Site Remedial Investigation Report

nationalgrid

National Grid Schenectady (Broadway) Service Center Schenectady, New York

November 2005

Site Remedial Investigation Report

nationalgrid

National Grid Schenectady (Broadway) Service Center Schenectady, New York

November 2005

Section	1.	Intro	duction	1-1
		1.1	General	1-1
		1.2	Report Organization	1-1
Section	2.	Site	Background	2-1
		2.1	General	2-1
		2.1	2.1.1 Site Location and Setting	
			2.1.2 Historical Operations and Land Use	
			2.1.3 Physical Setting	
			2.1.3.1 Site Topography and Drainage	
			2.1.3.2 Regional Geology and Hydrogeology	
Section	3.	Pre-1	999 Investigation Activities	3-1
		3.1	General	3-1
		3.2	Preliminary Site Assessment/Interim Remedial Measure Study (1992)	
			3.2.1 Soil Gas Survey	
			3.2.2 Subsurface Soil Investigation	
			3.2.3 Groundwater Investigation	3-1
			3.2.4 Sediment Investigation	3-1
			3.2.5 Preliminary Site Assessment/Interim Remedial Measure Study Results	3-1
		3.3	Remedial Investigation (1994 to 1997)	3-1
			3.3.1 Surface Soil Investigation	3-1
			3.3.2 Subsurface Soil Investigation	3-1
			3.3.3 Surface Water Investigation	3-1
			3.3.4 Groundwater Investigation	3-1
			3.3.5 Sediment Investigation	3-1
			3.3.6 Human Health Risk Assessment and Fish and Wildlife Impact Analysis	3-1
			3.3.7 Remedial Investigation Results	3-1
Section	4.	NAP	and Groundwater Investigation Activities	4-1
		4.1	General	4-1
		4.2	NAPL Monitoring Activities and Results (June 2001 through December 2001)	4-1
			4.2.1 NAPL Monitoring Activities	4-1
			4.2.2 NAPL Monitoring Activities Results	4-1
		4.3	Additional NAPL Delineation Activities and Results (December 2001)	4-1
			4.3.1 Additional NAPL Delineation Activities	
			4.3.2 Additional NAPL Delineation Sampling Results	
		4.4	NAPL Monitoring and Groundwater Sampling Activities and Results (June 2002)	
			4.4.1 NAPL Monitoring and Groundwater Sampling Activities	
			4.4.2 NAPL Monitoring and Groundwater Sampling Results	4-1
Section	5.	Histo	prical Subsurface Structure Investigation	5-1
		5.1	General	5-1

		5.2	Historical Subsurface Structure Investigation	5-1
		5.3	Historical Subsurface Structure Investigation Results	5-1
Section	6.	Add	itional Subsurface Investigations	6-1
		6.1	General	6-1
		6.2	Preliminary Groundwater Screening Activities	
		6.3	Additional NAPL-Related Soil Boring Activities	
		6.4	Downgradient Monitoring Well Installation Activities	
		6.5	Silt and Clay Unit Additional Investigation Activities	
		6.6	Monitoring Well Abandonment/Replacement Activities	
		6.7	Monitoring Well Repair/Replacement and Redevelopment Activities	
		6.8	Groundwater Sampling Activities	6-1
		6.9	Additional Subsurface Investigation Results	6-1
Section	7.	Till I	nvestigation	7-1
		7.1	General	71
		7.2	Till Investigation Monitoring Well Installation	
		7.3	Geotechnical Testing of Till Unit	
		7.4	Barrier Wall/In-Situ Stabilization Bench-Scale Study Data Acquisition	
			7.4.1 Soil Sampling	
			7.4.2 Groundwater and Mix Water Sampling	
		7.5	Groundwater Model Data Acquisition	
			7.5.1 Hydraulic Conductivity Testing	
			7.5.2 Water Level Measurements	
			7.5.3 Schermerhorn Creek Sediment Sampling and Flow Rate Measurement	
		7.6	Monitoring Well Repair & Maintenance	
		7.7	Till Investigation Results	
			7.7.1 Till Geology7.7.2 Till Hydrogeology	
				/ - 1
Section	8.	Site	Characterization	8-1
		8.1	General	8-1
		8.2	Site Geology and Hydrogeology	
			8.2.1 Site Geology	
			8.2.2 Site Hydrogeology	
			8.2.3 Groundwater Occurrence and Flow	
		0.0	8.2.4 Vertical Hydraulic Gradients	
		8.3	NAPL and Soil Quality Evaluation	
			8.3.2 NAPL Delineation	
			8.3.2.1 Development of NAPL Distribution Visual Model	
			8.3.2.2 Northern Portion of the Site	
			8.3.2.3 Central Portion of the Site	
			8.3.2.4 Western Portion of the Site	
			8.3.3 Soil Quality	
			8.3.3.1 Surface Soil	8-1
			8.3.3.2 Subsurface Soil	
			8.3.4 Conceptual Model for NAPL Migration	
		8.4	Groundwater Quality	
			8.4.1 Shallow Hydrostratigraphic Zone Groundwater Monitoring Results	
			8.4.2 Intermediate Hydrostratigraphic Zone Groundwater Monitoring Results	8-1

8.4.3	Deep Hydrostratigraphic Zone Groundwater Monitoring Results	8-1
8.4.4	Till Groundwater Monitoring Results	8-1
	nt Quality	
	Iry	
	,	

Tables

- 1 Analytical Sample Summary
- 2 Monitoring Well Construction Information Summary
- 3 Visual Characterization of Impacted Soil
- 4 Groundwater Analytical Results for Detected VOCs
- 5 Groundwater Analytical Results for Detected SVOCs
- 6 Groundwater Analytical Results for Total Cyanide
- 7 LNAPL Monitoring Summary
- 8 DNAPL Monitoring Summary
- 9 Soil Analytical Results for BTEX
- 10 Soil Analytical Results for Detected PAHs
- 11 Soil Analytical Results for Total Cyanide
- 12 Hydraulic Conductivities Estimated from Specific Capacity Tests
- 13 Static Groundwater Level Measurements
- 14 Vertical Hydraulic Gradients
- 15 LNAPL Analytical Results

Figures

- 1 Site Location Map
- 2 Current and Historical MGP Features
- 3 Sample Location Map
- 4a Shallow Groundwater Sampling Results BTEX and Total PAHs (ppb)
- 4b Intermediate Groundwater Sampling Results BTEX and Total PAHs (ppb)
- 5 Geophysical Survey Investigation Map
- 6 Revised Historical Site Features Location Map
- 7 Water Table Elevation Contour Map May 2005
- 8 Top of Till Contour Map
- 9 Geologic Cross Section Location Map
- 10 Generalized Geologic Cross Section A A'
- 11 Generalized Geologic Cross Section B B'
- 12a Modeled Distribution of NAPL and PAHs > 500 ppm in Soil
- 12b Combined Modeled Distribution of NAPL and PAHs > 500 ppm in Soil
- 13 Extent of NAPL-Impacted Soils
- 14 Extent of NAPL-Impacted Soil and Soil Containing PAHs > 500 ppm
- 15 Areas of Potential Sediment Removal

Appendices

- A Soil Boring Logs
- B Monitoring Well Construction Logs
- C Groundwater Sampling Logs
- D Ground-Penetrating Radar and Electromagnetic Survey Results
- E Offsite Groundwater Memorandum
- F MVS Model Animation
- G UST Removal Memorandum to File

1. Introduction

1.1 General

This Site Remedial Investigation Report (SRI Report) presents a summary of investigation activities conducted since 1999 at the National Grid Schenectady (Broadway) former manufactured gas plant (MGP) property (the property) located in Schenectady, New York. The overall objective of the investigation activities conducted since 1999 was to further identify the presence and extent of MGP-related chemical constituents and non-aqueous phase liquid (NAPL) in soil and groundwater in the vicinity of the property to obtain sufficient information to prepare a revised Feasibility Study for the site. This report has been prepared in accordance with a request from the New York State Department of Environmental Conservation (NYSDEC) presented in a May 28, 2003 letter to National Grid to summarize investigation activities conducted at and in the vicinity of the property since 1999 and in accordance with the *Work Plan for Investigation of Historical Subsurface Structures and Evaluation of Monitored Natural Attenuation Approach for Site Groundwater* (Work Plan) prepared by Blasland, Bouck & Lee, Inc. (BBL, April 2003). NYSDEC approved the Work Plan in a September 12, 2003 letter to National Grid. The site investigation activities were conducted in accordance with the November 7, 2003 Order on Consent between National Grid and NYSDEC (Order on Consent Index No. A4-0473-0000), which superseded the previous Order on Consent (Order on Consent Index No. DO-0001-9210).

This report also summarizes investigations conducted at and in the vicinity of the property prior to 1999, which consisted of a Preliminary Site Assessment/Interim Remedial Measure (PSA/IRM) Study conducted by Atlantic Environmental Services, Inc. (Atlantic) and a Remedial Investigation (RI) conducted by Parsons Engineering Science (Parsons). The PSA/IRM Study and RI activities and results were summarized in the following reports that were submitted to NYSDEC:

- Preliminary Site Assessment/Interim Remedial Measure Study (PSA/IRM Study), Atlantic, January 1993; and
- *Remedial Investigation Report for the Schenectady (Broadway) Site* (RI Report), Parsons, January 1999. The RI Report was approved by NYSDEC in January 1999.

Investigation activities and evaluations that have been conducted at the site since NYSDEC approval of the RI Report (Parsons, 1999) consist of:

- NAPL and groundwater investigation activities conducted by BBL in 2001 and 2002 (conducted in accordance with internal scope of work letters as well as November 21, 2001 and May 28, 2002 work plan letters that were verbally approved by NYSDEC);
- Historical subsurface structure investigation conducted by BBL in 2004 (per the NYSDEC-approved Work Plan);
- Additional subsurface investigations performed by BBL in 2004 (per the NYSDEC-approved Work Plan); and
- Till investigation activities conducted by BBL in 2005 (conducted per a scope of work included as an attachment to a March 3, 2005 conference call minutes scope was verbally approved by NYSDEC).

In accordance with the Work Plan, a monitored natural attenuation (MNA) evaluation is being conducted. As this evaluation is not yet complete, the results of the MNA evaluation will be submitted to NYSDEC under separate cover.

National Grid prepared an initial Feasibility Study (FS) report that was submitted to NYSDEC in February 2000. The FS evaluated several potential remedial alternatives to address constituents related to former MGP operations, and used the information contained in the PSA/IRM Study Report (Atlantic, 1993) and the RI Report (Parsons, 1999) as the basis for these evaluations.

Based on NYSDEC comments on the draft FS report (presented in letters dated May 24, 2000 and June 6, 2001) and as discussed in a meeting attended by representatives of NYSDEC, National Grid, and BBL on November 7, 2001 additional investigation activities were deemed necessary at the site. The NAPL investigation, historical subsurface structure investigation, and additional subsurface investigation activities summarized in this report were conducted in response to discussions between National Grid and NYSDEC.

1.2 Report Organization

This SRI Report is organized as follows:

Section	Purpose
Section 1 – Introduction	Provides general information and a brief description of the report format.
Section 2 – Site Background	Presents a summary of the property location and setting; historical operations and land use; site topography and drainage; regional geology and hydrogeology; and the regulatory history for the site.
Section 3 – Pre-1999 Investigation Activities	Presents a summary of the activities conducted and results obtained for the PSA/IRM Study and the RI.
Section 4 – NAPL and Groundwater Investigation Activities	Presents a description of the field activities conducted during the NAPL and groundwater investigation, the findings of the NAPL and groundwater investigation, and the results obtained for the analysis of soil and groundwater samples collected during the investigation.
Section 5 – Historical Subsurface Structure Investigation	Presents a detailed description of the activities and findings of the historical subsurface structure investigation, including geophysical surveying activities, test boring, and soil boring activities, as well as results obtained for the analysis of soil samples collected from beneath the historical subsurface structure foundations.
Section 6 – Additional Subsurface Investigations	Presents a detailed description of the activities and results for the additional subsurface investigation including groundwater screening at monitoring well MW-8, monitoring well abandonment and installation activities, hydrogeologic and geotechnical investigation of the silt and clay unit beneath the property, and groundwater sampling.
Section 7 – Till Investigation	Presents a detailed description of the activities and findings for a till investigation that was conducted to assess the hydrogeologic properties of the till at the site and to further assess site stratigraphy.
Section 8 – Site Characterization	Presents an overall site characterization consisting of site geology and hydrogeology; an evaluation of the presence, extent, and nature of NAPL at the site; and the nature and extent of impacts to soil, groundwater, and sediment at the site.

2.1 General

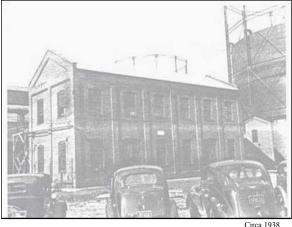
This section summarizes relevant site background information including property location and setting, historical operation and land use, site topography and drainage, regional geology and hydrogeology, and site regulatory history.

2.1.1 Site Location and Setting

The site is located near the corner of Broadway and Weaver Street in the City of Schenectady, Schenectady County, New York (Figure 1) and covers an area of approximately 9 acres. The property is approximately three-quarters of a mile southwest of downtown Schenectady and the area surrounding the property primarily consists of a mixture of industrial and commercial properties. National Grid currently utilizes the property as a service center. The principal structure at the property is an office building with an attached garage and repair shop located near the southeastern portion of the property. Additional existing, above-ground structures at the property include a small garage located in the western portion of the property, an open garage used for truck and equipment storage in the central portion of the property, and a storage building along the northern property boundary. Schermerhorn Creek transects the property generally flowing from southwest to northeast. A natural gas regulation and distribution station is located west of the office building near the center of the property. Parking areas are located to the north of the natural gas regulator and distribution station and west of the main entrance to the property along Broadway. A National Grid electrical substation (Weaver Street Substation) is located on the eastern portion of the property. Extensive subsurface utilities associated with the onsite natural gas regulator and distribution system, service center, and electrical substation, including underground natural gas mains and high-voltage electric lines, are present throughout the property. Current property features are shown on Figure 2.

The entire perimeter of the property is fenced and access to the property is provided via two entrances; the main entrance on Broadway and a secondary entrance on Weaver Street. The property is bounded to the north by a Delaware and Hudson railroad line, to the south by Broadway, to the east by Weaver Street, and to the west by a CSX Transportation, Inc. (CSX) railroad line.

2.1.2 Historical Operations and Land Use


Based on National Grid records and information presented in the RI Report, manufactured gas was produced at the property from 1903 to the mid-1940s. The original manufactured gas plant (MGP) was constructed in 1903 and used the coal carbonization process for production of manufactured gas. The gas was stored in an 800,000 cubic foot (CF) above-grade steel gas holder located in the northern portion of the property near the east corner of the existing storage building. At that time, the east side of the property was occupied by a small trolley car yard operated by the Schenectady Railway Company. The trolley yard covered the area now occupied by the National Grid garage/office building and the open area north of the garage.

Manufactured gas production switched to the carbureted water gas process beginning in 1907 following construction of a water gas house, a brick purifier house, a boiler house, and a 150,000 CF above-grade steel gas holder that was located in the northern portion of the property near the south corner of the existing storage

building. A 2 million CF above-grade gas holder was constructed to the east of the 800,000 CF gas holder in 1913 to increase gas storage capacity. In 1914, the principal structures at the property included the three gas holders; a retort house; a central manufacturing building containing an engine room, boiler room, generator

house, and condenser house; and a purifier house. Smaller structures included a governor house, a concrete oil tank, an ammonia concentrator, a tar separator, and a tar tank. By 1930, a second purifier house and second boiler room were present at the property (Atlantic, 1993). The approximate locations of the historical site features are indicated on Figure 2.

Gas production at the property increased between 1914 and 1927 until gas generated at a regional plant in Troy, New York, became the primary source of manufactured gas to the City of Schenectady. By 1930, several of the water gas manufacturing structures (including one of the purifier houses, the generator house, and the condenser house) had been converted to other uses, indicating that water gas

production had ceased. Based on available information, coal gas production continued until sometime in the 1940s and weekly testing of gas production equipment was conducted during the 1950s. By 1956, manufactured gas production had ceased and the property was used for natural gas distribution. The gas holders were reportedly removed from the property in 1961.

National Grid assumed ownership of the property in 1950. Previous property owners included the Mohawk Gas Company (1903 to 1919), the Schenectady Illuminating Company (1919 to 1921), the Adirondack Power and Light Company (1921 to 1927), and the New York Power and Light Company (1927 to 1950).

In an effort to obtain information relating to the generation, handling, and disposal of coal tar and other waste products from the MGP operations at the property, BBL conducted a review of the New York State Public Services Commission (PSC) records at the State Archives Office located in Albany, New York. Information included in the records reviewed by BBL primarily pertained to employee records, revenues, and inventory of equipment for the various utility companies that formerly owned the Schenectady (Broadway) property. Select reports referenced volumes/amounts of residual waste materials generated during a particular year, however, the amounts were not presented on a per site basis, rather as totals for the company.

2.1.3 Physical Setting

The property is located in Schenectady County, New York. Schenectady County lies almost entirely within the Mohawk lowland area bounded by the Adirondack Mountains to the north and by the Helderberg Escarpment of the Alleghenv Plateau Province to the south. The property is located in the Mohawk River Valley just within the 500 year flood plain at the base of a steep northwest-facing slope (Figure 1).

2.1.3.1 Site Topography and Drainage

Site ground-surface elevations range from approximately 220 to 230 feet above mean sea level (AMSL). The CSX railroad line, located immediately west of the property on a steep-sided man-made berm is approximately 20 feet higher in elevation than the property.

The ground surface at the property on either side of Schermerhorn Creek generally slopes towards the creek, which flows from southwest to northeast across the property. Schermerhorn Creek daylights in the southwestern portion of the property from an approximately 90-inch diameter concrete culvert and re-enters an approximately 72-inch diameter culvert at the northeastern property boundary on Weaver Street. The open section of creek at the property is approximately 1,100 feet long. Sediment up to 6.5 feet (78 inches) in thickness has accumulated within the 90-inch culvert.

Schermerhorn Creek discharges to the Mohawk River, which is located approximately 0.8 miles north of the property. The Mohawk River generally flows southeastward across Schenectady County, discharging to the Hudson River approximately 15 miles east of the property, near Cohoes, New York. From approximately 10 miles upstream of the property to approximately 5 miles downstream of the property, the Mohawk River occupies a relatively wide floodplain, 1 to 2 miles across. The surface elevation of the floodplain is generally between 220 and 240 feet AMSL in the property vicinity. From the floodplain, the ground surface elevation increases rapidly to more than 350 feet AMSL in the highland area south of the property. The property is located within the 500-year floodplain of the Mohawk River, but outside of the 100-year floodplain (FEMA, 1983).

2.1.3.2 Regional Geology and Hydrogeology

Regional Geology

Regional geologic mapping indicates that unconsolidated sediments consisting of alluvium and glacial deposits overlie shale, siltstone, and sandstone bedrock in the area of the property. Following the last glaciation, existing streams deposited clay, silt, and sand along their floodplains. The materials deposited are primarily the product of erosion and redeposition of older valley-fill material (Winslow, 1965). Regional mapping indicates recentage alluvium is present immediately north of the property (Cadwell, 1987). This material is confined to the floodplain of the Mohawk River and consists of silt and fine to coarse sand and gravel deposits, with thicknesses ranging from 3 feet to as much as 50 feet (Winslow, 1965). As described in Section 8.2, based on the investigation activities conducted at the site, these alluvial flood plain deposits are also present onsite, which is not unexpected given the property's position on the 500-year floodplain of the Mohawk River. Channel fill deposits associated with prior Mohawk River channels are not present near the valley walls, including the property.

The Mohawk lowland was deeply eroded during Pleistocene glacial advances, as well as by more recent drainage systems. During glacial retreat, the lowland was covered by pro-glacial Lake Albany (Woodworth, 1905). Glaciolacustrine deposits including sands, silts, and clays were deposited in Lake Albany. Eventually, a barrier in the lower valley of the Hudson River was eroded, causing the water level of Lake Albany to decline. This drainage left most of the Mohawk River Valley exposed, and the Mohawk River began to erode the preexisting lake deposits, till, and even bedrock, leaving coarse-grained sediments, or channel fill deposits along the river channel. During Mohawk River flooding events, overbank floodplain deposits (interbedded clay, silt, and sand layers) were also formed. According to Stoller (1911), the Mohawk River followed several different courses before the current course was established.

Unconsolidated glacial sediments, deposited by glacial melt waters more than 10,000 years ago during the final stage of glacial retreat, are present at or near the ground surface in the vicinity of the property (Cadwell, 1987). Based on visual characterization of soil samples collected during the soil boring activities, alluvial and/or shallow glaciolacustrine silt and clay deposits underlie the property and areas north of the property. Glacio-

deltaic deposits are mapped to underlie regions south and west of the property. Regional mapping indicates that the lacustrine deposits are fairly well stratified and consist of alternating beds ranging from sand and gravel to clay. They are generally laminated, with thicknesses up to 250 feet in some places (Simpson, 1952).

Basal till deposits underlie lacustrine silt and clay in the vicinity of the property and are exposed on the northeast side of the City of Schenectady (Simpson, 1952). Basal till, which was deposited by accumulation and compression under the ice sheet, generally consists of poorly sorted materials ranging in grain size from clay to boulders. As a result of this type of deposition, the till in Schenectady County is often referred to as "hardpan" because of difficulty drilling or excavating through the material, due to its density. It is also characterized by low hydraulic conductivity. Results obtained for permeameter testing performed on several samples of unweathered till indicated that the basal till near the City of Schenectady has a permeability as low as 0.0004 gpd/ft^2 (1.06 x 10⁻⁶ cm/sec). Regionally the thickness of the till ranges from none present to more than 150 feet (Simpson, 1952).

The Middle to Upper Ordovician Schenectady Formation and the Middle Ordovician Canajoharie Shale underlie the till in the vicinity of the property. The Schenectady Formation consists of bluish-gray greywacke, tan sandstone, siltstone, and gray shale. The Canajoharie Shale consists of calcareous, black, fissile shale. Bedrock is relatively flat-bedded, with regional mapping indicating a gentle dip of 1° to 2° west and southwest (Simpson, 1952). During the site investigations, bedrock was identified at depths of between 89 and 108 feet below ground surface (bgs) based on cuttings at three soil boring locations, but was not confirmed by coring.

Regional Hydrogeology

The Mohawk River is located approximately 0.8 miles north of the property. According to Stoller (1911), the Mohawk River has followed several different courses before the current course was established. The current and previous channels deposited coarse sand and gravel channel fill from approximately 10 miles northwest of the property to the Rotterdam/Schenectady well fields (approximately 2 miles northwest of the property), ranging from 50 to over 100 feet thick and overlying different materials including till and bedrock (Winslow et al., 1985). Pumping tests conducted on 10 wells (nine water supply wells and one test well) indicated that the coarse sand and gravel channel fill along the river channels has a permeability ranging from 400 (Scotia Naval Department) to 300,000 gpd/ft² (Schenectady Well Field) (Winslow et al., 1965). This productive channel fill aquifer (the Schenectady aquifer) is the primary source of drinking water in Schenectady County, and is a designated sole-source aquifer under Section 1427 of the Safe Drinking Water Act (42 U.S.C. 300f et seq.) (Atlantic, 1993). Coarse sand and gravel channel fill deposits were not observed at the property.

The Schenectady aquifer is recharged by precipitation onto the ground surface overlying the aquifer, seepage from streams flowing across the aquifer, and subsurface flow from underlying till deposits and bedrock (Brown, 1982). The aquifer principally discharges water into the Mohawk River, and to other streams in smaller quantities. A report prepared for the Schenectady Intermunicipal Watershed Rules and Regulations Board indicates that the former MGP is not located within the primary recharge area of the Schenectady and Rotterdam well fields (i.e., the portion of the aquifer recharge area that contributes water to the public water supply wells). The report does indicate however that the property is located within an area designated as a general aquifer recharge area (i.e., an area where surface water or precipitation recharges an aquifer) (Parsons, 1999).

Based on information presented in the RI Report, the City of Schenectady obtains its public water supply from 16 pumping wells located approximately 2 miles northwest of the property near the southern bank of the Mohawk River. Three additional wells that supply drinking water to the City of Rotterdam are located approximately 1,000 feet north of the Schenectady wells. A review of regional groundwater flow patterns however, suggests that groundwater at the property does not flow toward the Schenectady public water supply

wells. The NYSDEC Division of Environmental Remediation's Proposed Remedial Action Plan (PRAP) for the General Electric (GE) Main Plant (Site No. 447004) (NYSDEC, 2004) states: "There is a well established hydrogeologic divide west of the western boundary of the (GE) site that separates groundwater beneath the site from the groundwater west of the (GE) site. The groundwater beneath the (GE) site and east of the divide migrates towards the Mohawk River. The groundwater west of the hydrogeologic divide migrates toward the Schenectady-Rotterdam municipal well field." Therefore, because the Schenectady (Broadway) site is east of the western portion of the GE site, groundwater beneath the National Grid property likely flows northwestward toward the Mohawk River and not to the municipal well field.

BBL is preparing a site-specific groundwater flow model to be used in conjunction with the design of the remedial measure selected for addressing MGP-related impacts at the Schenectady (Broadway) site. The groundwater flow model will be used to further evaluate site groundwater flow characteristics. The site-specific geology and hydrogeology are discussed in Subsection 8.2.

3.1 General

The information presented in this section was previously provided to NYSDEC in the PSA/IRM Study Report (Atlantic, 1993) and the RI Report (Parsons, 1999). Therefore, only a summary of the PSA and RI activities and results are presented below. For the purposes of this report, analytical results obtained for the investigation samples were compared to the matrix-specific standards/criteria/guidance values outlined below:

- Soil analytical results were compared to guidance values established in the NYSDEC's Technical and Administrative Guidance Memorandum (TAGM) entitled "Determination of Soil Cleanup Objectives and Cleanup Levels," HWR-94-4046 (TAGM 4046) and a follow-up NYSDEC memorandum from Michael J. O'Toole, Jr. dated December 20, 2000. The guidance values establish limits for total detected VOCs and SVOCs as less than or equal to (≤) 10 ppm and ≤ 500 ppm, respectively.
- Groundwater analytical results were compared to the Class GA groundwater standards and guidance values presented in the NYSDEC document entitled, "Division of Water, Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (TOGS 1.1.1, NYSDEC, reissued June 1998 and addended April 2000). Class GA standards and guidance values are protective for groundwater used as a source for drinking water.
- Sediment analytical results for organic compounds were compared to the benthic aquatic life chronic toxicity sediment screening criteria using total organic carbon (TOC) concentrations (where available) as presented in NYSDEC's, "Technical Guidance for Screening Contaminated Sediment," January 1999. Results obtained for the analysis of inorganic constituents compared to the severe effect level criteria presented in NYSDEC's technical guidance document. As stated in the guidance document, these criteria do not necessarily represent and are not intended as remedial cleanup criteria.
- Surface Water analytical results were compared to the Class D ambient water quality standards and guidance values for fresh water fish survival presented in TOGS 1.1.1.

3.2 Preliminary Site Assessment/Interim Remedial Measure Study (1992)

Atlantic conducted the PSA/IRM Study field activities during the spring and summer of 1992. To identify potential sources of MGP residual material at the property and obtain data to develop an IRM to address the source area(s), the PSA/IRM Study consisted of the following investigations:

- Soil gas survey;
- Subsurface soil investigation;
- Groundwater investigation; and
- Sediment investigation.

A summary of the PSA/IRM Study activities and results is presented below.

3.2.1 Soil Gas Survey

Atlantic (1993) indicated that the soil gas survey activities were conducted to obtain a preliminary assessment of the horizontal extent and relative concentration of volatile organic compounds (VOCs) in soil and groundwater at the property. The soil gas survey consisted of collecting soil gas samples on a 50-foot grid across the property and analyzing the samples in the field using a portable gas chromatograph. Additional soil gas samples also were collected at sampling points surrounding the locations along the sampling grid where sample analysis indicated elevated VOC concentrations. The results of the soil gas survey were used to help focus the subsurface soil investigation activities (described below) on areas where elevated VOC concentrations were detected during the soil gas survey.

3.2.2 Subsurface Soil Investigation

The subsurface soil investigation activities consisted of excavating 15 test pits (test pits BT-1 through BT-15) near former MGP structures to identify the presence/extent of soil visibly impacted by MGP-related materials. Following completion of the test pitting activities, 26 soil borings (BB-1 through BB-26) were installed to further delineate the extent of impacted soil at the property. Drilling refusal was met at several of the boring locations. This information was used to identify the locations and depths of historical subsurface structure foundations. Test pit and soil boring locations are shown on Figure 3.

A total of 73 soil samples were collected from discrete depth intervals within the test pits and soil borings. Each soil sample was screened in the field for volatile organic vapors using a photoionization detector (PID) and for separate phase liquids using a centrifuge. Select soil samples were submitted for laboratory analysis for VOCs and polynuclear aromatic hydrocarbons (PAHs) as summarized in Table 1.

Test pit and soil boring logs are presented in the PSA/IRM Study Report (Atlantic, 1993).

3.2.3 Groundwater Investigation

One groundwater monitoring well was installed (BMW-1, which was later renamed monitoring well MW-2) east of the open garage to characterize groundwater for handling and disposal requirements in the event that groundwater management was required during potential remedial activities to be conducted at the property.

Following well installation, Atlantic collected and submitted a groundwater sample for laboratory analysis for VOCs, semi-volatile organic compounds (SVOCs), pesticides, polychlorinated biphenyls (PCBs), biochemical oxygen demand (BOD), inorganics, cyanide, chemical oxygen demand (COD), pH, total suspended solids (TSS), and total organic carbon (TOC). An analytical sample summary is included in Table 1.

3.2.4 Sediment Investigation

Atlantic collected two sediment samples (BSD-1 [1-1.5'] and BSD-2 [1.5-2']) from Schermerhorn Creek using a hand auger to characterize creek sediment. Each sediment sample was field screened for the presence of separate phase liquids using a centrifuge and submitted for laboratory analysis for VOCs and PAHs. An analytical sample summary is included in Table 1.

3.2.5 Preliminary Site Assessment/Interim Remedial Measure Study Results

Detailed results for the PSA/IRM Study are presented in the PSA/IRM Study Report (Atlantic, January 1993) and are summarized below.

Soil Gas Survey Results

As reported in Atlantic (1999), results of the soil gas survey indicated the following:

- Detectable levels of VOCs were identified in 78 of the 82 soil gas samples;
- Of the 78 samples, 29 indicated benzene, toluene, ethylbenzene, and xylene (BTEX) peaks;
- Of the 29 samples, 10 produced chromatograms indicative of coal tar-related constituents; and
- Of the 29 samples, 19 produced chromatograms were tentatively identified as containing petroleum-related products.

Atlantic (1999) reported that the soil gas samples producing chromatograms indicative of coal tar impacts were generally located north and west of the open garage and near the 800,000 CF gas holder. Soil gas samples producing chromatograms indicative of petroleum impacts were generally located in the central portion of the site near the former south of the Storage Garage.

Subsurface Soil Investigation Results

As indicated above, the PSA/IRM Study subsurface soil investigation consisted of completing 15 test pits and 26 soil borings to identify the presence and location of historical subsurface MGP structures and facilitate the collection of subsurface soil samples for laboratory analysis. Field observations and soil characteristics are summarized in test pit and soil boring logs presented in the PSA/IRM Study Report (Atlantic, 1993). Several of the test pits and soil borings indicated the presence of subsurface structures potentially associated with former MGP structures.

Atlantic identified visible staining and sheens, obvious odors, and NAPL at the following test pit and soil boring locations:

Sample Location	Sample ID	Approximate Depth Interval(s) (feet bgs)
North of the open garage in the	BT-1	5.0
vicinity of the 150,000 CF gas holder	BB-8	4.0-8.0
West of the open garage in the	BB-1	6.5-11.5
vicinity of the former condenser	BB-13	6.0-8.0 & 14.0-16.0
house and retort	BB-14	15.6-16.5, 18.0-22.0, &25.5-27.0
West of the open garage and north of	BB-18	9.5-23.5 & 28.0-31.0
the small garage	BB-22	10.0-21.0
East of the open garage in the	BT-7	1.0-2.0
vicinity of the former tar tank and	BT-8	7.0
water gas condenser	BT-13	2.0-3.0 (western portion of test pit)
	BT-15	4.0-7.0

Sample Location	Sample ID	Approximate Depth Interval(s) (feet bgs)
	BB-4	5.0-10.0, 14.0-16.0, &28.0-35.0
	BB-11	5.0-27.5
South of the open gerage	BT-9	2.0-8.0
South of the open garage	BB-15	8.0-9.5
East of the storage building in the	BT-15	4.0-7.0
vicinity of the former 800,000 CF gas	BB-2	4.0-7.5
holder	BB-9	4.0-10.0

Results obtained for the laboratory analysis of subsurface soil samples collected during the PSA/IRM Study are summarized below.

Analyses	Subsurface Soil Investigation Results
VOCs	Total VOCs were detected in 11 of the 73 subsurface soil samples at concentrations greater than or equal to the 10 parts per million (ppm) TAGM 4046 guidance value. VOCs were detected at concentrations exceeding 10 ppm in soil samples collected from the eastern side of Schermerhorn Creek in the vicinity of a former fuel island (BB-20); in the vicinity of the former 150,000 CF gas holder (BB-8); in the vicinity of the former 800,000 CF gas holder (BB-9); in the vicinity of the former condenser house (BB-11 and BT-7); and in the vicinity of the existing parking area to the west of the office building (BB-20). Primary VOCs detected in the subsurface soil samples included toluene, ethylbenzene, and xylenes.
PAHs	Total PAHs were detected in 11 of the 73 subsurface soil samples at concentrations greater than or equal to the 500 ppm TAGM 4046 guidance value. These 11 samples were collected east of the former condenser house (BB-11); in the vicinity of the former generator house and the former condenser house (BT-7); in the vicinity of the former 150,000 CF gas holder (BB-8), in the vicinity of the former 800,000 CF gas holder (BB-9 and BT-5), in the vicinity of the former coke bin (BB-13), in the vicinity of the former pit (south of the retort) (BB-18 and BT-10), in the vicinity of the former retort (BT-3), and in the vicinity of the existing parking area to the west of the office building (BB-20).

Groundwater Investigation Results

Results obtained for the laboratory analysis of the groundwater sample collected from monitoring well BMW-1 (MW-2) during July 1992 are summarized below.

Analyses	Groundwater Investigation Results
VOCs	Select VOCs (including BTEX) were detected at concentrations exceeding Class GA NYSDEC groundwater quality standards and guidance values presented in TOGS 1.1.1 in the groundwater sample collected from monitoring well BMW-1 (MW-2). BTEX compounds were detected in the groundwater sample at a total concentration of 1,649 parts per billion (ppb).
SVOCs	Acenaphthene was detected in groundwater sample BMW-1 at a concentration of 43 ppb, which exceeds the Class GA NYSDEC groundwater quality standard of 20 ppb presented in TOGS 1.1.1. No other PAHs were detected at concentrations exceeding NYSDEC groundwater quality standards and guidance values.
Cyanide	Cyanide was not detected in the groundwater sample collected from monitoring well BMW-1 at a concentration exceeding Class GA NYSDEC groundwater quality standard for cyanide of 200 ppb.

Sediment Investigation Results

Analytical results indicated the presence of total VOCs in sediment samples BSD-1(PSA/IRM) and BSD-2(PSA/IRM) at concentrations of 0.84 and 1.73 ppm, respectively and total PAHs at concentrations of 24.91 ppm and 617.26 ppm, respectively. Benthic aquatic life chronic toxicity screening criteria could not be established for these samples since TOC data was not obtained.

3.3 Remedial Investigation (1994 to 1997)

Parsons conducted the RI field activities during the summer and fall of 1994, the spring and summer of 1996, and the winter of 1997. Parsons (1999) identified the objectives of the RI as follows:

- Evaluate the nature and extent of impacted materials, including the delineation and characterization of source materials, residuals, and potential migration pathways;
- Evaluate potential human health and environmental risks and preliminary remediation goals (PRGs);
- Obtain data to support a feasibility study; and
- Investigate potential offsite sources.

The RI consisted of the following investigations:

- Surface soil investigation;
- Subsurface soil investigation;
- Surface water investigation;
- Groundwater investigation;
- Sediment investigation; and
- Human Health Risk Assessment (HHRA) and Fish and Wildlife Impact Analysis (FWIA).

A description of the RI activities is presented below followed by a summary of the RI results.

3.3.1 Surface Soil Investigation

Parsons collected 25 surface soil samples for field screening for PAHs and PCBs using EnSys field analysis kits. The EnSys field screening results were used to select onsite and offsite surface soil samples to be submitted for laboratory analysis.

Based on the results of the field screening, Parsons submitted a total of 18 surface soil samples collected at nine onsite locations (designated BSS-1 through BSS-7, BSS-17, and BB-84) and nine offsite locations (designated BSS-8 through BSS-16) for laboratory analysis.

With the exception of samples BSS-17 and BB-84, each surface soil sample was submitted for laboratory analysis for target compound list (TCL) VOCs, TCL SVOCs, pesticides/PCBs, target analyte list (TAL) inorganics, cyanide, and TOC. Surface soil samples BSS-17 and BB-84 were submitted for laboratory analysis for BTEX, PAHs, and cyanide.

3.3.2 Subsurface Soil Investigation

The subsurface soil investigation activities consisted of excavating additional test pits, completing soil borings, and collecting additional subsurface soil samples to further characterize subsurface conditions at the property.

Test Pit Excavation Activities

Three additional test pits (test pits BTP-1 through BTP-3) were excavated in the northeastern portion of the site. Test pit locations were selected to assess impacts (if any) related to the potential use of this portion of the property as a fire training area. Two subsurface soil grab samples were collected from each test pit and submitted for laboratory analysis for BTEX, PAHs, PCBs, and cyanide.

Soil Boring Activities

A total of 59 additional onsite and offsite soil borings (soil borings BB-27 through BB-84, and BB-41R) were advanced to further assess the nature and extent of MGP residuals in subsurface soil and to further characterize the subsurface stratigraphy at the property. As presented in the RI Report, boring locations were selected to further delineate impacted material based on the results of the PSA/IRM Study and to focus on areas at the property previously not sampled. Soil boring locations are shown on Figure 3.

Soil boring depths ranged from 3.5 feet below grade (soil boring BB-53) to 109.7 feet below grade (soil boring BB-65). Parsons (1999) reported that a geologist visually characterized each soil sample for soil type, the presence of staining, sheens, NAPL, or obvious petroleum or coal tar-type odors, and conducted field screening using a PID to identify the potential presence of volatile organic vapors.

A total of 135 soil samples (excluding field duplicates) were collected from discrete depth intervals and submitted for laboratory analysis for the following:

- 110 subsurface soil samples were submitted for laboratory analysis for BTEX, PAHs, and cyanide;
- 19 soil samples were submitted for laboratory analysis for TCL VOCs, SVOCs, pesticides, TAL inorganics, and cyanide;
- 1 sample, BB-35 (6-8'), was analyzed for hazardous waste characteristics;
- 3 samples, BB-34 (12-14'), BB-56 (40-44'), and BB-59 (12-14') were submitted for geotechnical testing to characterize soil type; and
- 2 of the samples, BB-28 (14-16') and BB-83 (12-14') were submitted for laboratory testing for vertical hydraulic conductivity to assess the potential for the shallow silt and clay layer at the property to act as a confining unit.

An analytical sample summary indicating the laboratory analyses conducted on each of the soil samples is presented in Table 1.

3.3.3 Surface Water Investigation

During June 1996, four surface water samples (BSW-1, BSW-2, BSW-4, and BSW-5) were collected and submitted for laboratory analysis to characterize surface water quality in Schermerhorn Creek. The surface water sample locations coincide with sediment sample locations described below in Section 3.3.5. A surface water sample was not collected at sediment sampling location BSD-3 (i.e., surface water sample BSW-3) since there was no flow from the garage outfall at the time of the sampling activities. Surface water sample BSW-1 was collected upstream of the property, surface water samples BSW-2 and BSW-4 were collected onsite, and surface water sample BSW-5 was collected downstream of the property. Each surface water sample was submitted for laboratory analysis for TCL VOCs, TCL SVOCs, pesticides, PCBs, TAL inorganics, and cyanide. An analytical sample summary indicating the laboratory analyses conducted on each of the surface water samples is presented in Table 1.

3.3.4 Groundwater Investigation

Twenty-nine monitoring wells were installed at and in the vicinity of the property during the summer of 1994 and spring of 1996 to facilitate monitoring of onsite and downgradient groundwater quality and evaluating onsite hydrogeological conditions. Monitoring wells installed during previous investigation activities were designated MW-1 (installed prior to the PSA/IRM Study) and MW-2 (monitoring well BMW-1, installed during the PSA/IRM Study). Monitoring well MW-1 construction information (including construction details, date of installation, and who installed the well) is not available.

The RI monitoring wells consisted of ten single wells (monitoring wells MW-3 through MW-5, MW-7, MW-10, MW-11, MW-12, MW-16, MW-17, and MW-18), two well pairs (monitoring well clusters MW-6 and MW-15), and five well triplets (monitoring well clusters MW-8, MW-9, MW-13, MW-14, and MW-19). Parsons nomenclature for monitoring wells within pairs and triplets used letter suffixes that indicate the depth of the well screen relative to the site hydrostratigraphy: S – shallow, P – between shallow and intermediate, I – intermediate, and D – deep aquifer zones. No specific depth, geologic, or hydrostratigraphic references to assigning the well nomenclature was presented in the RI Report. Well construction details and well construction logs are presented in the RI Report (Parsons, 1999). As described in more detail in Subsection 8.2.2 – Site Hydrogeology, BBL reviewed the hydrogeologic properties (e.g., hydraulic conductivity, hydraulic head) to group the monitoring wells relative to the different hydrostratigraphic zone that each well screen is positioned within to aid in the interpretation of groundwater flow at the property. Based on this review, BBL identified shallow, intermediate, deep, and till hydrostratigraphic zones at the site. A monitoring well construction summary, including the hydrostratigraphic zone in which each monitoring well has been classified, is presented as Table 2.

Hydraulic Conductivity Testing Activities

Parsons conducted in-situ hydraulic conductivity testing activities at six monitoring well locations (monitoring wells MW-7, MW-9S, MW-9I, MW-9D, MW-13P, and MW-19D) during June 1996. As presented in the RI Report, the objective of the testing activities was to obtain data necessary to estimate the hydraulic conductivity of the saturated zone at and in the vicinity of the property. Results of the hydraulic conductivity testing are summarized in Subsection 8.2.2 – Site Hydrogeology.

engineers, scientists, economists

Groundwater Sampling Activities

Parsons conducted two rounds of groundwater sampling between June and August 1996. Samples were not collected from monitoring wells MW-3 through MW-5 during the sampling activities due to the presence of NAPL in the monitoring wells.

Groundwater samples collected during each sampling event were submitted for laboratory analysis for TCL VOCs, TCL SVOCs, pesticides, PCBs, TAL inorganics, and cyanide. In addition, during the initial round of sampling, twelve of the groundwater samples (collected from monitoring wells MW-6S, MW-7, MW-8I, MW-9S, MW-9I, MW-9D, MW-12, MW-13I, MW-16, MW-17, MW-18, and MW-19D) were also analyzed for biological oxygen demand (BOD), chemical oxygen demand (COD), chloride, hardness, nitrate, nitrite, oil and grease, sulfate, sulfide, total dissolved solids (TDS), pH, and alkalinity. An analytical sample summary indicating the laboratory analyses conducted on each of the groundwater samples is presented in Table 1.

3.3.5 Sediment Investigation

Parsons collected a total of 34 sediment samples from 20 sediment sampling locations (sampling locations BSD-1 through BSD-20) within Schermerhorn Creek during three rounds of sampling. Note that sample IDs BSD-1 and BSD-2 were also used during the PSA/IRM Study. Where appropriate, this report distinguishes between these samples by indicating the investigation associated with the sample in parentheses after the sample ID [e.g., BSD-1(RI)]. Following the initial sediment sampling activities in August 1994 (which consisted of collecting 11 sediment samples from 6 sediment sampling locations), the City of Schenectady Department of Public Works excavated sediment from Schermerhorn Creek upstream and downstream of the property to improve drainage through the creek. Parsons collected 23 additional sediment samples from 14 locations during a second and third round of sampling during May 1996 and March 1997, respectively, to assess the conditions following sediment removal activities. Sediment samples consisted of surface sediment (0-0.5') and sediment cores to depths up to 6 feet bgs. Sediment sampling locations are shown on Figure 3 and an analytical sample summary is presented in Table 1.

Parsons submitted 14 of the 34 sediment samples to Nytest for laboratory analysis for TCL VOCs, TCL SVOCs, pesticides/PCBs, TAL inorganics, cyanide, and TOC. The remaining 20 sediment samples were analyzed for BTEX, PAHs, PCBs, cyanide, and TOC.

3.3.6 Human Health Risk Assessment and Fish and Wildlife Impact Analysis

Following laboratory analysis of samples collected as part of the RI, analytical results were validated and used in the development of an HHRA. Parsons (1999) reported that the HHRA was conducted to assess the potential risk to human health due to the presence chemical constituents within environmental media at and in the vicinity of the property and that the HHRA was conducted using a conservative (health protective) approach in accordance with USEPA guidelines.

A Phase I Fish and Wildlife Impact Analysis (FWIA) were conducted to develop a property description to address existing environmental conditions and characterize local ecological resources. Parsons indicated that the FWIA was conducted in accordance with the requirements outlined as Step I and Step IIA of the NYSDEC Division of Fish and Wildlife document entitled "Impact Analysis for Inactive Hazardous Waste Sites" (NYSDEC, 1994).

3.3.7 Remedial Investigation Results

Detailed results obtained for the RI are presented in the RI Report (Parsons, 1999). The results for the RI are summarized below.

Surface Soil Investigation Results

Analytical results obtained for the laboratory analysis of surface soil samples collected as part of the RI activities are summarized below.

Analyses	Surface Soil Investigation Results
VOCs	Total BTEX was not detected in any of the surface soil samples at concentrations greater than the 10 ppm TAGM 4046 guidance value for total VOCs.
SVOCs	Total SVOCs (primarily consisting of PAHs) were detected at concentrations greater than 500 ppm in three of the nine onsite surface soil samples [surface soil samples BSS-4(0-0.5'), BSS-17(0-0.5'), and BB-84(0-2')]. Total PAHs were not detected in any of the offsite surface soil samples at concentrations exceeding 500 ppm.
Cyanide	Cyanide was detected at concentrations exceeding laboratory detection limits in 5 of the 18 surface soil samples. The highest total cyanide concentration (80.5 ppm) was reported in surface soil sample BSS-4(0-0.5').

Subsurface Investigation Results

Results obtained for the laboratory analysis of subsurface soil samples collected as part of the RI activities are summarized below.

Analyses	Subsurface Soil Investigation Results
VOCs	Total BTEX was detected at concentrations greater than 10 ppm TAGM 4046 values for total VOCs in 14 of the 136 subsurface soil samples submitted for BTEX or VOC analysis. The highest concentrations of BTEX were reported in samples collected in the vicinity of the former gas holders, the former tar separator, the former tar tank, and near the fence along the western property line. BTEX concentrations were not detected at concentrations greater than 1 ppm in any of the subsurface soil samples collected offsite.
SVOCs	Total SVOCs, primarily consisting of PAHs, were detected at concentrations greater than the 500 ppm TAGM 4046 guidance value in 9 of the 136 subsurface soil samples submitted for SVOC or PAH analysis. The highest concentrations of total SVOCs were reported in samples collected in the vicinity of the former tar separator, the former tar tank, the former condenser house, and the former gas holders, and near the fence along the western property line.
Cyanide	Cyanide was detected in 31 of the 136 subsurface soil samples submitted for cyanide analysis. The highest cyanide concentrations were reported in subsurface soil samples obtained in the vicinity of the fence along the western property line, the west side of the office building, and the former tar separator. As presented above, TAGM 4046 does not list a recommended soil cleanup objective for cyanide.

NAPL (primarily oil-like material) was observed in split-spoon samples recovered from borings advanced in the vicinity of the former tar separator, former tar tank, former condenser house, immediately northwest of the 800,000 CF former gas holder, former purifier houses, west of the former oil tank, and in the vicinity of the fence along the western property boundary. A NAPL evaluation is presented in Subsection 8.3 and a summary of the visual characterization of subsurface soil impacts (i.e., odors, sheens, and NAPL) is presented as Table 3.

Groundwater Investigation Results

A summary of the results obtained for the RI groundwater sampling activities is presented below.

Analyses	Groundwater Investigation Results
VOCs	TCL VOCs, primarily consisting of BTEX, were detected at concentrations greater than TOGS 1.1.1 Class GA groundwater quality standards and guidance values in groundwater samples collected from 12 of the 28 wells that were sampled during this monitoring event. The highest onsite BTEX concentration (20,700 ppb) was reported for groundwater sample MW-18 (located immediately south of the former 800,000 CF holder). The highest offsite BTEX concentrations were 1,435 ppb, reported for the groundwater sample collected from monitoring well MW-8I (located west of the CSX railroad line) and 1,166 ppb reported for the groundwater sample collected from monitoring well MW-9S (located on the CSX right-of-way).
SVOCs	TCL SVOCs, primarily consisting of PAHs, were detected in groundwater samples collected from 11 of the 28 wells that were sampled at concentrations greater than TOGS 1.1.1 Class GA groundwater standards and guidance values. The highest PAH concentrations detected in groundwater samples collected from onsite monitoring wells were: 722 ppb reported for the groundwater sample collected from monitoring well MW-1 (located in the vicinity of the former 150,000 CF holder), 1,804 ppb reported for the groundwater sample collected from monitoring well MW-2 (located in the vicinity of the former tar separator), 2,224 ppb reported for the groundwater sample collected from monitoring well MW-18 (located in the vicinity of the former 800,000 CF holders), and 5,890 ppb reported for the groundwater sample collected from monitoring well MW-18 (located in the vicinity of the former 800,000 CF holders), and 5,890 ppb reported for the groundwater sample collected from monitoring well MW-18 (located in the vicinity of the former sample collected from monitoring well MW-18 (located in the vicinity of the former 800,000 CF holders), and 5,890 ppb reported for the groundwater sample collected from sample collected from monitoring well MW-18 (located in the vicinity of PAHs detected in groundwater samples collected from offsite monitoring wells was 2,094 ppb in sample MW-8D (located west of the CSX railroad line).
Cyanide	Cyanide was detected in groundwater samples collected from 6 of the 28 wells that were sampled at concentrations greater than the TOGS 1.1.1 Class GA groundwater standard of 200 ppb. The maximum concentration of cyanide detected in groundwater samples collected from onsite monitoring wells was 830 ppb reported for the groundwater sample collected from monitoring well MW-18 located immediately south of the former 800,000 CF gas holder. Cyanide was not detected at concentrations greater than the Class GA groundwater standard in samples collected from offsite monitoring wells

Results obtained for the analysis of the RI groundwater samples for VOCs, SVOCs, and total cyanide is presented in Table 4, 5, and 6, respectively. In addition, the groundwater analytical results for BTEX and PAHs for the shallow and intermediate hydrostratigraphic zones are shown on Figures 4a and 4b, respectively.

Surface Water Investigation Results

Analytical results obtained for the laboratory analysis of surface water samples collected as part of the RI activities indicated that VOCs, SVOCs, or cyanide were not detected at concentrations exceeding the TOGS 1.1.1 Class D Ambient Water Quality Standards and Guidance Values for fresh water fish survival. Results obtained for the analysis of the surface water samples are presented in the RI Report (Parsons, 1999).

Sediment Investigation Results

Results obtained for the laboratory analysis of the sediment samples for VOCs, SVOCs, PCBs, and inorganics in the sediment samples are summarized below. The sediment in the portions of Schermerhorn Creek directly upstream and downstream of the site was dredged by the City of Schenectady in 1996 to improve drainage. As a result, a comparison of concentrations from the site to upstream concentrations could not be made as a means

of evaluating potential contribution of site-related constituents to the creek sediments. As indicated in Subsection 3.1, BBL compared the results obtained for the analysis of sediment samples for organics to the benthic aquatic life chronic toxicity screening criteria. These criteria were calculated on a per sample basis using TOC data in accordance with NYSDEC's Technical Guidance for Screening Contaminated Sediment (NYSDEC, 1999). As indicated above, these criteria do not necessarily represent and are not intended as remedial cleanup criteria.

Analyses	Sediment Investigation Results
VOCs	BTEX compounds were not detected in any of the sediment samples at concentrations exceeding the calculated sediment screening criteria.
SVOCs	SVOCs, primarily PAHs were detected in 31 of the 34 sediment samples at concentrations greater than the calculated screening criteria. In most cases, PAHs were detected at concentrations that are only slightly greater than the sediment screening criteria. Sediment samples containing elevated PAH concentrations (relative to the other sediment samples) included BSD-13(0-4') (52.7 ppm) and BSD-14(0-4') (268 ppm).
PCBs	PCBs were detected in 4 of the 34 sediment samples at concentrations above the calculated sediment screening criteria, including BSD-9(0-2') 4.1 ppm - estimated, BSD-11 (0-4') 1.3 ppm - estimated, BSD-12 (0-4') 1.3 ppm, BSD-13(0-4') 15 ppm. Each of these sediment samples was collected from the onsite portion of Schermerhorn Creek.
Inorganics	Lead was detected in sediment samples BSD-5(0.5-1') and BSD-6(0-0.5') at concentrations of 1,050 and 136 ppm (estimated), respectively, which are above the severe effect level sediment criteria of 110 ppm presented in NYSDEC's sediment screening technical guidance document. Copper was also detected in sediment sample BSD-5(0.5-1') at an estimated concentration of 120 ppm, which is slightly greater than the severe effect level criteria of 110 ppm. Sediment sample BSD-5(0.5-1') was collected approximately 800 feet downstream from the property in the vicinity of Edison Avenue and sediment sample BSD-6 was collected upstream from the property near Congress Street. No other inorganic constituents were detected at concentrations exceeding the severe effect level criteria presented in the NYSDEC technical guidance document.

A more detailed discussion of the results obtained for the analysis of the sediment samples are presented in the RI Report (Parsons, 1999).

Human Health Risk Assessment and Fish and Wildlife Impact Analysis Results

Parsons' HHRA concluded that there is a potential carcinogenic and non-carcinogenic health threat to both current and future onsite personnel and current and future residents who utilize downgradient groundwater for domestic purposes. The RI Report (Parsons 1999) indicated that the groundwater pathway is complete for current and future residents near the site. As indicated above, a PRAP for the nearby GE Schenectady Plant indicates that there is strong evidence that water in the area of the site does not flow toward the Schenectady – Rotterdam municipal well fields. However, according to the RI Report (Parsons 1999), there are 13 private wells within one mile of the site, although their exact locations are not known at the present time.

The results of the FWIA indicated the absence of ecological resources associated with the property. The FWIA also indicated that potential impacts to fish and wildlife were considered to be minimal. Therefore, the derivation of site-specific ecology-based remedial objectives was not considered appropriate for the property.

4.1 General

Following completion of the RI, BBL prepared a Feasibility Study (BBL, 2000) that presented an evaluation of potential remedial alternatives to address the environmental concerns identified at the Schenectady (Broadway) site based on the results of the PSA/RI. Based on comments provided by NYSDEC and meetings to discuss the FS, National Grid elected to conduct additional monitoring and investigation activities to further investigate the presence and extent of site impacts related to former MGP operations. The additional activities included periodic NAPL monitoring and groundwater sampling. Letter reports summarizing the monitoring and sampling activities were prepared following each monitoring event and later submitted to the NYSDEC as part of the Work Plan. Therefore, only a summary of the activities and results for these events are presented in this section.

BBL conducted the following NAPL and groundwater investigation activities between June 2001 and June 2002:

- Monthly NAPL monitoring (June 2001 through December 2001) conducted per internal scope of work letters;
- Additional NAPL delineation sampling (December 2001) conducted per November 21, 2001 letter work plan as verbally approved by the NYSDEC; and
- NAPL monitoring and groundwater sampling activities (June 2002) conducted per May 28, 2002 letter work plan as verbally approved by the NYSDEC.

Summaries of the NAPL and groundwater investigation activities and results are presented below.

4.2 NAPL Monitoring Activities and Results (June 2001 through December 2001)

BBL conducted monthly NAPL measurements from June 2001 through December 2001 to monitor for the presence and thickness of NAPL in existing monitoring wells at and in the vicinity of the property and to passively recover NAPL (to the extent possible) using manual bailing techniques to assess the potential mobility and potential for recovering NAPL. A summary of the monitoring activities is presented below followed by the results of the monthly NAPL monitoring.

4.2.1 NAPL Monitoring Activities

Field personnel utilized an oil/water interface probe to assess the presence/absence and thickness (if present) of NAPL in each of the existing monitoring wells. During each monthly event, NAPL (where encountered) was removed to the extent possible using bailers and transferred to 55-gallon drums for offsite disposal in conformance with applicable rules and regulations.

4.2.2 NAPL Monitoring Activities Results

The results of the monthly NAPL monitoring activities are presented in Tables 7 and 8, respectively, and are summarized below. As indicated in the table below, both LNAPL and DNAPL were encountered in monitoring wells MW-2 through MW-5 at various times over the 6-month monitoring period. LNAPL was consistently (i.e., monthly) observed in monitoring wells MW-2 and MW-4. LNAPL was also observed in monitoring wells MW-3 and MW-5 (though not consistently).

DNAPL was consistently encountered in monitoring wells MW-2 and MW-5 over the

NAPL Monitoring Results

Monitoring Well		ine)01		uly)01		ept)01	0 20	ct 01	No 20	ov 01	Do 20	ec 01
wen	L	D	L	D	L	D	L	D	L	D	L	D
MW-2**			✓		1		✓		✓		✓	
MW-3	✓	✓*	✓	✓*	1	✓*						
MW-4**		✓*	~		<		<		<		<	
MW-5**	1	1	1	 Image: A set of the set of the		1		1		1		 Image: A start of the start of

Notes:

- NAPL Monitoring activities were conducted by Blasland, Bouck & Lee, Inc. (BBL) on June 13, 2001; July 31 and August 1, 2001; September 6 and 7, 2001; October 9, 2001; November 6, 2001; and December 6, 2001.
- * Based on notes from the June 2001 monitoring event, the nature of the material at the bottom of monitoring wells MW-3 and MW-4 is unknown. The material in the bottom of the wells may be a mixture of sediment and DNAPL.
- 3. ** Monitoring wells MW-2, MW-4, and MW-5 were replaced during 2004 with monitoring wells MW-20, MW-22, and MW-21, respectively.
- 4. D DNAPL
- 5. L LNAPL

monitoring period. Due to the relatively solid nature of the material at the bottom of the wells, the field personnel were not able to probe to the construction depth of the wells to identify the nature of the material. As confirmed by more recent investigation activities completed during 2004 and 2005, the material between the measured depth to the bottom of the well and the original construction depth of the well in these was primarily solids (i.e., fine grained sediments) with traces of NAPL. As discussed further in Section 6.7, several wells across the property contained accumulated fine grained materials that did not indicate the presence of any NAPL.

As described above, following each measurement round, NAPL (where encountered) was removed to the extent possible. A total of approximately 73 gallons of development water and NAPL/water were recovered from monitoring wells MW-2 through MW-5 during the 6-month NAPL monitoring period.

4.3 Additional NAPL Delineation Activities and Results (December 2001)

Additional NAPL delineation sampling activities were completed during December 2001 to identify the potential presence and extent of NAPL in soil near the northern and western property boundaries. A summary of the sampling activities is presented below followed by the results of the additional NAPL delineation activities.

4.3.1 Additional NAPL Delineation Activities

To facilitate the additional NAPL delineation activities, BBL initially advanced four soil borings (BB-85, BB-86, BB-88, and BB-89) along the northern and western property boundaries (i.e., the hydraulically downgradient property boundaries). An additional soil boring (BB-87) was completed east of the open garage to facilitate installation of monitoring well MW-20, as described below. Soil samples were collected from each 5-foot depth interval and from the bottom of each soil boring. Each soil sample was submitted for laboratory analysis for PAHs. The soil boring and monitoring well locations are shown on Figure 3.

During the completion of soil boring BB-88, both BBL and NYSDEC personnel were onsite observing the soil boring activities. BBL's onsite geologist noted the presence of blebs of NAPL in the soil samples recovered from the 10 to 16 foot depth interval. In consultation with NYSDEC, an additional soil boring (soil boring BB-88A) was drilled to confirm the NAPL observations at soil boring BB-88. Soil samples collected from soil boring BB-88A were not submitted for laboratory analysis.

While conducting the December 2001 NAPL monitoring activities (described above in Subsection 4.2), a stainless steel bailer became lodged in the well screen of monitoring well MW-2 and could not be removed by field personnel. Monitoring well MW-2 was abandoned and replaced with monitoring well MW-20. Prior to installing the monitoring well, soil boring BB-87 was completed to characterize the subsurface soil conditions and facilitate installation of monitoring well MW-20.

4.3.2 Additional NAPL Delineation Sampling Results

Trace amounts of NAPL were encountered at each soil boring completed as part of the additional NAPL delineation activities, with the exception of soil boring BB-89 located west of the small garage in the western portion of the property. The depth intervals where NAPL was encountered and a visual characterization of the extent of NAPL in each soil sample where NAPL was observed are summarized below.

Soil Boring Location	Depth of NAPL (feet bgs)	Visual Observation
	13.0-13.5	Trace blebs of NAPL in
BB-85	14.0-15.0	inclusions (less than 1 millimeter)
BB-86	19.0-19.4	Trace blebs of NAPL
	9.4-10.0	
BB-87	14.0-16.5	Trace blebs of NAPL
	18.5-20.0	
BB-88	10.0-16.0	Trace blebs of NAPL
22-00	17.0-17.4	THACE DIEDS OF TAKE
BB-88A	12.0-13.3	Trace blebs of NAPL

Soil boring logs and monitoring well construction logs (for MW-20/BB-87) are included in Appendices A and B, respectively. Visual characterization of soil samples collected during the additional NAPL delineation activities completed along the western (hydraulically downgradient) property boundary and in the vicinity of new monitoring well MW-20 located east of the open garage indicated that NAPL, where encountered in the soil, is present as blebs. These visual observations do not support the findings of the PSA/IRM Study and RI, which indicated the presence of NAPL-saturated soil in these areas. Further analysis of the presence and extent of NAPL in subsurface soil at the property is presented in Subsection 8.3. Analytical results obtained for the laboratory analysis of subsurface soil samples for PAHs are presented in Table 10 and summarized below.

Boring ID	PAH Concentration Range (ppm)	Depth of Maximum Concentration (feet bgs)				
BB-85	3.59 J – 40.41 J	14.0 - 16.0				
BB-86	0.12 J – 633.80 J	4.0 - 5.3				
BB-87	22.0 J – 422.90 J	19.6 - 20.0				
BB-88	0.560 J – 75.90 J	4.0 - 4.6				
BB-89 0.081 J – 3.02 J		4.0 - 6.0				
 Notes: ppm = parts per million, which is equivalent to milligrams per kilogram (mg/kg). J = Indicates an estimated concentration. Presented concentration is less than the method detection limit but greater than the instrument detection limit. 						
	5					

4. None of the soil samples collected at soil boring BB-88A was submitted for laboratory analysis.

4.4 NAPL Monitoring and Groundwater Sampling Activities and Results (June 2002)

BBL conducted additional NAPL monitoring and a complete round of groundwater sampling during June 2002. Summaries of the NAPL monitoring and groundwater sampling activities are presented below followed by the results.

4.4.1 NAPL Monitoring and Groundwater Sampling Activities

NAPL Monitoring

During the week of June 10, 2002, a BBL representative gauged each monitoring well using an oil/water interface probe to identify the potential presence/thickness of LNAPL and DNAPL. Where identified based on the gauging activities, NAPL was removed to the extent possible using bailers and containerized in 55-gallon drums for offsite disposal.

Groundwater Sampling

BBL conducted groundwater sampling activities during the week of June 10, 2002 to further characterize groundwater quality at the property. Groundwater sampling logs are included as Appendix C.

Groundwater samples were collected from 26 existing monitoring wells at and in the vicinity of the property. Monitoring wells MW-16 and MW-17 were not able to be located during this monitoring event due to the presence of gravel over the well covers. In addition, groundwater samples were not collected at monitoring wells MW-3, MW-4, and MW-5 due to the presence of NAPL. The groundwater samples were submitted for laboratory analysis for TCL VOCs, TCL SVOCs, and total cyanide. An analytical sample summary presenting the laboratory analyses conducted for each of the groundwater samples is presented as Table 1.

The results of the NAPL Monitoring and Groundwater Sampling Activities are discussed below.

4.4.2 NAPL Monitoring and Groundwater Sampling Results

NAPL Monitoring

Approximately 1.07 feet of LNAPL was encountered in monitoring well MW-4. No measurable amounts of LNAPL were encountered in monitoring wells MW-3 or MW-5 during this event. DNAPL was identified in monitoring well MW-5, but no measurable amounts of DNAPL were encountered in monitoring wells MW-3 or MW-4. DNAPL was previously identified in monitoring wells MW-3 and MW-4 on more than one occasion during the 2001 NAPL monitoring and removal activities. As previously indicated, based on the solid nature of the material at the bottom of the monitoring well MW-5 (likely sediment with trace NAPL), field personnel were not able to probe to the constructed depth of the well.

A total of approximately 2.5 gallons of a mixture of NAPL and water were recovered from monitoring wells MW-3 through MW-5 during the June 2002 NAPL monitoring activities. The NAPL and water were containerized and stored onsite in 55-gallon drums prior to offsite disposal in accordance with applicable rules and regulations.

The results of the LNAPL and DNAPL monitoring activities conducted during June 2002 are presented in Tables 7 and 8, respectively.

Groundwater Sampling Activities

A summary of the results obtained for the June 2002 groundwater sampling activities is presented below.

Analyses	Groundwater Investigation Results
VOCs	BTEX compounds were detected in 10 of the 26 groundwater samples at concentrations greater than the Class GA NYSDEC groundwater standards/guidance values presented in TOGS 1.1.1. The highest total BTEX concentration (7,160 ppb) was reported for groundwater sample MW-18.
PAHs	PAHs were detected in 6 of the 26 groundwater samples at concentrations greater than Class GA NYSDEC groundwater standards/guidance values. The highest total PAH concentration (3,254 ppb) was reported for groundwater sample MW-20. Individual PAHs that were detected at concentrations greater than NYSDEC groundwater standards/guidance values included acenaphthene (in samples MW-13I and MW-20), benzo(a)anthracene (in samples MW-1 and MW-20), benzo(k)fluoranthene (in sample MW-20), chrysene (in samples MW-1 and MW-20), fluorene (in sample MW-20), indeno(1,2,3-cd)pyrene (in samples MW-1 and MW-20), naphthalene (in samples MW-9S, MW-9I, MW-18, and MW-20), and phenanthrene (in sample MW-20).
Cyanide	Total cyanide was detected in 5 of the 26 groundwater samples at concentrations greater than the 200 ppb TOGS 1.1.1 NYSDEC groundwater standard. The highest cyanide concentration (1,100 ppb) was reported for groundwater sample MW-6S.

The results obtained for the laboratory analysis of groundwater samples collected during the June 2002 sampling event for VOCs, PAHs, and cyanide are presented in Tables 4, 5, and 6, respectively. Groundwater sampling results for BTEX and total PAHs are also presented on Figures 4a and 4b and for the shallow and intermediate hydrostratigraphic zones, respectively.

5.1 General

This section summarizes the activities conducted and results obtained for a historical subsurface structure investigation that was conducted at the property by BBL in May and June 2004 in accordance with the NYSDEC approved Work Plan (BBL, 2003) to identify the potential presence and extent of NAPL beneath historical subsurface structures associated with former MGP operations at the property. A written summary of these activities has not been previously provided to the NYSDEC, and therefore, additional detail related to the investigation methods utilized is presented in this section.

5.2 Historical Subsurface Structure Investigation

Historical structures associated with MGP operations at the property include the following:

- 2-million CF gas holder;
- 800,000 CF gas holder;
- 150,000 CF gas holder;
- retort building;
- generator/condenser house (including boiler and engine rooms);
- two purifier houses;
- ammonia concentrator;
- coke bin;
- pit;
- oil tank;
- tar tank;
- tar separator;
- water gas condenser;
- scrubber tank; and
- separator.

The approximate locations of known historical subsurface structures based on a review of historical site maps and previous site investigation activities are shown on Figure 2.

The objectives of the historical subsurface structure investigation, as previously listed in the Work Plan were as follows:

- Verify the presence (or confirm the absence) of onsite subsurface structures and document the location of these structures;
- Identify the approximate depth and size of subsurface structures;
- Develop survey data and mapping of historical subsurface structures; and

• Complete soil borings that penetrate historical subsurface structure foundations and collect soil samples to assess the presence and extent of NAPL-impacted soil underlying the historical subsurface structures.

The historical subsurface structure investigation included a non-intrusive subsurface investigation (consisting of a geophysical survey) followed by an intrusive subsurface investigation (consisting of the completion of test borings and soil borings).

Non-intrusive Subsurface Investigation

BBL completed a non-intrusive geophysical investigation to assist in locating and delineating historical subsurface structure foundations and other subsurface features. The non-intrusive geophysical investigation consisted of conducting electromagnetic (EM) and ground-penetrating radar (GPR) surveys.

BBL conducted the EM survey during May 2004 using a Geonics EM-31 frequency-domain conductivity meter equipped with a digital data recorder and a global positioning system (GPS) for horizontal control. Survey data was collected using vertical dipole orientation with both quadrature (apparent conductivity) and in-phase (metal sensitivity) modes. The EM survey was conducted by collecting discrete readings every 10 feet along transect lines spaced approximately every 20 feet across the property. The locations of the surveyed transect lines relative to existing and historical site features are shown on Figure 5.

The EM data was reduced, contoured, and evaluated to assess the locations of apparent anomalies detected by the EM survey relative to anticipated/approximate subsurface structure locations based on historical mapping and soil boring activities conducted during previous investigations. Areas of decreased or increased EM measurements (i.e., anomalies) were noted and further investigated using GPR.

Following the EM survey activities, a GPR survey was conducted to verify the presence and location of anomalies identified by the EM survey and attempt to quantify the depth of the subsurface structures. The GPR survey was conducted using a Subsurface Interfacing Radar (SIR) System 2000, manufactured by Geophysical Survey Systems, Inc. The results of the EM and GPR surveys are discussed below in Subsection 5.3.

Intrusive Subsurface Investigation

Based on the results of the geophysical investigation, intrusive subsurface investigation activities were conducted to further identify the locations and depths of historical subsurface structures and to facilitate collecting samples of the soil underlying the structure foundations. Intrusive subsurface investigations consisted of advancing both test borings and soil borings. Test borings and soil borings were both completed using a direct push AMS PowerProbeTM equipped with a 2-inch diameter 4-foot long macrocore sampling tube. The purpose of the test borings was to physically identify/verify the location of historical subsurface structures by boring along transects in the vicinity of likely subsurface structure locations until refusal was met. The purpose of the soil borings was to characterize and sample soil from directly beneath historical subsurface structures.

Prior to the commencement of the boring activities, a total of 38 test boring and 30 soil boring locations were field marked and surveyed. The test boring locations were positioned toward the edges of suspected historical subsurface structure positions as determined by historical site maps, geophysical surveying, and information obtained from the PSA/IRM Study and RI.

Following field demarcation of the test boring and soil boring locations, Dig Safely New York was contacted to locate and field mark subsurface utilities. Due to the number of gas mains located on the property, National Grid's gas locator was onsite for the invasive subsurface investigation field activities conducted in the vicinity

of the gas lines. At a number of the test boring locations, borings either had to be moved or not completed at all due to the proximity to the gas utilities.

Test Boring Activities

As indicated above, the test borings were completed using an AMS PowerProbeTM equipped with a 2-inch diameter 4-foot long macrocore sampling tube. In general, a series of test borings were completed at each location along transects oriented perpendicular to the suspected edge of the subsurface structure foundations to identify the approximate physical limits of the structures. To achieve this objective, an initial test boring was completed at the estimated edge of the historical subsurface structure (i.e., the field marked location). If possible, each test boring was advanced to a depth of approximately 8 feet bgs to identify the potential presence of a subsurface structure. If refusal was met at or above a depth of the inferred structure elevation at this initial location an additional test boring was completed approximately 5 feet from the initial boring in a direction away from the assumed historical subsurface structure foundation. Additional test borings were then completed (as necessary) until refusal was not met at the anticipated depth of the structure. Conversely, if the initial test boring at a location did not meet refusal, additional borings completed at 5-foot increments along the transect in a direction toward the assumed historical subsurface structure foundation until refusal was met. Following this protocol, BBL field personnel completed a total of 83 test borings along 27 test boring transects.

Soil samples collected during the completion of the test borings were visually characterized for soil type, staining, obvious odors, and the presence of NAPL. In addition, a PID was utilized to screen each soil sample for the presence of volatile organic vapors.

Soil removed during the test boring activities was returned to each borehole. Excess solid material was placed in 55-gallon drums for transportation and offsite disposal. Between each test boring/soil boring, the AMS PowerProbeTM sampling device was decontaminated and decontamination fluids were containerized in 55-gallon drums for transportation and offsite disposal. Following the completion of test boring activities, the locations were flagged to facilitate field surveying. Subsurface logs of the soil observed in the test borings were recorded in the project field books.

Soil Boring Activities

Following the test boring activities, soil borings were completed to assess the potential presence and extent of NAPL-impacted soil underlying historical subsurface structures. Based on the depth of the subsurface foundations, materials of construction, and presence of NAPL on top of the subsurface foundations, soil borings were advanced as follows:

- Where foundations were less than 4 feet bgs, the subsurface structure was exposed using a backhoe, and a hand-held core drill was used to core through the structure (if possible) to facilitate advancing the AMS PowerProbeTM sampler below the structure;
- Where foundations were greater than 4 feet bgs, BBL's drilling subcontractor, Lyon Drilling Company (Lyon), used hollow-stem auger techniques to auger through the structure to facilitate collecting samples of the soil underlying the subsurface foundation;
- Where visual indications of NAPL were encountered above the subsurface foundation, the soil boring was relocated to a position immediately outside the physical limits of the structure in accordance with the DNAPL Contingency Plan included as Appendix J to the NYSDEC-approved Work Plan (BBL, 2003).

The soil boring activities were completed from June 21 through June 29, 2004 and on September 1, 2004. The initial soil boring activities were conducted using an AMS PowerProbeTM equipped with a 2-inch diameter 4-foot long macrocore sampling tube to collect soil samples. Each soil boring was advanced to refusal or to the top of the groundwater table (approximately 3 to 10 feet bgs), whichever was encountered first. Originally, BBL proposed to complete 30 soil borings (BB-90 through BB-119) in the vicinity of historical subsurface structures. However, five of the proposed soil borings (BB-91, BB-102, BB-103, BB-109, and BB-111) were not initially completed due to the following property conditions:

- Soil boring BB-91 was not completed due to the presence of wooden power poles stored on the proposed boring location (i.e., the northwestern portion of the former retort), and based on at the findings from soil boring location BB-90 (located in the southwestern portion of the former retort) and test pit BT-2, which indicated that the historical subsurface structure was too thick to core through (i.e., greater than 3 feet thick);
- Soil borings BB-102 and BB-103 were not completed in June 2004 due to the proximity of the soil borings to an underground gas main. These soil borings were completed in July 2004 as described below;
- Soil boring BB-109 was not completed due to the indication of NAPL on top of a subsurface foundation within test borings completed along test boring transects TB-6 and TB-7 located in the vicinity of the proposed soil boring location (i.e., vicinity of the former tar tank) as well as the depth of the subsurface structure (6.5 to 7.0 feet bgs) as determined by the test borings; and
- Soil boring BB-111 was not completed in June 2004 due to the depth of the subsurface structure (approximately 6.5 feet bgs) as determined by test boring TB-01. Soil boring BB-111 was completed in July 2004 as described below.

Based on visual indications of NAPL encountered above the historical subsurface foundation at soil boring BB-110 (as well as a number of the test borings completed in the area east of the open garage), BBL completed 8 contingent soil borings (BB-120 through BB-127) to assess the presence and extent of NAPL-impacted soil underlying the historical subsurface structures in this area (i.e., east of the open garage). Soil borings BB-120 through BB-127 were completed east of the open garage in the general vicinity of soil boring BB-110.

An underground steel structure was encountered at several soil borings completed within the footprint of the former 800,000 CF holder. After several failed attempts to penetrate the steel foundation, contingent soil boring BB-128 was completed immediately north of the former 800,000 CF gas holder in the vicinity of soil boring BB-94 to assess the potential presence of NAPL in soil immediately adjacent to the former gas holder.

A hollow-stem auger (HSA) rig was used to complete a number of soil borings that were not able to be completed using the handheld core saw and AMS PowerProbeTM (due to the depth or thickness of the subsurface structure). Soil borings completed using the HSA consisted of following:

- Soil borings BB-102 and BB-103, located within the former purifier house. As indicated above, these soil borings were located in close proximity to subsurface gas utilities.
- Soil boring BB-111, located within the limits of the former oil tank.
- Soil borings BB-112 and BB-113, located within the open garage. During the June 2004 soil boring activities, BBL was not able to penetrate the subsurface structures associated with soil borings BB-112 and BB-113.

- Contingent soil boring BB-112B, located between soil borings BB-112 and BB-113 within the open garage. Soil boring BB-112B was completed because of refusal on the subsurface structure at soil borings BB-112 and BB-113 due to the thickness of the subsurface foundation (i.e., greater than 2 feet). Soil borings BB-112 and BB-113 were completed to approximate depths of 6 feet bgs and 5 feet bgs, respectively, after initially encountering the top of concrete at depths of 3 and 0.5 feet bgs, respectively.
- Soil borings BB-116 and BB-118, located within the limits of the former 150,000 CF gas holder.
- Contingent soil boring BB-129, located between soil boring BB-90 and proposed soil boring BB-91 west of the limits of the former retort. Soil boring BB-129 was completed at this location because the structure encountered at soil boring BB-90 was too thick to penetrate with a handheld core saw and proposed soil boring BB-91 could not be completed due to the presence of wooden power poles, as described above.
- Contingent soil boring BB-130, located near soil boring BB-108 in the vicinity of the former tar tank and tar separator. Soil boring BB-130 was completed to assess the potential presence of NAPL between the former tar tank/tar separator and Schermerhorn Creek.
- Contingent soil boring BB-131, located near soil boring BB-111 in the vicinity of the former oil tank. Soil boring BB-131 was completed due to a moderate to strong odor and black-stained silt and fine sand encountered above the subsurface structure at soil boring BB-111.
- Contingent soil borings BB-132 and BB-133, located east and west of the open garage, respectively. Soil borings BB-132 and BB-133 were completed because the soil borings completed within the open garage (BB-112, BB-112B, and BB-113) did not penetrate the subsurface foundation.

With the exception of soil borings completed within the open garage (soil borings BB-112, BB-112B, and BB-113) and the soil borings completed in the vicinity of the gas utilities (soil borings BB-102, and BB-103), each soil boring was advanced using a 4¹/₄-inch hollow stem auger while collecting continuous soil samples using a 2-inch diameter, 2-foot long split-barrel sampling device advanced in front of the auger. Due to the thickness of the subsurface structure encountered within the open garage, soil borings BB-112, BB-112B, and BB-113 were completed using a solid stem auger and direct push sampling unit equipped with a 2-inch diameter, 4-foot long macrocore sampling tube. Due to the location of soil borings BB-102 and BB-103 in the vicinity of an underground gas main, these soil borings were completed by hand-augering to the top of the subsurface structure, mechanically augering through the subsurface slab using a hollow stem auger and obtaining soil samples using a 3-inch diameter split-barrel sampling device.

Soil cuttings generated during the soil boring activities were containerized in 55-gallon drums and characterized for offsite disposal by National Grid. Each borehole was backfilled to the ground surface with cement/bentonite grout. Following completion of the soil boring activities, the boring locations were flagged to facilitate surveying. Hollow stem augers and split spoon samplers were decontaminated between each borehole and the decontamination fluids were containerized for transportation and offsite disposal. Surveyed soil boring locations are shown on Figure 3.

During completion of the boring activities, BBL's onsite geologist visually characterized each soil sample for soil type, staining, obvious odors, and the presence of potential MGP-related materials (e.g., NAPL, coal tar-like materials, wood chips).

Eight subsurface soil samples, BB-92(0-2'), BB-102(3-5'), BB-107(2-4'), BB-111(4-6.5'), BB-112B(2.5-5.6'), BB-124(6-8'), BB-127(6-8') and BB-128(2-4'), were collected and submitted to CompuChem located in Cary, North Carolina for laboratory analysis for BTEX, PAHs, and cyanide. Soil samples in which NAPL was identified were submitted for laboratory analysis.

5.3 Historical Subsurface Structure Investigation Results

The results for the historical subsurface structure investigation are summarized below.

Non-intrusive Subsurface Investigation

The data obtained from the EM and GPR surveys identified several locations that indicated the potential presence of subsurface structures. The locations of discrete geophysical survey points that identified the potential presence of a subsurface structure are shown on Figure 5. As indicated on Figure 5, the locations of subsurface structures identified during the geophysical activities generally agreed with the locations of the structures as identified on historical site mapping. The EM and GPR survey results are included in Appendix D.

Intrusive Subsurface Investigation

As indicated above in Subsection 5.2, based on the results of the geophysical survey, test borings were completed along 27 transects to confirm the presence and approximate extent of subsurface structures. The approximate locations of the test boring transects are shown on Figure 5. Using information obtained from the geophysical surveying and test boring activities, the locations of historical MGP structures were adjusted on the Site Plan (as applicable).

No significant changes in the locations of the historical subsurface structures were noted based on the investigation activities. The locations of the former gas holders were slightly shifted and the limits of the Retort on the western portion of the property slightly changed. The locations of structures east of the existing open garage were difficult to map. These difficulties are attributed to the size and close proximity of the historical MGP structures within this area, and refusal encountered during test boring activities outside the assumed limits of the historical MGP structures (as identified based on historical Sanborn mapping). Refusal encountered outside the limits of the historical MGP structures within this area may be attributed to the following scenarios:

- Historical MGP structures were constructed on slabs larger than the structures. Therefore, refusal was encountered on this larger slab and not the actual historical MGP structure; or
- Historical MGP structures were demolished and refusal during test boring activities was due to demolition debris and not on the actual historical MGP structure.

A Revised Historical Site Features Location Map is included as Figure 6.

A summary of the test boring findings indicating depth to structures and the locations where NAPL was encountered is presented in the following table.

Historical MGP Structure	Associated Test Boring(s)	Depth of Refusal (feet bgs)	NAPL Encountered (Yes/No)	Depth of NAPL (feet bgs)
	TB-22			
2-million CF Gas Holder	TB-23	1.0	No	NA
	TB-24			
800,000 CF Gas	TB-20	3.0		
Holder	TB-25	3.0	No	NA
	TB-26	2.0		
150,000 CF Gas Holder	TB-27	4.5	No	NA
	TB-34	4.0		
Retort Building	TB-35	6.0	No	NA
Refort Building	TB-36	4.0	NO	
	TB-37	2.0		
Southern Purifier House	TB-11	1.0	No	NA
	TB-3	1.0	No	NA
Ammonia	TB-4	6.0		1.0-2.0 & 4.0- 5.9
Concentrator	TB-5	3.0	Yes	0.8-2.2
	TB-6	6.0		1.0-2.0 & 4.0-
	_	0.0		4.5
Coke Bin & Trestle	TB-33	4.5	No	NA
	TB-6	6.0		1.2-1.5
Tar Tank	TB-7	6.0	Yes	2.4-2.5 & 4.0- 5.5
Tar Separator	TB-9	3.5	Yes	0.2-2.5
Note: NA = Not app	licable			-

NAPL was identified in soil samples collected from 11 of the 43 soil borings completed as part of the historical subsurface structure investigation. A summary of the locations and depth intervals (relative to subsurface structures) where NAPL was encountered is presented in the following table.

Historical MGP Structure	Soil Boring ID	Depth of Structure (feet bgs)	Depth of NAPL (feet bgs)	Visual Characterization
Coke Bin & Trestle	BB-92	4.5	1.0-2.5	Trace NAPL
Ammonia Concentrator	BB-110*	4.0	2.4-2.8	Tar saturated wood chips
Condenser House	BB-112B*	6.0	2.0-6.0	Oil-like material
Condensel House	BB-132**	0.0	6.0-8.0	Blebs of oil-like material
150,000 CF Gas Holder	BB-118	5.8	5.0-5.8 & 8.0-12.0	Oil-like material
Tar Tank	BB-121*	6.0	3.0-5.0	Tar-soaked sand
	BB-124**		3.0-6.7	Trace NAPL
Tar Separator	BB-125**	~6.0	4.0-8.0	Trace to some NAPL specks
	BB-127**		6.0-8.0	Trace blebs of NAPL
800,000 CF Gas Holder	BB-128**	3.0	2.0-8.0	Coal tar streaking
Retort Building	BB-129**	4.5	2.5	Trace tar-like material

Historical MGP Structure	Soil Boring ID	Depth of Structure (feet bgs)	Depth of NAPL (feet bgs)	Visual Characterization	
Notes: 1. * - NAPL observed in a soil sample collected above refusal on a subsurface structure.					
2. ** - NAPL observed in a soil sample collected from a contingent soil boring completed outside the limits of					
refusal on a subsurface structure.					

Soil boring logs for each of the soil borings completed as part of the historical subsurface structure investigation activities are included in Appendix A.

Soil samples that contained the visible presence of NAPL (as identified by BBL field personnel) were submitted for laboratory analysis during the historical subsurface structure investigation. Therefore, the results obtained for the analysis of the samples were anticipated to reflect elevated concentrations of BTEX and PAHs. Analytical results obtained for the laboratory analysis of subsurface soil samples for BTEX, PAHs, and cyanide are presented in Tables 9 through 11, respectively, and summarized below.

Analyses	Subsurface Soil Investigation Results
BTEX	BTEX compounds were detected at concentrations greater than NYSDEC recommended soil cleanup objectives in each of the soil samples submitted for laboratory analysis. The maximum concentrations of BTEX were detected in samples collected east of the open garage, in the vicinity of the former purifier house, and in the vicinity of the former oil tank. The highest BTEX concentration (3,351 ppm) was reported for soil sample BB-128(2-4') collected northwest of the former 800,000 CF gas holder.
PAHs	Total PAHs were detected in each soil sample at concentrations greater than NYSDEC recommended soil cleanup objective. The highest total PAH concentration (1,928 ppm) was reported for soil sample BB-128(2-4') collected immediately north of the former 800,000 CF gas holder.
Cyanide	Cyanide was detected in each of the soil samples at concentrations ranging from 0.58 to 82.2 ppm (reported for soil sample BB-102(3-5') collected in the vicinity of the former purifier house. Due to the various forms of cyanide and stability of the various cyanide compounds, TAGM 4046 does not list a recommended soil cleanup objective. Instead, a site specific cleanup objective is usually established if cyanide is detected at significant concentrations. However, the detected concentrations of cyanide do not exceed soil screening levels (SSLs) of 1,600 ppm established in USEPA 's Soil Screening Guidance (1996).

6.1 General

This section summarizes additional subsurface investigation activities conducted to further evaluate the extent of NAPL in soil and associated dissolved-phase hydrocarbons (DPH) in groundwater at the property. The additional subsurface investigation activities were conducted by BBL between July 2004 and January 2005 and consisted of:

- Conducting preliminary groundwater screening at existing monitoring wells MW-8I and MW-8D, located hydraulically downgradient of the property;
- Completing additional NAPL-related soil boring activities (i.e., advancing soil borings BB-134 through BB-148 and BB-142R to evaluate the potential presence and degree of saturation of NAPL in the vicinity of soil borings completed during the PSA and RI where NAPL was interpreted to be present in soil below the silt and clay unit at the property);
- Installing an additional monitoring well cluster (monitoring well cluster MW-27) downgradient of the western portion of the site to further evaluate the presence of benzene in groundwater in this area;
- Conducting additional investigation activities for evaluation of the silt and clay lacustrine unit (i.e., completing soil borings and installing monitoring wells MW-24 and MW-25 to investigate the hydrogeologic and geotechnical properties and groundwater quality within this unit);
- Conducting monitoring well abandonment and replacement activities for select monitoring wells (monitoring wells MW-4, MW-5, MW-16, and MW-18) that were constructed with their well screens penetrating the low-permeability silt and clay unit underlying the property;
- Completing monitoring well repair/replacement and redevelopment activities for several existing monitoring wells in preparation for a site-wide groundwater sampling event; and
- Conducting a comprehensive site-wide groundwater sampling event.

In addition, field samples were collected in support of the MNA evaluation. As presented in Section 1, an MNA evaluation report will be presented under separate cover. Descriptions of the additional subsurface investigation activities are presented below, followed by a summary of the investigation results.

6.2 Preliminary Groundwater Screening Activities

Previous groundwater analytical results from monitoring well MW-8I have indicated the presence of BTEX compounds (primarily benzene) at concentrations exceeding Class GA groundwater quality standards and guidance values. Between the June 1996 and June 2002 groundwater sampling events the concentration of total BTEX in groundwater from monitoring well MW-8I decreased by two orders of magnitude (from 1,435 μ g/L in 1996 to 28 μ g/L in 2002). BTEX compounds were not detected in groundwater samples collected from the shallow and deep wells at the MW-8 cluster during either the 1996 or 2002 groundwater sampling events.

In accordance with the NYSDEC-approved Work Plan, groundwater samples were collected at monitoring wells MW-8I and MW-8D as part of a preliminary screening to evaluate the need for an additional groundwater monitoring well cluster to delineate the extent of DPH in groundwater downgradient from the property. BBL collected groundwater samples from monitoring wells MW-8I and MW-8D on August 11, 2004 using low-flow sampling techniques.

Prior to sampling, the monitoring wells were purged using a peristaltic pump and disposable tubing. During purging, water quality parameters consisting of pH, temperature, conductivity, dissolved oxygen, oxidation reduction potential, and turbidity were measured and recorded every 5 minutes. The wells were purged until the turbidity of the purge water was less than 50 nephelometric turbidity units (NTUs) and the water quality parameters stabilized within 10 percent of each other for three consecutive measuring periods. Groundwater samples were submitted to CompuChem for laboratory analysis for BTEX compounds (using USEPA SW-846 Method 8260) and PAHs (using USEPA SW-846 Method 8270). Groundwater samples submitted for laboratory analysis for BTEX compounds were collected using a peristaltic pump. Groundwater samples submitted for laboratory analysis for BTEX compounds were collected using disposable polyethylene bailers. Groundwater sampling logs are included in Appendix C.

The results of the groundwater screening activities are summarized below in Subsection 6.9.

6.3 Additional NAPL-Related Soil Boring Activities

To further characterize subsurface soil conditions and evaluate the presence and extent of NAPL at the hydraulically downgradient property boundary, BBL completed 16 additional soil borings (soil borings BB-134 through BB-148 and BB-142R) between July 22 and November 5, 2004. Specifically, the borings were completed along the western fence line and in the vicinity of PSA/IRM and RI borings where field personnel indicated the presence of visible NAPL in soil below the silt and clay unit at the property.

BBL's drilling subcontractor, Parratt-Wolff, completed soil borings BB-134 and BB-135 using a 4¹/₄-inch ID hollow stem auger. Continuous soil samples were collected during the soil boring activities by advancing a 2-inch diameter outside diameter, 2-foot long split-barrel sampling device advanced ahead of the auger. The remaining soil borings were completed using an AMS PowerProbeTM equipped with a 2-inch diameter 4-foot long macrocore sampling tube. BBL's onsite representative visually characterized each soil sample for soil type and the presence of staining, obvious odors, and potential MGP-residual materials.

Originally, soil boring BB-134 was to be completed as a monitoring well with the well screen set entirely within the silt and clay unit. However, as further described in Subsection 6.5 (Silt and Clay Unit Additional Investigation Activities) the typical silt and clay unit that underlies the majority of the property was not encountered during completion of the soil boring.

6.4 Downgradient Monitoring Well Installation Activities

To provide an additional monitoring point to further assess the horizontal and vertical extent of DPH in groundwater hydraulically downgradient from the property, a groundwater monitoring well cluster (consisting of shallow and deep monitoring wells MW-27S and MW-27D, respectively) was installed on August 2, 2004. As indicated on Figure 3, monitoring well cluster MW-27 was installed at a location hydraulically downgradient of monitoring well MW-3 between monitoring well MW-7 and the monitoring well MW-8 cluster west of the property boundary.

A soil boring was completed at the proposed location of monitoring well MW-27D to visually characterize the subsurface soil conditions and identify the appropriate screen depths for the monitoring wells. The soil boring was completed using a 4¹/₄-inch ID hollow stem auger. Continuous soil samples were collected during the soil boring activities by advancing a 2-inch outside diameter, 2-foot long split barrel sampling device ahead of the auger. BBL's onsite representative visually characterized each soil sample for soil type and the presence of staining, obvious odors, and potential MGP-residual materials. No staining, odors, or indications of MGP residuals were encountered during the completion of monitoring wells MW-27S or MW-27D.

Monitoring well MW-27S was constructed with a 5-foot long well screen set from 3 to 8 feet bgs to straddle the groundwater table (encountered at approximately 5.5 feet bgs) and monitor groundwater quality within the shallow groundwater interval. The top of the silt and clay unit was encountered approximately 8 feet bgs. Monitoring well MW-27D was constructed with a 10-foot well screen set from 55.7 to 65.7 feet bgs positioned within the till unit beneath the property. The top of the till unit at this location was encountered at approximately 53.5 feet bgs.

Both of the monitoring wells were constructed using 2-inch diameter Schedule 40 PVC well casing and 20 slot PVC well screens (0.020-inch slot size). After setting the well casing, a Morie #1 silica sand pack was placed in the annulus between the well casing and the borehole wall from the bottom of the borehole to a height of approximately 0.5 feet above the top of the well screen. A one- to two-foot thick hydrated bentonite seal was then placed on top of the sand pack and the remainder of the annulus between the well casing and the borehole wall was filled with a cement/bentonite grout to approximately 1 foot bgs. Monitoring well construction logs are included as Appendix B.

Each monitoring well was completed with the PVC well casing extending approximately 2-feet above the ground surface and fitted with a vented cap. A 4-inch-diameter protective steel casing was then placed around each stick-up casing and secured in an approximately 2-foot-diameter, 1-foot-thick surface pad. The protective steel casings were fitted with locking caps equipped with keyed-alike locks.

6.5 Silt and Clay Unit Additional Investigation Activities

Additional investigation activities were conducted to evaluate the potential for the silt and clay unit located beneath the property to act as a confining unit for the downward migration of NAPL. As presented in a July 1, 2003 comment response letter to NYSDEC, National Grid proposed to install three monitoring wells with the well screens set entirely within the silt and clay unit. The letter also indicated that undisturbed soil samples of the silt and clay material would be collected using Shelby Tube samplers and submitted for laboratory analysis for geotechnical parameters.

During completion of the soil boring at one of the proposed well locations (soil boring BB-134 located along the fence line at the northwestern property boundary) the typical silt and clay unit that underlies the majority of the property was not encountered. Three attempts to collect a Shelby Tube sample proved unsuccessful. Since the typical silt and clay layer was not encountered at this location, a monitoring well was not installed.

Two monitoring wells (monitoring wells MW-24 and MW-25) were installed at the locations shown on Figure 3. At each of these monitoring well locations, the soil borings were advanced to the top of the silt and clay unit using hollow stem auger techniques. Undisturbed soil samples MW-24(12-13.6') and MW-25(10-12') were collected using Shelby tubes and submitted for laboratory analysis to evaluate the geotechnical properties of the

silt and clay. The soil samples were submitted to PW Laboratories, Inc. of East Syracuse, New York for laboratory analysis for the following geotechnical parameters:

- Grain size analysis;
- Vertical hydraulic conductivity;
- Atterberg limits; and
- Bulk density.

Results obtained for the analysis of the soil samples are summarized below in Subsection 6.9.

Monitoring wells MW-24 and MW-25 were constructed using 2-inch-diameter Schedule 40 PVC well casing with a 3-foot-long 20 slot PVC well screens (0.020-inch slot size). The wells were constructed with the well screen and filter pack positioned entirely within the site and clay unit, so that the water levels and water quality measured in the wells are representative of the silt and clay unit. Prior to setting the monitoring well casings, monitoring well MW-24 borehole was backfilled with approximately 2.5 feet of bentonite and the monitoring well MW-25 borehole was allowed to naturally collapse approximately 1.5 feet to bring the bottom of the borehole at each location above the bottom of the silt and clay unit. After setting the well casing, a silica sand pack was placed in the annulus between the well casing and the borehole wall from the bottom of the borehole to a height of approximately 0.5 feet above the top of the well screen. An approximately 6-inch-thick bentonite seal was then placed on top of the sand pack and the remainder of the annulus, between the well casing and the borehole wall, was filled with a cement/bentonite grout to within one foot of the ground surface. Each monitoring well was completed with a flush-mount cover, fitted with a vented cap, and secured within a 1-foot-thick concrete pad. Soil boring logs and monitoring well construction logs are included as Appendices A and B, respectively.

The following table summarizes the depth of the silt and clay unit encountered at each location and the well screen depths.

Monitoring Well ID	Silt & Clay Unit Depth (feet bgs)	Well Screen Depth (feet bgs)
MW-24	9.8 - 16.7	12.0 – 15.0
MW-25	9.6 - 14.9	11.5 – 14.5

6.6 Monitoring Well Abandonment/Replacement Activities

Several of the monitoring wells installed during the RI (i.e., monitoring wells MW-4, MW-5, MW-16, and MW-18) were screened across the low-permeability silt and clay unit in areas potentially containing NAPL. In July 2004, each of these monitoring wells was overdrilled, abandoned, and replaced with new monitoring wells constructed with their well screens set slightly into the low-permeability silt and clay unit. Monitoring wells MW-4, MW-5, MW-16, and MW-18 were replaced with monitoring wells MW-22, MW-21, MW-26, and MW-23, respectively.

Each replacement monitoring well was constructed using 2-inch-diameter Schedule 40 PVC well casing with a 5-foot-long, 20-slot PVC well screen (0.020-inch slot size) and a 2-foot-long PVC sump. After setting the well casing, the annulus between the 2-foot sump and the borehole wall was backfilled with hydrated bentonite chips. A silica sand pack was then placed in the annulus between the well casing and the borehole wall from the top of the bentonite to a minimum height of 0.5 feet above the top of the well screen. An approximately 1 to 2 foot-thick bentonite seal was then placed above the sand pack at each monitoring well. Where necessary, the

remainder of the annulus, between the well casing and the borehole wall was filled with a cement/bentonite grout to approximately 2 feet bgs. With the exception of trace blebs of yellow-brown oil-like material observed in soil samples collected from the 8 to 12 foot depth interval at monitoring well MW-21, NAPL was not observed in soil samples collected during the completion of the soil borings.

Monitoring wells MW-21, MW-23, and MW-26 were completed as a flush mount monitoring wells, fitted with a vented cap, and secured with an approximately 2-foot-thick concrete surface pad. Monitoring well MW-22 was completed with an approximately 2-foot stick-up casing fitted with a vented cap. A 4-inch-diameter protective steel casing was then placed around the PVC stick-up casing and secured in a 2-foot-diameter, 1.5-foot-thick concrete surface pad. The protective steel casings were fitted with a locking cap and lock. Monitoring well construction logs are included as Appendix B.

6.7 Monitoring Well Repair/Replacement and Redevelopment Activities

On August 11, 2004, BBL identified, visually assessed, and gauged each existing monitoring well accessible to field personnel. BBL's field personnel were not able to gauge the monitoring well MW-9 cluster or monitoring well MW-10 due to offsite access agreement issues or monitoring well MW-15 due to physical access issues at that location. Based on the assessment activities, field personnel identified that the cast-iron flush-mounted protective covers at monitoring wells MW-6I and MW-13S were missing, and the well riser at monitoring well MW-13S was broken at the top and appeared to be heaved slightly above the ground surface. In addition, field personnel noted the presence of accumulated sediment within each existing monitoring well at depths ranging up to approximately 10.8 feet in monitoring well MW-6S.

Based on the results of these activities, monitoring well repair, replacement, and redevelopment activities were completed between September 9 and 10, 2004. Monitoring well MW-6I was repaired by installing a new 8-inch-diameter steel curb box in an approximately 2-foot-diameter concrete surface pad. Due to the extensive damage to monitoring well MW-13S, the existing monitoring well was abandoned and replaced. Monitoring well MW-13S was abandoned by overdrilling the monitoring well to a total depth of approximately 24 feet bgs (approximately 2 feet below the well construction depth) using 6¹/₄-inch-diameter hollow stem augers. Following overdrilling activities, the monitoring well casing was removed and the borehole was tremie grouted to the ground surface using cement/bentonite grout.

Monitoring well MW-13SR was installed to replace damaged monitoring well MW-13S. Monitoring well MW-13SR was constructed using a 2-inch-diameter, Schedule 40 PVC well casing equipped with a 10-foot-long, 20slot PVC well screen (0.020-inch slot size) positioned between 10 and 20 feet bgs. After setting the casing, a Morie #1 silica sand pack was placed in the annulus between the well casing and the borehole wall to a height of approximately 2 feet above the top of the well screen. An approximately 2-foot-thick hydrated bentonite seal was then placed above the sand pack. The remainder of the borehole was filled with cement/bentonite grout to approximately 1.5 feet bgs. The well casing was fitted with a locking well cap and finished with an 8-inchdiameter flush-mounted curb box set in an approximately 1-foot-diameter, 18-inch-thick concrete pad.

Fifteen monitoring wells (monitoring wells MW-6S, MW-8S, MW-8I, MW-8D, MW-11, MW-12, MW-13I, MW-13P, MW-14S, MW-14P, MW-14I, MW-17, MW-19S, MW-19I, and MW-19D) were redeveloped to remove accumulated sediment and to facilitate completion of a site-wide groundwater sampling event. Redevelopment activities were conducted by injecting water through a tremie pipe to "lift" accumulated sediment to the surface. Sediment and water removed from the monitoring wells was containerized in 55-gallon drums for future transportation and offsite disposal by National Grid. Each monitoring well was redeveloped so

that the measured depth to the bottom of the well was within 1-foot or less of the original reported monitoring well installation depth.

In January 2005, a manually-driven macro-core sampler was used in an attempt to collect a sample of the material that had accumulated in the bottom of monitoring well MW-20. While attempting to retrieve the sampler after it was driven into the material at the bottom of the well, the well casing was lifted several inches out of the borehole. Since this could have caused damage to the integrity of the well, National Grid elected to abandon and replace monitoring well MW-20.

Monitoring well MW-20R was installed to replace damaged monitoring well MW-20. Monitoring well MW-20 was overdrilled using a 6¹/₄-inch I.D. HSA to remove the well materials. Monitoring well MW-20R was constructed within the borehole created by overdrilling MW-20 using a 4-inch-diameter, Schedule 40 PVC well casing equipped with a 15-foot-long, 20-slot PVC well screen (0.020-inch slot size) positioned between 6 and 21 feet bgs and a 4-inch diameter 3-foot long sump. The well sump was set in cement-bentonite grout from the bottom of the borehole to the top of the sump to minimize the potential for NAPL to migrate to the annulus between the well sump. After setting the well casing, a Morie #1 silica sand pack was placed in the annulus between the well casing and the borehole wall to a height of approximately 2 feet above the top of the well screen. An approximately 2-foot-thick hydrated bentonite seal was then placed above the sand pack. The well casing was fitted with a locking well cap and finished with an 8-inch-diameter flushmounted curb box set in an approximately 1-foot-diameter, 18-inch-thick concrete pad. The MW-20R monitoring well construction log is included in Appendix B.

BBL developed the monitoring well by surging the well screen for approximately 30 minutes using a 2-inch diameter polyethylene bailer prior to pumping the well at an average rate of approximately 4 liters per minute using a Waterra pump and a 4-inch diameter surge block. Field personnel noted that the well development water exhibited a strong MGP-type odor, heavy sheens, and trace blebs of NAPL.

6.8 Groundwater Sampling Activities

BBL conducted groundwater sampling activities from November 1 to November 12, 2004 and during the week of January 10, 2005 to further characterize groundwater at and in the vicinity of the property. Static groundwater level measurements were obtained from each accessible onsite and offsite monitoring well on November 11, 2004 and January 12, 2005. Monitoring wells located on CSX Transportation, Inc. (CSX) property (including monitoring wells MW-9S, MW-9I, MW-9D, and MW-10) were not monitored/sampled during the November 2004 groundwater sampling event due to the extended time frame required to obtain a right-of-entry agreement from CSX. Following execution of the right-of-entry agreement, these wells were sampled on January 12, 2005.

Groundwater samples were collected from 30 existing groundwater monitoring wells in the vicinity of the property. A groundwater sample was not collected from monitoring well MW-20 due to the presence of LNAPL on the water surface in that monitoring well.

In accordance with the Work Plan, low-flow sampling techniques were used to purge groundwater from each monitoring well prior to collecting groundwater samples. Field parameters (consisting of pH, conductivity, dissolved oxygen, temperature, turbidity, and oxygen reduction potential) were measured approximately every 5 minutes during well purging, and the depth to water was monitored throughout the pumping process and adjusted as necessary to minimize drawdown within the well. Copies of the groundwater sampling logs are included in Appendix C.

Well purging activities continued at each monitoring well until the field parameters stabilized. Following purging of each monitoring well, a groundwater sample was collected using low-flow sampling techniques. Groundwater samples for PAH analysis were collected using a peristaltic pump and dedicated tubing. Groundwater samples submitted for laboratory analysis for BTEX compounds were collected using new disposable polyethylene bailers.

Groundwater samples were submitted to CompuChem for laboratory analysis for BTEX and PAHs using USEPA SW-846 Methods 8260 and 8270, respectively. Quality assurance/quality control samples, including blind duplicates (collected from monitoring wells MW-3 and MW-13I), trip blanks, matrix spike, and matrix spike duplicate samples, were submitted in accordance with the Work Plan.

The results of the groundwater sampling activities are presented below in Subsection 6.9.

6.9 Additional Subsurface Investigation Results

This section presents a summary of the results obtained for the following additional subsurface investigation activities:

- Preliminary groundwater screening;
- Additional NAPL-related soil borings;
- Silt and clay unit additional investigation; and
- Groundwater sampling.

Preliminary Groundwater Screening Results

A summary of the analytical results obtained for the laboratory analysis of the groundwater samples is presented in the following table.

Analyses	Preliminary Groundwater Screening Results
VOCs	Benzene was detected in groundwater sample MW-8I at a concentration of 49 ppb, which is greater than the Class GA groundwater standard of 1 ppb. No other VOCs were detected in groundwater samples collected from monitoring wells MW-8I and MW-8D at concentrations exceeding Class GA groundwater standards or guidance values presented in TOGS 1.1.1.
SVOCs	Acenaphthene was detected in the groundwater sample collected from monitoring well MW-8I at a concentration of 46 ppb, which is greater than the Class GA groundwater standard of 20 ppb. No other PAHs were detected at concentrations greater than the laboratory detection limits in the groundwater sample collected from monitoring well MW-8D.

Analytical results for BTEX compounds and PAHs in the groundwater samples are presented in Tables 4 and 5, respectively. Results for groundwater samples collected from wells screened in the shallow and intermediate hydrostratigraphic zones are also shown on Figures 4a and 4b, respectively. In accordance with the NYSDEC-approved Work Plan, an additional monitoring well was planned for installation hydraulically downgradient from the monitoring well MW-8 cluster on the D&H railroad right-of-way based on the presence of benzene in the groundwater sample at concentrations exceeding TOGS 1.1.1 Class GA Groundwater standards and guidance values. However, National Grid was unable to obtain a right-of-entry agreement with D&H to conduct the well installation.

Additional NAPL-Related Soil Boring Results

NAPL, primarily characterized by field personnel as an oil-like material, was identified in soil samples collected from 12 of the 16 soil borings completed as part of the additional NAPL-related soil boring activities. Depth intervals of observed impacted soil are summarized below and in Table 3.

Soil Boring ID	Depth of NAPL (feet bgs)	Soil Characteristics	Visual Characteristics
	11.5 - 13.5	Silt and clay fine sand	Bleb of brown oil-like material
BB-134	16.0 - 18.0	Silty clay with fine sand lenses	Trace blebs of brown oil-like material
	18.0 – 20.0	Silt and fine sand, trace clay	Trace reddish-brown oil-like material
BB-135	7.8 – 10.0	Sand and silt	Trace brown oily NAPL
	8.0 - 8.25	Fine sand	Brown non-viscous oil
	8.4	Sand seam	Brown oil
	8.4 – 10.0	Fine sand little silt	
	12.0 -13.5	Fine sand little silt	
BB-137	17.25 – 17.50	Fine sand seam	Dark brown oil
	18.50 – 18.75	Fine sand seam	Dark brown on
	20.5	Fine sand seam	
	21.2	Fine sand seam	
	21.5 – 22.0	Fine sand seam	Dark brown non-viscous oil
	0.5-4.0	Fine to coarse sand	Black stained with black oil
BB-138	4.0 – 4.5	Cinders and ash	Black oil
	8.0 – 12.0	Silt trace sand with sand seams	Trace blebs of brown oil
9.0 - 10.0		Fine sand	NAPL saturated
BB-139	10.0 – 12.0	Silt and clay	Black NAPL staining
12.0 - 16.0		Silt and clay trace fine sand rootlets	Brown NAPL staining
BB-140	14.0 – 16.0	Silt some fine sand	Brown oily sheens
1.2		Coarse sand and gravel	Sticky black tar
BB-142	2.6 – 2.8	Fine sand and silt	
00 142	4.0 - 4.2	Fine sand and silt coarse sand and gravel	Dark brown oil
	2.0 - 3.0	Fine to medium sand and silt	Black oily material
	4.0 - 8.0	Fine sand and silt	Black oil
BB-143	8.0 – 12.0	Silt little fine sand	Brownish-black oil
	12.0 – 16.5	Clay little silt fine sand seam	Dark brown non-viscous oil
	17.0 – 19.0	Fine sand lenses	Lenses saturated with oil
	4.0 - 10.25	Fine sand trace silt	Dark brown oil
BB-144	10.25 – 11.0	Fine sand	Saturated with oil
DD-144	13.0 – 13.75	Fine sand	Dark brown non-viscous oil
	16.0 – 20.0	Silt trace clay with fine sand seams	Trace dark brown oil

Soil boring logs for each of the soil borings completed as part of the additional NAPL-related soil boring activities are included in Appendix A.

engineers, scientists, economists

Silt and Clay Unit Additional Investigation Results

Results obtained for the analysis of soil samples collected at monitoring well locations MW-24 and MW-25 for geotechnical properties are summarized in the adjacent table.

In addition, grain size analysis for the soil samples submitted from monitoring well locations MW-24 and MW-25 indicated that 95.1 and 93.2 percent by weight (respectively) of the samples passed a #200 sieve, which classifies the soil as silt-clay.

Based on these laboratory results, the geometric mean vertical hydraulic conductivity value for the silt and clay unit that underlies the property is 5.6x10⁻⁷ cm/sec. According to the United States Environmental Protection Agency (USEPA) document entitled, "Geosynthetic Clay Liners Used in Municipal Solid Waste Landfills"

Geotechnical Properties	MW-24 (12.0-13.6')	MW-25 (10.0-12.0')
Plastic Limit (% moisture content)	17	19
Liquid Limit (% moisture content)	28	30
Plasticity Index	11	11
Dry Density (lbs/ft ³)	103.5	90.5
Moist Density (lbs/ft ³)	127.1	118.3
K Value (cm/sec)	4.25x10 ⁻⁶	7.30x10 ⁻⁸
Notes: 1. K Value = Coefficient of Permeability. 2. lbs/ft ³		

(December, 2001), the hydraulic conductivity of most geosynthetic clay liner products ranges from approximately 1×10^{-5} cm/sec to 1×10^{-12} cm/sec (USEPA, 2001).

Groundwater Sampling Results

A summary of the analytical results obtained for the laboratory analysis of the groundwater samples collected during the November 2004/January 2005 sampling event is presented in the following table.

Analyses	Groundwater Investigation Results
BTEX	BTEX compounds were detected in 14 of the 34 groundwater samples collected at concentrations exceeding the Class GA groundwater standards and guidance values. The highest total BTEX concentration (13,530 ppb) was reported for groundwater sample MW-23 installed to replace monitoring well MW-18 immediate south of the former 800,000 CF holder.
PAHs	PAHs were detected in 12 of the 34 groundwater samples collected at concentrations greater than the Class GA groundwater quality standards and guidance values presented in TOGS 1.1.1. The highest total PAH concentration (6,280 ppb) was reported for groundwater sample MW-26. Individual PAHs detected at concentrations exceeding TOGS 1.1.1 Class GA groundwater standards and guidance values included acenaphthene, anthracene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)-fluoranthene, chrysene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene, and pyrene].

The results obtained for the analysis of the groundwater samples collected during the November 2004 and January 2005 groundwater sampling events for BTEX and PAHs are presented in Tables 4 and 5, respectively and for the shallow and intermediate hydrostratigraphic zones are shown on Figures 4a and 4b, respectively.

In November 2003, NYSDEC provided National Grid with laboratory analytical data for groundwater samples collected from two offsite monitoring well clusters on a neighboring property located downgradient of the D&H and CSX right-of-ways. The analytical data provided by NYSDEC indicated that MGP-related dissolved-phase groundwater impacts were not detected in the two neighboring property offsite monitoring well clusters. National Grid will either review relevant groundwater sampling reports and data (if available) at the public repository or submit a Freedom of Information Law (FOIL) request to the NYSDEC to obtain additional information related to groundwater sampling at these offsite wells. National Grid's project manger met with the

NYSDEC project manager for the neighboring property located hydraulically downgradient of the Schenectady (Broadway) site to obtain downgradient groundwater data. A memorandum prepared by National Grid's project manager summarizing the results of the data evaluation is presented as Appendix E.

7.1 General

This section summarizes the till investigation activities conducted to evaluate the presence and hydrogeologic properties of the till beneath the property and further evaluate property stratigraphy. Additional field samples/data were acquired in conjunction with the till investigation in support of a bench-scale study for barrier wall/in-situ stabilization remediation technologies and the development of a site-specific groundwater flow model. The investigation activities conducted in support of these efforts included the following:

Till Investigation

- Installed 13 new monitoring wells including five monitoring wells screened within the till unit, to further evaluate property stratigraphy and the hydrogeologic properties (e.g., hydraulic gradients, hydraulic conductivity) of the unconsolidated materials at the property; and
- Collected and submitted five samples of the till material for laboratory analysis.

Barrier Wall/In-situ Soil Stabilization Bench-scale Studies

- Completed two new soil borings (BB-149 and BB-150) and collected bulk soil samples; and
- Collected a bulk groundwater sample from monitoring well MW-26 and a "mix water" sample from an onsite municipal water supply.

Site-Specific Groundwater Flow Model Data Acquisition

- Completed specific capacity testing during well development activities to facilitate estimation of hydraulic conductivities within the different hydrostratigraphic zones at the property;
- Collected a comprehensive round of water level measurements; and
- Conducted sediment probing, collected a sediment core sample, and measured the flow rate with in the onsite reach of Schermerhorn Creek.

Additional activities also were conducted to repair and/or replace missing components of surface completions (e.g., concrete surface pads, protective covers, well plugs, locks) for 11 existing monitoring wells.

Descriptions of these investigation and well repair/maintenance activities are presented below. Results supporting the site conceptual model and characterization of the geologic and hydrogeologic characteristics of the till unit are also presented in this section. The results obtained for the bench-scale study will be presented in the revised FS Report.

7.2 Till Investigation Monitoring Well Installation

One of the remedial alternatives anticipated to be evaluated in the FS is isolation/containment of impacted materials using a low-permeability barrier wall keyed into a relatively impermeable geologic unit beneath the property. Based on information presented in the RI Report, the silt and clay unit appears to be a low-permeability unit underlying the site. As described in Section 6.5, the silt and clay layer was observed across the majority of the property, but is not continuous and therefore may not be suitable to utilize as the only unit to key a low-permeability barrier into as part of a remedial measure at the property.

This investigation was conducted to obtain additional information to better characterize the stratigraphic and hydrogeologic properties of the deeper unconsolidated units at the property, and evaluate whether the till unit would be an appropriate unit in which to key a containment wall. Prior to the till investigation activities, only monitoring well MW-27D was screened in the till unit, and there were 30 borings that had encountered the top of the till surface.

In support of this objective, thirteen new monitoring wells (MW-13T, MW-19T, MW-28S, MW-28I, MW-28D, MW-28T, MW-29S, MW-29I, MW-29T, MW-30S, MW-30I, MW-30D, MW-30T) at five well clusters were installed, with five monitoring wells (MW-13T, MW-19T, MW-28T, MW-29T, and MW-30T) screened within the till unit. The monitoring well locations (as shown on Figure 3) were selected to provide additional data in strategic areas of the property that also would likely have minimal, if any, MGP-impacted soils and groundwater based on the results obtained from previous subsurface investigation activities.

Two of the till monitoring wells (MW-13T and MW-19T) were installed to expand existing well clusters, and new monitoring well clusters were installed at three locations (MW-28, MW-29, and MW-30). Upon completion, the well clusters typically included 3 to 4 wells screened at various depth intervals. Standard Penetration Testing (SPT) was conducted using ASTM Standard D1586 – Standard Test Method for Penetration Test and Split Barrel Sampling of Soils during the advancement of the soil borings for the five till monitoring wells. In accordance with SPT protocols, continuous soil sampling was conducted at the till wells by advancing a 2-foot long 2-inch outside diameter split spoon sampler ahead of the drilling apparatus. In addition, blow counts were recorded to provide additional data for geotechnical evaluation of the subsurface material. BBL's field personnel visually characterized each soil sample for soil type and for the presence of NAPL, staining, and obvious MGP or petroleum type odors. Geologic changes in the subsurface materials were noted at each till monitoring well location to refine the understanding of the stratigraphic contacts. The field observations, blow counts, and visual characterizations of the soil samples recovered during the SPT split spoon sampling are summarized in the soil boring and monitoring well construction logs presented in Appendices A and B, respectively.

Each well was constructed using 2-inch diameter Schedule 40 PVC well casing equipped with a 5 or 10 foot long, 10-slot (0.010-inch slot size) PVC well screen. At locations where the monitoring well was not installed at the bottom of the bore hole, the borehole was backfilled to the depth of the bottom of the well with bentonite. The wells were constructed by placing a silica sand pack within the annulus between the borehole wall and the well casing from the bottom of the well screen to approximately 2 feet above the top of the well screen. An approximately 2-feet thick bentonite seal was then placed on top of the sand pack. The remainder of the annulus was filled with cement-bentonite grout to within approximately 1 foot of grade. An approximately 6-inch thick sand drain was then installed and the wells were finished with cast-iron flush-mounted curb boxes set in concrete surface pads. The wells were then fitted with a locking well cap equipped with keyed alike locks.

During grouting at monitoring wells MW-28I and MW-30I, slight sheens were noted on the grout surface. No NAPL or sheen was noted during drilling. As a precautionary measure, subsequent shallow monitoring wells installed at these well clusters (monitoring wells MW-28S and MW-30S) were equipped with 2-foot long 2-inch diameter PVC well sumps with the tops of the sumps positioned just below the top of the silt and clay surface, grouted into place, and allowed to set prior to installation of the remaining well materials.

In addition to the till wells, monitoring wells screened within the shallow, intermediate, and deep hydrostratigraphic zones (as defined in Section 8) were installed (as appropriate) at monitoring well cluster locations MW-28, MW-29, and MW-30 to facilitate collection of additional hydraulic data in support of formulating the site conceptual model and preparing the site-specific groundwater flow model (described in Section 7.5). During advancement of the soil borings completed to facilitate installation of the shallow, intermediate, and deep monitoring wells, confirmatory split-spoon soil sampling (approximately 3 to 5 split-spoon samples per bore hole) was conducted to confirm the geological contacts at these locations.

Monitoring wells were installed in the shallow and intermediate hydrostratigraphic zones (the upper fine sand and upper portion of the lower fine sand unit, respectively) at each of the three well cluster locations. In addition monitoring wells were installed in the deep hydrostratigraphic zone (the lower portion of the lower fine sand unit) at well clusters MW-28 and MW-30 since the lower fine sand unit was greater than 30 feet thick.

Following completion of the till investigation activities, BBL surveyed the locations and elevations (as appropriate) for each of the new soil borings and new monitoring wells. Soil boring and monitoring well completion logs are included as Appendices A and B, respectively.

7.3 Geotechnical Testing of Till Unit

As indicated above, SPT was conducted at each of the soil borings completed to facilitate installation of a till monitoring well. During the completion of the drilling activities, soil samples recovered from the split-spoon samplers were placed in jars, labeled, and archived in boxes. Following completion of the drilling activities, individual soil samples (i.e., consisting of the different soil types observed during drilling) were selected for geotechnical testing for grain size analysis and Atterberg limits.

In addition to SPT, attempts were made to collect undisturbed till soil samples from each till monitoring well location for triaxial permeability testing. Shelby Tube samples were successfully collected at MW-13T (68-70' bgs) and at MW-19T (64-66' bgs). Due to the density of the till at MW-28T and MW-29T, initial attempts using the Shelby Tube samplers and second attempts using brass-lined 3-inch diameter split-spoons failed to recover undisturbed soil samples. Running sands and borehole cave-in created difficult drilling conditions at MW-30T and prevented sampling attempts. However, three samples of solid, intact soil recovered from 2-inch diameter split spoon samplers collected from MW-28T (50-54' bgs) and MW-30T (48-50' bgs and 56-58' bgs) and were submitted for geotechnical testing to Geotechnics, Inc.

The results of the geotechnical testing were used to confirm the visual classification of soils and will be used to evaluate potential remedial alternatives as part of the FS. A geotechnical testing sample summary is presented in Table 1.

7.4 Barrier Wall/In-Situ Stabilization Bench-Scale Study Data Acquisition

In support of the Feasibility Study (FS), data were acquired during the till investigation activities to facilitate a bench-scale study to evaluate a slurry wall and in-situ soil stabilization (ISS) as potential remedial technologies. Data acquisition activities consisted of:

- Collecting a composite bulk soil sample, in the vicinity of the anticipated location of a potential barrier wall, representative of the entire soil column from the ground surface to the top of till;
- Collecting a composite bulk NAPL-impacted soil sample from the area immediately east of the Open Garage, adjacent to several former MGP structures;
- Collecting a bulk impacted groundwater sample from monitoring well MW-26 to be used as "worst case" conditions for compatibility testing during the bench-scale testing; and
- Collecting a bulk "mix water" sample that is representative of the water source that would likely be used during the construction of a cement-bentonite or soil-bentonite slurry wall.

The results of the bench-scale study will be incorporated into the Revised Feasibility Study.

7.4.1 Soil Sampling

Two soil borings (BB-149 and BB-150) were advanced to facilitate collection of soil samples to be utilized during the completion of the bench-scale testing activities.

Soil boring BBL-149 was advanced to a depth of 26 feet bgs to collect a bulk composite soil sample at this location. The soil sample collected from BB-149 was then combined with soil collected from 26 feet to the depth of the till at soil boring MW-28T to form a composite sample representative of the entire soil column from the ground surface to the top of till.

Soil boring BB-150 was completed to a depth of approximately 24 feet bgs to collect the bulk composite soil sample at this location. The location of this soil boring was selected to target an area with known NAPL impacts, and the soil sample appeared representative of the material encountered during previous investigation activities. BBL's onsite personnel collected two 5-gallon pails of soil directly from each borehole at BB-149 and BB-150. Two 5-gallon pails were collected from each sampling location to form the composite soil samples. The samples were then shipped to Geo-Solutions testing laboratory, Geotechnics, for the bench-scale testing activities.

Following completion, soil borings BB-149 and BB-150 were backfilled to the ground surface using cement bentonite grout. The soil boring logs for BB-149 and BB-150 are included in Appendix A. Results of the bench-scale study will be incorporated into the Revised Feasibility Study.

Three composite samples representative of the entire soil column at soil borings MW-28T, MW-29T, and MW-30T also were collected and submitted for grain size analysis to be used during the evaluation of potential remedial alternatives as part of the FS. The three composite soil samples were placed in plastic baggies and submitted to Geotechnics for grain size analysis.

7.4.2 Groundwater and Mix Water Sampling

BBL collected an impacted groundwater sample from monitoring well MW-26 and a mix water sample from an onsite municipal water tap to facilitate bench-scale testing activities. Descriptions of the sample collection activities are presented below.

Impacted Groundwater Sample Collection

As indicated above, a bulk groundwater sample was collected from existing monitoring well MW-26 for use in the bench-scale testing activities. Prior to sampling, the monitoring well was purged using a peristaltic pump and disposable tubing. During well purging, water quality parameters consisting of pH, temperature, conductivity, dissolved oxygen, oxidation reduction potential, and turbidity were measured and recorded every 5 minutes. Approximately 8 gallons of water were then pumped from the well and shipped to Geotechnics for use in the bench-scale testing.

Mix Water Sample Collection

A sample of the municipal water supply was collected from an onsite municipal water supply tap. Tap water would be used to prepare the slurry mix and soil stabilization mix during theoretical remedial construction activities. Prior to collecting the water sample, the tap was opened and water was allowed to run for a period of time to flush potentially stagnant water from the piping. Approximately 8 gallons of water were then collected in two 5-gallon pails and shipped to Geotechnics for use in the bench-scale study.

The sampling logs for monitoring well MW-26 and the mix water are included in Appendix C. As indicated above, information obtained from the bench-scale study will be incorporated into the revised FS and a bench-scale study report will be included as an appendix to the revised FS.

7.5 Groundwater Model Data Acquisition

A site-specific numerical, three-dimensional groundwater model will be developed for the site. National Grid plans to use the flow model, as a quantitative tool, to calculate groundwater levels, flow directions, flow velocity, hydraulic gradients, and flow rate at the site under current site conditions as well as under site conditions following construction of the selected remedial measure for addressing the site. Additional data acquired during these activities in support of developing the groundwater flow model consisted of:

- Completing specific capacity testing during well development activities to obtain additional hydraulic conductivity estimates for the different hydrostratigraphic zones at the site;
- Conducting a comprehensive round of water levels to evaluate vertical hydraulic gradients; and
- Probing creek sediment, collecting a sediment core sample for grain size analysis, and measuring the flow rate in the onsite portion of Schermerhorn Creek.

7.5.1 Hydraulic Conductivity Testing

Specific capacity tests were conducted during well development for the 13 wells installed as part of the till investigation activities as well as at existing monitoring wells MW-6I, MW-13SR, MW-19I, and MW-27S (to verify the results obtained during previous investigation activities). The monitoring wells installed during the till investigation were developed to remove fine-grained materials from the well screens and well sand pack. Each well was surged using an inertial pump. After surging, up to 10 well volumes of groundwater were purged from each well. During purging, groundwater physical parameters and water levels were monitored and recorded. Well development logs are included in Appendix B.

	Hydraulic Conductivity
Well ID	(cm/sec)
MW-13T	2.41x10 ⁻⁶
MW-19T	3.00x10 ⁻⁷
MW-28S	8.71x10 ⁻⁵
MW-28I	3.60x10 ⁻⁵
MW-28D	8.25x10 ⁻²
MW-28T	4.67x10 ⁻⁷
MW-29S	5.23x10 ⁻⁴
MW-29I	5.52x10 ⁻⁵
MW-29T	2.80x10 ⁻⁸
MW-30S	1.07x10 ⁻³
MW-30I	5.57x10 ⁻⁵
MW-30D	2.28x10 ⁻²
MW-30T	2.10x10 ⁻⁸

The hydraulic conductivity of the overburden was calculated for monitoring wells installed during the till investigation using a specific-capacity test reduction method based on the analytical solution described in Walton (1962), with the exception of a till monitoring wells MW-13T, MW-28T, MW-29T, and MW-30T. Due to the low

permeability of the till unit, the hydraulic conductivity at these four wells was calculated using recovery data collected April 22, 2005, and April 29, 2005, based on the analytical solution described in Domenico and Schwartz, 1998. Results of the hydraulic conductivity analysis are summarized in the adjacent table and presented in Table 12. Further discussion of the hydraulic conductivities for the various hydrostratigraphic zones at the property is presented in Subsection 8.2.2.

7.5.2 Water Level Measurements

BBL collected a complete round of water level measurements from the property monitoring wells and surface water gauging locations on May 9, 2005. Water levels were measured using an electronic water level probe or an oil/water interface probe (as appropriate) relative to a surveyed mark at the top of the well casing. Groundwater elevations are presented in Table 13, and a May 2005 groundwater water table elevation contour map is presented in Figure 7. Based on a review of the water level data, it appears that three of the till wells (MW-19T, MW-29T, and MW-30T) had not fully recovered at the time of the water level monitoring event. As a result, a groundwater elevation contour map for the till unit was not prepared. The water level data were also used to evaluate vertical hydraulic gradients as discussed in Section 8.2.4.

7.5.3 Schermerhorn Creek Sediment Sampling and Flow Rate Measurement

BBL conducted additional investigation activities on May 10, 2005 along the onsite portion of Schermerhorn creek to collect data that will be used in the development of the site-specific groundwater flow model. Additional data acquisition activities included probing the sediment at three transects across the creek; collecting and submitting one sediment core sample for geotechnical testing for grain size analysis; and measuring the creek flow rate. The flow within the creek represented base flow for this time of year as the week prior to the monitoring event the City of Schenectady only received trace amounts of precipitation.

Probing activities were completed using a 1-inch diameter steel pipe manually advanced to the depth of refusal. The probing activities were completed along three transects positioned immediately adjacent to the three staff gauges (SG-1 through SG-3) established along the onsite reach of the creek. Field personnel recorded the total width of the creek and probed the creek at points 25, 50, and 75% of the distance across the creek profile.

One sediment core was obtained near staff gauge SG-2 (shown on Figure 3). The sediment core was collected by advancing 2-inch diameter Lexan tubing with a stainless-steel core driver to the depth of refusal, withdrawing the tubing, and capping and cutting the tubing at the top of the sediment core. Refusal was encountered approximately 1 foot below the top of sediment and the Lexan tubing could not be advanced beyond that point. The sample was packaged and shipped to Geotechnics for grain size analysis.

Creek flow rate measurements were obtained by estimating the cross-sectional area of the creek at the three transect locations and measuring creek velocity using a JDC Electronic "Flowatch" Liquid/air flow measurement device. Depth of water and creek velocities was measured at the same locations as the sediment probing activities (i.e., 25, 50, and 75% of the creek width). Depending on the depth of water at each point creek velocities were either measured at 50% of the creek depth or at 20 and 80% of the creek depth. Using the data obtained from the creek flow measurements, an average creek flow rate was determined and incorporated into the site-specific groundwater flow model.

7.6 Monitoring Well Repair & Maintenance

During the additional field activities, several monitoring wells were observed to be damaged or missing components of surface completions (e.g., well caps, curb box covers, locks). BBL visually assessed each of the onsite monitoring wells for obvious damage or missing well materials. Based on the results of this assessment, BBL's subcontractor, Parratt-Wolff, conducted monitoring well repair and maintenance of the damaged onsite monitoring wells. A summary of the observed conditions and completed repairs and/or maintenance is presented in the following table.

Monitoring Well Location	Observed Damage	Repair Completed	
MW-1, MW-6S, MW-13I,	Surface completion damaged.	New curb boxes installed with	
MW-13R, MW-19S, and		flush mount covers, locking	
MW-29S		caps, and surface completions.	
MW-17 and MW-19D	Locking cap missing.	New locking cap installed.	
MW-20R Top of inner casing set high,		PVC casing cut and resurveyed.	
	not allowing flush mount cover		
	to seat properly.		
MW-24 and MW-29I	Flush mount cover damaged/	New flush mount cover installed.	
	missing.		
MW-6S	Several feet of sediment	MW-6S was redeveloped using	
	accumulated at the bottom of	the purge and surge method.	
	the well.		

7.7 Till Investigation Results

The results obtained relative to the till geology and hydrogeology for the investigation activities described in this section are presented below.

7.7.1 Till Geology

Visual characterization of the till beneath the site indicated trace amounts of fine to coarse sand and gravel in a matrix of gray clayey silt. The sand and gravel portion of the till contained a high-degree of variability in color and mineralogy, suggesting glacial transport from many different source-rocks. The clayey silt matrix was a uniform gray color and most likely derived from local sedimentary rocks (i.e., Canajoharie Shale).

The till appeared to have an upper and a lower portion as evidenced by blow counts and N-values obtained SPT information. Although compositionally similar, the upper portion of the till was less dense (N-values generally ranged from 10 to 20) than the lower portion (N-values ranged from 20 to refusal [e.g., greater than 50 blows over 6 inches]). The lower portion of the till may represent a lodgment till deposited during glacial advance. The upper less-dense portion of the till may represent a water-lain till deposited in a proglacial lake during deglaciation or ablation till.

