GROUNDWATER MONITORING PROGRAM 2017 QUARTER FOUR STATUS REPORT FOR

REMEDIAL ACTION AT THE DEFENSE NATIONAL STOCKPILE CENTER SCOTIA DEPOT GLENVILLE, NEW YORK

Prepared For:

U.S. Army Corps of Engineers

Prepared By:

AECOM Technical Services
May 2018

GROUNDWATER MONITORING PROGRAM 2017 QUARTER FOUR STATUS REPORT

FOR

REMEDIAL ACTION AT THE DEFENSE NATIONAL STOCKPILE CENTER SCOTIA DEPOT GLENVILLE, NEW YORK

Prepared For:

U.S. Army Corp of Engineers

Prepared By:

AECOM

Contract No. W912DY-09-D-0059

Task Order No. 0010

May 2018

Table of Contents

1	INTI	RODUCTION	1-1
	1.1	Site Description	1-1
	1.2	Site History	1-1
		1.2.1 Summary of Previous Investigations	
		1.2.2 Pre-Design Groundwater Investigation – 2013	
		1.2.3 Baseline Groundwater Investigation	
	1.3	PRB Design Summary	
	1.4	Remedial Action Implementation	1-4
2	QUA	RTERLY GROUNDWATER MONITORING PROGRAM	2-5
	2.1	Sample Collection Methods	2-6
3	RES	ULTS	3-1
	3.1	Hydrogeologic Results	
	3.2	Groundwater MNA Parameter Results	
	3.3	Groundwater VOC results	
4	SUM	MARY AND CONCLUSIONS	 4- 1
5	REF	ERENCES	 5- 1
List o	f Figu	ıres	
Figure	1-1	Site Location Map	
Figure	1-2	Site Layout Map	
Figure	2-1A	Compliance Wells and PRB Profile Section A-A'- December 2017	
Figure	2-1B	Groundwater Profile Section B-B'- December 2017	
Figure	3-1	Potentiometric Site Map – December 2017	
Figure	3-2	Groundwater Results – Quarterly Monitoring Locations – December 2017	

List of Tables

Table 2-1	Location of Monitoring Wells
Table 2-2	Monitoring Well Sampling Schedule and Guidelines
Table 3-1	Groundwater Elevation Data – December 2017
Table 3-2	Compliance Well Pairs Groundwater Sample Results - December 2017

List of Appendices

Appendix A	Groundwater Sample Collection Field Forms
Appendix B	Field Calibration Forms
Appendix C	Hydraulic Gradient and Velocity Calculations
Appendix D	Full Laboratory Analytical Results
Appendix E	AECOM Data Usability Summary Report (DUSR)

Appendix F Groundwater Concentration Trend Plots

1 INTRODUCTION

This report has been prepared by AECOM on behalf of the United States Army Corps of Engineers (USACE) and the United States General Services Administration (GSA) to document the groundwater monitoring activities performed at the Former Scotia Navy Depot (FSND) (Site) for the fourth quarter of 2017 (December 11, 2017, through December 14, 2017). This report presents the results of the fifth groundwater sampling event after the completion of the construction of the zero valent iron (ZVI) permeable reactive barrier (PRB) which was installed across the volatile organic compound (VOC) plume to remediate groundwater at the Site. This groundwater sampling event was a Site-wide sampling event which included collection of groundwater samples from 12 monitoring wells. Installation of the PRB was completed in from February 2016 to December 2016. The Site is adjacent to the north side of New York State (NYS) Route 5 (Amsterdam Road) in the Town of Glenville, Schenectady County, New York. A Site location map is provided in Figure 1-1.

1.1 Site Description

The Site and adjacent properties are zoned for commercial use. Residential properties are located to the south between Amsterdam Road and the Mohawk River. The Mohawk River is located approximately 1,500 feet west-southwest of the Site and represents the major drainage feature in Schenectady County. The water table beneath the Site is approximately 65 feet below ground surface (bgs), and groundwater beneath the Site flows from northeast to southwest toward the Mohawk River.

The Site overlies a United States Environmental Protection Agency (US EPA) designated Sole Source Aquifer referred to as the Schenectady or Great Flats Aquifer system, which is adjacent to and extends beneath the Mohawk River over a distance of approximately 12 miles in Schenectady County. Relative to a series of four aquifer protection zones established to protect five municipal water supplies relying on the aquifer system, the Site lies in Zone III or the General Aquifer Recharge Area. The Site is located approximately 1,500 feet southwest of the Village of Scotia well field and approximately 1.25 miles north of the Town of Rotterdam and City of Schenectady well fields.

Portions of the original Scotia Naval Depot have been subdivided and sold since 1972 by the United States Government. The Site now consists of several large privately held parcels in addition to a portion of land still administered by the GSA. The private parcels contain a variety of industrial tenants; while the GSA leases its remaining portion to the Defense Logistics Agency/Defense National Stockpile Center and the Navy.

1.2 Site History

The Scotia Depot was built in 1942 and 1943 and was commissioned as a United States Navy facility on March 30, 1943. It served as a storage and supply depot for naval forces along the Atlantic coast and Europe, and as a storage and distribution point for National Stockpile materials. On January 1, 1960, the Navy turned the facility over to the GSA. During the period between early 1966 and approximately 1973, the USACE/Army Material Command (AMC) leased buildings from the Navy for the fabrication and storage of vehicles as well as other

military equipment. Additionally, between 1967 and 1969, the GSA and the Navy leased to the United States Army/Defense Supply Agency, Buildings 202 and 203. The agreement indicates these buildings were used for the preservation and rail loading of trucks; and storage of trucks and vehicles.

1.2.1 Summary of Previous Investigations

In the late 1980s, trichloroethene (TCE) was detected at low-level concentrations of less than 1 microgram per liter (µg/L) in the Town of Rotterdam and City of Schenectady well fields. In an effort to determine the potential source(s) of the TCE, the New York State Department of Health (NYSDOH) performed sampling of private water supply wells in the area during 1991. The private water supply sampling included residences located on NYS Route 5 in the Town of Glenville hydraulically downgradient of the Defense National Stockpile Center Scotia Depot Site. VOCs, including TCE, 1,1,1-trichloroethane (1,1,1-TCA), and tetrachloroethene (PCE), were detected in groundwater collected in some of these residential wells. The sampling results were consistent with the known groundwater contamination concentrations at the Defense National Stockpile Center Scotia Depot Site, including TCE which was detected in the NYS Route 5 residential well water samples at concentrations up to 320 µg/L. Following a recommendation by the NYSDOH to connect to public water, the homes on NYS Route 5 were subsequently connected to public water provided by the Town of Glenville. Although the drinking water standard was never exceeded in the City of Schenectady and the Town of Rotterdam municipal water supply wells, increased groundwater quality monitoring was initiated following the identification of the contamination.

Subsequent to the NYSDOH residential groundwater sampling, six subsurface investigations were completed to identify the possible source of TCE in the residential wells and to delineate the extent of the TCE groundwater plume. The investigations were completed between 1995 and 2007 and focused on the assemblage of properties comprising the former 337-acre Defense National Stockpile Center Scotia Depot. The New York State Department of Environmental Conservation (NYSDEC) 2007 Expanded Site Investigation (ESI) (NYSDEC, 2007) provides details on each of these investigations. Investigation data indicated that TCE disposal may have also occurred in the northeast corner of the 401 sub-block and the area near the north corner of the 403 sub-block.

Based on these investigations, a Record of Decision (ROD) specifying a groundwater remedy was approved by the NYSDEC in March 2010 (NYSDEC, 2010). The ROD specified a remedial action for the groundwater plume which included treatment of the plume through the installation of a zero valent iron (ZVI) PRB. During this time investigations were also conducted in relation to a carbon tetrachloride plume that was identified as a source for potential soil vapor intrusion. In addition to the groundwater remedy, the ROD also identified the need for soil vapor intrusion mitigation at the building 201 sub-block. Details on the installation and monitoring of the SVI portion of the remedy are provided in the Final Engineering Report (FER) (AECOM, 2017a). A Site Layout Map is provided in Figure 1-2.

1.2.2 Pre-Design Groundwater Investigation – 2013

A pre-design investigation (PDI) was completed by Stone Environmental in 2013 to verify the location and dimensions of the TCE plume to better estimate the appropriate location and depth of the PRB. The PDI was completed as a component of the ROD selected remedy to aid in the PRB design. The pre-design investigation included:

- Baseline groundwater sampling of 24 existing onsite monitoring wells
- Synoptic measurement of groundwater elevations in 35 on-site and off-site monitoring wells
- Vertical groundwater profile of VOC plume at 16 locations (WP-01 to WP-16)
- Installation and development of four on-site monitoring wells (MW-24 through MW-27)
- Hydraulic conductivity measurements
- Geotechnical soil sampling (laboratory sieve, bulk density, and effective porosity analyses)
- ZVI treatability study (bench-scale column test) using Site soil and groundwater

The results of the PDI indicated that the plume location had shifted to the south/southeast from the estimated plume delineation shown in the 2010 ROD (see Figure 3 from the ROD and Figures 6 and 10 from Final PDI Report) (Stone, 2013). The PDI also delineated the vertical and horizontal limits of the plume across a transect of groundwater profile locations, which had not been well defined in previous investigations. The results of the ZVI treatability study indicated that ZVI would be effective in remediating the TCE plume at the detected maximum concentrations and Site-specific geochemical conditions. The PDI evaluated a preliminary PRB design approximately 850-feet long centered on the highest concentration axis of the TCE plume and extending to estimated lateral limits of the plume based on the results of the vertical groundwater profile locations. Subsequent evaluation of the data to maximize effectiveness and efficiency of the remedial design suggested a 700-feet long deep section centered on the TCE plume with a shallower 250-feet long section to treat lower TCE concentrations would be effective at mitigating the groundwater contamination.

1.2.3 Baseline Groundwater Investigation

As part of the remedial design investigation work plan (RDIWP) (AECOM, 2015) various field activities were conducted during the fall of 2015 in order to gather data and information needed to complete the final PRB design. The main components of the remedial design investigation (RDI) field activities that related to the PRB design included:

• Installation and development of four compliance well pairs (MW-28 to MW-35) and one additional monitoring well (MW-36) to confirm upgradient edge of groundwater plume

- Collection of 33 baseline groundwater samples
- Performance of a confirmatory ZVI bench scale test
- Performance of aquifer tests including slug testing and hydraulic pulse interference testing (HPIT)

Detailed methods and results of these field activities were presented in the Remedial Action Work Plan (PRB-RAWP) (AECOM, 2016) and the 2015 RDI Work Summary Memo presented in Appendix A of the PRB-RAWP.

1.3 PRB Design Summary

The remedial investigation activities at the Site indicated that variable hydraulic conductivity and hydraulic gradient, and therefore groundwater velocity, conditions may exist at the Site. Therefore, various design cases were analyzed within the range of the measured values to determine the optimum design for the PRB. Three design cases in particular were outlined in the (PRB-RAWP) (AECOM, 2016). These design cases were based on average values from the slug test data and HPIT data from the 2015 RDI activities and historic data from the Stone PDI (Stone, 2013). The three design cases used an average value of 0.004 ft/ft for the hydraulic gradient and varied the hydraulic conductivity from 15.66 ft/day to 193.8 ft/day. This variability of hydraulic conductivity results in a range of groundwater velocity at the Site from 0.128 ft/day to 2.83 ft/day. GeoSierra Environmental, Inc. (GeoSierra), the PRB installation subcontractor, performed a sensitivity analysis based on these design cases and the design of the PRB was chosen based on design scenarios that reflected a conservative approach. A full description of the PRB design including details of each design case is presented in the PRB-RAWP (AECOM, 2016).

1.4 Remedial Action Implementation

In accordance with the ROD for the remedial action at the FSND, a ZVI PRB was installed in order to mitigate the impacted groundwater plume at the Site. AECOM, and its subcontractor GeoSierra, performed the installation of the PRB over the course of 10 months in 2016. The design and installation procedures of the PRB are outlined in the PRB-RAWP (AECOM, 2016). The main components of PRB installation were as follows:

- Installation of 77 injection wells
- Installation of 31 Resistivity strings
- Placement of ZVI into the formation via injection wells
- Post PRB installation HPIT testing

The installation of the ZVI PRB was successfully completed in November of 2016. Details of the PRB construction activities of the PRB are provided in the FER (AECOM, 2017a) for the Site.

2 QUARTERLY GROUNDWATER MONITORING PROGRAM

The eight compliance monitoring wells (MW-28 through MW-35) were installed in pairs so that groundwater quality could be monitored directly upgradient and directly downgradient to of the PRB. The four monitoring wells pairs are installed 20 feet apart on opposite sides of the wall, one being upgradient and one being downgradient, with corresponding screen depths. Figure 2-1 provides a profile well of the compliance monitoring wells showing the screened interval in relation to the PRB. Results from the groundwater monitoring program will be used to evaluate the effectiveness of the remedy at decreasing chlorinated VOC concentrations in groundwater and preventing the migration of contaminated groundwater off-site. The compliance well pairs, in addition to MW-24 (downgradient), MW-26 (downgradient), MW-15 (upgradient) and MW-16 (outside of plume), will be sampled quarterly for the first two years (eight quarters) then annually thereafter. The first quarterly sampling event was conducted in December 2016. Monitoring well locations are shown on Figure 1-2 and are described in Table 2-1 below.

Table 2-1: Location of Monitoring Wells

Monitoring Well ID	Location in Relation to PRB
MW-15	Upgradient
MW-16	Outside of Plume
MW-24	Downgradient
MW-26	Downgradient
MW-28	Downgradient
MW-29	Upgradient
MW-30	Downgradient
MW-31	Upgradient
MW-32	Downgradient
MW-33	Upgradient
MW-34	Downgradient
MW-35	Upgradient

Table 2-2 provides the monitoring well sample schedule and analytical information for the groundwater monitoring program. The groundwater monitoring program will be carried out in accordance with the schedule and sampling protocol outlined in the Site Management Plan (SMP) (AECOM, 2017b).

2.1 Sample Collection Methods

Prior to sample collection, depth to water measurements were collected with an electronic water level meter from all accessible wells on Site. Depth to water measurements were taken to the hundredth of a foot from a designated measuring point on the well casing.

The groundwater sampling event was performed in accordance with EPA's low stress, often referred to as low-flow, sampling technique (Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures, EPA/540/S-95/504) (EPA, 2010) and is discussed below.

A bladder pump was used to purge the monitoring wells with the pump intake set at the midpoint of the saturated screened interval. During purging, the pump was operated at a flow rate of approximately 100 to 500 milliliters per minute (mL/min) and water levels were monitored to ensure that the pumping rate caused minimal/no drawdown. Dedicated tubing for each monitoring well was used for groundwater sample collection. Field parameters were recorded on the Well Sampling Forms every five minutes during purging, including:

- Purge rate (mL/min)
- Depth to water (0.01 ft)
- Temperature (degrees Celsius)
- pH
- Specific conductance (millisiemens per centimeter [ms/cm])
- Dissolved Oxygen (DO) (milligrams per liter [mg/L])
- Oxidation-Reduction Potential (ORP) (millivolts [mV])
- Turbidity (NTU)

A flow-through cell was used to obtain temperature, pH, specific conductance, DO, and ORP. Turbidity will be measured using a separate instrument. Purging was considered complete when the indicator parameters have stabilized over three consecutive readings. Stabilization parameters include the following:

- Drawdown: less than 0.3 ft drawdown during purging
- pH: \pm 0.1 standard unit
- Specific Conductivity: ± 3%
- DO: $\pm 10 \%$ (mg/L) for values greater than 0.5 mg/L or 3 readings < 0.5 mg/L
- ORP: ±10 mV

• Turbidity: < 5 NTU or $\pm 10\%$ for readings > 5 NTU

Groundwater sample collection field forms with the field parameter readings for each monitoring well are included as Appendix A. Sampling instruments were calibrated daily prior to starting sampling activities, or as needed throughout the day. A log of the field equipment calibration records is provided in Appendix B.

Prior to sample collection, the flow-through cell was disconnected from the dedicated sample tubing and the sample was collected directly from the tubing into the laboratory supplied sample containers. The target flow rate during sample collection was approximately 100 mL/min and sample collection was completed within a single bladder pulse for VOC analysis. Once sampling was complete, the purge water was placed in a 55-gallon drum and will be disposed of offsite at the conclusion of the sampling event. More detailed procedures for sample collection and handling and waste handling, are included in Appendix H of the SMP (AECOM, 2017b). Appendix G of the SMP includes the analytical QAPP for the site management activities. Appendix I of the SMP includes the HASP for the site management activities.

Groundwater samples were packaged on ice and delivered to ALS Laboratory daily via courier during the sample collection timeframe. Standard chain of custody procedures were used for sample transport. In total, 12 groundwater samples were collected and analyzed for targeted VOCs (EPA method 8260C) and monitored natural attenuation (MNA) parameters including TOC (SM 5310B), alkalinity (SM 2320B), chloride, nitrate, sulfate (EPA Method 300.0), and dissolved gases (methane, ethane, and ethene; Method RSK 175).

3 RESULTS

3.1 Hydrogeologic Results

The groundwater elevations for the Site were determined based on the initial depth to groundwater measurements that were taken prior to sample collection. Table 3-1 shows the groundwater elevation data for the December 2017 sampling event and compares it to the December 2015 baseline sampling event and past sampling event levels. A potentiometric Site map indicating the overburden, groundwater elevation and direction of groundwater flow during the December 2017 sampling event is included as Figure 3-1. Observed general groundwater flow direction in December 2017 was from east to west, which is similar to past sampling events. Between the compliance well pair MW-28 and MW-29 there appears to be a very slight reverse or flat gradient during some sampling events including the December 2017 event.

Based on observed trends during the past sampling events it appears that the groundwater elevation at the Site is subject to seasonal variability. The December 2017 sampling event exhibits lower groundwater elevations than the September 2017 sampling event but similar to the December 2016 sampling event, indicating that there is a potential seasonal groundwater level trend at the Site. Groundwater elevation data for the December 2017 event indicate that groundwater levels are currently lower than the top of the PRB wall at the north most monitoring well pairs along the PRB. Meanwhile, the groundwater elevation levels are slightly above the top of the PRB for the south most monitoring well pairs. The current potentiometric surface in relation to the PRB is shown in profile on Figure 2-1A and in relation to along the axis of the estimate plume in Figure 2-1B.

The hydraulic gradient is change in hydraulic head, or water level, per unit distance. The average hydraulic gradient at the Site in the vicinity of the PRB, estimated based on the December 2017 hydrogeologic conditions, was determined to be 0.0039 ft/ft. The December 2017 hydraulic gradient is consistent with the past three quarterly sampling events where the hydraulic gradient was 0.0039ft/ft in March 2017, 0.0037 ft/ft in June 2017, and 0.0028 ft/ft in September 2017. The groundwater seepage velocity is the rate of solute transport through the open pore space in the soil. Based on the December 2017 hydraulic gradient of 0.0039 ft/ft and the range of hydraulic conductivities evaluated for the PRB design (15.66 ft/day to 193.8 ft/day) groundwater seepage velocity at the Site could vary between approximately 0.16 ft/day and 1.94 ft/day. The range of estimated groundwater seepage velocities based on the December 2017 Site conditions (0.16 ft/day-1.94 ft/day) is comparable to the range of estimated groundwater velocities used for the PRB design (0.128 ft/day-2.83 ft/day). Calculations for hydraulic gradient and velocity estimates are included in Appendix C.

The drum of purge water from the December 2017 sampling event was removed from the Site on March 28, 2018 and its contents properly disposed of by the environmental waste services contractor.

3.2 Groundwater MNA Parameter Results

Results of groundwater MNA parameters obtained from the baseline sampling event through the December 2017 quarterly sampling event for the PRB monitoring compliance wells are presented in Table 3-2. MNA parameters were compared between compliance well pairs. In general conductivity values are significantly higher throughout all the compliance well pairs when compared to past sampling events.

During previous quarterly sampling events no significant changes have been observed in DO and ORP concentrations and measurements were variable with some well pairs showing an increase and some pairs showing a decrease. DO measurements during the December 2017 generally had an increase from the previous sampling event, but decreased between each upgradient and downgradient individual monitoring well pair. ORP levels decreased significantly from upgradient to downgradient at well pairs MW-33/32 and MW-35/34. These conditions are expected downgradient of the PRB indicating reducing conditions as the groundwater passes through the PRB. Furthermore, low DO and ORP values downgradient indicate that anaerobic conditions exist which promote anaerobic biodegradation. However it should be noted that there was some increase in DO noted during this sampling event suggesting that anaerobic conditions may not be sustained. The December 2017 groundwater results showed a general increase in methane, ethane, and ethene in most downgradient compliance monitoring wells. This is most pronounced in the well pairs toward the center of the wall (MW-30/MW-31 and MW-32/MW-33). For methane, there was a particular increase in downgradient monitoring wells MW-30, MW-32 and MW-34. The largest increase in methane, ethane, and ethene this quarter was again seen in compliance monitoring well pairs in the middle of the PRB. Initially the methane, ethane, and ethene concentrations increased from the breakdown of the carrier fluid (guar). continued increase in ethane and ethane in downgradient well pairs is indicative of the βelimination abiotic reaction of CVOCs with the PRB. These compounds, along with acetylene, are final products from the interaction of the ZVI and COVCs. To date nitrate and sulfate levels have been variable since the 2015 baseline sampling event. In the December 2017 sampling event, Nitrate levels were variable in compliance well pairs while all sulfate levels decreased from upgradient to downgradient compliance well pairs. Nitrate and sulfate concentrations are expected to decrease from upgradient to downgradient wells as this would further indicate that bioactivity is occurring.

Overall the MNA data does not show consistency in the well pairs throughout the expanse of the PRB. They will be monitored and expanded as needed to verify the effectiveness of the PRB. The well pair MW-28/MW-29 is screened in the more transmissive upper sand and gravel and does not appear to show the same MNA affects as the other well pairs.

3.3 Groundwater VOC results

The VOC results from the December 2017 quarterly sampling event are presented in Table 3-2. This groundwater sampling included collection of 12 groundwater samples. Figure 3-2 provides a summary of the groundwater VOC results for the monitoring well compliance pairs that exceed the NYSDEC Ambient Water Quality Standards (AWQS) and Guidance Values (GV) found in

the Technical and Operational Guidance Series (TOGS) 1.1.1 (NYSDEC, 1998) and compares the December 2017 sampling event results to the historic sampling event results.

Full analytical reports are included in Appendix D.

The laboratory data was validated by an AECOM chemist and a full data usability summary report (DUSR) was prepared. The DUSR, included in Appendix E, indicated that all data points were usable and no data points were rejected.

A narrative summary of the results is presented below:

- Trichloroethene (TCE), the primary constituent of concern, was detected in 10 of the 12 wells sampled, nine of which were above the AWQS of 5 μg/L. Wells with detectable levels of TCE were MW-15, MW-24, MW-28, MW-29, MW-30, MW-31, MW-32, MW-33, MW-34, and MW-35. The concentration of TCE found in MW-24 was below the AWQS. These results are consistent with September 2017 results.
- No TCE was detected in samples from monitoring wells MW-16 and MW-26. Monitoring Well MW-16 is a plume bounding well located outside of the estimated area of the chlorinated volatile organic compound (CVOC) plume.
- For the December 2017 event some downgradient wells of the compliance well monitoring pairs showed lower levels of TCE concentrations than their upgradient counterparts. Monitoring wells MW-28, MW-32, and MW-34 were the downgradient members of the confirmation well pairs to show a slight decrease in concentration of TCE. The samples TCE concentration ranged from 19.6 μg/L (MW-30) to 201 μg/L (MW-28). These reduced concentrations could be due to either groundwater interaction with the ZVI or enhanced reductive dechlorination (ERD).
- In general detected concentrations of TCE, as well as other chlorinated VOCs, for the December 2017 sampling event were consistent with previous groundwater sample results. However, as noted in the preceding bullet there appears to be some reduction in TCE concentrations downgradient of the PRB based on the results of the compliance well pairs.
- 1,1,1-Trichloroethane was detected in three of the 12 wells sampled. The concentration of 1,1,1-Trichloroethane in wells MW-28, MW-29 were above the AWQS of 5 μg/L and the concentration in MW-15 was below the AWQS.
- Wells with detectable levels of tetrachloroethene (PCE) were MW-15, MW-28, and MW-29. The concentration of PCE measured in MW-28 and MW-29 were above the AWGS of 5 µg/L and in MW-15 was below the AWQS.

Graphs showing concentrations of CVOCs were created for the monitoring well compliance pairs to monitor groundwater concentration trends. Data shown includes the baseline sampling event in December 2015 through the most recent sampling event in December 2017. These trend plots are included in Appendix F as Figures F-1 through F-4. To date no definitive trends have been observed as groundwater concentrations have been generally consistent with the baseline sampling event.

4 SUMMARY AND CONCLUSIONS

The December 2017 groundwater monitoring event was the fourth quarterly groundwater sampling event. Quarterly groundwater sampling will continue on the selected subset of monitoring wells listed in Table 2-1. The next groundwater sampling event is scheduled for March 2018 and will include groundwater sampling at the 12 designated quarterly sample locations. The next Site-wide sampling event will be conducted in the second quarter of 2018. Details regarding the groundwater sampling program for the Site are included in the SMP (AECOM 2017b).

The laboratory results suggest that concentrations of dissolved VOCs in Site groundwater are currently similar to the baseline concentrations before installation of the ZVI PRB and no significant changes has been observed to date. Recent increased methane and ethane concentrations at some downgradient monitoring wells, particularly in the center of the wall, indicate the presence of anaerobic conditions and abiotic reduction of CVOCs in the vicinity of the PRB. While there had been increased TOC concentrations at the MW compliance pairs noted in the previous sampling events it appears TOC has moved toward baseline conditions. Results from the future sampling rounds will help to verify this trend. Downgradient parameters including the presence of ethane, ethane, and methane suggest that the abiotic degradation of TCE is taking place as impacted groundwater flows through the PRB in most well pairs. The data from the MW-28/MW-29 well pair at the northern end of the wall indicates that the wall may be less effective in the more transmissive sand and gravel or groundwater flow conditions are not optimal in this area of the Site.

Current Site groundwater flow conditions indicate that the on average the hydraulic gradient is consistent with the design. The PRB was designed based on a hydraulic gradient of 0.004 ft/ft which is similar to the estimated hydraulic gradient of 0.0039 ft/ft measured in December 2017. There appears to be a seasonal variability in groundwater elevation and hydraulic gradient which will be better understood as the quarterly monitoring continues. There appears to be a reverse gradiant in the MW-28/MW-29 well pair at the northern edge of the wall. In acctuality this is likely an area with a flat gradient and the minor vairability in grounwater levels between the well pair is due to margin of error in the survey of the well casing or with the field measurments. Historic data indicates a range of gradients from 0.001 to 0.006 ft/ft measured at the Site (Stone 2013). Based on the current gradient and estimated groundwater seepage velocity groundwater passing through the PRB has reached the downgradient monitoring wells.

5 REFERENCES

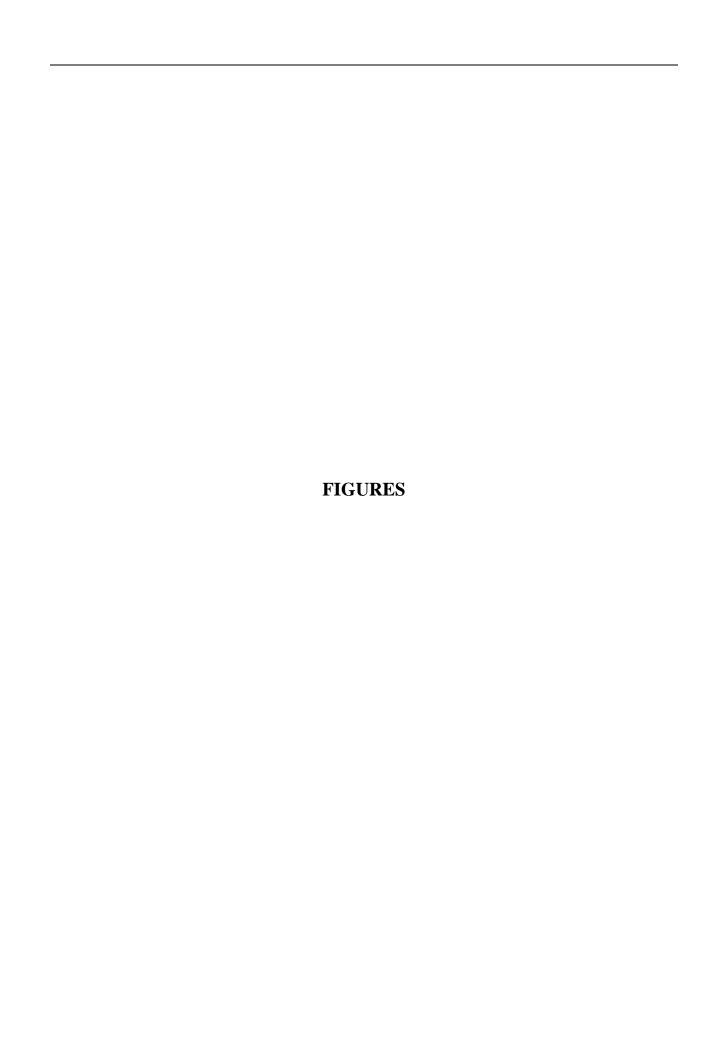
AECOM, 2015. Remedial Design Investigation Work Plan for the Defense National Stockpile Center Scotia Depot, Town of Glenville, NY. November.

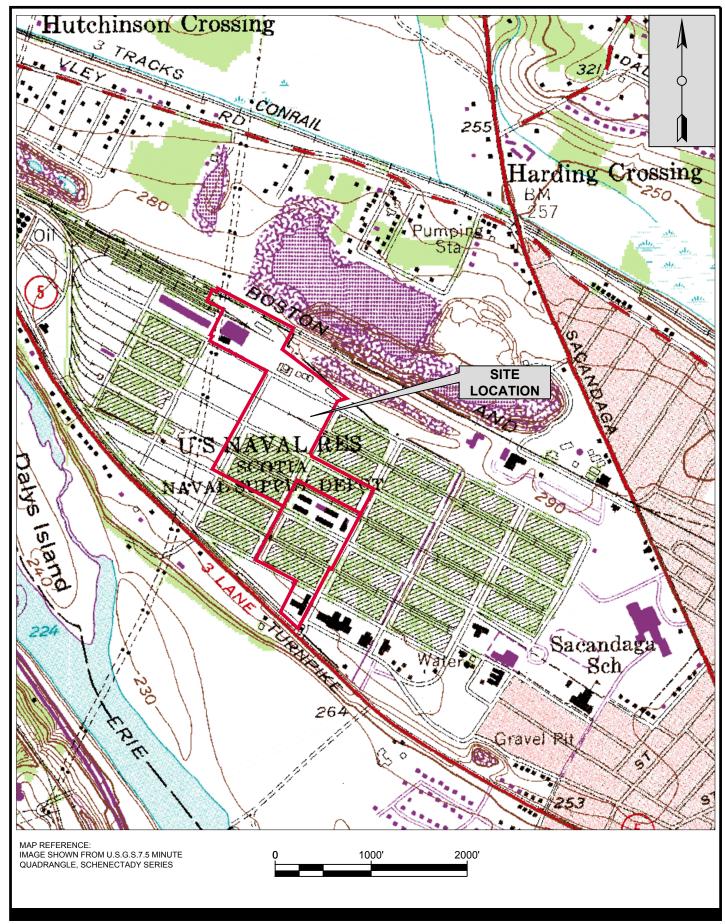
AECOM, 2016. Permeable Reactive Barrier Remedial Action Work Plan for the Defense National Stockpile Center Scotia Depot, Town of Glenville, NY. April.

AECOM, 2017a. Final Engineering Report for the Defense National Stockpile Center Scotia Depot, Town of Glenville, NY.

AECOM, 2017b. Site Management Plan for the Defense National Stockpile Center Scotia Depot, Town of Glenville, NY.

AECOM, 2017c. Groundwater Monitoring Program 2016 Fourth Quarter Status Report for the Defense National Stockpile Center Scotia Depot, Town of Glenville, NY. April.

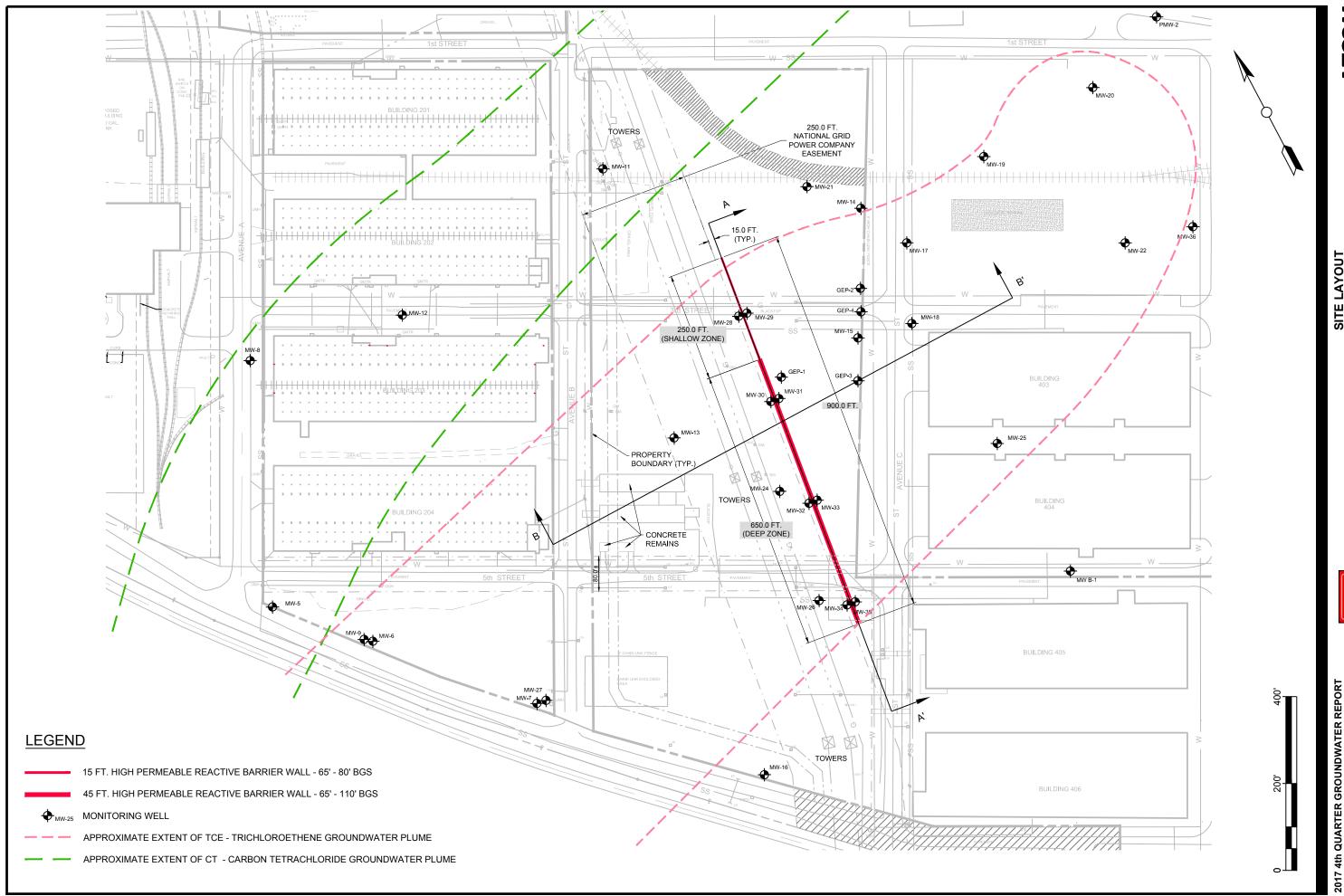

AECOM, 2017d. Groundwater Monitoring Program 2017 First Quarter Status Report for the Defense National Stockpile Center Scotia Depot, Town of Glenville, NY. May.


AECOM, 2017e. Groundwater Monitoring Program 2016 Second Quarter Status Report for the Defense National Stockpile Center Scotia Depot, Town of Glenville, NY. November.

AECOM, 2018. Groundwater Monitoring Program 2017 Third Quarter Status Report for the Defense National Stockpile Center Scotia Depot, Town of Glenville, NY. February.

NYSDEC, 2010. Record of Decision for Defense National Stockpile Center Scotia Depot Site State Superfund Project, Site Number 447023, Town of Glenville, NY, March.

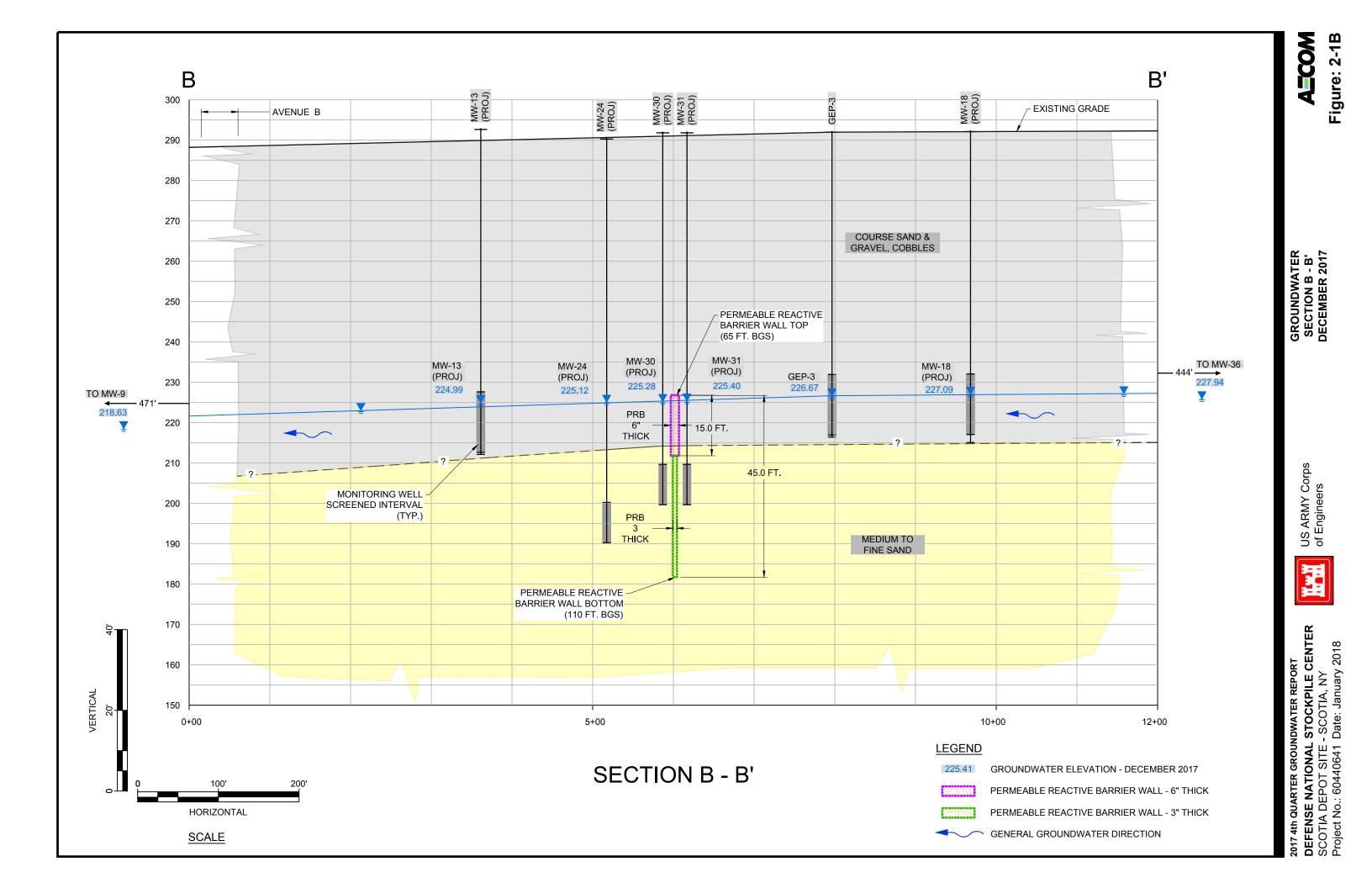
Stone Environmental, 2013. Final Pre-Design Investigation Report, Defense Nation Stockpile Center Scotia Depot Site, Town of Glenville, NY, December.

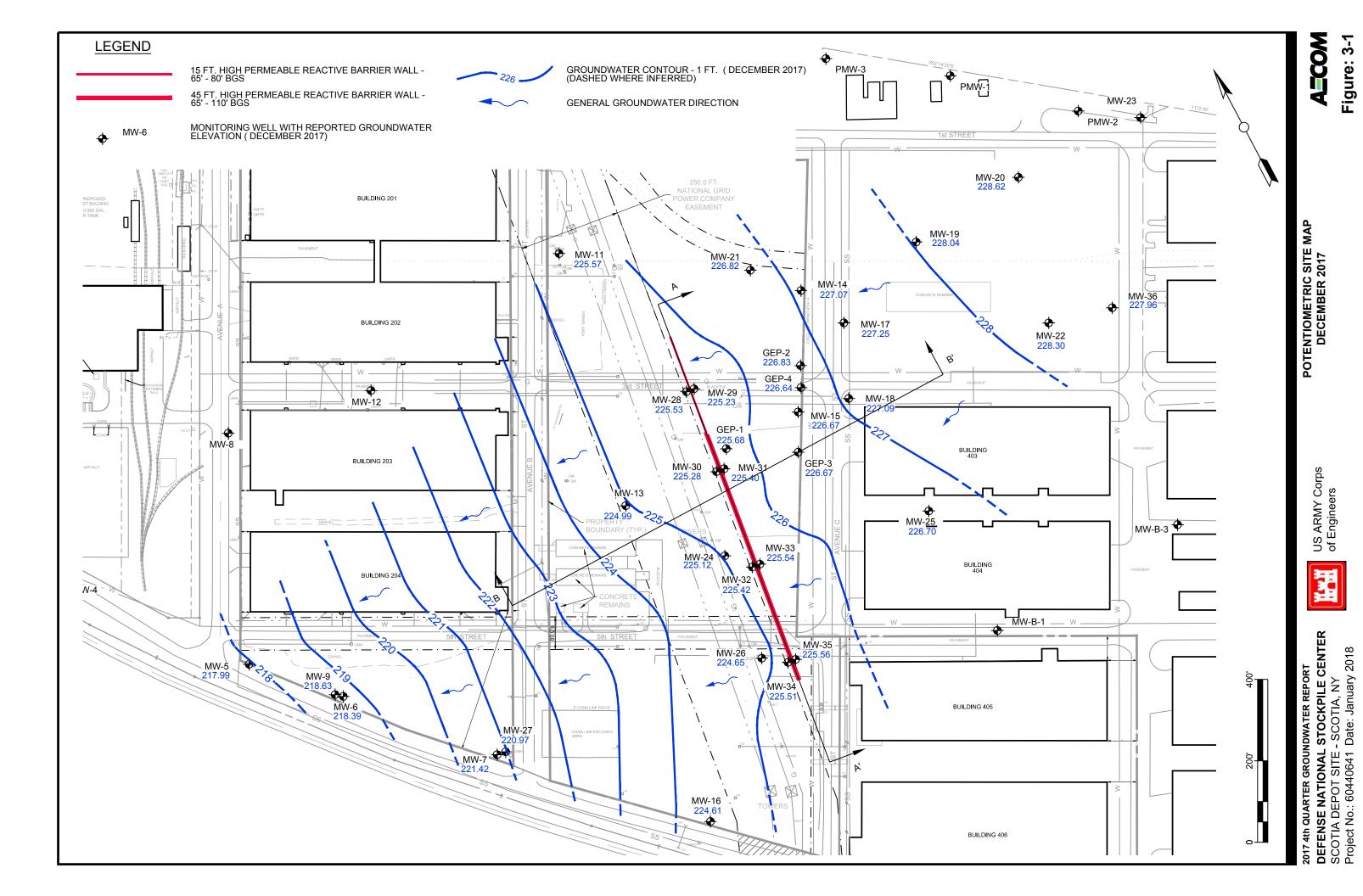


2017 4th QUARTER GROUNDWATER REPORT DEFENSE NATIONAL STOCKPILE SCOTIA DEPOT SITE - SCOTIA, NY Project No.: 60440641 Date: January 2018

SITE LOCATION MAP

A=COM


A=COM Figure: 2-1A


COMPLIANCE MONITORING WELLS AND PRB WALL PROFILE GROUNDWATER SECTION A - A' DECEMBER 2017

> US ARMY Corps of Engineers

2017 4th QUARTER GROUNDWATER REPORT
DEFENSE NATIONAL STOCKPILE CENTER
SCOTIA DEPOT SITE - SCOTIA, NY
Project No.: 60440641 Date: January 2018

Monitoring Well ID ¹	Rationale ²	Sampling Frequency	Analytes ³	Screen Interval (ft bgs)
MW-15	Upgradient	Quarterly for 2 years then anually	VOCs/MNA	65-80
MW-16	Outside Plume	Quarterly for 2 years then anually	VOCs/MNA	55-70
MW-24	Downgradient	Quarterly for 2 years then anually	VOCs/MNA	100-110
MW-26	Downgradient	Quarterly for 2 years then anually	VOCs/MNA	100-110
MW-28	Downgradient	Quarterly for 2 years then anually	VOCs/MNA	67-72
MW-29	Upgradient	Quarterly for 2 years then anually	VOCs/MNA	67-72
MW-30	Downgradient	Quarterly for 2 years then anually	VOCs/MNA	82-92
MW-31	Upgradient	Quarterly for 2 years then anually	VOCs/MNA	82-92
MW-32	Downgradient	Quarterly for 2 years then anually	VOCs/MNA	82-92
MW-33	Upgradient	Quarterly for 2 years then anually	VOCs/MNA	82-92
MW-34	Downgradient	Quarterly for 2 years then anually	VOCs/MNA	82-92
MW-35	Upgradient	Quarterly for 2 years then anually	VOCs/MNA	82-92
GEP-3	Upgradient	Annually	VOCs	59.6-74.6
MW-B-3	Outside Plume	Annually	VOCs	47.5-67.5
MW-5	Downgradient	Annually	VOCs	62.5-72.5
MW-6	Downgradient	Annually	VOCs	58.5-68.5
MW-7	Outside Plume	Annually	VOCs	61-71
MW-8	CT Plume	Annually	VOCs	66-76
MW-9	Downgradient	Annually	VOCs	110-120

Monitoring Well ID ¹	Rationale ²	Sampling Frequency	Analytes ³	Screen Interval (ft bgs)
MW-11	CT Plume	Annually	VOCs	65-80
MW-12	CT Plume	Annually	VOCs	65-80
MW-14	Upgradient	Annually	VOCs	65-80
MW-17	Upgradient	Annually	VOCs	60-75
MW-18	Upgradient	Annually	VOCs	60-75
MW-19	Upgradient	Annually	VOCs	62-77
MW-20	Upgradient	Annually	VOCs	63-78
MW-22	Upgradient	Annually	VOCs	63-78
MW-23	Outside Plume	Annually	VOCs	63-78
MW-24	Downgradient	Annually	VOCs	90-100
MW-25	Upgradient	Annually	VOCs	65-75
MW-26	Downgradient	Annually	VOCs	100-110
MW-27	Downgradient	Annually	VOCs	100-110
MW-36	Upgradient	Annually	VOCs	70-80
GEP-2	Upgradient	Annually	VOCs	60.6-75.6
GEP-1	Upgradient	Annually	VOCs	59.6-74.6
GEP-4	Upgradient	Annually	VOCs	60.15-75.15

Notes:

¹ *2015 Compliance monitoring well

 $^{^2}$ Rationale: Upgradient of PRB wall; Downgradient of PRB wall; Outside of any plume; Within Carbon Tetrachloride (CT) plume

³ Monitored natural attenuation (MNA) parameters include TOC (EPA SM 5310B), alkalinity (EPA SM 2320B), Chloride, nitrate, sulfate (EPA Method 300.0), and Dissolved Gases (Methane, ethane, and ethene; Method RSK 175).

