloromethane	1.2	U
78-87-5	1,2-Dichloropropane	1.2	U
10061-01-5	cis-1,3-Dichloropropene	1.2	U
79-01-6	Trichloroethene	6.0	Jo
71-43-2	Benzene	0.9	Jo
142-28-9	1,3-Dichloropropane	1.2	U
124-48-1	Dibromochloromethane	1.2	: U
10061-02-6	trans-1,3-Dichloropropene	1.2	U
79-00-5	1,1,2-Trichloroethane	1.2	U
106-93-4	1,2-Dibromoethane	1.2	U
75-25-2	Bromoform	1.2	U
127-18-4	Tetrachloroethene	1.2	U
630-20-6	1,1,1,2-Tetrachloroethane	1.2	U
108-88-3	Toluene	2.6	Ja
108-90-7	Chlorobenzene	51	JE
100-41-4	Ethylbenzene	1.2	U
100-42-5	Styrene	1.2	U
108-38-3	m,p-Xylene	1.2	U
95-47-6	o-Xylene	1.2	U
96-18-4	1,2,3-Trichloropropane	1.2	U

NYSDOH 10142

NJDEP 73015

FORM I VOA CTDOHS PH-0554 3/90 EPA NY049 PA 68-378 M-NY049

EPA SAMPLE N	IU.
CD 02D 61202	6-7ET

Lab Name: <u>STL</u>	Newburgh		Contract: 01012.01	_ 38-238-01302	
Lab Code: 1014	12 Ca	se No.:	SAS No.: S	DG No.: 212860	
Matrix: (soil/water)	SOIL	_	Lab Sample ID:	212860-012	
Sample wt/vol:	5.0	(g/ml) <u>G</u>	Lab File ID:	W7780.D	
Level: (low/med)	LOW	_	Date Received:	06/18/02	
% Moisture: not de	ec. <u>19.8</u>		Date Analyzed:	06/20/02	
GC Column: DB-6	<u>24</u> ID: <u>0</u>	53 (mm)	Dilution Factor:	1.0	
Soil Extract Volum	e:	(uL)	Soil Aliquot Volu	me:	(uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
98-82-8	√ Isopropylbenz	ene	1	.2 U
108-86-1	Bromobenzen	e	1	.2 U
103-65-1	√ n-Propylbenze	ene	1	.2 U
79-34-5	1,1,2,2-Tetrac		1	.2 U
95-49-8	2-Chlorotoluer	ne	1	.2 U
106-43-4	4-Chlorotoluer	ne	1	.2 U
108-67-8	√ 1,3,5-Trimethy	/lbenzene	1	.2 U
98-06-6	tert-Butylbenz	ene	1	.2 U
95-63-6	1,2,4-Trimethy	/lbenzene	1	.2 U
135-98-8	sec-Butylbenz	ene	_ 1	2 U
541-73-1	√ 1,3-Dichlorobe	enzene	3	.4 J _©
99-87-6	4-Isopropyltolu	uene	1	.2 U
106-46-7	1,4-Dichlorobe	enzene	3	.2 Jo
95-50-1	1,2-Dichlorobe	enzene		<u>)1 -Jpи</u> м
104-51-8	n-Butylbenzen	ne	1	.2U
96-12-8	1,2-Dibromo-3	3-chloropropane	1	.2 U
87-68-3	Hexachlorobu	tadiene	1 1	.2 U
120-82-1	1,2,4-Trichlord	benzene	1	.2 U
91-20-3	Naphthalene		1	.2 U
87-61-6	1,2,3-Trichlord	benzene	1	.2 U

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SB-23D-61302	(g-	7	F
--------------	-----	---	---

JT

 J_{T}

33

Lab Name: STL Newb	ourgh Contract	: 01012.01	_	
Lab Code: 10142	Case No.: SAS N	lo.: S	DG No.: 2128	360
Matrix: (soil/water) S	SOIL L	ab Sample ID:	212860-012	
Sample wt/vol: 5	5.0 (g/ml) <u>G</u> L	ab File ID:	W7780.D	·
Level: (low/med) L	.OW	ate Received:	06/18/02	
% Moisture: not dec. 1	19.8 D	ate Analyzed:	06/20/02	
GC Column: DB-624	_ ID: <u>0.53</u> (mm) D	ilution Factor:	1.0	
Soil Extract Volume:	(uL) S	Soil Aliquot Volu	ıme:	(uL)
	CONCENTRA	ATION UNITS:		
Number TICs found: _	(ug/L or ug/Ko	g) <u>UG/KG</u>	<u> </u>	
CAS NO.	COMPOUND NAME	RT E	ST. CONC.	Q
<i>L</i> 67-64-1 A	Acetone	5.31	40	
	Carbon Disulfide	5.59	8	-
	I-Propanol	8.49	-27	JN R

13.27

22.42

123/cs

5.

EPA NY049

Unknown CnH2n

Unknown CnH2n

COMPOUND

VOLATILE ORGANICS ANALYSIS DATA SHEET

EDA	SAMPL	⊏	NO
EPA	PHINILF	.⊏	NO.

SB-24-61302	4.5	-5.S	FI
02 2 . 0 . 0		ŀ	

Q

Lab Code: 10142 Case No.: SAS No.: SDG No.: 212860 Matrix: (soil/water) SOIL Lab Sample ID: 212860-010 Sample wt/vol: 5.0 (g/ml) G Lab File ID: W7791.D Level: (low/med) LOW Date Received: 06/18/02 % Moisture: not dec. 13.8 Date Analyzed: 06/21/02 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)	Lab Name:	STL Nev	vburgh	· · · · · · · · · · · · · · · · · · ·	_ Contract: <u>01012.01</u>		_
Sample wt/vol: 5.0 (g/ml) G Lab File ID: W7791.D Level: (low/med) LOW Date Received: 06/18/02 % Moisture: not dec. 13.8 Date Analyzed: 06/21/02 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0	Lab Code:	10142	· · ·	Case No.:	SAS No.:	SDG No.: 212860	
Level: (low/med) LOW Date Received: 06/18/02 % Moisture: not dec. 13.8 Date Analyzed: 06/21/02 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0	Matrix: (soil/wa	ater)	SOIL		Lab Sample ID	212860-010	
% Moisture: not dec. 13.8 Date Analyzed: 06/21/02 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0	Sample wt/vol	•	5.0	(g/ml) <u>G</u>	Lab File ID:	W7791.D	
GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0	Level: (low/m	ed)	LOW		Date Received	: 06/18/02	
	% Moisture: no	ot dec.	13.8		Date Analyzed	06/21/02	
Soil Extract Volume: (uL) Soil Aliquot Volume: (uL	GC Column: [DB-624	ID:	<u>0.53</u> (mm)	Dilution Factor:	1.0	
	Soil Extract Vo	olume:		(uL)	Soil Aliquot Vol	ume: (uL)

CONCENTRATION UNITS:

UG/KG

(ug/L or ug/Kg)

75-71-8	Dichlorodifluoromethane	1.2	UJL
74-87-3	Chloromethane	1.2	U
74-83-9	Bromomethane	1.2	U
75-01-4	Vinyl Chloride	1.2	U
75-00-3	Chloroethane	1.2	U
75-69-4	Trichlorofluoromethane	1.2	U
75-09-2	Methylene Chloride	1.2	Jq
75-35-4	1,1-Dichloroethene	1.2	U
75-34-4	1,1-Dichloroethane	1.2	U
590-20-7	2,2-Dichloropropane	1.2	U
156-60-5	trans-1,2-Dichloroethylene	1.2	. U
540-59-0	cis-1,2-Dichloroethene	: 18	:
67-66-3	Chloroform	1.2	U
563-58-6	1,1-Dichloropropene	1.2	U
107-06-2	1,2-Dichloroethane	1.2	U
74-97-5	Bromochloromethane	1.2	U
71-55-6	1,1,1-Trichloroethane	1.2	U
56-23-5	Carbon Tetrachloride	1.2	U
74-95-3	Dibromomethane	1.2	U
75-27-4	Bromodichloromethane	1.2	U
78-87-5	1,2-Dichloropropane	1.2	U
10061-01-5	cis-1,3-Dichloropropene	1.2	U
79-01-6	Trichloroethene	11	Im
71-43-2	Benzene	1.2	U
142-28-9	1,3-Dichloropropane	1.2	U
124-48-1	Dibromochloromethane	1.2	U
10061-02-6	trans-1,3-Dichloropropene	1.2	U
79-00-5	1,1,2-Trichloroethane	1.2	U
106-93-4	1,2-Dibromoethane	1.2	U
75-25-2	Bromoform	1.2	U
127-18-4	Tetrachloroethene	1.0	Jo
630-20-6	1,1,1,2-Tetrachloroethane	1.2	U
108-88-3	Toluene	1.3	$J_{m_1}J$
108-90-7	Chlorobenzene	1.2	U '
100-41-4	Ethylbenzene	1.2	U
100-42-5	Styrene	1.2	U
108-38-3	m,p-Xylene	1.2	U
95-47-6	o-Xylene	1.2	U
96-18-4	1,2,3-Trichloropropane Sit Newburghis a part of Severn Trent Lat	1.2	U

CAS NO.

3/90 M-NY049 STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

EPA NY049

EPA SAMPLE NO.

SB-24-61302 4.5 -5,5 FT

Lab Name:	SILNE	wburgh	· · · · · · · · · · · · · · · · · · ·	_ Contract:	01012.01		
Lab Code:	10142		Case No.:	SAS No	o.: S	SDG No.: 212860	
Matrix: (soil/w	ater)	SOIL		La	b Sample ID:	212860-010	
Sample wt/vo	l:	5.0	(g/ml) G	Lai	b File ID:	W7791.D	
Level: (low/m	ed)	LOW		Da	te Received:	06/18/02	•
% Moisture: n	ot dec.	13.8		Da	te Analyzed:	06/21/02	
GC Column: J	DB-624	ID:	0.53 (mm)	Dil	ution Factor:	1.0	
Soil Extract V	olume:		(uL)	So	il Aliquot Volu	ıme:	(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	 ·	Q
98-82-8	Isopropylbenzene	•	.:	1.2	U
108-86-1	Bromobenzene			1.2	U
103-65-1	n-Propylbenzene			1.2	.U
79-34-5	1,1,2,2-Tetrachlo	roethane		1.2	Ű.
95-49-8	2-Chlorotoluene			1.2	Ū
106-43-4	4-Chlorotoluene			1.2	U
108-67-8	1,3,5-Trimethylbe	nzene	·	1.2	U
98-06-6		tert-Butylbenzene			U
95-63-6	1,2,4-Trimethylbe	1,2,4-Trimethylbenzene		1.2	U
135-98-8	sec-Butylbenzene	sec-Butylbenzene		1.2	U
541-73-1	1,3-Dichlorobenze	1,3-Dichlorobenzene		1.2	U
99-87-6	4-Isopropyltoluen	4-Isopropyltoluene		1.2	U
106-46-7	1,4-Dichlorobenze	1,4-Dichlorobenzene		1.2	U
95-50-1	1,2-Dichlorobenz	1,2-Dichlorobenzene		1.2	U
104-51-8	n-Butylbenzene	n-Butylbenzene		1.2	U
96-12-8	1,2-Dibromo-3-ch	loropropane		1.2	U
87-68-3		Hexachlorobutadiene		1.2	U
120-82-1	1,2,4-Trichlorober	1,2,4-Trichlorobenzene		1.2	U _
91-20-3	Naphthalene		.	1.2	U
87-61-6	1,2,3-Trichlorober	nzene		1.2	U

EPA NY049

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMBOLINDS

EPA SAMPLE NO).
---------------	----

	TENTATIVELT IDENTIFIE				פטאנ	07 04 04000	
Lab Name:	STL Ne	wburgh		Contract:	01012.01	SB-24-61302	4.5 -5.5
Lab Code:	10142	Ci	ase No.:	SAS No	u.:	SDG No.: 21286	0
Matrix: (soil/w	ater)	SOIL		- Lal	b Sample I	D: 212860-010	
Sample wt/vol	l:	5.0	(g/ml) G	Lal	b File ID:	W7791.D	_
Level: (low/m	ed)	LOW		Da	te Receive	d: <u>06/18/02</u>	_
% Moisture: n	ot dec.	13.8	· · · · · ·	Da	te Analyze	d: <u>06/21/02</u>	_
GC Column: 1	DB-624	ID: <u>0</u>	.53 (mm)	Dil	ution Facto	or: 1.0	
Soil Extract V	olume:		(uL)	So	il Aliquot V	olume:	(uL)
				CONCENTRAT	ION UNIT	S:	
Number TICs	found:	1	_	(ug/L or ug/Kg)	UG/K	G	-
CAS NO		COMPO	UND NAME		RT	EST CONC	

8.54

PA 68-378

000071-23-8

1-Propanol

NJDEP 73015

EPA	SAMPL	E NO
-----	-------	------

Lab Name: §	STL Nev	vburgh		Contract.	01012.01		
Lab Code:	10142	Cas	se No.:	SAS No).:	SDG No.: 212860	
Matrix: (soil/wa	ater)	SOIL		La	b Sample ID): 212860-017	
Sample wt/vol:		5.0	(g/ml) G	La	b File ID:	W7784.D	
Level: (low/me	ed)	LOW	_	Da	ite Received	d: <u>06/18/02</u>	
% Moisture: no	ot dec.	10		Da	ite Analyzed	l: <u>06/21/02</u>	
GC Column: <u>E</u>)B-624	ID: <u>0.5</u>	i3 (mm)	Dil	ution Factor	r: <u>1.0</u>	
Soil Extract Vo	lume:		_ (uL)	So	il Aliquot Vo	olume:	(uL)

CONCENTRATION UNITS:

CAS ŅO.	COMPOUND (I	ug/L or ug/Kg)	UG/KG		Q
75-71-8	Dichlorodifluorometh	ane		1.1	UJ
74-87-3	Chloromethane			1.1	U
74-83-9	Bromomethane			1.1	U
75-01-4	Vinyl Chloride			1.1	U
75-00-3	Chloroethane			1.1	U
75-69-4	Trichlorofluorometha	ne		1.1	U
75-09-2	Methylene Chloride			1.1	U
75-35-4	1,1-Dichloroethene			1.1	U
75-34-4	1,1-Dichloroethane			1.1	U
590-20-7	2,2-Dichloropropane			1.1	U
156-60-5	trans-1,2-Dichloroeth	ylene		1.1	U
540-59-0	cis-1,2-Dichloroether			21	
67-66-3	Chloroform			1.1	U
563-58-6	1,1-Dichloropropene			1.1	U
107-06-2	1,2-Dichloroethane			1.1	U
74-97-5	Bromochloromethane	 		1.1	U
71-55-6	1,1,1-Trichloroethane		İ	1.1	U
56-23-5	Carbon Tetrachloride		İ	1.1	U
74-95-3	Dibromomethane			1.1	U
75-27-4	Bromodichlorometha	ne		1.1	Ū
78-87-5	1,2-Dichloropropane			1.1	U
10061-01-5	cis-1,3-Dichloroprope	ene		1.1	U
79-01-6	Trichloroethene			17	
71-43-2	Benzene			1.1	U
142-28-9	1,3-Dichloropropane	· .		1,1	U
124-48-1	Dibromochlorometha	ne	.'	1.1	Ü
10061-02-6	trans-1,3-Dichloropro			1.1	Ū
79-00-5	1,1,2-Trichloroethane			1.1	U
106-93-4	1,2-Dibromoethane	-		1.1	Ū
75-25-2	Bromoform			1.1	Ū
127-18-4	Tetrachloroethene		14 000	-1400	E_
630-20-6	1,1,1,2-Tetrachloroet			1.1	U
108-88-3	Toluene			12	
108-90-7	Chlorobenzene			1,1	U
100-41-4	Ethylbenzene			1.1	Ū
100-42-5	Styrene			1.1	Ū
108-38-3	m,p-Xylene		<u> </u>	1.1	Ū
95-47-6	o-Xylene			1.1	Ū
<u>96-18-4</u>	1,2,3-Trichloropropal	na	1		U

EPA NY049

3/90 M-NY049 STL Newburgh 315 Fullerion Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

EPA SAMPLE NO.

SB-25-61402 5-16FT

Lab Name: S	STL Nev	vburgh			Contract:	01012.01		`
Lab Code: 1	10142		Case No.:	•	SAS No	o.: S	DG No.: 212860	
Matrix: (soil/wa	ater)	SOIL	-		La	b Sample ID:	212860-017	
Sample wt/vol:		5.0	(g/ml)	G	La	b File ID:	W7784.D	
Level: (low/me	ed)	LOW			Da	ite Received:	06/18/02	
% Moisture: no	ot dec.	10			Da	ite Analyzed:	06/21/02	
GC Column: <u>D</u>	DB-624	ID:	<u>0.53</u> (m	m)	Dil	ution Factor:	1.0	
Soil Extract Vo	olume:		(uL)		So	il Aliquot Volu	ıme:	(uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG	Q .
98-82-8	Isopropylbenzene	1.1	U
108-86-1	Bromobenzene	1.1	U
103-65-1	n-Propylbenzene	1.1	U
79-34-5	1,1,2,2-Tetrachloroethane	1.1	U
95-49-8	2-Chlorotoluene	1.1	U
106-43-4	4-Chlorotoluene	1.1	U
108-67-8	1,3,5-Trimethylbenzene	1.1	U
98-06-6	tert-Butylbenzene	1.1	U
95-63-6	1,2,4-Trimethylbenzene	1.1	U
135-98-8	sec-Butylbenzene	1.1	U
541-73-1	1,3-Dichlorobenzene	1.1	U
99-87-6	4-Isopropyltoluene	1.1	U
106-46-7	1,4-Dichlorobenzene	1.1	U
95-50-1	1,2-Dichlorobenzene	1.1	U
104-51-8	n-Butylbenzene	1.1	U
96-12-8	1,2-Dibromo-3-chloropropane	1,1	U
87-68-3	Hexachlorobutadiene	1.1	<u> </u>
120-82-1	1,2,4-Trichlorobenzene	1.1	U
91-20-3	Naphthalene	1.1	·U
87-61-6	1,2,3-Trichlorobenzene	1.1	U

3/90

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.	

Lab Name:	STL Ne	wburgh:	Contract	: 01012.0		25-61402	5-6-
Lab Code:	10142	Case No.:	SAS N	lo.:	SDG No	212860)
Matrix: (soil/w	vater)	SOIL	L	ab Sample	ID: 21286	30-017	
Sample wt/vo	ol:	5.0 (g/ml) <u>G</u>		ab File ID:	<u>W778</u>	4.D	
Level: (low/m	ned)	LOW		ate Receiv	ed: <u>06/18</u>	/02	
% Moisture: r	not dec.	10		ate Analyz	ed: <u>06/21</u>	/02	-
GC Column:	DB-624	ID: <u>0.53</u> (mm)		ilution Fact	tor: <u>1.0</u>		
Soil Extract V	olume:	(uL)	. 8	oil Aliquot	Volume: _	· · · · · · · · · · · · · · · · · · ·	(uL)
Number TiCs	s found:	0	CONCENTRA (ug/L or ug/K				
1100	T						
CAS NO.		COMPOUND NAME	-	RT	EST. CO	NC.	Q

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMF	LE NO
-----	------	-------

*	
SB-26-61402	5-6 FT

Lab Name: STI	_ Newburgh	Contract:	01012.01	SB-26-61402	5-6 FT
Lab Code: 101	42 Case No.:	SAS No	o.: SD	G No 212860	
Matrix: (soil/wate	r) <u>SOIL</u>	Ļat	Sample ID: 2	212860-019	
Sample wt/vol:	5.0 (g/ml)	G Lat	b File ID:	<i>N</i> 7785.D	4 - 4
Level: (low/med)	LOW	Da	te Received: (06/18/02	
% Moisture: not o	lec. 12.5	Da	te Analyzed: (06/21/02	
GC Column: DB-	624 ID: <u>0.53</u> (m	nm) Dilu	ution Factor:	1.0	
Soil Extract Volur	ne: (uL)	Soi	il Aliquot Volum	ne:	(uL)
		CONCENTRAT	TION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	ÚG/KG	Q	

710110.	(49.2 9. 49.1	(9)		
75-71-8	Dichlorodifluoromethane		1.1	UJu
74-87-3	Chloromethane		1.1	U
74-83-9	Bromomethane		1.1	U
75-01-4	Vinyl Chloride		1.1	U
75-00-3	Chloroethane		1.1	U
75-69-4	Trichlorofluoromethane		1.1	. U
75-09-2	Methylene Chloride		1.1	U
75-35-4	1,1-Dichloroethene		1.1	U
75-34-4	1,1-Dichloroethane	-	1.1	U
590-20-7	2,2-Dichloropropane		1.1	U
156-60-5	trans-1,2-Dichloroethylene		1.1	U
540-59-0	cis-1,2-Dichloroethene		66	
67-66-3	Chloroform		1.1	U
563-58-6	1,1-Dichloropropene		1.1	U
107-06-2	1,2-Dichloroethane		1.1	U
74-97-5	Bromochloromethane		1.1	U
71-55-6	1,1,1-Trichloroethane	: :	1.1	U
56-23-5	Carbon Tetrachloride		1.1	U
74-95-3	Dibromomethane		1.1	U
75-27-4	Bromodichloromethane		1.1	Ú
78-87-5	1,2-Dichloropropane		1.1	Ū
10061-01-5	cis-1,3-Dichloropropene		1.1	U
79-01-6	Trichloroethene		65	
71-43-2	Benzene		1.1	Ū
142-28-9	1,3-Dichloropropane		1.1	U
124-48-1	Dibromochloromethane		1.1	Ū
10061-02-6	trans-1,3-Dichloropropene		1.1	U
79-00-5	1,1,2-Trichloroethane		1.1	U
106-93-4	1,2-Dibromoethane		1.1	U
75-25-2	Bromoform		1.1	U
127-18-4	Tetrachloroethene	20,000	1600	E
630-20-6	1,1,1,2-Tetrachloroethane		1.1	U
108-88-3	Toluene		14	
108-90-7	Chlorobenzene	ĺ	1.1	U
100-41-4	Ethylbenzene		1.1	U
100-42-5	Styrene		1.1	U
108-38-3	m,p-Xylene		1.1	U
95-47-6	o-Xylene		1.1	U
96-18-4	1,2,3-Trichloropropane	·		U

3/90 M-NY049 STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB-26-61402	5-6FT

Lab Name:	STL Nev	wburgh	Contract: 01012	.01
Lab Code:	10142	Case No.:	SAS No.:	SDG No.: 212860
Matrix: (soil/w	vater)	SOIL	Lab Samp	e ID: 212860-019
Sample wt/vo	ol:	5.0 (g/ml) G	Lab File ID	: <u>W7785.D</u>
Level: (low/m	ned)	LOW	Date Rece	ived: 06/18/02
% Moisture: r	not dec.	12.5	Date Analy	zed: 06/21/02
GC Column:	DB-624	ID: <u>0.53</u> (mm	Dilution Fa	ctor: 1.0
Soil Extract V	olume:	(uL)	Soil Aliquo	t Volume: (uL)
			CONCENTERATION UN	UTO.

CONCENTRATION UNITS:

		CONCENTRATION ONTO:					
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q			
98-82-8	Isopropylbenze	ne	1.1	U			
108-86-1	Bromobenzene		1.1	U			
103-65-1	n-Propylbenzer	ne	1.1	U			
79-34-5	1,1,2,2-Tetrach		1,1	U			
95-49-8	2-Chlorotoluene		1.1	U			
106-43-4	4-Chlorotoluene)	1.1	U			
108-67-8	1,3,5-Trimethyll	penzene	1.1	U			
98-06-6	tert-Butylbenze	ne	1.1	U			
95-63-6	1,2,4-Trimethyll	penzene	1.1	U			
135-98-8	sec-Butylbenze		1.1	U			
541-73-1	1,3-Dichlorober	izene	1.1	U			
99-87-6	4-Isopropyltolue	ene	1.1	U			
106-46-7	1,4-Dichlorober		1.1	U			
95-50-1	1,2-Dichlorober	rzene	1.1	U			
104-51-8	n-Butylbenzene)	1,1	U			
96-12-8	1,2-Dibromo-3-	chloropropane	1.1	U			
87-68-3	Hexachlorobuta		1.1	U			
120-82-1	1,2,4-Trichlorob	enzene	1.1	U			
91-20-3	Naphthalene		1.1	U			
87-61-6	1,2,3-Trichlorob	enzene	1.1	U			

M-NY049

NJDEP 73015

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EF	Α	SAI	MP	LE	Ν	O.
						\neg

							- 1,	CD 06 64400	
Lab Name:	STL Nev	wburgh	•		Contract:	01012.0		SB-26-61402	5-10-
Lab Code:	10142	<u>. </u>	Case No.:		_ SAS N	o.:	_ SDG	No.: 212860)
Matrix: (soil/wa	ater)	SOIL			. La	ab Sample	ID: <u>21</u>	2860-019	
Sample wt/vol	:	5.0	(g/ml)	G	La	ab File ID:	W	7785.D	_
Level: (low/me	ed)	LOW	··		· D	ate Receiv	ed: <u>06</u>	3/18/02	
% Moisture: no	ot dec.	12.5			D	ate Analyz	ed: 06	5/21/02	
GC Column: _	DB-624	ID:	<u>0.53</u> (m	m)	D	ilution Fact	tor: 1.0	0.	_
Soil Extract Vo	olume:		(uL)		S	oil Aliquot \	√olume	:	(uL)
Number TICs	found:	0			NCENTRA /L or ug/Kg	TION UNI			
CAS NO.		COME	POUND NAM	1E		RT	EST.	CONC.	Q

STL Newburgh is a part of Severn Trent Laboratories, Inc.

COMPOUND

VOLATILE ORGANICS ANALYSIS DATA SHEET

-	SAMPL	
	>4 M/P	- 1011

SB-27-61302	

Q

	V	OLATIL	E ORGANICS ANAL	1515 DATA	SHEET		6-7.5 FT
_ab Name: _9	STL Nev	vburgh	; (Contract:	01012.01	SB-27-61302	(% 1.2. 1
_ab Code: _1	10142		Case No.:	_ SAS No	ı.: S	DG No.: <u>212860</u>	
Matrix: (soil/wa	ater)	SOIL		Lat	b Sample ID:	212860-001	····
Sample wt/vol:		5.0	(g/ml) <u>G</u>	_ Lab	b File ID:	W7776.D	
_evel: (low/me	ed)	LOW		Da	te Received:	06/18/02	i
% Moisture: no	ot dec.	15.8	·	Da	te Analyzed:	06/20/02	
GC Column: <u>E</u>	DB-624	ID:	<u>0.53</u> (mm)	Dik	ution Factor:	1.0	
Soil Extract Vo	olume:		(uL)	Soi	il Aliquot Volu	me:	(uL)

CONCENTRATION UNITS:

UG/KG

(ug/L or ug/Kg)

0/10/110.	COM COND (agiz or aging)	30/10	•
75-71-8	Dichlorodifluoromethane	1.2	UJ.
74-87-3	Chloromethane	1.2	UJ
74-83-9	Bromomethane	1.2	U
75-01-4	Vinyl Chloride	1.2	U
75-00-3	Chloroethane	1.2	U
75-69-4	Trichlorofluoromethane	1.2	U
75-09-2	Methylene Chloride	1.2	U
75-35-4	1,1-Dichloroethene	1.2	U
75-34-4	1,1-Dichloroethane	1.2	U
590-20-7	2,2-Dichloropropane	1.2	Ü
156-60-5	trans-1,2-Dichloroethylene	1.2	U
540-59-0	cis-1,2-Dichloroethene	1.2	U
67-66-3	Chloroform	1.2	U
563-58-6	1,1-Dichloropropene	1.2	U
107-06-2	1,2-Dichloroethane	1.2	U
74-97-5	Bromochloromethane	1.2	U
71-55-6	1,1,1-Trichloroethane	1.2	U
56-23-5	Carbon Tetrachloride	1.2	Ú
74-95-3	Dibromomethane	1.2	U
75-27-4	Bromodichloromethane	1.2	U
78-87-5	1,2-Dichloropropane	1.2	U
10061-01-5	cis-1,3-Dichloropropene	1.2	U
79-01-6	Trichloroethene	1.2	U
71-43-2	Benzene	1.2	U
142-28-9	1,3-Dichloropropane	1.2	U
124-48-1	Dibromochloromethane	1.2	U
10061-02-6	trans-1,3-Dichloropropene	1.2	U
79-00-5	1,1,2-Trichloroethane	1.2	U
106-93-4	1,2-Dibromoethane	1.2	U
75-25-2	Bromoform	1.2	U
127-18-4	Tetrachloroethene	1.2	IJ
630-20-6	1,1,1,2-Tetrachloroethane	1.2	U
108-88-3	Toluene	5.9	Jo
108-90-7	Chlorobenzene	1.2	U
100-41-4	Ethylbenzene	1.2	U
100-42-5	Styrene	1.2	U
108-38-3	m,p-Xylene	1.2	U
95-47-6	o-Xvlene	1.2	U
96-18-4	1,2,3-Trichloropropane Stt Newburgh is a part of Severn Trent Lai	1.2	U

NYSDOH 10142

CAS NO.

NJDEP 73015 CTDOHS PH-0554

FORM I VOA

EPA NY049

3/90 M-NY049

PA 68-378

STL Newburgh 315 Fullerion Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (846) 562-0841

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB-27-61302 6- 7.5 FT

Lab Name:	STL Nev	wburgh	·	Contract: 01012.01		لــ
Lab Code:	10142	Case	• No.:	SAS No.:	SDG No.: 212860	_
Matrix: (soil/w	ater)	SOIL		Lab Sample II	D: 212860-001	
Sample wt/vo	1:	5.0	(g/ml) G	Lab File ID:	W7776.D	
Level: (low/m	ned)	LOW		Date Receive	d: <u>06/18/02</u>	
% Moisture: n	ot dec.	15.8	n, and the formula fin	Date Analyze	d: <u>06/20/02</u>	
GC Column:	DB-624	ID: <u>0.53</u>	3 (mm)	Dilution Facto	r: <u>1.0</u>	
Soil Extract V	olume:		(uL)	Soil Aliquot Vo	olume: (uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG	· · · · ·	Q
98-82-8	Isopropylbenzene		1.2	U
108-86-1	Bromobenzene		1.2	U
103-65-1	n-Propylbenzene		1.2	U
79-34-5	1,1,2,2-Tetrachloroethane		1.2	U
95-49-8	2-Chlorotoluene	i	1.2	U
106-43-4	4-Chlorotoluene		1.2	U
108-67-8	1,3,5-Trimethylbenzene		1.2	U
98-06-6	tert-Butylbenzene		1.2	U
95-63-6	1,2,4-Trimethylbenzene		1.2	U
135-98-8	sec-Butylbenzene		1.2	U
541-73-1	1,3-Dichlorobenzene		1.2	U
99-87-6	4-Isopropyltoluene		1.2	U
106-46-7	1,4-Dichlorobenzene		1.2	U
95-50-1	1,2-Dichlorobenzene		1.2	U
104-51-8	n-Butylbenzene		1.2	U
96-12-8	1,2-Dibromo-3-chloropropane		1.2	U
87-68-3	Hexachlorobutadiene		1.2	Ų
120-82-1	1,2,4-Trichlorobenzene		1.2	U
91-20-3	Naphthalene		1.2	U
87-61-6	1,2,3-Trichlorobenzene		1.2	U

M-NY049

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	STL Ne	wburgh	Contract:	01012.0	SB-27-61302	2 6-7.
Lab Code:	10142	Case No.:	SAS No	o.:	_ SDG No.: 21286	30
Matrix: (soil/w	ater)	SOIL	La	b Sample	ID: <u>212860-001</u>	
Sample wt/vol	l:	5.0 (g/ml) G	La	b File ID:	W7776.D	
Level: (low/m	ned)	LOW	Da	te Receive	ed: 06/18/02	<u> </u>
% Moisture: n	ot dec.	15.8	Da Da	ite Analyze	ed: 06/20/02	
GC Column:	DB-624	ID: <u>0.53</u> (mm)	Dil	ution Fact	or: <u>1.0</u>	_
Soil Extract V	olume:	(uL)	So	il Aliquot V	/olume:	_ (uL)
	•		CONCENTRAT			
Number TICs	found:	1	(ug/L or ug/Kg)	UG/I	KG	
CAS NO.		COMPOUND NAME		RT	EST. CONC.	Q
1 000071	23.8	1.Propagal		8.48	12	-141

NYSDOH 10142

COMPOUND

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPL	E NO	
-----	-------	------	--

SB-27D-61302	6-7.5 FT
0D-21D-01002	יי שן

Q

Lab Name: §	STL New	vburgh		Contract: 01012.01	L	
Lab Code:	10142		Case No.:	SAS No.:	SDG No.: 212860	
Matrix: (soil/wa	ater)	SOIL		Lab Sample I	D: 212860-004	
Sample wt/vol:	•	5.0	(g/ml) <u>G</u>	Lab File ID:	W7777.D	
Level: (low/me	ed)	LOW		Date Receive	ed: <u>06/18/02</u>	
% Moisture: no	ot dec.	17.5	·	Date Analyze	d: <u>06/20/02</u>	
GC Column: <u>E</u>	DB-624	ID:	0.53 (mm)	Dilution Facto	or: 1.0	
Soil Extract Vo	olume:		(uL)	Soil Aliquot V	olume:	(uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg)

UG/KG

75-71-8	Dichlorodifluoromethane	1.2	UJL
74-87-3	Chloromethane	5.0	JEJ
74-83-9	Bromomethane	1.2	Ü
75-01-4	Vinyl Chloride	1.2	U
75-00-3	Chloroethane	1.2	U
75-69-4	Trichlorofluoromethane	1.2	U
75-09-2	Methylene Chloride	1.2	U
75-35-4	1,1-Dichloroethene	1.2	U
75-34-4	1,1-Dichloroethane	1.2	U
590-20-7	2,2-Dichloropropane	1.2	U
156-60-5	trans-1,2-Dichloroethylene	1.2	U
540-59-0	cis-1,2-Dichloroethene	1.2	U
67-66-3	Chloroform	1.2	U
563-58-6	1,1-Dichloropropene	1.2	Ų
107-06-2	1,2-Dichloroethane	1.2	U
74-97-5	Bromochloromethane	1.2	U
71-55-6	1,1,1-Trichloroethane	· 1.2	U
56-23-5	Carbon Tetrachloride	1.2	U
74-95-3	Dibromomethane	1.2	U
75-27-4	Bromodichloromethane	1.2	U
78-87-5	1,2-Dichloropropane	1.2	U
10061-01-5	cis-1,3-Dichloropropene	1.2	U
79-01-6	Trichloroethene	1.2	U
71-43-2	Benzene	1.2	U
142-28-9	1,3-Dichloropropane	1.2	U
124-48-1	Dibromochloromethane	1.2	U
10061-02-6	trans-1,3-Dichloropropene	1.2	U
79-00-5	1,1,2-Trichloroethane	1.2	U
106-93-4	1,2-Dibromoethane	1.2	. U
75-25-2	Bromoform	1.2	U
127-18-4	Tetrachloroethene	1.2	. U
630-20-6	1,1,1,2-Tetrachloroethane	1.2	: U
108-88-3	Toluene	2.7	Jo
108-90-7	Chlorobenzene	1.2	U
100-41-4	Ethylbenzene	1.2	, U
100-42-5	Styrene	1.2	: U
108-38-3	m,p-Xylene	1.2	U
95-47-6	o-Xylene	1.2	Ū
<u>96-18-4</u>	1,2,3-Trichloropropane STL Newburgh is a part of Severn Trent Lab	1.2	· U

CAS NO.

FORM I VOA CTDOHS PH-0564

3/90 M-NY049

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB-27D-61302

Lab Name:	STL Nev	wburgh			Contract:	01012.01			
Lab Code:	10142		Case No.:		SAS No	o.: s	DG No.:	212860	
Matrix: (soil/w	vater)	SOIL	MT-Flattering		Lal	b Sample ID:	212860-	004	···········
Sample wt/vo	ol:	5.0	(g/ml)	<u>G</u>	Lal	b File ID:	W7777.	<u> </u>	
Level: (low/m	ned)	LOW			Da	te Received:	06/18/02	<u> </u>	
% Moisture: r	not dec.	17.5	· ·		Da	te Analyzed:	06/20/02	?	
GC Column:	DB-624	ID:	<u>0.53</u> (m	ım)	Dile	ution Factor:	1.0		
Soil Extract V	olume:		(uL)		So	il Aliquot Volu	ıme:		(uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG		Q
98-82-8	Isopropylbenzene	<u> </u>		1.2	U
108-86-1	Bromobenzene		i	1.2	U
103-65-1	n-Propylbenzene			1.2	U
79-34-5	1,1,2,2-Tetrachloroe	ethane		1.2	U
95-49-8	2-Chlorotoluene			1.2	U
106-43-4	4-Chlorotoluene			1.2	U
108-67-8	1,3,5-Trimethylbenz	ene		1.2	U
98-06-6	tert-Butylbenzene			1.2	U
95-63-6	1,2,4-Trimethylbenz	ene		1.2	U
135-98-8	sec-Butylbenzene			1.2	U
541-73-1	1,3-Dichlorobenzen	е		1.2	U
99-87-6	4-Isopropyltoluene			1.2	U
106-46-7	1,4-Dichlorobenzen	е		1.2	U
95-50-1	1,2-Dichlorobenzen	e		1.2	U
104-51-8	n-Butylbenzene			1.2	U
96-12-8	1,2-Dibromo-3-chlor	ropropane		1.2	U
87-68-3	Hexachlorobutadier			1.2	U
120-82-1	1,2,4-Trichlorobenz	ene	1	1.2	U
91-20-3	Naphthalene			1.2	U
87-61-6	1,2,3-Trichlorobenz	ene	2	1.2	U

PA 68-378

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SB-27D-61302	6-7.5F
--------------	--------

Lab Name: STL Ne	wburgh	Contract: 01012.01	SB-27D-61302	
Lab Code: 10142	Case No.:	SAS No.:	SDG No.: 212860	
Matrix: (soil/water)	SOIL	Lab Sample II	D: <u>212860-004</u>	···
Sample wt/vol:	5.0 (g/ml) G	Lab File ID:	W7777.D	•
Level: (low/med)	LOW	Date Receive	d: <u>06/18/02</u>	
% Moisture: not dec.	17.5	Date Analyze	d: <u>06/20/02</u>	
GC Column: DB-624	ID: <u>0.53</u> (mm)	Dilution Facto	r: <u>1.0</u>	
Soil Extract Volume:	(uL)	Soil Aliquot V	olume:	(uL)
		CONCENTRATION UNIT	•	·
Number TICs found:	1	(ug/L or ug/Kg) <u>UG/K</u>	<u>G</u>	
CAS NO.	COMPOUND NAME	RT	EST. CONC.	Q C
4 000074 22 0	1 Proposal	9.40	6	- Ω - IA

EPA NY049

1A

COMPOUND

VOLATILE ORGANICS ANALYSIS DATA SHEET

FPA	SAMPL	F NO

SB-28-61302 7-8 FT	SB-28-61302	7-	8	FT
--------------------	-------------	----	---	----

Lab Name:	STL Ne	wburgh	Contract: 01012.01	05 20 01002
Lab Code:	10142	Case No.:	SAS No.: S	SDG No.: 212860
Matrix: (soil/v	vater)	SOIL	Lab Sample ID:	212860-005
Sample wt/vo	ol:	5.0 (g/ml) G	Lab File ID:	W7792.D
Level: (low/n	ned)	LOW	Date Received:	06/18/02
% Moisture: ı	not dec.	10.7	Date Analyzed:	06/21/02
GC Column:	DB-624	ID: <u>0.53</u> (mm)	Dilution Factor:	1.0
Soil Extract V	/olume:	(uL)	Soil Aliquot Volu	ume: (uL)

CONCENTRATION UNITS:

UG/KG

(ug/L or ug/Kg)

75-71-8	Dichlorodifluoromethane	1.1	UJL
74-87-3	Chloromethane	8.1	
74-83-9	Bromomethane	1.1	U
75-01-4	Vinyl Chloride	1.1	U
75-00-3	Chloroethane	1.1	U
75-69-4	Trichlorofluoromethane	1.1	U
75-09-2	Methylene Chloride	1.1	U
75-35-4	1,1-Dichloroethene	1.1	U
75-34-4	1,1-Dichloroethane	1.1	U
590-20-7	2,2-Dichloropropane	1.1	U
156-60-5	trans-1,2-Dichloroethylene	1.1	U
540-59-0	cis-1,2-Dichloroethene	35	
67-66-3	Chloroform	1.1	U
563-58-6	1,1-Dichloropropene	1.1	U
107-06-2	1,2-Dichloroethane	1.1	U
74-97-5	Bromochloromethane	1.1	U
71-55-6	1,1,1-Trichloroethane	1.1	U
56-23-5	Carbon Tetrachloride	1.1	U
74-95-3	Dibromomethane	1.1	U
75-27-4	Bromodichloromethane	1.1	U
78-87-5	1,2-Dichloropropane	1.1	U
10061-01-5	cis-1,3-Dichloropropene	1.1	U
79-01-6	Trichloroethene	8.4	
71-43-2	Benzene	1.1	U
142-28-9	1,3-Dichloropropane	. 1.1	U
124-48-1	Dibromochloromethane	1.1	U
10061-02-6	trans-1,3-Dichloropropene	1.1	U
79-00-5	1,1,2-Trichloroethane	1.1	U
106-93-4	1,2-Dibromoethane	1.1	U
75-25-2	Bromoform	1.1	U
127-18-4	Tetrachloroethene	0.6	10
630-20-6	1,1,1,2-Tetrachloroethane	1.1	Ū
108-88-3	Toluene	2.0	Jo
108-90-7	Chlorobenzene	1.1	U
100-41-4	Ethylbenzene	1.1	U
100-42-5	Styrene	1.1	U
108-38-3	m,p-Xylene	1.1	Ų
95-47-6	o-Xylene	1.1	U
96-18-4	1,2,3-Trichloropropane	1.1	U

SEVERN TRENT SERVICES

CAS NO.

