

Groundwater Sampling Report December 2009

34 FREEMAN'S BRIDGE ROAD SITE Site 4-47-028

Work Assignment No. D004445-9

Prepared for:

SUPERFUND STANDBY PROGRAM New York State Department of Environmental Conservation

625 Broadway Albany, New York 12233

Prepared by:

AECOM Technical Services Northeast, Inc.

40 British American Boulevard Latham, New York 12110

February 2010

TABLE OF CONTENTS

Chap	pter	Page
1.0	INTRODUCTION1.1 SITE DESCRIPTION AND HISTORY	
2.0	GROUNDWATER SAMPLING AND ANALYSIS2.1 METHODOLOGY	
3.0	MONITORING RESULTS	4 4 5
4.0	CONCLUSIONS AND RECOMMENDATIONS	7
1 2 3	LIST OF TABLES Groundwater Elevations and Monitoring Well Details Groundwater Analytical Summary – Volatile Organic Compounds Groundwater Analytical Summary – Semi–Volatile Organic Compounds	
4	Groundwater Analytical Summary – Metals	
	LIST OF FIGURES	
1 2 3 4	Site Location Map Shallow Groundwater Contours – December 2009 Total Detected VOC Concentrations in Groundwater & AWQS Exceedences Total Detected SVOC Concentrations in Groundwater & AWQS Exceedences	
	APPENDIX	
Α	Monitoring Well Purging/ Sampling Forms	

1.0 INTRODUCTION

This groundwater sampling report has been prepared by AECOM Technical Services Northeast, Inc. (AECOM) for the 34 Freeman's Bridge Road Site (Site), Site Number 4-47-028, located at 34 Freeman's Bridge Road, Town of Glenville, Schenectady County, New York (See Figure 1). This work is being performed under Work Assignment No. D004445-9 of the Superfund Standby Contract between the New York State Department of Environmental Conservation (NYSDEC) and AECOM. The purpose of this report is to present the data collected from the December 2009 groundwater sampling event and any conclusions or suggestions drawn from this data. This groundwater sampling event was the sixth of eight quarterly events required during the first two years of monitoring at the Site as presented in the Site Management Plan (SMP) (AECOM, 2008).

1.1 SITE DESCRIPTION AND HISTORY

The Site is located in a commercial and light industrial area in the southeast part of the Town of Glenville, northeast of the Village of Scotia. The Site is on the northeast side of Freeman's Bridge Road approximately 1,000 feet northwest of the reconstructed Freeman's Bridge over the Mohawk River. The site is currently owned by Lyon's Ventures, Inc.

The Site occupies approximately 13 acres, as determined by the estimated limits of impacted fill on the property and adjacent properties delineated during the Remedial Investigation/Feasibility Study (RI/FS). The site is bordered to the east by the Delaware and Hudson Railroad, and Niagara Mohawk power line right of ways; to the north by Warner Creek; to the west by private properties and Freeman's Bridge Road; and to the south by a private property. The Site is generally flat, with a rise in the grade approaching the railroad power line and right of ways to the east and a swale centrally located that extends to Warner Creek to the north. The Mohawk River is approximately 300 feet south of the Site. Warner Creek is a Class A designated tributary of the Mohawk River.

The Site was owned and operated by the Kitchton Cooperage Company as a drum recycling facility from the late 1950's to 1972. A 12-acre parcel, Town of Glenville Tax Map # 30.19-01-26.1, was purchased in 1978 by Lyon's Ventures, Inc (Lyon's). In addition to operating a commercial used furniture business, Lyon's operations also included storing drummed waste on the Site and receiving large quantities of fill and construction and demolition (C&D) debris that were spread across an 11-acre area south of Warner Creek. Drum recycling operations (late 1950's to 1972) by the Kitchton Cooperage Company, and more recent drum storage and unregulated fill operations conducted by Lyon's, contaminated the soils and groundwater on the Site to various degrees, in particular the southwest corner, with polychlorinated biphenyls (PCBs).

A RI/FS was conducted by AECOM from 2000 through 2004. A remediation strategy consisting of excavation and treatment of on-site soil via low temperature thermal technologies and the collection and treatment of contaminated groundwater was recommended in the NYSDEC ROD (March 31, 2004). Construction of the preferred remediation alternative began in November 2006 and was completed in October 2007. In addition to treating over 75,000 tons of hazardous and non-hazardous soils, over 9 million gallons of groundwater from the Site operations was treated by the on-site wastewater treatment plant and discharged into the Warner's Creek in accordance with the NYSDEC approved Site Dewatering Plan.

A SMP (AECOM, 2008) was developed for the Site and approved by the NYSDEC in July 2008. The SMP summarizes the engineering and institutional controls for the site, as well as outlining the future monitoring plan. The monitoring includes quarterly groundwater sampling for the first two years of the plan, followed by annual sampling thereafter.

2.0 GROUNDWATER SAMPLING AND ANALYSIS

AECOM collected groundwater samples from each of the 20 Site monitoring wells on December 8 through 10, 2009. All groundwater samples were submitted to Adirondack Environmental Services, Inc. in Albany, New York, for analysis of VOCs by method SW8260B, SVOCs by SW8270C and Metals by E200.7. Neither PCBs nor pesticides were not detected during the first rounds of sampling and the NYSDEC has determined that these compounds will be analyzed only during annual sampling events. Hence, the PCBs and pesticides were not analyzed during this quarterly sampling event. Monitoring well purging/sampling logs were completed for each monitoring well and are presented in Appendix A.

2.1 METHODOLOGY

A complete round of depth to water measurements was completed prior to purging and sampling the monitoring wells. The groundwater levels were collected to develop a potentiometric map for the shallow groundwater zone and to determine the groundwater flow pathways. The depth to water measurements were recorded using an interface probe, which was decontaminated with a liquinox bath and rinsed with distilled water between each use. Prior to sampling, each monitoring well was purged of three well volumes of water. Purge water was disposed on the ground in the immediate vicinity of each well as per NYSDEC directive. The pump was decontaminated after purging/sampling each monitoring well by a liquinox bath followed by a distilled water rinse.

After purging, temperature, conductivity, pH, turbidity, color and odor of the groundwater were recorded on the monitoring well purging/sampling logs (Appendix A). Field parameters were taken using an YSI 556 series Water Quality Meter and a LaMotte 2020 turbidimeter. Each piece of equipment was calibrated each day prior to use. Groundwater samples were collected using a Whale pump with dedicated polyethylene tubing or a dedicated bailer. Bailers were used on the shallow wells that have historically purged dry very quickly. This change was made to gather more accurate parameters on the groundwater on these wells. All groundwater samples were collected in bottles provided by the laboratory. Samples were packed on ice, and submitted with a completed Chain-of-Custody (COC) to Adirondack Environmental Services, Inc., for analysis.

3.0 MONITORING RESULTS

The following section presents the results of the December 2009 groundwater sampling events at the Site.

3.1 GROUNDWATER FLOW

Prior to groundwater sampling, water level measurements were collected and recorded for each well (Table 1). These water level elevations were then used to develop a groundwater flow map for the shallow portion of the aquifer (Figure 2). The overall direction of groundwater flow in the shallow portion was to the northwest in the southern section of the Site, trending to the northnortheast in the northern section of the Site, towards Warner's Creek. The overall direction of groundwater flow has remained consistent over the past five sampling events.

3.2 GROUNDWATER ANALYTICAL RESULTS

This was the sixth of the eight quarterly groundwater sampling events proposed in the SMP. The groundwater results were evaluated based on comparison with NYS Ambient Water Quality Standards (AWQS) and Guidance Values (GV), collectively known as Standards, Criteria and Guidelines (SCGs). In addition, the December 2009 results were compared to the previous five sampling events occurring from March 2008 through September 2009.

In each of previous sampling events the water purged from the monitoring wells was very turbid. This additional material is likely caused by the fine nature of the thermally treated soil used to backfill. In response to this situation, additional groundwater was purged to augment well development during the March and June 2009 sampling events. The wells and groundwater samples have continued to show much lower levels of turbidity following the additional well development the wells.

Tables 2 through 4 presents the groundwater analytical results for the 20 monitoring wells sampled during the December 2009 and prior sampling events, for VOCs, SVOCs, and metals, respectively. These tables present only those compounds detected historically above laboratory detection limits.

3.2.1 Volatile Organic Compounds

The results of the VOC analysis are presented in Table 2. VOCs were detected in concentrations exceeding the AWQSs in the seven monitoring wells during the December 2009 event compared to ten in September 2009. Cis-1,2-dichloroethene was detected in four wells, with a maximum concentration of 29 μ g/L (MW-19D). The concentrations of cis-1,2-dichloroethene in MW-19 and MW-23 have decreased to below detection limits during this sampling event. These monitoring wells have consistently showed exceedences in past sampling events.

The list of VOCs detected in the December 2009 sampling event include, vinyl chloride, cis-1,2 dichloroethene, trichloroethene, acetone, 2-butanone, xylene, isopropylbenzene, and ethylbenzene. Several of these VOCs are only being detected in MW-30. This well had a total VOC concentration of 8,600 $\mu g/L$, an increase from 5,284 $\mu g/L$ in the September 2009 sampling event. MW-30 is located in a section of the former excavation that exhibited some evidence of non-aqueous phase liquid (NAPL) during remediation. An oily residue has been observed in this

well at each of the sampling events for the SMP; however no measurable NAPL has been detected with the interface probe since the onset of sampling.

Shallow monitoring well MW-20 has exhibited a high concentration of acetone in all of the six quarterly sampling events. The concentration has increased to 1,100 μ g/L (December 2009) from 670 μ g/L (September 2009). Similar to September 2009, 2-butanone was detected at elevated concentrations. The concentration of 2-butanone was recorded at 210 μ g/L in this well, an increase from 120 μ g/L. No apparent trends in the concentrations of these compounds are evident at this time. This monitoring well is located along the northwestern Site boundary, adjacent to the veterinary clinic property. The well has exhibited a very strong "urine" odor and yellow coloration over the past five sampling events. Groundwater quality data measured the Oxygen Reduction Potential (ORP) to be an order of magnitude lower than upgradient wells. In addition, the pH in the water exceeded 11.

As in the prior sampling events, the only deep wells with VOC concentrations above the laboratory detection limits were MW-19D located upgradient and off-site to the southeast and MW-16D located in the northeastern edge of the site. Cis-1,2-dichloroethene was detected at concentrations exceeding AWQS standards (5 μ g/L) in MW-19D (29 μ g/L) and MW-16D (8.4 μ g/L). These concentrations remain relatively unchanged from the concentrations detected in September 2009.

Figure 3 summarizes the contaminant concentrations that exceeded the VOC AWQSs.

3.2.2 Semi-volatile Organic Compounds

Concentrations of SVOCs above laboratory detection limits were detected in four monitoring wells: MW-16, MW-20, MW-30, and MW-33 (see Table 3). Phenol concentrations in MW-20 increased, from 1400 μ g/L in September 2009 to 2300 μ g/L in December 2009, the highest concentration to date. Additionally MW-20 had exceedences for 2-methylphenol (180 μ g/L) and 4-methylphenol (720 μ g/L).

MW-16 and MW-33 both exhibited exceedences for SVOCs for the first time since the onset of sampling. MW-16 had an exceedence of bis(2-ethylhexyl)phthalate (17 μ g/L) and MW-33 had an exceedence of naphthalene (35 μ g/L).

The only other monitoring well with a concentration exceeding the AWQSs was MW-30 with 15 μ g/L of naphthalene. This is the first sampling event where the concentration of 2,4-dimethylphenol was below the detection limit of 5 μ g/L. This concentration has shown a steady decrease in the concentration of this compound since August 2008.

Figure 4 summarizes the contaminant concentrations that exceeded the SVOC AWQSs.

3.2.3 Metals

Table 4 presents the results of the metals analysis for the December 2009 and previous sampling events. Antimony, iron, lead, magnesium, manganese, sodium, and thallium were detected in concentrations above the SCGs for metals in drinking water in the prior sampling events.

This sampling event exhibited exceedences for thallium in 13 out of the 20 monitoring wells compared to all 20 wells in September 2009. No apparent explanation for the increase of this element has been determined, but some possibilities are presented in section 4.0.

As with most of the past sampling events for the SMP, there were no exceedences of the AWQSs for cyanide.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Comparison of the December 2009 groundwater analytical data to the data from the six previous sampling events shows few notable changes to the 20 Site wells. Monitoring wells MW-20, and MW-30 continue to have the highest levels of VOC concentrations. Both of these wells had increased concentrations for total VOCs during this event. Additionally MW-20 and MW-30 continue to have exceedences for SVOCs significantly higher than any of the other site wells. MW-23 had previously shown exceedences in all six sampling events but had no VOC concentrations over detection limits in December 2009.

There was an increase in the concentration of total VOCs in MW-30 from 5,284 μ g/L to 8,600 μ g/L. This concentration is still an order of magnitude lower than the maximum concentration of 11,100 μ g/L recorded in March 2009. The total SVOC concentrations have continued to decrease to 15 μ g/L, down from its maximum of 125 μ g/L recorded in August 2008. The level of 2, 4-dimethyphenol has dropped to below the detection limit (5 μ g/L). The concentration of naphthalene (15 μ g/L) continues to be just above the SCGs value of 10 μ g/L.

Acetone still exceeds cleanup standards in MW-20. The concentration increased from 670 $\mu g/L$ in September 2009 to 1,100 $\mu g/L$. The total VOC concentrations in MW-20 have increased slightly from September 2009 but are still lower than the maximum of 3,310 $\mu g/L$ in December 2008. Odors from MW-20 suggest that practices at the veterinary clinic could be impacting this well. This well should be sampled for total organic carbon, ammonia, nitrates, nitrites, total coliform bacteria during the next sampling event to determine if septic discharge is possibly entering the well from the veterinary clinic located to the west.

Seven other wells on site recorded exceedences for VOCs but showed no significant changes in concentrations from the September 2009 sampling event.

Continued monitoring for metals may help determine if the exceedences for thallium in 13 of the 20 wells at the site is a trend or an anomaly. Disposal and backfilling practices at the site may have contributed to the concentration of thallium (ie. commonly found in specialized electronic equipment and a by-product of cement plants and coal-burning power plants). Large volumes of concrete were part of the site fill, and were processed through the Low Temperature Thermal Desorption (LTTD) unit and subsequently backfilled former fill area. In addition, the excavated soil was often combined with Lime Kiln Dust (LKD) prior to treatment to reduce moisture. This concrete and concrete dust may be leaching additional thallium into the groundwater adding to the elevated concentrations.

The next sampling event for the Freemans Bridge Site is March 2010.

Tables

Table 1

Groundwater Elevations and Monitoring Well Details 34 Freemans Bridge Road Glenville, New York Site No. 4-47-028 December 2009

Date					Dec	:-09
Monitoring Well	Total Depth	GROUND Elevation	CASING Elevation	Measuring Point	DTW (ft)	GW Elevation (ft)
MW-11	19.35	228.57	231.42	231.23	11.51	219.72
MW-11D	53.5	228.61	231.26	231.20	11.44	219.76
MW-12	17.29	228.50	231.06	230.68	10.63	220.05
MW-15	14.25	FLUSH	224.47	224.14	3.42	220.72
MW-15D	29.5	FLUSH	224.49	224.35	3.51	220.84
MW-16	13.2	226.09	228.68	228.41	9.06	219.35
MW-16D	28.64	225.81	227.67	227.49	8.45	219.04
MW-18	14.7	227.29	229.94	229.58	7.88	221.70
MW-19	9.72	224.77	227.27	227.12	5.62	221.50
MW-19D	22.31	224.89	226.14	226.01	4.71	221.30
MW-20	12.41	224.80	226.99	226.89	6.59	220.30
MW-20D	31.9	224.72	227.16	227.13	6.8	220.33
MW-21	18.3	224.52	227.51	227.46	7.17	220.29
MW-21D	50.2	224.71	229.56	229.05	8.85	220.20
MW-23	11.3	221.99	224.93	224.86	4.97	219.89
MW-23D	55.3	222.36	224.46	224.32	4.28	220.04
MW-30	16.49	223.57	226.26	226.19	6.3	219.89
MW-31	16.79	223.18	225.55	225.43	5.69	219.74
MW-32	22.24	224.92	227.83	227.32	6.93	220.39
MW-33	13.94	224.18	227.37	226.99	6.19	220.80

MP = Measuring point established on top of pvc (black marker)
All measurements in Feet

Table 2 **Groundwater Analytical Summary** Volatile Organic Compounds 34 Freemans Bridge Road Glenville, New York December 2009 Site No. 4-47-028

Sample ID					MW11							MW11D							MW12							MW15							MW15D		•	
Sampling Date		3/27/08	8/26/08	12/3/08	3/26/09	6/18/09	9/16/09	12/8/09	3/27/08	8/26/08	12/3/08	3/26/09	6/18/09	9/16/09	12/10/09	3/24/08	8/26/08	12/5/08	3/26/09	6/18/09	9/16/09	12/8/09	3/26/08	8/26/08	12/5/08	3/27/09	6/19/09	9/17/09	12/10/09	3/26/08	8/26/08	12/5/08	3/27/09	6/19/09	9/17/09	12/10/09
Units		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
									1														1									_	_			
Volatiles	AWQS/GV Values																																			
Vinyl chloride	2	5 U	10 L	J 10 L	10	U 10	U 10	U 10	U 5	U 10 L	J 10 U	10 l	J 10 L	J 10	U 10	U 5	U 10 I	J 10	U 10 L	J 10 U	10 U	10 l	J 16	76	44	11	21	21	18	5 L	10 U					
Chloroethane	5	5 U	10 L	J 10 L	J 5	U 10	U 10	U 10	U 5	U 10 L	J 10 U	10 l	J 10 L	J 10	U 10	U 5	U 10 I	J 10	U 10 L	J 10 U	10 U	10 l	J 5 L	J 10 L	J 10 U	10 L	10 U	J 10 l	J 10 U	5 L	10 U					
Acetone	50 (GV)	10 U	10 L	J 10 L	10	U 10	U 10	U 10	U 10	U 10 L	J 10 U	10 l	J 10 L	J 10	U 10	U 10	U 10 I	J 10	U 10 L	10 U	10 U	10 l	J 10 L	10 L	J 10 U	10 L	10 U	J 10 l	J 10 U	10 L	10 U					
Methyl Acetate	NL	5 U	5 L	J 5 L	J 5	U 5	U 5	U 5	U 5	U 5 L	J 5 U	5 l	J 5 L	J 5	U 5	U 5	U 5 I	J 5	U 5 L	J 5 U	5 U	5 (J 5 L	J 5 L	J 5 U	5 L	5 U	J 5 l	J 5 U	5 L	5 U	5 U	5 U	5 U	5 U	5 U
Methylene chloride	5	5 U	5 L	11	5	U 5	U 5	U 5	U 5	U 5	5	5 l	J 5 L	J 5	U 5	U 5	U 5 I	J 5	U 5 L	J 5 U	5 U	5 l	J 5 L	J 5 L	J 5 U	5 L	5 U	J 5 l	J 5 U	5 L	5 U	5 U	5 U	5 U	5 U	5 U
Methyl tert-butyl Ether	10(GV)	5 U	5 L	J 5 L	J 5	U 5	U 5	U 5	U 5	U 5 L	J 5 U	5 l	J 5 L	J 5	U 5	U 5	U 5 I	J 5	U 5 L	J 5 U	5 U	5 l	J 5 L	J 5 L	J 5 U	5 L	5 U	J 5 l	J 5 U	5 L	5 U	5 U	5 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	5	5 U	5 L	J 5 L	J 5	U 5	U 5	U 5	U 5	U 5 L	J 5 U	5 l	J 5 L	J 5	U 5	U 5	U 5 I	J 5	U 5 L	J 5 U	5 U	5 (8.3	15	17	5 L	8.6	11	9.9	5 L	5 U	5 U	5 U	5 U	5 U	5 U
2-Butanone	50(GV)	10 U	10 L	J 10 L	10	U 10	U 10	U 10	U 10	U 10 l	J 10 U	10 l	J 10 L	J 10	U 10	U 10	U 10 I	J 10	U 10 L	J 10 U	10 U	10 l	J 10 L	10 L	J 10 U	10 L	10 U	J 10 l	J 10 U	10 L	10 U					
Benzene	1	5 U	5 L	J 5 L	J 5	U 5	U 5	U 5	U 5	U 5 L	J 5 U	5 l	J 5 L	J 5	U 5	U 5	U 5 I	J 5	U 5 L	J 5 U	5 U	5 l	J 5 L	J 5 L	J 5 U	5 L	5 U	J 5 l	J 5 U	5 L	5 U	5 U	5 U	5 U	5 U	5 U
Trichloroethene	5	17	9.9	12	5	U 11	5.7	7.5	5	U 5 L	J 5 U	5 l	J 5 L	J 5	U 5	U 5	U 5 I	J 5	U 5 L	J 5 U	5 U	5 l	J 5 L	J 5 L	J 5 U	5 L	5 U	J 5 l	J 5 U	5 L	5 U	5 U	5 U	5 U	5 U	5 U
Methylcyclohexane	NA	5 U	5 L	J 5 L	J 5	U 5	U 5	U 5	U 5	U 5 L	J 5 U	5 l	J 5 L	J 5	U 5	U 5	U 5 I	J 5	U 5 L	J 5 U	5 U	5 l	J 5 L	J 5 L	J 5 U	5 L	5 U	J 5 l	J 5 U	5 L	5 U	5 U	5 U	5 U	5 U	5 U
Toluene	5	5 U	5 L	J 5 L	J 5	U 5	U 5	U 5	U 5	U 5 L	J 5 U	5 l	J 5 L	J 5	U 5	U 5	U 5 I	J 5	U 5 L	J 5 U	5 U	5 l	J 5 L	J 5 L	J 5 U	5 L	5 U	J 5 l	J 5 U	5 L	5 U	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	5	7	5 L	J 5 L	J 5	U 5	U 5	U 5	U 5	U 5 L	J 5 U	5 l	J 5 L	J 5	U 5	U 5	U 5 I	J 5	U 5 L	J 5 U	5 U	5 l	J 5 L	J 5 L	J 5 U	5 L	5 U	J 5 l	J 5 U	5 L	5 U	5 U	5 U	5 U	5 U	5 U
Ethylbenzene	5	5 U	5 L	J 5 L	J 5	U 5	U 5	U 5	U 5	U 5 L	J 5 U	5 l	J 5 L	J 5	U 5	U 5	U 5 I	J 5	U 5 L	J 5 U	5 U	5 (J 5 L	J 5 L	J 5 U	5 L	5 U	J 5 l	J 5 U	5 L	5 U	5 U	5 U	5 U	5 U	5 U
o-xylene	5	5 U	5 L	J 5 L	J 5	U 5	U 5	U 5	U 5	U 5 L	J 5 U	5 l	J 5 L	J 5	U 5	U 5	U 5 I	J 5	U 5 L	J 5 U	5 U	5 (U 5 L	J 5 L	J 5 U	5 L	5 U	J 5 l	J 5 U	5 L	5 U	5 U	5 U	5 U	5 U	5 U
m&p-xylenes	5	5 U	5 L	J 5 L	J 5	U 5	U 5	U 5	U 5	U 5 L	J 5 U	5 l	J 5 L	J 5	U 5	U 5	U 5 I	J 5	U 5 L	J 5 U	5 U	5 l	J 5 L	J 5 L	J 5 U	5 L	5 U	J 5 l	J 5 U	5 L	5 U	5 U	5 U	5 U	5 U	5 U
Isopropylbenzene	5	5 U	5 L	J 5 L	J 5	U 5	U 5	U 5	U 5	U 5 L	J 5 U	5 l	J 5 L	J 5	U 5	U 5	U 5 I	J 5	U 5 L	J 5 U	5 U	5 l	J 5 L	J 5 L	J 5 U	5 L	5 U	J 5 l	J 5 U	5 L	5 U	5 U	5 U	5 U	5 U	5 U
-																																				
Total CVOC's		24	9.9	23	0	11	5.7	7.5	0	5	5	0	0	0	0	0	0	0	0	0	0	0	24.3	91	61	11	29.6	32	27.9	0	0	0	0	0	0	0
Total VOC's		24	9.9	23	0	11	5.7	7.5	0	5	5	0	0	0	0	0	0	0	0	0	0	0	24.3	91	61	11	29.6	32	27.9	0	0	0	0	0	0	0