As indicated on the top of till surface contour map included on Figure 8, the presence and orientation of a northward-trending trough was confirmed during the till investigation. The top of till contour map was prepared using interpreted information obtained from boring logs prepared for previous investigations as well as this investigation. The elevation of the top of till surface ranged from 153.8 ft AMSL at MW-11/BB-70 to 192.9 ft AMSL at MW-10/BB-68. As indicated on the top of till contour map, the change in relief of the top of till surface is approximately 39 feet from the base of the linear trough to higher elevations observed near the north-central portion of the property.

A cross-section location map is included on Figure 9 and the geologic cross-sections are shown on Figures 10 and 11. The most significant adjustment to the geologic cross-sections based on the data obtained during the till investigation was the addition of the lower lacustrine silt unit observed below the lower fine sand unit and above the till unit in each of the till soil borings. This unit was characterized as soft, dark-gray homogenous silt containing substantial water content. There was an abrupt contact between the silt and the overlying and underlying units. The dark-gray silt may be representative of the initial post-glacial lake deposits pro-grading into glacial Lake Albany, filling localized depressions in the till surface.

7.7.2 Till Hydrogeology

The hydraulic conductivity of the till unit was calculated for the five monitoring wells installed during the till investigation, as previously discussed in Section 7.5.1. The hydraulic conductivity value for monitoring well MW-27D (the only other till well installed during a previous investigation) was also calculated using a specific-

capacity test reduction method based on the analytical solution described in Walton, 1962. Hydraulic conductivity for the till unit based on the in-situ test results ranges from 2.10×10^{-8} cm/sec (MW-30T) to 2.47×10^{-5} cm/sec (MW-27D). The triaxial permeability results (e.g., vertical hydraulic conductivity) for the five undisturbed soil samples (two Shelby Tubes, and three 2-inch diameter split spoon samples) collected from the till unit also fell within that range, as summarized in the adjacent table.

Sample ID	Vertical Hydraulic Conductivity (cm/sec)
MW-13T (68-70')	7.3 x 10 ⁻⁸
MW-19T (64-66')	1.2 x 10 ⁻⁶
MW-28T (50-54')	3.2 x 10 ⁻⁸
MW-29T (48-50')	5.8 x 10 ⁻⁷
MW-30T (56-58')	9.6 x 10 ⁻⁸

As previously discussed in Section 7.5.2, it appears that three of the till wells (MW-19T, MW-29T, and MW-30T) had not fully recovered after monitoring well development, over a period of approximately one month. As

a result, a groundwater elevation contour map for the till unit was not prepared, therefore, flow direction and horizontal gradients within the till unit could not be accurately determined at the time of this report. The groundwater elevation data were also used to evaluate vertical hydraulic gradients at each of the monitoring well clusters. The vertical hydraulic gradient results are discussed further in Subsection 8.2.4.

8. Site Characterization

8.1 General

This section presents an overall property characterization based on the findings from the previous and current investigation activities. The property characterization includes the following:

- The property geology and hydrogeology;
- An evaluation of the presence, extent, and nature of NAPL at the property; and
- The nature and extent of impacts to soil, groundwater, and sediment at the property.

8.2 Site Geology and Hydrogeology

This section summarizes the property geologic and hydrogeologic conditions based on field observations and testing conducted as part of the site investigations.

8.2.1 Site Geology

Based on the visual characterization of subsurface soil samples collected during the site investigations, three primary unconsolidated geologic units have been identified beneath the property, as presented in the adjacent Generalized Geologic Column table. These geologic units are described below.

- Fill: man-placed fill materials and various man-made structures, including those related to the former MGP and the current utility service center operations. The fill is comprised of a mixture of silt, sand, and gravel and to a lesser extent debris (including ash, coal, coke, concrete, bricks, glass, and wood).
- An interbedded sequence of fine sand, silt, and clay, representing glaciolacustrine deposits in proglacial Lake Albany. In some portions of the property, deposits that are likely recent alluvial floodplain deposits consisting of interbedded fine sand, silt, and clay from the Mohawk River are present above the glaciolacustrine deposits, but are not distinguished from this unit. Based on the results of the site investigation activities, the glaciolacustrine deposits appear to have filled in the trough and other low spots observed in the till. Three subunits were identified within the glaciolacustrine deposits:
 - An upper subunit (3 to greater than [>]13 feet thick) comprised of very fine sand and silt and silt and clay, with lesser amounts

BLASLAND, BOUCK & LEE, INC

engineers, scientists, economists

Generalized Geologic Column

Stratigraphic Unit	Thickness Range (ft)	Approximate Upper Contact Elev.(ft. AMSL)
Fill – silt, sand, gravel, ash, cinders, slag. Also includes demolition debris, foundation remnants, and buried utilities.	2 to 13	Ground surface - 228
Glaciolacustrine - interbedded and laminated fine- grained deposits of varying grain size.	26 to 66	Upper Fine Sand – 228 Silt and Clay – 215 Lower Fine
Till – dense basal till, consisting of poorly-sorted silt, sand, clay, and gravel. Locally, a less dense till was encountered that may represent a water-lain till deposited in a proglacial lake during deglaciation or ablation till Note: elevations from	>45	Sand – 205 174

Note: elevations from approximate center of site

of gravel and sand, and no peat; orange staining and small roots. Locally, clay was encountered within this subunit with thicknesses greater than 10 feet (this unit may contain recent alluvial floodplain deposits, as described above);

- An intermediate subunit (23 to 29 feet thick) comprised of silt and fine to medium sand, with organic material (roots, wood, plant debris, peat), occurring in alternating layers of sand and silt in many locations; and
- A deeper subunit (0 to >28 feet thick) comprised of very fine sand and silt, with lesser amounts of gravel and orange staining and small roots. Locally, clay was encountered within this subunit with thicknesses greater than 10 feet.
- Till deposits consisting primarily of dense, poorly-sorted silt, sand, clay, and gravel that was left behind during Pleistocene glaciation. As discussed in Section 7 and illustrated on Figure 8, a trough exists in the upper surface of the till, extending from west of the office building to the northeast corner of the property, Results of the till investigation confirmed that this unit is a confining layer underlying the property.

Bedrock (identified as Canajoharie Shale (Simpson, 1952)) has not been confirmed by coring at the property, but was assumed to be encountered in three RI borings (BB-27, BB-55, and BB-65), based on drill cuttings and regional information (see Section 2.1.3.2).

Figure 9 shows the location of two generalized geologic cross-sections. As shown on the two geologic crosssections included as Figures 10 and 11, the composition of the silt and clay subunit of the glaciolacustrine unit is variable across the property, ranging from predominantly silt to silty clay, with frequent interbeds of fine sand and silt. Due to the variable nature of the glaciolacustrine subunit, the silt and clay unit does not appear to constitute a continuous confining subunit at the property. While the silt and clay unit was observed across most of the property, the unit was not observed at soil borings MW-8D/BB-64 (located immediately north of CSX), BB-33 (located in the northern portion of the property, beneath the former 150,000 CF gas holder), and BB-42 (located in the south-central portion of the property, south of the tar tank and tar separator and Schermerhorn Creek). As indicated in Section 6.3, the typical silt and clay unit that underlies the majority of the property was not encountered during completion of soil boring BB-134 located along the fence line at the northwestern property boundary.

8.2.2 Site Hydrogeology

The site hydrogeology was characterized using information from regional hydrogeologic references (Subsection 2.1.3.2), and information obtained during site investigations. The site-specific information included:

- Water level measurements obtained from 49 monitoring wells and three staff gauges;
- Results from in-situ hydraulic conductivity (slug) tests conducted in six monitoring wells;
- Specific capacity hydraulic conductivity tests conducted in 43 monitoring wells;
- Well recovery hydraulic conductivity tests conducted in 4 monitoring wells;
- Geotechnical analyses of subsurface samples including triaxial permeability analyses of 9 undisturbed soil samples; and

• Geologic data from over 150 soil borings.

Hydrostratigraphic zones comprise one or more geologic units of similar hydrogeologic properties (e.g., hydraulic conductivity) that may be grouped together to aid interpretation and simplify the discussion of groundwater flow. Based on a review of this information, the following four hydrostratigraphic zones were defined based on their relative position to the silt and clay subunit: Hydrostratigraphic

- A shallow zone, comprised of saturated fill and the upper fine sand unit, located above the silt and clay unit;
- A silt and clay unit that includes seams of interbedded fine sands classified as a "leaky" semi-confining unit;
- An intermediate zone, comprised of the upper portion of the lower fine sand subunit below the silt and clay subunit;
- A deep zone, comprised of the lower portion of the lacustrine lower fine sand subunit, below the silt and clay subunit; and
- A till zone located below the glaciolacustrine deposits.

Existing monitoring wells grouped into these hydrostratigraphic zones are presented in the adjacent

2	01	-		5				
table.	Monitoring wells	5 MW-17, N	AW-20R, and	MW-21	were installed	such that the	eir screens straddle the	
shallo	w and intermediate	hydrostratig	graphic zones,	, therefor	e, groundwater	data obtained	from these wells were	
not uti	lized to evaluate th	e hydrogeol	logic propertie	s of the h	ydrostratigraph	ic zones.		

As described in Subsection 3.3.4, Parsons conducted slug tests during the RI at six monitoring wells (MW-7, MW-9S, MW-9I, MW-9D, MW-13P, and MW-19D). The results obtained from the slug tests indicate that the lacustrine unit may be characterized as a single hydrostratigraphic zone. However, since the hydraulic conductivity values calculated from the results of the slug test performed by Parsons ranged over five orders of magnitude, the four hydrostratigraphic zones described above were assigned for the purposes of this report.

Specific capacity test data collected from 46 monitoring wells during the November 2004 groundwater sampling event, and the April 2005 till investigation were used to evaluate the horizontal hydraulic conductivity of the

formation surrounding the monitoring wells. Each of the wells previously tested by Parsons (monitoring wells MW-7, MW-9S, MW-9I, MW-9D, MW-13P, and MW-19D) were retested by BBL and therefore the most recent hydraulic conductivity results were used in this evaluation. A successful specific capacity test was not able to be completed at monitoring well MW-25 since the pumping test was not

Hydrostratigraphic Zone	Geometric Mean Horizontal Hydraulic Conductivity (cm/sec)
Shallow (15 Wells)	9.70 x 10 ⁻⁴
Intermediate (12 Wells)	8.59 x 10 ⁻⁴
Deep (9 Wells)	2.50 x 10 ⁻³
Till (6 Wells)	4.15 x 10 ⁻⁷

long enough and water was not drawn in from the surrounding formation. Therefore an estimated hydraulic conductivity could not be calculated for this location. The hydraulic conductivity values for the 46 wells tested are summarized in Table 12. Hydraulic conductivity values calculated from specific capacity and well recovery tests range from 2.10 x 10^{-8} cm/sec (MW-30T) to 1.14 x 10^{-1} cm/sec (MW-6I). The geometric mean calculated for the four hydrostratigraphic zones identified at the property are summarized in the adjacent table.

Zone	Monitoring Well ID
Shallow	MW-3, MW-6S, MW-7, MW-8S, MW-9S, MW-13SR, MW-14S, MW-19S, MW-22, MW-23, MW- 26, MW-27S, MW-28S, MW- 29S, MW-28S, MW-28S, MW-
Intermediate	29S, MW-30S MW-6I, MW-8I, MW-9I, MW-10, MW-11, MW-13P, MW-14P, MW-15S, MW-19I, MW-24, MW-25, MW-28I, MW-29I, and MW-30I
Deep	MW-8D, MW-9D, MW-12, MW- 13I, MW-14I, MW-15I, MW-19D, MW-28D, and MW-30D
Till	MW-13T, MW-19T, MW-27D, MW-28T, MW-29T, MW-30T
Note:	

Well construction information for monitoring well MW-1 is not available. Therefore the hydrostratigraphic zone in which the well is screened cannot be determined. Parsons collected two undisturbed subsurface soil samples from soil boring BB-28H and BB-83 from the silt

and clay subunit. As discussed in Section 6, additional undisturbed subsurface soil samples were collected from the silt and clay subunit by BBL in 2004 at soil borings MW-24 and MW-25. BBL also collected five undisturbed subsurface soil samples from the till unit during the till investigation at soil borings MW-13T, MW-19T, MW-28T, and MW-30T. Each of the undisturbed soil samples was submitted for laboratory testing for vertical hydraulic conductivity using a triaxial permeameter. The triaxial permeability results summarized in the adjacent table indicate that the silt and clay subunit inhibits or forms a barrier to vertical fluid movement.

Vertical Hydraulic Conductivity (cm/sec) Sample ID Silt and Clay Unit BB-28H (14-16') 3.3 x 10 4.1 x 10⁻⁸ BB-83 (12-14') MW-24 (12-13.6') 4.5 x 10⁻⁶ MW-25 (10-12') 7.3 x 10⁻⁸ Geometric Mean 2.6 x 10⁻⁷ **Till Unit** MW-13T (68-70') 7.3 x 10⁻⁸ MW-19T (64-66') 1.2 x 10⁻⁶ MW-28T (50-54') 3.2 x 10⁻⁸ MW-30T (48-50') 5.8 x 10⁻⁷ MW-30T (56-58') 9.6 x 10⁻⁸ Geometric Mean 1.7×10^{-7}

The triaxial permeability results for till samples summarized in the above table and hydraulic conductivity values for the six monitoring

wells installed within the underlying till unit (geometric mean values of 1.7×10^{-7} cm/sec and 4.15×10^{-7} cm/sec, respectively) indicate that the till unit also inhibits or forms a barrier for vertical migration of fluids. Additionally, as previously stated, the till unit is relatively dense, poorly-sorted, and appears to be continuous across the property with a thickness of greater than 45 feet. Section 7.0 presents a detailed description of the findings of the till investigation.

8.2.3 Groundwater Occurrence and Flow

The November 11, 2004, January 12, 2005, and May 9, 2005 rounds of groundwater level measurements were used to evaluate groundwater flow beneath the property. Measurements were obtained from both onsite and offsite monitoring wells. Monitoring wells were grouped according to the hydrostratigraphic zone in which they

are primarily screened as summarized above. These groupings were used to assess the degree of hydraulic connections and vertical gradients between the hydrostratigraphic zones. A summary of the water levels measured at each of the onsite and offsite monitoring wells for these monitoring events is presented in Table 13.

A water table elevation contour map for the May 9, 2005 monitoring event is presented as Figure 7. Generally, the pattern of contours indicates that shallow groundwater beneath the property and surrounding areas generally flows to the northwest toward the Mohawk

Average Groundwater Level (feet below ground surface)

Monitoring Event						
11/11/04	1/12/05	5/9/05				
6.1	7.7	6.2				
8.3	9.1	8.4				
9.5	10.1	9.2				
NM	NM	12.0*				
	11/11/04 6.1 8.3 9.5	11/11/041/12/056.17.78.39.19.510.1				

Note:

* - Three of the till wells did not appear to be fully recovered one month after well development

River, with localized northern and northeastern flow components. As indicated on Figure 7, Schermerhorn Creek is a losing stream in the property vicinity, meaning that surface water is discharging to groundwater and that locally, groundwater flow is away from the creek. Estimated shallow horizontal hydraulic gradients, based on Figure 7, range from 0.002 feet/foot to 0.022 feet/foot.

Due to the complex hydrostratigraphy beneath the site (e.g., strong vertical gradients between hydrostratigraphic units, numerous regional hydraulic influences), it is very difficult to depict groundwater flow patterns on plan view potentiometric surface maps. Therefore the potentiometric surfaces for the intermediate, deep, and till hydrostratigraphic units are not depicted on figures included with this report. Based on the complexity of the

system additional data may be required in order to fully understand groundwater flow and construct a usable 3-D groundwater flow model. These additional data may be collected as part of a pre-design investigation after the selection of a remedial measure to address the site.

8.2.4 Vertical Hydraulic Gradients

Vertical hydraulic gradients were calculated using water level measurements obtained on May 9, 2005 from three monitoring well pairs and seven monitoring well clusters as summarized in the following table.

An upward gradient of 0.226 feet/foot was observed between the till and deep monitoring wells in the MW-13 well cluster. A slight upward gradient of 0.023 feet/foot was also observed between the deep and intermediate monitoring wells in the MW-19 well cluster. Downward gradients ranging from 0.005 feet/foot (MW-28I to MW-28D) to 0.371 feet/foot (MW-28S to MW-28I) were observed at the remaining well clusters. The geometric mean calculated for the vertical hydraulic gradients between shallow and intermediate wells was 0.163 feet/foot, which is approaching an order of magnitude higher than the geometric mean calculated between the intermediate and deep wells (0.0140 feet/foot). The predominantly downward gradients indicate that the property is located within a recharge area for the underlying saturated zone. Consistent with previous findings, the magnitude of the

	Shallow to Intermediate	Intermediate to Deep	Deep to Till
Well ID	Vertic	al Gradient (ft/ft) (5/9/05)
MW-6	0.071		
MW-8	0.106	0.007	
MW-13	0.23	0.053	-0.226
MW-14	0.211	0.029	
MW-15	0.027		
MW-19	0.134	-0.023	*
MW-27	0	.045 (Shallow to Til	I)
MW-28	0.371	0.005	*
MW-29	0.245	لا	*
MW-30	0.257	0.006	*

Note:

 * - Indicates that associated till well did not appear to be fully recovered at the time of water level measurement. Therefore, vertical gradient was not calculated.

2. Negative value indicates upward vertical gradient.

vertical hydraulic gradient exceeds the magnitude of the horizontal hydraulic gradient (i.e., vertical to horizontal anisotropy). The presence of upward vertical hydraulic gradients between the till and the deep and the deep and intermediate hydrostratigraphic zones at select wells (MW-13 and MW-19 during May 2005; MW-14 during January 2005; and MW-13 during the RI in October 1996) indicates a limited extent of upward vertical groundwater flow. Since these upward vertical gradients were not observed during each of the monitoring events, they may be of limited or seasonal nature. However; as previously discussed in Section 7.5.2, it appears that three of the till wells (MW-19T, MW-28T, MW-29T, and MW-30T) had not fully recovered after monitoring well development, over a period of approximately one month. As a result, vertical hydraulic gradients within the till unit at these three monitoring well clusters could not be accurately determined at the time of this report. A summary of the vertical hydraulic gradients (including water table elevations used to calculate the gradients) is presented in Table 14.

8.3 NAPL and Soil Quality Evaluation

Based on its immiscible nature and the generally low solubility of its chemical constituents, coal tar NAPL can persist for many years in the subsurface acting as a continuing source of dissolved-phase chemical constituents to groundwater as the chemical constituents of the NAPL slowly dissolve. NAPL also tends to migrate to a limited degree into low permeability zones (e.g., silt and clay) via capillary forces , which then in turn act as an ongoing source of chemical constituents to groundwater. Therefore, characterizing the nature and extent of

8-5

NAPL is a challenging component of a remedial investigation. The NAPL evaluation for the property is presented below and consists of NAPL characterization (to assess the potential nature and origin of the NAPL) and NAPL distribution to summarize the extent of visual observations of NAPL in soil at the property.

8.3.1 NAPL Characterization

The primary approach used to characterize the nature of the NAPL encountered at the property was "source evaluation," which consisted of reviewing chromatograms and analytical results for a limited number of soil samples. The samples chosen for a preliminary forensic evaluation were selected based on their location (i.e., to provide distribution across the areas where NAPL-impacted soil was observed) and the results obtained from laboratory analysis of the soil samples. The purpose of the source evaluation was to provide information about the potential origin of the NAPL observed at the property.

Based on the nature of the DNAPL encountered at the property and the relative low volume of DNAPL in existing onsite groundwater monitoring wells, where encountered, a sample of the DNAPL material has not been able to be collected during recent investigation activities. However, an LNAPL sample was collected from monitoring well MW-20 on November 12, 2004 and submitted for laboratory analysis to characterize the physical and chemical characteristics of the material.

BBL's forensic specialist performed a preliminary source evaluation (on a subset of soil samples that were believed to contain NAPL) by reviewing the total-ion-current (TIC) chromatograms generated during laboratory analysis for organic compounds and comparing ratios of target compounds to describe the compositional characteristics of the NAPL.

The results of the preliminary source evaluation indicated whether the sample observed within an impacted soil sample exhibited the characteristics of:

- Coal tar, including whether the sample had the characteristics of the coal carbonization or carbureted water gas manufacturing processes (which were both utilized at this property);
- Petroleum, including whether the sample had the characteristics of gasoline-range organics; diesel-range organics; or heavy-range petroleum distillates; or
- A mixture of coal tar and petroleum products.

The following table summarizes the findings of the evaluation.

			Coal Tar Ch	Coal Tar Characteristics Petroleum Characteristics		Soil Sample Results (ppm)				
Sample ID	Depth (ft)	Boring Location	Creosote	сс	CWG	Gas Range	Diesel Range	Heavy Distillate	BTEX	TPAH
BB-111	4-6.5	Former Oil Tank	<i>\</i>	~		1	1		1,320	1,793
BB-112B	2.5-6.5	Former Condenser House			>				11.2	1,287
BB-124	6-8	Between former Tar Tank and Condenser House				1			777	1.8
BB-128	2-4	Adjacent to 800,000 CF Holder			1			1	3,351	1,928
BB-135	8-10	Adjacent to western fence line			~				191	6,883
Notes: Notes: 1. The locations of these samples are shown on Figure 3. 2. CC = Coal carbonization coal tar. CWG = Carbureted water gas coal tar.										

Field personnel collected and submitted an LNAPL sample from monitoring well MW-20 to characterize the physical and chemical properties of the material. The LNAPL sample was submitted to Queen's University in Kingston, Ontario for laboratory testing for kinematics viscosity, density, and interfacial tension. The sample was analyzed at a temperature of 12.5°C to approximate the in-situ temperature characteristics of the material. The results obtained for the physical characterization of the LNAPL sample are presented in the table below. As indicated in the table, the viscosity of the LNAPL was approximately 45 times that of water at the same temperature. However, the density of the NAPL was only slightly less than water.

A sample of the LNAPL was also submitted to BBL's analytical laboratory subcontractor (CompuChem) for laboratory analysis for total petroleum hydrocarbons [diesel range organics (DRO) and gasoline-range organics (GRO)] and priority pollutant PAHs. Based on a preliminary forensic evaluation of the LNAPL sample, the material appeared to be weathered middle-distillate oil (No. 2 fuel oil, diesel) with more than 20% co-mingled carbureted water gas coal tar. The results obtained for the laboratory analysis of the LNAPL sample are presented in Table 15.

LNAPL Physical Characteristics

Analysis	LNAPL	Water			
Kinematics Viscosity (cP)	58.59	1.3			
Density (g/mL)	0.985	1.0			
Interfacial Tension (mN/m)	15.39				
Notes;					
 Kinematics viscosity, density 		cial			
tension were measured at 1	2.5° C.				
g/mL = grams per milliliter					
cP = centiPoise					
4. mN/m = milliNewtons/meter					

5. -- = not applicable

8.3.2 NAPL Delineation

Delineating the extent of NAPL is often challenging at former MGP sites due to many factors, including lack of information regarding plant operations and waste handling; the potential for multiple release points; and the complicated nature of coal tar DNAPL migration in the subsurface. According to Pankow and Cherry (1996), it is not possible to predict the paths that DNAPL will take in any but the broadest sense. Similarly, BBL's experience at numerous MGP sites is that residual and pooled (i.e., potentially mobile and/or recoverable) DNAPL rarely can be reliably distinguished by visual examination of split-spoon samples. Such a distinction is best made by installing a properly constructed monitoring well screened across the NAPL-containing zone.

Because of these factors, NAPL delineation for the property has focused on an assessment of the general location of NAPL in the subsurface without regard for differentiating between residual, pooled, or potentially mobile NAPL. The evaluation of the extent of NAPL at the property consisted of periodic monitoring of groundwater monitoring wells, visual observation of soil samples collected during subsurface boring, and test pitting activities.

Summaries of LNAPL and DNAPL observations for each monitoring event are presented in Tables 7 and 8, respectively. A summary of locations where NAPL has been identified within monitoring wells at the property is presented in the following table.

As discussed in the next section, BBL developed a three dimensional (3-D) model of NAPL distribution at the site. This involved reviewing available soil boring for the property, identifying soil samples and depth intervals that contained NAPL, and tabulating those data in a database, which was used as input for the 3-D model.

Monitoring Well		ine 101		uly 101	Se 20	ept 01	0 20	ct 01	No 20	ov 01	Do 20	ec 01		ne 02		ov 04	Ja 20	an 05	Ma 200	
wen	D	L	D	L	D	L	D	L	D	L	D	L	D	L	D	L	D	_	D	L
MW-2**	NM	NM	1	1		1		1		1		1			NM	NM	NM	NM		
MW-3	✓*	~	✓*	~	✓*	1										1		1		
MW-4**	∕*			1		1		1		1		1		1	NM	NM	NM	NM		
MW-5**	1	~	1	~	1		1		1		1		~		NM	NM	NM	NM		
MW-20***	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	-	~		~		✓
MW-21	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	1	1	1	1	1	

Notes:

1. NAPL Monitoring activities were conducted by Blasland, Bouck & Lee, Inc. (BBL) on June 13, 2001; July 31 and August 1, 2001; September 6 and 7, 2001; October 9, 2001; November 6, 2001; December 6, 2001; June 2002; November 11, 2004; and January 12, 2005.

2. * - Based on field notes from the June 2001 monitoring event, the nature of the material at the bottom of monitoring wells MW-3 and MW-4 is unknown. The material in the bottom of the wells may be a mixture of sediment and DNAPL.

3. ** - Monitoring wells MW-2, MW-4, and MW-5 were replaced prior to the November 2004 monitoring event with monitoring wells MW-20, MW-22, and MW-21, respectively.

4. *** - MW-20 was replaced by MW-20R on November 18, 2004.

5. NM = Not measured.

6. -- = Not present.

7. D = DNAPL

8. L = LNAPL

8.3.2.1 Development of NAPL Distribution Visual Model

As indicated above, a database of NAPL observation for the site borings was developed in the process of building the 3-D site NAPL model. As part of the modeling process, the NAPL-observation data from soil boring and test-pit logs were transformed into numerical values in the database. A BBL geologist assigned one of three numerical values to each soil sample as follows:

- A value of "0" represented a sample with no visual indications of NAPL or sheens.
- A value of "0.5" represented a sample where no separate-phase NAPL was evident, but sheens were present.
- A value of "1" was assigned to any sample were NAPL was identified at any point in the soil sample regardless of the degree of NAPL saturation.

These values were used as input for the Mining Visualization Software (MVS) package (a 3-dimensional visualization software platform). The output of the MVS model is a 3-dimensional visual representation of the interpreted vertical and horizontal extents of NAPL in soil at the site. The NAPL distribution model and the software to install a small viewing program are located on a CD-ROM in Appendix F.

The approximate extent of NAPL-impacted soil is depicted on Figure 12a in three "panes", one plan view and two oblique views. The following information is useful for interpreting the figure:

• The three panes across the top of the figure represent NAPL distribution in the subsurface soil based on visual identification of NAPL in soil samples collected during previous investigation activities. The three panes across the bottom of the figure represent the distribution of soil containing total PAHs at concentrations > 500 ppm based on laboratory analysis of soil samples collected during previous investigation activities.

- The silt and clay unit surface is shown to facilitate the comparison of the NAPL extent relative to the silt and clay surface. In plan view, the silt and clay surface is shown using contours. In the oblique views, the silt and clay surface is depicted as a semi-transparent surface (the shading reflects the surface topography of the silt and clay unit).
- The May 2005 water table appears as a light-blue colored, semi-transparent surface and the shaded areas representing NAPL impacted soil change tint relative to whether the impacted soil is above or below the water table.
- The actual presence and (if present) distribution of DNAPL beneath the water table is expected to be highly irregular, due to the stratified, heterogeneous nature of the silt and clay unit and lower fine sand units (Pankow and Cherry, 1996). As such, NAPL extents shown are mathematical interpretations based on the existing data and may only be considered a general representation of the actual distribution.
- As indicated above, to evaluate the extent of NAPL in the subsurface, the model incorporates visual indications of NAPL in soil samples collected from previous investigation. However, visual indications of NAPL observed in soil samples collected during the test boring activities conducted during the Historical Subsurface Structure Investigation were not incorporated in the model. Specifically, as indicated in Section 5.3, NAPL-impacted soil was identified in soil samples collected from depths of 1 to 6 feet bgs in test borings completed in the vicinity of the Ammonia Concentrator, Tar Tank, and Tar Separator.

The modeled extent of NAPL at the site is described below relative to three "subareas," (Figure 12a) as defined below:

- Northern Portion of the Site The portion of the property near the former 800,000 CF and 2-million CF gas holders, extending along northern portion of the property from soil borings BB-51 to BB-55;
- Central Portion of the Site The portion of the property between the former oil tank and 150,000 CF gas holder, and former retort and eastward to the tar tank.
- Western Fence Line Portion of the Site The portion of the property near the western fence line extending from the small garage northward to monitoring well MW-22, west of the former retort.

An oblique view (facing northeast) of the combined distribution of NAPL-impacted soil and soil containing total PAHs at concentrations > 500 ppm based on laboratory analysis is shown on Figure 12b.

The distribution of NAPL-impacted soil and soil containing total PAHs shown on Figures 12a and 12b includes NAPL-impacted soils delineated based on computer modeling using MVS software. As indicated above, the MVS model interpolated the extent of NAPL-impacted soil from a database formed from visual observations of NAPL in samples collected from soil borings completed at the site. Interpreted areas of potential NAPL-impacted soil depicted on Figure 13 include areas where test borings, test pits, and subsurface excavations were completed and where NAPL-impacted soils were noted but not included in the MVS database. Areas where no soil information was available indicating visually clean soil between NAPL-impacted soil sampling locations were also included as areas of potentially NAPL-impacted soil on Figure 13.

8.3.2.2 Northern Portion of the Site

Former MGP structures in the northern portion of the property include the 800,000 CF and 2 million CF gas holders. NAPL observations in this area of the property consisted of the following:

- Generally NAPL in this area was observed in the fill and upper fine sand units.
- NAPL was also observed in the uppermost portion of the silt and clay at soil borings BB-9, BB-51, BB-55, and BB-85.
- Refusal was met on a subsurface steel structure at several locations within the vicinity of the former 800,000 CF gas holder prohibiting visual assessment of the subsurface soil conditions below the former gas holder. Further investigation in this area is not practicable without significant excavation efforts to remove the steel subsurface structure. Based on visual characterization of soil samples collected from borings BB-51, BB-82 and BB-102, areas indicating interpreted areas of potentially NAPL-impacted soil in the vicinity of the 800,000 CF holder are shown on Figure 13.
- The BB-58 soil boring log indicates the presence of "strong HC (hydrocarbon) odor, sheen, free phase" and "wood, black stained fill, free phase wet" at 4 feet and 7 feet bgs, respectively. Five borings (soil borings BB-95 through BB-99) were completed during 2004 and were advanced to depths between 7.4 and 8.6 feet bgs. None of these borings encountered "free phase" material that was indicated in the BB-58 soil boring log.

8.3.2.3 Central Portion of the Site

Former MGP structures in this portion of the property include the 150,000 CF gas holder, oil tank, tar tank, tar separator, condenser house, ammonia concentrator, and the southern-most purifier house. The former MGP structures located in this area of the property were primarily associated with the production of manufactured gas. NAPL observations in this area of the property consisted of the following:

- NAPL was observed in soil samples collected slightly beneath the bottom of the former 150,000 CF gas holder at soil boring locations BB-8 and BB-118.
- NAPL observed in the vicinity of the 150,000 CF holder appears to be confined to the immediate vicinity of the holder and does not appear to significantly penetrate the upper surface of the silt and clay unit.
- NAPL was observed in soil boring B-112B above the subsurface slab associated with the former condenser house (soil sample BB-112B).
- LNAPL has consistently been encountered in monitoring well MW-20.
- DNAPL was encountered at several of the soil borings completed in the vicinity of the ammonia concentrator, tar tank, and tar separator. NAPL was observed above the water table and above a number of the historical subsurface structures located in the Central Portion of the site (i.e., the ammonia concentration, tar separator, tar tank) during the test boring activities described in Section 5.2. During the PSA, Atlantic's field personnel noted the visual presence of NAPL in soil at depths up to 40 feet bgs in soil boring BB-4.

NAPL also was observed by BBL personnel at soil boring BB-150 during the till investigation described in Section 7.

On June 1, 2004, S&W Services, Inc., under contract to National Grid, removed an 8,000-gallon gasoline underground storage tank (UST). Visual indications of coal tar-related impacts were observed in subsurface soil in the north-northwest corner of the excavation. Visual impacts consisted of stained soil (starting at approximately 1 foot bgs) and sheen (started between 3 and 4 feet bgs). These soils also had an obvious coal tar-like odor. A memorandum to file prepared by Brown and Caldwell (who observed the UST removal activities) is included as Appendix G.

8.3.2.4 Western Portion of the Site

Former MGP structures in this portion of the property include the retort building, trestle, and coal bin. Additional features include the former rail siding and indications that this area was utilized for storage of coal that was used as raw material for the gas manufacturing process. NAPL observations in this portion of the property consisted of the following:

- NAPL was observed in soil beginning very near the ground surface at several soil borings along the western fence and west of the former rail spur.
- NAPL in this area was observed in the upper fine sand unit primarily located immediately above the silt and clay unit, within rootlets through the silt and clay, in higher concentrations within fine sand seams throughout the silt and clay unit, and into the upper portion of the lower fine sand unit.
- During the PSA, Atlantic's field personnel noted the presence of NAPL to a maximum depth of approximately 30 feet bgs in this portion of the property observed at soil boring BB-18. NAPL was observed by BBL personnel at soil boring BB-149 during the till investigation described in Section 7.

8.3.3 Soil Quality

A summary of soil quality is presented in conjunction with the NAPL evaluation since a considerable portion of the organic compounds in the site soil are likely associated with NAPL (primarily coal tar DNAPL). Limited areas of the property have been impacted by petroleum products outside of the interpreted extent of NAPL-impacted soil.

Principal components of coal tar that are typically analyzed for at MGP sites are BTEX and PAHs. Because coal tar contains elevated concentrations of these compounds, soil samples that contained visual indications of coal tar were not always analyzed; instead, BTEX and PAHs were conservatively assumed to be present in the visibly NAPL-impacted soil at concentrations greater than applicable Standards, Criteria, and Guidance (SCGs).

SCGs for this property were obtained from NYSDEC's TAGM 4046 and a follow-up NYSDEC memorandum from Michael J. O'Toole, Jr. dated December 20, 2000. These SCGs (guidance values) establish limits for total detected VOCs and SVOCs as ≤ 10 ppm and ≤ 500 ppm, respectively.

Similar to the visual depiction of NAPL-impacted soil described in Subsection 8.3.2, the modeled extent of soil containing PAHs at concentrations > 500 ppm is depicted on Figure 12a in three "panes", one plan view and two oblique views and an oblique view of the combined distribution of NAPL-impacted soil and soil containing total

PAHs at concentrations > 500 ppm is shown on Figure 12b. In addition, the extent of NAPL-impacted soil (including interpreted areas of potential NAPL distribution as described above in Section 8.3.2.1) and soil containing total PAHs at concentrations > 500 ppm is shown on Figure 14.

8.3.3.1 Surface Soil

Parsons collected a total of 18 surface soil samples from a depth of 0-6 inches bgs. during the RI between 1994 and 1996. In addition, BBL collected one soil sample [BB-92(0-2')] during the Historical Subsurface Structure Investigation activities in the immediate vicinity of the former Coal Bin near the western fence line of the property. Results obtained for the analysis of the surface soil samples indicated the following:

- None of the soil samples collected during the RI indicated the presence of BTEX at concentrations exceeding the 10 ppm guidance value.
- Soil sample BB-92 (0-2') indicated the presence of total BTEX at concentrations exceeding the 10 ppm guidance value (48.2 ppm).
- Two soil samples [BSS-4 (0-0.5'), located along the former railroad siding in the western portion of the property and BB-84 (0-2') located east of Schermerhorn creek near a former gasoline distribution area] contained total PAHs at concentrations of 554.5 and 3,158 ppm, respectively.

Analytical results for soil samples collected during the RI are presented in the RI Report (Parsons, January 1999). An analytical sample summary is presented in Table 1 and results obtained for surface soil sample BB-92 (0-2') for BTEX and PAHs are presented in Tables 9 and 10, respectively. The human health risk assessment conducted as part of the RI evaluated the risk to humans by the constituents detected in the surface soil samples.

8.3.3.2 Subsurface Soil

As a conservative measure, soil containing NAPL is assumed to contain BTEX and PAHs at concentrations exceeding the TAGM 4046 recommended soil cleanup objectives. Therefore, the extent of impacted soil at the property requires discussing both analytical results and the extent of NAPL together. During the PSA/IRM, RI, NAPL investigation, historical subsurface structure investigation, and additional subsurface investigation activities, a total of 234 soil

Soil Sampling	Summary
---------------	---------

	Nur					
Analysis	PSA/IRM	RI	NAPL Investigation	HSSI	ASI	Totals
BTEX ¹	73	152	0	8	1	234
PAHs ¹	73	152	27	8	1	261
VOCs a 2. HSSI = I 3. ASI = Ad	nd SVOCs. Historical Subs dditional Subs of samples do	surface urface li	nples were analyz Structure Investig nvestigations. include QA/QC or	ation.		

samples were submitted for laboratory analysis for BTEX and 261 soil samples were submitted for laboratory analysis for PAHs, as summarized in the adjacent table.

Analytical results for soil samples collected during the PSA/IRM and the RI are presented in their respective reports. Results obtained for the analysis of soil samples for BTEX and PAHs collected since the completion of the RI are presented in Tables 9 and 10, respectively. For the purposes of this report, the distribution of impacted soil is based on soil containing PAHs at concentrations greater than the 500 ppm guidance value.

The extent of soil containing PAHs at concentrations > 500 ppm (based on laboratory analysis of soil samples) is shown on Figure 12a. As shown on Figure 12a, the following observations can be made regarding the extent of soil containing PAHs at concentrations greater than the 500 ppm guidance value:

- Similar to NAPL distribution, soil containing PAHs at concentrations greater than the guidance value was concentrated in the northern portion of the property near the 800,000 CF holder (soil borings BB-9 and BB-128); in the central portion of the property near the former condenser house, oil tank, tar tank, and tar separator (soil borings BB-11, BB-41R, BB-81, BB-111, and BB-112B); and along the western fence line near the former railroad siding and former coal stock pile area (soil borings BB-13, BB-14, BB-29, BB-30, BB-32, BB-86, and BB-135).
- PAH-impacted soil also extends south of Schermerhorn Creek in the vicinity of a former UST previously located west of the existing Garage/Office Building. The soil impacts in this area are believed to primarily be due to a petroleum source formerly located west of the Garage/Office Building.
- The majority of the NAPL-impacted soil and soil containing PAHs at concentrations exceeding 500 ppm is located below the water table.
- Relatively high PID readings (i.e., levels greater than 500 ppm) were detected in soil samples collected from soil borings BB-104, BB-105, BB-111, and BB-128; however, only MGP-type odors were noted by field personnel (i.e., presence of NAPL and/or NAPL-impacted soils was not noted). Although there is the potential for NAPL to be present in areas of elevated PID readings, these readings are used for field screening, but are not a direct indicator of NAPL presence.

As a conservative measure, all soils containing visual indications of NAPL may also be considered to contain total PAHs at concentrations > 500 ppm. An oblique view (facing northeast) showing the combined modeled distribution of NAPL-impacted soil and soil containing PAHs at concentrations > 500 ppm is included on Figure 12b.

8.3.4 Conceptual Model for NAPL Migration

Based on information obtained during the site investigations, NAPL at the property can be attributed to historical site operations associated with the former MGP process and multiple petroleum sources. Based on the observed NAPL distribution, there appear to be multiple NAPL release points, which are supported by the long operational history of the property and the apparent poor waste handling practices typical of the era and specifically of MGP sites. The most likely sources based on the MGP process and the distribution of NAPL observed in subsurface soil are the condenser house; the tar tank, tar separator; and ammonia concentrator; the 150,000 and 800,000 CF gas holders, the former railroad siding and coal stockpile area along the western fence line; and the former oil tank. These specific structures are noted because NAPL was either handled or generated in larger quantities at these locations and many of these features are often the source of NAPL at MGP sites. Equally important, NAPL was not encountered beneath several historical subsurface structures (e.g., the 2 million CF gas holder).

As indicated above, a sufficient volume of DNAPL was not able to be collected during the recent investigation activities to assess its physical characteristics that influence its migration potential. Therefore, the only conclusions that can be made regarding NAPL migration are indications of where NAPL has been identified in the subsurface strata.

- NAPL was observed at several locations across the property immediately above the silt and clay unit;
- Coal tar-type odors, blebs, and coal tar-saturated rootlets were also observed throughout the silt and clay unit with greater degrees of NAPL saturation within coarser-grained interbedded fine sand seams within the silt and clay unit;
- At some locations NAPL was observed in the upper portion of the lower fine sand unit, below the silt and clay unit;
- No NAPL was observed in the lower portion of the lower fine sand unit near the upper surface of the till unit, or within the till unit itself;
- Vertical migration of historic NAPL releases has apparently ceased based on the absence of NAPL observations in the lower fine sand unit and underlying till;
- NAPL was not observed in offsite monitoring wells; and
- NAPL does not appear to be migrating horizontally.

8.4 Groundwater Quality

summarizes This section groundwater characteristics at and near the property based on obtained the results for groundwater sampling conducted since 1992. The individual groundwater investigations are described in more detail in previous sections of this report as well as in summary reports for the individual investigations. The adjacent table summarizes known groundwater sampling events conducted during the site investigations:

As previously discussed, the primary dissolved-phase chemical constituents at the property are BTEX and PAHs. A summary of the results obtained for the analysis of the

	Groundwater Sampling	Number of Wells	TCL VOCs	втех	TCL SVOCs	PAHs	PCBs/Pesticides	TAL Metals	Cyanide	NA Parameters
Site Investigation PSA/IRM	Event	Sampled								
PSA/IRM	July 1992	•	1		1				1	
RI	June 1996	28	1		1		1	1	1	-
	July 1996	28	1		1		1	1	1	
NAPL/Groundwater Investigation	June 2002	26	1			1			1	
Additional	August 2004	2		1		1				
Subsurface Investigation	November 2004/January 2005	34		~		~				~
Notes: 1. VOCs = volatile organic compounds 2. SVOCs = semi-volatile organic compounds 3. PCBs = polychlorinated biphenyls 4. PAHs = polynuclear aromatic hydrocarbons 5. NA Parameters = natural attenuation indicator parameters										

groundwater samples for BTEX and PAHs are presented in Tables 4 and 5, respectively and for the shallow and intermediate hydrostratigraphic zones are shown on Figures 4a and 4b, respectively. Results obtained for the analysis of natural attenuation parameters will be discussed in detail as part of the Monitored Natural Attenuation Evaluation Report to be included as an attachment to the revised Feasibility Study Report.

Groundwater Sampling Events

Analytical results are discussed below respective to their hydrostratigraphic zone (i.e., shallow, intermediate, deep, and till as defined in Subsection 8.2.3).

8.4.1 Shallow Hydrostratigraphic Zone Groundwater Monitoring Results

As presented above in Subsection 8.2.2, a total of 19 monitoring wells are currently screened in the shallow hydrostratigraphic zone. This zone is generally defined as the saturated zone above the silt and clay unit and in most cases the well screen straddles the water table (Figures 10 and 11). However, some of the wells included in the discussion of this hydrostratigraphic zone were included because their hydraulic properties (e.g., hydraulic head, hydraulic conductivity) are more consistent with the shallow zone. As presented above under Subsection 6.6 (Monitoring Well Abandonment/Replacement Activities), BBL abandoned and replaced monitoring wells MW-4, MW-5, MW-16, and MW-18 with monitoring wells MW-22, MW-21, MW-26, and MW-23, respectively, because the original monitoring wells were constructed with their well screens straddling the low permeability silt and clay unit. For the purposes of this summary, the results obtained for the analysis of the groundwater samples collected from the abandoned monitoring wells are discussed under this section. Results obtained for the laboratory analysis of groundwater samples collected from the shallow.

<u>BTEX</u>

As presented above in Subsection 6.9, BTEX compounds were detected at concentrations greater than the Class

GA NYSDEC groundwater standards/guidance values presented in TOGS 1.1.1 in groundwater samples collected from 8 of the 15 shallow monitoring wells (monitoring wells MW-3, MW-9S, MW-13SR, MW-20, MW-21, MW-22, MW-23, MW-24, and MW-26) that were sampled during the November 2004/January 2005 sampling event.

Generally, the monitoring wells where BTEX compounds were detected at concentrations exceeding TOGS 1.1.1 standards and guidance values correspond to the locations where NAPL was observed (i.e., the northern, central, and western areas described above). Elevated BTEX concentrations (212 ppb and 1,780 ppb) were also detected in the groundwater samples collected from monitoring well MW-24 (located on the south side on Schermerhorn Creek) and monitoring well MW-26 (located hydraulically downgradient from the former oil tank), respectively. The time series data presented in the adjacent table do not indicate identifiable trends toward greater or lesser BTEX concentrations.

Time Series G	Broundwater DIEA and PAR							
Concentrations in Shallow Overburden Wells								
	Total BTEX (ppb)							

	Total BTEX (ppb)						
Well ID	6/96	7/96	6/02	11/04-1/05			
MW-2/MW-20	1,500	1,417	4,299	NS			
MW-9S	1,166	328	3,828	387			
MW-16/MW-26	993	758	NS	1,780			
MW-18/MW-23	20,700	17,400	7,160	13,530			
		Total P	AHs (ppb)				
MW-2/MW-20	1,804	197	3,254	NS			
MW-9S	140	130	452	100			
MW-16/MW-26	4,476	5,890	NS	6,280			
MW-18/MW-23	2,224	968	596	531			
Neteo							

Notes:

1. Monitoring well MW-20 installed during January 2002 to replace monitoring well MW-2.

 MW-23 installed in August 2004 to replace monitoring well MW-18. MW-18 screened within both shallow and intermediate hydrostratigraphic units.

 MW-26 installed in August 2004 to replace monitoring well MW-16. MW-16 screened within both shallow and intermediate hydrostratigraphic units.

4. NS = Not sampled

PAHs

As discussed in Subsection 6.9, PAHs were detected at concentrations above NYSDEC groundwater standards/guidance values presented in TOGS 1.1.1 in groundwater samples collected from 8 of the 15 shallow monitoring wells (monitoring wells MW-3, MW-9S, MW-20, MW-21, MW-22, MW-23, MW-24, and MW-26)

that were sampled during the November 2004/January 2005 sampling event. With the exception of monitoring well MW-13SR, PAH and BTEX compounds detections in groundwater were found to be co-located, (i.e., PAHs were detected in groundwater samples collected from the same wells where analytical results indicated the presence of BTEX).

As indicated in the adjacent time series table, PAH concentrations appear to have generally been decreasing in monitoring well MW-18 and replacement well MW-23 located to the east of the storage building in the central portion of the property. PAHs appear to have generally increased in groundwater samples collected from monitoring well MW-16 and replacement well MW-26 located to the south of the open garage hydraulically downgradient from the former oil storage tank. The remaining time series data do not indicate identifiable trends in PAH concentrations.

8.4.2 Intermediate Hydrostratigraphic Zone Groundwater Monitoring Results

As presented in Subsection 8.2.2, a total of 13 monitoring wells are currently screened within the intermediate hydrostratigraphic zone. This zone is generally defined as the fine sand unit below the silt and clay unit (Figures 10 and 11). Results obtained for the laboratory analysis of groundwater samples collected from the intermediate groundwater zone are summarized below.

BTEX

As presented above in Subsection 6.9, BTEX was detected at concentrations greater than the Class GA NYSDEC groundwater standards/guidance values presented in TOGS 1.1.1 in groundwater samples collected from 4 of the 12 intermediate monitoring wells (monitoring wells MW-8I, MW-9I, MW-17, and MW-25) that were sampled during the November 2004/January 2005 sampling event.

Generally, the monitoring wells where BTEX was detected at concentrations greater than TOGS 1.1.1 standards and guidance values correspond to the locations where NAPL was observed (i.e., the northern, central, and western areas described above). However, groundwater monitoring wells MW-8I and MW-9I are located offsite, hydraulically downgradient of the western and northern portions of the property (respectively). The time series evaluation of groundwater BTEX concentrations presented in the adjacent table does not indicate consistent trends toward increasing or decreasing BTEX concentrations.

Time Series Groundwater BTEX and PAH Concentrations in Intermediate Overburden Wells

		Total BTEX (ppb)						
Well ID	6/96	7/96	6/02	11/04-1/05				
MW-8I	1,435	113	28	589				
MW-9I	739	274	712	581				
MW-17	626	124	NS	475				
		Total	PAHs (ppb)				
MW-8I	<10	2	28.3	61				
MW-9I	79	<37	110	52				
MW-17	116	28	NS	86				
Notes:								

1. NS = Not sampled

PAHs

PAHs were detected at concentrations exceeding NYSDEC groundwater standards/guidance values presented in TOGS 1.1.1 in 4 of the 12 intermediate monitoring wells (MW-8I, MW-9I, MW-17, and MW-25) that were sampled during the November 2004/January 2005 sampling event. Note that these are the same wells where BTEX concentrations were detected at concentrations greater than groundwater standards and guidance values.

As indicated in the adjacent time series evaluation of groundwater PAH concentrations, a general upward trend in groundwater PAH concentrations is inferred by groundwater samples collected from monitoring well MW-8I (from non-detect in 1992 to 61 ppb in 2004). Monitoring well MW-8I is located offsite west of the CSX railroad right-of-way. None of the other time series results obtained for the analysis of groundwater samples collected from intermediate monitoring wells indicated a distinguishable trend toward increasing or decreasing PAH concentrations.

8.4.3 Deep Hydrostratigraphic Zone Groundwater Monitoring Results

As presented in Subsection 8.2.2, a total of 9 monitoring wells are currently screened within the deep hydrostratigraphic zone. The deep zone is generally defined as the lower portion of the lower fine sand unit below the silt and clay unit at the property (Figures 10 and 11). Results obtained for the laboratory analysis of groundwater samples collected from the deep aquifer zone are summarized below.

BTEX

Based on the results obtained for the analysis of groundwater samples collected from the deep monitoring wells during the November 2004/January 2005 sampling event, groundwater sample MW-9D (19 ppb total BTEX) was the only groundwater sample that indicated the presence of BTEX at concentrations exceeding Class GA groundwater standards/guidance values. Monitoring well MW-9D is located northwest of the Service Center property on the west side of the D&H railroad right-of-way

<u>PAHs</u>

Based on the results obtained for the laboratory analysis of the groundwater samples, none of the groundwater samples collected from the deep monitoring wells during the November 2004/January 2005 groundwater sampling event contained PAHs at concentrations exceeding Class GA groundwater standards/guidance values.

8.4.4 Till Groundwater Monitoring Results

As presented in Subsection 8.2.2, a total of six monitoring wells are currently screened within the till unit beneath the property. However, with the exception of monitoring well MW-27D, each of the till wells was installed following the November 2004/January 2005 groundwater sampling event. None of the till wells installed in 2005 were sampled to assess groundwater quality at these locations.

The results obtained for the analysis of the groundwater sample collected from monitoring well MW-27D, did not indicate the presence of BTEX or PAHs at concentrations exceeding laboratory detection limits.

8.5 Sediment Quality

Sediment investigations were conducted during the PSA/IRM and RI activities between 1994 and 1997. A total of 2 sediment samples were collected during PSA/IRM activities and a total of 34 sediment samples were collected at 20 sampling locations during RI activities.

VOCs were not detected at concentrations greater than the sediment screening criteria for the protection of benthic aquatic life (chronic toxicity). SVOCs [including acenaphthene, anthracene, benzo(a)anthracene, fluoranthene, fluorene, naphthalene, phenanthrene, phenol, and pyrene] were detected

Area	Sediment Sampling Locations
Area 1	BSD-1 (PSA), BSD-14
Area 2	BSD-12, BSD-13
Area 3	BSD-2 (PSA), BSD-11
Area 4	BSD-9

in sediment samples collected at several sampling locations at concentrations greater than the sediment screening criteria for the protection of benthic aquatic life (chronic toxicity). The most elevated concentration of total PAHs were detected in sediment samples collected from sediment sampling locations BSD-2(0.11') [PSA/IRM Study] 617.26 ppm and BSD-14(0-4') [RI] 278.29 ppm. In addition, PCBs were detected at concentrations exceeding the sediment screening criteria for the protection of benthic aquatic life (chronic toxicity) in 4 of the 34 samples analyzed at concentrations up to 15 ppm [sediment sample BSD-13(0-4')]. Four areas encompassing several individual sediment sampling locations were identified along the creek where SVOCs and PCBs were detected in sediment samples at concentrations exceeding the sediment screening criteria for the protection of benthic aquatic life (chronic toxicity). As presented above, the screening values are not intended to serve as cleanup criteria. These areas are indicated on Figure 15 and are summarized in the adjacent table.

8.6 Summary

Based on the results and findings of site investigation activities, the nature and extent of environmental impacts from former site operations has been sufficiently characterized in order to proceed with a Feasibility Study. As detailed in the previous sections of this report, investigation activities were conducted at the property to facilitate a detailed analysis of the following:

- Site geology and hydrogeology;
- The nature and extent of impacts to soil, groundwater, and sediment; and
- The presence, extent, and nature of NAPL.

This section summarizes these findings and presents conclusions that will facilitate the evaluation of remedial alternatives as part of the Feasibility Study.

Based on the results obtained from the investigation activities conducted at the Schenectady (Broadway) former MGP site, the following summaries can be made:

- Impacts to soil and groundwater appear to be from both MGP- and petroleum-related historical operations at the property.
- NAPL-impacted soil is present at the property and is primarily limited to three general areas (the Northern, Central, and Western portions) of the property.
- NAPL was encountered adjacent to several of the former historical MGP subsurface structures. However, significant amounts of NAPL were not encountered directly below the former historical MGP subsurface structures.
- The majority of NAPL-impacted soil appears to be located above the silt and clay unit and within fine sand seams interbedded with the silt and clay. The majority of the NAPL-impacted soils are below the groundwater table.

- No NAPL-impacted soil has been encountered offsite.
- NAPL has been encountered in soil along the downgradient western property boundary (adjacent to the CSX railroad right-of-way).
- The till unit beneath the property is a hydraulic confining layer and would provide a hydraulic barrier for the downward migration of NAPL if NAPL ever migrated to this depth. NAPL has not been encountered below the upper portion of the lower fine sand unit.
- Relatively strong vertically downward vertical hydraulic gradients are present between the shallow and intermediate, and intermediate and deep hydrostratigraphic zones. An upward hydraulic gradient appears to be present between the till and deep hydrostratigraphic zones further providing a deterrent to the downward migration of NAPL or DPH. However, based on limited information due to four of the till wells not being fully recovered more than one month following well development, the vertical gradients between the till and deep hydrostratigraphic zones will be further evaluated during the FS.
- LNAPL and DNAPL have been encountered sporadically in a limited number of groundwater monitoring wells at the property.
- NAPL has not been encountered in any of the offsite groundwater monitoring wells or associated soil samples.
- Impacted groundwater is present offsite hydraulically downgradient from the Western and Northern Portions of the property.
- Analytical data provided by NYSDEC for groundwater sampling conducted at two neighboring property offsite monitoring well clusters indicated that MGP-related dissolved-phase groundwater impacts were not detected. National Grid will further review available information for these wells by either reviewing relevant groundwater sampling reports and data (if available) at the public repository or by submitting a FOIL request to the NYSDEC to obtain additional information related to groundwater sampling at these offsite wells.

An FS will be prepared to evaluate potential remedial measures to address the environmental concerns identified by the investigation activities conducted at the Schenectady (Broadway) Service Center.

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample D (rt bg) Date Matrix VOCs PTEX VOCs PAts Inorganics PCBs Qualide BB-1 210-250 7/13/92 Soil X <		Depth Interval									Total
BB-1 21.0-22.0 7/13/92 Soil X	Sample ID	(ft bgs)	Date	Matrix	VOCs	BTEX	SVOCs	PAHs	Inorganics	PCBs	Cyanide
BB-1 22.0-23.0 // 13/92 Soil X	Preliminary S		Interim Rem	nedial Measure							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BB-1		7/13/92	Soil							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			1710/02	001							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								Х			
BB-4 11.0.13.0 550.67.0 $7/14/92$ Soil X X X X BB-5 19.0 ± 10 19.0 ± 10 $260.28.0$ $7/14/92$ Soil X X X X BB-6 9.0 ± 10 360.38.0 $7/14/92$ Soil X X X X BB-7 $120.210360.38.0$ $7/15/92$ Soil X X X X BB-7 $120.28.0$ $7/15/92$ Soil X X X X BB-8 $140.16.0$ $7/15/92$ Soil X X X X BB-9 $60.96.0$ $7/15/92$ Soil X X X X BB-10 $100.12.0$ $7/16/92$ Soil X X X X BB-10 $10.0.12.0$ $7/16/92$ Soil X X X X BB-11 $7.0.9.0$ $7/16/92$ Soil X X X X BB-11 $50.0.7$	BB-2		7/13/92	Soil							
BB-4 550-57.0 // 1492 Suit X X X BB-5 190-21.0 7/14/92 Soit X X X X BB-6 30-61.0 9.0-11.0 X X X X X BB-6 360-38.0 7/15/92 Soit X X X X BB-7 160-18.0 7/15/92 Soit X X X X BB-8 140-16.0 7/15/92 Soit X X X X BB-8 140-16.0 7/15/92 Soit X X X X BB-9 6.0-8.0 7/16/92 Soit X X X X BB-10 5.0-7.0 7/16/92 Soit X X X Image: Soit Si X X Image: Soit Si X X Image: Soit Si X Image: Soit Si X X Image: Soit Si X X Image: Soit Si X											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BB-4		7/14/92	Soil							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			7/4 4/00	Cail							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	DD-0		7/14/92	3011							
BB-6 17.0-19.0 7/15/92 Soil X											
	BB-6		7/15/92	Soil							
BB-7 16.0-18.0 7/15/92 Soil X	DD-0		1/15/52	001							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BB-7		7/15/92	Soil							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BB-8		7/15/92	Soil							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			7/40/00	0							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BB-A		7/16/92	Soll	Х						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	BB-10		7/16/92	Soil	Х			Х			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		20.0-22.0			Х						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		7.0-9.0									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BB-11		7/16/92	Soil	Х			Х			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		50.0-52.0									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BB-12		7/16/92	Soil							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BB-13		7/17/92	Soil	Х						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Х			Х			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BB-14		7/17/92	Soil							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BB-15		7/17/92	Soil				X			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	DD 40		7/17/00	0.11							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BB-16		7/17/92	5011							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		4000									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BB-17		7/20/92	Soil				~ 			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BB-18		7/20/92	Soil							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DD 10		1120/02	0011							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BB-19		7/21/92	Soil	X			X			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BB-20		7/21/92	Soil							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				2.2							
BB-21 24.0-26.0 7/21/92 Soil X X X Image: Constraint of the state of th			7/0: /00	o "							
BB-22 24.0-26.0 30.0-32.0 7/21/92 Soil X X X BB-23 12.0-14.0 7/21/92 Soil X X X X	BB-21		7/21/92	Soil							
BB-22 30.0-32.0 7/21/92 Soil X X X BB-23 12.0-14.0 7/21/92 Soil X X X X			7/04/00	0							
BB-23 12.0-14.0 7/21/92 Soil X X	вв-22		7/21/92	Soll							
	BD 00		7/21/02	Scil	Х			Х			
	00-23	24.0-26.0	1/21/92	5011							

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID	Depth Interval (ft bgs)	Date	Matrix	VOCs	BTEX	SVOCs	PAHs	Inorganics	PCBs	Total Cyanide
BB-24	4.0-6.0	7/22/92	Soil	Х			Х			
DD-24	24.0-26.0	1/22/92	3011	Х			Х			
BB-25	4.0-6.0	7/22/92	Soil	Х			Х			
BB 23	24.0-26.0	1/22/32	001	Х			Х			
BB-26	8.0-10.0	7/22/92	Soil	Х			Х			
	24.0-26.0			Х			Х			
BT-1	7.0	7/9/92	Soil	Х			Х			
BT-2	13.0	7/9/92	Soil	X			Х			
BT-3	6.0	7/9/92	Soil	X			X			
BT-5	7.0	7/9/92	Soil	X			X			
BT-6	5.0	7/9/92	Soil	X			X			
BT-7	6.0	7/9/92	Soil	X			X			
BT-8 BT-9	6.0 6.0	7/9/92 7/9/92	Soil Soil	X X			X X			
BT-10	6.0	7/9/92	Soil	X			X			
BT-10 BT-11	5.0	7/9/92	Soil	X			X			
BT-11 BT-12	12.0	7/9/92	Soil	X			X			
BT-12 BT-13	4.0	7/10/92	Soil	X			X			
BT-13 BT-15	4.0	7/10/92	Soil	X			X			
MW-2	4.0	7/23/92	Groundwater	X		Х	^	Х	Х	Х
BSD-1	1.45	7/24/92	Sediment	X		~	Х	~	Λ	^
BSD-2	0.11	7/24/92	Sediment	X			X			
Remedial Inve		1/24/92	Sediment				~			
BSS-1	0.0-0.5	8/30/94	Soil	Х		Х		Х	Х	Х
BSS-2	0.0-0.5	8/30/94	Soil	X		X		X	X	X
BSS-3	0.0-0.5	8/30/94	Soil	X		X		X	X	X
BSS-4	0.0-0.5	8/30/94	Soil	X		X		X	X	X
BSS-5	0.0-0.5	8/30/94	Soil	X		X		X	X	X
BSS-6	0.0-0.5	8/30/94	Soil	X		X		X	Х	X
BSS-7	0.0-0.5	8/30/94	Soil	Х		Х		Х	Х	Х
BSS-8	0.0-0.5	8/30/94	Soil	Х		Х		Х	Х	Х
BSS-9	0.0-0.5	8/30/94	Soil	Х		Х		Х	Х	Х
BSS-10	0.0-0.5	8/30/94	Soil	Х		Х		Х	Х	Х
BSS-11	0.0-0.5	8/30/94	Soil	Х		Х		Х	Х	Х
BSS-12	0.0-0.5	8/30/94	Soil	Х		Х		Х	Х	Х
BSS-13	0.0-0.5	5/16/96	Soil	Х		Х		Х	Х	Х
BSS-14	0.0-0.5	5/16/96	Soil	Х		Х		Х	Х	Х
BSS-15	0.0-0.5	5/16/96	Soil	Х		Х		Х	Х	Х
BSS-16	0.0-0.5	5/16/96	Soil	Х		Х		Х	Х	Х
BSS-17	0.0-0.5	6/4/96	Soil		Х		Х			Х
BB-27	8.0-12.0	8/25/94	Soil		Х		Х			Х
00 21	12.0-16.0	0,20,04	001		Х		Х			Х
BB-28	12.0-14.0	8/10/94	Soil	Х		Х		Х	Х	Х
BB 20	18.0-20.0	0/10/34	001	Х		Х		Х	Х	Х
	8.0-12.0				Х		Х			Х
BB-29	30.0-32.0	8/24/94	Soil		Х		Х			Х
	38.0-40.0				Х		Х			Х
	4.0-6.0				Х		Х			X
BB-30	16.0-18.0	9/1/94	Soil		Х		Х			X
	24.0-26.0				Х		X			X
	28.0-30.0				Х		Х			X
	4.0-8.0				X		X			X
	6.0-8.0	8/30/94	0-11	l	X		X			X
BB-31	16.0-18.0		Soil		X		X			X
	30.0-36.0	0/04/04			X		X			X
	40.0-44.0	8/31/94			Х		Х			Х

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Completio	Depth Interval	Dete	Matrice	VOCs	BTEX	SVOCs	PAHs	Inorganics	PCBs	Total
Sample ID	(ft bgs)	Date	Matrix	VUUS		30005		morganics	FCDS	Cyanide
BB-32	6.0-8.0 32.0-36.0	9/1/94	Soil		X X		X X			X X
	8.0-12.0	9/2/94			X		X			X
	12.0-14.0				X		X			X
BB-33	30.0-32.0	9/6/94	Soil		X		X			X
	34.0-38.0				X		X			X
	6.0-8.0		0		X		X			X
BB-34	12.0-14.0	8/3/94	Soil		Х		Х			Х
	20.0-22.0	0/0/04	Cail		Х		Х			Х
BB-35	28.0-30.0	8/9/94	Soil		Х		Х			Х
BB-36	10.0-12.0	8/2/94	Soil	Х		Х		Х	Х	Х
DD-30	16.0-24.0	8/3/94	001	Х		Х		Х	Х	Х
BB-37	10.0-12.0	9/7/94	Soil		Х		Х			Х
	25.0-27.0				Х		Х			Х
	6.0-8.0	0/7/04	0.1		X		Х			X
BB-38	20.0-22.0	9/7/94	Soil		X		X			X
BB-39	30.0-34.0 6.0-8.0	7/12/94	Soil		X X		X X			X X
DD-39	6.0-8.0	7/12/94	3011		X		X			X
BB-40	6.0-8.0 (DUP)	7/29/94	Soil		X		X			X
BB 40	14.0-16.0	1/20/04	001		X		X			X
	6.0-10.0				X		X			X
BB-41	6.0-10.0 (DUP)	9/13/94	Soil		X		X			X
	10.0-18.0				X		X			X
BB-41R	4.0-5.0	9/13/94	Soil		Х		Х			Х
	8.0-10.0				Х		Х			Х
BB-42	24.0-26.0	7/13/94	Soil		Х		Х			Х
	32.0-34.0				Х		Х			Х
BB-43	8.0-10.0	7/12/94	Soil		Х		Х			Х
	26.0-28.0	.,,.	0011		Х		Х			Х
BB-44	8.0-10.0	7/14/94	Soil		X		X			X
	12.0-14.0			V	Х	V	Х	X	Х	X X
BB-45	2.0-8.0 2.0-8.0 (DUP)	8/1/94	Soil	X X		X X		Х	X	X
DD-43	12.0-14.0	0/1/94	301	X		X		Х	Х	X
	8.0-10.0			~	Х	~	Х	~	Λ	X
BB-46	8.0-10.0 (DUP)	7/14/94	Soil		X		X			X
DD (7	6.0-8.0	7/10/01	0.1		X		X			X
BB-47	12.0-14.0	7/19/94	Soil		Х		Х			Х
BB-48	6.0-8.0	7/18/94	Soil		Х		Х			Х
DD-40	12.0-14.0	7/14/94	301		Х		Х			Х
BB-49	6.0-8.0	7/13/94	Soil		Х		Х			Х
	8.0-10.0				Х		Х			Х
BB-50	28.0-30.0	7/19/94	Soil		Х		Х			Х
BB-51	6.0-8.0	8/11/94	Soil	X		X		X	X	X
	14.0-16.0			Х	v	Х	V	Х	Х	X
BB-52	6.0-10.0	9/14/94	Soil		X X		X			X
	10.0-14.0 6.0-10.0				X		X X			X X
BB-55	12.0-16.0	9/12/94	Soil		X		X			X
	6.0-10.0				X		X			X
BB-56	12.0-16.0	9/16/94	Soil		X		X			X
	6.0-8.0	0.11.15	a		X		X			X
BB-57	14.0-16.0	8/1/94	Soil		X		X			X
	4.0-8.0	0/4 5/0 4	Call		X		Х			X
BB-58	8.0-12.0	9/15/94	Soil		Х		Х			Х

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID	Depth Interval (ft bgs)	Date	Matrix	VOCs	BTEX	SVOCs	PAHs	Inorganics	PCBs	Total Cyanide
BB-59	6.0-10.0	7/25/94	Soil		Х		Х			Х
BB-60	8.0-12.0	7/22/94	Soil		Х		Х			Х
	6.0-8.0	5/10/96			Х		Х			Х
BB-61	24.0-28.0		Soil	Х		Х		Х	Х	Х
	50.0-52.0	5/28/96		Х		Х		Х	Х	Х
	4.0-6.0				Х		Х			Х
BB-62	24.0-26.0	5/7/96	Soil		Х		Х			Х
	46.0-48.0				Х		Х			Х
	6.0-8.0				Х		Х			Х
BB-63	22.0-24.0	5/13/96	Soil		Х		Х			Х
	44.0-48.0				Х		Х			Х
	4.0-6.0	5/13/96			Х		Х			Х
	12.0-14.0	5/14/96	Cail		Х		Х			Х
BB-64	30.0-32.0	E/40/00	Soil		Х		Х			Х
	44.0-46.0	5/13/96			Х		Х			Х
	14.0-16.0	5/29/96			Х		Х			Х
BB-65	54.0-56.0	E/20/00	Soil	Х		Х		Х	Х	Х
	100.0-102.0	5/30/96			Х		Х			Х
	4.0-8.0	5/22/96			Х		Х			Х
BB-66	18.0-20.0	5/24/96	Soil	Х		Х		Х	Х	Х
	38.0-40.0	5/22/96			Х		Х			Х
	4.0-6.0				Х		Х			Х
BB-67	14.0-16.0	5/22/96	Soil		Х		Х			Х
	38.0-40.0				Х		Х			Х
	6.0-8.0				Х		Х			Х
BB-68	20.0-22.0	5/21/96	Soil		Х		Х			Х
	38.0-40.0				Х		Х			Х
	4.0-6.0				Х		Х			Х
BB-69	20.0-22.0	5/15/96	Soil		Х		Х			Х
	38.0-40.0				Х		Х			Х
	6.0-8.0				Х		Х			Х
BB-70	18.0-20.0	5/15/96	Soil		Х		Х			Х
	44.0-46.0				Х		Х			Х
DD 74	4.0-6.0	5/29/96	0		Х		Х			Х
BB-71	10.0-12.0	5/28/96	Soil	Х		Х		Х	Х	Х
	4.0-8.0				Х		Х			Х
BB-72	22.0-24.0	5/8/96	Soil		Х		Х			Х
	48.0-50.0				Х		Х			Х
	4.0-6.0				Х		Х			Х
BB-73	20.0-22.0	5/9/96	Soil		Х		Х			Х
	50.0-52.0				Х		Х			Х
BB-74	12.0-14.0	6/4/06	Soil		Х		Х			Х
DD-/4	28.0-30.0	6/4/96	Soil		Х		Х			Х
	6.0-8.0				Х		Х			Х
BB-75	16.0-18.0	5/20/96	Soil		Х		Х			Х
	58.0-60.0				Х		Х			Х
	10.0-12.0				Х		Х			Х
BB-76	10.0-12.0 (DUP)	8/11/94	Soil		Х		Х			Х
	20.0-22.0			Х		Х		Х	Х	Х
BB-77	6.0-10.0	7/25/94	Soil		Х		Х			Х
BB-78	10.0-12.0	7/20/94	Soil		Х		Х	i i		Х
BB-79	8.0-10.0	8/5/94	Soil	Х		Х		Х	Х	Х
DD-/9	16.0-18.0	0/0/94	3011		Х		Х			Х

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID	(ft bgs)	Date	Matrix	VOCs	BTEX	SVOCs	PAHs	Inorganics	PCBs	Total Cyanide
	10.0-12.0			Х		Х		Х	Х	Х
	10.0-12.0 (DUP)	0/40/04	0.1	Х			Х			Х
BB-80	18.0-20.0	8/10/94	Soil		Х		Х			Х
	24.0-26.0				Х		Х			Х
	4.0-12.0				Х		Х			Х
BB-81	18.0-24.0	9/8/94	Soil		Х		Х			Х
	18.0-24.0 (DUP)				X		X			X
	8.0-10.0			Х		Х		Х	Х	Х
BB-82	22.0-24.0	8/8/94	Soil	Х		Х		Х	Х	Х
-	28.0-30.0			Х		Х		Х	Х	Х
	0.0-2.0	0/4/00	0.1		Х		Х			Х
BB-84	2.0-4.0	6/4/96	Soil		Х		Х			Х
	2.0		a "		X		X		Х	X
BTP-1	4.0	3/12/97	Soil		X		X		X	X
	3.0				X		X		X	X
BTP-2	5.0	3/12/97	Soil		X		X		X	X
	2.0				X		X		X	X
BTP-3	7.5	3/12/97	Soil		X		X		X	X
	0.0-0.5			Х	~	Х	Λ	Х	X	X
BSD-1	0.5-1.0	8/23/94	Sediment	X		X		X	X	X
	0.0-0.5			X		X		X	X	X
BSD-2	0.5-1.0	8/22/94	Sediment	X		X		X	X	X
	0.0-0.5			X		X		X	X	X
BSD-3	0.5-1.0	8/22/94	Sediment	X		X		X	X X	X
	0.0-0.5			X		X		X	X X	X
BSD-4	0.5-1.0	8/22/94	Sediment	X		X		X	X X	X
	0.0-0.5			X		X		X	X	X
BSD-5	0.5-1.0	8/23/94	Sediment	X		X		X	X X	X
		E/4.C/0C	Codimont	X		X		X	X	X
BSD-6 BSD-7	0.0-0.5 0.0-0.5	5/16/96 5/16/96	Sediment Sediment	X		X		X	X X	X
				X		X			X	X
BSD-8	0.0-0.5 0.0-2.0	5/16/96	Sediment	X	v	~	V	Х	X X	X
BSD-9	2.0-3.0	3/11/97	Sediment		X X		X X		X	X
					X		X		X X	X
BSD-10	0.0-4.0	3/11/97	Sediment							
	5.0-6.0				X		X		X	X
BSD-11	0.0-4.0	3/11/97	Sediment		X		X		X	X
\vdash	4.7-5.7	0/00/04		V	Х	V	Х	X	X	X
BSD-12	0.0-0.5	8/22/94	Sediment	Х	V	Х	V	Х	X	X
\vdash	0.0-4.0	3/11/97			X		Х		Х	Х
BSD-13	0.0-4.0	3/12/97	Sediment		X		X		X	X
┝─────	5.0-6.0				X		X		X	X
BSD-14	0.0-4.0	3/12/97	Sediment		X		X		X	X
└────┤	3.7-4.7				X		Х		Х	X
BSD-15	0.0-4.0	3/12/97	Sediment		Х		Х		X	X
	4.5-5.5				X		Х		X	X
BSD-16	0.0-3.5	3/12/97	Sediment		Х		Х		X	X
	3.5-4.5				Х		Х		Х	Х
BSD-17	0.0-4.0	3/12/97	Sediment		Х		Х		Х	Х
	5.0-6.0				Х		Х		Х	Х
BSD-18	0.0-2.0	3/18/97	Sediment		Х		Х		Х	Х
BSD-19	0.0-2.0	3/18/97	Sediment		Х		Х		Х	Х
BSD-20	0.0-2.0	3/18/97	Sediment		Х		Х		Х	Х
MW-1		6/20/96	Groundwater	Х		Х		Х	Х	Х
10100-1		7/31/96	Situnuwater	Х		Х		Х	Х	Х
MW-2		6/20/96	Groundwater	Х		Х		Х	Х	Х
₩₩		7/31/96	Groundwater	Х		Х		Х	Х	Х

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID	Depth Interval (ft bgs)	Date	Matrix	VOCs	BTEX	SVOCs	PAHs	Inorganics	PCBs	Total Cyanide
MW-6S		6/21/96	Croundwater	Х		Х		Х	Х	Х
10100-05		7/30/96	Groundwater	Х		Х		Х	Х	Х
		6/21/96	Croundwater	Х		Х		Х	Х	Х
MW-6I		7/30/96	Groundwater	Х		Х		Х	Х	Х
		6/18/96	Croundwater	Х		Х		Х	Х	Х
MW-7		7/31/96	Groundwater	Х		Х		Х	Х	Х
		6/19/96	Croundwater	Х		Х		Х	Х	Х
MW-8S		7/31/96	Groundwater	Х		Х		Х	Х	Х
MW-8I		6/19/96	Groundwater	Х		Х		Х	Х	Х
10100-01		7/31/96	Groundwater	Х		Х		Х	Х	Х
MW-8D		6/19/96	Groundwater	Х		Х		Х	Х	Х
10100-00		7/31/96	Groundwater	Х		Х		Х	Х	Х
MW-9S		6/20/96	Groundwater	Х		Х		Х	Х	Х
10100-95		7/31/96	Groundwater	Х		Х		Х	Х	Х
MW-91		6/20/96	Groundwater	Х		Х		Х	Х	Х
10100-91		8/1/96	Groundwater	Х		Х		Х	Х	Х
MW-9D		6/20/96	Groundwater	Х		Х		Х	Х	Х
10100-90		8/1/96	Groundwater	Х		Х		Х	Х	Х
MW-10		6/20/96	Groundwater	Х		Х		Х	Х	Х
10100-10		7/31/96	Groundwater	Х		Х		Х	Х	Х
MW-11		6/19/96	Groundwater	Х		Х		Х	Х	Х
10100-11		7/31/96	Groundwater	Х		Х		Х	Х	Х
MW-12		6/19/96	Groundwater	Х		Х		Х	Х	Х
10100-12		7/31/96	Groundwater	Х		Х		Х	Х	Х
MW-13S		6/18/96	Groundwater	Х		Х		Х	Х	Х
10100-135		7/30/96	Groundwater	Х		Х		Х	Х	Х
MW-13P		6/18/96	Groundwater	Х		Х		Х	Х	Х
10100-136		7/30/96	Groundwater	Х		Х		Х	Х	Х
MW-13I		6/18/96	Groundwater	Х		Х		Х	Х	Х
10100-131		7/30/96	Groundwater	Х		Х		Х	Х	Х
MW-14S		6/18/96	Groundwater	Х		Х		Х	Х	Х
140		7/30/96	Oroundwater	Х		Х		Х	Х	Х
MW-14P		6/18/96	Groundwater	Х		Х		Х	Х	Х
10100-141		7/30/96	Oroundwater	Х		Х		Х	Х	Х
MW-14I		6/18/96	Groundwater	Х		Х		Х	Х	Х
		7/30/96	Groundwater	Х		Х		Х	Х	Х
MW-15S		6/19/96	Groundwater	Х		Х		Х	Х	Х
10100		7/31/96	Groundwater	Х		Х		Х	Х	Х
MW-15I		6/19/96	Groundwater	Х		Х		Х	Х	Х
10100		7/31/96	Groundwater	Х		Х		Х	Х	Х
MW-16		6/21/96	Groundwater	Х		Х		Х	Х	Х
10100		8/1/96	Groundwater	Х		Х		Х	Х	Х
MW-17		6/20/96	Groundwater	Х		Х		Х	Х	Х
10100 17		7/30/96	Signiturater	Х		Х		Х	Х	Х
MW-18		6/20/96	Groundwater	Х		Х		Х	Х	Х
		7/31/96	Signiturater	Х		Х		Х	Х	Х
MW-19S		6/19/96	Groundwater	Х		Х		Х	Х	Х
		7/30/96	Signiturater	Х		Х		Х	Х	Х
MW-19I		6/19/96	Groundwater	Х		Х		Х	Х	Х
		7/30/96	Signiturater	Х		Х		Х	Х	Х
MW-19D		6/19/96	Groundwater	Х		Х		Х	Х	Х
		7/30/96	Croanawater	Х		Х		Х	Х	Х

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID	Depth Interval (ft bgs)	Date	Matrix	VOCs	BTEX	SVOCs	PAHs	Inorganics	PCBs	Total Cyanide
	gation Activities	Date	Watrix	VOCS	DILX	37003	FAIIS	morganics	FCDS	Cyanice
NAFL Investig	5.0-5.7	[[Х	I I I		
	10.0-10.5						X			
BB-85	14.0-16.0	12/19/01	Soil				X			
	20.0-22.0						X			
	4.0-5.3						X			
	8.0-9.0	12/19/01					X			
	15.4-15.7						X			
BB-86	15.4-15.7 (DUP)		Soil				X			
	19.2-19.5	12/20/01					X			
	24.0-26.0						Х			
	28.0-30.0						Х			
	4.0-5.1						Х			
	10.0-12.0						Х			
	14.0-16.0	10/10/01	Soil				Х			
BB-87	19.6-20.0	12/18/01	501				Х			
	24.0-26.0						Х			
	28.0-28.7						Х			
	4.0-4.6						Х			
	10.0-12.0						Х			
	10.0-12.0 (DUP)						Х			
BB-88	14.0-16.0	12/17/01	Soil				Х			
	18.0-20.0						Х			
	24.0-26.0						Х			
	26.8-28.0						Х			
	4.0-6.0						Х			
	10.0-12.0						Х			
BB-89	16.0-18.0	12/19/01	Soil				Х			
	22.0-24.0						Х			
	28.0-30.0						Х			
	bsurface Structur				V	1	V	1		V
BB-92	0.0-2.0	6/23/04	Soil		X		X			X
BB-102	3.0-5.0	7/28/04	Soil		X		X			X
BB-107	2.0-4.0	6/24/04	Soil		X		X			X
BB-111	4.0-6.5	7/26/04	Soil Soil		X X		X X			X X
BB-112B	2.5-5.6	7/20/04			X		X			X
BB-124 BB-127	6.0-8.0 6.0-8.0	6/28/04 6/29/04	Soil Soil		X		X			X
BB-127 BB-128	2.0-4.0	6/29/04	Soil		X		X			X
	ibsurface Investig		301		~		~			~
	8.0-10.0	9/10/04	Soil		Х		Х			Х
BB-135	8.0-10.0 (DUP-1)		Soil		X		X			X
Groundwater	(/	0,10,01	001		~		~	1 1		
		6/11/02		Х			Х			Х
MW-1		11/5/04	Groundwater	~	Х		X			~
		11/11/04	Groundwater		X		X			
MW-3	DUP	11/11/04	Groundwater		X		X			
104/00		6/12/02		Х			X			Х
MW-6S		11/9/04	Groundwater		Х		X			-
MAL OL		6/12/02	Organization of the	Х			X			Х
MW-6I		11/10/04	Groundwater		Х		Х			
		6/12/02	Croundwater	Х			Х	i i		Х
MW-7		11/4/04	Groundwater		Х		Х			
MW-8S		6/12/02	Groundwater	Х			Х			Х
10100-03		11/9/04	Groundwater		Х		Х			

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID	Depth Interval (ft bgs)	Date	Matrix	VOCs	BTEX	SVOCs	PAHs	Inorganics	PCBs	Total Cyanide
		6/12/02		Х			Х			Х
MW-8I		8/11/04	Groundwater		Х		Х			
		11/10/04			Х		Х			
		6/12/02		Х			Х			Х
MW-8D		8/11/04	Groundwater		Х		Х			
		11/11/04			Х		Х			
		6/13/02		Х			Х			Х
MW-9S		1/12/05	Groundwater		Х		Х			
	DUP	1/12/05			Х		Х			
		6/13/02		Х			Х			Х
		6/13/02	One of the set of the							
MW-9I		(DUP-1)	Groundwater	Х			Х			Х
		1/12/05			Х		Х			
		6/13/02		Х			X			Х
MW-9D		1/12/05	Groundwater		Х		X			
		6/13/02		Х			X			Х
		6/13/02								
MW-10		(DUP-2)	Groundwater	Х			Х			Х
		1/12/05			Х		Х			-
		6/12/02		Х	~		X			Х
MW-11		11/1/04	Groundwater	~	Х		X			
		6/12/02		Х	~		X			Х
MW-12		11/2/04	Groundwater	~	Х		X			
MW-13S		6/11/02	Groundwater	Х	~		X			Х
MW-13SR		11/4/04	Groundwater	~	Х		X			^
WW-133K		6/11/02	Groundwater	Х	^		X			Х
MW-13P		11/2/04	Groundwater	^	v		X			^
10100-136		11/2/04	Groundwater		X X		X		-	-
		6/11/02		V	^		X			Х
MW-13I			Groundwater	Х	V		X			
		11/2/04		V	Х					×
MW-14S		6/11/02	Groundwater	Х	V		X			Х
		11/3/04		V	Х		X			X
MW-14P		6/11/02	Groundwater	Х	Ň		X			Х
		11/3/04			Х		Х			
MW-14I		6/11/02	Groundwater	Х			Х			Х
		11/3/04			Х		Х			
MW-15S		6/12/02	Groundwater	Х			Х			Х
		11/9/04			Х		Х			
MW-15I		6/12/02	Groundwater	Х			Х			Х
		11/9/04			X		X			
MW-17		11/5/04	Groundwater		Х		Х			
MW-18		6/11/02	Groundwater	X			Х			Х
MW-19S		6/11/02	Groundwater	Х			X			Х
		11/3/04			Х		Х			\square
MW-19I		6/11/02	Groundwater	Х			Х			Х
		11/3/04			Х		Х			
MW-19D		6/11/02	Groundwater	Х			Х			Х
		11/3/04		-	Х		Х			
MW-20		6/13/02	Groundwater	Х			Х			Х
MW-21		11/10/04	Groundwater		Х		Х			ļ
MW-22		11/10/04	Groundwater		Х		Х			
MW-23		11/8/04	Groundwater		Х		Х			
MW-24		11/4/04	Groundwater		Х		Х			
MW-25		11/2/04	Groundwater		Х		Х			
MW-26		11/8/04	Groundwater		Х		Х			
MW-27S		11/4/04	Groundwater		Х		Х			

National Grid Schenectady (Broadway) Service Center Schenectady, New York

	Depth Interval									Total
Sample ID	(ft bgs)	Date	Matrix	VOCs	BTEX	SVOCs	PAHs	Inorganics	PCBs	Cyanide
MW-27D		11/4/04	Groundwater		Х		Х			
Surface Wate	r Sampling									
BSW-1		6/20/96	Surface Water	Х		Х		Х	Х	Х
BSW-2		6/20/96	Surface Water	Х		Х		Х	Х	Х
BSW-4		6/20/96	Surface Water	Х		Х		X	Х	Х
BSW-5		6/20/96	Surface Water	Х		Х		Х	Х	Х

National Grid Schenectady (Broadway) Service Center Schenectady, New York

BORING ID	DEPTH (ft)	DATE COLLECTED	Sieve (ASTM D422)	Hydrometer (ASTM D1140)	Atterberg Limits (ASTM D4318)	Bulk (Natural) Soil Density (ACOE EM- 1110-2-1906)	Hydraulic Conductivity Flex Wall Permeameter (ASTM D5084)	Porosity (ACOE EM-1110-2- 1906 Appendix II)
MW-13T	68-70	3/9/2005	Х	Х	Х	Х	Х	Х
MW-19T	64-66	3/23/2005	Х	Х	Х	Х	Х	Х
	8-10		Х	Х				
	12-14		Х	Х	Х			
	16.3-18		Х	Х	Х			
	20-22	3/17/2005	Х	Х				
	28-30	0,1172000	Х					
	34-36		X					
MW-28T	42-44		Х					
_	48-50		X	X	X	X	N/	
	50-54	4/29/2005	X	X	X	Х	Х	
	54-56	0/40/0005	X X	X	X			
	60-62	3/18/2005		Х	X			
	70-72		X X	Х	Х			
	comp1 comp2	4/15/2005	X					
	10.2-11		× X					
	14-16		X	Х	Х			
	18-20		X	× ×	X			
	24-26		X	X X	X			
	28-30	3/14/2005	X	Λ	~			
	34-36		X	Х	Х			
MW-29T	36-38		X	~	~			
	44-46		X	Х	Х			
	48-50	0/45/0005	Х	Х	Х			
	60-62	3/15/2005	Х	Х	Х			
	comp1	4/15/2005	Х					
	comp2	4/15/2005	Х					
	8-10		Х	Х	Х			
	12-14		Х	Х	Х			
	16-18		Х	Х	Х			
	24-26	3/25/2005	Х					
	28-30	3/23/2003	Х					
	34-36		Х					
	42-44		Х					
MW-30T	46-48		Х					
	48-50	4/29/2005	Х	Х	Х	Х	Х	
	52-54	3/25/2005	Х					
	56-58	4/29/2005	X	X	X	Х	Х	
	58-60	3/25/2005	X	Х	X			
	60-62		Х	Х	Х			
	comp1	4/15/2005	X					
	comp2		Х					

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID	Date	Matrix	Toluene Dioxygenase	Catechol Dioxygenase	DNA	PLFA	Bicarbonate Alkalinity	Iron*	Manganese*	Methane	Nitrate	Nitrogen	Sulfate	Sulfide	тос
Monitored N	latural Atte	nuation													
MW-3	11/11/04	Groundwater	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
10100-5	1/12/05	Micob. Trap				Х									
MW-6S	11/9/04	Groundwater	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
10100-03	1/12/05	Micob. Trap				Х									
MW-8D	11/9/04	Groundwater	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
10100-00	1/12/05	Micob. Trap				Х									
MW-9S	1/11/05	Groundwater	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
10100-93		Micob. Trap													1
MW-21	11/12/04	Groundwater	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
10100-21	1/12/05	Micob. Trap				Х									
MW-22	11/10/04	Groundwater	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
10100-22	1/12/05	Micob. Trap				Х									

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Analytical Sample Summary

Sample ID	Date	Matrix	GRO	DRO	PAHs	Viscosity	Density	Interfacial Tension
Light Non-Aq	ueous Phas	se Liquid						
MW-20	11/12/04	Oil	Х	Х	Х	Х	Х	Х

Notes:

- 1. PSA/IRM samples collected by Atlantic Environmental Services, Inc. between June and August 1992.
- 2. RI samples collected by Parsons Engineering Science, Inc. between July and September 1994; May and August 1996; and March 1997.
- 3. NAPL Investigation samples collected by Blasland, Bouck & Lee, Inc. (BBL) during December 2001 and June 2002.
- 4. Historical Subsurface Structure Investigation samples collected by BBL between June and September 2004.
- 5. Additional Subsurface Investigation samples collected by BBL between August 2004 and January 2005.
- 6. MNA samples collected by BBL during November 2004, January 2005, and April 2005.
- 7. NAPL sample collected by BBL during November 2004.
- 8. DNA = deoxyribonucleic acid.
- 9. PLFA = phospholipid fatty acid.
- 10. * = total and dissolved.
- 11. VOCs = volatile organic compounds.
- 12. BTEX = benzene, toluene, ethylbenzene, and total xylenes.
- 13. SVOCs = semi-volatile organic compounds.
- 14. PAHs = polynuclear aromatic hydrocarbons.
- 15. PCBs = polychlorinated biphenyls.
- 16. TOC = total organic carbon.
- 17. GRO = Gasoline-range organics.
- 18. DRO = Diesel-range organics.
- 19. Additional testing on PSA groundwater sample MW-2 included: pesticides, biological oxygen demand (BOD), chemical oxygen demand (COD), pH, total suspended solids (TSS), and total organic carbon (TOC).
- 20. Additional testing on RI surface soil samples BSS-1 through BSS-7 included: pesticides and TOC.
- 21. Additional testing on RI surface water samples BSW-1, -2, -4, -5 included pesticides.
- 22. Additional testing on RI groundwater samples MW-6S, -7, -8I, -9S, -9I, -9D, -12, -13I, -16, -17, -18, -19D included: BOD, COD, chloride, hardness, nitrate, nitrite, oil and grease, sulfate, sulfite, total dissolved solids (TDS), pH, and alkalinity.
- 23. Additional testing on RI sediment samples BSD-1 through BSD-20 included: pesticides and TOC.

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Monitoring Well Construction Information Summary

	Hydro-			Ground	Top of Casing			Screen	Screen
Monitoring	stratigraphic	Investigation	Date	Elevation	Elevation	Boring Depth	Well Depth	Depth	Elevation
Well ID	Zone	Ву	Installed	(ft. AMSL)	(ft. AMSL)	(ft. bgs)	(ft. bgs)	(ft. bgs)	(ft. AMSL)
MW-1	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-2*		Atlantic	7/22/92	NA	228.54	14.0	14.0	4.0-14.0	NA
MW-3	S	Parsons	8/24/94	228.98	231.14	56.0	22.0	10.0-20.0	209.0-219.0
MW-4*		Parsons	8/31/94	228.23	230.53	44.0	18.0	6.0-16.0	212.2-222.2
MW-5*		Parsons	9/8/94	228.10	227.8	24.0	20.0	8.0-18.0	210.1-220.1
MW-6S	S	Parsons	8/2/94	227.76	227.35	54.0	18.0	6.0-16.0	211.8-221.8
MW-6I		Parsons	8/16/94	227.72	227.34	54.0	50.5	38.5-48.5	179.2-189.2
MW-7	S	Parsons	5/10/96	226.41	228.55	62.0	20.0	8.0-18.0	208.4-218.4
MW-8S	S	Parsons	6/4/96	227.15	229.87	50.0	18.0	6.0-16.0	211.2-221.2
MW-8I	I	Parsons	5/17/96	227.27	229.28	50.0	37.0	25.0-35.0	192.3-202.3
MW-8D	D	Parsons	5/14/96	227.16	229.09	50.0	48.0	41.0-46.0	181.2-186.2
MW-9S	S	Parsons	5/23/96	228.98	231.86	42.0	15.0	5.0-15.0	214.0-224.0
MW-9I		Parsons	5/24/96	228.92	230.84	42.0	26.0	19.0-24.0	204.9-209.9
MW-9D	D	Parsons	5/23/96	229.12	230.96	42.0	42.0		189.1-194.1
MW-10	I	Parsons	5/21/96	232.09	234.04	42.0	30.0	18.0-28.0	204.1-214.1
MW-11	I	Parsons	6/5/96	224.35	225.94	72.8	22.0	10.0-20.0	204.4-214.4
MW-12	D	Parsons	6/5/96	224.99	226.74	62.0	25.0	13.0-23.0	202.0-212.0
MW-13S*		Parsons	8/11/94	226.85	226.55	66.0	22.0	10.0-20.0	206.9-216.9
MW-13SR	S	BBL	9/9/04	227.16	226.87	22.0	22.0	10.0-20.0	207.2-217.2
MW-13P	I	Parsons	8/23/94	226.95	226.62	66.0	37.0	30.0-35.0	192.0-197.0
MW-13I	D	Parsons	8/23/94	226.89	226.55	66.0	66.0	54.0-64.0	
MW-13T	Т	BBL	3/11/05	226.73	226.54	90.0	85.0	75.0-85.0	
MW-14S	S	Parsons	7/28/94	228.59	228.24	57.0	22.0	10.0-20.0	208.6-218.6
MW-14P	I	Parsons	7/28/94	228.61	228.23	57.0	37.0		193.6-198.6
MW-14I	D	Parsons	7/28/94	228.63	228.15	57.0	57.0		173.6-183.6
MW-15S	I	Parsons	7/21/94	226.98	228.95	48.0	22.0		207.0-217.0
MW-15I	D	Parsons	7/21/94	226.59	228.61	48.0	48.0		180.6-190.6
MW-16*		Parsons	8/16/94	228.59	228.04	26.0	18.0		212.6-222.6
MW-17	I	Parsons	8/15/94	226.74	226.21	20.0	20.0	8.0-18.0	208.7-218.7
MW-18*		Parsons	8/9/94	226.67	226.24	30.0	16.0	4.0-14.0	212.7-222.7
MW-19S	S	Parsons	9/21/94	225.70	225.41	77.5	20.0	8.0-18.0	207.7-217.7
MW-19I	I	Parsons	9/20/94	225.92	225.5	77.5	50.0		177.9-187.9

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Monitoring Well Construction Information Summary

Monitoring Well ID	Hydro- stratigraphic Zone	Investigation By	Date Installed	Ground Elevation (ft. AMSL)	Top of Casing Elevation (ft. AMSL)	Boring Depth (ft. bgs)	Well Depth (ft. bgs)	Screen Depth (ft. bgs)	Screen Elevation (ft. AMSL)
MW-19D	D	Parsons	9/20/94	225.98	225.56	77.5	76.0	64.0-74.0	152.0-162.0
MW-19T	Т	BBL	3/30/05	226.01	225.60	81.2	81.2	71.2-81.2	144.8-154.8
MW-20	S	BBL	12/18/01	227.40	227.28	30.0	28.0	6.3-21.3	206.1-221.1
MW-21	S	BBL	7/23/04	228.10	227.88	16.5	16.5	9.5-14.5	213.6-218.5
MW-22	S	BBL	7/21/04	229.00	231.55	14.0	13.0	6.0-11.0	218.0-223.0
MW-23	S	BBL	7/21/04	227.00	226.64	12.0	11.0	4.0-9.0	218.0-223.0
MW-24	I	BBL	7/22/04	226.90	226.52	18.0	15.5	12.0-15.0	211.9-214.9
MW-25	I	BBL	7/27/04	225.80	225.51	16.0	14.5	11.5-14.5	211.3-214.3
MW-26	S	BBL	7/29/04	229.10	228.84	14.0	13.5	6.5-11.5	217.6-222.6
MW-27S	S	BBL	8/2/04	224.60	226.52	8.3	8.3	3.0-8.0	216.6-221.6
MW-27D	Т	BBL	8/2/04	224.60	227.35	66.0	66.0	55.7-65.7	158.9-168.9
MW-28S	S	BBL	3/25/05	228.88	228.37	13.0	13.0	6.0-11.0	217.9-222.9
MW-28I	I	BBL	3/25/05	228.94	228.57	28.0	28.0	23.0-28.0	200.9-205.9
MW-28D	D	BBL	3/24/05	228.97	228.52	47.0	47.0	42.0-47.0	181.0-186.0
MW-28T	Т	BBL	3/21/05	228.88	228.61	74.0	74.0	64.0-74.0	154.9-164.9
MW-29S	S	BBL	3/17/05	230.39	230.12	14.0	14.0	4.0-14.0	216.4-206.4
MW-29I	I	BBL	3/17/05	230.31	230.09	39.0	39.0	28.0-38.0	192.3-182.3
MW-29T	Т	BBL	3/16/05	230.45	230.13	62.0	62.0	52.0-62.0	168.5-158.5
MW-30S	S	BBL	4/4/05	226.72	226.42	12.0	12.0	2.0-12.0	214.4-204.7
MW-30I		BBL	4/4/05	226.69	226.34	30.0	30.0	25.0-30.0	196.7-201.7
MW-30D	D	BBL	4/1/05	226.72	226.37	46.0	46.0	41.0-46.0	180.4-185.4
MW-30T	Т	BBL	3/31/05	226.73	226.38	78.0	78.0	68.0-78.0	148.7-158.7

Notes:

1. Monitoring well MW-1 was installed prior to the PSA/IRM investigation activities. No additional well construction information is available.

- 2. Atlantic = Atlantic Environmental Services, Inc.
- 3. Parsons = Parsons Engineering Science, Inc.
- 4. BBL = Blasland, Bouck & Lee, Inc.
- 5. NA = Not available.
- 6. ft. AMSL = Feet above mean sea level.
- 7. ft. bgs = Feet below ground surface.
- 8. Hydrostratigraphic zone determined based on a review of screened interval and hydraulic conductivity data:

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Monitoring Well Construction Information Summary

- S = shallow monitoring well
- I = Intermediate monitoring well.
- D = Deep monitoring well.
- T = Till monitoring well.
- 9. * = Indicates an abandoned monitoring well.

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Boring ID	Depth (ft bgs)	Description
		Faint hydrocarbon (HC) odor
	3.1 - 5.5	Moderate HC odor
	5.5 - 6.5	Moderate HC odor, slight HC staining
BB-1	6.5 - 8.0	Moderate HC odor, moderate staining, and iridescent sheen
	8.0 - 11.8	Some black HC staining, heavy iridescent HC sheen, strong HC odor
	11.8 - 16.0	Some black HC staining, faint HC odor
	18.0 - 19.5	Faint HC odor, mdoerate black HC staining
	4.0 - 5.5	Heavy black tar staining, strong tar odor, and iridescent sheen
	5.5 - 6.1	Saturated with yellowish black tar
	7.0 - 9.5	Heavy black tar staining, saturated with tar, heavy iridescent sheen, moderate tar odor
	9.5 - 12.0	Saturated with yellowish black tar, heavy tar staining, strong tar odor
	12.0 - 14.0	Moderate tar odor and moderate black tar staining
	14.0 - 15.5	Saturated with yellowish black tar, strong odor
	15.5 - 16.5	Moderate tar odor, moderate tar staining
	16.5 - 19.5	Faint HC odor
BB-4	19.5 - 24.0	Faint HC odor
00-4	27.75 - 28.0	Heavy black staining and faint HC odor
	28.0 - 31.6	Heavy black tar staining, strong tar odor, saturated with yellowish black tar, heavy iridescent sheen
	31.6 - 31.9	Saturated with yellowish black tar, heavy staining, odor and sheen
	31.9 - 34.0	Moderate tar odor, staining, iridescent sheen
	34.0 - 35.5	Saturated with black tar, strong tar odor, and iridescent sheen
	35.5 - 37.0	Moderate tar odor
	37.0 - 42.0	Faint HC odor
	42.0 - 44.0	Heavy purplish black tar stain mottling, strong tar odor, slight iridescent sheen
	45.0 - 46.0	Heavy purplish black tar stain mottling, strong tar odor, slight iridescent sheen
BB-8	4.0 - 6.0	Strong tar odor, heavy tar staining
	6.0 - 8.5	Strong tar odor, heavy tar staining, heavy iridescent sheen, saturated with tar
	4.0 - 6.5	
BB-9	6.5 - 8.0	Very strong HC odor, very heavy HC staining
	8.0 - 10.0	

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Boring ID	Depth (ft bgs)	Description
	4.5 - 11.0	Very strong HC odor, heavy HC staining, saturated with yellowish black HC
	12.0 - 14.0	Very strong HC odor, heavy yellowish black HC staining
	14.0 - 16.0	Very strong HC odor, very heavy HC staining, saturated with HC
BB-11	16.0 - 20.0	Very strong HC odor, heavy iridescent sheen, saturated with HC
DD-11	20.0 - 22.0	HC staining, strong HC odor
	22.0 - 28.0	Moderate HC odor, iridescent HC sheen, lenses of yellowish black HC saturated sediments
	28.0 - 36.0	Strong HC odor, slight iridescent sheen
	36.0 - 42.0	Faint HC odor
	6.0 - 8.0	Strong HC odor, dark gray to black HC staining, sediment saturated with yellowish black HC
	8.0 - 10.0	Some yellowish black HC staining and iridescent sheen, strong HC odor
	10.0 - 12.0	Moderate HC odor, yellowish black HC staining and iridescent sheen, trace lenses of sediment saturated with tar
	12.0 - 14.0	Strong HC odor, some lenses of heavy yellowish black HC sheen and staining
B-13	14.0 - 16.0	Strong HC odor, clay with some partings containing yellowish black HC and iridescent sheen
	16.0 - 20.0	Faint HC odor, yellowish black HC staining and iridescent sheen
	20.0 - 23.5	Strong HC odor, heavy yellowish black HC staining and iridescent sheen
	23.5 - 26.0	Trace black HC staining and iridescent sheen, faint HC odor
	26.0 - 30.0	iridescent HC staining, faint HC odor
	6.5 - 7.0	Moderate HC odor, heavy iridescent sheen, black HC staining
	8.0 - 10.0	Moderate HC odor, trace strong iridescent sheen
BB-14	15.8 - 16.5	Heavy yellowish black HC staining and strong odor, heavy iridescent sheen
DD-14	18.0 - 19.0	Theavy yellowish black the staining and strong odor, heavy indescent sheen
	19.0 - 22.0	Clay contains partings with yellowish black HC and iridescent sheen, strong HC odor
	25.0 - 27.0	Yellowish black HC stained, saturated with HC, very strong HC odor, heavy staining and iridescent sheen
BB-15	3.1 - 3.3	Coal and ash cemented with pitch-like solidfied tar
DD-10	7.5 - 9.5	Heavy iridescent black staining, strong HC odor, saturated with HC
	2.0 - 4.0	Moderate HC odor, black stained purifier wood chips
	4.5 - 9.5	Moderate HC odor, some iridescent yellowish black staining
	9.5 - 10.0	Moderate HC odor
	10.0 - 11.0	Saturated with yellowish black iridescent HC
BB-18	11.0 - 15.0	Clay contains partings that with yellowish black iridescent HC
	15.0 - 18.5	Strong HC odor, saturated with yellowish black HC, heavy iridescent sheen
	18.5 - 23.0	Clay partings contain yellowish black iridescent HC, strong HC odor, heavy HC staining
	28.0 - 31.5	Saturated with yellowish black iridescent HC, very heavy HC staining, very heavy HC odor
	32.0 - 35.0	Strong HC odor, moderate yellowish black iridescent HC staining

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Boring ID	Depth (ft bgs)	Description
	4.0 - 7.0	Some purplish black staining, strong HC odor
	7.0 - 10.0	Heavy purplish black HC staining, v. strng HC odor, sediment sat. with HC at 7' bgs, moderate iridescent sheen
BB-22	10.0 - 15.0	Very strong HC odor, saturated with yellowish black HC
DD-22	15.0-19.0	Very strong HC odor, all partings filled with yellowish black HC
	19.0 - 21.0	Heavy HC staining, strong HC odor, sediments saturated with HC
	21.0 - 24.0	Slight HC odor and staining
	1.5 - 10.0	Strong HC odor, sheen
MW-3 (BB-29)	10.0 - 11.0	Heavy red stained liquid, strong HC odor, sheen
IVIV-3 (DD-29)	16.0 - 21.0	Strong HC odor, heavy red-yellow staining, sheen
	21.0 - 42.0	HC odor, sheen
	4.0 - 12.0	Strong HC odor, black staining, sheen, red-yellow heavy free phase liquid
BB-30	13.5 - 18.0	HC odor, sheen, staining
DD-30	18.0 - 20.0	HC odor, yellow-red staining, sheen
	20.0 - 22.0	Sheen, staining
	4.0 - 6.0	HC odor, black staining, sheen
MW-4 (BB-31)	10.0 - 16.0	Strong HC odor, free phase, sheen
10100-4 (DD-31)	16.0 - 24.0	Strong HC odor, blebs of free phase, sheen
	24.0 - 26.0	Reddish-brown free phase liquid, strong HC odor, sheen
	6.0 - 20.0	Free phase liquid
	6.0 - 28.0	Sheen, staining
BB-32	6.0 - 10.0	Strong HC odor
	12.0 - 17.7	Strong HC odor, sheen, staining
	17.7 - 20.5	Strong HC odor
BB-33	30.5 - 36.0	HC odor, sheen, yellow-red staining
	0.8 - 10.5	Staining
BB-35	2.0 - 10.5	Black free phase liquid
	6.0 - 10.5	Sheen
	1.5 - 6.0	HC odor, yellow black staining
BB-36	2.0 - 12.7	Staining
00-00	10.0 - 16.0	Sheen, free phase liquid
	12.7 - 16.0	HC odor
BB-37	7.0 - 10.0	Black staining, sheen

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Boring ID	Depth (ft bgs)	Description
	1.0 - 1.5	Strong HC odor
	6.0 - 8.0	Strong HC odor, staining, free phase liquid
BB-38	10.0 - 20.0	Black staining
	20.0 - 25.8	HC odor, sheen, staining
	25.8 - 30.0	HC odor, sheen
BB-40	4.0 - 8.0	Black staining, coal, sheen
	4.0 - 8.0	Black free phase liquid, staining
BB-41	4.0 - 10.0	Sheen
	8.0 - 16.0	HC odor, sheen
BB-44	4.0 - 10.0	Black staining
DD-44	6.0 - 10.0	Black staining, sheen
	0.0 - 0.5	Strong HC odor
BB-51	3.5 - 8.5	Free phase liquid
	4.0 - 5.0	Strong HC odor, sheen
	0.0 - 0.5	HC odor
	2.0 - 2.5	HC odor
BB-55	4.0 - 4.5	HC odor, black staining
	6.0 - 6.5	Free phase liquid, sheen
	8.0 - 8.5	Free phase liquid, sheen, black staining
BB-56	4.5 - 9.4	Black staining, sheen
BB-57	6.0 - 8.0	HC odor, sheen
	2.4	Green-brown staining, slight HC odor
BB-58	4.0 - 8.0	Strong HC odor, sheen, free phase liquid
	7.0 - 8.0	Black stained fill, free phase liquid
BB-71	6.0 - 10.5	Oily sheen
	4.0 - 6.0	Black staining, trace sheen, odor
BB-85	8.0 - 8.3	Trace black staining
DD-00	10.0 - 10.3	
	14.5 - 14.8	Trace blebs of product in inclusions (<1mm)
	9.0	Trace sheen
BB-86	12.0 - 14.0	Trace staining and sheen
00-00	14.0 - 18.0	Sand seams with staining, sheens, and odor
	19.3 - 19.4	Black staining with sheen and trace product

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Boring ID	Depth (ft bgs)	Description
	6.3 - 6.6	Black flecking/staining
	6.6 - 7.0	Sheen, trace product
	8.0 -9.5	Black flecking, sheen
	9.5 - 10.0	Heavy sheen, trace blebs of product
	10.0 - 12.0	Heavy sheen
	12.0 - 12.3	Trace sheens
MW-20 (BB-87)	12.3 - 12.9	Heavy black staining
	12.9 - 13.4	Trace black flecking
	14.0 - 16.5	Trace blebs of product
	16.0 - 19.5	Trace to some black flecking/staining and trace blebs of product
	19.5 - 20.0	Sheen, trace blebs of product
	20.0 - 22.5	Sheen
	24.6 - 24.7	Trace flecks of sheen
	9.5 - 10.0	Sheen, odor
	10.0 -12.0	Little blebs of product and black flecking, sheens
BB-88	12.0 - 13.5	Blebs of product, sheens
	13.5 - 16.0	Trace blebs of product
	16.0 - 17.0	Trace black flecking
BB-90	4.0 - 4.5	Staining with strong coal tar odor, sheen present on water
BB-92	0.0 - 2.0	Trace NAPL, strong odor
DD-92	2.0 - 2.5	Trace NAPL, odor
BB-108	2.0 - 4.0	Stong petroleum odor, sheen
BB-110	2.0 - 2.5	Strong tar odor
BB-110	2.5 - 4.0	Saturated with tar, strong odor
BB-112	1.7 - 3.1	Moderate MGP-type odor
BB-112	7.0	Sheen
BB-112B	1.5 - 5.6	Trace to little oil-like material (brownish-black liquid)
BB-113	1.0 - 1.6	Moderate MGP-type odor
BB-113	1.6 - 5.0	Trace oil-like material and MGP-type odor
BB-116	8.0 - 10.0	Trace sheen
BB-118	5.0 - 6.0	Trace brown oil-like material, sheen, moderate odor
DD-110	8.0 - 10.0	Trace brown oil-like material, little sheen, moderate odor
BB-121	2.0 - 5.0	Black coal tar soaked sand
BB-124	4.9 - 6.7	Trace NAPL
DB-124	5.0	Trace light brown to gold NAPL
120/2005		

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Boring ID	Depth (ft bgs)	Description
BB-125	4.0 - 6.0	Trace NAPL specs, strong coal tar odor
DD-120	6.0 - 8.0	Some NAPL, strong coal tar odor
BB-127	6.0 - 8.0	Trace blebs of NAPL
BB-128	1.0 - 4.0	Coal tar streaking on liner, strong odor
BB-129	2.5 - 4.0	Trace thick black tar-like material
BB-131	8.0 - 9.0	Trace sheen, slight odor
BB-132	6.0 - 8.0	Trace bleb of brown oil-like material, trace sheen
		Moderate petroleum type odor, heavy sheen
BB-134		Bleb of brown oil-like material, sheen, moderate petroleum-type odor
00104	16.0 - 18.0	Trace blebs of brown oil-like material
	18.0 - 20.0	Trace reddish-brown oil-like material
		Bluish staining, slight to moderate odor
BB-135		Black staining, slight to moderate odor
	7.8 - 10.0	Trace brown oily NAPL
		Brown non-viscous oil
		Brown oil
		Dark brown oil, strong MGP-like odor
		Strong MGP-like odor
		Dark brown oil
		Black staining, moderate odor
BB-137		Moderate MGP-type odor
	17.25 - 17.5	Dark brown oil, strong odor
	17.5 - 18.5	Moderate odor
	18.5 - 18.75	
	20.5	Dark brown oil
	21.2	
		Dark brown non-viscous oil
		Black stained, black oil
		Black oil, very strong MGP-like odor
	4.5 - 5.5	Sheen
BB-138		Rainbow sheen, trace blebs of brown oil, very strong odor
		Black staining, faint MGP-like odor
		Black staining
	20.0 - 24.75	Faint MGP-like odor

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Boring ID	Depth (ft bgs)	Description
	9.0 - 10.0	Black oily staining, NAPL saturated, odor
	10.0 - 12.0	Black NAPL staining
BB-139	12.0 - 14.0	Brown NAPL staining, slight odor
	14.0 - 16.0	Brown NAPL staining, sheen, odor
	16.0 - 20.0	Saturated with moderate to heavy sheens
	10.5 - 12.0	Black staining, MGP odor
	12.0 - 14.0	Black staining, moderate odor
BB-140	14.0 - 16.0	Black staining, brown oily sheens, strong odor
	20.0 - 23.0	Staining, odor
	23.0 - 24.0	Black staining, odor
BB-141	17.0 - 18.5	Gray staining, slight odor
00-141	25.25 - 28.0	Slight sheen, MGP odor
	0.5 - 2.0	Black staining, moderate odor
	1.2	Sticky black tar
BB-142		Dark brown oil
		Dark brown oil, very strong odor
		Black taffy-like material
		Heavy staining, strong odor
		Oily sheen
BB-142R		Mottled staining, MGP odor
		MGP odor
	16.0 - 24.0	Slight odor
	24.0 - 28.0	Heavy sheens, strong MGP odor
	2.0 - 3.0	Black oily material
	4.0 - 8.0	Black oil
BB-143	8.0 - 12.0	Brownish-black oil, strong odor
		Dark brown non-viscous oil
	16.0 - 16.5	Saturated with dark brown non-viscous oil
	17.0 - 19.0	Sand lenses saturated with oil

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Boring ID	Depth (ft bgs)	Description
	4.0 - 8.0	Dark brown oil, strong MGP-like odor
	8.0 - 9.25	Dark brown non-viscous oil, strong odor
	9.25 - 9.5	Saturated with dark brown oil, strong odor
	9.5 - 10.25	Dark brown oil
BB-144	10.25 - 11.0	Saturated with oil
	11.0 - 13.0	Black mottling, strong odor
	13.0 - 13.75	Dark brown non viscous oil
	13.75 - 16.0	Strong odor
	16.0 - 20.0	Trace dark brown oil
		Little sheen, moderate MGP-like odor
		Faint MGP-like odor
		Dark brown non-visous oil, strong MGP-like odor
	10.0 - 12.0	Moderate MGP-type odor
	12.0 - 12.8	Dark brown oil in root
BB-145	12.8 13.2	1-inch sand seam saturated with dark brown oil
	13.2 - 15.4	Black mottling, occasional bleb of dark brown oil
	15.4 - 16.5	Heavy sheen, trace dark brown oil
	16.5 - 20.25	Dark brown oil within sand seams
	23.5 - 24.0	Dark brown oil
	24.8	2-inch fine sand seam with some dark brown oil
	25.75 - 28.0	Dark brown oil
		Black staining, odor
	7.0 - 8.0	Black staining, sheens, odor
	8.0 - 10.5	Heavy brown to dark brown oil sheens, MGP odor
BB-147	10.5 - 12.0	Black staining, MGP odor
00-147	12.0 - 13.5	Heavy brown to black oily sheen, MGP odor
	13.5 - 14.0	Staining
	16.0 - 18.5	Brown oily sheens and staining, MGP odor
	18.5 - 24.0	Heavy brown oily sheens, strong odor

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Visual Characterization of Impacted Soil

Boring ID	Depth (ft bgs)	Description
	9.5 - 10.5	Heavy oil sheen, strong MGP odor
	10.5 - 12.0	Some oil sheens, MGP odor
	12.0 - 13.0	Oil Sheens and staining, strong MGP odor
BB-148	13.0 - 13.4	Blebs of NAPL and heavy sheens, strong odor
DD-140		Minor staining, slight odor
		Heavy NAPL sheen, strong MGP odor
	17.25 - 19.25	Minor staining
	19.25 - 19.5	NAPL saturated, odor
		Slight to moderate MGP-type odor
	4 - 5	Moderate to strong MGP-type odor some black staining
	5 - 7	Moderate to strong MGP-type odor little black staining
BB-149	8	Slight sheen, trace gold oily NAPL
	10 - 11	Moderate sheen, little to some black tar-like NAPL in silt matrix
	11 -15	Strong MGP odor, heavy sheen, some gold oily NAPL
		moderate MGP- odor, trace oily gold NAPL
	0.5 - 4	Strong motor-oil type odor
BB-150	4 - 5	Strong motor-oil type odor, some sheen, oil gold NAPL from 4.6 - 4.8 feet bgs
	5 - 22	Moderate to strong motor-oil type odor, little to some oily gold NAPL
MW-22	8.8 - 10.6	Strong petroleum odor
	10.0 - 14.0	Little to some sheen
	5.1 - 8.8	Moderate odor
MW-25	6.0 - 8.0	Trace sheen
10100-23	8.8 - 10.0	Slight odor
		Slight odor
MW-26		Little oil-like material, some sheen, odor
10100-20	11.0 - 11.5	Black staining

Notes:

1. Impacted material descriptions obtained from soil boring logs prepared by Atlantic Environmental Services, Inc., Parsons Engineering Science, Inc. or Blasland, Bouck & Lee, Inc.

2. HC = Hydrocarbon.

3. NAPL - Non-aqueous phase liquid.

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID:	Class GA		MV	V-1			MW-2		М	W-3	MW	/-6S
Date Collected:	Groundwater Criteria	06/20/96	07/31/96	6/11/02	11/5/04	7/23/92	6/20/96	07/31/96	11/11/04	11/11/04 DUP	06/21/96	07/30/96
1,1,1-Trichloroethane	5	19	14	<5	NA	NA	<10	<10	NA	NA	<10	<10
1,1-Dichloroethane	5	4 J	5 J	<5	NA	NA	<10	<10	NA	NA	<10	<10
1,2-Dichloroethane	0.6	<10	<10	<5	NA	NA	<10	<10	NA	NA	<10	<10
2-Hexanone	50	<10	<10	<10	NA	NA	<10	<10	NA	NA	<10	<10
Acetone	50	<10 J	<10	6.4 J	NA	NA	<10 J	<10	NA	NA	<10	<10 J
Benzene	1	220 D	150	150	10	550	500 J	850 D	2,100 D	2,200	5 J	3 J
Bromodichloromethane	50	<10	<10	<5	NA	NA	<10	<10	NA	NA	<10	<10
Chlorobenzene	5	<10	<10	<5	NA	NA	<10	<10	NA	NA	<10	<10
Chloroform	7	<10	<10	<5	NA	NA	<10	<10	NA	NA	<10	<10
Chloromethane	5	<10	<10	3.4 J	NA	NA	<10	<10	NA	NA	<10	<10 J
Ethylbenzene	5	100	3 J	31	1 J	560	370 J	130	660 D	680	22 J	5 J
Methylene chloride	5	<10	<10	2.3 JB	NA	NA	<10	<10	NA	NA	<10	<10 J
Styrene	5	2 JN	<10	1.2 JB	NA	NA	<10	<10	NA	NA	<10	<10
Tetrachloroethene	5	3 J	<10	<5	NA	NA	<10	<10	NA	NA	<10	<10
Toluene	5	30	17	4.8 JB	2 J	39	120	77	18	<200	1 J	<10
Total Xylenes	5	110 D	52	14 J	3 J	500	510 J	360	580 D	570	4 J	<10
Total BTEX		460	222 J	199.8 J	16 J	1,649	1,500 J	1,417	3,358	3,450	32 J	8 J

Sample ID:	Class GA	MW	/-6S		MM	/-61			М	W-7		MW-8S
Date Collected:	Groundwater Criteria	6/12/02	11/9/04	06/21/96	07/30/96	6/12/02	11/10/04	06/18/96	07/31/96	6/12/02	11/4/04	06/19/96
1,1,1-Trichloroethane	5	<5	NA	<10	<10	<5	NA	<10	<10	<5	NA	<10
1,1-Dichloroethane	5	<5	NA	<10	<10	<5	NA	<10	<10	<5	NA	<10
1,2-Dichloroethane	0.6	3 J	NA	<10	3 J	2.2 J	NA	<10	<10	<5	NA	<10
2-Hexanone	50	<10	NA	<10	<10	<10	NA	<10	<10	<10	NA	<10
Acetone	50	<25	NA	<10	<10	<25	NA	<10	<10	5.1 J	NA	<10
Benzene	1	1.8 J	<10	<10	<10	<5	<10	<10	<10	<5	<10	<10
Bromodichloromethane	50	<5	NA	<10	<10	<5	NA	<10	<10	<5	NA	<10
Chlorobenzene	5	<5	NA	<10	<10	<5	NA	<10	<10	<5	NA	<10
Chloroform	7	<5	NA	1 J	<10	<5	NA	<10	<10	<5	NA	<10
Chloromethane	5	<10	NA	<10	<10	<10	NA	<10	<10	<10	NA	<10
Ethylbenzene	5	<5	<10	<10	<10	<5	<10	<10	<10	<5	<10	<10
Methylene chloride	5	<5	NA	<10	<16	<5	NA	<10	<10	<5	NA	<10
Styrene	5	<5	NA	<10	<10	<5	NA	<10	<10	<5	NA	<10
Tetrachloroethene	5	<5	NA	<10	<10	<5	NA	<10	<10	<5	NA	<10
Toluene	5	1 J	<10	<10	<10	<5	<10	<10	<10	<5	<10	<10
Total Xylenes	5	<15	<10	<10	<10	<15	<10	<10	<10	<15	<10	<10
Total BTEX		2.8 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID:	Class GA		MW-8S				MW-8I				MW-8D	
Date Collected:	Groundwater Criteria	07/31/96	6/12/02	11/9/04	06/19/96	07/31/96	6/12/02	08/11/04	11/9/04	06/19/96	07/31/96	6/12/02
1,1,1-Trichloroethane	5	<10	<5	<5	<10	<10	<5	NA	NA	<10	<10	<5
1,1-Dichloroethane	5	<10	<5	<5	<10	<10	<5	NA	NA	<10	<10	<5
1,2-Dichloroethane	0.6	<10	<5	<5	<10	<10	<5	NA	NA	1 JN	<10	<5
2-Hexanone	50	<10	<10	<10	<10	<10	<10	NA	NA	<10	<10	<10
Acetone	50	<10	<25	<25	<10	<10	<25	NA	NA	<10	<10	<25
Benzene	1	<10	<5	<10	1,000 D	110	26	49	530 D	<10	<10	<5
Bromodichloromethane	50	<10	<5	<5	<10	<10	<5	NA	NA	<10	<10	<5
Chlorobenzene	5	<10	<5	<5	<10	<10	<5	NA	NA	<10	<10	<5
Chloroform	7	<10	<5	<5	<10	<10	<5	NA	NA	<10	<10	<5
Chloromethane	5	<10	<10	<10	<10	<10	<10	NA	NA	<10	<10	<10
Ethylbenzene	5	<10	<5	<10	410 D	<10	2.1 J	3 J	49	<10	<10	<5
Methylene chloride	5	<10	<5	<5	<10	<10	<5	NA	NA	<10	<10	<5
Styrene	5	<10	<5	<5	<10	<10	<5	NA	NA	<10	<10	<5
Tetrachloroethene	5	<10	<5	<5	<10	<10	<5	NA	NA	<10	<10	<5
Toluene	5	<10	<5	<10	1 J	<10	<5	< 10	0.8 J	<10	<10	<5
Total Xylenes	5	<10	<15	<10	24	3 J	<15	2 J	9 J	<10	<10	<15
Total BTEX		ND	ND	ND	1,435 J	113 J	28.1 J	54 J	588.8 J	ND	ND	ND

Sample ID:	Class GA	MM	MW-8D			MW-9S				MW	/-91	
Date Collected:	Groundwater Criteria	8/11/04	11/9/04	06/20/96	07/31/96	6/13/02	1/12/05	1/12/05 DUP	06/20/96	08/01/96	6/13/02	6/13/02 DUP
1,1,1-Trichloroethane	5	NA	NA	<10	<10	<5	NA	NA	<10	<10	<5	<5
1,1-Dichloroethane	5	NA	NA	<10	<10	<5	NA	NA	<10	<10	<5	<5
1,2-Dichloroethane	0.6	NA	NA	<10	<10	<5	NA	NA	<10	<10	<5	<5
2-Hexanone	50	NA	NA	<10	<10	<10	NA	NA	<10	<10	<10	<10
Acetone	50	NA	NA	<10	<10	<25	NA	NA	<10	<10	<25	<25
Benzene	1	< 10	<10	10	3 J	20	5 J	5 J	6 J	5 J	9.2	9.4
Bromodichloromethane	50	NA	NA	<10	<10	<5	NA	NA	<10	<10	<5	<5
Chlorobenzene	5	NA	NA	<10	<10	<5	NA	NA	<10	<10	<5	<5
Chloroform	7	NA	NA	<10	<10	<5	NA	NA	<10	<10	<5	<5
Chloromethane	5	NA	NA	<10	<10	<10	NA	NA	<10	<10	<10	<10
Ethylbenzene	5	< 10	<10	360 D	83	870 D	110	100	190	57	140	140 D
Methylene chloride	5	NA	NA	<10	<10	3.4 JB	NA	NA	<10	<10	2.7 JB	2.2 JB
Styrene	5	NA	NA	<10	<10	<5	NA	NA	<10	<10	<5	<5
Tetrachloroethene	5	NA	NA	<10	<10	<5	NA	NA	<10	<10	<5	<5
Toluene	5	< 10	<10	16	2 J	38 B	2 J	2 J	3 J	2 J	3 JB	2.8 JB
Total Xylenes	5	< 10	<10	780 D	240	2,900 D	270	270	540 D	210	560 D	590 D
Total BTEX		ND	ND	1,166	328 J	3,828	387 J	377 J	739 J	274 J	712.2 J	742.2 J

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID:	Class GA	MW-9I		MW	-9D				MW-10			MW-11
Date Collected:	Groundwater Criteria	1/12/05	06/20/96	08/01/96	6/13/02	1/12/05	06/20/96	07/31/96	6/13/02	6/13/02 DUP	1/12/05	06/19/96
1,1,1-Trichloroethane	5	NA	<10	<10	<5	NA	<10	<10	<5	<5	NA	<10
1,1-Dichloroethane	5	NA	<10	<10	<5	NA	<10	<10	<5	<5	NA	<10
1,2-Dichloroethane	0.6	NA	<10	<10	<5	NA	<10	<10	<5	<5	NA	<10
2-Hexanone	50	NA	<10	<10	<10	NA	<10	<10	<10	<10	NA	<10
Acetone	50	NA	<10 J	<10	<25	NA	<10 J	<10	<25	<25	NA	<10
Benzene	1	4 J	15	27	20	18	<10	<10	<5	<5	<10	<10
Bromodichloromethane	50	NA	1 J	<10	<5	NA	<10	<10	<5	<5	NA	<10
Chlorobenzene	5	NA	<10	<10	<5	NA	<10	<10	<5	<5	NA	<10
Chloroform	7	NA	3 D	<10	<5	NA	<10	<10	<5	<5	NA	<10
Chloromethane	5	NA	<10	<10 J	<10	NA	<10	<10	<10	<10	NA	<10
Ethylbenzene	5	81	<10	<10	<5	<10	<10	<10	<5	<5	<10	<10
Methylene chloride	5	NA	<10	<10	2.6 JB	NA	<10	<10	3.9 JB	2.2 JB	NA	<10
Styrene	5	NA	<10	<10	<5	NA	<10	<10	<5	<5	NA	<10
Tetrachloroethene	5	NA	<10	<10	<5	NA	<10	<10	<5	<5	NA	<10
Toluene	5	1 J	<10	<10	<5	<10	<10	<10	<5	<5	<10	<10
Total Xylenes	5	520 D	2 J	2 J	1.2 J	<10	<10	<10	<15	<15	<10	<10
Total BTEX		606 J	17 J	29 J	21.2 J	18	ND	ND	ND	ND	ND	NA

Sample ID:	Class GA		MW-11			MW	/-12			MW-13S/	MW-13SR	
Date Collected:	Groundwater Criteria	07/31/96	6/12/02	11/1/04	06/19/96	07/31/96	6/12/02	11/2/04	06/18/96	07/30/96	6/11/02	11/4/04
1,1,1-Trichloroethane	5	<10	<5	NA	<10	<10	<5	NA	<10	<10	<5	NA
1,1-Dichloroethane	5	<10	<5	NA	<10	<10	<5	NA	<10	<10	<5	NA
1,2-Dichloroethane	0.6	<10	<5	NA	<10	<10	<5	NA	<10	<10	<5	NA
2-Hexanone	50	<10	<10	NA	<10	<10	<10	NA	<10	<10	<10	NA
Acetone	50	<10	6.1 J	NA	<10	<10	6.8 J	NA	<10	<10	6.2 J	NA
Benzene	1	<10	<5	<10	<10	<10	<5	<10	<10	<10	<5	5 J
Bromodichloromethane	50	<10	<5	NA	<10	<10	<5	NA	<10	<10	<5	NA
Chlorobenzene	5	<10	<5	NA	<10	<10	<5	NA	<10	<10	<5	NA
Chloroform	7	<10	<5	NA	<10	<10	<5	NA	<10	<10	<5	NA
Chloromethane	5	<10	<10	NA	<10	<10	<10	NA	<10	<10	<10	NA
Ethylbenzene	5	<10	<5	<10	<10	<10	<5	<10	<10	<10	<5	2 J
Methylene chloride	5	<10	<5	NA	<10	<10	<5	NA	<10	<10	2.8 JB	NA
Styrene	5	<10	<5	NA	<10	<10	<5	NA	<10	<10	<5	NA
Tetrachloroethene	5	<10	<5	NA	<10	<10	<5	NA	<10	<10	<5	NA
Toluene	5	<10	<5	<10	<10	<10	<5	<10	<10	<10	<5	<10
Total Xylenes	5	<10	<15	<10	<10	<10	<15	<10	<10	<10	<15	1 J
Total BTEX		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8 J

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID:	Class GA		MW-13P					MW	-13		MW	-14S
Date Collected:	Groundwater Criteria	06/18/96	07/30/96	6/11/02	11/2/04	11/2/04 DUP	06/18/96	07/30/96	6/11/02	11/2/04	06/18/96	07/30/96
1,1,1-Trichloroethane	5	<10	<10	<5	NA	NA	<10	<10	<5	NA	<10	<10
1,1-Dichloroethane	5	<10	<10	<5	NA	NA	<10	<10	<5	NA	<10	<10
1,2-Dichloroethane	0.6	<10	<10	<5	NA	NA	<10	<10	<5	NA	<10	<10
2-Hexanone	50	<10	<10	<10	NA	NA	<10	<10	<10	NA	<10	<10
Acetone	50	<10	<10 J	5.7 J	NA	NA	<10	<10 J	7.3 J	NA	<10	<10
Benzene	1	7 J	6 J	<5	<10	<10	<10	<10	9.2	5 J	<10	<10
Bromodichloromethane	50	<10	<10	<5	NA	NA	<10	<10	<5	NA	<10	<10
Chlorobenzene	5	<10	<10	<5	NA	NA	<10	<10	<5	NA	<10	<10
Chloroform	7	<10	<10	<5	NA	NA	<10	<10	<5	NA	<10	<10
Chloromethane	5	<10 J	<10 J	<10	NA	NA	<10 J	<10 J	<10	NA	<10 J	<10
Ethylbenzene	5	<10	<10	<5	<10	<10	<10	<10	<5	<10	<10	<10
Methylene chloride	5	<10 J	<10 J	2.6 JB	NA	NA	<10 J	<10 J	2.2 JB	NA	<10 J	<14 J
Styrene	5	<10	<10	<5	NA	NA	<10	<10	<5	NA	<10	<10
Tetrachloroethene	5	<10	<10	<5	NA	NA	<10	<10	<5	NA	<10	<10
Toluene	5	<10	<10	<5	<10	<10	<10	<10	1 J	<10	<10	<10
Total Xylenes	5	<10	<10	<15	<10	<10	<10	<10	<15	<10	<10	<10
Total BTEX		7 J	6 J	ND	ND	ND	ND	ND	10.2 J	5 J	ND	ND

Sample ID:	Class GA	MW	-14S		MW	-14P			MW	-141		MW-15S
Date Collected:	Groundwater Criteria	6/11/02	11/3/04	06/18/96	07/30/96	6/11/02	11/3/04	06/18/96	07/30/96	6/11/02	11/3/04	06/19/96
1,1,1-Trichloroethane	5	<5	NA	<10	<10	<5	NA	<10	<10	<5	NA	<10
1,1-Dichloroethane	5	<5	NA	<10	<10	<5	NA	<10	<10	<5	NA	<10
1,2-Dichloroethane	0.6	<5	NA	<10	<10	<5	NA	<10	<10	<5	NA	<10
2-Hexanone	50	<10	NA	<10	<10	<10	NA	<10	<10	<10	NA	<10
Acetone	50	<25	NA	<10	<10	7.4 J	NA	<10	<10	7.8 J	NA	<10
Benzene	1	<5	<10	<10	<10	<5	<10	<10	<10	<5	<10	<10
Bromodichloromethane	50	<5	NA	<10	<10	<5	NA	<10	<10	<5	NA	<10
Chlorobenzene	5	<5	NA	<10	<10	<5	NA	<10	<10	<5	NA	<10
Chloroform	7	<5	NA	<10	<10	<5	NA	<10	<10	<5	NA	<10
Chloromethane	5	2.4 J	NA	<10	<10	<10	NA	<10	<10	<10	NA	<10
Ethylbenzene	5	<5	<10	<10	<10	<5	<10	<10	<10	<5	<10	<10
Methylene chloride	5	3.5 JB	NA	<10	<10	3.1 JB	NA	<10	<10	2.8 JB	NA	<10
Styrene	5	<5	NA	<10	<10	<5	NA	<10	<10	<5	NA	<10
Tetrachloroethene	5	<5	NA	<10	<10	<5	NA	<10	<10	<5	NA	<10
Toluene	5	<5	<10	<10	<10	<5	<10	<10	<10	<5	<10	<10
Total Xylenes	5	<15	<10	<10	<10	<15	<10	<10	<10	<15	<10	<10
Total BTEX		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID:	Class GA		MW-15S			MW	-151		MM	/-16	MW	/-17
Date Collected:		07/31/96	6/12/02	11/9/04	06/19/96	07/31/96	6/12/02	11/9/04	06/21/96	08/01/96	06/20/96	07/30/96
1,1,1-Trichloroethane	5	<10	<5	NA	<10	<10	<5	NA	<10	<10	<10	<10
1,1-Dichloroethane	5	<10	2.2 J	NA	<10	<10	<5	NA	<10	<10	<10	<10
1,2-Dichloroethane	0.6	<10	<5	NA	<10	<10	<5	NA	<10	<10	<10	<10
2-Hexanone	50	<10	<10	NA	<10	<10	<10	NA	<10	<10	<10	<10
Acetone	50	<10	<25	NA	<10	<10	<25	NA	<10	<10	<10 J	<10
Benzene	1	<10	<5	<10	<10	<10	<5	<10	110	110	8 J	5 J
Bromodichloromethane	50	<10	<5	NA	<10	<10	<5	NA	<10	<10	<10	<10
Chlorobenzene	5	<10	<5	NA	<10	<10	<5	NA	<10	<10	<10	4 J
Chloroform	7	<10	<5	NA	<10	<10	<5	NA	<10	<10	<10	<10
Chloromethane	5	<10	<10	NA	<10	<10	<10	NA	<10	<10 J	<10	<10
Ethylbenzene	5	<10	<5	<10	<10	<10	<5	<10	630 D	350 D	430 D	95
Methylene chloride	5	<10	<5	NA	<10	<10	<5	NA	<10	<10	<10	<10
Styrene	5	<10	<5	NA	<10	<10	<5	NA	<10	<10	<10	<10
Tetrachloroethene	5	<10	<5	NA	<10	<10	<5	NA	<10	<10	<10	<10
Toluene	5	<10	<5	<10	<10	<10	<5	<10	18	18	8 J	4 J
Total Xylenes	5	<10	<15	<10	<10	<10	<15	<10	320	280	180	20
Total BTEX		ND	ND	ND	ND	ND	ND	ND	1,078	758	626 J	124 J

Sample ID:	Class GA	MW-17		MW-18			MW	-19S			MW-19I	
Date Collected:	Groundwater Criteria	11/5/04	06/20/96	07/31/96	6/11/02	06/19/96	07/30/96	6/11/02	11/3/04	06/19/96	07/30/96	6/11/02
1,1,1-Trichloroethane	5	NA	<10	<500	<5	<10	<10	<5	NA	<10	<10	<5
1,1-Dichloroethane	5	NA	<10	<500	<5	<10	<10	<5	NA	<10	<10	<5
1,2-Dichloroethane	0.6	NA	<10	<500	<5	<10	<10	<5	NA	<10	<10	<5
2-Hexanone	50	NA	<10	<500	40	<10	<10	<10	NA	<10	<10	<10
Acetone	50	NA	<10 J	<500	300	<10	<10	<25	NA	<10	<10	<25
Benzene	1	9 J	8,000 D	4,600 D	2,800 D	<10	<10	<5	<10	<10	<10	<5
Bromodichloromethane	50	NA	<10	<500	<5	<10	<10	<5	NA	<10	<10	<5
Chlorobenzene	5	NA	<10	<500	<5	<10	<10	<5	NA	<10	<10	<5
Chloroform	7	NA	<10	<500	<5	<10	<10	<5	NA	<10	<10	<5
Chloromethane	5	NA	<10	<500	<10	<10	<10	<10	NA	<10	<10	<10
Ethylbenzene	5	390 D	1,800 D	1,500 D	990 D	<10	<10	<5	<10	<10	<10	<5
Methylene chloride	5	NA	54	<430	<5	<10	<10	2 JB	NA	<10	<10	3.3 JB
Styrene	5	NA	<10	<500	<5	<10	<10	<5	NA	<10	<10	<5
Tetrachloroethene	5	NA	<10	<500	<5	<10	<10	<5	NA	<10	<10	<5
Toluene	5	6 J	3,100 D	3,000 D	470 D	<10	<10	<5	<10	<10	<10	<5
Total Xylenes	5	70	7,800 D	8,300 D	2,900 D	<10	<10	<15	<10	<10	<10	<15
Total BTEX		475 J	20,700 D	17,400 D	7,160 D	ND	ND	ND	ND	ND	ND	ND

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID:	Class GA	MW-19I		MW-	·19D		MW-20	MW-21	MW-22	MW-23	MW-24	MW-25
Date Collected:		11/3/04	06/19/96	07/30/96	6/11/02	11/3/04	6/13/02	11/12/04	11/10/04	11/08/04	11/04/04	11/01/04
1,1,1-Trichloroethane	5	NA	<10	<10	<5	NA	<5	NA	NA	NA	NA	NA
1,1-Dichloroethane	5	NA	<10	<10	<5	NA	<5	NA	NA	NA	NA	NA
1,2-Dichloroethane	0.6	NA	<10	<10	<5	NA	<5	NA	NA	NA	NA	NA
2-Hexanone	50	NA	<10	<10	<10	NA	<10	NA	NA	NA	NA	NA
Acetone	50	NA	<10	<10	<25	NA	<25	NA	NA	NA	NA	NA
Benzene	1	<10	<10	<10	<5	<10	2,300 D	220 D	2 J	6,700 D	200	1,400 D
Bromodichloromethane	50	NA	<10	<10	<5	NA	<5	NA	NA	NA	NA	NA
Chlorobenzene	5	NA	<10	<10	<5	NA	<5	NA	NA	NA	NA	NA
Chloroform	7	NA	<10	<10	<5	NA	<5	NA	NA	NA	NA	NA
Chloromethane	5	NA	<10	<10	3.3 J	NA	<10	NA	NA	NA	NA	NA
Ethylbenzene	5	<10	<10	<10	<5	<10	940 D	320 D	2 J	2,100 D	5 J	650 D
Methylene chloride	5	NA	<10	<10	3.7 JB	NA	3.4 JB	NA	NA	NA	NA	NA
Styrene	5	NA	<10	<10	<5	NA	<5	NA	NA	NA	NA	NA
Tetrachloroethene	5	NA	<10	<10	<5	NA	<5	NA	NA	NA	NA	NA
Toluene	5	<10	<10	<10	<5	<10	59 B	110	2 J	330 JD	2 J	14
Total Xylenes	5	<10	<10	<10	<15	<10	1,000 D	400	3 J	4,400 D	5 J	180
Total BTEX		ND	ND	ND	ND	ND	4,299	1,050	9 J	13,530 JD	212 J	2,244

Sample ID:	Class GA	MW-26	MW-27S	MW-27D
	Groundwater			
Date Collected:	Criteria	11/08/04	11/04/04	11/04/04
1,1,1-Trichloroethane	5	NA	NA	NA
1,1-Dichloroethane	5	NA	NA	NA
1,2-Dichloroethane	0.6	NA	NA	NA
2-Hexanone	50	NA	NA	NA
Acetone	50	NA	NA	NA
Benzene	1	69	<10	<10
Bromodichloromethane	50	NA	NA	NA
Chlorobenzene	5	NA	NA	NA
Chloroform	7	NA	NA	NA
Chloromethane	5	NA	NA	NA
Ethylbenzene	5	830 D	<10	<10
Methylene chloride	5	NA	NA	NA
Styrene	5	NA	NA	NA
Tetrachloroethene	5	NA	NA	NA
Toluene	5	41	<10	<10
Total Xylenes	5	840 D	<10	<10
Total BTEX		1,780	ND	ND

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Groundwater Analytical Results for Detected VOCs (ppb)

Notes:

- 1. Samples were collected by Atlantic Environmental Services during 1992; Parsons Engineering Science between 1994 and 1997; and Blasland, Bouck & Lee, Inc. between 2001 and 2005.
- 2. VOCs = volatile organic compounds.
- Laboratory analysis was conducted by Energy and Environmental Engineering, Inc. for samples collected during 1992; Nytest Environmental, Inc. located in Port Washington, New York for samples collected during 1996; Severn Trent Laboratories, Inc. located in Amherst, New York for samples collected during 2002 and by CompuChem located in Cary, North Carolina for samples collected during 2004.
- 4. Samples were analyzed for VOCs using USEPA SW-846 Method 8260.
- NYSDEC Class GA Standards/Guidance Values from New York State Department of Environmental Conservation (NYSDEC) document entitled, "Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (NYSDEC, reissued June 1998 and addended April 2000).
- 6. Concentrations reported in micrograms per liter (µg/L) or parts per billion (ppb).
- 7. < = Compound was not detected at a concentration exceeding the presented laboratory detection limit.
- 8. ND = Compound was not detected at a concentration exceeding laboratory detection limits.
- 9. NA = Not Analyzed.
- 10. J = Indicates an estimated concentration. Presented concentration is less than the method detection limit but greater than the instrument detection limit.
- 11. B = Indicates that the compound was detected in the laboratory sample as well as the associated laboratory blank.
- 12. D = Indicates that the presented concentration is based on the analysis of a diluted sample.
- 13. Shaded values indicate that the compound was detected at a concentration greater than or equal to the NYSDEC Class GA (groundwater) standard or guidance value presented in TOGS 1.1.1.
- 14. Monitoring wells MW-16 and MW-17 were not able to be located during the 2002 sampling event, and therefore, were not sampled.
- 15. -- = Indicates that a Class GA water quality standard or guidance value was not available for this compound.