FORM I VOA

3/90

M-NY049

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPL	E NO

	SB-28	-61302	7-	8 FT
- D(3 No.:	212860		•

Lab Name:	STL Ne	wburgh		Contract: <u>01012.01</u>		
Lab Code:	10142		Case No.:	SAS No.: S	SDG No.: 212860	
Matrix: (soil/w	vater)	SOIL		Lab Sample ID:	212860-005	
Sample wt/vo	ol:	5.0	(g/ml) <u>G</u>	Lab File ID:	W7792.D	•
Level: (low/m	ned)	LOW	•	Date Received:	06/18/02	
% Moisture: r	not dec.	10.7	·	Date Analyzed:	06/21/02	
GC Column:	DB-624	ID: <u>(</u>	0.53 (mm)	Dilution Factor:	1.0	
Soil Extract V	olume:		(uL)	Soil Aliquot Volu	ume:	(uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG		Q
98-82-8	Isopropylbenzene		!	1.1	U
108-86-1	Bromobenzene			1.1	U
103-65-1	n-Propylbenzene			1.1	Ü
79-34-5	1,1,2,2-Tetrachioro	ethane	.	1.1	U
95-49-8	2-Chlorotoluene			1.1	U
106-43-4	4-Chlorotoluene			1.1	U
108-67-8	1,3,5-Trimethylbena	zene		1.1	U
98-06-6	tert-Butylbenzene		ļ	1.1	Ū
95-63-6	1,2,4-Trimethylben	rene	. [1.1	U
135-98-8	sec-Butylbenzene			1.1	U
541-73-1	1,3-Dichlorobenzen	е		1.1	U
99-87-6	4-isopropyltoluene			1.1	U
106-46-7	1,4-Dichlorobenzen	е		1.1	U
95-50-1	1,2-Dichlorobenzen	е		1.1	U
104-51-8	n-Butylbenzene			1.1	U
96-12-8	1,2-Dibromo-3-chlo	ropropane		1.1	U
87-68-3	Hexachlorobutadier			1.1	U
120-82-1	1,2,4-Trichlorobenz	ene		1.1	U
91-20-3	Naphthalene	·		1.1	U
87-61-6	1,2,3-Trichlorobenz	ene		1.1	U

NJDEP 73015

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMP	'LE	NO.
,			

		IENIA	MIVELY IDE	ATTED COMP	O014D2	OD 20 6420	2 7-8F
Lab Name:	STL Ne	wburgh		Contrac	t: <u>01012</u>	SB-28-6130	12 /- 8 /-
Lab Code:	10142		Case No.:	SAS	No.:	SDG No.: 2128	60
Matrix: (soil/	water)	SOIL			Lab Samp	le ID: 212860-005	
Sample wt/v	ol:	5.0	(g/ml) <u>G</u>		Lab File I	D: <u>W7792.D</u>	
Level: (low/ı	med)	LOW			Date Rece	eived: 06/18/02	.
% Moisture:	not dec.	10.7			Date Anal	yzed: 06/21/02	
GC Column:	DB-624	ID: _	0.53 (mm)		Dilution Fa	actor: 1.0	
Soil Extract \	Volume:	~	(uL)		Soil Aliquo	ot Volume:	(uL)
				CONCENTR	ATION UI	NITS:	
Number TIC	s found:	1		(ug/L or ug/ł	(g) <u>U</u>	G/KG	
CAS NO.		COMPO	OUND NAME		RT	EST. CONC.	Q

8.51

SEVERN TRENT SERVICES

STL Newburgh is a part of Severn Trent Laboratories, Inc.

000071-23-8

1-Propanol

1A

EPA SAMPLE NO.

		101 ATH F 01	~~ * * * * * * *	ALAINZOLO	-					$\overline{}$
	\	OLATILE OF	RGANICS A	ANALYSIS	S DATA	ASHE	E۱	TB-61	302	
Lab Name:	.ab Name: STL Newburgh .ab Code: 10142 Case No.:			Co	ntract:	010	12.01			
Lab Code:					SAS Ņ	o.:	s	DG No.:	212860	ı
Matrix: (soil/	water)	WATER			La	ab San	ple ID:	212860-	31	·
Sample wt/v	ol:	. 5.0	(g/ml) ML	<u>. </u>	La	ab File	ID:	W7790.	D	
Level: (low/	med)	LOW	•		Da	ate Re	ceived:	06/18/02	2	
% Moisture: not dec.			Date Analyzed: (06/21/02	06/21/02				
GC Column: DB-624		ID: 0.53	3 (mm)		Di	lution	Factor:	1.0		
Soil Extract	Volume:	(uL)			Soil Aliquot Volur			me:	me:	
				CONCE	NTRA	TION	UNITS:			
CAS N	٥.	СОМРО	UND	(ug/L or			UG/L		Q	
75-71	-8	Dichlor	odifluorome	ethane			<u> </u>	1.0	UJ	ĪL i
74-87	-3	Chloro	methane					1.0	U	
74-83		Bromo	methane					1.0	U	
75-01			hloride					1.0	U	

75-71-8	Dichlorodifluoromethane	1.0	ՍՄև
74-87-3	Chloromethane	1.0	U
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	Ų
75-35-4	1,1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.0	U.
540-59-0	cis-1,2-Dichloroethene	1.0	U
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	Ų
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	1.0	U
71-43-2	Benzene	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
124-48-1	Dibromochloromethane	1.0	Ū
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	1.0	U
127-18-4	Tetrachloroethene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	Ū
100-41-4	Ethylbenzene	1.0	Ū
100-42-5	Styrene	1.0	Ū
108-38-3	m,p-Xylene	1.0	Ŭ
95-47-6	o-Xylene	1.0	Ū
_96-18-4	1,2,3-Trichloropropane STL Newburgh is a part of Severn Trent Lat		Ū

3/90 M-NY049 STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

(uL)

ab Name:	STL Ne	wburgh		_ Contract: 01012.0	Contract: 01012.01		
.ab Code:	10142	Case	e No.:	SAS No.:		OG No.: 212860	
//atrix: (soil/v	vater)	WATER		Lab Sample	ID:	212860-31	
Sample wt/vo	ol:	5.0	(g/ml) ML	Lab File ID:	· <u>}</u>	W7790.D	
evel: (low/n	ned)	LOW		Date Receiv	ed: 6	06/18/02	
% Moisture: r	not dec.	· 		Date Analyz	ed: (06/21/02	
GC Column:	DB-624	ID: <u>0.53</u>	3_ (mm)	Dilution Fact	tor:	1.0	

CONCENTRATION UNITS:

Soil Aliquot Volume:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
98-82-8	Isopropylbenzene			1.0	U
108-86-1	Bromobenzene			1.0	U
103-65-1	n-Propylbenzene			1.0	U
79-34-5	1,1,2,2-Tetrachlord	ethane		1.0	U
95-49-8	2-Chlorotoluene			1.0	U
106-43-4	4-Chlorotoluene			1.0	U
108-67-8	1,3,5-Trimethylben	zene	İ	1.0	U
98-06-6	tert-Butylbenzene			1.0	U
95-63-6	1,2,4-Trimethylben	zene		1.0	U
135-98-8	sec-Butylbenzene			1.0	U
541-73-1	1,3-Dichlorobenze	ne		1.0	U
99-87-6	4-Isopropyltoluene			1.0	U
106-46-7	1,4-Dichlorobenze	ne		1.0	U
95-50-1	1,2-Dichlorobenzer	ne		1.0	U
104-51-8	n-Butylbenzene			1.0	U
96-12-8	1,2-Dibromo-3-chlo	propropane		1.0	U
87-68-3	Hexachlorobutadie	ne		1.0	U
120-82-1	1,2,4-Trichloroben:	zene .		1.0	U
91-20-3	Naphthalene			1.0	U
87-61-6	1,2,3-Trichloroben:	zene		1.0	U

Soil Extract Volume:

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMP	LEP	10.

-						ITD	-61302	
Lab Name:	STL Ne	wburgh	·	Contract	: <u>01012.</u>		-01302	
Lab Code:	10142	Cas	e No.:	SAS	No.:	SDG No	o.: <u>2128</u>	360
Matrix: (soil/v	water)	WATER		L	ab Sample	∍ ID: 2128	60-31	
Sample wt/vo	ol:	5.0	(g/ml) ML	L	ab File ID:	W779	30.D	
Level: (low/r	ned)	LOW			oate Recei	ved: <u>06/18</u>	3/02	
% Moisture:	not dec.		· .	[ate Analy:	zed: 06/21	/02	
GC Column:	DB-624	ID: <u>0.5</u>	3 (mm)	· C	Dilution Fac	ctor: 1.0		
Soil Extract \	/olume:		_ (uL)	S	Soil Aliquot	Volume:		(uL)
Number TICs	s found:	0	_ ·	CONCENTRA (ug/L or ug/K				
CAS NO.		COMPOU	ND NAME		RT	EST. CC	NC.	Q

NJDEP 73015

1A

(uL)

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

(uL)

RS-SB-61302 Lab Name: STL Newburgh Contract: 01012.01 Lab Code: SAS No.: 10142 Case No.: SDG No.: 212860 Matrix: (soil/water) WATER Lab Sample ID: 212860-29 Sample wt/vol: 5.0 (g/ml) ML Lab File ID: W7788.D Level: (low/med) LOW Date Received: 06/18/02 % Moisture: not dec. Date Analyzed: 06/21/02 GC Column: DB-624 ID: 0.53 Dilution Factor: 1.0 (mm)

CONCENTRATION UNITS:

Soil Aliquot Volume:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q.
75-71-8	Dichlorodifluoromethane	1.0	UJı
74-87-3	Chloromethane	1.0	U_
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	Ų
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.0	Ų
540-59-0	cis-1,2-Dichloroethene	1.0	U
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	Ū
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	Ų
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	1.0	U
71-43-2	Benzene	1.0	Ū
142-28-9	1,3-Dichloropropane	1.0	Ù
124-48-1	Dibromochloromethane	1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	1.0	U
127-18-4	Tetrachloroethene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
100-42-5	Styrene	1.0	U
108-38-3	m,p-Xylene	1.0	Ū
95-47-6	o-Xylene	1.0	Ū
96-18-4	1,2,3-Trichloropropane STL Newburgh is a part of Severn Tre		U

SEVERN TRENT

NYSDOH 10142

NJDEP 73015

Soil Extract Volume:

FORM I VOA
CTDOHS PH-0554 EPA NY049

3/90 PA 68-378 M-NY049 STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

RS-SB-61302

Lab Name: STL New!		wburgh	Contract: 01012.01	_
Lab Code:	10142	Case No.:	SAS No.: S	DG No.: 212860
Matrix: (soil/w	vater)	WATER	Lab Sample ID:	212860-29
Sample wt/vo	ol:	5.0 (g/ml) ML.	Lab File ID:	W7788.D
Level: (low/m	ned)	LOW	Date Received:	06/18/02
% Moisture: r	not dec.		Date Analyzed:	06/21/02
GC Column:	DB-624	ID: <u>0.53</u> (mm)	Dilution Factor:	1.0
Soil Extract V	olume:	(uL)	Soil Aliquot Volu	ime: (uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
98-82-8	Isopropylbenze	ne		1.0	U
108-86-1	Bromobenzene			1.0	U
103-65-1	n-Propylbenzen	е		1.0	U
79-34-5	1,1,2,2-Tetrach	oroethane		1.0	U
95-49-8	2-Chlorotoluene)		1.0	U
106-43-4	4-Chlorotoluene)		1.0	U
108-67-8	1,3,5-Trimethyll	penzene		1.0	U
98-06-6	tert-Butylbenzer	пе		1.0	U
95-63-6	1,2,4-Trimethyll	enzene		1.0	U
135-98-8	sec-Butylbenze	ne		1.0	U
541-73-1	1,3-Dichloroben	zene		1.0	U
99-87-6	4-Isopropyltolue	ene		1.0	U
106-46-7	1,4-Dichloroben	zene		1.0	U
95-50-1	1,2-Dichloroben	zene		1.0	U
104-51-8	n-Butylbenzene			1.0	U
96-12-8	1,2-Dibromo-3-c	chloropropane		1.0	U
87-68-3	Hexachlorobuta	diene		1.0	U
120-82-1	1,2,4-Trichlorob	enzene		1.0	U
91-20-3	Naphthalene			1.0	U
87-61-6	1,2,3-Trichlorob	enzene		1.0	U

PA 68-378

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

JN_T

RS-SB-61302 STL Newburgh Lab Name: Contract: 01012.01 Lab Code: 10142 Case No.: SAS No.: SDG No.: 212860 Matrix: (soil/water) WATER Lab Sample ID: 212860-29 Sample wt/vol: 5.0 (g/ml) ML Lab File ID: W7788.D Level: (low/med) LOW Date Received: 06/18/02 % Moisture: not dec. Date Analyzed: 06/21/02 GC Column: DB-624 ID: 0.53 Dilution Factor: 1.0 Soil Extract Volume: Soil Aliquot Volume: (uL) **CONCENTRATION UNITS:** (ug/L or ug/Kg) UG/L Number TICs found: CAS NO. **COMPOUND NAME** RT EST. CONC. Q

8.51

1-Propanol

000071-23-8

NYSDOH 10142

Fax (845) 562-0841

1A

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

RS-SB-61402

Lab Name:	STL Nev	vburgh			Contract:	01012.01	_ 110 05 01,02	
Lab Code:	10142	Cas	e No.:		SAS No	o.: S	DG No.: 212860)
Matrix: (soil/w	vater)	WATER	_		Lal	b Sample ID:	212860-30	
Sample wt/vo	ol:	5.0	(g/ml)	ML	Lai	b File ID:	W7789.D	_
Level: (low/m	ned)	LOW	_		Da	te Received:	06/18/02	_
% Moisture: r	not dec.		~~~		Da	te Analyzed:	06/21/02	_
GC Column:	DB-624	ID: <u>0.5</u>	<u>3</u> (m	ım)	Dil	ution Factor:	1.0	. .
Soil Extract V	olume:		_ (uL)		So	il Aliquot Volu	ıme:	_ (uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane	1.0	UJL
74-87-3	Chloromethane	1.0	U
74-83-9	Bromomethane	1.0	U
75-01-4	Vinyl Chloride	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-09-2	Methylene Chloride	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
75-34-4	1,1-Dichloroethane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	U
156-60-5	trans-1,2-Dichloroethylene	1.0	U
540-59-0	cis-1,2-Dichloroethene	1.0	U
67-66-3	Chloroform	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
107-06-2	1,2-Dichloroethane	1.0	Ų
74-97-5	Bromochloromethane	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	Ų
56-23-5	Carbon Tetrachloride	1.0	U
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
79-01-6	Trichloroethene	1.0	U
71-43-2	Benzene	1.0	U
142-28-9	1,3-Dichloropropane	1.0	Ū
124-48-1	Dibromochloromethane	1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	Ū
106-93-4	1,2-Dibromoethane	1.0	U
75-25-2	Bromoform	1.0	U
127-18-4	Tetrachloroethene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
108-88-3	Toluene	1.0	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	1.0	U
100-42-5	Styrene	1.0	U
108-38-3	m,p-Xylene	1.0	U
95-47-6	o-Xylene	1.0	Ū
96-18-4	1,2,3-Trichloropropane STL Newburgh is a part of Severn Trent		U

FORM I VOA

3/90

NYSDOH 10142 NJDEP 73015 CTDOHS PH-0554

EPA NY049

M-NY049

PA 68-378

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

RS-SB-61402

Lab Name: STL Nev Lab Code: 10142		wburgh	Contract: 01012.01		
		Case No.:	SAS No.: SI	OG No.: 212860	
Matrix: (soil/v	vater)	WATER	Lab Sample ID:	212860-30	
Sample wt/vo	ol:	5.0 (g/ml) ML	Lab File ID:	W7789.D	
Level: (low/n	ned)	LOW	Date Received:	06/18/02	
% Moisture:	not dec.		Date Analyzed:	06/21/02	
GC Column:	DB-624	ID: <u>0.53</u> (mm)	Dilution Factor:	1.0	
Soil Extract V	/olume:	(uL)	Soil Aliquot Volur	ne: (uL	

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
98-82-8	Isopropylbenzene	1.0	U ·
108-86-1	Bromobenzene	1.0	U
103-65-1	n-Propylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	<u> </u>
95-50-1	1,2-Dichlorobenzene	1.0	U
104-51-8	n-Butylbenzene	1.0	<u> </u>
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
91-20-3	Naphthalene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U

STL Newburgh is a part of Severn Trent Laboratories, Inc.

1E

Case No .:

ID: 0.53 (mm)

(g/ml) ML

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

RS-SB-61402 Contract: 01012.01 SDG No.: 212860 Lab Sample ID: 212860-30 Lab File ID: W7789.D Date Received: 06/18/02 Date Analyzed: 06/21/02

Dilution Factor: 1.0

Soil Aliquot Volume:

CONCENTRATION UNITS:

SAS No.:

(ug/L or ug/Kg) UG/L

COMPOUND NAME

Lab Name:

Lab Code:

Matrix: (soil/water) Sample wt/vol:

Level: (low/med)

% Moisture: not dec.

GC Column: DB-624

Soil Extract Volume:

Number TICs found:

CAS NO.

STL Newburgh

WATER

5.0

LOW

10142

RT

EST. CONC.

Q

(uL)

PA 68-378

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SB17-5-6

Lab Name:	STL New	/burgh			Contract:	01012.01	
Lab Code:	10142	C	ase No.:		SAS No	o.: S	DG No.: 212860
Matrix: (soil/w	vater)	SOIL	· 		La	b Sample ID:	212860-024
Sample wt/vo	ol:	30.0	(g/ml) <u>G</u>		La	b File ID:	E26955.D
Level: (low/n	ned)	LOW	· · · · ·		Da	ate Received:	6/18/02
% Moisture:	21.9	d	ecanted:(Y/N)	N	Da	ate Extracted:	6/27/02
Concentrated	I Extract √	/olume:	1000 (uL)		Da	ate Analyzed:	6/28/02
Injection Volu	ıme: 2.0) (uL)			Dil	ution Factor:	1.0
GPC Cleanup	o: (Y/N)	N	pH: <u>7.08</u>				

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
111-44-4	bis(2-Chloroethyl)eth	er	430	U
108-95-2	Phenol		430	UJL
95-57-8	2-Chlorophenol		430	Մյւ
541-73-1	1,3-Dichlorobenzene		430	U
106-46-7	1,4-Dichlorobenzene		430	UJL
95-50-1	1,2-Dichlorobenzene		430	U
100-51-6	Benzyl alcohol		430	U
108-60-1	2,2'-oxybis(1-Chlorop	propane)	430	U
95-48-7	2-Methylphenol		430	U
67-72-1	Hexachloroethane		430	U
621-64-7	N-Nitroso-di-n-propy	amine	430	UJL
106-44-5	4-Methylphenol		430	U
98-95-3	Nitrobenzene		430	U
78-59-1	Isophorone		430	U
88-75-5	2-Nitrophenol	:	430	U
105-67-9	2,4-Dimethylphenol		430	U
111-91-1	bis(2-Chloroethoxy)n	nethane	430	U
120-83-2	2,4-Dichlorophenol		430	Ų
120-82-1	1,2,4-Trichlorobenze	ne	430	Մյլ
91-20-3	Naphthalene		430	U
106-47-8	4-Chloroaniline		430	UJc
87-68-3	Hexachlorobutadiene		430	U
59-50-7	4-Chloro-3-methylph	enol	430	UJL
91-57-6	2-Methylnaphthalene		430	U
77-47-4	Hexachlorocyclopeni	adiene	430	UJc
88-06-2	2,4,6-Trichloropheno	1	430	Ų
95-95-4	2,4,5-Trichloropheno		430	U
91-58-7	2-Chloronaphthalene		430	U
88-74-4	2-Nitroaniline		1100	U
208-96-8	Acenaphthylene		430	U
131-11-3	Dimethylphthalate		430	U
606-20-2	2,6-Dinitrotoluene		430	U
83-32-9	Acenaphthene		430	UJL
99-09-2	3-Nitroaniline	•	1100 ;	UJc
51-28-5	2,4-Dinitrophenol		1100	UJc
132-64-9	Dibenzofuran		430	U
121-14-2	2,4-Dinitrotoluene	-	430	UJL

STL Newburgh is a part of Severn Trent Laboratories, Inc.

1C

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB17:5-6' STL Newburgh Lab Name: Contract: 01012.01 Lab Code: 10142 Case No.: SAS No.: SDG No.: 212860 SOIL Matrix: (soil/water) Lab Sample ID: 212860-024 E26955.D Sample wt/vol: 30.0 Lab File ID: (g/ml) G Level: (low/med) LOW Date Received: 6/18/02 % Moisture: 21.9 decanted:(Y/N) Date Extracted: 6/27/02 Ν Concentrated Extract Volume: 1000 Date Analyzed: 6/28/02 Injection Volume: 2.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) pH: 7.08

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/l	or ug/Kg) UG/KG	. Q
100-02-7	4-Nitrophenol	1100	UJL, UJC
86-73-7	Fluorene	430	U '
7005-72-3	4-Chlorophenyl-phenylether	430	U
84-66-2	Diethylphthalate	430	U
100-01-6	4-Nitroaniline	1100	U
534-52-1	4,6-Dinitro-2-methylphenol	1100	UTc
86-30-6	n-Nitrosodiphenylamine (1)	430	U
101-55-3	4-Bromophenyl-phenylether	430	U
118-74-1	Hexachlorobenzene	430	U
87-86-5	Pentachlorophenol	1100	UJL, UTC
85-01-8	Phenanthrene	430	U
120-12-7	Anthracene	430	U
84-74-2	Di-n-butylphthalate	430	U
206-44-0	Fluoranthene	430	U
129-00-0	Pyrene	430	U ·
85-68-7	Butylbenzylphthalate	430	U
91-94-1	3,3'-Dichlorobenzidine	850	U
56-55-3	Benzo(a)anthracene	430	U
218-01-9	Chrysene	430	U
117-81-7	bis(2-Ethylhexyl)phthalate	430	U
117-84-0	Di-n-octylphthalate	430	UJC
205-99-2	Benzo(b)fluoranthene	430	U
207-08-9	Benzo(k)fluoranthene	430	U
50-32-8	Benzo(a)pyrene	430	U
193-39-5	Indeno(1,2,3-cd)pyrene	430	U
62-75-9	N-Nitrosodimethylamine	430	U
53-70-3	Dibenz(a,h)anthracene	430	U .
191-24-2	Benzo(g,h,i)perylene	430	U

PA 68-378

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	STL Ne	wburgh			Contract:	01012.01	SB17:5-6'
Lab Code:	10142		Case No.:		SAS No	n.; SI	DG No.: 212860
Matrix: (soil/w	vater)	SOIL			Lat	o Sample ID:	212860-024
Sample wt/vo	ol:	30	(g/ml) <u>G</u>		Lai	b File ID:	E26955.D
Level: (low/n	ned)	LOW			Da	te Received:	6/18/02
% Moisture:	21.9		decanted: (Y/N)	N	Da	te Extracted:	6/27/02
Concentrated	Extract	Volume	e: 1000 (uL)		Da	te Analyzed:	6/28/02
Injection Volu	ıme: <u>2.</u> 0	<u>)</u> (u	L)		Dil	ution Factor:	1.0
GPC Cleanur	p: (Y/N)	N	pH: <u>7.08</u>				

CONCENTRATION UNITS:

Number TICs found:	16	(ug/L or ug/Kg)	UG/KG	
	* . *	\-\3\-\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		

					7
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	
1.	unknown	5.30	-2100	J	[R.,
2. 000124-18-5	Decane	6.40	670	JN]
3. 006975-98-0	Decane, 2-methyl-	7.31	810	JN]
4. 013151-34-3	Decane, 3-methyl-	7.39	550	JN]
5. 004926-90-3	Cyclohexane, 1-ethyl-1-methyl-	7.64	440	JN]
6. 001120-21-4	Undecane	7.80	2600	JN	
7.	unknown CnH2n+2	8.01	410	J]
8.	unknown	8.10	210	J	J
9.	unknown CnH2n+2	8.14	260	· J]
10.	unknown Cyclohexane	8.33	400	J	_ :
11. 001632-70-8	Undecane, 5-methyl-	8.52	680	JN	
12. 002980-69-0	Undecane, 4-methyl-	8.57	440	JN	_
13. 007045-71-8	Undecane, 2-methyl-	8.64	670	JN	_
14.	unknown CnH2n+2	8.72	550	J	
15. 000112-40-3	Dodecane	9.10	1200	JN	_
16.	dimethyl Undecane isomer	9.26	370	J	_

M-NY049

1B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name:	STL Nev	wburgh		Co	ntract: 01012	2.01	3B10.2-4
Lab Code:	10142		Case No.:		SAS No.:	SD	G No.: 212860
Matrix: (soil/w	vater)	SOIL			Lab Samp	le ID:	212860-022
Sample wt/vo	ol:	30.0	(g/ml) <u>G</u>		Lab File II	D: <u> </u>	E26964.D
Level: (low/m	ned)	LOW	· .		Date Rece	eived: (6/18/02
% Moisture:	24		decanted:(Y/N)	N	Date Extra	acted:	6/27/02
Concentrated	i Extract	Volume:	1000 (uL)		Date Anal	yzed: (6/28/02
Injection Volu	ıme: <u>2</u>	.0(uL))		Dilution Fa	actor:	1.0
GPC Cleanur	o: (Y/N)	N	pH: <u>6.98</u>	_			

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
111-44-4	bis(2-Chloroethyl)eth	er	440	U
108-95-2	Phenol		440	UJL
95-57-8	2-Chlorophenol		440	Uju
541-73-1	1,3-Dichlorobenzene		440	U
106-46-7	1,4-Dichlorobenzene		440	Սյւ
95-50-1	1,2-Dichlorobenzene	:	440	U
100-51-6	Benzyl alcohol		440	U
108-60-1	2,2'-oxybis(1-Chloror	propane)	440	U
95-48-7	2-Methylphenol		440	U
67-72-1	Hexachloroethane		440	U
621-64-7	N-Nitroso-di-n-propyl	amine	440	UJL
106-44-5	4-Methylphenol		440	U
98-95-3	Nitrobenzene	i i	440	U
78-59-1	Isophorone		440	U
88-75-5	2-Nitrophenol		440	U
105-67-9	2,4-Dimethylphenol		440	U
111-91-1	bis(2-Chloroethoxy)n	nethane	440	U
120-83-2	2,4-Dichlorophenol		440	U
120-82-1	1,2,4-Trichlorobenze	ne	440	UΤι
91-20-3	Naphthalene		440	U
106-47-8	4-Chloroaniline		440	UJc
87-68-3	Hexachlorobutadiene		440	U
59-50-7	4-Chioro-3-methylph	enol	440	UJL
91-57-6	2-Methylnaphthalene		440	U
77-47-4	Hexachlorocyclopent	adiene	440	UJc
88-06-2	2,4,6-Trichloropheno		440	U
95-95-4	2,4,5-Trichloropheno	<u> </u>	440	U
91-58-7	2-Chloronaphthalene		440	U
88-74-4	2-Nitroaniline		1100	U
208-96-8	Acenaphthylene		440	U
131-11-3	Dimethylphthalate		440	U
606-20-2	2,6-Dinitrotoluene		440	U
83-32-9	Acenaphthene		440	ՍՄև
99-09-2	3-Nitroaniline		1100	UJC
51-28-5	2,4-Dinitrophenol		1100	UJc
132-64-9	Dibenzofuran		440	U
121-14-2	2,4-Dinitrotoluene	.	440	UJL

STL Newburgh is a part of Severn Trent Laboratories, Inc.

1C

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: STL Ne	wburgh	Contract: 01012.01	SB18:2	-4'
Lab Code: 10142	Case No.:	SAS No.: S	–	212860
Matrix: (soil/water)	SOIL	Lab Sample ID:	212860-0	22
Sample wt/vol:	30.0 (g/ml) G	Lab File ID:	E26964.D)
Level: (low/med)	LOW	Date Received:	6/18/02	
% Moisture: 24	decanted:(Y/N)	N Date Extracted:	6/27/02	
Concentrated Extract	Volume: 1000 (uL)	Date Analyzed:	6/28/02	
Injection Volume: 2	.0 (uL)	Dilution Factor:	1.0	
GPC Cleanup: (Y/N)	N pH: 6.98			
		CONCENTRATION	UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) <u>U</u>	G/KG	Q
100-02-7	4-Nitrophenol		1100	UJLIUI
86-73-7	Fluorene		440	U
7005-72-3	4-Chlorophenyl-pheny	lether	440	U
84-66-2	Diethylphthalate		440	U
100-01-6	4-Nitroaniline		1100	U

100-02-7	4-Nitrophenol	1100	UJLIUJC
86-73-7	Fluorene	440	U
7005-72-3	4-Chlorophenyl-phenylether	440	U
84-66-2	Diethylphthalate	440	U
100-01-6	4-Nitroaniline	1100	U
534-52-1	4,6-Dinitro-2-methylphenol	1100	UIC
86-30-6	n-Nitrosodiphenylamine (1)	440	U
101-55-3	4-Bromophenyl-phenylether	440	U
118-74-1	Hexachlorobenzene	440	U
87-86-5	Pentachlorophenol	1100	UJLIUJC
85-01-8	Phenanthrene	440	U
120-12-7	Anthracene	440	U
84-74-2	Di-n-butylphthalate	440	U
206-44-0	Fluoranthene	440	U
129-00-0	Pyrene	440	U
85-68-7	Butylbenzylphthalate	440	U
91-94-1	3,3'-Dichlorobenzidine	880	U
56-55-3	Benzo(a)anthracene	440	U
218-01-9	Chrysene	440	U
117-81-7	bis(2-Ethylhexyl)phthalate	440	U
117-84-0	Di-n-octylphthalate	440	UJC
205-99-2	Benzo(b)fluoranthene	440	U
207-08-9	Benzo(k)fluoranthene	440	U
50-32-8	Benzo(a)pyrene	440	U
193-39-5	indeno(1,2,3-cd)pyrene	440	U
62-75-9	N-Nitrosodimethylamine	440	U
53-70-3	Dibenz(a,h)anthracene	440	U
191-24-2	Benzo(g,h,i)perylene	440	U

EPA NY049

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAI	MPL	Ε	NC	١.

		I ENTANY ELI IDEN		00,100		SB18:2-4'	
Lab Name:	STL Ne	wburgh	Contrac	ct: <u>01012</u>	.01	36 (0.2-4	~
Lab Code:	10142	Case No.:	SAS	No.:	SE	G No.: 212	860
Matrix: (soil/	water)	SOIL		Lab Samp	le ID:	212860-022	
Sample wt/vo	ol:	30 (g/ml) <u>G</u>	·	Lab File IC):	E26964.D	
Level: (low/r	ned)	LOW		Date Rece	ived:	6/18/02	
% Moisture:	24	decanted: (Y/N)	<u>N</u>	Date Extra	cted:	6/27/02	
Concentrated	d Extract	Volume: 1000 (uL)		Date Analy	/zed:	6/28/02	
Injection Volu	ume: <u>2.</u>	0 (uL)		Dilution Fa	ctor:	1.0	
GPC Cleanu	p: (Y/N)	N pH: 6.98		•			
			CONCE	NTRATIO	TINU V	S:	
Number TICs	s found:	1	(ug/L or	ug/Kg)	UG/k	(G	,
CAS NUME	BER	COMPOUND NAME		RT	ES'	T. CONC.	Q

unknown

5.27

~1400

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SB19:7-8'

Lab Name:	STL Nev	vburgh			Contract:	01012.01	
Lab Code:	10142	·	Case No.:		SAS No	o.: S	DG No.: 212860
Matrix: (soil/v	vater)	SOIL			La	b Sample ID:	212860-026
Sample wt/vo	ol:	30.0	(g/ml) <u>G</u>		La	b File ID:	E26956.D
Level: (low/n	ned)	LOW	· .		Da	ite Received:	6/18/02
% Moisture:	11.4		decanted:(Y/N)	N	. Da	te Extracted:	6/27/02
Concentrated	d Extract	Volume	: <u>1000</u> (uL)		Da	ite Analyzed:	6/28/02
Injection Volu	ıme: <u>2</u> .	.0(ul	_)		Dil	ution Factor:	1.0
GPC Cleanu	p: (Y/N)	N	pH: <u>7.32</u>				

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg) <u>UG/KG</u>	Q
111-44-4	bis(2-Chloroethyl)ether	370	U
108-95-2	Phenol	370	UJL
95-57-8	2-Chlorophenol	370	UJL
541-73-1	1,3-Dichlorobenzene	370	U
106-46-7	1,4-Dichlorobenzene	370	UJL
95-50-1	1,2-Dichlorobenzene	370	Ū
100-51-6	Benzyl alcohol	370	U
108-60-1	2,2'-oxybis(1-Chloropropane)	370	U
95-48-7	2-Methylphenol	370	U
67-72-1	Hexachloroethane	370	U
621-64-7	N-Nitroso-di-n-propylamine	370	UJ
106-44-5	4-Methylphenol	370	U
98-95-3	Nitrobenzene	370	U
78-59-1	Isophorone	370	U
88-75-5	2-Nitrophenol	370	U
105-67-9	2,4-Dimethylphenol	370	U
111-91-1	bis(2-Chloroethoxy)methane	370	U
120-83-2	2,4-Dichlorophenol	370	U
120-82-1	1,2,4-Trichlorobenzene	370	UJL
91-20-3	Naphthalene	370	U
106-47-8	4-Chloroaniline	370	UJc
87-68-3	Hexachlorobutadiene	370	U
59-50-7	4-Chloro-3-methylphenol	370	UJL
91-57-6	2-Methylnaphthalene	370	Ū
77-47-4	Hexachlorocyclopentadiene	370	UJC
88-06-2	2,4,6-Trichlorophenol	370	U
95-95-4	2,4,5-Trichlorophenol	370	U
91-58-7	2-Chloronaphthalene	370	U
88-74-4	2-Nitroaniline	940	U
208-96-8	Acenaphthylene	370	Ü
131-11-3	Dimethylphthalate	370	Ū.
606-20-2	2.6-Dinitrotoluene	370	U
83-32-9	Acenaphthene	370	UJL
99-09-2	3-Nitroaniline	940	UJے
51-28-5	2,4-Dinitrophenol	940	UJC
132-64-9	Dibenzofuran	370	U
121-14-2	2,4-Dinitrotoluene	370	UJL

STL Newburgh is a part of Severn Trent Laboratories, Inc.

1C

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB19:7-8'

Q

Lab Name:	STL Newburgh			c	ontract: 01012.0	1
Lab Code:	10142	c	Case No.:		SAS No.:	_ SDG No.: 212860
Matrix: (soil/v	vater)	SOIL	·		Lab Sample	ID: <u>212860-026</u>
Sample wt/vo	ol:	30.0	(g/ml) <u>G</u>		Lab File ID:	E26956.D
Level: (low/n	ned)	LOW			Date Receive	ed: 6/18/02
% Moisture:	11.4	d	ecanted:(Y/N)	N	_ Date Extract	ed: 6/27/02
Concentrated	d Extract \	/olume:	1000 (uL)		Date Analyze	ed: <u>6/28/02</u>
Injection Volu	ıme: <u>2.</u> 0	0 (uL)			Dilution Fact	or: 1.0
GPC Cleanup	p: (Y/N)	N	pH: <u>7.32</u>	_		

COMPOUND

CONCENTRATION UNITS:

UG/KG

(ug/L or ug/Kg)

100-02-7	4-Nitrophenol	940	ሀፓւ ሀፓ
86-73-7	Fluorene	370	U ,
7005-72-3	4-Chlorophenyl-phenylether	370	U
84-66-2	Diethylphthalate	370	U
100-01-6	4-Nitroaniline	940	U
534-52-1	4,6-Dinitro-2-methylphenol	940	UJC
86-30-6	n-Nitrosodiphenylamine (1)	370	U
101-55-3	4-Bromophenyl-phenylether	370	U
118-74-1	Hexachlorobenzene	370	U
87-86-5	Pentachlorophenol	940	ՄՄ և, ՄՆ
85-01-8	Phenanthrene	370	U
120-12-7	Anthracene	370	U
84-74-2	Di-n-butylphthalate	370	U
206-44-0	Fluoranthene	370	U
129-00-0	Pyrene	370	U
85-68-7	Butylbenzylphthalate	370	U
91-94-1	3,3'-Dichlorobenzidine	750	U
56-55-3	Benzo(a)anthracene	370	<u> </u>
218-01-9	Chrysene	370	<u>U</u>
117-81-7	bis(2-Ethylhexyl)phthalate	370	U
117-84-0	Di-n-octylphthalate	370	UJc
205-99-2	Benzo(b)fluoranthene	370	<u> </u>
207-08-9	Benzo(k)fluoranthene	370	U
50-32-8	Benzo(a)pyrene	370	U
193-39-5	Indeno(1,2,3-cd)pyrene	370	U
62-75-9	N-Nitrosodimethylamine	370	U
53-70-3	Dibenz(a,h)anthracene	370	U
191-24-2	Benzo(g,h,i)perylene	370	U

CAS NO.