Sample ID					MW16	;							MW16D								MW18							MW19							MW19D)		·
Sampling Date		3/25/08	8/26/08	12/3/08	3/25/09	6/17/09	9/15/09	12/9/	/09 3/2	25/08	8/26/08	12/3/08	3/25/09	6/17/09	9/15/09	12/9/	09 3/	/26/08	8/26/08	12/5/08	3/27/09	6/18/09	9/16/09	12/10/09	3/26/08	8/25/08	12/4/08	3/27/09	6/18/09	9/16/09	12/10/09	3/26/08	8/25/08	12/4/08	3/27/09	6/18/09	9/16/09	12/10/09
Units		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug	/Ι ι	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug	I	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Volatiles	AWQS/GV Values																																					
Vinyl chloride	2	5 U	10 L	J 10 L	J 10	U 10	U 10	U	10 U	5 U	10 U	10 U	10 L	J 10 L	J 10	U	0 U	5 U	10 U	10	J 10 L	10 U	10	J 10	U 5 L	10 L	10 L	J 5 U	10 U	10 l	J 10 U	5 U	10 L	J 10 U	10 U	J 10 U	J 10 I	U 10 U
Chloroethane	5	5 U	10 L	J 10 L	J 10	U 10	U 10	U	10 U	5 U	10 U	10 U	10 L	J 10 L	J 10	U	10 U	5 U	10 U	10	J 10 L	10 U	10	J 10	U 5 L	10 L	10 L	J 5 U	10 U	10 l	J 10 U	5 U	10 L	J 10 U	10 U	J 10 U	J 10 I	U 10 U
Acetone	50 (GV)	10 U	24	10 L	15	10	U 10	U	10 U	10 U	5 U	5 U	5 L	J 10 L	J 10	U	0 U	10 U	5 U	5 1	J 5 L	5 U	5 (J 5	U 10 L	10 L	10 L	J 10 U	10 U	10 l	J 10 U	10 U	10 L	J 10 U	10 U	J 10 U	J 10 I	U 10 U
Methyl Acetate	NL	5 U	5 L	J 5 L	J 5	U 5	U 5	U	5 U	5 U	5 U	5 U	5 L	J 5 L	J 5	U	5 U	5 U	5 U	5 1	J 5 L	5 U	5 (J 5	U 5 L	J 5 L	5 L	J 5 U	5 U	5 l	J 5 U	5 U	5 L	J 5 U	5 U	J 5 U	J 5 I	U 5 U
Methylene chloride	5	5 U	5 L	J 5 L	J 5	U 5	U 5	U	5 U	5 U	5 U	5 U	5 L	J 5 L	J 5	U	5 U	5 U	5 U	5 1	J 5 L	5 U	5 (J 5	U 5 L	J 5 L	5 L	J 5 U	5 U	5 l	J 5 U	5 U	5 L	J 5 U	5 U	J 5 U	J 5 I	U 5 U
Methyl tert-butyl Ether	10(GV)	5 U	5 L	J 5 L	J 5	U 5	U 5	U	5 U	5.9	5 U	5 U	5 L	11	5	U	5 U	5 U	5 U	5 1	J 5 L	5 U	5 (J 5	U 5 L	23	12	5 U	9.4	5 l	J 5 U	5 U	5 L	J 5 U	5 U	J 5 U	J 5 I	U 5 U
cis-1,2-Dichloroethene	5	5 U	5 L	J 5 L	J 5	U 5	U 5	U	5 U	25	9.2	11	7.3	14	7.8	8	4	5 U	5 U	5 1	J 5 L	5 U	5 (J 5	U 5 L	J 5 L	5 L	J 5 U	6.5	5.7	5 U	36	33	42	34	43	26	29
2-Butanone	50(GV)	10 U	10 L	J 10 L	J 10	U 10	U 10	U	10 U	10 U	10 U	10 U	10 L	J 10 L	J 10	U	0 U	10 U	10 U	10	J 10 L	10 U	10	J 10	U 10 L	J 10 L	10 L	J 10 U	10 U	10 l	J 10 U	10 U	10 L	J 10 U	10 U	J 10 U	J 10 I	U 10 U
Benzene	1	5 U	5 L	J 5 L	J 5	U 5	U 5	U	5 U	5 U	5 U	5 U	5 L	J 5 L	J 5	U	5 U	5 U	5 U	5 1	J 5 L	5 U	5 (J 5	U 5 L	J 5 L	5 L	J 5 U	5 U	5 l	J 5 U	5 U	5 L	J 5 U	5 U	J 5 U	J 5 I	U 5 U
Trichloroethene	5	5 U	5 L	J 5 L	J 5	U 5	U 5	U	5 U	5 U	5 U	5 U	5 L	J 5 L	J 5	U	5 U	5 U	5 U	5 1	J 5 L	5 U	5 (J 5	U 5 L	J 5 L	5 L	J 5 U	5 U	5 l	J 5 U	5 U	5 L	J 5 U	5 U	J 5 U	J 5 I	U 5 U
Methylcyclohexane	NA	5 U	5 L	J 5 L	J 5	U 5	U 5	U	5 U	5 U	5 U	5 U	5 L	J 5 L	J 5	U	5 U	5 U	5 U	5 1	J 5 L	5 U	5 1	J 5	U 5 L	J 5 L	5 L	J 5 U	5 U	5 l	J 5 U	5 U	5 L	J 5 U	5 U	J 5 U	J 5 I	U 5 U
Toluene	5	5 U	5 L	J 5 L	J 5	U 5	U 5	U	5 U	5 U	5 U	5 U	5 L	J 5 L	J 5	U	5 U	5 U	5 U	5 1	J 5 L	5 U	5 (J 5	U 5 L	J 5 L	5 L	J 5 U	5 U	5 l	J 5 U	5 U	5 L	J 5 U	5 U	J 5 U	J 5 I	U 5 U
Tetrachloroethene	5	5 U	5 L	J 5 L	J 5	U 5	U 5	U	5 U	5 U	5 U	5 U	5 L	J 5 L	J 5	U	5 U	5 U	5 U	5 1	J 5 L	5 U	5 (J 5	U 5 L	J 5 L	5 L	J 5 U	5 U	5 l	J 5 U	5 U	5 L	J 5 U	5 U	J 5 U	J 5 I	U 5 U
Ethylbenzene	5	5 U	5 L	J 5 L	J 5	U 5	U 5	U	5 U	5 U	5 U	5 U	5 L	J 5 L	J 5	U	5 U	5 U	5 U	5 1	J 5 L	5 U	5 (J 5	U 5 L	J 5 L	5 L	J 5 U	5 U	5 l	J 5 U	5 U	5 L	J 5 U	5 U	J 5 U	J 5 I	U 5 U
o-xylene	5	5 U	5 L	J 5 L	J 5	U 5	U 5	U	5 U	5 U	5 U	5 U	5 L	J 5 L	J 5	U	5 U	5 U	5 U	5 1	J 5 L	5 U	5 (J 5	U 5 L	J 5 L	5 L	J 5 U	5 U	5 l	J 5 U	5 U	5 L	J 5 U	5 U	J 5 U	J 5 I	U 5 U
m&p-xylenes	5	5 U	5 L	J 5 L	J 5	U 5	U 5	U	5 U	5 U	5 U	5 U	5 L	J 5 L	J 5	U	5 U	5 U	5 U	5 1	J 5 L	5 U	5 1	J 5	U 5 L	J 5 L	5 L	J 5 U	5 U	5 l	J 5 U	5 U	5 L	J 5 U	5 U	J 5 U	J 5 I	U 5 U
Isopropylbenzene	5	5 U	5 L	J 5 L	J 5	U 5	U 5	U	5 U	5 U	5 U	5 U	5 L	J 5 L	J 5	U	5 U	5 U	5 U	5 1	J 5 L	5 U	5 (J 5	U 5 L	J 5 L	5 L	J 5 U	5 U	5 l	J 5 U	5 U	5 L	J 5 U	5 U	J 5 U	J 5 I	J 5 U
Total CVOC's		0	0	0	0	0	0		0	25	9.2	11	7.3	14	7.8	8	4	0	0	0	0	0	0	0	0	0	0	0	6.5	5.7	0	36	33	42	34	43	26	29 29
Total VOC's		0	24	0	15	0	0		0 3	30.9	9.2	11	7.3	25	7.8	8	4	0	0	0	0	0	0	0	0	23	12	0	15.9	5.7	0	36	33	42	34	43	26	29

- Qualifiers:
 Detected concentrations shown in **bold** font. Bold font in shaded cell indicates exceedances of AWQS+GV.

 NA Not analyzed

 ND Non Detect

 E Value above quantitation range

 B For organic analyses compound detected in laboratory method blank. For inorganic analyses indicates trace concentration below reporting limit and equal to or above the detection limit.

 U Compound not detected at or above the instrument detection limit (IDL).

 J Estimated concentration above the IDL but less than the contract required detection limits (CRDL).

 D Results from a subsequent dilution of the original sample due to original sample results being outside the linear range.

 * Duplicate Sample

 ** New York State Ambient Water Quality Standards (TOGs 1.1.1) GV guidance value.

- ** New York State Ambient Water Quality Standards (TOGs 1.1.1) GV guidance value.
- NS No standard or Guidance Value

Table 2 **Groundwater Analytical Summary Volatile Organic Compounds** 34 Freemans Bridge Road Glenville, New York December 2009 Site No. 4-47-028

Sample ID					MW20							MW20D							MW21							MW21)						MW23			
Sampling Date		3/24/08	8/25/08	12/4/08	3/25/09	6/19/09	9/15/09	12/10/09	3/24/08	8/25/08	12/4/08	3/25/09	6/19/09	9/15/09	12/10/09	3/24/08	8/25/08	12/4/08	3/26/09	6/17/09	9/16/09	12/10/09	3/24/08	8/25/08	12/4/08	3/26/09	6/17/09	9/16/09	12/10/09	3/27/08	8/25/08	12/3/08	3/25/09	6/17/09	9/15/09	12/9/09
Units		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Volatiles	AWQS/GV Values																																		i	
Vinyl chloride	2	5 U	100 L	J 200 L	J 200 L	J 100 U	50 U	50 L	J 5 U	10 U	J 10 L	J 10 U	10 L	J 10 L	10 L	5 U	10 U	10 U	10 U	10	U 10	J 10 U	J 5 l	J 10 U	10 U	10 U	J 10 U	10 U	10 U	10	10 U	16	23	39	16	10 U
Chloroethane	5	5 U	100 L	J 200 L	J 200 L	J 100 U	50 U	50 L	J 5 U	10 U	J 10 L	J 10 U	10 L	J 10 L	10 L	5 U	10 U	10 U	10 U	10	U 10	J 10 U	J 5 l	J 10 U	10 U	10 U	J 10 U	10 U	10 U	5 U	10 U	34	10 U	10 U	24	10 U
Acetone	50 (GV)	720 D	1400	2900 [1900	1300	670	1100	10 U	10 U	J 10 L	J 10 U	10 L	15	10 L	10 U	10 U	10 U	10 U	10	U 10	J 10 U	J 10 l	J 10 U	10 U	10 U	J 10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methyl Acetate	NS	5 U	50 L	J 50 L	J 100 L	390	57	25 L	J 5 U	5 U	J 5 L	J 5 U	5 L	J 5 L	5 L	5 U	5 U	5 U	5 U	5	U 5	J 5 U	J 5 l	J 5 U	5 U	5 U	J 5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methylene chloride	5	5 U	50 L	J 120	100 L	J 100 U	25 U	25 L	J 5 U	5 U	J 5 L	J 5 U	5 L	J 5 L	5 L	5 U	5 U	5 U	5 U	5	U 5	J 5 U	J 5 l	J 5 U	5 U	5 U	J 5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methyl tert-butyl Ether	10(GV)	5 U	50 L	J 50 L	J 100 L	J 100 U	25 U	25 L	J 5 U	5 U	J 5 L	J 5 U	5 L	J 5 L	5 L	5 U	5 U	5 U	5 U	5	U 5	J 5 U	J 5 l	J 5 U	5 U	5 U	J 5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	5	5 U	50 L	J 100 L	J 100 L	J 50 U	25 U	25 L	J 5 U	5 U	J 5 L	J 5 U	5 L	J 5 L	5 L	5 U	5 U	5 U	5 U	5	U 5	J 5 U	J 5 l	J 5 U	5 U	5 U	J 5 U	5 U	5 U	49	68	21	61	99	33	5 U
2-Butanone	50(GV)	77	100 L	290	200 L	190	120	210	10 U	10 U	J 10 L	J 10 U	10 L	J 10 L	10 L	10 U	10 U	10 U	10 U	10	U 10	J 10 U	J 10 l	J 10 U	10 U	10 U	J 10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	1	5 U	50 L	J 100 L	J 100 L	J 50 U	25 U	25 L	J 5 U	5 U	J 5 L	J 5 U	5 L	J 5 L	5 L	5 U	5 U	5 U	5 U	5	U 5	J 5 U	J 5 l	J 5 U	5 U	5 U	J 5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Trichloroethene	5	5 U	50 L	J 50 L	J 100 L	J 50 U	25 U	25 L	J 5 U	5 U	J 5 L	J 5 U	5 L	J 5 L	5 L	5 U	5 U	5 U	5 U	5	U 5	J 5 U	J 5 l	J 5 U	5 U	5 U	J 5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methylcyclohexane	NS	5 U	50 L	J 100 L	J 100 L	J 50 U	25 U	25 L	J 5 U	5 U	J 5 L	J 5 U	5 L	J 5 L	5 L	5 U	5 U	5 U	5 U	5	U 5	J 5 U	J 5 l	J 5 U	5 U	5 U	J 5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Toluene	5	5 U	50 L	J 100 L	J 100 L	J 50 U	25 U	25 L	J 5 U	5 U	J 5 L	J 5 U	5 L	J 5 L	5 L	5 U	5 U	5 U	5 U	5	U 5	J 5 U	J 5 l	J 5 U	5 U	5 U	J 5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	5	5 U	50 L	J 50 L	J 100 L	J 50 U	25 U	25 L	J 5 U	5 U	J 5 L	J 5 U	5 L	J 5 L	5 L	5 U	5 U	5 U	5 U	5	U 5	J 5 U	J 5 l	J 5 U	5 U	5 U	J 5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Ethylbenzene	5	5 U	50 L	J 100 L	J 100 L	J 50 U	25 U	25 L	J 5 U	5 U	J 5 L	J 5 U	5 L	J 5 L	5 L	5 U	5 U	5 U	5 U	5	U 5	J 5 U	J 5 l	J 5 U	5 U	5 U	J 5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
o-xylene	5	5 U	50 L	J 100 L	J 100 L	J 50 U	25 U	25 L	J 5 U	5 U	J 5 L	J 5 U	5 L	J 5 L	5 L	5 U	5 U	5 U	5 U	5	U 5	J 5 U	J 5 l	J 5 U	5 U	5 U	J 5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
m&p-xylenes	5	5 U	50 L	J 100 L	J 100 L	J 50 U	25 U	25 L	J 5 U	5 U	J 5 L	J 5 U	5 L	J 5 L	5 L	5 U	5 U	5 U	5 U	5	U 5	J 5 U	J 5 l	J 5 U	5 U	5 U	J 5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Isopropylbenzene	5	5 U	50 L	J 100 L	J 100 L	J 50 U	25 U	25 L	J 5 U	5 U	J 5 L	J 5 U	5 L	J 5 L	5 L	5 U	5 U	5 U	5 U	5	U 5	J 5 U	J 5 l	J 5 U	5 U	5 U	J 5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Total CVOC's		0	0	120	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	59	68	71	84	138	73	0
Total VOC's		797	1400	3310	1900	1880	847	1310	0	0	0	0	0	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	59	68	71	84	138	73	0