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID:		MW-1					MW-2	MW-3		
Date Collected:	Class GA Groundwater Criteria	6/20/96	7/31/96	6/11/02	11/5/04	7/23/92	6/20/96	7/31/96	11/11/04	11/11/04 DUP
1,3-Dichlorobenzene	3	<10	<10	NA	NA	NA	<10	<10	NA	NA
1,4-Dichlorobenzene	3	<10	<10	NA	NA	NA	<10	<10	NA	NA
2,4-Dimethylphenol	50	67 J	<10	NA	NA	NA	700 JD	2000 D	NA	NA
2-Methyl phenol		8 J	<10	NA	NA	NA	360 JD	940 D	NA	NA
2-Methylnaphthalene		22	<10	<10	<10	NA	44	7 J	360 D	350 D
4-Methyl phenol		3 J	<10	NA	NA	NA	240 JD	710 D	NA	NA
Acenaphthene	20	74	<10	4 J	4 J	43	82	65	120	140
Acenaphthylene		7 J	6 J	3 J	<10	12	<10	5 J	8 J	7 J
Anthracene	50	10 J	2 J	1 J	<10	8	6 J	7 J	22	24
Benzo(a)anthracene	0.002	3 J	3 J	0.7 J	<10	2 J	2 J	1 J	8 J	7 J
Benzo(a)pyrene	ND	2 J	4 J	1 J	<10	1 J	1 J	1 J	7 J	6 J
Benzo(b)fluoranthene	0.002	1 J	2 J	0.6 J	<10	<5	<10	<10	3 J	3 J
Benzo(ghi)perylene		<10	4 J	3 J	<10	<5	<10	<10	4 J	3 J
Benzo(k)fluoranthene	0.002	<10	2 J	<10	<10	<5	<10	<10	4 J	3 J
bis(2-Ethylhexyl)phthalate	5	<10	<10	NA	NA	NA	<10	<10	NA	NA
Carbazole		4 J	<10	NA	NA	NA	53	45	NA	NA
Chrysene	0.002	3 J	3 J	0.6 J	<10	2 J	2 J	1 J	8 J	7 J
Dibenzo(a,h)anthracene		<10	<10	<10	<10	<5	<10	<10	<10	<10
Dibenzofuran		<10	<10	NA	NA	NA	22	17	NA	NA
Diethylphthalate	50	<10	<10	NA	NA	NA	<10	<10	NA	NA
Di-n-Octylphthalate	50	<10	<10	NA	NA	NA	<10	<10	NA	NA
Fluoranthene	50	9 J	3 J	<1	<10	7	7 J	6 J	18	18
Fluorene	50	33	<10	<10	<10	22	22	26	47	54
Indeno(1,2,3-cd)pyrene	0.002	<10	2 J	2 J	<10	<5	<10	<10	3 J	2 J
Naphthalene	10	500 D	2 JN	<10	<10	<5	1600 D	66 JD	1500 D	1500 D
Phenanthrene	50	47	2 J	<10	<10	37	32	6 J	78	88
Phenol	1	8 J	4 J	NA	NA	NA	360 J	300 JD	NA	NA
Pyrene	50	11	6 J	<1	<10	6	6 J	6 J	27	27
Total PAHs		722 J	41 J	15.9 J	4 J	122	1,804 J	197 J	2,217 J	2,239 J

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID:			MW-6I						
Date Collected:	Class GA Groundwater Criteria	6/21/96	7/30/96	6/12/02	11/9/04	6/21/96	7/30/96	6/12/02	11/10/04
1,3-Dichlorobenzene	3	<10	<10	NA	NA	<10	<10	NA	NA
1,4-Dichlorobenzene	3	<10	<10	NA	NA	<10	<10	NA	NA
2,4-Dimethylphenol	50	<10	<10	NA	NA	<10	<10	NA	NA
2-Methyl phenol		<10	<10	NA	NA	<10	<10	NA	NA
2-Methylnaphthalene		<10	<10	<10	NA	<10	<10	<10	<10
4-Methyl phenol		<10	<10	NA	NA	<10	<10	NA	NA
Acenaphthene	20	<10	<10	<10	<10	<10	<10	<10	<10
Acenaphthylene		<10	<10	<10	<10	<10	<10	<10	<10
Anthracene	50	<10	<10	<10	<10	<10	<10	<10	<10
Benzo(a)anthracene	0.002	<10	<10	<10	<10	<10	<10	<10	<10
Benzo(a)pyrene	ND	<10	<10	<10	<10	<10	<10	<10	<10
Benzo(b)fluoranthene	0.002	<10	<10	<10	<10	<10	<10	<10	<10
Benzo(ghi)perylene		<10	<10	<10	<10	<10	<10	<10	<10
Benzo(k)fluoranthene	0.002	<10	<10	<10	<10	<10	<10	<10	<10
bis(2-Ethylhexyl)phthalate	5	<10	<10	NA	NA	<10	<10	NA	NA
Carbazole		<10	<10	NA	NA	<10	<10	NA	NA
Chrysene	0.002	<10	<10	<10	<10	<10	<10	<10	<10
Dibenzo(a,h)anthracene		<10	<10	<10	<10	<10	<10	<10	<10
Dibenzofuran		<10	<10	NA	NA	<10	<10	NA	NA
Diethylphthalate	50	2 J	<10	NA	NA	1 J	<10	NA	NA
Di-n-Octylphthalate	50	<10	<10	NA	NA	<10	<10	NA	NA
Fluoranthene	50	<10	<10	<10	<10	<10	<10	<10	<10
Fluorene	50	<10	<10	<10	<10	<10	<10	<10	<10
Indeno(1,2,3-cd)pyrene	0.002	<10	<10	<10	<10	<10	<10	<10	<10
Naphthalene	10	2 J	<10	2 J	<10	<10	<10	<10	<10
Phenanthrene	50	<10	<10	<10	<10	<10	<10	<10	<10
Phenol	1	<10	<10	NA	NA	<10	<10	NA	NA
Pyrene	50	<10	<10	<10	<10	<10	<10	<10	<10
Total PAHs		2 J	ND	2 J	ND	ND	ND	ND	ND

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID:			MV	V-7			MW-8S				
Date Collected:	Class GA Groundwater Criteria	6/18/96	7/31/96	6/12/02	11/4/04	6/19/96	7/31/96	6/12/02	11/9/04		
1,3-Dichlorobenzene	3	<10	<10	NA	NA	<10	<10	NA	NA		
1,4-Dichlorobenzene	3	<10	<10	NA	NA	<10	<10	NA	NA		
2,4-Dimethylphenol	50	<10	<10	NA	NA	<10	<10	NA	NA		
2-Methyl phenol		<10	<10	NA	NA	<10	<10	NA	NA		
2-Methylnaphthalene		<10	<10	<10	<10	<10	<10	<10	<10		
4-Methyl phenol		<10	<10	NA	NA	<10	<10	NA	NA		
Acenaphthene	20	<10	<10	<10	<10	<10	<10	<10	<10		
Acenaphthylene		<10	<10	<10	<10	<10	<10	<10	<10		
Anthracene	50	<10	<10	<10	<10	<10	<10	<10	<10		
Benzo(a)anthracene	0.002	<10	<10	<10	<10	<10	<10	<10	<10		
Benzo(a)pyrene	ND	<10	<10	<10	<10	<10	<10	<10	<10		
Benzo(b)fluoranthene	0.002	<10	<10	<10	<10	<10	<10	<10	<10		
Benzo(ghi)perylene		<10	<10	<10	<10	<10	<10	<10	<10		
Benzo(k)fluoranthene	0.002	<10	<10	<10	<10	<10	<10	<10	<10		
bis(2-Ethylhexyl)phthalate	5	<10	<10	NA	NA	<10	<10	NA	NA		
Carbazole		<10	<10	NA	NA	<10	<10	NA	NA		
Chrysene	0.002	<10	<10	<10	<10	<10	<10	<10	<10		
Dibenzo(a,h)anthracene		<10	<10	<10	<10	<10	<10	<10	<10		
Dibenzofuran		<10	<10	NA	NA	<10	<10	NA	NA		
Diethylphthalate	50	<10	<10	NA	NA	2 JN	<10	NA	NA		
Di-n-Octylphthalate	50	<10	<10	NA	NA	<10	<10	NA	NA		
Fluoranthene	50	<10	<10	<10	<10	<10	<10	<10	<10		
Fluorene	50	<10	<10	<10	<10	<10	<10	<10	<10		
Indeno(1,2,3-cd)pyrene	0.002	<10	<10	<10	<10	<10	<10	<10	<10		
Naphthalene	10	<10	<10	<10	<10	<10	<10	<10	<10		
Phenanthrene	50	<10	<10	<10	<10	<10	<10	<10	<10		
Phenol	1	<10	<10	NA	NA	<10	<10	NA	NA		
Pyrene	50	<10	<10	<10	<10	<10	<10	<10	<10		
Total PAHs		ND									

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID:				MW-8I					MW-8D		
Date Collected:	Class GA Groundwater Criteria	6/19/96	7/31/96	6/12/02	8/11/04	11/9/04	6/19/96	7/31/96	6/12/02	8/11/04	11/9/04
1,3-Dichlorobenzene	3	<10	<11	NA	NA	NA	<10	<10	NA	NA	NA
1,4-Dichlorobenzene	3	<10	<11	NA	NA	NA	<10	<10	NA	NA	NA
2,4-Dimethylphenol	50	<10	<11	NA	NA	NA	<10 J	<10	NA	NA	NA
2-Methyl phenol		<10	<11	NA	NA	NA	<10	<10	NA	NA	NA
2-Methylnaphthalene		<10	<11	2 J	NA	13	150 JD	<10	<9	NA	<10
4-Methyl phenol		<10	<11	NA	NA	NA	<10	<10	NA	NA	NA
Acenaphthene	20	<10	2 J	20	46	31	110 JD	<10	0.7 J	< 10	<10
Acenaphthylene		<10	<6	<10	< 10	<10	<10	<10	<9	< 10	<10
Anthracene	50	<10	<11	0.7 J	< 10	<10	<10	<10	<9	< 10	<10
Benzo(a)anthracene	0.002	<10	<11	<10	< 10	<10	<10	<10	<9	< 10	<10
Benzo(a)pyrene	ND	<10	<11	<10	< 10	<10	<10 J	<10	<9	< 10	<10
Benzo(b)fluoranthene	0.002	<10	<11	<10	< 10	<10	<10 J	<10	<9	< 10	<10
Benzo(ghi)perylene		<10	<11	<10	< 10	<10	<10 J	<10	<9	< 10	<10
Benzo(k)fluoranthene	0.002	<10	<11	<10	< 10	<10	<10 J	<10	<9	< 10	<10
bis(2-Ethylhexyl)phthalate	5	<10	<11	NA	NA	NA	<10	<10	NA	NA	NA
Carbazole		<10	<11	NA	NA	NA	<10	<10	NA	NA	NA
Chrysene	0.002	<10	<11	<10	< 10	<10	<10	<10	<9	< 10	<10
Dibenzo(a,h)anthracene		<10	<11	<10	< 10	<10	<10 J	<10	<9	< 10	<10
Dibenzofuran		<10	<11	NA	NA	NA	6 J	<10	NA	NA	NA
Diethylphthalate	50	1 J	<11	NA	NA	NA	<10	<10	NA	NA	NA
Di-n-Octylphthalate	50	<10	<11	NA	NA	NA	<10 J	<10	NA	NA	NA
Fluoranthene	50	<10	<11	<10	< 10	<10	<10	<10	<9	< 10	<10
Fluorene	50	<10	<11	4 J	10	6 J	32	<10	<9	< 10	<10
Indeno(1,2,3-cd)pyrene	0.002	<10	<11	<10	< 10	<10	<10 J	<10	<9	< 10	<10
Naphthalene	10	<10	<2	0.9 J	2 J	11	1800 D	<10	<9	< 10	<10
Phenanthrene	50	<10	<11	0.7 J	< 10	<10	2 JN	<10	<9	< 10	<10
Phenol	1	<10	<10	NA	NA	NA	<10	<10	NA	NA	NA
Pyrene	50	<10	<11	<10	< 10	<10	<10	<10	<9	< 10	<10
Total PAHs		ND	2 J	28.3 J	58 J	61 J	2,094 J	ND	0.7 J	ND	ND

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID:				MW-9S					MW-9I		
-	Class GA Groundwater					1/12/05				6/13/02	
Date Collected:	Criteria	6/20/96	7/31/96	6/13/02	1/12/05	DUP	6/20/96	8/1/96	6/13/02	DUP	1/12/05
1,3-Dichlorobenzene	3	<10	<10	NA	NA	NA	<10	<10	NA	NA	NA
1,4-Dichlorobenzene	3	<10	<10	NA	NA	NA	<10	<10	NA	NA	NA
2,4-Dimethylphenol	50	<10	5 J	NA	NA	NA	<10	<10	NA	NA	NA
2-Methyl phenol		<10	<10	NA	NA	NA	<10	<10	NA	NA	NA
2-Methylnaphthalene		<10	<10	2 J	<10	<10	<10	<10	<10	<10	<10
4-Methyl phenol		<10	<10	NA	NA	NA	<10	<10	NA	NA	NA
Acenaphthene	20	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Acenaphthylene		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Anthracene	50	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Benzo(a)anthracene	0.002	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Benzo(a)pyrene	ND	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Benzo(b)fluoranthene	0.002	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Benzo(ghi)perylene		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Benzo(k)fluoranthene	0.002	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
bis(2-Ethylhexyl)phthalate	5	<10	<10	NA	NA	NA	<10	<10	NA	NA	NA
Carbazole		<10	<10	NA	NA	NA	<10	<10	NA	NA	NA
Chrysene	0.002	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Dibenzo(a,h)anthracene		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Dibenzofuran		<10	<10	NA	NA	NA	<10	<10	NA	NA	NA
Diethylphthalate	50	<10	<10	NA	NA	NA	<10	<10	NA	NA	NA
Di-n-Octylphthalate	50	<10	<10	NA	NA	NA	<10	<10	NA	NA	NA
Fluoranthene	50	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Fluorene	50	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Indeno(1,2,3-cd)pyrene	0.002	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Naphthalene	10	140 D	130 D	450 D	100 J	68	79	<37	110	100	52
Phenanthrene	50	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Phenol	1	<10	<10	NA	NA	NA	<10	<10	NA	NA	NA
Pyrene	50	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Total PAHs		140 D	130 D	452 J	100 J	68	79	ND	110	100	52

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID:			MW-9	D				MW-10		
Date Collected:	Class GA Groundwater Criteria	6/20/96	8/1/96	6/13/02	1/12/05	6/20/96	7/31/96	6/13/02	6/13/02 DUP	1/12/05
1,3-Dichlorobenzene	3	<10	<11	NA	NA	<10	<10	NA	NA	NA
1,4-Dichlorobenzene	3	<10	<11	NA	NA	<10	<10	NA	NA	NA
2,4-Dimethylphenol	50	<10	<11	NA	NA	<10	<10	NA	NA	NA
2-Methyl phenol		<10	<11	NA	NA	<10	<10	NA	NA	NA
2-Methylnaphthalene		<10	<11	<10	<10	<10	<10	<10	<10	<10
4-Methyl phenol		<10	<11	NA	NA	<10	<10	NA	NA	NA
Acenaphthene	20	<10	<11	<10	<10	<10	<10	<10	<10	<10
Acenaphthylene		<10	<11	<10	<10	<10	<10	<10	<10	<10
Anthracene	50	<10	<11	<10	<10	<10	<10	<10	<10	<10
Benzo(a)anthracene	0.002	<10	<11	<10	<10	<10	<10	<10	<10	<10
Benzo(a)pyrene	ND	<10	<11	<10	<10	<10	<10	<10	<10	<10
Benzo(b)fluoranthene	0.002	<10	<11	<10	<10	<10	<10	<10	<10	<10
Benzo(ghi)perylene		<10	<11	<10	<10	<10	<10	<10	<10	<10
Benzo(k)fluoranthene	0.002	<10	<11	<10	<10	<10	<10	<10	<10	<10
bis(2-Ethylhexyl)phthalate	5	<10	<11	NA	NA	<10	<10	NA	NA	NA
Carbazole		<10	<11	NA	NA	<10	<10	NA	NA	NA
Chrysene	0.002	<10	<11	<10	<10	<10	<10	<10	<10	<10
Dibenzo(a,h)anthracene		<10	<11	<10	<10	<10	<10	<10	<10	<10
Dibenzofuran		<10	<11	NA	NA	<10	<10	NA	NA	NA
Diethylphthalate	50	<10	<11	NA	NA	<10	<10	NA	NA	NA
Di-n-Octylphthalate	50	<10	<11	NA	NA	<10	<10	NA	NA	NA
Fluoranthene	50	<10	<11	<10	<10	<10	<10	<10	<10	<10
Fluorene	50	<10	<11	<10	<10	<10	<10	<10	<10	<10
Indeno(1,2,3-cd)pyrene	0.002	<10	<11	<10	<10	<10	<10	<10	<10	<10
Naphthalene	10	<10	<11	<10	<10	<10	<10	<10	<10	<10
Phenanthrene	50	<10	<11	<10	<10	<10	<10	<10	<10	<10
Phenol	1	<10	<11	NA	NA	<10	<10	NA	NA	NA
Pyrene	50	<10	<11	<10	<10	<10	<10	<10	<10	<10
Total PAHs		ND	ND	ND	ND	ND	ND	ND	ND	ND

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID:			MW	/-11			MW	/-12	
Date Collected:	Class GA Groundwater Criteria	6/19/96	7/31/96	6/12/02	11/1/04	6/19/96	7/31/96	6/12/02	11/2/04
1,3-Dichlorobenzene	3	<10	<11	NA	NA	<10	<10	NA	NA
1,4-Dichlorobenzene	3	<10	<11	NA	NA	<10	<10	NA	NA
2,4-Dimethylphenol	50	<10	<11	NA	NA	<10	<10	NA	NA
2-Methyl phenol		<10	<11	NA	NA	<10	<10	NA	NA
2-Methylnaphthalene		<10	<11	<10	NA	<10	<10	<10	NA
4-Methyl phenol		<10	<11	NA	NA	<10	<10	NA	NA
Acenaphthene	20	<10	<11	<10	<10	<10	<10	<10	<10
Acenaphthylene		<10	<11	<10	<10	<10	<10	<10	<10
Anthracene	50	<10	<11	<10	<10	<10	<10	<10	<10
Benzo(a)anthracene	0.002	<10	<11	<10	<10	<10	<10	<10	<10
Benzo(a)pyrene	ND	<10	<11	<10	<10	<10	<10	<10	<10
Benzo(b)fluoranthene	0.002	<10	<11	<10	<10	<10	<10	<10	<10
Benzo(ghi)perylene		<10	<11	<10	<10	<10	<10	<10	<10
Benzo(k)fluoranthene	0.002	<10	<11	<10	<10	<10	<10	<10	<10
bis(2-Ethylhexyl)phthalate	5	<10	<11	NA	NA	<10	<10	NA	NA
Carbazole		<10	<11	NA	NA	<10	<10	NA	NA
Chrysene	0.002	<10	<11	<10	<10	<10	<10	<10	<10
Dibenzo(a,h)anthracene		<10	<11	<10	<10	<10	<10	<10	<10
Dibenzofuran		<10	<11	NA	NA	<10	<10	NA	NA
Diethylphthalate	50	<10	<10	NA	NA	<10	<10	NA	NA
Di-n-Octylphthalate	50	<10	1 J	NA	NA	<10	1 J	NA	NA
Fluoranthene	50	<10	<11	<10	<10	<10	<10	<10	<10
Fluorene	50	<10	<11	<10	<10	<10	<10	<10	<10
Indeno(1,2,3-cd)pyrene	0.002	<10	<11	<10	<10	<10	<10	<10	<10
Naphthalene	10	<10	<11	<10	<10	<10	<10	<10	<10
Phenanthrene	50	<10	<11	<10	<10	<10	<10	<10	<10
Phenol	1	<10	<11	NA	NA	<10	<10	NA	NA
Pyrene	50	<10	<11	<10	<10	<10	<10	<10	<10
Total PAHs		ND							

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID:			MW	-13S		MW-13P					
Date Collected:	Class GA Groundwater Criteria	6/18/96	7/30/96	6/11/02	11/4/04	6/18/96	7/30/96	6/11/02	11/1/04	11/1/04 DUP	
1,3-Dichlorobenzene	3	<10	<10	NA	NA	<10	<10	NA	NA	NA	
1,4-Dichlorobenzene	3	<10	<10	NA	NA	<10	<10	NA	NA	NA	
2,4-Dimethylphenol	50	<10	<10	NA	NA	<10	<10	NA	NA	NA	
2-Methyl phenol		<10	<10	NA	NA	<10	<10	NA	NA	NA	
2-Methylnaphthalene		<10	<10	<10	<10	<10	<10	<10	NA	NA	
4-Methyl phenol		<10	<10	NA	NA	<10	<10	NA	NA	NA	
Acenaphthene	20	<10	<10	<10	2 J	20	33 J	<10	<10	21	
Acenaphthylene		<10	<10	<10	<10	5 J	8 J	<10	<10	7 J	
Anthracene	50	<10	<10	<10	<10	<10	<10	<10	<10	<10	
Benzo(a)anthracene	0.002	<10	<10	<10	<10	<10	<10	<10	<10	<10	
Benzo(a)pyrene	ND	<10	<10	<10	<10	<10	<10	<10	<10	<10	
Benzo(b)fluoranthene	0.002	<10	<10	<10	<10	<10	<10	<10	<10	<10	
Benzo(ghi)perylene		<10	<10	<10	<10	<10	<10	<10	<10	<10	
Benzo(k)fluoranthene	0.002	<10	<10	<10	<10	<10	<10	<10	<10	<10	
bis(2-Ethylhexyl)phthalate	5	<10	<10	NA	NA	<10	<10	NA	NA	NA	
Carbazole		<10	<10	NA	NA	<10	1 J	NA	NA	NA	
Chrysene	0.002	<10	<10	<10	<10	<10	<10	<10	<10	<10	
Dibenzo(a,h)anthracene		<10	<10	<10	<10	<10	<10	<10	<10	<10	
Dibenzofuran		<10	<10	NA	NA	<10	<10	NA	NA	NA	
Diethylphthalate	50	<10	<10	NA	NA	2 J	<10	NA	NA	NA	
Di-n-Octylphthalate	50	<10	<10	NA	NA	<10	<10	NA	NA	NA	
Fluoranthene	50	<10	<10	<10	<10	<10	<10	<10	<10	<10	
Fluorene	50	<10	<10	<10	<10	3 J	8 J	<10	<10	<10	
Indeno(1,2,3-cd)pyrene	0.002	<10	<10	<10	<10	<10	<10	<10	<10	<10	
Naphthalene	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	
Phenanthrene	50	<10	<10	<10	<10	<10	2 J	<10	<10	<10	
Phenol	1	<10	<10	NA	NA	<10	<10	NA	NA	NA	
Pyrene	50	<10	<10	<10	<10	<10	<10	<10	<10	<10	
Total PAHs		ND	ND	ND	2 J	28 J	51 J	ND	ND	28 J	

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID:			MV	V-13I			MW	-14S	
Date Collected:	Class GA Groundwater Criteria	6/18/96	7/30/96	6/11/02	11/1/04	6/18/96	7/30/96	6/11/02	11/3/04
1,3-Dichlorobenzene	3	<10	<10	NA	NA	<10	<10	NA	NA
1,4-Dichlorobenzene	3	<10	<10	NA	NA	<10	<10	NA	NA
2,4-Dimethylphenol	50	<10	<10	NA	NA	<10	<10	NA	NA
2-Methyl phenol		<10	<10	NA	NA	<10	<10	NA	NA
2-Methylnaphthalene		<10	<10	<10	NA	<10	<10	<10	NA
4-Methyl phenol		<10	<10	NA	NA	<10	<10	NA	NA
Acenaphthene	20	<10	<10	26	21	<10	<10	<10	<10
Acenaphthylene		<10	<10	8 J	7 J	<10	<10	<10	<10
Anthracene	50	<10	<10	<10	<10	<10	<10	<10	<10
Benzo(a)anthracene	0.002	<10	<10	<10	<10	<10	<10	<10	<10
Benzo(a)pyrene	ND	<10	<10	<10	<10	<10	<10	<10	<10
Benzo(b)fluoranthene	0.002	<10	<10	<10	<10	<10	<10	<10	<10
Benzo(ghi)perylene		<10	<10	<10	<10	<10	<10	<10	<10
Benzo(k)fluoranthene	0.002	<10	<10	<10	<10	<10	<10	<10	<10
bis(2-Ethylhexyl)phthalate	5	<10	<10	NA	NA	<10	<10	NA	NA
Carbazole		<10	<10	NA	NA	<10	<10	NA	NA
Chrysene	0.002	<10	<10	<10	<10	<10	<10	<10	<10
Dibenzo(a,h)anthracene		<10	<10	<10	<10	<10	<10	<10	<10
Dibenzofuran		<10	<10	NA	NA	<10	<10	NA	NA
Diethylphthalate	50	<10	<10	NA	NA	10 J	<10	NA	NA
Di-n-Octylphthalate	50	<10	<10	NA	NA	<10	<10	NA	NA
Fluoranthene	50	<10	<10	<10	<10	<10	<10	<10	<10
Fluorene	50	<10	<10	2 J	<10	<10	<10	<10	<10
Indeno(1,2,3-cd)pyrene	0.002	<10	<10	<10	<10	<10	<10	<10	<10
Naphthalene	10	<10	<10	<10	<10	<10	<10	<10	<10
Phenanthrene	50	<10	<10	<10	<10	<10	<10	<10	<10
Phenol	1	<10	<10	NA	NA	<10	<10	NA	NA
Pyrene	50	<10	<10	<10	<10	<10	<10	<10	<10
Total PAHs		ND	ND	36 J	28 J	ND	ND	ND	ND

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID:			MW	-14P			MW	'-14I	
Date Collected:	Class GA Groundwater Criteria	6/18/96	7/30/96	6/11/02	11/3/04	6/18/96	7/30/96	6/11/02	11/3/04
1,3-Dichlorobenzene	3	<10	<10	NA	NA	<10	<20	NA	NA
1,4-Dichlorobenzene	3	<10	<10	NA	NA	<10	<20	NA	NA
2,4-Dimethylphenol	50	<10	<10	NA	NA	<10	<20	NA	NA
2-Methyl phenol		<10	<10	NA	NA	<10	<20	NA	NA
2-Methylnaphthalene		<10	<10	<10	NA	<10	<20	<10	NA
4-Methyl phenol		<10	<10	NA	NA	<10	<20	NA	NA
Acenaphthene	20	<20	<10	<10	<10	<10	<20	<10	<10
Acenaphthylene		5 J	<10	<10	<10	<10	<20	<10	<10
Anthracene	50	<10	<10	<10	<10	<10	<20	<10	<10
Benzo(a)anthracene	0.002	<10	<10	<10	<10	<10	<20	<10	<10
Benzo(a)pyrene	ND	<10	<10	<10	<10	<10	<20	<10	<10
Benzo(b)fluoranthene	0.002	<10	<10	<10	<10	<10	<20	<10	<10
Benzo(ghi)perylene		<10	<10	<10	<10	<10	<20	<10	<10
Benzo(k)fluoranthene	0.002	<10	<10	<10	<10	<10	<20	<10	<10
bis(2-Ethylhexyl)phthalate	5	<10	<10	NA	NA	<10	<20	NA	NA
Carbazole		<10	<10	NA	NA	<10	<20	NA	NA
Chrysene	0.002	<10	<10	<10	<10	<10	<20	<10	<10
Dibenzo(a,h)anthracene		<10	<10	<10	<10	<10	<20	<10	<10
Dibenzofuran		<10	<10	NA	NA	<10	<20	NA	NA
Diethylphthalate	50	2 J	<10	NA	NA	2 J	<20	NA	NA
Di-n-Octylphthalate	50	<10	<10	NA	NA	<10	<20	NA	NA
Fluoranthene	50	<10	<10	<10	<10	<10	<20	<10	<10
Fluorene	50	3 J	<10	<10	<10	<10	<20	<10	<10
Indeno(1,2,3-cd)pyrene	0.002	<10	<10	<10	<10	<10	<20	<10	<10
Naphthalene	10	<10	<10	<10	<10	<10	<20	<10	<10
Phenanthrene	50	<10	<10	<10	<10	<10	<20	<10	<10
Phenol	1	<10	<10	NA	NA	46	66 J	NA	NA
Pyrene	50	<10	<10	<10	<10	<10	<20	<10	<10
Total PAHs		8 J	ND						

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID:			MW	-15S			MW	-151	
Date Collected:	Class GA Groundwater Criteria	6/19/96	7/31/96	6/12/02	11/9/04	6/19/96	7/31/96	6/12/02	11/9/04
1,3-Dichlorobenzene	3	<10	<11	NA	NA	<10	<10	NA	NA
1,4-Dichlorobenzene	3	<10	<11	NA	NA	<10	<10	NA	NA
2,4-Dimethylphenol	50	<10	<11	NA	NA	<10	<10	NA	NA
2-Methyl phenol		<10	<11	NA	NA	<10	<10	NA	NA
2-Methylnaphthalene		<10	<11	<10	NA	<10	<10	<10	NA
4-Methyl phenol		<10	<11	NA	NA	<10	<10	NA	NA
Acenaphthene	20	<10	<11	<10	<10	<10	<10	<10	<10
Acenaphthylene		<10	<11	<10	<10	<10	<10	<10	<10
Anthracene	50	<10	<11	<10	<10	<10	<10	<10	<10
Benzo(a)anthracene	0.002	<10	<11	<10	<10	<10	<10	<10	<10
Benzo(a)pyrene	ND	<10	<11	<10	<10	<10	<10	<10	<10
Benzo(b)fluoranthene	0.002	<10	<11	<10	<10	<10	<10	<10	<10
Benzo(ghi)perylene		<10	<11	<10	<10	<10	<10	<10	<10
Benzo(k)fluoranthene	0.002	<10	<11	<10	<10	<10	<10	<10	<10
bis(2-Ethylhexyl)phthalate	5	<10	<11	NA	NA	<10	<10	NA	NA
Carbazole		<10	<11	NA	NA	<10	<10	NA	NA
Chrysene	0.002	<10	<11	<10	<10	<10	<10	<10	<10
Dibenzo(a,h)anthracene		<10	<11	<10	<10	<10	<10	<10	<10
Dibenzofuran		<10	<11	NA	NA	<10	<10	NA	NA
Diethylphthalate	50	<10	<10	NA	NA	<10	<10	NA	NA
Di-n-Octylphthalate	50	<10	<11	NA	NA	<10	<10	NA	NA
Fluoranthene	50	<10	<11	<10	<10	<10	<10	<10	<10
Fluorene	50	<10	<11	<10	<10	<10	<10	<10	<10
Indeno(1,2,3-cd)pyrene	0.002	<10	<11	<10	<10	<10	<10	<10	<10
Naphthalene	10	<10	<11	<10	<10	<10	<10	<10	<10
Phenanthrene	50	<10	<11	<10	<10	<10	<10	<10	<10
Phenol	1	<10	<11	NA	NA	<10	<10	NA	NA
Pyrene	50	<10	<11	<10	<10	<10	<10	<10	<10
Total PAHs		ND							

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID:		MW-17				MW-18		MW-19S			
Date Collected:	Class GA Groundwater Criteria	6/20/96	7/30/96	11/5/04	6/20/96	7/31/96	6/11/02	6/19/96	7/30/96	6/11/02	11/3/04
1,3-Dichlorobenzene	3	1 J	2 J	NA	<10	<10	NA	<10	<10	NA	NA
1,4-Dichlorobenzene	3	<10	3 J	NA	<10	<10	NA	<10	<10	NA	NA
2,4-Dimethylphenol	50	<10 J	12	NA	<10 J	62	NA	<10	<10	NA	NA
2-Methyl phenol		<10	<10	NA	31	57	NA	<10	<10	NA	NA
2-Methylnaphthalene		1 J	<10	<10	130 JD	140 J	39 J	<10	<10	<10	NA
4-Methyl phenol		<10	<10	NA	67	94 JD	NA	<10	<10	NA	NA
Acenaphthene	20	5 J	4 J	5 J	37	24	15 J	<10	<10	<10	<10
Acenaphthylene		<10	<10	<10	5 J	6 J	<100	<10	<10	<10	<10
Anthracene	50	<10	<10	<10	6 JN	5 J	<100	<10	<10	<10	<10
Benzo(a)anthracene	0.002	<10	<10	<10	1 J	1 J	<100	<10	<10	<10	<10
Benzo(a)pyrene	ND	<10	<10	<10	<10	<10	<100	<10	<10	<10	<10
Benzo(b)fluoranthene	0.002	<10	<10	<10	<10	<10	<100	<10	<10	<10	<10
Benzo(ghi)perylene		<10	<10	<10	<10	<10	<100	<10	<10	<10	<10
Benzo(k)fluoranthene	0.002	<10	<10	<10	<10	<10	<100	<10	<10	<10	<10
bis(2-Ethylhexyl)phthalate	5	<10	<10	NA	64	83	NA	<10	<10	NA	NA
Carbazole		<10	<10	NA	10 J	9 J	NA	<10	<10	NA	NA
Chrysene	0.002	<10	<10	<10	1 J	1 J	<100	<10	<10	<10	<10
Dibenzo(a,h)anthracene		<10	<10	<10	<10	<10	<100	<10	<10	<10	<10
Dibenzofuran		<10	<10	NA	<10	3 J	NA	<10	<10	NA	NA
Diethylphthalate	50	<10	<10	NA	<10	<10	NA	<10	<10	NA	NA
Di-n-Octylphthalate	50	<10	<10	NA	<10	<10	NA	<10	<10	NA	NA
Fluoranthene	50	<10	<10	<10	3 J	3 J	<100	<10	<10	<10	<10
Fluorene	50	<10	<10	<10	18	16	<100	10 J	<10	<10	<10
Indeno(1,2,3-cd)pyrene	0.002	<10	<10	<10	<10	<10	<100	<10	<10	<10	<10
Naphthalene	10	110 D	24	81	2,000 D	750 D	520	<10	<10	<10	<10
Phenanthrene	50	<10	<10	<10	19	18	16 J	<10	<10	<10	<10
Phenol	1	<10	<10	NA	<10	380 D	NA	<10	<10	NA	NA
Pyrene	50	<10	<10	<10	4 J	4 J	6 J	<10	<10	<10	<10
Total PAHs		116 J	28 J	86 J	2,224 J	968 J	596 J	10 J	ND	ND	ND

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID:			MW	'-19I			MW	-19D	
Date Collected:	Class GA Groundwater Criteria	6/19/96	7/30/96	6/11/02	11/3/04	6/19/96	7/30/96	6/11/02	11/3/04
1,3-Dichlorobenzene	3	<11	<10	NA	NA	<10	<10	NA	NA
1,4-Dichlorobenzene	3	<11	<10	NA	NA	<10	<10	NA	NA
2,4-Dimethylphenol	50	<11	<10	NA	NA	<10	<10	NA	NA
2-Methyl phenol		<11	<10	NA	NA	<10	<10	NA	NA
2-Methylnaphthalene		<11	<10	<10	NA	<10	<10	<10	NA
4-Methyl phenol		<11	<10	NA	NA	<10	<10	NA	NA
Acenaphthene	20	<11	<10	<10	<10	<10	<10	<10	<10
Acenaphthylene		<11	<10	<10	<10	<10	<10	<10	<10
Anthracene	50	<11	<10	<10	<10	<10	<10	<10	<10
Benzo(a)anthracene	0.002	<11	<10	<10	<10	<10	<10	<10	<10
Benzo(a)pyrene	ND	<11	<10	<10	<10	<10	<10	<10	<10
Benzo(b)fluoranthene	0.002	<11	<10	<10	<10	<10	<10	<10	<10
Benzo(ghi)perylene		<11	<10	<10	<10	<10	<10	<10	<10
Benzo(k)fluoranthene	0.002	<11	<10	<10	<10	<10	<10	<10	<10
bis(2-Ethylhexyl)phthalate	5	<11	<10	NA	NA	<10	<10	NA	NA
Carbazole		<11	<10	NA	NA	<10	<10	NA	NA
Chrysene	0.002	<11	<10	<10	<10	<10	<10	<10	<10
Dibenzo(a,h)anthracene		<11	<10	<10	<10	<10	<10	<10	<10
Dibenzofuran		<11	<10	NA	NA	<10	<10	NA	NA
Diethylphthalate	50	<11	<10	NA	NA	<10	<10	NA	NA
Di-n-Octylphthalate	50	<11	<10	NA	NA	<10	<10	NA	NA
Fluoranthene	50	<11	<10	<10	<10	<10	<10	<10	<10
Fluorene	50	<11	<10	<10	<10	10 J	<10	<10	<10
Indeno(1,2,3-cd)pyrene	0.002	<11	<10	<10	<10	<10	<10	<10	<10
Naphthalene	10	<11	<10	<10	<10	<10	<10	<10	<10
Phenanthrene	50	<11	<10	<10	<10	<10	<10	<10	<10
Phenol	1	19	<10	NA	NA	<10	<10	NA	NA
Pyrene	50	<11	<10	<10	<10	<10	<10	<10	<10
Total PAHs		ND	ND	ND	ND	10 J	ND	ND	ND

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID:		MW-20	MW-21	MW-22	MW-23	MW-24	MW-25
Date Collected:	Class GA Groundwater Criteria	6/13/02	11/12/04	11/10/04	11/8/04	11/4/04	11/1/04
1,3-Dichlorobenzene	3	NA	NA	NA	NA	NA	NA
1,4-Dichlorobenzene	3	NA	NA	NA	NA	NA	NA
2,4-Dimethylphenol	50	NA	NA	NA	NA	NA	NA
2-Methyl phenol		NA	NA	NA	NA	NA	NA
2-Methylnaphthalene		380 D	250 D	<10	NA	24	NA
4-Methyl phenol		NA	NA	NA	NA	NA	NA
Acenaphthene	20	140	280 D	78	26 J	32	45 J
Acenaphthylene		11	44	42	<40	16	<120
Anthracene	50	19	52	6 J	<40	8 J	<120
Benzo(a)anthracene	0.002	6 J	28	<10	<40	<10	<120
Benzo(a)pyrene	ND	4 J	23	<10	<40	<10	<120
Benzo(b)fluoranthene	0.002	2 J	14	<10	<40	<10	<120
Benzo(ghi)perylene		2 J	14	<10	<40	<10	<120
Benzo(k)fluoranthene	0.002	2 J	17	<10	<40	<10	<120
bis(2-Ethylhexyl)phthalate	5	NA	NA	NA	NA	NA	NA
Carbazole		NA	NA	NA	NA	NA	NA
Chrysene	0.002	6 J	24	<10	<40	<10	<120
Dibenzo(a,h)anthracene		0.6 J	3 J	<10	<40	<10	<120
Dibenzofuran		NA	NA	NA	NA	NA	NA
Diethylphthalate	50	NA	NA	NA	NA	NA	NA
Di-n-Octylphthalate	50	NA	NA	NA	NA	NA	NA
Fluoranthene	50	12	80	<10	<40	3 J	<120
Fluorene	50	66	88	34	11 J	39	<120
Indeno(1,2,3-cd)pyrene	0.002	1 J	15	<10	<40	<10	<120
Naphthalene	10	2,500 D	2,200 D	110	480	86	1,700
Phenanthrene	50	84	290 D	21	14 J	33	<120
Phenol	1	NA	NA	NA	NA	NA	NA
Pyrene	50	18	78	2 J	<40	3 J	<120
Total PAHs		3,253.6 J	3,500 J	293 J	531 J	244 J	1,745 J

Niagara Mohawk, a National Grid Company Schenectady (Broadway) Service Center Schenectady, New York

Sample ID:		MW-26	MW-27S	MW-27D
Date Collected:	Class GA Groundwater Criteria	11/8/04	11/4/04	11/4/04
1,3-Dichlorobenzene	3	NA	NA	NA
1,4-Dichlorobenzene	3	NA	NA	NA
2,4-Dimethylphenol	50	NA	NA	NA
2-Methyl phenol		NA	NA	NA
2-Methylnaphthalene		NA	<10	<10
4-Methyl phenol		NA	NA	NA
Acenaphthene	20	270 J	<10	<10
Acenaphthylene		<500	<10	<10
Anthracene	50	<500	<10	<10
Benzo(a)anthracene	0.002	<500	<10	<10
Benzo(a)pyrene	ND	<500	<10	<10
Benzo(b)fluoranthene	0.002	<500	<10	<10
Benzo(ghi)perylene		<500	<10	<10
Benzo(k)fluoranthene	0.002	<500	<10	<10
bis(2-Ethylhexyl)phthalate	5	NA	NA	NA
Carbazole		NA	NA	NA
Chrysene	0.002	<500	<10	<10
Dibenzo(a,h)anthracene		<500	<10	<10
Dibenzofuran		NA	NA	NA
Diethylphthalate	50	NA	NA	NA
Di-n-Octylphthalate	50	NA	NA	NA
Fluoranthene	50	<500	3 J	<10
Fluorene	50	<500	<10	<10
Indeno(1,2,3-cd)pyrene	0.002	<500	<10	<10
Naphthalene	10	5,900	<10	<10
Phenanthrene	50	110 J	<10	<10
Phenol	1	NA	NA	NA
Pyrene	50	<500	2 J	<10
Total PAHs		6,280 J	5 J	<10

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Groundwater Analytical Results for Detected SVOCs (ppb)

Notes:

- 1. Samples were collected by Blasland, Bouck & Lee, Inc. on the dates indicated.
- 2. SVOCs = semi-volatile organic compounds.
- 3. Laboratory analysis was conducted by Severn Trent Laboratories, Inc. located in Amherst, New York for samples collected during 2002 and by CompuChem located in Cary, North Carolina for samples collected during 2004.
- 4. Samples were analyzed for SVOCs using USEPA SW-846 Method 8270.
- NYSDEC Class GA Standards/Guidance Values from New York State Department of Environmental Conservation (NYSDEC) document entitled, "Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (NYSDEC, reissued June 1998 and addended April 2000).
- 6. Concentrations reported in micrograms per liter (μ g/L) or parts per billion (ppb).
- 7. ND = Compound was not detected at a concentration exceeding laboratory detection limits.
- 8. NA = Not Analyzed.
- 9. < = Compound was not detected at a concentration exceeding the presented laboratory detection limit.
- 10. J = Indicates an estimated concentration. Presented concentration is less than the method detection limit but greater than the instrument detection limit.
- 11. D = Indicates that the presented concentration is based on the analysis of a diluted sample.
- 12. Shaded values indicate that the compound was detected at a concentration greater than or equal to the NYSDEC Class GA (groundwater) standard or guidance value presented in TOGS 1.1.1.
- 13. Monitoring wells MW-16 and MW-17 were not able to be located during the 2002 sampling event, and therefore, were not sampled.

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Sample ID	Date Collected	Total Cyanide
MW-1	6/11/02	220
MW-6S	6/12/02	1,100
MW-6I	6/12/02	18
MW-7	6/12/02	<10
MW-8S	6/12/02	<10
MW-8I	6/12/02	<10
MW-8D	6/12/02	42
MW-9S	6/13/02	<10
MW-9I	6/13/02	<10
10100-91	6/13/02 DUP	<10
MW-9D	6/13/02	<10
MW-10	6/13/02	<10
10100-10	6/13/02 DUP	<10
MW-11	6/12/02	<10
MW-12	6/12/02	<10
MW-13S	6/11/02	29
MW-13P	6/11/02	<10
MW-13I	6/11/02	580
MW-14S	6/11/02	<10
MW-14P	6/11/02	<10
MW-14I	6/11/02	<10
MW-15S	6/12/02	<10
MW-15I	6/12/02	<10
MW-18	6/11/02	720
MW-19S	6/11/02	<10
MW-19I	6/11/02	<10
MW-19D	6/11/02	<10
MW-20	6/13/02	240

Groundwater Analytical Results for Total Cyanide (ppb)

Notes:

- 1. Samples were collected by Blasland, Bouck & Lee, Inc. on the dates indicated.
- 2. Laboratory analysis was conducted by Severn Trent Laboratories, Inc. located in Amherst, New York.
- 3. Samples were analyzed for total cyanide using USEPA SW-846 Method 9010.
- 4. Concentrations reported in micrograms per liter (µg/L) or parts per billion (ppb).
- 5. < = Indicates that cyanide was not detected at a concentration exceeding the presented laboratory detection limit.
- 6. J = Indicates an estimated concentration. Presented concentration is less than the method detection limit but greater than the instrument detection limit.
- 7. Shaded value indicates that cyanide was detected at a concentration exceeding the 200 ppb Class GA Ambient Water Quality Standard presented in the New York State Department of Environmental Conservation (NYSDEC) document entitled, "Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (NYSDEC, reissued June 1998 and addended April 2000).
- 8. Monitoring wells MW-16 and MW-17 were not able to be located during the 2002 sampling event, and therefore, were not sampled.

National Grid Schenectady (Broadway) Service Center Schenectady, New York

LNAPL Monitoring Summary

			Depth	to LNAPL (fe	et TOC) / LNA	PL Thicknes	s (feet)		
Monitoring Well ID	June 2001	July/August 2001	September 2001	October 2001	November 2001	December 2001	June 2002	November 2004	Jaunary 2005
MW-2	NM	5.80/0.02	6.18/0.20	6.65/0.02	6.79/0.09	6.71/0.08	NM	NM	NM
MW-3	8.58/Sheen	9.75/0.15	10.68/2.27	NP	NP	NP	NP	9.35/0.01	9.53/trace
MW-4	NP	10.92/2.11	12.10/0.85	12.71/1.18	13.01/0.81	13.39/0.56	9.49/1.07	NM	NM
MW-5	4.42/Sheen	5.80/0.02	NP	NP	NP	NP	NP	NM	NM
MW-20	NM	NM	NM	NM	NM	NM	NM	6.05/0.01	5.77/0.83
MW-21	NM	NM	NM	NM	NM	NM	NM	5.90/0.51	*

Notes:

1. Monitoring activities were conducted by Blasland, Bouck & Lee, Inc. (BBL) on June 13, 2001; July 31, 2001; August 1, 2001; September 6 and 7, 2001; October 9, 2001; November 6, 2001; and December 6, 2001, November 11, 2004; and January 12, 2005.

2. Depth to LNAPL measurements were obtained using an oil/water interface probe and are referenced to a surveyed mark on the top of the PVC well casing.

3. LNAPL thickness was calculated based on the difference between the measured depth to LNAPL and the measured depth to water.

4. NM = Not measured.

5. NP = No product observed.

- 6. Feet TOC = Depth measured from top of casing.
- 7. LNAPL = Light non-aqueous phase liquid.

8. * - Measuring tape covered in gold oily NAPL, intermittant signal. No measurable thickness.

National Grid Schenectady (Broadway) Service Center Schenectady, New York

DNAPL Monitoring Summary

	Construction	Depth to DNAPL (feet TOC) / DNAPL Thickness (feet)											
Monitoring Well ID	Depth of Well (feet TOC)	June 2001	July/August 2001	September 2001	October 2001	November 2001	December 2001	June 2002	November 2004	January 2005			
MW-2	14.00	NM	NP	NP	NP	NP	NP	NM	NM	NM			
MW-3	24.16	15.60/8.40*	24.15/0.01	24.08/0.08	NP	NP	NP	NP	NP	NP			
MW-4	20.30	13.00/3.00*	NP	NP	NP	NP	NP	NP	NM	NM			
MW-5	19.70	16.00/1.26	NP	13.38/4.06	14.65/2.79	14.00/3.55	14.78/2.77	12.47/5.08	NM	NM			
MW-20	21.20	NM	NM	NM	NM	NM	NM	NM	NP	NP			
MW-21	14.28	NM	NM	NM	NM	NM	NM	NM	NP	NP			

Notes:

1. Monitoring activities were conducted by Blasland, Bouck & Lee, Inc. (BBL) on June 13, 2001; July 31, 2001; August 1, 2001; September 6 and 7, 2001; October 9, 2001; November 6, 2001; and December 6, 2001.

2. Depth to DNAPL measurements were obtained using an oil/water interface probe and are referenced to a surveyed mark on the top of the PVC well casing.

3. * - Based on field notes from the June 2001 monitoring event, the nature of the material at the bottom of monitoring wells MW-3 and MW-4 is unknown. The material in the bottom of the wells may be a mixture of sediment and DNAPL.

4. NM = Not measured.

5. NP = No product observed.

6. Feet TOC = Depth measured from top of casing.

7. DNAPL = Dense non-aqueous phase liquid.

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Soil Analytical Results for BTEX (ppm)

Sample ID	Depth Interval (ft bgs)	Date Collected	Benzene	Toluene	Ethvlbenzene	Total Xylenes	Total BTEX
BB-92	0 - 2	6/23/04	<1.6	1.2 J	21	26	48.2 J
BB-102	3 - 5	7/28/04	19	400 D	240 D	2,200 D	2,859
BB-107	2 - 4	6/24/04	<1.5	<1.5	0.35 J	1.9	2.3 J
BB-111	4 - 6.5	7/26/04	430 D	340 D	120	430	1,320
BB-112B	2.5 - 5.6	7/20/04	0.13	2.2 D	0.11	8.8 D	11.2
BB-124	6 - 8	6/28/04	17	150 D	270 D	340 D	777
BB-127	6 - 8	6/29/04	4	<1.7	38 D	34	76
BB-128	2 - 4	6/29/04	110 J	71 J	570	2,600	3,351 J
BB-135	8 - 10	9/10/04	33 JD	10	38 JD	110 JD	191 J
DUP-1 <bb-135></bb-135>	8 - 10	9/10/04	13	17	41 D	78	149

Notes:

1. Samples were collected by Blasland, Bouck & Lee, Inc. on the dates indicated.

2. BTEX = benzene, toluene, ethylbenzene, and total xylenes.

3. Samples were analyzed for BTEX compounds by CompuChem located in Cary, North Carolina using USEPA SW-846 Method

4. Shaded values indicate that the compound was detected at a concentration exceeding the recommended soil cleanup objective presented in the NYSDEC Technical and Administrative Guidance Memorandum (TAGM) titled "Determination of Soil Cleanup Objectives and Cleanup Levels," HWR-94-4046 (TAGM 4046) dated January 24, 1994. NYSDEC recommended soil cleanup objectives are as follows:

- 0.06 ppm for benzene;

- 1.5 ppm for toluene;
- 5.5 ppm for ethylbenzene; and
- 1.2 ppm for total xylenes.
- 5. Concentrations reported in parts per million (ppm), which is equivalent to milligrams per kilogram (mg/kg).
- 6. < = Compound was not detected at a concentration exceeding the presented laboratory detection limit.
- 7. J = Indicates an estimated concentration. Presented concentration is less than the method detection limit but greater than the instrument detection limit.
- 8. D = Indicates that the presented concentration is based on the analysis of a diluted sample.

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Soil Analytical Results for Detected PAHs (ppm)

Sample ID:	TAGM 4046		BB	-85				В	B-86		
Sample Depth (feet bgs):	Soil Cleanup	5 - 5.7	10 - 10.5	14 - 16	20 - 22	4 - 5.3	8 - 9	15.4 - 15.7	15.4 - 15.7 DUP	19.2 - 19.5	24 - 26
Date Collected:	Objectives	12/19/01	12/19/01	12/19/01	12/19/01	12/19/01	12/19/01	12/20/01	12/20/01	12/20/01	12/20/01
2-Methylnaphthalene	36.4	20	31	8.3 D	0.39 J	7.8 J	16	<3.8	<2	<2	<0.47
Acenaphthene	50	12	13	3.3	0.61	4.5 J	1.8 J	7.0	3.4	5.1	<0.47
Acenaphthylene	41	1.4 J	1.2 J	0.36 J	0.031 J	31 J	10	17	8.2	16	<0.47
Anthracene	50	6.8	5.6	1.5	0.023 J	19 J	6.2	19	8.8	14	<0.47
Benzo(a)anthracene	0.224	4.2	3.2 J	0.87	<0.44	47 J	3.3 J	10	4.6	7	<0.47
Benzo(a)pyrene	0.061	3 J	2.3 J	0.48	0.13 J	66 J	2.5 J	6.4	3.0	4.8	0.12 J
Benzo(b)fluoranthene	1.1	1.3 J	1.2 J	0.27 J	<0.44	46 J	1.4 J	2.9 J	1.3 J	2.2	<0.47
Benzo(g,h,i)perylene	50	1.2 J	1 J	0.14 J	<0.44	52 J	1.4 J	2 J	0.84 J	1.5 J	<0.47
Benzo(k)fluoranthene	1.1	1.6 J	1.2 J	0.21 J	<0.44	46 J	1.6 J	3.6 J	1.8 J	2.9	<0.47
Chrysene	0.4	3.9	2.9 J	0.79	<0.44	47 J	3.2 J	9.1	4.1	6.2	<0.47
Dibenzo(a,h)anthracene	0.014	0.34 J	0.26 J	0.058 J	<0.44	16 J	0.45 J	1 J	0.35 J	0.58 J	<0.47
Fluoranthene	50	6.8	5.4	1.2	<0.44	80	5.9	17	8.2	13	<0.47
Fluorene	50	7.4	6.5	1.8	0.25 J	7.1 J	1.5 J	18	8.3	14	<0.47
Indeno(1,2,3-cd)pyrene	3.2	<3.9	0.82 J	0.13 J	<0.44	6.4 J	1.2 J	2 J	0.82 J	1.5 J	<0.47
Naphthalene	13	0.42 J	48	14 D	2	<77	20	0.4 J	0.19 J	0.2 J	<0.47
Phenanthrene	50	21	18	4.5	0.16 J	63 J	19	50	24	42 D	<0.47
Pyrene	50	14	11	2.5	<0.44	95	10	29	14	21	<0.47
Total PAHs		105.4 J	152.6 J	40.4 J	3.6 J	633.8 J	105.5 J	194.4 J	91.9 J	152 J	0.12 J

Sample ID:	TAGM 4046	BB-86			BB	-87				BB-88	
Sample Depth (feet bgs):	Soil Cleanup	28 - 30	4 - 5.1	10 - 12	14 - 16	19.6 - 20	24 - 26	28 - 28.7	4 - 4.6	10 - 12	10 - 12 DUP
Date Collected:	Objectives	12/20/01	12/18/01	12/18/01	12/18/01	12/18/01	12/18/01	12/18/01	12/17/01	12/17/01	12/17/01
2-Methylnaphthalene	36.4	<0.45	<19	23	2	50 D	6	4.9	<40	3.5	5.0
Acenaphthene	50	<0.45	<19	10	2.6	67 D	2.6	1.8	<40	4.1	5.4
Acenaphthylene	41	<0.45	<19	1.1 J	0.53	10	0.15 J	0.035 J	8.3 J	3.7	4.8
Anthracene	50	<0.45	<19	4 J	1.9	31	0.3 J	0.28 J	<40	1.6 J	2.3
Benzo(a)anthracene	0.224	<0.45	1.5 J	2.4 J	0.92	16	0.17 J	<0.49	7.5 J	0.48 J	0.67 J
Benzo(a)pyrene	0.061	0.14 J	1.3 J	1.2 J	0.44	10	0.098 J	0.074 J	11 J	0.2 J	0.28 J
Benzo(b)fluoranthene	1.1	<0.45	2.1 J	0.71 J	0.21 J	4.8	0.044 J	<0.49	8.8 J	<2	0.15 J
Benzo(g,h,i)perylene	50	<0.45	<19	0.46 J	0.16 J	3.4 J	0.03 J	<0.49	7.3 J	<2	<2
Benzo(k)fluoranthene	1.1	<0.45	<19	0.81 J	0.2 J	5.2	0.048 J	<0.49	7.1 J	<2	<2
Chrysene	0.4	<0.45	1.5 J	2.1 J	0.92	15	0.15 J	<0.49	4.3 J	0.44 J	0.63 J
Dibenzo(a,h)anthracene	0.014	<0.45	<19	<4.2	0.071 J	1.5 J	<0.44	<0.49	<40	<2	<2
Fluoranthene	50	<0.45	2.7 J	6.6	1.4	28	0.28 J	0.09 J	3.4 J	1 J	1.4 J
Fluorene	50	<0.45	<19	6.3	2.7	41	0.69	0.82	<40	2.7	3.6
Indeno(1,2,3-cd)pyrene	3.2	<0.45	<19	0.37 J	0.021 J	<4	0.027 J	<0.49	6.2 J	<2	<2
Naphthalene	13	<0.45	4.9 J	38	9.2 D	80 D	15 D	20 D	<40	16	19
Phenanthrene	50	0.033 J	3 J	17	5.7	10 D	1.3	1.6	<40	5.9	7.9
Pyrene	50	<0.45	5 J	8.2	2.7	50	0.54	0.2 J	12 J	1.9 J	2.6
Total PAHs		0.17 J	22 J	122.3 J	31.7 J	422.9 J	27.4 J	29.8 J	75.9 J	41.5 J	53.7 J

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Soil Analytical Results for Detected PAHs (ppm)

Sample ID:	TAGM 4046		BB	-88				BB-89			BB-92
Sample Depth (feet bgs):	Soil Cleanup	14 - 16	18 - 20	24 - 26	26.8 - 28	4 - 6	10 - 12	16 - 18	22 - 24	28 - 30	0 - 2
Date Collected:		12/17/01	12/17/01	12/17/01	12/17/01	12/19/01	12/19/01	12/19/01	12/19/01	12/19/01	6/23/04
2-Methylnaphthalene	36.4	0.16 J	0.031 J	<0.43	<0.4	<3.5	<0.41	<0.43	<0.42	<0.48	NA
Acenaphthene	50	1.1	0.2 J	0.37 J	0.12 J	<3.5	<0.41	<0.43	<0.42	<0.48	16
Acenaphthylene	41	0.67	0.14 J	0.098 J	<0.4	<3.5	<0.41	<0.43	<0.42	<0.48	46 D
Anthracene	50	0.52	0.11 J	<0.43	0.028 J	<3.5	<0.41	<0.43	<0.42	<0.48	26
Benzo(a)anthracene	0.224	0.18 J	<0.4	<0.43	<0.4	0.34 J	<0.41	<0.43	<0.42	<0.48	11
Benzo(a)pyrene	0.061	0.082 J	<0.4	0.028 J	<0.4	0.21 J	<0.41	<0.43	<0.42	0.081 J	9.3
Benzo(b)fluoranthene	1.1	0.037 J	<0.4	<0.43	<0.4	0.35 J	<0.41	<0.43	<0.42	<0.48	3.7
Benzo(g,h,i)perylene	50	<0.43	<0.4	<0.43	<0.4	<3.5	<0.41	<0.43	<0.42	<0.48	2.3
Benzo(k)fluoranthene	1.1	0.045 J	<0.4	<0.43	<0.4	<3.5	<0.41	<0.43	<0.42	<0.48	5.5
Chrysene	0.4	0.16 J	<0.4	<0.43	<0.4	0.43 J	<0.41	<0.43	<0.42	<0.48	11
Dibenzo(a,h)anthracene	0.014	<0.43	<0.4	<0.43	<0.4	<3.5	<0.41	<0.43	<0.42	<0.48	0.65 J
Fluoranthene	50	0.34 J	0.058 J	<0.43	<0.4	0.55 J	<0.41	<0.43	<0.42	<0.48	23
Fluorene	50	0.79	0.16 J	0.039 J	0.052 J	<3.5	<0.41	<0.43	<0.42	<0.48	31 J
Indeno(1,2,3-cd)pyrene	3.2	<0.43	<0.4	<0.43	<0.4	<3.5	<0.41	<0.43	<0.42	<0.48	2.7
Naphthalene	13	5.1	1.3	2	0.22 J	<3.5	<0.41	<0.43	<0.42	<0.48	120 D
Phenanthrene	50	1.7	0.41	0.052 J	0.14 J	0.37 J	<0.41	< 0.43	<0.42	<0.48	70 D
Pyrene	50	0.63	0.11 J	<0.43	<0.4	0.77 J	<0.41	<0.43	<0.42	<0.48	30
Total PAHs		11.5 J	2.5 J	2.6 J	0.56 J	3 J	ND	ND	ND	0.081 J	408.2 JD
Sample ID:	TAGM 4046										
		BB-102	BB-107	BB-111	BB-112B	BB-124	BB-127	BB-128	BB-	135	
		BB-102	BB-107	BB-111 4 - 6 5	BB-112B	BB-124	BB-127	BB-128	BB- 8 - 10		
Sample Depth (feet bgs): Date Collected:	Soil Cleanup	3 - 5	BB-107 2 - 4 6/24/04	4 - 6.5	BB-112B 2.5 - 5.6 7/20/04	BB-124 6 - 8 6/28/04	BB-127 6 - 8 6/29/04	BB-128 2 - 4 6/29/04	BB- 8 - 10 9/10/04	135 8 - 10 DUP 9/10/04	
Sample Depth (feet bgs): Date Collected:	Soil Cleanup Objectives	3 - 5 7/28/04	2 - 4 6/24/04	4 - 6.5 7/26/04	2.5 - 5.6 7/20/04	6 - 8 6/28/04	6 - 8 6/29/04	2 - 4 6/29/04	8 - 10 9/10/04	8 - 10 DUP 9/10/04	
Sample Depth (feet bgs):	Soil Cleanup Objectives 36.4	<mark>3 - 5</mark> 7/28/04 NA	2 - 4 6/24/04 NA	4 - 6.5 7/26/04 NA	2.5 - 5.6	6 - 8	<mark>6 - 8</mark> 6/29/04 NA	2 - 4 6/29/04 NA	8 - 10 9/10/04 1,200 D	8 - 10 DUP 9/10/04 830 D	
Sample Depth (feet bgs): Date Collected: 2-Methylnaphthalene Acenaphthene	Soil Cleanup Objectives 36.4 50	3 - 5 7/28/04	2 - 4 6/24/04 NA 3.1	4 - 6.5 7/26/04 NA < 230	2.5 - 5.6 7/20/04 NA	6 - 8 6/28/04 NA	6 - 8 6/29/04 NA 45 D	2 - 4 6/29/04 NA 240 D	8 - 10 9/10/04 1,200 D 350	8 - 10 DUP 9/10/04 830 D 420	
Sample Depth (feet bgs): Date Collected: 2-Methylnaphthalene	Soil Cleanup Objectives 36.4 50 41	3 - 5 7/28/04 NA <12	2 - 4 6/24/04 NA 3.1 25	4 - 6.5 7/26/04 NA < 230 78 J	2.5 - 5.6 7/20/04 NA 21	6 - 8 6/28/04 NA < 0.39	6 - 8 6/29/04 NA 45 D 9.2	2 - 4 6/29/04 NA 240 D 18	8 - 10 9/10/04 1,200 D 350 150	8 - 10 DUP 9/10/04 830 D 420 89	
Sample Depth (feet bgs): Date Collected: 2-Methylnaphthalene Acenaphthene Acenaphthylene	Soil Cleanup Objectives 36.4 50	3 - 5 7/28/04 NA <12 2.9 J	2 - 4 6/24/04 NA 3.1 25 30	4 - 6.5 7/26/04 NA < 230 78 J 95 J	2.5 - 5.6 7/20/04 NA 21 140 D	6 - 8 6/28/04 NA < 0.39 < 0.39	6 - 8 6/29/04 NA 45 D 9.2 23 D	2 - 4 6/29/04 NA 240 D 18 120 D	8 - 10 9/10/04 1,200 D 350 150 230	8 - 10 DUP 9/10/04 830 D 420 89 210	
Sample Depth (feet bgs): Date Collected: 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	Soil Cleanup Objectives 36.4 50 41 50	3 - 5 7/28/04 NA <12 2.9 J 4.1 J	2 - 4 6/24/04 NA 3.1 25 30 6.1	4 - 6.5 7/26/04 NA < 230 78 J 95 J 49 J	2.5 - 5.6 7/20/04 NA 21 140 D 50 35	6 - 8 6/28/04 NA < 0.39 < 0.39 < 0.39	6 - 8 6/29/04 NA 45 D 9.2 23 D 9.3	2 - 4 6/29/04 NA 240 D 18 120 D 35	8 - 10 9/10/04 1,200 D 350 150	8 - 10 DUP 9/10/04 830 D 420 89 210 84	
Sample Depth (feet bgs): Date Collected: 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene	Soil Cleanup Objectives 36.4 50 41 50 0.224	3 - 5 7/28/04 NA <12 2.9 J 4.1 J 4.1 J	2 - 4 6/24/04 NA 3.1 25 30	4 - 6.5 7/26/04 NA < 230 78 J 95 J	2.5 - 5.6 7/20/04 NA 21 140 D 50	6 - 8 6/28/04 NA < 0.39 < 0.39 < 0.39 0.12 J 0.18 J	6 - 8 6/29/04 NA 45 D 9.2 23 D 9.3 5.4	2 - 4 6/29/04 NA 240 D 18 120 D	8 - 10 9/10/04 1,200 D 350 150 230 110 91	8 - 10 DUP 9/10/04 830 D 420 89 210 84 70	
Sample Depth (feet bgs): Date Collected: 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	Soil Cleanup Objectives 36.4 50 41 50 0.224 0.061 1.1	3 - 5 7/28/04 NA <12 2.9 J 4.1 J 4.1 J <12	2 - 4 6/24/04 NA 3.1 25 30 6.1 5.2 2.2	4 - 6.5 7/26/04 NA < 230 78 J 95 J 49 J < 230	2.5 - 5.6 7/20/04 NA 21 140 D 50 35 35	6 - 8 6/28/04 NA < 0.39 < 0.39 < 0.39 0.12 J	6 - 8 6/29/04 NA 45 D 9.2 23 D 9.3	2 - 4 6/29/04 NA 240 D 18 120 D 35 30 13	8 - 10 9/10/04 1,200 D 350 150 230 110	8 - 10 DUP 9/10/04 830 D 420 89 210 84	
Sample Depth (feet bgs): Date Collected: 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	Soil Cleanup Objectives 36.4 50 41 50 0.224 0.061	3 - 5 7/28/04 NA <12 2.9 J 4.1 J 4.1 J <12 <12 <12	2 - 4 6/24/04 NA 3.1 25 30 6.1 5.2	4 - 6.5 7/26/04 NA < 230 78 J 95 J 49 J < 230 < 230	2.5 - 5.6 7/20/04 NA 21 140 D 50 35 35 35 20	6 - 8 6/28/04 NA < 0.39 < 0.39 < 0.39 0.12 J 0.18 J 0.13 J	6 - 8 6/29/04 NA 45 D 9.2 23 D 9.3 5.4 2.9	2 - 4 6/29/04 NA 240 D 18 120 D 35 30	8 - 10 9/10/04 1,200 D 350 150 230 110 91 44	8 - 10 DUP 9/10/04 830 D 420 89 210 84 70 29	
Sample Depth (feet bgs): Date Collected: 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene	Soil Cleanup Objectives 36.4 50 41 50 0.224 0.061 1.1 50	3 - 5 7/28/04 NA <12 2.9 J 4.1 J 4.1 J <12 <12 <12 <12	2 - 4 6/24/04 NA 3.1 25 30 6.1 5.2 2.2 1.3 J	4 - 6.5 7/26/04 NA < 230 78 J 95 J 49 J < 230 < 230 < 230	2.5 - 5.6 7/20/04 NA 21 140 D 50 35 35 35 20 17	6 - 8 6/28/04 NA < 0.39 < 0.39 < 0.39 0.12 J 0.18 J 0.13 J 0.21 J	6 - 8 6/29/04 NA 45 D 9.2 23 D 9.3 5.4 2.9 1.5	2 - 4 6/29/04 NA 240 D 18 120 D 35 30 13 10	8 - 10 9/10/04 1,200 D 350 150 230 110 91 44 46	8 - 10 DUP 9/10/04 830 D 420 89 210 84 70 29 31	
Sample Depth (feet bgs): Date Collected: 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	Soil Cleanup Objectives 36.4 50 41 50 0.224 0.061 1.1 50 1.1	3 - 5 7/28/04 NA <12 2.9 J 4.1 J 4.1 J <12 <12 <12 <12 <12 <12	2 - 4 6/24/04 NA 3.1 25 30 6.1 5.2 2.2 1.3 J 2.6	4 - 6.5 7/26/04 NA < 230 78 J 95 J 49 J < 230 < 230 < 230 < 230	2.5 - 5.6 7/20/04 NA 21 140 D 50 35 35 20 17 22	6 - 8 6/28/04 NA < 0.39 < 0.39 < 0.39 0.12 J 0.18 J 0.13 J 0.21 J 0.16 J	6 - 8 6/29/04 NA 45 D 9.2 23 D 9.3 5.4 2.9 1.5 2.8	2 - 4 6/29/04 NA 240 D 18 120 D 35 30 13 10 14	8 - 10 9/10/04 1,200 D 350 150 230 110 91 44 46 56	8 - 10 DUP 9/10/04 830 D 420 89 210 84 70 29 31 41	
Sample Depth (feet bgs): Date Collected: 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	Soil Cleanup Objectives 36.4 50 41 50 0.224 0.061 1.1 50 1.1 0.4	3 - 5 7/28/04 NA <12 2.9 J 4.1 J 4.1 J <12 <12 <12 <12 <12 <12 <12 <12 <12 4.9 J	2 - 4 6/24/04 NA 3.1 25 30 6.1 5.2 2.2 1.3 J 2.6 5.4	4 - 6.5 7/26/04 NA < 230 78 J 95 J 49 J < 230 < 230 < 230 < 230 < 230 < 230 51 J	2.5 - 5.6 7/20/04 NA 21 140 D 50 35 35 20 17 22 34	6 - 8 6/28/04 NA < 0.39 < 0.39 < 0.39 0.12 J 0.18 J 0.13 J 0.21 J 0.16 J 0.16 J	6 - 8 6/29/04 NA 45 D 9.2 23 D 9.3 5.4 2.9 1.5 2.8 10	2 - 4 6/29/04 NA 240 D 18 120 D 35 30 13 10 14 35	8 - 10 9/10/04 1,200 D 350 150 230 110 91 44 46 56 110	8 - 10 DUP 9/10/04 830 D 420 89 210 84 70 29 31 41 83	
Sample Depth (feet bgs): Date Collected: 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene	Soil Cleanup Objectives 36.4 50 41 50 0.224 0.061 1.1 50 1.1 0.4 0.014	3 - 5 7/28/04 NA <12 2.9 J 4.1 J 4.1 J <12 <12 <12 <12 <12 <12 <12 <12 <12 <12	2 - 4 6/24/04 NA 3.1 25 30 6.1 5.2 2.2 1.3 J 2.6 5.4 0.40 J	4 - 6.5 7/26/04 NA < 230 78 J 95 J 49 J < 230 < 230 < 230 < 230 < 230 < 230 < 230 < 230 < 230	2.5 - 5.6 7/20/04 NA 21 140 D 50 35 35 20 17 22 34 3.6 J	6 - 8 6/28/04 NA < 0.39 < 0.39 < 0.39 0.12 J 0.18 J 0.13 J 0.21 J 0.16 J 0.16 J < 0.39	6 - 8 6/29/04 NA 45 D 9.2 23 D 9.3 5.4 2.9 1.5 2.8 10 0.54 J	2 - 4 6/29/04 NA 240 D 18 120 D 355 30 13 10 14 35 2.6	8 - 10 9/10/04 1,200 D 350 150 230 110 91 44 46 56 110 NA	8 - 10 DUP 9/10/04 830 D 420 89 210 84 70 29 31 41 83 NA	
Sample Depth (feet bgs): Date Collected: 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	Soil Cleanup Objectives 36.4 50 41 50 0.224 0.061 1.1 50 1.1 0.4 0.014 50 50	3 - 5 7/28/04 NA <12 2.9 J 4.1 J 4.1 J <12 <12 <12 <12 <12 <12 <12 <12 <12 <12	2 - 4 6/24/04 NA 3.1 25 30 6.1 5.2 2.2 1.3 J 2.6 5.4 0.40 J 9.3	4 - 6.5 7/26/04 NA < 230 78 J 95 J 49 J < 230 < 230 < 230 < 230 < 230 < 230 < 230 < 230 < 230 < 1 J < 230 51 J < 230	2.5 - 5.6 7/20/04 NA 21 140 D 50 35 35 20 17 22 34 3.6 J 110 D	6 - 8 6/28/04 NA < 0.39 < 0.39 < 0.39 0.12 J 0.18 J 0.13 J 0.21 J 0.16 J 0.16 J < 0.39 0.23 J	6 - 8 6/29/04 NA 45 D 9.2 23 D 9.3 5.4 2.9 1.5 2.8 10 0.54 J 20	2 - 4 6/29/04 NA 240 D 18 120 D 355 30 13 10 14 35 2.6 110 D	8 - 10 9/10/04 1,200 D 350 150 230 110 91 44 46 56 110 NA 340	8 - 10 DUP 9/10/04 830 D 420 89 210 84 70 29 31 41 83 NA 260	
Sample Depth (feet bgs): Date Collected: 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene	Soil Cleanup Objectives 36.4 50 41 50 0.224 0.061 1.1 50 1.1 0.4 0.014 50 50 50 3.2	3 - 5 7/28/04 NA <12 2.9 J 4.1 J <12 <12 <12 <12 <12 <12 <12 <12 <12 <12	2 - 4 6/24/04 NA 3.1 25 30 6.1 5.2 2.2 1.3 J 2.6 5.4 0.40 J 9.3 16 J 1.4 J	4 - 6.5 7/26/04 NA < 230 78 J 95 J 49 J < 230 < 230 < 230 < 230 < 230 < 230 < 230 51 J < 230 160 J 130 J < 230	2.5 - 5.6 7/20/04 NA 21 140 D 50 35 35 20 17 22 34 3.6 J 110 D 67 J 20	6 - 8 6/28/04 NA < 0.39 < 0.39 < 0.39 0.12 J 0.18 J 0.13 J 0.21 J 0.16 J 0.16 J < 0.39 0.23 J < 0.39 J	6 - 8 6/29/04 NA 45 D 9.2 23 D 9.3 5.4 2.9 1.5 2.8 10 0.54 J 20 18 J 1.8	2 - 4 6/29/04 NA 240 D 18 120 D 355 30 13 10 13 10 14 35 2.6 110 D 110 JD 10	8 - 10 9/10/04 1,200 D 350 150 230 110 91 44 46 56 110 NA 340 210 46	8 - 10 DUP 9/10/04 830 D 420 89 210 84 70 29 31 41 83 NA 260 190 31	
Sample Depth (feet bgs): Date Collected: 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	Soil Cleanup Objectives 36.4 50 41 50 0.224 0.061 1.1 50 1.1 0.4 0.014 50 50 50 3.2 13	3 - 5 7/28/04 NA <12 2.9 J 4.1 J <12 <12 <12 <12 <12 <12 <12 <12 <12 <12	2 - 4 6/24/04 NA 3.1 25 30 6.1 5.2 2.2 1.3 J 2.6 5.4 0.40 J 9.3 16 J 1.4 J 100 D	4 - 6.5 7/26/04 NA < 230 78 J 95 J 49 J < 230 < 230 < 230 < 230 < 230 < 230 < 230 < 230 < 1 J < 230 160 J 130 J	2.5 - 5.6 7/20/04 NA 21 140 D 50 35 35 20 17 22 34 3.6 J 110 D 67 J 20 400 D	6 - 8 6/28/04 NA < 0.39 < 0.39 < 0.39 0.12 J 0.18 J 0.13 J 0.21 J 0.16 J < 0.39 0.23 J < 0.39 J 0.20 J < 0.39	6 - 8 6/29/04 NA 45 D 9.2 23 D 9.3 5.4 2.9 1.5 2.8 10 0.54 J 20 18 J 1.8 130 D	2 - 4 6/29/04 NA 240 D 18 120 D 35 30 13 10 14 35 2.6 110 D 110 JD 10 680 D	8 - 10 9/10/04 1,200 D 350 150 230 110 91 44 46 56 110 NA 340 210	8 - 10 DUP 9/10/04 830 D 420 89 210 84 70 29 31 41 83 NA 260 190	
Sample Depth (feet bgs): Date Collected: 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene	Soil Cleanup Objectives 36.4 50 41 50 0.224 0.061 1.1 50 1.1 0.4 0.014 50 50 50 3.2	3 - 5 7/28/04 NA <12 2.9 J 4.1 J <12 <12 <12 <12 <12 <12 <12 <12 <12 <12	2 - 4 6/24/04 NA 3.1 25 30 6.1 5.2 2.2 1.3 J 2.6 5.4 0.40 J 9.3 16 J 1.4 J	4 - 6.5 7/26/04 NA < 230 78 J 95 J 49 J < 230 < 230 < 230 < 230 < 230 < 230 < 230 51 J < 230 160 J 130 J < 230 780 J	2.5 - 5.6 7/20/04 NA 21 140 D 50 35 35 20 17 22 34 3.6 J 110 D 67 J 20	6 - 8 6/28/04 NA < 0.39 < 0.39 < 0.39 0.12 J 0.18 J 0.13 J 0.21 J 0.16 J < 0.39 0.23 J < 0.39 J 0.20 J	6 - 8 6/29/04 NA 45 D 9.2 23 D 9.3 5.4 2.9 1.5 2.8 10 0.54 J 20 18 J 1.8	2 - 4 6/29/04 NA 240 D 18 120 D 355 30 13 10 13 10 14 35 2.6 110 D 110 JD 10	8 - 10 9/10/04 1,200 D 350 150 230 110 91 44 46 56 110 NA 340 210 46 1,800 D	8 - 10 DUP 9/10/04 830 D 420 89 210 84 70 29 31 41 83 NA 260 190 31 1,500 D	

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Soil Analytical Results for Detected PAHs (ppm)

Notes:

- 1. Samples were collected by Blasland, Bouck & Lee, Inc. on the dates indicated.
- 2. PAHs = polynuclear aromatic hydrocarbons.
- 3. Samples were analyzed by Severn Trent Laboratories, Inc. located in Amherst, New York for samples collected during 2001 and CompuChem located in Cary, North Carolina for samples collected during 2004.
- 4. Samples were analyzed for PAHs using USEPA SW-846 Method 8270.
- 5. TAGM 4046 soil cleanup objectives from the New York State Department of Environmental Conservation (NYSDEC) Technical and Administrative Guidance Memorandum (TAGM) titled "Determination of Soil Cleanup Objectives and Cleanup Levels," HWR-94-4046 (TAGM 4046) dated January 24, 1994.
- 6. Concentrations reported in parts per million (ppm), which is equivalent to milligrams per kilogram (mg/kg).
- 7. NA = Not analyzed.
- 8. < = Compound was not detected at a concentration exceeding the presented laboratory detection limit.
- 9. J = Indicates an estimated concentration. Presented concentration is less than the laboratory detection limit.
- 10. D = Indicates that the presented concentration is based on the analysis of a diluted sample.
- 11. ND = Constituent was not detected at a concentration exceeding the laboratory detection limit.

12. Shaded values indicate that the compound was detected at a concentration exceeding the NYSDEC recommended soil cleanup objectives presented in TAGM 4046.

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Soil Analytical Results for Total Cyanide (ppm)

Sample ID	Depth Interval (feet)	Date Collected	Total Cyanide
BB-92	0 - 2	6/23/04	1.7
BB-102	3 - 5	7/28/04	82.2
BB-107	2 - 4	6/24/04	0.77
BB-111	4 - 6.5	7/26/04	5.6
BB-112B	2.5 - 5.6	7/20/04	15.5
BB-124	6 - 8	6/28/04	0.58 B
BB-127	6 - 8	6/29/04	0.81
BB-128	2 - 4	6/29/04	2.2
BB-135	8 - 10	9/10/04	8.1 J
DUP-1 <bb-135></bb-135>	8 - 10	9/10/04	33.4 J

Notes:

- 1. Samples were collected by Blasland, Bouck & Lee, Inc. on the dates indicated.
- 2. Samples were analyzed for cyanide by CompuChem located in Cary, North Carolina using USEPA SW-846 Method 9010B.
- 3. Concentrations reported in parts per million (ppm), which is equivalent to milligrams per kilogram (mg/kg).
- 4. J = Indicates an estimated concentration. Presented concentration is less than the method detection limit but greater than the instrument detection limit.
- 5. B = The indicated concentration was obtained from a reading less than the reporting limit but greater than or equal to the instrument detection limit.

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Hydraulic Conductivities Estimated from Specific Capacity Tests

Shallow \	Wells	Intermediat	e Wells	Deep W	ells	Till We	lls
Well ID	Hydraulic Conductivity (cm/sec)						
MW-28S	8.71E-05	MW-28I	3.60E-05	MW-19D	4.04E-05	MW-30T	2.10E-08
MW-7	1.25E-04	MW-29I	5.52E-05	MW-13I	8.84E-05	MW-29T	2.80E-08
MW-14S	3.51E-04	MW-30I	5.57E-05	MW-14I	3.51E-04	MW-19T	3.00E-07
MW-3	3.95E-04	MW-15S	1.60E-05	MW-12	3.66E-04	MW-28T	4.67E-07
MW-6S	4.14E-04	MW-14P	2.48E-04	MW-9D	3.34E-03	MW-13T	2.41E-06
MW-29S	5.24E-04	MW-10	2.53E-04	MW-30D	2.28E-02	MW-27D	2.58E-05
MW-23	6.88E-04	MW-11	3.54E-03	MW-8D	3.30E-02	Geometric Mean:	4.15E-07
MW-19S	8.42E-04	MW-9I	4.60E-03	MW-15I	3.97E-02		
MW-30S	1.07E-03	MW-13P	4.77E-03	MW-28D	8.26E-02		
MW-9S	1.46E-03	MW-8I	9.36E-03	Geometric Mean:	2.50E-03		
MW-26	2.29E-03	MW-19I	1.75E-02				
MW-8S	2.45E-03	MW-6I	1.14E-01				
MW-22	4.43E-03	Geometric Mean:	8.59E-04				
MW-27S	8.21E-03						
MW-13SR	1.05E-02						
Geometric Mean:	9.70E-04						

Notes:

- 1. The results of the specific capacity test conducted at monitoring well MW-25 were not used since water from the formation was not drawn into the well prior to the well being pumped dry.
- 2. Monitoring wells MW-17, MW-20R, and MW-21 were installed such that their screens straddle the shallow and intermediate hydrostratigraphic zones, therefore, groundwater data obtained from these wells were not utilized to estimate a hydraulic conductivity for either of the hydrostratigraphic zones.
- 3. Monitoring well MW-24 was installed such that the screen was positioned completely within the silt and clay unit (i.e., the upper portion of the intermediate hydrostatigraphic zone). However, based on the results obtained from several monitoring events, the water level within MW-24 very closely follows the water levels in nearby MW-13SR, a shallow well. Therefore, the results of the specific capacity testing at MW-24 are not indicative of the intermediate hydrostratigraphic zone and were not used to estimate a hydraulic conductivity for this unit.

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Static Groundwater Level Measurements

	Hydro-	700					Water Ele	vation (ft)				
Monitoring	stratigraphic	TOC	Aug-01	Sep-01	Oct-01	Nov-01	Dec-01	Jun-02	Aug-04	Nov-04	Jan-05	May-05
Well MW-1	Zone NA	Elevation (ft) 227.1	222.2	NA	220.9	220.7	220.5	222.7	221.4	222.4	222.7	223.3
MW-3	S	227.1	 NM	NA	220.9 NM	220.7 NM	220.5 NM	NM	221.4 NM	NM	222.7	223.3
MW-6S	S	231.1	223.7	223.6	223.4	223.4	223.3	223.9	224.1	223.6	221.6	222.8
MW-6I	3	227.3	218.1	223.0	223.4	223.4	223.3	223.9	219.0	223.0	223.7	221.0
MW-7	S	228.6	210.1	217.0	217.2	217.1	210.0	218.5	219.0	210.2	218.3	210.7
MW-8S	s	229.9	219.0	210.0	216.7	216.5	216.3	218.0	220.9	218.6	218.9	219.7
MW-80	<u> </u>	229.3	217.1	217.2	216.2	216.1	215.8	217.5	218.0	217.2	217.3	213.7
MW-8D	D	229.1	216.1	216.7	216.2	216.1	215.8	217.5	218.0	217.2	217.2	217.6
MW-9S	S	231.9	219.6	218.7	218.7	217.8	217.5	220.3	NM	NM	220.4	221.4
MW-9I		230.8	219.1	218.3	217.1	217.4	217.0	219.5	NM	NM	219.7	220.7
MW-9D	D	231.0	217.7	217.3	216.8	216.7	216.4	218.0	NM	NM	217.9	218.3
MW-10		234.0	219.5	218.6	218.0	217.7	217.3	219.8	NM	NM	220.1	221.1
MW-11		225.9	220.1	219.1	218.6	218.3	218.4	220.7	221.4	220.5	220.6	221.2
MW-12	D	226.7	219.1	218.5	217.9	218.4	217.8	219.7	220.1	219.0	218.0	219.7
MW-13S/SR*	S	226.6	223.1	222.8	222.7	222.8	222.8	223.6	223.7	223.8	224.0	224.0
MW-13P	-	226.6	219.2	219.0	218.9	218.6	218.2	219.4	219.8	219.2	219.1	220.0
MW-13I	D	226.6	218.0	217.6	217.1	217.0	216.7	218.4	218.9	218.1	218.1	218.6
MW-13T	Т	226.54	NI	NI	NI	NI	NI	NI	NI	NI	NI	223.4
MW-14S	S	228.2	222.9	222.6	222.3	219.4	222.5	223.2	223.1	222.8	222.9	222.9
MW-14P	I	228.2	218.1	217.7	NA	216.5	217.3	218.2	217.9	218.4	218.3	219.2
MW-14I	D	228.2	218.1	217.7	217.1	217.1	217.8	218.5	219.0	218.2	218.5	218.7
MW-15S	-	229.0	219.2	218.9	218.9	218.7	218.4	219.5	NM	219.5	220.4	219.3
MW-15I	D	228.6	218.0	217.6	217.0	217.0	216.7	218.4	NM	218.1	218.0	218.6
MW-17	I	226.21	NM	NM	NM	NM	NM	NM	NM	NM	NM	222.0
MW-19S	S	225.4	221.4	220.0	220.1	220.1	220.2	221.9	222.5	221.5	NM	222.5
MW-19I	I	225.5	217.9	217.6	NA	220.0	216.7	218.4	219.0	218.1	NM	218.5
MW-19D	D	225.6	218.0	217.7	217.8	219.9	216.2	218.4	218.9	217.8	217.1	219.1
MW-19T	Т	225.60	NI	NI	NI	NI	NI	NI	NI	NI	NI	215.8
MW-20	S	227.3	NI	NI	NI	NI	NI	NI	NM	220.9	220.7	NA
MW-20R	S	227.3	NI	NI	NI	NI	NI	NI	NI	NI	NI	220.0
MW-21	S	227.9	NI	NI	NI	NI	NI	NI	222.8	221.8	221.5	222.3
MW-22	S	231.6	NI	NI	NI	NI	NI	NI	222.3	220.9	221.4	222.2
MW-23	S	226.6	NI	NI	NI	NI	NI	NI	223.6	222.6	NM	223.2
MW-24		226.5	NI	NI	NI	NI	NI	NI	223.9	223.7	222.7	223.9
MW-25		225.5	NI	NI	NI	NI	NI	NI	221.1	220.0	NM	NM
MW-26	S	228.8	NI	NI	NI	NI	NI	NI	223.9	222.8	NM	223.8
MW-27S	S F	226.5	NI	NI	NI	NI	NI	NI	219.8	219.0	219.3	220.2
MW-27D	Т	227.4	NI	NI	NI	NI	NI	NI	218.0	217.2	217.3	217.7
MW-28S	S	228.37	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	224.6
MW-28I MW-28D	D	228.57 228.52	NI	NI	NI	NI	NI	NI	NI	NI	NI	218.3 218.2
MW-28D MW-28T	T	228.52		NI	NI	NI	NI	NI	NI	NI	NI	218.2
MW-29S	S	228.61	NI	NI	NI	NI	NI	NI	NI	NI	NI	214.8
MW-295 MW-291		230.12	NI	NI	NI	NI	NI	NI	NI	NI	NI	224.3
MW-29T	T	230.09	NI	NI	NI	NI	NI	NI	NI	NI	NI	218.4
MW-30S	S	226.42	NI	NI	NI	NI	NI	NI	NI	NI	NI	203.3
MW-303		226.34	NI	NI	NI	NI	NI	NI	NI	NI	NI	218.7
MW-30D	D	226.34	NI	NI	NI	NI	NI	NI	NI	NI	NI	218.6
MW-30D	T	226.38	NI	NI	NI	NI	NI	NI	NI	NI	NI	218.0
SG-1		220.30	NI	NI	NI	NI	NI	NI	NI	222.8	222.9	NM
SG-2		227.4	NI	NI	NI	NI	NI	NI	NI	224.4	224.5	224.1
SG-3		227.0	NI	NI	NI	NI	NI	NI	NI	225.1	225.6	225.0
000		227.0								220.1	220.0	220.0

Notes:

1. Groundwater level measurements were obtained by Blasland, Bouck & Lee, Inc. on the dates indicated.

TOC = Top of casing.
 NA = Not available. Water levels were not able to be mesured at monitoring wells on the dates indicated due to field conditions.

4. NI = monitoring well was not installed at the time of groundwater level monitoring event.

5. Hydrostratigraphic zone determined based on a review of screened interval and hydraulic conductivity data:

- S = shallow monitoring well (typically screened in the upper fine sand unit above the silt and clay unit across the water table).

- I = Intermediate monitoring well (typically screened within the upper portion of the fine sand unit below the silt and clay unit).

- D = Deep monitoring well (typically screened in the lower portion of the lower fine sand unit below the silt and clay unit).

- T = Till monitoring well (screened within the till unit).

6. Water levels were not measured at monitoring well MW-3 prior to 2005 due to the presence of NAPL.

7. SG = Staff gauge.

8. * - MW-13S replaced by MW-13SR during September 2004 due to damage to MW-13S well casing.

National Grid Schenectady (Broadway) Service Center Schenectady, New York

Vertical Hydraulic Gradients

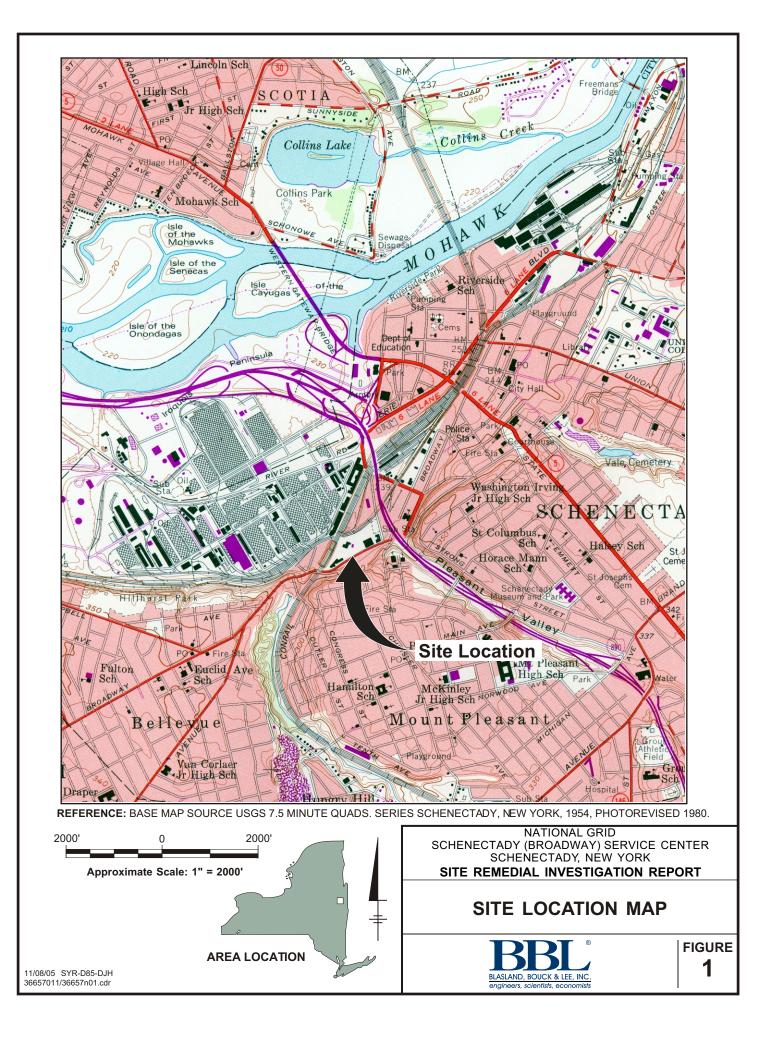
			May 9,	2005
			Water	
	Screen	Screen	Level	Vertical
	Interval	Midpoint	Elevation	Gradient
Well ID	(ft bgs)	(ft AMSL)	(ft AMSL)	(ft/ft)
MW-6S	6.0-16.0	216.8	221	
MW-6I	38.5-48.5	184.2	218.7	0.071
MW-8S	6.0-16.0	216.2	219.7	
MW-8I	25.0-35.0	197.3	217.7	0.106
MW-8I	25.0-35.0	197.3	217.7	0.007
MW-8D	41.0-46.0	183.7	217.6	0.007
MW-13SR	10.0-20.0	211.9	224	0.00
MW-13P MW-13P	30.0-35.0	194.5	220	0.23
MW-13P	30.0-35.0	194.5	220	0.050
MW-13I	54.0-64.0	167.9	218.6 218.6	0.053
MW-13T	54.0-64.0 141.7-151.7	167.9 146.7		0.000
MW-131 MW-14S	10.0-20.0	213.6	223.4	-0.226
MW-145			222.9	0.011
MW-14P	30.0-35.0 30.0-35.0	196.1 196.1	219.2 219.2	0.211
MW-14P	45.0-55.0	196.1		0.020
MW-15S	45.0-55.0	212	218.7 219.3	0.029
MW-15I	36.0-46.0	185.6	219.3	0.027
MW-19S	207.7-217.7	212.7	218.0	0.027
MW-193	177.9-187.9	182.9	218.5	0.134
MW-191	177.9-187.9	182.9	218.5	0.134
MW-19D	152.0-162.0	157	210.0	-0.023
MW-19D	152.0-162.0	157	219.1	0.020
MW-19T	144.8-154.8	149.8	215.8	*
MW-27S	3.0-8.0	219.1	220.2	
MW-27D	55.7-65.7	163.9	217.7	0.045
MW-28S	217.9-222.9	220.4	224.6	
MW-28I	200.9-205.9	203.4	218.3	0.371
MW-28I	200.9-205.9	203.4	218.3	
MW-28D	181.0-186.0	183.5	218.2	0.005
MW-28D	181.0-186.0	183.5	218.2	
MW-28T	154.9-164.9	159.9	214.8	*
MW-29S	216.4-226.4	221.4	224.3	
MW-29I	192.3-202.3	197.3	218.4	0.245
MW-29I	192.3-202.3	197.3	218.4	
MW-29T	168.5-178.5	173.5	203.3	*
MW-30S	214.7-224.7	219.4	223.9	
MW-30I	196.7-201.7	199.2	218.7	0.257
MW-30I	196.7-201.7	199.2	218.7	
MW-30D	180.4-185.4	182.9	218.6	0.006
MW-30D	180.4-185.4	182.9	218.6	
MW-30T	148.7-158.7	153.7	218	*

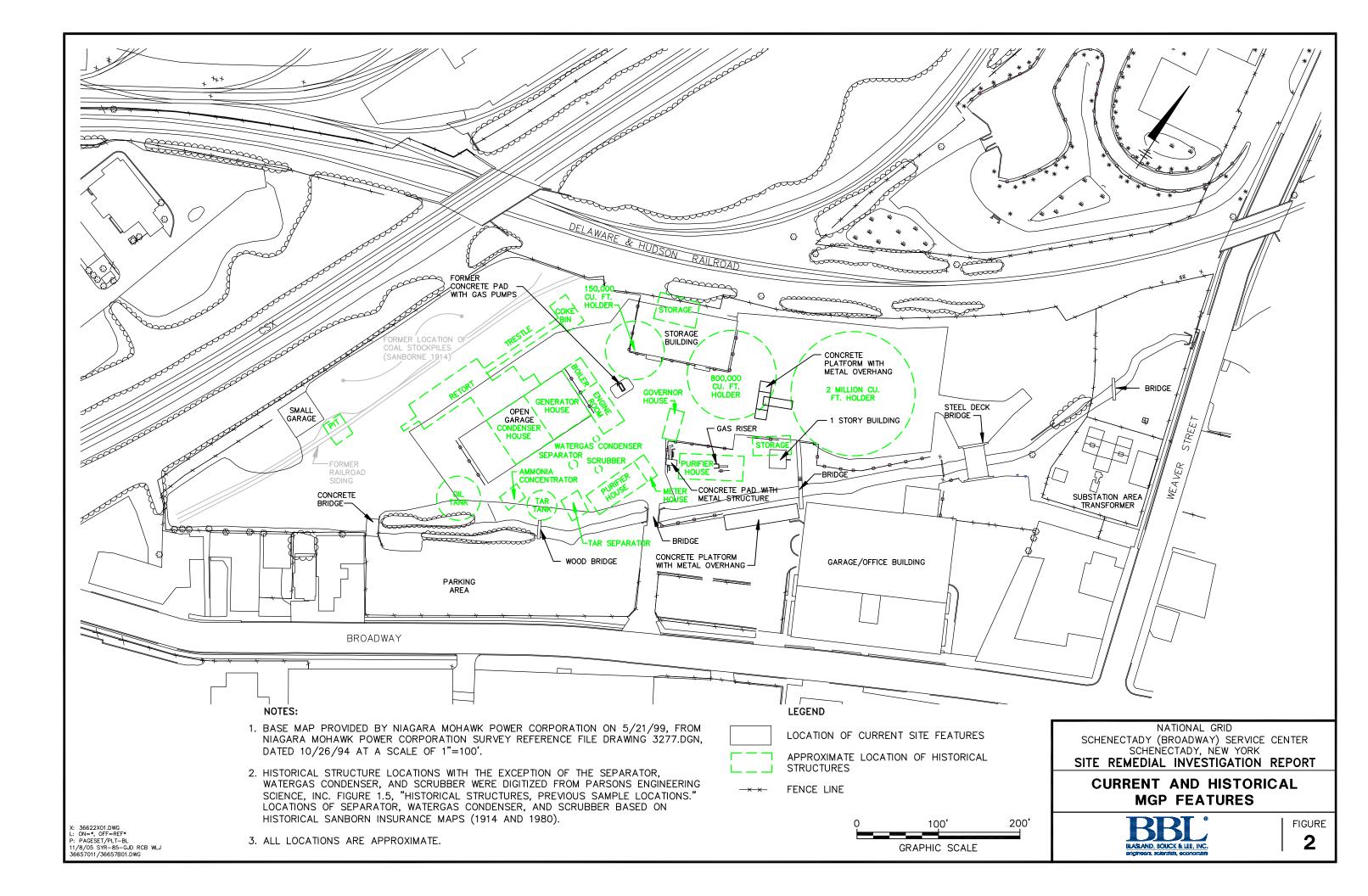
Note:

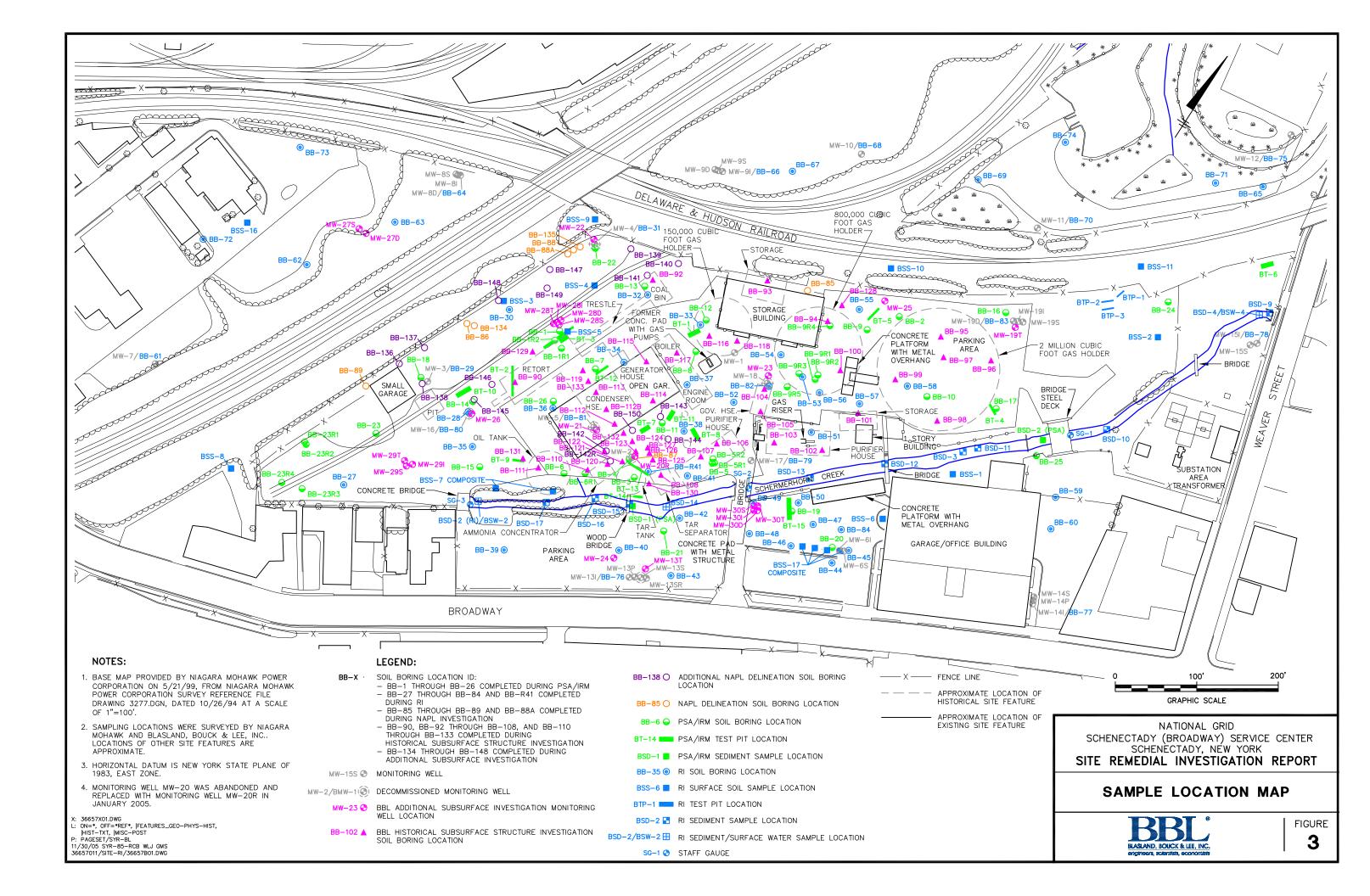
 Indicates that associated till well did not appear to be fully recovered at the time of water level measurement. Therefore, vertical gradient was not calculated.

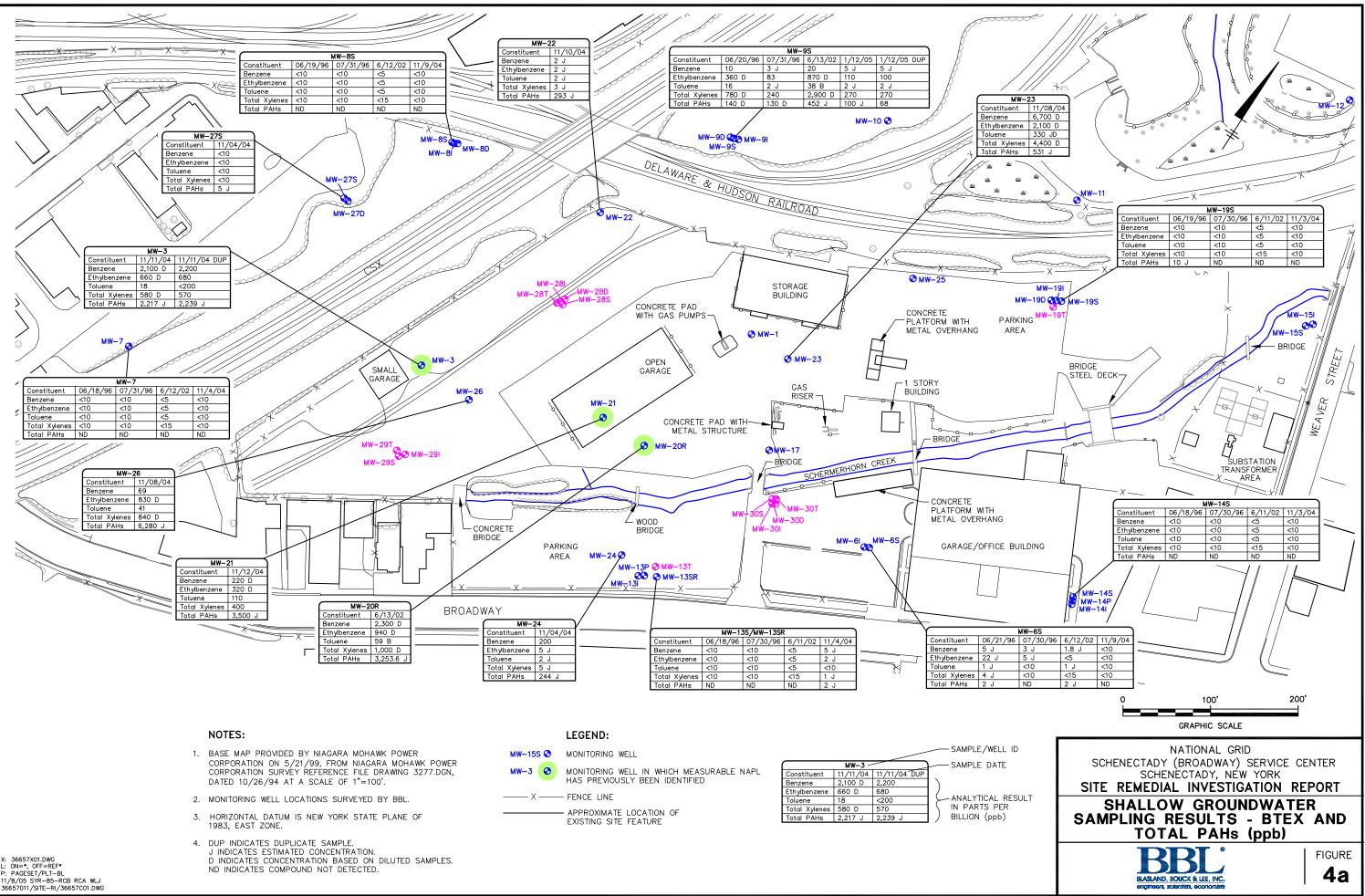
National Grid Schenectady (Broadway) Service Center Schenectady, New York

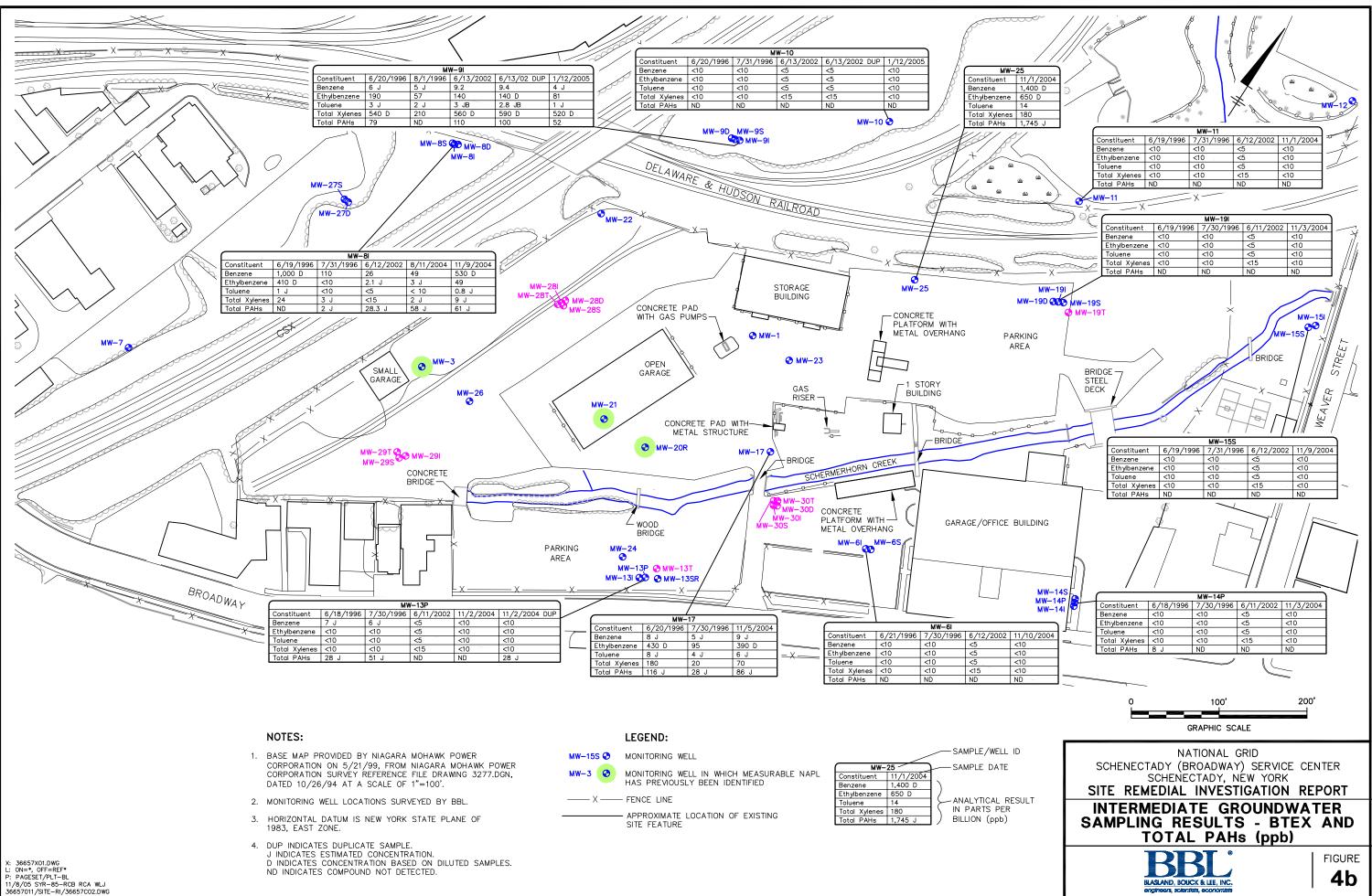
LNAPL Analytical Results (ppm)

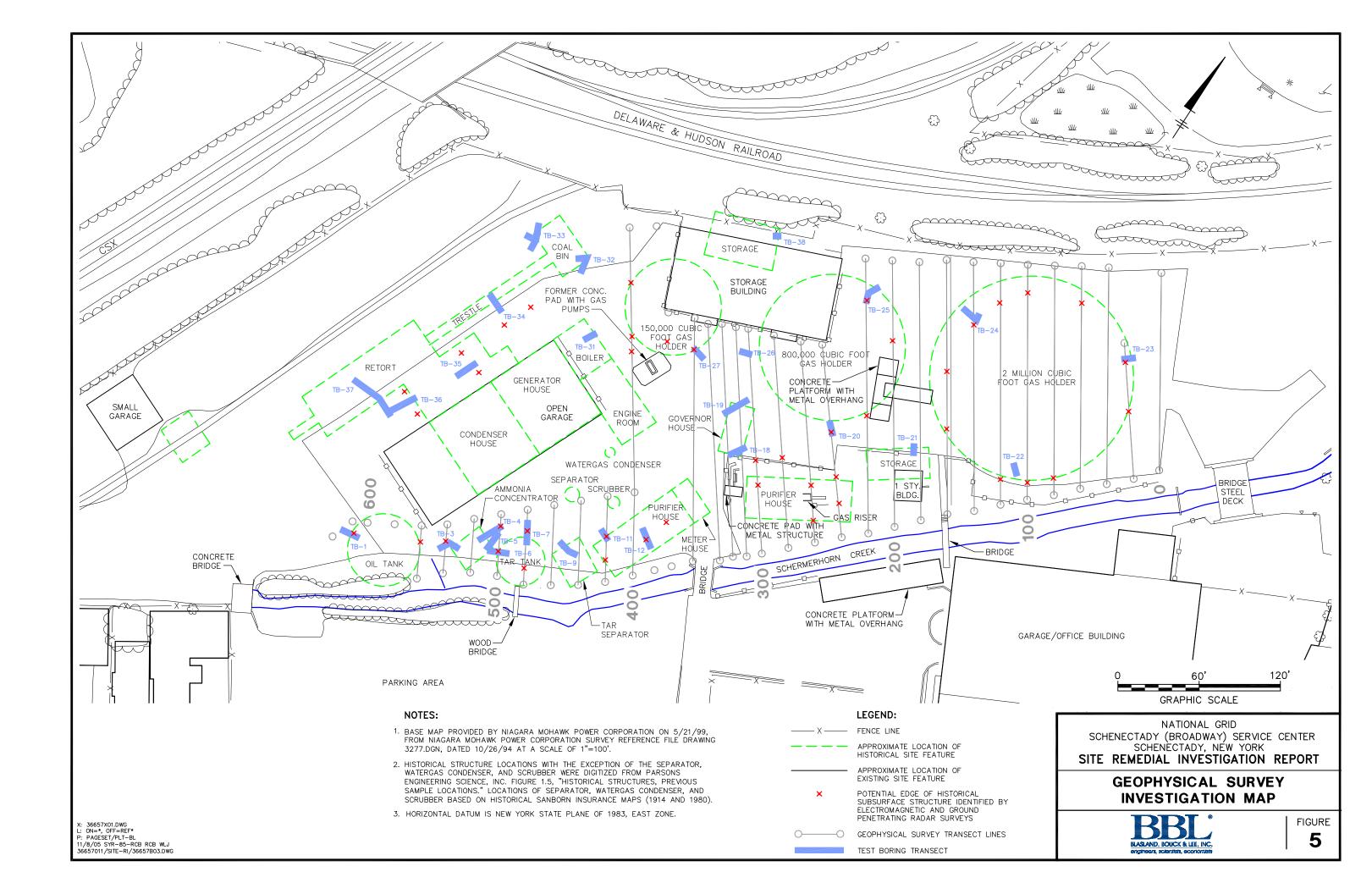

	MW-20 1/12/05
Total Gasoline Range Organics (GROs)	
Total GROs	390
Total Diesel Range Organics (DROs)	
Total GROs	770,000
PAHs	
Naphthalene	23,000
Acenaphthylene	1,100
Acenaphthene	7,100
Fluorene	4,700
Phenanthrene	11,000
Anthracene	2,700
Fluoranthene	3,100
Pyrene	5,000
Benzo(a)anthracene	1,500
Chrysene	1,500
Benzo(b)fluoranthene	550
Benzo(k)fluoranthene	510
Benzo(a)pyrene	960
Ideno(1,2,3-cd)pyrene	390
Dibenzo(a,h)anthracene	150 J
Benzo(g,h,i)perylene	410 J

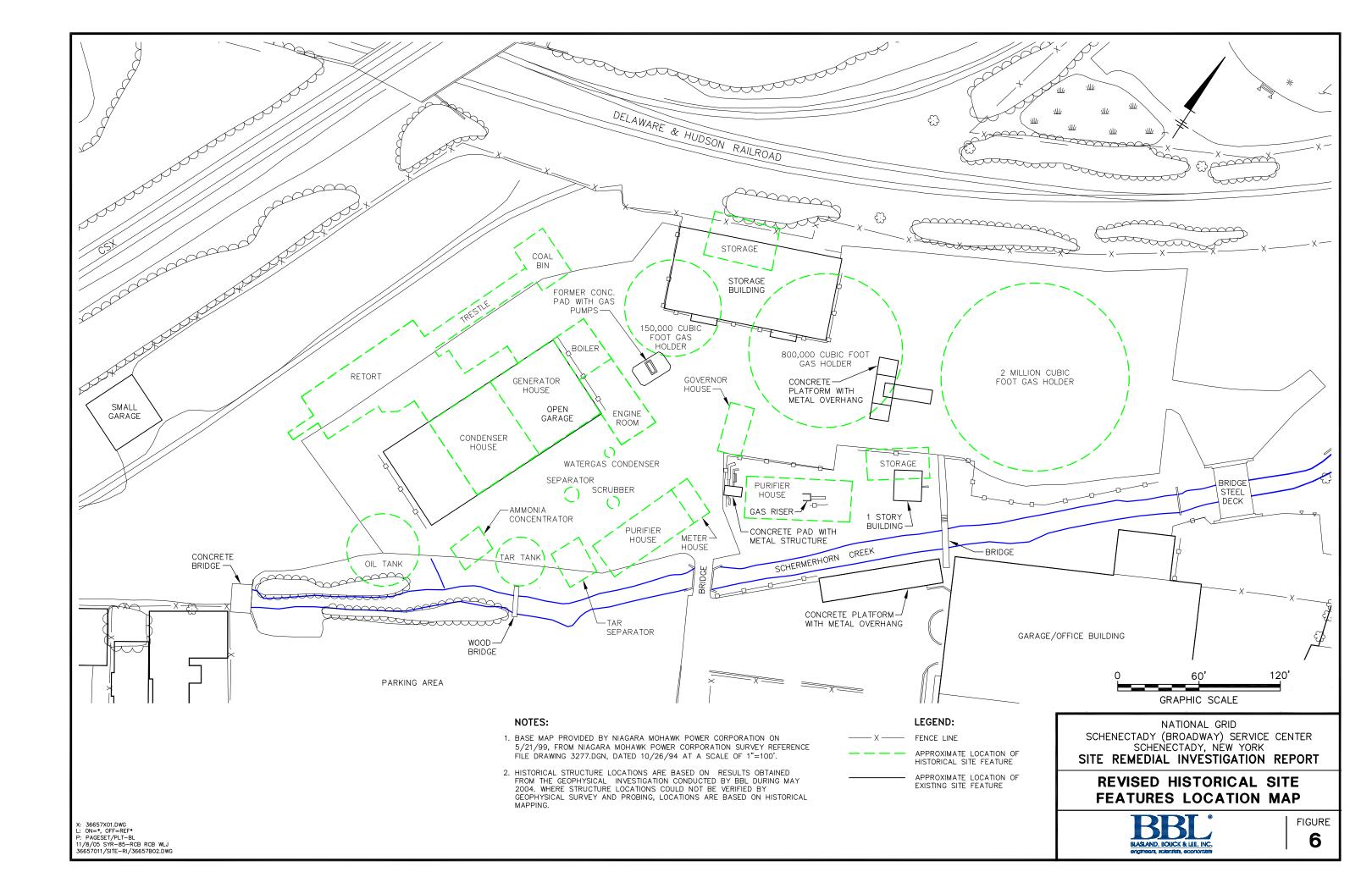

Notes:

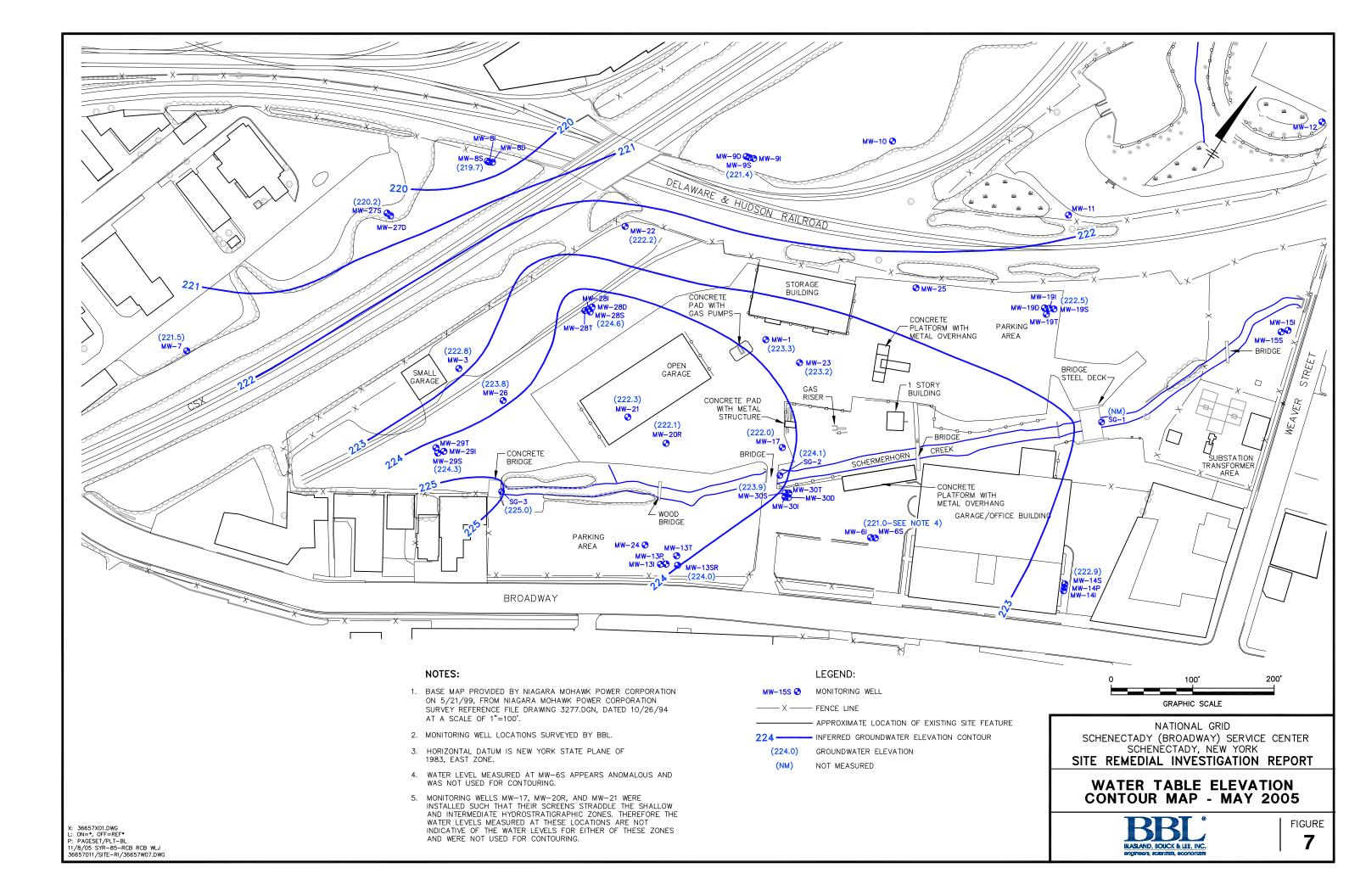

- 1. LNAPL sample was collected by Blasland, Bouck & Lee, Inc. on January 12, 2005.
- 2. PAHs = polynuclear aromatic hydrocarbons.
- 3. Sample was analyzed by CompuChem located in Cary, North Carolina using USEPA SW-846 Method 8270.
- 4. Concentrations reported in parts per million (ppm), which is equivalent to milligrams per kilogram (mg/kg).
- 5. J = Indicates an estimated concentration. Presented concentration is less than the laboratory detection limit.