M-NY049

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

		IENIAI	IVELY IDEN I	IFIED	COMPO	UNDS	[0040-7-01	
Lab Name:	STL Newburgh Co				Contract: 01012.01			SB19:7-8'	
Lab Code:	10142						SDG	No.: 212860	
Matrix: (soil/w	/ater)	SOIL	_		Lat	o Sample II	D: <u>21</u>	2860-026	
Sample wt/vo	l:	30	(g/ml) G		Lal	File ID:	EZ	26956.D	
Level: (low/m	ned)	LOW		÷	Da	te Received	d: <u>6/</u>	18/02	
% Moisture:	11.4	dec	anted: (Y/N)	N	_ Da	te Extracte	d: <u>6/</u>	27/02	
Concentrated	Extract '	Volume:	1000 (uL)		Da	te Analyzed	d: <u>6/</u> 2	28/02	

GPC Cleanup: (Y/N) Ν pH: 7.32

(uL)

Injection Volume: 2.0

CONCENTRATION UNITS:

Dilution Factor: 1.0

Number TICs found:	1	(ug/L or ug/Kg)	UG/KG
--------------------	---	-----------------	-------

CAS NUMBER	COMPOUND NAME	RT .	EST. CONC.	Q
1.	unknown	5.27	990	—J—

EPA NY049

1B

EPA SAMPLE NO.

Q

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

STL Newburgh Contract: 01012.01

Matrix: (soil/water) SOIL Lab Sample ID: 212860-028

Sample wt/vol: 30.0 (g/ml) G Lab File ID: E26965.D

Level: (low/med) LOW Date Received: 6/18/02

% Moisture: 10.7 decanted:(Y/N) N Date Extracted: 6/27/02

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 6/28/02

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: 6.87

COMPOUND

Lab Name:

CAS NO.

CONCENTRATION UNITS:

UG/KG

(ug/L or ug/Kg)

	•		
111-44-4	bis(2-Chloroethyl)ether	370	U
108-95-2	Phenol	370	UJL
95-57-8	2-Chlorophenol	370	UJL
541-73-1	1,3-Dichlorobenzene	370	U
106-46-7	1,4-Dichlorobenzene	370	UJL
95-50-1	1,2-Dichlorobenzene	370	U
100-51-6	Benzyl alcohol	370	U
108-60-1	2,2'-oxybis(1-Chloropropane)	370	U
95-48-7	2-Methylphenol	370	U
67-72-1	Hexachloroethane	370	U
621-64-7	N-Nitroso-di-n-propylamine	370	UJL
106-44-5	4-Methylphenol	370	U
98-95-3	Nitrobenzene	370	U
78-59-1	Isophorone	370	U
88-75-5	2-Nitrophenol	370	Ū
105-67-9	2,4-Dimethylphenol	370	U
111-91-1	bis(2-Chloroethoxy)methane	370	U
120-83-2	2,4-Dichlorophenol	370	U
120-82-1	1,2,4-Trichlorobenzene	370	UJL
91-20-3	Naphthalene	370	U
106-47-8	4-Chloroaniline	370	UJc
87-68-3	Hexachlorobutadiene	370	U
59-50-7	4-Chloro-3-methylphenol	370	UJL
91-57-6	2-Methylnaphthalene	370	U
77-47-4	Hexachlorocyclopentadiene	370	UJc
88-06-2	2,4,6-Trichlorophenol	370	U
95-95-4	2,4,5-Trichlorophenol	370	U
91-58-7	2-Chloronaphthalene	370	U
88-74-4	2-Nitroaniline	940	U
208-96-8	Acenaphthylene	370	U
131-11-3	Dimethylphthalate	370	U
606-20-2	2,6-Dinitrotoluene	370	υ
83-32-9	Acenaphthene	370	UJL
99-09-2	3-Nitroaniline	940	UJC
51-28-5	2,4-Dinitrophenol	940	UJC
132-64-9	Dibenzofuran	370	U
121-14-2	2,4-Dinitrotoluene	370	UJL

STL Newburgh is a part of Severn Trent Laboratories, Inc.

M-NY049

PA 68-378

1C

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB20:4 5-5 5

Lab Name:	STL Ne	wburgh		C	ontract:	01012.01	
Lab Code:	10142	C	ase No.:		SAS No	o.: S	DG No.: 212860
Matrix: (soil/v	water)	SOIL			La	b Sample ID:	212860-028
Sample wt/vo	ol:	30.0	(g/ml) <u>G</u>		La	b File ID:	E26965.D
Level: (low/n	ned)	LOW	· · · · · · · · · · · · · · · · · · ·		Da	te Received:	6/18/02
% Moisture:	10.7	<u></u> d	ecanted:(Y/N)	Ň	_ Da	te Extracted:	6/27/02
Concentrated	d Extract	Volume:	1000 (uL)		Da	te Analyzed:	6/28/02
Injection Volu	ume: 2	.0 (uL)			Dil	ution Factor:	1.0
GPC Cleanu	p: (Y/N)	N	pH: 6.87	_	•		

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
100-02-7	4-Nitrophenol		940	UJL, UJC
86-73-7	Fluorene		370	U ,
7005-72-3	4-Chlorophenyl-pheny	lether	370	U
84-66-2	Diethylphthalate		370	U
100-01-6	4-Nitroaniline		940	U
534-52-1	4,6-Dinitro-2-methylph	enol	940	UJc
86-30-6	n-Nitrosodiphenylamin	ie (1)	370	U
101-55-3	4-Bromophenyl-pheny	lether	370	U
118-74-1	Hexachlorobenzene		370	U
87-86-5	Pentachlorophenol		940	UJL, UJC
85-01-8	Phenanthrene		370	U,
120-12-7	Anthracene		370	U
84-74-2	Di-n-butylphthalate		370	U
206-44-0	Fluoranthene		370	U
129-00-0	Pyrene		370	U
85-68-7	Butylbenzylphthalate		370	U
91-94-1	3,3'-Dichlorobenzidine		750	U
56-55-3	Benzo(a)anthracene		370	U
218-01-9	Chrysene		370	U
117-81-7	bis(2-Ethylhexyl)phtha	late	370	U
117-84-0	Di-n-octylphthalate		370	UJC
205-99-2	Benzo(b)fluoranthene		370	U
207-08-9	Benzo(k)fluoranthene		370	U
50-32-8	Benzo(a)pyrene		370	U
193-39-5	Indeno(1,2,3-cd)pyren	е	370	U
62-75-9	N-Nitrosodimethylamir	ne	370	U
53-70-3	Dibenz(a,h)anthracene	9	370	U
191-24-2	Benzo(g,h,i)perylene		370	U

FORM I SV-2

PA 68-378

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SB20:4.5-5.5

Lab Name: S	STL Nev	wburgh	Cor	ntract:	01012.0)1	SB20:4.5	-5.5	
Lab Code: 1	10142	Case No.:	s	AS No	.:	SI	DG No.: 21	2860	
Matrix: (soil/wa	ater)	SOIL		Lab	Sample	ID:	212860-02	8	
Sample wt/vol:		30 (g/ml) G		Lat	File ID:		E26965.D	·	
Level: (low/me	ed)	LOW	·	Da	te Receiv	/ed:	6/18/02		
% Moisture:	10.7	decanted: (Y/N)	N	Da	te Extrac	ted:	6/27/02		
Concentrated I	Extract \	Volume: 1000 (uL)		Da	te Analyz	ed:	6/28/02		
Injection Volum	ne: <u>2.0</u>) (uL)		Dilu	ution Fac	tor:	1.0		
GPC Cleanup:	(Y/N)	N pH: 6.87							
Number TICs f	ound:	1		ICENT or ug/	RATION (Kg)	UNIT UG/F			-
CAS NUMBE	R	COMPOUND NAME			RT	ES	T. CONC.	Q	
1.		unknown			5.29		- 2100		7

M-NY049

1B

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SR21-7-81

Lab Name:	STL Nev	wburgh		c	Contract:	01012.01	3BZ 1.7-0
Lab Code:	10142		Case No.:		SAS No	o SI	DG No.: 212860
Matrix: (soil/w	vater)	SOIL			La	b Sample ID:	212860-014
Sample wt/vo	ol:	30.0	(g/ml) <u>G</u>	-	Lai	b File ID:	E26963.D
Level: (low/n	ned)	LOW			Da	te Received:	6/18/02
% Moisture:	15.2		decanted:(Y/N)	N	Da	te Extracted:	6/27/02
Concentrated	i Extract '	Volume	: <u>1000</u> (uL)		Da	te Analyzed:	6/28/02
Injection Volu	ıme: 2.	<u>0</u> (ul	_)		Dil	ution Factor:	1.0
GPC Cleanur	o: (Y/N)	. N	pH: 6.16		٠		

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
111-44-4	bis(2-Chloroethyl)eth	er	390	U
108-95-2	Phenol		390	UJL
95-57-8	2-Chlorophenol		390	UJL
541-73-1	1,3-Dichlorobenzene		390	U
106-46-7	1,4-Dichlorobenzene		390	UJL
95-50-1	1,2-Dichlorobenzene		390	.U
100-51-6	Benzyl alcohol		390	U
108-60-1	2,2'-oxybis(1-Chlorop	propane)	390	U
95-48-7	2-Methylphenol		390	U
67-72-1	Hexachloroethane		390	U
621-64-7	N-Nitroso-di-n-propy	amine	390	ՍՄ _Ն
106-44-5	4-Methylphenol		390	U
98-95-3	Nitrobenzene		390	U
78-59-1	Isophorone		390	U
88-75-5	2-Nitrophenol	,	390	U
105-67-9	2,4-Dimethylphenol		390	U
111-91-1	bis(2-Chloroethoxy)n	nethane	390	U
120-83-2	2,4-Dichlorophenol		390	U
120-82-1	1,2,4-Trichlorobenze	ne	390	UJL
91-20-3	Naphthalene		390	U
106-47-8	4-Chloroaniline		390	UJc
87-68-3	Hexachlorobutadiene		390	U
59-50-7	4-Chloro-3-methylph	enol	390	UJL
91-57-6	2-Methylnaphthalene		390	U
77-47-4	Hexachlorocyclopent	adiene	390	UJε
88-06-2	2,4,6-Trichloropheno	<u> </u>	390	U
95-95-4	2,4,5-Trichloropheno		390	U
91-58-7	2-Chloronaphthalene		390	U ·
88-74-4	2-Nitroaniline		980	U
208-96-8	Acenaphthylene		390	υ
131-11-3	Dimethylphthalate	·	390	U
606-20-2	2,6-Dinitrotoluene		390	U
83-32-9	Acenaphthene		390	UJL
99-09-2	3-Nitroaniline		980	UJC
51-28-5	2,4-Dinitrophenol		980	UJс
132-64-9	Dibenzofuran		390	U
121-14-2	2,4-Dinitrotoluene	·	390	UJL

STL Newburgh is a part of Severn Trent Laboratories, Inc.

M-NY049

NJDEP 73015

1C

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB21:7-8'

Lab Name:	STL Ne	wburgh	: •	Co	ntract:	01012.01	_
Lab Code:	10142	c	ase No.:		SAS No	o.: S	DG No.: 212860
Matrix: (soil/v	vater)	SOIL			La	b Sample ID:	212860-014
Sample wt/vo	ol:	30.0	(g/ml) G		La	b File ID:	E26963.D
Level: (low/n	ned)	LOW	_		Da	te Received:	6/18/02
% Moisture:	15.2	de	ecanted:(Y/N)	N	Da	te Extracted:	6/27/02
Concentrated	d Extract	Volume:	1000 (uL)		Da	te Analyzed:	6/28/02
Injection Volu	ıme: <u>2</u>	.0 (uL)			Dil	ution Factor:	1.0
GPC Cleanu	p: (Y/N)	N	pH: <u>6.16</u>				

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
		(49, - 6, 49, (9)	00//10	~

100-02-7	4-Nitrophenol	980	UJLIUJE
86-73 - 7	Fluorene	390	U
7005-72-3	4-Chlorophenyl-phenylether	390	U
84-66-2	Diethylphthalate	390	U
100-01-6	4-Nitroaniline	980	U
534-52-1	4,6-Dinitro-2-methylphenol	980	UJC
86-30-6	n-Nitrosodiphenylamine (1)	390	U
101-55-3	4-Bromophenyl-phenylether	390	U
118-74-1	Hexachlorobenzene	390	U
87-86-5	Pentachlorophenol	980	UJL, UJC
85-01-8	Phenanthrene	390	U '
120-12-7	Anthracene	390	U
84-74-2	Di-n-butylphthalate	390	U
206-44-0	Fluoranthene	390	U
129-00-0	Pyrene	390	U
85-68-7	Butylbenzylphthalate	390	U
91-94-1	3,3'-Dichlorobenzidine	780	U
56-55-3	Benzo(a)anthracene	390	U
218-01-9	Chrysene	390	U
117-81-7	bis(2-Ethylhexyl)phthalate	390	U
117-84-0	Di-n-octylphthalate	390	UJc
205-99-2	Benzo(b)fluoranthene	390	U
207-08-9	Benzo(k)fluoranthene	390	U
50-32-8	Benzo(a)pyrene	390	U
193-39-5	Indeno(1,2,3-cd)pyrene	390	U
62-75-9	N-Nitrosodimethylamine	390	U
53-70-3	Dibenz(a,h)anthracene	390	U
191-24-2	Benzo(g,h,i)perylene	390	U

FORM I SV-2

PA 68-378

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET **TENTATIVELY IDENTIFIED COMPOUNDS**

EPA SAMPLE NO.

Lab Name:	STL Ne	wburgh	Contra	ct: <u>010</u>	012.01	SB21:7	-8	
Lab Code:	10142	Case No.:	SAS	No.: _	s	DG No.:	212860	٠
Matrix: (soil/v	water)	SOIL		Lab Sa	mple ID:	212860-0	114	
Sample wt/vo	ol:	30 (g/ml) <u>G</u>		Lab File	e ID:	E26963.D)	
Level: (low/r	ned)	LOW		Date R	eceived:	6/18/02		•
% Moisture:	15.2	decanted: (Y/N)	N	Date Ex	xtracted:	6/27/02		
Concentrated Extract Volume: 1000 (uL)			Date Analyzed: 6/28/02					
Injection Volu	ume: 2.	<u>) (uL) </u>		Dilution	Factor:	1.0		
GPC Cleanu	p: (Y/N)	N pH: 6.16			•			
•			CONCE	NTRAT	ION UNI	TS:		
Number TICs	s found:	1	(ug/L or	ug/Kg)	<u>UG/</u>	KG		_
CAS NUME	BER	COMPOUND NAME		R1	Γ ES	ST. CONC	. Q	
1.		unknown		5	.27	-180 0] R.

M-NY049

1B

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Contract: 01012 01

Lab Name:	STL Newburgh		C	ontract: 01012.	01	
Lab Code:	10142	Case No.:		SAS No.:	SDG No.: 212860	
Matrix: (soil/v	vater)	SOIL		Lab Sample	e ID: 212860-016	
Sample wt/vo	oi:	30.0 (g/ml) C	3	Lab File ID:	E26946.D	
Level: (low/med)		LOW	• .	Date Recei	ved: 6/18/02	
% Moisture:	15.2	decanted:(Y/I	N) <u>N</u>	_ Date Extra	oted: 6/27/02	
Concentrated Extract Volume: 1000 (uL)			ıL)	Date Analy:	zed: <u>6/28/02</u>	
Injection Volu	ıme: 2	.0 (uL)	•	Dilution Fac	ctor: 1.0	

GPC Cleanup: (Y/N) N pH: 7.52

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
111-44-4	bis(2-Chloroethyl)ethe	er	390	U
108-95-2	Phenol		390	UJL
95-57-8	2-Chlorophenol		390	UJL
541-73-1	1,3-Dichlorobenzene		100	JQ
106-46-7	1,4-Dichlorobenzene		94	JL, Jo
95-50-1	1,2-Dichlorobenzene		590	
100-51-6	Benzyl alcohol	***************************************	390	U
108-60-1	2,2'-oxybis(1-Chlorop	ropane)	390	Ū
95-48-7	2-Methylphenol		390	Ū
67-72-1	Hexachloroethane		390	Ū.
621-64-7	N-Nitroso-di-n-propyla	amine	390	UJL
106-44-5	4-Methylphenol		390	U
98-95-3	Nitrobenzene		390	U
78-59-1	Isophorone		390	Ū
88-75-5	2-Nitrophenol		390_	Ū
105-67-9	2,4-Dimethylphenol		390	U
111-91-1	bis(2-Chloroethoxy)m	ethane	390	U
120-83-2	2,4-Dichlorophenol		390	Ü
120-82-1	1,2,4-Trichlorobenzer	ne	390	UJL
91-20-3	Naphthalene		390	U
106-47-8	4-Chloroaniline		390	Ū
87-68-3	Hexachlorobutadiene		390	Ū
59-50-7	4-Chloro-3-methylphe	nol	390	UJL
91-57-6	2-Methylnaphthalene		390	U
77-47-4	Hexachlorocyclopenta	adiene	390	U
88-06-2	2,4,6-Trichlorophenol		390	Ū
95-95-4	2,4,5-Trichlorophenol		390	U
91-58-7	2-Chloronaphthalene		390	Ū
88-74-4	2-Nitroaniline		980	U
208-96-8	Acenaphthylene		390	U
131-11-3	Dimethylphthalate		390	U
606-20-2	2,6-Dinitrotoluene		390	Ū
83-32-9	Acenaphthene	· · · · · · · · · · · · · · · · · · ·	390	Uji
99-09-2	s 3-Nitroaniline		980	U
51-28-5	2,4-Dinitrophenol	The second secon	980	Ū
132-64-9	Dibenzofuran		390	Ū
121-14-2	2,4-Dinitrotoluene		390	UJL

NYSDOH 10142

NJDEP 73015

STL Newburgh is a part of Severn Trent Laboratories, Inc.

1C.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB22:5-6'	

Lab Name:	STL Ne	wburgh		(Contrac	t: <u>01012.0</u>	1	SB22.5-0
Lab Code:	10142 Case No.:			SAS No.:		S	DG No.: 212860	
Matrix: (soil/v	vater)	SOIL	· · ·		L	_ab Sample	ID:	212860-016
Sample wt/vo	oi:	30.0	(g/ml) <u>G</u>		. [ab File ID:		E26946.D
Level: (low/n	ned)	LOW	<u> </u>		. [Date Receiv	ed:	6/18/02
% Moisture:	15.2	<u>:</u> c	lecanted:(Y/N)	N	· [Date Extract	ted:	6/27/02
Concentrated	l Extract	Volume:	1000 (uL)			Date Analyz	ed:	6/28/02
Injection Volu	me: <u>2</u>	0 (uL)		-	. [Dilution Fac	tor:	1.0
GPC Cleanup	o: (Y/N)	N	pH: 7.52					

CONCENTRATION UNITS:

· · ·				
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q

100-02-7	4-Nitrophenol	980	UJL
86-73-7	Fluorene	390	
7005-72-3	4-Chlorophenyl-phenylether	390	U
84-66-2	Diethylphthalate	390	Ū
100-01-6	4-Nitroaniline	980	U
534-52-1	4,6-Dinitro-2-methylphenol	980	U
86-30-6	n-Nitrosodiphenylamine (1)	390	U
101-55-3	4-Bromophenyl-phenylether	390	U
118-74-1	Hexachlorobenzene	390	U
87-86-5	Pentachlorophenol	980	UJL
85-01-8	Phenanthrene	390	U
120-12-7	Anthracene	390	U
84-74-2	Di-n-butylphthalate	390	U
206-44-0	Fluoranthene	390	U
129-00-0	Pyrene	390	U
85-68-7	Butylbenzylphthalate	390	U
91-94-1	3,3'-Dichlorobenzidine	780	UJc
56-55-3	Benzo(a)anthracene	390	U
218-01-9	Chrysene	390	U
117-81-7	bis(2-Ethylhexyl)phthalate	57	JQ
117-84-0	Di-n-octylphthalate	390	U
205-99-2	Benzo(b)fluoranthene	390	U
207-08-9	Benzo(k)fluoranthene	390	U
50-32-8	Benzo(a)pyrene	390	U
193-39-5	Indeno(1,2,3-cd)pyrene	390	U
62-75-9	N-Nitrosodimethylamine	390	U
53-70-3	Dibenz(a,h)anthracene	390	Ų
191-24-2	Benzo(g,h,i)perylene	390	U

CTDOHS PH-0554

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

		ILMIAIIVELI IDEMIII	LIED COME	CONDS		0000.5 0	
Lab Name:	STL Nev	wburgh	Contrac	ot: 01012.	.01	SB22:5-6'	
Lab Code:	10142	Case No.:	SAS	No.:	SD0	3 No.: 212	860
Matrix: (soil/v	water)	SOIL		Lab Sampl	e ID: 2	12860-016	<u></u>
Sample wt/vo	ol:	30 (g/ml) G		Lab File ID	: <u>E</u>	26946.D	· .
Level: (low/n	ned)	LOW		Date Rece	ived: <u>6</u>	/18/02	
% Moisture:	15.2	decanted: (Y/N) _	N	Date Extra	cted: 6	/27/02	
Concentrated	d Extract	Volume: <u>1000</u> (uL)		Date Analy	zed: <u>6</u>	/28/02	Think Wiles was
Injection Volu	ume: <u>2.0</u>) (uL)		Dilution Fa	ctor: 1	.0	
GPC Cleanu	p: (Y/N)	N pH: 7.52					
			CONCE	NTRATION	UNITS	5 ;	
Number TICs	s found:	1	(ug/L or	ug/Kg)	UG/K	<u> </u>	
CAS NUME	BER	COMPOUND NAME		RT	EST	. CONC.	, Q

unknown

5.29

-1400

1B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB23:6-7'

Lab Name:	STL Ne	wburgh	· .	C	ontract:	01012.01	
Lab Code:	10142		Case No.:	·	SAS No	o.: S	DG No.: 212860
Matrix: (soil/\	water)	SOIL		-	Lal	Sample ID:	212860-008
Sample wt/vo	ol:	30.0	(g/ml) <u>G</u>		Lal	o File ID:	E26959.D
Level: (low/r	ned)	LOW	· 		Da	te Received:	6/18/02
% Moisture:	16.	<u>5</u> c	decanted:(Y/N)	N	_ Da	te Extracted:	6/27/02
Concentrated	d Extract	Volume:	1000 (uL.)		Da	te Analyzed:	6/28/02
Injection Volu	ume: <u>2</u>	2.0 (uL)	·		Dile	ution Factor:	1.0
GPC Cleanu	p: (Y/N)	N	pH: 7.19				

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
111-44-4	bis(2-Chloroethyl)eth	er	400	U
108-95-2	Phenol		400	UJL
95-57-8	2-Chlorophenol		400	UJL
541-73-1	1,3-Dichlorobenzene		400	U
106-46-7	1,4-Dichlorobenzene		400	UJ.
95-50-1	1,2-Dichlorobenzene		400	U
100-51-6	Benzyl alcohol		400	U
108-60-1	2,2'-oxybis(1-Chlorop	ropane)	400	U
95-48-7	2-Methylphenol		400	U
67-72-1	Hexachloroethane	1	400	U
621-64-7	N-Nitroso-di-n-propyl	amine	400	UJL
106-44-5	4-Methylphenol		400	U
98-95-3	Nitrobenzene		400	U
78-59-1	Isophorone		400	U
88-75-5	2-Nitrophenol		400	U
105-67-9	2,4-Dimethylphenol		400	U
111-91-1	bis(2-Chloroethoxy)m	ethane	400	U
120-83-2	2,4-Dichlorophenol		400	U
120-82-1	1,2,4-Trichlorobenzer	ne	400	UJL
91-20-3	Naphthalene		400	U
106-47-8	4-Chloroaniline		400	UJc
87-68-3	Hexachlorobutadiene		400	U
59-50-7	4-Chloro-3-methylphe	enol	400	UJL
91-57-6	2-Methylnaphthalene		400	U
77-47-4	Hexachlorocyclopenta	adiene	400	UJc
88-06-2	2,4,6-Trichlorophenol		400	U
95-95-4	2,4,5-Trichlorophenol		400	U
91-58-7	2-Chloronaphthalene		400	U
88-74-4	2-Nitroaniline		1000	U
208-96-8	Acenaphthylene		400	U
131-11-3	Dimethylphthalate		400	U
606-20-2	2,6-Dinitrotoluene		400	U
83-32-9	Acenaphthene		400	UJL
99-09-2	3-Nitroaniline		1000	UJc
51-28-5	2,4-Dinitrophenol		1000	UTc
132-64-9	Dibenzofuran		400	U
121-14-2	2,4-Dinitrotoluene		400	UJL

STL Newburgh is a part of Severn Trent Laboratories, Inc.

PA 68-378

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name:	STL Ne	wburgh		(Contract:	01012.01	
Lab Code:	10142	(Case No.:		SAS No.	: s	DG No.: 212860
Matrix: (soil/\	water)	SOIL			Lab	Sample ID:	212860-008
Sample wt/vo	ol:	30.0	(g/ml) <u>G</u>		Lab	File ID:	E26959.D
Level: (low/r	ned)	LOW			Dat	e Received:	6/18/02
% Moisture:	16.5	<u> </u>	lecanted:(Y/N)	N	Dat	e Extracted:	6/27/02
Concentrated	d Extract	Volume:	1000 (uL)		Dat	e Analyzed:	6/28/02
Injection Volu	ume: <u>2</u>	.0 (uL)			Dilu	tion Factor:	1.0
GPC Cleanu	p: (Y/N)	N	pH: <u>7.19</u>	_			

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
U ,	•••••	(-333/		

100-02-7	4-Nitrophenol	1000	UJL, VJ
86-73-7	Fluorene	400	U
7005-72-3	4-Chlorophenyl-phenylether	400	U
84-66-2	Diethylphthalate	400	U
100-01-6	4-Nitroaniline	1000	U
534-52-1	4,6-Dinitro-2-methylphenol	1000	$\cup J_{c}$
86-30-6	n-Nitrosodiphenylamine (1)	400	U
101-55-3	4-Bromophenyl-phenylether	400	U
118-74-1	Hexachlorobenzene	400	U
87-86-5	Pentachlorophenol	1000	$UJ_{L_1}UJ_{C_2}$
85-01-8	Phenanthrene	400	U
120-12-7	Anthracene	400	U
84-74-2	Di-n-butylphthalate	400	U
206-44-0	Fluoranthene	400	U
129-00-0	Pyrene	400	U
85-68-7	Butylbenzylphthalate	400	U
91-94-1	3,3'-Dichlorobenzidine	800	U
56-55-3	Benzo(a)anthracene	400	U
218-01-9	Chrysene	400	U
117-81-7	bis(2-Ethylhexyl)phthalate	400	U
117-84-0	Di-n-octylphthalate	400	UJC
205-99-2	Benzo(b)fluoranthene	400	U .
207-08-9	Benzo(k)fluoranthene	400	U
50-32-8	Benzo(a)pyrene	400	U
193-39-5	Indeno(1,2,3-cd)pyrene	400	U
62-75-9	N-Nitrosodimethylamine	400	U
53-70-3	Dibenz(a,h)anthracene	400	U
191-24-2	Benzo(g,h,i)perylene	400	U

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SB23:6-7'

Lab Name: STL Ne	wburgh	Contract: 01012.01	SB23:0-7
Lab Code: 10142	Case No.:	SAS No.: S	DG No.: 212860
Matrix: (soil/water)	SOIL	Lab Sample ID:	212860-008
Sample wt/vol:	30 (g/ml) <u>G</u>	Lab File ID:	E26959.D
Level: (low/med)	LOW	Date Received:	6/18/02
% Moisture:16.5	decanted: (Y/N)	N Date Extracted:	6/27/02
Concentrated Extract	Volume: 1000 (uL)	Date Analyzed:	6/28/02
Injection Volume: 2.	0 (uL)	Dilution Factor:	1.0
GPC Cleanup: (Y/N)	N pH: 7.19		
		CONCENTRATION UNI	TS:
Number TICs found:	2	(ug/L or ug/Kg) UG/	′KG
CAS NUMBER	COMPOUND NAME	RT FS	ST CONC O

CAS NUMBER	COMPOUND NAME	RT	EST, CONC.	Q	
1. 000123-42-2	2-Pentanone, 4-hydroxy-4-methyl	4.34	21000	JN	
2.	unknown	5.29	~1500	J	Rm

1B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB23D-6-7

Lab Name:	STL Ne	wburgh		c	Contract:	01012.01	SB23D.0-7
Lab Code:	10142		Case No.:		SAS N	o.: S	DG No.: 212860
Matrix: (soil/	water)	SOIL	·		La	ab Sample ID:	212860-011
Sample wt/vo	ol:	30.0	(g/ml) <u>G</u>		La	b File ID:	E26962.D
Level: (low/r	med)	LOW	· 		Da	ate Received:	6/18/02
% Moisture:	19.8	d	ecanted:(Y/N) _	N	_ Da	ate Extracted:	6/27/02
Concentrated	d Extract	Volume:	1000 (uL)		Da	ate Analyzed:	6/28/02
Injection Volu	ume: <u>2</u>	.0 (uL)			Di	lution Factor:	1.0
GPC Cleanu	p: (Y/N)	N	pH: 7.6				

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
111-44-4	bis(2-Chloroethyl)eth	ier	420	U
108-95-2	Phenol		420	UJL
95-57-8	2-Chlorophenol		420	UJL
541-73-1	1,3-Dichlorobenzene		420	U
106-46-7	1,4-Dichlorobenzene		420	UJŁ
95-50-1	1,2-Dichlorobenzene		420	U
100-51-6	Benzyl alcohol		420	Ü
108-60-1	2,2'-oxybis(1-Chlorop	propane)	420	Ū
95-48-7	2-Methylphenol		420	Ū
67-72-1	Hexachloroethane		420	Ū
621-64-7	N-Nitroso-di-n-propyl	amine	420	UJL
106-44-5	4-Methylphenol		420	U
98-95-3	Nitrobenzene		420	Ū
78-59-1	Isophorone		420	Ü
88-75-5	2-Nitrophenol		420	Ū
105-67-9	2,4-Dimethylphenol		420	Ū
111-91-1	bis(2-Chloroethoxy)n	nethane	420	U
120-83-2	2,4-Dichlorophenol		420	Ū
120-82-1	1,2,4-Trichlorobenze	ne	420	UJL
91-20-3	Naphthalene		420	U
106-47-8	4-Chloroaniline		420	UJc
87-68-3	Hexachlorobutadiene		420	U
59-50-7	4-Chloro-3-methylphe		420	UJL
91-57-6	2-Methylnaphthalene		420	U
77-47-4	Hexachlorocyclopent		420	- UJc
88-06-2	2,4,6-Trichloropheno		420	Ü
95-95-4	2,4,5-Trichloropheno		420	Ū
91-58-7	2-Chloronaphthalene		420	Ū
88-74-4	2-Nitroaniline		1000	Ū
208-96-8	Acenaphthylene		420	Ū
131-11-3	Dimethylphthalate		420	Ū
606-20-2	2,6-Dinitrotoluene		420	Ū
83-32-9	Acenaphthene		420	Uji
99-09-2	3-Nitroaniline			UJc
51-28-5	2,4-Dinitrophenol		1000	UJc
132-64-9	Dibenzofuran		420	U
121-14-2	2,4-Dinitrotoluene		420	ÜΙL

STL Newburgh is a part of Severn Trent Laboratories, Inc.

PA 68-378

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name:	STL Nev	wburgh	· .	c	ontract:	01012.01	35230.0-7
Lab Code:	10142		Case No.:		SAS No	.: S	DG No.: 212860
Matrix: (soil/w	vater)	SOIL			Lal	Sample ID:	212860-011
Sample wt/vo	ol:	30.0	(g/ml) - <u>G</u>		Lal	File ID:	E26962.D
Level: (low/m	ned)	LOW			Da	te Received:	6/18/02
% Moisture:	19.8	<u></u> .	decanted:(Y/N)	N	Da	te Extracted:	6/27/02
Concentrated	Extract	Volume:	1000 (uL)		Da	te Analyzed:	6/28/02
Injection Volu	me: <u>2</u>	.0 (uL)		Dile	ution Factor:	1.0
GPC Cleanur	o: (Y/N)	N	pH: <u>7.6</u>	-			

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
100-02-7	4-Nitrophenol		1000	UJL, UJC
86-73-7	Fluorene		420	U
7005-72-3	4-Chlorophenyl-phenylether		420	U
84-66-2	Diethylphthalate		420	l U
100-01-6	4-Nitroaniline		1000	U
534-52-1	4,6-Dinitro-2-methylphenol		1000	UJc
86-30-6	n-Nitrosodiphenylamine (1)		420	U
101-55-3	4-Bromophenyl-phenylether		420	U
118-74-1	Hexachlorobenzene		420	U
87-86-5	Pentachlorophenol		1000	UJL, UJC
85-01-8	Phenanthrene		420	U
120-12-7	Anthracene		420	U
84-74-2	Di-n-butylphthalate		420	U
206-44-0	Fluoranthene		420	U
129-00-0	Pyrene		420	U
85-68-7	Butylbenzylphthalate		420	U
91-94-1	3,3'-Dichlorobenzidine		830-	
56-55-3	Benzo(a)anthracene		420	· U
218-01-9	Chrysene	·	420	U.
117-81-7	bis(2-Ethylhexyl)phthalate		420	U
117-84-0	Di-n-octylphthalate		420	UJC
205-99-2	Benzo(b)fluoranthene		420	U
207-08-9	Benzo(k)fluoranthene		420	U
50-32-8	Benzo(a)pyrene		420	U
193-39-5	indeno(1,2,3-cd)pyrene		420	U
62-75-9	N-Nitrosodimethylamine		420	U
53-70-3	Dibenz(a,h)anthracene		420	U
191-24-2	Benzo(g,h,i)perylene		420	U

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SB23D:	ô-7'

430

Lab Name: STL N	ewburgh	Contrac	t: 01012.0	SB23D:6-7'	
Lab Code: 10142		SAS I		SDG No.: 212860	
Matrix: (soil/water)	SOIL		_ab Sample	ID: 212860-011	
Sample wt/vol:	30 (g/ml) G		.ab File ID:	E26962.D	
Level: (low/med)	LOW	[Date Receiv	ed: 6/18/02	
% Moisture:19	.8 decanted: (Y/N)	N [Date Extract	ed: 6/27/02	
Concentrated Extrac	t Volume: 1000 (uL)		Date Analyz	ed: 6/28/02	
Injection Volume: 2	2.0 (uL)	. [Dilution Fact	or: 1.0	
GPC Cleanup: (Y/N)	N pH: 7.6				
•		CONCE	NTRATION	UNITS:	
Number TICs found:	2	(ug/L or t	ug/Kg)	UG/KG	•
CAS NUMBER	COMPOUND NAME		RT	EST. CONC.	
1.	unknown		5.27	1500	<u></u> R.

unknown

PA 68-378

20.69

3/90

1B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB24:4.5-5.5

_ab Name:	STL Ne	wburgh	···	(Contract:	01012.01	_	_
_ab Code:	10142	c	ase No.:		SAS No	o.: S	DG No.: 212860	
Matrix: (soil/∖	water)	SOIL			Lal	Sample ID:	212860-009	
Sample wt/vo	ol:	30.0	(g/ml) <u>G</u>		Lat	File ID:	E26943.D	
_evel: (low/r	med)	LOW	· ·		Da	te Received:	6/18/02	
% Moisture:	13.8	<u> </u>	ecanted:(Y/N)	N	Da	te Extracted:	6/27/02	
Concentrated	d Extract	Volume:	1000 (uL)		Da	te Analyzed:	6/27/02	
njection Volu	ume: <u>2</u>	.0 (uL)			Dilu	ution Factor:	1.0	
SPC Cleanu	n: (Y/N)	N	nH: 753					

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug.	/L or ug/Kg) UG/KG	_ Q
111-44-4	bis(2-Chloroethyl)ether	390	U
108-95-2	Phenol	390	UJL
95-57-8	2-Chlorophenol	390	UJL
541-73-1	1,3-Dichlorobenzene	390	U
106-46-7	1,4-Dichlorobenzene	390	UJm, UJ,
95-50-1	1,2-Dichlorobenzene	390	U
100-51-6	Benzyl alcohol	390	U
108-60-1	2,2'-oxybis(1-Chloropropane)	390	U
95-48-7	2-Methylphenol	390	U
67-72-1	Hexachloroethane	390	U
621-64-7	N-Nitroso-di-n-propylamine	390	UJm UJ
106-44-5	4-Methylphenol	390	U
98-95-3	Nitrobenzene	390	U
78-59-1	Isophorone	390	U
88-75-5	2-Nitrophenol	390	U
105-67-9	2,4-Dimethylphenol	390	U
111-91-1	bis(2-Chloroethoxy)methane	390	U
120-83-2	2,4-Dichlorophenol	390	U
120-82-1	1,2,4-Trichlorobenzene	390	UJm UJ
91-20-3	Naphthalene	390	U
106-47-8	4-Chloroaniline	390	U
87-68-3	Hexachlorobutadiene	390	U
59-50-7	4-Chloro-3-methylphenol	390	UJL
91-57-6	2-Methylnaphthalene	390	. U
77-47-4	Hexachlorocyclopentadiene	390	U
88-06-2	2,4,6-Trichlorophenol	390	U
95-95-4	2,4,5-Trichlorophenol	390	U
91-58-7	2-Chloronaphthalene	390	U
88-74-4	2-Nitroaniline	970	υ
208-96-8	Acenaphthylene	390	U
131-11-3	Dimethylphthalate	390	U
606-20-2	2,6-Dinitrotoluene	390	U
83-32-9	Acenaphthene	390	UJL
99-09-2	4 3-Nitroaniline	970	U
51-28-5	2,4-Dinitrophenol	970	· U
132-64-9	Dibenzofuran	390	U
121-14-2	2,4-Dinitrotoluene	390	UJL

STL Newburgh is a part of Severn Trent Laboratories, Inc.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB24:4.5-5.5

Lab Name:	STL Nev	vburgh		_ c	ontract:	01012.01	0024.4.0-0.0
Lab Code:	10142		Case No.:		SAS No	.: s	DG No.: 212860
Matrix: (soil/w	vater)	SOIL			Lal	Sample ID:	212860-009
Sample wt/vo	ol:	30.0	(g/ml) <u>G</u>		Lal	File ID:	E26943.D
Level: (low/m	ned)	LOW			Da	te Received:	6/18/02
% Moisture:	13.8	•	decanted:(Y/N)	N	Da	te Extracted:	6/27/02
Concentrated	I Extract	Volume:	1000 (uL)		Da	te Analyzed:	6/27/02
Injection Volu	ıme: <u>2</u> .	0(uL))		Dil	ution Factor:	1.0
GPC Cleanup	o: (Y/N)	N	pH: <u>7.53</u>				

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
100-02-7	4-Nitrophenol		970	UJL
86-73-7	Fluorene		390	Ų
7005-72-3	4-Chlorophenyl-phenylet	her	390	U
84-66-2	Diethylphthalate	:	390	U
100-01-6	4-Nitroaniline		970	U
534-52-1	4,6-Dinitro-2-methylphen	ol	970	U
86-30-6	n-Nitrosodiphenylamine ((1)	390	U
101-55-3	4-Bromophenyl-phenylet	her	390	U
118-74-1	Hexachlorobenzene		390	U
87-86-5	Pentachlorophenol		970	Uĭ∟
85-01-8	Phenanthrene		390	U
120-12-7	Anthracene		390	U
84-74-2	Di-n-butylphthalate		390	U
206-44-0	Fluoranthene		390	U
129-00-0	Pyrene		390	U
85-68-7	Butylbenzylphthalate		390	U
91-94-1	3,3'-Dichlorobenzidine		780	UJc
56-55-3	Benzo(a)anthracene	1	390	U
218-01-9	Chrysene		390	U
117-81-7	bis(2-Ethylhexyl)phthalat	е	390	U
117-84-0	Di-n-octylphthalate		390	U
205-99-2	Benzo(b)fluoranthene		390	U
207-08-9	Benzo(k)fluoranthene		390	U
50-32-8	Benzo(a)pyrene		390	<u>U</u>
193-39-5	Indeno(1,2,3-cd)pyrene		390	U
62-75-9	N-Nitrosodimethylamine		390	U
53-70-3	Dibenz(a,h)anthracene		390	U
191-24-2	Benzo(g,h,i)perylene		390	U

NJDEP 73015

COMPOUND NAME

unknown

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SB24:4.5-5.5 Lab Name: STL Newburgh Contract: 01012.01 Lab Code: 10142 SAS No.: Case No.: SDG No.: 212860 Matrix: (soil/water) SOIL Lab Sample ID: 212860-009 Sample wt/vol: 30 (g/ml) G Lab File ID: E26943.D Level: (low/med) LOW Date Received: 6/18/02 13.8 % Moisture: decanted: (Y/N) Date Extracted: 6/27/02 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 6/27/02 Injection Volume: 2.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) Ν pH: 7.53 CONCENTRATION UNITS: Number TICs found: (ug/L or ug/Kg) UG/KG

RT

5.30

EST. CONC.