Sample ID					MW-23	D							MW30								MW31							MW32	2						MW33			
Sampling Date		4/4/08	8/25/08	12/3/08	3/25/09	6/17/09	9/15/09	12/9/0	9 3/25/0	8/26/	/08 12	/5/08	3/27/09	6/19/09	9/17/09	12/10	/09 3/	25/08	8/26/08	12/4/08	3/25/09	6/19/09	9/17/09	12/10/09	3/27/08	8/26/08	12/5/08	3/26/09	6/19/09	9/17/09	12/8/09	3/26/08	8/26/08	12/5/08	3/26/09	6/17/09	9/17/09	12/8/09
Units		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug	/I t	ıg/l	ug/l	ug/l	ug/l	ug	1	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Volatiles	AWQS/GV Values																																					
Vinyl chloride	2	5 U	10 U	10 U	10 1	U 10	U 10	U 10	U s	5 U 20	00 U	100 U	500 U	100 U	100	U 2	00 U	7.9	13	12	11	11	10	U 10	U 5	J 10	J 10 I	U 10 L	J 10 L	J 10	U 10 l	J 5 (J 10 U	10 U	10 L	J 10 U	10 L'	J 10 U
Chloroethane	5	5 U	10 U	10 U	10	U 10	U 10	U 10	U :	5 U 20	00 U	100 U	500 U	100 U	100	U 2	00 U	5 U	10 U	10	U 10 l	J 10 L	10	U 10	U 5	J 10	J 10 I	U 10 L	J 10 L	J 10	U 10 U	J 5 (J 10 U	10 U	10 L	J 10 U	10 L'	10 U
Acetone	50 (GV)	10 U	10 L	10 U	10	U 10	U 25	10) U 1	U 20	00 U	100 U	500 U	100 U	100	U 2	00 U	10 U	10 U	10	U 10 l	J 10 L	10	U 10	U 10	J 10	J 10 I	U 10 L	J 10 L	J 10	U 10 l	J 36	10 U	16	10 L	J 10 U	18 F	3 10 U
Methyl Acetate	NL	5 U	5 L	5 U	5 1	U 5	U 5	U !	5 U :	5 U 10	00 U	100 U	250 U	50 U	J 50	U 1	00 U	5 U	5 U	5 1	U 5 l	J 5 L	5	U 5	U 5	J 5	J 5 I	U 5 L	J 5 L	J 5	U 5 l	J 5 (J 5 U	5 U	5 L	J 5 U	5 L'	J 5 U
Methylene chloride	5	5 U	5 L	5 U	5 1	U 5	U 5	U !	5 U :	5 U 10	00 U	50 U	250 U	50 U	J 50	U 1	00 U	5 U	5 U	5 1	U 5 l	J 5 L	5	U 5	U 5	J 5	J 5 I	U 5 L	J 5 L	J 5	U 5 l	J 5 (J 5 U	5 U	5 L	J 5 U	11	5 U
Methyl tert-butyl Ether	10(GV)	5 U	5 L	5 U	5 1	U 5	U 5	U :	5 U :	5 U 10	00 U	100 U	250 U	50 U	50	U 1	00 U	5 U	5 U	5 1	U 5 l	J 5 L	5	U 5	U 5	J 5	J 5 I	U 5 L	J 5 L	J 5	U 5 l	J 5 (J 5 Ľ	5 U	5 L	J 5 U	5 L	J 5 U
cis-1,2-Dichloroethene	5	5 U	5 L	5 U	5 1	U 5	U 5	U !	5 U 50	10	00 U	50 U	250 U	50 U	J 50	U 1	00 U	12	10	14	11	24	12	10	5	J 5	J 5 I	U 5 L	J 5 L	J 5	U 5 l	J 5 (J 5 U	5 U	5 L	J 5 U	5 L'	J 5 U
2-Butanone	50(GV)	10 U	10 L	10 U	10	U 10	U 10	U 10) U 1	U 20	00 U	100 U	500 U	100 U	100	U 2	00 U	10 U	10 U	10	U 10 l	J 10 L	10	U 10	U 10	J 10	J 10 I	U 10 L	J 10 L	J 10	U 10 l	J 10 l	J 10 U	10 U	10 L	J 10 U	10 L'	J 10 U
Benzene	1	5 U	5 U	5 U	5 1	U 5	U 5	U !	5 U :	5 U 10	00 U	50 U	250 U	50 U	J 50	U 1	00 U	5 U	5 U	5 1	U 5 L	J 5 L	5	U 5	U 5	J 5	J 5 I	U 5 L	J 5 L	J 5	U 5 l	J 5 (6	6 U	5 L	7.8	7.1	5 U
Trichloroethene	5	5 U	5 L	5 U	5 1	U 5	U 5	U !	5 U :	5 U 10	00 U	100 U	250 U	50 U	J 50	U 1	00 U	5 U	5 U	5 1	U 5 l	J 5 L	5	U 5	U 5	J 5	J 5 I	U 5 L	J 5 L	J 5	U 5 l	J 5 (J 5 U	5 U	5 L	J 5 U	5 L'	J 5 U
Methylcyclohexane	NS	5 U	5 L	5 U	5 1	U 5	U 5	U !	5 U 26	10	00 U	50 U	250 U	50 U	64	1	00 U	5 U	5 U	5 1	U 5 L	J 5 L	5	U 5	U 5	J 5	J 5 I	U 5 L	J 5 L	J 5	U 5 U	J 5 (J 5 U	5 U	5 L	J 5 U	5 L'	J 5 U
Toluene	5	5 U	5 L	5 U	5 1	U 5	U 5	U :	5 U 69	10	00 U	50 U	250 U	50 U	140	1	00 U	5 U	5 U	5 1	U 5 L	J 5 L	5	U 5	U 5	J 5	J 5 I	U 5 L	J 5 L	J 5	U 5 l	J 5 (J 5 U	5 U	5 L	J 5 U	5 L'	J 5 U
Tetrachloroethene	5	5 U	5 L	5 U	5 1	U 5	U 5	U !	5 U :	5 U 10	00 U	100 U	250 U	50 U	J 50	U 1	00 U	5 U	5 U	5 1	U 5 l	J 5 L	5	U 5	U 5	J 5	J 5 I	U 5 L	J 5 L	J 5	U 5 l	J 5 (J 5 U	5 U	5 L	J 5 U	5 L'	J 5 U
Ethylbenzene	5	5 U	5 L	5 U	5 1	U 5	U 5	U :	5 U 110	170	0 D 6	610 D	1100	700	780	80	00	5 U	5 U	5 1	U 5 L	J 5 L	5	U 5	U 5	J 5	J 5 I	U 5 L	J 5 L	J 5	U 5 l	J 5 (J 5 U	5 U	5 L	J 5 U	5 l	J 5 U
o-xylene	5	5 U	5 U	5 U	5 1	U 5	U 5	U :	5 U 110	14	0 D	73 D	250 U	79	150	1	00 U	140	5 U	5 1	U 5 L	J 5 L	5	U 5	U 5	J 5	J 5 I	U 5 L	J 5 L	J 5	U 5 l	J 5 (J 5 Ľ	5 U	5 L	J 5 U	5 l'	J 5 U
m&p-xylenes	5	5 U	5 L	5 U	5 1	U 5	U 5	U :	5 U 3000	D 850	0 E 26	600 E	10000	4100 EE	4000	770	00	5.8	5 U	5 1	U 5 L	J 5 L	5	U 5	U 5	J 5	J 5 I	U 5 L	J 5 L	J 5	U 5 l	J 5 (J 5 Ľ	5 U	5 L	J 5 U	5 l'	J 5 U
Isopropylbenzene	5	5 U	5 L	5 U	5 1	U 5	U 5	U !	5 U 7 2	18	0 D 1	110 D	250 U	90	150	10	00	5 U	5 U	5 1	U 5 L	J 5 L	5	U 5	U 5	J 5	J 5 I	U 5 L	J 5 U	J 5	U 5 L	J 5 U	5 U	5 U	5 L	J 5 U	5 U	5 U
Total CVOC's	+	0	0	0	0	0	0	(50		0	0	0	0	0		0	19.9	23	26	22	35	12	10	0	0	0	0	0	0	0	0	0	0	0	0	11	0
Total VOC's		0	0	0	0	0	25	(3437	1052	20 33	393	11100	4969	5284	860	0 10	35.7	23	26	22	35	12	10	0	0	0	0	0	0	0	36	6	16	0	7.8	36.1	0

Qualifiers:

- Qualifiers:
 Detected concentrations shown in **bold** font. Bold font in shaded cell indicates exceedances of AWQS+GV.

 NA Not analyzed

 ND Non Detect

 E Value above quantitation range

 B For organic analyses compound detected in laboratory method blank. For inorganic analyses indicates trace concentration below reporting limit and equal to or above the detection limit.

 U Compound not detected at or above the instrument detection limit (IDL).

 J Estimated concentration above the IDL but less than the contract required detection limits (CRDL).

 D Results from a subsequent dilution of the original sample due to original sample results being outside the linear range.

 * Duplicate Sample

 ** New York State Ambient Water Quality Standards (TOGs 1.1.1) GV guidance value.

 NS No standard or Guidance Value

Table 3 **Groundwater Analytical Summary** Semi-Volatile Organic Compounds 34 Freemans Bridge Road Glenville, New York December 2009 Site No. 4-47-028

Sample ID		1			MW11				1			MW11D	1			1			MW12				1			MW15				1			MW15D	1		
Sampling Date		3/27/08	8/26/08	12/3/08	3/26/09		9/16/09	12/8/09	3/27/08	8/26/08	12/3/08	3/26/09		9/16/09	12/10/0	9 3/24/0	8 8/26/08	12/5/08		6/18/09	9/16/09	12/8/09	3/26/08	8/26/08	12/5/08	3/27/09	6/19/09	9/17/09	12/10/09	3/26/08	8/26/08	12/5/08	3/27/09	6/19/09	9/17/09	12/10/09
Units		ua/I	ug/l	ug/l	ua/I	ug/l	ug/l	ua/l	ua/l	ug/l	ug/l	ua/I	ua/l	ua/I	ua/l	ua/l	ug/l	ua/l	ug/l	ug/l	ug/l	ug/l	ua/l	ug/l	ug/l	ug/l	ua/l	ua/I	ug/l	ug/l	ua/l	ug/l	ug/l	ug/l	ug/l	ug/l
			- 3			- 3	- 3					- 3								- 3	- 3	- 3					- 3				- 3			- 3	- 3	
Semi-Volatiles	AWQS/GV Values																																			
Phenol	1	5 U	5 U	J 5 L	J 5	U 5	U 5	U 5	U 5 l	J 5 U	5 U	5 L	U 5 L	J 5	U 5	U 5.1	U 5	U 5	J 5 U	5 L	J 5 l	J 5 l	J 5 L	J 6 L	J 6 L	J 5 L	J 5 U	5 L	J 5 L	J 5 U	5 U	5 U	5 U	5 U	5 L	5 L
2-Chlorophenol	1	5 U	5 U	J 5 L	J 5	U 5	U 5	U 5	U 5 L	J 5 U	5 U	5 L	U 5 L	J 5	U 5	U 5.1	U 5	U 5	J 5 U	5 L	J 5 l	J 5 l	J 5 L	J 6 L	J 5 L	J 5 L	J 5 U	5 L	J 5 L	J 5 U	5 U	5 U	5 U	5 U	5 L	5 L
2-Methylphenol	1	5 U	5 U	J 5 L	J 5	U 5	U 5	U 5	U 5 L	J 5 U	5 U	5 L	U 5 L	J 5	U 5	U 5.1	U 5	U 5	J 5 U	5 L	J 5 l	J 5 l	J 5 L	J 6 L	J 6 L	J 5 L	J 5 U	5 L	J 5 L	J 5 U	5 U	5 U	5 U	5 U	5 L	5 L
4-Methylphenol	1	NA	5 U	J 5 L	J 5	U 5	U 5	U 5	U NA	5 U	5 U	5 l	U 5 L	J 5	U 5	U NA	5	U 5	J 5 U	5 L	J 5 l	J 5 l	J 5 L	J 6 L	J 6 L	J 5 L	J 5 U	5 L	J 5 L	J 5 U	5 U	5 U	5 U	5 U	5 L	5 L
2,4-Dimethylphenol	50(GV)	5 U	5 U	J 5 L	J 5	U 5	U 5	U 5	U 5 L	J 5 U	5 U	5 L	U 5 L	J 5	U 5	U 5.1	U 5	U 5	J 5 U	5 L	J 5 l	J 5 l	J 5 L	J 6 L	J 6 L	J 5 L	J 5 U	5 L	J 5 L	J 5 U	5 U	5 U	5 U	5 U	5 L	5 L
Naphthalene	10(GV)	5 U	5 U	J 5 L	J 5	U 5	U 5	U 5	U 5 l	J 5 U	5 U	5 l	U 5 L	J 5	U 5	U 5.1	U 5	U 5	J 5 U	5 L	J 5 l	J 5 l	J 5 L	J 6 L	J 6 L	J 5 L	J 5 U	5 L	J 5 L	J 5 U	5 U	5 U	5 U	5 U	5 L	5 L
Phenanthrene	50(GV)	5 U	5 U	J 5 L	J 5	U 5	U 5	U 5	U 5 L	J 5 U	5 U	5 L	U 5 L	J 5	U 5	U 5.1	U 5	U 5	J 5 U	5 L	J 5 L	J 5 l	J 5 L	J 6 L	J 5 L	J 5 L	J 5 U	5 L	J 5 L	J 5 U	5 U	5 U	5 U	5 U	5 L	5 L
Anthracene	50(GV)	5 U	5 U	J 5 L	J 5	U 5	U 5	U 5	U 5 L	J 5 U	5 U	5 L	U 5 L	J 5	U 5	U 5.1	U 5	U 5	J 5 U	5 L	J 5 l	J 5 L	J 5 L	J 6 L	J 5 L	J 5 L	J 5 U	5 L	J 5 L	J 5 U	5 U	5 U	5 U	5 U	5 L	5 L
Carbazole	NA	5 U	5 U	J 5 L	J 5	U 5	U 5	U 5	U 5 L	J 5 U	5 U	5 L	U 5 L	J 5	U 5	U 5.1	U 5	U 5	J 5 U	5 L	J 5 L	J 5 l	J 5 L	J 6 L	J 6 L	J 5 L	J 5 U	5 L	J 5 L	J 5 U	5 U	5 U	5 U	5 U	5 L	5 L
Fluoranthene	50(GV)	5 U	5 U	J 5 L	J 5	U 5	U 5	U 5	U 5 L	J 5 U	5 U	5 L	U 5 L	J 5	U 5	U 5.1	U 5	U 5	J 5 U	5 L	J 5 l	J 5 L	J 5 L	J 6 L	J 5 L	J 5 L	J 5 U	5 L	5 0	J 5 U	5 U	5 U	5 U	5 U	5 L	5 L
Pyrene	50(GV)	5 U	5 U	J 5 L	J 5	U 5	U 5	U 5	U 5 L	J 5 U	5 U	5 L	U 5 L	J 5	U 5	U 5.1	U 5	U 5	J 5 U	5 L	J 5 l	J 5 L	J 5 L	J 6 L	J 5 L	J 5 L	J 5 U	5 L	5 0	J 5 U	5 U	5 U	5 U	5 U	5 L	5 L
Benzo(a)anthracene	0.002	5 U	5 U	J 5 L	J 5	U 5	U 5	U 5	U 5 L	J 5 U	5 U	5 L	U 5 L	J 5	U 5	U 5.1	U 5	U 5	J 5 U	5 L	J 5 L	J 5 L	J 5 L	J 6 L	J 5 L	J 5 L	J 5 U	5 L	J 5 L	J 5 U	5 U	5 U	5 U	5 U	5 L	5 L
Chrysene	0.002	5 U	5 U	J 5 L	J 5	U 5	U 5	U 5	U 5 L	J 5 U	5 U	5 L	U 5 L	J 5	U 5	U 5.1	U 5	U 5	J 5 U	5 L	J 5 l	J 5 L	J 5 L	J 6 L	J 5 L	J 5 L	J 5 U	5 L	J 5 L	J 5 U	5 U	5 U	5 U	5 U	5 L	5 L
Bis(2-ethylhexyl)phthalate	5	5 U	5 U	J 5 L	J 5	U 5	U 5	U 5	U 5 L	J 5 U	6 B	5 L	U 5 L	J 5	U 5	U 5.1	U 5	U 7	5 U	5 L	J 5 l	J 5 l	J 5 L	J 6 L	J 7 E	5 L	J 5 U	5 L	J 5 L	J 5 U	5 U	5 U	5 U	5 U	5 L	5 L
Benzo(b)fluoranthene	0.002 (GV)	5 U	5 U	5 L	J 5	U 5	U 5	U 5	U 5 L	J 5 U	5 U	5 L	U 5 L	J 5	U 5	U 5.1	U 5	U 5	J 5 U	5 L	J 5 L	J 5 l	J 5 L	J 6 L	J 5 L	J 5 L	J 5 U	5 L	J 5 L	J 5 U	5 U	5 U	5 U	5 U	5 L	5 L
Benzo(k)fluoranthene	0.002 (GV)	5 U	5 U	5 L	J 5	U 5	U 5	U 5	U 5 L	J 5 U	5 U	5 L	U 5 L	J 5	U 5	U 5.1	U 5	U 5	J 5 U	5 L	J 5 L	J 5 L	J 5 L	J 6 L	J 5 L	J 5 L	J 5 U	5 L	J 5 L	J 5 U	5 U	5 U	5 U	5 U	5 L	5 L
Benzo(a)pyrene	ND	5 U	5 U	5 L	J 5	U 5	U 5	U 5	U 5 l	J 5 U	5 U	5 l	U 5 L	J 5	U 5	U 5.1	U 5	U 5	J 5 U	5 L	J 5 l	J 5 l	J 5 l	J 6 L	J 5 L	J 5 L	J 5 U	5 L	J 5 L	J 5 U	5 U	5 U	5 U	5 U	5 L	5 L
Total SVOCs		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Sample ID					MW16							MW16D							MW18							MW19)						MW19D	1		
Sampling Date		3/25/08	8/26/08	12/3/08	3/25/09	6/17/09	9/15/09	12/9/09	3/25/08	8/26/08	12/3/08	3/25/09	6/17/09	9/15/09	12/9/09	3/26/08	8/26/08	12/5/0	8 3/27/09	6/18/09	9/16/09	12/10/09	3/26/08	8/25/08	12/4/08	3/27/09	6/18/09	9/16/09	12/10/09	3/26/08	8/25/08	12/4/08	3/27/09	6/18/09	9/16/09	12/10/09
Units		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l						
											_																								<u> </u>	
	AWQS/GV																																			
Semi-Volatiles	Values																																			
Phenol	1	5.2 U	5 U	J 5 L	J 5 L	J 5 I	J 5 I	U 5 l	J 5 I	J 5 U	5 U	5 L	5 L	J 5	U 5 L	J 5	J 5 L	J 5	U 5 U	5 U	5 l	J 5 L	J 5 U	J 5	U 5 L	J 5	U 6 I	U 6	U 5 l	J 5 U	5 L	5 U	5 U	5 U	5 U	5 U
2-Chlorophenol	1	5.2 U	5 U	J 5 L	J 5 L	J 5 I	J 5 I	U 5 l	J 5 I	J 5 U	5 U	5 L	5 L	J 5	U 5 L	J 5	J 9	5	U 5 U	5 U	5 l	J 5 L	J 5 U	J 5	U 5 L	J 5	U 5 I	U 5	U 5 l	J 5 U	5 L	5 U	5 U	5 U	5 U	5 U
2-Methylphenol	1	5.2 U	5 U	5 L	J 5 L	J 5 I	J 5 I	U 5 l	J 5 I	J 5 U	5 U	5 L	5 L	J 5	U 5 L	J 5	J 5 L	J 5	U 5 U	5 U	5 l	J 5 L	J 5 U	J 5	U 5 L	J 5	U 6 I	U 6	U 5 l	J 5 U	5 L	5 U	5 U	5 U	5 U	5 U
4-Methylphenol	1	NA	5 U	5 L	J 5 L	J 5 I	J 5 I	U 5 l	J NA	5 U	5 U	5 L	5 L	J 5	U 5 L	J 5	J 5 L	J 5	U 5 U	5 U	5 l	J 5 L	J 5 U	J 5	U 5 L	J 5	U 6 I	U 6	U 5 l	J 5 U	5 L	5 U	5 U	5 U	, 5 U	5 U
2,4-Dimethylphenol	50(GV)	5.2 U	5 U	5 L	J 5 L	J 5 I	J 5 I	U 5 l	J 5 I	J 5 U	5 U	5 L	5 L	J 5	U 5 L	J 5	J 5 L	J 5	U 5 U	5 U	5 l	J 5 L	J 5 U	J 5	U 5 L	J 5	U 6 I	U 6	U 5 l	J 5 U	5 L	5 U	5 U	5 U	, 5 U	5 U
Naphthalene	10(GV)	5.2 U	5 U	5 L	J 5 L	J 5 I	J 5 l	U 5 l	J 5 I	J 5 U	5 U	5 L	5 L	J 5	U 5 L	J 5	J 5 L	J 5	U 5 U	5 U	5 l	J 5 L	J 5 U	J 5	U 5 L	J 5	U 6 I	U 6	U 5 l	J 5 U	5 L	5 U	5 U	5 U	, 5 U	5 U
Phenanthrene	50(GV)	5.2 U	5 U	5 L	J 5 L	J 5 I	J 5 I	U 5 l	J 5 I	J 5 U	5 U	5 L	5 L	J 5	U 5 L	J 5	J 5 L	J 5	U 5 U	5 U	5 l	J 5 L	J 5 U	J 7	23	5	U 5 I	U 5	U 5 l	J 5 U	5 L	5 U	5 U	5 U	5 U	5 U
Anthracene	50(GV)	5.2 U	5 U	5 L	J 5 L	J 5 I	J 5 l	U 5 l	J 5 I	J 5 U	5 U	5 L	5 L	J 5	U 5 L	J 5	J 5 L	J 5	U 5 U	5 U	5 L	J 5 L	J 5 U	J 5	U 11	5	U 5 I	U 5	U 5 l	J 5 U	5 L	5 U	5 U	5 U	, 5 U	5 U
Carbazole	NA	5.2 U	5 U	5 L	J 5 L	J 5 I	J 5 I	U 5 l	J 5 I	J 5 U	5 U	5 L	5 L	J 5	U 5 L	J 5	J 5 L	J 5	U 5 U	5 U	5 L	J 5 L	J 5 U	5	5 L	J 5	U 6 I	U 6	U 5 l	J 5 U	5 L	5 U	5 U	5 U	5 U	5 U
Fluoranthene	50(GV)	5.2 U	5 U	5 L	J 5 L	J 5 I	J 5 I	U 5 l	J 5 I	J 5 U	5 U	5 L	5 L	J 5	U 5 L	J 5	J 5 L	J 5	U 5 U	5 U	5 L	J 5 L	J 5 U	J 7	31	5	U 5 I	U 5	U 5 l	J 5 U	5 L	5 U	5 U	5 U	5 U	5 U
Pyrene	50(GV)	5.2 U	5 U	5 L	J 5 L	J 5 I	J 5 I	U 5 l	J 5 I	J 5 U	5 U	5 L	5 L	J 5	U 5 L	J 5	J 5 L	J 5	U 5 U	5 U	5 L	J 5 L	J 5 U	6	16	5	U 5 I	U 5	U 5 l	J 5 U	5 L	5 U	5 U	5 U	, 5 U	5 U
Benzo(a)anthracene	0.002	5.2 U	5 U	5 L	J 5 L	J 5 I	J 5 I	U 5 l	J 5 I	J 5 U	5 U	5 L	5 L	J 5	U 5 L	J 5	J 5 L	J 5	U 5 U	5 U	5 L	J 5 L	J 5 U	J 5	U 11	5	U 5 I	U 5	U 5 l	J 5 U	5 L	5 U	5 U	5 U	, 5 U	5 U
Chrysene	0.002	5.2 U	5 U	5 L	J 5 L	J 5 I	J 5 I	U 5 l	J 5 I	J 5 U	5 U	5 L	5 L	J 5	U 5 L	J 5	J 5 L	J 5	U 5 U	5 U	5 L	J 5 L	J 5 U	J 5	U 11	5	U 5 I	U 5	U 5 l	J 5 U	5 L	5 U	5 U	5 U	, 5 U	5 U
Bis(2-ethylhexyl)phthalate	5	5.2 U	5 U	5 L	J 5 L	J 5 I	J 5 I	U 17	5	J 5 U	5 U	5 L	5 L	J 5	U 5 L	J 5	J 5 L	J 5	U 5 U	5 U	5 l	J 5 L	J 5 U	J 5	U 15 E	3 5	U 5 I	U 5	U 5 l	J 5 U	5 L	11 B	5 U	5 U	, 5 U	5 U
Benzo(b)fluoranthene	0.002 (GV)	5.2 U	5 U	5 L	J 5 L	J 5 I	J 5 I	U 5 l	J 5 I	J 5 U	5 U	5 L	5 L	J 5	U 5 L	J 5	J 5 L	J 5	U 5 U	5 U	5 L	J 5 L	J 5 U	J 5	U 8	5	U 5 I	U 5	U 5 l	J 5 U	5 L	5 U	5 U	5 U	, 5 U	5 U
Benzo(k)fluoranthene	0.002 (GV)	5.2 U	5 U	5 L	J 5 L	J 5 I	J 5 I	U 5 l	J 5 I	J 5 U	5 U	5 L	5 L	J 5	U 5 L	J 5	J 5 L	J 5	U 5 U	5 U	5 l	J 5 L	J 5 U	J 5	U 8	5	U 5 I	U 5	U 5 l	J 5 U	5 L	5 U	5 U	5 U) 5 U	5 U
Benzo(a)pyrene	ND	5.2 U	5 U	5 L	J 5 L	J 5 I	J 5 I	U 5 l	J 5 I	J 5 U	5 U	5 L	5 L	J 5	U 5 L	J 5	J 5 L	J 5	U 5 U	5 U	5 l	J 5 L	J 5 U	J 5	U 9	5	U 5 I	U 5	U 5 (J 5 U	5 L	5 U	5 U	5 U	, 5 U	5 U
Total SVOCs		4.8	0	0	0	0	0	17	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	25	128	0	0	0	0	0	0	0	0	0	0	0

Qualifiers:

Detected concentrations shown in **bold** font. Bold font in shaded cell indicates exceedances of AWQS+GV.