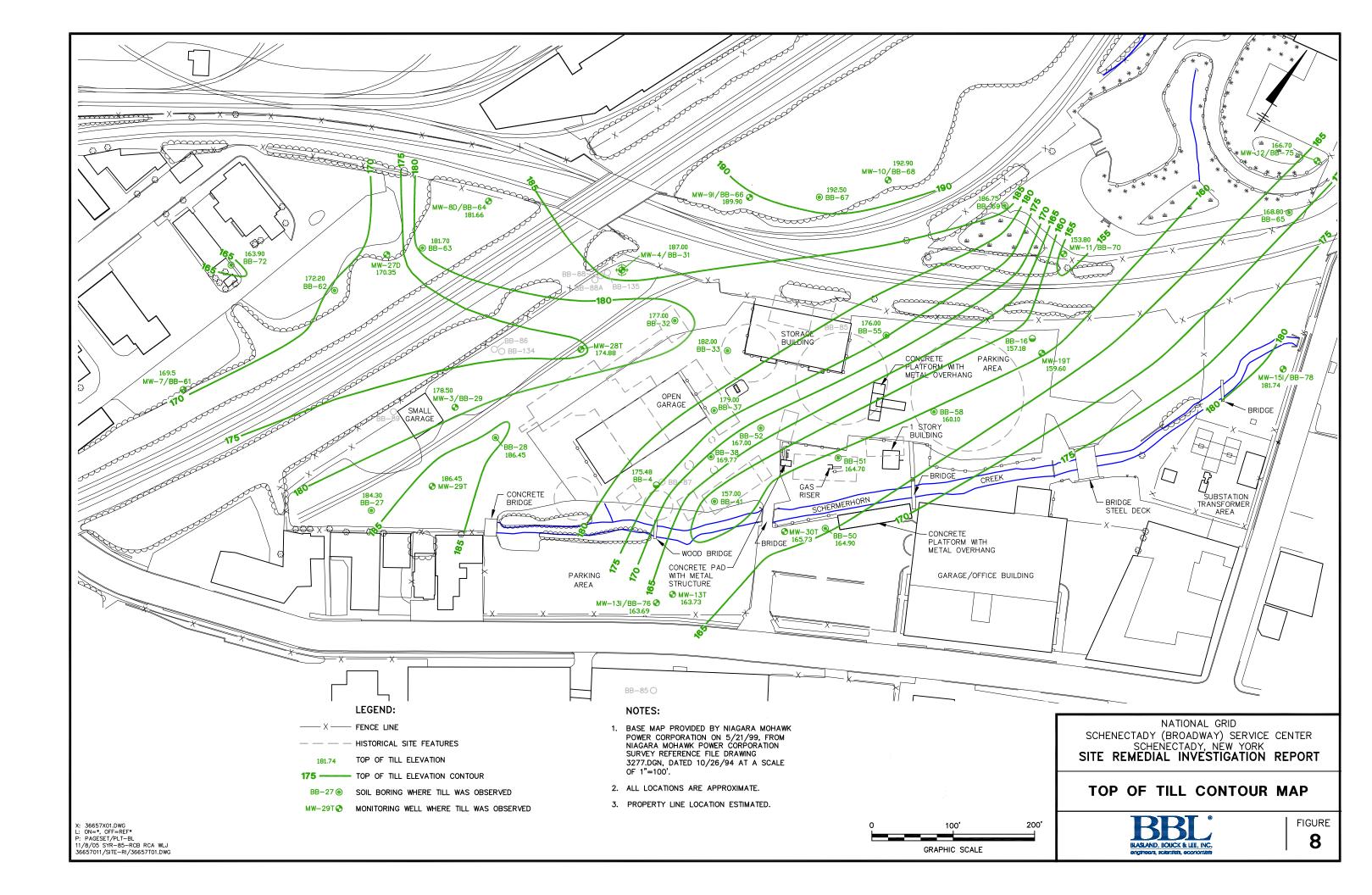

Figures

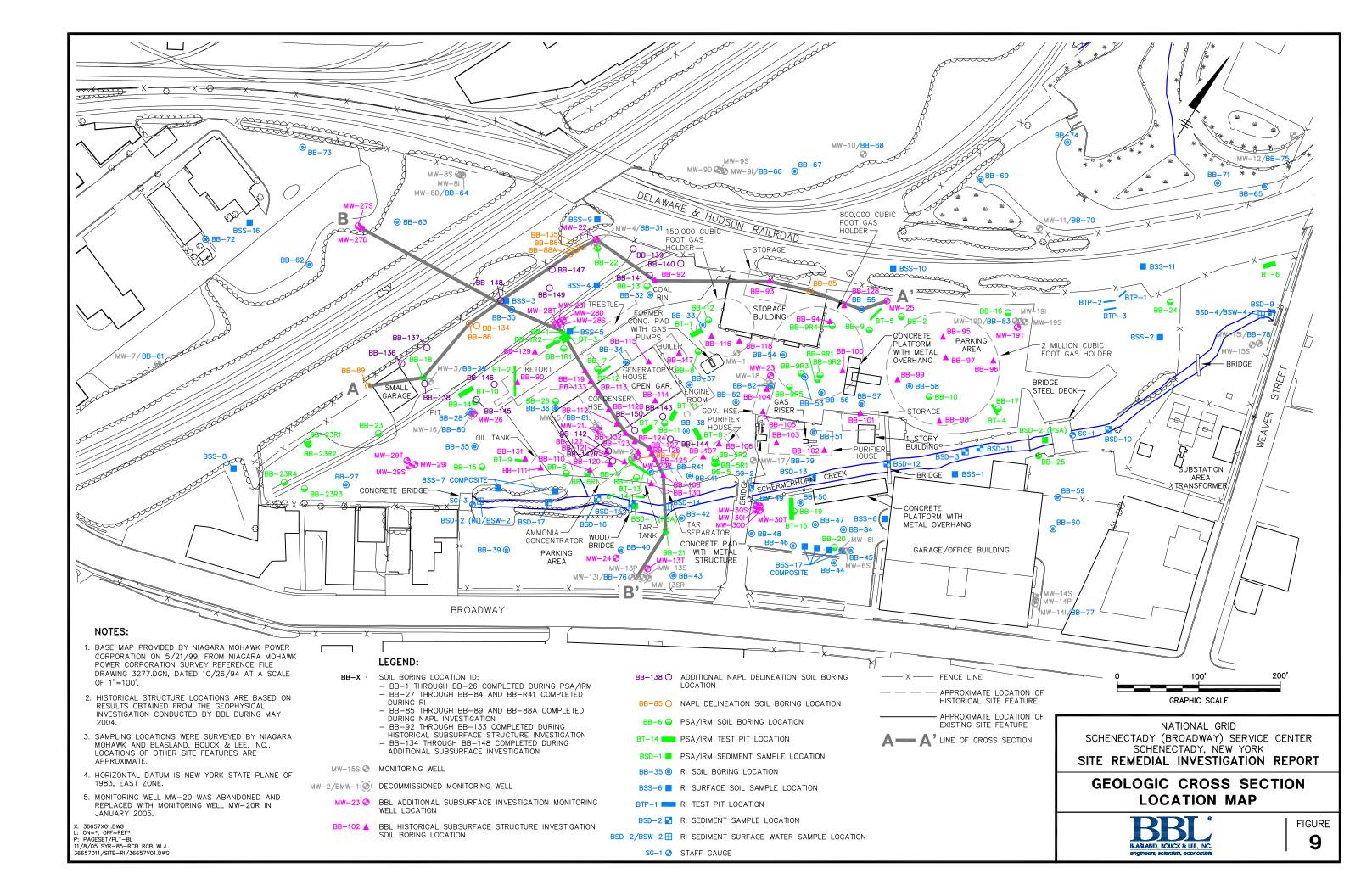


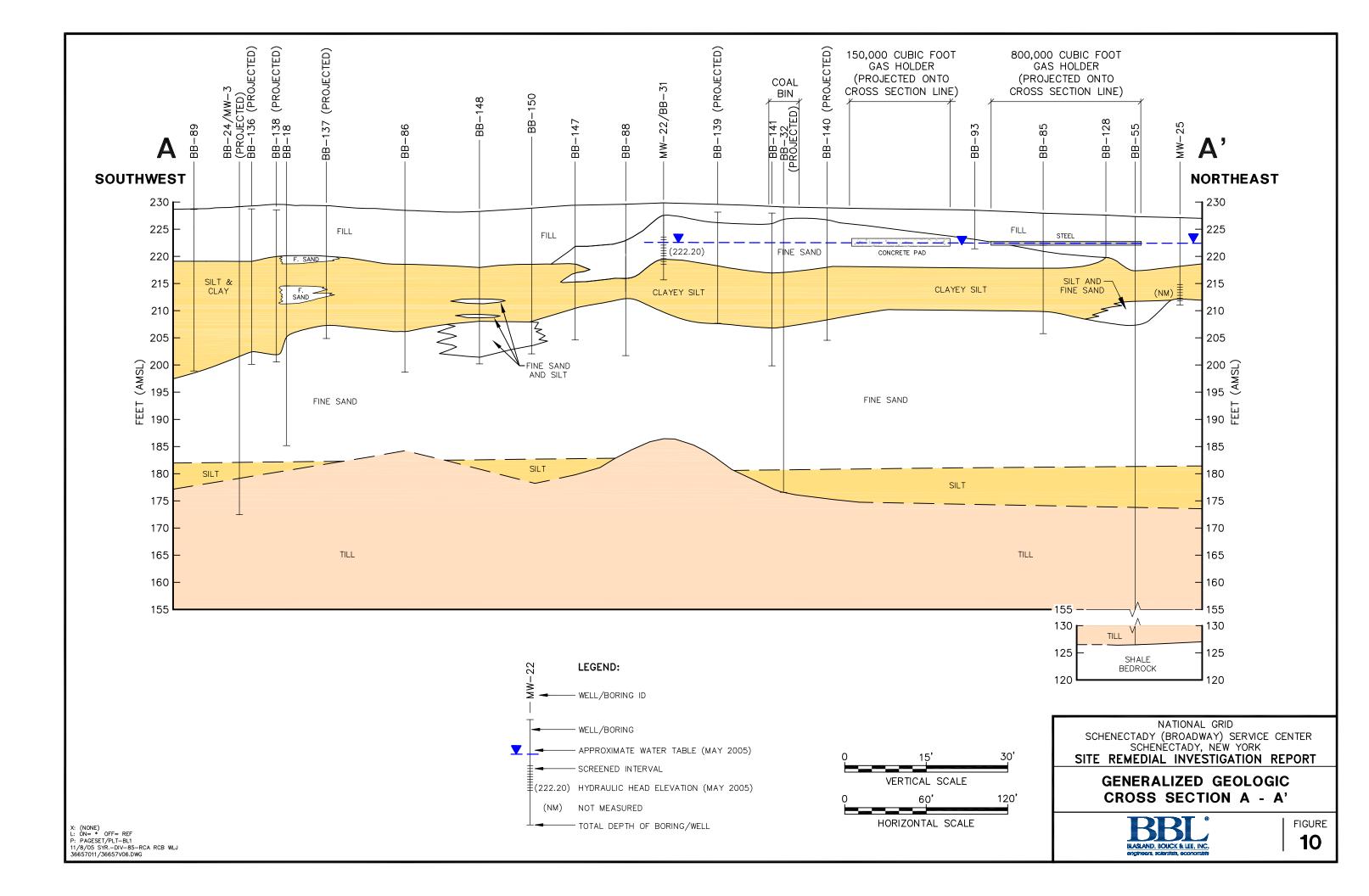


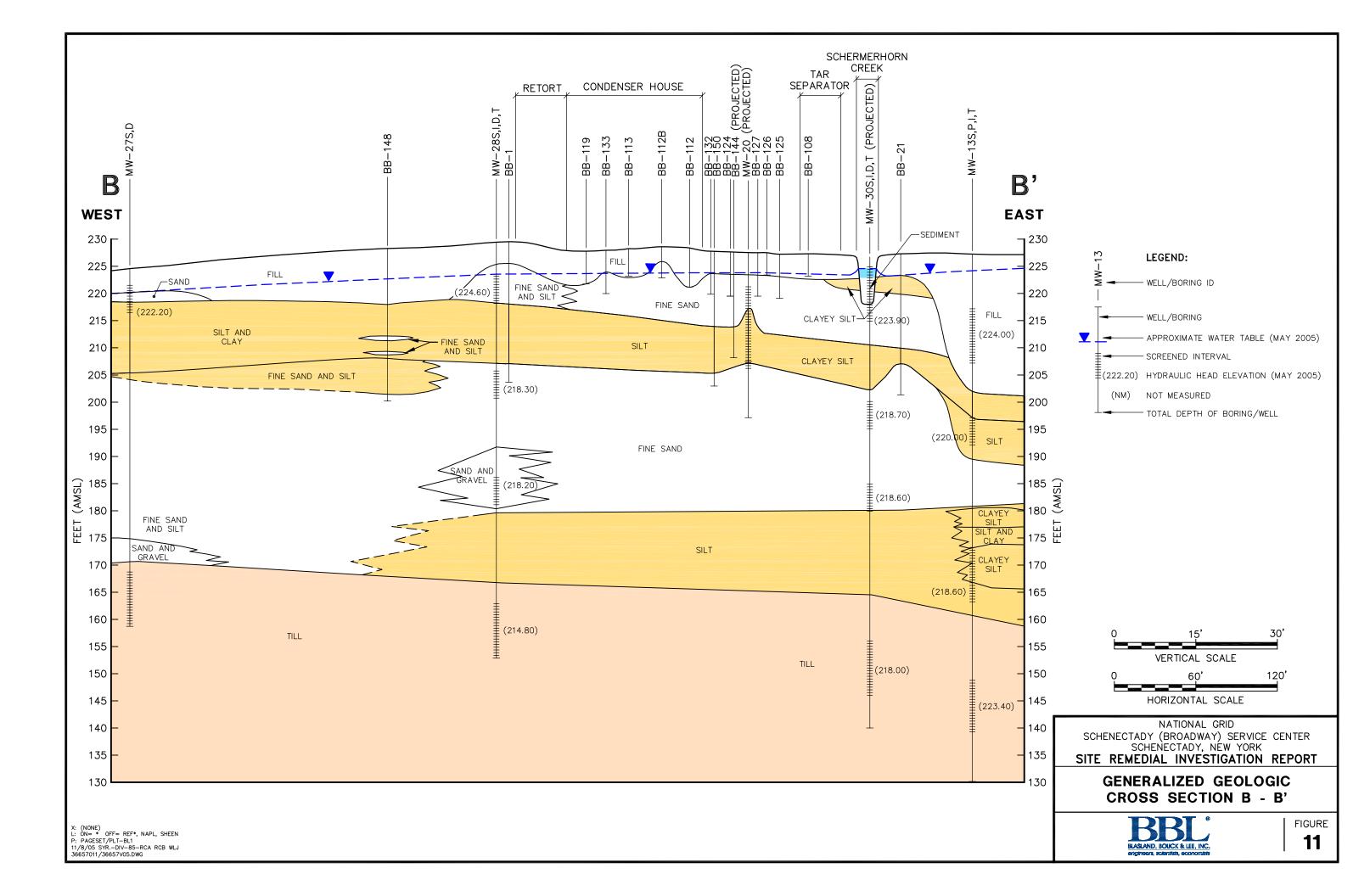


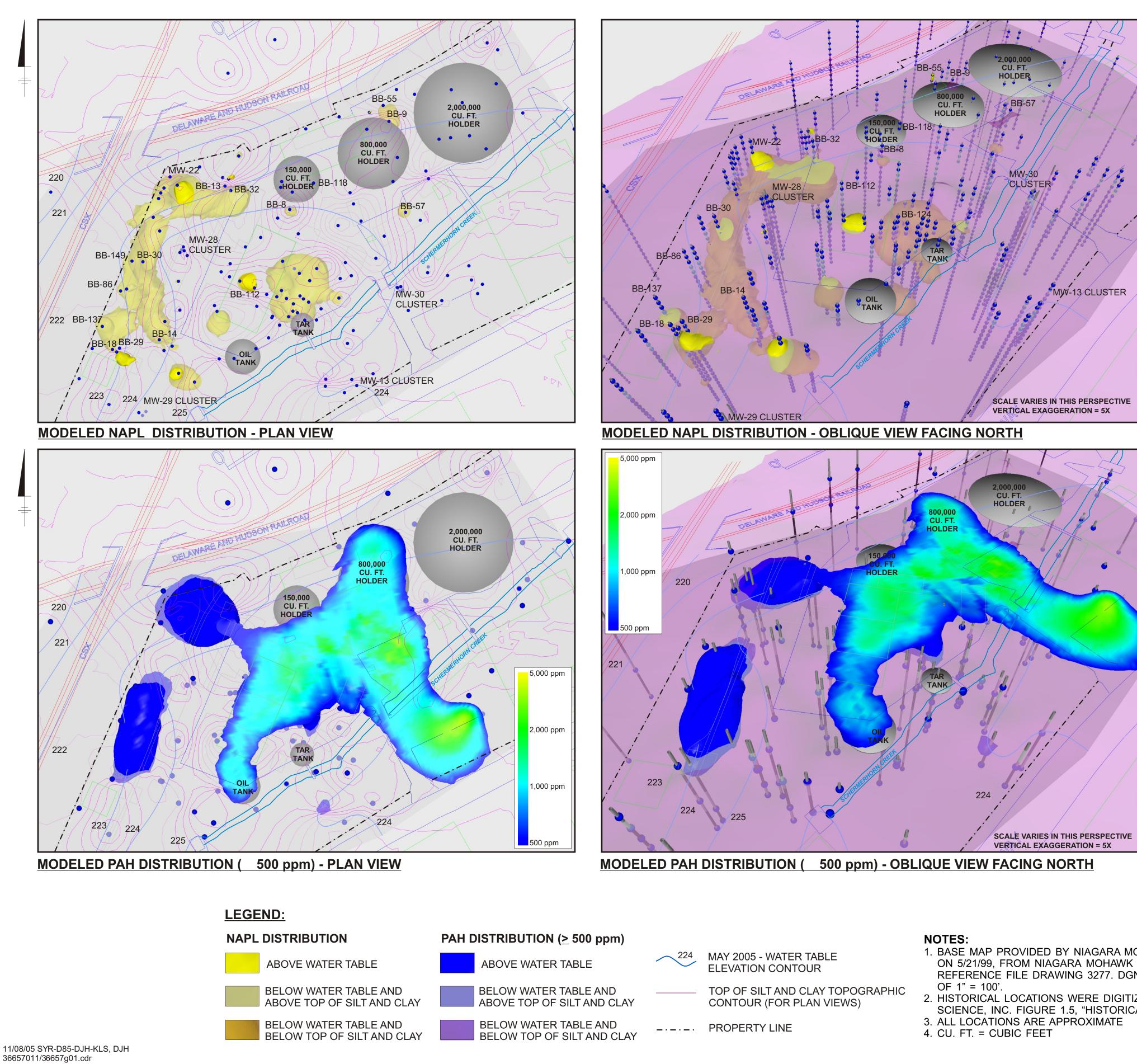


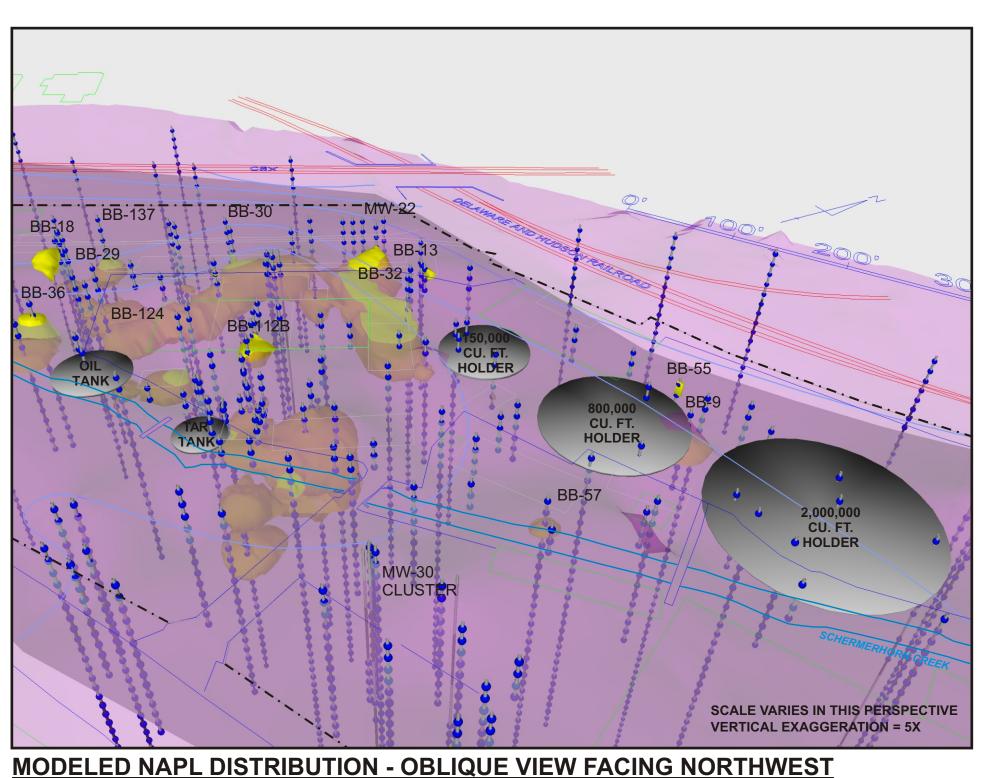


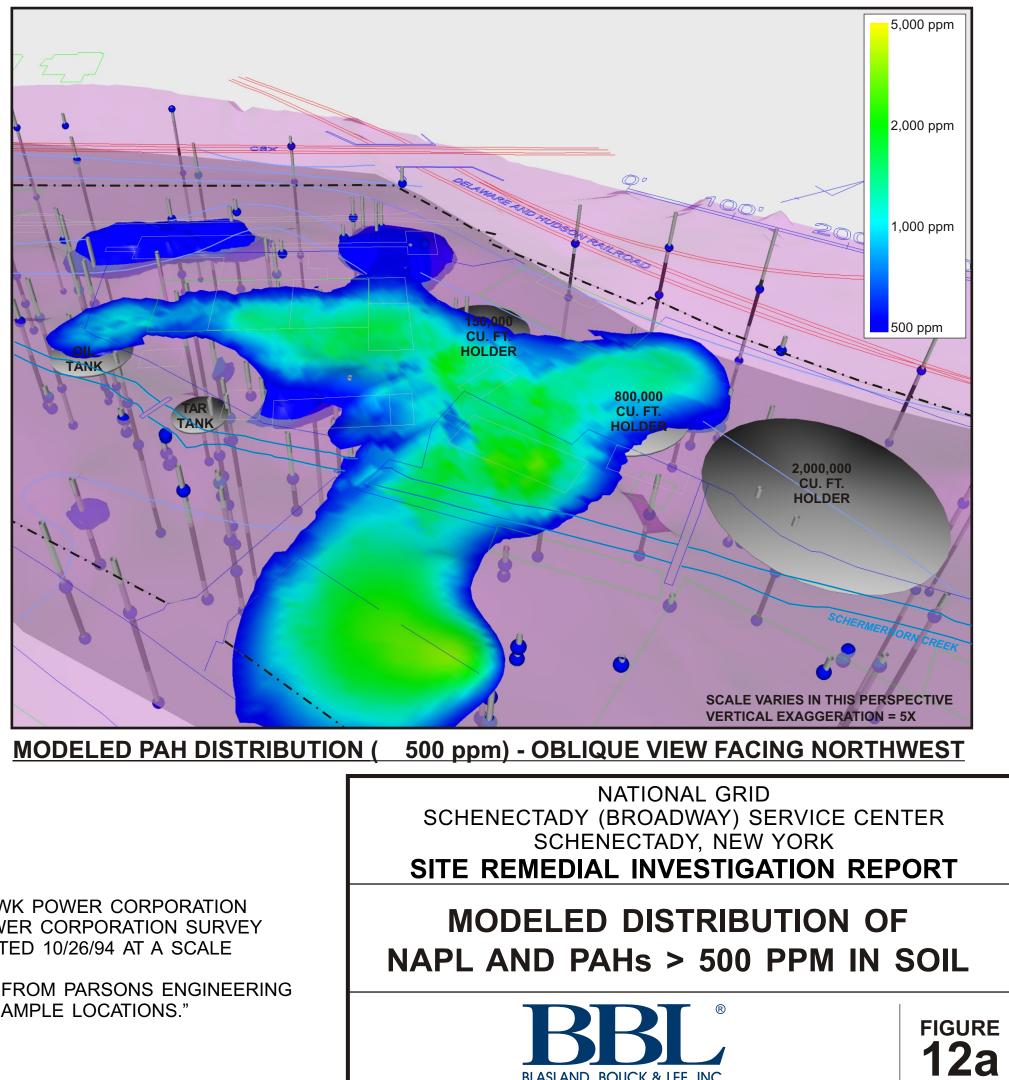


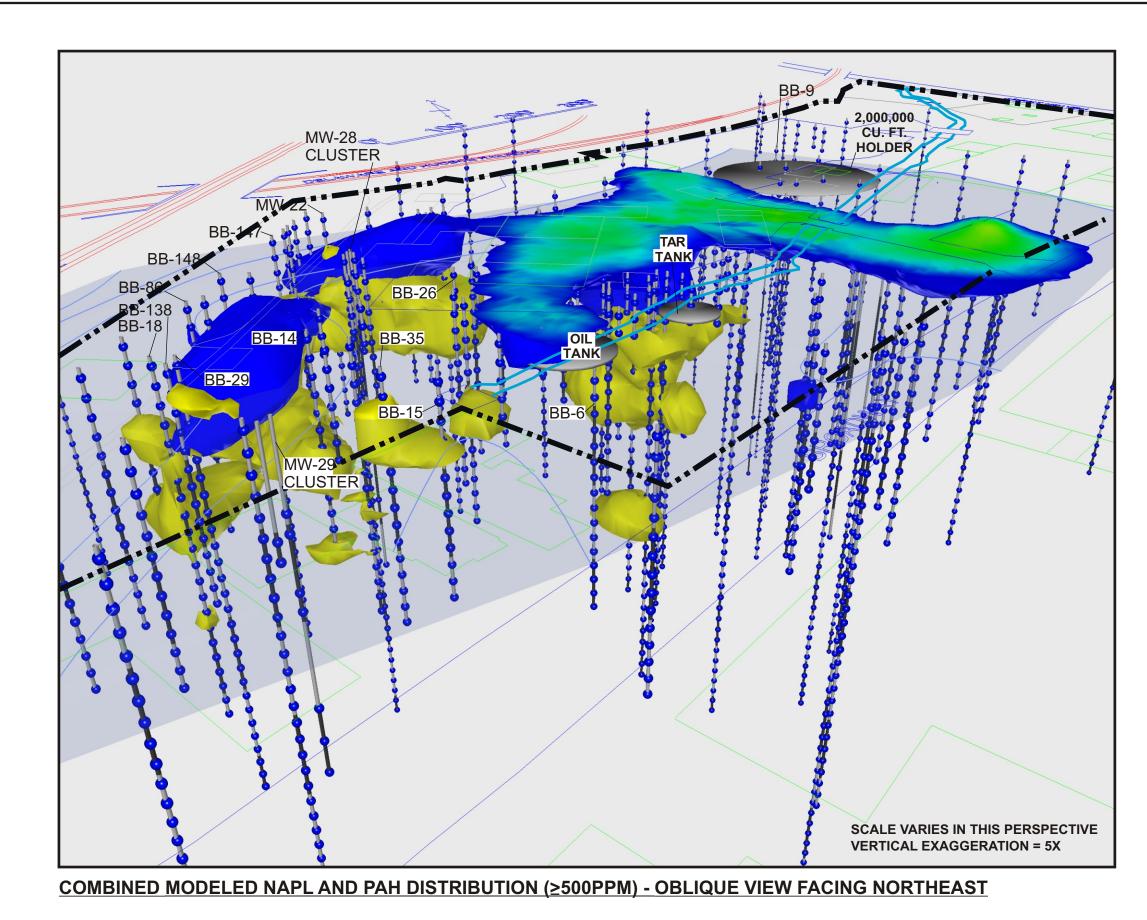






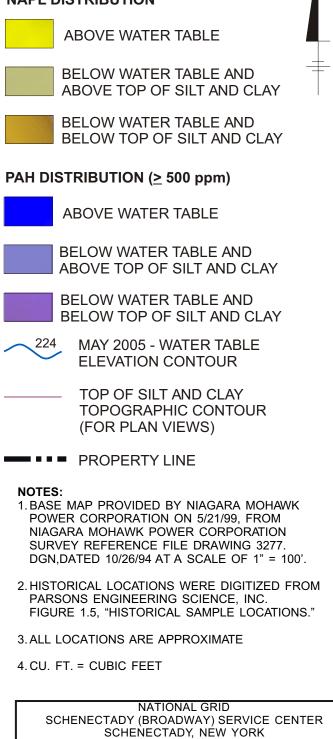






BLASLAND, BOUCK & LEE, INC.

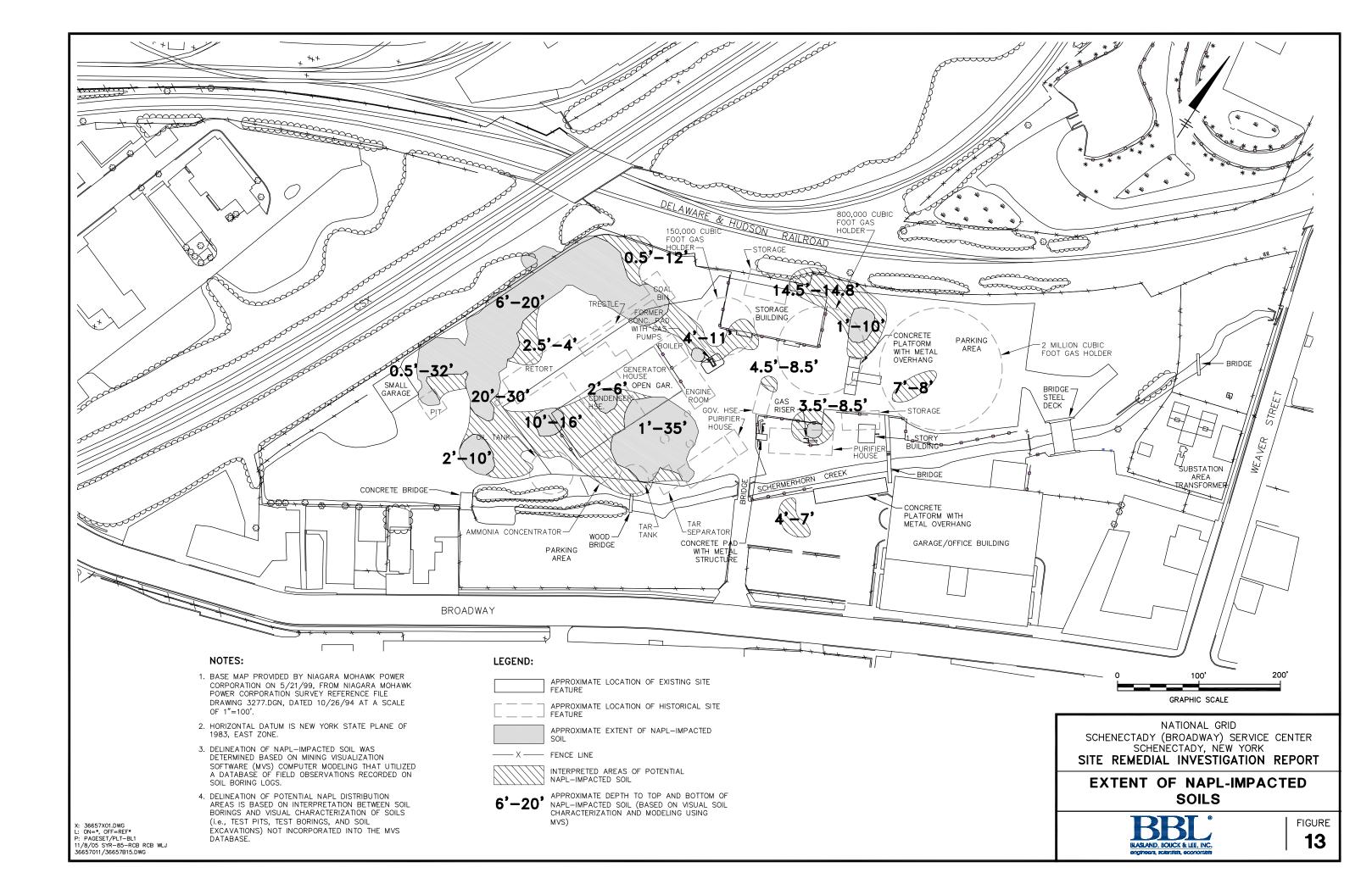
engineers, scientists, economists

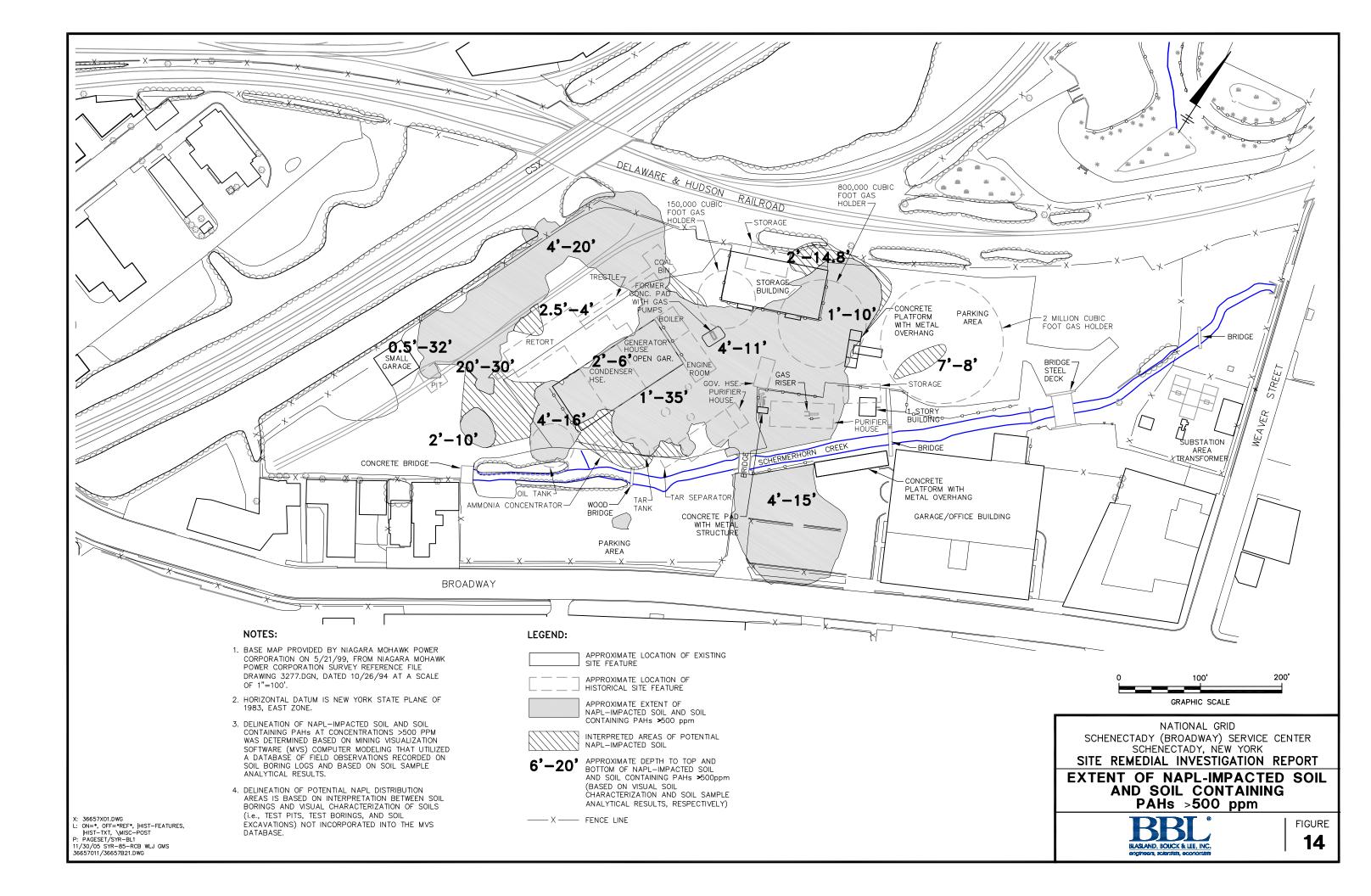

- 1. BASE MAP PROVIDED BY NIAGARA MOHAWK POWER CORPORATION ON 5/21/99, FROM NIAGARA MOHAWK POWER CORPORATION SURVEY REFERENCE FILE DRAWING 3277. DGN, DATED 10/26/94 AT A SCALE
- 2. HISTORICAL LOCATIONS WERE DIGITIZED FROM PARSONS ENGINEERING SCIENCE, INC. FIGURE 1.5, "HISTORICAL SAMPLE LOCATIONS."

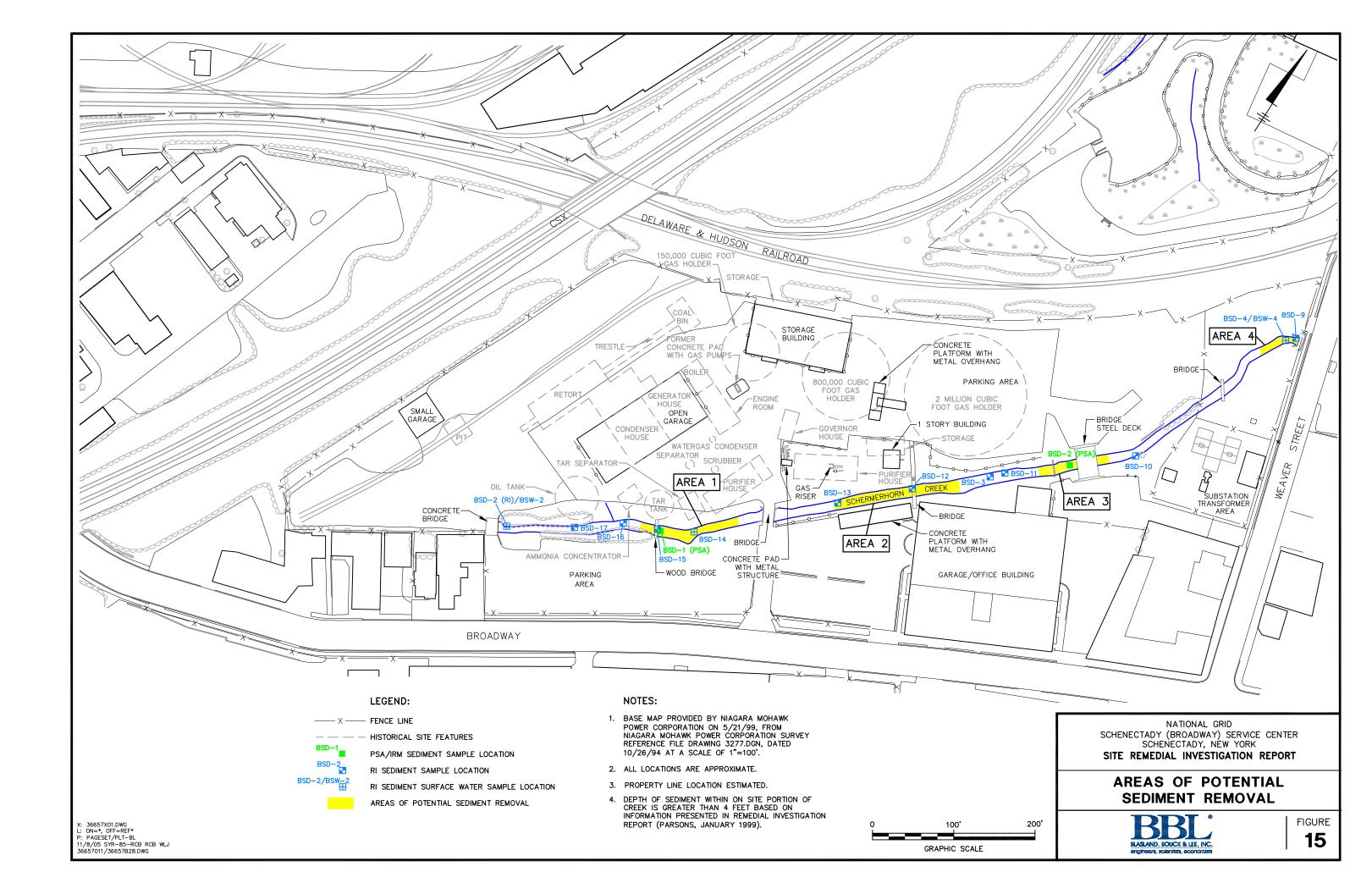
11/08/05 SYR-D85-DJH 36657014/36657g01.cdr

LEGEND:

NAPL DISTRIBUTION




SITE REMEDIAL INVESTIGATION REPORT


COMBINED MODELED DISTRIBUTION OF NAPL AND PAHs > 500PPM IN SOIL

Appendices

Appendix A

Soil Boring Logs

Date Star Drilling C Driller's I Drilling N Sampler	Comp Name Aetho	any: : DN d: Ti	BBL, 1 ruck-r	Inc. nounte	ed AM ocore	S Powe	er Prob	Easting: Casing E Borehole Surface	g: 144715 : 639044.2 Elevation e Depth: Elevatior tions By:	2788 : NA 4.5' be n: 228.6	67' AMS	de L	CI	ient: N A	9: BB-090 agara Mo National : Broadw Schene	ohawk, Grid Co vay Stro	eet	
DEPTH ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column			Stratigra	aphic De	escriptio	n				С	Boring onstruct	
230 -																		
							Staining present Refusal	g and strong ed below 4.0 on Concrete	e at 4.5' bgs.	r on soil fro					ground st	urface;		Borehole backfilled to grade with excavated materials.
					LEE,I enti													Page: 1 of 1

Dril Dril Dril	e Star lling C ller's I lling N npler	Comp Name Aetho	any: : DN d: T	BBL, /I ruck N	Inc.	ed AM ocore	S Powe	Easting Casing er Probe Borehol Surface	g: 1447339.0607 : 639113.2184 Elevation: NA le Depth: 6.0' below grade Elevation: 228.38' AMSL tions By: Steve Lewitt	Client: N A	 D: BB-092 liagara Mohawk, National Grid Company Broadway Street Schenectady, NY 	
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic Description		Boring Constructio	'n
-	- 230 - -											-
-		1	0-2	2.0	274	×		Black fine SAND ar	nd SILT, trace NAPL, strong odor, wet.			-
-	- 225 -	2	2-4		357			Dark gray SILT and Trace NAPL from 2	I CLAY, little fine Sand, odor, wet. .0' - 2.5'.		w	orehole backfilled ⁻ ith Bentonite ellets.
- 5	-	3	4-6	4.0	122							_
-	_											-
-	- 220 -											-
-	-											-
- 10	_											-
-	_											-
-	215 -											-
-	_											-
- 15	-											_
					2			Remarks:	NA = Not Applicable/Available; t sea level.	ogs = below	ground surface; AMSL =	above mean
									Excavated 4.5, then cored 1.1' c Concrete.	f Concrete.	Boring started at the base	e of the
	-	gine	əer			LEE, I enti	ists		Sample collected from 0 - 2.0' fo SVOCs, TCLP metals, TCLP PC	Bs, Ignitabi	ility, Corrosivity, and Reac	s, TCLP tivity. Page: 1 of 1

Dri Dri Dri		Comp Name Netho	any: e: Na d: B	BBL, te Ro obcat	Inc. meo/B -moun		ehl ∕IS Pov	ver Pro	Northing: 1447425 Easting: 639233.77 Casing Elevation: be Borehole Depth: Surface Elevation: Descriptions By:	264 NA 6.0' below grade : 227.41' AMSL		Client: N A	D: BB-093 iagara Mo National (: Broadw Schene	Grid C ay Sti	company reet
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigra	ohic Description				C	Boring Construction
-	230 - -														-
	-	1	0-2		0.0			ASPH	rown SAND, some fine Gra ALT rown SAND, some fine Gra						
-	225 -	2	2-4	2.0	0.0			Dark b	rown SAND, moist.					_	Borehole backfilled to grade with excavated materials
5	_	3	4-6	2.3	0.0	-		Dark b	rown fine SAND and SILT,	moist.					-
	_	4	6-7		0.0										
-	220 -														-
- 10) _														-
	215 -														-
-	-														-
- 19	5 –														_
						LEE, I enti		Re	marks: NA = Not sea level.	Applicable/Availa	able; bg	s = below	l ground su	Irface	; AMSL = above mean

Dri Dri Dri	te Star Iling (Iler's I Iling M mpler	Comp Name Netho	any: e: DN od: J(BBL, 1	Inc.	ck-mou	inted B	ackho	Northing: 1447425.3848 Easting: 639325.392 Casing Elevation: NA Borehole Depth: 4.8' below grade Surface Elevation: 227.21' AMSL Descriptions By: Steve Lewitt	Client: N A	 D: BB-094 iagara Mohawk, National Grid Company Broadway Street Schenectady, NY
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic Description		Boring Construction
- -	230 - - -	-					×××	FILL.			-
-	- 225 - -							Stainin	g and petroleum odor below 2.8' bgs.		Borehole backfilled to grade with excavated materials.
- 5								Steel s	tructure encountered at 3.8' bgs.		-
10	220 - - -										-
-	- 215 -										-
- 15	-							Re	marks: NA = Not Applicable/Available; bg	as = below	- ground surface: AMSL = above mean
						LEE, I			sea level.		ground oundoo, Awior – above medi

	Date S Drillin Driller Drillin Samp	ng C r's N ng M	omp lame letho	any: : DN d: T	BBL, /I ruck N	Inc.	ed AM ocore	S Powe	er Prob	Northing: 1447484.573 Easting: 639452.2268 Casing Elevation: NA Borehole Depth: 7.0' below grade Surface Elevation: 225.70' AMSL Descriptions By: Steve Lewitt	Client: N A	 D: BB-095 iagara Moha National Gri Broadway Schenecta 	id Company / Street
	DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic Description			Boring Construction
-	0	-											-
	22	5 -	1	0-1		1.4			Brown	fine SAND, little Silt, moist.			
-		_	2	1-3	2.0	26							· ·
-	5	_	3	3-5		0.4				noist below 3.0'. solor, wet below 4.4'.		-	Borehole backfilled with Bentonite Pellets.
-	22	0 -	4	5-7	2.2	0.4							
-		_											
	10	_											_
-	21	5 -											
-		_											
-		_											-
-		-											
$\left \right $	15 <i>21</i>												-
ſ	21								Re	emarks: NA = Not Applicable/Available; b sea level.	gs = below	ground surfa	ace; AMSL = above mean
							LEE, I enti			Excavated 0.5' of Gravel, then co of the Concrete.	pred 1.1' of	Concrete. B	oring started at the base
-							_						Page: 1 of 1

Dril Dril Dril	e Stai ling C ler's I ling N npler	Comp Name Aetho	any: e: DN od: Ti	BBL, /I ruck N	Inc.	ed AM ocore	S Powe	er Probe S	Easting: Casing E Borehole Surface E	: 1447493.8 639519.873 levation: N Depth: 7. Elevation: St	38 NA 0' below g 225.83' Al	MSL	Cli	ent: Ni A	9: BB-096 agara Mo National (: Broadw Schene	ohaw Grid /ay S	l Company Street	
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column			Stratigraph	ic Descrip	ition					Boring Construction	
-	-																	-
	225 -	1	0-1		0.3	-		Brown fine	e SAND, litt	le medium San	d, very moist.							_
-	-	2	1-3	2.0	0.3													-
-	_	3	3-5		0.4	-		-		edium SAND, li							Borehole backfill with Bentonite Pellets.	ed -
- 5	- 220 -	4	5-7	2.3	0.2	-		Gray SAN	ID, some G	ravel, Glass, an	id Wood, wet							
-																		
- 10	_																	_
-	215 -																	-
ŀ	_																	-
Ĺ	_																	-
- 15	_																	_
	210 -																	
						LEE, I		Rem		sea level.	0.5' of Gra						ce; AMSL = above mear ring started at the base	

Dri Dri Dri	te Star Iling C Iler's I Iling N mpler	Comp Name Netho	any: e: DN od: Ti	BBL, /I ruck N	Inc.	ed AMS ocore	S Powe	r Prob	Easting: Casing E Borehole Surface	: 1447465. 639468.886 Elevation: 1 e Depth: 6 Elevation: ions By: S	82 NA 5.0' below g 226.06' A	MSL	Client: N A	: Broadwa	Grid Company
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column			Stratigraph	hic Descrip	tion			Boring Construction
-	-														
-	225 -	1	0-2	1.3	1.4			Brown	fine SAND, lii	ttle medium Sar	nd, moist.				
-	_	2	2-4		0.9			Gray-b	rown fine SAI	ND, little mediur	m Sand and S	ilt, wet.			Borehole backfilled with Bentonite Pellets.
-5	-	3	4-6	2.5	0.2			Dark g	ray SAND, so	me Glass and A	Ash, little Grav				
-	- 220														
-	-														
- 10) _														-
	215 -														
-	_														
- 1!	-														-
	_						®	Re	marks:	NA = Not A	Applicable/	'Available; b	gs = below	ground su	rface; AMSL = above mean
						LEE, I	NC.			sea level.	l 0.7' of Gra				Boring started at the base

Dril Dril Dril	e Star Iling C Iler's N Iling N npler S	comp Name letho	any: e: DN od: Tr	BBL, 1 ruck N	Inc. Iounte	ed AMS ocore	S Powe	r Prob	Easting Casing Borehol Surface	Elevation:	19		Client: N A	9: BB-098 iagara Mo National (: Broadw Schene	hawk, Grid Cor ay Stree	et	
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column			Stratigrap	hic Descripti	on				Boring nstruction	
-	-																-
	225 -	1	0-1		0.2			Brown	fine SAND, li	ittle medium to	coarse Sand, tra	ce Gravel, mois	st.				_
-	-	2	1-3	1.7	0.4			Gray fi	ne SAND littl	e medium to co	arse Sand, trace	Silt, very mois	t.				-
-										um SAND, trace	Silt, wet.	vel, trace Brick,	wet.			Borehole ba with Bentoni Pellets.	
- 5	220 -	4	5-7	2.3	0.3												-
-	-																
- 10	- 215 -																_
-	-																-
-	_																-
- 15	- 210 -																_
	T				2	ſ	®	Re	marks:	sea level.						AMSL = above m	
						LEE, I				Excavated of the Cor		vel, then co	red 0.65' o	f Concrete	e. Borinç	g started at the b	ase
	•	657 0			ns, et			<u> </u>		(0004)	les\36657\Br					Page: 1	of 1

Dri Dri Dri	te Stai Illing C Iller's I Illing M mpler	Comp Name Netho	any: e: DN od: T	BBL, /I ruck N	Inc. Nounte		S Powe	r Prob	Easting: Casing E Borehole Surface	: 1447410.2 639433.832 Elevation: N Depth: 6.1 Elevation: 2 ions By: St	2 IA 0' below gra 226.00' AM	ade SL	Client: N A	D: BB-099 iagara Moha National Gri : Broadway Schenecta	id Company v Street
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column			Stratigraph	ic Descripti	on			Boring Construction
-	_														
-	225 -	1	0-2	1.1	0.2			Brown	gray fine SAN	ND, some Silt, tra	ace medium to	coarse Sand, n	noist.		- I
-	-	2	2-4	4.0	0.0			Gray-b	rown fine SAN	ND, little Silt, wet	t.		-	Borehole backfilled with Bentonite Pellets.	
- 5	-	3	4-6	4.0	8.8			Gray S	AND and WC	OOD, trace Glass	s, wet.			· ·	
-	- 220														
-	-														
- 1	0 –														-
	215 -														
-	-														
- 1	- 5														-
	010						_	Re	marke		nnlicable/A	vailable: bo	15 - holow	around surf	ace; AMSL = above mean
						LEE, I				sea level.	0.3' of Asp	halt and 0.9	9' of Grave		10.4' of Concrete. Boring

Dril Dril Dril	e Stai ling C ler's I ling N npler	Comp Name Netho	any: : DN d: J(BBL, 1	Inc.	ck-mou	inted B	ackho	Northing: 1447383.0155 Easting: 639371.2871 Casing Elevation: NA Borehole Depth: 3.0' below grade Surface Elevation: 226.50' AMSL Descriptions By: Steve Lewitt	Client: N A	D: BB-100 iagara Mohawk, National Grid Company : Broadway Street Schenectady, NY
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic Description		Boring Construction
-	-						× >				-
-	- 225 - -						× × × × × × × × × × × × × × × × × × ×		taining with petroleum odor above steel structure.		Borehole backfilled to grade with excavated materials.
- 5	-							Steel s	structure at 3.0' bgs.		-
-	- 220										-
	-										-
-	- 215										-
- 15	_							Da	marke: NA - Not Applicable/Available: b		around surface: AMSL - shave mean
						LEE, I		RE	emarks: NA = Not Applicable/Available; by sea level.	ης = pelom	ground surrace, ANISL = above mean

Dr Dr Dr	ite Sta illing (iller's illing N impler	Comp Name Netho	any: e: SL od: Ti	BBL, L ruck N	Inc. Nounte		S Powe	er Prob	Northing: 1447350.99 Easting: 639418.097 Casing Elevation: NA Borehole Depth: 8.0' Surface Elevation: 22 Descriptions By: DEC	below grade 25.64' AMSL	A	:: BB-101 agara Mohaw National Grid Broadway S Schenectad	Company Street
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic	Description			Boring Construction
-	-	-											-
	- 225	1	0-2	4.0	1.6	-		Mediu	fine SAND, little coarse Sand, tr n brown fine SAND, trace fine G rown fine SAND, some Clay, trac	iravel, moist.			-
-	-	2	2-4	4.0	2.8	-						-	Borehole backfilled with Bentonite Pellets.
- 5	- 220 -	3	4-6	4.0	0.9	-		Wet at	4.2' bgs.				-
-	-	4	6-8		0.6								-
- - 1	- - 0	-											-
-	215 -												
-	-												
- 1	5 210 -	_						_					_
						LEE, I		Re	emarks: NA = Not App sea level.	plicable/Available; b	gs = below (ground surfac	æ; AMSL = above mean

Dril Dril Dril	e Star ling C ler's I ling N npler	Comp Name Netho	any: e: NA od: H	BBL, A and A	Inc.	n			Easting Casing Borehol Surface	g: 144728 : 639405.7 Elevation: e Depth: Elevation tions By:	7077 : NA 5.0' belo 1: 226.2	1' AMSL	-	Clie	ent: Ni A	: BB-102 agara Mo National Broadv Schene	ohawk Grid C vay Sti	ompany reet	/	
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column			Stratigra	aphic De	scription	I				C	Boring Construc		
-	-																			-
	- 225 - -	-					× × × 00000000000000000000000000000000	[FILL] CONC	RETE											-
- 5	-	. 1	3-5	1.5	>9999	×				o medium SAI n-type odor, n			d Gravel, d	lense,					Cement-E Grout.	-
-	220 -																			-
- - 10	-																			-
-	215 -																			-
- 15	-																			-
					S CK & sts, ec			Re	marks:	NA = No sea leve	ot Applica	able/Ava	ilable; b	ogs = t	pelow (ground s	urface	; AMSL	= above	mean

Drill Drill Drill	ing C er's I ing N	Comp Name Aetho	ish: any: any: DN d: H 2" II	BBL, /I and A	Inc.	ocore		Easting: 639351.5281 Casing Elevation: NA	A	9: BB-103 agara Mohawk, National Grid Company : Broadway Street Schenectady, NY
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		Boring Construction
-	-									
	_						× × × × × ×			
2	25 -						× × × ×	CONCRETE		
-	_									Cement-Bentonite
-	_					_	07070	Grayish-brown fine to medium SAND, little Silt, soft, trace to little bla staining, moderate petroleum-type odor, wet.	ack	Grout.
5	_	1	4.3-6.3	0.8	0.0			Black stained fine to medium SAND, trace coarse Gravel and cobble soft, moderate odor, no sheen or NAPL observed.	es, very	-
- 2	20 -									
-	_									
-	_									
- 10	_									-
-	- 215 -									
-	_									
F	-									
-	-									
- 15	_									-
						LEE, I		Remarks: NA = Not Applicable/Available; bgs sea level.	s = below	ground surface; AMSL = above mean

Drill Drill Drill	ing C er's N ing M	omp Iame Ietho		BBL, L ruck N	Inc.		S Powe	r Prob	Easting: Casing E Borehole Surface I	: 1447313. 639305.48 Elevation: Depth: 8 Elevation: ions By: [864 NA 3.0' below ç 226.91' A	grade MSL	Client: N A	D: BB-104 iagara Mo National (: Broadw Schene	hawk, Grid Corr	t
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column			Stratigrap	hic Descrip	otion				Boring Istruction
- -	-							ASPH	ALT and CON	CRETE						-
-	-	1	0-2		14.1			Dark b	rown fine SAN RETE	ID and SILT, lit						
	_	2	2-4	2.8	992			BRICK Dark b		ID and SILT, lit parse SAND ar g odor, moist.		and Concrete, li	/			Borehole backfilled ⁻ with Bentonite Pellets.
- 5	_	3	4-6	2.1	146			Red B	RICK, trace fin	ne to coarse Sa	and and Silt, w	et.				-
_ 2	20 -	4	6-8	2.1	228											-
- 10	_															-
-	- 215 -															
_	_															-
- 15	_															-
					S	LEE, I	®	Re	marks:	NA = Not a sea level.	Applicable,	/Available; b	gs = below	 ground su	ırface; Al	MSL = above mean
						conor	nists					Broadway Idf				Page: 1 of 1

Dri Dri Dri	te Star Iling C Iler's I Iling M mpler	Comp Name Netho	any: e: DN od: T	BBL, /I ruck N	Inc. Aounte		S Powe	er Prob	Northing: 1447287.3993 Easting: 639316.6529 Casing Elevation: NA Borehole Depth: 8.0' below grade Surface Elevation: 226.71' AMSL Descriptions By: Steve Lewitt	Client: N	D: BB-105 Jiagara Mohawk, A National Grid Company n: Broadway Street Schenectady, NY
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic Description		Boring Construction
-	-	-									
-	- 225 -	1	0-2		850			strong	ALT prown-gray fine SAND, little Silt, medium to coarse Sand petroleum odor. <, strong petroleum odor.	and Gravel,	
-	-	2	2-4	2.5	1028						Borehole backfilled with Bentonite Pellets.
-5	-	3	4-6		810			Red B	RICK, strong petroleum odor, wet.		
-	220 -	4	6-8	1.1	NA						
_	-										
- 1) - 215 -	-									-
-											· · ·
- 1	- 5										-
					B CK & sts, eq			Re	emarks: NA = Not Applicable/Available; sea level.	bgs = below	y ground surface; AMSL = above mean

Dr Dr Dr	ate Sta illing (iller's illing I impler	Comp Name Netho	any: e: DN od: T	BBL, /I ruck N	Inc. Nounte		S Powe	r Prob	Easting: Casing I Borehol Surface	g: 1447224.7 639293.087 Elevation: N e Depth: 6. Elevation: tions By: St	79 NA 0' below gi 227.00' AN	//SL	A	9: BB-106 iagara Mol National C : Broadwa Schenee	Grid Co ay Stre	et
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column			Stratigraph	ic Descript	tion				Boring Instruction
-	-	-														
-	-	1	0-2	1.7	1.0		××	<u> </u>	-	ace Brick and Co race Silt, Clay an		d, moist.	/			
-	225 -	2	2-4	3.7	6.3			Brown	fine SAND ar	nd SILT, trace m	edium to coars	se Sand, wet.			_	Borehole backfilled with Bentonite Pellets.
- 5	-	3	4-6	0.1	7.6			Gray fi	ne to medium	n SAND, little Silt	i, wet.					-
-	220 -															
-	-	_														
- 1	- 0															-
-	-	_														
-	215 -	-														
-	-															
- 1	5 -															-
						LEE, I		Re	marks:	sea level. Excavated	0.6' of As		ravel, then			AMSL = above mean

Dri Dri Dri	te Sta Iling (Iler's I Iling M mpler	Comp Name Netho	any: e: DN od: T	BBL, /I ruck N	Inc.	ed AMS	S Powe	er Prob	Easting: Casing E Borehole Surface	: 1447200. 639285.20 Elevation: 6 Elevation: 6 Elevation: 5	27 NA 5.0' below 227.07' A	AMSL	Clie	ent: Ni A	9: BB-107 agara Mc National Broadw Schene	ohawl Grid (vay S	Company treet	/	
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column			Stratigrap	hic Descri	iption					Boring Construc		
-																			-
-	_	1	0-2	2.0	2.4		× ×	<u> </u>	-	AG and BRICK		noist.		/					-
-	- 225	2	2-4	3.4	64.1	×				ND, little SIIt, Bl			wet.					_Borehole backfilled with Bentonite Pellets.	- d
-5		3	4-6		11.8														_
-	220 -																		-
-	-																		-
- 10) _																		-
-	215 -																		-
- 1!	- 5 _																		_
							®	Re	marks:	NA = Not A	Applicable	e/Available;	bgs =	below	ground su	urface	e; AMSL	= above mean	
			5		5							sphalt and of the Conc		l, then	cored 0.7	'5' of	Concrete	. Boring	
						LEE, I conor				Sample co	ollected fro	om 2.0' - 4.(0' for B	STEX, F	PAH, and	Cyar	nide.	Dogo: 1 of 1	

Dri Dri Dri	te Sta illing (iller's I illing M mpler	Comp Name Netho	any: e: DN od: Ti	BBL, /I ruck N	Inc. Aounte	ed AM ocore	S Powe	er Prob	Northing: 1447155 Easting: 639256.55 Casing Elevation: Borehole Depth: Surface Elevation: Descriptions By:	072 NA 6.0' below grac : 227.19' AMS	de SL	A	9: BB-108 iagara Moha National Grid : Broadway Schenecta	d Company Street
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigra	ohic Descriptio	n			Boring Construction
-	-													-
-	-	. 1	0-2	1.4	86.8		0000	ASPH, Dark b	ALT	little Silt, strong pet	roleum odor,	moist.		-
-	- 225	2	2-4		NA		0000	Water	with sheen visible in boreho	ole at 2.15' bgs.			-	Borehole backfilled ⁻ with Bentonite Pellets.
-5	-	. 3	4-6	0	NA			No rec	overy from 4.0' - 6.0' bgs, p	ipe dropped becaus	se of a void.			-
_	- 220 -													
-	-													-
- 1	- 0													-
-	-													-
-	215 -													-
-	_													-
- 1	5_													-
								R	marke: NA - Not	Annlicable/Av	ailable: bo	s - halow	around surfa	ice; AMSL = above mean
					S CK & sts, eq				sea level.		מוומטופ, טט		ground Sulla	ice, Aivior = above mean

Dri Dri Dri		Comp Name Aetho	any: : JA d: Ti	BBL, B ruck N	Inc.		S Powe	r Probi	Easting: Casing E Borehole Surface	: 1447111. 639177.73 Elevation: • Depth: 4 Elevation: ions By: 5	37 NA I.0' below (227.78' A	MSL	Client: N A	D: BB-110 iagara Moh National G : Broadwa Schenec	rid Company y Street
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column			Stratigrap	hic Descrij	ption			Boring Construction
-	230 - - -														-
-	-	1	0-2	0.3	1.6		<u>\$</u> \$\$\$\$\$\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$\$\$	Brown	GRAVEL, BR	ICK and SILT,	wet.				· ·
-	- 225	2	2-4	0.8	1593					AVEL, strong t saturated with					Borehole backfilled with Bentonite Pellets.
- 5	-							Refusal	at 4.0', Conc	crete in shoe.					
-	- 220 -														-
- 10	-														-
-	- 215 -														-
- 15	-														-
	_											·····	<u> </u>		
					S CK & sts, eq			Re	marks:	sea level. Excavated	d 0.6' of A		iravel, then	cored 0.6' c	face; AMSL = above mean of Concrete. Boring started

Dri Dri Dri Bit Au Rig	te Star Iling C Iler's I Iling M Size: ger Siz J Type mpling	Comp Name Nethe NA ze:	oany: e: Je od: 0 4-1/4 1E 45	: Lyc eff Gi CME " Hol 5B	on Dr rant/J 45B low S	leff L	Auge				25.5865 ion: NA th: 6.53' below grade tion: 228.81' AMSL	Client: Ni A	ng ID: BB agara Moł National G Broadwa Schenec	nawk, Grid Company y Street
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	St	ratigraphic Description			Well/Boring Construction
-	- 230 - -													-
-	-	1	0.5-2	0.9	6 6 4 3	45	393		0000	ASPHALT Brownish-gray fine to co moderately dense, sligh	parse SAND and medium to coarse t petroleum-type odor, dry. [FILL]	GRAVEL,		-
-	- 225 -	2	2-4	0.5	2 2 1 2	15	279		00000	Moderate odor, wet belo	ow 2.0' bgs.			Borehole backfilled to grade with cement/bentonite
- 5	-	3	4-6.5	0.4	2 1 3 2 50/.03	3	953	×		Black stained SILT and Void from 5' - 6.5' bgs.	fine SAND, soft, moderate to stror	g odor, wet.	-	grout
-	-													-
- - 10	220 -													-
-	-													-
 - 	- 215 -													-
- 15	; -													-
	BLASLAND, BOUCK & LEE, INC engineers, scientists, economists									sea l		-	-	rface; AMSL = above mean and Cyanide.

	Drilli Drille Drilli	ing C er's M ing N	Comp Name Netho	: Jef d: C	Lyon f Gra ME 4	Drillin nt/Jeff	Lyon			Easting: Casing E Borehole Surface	y: 1447177 639174.69 Elevation: e Depth: 7 Elevation: tions By: 5	975 NA 7.0' belov 228.13'	AMSL		Boring II Client: N A Location	iagara M Nationa : Broad	Mohav al Gric dway	l Compai	ny	
	DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column			Stratigrap	hic Desc	cription					Borin Constru	-	
-	2	30 - -																		-
-	-0	-							ASPH/	ALT/CONCRE	ETE.									-
-		_	1	1.7-3.1	1.7	471	-		Mediur Rock f [FILL]	1 to coarse G agmets, mod	iravel, trace sm lerately dense,	nall chips of moderate N	furnace Bri //GP-type o	ick, Wooc odor, dry te	l, trace o moist.					-
-	2	25 -					-		CONC	RETE.						-	-		Borehole b to grade wi cement/ber grout.	th
-	- 5	-																		
-									Observ	ed sheen on	Concrete piece	es removed	from liner.							
-	2	20 -																		-
-	-10	-																		-
-		-																		-
	0	- 15 -																		-
	2	- כו																		-
	-15	_																		_
							LEE, I		Re	marks:	NA = Not sea level.		le/Availa	able; bg	s = below	ground	surfa	ce; AMSI	L = above r	nean

Dri Dri Dri	te Star Iling C Iler's I Iling N mpler	Comp Name Aetho	any: : Jef d: Cl	Lyon f Gra ME 4	Drillin nt/Jeff 5B	Lyon			Easting: Casing B Borehole Surface	g: 144718 639156.4 Elevation: e Depth: Elevation tions By:	184 NA 5.6' belo 228.44	I' AMSL		Client: N A	D: BB-112 iagara Mo National (: Broadw Schene	hawk, Grid Con	et	
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column			Stratigra	phic Des	cription					3oring Istructio	on
-	- 230 - -																	
	-	1	0-0.7	0.3	0.0	-		ASPH.		arse GRAVE	EL, some fine	e to coarse	Sand, loos	se, dry.				
- - - - 5	- 225 - - -	2	1.5-5.6	2.5	351	-		CONC Brown Black	RETE coarse GRA\ ine SAND and	/EL FILL, littl d SILT, trace brownish-bla	e medium to natural Orga	o coarse Sa anics, trace	nd. e to little oil	-like			t	Borehole backfilled to grade with cement/bentonite grout.
-	-																	
-	220 -																	
- 10) _																	
ŀ	_																	
-	- 215 -																	
- 15	5 _																	
							®	Re	marks:	NA = No	t Applica	ble/Avail	able; bg	s = below	ground su	Irface; A	MSL =	above mean
						LEE, I				sea leve		t of BB-1	112, in tl	ne center d	of an open	garage.		

Dri Dri Dri	ller's I lling N	Comp Name Netho	any: : Jef d: C	Lyon f Gra ME 4	Drillin nt/Jeff	Lyon			Easting: Casing E Borehole	Elevatior e Depth: Elevatio	3702 n: NA 5.0' be n: 228.	elow gra .13' AM	SL	C	Boring I Client: N A	liagara Nation 1: Broa	Moha nal Gri	id Cor v Stree	ət		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column			Stratigr	aphic D	escriptio	on						Boring nstruct		
-	- 230 - -																				
- - -	- - 225 - - -	1	1-1.6	1.0	554	-		mediu		erately dens	e, modera	ite MPG-ty	/pe odor, o	dry to r	ie to noist.		_			Borehole b to grade w cement/be grout.	ith _
- - - 10	- 220 - - -																				- - - -
- - 15	- 215 - -																				-
						LEE, I		Re	marks:	NA = No sea leve		cable/A	vailable	; bgs	= below	groun	d surfa	ace; A	MSL =	above	mean

Drill Drill Drill		omp Name Ietho	any: e: SL d: Tr	BBL, L [.] uck N	Inc.		S Powe	Easting Casing Probe Boreho Surface	ng: 1447227.3474 g: 639197.9929 Elevation: NA ole Depth: 6.0' below grade e Elevation: 227.93' AMSL otions By: DEG	Client: N A	D: BB-114 Jiagara Mohawk, A National Grid Company 1: Broadway Street Schenectady, NY
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic Description		Boring Construction
- 2	230 -										
- 0		1	0-2	2.0	3.1				AND, some fine to coarse Gravel, little Silt. AND, some coarse Sand, trace fine to coarse G	ravel and	
- 2	 225 - -	2	2-4 4-6	3.1	48.7			moist. Dark brown fine S,	AND, trace coarse Sand and fine Gravel, strong AND, some Clay, odor, moist. AND, some coarse Sand and fine Gravel, strong		Borehole backfilled with Bentonite Pellets.
- 10 -	- 220 - - - 215 - -										
- 15	engi	nee	rs, sc			LEE, I	nists		sea level.	avel, then o	r ground surface; AMSL = above mean cored 1.0' of Concrete. Boring started Page: 1 of 1

Dr Dr Dr	te Sta illing C iller's I illing M mpler	Comp Name Metho	any: e: SL od: T	BBL, L ruck N	Inc. Nounte	ed AM ocore	S Powe	er Prob	Easting: 639165.4716 Casing Elevation: NA Berehele Dopth: 6 0' below grade			Niag A Na n: 	D: BB-115 liagara Mohawk, National Grid Company I: Broadway Street Schenectady, NY									
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type Sample/Int/Type PID Headspace (ppm) Analytical Sample Geologic Column Geologic Column								Boring Construction											
-	230 -																					-
									rown medium													
	-	1	0-2	0.8	0.8	-			rown fine to co dor, moist.	oarse GRA	VEL and E	SRICK, litt	tie fine to	coarse	Sand,							-
-	225 -	2	2-4		10.4															wit	rehole ba h Benton llets.	ickfilled ⁻ ite
-5	-	3	4-6	0.8	10.6																	_
	220 -	-																				-
-	-	-																				-
- 1	0 -																					_
-	-	-																				-
-	-	-																				-
	215 -																					-
- 1	5 -	-																				
	_																					
					S CK & sts, eq			Re	marks:	NA = N sea leve	ot Appli el.	icable/A	Availab	le; bg:	s = belov	v gro	ound si	urfac	e; AMS	iL = a	bove m	nean

Di Di Di Bi Ai Ri	ate Star illing C iller's I illing M t Size: uger Si g Type ampling	Comp Name Aether 4-1/2 ze:	p any : e: Je od: 0 4" 4-1/4 //E 45	: Lyc eff Gr CME " Hol 5B	on Dr rant/J 45B low S	leff L Stem	Auge			Northing: 1447330.8644 Easting: 639213.25 Casing Elevation: NA Borehole Depth: 10' below grade Surface Elevation: 227.30' AMSL Geologist: Jennifer Sandorf	ng ID: BB-116 agara Mohawk, National Grid Company Broadway Street Schenectady, NY				
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		Well/Boring Construction			
-	230 -											-			
-	- 225 - -	1	1.5-3 3-5	1.1	3 4 4 2 2 3	7	0.0	-		ASPHALT. CONCRETE. Brown fine to medium SAND, moist, moderately loose. Some Silt below 1.8' bgs. Color changes to gray, light odor from 3.6' - 4.2' bgs. Little Silt below 5' bgs	/	Borehole backfilled to grade with cement/bentonite grout.			
- 5	- 3 5-7 1.2 NA NA 0.0 NA NA CONTRACTOR CONTR						0.0	-		Dark gray fine to medium SAND, some Silt, medium dense, tr Gravel, Concrete in tip of spoon, moist to wet. Refusal on lower foundation, auger though CONCRETE. Brok Concrete at 7.9' bgs. Fragments of CONCRETE, trace Sheen.					
- 1 -	- 0 -	4	8-10	1.4	2 2 1	3	13.8			Brownish-gray fine SAND and SILT, trace Clay, medium stiff, plasticity. Brown color, increasing fine Sand wih depth, trace sheen in ti					
- - - 1	215 - - - 5 -											-			
	BLASLAND, BOUCK & LEE, INC. engineers, scientists, economists														

Dr Dr Dr	te Sta illing C iller's I illing M mpler	Comp Name Aetho	any: : JA d: Ti	BBL, B ruck N	Inc. Aounte	ed AMS	S Powe	r Prob	Northing: 1447322.23 Easting: 639212.6719 Casing Elevation: NA Borehole Depth: 4.0' Surface Elevation: 22 Descriptions By: Ster	27.51' AMSL	Client: N A	: Broadwa	Grid Company
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic	Description			Boring Construction
-	230 - -												-
-	-	1	0-2	1.1	0.8			Brown	ine SAND, little Silt, moist.				-
-	225 -	2	2-4	1.4	NA			Wet at	e SAND, some Silt, trace coars 2.7'. te in shoe at 4.0'.	e Sand and coarse Gravel,	moist.		Borehole backfilled with Bentonite Pellets.
- 5	-												-
-	- 220 -												-
	-												-
-	- 215 -												-
-	-												-
- 1	5							Pa	marke: NA - Not A-	nlicahla/Availahla: ha		around or	-
						LEE, I		K	sea level. Excavated 0		Gravel, ther		rface; AMSL = above mean

Dril Dril Dril Bit Aug Rig	e Star ling C ler's N ling N Size: ger Siz Type npling	Comp Name Ietho 4-1/2 ze: 4 : CN	oany: e: Je od: (¹ 4-1/4 1E 45	: Lyc eff Gi CME " Hol 5B	on Dri ant/J 45B low S	leff L Stem	Auge			Northing: 1447344.3941 Easting: 639245.186 Casing Elevation: NA Borehole Depth: 12.6' below grade Surface Elevation: 227.65' AMSL Geologist: Jennifer Sandorf	Client: Nia A N Location:	ng ID: BB-118 agara Mohawk, National Grid Company Broadway Street Schenectady, NY
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		Well/Boring Construction
	230 - -											
-	_	1	0-1.5	0.2	50/.4 NA NA	NA	23.9		90000 00000 00000	ASPHALT. Dark brown GRAVEL fill, medium dense. Upper CONCRETE foundation.		
-	225 -	2	1.5-3	1.0	1 4 5	5	0.0			Brown fine to medium well sorted SAND, loose, moist. Brown SILT, some fine Sand, trace coarse Gravel, medium st odor.	iff, slight	
-	-	3	3-5	1.1	1 1 1 2	2	5.8			Gray SILT and fine SAND, trace coarse angular to subangula medium dense, slight odor, moist to wet.	r Gravel,	Borehole backfilled to grade with cement/bentonite grout.
- 5	-	4	5-7	1.0	1 50/.3 NA NA	NA	62.1	-		Increased Silt with depth and softer with depth, trace brown of sheen observed, moderate odor at bottom of spoon, wet from bgs. Refusal on lower foundation, auger though CONCRETE. Brok Concrete at 7.9' bgs.	1 5.0' - 5.8'	
-	220 -											
- 10	-	58	3.6-10.	6 0.5	3 2 1 2 2	3	99.1	-		Fine to medium SAND, some Silt, trace Clay, low plasticity, lo brown oil-like material, little sheen, moderate odor, wet.	ose, trace	
-	- 215 -	6 1	0.6-12	.62.0	1 1 2	2	92			Grayish-brown SILTY CLAY, little fine Sand, trace natural Org medium stiff, low plasticity, slight odor.	janics,	
- 15	- c12 -											-
	BLAS									Remarks: NA = Not Applicable/Available; bg sea level.	gs = below g	ground surface; AMSL = above mean

Dri Dri Dri		Comp Name Aletho	any: : DN d: T	BBL, /I ruck n	Inc.		S Powe	er Prob	Easting: Casing E Borehole Surface	y: 1447210. 639106.11 Elevation: e Depth: 6 Elevation: ions By: 5	52 NA 6.0' below 227.83' A	AMSL	Clie	ent: Ni A	e: BB-119 agara Mo National (: Broadw Schene	ohaw Grid /ay S	Compang Street	y	
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column			Stratigrap	hic Descri	iption					Borin Construc	-	
-	230 -																		-
-	_	1	0-2	1.1	2.4		0000		SAND and GI	RAVEL, some	Brick, trace C	Coal, wet.							-
-	- 225	2	2-4		2.0			-		itle Silt, mediun	n to coarse S	and, trace Bric	k.					Borehole backfille with Bentonite Pellets.	led -
-5	_	3	4-6	2.8	0.8														_
-	- 220 -																		-
- 10	-																		-
-	-																		-
-	215 -																		-
- 1!	5 -																		
					S CK & sts, eq			Re	marks:	sea level.	d 0.4 of A	sphalt and						= above mear Boring started	

Dri Dri Dri	te Star Iling C Iler's I Iling M mpler	Comp Name Aetho	any: : DN d: T	BBL, /I ruck N	Inc. /Iounte	ed AMS ocore	S Powe	r Prob	Northing: 144713 Easting: 639194. Casing Elevation Borehole Depth: Surface Elevatior Descriptions By:	1691 : NA 6.0' below grad n: 227.71' AMSI	de L	Client: N A	D: BB-120 iagara Mol National G : Broadwa Schened	Grid Con ay Stree	t
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigra	aphic Descriptior	n				Boring Instruction
-	230 -														-
-	-	1	0-2	3.7	4.8		0000	ASPH/ Brown	ALT SAND and GRAVEL, trac	e Brick, dry.		/			
-	225 -	2	2-4		4.0			trace E Wet at	ray-brown fine SAND, little rrick, slight coal tar odor. 2.6'. ray-brown fine SAND, little					+	Borehole backfilled with Bentonite Pellets.
5		3	4-6	2.0	14.2			wet.							
-	- 220 -														
- 1) –														-
-	- 215 -														-
- 1!	-														-
					}		®	Re	marks: NA = No sea leve	rt Applicable/Ava I.	ailable; bg	s = below	ground su	rface; A	MSL = above mean
						LEE, I conor									

Dr Dr Dr	te Sta illing C iller's I illing N mpler	Comp Name Netho	any: e: DN od: Ti	BBL, /I ruck N	Inc. Nounte	ed AM ocore	S Powe	er Prob	Northing: 1447143 Easting: 639207.77 Casing Elevation: Borehole Depth: 4 Surface Elevation: Descriptions By:	753 NA 5.0' below grade 227.55' AMSL		Client: N A	D: BB-121 iagara Moha National Gr : Broadway Schenect	id Company y Street
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigrap	hic Description				Boring Construction
-	230 -													
-	-	1	0-2	3.2	49.1	-	00000	ASPH/ Dark B	ALT rown SAND and GRAVEL,	trace Brick, strong coa	al tar odor.	/		
-	- 225	2	2-4		695	-			coal tar soaked SAND, stror	-			-	Borehole backfilled with Bentonite Pellets.
5 - -	- - 220 -	3	4-5	0.5	1527									
- 1	- - 0 -													-
-	- 215 - -													
- 1	5													_
						LEE, I		Re	marks: NA = Not sea level.	Applicable/Avail:	able; bg	s = below	ground surf	ace; AMSL = above mean

Drilli Drille Drilli		omp lame etho	any: : DM d: Tr	BBL, 1 uck N	Inc.		S Powe	r Prob	Easting: 6 Casing El Borehole Surface E	evation: N Depth: 12	IA ' below grade 227.76' AMSL	-	Client: N A	: Broadwa	irid Company	
DEPTH	Barble Kun Number Sample Kun Number 230 Sample Kun Number 230 Sample Kun Number														Boring Construction	
-	- 30								-							
- 0	0 - ASPHALT - 1 0-2 5.9 - 3.6 - 3.6 - - 3.6 - - - - <t< td=""><td></td><td>-</td></t<>															-
2	1 0-2 5.9 5.9 Dark gray fine SAND, little medium to coarse Sand, trace Gravel, slight														Borehole with Bentr Pellets.	
5 		3	4-6 6-8	3.5	3.0			gray st	rown fine SANE aining, moist. 5.0' bgs.	D, trace Silt, slig	ght petroleum and	coal tar odd	or, slight			-
-	20 -	5	8-10		10.0			Dark g	ay fine SAND a	and SILT, petro	leum odor, wet.					-
- 10	-	6	10-12	4.0	78.4			Dark g	ay SILT, little fi	ine Sand, petrol	leum odor, moist.					-
2	- 15 -															-
- 15	_															_
						LEE, I		Re		NA = Not Aj sea level.	pplicable/Avai	ilable; bç	js = below	ground sur	face; AMSL = above	

Date Start/Finish: 6/28/04 Drilling Company: BBL, Inc. Driller's Name: DM Drilling Method: Truck Mounted AMS Power I Sampler Size: 2" ID 4' L Macrocore	Easting: 639214.9381 Casing Elevation: NA Client: Borehole Denth: 2.6' below grade	 ID: BB-123 Niagara Mohawk, A National Grid Company n: Broadway Street Schenectady, NY
DEPTH ELEVATION Sample Run Number Sample/Int/Type Recovery (feet) PID Headspace (ppm) Analytical Sample Geologic Column	Stratigraphic Description	Boring Construction
		-
	SPHALT ray-brown SAND and GRAVEL, dry ray-brown fine SAND, little medium to coarse Sand, Silt, trace Coal, slight for, dry.	Borehole backfilled with Bentonite Pellets.
	<pre>sea level.</pre>	v ground surface; AMSL = above mean

Dril Dril Dril	e Star ling C ler's N ling M npler \$	omp lame letho	any: : DM d: Tr	BBL, 1 [.] uck N	Inc. Iounte	ed AMS ocore	S Powe	Easting: 639204.5238 Casing Elevation: NA er Probe	А	e: BB-124 agara Mohawk, National Grid Company : Broadway Street Schenectady, NY
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		Boring Construction
-	230 - - -						-			
- 0 - - -	-	1	0-2	3.3	2.3	Gravel,	-			
-	225 -	2	2-4		205			Gray fine SAND, little Silt, strong petroleum odor, wet.		Borehole backfilled with Bentonite Pellets.
5	_	3	4-6	2.7	1092			Trace NAPL from 4.9' - 6.7' bgs. Trace light brown to gold NAPL staining on liner.		
	- 220 -	4	6-8		3716	×				
	_									-
-	_									-
-	215 -									-
- 15	_							Demostra an and a second second		_
						LEE, I		Remarks: NA = Not Applicable/Available; bgs sea level. Sample collected from 6.0' - 8.0' bg TCLP SVOCs, TCLP Metals, Ignita	as for BTE	X, PAHs, Cyanide, TCLP VOCs,

Drill Drill Drill		omp lame letho	any: e: DN d: Tr	BBL, 1 [.] uck N	Inc.		S Powe	r Prob	Borehole Depth	.8609 n: NA : 8.0' below grade on: 227.22' AMSL		Client: N A	D: BB-125 Jiagara Mohawk, A National Grid Company 1: Broadway Street Schenectady, NY
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)		Boring Construction						
- -	-					/							
- 2	- 225 - -	1	0-2 2-4	2.0	, no visible	Borehole backfiller with Bentonite Pellets.							
- 5	- - 220 -	3	4-6 6-8	3.5	205 993			_	NAPL present, strong co	, trace NAPL specs, strong o			
- 10	_												
- 2	?15 - - -												
- 15				E	S		®	Re	marks: NA = N sea lev		ole; bg	s = below	ground surface; AMSL = above mean
	engi		rs, sc			LEE, I conor	nists			onfiles\36657\Broadwa			Page: 1 of 1

Di Di Di	ate Sta iilling (iiller's iilling I ampler	Comp Name Netho	any: e: SL od: Ti	BBL, L ruck N	Inc. Aounte	ed AM ocore	S Powe	er Prob	Northing: 14 Easting: 639 Casing Eleva Borehole De Surface Elev Descriptions	229.9291 ation: NA pth: 4.0' b vation: 227	elow grade		Boring ID Client: Ni A Location	agara Mol National (Grid (ay S	Company treet
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Str	atigraphic C	Description					Boring Construction
-	230 -	-														-
- 0 - -	- - 225 -	1	0-2	3.1	82.8	_			ALT fine to coarse SAN rown fine SAND, sc			Gravel, str	ong odor.			Borehole backfilled ⁻ with Bentonite
-	-	2	2-4		34.5											Pellets.
- 5	-	-														-
-	220 -	-														
- 1	0 -	_														-
-	215 -	-														-
1	5.						®	Re	marks: NA	. = Not Appl a level.	icable/Avail	lable; bg	s = below	ground su	Irface	e; AMSL = above mean
						LEE, I										

Dril Dril Dril	te Star Iling C Iler's N Iling M npler S	ompa lame letho	any: : SLI d: Tr	BBL, L [.] uck N	Inc. Iounte		S Powe	Northing: 1447174.6992 Easting: 639224.6744 Casing Elevation: NA Probe Borehole Depth: 8.0' below g Surface Elevation: 227.36' AM Descriptions By: DEG	Clier	A Na ation: E	B-127 ara Mohawk, tional Grid Company Broadway Street Schenectady, NY
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Descrip	tion		Boring Construction
-	230 - - -						-				
-	- - 225 -	1	0-2	3.5	1.7		-				
-	_	2	2-4		2.9			Dark brown fine to coarse SAND, little fine Gravel,	moist.		Borehole backfilled with Bentonite Pellets.
5	-	3	4-6		13.4			Dark gray fine SAND and SILT, moist.			-
-	220 -	4	6-8	3.7	131	×		Dark gray fine SAND and SILT, some Clay, trace I	olebs of NAPL, wet.		
- 10) _										-
-	- 215 -										-
- - 15	-										-
						LEE, I		Remarks: NA = Not Applicable// sea level. Sample collected from			

Dr Dr Dr	ite Star illing C iller's I illing N impler	Comp Name Netho	any: e: SL od: T	BBL, L ruck N	Inc. Aounte	ed AM ocore	S Powe	er Prob	Easting: Casing I Borehol Surface	g: 144745(: 639329.4 Elevation: e Depth: Elevation tions By:	312 NA 8.0' below : 226.57'	grade AMSL		Boring I Client: N A Location	liagara Natio 1: Bro	a Moha nal Gr	id Con / Stree	et		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column			Stratigra	phic Descr	ription						Boring	on	
-	-	-																		-
-	- 225 -	1	0-2		627			<u> </u>	fine SAND a	nd SILT, trace			r streaki	/ ng on						-
-	-	2	2-4	3.2	1034	×										-		١	Borehole ba with Benton Pellets.	
- 5	-	3	4-6		683			Dark b moist		nd CLAY, trace	e fine to coars	e Gravel, sta	aining, s	trong odor,						_
-	220 -	4	6-8	3.7	1834			Dark b odor.	rown fine to c	coarse GRAVE	EL, little fine to	o coarse San	ıd, stain	ing, strong						-
-	-																			-
- 1	0 - 215 -																			-
-	_	-																		-
- 1	5 –	-																		-
	BLA		ND, B		S CK & sts, eq	LEE, I	® INC. mists	Re	emarks:	NA = Not sea level Sample c									above n	nean

Dri Dri Dri Bit Au Riç	te Star Iling C Iler's I Iling M Size: ger Si g Type mpling	Comp Name Aethe 4-1/4 ze: c	oany e: Je od: 9 4" 4-1/4 //E 45	: Lyc eff Gr CME " Hol 5B	on Dr ant/J 45B low S	leff L <u>i</u> Stem	Auge			Northing: 1447196.5359 Easting: 639042.0455 Casing Elevation: NA Borehole Depth: 8.0' below grade Surface Elevation: 229.00' AMSL Geologist: Jennifer Sandorf	Client: Nia A I	n g ID: BB-129 agara Mohawk, National Grid Company Broadway Street Schenectady, NY	
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		Well/Boring Constructior	1
-	- 230 -	12											-
-	_	1	0-2	1.4	25 27	52	640			Gray-brown GRAVEL FILL, trace red Brick, trace Coal, dens	e, dry.		-
-	9 2 2 2 4 1.2 3 7 4.5									Dark brown to gray fine SAND, little to some Silt, moderately thick black tar-like material at 2.5' bgs.	dense, trace	to g	- ehole backfilled rade with ent/bentonite
	- 225	3	4-6	1.2	2 3 4 4	7	45.0			Brownish-gray fine SAND, little to some Silt, trace coarse Gra moderately dense, moist to wet.	avel,	- grou	ut. –
-	-	4	6-8	1.7	4 6 8 8	14	41.9			Grayish-brown fine SAND, little to some Silt, slightly plastic, r odor, moderately dense, wet.	no apparent		-
-	220 -												-
- 10) –												-
-													-
- 15	215 -												-
	BLAS									Remarks: NA = Not Applicable/Available; b sea level.	gs = below g	ground surface; AMSL = ab	oove mean

Dril Dril Dril Bit Aug Rig	e Star ling C ler's I ling N Size: jer Si ger Si Type npling	Comp Name Aetho 4-1/2 ze: 4 : CN	bany e: Je od: 0 4" 4-1/4 1E 45	: Lyc eff Gr CME " Holl 5B	on Dri ant/J 45B low S	leff L Stem	Auge			Northing: 1447138.4947 Easting: 639249.8794 Casing Elevation: NA Borehole Depth: 6.0' below grade Surface Elevation: 227.41' AMSL Geologist: Jennifer Sandorf	Client: Nia A N Location:	ng ID: BB-130 agara Mohawk, National Grid Company Broadway Street Schenectady, NY
DEPTH	ELEVATION								Geologic Column	Stratigraphic Description		Well/Boring Construction
	230 -											-
-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								00	Dark brown fine to coarse Sand and fine to medium Gravel, li subrounded to subangular gravel, dense, dry. Dark brown fine to medium SAND, some Silt, low plasticity, tr subrounded Gravel, slight petroleum-type odor, moist to wet. Dark brown fine to medium SAND, little Silt, dry to moist.		-
5	-	2	2-4 4-6	1.6	2 1 2 2 1 3	3	51.8 35.8			Black staining from 3.4' - 3.6' moderate petroleum-type odor, Black staining throughout, medium dense, trace natural Organ and fine to medium subangular Gravel below 4.0' bgs, modera wet.	nics (rootlets)	Borehole backfilled to grade with cement/bentonite grout.
-	- 220 - -				2							-
- 10 -	-											-
-	215 -											-
15					2		 	®	F	Remarks: NA = Not Applicable/Available; bg sea level.	gs = below g	round surface; AMSL = above mean
Proje	BLAS engl	inee	ers, s				onon	nists		kware\logplot2001\logfiles\36657\BroadwayWB		Page: 1 of 1

Di Di Di Bi Ai Ri	ate Stan illing C iller's I illing M t Size: uger Si g Type impling	Comp Name Alethe 4 1/4 ze: 4	5any : e: Je od: (¹ 4 1/4 1E 45	: Lyc eff Gr CME ' Holl iB	on Dr ant/J 45B low S	leff L	Auge			Northing: 1447080.1031 Easting: 639103.494 Casing Elevation: NA Borehole Depth: 10' below grade Surface Elevation: 228.71' AMSL Geologist: Jennifer Sandorf	Client: Nia A t	ng ID: BB-131 agara Mohawk, National Grid Company Broadway Street Schenectady, NY
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		Well/Boring Construction
-	- 230 - -											-
	-	1	0.5-2	0.8	NA 20 19 16	39	11.6		000000	ASPHALT Dark brown to black fine to coarse SAND and fine to coarse s GRAVEL, trace Coal, medium dense, dry. [Gravel FILL]	subangular	
-	- 225 -	2	2-4	1.4	7 8 7 15	15	5.0	-	00000	Trace Concrete, faint odor from 2.0' - 4.0' bgs Dry to moist below 4.0' bgs		Borehole backfilled with Grout to grade
- 5	-	3	4-6	0.5	8 3 3 3	6	0.3	-	0000	Dry to molet below 4.0 bgs		
-	-	4	6-8	0.1	1 2 3 3	5	0.5	-	0000	Dark gray fine SAND, some Silt at tip of spoon.	-1	
- 1	220 - - 0	5	8-10	1.6	2 2 1 1	3	2.9			Dark brown fine SAND, some Silt, some black staining, loose trace sheen. Dark gray to black SILT, trace to little Clay, medium stiff, sligt type odor.	-	-
-												-
-	- 215 -											-
- 1	5 -											_
	BLA									Remarks: NA = Not Applicable/Available; by sea level.	gs = below g	ground surface; AMSL = above mean

Dri Dri Dri Bit Au Riç	te Star Iling C Iler's I Iling M Size: ger Siz Type mpling	Comp Name Aethe 4-1/4 ze: 4	bany : e: Je od: 0 4" 4-1/4 1E 45	: Lyc eff Gr CME " Holl 5B	on Dr ant/J 45B low S	leff L	Auge			Northing: 1447173.5544 Easting: 639190.0211 Casing Elevation: NA Borehole Depth: 8.0' below grade Surface Elevation: 227.89' AMSL Geologist: Jennifer Sandorf	Client: Nia A I	ng ID: BB-132 agara Mohawk, National Grid Company Broadway Street Schenectady, NY
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		Well/Boring Construction
-	230 -											-
-					9			-		ASPHALT CONCRETE	/	
	_	1	0.5-2	0.9	18 11	27	0.0	_		Gray to dark brown GRAVEL FILL, trace red brick [FILL].		
	225 -				3 4					Grayish-brown fine SAND, little Silt, trace coarse angular Gra dry to moist.	vel, dense,	
	220	2	2-4	1.1	5 7	9	0.0			Gray at 3.0' bgs.		Borehole backfilled to grade with cement/bentonite
ŀ	_				1					Brown-gray fine SAND, some Silt, dense, moderate petroleur	n-type odor.	- grout
-5	-	3	4-6	1.8	1 1	2	166					-
-	-				2 1			-				
-	-	4	6-8	1.8	1	2	680			Trace sheen, trace bleb of brown oil-like material, lenses of g	rayish-brown	-
	220 -				1					Silty Clay, from 7.6' - 7.7' bgs.		
	_	-										-
10	. –											
- 10	,											
ŀ	-											-
-	-											-
-	215 -											-
-	_	-										-
- 15	; –	-										-
	BLAS									Remarks: NA = Not Applicable/Available; by sea level.	gs = below g	ground surface; AMSL = above mean

Dr Dr Dr Bit Au Rig	te Star illing C iller's I illing M Size: ger Si g Type mpling	Comp Name Aethe 4-1/4 ze: c	oany: e: Je od: 0 4" 4-1/4 //E 45	: Lyc eff Gr CME " Hol 5B	on Dr rant/J 45B low S	leff L <u>i</u> Stem	yon Auge			Northing: 1447203.4163 Easting: 639118.9501 Casing Elevation: NA Borehole Depth: 8.0' below grade Surface Elevation: 228.09' AMSL Geologist: Jennifer Sandorf	Client: Nia A I	ng ID: BB-133 agara Mohawk, National Grid Company Broadway Street Schenectady, NY
DEPTH	LELVATION ELEVATION Sample/Int/Type Sample/Int/Type Recovery (feet) Blows / 6 Inches N - Value N - Value PID Headspace (ppm) Analytical Sample									Stratigraphic Description		Well/Boring Construction
-	230 -											-
										ASPHALT.		
F	-	1	0.5-2	1.1	30 15	45	0.0			GRAVEL FILL, trace Brick, dense, dry.		-
-	_	-			7					Brown fine to medium SAND, little coarse subangular Gravel	trace Glass,	
-	225 -	2	2-4	0.9	2 1	3	0.0			moderately dense, moist.		Borehole backfilled to grade with
-	-				1 1 4			-		Brown fine to medium SAND, little Silt, moderately loose, no odor.	apparent	cement/bentonite grout
-5	-	3	4-6	1.3	4	8	0.0					
	_	4	6-8	2.0	3 3	5	0.0					
			00	2.0	2 3		0.0					
	220 -											
- 1	- 1											
	-											
	_											-
- 215 -												-
F	-											-
- 1	5 _											-
	BLAS									Remarks: NA = Not Applicable/Available; by sea level.	gs = below g	ground surface; AMSL = above mean

Dril Dril Dril Bit Aug Rig	e Star ling C ler's I ling N Size: jer Siz Type npling	Comp Name Aetho 4-1/2 ze: : CN	oany: e: Je od: (4" 4-1/4 1E 45	: Lyc eff Gr CME " Holl 5B	on Dri ant/J 45B Iow S	eff L	Auge			Northing: 1447785 Easting: 638964.1 Casing Elevation: NA Borehole Depth: 20' below grade Surface Elevation: 228.8' AMSL Geologist: Jennifer Sandorf	Client: Nia A N Location:	ng ID: BB-134 agara Mohawk, National Grid Company Broadway Street Schenectady, NY
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		Well/Boring Construction
	- 230 - -											-
-		1	0.5-2	1.0	2 3 4 4	7	32.4			Whitish ASH, CINDERS, red Brick, dark brown fine to mediur medium to coarse subrounded Gravel, loose, dry. [FILL] Increased red Brick with depth, from 2' - 4' bgs.	n Sand, trace	
	- 225 -	2	2-4	0.5	3 1 4 8	5	0.0					
5	-	3	4-6	1.0	1 1 2 1	3	0.0			Brown fine to medium SAND, little Silt, trace red Brick and sul subangular medium to coarse Gravel, dense, moist to wet.	brounded to	Borehole backfilled
-	_	4	6-8	0.6	3 4 8 10	12	0.0			Brown fine SAND, some SILT, little medium Sand, trace medi subrounded Gravel, 0.1" lens (seam) of black stained materia with moderate petroleum-type odor, wet.		to grade with cement/bentonite grout.
- 10	220 -	5	8-10	0.6	1 1 3 2	4	33.7			Black fine SAND and SILT, little Clay, trace medium to coarse Gravel, moderate petroleum type odor, heavy sheen, soft, pla	subangular stic, wet.	
-	-	6	10-12	2.0	1 2 2 1	4	170			Brownish-gray SILTY CLAY, trace natural Organics. Black fine SAND, some SILT, trace to little clinker-like materia Brownish-gray SILT and CLAY, trace fine Sand, bleb of brown material.		
	- 215 -	7	12-14	2.0	1/12" NA 1 2	1	34.1			Sheen and moderate petroleum-type odor. Gray brown SILTY CLAY, medium stiff, plastic.		
- 15	-	8	14-16	0.0	NA	NA	NA					-
	BLAS	SLAI		BOU	З		EE, 1	® NC.	F	Remarks: NA = Not Applicable/Available; bg sea level; WOH/R = Weight of Ha		
	eng		ers, s				onon	nists		kware\logplot2001\logfiles\36657\BroadwayWB		Page: 1 of 2

Client: Niagara Mohawk, A National Grid Company Site Location: Broadway Street Schenectady, NY

Borehole Depth: 20' below grade

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		Well/Boring Construction	
-	_	9	16-18	1.5	WOR WOR WOR	NA	29.7			SILTY CLAY, soft, some Sand lens with heavy sheen, trace blebs of brown oil-like material.		Borehole backfilled to grade with cement/bentonite	
-	- 210 -				WOR WOH WOH			-		Gray-brown SILT and fine SAND, trace Clay, very soft, wet.		grout	
- 20		10	18-20	2.0	woн woн	NA	12.2			Black fine to medium Sand, trace reddish-brown oil-like material at bottom of spoon.			
-	-	-										-	
	-	-										-	
-	205 -	-										-	
- 25	_	-										-	
-	-	-										-	
-	-											-	
	200 -											-	
- 30	_	-										-	
F	-	-										-	
	-											-	
-	195 -	-										-	
- 35	_											-	
	Ţ						Γ	®		Remarks: NA = Not Applicable/Available; bgs = below g sea level; WOH/R = Weight of Hammer/Rod] round surfa	ace; AMSL = above mean	
	BLASLAND, BOUCK & LEE, INC. engineers, scientists, economists												
Proi	ect: 36	657	011				Tom	nlate	i \rc	ockware\logplot2001\logfiles\36657\BroadwayWELLS.ldf		Page: 2 of 2	

Drilli Drille Drilli	ing C er's N ing M	omp lame letho	: Ro d: IR	Parra bert E 8-830	att Wol [:] Baldoze	e/Stev	e Collir	Easting: NA Casing Elevation: NA Borehole Denth: 12' below grade	А	9: BB-135 iagara Mohawk, National Grid Company : Broadway Street Schenectady, NY					
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		Boring Construction					
- - - -	- -														
-	2 2-4 1.7 796							Gray fine to coarse GRAVEL, little fine to coarse Sand, moderately of dry. Brown fine SAND, some Silt, some black staining, moderately loose moderately dense, slight to moderate odor, dry to slightly moist. Dark brown, little fine to medium Gravel below 4.0' bgs. Dark gray fine SAND and SILT, slightly plastic, moderate odor, moderate odorate odor, moderate odor, moderate odor, moderate odor, m	to	Borehole backfilled to grade with cement/bentonite grout.					
- 5	-5 -	3	4-6 6-8	2.0	81.5 257			Trace brown oily NAPL throughout below 7.8' bgs.	eratery						
- 10- -	- 10 - -	5	8-10	2.0 0.65	227 NA	×		<0.1'-thick lens of Clay at 9.5' bgs. <0.1'-thick lens of Clay at 9.9' bgs. Shelby Tube attepmted from 10' - 12' bgs.		-					
- - - 15-	- - 15 -														
	BLAS				B CK & CK & C			Remarks: NA = Not Applicable/Available; bgs sea level.	s = below g	ground surface; AMSL = above mean					

Dril Dril Dril	e Star ling C ler's I ling N npler	Comp Name Aletho	any: e: J. I od: Ti 4'x1 Mac	BBLE Bolan ruck n .5" ID	ES d	Tube embly	verProb	0e	Northing: 1447095.7 Easting: 638912.3 Casing Elevation: NA Borehole Depth: 28.5' bgs Surface Elevation: 228.8' AM Descriptions By: Scott Powlin		Client: N A	D: BB-136 liagara Mohawk, National Grid Company Broadway Street Schenectady, NY	
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic Descrip	ition		Boring Construction	
-	- 230 -												-
-	- - 225 -	1	0-4	2.4	0.0		02/302	Brown	HED STONE, damp. fine to coarse SAND, moist. ine to coarse SAND, Cinders, loose, damp.		/	Borehole to grade bentonite	- - backfilled with e chips.
- 5	-	2	4-8	2.7	0.0				rown fine to medium SAND, little coarse Sa fine SAND, trace Silt, loose, soft, wet.	and, moist, loose.			-
- 10	220 – – –	3	8-12	4.0	0.0 0.0 0.0			Dark g	rown-gray fine SAND and SILT, little Clay, s ray-brown fine to coarse SAND, loose, wet. ray-brown SILT, little fine Sand and Clay, lo				- - -
15	- 215 - -	4	12-16	3.0	0.0				ray SILT and CLAY, trace fine SAND, firm,		y, wet.		- - -
						LEE, I		Re	marks: NA = Not Applicable/ sea level.	'Available; bç	gs = below	ground surface; AMSL = above	

Project: 36657.011 Data File: BB-136.dat

Broadway Street Schenectady, NY

Borehole Depth: 28.5' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction				
								Dark gray CLAY, trace to no Silt, high plasticity, firm, moist.					
	-	-			0.0			Dark Gray SILT, little to trace fine Sand, trace Clay, trace Rootlets, low					
					0.0			plasticity, wet.					
-	-	5	16-20	4.0				Dark gray CLAY, some Silt, moderate plasticity, moist to wet.					
	210 -				0.0								
	210 -				0.0								
- 20	_	-											
Z						1			Borehole backfilled to grade with bentonite chips.				
-	-				0.0				bentonite chips.				
								Fine SAND and SILT, no plasticity, no sheen, moderate mothball-like odor,					
-	-	6	20-24	4.0				wet.					
	_	-			70.9								
Ē.							===						
	205 -												
- 25	_				49.5				-				
	_				040			Peaty fine SAND and SILT, firm, no plasticity, no sheen, moderate mothball- like odor, damp.					
		7	24-28	3.5	213			Dark gray stratified fine SAND, trace SIIt, moderate mothball-like odor, moist.					
F	-				61.9								
	_	-											
		8	28-28.5	0.5	40.2								
	200 -	-						Boring terminated at 30' bgs due to flowing Sand in tube assembly.					
	_												
- 30									-				
	-	-											
F	-	1											
	_												
F													
	195 -												
- 35	_	1							-				
	_												
_	BLASLAND, BOUCK & LEE, INC. engineers, scientists, economists Remarks: NA = Not Applicable/Available; bgs = below ground surface; AMSL = above mean sea level.												
Desig	ect: 36					Тал	onlota	:\rockware\logplot2001\logfiles\36657\Broadway.ldf	Page: 2 of 2				

Dri Dri Dri	te Star Iling C Iler's I Iling N mpler	Comp Name Aetho	any: : J. E d: Tr 4'x1 Mac	BBLE Bolan ruck n .5" ID	ES d nounte	Tube embly	verProb	e E	Northing: 1447129.0 Easting: 638927.6 Casing Elevation: NA Borehole Depth: 24' by Surface Elevation: 229 Descriptions By: Scott	9.0' AMSL	Client: N A	 b: BB-137 iagara Moha National Gr Broadway Schenect 	id Company / Street
DEPTH	ELEVATION Sample Run Number Sample/Int/Type Recovery (feet) PID Headspace (ppm) Analytical Sample Geologic Column						Geologic Column		Stratigraphic I	Description			Boring Construction
-	- 230 -												-
								Brown fin	e to coarse SAND, loose, damp).			
-								Black fine	e to coarse SAND and CINDER	S, loose, no impacts obse	rved.	-	Borehole backfilled to grade with bentonite chips.
- 5 -		2	4-8	1.9	0.5		^ × × × × × × × × × × × × × × × × × × ×	Black CIN	NDERS and COAL, no impacts i 0' bgs.	noted.			
ŀ	-						× ` × `	Brown-bla	ack fine SAND, loose, trace to li	ittle brown non-viscous oil,	, wet.		
- 10	220 -) -	3	8-12	3.0	137 98.8			1" Sand s Fine SAN Dark gray throuhgou	y SILT, trace fine Sand. seam with trace brown oil at 8.4 ID, little Silt, some dark brown n y SILT, trace to little fine Sand, t ut, stiff, moist to wet. GP-like odor throughout 8.0' - 1	non-viscous oil, loose, wet.			
							<u></u>	Dark gray	y-black fine SAND, little Silt, little	a ta sama dark brown oil t	broughout		
- - - 15	- 215 - 5 -	4	12-16	2.9	89.7 22.1			loose, we Dark gray fine Sand Dark gray	et. / SILT, trace fine Sand and Clay	y, low plasticity, little dark l	brown oil in		
						LEE, I		Rem	narks: NA = Not Appl sea level.	licable/Available; bg	js = below	ground surf	ace; AMSL = above mean

Site Location:

Broadway Street Schenectady, NY Borehole Depth: 24' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction					
- 21	- - 0 -	5	16-20	2.8	17.5 86.7 150 205 17.6			Dark gray CLAY, high plasticity, no oil ot sheen, moderate MGP-like odor, moist to wet. Dark gray fine SAND, loose, saturated with dark brown oil, strong odor, wet. Dark gray CLAY, high plasticity, firm, no oil or sheen, moderate odor, moist. Fine SAND seam with little dark brown oil. Dark gray CLAY, high plasticity, no oil or sheen, moist.						
- 20	-	6	20-24	3.5	26.5 436 40.6			Seams of fine Sand with little dark brown oil at 20.5' and 21.2' bgs. Dark gray fine SAND, little Silt, loose, saturated with dark brown non-viscous oil, wet. Dark gray fine SAND and SILT, firm, no oil, wet.	Borehole backfilled to grade with bentonite chips.					
- 25 - 25 -								Boring terminated at 24' bgs due to flowing Sand in tube assembly. Flowing Sands are saturated with dark brown non-viscous oil, likely from 21.5' - 22.5' bgs interval.	-					
- 20 - 30 -	0 -								-					
- <i>19</i> - 35	- 5 -								-					
	BLASLAND, BOUCK & LEE, INC. engineers, scientists, economists Remarks: NA = Not Applicable/Available; bgs = below ground surface; AMSL = above mean sea level.													

Dril Dril Dril	ling C ler's I ling N	comp Name Ietho	4'x1 Mac	BBLE Boland ruck n .5" ID	ES d	Tube embly	verProb	e	Easting: 638949.3 Casing Elevation: NA Borehole Depth: 28.0' hos			D: BB-138 liagara Mohawk, National Grid Company I: Broadway Street Schenectady, NY		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic Description		Boring Construction			
-	- 230 - -													
-	- - 225 -	1	0-4	0.8	15.7			Black s	o coarse SAND, little Gravel, loose, damp. stained little black oil, some Cinders and Ash, very s .5' - 0.8' bgs.	rnt odor	_	Borehole backfilled to grade with bentonite chips.		
- 5	225 - 31.6 $- 2 4.8 2.5$ 2.0								ERS and ASH, trace black oil, very strong MGP-like ray-brown fine SAND, little Silt, trace coarse Sand a from 4.5' - 5.5' bgs, becomes brown, moist.		-			
- 10	220 - 3 8-12 1.9								ray-brown SILT, trace fine Sand, 0.25" seams of fin hout, seams contain rainbow sheen and trace blebs trong odor, moist.	n oil, firm,		-		
- 2	215 - 4 12-16 2.3 0.2								Dark gray SILT, trace fine SAND, streaks of black staining, faint MGP-like odor, no sheen or oil, moist. Dark gray fine SAND SEAM, trace Silt, little black staining, loose, wet. Dark gray SILT and CLAY, Rootlets from 12.8' - 13.5' bgs, grades to Clay, trace Silt at 13.5' bgs, moderate to high plasticiity, no sheen or oil, faint to no odor, damp to moist.					
BLASLAND, BOUCK & LEE, INC. engineers, scientists, economists Remarks: NA = Not Applicable/Available; bgs = below ground surface; AMSL = above sea level.													ce; AMSL = above mean	

Site Location:

Broadway Street Schenectady, NY Borehole Depth: 28.0' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction				
- 210		5	16-20	1.5	0.9 0.3			Dark gray fine SAND, little Silt, loose, no sheen or oil, faint to no odor, wet. Dark gray CLAY, trace Silt, high plasticity, faint to no odor, moist.					
- 20 - - 205		6	20-24	4.0	0.3			Dark gray CLAY, high plasticity, soft, faint MPG-like odor, moist to wet. Dark gray SILT, little to trace fine Sand, trace Clay, faint MGP-like odor, low plasticity, no sheen or oil, wet.	Borehole backfilled to grade with bentonite chips.				
- 25 -	-	7	24-28	3.2	24.8 5.6			Dark gray SILT, little to some fine Sand, firm, Peaty from 26.5' - 26.8' bgs, wet. Dark gray fine SAND, trace to little Silt, loose, no sheen or oil, wet.	-				
200 - 30 -									-				
- 195 - 35	-								-				
	BLASLAND, BOUCK & LEE, INC. engineers, scientists, economists Remarks: NA = Not Applicable/Available; bgs = below ground surface; AMSL = above mean sea level.												

Drilli Drille Drilli	ing C er's M ing N	comp Name Ietho	4'x1 Mac	BBLE Bolan ruck n .5" ID	ES d	Tube embly	verProbe	Northing: 1447368.7 Easting: 639073.9 Casing Elevation: NA Borehole Depth: 20' bgs Surface Elevation: 228.3' AMSL Descriptions By: Raymond Wagner	D: BB-139 iagara Mohawk, National Grid Company : Broadway Street Schenectady, NY			
рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		Boring Construction		
2	- 30 - -											
- 2	- - 25 -	1	0-4	3.2	0.5		× × × × × ×	arown fine SAND, trace medium to coarse Sand. Hack granular COAL layer. an-brown fine SAND, trace Silt.		Borehole backfilled to grade with bentonite chips.		
- 5 -	-	2	4-8	2.0	0.5			rown fine SAND, some Silt, little medium to coarse Sand, loose				
- 2 - 10 -	20 -	3	8-12	2.9	42.3	-		arown fine SAND, some Silt, wet. Hack fine SAND, black oily staining, NAPL saturated, odor. Park gray SILT and CLAY, black NAPL staining (mottled), plastic recoming less stained below 10.9' bgs.				
- <i>2</i> 	- 15 - -	4	12-16	3.6	114			Bray to dark gray SILT and CLAY, trace fine Sand, occasional dat lack rootlet with brown NAPL staining, moderately plastic, slight b wet. Dark gray SILT, little fine Sand, brown NAPL staining and sheen aturated.				
	engi	ineel	rs, sc		3 CK & sts, ec	conor	nists	sea level. At 20' bgs, 4' of running Sands e	arks: NA = Not Applicable/Available; bgs = below ground surface; AMSL = above mean sea level. At 20' bgs, 4' of running Sands encountered in boring. Woogplot2001/Jogfiles/36657/Broadway.ldf Page: 1 of 2			

Site Location:

Broadway Street Schenectady, NY Borehole Depth: 20' bgs

DEPTH ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic Descriptior	1	C	Boring Construction			
	5	16-20	2.3	17			throughout. 0.2' to 0.3' thick laye bgs.	fine SAND, saturated with moderates of brown Silt with little to some ers of brown Silt with little to some	Clay at 17.3' and 17.5'	_	Borehole backfilled to grade with bentonite chips.			
25											-			
200 -											-			
											-			
eng	BBBBLE Remarks: NA = Not Applicable/Available; bgs = below ground surface; AMSL = above mean sea level. At 20' bgs, 4' of running Sands encountered in boring. Project: 36657.011 Template: i:\rockware\logplot2001\logfiles\36657\Broadway.ldf Page: 2 of 2													

Dril Dril Dril	e Star ling C ler's I ling N npler	Comp Name Aetho	any: : J. E d: Tr 4'x1 Mac	BBLE Bolan ruck n .5" ID rocor	ES d	Tube mbly	verProbe	Northing: 1447385.3 Easting: 639132.7 Casing Elevation: NA Borehole Depth: 24' bgs Surface Elevation: 228.6' AMSL Descriptions By: Raymond Wagner	9: BB-140 agara Mohawk, National Grid Company : Broadway Street Schenectady, NY			
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		Boring Construction		
-	- 230 - -											
-	- - 225 -	1	0-4	2.6	0.0		× × × × × × × × × × × × × × × × × × ×	lack SILT, CINDERS, and medium to coarse SAND, moist. [FIL an fine SAND, some Silt, little medium to coarse Sand, moist.	L]	Borehole backfilled to grade with bentonite chips.		
- 5	-	2	4-8	2.6	0.0			an fine to medium SAND, little Silt, moist. rown fine SAND, some Silt, trace Roots, moist. ray fine SAND, some Silt, trace Roots, wet.				
- 10	220 – – –	3	8-12	3.5	0.0			rown fine SAND and SILT. aturated at 9.5' bgs. rray SILT, little Clay, black rootlets in last 0.5' bgs for core, som iaining, MGP odor, moist to wet.				
15	- 215 - -	4	12-16	3.3	79 23.7			ray SILT and CLAY, little black staining and rootlets, moderate looderately plastic, wet. ray SILT, some fine Sand, black staining and brown oily sheen dor, wet to saturated.				
		inee	rs, sc			LEE, I	nists	Remarks: NA = Not Applicable/Available; B sea level. At 24' bgs, 4' of running Sands e	encountered	-		

Broadway Street Schenectady, NY Borehole Depth: 24' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic Description		Boring Construction		
								No Recovery. Possil	bly saturated Silt and fine Sand, flowable.				
- - 21	- 0 - -	5	16-20	0.0	NA								
- 20 - -	-	6	20-24	3.5	3.7			Dark gray fine SANE	D, some Silt, slight odor and staining, saturated.		Borehole backfilled to grade with bentonite chips.		
20	5 -							Dark gray fine SANE	D, little Silt, little black staining and odor, wet.				
- 25	-										_		
	_												
20	-										-		
- 20	0 -										-		
- 30	-												
	_												
F											_		
ļ	-										4		
	4												
- 19	5 -												
- 35											_		
I B Q	BLASLAND, BOUCK & LEE, INC. engineers, scientists, economists Remarks: NA = Not Applicable/Available; bgs = below ground surface; AMSL = above mean sea level. At 24' bgs, 4' of running Sands encountered in boring.												
Project	-				,				ot2001\logfiles\36657\Broadway.ldf		Page: 2 of 2		

Drill Drill Drill	ing C er's I ing N	Comp Name Aetho	4'x1 Mac	BBLE Boland ruck n .5" ID	ES d	Tube embly	verProbe	Northing: 1447352.4 Easting: 639108.5 Casing Elevation: NA Borehole Depth: 28' bgs Surface Elevation: 228.2' AMSL Descriptions By: Raymond Wagner	 b: BB-141 iagara Mohawk, National Grid Company : Broadway Street Schenectady, NY 			
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		Boring Construction		
2	- 30 - -											
- 2	- - 225 -	1	0-4	2.0	0.0		× : : × : : × : : × : : × : : × : : × : : ×	Brown to dark brown fine to coarse SAND and CINDERS, some fir medium Gravel, trace Silt, moist. [FILL] Tan fine SAND, moist.	ne to	Borehole backfilled to grade with bentonite chips.		
- 5		2	4-8	2.6	0.1			Brown fine to medium SAND, little Silt, trace coarse Sand, moist. Brown fine SAND and SILT, moist. Brown fine to medium SAND, trace Silt, no odor, moist.				
- 10	20 - - -	3	8-12	3.7	1.3 9.3			Saturated at 8.5' bgs. Dark gray and brown mottled fine SAND and SILT, trace Rootlets, Medium gray SILT and CLAY, little black Organic rootlets, modera slight odor, moist.				
- 15	- 215 - -	4	12-16	2.6	18			Brown to light gray CLAY, some Silt, trace organic rootlets, plastic odor, moist.				
						LEE, I		Remarks: NA = Not Applicable/Available; bgs = below ground surface; AMSL = above mean sea level. At 28' bgs, 2' of running Sands encountered in boring.				

Project: 36657.011 Data File: BB-141.dat

Site Location:

Broadway Street Schenectady, NY Borehole Depth: 28' bgs

DЕРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction				
- 2	- 210 - -	5	16-20	3.3	6.2			Brown to light gray SILT, some Clay and fine Sand, slightly plastic, wet. Gray SILT, little to some fine Sand, slight gray staining, slight odor, saturated. Dark gray SILT and fine SANd, slight odor, saturated.					
- 20	- - 205 -	6	20-24	4.0	1.7			Medium gray fine SAND and SILT, trace rootlets, saturated. Gray SILT and fine SAND, grading to fine Sand, no staining or odor, saturated. Trace Silt at 23.5' bgs.	Borehole backfilled to grade with bentonite chips.				
- 25 -	-	7	24-28	3.1	16.7			Dark gray SILT, little to some fine Sand, trace Wood fragments and rootlets, wet. Gray fine to medium SAND, little Silt, MGP odor, slight sheen observed, wet to saturated.					
- 30	- 200 - -								-				
- - - 35	- 195 - -								-				
	BLASLAND, BOUCK & LEE, INC. engineers, scientists, economists Remarks: NA = Not Applicable/Available; bgs = below ground surface; AMSL = above mean sea level. At 28' bgs, 2' of running Sands encountered in boring.												

Dr Dr Dr	ite Stai illing C iller's I illing M mpler	Comp Name Netho	any: : J. I d: T 4'x1 Mac	BBLE Bolan ruck n .5" ID	ES d nounte	Tube embly	verProb	e	A			: Nia A N	gara Moha	rid Company y Street			
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description						Boring Construction			
-	- - 0							ASPH	17								
-	-	1	0-4	2.8	103 228			ASPHALT. CRUSHED STONE. Brown fine to coarse SAND and GRAVEL, black staining, moderate odor, loose, dry. Spec of sticky black tar at 1.2' bgs. Dark gray-black fine SAND and SILT, strong odor (possibly from Ammonia Separator), firm, damp to moist. Little to trace dark brown oil from 2.6' - 2.8' bgs.						Borehole backfilled [–] to grade with bentonite chips.			
- 5	-5 -	2	4-6	1.8	297 513						ong pungent odor, lo y-like material throu				-		
-	- - - - - 5-15 -						®		at 6.0' bgs.	A = Not Applia	cable/Available	; bgs = bel	ow g	round surf	- - - - - - - - - - - - - - - - - - -		
						LEE, I	NC.	IK6	se	4 = Not Applic a level.	,aue/Availadie	, ugs = Deli	ow g	rouna Suff	ace, ANISL = above mean		

Date S Drilling Driller Drilling Sample	g Com s Nam g Meth	bany: e: J. I od: Tr od: Tr : 4'x1 Mac	BBLE Bolan ruck n .5" ID rocor	ES d nounte	Tube embly	verProb		Client: Ni A	9: BB-142R agara Mohawk, National Grid Company : Broadway Street Schenectady, NY					
DEPTH	ELEVATION Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		Boring Construction					
_ 230)								-					
- 225	0 - 1 0-4 3.7 0.6 Image: Second sec													
-5	2	4-8	2.1	0.3			Dark gray fine SAND, some Silt, trace Clay, no staining or odor, we	it.						
- 10	- - 3 -	8-12	1.7	37.2			Dark gray SILT, some Clay, little fine Sand, heavy staining, strong of Dark gray fine SAND and SILT, oily sheen present, saturated.	odor.						
- 215 - 15	5 - - 4	12-16	2.5	1.7			Gray SILT, little fine Sand and Clay, mottled staining, MGP odor, sa Gray fine to medium SAND, little Silt, MGP odor, no sheen, saturate							
	BLASLAND, BOUCK & LEE, INC. engineers, scientists, economists Remarks: NA = Not Applicable/Available; bgs = below ground surface; AMSL = above mean sea level; R = Relocated due to refusal. At 28' bgs, 4' of running Sands encountered in boring.													

Data File: BB-142R.dat

Broadway Street Schenectady, NY

Borehole Depth: 28' below grade

DEPTH ELEVATION	Sample Run Number		Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction			
- 210 - 20	- 5	1	6-20	0.4	0.8			Dark gray fine to medium SAND, little Silt, no sheen, slight odor, saturated.				
- - _ 205	- 6 -	2	20-24	0.9	1.3			Gray fine SAND, some Silt, little Clay, no sheens, slight MGP odor, saturated	Borehole backfilled to grade with bentonite chips.			
- 25 - - 200	- 7 -	2	24-28	2.1	7.5			Dark gray fine SAND, some Silt, trace Clay, heavy sheens, strong MGP odor, saturated.				
- 30 -	-								-			
- <i>195</i> - 35	-								- - -			
BLASLAND, BOUCK & LEE, INC. engineers, scientists, economists Project: 36657.011 Remarks: NA = Not Applicable/Available; bgs = below ground surface; AMSL = above mean sea level; R = Relocated due to refusal. At 28' bgs, 4' of running Sands encountered in boring. Project: 36657.011 Project: 36657.011 Project: 36657.011 Project: 36657.011												

Project: 36657.011 Data File: BB-142R.dat

	ng C er's N ng M	comp Name letho	any: : J. I d: Tr 4'x1 Mac	BBLE Bolan ruck n .5" ID rocor	ES d	Tube embly	verProb	е	Easting: 639198.1 Casing Elevation: NA Client: NA			D: BB-143 iagara Moha National Gri : Broadway Schenecta	id Company / Street	
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic Description			Boring Construction		
23	30 - - -												-	
22	- 25 - -	1	0-4	3.0	84.7			Black f odor.	ALT. HED STONE, loose, dry. ine to medium SAND and SILT, I ack oily material from 2.0' - 3.0' b		/	-	Borehole backfilled to grade with bentonite chips.	
-5	- - 20 -	2	4-8	1.6	206				ine SAND and SILT, little coarse rout, moist to wet.	Sand and Gravel, little blad				
- 10	-	3	8-12	0.5	122				ray SILT, little fine Sand, black m rm, moist.	nottling, little brownish-black	k oil, strong			
- - - 15		4	12-16	1.3	106			sample	ray CLAY, little Silt, medium to hi e coated with dark brown non-vis of sample, oil likely from fine Sa	cous oil, fine Sand noted in				
						LEE, I		Re	marks: NA = Not App sea level.	olicable/Available; bo	gs = below	ground surfa	ace; AMSL = above mean	

Broadway Street Schenectady, NY

Borehole Depth: 24' bgs

DEPTH ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	⊃ID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction				
							Dark gray fine SAND and SILT, saturated with dark brown non-viscous oil, loose, wet.					
- 210 -	5	16-20	3.5	119			Dark gray SILT, little Clay, rootlets interbedded with <1 cm of fine Sand lenses to 19' bgs, Sand lenses saturated with oil, low plasticity.					
- 	- 29.3 No oil or sheen noted below 19' bgs.											
- 20				6.6			Dark gray-black fine SAND and SILT, rootlets, no oil or sheen, loose, wet.	borehole backfilled to grade with bentonite chips.				
- 205 - -	6	20-24	3.0	7.6			Dark gray SILT, little fine Sand, no oil or sheen, firm, wet.					
_												
- 25								-				
200 -								-				
- 30	-							-				
- - 195 -	-							-				
- - - 35	-							-				
BLASLAND, BOUCK & LEE, INC. engineers, scientists, economists Remarks: NA = Not Applicable/Available; bgs = below ground surface; AMSL = above mean sea level.												
Project: 36												

Date Sta Drilling (Driller's Drilling I Sampler	Comp Name Metho	any: : J. I : J. I : d: Tr : 4'x1 Mac	BBLE Bolan ruck n .5" ID	ES d nounte	Tube embly	verProbe	Northing: 1447146.1 Easting: 639200.8 Casing Elevation: NA Borehole Depth: 20' bgs Surface Elevation: 227.7' AMSL Descriptions By: Scott Powlin	 D: BB-144 iagara Mohawk, National Grid Company : Broadway Street Schenectady, NY 			
DEPTH ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction			
230 -	-										
- 0 - - - - 225 -	1	0-4	4.0	9.3		00000	SPHALT. RUSHED STONE, loose, dry. ay to black fine to coarse SAND and GRAVEL, some Cinders, ecces, faint odor, loose, dry.	/	Borehole backfilled		
	2	4-8	1.3	70			bollening and edur, loose, damp.				
220 -	3	8-12	4.0	239 494 64.5			ark gray fine SAND and SILT, little Clay, some dark brown non- oughout, strong odor, loose, wet. ark gray-black fine SAND, saturated with dark brown oil, strong et. ark gray SILT, trace fine Sand and Clay, black mottling, little dar oughout, firm, wet. ark gray-black fine SAND, saturated with oil, loose. ark gray-brown SILT and CLAY, trace Roots, black mottling, stro or boop. Jour doublish firm.	odor, loose, k brown oil			
							ark gray-block fine SAND, some to saturated with dark brown non-viscous I, loose, wet. ark gray-brown SILT, some Clay, trace Roots, strong odor, no oil or sheen, w plasticity.				
					LEE, I		Remarks: NA = Not Applicable/Available; b sea level.	gs = below	ground surface; AMSL = above mean		

Client:

Broadway Street Schenectady, NY Borehole Depth: 20' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction
-	- 210 -	5	16-20	2.5	22.3			Dark gray-brown SILT, trace Clay, fine Sand seams present, trace dark brown oil.	Borehole backfilled to grade with bentonite chips.
- 2	0 205 - - 5 - 200 -							Boring terminated at 20' due to flowing sands.	
- 3	- 0 - 195 -	-							
3	BLA		DID, B	OUC	S CK & Sts, ec	LEE, I	® NC. nists	Remarks: NA = Not Applicable/Available; bgs = below sea level.	ground surface; AMSL = above mean

Dril Dril Dril		Comp Name Aetho	any: e: J. E d: Tr 4'x1 Mac	BBLE Bolan ruck n .5" ID rocor	ES d	Tube embly	verProb	Northing: 1447108.9 Easting: 639013.3 Casing Elevation: NA Borehole Depth: 28' bgs Surface Elevation: 229.2' AMSL Descriptions By: Scott Powlin	Easting: 639013.3 Casing Elevation: NA Borehole Depth: 28' bgs Surface Elevation: 229.2' AMSL Location		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		Boring Construction	
-	- 230 -										
-	-	. 1	0-4	2.3	0.4			SPHALT. CRUSHED STONE, loose, dry. Fine to coarse SAND, Cinders, Ash, Brick, moist.		Borehole backfilled to grade with bentonite chips.	
- 5	225 - - -	2	4-8	3.1	0.0			Brown fine SAND, trace Coarse Sand and fine Gravel, moist. Brown-black fine to coarse SAND, little Cinders and Clinkers, little noderate MGP-like odor, loose, moist to wet.	sheen,		
- 10	- 220 - -	. 3	8-12	2.8	79.4 2.4			Brown fine SAND, little Silt, faint MGP-like odor, firm, moist to wet Black fine SAND, little to trace Silt, some dark brown non-viscous AGP-like odor, wet. Dark gray SILT, Rootlets, moderate MGP-like odor, no oil ot sheer lasticity, stiff, wet.	oil, strong		
								Dark brown oil in Root, trace mottled black staining throughout bel Approximately 1" Sand seam, saturated with dark brown oil at 12.4 Approximately 1" Sand seam, saturated with dark brown oil at 13.2 Dark gray SILT and CLAY, firm, medium plasticity, black mottling to accasional bleb of dark brown oil. Soft from 15.2' - 15.4' bgs. Dark gray fine SAND, trace Silt, loose, heavy sheen, trace dark br vet.	8' bgs. 2' bgs. thouhgout,		
	eng		rs, sc			LEE, I	nists	Remarks: NA = Not Applicable/Available; by sea level.	_	ground surface; AMSL = above mean Page: 1 of 2	

Site Location:

Broadway Street Schenectady, NY Borehole Depth: 28' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	⊃ID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction				
-	- - 210 -	5	16-20	3.7	4.5 27.4			Dark gray fine SAND, trace Silt, loose, heavy sheen, trace dark brown oil, wet. Dark gray-brown SILT and CLAY, with fine Sand seams (>1 cm) throughout, dark brown oil observed in Sand seams, moderately plastic.					
- 20	-	6	20-24	4.0	56.8			brown oil. Dark gray SILT and CLAY, soft, moderately plastic, no oil or sheen, wet. Dark gray SILT, little Clay, low plasticity, no oil or sheen, wet.	Borehole backfilled to grade with bentonite chips.				
- 25	205 – – –	7	24-28	3.1	5.3 213 84.7 87.9			Dark gray fine SAND and SILT, Rootlets, some dark brown oil, loose, wet. Dark gray-black SILT, trace fine Sand, rootlets throughout, 2" fine Sand seam with some dark brown oil at 24.8' bgs. Peaty from 24.9' - 25.2' bgs. Dark gray fine SAND, little Silt, little to some dark brown oil, loose, wet. Dark gray fine SAND and SILT, some to saturated with dark brown oil, loose, wet.					
- 30	- 200 - - -												
- - 1 - 35	- - .95 -								- - -				
	BLASLAND, BOUCK & LEE, INC. engineers, scientists, economists												

	ate Sta rilling riller's rilling ampler	Comp Name Metho	any: e: J. I d: Ti 4'x1 Mac	BBLE Bolan ruck n .5" ID	ES d nounte	Tube embly	verProb)e	Northing: 1447136.3 Easting: 639021.5 Casing Elevation: NABoring ID: BB-146Borehole Depth: 5.0' bgs Surface Elevation: 229.3' AMSLClient: Niagara Mohawk, A National Grid CompanyDescriptions By: Scott PowlinLocation: Broadway Street Schenectady, NY								
	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column			Stratigra	phic Des	cription				Boring Construction	on
-	230 -																-
-	,	- 1	0-5	2.5	0.8		0000000000	<u> </u>	IED STONE.	SAND and C	GRAVEL, tra	ace Cinders	and Brick	/		t	- Borehole backfilled o grade with pentonite chips. -
-		-							l at 5.0' bgs. I me results.	Possible retor	rt foundation	i. Attempted	l two near	by locations			-
-	220 - 10	-															-
-	<i>215</i> - 15 -	-															- -
						LEE, I		Re	marks:	NA = No sea level	t Applical	ble/Availa	able; bg	s = below	ground sur	face; AMSL =	above mean

Dril Dril Dril		Comp Name Aetho	any: : J. E : J. E : Ti : d: Ti : 4'x1 Mac	BBLE Bolan ruck r .5" ID rocor	ES d	Tube embly	verProb	Northing: 1447293.2 Easting: 639004.3 Casing Elevation: NA Borehole Depth: 24' below grade Surface Elevation: 229.2' AMSL Descriptions By: Raymond Wagner	Easting: 639004.3Client: NCasing Elevation: NAClient: NBorehole Depth: 24' below gradeASurface Elevation: 229.2' AMSLLocation					
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		Boring Construction				
-	- 230 -													
-	-	. 1	0-4	1.6	0.8		× · · × · × · × · × · × · × · × · × · ×	Brown to black fine to medium SAND, some Cinders, Brick, and comoist. [FILL]	varse Sand,	Borehole backfilled to grade with bentonite chips.				
- 5	225 - - -	2	4-8	3.2	18.9 34.3			Brown medium to coarse SAND, some fine Sand, little Silt, moist. Brown fine SAND and SILT, moist. Gray SILT and fine SAND, some black staining, odor. Black fine SAND, some Silt, black staining and sheens, odor.						
- 10	- 220 - -	3	8-12	3.2	57.2			Black fine to mediuim SAND, little Silt, heavy brown to dark brown of MGP odor, wet to saturated.						
- 15	- 215 - -	. 4	12-16	3.0	29.6				lack fine SAND, some Silt, heavy brown to black oily sheen, MGP odor.					
	eng		rs, sc			LEE, I	nists	Remarks: NA = Not Applicable/Available; bg sea level. At 24' bgs,4' of running Sands end		-				

Broadway Street Schenectady, NY

Borehole Depth: 24' below grade

DEPTH ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic Description				Boring nstruction	
				37.2			Brown SILT and CL noted along rootlets	AY. some brown oily sheens and staining, oil in sample, MGP odor, wet.	staining				
210 -	- 5	16-20	3.1	16.1			Gray-black fine SAN	D, some Silt, heavy brown oily sheens, stron	ng odor, wet.				-
- 20 - 	6	20-24	1.7	24.3								Borehole back to grade with bentonite chips	filled 3. -
205 -													
- 25 -	-												_
	-												-
	-												-
-													-
200 -													-
- 30 -													_
	-												
													-
													-
- 195 -	-												-
- 35 -	-												-
	Remarks: NA = Not Applicable/Available; bgs = below ground surface; AMSL = above mean sea level. At 24' bgs,4' of running Sands encountered in boring.												
	BLASLAND, BOUCK & LEE, INC. engineers, scientists, economists												
Proiect: 36	657 (11			Tom	nlata: i	:\rockware\logple	t2001\loofiles\36657\Broadway.ld	lf			Page: 2 of	2

Dri Dri Dri		Comp Name Aetho	any: e: J. I d: Tr 4'x1 Mac	BBLE Bolan ruck n .5" ID	∃S d	Tube embly	verProb	Easting: 638972.3 Casing Elevation: NA Clie	oring ID: BB-148 ent: Niagara Mohawk, A National Grid Company ocation: Broadway Street Schenectady, NY
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction
-	- 230 - -								
-	- - 225 -	1	0-4	2.0	0.3		x x	Brown to black fine SAND, some Silt, medium to coarse Sand, Brick fragments, and Cinders, moist. [FILL]	Borehole backfilled to grade with bentonite chips.
5 -	-	2	4-8	2.6	0.0			Black CINDERS, some fine to medium Sand, little Silt. [FILL] Brown SILT, some Clay, little fine Sand, slightly plastic, wet.	
- - 10	220 - - -	3	8-12	3.3	0.0 2.1 2.2			Brown fine SAND and SILT, wet to saturated. Brown fine to medium SAND, little Silt, saturated. Black fine to medium SAND, little Silt, heavy oil sheen, strong MGP odo saturated. Dark gray SILT, some Clay, little fine Sand, some oil sheens, MGP odor	
- - 15	- 215 - - -	4	12-16	3.0	0.3			Dark gray SILT, some Clay, trace fine Sand, oil sheens and staining, str MGP odor, saturated/ Dark gray fine SAND, little Silt, blebs of NAPL and heavy sheens, strong saturated. Gray SILT and CLAY, trace fine Sand, minor staining from 13.4' - 13.9' b slight odor, plastic, wet.	g odor,
						LEE, I		Remarks: NA = Not Applicable/Available; bgs = sea level. At 28' bgs, 7' of running Sands encou	

Broadway Street Schenectady, NY

Borehole Depth: 28' below grade

DEPTH ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction					
 210 -	5	16-20	3.7	1.6 0.9 0.5			Gray CLAY, some Silt, trace fine Sand, minor staining, plastic, wet. Black fine Sand, little Silt and Clay, heavy NAPL sheen, strong MGP odor, saturated. Gray CLAY, some Silt, trace fine Sand, minor staining.						
- 20 - - 205 -	6	20-24	2.0	0.0			Gray CLAY, some Silt, trace fine Sand, wet. Dark gray fine SAND, little Silt, no visible staining, sheens, or odor, saturated. Dark gray fine SAND and SILT, no staining or odor, moist.	Borehole backfilled to grade with bentonite chips.					
- 25 - - 25 - 	7	24-28	3.0	1.2			Dark gray SILT, little fine Sand and Wood fragments, Organic material, no staining or odor, moist. Dark gray fine SAND, little Silt, no staining or odor, saturated.						
200 - - - 30 -								-					
	-												
	BLASLAND, BOUCK & LEE, INC. engineers, scientists, economists Remarks: NA = Not Applicable/Available; bgs = below ground surface; AMSL = above mean sea level. At 28' bgs, 7' of running Sands encountered in boring.												