-1800

Q

CAS NUMBER

1B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB25:5-6'RR Lab Name: STL Newburgh Contract: 01012.01 SDG No.: 212860 Lab Code: 10142 Case No.: SAS No.: Lab Sample ID: 212860-018RR Matrix: (soil/water) SOIL 30.0 E26972.D Sample wt/vol: Lab File ID: (g/ml) G LOW Date Received: 6/18/02 Level: (low/med) 11 decanted:(Y/N) Date Extracted: 7/1/02 % Moisture: Concentrated Extract Volume: 1000 Date Analyzed: 7/2/02 Dilution Factor: 1.0 Injection Volume: 2.0 (uL)

GPC Cleanup: (Y/N) Ν pH: 7.39

COMPOUND

CAS NO.

CONCENTRATION UNITS:

UG/KG

Q

(ug/L or ug/Kg)

	•		
111-44-4	bis(2-Chloroethyl)ether	370	UJh
108-95-2	Phenoi	370	U I , UJL
95-57-8	2-Chlorophenol	370	U UJL
541-73-1	1,3-Dichlorobenzene	370 ⁻	υl
106-46-7	1,4-Dichlorobenzene	370	U UTL
95-50-1	1,2-Dichlorobenzene	370	U
100-51-6	Benzyl alcohol	370	U
108-60-1	2,2'-oxybis(1-Chloropropane)	370	U
95-48-7	2-Methylphenol	370	U
67-72-1	Hexachloroethane	370	U
621-64-7	N-Nitroso-di-n-propylamine	370	UUJL
106-44-5	4-Methylphenol	370	U
98-95-3	Nitrobenzene	370	U
78-59-1	Isophorone	370	U
88-75-5	2-Nitrophenol	370	U
105-67-9	2,4-Dimethylphenol	370	U
111-91-1	bis(2-Chloroethoxy)methane	370	U
120-83-2	2,4-Dichlorophenol	370	U
120-82-1	1,2,4-Trichlorobenzene	370	UUJL
91-20-3	Naphthalene	370	U ,
106-47-8	4-Chloroaniline	370	U
87-68-3	Hexachlorobutadiene	370	U
59-50-7	4-Chloro-3-methylphenol	370	U , UJL
91-57-6	2-Methylnaphthalene	370	U '
77-47-4	Hexachlorocyclopentadiene	370	U UTC
88-06-2	2,4,6-Trichlorophenol	370	U '
95-95-4	2,4,5-Trichlorophenol	370	U
91-58-7	2-Chloronaphthalene	370	U
88-74-4	2-Nitroaniline	940	U
208-96-8	Acenaphthylene	370	U
131-11-3	Dimethylphthalate	370	U
606-20-2	2,6-Dinitrotoluene	370	U
83-32-9	Acenaphthene	370	UUJL
99-09-2	3-Nitroaniline	940	U
51-28-5	2,4-Dinitrophenol	940	- U Ro
132-64-9	Dibenzofuran	370	U ↓
121-14-2	2,4-Dinitrotoluene	370	UJh, VJu

NYSDOH 10142

STL Newburgh is a part of Severn Trent Laboratories, Inc.

10

EPA SAMPLE NO.

Q

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SB25:5-6'RR

Lab Name:	STL Nev	wburgh		C	ontract:	01012.01	
Lab Code:	10142		Case No.:	·····	SAS No	o: s	DG No.: 212860
Matrix: (soil/w	vater)	SOIL			Lal	b Sample ID:	212860-018RR
Sample wt/vo	ol:	30.0	(g/ml) <u>G</u>		Lal	b File ID:	E26972.D
Level: (low/m	ned)	LOW	·		Da	te Received:	6/18/02
% Moisture:	11		decanted:(Y/N)	N	_ Da	te Extracted:	7/1/02
Concentrated	i Extract	Volume:	1000 (uL)		Da	te Analyzed:	7/2/02
Injection Volu	ıme: <u>2</u> .	<u>0</u> (uL) .		Dil	ution Factor:	1.0
GPC Cleanup	o: (Y/N)	N	pH: 7.39	<u> </u>			# *** **

COMPOUND

CONCENTRATION UNITS:

(ug/L or ug/Kg)

UG/KG

400.00.7	4 \$150 min and	040	<u> </u>
100-02-7	4-Nitrophenol	940	<u>- UJ</u> R
86-73-7	Fluorene	370	Սսյե
7005-72-3	4-Chlorophenyl-phenylether	370	<u> </u>
84-66-2	Diethylphthalate	370	U
100-01-6	4-Nitroaniline	940	U
534-52-1	4,6-Dinitro-2-methylphenol	940	U
86-30-6	n-Nitrosodiphenylamine (1)	370	U
101-55-3	4-Bromophenyl-phenylether	370	U
118-74-1	Hexachlorobenzene	370	UUJh
87-86-5	Pentachlorophenol	-940	
85-01-8	Phenanthrene	370	Uuth
120-12-7	Anthracene	370	U
84-74-2	Di-n-butylphthalate	370	U
206-44-0	Fluoranthene	370	U
129-00-0	Pyrene	370	U
85-68-7	Butylbenzylphthalate	370	U
91-94-1	3,3'-Dichlorobenzidine	750	U
56-55-3	Benzo(a)anthracene	370	U
218-01-9	Chrysene	370	U
117-81-7	bis(2-Ethylhexyl)phthalate	370	U
117-84-0	Di-n-octylphthalate	370	U
205-99-2	Benzo(b)fluoranthene	370	U :
207-08-9	Benzo(k)fluoranthene	370	U
50-32-8	Benzo(a)pyrene	370	U
193-39-5	Indeno(1,2,3-cd)pyrene	370	Ü
62-75-9	N-Nitrosodimethylamine	370	U
53-70-3	Dibenz(a,h)anthracene	370	U
191-24-2	Benzo(g,h,i)perylene	370	UJh

CAS NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	STL Ne	wburgh		(Contract:	01012.0)1	SB25:5-6'	RR
Lab Code:	10142		ase No.:		SAS N	o.:	SD0	3 No.: 212	2860
Matrix: (soil/	water)	SOIL			La	b Sample		12860-018	RR
Sample wt/ve	ol:	30	(g/ml) G	· · · · · · · · · · · · · · · · · · ·	La	b File ID:	E	26972.D	
Level: (low/r	med)	LOW			Da	ate Receiv	ved: <u>6</u>	/18/02	
% Moisture:	11	de	canted: (Y/N)	N	Da	ate Extrac	ted: <u>7</u>	/1/02	
Concentrate	d Extract	Volume:	1000 (uL)		Da	ate Analyz	zed: <u>7</u>	/2/02	
Injection Vol	ume: <u>2.</u>	0 (uL)		•	Di	lution Fac	tor: <u>1</u>	.0	
GPC Cleanu	ip: (Y/N)	<u>N</u>	pH: <u>7.39</u>	-	i			•	
				С	ONCEN	TRATION	UNITS	3:	•
Number TIC	s found:	1		(t	ɪg/L or ug	g/Kg)	UG/K	3	
CAS NUME	3ER	COMPO	OUND NAME			RT	EST	. CONC.	Q
1.		unknowr				5.27		1600	J-

Q

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SB26:5-6'

Lab Name:	STL Nev	vburgh			Contra	act: 01012.01	
Lab Code:	10142	с	ase No.	:	SA	S No.:	SDG No.: 212860
Matrix: (soil/w	vater)	SOIL		•		Lab Sample ID	: 212860-020
Sample wt/vo	ol:	30.0	_ (g/m	il) <u>G</u>	*****	Lab File ID:	E26973.D
Level: (low/m	ned)	LOW				Date Received	: 6/18/02
% Moisture:	10.1	d	ecanted	:(Y/N)	N	Date Extracted	: 6/27/02
Concentrated	d Extract \	Volume:	1000	(uL)		Date Analyzed	: <u>7/2/02</u>
Injection Volu	me: <u>2.</u>	0 (uL)				Dilution Factor	1.0
GPC Cleanup	o: (Y/N)	N	pH:	7.48			

COMPOUND

CAS NO.

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NO.	COMPOSIVE (agric or agri	(g) <u>00/(0</u>	Q
111-44-4	bis(2-Chloroethyl)ether	370	U
108-95-2	Phenol	370	UJL
95-57-8	2-Chlorophenol	370	UTL
541-73-1	1,3-Dichlorobenzene	370	U
106-46-7	1,4-Dichlorobenzene	370	ՍՄև
95-50-1	1,2-Dichlorobenzene	370	U
100-51-6	Benzyl alcohol	370	Ų
108-60-1	2,2'-oxybis(1-Chloropropane)	370	U
95-48-7	2-Methylphenol	370	U
67-72-1	Hexachloroethane	370	Ú
621-64-7	N-Nitroso-di-n-propylamine	370	UJL
106-44-5	4-Methylphenol	370	U
98-95-3	Nitrobenzene	370	Ų
78-59-1	Isophorone	370	U
88-75-5	2-Nitrophenol	370	U
105-67-9	2,4-Dimethylphenol	370	U
111-91-1	bis(2-Chloroethoxy)methane	370	U
120-83-2	2,4-Dichlorophenol	370	U
120-82-1	1,2,4-Trichlorobenzene	370	UJL
91-20-3	Naphthalene	370	U
106-47-8	4-Chloroaniline	370	U
87-68-3	Hexachlorobutadiene	370	U
59-50-7	4-Chloro-3-methylphenol	370	UJL
91-57-6	2-Methylnaphthalene	370	U
77-47-4	Hexachlorocyclopentadiene	370	UJc
88-06-2	2,4,6-Trichlorophenol	370	Ü
95-95-4	2,4,5-Trichlorophenol	370	Ū
91-58-7	2-Chloronaphthalene	370	U
88-74-4	2-Nitroaniline	930	Ū
208-96-8	Acenaphthylene	370	U
131-11-3	Dimethylphthalate	370	U
606-20-2	2,6-Dinitrotoluene	370	U
83-32-9	Acenaphthene	370	UJL
99-09-2	3-Nitroaniline	930	Ų
51-28-5	2,4-Dinitrophenol	-930	U - (
132-64-9	Dibenzofuran	370	U
121-14-2	2,4-Dinitrotoluene	370	UJL

STL Newburgh is a part of Severn Trent Laboratories, Inc.

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SB26:5-6'

Lab Name:	STL Ne	wburgh	C	ontract: 01012.01	_
Lab Code:	10142	Case No.:	·	SAS No.:S	DG No.: 212860
Matrix: (soil/w	vater)	SOIL		Lab Sample ID:	212860-020
Sample wt/vo	ol:	30.0 (g/ml) G		Lab File ID:	E26973.D
Level: (low/n	ned)	LOW		Date Received:	6/18/02
% Moisture:	10.1	decanted:(Y/N) _	N	Date Extracted:	6/27/02
Concentrated	d Extract	Volume: <u>1000</u> (uL)		Date Analyzed:	7/2/02
Injection Volu	ıme: <u>2</u>	.0 (uL)		Dilution Factor:	1.0
GPC Cleanu	p: (Y/N)	N pH: 7.48	_	•	

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q	
100-02-7	4-Nitrophenol	·	-930	UJ	Rc
86-73-7	Fluorene		370	U	
7005-72-3	4-Chlorophenyl-phenyleti	her	370	U	
84-66-2	Diethylphthalate		370	U	
100-01-6	4-Nitroaniline		930	U	
534-52-1	4,6-Dinitro-2-methylphen	ol	930	U	
86-30-6	n-Nitrosodiphenylamine (1)	370	U	
101-55-3	4-Bromophenyl-phenyleti	ner	370	U	
118-74-1	Hexachlorobenzene		370	U	
87-86-5	Pentachlorophenol		- 930	UJ L	Rc
85-01-8	Phenanthrene		370	U	
120-12-7	Anthracene		370	U	
84-74-2	Di-n-butylphthalate		370	U	
206-44-0	Fluoranthene		370	U	
129-00-0	Pyrene		370	U	
85-68-7	Butylbenzylphthalate		370	U	
91-94-1	3,3'-Dichlorobenzidine		740	U	
56-55-3	Benzo(a)anthracene		370	U	
218-01-9	Chrysene		370	U	
117-81-7	bis(2-Ethylhexyl)phthalate	е	370	U	
117-84-0	Di-n-octylphthalate		370	U	
205-99-2	Benzo(b)fluoranthene		370	U	
207-08-9	Benzo(k)fluoranthene		370	U	
50-32-8	Benzo(a)pyrene		370	U	
193-39-5	Indeno(1,2,3-cd)pyrene		370	U	:
62-75-9	N-Nitrosodimethylamine		370	U	
53-70-3	Dibenz(a,h)anthracene		370	U	:
191-24-2	Benzo(g,h,i)perylene		370	U	

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

ENTATIVELY IDENTIFIE	ED COMPO	JNDS	
			SB26:5-6'
rah	Contract	01012 01	100000

Lab Name: STL Newburgh Lab Code: 10142 Case No.: SAS No.: SDG No.: 212860 Lab Sample ID: 212860-020 Matrix: (soil/water) SOIL (g/ml) G Lab File ID: E26973.D Sample wt/vol: 30 LOW Date Received: 6/18/02 Level: (low/med) Date Extracted: 6/27/02 10.1 % Moisture: decanted: (Y/N) Ν Concentrated Extract Volume: 1000 (uL) Date Analyzed: 7/2/02 Dilution Factor: 1.0 Injection Volume: 2.0 (uL) GPC Cleanup: (Y/N) N pH: 7.48

CONCENTRATION UNITS:

Number TICs found:	3	(ug/L or ug/Kg)	UG/KG	· .
CACNUMBED	COMPOUND NAME	DT	EST CONC	0

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	
1.	unknown	5.25	870	J	R۸
2.	unknown	18.53	260	J	j
3. 000630-06-8	Hexatriacontane	20.72	200	JN	j

M-NY049

1B

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

_ab Name:	STL Nev	wburgh	•	C	Contract:	01012.01	SB27:6-7.5RR
_ab Code:	10142		Case No.:		SAS No	o.: S	DG No.: 212860
Matrix: (soil/v	vater)	SOIL			Lal	Sample ID:	212860-002RR
Sample wt/vo	ol:	30.0	(g/ml) G		Lal	o File ID:	E26971.D
_evel: (low/n	ned)	LOW			Da	te Received:	6/18/02
% Moisture:	15.6		decanted:(Y/N)	N	Da	te Extracted:	7/1/02

GPC Cleanup: (Y/N) Ν pH: 7.45

Concentrated Extract Volume: 1000 (uL)

Injection Volume: 2.0 (uL)

CONCENTRATION UNITS:

Dilution Factor: 1.0

Date Analyzed: 7/2/02

CAS NO.	COMPOUND (ug/L or ug/h	(g) <u>UG/KG</u>	Q	
111-44-4	bis(2-Chloroethyl)ether	400	UJh	
108-95-2	Phenol	400	Uı.	UJL
95-57-8	2-Chlorophenol	400	U	UJL
541-73-1	1,3-Dichlorobenzene	400	U,	
106-46-7	1,4-Dichlorobenzene	400	U	UJL
95-50-1	1,2-Dichlorobenzene	400	U	
100-51-6	Benzyl alcohol	400	U	
108-60-1	2,2'-oxybis(1-Chloropropane)	400	U	
95-48-7	2-Methylphenol	400	U	
67-72-1	Hexachioroethane	400	U	
621-64-7	N-Nitroso-di-n-propylamine	400	U.	UJL
106-44-5	4-Methylphenol	400	U ,	1
98-95-3	Nitrobenzene	400	U	muchen
78-59-1	Isophorone	400	U	disregard rejection
88-75-5	2-Nitrophenol	400UJ-400-	<u> </u>	Rê van
105-67-9	2,4-Dimethylphenol	400	U	-
111-91-1	bis(2-Chloroethoxy)methane	400	U	
120-83-2	2,4-Dichlorophenol	400	U	-
120-82-1	1,2,4-Trichlorobenzene	400	U,	UJL
91-20-3	Naphthalene	400	U '	
106-47-8	4-Chloroaniline	400	U	· .
87-68-3	Hexachlorobutadiene	400	U]
59-50-7	4-Chloro-3-methylphenol	400	U.	ປປຸ
91-57-6	2-Methylnaphthalene	400	u l'	,
77-47-4	Hexachlorocyclopentadiene	400	U,	UJc
88-06-2	2,4,6-Trichlorophenol	400	U L	
95-95-4	2,4,5-Trichlorophenol	400	U	
91-58-7	2-Chloronaphthalene	400	U.]
88-74-4	2-Nitroaniline	990	U]
208-96-8	Acenaphthylene	400	U]
131-11-3	Dimethylphthalate	400	U	
606-20-2	2,6-Dinitrotoluene	400	U	
83-32-9	Acenaphthene	400	U .	արև
99-09-2	3-Nitroaniline	990	U	
51-28-5	2,4-Dinitrophenol	-990		<u>"</u> Rc
132-64-9	Dibenzofuran	400	U↓	_
121-14-2	2,4-Dinitrotoluene	400	UJh	UJL

STL Newburgh is a part of Severn Trent Laboratories, Inc.

PA 68-378

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SB27:6-7 5RR

Lab Name: STL N		wburgh		C	ontract: 01012.01	OBZT.O 7.0141	
Lab Code:	10142	0142 Case No.:			SAS No.: S	DG No.: 212860	
Matrix: (soil/v	vater)	SOIL			Lab Sample ID:	212860-002RR	
Sample wt/vo	ol:	30.0	(g/ml) <u>G</u>		Lab File ID:	E26971.D	
Level: (low/n	ned)	LOW			Date Received:	6/18/02	
% Moisture:	15.6	(decanted:(Y/N) _	N	Date Extracted:	7/1/02	
Concentrated	Extract	Volume:	1000 (uL)		Date Analyzed:	7/2/02	
Injection Volu	ıme: <u>2</u>	.0 (uL)		Dilution Factor:	1.0	
GPC Cleanu	p: (Y/N)	N	pH: <u>7.45</u>	-			

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Ng)	UG/NG	. Q	
100-02-7	4-Nitrophenol		- 990	-UJh	
86-73-7	Fluorene		400	II terra	

100-02-7	4-Nitrophenol	- 990-	UJh Rc
86-73-7	Fluorene	400	UluJh
7005-72-3	4-Chlorophenyl-phenylether	400	U
84-66-2	Diethylphthalate	400	U
100-01-6	4-Nitroaniline	990	U
534-52-1	4,6-Dinitro-2-methylphenol	990	U
86-30-6	n-Nitrosodiphenylamine (1)	400	U
101-55-3	4-Bromophenyl-phenylether	400	U
118-74-1	Hexachlorobenzene	400	U
87-86-5	Pentachlorophenol	- 990	U-
85-01-8	Phenanthrene	400	U
120-12-7	Anthracene	400	U
84-74-2	Di-n-butylphthalate	400	U
206-44-0	Fluoranthene	400	U
129-00-0	Pyrene	400	U
85-68-7	Butylbenzylphthalate	400	U
91-94-1	3,3'-Dichlorobenzidine	790	U
56-55-3	Benzo(a)anthracene	400	U
218-01-9	Chrysene	400	U
117-81-7	bis(2-Ethylhexyl)phthalate	400	U
117-84-0	Di-n-octylphthalate	400	U
205-99-2	Benzo(b)fluoranthene	400	U
207-08-9	Benzo(k)fluoranthene	400	U
50-32-8	Benzo(a)pyrene	400	U
193-39-5	Indeno(1,2,3-cd)pyrene	400	U
62-75-9	N-Nitrosodimethylamine	400	U
53-70-3	Dibenz(a,h)anthracene	400	U↓
191-24-2	Benzo(g,h,i)perylene	400	$\cup \mathcal{J}_{h}$

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	STL Ne	wburgh	Contrac	t: <u>01012.0</u>	1 5827:6-7.51	XIX.
Lab Code:	10142	Case No.:	SAS	No.:	_ SDG No.: 2128	60
Matrix: (soil/v	vater)	SOIL		_ab Sample	ID: <u>212860-002</u> R	R
Sample wt/vo	ol:	30 (g/ml) G		ab File ID:	E26971.D	
Level: (low/n	ned)	LOW	Į.	Date Receive	ed: 6/18/02	·
% Moisture:	15.6	decanted: (Y/N)	N I	Date Extract	ed: 7/1/02	
Concentrated	l Extract	Volume: 1000 (uL)		Date Analyze	ed: 7/2/02	
Injection Volu	ıme: <u>2.</u>	0 (uL)		Dilution Fact	or: 1.0	
GPC Cleanur	o: (Y/N)	N pH: 7.45	-		. *	
			CONCE	NTRATION !	UNITS:	
Number TICs	found:	2	(ug/L or	ug/Kg)	UG/KG	
CAS NUME	BER	COMPOUND NAME		RT	EST. CONC.	Q
1. 00059	7-76-2	3-Hexanol, 3-ethyl-		4.84	340	JN 31
2.		unknown		5.27	- 1700 - 	J_

3/90

M-NY049

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SB27D:6-7.5'

Lab Name:	STL Nev	vburgh		_ Contract:	01012.01	OD27 D.0-7.0
Lab Code:	10142		Case No.:	_ SAS N	lo.: S	DG No.: 212860
Matrix: (soil/w	vater)	SOIL		La	ab Sample ID:	212860-003
Sample wt/vo	ol:	30.0	(g/ml) G	L	ab File ID:	E26942.D
Level: (low/m	ned)	LOW		D	ate Received:	6/18/02
% Moisture:	17.5		decanted:(Y/N)	<u>N</u> D	ate Extracted:	6/27/02
Concentrated	Extract \	/olume	: <u>1000</u> (uL)	, D	ate Analyzed:	6/27/02
Injection Volu	me: <u>2.</u>	0 (ul	_)	D	ilution Factor:	1.0
GPC Cleanup	o: (Y/N)	N	pH: <u>7.3</u>			

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
111-44-4	bis(2-Chloroethyl)eth	er	410	U
108-95-2	Phenol		410	UJL
95-57-8	2-Chlorophenol		410	UJL
541-73-1	1,3-Dichlorobenzene		410	U
106-46-7	1,4-Dichlorobenzene		410	UJL
95-50-1	1,2-Dichlorobenzene		410	U
100-51-6	Benzyl alcohol		410	U
108-60-1	2,2'-oxybis(1-Chlorop	propane)	410	U
95-48-7	2-Methylphenol		410	· U
67-72-1	Hexachloroethane		410	U
621-64-7	N-Nitroso-di-n-propyl	amine .	410	UJL
106-44-5	4-Methylphenol		410	U
98-95-3	Nitrobenzene		410	U
78-59-1	Isophorone		410	U
88-75-5	2-Nitrophenol		410	Ü
105-67-9	2,4-Dimethylphenol	i	410	U
111-91-1	bis(2-Chloroethoxy)n	nethane	410	U
120-83-2	2,4-Dichlorophenol		410 :	U
120-82-1	1,2,4-Trichlorobenze	ne	410	UJL
91-20-3	Naphthalene		410	U
106-47-8	4-Chloroaniline		410	U
87-68-3	Hexachlorobutadiene)	410	U
59-50-7	4-Chloro-3-methylphe	enol	410	UJL
91-57-6	2-Methylnaphthalene		410	U
77-47-4	Hexachlorocyclopent	adiene	410	U
88-06-2	2,4,6-Trichloropheno		410	U
95-95-4	2,4,5-Trichloropheno		410	Ų
91-58-7	2-Chloronaphthalene		410	U
88-74-4	2-Nitroaniline	·	1000	U
208-96-8	Acenaphthylene		410	U
131-11-3	Dimethylphthalate		410	U
606-20-2	2,6-Dinitrotoluene		410	U
83-32-9	Acenaphthene		410	UJL
99-09-2	3-Nitroaniline		1000	U
51-28-5	2,4-Dinitrophenol		1000	U
132-64-9	Dibenzofuran		410	U
121-14-2	2,4-Dinitrotoluene		410	UJL

STL Newburgh is a part of Severn Trent Laboratories, Inc.

EPA NY049

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SB27D:6-7.5'

Lab Name:	STL Newburg	<u>h</u>	Contract:	01012.01	
Lab Code:	10142	Case No.:	SAS No	o.: S	DG No.: 212860
Matrix: (soil/w	vater) SOIL	·	La	b Sample ID:	212860-003
Sample wt/vo	ol: <u>30.0</u>	(g/ml) <u>G</u>	La	b File ID:	E26942.D
Level: (low/n	ned) <u>LOV</u>	<u> </u>	Da	te Received:	6/18/02
% Moisture:	17.5	decanted:(Y/N)	N Da	te Extracted:	6/27/02
Concentrated	d Extract Volun	ne: 1000 (uL)	Da	ite Analyzed:	6/27/02
Injection Volu	ıme: 2.0 (uL)	Dil	ution Factor:	1.0
GPC Cleanup	p: (Y/N)1	N pH: 7.3		•	

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
100-02-7	4-Nitrophenol		1000	UJL

100-02-7	4-Nitrophenol	1000	UJL
86-73-7	Fluorene	410	U
7005-72-3	4-Chlorophenyl-phenylether	410	U
84-66-2	Diethylphthalate	410	U
100-01-6	4-Nitroaniline	1000	Ų
534-52-1	4,6-Dinitro-2-methylphenol	1000	U
86-30-6	n-Nitrosodiphenylamine (1)	410	<u> </u>
101-55-3	4-Bromophenyl-phenylether	410	U
118-74-1	Hexachlorobenzene	410	U
87-86-5	Pentachlorophenol	1000	UJL
85-01-8	Phenanthrene	410	U
120-12-7	Anthracene	410	U
84-74-2	Di-n-butylphthalate	410	U
206-44-0	Fluoranthene	410	U
129-00-0	Pyrene	410	<u> U </u>
85-68-7	Butylbenzylphthalate	410	U
91-94-1	3,3'-Dichlorobenzidine	810	UJc
56-55-3	Benzo(a)anthracene	410	U
218-01-9	Chrysene	410	. <u>U</u>
117-81-7	bis(2-Ethylhexyl)phthalate	410	U
117-84-0	Di-n-octylphthalate	410	U
205-99-2	Benzo(b)fluoranthene	410	U
207-08-9	Benzo(k)fluoranthene	410	U
50-32-8	Benzo(a)pyrene	410	U
193-39-5	Indeno(1,2,3-cd)pyrene	410	U
62-75-9	N-Nitrosodimethylamine	410	U
53-70-3	Dibenz(a,h)anthracene	410	U
191-24-2	Benzo(g,h,i)perylene	410	U

NJDEP 73015

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SB27D:6-7.5'

Lab Name: S	TL Newburgh	_ Contract: 01012.01	OBZY D.O Y.O
Lab Code: 10	0142 Case No.:	SAS No.: SI	DG No.: 212860
Matrix: (soil/wat	er) <u>SOIL</u>	Lab Sample ID:	212860-003
Sample wt/vol:	30 (g/ml) G	Lab File ID:	E26942.D
Level: (low/med	d) <u>LOW</u>	Date Received:	6/18/02
% Moisture:	17.5 decanted: (Y/N)	N Date Extracted:	6/27/02
Concentrated E	xtract Volume: 1000 (uL)	Date Analyzed:	6/27/02
Injection Volum	e: <u>2.0</u> (uL)	Dilution Factor:	1.0
GPC Cleanup: ((Y/N) N pH: 7.3		
		CONCENTRATION UNI	rs:
Number TiCs fo	ound: 1	(ug/L or ug/Kg) UG/	KG
CAS NUMBER	R COMPOUND NAME	RT ES	IT. CONC. Q
1.	unknown	5.28	- 1700 - J

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SB28:7-8'

Lab Name:	STL Ne	wburgh	C	ontract: 01012.0)1	
Lab Code:	10142	Case No.:		SAS No.:	SDG No	.: <u>212860</u>
Matrix: (soil/w	vater)	SOIL		Lab Sample	ID: 21286	80-006
Sample wt/vo	oi:	30.0 (g/ml) G		Lab File ID:	E269	54.D
Level: (low/n	ned)	LOW		Date Receiv	/ed: <u>6/18/</u> 0)2
% Moisture:	12.7	decanted:(Y/N) _	N	Date Extrac	ted: 6/27/0)2
Concentrated	l Extract	Volume: 1000 (uL)		Date Analyz	zed: 6/28/0	02
Injection Volu	ıme: <u>2</u>	.0 (uL)		Dilution Fac	tor: 1.0	
GPC Cleanur	o: (Y/N)	N pH: 7.58	-			

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
111-44-4	bis(2-Chloroethyl)ethe	er	380	U
108-95-2	Phenol		380	UJı
95-57-8	2-Chlorophenol		380	ÚJL
541-73-1	1,3-Dichlorobenzene		380	U
106-46-7	1,4-Dichlorobenzene		380	UJL
95-50-1	1,2-Dichlorobenzene		380	U
100-51-6	Benzyl alcohol		380	U
108-60-1	2,2'-oxybis(1-Chlorop	ropane)	380	U
95-48-7	2-Methylphenol		380	U
67-72-1	Hexachloroethane		380	U
621-64-7	N-Nitroso-di-n-propyla	amine	380	UJL
106-44-5	4-Methylphenol		380	U
98-95-3	Nitrobenzene		380	U
78-59-1	Isophorone		380	U
88-75-5	2-Nitrophenol		380	U
105-67-9	2,4-Dimethylphenol		380	U
111-91-1	bis(2-Chloroethoxy)m	ethane	380	U
120-83-2	2,4-Dichlorophenol		380	U
120-82-1	1,2,4-Trichlorobenzer	ne	380	UJL
91-20-3	Naphthalene		380	U
106-47-8	4-Chloroaniline		380	UJc
87-68-3	Hexachlorobutadiene		380	U
59-50-7	4-Chloro-3-methylphe		380	Սյլ
91-57-6	2-Methylnaphthalene		380	U
77-47-4	Hexachlorocyclopent	adiene	380	UJc
88-06-2	2,4,6-Trichlorophenol		380	U
95-95-4	2,4,5-Trichlorophenol		380	U
91-58-7	2-Chloronaphthalene		380	U
88-74-4	2-Nitroaniline		960	U
208-96-8	Acenaphthylene		380	U
131-11-3	Dimethylphthalate		380	U
606-20-2	2,6-Dinitrotoluene		380	U
83-32-9	Acenaphthene		380	UJL
99-09-2	3-Nitroaniline		960	پTU
51-28-5	2,4-Dinitrophenol		960	UJC
132-64-9	Dibenzofuran		380	Ū
121-14-2	2,4-Dinitrotoluene		380	UJL

STL Newburgh is a part of Severn Trent Laboratories, Inc.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Q

Lab Name:	STL Nev	wburgh		_ Contract:	01012.01	SB20.7-0
Lab Code:	10142		Case No.:	SAS N	lo.: S	DG No.: 212860
Matrix: (soil/w	vater)	SOIL		La	ab Sample ID:	212860-006
Sample wt/vo	d:	30.0	(g/ml) <u>G</u>	L	ab File ID:	E26954.D
Level: (low/m	ned)	LOW		D	ate Received:	6/18/02
% Moisture:	12.7		decanted:(Y/N)	N D	ate Extracted:	6/27/02
Concentrated	Extract	Volume	: 1000 (uL)	D	ate Analyzed:	6/28/02
Injection Volu	me: <u>2</u>	.0(ul	L)	Ď	ilution Factor:	1.0
GPC Cleanup	o: (Y/N)	N	pH: <u>7.58</u>	•		

COMPOUND

CONCENTRATION UNITS:

UG/KG

(ug/L or ug/Kg)

100-02-7	4-Nitrophenol	960	UJL
86-73-7	Fluorene	380	U
7005-72-3	4-Chlorophenyl-phenylether	380	U
84-66-2	Diethylphthalate	. 380	U
100-01-6	4-Nitroaniline	960	U
534-52-1	4,6-Dinitro-2-methylphenol	960	UJc
86-30-6	n-Nitrosodiphenylamine (1)	380	U .
101-55-3	4-Bromophenyl-phenylether	380	U
118-74-1	Hexachlorobenzene	380	U
87-86-5	Pentachlorophenol	960	UTL UJO
85-01-8	Phenanthrene	380	U
120-12-7	Anthracene	380	U
84-74-2	Di-n-butylphthalate	380	U
206-44-0	Fluoranthene	380	U
129-00-0	Pyrene	380	U
85-68-7	Butylbenzylphthalate	380	U
91-94-1	3,3'-Dichlorobenzidine	770	U
56-55-3	Benzo(a)anthracene	380	U
218-01-9	Chrysene	380	U
117-81-7	bis(2-Ethylhexyl)phthalate	380	U
117-84-0	Di-n-octylphthalate	380	UJC
205-99-2	Benzo(b)fluoranthene	380	U
207-08-9	Benzo(k)fluoranthene	380	U
50-32-8	Benzo(a)pyrene	380	U
193-39-5	Indeno(1,2,3-cd)pyrene	380	U
62-75-9	N-Nitrosodimethylamine	380	U
53-70-3	Dibenz(a,h)anthracene	380	U
191-24-2	Benzo(g,h,i)perylene	380	U

CAS NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

2000

• 7			
STL Newbu	ırgh	Contract: 01012	SB28:7-8'
10142	Case No.:	SAS No.:	SDG No.: 212860

Lab Code: 10 Matrix: (soil/water) SOIL Lab Sample ID: 212860-006 Sample wt/vol: 30 (g/ml) G Lab File ID: E26954.D Level: (low/med) LOW Date Received: 6/18/02 % Moisture: 12.7 decanted: (Y/N) Date Extracted: 6/27/02 Ν Concentrated Extract Volume: 1000 Date Analyzed: 6/28/02 Injection Volume: 2.0 Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: 7.58

unknown

Lab Name:

CONCENTRATION UNITS:

5.31

Number TICs found:	1	(ug/L or ug/Kg)	UG/KG		
CAS NUMBER	COMPOUND NAME	PT	EST. CONC.	0	

Fax (845) 562-0841

PA 68-378

Q

E26918.D

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name:	STL Newb	urgh	Contract: 0	RBSB-61302	
Lab Code:	10142	Case No.:	SAS No.:	SDG No.: 212860	
Matrix: (soil/	water) W	ATER	Lab S	Sample ID; 212860-029	

Sample wt/vol: (g/ml) ML Level: (low/med) LOW Date Received: 6/18/02

% Moisture: decanted:(Y/N) Date Extracted: 6/21/02 Date Analyzed: 6/25/02

Concentrated Extract Volume: 1000 Dilution Factor: 1.0 Injection Volume: 2.0 (uL)

GPC Cleanup: (Y/N)

CAS NO.

COMPOUND

965.0

CONCENTRATION UNITS:

UG/L

(ug/L or ug/Kg)

Lab File ID:

CAO NO.	(dg/2 o/ dg/.	9) 00/1
111-44-4	bis(2-Chloroethyl)ether	10 UJh
108-95-2	Phenol	<u>-10 U R</u> s
95-57-8	2-Chlorophenol	-10 U Rs
541-73-1	1,3-Dichlorobenzene	10 UJ _h
106-46-7	1,4-Dichlorobenzene	10 <u>U</u>
95-50-1	1,2-Dichlorobenzene	10 U
100-51-6	Benzyl alcohol	10 U L
108-60-1	2,2'-oxybis(1-Chloropropane)	10 UJ _b
95-48-7	2-Methylphenol	10 U RS
67-72-1	Hexachloroethane	10 UJ _h
621-64-7	N-Nitroso-di-n-propylamine	10 UJ _h
106-44-5	4-Methylphenol	10 U R≤
98-95-3	Nitrobenzene	10 UJ _h
78-59-1	Isophorone	10 UJh
88-75-5	2-Nitrophenol	10 U Rs
105-67-9	2,4-Dimethylphenol	- 10 U Rs
111-91-1	bis(2-Chloroethoxy)methane	10 UJ _h 10 UJ _h 10 UJ _h
120-83-2	2,4-Dichlorophenol	- 10 U Rs
120-82-1	1,2,4-Trichlorobenzene	10 UJ _h
91-20-3	Naphthalene	10 U
106-47-8	4-Chloroaniline	10 U 105c
87-68-3	Hexachlorobutadiene	10 UJh
59-50-7	4-Chloro-3-methylphenol	10 U Rs
91-57-6	2-Methylnaphthalene	10 ՄՆ
77-47-4	Hexachlorocyclopentadiene	10 UJh, UJc.
88-06-2	2,4,6-Trichlorophenol	10 U Rs
95-95-4	2,4,5-Trichlorophenol	10
91-58-7	2-Chloronaphthalene	10 UJ _h
88-74-4	2-Nitroaniline	26 U ,
208-96-8	Acenaphthylene	10 U
131-11-3	Dimethylphthalate	10 U
606-20-2	2,6-Dinitrotoluene	10 U
83-32-9	Acenaphthene	10 ∪ ↓
99-09-2	3-Nitroaniline	26 U Jh UJc
51-28-5	2,4-Dinitrophenol	- 26 U Rs
132-64-9	Dibenzofuran	10 U Th
121-14-2	2,4-Dinitrotoluene	10 U J _h

STL Newburgh is a part of Severn Trent Laboratories, Inc.