Table 3-1 Groundwater Elevations Data The Defense National Stockpile Center Scotia Depot Fourth Quarter 2017 Status Report AECOM Project 60440641

Well IDs	Screened Interval (ft bgs)	Ground Surface Elevation (ft)	Reference Point Elevation (ft)	Depth To Water (ft bgs) Q1 2017	Depth to Water (ft bgs) Q2 2017	Depth To Water (ft bgs) Q3 2017	Depth To Water (ft bgs) Q4 2017	Groundwater Elevation 2015	Groundwater Elevation 2016	Groundwater Elevation Q1 2017	Groundwater Elevation Q2 2017	Groundwater Elevation Q3 2017	Groundwater Elevation Q4 2017
B-1	48-68	-	287.14		57.34		-	227.74	-	-	229.80	-	-
B-3	47.5-67.5	-	287.05	ı	-		-	227.95	-	-	-	-	-
MW-4	63.8-73.8	289.58	291.74	-	-		-	225.74	-	-	-	-	-
MW-5	62.5-72.5	287.95	290.11	70.50	63.82	64.00	72.12	225.75	219.29	219.61	226.29	226.11	217.99
MW-6	58.5-68.5	286.28	288.58	68.78	62.03	62.27	70.19	225.86	219.80	219.80	226.55	226.31	218.39
MW-7	61-71	286.8	289.26	68.47	61.96	61.95	67.84	226.28	223.16	220.79	227.30	227.31	221.42
MW-9	110-120	285.98	288.33	68.55	61.85	62.04	69.70	225.83	219.75	219.78	226.48	226.29	218.63
MW-10	65-80	290.94	293.15	-	-	-	-	228.24	-	-	-	-	-
MW-11	65-80	295.73	295.12	70.12	64.36	65.36	69.55	227.7	225.91	225.00	230.76	229.76	225.57
MW-13	65-80	292.62	293.85	69.90	64.25	64.40	68.86	227.32	225.43	223.95	229.60	229.45	224.99
MW-14	65-80	-	296.2	70.13	64.88	65.60	69.13	228.08	226.56	226.07	231.32	230.60	227.07
MW-15	65-80	-	293.67	68.35	63.07	63.49	67.00	227.8	226.27	225.32	230.60	230.18	226.67
MW-16	55-70	-	288.33	66.38	60.7	60.28	63.72	226.39	225.38	221.95	227.63	228.05	224.61
MW-17	60-75	-	295.24	69.25	64.09	64.66	67.99	228.08	226.55	225.99	231.15	230.58	227.25
MW-18	60-75	-	295.24	69.56	64.49	64.86	68.15	227.94	226.46	225.68	230.75	230.38	227.09
MW-19	62-77	-	297.67	70.54	65.74	66.42	69.63	228.43	226.85	227.13	231.93	231.25	228.04
MW-20	63-78	-	301.55	73.72	69.22	69.90	72.93	228.71	227.01	227.83	232.33	231.65	228.62
MW-21	57-72	-	296.52	70.55	65.19	65.40	69.70	228.06	226.50	225.97	231.33	231.12	226.82
MW-22	63-78	-	298.91	72.08	67.64	67.80	70.61	228.29	226.73	226.83	231.27	231.11	228.30
MW-23	63-78	-	300.54	72.14	67.98	68.55	-	228.9	227.06	228.40	232.56	231.99	-
MW-24	90-100	290.24	292.45	68.85	63.4	63.62	67.33	226.79	225.30	223.60	229.05	228.83	225.12
MW-25	65-75	288.16	290.26	65.44	60.61	60.57	63.56	227.16	225.82	224.82	229.65	229.69	226.70
MW-26	100-110	287.23	286.45	63.85	58.44	58.35	61.80	226.06	224.75	222.60	228.01	228.10	224.65
MW-27	100-110	286.08	288.32	68.67	61.89	62.00	67.35	225.5	223.44	219.65	226.43	226.32	220.97
MW-28	67-72	292.55	292.25	67.94	62.46	63.06	66.72	227.07	225.41	224.31	229.79	229.19	225.53
MW-29	67-72	292.50	292.13	67.80	62.31	62.94	66.90	227.05	225.38	224.33	229.82	229.19	225.23
MW-30	82-92	291.76	291.63	67.65	62.19	62.59	66.35	226.98	225.35	223.98	229.44	229.04	225.28
MW-31	82-92	291.80	291.54	67.42	62.02	62.43	66.14	226.95	225.40	224.12	229.52	229.11	225.40
MW-32	82-92	290.12	289.75	66.05	60.7	60.82	64.33	226.86	225.45	223.70	229.05	228.93	225.42
MW-33	82-92	290.27	289.91	66.11	60.8	60.86	64.37	226.89	225.51	223.80	229.11	229.05	225.54
MW-34	82-92	287.30	287.05	63.70	58.39	58.28	61.54	226.73	225.48	223.35	228.66	228.77	225.51
MW-35	82-92	287.25	286.96	63.56	58.28	58.15	61.40	226.69	225.46	223.40	228.68	228.81	225.56
MW-36	70-80	292.61	292.36	66.10	61.87	60.98	64.42	227.8	226.12	226.26	230.49	231.38	227.94
GEP-1	59.6-74.6	-	294.98	70.55	65.06	-	69.30	227.36	-	224.43	229.92	-	225.68
GEP-2	60.6-75.6	-	296.02	70.43	65.18	65.69	69.19	227.9	226.38	225.59	230.84	230.33	226.83
GEP-3	59.6-74.6	-	292.97	67.71	62.47	62.85	66.30	227.81	226.31	225.26	230.50	230.12	226.67
GEP-4	60.15-75.15	-	295.62	70.23	65.01	65.50	68.98	227.73	226.22	225.39	230.61	230.12	226.64

	NYSDEC Ambient				ational Stockpi								
	Water Quality			BANA	<i>l</i> -15					BA\A	<i>V</i> -16		
Analytes	Standards and	11/0/2015	40/44/0046			9/28/2017	12/14/2017	44/44/0045	40/40/0046			9/25/2017	12/11/2017
	Guidance Value	11/9/2015	12/14/2016	3/22/2017	6/21/2017	9/28/2017	12/14/2017	11/11/2015	12/12/2016	3/20/2017	6/20/2017	9/25/2017	12/11/2017
				Upgra	adient			Outside Plume					
VOCs (μg/L)													
1,1,1,2-Tetrachloroethane	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
1,1,1-Trichloroethane (1,1,1-TCA)	5	1.9	4.4	1.9	3.8	7.4	4.3	0.49 J	0.75 U	0.53 J	0.50 J	0.44 J	0.75 U
1,1,2,2-Tetrachloroethane	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
1,1,2-Trichloroethane	1	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
1,1-Dichloroethane (1,1-DCA)	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
1,1-Dichloroethene (1,1-DCE)	5	0.75 U	0.44 J	0.75 U	0.75 U	0.69 J	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
1,2-Dichloroethane (EDC)	0.6	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
Carbon Tetrachloride	5	0.75 U	0.75 U	0.75 U	0.75 U	0.45 J	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 UJ
cis-1,2-Dichloroethene (cis-1,2-DCE)	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
Tetrachloroethene (PCE; PERC)	5	0.6 J	1.7	0.84 J	0.66 J	1.4	1.3	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
Toluene	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
trans-1,2-Dichloroethene (trans-1,2-DCE)	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
Trichloroethene (TCE)	5	77.3	183	80.5	122	185	143	0.55 J	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
Vinyl Chloride (VC)	2	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
MNA Parameters													
Alkalinity, Total (as CaCO ₃) (mg/L)	NS	182	212	201	217	229	216	248	312	317	322	480	NA
Chloride (mg/L)	NS	28.9	14.3	28.3	40.1	30.6	39.7	13.6	9.0	5.6	20.2	4.3	4.0
Nitrate (mg/L)	NS	0.58	0.56	0.90	0.52	0.58	0.60	1.6	1.6	2.1	3.7	1.4	1.1
Sulfate (mg/L)	NS	12.3	12.4	21.3	20.5	14.3	20.5	35.2	44.8	65.3	75.5	64.8	119
Methane (μg/L)	NS	0.19 J	0.21 J	0.21 J	0.25 J	0.21 J	0.50 U	0.25 U	0.14 J	0.50 U	0.19 J	0.23 J	0.50 U
Ethane (µg/L)	NS	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Ethene (µg/L)	NS	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
Total Organic Carbon (mg/L)	NS	0.55 J	0.57 J	0.47 J	0.21 J	0.59 J	0.33 J	3.6	0.96 J	1.1	0.67 J	0.64 J	0.9 J
Field Parameters													
Turbidity (NTU)	NS	11.1	7.00	15.7	2.10	52.1	6.30	8.01	14.8	7.71	4.40	199	30.9
ORP (MeV)	NS	91.4	54.6	-0.6	114.6	92.8	16.6	137.6	139.9	115.9	298.7	82.2	94.5
Conductivity (mS/cm)	NS	0.358	0.250	0.387	0.487	0.709	0.416	0.361	0.388	0.436	0.486	0.928	0.596
Dissolved Oxygen (mg/L)	NS	31.45	8.04	6.37	4.90	9.22	8.38	22.27	9.50	10.40	10.82	9.81	10.30
Groundwater Elevation (ft)	NS	227.80	226.27	225.32	230.60	230.18	226.67	226.39	225.38	221.95	227.63	228.05	224.61

Notes:

MNA - Monitored Natural Attenuation

NS - No Standard

NA - Not Analyzed

Detected concentrations are in bold font.

- J Indicates an estimated value between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) for the analyte.
- J+ The result is an estimated quantity, likely to be biased high.
- U Indicates that the analyte was not detected (ND).
- 1 TheTotal Alkalinity is titrated to a pH of 4.5 and reported as mg CaCO₃/L.
- 2 Analyte was analyzed past the 48 hour holding time.
- 3 The QC sample type DUP for method RSK 175 was outside the control limits for the analyte Methane. The RPD was reported as 23.8 and the upper contol limit is 20.

	NYSDEC Ambient													
	Water Quality			MW	<i>I</i> -24					MW	<i>I</i> -26			
Analytes	Standards and	11/10/2015	12/13/2016	3/21/2017	6/26/2017	9/26/2017	12/12/2017	11/17/2015	12/13/2016	3/21/2017	6/26/2017	9/25/2017	12/12/2017	
	Guidance Value												'	
VOQ- (/1)				Downg	radient			Downgradient						
VOCs (µg/L)	_				I									
1,1,1,2-Tetrachloroethane	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	
1,1,1-Trichloroethane (1,1,1-TCA)	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	
1,1,2,2-Tetrachloroethane	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	
1,1,2-Trichloroethane	1	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	
1,1-Dichloroethane (1,1-DCA)	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	
1,1-Dichloroethene (1,1-DCE)	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	
1,2-Dichloroethane (EDC)	0.6	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	
Carbon Tetrachloride	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 UJ	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 UJ	
cis-1,2-Dichloroethene (cis-1,2-DCE)	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	
Tetrachloroethene (PCE; PERC)	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	
Toluene	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.57 J	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	
trans-1,2-Dichloroethene (trans-1,2-DCE)	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	
Trichloroethene (TCE)	5	0.93 J	1.4	1.7	1.2	1.0	0.94 J	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	
Vinyl Chloride (VC)	2	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	
MNA Parameters														
Alkalinity, Total (as CaCO ₃) (mg/L)	NS	168	198	205	195	282	352	204	197	196	223	317	204	
Chloride (mg/L)	NS	36.3	38.5	59.0	41.0	110	155	45.2	44.9	53.4	133	86.2	56.7	
Nitrate (mg/L)	NS	0.9	0.06 U	0.06 U	0.04 J	0.06 U	0.06 U	0.06 U	0.04 J	0.06 U	0.02 J	0.06 U	0.06 U	
Sulfate (mg/L)	NS	15.5	21.4	24.1	22.1	0.5 U	0.48 J	25.1	24.6	29.4	20.9	5.9	25.7	
Methane (µg/L)	NS	0.82	1.6	1.7	2.2	7.8	431	34.8	2.7	1.4 J	2.1	444	20.7	
Ethane (µg/L)	NS	0.34 J	0.50 U	0.50 U	0.50 U	0.29 J	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	
Ethene (μg/L)	NS	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	
Total Organic Carbon (mg/L)	NS	3.5	1.9	1.0 J	0.79 J	94.6	96.2	9.3	2.6	1.3 J	30.7	52.1	1.1	
Field Parameters														
Turbidity (NTU)	NS	9.33	13.9	16.3	35.2	88.37	2.8	68.3	21.8	31.9	0.4	60.96	57.38	
ORP (MeV)	NS	-80.2	-93.2	-111.3	-108.6	-169.9	-83.1	-103.6	-28.9	-46.4	-26.9	-138.7	-173.0	
Conductivity (mS/cm)	NS	0.327	0.570	0.438	0.365	1.396	0.841	0.324	0.590	0.469	0.630	1.347	4.256	
Dissolved Oxygen (mg/L)	NS	0.94	0.44	0.55	1.20	0.30	0.15	0.00	0.33	0.27	0.62	0.33	0.66	
Groundwater Elevation (ft)	NS	226.79	225.30	223.60	229.05	228.83	225.12	226.06	224.75	222.60	228.01	228.10	224.65	

Notes:

MNA - Monitored Natural Attenuation

NS - No Standard

NA - Not Analyzed

Detected concentrations are in bold font.

- J Indicates an estimated value between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) for the analyte.
- J+ The result is an estimated quantity, likely to be biased high.
- U Indicates that the analyte was not detected (ND).
- 1 TheTotal Alkalinity is titrated to a pH of 4.5 and reported as mg CaCO₃/L.
- 2 Analyte was analyzed past the 48 hour holding time.
- 3 The QC sample type DUP for method RSK 175 was outside the control limits for the analyte Methane. The RPD was reported as 23.8 and the upper contol limit is 20.

	NYSDEC Ambient						Confirmation	on Well Pair					
	Water Quality			MV	V-28					MW	<i>l</i> -29		
Analytes	Standards and Guidance Value	12/1/2015	12/14/2016	3/22/2017	6/27/2017	9/27/2017	12/14/2017	12/1/2015	12/14/2016	3/22/2017	6/27/2017	9/27/2017	12/14/2017
	Guidance value		•	Downe	radient					Upara	adient	•	
VOCs (μg/L)	1			209	,, a a					- Pg. (
1,1,1,2-Tetrachloroethane	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	3.8 U	0.75 U	0.75 U	0.75 U	0.75 U
1,1,1-Trichloroethane (1,1,1-TCA)	5	11.2	10.4	9.9	8.9 J	10.5	9.5	12.4	14.0 J	10.4	11.8 J	13.6	14.6
1,1,2,2-Tetrachloroethane	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	3.8 U	0.75 U	0.75 U	0.75 U	0.75 U
1,1,2-Trichloroethane	1	0.46 J	0.75 U	0.75 U	0.75 U	0.75 U	0.33 J	0.75 U	3.8 U	0.75 U	0.75 U	0.75 U	0.75 U
1,1-Dichloroethane (1,1-DCA)	5	1.0	0.77 J	0.88 J	1.0 J	1.3	0.84 J	0.97 J	3.8 U	0.45 J	1.0 J	1.2	0.88 J
1,1-Dichloroethene (1,1-DCE)	5	0.53 J	0.43 J	0.53 J	0.38 J	0.76 J	0.45 J	0.68 J	3.8 U	0.55 J	0.63 J	0.99 J	0.96 J
1,2-Dichloroethane (EDC)	0.6	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	3.8 U	0.75 U	0.75 U	0.75 U	0.75 U
Carbon Tetrachloride	5	0.61 J	0.75 U	0.62 J	0.75 U	0.53 J	0.57 J	0.75 U	3.8 U	0.63 J	0.75 U	0.85 J	0.71 J
cis-1,2-Dichloroethene (cis-1,2-DCE)	5	4.7	4.3	4.4	4.7 J	5.5	5.0	4.9	6.1 J	3.1	5.8 J	5.6	5.7
Tetrachloroethene (PCE; PERC)	5	33	44.6	42.4	36.3 J	37.1	45.2	33.2	30.8 J	37.2	38.1 J	42.2	41.7
Toluene	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	3.8 U	0.75 U	0.75 U	0.75 U	0.75 U
trans-1,2-Dichloroethene (trans-1,2-DCE)	5	0.75 U	0.47 J	0.42 J	0.37 J	0.35 J	0.49 J	0.75 U	3.8 U	0.61 J	0.70 J	0.67 J	0.62 J
Trichloroethene (TCE)	5	182	196	181	195	170	201	224	209 J	197	264	226	233
Vinyl Chloride (VC)	2	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	3.8 U	0.75 U	0.75 U	0.75 U	0.75 U
MNA Parameters													
Alkalinity, Total (as CaCO ₃) (mg/L)	NS	352	316	295	352	380	383	327	301	258	361	374	348
Chloride (mg/L)	NS	22.1	32.4	25.7	29.0	25.7	20.4	28.2	28.4	21.3	49.4	24.2	21.3
Nitrate (mg/L)	NS	0.06 U	0.06 J	0.44	1.5	0.18 J	1.2	0.1 J	0.26	0.52	1.3	0.12 J	0.86
Sulfate (mg/L)	NS	22.4	20.9	21.6	13.0	10.3	22.4	29.2	24.9	20.1	13.8	16.1	22.7
Methane (μg/L)	NS	3.4	3.0	0.94	1.0	0.37 J	0.50 U	13.9	0.62	1.1	0.20 J	0.21 J	0.50 U
Ethane (μg/L)	NS	0.50 U	3.6	1.0	0.50 U	0.45 J	0.50 U	0.81 J	0.50 U	0.5 U	0.50	0.50 U	0.50 U
Ethene (µg/L)	NS	0.75 U	1.3 J	1.9	0.75 U	0.72 J	0.75 U	0.59 J	0.75 U	0.75 U	0.75	0.75 U	0.75 U
Total Organic Carbon (mg/L)	NS	1.9	2.3	0.81 J	0.76 J	1.9	0.94 J	2.3	1.4	0.91 J	0.92 J	2.1	1.2
Field Parameters													
Turbidity (NTU)	NS	209	1.5	2.07	-3	61.1	229.80	82.4	0.62	2.73	2.80	65.1	1.50
ORP (MeV)	NS	273	71.2	77.1	97.4	32.1	19.0	-25.1	60.9	46.1	120	41.7	33.7
Conductivity (mS/cm)	NS	0.324	0.366	0.520	0.554	1.044	0.564	0.325	0.354	0.424	0.619	1.058	0.559
Dissolved Oxygen (mg/L)	NS	6.75	3.94	5.2	7.59	4.3	8.45	4.29	6.17	9.26	7.12	6.46	8.65
Groundwater Elevation (ft)	NS	227.07	225.41	224.31	229.79	229.19	225.53	227.05	225.38	224.33	229.79	229.19	225.23

Notes:

MNA - Monitored Natural Attenuation

NS - No Standard

NA - Not Analyzed

Detected concentrations are in bold font.

- J Indicates an estimated value between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) for the analyte.
- J+ The result is an estimated quantity, likely to be biased high.
- U Indicates that the analyte was not detected (ND).
- 1 TheTotal Alkalinity is titrated to a pH of 4.5 and reported as mg CaCO₃/L.
- 2 Analyte was analyzed past the 48 hour holding time.
- 3 The QC sample type DUP for method RSK 175 was outside the control limits for the analyte Methane. The RPD was reported as 23.8 and the upper contol limit is 20.

	NYSDEC Ambient						Confirmatio	n Well Pair						
	Water Quality			MV	V-30					MV	V-31			
Analytes	Standards and Guidance Value	12/1/2015	12/13/2016	3/21/2017	6/26/2017	9/27/2017	12/13/2017	12/1/2015	12/14/2016	3/22/2017	6/26/2017	9/27/2017	12/13/2017	
	Guidance Value			Down	gradient					Upgra	adient		,	
VOCs (μg/L)				•	•									
1,1,1,2-Tetrachloroethane	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	
1,1,1-Trichloroethane (1,1,1-TCA)	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	
1,1,2,2-Tetrachloroethane	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	
1,1,2-Trichloroethane	1	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	
1,1-Dichloroethane (1,1-DCA)	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	
1,1-Dichloroethene (1,1-DCE)	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	
1,2-Dichloroethane (EDC)	0.6	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	
Carbon Tetrachloride	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	
cis-1,2-Dichloroethene (cis-1,2-DCE)	5	0.75 U	0.75 U	0.74 J	0.61 J	0.39 J	0.41 J	0.75 U	0.75 U	0.41 J	0.50 J	0.42 J	0.40 J	
Tetrachloroethene (PCE; PERC)	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	
Toluene	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	
trans-1,2-Dichloroethene (trans-1,2-DCE)	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	
Trichloroethene (TCE)	5	25.2	42.3	66.3	24.3	18.4	19.6	42.7	38.2	35.0	29.0	25.6	19.6	
Vinyl Chloride (VC)	2	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	
MNA Parameters														
Alkalinity, Total (as CaCO ₃) (mg/L)	NS	143	319	210	154	104	347	178	222	381	150	132	119	
Chloride (mg/L)	NS	38.4	182	136	49.6	35.3	87.3	41.9	56.6	98.5	31.0	31.7	36.3	
Nitrate (mg/L)	NS	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.04 J	0.02 J	0.06 U	0.06 U	
Sulfate (mg/L)	NS	35.9	2.9	0.5 U	0.32 J	0.5 U	0.22 J	26.3	10.9	2.6	5.6	5.6	7.8	
Methane (µg/L)	NS	47.4	146	870	3210	3560	12900	20.7	3.5	106	56.5	29.1	59.4	
Ethane (µg/L)	NS	4.7	5.4	23.5	36.7	39.7	40.5	2.2	1.5	10.1	2.7	2.6	3.3	
Ethene (µg/L)	NS	2.2	3.3	9.1	12.7	8.5	4.2	0.91 J	0.84 J	4.7	3.2	2.3	1.9	
Total Organic Carbon (mg/L)	NS	2.2	225	139	75.2	27.0	366	2.1	43.9	257	2.8	1.5	1.3	
Field Parameters														
Turbidity (NTU)	NS	58.2	3.55	3.82	3	69.1	16.1	51.7	8.03	11.4	4.60	8.60	8.62	
ORP (MeV)	NS	-278.4	-166.3	-166.9	-173.3	-212.2	-170.1	-319.7	-163.1	-201.5	-283.2	-174.4	-208.0	
Conductivity (mS/cm)	NS	0.210	1.410	0.740	0.320	0.412	0.758	0.243	0.348	0.850	0.280	0.526	0.294	
Dissolved Oxygen (mg/L)	NS	3.70	0.29	0.17	0.48	0.06	0.80	1.29	0.28	0.22	0.70	0.13	0.19	
Groundwater Elevation (ft)	NS	226.98	225.35	223.98	229.44	229.04	225.28	226.95	225.40	224.12	229.52	229.11	225.40	

Notes:

MNA - Monitored Natural Attenuation

NS - No Standard

NA - Not Analyzed

Detected concentrations are in bold font.

- J Indicates an estimated value between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) for the analyte.
- J+ The result is an estimated quantity, likely to be biased high.
- U Indicates that the analyte was not detected (ND).
- 1 TheTotal Alkalinity is titrated to a pH of 4.5 and reported as mg CaCO₃/L.
- 2 Analyte was analyzed past the 48 hour holding time.
- 3 The QC sample type DUP for method RSK 175 was outside the control limits for the analyte Methane. The RPD was reported as 23.8 and the upper contol limit is 20.

	NYSDEC Ambient						Confirmation	on Well Pair					
	Water Quality			MW	<i>I</i> -32					MW	/-33		
Analytes	Standards and Guidance Value	11/30/2015	12/13/2016	3/21/2017	6/26/2017	9/26/2017	12/13/2017	11/24/2015	12/14/2016	3/22/2017	6/26/2017	9/26/2017	12/13/2017
	Guidance Value			Downg	radient					Upgra	adient		
VOCs (μg/L)	1									. •			
1,1,1,2-Tetrachloroethane	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
1,1,1-Trichloroethane (1,1,1-TCA)	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
1,1,2,2-Tetrachloroethane	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
1,1,2-Trichloroethane	1	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
1,1-Dichloroethane (1,1-DCA)	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
1,1-Dichloroethene (1,1-DCE)	5	0.75 U	0.75 U	0.40 J	0.48 J	0.60 J	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
1,2-Dichloroethane (EDC)	0.6	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
Carbon Tetrachloride	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
cis-1,2-Dichloroethene (cis-1,2-DCE)	5	0.75 U	0.75 U	1.2	1.3	1.2	0.68 J	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
Tetrachloroethene (PCE; PERC)	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
Toluene	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
trans-1,2-Dichloroethene (trans-1,2-DCE)	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
Trichloroethene (TCE)	5	150	132	191	130	135	120	133	93.5	151	152	170	142
Vinyl Chloride (VC)	2	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
MNA Parameters													
Alkalinity, Total (as CaCO ₃) (mg/L)	NS	196	277	214	129	129	141	172	218	194	205	202	212
Chloride (mg/L)	NS	35.6	138	84.6	38.0	30.7	28.2	41.8	43.2	29.2	22.8	24.6	28.1
Nitrate (mg/L)	NS	0.06 U	0.06 U	0.02 J	0.02 J	0.06 U	0.06 U	0.06 U	0.06 U	0.32	0.32	0.30	0.32
Sulfate (mg/L)	NS	21.1	2.8	0.68 J	0.50 J	0.4 J	6.0	25.1	8.2	15.0	11.8	12.6	14.8
Methane (μg/L)	NS	6.8	16.5	309	817	835	233 J	64	3.4	9.2	16.0	17.8	7.2
Ethane (µg/L)	NS	0.5 J	1.5	19.3	35.9	29.4	5.6 J	7	0.25 J	0.50 U	0.50 U	0.50 U	0.50 U
Ethene (µg/L)	NS	0.75 U	1.8	10.3	15.6	5.4	2.3 J	3.6	0.48 J	0.75 U	0.75 U	0.75 U	0.75 U
Total Organic Carbon (mg/L)	NS	2.6	133	98.0	22.0	5.0	5.4 J	8.1	30.9	2.1	0.54 J	0.44 J	0.44 J
Field Parameters													
Turbidity (NTU)	NS	180	5.92	4.01	5.10	3.91	5.11	23.1	9.31	11.7	3.40	51.2	6.38
ORP (MeV)	NS	-234.2	-107.7	-140.7	-238.7	-149.4	-181.9	-471.2	-126.8	-64.3	44.9	-3.2	-20.4
Conductivity (mS/cm)	NS	0.239	1.180	0.640	0.261	0.478	0.257	0.247	0.303	0.386	0.350	0.648	0.370
Dissolved Oxygen (mg/L)	NS	0.64	1.81	1.77	2.50	1.80	1.50	0.92	0.41	2.50	2.99	2.87	6.80
Groundwater Elevation (ft)	NS	226.86	225.45	223.70	229.05	228.93	225.42	226.89	225.51	223.80	229.11	229.05	225.54

Notes:

MNA - Monitored Natural Attenuation

NS - No Standard

NA - Not Analyzed

Detected concentrations are in bold font.

- J Indicates an estimated value between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) for the analyte.
- J+ The result is an estimated quantity, likely to be biased high.
- U Indicates that the analyte was not detected (ND).
- 1 TheTotal Alkalinity is titrated to a pH of 4.5 and reported as mg CaCO₃/L.
- 2 Analyte was analyzed past the 48 hour holding time.
- 3 The QC sample type DUP for method RSK 175 was outside the control limits for the analyte Methane. The RPD was reported as 23.8 and the upper contol limit is 20.

	NYSDEC Ambient Water Quality	Confirmation Well Pair											
		MW-34						MW-35					
Analytes	Standards and Guidance Value	11/24/2015	12/13/2016	3/21/2017	6/26/2017	9/26/2017	12/12/2017	11/24/2015	12/15/2016	3/22/2017	6/26/2017	9/26/2017	12/12/2017
	Guidance value	Downgradient						Upgradient					
VOCs (μg/L)		3						- F-3					
1,1,1,2-Tetrachloroethane	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
1,1,1-Trichloroethane (1,1,1-TCA)	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
1,1,2,2-Tetrachloroethane	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
1,1,2-Trichloroethane	1	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
1,1-Dichloroethane (1,1-DCA)	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
1,1-Dichloroethene (1,1-DCE)	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
1,2-Dichloroethane (EDC)	0.6	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
Carbon Tetrachloride	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 UJ	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 UJ
cis-1,2-Dichloroethene (cis-1,2-DCE)	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
Tetrachloroethene (PCE; PERC)	5	0.42 J	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
Toluene	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
trans-1,2-Dichloroethene (trans-1,2-DCE)	5	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
Trichloroethene (TCE)	5	17.7	41.3	48.3	34.0	29.6	28.0	31.9	31.8	12.5	43.8 J	47.8	43.5
Vinyl Chloride (VC)	2	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
MNA Parameters													•
Alkalinity, Total (as CaCO ₃) (mg/L)	NS	99	191	597	201	197	203	181	223	51	202	192	210
Chloride (mg/L)	NS	48.5	62.3	461	15.7	11.7	12.9	42.2	53.9	2.0	17.1	14.4	22.2
Nitrate (mg/L)	NS	0.56	0.06 J	0.06 U	0.04 J	0.06 U	0.02 J	0.06 U	0.04 J	0.14 J	0.66	0.6	0.44
Sulfate (mg/L)	NS	64.3	23.8	0.56 J	13.4	9.0	7.3	48.1	7.2	3.5	13.6	10.8	10.2
Methane (μg/L)	NS	14.5	1.2	1780	12.4	88.1	531	13.8	0.90	5.8	7.2	7.5	7.9
Ethane (μg/L)	NS	2.2	0.50 U	17.3	0.50 U	0.45 J	1.1	2.9	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Ethene (μg/L)	NS	1.8	0.75 U	4.4	0.75 U	0.58 J	0.75 U	1.6	0.75 U	0.32 J	0.75 U	0.75 U	0.75 U
Total Organic Carbon (mg/L)	NS	5.9	12.0	631	3.3	3.8	4.1	7.7	18.3	1.4	0.75 J	0.68 J	0.56 J
Field Parameters													
Turbidity (NTU)	NS	44.7	3.23	4.59	-4	4.40	4.20	381	5.99	16.3	38.2	31.91	13.81
ORP (MeV)	NS	-185.4	-8.4	-144.0	-139.4	-63.1	-133.4	-404	-167.9	-68.4	-10.6	30	0.40
Conductivity (mS/cm)	NS	0.361	0.630	2.280	0.332	0.578	0.310	0.287	0.329	0.078	0.324	0.599	0.338
Dissolved Oxygen (mg/L)	NS	6.9	1.12	0.12	0.46	0.62	2.70	0.79	0.41	6.63	3.67	4.58	4.84
Groundwater Elevation (ft)	NS	226.73	225.48	223.35	228.66	228.77	225.51	226.69	225.46	223.40	228.68	228.81	225.56

Notes:

MNA - Monitored Natural Attenuation

NS - No Standard

NA - Not Analyzed

Detected concentrations are in bold font.

- J Indicates an estimated value between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) for the analyte.
- J+ The result is an estimated quantity, likely to be biased high.
- U Indicates that the analyte was not detected (ND).
- 1 TheTotal Alkalinity is titrated to a pH of 4.5 and reported as mg CaCO₃/L.
- 2 Analyte was analyzed past the 48 hour holding time.
- 3 The QC sample type DUP for method RSK 175 was outside the control limits for the analyte Methane. The RPD was reported as 23.8 and the upper contol limit is 20.

Monitoring Well Purging / Sampling Form

Project Name and Number:

Scotia Navy Depot

Monitoring Well Number:

MW-15

Date: 12/14/17

Samplers:

Ross McCredy and Joe Scalo

Sample Number:

MW-17 121417 QA/QC Collected? DVP-2 121417

Bladder Pump/Low Flow

1. L = Well Depth:

2. D = Riser Diameter (I.D.):

6. 3(V) = Target Purge Volume

Purging / Sampling Method:

105-80

81.74 feet feet

D (inches) D (feet) 1-inch 0.08 2-inch

3. W = Depth to Water:

4. C = Column of Water in Well:

feet

feet

gal

gal

Z*IIICII	0.17
3-inch	0.25
4-inch	0.33
6-inch	0.50

Conversion factors to determine V given C

D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
V (gal / ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Readings Collected Using

5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$

YSI Pro Plus/ Hach 2100Q

Parameter	Units				Readings			
Time	24 hr	1036	1041	1046	1051	1056	1101	
Water Level (0.33)	feet	67.20	67.20	67.20	67.20	67.20	67.20	
Volume Purged	gal	0	0.3	0.55	0.70	1.00	1.25	,
Flow Rate	mL/min	240	240	240	240	240	240	
Turbidity (+/- 10%)	NTU	105.79	56.39	19.58	6.66	6.41	6.30	
Dissolved Oxygen (+/- 10%)	%	77.6	77.1	75.9	75.4	75.0	75.4	
Dissolved Oxygen (+/- 10%)	mg/L	8.87	8.64	8.47	3.36	8.36	8.38	
Eh / ORP (+/- 10)	MeV	15.4	18.3	17.9	16.3	15.7	16.6	
Specific Conductivity (+/- 3%)	mS/cm ^c	558.7	569.5	577.6	575.9	576.6	574.6	
Conductivity (+/- 3%)	mS/cm	392.6	408.8	416.7	417.5	417.2	416.1	
pH (+/- 0.1)	pH unit	7.56	7.46	7.43	7.48	7.40	7.38	
Temp (+/- 0.5)	C.	9.13	10.25	10.37	10.57	10.50	10.56	
Color	Visual	Che	clear	clear	clear	creer	clair	
Odor	Olfactory	Noan	NOAL	None	Non-	NO	No	

Comments:

primp set @ ~ 73'
Sampled @

	Monitoring Well Purging / Sampling Form											
Project Name and Number:		Scotia Navy	Depot									
Monitoring Well Number:		_MW-1	6	_ Date:	12/11,	117		-				
Samplers:		Ross McCre	dy and Joe S	Scalo	<u> </u>							
Sample Number:		MW-16		_ QA/QC	C Collected?	_No						
Purging / Sampling Method: Bladder Pump/Low Flow												
1. L = Well Depth:												
4. C = Column of Water in Well: 5. V = Volume of Water in Well =		9)(0.5D) ² (7.4	.8)	5.78 6094	feet gal	3-inch 4-inch	0.25					
6. 3(V) = Target Purge Volume	-,	Λ	-,	2.82		6-inch	0.50					
		D (inches) V (gal / ft)	1-inch 0.041	2-inch 0.163	3-inch 0.37	V given C 4-inch 0.65	6-inch 1.5					
Water Quality Readings Collecte	ed Using Units	YSI Pro Plus	s/ Hach 210)0Q	Readings							
Time	24 hr	1136	1191	1146	/20g	1213	1220	1225				
Water Level (0.33)	feet	63.75	63.78	63.74	63.79	63.79	63.79	63.79				
Volume Purged	gal	0	0.10	0.20	0.36	0.48	0.50	0.90				
Flow Rate	mL/min	200	200	200	2.0	200	200	200				
Turbidity (+/- 10%)	NTU	32.57	295./0	653.12	14.16	58.68	45.09	31.93				
Dissolved Oxygen (+/- 10%)	%	1139	116.6	169.8	104.9	99.4	94.1	938				
Dissolved Oxygen (+/- 10%)	mg/L	13.17	13.52	12.54	12.50	11.41	10.45	10.40				
Eh / ORP (+/- 10)	MeV	215.9	-97.1	- BS.6	-67.4	-60.3	-60.2	-60.1				
Specific Conductivity (+/- 3%)	mS/cm ^c	812.14	805.7	864.6	810-1	794.4	812.8	814.7				
Conductivity (+/- 3%)	mS/cm	562.0	556.6	564.1	5338	549.8	588.2	591.3				
pH (+/- 0.1)	pH unit	8.86	7.97	7.71	7.33	7.18	7.17	7.17				
Temp (+/- 0.5)	C"	8.74	8.74	7.39	7.16	8.92	10.53					
Color	Visual	Clear	Clear	clear	clear	cler		10.60 Clear				
Odor	Olfactory	No	Nu	No			cleor					
Odol	Onacion		14-	100	No	V)1	No	No				
Comments:) 66. ₍ (01				8						
							Page 1 of	2				

	Monito	oring Wel	l Purging	/ Sampli	ng Form			
Project Name and Number:		Scotia Navy	Depot					
Monitoring Well Number:		Mw-1	6	Date:	12/11/	17		
Samplers:		Ross McCre	edy and Joe S	Scalo				
Sample Number:		Mw-16	121177	QA/QC	Collected?	No		
Purging / Sampling Method:		Bladder Pun	np/Low Flov	v		**********		
 L = Well Depth: D = Riser Diameter (I.D.): W = Depth to Water: C = Column of Water in Well: V = Volume of Water in Well: 3 (V) = Target Purge Volume 	= C(3.14159	9)(0.5D) ² (7.4		(See pero) 0.17	feet feet gal gal	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50	
			Conversion	n factors to	determine \	/ given C		
		D (inches) V (gal / ft)	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5	
Water Quality Readings Collecte	ed Using	YSI Pro Plus	s/ Hach 210	00Q				
Parameter	Units				Readings			
Time	24 hr	1236	1254	1240	1245			
Water Level (0.33)	feet	63.79	63.79	63.78	63.79			
Volume Purged	gal	1.30	1.70	3.0	3.5			
Flow Rate	mL/min	300	300	300	350			
Turbidity (+/- 10%)	NTU	26.59	26.70	28.60	30.91			
Dissolved Oxygen (+/- 10%)	%	93.3	93.3	93.2	93.1			
Dissolved Oxygen (+/- 10%)	mg/L	10.39	10.35	10.28	16.30			
Eh / ORP (+/- 10)	MeV	100.5	97.6	94.9	94.5			
Specific Conductivity (+/- 3%)	mS/cm ^c	817.6	814.7	814.8	819.1			
Conductivity (+/- 3%)	mS/cm	591.8	591.2	595.1	598.7			
pH (+/- 0.1)	pH unit	7.16	7.12	7.10	7.10			
Temp (+/- 0.5)	C.	10.52	10.62	10.71	10.68			
Color	Visual	clear	clear	cleer	Clear			
Odor	Olfactory	No	NI	<i>N</i> 0	Ns			
Comments: 5.4	bleg	@	1245					
				× 4.500,770	-4-1		Page Lof (

Project Name and Number:		Scotia Navy	Depot					
Monitoring Well Number:		MW-2	4	_ Date:	12/12	//7		
Samplers:		Ross McCre	edy and Joe S	Scalo				
Sample Number:		MW-24	21217	QA/Q0	Collected?		148	
Purging / Sampling Method:		Bladder Pun	np/Low Flov	v				
1. L = Well Depth:		106-110		103.40	feet	D (inches)	D (feet)	1
2. D = Riser Diameter (I.D.):		(00 1/0		0.17	feet	1-inch	0.08	1
3. W = Depth to Water:		101		67.33	feet	2-inch	0.17	1
4. C = Column of Water in Well	:			36.06	feet	3-inch	0.25	1
5. V = Volume of Water in Well	= C(3.14159)(0.5D) ² (7.4	8)	5.87	gal	4-inch	0.33	1
6. 3(V) = Target Purge Volume				17.61	gal	6-inch	0.50	1
				8				
1.			Conversion	n factors to	determine	V given C		
			T					1
		D (inches)	I 1-inch	I 2-inch	l 3-inch	I 4-inch I	6-inch	
Water Quality Readings Collect	ed Using	D (inches) V (gal / ft) Y SI Pro Plu	1-inch 0.041 s/ Hach 210	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5	
Parameter	Units	V (gal / ft) Y SI Pro Plu	0.041 s/ Hach 210	0.163	0.37	0.65	1.5	
Parameter Time	Units 24 hr	V (gal / ft) YSI Pro Plu	0.041	0.163	Readings		1.5	1402
Parameter Time Water Level (0.33)	Units 24 hr feet	V (gal / ft) YSI Pro Plus 1332 67.40	0.041 s/ Hach 210	0.163	0.37 Readings 1747 67.40	1352	1.5 1357 G7.40	67.40
Parameter Time Water Level (0.33) Volume Purged	Units 24 hr feet gal	V (gal / ft) YSI Pro Plu: 1332 67.40 0	0.041 s/ Hach 210 1337 67.40 0.3	0.163	0.37 Readings 1>47 67.40	0.65 1352 67.40 1.05	1.5 /357 67.40 /.3c	67.40
Parameter Fime Water Level (0.33) Volume Purged Flow Rate	Units 24 hr feet gal mL/min	V (gal / ft) YSI Pro Plui 1332 67.40 0 277	0.041 s/ Hach 210 1337 67.40 0.3 275	0.163 000 Exa 1342 67.40 0.5 275	0.37 Readings 1347 67.40 0.75 275	0.65 1352 67.40 1.05 275	1.5 /357 67.40 /.35 275	67.40 1.50 275
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%)	Units 24 hr feet gal mL/min NTU	V (gal / ft) YSI Pro Plus 1332 67.40 0 277 8.54	0.041 s/ Hach 210 1337 67.40 0.3 275 10.00	0.163 000 Exc 1342 67.40 0.5 275 8.92	0.37 Readings 1747 67.40 0.75 2.75 6.35	0.65 1352 67.40 1.05 275 4.85	1.5 /357 67.40 /.3c 275 4.04	67.40 1.50 277 2.60
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min NTU %	V (gal / ft) YSI Pro Plu 1332 67.40 0 277 8.54 30.2	0.041 s/ Hach 210 1337 67.40 0.3 275 10.00 8.7	0.163 000 EX 1342 67.40 0.5 275 8.92 3.4	0.37 Readings 1247 67.40 0.75 275 6.35 2.3	0.65 1352 67.40 1.05 275 4.85 2.0	1.5 /357 67.40 /.35 275 4.04 1.8	67.40 1.50 275 2.60 1.7
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min NTU % mg/L	V (gal / ft) YSI Pro Plu 1332 67.40 0 277 8.54 30.2 3.48	0.041 s/ Hach 210 1337 67.40 0.3 275 10.00 8.7	0.163 000 Exa 67.40 0.5 275 8.92 3.4 0.38	0.37 Readings 1347 67.40 0.75 275 6.35 2.3 0.26	0.65 1352 67.40 1.05 275 4.85 2.0	1.5 /357 67.40 /.35 275 4.04 1.8 0.19	67.40 1.50 275 2.60 1.7
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	Units 24 hr feet gal mL/min NTU % mg/L MeV	V (gal / ft) YSI Pro Plus 1332 67.40 0 277 8.54 30.2 3.48 -159.1	0.041 s/ Hach 210 1337 67.40 0.3 275 10.00 8.7 1.00 -172.5	0.163 000 Exc 1342 67.40 0.5 275 8.92 3.4 0.38 ~181.0	0.37 Readings 1747 67.40 0.75 275 6.35 2.3 0.26 -184.2	0.65 1352 67.40 1.055 275 4.85 2.0 0.22 -1863	1.5 /357 67.40 /.35 275 4.04 1.8 0.19 -/86.2	67.40 1.50 275 2.60 1.7 0.17
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc	V (gal / ft) YSI Pro Plus 1332 67.40 0 277 8.54 30.2 3.48 -159.1	0.041 s/ Hach 210 1337 67.40 0.3 275 10.00 8.7 1.00 - 172.5 912.1	0.163 000 Exc 67.40 0.5 275 8.92 3.4 0.38 -181.0 16/2.0	0.37 Readings 1747 67.40 0.75 275 6.36 2.3 0.26 -184.2 1100	0.65 1352 67.40 1.05 275 4.85 2.0 0.22 -1863	1.5 /357 67.40 /.35 275 4.04 1.8 0.19 -/86.2 1160.2	67.40 1.50 275 2.60 1.7 0.17 -(86.1
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm	V (gal / ft) YSI Pro Plui 1332 67.40 0 277 8.54 30.2 3.48 -154.1 755.6 526.1	0.041 s/Hach 210 1337 67.40 0.3 275 10.00 8.7 1.00 -172.5 912.1	0.163 000 EX 67.40 0.5 275 8.92 3.4 0.33 ~181.0 /6/2.0 725.6	0.37 Readings 1747 67.40 0.75 275 6.35 2.3 0.26 -184.2 1100 790.1	0.65 1352 67.40 1.05 275 4.85 2.0 0.22 -1863 1142 822.5	1.5 /357 67.40 /.35 275 4.04 1.8 0.19 -/86.2 1160.2 838.6	67.40 1.50 277 2.60 1.7 0.17 -(86.1 1170.1 840.1
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) OH (+/- 0.1)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc pH unit	V (gal / ft) YSI Pro Plus 1332 67.40 0 277 8.54 30.2 3.48 -159.1 755.6 526.1 7.42	0.041 s/ Hach 210 67.40 0.3 275 10.00 8.7 1.00 -172.5 912.1 645.3 7.35	0.163 000 Example 1342 67.40 0.5 275 8.92 3.4 0.38 -181.0 1612.0 725.6 7.33	0.37 Readings 1747 67.40 0.75 275 6.35 2.3 0.26 -184.2 1100 750.1	0.65 1352 67.40 1.05 277 4.85 2.0 0.22 -1863 1142 822.5 7.32	1.5 /357 67.40 /.35 275 4.04 1.8 0.19 -/86.2 1160.2 838.6 7.31	67.40 1.50 275 2.60 1.7 0.17 -(86.1 1170.1 840.1 7.3>
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5)	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit C°	V (gal / ft) YSI Pro Plus 1332 67.40 0 277 8.54 30.2 3.48 -159.1 755.6 526.1 7.42 9.18	0.041 s/ Hach 210 1337 67.40 0.3 275 10.00 8.7 1.00 -172.5 912.1 645.3 7.35 9.80	0.163 000 Exc 1342 67.40 0.5 275 8.92 3.4 0.38 ~181.0 /6/2.0 725.6 7.33 10.22	0.37 Readings 1747 67.40 0.75 275 6.35 2.3 0.26 -184.2 1100 750.1 7.32 10.34	0.65 1352 67.40 1.065 275 4.85 2.0 0.22 -1863 1142 822.5 7.32 10.31	1.5 /357 67.40 /.37 275 4.04 1.8 0.19 -/86.2 1160.2 838.6 7.31	67.40 1.50 275 2.60 1.7 0.17 -(86.1 1170.1 840.1 7.30 10.19
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5) Color	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit C* Visual	V (gal / ft) YSI Pro Plus 1332 67.40 0 275 8.54 30.2 3.48 -159.1 755.6 526.1 7.42 9.18 chur	0.041 s/Hach 210 67.40 0.3 275 (0.00 8.7 1.00 -172.5 12.1 645.3 7.35 9.80 cle 17	0.163 000 Exc 1342 67.40 0.5 275 8.92 3.4 0.38 -181.0 16/2.0 725.6 7.33 10.22 Cheer	0.37 Readings 1747 67.40 0.75 275 6.35 2.3 0.26 -184.2 1100 750.1 7.32 10.34 cleat	0.65 1352 67.40 1.05 275 4.85 2.0 0.22 -1863 1142 822.5 7.32 10.31 clear	1.5 1357 67.40 1.35 275 4.04 1.8 0.19 -186.2 1160.2 838.6 7.31 10.21 clear	67.40 1.50 275 2.60 1.7 0.17 -(86.1 1170.1 840.1 7.33 10.19 checr
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5) Color	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit C°	V (gal / ft) YSI Pro Plus 1332 67.40 0 277 8.54 30.2 3.48 -159.1 755.6 526.1 7.42 9.18	0.041 s/ Hach 210 1337 67.40 0.3 275 10.00 8.7 1.00 -172.5 912.1 645.3 7.35 9.80	0.163 000 Exc 1342 67.40 0.5 275 8.92 3.4 0.38 ~181.0 /6/2.0 725.6 7.33 10.22	0.37 Readings 1747 67.40 0.75 275 6.35 2.3 0.26 -184.2 1100 750.1 7.32 10.34	0.65 1352 67.40 1.065 275 4.85 2.0 0.22 -1863 1142 822.5 7.32 10.31	1.5 /357 67.40 /.37 275 4.04 1.8 0.19 -/86.2 1160.2 838.6 7.31	67.40 1.50 275 2.60 1.7 0.17 -(86.1 1170.1 840.1 7.30 10.19
	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cm pH unit C* Visual Olfactory	V (gal / ft) YSI Pro Plus 1332 67.40 0 275 8.54 30.2 3.48 -159.1 755.6 526.1 7.42 9.18 chur	0.041 s/Hach 210 67.40 0.3 275 (0.00 8.7 1.00 -172.5 12.1 645.3 7.35 9.80 cle 17	0.163 000 Exc 1342 67.40 0.5 275 8.92 3.4 0.38 -181.0 16/2.0 725.6 7.33 10.22 Cheer	0.37 Readings 1747 67.40 0.75 275 6.35 2.3 0.26 -184.2 1100 750.1 7.32 10.34 cleat	0.65 1352 67.40 1.05 275 4.85 2.0 0.22 -1863 1142 822.5 7.32 10.31 clear	1.5 1357 67.40 1.35 275 4.04 1.8 0.19 -186.2 1160.2 838.6 7.31 10.21 clear	67.40 1.50 275 2.60 1.7 0.17 -(86.1 1170.1 840.1 7.33 10.19 checr

Page 1 of /

	Monite	oring Well	Purging	/ Sampli	ng Form			
Project Name and Number:		Scotia Navy	Depot	V-2				_
Monitoring Well Number:		MW-2	6	Date:	12/12	רי/	0.	
Samplers:		Ross McCre	dy and Joe S	Scalo				
Sample Number:		MW-2	12121	7 QA/Q0	Collected?	Dr. 1	12121	7
Purging / Sampling Method:		Bladder Pum	p/Low Flow	v				_
1. L = Well Depth:		100-110		102.40	feet	D (inches)	D (feet)	i 1
2. D = Riser Diameter (I.D.):		10	17	0.17	feet	1-inch	0.08	1
3. W = Depth to Water:		~9		63.62	_	2-inch	0.17	1
4. C = Column of Water in Well:		~ /	0	39.78	feet	3-inch	0.25	1
5. V = Volume of Water in Well	= C(3.14159	9)(0.5D) ² (7.48	8)	6.48	= gal	4-inch	0.33	
6. 3(V) = Target Purge Volume				19.45	-	6-inch	0.50	
		D (inches)	1-inch	n factors to	3-inch	4-inch	6-inch]
		V (gal / ft)	0.041	0.163	0.37	0.65	1.5	
Water Quality Readings Collect Parameter	Units	YSI Pro Plus	a, macin 210		Readings			
Time	24 hr	826	831	836	841	846	851	856
Water Level (0.33)	feet	61.90	61.90	61.90	61.90	61.90	61.90	61.90
Volume Purged	gal	4	0.25	0.50	0.70	0.90	1.00	1.26
Flow Rate	mL/min	200	150	150	156	160	160	160
Turbidity (+/- 10%)	NTU	23.95	29.90	56.73	64.41	81.68	86.02	89.37
Dissolved Oxygen (+/- 10%)	%	/118.3	115.6	103.3	87.0	73.1	61.3	44.2
Dissolved Oxygen (+/- 10%)	mg/L	14.65	13.97	12.31	10.31	8.59	7.21	5.18
Eh / ORP (+/- 10)	MeV	142.2	-12.4	-17.7	-106.2	-100.4	-97.5	- 93.1
Specific Conductivity (+/- 3%)	mS/cm ^c	335.5	388.5	409.8	459.2	567.1	538.1	570.1
Conductivity (+/- 3%)	mS/cm	244.8	255.9	274.1	310.6	345.6	364.8	390.9
pH (+/- 0.1)	pH unit	8.95	8.48	8.23	8.14	8.01	7.91	7.86
Γemp (+/- 0.5)	C.	5.60	7,22	7.76	8.15	8.34	8.27	8.47
Color	Visual	Cher	clear	clev	Clear	clear	clear	cteer
Odor	Olfactory	Nonz	Non=	Non	None	None	None	None
Comments:	a 3 2						a	
							Page 1 of	

	Monite	oring Well	Purging	/ Sampli	ng Form			
Project Name and Number:		Scotia Navy	Depot					
Monitoring Well Number:		MW-2	6	Date:	12/17	4/17		
Samplers:		Ross McCre	dy and Joe S	calo				
Sample Number:		MW-20	121217	QA/QC	Collected?	Dup.	1 121217	<u> </u>
Purging / Sampling Method:		Bladder Pum	np/Low Flow	1	,			
1. L = Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Depth to Water: 4. C = Column of Water in Well: 5. V = Volume of Water in Well		9)(0.5D) ² (7.4		(See 1200)	feet feet feet feet gal	D (inches) 1-inch 2-inch 3-inch 4-inch	D (feet) 0.08 0.17 0.25 0.33	
6. 3(V) = Target Purge Volume				*	gal	6-inch	0.50	
			Conversion	n factors to	determine '	V given C		
		D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch	
		V (gal / ft)	0.041	0.163	0.37	0.65	1.5	
Water Quality Readings Collect Parameter	Units	YSI Pro Plus		1-	Readings	-		
Time	24 hr	901	906	911	916	921	926	
Water Level (0.33)	feet	61.96	61.90	61.90	61-90	61.98	61.98	
Volume Purged	gal	1.40	1.60	1.80	2.20	2140	2.60	
Flow Rate	mL/min	160	160	160	160	160	160	
Turbidity (+/- 10%)	NTU	16.70		57.96	56.20	5647	57.38	
Dissolved Oxygen (+/- 10%)	%	35.2	24.9	17.7	8.4	7.1	6.9	
Dissolved Oxygen (+/- 10%)	mg/L	4.13	2.90	2.07	0.97	869	0.66	
Eh / ORP (+/- 10)	MeV	-136.8	-148.0	- 155.0	6.00	-17(.6	-173.0	
Specific Conductivity (+/- 3%)	mS/cm ^c	581.7	593.2	597.1	607.1	6.81	613-5	
Conductivity (+/- 3%)	mS/cm	398.2	407.9	4130	422.1	425.6	425.6	
pH (+/- 0.1)	pH unit	7.82	7.77	7.74	7.68	7.65	7.65	
Temp (+/- 0.5)	C.	8-50	8.69	8.30	9.00	8.99	8.97	
Color	Visual	cleur	Cled	Cleur	cler	clear	cter	
Odor	Olfactory	None	None	Now	Non-	Na	Din	
Comments:	ampie b	@ 92	6					9
							Page 2 of	2_

Monitoring Well Purging / Sampling Form Project Name and Number: Scotia Navy Depot Monitoring Well Number: Date: 12/14/17 MW-28 Samplers: Ross McCredy and Joe Scalo Sample Number: MW - 28 121417 QA/QC Collected? No Purging / Sampling Method: Bladder Pump/Low Flow 1. L = Well Depth: 71.07 feet D (inches) D (feet) 67-72 2. D = Riser Diameter (I.D.): 0.17 feet 1-inch 0.08 3. W = Depth to Water: 0.17 feet 2-inch 66.72 4. C = Column of Water in Well: feet 3-inch 0.25 4.35 5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$ 4-inch 0.33 gal 0.71 6. 3(V) = Target Purge Volume 6-inch 0.50 gal 2.13 Conversion factors to determine V given C D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch V (gal / ft) 0.041 0.37 0.163 0.65 1.5 Water Quality Readings Collected Using YSI Pro Plus/ Hach 2100Q Parameter Units Readings Time 24 hr 900 905