Date S Drillin Driller Drillin Bit Siz Auger Rig Ty Sampl	g Con 's Nar g Meti ce: NA Size: vpe: IF	1pany ne: [nod: 3 1/4 8 A20	: Pai loug ⁻ Hollo ," D True	rratt-\ Thom w Ste	na em A ount	uger	n		Northing: 1447272.3 Easting: 639013.9 Casing Elevation: NAWell/Boring ID: BB-149Borehole Depth: 26' below grade Surface Elevation: 228.7' AMSLClient: Niagara Mohawk, A National Grid CompanyGeologist: Kristina GrossLocation: Broadway Street Schenectady, NY			wk, d Company Street
DEPTH	ELEVATION Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description			Well/Boring Construction
230	- 0 - -											-
	- 1	0-2	0.9	4 7 4 7	11	0.4		0୍ୱର ପ୍ରର	Brown fine SAND, SILT, and fine GRAVEL, loose, wet (from s [FILL]	snow melt).		
22	- 2 5 -	2-4	0.7	4 13 17 22	30	1.6			Black COAL fragments. [FILL] Red BRICK fragments, medium dense, moist, slight to moder type odor. [FILL]			Borehole tremied with cement- bentonite grout to grade.
- 5	- 3	4-6	2.0	7 12 10 10	22	76.0			Brown SILT, some fine Sand, soft, moist, moderate to strong odor, some black staining. Reddish-brown SILT, little fine Sand and fine Gravel, medium moderate to strong MGP-type odor. Grading to brownish-gray fine SAND, some Silt, medium dens	dense, dry,		
_	- 4	6-8	1.8	6 8 6 6	14	80.5			moist, moderate MGP-type odor, little black staining. Black-stained SILT, soft, moist, moderate to strong MGP-type	e odor.		
220	0 - 5	8-10	2.0	1 1 1 4	2	34.2			Very soft, wet, slight rainbow sheen, trace gold oily NAPL. Olive-green CLAY partings (up to 1/3" thick), soft, moderate rains	ainbow sheen.		
- 10	6	10-12	2 2.0	2 2 2	4	30.0			little to some black sticky tar-like NAPL in Silt matrix. Black-stained fine GRAVEL, loose, wet, strong MGP-type odd Black-stained SILT, soft, wet, strong MGP-type odor, heavy ra	or.	-	
7 12-14 2.0 3 5 46.4 Black-stained SILT, soft, wet, strong MGP-type odor, heavy rainbow sheen, little gold oily NAPL. Black-stained SILT, soft, wet, strong MGP-type odor, heavy rainbow Black-stained Clayey SILT, soft, wet, strong MGP-type odor.												
- 15 - 15 - 15 - 8 14-16 2.0 2 2 2 4 60.2 - 2 - 2 - 4 - - - - - - - - - - - - -									Black-stained fine SAND, loose, wet, strong MGP-type odor, l rainbow sheen, little to some gold oily NAPL. Black-stained Clayey SILT, soft, medium plasticity, wet, mode type odor, little to trace rainbow sheen, trace gold oily NAPL.			-
	LASLA								Remarks: NA = Not Applicable/Available; bo sea level.	gs = below g	ground surfa	ace; AMSL = above mean

Client: Niagara Mohawk, A National Grid Company Site Location: Broadway Street Schenectady, NY

Borehole Depth: 26' below grade

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		Well/Boring Construction
					2					Black-stained Clayey SILT, soft, medium plasticity, wet, moderate MGP- type odor.		
-	-	9	16-18	1.4	2 2 3	4	20.5			No odor or staining below 18' bgs.		-
2	- 10	10	18-20	0.9	1 1 1	2	17.9					Borehole tremied with cement- bentonite grout to
- 20					1			-				grade. –
-	-	11	20-22	1.2	1 2	3	16.2			Brown fine SAND and SILT, soft, wet.		-
F					1				2	Brown Peaty Clayey SILT, trace fine Sand and Wood, soft, wet.	-	-
-	-	12	22-24	0.8	2 2	4	12.0		77 77 77 77	,,,,,,		-
- 2	.05				3 2				>>⊂ >>⊂	Fine Sand laminations (1/8" thick) grading to fine Sand layers (1/2" - 1"		-
- 25	-				3				د حد	thick) with depth.		
	_	13	24-26	1.2	3 4	6	13.1			Gray fine SAND, loose, wet.		
-	_											-
-	-											-
	200 -											-
- 30	-											_
-	_											-
	_											-
1	.95 -											-
- 35	_											_
	_											
					З			®		Remarks: NA = Not Applicable/Available; bgs = below g sea level.	ground sur	face; AMSL = above mean
					tists,							
Proie			044				T			ockware\looplot2001\loofiles\36657\BroadwayWELLS new.	1 -14	Page: 2 of 2

Date Sta Drilling (Driller's Drilling M Bit Size: Auger Si Rig Type Sampling	Comp Nam Metho NA ze: : IR	pany: e: D od: I 3 1/4' A200	: Pai oug T Hollo ' ' Truc	rratt-\ Thom w Ste	na em A ount	uger	'n		Northing: 1447182.9 Easting: 639196.9 Casing Elevation: NA Borehole Depth: 24' below grade Surface Elevation: 227.6' AMSL Geologist: Kristina Gross	Location:	agara Mol National G	hawk, Grid Company y Street
DEPTH ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description			Well/Boring Construction
230 -	-											
-	1	0-2	1.5	- 7 8 5	NA	13.9	-		ASPHALT. Black-stained fine SAND, trace fine Gravel, medium dense, d motor oil-type odor. Some Silt.	ry, strong		
225 -	2	2-4	1.1	3 4 5 5	9	101	-					Borehole tremied with cement- bentonite grout to grade.
	3	4-6	1.8	1 1 1 1	2	98.0	-		Black-stained SILT, little fine Sand, very soft, moist, strong m odor, some rainbow sheen, oily gold NAPL from 4.6' - 4.8' bg			-
- - 220 -	4	6-8	2.0	2 2 2 2	4	833	-		Black-stained Clayey SILT, soft, moist to wet, strong motor oi some rainbow sheen and oily gold NAPL.	I-type odor,		-
- - - 10	5	8-10	2.0	2 2 2 3	4	629	-		Black stained SILT and fine SAND, with fine Sand lamination thick), strong motor oil-type odor, some rainbow sheen and o NAPL. Brown SILT, trace roots, soft to medium stiff, wet, moderate r odor, some black staining, oily gold NAPL on exterior of samp above.	notor oil-type		-
- - -	6	10-12	0.8	1 1 1 2	2	297	-		Brown Clayey SILT, soft, wet, moderate motor oil-type odor, staining, oily gold NAPL on exterior of sample likely from abo Brown SILT, dense, stiff, moist to dry, no odor/staining/sheen Black-stained fine SAND, loose, wet, strong motor oil-type od	ve.		-
215 -	7	12-14	2.0	2 2 2 2	4	319			strong rainbow sheen and oily gold NAPL. Black-stained fine SAND and SILT, loose, wet, strong motor of some oily gold NAPL. Black-stained fine SAND, loose, wet, strong motor oil-type of gold NAPL.	bil-type odor,		-
- 15 -	8	14-16	1.6	1 1 1 1	2	97.0			Grayish-brown SILT, soft, wet, strong motor oil-type odor, sor NAPL on exterior of sample likely from above. Layer of black SAND with strong motor oil-type odor and some oily gold NAI - 14.7' bgs.	-stained fine PL from 14.6		-
							®		Remarks: NA = Not Applicable/Available; bg sea level; WOH = Weight of Han	gs = below g nmer.	round su	rtace; AMSL = above mean
		ND, ers, s										

Project: 36657.011 Data File: BB-150.dat Client: Niagara Mohawk, A National Grid Company Site Location:

Broadway Street Schenectady, NY

Borehole Depth: 24' below grade

рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		Well/Boring Construction
	-				WOH/					Black-stained fine SAND, loose, wet, strong motor oil-type odor, some oily gold NAPL.		
-		9	16-18	1.4	2'	NA	86.2			Brown SILT, soft, wet, strong motor oil-type odor.		
	210 -				-					Brown fine SAND and SILT, soft, wet, strong motor oil-type odor, trace black staining, trace oily gold NAPL.		
-					3					Brown SILT, soft, wet, strong motor oil-type odor.		Borehole tremied with cement-
_	-	10	10.00	10	2	2	78.9			Black-stained fine SAND, little Silt, loose, wet, strong motor oil-type odor,		bentonite grout to grade.
	_	10	18-20	1.2	1	3	78.9			some oily gold NAPL.		
- 20)				1					Gray fine SAND and SILT, soft, wet, strong motor oil-type odor, little black		-
	_				2					staining, little oily gold NAPL.		
_		11	20-22	0.9	2	2	79.0					
-					3							
	205 -				3					Gray fine SAND, loose to medium dense, wet, strong motor oil-type odor, no staining/sheen/NAPL.		
-		12	22-24	2.0	3 5	8	80.0					
	_				6							
- 25	_											_
20	, 											
-												-
	_											
-												-
_	200 -											-
	_											
-												-
- 30												_
50												
_												-
	_											
-	105											-
-	195 -											-
	_											
-												-
- 35	_											_
55	_											
Ī										Demostres MA Met Anglis 11 (A 1911)		-
			8		3			®	,	Remarks: NA = Not Applicable/Available; bgs = below g sea level; WOH = Weight of Hammer.	round surfa	ace; AMSL = above mean
	BLAS				JCK tists,							
	engi	ilee	13, 5		11313,	ecc	non	11315	·			

Appendix B

Monitoring Well Construction Logs

Dri Dri Dri Bit Au Rig	te Sta Iling (Iler's Iling N Size: ger Si ger Si J Type mpling	Com Nam Meth 4-1/4 ize:	bany : e: Jo od: I 4" 4-1/4 ·8300	: Pai be Pe R-83 " Holl : 2"	ratt \ ercy 00 low S	Stem	Auge		0e	Northing: 1447039.9 Easting: 639310.1 Casing Elevation: 226.61' AMSL Borehole Depth: 22' below grade Surface Elevation: 226.87' AMSL Geologist: Jennifer Sandorf	Well/Borin Client: Nia A I Location:	agara M Nationa	1oh I Gi way	aw rid [,] St	k, Coi ree	mpany t	,	
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description						/ell/Bo onstrue	•	
-	-	-															8" Flush Moun Curb Box and Locking J-Plug	2".
-	- 225 -	1	0-2	0.5	NA	NA	NA			ASPHALT							⁻ Concrete Pad	-
-	- 223	2	2-4	0.6	NA	NA	NA	-		Brown fine to medium SAND, little Silt and medium to coarse red Brick fragments, moderately loose to moderately dense, moist to wet (probably from rainfall).	e Gravel, trace slight odor,						_ Cement-Bento Grout (0.5' - 6. bgs)	
5	-	3	4-6	0.2	NA	NA	NA			Trace medium to coarse Gravel, moderately loose, wet below	w 4.0' bgs.			_			⁻ 2" Sch. 40 PV(Riser (0.2' - 10 bgs)	
-	220 -	4	6-8	1.1	NA	NA	NA			Dark gray fine to medium SAND, little to some Silt, trace me coarse Gravel and Cinders, slightly plastic, moderately loose		-			_		_ Hydrated Bent chip seal (6.0' 8.0' bgs)	
-										Brown SILTY CLAY, trace fine Sand, moderately soft, very p	lastic.							-
ŀ	-	5	8-10	0.9	NA	NA	NA			Brown medium SAND, little Silt moderately loose, wet.								
- 10	, -							-		With Clay lens from 10.3' - 10.5' bgs.								_
	- 215 -	6	10-12	1.5	NA	NA	NA										Grade #1 Silica - Sand Pack (8.0 22.8' bgs))' -
-	-	7	12-14	1.3	NA	NA	NA			Brown fine to medium SAND, little Silt, moderately loose, we coarse angular Gravel.	et, trace						2" 0.020 Slot S 40 PVC Screet (10.8' - 20.8' by	n
ŀ	-	-						-		Tan-gray SILTY CLAY, very soft and plastic.								
- 15	; -	9	14-16	1.2	NA	NA	NA			איזער אוויס גע איזער אווער אווויס אוויעראט אווויס אוויס א								_
			ND, ers, se						<u> </u>	Remarks: NA = Not Applicable/Available; b sea level. PID unavailable due to rain and l		-	sur	fac	e; A	AMSL :	= above mea	an

Client: Niagara Mohawk, A National Grid Company Site Location: Broadway Street

Broadway Street Schenectady, NY

Borehole Depth: 22' below grade

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic Description		Well/Boring Construction
_ 2	210 -	10	16-18	1.1	NA	NA	NA			Grayish-brown	nedium SAND, little Silt, moderately loose. from 16.0' -16.4' bgs. b Brown from 16.4' - 17.1' bgs.		
	-	11	18-20	1.1	NA	NA	NA			Brown fine to m	nedium SAND, little to trace Silt, moderately loose	ə, wet.	2" 0.020 Slot Sch. 40 PVC Screen (10.8' - 20.8' bgs) Grade #1 Silica Sand Pack (8.0'
- 20	- 205	12	20-22	1.5	NA	NA	NA						22.8 bgs)
-													
- 25	-												-
_ 2	200 -												-
-	-												-
- 30	- 95												-
	-												-
- 35	-												-
	BLAS									Remarks:	NA = Not Applicable/Available; bgs sea level. PID unavailable due to rain and hig		d surface; AMSL = above mean

Date Star Drilling C Driller's N Drilling N Bit Size: Auger Siz Rig Type Sampling	Nam Nam Aeth 4 1/4 ze: ; CN	pany: e: la od: l 4" 4 1/4' ME 75	Pa n Gr Hollo	rratt-V asse w Ste A	Volfi em A	uger			Northing: 1447049.0 Easting: 639302.8 Casing Elevation: 226.54' AMSL Borehole Depth: 90' below grade Surface Elevation: 226.73' AMSL Geologist: Jason C. Sents	Location: Br	ara Mohav lional Gric	wk, I Company Street
DEPTH ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description			Well/Boring Construction
												B* Flush Mount Curti Box and 2* Locking J-Plug
				•				20220	ASPHALT		B.	Concrete Pad
	1	0-2	0.7	9	15	0.0			Black fine SAND, little Sill, trace Brick and Cinders, frozen. [FILL]		
225 -	-			3	_	-			Brown grading to black fine to medium SAND, trace Brick, lo	ose, moist.	A	
-	2	24	1.5	5 6 5	11	0.0			[FILL]			Cement-Bentonite Grout (1.0' - 71' bgs)
				4					No Recovery.		B.	2* ID Sch. 40 PVC
-5	3	4-6	0.0	6 1	7	0.0					1	Riser (0.2' - 75' bgs)
220 -	4	6-8	1,1	1 3 1 1	2	0.0			Gray fine SAND, trace Silt, loose, wet.			
				2 WOH					Gray medium SAND, trace fine and coarse Sand, trace Silt,	cose, wet.	И	4
- 10	5	8-10	0.5	WOH 1 1	NA	0.0						
-	6	10-12	2.0	WOH WOH 1	NA	0.0	1		Gray-brown medium SAND, trace fine Sand, loose, wet.			
215 -	7	12-14	1.5	1 1 1	2	0.0			Gray-brown Clayey SiLT, soft, wet, odor present.			
-				1					wrogrwinieriograp ok 1, soit, wei, udor present,		E	8
- 15	8	14-16	0.9	1 1 1	2	0.1			Gray fine to medium SAND, loose, wet, odor present.			-
BLAS	and the second second			and the second					Remarks: NA = Not Applicable/Available; H surface; WOH = Weight of Hamn		P1	Pi r; bgs = below ground Page: 1 of 5

Data File: MW-13T.dat

Date: 3/23/05

Niagara Mohawk,

A National Grid Company

Site Location:

Broadway Street Schenectady, NY Borehole Depth: 90' below grade

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
2	- 01	9	16-18	2.0	3 2 2 3	4	0.0			Gray fine to medium SAND, loose, wet, odor present. 0.5" thick Silt stringer present at 17.7" bgs.	
- 20	1. A.	10	18-20	1,2	4 3 3	6	0.0				
	- 05 -	11	20-22	2.0	2 2 3 2	5	0.0			Root at 20.5-20.6' bgs.	Cement-Bentonite Grout (1.0' - 71' bgs)
	21 A.A.	12	22-24	2,0	4 4 8 7	12	0.0			Brown SILT and CLAY, interbedded fine Sand, medium plastic, wet.	2' 1D Sch. 40 PVC Riser (0.2' - 75' bgs)
					6			1		Gray fine to medium SAND, loose, wet.	
- 25		13	24-26	2.0	5	9	0,0			Brown SiLT and CLAY, trace fine Sand, medium plastic, trace rootlets.	- 11
2	- 00	14	26-28	1.0	3 3 3 3 3	6	0.0			Black SILT/CLAY/WOOD, peal-like, medium plastic, trace fine Sand.	
- 30	10 - 100	15	28-30	1.5	4 1 3 2	4	0.0			Dark gray to black fine SAND and SILT, trace medium Sand, loose.	
	- 95	16	30-32	2,0	1 WOH WOH 2	NA	0.0			Gray-brown fine SAND, loose, wet, odor present. Running Sand observed.	
	1. 1.	17	32-34	2.0	5 4 4	8	0.0				
- 35		18	34-36	1.9	4 4 3 6	7	0.0			Brown-gray fine and medium SAND, trace coarse Sand, loose, wet.	
										Remarks: NA = Not Applicable/Available; HSA = Hollow surface; WOH = Weight of Hammer.	Stem Auger; bgs = below ground

Project: 36657.011 Data File: MW-13T.dat Template: j:\rockware\logplot2001\logfiles\36657\BroadwayWELLS_NEW.ldf Date: 3/23/05

Page: 2 of 5

Niagara Mohawk, A National Grid Company

Site Location:

Broadway Street Schenectady, NY

Well/Boring ID: MW-13T

Borehole Depth: 90' below grade

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
19	< L.	19	35-38	2.0	5 6 7 6	13	0.0			Gray fine and medium SAND, trace coarse Sand and well-rounded Gravel, loose, wet.	
	1 1	20	38-40	1.2	4 4 6	8	0.0			Gray medium and coarse SAND, little fine Sand, loose, wet.	
- 40 18:	- 14	21	40-42	1.1	2 4 6	10	0.0			Gray medium to coarse SAND and fine GRAVEL, trace fine Sand, loose, wet.	Cement-Bentonite Grout (1.0° - 71' bgs)
	-	22	42-44	1.5	4 3 5 3 5	8	0.0				2" ID Sch. 40 PVC Riser (0.2' - 75' bgs)
- 45	-	23	44-46	2,0	4 4 6 8	10	0,0			Gray SILT and CLAY, medium plastic.	
18	1 T	24	46-48	1.0	7 8 8 WOH	16	0.0				
- 50		25	48-50	1.2	6 7 7 8	14	0.0				
17!		26	50-52	0.8	8 7 15 16	22	0.0				
	-	27	52-54	2.0	7 7 9 8	16	0.0			Gray Clayey SILT, still, highly plastic, wet on outside of sample and damp in interior.	
- 55		28	54-56	2.0	4 6 10 8	16	0.0			Wet throughout.	
										Remarks: NA = Not Applicable/Available; HSA = Hollow St surface; WOH = Weight of Hammer.	em Auger; bgs = below ground

Project: 36657.011 Data File: MW-13T.dat

Template: j:\rockware\logplot2001\logfiles\36657\BroadwayWELLS_NEW.ldf Date: 3/23/05

Niagara Mohawk, A National Grid Company

Site Location:

Broadway Street Schenectady, NY

Well/Boring ID: MW-13T

Borehole Depth: 90' below grade

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Bon Construct	S.W.
1	70 -	29	56-58	1.3	8 11 15 16	26	0.0			Gray Clayey SILT, stiff, plastic, wet throughout.		
- 60	10 E	30	58-60	1.1	10 11 16 17	27	0.0					
	-	31	60-62	2.0	10 18 19 19	35	0.0			Gray SILT, trace sub-rounded Gravel, medium dense, wet.		Cement-Bentonite Grout (1.0' - 71' bgs)
		32	62-64	2.0	11 12 12 12	24	0.0					— 2" ID Sch, 40 PVC Riser (0.2' - 75' bgs)
- 65	1. 1.	33	64-66	0.6	10 9 8 9	17	0.0			Gray Clayey SILT, trace fine Sand and fine to coarse Gravel, medium plastic, wet. [TILL]		-
1	60 -	34	66-68	1.3	10 10 10 10	20	0.0			Gray CLAY and SILT, little fine to coarse Sand and fine to coarse Gravel, stiff, wet. [TILL]		
- 70	-	35	68-70	1.2	NA	NA	0.0			Shelby Tube collected.		
	-	36	70-72	1,4	7 6 8 9	14	0.0			Dark gray CLAY and SILT, little fine to coarse Gravel, stiff, damp. Gravel pieces comprised of shale, striae on exterior of gravel. [TILL]		-
		37	72-74	1.0	8 10 8 14	18	0.0				99999	 Hydrated bentonite chip seal (71.0'- 73.0' bgs)
- 75	-	38	74-76	0.4	12 14 12 19	26	0.0					- Grade #0 Silca Sand Pack (73.0' - 85.5' bgs) - 2" ID Sch. 40 0.010 Siot PVC Screen (75.0' - 85.0' bgs)
	en g	gin				o í e	ntl	sts		Remarks: NA = Not Applicable/Available; HSA = Hollow surface; WOH = Weight of Hammer.		Page: 4 of 5

Data File: MW-13T.dat

BroadwayWELLS_NEW.ldf Date: 3/23/05 Jġ

Niagara Mohawk, A National Grid Company

Site Location:

Broadway Street Schenectady, NY

Well/Boring ID: MW-13T

Borehole Depth: 90' below grade

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
250		39	76-78	0.4	12 10 22 21	32	0.0			Dark gray CLAY and SILT, little tine to coarse Gravel, stiff, damp. Gravel pieces composed of shale, striae on exterior of gravel.	
	-	40	78-80	0.1	50/ 0.2	NA	0.0		0000	Possible Boulder, shattered cobble in shoe. Split spoon deformed and destroyed during drive. Auger to 80' bgs. [TILL]	2" ID Sch. 40 0.011 Slot PVC Screen (75.0' - 85.0' bgs)
- 80 14!		41	80-82	0.6	5 6 12 18	18	0.0			Dark gray CLAY and SILT, itile fine to coarse Gravel, stiff, damp. Gravel pieces comprised of shale, striae on exterior of gravel. [TILL]	Grade #0 Silica Sand Pack (73.0' - 85.5' bgs)
		42	82-84	1,2	14 15 15 14	30	0.0				2" ID Sch. 40 0.01 Slot PVC Screen (75.0" - 65.0" bgs) Grade #0 Silica Sand Pack (73.0" - 85.5" bgs)
- 85		43	84-86	1,0	21 24 36 50	60	0.0			Very stiff to 88° bgs.	
140		44	86-88	0.2	50/ 0.4	NA	0.0				
90	-	45	88-90	0.0	50/ 0.1 -	NA	NA			No Recovery.	Hydrated bentonite chip seal (85.5'- 90.0' bgs)
135											
95	1 1 1										
										Remarks: NA = Not Applicable/Available; HSA = Hollow S surface; WOH = Weight of Hammer.	tem Auger; bgs = below ground

Project: 36657.011 Data File: MW-13T.dat

Template: j:\rockware\logplot2001\logfiles\36657\BroadwayWELLS_NEW.ldf Date: 3/23/05

Page: 5 of 5

Date Sta Drilling (Driller's Drilling M Bit Size: Auger Si Rig Type Sampling	Nam Meth 4 1/ ze: : Cl	pany: le: la od: 4"/3 4 1/4 ME 75	Pa In Gr Hollo 7/8* "HS	rratt- asse w St roller A	Wolff em A bit	f uger		Rota	Northing: 1447544.8 Easting: 639522.0 Casing Elevation: 225.60' AMSL Borehole Depth: 84' below grade Surface Elevation: 226.01' AMSL Geologist: Jason C. Sents	Location: Broady	lohawk, I Grid Company
DEPTH ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		Well/Boring Construction
1											6* Flush Mount Curb Box and 2*
0			_		-	-			ASPHALT	B	Locking J-Plug
225 -	1	0-2	0.2	5 5 5	10	0.0			Brown-orange fine to coarse SAND, trace Crushed Stone, loc [FILL]		Sand Drain
	2	2-4	1,1	4 3 3 2	6	0.0					Cement-Bentonite Grout (1.0' - 71'
5 -	з	4-6	0,5	5 4 3 2	7	0.0					2* ID Sch. 40 PVC Riser (0.2' - 75' bgs)
220 -	4	6-8	2.0	4 3 1 2	4	0.0			Orange-brown from 6-6.5' bgs. Gray from 6.5-7.8' bgs. Black-stained from 7.8-8' bgs.		
	5	8-10	1.7	1	2	0.0			Dark gray SILT and CLAY, soft, damp to wet.		
10 - 215 -	6	10-12	1.0	1 1 1 1 1 1	2	0.0			Trace rootlets, trace black staining, very soft, wet.		
	7	12-14	1.0	wон/ 2'	NA	0.0					
15 -	8	14-16	1.0	WOH/	NA	0.0			Change to mud rotary set-up. No rootlets present.		

Project: 36657.011 Data File: MW-19T.dat Template: j:\rockware\logplot2001\logfiles\36657\BroadwayWELLS_NEW.ldf Date: 3/28/05 Page: 1 of 5

Niagara Mohawk, A National Grid Company

Broadway Street Schenectady, NY

Well/Boring ID: MW-19T

Borehole Depth: 84' below grade

DEPTH ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	9	16-18	1.5	WOH 1.5 - 2	NA	0.0			Dark gray SILT and CLAY, soft, damp to wet.	
	10	18-20	2.0	WOH/ 1* 1	NA	0.0		EEE CONTRACT	Dark gray fine SAND and SILT, with alternating laminae of organic matter from 19.5-20' bgs, very loose/soft, damp to wet, organic/peat-like odor present.	
20 - 205 -	11	20-22	2.0	2 4 4 5	8	0.0			Dark gray fine SAND, trace medium Sand, trace Silt, laminae of organic matter from 21.2-22' bgs, some fine sand are light gray to white, loose, damp to wet.	Cement-Bentonite Grout (1.0' - 71' bgs)
	12	22-24	1.2	2 2 3 3	5	0.0			Dark gray fine to medium SAND, loose, wet.	2" ID Sch. 40 PVC Riser (0.2" - 75' bgs)
- 25 - 200 -	13	24-26	2.0	4 4 4 4	8	0.0				
- 200	14	26-28	1,0	3544	9	0.0				
-	15	28-30	1.6	2 4 4 3	8	0.0				
195 -	16	30-32	0.9	3 3 3	6	0.0			Dark gray fine to medium SAND, Irace coarse Sand, loose, wet.	
	17	32-34	1.0	4 3 4 4	7	0.0				
35 -	18	34-36	1.0	1 1 2 3	3	0.0				
BLAS								F	Remarks: NA = Not Applicable/Available; HSA = Hollow S surface; WOH = Weight of Hammer.	tem Auger; bgs = below ground

Project: 36657.011 Data File: MW-19T.dat

Template: j:/vockware/logplot2001/logfiles/36657/Broadway/WELLS_NEW.ldf Date: 3/28/05

Page: 2 of 5

Niagara Mohawk, A National Grid Company

Site Location:

Broadway Street Schenectady, NY

Well/Boring ID: MW-19T

Borehole Depth: 84' below grade

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
		19	36-38	2.0	3434	7	0.0			Dark gray fine to medium SAND, trace coarse Sand, loose, wet.	
- 40		20	38-40	1.0	3 2 2 4	4	0.0				
	85 -	21	40-42	1.6	4 4 4 4	8	0.0			Dark gray fine to coarse SAND, trace subrounded fine Gravel, loose, wet.	Cement-Bentonite Grout (1.0' - 71' bgs)
	4	22	42-44	1,0	1 2 4 4	6	0.0		Ö.	Dark gray fine to coarse SAND and GRAVEL, toose, wet. Dark gray Clayey SILT, soft, medium plastic, wet.	2" ID Sch. 40 PVC Föser (0.2" - 75" bgs)
- 45	1	23	44-46	0.3	4 6 4 7	10	0.0			Dark gray CLAY and SILT, medium plastic, wet.	-
1	80 -	24	46-48	1.5	12 12 17 14	29	NA			Dark gray SiLT, stiff, wet.	
- 50		25	48-50	1.7	10 7 10 12	17	0.0				
	75 -	26	50-52	1.5	4 4 4 8	8	0.0				
		27	52-54	1.7	8 8 10 11	18	0.0				
- 55	-	28	54-56	1.9	8 5 8 9	13	0.0				
								_	F	Remarks: NA = Not Applicable/Available; HSA = Hollow surface; WOH = Weight of Hammer.	Stem Auger; bgs = below ground

Project: 36657.011 Data File: MW-19T.dat

Template: j:\rockware\logplot2001\logfiles\36657\BroadwayWELLS_NEW.ldf Date: 3/28/05

Page: 3 of 5

Niagara Mohawk, A National Grid Company

Site Location:

Broadway Street Schenectady, NY

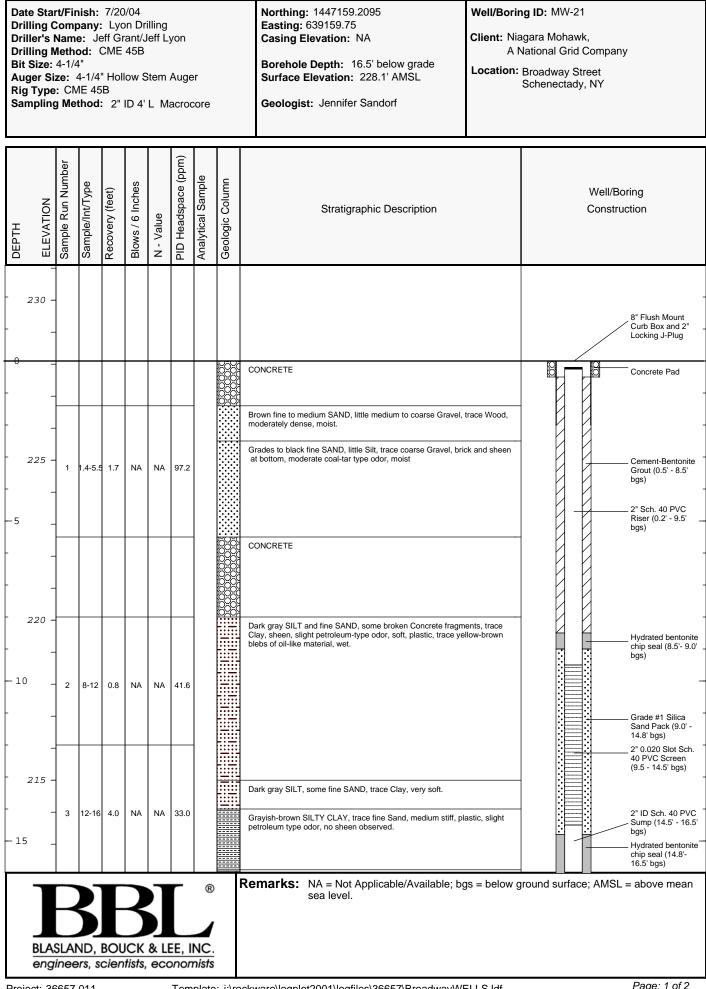
Borehole Depth: 84' below grade

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		ell/Boring
	-	29	56-58	1.3	10 9 8 9	17	0.0			Dark gray SILT, stiff, wet.		
- 60		30	58-60	1.5	9 7 7 6	14	0.0					
16	5 -	31	60-62	1.7	10 9 9 11	18	0.0					Cement-Bentonite Grout (1.0' - 71' bgs)
	-	32	62-64	2.0	9 8 7 8	15	0.0					2* ID Sch, 40 PVC Riser (0.2* - 75' bgs)
- 65 16	-	33	64-66	0.75	NA	NA	NA			Shelby Tube		
10	-	34	66-68	2.0	9 1 1 6	2	0,0			Dark gray Silty CLAY, little fine to coarse Sand, little fine Gravel, soft, wet. [TILL]		
70	-	35	68-70	1.0	2 6 8 8	14	0.0				-	Hydrated bentonite chip seal (71.0'- 73.0' bgs)
15	5 -	36	70-72	1.8	6 2 19 19	21	0.0			Dark gray fine SAND, loose, wet. [TILL] Dark gray SILT and CLAY, little fine to coarse Sand, trace Gravel, soft, wet. Trace shattered Cobble 71.7-71.8 bos. [TILL]		
	-	37	72-74	2.0	11 7 10 12	17	0.0			Fine to coarse SAND and GRAVEL, trace shattered Cobbie. Borehole		2* ID Sch. 40 0.010 Stot PVC Screen (71.2 - 61.2 bgs)
75	-	38	74-76	1,0	11 8 20 14	28	0.0			caved in. [TILL] Dark gray SILT and CLAY, little fine to coarse Sand, trace Gravel, stiff, wet. [TILL]		-
	ASI				3 CK		E, IN			Remarks: NA = Not Applicable/Available; HSA = Hollow surface; WOH = Weight of Hammer.	Stem Auger;	bgs = below ground

Data File: MW-19T.dat

Date: 3/28/05

Niagara Mohawk, A National Grid Company


Site Location:

Broadway Street Schenectady, NY

Well/Boring ID: MW-19T

Borehole Depth: 84' below grade

DEPTH ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
	39	76-78	2.0	10 11 12 11	23	0.0			Dark gray SILT and CLAY, little fine to coarse Sand, trace Gravel, stiff, wet,	2* ID Sch. 40 0.01 Slot PVC Screen (71.2 - 81.2' bgs)
	40	78-80	0.2	10 16 19 20	35	0.0			Dark grey SILT and CLAY, little fine to coarse Sand, trace Gravel, stiff, wet. Borehole caved in: [TILL]	
- 80 -	41	80-82	1.0	42 50/ 0.4	NA	0.0				Grøde #0 Silica Sand Pack (69.5' - 81.2' bgs)
	42	82-84	1.0	10 12 38 46	50	0.0			Dark gray SILT and CLAY, little fine to coarse Sand, trace Gravel, wat, Borehole caved in. [TILL]	Hole Cave-In (81.2)
- 140										
90 -										
-										
95 -										
130 -										
BLAS	R	3	F	3			1	R	<pre>temarks: NA = Not Applicable/Available; HSA = Hollow St surface; WOH = Weight of Hammer.</pre>	em Auger; bgs = below ground

Project: 36657.011 Data File: MW-22.dat Client: Niagara Mohawk, A National Grid Company Site Location: Broadway Street Schenectady, NY

Borehole Depth: 16.5' below grade

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction		
	_	3	12-16	4.0	NA	NA	33.0			Grayish-brown SILTY CLAY, trace fine Sand, medium siff, plastic, slight petroleum type odor, no sheen observed.	Hydrated bentonite chip seal (14.8'- 16.5' bgs)		
	- 210 -										2" ID Sch. 40 PVC Sump (14.5' - 16.5' bgs)		
- 20	-												
-	- 205 -										-		
- - 25	-										_		
	- - 200 -										-		
- 30	-										-		
	- - 195 -												
- 35	_												
	BLASLAND, BOUCK & LEE, INC. engineers, scientists, economists Project: 36657.011 Remarks: NA = Not Applicable/Available; bgs = below ground surface; AMSL = above mean sea level.												

Project: 36657.011 Data File: MW-22.dat

Dr Dr Dr Bi Au Ri	te Sta illing (iller's illing M Size: ger Si g Type mpling	Comp Nam Meth 4-1/4 ze: cN	pany: e: Je od: 0 4" 4-1/4 //E 45	: Lyc eff Gr CME " Hol 5B	on Dr rant/J 45B low S	leff L <u>i</u> Stem	Auge			Northing: 1447353.6769 Easting: 639029.4687 Casing Elevation: NA Borehole Depth: 14.0' below grade Surface Elevation: 229' AMSL Geologist: Jennifer Sandorf	Easting: 639029.4687Casing Elevation: NABorehole Depth: 14.0' below gradeSurface Elevation: 229' AMSLClient: Niagara Mohawk, A National Grid CompanyLocation: Broadway Street Schenectady, NY			ny
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description			Well/E Const	Boring ruction
-	- 230 -	-												8" Flush Mount Curb Box and 2" Locking J-Plug
-	-	1	0-2	0.9	1 3 7 13	10	0.0	_		Dark brown to black fine to medium SAND, little fine to media loose, dry.	um Gravel,			Concrete Pad
-	- 225 -	2	2-4	1.1	3 5 4 4	9	0.0	_		Light brown fine to medium SAND, little Silt, trace natural Org dry. Grades to some Silt from 4.0' - 6.0' bgs.	ganics, loose,			bgs) Hydrated bentonite chip seal (2.0'- 4.0' bgs)
- 5	-	3	4-6	1.5	3 4 3 3	7	0.0	_		Little Silt from 6.0' to 7.3' bgs.				— 2" Sch. 40 PVC Riser (0.2' - 6.0' bgs) Grade #1 Silica
-	-	4	6-8	1.9	4 6 4 4 2	10	0.0	-		Color change to dark brown-black from 7.3' - 7.9' bgs. Low plasticity from 8.0' - 8.8' bgs				Sand Pack (4.0' - 11.0' bgs) -
- 1	<i>220 -</i> 0 -	5	8-10	1.9	2 3 2	5	156	_		Black fine SAND, little medium Sand and Silt, strong petroleu wet. Sheen present below 10' bgs.			2" 0.020 Slot Sch. 40 PVC Screen (6.0 - 11.0' bgs)	
-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									Black CLAYEY SILT, plastic, moderate odor, little sheen, gra bottom of spoon. Little to some sheen below 12.0' bgs.	y-brown at			Bentonite chip seal (11' - 13' bgs) 2" ID Sch. 40 PVC
-	7 12-14 2.0 4 8 39.9 - 215 6 6													Sump (11.0' - 13.0' bgs) -
- 15 -														_
	BLA		ND, ers, s							Remarks: NA = Not Applicable/Available; b sea level.	gs = below (ground surf	ace; AMS	L = above mean

Drill Drill Drill Bit Aug Rig	e Star ling C ler's I ling M Size: jer Si Type npling	Comp Nam 4eth 4-1/4 ze: cN	pany e: Je od: 4 4" 4-1/4 //E 45	: Lyc eff G CME " Hol 5B	on Dr rant/J 45B low S	leff L	Auge			Northing: 1447329.9977 Easting: 639300.2133 Casing Elevation: NA Borehole Depth: 13' below grade Surface Elevation: 227' AMSL Geologist: Jennifer Sandorf	asting: 639300.2133 Client: Niagara Mohawk, A National Grid Company orehole Depth: 13' below grade Location: Broadway Street urface Elevation: 227' AMSL Schenectady, NY		
DEPTH	DEPTH ELEVATION Sample Run Number Sample/Int/Type Recovery (feet) Blows / 6 Inches N - Value N - Value PID Headspace (ppm) Analytical Sample Geologic Column									Stratigraphic Description		Well/Boring Construction	
-	-	-										8" Flush Mount Curb Box and 2" Locking J-Plug	
	_				NA 9					ASPHALT. Gray-brown fine to medium SAND, trace medium to coarse (Gravel and red	Concrete Pad	
		1	0.5-2	0.7	12 18	21	623			Brick, slight odor, loose, dry.		Cement-Bentonite Grout (0.5' - 2.0'	
-	- 225	2	2-4	1.2	39 33 12 9	45	1683			Grayish-brown fine to medium SAND, little to some medium Gravel, loose, moderate odor, dry to moist.	to coarse	→ Biost (0.3 * 2.0 → bgs) → Hydrated bentonite chip seal (2.0'- 3.0' bgs) → 2" Sch. 40 PVC Riser (0.2' - 4.0'	
5	-	3	4-6	1.6	4 4 3 8	7	1091			Dark gray fine to medium SAND, little Silt, loose, moderate owet.	dor, moist to	- bgs)	
- 2	- 220	4	6-8	1.9	6 2 3 3	5	1605	_		Trace Sheen, wet below 6.0' bgs.		Grade #1 Sliica Sand Pack (3.0' - 9.0' bgs) 2" 0.020 Slot Sch. 40 PVC Screen	
- 10	-	5	8-10	1.2	woн woн woн woн	NA	276			Brown-gray SILT, little fine Sand, cohesive, plastic, slight od 1* thick fine Sand lense at 9.0' bgs.	or, wet.	(4.0 - 9.0' bgs) Bentonite chip Seal (9' - 11.0' bgs)	
-	- 215 -	6	10-12	. 1.8	2 2 2 2 2	4	72.1			Brown-gray CLAYEY SILT, trace fine Sand, cohesive, plastic wet.	e, slight odor,	2" ID Sch. 40 PVC Sump (9.0' - 11.0' bgs)	
- 15	-												
					B JCK otists,			® NC. nists		Remarks: NA = Not Applicable/Available; b sea level; WOH = Weight of Han	gs = below (nmer.	ground surface; AMSL = above mean	

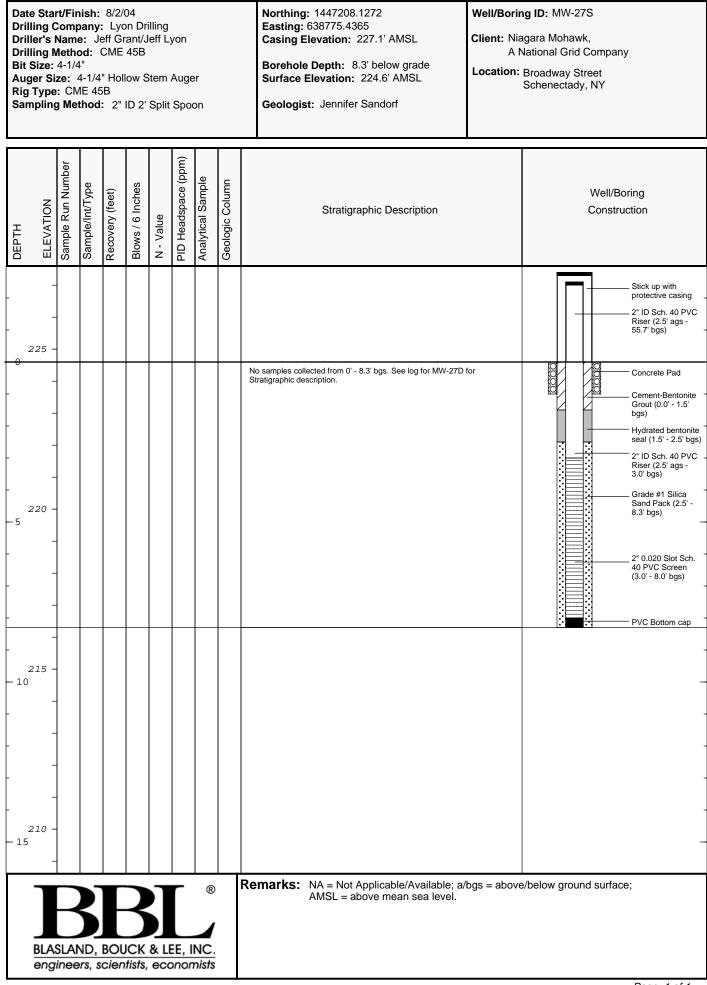
Dril Dril Dril Bit Aug Rig	ling (ler's ling M Size: jer Si Type	Com Nam Meth 4-1/4 ize: a: CN	nish: pany e: Je od: 1 4" 4-1/4 /E 45 thod	: Lyc eff Gi CME " Hol 5B	on Dr rant/J 45B llow S	Jeff L Stem	Auge			Northing: 1447039.0667 Easting: 639263.0581 Casing Elevation: NA Borehole Depth: 18.0' below grade Surface Elevation: 226.9' AMSL Geologist: Jennifer Sandorf	٩A	ng ID: MW-24 agara Mohawk, National Grid Company Broadway Street Schenectady, NY			
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description			Well/E Constr	•	
-	-	-												8" Flush Mount Curb Box and 2" Locking J-Plug	
-	- 225 -	1	0.5-2	0.8	NA 4 7 2	11	70.6		0000	Dark gray fine to coarse SAND and fine to medium GRAVEL, clinker-like material, moderately dense, dry.	trace			— Concrete Pad	
-	- 22	2	2-4	0.4	2 2 2 2 2	4	291		0000	Dark gray fine to coarse SAND and fine to medium GRAVEL, Fill, loose, slight odor, dry to moist.	some Wood				
-5	-	3	4-6	1.1	1 1 2 1	3	53.9			Dark gray to black fine SAND and SILT, 2" thick Sand lens at spoon, trace Wood Fill, low plasticity, sheen present, slight o				bgs) -	
	220 -	4	6-8	2.0	2 3 3 2	6	34.7							Cement-Bentonite Grout (2.0' - 10.9' bgs)	
- 10	-	5	8-10	1.8	woн woн woн woн	NA	0.0	_		2" thick Sand lens of brown-gray Clayey Silt at 9.2' bgs, trace material just above Clayey Silt lens. Brown fine SAND and SILT, some Clay, low plasticity, sheen, odor, wet. Gray brown CLAYEY SILT, little fine Sand, trace odor, mediuu	moderate			-	
-	- 215 -	6	10-12	0.8	WOH 1 1 1	2	0.0			plastic, slight sheen, wet.				Hydrated bentonite chip seal (10.9'- 11.5' bgs)	
-	-	7	12-14	2.0	2 2 3 3	5	0.0			Grayish brown SILTY CLAY, trace fine Sand, medium dense, faint odor, trace sheen, wet.	plastic, very			Grade #1 Silica Sand Pack (11.5' - 15.5' bgs) 2" 0.020 Slot Sch. 40 PVC Screen	
- 15	-	8	14-16	0.8	NA	NA	NA	×		Shelby tube collected from 14' - 16' bgs.				(12.0 - 15.0' bgs) Hydrated bentonite chip backfill (15.5'- 18.0' bgs)	
			ND, ers, s						,	Remarks: NA = Not Applicable/Available; bo sea level.	gs = below g	ground surf	ace; AMSI	L = above mean	

Client: Niagara Mohawk, A National Grid Company Site Location: Broadway Street Schenectady, NY

Well/Boring ID: MW-24

Borehole Depth: 18.0' below grade

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction			
	210 -	9	16-18	1.5	4 4 4 3	8	1.1			Brown fine SAND, some Silt, slightly plastic, faint odor, no sheen present, wet.		-	Hydrated bentonite chip backfill (15.5'- 18.0' bgs) -	
- 20	-												-	
	205 – –												-	
- 25 - -	- 200 - -												-	
- 30 -	-												-	
- 35	195 - - -												-	
	BLASLAND, BOUCK & LEE, INC. engineers, scientists, economists													

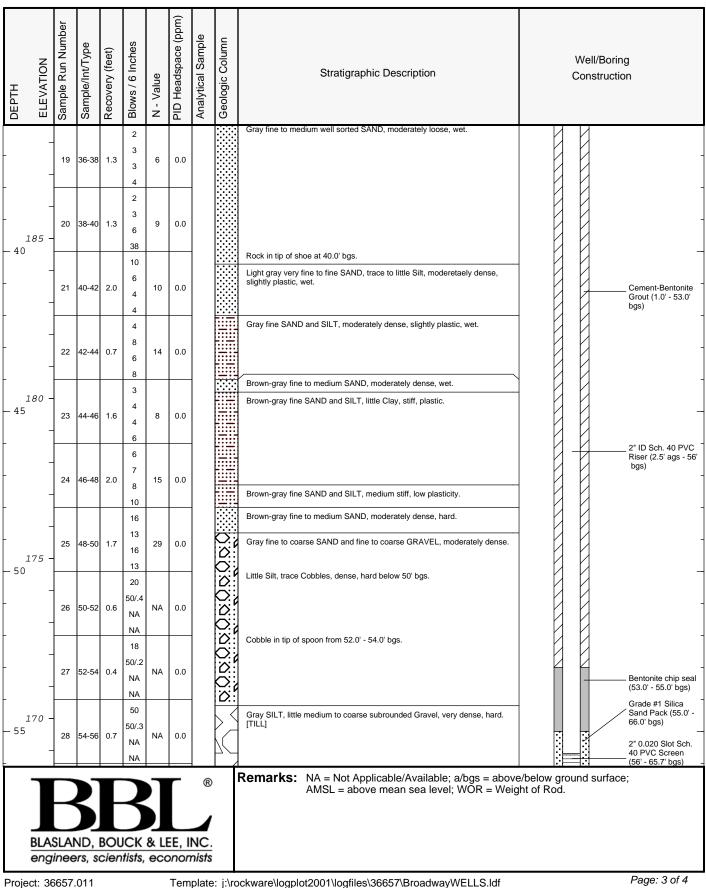

Project: 36657.011 Data File: MW-24.dat

Drill Drill Drill Bit Aug Rig	e Star ling C ler's I ling M Size: jer Si Jer Si Type npling	Comp Nam 4eth 4-1/4 ze: cN	oany: e: Je od: (^{1"} 4-1/4' 1E 45	ELyc eff Gr CME " Holl B	on Dri ant/J 45B Iow S	eff L	Auge			Northing: 1447484.87 Well/Boring ID: MW-25 Easting: 639370.0644 Casing Elevation: NA Borehole Depth: 16' below grade Client: Niagara Mohawk, A National Grid Company Borehole Depth: 16' below grade Location: Broadway Street Surface Elevation: 225.8' AMSL Schenectady, NY		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		Well/Boring Construction
	-	-										8" Flush Mount Curb Box and 2" Locking J-Plug
2	225 -				NA 3					ASPHALT Dark brown fine to medium SAND, little medium to coarse Gr	avel, trace	Concrete Pad
		1	0.5-2	0.3	7	10	NA			Cobble, medium dense.	,	
	-	2	2-4	1.4	7 3 4 2 3	7	NA	-		Some Silt from 2.9' - 3.2' bgs. Color changes to gray, slight odor, from 3.2' - 3.4' bgs.		2" Sch. 40 PVC Riser (0.4' - 11.5' bgs)
-5	-	3	4-6	1.6	2	4	NA			Gray fine to medium SAND, trace Silt.		
	220 - - -	4	6-8	1.8	2 2 1 1 1 1 1 1	2	NA		00000000	Gray medium to coarse SAND and fine to medium GRAVEL, flaky material, moderate odor. Trace Wood Fill, trace sheen from 6.0' - 8.0' bgs.	trace whitish	Cement-Bentonite Grout (1.0' - 10.4' bgs)
	-	5	8-10	2.0	2 2	4	NA			Brownish-gray SILTY CLAY, soft, slight odor, plastic.		
-10	-				2					Stiff from 9.6' - 10.0' bgs.		44.
	215 -	6	10-12	1.3	NA	NA	NA	×		Shelby tube collected from 10' - 12' bgs.		Hydrated bentonite chip seal (10.4'- 10.9' bgs)
	-	7	12-14	2.0	WOR 1 WOR 1	1	NA	-		Brownish-gray SILTY CLAY, little fine Sand, trace natural Org small Cobble, soft, plastic, soft at top of spoon and softer with	ganics, trace a depth.	Grade #1 Silica Sand Pack (10.9' - 14.5' bgs) 2" 0.020 Slot Sch. 40 PVC Screen (11.5 - 14.5' bgs)
- 15	_				WOH WOH							
210 - 8 14-16 1.6 1 NA NA .							NA			Grayish-brown fine to medium SAND, little to some Silt, loose	e, slight odor.	× × Natural collapse × × × (14.5' - 16.0' bgs.)
BBBL BLASLAND, BOUCK & LEE, INC.										Remarks: NA = Not Applicable/Available; bg sea level; WOH = Weight of Ham PID malfunction due to steady rai	mer/Rod.	round surface; AMSL = above mean
			ers, s									
												Page: 1 of 1

Project: 36657.011 Data File: MW-25.dat

Dri Dri Dri Bit Au Riç	te Stal Iling (Iler's I Iling M Size: ger Si ger Si Type mpling	Comp Nam Meth 4-1/4 ze: cN	pany e: Je od: ' 4" 4-1/4 //E 45	: Lyc eff Gr CME " Hol 5B	on Dr rant/J 45B low S	Jeff L	Auge			Northing: 1447092.7671 Easting: 639020.2646 Casing Elevation: NA Borehole Depth: 14' below grade Surface Elevation: 229.1' AMSL Geologist: Jennifer Sandorf	Well/Boring ID: MW-26 Client: Niagara Mohawk, A National Grid Company Location: Broadway Street Schenectady, NY			
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		Well/Boring Construction		
-	- 230 -	-											8" Flush Mount Curb Box and 2" Locking J-Plug	
-	_	1	0.5-2	0.9	NA 24 24 16	48	0.0			ASPHALT. GRAVEL. [FILL] ASPHALT.			Concrete Pad	
-	-	2	2-4	0.8	10 50/.3 NA NA	>50	0.0			Red BRICK fragments, dry.			Cement-Bentonite - Grout (1.0' - 5.0' bgs) - - - 2" Sch. 40 PVC Riser (0.4' - 6.5'	
	- 225	3	4-6	1.5	3 2 9 9	11	0.0	-		Brown fine SAND, little medium Sand, trace Silt and coarse Gr medium dense, moist. Wet from 4.8' - 5.2' bgs.	ravel,		Hydrated bentonite chip seal (5.0' - 6.0' -	
-	-	4	6-8	1.6	7 7 6 5	13	19.8	•		Dark brown fine SAND, some medium Sand, trace coarse sub Gravel, medium dense. Grayish-brown fine SAND, little Silt, medium dense, slight odo			2" 0.020 Slot Sch. 40 PVC Screen (6.5' - 11.5' bgs)	
	- 220 -	5	8-10	1.1	2 6 4 2	10	130	-		Brownish-gray SILT, some fine Sand, medium stiff. Little oil-like material, some sheen, odor, from 8.8' - 9.1' bgs.			Grade #1 Silica Sand Pack (6.0' - 11.5' bgs)	
- 10) _	6	10-12	2.0	1 2 1	3	6.2	-		Trace to little Clay, some odor below 10.2' bgs. Black stained fine to medium SAND, loose. Grayish-brown SILTY CLAY, medium stiff, plastic.			 Bentonite chip seal	
-	-	7	12-14	0.9	1 1 1 1	2	0.0	-		Trace natural Organics form 12.0' - 14.0' bgs.			(11.5' - 14.0' bgs) - Sump (11.5' - 13.5' bgs) -	
- 15 _														
	BLA		B ND, ers, s							Remarks: NA = Not Applicable/Available; bg sea level.	s = below g	, ground surface	; AMSL = above mean	

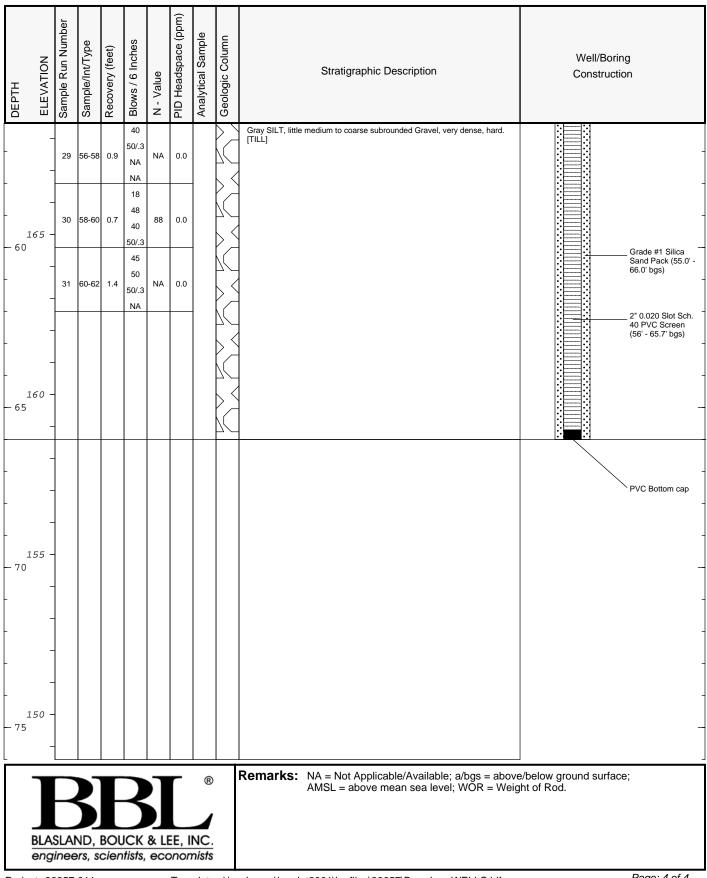
Project: 36657.011 Data File: MW-26.dat


Dr Dr Dr Bi Au Ri	ite Sta illing (iller's illing I t Size: iger Si g Type impling	Com Nam Meth 4-1/4 ize: e: CN	pany e: Je od: ' 4" 4-1/4 //E 45	: Lyc eff Gr CME " Hol 5B	on Dr rant/J 45B low S	illing Jeff Ly Stem	yon Auge			Northing: 1447207.7937 Easting: 638780.811 Casing Elevation: 227.1' AMSL Borehole Depth: 66' below grade Surface Elevation: 224.6' AMSL Geologist: Jennifer Sandorf	Location:	agara Moha National Gr	awk, id Com Street	pany
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description				II/Boring struction
-	- - 225 -	-							ш п					Stick up with protective casing
-	-	1	0-2	1.5	3 3 3	6	0.1			TOPSOIL. Brown to dark brown fine to medium SAND, little Silt, trace Construent Organics.	oncrete and			Concrete Pad
-	-	2	2-4	1.2	4 2 4 3	7	0.0			Trace Coal fragments and coarse subrounded to subangular (at tip of spoon below 2.0' bgs.	Gravel, moist			Cement-Bentonite - Grout (1.0' - 53.0' bgs) -
5	220 -	3	4-6	1.9	3 3 4 2 2	6	0.0	-		Dark brown below 4.0' bgs. Brown fine to medium SAND, loose, moist to wet. Grayish-brown SILT and SAND, little natural Organics, wet.				Riser (2.5' ags - 55.7' bgs) -
-	-	4	6-8	2.0	1 1 2 2	3	0.0			Grayish-brown CLAYEY SILT, little fine Sand, trace natural O medium stiff, wet.	rganics,			-
- 1	- 215 - 0	5	8-10	1.4	1 2 3 3	5	0.0			Grayish-brown SILTY CLAY, stiff, plastic, wet.				-
-	-	6	10-12	1.4	1 2 1 1	3	0.0							-
-	-	7	12-14	1.8	1 1 1 1	2	3.8	-		Trace fine Sand below 12.0' bgs.				-
- 1	210 - 5 -	8	14-16	2.0	1 1 1 1	2	0.0			Color changes to gray below 15.2' bgs.				_
						& LE				Remarks: NA = Not Applicable/Available; a/ AMSL = above mean sea level; W	bgs = above VOR = Weig	e/below gro ht of Rod.	ound su	rface;

Borehole Depth: 66' below grade

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
	_				WOR					Grayish-brown SILTY CLAY, stiff, plastic, wet.	
-	_	9	16-18	1.5	1	2	0.0			Little fine Sand from 17.2' - 17.5' bgs.	
-	_				1			-		Trace natural Organics below 18.0' bgs.	
-	205 -	10	18-20	1.6	1	2	0.0			Crawfine CAND and Oll T. moderately lease alightly plastic wat	
- 20					2 WOR			-		Gray fine SAND and SILT, moderately loose, slightly plastic, wet.	Cement-Bentonite Grout (1.0' - 53.0'
-	_	11	20-22	2.0	1 1	2	0.0			Gray fine SAND, little Silt, trace natural Organics, moderately loose, wet.	bgs)
-					1			-		Interdebbed with Silty Peat-like material, moderately dense below 22' bgs.	
-	_	12	22-24	1.4	2 4	6	0.0				
-	200 -				6 2						
- 25	_	13	24-26	1.2	5 6	11	0.0			Gray fine to medium SAND. 3 mm thick parting of reddish-brown Clay at 25.0' bgs.	2" ID Sch. 40 PVC ⁻ Riser (2.5' ags - 56' bgs)
-	_				6 3			-		Gray fine to medium well sorted SAND, moderately loose, wet.	-
-	_	14	26-28	0.9	5 6	11	0.0				
-	_				5 1			-			
-	.95 -	15	28-30	1.1	2 5	7	0.0				
- 30	_				6 2						
-	_	16	30-32	1.2	5 5 5	10	0.0				
-	_				3			-			
-	_	17	32-34	1.6	4	8	0.0				
-	90 -				5 2					Trace subrounded Gravel below 34.0' bgs.	
- 35	_ 90 -	18	34-36	1.3	2 4	6	0.0				-
	_				4			®		Remarks: NA = Not Applicable/Available; a/bgs = above	L [/ [/ e/below ground surface;
			5		${}$			_		AMSL = above mean sea level; WOR = Weig	jht of Rod.
	BLA										
	eng	inee	ers, s	cien	itists,	eco	onon	nists			Page 2 of 4

Schenectady, NY


Borehole Depth: 66' below grade

Data File: MW-27.dat

Schenectady, NY

Borehole Depth: 66' below grade

Dr Dr Dr Bit Au Rig	te Sta illing (iller's illing M : Size: ger Si g Type mpling	Comp Nam Aeth 4 1/2 ze: c CN	oany e: la od: l 4" 4 1/4 //E 75	: Pa in Gr Hollo " HS/	rratt-\ asse w Ste	em A	uger	١		Northing: 1447242.4 Easting: 639050.7 Casing Elevation: 228.37' AMSL Borehole Depth: 14' below grade Surface Elevation: 228.88' AMSL Geologist: Jason C. Sents	Client: Nia A N	ng ID: MW-28 agara Mohawl National Grid Broadway St Schenectady	rk, Company treet	
рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description			Well/Boring Construction	
-	- 230 -	-											8" Flush Mount Curb Box and 2" Locking J-Plug	
-	_	1	0-2	2.0	17 19 13	32	10.1			Brown fine to medium SAND and CRUSHED STONE, medium wet. [FILL] Black CINDERS, ASH, and COAL, medium dense, dry, slight			Concrete Pad	
-	- - 225 -	2	2-4	1.6	12 9 12 11 10	23	17.7	-	v v v v v	Black pulverized COAL (fine to medium sand-size, trace grav loose, dry, odor present. [FILL]	el-size),		Cernent-Bentonit Grout (1.0' - 3.5' bgs) Hydrated bentoni	
-5	-	3	4-6	1.7	2 4 4 7	8	24.0			Dark gray fine SAND, trace red Brick, black staining througho damp, odor present. Trace sheen at 5.5' bgs at 2 cm diamete sample. [FILL]	er pockets in		2" ID Sch. 40 PV/ Riser (0.2' - 6.0' bgs)	.0'
-	-	4	6-8	1.4	7 6 7 6	13	27.9			No red brick, loose, damp, black stains throughout, odor pres	ent, no sheen.			
- 1	220 -	5	8-10	1.1	1 1 1 1	2	28.3			Dark gray fine SAND and SILT, black staining throughout, loo trace sheen throughout.	se, wet,		Grade #0 Silica Sand Pack (5.0' - 11.0' bgs)	-
-	-	6	10-12	1.3	WOH/ 2' - -	NA	28.7			Trace rootlets. Dark gray fine SAND, SILT, and CLAY, trace rootlets, odor pr Dark gray Silty CLAY, black stains, very soft, damp to wet, od			2" ID Sch. 40 0.0 Slot PVC Screer (6.0' - 11.0' bgs)	
-	- 215 -	7	12-14	2.0	WOH/ 1' 1 2	NA	22.3			Trace staining.			2" ID Sch. 40 PV Sump (11.0' - 13. bgs) Cement-Bentonit Grout (11.0' - 14. bgs)	te .0'
- 1	_													_
	BLA									Remarks: NA = Not Applicable/Available; bo sea level; WOH = Weight of Ham	gs = below g mer.	ground surface	e; AMSL = above mean	I
	eng			cien	itists,	eco				akwara\lagalat2001\lagfilaa\26657\Proodwa\///			Page: 1 of 1	

Dr Dr Dr Bit Au Rig	te Sta illing (iller's illing M Size: ger Si g Type mpling	Com Nam Meth 4-1/2 ize: : CN	pany e: la od: 4" 4-1/4 //E 75	: Pa in Gr Hollo " Hol	rratt-\ asse w Ste	em A Stem	uger Auge	er		Northing: 1447244.0 Easting: 639046.9 Casing Elevation: 228.57' AMSL Borehole Depth: 28' below grade Surface Elevation: 228.94' AMSL Geologist: Jason C. Sents	Client: Ni A	ng ID: MW-28 agara Mohaw National Grid Broadway St Schenectady	k, Company treet
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description			Well/Boring Construction
	- 230 -	-											8" Flush Mount Curb Box and 2" Locking J-Plug
	- 225 - - - - - - - - - - - - - - - - - - -									Auger to 14' bgs without sampling. See MW-29T for descrip	tions.		Concrete Pad Sand Drain Cement-Bentonite Grout (1.0' - 18.0' bgs) 2" ID Sch. 40 PVC Riser (0.2' - 23.0' bgs)
- 1!	215 - 5 -	1	14-16	1.5	WOH/ 1' WOH/ 1'	, NA	15.5	-		Dark gray SILT and CLAY, black staining and orange mottlin soft, damp, MGP odor present.	g throughout,		-
					B JCK htists,					Remarks: NA = Not Applicable/Available; b sea level; WOH = Weight of Ham	gs = below (imer.	ground surfac	e; AMSL = above mean

Broadway Street Schenectady, NY

Borehole Depth: 28' below grade

DEPTH ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	2	16-18	3 2.0	WOH 1 1 2	2	20.0			Dark gray SILT and CLAY, black staining and orange mottling throughout, soft, damp, odor present.	Cement-Bentonite Grout (1.0' - 18.0'
- <i>210</i> - 20	3	18-20	0 2.0	WOH/ 1' 2 1	NA	11.3			Dark gray fine SAND and Clayey SILT, soft, wet, MGP odor present. Dark gray SILT and CLAY, black staining and orange mottling throughout, soft, damp, MGP odor present.	Hydrated bentonite chip seal (18.0'- 21.0' bgs)
-	4	20-22	2 2.0	WOH/ 1' 1/ 1'	NA	7.8			Black fine SAND, trace medium Sand, loose, wet. Dark gray fine SAND and Clayey SILT, soft, wet, MGP odor present. Dark gray SILT and CLAY, black staining and orange mottling throughout, soft, damp, MGP odor present.	2" ID Sch. 40 PVC
- - 205	_ 5	22-24	4 2.0	1 1 1 1	2	5.4			Dark gray fine SAND, trace medium Sand, trace Silt, loose, wet, MGP odor present. Then at 22' bgs: Dark gray fine SAND, trace medium Sand, loose, wet.	Riser (0.2' - 23.0' bgs) Grade #0 Silica Sand Pack (21.0' - 28.0' bgs)
- 25	_								Auger to 26' bgs without sampling.	2" ID Sch. 40 0.010 Slot PVC Screen (23.0' - 28.0' bgs)
-	6	26-28	3 1.2	1 1 2 3	3	0.9			Dark gray fine SAND, trace medium Sand, trace Silt, trace organic laminae throughout, loose, wet, MGP odor present.	
- <i>200</i> - 30	_									
-	_									
- - 195	_									
- 35	_									-
									Remarks: NA = Not Applicable/Available; bgs = below g sea level; WOH = Weight of Hammer.	round surface; AMSL = above mean

Drill Drill Drill Bit Aug Rig	e Stal ling C ler's I ling N Size: jer Si Type npling	Com Nam Meth 4-1/4 ize: e: CN	pany e: la od: 4" 4-1/4 //E 75	: Pa an Gr Hollo " Hol	rratt- ^v asse w Ste low S	em A Stem	uger Auge	er		Northing: 1447248.5 Easting: 639049.3 Casing Elevation: 228.52' AMSL Borehole Depth: 48' below grade Surface Elevation: 228.97' AMSL Geologist: Jason C. Sents	Client: Nia A I	ng ID: MW-2 agara Mohaw National Grid Broadway S Schenectad	/k, Company treet	1
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description			Well/Bo Construc	-
- 2	- 230 -	-												, 8" Flush Mount Curb Box and 2" Locking J-Plug
-	-	_								Auger to 2' bgs without sampling. See MW-28T for descriptio	ns.			- Concrete Pad - Sand Drain -
-	-	1	2-4	2.0	8 9 10 11	19	15.7	_		Black CINDERS, COAL, ASH, little fine Sand, trace Brick frag loose, dry, MGP odor present.	ments,			- Cement-Bentonite Grout (1.0' - 37.0' bgs)
-5	- 225	2	4-6	1.1	9 10 7 8	17	22.0			Trace Silt, loose, damp.		-		_ 2" ID Sch. 40 PVC Riser (0.2' - 42.0' _ bgs)
	- - 220 -	-								Auger to 12' bgs without sampling.				
- 10	-	-												-
-	- - 215 -	3	12-14	0.8	2 2 2 2 2	4	28.7	-		Dark gray SILT and CLAY, trace fine Sand, trace black stainin rootlets, soft, damp to wet, MGP odor present. [FILL]	ng, trace			
- 15		-								Auger to 16' bgs without sampling.				-
	-		ərs, s							Remarks: NA = Not Applicable/Available; bg sea level; WOH = Weight of Ham Confirmatory sampling performed	mer.			

Borehole Depth: 48' below grade

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
 □ □		ω I	S							Auger to 35' bgs without sampling.	Cement-Bentonite Grout (1.0' - 37.0' bgs)
		LAN		BOL	WOH WOH	NA				Dark gray fine to coarse SAND, loose, wet. Remarks: NA = Not Applicable/Available; bgs = below g sea level; WOH = Weight of Hammer. Confirmatory sampling performed - see MW-2	

Borehole Depth: 48' below grade

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
					1					Dark gray fine to coarse SAND, trace fine Gravel, loose, wet.	
- 15	- - 90 -	4	35-37	2.0	4	NA	0.0			Auger to 46' bgs without sampling.	Cement-Bentonite Grout (1.0' - 37.0' bgs)
- 40 - -	-										40.0' bgs) 2" ID Sch. 40 PVC Riser (0.2' - 42.0' bgs) Grade #0 Silica
- <i>18</i> - 45	- 35 - -										Sand Pack (40.0' - 48.0' bgs)
-	_				10 10					Dark gray fine to coarse SAND, little fine Gravel, loose, wet.	2" ID Sch. 40 0.010 Slot PVC Screen (42.0' - 47.0' bgs)
-	_	5	46-48	2.0	11 14	21	0.0			Dark gray SILT, soft to stiff, wet.	
	30 -										-
— 50 -	_										-
	_										-
- 17 - 55	75 -										-
					B ICK tists,					Remarks: NA = Not Applicable/Available; bgs = below g sea level; WOH = Weight of Hammer. Confirmatory sampling performed - see MW-	
Proiec	-									ockware\looplot2001\loofiles\36657\BroadwayWELLS_NEW	Idf Page: 3 of 3

	Date Drillie Drille Drilli Bit S Auge Rig T Samp	ng C er's N ng N ize: er Sia ype	Comp Name Aetho 4-1/2 ze: : CN	oany: e: la od: l 4" 4-1/4 1E 75	: Pai in Gra Hollo " Hol	rratt-\ asse w Ste low S	Wolff em A Stem	uger Auge	er	d Rota	Northing: 1447240.1 Easting: 639044.3 Casing Elevation: 228.61' AMSL Borehole Depth: 74' below grade Surface Elevation: 228.88' AMSL Geologist: Jason C. Sents	Client: Nia A I	ng ID: MW-2 agara Mohav National Gric Broadway S Schenectad	vk, I Compan <u>y</u> Street	y
	DЕРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description			Well/Bc Constru	-
-	2:	- 30 -													8" Flush Mount Curb Box and 2" Locking J-Plug
	0					-				\square	Augered through Crushed STONE. [FILL]				 Concrete Pad Sand Drain
ł		-	1	0-2	1.0	18 14	32	3.6		$\frac{1}{\sqrt{2}}$	Gray-brown fine SAND, Crushed STONE, and SILT, loose, d				·
		_				8					Black fine SAND, CINDERS, ASH, and BRICK, loose, dry, or [FILL]	lor present.		1	
ſ						12					Black crushed COAL, trace Wood and Ash, medium dense, c odor. [FILL]	Iry, strong		И	
-	22	- 25 -	2	2-4	1.0	8 11 14	19	14.5			Gray fine SAND, trace Silt, loose, damp, strong MGP odor.				_ Cement-Bentonite Grout (1.0' - 60.0' bgs)
	5	-	3	4-6	1.0	8 3 4 2	7	21.6	_		Gray fine to medium SAND, little Silt, loose, damp, trace blac strong MGP odor present.	k staining,	-		_ 2" ID Sch. 40 PVC Riser (0.2' - 64.0' bgs)
-		-	4	6-8	1.2	4 4 3 4	7	50.2	-						
-	22	20 -	5	8-10	1.5	6 4 3 3	7	31.2	-		Dark gray fine SAND and SILT, trace black stains, loose, dan strong MGP odor present.	np to wet,			-
						2 1					Dark gray Silty CLAY, very soft, damp, strong MGP odor pres	ent	НИ	И	
F		_	6	10-12	2.0	1	2	11.2						И	
		_				2					Dark gray fine SAND and SILT, little Clay, soft/loose, wet.			И	
-	21	- 15 -	7	12-14	1.3	2 2 3 1	5	13.5	_		Dark gray fine SAND and SILT and CLAY, black staining thro soft/loose, damp, MGP odor present.	pughout,			
						wон					Dark gray SILT and CLAY, orange mottling and black staining MGP odor present.	g, soft, damp,		R	
$\left \right $	15	_	8	14-16	2.0	WOH	NA	14.1			· · · · · · · · · · · · · · · · · · ·			Ø	-
		_				WOH WOH					Dark gray fine to medium SAND, trace rounded Gravel, loose odor present.	e, wet, MGP		1	
	-			ND, ers, se							Remarks: NA = Not Applicable/Available; by sea level; WOH = Weight of Ham	gs = below g mer.	ground surfa	ce; AMSL	
-	· · · ·			~ 4 4				-		• •					Page 1 of 4

Broadway Street Schenectady, NY

Borehole Depth: 74' below grade

DEPTH ELEVATION		Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
	-	9	16-18	2.0	woн woн woн	NA	4.5			Dark gray fine to medium SAND, trace rounded Gravel, loose, wet, MGP odor present. Dark gray Silty CLAY, little mottling, trace black staining, soft, damp, slight MGP odor.	
	_				woн woн			-		Change drilling method to mud rotary.	
210		10	18-20	2.0	woн woн woн	NA	5.1			Fine sand lens at 19.2 and 19.6' bgs.	
20		11	20-22	1.5	1 2 1	3	3.6			Dark gray fine SAND, trace medium Sand, loose, wet, MGP odor present. Dark gray fine and medium SAND, trace rootlets, loose, wet, MGP odor present.	Cement-Bentonite Grout (1.0' - 60.0' bgs)
205		12	22-24	2.0	1 2 3 2 3	5	2.8				2" ID Sch. 40 PV Riser (0.2' - 64.0' bgs)
205		13	24-26	1.0	2 4 4 3	8	4.3			LEAVES, ROOTS, WOOD, trace fine Sand, soft, wet, visible leaf imprints. Dark gray fine and medium SAND, trace rootlets, loose, wet, MGP odor present.	
		14	26-28	2.0	3 4 6 7	10	1.8				
200		15	28-30	1.8	WOH WOH 1 3	NA	0.5			Wood, leaves, roots, organic matter seam from 29.6' - 29.7' bgs.	
30	_	16	30-32	2.0	3 4 3 3	7	0.0			Organic/Peat seam at 31.5' bgs.	
		17	32-34	1.5	2 3 4 6	7	0.0			Dark gray fine to coarse SAND, trace organic matter, loose, wet.	
<i>195</i> 35		18	34-36	1.7	4 3 4 6	7	0.0				
					З					Remarks: NA = Not Applicable/Available; bgs = below g sea level; WOH = Weight of Hammer.	round surface; AMSL = above mear

Broadway Street Schenectady, NY

Borehole Depth: 74' below grade

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
	-		36-38	0.5	1 3 3 4	6	0.0		0000	Dark gray fine to coarse SAND and GRAVEL, gravel is well-rounded to subangular, loose, wet.	
19	0 -	20	38-40	1.0	2 4 5 5	9	0.0		0000		
- 40	_	21	40-42	1.0	2 3 4 3	7	0.0		0000		Cement-Bentonit Grout (1.0' - 60.0 bgs)
1.0	-	22	42-44	1.0	4 6 4 5	10	0.0		<u>୪୦୭୦୭୦୭୦୭୦୭୦୭୦୭୦୭୦</u>		2" ID Sch. 40 PV Riser (0.2' - 64.0 bgs)
18 - 45	-	23	44-46	0.5	2 4 3 6	7	0.0		00000		
	-	24	46-48	1.7	2 4 4 4	8	0.0		00000		
18	- 0	25	48-50	1.5	4 9 14 14	23	0.0			Dark gray SILT, soft to stiff, wet.	
50	_	26	50-52	1.6	16 6 11 10	17	0.0			Medium stiff to stiff from 50 to 52' bgs.	
	-	27	52-54	2.0	4 7 3 4	10	0.0			Soft from 52 to 54' bgs.	
17 - 55	5 -	28	54-56	1.6	4 5 10 16 12	26	0.0			Dark gray SILT, trace fine Sand, medium stiff to stiff, wet. [TILL]	
					З		EE, II			Remarks: NA = Not Applicable/Available; bgs = below g sea level; WOH = Weight of Hammer.	цИ ground surface; AMSL = above mear

Broadway Street Schenectady, NY

Borehole Depth: 74' below grade

DEPTH ELEVATION		Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	-	29	56-58	2.0	10 11 9 10	20	0.0			Dark gray SILT, trace fine Sand, medium stiff to stiff, wet.	
_ 170 - 60		30	58-60	1.5	11 6 6 7	12	0.0			Subangular Gravel pieces in shoe.	Cement-Bentonite Grout (1.0' - 60.0' bgs)
-	-	31	60-62	1.2	7 11 15 25	26	0.0			Dark gray Clayey SILT, little fine to coarse Sand and Gravel, very stiff, damp. [TILL]	Hydrated bentonite chip seal (60.0'- 62.0' bgs)
- - _ 165	_	32	62-64	0.8	28 36 34 35	70	0.0			Hard.	2" ID Sch. 40 PVC Riser (0.2' - 64.0' bgs) Grade #0 Silica Sand Pack (62.0' - 74.0' bgs)
- 65	_	33	64-66	0.0	50/ 0.3' - -	NA	NA			Attempt #1 for Shelby Tube with no recovery and tube crushed. Attempt #2 with 3" split spoon had no recovery. Blows counts are for 3" SS.	
-	_	34	66-68	1.6	20 26 30 31	56	0.0			Dark gray Clayey SILT, little fine to coarse Sand and Gravel, hard, damp. [TILL]	2" ID Sch. 40 0.010 Slot PVC Screen (64.0' - 74.0' bgs)
160	_	35	68-70	0.2	25 27 50/ 0.4'	NA	0.0				
- 70	_	36	70-72	0.3	15 18 17 18	35	0.0			Shattered Cobble in shoe.	
- 155		37	72-74	0.5	24 50/ 0.4' -	NA	0.0				
- 75	-										
							EE, I			Remarks: NA = Not Applicable/Available; bgs = below g sea level; WOH = Weight of Hammer.	jround surface; AMSL = above mean

Dril Dril Dril Bit Aug Rig	e Star ling C ler's I ling M Size: ger Si Type npling	Com Nam Aeth 4-1/2 ze: cN	pany: e: la od: l 4" 4-1/4 //E 75	: Pai in Gra Hollo " Hol	rratt-\ asse w Ste low S	em A Stem	uger Auge	er		Northing: 1446995.1 Easting: 638988.1 Casing Elevation: 230.12' AMSL Borehole Depth: 14' below grade Surface Elevation: 230.39' AMSL Geologist: Jason C. Sents	Well/Borin Client: Nia A t Location:	agara Moha National Gr	awk, id Company Street	,
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description			Well/Bo Construc	•
-	-	-												
-	_									8" Flush Mount Curb Box and 2" . Locking J-Plug				
-0-	230 -									Auger to 10' bgs without sampling. See MW-29T for descripti	ons.			- Concrete Pad
- 5	- - - 2225 - - - -		10-12		1 1 1 2 2 2 2	3	0.0			Brown fine SAND and SILT, trace crushed Stone and red Brid damp. Gray fine to medium SAND, loose, wet. Dark gray Clayey SILT, black mottling and layering throughou Sand, soft, damp to wet. Dark gray fine SAND, loose, wet. Dark gray-olive Clayey SILT, black mottling and layering throu fine Sand, soft, damp to wet.	t, trace fine			- Sand drain. - Hydrated bentonite chip seal (1.0'- 3.0' bgs) - 2" ID Sch. 40 PVC Riser (0.2' - 4.0' bgs) - Grade #0 Silica Sand Pack (3.0' - 14.0' bgs) - 2" ID Sch. 40 0.010 Slot PVC Screen (4.0' - 14.0' bgs)
- 15	- 215 -													-
			S ND, ers, s							Remarks: NA = Not Applicable/Available; bg sea level; WOH = Weight of Ham	ys = below g mer.	 ground surf	ace; AMSL	= above mean

	eate Sta prilling (priller's prilling I sit Size: suger Si sig Type amplin	Com Nam Meth 4-1/4 ize: e: CN	pany e: la od: 4" 4-1/4 //E 75	: Pa an Gr Hollo " Hol	rratt-\ asse w Ste low S	em A Stem	uger Auge	er		Northing: 1447000.9 Easting: 638993.2 Casing Elevation: 230.09' AMSL Borehole Depth: 39' below grade Surface Elevation: 230.31' AMSL Geologist: Jason C. Sents	Client: Nia	ng ID: MW-29I agara Mohawk, National Grid Company Broadway Street Schenectady, NY					
ЛЕРТЦ	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		Well/Boring Construction					
-	-	_										Curb	sh Mount Box and 2" ng J-Plug				
	230 - - - - - - - - - - - - - - - - - - -		8-10	1.1	1 1 1 1 1 1 2	2	0.0			Auger to 8' bgs without sampling. See MW-29T for description	I, trace	Locking J-Plug Concrete Pad Sand Drain Cement-Bentonite Grout (1.0' - 24' bgs) 2" ID Sch. 40 PVC Riser (0.2' - 28.0' bgs)					
-	- - - 215 -	2	10-12	1.2	1 1 1	2	0.0			Dark gray SILT and PEAT, some organic matter and rootlets, damp, black layering and mottling throughout. Auger to 16' bgs without sampling.			- - -				
			B ND, ers, s							Remarks: NA = Not Applicable/Available; bg sea level; WOH = Weight of Ham	gs = below g mer.	ground surface; AMSL = abo	ve mean				

Borehole Depth: 39' below grade

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction			
-	_	3	16-18	2.0	WOH WOH WOH WOH	NA	0.0			Gray-olive Clayey SILT, very soft, damp.	-			
-	-	4	18-20	2.0	WOH WOH WOH 4	NA	0.0	-		Gray fine to medium SAND, loose, wet.				
- 20 -	210 -							-		Auger to 29' bgs without sampling.	Cement-Bentonite Grout (1.0' - 24' bgs)			
-	-										2" ID Sch. 40 PVC Riser (0.2' - 28.0' bgs)			
- - 25	- 205 -										Hydrated bentonite chip seal (24.0'- 26.0' bgs)			
-	-													
- 30	- 200 -	5	29-31	0.7	WOH 2 2 1	4	0.0	-		Dark gray fine SAND, loose, wet. Thin beds (0.05' thick) of decaying rootlets at 29.2', 29.4', and 29.6' bgs.	Grade #0 Silica – Sand Pack (26.0' - 38.0' bgs)			
-	-							-		Auger to 33' bgs without sampling.	2" ID Sch. 40 0.010 - Slot PVC Screen (28.0' - 38.0' bgs)			
-	-	6	33-35	0.5	WOH 1 2 2	3	0.0	-		Dark gray fine to medium SAND, trace coarse Sand, loose, wet.				
- 35	195 -									Auger to 37' bgs without sampling.				
	Remarks: NA = Not Applicable/Available; bgs = below ground surface; AMSL = above mean sea level; WOH = Weight of Hammer.													
Droid							_			voltwara/lagalat2001/lagfilaa/266EZ/Braadway/WELLS_NEW	Page: 2 of 3			

Borehole Depth: 39' below grade

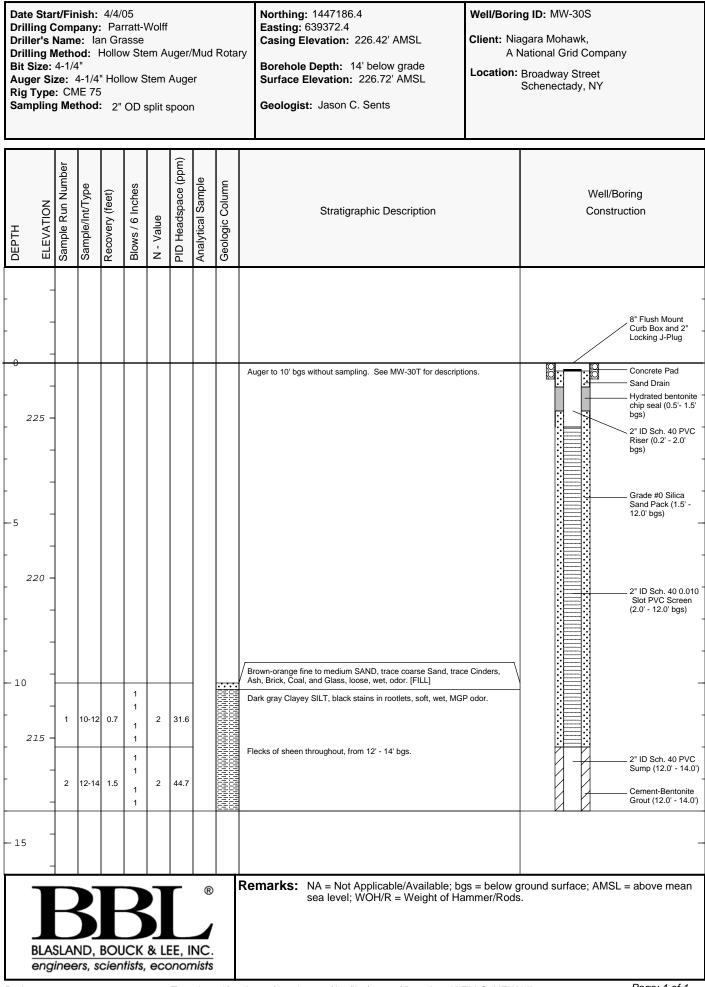
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction			
	_									Auger to 37' bgs without sampling.	Grade #0 Silica Sand Pack (26.0' 38.0' hos)			
-	-	7	37-39	0.4	WOH 2 2 1	4	0.0	-		Dark gray fine to coarse SAND, loose, wet.	Sand Pack (26.0'			
- 40	- 90 -	-									Hydrated bentonite chip seal (38.0'- 39.0' bgs)			
	90 -													
-	_	-									-			
-	_	-									-			
-	_	-									-			
- 45 1	85 -	-									-			
-	_	-									-			
-	_	-									-			
-	-										-			
- 50	_										-			
	80 -													
-	-	-									-			
-	-										-			
-											-			
- 55	- 75 -										-			
										Pomorkou NA Not Applicable (Auglichte berginster				
	BBBC Remarks: NA = Not Applicable/Available; bgs = below ground surface; AMSL = above mean sea level; WOH = Weight of Hammer.													
					JCK htists,									

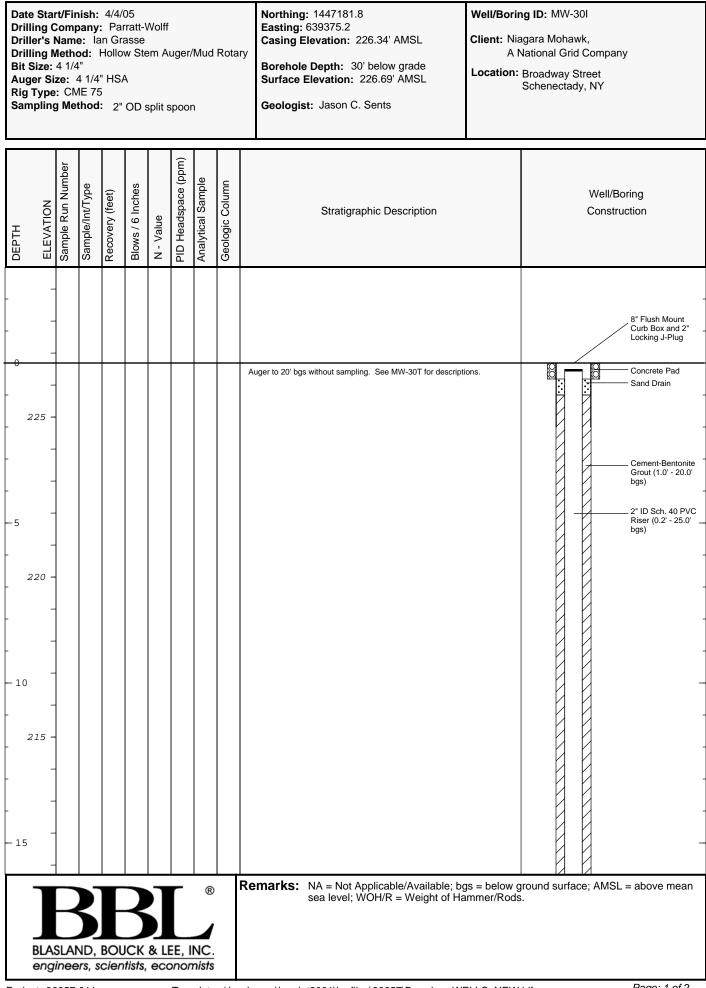
Dri Dri Dri Bit Au Riç	te Sta Iling (Iler's I Iling M Size: ger Si ger Si Type mpling	Comp Name Methe 4-1/4 ize: 4	pany: e: la od: l 4" 4-1/4 //E 75	: Pa in Gr Hollo " HS.	rratt-\ asse w Ste A	Wolff em A	uger		d Rota	Easting: 638982.6 Casing Elevation: 230.13' AMSL	Client: Nia A N Location:	ng ID: MW-2 agara Mohaw National Grid Broadway S Schenectad	vk, I Company street	/
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description			Well/Bo Constru	-
-	-	-												, 8" Flush Mount Curb Box and 2" Locking J-Plug
-	230 -	1	0-2	0.4	- 24 50/ 0.3	NA	0.0			ASPHALT Brown fine SAND and CRUSHED STONE, loose, dry. [FILL]				[–] Concrete Pad – Sand Drain –
-	-	2	2-4	1.4	7 20 28 20	48	0.1	-		Larger cobbles of crushed stone, trace Brick, dry, loose.				- Cement-Bentonite Grout (1.0' - 48' bgs)
	- 225 -	3	4-6	1.7	7 9 7 11	16	0.0	-		Damp. CINDERS, tan. [FILL] Black ASH, COAL and CINDERS, trace red Brick. [FILL] Red-brown SILT and fine SAND, loose, dry. [FILL]		-		- 2" ID Sch. 40 PVC Riser (0.2' - 52.2' bgs)
-	-	4	6-8	0.0	14 11 8 5	19	NA	-		No recovery.				-
-	-	5	8-10	0.3	5 3 1 1	4	0.0	-		Dark brown fine SAND, little crushed Stone and red Brick, trace Cobble in shoe, loose, dry. Wet at 10' bgs. [FILL]	e Cinders,			-
- 10) 220 - -	6	10-12	2.0	WOH WOH WOH 2		0.0	-		Brown fine and medium SAND, trace Silt. Peat at 10.9-11' bgs gray-brown. Gray fine SAND and SILT, soft, wet. Dark brown Clayey SILT, trace fine and medium Sand, very so				-
-	-	7	12-14	2.0	WOH 1 1 1	2	0.0	-		plastic, damp. Dark gray Clayey SILT, soft, wet, grades to black-stained at 13 slightly plastic, slight MGP odor.	/			-
- 15	- 215 -	8	14-16	2.0	woн woн woн woн	NA	0.0	-		Gray-olive Silty CLAY, very soft, medium plasticity, damp.				-
	BLA								F	Remarks: NA = Not Applicable/Available; bg: sea level; WOH = Weight of Hamn	s = below g ner.	round surfac	ce; AMSL	= above mean

Broadway Street Schenectady, NY

Borehole Depth: 62' below grade

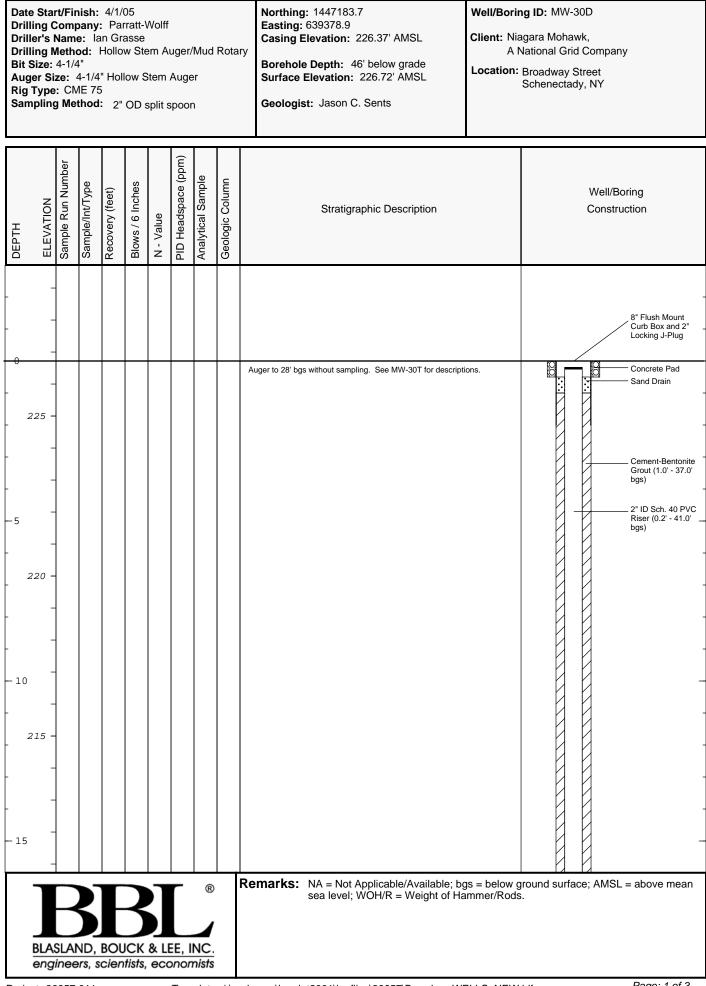
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
					2					Gray fine to medium SAND, loose, wet, odor present.	
-		9	16-18	2.0	2	4	0.0				
	_	-			2 2						
F	_				WOH						
-		10	18-20	2.0	WOH	NA	0.0			Fine to coarse SAND and trace rounded Gravel from 18.9 to 19' bgs, wet,	
	_				WOH WOH					loose. Sand color: white, clear, amber, olive, green, gray, and tan-brown.	
- 20 2	10 -				1					Dark gray fine SAND and Clayey SILT, very loose/very soft, wet, very faint MGP odor.	Cement-Bentonite Grout (1.0' - 48'
ŀ		11	20-22	2.0	2	3	0.0			Switch to mud rotary.	bgs)
	_				1 2						
ſ	_		1		2			1			2" ID Sch. 40 PVC Riser (0.2' - 52.2'
-		12	22-24	2.0	1	2	0.0				bgs)
	-				1 1						
-	_				1/						
- 25		13	24-26	1.5	1'	NA	0.0				_
2	05 -				1/ 1'						
Ē	_				2					Trace organic matter or rootlets visible.	
-		14	26-28	2.0	4	6	0.0				-
	_				2						
	_				WOH					Dark gray fine to medium SAND, trace coarse Sand, trace Silt, loose, wet, faint MGP odor.	
-		15	28-30	1.0	1	2	0.0				-
- 30	_				2						_
	00 -				2 3						
-		16	30-32	1.8	3	6	0.0			Dark gray Clayey SILT, trace fine Sand, trace rootlets, soft, damp to wet, faint MGP odor.	
Ļ	_				2						
	-				1 2					Dark gray fine to coarse SAND, trace Silt, loose, wet, faint MGP odor.	
F	_	17	32-34	0.4	2	4	0.0				-
ŀ					4						
	-				2 4					Dark gray Clayey SILT and fine SAND, loose, wet, very MGP faint odor.	
- 35 1	95 -	18	34-36	1.7	4	8	0.0				
-	-				7						
			5		3			®	,	Remarks: NA = Not Applicable/Available; bgs = below g sea level; WOH = Weight of Hammer.	jround surface; AMSL = above mean
					JCK tists,						
	•		.011	Cien	11313,					ockware\logplot2001\logfiles\36657\BroadwayWELLS_NEW.	.ldf Page: 2 of 4


Broadway Street Schenectady, NY


Borehole Depth: 62' below grade

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
	-	19	36-38	1.0	2 2 2	4	0.0		0000	Dark gray fine to coarse SAND and fine GRAVEL, grading to dark gray fine SAND, trace medium Sand, loose, wet.	
	-	20	38-40	0.9	2 2 4 3 3	7	0.0			Dark gray fine to coarse SAND, trace fine Gravel, loose, wet.	
- 40 <i>190</i>	0 - -	21	40-42	1.0	1 2 2 2	4	0.1			Tan-pink WOOD fragments, very strong sulfur-type odor.	Cement-Bentonite Grout (1.0' - 48' bgs)
		22	42-44	1.7	2 4 6 3	10	0.0			Dark gray fine to coarse SAND, loose. WOOD, as above. Dark gray fine SAND, loose. Dark gray fine SAND and SILT, loose.	2" ID Sch. 40 PVC Riser (0.2' - 52.2' bgs)
- 45 185	5 -	23	44-46	1.0	7 6 7 8	13	0.0			Dark gray SILT. Dark gray Clayey SILT, little fine to coarse Sand, trace Gravel, medium stiff, wet. [TILL]	
	_	24	46-48	0.6	38 50/ 0.1 -	NA	0.0			Hard, damp.	
50	_	25	48-50	0.9	17 40 50/ 0.3	NA	0.0				Hydrated bentoniti chip seal (48.0'- 50.0' bgs)
50 180	0 - -	26	50-52	0.3	50/ 0.3 - -	NA	0.0			Attempted Shelby Tube, then advanced 3" split spoon and recovered same as above.	
	_	27	52-54	0.6	29 50/ 0.4 -	NA	0.0			Dark gray Clayey SILT, little fine to coarse Sand and Gravel, very hard, damp. [TILL]	Grade #0 Silica Sand Pack (50.0' - 62.2' bgs)
55 175	-	28	54-56	0.7	21 50/ 0.4 -	NA	0.0			Wet throughout.	2" ID Sch. 40 0.01 Slot PVC Screen (52.2' - 62.2' bgs)
							EE, II			Remarks: NA = Not Applicable/Available; bgs = below gro sea level; WOH = Weight of Hammer.	und surface; AMSL = above mean

Borehole Depth: 62' below grade


DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction			
-	-	29	56-58	0.6	19 34 50/ 0.3	NA	0.0			Gray Clayey SILT, stiff, plastic, wet throughout.				
-	-	30	58-60	0.0	50/ 0.4 -	NA	NA	-		No recovery.	Grade #0 Silica Sand Pack (50.0' - 62.2' bgs)			
- 60	170 -	31	60-62	0.5	16 50/ 0.4 -	NA	0.0			Dark gray Clayey SILT, little fine to coarse Sand and Gravel, very hard, dry to damp. [TILL]	2" ID Sch. 40 0.010 Stot PVC Screen (52.2' - 62.2' bgs)			
-	-													
- 65	- 165 -													
-	-										-			
- 70	-										-			
-	160 -										-			
-	-										-			
- 75	- 155 -													
	155 - Remarks: NA = Not Applicable/Available; bgs = below ground surface; AMSL = above mean sea level; WOH = Weight of Hammer. BLASLAND, BOUCK & LEE, INC. engineers, scientists, economists Remarks: NA = Not Applicable/Available; bgs = below ground surface; AMSL = above mean sea level; WOH = Weight of Hammer.													

Borehole Depth: 30' below grade

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction			
	210 -									Auger to 20' bgs without sampling. See MW-30T for descriptions.				
-	-										Cement-Bentonite Grout (1.0' - 20.0' - bgs)			
- 20	_										2" ID Sch. 40 PVC Riser (0.2' - 25.0'			
	_				з WOH/					Dark gray Clayey SILT, very soft, wet, slight odor.	bgs)			
	205 -	1	20-22	0.6	1.5' -	NA	1.2				Hydrated bentonite			
	_				2 1					Little fine Sand, fine Sand seams and organic matter seams throughout, from 22.0' - 24.0' bgs.	23.0' bgs)			
Ī	_	2	22-24	0.7	1 1	2	1.9				Grade #0 Silica			
	_				1					Dark gray fine SAND, loose, wet.	Sand Pack (23.0' 30.0' bgs)			
- 25	_	3	24-26	0.4	2	3	0.0				2" ID Sch. 40 0.010			
F	200 -								•••••	Auger to 28' bgs without sampling.	Slot PVC Screen _ (25.0' - 30.0' bgs)			
Ī	_													
F	_				WOH/ 1.5'					Dark gray fine SAND, organic matter/Clay seams throughout, trace Silt, loose, wet.				
-	_	4	28-30	0.8	- 1	NA	0.0							
-30					1									
F	195 -										-			
-	195 -										-			
F	_										-			
F	_										-			
- 35	_										-			
	_									Remarks: NA = Not Applicable/Available: bos = below o				
	Remarks: NA = Not Applicable/Available; bgs = below ground surface; AMSL = above mean sea level; WOH/R = Weight of Hammer/Rods.													
	BLA eng													
Proje	ect: 36	657	011				Tom	plate	v iv/ro	ockware\logplot2001\logfiles\36657\BroadwayWELLS_NEW	.ldf Page: 2 of 2			

Borehole Depth: 46' below grade

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction		
										Auger to 28' bgs without sampling.			
- - - 20	210 - - - 205 -												
F	-										bgs)		
- 25	-												
2	200 -												
-	-	1	28-30	2.0	WOH 2 1 1	3	0.1			Dark gray fine SAND, little organic matter in seams throughout, trace Silt, loose, wet.			
- 30									••••	Auger to 30' bgs without sampling.			
1	- 195 -												
	-				1 1					Dark gray fine SAND, little organic matter in seams throughout, trace Silt, loose, wet.			
	-	2	32-34	1.5	1 1	2	0.0			Dark gray fine to medium SAND, trace coarse Sand and organic seams, loose, wet.			
- 35	-									Auger to 44' bgs without sampling.			
	_												
	BASLAND , BOUCK & LEE, INC. engineers, scientists, economists Project: 36657.011 Remarks: NA = Not Applicable/Available; bgs = below ground surface; AMSL = above mean sea level; WOH/R = Weight of Hammer/Rods.												

Borehole Depth: 46' below grade

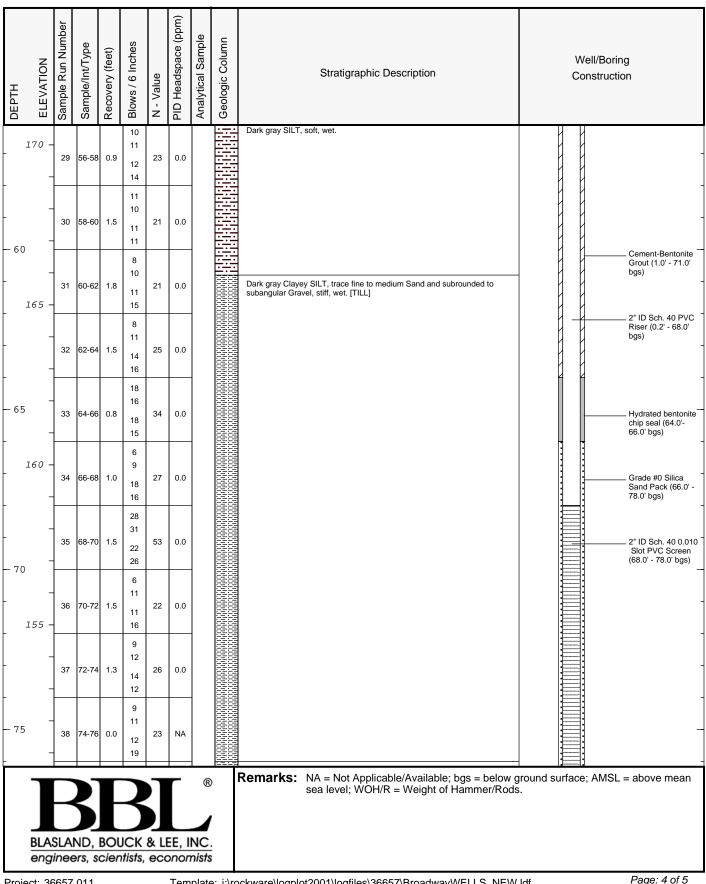
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction			
	190 -									Auger to 44' bgs without sampling.	Cement-Bentonite Grout (1.0' - 37.0' bgs)			
Ī	-	-												
ŀ	_										Hydrated bentonite chip seal (37.0'- 39.0' bgs)			
ŀ	-	-												
- 40	_	-									2" ID Sch. 40 PVC - Riser (0.2' - 41.0' bgs)			
F	185 -													
F		-									Grade #0 Silica Sand Pack (41.0' - 46.0' bgs)			
F	_	-												
-	-				5 2					Dark gray fine to coarse SAND, trace Gravel and Wood, loose, wet.	2" ID Sch. 40 0.010 Slot PVC Screen (41.0' - 46.0' bgs)			
- 45	-	3	44-46	1.2	3	5	0.0							
-	180 -	-									[•]====]•]			
ŀ	-	-									-			
F	-	-									-			
-	-	-									-			
- 50	-	-									-			
ŀ	175 -	-									-			
-	-	-									-			
-	-	-									-			
ŀ	-	-									-			
- 55	-	-									-			
	BLASLAND, BOUCK & LEE, INC. engineers, scientists, economists Remarks: NA = Not Applicable/Available; bgs = below ground surface; AMSL = above mean sea level; WOH/R = Weight of Hammer/Rods.													
L											Page: 3 of 3			

Dr Dr Dr Bit Au Rig	te Star illing C iller's I illing M Size: ger Si g Type mpling	Comp Name 4-1/4 ze: 4	oany: e: la od: l 4" / 3- 4-1/4 //E 75	: Pa In Gr Hollo -7/8" " Hol	rratt-V asse w Ste roller low S	Wolff em A bit Stem	uger/ Auge	er	Rotar	Northing: 1447188.7 Easting: 639376.3 Casing Elevation: 226.38' AMSL Borehole Depth: 84' below grade Surface Elevation: 226.73' AMSL Geologist: Jason C. Sents	Client: Nia A N Location:	ng ID: MW-3 agara Mohan National Grid Broadway S Schenectad	wk, d Compan Street	у
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description			Well/Bo Constru	-
-	-	-								ASPHALT			0	8" Flush Mount Curb Box and 2" Locking J-Plug
-	-	1	0-2	1.0	/			 Concrete Pad Sand Drain 						
	225 -	Ľ	02	1.0	3 4	6	0.1			Brown fine SAND, trace medium Sand, trace Cinders, trace C Brick, loose, wet.	oal, trace			
	-	-			1 3					Brown fine to medium SAND, trace coarse Sand, trace Grave Cinders, trace Ash, trace Coal, loose, wet.	l, trace			
	-	2	2-4	1.5	1 5	4	0.3							Cement-Bentonite Grout (1.0' - 64.0' bgs)
-					5 1					Rock in shoe, trace recovery.				- 2" ID Sch. 40 PVC
-5		3	4-6	0.1	1	2	0.2							Riser (0.2' - 68.0' bgs)
-	-				1					Black-stained fine to medium SAND, trace coarse Sand, trace loose, wet. Woody seam at 6.2-6.3' bgs, contains MGP odor a				
-	220 -	4	6-8	2.0	1	2	0.1			slight sheen.				-
-	-	-			1 WOH/	/				damp, no odor. Dark gray Clayey SILT, trace fine Sand, black-stained rootlets damp, very faint MGP odor.	, very soft,			
-	-	5	8-10	1.8	2' -	NA	0.1							-
- 10	- c	-			- woн/	/				Dark gray fine SAND, SILT, and CLAY, trace black staining, s	oft,		8	-
-	-	6	10-12	0.3	2'	NA	0.9			nonplastic, wet, MGP odor present.			8	-
-	215 -				-					Dark gray SILT and CLAY, very soft, medium plasticity, wet, N	IGP odor			-
_	-	7	12-14	1.5	WOH/ 2'	NA	11.2			present			8	-
	-		12 14	1.0	-		11.2							
					WOR/ 2'	/				Change to mud rotary set-up.			ł	
- 1!	- -	8	14-16	0.8	-	NA	9.6							_
	BLAS		B ND, ers, s							Remarks: NA = Not Applicable/Available; bg sea level; WOH/R = Weight of Ha	is = below g mmer/Rods	round surfa		= above mean

Broadway Street Schenectady, NY

Borehole Depth: 84' below grade

	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		ell/Boring nstruction
210		9	16-18	0.8	WOH/ 1' 1 1	NA	12.1			Dark gray fine SAND, SILT, and CLAY, very soft,nonplastic, wet, MGP odor present.		
	_	10	18-20	1.8	WOH/ 2' - -	NA	26.6			Dark gray SILT and CLAY, fine Sand seam at 18.9' bgs, soft, wet.		
20 205	-	11	20-22	2.0	WOH/ 1.5' - 2	NA	17.7			Dark gray fine SAND and SILT, loose, wet. Dark gray Silty CLAY, soft, damp.		Cement-Bentonite Grout (1.0' - 64.0' bgs)
		12	22-24	1.5	3 3 3 3	6	8.1			Dark gray fine SAND and Clayey SILT, trace rootlets, soft/loose, damp.		2" ID Sch. 40 PV Riser (0.2' - 68.0' bgs)
25	_	13	24-26	1.0	2 2 3 4	5	0.5			Dark gray fine SAND and Clayey SILT, organic matter seams throughout, loose, wet.		
200) - _	14	26-28	2.0	4 7 11 6	18	0.2			WOOD, wet, MGP odor present.		
	_	15	28-30	1.0	6 5 6 5	11	0.0			Dark gray fine to medium SAND, trace coarse Sand, loose, wet.		
30 195	-	16	30-32	1.5	2 2 2 2	4	0.0			Dark gray fine SAND, little organic matter throughout, trace Silt, loose, wet.		
	_	17	32-34	1.8	6 4 5 11	9	0.0			Grading to dark gray fine to medium SAND, trace coarse Sand, well rounded Gravel, and Wood, loose, wet.		
35		18	34-36	0.5	4 4 5 4	9	0.0			Wood, from 33.4' - 33.5' bgs.		
							EE, I			Remarks: NA = Not Applicable/Available; bgs = below g sea level; WOH/R = Weight of Hammer/Rods	round surface	; AMSL = above mear


Broadway Street Schenectady, NY

Borehole Depth: 84' below grade

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
	190 -				6 4					Grading to dark gray fine to medium SAND, trace coarse Sand, well rounded Gravel, and Wood, loose, wet.	
-	-	19	36-38	0.9	8 7	12	0.0				
-	_	20	38-40	0.7	4 4 5 5	9	0.0				
- 40	_	21	40-42	0.6	6 5 6	11	0.0				Cement-Bentonite Grout (1.0' - 64.0' bgs)
-	- 185	22	42-44	0.5	4 3 3 5 8	8	0.0				2" ID Sch. 40 PVC Riser (0.2' - 68.0' bgs)
- 45	_	23	44-46	0.5	6 7 7 8	14	0.0				
- -	180 -	24	46-48	0.3	7 6 6 7	12	0.0			Dark gray SILT, soft, wet.	
-	-	25	48-50	1.0	5 5 8 12	13	0.0				
50 -	- 175 -	26	50-52	0.5	8 10 10 15	20	0.0				
-	-	27	52-54	1.0	7 9 10 11	19	0.0				
- 55	_	28	54-56	0.5	8 4 9 9	13	0.0				
	BLAS									Remarks: NA = Not Applicable/Available; bgs = below g sea level; WOH/R = Weight of Hammer/Rods	round surface; AMSL = above mean Idf Page: 3 of 5

Schenectady, NY

Borehole Depth: 84' below grade

Borehole Depth: 84' below grade

150 - 39 76-78 1.2 18 - Subangular Gravel, stiff, wet. [TILL] - - 26 - - - - - Stot PVC S - - 26 - <td< th=""><th>DEPTH</th><th>ELEVATION Samole Run Numher</th><th>Sample/Int/Type</th><th>Recovery (feet)</th><th>Blows / 6 Inches</th><th>N - Value</th><th>PID Headspace (ppm)</th><th>Analytical Sample</th><th>Geologic Column</th><th>Stratigraphic Description</th><th>Well/Boring Construction</th></td<>	DEPTH	ELEVATION Samole Run Numher	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
40 78:60 12 11 12 0.0 80 - - - - - - 145 - - - - - - - -	150		9 76-7	8 1.2	18	41	0.0			Dark gray Clayey SILT, trace fine to medium Sand and subrounded to subangular Gravel, stiff, wet. [TILL]	2" ID Sch. 40 0.010 Slot PVC Screen (68.0' - 78.0' bgs)
80 0	-	-							1-3-1-3		Grade #0 Silica Sand Pack (66.0' 78.0' bgs)
80 -	-	4	0 78-8	0 1.2	11	22	0.0				Hydrated bentonite chip seal (78.0'- 80.0' bgs)
85 140 90 135 91 92 85 85 85 85 85 90 90 91 92 93 85 95 95 95 95 95 96 97 98 Remarks: NA = Not Applicable/Available; bgs = below ground surface; AMSL = above m	80	_									
P = 0 P	145	5 -									
P = 0 P	-	-									-
P = 0 P	-	-									-
-90 -90 -135 -95	- 85	-									-
135 - <		- 2 -									-
135 - <		_									
135 - <	-	-									-
-95 -95 -95 -	- 90	-									-
-95 -95 -95 -	-	_									-
	135	5 -									-
		_									
Image: Remarks: NA = Not Applicable/Available; bgs = below ground surface; AMSL = above m sea level; WOH/R = Weight of Hammer/Rods.	- 95	_									
Remarks: NA = Not Applicable/Available; bgs = below ground surface; AMSL = above m sea level; WOH/R = Weight of Hammer/Rods.		_									
BLASLAND, BOUCK & LEE, INC. engineers, scientists, economists								NC.		Remarks: NA = Not Applicable/Available; bgs = below g sea level; WOH/R = Weight of Hammer/Rods	ground surface; AMSL = above mean s.