PA 68-378

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

RBSB-61302

Lab Name:	STL Ne	wburgh		c	ontract	:: <u>01012.0</u>	1		-
Lab Code:	10142	C	ase No.:		SAS	No.:	SD	G No.: 21	2860
Matrix: (soil/v	vater)	WATER			Ĺ	ab Sample	ID: 3	212860-029)
Sample wt/vo	ol:	965.0	(g/mi) ML		L	ab File ID:	1	E26918.D	·
Level: (low/n	ned)	LOW	_		Ē	Date Receive	ed: (6/18/02	
% Moisture:		de	canted:(Y/N)	N	_ [Date Extract	ed: ﴿	6/21/02	
Concentrated	d Extract	Volume:	1000 (uL)			Date Analyz	ed: [6/25/02	
Injection Volu	ıme: <u>2</u>	.0 (uL)				Dilution Fact	or: _	1.0	
GPC Cleanu	p: (Y/N)	N	pH:						

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
100-02-7	4-Nitrophenol		-26	U- Rs
86-73-7	Fluorene		10	ՍՄԽ
7005-72-3	4-Chlorophenyl-phenylethe	r	10	U
84-66-2	Diethylphthalate		10	ΠŢ
100-01-6	4-Nitroaniline		26	UJh
534-52-1	4,6-Dinitro-2-methylphenol		-26	<u> </u>
86-30-6	n-Nitrosodiphenylamine (1)		10	U J.
101-55-3	4-Bromophenyl-phenylethe	r	10	UJh
118-74-1	Hexachlorobenzene		10	UJN
87-86-5	Pentachlorophenol		-26 -	—U Rs
85-01-8	Phenanthrene		10	UJh
120-12-7	Anthracene		10	<u> </u>
84-74-2	Di-n-butylphthalate		10	U
206-44-0	Fluoranthene		_10	U
129-00-0	Pyrene		10	U
85-68-7	Butylbenzylphthalate		10	U,
91-94-1	3,3'-Dichlorobenzidine		21	UUJC
56-55-3	Benzo(a)anthracene		10	U /
218-01-9	Chrysene		10	U
117-81-7	bis(2-Ethylhexyl)phthalate		10	υ
117-84-0	Di-n-octylphthalate		10	U UJC
205-99-2	Benzo(b)fluoranthene		10	U
207-08-9	Benzo(k)fluoranthene		10	U
50-32-8	Benzo(a)pyrene		10	U
193-39-5	Indeno(1,2,3-cd)pyrene		10	U
62-75-9	N-Nitrosodimethylamine		. 10	U
53-70-3	Dibenz(a,h)anthracene		10	U + UJc
191-24-2	Benzo(g,h,i)perylene		10	UJ

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

	* •	1 - 24 17 (HVEE! IDEN	11. 10.0	00 0.	51100	RBSB-61302
Lab Name:	STL Ne	wburgh	· .	c	ontract:	01012.01	KB3B-01302
Lab Code:	10142	C:	ase No.:		SAS No	i.: S	DG No.: 212860
Matrix: (soil/	water)	WATER			Lal	o Sample ID:	212860-029
Sample wt/ve	ol:	965	(g/ml) ML		Lal	o File ID:	E26918.D
Level: (low/r	med)	LOW			Da	te Received:	6/18/02
% Moisture:		de	canted: (Y/N)	N	Da	te Extracted:	6/21/02
Concentrate	d Extract	Volume:	1000 (uL)		Da	te Analyzed:	6/25/02
Injection Vol	ume: 2.0	0 (uL)			Dile	ution Factor:	1.0
GPC Cleanu	p: (Y/N)	N	pH:	_			

CONCENTRATION UNITS:

Number TICs found:	20	(ug/L or ug/Kg)	UG/L	

				_
COMPOUND NAME	RT	EST. CONC.	Q	
C14H22O isomer	14.57	14	J	Jh
Phenol, nonyl-	14.65	15	JN	, . l
C14H22O isomer	14.73	13	J	_ \
C14H22O isomer	15.01	15	J	_ }
Isopropyl Myristate	15.61	11	JN	_
unknown CnH2n+2O	16.14	67	J	
Hexadecanoic acid	17.35	360	JN	1 . \
unknown	17.62	12	J] \
Heneicosane	17.90	10	JN]
unknown CnH2n+2	18.65	- 29	J	1
Octadecanoic acid	18.81	26	JN	_
unknown CnH2n+2	19.38	38	J] <u>[</u>
2-Propenoic acid, 3-(4-methoxyp	19.62	-250	JN	Rm
unknown CnH2n+2	20.08	37	J]]
unknown CnH2n+2	20.75	42	J]
unknown CnH2n+2	21.39	34	J	<u> </u>
Hexatriacontane	22.02	52	JN]
Hexatriacontane	22.62	45	JN	
Hexatriacontane	23.20	77	JN	ļ
Glycerol tricaprylate	23.41	15	JN	$\int \mathcal{J}_{h}$
	C14H22O isomer Phenol, nonyl- C14H22O isomer C14H22O isomer Isopropyl Myristate unknown CnH2n+2O Hexadecanoic acid unknown Heneicosane unknown CnH2n+2 Octadecanoic acid unknown CnH2n+2 2-Propenoic acid, 3-(4-methoxyp unknown CnH2n+2 unknown CnH2n+2 unknown CnH2n+2 unknown CnH2n+2 Hexatriacontane Hexatriacontane Hexatriacontane	C14H22O isomer 14.57 Phenol, nonyl- 14.65 C14H22O isomer 14.73 C14H22O isomer 15.01 Isopropyl Myristate 15.61 unknown CnH2n+2O 16.14 Hexadecanoic acid 17.35 unknown 17.62 Heneicosane 17.90 unknown CnH2n+2 18.65 Octadecanoic acid 18.81 unknown CnH2n+2 19.38 2-Propenoic acid, 3-(4-methoxyp 19.62 unknown CnH2n+2 20.08 unknown CnH2n+2 20.75 unknown CnH2n+2 21.39 Hexatriacontane 22.02 Hexatriacontane 22.62 Hexatriacontane 23.20	C14H22O isomer 14.57 14 Phenol, nonyl- 14.65 15 C14H22O isomer 14.73 13 C14H22O isomer 15.01 15 Isopropyl Myristate 15.61 11 unknown CnH2n+2O 16.14 67 Hexadecanoic acid 17.35 360 unknown 17.62 12 Heneicosane 17.90 10 unknown CnH2n+2 18.65 29 Octadecanoic acid 18.81 26 unknown CnH2n+2 19.38 38 2-Propenoic acid, 3-(4-methoxyp 19.62 +250- unknown CnH2n+2 20.08 37 unknown CnH2n+2 20.75 42 unknown CnH2n+2 21.39 34 Hexatriacontane 22.02 52 Hexatriacontane 22.62 45 Hexatriacontane 23.20 77	C14H22O isomer 14.57 14 J Phenol, nonyl- 14.65 15 JN C14H22O isomer 14.73 13 J C14H22O isomer 15.01 15 J Isopropyl Myristate 15.61 11 JN unknown CnH2n+2O 16.14 67 J Hexadecanoic acid 17.35 360 JN unknown 17.62 12 J Heneicosane 17.90 10 JN unknown CnH2n+2 18.65 29 J Octadecanoic acid 18.81 26 JN unknown CnH2n+2 19.38 38 J 2-Propenoic acid, 3-(4-methoxyp 19.62 +250 JN- unknown CnH2n+2 20.08 37 J unknown CnH2n+2 20.08 37 J unknown CnH2n+2 21.39 34 J Hexatriacontane 22.02 52 JN Hexatriacontane 22.62 45

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

<i>-</i>	HASHEET	İ	
		RBSB-61402	
٠+٠	04042 D4	1 -	

Lab Name:	STL Ne	wburgh		c	ontract:	01012.01	_
Lab Code:	10142	Ca	se No.:		SAS No	o.: S	DG No.: 212860
Matrix: (soil/v	vater)	WATER	_		Lal	b Sample ID:	212860-030
Sample wt/vo	ol:	970.0	(g/ml) ML		Lal	b File ID:	E26919.D
Level: (low/n	ned)	LOW			Da	te Received:	6/18/02
% Moisture:		de	canted:(Y/N)	N	Da	te Extracted:	6/21/02
Concentrated	d Extract	Volume:	1000 (uL)		Da	te Analyzed:	6/25/02
injection Volu	ıme: <u>2</u>	<u>.0</u> (uL)			Dil	ution Factor:	1.0
GPC Cleanu	p: (Y/N)	N	pH:	_			

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
111-44-4	bis(2-Chloroethyl)et	her	10	U
108-95-2	Phenol		10	- U- Rs
95-57-8	2-Chlorophenol		10	—U Rs
541-73-1	1,3-Dichlorobenzene	e	10	U
106-46-7	1,4-Dichlorobenzene	е	10	U
95-50-1	1,2-Dichlorobenzene	е	10	U
100-51-6	Benzyl alcohol		10	U
108-60-1	2,2'-oxybis(1-Chloro	propane)	10	U
95-48-7	2-Methylphenol		-10	U Rs
67-72-1	Hexachloroethane		10	U
621-64-7	N-Nitroso-di-n-propy	/lamine	10	U
106-44-5	4-Methylphenol		10-	U Rs
98-95-3	Nitrobenzene		10	U
78-59-1	Isophorone	1	10	U
88-75-5	2-Nitrophenol	/	-10	U Rs
105-67-9	2,4-Dimethylphenol		40	- U Rs
111-91-1	bis(2-Chloroethoxy)	methane	10	U
120-83-2	2,4-Dichlorophenol		-10	U Rs
120-82-1	1,2,4-Trichlorobenze	ene	10	U
91-20-3	Naphthalene		10	U
106-47-8	4-Chloroaniline		10	UJc
87-68-3	Hexachlorobutadien	e	10	U
59-50-7	4-Chloro-3-methylph	nenol	10	- U Rs
91-57-6	2-Methylnaphthalen	е	10	U
77-47-4	Hexachlorocycloper	ntadiene	10	UJc
88-06-2	2,4,6-Trichlorophen	ol	10	U Ƙs
95-95-4	2,4,5-Trichlorophen	ol	10	U Rs
91-58-7	2-Chloronaphthalen	е	10	U
88-74-4	2-Nitroaniline		26	Ų
208-96-8	Acenaphthylene		10	U
131-11-3	Dimethylphthalate		10	U
606-20-2	2,6-Dinitrotoluene		10	U
83-32-9	Acenaphthene		10	U
99-09-2	3-Nitroaniline		26	UJد
51-28-5	2,4-Dinitrophenol		-26 -	- U βs
132-64-9	Dibenzofuran		10	U
121-14-2	2,4-Dinitrotoluene		10	U

STL Newburgh is a part of Severn Trent Laboratories, Inc.

3/90

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

• •	
	RBSB-61402
4	1.1505 01 102
1	

Lab Name:	STL Nev	wburgh		Co	ntract: <u>0</u>	1012.01	_	
Lab Code:	10142	Cas	e No.:	;	SAS No.:	SI	DG No.: <u>21286</u>	0
Matrix: (soil/w	vater)	WATER	4		Lab S	Sample ID:	212860-030	
Sample wt/vo	ol:	970.0	(g/ml) ML		Lab F	ile ID:	E26919.D	_
Level: (low/m	ned)	LOW			Date	Received:	6/18/02	· ·
% Moisture:		deca	anted:(Y/N) _	N	Date	Extracted:	6/21/02	_
Concentrated	I Extract	Volume: 10	000 (uL)		Date	Analyzed:	6/25/02	
Injection Volu	me: <u>2</u>	.0 (uL)			Dilutio	on Factor:	1.0	_
GPC Cleanur	o: (Y/N)	<u>N</u>	рН:	_		٠.		

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
		·		

100-02-7	4-Nitrophenol	-26	U R
86-73-7	Fluorene	- 10	U
7005-72-3	4-Chlorophenyl-phenylether	10	U ·
84-66-2	Diethylphthalate	10	<u> </u>
100-01-6	4-Nitroaniline	26	Ų
534-52-1	4,6-Dinitro-2-methylphenol	-26	<u> </u>
86-30-6	n-Nitrosodiphenylamine (1)	10	U
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	U
87-86-5	Pentachlorophenol	~ 26 —	
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
84-74-2	Di-n-butylphthalate	10	Ų
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	21	UJc
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
117-81-7	bis(2-Ethylhexyl)phthalate	10	U
117-84-0	Di-n-octylphthalate	10	UJح
205-99-2	Benzo(b)fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	<u> </u>
62-75-9	N-Nitrosodimethylamine	10	U
53-70-3	Dibenz(a,h)anthracene	10	UJZ
191-24-2	Benzo(g,h,i)perylene	10	U

CTDOHS PH-0554

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

RBSB-61402

Lab Name:	STL Nev	vburgh	Contract:	01012.01	_
Lab Code:	10142	Case No.:	SAS No	o.: S	DG No.: 212860
Matrix: (soil/v	vater)	WATER	La	b Sample ID:	212860-030
Sample wt/vo	ol:	970 (g/ml) ML	La	b File ID:	E26919.D
Level: (low/n	ned)	LOW	Da	te Received:	6/18/02
% Moisture:		decanted: (Y/N)	N Da	te Extracted:	6/21/02
Concentrated	d Extract '	Volume: 1000 (uL)	Da	ite Analyzed:	6/25/02
Injection Volu	ıme: <u>2.0</u>	<u> </u>	Dil	ution Factor:	1.0
GPC Cleanu	p: (Y/N)	NpH:			

CONCENTRATION UNITS:

		i i	
Number TICs found:	12	(ug/L or ug/Kg)	UG/L

Number 1105 lound	. 12	(ug/L or ug/r\g)		<u> </u>	7
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	
1.	unknown	14.48	3	J]
2.	C14H22O isomer	14.57	14	J	
3.	C15H24O isomer	14.64	14	J]
4.	C15H24O isomer	14.68	6	J	
5.	C14H22O isomer	14.72	13	J	-, _;
6.	unknown	14.83	5	J	-
7.	unknown	14.86	3	J	3
8.	C15H24O isomer	14.92	10	J	7,
9.	C14H22O isomer	15.01	15	J	
10.	unknown	15.08	8	j	-]
11. 000057-10-3	Hexadecanoic acid	17.28	-3	JN	٦R،
12.	unknown Hexadecane	21.70	10	J	_

	L Job Number: 212860	ABORATORY	TES	T RESUL	S 1		Date:08/22/2002		
CUSTOMER: Aner	CUSTOMER: Aneptek Corporation	PROJECT:	100000000	STRATTON ANGE 01012.			ATTN: Jeff Don	Donovan	
Customer Date San Time Sam Sample M	Customer Sample ID: SB-17-61402 5-6 FT Date Sampled: 06/14/2002 Time Sampled: 11:20 Sample Matrix: Soil		Lab Datı Tim	Laboratory Sample I Date Received Time Received	10: 212860-24 : 06/18/2002 : 12:00				
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	a FLAGS	191	RL	DILUTION	UNITS	DI DATE	TECH
SW846 7740	Selenium (Se)*	0.51		0.51	1.3	-	mg/Kg	07/24/02	b jg
SW846 7471A	Mercury (Hg)*	0.12	38.	0.12	0.12		mg/Kg	06/21/02	cl.f
EPA 160.3	% Moisture	21.9			0.1	_	*	06/18/02	l la
EPA 160.3	% Solids	78.1			0.100		%	06/18/02	lla
SWB46 6010B	Metals Analysis (ICAP) Aluminum (Al)* Antimony (Sb)* Arsenic (As)* Barium (Ba)* Cachium (Cd)* Calcium (Cd)* Cobalt (Co)* Copper (Cu)* Iron (Fe)	20400 1.4 VJm u 9.5 Jb 148 1.1 0.66 Jb B 26.6 16.4 33.9 37000 12.4 5800 66.5 33.9 33.9 3700 12.4 5800 66.5 10.4	m	8.0 1.4 0.167 0.058 0.053 13.2 0.63 1.8 1.8 1.8 1.7 0.63 3.9 1.8 1.8 1.8 55.7 55.7 0.40	51.2 15.4 12.6 12.8 12.8 12.8 10.2 10.2 2.6 2.6 2.6	2.000	99/Kg 99/Kg 99/Kg 99/Kg 99/Kg 99/Kg 99/Kg 99/Kg 99/Kg 99/Kg	07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02	mad mad mad mad mad mad mad mad mad mad
	* In Description = Dry Wgt.	Δ.	Page 24						

Page 24

			TECH	шад	
	Ų		DATE	07/30/02	
Date:08/22/2002	N: Jeff Donovan		UNITS DT	mg/Kg mg/Kg	
Dat	ATTN:		DILUTION		
w		: 212860-24 : 06/18/2002 : 12:00	RL D	5.1	
T RESULT	STRATTON ANGB 01012.	Laboratory Sample ID: Date Received: Time Received:	1DL	96.0	
ы Б		Labo Date Time	Q FLAGS		Page 25
LABORATORY	PROJECT:		SAMPLE RESULT C	85.7	Ps
L J Job Number: 212860	tek Corporation	Customer Sample ID: SB-17-61402 5-6 FT Date Sampled: 06/14/2002 Time Sampled: 11:20 Sample Matrix: Soil	PARAMETER/TEST DESCRIPTION	Vanadium (V)* Zinc (Zn)*	* In Description = Dry Wgt.
-5	CUSTOMER: Aneptek Corporation	Customer Date Samp Time Samp Sample Ma	TEST METHOD		

	Job Number: 212860	ABORATORY	н П	ST RESUL	s -		Date: 08/22/2002		
CUSTOMER: Ane	CUSTOMER: Aneptek Corporation	PROJECT:	STRATION	4 ANGB 01012.			ATTN: Jeff Donovan	ovan	
Custome Date San Time Sar Sample M	Customer Sample ID: SB-18-61402 2-4 FT Date Sampled: 06/14/2002 Time Sampled: 10:46 Sample Matrix: Soil		Lak Dat Tin	Laboratory Sample ID: Date Received	D: 212860-22 .: 06/18/2002 .: 12:00				
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	IDL	RL	DILUTION	UNITS	DT DATE	TECH
SW846 7740	Selenium (Se)*	0.53	ם	0.53	1.3	*	mg/Kg	07/24/02	ħjg
SW846 7471A	Mercury (Hg)*	0.13	*** ***	0.13	0.13	-	mg/Kg	06/21/02	cl.f.
EPA 160.3	% Moisture	24.0			0.1		%	06/18/02	l.l.a
EPA 160.3	% Solids	76.0		,	0.100	_	%	06/18/02	L la
SW846 6010B	Metals Analysis (ICAP) Aluminum (Al)* Antimony (Sb)* Arsenic (As)* Barium (Ba)* Cadrium (Ca)* Calcium (Ca)* Cobalt (Co)* Copper (Cu)* Iron (Fe)	27700 1.4 VIm 286. 286. 1.5 0.69 Jb 180 32.6 9.9 30.0 40500 12.1 6870 215 39.4 2650 220 Um) 220 Um) 220 Um) 220 Um) 220 Um)	2	8.2 1.4 0.69 0.05 0.13 13.6 0.22 0.65 1.8 1.7 1.7 6.0 6.0 18.6 18.6 18.6 18.6 0.49 0.49 0.49 0.49 0.49 0.49	22.6 15.8 15.8 13.2 13.2 13.2 13.2 13.2 13.2 13.2 2.6 2.6 2.6		78/Kg 78/Kg	07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02	mad mad
	* In Description = Dry Wgt.	a.	Page 22						

Page 22

		mad mad mad	
	van	07/30/02 07/30/02	
Date: 08/22/2002	ATIN: Jeff Donovan	mg/Kg mg/Kg	
		DILUTION 1	
S	212860-22 06/18/2002 12:00	13.2 5.3	
ESTRESULT	STRATION ANGE 01012. Laboratory Sample ID: Date Received	0.98 4.7	53
A B O R A T O R Y T	PROJECT: STR.	38.5 96.2	Page 23
L A Job Number: 212860	CUSTOWER: Aneptek Corporation Customer Sample ID: SB-18-61402 2-4 FT Date Sampled: 06/14/2002 Time Sampled: 10:46 Sample Matrix: Soil	Vanadium (V)* Zinc (Zn)*	* In Description = Dry Wat.
	CUSTOWER: Anep Customer Date Sam Time Samy	TEST METHOD	

 I	Job Number: 212860	ABORATORY	<u>н</u>	ST RESUL	S L		Date: 08/22/2002	·	
CUSTOMER: Anet	CUSTOMER: Aneptek Corporation	PROJECT:	STRATTON	N ANGB 01012.			ATIN: Jeff Donovan	van	
Customer Date San Time Sam Sample M	Customer Sample ID: SB-19-61402 7-8 FT Date Sampled: 06/14/2002 Time Sampled: 12:00 Sample Matrix: Soil		Lat Dan	Laboratory Sample Date Received	ID: 212860-26 : 06/18/2002 : 12:00				
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT 6	0 FLAGS	IDL	RL	DILUTION	UNITS DT	T DATE	ТЕСН
SW846 7740	Selenium (Se)*	0.45	ם	0.45	1.1	- -	mg/Kg	07/24/02	þ jg
SW846 7471A	Mercury (Hg)*	0.10	≅	0.10	0.10	-	mg/Kg	06/21/02	clf
EPA 160.3	% Moisture	11.4	-		0.1	-	*	06/18/02	Lla
EPA 160.3	% solids	88.6			0.100		56	06/18/02	E
SW846 6010B	Metals Analysis (ICAP) Aluminum (Al)* Antimony (Sb)* Arsenic (As)* Barium (Ba)* Cadmium (Cd)* Calcium (Cd)* Chromium (Cr)* Cobalt (Co)* Coper (Cu)* Iron (Fe)* Iron (Fe)* Iron (Fe)* Sodium (Na)* Narkel (Ni)* Sodium (Na)* Silver (Ag)* Thallium (Tl)*	14100 13.8 Jb 13.8 Jb 74.1 0.90 0.70 Jb 11.7 24.8 22.0 48.3 38500 22.8 7080 783 50.5 2050 93.3 Um 1 0.35 Um 1 0.35 Um 1	E 4TO N *	7.0 1.2 0.59 0.15 0.11 11.7 0.56 1.6 0.42 3.4 6.0 49.1 6.0 49.1 0.82	45.1 13.5 45.1 11.3 11.3 11.3 11.3 11.3 22.6 22.6 22.6 22.6 23.3 22.6 22.6 22	2.000	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02	
	* In Description = Dry Wgt.	Δ.	Page 26						

Page 26

.uob Number: Elcabo EUSTOMER: Areptek Corporation	PROJECT:	T: STRATTON ANGE 01012.			ATTN: Jeff Donovan	lovan	
Customer Sample ID: SB-19-61402 7-8 FT Date Sampled: 06/14/2002 Time Sampled: 12:00 Sample Matrix: Soil		Laboratory Sample ID: Date Received	ole ID: 212860-26 : 06/18/2002 : 12:00				
TEST METHOD PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	a FLAGS IDL	RL	DILUTION	STIM	DT DATE	TECH
Vanadium (V)* Zinc (Zn)*	22.1	0.84	11.3		mg/Kg mg/Kg	07/30/02 07/30/02	mad
	· ·					· ·	
		-					;
			· · ·				
	·						
* In Description = Dry Wgt.		Page 27					

	L Job Number: 212860	ABORATORY	TEST RES	3 U L T S		Date:08/22/2002		
USTOMER: Anet	CUSTOMER: Aneptek Corporation	PROJECT: S	STRATION ANGS 01012			ATTN: Jeff Bonovan	ran	
Customer Date San Time San Sample M	Customer Sample ID: SB-20-61402 4.5-5.5 FT Date Sampled: 06/14/2002 Time Sampled: 12:20 Sample Matrix: Soil		Laboratory Sample ID: Date Received Time Received	nple ID: 212860-28 : 06/18/2002 : 12:00				· · · · · · · · · · · · · · · · · · ·
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT Q	FLAGS IDL	RL	DILUTION	DI DI	DATE	TECH
SW846 7740	Selenium (Se)*	0.45	0.45	1.1	1	mg/Kg	02/54/02	hjg
SW846 7471A	Mercury (Hg)*	0.11	0.11	0.11		тв/Кв	06/21/02	clf
EPA 160.3	% Moisture	10.7		0.1	_	*	06/18/02	Ll.a
EPA 160.3	% Solids	89.3		0.100	,	%	06/18/02	l La
SW846 6010B	Metals Analysis (ICAP) Aluminum (Al)* Antimony (Sb)* Arsenic (As)* Barium (Ba)* Cadmium (Cd)* Calcium (Cd)* Chromium (Cr)* Copper (Cu)* Iron (Fe)* Iron (Fe)* Iron (Fe)* Iron (Fe)* Sodium (Mg)* Magnesium (Mg)* Nickel (Ni)* Sodium (Na)* Silver (Ag)* Thallium (IL)*	13800 1.2 U3m U 12.8 Jb 12.8 Jb 74.3 0.64 Jb 8 11.6 23.8 23.1 42.8 37300 887 42.7 2420 145 Um UJ 145 Um UJ 145 Um UJ 145 Um UJ	111 111 111 111 111 111 111 111 111 11	.0 .44.8 .58 .58 .64.8 .11 .11 .11 .12 .55 .55 .55 .56 .7 .112 .22 .42 .22 .42 .22 .42 .22 .2	2.000	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02	mad mad mad mad mad mad mad mad mad mad
	* In Description = Dry Wgt.	Page	Je 28					

Page 28

Touch s despe	Job Number: 212860		LUHFUND		STRATION ANGR 01012			Date:08/22/2002 ATTN: Jeff Donovan	Wan	
Customer Customer Date San Time San	Customer Sample ID: SB-20-61402 4.5-5.5 FT Date Sampled: 06/14/2002 Time Sampled: 12:20 Sample Matrix: Soil	5.5 FT		_	Laboratory Sample ID: Date Received: Time Received	3: 212860-28 3: 06/18/2002 3: 12:00		88		
TEST METHOD	PARAMETER/TEST DESCRIPTION	SCRIPTION	SAMPLE RESULT	a FLAGS	1DE	RL	DILUTION	UNITS	DT DATE	TECH
	Vanadium (V)* Zinc (Zn)*		22.2 91.2		0.84	11.2	£ E	mg/Kg mg/Kg	07/30/02 07/30/02	mad
				· .						
								· .		
							·			
							:			

~								:		
	* In Description = Dry Wgt.	Wgt.		Page 29						

	Job Number: 212860	LABORATORY	TEST	RESULTS			Date:08/22/2002		
CUSTOMER: Ane	CUSTOMER: Aneptek Corporation	PROJECT:	STRATTON ANGB	01012.			ATTN: Jeff Donovan	an	
Custome Date Sar Time Sar Sample M	Customer Sample ID: SB-21-61402 7-8 FT Date Sampled: 06/14/2002 Time Sampled: 10:00 Sample Matrix: Soil		Laborator Date Rece Time Rece	Laboratory Sample ID: Date Received	212860-14 06/18/2002 12:00				·
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	0 FLAGS	1DF	RL I	DILUTION	DNITS DT	DATE	TECH
SW846 7740	Selenium (Se)*	27.0	n	0,47	1.2	-	mg/Kg	02/54/02	h jg
SW846 7471A	Mercury (Hg)*	0.12	*	0,12	0.12		mg/Kg	06/21/02	clf
EPA 160.3	% Moisture	15.2			0.1	-	%	06/18/02	e 1 1
EPA 160.3	% solids	84.8			0.100		%	06/18/02	lla
SW846 6010B	Metals Analysis (ICAP) Aluminum (Al)* Antimony (Sb)* Arsenic (As)* Barium (Ba)* Beryllium (Be)* Calcium (Ca)* Chromium (Cl)* Cobalt (Co)* Copper (Cu)* Iron (Fe)* Lead (Pb)* Magnesium (Mg)* Manganese (Mn)* Nickel (Ni)* Potassium (K)* Sodium (Na)* Thallium (IL)*	13400 1.3 JJm 10.14 0.34 Jb 12.2 19.5 9.1 35.8 24800 13.3 3460 751 30.1 1970 99.9 Um 0.37 UJe 0.36	2 8 8 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.3 1.3 0.61 0.61 0.16 0.17 1.6 0.58 3.6 3.6 3.6 3.6 3.6 0.88	27.2 27.2 47.2 11.8 11.8 5.9 5.9 7.4 7.2 7.4 7.2 7.4 7.2 7.4 7.2 7.4 7.2 7.4 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2		######################################	07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02	mad mad mad mad mad mad mad mad mad mad
	* In Description = Dry Wgt.	<u>.</u>	Page 14				* .		

Page 14

-	L Job Number: 212860	ABORATORY	E S H	E S U L	ν		Date: 08/22/2002		
CUSTOMER: Anep	CUSTOMER: Aneptek Corporation	PROJECT:	STRATTON ANGB 01012	1012.			ATTN: Jeff Dohovan	van	
Customer Date Sam Time Sam Sample M	Customer Sample ID: SB-21-61402 7-8 FT Date Sampled: 06/14/2002 Time Sampled: 10:00 Sample Matrix: Soil		Laboratory Sample Date Received Time Received	ä : :	212860-14 06/18/2002 12:00				
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT (O FLAGS IT	701	RL	DILUTION	UNITS	DT DATE	TECH
	Vanadium (V)* Zinc (Zn)*	28.2		0.88	11.8		mg/Kg mg/Kg	07/30/02 07/30/02	шаф
		. · ·	·						
			-						
		-							
			· · · · · · · · · · · · · · · · · · ·		N.				
	* In Description = Dry Wgt.	a	Page 15	-					

	Job Number: 212860	obo lect.	CTERTON	ANCO 01012			ATIN: laff hom	Donovan	
CUSTOMEK: Ane	CUSTOMER: Aneptek Lorboration	* LUGRENI	NOT THE						
Custome Date Sar	Customer Sample ID: SB-22-61402 5-6 FT Date Sampled: 06/14/2002		Labor Date	atory Sample Received	10: 212860-16 : 06/18/2002				
Sample Sa	lime Sampled: Uvisu Sample Matrix: Soil								
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT 6	0 FLAGS	1DE	RL	DILUTION	UNITS	DT DATE	TECH
SW846 7740	Selenium (Se)*	0.47 Ja.,	B # TQ	24.0	1.2	τ	mg/Kg	07/54/02	hjg
SW846 7471A	Mercury (Hg)*	0.11	≥	0.11	0.11	-	mg/Kg	06/21/02	clf
EPA 160.3	% Moisture	15.2			0.1	_	**	06/18/02	e))
EPA 160.3	% solids	84.8			0.100	-	%	06/18/02	L a
SW846 6010B	Metals Analysis (ICAP) Aluminum (Al)* Antimony (Sb)* Arsenic (As)* Barium (Ba)* Barium (Cd)* Calcium (Cd)* Chromium (Cd)* Chromium (Co)* Choper (Cu)* Iron (Fe)* Lead (Pb)* Magnesium (Mg)* Magnesium (K)* Sodium (Na)* Silver (Ag)* Itallium (Tl)*	14000 1.3 Ufm U 7.8 Jb 99.7 0.76 0.55 Jb 8 1290 17.0 33.0 27600 13.3 5290 501 37.1 2120 121 Um, Ub 0.37 Ufe U	7 M m m m m m m m m m m m m m m m m m m	7.3 1.3 1.3 0.61 0.054 0.11 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	7.7.7.4. 4.7.4. 4.7.7.4. 4.7.4	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	197/Kg 197/Kg 197/Kg 197/Kg 197/Kg 197/Kg 197/Kg 197/Kg 197/Kg 197/Kg 197/Kg 197/Kg 197/Kg 197/Kg 197/Kg 197/Kg	07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02	mad mad mad mad mad mad mad mad mad mad
	* In Description = Dry Wgt.	ā	Page 16						_

Page 16

		· .	#5 <u>=</u>	mad	
	u		DATE	07/30/02 07/30/02	
002	Jeff Donovan		DI		
Date: 08/22/2002	ATTN: Jeff		UNITS	mg/Kg mg/Kg	
			DITCHION	4- 4-	
S		1D: 212860-16 : 06/18/2002 : 12:00	RL	11.8 4.7	
T RESUL	STRATION ANGB 01012.	Laboratory Sample ID: Date Received	101	0.88 4.2	
H E S		. Lab Dat	Q FLAGS		Page 17
LABORATORY	PROJECT:		SAMPLE RESULT	23.7	
Job Number: 212860	CUSTOMER: Aneptek Corporation	Customer Sample ID: SB-22-61402 5-6 FT Date Sampled: 06/14/2002 Time Sampled: 09:30 Sample Matrix: Soil	TEST METHOD PARAMETER/TEST DESCRIPTION	Vanadium (V)* Zinc (Zn)*	* In Description = Dry Wgt.

	Job Number: 212860	ABURALURI	о п	Ке 9 О Г	o -		Date: 08/22/2002		
CUSTOMER: Anet	CUSTOMER: Aneptek Corporation	PROJECT:	STRATION	ANGB 01012.			ATTN: Jeff Donovan	ovah	
Customer Date Sam Time Sam	Customer Sample ID: SB-23-61302 6-7 FT Date Sampled: 06/13/2002 Time Sampled: 15:00 Sample Matrix: Soil		Labor Date Time	atory Sample Received Received	1D: 212860-8 : 06/18/2002 : 12:00				
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	101	RL	DILUTION	UNITS	DT DATE	TECH
SW846 7740	Selenium (Se)*	0.53 گو ا	80	0.48	1.2	~ -	mg/Kg	07/24/02	hjg
SW846 7471A	Mercury (Hg)*	0.11	X	0.11	0.11	· ·	mg/Kg	06/21/02	clf
EPA 160.3	% Moisture	16.5			0.1	u -	%	06/18/02	[[a
EPA 160.3	% Solids	83.5			0.100		*	06/18/02	l la
SW846 6010B	Metals Analysis (ICAP) Aluminum (Al)* Antimony (Sb)* Arsenic (As)* Barium (Ba)* Berium (Ba)* Cadmium (Cd)* Calcium (Ca)* Chromium (Cr)* Cobalt (Co)* Copper (Cu)* Iron (Fe)* Lead (Pb)* Magnesium (Mg)* Magnesium (Mg)* Nickel (Ni)* Sodium (Na)* Silver (Ag)* Thallium (IL)*	13100 8.2 3b 8.2 3b 89.2 0.76 0.51 7 b 19.3 12.5 12.5 28.4 27.00 13.1 5090 507 29.4 1920 108 Um, # 108 Um, # 108 Um, # 108 Um, #	3	7.5 1.3 0.062 0.054 0.11 12.4 1.7 1.7 1.7 1.7 1.6 0.20 0.20 0.20 0.37 0.37 0.37	47.9 14.4 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0		99/Kg 99/Kg 99/Kg 99/Kg 99/Kg 99/Kg 99/Kg 99/Kg 99/Kg 99/Kg 99/Kg	07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02	mad mad mad mad mad mad mad mad mad mad
	* In Description = Dry Wgt.	White the second state of the second	Page 8		-			-	

Page 8

Controller Sample December Sample December	Job Number: 212860 CUSTOMER: Aheptek Corporation	PROJECT:	10000000	STRATTON ANGE 01012.	,		Date: 08/22/2002 AjTN: Jeff Donovan	ovan	
PARAMETER/TEST ELSCRIPTION SAMPLE RESULT QPLIAS T.D. T.	Customer Sample ID: SB-23-61302 6-7 FT Date Sampled: 06/13/2002 Time Sampled: 15:00 Sample Matrix: Soil		Lab Dat Tim	oratory Sample e Received	ä :::				
24.5 0.89 12.0 1 mg/kg 07/36/02 07/36/02 4.8 1 mg/kg 07/36/02			a FLAGS	TOT	RL	DILUTION			<u></u>
	Vanadium (V)* Zinc (Zn)*	24.5 69.5		0.89	12.0 4.8		mg/Kg mg/Kg	07/30/02 07/30/02	66
		-							

			TECH	þjg	clf	clf	clf		
	ue		DATE	07/24/02	06/21/02	06/19/02	06/19/02	07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02	
Date:08/22/2002	ATTN: jeff Donovan		UNITS DI	mg/Kg	mg/Kg	%	%	99/Kg 99/Kg 99/Kg 99/Kg 99/Kg 99/Kg 99/Kg 99/Kg 99/Kg 99/Kg 99/Kg 96/Kg 96/Kg 96/Kg	
			DILUTION	-			-		
ω		: 212860-11 : 06/18/2002 : 12:00	RL	1.2	0.12	0.1	0.100	49.9 15.0 2.5 49.9 125 2.5 125 125 2.5 125 2.5 2.5 2.5	-
RESULT	STRATION ANGB 01012.	Laboratory Sample ID: Date Received: Time Received	IDL	0.50	0.12			7.8 0.65 0.17 0.057 12.9 0.21 1.6 1.7 1.6 1.6 1.8 8.8 8.8 8.8 8.8 8.8 9.39 0.39	
E S I	RATTON A	Labor Date I	FLAGS		*	· ·			. 75
>-	1,000,000		O.					⊃ kg kg ⊃⊃	Page
LABORATOR	PROJECT:		SAMPLE RESULT	0.50	0.12	19.8	80.2	14600 1.3 Ufm U 4.5 114.5 10.78 B 0.46 B 659 Jf 20.3 13.1 17.7 22100 16.7 3730 464 22.9 1610 647 Uf 647 Uf 0.39 Uf	
Job Number: 212860	CUSTOWER: Aneptek Corporation	Customer Sample ID: SB-23D-61302 6-7 FT Date Sampled: 06/13/2002 Time Sampled: 15:05 Sample Matrix: Soil	PARAMETER/TEST DESCRIPTION	Selenium (Se)*	Mercury (Hg)*	% Moisture	% solids	Metals Analysis (ICAP) Aluminum (Al)* Antimony (Sb)* Arsenic (As)* Barium (Ba)* Cadmium (Cd)* Chromium (Cd)* Chromium (Co)* Cobalt (Co)* Copper (Cu)* Iron (Fe)* Iron (Fe)* Magnesium (Mg)* Manganese (Mn)* Nickel (Ni)* Sodium (Na)* Silver (Ag)* Thallium (Tl)*	* In Description = Dry Wgt.
- 	CUSTOMER: Anept	Customer Date Samp Time Samp Sample Ma	TEST METHOD	SW846 7740	SW846 7471A	EPA 160.3	EPA 160.3	SW846 6010B	

Page 12

	L Job Number: 212860	LABORATORY	T E S	T RESUL	1 S		Date:08/22/2002	01	
JUSTOMER: Ane	CUSTOMER: Aneptek Corporation	PROJECT:	10000000000	STRATTON ANGB 01012.			ATEN: Jeff Donovan	novan	
Custome Date San Time San Sample M	Customer Sample ID: SB-23D-61302 6-7 FT Date Sampled: 06/13/2002 Time Sampled: 15:05 Sample Matrix: Soil		Labo Date Time	Laboratory Sample ID: Date Received: Time Received:	D: 212860-11 .: 06/18/2002 .: 12:00	·			
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	O FLAGS	1DL	RL	DILUTION	UNITS	DT DATE	TECH
	Vanadium (V)* Zinc (Zn)*	28.9		0.93	12.5 5.0		mg/Kg mg/Kg	07/30/02 07/30/02	mad
			:						
		-							
				· .					
						-		· · · · · · · · · · · · · · · · · · ·	
			`.					et.	
				-	·			•	-