- NA Not analyzed
- ND Non Detect
- E Value above quantitation range
- B For organic analyses compound detected in laboratory method blank. For inorganic analyses indicates trace concentration below reporting limit and equal to or above the detection limit.
- U Compound not detected at or above the instrument detection limit (IDL).
- J Estimated concentration above the IDL but less than the contract required detection limits (CRDL).
- D Results from a subsequent dilution of the original sample due to original sample results being outside the linear range.
- * New York State Ambient Water Quality Standards (TOGs 1.1.1) GV guidance value.
- NS No standard or Guidance Value

Table 3 **Groundwater Analytical Summary** Semi-Volatile Organic Compounds 34 Freemans Bridge Road Glenville, New York December 2009 Site No. 4-47-028

Sample ID					MW20						-	MW20D							MW21	•						MW21D			•				MW23			
Sampling Date		3/24/08	8/25/08	12/4/08	3/25/09	6/19/09	9/15/09	12/10/09	3/24/08	8/25/08	12/4/08	3/25/09	6/19/09	9/15/09	12/10/09	3/24/08	8/25/08	12/4/08	3/26/09	6/17/09	9/16/09	12/10/09	3/24/08	8/25/08	12/4/08	3/26/09	6/17/09	9/16/09	12/10/09	3/27/08	8/25/08	12/3/08	3/25/09	6/17/09	9/15/09	12/9/09
Jnits		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Semi-Volatiles	AWQS/GV Values																																			1
Phenol	1	180 D	1700 D	930	970	1600	1400	2300 E	5 U	5 U	5 L	5 L	5 l	J 5	U 5 I	J 5.2	U 5	U 5	U 5 U	5 U	5 L	J 5 U	5.1 U	5 U	5 U	5 U	5 U	5 L	J 5 U	5 L	5 U	6 U	5 L	5 L	J 5 U	5
2-Chlorophenol	1	5.1 U	110 U	110 l	J 42 L	J 190 l	J 500 l	J 140 U	J 5 U	5 U	5 L	5 L	5 l	J 5	U 5 I	J 5.2	U 5	U 5	U 5 U	5 U	5 L	J 5 U	5.1 U	5 U	5 U	5 U	5 U	5 L	J 5 U	5 L	5 U	5 U	5 L	5 L	J 5 U	5
2-Methylphenol	1	9.2	200 D	140	120	200	500 U	J 180	5 U	5 U	5 L	5 L	5 l	J 5	U 5 I	J 5.2	U 5	U 5	U 5 U	5 U	5 L	J 5 U	5.1 U	5 U	5 U	5 U	5 U	5 L	J 5 U	5 L	J 5 U	6 U	5 L	5 L	J 5 U	5
I-Methylphenol	1	NA	1100 D	650	470	720 [980	720	NA	5 U	5 L	5 L	5 l	J 5	U 5 I	J NA	5	U 5	U 5 U	5 U	5 L	J 5 U	NA	5 U	5 U	5 U	5 U	5 L	J 5 U	NA	5 U	6 U	5 L	5 L	J 5 U	5
2,4-Dimethylphenol	50(GV)	5.1 U	110 U	56 l	J 42 L	J 190 l	J 500 l	J 140 U	J 5 U	5 U	5 L	5 L	5 l	J 5	U 5 I	J 5.2	U 5	U 5	U 5 U	5 U	5 L	J 5 U	5.1 U	5 U	5 U	5 U	5 U	5 L	J 5 U	5 L	J 5 U	6 U	5 L	5 L	J 5 U	5
Naphthalene	10(GV)	4.8 J	110 U	56 l	J 42 L	J 190 l	J 500 l	J 140 U	J 5 U	5 U	5 L	5 L	5 l	J 5	U 5 I	J 5.2	U 5	U 5	U 5 U	5 U	5 L	J 5 U	5.1 U	5 U	5 U	5 U	5 U	5 L	J 5 U	5 L	J 5 U	6 U	5 L	5 L	J 5 U	5
Phenanthrene	50(GV)	5.1 U	110 U	110 l	J 42 L	J 190 l	J 500 l	J 140 U	J 5 U	5 U	5 L	5 L	5 l	J 5	U 5 I	J 5.2	U 5	U 5	U 5 U	5 U	5 L	J 5 U	5.1 U	5 U	5 U	5 U	5 U	5 L	J 5 U	5 L	J 5 U	5 U	5 L	5 L	J 5 U	5
Anthracene	50(GV)	5.1 U	110 U	110 l	J 42 L	J 190 l	J 500 l	J 140 U	J 5 U	5 U	5 L	5 L	5 l	J 5	U 5 I	J 5.2	U 5	U 5	U 5 U	5 U	5 L	J 5 U	5.1 U	5 U	5 U	5 U	5 U	5 L	J 5 U	5 L	J 5 U	5 U	5 L	5 L	J 5 U	5
Carbazole	NA	5.1 U	110 U	110 l	J 42 L	J 190 l	J 500 l	J 140 U	J 5 U	5 U	5 L	5 L	5 l	J 5	U 5 I	J 5.2	U 5	U 5	U 5 U	5 U	5 L	J 5 U	5.1 U	5 U	5 U	5 U	5 U	5 L	J 5 U	5 L	5 U	5 U	5 L	5 L	J 5 U	5
luoranthene	50(GV)	5.1 U	110 U	110 l	J 42 L	J 190 l	J 500 l	J 140 U	J 5 U	5 U	5 L	5 L	5 l	J 5	U 5 I	J 5.2	U 5	U 5	U 5 U	5 U	5 L	J 5 U	5.1 U	5 U	5 U	5 U	5 U	5 L	J 5 U	5 L	5 U	5 U	5 L	5 L	J 5 U	5
Pyrene	50(GV)	5.1 U	110 U	110 l	J 42 L	J 190 l	J 500 l	J 140 U	J 5 U	5 U	5 L	5 L	5 l	J 5	U 5 I	J 5.2	U 5	J 5	U 5 U	5 U	5 L	J 5 U	5.1 U	5 U	5 U	5 U	5 U	5 L	J 5 U	5 L	J 5 U	5 U	5 L	5 L	J 5 U	5
Benzo(a)anthracene	0.002	5.1 U	110 U	110 l	J 42 L	J 190 l	J 500 l	J 140 U	J 5 U	5 U	5 L	5 L	5 l	J 5	U 5 I	J 5.2	U 5	U 5	U 5 U	5 U	5 L	J 5 U	5.1 U	5 U	5 U	5 U	5 U	5 L	J 5 U	5 L	J 5 U	5 U	5 L	5 L	J 5 U	5
Chrysene	0.002	5.1 U	110 U	110 l	J 42 L	J 190 l	J 500 l	J 140 U	J 5 U	5 U	5 L	5 L	5 l	J 5	U 5 I	J 5.2	U 5	U 5	U 5 U	5 U	5 L	J 5 U	5.1 U	5 U	5 U	5 U	5 U	5 L	J 5 U	5 L	5 U	5 U	5 L	5 L	J 5 U	5
Bis(2-ethylhexyl)phthalate	5	5.1 U	110 U	56 l	J 42 L	J 190 l	J 500 l	J 140 U	J 5 U	5 U	5 L	5 L	5 l	J 5	U 5 I	J 5.2	U 5	J 14	B 5 U	5 U	5 L	J 5 U	5.1 U	5 U	6 B	5 U	5 U	5 L	J 5 U	5 L	J 5 U	6 U	5 L	5 L	J 5 U	5
Benzo(b)fluoranthene	0.002 (GV)	5.1 U	110 U	110 l	J 42 L	J 190 l	J 500 l	J 140 U	J 5 U	5 U	5 L	5 L	5 l	J 5	U 5 I	J 5.2	U 5	U 5	U 5 U	5 U	5 L	J 5 U	5.1 U	5 U	5 U	5 U	5 U	5 L	J 5 U	5 L	J 5 U	5 U	5 L	5 L	J 5 U	5
Benzo(k)fluoranthene	0.002 (GV)	5.1 U	110 U	110 l	J 42 L	J 190 l	J 500 l	J 140 U	J 5 U	5 U	5 L	5 L	5 l	J 5	U 5 I	J 5.2	U 5	U 5	U 5 U	5 U	5 L	J 5 U	5.1 U	5 U	5 U	5 U	5 U	5 L	J 5 U	5 L	J 5 U	5 U	5 L	5 L	J 5 U	5
Benzo(a)pyrene	ND	5.1 U	110 U	110 l	J 42 L	J 190 l	J 500 l	J 140 U	J 5 U	5 U	5 L	5 L	5 l	J 5	U 5 I	J 5.2	U 5	U 5	U 5 U	5 U	5 L	J 5 U	5.1 U	5 U	5 U	5 U	5 U	5 L	J 5 U	5 L	J 5 U	5 U	5 L	5 L	J 5 U	5
_																																				
Total SVOCs		197.2	3000	1720	1560	2520	2380	3200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Sample ID					MW-23D	1						MW30							MW31							MW32							MW33			
Sampling Date		4/4/08	8/25/08	12/3/08	3/25/09	6/17/09	9/15/09	12/9/09	3/25/08	8/26/08	12/5/08	3/27/09	6/19/09	9/17/09	12/10/09	3/25/08	8/26/08	12/4/08	3/25/09	6/19/09	9/17/09	12/10/09	3/27/08	8/26/08	12/5/08	3/26/09	6/19/09	9/17/09	12/8/09	3/26/08	8/26/08	12/5/08	3/26/09	6/17/09	9/17/09	12/8/09
Units		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Semi-Volatiles	AWQS/GV Values																																			
Phenol	1	5 U	5 U	5 L	J 5 I	J 5 I	J 5 I	U 5 L	J 5 I	U 11 U	15 U	9 L	10 U	5 L	J 5 U	5 l	J 5 L	J 5	U 5 U	5 U	5 L	J 5 U	5 U	5 U	13	5 U	J 6 L	5	U 5 U	5 U	6 U	6 U	11 U	5 U	5 U	11 U
2-Chlorophenol	1	5 U	5 U	5 L	J 5 l	J 5 I	J 5 l	U 5 L	J 5 I	U 11 U	11 U	9 L	10 U	5 L	J 5 U	5 l	J 5 L	J 5	U 5 U	5 U	5 L	J 5 U	5 U	5 U	5 U	5 U	J 6 L	5	U 5 U	5 U	6 U	6 U	11 U	5 U	5 U	11 U
2-Methylphenol	1	5 U	5 U	5 L	J 5 l	J 5 I	J 5 l	U 5 L	J 5 I	U 11 U	15 U	9 L	10 U	5 L	J 5 U	5 l	J 5 L	J 5	U 5 U	5 U	5 L	J 5 U	5 U	5 U	5 U	5 U	J 6 L	5	U 5 U	5 U	6 U	6 U	11 U	5 U	5 U	11 U
4-Methylphenol	1	5 U	5 U	5 L	J 5 I	J 5 I	J 5 l	U 5 L	J NA	11 U	15 U	9 L	10 U	5 L	J 5 U	NA	5 L	J 5	U 5 U	5 U	5 L	J 5 U	NA	5 U	5 U	5 U	J 6 L	5	U 5 U	5 U	6 U	6 U	11 U	5 U	5 U	11 U
2,4-Dimethylphenol	50(GV)	5 U	5 U	5 L	J 5 I	J 5 I	J 5 I	U 5 L	21	110 D	100	86	49 D	37	5 U	5 l	J 5 L	J 5	U 5 U	5 U	5 L	J 5 U	5 U	5 U	5 U	5 U	J 6 L	5	U 5 U	5 U	6 U	6 U	11 U	5 U	5 U	11 U
Naphthalene	10(GV)	5 U	5 U	5 L	J 5 I	J 5 I	J 5 I	U 5 L	2.3	J 15 D	22	13	14 D	11	15	5 l	J 5 L	J 5	U 5 U	5 U	5 L	J 5 U	5 U	5 U	5 U	5 U	J 6 L	5	U 5 U	5 U	6 U	6 U	11 U	5 U	5 U	35
Phenanthrene	50(GV)	5 U	5 U	5 L	J 5 I	J 5 I	J 5 I	U 5 L	J 5 I	U 11 U	11 U	9 L	10 U	5 L	J 5 U	5 l	J 5 L	J 5	U 5 U	5 U	5 L	J 5 U	5 U	5 U	5 U	5 U	J 6 L	5	U 5 U	5 U	6 U	6 U	11 U	5 U	5 U	11 U
Anthracene	50(GV)	5 U	5 U	5 L	J 5 I	J 5 I	J 5 l	U 5 L	J 5 I	U 11 U	11 U	9 L	10 U	5 L	J 5 U	5 l	J 5 L	J 5	U 5 U	5 U	5 L	J 5 U	5 U	5 U	5 U	5 U	J 6 L	5	U 5 U	5 U	6 U	6 U	11 U	5 U	5 U	11 U
Carbazole	NA	5 U	5 U	5 L	J 5 I	J 5 I	J 5 I	U 5 L	J 5 I	U 11 U	11 U	9 L	10 U	5 L	J 5 U	5 l	J 5 L	J 5	U 5 U	5 U	5 L	J 5 U	5 U	5 U	5 U	5 U	J 6 L	5	U 5 U	5 U	6 U	6 U	11 U	5 U	5 U	11 U
Fluoranthene	50(GV)	5 U	5 U	5 L	J 5 I	J 5 I	J 5 l	U 5 L	J 5 I	U 11 U	11 U	9 L	10 U	5 L	J 5 U	5 l	J 5 L	J 5	U 5 U	5 U	5 L	J 5 U	5 U	5 U	5 U	5 U	J 6 L	5	U 5 U	5 U	6 U	6 U	11 U	5 U	5 U	11 U
Pyrene	50(GV)	5 U	5 U	5 L	J 5 l	J 5 I	J 5 l	U 5 L	J 5 I	U 11 U	11 U	9 L	10 U	5 L	J 5 U	5 l	J 5 L	J 5	U 5 U	5 U	5 L	J 5 U	5 U	5 U	5 U	5 U	J 6 L	5	U 5 U	5 U	6 U	6 U	11 U	5 U	5 U	11 U
Benzo(a)anthracene	0.002	5 U	5 U	5 L	J 5 l	J 5 I	J 5 l	U 5 L	J 5 I	U 11 U	11 U	9 L	10 U	5 L	J 5 U	5 l	J 5 L	J 5	U 5 U	5 U	5 L	J 5 U	5 U	5 U	5 U	5 U	J 6 L	5	U 5 U	5 U	6 U	6 U	11 U	5 U	5 U	11 U
Chrysene	0.002	5 U	5 U	5 L	J 5 I	J 5 I	J 5 I	U 5 L	J 5 I	U 11 U	11 U	9 L	10 U	5 L	J 5 U	5 l	J 5 L	J 5	U 5 U	5 U	5 L	J 5 U	5 U	5 U	5 U	5 U	J 6 L	5	U 5 U	5 U	6 U	6 U	11 U	5 U	5 U	11 U
Bis(2-ethylhexyl)phthalate	5	5 U	5 U	5 L	J 5 l	J 5 I	J 5 l	U 5 L	J 5 I	U 11 U	15 U	9 L	10 U	5 L	J 5 U	5 l	J 5 L	10	B 5 U	5 U	5 L	J 5 U	5 U	5 U	6 B	5 U	J 6 L	5	U 5 U	5 U	6 U	6 U	11 U	5 U	5 U	11 U
Benzo(b)fluoranthene	0.002 (GV)	5 U	5 U	5 L	J 5 I	J 5 I	J 5 I	U 5 L	J 5 I	U 11 U	11 U	9 L	10 U	5 L	J 5 U	5 l	J 5 L	J 5	U 5 U	5 U	5 L	J 5 U	5 U	5 U	5 U	5 U	J 6 L	5	U 5 U	5 U	6 U	6 U	11 U	5 U	5 U	11 U
Benzo(k)fluoranthene	0.002 (GV)	5 U	5 U	5 L	J 5 l	J 5 I	J 5 l	U 5 L	J 5 I	U 11 U	11 U	9 L	10 U	5 L	J 5 U	5 l	J 5 L	J 5	U 5 U	5 U	5 L	J 5 U	5 U	5 U	5 U	5 U	J 6 L	5	U 5 U	5 U	6 U	6 U	11 U	5 U	5 U	11 U
Benzo(a)pyrene	ND	5 U	5 U	5 L	J 5 I	J 5 I	J 5 I	U 5 L	J 5 I	U 11 U	11 U	9 L	10 U	5 L	J 5 U	5 l	J 5 L	J 5	U 5 U	5 U	5 L	J 5 U	5 U	5 U	5 U	5 U	J 6 L	5	U 5 U	5 U	6 U	6 U	11 U	5 U	5 U	11 U
Total SVOCs		0	0	0	0	0	0	0	23.3	125	122	99	63	48	15	0	0	0	0	0	0	0	0	0	13	0		0	0	0	0	0	0	0	0	35

Qualifiers:

Detected concentrations shown in **bold** font. Bold font in shaded cell indicates exceedances of AWQS+GV.

NA - Not analyzed ND - Non Detect

E - Value above quantitation range

- B For organic analyses compound detected in laboratory method blank. For inorganic analyses indicates trace concentration below reporting limit and equal to or above the detection limit.

 U Compound not detected at or above the instrument detection limit (IDL).
- J Estimated concentration above the IDL but less than the contract required detection limits (CRDL).
- D Results from a subsequent dilution of the original sample due to original sample results being outside the linear range.
- * Duplicate Sample

 ** New York State Ambient Water Quality Standards (TOGs 1.1.1) GV guidance value.

 NS No standard or Guidance Value

Table 4 Groundwater Analytical Summary Metals 34 Freemans Bridge Road Glenville, New York December 2009 Site No. 4-47-028

Sample ID					MW11							MW11E)			I			MW12							MW15				1			MW15D			
Sampling Date		3/27/08	8/26/08	12/3/08	3/26/09	6/18/09	9/16/09	12/8/09	3/27/08	8/26/08	12/3/08	3/26/09	6/18/09	9/16/09	12/10/09	3/24/08	8/26/08	12/5/08	3/26/09	6/18/09	9/16/09	12/8/09	3/26/08	8/26/08	12/5/08	3/27/09	6/19/09	9/17/09	12/10/09	3/26/08	8/26/08	12/5/08	3/27/09	6/19/09	9/17/09	12/10/09
Units		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Metals	AWQS/GV Values																																			
Aluminum	NS	4190	521	307	285	335	1280	230	60.4 J	100 L	J 100 U	100 L	J 100 U	790	100 l	830	14100	1460	558	843	1880	2570	1840	6660	10900	277	1320	693	1660	45.8 U	430	440	100 U	147	100 U	J 100 U
Antimony	3	6.8 U	60 U	60 U	60 U	60	U 60 U	60 U	6.8 U	60 L	J 60 U	60 L	J 60 U	60 U	60 l	6.8 L	60 U	60 L	J 60 U	60 U	60 U	60	U 6.8 U	60 L	J 60	U 60 U	60 L	J 60 L	J 60 L	J 6.8 U	60 L	60 U	60 U	60 l	J 60 U	J 60 U
Arsenic	25	5.99 J	5 U	5 U	5 U	5	U 5 U	5 U	3.9 U	5 L	J 5 U	5 L	J 5 U	5 U	5 l	3.9 l	5 U	5 L	J 5 U	5 U	5 U	5	U 3.9 U	5 L	J 5	U 5 U	5 L	J 5 L	J 5 L	J 3.9 U	5 L	J 5 U	5 U	5 I	J 5 U	J 5 U
Barium	1000	79.4 J	67	60	56	56	64	60	153 J	187	180	168	173	155	152	40.5	181	79	70	65	78	81	20.0	66	90	24	31	46	37	13.2 J	21	25	19	22	22	20
Beryllium	3	0.59 J	5 U	5 U	5 U	5	U 5 U	5 U	0.3 U	5 L	J 5 U	5 L	J 5 U	5 U	5 l	0.5	5 U	5 L	J 5 U	5 U	5 U	5	U 0.38 J	5 L	J 5	U 5 U	5 L	J 5 L	J 5 L	J 0.3 U	5 L	J 5 U	5 U	5 l	J 5 U	J 5 U
Cadmium	5	1.1 U	5 U	5 U	5 U	5	U 5 U	5 U	1.1 U	5 L	J 5 U	5 L	J 5 U	5 U	5 l	1.1 L	5 U	5 L	J 5 U	5 U	5 U	5	U 1.1 U	5 L	J 5	U 5 U	5 L	J 5 L	J 5 L	J 1.1 U	5 L	J 5 U	5 U	5 I	J 5 U	J 5 U
Calcium			161000	149000	170000	152000	144000	155000	178000	311000	284000	167000 F	169000	180000	190000	95100	149000	140000	112000	125000	145000	143000	65600	115000	127000	106000	105000	109000	101000	61100	111000	112000	115000	111000	127000	104000
Chromium	50	10.4	5 U	5 U	5 U	5	U 5 U	5 U	1.2 U	5 L	J 5 U	5 L	J 5 U	5 U	5 l	1.5	20	5 L	J 5 U	5 U	5 U	5	U 3.27 J	6	5	U 5 U	11	5 L	J 5 L	J 2.32 J	5 L	J 5 U	5 U	10	5 U	J 5 U
Cobalt	NS	6.78 J	50 U	50 U	50 U	50	U 50 U	50 U	2.4 U	50 L	J 50 U	50 L	J 50 U	50 U	50 L	J 2.4 l	50 U	50 L	J 50 U	50 U	50 U	50	U 3.05 J	50 L	J 50	U 50 U	50 L	J 50 L	J 50 L	J 2.4 U	50 L	J 50 U	50 U	50 l	J 50 U	J 50 U
Copper	200	11.4 J	5 U	5 U	5 U	5	U 5 U	5 U	1.7 U	5 L	J 5 U	5 L	J 5 U	5 U	5 L	1.7 (35	8	11	5 U	9	7	4.06 J	15	30	6	5 L	8	6	1.7 U	5 L	5 U	6	5 1	J 5 U	J 5 U
Iron	300	11500	1640	1250	462	1350	2900	1200	3100	6310	6820	6620	6740	7160	5710	2160	26500	2610	450	1460	3790	4250	4080	1110	18400	776	3490	2570	3940	37 U	864	831	56	175	91	128
Lead	25	11.7	5 U	5 U	5 U	5	5 0	5 U	4.6 U	12	5 U	5 (5 0	5 U	5 (4.6 (5 U	5 L	J 5 U	5 U	5 U	17200	U 4.6 U	5 0	04400	5 U	40000	10000	J 5 L	4.6 U	5 L	J 5 U	5 U	5 1	J 5 U	J 5 U
Magnesium	00000 (0.1)	18800	22800	21800	24600	22700	22300	23100	31200	34500	30000	25500	26200	22600	21700	10300	20000	1/300	12600	15800	16500	1/200	11400	20000	24100	18500	19800	18800	18300	10300	1/900	19200	19000	19000	20500	17700
Manganese	300 0.7	1180	2200	1780	1620	1780	1690	1770	209	540	529	512	313	440	397	49	242	59	21	20 U	32	39	224	4/4	583	282	300	303	326	38.7	108	114	103	124	136	118
Mercury Nickel	100	10.08 U	0.2 U	0.2 U	0.2 U	0.2	0.2 0	0.2 U	0.08 0	0.2 (0.2	0.2 (0.2 0	0.2 U	0.2 (0.08	0.2 0	0.2 (0.2 0	0.2 U	0.2 U	0.2	0.08 0	0.2 (0.2	0 0.2 0	0.02 (0.02	0.2 0	0.08 0	0.2 (0.2 0	0.2 0	0.2	J 0.2 U	0.2 0
Potassium	NS	1590	2130	1710	1880	1670	1840	1590	2490	2990	2830	2980	3020	2520	2750	1170	6180	2970	2130	2500	3520	2980	1540 J	5120	6220	2740	2820	3140	3240	1480	3340	3240	3880	3660	4130	3310
Selenium	10	5 11	5 11	5 11	5 11	.070	.040	5 11	5 1	5 1	5 1	5 1	5020	5 11	5 1	5 1	5 11	51	5 11	5 11	5 11	2300	11 5 11	5120	5220	11 5 11	5 1	5170	5 1	1 5 11	5 1	5 11	5 1	5 1	11 51	5 11
Silver	50	0.7 11	10 11	10 11	10 11	10	10 11	10 11	0.7 1	10 1	10 11	10 1	10 1	10 11	10 1	071	10 11	10 1	10 11	10 11	10 11	10	11 0711	10 1	1 10	10 11	10 1	101	1 10 1	0.7 11	10 1	10 11	10 1	10	10 1	10 11
Sodium	20000	23600	27300	34300	27400	28200	30300	39100	69200	40200	83600	45300	45800	43100	68500	6500	11500	14200	8620	11200	12100	10900	14200	26600	35900	38900	31600	32400	64300	30500	34600	38400	43200	32200	37800	38600
Thallium	0.5 (GV)	8 U	10 U	10 U	10 U	10	U 13	20	8 1	10 L	J 10 U	10 L	10 1	14	10	8 1	10 11	10 L	10 11	10 U	40	10	U 8 U	10 1	1 10	U 10 U	10 1	23	10 1	1 8 11	10 L	10 1	10 U	10 1	25	17
Vanadium	NS.	12.6 J	20 U	20 U	20 U	20	U 20 U	20 U	3.1 U	20 L	1 20 11	20 1	20 U	20 U	20 1	3.1 (31	20 1	J 20 U	20 U	20 U	20	U 4.9 J	20 1	29	20 U	20 1	1 20 1	J 20 L	3.1 U	20 1	20 U	20 U	20 1	U 20 L	J 20 U
Zinc	2000 (GV)	51.5	10 11	10 11	10 11	10	U 14	10 11	9.89	10 1	J 10 II	10 L	69	10 11	77	19.2	136	23	11	10	22	15	23 .	34	74	10 11	15	28	67	10.6	13	13	10 11	10 1	U 10 I	72
Cyanide	200	28.1	10 U	10 U	10 U	10	U 10 U	10	4.5	10 L	J 10 U	10 L	J 10 U	10 U	10 L	2.9	10 U	10 L	J 10 U	10 U	10 U	10	U 10 U	10 (J 10	U 10 U	10 L	J 10 L	J 10 L	1.9	10 L	J 10 U	10 U	10 (J 10 L	J 10 U

Sample ID	1				MW16				1			MW16I)			T .			MW18				1			MW19				1			MW19D			
Sampling Date		3/25/08	8/26/08	12/3/08	3/25/09	6/17/09	9/15/09	12/9/09	3/25/08	8/26/08	12/3/08	3/25/09	6/17/09	9/15/09	12/9/09	3/26/08	8/26/08	12/5/08	3/27/09	6/18/09	9/16/09	12/10/09	3/26/08	8/25/08	12/4/08	3/27/09	6/18/09	9/16/09	12/10/09	3/26/08	8/25/08	12/4/08	3/27/09	6/18/09	9/16/09	12/10/09
Units		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Metals	AWQS/GV Values																																			
Aluminum	NS	45.8 U	100 U	100 U	103	100	U 100 L	2550	103	J 100	U 100 L	100	J 100 L	100 U	215	930	970	386	444	187	176	160	458	990	1420	415	2940	1500	6260	694	1390	496	277	580	151	102
Antimony	3	6.8 U	60 U	60 U	60 L	60	U 60 L	J 60 L	J 6.8	U 60	U 60 L	60 1	J 60 L	60 U	60 l	J 6.8 l	J 60 U	60 L	J 60 U	60 U	60 U	60 l	U 6.8 U	60 U	60	U 60 U	60 L	J 60 L	60 U	15.1 J	60 L	60 U				
Arsenic	25	3.9 U	7	5 U	14	5	U 5 L	J 5 L	3.9	U 5	U 5 L	5 1	J 5 L	5 U	5 l	J 3.9 l	J 5 U	5 5	5 U	5 U	5 U	5 l	U 3.9 U	7	5	U 5 U	5 L	J 5 L	5 U	3.9 U	5	5 U	5 U	5 U	5 U	5 U
Barium	1000	247	160	241	174	255	320	299	35.5	J 54	54	48	48	51	58	19.6	J 51	21	20	21	19	22	29.1 J	109	73	46	116	79	117	42.3 J	60	53	47	48	47	49
Beryllium	3	0.3 U	5 U	5 U	5 U	J 5	U 5 L	J 5 L	J 0.3	U 5	U 5 L	5 1	J 5 L	5 U	5 l	J 0.3 l	J 5 U	5 L	J 5 U	5 U	5 U	5 l	U 0.3 U	5 U	5	U 5 U	5 L	J 5 L	5 U	0.3 U	5 L	5 U	5 U	5 U	5 U	5 U
Cadmium	5	1.1 U	5 U	5 U	5 U	J 5	U 5 L	J 5 L	J 1.1	U 5	U 5 L	5 1	J 5 L	5 U	5 l	J 1.1 l	J 5 U	5 L	J 5 U	5 U	5 U	5 l	U 1.1 U	5 U	5	U 5 U	5 L	J 5 L	5 U	1.1 U	5 L	5 U	5 U	5 U	5 U	5 U
Calcium	NS	347000	254000	250000	297000	265000	288000	285000	69200	121000	112000	114000	109000	99400	106000		141000	49800	67700	73000	67000	79700	67700	162000	152000	123000	161000	169000	172000	120000	156000	146000	154000	139000	159000	151000
Chromium	50	1.31 J	5 U	5 U	5 U	J 5	U 5 L	J 5 L	1.37	J 5	U 5 L	5 1	J 5 L	5 U	5 l	4.33	J 5 U	5 L	J 5 U	5 U	5 U	5 l	U 4.65 J	5 U	5	U 5 U	10	5 L	12	7.04 J	5 L	5 U	5 U	5 U	5 U	5 U
Cobalt	NS	2.4 U	50 U	50 U	50 U	J 50	U 50 L	J 50 L	7.93	J 50	U 50 L	50	J 50 L	50 U	50 l	2.56	J 50 U	50 L	J 50 U	50 U	50 U	50 l	U 2.4 U	50 U	50	U 50 U	50 L	J 50 L	50 U	7.29 J	50 L	50 U				
Copper	200	1.7 U	5 U	5 U	5 U	J 5	U 5 L	J 9	1.7	U 5	U 5 L	5 1	J 5 L	5 U	5 l	J 1.7 l	J 5 U	7 5	6	5 U	5 U	5 l	U 2.86 J	10	5	U 5 U	14	5 L	16	1.93 J	5 L	5 U	5 U	5 U	5 U	5 U
Iron	300	19200	14500	11400	3830	12900	17800	19600	1640	1200	1210	822	877	1820	3690	2530	2080	712	730	301	432	303	1520	4570	3410	966	5580	3770	13600	8990	9350	6950	5880	6530	6240	5990
Lead	25	4.6 U	5 U	5 U	5 U	J 5	U 5 L	16	4.6	U 5	U 5 L	5 1	J 5 L	5 U	5 l	J 4.6 l	J 5 U	5 L	J 5 U	5 U	5 U	5 l	U 4.6 U	5 U	15	5 U	7	5 L	11	4.6 U	5 L	5 U	5 U	5 U	5 U	5 U
Magnesium	35000 (GV)	47900	48200	34000	42100	36900	33700	35500	11100	19500	18800	18500	18200	17100	16800	9290	20600	9020	11200	11900	9800	11300	7680	19400	19600	16400	16000	17200	18300	17300	22200	21200	21400	20500	21500	21300
Manganese	300	2430	3000	1490	2100	1540	1420	1610	841	803	598	499	610	662	997	62.7	218	48	79	20 U	30	20 l	U 116	1820	597	184	1100	1220	1390	429	594	523	518	506	530	528
Mercury	0.7	0.08 U	0.2 U	0.2 U	0.2 U	J 0.2	U 0.2 L	J 0.2 L	J 0.08	U 0.2	U 0.2 L	0.2	J 0.2 L	0.2 U	0.2 l	J 0.08 l	U 0.2 U	0.2 L	J 0.2 U	0.2 U	0.2 U	0.2 l	U 0.09 J	0.2 U	0.2	U 0.2 U	0.2 L	J 0.2 L	0.2 U	0.08 U	0.2 L	0.2 U				
Nickel	100	4.7 U	20 U	20 U	20 U	J 20	U 20 L	J 20 L	J 4.7	U 20	U 20 L	20 1	J 20 L	20 U	20 l	J 4.7 l	J 20 U	20 L	J 20 U	20 U	20 U	20 l	U 4.7 U	20 U	20	U 20 U	20 L	J 20 L	20 U	4.7 U	20 L	20 U				
Potassium	NS	7790	6040	9430	7770	11400	9300	10300	1100	J 2680	2430	2490	2480	1940	2320	615	J 1690	752	822	772	899	847	1560 J	6280	4850	3710	5140	4920	5490	883 J	1670	1330	1170	1290	1100	1060
Selenium	10	5 U	5 U	5 U	5 U	J 5	U 5 L	J 5 L	J 5	U 5	U 5 L	5 1	J 5 L	5 U	5 l	J 5 l	J 5 U	5 5	5 U	5 U	5 U	5 l	U 5 U	5 U	5	U 5 U	5 L	J 5 L	5 U	5 U	5 L	5 U	5 U	5 U	5 U	5 U
Silver	50	0.7 U	10 U	10 U	10 U	J 10	U 10 L	J 10 L	J 0.7	U 10	U 10 L	10 1	J 10 L	10 U	10 l	J 0.7 l	J 10 U	10 5	10 U	10 U	10 U	10 l	U 0.7 U	10 U	10	U 10 U	10 L	J 10 L	10 U	0.7 U	10 L	10 U				
Sodium		31300	22800	20500	24500	20100	14100	17100	35800	42000	53900	47600	40500	42800	55800	3570	J 10000	13200	12200	6580	5230	6000	8400	15100	12700	1270	7170	10100	8510	5960	5610	6810	6240	5380	6060	6970
Thallium	0.5 (GV)	8 U	10 U	10 U	10 U	J 10	U 31	32	8	U 10	U 10 L	10 1	J 10 L	17	15	8 l	J 10 U	10 L	J 10 U	10 U	15	10 l	U 8 U	10 U	10	U 10 U	10 L	25	12	8 U	10 L	10 U	10 U	10 U	29	10 U
Vanadium	NS	3.1 U	20 U	20 U	20 U	J 20	U 20 L	J 20 L	3.1	U 20	U 20 L	20 1	J 20 L	20 U	20 l	J 3.1 l	J 20 U	20 l	J 20 U	20 U	20 U	20 l	U 3.1 U	20 U	20	U 20 U	20 L	J 20 L	20 U	3.1 U	20 L	20 U				
Zinc	2000 (GV)	16.7 J	10 U	10 U	10 U	14	10	211	16	J 10	U 10 L	10 1	J 10 L	10 U	333	26.6	J 10 U	12	10 U	10 U	10 U	64	17.3 J	38	35	10 U	46	22	131	21.1 J	10 L	10 U	10 U	10 U	10 U	66
Cyanide	200	7.6	10 U	10 U	10 U	J 10	U 10 L	J 10 L	5.1	20	10 l	10 1	750	10 U	10 l	2.3	10 U	10 L	J 10 U	10 U	10 U	10 l	U 2.3	10 U	10	10	10 L	J 10 L	10 U	4.8	10	10 U	10 U	10 U	10	10 U

- Qualifiers:
 Detected concentrations shown in **bold** font. Bold font in shaded cell indicates exceedances of AWQS+GV.
 NA Not analyzed
 ND Non Detect
 E Value above quantitation range
 B For organic analyses compound detected in laboratory method blank. For inorganic analyses indicates trace concentration below reporting limit and equal to or above the detection limit.
 U Compound not detected at or above the instrument detection limit (IDL).
 J Estimated concentration above the IDL but less than the contract required detection limits (CRDL).
 D Results from a subsequent dilution of the original sample due to original sample results being outside the linear range.
 * Duplicate Sample
 ** New York State Ambient Water Quality Standards (TOGs 1.1.1) GV guidance value.
 NS No standard or Guidance Value

Table 4 **Groundwater Analytical Summary** Metals 34 Freemans Bridge Road Glenville, New York December 2009 Site No. 4-47-028

Sample ID							I			MW20	D						MW21							MW21D	ı			T .			MW23					
Sampling Date		3/24/08	8/25/08	12/4/08	3/25/09	6/19/09	9/15/09	12/10/09	3/24/08	8/25/08	12/4/08	3/25/09	6/19/09	9/15/09	12/10/09	3/24/08	8/25/08	12/4/08	3/26/09	6/17/09	9/16/09	12/10/09	3/24/08	8/25/08	12/4/08	3/26/09	6/17/09	9/16/09	12/10/09	3/27/08	8/25/08	12/3/08	3/25/09	6/17/09	9/15/09	12/9/09
Units		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
																																		1		
Metals	AWQS/GV Values																																			
Aluminum	NS	141 J	3090	2060	2190	501	1490	3840	347	649	136	1300	105	415	176	441	3310	2410	347	NA	5350	36800	45.8 U	100 U	100	U 100 L	100	U 100	U 100 U	386	3650	11400	2160	2060	1480	15800
Antimony	3	6.8 U	60 U	60 U	60 L	J 60	U 60 l	U 60 L	J 6.8	U 60 I	J 60 L	J 60	U 60 L	60 U	60 L	10.2	J 60 U	60 L	J 60 L	J 60 U	60 U	60	U 6.8 U	60 U	60	U 60 L	60	U 60	U 60 U	6.8 U	60 L	J 60 U	60 U	60 L'	J 60 U	60 U
Arsenic	25	4.77 J	21	9 s	19	18	8	13	3.9	U 5 I	J 5 L	J 5	U 5 L	5 U	5 l	J 3.9 L	J 5 U	5 L	J 5 L	J 5 U	5 U	5	U 3.9 U	5 U	5	U 5 L	5	U 5	U 5 U	3.9 U	5 L	J 5 U	5 U	5 Ľ	J 5 U	5 U
Barium	1000	64.2 J	240	319	378	373	376	299	56	J 115	104	119	108	110	111	67	J 153	286	110	109	160	389	80.3 J	113	98	89	103	97	95	44.1 J	132	193	77	68	61	261
Beryllium	3	0.3 U	5 U	5 U	5 L	J 5	U 5 l	U 5 L	J 0.3	U 5 I	J 5 L	J 5	U 5 L	5 U	5 l	J 0.3 L	J 5 U	5 L	J 5 L	J 5 U	5 U	5 1	U 0.3 U	5 U	5	U 5 L	5	U 5	U 5 U	0.3 U	5 L	J 5 U	5 U	5 U	J 5 U	5 U
Cadmium	5	1.1 U	5 U	5 U	5 L	J 5	U 5 l	U 5 L	J 1.1	U 5 I	J 5 L	J 5	5 L	5 U	5 l	J 1.1 L	J 5 U	5 L	J 5	5 U	5 U	5 1	U 1.1 U	5 U	5	U 5 L	5	U 5	U 5 U	1.1 U	5 L	J 5 U	5 U	5 U	J 5 U	5 U
Calcium		168000	460000	635000	560000	396000	362000	563000	61100	114000	102000	111000	110000	101000	113000		351000	341000	324000	285000	279000	416000	82200	114000	98300	94700	101000	102000	107000	88800	136000	147000	118000	112000	102000	172000
Chromium	50	1.2 U	5 U	5 U	6	12	5 l	U 7	1.2	U 5 I	J 5 L	J 5	U 8	5 U	5 l	8.49	J 5 U	44	5 L	J 5 U	5 U	54	1.2 U	5 U	5	U 5 L	5	U 5	U 5 U	1.73 J	5 L	27	5 U	8	5 U	36
Cobalt	NS	2.4 U	50 U	50 U	50 L	J 50	U 50 l	U 50 L	J 2.4	U 50 I	J 50 L	J 50	U 50 L	50 U	50 l	J 6.67	J 50 U	50 L	J 50 L	J 50 U	50 U	50	U 2.4 U	50 U	50	U 50 L	50	U 50	U 50 U	2.4 U	50 L	J 50 U	50 U	50 U	J 50 U	50 U
Copper	200	12.9 J	29	10	9	9	5 l	U 18	2.1	J 5 I	J 5 L	8	5 L	5 U	5 l	J 1.7 L	5	44	5 L	J 5 U	10	77	1.7 U	5 U	5	U 5 L	5	U 5	U 5 U	1.7 U	8	22	5 U	5 U	J 5 U	47
Iron	300	37 U	3660	2350	3350	655	2560	5720	1630	2480	1420	5880	1190	1910	1500	9160	20400	58700	11700	13400	22400	80200	1050	1650	1400	1280	1300	1540	1720	3890	18000	45900	12100	8240	7260	47300
Lead	25	4.6 U	5 U	4700	5 L	5	U 5 I	U 18	4.6	U 5 I	J 5 L	17000	U 5 L	5 U	5 L	4.6 L	J 5 U	58	5 L	5 U	8	58	4.6 U	5 U	5	U 5 L	5	U 5	U 5 U	30.5	130	515	74	72	44	643
Magnesium	35000 (GV)	3950 J	5510	1760	4150	2980	3530	3260	9700	18600	17400	17800	18100	17500	18600	28800	50500	58200	46100	45400	39400	55100	13900	19400	17100	16000	18100	18100	19000	13800	23100	27200	18700	18800	17600	28500
Manganese	300 0.7	14.4 J	/1	38	44	20	U 47	/5	52.3	/1	47	88	61	55	49	6/30	10300	11/00	12200	9/30	8220	14100	107	163	136	122	142	144	155	449	904	800	390	308	323	983
Mercury	0.7	8.81 J	0.2 0	0.2 0	0.2 (0.2	0.2 (0.2 0	0.08	0.2 1	J 0.2 C	0.2	0.2 U	0.2 U	0.2 (0.08 (J 0.2 U	0.2 (J 0.2	0.2 U	0.2 U	0.2	0.08 U	0.2 U	0.2	U 0.2 U	0.2	U 0.2	0.2 0	0.08 U	0.2 (0.2 0	0.2 U	0.2 0	0.2 0	0.2 U
Nickel	100	15100	39	97100	100000	120000	28	154000	2000	U 20 I	4910	5710	U 20 C	20 0	5280	000	J 3000	5000	20 U	1000	20 0	60	4./ U	20 0	20	20 0	20	0700	20 0	4./ U	20 U	5110	20 0	20 0	1700	30
Potassium	NS 10	6.18	92600	9/100	108000	120000	99200	154000	2000	J 330U	4910	5/10	5210	4310	5280	898	3000	5900	1620	1630	2000	6450	1040 J	3420	3030	3230	3230	2/30	2900	1030 J	4540	5110	2970	2170	1700	8690
Selenium	50	0.10 J	40 11	1 5	5 0	5	U 5 U	U 5 L	5	U 5 I	5 1	5	5 0	5 0	5 (5 0	5 0	5 (5 40	5 0	5 0	5 10	0 5 0	5 0	5	U 5 L	5	U 5	U 5 U	5 0	5 (5 0	5 U	5 0	5 0	5 U
Sodium	20000	69800	122000	105000	167000	150000	126000	215000	22000	25400	47000	41000	29700	29200	61000	12500	19400	27600	26000	21200	24200	24400	52000	43500	72600	45800	42300	46500	72200	20000	22000	24100	26000	22100	33000	21500
Thallium	0.5 (GV)	8 11	69	26	157000	139000	69	76	32000	33400	10 1	1 10	30700	17	10.1	12300	19400	2/000	20000	16	24300	24400	8 11	10 11	13000	10 10 1	42300	17	10 11	30300	10 1	10 11	10 11	10 1	17	19
Vanadium	NS	3.67 J	20 11	36	43	32	21	24	3 1	11 20 1	1 20 1	1 20	10 0	20 11	20 1	5.96	1 20 11	77	20	20 11	20 11	53	3 1 11	20 11	20	11 20 1	20	11 20	10 0	3 1 11	20 1	27	20 11	20 1	20 11	29
Zinc	2000 (GV)	10.9	20	23	20	10	u 16	135	11.8	.1 10 1	1 10 1	12	10 1	10 11	102	20.8	21	178	11	317	35	346		10 11	10	10 1	10	10	113	18.8	54	160	34	30	22	278
Cvanide	200	11.2	10 11	10 11	10 1	J 10	U 10 I	U 10 L	22.4	10 1	J 10 L	J 10	U 10 L	10 11	10 1	21.2	10 11	10 1	J 10 L	10 11	10 11	10	U 2.7	10 11	10	U 10	10	U 10	U 10 U	8.5	10 1	J 10 IJ	10 11	10 1	10 11	10 U
0,40	200		10 0	10 0	10 0	10	10 0	10 0		10	10 0	10	10 0	10 0	10		10 0	10 0	10 0	, 10 0	10 0	10	J	10 0	. 10	J 10	10	10	10 0	0.0	10 0	10 0	10 0	10 0	10 0	.0 0

Sample ID					MW-23D							MW30	l						MW31							MW32							MW33			
Sampling Date		4/4/08	8/25/08	12/3/08	3/25/09	6/17/09	9/15/09	12/9/09	3/25/08	8/26/08	12/5/08	3/27/09	6/19/09	9/17/09	12/10/09	3/25/08	8/26/08	12/4/08	3/25/09	6/19/09	9/17/09	12/10/09	3/27/08	8/26/08	12/5/08	3/26/09	6/19/09	9/17/09	12/8/09	3/26/08	8/26/08	12/5/08	3/26/09	6/17/09	9/17/09	12/8/09
Units		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Metals	AWQS/GV Values																																			
Aluminum	NS	1400	544	252	182	108	138	126	401	707	286	294	111	100 U	100 l	265	820	131	122	438	100 U	100 L	1590	2730	13700	150	1630	453	772	45.8 U	1780	812	439	765	2310	630
Antimony	3	6.8 U	60 U	60 U	60 L	J 60	U 60 L	J 60 U	6.8 l	U 60 I	J 60 L	J 60	J 60 L	60 U	74	6.8 L	J 60 U	60 L	J 60 U	60 U	60 U	60 l	J 6.8 U	60	J 60	U 60 U	60	U 60 I	U 60 U	15.1 J	60 L	J 60 U	60 U	60 U	60 U	60 U
Arsenic	25	3.9 U	5 U	5 U	5 L	J 5	U 5 L	J 5 U	6.66	J 9	5 5	5 5	J 5 L	J 5 U	5 l	J 3.9 L	J 5 U	5 L	J 5 U	5 U	5 U	5 l	J 3.9 U	5 [J 5	U 5 U	5	U 5 I	U 5 U	3.9 U	18	5 S	8	9	11	5 U
Barium	1000	101 J	88	80	74	87	83	85	132	J 113	100	95	94	88	101	41.7	96	81	68	80	81	86	89.2 J	142	214	102	126	110	117	39.8 J	98	81	54	54	66	60
Beryllium	3	0.3 U	5 U	5 U	5 L	J 5	U 5 L	J 5 U	0.31	J 5 I	J 5 L	J 5	J 5 L	J 5 U	5 L	0.36	J 5 U	5 L	J 5 U	5 U	5 U	5 l	0.41 J	5 1	J 5	U 5 U	5	U 5 I	U 5 U	0.3 U	5 L	J 5 U	5 U	5 U	5 U	5 U
Cadmium	5	1.1 U	5 U	5 U	5 L	J 5	U 5 L	J 5 U	1.1 U	U 5 I	J 5 L	J 5	J 5 L	J 5 U	5 L	J 1.1 L	J 5 U	5 L	J 5 U	5 U	5 U	5 l	J 1.1 U	5 1	J 5	U 5 U	5	U 5 I	U 5 U	1.1 U	5 L	J 5 U	5 U	5 U	5 U	5 U
Calcium	NS		110000	100000	102000	109000	97900	109000	126000	126000	103000	115000	99500	112000	106000	115000	183000	179000	169000	184000	166000	190000	99200	156000	217000	145000	154000	126000	143000	128000	415000	596000	717000	527000	590000	825000
Chromium	50	2.67 J	5 U	5 U	5 L	J 5	U 5 L	J 5 U	1.2 l	U 5 I	J 5 L	J 5	14	5 U	5 l	J 1.2 L	J 5 U	5 L	J 5 U	8	5 U	5 L	J 4.85 J	5	J 16	5 U	15	5 1	U 5 U	4.94 J	5 L	J 5 U	5 U	5 U	5 U	5 U
Cobalt	NS	2.4 U	50 U	50 U	50 L	J 50	U 50 L	J 50 U	2.4 l	U 50 I	J 50 L	J 50	J 50 L	J 50 U	50 L	J 2.4 L	J 50 U	50 L	J 50 U	50 U	50 U	50 L	J 3.3 J	50 I	J 50	U 50 U	50	U 50 I	U 50 U	5.84 J	50 L	J 50 U	50 U	50 U	50 U	50 U
Copper	200	4.17 J	5 U	5 U	5 L	J 5	U 5 L	J 5 U	1.7 l	U 5 I	J 5 L	7	5 L	J 5 U	5 l	J 1.7 S	5 U	5 L	J 5 U	5 U	5 U	5 L	J 1.97 J	5 1	J 29	5 U	9	5 1	U 5 U	1.7 U	8	5 S	8	5 U	12	5
Iron	300	5560	2630	1840	1470	1830	1540	1780	6430	5410	5510	3570	2660	2410	3450	1800	6050	3160	4060	2890	3000	1970	7900	14800	39700	10800	11500	10400	10300	2480	6190	3000 S	1780	3090	8530	2620
Lead	25	4.96 J	5 U	5 U	5 L	J 5	U 5 L	J 5 U	4.6 l	U 5 I	J 5 L	J 5	J 5 L	J 5 U	5 l	J 4.6 L	J 5 U	5 L	J 5 U	5 U	5 U	5 L	J 5.73 J	5 I	J 44	5 U	8	5 1	U 5 U	4.6 U	7	5 U	5 U	5 U	25	5 U
Magnesium	35000 (GV)	19400	16900	15900	16400	17400	16300	16800	20900	16500	16900	15500	16600	17500	17200	17400	39500	36000	31300	38200	39500	41200	17800	29100	39000	24900	27700	27300	25600	12800	20700	22800	21200	22100	21800	19400
Manganese	300	226	159	129	121	144	128	138	626	792	678	733	767	755	668	359	455	364	328	358	357	375	714	1530	1830	1410	1560	1490	1450	232	413	298	162	307	366	274
Mercury	0.7	0.02 U	0.2 U	0.2 U	0.2 L	J 0.2	U 0.2 L	J 0.2 U	0.08 l	U 0.2 I	J 0.2 L	J 0.2	J 0.2 L	J 0.2 U	0.2 l	J 0.08 L	J 0.2	0.2	0.2 U	0.2 U	0.2 U	0.2 l	J 0.08 U	0.2	J 0.2	U 0.2 U	0.2	U 0.2 I	U 0.2 U	0.08 U	0.2 L	J 0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Nickel	100	4.7 U	20 U	20 U	20 L	J 20	U 20 L	J 20 U	4.7 l	U 20 I	J 20 L	J 20	J 20 L	J 20 U	20 l	J 4.7 L	J 20 U	20 L	J 20 U	20 U	20 U	20 L	J 4.7 U	20	J 35	20 U	20	U 20 I	U 20 U	4.7 U	20	20 U	20 U	20 U	20 U	20 U
Potassium		15300	2890	2530	3390	2820	2170	2690	1590	J 7060	3750	4730	2910	3650	4430	1590	5750	4960	3490	4060	4140	5400	1520 J	2880	7620	7610	4580	6330	8310	4780 J	33600	33400	33100	29200	29500	35300
Selenium	10	5 U	5 U	5 U	5 L	J 5	U 5 L	J 5 U	J 5 l	U 5 I	J 5 L	J 5	J 5 L	J 5 U	5 l	J 5 8	5 U	5 L	J 5 U	5 U	5 U	5 L	J 5 U	5 (J 5	U 5 U	5	U 5 I	U 5 U	5 U	5 L	J 5 S	5 U	5 U	5 U	5 U
Silver	50	0.7 U	10 U	10 U	10 L	J 10	U 10 L	J 10 U	0.7 l	U 10 I	J 10 8	3 10	J 10 L	J 10 U	10 L	0.7 8	10 U	10 L	J 10 U	10 U	10 U	10 L	J 0.7 U	10	J 10	U 10 U	10	U 10 I	U 10 U	0.7 U	10 L	J 10 S	10 U	10 U	10 U	10 U
Sodium	20000	80200	36300	48200	50800	39000	41400	57700	124000	135000	159000	240000	70400	190000	175000	29300	45300	68700	43300	45700	109000	83800	13900	19400	29500	20200	18200	27600	26100	130000	166000	214000	188000	184000	424000	248000
Thallium	0.5 (GV)	8 U	10 U	10 U	10 L	J 10	U 12	10 U	8 1	U 10 I	J 10 L	J 10	J 10 L	16	16	8 L	J 10 U	10 L	J 10 U	10 U	54	31	8 U	10	10	10 U	10	U 39	15	8 U	10 L	J 10 U	10 U	10 U	57	17
Vanadium	NS	3.59 J	20 U	20 U	20 L	J 20	U 20 L	J 20 U	3.1 l	U 20 I	J 20 L	J 20	J 20 L	J 20 U	20 l	J 3.1 L	J 20 U	20 L	J 20 U	20 U	20 U	20 l	J U 0	20 1	J 43	20 U	20	U 20 I	U 20 U	3.1 U	20 L	J 20 U	20 U	20 U	20 U	20 U
Zinc	2000 (GV)	43.2 J	10 U	10 U	10 L	J 10	U 10 L	105	19.5	J 11	12	10	J 10 L	J 10 U	68	8.35	J 10 U	10 L	J 10 U	10 U	10 U	81	21.1 J	20	131	10 U	22	10 1	U 15	14.2 J	26	22	10 U	11	31	10 U
Cyanide	200	0.96 J	10	10 U	10 L	J 10	U 10 L	J 10 U	4.3	10	J 30	10	J 10 L	J 10 U	10 l	8.4	20	20	60	20	20	10 l	79.9	190	10	U 21	200	190	190	3.7	20	20	20	20	20	20

- Oualifiers:
 Detected concentrations shown in **bold** font. Bold font in shaded cell indicates exceedances of AWQS+GV.

 NA Not analyzed

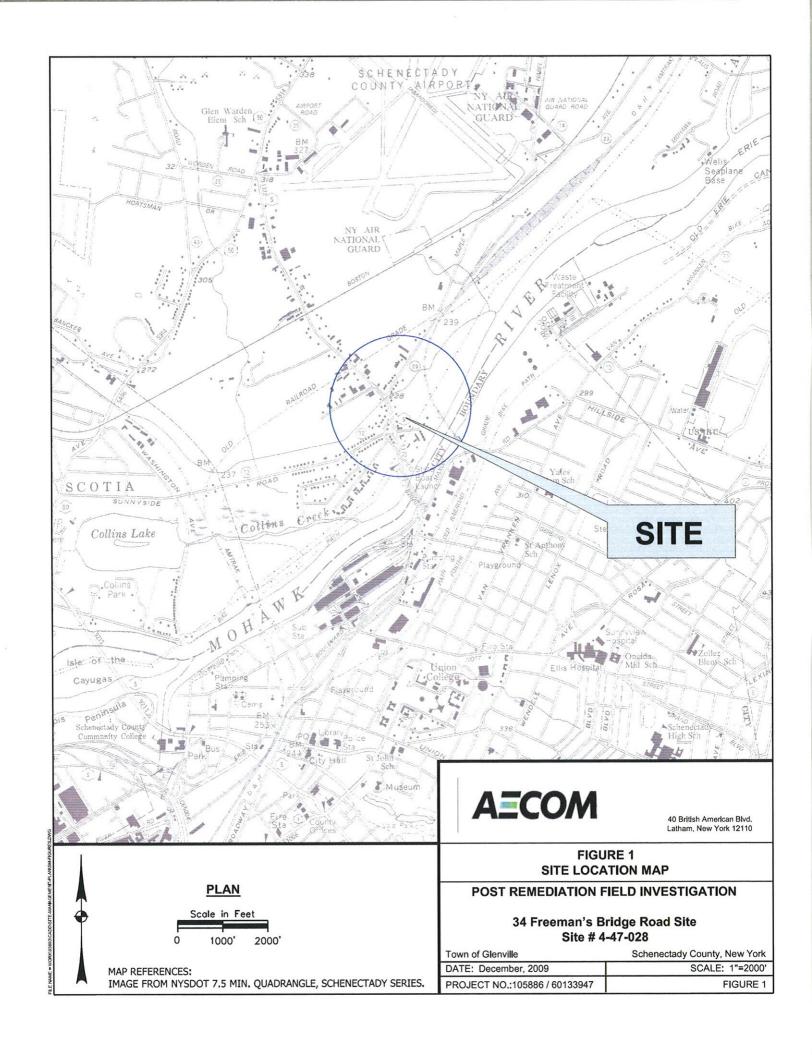
 ND Non Detect

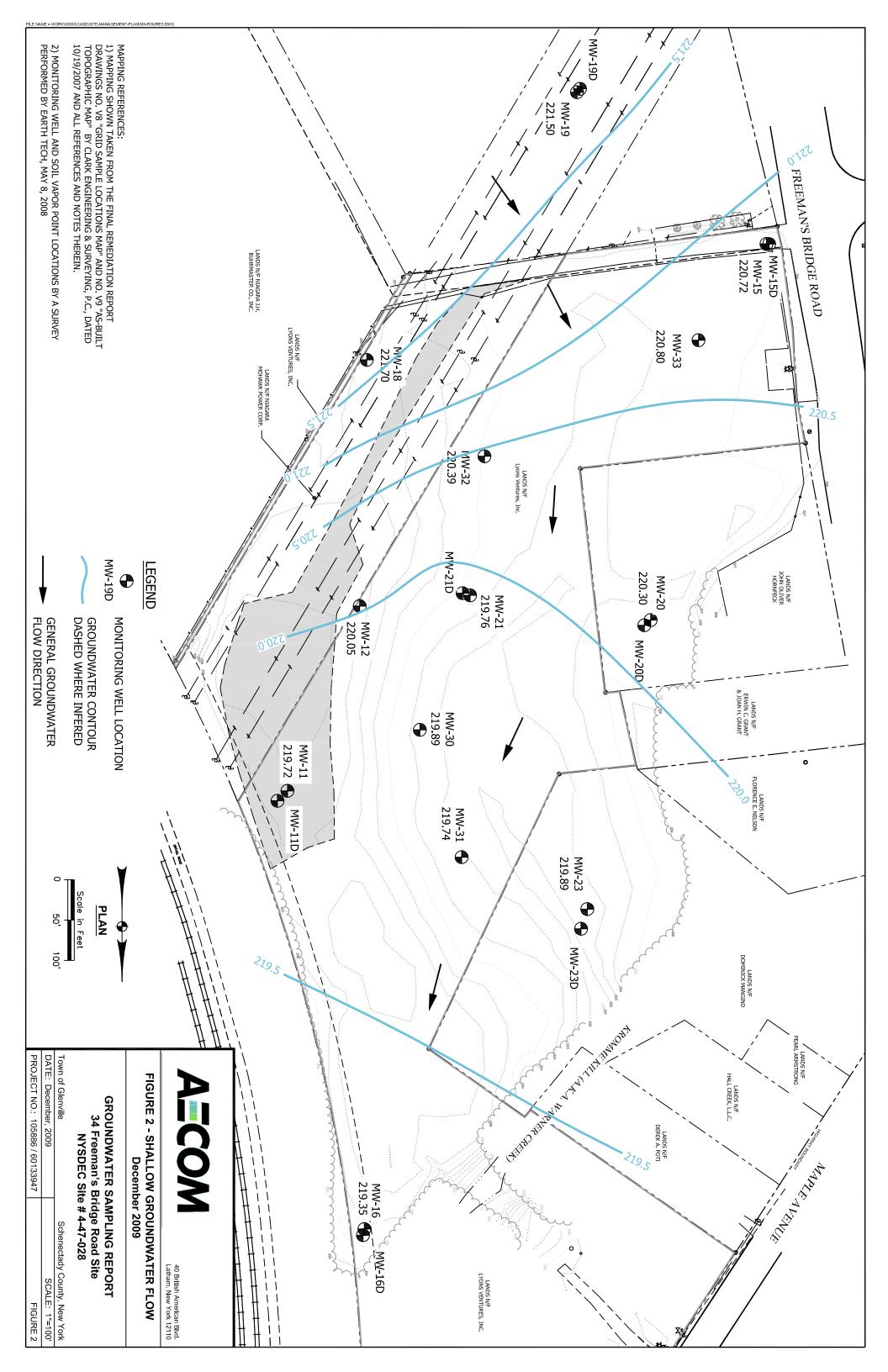
 E Value above quantitation range

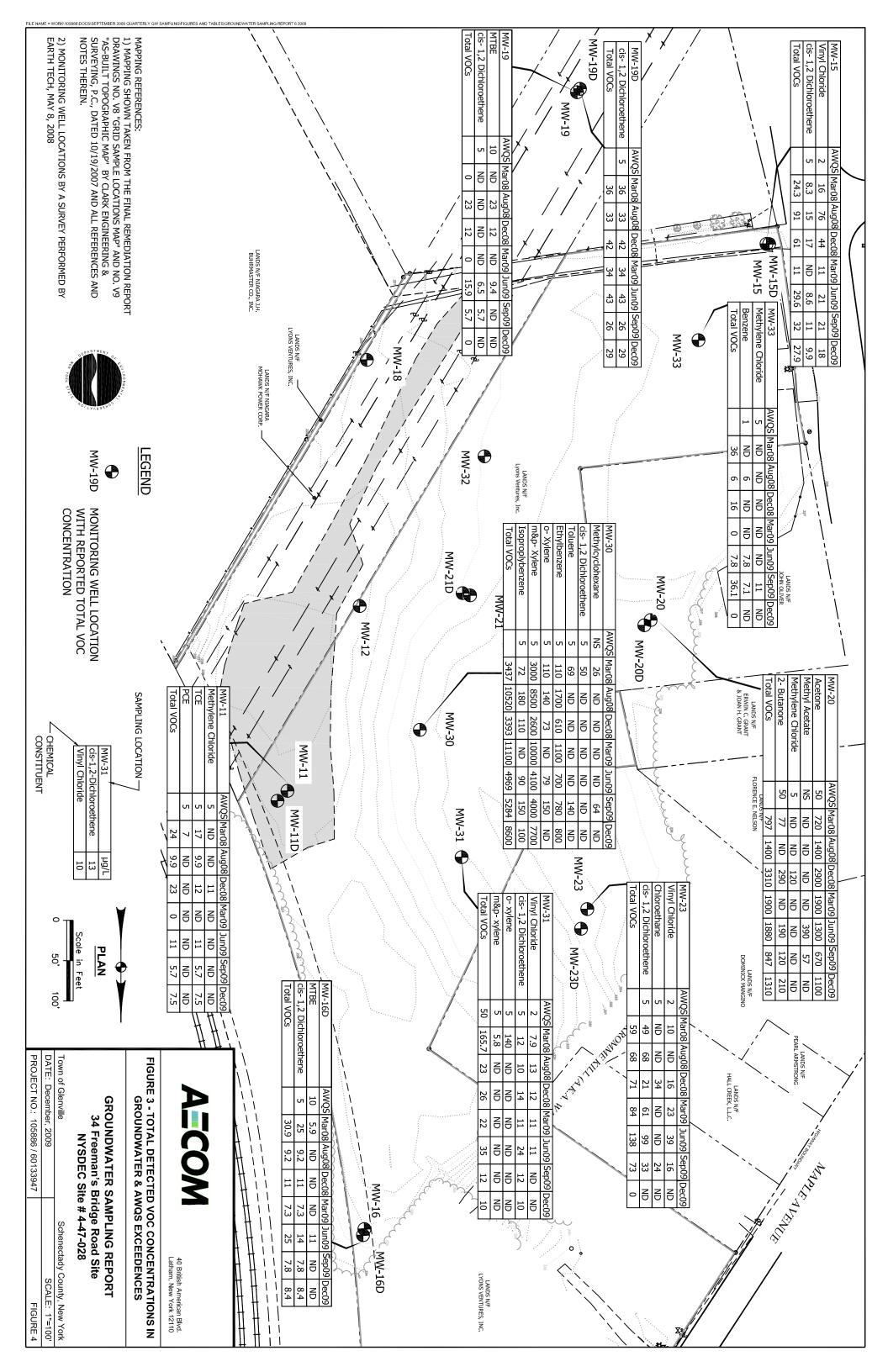
 B For organic analyses compound detected in laboratory method blank. For inorganic analyses indicates trace concentration below reporting limit and equal to or above the detection limit.

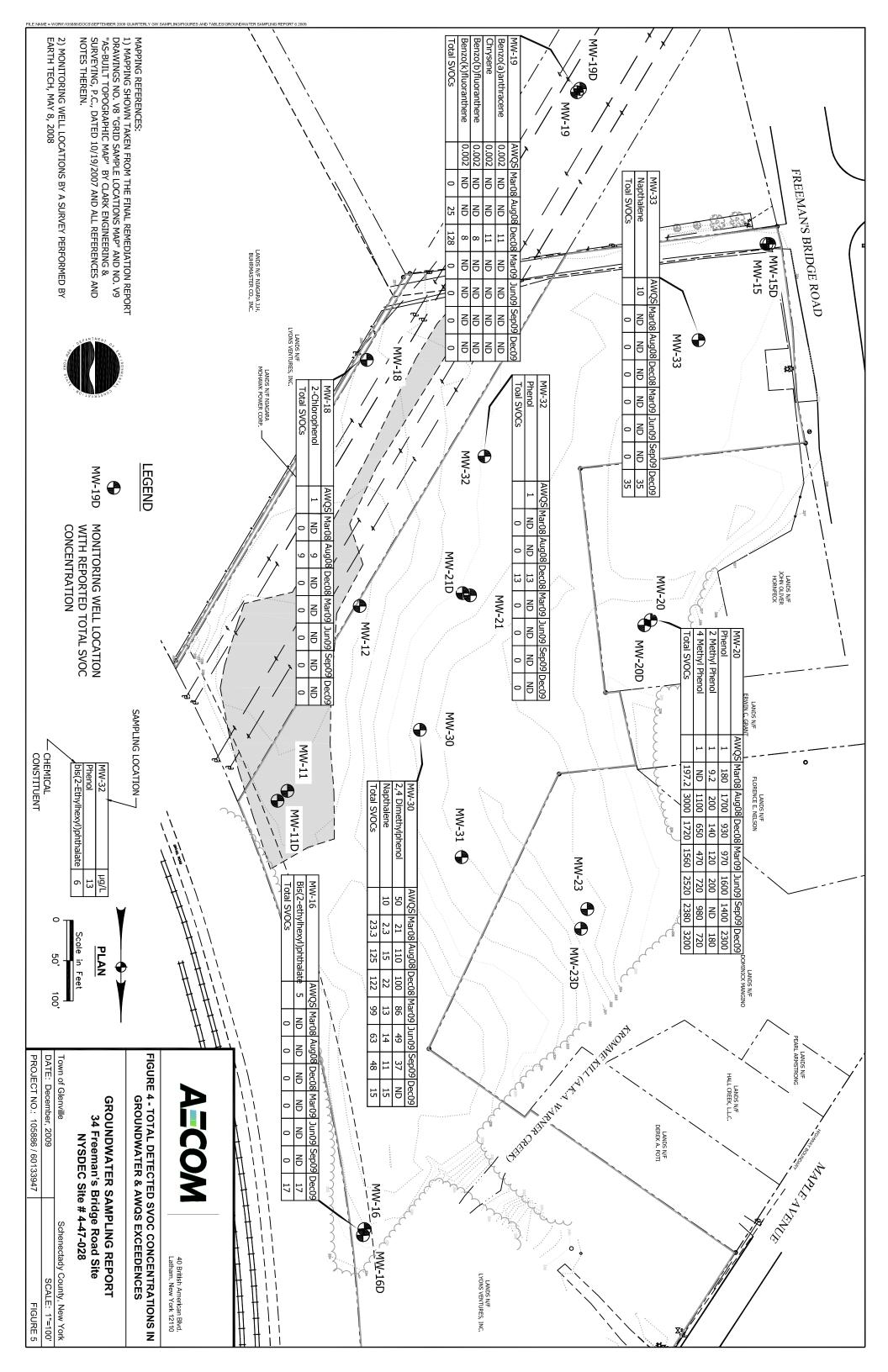
 U Compound not detected at or above the instrument detection limit (IDL).

 J Estimated concentration above the IDL but less than the contract required detection limits (CRDL).


 D Results from a subsequent dilution of the original sample due to original sample results being outside the linear range.


 * Duplicate Sample


 ** New York State Ambient Water Quality Standards (TOGs 1.1.1) GV guidance value.


 NS No standard or Guidance Value

Figures

Appendix A Monitoring Well Purging/Sampling Logs

Project Name and Number: Freemans Bridge Road 105886.02

Monitoring Well Number: MW- 11 Date: 12-8-09

Samplers: Tyler Brown and Mark Howard

Sample Number: MW-11 QA/QC Collected? None

Purging / Sampling Method: Whale Pump

1. L = Total Well Depth:	19.35	feet	D (inches
2. D = Riser Diameter (I.D.):	0.17	feet	1-inch
3. W = Static Depth to Water (TOC):	11.51	feet	2-inch
4. C = Column of Water in Casing:	7.84	feet	3-inch
5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$	1.30	gal	4-inch
6. 3(V) =Target Purge Volume	3.90	_ gal	6-inch

Conversion factors to determine V given C

D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
V (gal / ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Readings Collected Using YSI 556 and Lamont 2020

Parameter	Units			R	Readings		
Time	24 hr	1054	1056	1057	1058		
Water Level	feet	11.51	-	-	-		
Volume Purged	gal	0.00	5.00	7.00	8.50		
Flow Rate	mL / min	-	-	-	-		
Turbidity	NTU	8.92	6.61	6.00	5.96		
Dissolved Oxygen	mg / L	8.92	6.61	6.00	5.96		
Eh / ORP	MeV	74.80	68.90	63.60	58.30		
Conductivity	μmho / cm	1.075	1.018	1.004	0.989		
pН	pH unit	6.45	6.5	6.52	6.55		
Temp	С	9.51	11.09	11.41	11.48		
Color	Visual	clear	clear	cloudy	cloudy		
Odor	Olfactory	sulfu	sl. Sulfur	none	none		

Comments:

1054 - Started Purge

1058- Sampled, purged 10 gallons

Page 1 of 1

D (feet) 0.08 0.17 0.25 0.33

0.50

Project Name and Number: Freemans Bridge Road 105886.02

Monitoring Well Number: MW- 11 D Date: 12/10/09

Samplers: Tyler Brown and Mark Howard

Sample Number: MW-11 D QA/QC Collected? MS/MSD

Purging / Sampling Method: Whale Pump

1. L = Total Well Depth:	53.5	feet	D (inches)	D (feet)
2. D = Riser Diameter (I.D.):	0.17	feet	1-inch	0.08
3. W = Static Depth to Water (TOC):	11.44	feet	2-inch	0.17
4. C = Column of Water in Casing:	42.06	feet	3-inch	0.25
5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$	6.90	_ gal	4-inch	0.33
6. 3(V) =Target Purge Volume	20.60	gal	6-inch	0.50

Conversion factors to determine V given C

D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
V (gal / ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Readings Collected Using YSI 556 and Lamont 2020

Parameter	Units			R	eadings		
Time	24 hr	1015	1022	1029	1036		
Water Level	feet	11.44	-	-	-		
Volume Purged	gal	0.00	7.00	14.00	21.00		
Flow Rate	mL / min	-	-	-	-		
Turbidity	NTU	96.80	8.92	0.00	0.00		
Dissolved Oxygen	mg / L	9.60	3.94	2.67	2.58		
Eh / ORP	MeV	-65.3	-83.9	-90.3	-90.3		
Conductivity	μmho / cm	1.156	1.511	1.5	1.479		
pН	pH unit	7.20	7.15	7.20	7.20		
Temp	С	8.09	8.16	7.95	8.17		
Color	Visual	cloudy	clear	clear	clear		
Odor	Olfactory	none	none	none	none		

Comments:

1015 - Started purge

Project Name and Number: Freemans Bridge Road 105886.02

Monitoring Well Number: MW- 12 Date: 12/8/09

Samplers: Tyler Brown and Mark Howard

Sample Number: MW-12 QA/QC Collected? None

Purging / Sampling Method: Whale Pump with dedicated poly

1. L = Total Well Depth:	17.29	feet	D (inches)	D (feet)
2. D = Riser Diameter (I.D.):	0.17	feet	1-inch	0.08
3. W = Static Depth to Water (TOC):	10.63	feet	2-inch	0.17
4. C = Column of Water in Casing:	6.66	feet	3-inch	0.25
5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$	1.10	_ gal	4-inch	0.33
6. 3(V) =Target Purge Volume	3.30	gal	6-inch	0.50

Conversion factors to determine V given C

D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
V (gal / ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Readings Collected Using YSI 556 and Lamont 2020

Parameter	Units			R	Readings		
Time	24 hr	1143	1147	1205			
Water Level	feet	10.63	-	-			
Volume Purged	gal	0.00	1.10	2.10			
Flow Rate	mL / min	-	-	-			
Turbidity	NTU	54.3	86.2	33.3			
Dissolved Oxygen	mg / L	44.33	13.45	14.47			
Eh / ORP	MeV	97	110.8	136.7			
Conductivity	μmho / cm	0.743	0.722	0.735			
рН	pH unit	6.93	6.92	6.99			
Temp	O	8.62	9.66	8.22			
Color	Visual	yellowish	cloudy yellow	cloudy			
Odor	Olfactory	none	none	none			

Comments:

1143 - Started purge

1144 - Purged dry, 1.1 gallon

1145- purged dry purged another well volume

1205 - Sampled

Needs new tubing

Project Name and Number: Freemans Bridge Road 105886.02

Monitoring Well Number: MW- 15 Date: 12/10/09

Samplers: Tyler Brown and Mark Howard

Sample Number: MW-15 QA/QC Collected? None

Purging / Sampling Method: Whale Pump

1. L = Total Well Depth:	14.25	feet	D (inches)	D (feet)
2. D = Riser Diameter (I.D.):	0.17	feet	1-inch	0.08
3. W = Static Depth to Water (TOC):	3.42	feet	2-inch	0.17
4. C = Column of Water in Casing:	10.83	feet	3-inch	0.25
5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$	1.77	gal	4-inch	0.33
6. 3(V) =Target Purge Volume	5.30	gal	6-inch	0.50

Conversion factors to determine V given C

D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
V (gal / ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Readings Collected Using YSI 556 and Lamont 2020

Parameter	Units		Readings					
Time	24 hr	1333	1334	1334	1335			
Water Level	feet	3.42	-	-	-			
Volume Purged	gal	0.00	1.75	3.50	7.00			
Flow Rate	mL / min	-	-	-	-			
Turbidity	NTU	167.00	0.00	0.00	0.00			
Dissolved Oxygen	mg / L	8.10	9.87	4.66	4.58			
Eh / ORP	MeV	28.6	15.0	-22.5	-33.9			
Conductivity	μmho / cm	2.95	1.775	1.254	0.889			
рН	pH unit	7.51	7.39	7.33	7.35			
Temp	С	9.50	10.39	10.81	11.03			
Color	Visual	cloudy	cloudy	clear	clear			
Odor	Olfactory	none	none	none	none			

Comments:

1333 - Started purge

1335 - Sampled

The well has been destroyed from the plow. This well has no cap left on it and is only covered by a J plug

Project Name and Number: Freemans Bridge Road 105886.02

Monitoring Well Number: MW- 15 D Date: 12/10/09

Samplers: Tyler Brown and Mark Howard

Sample Number: MW-15 D QA/QC Collected? None

Purging / Sampling Method: Whale Pump

1. L = Total Well Depth:	29.5	feet
2. D = Riser Diameter (I.D.):	0.17	feet
3. W = Static Depth to Water (TOC):	3.51	feet
4. C = Column of Water in Casing:	25.99	feet
- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4.00	

4. C = Column of Water in Casing.	25.99	_ reet
5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$	4.23	gal
6. 3(V) =Target Purge Volume	12.70	gal

D (inches)	D (feet)
1-inch	0.08
2-inch	0.17
3-inch	0.25
4-inch	0.33
6-inch	0.50

Conversion factors to determine V given C

D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
V (gal / ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Readings Collected Using YSI 556 and Lamont 2020

Parameter	Units			R	eadings		
Time	24 hr	1315	1318	1321	1324		
Water Level	feet	3.51	-	-	-		
Volume Purged	gal	0.00	4.25	8.50	13.00		
Flow Rate	mL / min	-	-	-	-		
Turbidity	NTU	131.0	0.0	0.00	0.00		
Dissolved Oxygen	mg / L	17.81	6.85	3.50	3.08		
Eh / ORP	MeV	17.9	27.8	25.5	27.9		
Conductivity	µmho / cm	0.693	0.84	0.857	0.854		
pН	pH unit	7.35	7.31	7.32	7.32		
Temp	С	8.94	9.44	9.52	9.53		
Color	Visual	cloudy	clear	clear	clear		
Odor	Olfactory	none	none	none	none		

Comments:

1315 - Started purge

1324 - Sampled

Well missing screws for cap, continually floods bentonite to top of casing.

Project Name and Number: Freemans Bridge Road 105886.02

Monitoring Well Number: MW-16 Date: 12/9/09

Samplers: Tyler Brown and Mark Howard

Sample Number: MW-16 QA/QC Collected? None

Purging / Sampling Method: Whale Pump

1. L = Total Well Depth:	13.20	feet	D (inches)	D (feet)
2. D = Riser Diameter (I.D.):	0.17	feet	1-inch	0.08
3. W = Static Depth to Water (TOC):	8.45	feet	2-inch	0.17
4. C = Column of Water in Casing:	4.75	feet	3-inch	0.25
5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$	0.770	gal	4-inch	0.33
6. 3(V) =Target Purge Volume	2.300	gal	6-inch	0.50

Conversion factors to determine V given C

D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
V (gal / ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Readings Collected Using YSI 556 and Lamont 2020

Parameter	Units		Readings					
Time	24 hr	1013	1016	1020	1045			
Water Level	feet	8.45	-	-	-			
Volume Purged	gal	0.00	1.00	2.00	3.25			
Flow Rate	mL / min	-	-	-	-			
Turbidity	NTU	49.9	42.30	25.9	51.5			
Dissolved Oxygen	mg / L	8.89	6.79	5.48	6.34			
Eh / ORP	MeV	-47.6	-65.3	-65.2	-47.1			
Conductivity	μmho / cm	1.378	1.409	1.414	1.524			
pН	pH unit	6.80	6.82	6.82	6.84			
Temp	С	8.85	9.12	8.72	6.54			
Color	Visual	clear	cloudy	clear	cloudy			
Odor	Olfactory	none	sulfur	sulfur	sulfur			

Comments:

1013 - Started purge

1021 - purged dry, 3.25 gallons

Project Name and Number: Freemans Bridge Road 105886.02

Monitoring Well Number: MW- 16 D Date: 12/9/09

Samplers: Tyler Brown and Mark Howard

Sample Number: MW-16 D QA/QC Collected? None

Purging / Sampling Method: Whale Pump

1. L = Total Well Depth:	28.64	feet	D (inches)	D (feet)
2. D = Riser Diameter (I.D.):	0.17	feet	1-inch	0.08
3. W = Static Depth to Water (TOC):	8.45	feet	2-inch	0.17
4. C = Column of Water in Casing:	20.19	feet	3-inch	0.25
5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$	3.30	gal	4-inch	0.33
6. 3(V) =Target Purge Volume	9.90	gal	6-inch	0.50

Conversion factors to determine V given C

D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
V (gal / ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Readings Collected Using YSI 556 and Lamont 2020

Parameter	Units			R	Readings		
Time	24 hr	950	953	957	959		
Water Level	feet	8.45	-	-	-		
Volume Purged	gal	0.00	3.30	6.60	10.00		
Flow Rate	mL / min	-	-	-	-		
Turbidity	NTU	Max	207.00	15.40	7.68		
Dissolved Oxygen	mg / L	10.32	3.60	3.01	1.69		
Eh / ORP	MeV	109.6	23.7	0.4	-11.7		
Conductivity	μmho / cm	0.925	0.947	0.959	0.949		
рН	pH unit	7.22	7.06	7.11	7.09		
Temp	O	4.36	8.21	7.50	8.74		
Color	Visual	very turbid	cloudy	clear	clear		
Odor	Olfactory	none	none	none	none		

Comments:

Tubing fell off when pumpig, initial turbidity product off pump falling off tubing

950 - Started purge

959 - Sampled

Project Name and Number: Freemans Bridge Road 105886.02

Monitoring Well Number: MW- 18 Date: 12/10/09

Samplers: Tyler Brown and Mark Howard

Sample Number: MW-18 QA/QC Collected? None

Purging / Sampling Method: Whale Pump

1. L = Total Well Depth:	14.7	feet	D (
2. D = Riser Diameter (I.D.):	0.17	feet	1
3. W = Static Depth to Water (TOC):	7.88	feet	2
4. C = Column of Water in Casing:	6.82	feet	3
$5 \text{ V} = \text{Volume of Water in Well} = C(3.14159)(0.5D)^2(7.48)$	1 11	gal	4

6. 3(V) =Target Purge Volume 3.33 gal

D (inches)	D (feet)
1-inch	0.08
2-inch	0.17
3-inch	0.25
4-inch	0.33
6-inch	0.50

Conversion factors to determine V given C

D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
V (gal / ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Readings Collected Using YSI 556 and Lamont 2020

Parameter	Units						
Time	24 hr	1102	1104	1105	1107		
Water Level	feet	7.88	-	-	-		
Volume Purged	gal	0.00	1.11	2.22	3.33		
Flow Rate	mL / min	-	-	-	-		
Turbidity	NTU	32.8	55.2	35.5	17.60		
Dissolved Oxygen	mg / L	22.33	10.54	9.31	6.12		
Eh / ORP	MeV	2.15	31.3	49.3	58.5		
Conductivity	µmho / cm	0.544	0.506	0.497	0.482		
pН	pH unit	6.89	6.61	6.52	6.45		
Temp	С	8.34	8.72	8.61	8.84		
Color	Visual	clear	sl cloudy	clear	clear		
Odor	Olfactory	none	none	none	none		

Comments:

1102 - Started purge

1107 - Sampled

PVC was bent at approximatetly ground level, a bailer was unable to be put down the well.

Project Name and Number: Freemans Bridge Road 105886.02

Monitoring Well Number: MW- 19 Date: 12/10/09

Samplers: <u>Tyler Brown and Mark Howard</u>

Sample Number: MW-19 QA/QC Collected? None

Purging / Sampling Method: Whale Pump

1. L = Total Well Depth:	9.72	feet	D (inches)	D (feet)
2. D = Riser Diameter (I.D.):	0.17	feet	1-inch	0.08
3. W = Static Depth to Water (TOC):	5.62	feet	2-inch	0.17
4. C = Column of Water in Casing:	4.1	feet	3-inch	0.25
5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$	0.66	 gal	4-inch	0.33
6. 3(V) =Target Purge Volume	2.00	_ gal	6-inch	0.50

Conversion factors to determine V given C

D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
V (gal / ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Readings Collected Using YSI 556 and Lamont 2020

Parameter	Units			ı	Readings		
Time	24 hr	1232	1234	1236	1246		
Water Level	feet	5.62	-	-	-		
Volume Purged	gal	0.00	0.75	1.50	2.50		
Flow Rate	mL / min	-	-	-	-		
Turbidity	NTU	11.0	393.0	625.0	129.0		
Dissolved Oxygen	mg / L	5.21	5.03	4.36	3.04		
Eh / ORP	MeV	-22.00	-3.00	9.20	24.00		
Conductivity	µmho / cm	0.914	0.926	0.903	0.886		
pН	pH unit	7.24	7.13	7.17	7.12		
Temp	С	6.97	7.59	7.64	7.33		
Color	Visual	clear	v cloudy	v cloudy	cloudy		
Odor	Olfactory	none	none	none	none		

Comments:

1232 - Started purge

1238 - Purged dry, purged 2.5 gallons

1246 - Sampled

Project Name and Number: Freemans Bridge Road 105886.02

Monitoring Well Number: MW- 19 D Date: 12/10/09

Samplers: Tyler Brown and Mark Howard

Sample Number: MW-19 D QA/QC Collected? None

Purging / Sampling Method: Whale Pump

1. L = Total Well Depth:	22.31	feet	D (inches)	D (feet)
2. D = Riser Diameter (I.D.):	0.17	feet	1-inch	0.08
3. W = Static Depth to Water (TOC):	4.71	feet	2-inch	0.17
4. C = Column of Water in Casing:	17.6	feet	3-inch	0.25
5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$	2.86	gal	4-inch	0.33
6. 3(V) =Target Purge Volume	8.58	gal	6-inch	0.50

Conversion factors to determine V given C

D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
V (gal / ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Readings Collected Using YSI 556 and Lamont 2020

Parameter	Units			I	Readings		
Time	24 hr	1220	1221	1223	1225		
Water Level	feet	4.71	-	-	-		
Volume Purged	gal	0.00	3.00	6.00	9.00		
Flow Rate	mL / min	-	-	-	-		
Turbidity	NTU	88.2	16.6	9.8	5.6		
Dissolved Oxygen	mg / L	9.86	6.88	4.41	3.05		
Eh / ORP	MeV	-38.2	-70.9	-74.7	-76.8		
Conductivity	μmho / cm	0.798	0.812	0.805	0.807		
рН	pH unit	6.97	7.04	7.07	7.10		
Temp	С	8.25	9.31	9.46	9.27		
Color	Visual	cloudy (br)	clear	clear	clear		
Odor	Olfactory	none	none	none	none		

Comments:

1220 - Started purge

Project Name and Number: Freemans Bridge Road 105886.02

Monitoring Well Number: MW- 20 Date: 12/10/09

Samplers: Tyler Brown and Mark Howard

Sample Number: MW-20 QA/QC Collected? None

Purging / Sampling Method: Bailer

1. L = Total Well Depth:	12.41	feet
2. D = Riser Diameter (I.D.):	0.17	- feet
3. W = Static Depth to Water (TOC):	6.59	feet
3. W = Static Depth to Water (TOC): 4. C = Column of Water in Casing:	5.82	feet
0(0,44,50)(0,50)2(5,40)		— .

D (inches)	D (feet)
1-inch	80.0
2-inch	0.17
3-inch	0.25
4-inch	0.33
6-inch	0.50

Conversion factors to determine V given C

D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
V (gal / ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Readings Collected Using YSI 556 and Lamont 2020

Parameter	Units			R	eadings		
Time	24 hr	844	846	906			
Water Level	feet	6.59	-	-			
Volume Purged	gal	0.00	1.00	1.75			
Flow Rate	mL / min	-	-	-			
Turbidity	NTU	568.0	425.0	512.0			
Dissolved Oxygen	mg / L	2.75	5.37	4.61			
Eh / ORP	MeV	-171.5	-128.6	-81.9			
Conductivity	μmho / cm	3.235	3.088	2.592			
рН	pH unit	11.30	11.19	9.31			
Temp	С	7.09	7.82	7.42			
Color	Visual	yellow	yellow	yellow			
Odor	Olfactory	urine	urine	urine			

Comments:

844 - Started purge

848 - Purged dry, purged 1.75 gallons

906 - Sampled

Well exhibited strong urine odor and coloration

Project Name and Number: Freemans Bridge Road 105886.02

Monitoring Well Number: MW- 20 D Date: 12-10-09

Samplers: Tyler Brown and Mark Howard

Sample Number: MW-20 D QA/QC Collected? None

Purging / Sampling Method: Whale Pump

1. L = Total Well Depth:		31.9	feet
2. D = Riser Diameter (I.D.):		0.17	feet
3. W = Static Depth to Water (TOC):		6.8	feet
4. C = Column of Water in Casing:		25.1	feet
	^		

+. C = Column of Water in Casing.	20.1	_ reet
5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$	4.09	gal
6. 3(V) =Target Purge Volume	12.27	gal

D (inches)	D (feet)
1-inch	0.08
2-inch	0.17
3-inch	0.25
4-inch	0.33
6-inch	0.50

Conversion factors to determine V given C

D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
V (gal / ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Readings Collected Using YSI 556 and Lamont 2020

Parameter	Units			F	Readings		
Time	24 hr	826	828	831	833		
Water Level	feet	6.80	-	-	-		
Volume Purged	gal	0.00	4.00	8.00	12.00		
Flow Rate	mL / min	-	-	-	-		
Turbidity	NTU	116.0	219.0	72.4	31.2		
Dissolved Oxygen	mg / L	20.37	10.54	4.60	3.37		
Eh / ORP	MeV	-77.6	-75	-73.9	-74.2		
Conductivity	μmho / cm	0.823	0.841	0.828	0.828		
pН	pH unit	7.28	7.31	7.31	7.31		
Temp	С	8.34	8.40	8.69	8.75		
Color	Visual	cloudy	v cloudy	cloudy	sl cloudy		
Odor	Olfactory	none	none	none	none		

Comments:

826 - Started purge

Project Name and Number: Freemans Bridge Road

Monitoring Well Number: MW- 21 Date: 12/10/09

Samplers: Tyler Brown and Mark Howard

Sample Number: MW-21 QA/QC Collected? None

Purging / Sampling Method: Bailer

1. L = Total Well Depth:	18.3	feet
2. D = Riser Diameter (I.D.):	0.17	feet
3. W = Static Depth to Water (TOC):	7.17	feet
3. W = Static Depth to Water (TOC): 4. C = Column of Water in Casing:	11.13	feet
$V = Volume of Water in Well = C(3.14159)(0.5D)^2(7.48)$	1.81	_nal

6. 3(V) =Target Purge Volume 5.44 gal

D (inches)	D (feet)
1-inch	0.08
2-inch	0.17
3-inch	0.25
4-inch	0.33
6-inch	0.50

105886.02

Conversion factors to determine V given C

D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
V (gal / ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Readings Collected Using YSI 556 and Lamont 2020

Parameter	Units			F	Readings		
Time	24 hr	944	947	950	955		
Water Level	feet	7.17	-	-	-		
Volume Purged	gal	0.00	2.00	3.50	5.50		
Flow Rate	mL / min	-	-	-	-		
Turbidity	NTU	388.0	error3	error3	error3		
Dissolved Oxygen	mg / L	3.55	3.36	3.44	4.55		
Eh / ORP	MeV	-54.1	-57.8	-55.9	-54.2		
Conductivity	µmho / cm	1.254	1.279	1.249	1.307		
pН	pH unit	6.83	6.82	6.82	6.82		
Temp	С	7.77	8.37	8.79	9.15		
Color	Visual	yellow	br yellow	br yellow	brown		
Odor	Olfactory	urine	urine	urine	urine		

Comments:

944 - Started purge

Project Name and Number: Freemans Bridge Road 105886.02

Monitoring Well Number: MW-21 D Date: 12/10/09

Samplers: <u>Tyler Brown and Mark Howard</u>

Sample Number: MW-21 D QA/QC Collected? None

Purging / Sampling Method: Whale Pump

1. L = Total Well Depth:	50.2	feet	D (inches)	D (feet)
2. D = Riser Diameter (I.D.):	0.17	feet	1-inch	0.08
3. W = Static Depth to Water (TOC):	8.85	feet	2-inch	0.17
4. C = Column of Water in Casing:	41.35	feet	3-inch	0.25
5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$	6.74	gal	4-inch	0.33
6. 3(V) =Target Purge Volume	20.22	gal	6-inch	0.50

Conversion factors to determine V given C

D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
V (gal / ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Readings Collected Using YSI 556 and Lamont 2020

Parameter	Units			I	Readings		
Time	24 hr	922	927	932	937		
Water Level	feet	8.85	-	-	-		
Volume Purged	gal	0.00	6.75	13.50	20.75		
Flow Rate	mL / min	-	-	-	-		
Turbidity	NTU	14.50	2.34	1.34	1.50		
Dissolved Oxygen	mg / L	4.56	5.410	2.14	2.42		
Eh / ORP	MeV	-143.8	-97.5	-95.5	-96.3		
Conductivity	µmho / cm	0.905	0.919	0.914	0.899		
pН	pH unit	7.75	7.36	7.34	7.35		
Temp	С	8.18	8.20	8.61	8.92		
Color	Visual	clear	clear	clear	clear		
Odor	Olfactory	none	none	none	none		

Comments:

922 - Started purge

Project Name and Number: Freemans Bridge Road 105886.02

Monitoring Well Number: MW- 23 Date: 12/9/09

Samplers: Tyler Brown and Mark Howard

Sample Number: MW-23 QA/QC Collected? None

Purging / Sampling Method: Whale Pump

1. L = Total Well Depth:	11.3	feet
2. D = Riser Diameter (I.D.):	0.17	feet
3. W = Static Depth to Water (TOC):	4.97	feet
4. C = Column of Water in Casing:	6.33	feet
- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4 00	

5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$	1.03	gal
6. 3(V) =Target Purge Volume	3.09	gal

D (inches)	D (feet)
1-inch	0.08
2-inch	0.17
3-inch	0.25
4-inch	0.33
6-inch	0.50

Conversion factors to determine V given C

D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
V (gal / ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Readings Collected Using YSI 556 and Lamont 2020

Parameter	Units			F	Readings		
Time	24 hr	1214	1217	1219	1221		
Water Level	feet	4.97	-	-	-		
Volume Purged	gal	0.00	1.00	2.00	5.00		
Flow Rate	mL / min	-	-	-	-		
Turbidity	NTU	257.0	max	max	max		
Dissolved Oxygen	mg / L	1.26	2.89	2.21	3.70		
Eh / ORP	MeV	-102.4	-97.7	-91	-91.1		
Conductivity	μmho / cm	0.822	0.834	0.843	0.812		
pН	pH unit	7.18	7.19	7.18	7.18		
Temp	С	7.10	7.99	8.09	8.24		
Color	Visual	Turbid	v Turbid	v Turbid	v Turbid		
Odor	Olfactory	none	none	none	none		

Comments:

1214 - Started purge

Project Name and Number: Freemans Bridge Road 105886.02

Monitoring Well Number: <u>MW- 23 D</u> Date: <u>12/9/09</u>

Samplers: Tyler Brown and Mark Howard

Sample Number: MW-23 D QA/QC Collected? None

Purging / Sampling Method: Whale Pump

1. L = Total Well Depth:	55.3	feet
2. D = Riser Diameter (I.D.):	0.17	feet
3. W = Static Depth to Water (TOC):	4.28	feet
4. C = Column of Water in Casing:	51.02	feet
		—

D (inches)	D (feet)
1-inch	0.08
2-inch	0.17
3-inch	0.25
4-inch	0.33
6-inch	0.50

Conversion factors to determine V given C

D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
V (gal / ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Readings Collected Using YSI 556 and Lamont 2020

Parameter	Units			I	Readings		
Time	24 hr	1135	1142	1149	1156		
Water Level	feet	4.28	-	-	-		
Volume Purged	gal	0.00	~8.5	~17	~25		
Flow Rate	mL / min	=	-	-	-		
Turbidity	NTU	max	92.40	7.29	8.34		
Dissolved Oxygen	mg / L	3.80	2.06	3.97	2.88		
Eh / ORP	MeV	-47.2	-60	-57.5	-66		
Conductivity	μmho / cm	0.919	0.92	0.909	0.921		
рН	pH unit	7.38	7.38	7.43	7.39		
Temp	С	7.52	8.40	7.73	8.28		
Color	Visual	v turbid	cloudy	clear	clear		
Odor	Olfactory	none	none	none	none		

Comments:

1135 - Started purge

Project Name and Number: Freemans Bridge Road

Monitoring Well Number: MW-30 Date: 12/10/09

Samplers: Tyler Brown and Mark Howard

Sample Number: MW-30 QA/QC Collected? DUP-1

Purging / Sampling Method: Whale Pump

1. L = Total Well Depth:	16.49	feet
2. D = Riser Diameter (I.D.):	0.33	feet
3. W = Static Depth to Water (TOC):	6.3	feet
4. C = Column of Water in Casing:	10.19	feet
5. $V = Volume of Water in Well = C/3.14150 \(0.50 \)^2/7.48\$	6.62	

10: V = Volume of VValer in VVen = 0(0:14100)(0:0D) (7:40)	0.02	gai	
6. 3(V) =Target Purge Volume	19.87	gal	
		_	

D (inches)	D (feet)
1-inch	0.08
2-inch	0.17
3-inch	0.25
4-inch	0.33
6-inch	0.50

105886.02

Conversion factors to determine V given C

D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
V (gal / ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Readings Collected Using YSI 556 and Lamont 2020

Parameter	Units	Readings						
Time	24 hr	1507	1511	1515	1519			
Water Level	feet	6.30	-	-	-			
Volume Purged	gal	0.00	6.75	13.50	20.25			
Flow Rate	mL / min	ı	-	-	-			
Turbidity	NTU	error1	error1	error1	error1			
Dissolved Oxygen	mg / L	2.50	1.81	1.54	1.19			
Eh / ORP	MeV	-137.8	-235.8	-261.8	-261.8			
Conductivity	μmho / cm	1.623	1.548	1.394	1.346			
рН	pH unit	7.29	7.26	7.07	7.00			
Temp	С	7.91	8.38	8.42	9.04			
Color	Visual	bk cl	black	black	black			
Odor	Olfactory	strong voc	strong voc	strong voc	strong voc			

Comments:

1507 - Started purge

1519 - Sampled

Project Name and Number: Freemans Bridge Road 105886.02

Monitoring Well Number: MW-31 Date: 12/10/09

Samplers: Tyler Brown and Mark Howard

Sample Number: MW-31 QA/QC Collected? None

Purging / Sampling Method: Whale Pump

1. L = Total Well Depth:	16.79	feet	D (inches)	D (feet)
2. D = Riser Diameter (I.D.):	0.33	feet	1-inch	0.08
3. W = Static Depth to Water (TOC):	5.69	feet	2-inch	0.17
4. C = Column of Water in Casing:	11.1	feet	3-inch	0.25
5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$	7.22	_ gal	4-inch	0.33
6. 3(V) =Target Purge Volume	21.66	_ gal	6-inch	0.50

Conversion factors to determine V given C

D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
V (gal / ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Readings Collected Using YSI 556 and Lamont 2020

Parameter	Units		Readings					
Time	24 hr	1444	1447	1450	1453			
Water Level	feet	5.69	-	-	-			
Volume Purged	gal	0.00	7.25	14.50	22.00			
Flow Rate	mL / min	-	-	-	-			
Turbidity	NTU	134.0	0.0	0.0	0.0			
Dissolved Oxygen	mg / L	2.49	2.53	3.50	2.24			
Eh / ORP	MeV	-24.7	-44.2	-56.8	-56.4			
Conductivity	μmho / cm	1.55	1.509	1.482	1.401			
pН	pH unit	7.05	7.12	7.16	7.15			
Temp	С	7.96	8.32	8.63	9.00			
Color	Visual	cloudy	clear	clear	clear			
Odor	Olfactory	none	none	none	none			

Comments:

1444- Started purge

Project Name and Number: Freemans Bridge Road 105886.02

Monitoring Well Number: MW-32 Date: 12/8/09

Samplers: Tyler Brown and Mark Howard

Sample Number: MW-32 QA/QC Collected? None

Purging / Sampling Method: Whale Pump

1. L = Total Well Depth:	22.34	feet	D (inches)	D (feet)
2. D = Riser Diameter (I.D.):	0.33	feet	1-inch	0.08
3. W = Static Depth to Water (TOC):	6.93	feet	2-inch	0.17
4. C = Column of Water in Casing:	15.31	feet	3-inch	0.25
5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$	9.50	gal	4-inch	0.33
6. 3(V) =Target Purge Volume	29.85	gal	6-inch	0.50

Conversion factors to determine V given C

D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
V (gal / ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Readings Collected Using YSI 556 and Lamont 2020

Parameter	Units		Readings						
Time	24 hr	1332	1337	1341	1346				
Water Level	feet	6.93	-	-	-				
Volume Purged	gal	0.00	10.00	20.00	30.00				
Flow Rate	mL / min	-	-	-	-				
Turbidity	NTU	9.7	119.0	53.3	46.5				
Dissolved Oxygen	mg / L	31.50	8.38	6.82	3.91				
Eh / ORP	MeV	-94.3	-104.8	-86.7	-63.1				
Conductivity	μmho / cm	0.887	0.917	0.904	0.906				
рН	pH unit	8.60	7.15	7.10	7.06				
Temp	С	8.46	8.88	8.75	8.92				
Color	Visual	gr-bk	gr cloud	sl cl	sl cl				
Odor	Olfactory	sulfur	sulfur	sulfur	sulfur				

Comments:

1332 - Started purge

1346 - Sampled

Needs new tubing

Project Name and Number: Freemans Bridge Road 105886.02

Monitoring Well Number: MW-33 Date: 12/8/09

Samplers: Tyler Brown and Mark Howard

Sample Number: MW-33 QA/QC Collected? None

Purging / Sampling Method: Whale Pump

1. L = Total Well Depth:	13.94	feet	D (inches)	D (feet)
2. D = Riser Diameter (I.D.):	0.33	feet	1-inch	0.08
3. W = Static Depth to Water (TOC):	6.19	feet	2-inch	0.17
4. C = Column of Water in Casing:	7.75	feet	3-inch	0.25
5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$	5.04	_ gal	4-inch	0.33
6. 3(V) =Target Purge Volume	15.12	gal	6-inch	0.50

Conversion factors to determine V given C

D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
V (gal / ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Readings Collected Using YSI 556 and Lamont 2020

Parameter	Units	Readings						
Time	24 hr	1412	1415	1451				
Water Level	feet	6.19	-	-				
Volume Purged	gal	0.00	5.00	5.75				
Flow Rate	mL / min	-	-	-				
Turbidity	NTU	44.60	196.00	82.80				
Dissolved Oxygen	mg / L	21.27	7.57	4.44				
Eh / ORP	MeV	-66.0	-98.2	-41.8				
Conductivity	μmho / cm	3.325	3.436	3.442				
pН	pH unit	7.61	7.76	7.52				
Temp	С	7.63	7.56	7.46				
Color	Visual	green	green	green				
Odor	Olfactory	sulfur	sulfur	sulfur				

Comments:

1412 - Started purge

1416 - Purged dry, purged 5.75 gallon

1451 - Sampled

Purged a total of 6.5 gallons