Water Level (0.33)	teet	46.15	6615	(06·M	66.65	66.15	16.14	
Volume Purged	gal	٥	0.4	0.8	1.2	1.4	1.8	
Flow Rate	mL/min	240	246	240	240	240	240	
Turbidity (+/- 10%)	NTU	245144	205.2	224.1	225.10	223.08	229.8	
Dissolved Oxygen (+/- 10%)	%	87.1	76.2	75.5	75.2	74.7	75.1	
Dissolved Oxygen (+/- 10%)	mg/L	10.00	864	8.47	8.47	8.40	8.45	
Eh / ORP (+/- 10)	MeV	-1.4	U.7	14.2	17.1	18.2	19.0	
Specific Conductivity (+/- 3%)	mS/cm ^c	779.8	784.8	788.8	792.4	787.9	790.2	
Conductivity (+/- 3%)	mS/cm	544.0	559.0	562.1	1565.0	563.3	564.1	
pH (+/- 0.1)	pH unit	7.54	7.38	7.31	7,21	7.18	7.15	
Temp (+/- 0.5)	C.	9.24	9.73	10.78	10.12	10.08	10.11	
Color	Visual	cloudy	cloudy	clus	Clea	chec	clev	
Odor	Olfactory	None	Non	None	Nom	Nw	Non	

set pump @ "69'
Sampled @ 925 Comments:

Monitoring Well Purging / Sampling Form Project Name and Number: Scotia Navy Depot MW-29 Date: 12/14/17 Monitoring Well Number: Samplers: Ross McCredy and Joe Scalo Sample Number: QA/QC Collected? MW-29 121417 Purging / Sampling Method: Bladder Pump/Low Flow 71.84 feet 1. L = Well Depth: D (inches) D (feet) 67.72 2. D = Riser Diameter (I.D.): 0.17 feet 1-inch 80.0 3. W = Depth to Water: 6690 feet 2-inch 0.17 4. C = Column of Water in Well: 4.94 feet 3-inch 0.25 5. $V = Volume of Water in Well = C(3.14159)(0.5D)^2(7.48)$ 4-inch 0.33 0.81 gal 6. 3(V) = Target Purge Volume 0.50 gal 6-inch 2.41 Conversion factors to determine V given C D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch V (gal / ft) 0.041 0.37 1.5 0.163 0.65 Water Quality Readings Collected Using YSI Pro Plus/ Hach 2100Q Parameter Units Readings Time 24 hr 950 955 1000 1005 1010 66.92 Water Level (0.33) 6692 feet 66.92 66.92 66.92 Volume Purged gal 0.4 6.8 1,2 1.6 Flow Rate mL/min 250 250 250 250 270 Turbidity (+/- 10%) 19.60 1.54 NTU 3.39 1.50 11.01 Dissolved Oxygen (+/- 10%) 78.9 77.0 % 77.5 77.2 77.5 8.79 Dissolved Oxygen (+/- 10%) 9.00 8.73 mg/L 8.67 8.65 Eh / ORP (+/- 10) MeV 25.1 30.9 29.9 32.1 33.7 777.0 782.3 Specific Conductivity (+/- 3%) mS/cm^c 768.6 778.2 780.5 £57.6 Conductivity (+/- 3%) mS/cm 539.6 550.5 560.1 559.2

Comments:

pH (+/- 0.1)

Color

Odor

Temp (+/- 0.5)

set pump @ 69

pH unit

C*

Visual

Olfactory

7.30

9.35

chil

Non

gample 6 0 1010

7.07

9.96

clev

No

7.15

7.68

cleul

Na

7.03

10.19

Clev

NO

7.01

10.39

coel

MD

MW - 30	3 o dy and Joe S		12/13/	17			
oss McCred	dy and Joe S		12/13/	17			1
MW - 30		calo			_		
•							
adder Pum	121711	QA/Q0	Collected?	N9			
	p/Low Flow		· · · · · · · · · · · · · · · · · · ·		- .		
		91.30	feet	D (inches)	D (feet)		
		0.17	feet	1-inch	0.08	ĺ	
		64.35	feet	2-inch	0.17		
		24.95	feet	3-inch	0.25		
0.5D) ² (7.48	3)	4.06	- gal	4-inch	0.33		1
		12.2	gal	6-inch	0.50	l	
	Conversion	factors to	determine \	/ given C			
(inches)	1-inch	2-inch	3-inch	4-inch	6-inch	1	ı
(gal / ft)	0.041	0.163	0.37	0.65	1.5		
			Readings				
634	1039	1050	1055	1100	1105	1110	1
6.66	66.60	66.60	66.6	66.6	66.6	46.6	66
5	2.5	3.0	3.25	3.30	3.50	375	닉
25.8	220	220	220	720	220	240	2
125.0	120.1	21.3	16.3	16. (17.7		16
107.1	160.2	99.8	109.7	109.3	1A4.058:1	43.67.2	7.
12.2	11.96	11.07	12.28	12.30	1501		0.
157.6	-161.4	- 1655	-161.8	-1620	-159.4	-161.4	-1
379.4	6465	891.6	1053.7	1066.4	1099	1051.4	100
264.4	460.4	620.6	754.1	762.2	763.3	760.3	7
7.87	7.64	7.52	7.48	7.43	7.44	7.50	7.
9.45	9.95		10.08	10,08	10.//	10,01	10
Afriels	Clay	cky	Che V	Clev	Check	Cher	Ch
suh/	Sul Li	suhr	sulkr	SVIE	syller	Sulhe .	S
-lowte	n Cel	i	at tubia	wellace	له عام له	der	
794) ON	01	1, 19.00		,	
/	1 111	0					
	Flow - H	Flow - Har Cell	Flow - How Cell i out	Flow - then Cell i out of tables @ 1120	Flow - How Cell is out of tuling, replaced	Plan - the Cell i out of thing, replaced blad	Flow - the Cell i out of tuling, replaced bladder,

Page 1 of

Monitoring Well Purging / Sampling Form Project Name and Number: Scotia Navy Depot Date: 12/13/17 Monitoring Well Number: MW-31 Samplers: Ross McCredy and Joe Scalo QA/QC Collected? _ No Sample Number: MW.31 121317 Purging / Sampling Method: Bladder Pump/Low Flow 91.60 1. L = Well Depth: feet D (inches) D (feet) 82-9-2. D = Riser Diameter (I.D.): 0.17 feet 1-inch 0.08 66.14 (2)inch 3. W = Depth to Water: feet 0.17 4. C = Column of Water in Well: 0.25 3-inch 25.46 feet 5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$ 4-inch 0.33 4.15 gal 6. 3(V) = Target Purge Volume 6-inch 0.50 12.45 gal Conversion factors to determine V given C D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch V (gal / ft) 0.041 0.163 0.37 0.65 1.5 Water Quality Readings Collected Using YSI Pro Plus/ Hach 2100Q Parameter Readings Time 24 hr 1200 1215 1155 1205 1210 1128 Water Level (0.33) feet 66.42 66.4 L 66.42 66.42 66.42 66.42 Volume Purged 0 0.41 gal 0.25 0.55 0.70 1.00 Flow Rate mL/min 220 220 220 220 224 220 Turbidity (+/- 10%) NTU 8.26 10.71 8.46 9.02 8.72 8.62 2.4 Dissolved Oxygen (+/- 10%) % 29.1 3.6 2.2 1.9 10.5 Dissolved Oxygen (+/- 10%) 3.46 1.22 mg/L D.41 0.28 0.22 0.19 - 200.1 Eh / ORP (+/- 10) MeV - 173.4 208.8 -190.3- 202.7 - 208.0 419.1 417.5 420.8 Specific Conductivity (+/- 3%) mS/cm^c 412.9 412.4 4134 293.9 284.7 Conductivity (+/- 3%) mS/cm 290.9 291.4 294.4 288.9 7.70 7.68 pH (+/- 0.1) pH unit 797 7.72 9.69 7.80 01.60 91.23 Temp (+/- 0.5) C* 8.29 9.20 9,50 cleur clear cher Color clar Visual Clear chec Odor Olfactory W None No No NO N pins @ 87' 5 and red @ 1215 Comments:

Page 1 of

	Monito	oring Well	Purging	/ Sampli	ng Form		
Project Name and Number:		Scotia Navy	Depot				
Monitoring Well Number:		MW-32		Date: 12/18/17			
Samplers:		Ross McCre	dy and Joe S	calo			
Sample Number:		MW-32	121317	QA/Q0	C Collected?	No	
Purging / Sampling Method:		Bladder Pun	p/Low Flow	į.			
1. L = Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Depth to Water: 4. C = Column of Water in Well: 5. V = Volume of Water in Well 6. 3(V) = Target Purge Volume		82-92 (0.5D) ² (7.4		91.55 0.17 64.55 27.22 4.44 13.31	_feet _feet _feet _feet _gal _gal	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	0.08 0.17 0.25 0.33 0.50
		,	Conversion	n factors to	determine	V given C	
		D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
		V (gal / ft)	0.041	0.163	0.37	0.65	1.5
Water Quality Readings Collecto	ed Using	YSI Pro Plus	s/ Hach 210	0Q		_	
Parameter	Units				Readings	_	
Time	24 hr	821	626	831	836	841	
Water Level (0.33)	feet	64.81	64.81	64.80	64.80	64.80	
Volume Purged	gal	0	0.3	0.8	1.4	1.6	
Flow Rate	mL/min	170	190	225	225	225	
Turbidity (+/- 10%)	NTU	20.14	7.16	5.31	5.32	5.11	
Dissolved Oxygen (+/- 10%)	%	66.7	9.2	12.1	12.4	13.1	-
Dissolved Oxygen (+/- 10%)	mg/L	7.98	1.65	1.38	1.41	1.50	
Eh / ORP (+/- 10)	MeV	-151.3	-183.5	- 181.7	-181.7	-181.9	
Specific Conductivity (+/- 3%)	mS/cm ^c	320.3	316.9	375.1	355.8	361.1	
	mS/cm	218.8	221.8	250.	250.8	2563	
Conductivity (+/- 3%)		7.49	7.36	7.40	7.41	7.42	
Conductivity (+/- 3%) pH (+/- 0.1)	pH unit	1.77	1.00				
	pH unit	7.94	7.29	9.55	9.49	7.78	
pH (+/- 0.1)						9.78 Chev	

Comments:

Monitoring Well Purging / Sampling Form Project Name and Number: Scotia Navy Depot Date: 12/13/17 MW-33 Monitoring Well Number: Samplers: Ross McCredy and Joe Scalo Sample Number: MW-33 121317 QA/QC Collected? Purging / Sampling Method: Bladder Pump/Low Flow 1. L = Well Depth: 92.33 feet D (inches) D (feet) 2. D = Riser Diameter (I.D.): 0.17 feet 82-92 1-inch 80.0 **64.37** feet 3. W = Depth to Water: 2-inch 0.17 4. C = Column of Water in Well: 3-inch 0.25 27.96 feet $5. V = Volume of Water in Well = C(3.14159)(0.5D)^2(7.48)$ 4-inch 0.33 gal 6. 3(V) = Target Purge Volume 13.6つ gal 6-inch 0.50 Conversion factors to determine V given C D (inches) 4-inch 1-inch 2-ingh 3-inch 6-inch V (gal / ft) 0.041 0.163 0.37 0.65 1.5

Water Quality Readings Collected Using

YSI Pro Plus/ Hach 2100Q

Parameter	Units	9	a	9	Readings			
Time	24 hr	1015	ROLO	6030	\$35	K 940	945	
Water Level (0.33)	feet	64.38	GU 38	64.32	64.38	64.38	64.38	
Volume Purged	gal	0	8.30	090	1.3	1.7	2.0	
Flow Rate	mL/min	150	150	150	150	151	124	
Turbidity (+/- 10%)	NTU	6.00	7.38	6.67	6.62	6.40	6.38	
Dissolved Oxygen (+/- 10%)	%	32.8	46.1	58.3	00.0	60.9	60.9	
Dissolved Oxygen (+/- 10%)	mg/L	377	5.24	6.58	4.70	6.80	(d.es	74.5
Eh / ORP (+/- 10)	MeV	-44.4	- 38.8	- 27.2	-23.3	- 26.8	-20.4	
Specific Conductivity (+/- 3%)	mS/cm ^c	506.9	509.0	511.6	512.6	514.1	514.3	
Conductivity (+/- 3%)	mS/cm	354.0	357.5	364.8	369,5	370.4	370.4	
pH (+/- 0.1)	pH unit	7.41	7.43	7.48	7.50	7.52	7.53	
Temp (+/- 0.5)	C.	9.20	9.32	9.90	10.32	10-37	10.70	
Color	Visual	Cher	cle d	cleir	Clar	elar	cle or	
Odor	Olfactory	None	Here	100	No	טיען	W	

Comments:

Set pump @ 187'
Sampled @ 945

Monitoring Well Purging / Sampling Form Project Name and Number: Scotia Navy Depot MW-34 Date: 12/12/17 Monitoring Well Number: Samplers: Ross McCredy and Joe Scalo MW-34 12/12/17 QA/QC Collected? Sample Number: Purging / Sampling Method: Bladder Pump/Low Flow 82-92 D (inches) D (feet) 1. L = Well Depth: 88.10 feet 0.08 0.17 feet 1-inch 2. D = Riser Diameter (I.D.): 0.17 6154 feet 2-inch 3. W = Depth to Water: feet 3-inch 0.25 4. C = Column of Water in Well: 5. V = Volume of Water in Well = C(3.14159)(0.5D)²(7.48) 0.33 4-inch 4.33 gal 6-inch 0.50 6. 3(V) = Target Purge Volume gal 13.0 Conversion factors to determine V given C D (inches) 2-inch 3-inch 4-inch 6-inch 1-inch 1.5 V (gal / ft) 0.041 0.163 0.37 0.65 YSI Pro Plus/ Hach 2100Q Water Quality Readings Collected Using Readings Parameter 24 hr 1036 1071 1046 1057 Time 4 1021 1026 1091 61.80 feet 61.80 61.20 Water Level (0.33) 61.80 6680 61.80 61.80 1.70 Volume Purged 0 0.40 0.60 1.50 gal 0.19 1.02 160 160 Flow Rate mL/min 160 160 166 160 160 4.20 NTU 4.46 4.48 4.31 Turbidity (+/- 10%) 12.95 6.77 20.60 24.1 10.7 15.2 Dissolved Oxygen (+/- 10%) % 36.6 14.2 22.2 23.4 4.27 1.21 1.67 1.46 Dissolved Oxygen (+/- 10%) 2.61 2.70 mg/L 1.60 Eh / ORP (+/- 10) -1336 MeV -129.8 - 145.7 -1489 142.3 - 136.8 -133.4 429.0 431.1 425.3 425.2 Specific Conductivity (+/- 3%) mS/cm^c 335.5 378.9 4285 2.36.1 311.6 Conductivity (+/- 3%) mS/cm 271.7 3138 310.0 310.0 310.1 7.49 7.45 7.40 pH (+/- 0.1) pH unit 7.40 757 7.53 7.63 10.80 Temp (+/- 0.5) C. 9.46 10.05 10.60 10.72 10.78 10.73 cleat des eker Color Visual clear clear cteci chegr

None

None

Comments:

Odor

Pump sut @ 85'
Sampled @

NONe

None

Olfactory

None

None

None

Monitoring Well Purging / Sampling Form Project Name and Number: Scotia Navy Depot MW-35 Date: 12/12/17 Monitoring Well Number: Samplers: Ross McCredy and Joe Scalo QA/QC Collected? M5/MST Sample Number: MW-35 121217 Purging / Sampling Method: Bladder Pump/Low Flow 82-92 1. L = Well Depth: 92.34 feet D (inches) D (feet) 2. D = Riser Diameter (I.D.): feet 1-inch 0.08 3. W = Depth to Water: feet 2-inch 0.17 61.40 4. C = Column of Water in Well: 0.25 3-inch feet 5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$ 4-inch 0.33 gal 6. 3(V) = Target Purge Volume 6-inch 0.50 15.12 gal Conversion factors to determine V given C

D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
V (gal / ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Readings Collected Using

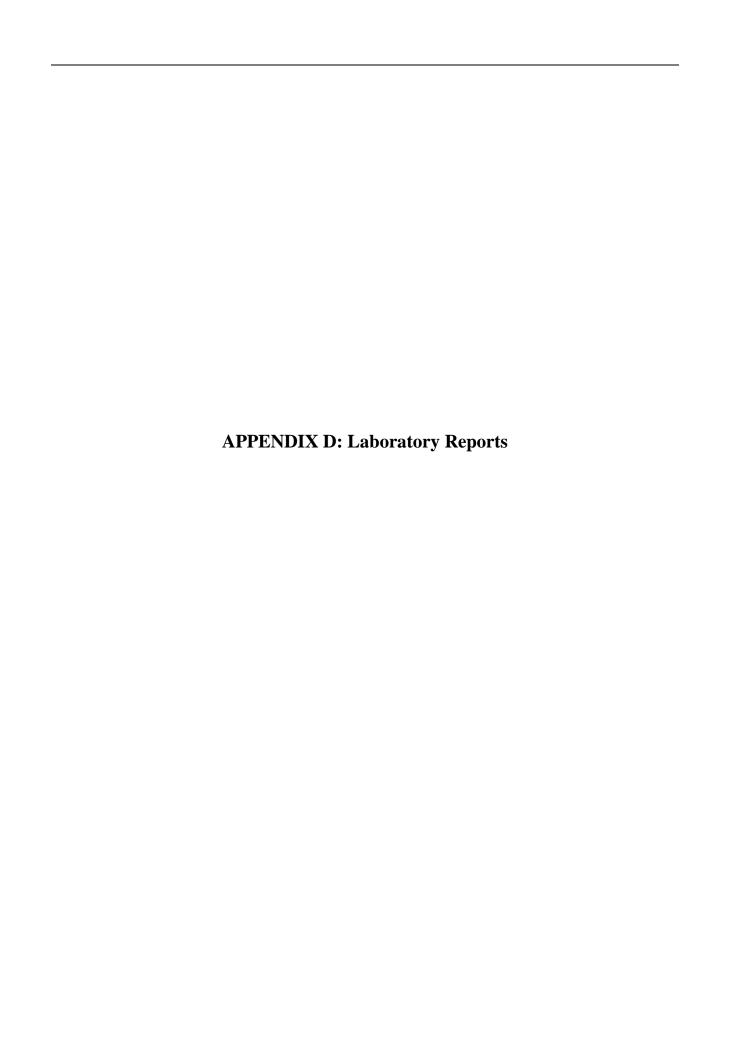
YSI Pro Plus/ Hach 2100Q

Parameter	Units				Readings			
Time	24 hr	1124	1129	1134	11301	1144	1149	1154
Water Level (0.33)	feet	61.50	61.50	01.50	61.50	61.50	@1.50	61.50
Volume Purged	gal	0	0.20	0.40	0.60	0.90	1.40	1.70
Flow Rate	mL/min	/8 ₀	180	180	180	180	180	180
Turbidity (+/- 10%)	NTU	33.29	32.48	27.96	21.83	15.81	14.10	13.31
Dissolved Oxygen (+/- 10%)	%	54.4	45.5	44.0	43.3	43.8	43.2	43.7
Dissolved Oxygen (+/- 10%)	mg/L	6.21	5.10	4.92	4.82	4.85	4.78	4.84
Eh / ORP (+/- 10)	MeV	- 11.8	-3.0	-1.5	-0.5	-0.7	-0.7	0.4
Specific Conductivity (+/- 3%)	mS/cm ^c	386.5	438.6	448.4	453,3	458.1	461.4	464.5
Conductivity (+/- 3%)	mS/cm	272.6	314.9	327.7	328.8	333.1	335.7	338.1
pH (+/- 0.1)	pH unit	7.31	7.42	7.45	7.46	7.45	7.45	7.44
Temp (+/- 0.5)	C.	9.67	10.25	10.42	10.63	10.71	10,74	10.75
Color	Visual	cleu	Cleir	clear	Clear	cler	clear	cleir
Odor	Olfactory	None	None	Nin-	No	No	100	601

Comments:

Pump set e ~37'
Sampled @ 1154

APPENDIX B: Field Calibration Forms


Calibration Log

Data	12/10	T:	11.00		F.A
Date:	12/11/17	Time:	1100	Instrument:	Exo.
	PH ₁ 4.25			270.1	-> - N/A
		->	3.99 ORP	2011	
	PH ₂ 7.13	>	7.00 Cond.	1422	-> /4/3
	PH ₃ 9.17	->	/0.0\ Turb.	N/A	-> <u>N/A</u>
Date:	12/12/17	Time:	800	Instrument:	Exon
	PH ₁ 4.12	->	4.00 ORP	236.1	-> _220.0
	PH ₂ 9.78	->	(0.01 Cond.	the state of the s	-> (413
	PH ₃ 7.16		7.00 Turb.	100	-> NA
Date:	12/12/17	Time:	730	Instrument:	Exo2
	PH ₁ 4,16	->	4.00 ORP	242.7	-> _220.1_
	PH ₂ 7.30	->	Zor Cond.		->
5	PH ₃ 10.(1	->	10.02 Turb.	The state of the s	-> <u>N(A</u>
Date:	1414/17	Time:	*	Instrument:	
	PH ₁ 4.2	<u>o</u> ->	4.01 ORP	244.7	-> 220.5
	PH ₂ 7.12	->	7.00 Cond.	1460	-> [4(7
	PH ₃ 9.79	->	(0.02 Turb.	NIA	-> <u>~(A</u>
Date:		Time:		Instrument:	
	PH ₁	->	ORP		->
	PH ₂	->	Cond.		->
	4				
	PH ₃	->	Turb.		->
Date:				Instrument:	->
Date:		->		Instrument:	->
Date:	PH ₃	-> Time:	Turb.	Instrument:	

December 2017 Quarterly Monitoring Report The Defense National Stockpile Center Scotia Depot Appendix C Hydraulic Gradient and Velocity Calculations

Hydraulic Gra	dient Calculation		aha	mae in aroundwat	tor alonati	on Δh
		hydrai	ılic gradient = Cha	inge in groundwat change in dist		$\frac{\partial h}{\partial L} = \frac{\Delta h}{\Delta L}$
					·uncc	AL
Dec 2017 Data	a	GW Elevation (ft)	Delta Elevation (ft)	Delta Distance (ft)	Gradient	Average Gradient (ft/ft
	MW-25	226.7	2.05	540		
Pair 1	MW-26	224.65	2.03	540	0.003796	
	GEP-3	226.67	1.68	420		0.003997
Pair 2	MW-13	224.99	1.08	420	0.004	0.003997
	MW-17	227.25	1.72	410		
Pair 3	MW-28	225.53	1.72	410	0.004195	
•	Conductivity (K) (ft/day)	15.66 193.8				
ingii riyaraane	conductivity (it) (it) day)	155.0	1			
Darcy V	elocity Low (ft/day)	0.06]			
Darcy V	elocity High (ft/day)	0.77]			
Seepage Velo	city					
		Se	epage $Velocty = \frac{K}{2}$	$\frac{\times hydraulic\ gradient}{n} =$	= Darcy Velo	ocity_
		T			n	
Porosity (n)	0.4				n	
Porosity (n) Seepage 1	0.4 Velocity Low (ft/day)	0.16]		n	

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11, MA PA0102, MD 128, VA 460157, WV 343

December 27, 2017

Mr. John Santacroce AECOM - LATHAM NY 40 British American Blvd. Albany, NY 12210

Certificate of Analysis

Project Name:

2015-SCOTIA NAVY DEPOT-PO

Workorder:

2282785

Purchase Order:

66432/60440641.11

60440641

Workorder ID: ANL005|60440641

Dear Mr. Santacroce:

Enclosed are the analytical results for samples received by the laboratory on Wednesday, December 13, 2017.

The ALS Environmental laboratory in Middletown, Pennsylvania is a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory and as such, certifies that all applicable test results meet the requirements of NELAP.

If you have any questions regarding this certificate of analysis, please contact Mrs. Vanessa N Badman (Project Coordinator) at (717) 944-5541.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable. For a specific list of accredited analytes, refer to the certifications section of the ALS website at www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads.

This laboratory report may not be reproduced, except in full, without the written approval of ALS Environmental.

ALS Spring City: 10 Riverside Drive, Spring City, PA 19475 610-948-4903

CC: Ms. Kelly Lurie, Mr. Scott Underhill

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Vanessa M. Badman

Mrs. Vanessa N Badman **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

SAMPLE SUMMARY

Workorder: 2282785 ANL005|60440641

Lab ID	Sample ID	Matrix	Date Collected	Date Received	Collected By
2282785001	MW-20 121217	Ground Water	12/12/2017 09:26	12/13/2017 09:13	Collected by Client
2282785002	DUP-1 121217	Ground Water	12/12/2017 00:00	12/13/2017 09:13	Collected by Client
2282785003	EB-1 121217	Ground Water	12/12/2017 10:01	12/13/2017 09:13	Collected by Client
2282785004	MW-34 121217	Ground Water	12/12/2017 10:51	12/13/2017 09:13	Collected by Client
2282785005	MW-35 121217	Ground Water	12/12/2017 11:54	12/13/2017 09:13	Collected by Client
2282785006	MW-24 121217	Ground Water	12/12/2017 14:12	12/13/2017 09:13	Collected by Client

Report ID: 2282785 - 12/27/2017 Page 2 of 22

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DOD ELAP: A2LA 0818.01 State Certifications: DE ID 11, MA PA0102, MD 128, VA 460157, WV 343

SAMPLE SUMMARY

Workorder: 2282785 ANL005|60440641

Notes

- Samples collected by ALS personnel are done so in accordance with the procedures set forth in the ALS Field Sampling Plan (20 -Field Services Sampling Plan).
- -- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- -- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- -- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- -- The Chain of Custody document is included as part of this report.
- -- All Library Search analytes should be regarded as tentative identifications based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.
- -- Parameters identified as "analyze immediately" require analysis within 15 minutes of collection. Any "analyze immediately" parameters not listed under the header "Field Parameters" are preformed in the laboratory and are therefore analyzed out of hold time.
- -- Method references listed on this report beginning with the prefix "S" followed by a method number (such as S2310B-97) refer to methods from "Standard Methods for the Examination of Water and Wastewater".
- -- For microbiological analyses, the "Prepared" value is the date/time into the incurbator and the "Analyzed" value is the date/time out the incubator.

Standard Acronyms/Flags

- J Indicates an estimated value between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) for the analyte
- U Indicates that the analyte was Not Detected (ND)
- N Indicates presumptive evidence of the presence of a compound
- MDL Method Detection Limit
- PQL Practical Quantitation Limit
- RDL Reporting Detection Limit
- ND Not Detected indicates that the analyte was Not Detected at the RDL
- Cntr Analysis was performed using this container

RegLmt Regulatory Limit

- LCS Laboratory Control Sample
- MS Matrix Spike
- MSD Matrix Spike Duplicate
- DUP Sample Duplicate
- %Rec Percent Recovery
- RPD Relative Percent Difference
- LOD DoD Limit of Detection
- LOQ DoD Limit of Quantitation
- DL DoD Detection Limit
- I Indicates reported value is greater than or equal to the Method Detection Limit (MDL) but less than the Report Detection Limit (RDL)
- (S) Surrogate Compound
- NC Not Calculated
- * Result outside of QC limits

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2282785 ANL005|60440641

Lab ID: 2282785001

Report ID: 2282785 - 12/27/2017

Sample ID:

MW-20 121217

Date Collected: 12/12/2017 09:26

Matrix: Ground Water

Date Received: 12/13/2017 09:13

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared By	Analyzed	Ву	Cnt
VOLATILE ORGANICS						97.04				4	
Carbon Tetrachloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α
1,1-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α
1,1-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α
cis-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α
trans-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α
Tetrachloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α
1,1,1-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α
1,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α
Trichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared By	Analyzed	Ву	Cnt
1,2-Dichloroethane-d4 (S)	108		%	81 - 118			SW846 8260C		12/20/17 03:31	CJG	Α
4-Bromofluorobenzene (S)	108		%	85 - 114			SW846 8260C		12/20/17 03:31	CJG	Α
Dibromofluoromethane (S)	99.9		%	80 - 119			SW846 8260C		12/20/17 03:31	CJG	Α
Toluene-d8 (S)	106		%	89 - 112			SW846 8260C		12/20/17 03:31	CJG	Α
LIGHT HYDROCARBON GA	SES										
Ethane	0.50U	U	ug/L	1.0	0.50	0.25	RSK 175		12/19/17 02:03	EGO	D
Ethene	0.75U	U	ug/L	1.5	0.75	0.31	RSK 175		12/19/17 02:03	EGO	D
Methane	20.7		ug/L	0.50	0.25	0.13	RSK 175		12/19/17 02:03	EGO	D
WET CHEMISTRY											
Alkalinity, Total	204	1	mg/L	5	5	8.0	S2320B-97		12/15/17 00:51	MSA	1
Chloride	56.7		mg/L	2.0	0.50	0.16	EPA 300.0		12/14/17 06:01	CHW	1
Nitrate-N	0.060U	U	mg/L	0.20	0.060	0.020	EPA 300.0		12/14/17 06:01	CHW	/ 1
Sulfate	25.7		mg/L	2.0	0.50	0.20	EPA 300.0		12/14/17 06:01	CHW	/ 1
Total Organic Carbon (TOC)	1.1		mg/L	1.0	0.50	0.18	S5310B-00		12/18/17 10:42	PAG	G

Vanessa M. Badman Mrs. Vanessa N Badman

Project Coordinator

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11, MA PA0102, MD 128, VA 460157, WV 343

ANALYTICAL RESULTS

Workorder: 2282785 ANL005|60440641

DUP-1 121217

Lab ID: 2282785002

Sample ID:

Date Collected: 12/12/2017 00:00

Matrix: Ground Water

Date Received: 12/13/2017 09:13

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared By	Analyzed	Ву	Cnt
VOLATILE ORGANICS									EL AT	g a A	(AJC
Carbon Tetrachloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α
1,1-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α
1,1-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α
cis-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α
trans-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α
Tetrachloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α
1,1,1-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α
1,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α
Trichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared By	Analyzed	Ву	Cnt
1,2-Dichloroethane-d4 (S)	107		%	81 - 118			SW846 8260C	=10	12/20/17 03:53	CJG	Α
4-Bromofluorobenzene (S)	110		%	85 - 114			SW846 8260C		12/20/17 03:53	CJG	Α
Dibromofluoromethane (S)	98.3		%	80 - 119			SW846 8260C		12/20/17 03:53	CJG	Α
Toluene-d8 (S)	104		%	89 - 112			SW846 8260C		12/20/17 03:53	CJG	Α
LIGHT HYDROCARBON GA	SES										
Ethane	0.50U	U	ug/L	1.0	0.50	0.25	RSK 175		12/19/17 01:24	EGO	D
Ethene	0.75U	U	ug/L	1.5	0.75	0.31	RSK 175		12/19/17 01:24	EGO	D
Methane	20.8		ug/L	0.50	0.25	0.13	RSK 175		12/19/17 01:24	EGO	D
WET CHEMISTRY											
Alkalinity, Total	212	1	mg/L	5	5	0.8	S2320B-97		12/15/17 01:02	MSA	Н
Chloride	50.8		mg/L	2.0	0.50	0.16	EPA 300.0		12/14/17 07:22	CHW	/ Н
Nitrate-N	0.060U	U	mg/L	0.20	0.060	0.020	EPA 300.0		12/14/17 07:22	CHW	/ Н
Sulfate	24.2		mg/L	2.0	0.50	0.20	EPA 300.0		12/14/17 07:22	CHW	/ Н
Total Organic Carbon (TOC)	1.1		mg/L	1.0	0.50	0.18	S5310B-00		12/18/17 10:42	DAC	F

Vanessa M. Badman
Mrs. Vanessa N Badman

Project Coordinator

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

NELAP Certifications: NJ PA010 , NY 11759 , PA 22–293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2282785 ANL005|60440641

Lab ID: 2282785003

Sample ID:

EB-1 121217

Date Collected: 12/12/2017 10:01

Matrix:

Ground Water

Date Received: 12/13/2017 09:13

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared By	Analyzed	Ву	Cntr
VOLATILE ORGANICS									A is no		
Carbon Tetrachloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 02:25	CJG	Α
1,1-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 02:25	CJG	Α
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 02:25	CJG	Α
1,1-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 02:25	CJG	Α
cis-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 02:25	CJG	Α
trans-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 02:25	CJG	Α
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 02:25	CJG	Α
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 02:25	CJG	Α
Tetrachloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 02:25	CJG	Α
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 02:25	CJG	- A
1,1,1-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 02:25	CJG	Α
1,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 02:25	CJG	Α
Trichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 02:25	CJG	Α
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 02:25	CJG	Α
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared By	Analyzed	Ву	Cntr
1,2-Dichloroethane-d4 (S)	105		%	81 - 118			SW846 8260C		12/20/17 02:25	CJG	Α
4-Bromofluorobenzene (S)	110		%	85 - 114			SW846 8260C		12/20/17 02:25	CJG	Α
Dibromofluoromethane (S)	98.9		%	80 - 119			SW846 8260C		12/20/17 02:25	CJG	Α
Toluene-d8 (S)	106		%	89 - 112			SW846 8260C		12/20/17 02:25	CJG	Α

Mrs. Vanessa N Badman

Project Coordinator

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2282785 ANL005|60440641

Lab ID: 2282785004

Date Collected: 12/12/2017 10:51

Matrix: Ground Water

Sample ID: MW-34 121217

Date Received: 12/13/2017 09:13

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared By	Analyzed	Ву	Cnt
VOLATILE ORGANICS									Editor	0.40	A.Jō
Carbon Tetrachloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:15	CJG	Α
1,1-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:15	CJG	Α
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:15	CJG	Α
1,1-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:15	CJG	Α
cis-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:15	CJG	Α
trans-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:15	CJG	Α
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:15	CJG	Α
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:15	CJG	Α
Tetrachloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:15	CJG	Α
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:15	CJG	Α
1,1,1-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:15	CJG	Α
1,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:15	CJG	Α
Trichloroethene	28.0		ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:15	CJG	Α
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:15	CJG	Α
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared By	Analyzed	Ву	Cnti
1,2-Dichloroethane-d4 (S)	107		%	81 - 118		III v	SW846 8260C		12/20/17 04:15	CJG	Α
4-Bromofluorobenzene (S)	111		%	85 - 114			SW846 8260C		12/20/17 04:15	CJG	Α
Dibromofluoromethane (S)	99.9		%	80 - 119			SW846 8260C		12/20/17 04:15	CJG	Α
Toluene-d8 (S)	105		%	89 - 112			SW846 8260C		12/20/17 04:15	CJG	Α
LIGHT HYDROCARBON GA	SES										
Ethane	1.1		ug/L	1.0	0.50	0.25	RSK 175		12/19/17 02:19	EGO	D
Ethene	0.75U	U	ug/L	1.5	0.75	0.31	RSK 175		12/19/17 02:19	EGO	D
Methane	531		ug/L	0.50	0.25	0.13	RSK 175		12/19/17 02:19	EGO	D
WET CHEMISTRY											
Alkalinity, Total	203	1	mg/L	5	5	0.8	S2320B-97		12/15/17 01:12	MSA	J
Chloride	12.9		mg/L	2.0	0.50	0.16	EPA 300.0		12/14/17 07:33	CHW	/ J
Nitrate-N	0.020J	Ĺ	mg/L	0.20	0.060	0.020	EPA 300.0		12/14/17 07:33		
			-								
Sulfate	7.3		mg/L	2.0	0.50	0.20	EPA 300.0		12/14/17 07:33	CHW	/ J

Vanessa M. Badman

Mrs. Vanessa N Badman Project Coordinator

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2282785 ANL005|60440641

Lab ID: 2282785005

Sample ID: MW-35 121217

Date Collected: 12/12/2017 11:54

Matrix: Ground Water

Date Received: 12/13/2017 09:13

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared By	Analyzed	Ву	Cni
VOLATILE ORGANICS									-		
Carbon Tetrachloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	Α
1,1-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	Α
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	Α
1,1-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	Α
cis-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	Α
trans-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	Α
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	Α
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	Α
Tetrachloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	Α
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	Α
1,1,1-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	A
1,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	A
Trichloroethene	43.5		ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	A
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	A
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared By	Analyzed	Ву	Cr
1,2-Dichloroethane-d4 (S)	107		%	81 - 118		-16.	SW846 8260C		12/20/17 04:37	CJG	A
4-Bromofluorobenzene (S)	107		%	85 - 114			SW846 8260C		12/20/17 04:37	CJG	A
Dibromofluoromethane (S)	99.7		%	80 - 119			SW846 8260C		12/20/17 04:37	CJG	A
Toluene-d8 (S)	103		%	89 - 112			SW846 8260C		12/20/17 04:37	CJG	A
LIGHT HYDROCARBON GA	SES										
Ethane	0.50U	U	ug/L	1.0	0.50	0.25	RSK 175		12/19/17 02:35	EGO	G
Ethene	0.75U	U	ug/L	1.5	0.75	0.31	RSK 175		12/19/17 02:35	EGO	(
Methane	7.9		ug/L	0.50	0.25	0,13	RSK 175		12/19/17 02:35	EGO	9
WET CHEMISTRY											
Alkalinity, Total	210	1	mg/L	5	5	0.8	S2320B-97		12/14/17 23:41	MSA	, k
Chloride	22.2		mg/L	2.0	0.50	0.16	EPA 300.0		12/14/17 06:12	CHW	/ i
Nitrate-N	0.44		mg/L	0.20	0.060	0.020	EPA 300.0		12/14/17 06:12	CHW	/ t
Sulfate	10.2		mg/L	2.0	0.50	0.20	EPA 300.0		12/14/17 06:12	CHW	/ 1
Sullate	10,2		111g/ L	2.0	0.00	0.20			12/1/1/1/ 00:12		• ,

Vanessa M. Baolman

Mrs. Vanessa N Badman

Project Coordinator

ALS Environmental Laboratory Locations Across North America

Canada: Burlington - Calgary - Centre of Excellence - Edmonton - Fort McMurray - Fort St. John - Grande Prairie - London - Mississauga - Richmond Hill - Saskatoon - Thunder Bay Vancouver Waterloo - Winnipeg - Yellowknife - United States: Cincinnati - Everett - Fort Collins - Holland - Houston - Middletown - Salt Lake City - Spring City - York - Mexico: Monterrey

Report ID: 2282785 - 12/27/2017

Page 8 of 22

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2282785 ANL005|60440641

MW-24 121217

Lab ID: 2282785006

Sample ID:

Date Collected: 12/12/2017 14:12

Matrix: Ground Water

Date Received: 12/13/2017 09:13

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared By	Analyzed	Ву	Cnti
VOLATILE ORGANICS			111					orne Alberta de	ura lipurativings		
Carbon Tetrachloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
1,1-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
1,1-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
cis-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
trans-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
Tetrachloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
1,1,1-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
1,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
Trichloroethene	0.94J	J	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared By	Analyzed	Ву	Cnti
1,2-Dichloroethane-d4 (S)	107		%	81 - 118			SW846 8260C		12/20/17 04:59	CJG	Α
4-Bromofluorobenzene (S)	108		%	85 - 114			SW846 8260C		12/20/17 04:59	CJG	Α
Dibromofluoromethane (S)	100		%	80 - 119			SW846 8260C		12/20/17 04:59	CJG	Α
Toluene-d8 (S)	104		%	89 - 112			SW846 8260C		12/20/17 04:59	CJG	Α
LIGHT HYDROCARBON GA	SES										
Ethane	0.50U	U	ug/L	1.0	0.50	0.25	RSK 175		12/19/17 03:11	EGO	D
Ethene	0.75U	U	ug/L	1.5	0.75	0.31	RSK 175		12/19/17 03:11	EGO	D
Methane	431		ug/L	0.50	0.25	0.13	RSK 175		12/19/17 03:11	EGO	D
WET CHEMISTRY											
Alkalinity, Total	352	1	mg/L	5	5	0.8	S2320B-97		12/15/17 02:19	MSA	J
Chloride	155		mg/L	2.0	0.50	0.16	EPA 300.0		12/14/17 07:45	CHW	J
Nitrate-N	0.060U	U	mg/L	0.20	0.060	0.020	EPA 300.0		12/14/17 07:45		
Sulfate	0.48J	J	mg/L	2.0	0.50	0.20	EPA 300.0		12/14/17 07:45	CHW	J
	96.2		mg/L	25.0	12.5	4.6	S5310B-00			PAG	G

Vanessa M. Badman
Mrs. Vanessa N Badman

Project Coordinator

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2282785 ANL005|60440641

PARAMETER QU			A - of Alast Adabase	8	
Lab ID	#	Sample ID	Analytical Method	Analyte	
2282785001	1-	MW-20 121217	\$2320B-97	Alkalinity, Total	
The Total Alkalinit	y is titrat	ed to a pH of 4.5 and reporte	d as mg CaCO3/L.		
2282785002	1	DUP-1 121217	S2320B-97	Alkalinity, Total	
The Total Alkalinit	y is titrat	ed to a pH of 4.5 and reporte	d as mg CaCO3/L.		
2282785004	1	MW-34 121217	S2320B-97	Alkalinity, Total	
The Total Alkalinit	y is titrat	ed to a pH of 4.5 and reporte	d as mg CaCO3/L.		
2282785005	1	MW-35 121217	S2320B-97	Alkalinity, Total	
The Total Alkalinit	y is titrat	ed to a pH of 4.5 and reporte	d as mg CaCO3/L.		
2282785006	1	MW-24 121217	S2320B-97	Alkalinity, Total	
The Total Alkalinit	y is titrat	ed to a pH of 4.5 and reporte	d as mg CaCO3/L.		

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DOD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

QUALITY CONTROL DATA

Workorder: 2282785 ANL005|60440641

QC Batch:

SVGC/47651

Analysis Method:

RSK 175

QC Batch Method: RSK 175

Associated Lab Samples: 2282785001, 2282785002, 2282785004, 2282785005, 2282785006

METHOD BLANK: 2662303

Parameter	Blank Result	Units	Reporting Limit
Ethane	0.50U	ug/L	1.0
Ethene	0.75U	ug/L	1.5
Methane	0.15J	ug/L	0.50

SAMPLE DUPLICATE: 2662304 ORIGINAL: 2282785005

Parameter	Original Result	Units	DUP Result	RPD	Max RPD		
Ethane	0	ug/L	0	NC	20	in the second	
Ethene	0	ug/L	0	NC	20		
Methane	7.93	ug/L	7.09	11.2	20		

SAMPLE DUPLICATE: 2662305 ORIGINAL: 2282982001

Parameter	Original Result	Units	DUP Result	RPD	Max RPD
Ethane	5.55	ug/L	15.42	94.1*	20
Ethene	2.26	ug/L	4.64	69*	20
Methane	233.23	ug/L	611.11	89.5*	20

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

QUALITY CONTROL DATA

Workorder: 2282785 ANL005|60440641

QC Batch: VOMS/45442

Analysis Method:

SW846 8260C

QC Batch Method: SW846 8260C

Associated Lab Samples: 2282785001, 2282785002, 2282785003, 2282785004, 2282785005, 2282785006

METHOD BLANK: 2662960				
Parameter	Blank Result	Units	Reporting Limit	
Carbon Tetrachloride	0.75U	ug/L	1.0	and the second second second
1,1-Dichloroethane	0.75U	ug/L	1.0	
1,2-Dichloroethane	0.75U	ug/L	1.0	
1,1-Dichloroethene	0.75U	ug/L	1.0	
cis-1,2-Dichloroethene	0.75U	ug/L	1.0	
trans-1,2-Dichloroethene	0.75U	ug/L	1.0	
1,1,1,2-Tetrachloroethane	0.75U	ug/L	1.0	
1,1,2,2-Tetrachloroethane	0.75U	ug/L	1.0	
Tetrachloroethene	0.75U	ug/L	1.0	
Toluene	0.75U	ug/L	1.0	
1,1,1-Trichloroethane	0.75U	ug/L	1.0	
1,1,2-Trichloroethane	0.75U	ug/L	1.0	
Trichloroethene	0.75U	ug/L	1.0	
Vinyl Chloride	0.75U	ug/L	1.0	
1,2-Dichloroethane-d4 (S)	105	%	81 - 118	
4-Bromofluorobenzene (S)	108	%	85 - 114	
Dibromofluoromethane (S)	98.1	%	80 - 119	
Toluene-d8 (S)	103	%	89 - 112	

LABORATORY CONTROL SAM	MPLE: 2662961						
Parameter	LCS % Rec	Units	Spike Conc.	LCS Result	% Rec Limit		
Carbon Tetrachloride	87	ug/L	20	17.4	72 - 136		
1,1-Dichloroethane	98	ug/L	20	19.6	77 - 125		
1,2-Dichloroethane	97.1	ug/L	20	19.4	73 - 128		
1,1-Dichloroethene	101	ug/L	20	20.2	71 - 131		
cis-1,2-Dichloroethene	96.1	ug/L	20	19.2	78 - 123		
trans-1,2-Dichloroethene	104	ug/L	20	20.7	75 - 124		
1,1,1,2-Tetrachloroethane	104	ug/L	20	20.8	78 - 124		
1.1.2.2-Tetrachloroethane	99.3	ug/L	20	19.9	71 - 121		
Tetrachloroethene	104	ug/L	20	20.8	74 - 129		
Toluene	99.7	ug/L	20	19.9	80 - 121		
1.1.1-Trichloroethane	106	ug/L	20	21.1	74 - 131		
1,1,2-Trichloroethane	97.7	ug/L	20	19.5	80 - 119	Y.	
Trichloroethene	93.4	ug/L	20	18.7	79 - 123		

ALS Environmental Laboratory Locations Across North America

Canada: Burlington - Calgary - Centre of Excellence - Edmonton - Fort McMurray - Fort St. John - Grande Prairie - London - Mississauga - Richmond Hill - Saskatoon - Thunder Bay Vancouver Waterloo - Winnipeg - Yellowknife - United States: Cincinnati - Everett - Fort Collins - Holland - Houston - Middletown - Salt Lake City - Spring City - York - Mexico: Monterrey

Report ID: 2282785 - 12/27/2017 Page 12 of 22

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

QUALITY CONTROL DATA

Workorder: 2282785 ANL005|60440641

Vinyl Chloride	98.2	ug/L	20	19.6	58 - 137
1,2-Dichloroethane-d4 (S)	104	%			81 - 118
4-Bromofluorobenzene (S)	108	%			85 - 114
Dibromofluoromethane (S)	102	%			80 - 119
Toluene-d8 (S)	101	%			89 - 112

percent recoveries. This result	is not a final va	lue and can	not be use	d as such							
Parameter	Original Result	Units	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	
Carbon Tetrachloride	0	ug/L	20	20.1411	19.9079	101	99.5	72 - 136	1.16	30	
1,1-Dichloroethane	0	ug/L	20	20.8932	20.4336	104	102	77 - 125	2.22	30	
1,2-Dichloroethane	0	ug/L	20	20.6907	19.9549	103	99.8	73 - 128	3.62	30	
1,1-Dichloroethene	0	ug/L	20	21.5632	20.891	108	104	71 - 131	3.17	30	
cis-1,2-Dichloroethene	0	ug/L	20	20.3404	19.8268	102	99.1	78 - 123	2.56	30	
trans-1,2-Dichloroethene	0	ug/L	20	22.3304	21.0129	112	105	75 - 124	6.08	30	
1,1,1,2-Tetrachloroethane	0	ug/L	20	21.6152	21.3327	108	107	78 - 124	1.32	30	
1,1,2,2-Tetrachloroethane	0	ug/L	20	21.3914	20.0437	107	100	71 - 121	6.51	30	
Tetrachloroethene	0	ug/L	20	21.9126	21.4263	110	107	74 - 129	2.24	30	
Toluene	0	ug/L	20	20.7673	20.6633	104	103	80 - 121	.5	30	
1,1,1-Trichloroethane	0	ug/L	20	22.5835	22.5134	113	113	74 - 131	.31	30	
1,1,2-Trichloroethane	0	ug/L	20	20.5231	20.3159	103	102	80 - 119	1.01	30	
Trichloroethene	43.5452	ug/L	20	65.6276	63.6674	110	101	79 - 123	3.03	30	
Vinyl Chloride	0	ug/L	20	21.0066	21.0891	105	105	58 - 137	.39	30	
1,2-Dichloroethane-d4 (S)	106	%				106	108	81 - 118			
4-Bromofluorobenzene (S)	108	%				108	104	85 - 114			
Dibromofluoromethane (S)	103	%				103	101	80 - 119			
Toluene-d8 (S)	99.3	%				99.3	99.9	89 - 112			

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11, MA PA0102, MD 128, VA 460157, WV 343

QUALITY CONTROL DATA

Workorder: 2282785 ANL005 60440641

Analysis Method: QC Batch: WETC/197653

S2320B-97

QC Batch Method: \$2320B-97

Associated Lab Samples: 2282785001, 2282785002, 2282785004, 2282785005, 2282785006

METHOD BLANK: 2660509

Blank

Reporting

Parameter

Result Units Limit

Alkalinity, Total

2J mg/L 5

SAMPLE DUPLICATE: 2660514 ORIGINAL: 2282785005

Original

Result

Units

DUP Result

Max **RPD RPD**

Alkalinity, Total

Parameter

209.61745

208.13216 mg/L

.71

20

METHOD BLANK: 2660517

Blank

Reporting

Parameter

Result 2.J

Limit

Alkalinity, Total

Units mg/L

5

ORIGINAL: 2282836001 SAMPLE DUPLICATE: 2660518

Original Result

DUP Result Units

Max

Parameter Alkalinity, Total

Alkalinity, Total

Parameter

83.52351

mg/L

81.95883

RPD 1.89 **RPD** 20

METHOD BLANK: 2660521

Parameter

Blank Result

Reporting Limit Units

mg/L

SAMPLE DUPLICATE: 2660522

ORIGINAL: 2282973001

Original Result

Units

DUP Result **RPD**

5

Max **RPD**

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Page 14 of 22 Report ID: 2282785 - 12/27/2017

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

QUALITY CONTROL DATA

Workorder: 2282785 AN					**************************************	This To R. F. Min Sa Versilla Test week
Alkalinity, Total	155.50861	mg/L	164.00923	5.32	20	
METHOD BLANK: 2660	1525					
Parameter	Blank Result	Units	Reporting Limit			
Alkalinity, Total	2J	mg/L	5			
SAMPLE DUPLICATE: 2	2660526 ORIGINAL	.: 228297	6001			
Parameter	Original Result	Units	DUP Result	RPD	Max RPD	
Alkalinity, Total	258.27353	mg/L	249.76445	3.35	20	
METHOD BLANK: 2660	529					
Parameter	Blank Result	Units	Reporting Limit			
Alkalinity, Total	2J	mg/L	5			
SAMPLE DUPLICATE: 2	2660530 ORIGINAL	.: 228301	3001			
Parameter	Original Result	Units	DUP Result	RPD	Max RPD	
Alkalinity, Total	13.1013	mg/L	13.25463	1.16	20	
METHOD BLANK: 2660	533					
Parameter	Blank Result	Units	Reporting Limit			
Alkalinity, Total	2J	mg/L	5			
SAMPLE DUPLICATE: 2	2660534 ORIGINAL	: 228301	3008			
Parameter	Original Result	Units	DUP Result	RPD	Max RPD	
Alkalinity, Total	12.73502	mg/L	13.1689	3.35	20	

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

QUALITY CONTROL DATA

METHOD BLANK: 2660685							
Parameter	Blank Result	Units	Reporting Limit				
Alkalinity, Total	2J	mg/L	5				
SAMPLE DUPLICATE: 266068	6 ORIGINAL	: 228304	1001				
Parameter	Original Result	Units	DUP Result	RPD	Max RPD		
Alkalinity, Total	515.20416	mg/L	493.01376	4.4	20		
METHOD BLANK: 2660689							
Parameter	Blank Result	Units	Reporting Limit				
Alkalinity, Total	1J	mg/L	5				

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2282785 - 12/27/2017 Page 16 of 22

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DOD ELAP: A2LA 0818.01 State Certifications: DE ID 11, MA PA0102, MD 128, VA 460157, WV 343

QUALITY CONTROL DATA

Workorder: 2282785 ANL005|60440641

QC Batch:

WETC/197656

Analysis Method:

EPA 300.0

QC Batch Method: EPA 300.0

Associated Lab Samples: 2282785001, 2282785002, 2282785004, 2282785005, 2282785006

METHOD BLANK: 2660594

Parameter	Blank Result	Units	Reporting Limit
Chloride	0.15J	mg/L	1.0
Nitrate-N	0.030U	mg/L	0.10
Sulfate	0.25U	mg/L	1.0

LABORATORY CONTROL SAMPLE: 2660596

Parameter	LCS % Rec	Units	Spike Conc.	LCS Result	% Rec Limit
Chloride	97.8	mg/L	20	19.6	87 - 111
Nitrate-N	96.8	mg/L	2.5	2.4	88 - 111
Sulfate	98	mg/L	20	19.6	87 - 112

MATRIX SPIKE: 2660598 DUPLICATE: 2660599 ORIGINAL: 2282785005

percent recoveries. Th	is result is not a final va	lue and can	not be used	as such.							
Parameter	Original Result	Units	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	
Chloride	22.2	mg/L	40	62.1	60.18	99.8	95	87 - 111	3.14	15	
Nitrate-N	.44	mg/L	5	6.08	5.9	113*	109	88 - 111	3.01	15	
Sulfate	10.24	mg/L	40	55.02	53.34	112	108	87 - 112	3.1	15	

METHOD BLANK: 2660601

Parameter	Blank Result	Units	Reporting Limit	
Chloride	0.20J	mg/L	1.0	
Nitrate-N	0.030U	mg/L	0.10	
Sulfate	0.25U	mg/L	1.0	

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2282785 - 12/27/2017

Page 17 of 22

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

QUALITY CONTROL DATA

Workorder: 2282785 ANL005|60440641

METHOD BLANK: 2660603						
Parameter	Blank Result	Units	Reporting Limit			
Chloride	0.18J	mg/L	1.0			
Nitrate-N	0.030U	mg/L	0.10			
Sulfate	0.25U	mg/L	1.0			

Report ID: 2282785 - 12/27/2017 Page 18 of 22

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11, MA PA0102, MD 128, VA 460157, WV 343

QUALITY CONTROL DATA

Workorder: 2282785 ANL005|60440641

QC Batch:

WETC/197787

Analysis Method:

S5310B-00

QC Batch Method: 415.1/9060/5310B

Associated Lab Samples: 2282785001, 2282785002, 2282785004, 2282785005

METHOD BLANK: 2662125

Blank Result

Reporting Limit Units

Parameter Total Organic Carbon (TOC)

0.20J

mg/L

1.0

LABORATORY CONTROL SAMPLE: 2662126

Parameter

LCS % Rec

Spike Conc. Units

LCS Result % Rec Limit

Total Organic Carbon (TOC)

108 mg/L

85 - 115

MATRIX SPIKE: 2662127

Total Organic Carbon (TOC)

DUPLICATE: 2662128

ORIGINAL: 2282576002

Parameter	Original Result	Units	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
Total Organic Carbon (TOC)	.903	mg/L	6	7.081	7.006	103	102	85 - 115	1.06	20

MATRIX SPIKE: 2662129 DUPLICATE: 2662130 ORIGINAL: 2282785005

""NOTE - The Original Result	shown below i	s a raw resu	ilt and is onl	y used for th	ne purpose o	of calculatin	g Matrix Sp	ike			
percent recoveries. This result	is not a final va	alue and can	not be used	as such.					Marie William		
	Original		Spike	MS	MSD	MS %	MSD %	% Rec		Max	
Parameter	Result	Units	Conc.	Result	Result	Rec	Rec	Limit	RPD	RPD	
Total Organic Carbon (TOC)	.555	mg/L	6	6.595	6.6	101	101	85 - 115	.08	20	

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2282785 - 12/27/2017

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11, MA PA0102, MD 128, VA 460157, WV 343

QUALITY CONTROL DATA

Workorder: 2282785 ANL005|60440641

QC Batch:

WETC/197832

Analysis Method:

S5310B-00

QC Batch Method: 415.1/9060/5310B Associated Lab Samples: 2282785006

METHOD BLANK: 2662782

Blank Result Reporting Limit

Total Organic Carbon (TOC)

Parameter

Parameter

0.20J

1.0

LABORATORY CONTROL SAMPLE: 2662783

LCS %

Rec

Spike Conc.

LCS Result

% Rec Limit

Total Organic Carbon (TOC)

108

Units mg/L

Units

mg/L

85 - 115 1.1

MATRIX SPIKE: 2662784 DUPLICATE: 2662785 ORIGINAL: 2283142002

NOTE - The Original Result shown below is a raw result and is only used for the purpose of calculating Matrix Spike

Parameter	Original Result	Units	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
Total Organic Carbon (TOC)	1.857	mg/L	6	7.846	7.67	99.8	96.9	85 - 115	2.27	20

MATRIX SPIKE: 2662786 DUPLICATE: 2662787 ORIGINAL: 2283291001

""NOTE - The Original Result	shown below i	s a raw resu	ilt and is onl	y used for th	ne purpose o	of calculatin	g Matrix Sp	ike			
percent recoveries. This result i	s not a final va	lue and can								and the second	
	Original		Spike	MS	MSD	MS %	MSD %	% Rec		Max	
Parameter	Result	Units	Conc.	Result	Result	Rec	Rec	Limit	RPD	RPD	
Total Organic Carbon (TOC)	.983	mg/L	6	6.973	6.978	99.8	99.9	85 - 115	.07	20	

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Page 20 of 22 Report ID: 2282785 - 12/27/2017

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: 2282785 ANL005|60440641

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
2282785001	MW-20 121217			S2320B-97	WETC/197653
2282785002	DUP-1 121217			S2320B-97	WETC/197653
2282785004	MW-34 121217			S2320B-97	WETC/197653
2282785005	MW-35 121217			S2320B-97	WETC/197653
2282785006	MW-24 121217			S2320B-97	WETC/197653
2282785001	MW-20 121217			EPA 300.0	WETC/197656
2282785002	DUP-1 121217			EPA 300.0	WETC/197656
2282785004	MW-34 121217			EPA 300.0	WETC/197656
2282785005	MW-35 121217			EPA 300.0	WETC/197656
2282785006	MW-24 121217			EPA 300.0	WETC/197656
2282785001	MW-20 121217			S5310B-00	WETC/197787
2282785002	DUP-1 121217			S5310B-00	WETC/197787
2282785004	MW-34 121217			S5310B-00	WETC/197787
2282785005	MW-35 121217			S5310B-00	WETC/197787
2282785001	MW-20 121217			RSK 175	SVGC/47651
2282785002	DUP-1 121217			RSK 175	SVGC/47651
2282785004	MW-34 121217			RSK 175	SVGC/47651
2282785005	MW-35 121217			RSK 175	SVGC/47651
2282785006	MW-24 121217			RSK 175	SVGC/47651
2282785006	MW-24 121217			S5310B-00	WETC/197832
2282785001	MW-20 121217			SW846 8260C	VOMS/45442
2282785002	DUP-1 121217			SW846 8260C	VOMS/45442
2282785003	EB-1 121217			SW846 8260C	VOMS/45442
2282785004	MW-34 121217			SW846 8260C	VOMS/45442
2282785005	MW-35 121217			SW846 8260C	VOMS/45442
2282785006	MW-24 121217			SW846 8260C	VOMS/45442

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2282785 - 12/27/2017 Page 21 of 22

	2785*	Trest transitions	* (four	Cooler Temps:	Them 10: 402	No. of Coolers: Notes:		N A A	famulov e famulov e faoiliavos feoilialoV vo Y etsi	ilqmes t enq tae leoeqeb	Correction Con		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	· · @ @ ·	Cabanus Sabi mo Sabinus	Seals celvind delision	tresent Es comp	Curape		ALS FIELD SERVICES	Z		Composite Sampling	Nominal Capacitans			
1 od 1	8 2 2 8				ANALYSESIMETHOD REQUESTED						Enter Number of Containers Per Analysis									Standard forms? Calendaria hit		NJ-Reduced yes],	Hym, tomathypic Other Sect. OAPP	200 Cileta Restired?	** Shadin: Apalin Dwinding Water; GWindroundwater; CH-Olf; OL=Other Liquid; \$L=Shudge; 5O=Solt WP=Wipe; WWwithsatervider
Courier Tracking &	0 4		\$ 120 gra	,	SESIMETHO			20/1	res	117	Yumber of C	X	X		x X	×	x X	×	x X		S S			090	*00:	5000	St. Studge; SO
/SIS		-57)	8		ANALY			-	541.		Enter	W.	T		χ	<u></u>	አ	<u>۷</u>	X	,	Revol SM	Date	1/10	1/4/3/			Other Liquids
CHAIN OF CUSTODY/ REQUEST FOR ANALYSIS ALL SHADED AFFENS MUST BE COMPLETED BY THE CLENT!	INSTRUCTIONS ON THE BACK	OH 6)	Store 46 Fib.	Promotor Her Hel-			× == 1		7 69	28 	O to O zirteM	Y TO Y	ζ, X	77x	X	X	λ 	メ 	人人		nat	Received By / Company Name n		J.			WinGroundwater; OfnOlf; OL:
CHAIN REQUES	SAMPLEM. II							112			-	12/0 to to 12/0	,	7807	1001	1154	HSH	HSH INSH	1912	Birt houte	松子NP Blank	Received By	2 3		3	B C	r. DW-Drinding Water, G
d Lane , PA 17057 · 5541			Phone:	Bevo	ı		#Od	ALS Quote #	Date Required. Approved By:	LCOM-10m	COC Comments					:		4		Project Comments:		Date Time	12/12/17 1530	1210/1330	, , /		
34 Dogwood Lane Middletown, PA 17057 P. 717-944-5341		From		British American		12 Care	aparta);	(1-904h09)	2 8	John. Santacroce a accounter	uo	aron to leb record	[7	F12131	רובובו	121217	MS 121217	MSD (2121)		ase Print):	the dy	Relinguished By / Company Name	177	MARCHURA	,		· G=Grab; C=Composite
ALS.	Environmental	Co. Name:	Contact (Reporte):	Address: 4h	-	Ē.	Bill to (Adhemet ben flagent bi):	Project Name#	TAT: Norm:	习	Sample Desc	1 AA 14 - 24	2 D.P. 1	3 E18-1	4 MW-34	5 MW - 35	8 MM - 35	7 MW. 35	क्र	SAMPLED BY (Please Print):	Ross Maconty	Relingui	M	(B) (U)	in.		

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DOD ELAP: A2LA 0818.01 State Certifications: DE ID 11, MA PA0102, MD 128, VA 460157, WV 343

December 27, 2017

Mr. John Santacroce AECOM - LATHAM NY 40 British American Blvd. Albany, NY 12210

Certificate of Analysis

Project Name:

2015-SCOTIA NAVY DEPOT-PO

Workorder:

2282982

Purchase Order:

66432/60440641.11

60440641

Workorder ID:

ANL006|60440641

Dear Mr. Santacroce:

Enclosed are the analytical results for samples received by the laboratory on Thursday, December 14, 2017.

The ALS Environmental laboratory in Middletown, Pennsylvania is a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory and as such, certifies that all applicable test results meet the requirements of NELAP.

If you have any questions regarding this certificate of analysis, please contact Mrs. Vanessa N Badman (Project Coordinator) at (717) 944-5541.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable. For a specific list of accredited analytes, refer to the certifications section of the ALS website at www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads.

This laboratory report may not be reproduced, except in full, without the written approval of ALS Environmental.

ALS Spring City: 10 Riverside Drive, Spring City, PA 19475 610-948-4903

CC: Ms. Kelly Lurie , Mr. Scott Underhill

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Vanessa M. Badman

Mrs. Vanessa N Badman Project Coordinator

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2282982 - 12/27/2017

Page 1 of 18

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

SAMPLE SUMMARY

Workorder: 2282982 ANL006|60440641

Lab ID	Sample ID	Matrix	Date Collected	Date Received	Collected By
2282982001	MW-32-121317	Ground Water	12/13/2017 08:41	12/14/2017 09:55	Collected by Client
2282982002	MW-33-121317	Ground Water	12/13/2017 09:45	12/14/2017 09:55	Collected by Client
2282982003	MW-30-121317	Ground Water	12/13/2017 11:20	12/14/2017 09:55	Collected by Client
2282982004	MW-31-121317	Ground Water	12/13/2017 12:15	12/14/2017 09:55	Collected by Client

Report ID: 2282982 - 12/27/2017 Page 2 of 18

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11, MA PA0102, MD 128, VA 460157, WV 343

SAMPLE SUMMARY

Workorder: 2282982 ANL006|60440641

Notes

- -- Samples collected by ALS personnel are done so in accordance with the procedures set forth in the ALS Field Sampling Plan (20 Field Services Sampling Plan).
- -- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- -- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- -- The Chain of Custody document is included as part of this report.
- -- All Library Search analytes should be regarded as tentative identifications based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.
- -- Parameters identified as "analyze immediately" require analysis within 15 minutes of collection. Any "analyze immediately" parameters not listed under the header "Field Parameters" are preformed in the laboratory and are therefore analyzed out of hold time.
- -- Method references listed on this report beginning with the prefix "S" followed by a method number (such as S2310B-97) refer to methods from "Standard Methods for the Examination of Water and Wastewater".
- -- For microbiological analyses, the "Prepared" value is the date/time into the incurbator and the "Analyzed" value is the date/time out the incubator.

Standard Acronyms/Flags

- J Indicates an estimated value between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) for the analyte
- U Indicates that the analyte was Not Detected (ND)
- N Indicates presumptive evidence of the presence of a compound
- MDL Method Detection Limit
- PQL Practical Quantitation Limit
- RDL Reporting Detection Limit
- ND Not Detected indicates that the analyte was Not Detected at the RDL
- Cntr Analysis was performed using this container
- RegLmt Regulatory Limit
- LCS Laboratory Control Sample
- MS Matrix Spike
- MSD Matrix Spike Duplicate
- DUP Sample Duplicate
- %Rec Percent Recovery
- RPD Relative Percent Difference
- LOD DoD Limit of Detection
- LOQ DoD Limit of Quantitation
- DL DoD Detection Limit
- I Indicates reported value is greater than or equal to the Method Detection Limit (MDL) but less than the Report Detection Limit (RDL)
- (S) Surrogate Compound
- NC Not Calculated
- * Result outside of QC limits

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2282982 - 12/27/2017 Page 3 of 18

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DOD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2282982 ANL006|60440641

MW-32-121317

Lab ID: 2282982001

Sample ID:

Date Collected: 12/13/2017 08:41

Matrix: Ground Water

Date Received: 12/14/2017 09:55

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared By	Analyzed	Ву	Cntr
VOLATILE ORGANICS				15 -							
Carbon Tetrachloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:34	DD	С
1,1-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:34	DD	С
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:34	DD	С
1,1-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:34	DD	С
cis-1,2-Dichloroethene	0.68J	J	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:34	DD	С
trans-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0,33	SW846 8260C		12/20/17 11:34	DD	С
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:34	DD	С
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:34	DD	С
Tetrachloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:34	DD	С
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:34	DD	C
1,1,1-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:34	DD	С
1,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:34	DD	С
Trichloroethene	120	5	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:34	DD	С
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:34	DD	С
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared By	Analyzed	Ву	Cntr
1,2-Dichloroethane-d4 (S)	107		%	81 - 118			SW846 8260C		12/20/17 11:34	DD	С
4-Bromofluorobenzene (S)	109		%	85 - 114			SW846 8260C		12/20/17 11:34	DD	С
Dibromofluoromethane (S)	100		%	80 - 119			SW846 8260C		12/20/17 11:34	DD	С
Toluene-d8 (S)	105		%	89 - 112			SW846 8260C		12/20/17 11:34	DD	С
LIGHT HYDROCARBON GA	SES										
Ethane	5.6	2	ug/L	1.0	0.50	0.25	RSK 175		12/19/17 03:28	EGO	Α
Ethene	2.3	3	ug/L	1.5	0.75	0.31	RSK 175		12/19/17 03:28	EGO	Α
Methane	233	1	ug/L	0.50	0.25	0.13	RSK 175		12/19/17 03:28	EGO	Α
WET CHEMISTRY											
Alkalinity, Total	141	4	mg/L	5	5	0.8	S2320B-97		12/15/17 06:58	MSA	Н
Chloride	28.2		mg/L	2.0	0.50	0.16	EPA 300.0		12/15/17 05:36	CHW	G
Nitrate-N	0.060U	U	mg/L	0.20	0.060	0.020	EPA 300.0		12/15/17 05:36	CHW	G
Sulfate	6.0		mg/L	2.0	0.50	0.20	EPA 300.0		12/15/17 05:36	CHW	G
Total Organic Carbon (TOC)	5.4J	J	mg/L	10.0	5.0	1.8	S5310B-00		12/19/17 15:44	PAG	D

Mrs. Vanessa N Badman

Project Coordinator

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2282982 - 12/27/2017

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DOD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2282982 ANL006|60440641

MW-33-121317

Lab ID: 2282982002

Sample ID:

Date Collected: 12/13/2017 09:45

Matrix: Ground Water

Date Received: 12/14/2017 09:55

Gample ID. WW-55-12151						11000110	d. 12717/2017 00				
Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared By	Analyzed	Ву	Cnti
VOLATILE ORGANICS						711			25 4470	034	11.30
Carbon Tetrachloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:56	DD	В
1,1-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:56	DD	В
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:56	DD	В
1,1-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:56	DD	В
cis-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:56	DD	В
trans-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:56	DD	В
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:56	DD	В
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:56	DD	В
Tetrachloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:56	DD	В
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:56	DD	В
1,1,1-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:56	DD	В
1,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:56	DD	В
Trichloroethene	142		ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:56	DD	В
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 11:56	DD	В
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared By	Analyzed	Ву	Cntr
1,2-Dichloroethane-d4 (S)	108		%	81 - 118			SW846 8260C	DUT	12/20/17 11:56	DD	В
4-Bromofluorobenzene (S)	108		%	85 - 114			SW846 8260C		12/20/17 11:56	DD	В
Dibromofluoromethane (S)	102		%	80 - 119			SW846 8260C		12/20/17 11:56	DD	В
Toluene-d8 (S)	103		%	89 - 112			SW846 8260C		12/20/17 11:56	DD	В
LIGHT HYDROCARBON GA	SES										
Ethane	0.50U	U	ug/L	1.0	0.50	0.25	RSK 175		12/19/17 04:01	EGO	Α
Ethene	0.75U	U	ug/L	1.5	0.75	0.31	RSK 175		12/19/17 04:01	EGO	Α
Methane	7.2		ug/L	0.50	0.25	0.13	RSK 175		12/19/17 04:01	EGO	Α
WET CHEMISTRY											
Alkalinity, Total	212	1	mg/L	5	5	0.8	S2320B-97		12/15/17 07:08	MSA	Н
Chloride	28.1		mg/L	2.0	0.50	0.16	EPA 300.0		12/15/17 05:52	CHW	G
Nitrate-N	0.32		mg/L	0.20	0.060	0.020	EPA 300.0		12/15/17 05:52		
Sulfate	14.8		mg/L	2.0	0.50	0.20	EPA 300.0		12/15/17 05:52		
Total Organic Carbon (TOC)	0.44J	J	mg/L	1.0	0.50	0.18	S5310B-00		12/19/17 15:44		D
•			•								

Vanessa M. Badman
Mrs. Vanessa N Badman

Project Coordinator

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2282982 - 12/27/2017

Page 5 of 18

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2282982 ANL006|60440641

Lab ID: 2282982003

Sample ID:

Date Collected: 12/13/2017 11:20

Matrix: Ground Water

MW-30-121317 Date Received: 12/14/2017 09:55

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared By	Analyzed	Ву	Cnt
VOLATILE ORGANICS									ng anto		
Carbon Tetrachloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
1,1-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
1,1-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
cis-1,2-Dichloroethene	0.41J	J	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
trans-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
1,1,2,2-Tetrachioroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	j
Tetrachloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
1,1,1-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
1,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
Trichloroethene	19.6		ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared By	Analyzed	Ву	Cnt
1,2-Dichloroethane-d4 (S)	108		%	81 - 118			SW846 8260C		12/20/17 12:18	DD	J
4-Bromofluorobenzene (S)	108		%	85 - 114			SW846 8260C		12/20/17 12:18	DD	J
Dibromofluoromethane (S)	98.9		%	80 - 119			SW846 8260C		12/20/17 12:18	DD	J
Toluene-d8 (S)	104		%	89 - 112			SW846 8260C		12/20/17 12:18	DD	J
LIGHT HYDROCARBON GA	SES										
Ethane	40.5		ug/L	1.0	0.50	0.25	RSK 175		12/19/17 04:18	EGO) A
Ethene	4.2		ug/L	1.5	0.75	0.31	RSK 175		12/19/17 04:18	EGO) A
Methane	12900		ug/L	1.0	0.50	0.26	RSK 175		12/19/17 06:17	EGO	A
WET CHEMISTRY											
Alkalinity, Total	347	1	mg/L	5	5	0.8	S2320B-97		12/15/17 07:18	MSA	Н
Chloride	87.3		mg/L	2.0	0.50	0.16	EPA 300,0		12/15/17 06:08	CHW	V G
Nitrate-N	0.060U	U	mg/L	0.20	0.060	0.020	EPA 300.0		12/15/17 06:08	CHW	V G
Sulfate	0.22J	J	mg/L	2.0	0.50	0.20	EPA 300.0		12/15/17 06:08	CHW	V G
Total Organic Carbon (TOC)	366		mg/L	50.0	25.0	9.2	S5310B-00		12/19/17 15:44	DAG	D

Vanessa VI. Badman

Mrs. Vanessa N Badman

Project Coordinator

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2282982 - 12/27/2017

Page 6 of 18

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2282982 ANL006|60440641

Lab ID: 2282982004

Date Collected: 12/13/2017 12:15

Matrix: Ground Water

Sample ID: MW-31-121317 Date Received: 12/14/2017 09:55

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared By	Analyzed	Ву	Cnt
VOLATILE ORGANICS		- After	m) .		235	gw-		1000	4.4	dour	s Thi
Carbon Tetrachloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:40	DD	В
1,1-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:40	DD	В
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:40	DD	В
1,1-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:40	DD	В
cis-1,2-Dichloroethene	0.40J	J	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:40	DD	В
trans-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:40	DD	В
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:40	DD	В
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:40	DD	В
Tetrachloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:40	DD	В
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:40	DD	В
1,1,1-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:40	DD	В
1,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:40	DD	В
Trichloroethene	19.6		ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:40	DD	В
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:40	DD	В
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared By	Analyzed	Ву	Cnt
1,2-Dichloroethane-d4 (S)	106		%	81 - 118			SW846 8260C		12/20/17 12:40	DD	В
4-Bromofluorobenzene (S)	107		%	85 - 114			SW846 8260C		12/20/17 12:40	DD	В
Dibromofluoromethane (S)	99.8		%	80 - 119			SW846 8260C		12/20/17 12:40	DD	В
Toluene-d8 (S)	103		%	89 - 112			SW846 8260C		12/20/17 12:40	DD	В
LIGHT HYDROCARBON GA	SES										
Ethane	3.3		ug/L	1.0	0.50	0.25	RSK 175		12/19/17 04:35	EGO	Α
Ethene	1.9		ug/L	1.5	0.75	0.31	RSK 175		12/19/17 04:35	EGO	Α
Methane	59.4		ug/L	0.50	0.25	0.13	RSK 175		12/19/17 04:35	EGO	Α
WET CHEMISTRY											
Alkalinity, Total	119	1	mg/L	5	5	8.0	S2320B-97		12/15/17 07:28	MSA	Н
Chloride	36.3		mg/L	2.0	0.50	0.16	EPA 300.0		12/15/17 06:24	CHW	G
Nitrate-N	0.060U	U	mg/L	0.20	0.060	0.020	EPA 300.0		12/15/17 06:24	CHW	G
Sulfate	7.8		mg/L	2.0	0.50	0.20	EPA 300.0		12/15/17 06:24	CHW	G
Total Organic Carbon (TOC)	1.3		mg/L	1.0	0.50	0.18	S5310B-00		12/19/17 15:44	DAG	D

Vanessa M. Badman
Mrs. Vanessa N Badman

Project Coordinator

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2282982 - 12/27/2017

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11, MA PA0102, MD 128, VA 460157, WV 343

Analyte

ANALYTICAL RESULTS

Workorder: 2282982 ANL006|60440641

PARAMETER QUALIFIERS

Lab ID Sample ID **Analytical Method**

MW-32-121317 Methane 2282982001 1 **RSK 175**

The QC sample type DUP for method RSK 175 was outside the control limits for the analyte Methane. The RPD was reported as 89.5 and the

upper control limit is 20.

RSK 175 2282982001 MW-32-121317 Ethane

The QC sample type DUP for method RSK 175 was outside the control limits for the analyte Ethane. The RPD was reported as 94.1 and the

upper control limit is 20. 2282982001

Ethene MW-32-121317 **RSK 175**

The QC sample type DUP for method RSK 175 was outside the control limits for the analyte Ethene. The RPD was reported as 69 and the upper

control limit is 20.

MW-32-121317 S2320B-97 Alkalinity, Total 2282982001

The Total Alkalinity is titrated to a pH of 4.5 and reported as mg CaCO3/L.

2282982001 MW-32-121317 SW846 8260C

Trichloroethene The QC sample type MS for method SW846 8260C was outside the control limits for the analyte Trichloroethene. The % Recovery was reported

as 141 and the control limits were 79 to 123. Alkalinity, Total

S2320B-97 MW-33-121317 2282982002

The Total Alkalinity is titrated to a pH of 4.5 and reported as mg CaCO3/L.

Alkalinity, Total 2282982003 MW-30-121317 S2320B-97

The Total Alkalinity is titrated to a pH of 4.5 and reported as mg CaCO3/L.

S2320B-97 2282982004 MW-31-121317 Alkalinity, Total

The Total Alkalinity is titrated to a pH of 4.5 and reported as mg CaCO3/L.

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

QUALITY CONTROL DATA

Workorder: 2282982 ANL006|60440641

QC Batch: SVGC/47651

Analysis Method: RSK 175

QC Batch Method: RSK 175

METHOD BLANK: 2662303

Associated Lab Samples: 2282982001, 2282982002, 2282982003, 2282982004

Parameter	Blank Result	Units	Reporting Limit
Ethane	0.50U	ug/L	1.0

Ethene 0.75U ug/L 1.5

Methane 0.15J ug/L 0.50

SAMPLE DUPLICATE: 2662304 ORIGINAL: 2282785005

Parameter	Original Result	Units	DUP Result	RPD	Max RPD			
Ethane	0	ug/L	0	NC	20	Test	uilla S	and the second s
Ethene	0	ug/L	0	NC	20			
Methane	7.93	ug/L	7.09	11.2	20			

SAMPLE DUPLICATE: 2662305 ORIGINAL: 2282982001

Parameter	Original Result	Units	DUP Result	RPD	Max RPD	
Ethane	5.55	ug/L	15.42	94.1*	20	
Ethene	2.26	ug/L	4.64	69*	20	
Methane	233.23	ug/L	611.11	89.5*	20	

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2282982 - 12/27/2017

Page 9 of 18

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11, MA PA0102, MD 128, VA 460157, WV 343

QUALITY CONTROL DATA

Workorder: 2282982 ANL006 60440641

QC Batch: VOMS/45453 Analysis Method: SW846 8260C

QC Batch Method: SW846 8260C

Toluene-d8 (S)

Associated Lab Samples: 2282982001, 2282982002, 2282982003, 2282982004

103

%

89 - 112

METHOD BLANK: 2663538					
Parameter	Blank Result	Units	Reporting Limit		
Carbon Tetrachloride	0.75U	ug/L	1.0		
1,1-Dichloroethane	0.75U	ug/L	1.0		
1,2-Dichloroethane	0.75U	ug/L	1.0		
1,1-Dichloroethene	0.75U	ug/L	1.0		
cis-1,2-Dichloroethene	0.75U	ug/L	1.0		
trans-1,2-Dichloroethene	0.75U	ug/L	1.0		
1,1,1,2-Tetrachloroethane	0.75U	ug/L	1.0		
1,1,2,2-Tetrachloroethane	0.75U	ug/L	1.0		
Tetrachloroethene	0.75U	ug/L	1.0		
Toluene	0.75U	ug/L	1.0		
1,1,1-Trichloroethane	0.75U	ug/L	1.0		
1,1,2-Trichloroethane	0.75U	ug/L	1.0		
Trichloroethene	0.75U	ug/L	1.0		
Vinyl Chloride	0.75U	ug/L	1.0		
1,2-Dichloroethane-d4 (S)	107	%	81 - 118		
4-Bromofluorobenzene (S)	107	%	85 - 114		
Dibromofluoromethane (S)	98.8	%	80 - 119		

LABORATORY CONTROL SAI	MPLE: 2663539					
Parameter	LCS % Rec	Units	Spike Conc.	LCS Result	% Rec Limit	
Carbon Tetrachloride	93.2	ug/L	20	18.6	72 - 136	
1,1-Dichloroethane	101	ug/L	20	20.2	77 - 125	
1,2-Dichloroethane	99.2	ug/L	20	19.8	73 - 128	
1,1-Dichloroethene	103	ug/L	20	20.7	71 - 131	
cis-1,2-Dichloroethene	99	ug/L	20	19.8	78 - 123	
trans-1,2-Dichloroethene	104	ug/L	20	20.9	75 - 124	
1,1,1,2-Tetrachloroethane	106	ug/L	20	21.3	78 - 124	
1,1,2,2-Tetrachloroethane	102	ug/L	20	20.5	71 - 121	
Tetrachloroethene	110	ug/L	20	21.9	74 - 129	
Toluene	104	ug/L	20	20.7	80 - 121	
1,1,1-Trichloroethane	108	ug/L	20	21.6	74 - 131	
1,1,2-Trichloroethane	103	ug/L	20	20.6	80 - 119	
Trichloroethene	96.6	ug/L	20	19.3	79 - 123	

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2282982 - 12/27/2017 Page 10 of 18

NELAP Certifications: NJ PA010 , NY 11759 , PA 22–293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

QUALITY CONTROL DATA

Workorder: 2282982 ANL006|60440641

Vinyl Chloride	103	ug/L	20	20.5	58 - 137
1,2-Dichloroethane-d4 (S)	108	%			81 - 118
4-Bromofluorobenzene (S)	107	%			85 - 114
Dibromofluoromethane (S)	104	%			80 - 119
Toluene-d8 (S)	103	%			89 - 112

MATRIX SPIKE: 2663540 DUPLICATE: 2663541 ORIGINAL: 2282982001

Parameter	Original Result	Units	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	
Carbon Tetrachloride	0	ug/L	20	20.1399	19.5739	101	97.9	72 - 136	2.85	30	
,1-Dichloroethane	0	ug/L	20	20.8717	20.0455	104	100	77 - 125	4.04	30	
,2-Dichloroethane	0	ug/L	20	20.4254	19.9252	102	99.6	73 - 128	2.48	30	
,1-Dichloroethene	0	ug/L	20	22.2394	20.9281	111	105	71 - 131	6.08	30	
is-1,2-Dichloroethene	.6766	ug/L	20	21.262	20.0375	103	96.8	78 - 123	5.93	30	
ans-1,2-Dichloroethene	.29568	ug/L	20	22.8443	21.4083	113	106	75 - 124	6.49	30	
,1,1,2-Tetrachloroethane	0	ug/L	20	21.6903	21.0336	108	105	78 - 124	3.07	30	
,1,2,2-Tetrachloroethane	0	ug/L	20	20.888	20.2452	104	101	71 - 121	3.13	30	
etrachloroethene	0	ug/L	20	22.4306	22.4855	112	112	74 - 129	.24	30	
oluene	0	ug/L	20	21.0495	20.3688	105	102	80 - 121	3.29	30	
,1,1-Trichloroethane	0	ug/L	20	23.0172	21.8957	115	109	74 - 131	4.99	30	
,1,2-Trichloroethane	0	ug/L	20	21.0909	20.6254	105	103	80 - 119	2.23	30	
richloroethene	119.829	ug/L	20	148.106	138.752	NC	NC	79 - 123	6.52	30	
/inyl Chloride	0	ug/L	20	22.6834	21.2031	113	106	58 - 137	6.75	30	
,2-Dichloroethane-d4 (S)	110	%				110	108	81 - 118			
-Bromofluorobenzene (S)	106	%				106	106	85 - 114			
Dibromofluoromethane (S)	101	%				101	103	80 - 119			
Toluene-d8 (S)	102	%				102	102	89 - 112			

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2282982 - 12/27/2017

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11, MA PA0102, MD 128, VA 460157, WV 343

QUALITY CONTROL DATA

Workorder: 2282982 ANL006|60440641

QC Batch: WETC/197653

Analysis Method:

S2320B-97

QC Batch Method: S2320B-97

Associated Lab Samples: 2282982001, 2282982002, 2282982003, 2282982004

METHOD BLANK: 2660509

Parameter

Blank Reporting
Result Units Limit

Alkalinity, Total 2J mg/L

SAMPLE DUPLICATE: 2660514 ORIGINAL: 2282785005

 Parameter
 Original Result
 DUP Units
 Max Result
 RPD
 Max RPD

 Alkalinity, Total
 209.61745
 mg/L
 208.13216
 .71
 20

METHOD BLANK: 2660517

Parameter Blank Reporting Result Units Limit

Alkalinity, Total 2J mg/L 5

SAMPLE DUPLICATE: 2660518 ORIGINAL: 2282836001

 Parameter
 Original Result
 DUP Units
 Max Result
 RPD
 Max RPD

 Alkalinity, Total
 83.52351
 mg/L
 81.95883
 1.89
 20

METHOD BLANK: 2660521

 Parameter
 Blank Result
 Reporting Units

 Alkalinity, Total
 2J
 mg/L
 5

SAMPLE DUPLICATE: 2660522 ORIGINAL: 2282973001

Original DUP Max
Parameter Result Units Result RPD RPD

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2282982 - 12/27/2017 Page 12 of 18

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

QUALITY CONTROL DATA

Alkalinity, Total	155.50861	mg/L	164.00923	5.32	20	
AFTUOD DI ANIV. 2000525						
METHOD BLANK: 2660525						
	Blank		Reporting			
Parameter	Result	Units	Limit			
Alkalinity, Total	2J	mg/L	5			
SAMPLE DUPLICATE: 2660526	ORIGINAL	.: 228297	6001			
	Original		DUP		Max	
Parameter	Result	Units	Result	RPD	RPD	
Alkalinity, Total	258.27353	mg/L	249.76445	3.35	20	
METHOD BLANK: 2660529						
	Blank		Reporting			
Parameter	Result	Units	Limit			
Alkalinity, Total	2J	mg/L	5			
SAMPLE DUPLICATE: 2660530	ORIGINAL	.: 228301	3001			
	Original		DUP		Max	
Parameter	Result	Units	Result	RPD	RPD	
Alkalinity, Total	13.1013	mg/L	13.25463	1.16	20	
METHOD BLANK: 2660533						
	Blank		Reporting			
Parameter	Result	Units	Limit			
Alkalinity, Total	2J	mg/L	5			
SAMPLE DUPLICATE: 2660534	ORIGINAL	.: 228301	3008			
	Original		DUP		Max	
Parameter	Result	Units	Result	RPD	RPD	
Alkalinity, Total	12.73502	mg/L	13.1689	3.35	20	

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2282982 - 12/27/2017 Page 13 of 18

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DOD ELAP: A2LA 0818.01 State Certifications: DE ID 11, MA PA0102, MD 128, VA 460157, WV 343

QUALITY CONTROL DATA

Workorder: 2282982 ANL006 60440641

METHOD BLANK: 2660685								
Parameter	Blank Result	Units	Reporting Limit					
Alkalinity, Total	2J	mg/L	5			- OF 110	7 -	
SAMPLE DUPLICATE: 2660686	ORIGINAL	: 228304	1001					
Parameter	Original Result	Units	DUP Result	RPD	Max RPD			
Alkalinity, Total	515.20416	mg/L	493.01376	4.4	20	note to	100	
METHOD BLANK: 2660689								
Parameter	Blank Result	Units	Reporting Limit					
Alkalinity, Total	1J	mg/L	5					la l

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2282982 - 12/27/2017 Page 14 of 18

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DOD ELAP: A2LA 0818.01 State Certifications: DE ID 11, MA PA0102, MD 128, VA 460157, WV 343

QUALITY CONTROL DATA

Workorder: 2282982 ANL006|60440641

QC Batch:

WETC/197660

Analysis Method:

EPA 300.0

QC Batch Method: EPA 300.0

Associated Lab Samples: 2282982001, 2282982002, 2282982003, 2282982004

METHOD BLANK: 2660659

Parameter	Blank Result	Units	Reporting Limit	
Chloride	0.25U	mg/L	1.0	
Nitrate-N	0.030U	mg/L	0.10	
Sulfate	0.25U	mg/L	1.0	

LABORATORY CONTROL SAMPLE: 2660661

Parameter	LCS % Rec	Units	Spike Conc.	LCS Result	% Rec Limit	
Chloride	103	mg/L	20	20.6	87 - 111	
Nitrate-N	98.8	mg/L	2.5	2.5	88 - 111	
Sulfate	102	mg/L	20	20.4	87 - 112	

METHOD BLANK: 2660899

Parameter	Blank Result	Units	Reporting Limit	
Chloride	0.15J	mg/L	1.0	
Nitrate-N	0.030U	mg/L	0.10	
Sulfate	0.25U	mg/L	1.0	

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2282982 - 12/27/2017

Page 15 of 18

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11, MA PA0102, MD 128, VA 460157, WV 343

QUALITY CONTROL DATA

Workorder: 2282982 ANL006|60440641

QC Batch: WETC/197832 **Analysis Method:** S5310B-00

QC Batch Method: 415.1/9060/5310B

Associated Lab Samples: 2282982001, 2282982002, 2282982003, 2282982004

METHOD BLANK: 2662782

Parameter

Blank Reporting Result Limit Units 0.20J

Total Organic Carbon (TOC)

1.0 mg/L

LABORATORY CONTROL SAMPLE: 2662783

LCS % Spike LCS % Rec Rec Conc. Result Limit Parameter Units 108 85 - 115 1 1.1 Total Organic Carbon (TOC) mg/L

ORIGINAL: 2283142002 MATRIX SPIKE: 2662784 DUPLICATE: 2662785

NOTE - The Original Result shown below is a raw result and is only used for the purpose of calculating Matrix Spike MSD **MS %** MSD % % Rec Max Original Spike MS Limit **RPD RPD** Result Conc Result Result Rec Rec Units Parameter 7.67 99.8 85 - 115 Total Organic Carbon (TOC) 1.857 mg/L 6 7.846 96.9 2.27 20

DUPLICATE: 2662787 ORIGINAL: 2283291001 MATRIX SPIKE: 2662786 NOTE - The Original Result shown below is a raw result and is only used for the purpose of calculating Matrix Spike ercent recoveries. This result is not a final value and cannot be used as such **MS %** MSD % Original Spike MS MSD % Rec Max **RPD RPD** Result Conc. Result Result Rec Rec Limit

Parameter Units 6.978 99.8 99.9 85 - 115 .983 mg/L 6 6.973 .07 20 Total Organic Carbon (TOC)

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Page 16 of 18 Report ID: 2282982 - 12/27/2017

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: 2282982 ANL006|60440641

2282982002 MW-33-121317 \$2320B-97 WETC/197653 2282982003 MW-30-121317 \$2320B-97 WETC/197653 2282982004 MW-31-121317 \$2320B-97 WETC/197653 2282982001 MW-32-121317 EPA 300.0 WETC/197660 2282982002 MW-33-121317 EPA 300.0 WETC/197660	Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
2282982003 MW-30-121317 \$2320B-97 WETC/197653 2282982004 MW-31-121317 \$2320B-97 WETC/197653 2282982001 MW-32-121317 EPA 300.0 WETC/197660 2282982002 MW-33-121317 EPA 300.0 WETC/197660 2282982003 MW-30-121317 EPA 300.0 WETC/197660 2282982004 MW-31-121317 EPA 300.0 WETC/197660 2282982001 MW-32-121317 RSK 175 SVGC/47651 2282982002 MW-33-121317 RSK 175 SVGC/47651 2282982003 MW-31-121317 RSK 175 SVGC/47651 2282982004 MW-31-121317 S5310B-00 WETC/197832 2282982001 MW-32-121317 S5310B-00 WETC/197832 2282982003 MW-31-121317 S5310B-00 WETC/197832 2282982004 MW-31-121317 S5310B-00 WETC/197832 2282982001 MW-32-121317 SW846 8260C VOMS/45453 2282982002 MW-33-121317 SW846 8260C VOMS/45453 2282982003 MW-30-121317 SW846 8260C VOMS/45453	2282982001	MW-32-121317			S2320B-97	WETC/197653
2282982004 MW-31-121317 S2320B-97 WETC/197653 2282982001 MW-32-121317 EPA 300.0 WETC/197660 2282982002 MW-33-121317 EPA 300.0 WETC/197660 2282982004 MW-31-121317 EPA 300.0 WETC/197660 2282982001 MW-32-121317 EPA 300.0 WETC/197660 2282982002 MW-33-121317 RSK 175 SVGC/47651 2282982003 MW-30-121317 RSK 175 SVGC/47651 2282982004 MW-31-121317 RSK 175 SVGC/47651 2282982004 MW-31-121317 S5310B-00 WETC/197832 2282982001 MW-32-121317 S5310B-00 WETC/197832 2282982003 MW-30-121317 S5310B-00 WETC/197832 2282982004 MW-31-121317 S5310B-00 WETC/197832 2282982001 MW-32-121317 SW846 8260C VOMS/45453 2282982002 MW-33-121317 SW846 8260C VOMS/45453 2282982003 MW-30-121317 SW846 8260C VOMS/45453	2282982002	MW-33-121317			S2320B-97	WETC/197653
2282982001 MW-32-121317 EPA 300.0 WETC/197660 2282982002 MW-33-121317 EPA 300.0 WETC/197660 2282982003 MW-30-121317 EPA 300.0 WETC/197660 2282982004 MW-31-121317 EPA 300.0 WETC/197660 2282982001 MW-32-121317 RSK 175 SVGC/47651 2282982002 MW-33-121317 RSK 175 SVGC/47651 2282982003 MW-30-121317 RSK 175 SVGC/47651 2282982004 MW-31-121317 RSK 175 SVGC/47651 2282982004 MW-31-121317 RSK 175 SVGC/47651 2282982001 MW-32-121317 S5310B-00 WETC/197832 2282982003 MW-30-121317 S5310B-00 WETC/197832 2282982004 MW-31-121317 S5310B-00 WETC/197832 2282982004 MW-31-121317 S5310B-00 WETC/197832 2282982004 MW-31-121317 SS310B-00 WETC/197832 2282982004 MW-31-121317 SS310B-00 WETC/197832 2282982004 MW-31-121317 SS310B-00 WETC/197832 2282982004 MW-31-121317 SS310B-00 WETC/197832 2282982001 MW-32-121317 SSW846 8260C VOMS/45453 2282982002 MW-33-121317 SW846 8260C VOMS/45453 2282982003 MW-30-121317 SW846 8260C VOMS/45453	2282982003	MW-30-121317			S2320B-97	WETC/197653
2282982002 MW-33-121317 EPA 300.0 WETC/197660 2282982003 MW-30-121317 EPA 300.0 WETC/197660 2282982004 MW-31-121317 EPA 300.0 WETC/197660 2282982001 MW-31-121317 RSK 175 SVGC/47651 2282982002 MW-33-121317 RSK 175 SVGC/47651 2282982003 MW-30-121317 RSK 175 SVGC/47651 2282982004 MW-31-121317 RSK 175 SVGC/47651 2282982001 MW-32-121317 S5310B-00 WETC/197832 2282982002 MW-33-121317 S5310B-00 WETC/197832 2282982003 MW-30-121317 S5310B-00 WETC/197832 2282982004 MW-31-121317 S5310B-00 WETC/197832 2282982001 MW-32-121317 SW846 8260C VOMS/45453 2282982002 MW-33-121317 SW846 8260C VOMS/45453 2282982003 MW-30-121317 SW846 8260C VOMS/45453	2282982004	MW-31-121317			S2320B-97	WETC/197653
2282982003 MW-30-121317 EPA 300.0 WETC/197660 2282982004 MW-31-121317 EPA 300.0 WETC/197660 2282982001 MW-32-121317 RSK 175 SVGC/47651 2282982002 MW-33-121317 RSK 175 SVGC/47651 2282982003 MW-30-121317 RSK 175 SVGC/47651 2282982004 MW-31-121317 RSK 175 SVGC/47651 2282982001 MW-32-121317 S5310B-00 WETC/197832 2282982002 MW-33-121317 S5310B-00 WETC/197832 2282982003 MW-31-121317 S5310B-00 WETC/197832 2282982001 MW-31-121317 SW846 8260C VOMS/45453 2282982002 MW-33-121317 SW846 8260C VOMS/45453 2282982003 MW-30-121317 SW846 8260C VOMS/45453	2282982001	MW-32-121317			EPA 300.0	WETC/197660
2282982004 MW-31-121317 EPA 300.0 WETC/197660 2282982001 MW-32-121317 RSK 175 SVGC/47651 2282982002 MW-33-121317 RSK 175 SVGC/47651 2282982003 MW-30-121317 RSK 175 SVGC/47651 2282982004 MW-31-121317 RSK 175 SVGC/47651 2282982001 MW-32-121317 S5310B-00 WETC/197832 2282982002 MW-33-121317 S5310B-00 WETC/197832 2282982003 MW-30-121317 S5310B-00 WETC/197832 2282982004 MW-31-121317 S5310B-00 WETC/197832 2282982001 MW-32-121317 SW846 8260C VOMS/45453 2282982002 MW-33-121317 SW846 8260C VOMS/45453 2282982003 MW-30-121317 SW846 8260C VOMS/45453	2282982002	MW-33-121317			EPA 300.0	WETC/197660
2282982001 MW-32-121317 RSK 175 SVGC/47651 2282982002 MW-33-121317 RSK 175 SVGC/47651 2282982003 MW-30-121317 RSK 175 SVGC/47651 2282982004 MW-31-121317 RSK 175 SVGC/47651 2282982001 MW-32-121317 S5310B-00 WETC/197832 2282982002 MW-33-121317 S5310B-00 WETC/197832 2282982003 MW-30-121317 S5310B-00 WETC/197832 2282982004 MW-31-121317 S5310B-00 WETC/197832 2282982001 MW-32-121317 SW846 8260C VOMS/45453 2282982002 MW-33-121317 SW846 8260C VOMS/45453 2282982003 MW-30-121317 SW846 8260C VOMS/45453	2282982003	MW-30-121317			EPA 300.0	WETC/197660
2282982002 MW-33-121317 RSK 175 SVGC/47651 2282982003 MW-30-121317 RSK 175 SVGC/47651 2282982004 MW-31-121317 RSK 175 SVGC/47651 2282982001 MW-32-121317 S5310B-00 WETC/197832 2282982002 MW-33-121317 S5310B-00 WETC/197832 2282982003 MW-30-121317 S5310B-00 WETC/197832 2282982004 MW-31-121317 S5310B-00 WETC/197832 2282982001 MW-32-121317 SW846 8260C VOMS/45453 2282982002 MW-33-121317 SW846 8260C VOMS/45453 2282982003 MW-30-121317 SW846 8260C VOMS/45453	2282982004	MW-31-121317			EPA 300.0	WETC/197660
2282982003 MW-30-121317 RSK 175 SVGC/47651 2282982004 MW-31-121317 RSK 175 SVGC/47651 2282982001 MW-32-121317 S5310B-00 WETC/197832 2282982002 MW-33-121317 S5310B-00 WETC/197832 2282982003 MW-30-121317 S5310B-00 WETC/197832 2282982004 MW-31-121317 S5310B-00 WETC/197832 2282982001 MW-32-121317 SW846 8260C VOMS/45453 2282982002 MW-33-121317 SW846 8260C VOMS/45453 2282982003 MW-30-121317 SW846 8260C VOMS/45453	2282982001	MW-32-121317			RSK 175	SVGC/47651
2282982004 MW-31-121317 RSK 175 SVGC/47651 2282982001 MW-32-121317 S5310B-00 WETC/197832 2282982002 MW-33-121317 S5310B-00 WETC/197832 2282982003 MW-30-121317 S5310B-00 WETC/197832 2282982004 MW-31-121317 S5310B-00 WETC/197832 2282982001 MW-32-121317 SW846 8260C VOMS/45453 2282982002 MW-33-121317 SW846 8260C VOMS/45453 2282982003 MW-30-121317 SW846 8260C VOMS/45453	2282982002	MW-33-121317			RSK 175	SVGC/47651
2282982001 MW-32-121317 S5310B-00 WETC/197832 2282982002 MW-33-121317 S5310B-00 WETC/197832 2282982003 MW-30-121317 S5310B-00 WETC/197832 2282982004 MW-31-121317 S5310B-00 WETC/197832 2282982001 MW-32-121317 SW846 8260C VOMS/45453 2282982002 MW-33-121317 SW846 8260C VOMS/45453 2282982003 MW-30-121317 SW846 8260C VOMS/45453	2282982003	MW-30-121317			RSK 175	SVGC/47651
2282982002 MW-33-121317 S5310B-00 WETC/197832 2282982003 MW-30-121317 S5310B-00 WETC/197832 2282982004 MW-31-121317 S5310B-00 WETC/197832 2282982001 MW-32-121317 SW846 8260C VOMS/45453 2282982002 MW-33-121317 SW846 8260C VOMS/45453 2282982003 MW-30-121317 SW846 8260C VOMS/45453	2282982004	MW-31-121317			RSK 175	SVGC/47651
2282982003 MW-30-121317 S5310B-00 WETC/197832 2282982004 MW-31-121317 S5310B-00 WETC/197832 2282982001 MW-32-121317 SW846 8260C VOMS/45453 2282982002 MW-33-121317 SW846 8260C VOMS/45453 2282982003 MW-30-121317 SW846 8260C VOMS/45453	2282982001	MW-32-121317			S5310B-00	WETC/197832
282982004 MW-31-121317 S5310B-00 WETC/197832 282982001 MW-32-121317 SW846 8260C VOMS/45453 282982002 MW-33-121317 SW846 8260C VOMS/45453 282982003 MW-30-121317 SW846 8260C VOMS/45453	282982002	MW-33-121317			S5310B-00	WETC/197832
282982001 MW-32-121317 SW846 8260C VOMS/45453 282982002 MW-33-121317 SW846 8260C VOMS/45453 282982003 MW-30-121317 SW846 8260C VOMS/45453	282982003	MW-30-121317			S5310B-00	WETC/197832
2282982002 MW-33-121317 SW846 8260C VOMS/45453 2282982003 MW-30-121317 SW846 8260C VOMS/45453	282982004	MW-31-121317			S5310B-00	WETC/197832
2282982003 MW-30-121317 SW846 8260C VOMS/45453	2282982001	MW-32-121317			SW846 8260C	VOMS/45453
	2282982002	MW-33-121317			SW846 8260C	VOMS/45453
2282982004 MW-31-121317 SW846 8260C VOMS/45453	2282982003	MW-30-121317			SW846 8260C	VOMS/45453
	2282982004	MW-31-121317			SW846 8260C	VOMS/45453

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2282982 - 12/27/2017 Page 17 of 18

	8 2 9 8 2 4	(previous block) (healtes)	(special	Cooler Temp: ()'	Therm. ID: 400	No. of Coolers: Notes:			1 12 () 10 () 10	mulay e	idgrusa i idgrusa i senq ice iceqeb	Correct moJ				SOC - 00	faoi no	steets (general second	t hy		ALS FIELD SERVICES		- Poper	Composite Sempling	Rental Squipment	Others		
0	3/02/2/5/				0							Analysis	il Alidiyələ								/	SURA Sembras	☐ <u>Q</u> <u>T</u>	2 	<u>}</u>	R.	8	o centeraviono	Manuals et ourster
Page Courter:	Tracking #(44-1683102816	74	8 64	•	ANALYSES/METHOD REQUESTED	:		Ay.	رزم	الج	V	Cales Manhar of Cantainsia		×	~	×	শ				,	Shandend	CLP-Re		0	Second	If yes, formet types,	= 1 Sec 0.4PP	10 IOOU CITIZEN CALLES CITIZEN CALLES
YSIS	THE CLIENT?	A VAR DE	40 80		ANALYSES			-gv	SLI	75.	عر عر عر	- Cates Man	בחנפו ממווום	F V V	となべ	X X X	2 8 H							Date Time	· 12/13/14 1300	12-41 OPSS	,		- Control in the Control of the Cont
CHAIN OF CUSTODY/ REQUEST FOR ANALYSIS	ALL SHADED AREAS MUST GE COMPLETED BY THE CLENT) SAMPLER INSTRUCTIONS ON THE DACK.	Type VOA VOA	Container %o %o	no Her					7	09	8	Sor C.	-	G aw x3	113×	Z/2	\$ \$ x 3 >	· ·× · ·						By / Company Name	11 to 1				1010
CHAIN	ALL SHADED AREAS M SAMPLER IN		ft 220c			70 M	,	u				Semple Military	erit erit	1/10/10 841) GMC	07(1)	7121 A	1		1	<u>ار</u>			Received By	2	1	8	2	10
e 7057			Phone: 519		2		PO#:		ALS Quote #	Approved By:	4		COC Comments		からない		1	140	3.0°. R		No.X	Project Comments:	1	Date Time	12/12/11 1300	12/13/11/1400			
34 Dogwood Lane Middletown, PA 17057	P. 717-944-5541 F.717-944-1430		Crast					•	and the second second	nd surcharges.	JAM. SadALAGE O ACCOMILON	1000	בסב		T) There	1000	MAN SELECT	10000		+		Proje			11/	Zi			
	S) nental	DECON	Contact mouth! John Sentacreed	A A	10 70 400	LATRAM, NY	part taj):		amel#: 6044 0641	monner-handero i.v. i ib iv. i.e oberinde vars. Rush-Subject to ALS approval and surcharges	John Sadhela	Sample Description/Location	les it will appear on the lab record	121317	[213t7	Ł		1 2				se Print):	- Lores	Relinguished By / Company Name	Stant .	4			
•	(ALS) Environmental	Co. Name: 7	Contact (Report tel:	Address: LL	2 -	*	Bill to arthrestean Aspectus):		Project Name#:	TAT:	Email? V.Y	Sample Desc	(as it will appe	1 MW-32	2 MM-33	3 MW- 34	C-MW 4	5 1/2.19	1 1	7		SAMPLED BY (Please Print):	Riss M&Cray	Relinquia	*	3)	7	60

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11, MA PA0102, MD 128, VA 460157, WV 343

December 28, 2017

Mr. John Santacroce AECOM - LATHAM NY 40 British American Blvd. Albany, NY 12210

Certificate of Analysis

Project Name:

2015-SCOTIA NAVY DEPOT-PO

60440641

Purchase Order: 6

66432/60440641.11

Workorder:

2283331

Workorder ID: ASN030|Scotia Navy Depot 60440

Dear Mr. Santacroce:

Enclosed are the analytical results for samples received by the laboratory on Friday, December 15, 2017.

The ALS Environmental laboratory in Middletown, Pennsylvania is a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory and as such, certifies that all applicable test results meet the requirements of NELAP.

If you have any questions regarding this certificate of analysis, please contact Mrs. Vanessa N Badman (Project Coordinator) at (717) 944-5541.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable. For a specific list of accredited analytes, refer to the certifications section of the ALS website at www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads.

This laboratory report may not be reproduced, except in full, without the written approval of ALS Environmental.

ALS Spring City: 10 Riverside Drive, Spring City, PA 19475 610-948-4903

CC: Ms. Kelly Lurie, Mr. Scott Underhill

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Vanessa M. Badman

Mrs. Vanessa N Badman
Project Coordinator

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay

Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

SAMPLE SUMMARY

Workorder: 2283331 ASN030|Scotia Navy Depot 60440

Lab ID	Sample ID	Matrix	Date Collected	Date Received	Collected By
2283331001	MW-28 121417	Ground Water	12/14/2017 09:25	12/15/2017 09:30	Collected by Client
2283331002	MW-29 121417	Ground Water	12/14/2017 10:10	12/15/2017 09:30	Collected by Client
2283331003	MW-15 121417	Ground Water	12/14/2017 11:01	12/15/2017 09:30	Collected by Client
2283331004	DUP-2 121417	Ground Water	12/14/2017 00:00	12/15/2017 09:30	Collected by Client
2283331005	TRIP BLANK	Ground Water	12/15/2017 09:30	12/15/2017 09:30	Collected by Client

Report ID: 2283331 - 12/28/2017 Page 2 of 24

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DOD ELAP: A2LA 0818.01 State Certifications: DE ID 11, MA PA0102, MD 128, VA 460157, WV 343

SAMPLE SUMMARY

Workorder: 2283331 ASN030|Scotia Navy Depot 60440

Notes

- -- Samples collected by ALS personnel are done so in accordance with the procedures set forth in the ALS Field Sampling Plan (20 Field Services Sampling Plan).
- -- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- -- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- -- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- -- The Chain of Custody document is included as part of this report.
- -- All Library Search analytes should be regarded as tentative identifications based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.
- -- Parameters identified as "analyze immediately" require analysis within 15 minutes of collection. Any "analyze immediately" parameters not listed under the header "Field Parameters" are preformed in the laboratory and are therefore analyzed out of hold time.
- -- Method references listed on this report beginning with the prefix "S" followed by a method number (such as S2310B-97) refer to methods from "Standard Methods for the Examination of Water and Wastewater".
- -- For microbiological analyses, the "Prepared" value is the date/time into the incurbator and the "Analyzed" value is the date/time out the incubator.

Standard Acronyms/Flags

- J Indicates an estimated value between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) for the analyte
- U Indicates that the analyte was Not Detected (ND)
- N Indicates presumptive evidence of the presence of a compound
- MDL Method Detection Limit
- PQL Practical Quantitation Limit
- RDL Reporting Detection Limit
- ND Not Detected indicates that the analyte was Not Detected at the RDL
- Cntr Analysis was performed using this container
- RegLmt Regulatory Limit
- LCS Laboratory Control Sample
- MS Matrix Spike
- MSD Matrix Spike Duplicate
- DUP Sample Duplicate
- %Rec Percent Recovery
- RPD Relative Percent Difference
- LOD DoD Limit of Detection
- LOQ DoD Limit of Quantitation
- DL DoD Detection Limit
- I Indicates reported value is greater than or equal to the Method Detection Limit (MDL) but less than the Report Detection Limit (RDL)
- (S) Surrogate Compound
- NC Not Calculated
- * Result outside of QC limits

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2283331 - 12/28/2017

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DOD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

PROJECT SUMMARY

Workorder: 2283331 ASN030|Scotia Navy Depot 60440

Sample Comments

Lab ID: 2283331001

Sample ID: MW-28 121417

Sample Type: SAMPLE

A positive residual chlorine result was detected in the preservation check for the volatile organics analysis of this sample. This may be due to the presence of residual chlorine or another oxidizing agent.

Lab ID: 2283331004

Sample ID: DUP-2 121417

Sample Type: SAMPLE

This sample was extracted for the RSK-175 analysis. The SOP states that the sample must have a pH < 2. The pH of this sample was > 2.

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2283331 ASN030|Scotia Navy Depot 60440

Lab ID: 2283331001

Sample ID:

Date Collected: 12/14/2017 09:25

Matrix: Ground Water

MW-28 121417 Date Received: 12/15/2017 09:30

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared By	Analyzed	Ву	Cntr
VOLATILE ORGANICS											
Carbon Tetrachloride	0.57J	J	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:02	DD	Α
1,1-Dichloroethane	0.84J	J	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:02	DD	Α
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:02	DD	Α
1,1-Dichloroethene	0.45J	J	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:02	DD	Α
cis-1,2-Dichloroethene	5.0		ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:02	DD	Α
trans-1,2-Dichloroethene	0.49J	J	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:02	DD	Α
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:02	DD	Α
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:02	DD	Α
Tetrachloroethene	45.2		ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:02	DD	Α
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:02	DD	Α
1,1,1-Trichloroethane	9.5		ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:02	DD	Α
1,1,2-Trichloroethane	0.33J	J	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:02	DD	Α
Trichloroethene	201		ug/L	5.0	3.8	1.7	SW846 8260C		12/21/17 22:51	CJG	В
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:02	DD	Α
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared By	Analyzed	Ву	Cntr
1,2-Dichloroethane-d4 (S)	108		%	81 - 118			SW846 8260C		12/21/17 22:51	CJG	В
1,2-Dichloroethane-d4 (S)	106		%	81 - 118			SW846 8260C		12/20/17 13:02	DD	Α
4-Bromofluorobenzene (S)	108		%	85 - 114			SW846 8260C		12/20/17 13:02	DD	Α
4-Bromofluorobenzene (S)	109		%	85 - 114			SW846 8260C		12/21/17 22:51	CJG	В
Dibromofluoromethane (S)	99.9		%	80 - 119			SW846 8260C		12/20/17 13:02	DD	Α
Dibromofluoromethane (S)	99.1		%	80 - 119			SW846 8260C		12/21/17 22:51	CJG	, В
Toluene-d8 (S)	104		%	89 - 112			SW846 8260C		12/21/17 22:51	CJG	В
Toluene-d8 (S)	104		%	89 - 112			SW846 8260C		12/20/17 13:02	DD	Α
LIGHT HYDROCARBON GAS	SES										
Ethane	0.50U	U	ug/L	1.0	0.50	0.25	RSK 175		12/19/17 05:27	EGO	D
Ethene	0.75U	U	ug/L	1.5	0.75	0.31	RSK 175		12/19/17 05:27	EGO	D
Methane	0.38J	J	ug/L	0.50	0.25	0.13	RSK 175		12/19/17 05:27	EGO	D
WET CHEMISTRY											
Alkalinity, Total	383	1	mg/L	5	5	0.8	S2320B-97		12/16/17 17:41	MSA	K
Chloride	20.4		mg/L	2.0	0.50	0.16	EPA 300.0		12/16/17 05:45	CHW	/ J
Nitrate-N	1.2		mg/L	0.20	0.060	0.020	EPA 300.0		12/16/17 05:45	CHW	/ J
Sulfate	22.4		mg/L	2.0	0.50	0.20	EPA 300.0		12/16/17 05:45	CHW	/ J
Total Organic Carbon (TOC)	0.94J	J	mg/L	1.0	0.50	0.18	S5310B-00		12/20/17 12:11	PAG	G
- ' '			_								

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2283331 - 12/28/2017

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11, MA PA0102, MD 128, VA 460157, WV 343

LOD

ANALYTICAL RESULTS

LOQ

Workorder: 2283331 ASN030|Scotia Navy Depot 60440

Flag

Units

Lab ID:

2283331001

Date Collected: 12/14/2017 09:25

Matrix:

Ground Water

Sample ID:

MW-28 121417

Date Received: 12/15/2017 09:30

DL

Method

Analyzed

Cntr

Parameters Results

> Vanessa M. Badman Mrs. Vanessa N Badman **Project Coordinator**

Prepared By

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2283331 ASN030|Scotia Navy Depot 60440

MW-29 121417

Lab ID: 2283331002

Sample ID:

Date Collected: 12/14/2017 10:10

Matrix: Ground Water

Date Received: 12/15/2017 09:30

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared B	Ву	Analyzed	Ву	Cnt
VOLATILE ORGANICS												
Carbon Tetrachloride	0.71J	J	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 14:08	DD	Α
1,1-Dichloroethane	0.88J	J	ug/L	-1.0	0.75	0.33	SW846 8260C			12/20/17 14:08	DD	Α
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 14:08	DD	Α
1,1-Dichloroethene	0.96J	J	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 14:08	DD	Α
cis-1,2-Dichloroethene	5.7		ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 14:08	DD	Α
trans-1,2-Dichloroethene	0.62J	J	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 14:08	DD	Α
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 14:08	DD	Α
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 14:08	DD	Α
Tetrachloroethene	41.7		ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 14:08	DD	Α
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 14:08	DD	Α
1,1,1-Trichloroethane	14.6		ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 14:08	DD	Α
1,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 14:08	DD	Α
Trichloroethene	233		ug/L	5.0	3.8	1.7	SW846 8260C			12/21/17 23:13	CJG	В
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 14:08	DD	Α
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared	Ву	Analyzed	Ву	Cnt
1,2-Dichloroethane-d4 (S)	107		%	81 - 118			SW846 8260C			12/20/17 14:08	DD	Α
1,2-Dichloroethane-d4 (S)	109		%	81 - 118			SW846 8260C			12/21/17 23:13	CJG	В
4-Bromofluorobenzene (S)	111		%	85 - 114			SW846 8260C			12/20/17 14:08	DD	Α
4-Bromofluorobenzene (S)	107		%	85 - 114			SW846 8260C			12/21/17 23:13	CJG	В
Dibromofluoromethane (S)	98.7		%	80 - 119			SW846 8260C			12/21/17 23:13	CJG	В
Dibromofluoromethane (S)	99.6		%	80 - 119			SW846 8260C			12/20/17 14:08	DD	Α
Toluene-d8 (S)	103		%	89 - 112			SW846 8260C			12/21/17 23:13	CJG	В
Toluene-d8 (S)	104		%	89 - 112			SW846 8260C			12/20/17 14:08	DD	Α
LIGHT HYDROCARBON GA	SES											
Ethane	0.50U	U	ug/L	1.0	0.50	0.25	RSK 175			12/19/17 05:43	EG0	D
Ethene	0.75U	U	ug/L	1.5	0.75	0.31	RSK 175			12/19/17 05:43	EG0	D
Methane	0.42J	J	ug/L	0.50	0.25	0.13	RSK 175			12/19/17 05:43	EGO	D
WET CHEMISTRY												
Alkalinity, Total	348	1	mg/L	5	5	0.8	S2320B-97			12/16/17 17:53	MSA	K
Chloride	21.3		mg/L	2.0	0.50	0.16	EPA 300.0			12/16/17 06:01	CHW	J
Nitrate-N	0.86		mg/L	0.20	0.060	0.020	EPA 300.0			12/16/17 06:01		
Sulfate	22.7		mg/L	2.0	0.50	0.20	EPA 300.0			12/16/17 06:01		
Total Organic Carbon (TOC)	1.2		mg/L	1.0	0.50	0.18	S5310B-00			12/20/17 12:11		G

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2283331 - 12/28/2017

Page 7 of 24

Ground Water

34 Dogwood Lane = Middletown, PA 17057 = Phone: 717-944-5541 = Fax: 717-944-1430 = www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2283331 ASN030 Scotia Navy Depot 60440

Lab ID: 2283331002

Date Collected: 12/14/2017 10:10

Sample ID: MW-29 121417 Date Received: 12/15/2017 09:30

Parameters Results Flag Units LOQ LOD DL Method Prepared By Analyzed By Cntr

Vanessa M. Baolman
Mrs. Vanessa N Badman
Project Coordinator

Matrix:

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11, MA PA0102, MD 128, VA 460157, WV 343

ANALYTICAL RESULTS

Workorder: 2283331 ASN030|Scotia Navy Depot 60440

Lab ID: 22

2283331003

Date Collected: 12/14/2017 11:01 Date Received: 12/15/2017 09:30 Matrix: Ground Water

Sample ID: MW-15 121417

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared	Ву	Analyzed	Ву	Cntr
VOLATILE ORGANICS										tshi (Anit	DE II	Alto
Carbon Tetrachloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 13:24	DD	С
1,1-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 13:24	DD	C
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 13:24	DD	C
1,1-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 13:24	DD	C
cis-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 13:24	DD	C
trans-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 13:24	DD	C
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 13:24	DD	С
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 13:24	DD	C
Tetrachloroethene	1.3		ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 13:24	DD	С
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 13:24	DD	C
1,1,1-Trichloroethane	4.3		ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 13:24	DD	C
1,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 13:24	DD	C
Trichloroethene	143		ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 13:24	DD	С
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 13:24	DD	С
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared	Ву	Analyzed	Ву	Cntr
1,2-Dichloroethane-d4 (S)	107		%	81 - 118		To IT	SW846 8260C			12/20/17 13:24	DD	С
4-Bromofluorobenzene (S)	108		%	85 - 114			SW846 8260C			12/20/17 13:24	DD	C
Dibromofluoromethane (S)	100		%	80 - 119			SW846 8260C			12/20/17 13:24	DD	C
Toluene-d8 (S)	104		%	89 - 112			SW846 8260C			12/20/17 13:24	DD	C
LIGHT HYDROCARBON GA	SES											
Ethane	0.50U	U	ug/L	1.0	0.50	0.25	RSK 175			12/19/17 06:00	EGO	D
Ethene	0.75U	U	ug/L	1.5	0.75	0.31	RSK 175			12/19/17 06:00	EGO	D
Methane	0.28J	J	ug/L	0.50	0.25	0.13	RSK 175			12/19/17 06:00	EGO	D
WET CHEMISTRY												
Alkalinity, Total	216	1	mg/L	5	5	0.8	S2320B-97			12/16/17 18:40	MSA	K
Chloride	39.7		mg/L	2.0	0.50	0.16	EPA 300.0			12/16/17 06:19	CHW	J

Mrs. Vanessa N Badman

Project Coordinator

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2283331 - 12/28/2017

Total Organic Carbon (TOC)

0.60

20.5

0.33J

mg/L

mg/L

mg/L

0.20

2.0

1.0

0.060

0.50

0.50

0.020

0.20

0.18

EPA 300.0

EPA 300.0

S5310B-00

Nitrate-N

Sulfate

12/16/17 06:19 CHW

12/16/17 06:19 CHW J

12/20/17 12:11 PAG G

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2283331 ASN030|Scotia Navy Depot 60440

Lab ID: 2283331004

Date Collected: 12/14/2017 00:00

Matrix: Ground Water

Sample ID: **DUP-2 121417**

Date Received: 12/15/2017 09:30

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared By	Analyzed	Ву	Cnt
VOLATILE ORGANICS											
Carbon Tetrachloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
1,1-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
1,1-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
cis-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
trans-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
Tetrachloroethene	1.4		ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
1,1,1-Trichloroethane	4.6		ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
1,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
Trichloroethene	154		ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared By	Analyzed	Ву	Cn
1,2-Dichloroethane-d4 (S)	107		%	81 - 118			SW846 8260C		12/20/17 13:46	DD	Α
4-Bromofluorobenzene (S)	108		%	85 - 114			SW846 8260C		12/20/17 13:46	DD	Α
Dibromofluoromethane (S)	99.2		%	80 - 119			SW846 8260C		12/20/17 13:46	DD	Α
Toluene-d8 (S)	104		%	89 - 112			SW846 8260C		12/20/17 13:46	DĐ	Α
LIGHT HYDROCARBON GA	SES										
Ethane	0.50U	U	ug/L	1.0	0.50	0.25	RSK 175		12/19/17 05:11	EGO	D
Ethene	0.75U	U	ug/L	1.5	0.75	0.31	RSK 175		12/19/17 05:11	EGO	D
Methane	0.48J	J	ug/L	0.50	0.25	0.13	RSK 175		12/19/17 05:11	EGO	D
WET CHEMISTRY											
Alkalinity, Total	219	1	mg/L	5	5	0.8	S2320B-97		12/16/17 18:51	MSA	K
Chloride	39.5		mg/L	2.0	0.50	0.16	EPA 300.0		12/16/17 05:27	CHW	/ J
Nitrate-N	0.60		mg/L	0.20	0.060	0.020	EPA 300.0		12/16/17 05:27	CHW	/ J
Sulfate	20.8		mg/L	2.0	0.50	0.20	EPA 300.0		12/16/17 05:27	CHW	/ J
Total Organic Carbon (TOC)	0.40J	J	mg/L	1.0	0.50	0.18	S5310B-00		12/20/17 12:11	D40	G

Vanessa M. Badman Mrs. Vanessa N Badman

Project Coordinator

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2283331 - 12/28/2017

Page 10 of 24

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2283331 ASN030|Scotia Navy Depot 60440

PARAMETER Q	UALIFIER	RS			
Lab ID	#	Sample ID	Analytical Method	Analyte	
2283331001	11	MW-28 121417	S2320B-97	Alkalinity, Total	
The Total Alkalin	ity is titrat	ed to a pH of 4.5 and reporte	ed as mg CaCO3/L.		
2283331002	1	MW-29 121417	S2320B-97	Alkalinity, Total	
The Total Alkalin	ity is titrat	ed to a pH of 4.5 and reporte	ed as mg CaCO3/L.		
2283331003	1	MW-15 121417	S2320B-97	Alkalinity, Total	
The Total Alkalin	ity is titrat	ed to a pH of 4.5 and reporte	ed as mg CaCO3/L.	Agin ditarn	
2283331004	1	DUP-2 121417	S2320B-97	Alkalinity, Total	
The Total Alkalin	ity is titrat	ed to a pH of 4.5 and reporte	ed as mg CaCO3/L.		

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2283331 - 12/28/2017

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11, MA PA0102, MD 128, VA 460157, WV 343

QUALITY CONTROL DATA

Workorder: 2283331 ASN030|Scotia Navy Depot 60440

QC Batch:

SVGC/47651

Analysis Method:

RSK 175

QC Batch Method: RSK 175

Associated Lab Samples: 2283331001, 2283331002, 2283331003, 2283331004

METHOD BLANK: 2662303

Parameter	Blank Result	Units	Reporting Limit
Ethane	0.50U	ug/L	1.0
Ethene	0.75U	ug/L	1.5
Methane	0.15J	ug/L	0.50

SAMPLE DUPLICATE: 2002304 URIGINAL: 220270300	SAMPLE D	UPLICATE: 2662304	ORIGINAL:	2282785005
---	----------	-------------------	-----------	------------

Parameter	Original Result	Units	DUP Result	RPD	Max RPD
Ethane	0	ug/L	0	NC	20
Ethene	0	ug/L	0	NC	20
Methane	7.93	ug/L	7.09	11.2	20

SAMPLE DUPLICATE: 2662305 ORIGINAL: 228298200	SAMPLE	DUPLICATE:	2662305	ORIGINAL:	2282982001
---	--------	------------	---------	-----------	------------

Parameter	Original Result	Units	DUP Result	RPD	Max RPD
Ethane	5.55	ug/L	15.42	94.1*	20
Ethene	2.26	ug/L	4.64	69*	20
Methane	233.23	ug/L	611.11	89.5*	20

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Page 12 of 24 Report ID: 2283331 - 12/28/2017

Page 13 of 24

34 Dogwood Lane = Middletown, PA 17057 = Phone: 717-944-5541 = Fax: 717-944-1430 = www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DOD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

QUALITY CONTROL DATA

Workorder: 2283331 ASN030|Scotia Navy Depot 60440

QC Batch: VOMS/45453

Analysis Method: SW846

SW846 8260C

QC Batch Method: SW846 8260C

Associated Lab Samples: 2283331001, 2283331002, 2283331003, 2283331004

METHOD	BLANK	: 2663538
--------	-------	-----------

Parameter	Blank Result	Units	Reporting Limit				
Carbon Tetrachloride	0.75U	ug/L	1.0	2/11	1.15	1000	
1,1-Dichloroethane	0.75U	ug/L	1.0				
1,2-Dichloroethane	0.75U	ug/L	1.0				
1,1-Dichloroethene	0.75U	ug/L	1.0				
cis-1,2-Dichloroethene	0.75U	ug/L	1.0				
trans-1,2-Dichloroethene	0.75U	ug/L	1.0				
1,1,1,2-Tetrachloroethane	0.75U	ug/L	1.0				
1,1,2,2-Tetrachloroethane	0.75U	ug/L	1.0				
Tetrachloroethene	0.75U	ug/L	1.0				
Toluene	0.75U	ug/L	1.0				
1,1,1-Trichloroethane	0.75U	ug/L	1.0				
1,1,2-Trichloroethane	0.75U	ug/L	1.0				
Trichloroethene	0.75U	ug/L	1.0				
Vinyl Chloride	0.75U	ug/L	1.0				
1,2-Dichloroethane-d4 (S)	107	%	81 - 118				
4-Bromofluorobenzene (S)	107	%	85 - 114				
Dibromofluoromethane (S)	98.8	%	80 - 119				
Toluene-d8 (S)	103	%	89 - 112				
. ,							

LABORATORY CONTROL SAMPLE: 2663539

Parameter	LCS % Rec	Units	Spike Conc.	LCS Result	% Rec Limit	
Carbon Tetrachloride	93.2	ug/L	20	18.6	72 - 136	
1,1-Dichloroethane	101	ug/L	20	20.2	77 - 125	
1,2-Dichloroethane	99.2	ug/L	20	19.8	73 - 128	
1,1-Dichloroethene	103	ug/L	20	20.7	71 - 131	
cis-1,2-Dichloroethene	99	ug/L	20	19.8	78 - 123	
trans-1,2-Dichloroethene	104	ug/L	20	20.9	75 - 124	
1,1,1,2-Tetrachloroethane	106	ug/L	20	21.3	78 - 124	
1,1,2,2-Tetrachloroethane	102	ug/L	20	20.5	71 - 121	
Tetrachloroethene	110	ug/L	20	21.9	74 - 129	
Toluene	104	ug/L	20	20.7	80 - 121	
1,1,1-Trichloroethane	108	ug/L	20	21.6	74 - 131	
1,1,2-Trichloroethane	103	ug/L	20	20.6	80 - 119	
Trichloroethene	96.6	ug/L	20	19.3	79 - 123	

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2283331 - 12/28/2017

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

QUALITY CONTROL DATA

Workorder: 2283331 ASN030|Scotia Navy Depot 60440

Vinyl Chloride	103	ug/L	20	20.5	58 - 137
1,2-Dichloroethane-d4 (S)	108	%			81 - 118
4-Bromofluorobenzene (S)	107	%			85 - 114
Dibromofluoromethane (S)	104	%			80 - 119
Toluene-d8 (S)	103	%			89 - 112

""NOTE - The Original Result				BUAN 18 18 18	ne purpose c	n calculaun	y wattix of	ike			
percent recoveries. This result is not a final value and cannot be used as such.											
Parameter	Original Result	Units	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	
Carbon Tetrachloride	0	ug/L	20	20.1399	19.5739	101	97.9	72 - 136	2.85	30	
1,1-Dichloroethane	0	ug/L	20	20.8717	20.0455	104	100	77 - 125	4.04	30	
1,2-Dichloroethane	0	ug/L	20	20.4254	19.9252	102	99.6	73 - 128	2.48	30	
1,1-Dichloroethene	0	ug/L	20	22,2394	20.9281	111	105	71 - 131	6.08	30	
cis-1,2-Dichloroethene	.6766	ug/L	20	21.262	20.0375	103	96.8	78 - 123	5.93	30	
trans-1,2-Dichloroethene	.29568	ug/L	20	22.8443	21.4083	113	106	75 - 124	6.49	30	
1,1,1,2-Tetrachloroethane	0	ug/L	20	21.6903	21.0336	108	105	78 - 124	3.07	30	
1,1,2,2-Tetrachloroethane	0	ug/L	20	20.888	20.2452	104	101	71 - 121	3.13	30	
Tetrachloroethene	0	ug/L	20	22.4306	22.4855	112	112	74 - 129	.24	30	
Toluene	0	ug/L	20	21.0495	20.3688	105	102	80 - 121	3.29	30	
1,1,1-Trichloroethane	0	ug/L	20	23,0172	21.8957	115	109	74 - 131	4.99	30	
1,1,2-Trichloroethane	0	ug/L	20	21.0909	20.6254	105	103	80 - 119	2.23	30	
Trichloroethene	119.829	ug/L	20	148.106	138.752	NC	NC	79 - 123	6.52	30	
Vinyl Chloride	0	ug/L	20	22.6834	21.2031	113	106	58 - 137	6.75	30	
1,2-Dichloroethane-d4 (S)	110	%				110	108	81 - 118			
4-Bromofluorobenzene (S)	106	%				106	106	85 - 114			
Dibromofluoromethane (S)	101	%				101	103	80 - 119			
Toluene-d8 (S)	102	%				102	102	89 - 112			

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2283331 - 12/28/2017 Page 14 of 24

Page 15 of 24

34 Dogwood Lane = Middletown, PA 17057 = Phone: 717-944-5541 = Fax: 717-944-1430 = www.alsglobal.com

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11, MA PA0102, MD 128, VA 460157, WV 343

QUALITY CONTROL DATA

Analysis Method:

SW846 8260C

Workorder: 2283331 ASN030|Scotia Navy Depot 60440

VOMS/45477

QC Batch Method: SW846 8260C

Associated Lab Samples: 2283331001, 2283331002

METHOD BLANK: 2664725

QC Batch:

WE 1110D BLAIN. 2004/25			
Parameter	Blank Result	Units	Reporting Limit
Trichloroethene	0.75U	ug/L	1.0
1,1,1,2-Tetrachloroethane	0.75U	ug/L	1.0
1,1,1-Trichloroethane	0.75U	ug/L	1.0
1,1,2,2-Tetrachloroethane	0.75U	ug/L	1.0
1,1,2-Trichloroethane	0.75U	ug/L	1.0
1,1-Dichloroethane	0.75U	ug/L	1.0
1,1-Dichloroethene	0.75U	ug/L	1.0
1,2-Dichloroethane	0.75U	ug/L	1.0
Carbon Tetrachloride	0.75U	ug/L	1.0
Tetrachloroethene	0.75U	ug/L	1.0
Toluene	0.75U	ug/L	1.0
Vinyl Chloride	0.75U	ug/L	1.0
cis-1,2-Dichloroethene	0.75U	ug/L	1.0
trans-1,2-Dichloroethene	0.75U	ug/L	1.0
1,2-Dichloroethane-d4 (S)	107	%	81 - 118
4-Bromofluorobenzene (S)	106	%	85 - 114
Dibromofluoromethane (S)	96.9	%	80 - 119
Toluene-d8 (S)	103	%	89 - 112

LA	BOR	ATORY	CONTROL	SAMPLE	2664726

Parameter	LCS % Rec	Units	Spike Conc.	LCS Result	% Rec Limit	
Frichloroethene	91.9	ug/L	20	18.4	79 - 123	
,1,1,2-Tetrachloroethane	101	ug/L	20	20.2	78 - 124	
,1,1-Trichloroethane	103	ug/L	20	20.7	74 - 131	
,1,2,2-Tetrachloroethane	101	ug/L	20	20.2	71 - 121	
,1,2-Trichloroethane	102	ug/L	20	20.3	80 - 119	
,1-Dichloroethane	99.2	ug/L	20	19.8	77 - 125	
,1-Dichloroethene	101	ug/L	20	20.2	71 - 131	
,2-Dichloroethane	99	ug/L	20	19.8	73 - 128	
Carbon Tetrachloride	86.4	ug/L	20	17.3	72 - 136	
Tetrachloroethene	101	ug/L	20	20.3	74 - 129	
Toluene	98.6	ug/L	20	19.7	80 - 121	
/inyl Chloride	98.1	ug/L	20	19.6	58 - 137	
cis-1,2-Dichloroethene	96.8	ug/L	20	19.4	78 - 123	

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2283331 - 12/28/2017

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

QUALITY CONTROL DATA

Workorder: 2283331 ASN030|Scotia Navy Depot 60440

trans-1,2-Dichloroethene	105	ug/L	20	21.0	75 - 124	
1,2-Dichloroethane-d4 (S)	108	%			81 - 118	
4-Bromofluorobenzene (S)	106	%			85 - 114	
Dibromofluoromethane (S)	103	%			80 - 119	
Toluene-d8 (S)	100	%			89 - 112	

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11, MA PA0102, MD 128, VA 460157, WV 343

QUALITY CONTROL DATA

Workorder: 2283331 ASN030|Scotia Navy Depot 60440

QC Batch:

WETC/197724

Analysis Method:

S2320B-97

QC Batch Method: S2320B-97

Associated Lab Samples: 2283331001, 2283331002, 2283331003, 2283331004

METHOD BLANK: 2661152

Blank Result

Units

Reporting Limit

Alkalinity, Total

Parameter

3Jmg/L 5

SAMPLE DUPLICATE: 2661157

ORIGINAL: 2283142001

Parameter

Original Result

DUP Result Units

Max **RPD** RPD

Alkalinity, Total

334.15649

mg/L 337.91794 1.12

20

METHOD BLANK: 2661160

Blank

Result 2J

Reporting Limit Units

Alkalinity, Total

Parameter

mg/L

5

SAMPLE DUPLICATE: 2661161

ORIGINAL: 2283157001

Parameter

Original Result

DUP Result Linits

Max **RPD RPD**

Alkalinity, Total

203.4538

20

205.78917

mg/L

1.14

METHOD BLANK: 2661164

Parameter

Parameter

Blank Result

Reporting Limit Units

Alkalinity, Total

mg/L

SAMPLE DUPLICATE: 2661165

ORIGINAL: 2283291001

Original Result

Units

DUP Result

5

RPD

Max **RPD**

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2283331 - 12/28/2017

Page 17 of 24

NELAP Certifications: NJ PA010 , NY 11759 , PA 22–293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

QUALITY CONTROL DATA

Alkalinity, Total	319.14926	mg/L	326.99271	2.43	20	
METHOD BLANK: 2661168						
Parameter	Blank Result	Units	Reporting Limit			
Alkalinity, Total	2J	mg/L	5			
SAMPLE DUPLICATE: 2661169	ORIGINAL	228329	1002			
Parameter	Original Result	Units	DUP Result	RPD	Max RPD	
	242.72678	mg/L	237.98059	1.97	20	
METHOD BLANK: 2661172						
Parameter	Blank Result	Units	Reporting Limit			
Alkalinity, Total	2J	mg/L	5			
SAMPLE DUPLICATE: 2661173	ORIGINAL	: 228329	1003			
Parameter	Original Result	Units	DUP Result	RPD	Max RPD	
	273.78479	mg/L	253.69031	7.62	20	
METHOD BLANK: 2661176						
Parameter	Blank Result	Units	Reporting Limit			
Alkalinity, Total	2J	mg/L	5			
SAMPLE DUPLICATE: 2661177	ORIGINAL	: 228329	01004			
Parameter	Original Result	Units	DUP Result	RPD	Max RPD	
Alkalinity, Total	292.03079	mg/L	279.43884	4.41	20	

ALS Environmental Laboratory Locations Across North America

Canada: Burlington - Calgary - Centre of Excellence - Edmonton - Fort McMurray - Fort St. John - Grande Prairie - London - Mississauga - Richmond Hill - Saskatoon - Thunder Bay Vancouver Waterloo - Winnipeg - Yellowknife - United States: Cincinnati - Everett - Fort Collins - Holland - Houston - Middletown - Salt Lake City - Spring City - York - Mexico: Monterrey

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

QUALITY CONTROL DATA

Workorder: 2283331 ASN030|Scotia Navy Depot 60440

METHOD BLANK: 2661180						
Parameter	Blank Result	Units	Reporting Limit			
Alkalinity, Total	2J	mg/L	5		=	
SAMPLE DUPLICATE: 2661181	ORIGINAL	: 228328	7003			
Parameter	Original Result	Units	DUP Result	RPD	Max RPD	
Alkalinity, Total	483.03293	mg/L	497.00146	2.85	20	
METHOD BLANK: 2661184			NAME OF			
Parameter	Blank Result	Units	Reporting Limit			
Alkalinity, Total	2J	mg/L	5			
SAMPLE DUPLICATE: 2661185	ORIGINAL	: 228333	1003			
Parameter	Original Result	Units	DUP Result	RPD	Max RPD	
Alkalinity, Total	216.11301	mg/L	208.50745	3.58	20	
METHOD BLANK: 2661188			Wall-12-3			
Parameter	Blank Result	Units	Reporting Limit			
Alkalinity, Total	2J	mg/L	5			
SAMPLE DUPLICATE: 2661189	ORIGINAL	: 228346	8001			
Parameter	Original Result	Units	DUP Result	RPD	Max RPD	
Alkalinity, Total	27.19653	mg/L	27.58272	1.41	20	

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

QUALITY CONTROL DATA

Workorder: 2283331 ASN030|Scotia Navy Depot 60440

METHOD BLANK: 2661192		Wales		
Parameter	Blank Result	Units	Reporting Limit	
Alkalinity, Total	1J	mg/L	5	

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2283331 - 12/28/2017 Page 20 of 24

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DOD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

QUALITY CONTROL DATA

Workorder: 2283331 ASN030|Scotia Navy Depot 60440

QC Batch: V

WETC/197730

Analysis Method:

EPA 300.0

QC Batch Method: EPA 300.0

Associated Lab Samples: 2283331001, 2283331002, 2283331003, 2283331004

METHOD BLANK: 2661313

Parameter	Blank Result	Units	Reporting Limit			
Chloride	0.25U	mg/L	1.0		100	
Nitrate-N	0.030U	mg/L	0.10			
Sulfate	0.25U	mg/L	1.0			

LABORATORY CONTROL SAMPLE: 2661315

Parameter	LCS % Rec	Units	Spike Conc.	LCS Result	% Rec Limit	
Chloride	103	mg/L	20	20.6	87 - 111	
Nitrate-N	98.8	mg/L	2.5	2.5	88 - 111	
Sulfate	102	mg/L	20	20.4	87 - 112	

METHOD BLANK: 2661318

Parameter	Blank Result	Units	Reporting Limit			
Chloride	0.15J	mg/L	1.0			
Nitrate-N	0.030U	mg/L	0.10			
Sulfate	0.25U	mg/L	1.0			

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2283331 - 12/28/2017

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DOD ELAP: A2LA 0818.01 State Certifications: DE ID 11, MA PA0102, MD 128, VA 460157, WV 343

QUALITY CONTROL DATA

Workorder: 2283331 ASN030|Scotia Navy Depot 60440

QC Batch: WETC/197902 Analysis Method: S5310B-00

QC Batch Method: 415.1/9060/5310B

Associated Lab Samples: 2283331001, 2283331002, 2283331003, 2283331004

METHOD BLANK: 2663620

Parameter

Blank Result Units Limit

Total Organic Carbon (TOC)

Blank Reporting Units Limit

LABORATORY CONTROL SAMPLE: 2663621

 Parameter
 LCS % Rec
 Spike Units
 LCS % Conc.
 % Rec Result
 LCS % Limit

 Total Organic Carbon (TOC)
 102
 mg/L
 1
 1.0
 85 - 115

MATRIX SPIKE: 2663622 DUPLICATE: 2663623 ORIGINAL: 2283740001

"NOTE - The Original Result shown below is a raw result and is only used for the purpose of calculating Matrix Spike ercent recoveries. This result is not a final value and cannot be used as such. MS % MS MSD % % Rec Max MSD Original Spike **RPD RPD** Result Conc. Result Result Rec Rec Limit Parameter Units .84 6.605 6.701 96.1 97.7 85 - 115 1.44 20 Total Organic Carbon (TOC) mg/L

MATRIX SPIKE: 2663624 DUPLICATE: 2663625 ORIGINAL: 2283533003

""NOTE - The Original Result	shown below i	s a raw resu	It and is onl	y used for th	ne purpose o	of calculatin	g Matrix Sp	ike			
percent recoveries. This result	original Va	alue and can	not be used Spike	as such.	MSD	MS %	MSD %	% Rec		Max	
Parameter	Result	Units	Conc.	Result	Result	Rec	Rec	Limit	RPD	RPD	
Total Organic Carbon (TOC)	1.771	mg/L	6	7.405	7.477	93.9	95.1	85 - 115	.97	20	

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2283331 - 12/28/2017 Page 22 of 24

NELAP Certifications: NJ PA010 , NY 11759 , PA 22–293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

QUALITY CONTROL DATA CROSS REFERENCE TABLE

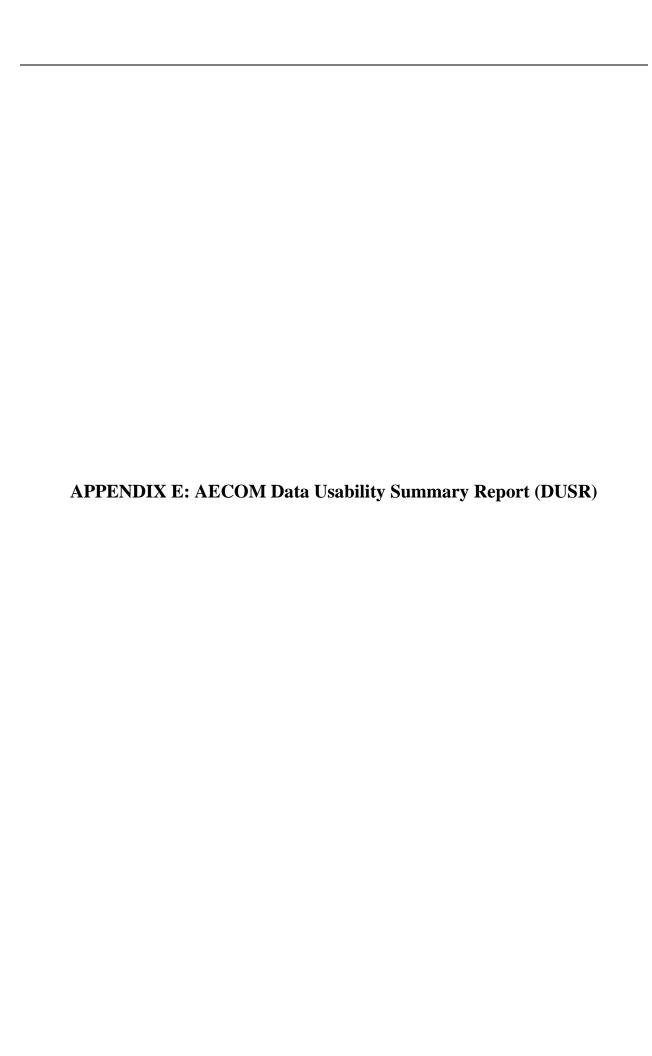
Workorder: 2283331 ASN030|Scotia Navy Depot 60440

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
2283331001	MW-28 121417		8 S (W) S -	S2320B-97	WETC/197724
2283331002	MW-29 121417			S2320B-97	WETC/197724
2283331003	MW-15 121417			S2320B-97	WETC/197724
2283331004	DUP-2 121417			S2320B-97	WETC/197724
2283331001	MW-28 121417			EPA 300.0	WETC/197730
2283331002	MW-29 121417			EPA 300.0	WETC/197730
2283331003	MW-15 121417			EPA 300.0	WETC/197730
2283331004	DUP-2 121417			EPA 300.0	WETC/197730
2283331001	MW-28 121417			RSK 175	SVGC/47651
2283331002	MW-29 121417			RSK 175	SVGC/47651
2283331003	MW-15 121417			RSK 175	SVGC/47651
2283331004	DUP-2 121417			RSK 175	SVGC/47651
2283331001	MW-28 121417			SW846 8260C	VOMS/45453
2283331002	MW-29 121417			SW846 8260C	VOMS/45453
2283331003	MW-15 121417			SW846 8260C	VOMS/45453
2283331004	DUP-2 121417			SW846 8260C	VOMS/45453
2283331001	MW-28 121417			S5310B-00	WETC/197902
2283331002	MW-29 121417			S5310B-00	WETC/197902
2283331003	MW-15 121417			S5310B-00	WETC/197902
2283331004	DUP-2 121417			S5310B-00	WETC/197902
2283331001	MW-28 121417			SW846 8260C	VOMS/45477
2283331002	MW-29 121417			SW846 8260C	VOMS/45477

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2283331 - 12/28/2017 Page 23 of 24


CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

ORM
75 (fax) PAGE

565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax)

ALTERNATE DESCRIPTION © 2012 by ALS Group INVO!CE INFORMATION RECEIVED BY Printed Name Date/Time BHL 10: ANALYSIS REQUESTED (Include Method Number and Containe) Prese Film Š N. Data Valdation Report with Raw Data REPORT REQUIREMENTS (LCS, DUP, MS/MSD as required) III. Persuits + OC and Calibration Summaries QAPP A. Results + OC Surrmaries RELINDUISHED BY f. Results Only 3 3 Minbed Menne **Верелите** 04:40 TURNAROUND REQUIREMENTS RUSH (SURCHARGES APPLY) __ 1 day _____ 2 day _____ 3 day _____ 4 day _____ 3 day 不必死 REQUESTED REPORT DATE Data/Time | 2-15-17 PRESERVATIVE 100 Tempic 1 4 S S NUMBER OF CONTAINERS Ship Carrier RELINCUISHED BY Therm ID: Cooler #: MATRIX 3 Initials HE Samples Printed Name A Condy 925 101 00 SAMPLING z Corstoco 41 840 12/14/0 if present) Seals Infact? DATE Custody Seals Present? (14/108 Correct Preservation? -leadspace/Volatiles? Correct Containers? Cont in Good Cond? COC/Lbts Complete Correct Samp Vol? Received on Ice? RECEIVED BY American 2 FOR OFFICE USE ONLY LABID STATE WHERE SAMPLES WERE COLLECTED Distribution: With - Lab Copy, Yellow - Return to Originate Scota Navy Deal B.145A 3 2200 121417 CIMIZI 121417 721417 なかられると CLIENT SAMPLE ID SPECIAL INSTRUCTIONS/COM! नेटाका डा PIELINOUISHED BY 25 MW . 29 MW-26 マットン MW- 15 Printed Name Oct. 5 10 kg S(8) See GAPP 120

4

April 16, 2018 (revised)

Data Usability Summary Report
Defense National Stockpile Center
Scotia Depot
Glenville, New York
Groundwater Sampling Event
December 2017
Final

April 16, 2018 (revised)

Data Usability Summary Report
Defense National Stockpile Center
Scotia Depot
Glenville, New York
Groundwater Sampling Event
December 2017
Final

Prepared By

Gregory Malzone, Project Chemist

Buyon S. Mafine

AECOM

Gulf Tower

707 Grant Street, 5th floor

Pittsburgh, PA 15219

Reviewed by

Robert Davis, Data Validator/Database Technician

AECOM

1360 Peachtree Street NE, Suite 500

adjulanh

Atlanta, GA 30309

AECOM

Contents

Executiv	ve Summary	ES-1
1.0	Volatile Organic Compounds	1-1
2.0	Methane, Ethane, Ethene	2-1
3.0	Chloride, Sulfate, Nitrate as N	3-1
4.0	Alkalinity	4-1
5.0	Total Organic Carbon	5-1
6.0	Field Duplicate Comparison	6-1
7.0	Notes	7-1

List of Appendices

Appendix A Glossary of Data Qualifier Codes

Appendix B Data Qualification Summaries

Appendix C Support Documentation

AECOM ES-1

Executive Summary

Overview

Data validation was performed by Gregory A. Malzone of AECOM-Pittsburgh on the fixed-laboratory analytical data for groundwater samples collected from the Defense National Stockpile Center Scotia Depot, Glenville, New York, from December 11, 2017 through December 14, 2017. Samples were collected as part of the baseline groundwater sampling round as described in Final Quality Assurance Project Plan for the Defense National Stockpile Center Scotia Depot Glenville, New York (the project-specific QAPP; AECOM, September 2016). Samples were submitted for analysis to ALS Environmental, 34 Dogwood Lane, Middletown, Pennsylvania 17057.

The list of field and field quality control samples submitted, the date sampled and the laboratory work order numbers are presented in Table 1. Data were reported by ALS in four deliverables. Each laboratory deliverable is identified by both a laboratory work order number and sample delivery group (SDG) number.

The following analytical methods were requested on the chain-of-custody (CoC) records.

- Volatile Organic Compounds by USEPA SW-846 Method 8260C
- Methane, Ethane and Ethene by RSK -175
- Chloride, Nitrate as N and Sulfate by Method EPA Method 300.0
- Alkalinity by Standard Methods 2320B-97
- Total Organic Carbon by Standard Methods 5310B-00

The trip blanks and the equipment blank were analyzed for VOCs only. Sample MW-35-121217 was designated in the field to be processed as the quality control sample, that is, as the matrix spike/matrix spike duplicate (MS/MSD). Unless otherwise noted, analyses were performed in accordance with the project-specific QAPP which is based on the DoD QSM v5.0.

Table 1 - Sample Submittals

Field ID	ALS ID	Matrix	Date Sampled	WO Number	SDG Number
MW-16-121117	2282912001	Groundwater	12/11/2017	2282912	ASN029
Trip Blank-121117	2282912002	Aqueous (QC)	12/11/2017	2282912	ASN029
MW-26-121217	2282785001	Groundwater	12/12/2017	2282785	ANL005
DUP-1-121217 [MW-26]	2282785002	Groundwater (QC)	12/12/2017	2282785	ANL005
EB-1-121217	2282785003	Aqueous (QC)	12/12/2017	2282785	ANL005
MW-34-121217	2282785004	Groundwater	12/12/2017	2282785	ANL005
MW-35-121217	2282785005	Groundwater	12/12/2017	2282785	ANL005
MW-24-121217	2282785006	Groundwater	12/12/2017	2282785	ANL005
MW-32-121317	2282982001	Groundwater	12/13/2017	2282982	ANL006
MW-33-121317	2282982002	Groundwater	12/13/2017	2282982	ANL006
MW-30-121317	2282982003	Groundwater	12/13/2017	2282982	ANL006
MW-31-121317	2282982004	Groundwater	12/13/2017	2282982	ANL006
MW-28-121417	2283331001	Groundwater	12/14/2017	2283331	ASN030
MW-29-121417	2283331002	Groundwater	12/14/2017	2283331	ASN030
MW-15-121417	2283331003	Groundwater	12/14/2017	2283331	ASN030
DUP-2-121417 [MW-15]	2283331004	Groundwater	12/14/2017	2283331	ASN030
Trip Blank-121417	2283331005	Aqueous (QC)	12/14/2017	2283331	ASN030

AECOM ES-2

The data were evaluated for conformance to method specifications and qualifiers were applied using the USEPA Region II SOPs and the validation criteria set forth in the *USEPA Contract Laboratory Program (CLP)* National Functional Guidelines for Superfund Organic Methods Data Review, EPA-540-R-014-002, August 2014 and *USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review*, EPA-540-R-013-001, August 2014, as they apply to the analytical methods employed.

Field duplicate relative percent difference (RPD) review and applicable control limits were taken from the *USEPA Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses*, December 1996.

Summary

All data have been determined to be useable for the purpose of assessing the presence/absence and quantitative concentrations of the compounds and analytes in the media tested (i.e. groundwater) with the qualifications described below. Completeness of 100% was achieved for this data set. This is within the goal of 90-100% and is acceptable.

A glossary of data qualifier definitions is included in Appendix A of this report. The data qualifier summaries are attached as Appendix B of this report.

Each nonconformance with specific data usability criteria is discussed below. Page references for the supporting documentation in the laboratory reports are provided in each item header. Support documentation for data qualifications was included in Appendix C of this report.

This DUSR has been revised to correct the sample ID "MW-20-121217" to be "MW-26-121217".

AECOM 1-1

1.0 Volatile Organic Compounds

Measurement performance indicators which did not meet criteria for Volatile Organic Compounds (VOCs) analysis are presented below for each of the four laboratory reports. Analytical results for VOCs were reviewed for the following measurement performance indicators:

- Data Completeness
- Chain of Custody
- Sample Preservation
- Holding Time
- GC/MS Tunes
- Initial Calibration
- Initial Calibration Verification
- Continuing Calibration Verification
- Method Blanks
- Trip Blanks
- Surrogates
- Matrix Spike/Matrix Spike Duplicate
- Internal Standards
- Quantitation Limits
- Laboratory Control Samples
- Data package / EDD consistency

Work Order 2282912 (SDG ASN029)

Continuing Calibration Verifications (pp. 906-908): The continuing calibration verification percent difference for carbon tetrachloride was less than the lower method specification limit of -20% on December 20, 2017, at 06:05 on instrument MS03. The carbon tetrachloride result for associated samples MW-16-121117 and Trip Blank-121117 were non-detect and were qualified "UJ," as estimates, because of low instrument bias.