			TECH	e j h	off	clf	c[f	
	an		DATE	07/24/02	06/21/02	06/19/02	06/19/02	07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02
Date: 08/22/2002	AIIN: Jeff Donovan		UNITS DI	те те	mg/Kg	*	%	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg
			DILUTION	1		_	-	
S		: 212860-9 : 06/18/2002 : 12:00	RL	1.2	0.12	0.1	0.100	4.6.4 13.9 46.4 1.2 1.2 1.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2
RESULT	NGB 01012.	Laboratory Sample ID: Date Received: Time Received:	101	97.0	0.12			7.2 1.2 0.60 0.15 0.053 0.17 1.6 1.6 1.6 3.5 3.5 16.4 50.4 0.36
TEST	STRATTON ANGE 01012	Labor Date Time	FLAGS		E,			150 a 40 a 40 a 40 a 40 a 40 a 40 a 40 a
ABORATORY	PROJECT: S		SAMPLE RESULT Q	n 97°0	0,12 U	13.8	86.2	14100 1.2 U.Im U 15.0 3.6 94.3 0.78 3.6 0.78 3.8 8 106 U.m 8 23.6 54.7 38500 23.6 68.8 23.6 68.8 23.6 68.8 23.6 68.8 23.6 68.8 23.6 68.8 23.6 68.8 23.0 106 U.m F
L Job Number: 212860	CUSTOWER: Aneptek Corporation	Customer Sample ID: SB-24-61302 4.5-5.5 FT Date Sampled: 06/13/2002 Time Sampled: 15:40 Sample Matrix: Soil	PARAMETER/TEST DESCRIPTION	Selenium (Se)*	Mercury (Hg)*	% Moisture	% Solids	Metals Analysis (ICAP) Aluminum (Al)* Antimony (Sb)* Arsenic (As)* Barium (Ba)* Barium (Cd)* Cacdrium (Cd)* Chromium (Cd)* Chromium (Co)* Chromium (Co)* Chromium (Ch)* Chromium (Ch)* Chromium (Ch)* Chromium (Ch)* Chromium (Ch)* Chromium (Ch)* Chromium (Ch)* Cobalt (Co)* Copper (Cu)* Cobalt (Co)* Cobalt (No)* Cobalt (No)* Iron (Fe)* Iron (Fe)* Iron (Fe)* Iron (Fe)* Iron (Fe)* Iron (Fe)* Iron (Fe)* Iron (Fe)* Iron (Ho)* Magnesium (K)* Sodium (No)* Irallium (Il)*
	CUSTOMER: Ane	Custome Date San Time San Sample A	TEST METHOD	SW846 7740	SW846 7471A	EPA 160.3	EPA 160.3	SW846 6010B

Page 10

OP .	Job Number: 212860	LABORATORY	T S T	ESULT	S		Date:08/22/2002		
CUSIOMER: Aneptek Corporation	k Corporation	PROJECT: 5	STRATTON ANGE 01012.	1012.			AliN: Jeff Donovan	wan	
Customer Sample ID: Date Sampled Time Sampled	iample ID: SB-24-61302 4.5-5.5 FT ed: 06/13/2002 ed: 15:40 rix: Soil		Laboratory Sample Date Received Time Received	9 : :	212860-9 06/18/2002 12:00				
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT Q	Q FLAGS D	101	RL	DILUTION	D SLIND	DT DATE	TECH
> 2	Vanadium (V)* Zinc (Zn)*	108		4.1	4.6		mg/Kg mg/Kg	07/30/02	aad aad aa aad aa aad aa aad aa aad aa aa
	* In Description = Dry Wgt.	Pa	Page 11						

	L . Job Number: 212860	ABORATORY	⊢ Ш ⊗	T RESUL	S 		Date: 08/22/2002		
CUSTOMER: Anep	CUSTOMER: Aneptek Corporation	PROJECT:	STRATTON	ANGB 01012.			ATIN: Jeff Donovan	van	
Customer Date Sam Time Sam Sample M	Customer Sample ID: SB-25-61402 5-6 FT Date Sampled: 06/14/2002 Time Sampled: 08:45 Sample Matrix: Soil		Labor Date Time	atory Sample Received Received	ID: 212860-18 : 06/18/2002 : 12:00				
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT 0	Q FLAGS	1DL.	RL	DILUTION	UNITS DT	T DATE	TECH
SW846 7740	Selenium (Se)*	0.45	n	97.0	1.1	-	тд/Кд	07/24/02	hjg
SW846 7471A	Mercury (Hg)*	0.11 Jm	2	0.11	0.11	-	тд/Кд	06/21/02	clf
EPA 160.3	% Moisture	11.0			0.1	-	%	06/18/02	[[a
EPA 160.3	% Solids	89.0			0.100	-	*	06/18/02	E =
SW846 6010B	Metals Analysis (ICAP) Aluminum (Al)* Antimony (Sb)* Arsenic (As)* Barsin (Ba)* Berium (Ba)* Cadmium (Cd)* Calcium (Ca)* Chromium (Ct)* Cobalt (Co)* Copper (Cu)* Iron (Fe)* Lead (Pb)* Lead (Pb)* Magnesium (Mg)* Magnesium (Ms)* Sodium (Na)* Sodium (Na)* Silver (Ag)* Thallium (Il)*	14200 1.2 Um U 14.5 Jb 92.0 0.89 B 0.82 Jb 23.3 23.4 53.3 23.4 53.3 37600 21.0 6320 1060 76.5 27.5 Um, B 97.5 Um, B		7.0 1.2 0.15 0.15 0.11 11.6 0.18 1.5 0.42 3.4 1.5 0.42 3.4 1.5 0.42 4.8.9 4.8.9 0.82	45.0 13.5 45.0 45.0 11.1 11.2 11.2 5.6 5.6 5.6 5.6 7.6 7.7 11.2 11.2 11.2 2.2 11.2 2.2 2.2 2.2		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02	Mad
	* In Description = Dry Wgt.	ď	Page 18						

Page 18

			TECH	pag pag pag pag pag pag pag pag pag pag	
	än	·	DATE	07/30/02	
Date:08/22/2002	ATTN: Jeff Donovan		UNITS DT	тд/Кд тд/Кд	
			DILUTION		
s L		10: 212860-18 : 06/18/2002 : 12:00	RL	4.5	
STRESUL	PROJECT: STRATTON ANGB 01012.	Laboratory Sample ID: Date Received	701	4.0	
→ 	: STRATTC	Le Ti	0 FLAGS		Page 19
ABORATORY	PROJECT		SAMPLE RESULT	118	
Job Number: 212860	CUSTOMER: Aneptek Corporation	Customer Sample ID: SB-25-61402 5-6 FT Date Sampled: 06/14/2002 Time Sampled: 08:45 Sample Matrix: Soil	PARAMETER/TEST DESCRIPTION	Vanadium (V)* Zinc (Zn)*	* In Description = Dry Wgt.
	. Anep	istomer ite Sam me Sam imple M	TEST METHOD		

	Job Number: 212860	ABORATORY	⊢ S	T RESUL	S L		Date:08/22/2002		
CUSTOMER: Anep	CUSTOMER: Aneptek Corporation	PROJECT:	STRATTON	ANGB 01012.			ATIN: Jeff Donovan	/an	
Customer Date Sam Time Sam Sample M	Customer Sample ID: SB-26-61402 5-6 FT Date Sampled: 06/14/2002 Time Sampled: 08:45 Sample Matrix: Soil		Labor Date Time	atory Sample Received Received	1D: 212860-20 : 06/18/2002 : 12:00				
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	TQ1	RL	DILUTION	UNITS DT	r DATE	TECH
SW846 7740	Selenium (Se)*	0,45	n	0,45	1.1	-	mg/Kg	07/54/02	h jg
SW846 7471A	Mercury (Hg)*	0.11	=	0.11	0.11	-	mg/Kg	06/21/02	clf
EPA 160.3	% Moisture	10.1			0.1	~ -	%	06/18/02	L a
EPA 160.3	% Solids	89.9			0.100	τ	%	06/18/02	l la
SW846 6010B	Metals Analysis (ICAP) Aluminum (Al)* Antimony (Sb)* Arsenic (As)* Barium (Ba)* Beryllium (Be)* Cadmium (Cd)* Calcium (Co)* Chomium (Cr)* Chopel (Co)* Copper (Cu)* Iron (Fe)* Iron (Fe)* Magnesium (Mg)* Magnesium (Mg)* Nickel (Ni)* Potassium (K)* Sodium (Na)* Silver (Ag)* Thallium (Tl)*	11900 1.2 UJm 1 12.8 Jb 67.1 67.1 0.70 0.50 Jb 1 198 20.5 12.3 46.1 32300 3500 3500 3500 3500 3500 3500 350	7 8 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.9 1.2 0.58 0.051 1.15 0.15 0.55 3.4 7.9 48.4 7.9 0.35	44.5 44.5 44.5 11.1 11.1 22.3 11.1 11.1 11.1 2.2 2.2 2.2		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02	mad mad mad mad mad mad mad mad mad mad
	* In Description = Dry Wgt.		Page 20			÷.			:

Page 20

			TECH	шаd	
				20.00	
			DATE	07/30/02 07/30/02	
	ovan	•	DI		
72002	Jeff Dohovan				
Date: 08/22/2002			UNITS	mg/Kg mg/Kg	
Date	ATTN:			EM EM	
			NO		
			DICUTION		
		05	0		
		212860-20 06/18/2002 12:00	BL.	11.1 4.5	
S		41 41 21		•	
U L		Laboratory Sample ID: Date Received Time Received		M -	
м П	STRATTON ANGB 01012.	y Sam sived. sived.	TOT	0.83	
-	ANGB	orator e Rece e Rece			
ы Б	ATTON	Lab Dat Tim	FLAGS		
≻			0 81		1
T 0 R	PROJECT:		RESULT	89 P-	
0 R A	4		SAMPLE RE	19.8 85.7	
¥ .			SAM		
_		·			
			NO11c		
		E	PARAMETER/TEST DESCRIPTION		
		SB-26-61402 5-6 FT 06/14/2002 08:45 Soil	FEST D		
99		6-6140 4/2002 5	ETER/1		
2128	tion	SB-26- 06/14/ 08:45 Soil	PARAM	*()	
mber:	rpora	e ID		Vanadium (V)* Zinc (Zn)*	
Job Number: 212860	CUSTOMER: Aneptek Corporation	Customer Sample ID: Date Sampled Time Sampled		Vanac Zinc	
-	Anep	stomer se Sam ne Sam iple M	HOD		
	TOMER:	Cus Dat Tim Sam	TEST METHOD		
ı	CGS		塑		

Page 21

			TECH	hjg	clf	LI.a	E I	mad mad mad mad mad mad mad mad mad mad
	wan		DT DATE	07/24/02	06/21/02	06/18/02	06/18/02	07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02
Date:08/22/2002	ATTN: Jeff Donovan		UNITS	mg/Kg	mg/Kg	*	ж	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg
			DILUTION	1	-	·-		
v		212860-2 06/18/2002 12:00	RL	1.2	0.11	0.1	0.100	47.4 14.2 2.4 47.4 47.4 47.6 11.2 11.2 11.9 11.9 11.0 11.0 11.0 11.0 11.0 11.0
RESULT	ANGB 01012.	Laboratory Sample ID: Date Received	701	25.0	0.11			7.4 1.3 0.62 0.054 0.11 12.3 0.20 0.20 0.59 1.6 1.6 1.6 1.6 1.5 3.6 3.6 8.4 3.6 0.44 3.6 0.37 0.37
T E S T	STRATTON AN	Labora Date R Time R	FLAGS	Jo	¥			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ABORATORY	PROJECT: S		SAMPLE RESULT Q	0.50 3€, \$	0 11 U	15.6	84.4	11500 11.3 UJm U 11.8 Jb 70.9 0.70 0.53 Jb 19.9 16.6 42.9 32800 15.3 5250 680 680 680 680 680 680 680 680 680 68
Job Number: 212860	CUSIOWER: Aneptek Corporation	Customer Sample ID: SB-27-61302 6-7.5 FT Date Sampled: 06/13/2002 Time Sampled: 13:55 Sample Matrix: Soil	PARAMETER/TEST DESCRIPTION	Selenium (Se)*	Mercury (Hg)*	% Moisture	% Solids	Metals Analysis (ICAP) Aluminum (Al)* Antimony (Sb)* Arsenic (As)* Barium (Ba)* Beryllium (Be)* Cadmium (Cd)* Chromium (Cd)* C
	CUSTOMER: Anep	Customer Date Samp Time Sample Ms	TEST METHOD	SW846 7740	SW846 7471A	EPA 160.3	EPA 160.3	SW846 6010B

Page 2

			TECH	mad	
	Wan		DT DATE	07/30/02	,
Date:08/22/2002	ATTN: Jeff Donovan		O SLINO	mg/Kg mg/Kg	
			DILUTION		
ഗ		212860-2 06/18/2002 12:00	RL	9.17.	
T RESULT	STRATION ANGE 01012.	Laboratory Sample ID: Date Received: Time Received:	IDL	4.2	
Y TES		Labo Date Time	a FLAGS		Page 3
LABORATOR	PROJECT:		SAMPLE RESULT	81.5	
		6-7.5 FI	PARAMETER/TEST DESCRIPTION		Dry Wgt.
Job Number: 212860	CUSTOWER: Aneptek Corporation	Customer Sample ID: SB-27-61302 6-7.5 FT Date Sampled: 06/13/2002 Time Sampled: 13:55 Sample Matrix: Soil	PARAMETER/TE	Vanadium (V)* Zinc (Zn)*	* In Description = Dry Wgt.
	CUSTOMER: AME	Customer Date San Time San Sample P	TEST METHOD		

Page 3

	Job Number: 212860	ABORATORY	T S T	RESULT	S		Date: 08/22/2002		
CUSTOMER: Ane	CUSTOMER: Aneptek Corporation	PROJECT: S	STRATTON A	ANGB 01012.			ATTN: Jeff Donovan	/ah	
Custome! Date San Time San Sample P	Customer Sample ID: SB-27D-61302 6-7.5 FT Date Sampled: 06/13/2002 Time Sampled: 14:00 Sample Matrix: Soil		Labora Date F Time F	aboratory Sample ID: Date Received	1D: 212860-3 : 06/18/2002 : 12:00				
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT 0	FLAGS	TgI	RL	DILUTION	DI DI	r DATE	ТЕСН
SW846 7740	Selenium (Se)*	0.56 Ja B		65.0	1.2	-	тв/Кв	07/24/02	bị h
SW846 7471A	Mercury (Hg)*	0.12 ΨΓ, υ	×	0.12	0.12	-	mg/Kg	07/12/02	sm.
EPA 160.3	% Moisture	17.5			0.1		%	06/19/02	cl f
EPA 160.3	% Solids	82.5			0.100	<u>~</u>	26	06/19/02	clf
SW846 6010B	Metals Analysis (ICAP) Aluminum (Al)* Antimony (Sb)* Arsenic (As)* Barium (Ba)* Cadmium (Cd)* Calcium (Ca)* Chromium (Cr)* Cobalt (Co)* Copper (Cu)* Iron (Fe)* Iron (Fe)* Iron (Fe)* Iron (Fo)* Sodium (Mg)* Magnesium (Mg)* Mickel (Ni)* Nickel (Ni)* Sodium (Na)* Silver (Ag)* Thallium (Tl)*	12500 1.3 UTm U 77.6 0.81 0.81 414 22.3 414 22.3 19.3 45.5 3610 874 44.4 5810 874 2330 93.1 Um,		7.5 1.3 0.63 0.16 0.055 0.12 12.5 0.20 0.60 1.7 1.7 1.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 0.88	48.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02	
	* In Description = Dry Wgt.	Page	ge 4						

Page 4

			TECH	mad mad	
	1		DATE	07/30/02	
Date: 08/22/2002	ATTN: Jeff Donovan		UNITS DT	mg/Kg mg/Kg	
Dat	AT		DILUTION		
		: 212860-3 : 06/18/2002 : 12:00	RL	4.9	
RESULT	STRATTON ANGB 01012.	Laboratory Sample ID: Date Received: Time Received:	101	0.90	
T E S ⊐	STRATTON /	Labor Date Time	Q FLAGS		Page 5
BORATORY	PROJECT:		SAMPLE RESULT (91.7	- a.
Job Number: 212860	CUSTOMER: Aneptek Corporation	Customer Sample ID: SB-270-61302 6-7.5 FT Date Sampled: 06/13/2002 Time Sampled: 14:00 Sample Matrix: Soil	TEST METHOD PARAMETER/TEST DESCRIPTION	Vanadium (V)* Zinc (Zn)*	* In Description = Dry Wgt.
-	CUSTO		TEST		

	Job Number: 212860		- n	o -		Date: 08/22/2002	÷	
CUSTOMER: Anep	CUSTONER: Aneptek Corporation	PROJECT: STRATTO	STRATTON ANGE 01012.			ATIN: Jeff Donovan	van	
Customer Date Sam Time Sam Sample M	Customer Sample ID: SB-28-61302 7-8 FT Date Sampled: 06/13/2002 Time Sampled: 14:10 Sample Matrix: Soil	Lal Da Ti	Laboratory Sample ID: Date Received Time Received	D: 212860-6 .: 06/18/2002 .: 12:00				·
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT Q FLAGS	101	RL	DILUTION	DI DI	T DATE	TECH
SW846 7740	Selenium (Se)*	0.46 U W	97.0	-	-	mg/Kg	07/24/02	þjg
SW846 7471A	Mercury (Hg)*	0.11Ja, Jrn #	0.10	0.10	-	тө/Кө	06/21/02	clf
EPA 160.3	% Moisture	12.7		0.1	-	. %	06/18/02	lla
EPA 160.3	% solids	87.3		0.100		%	06/18/02	l la
SH846 6010B	Metals Analysis (ICAP) Aluminum (Al)* Antimony (Sb)* Arsenic (As)* Barium (Ba)* Cadmium (Cd)* Calcium (Ca)* Cobalt (Co)* Cobalt (Co)* Cobalt (Co)* Antimon (Cl)* Cobalt (Co)*	13200 1.2 UIm U R 15.3 Te 79.2 0.85 B 0.69 Je B 22.9 19.9 B 22.4 6180 C 22.4 6180 C 44 644 E UJb U R UJb 0.36 UJc U R UJb 0.83 U R UJc U R UJ	7.1 1.2 0.60 0.15 0.11 11.8 0.57 1.5 1.5 16.2 3.5 16.2 49.8 49.8 49.8 49.8 16.2 16.2 16.2 16.2 16.2 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.	45.8 45.8 45.8 11.1 11.5 22.9 11.5 11.5 11.5 12.3	66666666666666666666666666666666666666	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02 07/30/02	

Page 6

	Job Number: 212860	LABORATORY	TEST	T RESUL	∽	-	Date:08/22/2002			
CUSTOMER: Anep	CUSTOMER: Aneptek Corporation	PROJECT:	STRATTON A	STRATTON ANGE 01012.			ATIN: Jeff Donovan	neven		£00000001
Customer Date Sam Time Sam Sample M	Customer Sample ID: SB-28-61302 7-8 FT Date Sampled: 06/13/2002 Time Sampled: 14:10 Sample Matrix: Soil		Labor Date Time	Laboratory Sample ID: Date Received	D: 212860-6 .: 06/18/2002 .: 12:00					
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT 0	G FLAGS	IDI	RE	DILUTION	UNITS	DT DATE	TECH	1000444000
	Vanadruli (V)* Zinc (Zn)*	0.17 0.09 0.09		6.0	6.4		ng/kg mg/kg	07/30/02		
			· · · · · · · · · · · · · · · · · · ·							
										

	u		DATE TECH	07/24/02 hjg	06/21/02 clf	07/30/02 mad 07/30/02 mad	
Date:08/22/2002	ATTN: Jeff Donovan	· .	UNITS DT	T/6n	7/6n	7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n	
			DILUTION	1	-		•
S		1D: 212860-29 06/18/2002 12:00	RL	5.0	0.20	200 60.0 200 500 500 10.0 500 10.0 500 500 500 500 500	
r RESUL1	ANGB 01012.	atory Sample Received Received	TQI	2.0	07.50	21.1 2.3 2.6 0.0 0.23 0.23 0.83 2.5 2.5 3.6 3.7 3.7 3.7	
E S	STRATION	Labor Date Time	a FLAGS	ח	7E-	25	Page 2
ABORATORY	PROJECT:		SAMPLE RESULT G	2.0	0.20	2,42 2,42 2,42 2,42 80.2 80.2 19.4 17.5 17.5 17.8 17.8	P.
L) Job Number: 212860	tek Corporation	Customer Sample ID: RB-SB-61302 Date Sampled: 06/13/2002 Fime Sampled: 16:50 Sample Matrix: Water	PARAMETER/TEST DESCRIPTION	Selenium (Se)	Mercury (Hg)	Metals Analysis (ICP) Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba) Barium (Ba) Beryllium (Bc) Calcium (Cd) Calcium (Cd) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Magnesium (Mg) Manganese (Mn) Nickel (Ni) Potassium (K) Silver (Ag) Sodium (Na) Thallium (Tl) Vanadium (V) Zinc (Zn)	* In Description = Dry Wgt.
7	CUSTOMER: Aneptek Corporation	Customer Sample Date Sampled Time Sampled Sample Matrix	TEST METHOD	EPA 270.2	EPA 245.1	EPA 200.7	

Page 2

																									 _
			TECH	þjg	cif		mad	pag d	9 9	mad	mad m	3 6	Вщ	pem .	Mad	llad llad	mad	шad	mad	De la	mad mad	mad	mad		
	1		DATE	07/24/02	06/21/02		07/30/02	07/30/02	07/30/02	07/30/02	07/30/02	07/30/02	07/30/02	07/30/02	07/50/02	07/30/02	07/30/02	07/30/02	07/30/02	07/30/02	07/30/02	07/30/02	07/30/02		
2	Donovan		DT																						7
2/200	eff Do																								
Date:08/22/2002	ATIN: Je		UNITS	ng/L	T/6n		1/8n	ug/L	ug/L	1/Bn	ug/L	1/6/1 1/6/1	ug/t	ug/L	J/Bn	UG/L	ug/L	ng/r	ng/L	ug/L	1/6n	ng/L	ng/L		
			DILUTION	-	-		_			_				ς- ,				_	ζ	,- ,		-	-	-	
ω		1D: 212860-30 : 06/18/2002 : 12:00	RL	5.0	0.20		200	60.0	200	5.0	.0.0	10.0	50.0	25.0	60.0	0.0 U.C	10.0	40.0	200	10.0	500 10.0	50.0	20.0		
RESULI	STRATION ANGE 01012.	Laboratory Sample II Date Received Time Received	101	2.0	0.20		31.1		0.66	0.23	0.48	0.83	2.5	6.9	9.0	٠. بر د د	- 6.	15.2	35.4	1.6	217	3.7	17.8		
TEST	TRATTON A	Labor Date Time	FLAGS		2 4.	-		*							•					-	- Trans				
> -	00001000001		o	ם	2			5	5 =) =	5) <u>=</u>		n	۹.	.	S- 66	_	ĎΩ	⊃	=))	<u> </u>		 _
ABORATOR	PROJECT:		SAMPLE RESULT	2.0	07.50		31.1	15. C	9,0	0.23	0.48	0.83	2.5	6.9	42.7	20.5 70.8 T	0.03 0.001 0.001	15.2	255	1.6	217	3.7	17.8		
																						-	 ,		
3		RB-SB-61402 06/13/2002 16:50 Water	PARAMETER/TEST DESCRIPTION				(ICP)					-													
Job Number: 212860	CUSTOMER: Aneptek Corporation	Customer Sample ID: RB-SB-6140. Date Sampled: 06/13/2002 Time Sampled: 16:50 Sample Matrix: Water	PARAME	Selenium (Se)	Mercury (Hg)	•	Metals Analysis (ICP) Aluminum (Al)	Antimony (Sb)	Arsenic (As)	Beryllium (Be)	Cadmium (Cd)	Catclem (Ca)	Cobalt (Co)	Copper (Cu)	Iron (Fe)		Magnesium (Mg)		Potassium (K)	Silver (Ag)	Sodium (Na)	Vanadium (V)	Zinc (Zn)		
	CUSTOMER: Anep	Customer Date Sam Time Sam Sample M	TEST METHOD	EPA 270.2	EPA 245.1		EPA 200.7																		

Page 3

APPENDIX B CHAIN OF CUSTODY

CHAIN OF CUSTODY

315 Fullerron Avenue Newburgh, NY 12550 TEL (845) 562-0890 FAX (845) 562-0841

STL Newburgh						
CUSTOMER NAME			REPORT TYPE		TURNAROUND	REPORT # (Lab Use Only)
ANTIK	COKI			INDEMA!	1	
ADDRESS PLEOSANT	45 12BS	2ND 120012	SIANDARD R		100	
CITY, STATE, ZIP	Act	609/0	NYASP A BK	CLP□		SAMPLE REGIDIONICE Y N
NAME OF CONTACT	1400	FOR- 459-6989	001 НЕН	VERBAL	11-	PHIOHEOK Y N
PROJECT LOCATION	-1) () () () () () () () () () (Matrix		NY PUBLIC WATER SUPPLIES
PROJECT NUMBER / PO NO.		V 10 0 0 0 1	DW = DRINKING WATER	S 5	SOIL O = OIL	SOURCE ID
01012.	0)			ig H	ROOMD WATER	H BP TYPE
NOTE: SAME	LETEM	NOTE: SAMPLE TEMPERATURE UPON		oxide oli		EEDEBAI ID
REC	SEIPT M	RECEIPT MUST BE 4"±2°C.	Amber Amber Amber	Acid Acid Acid Acid Acid Acid Acid Acid	əqui	
SAMPLI STL# DATE	SAMPLING P. B. B. DATE TIME DATE MATRIX	TRIX CLIENT I.D.	O ^{rgani} .	Sodiunic Sodiunic Nuttic N	125ml 2000 2000 2000 2000 2000	ANALYSIS REQUESTED
(413)02/355	255 X 1 S	88-27-61302	6-7.5 FT 1		×	8260B 10C
	>	58-27-61302 6-7.5	-7.5 1		*	4770 SVOC/ TAI METO15
	ash/	58-270-613026-15	1-12-1		×	TAI METALS 19370 540 C
		58.270-61302 6-75	6-2,5 1		×	2608406
	- 0161	58-28-61302 7-8	1-8-1		×	\$2.60BVOC
The state of the s		58-27-613027-8	7-8 1			1200 (VUC)741 META, S
	500	58-23-61302 6-7	6-2		X X	270 VOC
V		58-23-61302 6-7	6-2 1		X WY S27	170 Suve / TAI METALS
and the same	540	SB-24-61302 415-55	4.5-5.51		X	8330 SVOC / 7AL METALS MS/ASD
		55-26 20819-12-83	5-5,5 1		X	8266 you nelmen
	1535	(B-230-61302 6-7	6-7 1		X 8220	70 SVUC /702 AFTRES
	<u>↑</u>	58-230-613-26-7	6-7 1		Z V	82608 NOC
SAMPLES SUBMITTED FO	OR ANALYSIS WI	LL BE SUBJECTED TO THE STL TE	SAMPLES SUBMITTED FOR ANALYSIS WILL BE SUBJECTED TO THE STL TERMS AND CONDITIONS OF SALE (SHORT FORM) UNLESS ALTERNATE TERMS ARE AGREED IN WRITING.	SHORT FORM) UNLESS ALTE	RNATE TERMS ARE A	
RELINQUISHED BY		COMPANY	DATE TIME	RECEIVED BY	00	DAIE
SAMPLEDEN	- 184 C. of	0	DATE TIME	RECEIVED BY	8	COMPANY DATE TIME

COMMENTS

NYSDOH 10142 NJDEP 73015 CTDOHS PH-0554 EPA NY049 M-NY049

PA 68-378

DATE DATE

COMPANY COMPANY

RECEIVED BY RECEIVED BY

DATE

COMPANY

RELINQUISHED BY

SAMPLEDEN

SEVERN TRENT SERVICES

CHAIN OF CUSTODY

315 Fullerton Avenue Newburgh, NY 12550 TEL (845) 562-0890 FAX (845) 562-0841

2 X WALLE		CDA 7 ST 2N1/FL CT 47 01608 PHONE NO. 508-059688	REPORT TYPE STANDARD□ ISRA□ NJ REG□ NYASP A□ BØ CLF OTHER		TURNAROUND NORMAL QUICK	SAA SAB
$S/7\xi$ G SD C S PROJECT NUMBER/PO NO. $O/O/2$. G/O	3 73 7	5729770M AN & B	DW = DRINKING WW = WASTE WATER	Matrix S WATER S = SOIL SL = SLUDGE GW	SOIL O = OIL GW = GROUND WATER	NY PUBLIC WATER SUPPLIES ATER SOURCE ID
NOTE: SAMPLE TEMPERATURE UPON RECEIPT MUST BE 4"±2"C. STL # DATE AND SE MATRIX CLIENT 1.D.	T MUS	AMPLE TEMPERATURE UPON RECEIPT MUST BE 4" ± 2°C.	Total Number 40mi Glass 40mi Glass Lifet Amber Lifet Amber Lifet Amber Lifet Amber Lifet Amber Lifet Amber Lifet Amber	Sulfuric Acid Lifer Plastic Sodium Hydroxide Lifer Plastic Miller Plastic Miller Plastic	250ml Plastic 125ml Plastic 125ml Plastic 205.	
	5	[[[1891		×	124/
260		(B-22-61402 5706	5006		< <	7260 / IMC MEIALS
$ \times $		58-12-61402 5	5 706 (×	1270 / 191 METAL
\$\frac{\display}{\pi}	×	58-15-61402 5 m6 59-25-61402 5 106) 90		× ×	7270 / TAL METALS
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<u> </u>	58-26-61402 5706	5706 1		× ×	8250 1741 MEIRES
350 A		1 1	1 00		× ×	7 200 x 0000
7 7 7	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	SB-17-61402 5	5.06		× ×	8200 702 Inverses
PLES SUBMITTED FOR ANALY	SIS WILL BE	SUBJECTED TO THE STL TERM	SAMPLES SUBMITTED FOR ANALYSIS WILL BE SUBJECTED TO THE STL TERMS AND CONDITIONS OF SALE (SHORT FORM) UNLESS ALTERNATE TERMS ARE AGREED IN WRITING.	IORT FORM) UNLE	SS ALTERNATE TERN	IS ARE AGREED IN WRITING. COMPANY DATE TIME

LINOUISHED BY	COMPANY	DATE	TIME / 1 20	RECEIVED BY	COMPANY	DAIR T	
MPLED BY	COMPANY	DATE	TIME	RECEIVED BY	COMPANY	DATE	TIME
LINQUISHED BY	COMPANY	DATE	TIME	RECEIVED BY	COMPANY	DATE	TIME

COMMENTS

PA 68-€. M-NYC .. EPA N. C. 3 PH-0L... NJD.....5

SEVER'N TRENT SERVICES

CHAIN OF CUSTUDY COM

315 Fillerton Avenue Newcurgh, I.....550 TEL (845) 562-0890 FAX (845) 562-0841

			COMPANY	BELINOUISHED BY
COMPANY	RECEIVED BY	ATE TIME		SAMPLED BY
	RECEIVED BY	DATE TIME F		אפרוואלטוסו יידע די
COMPANY DATE TIME	TECEIVED BY	DATE TIME F	COMPANY DA	SAMPLES SUBMITTED FOR AWALTED WITH
RE AGREED IN WRITING. DATE TIME	IT FORM) UNLESS ALTERNATE TERMS A	AS AND CONDITIONS OF SALE (SHOF	I RE SUBJECTED TO THE STL TER	
			18-0/40-	
8260	X	7 6	1	<u>۸</u>
TAL METALS		×		
5106 8270			0000	1/2/1/2/1/2/1/9 // 1/2/2/1/2/1/2/1/2/2/2/2/2/2/2/2/2/2/
8260 1160		12 2 X	DR-CD-K1462	}
SVOC 8270		7		A STATE OF THE STA
8260 Voc		2 3	No-202-613-2	W 059/ 76//9
METASKAGO STORES	747	7	× 60 60	× ;
1786 M	×	, पट्टा	18-40 -0/404 45 m54	(230 K
8260	8		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4
8270 /TAL METAL	X	1 0001/	18-19-6/402 mg	6/14/02/1200 12 5
82 60				STL# DATE TIME OF MATRIX
ANALYSIS REQUESTED	Lifer Plass Sodium I Some Plass Solution Plass Solu	Total Numic Active Acti	5	SAMPLING AND
FEDERAL ID	stic stic	ng quality qua	AMPLE TEMPERATURE UPON	OTE: SAMPLE TEMPERATURE UPON
SOURCE ID ELRP TYPE	SL = SLUDGE GW = GROUND WATER	DW = DRINKING WATER WW = WASTE WATER SL = SLUDC		PROJECT NUMBER? PO NO.
NY PUBLIC WATER SUPPLIES	. !		81 NA NOTABATS	NO.
			0,0	
	OCT COUNTY	NYASP A□ BØ CLP□	90910 pm	2 0
SA With Septiety Periods Septiet Septi	_ 	STANDARD SRA	AT ST ZNOFE	DORESS UP & PLEASONS
	· · · · · · · · · · · · · · · · · · ·	REPORT TYPE		USTOMER NAME
RFPORT # (Lab Use Only)				TEMPARET

NYSDOH 10142 NJDEP 73015 CTDOHS PH-0554 EPA NY049 M-NY049 PA 68-378

COMMENTS __

SEYERN TRENT SERVICES

CHAIN OF CUSTODY

315 Fullerton Avenue Newburgh, NY 12550 TEL (845) 562-0890 FAX (845) 562-0841

ST. Newburgh CUSTOMER NAME		BOXT TOODO	CINIDARNAIT	REPORT # (Lab Use Only)
ANENTER CORR				
ADDRESS PLEASONT S	y July 6.4.	STANDARD ISRA	NORMAL	
17617 13.4	9 1 6 9 7	NYASP A□ B区 CLP□		SAMPLE TEMP C SAMPLE REC'D ON ICE Y N
	HONE NO.	OTHER	- [_] VERBAL	PH CHECK X
16 4 6-	508-979-6988			- REVIEWED BY:
PROJECT LOCATION	A. Are has	Mai		NY PUBLIC WATER SUPPLIES
SER / PO NO.		DW = DRINKING WATER S: WW - WASTE WATER S! = SLUDGE	S≠SOIL	SOURCE ID
0/4/2.01		משפור מיי	ĺ	ELRP TYPE
NOTE: SAMPLE TEMPERATURE UPON	PERATURE UPON	Pay 16	0,	FEDERAL ID
RECEIPT ML	RECEIPT MUST BE 4°±2°C.	lass Amber Amber Astic Astic Astic Astic	Plastic Plastic Plastic	
SAMPLING & B MATRIX	FRIX CLIENT I.D.	HOL Sulfurio Sulfurio Organio Lifer Pl Lifer Pl Nitric A Sodium	Liler py	ANALYSIS REQUESTED
X 56/21/2	64 Kmw -21 82602	7 7 7		OBYOC DIDOCSUOCTAL MEDALS
	Smu-12/62602	11125		
Cc9/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	FB-PW-62602	7	0160 g VOC	140C 1200 5 50 786 786 316 365
	78-62602	22	3,508	DB YDC THIN BLANK
6/2/2/1/5	Sma	42 11	8,608	OBYOL BEDOCSHOC TAL METERS
CCZ/	5mw-0862602	7 7		
17.35	GMW-0962602	7 7		
> 001/ >	6mW-1062602	42		
001/2019 Basses	500-162702	8		260 B 1005 Just
7 6/	Sw-262702	22)
CAMADI ES CLIBALITED FOR ANALYSIS WILL RE SUBLIFICITED TO THE STL TERMS AND CONDITIONS OF SALE (SHORT FORM) UNLESS ALTERNATE TERMS ARE AGREED IN WRITING.	I BE SUBJECTED TO THE STLIERMS	SAND CONDITIONS OF SALE (SHORT FO	HAN) UNLESS ALTERNATE TERMS ARE	
RELINQUISHED BY	COMPANY DATE	E TIME RECE	RECEIVED BY CC	DATE
	COMPANY) DIME	RECEIVED BY CC	COMPANY DATE TIME
The state of the s	'>			

ZPAN) U+5 M-NYU-2 PA 68-C. NISDOM 10142 NJDER 130/15 CILCUINS PH-0504

1860 18 WY

JATSCHUED IN

Me - 62.62

ام. ایک ار

; Delators

745 742

COMMENTS

DATE

COMPANY

RECEIVED BY RECEIVED BY

TIME

DATE

COMPANY

RELINQUISHED BY

SEVERN TRENT SERVICES

CHAIN OF CUSTODY

310 Fuller ron Avenue Newburgh, NY 12550 TEL (845) 562-0890 FAX (845) 562-0841

STL Newburgh										
CUSTOMER NAME	MER NAME	Charles San San			REPORT TYPE	YPE	TURNAROUND	ONNO	REPORT # (Lab Use Only)	
ADDRESS	The second of the second of		4 4 6 6	ST/	STANDARD ISRA	SRA 🗌	M NORMAL -			
CITY, STATE, ZIP	2.3			2	NJREG∐ NYASP A∏ BK	BK CLP				ပ
(20)	NOACESPER	30.2	0/609		1] 	∏ VEBBAL			
NAME OF CONTACT	ONTACT パージック。	T JONOVAN &	508-459-6889	<u>, </u>					pHICHECK r	
PROJECT LOCATION	SCATION G S D C	CASATIO	CTRATUL SULFA			Matrix	:		NY PUBLIC WATER SUPPLIES	S
PROJECT NI	<u>اين</u> <	1		WW #	DW = DRINKING WATER WW = WASTE WATER SLU	NG WATER S: SL = SLUDGE	S=SOIL O=OIL GE GW=GROUND WATER	JIL JND WATER	SOURCE ID	
NOTE:	SAMPI	LE TEMP	NOTE: SAMPLE TEMPERATURE UPON			Pe				
	REC	EIPT MU	RECEIPT MUST BE 4° ±2°C.	٠	Amber Moor Moor	astic	Acido Silestic Silest		FEDERAL ID	
# L	SAMPLING P. DATE ATIME OR	ME OMP RAB MATRIX	× CLIENT I.D.	Total A	HCL Sullurid Sullurid Organia	Viling A	Sulfund Sulfund SSOMI 125MI	20 Soni	ANALYSIS REQUESTED	
	(126/b) (0715-	No. No. No. No.	6,000		N /			82608V3C	VOC BEJOESHOR THE METAL	,~4
N. S. S. S. S. S. S. S. S. S. S. S. S. S.	0860	3	6mw-1162602			1				
A CATA	5745	2,7	600 -1262602							
	3	00%0	6mw-1361602	2						
1960g S 1985g A 1985g A	3875	6.	6mm-1462601	→ ~	<i>→</i>					
		3	6 ma-15 62602	2 12	5 3	3			05/250	
	Of C	3	LMW-1662602	2 4	2					
V	1. A. A. A.		6244-19 EASOR	7.2		8				
approximation of the state of t	3916	15.	6mw-1862602	502						
	60	0860	6mW-18162602	602		N.				
	101	000	6nw-1962602	20,						
	5/0/	\frac{1}{2}	6mm-2062602	02	<u>}</u>				>	
SAMPLES St	JBMITTED FOF	3 ANALYSIS WILL (SAMPLES SUBMITTED FOR ANALYSIS WILL BE SUBJECTED TO THE STL TERMS AND CONDITIONS OF SALE (SHORT FORM) UNLESS ALTERNATE TERMS ARE AGREED IN WRITING.	AMS AND CON	DITIONS OF SALE	(SHORT FORM	UNLESS ALTERNA	TE TERMS ARE A	E AGREED IN WRITING. DATE TIME	
					1111	人名 じょくしょしょう	\a_C	3	בי	_

COMPANY DATE COMPANY DATE	ELINQUISHED BY COM	1PANY	/ DATE	IME	. :		
COMPANY DATE TIME RECEIVED BY COMPANY DATE	The state of the s		DATE	TIME		DATE	TIME
			DATE	TIME		DATE	TIME

COMMENTS

NYSDOH 10142 NJDEP 73015 CTDOHS PH-0554 EPA NY049 M-NY049 PA 68-378

SEVERN TRENT
SERVICES

nd and art

CHAIN OF CUSTODY

315 Fullerton Avenue Newburgh, NY 12550 TEL (845) 562-0890 FAX (845) 562-0841

IEL (845) 562-0890 FAX (845) 562-0841	REPORT # (Lab Use Only)		SAMPLE LEMP. SAMPLE RECIDION ICE 1/2	pH CHECK YN	NY PUBLIC WATER SUPPLIES	SOURCE ID	ELKF 17FE		ANALYSIS REQUESTED	B VOC BITOCSVOC TAL MEMIS									
	TURNAROUND	NORMAL		- VENDAL	XI	SWATER S≡SOIL O=OIL SL=SLUDGE GW ≃GROUND WATER	3	o void selic	Sullun Sullun Sullun Seomi	8360 8					300000			*	
	REPORT TYPE	STANDARD ISRA	NYASP A B B CLP		Matrix	DW = DRINKING WATEF WW = WASTE WATER SL = SL1	Pəi	Amber C Wash Co Wash C	Creaning Control Contr	42 11						→ → →	4211	7 7 1 1	
V 5002		24 G. CL	0/609	508-459-6989		. 5	RATURE UPON	r BE 4° ±2°C.	CLIENT I.D.	6nw-0381302	6.nw-1381302	6mw-1481302	6mw-1581302	6mw-1681302	6MW-1781302	Snw-13381302	12 W IDW-DI-COR81502	I OU - WILL WARRY 815 02	
Jus our sark	"4 w \:	DLESSANT ST	57612 200	SAUVAR	JECT LOCATION	BER/PO NO.	NOTE: SAMPLE TEMPERATURE UPON	RECEIPT MUST BE 4° ±2°C.	SAMPLING SE DOTE DATE AT SECULOR SAMPLING SECULOR SAMPLING SECULOR SAMPLING SECULOR SE	9141/6X X FB	1,570	(53)	15%5	009/	1615	15/5	8/15/2 945 11 WW	1 0/w V	Control of the contro
SERVICES	CUSTOMER NAM	ADDRESS	CITY, STATE, ZIP	NAME OF CONTACT	PROJECT LOCATION	PROJECT, NUMBER / PO NO	NOTE: 5		STL#		Å		(Play	comp. Se zasig		gaz koni koni	300	Section 1	

SAMPLES SUBMITTED FOR ANALYSIS WILL BE SUBJECTED TO THE STL TERMS AND CONDITIONS OF SALE (SHORT FORM) UNLESS ALTERNATE TERMS ARE AGREED IN WRITING. VNADANY

IDW-SOK-DRUMBERS

512

インカウ

1750 BVOC

RELINOUISHED BY	COMPANY	A-PATEDS	TIME	RECEIVED BY	COMPAN		
	7				VIABANIV	DATE	
SAMPLED BY	COMPANY	DATE	TIME	RECEIVED BY			
1000 TATE	•				VMAGMOO	DATE	TIME
RELINQUISHED BY	COMPANY	DATE	TIME	RECEIVED BY		1 5	

COMMENTS

SSOH TOTAL NUBER TOTAL COLUMNS PHOUS EPANTON MENTON

PA 68-1.