Appendix C

Groundwater Sampling Logs

June 2002 Groundwater Sampling

Niagara Mohawk Power Corporation Schenectady (Broadway) Service Center Schenectady, New York Groundwater Sampling Log

Well ID	MW-	PID Reading (ppm)	0.0
Date	6/11/02	Depth to Water (ft BTO	
Sampler(s)	RET	Total Depth of Well (ft I	
Purge/Sample		Height of Purge Column	
Method	Bailer		
Other Observation	ns (weather conditions, well deteriora	tion/damage, evidence of tampering, odor,	etc.):
amples Collected	Volume Collecte	d (ml)	
AHs	stand 1	LA	
HEX JOCS	- 40 ml		
otal Cyanide	100 ml		
urge Data		Water Our line Provent	
	1	Water Quality Parameters	Specific
Time	Temperature	pH	Conductance
	(°C)		(mmhos/cm)
Initial			(minosen)
Stablization Criteria	±0,5°C	+0.1	±3%
Initial	16.8	7.49	3.42
2nd Well Volume	16.6/162	7.49/ 7.42	3.01 2.94
Final Well	16.3		
Volume		7.36	2.9/
	e) depth to groundwater prior to pump	shutoff (fi BTOC):	
Total volume purg	ged (G): 4.8		
Sample ID(s):			
Sample Time:	1810		
Vell Data			
Vell Data Well ID	MW- 19	PID Reading (ppm)	736
	6/11/02	PID Reading (ppm) Depth to Water (ft BTOC	25 1198 3.36
Well ID Date	6/11/02 DL4	Depth to Water (ft BTOC	
Well ID Date Sampler(s)	6/11/02 DL4	Depth to Water (ft BTOC Total Depth of Well (ft B	TOC) <u>/4.98</u>
Vell ID Date Sampler(s) Purge/Sample	MW-18 6/(1/02 DL4 Bailer	Depth to Water (ft BTOC	TOC) <u>/4.98</u>
Well ID Date Sampler(s) Purge/Sample Method	DL 4 Bailer	Depth to Water (ft BTOC Total Depth of Well (ft B	(TOC) <u>/4.98</u> _//.62
Well ID Date Sampler(s) Purge/Sample Method	Bailer ns (weather conditions, well deteriorat Volume Collecter	Depth to Water (ft BTOC Total Depth of Well (ft B Height of Purge Column tion/damage, evidence of tampering, odor, o f (ml)	rtoc) <u>/4.98</u> _//.62 rtc.):
Well ID Date Sampler(s) Purge/Sample Method Other Observation	Bailer ns (weather conditions, well deteriorat Volume Collecter 1 Loc	Depth to Water (ft BTOC Total Depth of Well (ft B Height of Purge Column tion/damage, evidence of tampering, odor, o f (ml)	rtoc) <u>/4.98</u> _//.62 rtc.):
Well ID Date Sampler(s) Purge/Sample Method Other Observation amples Collected AHs	DL 4 Bailer ns (weather conditions, well deterioral Volume Collecter 1 Loca 40 ml	Depth to Water (ft BTOC Total Depth of Well (ft B Height of Purge Column tion/damage, evidence of tampering, odor, o f (ml)	rtoc) <u>/4.98</u> _//.62 rtc.):
Well ID Date Sampler(s) Purge/Sample Method Other Observation amples Collected AHn TEX VICS	Bailer ns (weather conditions, well deteriorat Volume Collecter 1 Loc	Depth to Water (ft BTOC Total Depth of Well (ft B Height of Purge Column tion/damage, evidence of tampering, odor, o f (ml)	rtoc) <u>/4.98</u> _//.62
Well ID Date Sampler(s) Purge/Sample Method Other Observation amples Collected	DL 4 Bailer ns (weather conditions, well deterioral Volume Collecter 1 Loca 40 ml	Depth to Water (ft BTOC Total Depth of Well (ft B Height of Purge Column tion/damage, evidence of tampering, odor, e f (ml) Pood Pooted	rtoc) <u>/4.98</u> _//.62 rtc.):
Well ID Date Sampler(s) Purge/Sample Method Other Observation amples Collected AHs TEX VICS otal Cyanide	DL 4 Bailer ns (weather conditions, well deterioral Volume Collecter 1 Loca 40 ml	Depth to Water (ft BTOC Total Depth of Well (ft B Height of Purge Column tion/damage, evidence of tampering, odor, o f (ml)	ntoc) site inside well we core may have heigh PID
Well ID Date Sampler(s) Purge/Sample Method Other Observation amples Collected AHs TEX VICS otal Cyanide urge Data	DL 4 Bailer ns (weather conditions, well deterioral Volume Collecter 1 40 100 ml	Depth to Water (ft BTOC Total Depth of Well (ft B Height of Purge Column tion/damage, evidence of tampering, odor, e f (ml) Food Water Quality Parameters	rtoc) sit.): put inside well iun core may have heigh PID specific
Well ID Date Sampler(s) Purge/Sample Method Other Observation amples Collected AHs TEX VICS otal Cyanide	DL 4 Bailer as (weather conditions, well deterioral Volume Collecter 40 ml 150 ml	Depth to Water (ft BTOC Total Depth of Well (ft B Height of Purge Column tion/damage, evidence of tampering, odor, e f (ml) Pood Pooted	rtoc) rtc.): put inside well iun cove may have hegt PID Specific Conductance
Well ID Date Sampler(s) Purge/Sample Method Other Observation amples Collected Alls TEX VICS otal Cyanide urge Data	DL 4 Bailer ns (weather conditions, well deterioral Volume Collecter 1 40 100 ml	Depth to Water (ft BTOC Total Depth of Well (ft B Height of Purge Column tion/damage, evidence of tampering, odor, e f (ml) Food Water Quality Parameters	rtoc) sit.): put inside well iun core may have heigh PID specific
Well ID Date sampler(s) /urge/Sample /dethod 0ther Observation imples Collected AHs FEX VICS Mal Cyanide irge Data Time Initial Stablization	DL 4 Bailer as (weather conditions, well deterioral Volume Collecter 40 ml 150 ml	Depth to Water (ft BTOC Total Depth of Well (ft B Height of Purge Column tion/damage, evidence of tampering, odor, e f (ml) Food Water Quality Parameters	TOC) stc.): put inside well in cove may have hegt PID Specific Conductance (mmbos/cm)
Well ID Date Sampler(s) Purge/Sample Method Dther Observation amples Collected AHs TEX VICS total Cyanide urge Data Time Initial Stablization Criteria	DL 4 Bailer ns (weather conditions, well deterioral Volume Collecter 40 ml 100 ml 100 ml 100 ml 100 ml 100 ml 100 ml 100 ml	Depth to Water (ft BTOC Total Depth of Well (ft B Height of Purge Column tion/damage, evidence of tampering, odor, e f (ml) Rood Protection Water Quality Parameters pH +0,1	rtoc) rtc.): put inside well iun cove may have hegt PID Specific Conductance
Well ID Date Sampler(s) Purge/Sample Method Other Observation amples Collected AHs TEX VICS otal Cyanide urge Data Time Initial Stablization Criteria Initial	DL 4 Bailer ns (weather conditions, well deterioral Volume Collecter 40 ml 150 ml 150 ml 20.5°C ±0.5°C	Depth to Water (ft BTOC Total Depth of Well (ft B Height of Purge Column tion/damage, evidence of tampering, odor, of f (ml) Rood Protted Courses Water Quality Parameters pH +0,1	TOC)
Well ID Date Sampler(s) Purge/Sample Method Other Observation amples Collected AHs TEX VICS otal Cyanide urge Data Time Initial Stabilization Criteria Initial	DL 4 Bailer ns (weather conditions, well deterioral Volume Collecter 40 ml 10	Depth to Water (ft BTOC Total Depth of Well (ft B Height of Purge Column tion/damage, evidence of tampering, odor, e f (ml) Rood Protection Water Quality Parameters pH +0,1	TOC) stc.): put inside well in cove may have hegt PID Specific Conductance (mmbos/cm)
Well ID Date Sampler(s) Purge/Sample Method Other Observation amples Collected AHs TEX VICS otal Cyanide urge Data Time Initial Stablization Criteria Initial	DL 4 Bailer ns (weather conditions, well deterioral Volume Collecter 40 ml 10	Depth to Water (ft BTOC Total Depth of Well (ft B Height of Purge Column tion/damage, evidence of tampering, odor, of f (ml) Rood Protted Courses Water Quality Parameters pH +0,1	TOC)
Vell ID Vell ID vate ampler(s) urge/Sample dethod ther Observation mples Collected Hs TEX VICS tal Cyanide rge Data Time Initial Stablization Criteria Initial Stablization ST Volume Final Well Volume Volume	DL 4 Bailer ns (weather conditions, well deterioral Volume Collecter 40 ml 150 ml 150 ml 20.5°C ±0.5°C	Depth to Water (ft BTOC Total Depth of Well (ft B Height of Purge Column tion/damage, evidence of tampering, odor, e f (ml) Rood Pooted Courses Water Quality Parameters pH +0,1 7,51 7,42,7,37 7,24	TOC)

6/10/2002

Alis Here Here Here Here Standik Time Temperature pH Conductance (minbos(m)) Initial 10.5°C Hotial 10.5°C Hotial 10.5°C PH Conductance Conductance (minbos(m)) Isabitation 10.5°C Pinal Well	Well ID Date Sampler(s) Purge/Sample Method Other Observations (My 4 6/12/02 Role Bailer weather conditions, well deterioration/damag	PID Reading (ppm) Depth to Water (ft BTOC) Total Depth of Well (ft BTOC) Height of Purge Column e, evidence of tampering, odor, etc.):	0.0 10.56 20.42 10.56 No D. Bottom
Varge Data Water Quality Parameters Specific Time Temperature pH Conductance Initial 20.5°C 40.1 23% Initial 20.5°C 40.1 23% Initial	Samples Collected PAHs STEX VOL _S Fotal Cyanide		angle lected - NAPL Wall	2. (
Time Temperature (°C) pH Specific Coductance (mmhosicm) Initial 20.5°C +0.1 ±3% Stabilization ±0.5°C +0.1 ±3% Initial — — — Stabilization ±0.5°C +0.1 ±3% Initial — — — Stabilization ±0.5°C +0.1 ±3% Pinal Well — — — Valume — — — Final (post sample) depth to groundwater prior to pump shutoff (ft BTOC): — — Total Volume purged (G):	Purge Data			
Stabilization ±0.5°C +0.1 ±3% Criteria				Conductance
2nd Well Volume Final Well	Stablization	±0.5°C	+0.1	±3%
Volume Image: Construct of the second state of the second st	the second se		-	
Volume Pinal (post sample) depth to groundwater prior to pump shutoff (fi BTOC): Total volume purged (G): Sample ID(s): NO SAMPS LG Sample ID(s): NO SAMPS LG Sample Time: Vell Data MW-MW-S PID Reading (ppm) O.O Date G / 12 / 00 Depth to Water (fi BTOC) 9.33 Sampler(s) Total Depth of Well (fi BTOC) 24/36 Purge/Sample Height of Purge Column No NAPL Method Bailer Height of Purge Column No NAPL Sampler(s) Sampler Collected (ml) CLESTINES NAPL OFF Samples Collected Volume Collected (ml) CLESTINES NAPL OFF Samples Collected Volume Collected (ml) CLESTINES NAPL OFF Parge Data Vater Quality Parameters Specific Conductance (mmhos/em) Initial Sabilization 20.5%C +0.1 23% 23% Initial <		-	-	-
Final (post sample) depth to groundwater prior to pump shutoff (ft BTOC): Total volume purged (G): Sample ID(s): ND Sample Time: Well Data Well Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): Samples Collected Volume Collected (ml) Parge Data Water Quality Parameters Frial (vell Volume Initial Stabilization 20,5°C +0.1 2:3%	THE REPORT OF A DESCRIPTION OF A DESCRIP		-	
Sample ID(9): NO SAMPLE Sample Time: NO SAMPLE Nell Data NUW-S PID Reading (ppm) Date C1(12 for Depth to Water (ft BTOC) Sampler(s) Total Depth of Well (ft BTOC) Purge/Sample Height of Purge Column Method Bailer No NAPL Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): No NAPL Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): No NAPL Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): No NAPL Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): No NAPL Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): No NAPL Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): No NAPL Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): No NAPL Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): No NAPL Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): No NAPL Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): No NAPL Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): No NAPL Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): No NAPL Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): No NAPL Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): No NAPL Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): No NAPL Other Observations (weather conditions, weather conditions, weather conditions, weather conditions, weather conditions, weather conditions,	Starting Starting	lepth to groundwater prior to pump shutoff (fi	BTOC):	
Sample Time: Multi-S Well Data MW-MW-S Well ID MW-MW-S Date G [12]ool Date G [12]ool Sampler(s) Content of the server	Total volume purged	(G):		
Date G //2 /or Depth to Water (ft BTOC) Sampler(s) Total Depth of Well (ft BTOC) Purge/Sample Height of Purge Column Method Bailer Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): No Samples Collected Volume Collected (ml) Parge Data Conference of tampering, odor, etc.): Samples Collected Volume Collected (ml) Parge Data Conference of tampering, odor, etc.): Time Method Time Temperature (°C) pH Initial Stabilization Stabilization ±0.5°C Holl Volume	Well Data	MW. MW-3	PID Reading (nom)	0.0
Samples Collected Volume Collected (ml) PAHs TEX Total Cyanide Time Temperature ("C) Initial Stabilization t0.5°C +0.1 t3% Initial Stabilization t0.5°C +0.1 t3% Initial Time Temperature Initial T	Date Sampler(s) Purge/Sample Method	G 112102 RJG Bailer	Depth to Water (ft BTOC) Total Depth of Well (ft BTOC) Height of Purge Column	9.33
PAHs BTEX Total Cyanide Purge Data Purge Data Time Temperature (°C) Initial Stabilization Criteria Tintial Distriction Criteria Tintial Distriction Criteria Tintial Distriction Criteria Tintial Distriction Criteria Tintial Distriction Criteria Tintial Distriction Criteria Tintial Distriction Criteria Tintial Distriction Criteria Tintial Distriction Criteria Tintial Distriction Criteria Tintial Distriction Criteria Tintial Conductance (°C) Criteria Conductance (°C) Criteria Conductance (°C) Criteria Criteria Conductance (°C) Criteria Criteria Conductance (°C) Criteria Conductance (°C) Criteria Criteria Criteria Criteria Conductance (°C) Criteria Criteria Conductance (°C) Criteria Criteria Criteria Conductance (°C) Criteria Criteria Conductance Criteria Criteria Conductance (°C) Criteria Criteria Criteria Conductance Criteria				OTTECTED
Water Quality Parameters Time Temperature (°C) pH Specific Conductance (mmhos/cm) Initial Stablization Criteria ±0.5°C +0.1 ±3% Initial ±0.5°C +0.1 ±3% Initial	PAHs BTEX Total Cyanide		OF	ROBE AND ROBE AND E. MINIMAL AM
Time Temperature (°C) pH Specific Conductance (mmhos/cm) Initial Stabilization Criteria ±0.5°C +0.1 ±3% Initial	Purge Data		Water Onality Recomptage	
Stabilization Criteria ±0.5°C +0.1 ±3% Initial	Time			Conductance
Znd Well Volume	Stablization	±0.5°C	+0.1	±3%
Final Well Volume		-	A Street	
Final Well Volume	2nd Well Volume	-		-
	Final Well	-	-	-
Final (post sample) depth to groundwater prior to pump shutoff (ft BTOC);		depth to groundwater prior to pump shutoff (f	t BTOC);	
	Sample ID(s):	No Sample collect	LA NARL Well	

Well ID MW-GY PID Reading (ppm) Date 6/12/02 Depth to Water (ft BTOC) Sampler(s) Total Depth of Well (ft BTOC) Purge/Sample Height of Purge Column Method Bailer Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): Samples Collected Volume Collected (ml) PAHs 1/11/16 Other Observations 1/11/16 Parge Data Water Quality Parameters Time Temperature pH Initial ±0.59C ±0.1	0, 0 3,45 7,30 3.85
Sampler(s) Total Depth of Well (ft BTOC) Purge/Sample Height of Purge Column Method Bailer Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): amples Collected Volume Collected (ml) AHs The Hore Hore otal Cyanide Hore Time Temperature pH Initial	7.30
Purge/Sample Height of Purge Column Method Bailer Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): amples Collected Volume Collected (ml) AHs FIEX FORG FOR	3.85
Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): amples Collected Volume Collected (ml) AHs Howe Howe Howe Howe Howe Howe Howe Howe	
amples Collected Volume Collected (ml) AHs I UIG Otal Cyanide Turge Data Time Time Temperature (°C) Initial	
AHs TEX USC: Otal Cyanide USD MC USD MC USD MC USD MC USD MC Water Quality Parameters Time Temperature (°C) Initial	
Time Temperature pH (°C)	
Time Temperature pH (°C)	
(°C)	
A. LET IT	Specific Conductance (mmhos/cm)
Criteria ±0.5°C +0.1	±3%
Initial 18.0 6.4.3	4.38
Zand Well Volume 15.7 15.3 5.01 3.73 5.01	.48/1.36
Final Well Volume 3.45	6.95
Final (post sample) depth to groundwater prior to pump shutoff (fi BTOC):	
Total volume purged (G): 0.63	
Sample ID(s): MW-63 Sample Time: 14:00	
Vell Data	
Well ID MW- C PID Reading (ppm)	0,0
Date Depth to Water (ft BTOC)	8.85
Sampler(s) Total Depth of Well (R BTOC)	
Purge/Sample Height of Purge Column	4248
Method Bailer	and the second sec
Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.):	
Amples Collected Volume Collected (ml)	
PAHS Thick The Thick	
Total Cyanide	
urge Data Water Quality Parameters	
	Specific
Time Temperature pH (°C)	Conductance (mmbos/cm)
Initial Stabilization +0.1	152530
Criteria	±3%
Initial 13,9 6.49	0.699
nd Well Volume 147/15.1 5.74/6.52 0.9	5/0.576
Final Well Land Land	39
Volume 14.4 6.79 1.	Report to the second
Final (post sample) depth to groundwater prior to pump shutoff (fl BTOC):	

Well ID	MW- 7	PID Reading (ppm)	00
Date	6/12/02		Malan 7 17
Sampler(s)	Dir	Depth to Water (ft BTOC)	No 11. 4.51
STREET, STREET	por	Total Depth of Well (ft BTOC)	21,01
Purge/Sample		Height of Purge Column	12.94
Method	Bailer		
Other Observations	weather conditions, well deterioration	damage, evidence of tampering, odor, etc.):	
amples Collected	Volume Collected (m	1)	
AHs	- Ulite		
EX VOCS	40 ml		
otal Cyanide	_ coo ml		
urge Data			
-		Water Quality Parameters	
1000		1000	Specific
Time	Temperature	pH	Conductance
	("C)		(mmhos/cm)
Initial Stablization	10.000	+0.1	
Criteria	±0.5°C	70.3	±3%
Initial	12.200	7.1.4	0.841
2nd Well		aulan	
Volume	12.3/11.0	1.11/7.89	0.257/ 0.791
Final Well		1.1	
Volume	10.5	1.01	0.819
inal (post sample)	depth to groundwater prior to pump shu	ntoff (ft BTOC):	A CONTRACTOR OF THE OWNER
l'otal volume purgeo	d (G): 2.2 6405		
Sample ID(s):	Anis Z	and the second	
Sample Time:	NW-7 1555		
Vell Data Well ID	MW-	PID Reading (ppm)	
Date		Depth to Water (ft BTOC)	
Sampler(s)		Total Depth of Well (ft BTOC)	Contraction of the lot of the
Purge/Sample		Height of Purge Column	
Method	Bailer	Height of Furge Column	
All the second se	CARDING THE REPORT OF THE REPORT	a second second	
		/damage, evidence of tampering, odor, etc.):	
amples Collected	Volume Collected (m	d)	
TEX			
TEX otal Cyanide			
AHs iTEX iotal Cyanide iurge Data		Water Quality Parameters	
TEX otal Cyanide urge Data			Specific
TEX otal Cyanide	Temperature	Water Quality Parameters	Conductance
TEX otal Cyanide arge Data	Temperature (°C)		Conductance
TEX otal Cyanide arge Data Time Initial	(°C)	.рЦ	Conductance (mmhos/cm)
TEX otal Cyanide arge Data Time Initial Stablization	and the second sec		Conductance
TEX otal Cyanide arge Data Time Initial Stablization Criteria	(°C)	.рЦ	Conductance (mmhos/cm)
TEX otal Cyanide urge Data Time Initial Stablization	(°C)	.рЦ	Conductance (mmhos/cm)
TEX onal Cyanide arge Data Time Initial Stablization Criteria Initial	(°C)	.рЦ	Conductance (mmhos/cm)
TEX otal Cyanide arge Data Time Initial Stablization Criteria	(°C)	pH +0.1	Conductance (mmhos/cm)
TEX shal Cyanide arge Data Time Initial Stablization Criteria Initial	(°C)	.рЦ	Conductance (mmhos/cm)
Time Initial Stablization Criteria Initial d Well Volume Final Well Volume	(°C) ±0.5°C depth to groundwater prior to pump sh	.pH +0.1	Conductance (mmhos/cm)
TEX otal Cyanide arge Data Time Time Initial Stablization Criteria Initial Initial od Well Volume Final Well Volume Final (post sample)	(°C) ±0.5°C	.pH +0.1	Conductance (mmhos/cm)

Well Data			
Well ID	MW: 85	PID Reading (ppm)	6.0
Date	6/12/02	Depth to Water (ft BTOC)	11.83
Sampler(s)	DEK TRIG	Total Depth of Well (ft BTOC)	18.17
Purge/Sample	. ,	Height of Purge Column	6.34
Method	Bailer	the part of the problem in	
Other Observations (amage, evidence of tampering, odor, etc.):	
Samples Collected	Volume Collected (ml)		
PAHs	1 lite		
BTEX	- YO me		
Fotal Cyanide	100 m		
'urge Data			
_		Water Quality Parameters	
-	and a manufacture of process		Specific
Time	Temperature	pH	Conductance
Induited	(°C)	and the second	(mmhos/cm)
Initial Stablization	10.500	+0.1	HERMAN
Criteria	±0.5°C		±3%
Initial	12.2	7.71	0.684
2nd Well Volume	12,3 / 11,2	7.74/1.51	0.673/0.741
Final Well			0.010/01/10
Volume	18.5	7.32	0.673
Final (post sample) d	epth to groundwater prior to pump shute	ff (fi BTOC):	
Total volume purged			
Sample ID(s):	MW- 83		
Sample Time:	U:30		
Well Data			In the second second
Well ID	MW-	PID Reading (ppm)	
Date	A18.18-7		
Sampler(s)		Depth to Water (ft BTOC)	The second se
Sampler(s) Purge/Sample		Total Depth of Well (ft BTOC)	
The second s	10 J	Height of Purge Column	
Method Other Observations /	Bailer weather conditions, well deterioration (de	unage, evidence of tampering, odor, etc.):	
amples Collected			
Alls	Volume Collected (ml)		
	5		
STEX			
'otal Cyanide	+		
urge Data		Water Quality Deservation	
1.1		Water Quality Parameters	Specific
Time	Temperature	pH	
A. A	(*C)	14.K.	Conductance (mmhos/cm)
Initial	1.447		(unninosient)
Stablization	±0.5°C	+0.1	±3%
Criteria	-0.0 0	the second second second	-376
Initial			
nd Well Volume			
Final Well			
Volume			
Final (post sample) d	epth to groundwater prior to pump shute	ff (ft BTOC):	
Total volume purged	(G):		
Sample ID(s):			
Sample Timesan vie			

Well ID	MW- 80 6/12/02	PID Reading (ppm)	0.0
Date	6/12/02	Parth to Water (0 D2000)	
Sampler(s)	RIG		
Purge/Sample		Total Depth of Well (ft BTOC)	
Method		Height of Purge Column	
	Bailer Bathan and fitigeneration and the second		
Other Observations (w	cather conditions, well deterioratio	n/damage, evidence of tampering, odor, etc.):	
Samples Collected	Volume Collected (ml)	
PAHs	1 luca		
WHEN VOLS	40 10		
Total Cyanide	100 ml		
Purge Data			La sur an a state
_		Water Quality Parameters	
1122	12		Specific
Time	Temperature	pH	Conductance
	(°C)		(mmhos/em)
Initial Stablization		+0.1	
Criteria	±0.5°C	70.1	±3%
Initial	12.200	8.27	0.714
2nd Well	11 11/10 1	8.37/8 13	1
Volume Final Well	p. 11 10.1	1 4 1 1 2	0.718/0.723
Volume	12.2	7.68	0.874
Final (post sample) de	pth to groundwater prior to pump sl	autoff (ft BTOC):	
Total volume purged (
Sample ID(s):	80		
Sample Time:	11-20		
And the straight stra	na	A REAL PROPERTY AND A REAL	
Vell Data		and the second second	
Well ID	MW- 87	PID Reading (ppm)	0,0
Date	6/12/02	Depth to Water (ft BTOC)	11.74
Sampler(s)	REG	Total Depth of Well (ft BTOC)	37 23
Purge/Sample		Height of Purge Column	75.49
Method	Bailer	the Bur of 1 m Po commu	
		n/damage, evidence of tampering, odor, etc.):	
amples Collected	Volume Collected (1	date sources and the second se	No.
AHs	1 lits		
TEX	40 m		
otal Cyanide	1177.00		
2010/07/2014/07/20	-formt		
urge Data		Water Quality Parameters	
		a contract a primitive ap	Specific
Time	Temperature	pH	Conductance
	(°C)		(mmhos/cm)
Initial	1.47		(ununos cm)
Stablization	±0.5°C	+0.1	±3%
Criteria			and the second
Initial	11.8	7.47	0.617
nd Well Volume	11.1/ 11.2	7.34 / 7.28	0.619/0.617
Finnl Well	11.6	7.21	0.619
Volume Final (post sample) der	pth to groundwater prior to pump sl		
Fotal volume purged (Contraction of the second s	and the proves.	The second second second
and the second se	mi 82		
Sample ID(s):	mw or		

Well ID	MW. 91	* *DID Desils	0.0
Date	6/ 18/0	"PID Reading (ppm)	
Sampler(s)	011310	,	-11-33
Purge/Sample	-reve-	Total Depth of Well (ft BT(() <u>65.5</u>
Method	Bailer	Height of Purge Column	_17.17_
		n/damage, evidence of tampering, odor, etc.	.)•
amples Collecte			~
AHs	_1 lite		
TEX VOLS	40 ml		
otal Cyanide	_ LOD m		
urge Data			
		Water Quality Parameters	
Time	Temperature	pH	Specific
10000-14	(°C)	Para	Conductance
Initial	<u> </u>	I State of the second second	(mmhos/cm)
Stablization	±0.5°C .	+0.1	±3%
Criteria	11,4	1 /1	
T/2nd Well		2	0.449
Volume Final Well	11.2/11.3	7.24 / 1.51	0.449 / 0,513
Volume	11.4	7,29	0.521
Final (post samp	le) depth to groundwater prior to pump s	hutoff (ft BTOC):	
Total volume pur			
Sample ID(s):	MV-9I		
Sample Time:	08:30		
Vell Data			
Well ID	MW-,90	PID Reading (ppm)	0.0
Date	6/13/02	 Depth to Water (ft BTOC) 	1295
Sampler(s)	OLK	Total Depth of Well (ft BTC	DC) 42.78
Purge/Sample		Height of Purge Column	29.83
Method	Bailer		
Other Observatio	ons (weather conditions, well deterioratio	n/damage, evidence of tampering, odor, etc.):
amples Collecter		ml) .*	
AHs	Aliter	100 - 10 - 10 - 10 - 10 - 10 - 10 - 10	
TEX	40 ml		
otal Cyanide	LOOM		
urge Data			
		Water Quality Parameters	1
1200	100		Specific
Time	Temperature	pH	Conductance *
Initial	(°C)		(mmhos/cm)
Initial Stablization	+0.590	+0.1	in the second
Criteria	±0.5°C		±3%
Initial	([, 9	8,89	D1348
nd Well Volume	11.4/11.5	8,34 8,25	0.397 0.397
Final Weil	11 -	7 07	
Volume		1.1	0.636
	le) depth to groundwater prior to pump sl	hutoti (ft BTOC):	
Fotal volume pur Sample ID(s):	MW 20		
Sumple ID(a).			
	1000 F 1F, F 1		

Well Data	90	199-23 W	A 11
Well ID	MW- 95	PID Reading (ppm)	0.0
Date	6/13/02	Depth to Water (ft BTOC)	11.6
Sampler(s)	ROF	Total Depth of Well (ft BTOC)	15.71
Purge/Sample		Height of Purge Column	4.11
Method	Bailer		
Other Observation	ions (weather conditions, well deterioration	/damage, evidence of tampering, odor, etc.):	
Samples Collect	ed Volume Collected (n	al)	
PAHs	12000		
BTEX VOS	40 00		
Total Cyanide	_100 ml		
Purge Data	1		
		Water Quality Parameters	
Time	Temperature	-11	Specific
a nue	(°C)	pH	Conductance
Initial	(9		(mmhos/cm)
Stablization Criteria	±0.5°C	+0.1	±3%
Initial	14.1	7.06	0.521
Volume	11.0 / 10.9	7.01 / 7.02	0.509 / 0.527
Final Well	11.8		
Volume	11.0	7.02	0.527
Final (post sam	ple) depth to groundwater prior to pump she	stoff (ft BTOC):	
Total volume p	urged (G): 0.68 MW-95		
Sample ID(s):	MW-95		
Sample Time:	9:05		
Well Data			
Well ID	MW; 10	PID Reading (ppm)	0.0
Date	6/13/02	Depth to Water (ft BTOC)	14.27
Sampler(s)	DEK	Total Depth of Well (ft BTOC)	31.00
Purge/Sample		Height of Purge Column	16.73
Method	Bailer		1
Other Observati	ions (weather conditions, well deterioration	/damage, evidence of tampering, odor, etc.):	
Samples Collect	ed Volume Collected (m	al)	
PAHs	1 lite		
BTEX VAC	5 Land		
Total Cyanide	_100 ml		
Purge Data			
		Water Quality Parameters	
125			Specific
Time	Temperature	pH	Conductance
Internal.	(°C)		(mmhos/cm)
Initial Stablization	10 222	+0.1	
Criteria	±0.5°C		±3%
Initial	11.1	7.04 ,	0.733
2nd Well Volum	115/11.6	209/211	0.753/0.747
Final Well	4.1	11 11 11	
Volume	1111 1111	7,10/1,04	0/140/0.13
The second second second	ple) depth to groundwater prior to pump sh	utoff (ft BTOC): · /	
Total volume p Sample ID(s):	urged (G): 2.76 MW-10		
SHURE TRUE	20 via 950		

Well ID	MW- 12	PID Reading (ppm)	0.0
Date	6/12/02	Depth to Water (ft BTOC)	7.07
Sampler(s)	DLK	Total Depth of Well (ft BTOC)	20.02
Purge/Sample	and the second se	Height of Purge Column	10 06 13.06
Method	Bailer	and a second sec	
Other Observatio	ons (weather conditions, well deterioration/c	famage, evidence of tampering, odor, etc.):	
amples Collecte	d Volume Collected (ml)	
AHs	_ litte		
TEX VOCS	yon.		
otal Cyanide	100 ml		
urge Data			
		Water Quality Parameters	
Time	Townset		Specific
Time	Temperature	pH	Conductance
Initial	(*C)		(mmhos/cm)
Stablization	±0.5°C	+0,1	ton/.
Criteria			±3%
Initial 2nd Well	14.1	7,58	3,15
Volume	118/11.9	252/7.51	3.23/3.29
Final Well Volume	11.4	7.48	3.21
and the second second	(e) depth to groundwater prior to pump shut		3.56
fotal volume pur		on (it broc).	
Sample ID(s):	500107.		
Sample Time:			
ell Data			
Well ID	MW // /00	PID Reading (ppm)	6,0
Date	6/12/02	Depth to Water (ft BTOC)	5.29
Sampler(s)	ROG	Total Depth of Well (ft BTOC)	20.54
Purge/Sample		Height of Purge Column	0 15.25
Method	Bailer		
Other Observatio	ns (weather conditions, well deterioration/d	amage, evidence of tampering, odor, etc.):	
amples Collecte	Volume Collected (ml)		
AHs	- ilite		
TEX VOLS	- 40 ml		
otal Cyanide	100mal	M. F. Markel	
urge Data		Water Overlage	
		Water Quality Parameters	Specific
Time	Temperature	pH	Specific
- 1940	(°C)	pre	Conductance (mmhos/cm)
Initial			(analysed)
Stablization Criteria	±0.5°C	+0,1	13%
Initial	13,8	7.82	A38 413
LSt-		7.66/7.52	1.04/ 0.892
nd Well Volume	12.4 / 11.0		1.04 0.84 2
Final Well Volume	11.0	7.45	0.866
	e) depth to groundwater prior to pump shut	off (ft BTOC):	
otal volume pur	ged (G): 2,5 MW~1/		
Sample ID(s):			
ample Time:	10:20		

Well ID Date Sampler(\$) Purge/Sample Method Other Observations (MW-13-I G111102 DLK R5G Bailer (weather conditions, well deterioration/	PID Reading (ppm) Depth to Water (ft BTOC) Total Depth of Well (ft BTOC) Height of Purge Column damage, evidence of tampering, odor, etc.):	8.0 8.17 34.41 26.24
Samples Collected PAHs RTEX UOC5 Total Cyanide	Volume Collected (m) L L L L L L	1) 🛱	
Purge Data			
Time	Temperature (°C)	Water Quality Parameters	Specific Conductance (mmhos/cm)
Initial Stablization Criteria	20.5°C	+0.1	±3%
Initial	15°C	7.28/	1.73
Volume Final Well	H10/ 13.5	7.38/ 7.31	1.75/1.75
Volume	13.7	7,22	1.75
Final (post sample) o	depth to groundwater prior to pump shu	toff (ft BTOC):	
Total volume purged Sample ID(s): M	1(G): 4-33 W-13 I		
Sample Time:	1145		and the second strength
Well Data			
Well ID Date Sampler(s) Purge/Sample Method	MW- 13 D GIU/02 DLK/RJC Bailer (weather conditions, well deterioration/		0,0 7,21 56.46 49.25
Well ID Date Sampler(s) Purge/Sample Method Other Observations (Samples Collected PAHs BTEX	Gluiton DLK/RJC Bailer	PID Reading (ppm) Depth to Water (ft BTOC) Total Depth of Well (ft BTOC) Height of Purge Column damage, evidence of tampering, odor, etc.)	7,21 56.46
Well ID Date Sampler(s) Purge/Sample Method Other Observations (Samples Collected PAHs BTEX Total Cyanide	Bailer (weather conditions, well deterioration/ Volume Collected (m	PID Reading (ppm) Depth to Water (ft BTOC) Total Depth of Well (ft BTOC) Height of Purge Column damage, evidence of tampering, odor, etc.)	7,21 56.46
Well ID Date Sampler(s) Purge/Sample Method Other Observations (Samples Collected PAHs BTEX Fotal Cyanide	Bailer (weather conditions, well deterioration/ Volume Collected (m	PID Reading (ppm) Depth to Water (ft BTOC) Total Depth of Well (ft BTOC) Height of Purge Column damage, evidence of tampering, odor, etc.)	7,21 56.46
Well ID Date Sampler(s) Purge/Sample Method Other Observations (Samples Collected PAHs BTEX Fotal Cyanide Purge Data	GILITO2 DLIK/R5G Bailer (weather conditions, well deterioration/ Volume Collected (m JL JAYDAL VOAS J	PID Reading (ppm) Depth to Water (ft BTOC) Total Depth of Well (ft BTOC) Height of Purge Column (damage, evidence of tampering, odor, etc.): 1) 3 Water Quality Parameters	7,21 56.46 49.25 Specific Conductance
Well ID Date Sampler(s) Purge/Sample Method Other Observations (Samples Collected PAHs BTEX Fotal Cyanide Purge Data Time Initial Stablization Criteria Initial Initial	GILITO2 DLIK/R5C Bailer (weather conditions, well deterioration/ Volume Collected (m JL JAX40 AL VOAS J Temperature (°C)	PID Reading (ppm) Depth to Water (ft BTOC) Total Depth of Well (ft BTOC) Height of Purge Column (damage, evidence of tampering, odor, etc.): 1) 3 Water Quality Parameters pH +0.1 7, 19	7,21 56.46 49.25 Specific Conductance (mmhos/cm)
Well ID Date Sampler(s) Purge/Sample Method Other Observations (Samples Collected PAHs BTEX Fotal Cyanide Purge Data Time Initial Stablization Criteria Initial	$\frac{G II / O 2}{D L K / R S G}$ Bailer (weather conditions, well deterioration/ Volume Collected (m $J \leftarrow$ $J \leftarrow$ $J \times 40 \text{ mL}$ VOAS J Temperature (°C) $\pm 0.5^{\circ}\text{C}$	PID Reading (ppm) Depth to Water (ft BTOC) Total Depth of Well (ft BTOC) Height of Purge Column (damage, evidence of tampering, odor, etc.): 1) 3 Water Quality Parameters pH	7,21 56.46 49.25 Specific Conductance (mmhos/cm)
Well ID Date Sampler(s) Purge/Sample Method Other Observations (Samples Collected PAHs BTEX Total Cyanide Purge Data Time Initial Stablization Criteria Initial	$\frac{G II / O 2}{D L K / R S G}$ Bailer (weather conditions, well deterioration/ Volume Collected (m $J \leftarrow$ $J \leftarrow$ $J \times 40 \text{ mL}$ VOAS J Temperature (°C) $\pm 0.5^{\circ}\text{C}$	PID Reading (ppm) Depth to Water (ft BTOC) Total Depth of Well (ft BTOC) Height of Purge Column (damage, evidence of tampering, odor, etc.): 1) 3 Water Quality Parameters pH +0.1 7, 19	7,21 56.46 49.25 Specific Conductance (mmhos/cm)

Well ID	MW. 135	PID Reading (ppm)	0.0
Date	MW. 135 5/11/02		
Sampler(s)	OIX 1875	Depth to Water (ft BTOC)	3.0
Purge/Sample	Dert	Total Depth of Well (ft BTOC	19.88
Method	Bailer	Height of Purge Column	1.28
	weather conditions, well deterioration/dam	age, evidence of tampering, odor, etc.):	
Samples Collected	Volume Collected (ml)	NATE	TAD AF WELL ADDING
PAHs	1 lite		TOP OF WELL ORSING
THEY UDC.	40 00	BROKEN,	NO COD NO COVER
Total Cyanide	100ml		
Purge Data			
		Water Quality Parameters	
Time			Specific
Time	Temperature	pH	Conductance
Initial	(°C)		(mmhos/cm)
Stablization	±0.5°C	+0.1	1000
Criteria			±3%
Initial 15/2nd Well	19.5	7.69	0.288
Volume	16.0/ 14.4	7.38 /7.38	0,675 1.32
Final Well Volume	14.0	7.43	1.42
Final (post sample) de	epth to groundwater prior to pump shutoff	(ft BTOC):	
Total volume purged	(G): 1.96		
Sample ID(s): Mi Sample Time: Well Data			
Well ID	MW 147	PID Reading (ppm)	2.0
Date	6/11/07	Depth to Water (ft BTOC)	35,68 9.62
Sampler(s)	DER RJG	Total Depth of Well (ft BTOC)	3510 1.02
Purge/Sample		Height of Purge Column	21 1
Method	Bailer	the Bit of Furge Containing	_20.06
	weather conditions, well deterioration/dam	age, evidence of tampering, odor, etc.):	
Other Observations () Samples Collected	Values Collected (mb)	age, evidence of tampering, odor, etc.):	
Other Observations (v Samples Collected PAHs		age, evidence of tampering, odor, etc.):	
Other Observations (v Samples Collected PAHs STEX- VOCS	Volume Collected (ml)	age, evidence of tampering, odor, etc.):	
Other Observations (s Samples Collected PAHs STEX- VOC ₅ Fotal Cyanide	Values Collected (mb)	age, evidence of tampering, odor, etc.):	
Other Observations (s Samples Collected PAHs STEX- VOC ₅ Fotal Cyanide	Volume Collected (ml)		
Other Observations () Samples Collected	Volume Collected (ml)	age, evidence of tampering, odor, etc.): Water Quality Parameters	Sawifin
Other Observations (v Samples Collected PAHs DTEX- VOCs Total Cyanide Purge Data	Volume Collected (ml) Luis 40 ml 100 ml	Water Quality Parameters	Specific
Other Observations (s Samples Collected PAHs STEX- VOC ₅ Fotal Cyanide	Volume Collected (ml)		Conductance
Other Observations (x Samples Collected PAHs DTEX- VOCs Fotal Cyanide Purge Data	Volume Collected (ml)	Water Quality Parameters pH	1.
Other Observations (x Samples Collected PAHs DTEX- VOCs Fotal Cyanide Purge Data Time Initial Stablization	Volume Collected (ml)	Water Quality Parameters	Conductance
Other Observations (x Samples Collected PAHs DEEX- VOC3 Fotal Cyanide Purge Data Time Initial Stablization Criteria Initial	Volume Collected (ml)	Water Quality Parameters pH +0.1 4.08	Conductance (mmhos/em)
Other Observations (x Samples Collected PAHs DTEX- VOCs Total Cyanide Purge Data Time Initial Stablization Criteria	Volume Collected (ml)	Water Quality Parameters pH +0,1	Conductance (mmhos/cm) ±3%
Other Observations (x Samples Collected PAHs DEEX- VOCS Total Cyanide Purge Data Time Initial Stablization Criteria Initial Stablization Criteria Initial	Volume Collected (ml) <u>Luis</u> <u>40</u> ml <u>100</u> ml <u>100</u> ml <u>20.5°C</u> <u>16.5</u> <u>-9=75</u> 15.3 //29	Water Quality Parameters pH +0,1 4.08 9.15 / 9.09	Conductance (mmhos/cm) ±3% 0.347 0.334/0.336
Other Observations (x Samples Collected PAHS OTEX- VOCS Fotal Cyanide Purge Data Time Initial Stablization Criteria Initial Stablization Criteria Initial	Volume Collected (ml) <u>[uks</u> <u>40 ml</u> <u>100 ml</u> <u>100 ml</u> <u>20.5°C</u> <u>16.5</u> <u>-9:15 15.3 Ml9</u> <u>14.9</u>	Water Quality Parameters pH +0.1 4.08 9.15 9.15	Conductance (mmhos/cm) ±3%
Other Observations (v samples Collected PAHs OTEX- VOCs Fotal Cyanide Purge Data Time Initial Stablization Criteria Initial Stablization Criteria Initial	Volume Collected (ml) <u>I</u> <u>H</u> <u>H</u> <u>H</u> <u>H</u> <u>H</u> <u>H</u> <u>H</u> <u>H</u>	Water Quality Parameters pH +0.1 4.08 9.15 9.15	Conductance (mmhos/cm) ±3% 0.347 0.334/0.336

Well ID Date Sampler(s) Purge/Sample Method Other Observation	Bailer	PID Reading (ppm) Depth to Water (ft BTOC) Total Depth of Well (ft BT Height of Purge Column	roc) 53.52 43.49
Samples Collected PAHs PTEK VOCS Fotal Cyanide	Volume Collected	(ml) :	
urge Data			
Time	Temperature (°C)	Water Quality Parameters pH	Specific Conductance (mmhos/cm)
Initial Stablization Criteria	±0.5°C	+0.1	±3%
Initial	15,2	7.18	0.607
Volume	14.5/ 14.2	6.82 / 6.71	0.621/ 0.640
Final Well Volume	14.2	6.35	0.687
Sample ID(s): Sample Time: Vell Data Well ID Date Sampler(s) Purge/Sample Method Other Observation	Values Collected	PID Reading (ppm) Depth to Water (ft BTOC) Total Depth of Well (ft BT Height of Parge Column on/damage, evidence of tampering, odor, etc	12.93
AHs VIEX JOE Votal Cyanide	1 /10	ima)	
urge Data		Water Quality Parameters	
Time	Temperature (°C)	pH	Specific Conductance (mmhos/cm)
Initial Stablization Criteria	±0.5°C	+0.1	±3%
Initial	15.8	8.18	0.599
nd Well Volume	R. 197 14.4	7.07 / 6.77 .	2.53/.3.15 .
Final Well Volume	14.2.	6.81	3.44
Final (post sample Total volume purg Sample ID(s):	ed (G): 2.1 MW - 145	ihutoff (ft BTOC);	

PAHs 1 <th>Well ID Date Sampler(s) Purge/Sample Method Other Observations</th> <th>MW. 15 I 6/12/02 R56/04K Bailer (weather conditions, well deterioration)</th> <th>PID Reading (ppm) Depth to Water (ft BTOC) Total Depth of Well (ft BTOC Height of Purge Column damage, evidence of tampering, odor, etc.):</th> <th>0,0 10,25 48,35 38,1</th>	Well ID Date Sampler(s) Purge/Sample Method Other Observations	MW. 15 I 6/12/02 R56/04K Bailer (weather conditions, well deterioration)	PID Reading (ppm) Depth to Water (ft BTOC) Total Depth of Well (ft BTOC Height of Purge Column damage, evidence of tampering, odor, etc.):	0,0 10,25 48,35 38,1	
Time Temperature pH Specific Initial 20,5°C +0.1 33% Initial 20,5°C +0.1 33% Initial 12,5° 9.19 2.444 Volume 11.6 /12.3 8.53/7.4.85 2.34/2.40 Final Vell 11.6 /12.3 7.41 2.62~ Final Vell 12.3 7.41 2.62~ Final Vell Notes 9.55 9.19D Reading (ppm) 0.0 Samplet Time: 8:50 9.15 1.2.3% Well Da MW-155 PID Reading (ppm) 0.0 21.80 Purge/Sample Bailer Deth Net (ft BTOC) 21.80 Purge/Sample Volume Collected (mi) 12.3% 12.3% Method Bailer Method 12.3% 12.3% Tine Temperature pH	Samples Collected PAHs HTTELLOLS Total Cyanide	- lit)		
Time Temperature pH Specific Initial 20,5°C +0.1 33% Initial 20,5°C +0.1 33% Initial 12,5° 9.19 2.444 Volume 11.6 /12.3 8.53/7.4.85 2.34/2.40 Final Vell 11.6 /12.3 7.41 2.62~ Final Vell 12.3 7.41 2.62~ Final Vell Notes 9.55 9.19D Reading (ppm) 0.0 Samplet Time: 8:50 9.15 1.2.3% Well Da MW-155 PID Reading (ppm) 0.0 21.80 Purge/Sample Bailer Deth Net (ft BTOC) 21.80 Purge/Sample Volume Collected (mi) 12.3% 12.3% Method Bailer Method 12.3% 12.3% Tine Temperature pH	Purge Data				
Time Temperature pH Conductance (mmbss/cm) Initial 20,5% +0.1 ±3% Initial 12.5 9.14 ±3% Initial 12.5 9.14 ±3% Initial 12.5 9.14 ±3% Initial 12.5 9.14 ±3% Volume 11.6 (12.3 8.53/7.9.85 2.34/7 2.447 Volume 12.3 7.47/7 2.62 7.47 2.62 Final (post sample) depth to groundwater prior to pump shutoff (fi BTOC): Total volume purged (g): 6.3 3 Sample ID(s): MW-15 S PID Reading (ppm) 0-0 2.62 Sample Time: 8:50 Stat 5.50 2.180 Well Data Depth to Water (fi BTOC) 7.44 2.480 12.35 Method Bailer Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): Samples Collected Volume Collected (mi) 12.35 Parge Data 10.00 10.00 12.35	-		Water Quality Parameters		
Stablization Criteria ±0.5°C +0.1 ±3% Initial 12.5 9.19 2.449 Yolume 11.6 12.3 8.53 7.85 2.34 2.49 Volume 11.6 12.3 8.53 7.85 2.34 2.49 Volume 12.3 7.41 2.62 2.62 Final Well 12.3 7.41 2.62 Final Well 12.3 7.41 2.62 Final Well 6.3 Sample Dig: MW - 15.5 PID Reading (ppm) 0.00 Total volume purged (G): 6.43 Depth to Water (ft BTOC) 7.49 21.480 Sample Dig: MW - 15.5 PID Reading (ppm) 0.00 7.49 21.480 PurgeSample Depth to Well (ft BTOC) 7.49 21.480 12.36 12.36 Method Bailer Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): Samples Collected Volume Collected (ml) Parge Data			pH	Conductance	
20 Well 11.6 12.3 8.53 7.85 2.34 2.40 Final Well 12.3 7.4/ 2.62 Final (post sample) depth to groundwater prior to pump shutoff (fi BTOC): 7.4/ 2.62 Total volume purged (3): 6.3 5.50 5.50 Sample Time: 8:50 9:50 9:50 Well Data 0.4.4 (R576) Depth to Water (fi BTOC) 7.4// Method Bailer Depth to Water (fi BTOC) 21.80 Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): Samples Collected Volume Collected (mil) PAHs 11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	Stablization		+0.1	±3%	
2.30 Well 11.6 12.3 $8.53/7.88$ $2.34/2.40$ Final Well 12.3 $7.41/$ 2.62 Final Well 12.3 $7.41/$ 2.62 Final (post sample) depth to groundwater prior to pump shutoff (fi BTOC): $7.41/$ 2.62 Total volume purged (G): 6.3 $5.53/7.84/$ 2.62 Sample D(c): $MW - 155$ PID Reading (ppm) $0-0$ Date $61/2.0^2$ Depth to Water (fi BTOC) $7.44/$ Sample Time: $8:50$ 9.50 $9.10/7.85$ $9.10/7.85$ $9.10/7.85$ Sample Time: $8:50$ $9.10/7.85$ $9.10/7.85$ $9.10/7.85$ $9.10/7.85$ Sample Time: $8:50$ $9.10/7.85$ $9.10/7.85$ $9.10/7.85$ $9.10/7.85$ Method Bailer $0.11/7.85$ 12.35 $9.2.35$ Method Bailer 12.736 12.736 Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): Samples Collected Volume Collected (mil) Parts $10.20/7.100/7.100/7.100/7.100/7.100/7.100/7.100/7.100/7.100/7.100/7.100/7.100/7.100/7.100/7.100/7.100/7.100/7.100/$		12.5		244	
Volume 12.3 $7,41/$ 2.62 Final (post sample) depth to groundwater prior to pump shutoff (ft BTOC):Total volume purged (G): 6.3 Sample TD(s): $MW - 15$ T.Sample Time: $3:50$ Well DataWell TDMW- 15 T.Sample Time: $3:50$ Well DataWell TDMW- 15 T.Sample Time: $3:50$ Well TDMW- 15 T.Sample Time: $3:50$ Depth to Water (ft BTOC) $7.44/$ Open to Water (ft BTOC) $7.44/$ Open to Water (ft BTOC)Purge SampleHeight of Purge ColumnID2.35Samples CollectedVolume Collected (m1)AlisIDD colVolume Collected (m1)AlisIDD colVolume Collected (m1)AlisIDD colSpecificConductance(C)IDD colIDD colSpecificConductance(C)IDD colIDD colIDD col </td <td>Volume</td> <td></td> <td></td> <td></td>	Volume				
Final (post sample) depth to groundwater prior to pump shutoff (ft BTOC): Total volume purged (G): 6.3 Sample ID(s): $MW - 155$ I. Sample Time: 8:50 Well Data $MW - 155$ PID Reading (ppm) Date $6112/0^2$ Depth to Water (ft BTOC) Date $6112/0^2$ Depth to Water (ft BTOC) Sampler(s) 04.4 / RTG Purge/Sample Height of Purge Column Height of Purge Column 12.3% Samples Collected Volume Collected (ml) PAHs 14.4 Mathematication (mathematication) Parter Volume 100.4 / RTG Total Cyanide 100.4 / RTG Time Temperature pH Conductance (minhos/em) Initial 10.5 / 1.5 / 1.55 Stabilization 10.5 / 1.6 / 1.55 Criteria $V2.6$ / 7.81 / 1.55 Final (well Volume 12.6 / 7.81 / 1.55 Final (well Volume 12.6 / 7.81 / 1.55		12.3	7,4/	2.62	
Total volume purged (G): 6.3 Sample ID(s): $MW - 155$ I. Sample Time: 8:50 Well Data Well Data Well Data 0-0 Date $6112/0^2$ Depth to Water (ft BTOC) 7.44/ Sampler(s) 0-1///ROT Date $6112/0^2$ Depth to Water (ft BTOC) 7.44/ Sampler(s) 0-1///ROT Purge/Sample Height of Purge Column Method Bailer Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): Samples Collected Volume Collected (ml) PAHs	Final (post sample)	depth to groundwater prior to pump shut-	eff (fi BTOC):		
Sample ID(s): $\mathcal{W} = 15 \text{ T}$ Sample Time: $8:50$ Well Data Well D MW-155 PID Reading (ppm) $0-0$ Date $61/2/02$ Depth to Water (ft BTOC) $7.4'4'$ Sampler(s) $01/2/16^{27}$ Depth to Water (ft BTOC) 21.80 Purge/Sample Bailer $01/2/16^{27}$ Depth to Water (ft BTOC) 21.80 Method Bailer $01/2/16^{27}$ Depth to Water (ft BTOC) 21.80 Method Bailer $01/2/16^{27}$ Depth to Water (ft BTOC) Volume Collected (m1) Alts Purge Data Time Temperature pH Conductance Initial $12.9'2$ $1/2.9'2$ Initial $100 -0.1$ Initial $100 -0.1$ <th co<="" td=""><td>CONTRACTOR AND GROWING CONTRACTOR AND AND AND AND AND AND AND AND AND AND</td><td>Charles and the second s</td><td></td><td></td></th>	<td>CONTRACTOR AND GROWING CONTRACTOR AND AND AND AND AND AND AND AND AND AND</td> <td>Charles and the second s</td> <td></td> <td></td>	CONTRACTOR AND GROWING CONTRACTOR AND	Charles and the second s		
Well ID MW-155 bill 2/02 Sampler(s) PID Reading (ppm) Depth to Water (ft BTOC) 0.0 7.444 Sampler(s) DLK/Rore Total Depth to Water (ft BTOC) 21.80 21.80 Purge/Sample Bailer 12.35 Method Bailer 12.35 Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): 3 Samples Collected Volume Collected (ml) PAHs Lifth Water Quality Parameters Specific Total Cyanide 100 col Parge Data Water Quality Parameters Time Temperature pH Conductance (mmhos/em) 13% Initial 12.9 1.25 Initial 12.9 1.83 Volume Collected .9 .20 Volume Collocation .100 col	Sample ID(s):	MW-15I			
Date $61/2/R^{2}/R^{2}$ Depth to Water (ft BTOC) 7.44 Sampler(s) DLK/R^{2} Total Depth of Well (ft BTOC) 21.30 Purge/Sample Bailer 12.34 21.30 Method Bailer 12.34 21.30 Other Observations (weather conditions, well deterioration/damage, evidence of tampering, odor, etc.): 32.34 12.34 Samples Collected Volume Collected (ml) 12.34 12.34 PAHs 14.44 40.44 12.34 Water Collected (ml) 12.34 12.34 PAHs 14.44 40.44 12.34 Water Collected (ml) 12.34 12.34 PAHs 14.44 40.44 12.34 Water Collected (ml) 12.34 12.34 12.34 Parge Data 100.44 Phonel 100.44 100.44 Function (C) 100.44 Phonel 100.44 100.44 100.44 Final (c) 100.44 Phonel 100.44 100.44 100.44 100.44 100.44 100.44 100.44 1	Well Data				
Samples Collected Volume Collected (ml) PAHs HEAT VOL Total Cyanide Purge Data Time Temperature (°C) Initial Stabilization Criteria Stabilization Criteria Mater Quality Parameters Water Quality Parameters PH Conductance (°C) Initial Stabilization Criteria 10.5°C H0.1 13% Final Well Volume 12.8 12,6 7.83 1.81 0.669 1.55 Final Well Volume (pt 1.55 1.55 1.55 Final Well Volume (pt 1.55 1.55 Final Well Volume (pt 1.55 1.55 1.55 Final Well Volume (pt 1.55 1.55 Volume V	Date Sampler(s) Purge/Sample Method	Bailer	Depth to Water (ft BTOC) Total Depth of Well (ft BTOC) Height of Purge Column	9.44	
Water Quality Parameters Time Temperature (°C) pH Specific Conductance (mmhos/cm) Initial ±0.5°C +0.1 ±3% Initial 10.5°C +0.1 ±3% Initial 12.9 8.20 1.72 Stablization ±0.5°C +0.1 ±3% Initial 12.9 8.20 1.72 Stablization 12.8 17.6 7.83 1.81 Volume 12.8 17.6 7.83 1.81 Final Well 12.6 7.81 1.55 Final (post sample) depth to groundwater prior to pump shutoff (ft BTOC): 1.55 1.55	Samples Collected PAHs BTEX VOCs Total Cyanide	Volume Collected (ml)			
TimeTemperature (°C)pHSpecific Conductance (mmhos/cm)Initial Stablization Criteria $\pm 0.5^{\circ}$ C ± 0.1 $\pm 3\%$ Initial Nation $\pm 2.9^{\circ}$ 8.26 1.72 Initial Volume 12.8 17.6 7.83 1.81 Volume 12.6 7.81 1.55 Final Well Volume 12.6 7.81 1.75	Purge Data				
Time Temperature (°C) pH Conductance (mmhos/cm) Initial Stablization Criteria ±0.5°C +0.1 ±3% Initial 12.9 8.20 1.72 Stablization Criteria 12.8 17.6 7.83 1.81 Stablization Criteria 12.8 17.6 7.83 1.81 0.669 1.55 Final Well Volume L2.6 7.81 L-56 1.55 Final (post sample) depth to groundwater prior to pump shutoff (ft BTOC): 5 5 5			Water Quality Parameters		
Initial Stabilization Criteria $\pm 0.5^{\circ}$ C ± 0.1 $\pm 3\%$ Initial 12.9° 8.20° 1.72° Initial 12.8° 17.6° 7.83° 1.81° 2nd Well Volume 12.8° 17.6° 7.83° 1.81° Final Well Volume 12.6° 7.81° 1.55° Final (post sample) depth to groundwater prior to pump shutoff (ft BTOC): 1.55°	Time	and the second	pH	Conductance	
2nd Well Volume 12.8 17.6 7.83 1.81 0.669 1.55 Final Well Volume L2.6 7.81 L-56 Final (post sample) depth to groundwater prior to pump shutoff (ft BTOC): L-56 L-56	Stablization	±0.5°C	+0.1		
2nd Well Volume 12.8 17.6 7.83 7.81 0.669 1.55 Final Well Volume L2.6 7.81 1.55 Final (post sample) depth to groundwater prior to pump shutoff (ft BTOC): 1.55	the second secon	12.9	8.20	1.22	
Volume L 2.6 7.81 L-56 Final (post sample) depth to groundwater prior to pump shutoff (ft BTOC):	2nd Well Volume	12.8 /17.6	7.83/7.81	1011	
Final (post sample) depth to groundwater prior to pump shutoff (ft BTOC):		12.6	7.81	1.50	
	Final (post sample)	depth to groundwater prior to pump shute			
Sample ID(s): MW-155	Sample Time	900			

Well ID	MW-19 D	BID Baseline (154
Date	Gluio	PID Reading (ppm)	12.4
Sampler(s)	the second se		the second se
Sampler(s) Purge/Sample	RT6/DLI	C Total Depth of Well (ft B	TOC)
	D-31-	Height of Purge Column	G3.TY
Method Other Observations	Bailer		
and the second se	weather conditions, well deteriorat	ion/damage, evidence of tampering, odor, e	nc.):
Samples Collected	Volume Collected	i (ml)	
PAHs	1 like		
BTTEX VOCS	-long,		
Total Cyanide	10an		
Purge Data			
_		Water Quality Parameters	
			Specific
Time	Temperature	pH	Conductance
	(*C)		(mmhos/cm)
Initial		122	
Stablization Criteria	±0.5°C	+0,1	±3%
Initial	10.8	8.23	0.623
Ist/2nd Well	14:0/ 814.0		
Volume	17.0/ 119.0	8.10 / 9.09	0.577/0.598
Final Well Volume	13-0	8.68	0.597
Final (post sample)	depth to groundwater prior to pump	shutoff (ft BTOC):	
Total volume purge	d (G): 10.4.		and the second second second
	nw-190	and the second sec	
Sample Time:			
Well Data		and the second second	
Well ID	MW-191	PID Reading (ppm)	71.6
Date	6/11/62	Depth to Water (ft BTOC)	7.10
Sampler(s)		Total Depth of Well (ft B)	TOC) 47.69
Purge/Saynple		Height of Purge Column	40.59
Method 🍐	Bailer		
Other Observations	(weather conditions, well deterioration	ion/damage, evidence of tampering, odor, et	tc.);
Samples Collected	Volume Gollgeted		
PAHe	11.5		
DIEX VOCS	HON		
Total Cyanide	1 mm	/	
	-Local		
Purge Data		Water Ouslin Day	
		Water Quality Parameters	Develop
Time	Temperature	all	Specific
TIME	(*C)	pH	Conductance
Initial	(0)		(mmhos/cm)
Stablization	±0.5°C	+0.1	1004
Criteria			±3%
	19.9	11.63	1.81.
Initial			1.84 / 1.70
Initial IST/ 2nd Well Volume	13.8/13.6	11.68/ 11.00	
and the state of t	13.2/13.6	9.04	0.842
2nd Well Volume Final Well Volume	13:2	11-63 11:68/11-65 9.04 shutoff (ft BTOC):	
2nd Well Volume Final Well Volume Final (post sample)	13.2 depth to groundwater prior to pump		
2nd Well Volume Final Well Volume	13.2 depth to groundwater prior to pump		

Well Data			
Well ID	MW, 195	PID Reading (ppm)	8.1
Date	611102	Depth to Water (ft BTOC)	3.55
Sampler(s)		Total Depth of Well (ft BTOC)	16.65
Purge/Sample		Height of Purge Column	[3.10
Method	Bailer		
Other Observations	(weather conditions, well deterioration	/damage, evidence of tampering, odor, etc.):	
Samples Collected	Volume Collected (r	nl)	
PAHs	line		
- uble	uone		
Total Cyanide	_ Loend	and the second se	a second and the second
Purge Data		111 St. 100 St. 100 St.	
-		Water Quality Parameters	Sumilia.
Time	Temperature	pH	Specific
	(°C)	pri	Conductance
Initial	1.5/		(mmhos/cm)
Stablization	±0.5°C	+0,1	±3%
Criteria		1110	
Initial 2nd Well	17.6	7-48	0.696
Volume	14-8/14.6	7-36/ 7.34	0.780/0.800
Final Well Volume	14.1	7.32	0.860
	depth to groundwater prior to pump sh	utoff (ft BTOC):	0,0.0
Total volume purged	and the second		
Sample ID(s):	MW-LRS		the state of the state of the
Sample Time:			
Well Data			Sector Sector
Well ID	MW-	PID Reading (ppm)	
Date		Depth to Water (ft BTOC)	and the second sec
Sampler(s)		Total Depth of Well (ft BTOC)	
Purge/Sample		Height of Purge Column	and the second
Method	Bailer		
and the second second second second	weather conditions, well deterioration	/damage, evidence of tampering, odor, etc.):	
Samples Collected	Volume Collected (n	ni)	
PAHs	8		
BTEX			
Total Cyanide		and the second	and the second second
Purge Data	a di sa	Water Orable, Barrison	
-		Water Quality Parameters	Specific
Time	Temperature	pH	Conductance
1000	(°C)	Pre-	(mmhos/em)
Initial			(ministrent)
Stablization	±0.5°C	+0.1	±3%
Criteria	methy	1.10	
Initial	11.6.0	245	0-696
2nd Well Volume	19.9 19.6	7.3677.34	0.780 /0.8
Final Well	14-17-	2.37	AAT
Volume		TI VG	-860
Total volume purged	depth to groundwater prior to pump sh I (G):	unit (n.D.I.A.).	
Sample ID(s):		100 THE PLANE WAR	
SHEDISTING 32 M			
JHOUTED TE TOOL AN			

Well ID Date Sampler(s) Purge/Sample Method Other Observations (MW-20 -6/13/02 DCK /RTS Bailer weather conditions, well deteriorati	PID Reading (ppm) Depth to Water (fi BTOC) Total Depth of Well (fi BTO Height of Purge Column on/damage, evidence of tampering, odor, etc.	16.22	
Samples Collected PAHs FFER VOLS Fotal Cyanide	Volume Collected <u>1 × 1 br</u> A <u>2 × 40 ml</u> Vo <u>1 × 250 ml</u>	A		
urge Data				
Time	Temperature (°C)	Water Quality Parameters pH	Specific Conductance (mmhos/em)	
Initial Stablization Criteria	±0.5°C	+0,1	±3%	
Initial	19.4	7.76	1.33	
2nd Well Volume Final Well	13.2/13.0	7.64/ 7.59	1.34/1.38	
Volume	12.8	1.51	1.41	
Final (post sample) d	epth to groundwater prior to pump	shutoff (fi BTOC):		
Total volume purged				
Sample ID(s): Sample Time:		PETROLEUM CODA, SUIGHT SHEED (N	OT MEASURABLE)	
Vell Data				
Well ID Date Sampler(s) Purge/Sample Method Other Observations ()	Bailer weather conditions, well deteriorati	PID Reading (ppm) Depth to Water (ft BTOC) Total Depth of Well (ft BTO Height of Purge Column on/damage, evidence of tampering, odor, etc.	Dept + NAPI 12.47	
amples Collected AHs ITEX otal Cyanide	Volume Collected		collected for VOGS + Total aparte	a +12 4
drge Data		NAPL observed for	, baile was only 1-	I where thick
Time	Temperature (°C)	Water Quality Parameters pH	Specific Conductance (mmbos/cm)	- fad difred filling Samp
Initial Stablization Criteria	±0.5°C	+0.1	±3%	Jan. Took
Initial				- nurcon bo
nd Well Volume	-	-		NAPI was n
Final Well Volume	-	-	-	5 thek. Ma Lave been Si
Total volume purged	epth to groundwater prior to pump : (G): Bailed app NW - 5 M E2:00	shutoff (A BTOC): roundly 2 Gallon	o of NAPI (water mini	to at 12.47

November 2004 and January 2005 Groundwater Sampling

Event

121	TME A	23		-	Well ID:						
	Niagara Mo	hawk / 36657.00	9			15104	Time O			_	
lient / Job Number: leather:	30°5				Time In:	9:42	Time O	ut			
eaurer.	start .										
Well Information	_	100			Well Type:		Plushm	Ruoi	S	tick-Up	
Depth to Water:	(feet)	3.41	(from MP)		Well Material:		Stainless S	Steel		PVC	2
Total Depth:	(feet)	11-40	(from MP)	-	Well Locked:		(Yes		No	<u> </u>
Length of Water Column:	(feet)	7.99		-	Measuring Point	Marked:	(Yes		Ne	5
Volume of Water in Well:	(gal)	1.30			Well Diameter:		1-	2°	Other	2	-
Three Well Volumes:	(gai)	391									
Purging Information									sion Facto	100000000	6* ID
Purging Method:	Bailer	Peristaltic	Wa	iterra	Other:		gal / ft.	1* ID		4" ID	1.469
Tubing/Baller Material:	Steel	Potyethylen	e Te	llon	Other:	-	of water	0,041	100000),653	
THE PARAMENTAL PROPERTY OF A PROPERTY OF A	("Bajlår	Peristaltic	Wa	sterra	Other		t gal = 3.	785 L ⇒38	75 ml = 0.13	337 cut	iic teet
Sampling Method:								Uni	t Stability	-	
Duration of Pumping:	(min)	27	Water-Quali	ty Meter Type:	HUMIDA	11-22	oH	DO	Cond.		ORP
Average Pumping Rate:	(ml/mir	200		oid well go dry:	Yes	NO	± 0.1	± 10%	± 3.0%	a ±	10 m\
Total Volume Removed:	(gal)	1.59	1.0	and a second second		6		7	8		- 1
	1	1 2	3	4	5		10:08		11:0	10	:14
Parameter:	9:50	9:53	9:56	9:59	10:02	10:05			4.5	5	
Volume Purged (gal)	1	12	1482	3	3.5	4	4		-		00
Rate (mL/min)	250	200	200	200	200	200	200		200		.50
Depth to Water (ft.)	341	3.45	3.46	3.46	3.49	3.50	3.50		3.00		
Table		100	7.20	1.14	7.14	4.17	7.18		4.16		16
pH	1.48	0 60	12.03	11.84	11.79	11.90	12-02	-	1.96	-	2.2
Temp. (C)	11+20	1.83	1.75	1.80	1.70	1.63	1.56	0	1.56	11.2	-53
Conductivity (mS/cm)	1.65	-		3.58	3.09	2-61	2.2	3	1.69	4	2.1.6
Dissolved Oxygen (mg/L)	13.65		4.72		-64	-60	- 54	-	-48	- 0	13
ORP (mV)	-74	-76	- 13	-67		42.8	0:00	100	4.3	9	.0
Turbidity (NTU)	104	26 6	47.5	42.8	48.4	72.0	0.00	P	the state of the s		
Notes:											

Sampling Information Laboratory # Analyses CompuChem 3 BTEX (8260) CompuChem PAHs (8270) 4 See COC for details. Queen's University, See COC for detail. 0 MNA Analysis ð NAPL Analysis Sample Time: 10:21 Sample ID: No Yes MS/MSD: No Yes Duplicate: Dup. Time: Duplicate ID Chain of Custody Signed By:

Problems / Observations

A drops coz - high range. 002= 35 mg/L

J:\kmg\SampleForms\GroundWaterSamp.doc

Page _

Groundwater Sampling

Event

Site

GROUND-WATER SAMPLING LOG

Sampling Personnel:	AES/14				Well ID:	MW-1					
Client / Job Number:	Niagara Moha	wk / 36657.009	_		Date:	1115/04	4				
Weather:					Time In	Construction of Construction	Time	Out:			
Well Information					51.1.1						
Depth to Water.	(feet)		(from MP)		Well Type:		Flush	nount	2.516	Stick-L	lp
Total Depth:	(feet)		(from MP)	_	Well Material:		Stainless	Steel	/	PV	c
Length of Water Column	(feet)			- Sn 15	Well Locked:			Yes	_	Ň	la
Volume of Water in Well:	(gəl)			-	Measuring Poir			Yes		1	\o
Three Well Volumes:	(gal)			-0901	Weil-Dtameter:		1*	2*	Oth	ier;	
Purging Information		Get	v	.00			-	Conve	sion Fac	tors	_
Purging Method:	Bailer	Peristaltic	W	alerra	Other:		gal / ft.	1" ID	2" ID	4" ID	6* ID
Tubing/Bailer Material:	Steel	Polyethylene	Te	flon	Other:	_	of water	0.041	0.163	0.653	1,469
Sampling Method:	Bailer	Peristaltic	W	aterra	Other:		1 gal = 3.	785 L =38	75 ml = 0	1337 cul	bic feet
Duration of Pumping	(min)	100		1000						21.2	
Average Pumping Rate:	(ml/min)	W	ater-Qualit	ty Meter Type:			latt	DO	t Stabilit		000
Total Volume Removed:	(gai)	TRACTO	0	lid well go dry:	Yes	No	pH ± 0.1	± 10%	Conc ± 3.0		ORP 10 mV
5	1	2	3	4	5	6		7	8		
Parameter:	10=17	2	3	4	3	0		'	0		9
Volume Purged (gal)	KOL .										
Rate (mL/min)	200										
Depth to Water (fL)	3.63										1
pН	1.18		-								
Temp. (C)	12.42										
Conductivity (mS/cm)	1.649							2100		-	
Dissolved Oxygen (mg/L)	1.62										
ORP (mV)	- 38										
Turbidity (NTU)	42.5										
Notes:	clean No sheep Mothba,	31								-	

Sampling Information

Analyses	#	Laboratory
BTEX (8260)		CompuChem
PAHs (8270)		CompuChem
MNA Analysis		See COC for details.
NAPL Analysis	" page !	Queen's University, See COC for detail.
	50	
Sample ID:	Sample Time:	
MS/MSD: Xes	No	
Duplicate: Yes	No	
Dupticate ID	Dup. Time:	0
the second se		

Problems / Observations

J:\kmg\SampleForms\GroundWaterSamp.doc

Site

Event

GROUND-WATER SAMPLING LOG

Sampling Personnel:	KMG/	101			Well II	: MW-3					
Client / Job Number:	Niagara M	ohawk / 36657.	009		Date:	11/11/04	e				
Weather:	3005,	blue sky			Time I		Time	Out:			
Well Information	LNAPL	: 9.35'								c.,,	
Depth to Water:	(feet)	936'	(from MP	2)	Well Type:		Flush	mount		SHOR	Uo.
Total Depth:	(feet)	24301	(from MF	2)	Well Material		Stainless	Steel			10
Length of Water Column:	(feet)	14.94		-	Well Locked:			Xes		-	No
Volume of Water in Well:	(gal)	2.44			Measuring Po	pint Marked:		Yes		1	No
Three Well Volumes:	(gal)	7.31gal		_	Well Diamete	Ġ	1"	Ø	Oth	er	
Purging Information		~				14	_				
Purging Method:	Bailer	Peristatic	V	Vaterra	Other:			1" ID	2" ID	4" ID	6" 10
Tubing/Bailer Material:	Steel	Polyetbyle	ne T	eflon	Other:		gal / ft. of water	0.041	0.163	0.653	1.469
Sampling Method:	B	Peristaltic	W	Vaterra	Other		1 gal = 3.	100 C	175 ml = 0.	10000	1.052
Duration of Pumping:	(min)	60		5 10 1				the set of the set of the			
Average Pumping Rate:	(ml/min)	300	Water-Qua	lity Meter Type:		1508-17	-		t Stability		
Total Volume Removed:	(gal)	5.55		Did well go dry:	Yes	6	pH ± 0,1	DO ± 10%	Cond ± 3.0		ORP 10 mV
	1		3	4	5	6		7	8	1	9
Parameter:	0737	0742	0747	0752	0757	0802	090-		812	0	817
Volume Purged (gal)	-	1.56	31	4.56	CHÍL	7.52	94		0.5%		
Rate (mL/min)	300	300	300	.300	340	300	.300	100	00		00
Depth to Water (ft.)	936	10.00	10.05	10.14	10 20	10.25	10.28		2.28		.28
pН	10.13	9.62	9.58	8.21	7.90	7.71	7.61	-	+7		33
Temp. (C)	11.40	11.89	12.82	12.99	13.11	13.23	13.34		1.21		03
Conductivity (mS/cm)	1.20	1.20	122	1.24	1.25	1.2.5	CONTRACTOR OF			10000	white a
Dissolved Oxygen (mg/L)	4.39	.3.48	1.60	1.04	0.70	0.49	1.25		25	1.2	
ORP (mV)	-126	-115	- 103	- 104	-106	-108	- 109		12	-11	
Turbidity (NTU)	20.1	20.0	15.4	10.7	9.9	9.7	1000	1.12	9	122	
Notes:	CRAR, MODERS Sheen A		12.4	70.1	e	1.1	10.1			8	¢.

Sampling Information

Analyses	#		Laboratory
BTEX (8260)	з		CompuChem
PAHs (8270)	2		CompuChem
MNA Analysis	~		See COC for details.
NAPL Analysis	-		Queen's University, See COC for detail
	6	12	
Sample ID:	3 5	Sample Time:	0950
MS/MSD:		No	
Duplicate:		No	Contract of
Duplicate ID Dupa	2 [Dup. Time: 0	350
Chain of Custody Sign		KMG	

Problems / Observations

Note LVARL incomplicited at this location Similar in applicance to LNAPL at MW-20 and MW-21 - brown when Stacked on prube, black in blevs, Huckle then water, Strong odor inot MOP - type imotheril odor)

002 (1100) = 275 mg/L

```
J:\kmg\SampleForms\GroundWaterSamp.doc
```

Site

GROUND-WATER SAMPLING LOG

Event

Sampling Personnel:	KMG/J	the second s			Well II	D: MW-C	3	_			
Client / Job Number:		hawk / 36657.			Date:	11/11/04	65				
Weather:	.30°S, b	INE cky	/	_	Time I	n;	Time	Out:		-	-
Well Information											
Depth to Water:	(feet)		(from MP	2)	Well Type:		Flush	nount		Stick-L	In
Total Depth:	(feet)		(from MP	2	Well Material		Stainjese	Sleel		P	1
Length of Water Colum	n: (feet)	in the second		-4	Well Locked:	/		Yes		r	No
Volume of Water in We	lt (gal)	_		_ 1,1 K	Measuring Po			Yes		1	No
Three Well Volumes:	(gai)			+1' -	_₩ēll Diamete	c	1*	2*	Oth	ner:	
Purging Informatio	n		ser her	5			-				
Purging Method:	Bailer	Peristaltic	Jer V	Vaterra	Other		-	1	sion Fac		_
Tubing/Bailer Material:	Steel	Polyethyle		efion	Other:		gal / ft, of water	1* ID	2" ID	4* ID	6* ID
Sampling Method:	Bailer	Peristaltic	W	/aterra	Other:		and the first sector	0.041 785 L =38	0.163	0.653	1,469
Duration of Pumping:	(min)				Series.		- gui - ci	100		.1007.00	Dire 1061
Average Pumping Rate	: (ml/min)		Water-Oua	lity Meter Type:				Uni	t Stabilit	y .	
Total Volume Removed	1000000	-	Constraints and an	Did well go dry:	Var	11-	pH	DO	Con	1.	ORP
Total Polario riskiotes	(gai)	-		Did well go dry.	Yes	No	± 0.1	± 10%	± 3.0	% ±	10 mV
	1	2	3	4	5	6		7	8	8	S
Parameter:	0822	0827	09.32	0837	0842	69.47					
Volume Purged (gal)	13.56	15.1	110.51	184	19.5L	216					
Rate (mL/min)	300	300	300	300	300	300					
Depth to Water (fl.)	10.28	10.2.8	10.28	10.28	10.2.8	10-28			1.1.15		
pН	7.27	1.14	7.10	7.02	6.99	6.96					
Temp. (C)	13-61	12.40	13.10	13.14	13.61	13.69				12 -	
Conductivity (mS/cm)	1.25	1.25	1.26	1.25	1.26	1.24					
Dissolved Oxygen (mg/L)	0.00	0.00	0.00	0.00	0.00	0.00	1.5		-		
ORP (mV)	- 11-7	-119	-120	-123	-12.6	-12-8					
Turbidity (NTU)	7.3	10.8	7.3	6.4	4.5	3.5					
Notes:		HEAVY				heavy sheen modeland oder	r				10.51

Sampling Information

Analyses	#	Laboratory
BTEX (8260)		CompuChorn
PAHs (8270)		CompuChem
MNA Analysis		See COC for details.
NAPL Analysis	an'	Queen's University, See COC for detail.
Sample ID:	Sample Time:	
MS/MSD: Yes	Na	Land and the second
Duplicate Yes	No	
Duplicate ID	Dup. Time:	(
Chain of Custody Signe	ed By:	

Problems / Observations

CU2 (1100): 275 mg/L

Niagara Mohawk, A National Grid Company

Schenectady (Broadway St.), New York

Sampling Personnel:	KMG/JT.)c			Well I	D: MW-	6I				
Client / Job Number:	and the second se	hawk / 36657.	009	30.00	Date:						
Neather: Hans, C	lear, a	. ک			Time	In: 710	Time	Out:			
Well Information											
Depth to Water	(feet)	9.31	(from Mi	P)	Well Type:		Flush	nount		Stick-L	Jo
Total Depth:	(feet)	49,35	(from MF	P)	Well Materia	E.	Stainless	Steel		P	-
Length of Water Column:	(feet)	40.04			Well Locked:			Cer		1	No
Volume of Water in Well:	(gal)	6.53 9	7a1	-	Measuring P	oint Marked:	(Yes		1	No
Three Well Volumes:	(gal)	19.58	791	_	Well Diamete	26	1*	a	Oth	en	
Purging Information	Pu.	ny Start	1715	Rin	no Stor : 8	10		0			
Purging Method:	Bailer	Peristaltic	$<$ $^{\prime}$	Vaterra	Other:	-	-	1* ID	sion Fac	4* ID	6" IE
Tubing/Bailer Material:	Steel	Polyethyle		feflon	Other:		gal / ft. of water	0.041	0.163	0.653	1,46
Sampling Method:	C Baller ATE:	Peristallie	AH. Y	Vaterra	Other:		1 gal = 3.	INUCTION OF	75 ml = 0.	C. LDOW	11.17
Duration of Pumping:	(min)	CONTRACTOR OF STREET	S 30 MI								
Average Pumping Rate:	(mi/min)	Constantion of the last		lity Meter Type:	Hich	6-22	-		t Stability	-	
Total Volume Removed:	(gal)	300		Did well go dry:		No	pH	DO	Cond		ORP
	15-15	1.50 90			1 Page	\bigcirc	± 0.1	± 10%	± 3.0	% ±	10 m\
Parameter:	720'	725 2	7303	7354	740	745 6	750	7	8		
Volume Purged (gal)	-	1.5	3.0	4.5	6.0	7.5	9.0	-	100		-
Rate (mL/min)	300	300	300	300	300	300	300				
Depth to Water (ft.)	9.31	9.31	9.31	9.31	7.31	9.31	9.31				-
pН	5.57	6.06	6.28	6.41	6.50	6.54	6.59			-	-
Temp. (C)	11.77	1397	14.15	14.10	14.00	14.0L	13.57		-	-	-
Conductivity (mS/cm)	0.775	OBOI	0.851	0,860	0.863	0.863	0.863		-		-
Dissolved Oxygen (mg/L)	7,58	2.07	1,49	1.39	1.52	1,57	1.63			-	
ORP (mV)	199	174	145	119	102	96	93	-	-		-
Turbidity (NTU)	0,0	0.0	0.0	0.0	0.0	0.0	0.0		100	-	
i dibidity (ivi b)				1 /11 /							

Sampling Information

CompuChem CompuChem See COC for details Queen's University, See COC for detail
See COC for details. Queen's University, See
details. Queen's University, See
University, See
155
11
10.10
-

Problems / Observations

Initial prose - Clev, Ich-Kast, ador/1951 CO2 = 25 mg/L

J:\kmg\SampleForms\GroundWaterSamp.doc

Page / of /

0.0

Groundwater Sampling

ampling Personnel: DL lient / Job Number: Ni leather: JOS, Sum Well Information Depth to Water: Total Depth: Length of Water Column: Volume of Water in Well: Three Well Volumes: Purging Information Purging Method:	(feet) / (feet) / (feet) / (gal) / (gal) /	1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42		100	Well ID Date: Time Ir Well Type: Well Material: Well Locked;	11/9/04	GS Time (Flushm Stainless 3	nount) Steel		Stick-U	-
Veather: 305, 5000 Well Information Depth to Water: Total Depth: Length of Water Column: Volume of Water in Well; Three Well Volumes: Purging Information	(feet) / (feet) / (feet) g (gal) / (gal) g	1.72 1.49 1.49 1.49	B (from MP	100	Time Ir Well Type: Well Material:	11/5/04	Time (nount) Steel			-
Well Information Depth to Water: Total Depth: Length of Water Column: Volume of Water in Well: Three Well Volumes: Purging Information	(feet) / (feet) / (feet) g (gal) /	1.70 1.12 . 19 1.46	No. Anna anna anna anna anna anna anna ann	100	Well Type: Well Material:	<u>נ ג׳ז׳ יי</u>	Flushn	nount) Steel			-
Depth to Water: Total Depth: Length of Water Column: Volume of Water in Well: Three Well Volumes: Purging Information	(feet) / (feet) 9 (gal) / (gal) 9	1.70 1.12 . 19 1.46	No. Anna anna anna anna anna anna anna ann	100	Well Material:		and the second s	Steel			-
Total Depth: Length of Water Column: Volume of Water in Well: Three Well Volumes: Purging Information	(feet) / (feet) 9 (gal) / (gal) 9	1.70 1.12 . 19 1.46	No. Anna anna anna anna anna anna anna ann	100	Well Material:		and the second s	Steel	-		-
Length of Water Column Volume of Water in Well: Three Well Volumes: Purging Information	(feet) g (gal) / (gal) g	1.12 - 19 1, +6	(from MP	2_ 			Stainless 5	1		PV	2
Volume of Water in Well: Three Well Volumes: Purging Information	(gal) /	- 19 1. +6			Well Locked:			1			9
Three Weil Volumes: Purging Information	(gal) 1	7.46	-					Yes		N	lo
Purging Information	24	and the second se			Measuring Po	int Marked:	(Yes		N	10
	fu	ma Shurt			Well Diameter	r:	1*	(2")	Othe	er:	610
Durning Mathod		in start	1528				_	~			
r ununu menou.	Bailer	Recistalue	W	/aterra	Other:			Convers 1"ID	2° ID	4" ID	6* ID
Tubing/Bailer Material:	Steel	Polyethyler)0 T	efion	Other		gal / ft. of water	0.041	0.163	4 ID 0.653	1.465
Sampling Method:	Bailet	Peristalt	×#, W	/aterra	Other:		1 gal = 3.7	785 L =387			
Duration of Pumping:	(min)	70	11.0								-
Average Pumping Rate:	(ml/min)	3 10	Water-Quai	ity Meter Type:	HCRiba	11-22			Stability	-	-
Total Volume Removed:	(gai)			Did well go dry:	Yes	ND	pH ± 0.1	DO ± 10%	Cond ± 3.09	-	ORP 10 mV
		5.62 901			-						0.0.000
Parameter: /	533	1538	3 1543	1548	1553	1558	1603	7 160	8	161	3
Volume Purged (gal)		2.0	4.0	5.5	6.5	8.0	95	11		12	
Rate (mL/min)	300	300	300	300	300	300	300	30	0	30	
	1.50	4,50	4,50	4.50	4.50	4.50	4.50	4,5		41	
	.40	5.05	5,03	5.15	5.19	5.11	5.03	4,0		4.9	
	4,41	14.13	14,59	14.42	14.15	14.28	14.38	14.5		14,5	1.1.1.1
	5.40	5.78	5.97	5.90	5.74	5.44	5.46	5.5	1994 I 18	5.	18.11
Dissolved Oxygen 5 (mg/L)	,13	193	0.63	0.13	0.06	1.24	0.72	0,4	100	0,4	
ORP (mV)	12	110	100	81	75	82	94	10		10:	100
Turbidity (NTU)	999	>999	>999	>999	7999	539	485	30		35	
Notes:		111	7111	- and	111	1 10	105	26	2.1	22	5

Sampling Information

Analyses	#	Laboratory
BTEX (8260)	3	CompuChem
PAHs (8270)	2	CompuChem
MNA Analysis	v	See COC for details.
NAPL Analysis	-	Queen's University, See COC for detail
	and an inter-	1000
Sample IDML -L	/ Sample Time:	1650
Sample IDMW-L MS/MSD: Yes	5 Sample Time:	1650
Var	Sample Time:	1650

Problems / Observations Initial Purge - reddish, to white color, locks Similar to milk. White crean the Substance came up in first few seconosef purping. Noce-

(On= TO my/L

Groundwater Sampling

Sampling Personnel:						LOG					
ampling Personnel:					Well II	- MW-	15	0.71			
Client / Job Number:	Niagara Mol	nawk / 36657.	009		Date:	11/5/04	60			-	-
Veather:					Time I		Time	Out:			-
Well Information							_	/	/		1.11
Depth to Water:	(feet)		(from MP	2)	Well Type:	/	Flush	mount	-	Stick-L	lo
Total Depth:	(feet)		(from MP	2	Well Material		Stainless	GI		PV	
Length of Water Column:	(feet)				Well Locked:			Yes			ło
Volume of Water in Well:	(gal)		0	A	Measuring Po	pint Marked:		Yes			No.
Three Well Volumes:	(gal)		Juy		Well Diamete	r:	1*	2*	Ot	217.12 m	10
Purging Information		C.	e fox			The N			-		
Purging Method:	Bailer	Peristance	v	Vaterra	Other:			1	sion Fac		15
Tubing/Bailer Material:	Steel	Polyethyle	ne T	eflon	Other:		gal / ft. of water	1° 10 0.041	2" ID 0.163	4* ID	6" 10
Sampling Method:	Bailer	Peristaltic	V	Vaterra	Other:		1 gal = 3	785 L =38	1.000	0.653	1.468
Duration of Pumping:	(min)	1			AV80514						
Average Pumping Rate:	(ml/min)	0.000	Water-Qua	lity Meter Type:	_				t Stabilit		
Total Volume Removed:	(gal)	-	0.0112020000000000000000000000000000000	Did well go dry:	Yes	No	pН	DO	Con		ORP
	19-11			olo nell go di y.	rea	110	± 0.1	± 10%	± 3.0	2% ±	10 mV
Parameter:	1618	1623	1629	1633	16 3.9 5	1643		7	8		
Volume Purged (get)	14	15.5	10	18.5	20	21.5		_			
Rate (mL/min)	300	300	300	300	300	300		-	-	-	
Depth to Water (ft.)	4.50	4.50	4.50	4.50	4,50	4.50			-		
pН	4.96	4.95	4.97	4.99	5.00	5.01	-	-			-
Temp. (C)	14.55	14,57	14,16	14,57	1457	14.78			-		211
Conductivity (mS/cm)	6.49	5.54	5.91	5.91	5.91	5.91	-	-	-	1	
Dissolved Oxygen (mg/L)	0.41	0.30	0.47	0.05	0.00	0,00					-
ORP (mV)	106	108	106	103	101	100					-
Turbidity (NTU)	336	267	203	164	163	EP164					
Notes:	1.1.4			101	163	10			-		-

Sampling Information

Milary	Ses	#	Laboratory
BTEX (8260)			CompaChem
PAHs (8270)			CompuChem
MNA Analysis	5		See COC for details.
NAPL Analys	is		Queen's University, See COC for detail
-		140000000000000000000000000000000000000	
Sample ID:	- 24/2	Sample Time:	
A MORE AND A	Yes	Sample Time: No	
Sample ID: MS/MSD: Duplicate:	Yes Yes		

Problems / Observations

Site

Groundwater Sampling

GROUND-WATER SAMPLING LOG

Event

Sampling Personnel:	AES, TMG				Well ID	MW-7					
Client / Job Number:	Niagara Mol	nawk / 36657.	009		Date:	11/4/04					1.
Weather: 42"F, 1	sunny, pa	Hy clou	dy		Time I	1: 11:29	Time	Out:		19.20	
Well Information	/	/	/								
Depth to Water:	(feet)	8.00	(from MF	P)	Well Type:	1	Flush	mount		Stick-	in)
Total Depth:	(feet) 2	1.08	(from MF	2)	Well Material:		Stainless			PI	A
Length of Water Column	u (feet)	13.08			Well Locked:	1000		Aes)			No
Volume of Water in Well	(gal)				Measuring Po	int Marked:		Res		-	No
Three Well Volumes:	(gal)				Well Diameter	-	17	F) 08	ier.	10
Purging Information	1				100		_	C	/		
Purging Method:	Bailer	Peristaltic) V	Vaterra	Other		-	1	rsion Fac		
Tubing/Bailer Material:	Steel	Polyethyle	pë T	eflon	Other:		gal / ft. of water	1" ID	2*10	4" ID	6* ID
Sampling Method:	(Bailer/	Peristallic	V	Vaterra	Other:		-	0.041	0.163	0.653	1.469
Duration of Pumping:	(min)	45			ouner,		i gai = 3	.105 L =3	875 ml = 0	.1337 cu	bic feet
Average Pumping Rate:	(ml/min)	45	Water Ore			11.00		Un	it Stabilit	y	
1000 Mar 100 Ma	* attended	200	water-Qua	lity Meter Type:	Moreha 1		рН	DO	Con	±.	ORP
Total Volume Removed:	(gai)	1.85 gal	10-01-01-02	Did well go dry:	Yes	(NP)	± 0.1	± 10%	± 3.0	1% ±	10 mV
	1	2	3	4	5	6	-	7	8	1	9
Parameter:	1136	11+1	1146	1151	1156	1201	1205	13	11		
Volume Purged (gal)	-	14	26	34	44	56	62	-	12		_
Rate (mL/min)	200	200	200	200	200	200	200		200		
Depth to Water (ft.)	800	8.55	8.60	8.42	867	2.67	9.67		2 67		
pН	7.87	7.16	6.91	10.89	10.89	6.88	6.86	2000	81		
Temp. (C)	10.49	10.26	10.90	11.06	11.30	11. 2.8	11.29		1.26		
Conductivity (mS/cm)	0.99	1.00	1.03	1.03	1.02	1.00	1.00	100	01		
Dissolved Oxygen (mg/L)	13.17	4.42	2.04	1.34	0.34	0.00	000		00	-	
ORP (mV)	-119	-103	- 86	- 85	- 85	- 85	- 83		80		
Turbidity (NTU)	7999	7999	769.0	438.0	202.0		7.2	1000	111-11-11		
Notes:	orange, turkhid, nu oddr ozstren		1010	100.0	000.0	167.0	.51.0	c1 100	st.1 car, octon	-	

Sampling Information

#	Laboratory
3	CompuChem
2	CompuChem
-	See COC for details.
-	Queen's University, See COC for detail
- Samala Tim	e: 12.16
1 Ostropis rinn	e: 1215
10	
Dup. Time:	
	3 2 - - 7 Sample Tim

Problems / Observations

602 (1211) : 65 mg 12

J:\kmg\SampleForms\GroundWaterSamp.doc

Groundwater Sampling

ampling Personnel:	KMGIJ	DE			Well I	D: MW-	80				
lient / Job Number:		ohawk / 36657.	009		Date:	1119/04	00	-			
Veather: 20%, 5	- nay		100		Time		Time	Out:			
Well Information	_										
Depth to Water.	(feet)	12.09	(from M	P)	Well Type:		Flush	nount		Stick-L	2
Total Depth:	(feet)	50.04	(from Mi	P)	Well Material	\$	Stainless	Steel		(PV	
Length of Water Column	(feet)	37.95			Well Locked:			(Yes)		N	No.
Volume of Water in Well	(gal)	6.19			Measuring Pr	oint Marked:		4es)		1	No
Three Well Volumes:	(gal)	18.56 90	1	_	Well Diamete	917;	1	(2)	Oth	er:	
Purging Information	Ying	Stort: E	755				-	Comune	sion Fac		
Purging Method:	Baller	Ceristaltio		Vaterra	Other:			1" ID	2" ID	4* ID	6"10
Tubing/Bailer Material:	Steel	Colyethyle	ine I	eflon	Other:		gal / ft. of water	0.041	0.163	0.653	1.465
Sampling Method:	Bailer	Peristallic	> \	Vaterra	Other:		1 gal = 3.	785 L =38	75 ml = 0		
Duration of Pumping:	(min)	55				The second second		0000000	2500000		
Average Pumping Rate:	(ml/min)	200	Water-Qua	ality Meter Type	5				t Stability		
Total Volume Removed:	(gal)		200.0000000	Did well go dry	MUN BO	NB	pH ± 0.1	DO	Cond	-	ORP
		2.91 90	(1)				L ± 0.1	± 10%	± 3.0	70 ±	10 mV
Parameter:	905	915	920	925	930 5	135	940	7 9	8 45	95	0
Volume Purged (gal)	-	20	30	7.0	5.0	1.0	7.0		,0	7	
Rate (mL/min)	200	200	200	200	20)	200	200	-	200	20.	-
Depth to Water (ft.)	12.10	1210	1210	12.10	12.10	12.10	12.10		.10	12.	_
pН	6.45	6.44	6.45	6.51	6.52	6.51	6.53		56	C.	
Temp. (C)	8.82	9,59	10.40	10.74	10.51	10,91	11.00		.13	10 0	
Conductivity (mS/cm)	1,19	1.23	1.24	1.23	1.22	1.22	1,22		25	1,1	1.00
Dissolved Oxygen (mg/L)	6.34	336	2.35	1.32	1.19	0.50	0.60		30	0.1	INCOME.
(mg/c) ORP (mV)	-11	-29	-39	-46	-48	-54	1.5507.0		66		10.
		-	32,6	10	10.3		-61	-	,4		
Turbidity (NTU)	43.9	35.7	511	11.6	10.3	4.6					

Sampling Information

		NAMES HALF DATE OF
3	7	CompuChem
2	-	CompuChem
r	/	See COC for details.
-		Queen's University, See COC for detail
16-80	Sample Time:	1005
Yes	NO)	1
Yes	09	
	Dup. Time:	
	2 ب <u>الب - في ا</u> Yes	2 V V V Ves No Yes No

Problems / Observations

(01- 70 my)L

Page _____ of ____

Groundwater Sampling

Site

GROUND-WATER SAMPLING LOG

Event

Sampling Personnel: J				-	Well ID	: MW- 11/9/04	BD			1	2
Client / Job Number: Weather:	Niagara Mo	hawk / 36657.009	1		Date:	11/4/04					_
	-	C. COME	and the second	-	Time Ir	1:	Time	Out:			
Well Information		and the second									
Depth to Water:	(feet)		(from MP)		Well Type:		Flush	nount		Stick-	Jp
Total Depth:	(feet)		(from MP)		Well Material:		Stainless	Steel		P	/c
Length of Water Column	: (feet)				Well Locked:			Yes		3	No
Volume of Water in Well	: (gal)				Measuring Pol		a see the second	Yes		1	No
Three Well Volumes:	(gal)		*		Well Diameter		1*	2*	Oth	ier:	
Purging Information			Q1 X	-							
Purging Method:	Bailer	Peristalting	Waterra		Other		-	1	sion Fac		1 3
Tubing/Baller Material:	Steel	Polyethylene	Teflon	-	Other:	<u>.</u>	gal / ft. of water	1" ID	2°1D	4" ID	6" ID
Sampling Method:	Bailer	Peristaltic -	Waterra	-	Other:		Sheen See	0.041	0.163 975 ml = 0	0.653	1.465
Duration of Pumping:	(min)			-	ouler.		i gai ≈ 3.	100 L = 30	175 mi = 0	.1337 cu	bic teet
Average Purpping Rate:	(ml/min)		Water Ouelle, Mater	-				Uni	t Stability	y	
Total Volume Removed:		and the second	Water-Quality Meter	0.055-546			pН	DO	Cont	1.	ORP
Volume Removed.	(gal)		Did well g	lo dry;	Yes	No	± 0.1	± 10%	± 3.0	% ±	10 mV
Parameter:	955	10002	3	4	5	6		7	8		9
Volume Purged (gal)	10	11	1	1.00						-	
Rate (mL/min)	200	200					1	-	-	-	-
Depth to Water (ft.)	12.10	12,10		-				-	-	-	
pН	6.60	6.11		-				-		-	-
Temp. (C)	10.98						-	-		-	-
Conductivity (mS/cm)	1.23	1.20		-			-	-	-	-	
Dissolved Oxygen (mg/L)	0,00	0.00			1			-	-		
August Marine and August Au	-74	-76									
ORP (mV)				-			1000	-	-	-	
URP (mV) Turbidity (NTU)	1,0	0.4		1							

Sampling Information

Analyses	#	Laboratory /
BTEX (8260)		CompuChem
PAHs (8270)		CompuChem
MNA Analysis		See COC for details.
NAPL Analysis	g+ 1	Queen's University, See COC for detail.
Sample ID: 5	y proj	
a constant and a second	Sample Time:	
MS/MSD: Yes	No	
Duplicate: Yes	No	
Duplicate ID	Dup. Time:	1
Chain of Custody Sign	ad Bur	Contract of the second

Problems / Observations

J:\kmg\SampleForms\GroundWaterSamp.doc

Groundwater Sampling

ampling Personnel: 7	DLIKMG	N.			Well II	D: MW-	8T	1.51	1111		
Illent / Job Number:	Niagara Mo	hawk / 36657.	009		Date:	the second se	or			-	
Veather: 20, Sunn	17				Time		Time	Out:			-
Well Information	<i>′</i>								31.4		
Depth to Water:	(feet)	12,26	(from MF	2)	Well Type:		Flushr	nount		Stick-L	2
Total Depth:	(feet)	39.23	(from MF		Weil Material	10	Stainless	Steel		ØV	
Length of Water Column	n: (feet)	26.96			Well Locked:			(Yes)			lo
Volume of Water in Well	(gal)	4.39 90	1		Measuring Po	oint Marked:	2200	62			No
Three Well Volumes:	(gai)	13-121			Well Diamete	80	1*	(2)	Oth		10
Purging Information	, tony	~		p .	Sta BS	- 2	_				
Purging Method:	Bailer	Raristaltic		Vaterra P	0ther:	0	-	1	sion Fac		
Tubing/Bailer Material:	Steel	Rolyethyle	pè T	effon			gal / ft. of water	1"10	2° 10	4* ID	6° 10
Sampling Method:	(Bailer)	Reristaltic		Valena	Other:		2012/08/09/2	0.041	0.163	0.653	1.469
	31		Calt. C	A	Other:		1 gal = 3.	785 L =38	75 mi = 0.	1337 cul	bic feet
Duration of Pumping:	(min)	40	ALL STRATES	and the second second				Unit	Stability	,	-
Average Pumping Rate:	(ml/min)	410	Water-Qua	lity Meter Type:	HOR-160	U-22	pH	DO	Conc		ORP
Total Volume Removed:	(gal)	4.23 90	1/	Did well go dry:	Yes	No	± 0.1	± 10%	± 3.0	% ±	10 mV
Parameter:	745	7502	755 3	800	805	810	815	7 8	8 25	8	25
Volume Purged (gal)	-	3.0	5.0	7.0	9.0	100	13		5	10	-
Rate (mL/min)	400	400	400	400	400	400	400		co	40	
Depth to Water (fL)	1228	12.30	12.30	12.30	12.30	12.30	12.30	-	30	12.	
pН	6.16	5.98	6.21	6.45	6.61	6.74	6,78	6.0		6.7	
Temp. (C)	9,19	9.50	9.48	9.27	9,43	9.20	8.80		64	8	
Conductivity (mS/cm)	0.96	0.96	0.97	1,00	1.00	1.01	1.02	-	02	-	07
Dissolved Oxygen	18.86	7,53	2.96	1,24	0.64	0.00	0.00		00	U.C	
	155	111	72	39	23	10	4	2	Contract	C	_
1				1	12 3	and the second se				-	2
(mg/L) ORP (mV) Turbidity (NTU)	36.8	11.5	1.0	5.8	1.4	3.5	5.4	L.		.7	-7

Sampling Information

Analyses # Laboratory BTEX (8260) CompuChem PAHs (8270) CompuChem See COC for MNA Analysis details Queen's NAPL-Analysis Oniversity See COC for detail. Sample Time: 830 Sample ID: Mu - 81 MS/MSD: res NO Yes Duplicate: Duplicate ID Dup. Time: ----Chain of Custody Signed By: K-MG-

Problems / Observations

Cos: Bong/L

Sile

Groundwater Sampling

GROUND-WATER SAMPLING LOG

Event

Sampling Personnel:	10 MB				Well II): MW- 5	5				
Client / Job Number:	Niagara Mo	hawk / 36657.0	009		Date:	11/9/04				_	
Weather:	2005,6	JUL SKY	·		Time I	Section and a section of the section	Time	Out:			
Well Information											
Depth to Water:	(feet)	11.34	(from MP	2)	Well Type:		Flush	mount	-	SUCCE	in.
Total Depth:	(feet) 2	1.09	(from MP	2	Well Material		Stainless			EV	2
Length of Water Column	(feet)	9.75	Aless And	_	Well Locked:			Yes	-		No
Volume of Water in Well:	(gal)	1.59 gal	8	_	Measuring Po	bint Marked:	1	CLES		N	No
Three Well Volumes:		3.00 900		a/	Well Diamete	r:	1"	Ø	Oth	ner;	-
Purging Information					3.2. 00		_				
Purging Method:	Bailer	Redistaltic	W	Vaterra	Other:		-	-	rsion Fac		-
Tubing/Bailer Material:	Steel	Pelverryler	ne T	eflon	Other:		gal / ft. of water	1" ID	2" ID	4* ID	6* ID
Sampling Method:	Baiter	Petistaltic	W	/aterra	Other:		1.221-1.201423	0.041 785 L ≈30	0.163 375 ml = 0	0.653	1.469 hir feat
Duration of Pumping:	(min)	40		1000				172.5			NG 1001
Average Pumping Rate:	(ml/min)	200	Water-Oua	lity Meter Type:				Uni	t Stabilit	у	
Total Volume Removed:			ALCONT STORE	Did well go dry.	HONDE		pH	DO	Con	1.	ORP
Telar Felania Hernorda.	(Reil)	2.11 gai		Did well go di y.	Yes	69	± 0.1	± 10%	± 3.0	% ±	10 mV
	1	2	3	4	5	6	1	7	8		9
Parameter: Volume Purged (gal)	0742	0740	0752	0757	0302	0307	0812	0	317	19.	22
The second s	-	14	24	34	+4	52	WL	1	16	56	_
Rate (mL/min)	200	200	200	200	200	200	200	2	00	20	0
Depth to Water (ft.)	11.34	11.46	11.46	11.46 .	11.46	11.46	11.16	11	10	11.	16
pH	6.25	6.49	6.12	10.08	6.08	6.08	6.08	10.	09	6.0	9
Temp. (C)	9.92	9.75	8.39	8.15	9.31	\$.30	9.74	a	67	44	aac
Conductivity (mS/cm)	0.856	0.319	0.849	0.948	0.949	0.946	0.946		4.45	0.9	
Dissolved Oxygen (mg/L)	6.47	9.91	2-70	076	0.35	0.24	100	-	100	0.0	1000
ORP (mV)	264	243	239	223	219	213	201		99	19-	AN
Turbidity (NTU)	\$1.6	5.0	1.9	0.0	1.1	1.0	0.0		0	0	
Notes.	SJIGHTY HIPELON TO ODERY SPEEN	stear				2.4	0.0		D	016	das,

Sampling Information

Analyses	#	Laboratory
BTEX (8260)	3	CompuChem
PAHs (8270)	2	CompuChem
MNA Analysis		See COC for details.
NAPL Analysis	-	Queen's University, See COC for detail
Sample ID: Mhr - 8-	ς Sample Time:	0824
MS/MSD: Yes	රස්ව	
Duplicate: Yes	ND .	
Duplicate ID -	Dup. Time:	-
Chain of Custody Sign	ed By:	17

Problems / Observations

602 1082=1. 55 mg 16

Site

Groundwater Sampling

GROUND-WATER SAMPLING LOG

Event

			GROUND-	WATER SA	AMPLING I	LOG					
Sampling Personnel:	TG, AS	Call			Well II	D: MW-11					
Client / Job Number:		hawk / 36657.	009		Date:	11/104			14		
Neather: SUDDY	- 50°F				Time I	n: 1480	Time	Out:			
Well Information	and the second			2							
Depth to Water:	(feet) 1	5.48	(from MF	2)	Well Type:		Flush	mount		(Stick-I	qL
Total Depth:		1.05	(from MF	<u>")</u>	Well Material	Stainless		CEN	0		
Length of Water Column	1: (feet) /.	8.57		- 11	Well Locked:		(es)		1	Na	
Volume of Water in Well	12 1 21	03		_	Measuring Po	oint Marked:		Tes		1	No
Three Well Volumes:	(gal) 9	08 gal		_	Well Diamete	r.	1"	T	Oth	ner:	
Purging Information											
Purging Method:	Bailer	Peristaltic	v	Vaterra	Other:		-	1	sion Fac		
Tubing/Bailer Material:	Steel	Polyethyle	ne) T	eflon	Other:		gal / ft. of water	1" ID	2" ID	4* ID	6* ID
Sampling Method:	Bailer	Peristaltic	V	Vaterra	Other:		1 gal = 3.785 L =3875 ml = 0.1337 cubic				
Duration of Pumping:	(min)	30			and taxes		- goi - o,	100 6 100	// J // U	.1557.00	Jic ieet
Average Pumping Rate:	(ml/min)	360	Water-Qua	lity Meter Type:	Hamba	1.00	-	and the second second	t Stabilit		
Total Volume Removed:	10400000000			Did well go dry.	Yes	(B)	pH	DO	Con		ORP
	10-17	3.17 ga	1	ena man go ary.	105	<u>C</u>	± 0,1	± 10%	± 3.0	1% ±	10 mV
Parameter:	1529	1599 2	1539	1544	1549	6 1554	1559	7	8		9
Volume Purged (gal)	-	41	4.54	64	91	104	IaL				
Rate (mL/min)	600mL/min	360m4min		300 ml/min	and the second se			Inno			
Depth to Water (ft.)	-500-	5.60	5.60	5.60	5.60	5.60	5.00	11111			
pН	5.87	6.88	4.00	7.04	4.08	7.09	7-09		1.10		
Temp. (C)	11.38	12.18	11.94	12.00	11.93	11.88	11.78		-	-	
Conductivity (mS/cm)	1.19	1.110	1.14	1.17	1.17	1.17	1.17				
Dissolved Oxygen (mg/L)	7.54	4.00	3.89	0.66	0.00	0.00	0.00				
ORP (mV)	-118	-155	-161	-172	-174	-173	-172				-
Turbidity (NTU)	196.0	124	62.6	24.0	18.3	17.7	20.0		-	-	
Notes:	no oder no streen stightly				<u> </u>	1	00.0	-	3		

Sampling Information

CompuChem
CompuChem
See COC for details.
Queen's University, See COC for detail
ime: 16:05
16.00
e:

Problems / Observations

13 co2 drops @ high range. = 65 mall

Final depth to $t_{20} = 5.60$

Site

Groundwater Sampling

Event

GROUND-WATER SAMPLING LOG

Sampling Personnel:	AESILA				Well ID	: MW-12	6					
Client / Job Number:		hawk / 36657	.009		Date:	11/2/0						
Weather:	4005, V.	light ,	Inizzle		Time I		Time	Out:				
Well Information												
Depth to Water:	(feet) 7.	7.5'	(from MP	<u>)</u>	Well Type:		Flush	mount		Stek-Up		
Total Depth:	(feet) 2	-7.05'	(from MP	1	Well Material:		Stainless	Steel		BAG		
Length of Water Column	n: (feet)	19.3'		14	Well Locked:			205		No		
Volume of Water in Wel	l: (gal)	3.15		-	Measuring Po	int Marked:		1000		No		
Three Well Volumes:	(gal)	9.91		_	Well Diameter	t .	1"	E	Othe	r.	- 0	
Purging Information	ı						-	-				
Purging Method:	Bailer	Refistance	, W	/aterra	Other			1" ID	z'iD	2/01/201 2022	ID	
Tubing/Baller Material:	Steel	Polyethyk	ene Ti	efion	Other:		gal / ft. of water	0.041	1991 (1991)		10	
Sampling Method:	400P	Peristaltic Waterra Other:								337 cubic fe		
Duration of Pumping:	(min)	15									~	
Average Pumping Rate:	HARL				Stability	1	_					
Total Volume Removed	ity Meter Type: Did well go dry:	Yes	8			Cond	ORP	-				
			9001			0	± 0.1	± 10%	± 3.0%	± 10 m	nV	
Parameter:	1 1036	2	3	4	5	6		7	8		9	
Volume Purged (gal)		ZL	24	1051	1056 4 L	1101	1100		11	1116	-	
Rate (mL/min)	201	200				51	61	7		34	-	
Depth to Water (ft.)	and the second	3.00	200	200	200	200	200		00	200	-	
pH	7.75		8.13		8.13	8.13	8.13		13	8.13	-	
Temp. (C)	9.17	3.31	7.93	7.67	7.49	7.45	7.41	101	39	7.37	-	
Conductivity (mS/cm)	12.20	12.21	12.24	12.34	12.48	12.60	12.75	10000	74	12.1	2	
Dissolved Oxygen	2.79	0.003	2.85	2,92	2.92	2.93	2.93	2.	92	2.92		
(mg/L)	12.07	6.22	9.83	2.03	0.97	0.44	012	0.	00	0.00		
ORP (mV)	-186	-110	-159	-161	-162	-164	-160	-1	69	-172	2	
Turbidity (NTU)	93.4	45.0	31.3	20.7	18.8	30.0	31.2	100.00	2.4	33.0		
Notes:	Clene, Slight Lightoll Odor,				Odor still present, long weaker						1	

Sampling Information

Analyses	#	Laboratory
BTEX (8260)	,3	CompuChem
PAHs (8270)	2	CompuChem
MNA Analysis		See COC for details.
NAPL Analysis	-	Queen's University, See COC for detail
Sample ID: MW-	2.7 Sample Time:	1125
MS/MSD:	No	1173
Duplicate:	E 19	
Duplicate ID	Oup. Time:	1125
Chain of Custody Sig		

Problems / Observations

CO2 = 40 mg/L (Barups at high range -> 1 ellup = 5 mg/L)

Site

GROUND-WATER SAMPLING LOG

Event

Sampling Personnel:	AES				Well ID	i MW-13	P ANIA	-131				
Client / Job Number:	Niagara Mo	hawk / 36657.	009		and the second se	11/2/04		131		-	-	
Veather: cloudy	1 # 52 F					n: 14:12	Time	Out:			-	
Well Information												
Depth to Water:	(feet)	Est 7.	(from MF		Well Type:		Flush	mount		Stick-L	In	
Total Depth:		76	(from MF	2)	Weil Material:	Sec. 1	Stainless			(FV	-	
Length of Water Column	; (feet) ⁽	58.9			Well Locked:		1.2	Fres	-	-	No	
Volume of Water in Well:	(gal) C	7.6007			Measuring Po	int Marked:		Yes				
Three Well Volumes:	(gal) 2	8.8021			Well Diameter	r,	1"	(2)	Oth			
Purging Information												
Purging Method:	Bailer	Peristaltic	2 V	Valerra	Other:		-	1000000	sion Fac		-	
Tubing/Bailer Material:	Steel	Polyethyle	ne, T	eflon	Other:		gal / ft. of water	1" ID	2" ID	4* ID	6* ID	
Sampling Method:	Bailer	Peristaltic	v	Vaterra	Other:			0.041	0.163 0.653 1.469 75 ml = 0.1337 cubic feet			
Duration of Pumping:	(min)	105		-				100 2 -00	10 m - 0	1007 00	Dic leet	
Average Pumping Rate:	(ml/min)	225	Water-Qua	lity Meter Type:	120250000000		-	Uni	t Stability	ć.,		
Total Volume Removed:	(gal)	3.72		Did well go dry:	Horeiba Yes	00	pH ± 0.1	DO ± 10%	Cond		ORP	
	-						[± 0;1]	- Call Internation	± 3.04	70 I	10 mV	
Parameter:	14:28	14:43	14:48	4:53	5 14:58	6 15:03	15:08	7 15	8 = 13	15	9 :18	
Volume Purged (gal)		61	FL	82	IDL	112	132	10.00	52	100		
Rate (mL/min)	Scomi/min	200m1/m		250	250	250	250			16	0.622	
Depth to Water (ft.)	7.1	9.2	9.32	89.5	9.65	9.71	9.85	100	.95	28	10 97	
pН	5.10	6.98	7.83	7.60	7.18	7.89	7.89	1 1	.87	1000	.Slo	
Temp. (C)	15.87		14.72	14.69	14.57	14,43	14.38	2		14		
Conductivity (mS/cm)	+ 247	1298	.301	-297	.306	6.299	-302	0 - Pittine	-86	- CALC -	1000	
Dissolved Oxygen	645	3.8%	2.67	1.20	.84	0.42	0.26		299 0.1k		94	
(mg/L)	216	186	179	160	147	136	129		28	13		
(mg/L) ORP (mV)	416			100	1 set 1	NO/WA	12-1	14	- 0	10	2	
	15.4	15.8	15.0	1.56	22.1	38.1	35.4	10	8.2	10	.8	

Sampling Information

Analys	ses	#	Laboratory
BTEX (8260)		3	CompuChem
PAHs (8270)		2	CompuChem
MNA Analysis		-	See COC for details.
NAPL Analysi	5	-	Queen's University, See COC for detail
			_
Sample ID:	10101 -17	a Samola Time:	
and the second se	MW -131 Yes	ତ Sample Time: ୧୯୨୨	1635
Sample ID: MS/MSD: Duplicate:	MY -131 Yes Yes	> Sample Time:	11035

Problems / Observations

28.8 gallone × 3. 7852 = 1092

& SAMPIC MISTADELLI NW-13P, Should Read NW-131 #

Sile

GROUND-WATER SAMPLING LOG

Event

Tiont / Job Number	FMU	houde / secont	000		Well II	: mw-	13 P	12			
Client / Job Number: Weather:	the second se	hawk / 36657.	009		Date:	111210	A CONTRACTOR OF THE OWNER OWNE	-			
reation.	40.51 119	the bain			Time I	n:	Time	Out:			
Well Information	الم المحمد ال										
Depth to Water:	(feet)	839	(from MF	2)	Well Type:		Aush	nount		Stick-L	In
Total Depth:	نځ (feet)	5.82	(from MF	2	Well Material:		Stainless		-	STICK-OP	
Length of Water Column	(feet) 2	7.13			Well Locked:			000			No
Volume of Water in Well	10.00	1.47		_	Measuring Po	int Marked:	1	1	the second se		
Three Well Volumes:	(gal) /	341 90	1	_	Well Diameter	r;	1"	3	Oth	1	
Purging Information		3									
Purging Method:	Bailer	Constantic	W	Vaterra	01			Conversion Fac		tors	
Tubing/Bailer Material	Steel	Colvetbyle		efion	Other:		gal / ft. of water	1" ID	2*1D	4" ID	6* 10
Sampling Method:	Ealfor	Peristaltic	W	Vaterra	Other:		Allowed Services	0.041	0.163	0.653	1.465
Duration of Pumping:	ALLEY				1 gal = 3.	785 L =38	75 ml = 0.	1337 cul	pic feet		
The second s	(min) (ml/min)	65	(1057-107-1005-10				-	Unit	Stability	/	-
Average Pumping Rate:	lity Meter Type:	HOLDIDE	4-22	pH DO Con							
Total Volume Removed:	(gai)	3.17 991		Did well go dry:	Yes	0	± 0.1	± 10%	± 3.0	% ±	10 m\v
	1	. 2	3	14554	5	6	-	7	8	1	9
Parameter:	1430	1438	1445	1450	1500	1505	1510		515	15	20
Volume Purged (gal)	-	24	34	44	54	64	74		12	91	
Rate (mL/min)	-	200	2.00	200	200	200	123		1.1	100	22
Depth to Water (ft.)	8.39	9.46	8.16	846	8.46	3.46	200	21		20	
pН	8.05	7.1.3	7.53	7.38	7.37	735	2.46	1000	46	8.1	
Temp. (C)	14.82	14.20	14.24	14.34	14.27	133	7.35		34	7.3	
Conductivity (mS/cm)	1.54	1.74	1.81	Constant of the	1000		14.21		4.17	14	
Dissolved Oxygen	100000			1.8.4	1.84	1.85	1.86	1.	8.7	1.8	7
(mg/L) ORP (mV)	13.86	5.67	10.32	2.25	1.61	0.91	0.52	0	32	0.0	15
Turbidity (NTU)	-120	-112.	-112	-113	-114	-1110	-117	-1	19	-12	.0
Notes:	86.6	14.6	10,10	16.5	18.3	22.0	23.0	2.2	2.5	23	. 7
(a la a	Mother !!										

Sampling Information

Analyses	#	Laboratory
BTEX (8260)	3	CompuChem
PAHs (8270)	2	CompuChem
MNA Analysis	~	See COC for details.
NAPL Analysis	-	Queen's University, See COC for detail
Sample ID	Sample Time	10
Sample ID: MW-13 MS/MSD- Yes	Sample Time	1540
Variation		1540
MS/MSD: Yes	No	1540

Problems / Observations

- pump of 1+\$5-1450.

* samples Mistabilid MW-131, should read MW-13+ A

Groundwater Sampling

Site

GROUND-WATER SAMPLING LOG

Event

Sampling Personnel:		- Jene			Well ID:	MW-1	32	_			
Client / Job Number: Weather:	the second se	hawk / 36657.	and the second se		Date:	11/2-11	24				
vveatner:	4005,00	ol, clond	ΎΥ		Time In		Time	Out:			
Well Information											
Depth to Water:	(feet)		(from MP	2)	Well Type:		Flush	mount		Stick-L	in
Total Depth:	(feet)	-	(from MF	2_	Well Material:		Stainless	and shares	-	PI	-
Length of Water Column	: (feet)				Well Locked:			Yos	_	1	No
Volume of Water in Well	(gai)				Measuring Poir	nt Marked	/	Yes:		-	No
Three Well Volumes;	(gal)				Well Diameter:	/	1"	2*	Oti	ier;	
Purging Information				al. 1	/	1111	91				
Purging Method:	Bailer	Peristaltic		Vilem	-			Conver	sion Fac	tors	
T	Steel	Polyethyle	ne St.T	valerra 1	Other;		gal / ft.	1" ID	2" ID	4* ID	6" ID
Tubing/Bailer Material:	Bailer	Pertstallic		N 10.702	Other:		of water	0.041	0.163	0.653	1.469
Sampling Method:	Udifier	Pertstaltic Waterra Other.						785 L =38	75 ml = 0	.1337 cu	bic feet
Duration of Pumping:	(min)							Uni	Cashilla		
Average Purpaing Rate: (ml/min) Water-Quality Meter Type:						pH	DO	Cone		ORP	
Total Volume Removed:	(gal)			Did well go dry	Yes	No	± 0.1	± 10%	± 3.0		10 mV
and the second second	1	2	3	4	5	6	1	7	8	1	9
Parameter:	1525	1530	1535					1	0		
Volume Purged (gal)	102	114	126			1					
Rate (mL/min)	200	200	200								
Depth to Water (ft.)	2.46	8.46	8.46					-	-	1	
pН	7.34	7.33	7.33						-	-	
Temp. (C)	14.19	14.16	14.16						-	2	
Conductivity (mS/cm)	1.28	1.88	1.88								
Dissolved Oxygen (mg/L)	0.0	0.0	0.0						-		
ORP (mV)	-121	-122	-123	1.5		1 - 1 - 7		12			
Turbidity (NTU)	21.8	22.4	20.9					-		1	
Notes:			CROF, Methball Odor, Slight Skeen								

Sampling Information

Analyses	#	Laboratory/
BTEX (8260)		CompuChem
PAHs (8270)	5 S	CompuChem
MNA Analysis		See COC for details.
NAPL Analysis	~ /	Queen's University, See COC for detail.
	NY NY	
Sample ID:	Sample Time:	
MS/MSD: Yes	No	
Duplicate: Yes	No	
Duplicate 1D	Dup. Time:	
Chain of Custody Signe	ed By:	

Problems / Observations

J:\kmg\SampleForms\GroundWaterSamp.doc

Site

Groundwater Sampling

See Page 1

GROUND-WATER SAMPLING LOG

Event

Sampling Personnel:					Well I	D: MW-13P						
Client / Job Number:	Niagara Mo	hawk / 36657.	009		Date:	11/2/04		1		200		
Neather:			_	_	Time I	n: A.12	Time	Out:				
Well Information												
Depth to Water	(feet)	7.10	(from MP		Well Type:		Flushn	noune		Stick-L	In	
Total Depth:	(feet)	66	(from MP		Well Material		Stainless :				PVC	
Length of Water Column	i: (feet)			_	Well Locked:			Tes	>	0	No	
Volume of Water in Well	; (gal)			_	Measuring Po	oint Marked:	(Res		N	No	
Three Well Volumes:	(gal)			<u> </u>	Well Diamete	r.	17	(2) Oth	ar:		
Purging Information	,						_	~				
Purging Method:	Bailer	Réristaltic	W	/aterra	Other:		-		sion Fact			
Tubing/Bailer Material:	Steel	Patyethyle	ne T	eflon	Other:		.gal / ft. of water	t" ID	2* 1D	4" ID	6* ID	
Sampling Method:	Bailer	Peristallic	W	/aterra	Other:			0.041	0.163 75 ml = 0.	0.653	1.465	
Duration of Pumping:	(min)						1 901 - 0.1	00.4 -00	a o ini = 0.	1337 000	NC reet	
Average Pumping Rate:	(ml/min)		Water-Qual	ity Meter Type:					t Stability			
Total Volume Removed:	(gal)			Did well go dry:	Yes	No	pH	DO	Cond	-	ORP	
	1 7	-				0.7	± 0.1	± 10%	± 3.0%	-	10 mV	
Parameter:	15:23	2 15:30	3	15:46	15:45	15:50	15:55		02 8	16	(5 9	
Volume Purged (gal)	184	192	206	211	22.56	241	271	-	81	20	2/	
Rate (mL/min)	250	250	2.50	250E	250	250	250	21	10	20	1000	
Depth to Water (It.)	9.97	9.97	9.97	9.97	9.97	9.94	9.97	1000	97		97	
ρH	7.83	7.90	8.00	7.97	7.93	7.93	8.00		310	1.000	49	
Temp. (C)	13.97	14.04	14.06	14.09	14.09	19.07	14.11	1000	3.63		. 53	
Conductivity (mS/cm)	.308	.305	. 304	. 803	-298	. 304	.301	1 222	PU	.30		
Dissolved Oxygen (mg/L)	5.84	2.47	1.89	1.44	1.87	0.36	1.31	1.00	-00	10000	30	
ORP (mV)	183	141	185	136	126	117	122	-	91	-13	1000	
Turbidity (NTU)	58.4	58.2	33.8	21.4	22.7	28.9	32.2		5.8		17	

Sampling Information

Analyses	#	Laboratory
BTEX (8260)		CompuChem
PAHs (8270)		CompuChern
MNA Analysis		See COC for details.
NAPL Analysis	1	Queen's University, See COC for detail.
Sample ID:	V Sample Time:	
MS/MSD: Yes	5/ No	
Duplicate: Yes	No	
Duplicate ID	Dup. Time:	
Chain of Custody Signe	d By:	

Problems / Observations

Site

Groundwater Sampling

See Pages 1+2

GROUND-WATER SAMPLING LOG

Event

Sampling Personnel:					Well ID	: MW-18	P				
Client / Job Number:	Niagara N	Aohawk / 36657	7.009		Date:	11/2/14				-	-
Weather:					Time In	:	Time	Out:			
Well Information			- 24								
Depth to Water:	(feet)	7.1	(from MF	·)	Well Type:		Flush	mount		Stick-L	Un
Total Depth:	(feet)	bb	(from MP	2	Well Material:		Stainless		-00-5	-	VC
Length of Water Colum	n: (feet)				Well Locked:			Yes		-	No
Volume of Water in We	lt: (gal)		- Contraction		Measuring Point	nt Marked:		Yes		-	No
Three Well Volumes:	(gal)			_	Well Diameter:		1"	2"	Othe	er:	
Purging Information	n										
Purging Method:	Bailer	Peristaltic	c V	/aterra	Other;			-	sion Fact		1
Tubing/Bailer Material:	Steel	Polyethyl	ene T	effon	1960 0 10 0		gal / ft_ of water	1" ID	2" ID	4* ID	6" ID
Sampling Method:	Bailer	Peristaltic	; W	/aterra	Other: Other:			0.041	0,163	0.653	1.469
Duration of Pumping:	(min)				Obler.		1 gar = 3.	/ 00 L =38	75 ml = 0.	1337 CU	bic feet
Average Pumping Rate	(ml/min	a.	Water-Oual	lity Meter Type:	De recenter			Uni	t Stability	<u>6</u>	
Total Volume Removed	\$10,1900//r	,		Did well go dry:	Yes	No	pН	DO	Cond	÷	ORP
	Gov			ova weit do gi à-	165	140	± 0.1	± 10%	± 3.05	% ±	10 mV
Parameter:	16:10	1 16:15 2	16.18 3	16:21	5	6		7	8		Ş
Volume Purged (gal)	30	31	321	33L							-
Rate (mL/min)	200	200	ZOB	200							
Depth to Water (ft.)	9.97	9.97	9.97	9.97			-	-	-	-	-
pН	8.58	8.67	82008.69						-		
Temp. (C)	13-61	13.61	13.60	13.62				-			
Conductivity (mS/cm)	. 385	-381	,380	.879							_
Dissolved Oxygen (mg/L)	0.00	0.00	0.00	0.00							
ORP (mV)	-160	-149	-144	-14-1			2.00	-	11 - 17		
Turbidity (NTU)	40.2	44.1	42.8	43.2		-11		18	-		_
	0.00	1.1.1	1 1 0	40.00							

Sampling Information

Analyses	#	Laboratory
BTEX (8260)		CompuChem ,
PAHs (8270)	S	CompuChem
MNA Analysis		See CQC for details.
NAPL Analysis	-gr	Queen's University, See COC for detail.
	120	
Sample ID:	Sample Time:	
MS/MSD: Yes	No	and the second
Duplicate: Yes	No	
Duplicate ID	Dup. Time:	1.0
Chain of Custody Signe	ed By:	

Problems / Observations

5 drops COz meanin range. 002 = 10 mg 1 L

Site

Groundwater Sampling

1	Event

Samaling Bargancal	AES					1111 100					
Sampling Personnel: Client / Job Number:	and the second se	hawk / 36657.	000	-		<u>: MW-135</u>					-
WOMMENT OF THE OWNER		LE SKY	009	-		11/4/04	-		_	_	_
	to a, pro	de say		CAN STREET	lime i	n: 7:16	Time	Out:		-	-
Well Information	100 - 111		- Sec. 10	<u></u>	-			_		1	
Depth to Water:		2.70	(from Mi	?)	Well Type:		Flush	mount		Stick-L	Jp
Total Depth:	(feet)	22.80	(from Mi	2)	Well Material:	ä.	Stainless	Steel		PV	ic)
Length of Water Column	n; (feet)	20.10		_	Well Locked:			Yes		٨	lo l
Volume of Water in Wel	l: (gal) 👅	3.28		<u>.</u>	Measuring Po	bint Marked:		Pes		1	No
Three Well Volumes:	(gai) 9	2.83		-	Well Diamete	C .	1*	E	Oth	er.	
Purging Information	i i	-					-				
Purging Method:	Bailer	Peristaltic	V	Vaterra	Other:			1° ID	2*ID	4" 10	0.00
Tubing/Bailer Material:	Steel	Polyethyle	пе т	efion	Other:		gal / ft. of water	0.041	0,163	4" ID 0.653	6" ID
Sampling Method:	Bailer	Peristaltic	V	Vaterra	Other:		1 gal = 3		375 ml = 0.	-	
Duration of Pumping:	(min)	61								and some of	
Average Pumping Rate:	(ml/min)	200	Water-Qua	lity Meter Type:	11				t Stability		
Total Volume Removed:	100 BALL	10	20140-0010-002-013	Did well go dry:	Yes	U-22	pH	DO	Cond		ORP
		3 4 gal	13.161				± 0,1	± 10%	± 3.0	%a ±	10 mV
Parameter:	730	735 2	3 740	745 4	150	6 755	800	7	8 UT	8	9
Volume Purged (gal)	-	26	34	4L	56	62	FL	1.1	32	90	-
Rate (mL/min)	400	200	200	200	200	200	200		10		
Depth to Water (ft.)	2.70	2.71	2.71	2.71	2.71	2.71	2.71		0.71	20	2210
ρH	5.48	6.26	6.49	6.59	1066	6.69	6.70		H	1000	74
Temp. (C)	10 72	12.91	13.38	13.13	12.45	12.38	12.57		2.71		.99
Conductivity (mS/cm)	1.78	177	1.76	1.76	1.76	1.75	175	-	1.76	and the second se	78
Dissolved Oxygen (mg/L)	1184	6.02	2.73	2.15	1.86	1.90	0.81		48		49
ORP (mV)	159	-16	- 50	-58	-63	-68	- 76		85	-9	-
Turbidity (NTU)	1999	981	963	853	432	265	198		05	12	
Notes:	high kiron			<u><u>w.</u><u>w</u>_1</u>		~~~	110		-1	14	1

shean

Sampling Information

Analyses	#	Laboratory
BTEX (8260)	3	CompuChem
PAHs (8270)	2	CompuChem
MNA Analysis	-	See COC for details.
NAPL Analysis	-	Queen's University, See COC for detail
Sample ID: ANW -12	c Sample Time:	9:31
	Sample Time:	8:34
Sample ID: MW -13 MS/MSD: Yes Duplicate: Yes	ی Sample Time: کی آن ک	8:34

Problems / Observations

J:\kmg\SampleForms\GroundWaterSamp.doc

Groundwater Sampling

Site

GROUND-WATER SAMPLING LOG

See page

Event

Sampling Personnel:			0.11		Well ID	: MW-13	S				
Client / Job Number:	Niagara Mol	nawk / 36657.	009		Date:	11/4/14			-	-	
Weather:			-		Time li	1: 4/6	Time	Out:		100	
Well Information								-			111
Depth to Water:	(feet)		(from MF	2	Well Type:		Flush	moulet		Stick-U	
Total Depth:	(feet)		(from MF	<u>"</u>	Well Material:		Stainless	0.00		CPV	
Length of Water Colum	in: (feet)				Well Locked:			CYes		101	lo
Volume of Water in We	il: (gal)	_			Measuring Po	int Marked:		Yes			lo
Three Well Volumes:	(gal)			_	Well Diameter	-	1"	62	Oth		<u>v</u>
Purging Information	n										
Purging Method:	Bailer	Peristaltic	5 W	/aterra	0.0			Conver	sion Fac	tors	
Tubing/Bailer Material:	Steel	Polyethyle		eflon	Other		gal / ft.	1* ID	2*1D	4* ID	6* ID
	Bailer	Peristaltic	2	/aterra	Other:	Sec. 1	of water	0.041	0.163	0.653	1.469
Sampling Method:	<u> </u>	T GHOLDING	**	raterra	Other:		1 gal = 3	785 L ≈38	175 ml = 0.	1337 cub	ic feet
Duration of Pumping:	(min)					-	-	Uni	t Stability		_
Average Pumping Rate:	(ml/min)		Water-Qual	ity Meter Type:			pH	DO	Cond	Complex sec	ORP
Total Volume Removed	: (gai)	- 1. S. S.	1	Did well go dry:	Yes	No	± 0.1	± 10%	± 3.0	-	10 mV
Parameter:	81.5	820 ²	825 ·	828 4	5 831	6		7	8		9
Volume Purged (gal)				S	Contraction of			-		-	
Rate (mL/min)	104	12	136	196	152			_			_
Depth to Water (ft.)	200	203	200	200	200			-	_		-
CLANE .	\$40AA	271	2.71	2.71	2.71			-			-
pH	676	678	6.88	6.91	6.92						1.1
Temp. (C)	13.24	13.45	13 FL	13.82	13.71						
Conductivity (mS/cm) Dissolved Oxygen	1.80	1.87	1.72	1.71	1.72		_	-			
(mg/L)	0.72	1.38	1.29	0.28	0.25						
ORP (mV)	-99	-105	-98	-93	-96						
Turbidity (NTU)	113	125	107	110	115						
Notes:					cleure, odor, ho sheer						

Sampling Information

Analyse	95	#	Laboratory
BTEX (8260)			CompuChem
PAHs (8270)			CompuChem
MNA Analysis			See COC for details.
NAPL Analysis			Queen's University, See COC for detail.
-	-		
Sample ID:		Sample Time:	9:34
MS/MSD:	Yes	Na	- D int
Duplicate:	Yes	No	
Duplicate ID	100	Dup. Time:	
Chain of Custod	y Signed	By:	

Problems / Observations

10 drops CO2 +CST - high range co2= 50 mg/. * moderate MEP ador

Page Z of 2

Site

GROUND-WATER SAMPLING LOG

Event

Sampling Personnel:	TES				Well I	D: MW- 14	€ 14F				
Client / Job Number:		Iohawk / 36657	.009		Date:		1.(.)-)			-	
Weather:	40°5, 5	JUESKY			Time	In: 12:41	Time	Out:		1000	
Well Information											
Depth to Water:	(feet)	9.97	(from MP	P)	Well Type:		RILEAR	hount		PE-I-I	14
Total Depth;	(feet)	56.3	(from MF	2)	Well Material	t/	Stainless			Stick-L	30.
Length of Water Column	(feet)	46.33			Well Locked:			63			No
Volume of Water in Well	(199)	7.55			Measuring Pe	oint Marked:		(TES'	_	0	No
Three Well Volumes:	(gai)	22.66		_	Well Diamete	ir:	1*	2	Oth	1.1.1	
Purging Information											
Purging Method:	Bailer	Peristalitic	V	Vaterra	Other				sion Fac		
Tubing/Bailer Material:	Steel	Pelyethyle	me T	eflon	Other.		gal / ft, of water	1* ID	2" ID	4* ID	6" ID
Sampling Method:	ष्ठविंह	Peristaltic	V	Vaterra	Other:		1 gal = 3.7	0.041	0.163	0.653	1,469
Duration of Pumping:	(min)	41					1 901 - 0.1	00 5 -00	/5 m = 0.	Taar cut	bic feet
Average Pumping Rate:	(ml/min)		Water-Qua	lity Meter Type:				Unit	Stability	'	
Total Volume Removed:	(gal)			Did well go dry:	Home then Yes	<u>U-2.2</u>	pH	DO	Cond		ORP
		1.98 90		old non go ory.	104	00	± 0.1	± 10%	± 3.04	% ±	10 mV
Parameter:	1430	1 2	3	1445	5 1450	6 1455	1500	7	85	150	9
Volume Purged (gal)	-	14	1.51	2.51	3.5	4.5	5L	1.	L	71	
Rate (mL/min)	200	200	200	200	2000	200	200		100		20
Depth to Water (ft.)	9.97	10.42	10.42	10.42	10.42	10.02	10.42		.42	20015	47
pН	8.76	8.87	9.67	9-11	9.12	9.25	9.32			1.0	39
Temp. (C)	12.66	13.35	13.23	13.18	13.02.	13.14	1.00		.99	10000	
Conductivity (mS/cm)	0.500	.479	.484	. 483	.481	.476	13.00	- 1/C	-		00
Dissolved Oxygen (mg/L)	10.76	9.47	2.79	1.48	1.07	133	· 4 F.	0.	74 Ng	, 4:	
ORP (mV)	4	- 33	- 79	-111	-128		the second				13
	1000	10.3	0.00	0.00	0.00	-155	-165	6.1	74	-17	CONTRACTOR OF
Turbidity (NTU)	32.4	10.3	11-110								

Sampling Information

Analyses	5 #		Laboratory
BTEX (8260)	ې	2	CompuChem
PAHs (8270)	2	-	CompuChem
MNA Analysis			See COC for details.
NAPL Analysis	-	-	Queen's University, See COC for detail
Sample ID: _N/	v-rd r	Sample Time:	15:13
MS/MSD:	Yes	Ø	10-0
Duplicate:	Yes	C	
Duplicate ID	-	Dup. Time:	-
Chain of Custody	Signed By:	in an	10 - 90 - 50

I drop cor test (high range) - cor = romg12

Groundwater Sampling

Site

See page 1 GROUND-WATER SAMPLING LOG

Event

Client / Job Number:	Niagara Moh	awk / 36657.009			Date:	MW-1	42			_	
Weather:			1		Time Ir	11/8/04	TL	ne Out:		_	_
Well Information								ne Out:			
Depth to Water	(feet) a	el /	(from MP)		Well Type:		Ek	stonoun	13	Stick-	110
Total Depth:	51 dieds g		(from MP)		Well Material:			ss Steel		SUCK-	
Length of Water Column	(feet)				Well Locked:			Fes	-	-	No
Volume of Water in Wel	l: (gal)				Measuring Poi	int Marked:		Ges			No
Three Well Volumes:	(gal)				Well Diameter		1*	and the second se		her:	140
Purging Information	n									-	
Purging Method:	Bailer	Peristaltic	Waterra		-	_	-	Cor	version Fa	ctors	
Tubing/Bailer Material:	Steel	Rolvethylepe	Teflon	-	Other		gal/f		D 2°1D	4" ID	6" ID
and a strength of the strength	Bailer	Peristaltic	5,240		Other:		of wat	r 0.0	1 0,163	0.653	1,469
Sampling Method:		r ensidiuc	Waterra		Other:		1 gal =	3,785 L	≈3875 ml =	0.1337 ci	ibic feet
Duration of Pumping:	(min)				Horeba	11-22				_	_
Average Pumping Rate:	(ml/min)		Water-Quality Meter	Type!	wathaca	8	pH	D	Unit Stabili Con		ORP
Total Volume Removed:	(gal)		Did well g	to dry;	Yes	No	± 0.1	= 10	- P. P.		10 mV
	1	2	3	4	5		6	1000		- 1 ¹ -	-
Parameter:	1511		×	886 	5		0	7	8	s	9
Volume Purged (gal)	7L										
Rate (mL/min)	200										
Depth to Water (ft.)	10.42								-	-	
pН	9.41						-	-		-	
Temp. (C)	13.03		200					-		-	-
Conductivity (mS/cm)	,473		-				-	-		-	-
Dissolved Oxygen (mg/L)	0.03				1211						
ORP (mV)	-182										-
Turbidity (NTU)	0.00	T							-	-	
Notes:											

Sampling Information

Analyses	#	Laboratory
BTEX (8260)		CompuChem
PAHs (8270)		CompyChem
MNA Analysis		See COC for details.
NAPL Analysis	Aul	Queen's University, See COC for detail.
	500 000	
Sample ID:	Sample Time	κ.
MS/MSD: Yes	No	
Duplicate: Yes	No	1.1
Duplicate 10	Dup. Time:	
Chain of Custody Signe	ed By:	

Site

GROUND-WATER SAMPLING LOG

Event

Sampling Personnel:	AES, TM	and the second se			Well II	D: MW-14	P				
Client / Job Number:		ohawk / 36657.	.009		Date:	1113104	2220		-	17.	1922
Weather:	403, 6/1	HE SKY	_		Time I		Time	Out:		-	
Well Information											
Depth to Water:	(feet)	9.95	(from Mi	P)	Well Type:		Eloste	hount		Stick-L	In
Total Depth:	(feet)	16.30	(from MF	 P)	Well Material		Stainless	Sec. 7.		CEV	
Length of Water Column	: (feet) ¿	2635	-		Well Locked:			1095	-		lo.
Volume of Water in Well	(gal)	4.32			Measuring Po	oint Marked:		Cas.		-	No
Three Well Volumes:	(gai)	12.96		_	Well Diamete	n.	17	CT.	Othe	100	
Purging Information											
Purging Method:	Bailer	Penstallic	V	Vaterra	Other:		-	Conversion		1000	
Tubing/Bailer Material:	Steel	Polyethyle	ne T	eflon	8201-702		gal / ft. of water		2"10	4* ID	6" ID
Sampling Method:	Baller	Peristaltic	V	Vaterra	Other: Other:			2.77/2.4	0.163	0.653	1,469
Duration of Pumping:	(min)	31			ouldi,		i gar = a.,	785 L =3875	imi ≈ 0.	1337 cut	NC feet
Average Pumping Rate:	(ml/min)	1000	Water-Oua	lity Meter Type:				Unit S	itability	6	
Total Volume Removed:	(gal)	2.77 200	ALC THREE MILLIONE	Did well go dry:	Yes		pH	DO	Cond	- 10	ORP
	(30.)	2.91		ola well go aly.	res	<u>م</u>	± 0,1	± 10%	± 3.0%	% ±	10 mV
Parameter:	13:25	13.30	13:35	13:40	13:45	13:50	13:55	7 14:0	8	14:0	03 9
Volume Purged (gal)	-	14	21	34	51	10 L	7.5	91			12
Rate (mL/min)	200	200	200	200	200	200	200	2.0		1.7566	15.2
Depth to Water (ft.)	9.95	11.1	11.2	11.3	11.32	11.35	11.35	11.3		20	
рН	8.77	8.04	7.64	7.41	7.18	702	6.96		200	1.0	10.00
Temp. (C)	13.54	14.20	14.23	14.21	14.26	14.17	14-13	14	C		87.
Conductivity (mS/cm)	6.95	0.784	. 797	.810	. 813	1802	.798	.7	(a)	14	07
Dissolved Oxygen (mg/L)	7.91	7.59	3.94	2.62	1.34	0.32	6.15	-10			1.001
ORP (mV)	- 98	-83	-80	-80	-89	-97	-102	-10	1	0-1	
Turbidity (NTU)	88.4	19.8	19.5	23.6	16.7	18.7	32.4	19.	100 C	-10	State of
Notes:	low hube	Vity, stight NGP- oder			16. 1	01/01-22	-121	19	.,	.94-	1

Sampling Information

Analyse	es #		Laboratory
BTEX (8260)	ق	7	CompuChem
PAHs (8270)	2	2	CompuChem
MNA Analysis			See COC for details.
NAPL Analysis	-		Queen's University, See COC for detail
Sample ID: "		Sample Time:	
MS/MSD:	Yes	Cample nine.	1409
Duplicate:	Yes	NJ	
Duplicate ID	-	Dup. Time:	-
Chain of Custoo	y Signed By:	KMG	L COLOR

Problems / Observations

Niagara Mohawk, A National Grid Company

Schenectady (Broadway St.), New York

Site

Groundwater Sampling

Event

See page 1

		GR	OUND-WATE	ER SA	MPLING L	.OG					Event
Sampling Personnel: Client / Job Number:	ASSTMG	wk / 36657.009				: MW-10	f.p				
Weather:	40°S, blue	the state of the s	0	-	Date:	11/8709			-	-	_
1040-00-00	103, 0108	any		-	Time Ir	1:	Time	Out:		_	
Well Information											
Depth to Water:	(feet)		(from MP)		Well Type:		Flush	mount		Stick-L	12
Total Depth;	(feet)		(from MP)		Well Material:		Stainless	Colorado Color		PV	100 C C C C
Length of Water Colum	nn: (feet)				Well Locked:			(Tes)	-		No
Volume of Water in We	ell: (gal)				Measuring Po	int Marked:	/	Fes			No
Three Well Volumes:	(gal)				Well Diameter	/	1*	E	Ot	her:	
Purging Informatio				1	/			-		2012	
Purging Method:	Bailer	Peristaltic	SIL Waterra	_				Conve	rsion Fa	tors	
The second secon	Steel	Polyethylene	Teflon		Other:	_	gal / ft.	1* ID	2" ID	4" ID	6* ID
Tubing/Bailer Material:	Bailer	/			Other.		of water	0.041	0.163	0.653	1.469
Sampling Method:	Baller	Peristaltic	Waterra	_	Other		1 gal = 3.	785 L ≈38	875 ml = 0	1337 cui	bic feet
Duration of Pumping	(min)										
Average Pumping Rate	c (mVmin)	V	Vater-Quality Meter	Type:			pH		t Stabilit		
Total Volume Removed	t: (gal)		Did well	go dry:	Yes	No	± 0.1	DO ± 10%	Con ± 3.0	201 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	ORP
	1	2	3	-			L + V, I	-	1 1 3.0	74 ±	10 mV
Parameter:	14:06	2	3	4	5	6		7	8		9
Volume Purged (gal)	111										
Rate (mL/min)	200						(CAUN)	-			
Depth to Water (it.)	11.45						1				
pН	6.87							-	-		
Temp. (C)	13-99					1.5	_	-			
Conductivity (mS/cm)	. 78%				-				-	-	
Dissolved Oxygen (mg/L)	0.19							-		-	-
ORP (mV)	-103										
Turbidity (NTU)	43-2							-	-	-	
Notes:	okac, shein and onden										

Sampling Information

Analyses	#	Laboratory
BTEX (8260)		CompuChepr
PAHs (8270)	and the second	CompeChem
MNA Analysis		See COC for details.
NAPL Analysis	d"/	Queen's University, See COC for detail.
	40	
Sample ID:	Sample Time:	A second
MS/MSD: Yes	No	
Duplicate: Yes	No	· · · · · · · · · · · · · · · · · · ·
Duplicate D	Dup. Time:	
Chain of Custody Signer	d By	

Problems / Observations 22 drops CO2 tost (high there). 002 = 110 mg/L

Site

-

Sampling Personnel:	ATS, TI		_		Well I	D: MW-k	18				
Client / Job Number:		hawk / 36657.	009		Date:	11/8/04					
Neather: 52°F	, Sungy,	breeze			Time I	In: 200	Time	Out:			
Well Information			11. The s			1520					
Depth to Water:	(feet)	5-58	(from MS	P)	Well Type:		Elustri	nount		Stick-L	Jp
Total Depth:	(feet) 5	21.50	(from MF	<u>P)</u>	Well Material	Ÿ.	Stainless	Steel		E	E
Length of Water Column	: (feet)	5.92			Well Locked:			(des		N	Vo
Volume of Water in Well	(leg)	2.59			Measuring Po	oint Marked:		98		-	No
Three Well Volumes:	(gal)	7.78		_	Well Diamete	r;	1*	3	Othe		
Purging Information		-									
Purging Method:	Bailer	Peristaltic) v	Vaterra	Other:		-	Conver 1* ID	z'io		-
Tubing/Bailer Material:	Steel	Polyethyle	ge T	eflon	Other:		gal / ft. of water	0.041	0.163	4" ID	6" ID
Sampling Method:	Bailer	Peristaltic	V	Vaterra	Other:		1 cal = 3	1.555.57	375 ml = 0.	0.653	1.469
Duration of Pumping:	(min)	38			E.M. HA		- gui - u.		// J // E = U.	1337 CUL	NC JEEL
Average Pumping Rate:	(ml/min)	200	Water-Qua	lity Meter Type:	110 - 11 -		-		t Stability		
Total Volume Removed:	(gal)	3.17		Did well go dry:	HORIBA . Yes	(NB)	pH ± 0.1	DO ± 10%	Cond.	-	ORP
	-	-		1		~	E L V.I	± 10%	± 3.09	6 ±	10 mV
Parameter:	15:45	15:50	15:55	16:00	16:05	6 16:10	16:19	7	26 ⁸	14	:23
Volume Purged (gal)	-	14	31	AL	5L	FL	91		12		
Rate (mL/min)	120	200	200	200	200	200	200		202	12	00
Depth to Water (ft.)	5.58	6.19	6.25	6.25	6.31	6.35	6.35		.85		F
pН	7.41	6.91	6.84	6.85	6.86	6.88	6-89		.89	1.00	90
Temp. (C)	12.35	14.13	15.00	15.29	15.39	15.28	15.20	1.000	5.12		1000
Conductivity (mS/cm)	2.63	3.39	3.82	3.82	3.84	3.90	3.82	Trans.	.80		-92
Dissolved Oxygen (mg/L)	6.62	4.05	1.31	1.75	0.49	.20	0.08	2 2322	02		· 7-1
ORP (mV)	- 82	- 88	-105	-115	-119	- 125	-128	-	128	0.0	
Turbidity (NTU)	18.4	18.9	11.8	8.4	10.1	10.0	10-5		3.4		28
Notes:	clear.	1.0.1	11-0	0.54	Slight	10-0	10-2)		2.4	c/ea	3
	no valor on sheen				Shaan &					5/19	nt

Sampling Information

Analys	es #		Laboratory
BTEX (8260)	3		CompuChem
PAHs (8270)	2		CompuChem
MNA Analysis			See COC for details.
NAPL Analysis	-		Queen's University, See COC for detail
Sample ID: 44	W-145	Sample Time:	167.5
Sample ID: M	Yes	(D)	1020
Duplicate:	Yes	10	
		Dup. Time:	

002 test: 35 drops high range. 002= 175 mg/L

Groundwater Sampling

Sampling Personnel:	JD4/10	10		1201-12		n MW-	- 15 F		1	-	-
Client / Job Number:	Niagara M	lohawk / 36657	.009		Well Date:		10+		-	-	
Weather: 305 / 5	anny				Time		Time (Out:	-	-	
Well Information	/										-
Depth to Water:	(feet)	12.69	(from M	P)	Well Type:		Flushn	tount	-	Stick-	t les
Total Depth:	(feet)	48.50	(from M	P)	Well Materia	ıd;	Stainless :			-	VC
Length of Water Column	: (feet)	37.81			Well Locked	:		Yes	>		No
Volume of Water in Well	(gal)	6.16			Measuring P	oint Marked:		Yes	>		No
Three Well Volumes:	(gal)	18.49			Well Diamet	er:	1-	(2)	Ott	ier:	
Purging Information	hm	stat:	1324	Q.	a	2	-	1.2			
Purging Method:	Bailer	Peristaltic	and the second s	Vaterra	Other	30			sion Fac		
Tubing/Bailer Material:	Steel	Polyethyle	ane	fefion	Other:		gal / ft. of water	1* ID	2* ID	4* ID	er ID
Sampling Method:	Baller	Peristallie	arts V	Valerra	Other:			0.041	0.163	0.653	1.469
Duration of Pumping:	(min)	25		arrowers.	Guilot.		1 gal = 3.7	00 L = 30	/ o mi = 0	1337 CU	ibic teet
Average Pumping Rate:	(ml/min)	the state of the s	Water Ous	lity Meter Type:	a source annu			Unit	t Stabilit	у	_
Total Volume Removed:	Noncession	300		C. S. C.	1141-120	115	рН	DO	Cond	i.	ORP
	(a)cut 1	3.25 gal		Did well go dry:	Yes	No	± 0.1	± 10%	± 3.0	% ±	10 mV
Parameter:	1330	1335	1340	1350	1359	1400 6	1405	7	8		9
Volume Purged (gal)	-	3.0	4.5	3.0	9.5	11	12.5		-		-
Rate (mL/min)	300	300	300	300	300	300	200			-	1
Depth to Water (ft.)	10.70	10.70	10,70	10,70	10,70	10.70		-	-	-	
pН	7.66	7.52	7.52	7.51	751	7.51	10.70	-	100	-	-
Temp. (C)	10.35	10.57	10.73	10.93	10.73	1 0	7.52	-	-	-	
Conductivity (mS/cm)	3.35	229	3.29	3.26	31	10.80	3.27	-		-	-
Dissolved Oxygen	12.24	1171	2.12	121	5.46	Jul		-		-	
(mg/L)	-711	4.76		0.23	6,00	Ciec.	3.00	-			
the second process of the second s	14	-91	-102	-113	-115	-119	-121	-	_4		
ORP (mV)	1	Oin	116.0								
the second process of the second s	115	33.8	19.8	26.4	11.4	7.1	00				

Sampling Information

CompuChem
a could provide and
CompuChem
See COC fordetails.
Queen's University, Se COC for detail
410
110

A. Martine

Problems / Observations

Cuz = 130 , 1951L

Page / of /

Site

Groundwater Sampling

GROUND-WATER SAMPLING LOG

Event

Sampling Personnel: 🚽					Well II	: AV 15	5				
Client / Job Number:	and the second sec	ohawk / 36657.	009		Date:	1119104					
Weather:	30°5, 500	inny	_		Time I		Time	Out:			
Well Information	1.0										
Depth to Water	(feet)	9.42	(from MF	P)	Well Type:		Flush	mount		SHERE	la
Total Depth:	(feet)	21.80'	(from MF	2	Well Material:		Stainless		-	Proving St	
Length of Water Column	n: (feet)	12.38			Well Locked:			103	T S		No
Volume of Water in Wel	t (gal)	2.02			Measuring Po	int Marked;		Tes			No
Three Well Volumes:	(gal)	6.05 90	/		Well Diamete	r:	1*	P	Oth	ner.	10
Purging Information	'n	9									
Purging Method:	Bailer	Fenstaltic	٧	Vaterra	Other:		-	1	sion Fac		South
Tubing/Bailer Material;	Steel	Polyethyle	ne T	eflon	Other:		gal / ft. of water	1" 10	2" ID	4* ID	6, ID
Sampling Method:	Bailita	Pensialtic	٧	Vaterra	Other:		-	0.041	0,163	0.653	1:469
Duration of Pumping:	(min)	4-0			Outer,		1 gai = 3.	785 L =38	/5 ml = 0	.1337 cu	bic feet
Average Pumping Rate:		1.10	Water Our	0. 11				Uni	t Stabilit	y	
	Access second a	200		lity Meter Type:	Mariba	1-22	pН	DO	Cone	d.	ORP
Total Volume Removed:	(gal)	2.11		Did well go dry:	Yes	No	± 0.1	± 10%	± 3.0	% ±	10 mV
	1	2	13163	1351 4	1356	6		7	8		9
Parameter:	1326	1331	1336	1341	1340	140.	1406				
Volume Purged (gal)	-	14	46	54	62	74	84	1			
Rate (mL/min)	200	200	200	200	200	200	200	0.1			
Depth to Water (ft.)	9.12	1.15	11.15	11.25	11.2.5	11.30	11.30				
pН	6.75	0.05	0.62	6.5.8	658	6.58	658		-		_
Temp. (C)	11.15	1.37	11.15	11.65	11.57	11.65	11.55			-	
Conductivity (mS/cm)	2.19	2.19	2.21	2.22	2.2.2				_	-	-
Dissolved Oxygen (mg/L)	4.98	2.03	136	0.79	0.92	2.19 0.70	2.17		-	-	
ORP (mV)	-116	-107	- 89	- 99	- 99	- 93	-99		-		_
Turbidity (NTU)	14.4	5.08	11.9			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-	-		-
Notes:	chan,	0.00	11.2	1.3	00	4.4	9.2				_
	no odoe pasheen		1.01	t Tilbi	1.1		NO ODE	in			

Sampling Information

Analyses	#		Laboratory
BTEX (8260)	3		CompuChem
PAHs (8270)	2		CompuChem
MNA Analysis	-		See COC for details.
NAPL Analysis	-		Queen's University, See COC for detail
Sample ID:	-155	Sample Time:	14.10
	Yes	150	1110
Duplicate:	les	R	
Duplicate ID	-	Dup. Time:	
Bapiloute its		wahe summe	

Problems / Observations

602(1415)=65mg/L

Site

GROUND-WATER SAMPLING LOG

Sampling Personnel:	AESIA	KM6			Well ID	: MW-17					
Client / Job Number:		ohawk / 36657.0	09	1124	Date:	11/0704	-				
Weather:	30051	pain			Time Ir	1: 8:12	Time	Out:	1	12	
Well Information											
Depth to Water:	(feet)	4-28	(from MP	2	Well Type:		Flush	nount		Stick-L	Jp:
Total Depth:	(feet)	19.92	(from MP)	Well Material;		Stainless	Steel		E	c)
Length of Water Column:	(feet)	15.64			Well Locked:			Yes		N	10
Volume of Water in Well:	(gal)	2,56			Measuring Po	int Marked:		Tas		7	No
Three Well Volumes:	(gal)	7.69		2	Well Diameter		17	(2") Othe	HC .	
Purging Information				4			-	Conver	sion Fact	ors	
Purging Method:	Bailer	Ceristaltic.	N N	/aterra	Other:		gal / ft.	1" ID	2*10	4" ID	67 ID
Tubing/Bailer Material:	Steel	Rolyethyler	i T	eflon	Other:		of water	0.041	0.163	0.653	1.469
Sampling Method:	Batter	Peristaltic	N	/aterra	Other		1 gal = 3.	785 L =38	75 ml = 0.1	1337 cu	oic feet
Duration of Pumping:	(min)	47								_	
Average Pumping Rate:	(ml/min)		Water-Qua	ity Meter Type:	Homiba	11-27-	pH	DO	Cond.		ORP
Total Volume Removed:	(gal)	1.85		Did well go dry:	Yes	Ø	± 0.1	± 10%	± 3.09	-	10 mV
	1	1 2	3	4	e	0.49 6		7	8	r.	5
Parameter:	8:25	8:30	8:35	8:40	8:45 5	8:48 6	8:51		54	8:	
Volume Purged (gal)		.5	1	à	3	4	4.5	ę	5	5-	1633
Rate (mL/min)	200	200 '	200	200	200	200	200	2	00	20	39
Depth to Water (ft.)	4.28	4.75	4.75	4.76	4.90	4.90	4.90	4	.9	4.0	2
pH	4.82	6.10	6.43	6.69	6.80	6.88	6.91	6	.94	112n-30	96
Temp. (C)	1.85	9.62	10.86	10.78	11-15	10.83	10.87	10	.82		96
Conductivity (mS/cm)	.002	1.69	1.67	1.69	1.68	1.66	1.66	- 13225	-6	1.6	0.007
Dissolved Oxygen (mg/L)	9.97	9.91	7.40	5.19	10-63	5.65	3.80	3	IZ	2.	
ORP (mV)	111	1	-54	- 89	-Ich	-109	-111	-1	14	-11	4
Turbidity (NTU)	484	355	254	285	71.0	48.4	36.4	2	9.9		
Notes:	heavy	in the			0.00						
			3630								

....