Work Order 2282785 (SDG ANL005)

Continuing Calibration Verifications (pp. 975-977): The continuing calibration verification percent difference for carbon tetrachloride was less than the lower method specification limit of -20% on December 20, 2017, at 06:05 on instrument MS03. The carbon tetrachloride results for associated samples MW-26-121217, DUP-1-121217, EB-1-121217, MW-34-121217, MW-35-121217 and MW-24-121217 were non-detect and were qualified "UJ," as estimates, because of low instrument bias.

Work Order 2282982 (SDG ANL006)

Matrix Spike Recoveries(p. 1611): The trichloroethene spike added to MW-32-121317 MS/MSD was less than 25% of the original sample result. The RPDs and percent recoveries could not be calculated. No data qualification was required.

AECOM 1-2

Work Order 2283331 (SDG ASN030)

Residual Chlorine (p. 16): A positive residual chlorine result was detected in the preservation check for VOC analysis of sample MW-28-121417. Residual chlorine reacts with organic matter to produce trihalomethanes, and can react with and degrade some VOC compounds, notably styrene. Styrene and trihalomethanes are not in the target compound list. No trihalomethanes were detected on review of the sample chromatogram. No data qualifications were required.

AECOM 2-1

2.0 Methane, Ethane, Ethene

Measurement performance indicators which did not meet criteria for methane, ethane, ethene (MEE) analysis are presented below for each of the four laboratory reports. Analytical results for MEE were reviewed for the following measurement performance indicators:

- Data Completeness
- Chain of Custody
- Sample Preservation
- Holding Time
- Initial Calibration
- Initial Calibration Verification
- Continuing Calibration Verification
- Method Blanks
- Matrix Spike/Matrix Spike Duplicate
- Laboratory Duplicate
- Quantitation Limits
- Laboratory Control Samples
- Data package / EDD consistency

Work Order 2282912 (SDG ASN029)

<u>Laboratory Method Blank (p. 1587):</u> Methane was detected in method blank 2662303 (12/19/17) at an estimated concentration of 0.15 μ g/L. The methane result for associated sample MW-16-121117 was estimated to be less than the LOQ. The MW-16-121117 result for methane was qualified "U," as undetected at the limit of quantitation (LOQ), because of laboratory contamination.

Work Order 2282785 (SDG ANL005)

<u>Laboratory Method Blank (p. 1242):</u> Methane was detected in method blank 2662303 (12/19/17) at an estimated concentration of 0.15 μ g/L. The methane results for associated samples MW-26-121217, DUP-1-121217, MW-34-121217, MW-35-121217 and MW-24-121217 were greater than the LOQ and greater than five times the method blank level. No data qualifications were required.

Work Order 2282982 (SDG ANL006)

<u>Laboratory Method Blank (p. 1242):</u> Methane was detected in method blank 2662303 (12/19/17) at an estimated concentration of 0.15 μ g/L. The methane results for associated samples MW-32-121317, MW-33-121317, MW-30-121317 and MW-31-121317 were greater than the LOQ and greater than five times the method blank level. No data qualifications were required.

<u>Laboratory Duplicate Precision (p. 1844):</u> The RPDs between the MW-32-121317 original and duplicate results for methane, ethane and ethene were greater than the maximum quality control limit of 20%. The methane, ethane and ethane results for sample MW-32-121317 were positive and were qualified "J," as estimated concentrations, because of method imprecision and/or sample heterogeneity.

AECOM 2-2

Work Order 2283331 (SDG ASN030)

<u>Laboratory Method Blank (p. 2032):</u> Methane was detected in method blank 2662303 (12/19/17) at a concentration of 0.15 μ g/L. The results for methane in associated samples MW-28-121417, MW-29-12141717, MW-15-121417 and DUP-2-121417 were estimated to be less than the LOQ and were qualified "U," as undetected at the LOQ, because of laboratory contamination.

<u>Holding Time (p. 16):</u> The pH measurement for sample DUP-2-121417 was greater than maximum method specification limit of less than 2 SU. Sample DUP-2-121417 was analyzed within the sevenday holding time for an unpreserved/under-preserved sample. No data qualifications were required.

AECOM 3-1

3.0 Chloride, Sulfate, Nitrate as N

Measurement performance indicators which did not meet criteria for chloride, sulfate and nitrate as N analysis are presented below for each of the four laboratory reports. Analytical results for these anions were reviewed for the following measurement performance indicators:

- Chain of Custody
- Sample Preservation
- Holding Time
- Quantitation Limits
- Initial Calibration
- Continuing Calibration Verification
- Method Blanks
- Matrix Spike/Matrix Spike Duplicate
- Laboratory Duplicate
- Laboratory Control Samples
- Data package / EDD consistency

Work Order 2282912 (SDG ASN029)

Continuing Calibration Blanks (p. 1252): Chloride was detected in the instrument IC-5 continuing calibration blanks on December 13, 2017 at concentrations estimated to be less than the LOQ. The chloride results for associated sample MW-16-121117 was greater than the LOQ and greater than ten times the blank levels and did not require qualification.

Work Order 2282785 (SDG ANL005)

Continuing Calibration Blanks (p. 1612): Chloride was detected in the instrument IC-5 continuing calibration blanks on December 14, 2017 at concentrations estimated to be less than the LOQ. The chloride results for associated samples MW-26-121217, DUP-1-121217, MW-34-121217, MW-35-121217 and MW-24-121217 were greater than the LOQ and greater than ten times the blank levels and did not require qualification.

Matrix Spike Recoveries(p. 1611): The MW-35-121217 MS/MSD recoveries for nitrate were high with the MS recovery being greater than the upper advisory limit. The nitrate results for associated samples MW-34-121217 and MW-35-121217 were positive and were qualified "J/J+," as estimated concentrations, biased high due to matrix effects and/or sample heterogeneity.

Work Order 2282982 (SDG ANL006)

Continuing Calibration Blanks (p. 1862): Chloride was detected in an instrument IC-7 continuing calibration blank on December 15, 2017 at a concentration estimated to be less than the LOQ. The chloride results for associated samples MW-32-121317, MW-33-121317, MW-30-121317 and MW-31-121317 were greater than the LOQ and greater than ten times the blank level and did not require qualification.

AECOM 3-2

Work Order 2283331 (SDG ASN030)

Continuing Calibration Blanks (p. 2055): Chloride was detected in the instrument IC-7 continuing calibration blank on December 16, 2017 at a concentration estimated to be less than the LOQ. The chloride results for associated samples MW-28-121417, MW-29-12141717, MW-15-121417 and DUP-2-121417 were greater than the LOQ and greater than ten times the blank level and did not require qualification.

AECOM 4-1

4.0 Alkalinity

Measurement performance indicators which did not meet criteria for alkalinity analysis are presented below for each of the four laboratory reports. Analytical results for alkalinity were reviewed for the following measurement performance indicators:

- · Chain of Custody
- Sample Preservation
- Holding Time
- · Quantitation Limits
- Initial Calibration
- Continuing Calibration Verification
- Method Blanks
- Matrix Spike/Matrix Spike Duplicate
- Laboratory Duplicate
- Laboratory Control Samples
- Data package / EDD consistency

Work Order 2282912 (SDG ASN029)

<u>Lost Sample (p. 15):</u> The alkalinity test was initially logged in for sample MW-16-121117, but when the laboratory went to analyze the sample, they were unable to locate it. ALS continued to look for the sample, but was ultimately unable to locate the missing jar.

Work Order 2282785 (SDG ANL005)

No data quality issues were noted. No data qualification was required.

Work Order 2282982 (SDG ANL006)

No data quality issues were noted. No data qualification was required.

Work Order 2283331 (SDG ASN030)

No data quality issues were noted. No data qualification was required.

AECOM 5-1

5.0 Total Organic Carbon

Measurement performance indicators which did not meet criteria for total organic carbon (TOC) analysis are presented below for each of the four laboratory reports. Analytical results for TOC were reviewed for the following measurement performance indicators:

- Chain of Custody
- Sample Preservation
- Holding Time
- Quantitation Limits
- Initial Calibration
- Initial Calibration Verification
- Continuing Calibration Verification
- Method Blanks
- Matrix Spike/Matrix Spike Duplicate
- Laboratory Duplicate
- Laboratory Control Samples
- Data package / EDD consistency

Work Order 2282912 (SDG ASN029)

No data quality issues were noted. No data qualification was required.

Work Order 2282785 (SDG ANL005)

No data quality issues were noted. No data qualification was required.

Work Order 2282982 (SDG ANL006)

No data quality issues were noted. No data qualification was required.

Work Order 2283331 (SDG ASN030)

No data quality issues were noted. No data qualification was required.

AECOM 6-1

6.0 Field Duplicate Comparison

Field duplicate samples were collected at groundwater wells MW-15 and MW-26. See Table 2 below for the calculated RPDs for all compounds for which there were detections. Field duplicate results were evaluated using the following criteria.

Organics: The RPD must be ≤ 30% for groundwaters, for results greater than or equal to two times the

LOQ. If one of the results is non-detect or less than two times the LOQ, and the duplicate is greater than two times the LOQ, the difference between the parent and field duplicate results

must be less than or equal to two times the LOQ.

Action applies only to the affected analyte in the organic duplicate sample pair.

Inorganics: The RPD must be $\leq 30\%$ for groundwaters, for results greater than or equal to five times the

LOQ. For results less than five times the reporting limit, the difference between the parent and

field duplicate results must be less than or equal to two times the LOQ.

Action applies to the affected analyte in all inorganic samples of the same matrix prepared and analyzed by the same method.

The following notations are used in the field precision table.

RPD: Relative percent difference

Qual: Qualification required

µg/L: micrograms per liter (ppb) and mg/L: milligrams per liter (ppm)

≤±2LOQ: The absolute difference between the parent and field duplicate results was less than two times the

LOQ. Variation of this magnitude is acceptable.

Table 2 - Field Duplicate Precision

Parameter	Units	MW-26-121217	DUP-1-121217	RPD (%)	Qual
Methane	μg/L	20.7	20.8	0.48	None
Alkalinity, total	mg/L	204	212	3.8	None
Chloride	mg/L	56.7	50.8	11.0	None
Sulfate	mg/L	25.7	24.2	6.0	None
Total Organic Carbon	mg/L	1.1	1.1	0.0	None
Parameter	Units	MW-15-121417	DUP-2-121417	RPD (%)	Qual
Tetrachloroethene	μg/L	1.3	1.4	7.4	None
1,1,1-Trichloroethane	μg/L	4.3	4.6	6.7	None
Trichloroethene	μg/L	143	154	7.4	None
Alkalinity, total	mg/L	216	219	1.4	None
Chloride	mg/L	39.7	39.5	0.51	None
Nitrate	mg/L	0.60	0.60	0	None
Sulfate	mg/L	20.5	20.8	1.5	None
Total Organic Carbon	mg/L	0.33 J	0.40 J	19	None

All parent and field duplicate results were within the advisory acceptance criteria. Field sampling/laboratory precision and sample homogeneity were acceptable. No data qualifications were required.

AECOM 7-1

7.0 Notes

Positive organic and inorganic results less than the LOQ, but greater than the detection limit were qualified "J," as estimated concentrations, due to increased uncertainty near the detection limit. The "J" qualifiers were maintained in the data validation.

Matrix spike and matrix spike duplicates and laboratory duplicates that were performed on non-project samples were not evaluated because matrix similarity to project samples could not be assumed.

Appendix A

Glossary of Data Qualifier Codes

Glossary of Data Qualifier Codes

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximated and may be inaccurate or imprecise.
- J The analyte was positively identified. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, likely to be biased high. The associated numerical value is the approximate concentration of the analyte in the sample.
- J- The result is an estimated quantity, likely to be biased low. The associated numerical value is the approximate concentration of the analyte in the sample.
- R The data are unusable. The sample results are rejected due to serious deficiencies in the ability to meet quality control criteria. The presence or absence of the analyte cannot be verified.
- N (Organics) The analysis indicates the presence of an analyte for which there is presumptive evidence to make a tentative identification.
- NJ (Organics) The analysis indicates the presence of an analyte that has been tentatively identified and the associated numerical value represents its approximate concentration.

Appendix B

Data Qualification Summaries

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 S tate Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2282912 ASN029|2015-SCOTIA NAVY DEPOT

Lab ID: 2282912001

Date Collected: 12/11/2017 12:45

Matrix: Ground Water

Sample ID: MW-16 121117

Date Received: 12/12/2017 09:54

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared By	Analyzed	Ву	Cntr	
VOLATILE ORGANICS							-					
Carbon Tetrachloride	0.75UJ	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:10	CJG	Α	U
1,1-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:10	CJG	Α	
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:10	CJG	Α	
1,1-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:10	CJG	Α	
cis-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:10	CJG	Α	
trans-1,2-Dichloroethene	0.75U	υ	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:10	CJG	Α	
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:10	CJG	Α	
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:10	CJG	Α	
Tetrachloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:10	CJG	Α	
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:10	CJG	Α	
1,1,1-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:10	CJG	Α	
1,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:10	CJG	Α	
Trichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:10	CJG	Α	
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:10	CJG	Α	
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared By	Analyzed	Ву	Cntr	-
1,2-Dichloroethane-d4 (S)	108		%	81 - 118			SW846 8260C	27-3	12/20/17 03:10	CJG	Α	
4-Bromofluorobenzene (S)	111		%	85 - 114			SW846 8260C		12/20/17 03:10	CJG	Α	
Dibromofluoromethane (S)	98.3		%	80 - 119			SW846 8260C		12/20/17 03:10	CJG	Α	
Toluene-d8 (S)	105		%	89 - 112			SW846 8260C		12/20/17 03:10	CJG	Α	
LIGHT HYDROCARBON GA	SES											
Ethane	0.50U	U	ug/L	1.0	0.50	0.25	RSK 175		12/19/17 01:08	EGO	D	
Ethene	0.75U	U	ug/L	1.5	0.75	0.31	RSK 175		12/19/17 01:08	EGO	D	}
Methane 0.50 U	-0.17J	- +	ug/L	0.50	0.25	0.13	RSK 175		12/19/17 01:08	EGO	D	
WET CHEMISTRY					0.50	0.16	EPA 300.0		12/13/17 05:48	CHW	J	
	4.0		mg/L	2.0	0.50	0.10						
WET CHEMISTRY Chloride Nitrate-N	4.0 1.1		mg/L mg/L	0.20	0.060	0.020	EPA 300.0		12/13/17 05:48		J	
Chloride									12/13/17 05:48 12/13/17 05:48	CHW		

Mrs. Vanessa N Badman Project Coordinator

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2282912 ASN029|2015-SCOTIA NAVY DEPOT

Lab ID: 228

2282912002

Date Collected: 12/11/2017 12:45

Matrix:

Ground Water

Sample ID:

Trip Blank - 121117

Date Received: 12/12/2017 09:54

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared I	Зу	Analyzed	Ву	Cntr
VOLATILE ORGANICS												
Carbon Tetrachloride	0.75U J	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:03	CJG	Α
1,1-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:03	CJG	Α
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:03	CJG	Α
1,1-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:03	CJG	Α
cis-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:03	CJG	Α
trans-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:03	CJG	Α
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:03	CJG	Α
1,1,2,2-Tetrachloroethane	0.75U	୍ଷ	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:03	CJG	Α
Tetrachloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:03	CJG	Α
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:03	CJG	Α
1,1,1-Trichloroethane	0.75U	Ų	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:03	CJG	Α
1,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:03	CJG	Α
Trichloroethene	0.75U	Ų	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:03	CJG	Α
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:03	CJG	Α
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared	Ву	Analyzed	Ву	Cntr
1,2-Dichloroethane-d4 (S)	106		%	81 - 118			SW846 8260C	11		12/20/17 02:03	CJG	Α
4-Bromofluorobenzene (S)	110		%	85 - 114			SW846 8260C			12/20/17 02:03	CJG	Α
Dibromofluoromethane (S)	98.4		%	80 - 119			SW846 8260C			12/20/17 02:03	CJG	Α
Toluene-d8 (S)	104		%	89 - 112			SW846 8260C			12/20/17 02:03	CJG	Α

Mrs. Vanessa N Badman

Project Coordinator

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11, MA PA0102, MD 128, VA 460157, WV 343

ANALYTICAL RESULTS

Workorder: 2282785 ANL005|60440641

Lab ID: 2282785001 Date Collected: 12/12/2017 09:26

Matrix:

Ground Water

Sample ID:

MW-20 121217 MW-26-121217

Date Received: 12/13/2017 09:13

												-
Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared By	Analyzed	Ву	Cntr	
VOLATILE ORGANICS						18						•
Carbon Tetrachloride	0.75U	UJ	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α	40
1,1-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α	
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α	
1,1-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α	
cis-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α	
trans-1,2-Dichloroethene	0.75U	υ	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α	
1,1,1,2-Tetrachloroethane	0.75U	Ų	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α	
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α	
Tetrachloroethene	0.75U	Ų	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α	
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α	
1,1,1-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α	
1,1,2-Trichloroethane	0.75U	υ	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α	
Trichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α	
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:31	CJG	Α	
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared By	/ Analyzed	Ву	Cntr	
1,2-Dichloroethane-d4 (S)	108		%	81 - 118			SW846 8260C		12/20/17 03:31	CJG	Α	
4-Bromofluorobenzene (S)	108		%	85 - 114			SW846 8260C		12/20/17 03:31	CJG	Α	
Dibromofluoromethane (S)	99.9		%	80 - 119			SW846 8260C		12/20/17 03:31	CJG	Α	
Toluene-d8 (S)	106		% :	89 - 112			SW846 8260C		12/20/17 03:31	CJG	Α	
LIGHT HYDROCARBON GA	SES											
Ethane	0.50U	U	ug/L	1.0	0.50	0.25	RSK 175		12/19/17 02:03	EGO	D	
Ethene	0.75U	U	ug/L	1.5	0.75	0.31	RSK 175		12/19/17 02:03	EGO	D	
Methane	20.7		ug/L	0.50	0.25	0.13	RSK 175		12/19/17 02:03	EGO	D	
WET CHEMISTRY												
Alkalinity, Total	204	1	mg/L	5	5	0.8	S2320B-97		12/15/17 00:51	MSA	- 1	
Chloride	56.7		mg/L	2.0	0.50	0.16	EPA 300.0		12/14/17 06:01	CHW	1	
Nitrate-N	0.060U	U	mg/L	0.20	0.060	0.020	EPA 300.0		12/14/17 06:01	CHW	1	
Sulfate	25.7		mg/L	2.0	0.50	0.20	EPA 300.0		12/14/17 06:01	CHW	1	
Total Organic Carbon (TOC)	1.1		mg/L	1.0	0.50	0.18	S5310B-00		12/18/17 10:42	PAG	G	

Vanessa M. Badman Mrs. Vanessa N Badman **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2282785 ANL005|60440641

Lab ID: 2282785002

Date Collected: 12/12/2017 00:00

Matrix:

Ground Water

Sample ID: **DUP-1 121217**

Date Received: 12/13/2017 09:13

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared By	/ Analyzed	Ву	Cntr
VOLATILE ORGANICS										2	
Carbon Tetrachloride	0.75U	UJ	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	A
1,1-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α
1,1-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α
cis-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α
trans-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α
Tetrachloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α
Toluene	0.75U	υ	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α
1,1,1-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α
1,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α
Trichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α =
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 03:53	CJG	Α
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared	By Analyzed	Ву	Cntr
1,2-Dichloroethane-d4 (S)	107		%	81 - 118			SW846 8260C		12/20/17 03:53	CJG	Α
4-Bromofluorobenzene (S)	110		%	85 - 114			SW846 8260C		12/20/17 03:53	CJG	Α
Dibromofluoromethane (S)	98.3		%	80 - 119			SW846 8260C		12/20/17 03:53	CJG	Α
Toluene-d8 (S)	104		%	89 - 112			SW846 8260C		12/20/17 03:53	CJG	Α
LIGHT HYDROCARBON GA	SES										
Ethane	0.50U	U	ug/L	1.0	0.50	0.25	RSK 175		12/19/17 01:24	EGO	D
Ethene	0.75U	U	ug/L	1.5	0.75	0.31	RSK 175		12/19/17 01:24	EGO	D
Methane	20.8		ug/L	0.50	0.25	0.13	RSK 175		12/19/17 01:24	EGO	D
WET CHEMISTRY											
Alkalinity, Total	212	×	mg/L	5	5	0.8	S2320B-97		12/15/17 01:02	MSA	Н
Chloride	50.8		mg/L	2.0	0.50	0.16	EPA 300.0		12/14/17 07:22	CHW	Н
Nitrate-N	0.060U	U	mg/L	0.20	0.060	0.020	EPA 300.0		12/14/17 07:22	CHW	Н
Sulfate	24.2		mg/L	2.0	0.50	0.20	EPA 300.0		12/14/17 07:22	CHW	Н
Total Organic Carbon (TOC)	1.1		mg/L	1.0	0.50	0.18	S5310B-00		12/18/17 10:42	PAG	F

Vanessa M. Baolman
Mrs. Vanessa N Badman
Project Coordinator

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP : A2LA 0818.01 S tate Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2282785 ANL005|60440641

Lab ID:

2282785003

Date Collected: 12/12/2017 10:01

Matrix:

Ground Water

Sample ID:

EB-1 121217

Date Received: 12/13/2017 09:13

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared I	Зу	Analyzed	Ву	Cntr
VOLATILE ORGANICS												
Carbon Tetrachloride	0.75U	UJ	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:25	CJG	A cc
1,1-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:25	CJG	Α
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:25	CJG	Α
1,1-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:25	CJG	Α
cis-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:25	CJG	Α
trans-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:25	CJG	Α
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:25	CJG	Α
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:25	CJG	Α
Tetrachloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:25	CJG	Α
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:25	CJG	Α
1,1,1-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:25	CJG	Α
1,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:25	CJG	Α
Trichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:25	CJG	Α
Vinyl Chloride	0.75U	Ų	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 02:25	CJG	Α
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared	Ву	Analyzed	Ву	Cntr
1,2-Dichloroethane-d4 (S)	105		%	81 - 118			SW846 8260C			12/20/17 02:25	CJG	Α
4-Bromofluorobenzene (S)	110		%	85 - 114			SW846 8260C			12/20/17 02:25	CJG	Α
Dibromofluoromethane (S)	98.9		%	80 - 119			SW846 8260C			12/20/17 02:25	CJG	Α
Toluene-d8 (S)	106		%	89 - 112			SW846 8260C			12/20/17 02:25	CJG	Α

Mrs. Vanessa N Badman

Project Coordinator

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2282785 ANL005|60440641

Lab ID: 2282785004

Date Collected: 12/12/2017 10:51

Matrix: Ground Water

Sample ID: MW-34 121217

Date Received: 12/13/2017 09:13

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared	Ву	Analyzed	Ву	Cntr
VOLATILE ORGANICS												
Carbon Tetrachloride	0.75U	UJ	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 04:15	CJG	A
1,1-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 04:15	CJG	Α
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 04:15	CJG	Α
1,1-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 04:15	CJG	Α
cis-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 04:15	CJG	Α
trans-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 04:15	CJG	Α
1,1,1,2-Tetrachioroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 04:15	CJG	Α
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 04:15	CJG	Α
Tetrachloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 04:15	CJG	Α
Toluene	0.75U	U	ug/L =	1.0	0.75	0.33	SW846 8260C			12/20/17 04:15	CJG	Α
1,1,1-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 04:15	CJG	Α
1,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 04:15	CJG	Α
Trichloroethene	28.0		ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 04:15	CJG	Α
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 04:15	CJG	Α
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared	Ву	Analyzed	Ву	Cntr
1,2-Dichloroethane-d4 (S)	107		%	81 - 118			SW846 8260C	100		12/20/17 04:15	CJG	Α
4-Bromofluorobenzene (S)	111		%	85 - 114			SW846 8260C			12/20/17 04:15	CJG	Α
Dibromofluoromethane (S)	99.9		%	80 - 119			SW846 8260C			12/20/17 04:15	CJG	Α
Toluene-d8 (S)	105		%	89 - 112			SW846 8260C			12/20/17 04:15	CJG	Α
LIGHT HYDROCARBON GA	SES											
Ethane	1.1		ug/L	1.0	0.50	0.25	RSK 175			12/19/17 02:19	EGO	D
Ethene	0.75U	Ü	ug/L	1.5	0.75	0.31	RSK 175			12/19/17 02:19	EGO	D
Methane	531		ug/L	0.50	0.25	0.13	RSK 175			12/19/17 02:19	EGO	D
WET CHEMISTRY												
Alkalinity, Total	203	×	mg/L	5	5	0.8	S2320B-97			12/15/17 01:12	MSA	J
Chloride	12.9		mg/L	2.0	0.50	0.16	EPA 300.0			12/14/17 07:33	CHW	J
Nitrate-N	0.020J	J	mg/L	0.20	0.060	0.020	EPA 300.0			12/14/17 07:33		-
Sulfate	7.3	-	mg/L	2.0	0.50	0.20	EPA 300.0			12/14/17 07:33		
Total Organic Carbon (TOC)	4.1		mg/L	1.0	0.50	0.18	S5310B-00			12/18/17 10:42		G

Mrs. Vanessa N Badman Project Coordinator

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

34 Dogwood Lane = Middletown, PA 17057 = Phone: 717-944-5541 = Fax: 717-944-1430 = www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2282785 ANL005|60440641

MW-35 121217

Lab ID: 2282785005

Sample ID:

Date Collected: 12/12/2017 11:54

Date Received: 12/13/2017 09:13

Ground Water

Matrix:

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared By	Analyzed	Ву	Cntr	
VOLATILE ORGANICS												_
Carbon Tetrachloride	0.75U	UJ	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	Α	cu
1,1-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	Α	
1,2-Dichloroethane	0.75U	_ U =	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	Α	
1,1-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	Α	
cis-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	Α	
trans-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	Α	
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	Α	
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	Α	
Tetrachloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	Α	
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	Α	
1,1,1-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	Α	
1,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	Α	
Trichloroethene	43.5		ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	Α	
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:37	CJG	Α	
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared By	Analyzed	Ву	Cntr	
1,2-Dichloroethane-d4 (S)	107		%	81 - 118			SW846 8260C	·	12/20/17 04:37	CJG	Α	-
4-Bromofluorobenzene (S)	107		%	85 - 114			SW846 8260C		12/20/17 04:37	CJG	Α	
Dibromofluoromethane (S)	99.7		%	80 - 119			SW846 8260C		12/20/17 04:37	CJG	Α	
Toluene-d8 (S)	103		%	89 - 112			SW846 8260C		12/20/17 04:37	CJG	Α	
LIGHT HYDROCARBON GA	SES											
Ethane	0.50U	U	ug/L	1.0	0.50	0.25	RSK 175		12/19/17 02:35	EGO	G	
Ethene	0.75U	U	ug/L	1.5	0.75	0.31	RSK 175		12/19/17 02:35	EGO	G	
Methane	7.9		ug/L	0.50	0.25	0.13	RSK 175		12/19/17 02:35	EGO	G	
WET CHEMISTRY												
Alkalinity, Total	210	X	mg/L	5	5	0.8	S2320B-97		12/14/17 23:41	MSA	b	
Chloride	22.2		mg/L	2.0	0.50	0.16	EPA 300.0		12/14/17 06:12	CHW	/ b	
Nitrate-N	0.44	J+	mg/L	0.20	0.060	0.020	EPA 300.0		12/14/17 06:12	CHW	b	m
Sulfate	10.2		mg/L	2.0	0.50	0.20	EPA 300.0		12/14/17 06:12	CHW	b	
Total Organic Carbon (TOC)	0.56J	J	mg/L	1.0	0.50	0.18	S5310B-00		12/18/17 10:42		s	

Vanessa M. Baolman
Mrs. Vanessa N Badman
Project Coordinator

ALS Environmental Laboratory Locations Across North America

34 Dogwood Lane - Middletown, PA 17057 - Phone: 717-944-5541 - Fax: 717-944-1430 - www.alsqlobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2282785 ANL005|60440641

Lab ID:

2282785006

Date Collected: 12/12/2017 14:12

Matrix:

Ground Water

Sample ID:

MW-24 121217

Date Received: 12/13/2017 09:13

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared By	Analyzed	Ву	Cntr
VOLATILE ORGANICS											
Carbon Tetrachloride	0.75U	UJ	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	A co
1,1-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
1,1-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
cis-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
trans-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
Tetrachloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
1,1,1-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
1,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
Trichloroethene	0.94J	J	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 04:59	CJG	Α
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared By	Analyzed	Ву	Cntr
1,2-Dichloroethane-d4 (S)	107		%	81 - 118			SW846 8260C		12/20/17 04:59	CJG	Α
4-Bromofluorobenzene (S)	108		%	85 - 114			SW846 8260C		12/20/17 04:59	CJG	Α
Dibromofluoromethane (S)	100		%	80 - 119			SW846 8260C		12/20/17 04:59	CJG	Α
Toluene-d8 (S)	104		%	89 - 112			SW846 8260C		12/20/17 04:59	CJG	Α
LIGHT HYDROCARBON GA	SES										
Ethane	0.50U	U	ug/L	1.0	0.50	0.25	RSK 175		12/19/17 03:11	EGO	D
Ethene	0.75U	U	ug/L	1.5	0.75	0.31	RSK 175		12/19/17 03:11	EGO	D
Methane	431		ug/L	0.50	0.25	0.13	RSK 175		12/19/17 03:11	EGO	D
WET CHEMISTRY											
Alkalinity, Total	352	2	mg/L	5	5	0.8	S2320B-97		12/15/17 02:19	MSA	J
Chloride	155		mg/L	2.0	0.50	0.16	EPA 300.0		12/14/17 07:45	CHW	J=
Nitrate-N	0.060U	U	mg/L	0.20	0.060	0.020	EPA 300.0		12/14/17 07:45	CHW	J
Sulfate	0.48J	J	mg/L	2.0	0.50	0.20	EPA 300.0		12/14/17 07:45	CHW	J
Total Organic Carbon (TOC)	96.2		mg/L	25.0	12.5	4.6	S5310B-00		12/19/17 15:44	PAG	G

Vanessa M. Badman Mrs. Vanessa N Badman

Project Coordinator

ALS Environmental Laboratory Locations Across North America

34 Dogwood Lane • Middletown, PA 17057 • Phone: 717-944-5541 • Fax: 717-944-1430 • www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP : A2LA 0818.01 S tate Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2282982 ANL006|60440641

Lab ID: 2282982001

Date Collected: 12/13/2017 08:41

Matrix:

Ground Water

Sample ID:

MW-32-121317

Date Received: 12/14/2017 09:55

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared E	Зу	Analyzed	Ву	Cnti
VOLATILE ORGANICS												
Carbon Tetrachloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:34	DD	С
1,1-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:34	DD	С
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:34	DD	С
1,1-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:34	DD	С
cis-1,2-Dichloroethene	0.68J	J	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:34	DD	С
rans-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:34	DD	С
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:34	DD	С
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:34	DD	С
Tetrachloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:34	DD	С
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:34	DD	С
1,1,1-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:34	DD	С
1,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:34	DD	С
Trichloroethene	120	18	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:34	DD	С
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:34	DD	С
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared	Ву	Analyzed	Ву	Cnti
1,2-Dichloroethane-d4 (S)	107		%	81 - 118			SW846 8260C			12/20/17 11:34	DD	С
4-Bromofluorobenzene (S)	109		%	85 - 114			SW846 8260C			12/20/17 11:34	DD	С
Dibromofluoromethane (S)	100		%	80 - 119			SW846 8260C			12/20/17 11:34	DD	С
Toluene-d8 (S)	105		%	89 - 112			SW846 8260C			12/20/17 11:34	DD	С
LIGHT HYDROCARBON GA	SES											
Ethane	5.6	25	ug/L	1.0	0.50	0.25	RSK 175			12/19/17 03:28	EGO	Α
Ethene	2.3	SJ	ug/L	1.5	0.75	0.31	RSK 175			12/19/17 03:28	EGO	Α
Methane	233	XJ	ug/L	0.50	0.25	0.13	RSK 175			12/19/17 03:28	EGO	Α
WET CHEMISTRY												
Alkalinity, Total	141	N	mg/L	5	5	8.0	S2320B-97			12/15/17 06:58	MSA	Н
Chloride	28.2	·	mg/L	2.0	0.50	0.16	EPA 300.0			12/15/17 05:36	CHW	G
Nitrate-N	0.060U	U	mg/L	0.20	0.060	0.020	EPA 300.0			12/15/17 05:36	CHW	G
Sulfate	6.0		mg/L	2.0	0.50	0.20	EPA 300.0			12/15/17 05:36	CHW	G
Total Organic Carbon (TOC)	5.4J	J ®	mg/L	10.0	5.0	1.8	S5310B-00			12/19/17 15:44	PAG	D

Vanessa M. Baolman
Mrs. Vanessa N Badman
Project Coordinator

ALS Environmental Laboratory Locations Across North America

34 Dogwood Lane - Middletown, PA 17057 - Phone: 717-944-5541 - Fax: 717-944-1430 - www.alsqlobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 S tate Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2282982 ANL006|60440641

Lab ID: 2282982002

Date Collected: 12/13/2017 09:45

Matrix:

Ground Water

Sample ID: MW-33-121317

Date Received: 12/14/2017 09:55

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared By	/	Analyzed	Ву	Cntr
VOLATILE ORGANICS												
Carbon Tetrachloride	0.75U	υ	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:56	DD	В
1,1-Dichloroethane	0.75U	υ	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:56	DD	В
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:56	DD	В
1,1-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:56	DD	В
cis-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:56	DD	В
trans-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:56	DD	В
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:56	DD	В
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:56	DD	В
Tetrachloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:56	DD	В
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:56	DD	В
1,1,1-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:56	DD	В
1,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:56	DD	В
Trichloroethene	142		ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:56	DD	В
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 11:56	DD	В
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared	Ву	Analyzed	Ву	Cntr
1,2-Dichloroethane-d4 (S)	108		%	81 - 118			SW846 8260C			12/20/17 11:56	DD	В
4-Bromofluorobenzene (S)	108		%	85 - 114			SW846 8260C			12/20/17 11:56	DD	В
Dibromofluoromethane (S)	102		%	80 - 119			SW846 8260C			12/20/17 11:56	DD	В
Toluene-d8 (S)	103		%	89 - 112			SW846 8260C			12/20/17 11:56	DD	В
LIGHT HYDROCARBON GA	SES											
Ethane	0.50U	U	ug/L	1.0	0.50	0.25	RSK 175			12/19/17 04:01	EG0	Α
Ethene	0.75U	U	ug/L	1.5	0.75	0.31	RSK 175			12/19/17 04:01	EGO	Α
Methane	7.2		ug/L	0.50	0.25	0.13	RSK 175			12/19/17 04:01	EGO	Α
WET CHEMISTRY												
Alkalinity, Total	212	X	mg/L	5	5	8.0	S2320B-97			12/15/17 07:08	MSA	Н
Chloride	28.1	.000	mg/L	2.0	0.50	0.16	EPA 300.0			12/15/17 05:52	CHW	G
Nitrate-N	0.32		mg/L	0.20	0.060	0.020	EPA 300.0			12/15/17 05:52	CHW	G
Sulfate	14.8		mg/L	2.0	0.50	0.20	EPA 300.0			12/15/17 05:52		
Total Organic Carbon (TOC)	0.44J	J	mg/L	1.0	0.50	0.18	S5310B-00			12/19/17 15:44		D

Mrs. Vanessa N Badman Project Coordinator

Vanessa M. Badman

ALS Environmental Laboratory Locations Across North America

34 Dogwood Lane - Middletown, PA 17057 - Phone: 717-944-5541 - Fax: 717-944-1430 - www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2282982 ANL006[60440641

Lab ID: 2282982003

Date Collected: 12/13/2017 11:20

Matrix:

Ground Water

Sample ID:

MW-30-121317

Date Received: 12/14/2017 09:55

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared By	Analyzed	Ву	Cntr
VOLATILE ORGANICS	Ø				0						
Carbon Tetrachloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
1,1-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
1,1-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
cis-1,2-Dichloroethene	0.41J	J	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
trans-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
Tetrachloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
1,1,1-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
1,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
Trichloroethene	19.6		ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 12:18	DD	J
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared E	By Analyzed	Ву	Cntr
1,2-Dichloroethane-d4 (S)	108		%	81 - 118			SW846 8260C		12/20/17 12:18	DD	J
4-Bromofluorobenzene (S)	108		%	85 - 114			SW846 8260C		12/20/17 12:18	DD	J
Dibromofluoromethane (S)	98.9		%	80 - 119			SW846 8260C		12/20/17 12:18	DD	J
Toluene-d8 (S)	104		%	89 - 112			SW846 8260C		12/20/17 12:18	DD	J
LIGHT HYDROCARBON GAS	SES										
Ethane	40.5	.00	ug/L	1.0	0.50	0.25	RSK 175		12/19/17 04:18	EGO	Α
Ethene	4.2		ug/L	1.5	0.75	0.31	RSK 175		12/19/17 04:18	EGO	Α
Methane	12900		ug/L	1.0	0.50	0.26	RSK 175		12/19/17 06:17	EGO	Α
WET CHEMISTRY											
Alkalinity, Total	347	×	mg/L	5	5	0.8	S2320B-97		12/15/17 07:18	MSA	Н
Chloride	87.3	A15-5	mg/L	2.0	0.50	0.16	EPA 300.0		12/15/17 06:08	CHW	G
Nitrate-N	0.060U	U	mg/L	0.20	0.060	0.020	EPA 300.0		12/15/17 06:08	CHW	G
Sulfate	0.22J	Ĵ	mg/L	2.0	0.50	0.20	EPA 300.0		12/15/17 06:08	CHW	G
Total Organic Carbon (TOC)	366		mg/L	50.0	25.0	9.2	S5310B-00		12/19/17 15:44	DAC	D

Mrs. Vanessa N Badman Project Coordinator

Vanessa M. Badman

ALS Environmental Laboratory Locations Across North America

34 Dogwood Lane - Middletown, PA 17057 - Phone: 717-944-5541 - Fax: 717-944-1430 - www.alsqlobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 S tate Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2282982 ANL006|60440641

Lab ID:

2282982004

Date Collected: 12/13/2017 12:15

Matrix:

Ground Water

Sample ID:

MW-31-121317

Date Received: 12/14/2017 09:55

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared By	/	Analyzed	Ву	Cntr
VOLATILE ORGANICS							Y Y e					
Carbon Tetrachloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 12:40	DD	В
1,1-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 12:40	DD	В
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 12:40	DD	В
1,1-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 12:40	DD	В
cis-1,2-Dichloroethene	0.40J	J	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 12:40	DD	В
trans-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 12:40	DD	В
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 12:40	DD	В
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 12:40	DD	В
Tetrachloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 12:40	DD	В
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 12:40	DD	В
1,1,1-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 12:40	DD	В
1,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 12:40	DD	В
Trichloroethene	19.6		ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 12:40	DD	В
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C			12/20/17 12:40	DD	В
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared I	Ву	Analyzed	Ву	Cntr
1,2-Dichloroethane-d4 (S)	106		%	81 - 118			SW846 8260C	_		12/20/17 12:40	DD	В
4-Bromofluorobenzene (S)	107		%	85 - 114			SW846 8260C			12/20/17 12:40	DD	В
Dibromofluoromethane (S)	99.8		%	80 - 119			SW846 8260C			12/20/17 12:40	DD	В
Toluene-d8 (S)	103		%	89 - 112			SW846 8260C			12/20/17 12:40	DD	В
LIGHT HYDROCARBON GA	SES											
Ethane	3.3		ug/L	1.0	0.50	0.25	RSK 175			12/19/17 04:35	EGO	Α
Ethene	1.9		ug/L	1.5	0.75	0.31	RSK 175			12/19/17 04:35	EGO	Α
Methane	59.4		ug/L	0.50	0.25	0.13	RSK 175			12/19/17 04:35	EGO	Α
WET CHEMISTRY												
Alkalinity, Total	119	1 pm	mg/L	5	5	0.8	S2320B-97			12/15/17 07:28	MSA	Н
Chloride	36.3		mg/L	2.0	0.50	0.16	EPA 300.0			12/15/17 06:24	CHW	G
Nitrate-N	0.060U	U	mg/L	0.20	0.060	0.020	EPA 300.0			12/15/17 06:24	CHW	G
Sulfate	7.8		mg/L	2.0	0.50	0.20	EPA 300.0			12/15/17 06:24	CHW	G
Total Organic Carbon (TOC)	1.3		mg/L	1.0	0.50	0.18	S5310B-00			12/19/17 15:44	PAG	D

Vanessa M. Badman Mrs. Vanessa N Badman **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

34 Dogwood Lane Middletown, PA 17057 Phone: 717-944-5541 Fax: 717-944-1430 www.alsqlobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 S tate Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2283331 ASN030|Scotia Navy Depot 60440

Lab ID: 2283331001

Date Collected: 12/14/2017 09:25

Matrix: Ground Water

Sample ID: MW-28 121417

Date Received: 12/15/2017 09:30

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared By	Analyzed	Ву	Cntr
VOLATILE ORGANICS			-	-		-					
Carbon Tetrachloride	0.57J	J	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:02	DD	Α
1,1-Dichloroethane	0.84J	J	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:02	DD	Α
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:02	DD	Α
1,1-Dichloroethene	0.45J	J	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:02	DD	Α
cis-1,2-Dichloroethene	5.0		ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:02	DD	Α
trans-1,2-Dichloroethene	0.49J	J	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:02	DD	Α
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:02	DD	Α
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:02	DD	Α
Tetrachloroethene	45.2		ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:02	DD	Α
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:02	DD	Α
1,1,1-Trichloroethane	9.5		ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:02	DD	Α
1,1,2-Trichloroethane	0.33J	J	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:02	DD	Α
Trichloroethene	201		ug/L	5.0	3.8	1.7	SW846 8260C		12/21/17 22:51	CJG	В
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:02	DD	Α
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared By	Analyzed	Ву	Cntr
1,2-Dichloroethane-d4 (S)	108		%	81 - 118			SW846 8260C		12/21/17 22:51	CJG	В
1,2-Dichloroethane-d4 (S)	106		%	81 - 118			SW846 8260C		12/20/17 13:02	DD	Α
4-Bromofluorobenzene (S)	108		%	85 - 114			SW846 8260C		12/20/17 13:02	DD	Α
4-Bromofluorobenzene (S)	109		%	85 - 114			SW846 8260C		12/21/17 22:51	CJG	В
Dibromofluoromethane (S)	99.9		%	80 - 119			SW846 8260C		12/20/17 13:02	DD	Α
Dibromofluoromethane (S)	99.1		%	80 - 119			SW846 8260C		12/21/17 22:51	CJG	В
										CJG	В
Toluene-d8 (S)	104		%	89 - 112			SW846 8260C		12/21/17 22:51	CoG	
` '	104 104		% %	89 - 112 89 - 112			SW846 8260C SW846 8260C		12/21/17 22:51 12/20/17 13:02	DD	Α
Toluene-d8 (S) Toluene-d8 (S) LIGHT HYDROCARBON GA	104										Α
Toluene-d8 (S)	104	U			0.50	0.25					
Toluene-d8 (S) LIGHT HYDROCARBON GA Ethane Ethene	104 SES	U U	%	89 - 112	0.50 0.75	0.25 0.31	SW846 8260C		12/20/17 13:02	DD	D
Toluene-d8 (S) LIGHT HYDROCARBON GA Ethane	104 SES 0.50U		% ug/L	89 - 112 1.0			SW846 8260C RSK 175		12/20/17 13:02 12/19/17 05:27	DD EGO EGO	D D
Toluene-d8 (S) LIGHT HYDROCARBON GA Ethane Ethene	104 SES 0.50U 0.75U	U	% ug/L ug/L	89 - 112 1.0 1.5	0.75	0.31	SW846 8260C RSK 175 RSK 175		12/20/17 13:02 12/19/17 05:27 12/19/17 05:27	DD EGO EGO	D D
Toluene-d8 (S) LIGHT HYDROCARBON GA Ethane Ethene Methane 0.50 U	104 SES 0.50U 0.75U	U	% ug/L ug/L	89 - 112 1.0 1.5	0.75	0.31	SW846 8260C RSK 175 RSK 175		12/20/17 13:02 12/19/17 05:27 12/19/17 05:27	DD EGO EGO EGO	D D D
Toluene-d8 (S) LIGHT HYDROCARBON GA Ethane Ethene Methane WET CHEMISTRY	104 SES 0.50U 0.75U 	U U	% ug/L ug/L ug/L mg/L	1.0 1.5 0.50	0.75 0.25	0.31 0.13	SW846 8260C RSK 175 RSK 175 RSK 175		12/20/17 13:02 12/19/17 05:27 12/19/17 05:27 12/19/17 05:27	DD EGO EGO EGO	D D D
Toluene-d8 (S) LIGHT HYDROCARBON GA Ethane Ethene Methane WET CHEMISTRY Alkalinity, Total	104 .SES 0.50U 0.75U 	U U	% ug/L ug/L ug/L mg/L mg/L	89 - 112 1.0 1.5 0.50	0.75 0.25	0.31 0.13 0.8	SW846 8260C RSK 175 RSK 175 RSK 175 S2320B-97		12/20/17 13:02 12/19/17 05:27 12/19/17 05:27 12/19/17 05:27 12/16/17 17:41	EGO EGO EGO MSA CHW	D D K
Toluene-d8 (S) LIGHT HYDROCARBON GA Ethane Ethene Methane WET CHEMISTRY Alkalinity, Total Chloride	104 .SES 0.50U 0.75U -0.30J 383 20.4	U U	% ug/L ug/L ug/L mg/L	89 - 112 1.0 1.5 0.50 5 2.0	0.75 0.25 5 0.50	0.31 0.13 0.8 0.16	SW846 8260C RSK 175 RSK 175 RSK 175 S2320B-97 EPA 300.0		12/20/17 13:02 12/19/17 05:27 12/19/17 05:27 12/19/17 05:27 12/16/17 17:41 12/16/17 05:45	EGO EGO EGO MSA CHW	р р о

ALS Environmental Laboratory Locations Across North America

34 Dogwood Lane = Middletown, PA 17057 = Phone: 717-944-5541 = Fax: 717-944-1430 = www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DOD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2283331 ASN030 Scotia Navy Depot 60440

Lab ID:

2283331002

Date Collected: 12/14/2017 10:10

Matrix:

Ground Water

Sample ID:

MW-29 121417

Date Received: 12/15/2017 09:30

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared By	Analyzed	Ву	Cntr
VOLATILE ORGANICS											
Carbon Tetrachloride	0.71J	J	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 14:08	DD	Α
1,1-Dichloroethane	0.88J	J	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 14:08	DD	Α
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 14:08	DD	Α
1,1-Dichloroethene	0.96J	J	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 14:08	DD	Α
cis-1,2-Dichloroethene	5.7		ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 14:08	DD	Α
trans-1,2-Dichloroethene	0.62J	J	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 14:08	DD	Α
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 14:08	DD	Α
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 14:08	DD	Α
Tetrachloroethene	41.7		ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 14:08	DD	Α
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 14:08	DD	Α
1,1,1-Trichloroethane	14.6		ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 14:08	DD	Α
1,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 14:08	DD	Α
Trichloroethene	233		ug/L	5.0	3.8	1.7	SW846 8260C		12/21/17 23:13	CJG	В
Vinyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 14:08	DD	Α
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared By	Analyzed	Ву	Cntr
1,2-Dichloroethane-d4 (S)	107		%	81 - 118			SW846 8260C		12/20/17 14:08	DD	Α
1,2-Dichloroethane-d4 (S)	109		%	81 - 118			SW846 8260C		12/21/17 23:13	CJG	В
4-Bromofluorobenzene (S)	111		%	85 - 114			SW846 8260C		12/20/17 14:08	DD	Α
4-Bromofluorobenzene (S)	107		%	85 - 114			SW846 8260C		12/21/17 23:13	CJG	В
Dibromofluoromethane (S)	98.7		%	80 - 119			SW846 8260C		12/21/17 23:13	CJG	В
Dibromofluoromethane (S)	99.6		%	80 - 119			SW846 8260C		12/20/17 14:08	DD	Α
Toluene-d8 (S)	103		%	89 - 112			SW846 8260C		12/21/17 23:13	CJG	В
Toluene-d8 (S)	104		%	89 - 112			SW846 8260C		12/20/17 14:08	DD	Α
LIGHT HYDROCARBON GA	SES										
Ethane	0.50U	U	ug/L	1.0	0.50	0.25	RSK 175		12/19/17 05:43	EGO	D
Ethene	0.75U	U	ug/L	1.5	0.75	0.31	RSK 175		12/19/17 05:43	EGO	D
Methane 0.50 U	0.423	_	ug/L	0.50	0.25	0.13	RSK 175		12/19/17 05:43	EGO	D
WET CHEMISTRY											
Alkalinity, Total	348	x	mg/L	5	5	0.8	S2320B-97		12/16/17 17:53	MSA	K
Chloride	21.3	2.5	mg/L	2.0	0.50	0.16	EPA 300.0		12/16/17 06:01		J
· · · · · · · · · · · · · · · · · · ·	0.86		mg/L	0.20	0.060	0.020	EPA 300.0		12/16/17 06:01		
Nitrate-N	0.00										_
Nitrate-N Sulfate	22.7		mg/L	2.0	0.50	0.20	EPA 300.0		12/16/17 06:01	CHW	J

ALS Environmental Laboratory Locations Across North America

34 Dogwood Lane = Middletown, PA 17057 = Phone: 717-944-5541 = Fax: 717-944-1430 = www.alsglobal.com

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DOD ELAP: A2LA 0818.01 State Certifications: DE ID 11, MA PA0102, MD 128, VA 460157, WV 343

ANALYTICAL RESULTS

Workorder: 2283331 ASN030|Scotia Navy Depot 60440

Lab ID:

2283331003

Date Collected: 12/14/2017 11:01

Matrix:

Ground Water

Sample ID:

MW-15 121417

Date Received: 12/15/2017 09:30

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared By	Analyzed	Ву	Cntr
OLATILE ORGANICS			-				<u> </u>				
Carbon Tetrachloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:24	DD	С
,1-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:24	DD	С
,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:24	DD	С
,1-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:24	DD	С
cis-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:24	DD	С
rans-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:24	DD	С
,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:24	DD	С
,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:24	DD	С
Tetrachloroethene	1.3		ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:24	DD	С
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:24	DD	С
,1,1-Trichloroethane	4.3		ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:24	DD	С
,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:24	DD	С
richloroethene	143		ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:24	DD	С
/inyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:24	DD	С
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared I	By Analyzed	Ву	Cntr
,2-Dichloroethane-d4 (S)	107		%	81 - 118	i i		SW846 8260C		12/20/17 13:24	DD	С
-Bromofluorobenzene (S)	108		%	85 - 114			SW846 8260C		12/20/17 13:24	DD	С
Dibromofluoromethane (S)	100		%	80 - 119			SW846 8260C		12/20/17 13:24	DD	С
oluene-d8 (S)	104		%	89 - 112			SW846 8260C		12/20/17 13:24	DD	С
IGHT HYDROCARBON GA	SES										
Ethane	0.50U	U	ug/L	1.0	0.50	0.25	RSK 175		12/19/17 06:00	EGO	D
Ethene	0.75U	U	ug/L	1.5	0.75	0.31	RSK 175		12/19/17 06:00	EGO	D
Methane 0.50 U	0.28J	_	ug/L	0.50	0.25	0.13	RSK 175		12/19/17 06:00	EGO	D
WET CHEMISTRY								8			
Alkalinity, Total	216	1	mg/L	5	5	0.8	S2320B-97		12/16/17 18:40	MSA	K
Chloride	39.7		mg/L	2.0	0.50	0.16	EPA 300.0		12/16/17 06:19	CHW	J
Nitrate-N	0.60		mg/L	0.20	0.060	0.020	EPA 300.0		12/16/17 06:19	CHW	J
Sulfate	20.5		mg/L	2.0	0.50	0.20	EPA 300.0		12/16/17 06:19	CHW	J

Vanessa M. Badman Mrs. Vanessa N Badman

Project Coordinator

ALS Environmental Laboratory Locations Across North America

34 Dogwood Lane - Middletown, PA 17057 - Phone: 717-944-5541 - Fax: 717-944-1430 - www.alsqlobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2283331 ASN030|Scotia Navy Depot 60440

Lab ID: 2283331004

331004 Date Collected: 12/14/2017 00:00

Sample ID: DUP-2 121417 Date Received: 12/15/2017 09:30

Matrix: Ground Water

Parameters	Results	Flag	Units	LOQ	LOD	DL	Method	Prepared By	Analyzed	Ву	Cntr
VOLATILE ORGANICS											
Carbon Tetrachloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
1,1-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
1,2-Dichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
1,1-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
cis-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
trans-1,2-Dichloroethene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
1,1,1,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
1,1,2,2-Tetrachloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
Tetrachloroethene	1.4		ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
Toluene	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
1,1,1-Trichloroethane	4.6		ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
1,1,2-Trichloroethane	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
Trichloroethene	154		ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
√inyl Chloride	0.75U	U	ug/L	1.0	0.75	0.33	SW846 8260C		12/20/17 13:46	DD	Α
Surrogate Recoveries	Results	Flag	Units	Limits			Method	Prepared E	By Analyzed	Ву	Cntr
1,2-Dichloroethane-d4 (S)	107		%	81 - 118			SW846 8260C		12/20/17 13:46	DD	Α
4-Bromofluorobenzene (S)	108		%	85 - 114			SW846 8260C		12/20/17 13:46	DD	Α
Dibromofluoromethane (S)	99.2		%	80 - 119			SW846 8260C		12/20/17 13:46	DD	Α
Toluene-d8 (S)	104		%	89 - 112			SW846 8260C		12/20/17 13:46	DD	Α
LIGHT HYDROCARBON GA	SES										
Ethane	0.50U	U	ug/L	1.0	0.50	0.25	RSK 175		12/19/17 05:11	EGO	D
Ethene	0.75U	U	ug/L	1.5	0.75	0.31	RSK 175		12/19/17 05:11	EGO	D
Methane 0.50 U	-0.48J	- J	ug/L	0.50	0.25	0.13	RSK 175		12/19/17 05:11	EGO	D
WET CHEMISTRY											
Alkalinity, Total	219	X	mg/L	5	5	8.0	S2320B-97		12/16/17 18:51	MSA	K
Chloride	39.5		mg/L	2.0	0.50	0.16	EPA 300.0		12/16/17 05:27	CHV	/ J
Nitrate-N	0.60		mg/L	0.20	0.060	0.020	EPA 300.0		12/16/17 05:27	CHV	/ J
Sulfate	20.8		mg/L	2.0	0.50	0.20	EPA 300.0		12/16/17 05:27	CHV	J
Total Organic Carbon (TOC)	0.40J	J	mg/L	1.0	0.50	0.18	S5310B-00		12/20/17 12:11	DAG	G

Mrs. Vanessa N Badman Project Coordinator

Vanessa M. Badman

ALS Environmental Laboratory Locations Across North America

Canada: Burlington - Calgary - Centre of Excellence - Edmonton - Fort McMurray - Fort St. John - Grande Prairie - London - Mississauga - Richmond Hill - Saskatoon - Thunder Bay Vancouver Waterloo - Winnipeg - Yellowknife - United States: Cincinnati - Everett - Fort Collins - Holland - Houston - Middletown - Salt Lake City - Spring City - York - Mexico: Monterrey

Report ID: 2283331 - 12/28/2017

Appendix C

Support Documentation

34 Dogwood Lane - Middletown, PA 17057 - Phone: 717-944-5541 - Fax: 717-944-1430 - www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

SAMPLE SUMMARY

Workorder: 2282912 ASN029|2015-SCOTIA NAVY DEPOT

Lab ID	Sample ID	Matrix	Date Collected	Date Received	Collected By
2282912001	MW-16 121117	Ground Water	12/11/2017 12:45	12/12/2017 09:54	Collected by Client
2282912002	Trip Blank	Ground Water	12/11/2017 12:45	12/12/2017 09:54	Collected by Client

	Ш	DOD Criteria Required?	DOD Criteria Required?	DOD Criberi						,	10	10			9	
	Ç'	Samual Vision	Suc app	EDC Phospade I V							œ					
Other:		Other See CAPPO	if yes, formet type: Oth							4	5				770	\bigcup
Rantal Equipment		PA P	# **		~ -	12/12	1	12	2	Y	1	1700	ī2 1		12	
Comports Sampling		357	NJ-Full	•	上1中22	FILMZII	1	\setminus	3		2	1422	(1.1.7		24-5	Y
Lebor		LIV LIV	NJ-Reduced y			Date	ame	Received By, Company Name	By/(Con	ecelved	70	Time	Date	Name	Relinquished By I Company Name	37
Pictup		Yee Wo		iverab											162.27 W	ty.
ALS FIELD SERVICES			Standard	ies								57t B:	Project Comments:		SAMPLED BY (Please Print):	AMPLED
cox						-								-		
	a						-									
Re	stody							_					<u> </u>	_		6
ceived	ieals P						 -									5
i Intact? on Ice? curate?	resent?															4
C	 }							\vdash								ω
N	N						 	λ		,	í			_	Black	2 +
				×	γ	x	*	X		12.4	27/11/20				MW-16 121117	3
(<u> </u>	lysis	Enter Number of Containers Per Analysis	er of Cor	Numb	Ente		"Mat	•G o	Time	Sample Date	nts	COC Comments		Sample Description/Location	Samp
rect samp lorrect pri Headspace	Correct						T		r C			, ,	San-acroca Odecom. com	4 c-96 t- 10	V Y 10/47. Sag	Fax?
servatio	ontaine			alin	So	k17	260 C	260	1			Approved By:		and surcharges.	Rush Subject to ALS approval and surchanges	2
on?	157						_	_		व	516	Date Required:		business days.	Monmai-Standard TAT is 10-12 business days.	
Ø 1 C 1	GI				N03					Ē	<u></u>	ALS Quote #:			ıme/#:	Project Name/#:
		25										PO#			Bill tO (I dibrord than Report by):	SIII to a sa
No. of Coolers: otes:	No. of					8										
Them. IDZ/QZ			SMETHOD REQUESTED	METHOD	ANALYSES/	ANA									(
CoolerTemp: 💍	0			×	!	HCL	HEL	HCC HCC	Presentative						Address: 40 R.i.l.	\ddress:
MINT UNIV	. 3			00 P	80	то	40	10	Container Size	28	1168	Phone: 518 911 2200			aport to):	Contact (Reports):
<u> Kecejiji gagojinjedin</u>				ρL	£2	9	Þ	6	Container						AECOM!	Co. Name:
8 2 9	* 2 2	11832 DIES	6470	Edwing #:		ALL SHADED AREAS MUST BE COMPLETED BY THE CUENT! SAMPLER, INSTRUCTIONS ON THE BACK.	THE BAC	BE COMPLI	S MUSTE LINSTRU	SAMPLER	ALL SH		1430	F.717-944-1430	(ALS)	Enul
				Courter	.	SIS	REQUEST FOR ANALYSIS	OR A	ST F	QUE	R		Middletown, PA 17057	Middletown, PA 17	>	-2

AECOM - Latham, NY ALS-Middletown Case Narrative ASN-029 (2282912)

Sample Management

This report contains the results of the analysis of two (2) ground water samples collected on December 11, 2017. Analytical results and quality control information are summarized in this data package.

Qualifier Symbol Definitions:

U = Qualifier indicates that the analyte was not detected above the LOD.

J = Qualifier indicates that the analyte value is between the DL and the LOQ.

B = Qualifier indicates that the analyte was detected in the blank.

E = Qualifier indicates that the analyte result exceeds the calibration range.

P = Qualifier indicates that the RPD between the two analytical columns is > 40%.

NSC = Qualifier indicates that spike recoveries were not calculated based on the spiking concentration.

Result Symbol Definitions:

- DL = The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence.
- LOD = The smallest analyte concentration that must be present in a sample in order to be detected at a high level of confidence.
- LOQ = The lowest concentration that produces a quantitative result within specified limits of precision or bias.

Manual Integration Symbol Definitions

- I = Peak was not integrated properly by chromatographic software. This may be due to baseline irregularities resulting from sample matrix, elevated baseline, or incorrect integration by software on a sample. Integration was adjusted by operator to ensure proper quantitation.
- H = The incorrect peak was identified or the chromatographic software did not identify an analyte peak. Operator manually identified the correct peak as the appropriate target analyte. This flag is automatically assigned by the Target software.
- SP = Peak was erroneously split. The operator manually integrated the peak to include all the area of the analyte peak to ensure proper quantitation.
- MP = Two peaks were erroneously merged. This may include two discrete peaks separated by a distinguishable valley or a larger peak with a clearly identifiable shoulder. Operator manually split peaks.
- AB = Integration of group of adjacent peaks did not follow baseline. Operator manually assigned integration to follow baseline.
- NP = Negative spike in the baseline resulted in overstating area of analyte peaks.

 Analyte peaks were re-assigned.
- AC = Integration of aggregate or multi-component analyte to include area off all components of the analyte (i.e., toxaphene).

AECOM - Latham, NY ALS-Middletown Case Narrative ASN-029 (2282912) Modified

Sample Management

This report contains the results of the analysis of two (2) ground water samples collected on December 11, 2017. Analytical results and quality control information are summarized in this data package.

Qualifier Symbol Definitions:

U = Qualifier indicates that the analyte was not detected above the LOD.

J = Qualifier indicates that the analyte value is between the DL and the LOQ.

B = Qualifier indicates that the analyte was detected in the blank.

E = Qualifier indicates that the analyte result exceeds the calibration range.

P = Qualifier indicates that the RPD between the two analytical columns is > 40%.

NSC = Qualifier indicates that spike recoveries were not calculated based on the spiking concentration.

Result Symbol Definitions:

- DL = The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence.
- LOD = The smallest analyte concentration that must be present in a sample in order to be detected at a high level of confidence.
- LOQ = The lowest concentration that produces a quantitative result within specified limits of precision or bias.

Manual Integration Symbol Definitions

- I = Peak was not integrated properly by chromatographic software. This may be due to baseline irregularities resulting from sample matrix, elevated baseline, or incorrect integration by software on a sample. Integration was adjusted by operator to ensure proper quantitation.
- H = The incorrect peak was identified or the chromatographic software did not identify an analyte peak. Operator manually identified the correct peak as the appropriate target analyte. This flag is automatically assigned by the Target software.
- SP = Peak was erroneously split. The operator manually integrated the peak to include all the area of the analyte peak to ensure proper quantitation.
- MP = Two peaks were erroneously merged. This may include two discrete peaks separated by a distinguishable valley or a larger peak with a clearly identifiable shoulder. Operator manually split peaks.
- AB = Integration of group of adjacent peaks did not follow baseline. Operator manually assigned integration to follow baseline.
- NP = Negative spike in the baseline resulted in overstating area of analyte peaks.

 Analyte peaks were re-assigned.
- AC = Integration of aggregate or multi-component analyte to include area off all components of the analyte (i.e., toxaphene).

Sample Receipt

Samples arrived at ALS via courier on December 12, 2017. Upon receipt, the samples were inspected and compared to the Chain of Custody. Sample temperature was documented on the enclosed Chain of Custody. Samples were received intact and properly preserved, unless noted on the enclosed Certificate of Analysis and/or Chain of Custody.

Manual Integrations

If manual integrations were performed they are indicated on the raw data quantification files for each method.

Modification

This data package was modified to include the explanation for the missing alkalinity data. The alkalinity test was initially logged in, but when the laboratory when to analyze the sample, they were unable to locate the sample. ALS continued to look for the sample, but were ultimately unable to locate the missing jar. ALS then notified Kelly Lurie and John Santacroce from AECOM of this error.

Volatile Organics by SW-846 Method 8260

Sample Handling. Two (2) water samples were analyzed by SW-846 Method 8260 for volatile organic compounds. All analyses were performed within the holding time.

Initial Calibrations. Initial calibrations were properly analyzed and met method criteria for all target analytes. **Note**: The batch LCS also serves as a second source (ICV).

Initial Calibration Verifications. Initial calibration verification samples were properly analyzed and met method criteria.

Continuing Calibration Verification. Samples were analyzed right after Initial Calibration.

Blanks. Target analytes were not detected in the method blank.

Surrogates. Recoveries were within control limits.

Laboratory control samples. Target analytes were recovered within control limits in the laboratory control samples.

Internal Standards. Internal standard results met method criteria

Light Hydrocarbon Gases by RSK-175

Sample Handling. One (1) water sample was submitted for the analysis of light hydrocarbon gases by Method RSK-175. The samples were analyzed within the method specified holding time of fourteen days.

Calibrations. The initial calibrations met method criteria for all target analytes.

Calibration verification. Prior to the analysis of samples in this group, the initial calibrations were successfully verified by the analysis of calibration verification

standards. The samples were then successfully bracketed with alternating calibration verification standards (CCV) throughout the analysis.

Continuing Calibration. A continuing calibration standard were properly analyzed and met method criteria for all target analytes.

Blanks. Target analytes were not detected in the method blank; except as follows:

Methane was detected at 0.15J μg/L.

Anions by EPA 300.0

Sample handling. One (1) aqueous sample was analyzed for chloride, nitrate, and sulfate by EPA Method 300.0. The sample was analyzed within the method recommended holding time for each analyte.

Calibration. Initial calibrations, identified as Method A (high range) and Method L (low range), were properly established. Initial and continuing calibration verification standards were recovered within the QC limits.

Blanks. Initial and continuing blanks were analyzed with the samples. Chloride, nitrate, and sulfate were not detected above the reporting limits in the blanks.

Laboratory Control Samples. Laboratory control samples identified as SSL and 2660566 were analyzed with the samples. Recoveries were within the QC limits.

Spikes. A matrix spike and spike duplicate were not performed on any samples from this deliverable group.

Total Organic Carbon by SM 5310B

Sample handling. One (1) aqueous sample was analyzed for total organic carbon by Standard Method 5310B. The sample was analyzed within the 28-day holding time established for the method.

Calibration. Initial calibrations were properly established on the days of analysis. Initial and continuing calibration standards were analyzed for verification, and recoveries were all within the QC limits.

Blanks. Method blanks were analyzed with the samples. Total organic carbon was not detected above the reporting limit in the blanks.

Laboratory Control Samples. A laboratory control sample identified as 2662120 was analyzed with the sample. The recovery was within the QC limits.

Spikes. Matrix spike and matrix spike duplicate analyses were not performed on any samples from this deliverable group.

Data File: 317121978.D

Report Date: 20-Dec-2017 10:40

ALS Environmental Services

RECOVERY REPORT

Client Name:

Client SDG: 3171219A.b

Sample Matrix: LIQUID Lab Smp Id: 1801 Level: LOW

Fraction: VOA

Operator: CJG

SampleType:

Data Type: MS DATA SpikeList File: DODENDCCV.spk

Quant Type: ISTD

Sublist File: DODall.sub
Method File: \\ALMDTWS014\TargetData\Chem2\ms03.i\03_2017\3171219A.b\3-8260b

Misc Info:

SPIKE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	% RECOVERED	LIMITS
1 Dichlorodifluorome 2 Chloromethane 3 Vinyl Chloride 4 Bromomethane 5 Chloroethane 6 Pentane 7 Trichlorofluorometh 8 Dichlorofluorometh 9 Ethyl Ether 10 1,1-Dichloroethene 11 Freon 113 12 Carbon Disulfide 13 Iodomethane 14 Acrolein 15 Isopropyl Alcohol 16 3-Chloro-1-propene 17 Methylene Chloride 18 Acetone 19 Methyl acetate 20 trans-1,2-Dichloro 21 Hexane 22 Methyl t-Butyl Eth 23 tert Butyl Alcoh 24 Acetonitrile 25 Diisopropyl ether 26 Chloroprene 27 1,1-Dichloroethane 28 Acrylonitrile 30 n-Propanol 29 Ethyl tert-butyl e 31 Vinyl acetate 32 cis-1,2-Dichloroet 33 2,2-Dichloropropan 34 Bromochloromethane 35 Cyclohexane 36 Chloroform 37 Ethyl acetate 38 Methyl acrylate 39 Carbon Tetrachlori 40 Tetrahydrofuran	50.0000 50.0000	42.2433 49.4331 46.0943 43.9004 45.5805 27.3540 46.1966 49.4310 53.4592 44.3709 36.2491 46.0363 52.3140 496.332 208.522 48.8364 50.6184 270.119 57.3658 48.9504 54.2665 238.523 264.013 55.0933 47.7234 50.4390 264.773 499.050 45.3621 50.7096 50.5172 33.9661 50.7427 48.5170 38.8931 243.679	84.49 98.87 92.19 87.80 91.16 54.71 92.39 98.86 106.92 88.74 72.50 92.07 104.63 99.27 83.41 97.67 101.24 108.05 114.73 97.83 69.90 108.53 95.41 105.61 110.19 95.45 100.88 105.91 99.81 90.72 101.42 101.03 67.93 104.45 65.80 98.53 101.49 97.77 97.47	\$\overline{50-150}\$ 50-150

Data File: 317121978.D Report Date: 20-Dec-2017 10:40

	CONC	CONC	96	
SPIKE COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
31 21 2 3 3 1 2 3 2 1 2	ug/L	ug/L	RECOVERED	DIMITIO
	5/ —	-5/-		
42 1,1,1-Trichloroeth	50.0000	48.5004	97.00	50-150
43 2-Butanone	250.000	266.521	106.61	50-150
44 1,1-Dichloropropen	50.0000	43.5747	87.15	50-150
45 1-Chlorobutane	50.0000	43.5668	87.13	50-150
46 Heptane	50.0000	24.3789	48.76*	50-150
47 Benzene	50.0000	49.3022	98.60	50-150
48 Propionitrile	250.000	268.827	107.53	50-150
49 Methacrylonitrile 50 tert-amyl methyl E	50.0000 50.0000	51.4816 51.2908	102.96 102.58	50-150
54 Isobutyl alcohol	500.000	510.132	102.38	50-150 50-150
52 1,2-Dichloroethane	50.0000	51.1892	102.38	50-150
53 tert-Amyl Alcohol	250.000	240.033	96.01	50-150
56 Diisobutylene	50.0000	29.4629	58.93	50-150
57 Trichloroethene	50.0000	43.1660	86.33	50-150
58 Methyl cyclohexane	50.0000	27.7172	55.43	50-150
59 tert-Amyl Ethyleth	50.0000	50.7058	101.41	50-150
60 Dibromomethane	50.0000	51.8133	103.63	50-150
61 1,2-Dichloropropan 62 Bromodichlorometha	50.0000	52.0511	104.10	50-150
63 Methyl methacrylat	50.0000 50.0000	50.4779 49.4351	100.96 98.87	50-150 50-150
64 1,4-Dioxane	1250.00	1090.36	87.23	50-150
65 2-Chloroethylvinyl	50.0000	49.0011	98.00	50-150
66 cis-1,3-Dichloropr	50.0000	48.8552	97.71	50-150
67 Octane	50.0000	24.5748	49.15*	
69 Toluene	50.0000	47.9051	95.81	50-150
70 Chloroacetonitrile	250.000	233.283	93.31	50-150
71 2-Nitropropane	250.000	239.425	95.77	50-150
72 1,1-Dichloro-2-pro 73 4-Methyl-2-Pentano	250.000	241.835	96.73	50-150
74 Tetrachloroethene	250.000 50.0000	246.956	98.78	50-150 50-150
75 trans-1,3-Dichloro	50.0000	41.2081 48.7280	82.42 97.46	50-150
76 Ethyl methacrylate	50.0000	50.3604	100.72	50-150
77 1,1,2-Trichloroeth	50.0000	52.4163	104.83	50-150
78 Chlorodibromometha	50.0000	49.1345	98.27	50-150
80 1,2-Dibromoethane	50.0000	55.1101	110.22	50-150
81 2-Hexanone	250.000	246.823	98.73	50-150
82 1-Chlorohexane	50.0000	31.6355	63.27	50-150
79 1,3-Dichloropropan 84 Chlorobenzene	50.0000	51.8529	103.71	50-150
85 Ethylbenzene	50.0000 50.0000	46.1277	92.26	50-150
86 1,1,1,2-Tetrachlor	50.0000	46.0575 53.4163	92.11 106.83	50-150 50-150
87 mp-Xylene	100.000	87.7756	87.78	50-150
88 o-Xylene	50.0000	47.8348	95.67	50-150
89 Styrene	50.0000	53.0937	106.19	50-150
90 Bromoform	50.0000	46.4395	92.88	50-150
91 Isopropylbenzene	50.0000	41.1286	82.26	50-150
93 Bromobenzene	50.0000	48.2910	96.58	50-150
94 n-Propylbenzene	50.0000	42.0100	84.02	50-150
95 1,1,2,2-Tetrachlor	50.0000	52.1525	104.31	50-150
96 o-Chlorotoluene M 100 1,2-Dichloroethene	50.0000	45.8725	91.75	50-150
97 1,3,5-Trimethylben	100.000 50.0000	99.4345	99.43	50-150 50-150
98 1,2,3-Trichloropro	50.0000	44.5150 52.6702	89.03 105.34	50-150
99 trans-1,4-Dichloro	50.0000	42.5204	85.04	50-150
	23.000	12.5201	05.04	
				١ ــــــــــــــــــــــــــــــــــــ

Data File: 317121978.D Report Date: 20-Dec-2017 10:40

1				
SPIKE COMPOUND	CONC ADDED	CONC RECOVERED	% RECOVERED	LIMITS
	ug/L	ug/L	_	
101 p-Chlorotoluene 102 tert-Butylbenzene 103 Pentachloroethane 104 1,2,4-Trimethylben 105 sec-Butylbenzene 106 p-Isopropyltoluene 107 1,3-Dichlorobenzen 109 1,4-Dichlorobenzen 110 Benzyl Chloride 111 n-Butylbenzene 112 Hexachloroethane 113 1,2-Dichlorobenzen 114 1,2-Dibromo-3-chlo 115 Nitrobenzene	50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000		94.78 81.33 96.51 89.94 77.17 84.54 95.42 88.73 70.79 80.17 82.19 92.83 94.93 57.48	50-150 50-150 50-150 50-150 50-150 50-150 50-150 50-150 50-150 50-150 50-150
116 Hexachlorobutadien 117 1,2,4-Trichloroben	50.0000 50.0000	38.4480 45.5177	76.90 91.04	50-150 50-150
118 Naphthalene M 120 1,3-Dichloropropen	50.0000 100.000	44.8799 97.5833	89.76 97.58	50-150 50-150
119 1,2,3-Trichloroben M 121 TOTAL XYLENES	50.0000 150.000	46.9739 135.610	93.95 90.41	50-150 50-150

SURROGATE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	% RECOVERED	LIMITS
\$ 41 Dibromofluorometha	50.0000	51.7975	103.60	80-119
\$ 51 1,2-Dichloroethane	50.0000	49.9218	99.84	81-118
\$ 68 Toluene-d8	50.0000	50.6077	101.22	89-112
\$ 92 4-Bromofluorobenze	50.0000	51.3312	102.66	85-114

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

						SAM	PLE NO.	
						2662	303 (MB)	
Lab Name:	ALS Globa	1	12		Contract:	SVGC		
Lab Code:	VOA	Case No	· · · _	N .	SAS No.:		SDG No.:	ASN-029
	oil/water):	W.	ATER		Lab Sample ID:	2662303		
Sample wt/	/vol: 0.30	(g/mL)	ML		Lab File ID:	MLJA003.	D	_
Level (low	v/med):	Low			Date Received:	12/18/17		
% Moisture	e: not dec.	100.0			Date Analyzed:	12/19/17	_	
GC Column:	PORPAK Q	ID:	2.0	(mm)	Dilution Facto	r: 1.	0	
Soil Extra	ct Volume:		(uL)	Soil Aliquot V	olume:		(uL)
					CONCENTRATION UNITS	27		
_	CAS No.		Compo	und	(ug/L or ug/Kg) [IG/L	Q	
[74-82-8		METHAN	NE		0.15	J	
- 1	74-85-1		ETHEN	3		0.75	ט	
L	74-84-0		ETHAN	Ē.		0.50	U	

Form 4B Inorganic Blank Summary

Analysis Method: EPA 300.0

Instrument: IC-5

SDG No.: ASN029

Sample ID	Amaliata	1 -	**				
	Analyte	Type	Matrix	Analyzed	Result	(E)	Units
2659059	Chloride	MB	QC-Water	12/13/2017 03:17	0.14	Ĵ	mg/L
2659059	Nitrate-N	MB	QC-Water	12/13/2017 03:17 12/13/2017 03:17	0.030	ΰ	mg/L
2659059	Sulfate	MB	QC-Water	12/13/2017 03:17	0.25	Ū	
	Sunace	1010	QC Water	12/13/2017 03.17	0.23	Ľ	mg/L
2660669	Chloride	MB	OC Water	12/12/2017 06 57			-
2660669	Nitrate-N		QC-Water	12/13/2017 06:57	0.19	Į,	mg/L
		MB	QC-Water	12/13/2017 06:57	0.030	U	mg/L
2660669	Sulfate	MB	QC-Water	12/13/2017 06:57	0.25	U	mg/L
0						Н	
						Н	
		 				\vdash	
		 				Н	
						ш	
						Щ	
				<u> </u>		Ш	
- 1							
						М	
				= =			
						12	
						\vdash	
						\vdash	-
						$\vdash \dashv$	
							
						Ш	<u> </u>
	117.11						
					1		
				-			
						\dashv	
				×			
						├─┤	
						\vdash	
		-					
							
					1.0		
						\neg	
						\dashv	

(1) The following qualifiers are	used
----------------------------------	------

U: The analyte concentration is less than the reporting limit listed J: The analyte concentration is less than the reporting limit but greater

than the method detection limit

_							
$\boldsymbol{\Gamma}$	0	m	m	•	n	te	

Form 4B Inorganic Blank Summary

Analysis Method: S5310B-00

Instrument: TOC

SDG No.: ASN029

Sample ID	Analyte	Type	Matrix	Analyzed	Result	Q (1)	
2662119	Total Organic Carbon (TOC)	МВ	QC-Water	12/18/2017 10:42	0.2	J	
CCB	Total Organic Carbon (TOC)	MB	QC-Water	12/18/2017 10:42	0.5	U	mg/L
,							
ССВ	Total Organic Carbon (TOC)	MB	QC-Water	12/18/2017 10:42	0.5	U	mg/L
			·			H	
		_		LOD = 0.50 mg/L. N	st used to	que	lefy Lata
				0)	0
						\vdash	
	·						
						Н	
						Н	
							
				-		\dashv	
		· · · · · · · · · · · · · · · · · · ·					
		-					
			100				

(1)) .	The	fol	lowing	qualifiers	are	used
-----	-----	-----	-----	--------	------------	-----	------

U: The analyte concentration is less than the reporting limit listed

J: The analyte concentration is less than the reporting limit but greater

than the method detection limit

Co	m	m	^	n	+	_	
	ш	ш	e	H	L:	5	

34 Dogwood Lane - Middletown, PA 17057 - Phone: 717-944-5541 - Fax: 717-944-1430 - www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22–293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

SAMPLE SUMMARY

Workorder: 2282785 ANL005|60440641

Lab iD	Sample ID	Matrix	Date Collected	Date Received	Collected By
2282785001	MVV-20 121217 MW-26-121217	Ground Water	12/12/2017 09:26	12/13/2017 09:13	Collected by Client
2282785002	DUP-1 121217	Ground Water	12/12/2017 00:00	12/13/2017 09:13	Collected by Client
2282785003	EB-1 121217	Ground Water	12/12/2017 10:01	12/13/2017 09:13	Collected by Client
2282785004	MW-34 121217	Ground Water	12/12/2017 10:51	12/13/2017 09:13	Collected by Client
2282785005	MW-35 121217	Ground Water	12/12/2017 11:54	12/13/2017 09:13	Collected by Client
2282785006	MW-24 121217	Ground Water	12/12/2017 14:12	12/13/2017 09:13	Collected by Client

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2282785 - 12/27/2017

8 2 7 8 5 *	(top) 1201 State S	Perhana (Argusta	Cooler Temp: 2 º	Them. ID: 403	No. of Coolers:		N N N N N N N N N N N N N N N N N N N	Z uolievo:	c sample sample leostable	Cone Co	(M N N	- B B B	fintactif Seol no Fatsruo	seats Pr (seats (colvod niete/ac	ia coul Bi busseu	(d	00	ALS FIELD SERVICES		Composite Sampling	Rentat Equipment	Ogles-			200-00-00
Courter:		250		ANALYSESIMETHOD REQUESTED				وازعر	THE STATE OF THE S	Enter Number of Containers Per Analysis	lx	- X		x	×	*	×	_	Standard Fermal?c Cub-like yes No Month	NJ-Reduced year	Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-	PA year	typec Other	Se Offe Sanitasionalis	DOD Criteria Required?	AEAIT DW-Drinding Water of Great Control of
CHAIN OF CUSTODY/ REQUEST FOR ANALYSIS ALL SHADED AREAS MUST BE COMPLETED BY THE CLIENT? SAMPLER. INSTRUCTIONS ON THE BACK.	6 10 00 01	40 870	Promouting Her Hech	ANALYSESIME			- Tela		70 <u>1</u> 78	e o o o o o o o o o o o o o o o o o o o	1 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 ×	ニなるなべ	×7	x x x	У У Х	λ λ λ	X X X	メメメメ	780	ny Name , Da	MICHURE HAMPISE	W // M4 693			40 DOD Criteria Required?	Rame-re tendus relativos of allows the services
		Phone:	000 ST			PO#:	ALS Quote #:	Date Required: Approved By:		COC Comments Sample Military COC Comments Date Time	976		1001	1021	HS11	hsil	HSM	71/11	Project Comments:	Date Time Received By /	1530 2 1	1330 4 7		œ	-	Matrix
34 Dogwood Lane Middletown, PA 17057 P. 717-944-5541 F.717-944-1430	Co. Name: /From	Contact (Appent tel:	Brilish American	\(\frac{1}{2}\)		Bill to (a effect than Report 12):	Project Name#: 60440641	7A1: Normal-Standard TAT is 10-12 business days. Rush-Subject to ALS approvel and surcharges.	Email? V.Y John. Santacroce a accounter	ndle Description/Location	1 MW - 26 (2(2)7	2 Dr.P- 1 121217	3 FB-1 181217	4 MW-34 12121	5 MW - 55 121217	6 MW - 35 MS 121217	7 MW- 35 MSD 121217	24 12hz		Refinduished By / Company Name		3 (A Wenny Many Well !	2	2	6	. G-Grap; C-Composite

34 Dogwood Lane - Middletown, PA 17057 - Phone: 717-944-5541 - Fax: 717-944-1430 - www.alsqlobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2282785 ANL005|60440641

PARAMETER QU	JALIFIER	RS			
Lab ID	#	Sample ID	Analytical Method	Analyte	
2282785001	1	MW-20 121217 MW-26-121217	S2320B-97	Alkalinity, Total	
The Total Alkalinit	y is titrate	ed to a pH of 4.5 and reported as mg	CaCO3/L.		
2282785002	1	DUP-1 121217	S2320B-97	Alkalinity, Total	
The Total Alkalinit	y is titrate	ed to a pH of 4.5 and reported as mg	CaCO3/L.		
2282785004	1	MW-34 121217	S2320B-97	Alkalinity, Total	
The Total Alkalinit	y is titrate	ed to a pH of 4.5 and reported as mg	CaCO3/L.		
2282785005	1	MW-35 121217	S2320B-97	Alkalinity, Total	
The Total Alkalinit	y is titrate	ed to a pH of 4.5 and reported as mg	CaCO3/L.		
2282785006	1	MW-24 121217	S2320B-97	Alkalinity, Total	
The Total Alkalinit	v is titrate	ed to a pH of 4.5 and reported as mg	CaCO3/I	•	

AECOM - Latham, NY ALS-Middletown Case Narrative ANL-005 (2282785)

Sample Management

This report contains the results of the analysis of six (6) ground water samples collected on December 12, 2017. Analytical results and quality control information are summarized in this data package.

Qualifier Symbol Definitions:

- U = Qualifier indicates that the analyte was not detected above the LOD.
- J = Qualifier indicates that the analyte value is between the DL and the LOQ.
- B = Qualifier indicates that the analyte was detected in the blank.
- E = Qualifier indicates that the analyte result exceeds the calibration range.
- P = Qualifier indicates that the RPD between the two analytical columns is > 40%.
- NSC = Qualifier indicates that spike recoveries were not calculated based on the spiking concentration.

Result Symbol Definitions:

- DL = The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence.
- LOD = The smallest analyte concentration that must be present in a sample in order to be detected at a high level of confidence.
- LOQ = The lowest concentration that produces a quantitative result within specified limits of precision or bias.

Manual Integration Symbol Definitions

- I = Peak was not integrated properly by chromatographic software. This may be due to baseline irregularities resulting from sample matrix, elevated baseline, or incorrect integration by software on a sample. Integration was adjusted by operator to ensure proper quantitation.
- H = The incorrect peak was identified or the chromatographic software did not identify an analyte peak. Operator manually identified the correct peak as the appropriate target analyte. This flag is automatically assigned by the Target software.
- SP = Peak was erroneously split. The operator manually integrated the peak to include all the area of the analyte peak to ensure proper quantitation.
- MP = Two peaks were erroneously merged. This may include two discrete peaks separated by a distinguishable valley or a larger peak with a clearly identifiable shoulder. Operator manually split peaks.
- AB = Integration of group of adjacent peaks did not follow baseline. Operator manually assigned integration to follow baseline.
- NP = Negative spike in the baseline resulted in overstating area of analyte peaks.

 Analyte peaks were re-assigned.
- AC = Integration of aggregate or multi-component analyte to include area off all components of the analyte (i.e., toxaphene).

Sample Receipt

Samples arrived at ALS via courier on December 13, 2017. Upon receipt, the samples were inspected and compared to the Chain of Custody. Sample temperature was documented on the enclosed Chain of Custody. Samples were received intact and properly preserved, unless noted on the enclosed Certificate of Analysis and/or Chain of Custody.

Manual Integrations

If manual integrations were performed they are indicated on the raw data quantification files for each method.

Volatile Organics by SW-846 Method 8260

Sample Handling. Six (6) water samples were analyzed by SW-846 Method 8260 for volatile organic compounds. The extraction and analysis were performed within holding time.

Initial Calibrations. Initial calibrations were properly analyzed and met method criteria for all target analytes. **Note:** The batch LCS also serves as a second source (ICV).

Continuing Calibration Verification. Samples were analyzed immediately following the initial calibration.

Blanks. Target analytes were not detected in the blank.

Surrogates. All surrogates were recovered within control limits.

Laboratory control samples. Target analytes were recovered within control limits,

Matrix and Matrix Spike samples. Target analytes were recovered within control limits,

Internal Standards. All internal standard results met method criteria.

Light Hydrocarbon Gases by RSK-175

Sample Handling. Five (5) water samples were submitted for the analysis of light hydrocarbon gases by Method RSK-175. The samples were analyzed within the method specified holding time of fourteen days.

Calibrations. The initial calibrations met method criteria for all target analytes.

Calibration verification. Prior to the analysis of samples in this group, the initial calibrations were successfully verified by the analysis of calibration verification standards. The samples were then successfully bracketed with alternating calibration verification standards (CCV) throughout the analysis.

Continuing Calibration. A continuing calibration standard were properly analyzed and met method criteria for all target analytes.

Blanks. Target analytes were not detected in the method blank; except as follows:

Methane was detected at 0.15] μg/L.

Duplicate Samples. A duplicate sample, identified as 2662304, from project sample MW-35-121217 (2282785005). Target analytes were detected as follows:

 Methane was detected at 7.9 μg/L in the sample and at 7.1 μg/L in the duplicate sample. The %RPD is 10.6%.

Anions by EPA 300.0

Sample handling. Five (5) aqueous samples were analyzed for chloride, nitrate, and sulfate by EPA Method 300.0. The samples were analyzed within the method recommended holding time for each analyte.

Calibration. Initial calibrations, identified as Method A (high range) and Method L (low range), were properly established. Initial and continuing calibration verification standards were recovered within the QC limits.

Blanks. Initial and continuing blanks were analyzed with the samples. Neither nitrate nor sulfate were detected above the reporting limits in the blanks.

Laboratory Control Samples. Laboratory control samples identified as 2660596 and SSL were analyzed initially and every 20 samples. Recoveries were within the QC limits.

Spikes. A matrix spike and spike duplicate identified as 2660598 and 2660599 were performed on sample 2282785005 (MW-35 121217). Recoveries were within QC limits except for nitrate in the matrix spike.

Total Alkalinity by SM 2320B

Sample handling. Five (5) aqueous samples were analyzed for total alkalinity by Standard Method 2320B. The samples were analyzed within the 14-day holding time established for the method.

Blanks. Method blanks were analyzed with the samples. Total alkalinity was not detected above the reporting limit in the blanks.

Calibration. The autotitrator was pH calibrated on the day of analysis. Total alkalinity and pH standards were analyzed initially and throughout the analysis. The standards were recovered within the alkalinity QC limits of 90-110% and the pH QC limits of +/-0.05 pH units.

Duplicate. A duplicate analysis identified as 2660514 was performed on sample 2282785005 (MW-35 121217). The relative percent difference between the results was within the QC limit of 20%.

Total Organic Carbon by SM 5310B

Sample handling. Five (5) aqueous samples were analyzed for total organic carbon by Standard Method 5310B. The samples were analyzed within the 28-day holding time established for the method.

Calibration. Initial calibrations were properly established on the days of analysis. Initial and continuing calibration standards were analyzed for verification, and recoveries were all within the QC limits.

Blanks. Method blanks were analyzed with the samples. Total organic carbon was not detected above the reporting limit in the blanks.

Spikes. Matrix spike and matrix spike duplicate analyses were performed on sample 2282785005 (MW-35 121217). The spike recoveries and the relative percent difference between the spikes were all within the QC limits.

Data File: 317121978.D

Report Date: 20-Dec-2017 10:40

ALS Environmental Services

RECOVERY REPORT

Client Name:

Sample Matrix: LIQUID

Lab Smp Id: 1801

Level: LOW

Data Type: MS DATA
SpikeList File: DODENDCCV.spk

Client SDG: 3171219A.b

Fraction: VOA

Operator: CJG SampleType:

Quant Type: ISTD

Sublist File: DODall.sub
Method File: \\ALMDTWS014\TargetData\Chem2\ms03.i\03_2017\3171219A.b\3-8260b Misc Info:

Y .				
	CONC	CONC	8	
SPIKE COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
	ug/L	ug/L		
	3,] - 3, -		
1 Dichlorodifluorome	50.0000	42.2433	84.49	50-150
2 Chloromethane	50.0000	49.4331	98.87	50-150
3 Vinyl Chloride	50.0000	46.0943	92.19	50-150
4 Bromomethane	50.0000	43.9004	87.80	50-150
5 Chloroethane	50.0000	45.5805	91.16	50-150
6 Pentane	50.0000	27.3540		
7 Trichlorofluoromet	50.0000		54.71	50-150
8 Dichlorofluorometh		46.1966	92.39	50-150
	50.0000	49.4310	98.86	50-150
9 Ethyl Ether	50.0000	53.4592	106.92	50-150
10 1,1-Dichloroethene	50.0000	44.3709	88.74	50-150
11 Freon 113	50.0000	36.2491	72.50	50-150
12 Carbon Disulfide	50.0000	46.0363	92.07	50-150
13 Iodomethane	50.0000	52.3140	104.63	50-150
14 Acrolein	500.000	496.332	99.27	50-150
15 Isopropyl Alcohol	250.000	208.522	83.41	50-150
16 3-Chloro-1-propene	50.0000	48.8364	97.67	50-150
17 Methylene Chloride	50.0000	50.6184	101.24	50-150
18 Acetone	250.000	270.119	108.05	50-150
19 Methyl acetate	50.0000	57.3658	114.73	50-150
20 trans-1,2-Dichloro	50.0000	48.9173	97.83	50-150
21 Hexane	50.0000	34.9504	69.90	50-150
22 Methyl t-Butyl Eth	50.0000	54.2665	108.53	50-150
23 tert Butyl Alcoh	250.000	238.523	95.41	50-150
24 Acetonitrile	250.000	264.013	105.61	50-150
25 Diisopropyl ether	50.0000	55.0933	110.19	50-150
26 Chloroprene	50.0000			
27 1,1-Dichloroethane	50.0000	47.7234	95.45	50-150
28 Acrylonitrile		50.4390	100.88	50-150
	250.000	264.773	105.91	50-150
30 n-Propanol	500.000	499.050	99.81	50-150
29 Ethyl tert-butyl e	50.0000	45.3621	90.72	50-150
31 Vinyl acetate	50.0000	50.7096	101.42	50-150
32 cis-1,2-Dichloroet	50.0000	50.5172	101.03	50-150
33 2,2-Dichloropropan	50.0000	33.9661	67.93	50-150
34 Bromochloromethane	50.0000	52.2245	104.45	50-150
35 Cyclohexane	50.0000	32.8982	65.80	50-150
36 Chloroform	50.0000	49.2647	98.53	50-150
37 Ethyl acetate	50.0000	50.7427	101.49	50-150
38 Methyl acrylate	50.0000	48.5170	97.03	50-150
39 Carbon Tetrachlori	50.0000	38.8931	77.79	50-150
40 Tetrahydrofuran	250.000	243.679	97.47	50-150
*]	
				·

Data File: 317121978.D Report Date: 20-Dec-2017 10:40

	CONC	CONC	ફ	
SPIKE COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
SFIRE COMPOUND	ug/L	ug/L	KECOVERED	TITMITIS
	49/1	ug/ ii		
42 1,1,1-Trichloroeth	50.0000	48.5004	97.00	50-150
43 2-Butanone	250.000	266.521	106.61	50-150
44 1,1-Dichloropropen	50.0000	43.5747	87.15	50-150
45 1-Chlorobutane	50.0000	43.5668	87.13	50-150
46 Heptane	50.0000	24.3789	48.76*	
47 Benzene	50.0000	49.3022	98.60	50-150
48 Propionitrile	250.000	268.827	107.53	50-150
49 Methacrylonitrile	50.0000	51.4816	102.96	50-150
50 tert-amyl methyl E	50.0000	51.2908	102.58	50-150
54 Isobutyl alcohol	500.000	510.132	102.03	50-150
52 1,2-Dichloroethane	50.0000	51.1892	102.38	50-150
53 tert-Amyl Alcohol	250.000	240.033	96.01	50-150
56 Diisobutylene	50.0000	29.4629	58.93	50-150
57 Trichloroethene	50.0000	43.1660	86.33	50-150
58 Methyl cyclohexane	50.0000	27.7172	55.43	50-150
59 tert-Amyl Ethyleth	50.0000	50.7058	101.41	50-150
60 Dibromomethane	50.0000	51.8133	103.63	50-150
61 1,2-Dichloropropan	50.0000	52.0511	104.10	50-150
62 Bromodichlorometha	50.0000	50.4779	100.96	50-150
63 Methyl methacrylat	50.0000	49.4351	98.87	50-150
64 1,4-Dioxane	1250.00	1090.36	87.23	50-150
65 2-Chloroethylvinyl	50.0000	49.0011	98.00	50-150
66 cis-1,3-Dichloropr 67 Octane	50.0000	48.8552	97.71	50-150
69 Toluene	50.0000 50.0000	24.5748 47.9051	49.15* 95.81	50-150 50-150
70 Chloroacetonitrile	250.000	233.283	93.31	50-150
71 2-Nitropropane	250.000	239.425	95.77	50-150
72 1,1-Dichloro-2-pro	250.000	241.835	96.73	50-150
73 4-Methyl-2-Pentano	250.000	246.956	98.78	50-150
74 Tetrachloroethene	50.0000	41.2081	82.42	50-150
75 trans-1,3-Dichloro	50.0000	48.7280	97.46	50-150
76 Ethyl methacrylate	50.0000	50.3604	100.72	50-150
77 1,1,2-Trichloroeth	50.0000	52.4163	104.83	50-150
78 Chlorodibromometha	50.0000	49.1345	98.27	50-150
80 1,2-Dibromoethane	50.0000	55.1101	110.22	50-150
81 2-Hexanone	250.000	246.823	98.73	50-150
82 1-Chlorohexane	50.0000	31.6355	63.27	50-150
79 1,3-Dichloropropan	50.0000	51.8529	103.71	50-150
84 Chlorobenzene	50.0000	46.1277	92.26	50-150
85 Ethylbenzene	50.0000	46.0575	92.11	50-150
86 1,1,1,2-Tetrachlor	50.0000	53.4163	106.83	50-150
87 mp-Xylene	100.000	87.7756	87.78	50-150
88 o-Xylene	50.0000	47.8348	95.67	50-150
89 Styrene 90 Bromoform	50.0000	53.0937	106.19	50-150
91 Isopropylbenzene	50.0000 50.0000	46.4395 41.1286	92.88 82.26	50-150 50-150
93 Bromobenzene	50.0000	48.2910	96.58	50-150
94 n-Propylbenzene	50.0000	42.0100	84.02	50-150
95 1,1,2,2-Tetrachlor	50.0000	52.1525	104.31	50-150
96 o-Chlorotoluene	50.0000	45.8725	91.75	50-150
M 100 1,2-Dichloroethene	100.000	99.4345	99.43	50-150
97 1,3,5-Trimethylben	50.0000	44.5150	89.03	50-150
98 1,2,3-Trichloropro	50.0000	52.6702	105.34	50-150
99 trans-1,4-Dichloro	50.0000	42.5204	85.04	50-150
				· — —

Data File: 317121978.D Report Date: 20-Dec-2017 10:40

	CONC	CONC	%	
SPIKE COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
Y.	ug/L	ug/L		
101 p-Chlorotoluene	50.0000	47.3897	94.78	50-150
102 tert-Butylbenzene	50.0000	40.6646	81.33	50-150
103 Pentachloroethane	50.0000	48.2539	96.51	50-150
104 1,2,4-Trimethylben	50.0000	44.9718	89.94	50-150
105 sec-Butylbenzene	50.0000	38.5830	77.17	50-150
106 p-Isopropyltoluene	50.0000	42.2677	84.54	50-150
107 1,3-Dichlorobenzen	50.0000	47.7106	95.42	50-150
109 1,4-Dichlorobenzen	50.0000	44.3656	88.73	50-150
110 Benzyl Chloride	50.0000	35.3966	70.79	50-150
111 n-Butylbenzene	50.0000	40.0834	80.17	50-150
112 Hexachloroethane	50.0000	41.0967	82.19	50-150
113 1,2-Dichlorobenzen	50.0000	46.4158	92.83	50-150
114 1,2-Dibromo-3-chlo	50.0000	47.4650	94.93	50-150
115 Nitrobenzene	500.000	287.398	57.48	50-150
116 Hexachlorobutadien	50.0000	38.4480	76.90	50-150
117 1,2,4-Trichloroben	50.0000	45.5177	91.04	50-150
118 Naphthalene	50.0000	44.8799	89.76	50-150
M 120 1,3-Dichloropropen	100.000	97.5833	97.58	50-150
119 1,2,3-Trichloroben	50.0000	46.9739	93.95	50-150
M 121 TOTAL XYLENES	150.000	135.610	90.41	50-150

SURROGATE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	% RECOVERED	LIMITS
\$ 41 Dibromofluorometha \$ 51 1,2-Dichloroethane \$ 68 Toluene-d8 \$ 92 4-Bromofluorobenze	50.0000 50.0000 50.0000 50.0000	51.7975 49.9218 50.6077 51.3312	103.60 99.84 101.22 102.66	80-119 81-118 89-112 85-114

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

						_		SAMP	LE NO.	
								26623	303 (MB)	
Lab Name:	ALS Globa	1		Si .	c	ontract:		SVGC		
Lab Code:	VOA	Case No	···			SAS No	··· _		SDG No.:	ANL-005
Matrix (so	il/water):	W.	ATER		L	ab Sample	ID:	2662303		
Sample wt/	vol: 0.30	(g/mL)	ML		L	ab File II	D:	MLJA003.I)	_
Level (low	/med):	Low			D	ate Receiv	ved:	12/18/17	,	
% Moisture	: not dec.	100.0			D	ate Analyz	-	12/19/17		
GC Column:	PORPAK Q	ID:	2.0	(mm)	D	ilution Fa	actor:	1.0	0	
Soil Extra	ct Volume:		(uL)		S	oil Aliquo	ot Volu	me:		(uL)
					CONCENT	RATION UN	ITS:			
_	CAS No.		Compou	nd	(ug/	L or ug/Kg	g) UG/:	L	Q	
	74-82-8		METHANI	3				0.15	J	
L	74-85-1		ETHENE					0.75	U	
	74-84-0		ETHANE					0.50	U	

Form 4B Inorganic Blank Summary

Analysis Method: EPA 300.0

Instrument: IC-5

SDG No.: ANLO05

Sample ID	Analyte	Type	Matrix	Analyzed	Result	Q	Units
		l ''		' ' '		(1)	
BLANK	Chloride	ICB	QC-Water	11/30/2017 02:53	0.24	J	mg/L
BLANK	Nitrate-N	ICB	QC-Water	11/30/2017 02:53	n.a.	j	mg/L
BLANK	Sulfate	ICB	QC-Water	11/30/2017 02:53	n.a.	J	mg/L
3							
2660594	Chloride	MB	QC-Water	12/14/2017 03:30	0.15	J	mg/L
2660594	Nitrate-N	МВ	QC-Water	12/14/2017 03:30	0.030	U	mg/L
2660594	Sulfate	MB	QC-Water	12/14/2017 03:30	0.25	U	mg/L
3550501	CII II	140	00.111	12/14/2017			
2660601	Chloride	MB	QC-Water	12/14/2017 07:10	0.2	IJ	mg/L
2660601 2660601	Nitrate-N	MB	QC-Water	12/14/2017 07:10	0.030	U	mg/L
2000001	Sulfate	MB	QC-Water	12/14/2017 07:10	0.25	U	mg/L
2660603	Chloride	MD	OC Water	12/14/2017 10:04	0.10	-	
2660603	Nitrate-N	MB MB	QC-Water QC-Water	12/14/2017 10:04	0.18		mg/L
2660603	Sulfate	MB	QC-Water QC-Water	12/14/2017 10:04 12/14/2017 10:04	0.030 0.25	U	mg/L
2000003	Sullate	IVID	QC-water	12/14/2017 10:04	0.25	U	mg/L
			-			\vdash	
			-		10	Н	
						Н	
						╂─┤	
						Н	
			 				
						Н	
			 	W.		Н	
	(6)					Н	
			1			Н	
		le .				Н	
						Н	
			 			Н	
						П	
	_ =====================================				-	Н	
						М	
						П	
				÷.		П	
						П	_
				a l		\Box	
						П	
						П	
						П	

1	١	The	follo	wina	guali	ifiare	310	usad	
ш		i ne	топо	wina	ппап	mers	are	usen	

U: The analyte concentration is less than the reporting limit listed J: The analyte concentration is less than the reporting limit but greater than the method detection limit

C	_	~	m	~	-	+-	٠

MW-35 121217

Form 3A Matrix Spike and Matrix Spike Duplicate Recovery Summary

Analysis Method: EPA 300.0
Matrix (soil/water): Ground Water

SDG No.: ANLO05
Units: mg/L
Lab Sample ID: 2282785005
Lab MS Sample ID: 2660598
Lab MSD Sample ID: 2660599

Analyte	Spike Added	Sample Concentration	MS Concentration	MS Recovery (%)	(1)	Acceptable Limits (%)
Chloride	40	22.2	62.1	99.8		87 - 111
Nitrate-N	5	0.44	6.1	113	*	88 - 111
Sulfate	40	10.2	55.0	112		87 - 112
						
					<u> </u>	
				-	<u> </u>	

Analyte	Spike Added	MSD Concentration	MSD Recovery (%)	(1)	Acceptable Limits (%)	RPD (%)	(1)	Acc. Lim. (%)
Chloride	40	60.2	95		87 - 111	3.14		15
Nitrate-N	5	5.9	109		88 - 111	3.01	П	15
Sulfate	40	53.3	108		87 - 112	3.1		15
				1				
<u> </u>								
				*				
	_						Ш	
			1				Ш	
					15			

(1)	The	fol	lowing	qualifier	S	are	used:
-----	-----	-----	--------	-----------	---	-----	-------

* : Values outside of acceptable limits

D : Spikes diluted out

Comments:					
			_	 _	
-	•	 			

Analysis Method: S2320B-97

Instrument: AUTOT

SDG No.: ANLO05

Sample ID	Analyte	Туре	Matrix	Analyzed	Result	Q (1)	Ünits
2660509	Alkalinity, Total	MB	QC-Water	12/14/2017 22:53	2	J	mg/L
2660517	Alkalinity, Total	МВ	QC-Water	12/15/2017 01:37	2	J	mg/L
2660521	Alkalinity, Total	MB	QC-Water	12/15/2017 03:29	2	J	mg/L
				LOD= 5 mg/L Notus	col to qualif	j d	eta.
				,			
					·		
						┝	
	-	,					

17	\ TL-	fall	qualifiers	
	1 1 1 1 1 1	TOUGHING	HILLITE	STO LICOU.
	, , , , , ,	IOHOWING	uuulliela	are useu.

U: The analyte concentration is less than the reporting limit listed J: The analyte concentration is less than the reporting limit but greater

than the method detection limit

_					
	٦m	m	ρı	nts	:

Analysis Method: S5310B-00

Instrument: TOC

SDG No.: ANLO05

Sample ID	Analyte	Type	Matrix	Analyzed	Result	Q (1)	Units
2662125	Total Organic Carbon (TOC)	MB	QC-Water	12/18/2017 10:42	0.2	J	mg/L
2662782	Total Organic Carbon (TOC)	MB	QC-Water	12/19/2017 15:44	0.2	H	mg/L
							IIIg/L
			<u> </u>	MOL = 0.18 mg/L LOS No used to qualify a	= 0.50 ing/L	Щ	
			<u> </u>	No west to qualify o	lata.	Н	
		-				Н	
						Н	
							
						\vdash	
	 					Щ	
						\vdash	
						-	
						\dashv	
		,				\dashv	
						\dashv	
						\neg	
		· · · · · · · · · · · · · · · · · · ·	7			\dashv	-
	 					\dashv	
						\dashv	
						寸	
						\Box	
						-+	
						\dashv	

(1)	The	following	qualifiers	are	used
`''		101101111119	qualificia	aic	useu.

U: The analyte concentration is less than the reporting limit listed

J: The analyte concentration is less than the reporting limit but greater

than the method detection limit

_					
C_{Ω}	m	m	ρ	ni	۲c

34 Dogwood Lane - Middletown, PA 17057 - Phone: 717-944-5541 - Fax: 717-944-1430 - www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

SAMPLE SUMMARY

Workorder: 2282982 ANL006|60440641

Lab ID	Sample ID	Matrix	Date Collected	Date Received	Collected By
2282982001	MW-32-121317	Ground Water	12/13/2017 08:41	12/14/2017 09:55	Collected by Client
2282982002	MW-33-121317	Ground Water	12/13/2017 09:45	12/14/2017 09:55	Collected by Client
2282982003	MW-30-121317	Ground Water	12/13/2017 11:20	12/14/2017 09:55	Collected by Client
2282982004	MW-31-121317	Ground Water	12/13/2017 12:15	12/14/2017 09:55	Collected by Client

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

64-16-83-10-25-15	* 2 2 8 2 9 8 2 *	N-track	Cooler Term: 50			Notes:		и		amulov nočisvo: esčaslo\	co tagmo alignisa to sang tagm Asosapete	Analysis		* * *		Statutul Section	ryd elass elsed? () b bavisc	insen iga iga iga iga iga iga iga iga iga iga	d b)	-	Standard Suns Sens Sensions ALS FIELD SERVICES		NJ-Reduced yes	E E	See Officer 1988 PA Retail Equipment from Entering Control of the Co. O.	SERVENCIOND	
Courier Trecking &	VOW VOW VAC D. PL	3	77.	┥.	AMACIOEOMICINOD NEG	4			54/	25'1 25'1 25'1	2L 2L	Enter Number of Containers Per	x3 x2 x2 x	22 xxxx	1×11×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1	22343	×				13	Janavi 2	Date Time Do	1300 m		33	
CHAIN OF CUSTODY/ REQUEST FOR ANALYSIS ALL SHADED AREAS WUST BE COMPLETED BY THE CLIENTY		510 SE	2007 111 017	Preserviche				,	ALS Quote #:	ed By:		Sample Military 0 0 0	=		11120	1 4 1/21 A	1		\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	くった	_/N		Time Received By / Сойпрапу Nатв		3 00	88	
34 Dogwood Lane Middletown, PA 17057 P. 717-944-5541 F.717-944-1430		Phone:	,	AMERICAN BUND			#Od			id and surcharges. Approved By:	JAN. Saal Lace O Accomican	n COC Comments		T) , . NORES LEGICAL	/ NOTE:		() "James"	100		22/	Project Comments:		Date		12/12/14/00		
ALS.	Co. Name: AECON	Contact (Report 18)	Addrago	THE THE THE THE IST	Latham, Ny	- I MANAGEMENT TO THE PARTY OF	Bill to (referent then Report 25):		Project Name#: 6044 0614 \	TAT: Constitution of the supervision of surchanges to ALS approval and surchanges	Email? VY Claro. Sadta.	ple De	1 MW - 32 121317	2 MW-35 121317	3 MW-36 121317	4 MW-31 121317	5 rail Blank	9	1	8	SAMPLED BY (Please Pdnt);	Riss MECray	Relinguished By / Company Name	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	3 7 #		

The Total Alkalinity is titrated to a pH of 4.5 and reported as mg CaCO3/L.

34 Dogwood Lane = Middletown, PA 17057 = Phone: 717-944-5541 = Fax: 717-944-1430 = www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DOD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2282982 ANL006|60440641

				ERS

Lab ID Sample ID **Analytical Method** Analyte 2282982001 1 MW-32-121317 **RSK 175** Methane The QC sample type DUP for method RSK 175 was outside the control limits for the analyte Methane. The RPD was reported as 89.5 and the upper control limit is 20. 2282982001 MW-32-121317 **RSK 175** Ethane The QC sample type DUP for method RSK 175 was outside the control limits for the analyte Ethane. The RPD was reported as 94.1 and the upper control limit is 20. 2282982001 MW-32-121317 **RSK 175** Ethene The QC sample type DUP for method RSK 175 was outside the control limits for the analyte Ethene. The RPD was reported as 69 and the upper control limit is 20. 2282982001 MW-32-121317 S2320B-97 Alkalinity, Total The Total Alkalinity is titrated to a pH of 4.5 and reported as mg CaCO3/L. 2282982001 5 MW-32-121317 SW846 8260C Trichloroethene The QC sample type MS for method SW846 8260C was outside the control limits for the analyte Trichloroethene. The % Recovery was reported as 141 and the control limits were 79 to 123. MW-33-121317 2282982002 S2320B-97 1 Alkalinity, Total The Total Alkalinity is titrated to a pH of 4.5 and reported as mg CaCO3/L. 2282982003 MW-30-121317 S2320B-97 Alkalinity, Total The Total Alkalinity is titrated to a pH of 4.5 and reported as mg CaCO3/L. 2282982004 MW-31-121317 S2320B-97 Alkalinity, Total

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

AECOM - Latham, NY ALS-Middletown Case Narrative ANL-006 (2282982)

Sample Management

This report contains the results of the analysis of four (4) ground water samples collected on December 13, 2017. Analytical results and quality control information are summarized in this data package.

Qualifier Symbol Definitions:

U = Qualifier indicates that the analyte was not detected above the LOD.

J = Qualifier indicates that the analyte value is between the DL and the LOQ.

B = Qualifier indicates that the analyte was detected in the blank.

E = Qualifier indicates that the analyte result exceeds the calibration range.

P = Qualifier indicates that the RPD between the two analytical columns is > 40%.

NSC = Qualifier indicates that spike recoveries were not calculated based on the spiking concentration.

Result Symbol Definitions:

- DL = The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence.
- LOD = The smallest analyte concentration that must be present in a sample in order to be detected at a high level of confidence.
- LOQ = The lowest concentration that produces a quantitative result within specified limits of precision or bias.

Manual Integration Symbol Definitions

- I = Peak was not integrated properly by chromatographic software. This may be due to baseline irregularities resulting from sample matrix, elevated baseline, or incorrect integration by software on a sample. Integration was adjusted by operator to ensure proper quantitation.
- H = The incorrect peak was identified or the chromatographic software did not identify an analyte peak. Operator manually identified the correct peak as the appropriate target analyte. This flag is automatically assigned by the Target software.
- SP = Peak was erroneously split. The operator manually integrated the peak to include all the area of the analyte peak to ensure proper quantitation.
- MP = Two peaks were erroneously merged. This may include two discrete peaks separated by a distinguishable valley or a larger peak with a clearly identifiable shoulder. Operator manually split peaks.
- AB = Integration of group of adjacent peaks did not follow baseline. Operator manually assigned integration to follow baseline.
- NP = Negative spike in the baseline resulted in overstating area of analyte peaks.

 Analyte peaks were re-assigned.
- AC = Integration of aggregate or multi-component analyte to include area off all components of the analyte (i.e., toxaphene).

Sample Receipt

Samples arrived at ALS via courier on December 14, 2017. Upon receipt, the samples were inspected and compared to the Chain of Custody. Sample temperature was documented on the enclosed Chain of Custody. Samples were received intact and properly preserved, unless noted on the enclosed Certificate of Analysis and/or Chain of Custody.

Manual Integrations

If manual integrations were performed they are indicated on the raw data quantification files for each method.

Volatile Organics by SW-846 Method 8260

Sample Handling. Four (4) water samples were analyzed by SW-846 Method 8260 for volatile organic compounds. The extraction and analysis were performed within holding time.

Initial Calibrations. Initial calibrations were properly analyzed and met method criteria for all target analytes. **Note:** The batch LCS also serves as a second source (ICV).

Continuing Calibration Verification. Samples were analyzed immediately following the initial calibration.

Blanks. Target analytes were not detected in the blank.

Surrogates. All surrogates were recovered within control limits.

Laboratory control samples. Target analytes were recovered within control limits,

Matrix and Matrix Spike samples. Target analytes were recovered within control limits, except as follows:

In 2663540 MS, Trichloroethene was recovered above control limits.

Internal Standards. All internal standard results met method criteria.

Light Hydrocarbon Gases by RSK-175

Sample Handling. Four (4) water samples were submitted for the analysis of light hydrocarbon gases by Method RSK-175. The samples were analyzed within the method specified holding time of fourteen days.

Calibrations. The initial calibrations met method criteria for all target analytes.

Calibration verification. Prior to the analysis of samples in this group, the initial calibrations were successfully verified by the analysis of calibration verification standards. The samples were then successfully bracketed with alternating calibration verification standards (CCV) throughout the analysis.

Continuing Calibration. A continuing calibration standard were properly analyzed and met method criteria for all target analytes.

Blanks. Target analytes were not detected in the method blank; except as follows:

Methane was detected at 0.15J µg/L.

Duplicate Samples. A duplicate sample, identified as 2662305, from project sample MW-32-121317 (2282982001). Target analytes were detected as follows:

- Methane was detected at 233 μ g/L in the sample and at 611 μ g/L in the duplicate sample. The %RPD is 89%.
- Ethene was detected at 2.3J µg/L in the sample and at 4.6J µg/L in the duplicate sample. The %RPD is 66%.
- Ethane was detected at 5.6J µg/L in the sample and at 15.4J µg/L in the duplicate sample. The %RPD is 93%.

Anions by EPA 300.0

Sample handling. Four (4) aqueous samples were analyzed for chloride, nitrate, and sulfate by EPA Method 300.0. The samples were analyzed within the method recommended holding time for each analyte.

Calibration. Initial calibrations, identified as Method A (high range) and Method L (low range), were properly established. Initial and continuing calibration verification standards were recovered within the QC limits.

Blanks. Initial and continuing blanks were analyzed with the samples. Chloride, nitrate, and sulfate were not detected above the reporting limits in the blanks.

Laboratory Control Samples. Laboratory control samples identified as SSL and 2660661 were analyzed initially and every 20 samples. Recoveries were within the QC limits.

Spikes. A matrix spike and spike duplicate were not prepared on any samples in this deliverable group.

Total Alkalinity by SM 2320B

Sample handling. Four (4) aqueous samples were analyzed for total alkalinity by Standard Method 2320B. The samples were analyzed within the 14-day holding time established for the method.

Blanks. Method blanks were analyzed with the samples. Total alkalinity was not detected above the reporting limit in the blanks.

Calibration. The autotitrator was pH calibrated on the day of analysis. Total alkalinity and pH standards were analyzed initially and throughout the analysis. The standards were recovered within the alkalinity QC limits of 90-110% and the pH QC limits of +/-0.05 pH units.

Duplicate. A duplicate analysis was not performed on any samples within this deliverable group.

Spikes. A matrix spike and spike duplicate were not prepared on any samples in this deliverable group.

Total Organic Carbon by SM 5310B

Sample handling. Four (4) aqueous samples were analyzed for total organic carbon by Standard Method 5310B. The samples were analyzed within the 28-day holding time established for the method.

Calibration. Initial calibrations were properly established on the days of analysis. Initial and continuing calibration standards were analyzed for verification, and recoveries were all within the QC limits.

Blanks. Method blanks were analyzed with the samples. Total organic carbon was not detected above the reporting limit in the blanks.

Duplicate. A duplicate analysis was not performed on any samples within this deliverable group.

Spikes. A matrix spike and spike duplicate were not prepared on any samples in this deliverable group.

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	ALS Global	Contract: VOMS		
Lab Code:	VOA Case No.:	SAS No.:	SDG No.:	ANL-006
Matrix Spi	ke - Sample No:	MW-32-121317MS		

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	MS CONCENTRATION (ug/L)	MS % REC#	QC LIMIT REC
Carbon Tetrachloride	20	0	20.1	101	(72-136)
1,1-Dichloroethane	20	0	20.9	104	(77-125)
1,2-Dichloroethane	20	0	20.4	102	(73-128)
1,1-Dichloroethene	20	0	22.2	111	(71-131)
cis-1,2-Dichloroethene	20	0.68	21.3	103	(78-123)
trans-1,2-Dichloroethene	20	0.3	22.8	113	(75-124)
1,1,1,2-Tetrachloroethane	20	0	21.7	108	(78-124)
1,1,2,2-Tetrachloroethane	20	0	20.9	104	(71-121)
Tetrachloroethene	20	0	22.4	112	(74-129)
Toluene	20	0	21.0	105	(80-121)
1,1,1-Trichloroethane	20	0	23.0	115	(74-131)
1,1,2-Trichloroethane	20	0	21.1	105	(80-119)
Trichloroethene	20	120	148	141*	(79-123)
Vinyl Chloride	20	0	22.7	113	(58-137)

# Column * Values	to be used to	co flag recover C limits	ry and RPD va	lues with an	asterisk	
RPD: 0	out of 0	outside limits	3			
Spike Reco	overy: 1	out of 14	outside limi	ts		
Comments:	d					

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	ALS Global			Contract:	VOMS		
Lab Code:	VOA	Case No.:		SAS No.:		SDG No.:	ANL-006
Matrix Spi	ke - Sample No):	MW-32-121317	MSD			

	SPIKE	MSD	N	ISD		
	ADDED	CONCENTRATION	%	%	OC T	IMITS
COMPOUND	(ug/L)	(ug/L)	REC #	RPD #	RPD	REC
Carbon Tetrachloride	20	19.6	97.9	2.85	30	(72-136)
1,1-Dichloroethane	20	20.0	100	4.04	30	(77-125)
1,2-Dichloroethane	20	19.9	99.6	2.48	30	(73-128)
1,1-Dichloroethene	20	20.9	105	6.08	30	(71-131)
cis-1,2-Dichloroethene	20	20.0	96.8	5.93	30	(78-123)
trans-1,2-Dichloroethene	20	21.4	106	6.49	30	(75-124)
1,1,1,2-Tetrachloroethane	20	21.0	105	3.07	30	(78-124)
1,1,2,2-Tetrachloroethane	20	20.2	101	3.13	30	(71-121)
Tetrachloroethene	20	22.5	112	.24	30	(74-129)
Toluene	20	20.4	102	3.29	30	(80-121)
1,1,1-Trichloroethane	20	21.9	109	4.99	30	(74-131)
1,1,2-Trichloroethane	20	20.6	103	2.23	30	(80-119)
Trichloroethene	20	139	94.6	6.52	30	(79-123)
Vinyl Chloride	20	21.2	106	6.75	30	(58-137)

Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits
RPD:0 out of _14 outside limits
Spike Recovery: 0 out of 14 outside limits
Comments:

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

						SAMPLE NO.			
					_		2662303 (MB)		
Lab Name:	ALS Globa	1		11	Contract:	svg	С		
Lab Code:	VOA	Case No	··· _	<u> </u>	SAS No	· · ·	SDG No	.: ANL-00	06
Matrix (se	oil/water):	W.	ATER	_	Lab Sample	ID: 26623	03		
Sample wt	/vol: 0.30	(g/mL)	ML		Lab File I	D: MLJA0	03.D		
Level (lov	w/med):	Low			Date Recei	ved: 12/18	/17		
% Moisture	e: not dec.	100.0			Date Analy:				
GC Column	PORPAK Q	ID:	2.0	(mm)	Dilution Fa	actor:	1.0		
Soil Extra	act Volume:		(uL)		Soil Alique	ot Volume:		(uL)	
					CONCENTRATION UN	ITS:			
_	CAS No.		Compou	nd	(ug/L or ug/K		Q		
	74-82-8		METHANI	<u> </u>		0.15	J	7	
	74-85-1		ETHENE			0.75	Ū	1	
	74-84-0		ETHANE			0.50	U	7	

VOLATILE ORGANICS ANALYSIS DATA SHEET

MW-32-121317 (2282982001DUP) Lab Name: ALS Global Contract: SVGC Lab Code: VOA Case No.: SAS No.: SDG No.: ANL-006 Matrix (soil/water): WATER Lab Sample ID: 2662305 Sample wt/vol: 0.30 (g/mL) MLLab File ID: MLJA012.D Level (low/med): Low Date Received: 12/14/17 % Moisture: not dec. 100.0 Date Analyzed: 12/19/17 GC Column: PORPAK Q ID: 2.0 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: KPDS CAS No. Compound (ug/L or ug/Kg) UG/L Q 74-82-8 89.5 **METHANE** 233 611 74-85-1 ETHENE 94.1 2.3 4.6 74-84-0 **ETHANE** 5.6 15.4

SAMPLE NO.

Analysis Method: EPA 300.0

Instrument: IC-7

SDG No.: ANLO06

BLANK	Sample ID	Analyte	Type	Matrix	Amalumad	D 1		1 11 1
BLANK Chloride ICB QC-Water 12/05/2017 01:43 n.a. J mg/L BLANK Nitrate-N ICB QC-Water 12/05/2017 01:43 n.a. J mg/L BLANK Sulfate ICB QC-Water 12/05/2017 01:43 n.a. J mg/L 2660659 Chloride MB QC-Water 12/15/2017 03:30 0.25 U mg/L 2660659 Sulfate MB QC-Water 12/15/2017 03:30 0.25 U mg/L 2660899 Chloride MB QC-Water 12/15/2017 08:47 0.15 J 7 mg/L 2660899 Nitrate-N MB QC-Water 12/15/2017 08:47 0.030 U mg/L 2660899 Nitrate-N MB QC-Water 12/15/2017 08:47 0.030 U mg/L			Type	Matrix	Analyzed	Result	Q (1)	Units
BLANK Nitrate-N ICB QC-Water 12/05/2017 01:43 n.a. J mg/L BLANK Sulfate ICB QC-Water 12/05/2017 01:43 n.a. J mg/L 2660659 Chloride MB QC-Water 12/15/2017 03:30 0.25 U mg/L 2660659 Nitrate-N MB QC-Water 12/15/2017 03:30 0.030 U mg/L 2660899 Chloride MB QC-Water 12/15/2017 08:47 0.15 J >mg/L 2660899 Nitrate-N MB QC-Water 12/15/2017 08:47 0.030 U mg/L			ICB	QC-Water	12/05/2017 01:43	n.a.	_	
BLANK Sulfate ICB QC-Water 12/05/2017 01:43 n.a. J mg/L 2660659 Chloride MB QC-Water 12/15/2017 03:30 0.25 U mg/L 2660659 Nitrate-N MB QC-Water 12/15/2017 03:30 0.030 U mg/L 2660659 Sulfate MB QC-Water 12/15/2017 03:30 0.25 U mg/L 2660899 Chloride MB QC-Water 12/15/2017 08:47 0.15 J >mg/L 2660899 Nitrate-N MB QC-Water 12/15/2017 08:47 0.030 U mg/L			ICB	QC-Water	12/05/2017 01:43		_	
2660659 Chloride MB QC-Water 12/15/2017 03:30 0.25 U mg/L 2660659 Nitrate-N MB QC-Water 12/15/2017 03:30 0.030 U mg/L 2660659 Sulfate MB QC-Water 12/15/2017 03:30 0.25 U mg/L 2660899 Chloride MB QC-Water 12/15/2017 08:47 0.15 J > mg/L 2660899 Nitrate-N MB QC-Water 12/15/2017 08:47 0.030 U mg/L	BLANK	Sulfate	ICB	QC-Water	12/05/2017 01:43			
2660659 Nitrate-N MB QC-Water 12/15/2017 03:30 0.030 U mg/L 2660659 Sulfate MB QC-Water 12/15/2017 03:30 0.25 U mg/L 2660899 Chloride MB QC-Water 12/15/2017 08:47 0.15 J > mg/L 2660899 Nitrate-N MB QC-Water 12/15/2017 08:47 0.030 U mg/L							ŕ	9/ _
2660659 Nitrate-N MB QC-Water 12/15/2017 03:30 0.030 U mg/L 2660659 Sulfate MB QC-Water 12/15/2017 03:30 0.25 U mg/L 2660899 Chloride MB QC-Water 12/15/2017 08:47 0.15 J > mg/L 2660899 Nitrate-N MB QC-Water 12/15/2017 08:47 0.030 U mg/L			MB	QC-Water	12/15/2017 03:30	0.25	U	ma/l
2660659 Sulfate MB QC-Water 12/15/2017 03:30 0.25 U mg/L 2660899 Chloride MB QC-Water 12/15/2017 08:47 0.15 J > mg/L 2660899 Nitrate-N MB QC-Water 12/15/2017 08:47 0.030 U mg/L		Nitrate-N	MB	QC-Water	12/15/2017 03:30		_	
2660899 Chloride MB QC-Water 12/15/2017 08:47 0.15 J 7 mg/L 2660899 Nitrate-N MB QC-Water 12/15/2017 08:47 0.030 U mg/L	2660659	Sulfate	MB					
2660899 Nitrate-N MB QC-Water 12/15/2017 08:47 0.030 U mg/L								g/ _
2660899 Nitrate-N MB QC-Water 12/15/2017 08:47 0.030 U mg/L		Chloride	MB	QC-Water	12/15/2017 08:47	0.15		2 mg/i
3000000 0 10 10 10 10 10 10 10 10 10 10 1		Nitrate-N	MB			0.030	南	mg/L
	2660899	Sulfate	MB		12/15/2017 08:47			
							Ť	9/ 2
							_	
							_	
							_	
				y				
					8	_	_	
							\vdash	
					T T			
			V					
							\neg	
					l _{1.15}			
							\neg	
						363		
							\neg	
							\neg	
							7	
						Ш	\neg	
	í							

(1) The following qualifiers are used:

U: The analyte concentration is less than the reporting limit listed J: The analyte concentration is less than the reporting limit but greater than the method detection limit

_						
C_{C}	m	m	_	ni	١c	٠

Analysis Method: S2320B-97

Instrument: AUTOT

SDG No.: ANLOO6

Sample ID	Analyte	Туре	Matrix	Analyzed	Result	Q	Units
		1,750	I III WELLIA		Result	(E)	Units
2660509	Alkalinity, Total	MB	QC-Water	12/14/2017 22:53	2	J	mg/L
2660525	Alkalinity, Total	MD	OC Water	12/15/2017 05 57			
2000323	Alkalinity, Total	MB	QC-Water	12/15/2017 05:57	2	J	mg/L
2660529	Alkalinity, Total	MB	QC-Water	12/15/2017 07:53	2	\vdash	mg/L
				,	,		
				LOD = 5 mg/L Mat	used to a	wl	ly data.
				0	()		0
	•		<u> </u>			Н	
						Н	
						Н	
						Н	
					,	Н	
						П	
						Н	
						Н	
			7				
						Ш	
						Н	
						Н	
						Н	
						Ш	
						Ш	
	· · · · · · · · · · · · · · · · · · ·					$\vdash\vdash$	
						\vdash	
						\dashv	

11) The	following	qualifiers	are	used.
ш.	/ 1110	IUIIUVVIIIU	uuaiiiieis	arc	useu.

U: The analyte concentration is less than the reporting limit listed J: The analyte concentration is less than the reporting limit but greater than the method detection limit

\sim	^	m	m	Δ	n	te	

Analysis Method: S5310B-00

Instrument: TOC

SDG No.: ANLOO6

Sample ID	Analyte	Type	Matrix	Analyzed	Result	Q	Units
2662782	Total Organic Carbon (TOC)	MB	QC-Water	12/19/2017 15:44	0.2	(1) J	mg/L
						4	
				LOD8.5 myle	Not used	Ď	rally da
						Н	
				·		Н	
	 						
				· · ·		Н	
						\vdash	
						H	
					,	Н	
	 					\square	
						\Box	
						\dashv	
	 					\dashv	
						┥	-
	 						
						\dashv	
						コ	
						-	

(1)	The	following	qualifiers	are	used:
-----	-----	-----------	------------	-----	-------

U: The analyte	e concentration is	iless than the	e reporting l	imit listed
J: The analyte	concentration is	less than the	reporting li	mit but greater

than the method detection limit

Comments:

34 Dogwood Lane Middletown, PA 17057 Phone: 717-944-5541 Fax: 717-944-1430 www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

SAMPLE SUMMARY

Workorder: 2283331 ASN030|Scotia Navy Depot 60440

Lab ID	Sample ID	Matrix	Date Collected	Date Received	Collected By		
Lab ID	Sample ID	IVIALIIX	Date Collected	Date Received	Collected By		
2283331001	MW-28 121417	Ground Water	12/14/2017 09:25	12/15/2017 09:30	Collected by Client		
2283331002	MW-29 121417	Ground Water	12/14/2017 10:10	12/15/2017 09:30	Collected by Client		
2283331003	MW-15 121417	Ground Water	12/14/2017 11:01	12/15/2017 09:30	Collected by Client		
2283331004	DUP-2 121417	Ground Water	12/14/2017 00:00	12/15/2017 09:30	Collected by Client		
2283331005	TRIP BLANK	Ground Water	12/15/2017 09:30	12/15/2017 09:30	Collected by Client		

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairle · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 2283331 - 12/28/2017

34 Dogwood Lane - Middletown, PA 17057 - Phone: 717-944-5541 - Fax: 717-944-1430 - www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

PROJECT SUMMARY

Workorder: 2283331 ASN030|Scotia Navy Depot 60440

Sample Comments

Lab ID: 2283331001

Sample ID: MW-28 121417

Sample Type: SAMPLE

A positive residual chlorine result was detected in the preservation check for the volatile organics analysis of this sample. This may be due to the presence of residual chlorine or another oxidizing agent.

Lab ID: 2283331004

Sample ID: DUP-2 121417

Sample Type: SAMPLE

This sample was extracted for the RSK-175 analysis. The SOP states that the sample must have a pH < 2. The pH of this sample was > 2.

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax)

PAGE

ALS)

REMARKS/ ALTERNATE DESCRIPTION INVOICE INFORMATION © 2012 by ALS Group 8. Other RECEIVED BY Printed Name ANALYSIS REQUESTED (include Method Number and Container Present BILL TO: Oatle/Time Š E N. Data Vasidation Report with Raw Data REPORT REQUIREMENTS II. Results + QC Surrmaries (LCS, DUP, MS/MSD as required) III. Results + OC and Calibration Q4PP RELINOUISHED BY ζ X 次 I, Results Only Summarles Edge . Printed Name Date/Time 02:00 11-61-21 murana 00+1+11 11 TURNAROUND REQUIREMENTS RUSH (SURCHARGES APPLY) 小學五年 REQUESTED REPORT DATE STO Printed Name PRESERVATIVE Cooler Temp 80 S S NUMBER OF CONTAINERS 7 = Ship Carrier RELINGUISHED BY JOHN. Southerner O. GARCOM. SONS Therm ID: MATRIX Cooler # 30 Initials 7-1208 Detertine 12 Surphy Philed Name Couly TIME 925 110 00 SAMPLING z 023 U 06 41 840 12/14/10 Custody Seals Present? (if present) Seals Infact? 0 DATE Tracking #. 64709 Correct Preservation? Headspace/Votatiles? Cont in Good Cond? Correct Containers? COC/Lbls Complete Correct Samp Vol? Project Number Received on Ice? American RECEIVED BY Ź FOR OFFICE USE ONLY LABID Printed Name STATE WHERE SAMPLES WERE COLLECTED Distribution; White - Lab Copy, Yellow - Return to Originator Detlo/Time Scopa Navy Deat Soute Cree B.145K × 2200 121417 121417 121417 SPECIAL INSTRUCTIONS/COMMENTS 121417 MEGREDY CLIENT SAMPLE ID DECOM मेटाका रा 14 Kax RELINGUISHED BY AELON 513) 951 12/12/ . 29 MW-28 2002 MW- 15 TOPHY ક Printed Nary Oc. 5 TRIP Ž See CAPP Project Name Dotto/Time

34 Dogwood Lane - Middletown, PA 17057 - Phone: 717-944-5541 - Fax: 717-944-1430 - www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: DE ID 11 , MA PA0102 , MD 128 , VA 460157 , WV 343

ANALYTICAL RESULTS

Workorder: 2283331 ASN030|Scotia Navy Depot 60440

Lab ID	#	Sample ID	Analytical Method	Analyte
 2283331001	1	MW-28 121417	S2320B-97	Alkalinity, Total
The Total Alkalini	ty is titrat	ed to a pH of 4.5 and reported as	mg CaCO3/L.	
2283331002	1	MW-29 121417	S2320B-97	Alkalinity, Total
The Total Alkalini	ty is titrat	ed to a pH of 4.5 and reported as	mg CaCO3/L.	
2283331003	1	MW-15 121417	S2320B-97	Alkalinity, Total
The Total Alkalini	ty is titrat	ed to a pH of 4.5 and reported as	mg CaCO3/L.	
2283331004	1	DUP-2 121417	S2320B-97	Alkalinity, Total
The Total Alkalini	ty is titrat	ed to a pH of 4.5 and reported as	mg CaCO3/L.	

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

AECOM - Latham, NY ALS-Middletown Case Narrative ASN-030 (2283331)

Sample Management

This report contains the results of the analysis of five (5) ground water samples collected on December 14-15, 2017. Analytical results and quality control information are summarized in this data package.

Qualifier Symbol Definitions:

U = Qualifier indicates that the analyte was not detected above the LOD.

J = Qualifier indicates that the analyte value is between the DL and the LOQ.

B = Qualifier indicates that the analyte was detected in the blank.

E = Qualifier indicates that the analyte result exceeds the calibration range.

P = Qualifier indicates that the RPD between the two analytical columns is > 40%.

NSC = Qualifier indicates that spike recoveries were not calculated based on the spiking concentration.

Result Symbol Definitions:

- DL = The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence.
- LOD = The smallest analyte concentration that must be present in a sample in order to be detected at a high level of confidence.
- LOQ = The lowest concentration that produces a quantitative result within specified limits of precision or bias.

Manual Integration Symbol Definitions

- I = Peak was not integrated properly by chromatographic software. This may be due to baseline irregularities resulting from sample matrix, elevated baseline, or incorrect integration by software on a sample. Integration was adjusted by operator to ensure proper quantitation.
- H = The incorrect peak was identified or the chromatographic software did not identify an analyte peak. Operator manually identified the correct peak as the appropriate target analyte. This flag is automatically assigned by the Target software.
- SP = Peak was erroneously split. The operator manually integrated the peak to include all the area of the analyte peak to ensure proper quantitation.
- MP = Two peaks were erroneously merged. This may include two discrete peaks separated by a distinguishable valley or a larger peak with a clearly identifiable shoulder. Operator manually split peaks.
- AB = Integration of group of adjacent peaks did not follow baseline. Operator manually assigned integration to follow baseline.
- NP = Negative spike in the baseline resulted in overstating area of analyte peaks.

 Analyte peaks were re-assigned.
- AC = Integration of aggregate or multi-component analyte to include area off all components of the analyte (i.e., toxaphene).

Sample Receipt

Samples arrived at ALS via courier on December 15, 2017. Upon receipt, the samples were inspected and compared to the Chain of Custody. Sample temperature was documented on the enclosed Chain of Custody. Samples were received intact and properly preserved, unless noted on the enclosed Certificate of Analysis and/or Chain of Custody.

Manual Integrations

If manual integrations were performed they are indicated on the raw data quantification files for each method.

Volatile Organics by SW-846 Method 8260

Sample Handling. Five (5) water samples were analyzed by SW-846 Method 8260 for volatile organic compounds. All analyses were performed within the holding time.

Initial Calibrations. Initial calibrations were properly analyzed and met method criteria for all target analytes. **Note**: The batch LCS also serves as a second source (ICV).

Initial Calibration Verifications. Initial calibration verification samples were properly analyzed and met method criteria.

Continuing Calibration Verification. Continuing Calibration Verification samples were analyzed and met method criteria for all target analytes.

Blanks. Target analytes were not detected in the method blank.

Surrogates. Recoveries were within control limits

Laboratory control samples. Target analytes were recovered within control limits in the laboratory control samples.

Internal Standards. Internal standard results met method criteria

Light Hydrocarbon Gases by RSK-175

Sample Handling. Four (4) water samples were submitted for the analysis of light hydrocarbon gases by Method RSK-175. The samples were analyzed within the method specified holding time of fourteen days.

Calibrations. The initial calibrations met method criteria for all target analytes.

Calibration verification. Prior to the analysis of samples in this group, the initial calibrations were successfully verified by the analysis of calibration verification standards. The samples were then successfully bracketed with alternating calibration verification standards (CCV) throughout the analysis.

Continuing Calibration. A continuing calibration standard were properly analyzed and met method criteria for all target analytes.

Blanks. Target analytes were not detected in the method blank; except as follows:

Methane was detected at 0.15J μg/L.

Anions by EPA 300.0

Sample handling. Four (04) aqueous samples were analyzed for chloride, nitrate-N, and sulfate by EPA Method 300.0. The samples were analyzed within the method recommended holding time for each analyte.

Calibration. Initial calibrations, identified as Method A (high range) and Method L (low range), were properly established. All calibration verification standards were recovered within the QC limits.

Blanks. Initial and continuing blanks were analyzed with the samples. No analyte was detected above ½ the reporting limits in the blanks.

Laboratory Control Samples. Laboratory control samples identified as 2661315 and SSL were analyzed initially and every 20 samples. Recoveries were within the QC limits.

Duplicate. A duplicate analysis was not performed on any samples in this deliverable group.

Spikes. A matrix spike analysis was not performed on any samples in this deliverable group.

Total Alkalinity by SM 2320B

Sample handling. Four (04) aqueous samples were analyzed for total alkalinity by Standard Method 2320B. The samples were analyzed within the 14-day holding time established for the method.

Blanks. Method blanks were analyzed with the samples. Total alkalinity was not detected above ½ the reporting limit in the blanks.

Calibration. The standards were recovered within the alkalinity QC limits.

Duplicate. A duplicate analysis identified as 2661185 was performed on sample 2283331003 (MW-15 121417). The recovery was within the QC limit of 20%.

Spikes. A matrix spike analysis was not performed on any samples in this deliverable group.

Total Organic Carbon by SM 5310B

Sample handling. Four (04) aqueous samples were analyzed for total organic carbon by Standard Method 5310B. The samples were analyzed within the 28-day holding time established for the method.

Calibration. Initial calibrations were properly established on the days of analysis. Initial and continuing calibration standards were analyzed for verification, and recoveries were all within the QC limits.

Blanks. Method blanks were analyzed with the samples. Total organic carbon was not detected above ½ the reporting limit in the blanks.

Duplicate. A duplicate analysis was not performed on any samples in this deliverable group.

 $\emph{Spikes.}$ A matrix spike analysis was not performed on any samples in this deliverable group.

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

SAMPLE NO. 2662303 (MB) Lab Name: ALS Global Contract: SVGC Lab Code: VOA Case No.: SAS No.: SDG No.: ASN-030 Matrix (soil/water): WATER Lab Sample ID: 2662303 Sample wt/vol: 0.30 Lab File ID: (g/mL) ML MLJA003.D Level (low/med): Low Date Received: 12/18/17 % Moisture: not dec. 100.0 Date Analyzed: 12/19/17 GC Column: ID: 2.0 PORPAK Q (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: CAS No. Compound (ug/L or ug/Kg) UG/L Q 74-82-8 **METHANE** 0.15 J 74-85-1 U ETHENE 0.75 74-84-0 **ETHANE** 0.50 U

Analysis Method: EPA 300.0

Instrument: IC-7

SDG No.: ASN030

Sample ID	Analyte	Туре	Matrix	Analyzed	Result	Q (1)	Units
BLANK	Chloride	ICB	QC-Water	12/05/2017 01:43	n.a.	J	mg/L
BLANK	Nitrate-N	ICB	QC-Water	12/05/2017 01:43	n.a.	j	mg/L
BLANK	Sulfate	ICB	QC-Water	12/05/2017 01:43	n.a.	ij	mg/L
	Duriate		QC Water	12/03/2017 01.13	71.0.	H	mg/L
2661313	Chloride	MB	QC-Water	12/16/2017 03:33	0.25	U	mg/L
2661313	Nitrate-N	MB	QC-Water	12/16/2017 03:33	0.030	Ü	mg/L
2661313	Sulfate	MB	QC-Water	12/16/2017 03:33	0.25	Ü	mg/L
			QU WATER	12/10/2017 03:33	0.23	H	mg/ L
2661318	Chloride	MB	QC-Water	12/16/2017 10:14	0.15		mg/L
2661318	Nitrate-N	MB	QC-Water	12/16/2017 10:14	0.030	Ü	mg/L
2661318	Sulfate	MB	QC-Water	12/16/2017 10:14	0.25	Ü	mg/L
			Qu'illiance.	12/10/2017 10:11	0.23	Ŭ	mg/ L
						Н	
						\vdash	
						Н	
		-				Н	
						Н	
						Н	
						Н	
						Н	
-			-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Н	
						Н	
						\vdash	
						Н	
						Н	
						Н	
						Н	
						\vdash	
						\vdash	
						$\vdash\vdash$	
						Н	
						ш	
						ш	
						ш	
						\sqcup	
						Ш	
						Ш	
	-					Ш	
						Ш	
						Ш	

(1) Th	ıe	fol	lowing	qua	lifiers	are	used	ŀ

U: The analyte concentration is less than the reporting limit listed J: The analyte concentration is less than the reporting limit but greater than the method detection limit

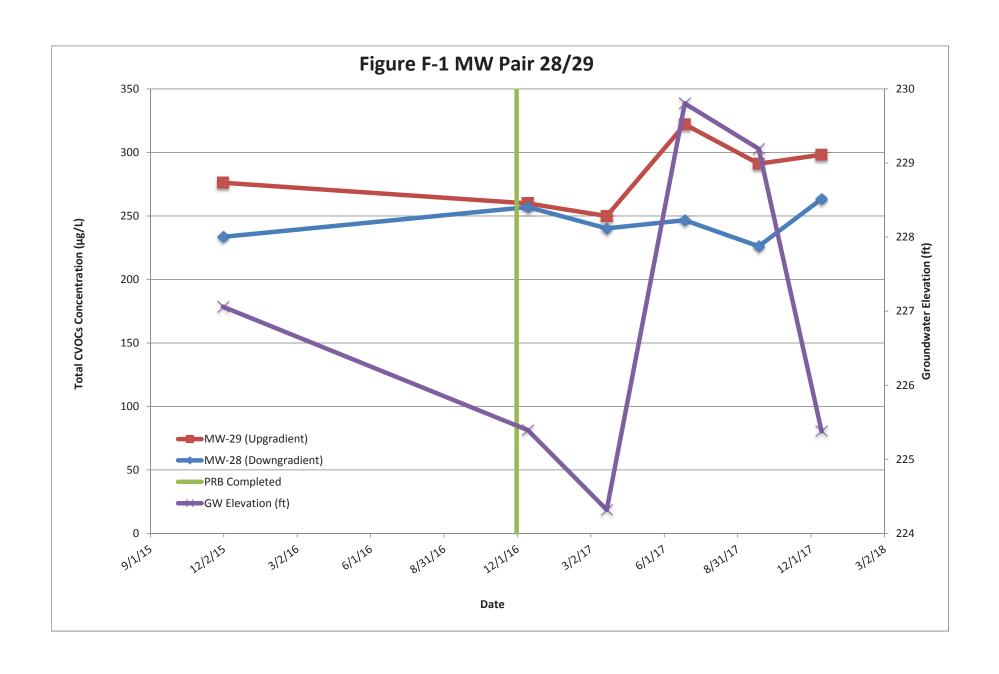
_						
Co	2	2	^	-4	-	٠
CU	111	ш	e	ш	7.2	

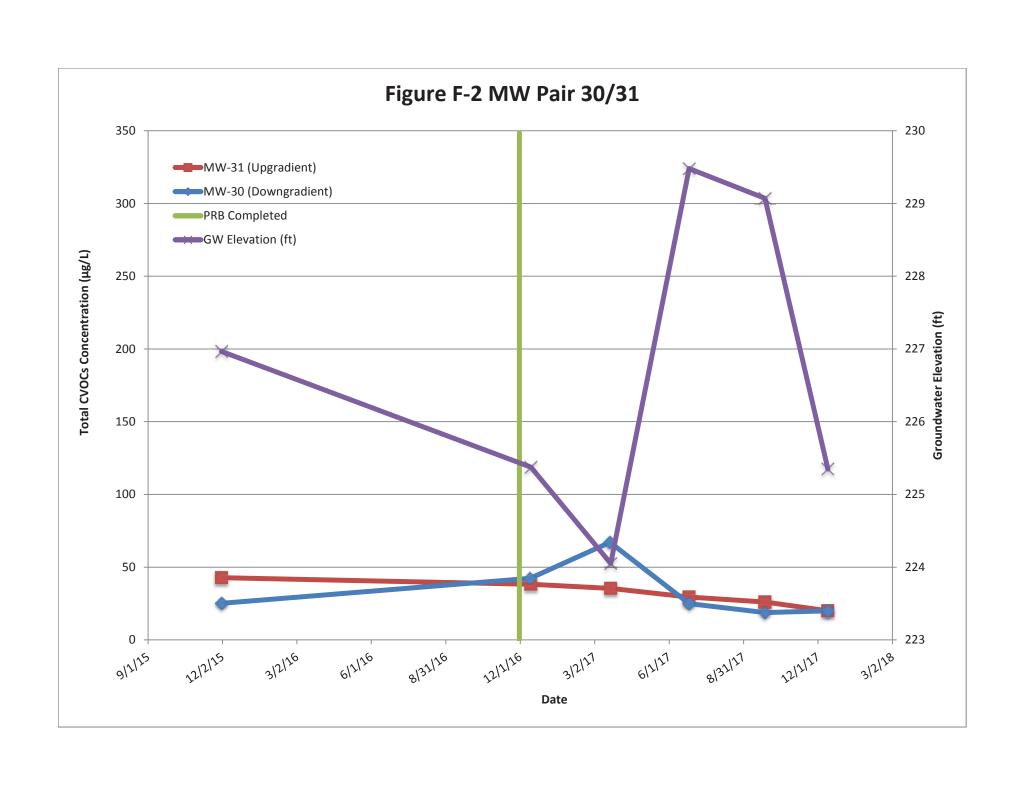
Analysis Method: S2320B-97

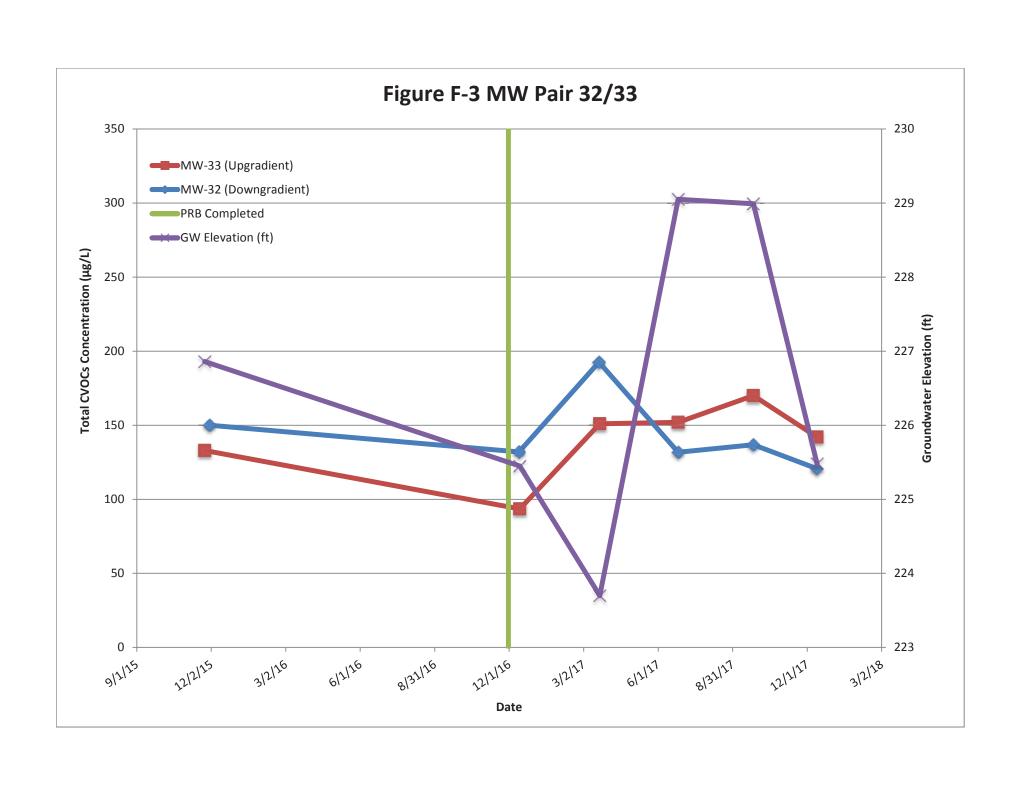
Instrument: AUTOT

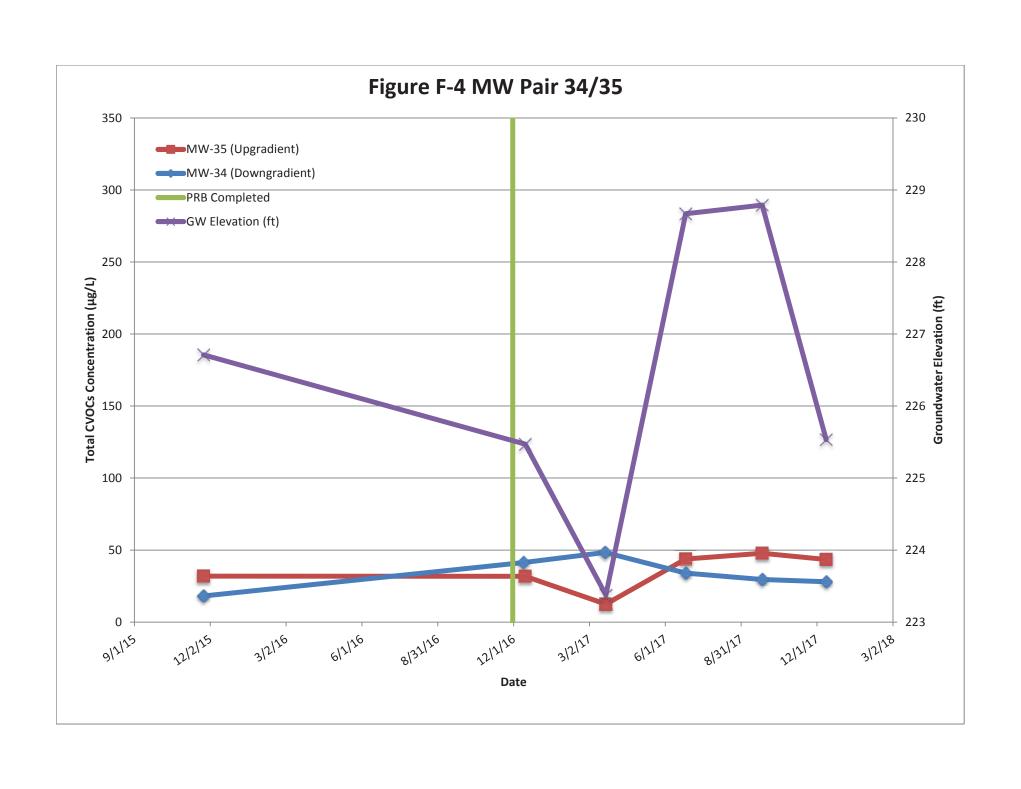
SDG No.: ASN030

Analyte	Type	Matrix	Analyzed	Result	Q (I)	Units
Alkalinity, Total	MB	QC-Water	12/16/2017 01:53	3	J	mg/L
Alkalinity, Total	MB	QC-Water	12/16/2017 15:54	2	J	mg/L
Alkalinity, Total	MB	QC-Water	12/16/2017 18:18	2	J	mg/L
Alkalinity, Total	MB	QC-Water	12/16/2017 20:15	2	J	mg/L
			Tustlan LOD of 5	mg/L. Not	MA	1 40
			guskipy data.	V		
					\vdash	
					F	
:						
					\vdash	
	-				F	
	Alkalinity, Total Alkalinity, Total Alkalinity, Total	Alkalinity, Total MB Alkalinity, Total MB Alkalinity, Total MB	Alkalinity, Total MB QC-Water Alkalinity, Total MB QC-Water Alkalinity, Total MB QC-Water	Alkalinity, Total MB QC-Water 12/16/2017 01:53 Alkalinity, Total MB QC-Water 12/16/2017 15:54 Alkalinity, Total MB QC-Water 12/16/2017 18:18 Alkalinity, Total MB QC-Water 12/16/2017 20:15	Alkalinity, Total MB QC-Water 12/16/2017 01:53 3 Alkalinity, Total MB QC-Water 12/16/2017 15:54 2 Alkalinity, Total MB QC-Water 12/16/2017 18:18 2 Alkalinity, Total MB QC-Water 12/16/2017 20:15 2	Alkalinity, Total MB QC-Water 12/16/2017 01:53 3 J Alkalinity, Total MB QC-Water 12/16/2017 15:54 2 J Alkalinity, Total MB QC-Water 12/16/2017 18:18 2 J Alkalinity, Total MB QC-Water 12/16/2017 20:15 2 J


(1) The following qualifiers are used:


U: The analyte concentration is less than the reporting limit listed


J: The analyte concentration is less than the reporting limit but greater than the method detection limit


Co	m	m	e	n	ts	:
----	---	---	---	---	----	---