CHAIN OF CUSTODY

315 Fullenon Avenue Newburgh, NY 12550 TEL (845) 562-0890 FAX (845) 562-0841

FAX (845) 562-0841	REPORT # (Lab Use Only)	Use the second s	SD ON ICE Y N	PHICHECK YNN	NY PUBLIC WATER SUPPLIES	SOURCE ID	FEDERAL ID		ANALYSIS REQUESTED	Broc 8230C Sub 746 MELLS					026/200				100001	Bloc TRIP BLONK	8770 5VOC + 7AL MEISES	AGREED IN WRITING.
	REPORT TYPE TURNAROUND	<u> </u>	A B B CLP	OTHER	-	DW = DRINKING WATER S = SOIL O = OIL WW = WASTE WATER SL = SLUDGE GW = GROUND WATER	Papixco oil	I Number Selection of the Plastic Marker Amber Colass I Amber Colassing Washi	PH MINDS	42 111 82608				→ →	126 33	771			->>>>>>>>>>>>>-	33	1770) CONDITIONS OF SALE (SHORT FORM) UNLESS ALTERNATE TERMS ARE
and and but	NAME 107EK COLP	B 14.695	STATE, ZIP LOACESTER MR 01609	VIACT SURVIVOR SUE	1 %	ER/PO NO.	IOTE: SAMPLE TEMPERATURE UPON	RECEIPT MUST BE 4° ±2°C.	SAMPLING \$ MATRIX CLIENT I.D.	8/44/200 X 6W 6MW-088/402	19 1 2520	1000 Sma-1081402	A CO	SA45 61402	5745 6MW-1881402	To the second se	2855 KMW-2081402		J900 1 5mw-20181402		4/5/02 VOZU X 5012-DRUMS A+B	AMPLES SUBMITTED FOR ANALYSIS WILL BE SUBJECTED TO THE STL TERMS AND CONDITIONS OF SALE (SHORT FORM) UNLESS ALTERNATE TERMS ARE AGREED IN WRITING.
SERVICES	USTOMER	ODRESS	HTY, STATE, ZIP	AME OF CO	POJECT L	ROJECT	OTE		STL #		× 200			SCOTE TO		Sec.	W	genous				

	DATE TIME	DATE TIME	
COMPANY	COMPANY	COMPANY	
RECEIVED BY	RECEIVED BY	RECEIVED BY	
Q. PATE OF TIME OF	1	DATE TIME	
COMPANY	j	COMPANY	
		RELINQUISHED BY	

COMMENTS

PA 68-378

APPENDIX C SDC BORING LOGS

Client/Project/Contract No.: ANG-Schenectady ANGB **ANEPTEK** Site 6 SDC - DAHA90-93-D-0003 D.O.# 14 Page 1 of 1 CORPORATION Boring/Well No.: Sampler Type/Size: **Boring Loa SB-17** 2 ft. Split Spoon - 140 lb. Hammer Date/Time Finished Drilling Contractor: Drilling Rig Make/Model: **Date/Time Started** 6/14/2002 B.L. Myers Bros. Mobile Drill Model B-61 Screening Device (Type, make, model): Logged By: **Drilling Method:** PID 11.7 EV J. Donovan HSA 140 lb. Hammer **Borehole Diameter:** Location (survey coord): Ground El.: Total Depth: Bedrock Depth: Water Table Depth: 8 inches USCS PID/FID Blows/ Depth Sample Sample Rec. Lithologic Description (ft) Interval Number 6-in. (in.) Class. (ppm) Top 2" backfill material (sand) from TCRA 0 5 8 Bott 7" Ight brn silt/clay/trace med sand 7 9 0 9 10 2 18 22 Lght brn silt/clay/trace med sand 22 Top 6" med brn sand/silt 10 22 Bott 14" Ight bm silt/clay trace med sand 20 Bott 4" petro odor 28 85 38 Top 5" brn silt/sand saturated 40 21 5" to 7" It brn silt/clay petro odor 22 26 27 7" to 20" dk brn silt/clay 2 50/1 Refusal 10 Penetration Resistance Proportions Granular Soils Cohesive Soils Trace: 0 - 10% Notes and Comments: Blows/ft Density Blows/ft Density Little: 10 - 20% V. Loose V. Soft Some: 20 - 35% 2 - 4 Soft 4 - 10 Loose And: 35 - 50% M. Stiff 10 - 30 M. Dense 4 - 8 Water Content 8 - 15 Stiff D - Dry 30 - 50 Dense

V. Dense

>50

15 - 30

>50

V. Stiff

Hard

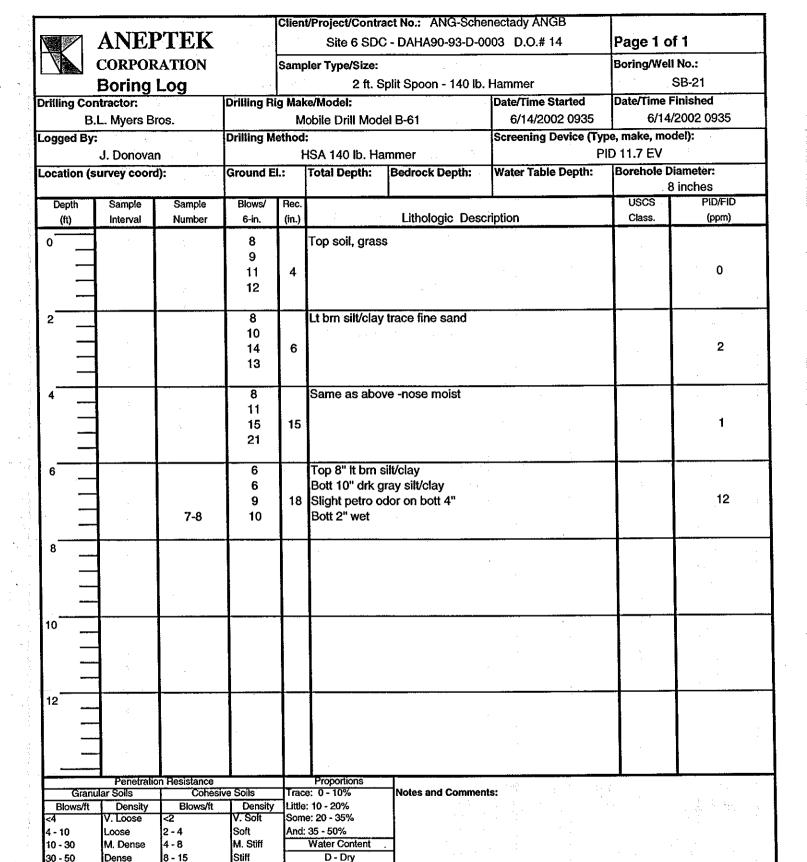
M - Moist

W - Wet

	A NITSI		1000	Clien	-	act No.: ANG-Sche					
		PTEK			Site 6 SDC	- DAHA90-93-D-0	003 D.O.#	14	Page 1 c	of 1	
	CORPOR			Sam	pler Type/Size:	*	10 m		Boring/Wel	1	
	Boring	Log				plit Spoon - 140 lb.				SB-18	
Drilling Co			Drilling R	-	ke/Model:	18.7	1		Date/Time		
	.L. Myers B					el B-61		002 1020		/2002 1020	
Logged By		1	Drilling M	ng Method: Screening Device (Type, make, mod					del):		
l ===#!=== <i>[</i> :	J. Donova		Ground E						D 11.7 EV Borehole Diameter:		
Location (s	survey coord	x):	Ground	El.: Total Depth: Bedrock Depth: Water Table Depth:				6	inches		
Depth	Sample	Sample	Blows/	Rec.					USCS	PID/FID	
(ft)	Interval	Number	6-in.	.(in.)		Lithologic Desc	ription		Class.	(ppm)	
0			11								
_			21				٠			· ·	
·			15	0	No recovery, r	ock in nose				0	
			17	1			· ·				
2			10	 	Top 9" It bm s	ilt/clay trace med/fi	ne sand		-[
			9	i	Bott 9" bm silt					·.	
]	2-4	14	18	****		7.77	;		4.5	
			16	ł					;		
		·	15	-	Bm silt/clay			:			
" —	1 1		15		Dill Silvciay		; ; v	ĝ.		244 -	
	1		14	14	1				h.	2	
			16	1					· >		
			1	<u> </u>	D 115/-11-1	e 6 - 1 - 1 - 1					
6 7	·		11 15	l	Brn silt/clay bi	ts of shale			· 		
. —	'		18	12	S477	Contract the same	Barrell .		`	2	
	1		26						ł	. **	
-				<u> </u>		. 20 /	:		_		
8 —	-		6	j							
_	1		8 10							,	
-	1		30/1"	1	Refusal -satur	rated					
				<u> </u>							
10	_	1							•	tie.	
	-		1				•		1		
	1										
. <u> </u>	<u> </u>		1			<u> </u>		÷	<u> </u>		
12											
_		· ·		1							
	1								:	·	
	1										
		n Resistance	1	-	Proportions	T	<u> </u>				
	ılar Soils	Cohesi	ve Soils	_	e: 0 - 10%	Notes and Commen	ts:	the figure to the			
Blows/ft <4	Density V. Loose	Blows/ft <2	V. Soft	_	: 10 - 20% e: 20 - 35%		.5	- / -			
4 - 10	Loose	2-4	Soft	And:	35 - 50%	_	, V				
10 - 30 30 - 50	M. Dense Dense	4 - 8 8 - 15	M. Stiff Stiff	\vdash	Water Content D - Dry	-					
>50 >50	V. Dense	15 - 30	V. Stiff		M - Moist					A State of the	
	<u> </u>	>50	Hard		W - Wet						

Client/Project/Contract No.: ANG-Schenectady ANGB **ANEPTEK** Site 6 SDC - DAHA90-93-D-0003 D.O.# 14 Page 1 of 1 CORPORATION Boring/Well No.: Sampler Type/Size: **Boring Log** 2 ft. Split Spoon - 140 lb. Hammer SB-19 Drilling Rig Make/Model: Date/Time Finished Drilling Contractor: Date/Time Started B.L. Myers Bros. Mobile Drill Model B-61 6/14/2002 1138 6/14/2002 1150 Screening Device (Type, make, model): Logged By: **Drilling Method:** J. Donovan HSA 140 lb. Hammer PID 11.7 EV Location (survey coord): Ground El.: Total Depth: **Bedrock Depth:** Water Table Depth: Borehole Diameter: 8 inches USCS PID/FID Depth Sample Sample Blows/ Rec. Lithologic Description Class. Interval Number 6-in. (in.) (ppm) (ft) Top 3" TCRA backfill (sand) 0 9 Bott 1" bm silt/clay 0 15 14 4 10 Lt brn silt/clay trace med/fine sand 7 8 15 21 1 15 12 Same as above 18 22 15 2 18 16 Top 10" same as above 22 Bott 2" bits of shale 38 12 55 7-8 38/4" Refusal -saturated 10 12 Penetration Resistance Proportions Granular Soils Cohesive Soils Notes and Comments: Trace: 0 - 10% Blows/ft Density Blows/ft Density Little: 10 - 20% V. Loose V. Soft Some: 20 - 35% 2 - 4 Soft 4 - 10 Loose And: 35 - 50% 10 - 30 M. Dense 4 - 8 M. Stiff Water Content 30 - 50 Dense 8 - 15 Stiff D - Dry V. Dense V. Stiff M - Moist >50 15 - 30

W - Wet


>50

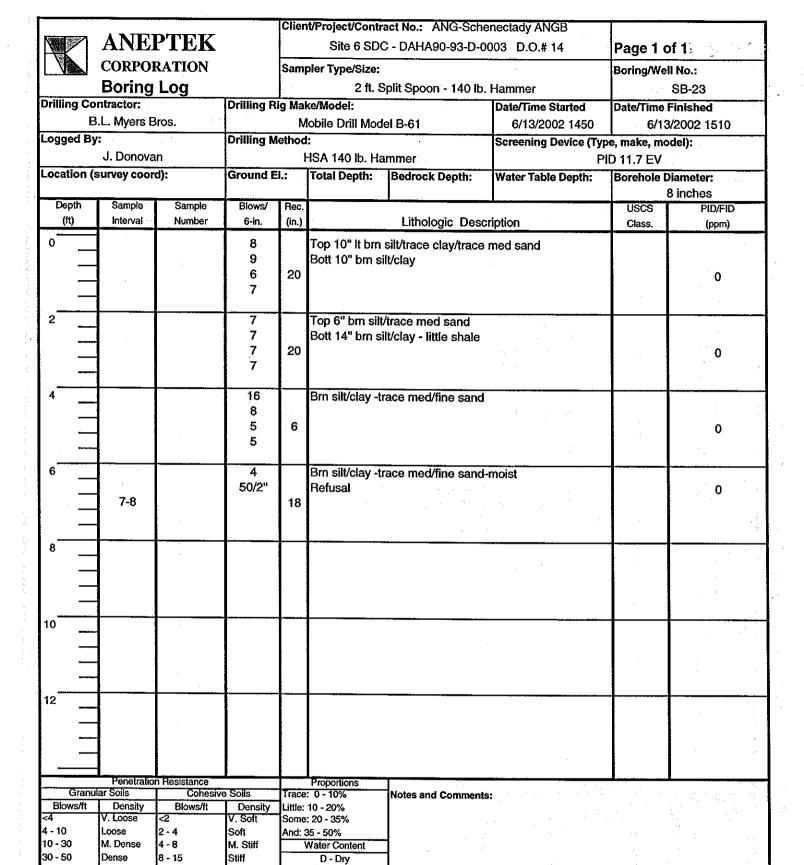
Hard

Client/Project/Contract No.: ANG-Schenectady ANGB **ANEPTEK** Site 6 SDC - DAHA90-93-D-0003 D.O.# 14 Page 1 of 1 CORPORATION Boring/Well No.: Sampler Type/Size: **SB-20 Boring Log** 2 ft. Split Spoon - 140 lb. Hammer Drilling Contractor: Date/Time Finished Drilling Rig Make/Model: Date/Time Started 6/14/2002 1230 B.L. Myers Bros. Mobile Drill Model B-61 6/14/2002 1210 Logged By: Drilling Method: Screening Device (Type, make, model): J. Donovan HSA 140 lb. Hammer **PID 11.7 EV** Total Depth: Borehole Diameter: Location (survey coord): Ground El.: Bedrock Depth: Water Table Depth: 8 inches Blows/ Rec. USCS PID/FID Depth Sample Sample (ft) Interval Number 6-in. (in.) Lithologic Description Class. (ppm) 0 8 Lt brn silt/clay trace med/fine sand -rock in nose 10 12 4 0 11 Top 3" It brn silt/sand 7 Bott 17" bm silt/clay trace med sand 9 12 20 0 17 25 Brn silt/clay trace med sand 26 Bits of shale in nose 4-5 32 19 0 58 Refusal 10 12 Penetration Resistance Proportions Granular Soils Cohesive Soils Trace: 0 - 10% Notes and Comments: Density Blows/ft Density Blows/ft Little: 10 - 20% V. Soft V. Loose Some: 20 - 35% 2 - 4 4 - 10 Soft And: 35 - 50% Loose 10 - 30 M. Dense 4-8 M. Stiff Water Content 30 - 50 Dense 8 - 15 Stiff D - Dry >50 V. Dense 15 - 30 V. Stiff M - Moist

>50

Hard

V. Dense


15 - 30

>50

V. Stiff

Hard

M - Moist

V. Dense

15 - 30

>50

V. Stiff

Hard

M - Moist

W - Wet

>50

Client/Project/Contract No.: ANG-Schenectady ANGB **ANEPTEK** Site 6 SDC - DAHA90-93-D-0003 D.O.# 14 Page 1 of 1 CORPORATION Boring/Well No.: Sampler Type/Size: **Boring Log** 2 ft. Split Spoon - 140 lb. Hammer SB-24 Date/Time Started Date/Time Finished Drilling Contractor: Drilling Rig Make/Model: 6/13/2002 1540 B.L. Myers Bros. 6/13/2002 1520 Mobile Drill Model B-61 Screening Device (Type, make, model): **Drilling Method:** Logged By: **PID 11.7 EV** J. Donovan HSA 140 lb. Hammer Borehole Diameter: Location (survey coord): Ground El.: Total Depth: Bedrock Depth: Water Table Depth: 8 inches USCS PID/FID Sample Sample Blows/ Depth Rec. Lithologic Description (ft) Interval Number 6-in. (in.) Class. (ppm) 0 4 Bm silt/clay 5 7 13 0 8 11 Top 8" It bm silt/clay Bott 4" drk brn silt/clay- trace med sand 11 12 12 0 13 Drk brn silt/clay- trace med sand 13 Bott 4" moist-bits of shale 13 4.5-5.5 17 18 50/1" Refusal 8 10 12 Penetration Resistance **Proportions** Granular Soils Cohesive Soils Trace: 0 - 10% Notes and Comments: Blows/ft Density Blows/ft Density Little: 10 - 20% Some: 20 - 35% V. Soft V. Loose 4 - 10 Loose 2 - 4 Soft And: 35 - 50% Water Content 10 - 30 M. Dense 4 - 8 M. Stiff 8 - 15 Stiff 30 - 50 Dense D - Dry V. Dense 15 - 30 V. Stiff >50 M - Moist

>50

Hard

		ANEI	PTEK	,	Clien		ct No.: ANG-Sche - DAHA90-93-D-00		Page 1 o	f 1.	
	1	CORPOI		-	Samp	oler Type/Size:	A		Boring/Wel		
Trester.		Boring			•		olit Spoon - 140 lb.	Hammer		SB-25	
Orilling		ntractor:		Drilling Ri	g Mak			Date/Time Started	Date/Time I	inished	
	В.	L. Myers B	ros.		M	obile Drill Mode	l B-61	6/14/2002 0851	6/14	/2002 0903	
oggeo	-		4 4	Drilling Mo				Screening Device (Ty			
		J. Donova				ISA 140 lb. Har			ID 11.7 EV		
		urvey coord	d): 	Ground E	l.:	Total Depth:	Bedrock Depth:	Water Table Depth:	Borehole D	lameter: 3 inches	
Deptl (ft)		Sample Interval	Sample Number	Blows/ 6-in.	Rec. (in.)		Lithologic Desci	ription	USCS Class.	PID/FID (ppm)	
0		:		3 5 7 10		No recovery	* 1 J			0	
2			·	10 11 19 18	17	Top 10" It brn s Bott 7" drk brn	ilt/ trace clay silt/clay			3	
4		5-6		22 28 55 60/2	21	Top 11" drk brr Bott 10" drk bri Refusal	n silt/clay n silt/clay -bits of w	eathered shale		3	
6											
8			4.								
10											
12							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
	rane d	Penetration ar Soils	n Resistance Cohesive	Soile	T	Proportions	Mates and O	the state of	A STATE OF	** .	
Blows <4 4 - 10 10 - 30		Density V. Loose Loose M. Dense	Blows/ft <2 2 - 4 4 - 8	Density V. Soft Soft M. Stiff	Little: Some And: 3	: 0 - 10% 10 - 20% : 20 - 35% 35 - 50% Water Content	Notes and Comments				
30 - 50 >50		Dense V. Dense	8 - 15 15 - 30 >50	Stiff V. Stiff Hard		D - Dry M - Moist W - Wet	:		·		

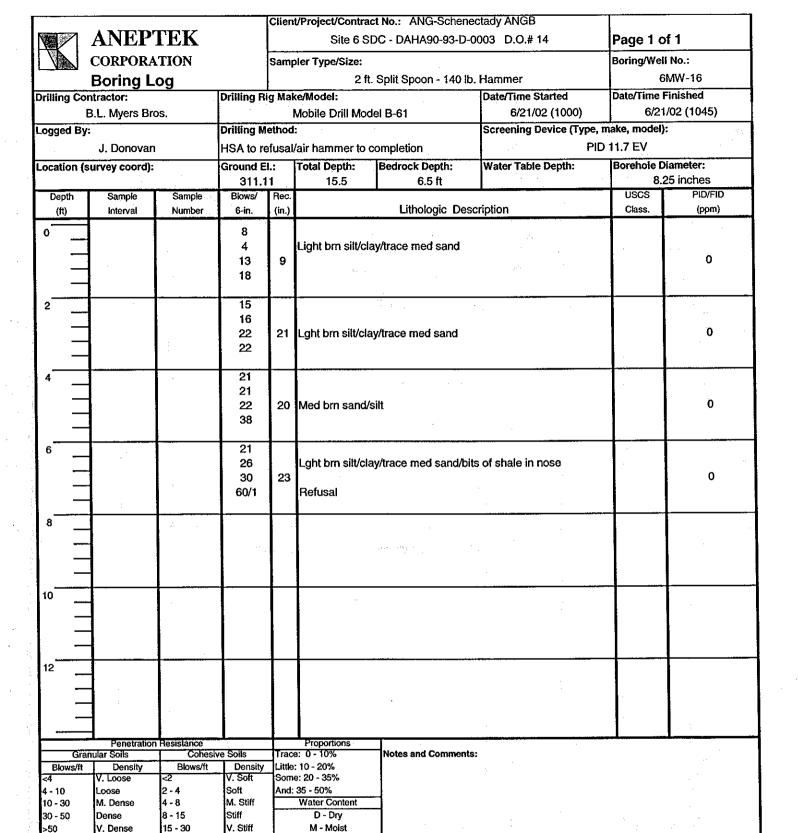
	1	ANE	PTEK	•	Clien	-	ct No.: ANG-Scr - DAHA90-93-D-0	•	Page 1 of 1			
	ָן י	CORPOR	RATION		Samp	oler Type/Size:			Boring/Wel	l No.:		
		Boring	Log			2 ft. S _l	plit Spoon - 140 lb	. Hammer		SB-26		
Drilling		ntractor:	1.4	Drilling Ri	g Mai	ce/Model:	1.	Date/Time Started	Date/Time I	Finished		
-	В.	L. Myers B	ros.			obile Drill Mode	el B-61	6/14/2002 0830	1 1			
Logged	-			Drilling M				Screening Device (Ty	del):			
		J. Donova				ISA 140 lb. Hai	<u> </u>		PID 11.7 EV			
Location	ı (sı	urvey coor	d):	Ground E	l.:	Total Depth:	Bedrock Depth:	Water Table Depth:	Borehole D			
Depth	, ,	Sample	Sample	Blows/	Rec.				USCS	8 inches PID/FID		
(ft)		Interval	Number	6-in.	(in.)		Lithologic Des	cription	Class.	(ppm)		
0				5 6 8 7	14	Top 4" topsoil Bott 10" It brn				3		
2 -				10 20 32 23	18	Top 10" It brn : Bott 8" same v	silt/trace clay vith bits of shale			4		
4	┪			22		Lt brn silt/trace	clay/trace med-fi	ne sand				
_		4		28			•			2		
_	_			35	24							
-	\dashv	5-6		65				*		14		
6	7			60/2"	2	Refusal-satura	ited		1			
_												
_												
-		÷	1					•				
8												
-			i						· .			
-	_											
-			·					•	1			
10												
-												
-	\dashv									#. -		
-	\neg					•		**				
12		:										
_	_							* *				
-												
-												
		Penetration	n Resistance	<u> </u>	 	Proportions	1					
	_	ar Soils	Cohesive		4	: 0 - 10%	Notes and Commen	its:				
Blows/		Density V. Loose	Blows/ft <2	Density V. Soft		10 - 20% : 20 - 35%	46.					
4 - 10		Loose	2-4	Soft	1	35 - 50%						
10 - 30		M. Dense	4 - 8	M. Stiff		Water Content						
30 - 50 >50		Dense V. Dense	8 - 15 15 - 30	Stiff V. Stiff		D - Dry M - Moist				*		
			>50	Hard		W - Wet		:				

	ANIET	PTEK		Clien		ct No.: ANG-Sche	-	Daniel die		
	CORPOR			<u> </u>		- DAHA90-93-D-00	703 D.O.# 14	Page 1 o		
V	Boring			Samp	oler Type/Size:	olit Spoon - 140 lb. l	Hammer	Boring/Well	SB-27	
william C.		LUG	Drilling Ri	- 16-1	•	ли ороон - 140 ю.	Date/Time Started	Date/Time F		
_	ontractor: 3.L. Myers B	ros.	Drilling Al	-	ce/Model: obile Drill Model	I B-61	6/13/2002 1327	1	/2002 1345	
ogged B			Drilling M				Screening Device (Type, make, model):			
- 33	J. Donova	n -		F	ISA 140 lb. Han	nmer	PID 11.7 EV			
ocation (survey coord	1):	Ground E	· · · · · · · · · · · · · · · · · · ·				Borehole Diameter: 8 inches		
Depth (ft)	Sample Interval	Sample Number	Blows/ 6-in.	Rec. (in.)		USCS Class.	PID/FID (ppm)			
0		:	3 5 9 8	12	Brn silt/trace cla	ay-soils loose			0	
2			8 10 13 17	24	Lt bm silt/clay t	race med/fine sand	1		0	
4			23 18 16 24	18	Brn silt-little cla	y trace gravel			0	
6	6-7		16 18 13 50/3"	16	Refusal-wet		-		0	
8							·			
10		:							·	
12	:					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
		L	<u></u>		<u></u>					
		n Resistance	- 0-11-	T	Proportions	W-4				
Gran Blows/ft <4 4 - 10 10 - 30 30 - 50	Ular Soils Density V. Loose Loose M. Dense Dense	Cohesiv Blows/ft <2 2 - 4 4 - 8 8 - 15	Density V. Soft Soft M. Stiff Stiff	Little: Some And:	o: 0 - 10% 10 - 20% o: 20 - 35% 35 - 50% Water Content D - Dry	Notes and Comments				
30 - 50 >50	V. Dense	8 - 15 15 - 30 >50	V. Stiff Hard		M - Moist W - Wet	·				

Client/Project/Contract No.: ANG-Schenectady ANGB **ANEPTEK** Site 6 SDC - DAHA90-93-D-0003 D.O.# 14 Page 1 of 1 CORPORATION Sampler Type/Size: Boring/Well No.: **Boring Log** SB-28 2 ft. Split Spoon - 140 lb. Hammer Drilling Contractor: Date/Time Finished Drilling Rig Make/Model: Date/Time Started B.L. Myers Bros. 6/13/2002 1406 6/13/2002 1425 Mobile Drill Model B-61 Drilling Method: Screening Device (Type, make, model): Logged By: **PID 11.7 EV** J. Donovan HSA 140 lb. Hammer Location (survey coord): Ground El.: Total Depth: Bedrock Depth: Water Table Depth: Borehole Diameter: 8 inches ÜSCS PID/FID Blows/ Depth Sample Sample Rec. (ft) Interval Number 6-in. (in.) Lithologic Description Class. (ppm) 5 Top 4" topsoil-grass 5 Bott 8" It brn silt/trace clay 8 12 0 8 10 Lt brn silt/clay-trace med/fine sand 2 12 0 16 17 18 21 Same as above 22 24 0 13 24 13 Top 7" It brn silt/trace clay 14 Bott 10" drk brn silt/clay-bits of shale 0 15 17 moist 7-8 22 50/3" Refusal-saturated 0 8 10 12 Penetration Resistance Proportions Cohesive Soils Granular Soils Trace: 0 - 10% Notes and Comments: Blows/ft Density Blows/ft Density Little: 10 - 20% V. Loose V. Soft Some: 20 - 35% 4 - 10 2 - 4 Loose Soft And: 35 - 50% M. Dense M. Stiff Water Content 10 - 30 4 - 8 Stiff 30 - 50 Dense 8 - 15 D - Dry V. Dense V. Stiff >50 15 - 30 M - Moist

>50

Hard


	ANEP	TEK	,		=	t No.: ANG-Schene DC - DAHA90-93-D-0		Page 1 o	f 1	
	CORPORA	ATION	177	Samp	oler Type/Size:			Boring/Well	No.:	
	Boring L	.oa			2 ft.	Split Spoon - 140 lb.	. Hammer	6MW-	11 (TW-30)	
Orilling Co		<u> </u>	Drilling R	ig Mak	ce/Model:		Date/Time Started	Date/Time F	inished	
. 6	B.L. Myers Br	os.		ı	Mobile Drill Mode	el B-61	6/17/2002	6/	17/2002	
.ogged By:	• .		Drilling M	Method: Screening Device (Type, ma						
	J. Donovan		HSA to re	efusal/	air hammer to c	ompletion	PIL	11.7 EV		
_ocation (s	survey coord):		Ground E	l.:	Total Depth:	Bedrock Depth:	Water Table Depth:	Borehole Diameter:		
			303.2		15.3	7.5		8.25 inches		
Depth (ft)	Sample Interval	Sample Number	Blows/ 6-in.	Rec. (in.)		Lithologic Desc	cription	USCS Class.	PID/FID (ppm)	
0			8 7 7 12	9	Light bm silt/cla	y/trace med sand			0	
2			12 16 21 22	17	Lght bm silt/cla	y/trace med sand	:		0	
4			10 22 28 38	20	Top 6" med bm Bott 14" Ight br	sand/silt n silt/clay trace med	sand		0	
6	÷	·	21 26 27 70/1	20	Top 5" bm silt/s 5" to 7" It bm sil 7" to 20" dk bm Refusal	lt/clay			0 0 0	
8								,		
10										
12										
Gras	Penetration	Resistance Cohesis	ve Soils	Trace	Proportions e: 0 - 10%	Notes and Comments				
Blows/ft <4 4 - 10	Density V. Loose Loose	Blows/ft <2 2 - 4	Density V. Soft Soft	Little:	10 - 20% e: 20 - 35% 35 - 50%	6MW-11 was originally	: installed as Temporary Well (TV W-11 when the first location for	V) -30. TW-30 w 6MW-11 was di	as converted y.	
10 - 30 30 - 50 >50	M. Dense Dense V. Dense	4 - 8 8 - 15 15 - 30 >50	M. Stiff Stiff V. Stiff Hard		D - Dry M - Moist W - Wet				:	

Client/Project/Contract No.: ANG-Schenectady ANGB **ANEPTEK** Page 1 of 1 Site 6 SDC - DAHA90-93-D-0003 D.O.# 14 CORPORATION Boring/Well No.: Sampler Type/Size: 6MW-12 **Boring Log** 2 ft. Split Spoon - 140 lb. Hammer Drilling Contractor: Drilling Rig Make/Model: Date/Time Started Date/Time Finished 6/20/02 (1015) Mobile Drill Model B-61 6/20/02 (0925) B.L. Myers Bros. Screening Device (Type, make, model): **Drilling Method:** Logged By: PID 11.7 EV HSA to refusal/air hammer to completion J. Donovan Borehole Diameter: Location (survey coord): Ground El.: Total Depth: Bedrock Depth: Water Table Depth: 8.25 inches 303.75 15.5 7.5 ft USCS PID/FID Depth Sample Sample Blows/ Rec. Lithologic Description Class. (ppm) Interval Number 6-in. (in.) (ft) 8 7 Light brn silt/clay/trace med sand 0 7 12 12 16 0 21 17 Lght bm silt/clay/trace med sand 22 10 22 0 28 20 Light brn silt/clay trace med sand 38 21 Top 5" brn silt/sand saturated 0 5" to 7" It brn silt/clay 0 26 20 7" to 20" dk brn silt/clay 0 27 Refusal 50/1 10 12 Penetration Resistance Granular Soils Cohesive Soils Trace: 0 - 10% Notes and Comments: Blows/ft Density Blows/ft Density Little: 10 - 20% V. Loose V. Soft Some: 20 - 35% Soft And: 35 - 50% 4 - 10 Loose Water Content 10 - 30 M. Dense 4 - 8 M. Stiff Stiff D - Dry 30 - 50 Dense 8 - 15 M - Moist 15 - 30 V. Stiff >50 V. Dense W - Wet >50 Hard

	······································			Clien	t/Project/Contrac	t No.: ANG-Schenec	tady ANGB				
	ANEP	TEK			The second second	DC - DAHA90-93-D-00	•	Page 1	of 1		
	CORPORA			Same	oler Type/Size:			Boring/We			
V-98725	Boring L				4 4 T	. Split Spoon - 140 lb.	Hammer	339	6MW-13		
Orilling Co		<u> </u>	Drilling Ri	g Mak			Date/Time Started	Date/Time			
	B.L. Myers Br	os.	. 13	- - I	Mobile Drill Mod	lel B-61	6/20/02 (1345)		6/20/02 (1430)		
Logged By	y:		Drilling Me	ethod	:		Screening Device (Type	Screening Device (Type, make, model):			
	J. Donovan		<u> </u>		/air hammer to o			PID 11.7 EV			
_ocation (survey coord):		Ground El		Total Depth:	Bedrock Depth:	Water Table Depth:	Borehole I			
Depth	Sample	Sample	305.5 Blows/	Rec.	15.5	6 .5ft	<u> </u>	USCS	8.25 inches USCS PID/FID		
(ft)	Interval	Number	6-in.	(in.)		Lithologic Descr	ription	Class.	(ppm)		
0 =			8 7 7 12	9	Light bm silt/cla	ay/trace med sand			0		
2			12 16 21 22	17	Lght bm silt/cla	y/trace med sand			0		
4			10 22 28 38	20	Med bm sand/s	silt			0		
6			21 26 30 55/1	20	Lght brn silt/cla	ny/trace med sand			° . O		
8											
10											
12											
		<u> </u>	<u> </u>						90		
Gra	Penetration nular Soils	Resistance Cohesir	ve Soils	Trace	Proportions e: 0 - 10%	Notes and Comments:					
Blows/ft <4 4 - 10 10 - 30 30 - 50	Density V. Loose Loose M. Dense Dense	Blows/ft <2 2 - 4 4 - 8 8 - 15	Density V. Soft Soft M. Stiff Stiff	Little: Some	: 10 - 20% e: 20 - 35% 35 - 50% Water Content	- And Comments.					
>50	V, Dense	15 - 30 >50	V. Stiff Hard								

Client/Project/Contract No.: ANG-Schenectady ANGB **ANEPTEK** Site 6 SDC - DAHA90-93-D-0003 D.O.# 14 Page 1 of 1 CORPORATION Boring/Well No.: Sampler Type/Size: 6MW-14 **Boring Log** 2 ft. Split Spoon - 140 lb. Hammer Date/Time Finished Drilling Contractor: Drilling Rig Make/Model: Date/Time Started 6/19/02 (1640) B.L. Myers Bros. Mobile Drill Model B-61 6/19/02 (1515) Screening Device (Type, make, model): Logged By: **Drilling Method:** HSA to refusal/air hammer to completion PID 11.7 EV J. Donovan Borehole Diameter: Location (survey coord): Ground El.; Total Depth: Bedrock Depth: Water Table Depth: 8.25 inches 310.8 15.5 7.5 ft PID/FID USCS Blows/ Rec. Depth Sample Sample Class. Lithologic Description (ppm) Interval Number 6-in. (in.) (ft) Light brn silt/clay/trace med sand 9 0 12 12 12 16 0 25 21 Brn silt/clay/trace med sand 23 16 21 0 22 19 Med brn sand/silt 38 24 27 Brn silt/clay/trace med sand 0 23 32 60/1 Refusal Proportions Trace: 0 - 10% Penetration Resistance Granular Soils Cohesive Soils Notes and Comments: Density Density Little: 10 - 20% Blows/ft Blows/ft Some: 20 - 35% V. Soft V. Loose 4 - 10 Loose Soft And: 35 - 50% Water Content M. Dense 4 - 8 M. Stiff 10 - 30 30 - 50 Dense 8 - 15 Stiff D - Dry v. Stiff M - Moist V. Dense 15 - 30 >50 >50 Hard W - Wet