Sampling Information

Analy	ses	#	Laboratory
8TEX (8260)	i i	9	CompuChem
PAHs (8270)			CompuChem
MNA Analysis		>	See COC for details.
NAPL Analys	s C	,	Queen's University, See COC for detail
	A.2. 10-1-14	Sample Time:	0.2
Sample ID:	MW-17	No The	913
MS/MSD:	Yes	6	
Duplicate:	Yes	(No)	
Duplicate ID	-	Dup. Time:	-
Chain of Cus	tody Signed	By:	N.C.

le drops 002 test (high range) 002 - 35mg/L

Site

Groundwater Sampling

sec page 1

GROU	JND-WA	TER	SAMPL	ING	LOG
------	--------	-----	-------	-----	-----

Event

Sampling Personnel:	Allegan Ar		0.00		Well ID	: MW-17		-	_		
Client / Job Number:	Niagara Mo	hawk / 36657.0	009		Date:	11/5/04		1.1			
Weather:				-	Time In	: 812	Time	Out:	1		
Well Information											
Depth to Water.	(feet)		(from Ma	P)	Well Type:		Flush	mount		Stick-I	In
Total Depth:	(feet)		(from Mi	P)	Well Material:		Stainless	Steel		PI	~
Length of Water Column	n: (feet)				Well Locked:			Yes	/		No
Volume of Water in Wel	l: (gal)				Measuring Poi	nt Marked:	/	Yes			Vo
Three Well Volumes:	(gal)			2	Well Diameter	/	1-	2"	Oth		
Purging Information	n			Vaterra V	1		_				
Purging Method:	Bailer	Peristaltic	663	Vaterra	Other:	_	Constant of	1" ID	2" ID		
Tubing/Bailer Material:	Steel	Polyethyler	18 1	effon	Other:		gal / ft. of water	0.041	0.163	4" ID 0.653	6* ID
Sampling Method:	Bailer	Peristaltic	V	Vaterra	Other:		t cal = 3	1.645-54	75 ml = 0	10123S	1000
Duration of Pumping	(min)						- Bor - or			.1007.00	NIC 1884
Average Pumping Rate	(ml/min)		Water-Qua	lity Meter Type:				Uni	t Stabilit	у	
Total Volume Removed	(gal)		Contraction of the second	Did well go dry:	Yes	No	pН	DO	Conc		ORP
	10-17			bid wen go di j.	103		± 0.1	± 10%	± 3.0	% ±	10 mV
	9:00	2	3	4	5	6		7	8		9
Parameter: Volume Purged (gal)		9:03	9-06	9:09	9:12			-	-	1	
	6.0	6.0	76.5	7	1		-		1	-	
Rate (mL/min)	200	200	203	202	200			_		1	
Depth to Water (ft.)	9-9	4.9	9.9	0.9	9.9						
pН	6.98	6.99	7.00	7.00	7.01						
Temp. (C)	10.69	10.44	10-51	10.7H	10-92						
Conductivity (mS/cm)	1.68	1.57	1.68	1-67	1.67						
Dissolved Oxygen (mg/L)	2.54	2.25	1.83	1.90	1.75						-
ORP (mV)	-118	-119	-120	-121	-122						
Turbidity (NTU)	0.00	0.00	6.9	0.000	1.00				-		-
		- Y.W		1.63636	4.00		the second second				

Sampling Information

Analy	ses	#	Laboratory
BTEX (8260)	; ;		CompuChem
PAHs (8270)			CompuChem
MNA Analysis			See COC for details.
NAPL Analysi	s		Queen's University, See COC for detail.
0			0
Sample ID:	MW 17	Sample Time:	913
MS/MSD:	Yes	Co	
Duplicate:	Yes	GNO	
	-	Due Time	
Duplicate ID		Dup, Time:	

Problems / Observations

Site

GROUND-WATER SAMPLING LOG

Event

Sampling Personnel:	AES	-			Well II	: MW-10	9.5				
Client / Job Number:		hawk / 36657.	009		Date:	11/3/04	19			-	
Weather:	40°5, 6	THE SKY			Time I		Time	Out:			
Well Information										1.1	
Depth to Water:	(feet) 3	.92	(from MF	PJ	Well Type:		Flustfr	nount		Stick-L	In
Total Depth:	(feet) /	7.6	(from MF	P)	Well Material:		Stainless		1	RV	and the second se
Length of Water Column	: (feet) /3	5.83			Well Locked:		(Ves		-	lo
Volume of Water in Well	(gal) Z	.56			Measuring Po	int Marked:		(Yes)_		N	lo
Three Well Volumes:	(gal) 7	.67			Well Diameter	ri.	1*	(2)) Oth	er.	
Purging Information							_				
Purging Method:	Bailer	Peristaltic	V	Vaterra	Other:		-	10000	sion Fac	10000	
Tubing/Bailer Material:	Steel	Polyethyler	па т	eflon	Other:		gal / ft. of water	1* ID 0.041	2* ID 0.163	4" ID	6" ID
Sampling Method:	Bailer	Peristaltic	v	Vaterra	Other:		1 gal = 3		0.163	0.653	1,469
Duration of Pumping.	(min)	38			The second s					1001 000	in lines
Average Pumping Rate:	(mi/min)	50 150	Water-Qua	lity Meter Type:			-	Uni	t Stability		
Total Volume Removed:	(gal)			Did well go dry:	Yes	8	рН	DO	Cond	-	ORP
	111	2.9 gal	S	and monigo ary.			± 0.1	± 10%	± 3.0	% ±	10 mV
Parameter:	10:10 1	10:15	3	10:25	5 10:30	6 10:35	10:38	7 102	8	16 -	9
Volume Purged (gal)		34	44	62	71_	SL.	82		71 .		
Rate (mL/min)	250	150	150	160	150	150	150		50	10	
Depth to Water (ft.)	3.92	4.25	4.25	4.25	9.25	4.25	9.25		25	15	25
pН	126	6.88	6.90	6.93	6.92	6.86	6.85	1.0	85	1.112	24
Temp. (C)	14.42	14.87	15-14	15.60	15.59	15.84	15.79		5.88		
Conductivity (mS/cm)	1.66	1.72	1.66	1.65	1.70	1.72	1.74	10-10-10-10-10-10-10-10-10-10-10-10-10-1	74	2 - 2 - F - C	74
Dissolved Oxygen (mg/L)	10.990	2.49	5.61	4.83	1.69	0.82	0.67	5	. 46		46
ORP (mV)	-92	-113	-110	- 11	-120	-125	-129		181		35
Turbidity (NTU)	LAGA	640	922	321	281	143	109	11	10.00	58	100 - California - C
Notes:	Very ture Slight shu	nol		U.A.I	201	/10	101			28	

Sampling Information

Analys	es	#	Laboratory
BTEX (8260)		3	CompuChem
PAHs (8270)		2	CompuChem
MNA Analysis	-	-	See COC for details.
NAPL Analysis	-		Queen's University, See COC for detail
Sample ID: A	W-19 C	Sample Time:	1050
Sample ID: 11 MS/MSD:	W-/95 Yes	Sample Time:	10.52
Sample ID: M MS/MSD: Duplicate:	W-/95 Yes Yes	Sample Time:	10.52
AND	-	C0	10.52_

Problems / Observations Migh 13 almps; CUL HIST (1997 Hange). CO2 - 65 mg/L

Groundwater Sampling

Site

000	00001	
200	page 1	
	/ /	-

GROUND-WATER S	AMPLING LOG
----------------	-------------

Event

Sampling Personnel:					Well ID	MW-19	S			-	
Client / Job Number:	Niagara Moha	wk / 36657.009			Date:	11/3104	2	-	1000	-	
Weather:					Time In		Time	Out:	-		-
Well Information											
Depth to Water	(feet)		(from MP)		Well Type:		Flues	mount		Stick-	
Total Depth:	(feet)		(from MP)		Well Material;		Stainless		/	PT	-
Length of Water Column	(feet)				Well Locked:	10	/	(Yes)	-		No
Volume of Water in Well:	(gal)				Measuring Poin	nt Marked		TYes	_		No
Three Well Volumes:	(gal)				Well Diameter:		17	2	Ot	ner:	NO
Purging Information			poge	1	/		_				
Purging Method:	Bailer	Peristaltic G	Waterra	-	Other:	-		-	sion Fac	ctors	
Tubing/Bailer Material:	Steel	Polyetbylene	Teflon	_	60.55		gal / ft. of water	1" ID	2" ID	4* ID	8* ID
Sampling Method:	Bailer	Peristaltic	Waterra		Other:			0.041	0.163	0.653	1.469
THE REAL PROPERTY AND A DESCRIPTION OF		-horized and the	Holena	-	Other;		1 gal = 3	785 L =38	175 ml ≈ 0	1337 cu	bic feet
Duration of Pumpling:	(min)							llei	t Stabilit		_
Average Pumping Rate:	(ml/min)	V	Vater-Quality Meter	Type:	1.11.12		pH	DO	Con		ORP
Total Volume Removed;	(gal)		Did well s	go dry:	Yes	No	± 0.1	± 10%	± 3.0		10 mV
Parameter:	10:48	2	3	4	5	6		7	8		9
Volume Purged (gal)								-		-	-
Rate (mL/min)	116			- 23				-	_		
Depth to Water (ft.)	4.25								_	-	-
pH	6.85							-	_		
Temp. (C)				-				-	-		-
Conductivity (mS/cm)	1601					_		-		-	_
Dissolved Oxygen (mg/L)	0.44							-	-	-	
ORP (mV)	-138				_			-	-	-	_
Turbidity (NTU)	45			-				-	-	-	
The second se	Clear, Slight Skein, MGP-type										

Sampling Information

Analyses	#	Laboratory
BTEX (8260)	and the second second	CompuCherry
PAHs (8270)		Compugnem
MNA Analysis		See COC for details.
NAPL Analysis	al 1	Queen's University, See COC for detail.
	un pro	
Sample ID:	Sample Time:	
MS/MSD: Yes	No	5
Duplicate: Yes	No	
Duplicate ID	Dup. Time:	
Chain of Custody Sign	ed Bv:	

Problems / Observations

影

Site

GROUND-WATER SAMPLING LOG

Event

Sampling Personnel: 7	ES				Well I	D: MAR-19	I now	-190			
Client / Job Number:		hawk / 36657	.009		Date:			111	-	2000	-
Neather: 40's	party su	inny			Time	In: 7:25	Time	Out:			-
Well Information	1	1							101 - 10	-	
Depth to Water:	(feet)	1.45	(from M	P)	Well Type:		FIOSDO	Cinuon	-	Stick-Us	
Total Depth:	(feet) 5	0.12	(from M	P)	Well Material	É.	Stainless			PH	-
Length of Water Column	(feet) 1	2.67			Well Locked:			(Tes)		No	
Volume of Water in Well:	(gal) (. 96			Measuring Po	oint Marked;	_	(ves)		No	-
Three Well Volumes:	(gal)	20.87			Well Diamete	NC.	i.	P	Oth		-
Purging Information								0			
Purging Method:	Bailer	Peristaltic	> 1	Vaterra	Other:				sion Fac		Autorial
Tubing/Bailer Material:	Steel	Polyethyle	ine 1	eflon	Other:		gal / ft. of water	1" ID 0.041	2° 1D	4" ID	5" ID
Sampling Method:	Bailer	Peristaltic	V	Vaterra	Other:		1 gal = 3.7	1.335.13	0.163	0.653	1,469
Duration of Pumping:	(min)	40					, 960 - 3.7	00	5 m = 0.	1337 CUDI	c reet
Average Pumping Rate:	(ml/min)	200	Water-Qua	lity Meter Type:	water the w			Unit	Stability	1	
Total Volume Removed:	(gal)	3.96		Did well go dry:	110 Per 13 6	0	pH	DO	Cond	-	RP
							± 0,1	± 10%	± 3.09	% ± 1	Vm 0
Parameter:	815	8:20 2	8:25	8:30	8:35 5	6		7	8		9
Volume Purged (gal)	0.10	al	5L	66	40000 7.5L	8:38	8:42	8:4		8:4	-
Rate (mL/min)	500	200	200		200	96	10.5	12	Contraction of the	12	1
Depth to Water (ft.)	7.45	Fills	146	200		200	200	221	00	20	
pН	10.10	10.82	9.98	7.46	7.46	7.06			46	7.9	
Temp. (C)	13.45	12-86	13.62	8.66	13.87	74	7-15		03	6.9	
Conductivity (mS/cm)	4.38	1.04	1.00	13.68	March 1	13.9%	13.50		3.52	13.9	
Dissolved Oxygen	6.55	2		1.11	1.16	1.16	1.15		14	1.18	
(mg/L) ORP (mV)	-21	10.34	5.17	0.90	0.00	0.00	0.00		00	0.00	-
Turbidity (NTU)	# 105	-67 38.7	-99	-292	-211	-197	-183	-13	0.000	-17	
I UIDIOILY (IVILU)	Han 1.1- 1	271-4	0.00	1.7	095	16.6	52.0	51	3.8	98.	Q

Sampling Information

Analys	es #		Laboratory
BTEX (8260)	З		CompuChem
PAHs (8270)	2		CompoChem
MNA Analysis	-		See COC for details.
NAPL Analysis	-		Queen's University, See COC for detail
-			
Course in			ACX 0 13
Sample ID:	1W-19P	Sample Time:	0900
	<u>1W-/9P</u> Yes	Sample Time.	0900
Sample ID: MS/MSD: Duplicate:			0900
MS/MSD:	Yes	500	-

CO2 test - 20 drops : high range test. co2 = 100 mg/2

Groundwater Sampling

Site

See Page 1 GROUND-WATER SAMPLING LOG

Event

Client / Job Number:	Niagara Moh	awk / 36657.009		_	Date:	-11-19		1-191			-
Weather:					Time In	113104				-	
Well Information		8			Time in		Time	Out:		-	
Depth to Water:	(feet)		(from MP)		Well Type:		Fluch	mount	-		/
Total Depth:	(feet)		(from MP)		Well Material:		Stainless	COMPANY N		Stick	100
Length of Water Column:	(feet)				Well Locked:		Chairiness	Tes	_		VC No
Volume of Water in Well:	(gal)				Measuring Pol	nt Marked:	/	Yes			No
Three Well Volumes:	(gal)				Well Diameter	/	1"	2*	Ott	ner:	NO
Purging Information			Waterla Tallon	nge							-
Purging Method:	Bailer	Peristaltic	Waterta		Other			1	sion Fac	100000000000000000000000000000000000000	1
Tubing/Bailer Material:	Steel	Polyethylene	Tellon		Other:		gal / ft. of water	1° ID	2* 1D	4* 1D	6" ID
Sampling Method:	Bailer	Peristallic	Waterra	-			-	0.041	0,163	0.653	1.465
Duration of Pumping:	tmin)			-	Other:		1 gal = 3.	785 L =38	75 ml = 0	.1337 cu	bic feet
Average Pumping Rate:	(ml/min)	V	Vater-Quality Met	ar Tuna:				Unit	Stabilit	y	
Total Volume Removed:	(gal)		2010/00/00/00	and the second			pН	DO	Con	£.	ORP
	(901)	_	Did wei	l go dry:	Yes	No	± 0.1	± 10%	± 3.0	% ±	10 mV
Parameter:	8:55	2	3	4	5	6	1	7	8		9
Volume Purged (gal)	151						-	-			-
Rate (mL/min)	200						-	-	-	-	-
Depth to Water (ft.)	746						-	-		-	_
рн	6.87						-	-	_	-	
Temp. (C)	13.61						-	-			
Conductivity (mS/cm)	1.10								-		-
Dissolved Oxygen (mg/L)	0.00										
ORP (mV)	-169					-	1	-	-	-	
Turbidity (NTU) Notes:	50.2										
A CONTRACTOR OF CONTRACTOR OFO	1.0.0										

Sampling Information

#	Laboratory
	CompuChem
	CompuChem
. 1	See COC for details.
pro	Queen's University, See COC for detail.
64	
/	
Sample Time:	
Sample Time: No	
	#

Problems / Observations

Site

GROUND-WATER SAMPLING LOG

Event

Client / Job Number:	Niagara M	ohawk / 36657	009		Well I	and 1		W-19	112	111-1	190
Weather:		ame lette			Date: Time	111.21.9	1000	-		_	
Well Information					tune		Time	Out:		-	
Depth to Water:	(feet)	7.56	(from M		Well Type:		The State	Rount		-	_
Total Depth:	(feet)	15.50	(from M	1000 C	Well Material	E.	Stainless			Stick-I	
Length of Water Column:	(feet)	67.94			Well Locked:		0.019622	रेखर	-		æ
Volume of Water in Well:	(gal)	11.07			Measuring Pe	oint Marked:		CEP CEP		2	No
Three Well Volumes:	(gal)	33.22		5	Well Diamete	ir:	1*	CBS (T	Ot	herc	Vo
Purging Information								14776			
Purging Method:	Bailer	Rentstaltic	1	Vaterra	Other:				sion Fac	tors	11-1
Tubing/Bailer Material:	Steel	Polyethyle	ine 7	Teflon	Other:		gal / ft. of water	1" ID	2" 1D	4* ID	6" ID
Sampling Method:	Sailer	Peristaltic	V	Vaterra	Other:			0.041	0.163	0.653	1.469
Duration of Pumping:	(min)	84		-	Other.		1 gal = 3.	785 L ≠38	75 ml = 0	.1337 cul	xic feet
Average Pumping Rate:	(ml/min)	and the second sec	Water Our	lity Meter Type:				Uni	Stabilit	y	
Total Volume Removed:	(gal)	200	- International	AND A CONTRACTOR	HORIZA L		pН	DO	Cond	5.	ORP
	(803)	4.2 901		Did well go dry;	Yes	0	± 0.1	± 10%	± 3.0	% ±	10 mV
	1	2	3	4	5	6		7	8		9
Parameter:	1836	0845	0855	\$905	1915	0920	0925	0	930	09.	15
Volume Purged (gal)	-	2-4	+1.	6.6	84	91	101		14	13	1.
Rate (mL/min)	200	200	2.00	201	200	200	200		00	20	
Depth to Water (fl.)	7.56	\$ 38	9.80	10.05	9.98	10.00	10.15		.2.6	10.	- Cart
рН	5.96	6.41	10.82	7.02	7.21	7.27	7.32		36	1 3 3	
Temp. (C)	14.31	13.98	14.75	14.76	14.85	14.69	14.30	1.		7.4	Som
Conductivity (mS/cm)	1.660	0.613	1.605	1.601	0.584	0.57%	10 10 10 10 10 10 10 10 10 10 10 10 10 1		.67	13.	
Dissolved Oxygen (mg/L)	7.53	3.01	1.20	1.00	0.00		0.569		564	0.5	100
ORP (mV)	13.8	33	-34	- 48	- 92	0.55	0.43		23	0.0	
Turbidity (NTU)	11.4	11.5	123			-100	-108	1 23	14	-12	-
Notes:	clena no sheen	11.5	123	19.7	24.5	47.3	31.3	40	2.0	40	.0

Sampling Information

Analyse	es /	#	Laboratory
BTEX (8260)	,3	r	CompuChem
PAHs (8270)	2		CompuChem
MNA Analysis	-		See COC for details.
NAPL Analysis	_	- 1 S - S	Queen's University, See COC for detail
Sample ID:	A. I.	Sample Time:	
M	Yes Yes		10.05
MS/MSD:	103	50	
Duplicate:	Yes	Ng	1.
Duplicate ID	-	Dup. Time:	-
Chain of Custor	fy Signed By:	KANIA	

Site

GROUND-WATER SAMPLING LOG

Event

Client / Job Number:	Niagara Mo	ohawk / 36657	009		Well ID	1000-11		1-19	/	_	-
Weather:	the second s	ome clos	the second se	_	Date: Time In	11/3/04			_		
Mail Information					Time in		Time	Out:			_
Well Information				_	-						
Depth to Water	(feet)		(from N	1P)	Well Type:		Flush	mount		Stick-	In
Total Depth:	(feet)		(from N	1P)	Well Material:		Stainless	Steel	1		/C
Length of Water Column	2 302.5M			_	Well Locked:			Yes		,	No
Volume of Water in Wel	and the second se				Measuring Poir	nt Marked:	/	Yes			Vo
Three Well Volumes:	(gal)				Well Djameter:	/	1-	2"	Ot	her:	
Purging Information	1			Waterra Sat P	ogi						-
Purging Method:	Bailer	Peristaltic		Waterra	-		_	Conve	rsion Fa	ctors	
Tubing/Bailer Material:	Steel	Polyethyle	ane	Tellon	ALCONOMIC AND ADDRESS OF ADDRESS ADDRES		gal / ft.	1" ID	2" ID	4* ID	6" ID
Sampling Method	Bailer	Beristaltic		Waterra	Other:		of water	0.041	0.163	0.653	1.469
				waterra	Other:		1 gal = 3,	785 L =38	875 ml = 0	.1337 cut	tic feet
Duration of Pumping:	(min)						r				
Average Pumping Rate:	(ml/min)		Water-Qu	ality Meter Type:			pH	DO	t Stabilit		
Total Volume Removed:	(gal)			Did well go dry:	Yes	No	± 0.1	± 10%	Con ± 3.0	2010 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ORP
	1	2	3	4					1 1 3.0	70 1 2	10 mV
Parameter:	09.50	0955	1000	4	5	6		7	8	1	9
Volume Purged (gal)		A CONTRACTOR OF THE OWNER OWNER OWNER OF THE OWNER OWNE OWNER OWNE				-	-	-	_		
Rate (mL/min)	146	151	16 L					-			-
Depth to Water (ft.)	200	200	200			1.00					
pH	10.55	10.60	10.65								
Assa.	7.47	7.50	7.57								
Temp. (C)	13.41	13.49	13.40								
Conductivity (mS/cm)	0.556	0.550	0.546								
Dissolved Oxygen (mg/L)	0.00	0.00	0.00				1				
ORP (mV)	-129	-131	-137				1	-	-		
Turbidity (NTU)	15.0	14.8	13.5					-		-	
Notes:	2010	11.0	CIEUR, NO Shell OR OGOR	~			8				

Sampling Information

CompuChen CompaChem See COC for details. Queen's University, See COC for detail.
See COC for details. Queen's University, See
details. Queen's University, See
University, See
10.2

Problems / Observations

602 = 20mg/L

Site

Groundwater Sampling

Sampling Personnel:	JDL/K.	non			Well	D: MW-	21				
Client / Job Number:	Niagara M	ohawk / 36657	.009		Date:						
Weather: 305, (luar				Time	In: 1550	Time	Out:			
Well Information						- 31					
Depth to Water:	(feet)	6,16	(from M	P)	Well Type:		Flush	mount	0	Stick-I	10
Total Depth:	(feet)	15.91'	(from M	<u>P)</u>	Well Materia	t:	Stainless			FI	
Length of Water Column	r: (feet)	9.75'			Well Locked			(Yes)	2	-	No
Volume of Water in Well	(gal)	1.59 90	1		Measuring P	oint Marked:		(Yes)			No
Three Well Volumes:	(gai)	4.779			Well Diamete	er:	1*	(2)	Ot	her:	NO
Purging Information	Pun,	n Start !!)	552								-
Purging Method:	Bailer	Peristaltia		Vaterra	Other			Conver	sion Fa	ctors	
Tubing/Bailer Material:	Steel	Polyethyle		fellon			gal / ft. of water	1" ID	2* ID	4" ID	6* ID
Sampling Method:	Bailer	Peristalilic	>0 V	Vaterra	Other:		-	0.041	0.163	0.653	1.469
Duration of Pumping:	(min)	40	PAR)		Quier-		1 gal = 3.1	785 L =38	75 ml = 0).1337 cul	bic feet
Average Pumping Rate:	(ml/min)	300	Water-Oua	ality Meter Type:				Unit	Stabilit	y	
Total Volume Removed:	(gal)	State House		Did well go dry:	1	4-22	pН	DO	Con	đ,	ORP
		3.17	-	old well go dry.	Yes	SD .	± 0.1	± 10%	± 3.0	% ±	10 mV
Parameter:	16051	1609	1614 3	1619	1624	1624	1634	7 11	39	1 1 .	9
Volume Purged (gal) /	-	1,5	3.0	4.5					and the second se	16	44
Rate (mL/min)	300	300	300	300	6,0	7.5	9.0	-	2.5	11	4
Depth to Water (ft.)	6.47	6.59	6.59		300	300	300	30		30	
pH	775	7.15	7.07	6,59	6.59	6,59	6.54	-	59	6.5	9
Temp. (C)	13,70	11.4	the second s	1,03	7,00	6,99	6.98		19	6,9	9
Conductivity (mS/cm)	-	13.85	13.89	13.98	14,02	13.95	13.95	13		13.	95
Dissolved Oxygen	2,20	2.24	2.29	2.31	2.33	2.34	2.35	2.	35	12.3	36
(mg/L)	6.03	1.95	1.05	0,72	C.41	0.25	0,06	he	00	0.0	0.0
ORP (mV)	-95	-121	-130	-134	-138	-141	-142		44	-14	
Turbidity (NTU)	6.8	2.2	0,0	0.0	DID	Ú.C	0,0	0.		0.0	1000
Notes:	Article California		a personal second and			Laste Color A		~.	E.S.	010	· · · · · ·

Sampling Information

Analys	ies	#	Laboratory
BTEX (8260)		3	CompuChem
PAHs (8270)		2	CompuChem
MNA Analysis			See COC for defails.
NARL Analysii			Queen's University, See COC for detail
Sample ID: M	w -21	Sample Time:	1650
MS/MSD:	Yes	CO .	1650
	Yes	6	2.2
Duplicate:		-	
Duplicate: Duplicate ID	-	Dup. Time:	

Problems / Observations Initial purgl: Clear, LNAPL blobs present. Strong adar (22=140 Mg/L

Groundwater Sampling

		- I Com	GROUN	D-WATER S	AMPLING	LOG					Ev
Sampling Personnel: J	DL //cma					The second se				-	-
Client / Job Number:	Niagara M	ohawk / 3665	7.009	20.000	Date:	In ML-	61		-		-
Weather: 30% / (10	uly				Time	1-1-1	Time	Out			-
Well Information							time	out		-	
Depth to Water:	(feet)	6.35	(from	MPI	Well Type:		6	5	_	×	_
Total Depth:	(feet)	15.91	(from		Well Materia	d:	CFlush	Contraction	-	(Stick-)	K.
Length of Water Column:	(feet)	9.56			Well Locked		Stainless		_	194	-
Volume of Water in Well:	(gal)	1.56 9	al		Measuring P			Yes		0	ye/
Three Well Volumes:	(gal)	4.679	al		Well Diamete	and the second second second	1*	Yes h	Oth	COLUMN TWO IS NOT	Vo
Purging Information								9	Of	ier.	
Purging Method:	Bailer	< Ceristali	R	Waterra				Conver	sion Fac	tors	
Tubing/Bailer Material:	Steel	Polyethy	1	Teflon	Other:		gal / ft.	1* ID	2" ID	4° ID	6" ID
Sampling Method:	Bailer	Ceristalti		Waterra	Other:		of water	0.041	0,163	0.653	1.469
Duration of Pumping:	(min)			Wateria	Other;	-	1 gal = 3,	785 L ≈38	75 ml = 0	.1337 cui	bic feet
Average Pumping Rate:	(mi/min)	50						Unit	Stability		_
	145.5.5	200	Water-Q	uality Meter Type	HORIS	a 41-22	pH	DO	Cond	-	ORP
Total Volume Removed.	(gal)	2.69.9.	a/	Did well go dry	Yes	6	± 0,1	± 10%	± 3.0	Concernant State	10 mV
Parameter:	823	8282	833	3 838	843	848 6	853	7 9	59	170	9
Volume Purged ()	1,0	2.0	3,0	4.0	5.0	60		,0		
Rate (mL/min)	200	200	200	200	200	2	200	and the second section.	Alter a	8.	_
Depth to Water (ft.)	6.57	6.61	6.63	1.15	6,65	11-		20		120	0
pH	7.28	7,01	7.05	7.03	7,01	100	665	6.	65	Cre	2
Temp. (C)	12.07	1271	12,75	13.01	13.17	13.09	6.97	6:	95	6.	14
Conductivity (mS/cm)	199	215	2.08	210	2.13	12,01	13,12	-	3,10	13,	_
Dissolved Oxygen	467	100		117	112	Alle	4.18	2.1	- Without the second	2.1	9
(mg/L) ORP (mV)	11000	1,53	1.86	1.11	0,48	1.16	1,35		97	Oil	
Turbidity (NTU)	43.4	2.0	503	70.	-83	-94	-100	-	05	-/0	
Notes:	73.4	5 119	58.3	46.6	2003	30.9	31,2	3	0.5	30	25

Sampling Information

Analyses	#	Laboratory
BTEX (8260)	ulia	CompuChem
PAHs (8270) (200	con 11/10)	CompuChem
MNA Analysis	V	See COC for details.
NAPL Analysis	\sum	Queen's Viniversity, See COC for detail
Samala ID: Muu - 2	1 Secole T	0.0
Vac	Sample Time:	915
Vac	/ Sample Time:	915
Sample ID: ကြ ယ - ၇ MS/MSD: Yes Duplicate: Yes	Sample Time:	915
MS/MSD: Yes	×	915

Problems / Observations

Inital parge - Sheen, NAPL Blobs, Cler, od ar

Co_==125.m,1L

J:\kmg\SampleForms\GroundWaterSamp.doc

BBL, Inc.

Page 1 of 2

Groundwater Sampling

ampling Personnel:					Well ID:	mw-	21				
Client / Job Number:	Niagara Moh	awk / 36657.009			Date:	11/12/04			-	-	
Veather:					Time in:		Time	Out:			
Well Information											
Depth to Water.	(feet)		(from MP)		Well Type:		Flushr	nount		Stick-U	Jp
Total Depth:	(feet)		(from MP)		Well Material:	/	Stainless	Steel	1.1.1.1.1	PV	C
Length of Water Column:	(feet)				Well Locked:			Yes		N	ło
Volume of Water in Well:	(gal)				Measoring Poir	t Marked:		Yes		N	No.
Three Well Volumes:	(gal)		-Dy	/	Well Diameter:		1"	2*	Othe	er:	
Purging Information		62	e II				_	Conver	sion Fac	tors	_
Purging Method:	Bailer	Peristaltic	Waterra	1.5	Other:		gal / ft.	1" ID	2" ID	4" ID	6" ID
Tubing/Bailer Material:	Steel	Betyethylene	Teflon		Other:	19.11	of water	0.041	0.163	0.653	1.469
Sampling Method:	Bailer	Peristaltic	Waterra		Other:		1 gal = 3.	785 L =38	875 mi = 0.	1337 cut	bic feet
Duration of Pumping	(min)							1101	t Stability		_
Average Pupping Rate:	(ml/min)		Water-Quality Mete	r Type:		10 I.	pH	DO	Cond		ORP
Total Volume Removed:	(gal)		Did well	go dry:	Yes	No	± 0.1	± 10%	± 3.0		10 mV
Parameter:	908 1	913	3	4	5	6		7	8		
Volume Purged (gat)	9,0	10		_							
Rate (mL/min)	200	200									
Depth to Water (ft.)	6.65	6,65									
pH	6.92	6.90				The second					_
Temp. (C)	13.11	13.25									
Conductivity (mS/cm)	2.20	2.21									
Dissolved Oxygen (mg/L)	0,00	0,00					1				
ORP (mV)	-110	-113							_		
Turbidity (NTU)	26.6	25.9		1							
Notes:		the second s									

Sampling Information

Analyses	#	Laboratory
BTEX (8260)	1	CompuChem
PAHs (8270)		CompuGhem
MNA Analysis		See COC for details.
NAPL Analysis	N/	Queen's University, See COC for detail.
	19	
Sample ID: GV	Sample Time:	
MS/MSD: Yes	No	
Duplicate: Yes	No	1.0
Duplicate 10	Dup. Time:	
Chair of Custody Sign	ied By:	

Problems / Observations

J:\kmg\SampleForms\GroundWaterSamp.doc

1

清理

Site

Groundwater Sampling

Event

N.

GROUND-WATER SAMPLING LOG

Sampling Personnel:	All and and a	Inhard	000000 000		_	-		: MW-		1	_	_	10.00	-
Client / Job Number:	Niagara N	Nonawk	/ 36657.009	10.		-	Date:	11010	4	-		_	-	
Weather:		-		-	-	-	Time Ir	1: 1098	3	Time	Out:			
Well Information	- K				_									
Depth to Water:	(feet)	7.31		(from ME	2)		Well Type:			Fhishr	nount)		Stick-	Jp
Total Depth:	(feet)	Walt	8.90	(from MR	2)		Well Material:			Stainless	Steel		CP	ic)
Length of Water Column:	(feet)						Well Locked:				es		1	No
Volume of Water in Well:	(gal)	_	_		-		Measuring Po	int Marked	8		(YES)	1.001		No
Three Well Volumes:	(gal)				_		Well Diameter	ä		1"	E	-) Ot	her:	
Purging Information											Camua	rsion Fa		
Purging Method:	Bailer	Ċ	eristaltio	v	Vaterra		Other:			gal / ft.	1" ID	2" ID	4* ID	6" ID
Tubing/Bailer Material:	Steel	1	Relivethylene	1	eflon		Other:		-	of water	0.041	0.163	0.653	1,469
Sampling Method:	Bailer	F	Peristaltic	٧	Vaterra	-	Other:		-	1 gal = 3.	785 L =3	1 875 ml = 1) 1337 cu	bic feet
Duration of Pumping:	(min)			11150		1.								
Average Pumping Rate:	(ml/mir	٦)		Water-Qua	lity Meter T	ype:				pH	DO	t Stabili Con		ORP
Total Volume Removed:	(gal)				Did well go	dry;	Yes	No		± 0.1	± 10%	± 3.1		10 mV
4		1	2	3	1	4	5	-	6		7		3	9
Parameter:			-	5		1	ÿ		N.		1			9
Volume Purged (gal)														
Rate (mL/min)										100				100
Depth to Water (ft.)														
pН									6					1
Tomp. (C)								. 60	1					
Conductivity (mS/cm)								2 1	1					
Dissolved Oxygen (mg/L)							3	1						
ORP (mV)			-					17	1					
Turbidity (NTU)								1.1						
Notes:	AND A	Horna	14 ende	Int		-			-			-		-

Sampling Information

Analys	es	#	Laboratory
BTEX (8260)			CompuChem
PAHs (8270)			CompuChem
MNA Analysis			See COC for details.
NAPL Analysis			Queen's University, See COC for detail
Sample ID:		Sample Time:	
	Yes	No	11
MS/MSD:	Yes	No	
Duplicate:			
Duplicate ID		Dup. Time:	
Chain of Custo	dy Signed	Bv	

Problems / Observations

depth to INAPL = 5.90 thin, burnt gold.

Page ____ of ___

Groundwater Sampling

Site			GROUND-	WATER SA	AMPLING L	.OG					Eve
Sampling Personnel:	Dilling					: MW- 2		-	-	-	_
Client / Job Number:	and the second se	nawk / 36657.	009		Date:	111/0/0	20.6	-			
Weather:	30° 5 1010				Time I	and the second	Time	Out:			_
Well Information											
Depth to Water:	(feet)	2.68'	(from MP	')	Well Type:		Flush	mount	(Sticket	En la
Total Depth:	(feet)	4 46	(from MP	5	Well Material:	8	Stainless	Steel		CPV	1
Length of Water Column	1: '(feet) 3	. 78			Well Locked:		(Yas			No
Volume of Water in Well	i: (gal) (62 901	1	1-01-0	Measuring Po	int Marked:		P		-	No
Three Well Volumes:	(gal)	85 gal			Well Diameter	6	1*	2	Oth		<u>ιφ.</u>
Purging Information	1	-			1		_				
Purging Method:	Bailer	Peristallic	2 W	/aterra	Other:		-	1	sion Fac		
Tubing/Bailer Material:	Steel	Polyethyle	ne T	etion	Other:		gal / ft. of water	1" ID 0.041	2* ID 0.163	4" ID 0.653	6" IE
Sampling Method:	Bailer	v Peristaltic	PAH: N	/aterra	Other:		1 nal = 3	-	0.163 175 ml = 0.		1,48
Duration of Pumping:	(min)		/		50/723					1007 00	Me 100
Average Pumping Rate:	(ml/min)	4.33 2	CARGO INCOMENDATION OF THE OWNER	ity Meter Type:				Uni	t Stability	(
Total Volume Removed:	in the second second	200		A CONTRACTOR OF CARE OF	Halasha 4		pН	DO	Cond		ORP
Total volume Removed.	(gal)	4.23 ga	/	Did well go dry:	Yes		± 0.1	± 10%	± 3.0	% ±	10 m\
	1	2	3	4	0908 5	6		7	8		16
Parameter:	0238	0843	0848	0353	0208	0913	0919	0	923	071	28
Volume Purged (gal)	-	14	24	36	62	72	82	9	12	10	2
Rate (mL/min)	2.00	200	200	200	200	200	200	2	00	20	0
Depth to Water (ft.)	10.68	11.03	11.14	11.16	11.13	11.18	11.18	1	1.18	11.)	18
pH	6.77	6.59	6.40	6.33	6.33	634	10.35	6	37	10-3	35
Temp. (C)	2.90	9.70	10.96	11.32	11.66	11.76	11.62		39	11-	
Conductivity (mS/cm)	1.47	1.13	1.25	1.20	1.17	1.18	1.19	100	20	1110	20
Dissolved Oxygen (mg/L)	6.51	3.75	2 80	2.02	0.84	0.67	0.58	100	18	0.3	
ORP (mV)	-15	-14	1	- 6	-19	-22	-25	-2		-3	-
Turbidity (NTU)	20199	> 999	72.4	13.2	0.0	13.0	14.1		1 . g	1	1000
Notes:	VERY HAR MEDERA MUTTER OCUL, S SHEEN	terel,			2.0	<u>73.0</u>	17-1		. 9	14	

Sampling Information

Analys	ses #	1	Laborator
BTEX (8260)	.3		CompuChem
PAHs (8270)	2		CompuChem
MNA Analysis	_	÷	See COC for details.
NAPL Analysis	. –		Queen's University, S COC for deta
Constants.	1111-7.2	Sample Time:	1000
Sample ID: 1			
	Yes	NØ	
MS/MSD:	Yes	NG NG	
Sample ID: MS/MSD: Duplicate: Duplicate ID	Yes		-

Problems / Observations

can (1020).

J:\kmg\SampleForms\GroundWaterSamp.doc

my

Groundwater Sampling

Site

GROUND-WATER SAMPLING LOG

Event

Sampling Personnel:	JOLIK	MG			Well II	: MW-2	2				
Client / Job Number:	and the second descent second descent	hawk / 36657.0	009		Date:	11/010					
Weather:	3005, 0	loudy			Time I		Time	Out:	240		
Well Information		- 194									
Depth to Water:	(feet)		(from MF	2)	Well Type;		Flush	mount		Stick-I	In
Total Depth:	(feet)		(from MF	2).	Well Material		Stainless		/		/C
Length of Water Column	t: (feet)				Well Locked:		/	Yes			No
Volume of Water in Well	(gal)				Measuring Po	oint Marked:		Yes	-		Vo
Three Well Volumes:	(gal)				Well Diamete	C.	1*	2*	Oth		
Purging Information	1		. jo	ngui				Conve	sion Fac	low	
Purging Method:	Bailer	Peristaltic	SUNT	Vaterra	Other:		gal / ft.	1° ID	2" ID	4* ID	6* ID
Tubing/Bailer Material:	Steel	Polyethyder	16 T	efion	Other:		gal / ft. of water	0.041	0.163	0.653	1.469
Sampling Method:	Bailer	Peristaltic	V	Vaterra	Other:		1 gal = 3.	D-SECART	75 ml = 0	Turner	1000000
Duration of Pumping	(min)									Plassource	
Average Pumping Rate:	(ml/min)	-	Water-Qua	lity Meter Type:				_	t Stability		
Total Volume Removed:	(gal)			Did well go dry:	Yes	No	pH	DO	Conc		ORP
Angeleinen belate en dies	1993 (P)			- 14 11 41 3 4 41 1 1			± 0.1	± 10%	± 3.0	% ±	10 mV
Parameter:	1	2	3	4 0949	5	6		7	8		9
Volume Purged (gal)	110	126	131	140	156	162				-	
Rate (mL/min)	200	200	200	200	200	200		-		-	
Depth to Water (ft.)	11.18	11.18	11.18	11.15	11.15	11.18	0777				-
pН	6.39	6.40	6.11	w-43	6.42	6.43					-
Temp. (C)	11.45	11.45	1.02	1.39	1150	11-51					
Conductivity (mS/cm)	1.2.1	1.20	1.21	1.28	1.26	1.25					-
Dissolved Oxygen (mg/L)	0.78	0-18	0.08	0.00	0.00	00					1
ORP (mV)	-32	-31	-34	-38	-38	-39					
Turbidity (NTU)	9.0	14.2	12.8	10.7	7.7	9.5					
Notes:						cicore, singhi to mode me oders, K	H. L.C. II STIGHT	\$ 0 0 0 0	~		

Sampling Information

Analyses	#	Laboratory
BTEX (8260)		CompuChem
PAHs (8270)		CompuChem
MNA Arialysis		See COC for details.
NAPL Analysis	pt-gu	Queen's University, See COC for detail.
Sample ID:	Sample Time	
	19100 (585) (10.85)	
MS/MSD: Yes	No	
Duplicate: Yes	No	
Duplicate ID	Dup. Time:	
Chain of Custody Sign	ad Da	

Problems / Observations

J:\kmg\SampleForms\GroundWaterSamp.doc

9

Site			GROUND-	WATER SA	AMPLING L	OG	1.10		R P		Eve
Sampling Personnel:	HANG IL	04		100	Well II	. Mus	23				
Client / Job Number:		hawk / 36657.	009		Date:	1/8/04		-	-		_
Weather:	2005,0				Time I		Time	Out:			-
Well Information										1	
Depth to Water:	(feet)	1.08	(from MF	ŋ	Well Type:		Tush	ðount		Stick-L	In
Total Depth;	(feet)	0.34	(from MP	")	Well Material		Stainless			E	
Length of Water Column:	(feet)	10.26	_		Well Locked:	1		100			No
Volume of Water in Well:	(gai)	1.02			Measuring Po	xint Marked:		des.			No
Three Well Volumes:	(gal)	3.06			Well Diamete	r.	1*	0	Oth	1000	
Purging Information							-				
Purging Method:	Bailer	Peristaltic	V	/aterra	Other:		-	1° ID	2" ID		Verie
Tubing/Bailer Material:	Steel	ColyelDyle	ne T	eflon	Other:		gal / ft. of water	0.041	0.163	4" ID 0.653	6* ID
Sampling Method:	BIRK	Peristaltic	V	/aterra	Other:		1 gal = 3,		10000	10.332/12	1151685
Duration of Pumping:	(min)	70		10.1							NO YOUL
Average Pumping Rate:	(ml/min)	250	Water-Qua	lity Meter Type:	da ba				Stability		
Total Volume Removed:	(gai)	2.67 9	al	Did well go dry:	Yes	019	рН ± 0,1	DO ± 10%	Cond ± 3.0		ORP 10 mV
	1	2	3	4	5	6		* 1	-	1	
Parameter:	1510	1515	1520	1525	15.36	1535	1545	7	8 50		9
Volume Purged (gal)	-		100						14		
Rate (mL/min)	250	250	250	250	250	250	250	1.1.1.1.1	50		
Depth to Water (ft.)	4.03	+.35	1.50	4.55	1.60	4.60	1.60		60		
pН	\$.12	9.07	7.60	7.50	7.52	7.52	7.50	7.			
Temp. (C)	12.30	12.34	13.2-7	13.37	12.75	12.06	11.97	11	.58		-
Conductivity (mS/cm)	7.24	7.13	5.59	5.56	5.51	5.49	5.45	5.			
Dissolved Oxygen (mg/L)	+.91	1.79	2.72	1.64	5.26	2.49	2.35		47		
ORP (mV)	- 146	-141	-136	-137	-135	-133	-133	-1	and the second se	-	
Turbidity (NTU)	>999	>999	144	42.9	24.4	11.5	11.2	9.			
Notes:	+4 p. bill, Strong MER-typ Udon, Slight St	erc.		101	-1.7		11.60				

Sampling Information

Analyses	#	Laboratory
BTEX (8260)	3	CompuChem
PAHs (8270)	2	CompuChem
MNA Analysis	_	See COC for details.
NAPL Analysis		Queets's University, See COC for detail
Sample ID: ML - 7	3 Sample Time:	1555
MS/MSD: Yes	(140	5.5.5.W.
internet and a second		
Duplicate: Yes	No	

Problems / Observations

PTNAR = 4.33

J:\kmg\SampleForms\GroundWaterSamp.doc

Page ____ of ____

Groundwater Sampling

	- 11 i i i =		GROUND	-WATER S	AMPLING	LOG					Ev
Sampling Personnel:	AES. TN	16			Well	10: MW-2	2.4			-	- 12
Client / Job Number:	Niagara Mo	hawk / 36657	7.009	1.200	Date:	and a state of the	4	-		-	_
Weather: 42°F	party (loudy			Time	100 100	Time	out 1	1.65	-	
Well Information	- 1985 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986	1				0 00	Time	out A	0:05		_
Depth to Water:	(feet)	2.75	(from M	P)	Well Type:	-	12		-	12151011	1.0
Total Depth:	(feet)	3.50	(from M		Well Materia	2	Flush	Storie 1	-	Stick-I	and a
Length of Water Column	i: (feet)	0.75			Well Locked		Stainless		-	CPV	(C)
Volume of Water in Well	(gal)	,75		_	Measuring P		(Yes	_	1	Vo
Three Well Volumes:		- 10 C - 10 C	allons		Well Diamete	and a state of the	1-	60		P. P. L.	No
Purging Information		1	and left 1.5	-			4	C) Oth	er;	
Purging Method:	Bailer	Peristaltic		Vaterra			1	Conver	sion Fac	tors	-
Tubing/Bailer Material:	Steel	Polyethyle		Teflon	Other:		gal / ft.	1* ID	2" ID	4" ID	6" ID
The second s	Bailer	Peristaltic	/		Other:		of water	0.041	0,163	0.653	1.469
Sampling Method:	Coanop	Pensialoc		Vaterra	Other:		1 gal = 3.3	785 L ≠38	75 ml = 0.	1337 cut	oic feet
Duration of Pumping:	(min)	1 hr. 15 1	mins (7:	5 minute	(8)						
Average Pumping Rate:	(ml/min)	Jbmi/min	Water-Qua	lity Meter Type		11-22	-	T to the second s	Stability		
Total Volume Removed:	(gal)	S.G.S. MARKER ST. S.		Did well go dry:	TWINK I	(1-22 (No)	pH	DO	Cond		ORP
	1	2			-		± 0.1	± 10%	± 3.09	% ±	10 mV
Parameter:	9:05	9:10	9:15	9:20	9:25	6	10000000000	7	8		9
Volume Purged (gal)	_	.52	14	1.5		9:30	9:35		:40	9:	45
Rate (mL/min)	150	150			2.5	3.5	4.5	5.		6	-50
Depth to Water (ft.)	2.75		150	150	150	150	150	1	50	15	0
pH		3.70	3.92	9.11	4.2	4.24	4.24	4	26	4.3	36
	6.97	6.64	6.55	6.52	6.51	6.51	6.51	6	50	6.8	0.00
Temp. (C)	5.78	10.65	11.66	11-76	11.96	12.13	12.42	1991 C 1997 -	.52		.36
Conductivity (mS/cm)	0.001	2.54	2-58	2.62	2.65	2.69	2.71	-	73	1000	The second second
Dissolved Oxygen (mg/L)	11.02	3.95	2.62	2.26	2.02	1.75	1.55	1.4	642A	_	74
ORP (mV)	-40	-88	-88	-88	-88	- 89		1.4	70	13	
Turbidity (NTU)	1999	1999	2999	2999	1999	931	-89		10	-9	
Notes:	water iš a biacer biari n coler slign+ shee			201	~117	-101	\$30	80	5	75	2
	has odor						_				

Sampling Information

Analys	es #	1	La	boratory
BTEX (8260)	3			mpuChem
PAHs (8270)	2		Co	mpuChem
MNA Analysis	0			e COC for ails.
NAPL Analysis	0		Un	cen's iversity, See C for detail
Sample ID: M	W DA	Sampla Tima	10.0	0
MS/MSD:	Yes Yes	Sample Time.	10-20	2
	Yes	No		
Duplicate:		U.S.		

33 drops CO2 - high range

Page ____ of 3____

Groundwater Sampling

Site	1.11		GROUND-	NATER SA	MPLING L	OG					Eve
Sampling Personnel:	HES, TME	4			Well ID	: MW-24					
Client / Job Number:		nawk / 36657.0	009		Date:	11/4/14					
Weather:					Time In	: 8:68	Time	Out:			
Well Information		1									
Depth to Water:	(feet)		(from MP	2	Well Type:		Flush	mount		Stick-U	Jo
Total Depth:	(feet)		(from MP)	Well Material:		Stainless	Steel		P	Ô
Length of Water Column:	(feet)	_			Well Locked:	1		Res		1	No
Volume of Water in Well:	(gai)				Measuring Poi	nt Marked:		Nes		1	No
Three Well Volumes:	(gal)		-	<u>.</u>	Well Diameter		1*	(2)	Othe	er;	
Purging Information											
Purging Method:	Bailer	Peristaltic	W	aterra	Other:		-	Convers 1° ID	2" ID	4" ID	6" ID
Tubing/Bailer Material:	Steel	Polyethyler	ne Te	efion	Other:		gal / ft. of water	0.041	0.163	4 ID 0.653	1,469
Sampling Method:	Bailer	Peristaltic	W	'aterra	Other:		1 gal = 3	.785 L =38	10000	10110	1121253
Duration of Pumping:	(min)										
Average Pumping Rate:	(ml/min)		Water-Qual	ity Meter Type:			-		Stability		-
Total Volume Removed:	(gal)		(Did well go dry:	Yes	No	pH ± 0.1	DO ± 10%	Cond ± 3.04	-	ORP 10 mV
	-						- 0.1		-		
Parameter:	9:50	9:53	3 9:56	9:59 4	10:02	10:05	10:08	7	8 ://	1	9
Volume Purged (gal)	1.5	8.0	8.0	8.5	91.	9.5		10	<u>, 11</u>		14
Rate (mL/min)		150	150		1.6		IDL	- 1	(11	- C
Depth to Water (ft.)	150			150	1.50	150	150	62 S	50	1000	50
	4.85	4.36	4.36	4.36	4.37	4-37	4.39		46		40
pH	Second Land	6.55	6.53	6.52	6.51	6-50	6.50		.02		52
Temp, (C)	12.10	12.09	12.45	12.30	12.55	12.76	12.9	1	2.56	100000	.84
Conductivity (mS/cm) Dissolved Oxygen	0.003	2.62	2.62	2.65	2-64	2.64	2.65	5 2	.62	2.	28
(mg/L)	7.43	3.03	24294	131	0.73	,41	0.84	L #	54	.6	1
ORP (mV)	-91	-90	-90	-90	-91	-92	-92	- 1	92	-8	9
Turbidity (NTU)	236	163	121	133	114	128	1/8	80	5.5	5:	2.2
Notes:		=								1	111

Sampling Information

Analyses	#	Laboratory
BTEX (8260)	3	CompuChem
PAHs (8270)	2	CompuChem
MNA Analysis	0	See COC for details.
NAPL Analysis	0	Queen's University, See COC for detail
a		11.01
Sample ID: MW-20	Sample Time:	10:23
MS/MSD: Tes	00	
Duplicate: Yes	69	
Duplicate ID	Dup. Time: -	-
Chain of Custody Signe	(But	House and the second

Groundwater Sampling

Site		GR	OUND-WAT	TER SA	MPLING L	OG					Evi
Sampling Personnel:					Well ID	: MIN-2	4			-	
Client / Job Number:	Niagara Mo	hawk / 36657.009			Date:	11/4/04	1		-		-
Weather:				_	Time In	and the second	Time	Out:			
Well Information						The second					
Depth to Water:	(feet)		(from MP)		Well Type:		Flush	mount	-	Stick-U	Les.
Total Depth:	(feet)		(from MP)		Well Material:	-	Stainless				/C
Length of Water Column	: (feet)				Well Locked:			Yes	1		No
Volume of Water in Well	(gal)				Measuring Pol	nt Marked:		Yes			No
Three Well Volumes:	(gal)				Well Diameter		1-	2*	Oth	ner:	10
Purging Information							-			ine e	
Purging Method:	Bailer	Peristaltic	Waterra	3	Other			1	sion Fac	tors	1
Tubing/Bailer Material:	Steel	Polyethylene	Teflon		Other:		gal / ft_ of water	t* ID	2* ID	4" ID	6" ID
Sampling Method:	Bailer	Peristaltic	Waterra	1	Other:		-	0.041	0.163	0.653	1.469
Duration of Pumping:	(min)				Galet		1 gai = 3.	785 L =38	/om=0	.1337 CU	oic feet
Average Pumping Rate:	(ml/min)	1000	Water-Quality Me	lar Tunot				Uni	Stabilit	y .	
Total Volume Removed:	(gai)		24560112	all go dry:	Yes	No	pН	DO	Cone	f.	ORP
	(80)		DID NO	an go ury.	Tes	NO	± 0.1	± 10%	± 3.0	% ±	10 mV
Parameter:	1017	10:20	3	4	5	6		7	8		9
Volume Purged (gal)	12	12.25							2	1.00	
Rate (mL/min)	150	150						-	-	-	-
Depth to Water (ft.)	4.41	4.43				1 1		-	-		-
pН	6.52	6.50							_		
Temp. (C)	12.41	12.69					-	-	-	-	
Conductivity (mS/cm)	2.73	2.72							-	1	-
Dissolved Oxygen (mg/l_)	.63	.68				118		-	-		-
ORP (mV)	-89	-89						-	-		
Turbidity (NTU)	51.2	48.8						-	-		
Notes:	000	0					_	_			

Sampling Information

Analyses	#	Laboratory
BTEX (8260)	3	CompuChem
PAHs (8270)	8	CompuChem
MNA Analysis	0	See COC for details.
NAPL Analysis	0	Queen's University, See COC for detail
2		1. 22
Sample ID: NW-20	Sample Time:	10:23
M\$/M\$D: Yes	NO	
Puplicate: Yes	(No)	
Duplicate: 100		

33 angs cor test - high range

Page 3_ of 3_

Niagara Mohawk, A National Grid Company

Schenectady (Broadway St.), New York

Site

GROUND-WATER SAMPLING LOG

Event

	ABS, KMG				Well ID						
Client / Job Number:	and the second se	hawk / 36657.0	009		Date:	11/2/04	-				_
Weather:	40°5, 010	udy			Time li	1: 8:08	Time C	Dut:			
Well Information											
Depth to Water:	(feet) 🖯	5.41	(from MP		Well Type:		Flushm	ount		Stick-L	Jo
Total Depth:	(feet) [4	1.10	(from MP	<u> </u>	Well Material:		Stainless S	Steel		(PV	0
Length of Water Column		7.69		4	Well Locked:			(Tes)	1	N	10
Volume of Water in Well:		1.42	_	-	Measuring Po	int Marked:		Yes	-	ħ	ło
Three Well Volumes:	(gal) 🔺	1.25		-	Well Diameter	12	15	2) Oth	er;	
Purging Information		- Andrew					_	-			
Purging Method:	Bailer	Peristaltic) w	aterra	Other:			1° ID	2" ID	4" ID	6" 10
Tubing/Bailer Material:	Steel	Polyethylei	ja Te	afion	Other:		gal / ft. of water	0.041	0.163	0.653	1,469
Sampling Method:	Bailer	Peristaltic	W	aterra	Other:		1 gal = 3.7				
Duration of Pumping:	(min)	92		C. C. Standard							
Average Pumping Rate:	(ml/min)	125	Water-Qual	ty Meter Type:	4000160	11-22			Stability	-	
Total Volume Removed:	(gal)	2.64	(Did well go dry:	G	No	рН ± 0.1	DO ± 10%	Cond ± 3.09		ORP 10 mV
	1	2	3	4	5	6		7	1 000000	1	
Parameter:	8.16	8:23	8:28	8:33	8:38	8:43	8:48	9.	53	0.	58
Volume Purged (gal)	-	1 Gallon	1 Gallon	1 ballon	1-5 Gaurons		6 liters	-33 U.S	UHERS.	¥.	
Rate (mL/min)	300m4/min	160me/min		Contraction and the second second		Q5 m/min			05		
Depth to Water (ft.)	5.41	995	10.90	11-10	11-55	11.80	12-05		1.45	12	100
рН	18.85	12.32	12.24	12.31	12.34	12.40	12.43	-	43	12-1	
Temp. (C)	13.47	14.50	12.89	12.72	12.40	12.05	12.32	1000	2.32	1.00.11	-29
Conductivity (mS/cm)	2.82	187	173	175	1.81	1	8.10	-	14	2	100
Dissolved Oxygen (mg/L)	8.15	8.84	8.63	7.20	2.70	2.05 2.3.02	2.05	0.000	2.79		04_ 34
ORP (mV)	-212	-192	-187	-197	-204	-193	-203	1.53.50	205	201-22	
Turbidity (NTU)	2999	2999	7000	7000	2999	633	566	4		41	
Notes:	odor very tu	bid	- ut		ann		000	4	d	40	Ι

Sampling Information

Analyse	s	#	Laboratory
BTEX (8260)	1.1	3	CompuChem
PAHs (8270)		2	CompuChem
MNA Analysis	1.2	120	See COC for details.
NAPL Analysis		-	Queen's University, See COC for detail.
		-	
Sample ID: M	N-25	Sample Time:	164.5 (11/2)
MS/MSD:	Yes	s.	and and and
Duplicate:	Yes	NØ	1
Duplicate ID	-	Dup. Time:	-
Chain of Custod	y Signed B	Y. KMG	

Problems / Observations

DENC 40 CO2 = 200 mg/c

DTW (1645) = 6.72' SAMPLE CULLECTED a Flick UN.11 pecovered ton - Thomas .

Groundwater Sampling

See page 1

Site			GROUND-	WATER SA	MPLING	LOG					Eve
Sampling Personnel:	AES, KME				Well II		25				
Client / Job Number:	and the second	nawk / 36657.	009		Date:	11/2/0	1.14.05		-	-	-
Weather:					Time I	Contract of the second s	Time	Out:	100		
Well Information											
Depth to Water:	(feet)		(from MF	27	Well Type:		Flush	mount		Stick-J	10
Total Depth:	(feet)		(from MP	2	Well Material		Stainless	C.P.C. UI	/	P	-
Length of Water Column	c (feet)				Well Locked:			Yes	-		No
Volume of Water in Well	: (gal)				Measuring Po	oint Marked:	/	Yes		-	Vo
Three Weil Volumes:	(lsg)			1	Well Diamete	IT	1"	2*	Oth	11.	-
Purging Information				vatera ge	1						_
Purging Method:	Bailer	Peristaltic	1 V	Vateria	Other:			1º ID	2" ID	4" ID	6* 10
Tubing/Bailer Material:	Steel	Polyethyle	ne T	eflon	Other:		gal / ft. of water	0.041	0.163	0.653	1.463
Sampling Method:	Bailer	Peristallic	V	Vaterra	Other:		1 gal = 3		75 ml = 0	100503	0.00
Duration of Pumping:	(min)				62361255			1.000.00			eng roles
Average Pumping Rate:	(ml/min)	1	Water-Qua	lity Meter Type:					t Stability		
Toter Volume Removed:	(gai)			Did well go dry:	Yes	No	pH ± 0.1	DO ± 10%	Conc		ORP
	1 7				101715	1020	20.1		± 3.0	70 ±	10 mV
Parameter:	9:03	9:08	9:13	9:18	9:23	9:28		7	8		9
Volume Purged (gal)	7L	84	86	QL		104					-
Rate (mL/min)	125 Min	125	125	125	92	125					
Depth to Water (ft.)	12.82	13.25	13.55	13:35	13 35	NA					_
pН	12.47	12.50	12.55	12.61	12.67	12.71					
Temp. (C)	12.30	12.00	11.98	11.35	10.69	11.96					-
Conductivity (mS/cm)	2.07	2.00	2.15	2.25	2.35	3.42					
Dissolved Oxygen (mg/L)	0.28	0.00	0.00	0.00	1.94	5.48	100				-
ORP (mV)	-220	- 226	-231	-29	-206	- 188					
Turbidity (NTU)	366	315	297	198	148	153					
Notes:	- MALLY			-110	140	well we	ent				

Sampling Information

#	Laboratory
	CompuChem
	CoppuChem
	See COC for details.
1. O.B.L	Queen's University, See COC for detail,
1	
500	
Sample Time:	
Sample Time:	
Sample Time:	
	#

Problems / Observations

Site

Groundwater Sampling

GROUND-WATER SAMPLING LOG

Event

Sampling Personnel:	VOL1				Well IC	: MW-2	la la				
Client / Job Number:	Niagara M	ohawk / 36657	7.009		Date:	11/4/04		-			
Weather:	.50°5.	Sunny			Time I	n:	Time (Dut:			
Well Information											
Depth to Water:	(feet)	6.04	(from Mi	P)	Well Type:		FILLER	Rount	S	Stick-U	6
Total Depth:	(feet)	12.20	(from Mi	P}	Well Material:		Stainless S	Steel		B	100
Length of Water Column	(feet)	10.16			Well Locked:			Yes		N	-
Volume of Water in Well.	(gal)	1.00			Measuring Po	oint Marked:		K@s		Ň	0
Three Well Volumes:	(gal)	3.00		_	Well Diamete	r.	17	Ø	Other		
Purging Information	Pan	start 12	00	Que	oena:		-				
Purging Method:	Bailer	Peristalti	2	Vaterra /	Other:			1° ID		rs • ID	6* ID
Tubing/Bailer Material:	Steel	Polyethy	lene 1	Teflon	Other:		gal / ft. of water	IN DEBUT	senifica (1)	.653	1,469
Sampling Method:	Bailer	Ex Peristalli	Ponts V	Vaterra	Other:		1 gal = 3.7	85 L =3875			
Duration of Pumping:	(min)	30	THUS	1.0.0		-		CONCLUSION			
Average Pumping Rate:	(ml/min)	225	Water-Oua	ality Meter Type:	3				tability	4	
Total Volume Removed:	(gal)	- Alexandre -		Did well go dry:	HCA iba Yes	1.1	pH	DO	Cond.	-	ORP
rotar rotario remorea.	(904)	1.76 ga	/	olo well go ury.	res	No	± 0.1	± 10%	± 3.0%	±	10 mV
Parameter:	1202	1207	1212	1217 4	1222	1227	1332	7 12	8	124	22
Volume Purged (gal)	-	2.0	3.0	4.0	5.0	6,0	7,0	1 1 m		1 4 4	12
Rate (mU/min)	200	200	200	200	200	200	200	200		1-	
Depth to Water (fL)	6.13	0,15	\$ 16	6,16	6,16	6.16	Q.16	6.1		250	
pH	5.89	6.22	6,39	6.47	6,54	6,59	6.60			6,6	
Temp. (C)	15.64	15,76	15.99	16.02	15.45	15,13	14,78	6,5			
Conductivity (mS/cm)	1.20	1.20	1.21	1,20	1.20	1,20	1.19			14,6	
Dissolved Oxygen	15.64	the second se	4,53	3.72		the second se		1,1		1.19	
(mg/L)	1	7.20			3.11	2,79	2.20	1,8		4.4,	
ORP (mV)	60	-21	-45	-51	-55	-57	-56	-5	5	-5	
Turbidity (NTU)	7999	103	48,3	22.3	22.3	17,5	34.1	11.1		638	\$
Notes:	torbideter devocased offer first four mins.									Ener Sken 64t	na

Sampling Information

Analys	es	#	Laboratory
BTEX (8260)		3	CompuChem
PAHs (8270)		2	CompuChem
MAA Analysis			See COC for details. Queen's University, See
	7		COC for detail
Sample ID: N	10-20	Sample Time:	13.25
MS/MSD:	Yes	O	
Duplicate:	Yes	0	
Duplicate ID	-	Dup. Time:	
Chain of Custo	dy Signed B	By: JEME	

Problems / Observations Initial purge - Vory turbil, strong obor, Steen

100 ms/L of CO2

Groundwater Sampling

Event

Site

Sampling Personnel:					Well I	o: mw-	26				
Client / Job Number:	Niagara Mol	hawk / 36657.	009		Date:	11/8/04	~			-	-
Weather:					Time		Time (Dut:			
Well Information											
Depth to Water.	(feet)		(from MP	P)	Well Type:	-	Flushn	ount	2	Stick-I	(In
Total Depth:	(feet)		(from MP	2)	Well Material		Stainless	111/1		and the second distance	/C
Length of Water Column	(feet)				Well Locked:	/		Yes			No
Volume of Water in Well	(gal)				Measuring Po	oint Marked:		Yes			No
Three Well Volumes:	(gal)			-1-	Well Diamete	c	1"	2"	Oth		
Purging Information	C		see Pr	ye.			_				
Purging Method:	Bailer	Peristaltic	yee v	Vaterra	Other:		-	1° ID	sion Fac	Contraction of the local sector	1 223
Tubing/Bailer Material:	Steel	Polyethyle	ne T	eflon	Other		gal / ft. of water	0.041	2* ID 0.163	4* ID 0.653	6* 10
Sampling Method:	Bailer	Peristaltic	V	Vaterra	Other:		1 gal = 3.7				1.000
Duration of Pumping:	(min)	-			25.00.53%				5 W 11 C 1 M		
Average Pumping Rate:	(ml/min)		Water-Qua	lity Meter Type:					t Stability		
Total Volume Removed:	(gal)			Did well go dry:	Yes	No	pH	DO	Cond		ORP
	1		5	14			± 0,1	± 10%	± 3.0	% ±	10 m\
Parameter:	1247	12522	1257	1302 4	5	1312	1317	7	8 322		0
Volume Purged (gal)			201					13	10		
Rate (mL/min)	250	250	250	250	200	250	250		50		_
Depth to Water (ft.)	6.19	6.21	6.23	6.25	6.25	6.20	6.28	6.3			
pH	6.61	6.72	6,73	6,73	6.76	6.27	6.85	and the local division of the local division	.88		
Temp. (C)	15.51	15.36	15.30	15:04	14.78	14.33	13.83		12	-	
Conductivity (mS/cm)	1,15	1.21	1,22	1,23	1.23	1.21	1,24	1.3	200 C	-	
Dissolved Oxygen (mg/L)	191	3.47	1.3	0.65	0.38	0.16	0.20		19		
ORP (mV)	-57	-62	-69	-71	-73	-73	-74	-8		-	
Turbidity (NTU)	440	83.6	76.)	48,4	39.2	30.2	32.4	_	0.2	-	-
Notes:		V.	1011	1017	0.0	20.x	00.9	1	Und	-	_

Sampling Information

Analyses	#	Laboratory
BTEX (8260)		CompuChem
PAHs (8270)		CompuChem
MNA Analysis		SecCOC for details.
NAPL Analysis	1/	Queen's University, See COC for detail
4	2M	
Sample ID:	Sample Time:	
MS/MSD: Yes	No	
Duplicate: Yes	No	
Duplicate ID	Dup. Time:	
Chain of Custody Signe	ed By:	

Site

Groundwater Sampling

Sampling Personne	1: 4-4-1			ND-WATER	SAMPLIN	GLOG					1
Client / Job Number			10.00	-	W	ell ID: UN			-		
Weather:	-1010	Mohawk / 36	657.009		1.51.57	1 41.49	-2.70	_			
Mail Ind		, sleet	& pain			me in:	104		24		
Well Information	1						Tim	e Out:	-		
Depth to Water:	(feet)	10.02		2.000							
Total Depth:	(feet)	86.95		n MP)	Well Type		Eluc	hmount			
Length of Water Colu		76.93	(from	MP)	Well Mate	rial:	Stainles	the second se	_	Stick	Dp
Volume of Water in V	Vell: (gal)	12.5.	4		Well Lock	ed:	0.000 (0C2		-	R	TC I
Three Well Volumes:	(gal)	37.62			Measuring	Point Marked:		Kes:		-	No
Puraina Inte		21.62			Well Diam		1"	CER.			No
Purging Informati								C	0	ther;	
Purging Method:	Bailer	Pensia	ftic	Waterra			-	-	_		
Tubing/Bailer Material	Steel	Petyets	Mene	Teflon	Other:			1° ID	rsion Fa		
Sampling Method:	Bailer	Peristal		1120370000	Other:		gal / ft. of water		2* ID	4* /D	6* ID
Duration of Pumping:	Freitelt			Waterra	Other:		Constraints of the	0.041	0.163	0,653	1.465
Average Pumping Rate		30					1 gal = 3.	785 L =38	75 ml = 0	.1337 cu	bic feet
Total Volume Removed		160	Water-Qu	ality Meter Type				Inte			
rolar volume Removed	d: (gai)	1.27 90	1/	Did well go dry	11012112	a 11-22	pH	DO	Stabilit		
	1			and Men 30 dry.	Yes	_0	± 0,1	± 10%	Conc		ORP
Parameter:	14.59	4	3	4	5	6			± 3.0	% ±	10 mV
/olume Purged (gal)		1504	1509	1514	1519	1524	10000 23	7	8		9
tate (mL/min)		<12	11	521	24		1529	P	<		
epth to Water (ft.)	160	160	160	160		<34	\$4			2.22	-
H	10.02	12. 40	12.00		160	160	160				
	927	9.72	9.74	12.80	13.20	13.78	14.13			-	-
emp. (C)	6.98	7.56	- frank i	1.87	10.01	9.98	10.07				
onductivity (mS/cm)	0,558	Turning States	7.55	7.32	7.35	8.30	8.67	-			
ssolved Oxygen		0.553	0.556	0.550	0.550	0.540		-			-
RP (mV)	7.04	7.00	5.77	4.50	4.19		0.544				
rbidity (NTU)	151	143	143			9.15	9.07				
tes:	216.0	168.0	130.0	135	124	123	124			64 - C	-
	Slightly totably no dave			119.0	58.0	14.0	7.2		-	3	

Sampling Information

Analyses	#	1
BTEX (8260)	. 9	Laboratory
PAHs (8270)		CompuChem
Concerned of Section 11	2	CompuChem
MNA Analysis	-	See COC for details,
NAPL Analysis		Queen's University, See
		COC for detail.
Sample ID: MW-	270 Sample Time	
		IE 34
	29	
MS/MSD: Yes	Č9	

 $\frac{\text{Problems / Observations}}{\text{CO}_2 (1529) = \text{Ormg/L}}$

.... J:\kmg\SampleForms\GroundWaterSamp.doc

Page ____ of ____

Groundwater Sampling

Sampling Personnel:					Wall I	: MW-27	K	1			
Client / Job Number:	Niagara Moh	awk / 36657.0	009		Date:	11/4/04	0				_
Weather: 912.1/ 5/04	es, rain/1	Tail, Idal	403 /vore	1 305	Time I		Time	Out:			
Well Information						In sec.		-			
Depth to Water:	(feet) 3	. 11	(from MP	2)	Well Type:		Flush	mount	-	SUGA	In
Total Depth:	(feet) /0	A1	(from MP	2)	Well Material:		Stainless	10.59660	11	E	
Length of Water Column:	(feet)				Well Locked:		-	6			No
Volume of Water in Well:	(gal)				Measuring Po	xint Marked:		Q		-	No
Three Weil Volumes:	(gal)			_	Well Diameter	r:	1*	0	Oth	ver:	
Purging Information							_				
Purging Method:	Bailer	Ceristeltic	W	/aterra	Other		-	t" ID	2" ID		
Tubing/Bailer Material:	Steel	Pelyetbyler	ie T	eflon	Other.	-	gal / ft. of water	0.041	0.163	4* ID 0.653	6" 10 1,469
Sampling Method:	640	Recisionic	N	/aterra	Other:		1 gal = 3		875 ml = 0		122
Duration of Pumping:	(min)	12			1100				2010-0741000	0.02.30.035	
Average Pumping Rate:	10000000	2.00	Water-Qual	lity Meter Type:	HORIDA		-		it Stabilit	-	_
Total Volume Removed:	(gal)	1.72		Did well go dry:	Yes	NO	pH ± 0.1	DO	Con	-	ORP
		1 - Contraction of the				-	± 0.1	± 10%	± 3.0	1% ±	10 mV
Parameter:	1436	2 1441	3 1446	4	1456	6 1501	1506		569 ⁸	15	12 9
Volume Purged (gal)	-	31	354	3.5	46	51	5.50	1	oL.	6.	51
Rate (mL/min)	200	200	200	200	200	200	200		OD	200	
Depth to Water (ft.)	S.1	2018.1	8.1	8.1	9.1	8.1	8.1		2.1	8.	
pН	7.99	7.06	6.81	6.62	6.55	6.52	6.5		.51	68	-
Temp. (C)	10.25	10.45	10.02	9.70	9.62	9.30	9.17	10.000	.21	9.2	
Conductivity (mS/cm)	1.14	1009	1.15	1.16	1.18	1.19	1.21		.21	in the second	
Dissolved Oxygen (mg/L)	13.34	10.90	4.52	2.20	0.89	. 33	0.06		.00	0.0	22
ORP (mV)	5.4	35	-3	-27	- 91	-32	-33			-3:	10.00 M
Turbidity (NTU)	1999	302	232	1.38	68.8	45.5	35.4		0.0	17.	
Notes.				100	@U.G	10-0	2014			17.	1

Sampling Information

Analyse	es f	#	Laboratory
8TEX (8260)	(n)	3	CompuChem
PAHs (8270)	2	2	CompuChem
MNA Analysis	-	-	See COC for details.
NAPL Analysis	-	-	Queen's University, See COC for detail
	-		
Sample ID:	1000 TE	Sample Time:	1612
Sample ID: MI	W-2-75 Yes	Sample Time:	193
Sample ID: MI MS/MSD: Duplicate:	W-2-75 Yes	CONTRACTOR CONTRACTOR OF A	193

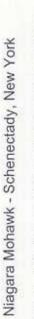
Problems / Observations

1

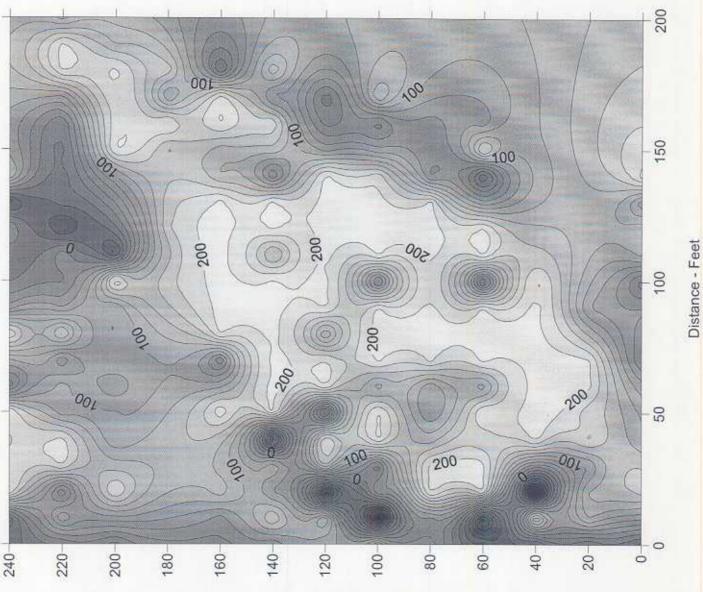
13 days CO2 test - high range

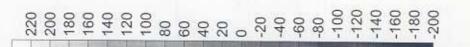
2

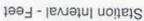
E

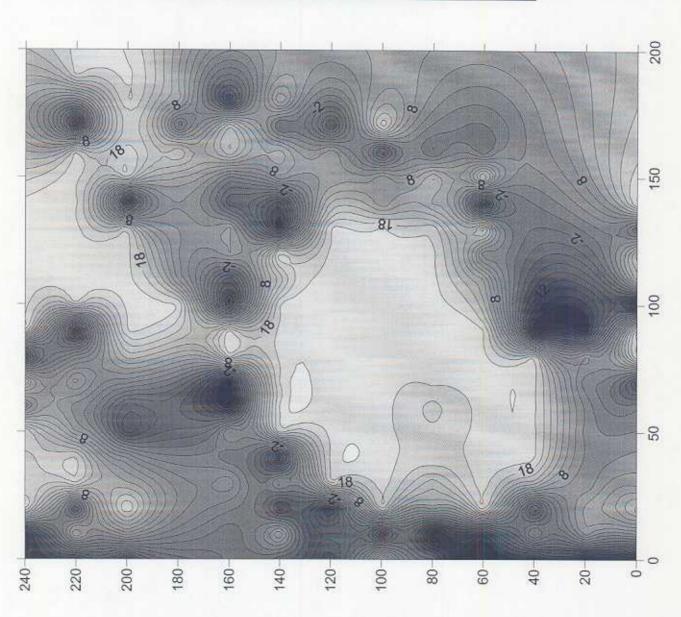

J:\kmg\SampleForms\GroundWaterSamp.doc

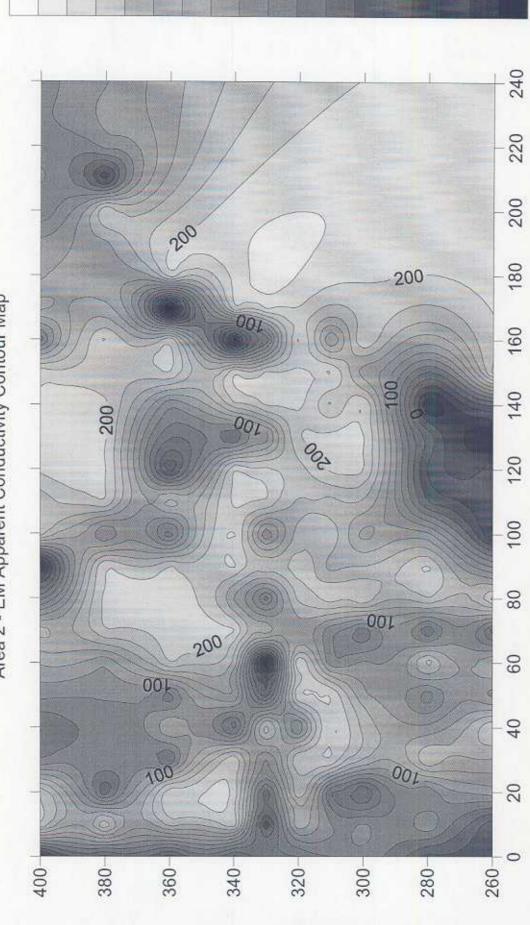
BBL, Inc.


Appendix D


Ground-Penetrating Radar and Electromagnetic Survey Results






Niagara Mohawk - Schenectady, New York

Area 1 - EM Inphase Contour Map

Distance - Feet

Station Interval - Feet

Niagara Mohawk - Schenectady, New York

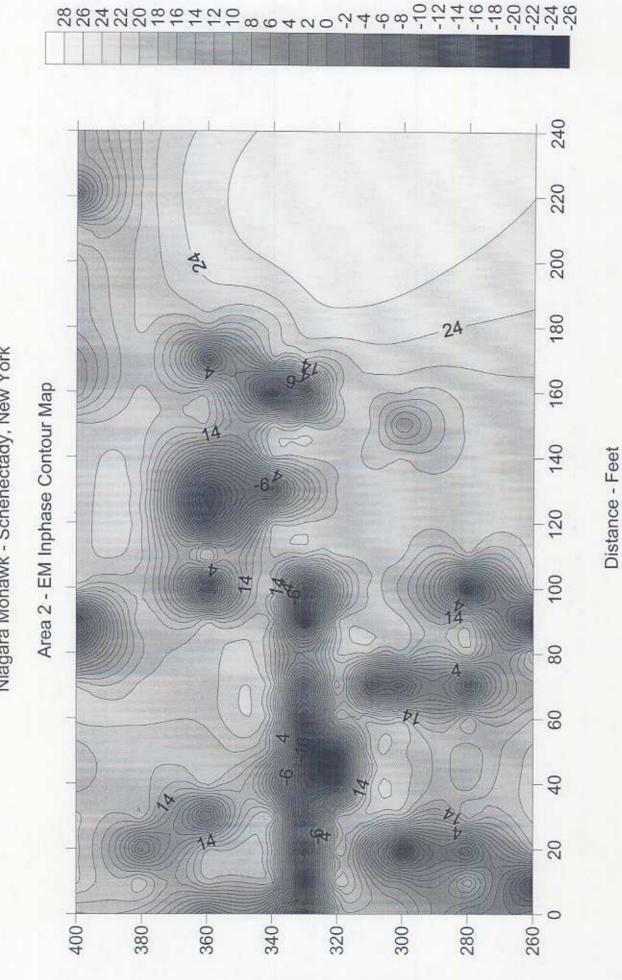
Area 2 - EM Apparent Conductivity Contour Map

220 200

180

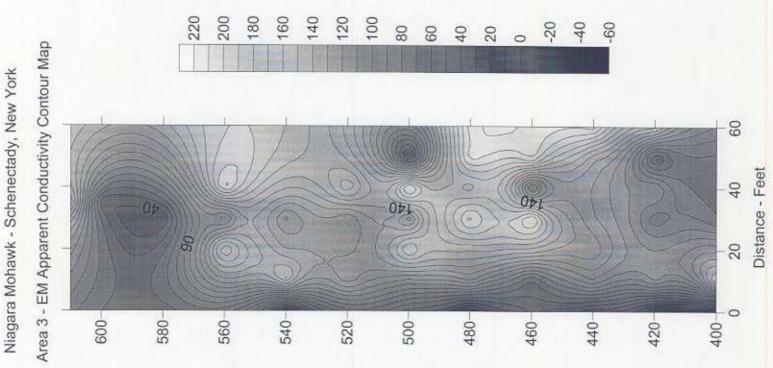
160

140

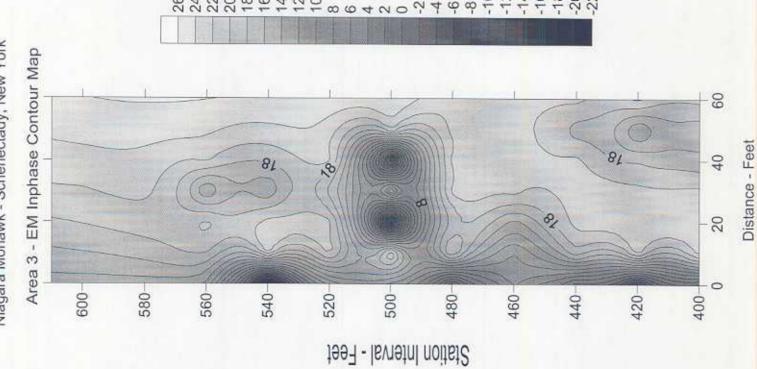

120

240

Distance - Feet


-100

80 60 40 20 -20 -40 -60 -80



Niagara Mohawk - Schenectady, New York

Station Interval - Feet

5tation Interval - Feet

Niagara Mohawk - Schenectady, New York

Appendix E

Offsite Groundwater Memorandum

MEMORANDUM

BROWN AND CALDWELL

TO: File

PROJECT NO: 127466.002

FROM: Bob O'Neill

DATE: November 11, 2005

SUBJECT: Review of Groundwater Quality Data From Downgradient Wells National Grid Schenectady (Broadway) Service Center

During the Supplemental Remedial Investigation (SRI) of the former manufactured gas plant (MGP) located at the National Grid Schenectady (Broadway) Service Center (referred to herein as the "site"), National Grid obtained existing groundwater quality data for two off-site well clusters located downgradient of the site and the downgradient railroad properties (CSX and Delaware & Hudson) located adjacent to the site. These well clusters were installed and sampled as part of the Remedial Investigation (RI) activities at the General Electric (GE) Main Plant site located west-northwest of the National Grid site. This information was acquired by the following two means:

- First, on October 7, 2003, on behalf of National Grid, I met with the New York State Department of Environmental Conservation's (NYSDEC's) project manager for the RI at the GE Main Plant site and reviewed the investigation data.
- Second, I obtained the NYSDEC's November 2004 Proposed Remedial Action Plan (PRAP) for the GE Main Plant site from NYSDEC's website and reviewed it for information that might pertain to the National Grid site.

Information for these wells obtained from these sources, including location maps, well construction details and groundwater quality data, is provided in the attachment to this memorandum.

The two well clusters are designated GE-210 and DM-422, and contain two and three monitoring wells, respectively. The well locations are shown on the attached map. The hydrostratigraphic intervals monitored by these wells are similar to those monitored on the National Grid site. The following provides a description of these wells based on information provided in Table 5-2 of the *Revised Remedial Investigation Report, GE Main Plant Site, Schenectady, New York* (URS, May 2003) (see Attachment):

Memorandum to File November 11, 2005 Page 2

GE-210 Cluster

• GE-210S

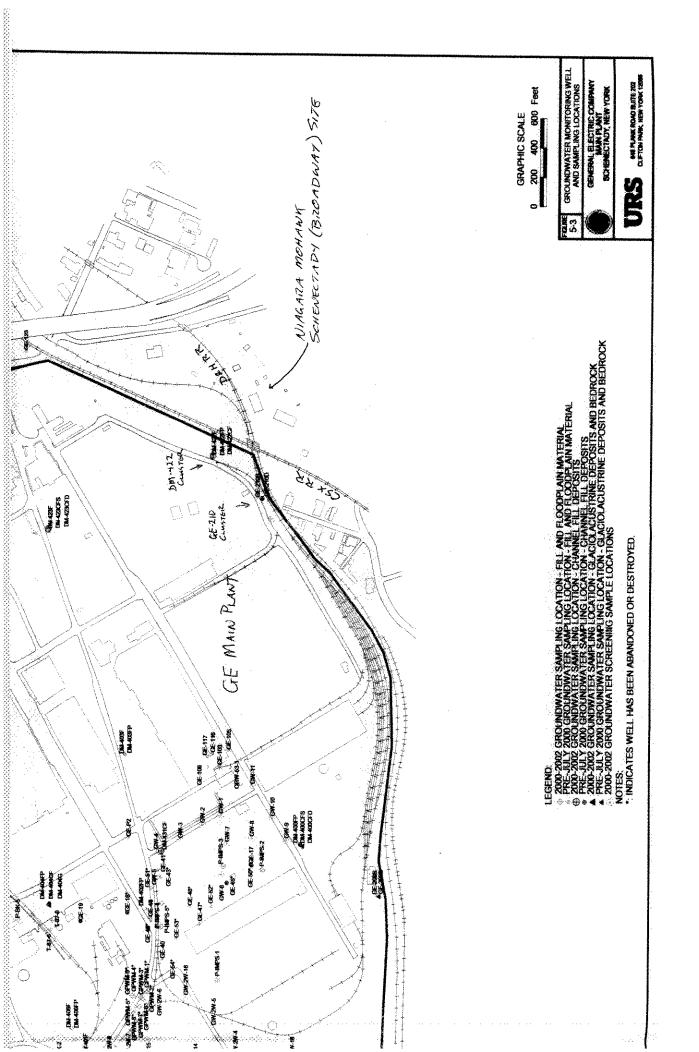
Screened interval: Depth10-20 ft bgs; Elevation: 216.11-206.11 ft amsl. Well screen positioned within flood plain and channel fill deposits.

• GE-210D Screened interval: Depth 45-55 ft bgs; Elevation 181.30-171.30 ft amsl. Well screen positioned within channel fill deposits.

DM-422 Cluster

- DM-422F Screened interval: Depth 7-12 ft bgs; Elevation 222.37-217.37 ft amsl. Well screen positioned within fill deposits.
- DM-422FP Screened interval: Depth 14-24 ft bgs; Elevation 215.48-205.48 ft amsl. Well screen positioned within floodplain deposits.
- DM-422CF

Screened interval: Depth 45-55 ft bgs; Elevation: 184.20-174.20 ft amsl. Well screen positioned within channel fill deposits.


The reviewed data indicates that volatile organic compounds (VOCs) were either not detected, or reported at low concentrations (i.e., below Class GA standards and guidance values) in each of these wells. Similarly, semivolatile organic compounds (SVOCs) were typically not detected, or reported at concentrations below Class GA criteria. During one sampling event in 1988, phenol was detected at GE-210S and GE-210D at concentrations slightly above the Class GA criteria, but during subsequent sampling events, the phenol was not detected or was at a concentration below Class GA criteria in these wells. Phenol can be derived from several common sources, and although phenol can be associated with MGP sites, groundwater data from the National Grid site do not indicate that substantial concentrations of phenol are migrating from the site in groundwater. Thus, the phenol detected in GE-210S and GE-210D was likely derived from a local source.

The data from the RI at the GE Main Plant site indicate that groundwater with concentrations of MGP-related constituents above the Class GA criteria is limited to the area upgradient of GE property. Further, a review of the soil descriptions in the soil boring logs for these wells, and for other nearby soil borings drilled on the GE property, did not indicate the presence of MGP-related contamination.

Memorandum to File November 11, 2005 Page 3

ATTACHMENTS

SELECTED TABLES AND FIGURE FROM: REVISED REMEDIAL INVESTIGATION REPORT, GE MAIN PLANT SITE, SCHENECTADY, NEW YORK (URS, May 2003)

MONITORING WELL LIST 2000-2002

GENERAL ELECTRIC SCHENECTADY, NEW YORK

							Measuring			Elevation of	ion of		Total
	\$	ļ		Coordinates	inates	Grade	Point	Screened Interval	Interval	Screened Interval	Interval	Well	Denth of
11(-11 M	Date .	Date		Northing	Easting	Elevation	Elevation	Top	Bottom	Top	Bottom	Diameter	Borlne
WCII VAIRE	Installed	Abandoned	Formation	(feet)	(feet)	(feet msl)	(feet msl)	(feet bgs)	(feet bgs)	(feet msl)	-	(inches)	(feet bes)
178 × 2000					Fill a	Fill and Floodplain	in .						
600-MIA	76/6	í	fi,fp	1025498.55	598863.00	235.66	238.61	19	39	216.66	196.66	V	41
DM-306S	9/92	1	ф	1025880.22	599897.28	223.67	226.43	6	29	214.67	104.67	r V	
DM-407FP	1999	*	fp	1024132.20	598945.25	227.28	226.90	61	24	208.28	86 200	r c	£7
DM-408F	4/99	*	fi	1024390.07	598356.34	226.167	228.28	, L		LYI VCC	1016161	205	* 7
DM-408FP	1999	1	fp	1024394.90	12125892	22616	AC 900	4 <u>C</u>	21	101.422	101.417	¢.5	2
DM-418FP	10/00		ų	1074970.04	91 20005	01.022	17:07V	21	c]	210.10	211.10	7	15
DM-419FP	10/00	-	fi fi	50 80 1 V CUI	01.140000	64'077	87.177	0	15	215.49	210.49	5	15
DM-421FP	00/01		fa	07:0011401	14:0/10/10/09	76.077	0/ 777	0	70	215.92	205.92	2	20
DM-422F	10/00	*	4	00.1002201	80.0001.40	C8.022	6/.877	S	10	221.85	216.85	2	10
DM-422FP	10/00		11 te	04./002001	011941.04	15.677	231.18	7	12	222.37	217.37	2	12
DM-423F	10/00		d1 2	1022233.03	601938.94	229.48	231.34	14	24	215.48	205.48	2	24
DM-474FP	1/01	2	5	10.1000201	001427.93	227.45	229.35	5	15	222.45	212.45	2	15
GE-28	10/82	•	đ	10243/9.02	601021.33	223.62	225.63	4	14	219,62	209.62	2	14
GE.31	40/01		d,	10241 59.94	596480.37	219.66	222.83	. 11	16	208.66	203.66	5	27
GE-34	70/01	1	a,	1023474.66	593439.47	225.50	227.56	9.5	14.5	216.00	211.00	2	14.5
GF-103	1/8/	F	di j	1023419.09	594005.69	222.45	224.63	10	15	212.45	207.45	2	15
<u>CE 105</u>	3/96	2	11,1P	1022483.03	599820.81	225.14	224.52	1	11	224.14	214.14	2	12
GE-108	1/86	I	11,1p	1022421.57	599924.84	225.30	225.07	0	10	225.30	215.30	2	9
GE-116	8/86		ц, ц 2	1022260.88	599813.70	225.55	225.40	0	10	225.55	215.55	3	10
GE-117	8/86	•	= L	1022530.00	599904.05	225.46	225.05	1	6	224.46	216.46	2	14.7
GE-118	0/8/9	1	11	1022555.76	599884.24	225.70	225.37	+	6	226.70	216.70	2	14
GE-120	9/8/6	•	141b	00.024201	602460.00	225.89	227.58	4	14	221.89	211.89	2	14
GE-121	12/85		6 fa	00 966 701	002/48.00	227.25	228.88	5	15	222.25	212.25	2	16
GE-122	12/85	-	fi fa	1074176.00	007040700	60.122	250.05	S	20	222.69	207.69	2	20
GE-123	12/85	1	fi.fn	107 181 8 00	00.002.500	17-077	17.677		20	221.27	206.27	2	20
GE-202	12/87	1	fin fi	1074367 62	00.000200	60.252	235.59	Ś	50	227.59	212.59	2	20
GE-204S	11/87	1	3 4	31 2024201	+0.626200	232.18	234.31	10	20	222.18	212.18	3	22
GE-205S	11/87	-	4	00 CCC3CU1	600193.84	1/1/17	233.31	0	20	221.71	211.71	2	21
GE-206S	11/87		1	02122201	0/ 040000	64.122	222.65	-	12	214.49	209.49	2	12,4
GE-214M	11/87		ţ	1074073 25.10	507705 25	07.177	228.46	0	20	211.26	201.26	2	20
GE-215M	11/87	-	, e	1074908 03	00'C0//6C	14/077	<u> </u>	2	50	215.41	205.41	2	21
GE-216M	11/87	÷	Į.į	CV:00/1201	00 100000	11.677	232.31	12	17	217.11	212.11	7	17.2
			<u> </u>	1	01-11-020	C0.022	60.822	01	20	216.63	206.63	~	20

GE-Main Plant-Remedial Investigation 38393962.00003/L6230RRevt5_2 xls

MONITORING WELL LIST 2000-2002

GENERAL ELECTRIC SCHENECTADY, NEW YORK

				:			Measuring			Elevation of	ion of		Total
		6		Coordinates	nates	Grade	Point	Screened Interval	Interval	Screened Interval	Interval	Well	Denth of
Well Name Ins	Date	Date Abandoned	Screened	Northing (feet)	Easting	Elevation	Elevation	Top	Bottom	Top	Bottom	Diameter	Boring
R-10 3	3/91			1024075	603488	(ieer msy)	(leet msi)	(feet bgs)	(leet bgs)	(feet msl)	(feet msl)	(inches)	(feet bgs)
			*			hannel Fill	1 67.107	4	12	224.83	219.79	٩	14
~	16/01	•	cf	1025409.31	596190 99 1	1 66 066	1 10 100	1 01	0.0			Å	
_	16/11		fp.cf	1025414.27	201106	71 066	101 222	0	57	202.22	197.22	4	37
DM-302S 1	16/11		cf	102519631	\$97335 70	11.022	07.077	0.0	64	1.001	180.17	4	44
DM-302D 1	16/11			NA 781201	01.0001200	80.05	02227	14	34	222.08	202.08	4	35.2
DM-303S 1	16/11	,	J.J.	102 070201	0010/60	07.007	238.01	51.3	71.3	183.96	163.96	4	75.3
DM-3031 1	16/11	,	17	03 176301	20.000/06	0/.077	237.69	20	30	215.76	205.76	4	40
DM-303D	16/11		Ju	20.1722201	CU/660/65	C1.CC7	72.827	48.5	58.5	187.25	177.25	4	61
DM-304S 5	9/92	-		04744201	21.026160	61.007	238.37	02	8	165.79	P45.79	4	102
DM-3041 5	9/92	-	30	20.0FCC201	CC.646046	C/ 725 CO	238.72	20	40	215.75	195.75	4	40
DM-304D 9	9/92	-	J.	400 246 201	20.404050	60.007	238.21	49	59	186.59	176.59	4	. 09
DM-3051 9	9/92	,	د و مر	1075505	C7.014020	00.002	238.15	69	62	166.60	156.60	4	83.7
DM-400CFS	1999	,	50 July	17.0001001	70.1/8840	235.81	238.49	55	75	180.81	160.81	4	76
-	6661		13	10262601	67.24245	225.25	227.13	35	50	190.25	175.25	2	50
╞	4/00		J-J-J-J-J-J-J-J-J-J-J-J-J-J-J-J-J-J-J-	16.0001001	06.700040	C0'877	230.45	35	50	193.65	178.65	2	50
DM-407CF 1	6661		12	0676764701	20,000,20	11.122	227.02	25	35	202.17	192.17	2	35
DM-408CF 1	6661	-	1 5	1074260.60	C87675075	227.28	227.05	32	47	195.28	180.28	2	47
DM-409CF	6661	-	, , , , , , , , , , , , , , , , , , ,	CV 022701	01.00000	226.11	228.12	53	68	173.11	158.11	2	68
DM-410CF	1999	*	1, 12	1074575 25	9/ 10/06/20	219.07	221.18	16	26	203.07	193.07	2	26
-	6661		5 ¹ 2	10243/3.10	86.100/96	231.14	233.70	28	38	203.14	193.14	2	38
DM-412CF	6661	,		1073647 44	0/-0070203	CI-677	231.45	28	38	201.15	191.15	2	38
DM-413CF 1	6661	,	J.	1073541 40	100070405	47.077	222.18	31	26	199.24	194.24	2	26
	1999	1	1 50	1072168.00	00 196020	77.007	230.01	31	41	204.22	194.22	2	41
	1999	1	C L	1022103.26	001007000	10 222	243.48	69	2	172.77	157.77	2	84
	10/00	ł	cf	1024971 10	00.042.002	10.002	67.007	55	41	200.81	192.81	2	41
	10/00	-	C.F.	1074114 37	06.100000	44.022	221.55	20	30	205.44	195.44	4	30
	10/00		5	1022540.67	13 101040	76.027	1/177	22	35	200.92	190.92	4	35
DM-423CFD 1	10/00	F	J.J.J.	10.075657 79	10.242100	07.677	07.167	45	55	184.20	174.20	2	55
	10/00		cf	07/202701	01 07 109	14177	22.622	52	62	175.47	165.47	2	62
	1/01		C.F.	1024375 91	01210109	CH-177	CZ:677	61	24	208.45	203.45	2	24
	1999	,	cf	1023123.44	505148 00	00.077	50.022	77	32	201.68	191.68	2	32
DM-431CF 1	1/01	,	ct	1022875 53	500747 10	02 244	243.13	43	48	200.90	195.90	2	52
					21.77.4///	00.024	89.177	32	42	193.58	183.58	2	42

GE-Main Plant-Remedial Investigation 38393962.00003/L6230RRevt5_2.xls

Page 5 of 7

MONITORING WELL LIST 2000-2002

GENERAL ELECTRIC SCHENECTADY, NEW YORK

				:			Measuring			Elevation of	ion of		Tatel
	4	1		Coordinates	nates	Grade	Point	Screened Interval	Interval	Screened Interval	Interval	Well	
	Date		Screened	Northing	Easting	Elevation	Elevation	Ton	Rattam	Tan	a		Deput of
Well Name	Installed	Abandoned	Formation	(feet)	(feet)	(feet msl)	(feet mc)		(faot has)	do 1	monod	Diameter	Boring
DM 4320F	10/1	3	cf	1022648.89	C1 777 92	275 27	1 103 1.00		(cin nin)	(icer mai) (icer mai)	(isu iaai)	(inches)	(feet bgs)
DM-435	11/02		fncf	390701	111003	70.077	nc.122	24	45	201.32	191.32	2	34
GE-1	6/80		30	0071-001	11060	67.177	226.83	12	22	215.29	187.29	~	22
GE-8	6/80		-C-	1021904./2	595679.49	232.66	237.56	30	40	202.66	192.66	1.5	47
GE-12	7/80		CI 00	1023148.23	597011.48	234.71	238.04	40	50	194.71	184.71	1.5	615
GE-15	7/80		1 to	47-0010701	91.01/666	228.40	230.78	38	48	190.40	180.40	1.5	57
GE-16	7/80			1/72002/1	294/46.23	223.44	226,44	20	30	203.44	193.44	1.5	42
GE-17	7/80		rb'cr	C072827701	595746.58	242.03	245.79	36.5	46.5	205.53	195.53	15	47
0E-19	7/80		5,	1022265.35	599154.39	225.66	225.38	30	40	195.66	185.66		
GE-20	10/01	' 	Ip,ct	1023417.33	598764.86	226.67	229.39	22	32	204.67	194.67		2
GE-30	10/82	•	čt	1024143.89	596478.33	219.47	222.88	24.5	29.5	194.97	189.97	<u>}</u>	75
GE.33	10/07	' -	t	1023477.52	593443.20	225.27	227.35	21	26	204.27	100 27	* ~	/n
GE-303D	70/01	- -	cť	1023414.81	594003.96	222.37	224.79	35	40	187 37	187 27	 7 r	76
	11/0/	-	cf	1024902.56	597113.79	233.50	235.01	25	35	200 50	100 20	7	47
0E-204D	11/87	*	cf	1025225.65	600201.47	232.00	733.07	36		00-007	00.861	7	42
0C07-30	11/87		cf	1025222.29	600395 95	24100	30 200			00./02	00.741	5	37
GE-206D	11/87		Cf	102512716	30 00009	24.144	00.022	24	34	197.47	187.47	2	35
GE-210S	11/87	,	th of	01.10100001	C0702000	221.32	223.67	24	34	197.32	187.32	2	36.5
GE-210D	11/87			1000001	66.000100	220.11	228.00	10	20	216.11	206.11	2	21
GE-213M	12/87	,	در 1- در	01.4022201	001052.23	226.30	227.61	45	55	181.30	171.30	2	57
0E-213D	12/87		17,41	16.6106201	596047.58	219.23	223.65	5	01	214.23	209.23		1
				0//0100701	596062.16	219.21	224.00	15	25	204.21	194.21	- - -	V C C
										4		*	1 1

GE-Main Plant-Remedial Investigation 38393962.00003/L6230RRevt5_2.xls

Page 6 of 7

MONITORING WELL LIST 2000-2002

GENERAL ELECTRIC SCHENECTADY, NEW YORK

ź

				:			Measuring			Elevation of	ion of		Total
	;			Coordinates	nates	Grade	Point	Screened Interval	Interval	Screened Interval	Interval	Well	Denth of
Web Were	Date	Date	Screened	Northing	Easting	Elevation	Elevation	Top	Bottom	Top	Bottom	Diameter	Boring
	Installed	Abandoned	Formation	(feet)	(feet)	(feet msl)	(feet msl)	(feet bgs)	(feet bgs)	(feet msl)	(feet msl)	(inches)	(feet bgs)
UE-214U	11/8/	-	cf.gl	1024916.91	597705.84	225.02	227.10	22	32	203.02	193.02	2	37
0E-215D	11/87	,	cť	1025003.58	598394 77	229.28	232.29	20	30	209.28	199.28	2	32
<u>05-216D</u>	11/87	*	cf	1025137.17	598985.79	226.29	228.76	25	35	201.29	191 29	6	12
GE-217D	11/87	1	cf	1025184.92	599526.40	225.61	227.54	25	35	200.61	190.61		12
GE-218D	11/87	-	cf	1024948.38	601423.40	221.17	223.59	27	32	194.17	189.17	2	37
0617-20	11/87	+	cf	1024700.06	601851.79	230.00	231.83	15	25	215.00	205.00	2	26
0E-219D	18/	,	cf	1024681.47	601841.93	229.78	231.41	30	40	199.78	189.78	2	42
07-30	/8/71	-	fp,cf	1023652.09	594754.22	223.43	225.42	10	15	213.43	208.43	2	1
UE-771	12/87	•	fp,cf	1024338.64	595397.29	221.76	223.65	10	20	211.76	201.76	2	22
q	10/01		l cf	1025725.58	595298.15	233.83	236.20	25	30	208.83	203.83	4	30
111 100 L		ł			Glo	Glaciolacustrine	6						
CLCUC-MIC	76/6	-	81	1025514.02	598881.93	235.79	238.52	1001	110	135.79	125.79	4	1197
UM-306D	9/92	E	158	1025893.92	599919.16	223.22	225.86	06	110	133.22	113.22	4	117
DM-3061	9/92	+	13 13	1025885.64	599906.48	223.41	226.27	50	72	173.41	151.41	4	74
UN1-211D	16/11	*	[]]	1025032.10	598685.41	234.80	238.00	52	72	182.80	162.80	2	114
DWI-400CFD	4/99		81	1021916.86	599279.46	225.27	227.35	57	72	168.27	153.27	4	64
DU2-4200	00/01	-	18	1021468.31	597523.11	237.51	246.01	20	30	217.51	207.51	2	30
DIA-4230	10/01		120	1022084.42	597355.10	226.81	229.05	4	24	212.81	202.81	2	24
DM-434G	10/1	-	18	1021956.38	596977.63	228.19	230.69	25	35	203.19	193.19	2	35
GE-10	10/0	,		1022350	597317	227.01	229.53	22	27	205.01	200.01	2	27
P-4716-1	100/1	-	50	1024366.00	595394.59	221.31	224.18	35	45	186.31	176.31	1.5	62
P-471G-7	70/0	f	66	SN	SN	NS	SN	13.5	17.5	NS	NS		9.61
P-421G-1	CU/E	1	120	SN	NS	NS	SN	13.5	17.5	NS	NS		8
		-	1 81	SN	NS	NS	NS	13.5	17.5	SN	NS		19.4

Notes:

fr: Fill

fp: Floodplain Deposits

cf: Channel Fill Deposits

gl. Glaciolacustrine Deposits NA: Well destroyed, details not available.

5/30/2003

URS Corporation-New York

Page 7 of 7

GE-Main Plant-Remedial Investigation 38393962.00003/L6230RRevt5_2.xls

NS: not surveyed, details not available Coordinates are relative to New York State Plane East NAD27.

TABLE 7-8

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS FILL AND FLOODPLAIN DEPOSITS JULY 2000 - OCTOBER 2002

GENERAL ELECTRIC SCHENECTADY, NEW YORK

	ew.												
Parameter (µg/L)	Standard' (µg/L)	DM-418FP 12/6/2000	DM-418FP 9/6/2002	DM-419FP 12/1/2000	DM-421FP 12/1/2000	DM-422F	DM-422FP	DM-423F	DM-424FP	GE-28	GE-28	GE-31	GE-31
Acetone	[50]	<10.0	NA	2.70JB	<10	<01>	<10	<10	1007/6/7	NA NA	1002/02/0	NA NA	NA NA
Benzene	I	<10.0	٧N	<10.0	<10	<10	<10	<10	<10	AN	NA	VN	VN
Bromobenzene	5*	NA	NA	NA	AN	NA	NA	NA	NA	l>	NA	12	AN
Bromochloromethane	5*	NA	VN	NA	NA	NA	AN	AN	NA	AN	NA	NA	NA
Bromodichloromethane	[50]	<10.0	1>	<10.0	01>	01>	<10	<10	01>	V		-1×	V
Bromoform	[50]	<10.0	v	<10,0	<10	<10	<10	<10	<10	· īv	NA	V	. VZ
Bromomethane	5*	<10.0	V	<10.0	01>	<10	<10	<10	<10	• 5	NA	1	A N
2-Butanone	[50]	<10.0	NA	<10.0	<10	<10	<10	<10	<10	VN	NA NA	VIN	VN VN
n-Butylbenzene	5*	NA	AN	NA	NA	NA	NA	NA	NA	NA	NA	VIN	VN
sec-Butylbenzene	5*	NA	N A	NA	NA	NA	NA	NA	NA	VAV	N.N.	VN	VN
tert-Butylbenzene	5*	NA	NA NA	AN	NA	NA	NA	VN	NA	VVV	AN A	VN	VN
Carbon Disulfide	,	<10.0	NA	<10.0	<10	01>	<10	<10	210	NIA	VN	VVI VIX	VN
Carbon Tetrachloride	5	<10.0	V	<10.0	~10	017		017		UN		VN.	
Chlorobenzene	5*	<10.0	ī	<10.0		017	01/	017	210		1	v	
Chloroethane	¥¥	2007-	7	0.01		012	01>	<10	<10	-1 ⊳	¶∨	V	1>
Chanter Chanter		10.0	~	<10.0	01>	<10	<10	<10	<10	1.11	1.66	ĪV	17
Chorotoff		<10.0	~	<10.0	<10	<10	<10	<10	<10	<1	4	V	V
Chloromethane	~	<10.0	~	<10.0	<10	<10	<10	<10	01>	V	1>	·	V
2-Chlorotoluene	5*	NA	NA	NA	AN	NA	NA	NA	NA	NA	NA	NA	NA
4-Chlorotoluene	5*	NA	AN	AN	AN	NA	AN	NA	NA	NA	NA	×N	VIN
Dibromochloromethane	[50]	<10.0		<10.0	<10	10	<10	<10				~	AN I
1,2-Dibromo-3-Chloropropane	0.04	NA	AN	NA	NIA	¥ IX			217		7	7	7
1,2-Dibromoethane	•	NA	VIN	VI	YN I	YN.	AN	ΥZ	NA	٨٨	AN	NA	NA
Dibromomethane	**	VIN	112	VNI I	AN	٩N	NA	AN	NA	NA	NA	N A	٧N
1 2. Dichlorohannana	, c	AN AN	NA	AN	AN	NA	NA	NA	NA	۲>	NA	1>	AN
1 3_Dichlorchanzon		NA.		AN	<9.62	<9.52	<9.62	<9.26	NA	Þ	~	-I>	~
1 A Dicklarchanner		AN .	V	NA	<9.62	<9.52	<9.62	<9.26	NA	V	<1	₽	>
		AN .	⊽	NA	<9.62	<9.52	<9.62	<9.26	NA	~	1×		l
UNUING ANTINOTORINANC		AN	2	NA	NA	NA	NA	NA	NA	V	12		V
1 - LICINOTOEINANE	*0	<10.0	⊽	<10.0	<10	<10	<10	<10	<10	2	V		. 12
1,2-LUCHOTOCHARC	0.6	<10.0	v	<10.0	<10	<10	01≥	<10	<10	V	<1	. ₋	
1,1-Lichioroethene	*	<10.0	1	<10.0	01>	<10	<10	<10	<10	V	¦ ⊽	>	. 1.
cis-1,2-Dichloroethene	5*	3.00J	NA	<10.0	100	<10	<10	5.83	<10	· IV	· 17		
trans-1,2-tDichloroethene	5*	1.10.3	NA	<10.0	1.13	<10	<10	01>	<10	1	7		
1.2-Dichloropropane		<10.0	ī>	<10.0	<10	<10	<10	<10	210			7 5	7 7
1,3-Dichloropropane	5*	NA	NA	NA	AN	NA	NA	NA	VN	VN I	VIV	17	7
2,2-Dichloropropane	5*	NA	NA	AN	NA	NA	NA	VIV				¥ 1.1,	VN
1,1-Dichloropropene	×.	NA	NA	NA	NA NA	NA	VN VN	VI	NA	AN 1	VN ;;	AN .	VN
GE-Main Plant-Remedial Investigation	cstigation					UN	YY I	NA I	AN	AN I	AN 1	VN	NA
38393962.00003/ L6230RRevt7_8.xls	vt7_8.xls				Page 3 of 23	of 23					URS C	URS Corporation-New York	ew York
وموجوع بمرجعهم والمعاملة فالمعالمة المالية المراجع والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والم	:											7	417/1814

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS FILL AND FLOODPLAIN DEPOSITS JULY 2000 - OCTOBER 2002

GENERAL ELECTRIC SCHENECTADY, NEW YORK

	6v G												
Parameter (µg/L)	Standard ¹	DM-418FP	DM-418FP	DM-419FP	DM-421FP	DM-422F	DM-422FP	DM-423F	DM-424FP	GE-28	GE-28	GE-31	GE-31
	(Hg/L)	12/6/2000	9/6/2002	12/1/2000	12/1/2000	12/5/2000	12/5/2000	12/6/2000	2/9/2001	8/11/2000	1000/10/8	0000/01/0	1000/06/0
cis-1, J-Dichloropropene	0,4**	<10.0	1>	<10.0	<10	<10	<10	<10	- <10	1/	10771770	0017/01/0	1007/77/0
trans-1,3-Dichloropropene	0.4**	<10.0	-1 >	<10.0	<10	210 VI2	10				8	~	
Ethylbenzene	5*	<10.0	NA	<10.0			01/			-	V		v
Hexachlorobutadiene	0.5	NA	NIA	210 T	017		~10 	₽ V	0[⊽	NA	NA	NA	۸A
2-Hexanone	1501	10.0	WN I	NA	AN	AN	AN	NA	NA	ΝA	NA	٧N	NA
RODINICAL	{ ^ ^ ~	~10.0	AN	<10.0	01>	<10	<10	<10	<10	NA	NA	NA	NA
1.000000000000000000000000000000000000		AN	AN	NA	NA	NA	NA	NA	AN	AN	NA	NA	NA
4-isopropyitomene	*	NA	NA	NA	VN .	NA	AN	NA	NA	V N	NA	VN	VN
Methylene Chloride	5*	<10.0	v	<10.0	<10	01>	<10	012				17	UN I
4-Methyl-2-Pentanone	1	<10.0	NA	<10.0	<10	1012	012			7	1	1	7
MTBE	5	NA	NA	NA	NA	N	VIV	10	~10	AN	AN	AN	AN
Naphthalene	101	NA	NA	VN	-14		44	WA.	NA	ΥN	NA	NA	NA
n-Propylbenzene	5*	NA	NA	VN	AN 11	YN	AN	AN	AN	AN	AN	NA	NA
Styrene	**	2012	212	AN 1	AN	AN	NA	NA	NA	NA	NA	VZ VZ	NA
Tetrachlorowhene	, *	10.0	AN.	<10.0	<10	<10	<10	<10	<10	NA	VN	AN AN	AN
1 1 3. Tatrochloundhair		10,0		<10.0	<10	<10	<10	01>	<10	-	۲	۲ ۲	٦ ا
1 1 7 Tatrachian th		NA	٧N	NA	NA	AN	AN	NA	VN	[>	۲>	· -	1
1,1,4,4,4 - 1 501 aC 1001 OC 17 APC	÷.	<10.0	7	<10.0	<10	<10	01>	01>	<10	>	V		
100000	*	<10.0	AN	<10.0	<10	<10	<10	<10	<10	VN	NA	N N	VIN
1,2,3-1 fichlorobenzene	\$*	NA	NA	NA	AN	AN	AN	AN	NA	VIV	NN	VN	VN I
1,2,4-Inchlorobenzene	5*	NA	NA	NA	AN	AN	NA	VN	VIN VIN		21	YN .	AN
1,1,1-Trichloroethane	ن ہ	<10.0	1>	<10.0	<10	01/			W M	AN	AN	NA	NA
1,1,2-Trichloroethane	1	<10.0	·	<10.0		017	012	4,1	<10	-1	</td <td><ا</td> <td>V</td>	<ا	V
Trichloroethene	5*	21.0	El	210.0	012	01>	<10	01>	01>	V	1>	⊳	[>
Trichlorofluoromethane	5*	NA		~10.0	39	012	<10	57	<10	<1	l>		V
1,2,3-Trichloropropane	0.04	NA	VIE	NA	AN I	٧N	NA	NA	NA	1>	١>	Ţ	1>
1,2,4-Trimethylbenzene	**	V I V	VN VN	VN i	AN	٨٨	ΝA	NĂ	٧N	V	<1	V	12
1,3,5-Trimethylbenzene	×\$	VIN	AN .	AN 1	ΥN	٧N	NA	NA	AN	NA	NA	VN	NA
Vinyl Chloride		<10.0	AN I	NA.	NA	νv	NA	NA	NA	NA	NA	NA	NA
m&p-Xylene		<10.0	NIN I	<10.0	2.31	9	01>	<10	<10	V	4	⊽	v
o-Xylene	**	<10.0		>10.0	01>	01∨	<10	<10	<10	٨٨	NA	ΥN	NA
Xvlene	*	NA	WN I	<10.0	01>	<10	<10	<10	<10	VN	NA	NN N	NA
Total VOCs		721	VVI 12 0	AN	νA	AN	NA	NA	NA	NA	NA	NA NA	NA
Total CVOCs		35.1	0.01		142	QZ	QN	66.8	QN	1.11	1.66	QZ	Q
Total BTEX	,	NN	1.4		142	Q	Q	66.8	Q	11.1	1.66	QN	QN
Total Chlorobenzenes	-	un	AN		Q	Ê	QN	QN	QN	NA	٨N	NA	AN N
Total Chloroethenes		12	011		Q	Q	QN	an	ND	QN	QN	QN	QN
		1.5- 1	0.61	an	142	QN	QN	62.8	QN	UN	QN		
												110	

GE-Main Plant-Remedial Investigation 38393962.00003/ L6230RRevt7_8.xls

Page 4 of 23

TABLE 7-8

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS FILL AND FLOODPLAIN DEPOSITS **VOLATILE ORGANIC COMPOUNDS** JULY 2000 - OCTOBER 2002

SCHENECTADY, NEW YORK **GENERAL ELECTRIC**

Notes:

NA: Indicates parameter was not analyzed for.

ND: Indicates parameter was not detected.

<: Indicates parameter was not detected at the quantitation limit shown. J: Indicates an estimated concentration.

B: Indicates the parameter was detected in the laboratory blank.

*: Indicates that the principal organic contaminant for groundwater

of 5 μ g/L applies to this substance.

**. Indicates that the standard applies to the sum of these substances.

]: Indicates a Guidance Value.

Shaded cells indicate a concentration that exceeds the NYSDEC GW Standard. Bold values indicate a concentration detected above the quantitation limit. I. New York State Groundwater Quality Standard from Division of Water Technical and Operational Guidance Series (NYSDEC, TOGS 1.1.1) See Table 5-4 for method of analysis.

VOCs: Volatile Organic Compounds

BTEX: Benzene, Ethylbenzene, Toluene, & Xylene CVOCs: Chlorinated Volatile Organic Compounds

> GE-Main Plant-Remedial Investigation 38393962.00003/L6230RRewt7_8.xls

Page 23 of 23

1
BLE
Z

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS CHANNEL FILL AND GLACIOLACUSTRINE DEPOSITS JULY 2000 - NOVEMBER 2002

GENERAL ELECTRIC SCHENECTADY, NEW YORK

						NUMBER OF THE PARTY OF THE PART	NNO					
	PARAMETER (110/1.)	ever 1									DM-432CF	
		Standard' (µg/L)	DM-421G 6/4/2002	DM-422CF 12/5/2000	DM-423CFS 17/6/2000	DM-423CFD	DM-424CF	DM-425CF	DM-431CF	DM-432CF	Duplicate	DM-432CF
	Acetone	[[50]	NA	1.2JB	<10	<10	<1012/212	NU4/CI/Q	10/0/2	2/7/2001	2/7/2001	9/18/2001
5° MA <	Benzene	1	NA	<10	<10	<10	<10	20.7	200V	ULC.	VVI	NA
	Bromobenzene	5*	NA	NA	NA	VN	NA		NA	NA	VN	NA
	Bromochloromethane	5*	NA	NA	AN	NA	NA	¥1 ×		VN	AN .	<pre>></pre>
	Bromodichloromethane	[50]	~	<10	<10	-10 -10	017	PN IV	NA 0.00	AN	N N	٨N
j_{ij} NA $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < [0]$ $< < < [0]$	Bromoform	[50]	AN	< 0	01>	012	01/	7 5	0.012	01>	٩N	<]
	Bromomethane	- 2*	NA	<10	<10	017	210	7	<10.0	<10	NA	<1
	2-Butanone	[50]	NA	<10	012	10	<10		<10.0	<10	NA	<1
	n-Butylbenzene	5*	AN	VIV	01/	<10	<10	AN	<10.0	<10	NA	NA
	sec-Butvihenzene	, w **	VN	NA	AN	AN	NA	NA	NA	NA	NA	NA
	tert-Butvhenzene	**	VN VN	NA	NA	NA	NA	NA	NA	٨٨	NA	NA
	Carbon Disulfida		NA	AN	AN	NA	NA	NA	VN	٧V	NA	NA
	Carbon Tetrachloride	: 4	AN .	<10	<10	<10	<10	NA	<10.0	<10	NA	NA
	Carvor 1 cuacinghue	с ж и	7	<10	<10	<10	<10	1>	<10.0	<10	NA	1×
	Chorothers		~	<10	<10	<10	<10	<1>	<10.0	<10	NA	. r
	2. Choroathulidadeo-			<10	<10	<10	<10	36.6	<10.0	<10	VN	1>
		-	V	NA	NA	NA	NA	NA	NA	NA	NIA	NT A
	Chlorotorm	2	⊽	<10	<10	<10	<10	1>	<10.0	<10	VN	VV
5^{*} NA <	L HINTOMETHANE	-	i∨	<10	<10	<10	<10	[>	<10.0	012	214	
5^* NA NA <th< td=""><td>2-Chlorotoluene</td><td>5*</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>VIV.</td><td>14</td><td>7</td></th<>	2-Chlorotoluene	5*	NA	NA	NA	NA	NA	NA	NA	VIV.	14	7
	4-Chierototuene	5*	NA	NA	NA	AN	NA	VN	VIV	WN TR	V N	VN
	Dibromochloromethane	[[50]	⊽	<10	<10	<10	012	221	NA 10.0	AN	V N	NA
	1.2-Dibromo-3-Chloropropane	0.04	NA	NA	NA	NN		7	~10.0	<10	VN	١٧
\circ NA N	1,2-Dibromoethane	÷	NA	NA	NA		NA	AN	AN	٨٨	٧N	NA
3 <1 (2)	Dibromomethane	5*	NA	NA	NA	VN	AN .	AN	AN	AN	٩N	NA
3 <1 < 0.26 < 0.35 < 0.43 < 0.43 < 0.43 < 0.43 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26	1,2-Dichlorobenzene	~	~	<0.76	20.75	CY 0/	NA	>	NA	NA	VN	v
3 <1 <926 <935 <943 NA <1 NA <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <920 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <926 <	1.3-Dichlorobenzene	~	V	<9.26	<0.35	-9.43 -0.43	NA	V	AN	<9.26	<9.26	<1
6^{+} <1 NA NA $14.5B$ $17B$ $17B$ 6^{+} <1 NA NA <t< td=""><td>1,4-Dichlorobenzene</td><td>3</td><td>V</td><td><9.76</td><td>×0.25</td><td>04 0/</td><td>AV.</td><td>12</td><td>NA</td><td><9.26</td><td><9.26</td><td>١></td></t<>	1,4-Dichlorobenzene	3	V	<9.76	×0.25	04 0/	AV.	12	NA	<9.26	<9.26	١>
0^{+} <1 \cdot <	Dichlorodifluoromethane	5*		NA	VIN	04.67	VN	V	AN	14.5B	17B	~
(6) <1 (0) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 >10 >10 >10 >10 <10 <10 >10 <th< td=""><td>1, 1-Dichloroethane</td><td>5*</td><td>V</td><td><10</td><td>01/</td><td>V.</td><td>AN</td><td>V</td><td>NA</td><td>NA</td><td>٧V</td><td>~</td></th<>	1, 1-Dichloroethane	5*	V	<10	01/	V.	AN	V	NA	NA	٧V	~
5* 2 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	1,2-Dichloroethane	0.6		<10	01/	012	<10	⊽	<10.0	<10	٧N	1.92
5* NA <10 <10 <10 <10 <10 <10 <10 <10 <10 NA $5*$ NA <10 <10 <10 <10 <10 <10 <10 <10 NA $5*$ NA <10 <10 <10 <10 <10 <10 NA NA $5*$ 1500 NA NA <t< td=""><td>1,1-Dichloroethene</td><td>5*</td><td>2</td><td>~10</td><td>01/</td><td>210</td><td><10</td><td><u>ا></u></td><td><10.0</td><td><10</td><td>٧N</td><td><1</td></t<>	1,1-Dichloroethene	5*	2	~10	01/	210	<10	<u>ا></u>	<10.0	<10	٧N	<1
5* NA <10 10 11 <1 <10.0 46 NA <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 </td <td>cis-1,2-Dichloroethene</td> <td>5*</td> <td>NA</td> <td><10 <10</td> <td>210</td> <td>01s</td> <td><10</td> <td><1</td> <td><10.0</td> <td><10</td> <td>NA</td> <td>V</td>	cis-1,2-Dichloroethene	5*	NA	<10 <10	210	01s	<10	<1	<10.0	<10	NA	V
5* 1500 NA NA 2.90 <1 <10.0 <10 NA NA 1 <1	trans-1,2-Dichloroethene	5*	NA	<10	10	5		~	<10.0	46	νv	95.8
I <1 <10 <10 <10 <10 <10 <10 <10 NA <	1,2-Dichloroethene, total	5*	1500	NA	NA	212	7.9.1	⊽	<10.0	<10	νv	V
A C C C C C C C C C C C C C C C C C C C	1,2-Dichloropropane			V12	AN 10	AN AN	AN	NA	NA	NA	٧N	NA
				712	212	<10	<10	V	<10.0	<10	NA	~

38393962.00003/ L6230RRevt7_9.xls

Page 13 of 27

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS CHANNEL FILL AND GLACIOLACUSTRINE DEPOSITS JULY 2000 - NOVEMBER 2002

GENERAL ELECTRIC SCHENECTADY, NEW YORK

PARAMETER (110/1.)	GW Steadard ¹									DM-432CF	
(rs Br) was a second as	(µg/L)	DM-421G 6/4/2002	DM-422CF 12/5/2000	DM-423CFS 12/6/2000	DM-423CFD 12/6/2000	DM-424CF	DM-425CF	DM-431CF	DM-432CF	Duplicate	DM-432CF
l,3-Dichloropropane	5*	NA	NA	NA	NA	NA	VA /	NA NA	1007///7	NA NA	1007/01/A
2,2-Dichloropropane	5*	NA	NA	NA	NA	NA	NA	NA	NA	AN	AM
l, l-Dichloropropene	5*	NĂ	NA	NA	AN	AN	NA	NA	NA	AN	NA
cis-1,3-Dichloropropene	0.4**	7	<10	<10	<10	<10		<10.0	01>	NA	V
trans-1,3-Dichloropropene	0.4**	V	<10	<10	<10	<10	-1>	<10.0	<10	NA NA	1
Ethylbenzene	5*	٨٨	<10	<10	<10	<10	-1>	<10.0	<10	NA	NA
2-Hexanone	[50]	NA	<10	<10	<10	<10	NA	<10.0	<10	NA	AN
Isopropylbenzene	5*	NA	NA	NA	NA	NA	NA	×z	NA	A N	NAN
4-Isopropyltoluene	5*	NA	NA	NA	AN	NA	NA	AN	NA	NA	AN
Methylene Chloride	5*	٩	<10	<10	<10	<10	<	<10.0	<10	VN	12
4-Methyl-2-Pentanone	1	NA	<10	<10	<10	<10	NA	<10.0	012	VN	VN
MTBE	. 2	NA	NA	NA	NA	NA	VN	A IA	~~~		
n-Propylbenzene	5*	NA	NA	AN	NA	NA	VN	VI	VN	VN .	NA NA
Styrene	5*	NA	<10	210	<10	-10 -	VI	0 0 1 V	VN	VN.	AN
Tetrachloroethene	5*	<1>	<10	<10	<10		1	10.0	012	YN	ΥN
1,1,1,2-Tetrachloroethane	5*	NA	NA	NA	VN	21×	7 1	~10.0	~!N	AN	V
1,1,2,2-Tetrachloroethane	5*	- -	<10	1.01	017	er.		AN	VN	٨N	√
Toluene	, v * v	NA	017	012	<10	<10	l≻	<10.0	<10	N A	₹
1.1.1-Trichloroetbane	, *	1200	012	015	<10	<10	1>	<10.0	<10	٧N	NA
1.1.2. Trichloroethane	-	MCT	210	01¢	<10	<10	<1>	<10.0	<10	٧N	V
Trichlorethane	**		<10	01>	<10	<10	<1	<10.0	<10	٧N	~
Trichlorofhioromathana	- *	7	<10	<10	<10	<10	<1	<10.0	<10	V N	<1>
1 3 2. Trickformunant		7	AN	NA	NA	NA	۲	NN	VN	NA NA	V
1.7 4. Trimethylbenzene	+0'0	AN .	AN	AN	AN	NA	1>	NA	NA	٧N	~
1,3.5-Trimethylbenzene	**	VN	NA	VN	AN	NA	NA	NA	NA	٧N	VN
Vinvl Chloride		7	AVI 012	AN	AN	NA	NA	NA	NA	NN	AN AN
m&p-Xvlene	- **	NA	210	ं हा	<10	<10	⊲1	<10.0	11	VN	37.9
o-Xvlene	**	VN	017	210	<10	<10	!>	<10.0	<10	AN NA	NA
Xvlene	*	VN	012	01>	<10	<10		<10.0	<10	٧N	NA
Total VOCs		0101	VN	AN	NA	NA	NA	NA	NA	NA	NA
Total CVOCs		1 010		13.0	1.00	13.9	36.6	QN	57.0	QN	136
Total BTEX		NA.	av	13.0	1.00	13.9	36.6	QN	57.0	QN	136
Total Chlerobenzenes		CIN I	QN 4	Q	QN	QN	ND	QN	an	NA	NA
Total Chloroethenes		1510		00	QN	QN	QN	UD	an	QN	az
		1910	AN	13.0	1.00	13.9	QN	an	57.0	NA	134

GE-Main Plant-Remedial Investigation 38393962.00003/ L.6230RRevt7_9.xls

Page 14 of 27

7-9
TABLE

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS CHANNEL FILL AND GLACIOLACUSTRINE DEPOSITS JULY 2000 - NOVEMBER 2002

GENERAL ELECTRIC SCHENECTADY, NEW YORK

						WINI MARI (INCLOSED)	~~~						
	GW												ſ
PARAMETER (µg/L)	Standard ¹	GE-210S	GE-210D	GE-210D	GE-213M	GE-213M	GE-213M	GE-213D	GE-213D	GE-213D	GE-214D	GE-214D	GE-214D
	17/271	0/4/7000	8/4/2000	8/21/2001	8/4/2000	8/27/2001	9/23/2002	8/4/2000	8/27/2001	9/23/2002	7/11/2000	8/78/7001	0/10/01/0
Actuate	[nc]	2.25J	AN	NA	NA	NA	NA	NA	AN '	NA	NA	NA	NA
Benzene		<10	NA	AN	NA	NA	NA	VN	NA	NA	NI A		
Bromobenzene	5*	٨٨	V	NA	1>	NA	NA		VN	A M	UN S	1	YN .
Bromochloromethane	5*	NA	AN	NA	NA	NA	VN	NN N	~17	VN VN	7	AN .	AN
Bromodichloromethane	[50]	01>	V	V	l>	1.11 × 1	ç, î	VN N	YN .	AN	VN	AN	NA
Bromoform	1501	01>		NA	7 7	7	7	V	v	V	V	1>	1
Bromomethane	5*	<10	, ,		7 5	NA	V	-	٨٨	1⊳	1	NA	~
2-Butanone	1501	<10	7 2	VV.	17	AN		⊽	NA	ľ	V	٧N	V
n-Butylbenzene	5*	NA		AN AN	AN Y	AN	AN	NA	NA	NA	NA	NA	AN AN
Sec-Butylhenzene	**		VN I	VZ ,	AN	NA	NA	NA	NA	NA	NA.	NA NA	NA
tert-Butvibenzene	**	NA	¥2	VN.	NA	NA	NA	٨A	NA	NA	AN	AN N	AN
Carbon Disulfida		AN 212	AN	NA	NA	NA	NA	NA	AN	AN	AN	AN	VN
Carbon Tatmoblogia		~10	AN	٩N	NA	NA	VN	NA	NA	AN	NA	VN	VIV
Chine 1 cuacilloride		<10	12	٦	₽		1	V	t≥	17	17	VN.	VVI
Lniorobenzene	5*	<10	1v	v	V	12	1>	1	; ;	7	12	12	~
Chloroethane	5*	01>	٦ ۲	V	· 12	- 1	7 1	75	7	V	49.5	45.3	56
2-Chloroethylvinylether	1	NA	AN	٩N	NA	111	75	7	V	V	<1	ī⊽	V
Chloroform	7	<10	V	1	5	AN .	~	AN	٨N	ŗ	VN	٨N	V
Chloromethane	÷	01>	; ;	7 7	7	[×	V	\overline{v}	₹.	I۷	I>	V	V
2-Chlorotoluene	5*	NA		114	i si	1>	√	V	1>	₽ V	, V	V	
4-Chlorotoluene	*5	VN		AN .	AN	NA	AN	NA	NA	٩N	NA	VN	NA
Dibromochloromethane	1051	012	AN .	AN .	ΥN	NA	NA	NA	NA	NA	NA	NA	NA
1.2-Dibromo-3-Chloropronane	0.04		7	7	⊽	4	⊽	V	V	I∨		V	12
1.2-Dibromoethane	10.0	AN A	AN	AN	NA	NA	NA	NA	NA	AN	NA	. VN	VN
Dibromomethane	**	AN AN	AN	AN AN	NA	NA	NA	NA	NA	AN	NA	VN	VN
1,2-Dichlorobenzene	, ~		7	AN I	⊽	NA	NA	17	NA	٧N	Į.	AN	VN
1,3-Dichlorobenzene		νN	7	7		⊽		</td <td>1</td> <td><1</td> <td> ></td> <td></td> <td></td>	1	<1	>		
I,4-Dichlorobenzene	~	N.A	7	7	ž	>	۲	v	⊽	1	2.55	3.5	·
Dichlorodifluoromethane	5*	AN	7	7			l>	⊽	V	V	9.51	9.23	
1,1-Dichloroethane	5*	<10	7			V	l≻	1>	1>	ī	l>	12	
1,2-Dichloroethane	0.6	01>		7	V	₽	١٧	~	₽	<u>ا></u>	2	- 12	
1.1-Dichloroethene	\$*	017	7	7	⊽	<ا	v	⊽	V	Ī	1		
cis-1.2.Thehlarowhone		012	V	⊽	!>	Þ	١٧		V	. 12	7 7	7 5	7
trane-1 9. Dicktoweath		01×	l⊽	1⊳	₽	l>		V		; -	7	17	v
1 7 DUCK		<10	1	₽	⊽	V	V			-	13.2	7.65	7
1,2°LUCHIOTOCINENC, total	5*	AN	AN	AN	AN	NA	VIN	7	7	7	V	7	7
1,2-Dichloropropane	-	<10	l ₽	l≏	V	1>		VN V	NA	V N	٨٨	NA	NA
GE-Main Plant-Remedial Investigation	autimation.							7	V	₩	V	v	ī∨
20203063 AMAGAINTRAILEAN	csuganon												

GE-Main Plant-Remedial Investigation 38393962.00003/ L6230RRevt7_9.xls

Page 21 of 27

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS CHANNEL FILL AND GLACIOLACUSTRINE DEPOSITS JULY 2000 - NOVEMBER 2002

GENERAL ELECTRIC SCHENECTADY, NEW YORK

		<u> </u>											
PARAMETER (119/L.)	GW Standard ¹	3011 a.C											
	(µg/L)	GE-2105 8/4/2000	GE-210D 8/4/2000	GE-210D 8/21/2001	GE-213M 8/4/2000	GE-213M 8/27/2001	GE-213M 9/23/2002	GE-213D 8/4/2000	GE-213D 8/27/2001	GE-213D 9/23/2002	GE-214D 7/31/2000	GE-214D 8/28/2001	GE-214D 9/10/2002
1,3-Dichloropropane	5*	NA	NA	NA	NA	NA	NA	NA	- NA	NA	NA	NA	NA
2,2-Dichloropropane	5*	NA	NA	NA	NA	NA	NA	VN	NA	٧N	NA	NA	NA
1,1-Dichloropropenc	5*	٧V	NA	NA	NA	NA	NA	NA	٧N	VN	NA	NA	NA
cis-1,3-Dichloropropene	0,4**	01>	<1	⊽	V	7	V	V	17	V		7	<1>
trans-1,3-Dichloropropene	0.4**	<10	1>	Ę>	~	l>	V	-1	~1~	1	1>	V	Īv
Ethylbenzene	5*	<10	AN	NA	AN	VN	NA	NA	AN	NA	NA	AN	NA
2-Hexanone	[50]	<10	AN	ΝA	NA	NA	NA	NA	AN AN	NA	NA	AN	NA
Isopropylbenzene	5*	NA	NA	NA	NA	٨٨	NA	AN	AN	AN	VN	AN	NA
4-Isopropyltoluene	5*	٧N	NA	NA	NA	ΝA	NA	NA	NA	VN	NA	AN	NA
Methylene Chloride	5*	<10	١>	Ţ.	1	1>	۲.	V	V	~	۲ ۲	v	īv
4-Methyl-2-Pentanone	3	<10	NA	NA	NA	NA	NA	NA	NA	NA	NA	AN AN	NA
MTBE	,	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
n-Propylbenzene	5*	٧N	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Styrene	<i>5</i> *	<10	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	جي *	<10	1>	1>	₽	V	<1>	V	-v	4	V	V	1>
1,1,1,2-Tetrachloroethane	*5	NA	<1>	1>	~	~	NA	1>	1>	NA		l∨ V	NA
1,1,2,2-Tetrachloroethane	5*	<10	1>	!>	<1>	-1>	V	1>	1>	7	~	v	1>
Toluene	5*	<10	NA	NA	NA	NA	NA	NA	NA	AN	NA	NA	AN
1,1,1-Trichloroethane	5*	<10	V	<1	<۱>	17	12	V	L.	₽		v	V
1,1,2-Inchloroethane	-	0 >	~	V	<u>.</u>	<1	2	<1	1>	1>		Ī	l>
1 richloroethene	5*	<10	.⊽	~1	1>	1>	۶	1>	Ţ.	1>	<1	v	Ī
I richlorolluoromethane	5*	AN	7	v	۲	<ا	1>	٦	1>	12	Þ	V	$\overline{\mathbf{v}}$
1,2,3-1richloropropane	0.04	٩N	v	~	√1	1>	NA	4	1>	NA	~	12	VN
1,2,4-11methylbenzene	*	AN	NA	AN	AN	NA	NA	NA	NA	NA	NA	NA	NA
1,2,5-1 rimeinyibenzene	*°	VN VN	٨٨	AN	NA	NA	NA	NA	NA	NA	AN	AN	NA
Vinyi Chionde	7	01>	V	⊽	⊽	<1	<1	l⊳	2	1>	14.4	18.4	10
mœp-Ayiene	*	01>	٧N	NA	٨٨	۸A	NA	NA	NN	NA	VN	VN	VN
0-Aytene		<10	۸N	AN	٨٨	AN	AN	NA	NA	NA	VN	VN	AN
Ayiene	<u></u>	AN	۷N	۷۷	AN	NA	NA	NA	NA	NA	NA	NA	NA
LOGAL VUCS	-	2.25	Ð	g	Q	QN	QN	QN	1.11	1.00	89.2	83.1	84.0
Total RTEV	•		av 1	QN II	Q	QN	QN	QN	1.11	1.00	89.2	83.1	84.0
Total Chlorobenzenes	* *		VN HN	AN	AN	VN VN	AN ***	VN N	AN	VN	٧N	NA	NA
Total Chlaraethenes					a		a	02	QN	ND	61.6	57.0	67.0
	*		an T		ND		av	Ø	1.1	1.00	27.6	26.1	17.0

GE-Main Plant-Remedial Investigation 38393962.00003/ L6230RRevt7_9.xls

URS Corporation-New York 5/30/2003

TABLE 7-9

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS CHANNEL FILL AND GLACIOLACUSTRINE DEPOSITS JULY 2000-NOVEMBER 2002

GENERAL ELECTRIC SCHENECTADY, NEW YORK

Notes:

NA: Indicates parameter was not analyzed for.

ND: Indicates parameter was not detected.

c: Indicates parameter was not detected at the quantitation limit shown.

J: Indicates an estimated concentration. B: Indicates the parameter was detected in the laboratory blank.

*: Indicates that the principal organic contaminant for groundwater

of 5 μ g/L applies to this substance. **: Indicates that the standard applies to the sum of these substances.

[]: Indicates a Guidance Value.

 New York State Groundwater Quality Standard from Division of Water Technical and Operational Guidance Series (NYSDEC, TOGS 1.1.1) Bold values indicate a concentration detected above the quantitation limit. Shaded cells indicate a concentration that exceeds the NYSDEC GW Standard. See Table 5-4 for method of analysis. VOCs: Volatile Organic Compounds CVOCs: Chlorinated Volatile Organic Compounds

BTEX: Benzene, Ethylbenzene, Toluene, & Xylene

GE-Main Plant-Remedial Investigation 38393962.00003/L6230RRevt7_9.xls

Page 27 of 27

0
7-1
ę
B
TA

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS SEMI VOLATILE ORGANIC COMPOUNDS FILL AND FLOODPLAIN DEPOSITS SEPTEMBER 2000 - SEPTEMBER 2001

GENERAL ELECTRIC SCHENECTADY, NEW YORK

	NYSDEC									GE-116
PARAMETER (µg/L)	Groundwater	DM-421FP	DM-422F	DM-422FP	DM-423F	GE-103	GE-105	GE-108	GE-116	Duplicate
	Standard ¹ (µg/L)	12/1/2000	12/5/2000	12/5/2000	12/6/2000	11/1/2000	11/1/2000	11/2/2000	11/1/2000	11/1/2000
Acenaphthene	[20]	<9.62	<9.52	<9.62	<9.26	5.773	<10.8	<10.4	2.27J	1.67.J
Acenaphthylene		<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<11.5
Anthracene	[50]	<9.62	<9.52	<9.62	<9.26	9.41J	, <10.8	<10.4	<9.80	<11.5
Benzo(a)anthracene	[0.002]	<9.62	<9.52	<9.62	<9.26	8.11.J	<10.8	<10.4	1.17J	<11.5
Benzo(a)pyrene	[0.002]	<9.62	<9.52	<9.62	<9.26	156.9	<10.8	<10.4	1.14J	<11.5
Benzo(b)fluoranthene	[0.002]	<9.62	<9.52	<9.62	<9.26	11.4	<10.8	<10.4	1.37J	<11.5
Benzo(g,h,i)perylene		<9.62	<9.52	<9.62	<9.26	6.02.1	<10.8	<10.4	<9.80	<11.5
Benzo(k)fluoranthene	[0.002]	<9.62	<9.52	<9.62	<9.26	3.60J	<10.8	<10.4	<9,80	<11.5
4-Bromophenyl-phenylether	ł	<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<11.5
Butylbenzylphthalate	[50]	<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<11.5
Carbazole		<9.62	<9.52	<9.62	<9.26	1.44J	<10.8	<10.4	<9.80	<11.5
4-Chloroaniline	5*	<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<11.5
bis(2-Chloroethoxy)methane	5*	<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<11.5
bis(2-Chloroethyl)ether	1.0	<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<11.5
bis(2-Chloroisopropyl)ether	F	<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<11.5
4-Chloro-3-methylphenol		<9.62	NA	NA	NA	NA	NA	NA	N A	NA
2-Chloronaphthalene	[01]	<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<11.5
2-Chlorophenol	*	<9.62	NA	NA	NA	NA	NA	NA	AN	NA
4-Unlorophenyl-phenylether		<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<11.5
Chrysene	[0.002]	<9.62	<9.52	<9.62	<9.26	7.56J	<10.8	<10.4	1.173	<11.5
Ulbenzo(a,h)anthracene		<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<11.5
Dibenzoluran	3	<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<11.5
Di-n-butylphthalate	50	<9.62	<9.52	<9.62	<9.26	3.27J	<10.8	<10.4	1.10J	<11.5
3,3'-Dichlorobenzidine	S*	<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<11.5
Z,4-Dichlorophenol	5*	<9.62	NA	NA	ŇA	NA	NA	AN	NA	NA
Dietnyiphthalate	[50]	<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<11.5
2,4-Dimethylphenol	[50]	<9.62	NA	NA	NA	NA	NA	NA	AN	NA
								-		ļ

GE-Main Plant-Remedial Investigation 38393962.00003/L6230RRevt7_10.xls

Page 1 of 15

URS Corporation-New York 5/30/2003

0
1-
3
BI
\mathbf{A}
[

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS SEMI VOLATILE ORGANIC COMPOUNDS FILL AND FLOODPLAIN DEPOSITS SEPTEMBER 2000 - SEPTEMBER 2001

GENERAL ELECTRIC SCHENECTADY, NEW YORK

	NSDEC									711 40
PARAMETER (ug/L)	Groundwater	DM-421FP	DM-422F	DM-422FP	DM-423F	GE-103	GE-105	CF_108	CE-116	Dunlicate
	Standard ¹ (µg/L)	12/1/2000	12/5/2000	12/5/2000	12/6/2000	11/1/2000	0002/1/11	11/2/2000	0002/11/11	11/1/2000
Dimethylphthalate	[50]	<9.62	<9.52	1.55J	<9.26	<10.2	<10.8	<10.4	<9.80	<11.5
4,6-Dínitro-2-Methylphenol	+	<9.62	NA	NA	NA	NA	NA	NA	NA	NA
2,4-Dinítrophenol	[10]	<9.62	NA	NA	NA	NA	NA	NA	NA	NA
2,4-Dinitrotoluene	5*	<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<11.5
2,6-Dinitrotoluene	5*	<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<11.5
Di-n-octylphthalate	[50]	<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<11.5
bis(2-Ethylhexyl)phthalate	5	2.39J	4.47.J	14.3	14 C	16.9	<10.8	<10.4	4.14.1	<11.5
Fluoranthene	[50]	<9.62	<9.52	<9.62	<9.26	14.0	<10.8	<10.4	2.61.3	<11.5
Fluorene	[50]	<9.62	<9.52	<9.62	<9.26	12.4	<10.8	<10.4	<9.80	<11.5
Hexachlorobenzene	0.04	<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<11.5
Hexachlorobutadiene	0.5	<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<11.5
Hexachlorocyclopentadiene	5*	<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<11.5
Hexachloroethane	\$*	<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<11.5
Indeno(1,2,3-cd)pyrene	[0.002]	<9.62	<9.52	<9.62	<9.26	4,60J	<10.8	<10.4	<9.80	<11.5
Isophorone	[50]	<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<11.5
2-Methylnaphthalene		<9.62	<9.52	<9.62	<9.26	5.49J	<10.8	<10.4	47.9	<11.5
2-Methylphenol	1	<9.62	NA	NA	NA	NA	NA	NA	ΝA	NA
4-Methylphenol	L	<9.62	NA	NA	AN	NA	NA	NA	NA	NA
Naphthalene	[10]	<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<11.5
Z-Nitroaniline	5*	<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<11.5
3-Nitroaniine	5*	<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<11.5
4-Nitroaniline	5*	<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<115
Nitrobenzene	0.4	<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<115
Z-NITrophenol		<9.62	NA	NA	NA	NA	NA	NA	AN	NA
4-Nitrophenol		<9.62	NA	ŅA	NA	NA	NA	NA	NA	VIN
n-Nitrosodiphenylamine	[50]	<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<0 80	×11>
n-Nitrosodi-n-propylamine	*	<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<115

GE-Main Plant-Remedial Investigation 38393962.00003/L6230RRevt7_10.xls

URS Corporation-New York 5/30/2003

Page 2 of 15

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS SEMI VOLATILE ORGANIC COMPOUNDS SEPTEMBER 2000 - SEPTEMBER 2001 FILL AND FLOODPLAIN DEPOSITS

SCHENECTADY, NEW YORK **GENERAL ELECTRIC**

	NYSDEC									GE-116
PARAMETER (µg/L)	Groundwater	DM-421FP	DM-422F	DM-422FP	DM-423F	GE-103	GE-105	GE-108	GE-116	Duplicate
	Standard ¹ (µg/L)	12/1/2000	12/5/2000	12/5/2000	12/6/2000	11/1/2000	11/1/2000	11/2/2000	11/1/2000	11/1/2000
Pentachlorophenol	+++	<9.62	NA	NA	NA	NA	NA	NA	VN	NA
Phenanthrene	[50]	<9.62	<9.52	<9.62	<9.26	14.0	<10.8	<10.4	2.12.)	<11.5
Phenol	**[<9.62	NA	NA	NA	NA	NA .	NA	NA	NA
Pyrene	[50]	<9.62	<9.52	<9.62	<9.26	19.5	<10.8	<10.4	1.90J	<11.5
1,2,3-Trichlorobenzene	5*	NA	NA	NA	AN NA	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	5*	<9.62	<9.52	<9.62	<9.26	<10.2	<10.8	<10.4	<9.80	<11.5
2,4,5-Trichlorophenol		<9.62	NA							
2,4,6-Trichlorophenol	ŀ	<9.62	NA							
Total SVOCs	F	2.39	4.47	15.9	14.0	153	Q	QN	6.99	1.67
Total PAHs		QN	QN	QN	QN	132	QN	DN	61.7	1.67

Notes:

NA: Indicates parameter was not analyzed for.

ND: Indicates parameter was not detected.

<: Indicates parameter was not detected at the quantitation limit shown.

J: Indicates an estimated concentration.

*: Indicates that the principal organic contaminant for groundwater of 5 μ g/L applies to this substance.

**. Indicates that the standard applies to the sum of these substances.

[]: Indicates a Guidance Value,

Shaded cells indicate a concentration that exceeds the NYSDEC GW Standard. I. New York State Groundwater Quality Standard from Division of Water Bold values indicate a concentration detected above the quantitation limit. Technical and Operational Guidance Series (NYSDEC, TOGS 1.1.1) SVOCs: Semivolatile Organic Compounds PAHs: Polycyclic Aromatic Hydrocarbons See Table 5-4 for method of analysis.

> GE-Main Plant-Remedial Investigation 38393962.00003/L6230RRevt7_10.xls

URS Corporation-New York

5/30/2003

Page 3 of 15

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS SEMIVOLATILE ORGANIC COMPOUNDS CHANNEL FILL AND GLACIOLACUSTRINE DEPOSITS NOVEMBER 2000 - FEBRUARY 2001

GENERAL ELECTRIC

			SCHE	SCHENECTADY, NEW YORK	NEW YORH					
	NYSDEC			DM-421G					DM-432CF	
PARAMETER (µg/L)	GW Standard ¹	DM-420G	DM-421G	Duplicate	DM-422CF	DM-423CFS	BM-423CFD	DM-432CF	Duplicate	DM-433G
	(μg/L)	11/30/2000	12/1/2000	12/1/2000	12/5/2000	12/6/2000	12/6/2000	2/7/2001	2/7/2001	2/8/2001
Acenaphthene	[20]	<9.8	<9.8	<10	<9.26	<9.35	<9.43	385	30 513	AT TR
Acenaphthylene		<9.8	≤9.8	<10	<9.26	<9.35	<9.43	<9.26	<0.26	<0.8
Anthracene	[50]	<9.8	8.6>	<10	<9.26	<9.35	<9.43	<9.26	<9.76	<0.8 8 0>
Benzo(a)anthracene	[0.002]	8,6>	<9.8	<10	<9.26	<9.35	<9.43	<0.05	<u> </u>	802
Benzo(a)pyrene	[0.002]	<9.8	<9.8	<10	<9.26	<9.35	<9.43	<9.26	<9.26	<0.€
Benzo(b)fluoranthene	[0.002]	<9.8	<9.8	<10	<9.26	<9.35	<9.43	>0.05	<9.05	805
Benzo(g,h,i)perylene	1	<9.8	<9.8	<10	<9.26	<9.35	<9.43	<9.26	<u><9.26</u>	<0.5
Benzo(k)Iluoranthene	[0.002]	<9.8	8.6>	<10	<9.26	<9.35	<943	<0.76	<0.76	802
4-Bromophenyl-phenylether	١	<9.8	<9.8	<10	<9.26	<9.35	<9.43	<0.05	90.02	0.0
Butylbenzylphthalate	[50]	<9.8	8.6>	<10	<9.26	<9.35	<9.43	96.02	<0.76	0.2
Carbazole		<9.8	8.6>	<10	96 6>	<0.35	-0 A2		07.0	0.0
4-Chloroaniline	5*	<9.8	8.6>	<10	<9.26	<0.25	C0 43	07.6	-03.20 -036	0.02
bis(2-Chloroethoxy)methane	5*	<9.8	<9.6>	<10	<9.26	<9.35	<0.43	2.62	07.6	0.62
bis(2-Chloroethyl)ether	1.0	<9.8	<9.8	<10	96.02	<0.25	CF 0/	N4.0	07.0	2.0
bis(2-Chloroisopropyl)ether	t	8.6>	× 0>	<10	90.02	30.07	0.4.0	07.65	07.6>	8.€>
4-Chloro-3-methylphenol		0 0	0.0/		07.6	CC.Y~	< 9.45	<9.20	<9.26	≤9.8
2-Chloronanhthalene	[10]	0.6	0.6	\$10 \$	AN	NA	NA	<9.26	<9.26	<9.8
2-Chloronhanol		2 ^{2,0}	<9.8	<10	<9.26	<9.35	<9.43	<9.26	<9.26	<9.8
4-Chloronhamil nhouiletter	~	<9.8 2.2	<9.8	<10	NA	NA	NA	<9.26	<9.26	8.6≻
Chrussie Chrussen		<0.8 2.05	8.6>	<10	<9.26	<9.35	<9.43	<9.26	<9.26	<0.8 8.6>
Dihenzo(a h)anthracana	[700'0]	8.6 <u>></u>	8.6>	<10	<9.26	<9.35	<9.43	<9.26	<9.26	<9.8
Dihenzofina	r	<4.8	8.6>	<10	<9.26	<9.35	<9.43	<9.26	<9.26	< 0 8
Di n hutdhhathalan	*	<9.8	<9.8	<10	<9.26	<9.35	<9.43	<9.26	<9.26	2.0> 8.0>
2 2 Dicklord	00	<9.8	<9.8	<10	<9.26	<9.35	1.15J	<9.26	<9.26	×0×
2,4 The Internation openzione	5*	<9.6>	<9.8	<10	<9.26	<9.35	<9.43	<0.26	AC 02	0.0
2,4-Dicniorophenol	5*	<9.8	<9.8	<10	NA	NA	NA	96 05	20 JK	0.0
Deuryphinalate	[50]	8.6>	<9.8	<10	<9.26	<9.35	<0.43	<0.05	20.07	0.0
2,4-Dimethylphenol	[50]	<9.8	<9.6>	<10	NA	NA	VIX	07.6	07.65	<9.8
GE-Main Plant-Remedial Investigation	estigation					UNT	AVI 1	07.6>	<9.26	<9.8
38393962.00003/L6230RRevt7_11.xls	rt7_11.xls			Page 1 of 3	f 3			URS	URS Corporation-New York	Vew York
			1		à				~ 1	5/30/2003

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS SEMIVOLATILE ORGANIC COMPOUNDS CHANNEL FILL AND GLACIOLACUSTRINE DEPOSITS NOVEMBER 2000 - FEBRUARY 2001

GENERAL ELECTRIC

			SCHE	SCHENECTADY, NEW YORK	NEW YORK					
	NYSDEC			DM-421G					DM-432CF	
PARAMETER (µg/L)	GW Standard ¹	DM-420G	DM-421G	Duplicate	DM-422CF	DM-423CFS	DM-423CFD	DM-432CF	Duplicate	DM-433G
	(µg/L)	11/30/2000	12/1/2000	12/1/2000	12/5/2000	12/6/2000	12/6/2000	2/7/2001	2/7/2001	2/8/2001
Dímethylphthalate	[50]	<9.8	<9.8	<10	<9.26	<9.35	<9.43	<9.26	<9.26	<9.8
4,6-Dinitro-2-Methylphenol	-	<9.8	<9.8	<10	NA	NA	NA	<9.26	<9.26	<9.8
2,4-Dinitrophenol	[10]	<9.8	<9.8	<10	NA	NA	NA	<9.26	<9.26	<9.8
2,4-Dinitrotoluene	5*	<9.8	<9.8	<10	<9.26	<9.35	<9.43	39.5B	37.6B	42.1B
2,6-Dinítrotolucne	\$*	<9.8	<9.8	<10	<9.26	<9.35	<9,43	<9.26	<9.26	<9.8
Di-n-octylphthalate	[50]	<9.8	<9.8	<10	<9.26	<9.35	<9.43	<9.26	<9.26	<9.8
bis(2-Ethylhexyl)phthalate	5	2.19J	5.45.1	4.55J	1.67.J	1.11.1	4.82.1	6.13J	7.81.1	5.13J
Fluoranthene	[50]	<9.8	<9.8	<10	<9.26	<9.35	<9.43	<9.26	<9.26	8.6>
Fluorene	[50]	<9.8	<9.8	<10	<9.26	<9.35	<9,43	<9.26	<9.26	<9.8
Hexachlorobenzene	0.04	<9.8	<9.8	<10	<9.26	<9.35	< 9.43	<9.26	<9.26	8.6>
Hexachlorobutadiene	0.5	<9.8	<9.8	<10	<9.26	<9.35	<9,43	<9.26	<9.26	<9.8
Hexachlorocyclopentadiene	5*	<9.8	<9.8	<10	<9.26	<9.35	<9,43	<9.26	<9.26	<9.8
Hexachloroethane	5*	<9.8	<9.8	<10	<9.26	<9.35	<9.43	<9.26	<9.26	<9,8
Indeno(1,2,3-cd)pyrene	[0.002]	<9.8	<9.8	<10	<9.26	<9.35	<9.43	<9.26	<9.26	<0.8
Isophorone	[50]	<9.8	<9.8	<10	<9.26	<9.35	<9.43	<9.26	<9.26	8.6>
2-Methylnaphthalene	1	<9.8	<9.8	<10	<9.26	<9.35	<9.43	16.9	15.4	<0.8
2-Methylphenol	ł	<9.8	<9.8	<10	NA	NA	NA	<9.26	<9.26	× 0>
4-Methylphenol	÷	<9.8	<9.8	<10	NA	NA	NA	<9.26	<9.26	<0.8
Naphthalene	[10]	<9.8	<9.8	<10	<9.26	<9.35	<9.43	<9.26	<9.26	8.6>
2-Nitroaniline	5*	<9.8	<9.8	<10	<9.26	<9.35	<9.43	<9.26	<9.26	<9.6>
3-Nitroaniline	5*	<9.8	<9.8	<10	<9.26	<9.35	<9.43	<9.26	<9.26	8 6≥
4-Nitroaniline	5*	<9.8	<9.8	<10	<9.26	<9.35	<9.43	<9.26	<9.26	<0.8
Nitrobenzene	0.4	< <u>9.8</u>	<9.8	<10	<9.26	<9.35	<9.43	<9.26	<9.26	<9.8
2-Nitrophenol	1	<9.8	<9.8	<10	NA	NA	NA	<9.26	<9.26	<0.8
4-Nitrophenol	*	<9.8	<9.8	<10	NA	NA	NA	<9.26	<9.26	8.6>
n-Nitrosodiphenylamine	[50]	<9.8	<9.8	<10	<9.26	<9.35	<9.43	<9.26	<9.26	<9.8
n-INITOSOCI-n-propylamme	-	<9.8	<9.8	<10	<9.26	<9.35	<9.43	41.4B	36.1B	41B
UE-Main Plant-Remedial Investigation	estigation							URS	URS Corporation-New York	New York
11.XIS	Vt / I I ,XIS			Page 2 of 3	of 3				•	5/30/2003

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS SEMIVOLATILE ORGANIC COMPOUNDS CHANNEL FILL AND GLACIOLACUSTRINE DEPOSITS NOVEMBER 2000 - FEBRUARY 2001

GENERAL ELECTRIC SCHENECTADY, NEW YORK

	NYSDEC			DM-421G	DM-421G				DM-432CF	
PARAMETER (µg/L)	GW Standard ¹	DM-420G	DM-421G	Duplicate	DM-422CF	DM-423CFS	BM-423CFD	DM-432CF	Duplicate	DM-433G
	(µg/L)	11/30/2000	12/1/2000	12/1/2000	12/5/2000	12/6/2000	12/6/2000	2/7/2001	2/7/2001	2/8/2001
Pentachlorophenol	1**	<9.8	≤9.8	<10	NA	NA	NA	<9.26	<9.26	<9.8
Phenanthrene	[50]	<9.8	≤9.8	<10	<9.26	<9.35	<9.43	1.2J	0.952J	<9.8
Phenol	**	<9.8	≤9.8	<10	NA	NA	NA	<9.26	<9.26	<9.8
Pyrene	[50]	<9.8	8.6>	<10	<9.26	<9.35	<9.43	43.2B	38.9B	49.5B
1,2,3-Trichlorobenzene	\$*	AN	NA	NA	NA	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	5*	<9.8	<9.8	<10	<9.26	<9.35	<9.43	23.1B	23.9B	34.9B
2,4,5-Trichlorophenol	*	<9.8	8.6>	<10	NA	NA	NA	<9.26	<9.26	60.8
2,4,6-Trichlorophenol	•	<9.8	<u><9.8</u>	<10	NA	NA	NA	<9.26	<9.26	<9.8
Total SVOCs	•	2.19	5.45	4.55	1.67	1.11	5.97	24.2	24.2	5.13
Total PAHs	*	QN	QN	QZ	QN	QN	QN	18.1	16.4	QN

Notes:

NA: Indicates parameter was not analyzed for.

ND: Indicates parameter was not detected.

<: Indicates parameter was not detected at the quantitation limit shown.

J: Indicates an estimated concentration.

B: Indicates the parameter was detected in the laboratory blank.

*: Indicates that the principal organic contaminant for groundwater

. Interfaces that the principal organic containing for ground of $5 \,\mu g/L$ applies to this substance.

**. Indicates that the standard applies to the sum of these substances.

[]: Indicates a Guidance Value.

 New York State Groundwater Quality Standard from Division of Water Technical and Operational Guidance Series (NYSDEC, TOGS 1.1.1)

Bold values indicate a concentration detected above the quantitation limit. Shaded cells indicate a concentration that exceeds the NYSDEC GW Standard. See Table 5-4 for method of analysis. SVOCs: Semivolatile Organic Compounds

> GE-Main Plant-Remedial Investigation 38393962.00003/L6230RRevt7_11.xls

URS Corporation-New York 5/30/2003

Page 3 of 3

PAHs: Polycyclic Aromatic Hydrocarbons

APPENDIX F-3B SUMMARY OF HISTORICAL GROUNDWATER ANALYTICAL RESULTS CHANNEL FILL DEPOSITS VOLATILE ORGANIC COMPOUNDS

GENERAL ELECTRIC SCHENECTADY, NEW VORK

		And and a second se										
PARAMETER	GE-206D	GE-207	GE-207	GE-207	GE-208	GE-208	GE-208	GE-209D	GE-209D	GE-210D	GE-210D	GE-210D
(ng/L)	8/3/00	4/12/88	7/11/89	4/12/99	4/12/88	68/11/2	4/9/99	4/14/88	6/28/89	4/13/88	6/28/89	12/16/97
Acetone	٨N	NA	NA	∽	NA	NA	20	NA	NA	NA	NA	<10
Acrolein	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	AN
Acrylonitrile	٨N	<35	NA	NA	<35	NA	NA	<35	NA	<35	NA	NA
Benzene	NA	<5	<0.5	<2	Ş	⊲0.5	\$	Ş	<0.5	<5	<0.5	\$
bis(Chloromethyl)ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromobenzene	√1	NA	<0.5	NA	NA	<0.5	NA	NA	<0.5	NA	<05 <05	NA
Bromochloromethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromodichloromethane	V	NA	NA	<5	NA	NA	\$	NA	NA	NA	NA	۲ ک
Bromotorm	√	Ş	NA	<5	Ŷ	NA	Ş	Ş	NA	<5	NA	Ś
Bromomethane	√	NA	NA	<10	NA	NA	<10	NA	NA	NA	NA	
2-Butanone	NA	NA	NA	<10	NA	NA	53	NA	NA	NA	NA	<10
n-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
sec-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	AN	NA	NA	VN
tert-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Caroon Disulfide	NA	NA	NA	Ş	NA	NA	Ş	NA	NA	NA	NA	\$
Carbon Letrachloride	V	NA	NA	Ş	NA	NA	Ş	NA	NA	NA	NA	ç ∑
Chlorobenzene	1	ŝ	<0.5	<5	<5	<0.5	Ş	Ŷ	<0.5	Ş	<05	° S
Culoroethane	L	<10	<0.5	<10	<5	<0.5	<10	<10	<0.5	<10	<0.5	01>
2-Unoroethylvinylether	AN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	AN
Caloroform	V	NA	NA	Ŝ	NA	NA	0.3J	NA	NA	NA	NA	₹
Chloromethane	7	AN	NA	<10	NA	NA	<10	NA	NA	NA	NA	×10
2-Uniorotoluene	AN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Chlorotoluene	AN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	VN
p-Cymene	NA	NA	NA	NA	NA	NA	NA	NA	NA	VN	VN	VIV
Dibromochloromethane	~	NA	NA	<5	NA	NA	Ş	NA	NA	NA	NA	
1,2-Dibromo-3-Chloropropane	AN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dibromoethane	AN	NA	NA	NA	NA	NA	NA	ŅĄ	NA	AN	VN	NA
L/Ibromomethane	l>	V N	NA	NA	AN	NA	NA	NA	NA NA	V N		

GE-Main Plant-Remedial Investigation 38394 00003/L6230RF-3B.xls

APPENDIX F-3B	SUMMARY OF HISTORICAL GROUNDWATER ANALYTICAL RESULTS	CHANNEL FILL DEPOSITS	VOLATILE ORGANIC COMPOUNDS
---------------	--	-----------------------	----------------------------

GENERAL ELECTRIC SCHENECTADY, NEW YORK

	L'UN ANT			SCHENELIADI, NEW IOKN	ADI, IUN	NNUL W	000 40					
	1007-35	107-35	107-79	GE-207	GE-208	GE-208	GE-208	GE-209D	GE-209D	GE-210D	GE-210D	GE-210D
FAKAWEJEK	1											
(ug/L)	8/3/00	4/12/88	7/11/89	4/12/99	4/12/88	7/11/89	4/9/99	4/14/88	6/28/89	4/13/88	6/28/89	12/16/97
1,2-Dichlorobenzene	1	<35	<0.5	<10	<35	<0.5	<10	<35	<0.5	<35	<0.5	<10
1,3-Dichlorobenzene	<1	<10	<0.5	<10	<10	<0.5	<10	<10	<0.5	<10	<0.5	<10
1,4-Dichlorobenzene	1⊳	<10	<0.5	<10	<10	<0.5	<10	<10	<0.5	<10	<0.5	<10
Dichlorodifluoromethane	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-Dichloroethane	<1	<5	<0.5	Ş	Ş	<0.5	ѷ	Ś	<0.5	\$	<0.5	<5
1,2-Dichloroethane	<1	Ş	⊲0.5	Ş	Ş	<0.5	\$	\$	<0.5	Ş	<0.5	<5
1,1-Dichloroethene	√	NA	NA	\$	NA	NA	\$	NA	NA	NA	NA	<5
cis-1,2-Dichloroethene	5.31	NA	<0.5	NA	NA	<0.5	NA	NA	<0.5	NA	<0.5	NA
trans-1,2-Dichloroethene	⊽	NA	NA	NA	NA	ΝA	NA	NA	NA	NA	NA	NA
1,2-Dichloroethene, total	NA	Ş	NA	\$	<5	NA	\$	Ş	NA	Ş	NA	<5
1,2-Dichloropropane	-1	NA	NA	S	NA	NA	S	NA	NA	NA	NA	<5
1,3-Dichloropropane	NA	NA	<0.5	NA	NA	<0.5	NA	NA	<0.5	NA	<0.5	NA
2,2-Dichloropropane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
cis-1,3-Dichloropropene		NA	NA	<5	NA	NA	\$	NA	NA	NA	NA	<5
trans-1,3-Dichloropropene	⊽	NA	NA	<5	NA	NA	Ş	NA	NA	NA	NA	Ş
1, 1-Dichloropropene	٩N	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichloropropylene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	NA	Ş	<0.5	Ş>	<5	<0.5	Ş	Ş	<0.5	Ş	<0.5	<5
Hexachlorobutadiene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Hexanone	NA	NA	NA	<10	NA	NA	<10	NA	NA	NA	NA	<10
Isopropylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-lsopropyltoluene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride	⊽	⊽	<0.5	5	\$	<0.5	Ş	Ş	<0.5	\$	<0.5	Ş
4-Methyl-2-Pentanone	NA	NA	NA	<10	NA	NA	<10	NA	NA	NA	NA	<10
MTBE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
n-Propylbenzene	NA	AN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Styrene	NA	NA	NA	♦	NA	NA	<5	NA	NA	NA	NA	Ş

URS Corporation-New York 5/30/2003

Page 107 of 171

GE-Main Plant-Remedial Investigation 38393962.00003/L6230RF-3B.xls

SUMMARY OF HISTORICAL GROUNDWATER ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS CHANNEL FILL DEPOSITS **APPENDIX F-3B**

SCHENECTADY, NEW YORK **GENERAL ELECTRIC**

			2	UCHENECIANI, NEW YUR	AUI, NE	MININE AN						
	GE-206D GE-207	GE-207	GE-207	GE-207	GE-208	GE-208 GE-208	GE-208	GE-209D	GE-200D	CE-210D	CE-210D	CE 31 an
PARAMETER								}				
(ng/L)	8/3/00	4/12/88	68/11//	4/12/99	4/12/88	7/11/89	4/9/99	4/14/88	6/28/89	4/13/88	6/28/80	12/16/07
Tetrachloroethene	l⊽	Ş	<0.5	Ş	Ŷ	<05 205	5	\$	<0 <	22 (27 II	202	2 (D) (D)
1,1,1,2-Tetrachloroethane	<1	NA	AN	AN	NA	NA	, N	NN	AN A			7
1.1.2.2-Tetrachloroethane	7	2	* 0/				211	UNI -	AN1	AN	AN	NA
Tchrana	*1	7		2	2	C N>	0	₽	<0.5	\$	<0.5	\$
	AN	0	<0.5 0.5	Ŷ	0.8J	<0.5	\$	Ŷ	<0.5	\$	<0.5	Ş
1, 2, 3-1 Inchlorobenzene	AN	NA	NA	NA	NA	NA	NA	NA	NA	AN	AN	NA
1, 2, 4-1 richlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	AN	AN	NA
1,1,1-Trichloroethane	1	Ş	<0.5	\$	Ŷ	<0.5	\∑	\$>	<0.5			2
1,1,2-Trichloroethane	V	AN	NA	≎	NA	NA	×	NA	AN A	2 M		24
Trichloroethene	_1	Ş	<05	V	5	305	×	N Y	3 47		AN C	2
Trichlorofluoromethane		×1.					7	7	C.7>	2	<.U>	≎
1 3 3_Trichlonoments		E S	AN	AN	AN	NA	NA	NA	NA	AN	ΑN	NA
	1>	AN	NA	AN	NA	NA	NA	NA	NA	AN	NA	NA
1, 2, 4- I IIIIIeunyIDenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	AN	AN N	NA
1,3,3-1 runethylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	AN NA	VN
V inyl Acetate	NA	NA	NA	<10	NA	NA	<101>	NA	NA	AN	N.V	
Vinyl Chloride	L	<10	<0.5	<10	<10	<0.5	01>	01>	¥ 0>	1012	202	
m-Xylene	NA	NA	≤0.5	NA	NA	<0.5	NA	NA	20 S	VN		
m&p-Xylene	NA	NA	NA	NA	NA	NA	NA	NA	VN			
o-Xylene	NA	NA	<0.5	NA	NA	205	NA	VN	5 U >	VN	ANI 2 00	AN N
Xylene	NA	NA	NA	Ş	NA	NA	5	VN	VIN	VI	C.W.	AN .
									WN	WN	NA	2

GE-Main Plant-Remedial Investigation 00003/L6230RF-3B.xls

38397

Page 108 of 171

APPENDIX F-3B SUMMARY OF HISTORICAL GROUNDWATER ANALYTICAL RESULTS CHANNEL FILL DEPOSITS VOLATILE ORGANIC COMPOUNDS

GENERAL ELECTRIC SCHENECTADY, NEW YORK

	GE-210D CE-210	CF_210D	CE-210D	JUDICE JUDICE JUST	CE 310S	CE 210S	CF JINS	CF.212D	CE 113D	CE 313D	
PARAMETER					0017-00						
(ug/L)	10/9/98	6/10/99	8/4/00	8/21/01	4/13/88	6/28/89	8/4/00	4/20/88	7/6/89	8/1/91	11/12/91
Acetone	81	\$	NA	NA	NA	NA	2.25J	NA	NA	NA	NA
Acrolein	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acrylonítrile	NA	NA	NA	NA	<35	NA	NA	<35	NA	NA	NA
Benzene	1J	<5	NA	NA	\$	<0.5	<10	<5	<0.5	$\overline{\nabla}$	I>
bis(Chloromethyl)ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromobenzene	NA	NA	<1	₩ V	NA	<0.5	NA	NA	<0.5	V	V
Bromochloromethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	₽	V
Bromodichloromethane	Ş	<5	<1	7	NA	NA	<10	NA	NA	₽	l∨
Bromoform	<5	<5	4	7	Ş	NA	<10	<5	NA	12	<1
Bromomethane	<10	<10	<1	1>	NA	NA	<10	NA	NA	NA	
2-Butanone	<10	11	NA	NA	NA	NA	<10	NA	NA	NA	NA
n-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	V	5
sec-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	7	<0.5
tert-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA		V
Carbon Disulfide	Ŷ	Ş	NA	NA	NA	NA	<10	NA	NA	NA	NA
Carbon Tetrachloride	ŝ	Ś	<1	l>	NA	NA	<10	NA	NA	V	V
Chlorobenzene	0.7J	Ş	<1	<1	≎	<0.5	<10	Ş	<0.5	V	V
Chloroethane	<10	<10	<1	1⊳	<10	<0.5	<10	<10	<0.5	NA	V
2-Chloroethylvinylether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloroform	Ş	Ş	⊲	⊲	NA	NA	<10	NA	NA	$\overline{\nabla}$	12
Chloromethane	<10	<10	4	<1	NA	NA	<10	NA	NA	NA	</td
2-Chlorotoluene	NA	NA	NA	NA	NA	NA	NA	NA	NA	⊽	₽
4-Chlorotoluene	AN	NA	NA	NA	NA	NA	NA	NA	NA	\ \[\[\]	0.53
p-Cymene	AN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromochloromethane	\$	\$	⊽	<1	NA	NA	<10	NA	NA	l>	l>
1,2-Dibromo-3-Chloropropane	AN	NA	NA	NA	NA	NA	NA	NA	NA	⊽	⊽
1,2-Dibromoethane	AN	NA	NA	NA	NA	NA	NA	NA	NA	7	l>
Dibromomethane	NA	NA	4	₽	NA	NA	NA	NA	NA	V	

URS Corporation-New York 5/30/2003

Page 109 of 171

GE-Main Plant-Remedial Investigation 38393962.00003/L6230RF-3B.xls APPENDIX F-3B SUMMARY OF HISTORICAL GROUNDWATER ANALYTICAL RESULTS CHANNEL FILL DEPOSITS VOLATILE ORGANIC COMPOUNDS

GENERAL ELECTRIC SCHENECTADY, NEW YORK

			SCHE	SCHENECIADY, NEW YORK	, NEW YO	RK					
C A D A D ANALAS C A	GE-210D	GE-210D	GE-210D	GE-210D	GE-210S	GE-210S	GE-210S	GE-213D	GE-213D	GE-213D	GE-213D
LAKAWELEK	01010								·····		
1 7. Dichtonohomon	10/9/98	0/10/99	8/4/00	8/21/01	4/13/88	6/28/89	8/4/00	4/20/88	7/6/89	8/1/91	11/12/91
		<10	1	₽	ŝ	<0.5	NA	<10	<0.5	V	~
1,3-Dichlorobenzene	<10	<10	1⊳	ī∨	<10	<0.5	AN	<10	<0.5		7 4
1,4-1)ichlorobenzene	<10	<10	₽	12	<10	<0 S		01/	307		
Dichlorodifluoromethane	AN	AN	V	Ī		VIN		01/	C.92	1	I>
1,1-Dichloroethane	\$	52	1	7 7	YVI - Y	NA 2 4	NA	AN	AN	NA	٦ ۷
1,2-Dichloroethane	, V	24	7	7	0	<0.5	<10	<5	<0.5	1>	V
1.1-Dichloroethene	24	2 4		V	Ŷ	⊲0.5	<10	Ś	<0.5	l>	V
cis-1.2-Dichloroethene		2 4	Ţ,		AN	AN	<10	NA	NA	l∨	V
trans-1 2. Dichlorosthene	AN1	2	V	1	AN	<0.5	<10	NA	<0.5	V	l>
1 7_Dickloroothons (str1	VN VN	Ŷ	1	₩	NA	NA	<10	NA	NA	V	· ⊽
1 2-Dichloromone	04	NA	NA	AN	Ş	NA	NA	\$	NA	NA	AN
1 3-Dichloronronane				⊽	NA	NA	<10	NA	NA	V	⊽
2 2. Dichloromona	V.	AN 1	NA	NA	NA	<0.5	NA	NA	<0.5	V	Ī
cis.1 3.Dichloronion	AN 1	AN	AN	AN	NA	NA	NA	NA	NA	V	, V
trans-1 3-Dichloromone		\$		⊽	NA	NA	<10	NA	NA	· 🗸	† ⊽
1 I-Dichloromonou	2	≎ ;	v	⊽	NA	NA	<10	NA	NA	V	· ·
1 2. Dichloromourland	AN .	AN	AN	AN	NA	NA	NA	NA	NA	·	· 17
Fthvthenzene	AN A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Herachlorohutadiana		¢ į	AN	AN	Ş	<0.5	<10	\diamond	<0.5	V	
2.Hevanore	AN C	AN	AN	NA	NA	NA	NA	NA	NA	NA	NA
Sonronvlhenzane	01/	012	AN	AN	NA	NA	<10	NA	NA	NA	AN
4-Isotronyltoluene	AN AN	AN	AN .	AN	NA	NA	NA	NA	NA	<1	√
Methylene Chloride		AN 1	AN.	AN	AN	NA	NA	NA	NA	-1	 ⊽
4-Methvl-7-Pentanone	7 ₹	\$ \$			Ŷ	<0.5	<10	ŝ	<0.5	NA	₩
MTRF			AN	NA	NA	NA	<10	NA	NA	NA	NA
Nanhthalene	AN N	AN	YN ;	NA	AN	NA	NA	NA	NA	NA	NA
n-Pronvlhenzene		AN	AN .	NA	NA	NA	NA	NA	NA	NA	NA
Stvrene		AN 4	AN 	NA	AN	AN	NA	NA	NA	1	V
	7	2	AN	NA	AN	NA	<10	NA	NA	₽	ī

Page 10 of 171

GE-Main Plant-Remedial Investigation 38397 00003/L6230RF-3B.xls

URS Corporation-New York 30/2003

APPENDIX F-3B SUMMARY OF HISTORICAL GROUNDWATER ANALYTICAL RESULTS CHANNEL FILL DEPOSITS VOLATILE ORGANIC COMPOUNDS

GENERAL ELECTRIC SCHENECTADY, NEW YORK

	GE-210D	GE-210D GE-210D	GE-210D	GE-210D	GE-210S	GE-210S	GE-210S	GE-213D	GE-213D	GE-213D	GE-213D
PARAMETER										1	
(ug/L)	10/9/98	66/10/99	8/4/00	8/21/01	4/13/88	6/28/89	8/4/00	4/20/88	7/6/89	8/1/91	11/12/91
Tetrachloroethene	<5	<5	1	V	<5	<0.5	<10	\$	<0.5	\sim	\sim
1,1,1,2-Tetrachloroethane	NA	NA	~	1	NA	NA	NA	NA	NA	$\overline{\nabla}$	~
1,1,2,2-Tetrachloroethane	\$	\$ S	V	1	<5	⊲0.5	<10	9	<0.5	$\overline{\nabla}$	$\overline{\nabla}$
Toluene	<5	ŝ	NA	NA	€	<0.5	<10	1	<0.5	1	0.3J
1,2,3-Trichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	<5	<5	<1	1>	Ş	<0.5	<10	<5	<0.5	7	√
1,1,2-Trichloroethane	Ś	<5	l>	1>	NA	NA	<10	NA	NA	V	<1>
Trichloroethene	<5	<5	<1	7	≎	<0.5	<10	<5	<0.5	$\overline{\vee}$	≻
Trichlorofluoromethane	NA	NA	<1	₽	NA	NA	NA .	NA	NA	NA	~
1,2,3-Tríchloropropane	NA	NA	<1	₽	NA	NA	NA	NA	NA	V	V
1,2,4-Trimethylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	\	<0.6
1,3,5-Trimethylbenzene	NA	NA	NA	NA	AN	NA	NA	NA	NA	-1	
Vinyl Acetate	· <10	<10	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vinyl Chloride	<10	<10	1 > .	~	<10	<0.5	<10	<10	<0.5	ΝA	⊽
m-Xylene	NA	NA	NA	NA	NA	⊲0.5	NA	NA	<0.5	NA	NA
m&p-Xylene	NA	NA	NA	NA	NA	NA	<10	NA	NA	~	0.21
o-Xylene	NA	NA	NA	NA	NA	<0.5	<10	NA	<0.5		0.2J
Xylene	<5	Ś	NA	NA	NA	NA	NA	NA	NA	NA	NA

GE-Main Plant-Remedial Investigation 38393962.00003/L6230RF-3B.xls

Page 111 of 171

APPENDIX F-3C	CHANNEL FILL DEPOSITS
SUMMARY OF HISTORICAL GROUNDWATER ANALYTICAL RESULTS	SEMIVOLATILE ORGANIC COMPOUNDS

GENERAL ELECTRIC SCHENECTADY, NEW YORK

DAD ANGTON						WOR HAUST MUSIC						
I ANAME I EK	807-70	GE-208	GE-208	GE-209D	GE-209D	GE-210D	GE-210D	GE-210D	GE-210D	GE-210D	CE 2105	CE 1100
(ug/L)	4/12/88	7/11/89	4/9/99	4/14/88	6/28/89	4/13/88	6/28/89	12/16/07	10/0/06	10000	C017-30	C017-35
Acenaphthene	<10	NA	<10	<10	NA	<10	NA	<10	<10	V11/	4/13/88	0/28/89
Acenaphthylene	<10	NA	<10	<10	AN	<10	VN	10				AN
Anthracene	<10	NA	<10	<10	AN		VN				012	AN
Benzidine	NA	NA	AN	NA	N A	NN	VN	717		012	<10	AN
Benzo(a)anthracene	NA	NA	<10	AN	AN	VN	VIN	AN 01/	AN	AN A	AN	AN
Benzo(a)pyrene	NA	NA	01⊳	NA	NN	VN			012	01	NA	NA
Benzo(b)fluoranthene	NA	NA	0I>	VN	VN	VN.	NN.	210	√10	01>	NA	ΥN
Benzo(g,h,i)perylene	NA	NA	012	AN		NN NN	NA		01>	01∨	NA	NA
Benzo(k)fluoranthene	AN	NA		V N		AN N	NA	012	<10	<10	NA	NA
Benzoic acid	A N	NA	VIN	VIV		NA 112	AN	<10	√10	<10	NA	NA
Benzvl alcohol	NA	NA		EN T	NA N	N	NA	8	<52	NA	NA	NA
4-Bromonhenvl-nhenvlether	NA	VIN		VV V	AN 1	NA	AN	10	<10	<10	NA	NA
Rutylhenzylnhthalsta		ANI A	10	AN	AN	AN	NA	<10	<10	<10	NA	NA
Corheredo		AN .	012	0[⊽	NA	<10	NA	<10	<10	<10	<10	NA
	VN -	NA	AN	NA	NA	NA	NA	<10	<10	NA	NA	VN
	AN	NA	01∑	NA	NA	NA	NA	10	<10	012	AN	
UIS 2-UNIOTOETNOXY)methane	AN	NA	10	NA	NA	NA	NA	<10	<10	<10	NA	
Li-Control Control Control Control	AN	NA	≤10	NA	NA	NA	NA	<10	<10	<10	VN	
Dis(2-Chloroisopropyl)ether	NA	NA	<10	NA	NA	AN	NA	<10	012	<10 <10	VN	NN N
4-Culoro-5-methylphenol	AN	NA	NA	NA	NA	NA	NA	<10	<10	NA	NA	VN
2-Unioronaphthalene	NA	NA	10	NA	NA	NA	NA	<10	<10	01>	AN	NA
	NA	NA	ΥN	NA	NA	NA	NA	<10	<10	AN	NA	VN
4-Cullorophenylether	VN VN	NA	<10	NA	NA	NA	NA	<10	<10	<10	AN	VN
Citrysene	AN	NA	10	AN	AN	NA	NA	<10	<10	<10	NA	NA
Dihanzo(c.L)	NA	NA	AN	AN	AN	NA	NA	<10	<10	NA	NA	AN
Diberrofa,II)allullacene	AN	AN	10	AN	AN	NA	NA	<10	<10	<10	NA	NA
	AN (AN	10	NA	NA	NA	NA	<10	<10	<10	AN	NA
	0I>	NA	€0.8	<10	NA	<10	NA	<10	6.0>	0 €	<10	VN
5,3-Dichlorobenzidine	AN	AN	<20	NA	NA	NA	NA	00 00	21	212	VIN	NA VIV
2,4-Dichlorophenol	NA	NA	NA	NA	NA	AN	NA	01>	110		VVI V	AN
									1012	NA	NA	NA
GE-Main Plant-Remedial Investigation	hgation									IRS	IRS Cornoration Nam Vord	Navy Vod

Page 132

2.00003/L6230RF-3C.xls

38397

APPENDIX F-3C SUMMARY OF HISTORICAL GROUNDWATER ANALYTICAL RESULTS	CHANNEL FILL DEPOSITS	SEMIVOLATILE ORGANIC COMPOUNDS
---	-----------------------	--------------------------------

GENERAL ELECTRIC SCHENECTADY NEW VODK

DADAMETED				SCHE	SCHENECTADY, NEW YORK	NEW YOF	K					
FARAMELEK	GE-208	GE-208	GE-208	GE-209D	GE-209D	GE-210D	GE-210D	GE-210D	GF-210D	GE-210D	CE-210S	CE 2105
(rI/gn)	4/12/88	68/11//	4/9/99	4/14/88	6/28/89	4/13/88	6/28/89	12/16/07	80/0/01	00/01/9	113/00	CU12-2105
Diethylphthalate	<10	NA	<0.3	<10	NA	<10	NA	<10	<10	<10	00/01/2	0/20/69
2,4-Dimethylphenol	NA	NA	NA	NA	NA	NA	AN	012	<10	NA	NN	VN
Dimethylphthalate	NA	NA	<10	NA	NA	NA	NA	<10	<10	<10	VN	VN
4,6-Dinitro-2-Methylphenol	NA	NA	NA	NA	NA	NA	NA	<50	<52	NA	NA	VN
2,4-Dinítrophenol	NA	NA	NA	NA	NA	NA	NA	≤50	<52	NA	NA	VN
2,4-Dinitrotoluene	NA	NA	<10	NA	NA	NA	NA	<10	<10	<10	NA	NA
2,6-Dinitrotoluene	NA	NA	<10	NA	NA	NA	NA	<10	<10	~10 1>	NA	VN
Di-n-octylphthalate	AN	NA	<0.3	NA	NA	NA	NA	<10	<10	<10	NA	NA
1,2-Diphenylhydrazine	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	AN
DIS(2-Ethylhexyl)phthalate	21	ΝA	∠	<10	NA	1]	NA	1J	l∑	4≻	<10	NA
Fluoranthene	√10	ΝA	<10	<10	NA	<10	NA	<10	<10	<10	<10	AN
r luorene	√10	AN	<10	<10	NA	<10	NA	<10	<10	<10	<10	NA
riexacniorobenzene	AN	AN	<10	NA	NA	NA	NA	<10	<10	<10	AN	AN
Hexachlorobutadiene	AN	AN	<10	NA	NA	NA	NA	<10	<10	<10	NA	NA
ricxacniorocyclopentadiene	AN 1	NA	10	NA	NA	NA	NA	<10	<10	<10	NA	NA
nexachioroethane	AN	NA	<10	NA	NA	NA	NA	<10	<10	<10	NA	NA
Indeno(1,2,3-cd)pyrene	NA	ΝΛ	<10	NA	NA	NA	NA	<10	<10	<10	NA	NA
Isophorone	AN I	NA	<10	NA	NA	NA	NA	<10	<10	<10	NA	NA
z-ivicinyinaprinalene	V N	AN	<10	NA	NA	NA	NA	<10	<10	<10	NA	NA
Z-Methylphenol	AN I	AN	AN	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Memylphenol	AN	NA	NA	NA	NA	NA	NA	<10	<10	NA	NA	NA
J Niteration	01⊳	NA	01∑	<10	NA	<10	NA	<10	<10	<10	<10	NA
	AN	NA	<50	NA	NA	NA	NA	<50	<52	<53	NA	AN AN
2-iNitroanline	AN N	NA	<50	AN	NA	NA	NA	<50	<52	<53	NA	AN
4-INITOANIINE	AN	AN	30	NA	NA	NA	NA	20	⊲1	<21	NA	V N
Nitrobenzene	NA	NA	<10	NA	NA	NA	NA	<10	<10	<10	VN	
2-Nitrophenol	NA	NA	NA	NA	NA	NA	AN	012	<10	NN	VN	
4-Nitrophenol	NA	NA	NA	NA	NA	NA	NA	\$0	<52	NA	N A	VN
n-Nitrosodimethylamine	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	AN

GE-Main Plant-Remedial Investigation 38393962.00003/L6230RF-3C.xls

Page 104 of 132

APPENDIX F-3C SUMMARY OF HISTORICAL GROUNDWATER ANALYTICAL RESULTS CHANNEL FILL DEPOSITS SEMIVOLATILE ORGANIC COMPOUNDS

GENERAL ELECTRIC SCHENECTADV. NEW VODK

				Nell'	OUTENECIALIY, NEW YORK	INFM XOI	¥					
FARAMETER	GE-208	GE-208 GE-208 GE-208	GE-208	GE-209D	GE-209D	GE-210D	CE-210D	Trans and	0010 40	2010	2010	
(ng/L)	4/12/88	7/11/89	4/0/00	4/14/98	08/86/9	00/01/1	0017-00	1017-30	1017-35	CL-21010	GE-2105	GE-210S
n-Nitrosodi-n-nronulamine	VIV I			0014714	VI 40107	00/01/1	69/27/0	12/10/97	86/6/01	6/10/99	4/13/88	6/28/89
	VV -	AN	AN	NA	NA	NA	NA	NA	NA	AN	AN	AN
II-IVIU0S001pnenylamme	NA	NA	<10	NA	NA	NA	AN	<10 <	<1>	101		
Pentachlorophenol	V Z	NA		NI A	V I K				77	01/	AN	NA
Dhensuthrana			CAT.	CAT	INA	NA	NA	\$0	<52	NA	ΔZ	ΝA
A HVAGHUE VIC	1 ~10	AN NA	01∨	~10	NA	<10	NA NA	10	110			
Phenol	NA	N N	N I N	<					21/	~10	<10 10</td <td>NA NA</td>	NA NA
74		U.T	LNA.	Ŷ	Ŷ	14	\$)	NA	11	4
Fuenyl xylyl ethane	VV NV	NA	NA NA	NA N	V N	NT A					11	2
Durene				4764	144	AN	INA	NA	NA	NA	AN	NA NA
ATTAX I Y	01/	NA I	012	<10	NA	012 V	NA	1012				
1,2,3-Trichlorobenzene	AN NA	<0.5	N N	N N	3.01				710	~10	<10	NA
1.2.4-Trichlorohenzene				44	C.W	INA	<.0>	NA	NA	NA	NA	<0.5
	?	C.V.	~1U	0	<u>60.5</u>	\$	0.5	0 V	<10	1012	2	
2,4,3-1richlorophenol	AN	NA	NA	AN	٩N	NTA				717	7	C.U>
2.4.6-Trichloronhenol	V V				SP1	AN1	NA	000	<52	NA	AN	۸N
		NA.	NA	NA	NA	NA	NA	<10	<10	NI A		
n-INITOSOGI-n-propylamine	AN	NA	<10	٩N	ATA	111				VV	AN	NA
					WVI	NA	NA	01	<10	<10	NA	NA
											4 5 6	+ + + + + + + + + + + + + + + + + + +

GE-Main Plant-Remedial Investigation 38392942.00003/L6230RF-3C.xls

URS Corporation-New York

Appendix F

MVS Model Animation

[CD included with hardcopy]

Appendix G

UST Removal Memorandum to File

BRO CAL	WN AND DWELL	MEMO	DRANDUM
то:	File	JOB NO:	127466.001
FROM:	Bob O'Neill		
DATE:	August 12, 2005		
SUBJECT:	6/1/04 UST Removal, Niagara Mohawk S Service Center	Schenectady (Broadway)	

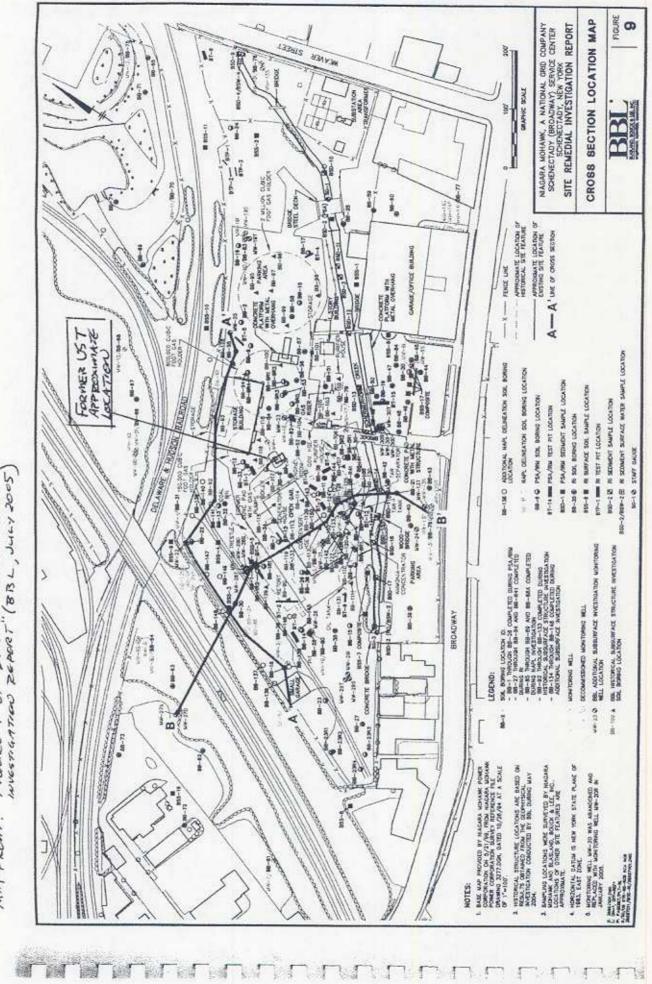
On June 1, 2004, S&W Services, Inc. under contract to Niagara Mohawk, A National Grid Company (Niagara Mohawk) removed an 8,000 gallon underground storage tank (UST) at Niagara Mohawk's Schenectady (Broadway) Service Center. The UST had been used to store gasoline. The Service Center is the site of a former manufactured gas plant (MGP) that is the subject of remediation activities under an Order on Consent with the New York State Department of Environmental Conservation (NYSDEC). As requested by Niagara Mohawk, I made observations relative to potential subsurface contamination during the excavation to remove the UST. These observations are documented herein.

Attached to this memorandum are the following:

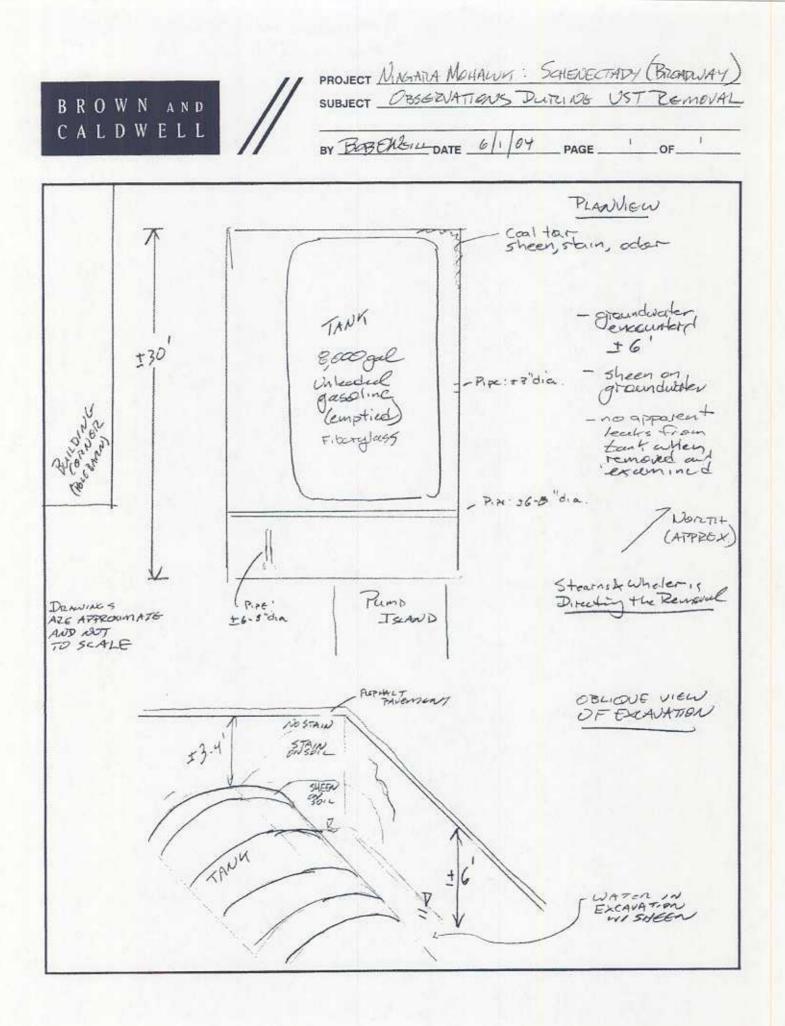
- Map indicating the approximate location of former UST relative to historic MGP structures and samples collected during the Preliminary Site Assessment (PSA), Remedial Investigation (RI), and Feasibility Study (FS)
- · Sketch depicting observations in excavation during removal of the UST.
- Photographs of excavation during and following removal of the UST.
- Document entitled Tank Closure Report, Niagara Mohawk, Broadway, Schenectady, New York (S&W Services, Inc., June 2004).

Visual indications of coal tar-related contamination were observed in the soil in the north-northwest corner of the excavation (see attached sketch and Photographs 2 and 3). Stained soil was observed beginning at about 1 foot below grade. Beginning at about 3 or 4 feet below grade, the soil was coated with an iridescent sheen. These soils had a tar-like odor. Groundwater was observed in the excavation at a depth of approximately 6 feet below grade. An iridescent sheen was observed on the groundwater.

Memorandum to File August 12, 2005 Page 2


The north-northwest corner of the excavation was the corner closest to the former 150,000 cubic foot holder. The observations in the excavation are generally consistent with those from borings and test pits in the vicinity of the former holder.

Visual inspection of the UST and the vent piping by S&W Services, Inc. after removal indicated that they were in good condition and there were no indications of a gasoline release.


Results of the analyses of soil and water samples collected during the UST removal prompted Niagara Mohawk to contact the NYSDEC, and a spill number was assigned under NYSDEC's oil and hazardous materials spill reporting program (see attached Tank Closure Report). However, based on the field observations, it is likely that the constituents detected in the samples are related primarily to the former MGP operations.

Abandoned cast iron pipes were observed in the excavation (see sketch and Photographs 1 and 4). These pipes are likely associated with former MGP operations.

Niagara Mohawk is addressing the contamination identified in the excavation for the UST as part of the site remediation activities.

MAP FROM : FIGURE 9 OF DRAFT SITE REMEMAL INVESTIGATION FEDERAL JULY 200

PHOTOGRAPHIC DOCUMENTATION LOG UST REMOVAL – JUNE 1, 2004 NIAGARA MOHAWK SCHENECTADY (BROADWAY) SERVICE CENTER SCHENECTADY, NEW YORK

Photograph 1: View to Northwest. UST in place with vertical pipes visible. Abandoned cast iron pipes, possibly related to the former MGP, are visible in foreground (marked with orange paint).

Photograph 2: View to North-Northwest. UST in place with vertical pipes visible. Encountered stained soils and soils with iridescent sheen in north-northwest corner of excavation. Groundwater visible to right of UST.

PHOTOGRAPHIC DOCUMENTATION LOG UST REMOVAL – JUNE 1, 2004 NIAGARA MOHAWK SCHENECTADY (BROADWAY) SERVICE CENTER SCHENECTADY, NEW YORK

Photograph 3: View to North-Northwest. UST removed (removed tank is visible on upper portion of photograph). Tanks straps are visible within excavation. Stained soil and soil with iridescent sheen visible in north-northwest corner of excavation. Iridescent sheen in water.

Photograph 4: View to Northeast along Southeast Side of Excavation. Note abandoned cast iron pipe, in right side of photograph, oriented northeast to southwest. Pipe in possibly related to former MGP operation.

P:\^Clients\National_Grid\23878_(Ningarn_Mohawk)\23878.001\Sites\Schenectady (Broadway West) MGP\UST_Removal_060104\PL081205(phto_log_ust_rcm).DOC 8/16/2005

Niagara Mohawk

A National Grid Company

Helen A. Baird Sr. Engineering Clerk

JUL 1 6 2004

July 13, 2004

Mr. Thomas Sperbeck New York State Department of Environmental Conservation 1150 North Westcott Rd. – Region 4 Schenectady, NY 12306

Dear Mr. Sperbeck:

SUBJECT: Niagara Mohawk, a National Grid Company Schenectady Service Center PBS #4-42981

Enclosed, please find, the Tank Closure Report for the removal of Tank #2, an 8000 gallon underground unleaded gasoline tank at Niagara Mohawk's Schenectady-Broadway Service Center. Although no petroleum impacted soil was observed during excavation, analytical results showed semi-volatiles exceeding TAGM 4046 criteria.

Mr. Robert Cazzolli, Niagara Mohawk's Environmental Engineer, contacted you on June 28 to report that these elevated results are most likely part of an MGP cleanup being performed on-site at this time. However, due to the possibility of a fuel-related spill, you directed Mr. Cazzolli to call the analytical results in as a spill, for which Spill #0403347 was assigned. Mr. Robert O'Neill, Schenectady Service Center's MGP Project Manager, will be including a copy of this closure report to Mr. William Ottaway, NYSDEC Remediation Engineer. We plan to address cleanup as part of the site's MGP remediation project.

Please feel free to contact Mr. Robert Cazzolli at (315) 428-3490 with any technical questions or myself at (315) 428-6611 with any administrative issues.

Sincerely,

Helen A. Baird Sr. Engineering Clerk

HAB:jw Enclosure pc: J. Talbot (w/enc.) B. Scheurer (w/enc.) R. Javarone (w/enc.) X. O'Neill (w/enc.)

W. Balestra (w/o enc.) R. Cazzolli (w/o enc.) W. Holzhauer, Esq. (w/enc.)

300 Erie Boulevard West Environmental Department, C-1 Syracuse, NY 13202 315.428.6611 Fax: 315.428.3549 helen baird@us.ngrid.com

Tank Closure Report

Ser Co

記録

時に認

關

1

Sold in

いいない

No.

時間湯

1000

Niagara Mohawk Broadway Schenectady, New York PBS # 4-42981 TANK#2 June 2004

TANK CLOSURE REPORT

Room

17.20

5.32

翻回

题

「「「「

STER.

2000

112123

19.000 19.000

「「「「

1000

THE REAL

10.00

NIAGARA MOHAWK

BROADWAY

SCHENECTADY, NEW YORK

Prepared for

NIAGARA MOHAWK

Prepared by

S&W SERVICES, INC. One Remington Park Drive Cazenovia, New York 13035 (315) 655-4953

JUNE 2004

Project No. 2071

Ē

TABLE OF CONTENTS

SECTION 1 - INTRODUCTION	.1
SECTION 2 - REMOVAL DESCRIPTION	
SECTION 3 - SAMPLING	.3
SECTION 4 - EXTENT OF PETROLEUM IMPACT	.3
SECTION 5 - CONCLUSIONS AND RECOMMENDATIONS	3

LIST OF APPENDICES

i

Appendix

2

(22)

町回線

である

關於

1000

である

The second secon

の調

No. 13

国家

The state

07.73

LE RE

a States

A	Disposal Receipts and Records
В	Soil Sample Analytical Results
С	Site Map
D	Site Photographs

24

TANK CLOSURE REPORT

Site:

Niagara Mohawk Broadway Schenectady, NY (Schenectady County) Spill No.: 0403347 2

Subject Tank:

Tank No.X: 8,000-Gallon Underground Gasoline Storage Tank

SECTION 1 - INTRODUCTION

A. Date of Tank Removal. The storage tank was removed on June 1, 2004.

B. Purpose of Tank Removal. The storage tank was removed because it was recommended by Niagara Mohawk's Fleet and Environmental Groups.

C. Permits Required or Obtained. A permit was not required for the tank removal.

D. Contractor Performing Tank Removal.

S&W Services, Inc. One Remington Park Drive Cazenovia, NY 13035

Contractor Performing Post-Excavation Sampling.

S&W Services, Inc. One Remington Park Drive Cazenovia, NY 13035

E. Number, Size, Description, and Manufacturer of Tank Removed. One 8,000-gallon, single-walled, fiberglass-constructed underground storage tank was removed. The manufacturer of the tank was Xerxes.

SECTION 2 - REMOVAL DESCRIPTION

A. Description of Tank Removal Procedures. The concrete pad and top of tank was excavated to expose the tank. Soil from around the sides was then excavated and the tank and associated piping were pulled from the excavation.

B. Description of Tank Disposal Procedures. The tank was cut open, cleaned, and transported off-site to Waste Management for disposal (Appendix A).

C. Condition of Tank and Piping. The tank and the product and vent piping were visually inspected after removal from the ground. The piping was found to be in good condition. After cleaning, the tank was inspected. The tank was also found to be in good condition with no signs of pitting or corrosion.

D. Description of Product Released During Tank and Line Removal. Product was not observed in the excavation during the tank removal.

E. Disposal of Hazardous Waste and Non-Hazardous Waste Generated.

No petroleum-impacted soil was transported off-site. All soil remained on-site as directed by Niagara Mohawk and the NYSDEC.

F. Use of Excavated Soil Not Disposed Of. Soil which did not exhibit petroleum impacts when screened with a photoionization detector was used to backfill the excavation.

G. Regulatory Personnel in Attendance. Regulatory personnel were not in attendance during the tank removal; however, the appropriate regulatory personnel were notified prior to the tank removal. Niagara Mohawk Environmental Affairs personnel and management were on-site during tank removal activities.

H. Depth of Groundwater. Groundwater was encountered during the tank removal at approximately 5 FT to 6 FT.

SECTION 3 - SAMPLING

A. Methods Used to Obtain and Handle Samples Collected in the Field. Endpoint soil samples were collected following removal of the tank. Seven (7) soil samples were collected from the four walls and floor of the tank excavation. The soil samples were analyzed by EPA Method 8021/8270 for the target parameters established in STARS Memo No. 1, Petroleum-Contaminated Soil Guidance Policy (NYSDEC, 1992).

B. Company Performing Sampling. A representative of S&W Services, Inc. performed the above-referenced sampling.

SECTION 4 - EXTENT OF PETROLEUM IMPACT

A. Vertical and Lateral Extent of Petroleum Impact. Petroleum-impacted soil was not observed in the excavation area during the tank removal.

B. Use of Excavated Soil and Screening of Soil for Contamination. All soil was used as backfill.

C. Backfill Material. In addition to the excavated soils, clean gravel obtained from an off-site source was used to backfill the excavation.

D. NYSDEC Oil and Hazardous Material Spill Reporting Program. Spill number 0403347 was assigned to the site as a result of the tank removal.

SECTION 5 - CONCLUSIONS AND RECOMMENDATIONS

Tank was removed, cleaned and disposed off-site. There was no petroleum-impacted soil observed during excavation; however, analytical results showed some elevated levels; thus Niagara Mohawk notified the NYSDEC and a spill number was generated. All soil from excavation activities remained on-site within the excavated area.

APPENDIX A

100 100

•

12.00

該

6 8 d

10000/000001

01/10/05/06/2012

10020432564110

Disposal Receipts and Records

UD/29/2004 ILE 14:04 FAL 1 018 460 0/22 ENV PRODUCTS & SYCS

Port of Albany, Albany, NY 12202 Email: albany@epsofvermont.com

-

1

PHONE: (518) 465-4000 FAX: (518) 465-5722 1-800-5-SPILLS

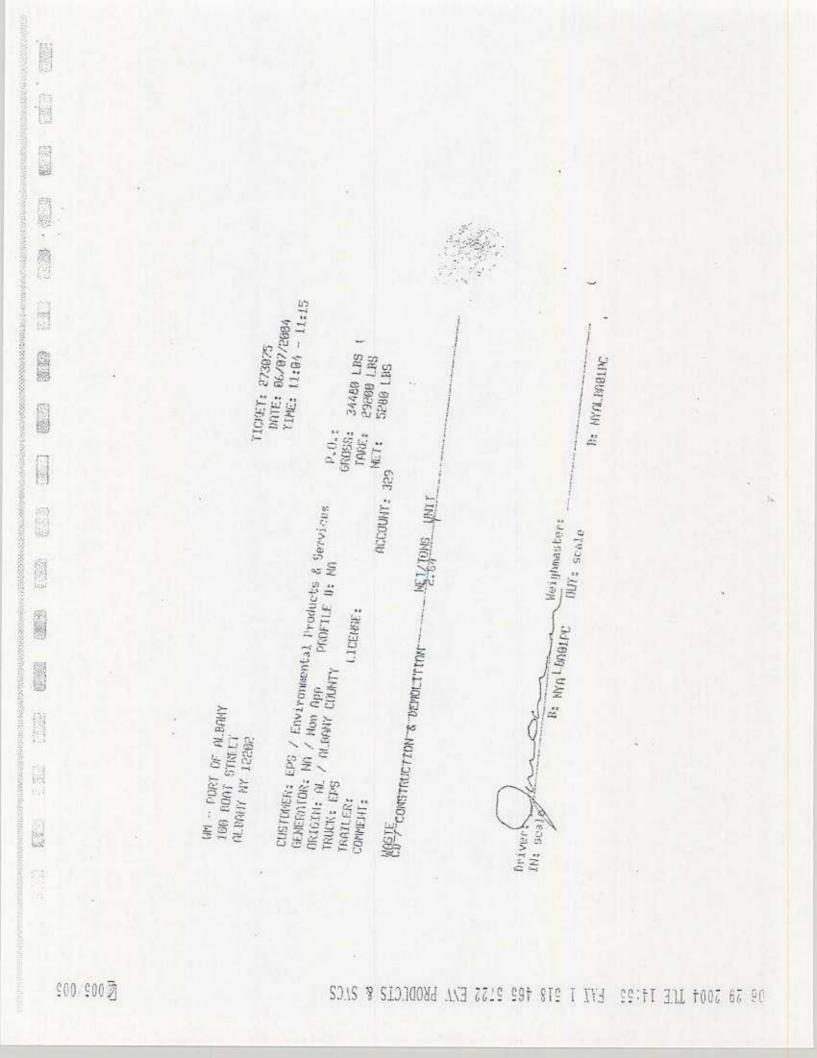
L2002 005

June 29, 2004

Attn: Tina Dorrance, S&W Services

From: Peter Marotta, EP&S of Vt.

RE: Fiberglass tank disposal


Attached you will find documents tracking the transportation, dismantling, and disposal of (1) 8,000 gallon fiberglass tank. The tank was cleaned on June 1, 2004 at the Niagara Mohawk facility on Broadway, Schenectady, NY by EP&S of Vt. crew as per industry standards. The empty and clean tank was transported to our branch office in the Port of Albany. The tank was dismantled/scrapped on June 7, 2004 (Daily Job Report and disposal ticket attached). The scrap fiberglass was disposed at Waste Management, 100 Boat St. Albany, NY. Should you have any further questions regarding the disposal of this tank, please feel free to contact me.

Sir Peter Marotta

Branch Manager

CONNECTICUT . MAINE . MASSACHUSETTS . NEW HAMPSHIRE . NEW YORK . PENNSYLVANIA . RHODE ISLAND . VERMONT

06/29/2004 TUE 14:5	4 FAI 1 513	5 465 8722 ENV P	RODUCTS & SY	CS		LO03-00
MANDON MOOLS MAR BOUND HO					Ī	384735
TTENTION SHIPPERS!	FREIGHT CH	ARGES ARE PREPAID OF	N THIS BILL OF L	ADING UNI ESS MAR	L-	2
		STRAIGHT E		21 N C C	Shipper No.	-
age / of /	En	warmented load	heter Serve	is of Verma	Carrier No.	
		Contraction of the second	e of camers	(SCAC)	- Date	
on Environmental	Products +S	encio AVr.	STIDDER NI	agara Moha	wk	
- Port at Albing	,		- Cay Selo	Dreading	1	Ip Code
Albany state 1	vy	Zip Code / 2202-	24 hr. Emergency (Contract The Ho STS-	439-3696	I Read and the second
de .	/		1		Vehicle	
Na of Units Container Type HM	Prop. antification Number () IN	BASIC DESCRIPTON or Shipping Name, Heterd Case, or NAI, Pecking Group, per 172,10	1	TOTAL QUANTITY (Weight, Volume,	WEIGHT (Subject to	HATE CHARGES
	000 galla		L L	Galions, etc.)	Correction)	Use Cri ₁ ;
	1 1	1. July Lass h	int	1,800	9280 T	
J	(Compty +	dean for score	£)	-	Alland	
					dischor	
					Ø	
				+		
PLACARDS TENDERED:	powers are movined to state	I hereby declare that the consumers of this densionhand are here well accurately	C.O.D. TO: ADDRESS			
where dependent waves of the property is nearby specify a proceeding. There the applicable land provident specify a single many tablety of doctor a value, the bigger and prime's tablety of doctors a value, the control tablety	Safey stated by the shipper to short of the samers satury	datched above by the proper theorem name and are classified, packed, manual and uppelied/placedesis, and an in an resorts in proper candidate for transport according in applicable	COD	Ami: S	COLLOT	5 3
iso by such provisions. Soo NMPG IIbm 172, nanotities requiring thospill of additional cure of site bals on making and packaged as the remains such was n 363, Dels of Ladeng, Freqeli Dels and Scatements of Contract Terms and Conditions for a fiel of such and	Approximations and the section to the section of th	regulations and relations generations regulations. Signature	tokening statements The Gerrier shall use major traight and all other sp-ful	Contracts, il the clapment is to be de c on the consigner, the contractors of delivery of this singularity on again.	ration the CHARDES	T CHARGES
HscGU/VLI1 subject to Lititational Ma property described active in place similar of autopages subjective (included time of partial market) understand (the word partial market) understand possission in the property under com random. Y and the scalar amenine to be also append as to each amenine of all co	rent good order, anticol as well consigned, and deerwest as a roughout line contract as most 79c0 options to contract as most rent to souther contract to be	d (continue and condition of con- clicities' Aldres which card camer with any option or corporation in 20 (Aldre of debining at said desir-	Whiston on the date Shickey hereby of	ch parts at are time interrocted in all a literative automatics at the part of leads and attended, and the task terms are consider tool and the task terms are consider	of briv 664 property, that every ginarina and conciliana in the g	service to cic newnarg claw
PPER Nragana Mokauk			CARRIER	netal fractic tar	Serves of	Vr.
Ba	ha-Sele	ne	PER Acord	Tran	1	4
9			DATE LITA	1		S
			- 0/1/0	7		

APPENDIX B

•

1251

1

Soil Sample Analytical Results

Tina Dorrance S&W Services 1 Remington Park Drive Cazenovia, NY 13035

Phone: (315) 655-4953 FAX: (315) 655-2285

Laboratory Analysis Report For

S&W Services

LSL Project ID: 0408604

Receive Date/Time: 06/03/04 13:52 Project Received by: MW

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirery. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

Life Science Laboratories, Inc.

LSL Central Lab 5854 Buttemut Drive East Syracuse, NY 13057 Tel. (315) 445-1105 Fax (315) 445-1301 NYS DOH ELAP #10248 PA DEP #68-2556

LSL North Eah 131 St. Lawrence Avenue Waddington, NY 13694 Tel. (315) 388-4476 Fax (315) 388-4061

LSL Finger Lakes Lab 16 N. Main St., PO Box 424 Wayland, NY 14572 Tel. (585) 728-3320 Fax (585) 728-2711 NYS DOH ELAP #10900 NYS DOH ELAP #11667

LSL Southern Tier Lab 30 East Main Street Cuba, NY 14727 Tel. (585) 968-2640 Fax (585) 968-0906

LSL MidLakes Lab 699 South Main Street Canandaigua, NY 14424 Tel. (585) 396-0270 Fax (585) 396-0377 NYS DOH ELAP #10760 NYS DOH ELAP #11369

This report was reviewed by:

chinda Water al

Date: 6/17/04

Life Science Laboratories, Inc.

A copy of this report was sent to:

Page 1 of 10 \$/17/64 Date Printed:

S&W Services Cazenovia, NY

LSL Sample ID:

0408604-001

Location: Sidewall Sampled: 06/01/04 11:00

Sample ID:

The state

翻回

283

E-A-VE

協調

Sampled By: DW

Sample Matrix:	SHW Dry Wt
----------------	------------

SW1

Analytical Method Analyte		Result	Units	Prep Date	Analysis Date & Time	Analys
// NYS-DEC STARS 8021 Volatiles		- Assessed to		Dinco	wate or Thile	101(12)
Benzene		<6	ug/kg dry		6/11/04	7.0
n-Butylbenzene		<6	ug/kg dry		6/11/04	LE
sec-Butylbenzene		<6	ug/kg dry		6/11/04	LE
tert-Butylbenzene		<6	ug/kg dry	5	6/11/04	LE
Ethyl benzene		<6	ug/kg dry	- Min	6/11/04	LE
Isopropylbenzene (Cumene)		<6	ug/kg dry		- 6/11/04	1.8
4-Isopropyl toluene (Cymene)		<6	ug/kg dry		6/11/04	LE
MTBE	44	<6	ug/kg dry		6/11/04	LE
Naphthalene		<6	ug/kg dry		6/11/04	LE
N-Propylbenzene		<6	ug/kg dry		6/11/04	LE
Toluene		<6	ug/kg dry		6/11/04	LE
1.2.4-Trimethylbenzene		<6	ug/kg dry		6/11/04	LE
1.3.5-Trimethylbenzene		<6	ug/kg dry			LE
Xylenes (Total)		<6	ug/kg dry		6/11/04	LE
Total Solids @ 103-105 C		88	Sh Sh		6/11/04 6/10/04	LEI
NYS-DEC STARS 8270 Base Neutrals					1. 1 M M.	(teres
Acenaphthese		<200	ug/kg dry	6/11/04	6/16/04	CRT
Anthracene		280	ug/kg dry	6/11/04	6/16/04	CRT
Benzo(a)anthracene		810	ug/kg dry	6/11/64	6/16/04	CRT
Benzo(b)fluoranthene		1500	ug/kg dry	6/11/04	6/16/04	CRI
Benzo(k)fluoranthene		650	ug/kg dry	6/11/04	6/16/04	CRT
Benzo(ghi)perylene		1200	ug/kg dry	6/11/04	6/16/04	CRT
Benzo(a)pyrene		1400	ug/kg dry	6/11/04	6/16/04	CRT
Chrysene		870	ug/kg dry	6/11/04	676/04	CRT
Dibenz(a.h)anthracene		220	ug/kg dry	6/11/04	6/16/04	CRT
Fluoranthene		750	ug/kg dry	6/11/04	6/16/04	CRT
Fluorene			ug/kg dry	6/11/04	6/16/04	CRT
Indeno(1.2.3-c.d)pyrene			ug/kg dry	6/11/04	6/16/04	CRT
Phenanthrene			ug/kg dry	6/11/04	6/16/04	CRT
Pyrene			ug/kg dry	6/11/04	6/16/04	CRT
Total Solids @ 103-105 C			%	No. 11. 14	6/10/04	LEF

S&W Services Cazenovia, NY

LSL Sample ID:

0408604-002

Location: Sidewall Sampled: 06/01/04 11:00 Sample Matrix: SHW Dry Wt

SW2

Sampled By: DW

Analytical Method Analyte		Result	Units	Prep Date	Analysis Date & Time	Analys Initial
IV NYS-DEC STARS 8021 Volatiles	240	Street, St		and the line of the		
Benzene		<6	ug/kg dry		6/11/04	LEI
n-Butylbenzene		<6	ug/kg dry		6/11/04	LEI
sec-Butylbenzene		<6	ug/kg dry		6/11/04	LER
tert-Butylbenzene		<6	ug/kg dry	~	6/11/04	LEI
Ethyl benzene		<6	ug/kg dry		6/11/04	LEI
Isopropylbenzene (Cumene)		<6	ug/kg dry		- 6/11/04	LEI
4-lsopropyl toluene (Cymene)		<6	ug/kg dry		6/11/04	LEI
MTBE	ы н .	<6	ug/kg dry		6/11/04	LEI
Naphthalene		<6	ug/kg dry		6/11/04	LEI
N-Propylbenzene		<6	ug/kg dry		6/11/04	LEI
Toluene		<6	ug/kg dry		6/11/04	LEI
1.2.4-Trimethylbenzene		<6	ug/kg dry		6/11/04	LET
1.3.5-Trimethylbenzene		<6	ug/kg dry		6/11/04	LEI
Xylenes (Total)		<6	ug/kg dry		6/11/04	LES
Total Solids @ 103-105 C		84	96		6-10/0-1	LET
/ NYS-DEC STARS 8270 Base/Neutrals						
Acenaphthene		<500	ug/kg dry	6/11/04	6/16/04	CRT
Anthracene		1000	ug/kg dry	6/11/04	616/04	CRT
Benzo(a)anthracene		2300	ug kg dry	6/11/04	6/16/04	CRI
Benzo(b)fluoranthene		8800	ug/kg dry	6/11/04	6/16/04	CRT
Benzo(k)fluoranthene		2100	ug/kg dry	6/11/04	6/16/04	CRT
Benzo(ghi)perylene		20000	ug/kg dry	6/11/04	6/16/04	CRT
Benzo(a)pyrenc		8500	ug/kg dry	6/11/04	6.16/04	CRT
Chrysene		2500	ug/kg dry	6/11/04	6/16/04	CRI
Dibenz(a.h)anthracene		<500	ug/kg dry	6/11/04	6'16/04	CRI
Fluoranthene		2300	ug/kg dry	6/11/04	6/16/04	CRT
Fluorene		<500	ug/kg dry	6/11/04	6/16/04	CRT
Indeno(1,2,3-c.d)pyrene		15000	ug/kg dry	6/11/04	6/16/04	CRT
Phenanthrene			ug/kg dry	6/11/04	6/16/04	CRT
Pyrene			ug/kg dry	6/11/04	6/16/04	CRT
Total Solids @ 103-105 C		84	%	1.61.95.96.944	6/10/04	LEF

A pattern resembling a degraded Fuel Oil #2 is present at an estimated amount of 310mg/kg dry.

前間

Sample ID:

S&W Services Cazenovia, NY

LSL Sample ID:

0408604-003

Sample ID: Location: Sidewall Sampled: 06/01/04 12:30

問題:

協いい

1223

の変通

(Called

N. Same

Call and

Sampled By: DW

Sample Ma	atrix:	SHW.	Dry Wt
-----------	--------	------	--------

SW3

Analytical Method Analyte	Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
1) NYS-DEC STARS 8021 Volatiles					
Benzene	<3000	ug/kg dry		6/11/04	LEF
n-Butylbenzene	<3000	ug/kg dry		6/11/04	LEF
sec-Butylbenzene	<3000	ug/kg dry		6/11/04	LEF
tert-Butylbeazene	<3000	ug/kg dry	-	6/11/04	LEF
Ethyl benzene	<3000	ug/kg dry		6/11/04	LEF
Isopropylbenzene (Cumene)	<3000	ug/kg dry		- 6/11/04	LEF
4-Isopropyl toluene (Cymene)	<3000	ug/kg dry		6/11/04	LEF
MTBE	~ <3000	ug/kg dry		6/11/04	LEF
Naphthalene	150000	ug/kg dry		6/11/04	LEF
N-Propylbenzene	<3000	ug/kg dry		6/11/04	LEF
Toluene	<3000	ug/kg dry		6/11/04	LEF
1.2.4-Trimethyibenzene	6000	ug/kg dry		6/11/04	LEF
1.3.5-Trimethylbenzene	<3000	ug/kg dry		6/11/04	LEF
Nylenes (Total)	7400	ug/kg dry		6/11/04	LEF
Total Solids @ 103-105 C	84	%		6/10/04	LEF
NYS-DEC STARS 8270 Base/Neutrals					
Acenaphthene	320000*	ug/kg dry	6 11.04	6/16/04	CRT
Anthracene	250000*	ug/kg dry	6/11/04	6/16/04	CRT
Benzo(a)anthracene	110000	ug/kg dry	6/11/04	6/16/04	CRT
Benzo(b)fluoranthene	71000	ug/kg dry	6/11/04	6/16/04	CRT
Benzo(k)fluoranthene	26000	ug/kg dry	6/11/04	6/16/04	CRT
Benzo(ghi)perylene	29000	ug/kg dry	6/11/04	6/16/04	CRT
Benzola)pyrene	94000	ug/kg dry	6/11/04	6/16/04	CRT
Chrysene	110000	ug/kg dry	6/11/04	6/16/04	CRT
Dibenz(a.h)anthracene	<20000	ug/kg dry	6.11/04	6/16/04	CRT
Fluoranthene	210000*	ug/kg dry	6/11/04	6/16/04	CRT
Fluorene	220000*	ug/kg dry	6/11/04	6/16/04	CRT
Indenu(1,2,3-c,d)pyrene	30000	ug/kg dry	6/11/04	6/16/04	CRT
Phenanthrene	650000*	ug/kg dry	6/11/04	6/16/04	CRT
Pyrene	290000*	ug/kg dry	6/11/04	6/16/04	CRT
Total Solids @ 103-105 C	84	%	20 C M 4 6 C	6/10/04	LEF

These results should be considered an estimate because the concentration exceeded the linear range of the instrument.

Augistis performed at: (1) LSL Central, (2) LSL North, (3) LSL Finger Lakes, (4) LSL Southern Tier, (5) LSL MidLakes

S&W Services Cazenovia, NY

100

12 A

調査

1

SW4 Sample ID: LSL Sample ID: 0408604-004 Location: Sidewall Sampled: 06/01/04 13:00 Sampled By: DW Sample Matrix: SHW Dry Wt Analytical Method Prep Analysis Analyst Analyte Result Units Date Date & Time Initials 111 NYS-DEC STARS 8021 Volatiles Benzene 25 ug/kg dry 6/14/04 LEF n-Butylbenzene <5 ug/kg dry 6/14/04 LEF sec-Butylbenzene <5 ug/kg dry 6/14/04 LEF tert-Butvibenzene <5 ug/kg dry 6/14/04 LEF Ethyl benzene <5 ug/kg dry 6/14/04 1.FF Isopropylbenzene (Cumene) <5 ug/kg dry ~ 6/14/04 LEF 4-Isopropyl toluene (Cymene) <5 ug/kg dry 6/14/04 LEF MTBE <5 ug/kg dry 6/14/04 LEF Naphthalene <5 ug/kg dry 6/14/04 LEF N-Propylbenzene <5 ug/kg dry 6/14/04 LEP Toluene <5 ug/kg dry 6/14/04 LEF 1.2.4-Trimethylbenzene <5 ug/kg dry 6/14/04 LEF 1.3.5-Trimethylbenzene <5 ug/kg dry 6/14/04 LEF Xvienes (Total) <5 ug/kg dry 6/14/04 LEF Total Solids @: 103-105 C 93 9% 6/11/04 LEF 11 NYS-DEC STARS 8270 Base Neutrals Acenaphthene <200 ug/kg drv 6/11/04 6/16/04 CRT Anthracene <200 ug/kg dry 6/11/04 6/16/04 CRT Benzo(a)anthracene <200 ug/kg dry 6/11/04 6/16/04 CRT Benzo(b) Suoranthene <200 ug/kg dry 6/11/04 6/16/04 CRT Benzo(k)fluoranthene <200 ug/kg dry 5/11/04 6/16/04 CRT Benzo(ghi)pervlene <200 ug/kg dry 6/11/04 6/16/04 CRT Benzo(a)pyrene <200 ug/kg dry 6/11/04 6/16/04 CRT Chrysene ug/kg dry <200 6/11/04 6/16/04 CRT Dibenz(a,h)anthracene <200 ug/kg dry 6/11/04 6/16/04 CRT Fluoranthene <200 ug/kg dry 6/11/04 6/16/04 CRT Fluorene <200 ug/kg dry 6/11/04 6/16/04 CRT Indeno(1.2.3-c,d)pyrene <200 ug/kg dry 6/11/64 6/16/04 CRT Phenanthrene 210 ug/kg dry 6/11/04 6/16/04 CRT Pyrene <200 ug/kg dry 6/11/04 6/16/04 CRT Total Solids @ 103-105 C 93 % 6/10/04 LEF

Page 5 ct 10 Date Printed: 6/17:04

Analysis performed at: (1) LSL Central, (2) LSL North, (3) LSL Finger Lakes, (4) LSL Southern Tier, (5) LSL MidLakes

S&W Services Cazenovia, NY

Sample ID: GW1 LSL Sample ID: 0408604-005 Location: Before Tank Sampled: 06/01/04 16:00 Sampled By: DW Sample Matrix: NPW Analytical Method Prep Analysis Analyst Analyte Result Units Date Date & Time Initials 411 NYS-DEC STARS 8021 Volatiles, by 8260 Benzena <5 ug/l 6/12/04 LEF n-Butylbenzene <5 ugi 6/12/04 LEF sec-Butylbenzene <5 ug/l 612/04 I FF tert-Butylbenzene <5 ug/l 6/12/04 LEF Ethyl benzene <5 ugi 6/12/04 LEF Isopropylbenzene (Cumene) <5 ug/i - 6/12/04 LEF 4-Isopropyl toluene (Cymene) <5 ug/l 6/12/04 1 FF MTBE 1000 ugA 6/12/04 LEF This result should be considered an estimate because the concentration exceeded the linear range of the instrument Naphthalene <5 ug/l 6/12/04 LEF N-Propylbenzene <5 ug/l 6/12/04 LEF Toluene <5 upi 6/12/04 LEF 1.2.4-Trimethylbenzene <5 ug/i 6/12/04 1.55 1.3.5-Trimethylbenzene <5 ug/l 6/12/04 LEE Xylenes (Total) <5 ug/l 6/12/04 LEF t-Butyl alcohol <500 ug/l 612/04 LEF Surrogate (1.2-DCA-d4) 111 %R 6/12/04 LEF Surrogate (Tol-d8) 91 %R 6.12/04 LEF Surrogate (4-BFB) 118 36R 6.12/04 LEP sample received in inappropriate container. (1) NYS-DEC STARS 8270 Base/Neutrals Accenaphthene <50 ugh 6/14/04 617/04 CRT Accounthylene <50 ug/l 6/14/04 6/17/04 CRT Anthracene <50 ug/l 6/14/04 6/17/04 CRT Benzo(a)anthracene <50 ug/l 6/14/04 6/17/04 CRT Benzo(b)fluoranthene <50 ug/i 6/14/04 5/17/04 CRT Benzo(k)fluoranthene <\$0 ug/l 6/14/04 6/17/04 CRT Benzo(ghi)perylene <50 ug/l 6/14/04 6/17/04 CRT Benzo(a)pyrene <50 ug/l 6/14/04 6/17/04 CRT Chrysene <50 6/14/04 ugf 6/17/04 CRT Dibenz(a,b)anthracene <50 121 6/14/04 6/17/04 CRT Fluoranthene <50 ug/l 6/14/04 6/17/04 CRT Fluorene <50 uel 6/14/04 6/17/04 CRT Indeno(1,2,3-c,d)pyrene <50 ug/l 6/14/04 6/17/04 CRT Phenanthrene <50 ug/l 6/14/04 6117/04 CRT Pyrene <50 ugA 6/14/04 6/17/04 CRT Surrogate (Nitrobenzene-d5) S6R 80 6/14/04 6/17/04 CRT Surrogate (2-Fluorobiphenyl) 81 %R 6/14/04 6/17/04 CRT Surrogate (Terphenyl-d14) 101 %R 6/14/04 6/17/04 CRT

Elevated detection limit due to limited sample volume.

Life Science Laboratories, Inc. Date Printed:

Analysis performed at: (1) LSL Central, (2) LSL North, (3) LSL Finger Lakes, (4) LSL Southern Tier, (5) LSL MidLakes

Page 5 of 10

6.17/04

contraction with the property.

S&W Services Cazenovia, NY

T. Marth

Strong to

6.200-

(DE)

1923

回調

Contraction of the Contraction o

協調に

(1987)333

No. 10

Sample ID:	GW2			Interest of the	LSL Sample ID:	0408604-	006
Location:	After Tank					0400004-	000
Sampled:	06/01/04 16:00	Sampled By:	DW				
Sample Matrix:		Sampieu by:	DW				
				_			un and and
Analytical Meth	bo		20.000	0.0000	Prep	Analysis	Analys
Analyte		-	Result	Units	Date	Date & Time	Initial
	ARS 8021 Volatiles.	by 8260					
Benzene			370	ug/l		6/12/04	LER
n-Butylben			<20			6/12/04	LEI
sec-Butylbe			<20	ug/l		6/12/04	LEI
tert-Butylb			<20	ug/1	-	6/12/04	LEF
Ethyl benzo			<20	ug/l		6/12/04	LEF
	enzene (Cumene)		<20	ugi		- 6/12/04	LEF
	toluene (Cymene)		<20	ug/1		6/12/04	LEF
MTBE		**	1800	ug/l		6/12/04	LEF
Naphthalen			4000	ug/l		6/12/04	LEF
	his result should be consi	dered an estimate becau			eded the linear range of the	t instrument.	
N-Propylbe	nzene		<20	ug/l		6/12/04	LES
Toluene			360	ug/l		6/12/04	LEF
	thylbenzene		47	ug/l		6/12/04	LEF
1.3.5-Trime			51	ugil		6/12/04	LEF
Xylenes (To			370	ug/1		6/12/04	LEF
t-Butyl alcol			<2000	ug/l		6/12/04	LEF
	.2-DCA-d4)		120	%R		6/12/04	LEF
Surrogate (1			102	%R		6/12/04	LEF
Surrogate (4			117	%aR		6/12/04	LEF
ample received in inaj	opropriate container.						
/ NYS-DEC ST/	ARS 8270 Base/Neut	rals					
Accaphthe	ne		54	ug/l	6/14/04	6/17/04	CRT
Acenaphthyl	ene		190	ug/l	6/14/04	6/17/04	CRT
Anthracene			<50	ug/ī	6/14/04	6/17/04	CRT
Benzo(a)anti	hracene		<50	ug/1	6/14/04	6/17/04	CRT
Benzo(b)fluo	ranthene		<50	ug/l	6/14/04	6/17/04	CRT
Benzo(k)fluo	ranthene		<50	ug/l	6/14/04	6/17/04	CRT
Benzo(ghi)pe	rylene		<50	ug/l	6/14/04	6/17/04	CRT
Benzo(a)pyro	ine		<50	ug/l	6/14/04	6/17/04	CRT
Chrysene			<50	ug/l	6/14/04	6/17/04	CRT
Dibenz(a,h)a	nthracene		<50	ug/l	6/14/04	6/17/04	CRT
Fluoranthene			<50	ug/l	6/14/04	6/17/04	CRT
Fluorene			70	ug/l	6/14/04	6/17/04	CRT
Indeno(1,2,3-	c.d)pyrene		<50	นฏา	6/14/04	6/17/04	CRT
Phenanthren	e		60	ug/i	6/14/04	6/17/04	CRT
Pyrene			<50	ug/l	6/14/04	6/17/04	CRT
Surrogate (Ni	trobenzene-d5)		83	%R	6/14/04	6/17/04	CRT
Surrogate (2-	Fluorobiphenyl)		80	%R	6/14/04	6/17/04	CRT
Surrogate (To	erphenyl-d14)			SiR	6/14/04	6/17/04	CRT

S&W Services Cazenovia, NY

Sample ID: BI LSL Sample ID: 0408604-007 Location: Under Tank Sampled: 06/01/04 10:00 Sampled By: DW Sample Matrix: SHW Dry Wt Analytical Method Prep Analysis Analyst Analyte Result Units Date Date & Time Initials (1) NYS-DEC STARS 8021 Volatiles Benzene <6 ug/kg dry 6/11/04 LEF n-Butvibenzene <6 ug/kg dry 6/11/04 LEF sec-Butvibenzene <6 ug/kg dry 6/11/04 LEF tert-Butylbenzene ug/kg dry <6 6/11/04 LEF Ethyl benzene ug/kg dry <6 6/11/04 LEF Isopropylbenzene (Cumene) <6 ug/kg dry - 6/11/04 LEF 4-Isopropyl toluene (Cymene) <6 ug/kg dry 6/11/04 LEF MTBE ug/kg dry <6 6/11/04 LEF Naphthalene 27 ug/kg dry 6/11/04 LEF N-Propylbenzene <6 ug/kg dry 6/11/04 LEF Toluene <6 ug/kg dry 6/11/04 LEF 1.2.4-Trimethylbenzene <6 ug/kg dry 6/11/04 LEF 1.3.5-Trimethylbenzene <6 ug/kg dry 6/11/04 LEF Xvlenes (Total) <6 ug/kg dry 6/11/04 LEF Total Solids (a, 103-105 C 89 % 6/10/04 LEF (1) NYS-DEC STARS 8270 Base/Neutrals Acenaphthene <200 ug/kg dry 6/11/04 6'16'04 CRT Anthracene 380 ug/kg dry 511/04 6/16/04 CRT Benzo(a)anthracene 330 ug/kg dry 6/11/04 6/16/04 CRT Renzo(h)fluorantheae 230 ug/kg dry 6/11/04 6/16/04 CRT Benzo(k)fluoranthene <200 ug/kg dry 6/11/04 6/16/04 CRT Benzo(ghi)pervlene <200 ug/kg dry 6/11/04 6/16/04 CRT Benzo(a)oyrene 230 ug/kg dry 6/16/04 6/11/04 CRT Chrysene 240 ug/kg dry 6/11/04 6/16/04 CRT Dibenz(a,h)anthracene <200 ug/kg dry 6/11/04 6/16/04 CRT Fluoranthene 390 ug/kg dry 6/11/04 6/16/04 CRT Fluorene 310 ug/kg dry 6/11/04 6/16/04 CRT Indeno(1.2.3-c.d)pyrene <200 ug/kg dry 6/11/04 6/16/04 CRT Phenanthrene 890 ug/kg dry 6/11/04 6/16/04 CRT Pyrene 670 ug/kg dry 6/11/04 6/16/04 CRT Total Solids @ 103-105 C 89 % 6/10/04 LEF

5

1

THE REAL

1

影

S&W Services Cazenovia, NY

Sample ID: B2 Location: Under Tank

LSL Sample ID:

0408604-008

Sampled: 06/01/04 16:30

Sampled By: DW

Sample Matrix:	SHW Dry Wt
----------------	------------

Analytical Method Analyte	Result	Units	Prep Date	Analysis Date & Time	Analys
U NYS-DEC STARS 8021 Volatiles		C IIII	Date	Date & Time	Initial
Benzene	5	ug/kg dry		6/11/04	LE
n-Butylbenzene	<5	ug/kg dry		6/11/04	LEI
sec-Butylbenzene	<5	ug/kg dry		6/11/04	LEI
tert-Butylbenzene	<5	ug/kg dry	-	6/11/04	
Ethyl benzene	<5	ug/kg dry		6/11/04	LE
Isopropylbenzene (Cumene)	<5	ug/kg dry		- 6/11/04	LEP
4-Isopropyl toluene (Cymene)	<5	ug/kg dry		6/11/04	LEF
MTBE	- <5	ug/kg dry		6/11/04	LEF
Naphthalene	<5	ug/kg dry		6/11/04	LEF
N-Propylbenzene	<5	ug/kg dry		6/11/04	LEF
Toluene	<5	ug/kg dry		6/11/04	LEF
1.2.4-Trimethylbenzene	<5	ug/kg dry		6/11/04	
1.3.5-Trimethylbenzene	<5	ug/kg dry		6/11/04	LEF
Xvienes (Total)	4	ug/kg dry		6/11/04	LEF
Total Solids @ 103-105 C	93	%		6/10/04	LEF
NYS-DEC STARS 8270 Base/Neutrals				* 1* 51.	Le Le I
Acenaphthene	<200	ug/kg dry	6/11/04	6/16/04	CRT
Anthracene	220	ug/kg dry	6/11/04	6/16/04	CRT
Benzo(a)anthracene	1100	ug/kg dry	6/11/04	6/16/04	CRT
Benzo(b)fluoranthene	970	ug/kg dry	6/11/04	6/16/04	CRT
Benzo(k)fluoranthene	530	ug/kg dry	6/11/04	6/16/04	CRT
Benzo(ghi)perylene	550	ug/kg dry	6/11/04	6/16/04	CRT
Benzo(a)pyrene	1300	ug/kg dry	5/11/04	6/16/04	CRT
Chrysene	970	ug/kg dry	6/11/04	6/16/04	CRT
Dibenz(a,h)anthracene	<200	ug/kg dry	6/11/04	6/16/04	CRT
Fluoranthene	830	ug/kg dry	6/11/04	6/16/04	CRT
Fluorene	<200	ug/kg dry	6/11/04	6/16/04	CRT
Indeno(1,2,3-c,d)pyrene	570	ug/kg dry	6/11/04	6/16/04	CRT
Phenanthrene	<200	ug/kg dry	6/11/04	6/16/04	CRT
Pyrene	2600	ug/kg dry	6/11/04	6/16/04	CRT
Total Solids @ 103-105 C	93	%		6/10/04	LEF

1000

S&W Services Cazenovia, NY

LSL Sample ID:

0408604-009

Sampled: 06/01/04 17:00

Sample ID:

Location:

1

同様・協

1204

10 2 C

「ない」

CE CERTE

STATE OF

Sampled By: DW

Sample Matrix:	SHW	Dry	Wt
----------------	-----	-----	----

B3

Under Sump

Analytical Method Analyte		Result	Units	Prep Date	Analysis Date & Time	Analys Initials
1/ NYS-DEC STARS 8021 Volatiles	- Williams				2 410 00 1 1110	intrai:
Benzene		<5	ug/kg dry		6/14/04	LEF
n-Butylbenzene		<5	ug/kg dry		6/14/04	LEF
sec-Butylbenzene		<5	ug/kg dry		6/14/04	LEF
tert-Butylbenzene		<5	ug/kg dry	-	6/14/04	LEF
Ethyl benzene		<5	ug/kg dry		6/14/04	LEF
Isopropylbenzene (Cumene)		<5	ug/kg dry		- 6/14/04	LEF
4-Isopropyl toluene (Cymene)		<5	ug/kg dry		6/14/04	LEF
MTBE	-	<5	ug/kg dry		6/14/04	LEF
Naphthalene		<5	ug/kg dry		6/14/04	LEF
N-Propylbenzene		<5	ug/kg dry		6/14/04	LEF
Toluene		<5	ug/kg dry		6/14/04	LEF
1.2.4-Trimethylbenzene		<5	ug/kg dry		6/14/04	LEF
1.3.5-Trimethylbenzene		<5	ug/kg dry		6/14/04	LEP
Xylenes (Total)		<5	ug/kg dry		6/14/04	LEF
Total Solids @ 103-105 C		94	%		6/10/04	LEF
NYS-DEC STARS 8270 Base/Neutrals						
Acenaphthene		<200	ug/kg dry	6/11/04	6/16/04	CRT
Anthracene		<200	ug/kg dry	6/11/04	6/16/04	CRT
Benzo(a)anthracene		<200	ug/kg dry	6/11/04	6/16/04	CRT
Benzo(b)fluoranthene		<200	ug/kg dry	6/11/04	6/16/04	CRT
Benzo(k)fluoranthene		<200	ug/kg dry	6/11/04	6/16/04	CRT
Benzo(ghi)perylene		<200	ug/kg dry	6/31/04	6/16/04	CRT
Benzo(a)pyrene		<200	ug/kg dry	6/11/04	6/16/04	CRT
Chrysene		<200	ug/kg dry	6/11/04	6/16/04	CRT
Dibenz(a,h)anthracene		<200	ug/kg dry	6/11/04	6/16/04	CRT
Fluoranthene		<200	ug/kg dry	6/11/04	6/16/04	CRT.
Fluorene		<200	ug/kg dry	6/11/04	6/16/04	CRT
Indeno(1.2.3-c.d)pyrene		<200	ug/kg dry	6/11/04	6/16/04	CRT
Phenanthrene		<200	ug/kg dry	6/11/04	6/16/04	CRT
Pyrene		<200	ug/kg dry	6/11/04	6/16/04	CRT
Total Solids @ 103-105 C		94	%		6/10/04	LEF

100000

10033

18 M

麗烈

10.00

题题题

回國

No.

1993

部調

Series and

(S. 7)

1.16.25

SURROGATE RECOVERY CONTROL LIMITS FOR ORGANIC METHODS

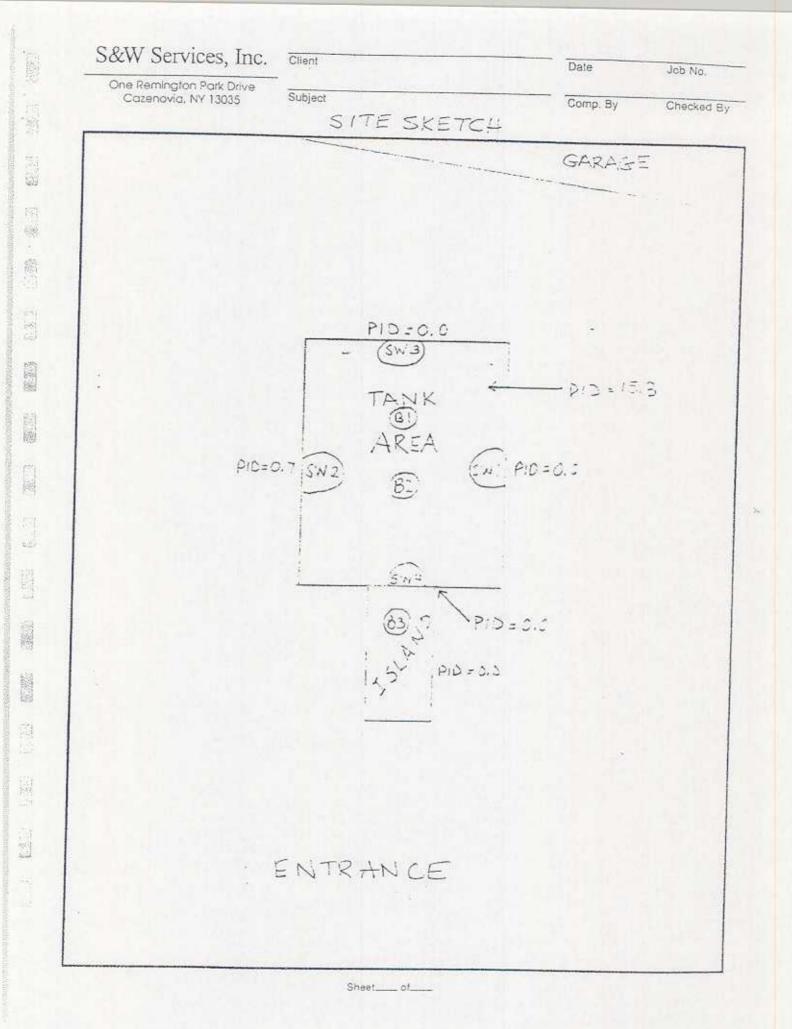
Method	Surrogate(s)	Water Limits, %R	SHW Limits, %R
EPA 504	TOUR		12-17-181 Sec-
	TCMX	80-120	NA
EPA 508	DCB	70-130	NA
EPA 515.4	DCAA	70-130	NA
EPA 524.2	1.2-DCA-d4, 4-BFB	80-120	NA
EPA 525.2	1,3-DM-2-NB, TPP, Per-d12	70-130	NA
EPA 526	1,3-DM-2-NB, TPP	70-130	NA
EPA 528	2-CP-3,4,5,6-d4, 2,4,6-TBP	70-130	NA
EPA 551.1	Decafluorobiphenyl	80-120	NA
EPA 552.2	2,3-DBPA	80-120	NA
EPA 601	1.2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
EPA 602	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
EPA 608	DCB	30-150	NA
EPA 624	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
EPA 625, AE	2-Fluorophenol	21-110	NA
EPA 625, AE	Phenol-d5	10-110	NA
EPA 625, AE	2.4,6-Tribromophenol	10-123	NA
EPA 625, BN	Nitrobenzene-d5	35-114	NA
EPA 625, BN	2-Fluorobiphenyl	43-116	NA
EPA 625, BN	Terphenyl-d14	33-141	NA
CENTRA STRATES IN		-	14/4
EPA 8010	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8020	1.2-DCA-d4, Tol-d8, 4-8F8	70-130	70-130
EPA 8021	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8081	TCMX, DCB	30-150	30-150
EPA 8082	DCB	30-150	30-150
EPA 8151	DCAA	30-130	30-120
EPA 8260	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8270, AE	2-Fluorophenol	21-110	25-121
EPA 8270, AE	Phenol-d5	10-110	24-113
EPA 8270, AE	2,4,5-Tribromophenol	10-123	19-122
EPA 8270, BN	Nitrobenzene-d5	35-114	23-120
EPA 8270, BN	2-Fluorobiphenyl	43-116	30-115
EPA 8270, BN	Terphenyl-d14	33-141	1B-137
DOH 310-13	Dodecane	40-110	10.110
DOH 310-14	Dodecane	40-110	40-110
DOH 310-15	Dodecane	40-110	40-110
DOH 310-34*	4-BFB	50-150	40-110
8015M GRO*	4-BF8	승지에서 그는 전통	50-150
our on one	40.0	50-150	50-150

*Run by GC/MS.

Units Key:	ug/l = microgram per liter
	ug/kg = microgram per kilogram
	mg/l = milligram per liter
	mg/kg = milligram per kilogram
	%R = Percent Recovery

100

NORSE INCOME


APPENDIX C

÷.

44

.

Site Sketch

APPENDIX D

the second

100

Note

1

第二章 第二章

manu pouto de autorna a descrete de antes de la competencia de la -

14

Site Photographs

Niagara Mohawk Broadway Schenectady, New York

and a

の調

國國

語言語

-

に変す

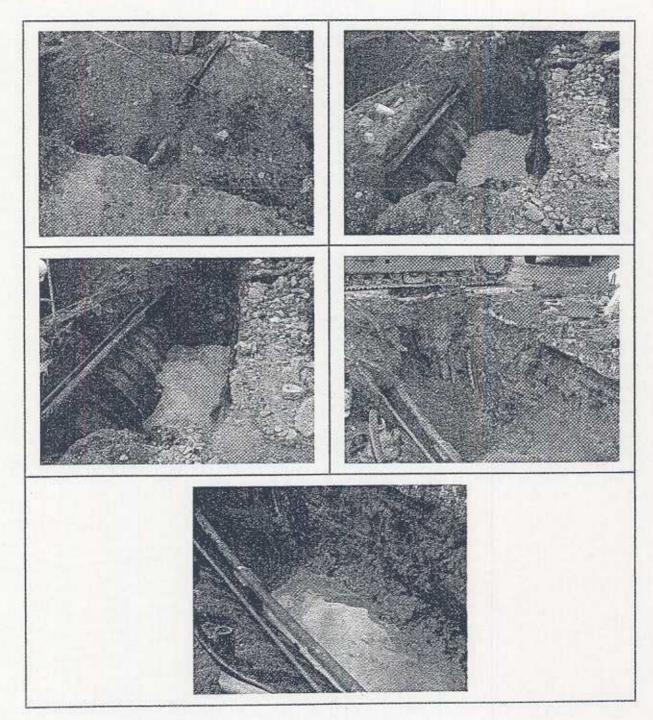
記録の

Parings

100 A

Series a

N. 16


100m

なない

HERE A

聖話

Tank Closure Photos June 2004