				Clies	/Drojost/O	No. ANO Cohora	otody ANCR			
	ANEP	TEK		CHEN	-	No.: ANG-Schene C - DAHA90-93-D-0	*	Page 1 o	_{f 1}	
	CORPORA		ŀ	Samo	oler Type/Size:			Boring/Well No.:		
	Boring Lo			2 - 111 p		Split Spoon - 140 lb	. Hammer	6MW-15		
Drilling Cor			Drilling Ri	g Mak		<u> </u>		Date/Time F	inished	
	3.L. Myers Bro	s.			Mobile Drill Mode		/02 (1320)			
Logged By:			Drilling Me				Screening Device (Type, m			
l anniem (a	J. Donovan	•	HSA to re Ground El		air hammer to co	empletion Bedrock Depth:	Water Table Depth:	D 11.7 EV Borehole Diameter:		
Location (s	urvey coord):		312.0			6.5ft	water rable Deput:	•	5 inches	
Depth	Sample	Sample	Blows/	Rec.				USCS	PID/FID	
(ft)	Interval	Number	6-in.	(in.)		Lithologic Desc	cription	Class.	(ppm)	
°			8 4		l ight hm sift/clay	/trace med sand]		
			13	9	Light Din Shvoluj	rado med sand			. 0	
			18		-		i .			
			15							
			16				•			
_		I	22 22	21	Lght bm silt/clay	/trace med sand			0	
4			21							
			21 22	20	Med brn sand/si	it .			0	
			38				·		·	
6			25							
			28		Lght brn silt/clay	/trace med sand				
_]		30	23	. .	•			0	
<u> </u>			60/1		Refusal		•		,	
8										
							. :			
						•		1		
			<u> </u>	_			~			
¹⁰ -	1									
	1		[
	4	•	l						·	
12			<u> </u>	 						
]									
-	1						•			
I]		1				•			
	Penetration		a Calla	T== -	Proportions	Notes and Comme		<u> </u>		
Blows/ft	nular Soils Density	Cohesiv Blows/ft	Density	Little:	o: 0 - 10% 10 - 20%	Notes and Comments	:			
<4 4 - 10	V. Loose Loose	<2 2 - 4	V. Soft Soft		e: 20 - 35% 35 - 50%				· .	
10 - 30	M. Dense	4 - 8	M. Stiff		Water Content				·.	
30 - 50 >50	Dense V. Dense	8 - 15 15 - 30	Stiff V. Stiff		D - Dry M - Moist				·	
<u> </u>		>50	Hard		W - Wet					

Hard

>50

	4,11			Y	Client	t/Project/Contract	No.: ANG-Sche	nectad	y ANGB			
	7	ANEP'	ГЕК			Site 6 SD	C - DAHA90-93-E	-0003	D.O.# 14	Page 1 o	[1	
	1	CORPORA		-	Samo	oler Type/Size:				Boring/Well		
	2.474		**		Jamp		Split Spoon - 140	lh ∐aı	mmer	1 -	/IW-17	
Drilling		Boring Latractor:		Drilling Ri	n Mak		Ophi		te/Time Started	Date/Time F		
Diminig		B.L. Myers Bro		Driaming th	_	Mobile Drill Mode	ol R-61	Va	6/21/02 (0820)		/02 (0910)	
Logged				Drilling Me				Sc	reening Device (Type, n			
55	, .	J. Donovan		_		/air hammer to co	■			ID 11.7 EV		
Locatio	on (si	urvey coord):		Ground El			Bedrock Depth:	W.	ater Table Depth:	Borehole Diameter:		
Locatio	JII (5			308.3		14.5	6.5 ft	"`	itel labie bepair		5 inches	
Dept	th	Sample	Sample	Blows/	Rec.	dec.				USCS	PID/FID	
(ft)	_	interval	Number	6-in	(in.)	· 	Lithologic De	escripti	on -	Class.	(ppm)	
0				8								
				4		Brn silt/clay/trac	e med sand		Marie Park	1.0		
				13 14	10						0	
	\dashv			' '								
2	1			13								
				16					•			
	\dashv			25 24	18	Brn silt/clay/trac	e med sand				0	
	\dashv			24		-					·	
4				21			£ .					
				21				*	£ .			
	\dashv			22	20	Med brn sand/si	lt .				0	
	\dashv		÷	38								
6—				25						1		
				30		Lght bm silt/clay	//trace med sand/l	oits of	shale in nose		·	
		÷		60/1	22				•		0	
			·			Refusal						
8—												
ľ	_			ŀ								
											·	
,,—	_				 	<u> </u>				1		
10	-					i				l		
	_			l					•		1.00	
									•	7	* *	
.					 							
12												
					١.							
l									at at	1		
					1		٠				*,	
	C-c-	Penetration ular Soils	Resistance Cohesiv	o Soile	Tron	Proportions : 0 - 10%	Notes and Commer	te.				
Blow		Density	Blows/ft	Density	₹ .	: 0 - 10% : 10 - 20%	notes and Commer	ııs;				
<4		V. Loose	<2	V. Soft	Some	: 20 - 35%						
4 - 10 10 - 30)	Loose M. Dense	2 - 4 4 - 8	Soft M. Stiff		35 - 50% Water Content	-					
30 - 50		Dense	8 - 15	Stiff		D - Dry	1					
>50		V. Dense	15 - 30 >50	V. Stiff Hard		M - Moist W - Wet						

	····			<u> </u>		ANO Cabasa	-T-du ANOD			
	ANEP	TEK		Client		t No.: ANG-Schene DC - DAHA90-93-D-0	· ·	Page 1 o	ıf 1	
V	CORPORA			Samo	ler Type/Size:			Boring/Wel	l No.:	
V.S.	Boring L			p		Split Spoon - 140 lb.	Hammer	1 -	MW-18	
Orilling Co		<u>og</u>	Drilling Ri	n Mak		Opin Opeon The in-	Date/Time Started	Date/Time I		
	B.L. Myers Bro	os.		Ŋ	Mobile Drill Mode	el B-61	6/20/02 (1536)	6/20	/02 (1555)	
_ogged By	/ :		Drilling Me	ethod:			Screening Device (Type, make, model):			
	J. Donovan		HSA to re	fusal/	air hammer to c	ompletion	Pi	D 11.7 EV		
Location (survey coord):	*	Ground El 304.9	1	Total Depth: 17.5	Bedrock Depth: 8 ft	Water Table Depth:	Borehole Diameter: 8.25 inches		
Depth	Sample	Sample	Blows/	Rec.				USCS	PID/FID	
(ft)	interval	Number	6-in.	(in.)		Lithologic Desc	cription	Class.	(ppm)	
0			10 10 15 18	12	Brn silt/clay/trac	e med sand			0	
2			15 18 28 21	21	Brn silt/clay/trac	ce med sand			0	
4			20 21 26 28	20	Med brn sand/s	silt same same	Y .		0	
6			25 30 32 40 50/1	18	Lght brn silt/cla Refusal	y/trace med sand/bit	s of shale in nose		0	
8										
10										
12										
		Hesistance		1	Proportions					
	anular Soils	Cohesi Blows/ft	ve Soils Density	_	e: 0 - 10% : 10 - 20%	Notes and Comments			· :	
Blows/ft <4	V. Loose	<2 stocks/rt	V. Soft		e: 20 - 35%		,			
4 - 10	Loose	2 - 4	Soft	And:	35 - 50%	_] -				
10 - 30	M. Dense	4 - 8	M. Stiff	<u> </u>	Water Content	-	•			
30 - 50 >50	Dense V. Dense	8 - 15 15 - 30	Stiff V. Stiff		D - Dry M - Moist					
200	V. Delise	>50	Hard		. W - Wet					

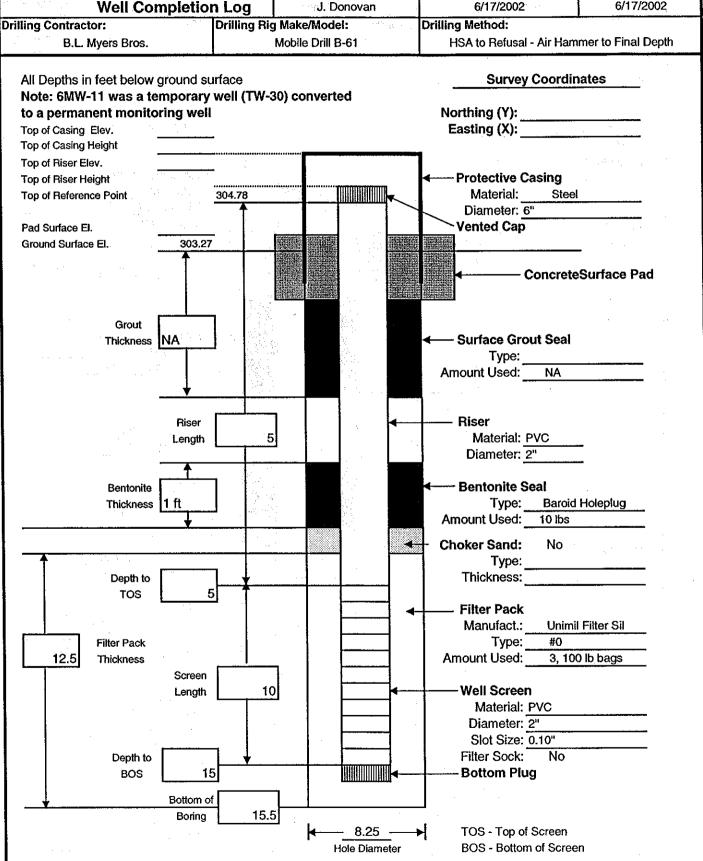
				Client	t/Project/Contract	No.: ANG-Schene	ctady ANGB			
	ANEP	TEK		-	-	C - DAHA90-93-D-0	=	Page 1 o	f.1	
	CORPORA	TION	İ	Samp	oler Type/Size:			Boring/Well	No.:	
100000	Boring L					Split Spoon - 140 lb	. Hammer		MW-19	
Drilling (Contractor:		Drilling Ri	g Mak	æ/Model:		Date/Time Started	Date/Time F	inished	
	B.L. Myers Br	os.			Mobile Drill Mode	B-61	6/20/02 (1435)		/02 (1520)	
Logged I	Зу:		Drilling Me	ethod:	•		Screening Device (Type, n	nake, model):	a sa g	
	J. Donovan	l	HSA to re	fusal/	air hammer to co	mpletion	PID	ID 11.7 EV		
Location	(survey coord):		Ground El 302.7		Total Depth: 17.5	Bedrock Depth: 8 ft	Water Table Depth:	Borehole Diameter: 8.25 inches		
Depth	Sample	Sample	Blows/	Rec.	17.0			USCS	PID/FID	
(ft)	Interval	Number	6-in.	(in.)	ye tit i e	Lithologic Des	cription	Class.	(ppm)	
0			12 9 11 15	15	Brn silt/clay/trace	e med sand			0	
ζ			15							
2 - - -			18 28 21	22	Brn silt/clay/trace	e med şand			0	
4 -			20 21 26 25	17	Med brn sand/sil	It :			··· 0	
6 _			26 37 36 41 55/1		Lght bm silt/clay	/trace med sand/bit	s of shale in nose		0	
8 -										
10 - - -									1	
12 -										
G Blows/ <4 4 - 10 10 - 30 30 - 50 >50	ranular Soils	Resistance	Density V. Soft Soft M. Stiff Stiff V. Stiff Hard	Little: Some And:	Proportions :: 0 - 10% 10 - 20% :: 20 - 35% 35 - 50% Water Content D - Dry M - Moist W - Wet	Notes and Comments				

	ANEP'		. •			et No.: ANG-Schene DC - DAHA90-93-D-		Page 1 c	of 1				
W.	CORPORA	TION		Samp	ler Type/Size:			Boring/We	II No.:				
	Boring L	.og			2 ft.	Split Spoon - 140 lb	. Hammer		6MW-20				
rilling Cor			Drilling R	g Mak	re/Model:		Date/Time Started	Date/Time					
	B.L. Myers Br	os.			Mobile Drill Mod	el B-61	6/20/02 (1435)	l	0/02 (1520)				
ogged By:			Drilling M				Screening Device (Type						
	J. Donovan				air hammer to c	ompletion	PID 11.7 EV						
ocation (s	survey coord):		Ground E	1	Total Depth:	Bedrock Depth:	Water Table Depth:	Borehole D					
Depth	Sample	Sample	302.9 Blows/	S Rec.	15.5	6.5 ft	5	USCS USCS	25 inches PID/FID				
(ft)	Interval	Number	6-in.	(in.)		Lithologic Des	cription	Class	(ppm)				
0			14			_							
`			14		Brn silt/clay/trac	e med sand							
			13	15					0				
			20										
2	 		17	 									
	1		16						1				
	1		26	19	19 Brn silt/clay/trace med sand 0								
	1		22										
4			19										
]		23				•						
			27	20	Med brn sand/s	ilt			0				
			22										
6	<u> </u>		28	 			·						
	1		35										
_]		50/1	18	Brn silt/clay/trac	ce med sand			. 0				
	-			1	Refusal	• •							
8	 		 	 				-					
	1		1	1					1 .				
]	1	1					1	l				
	-				1				1				
10		1	+	+					<u> </u>				
	1								1				
]												
	-{		1				•	-1					
12	╂╌──	1	1	1				_					
_	1						÷						
				l				1					
	-		1	1									
	- Donates	Bagiotanas		1	Proportions				<u> </u>				
Gran	Penetration nular Soils	Resistance Cohes	ive Soils	Trace	Proportions e: 0 - 10%	Notes and Comments	:						
Blows/ft	Density V. Loose	Blows/ft <2	Density V. Soft		: 10 - 20% e: 20 - 35%								
<4 4 - 10	Loose	2-4	Soft		35 - 50%								
10 - 30	M. Dense	4 - 8	M. Stiff		Water Content	-							
30 - 50 >50	Dense V. Dense	8 - 15 15 - 30	Stiff V. Stiff	1	D - Dry M - Moist								
		>50	Hard		W - Wet				•				

_		-	Tr.	Client	/Project/Contract	No.: ANG-Schene	ctady ANGB		20		
100	ANEPT	rrk			-	C - DAHA90-93-D-0	-	Page 1 o	_{f1} 1		
			-			O DATA TABLE OF D					
V A	CORPORA		1	Samp	ler Type/Size:			Boring/Well			
	Boring Lo	og			2 ft. 8	Split Spoon - 140 lb			MW-21		
Drilling Co			Drilling Ric	Mak	e/Model:		Date/Time Started	Date/Time F	inished		
1.	B.L. Myers Bro	s.		N	Mobile Drill Mode	I B-61	6/21/02 (0730)	0) 6/21/02 (0810)			
Logged By			Drilling Me	thod:			Screening Device (Type, make, model):				
	J. Donovan		-		air hammer to co	moletion	Pi	PID 11.7 EV			
Lagation (survey coord):		Ground El.			Bedrock Depth:	Water Table Depth:	N. C. C.			
rocanon (survey coord):		305.84		17.1		25 inches				
Depth	Sample	Sample		Rec.	17.1	7.5 ft		USCS	PID/FID		
(ft) :	Interval	Number	6-in.	(in.)		Class.	(ppm)				
	1			`		Lithologic Des					
° –	-i		15 15		Brn silt/clay/trace	mod cond	•				
_	-{		18	17	Dill Silvelay/liace	rineu Sanu		·	0		
_	-		20	-" l							
_	-		20								
2	-{ -		14	—							
	-j		19						1		
	1 1		26	18	Brn silt/clay/trace	e med sand			0		
_	1		25				,	1			
	1										
4	1		20								
_	1		22					1 1	·		
_	1		28	22	Med brn sand/si	lt :			0		
	1 1		22				•				
-	1							·			
6		•	27								
			38								
			41	20		e med sand/bits of	shale in nose		0		
] !		60/1		Refusal						
8	_										
_			1								
l _	_]				l						
_											
ļ.,			 	-	<u> </u>				ļ		
10			1	1	ł			ł			
-	- •			l	l						
J	┨				1			1			
-	-				1						
12	1		 	 	i 						
l'" -	-1			l							
-	┪										
-	1			1							
-								1			
	Penetration	Resistance		₩	Proportions	1	Service Control of th		1		
Gra	anular Soils	Cohesiv	re Soils	_	: 0 - 10%	Notes and Comments	s:				
Blows/ft	1	Blows/ft	Density		10 - 20%						
<4	V. Loose	<2 2 - 4	V. Soft Soft		s: 20 - 35% 35 - 50%	1					
4 - 10 10 - 30	Loose M. Dense	4 - 8	M. Stiff	Ailu.	Water Content	1					
30 - 50	Dense	8 - 15	Stiff		D - Dry	1			•		
>50	V. Dense	15 - 30	V. Stiff						•		
1		>50	Hard	1	W - Wet						

APPENDIX D SDC MONITORING WELL CONSTRUCTION DIAGRAMS

CORPORATION **Well Completion Log**


Client/Project/Contract No.: DAHA90-93-D-0003 Well/Boring No.: Site 6 SDC ANG-Schenectady ANGB

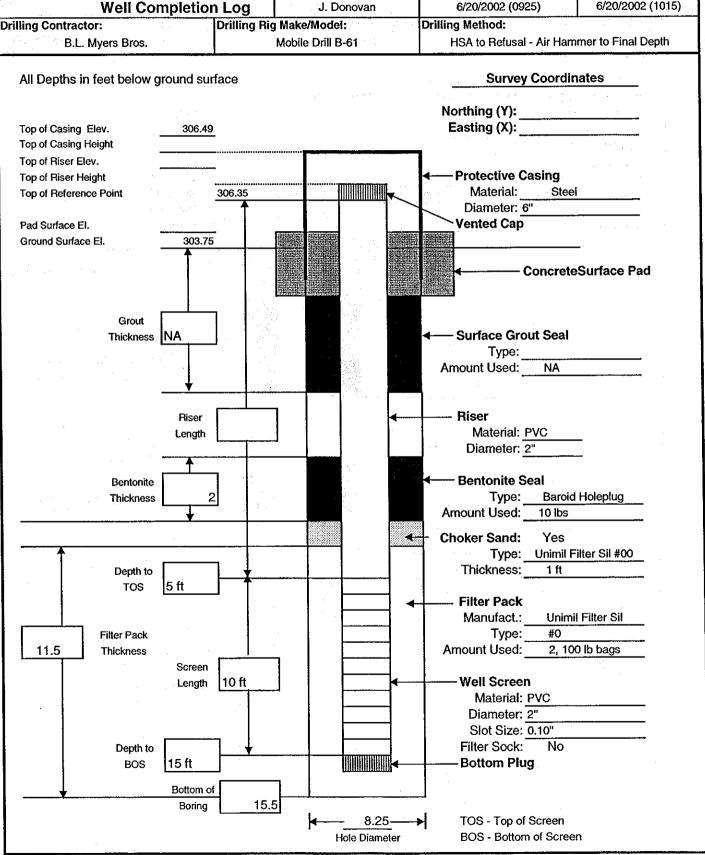
6MW-11 (TW-30)

Logged By:

Date/Time Started 6/17/2002

Date/Time Finished 6/17/2002

CORPORATION **Well Completion Log**


Client/Project/Contract No.: DAHA90-93-D-0003 Site 6 SDC ANG-Schenectady ANGB

Well/Boring No.: 6MW-12

Logged By:

Date/Time Started 6/20/2002 (0925)

Date/Time Finished 6/20/2002 (1015)

CORPORATION Well Completion Log

Client/Project/Contract No.:

DAHA90-93-D-0003

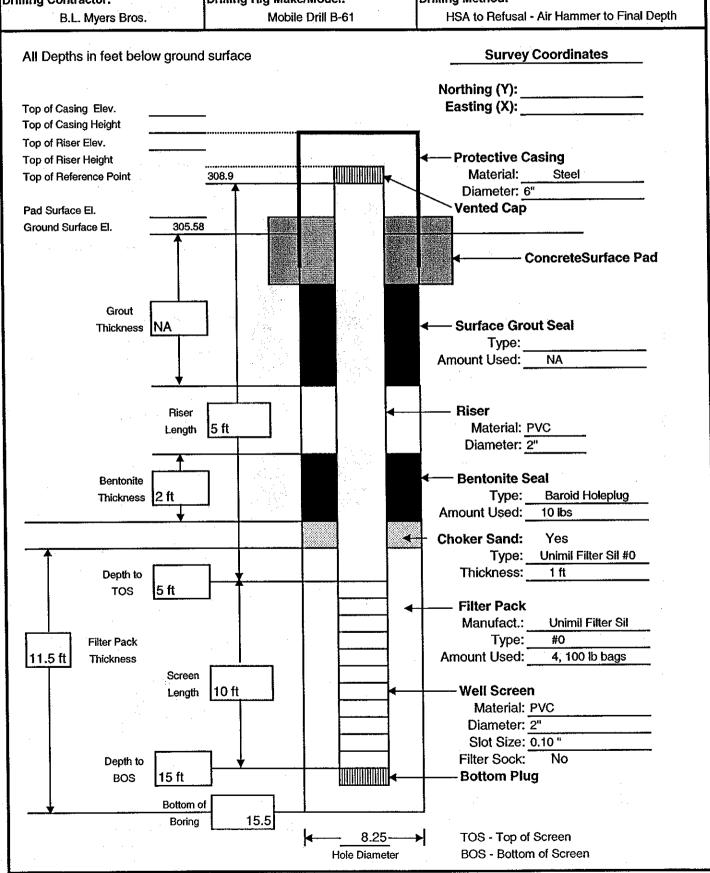
Well/Boring No.:

Site 6 SDC ANG-Schenectady ANGB

6MW-13

J. Donovan

Date/Time Started 6/20/2002 (1345)


Date/Time Finished 6/20/2002 (1430)

Drilling Contractor:

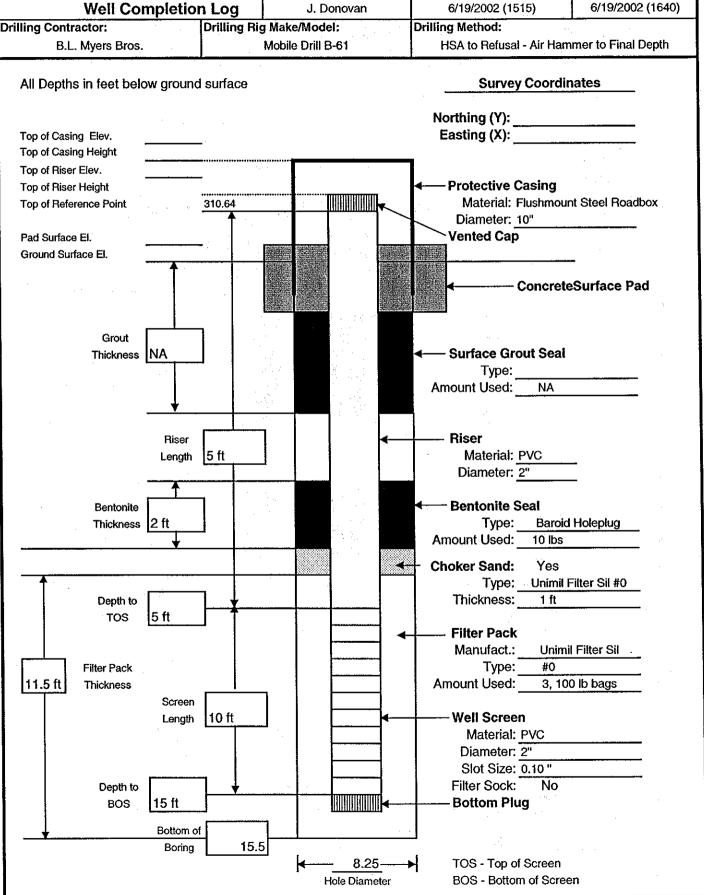
Drilling Rig Make/Model:

Logged By:

Drilling Method:

CORPORATION

Client/Project/Contract No.: DAHA90-93-D-0003 Site 6 SDC ANG-Schenectady ANGB


Logged By:

Date/Time Started

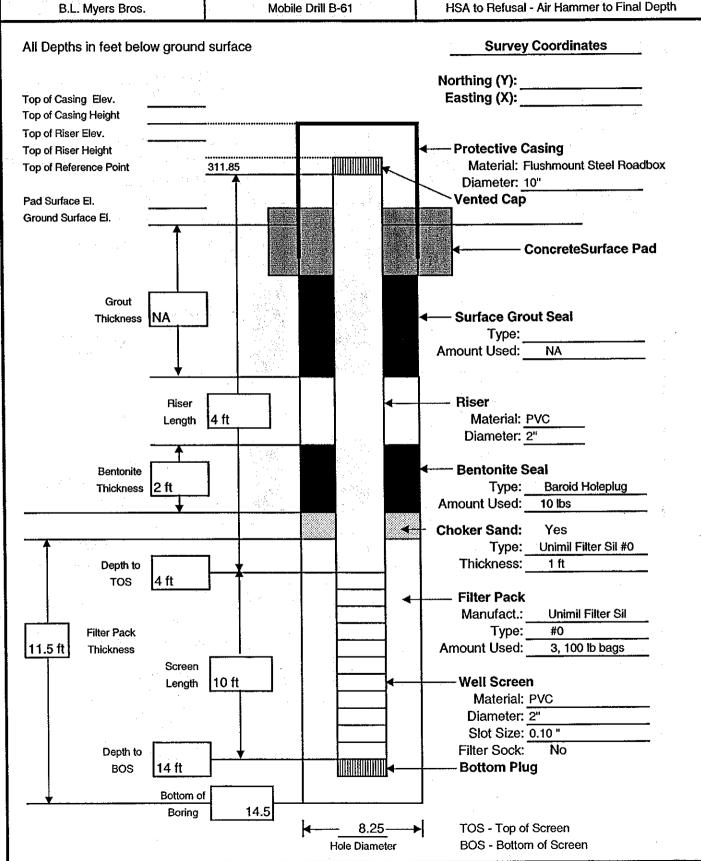
Date/Time Finished

6MW-14

Well/Boring No.:

CORPORATION **Well Completion Log**

DAHA90-93-D-0003 Client/Project/Contract No.: Site 6 SDC ANG-Schenectady ANGB


Well/Boring No.: 6MW-15

Logged By:

Date/Time Started 6/19/2002 (1237)

Date/Time Finished 6/19/2002 (1320)

J. Donovan Drilling Rig Make/Model: Drilling Method: Drilling Contractor: HSA to Refusal - Air Hammer to Final Depth B.L. Myers Bros. Mobile Drill B-61

CORPORATION

Client/Project/Contract No.: DAHA90-93-D-0003 Site 6 SDC ANG-Schenectady ANGB

Well/Boring No.: 6MW-16

Logged By:

J. Donovan

Date/Time Started

TOS - Top of Screen

BOS - Bottom of Screen

Date/Time Finished

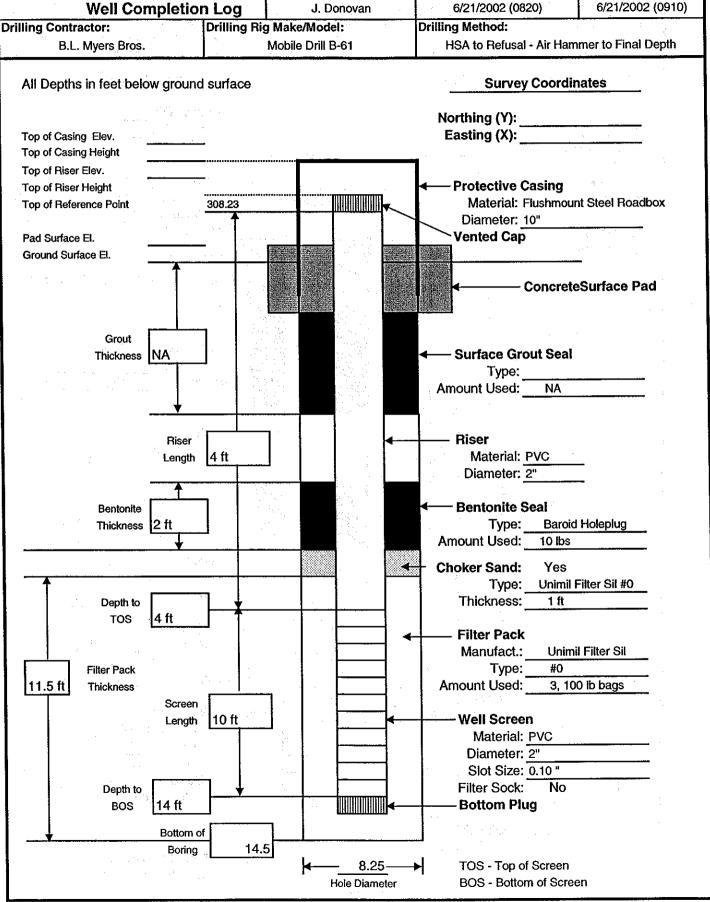
Well Completion Log 6/21/2002 (1000) 6/21/2002 (1045) **Drilling Contractor:** Drilling Rig Make/Model: Drilling Method: HSA to Refusal - Air Hammer to Final Depth B.L. Myers Bros. Mobile Drill B-61 All Depths in feet below ground surface **Survey Coordinates** Northing (Y): Easting (X): Top of Casing Elev. Top of Casing Height Top of Riser Elev. Top of Riser Height Protective Casing Material: Flushmount Steel Roadbox Top of Reference Point 310.99 Diameter: 10" Pad Surface El. Vented Cap Ground Surface El. ConcreteSurface Pad Grout Surface Grout Seal Thickness NA Type: Amount Used: Riser Riser 5 ft Material: PVC Length Diameter: 2" Bentonite **Bentonite Seal** Thickness 2 ft Type: **Baroid Holeplug** Amount Used: 10 lbs **Choker Sand:** Yes Type: Unimil Filter Sil #0 Thickness: 1ft Depth to TOS 5 ft **Filter Pack** Manufact.: Unimil Filter Sil Type: Filter Pack 12.5 ft Amount Used: 4, 100 lb bags Thickness Screen Well Screen 110 ft Length Material: PVC Diameter: 2" Slot Size: 0.10 " Filter Sock: Depth to BOS 15 ft **Bottom Plug**

8.25

Hole Diameter

Bottom of

15.5


CORPORATION Well Completion Log

Client/Project/Contract No.: DAHA90-93-D-0003
Site 6 SDC ANG-Schenectady ANGB

Well/Boring No.: 6MW-17

Logged By:

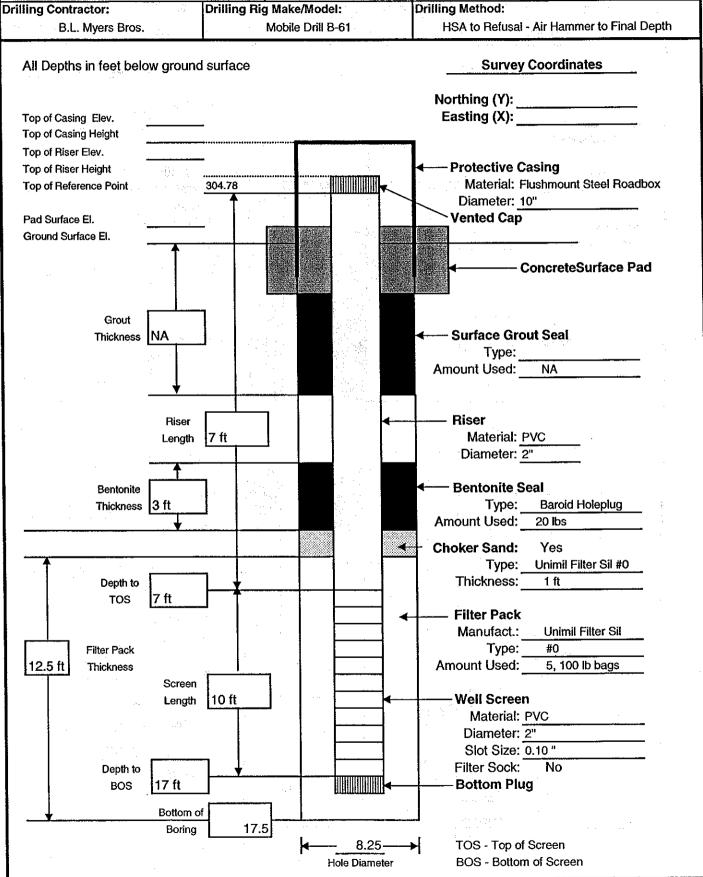
Date/Time Started 6/21/2002 (0820) Date/Time Finished

CORPORATION

Well Completion Log

Client/Project/Contract No.: DAHA90-93-D-0003
Site 6 SDC ANG-Schenectady ANGB

Logged By:


J. Donovan

Date/Time Started 6/20/2002 (1536)

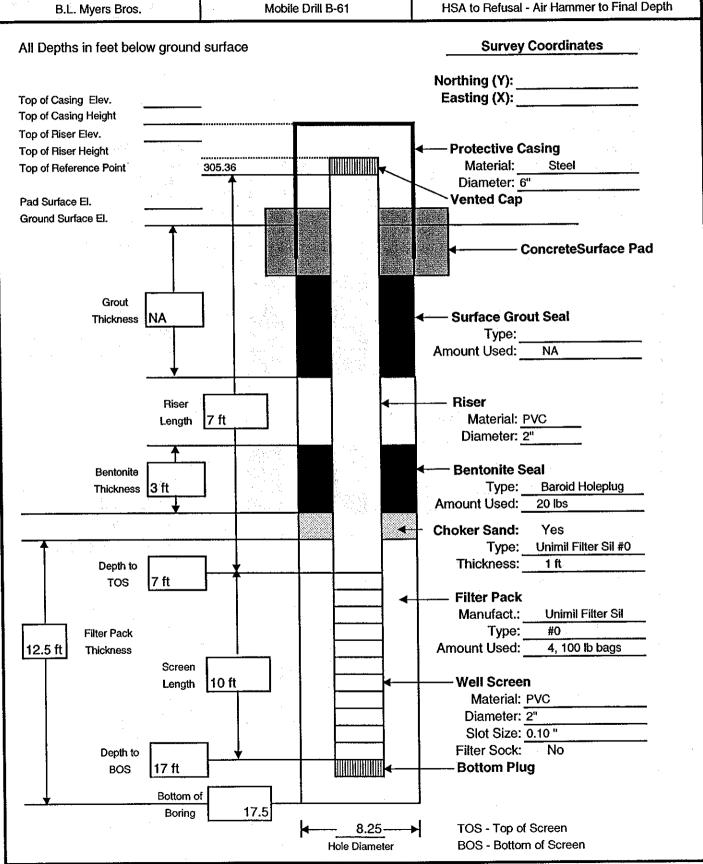
6MW-18

Date/Time Finished
6/20/2002 (1555)

Well/Boring No.:

CORPORATION **Well Completion Log**

Client/Project/Contract No.: Site 6 SDC ANG-Schenectady ANGB Well/Boring No.: 6MW-19


Logged By:

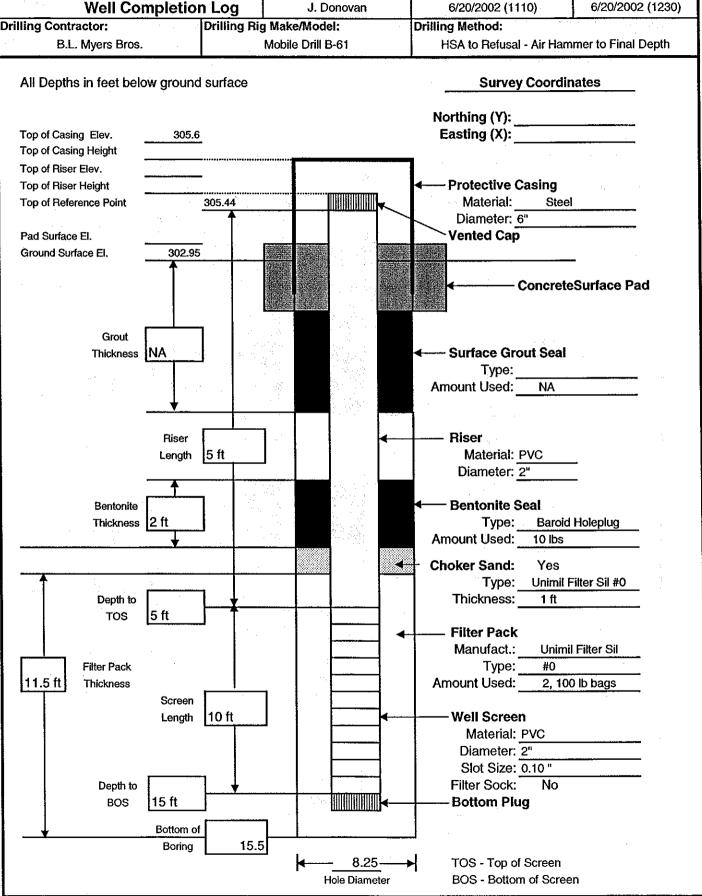
Date/Time Started 6/20/2002 (1435) J. Donovan

DAHA90-93-D-0003

Date/Time Finished 6/20/2002 (1520)

Drilling Rig Make/Model: Drilling Method: Drilling Contractor: Mobile Drill B-61 B.L. Myers Bros.

CORPORATION Well Completion Log


Client/Project/Contract No.: DAHA90-93-D-0003 Site 6 SDC ANG-Schenectady ANGB

Well/Boring No.: 6MW-20

Logged By:

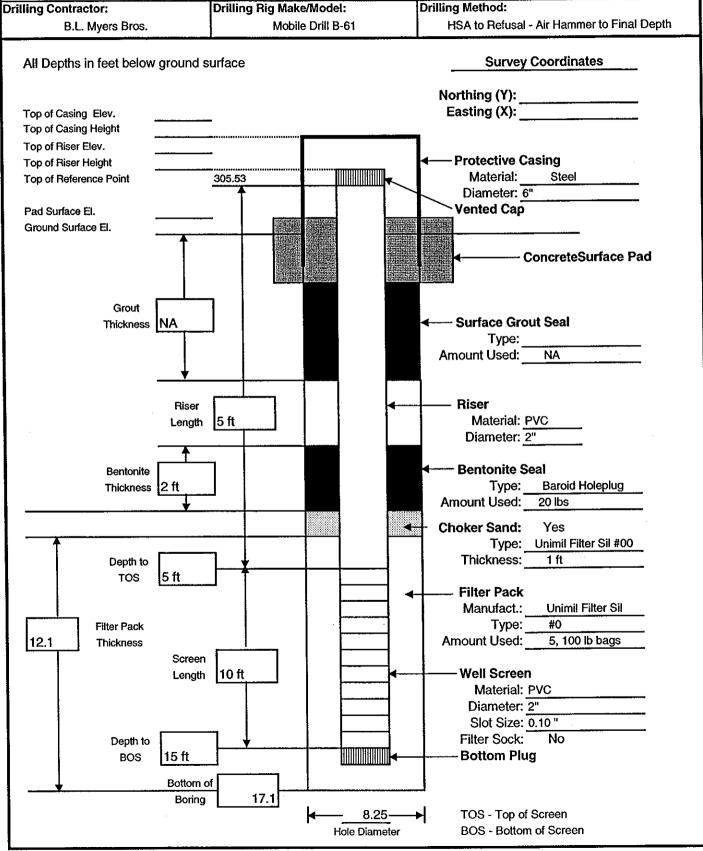
Date/Time Started 6/20/2002 (1110)

Date/Time Finished 6/20/2002 (1230)

CORPORATION Well Completion Log

Client/Project/Contract No.: Site 6 SDC ANG-Schenectady ANGB

DAHA90-93-D-0003


Well/Boring No.: 6MW-21

Logged By:

Date/Time Started 6/21/2002 (0730) J. Donovan

Date/Time Finished 6/21/2002 (0810)

Drilling Rig Make/Model:

