

PERIODIC REVIEW REPORT

PERIOD: July 1, 2016 to June 30, 2019

DAMBROSE CLEANERS SITE 1517-1519 Van Vranken Avenue Schenectady, NY

NYSDEC SITE NO.: 447030

<u>PREPARED FOR:</u> NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATION 625 BROADWAY, 12TH FLOOR ALBANY, NY 12233

PRECISION ENVIRONMENTAL SERVICES, INC. 831 ROUTE 67, LOT 38A BALLSTON SPA, NY 12020

August, 2019

TABLE OF CONTENTS

- 1.0 Executive Summary
- 2.0 Site Overview
- 3.0 EC/IC Compliance and Evaluation of performance, effectiveness, and protectiveness
- 4.0 Monitoring/ Operation & Maintenance
- 5.0 Conclusions and Recommendations

List of Figures

Figure 1Area MapFigure 2Site Map

Appendices

Appendix A	2018 & 2019 Summary Report
Appendix B	Certifications

1.0 EXECUTIVE SUMMARY

This Periodic Review Report document provides a written synopsis of work from July 1, 2016 through June 30, 2019 at the Dambrose Cleaners Inactive Hazardous Waste Disposal Site. Site investigation and remediation was conducted in accordance with a published Site Management Plan (SMP) and administration provided by the New York State Department of Environmental Conservation (NYSDEC or Department).

Background

The Dambrose Cleaners site is located at 1517 and 1519 Van Vranken Ave. in the City of Schenectady, Schenectady County, NY. It is located in a residential and commercial portion of the City approximately 300 feet north of Union College. Retail dry cleaning operations from approximately 1957 through 2001 reportedly resulted in contamination of soil and groundwater due to release of Tetrachloroethene (PCE). The Site was added to the Registry of Inactive Hazardous Waste Disposal Sites on December 6, 2001 as Site #447030.

After site planning, investigation and design, a subslab depressurization system (SSDS) was installed at the site in 2005 as part of an interim remedial measure. A Record of Decision (ROD) was issued for the site in October 2007 and a Soil Vapor Extraction System (SVES) was installed in 2011.

Effectiveness and Compliance

The 2011 SMP describes Engineering and Institutional Controls, Site Monitoring requirements, and an Operation and Maintenance Plan. Compliance with the remedial goals was demonstrated though site monitoring and operation & maintenance. Engineering Controls include:

- Soil Cover and Concrete Cap
- Sub slab depressurization system (SSDS)
- Soil Vapor Extraction System (SVES)

No significant changes were observed to these controls during the reporting period.

Institutional Controls

Institutional controls implemented as part of the ROD include:

- limiting the use and development of the property,
- compliance with the approved Site Management Plan, and
- restricting uses of groundwater as a source of potable or process water.

Floor 1 of the building was recently converted to a residential apartment from prior use as a drop off service for off site dry cleaning. This apartment use is allowed under the "restricted residential" institutional control. No significant change in site or potable water

use has occurred since the prior reporting period and thus compliance with these controls was satisfied.

Monitoring and Operation & Maintenance

During this review period, the following monitoring and O&M procedures were completed:

- 1. Monthly visual monitoring of the SSDS;
- 2. Monthly monitoring with the PID of the SVES; and
- 3. groundwater sampling and analysis. Emerging Contaminants were added to the scope per the NYSDEC.

Recommendations

Concentrations of contaminants in groundwater, soil and subslab vapor indicate the continued need for operation of the implemented Engineering /Institutional Controls at the site. Specific recommendations include:

- Cut back vines and vegetation from retaining wall and remediation shed.
- performance of additional interior sampling of the basement air and SSDS airstream to further document the effectiveness of the SSDS;
- consideration should be given to supplemental remedial alternatives, such as carbon slurry injection, whereby spread of PCE and breakdown products will be reduced or eliminated;
- Continued monthly monitoring of the SVES and SSDS.

2.0 <u>SITE OVERVIEW</u>

The Dambrose Cleaners site is located at 1517 and 1519 Van Vranken Ave. in the City of Schenectady, Schenectady County, NY. The site encompasses an 0.11 acre lot within a City block bounded by Nott Street, Van Vranken Avenue, and Hattie and Carrie Streets. The site is located in an urban setting and is surrounded by both private residence and commercial business. Figure 1 provides additional information on general site location. The site consists of a two story building and the first floor was recently converted to a residential apartment from prior use as a drop-off service for off-site dry cleaning. A residential apartment also exists on the second floor.

Retail dry cleaning operations reportedly existed at the site from approximately 1957 through 2001. This historic on premises dry cleaning operations and the storage/use of Tetrachloroethene (PCE) resulted in at least one documented spill in 1989. This use is believed to have contributed to releases as a result of poor operational practices and housekeeping. Key findings and actions were:

- PCE and associated degradation products were initially documented at the site in soil, groundwater, soil gas and indoor air. PCE concentrations in groundwater were documented to be as high as 15,000 µg/L.
- Concentrations within indoor air were found as high as $540 \ \mu g/m3$.
- A subslab depressurization system (SSDS) was installed at the site in 2005 as part of an interim remedial measure.
- A Record of Decision (ROD) was issued for the site in October 2007.
- In January 2011 a Soil Vapor Extraction System (SVES) was installed and made operational pursuant to the ROD.
- A Site Management Plan was prepared in October, 2011 by Malcom Pirnie, Inc. to document proposed actions intended to manage remaining contamination at the Site.
- The SSDS and SVES remain in operation as of the date of this report. The goal of the SVES is to remediate the identified and perceived source of PCE impacts located at the rear of the property.

Figure 2 is a Site Map obtained from the Feb. 7, 2011 property map by Malcom Pirnie, Inc.

3.0 <u>EC/IC Compliance and Evaluation of performance, effectiveness, and</u> <u>protectiveness</u>

Engineering controls on the site are:

- soil cover and concrete;
- sub slab depressurization system; and
- soil vapor extraction system.

Institutional Control on the site is agreement to an environmental easement to:

- Limit the use and development of the property to restricted residential use, which would also permit commercial or industrial uses;
- Require compliance with the approved Site Management Plan;
- Restrict the uses of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the NYSDOH;

3.1 Soil Cover and Concrete Cap

After construction completion of the SVE system, clean imported backfill was placed over the gravel trenches. A 10- inch thick concrete slab was then constructed and incorporated as a parking area over the western portion of the

Site. This cap system minimizes exposure to remaining contamination in soil.

Visual inspection of the soil cap and concrete occur on a monthly basis and during annual evaluation to monitor performance of this control. Both are significantly intact as originally constructed with no obvious wear.

3.2 Sub slab depressurization system (SSDS)

In 2005, a sub-slab depressurization system with three suction points was installed to create a negative pressure gradient between the basement and the area beneath the building slab. Additionally, cracks and seams in the slab were sealed, and the sump was capped and sealed. Vapor from beneath the slab is vented above the roofline of the Dambrose Cleaners Building.

During this monitoring period the system has operated well. Vacuum beneath the slab is documented through visual inspection of system controls and the manometer. The manometer registered 2.45 inches of water which is adequate for the vacuum pressure.

Air samples of SSDS exhaust and SVE system were analyzed via TO-15 but not during this PRR period based on specific scoping from the DEC.

3.3 Soil Vapor Extraction System

The purpose of the SVE system is to mitigate adsorbed contaminant mass within the vadose zone and capture fugitive VOCs. The vacuum and negative airflow induced by the SVE blower draws the contaminant mass upward to the horizontal SVE lines. Following extraction by the blower, the raw recovered vapor is then discharged to the atmosphere. Currently, no method of off-gas treatment has been applied.

The SVE system consists of one 33 foot long and two 25 foot long subsurface horizontal soil vapor extraction wells bedded in trenches of granular material. The system activated on January 10, 2011. It has generally been in operation since this date, with periodic maintenance shutdown.

Appendix A contains the 2018 Summary Report, complete with tables and analytical results. It includes historical data back to 2004. Table 1 from the report (SVE System Removal Summary) indicates contaminant removal continues to fluctuate. This may be due to variance of rain events, which often affect groundwater levels and exposure of greater surface area of the SVE wells to the smear zone and adsorbed contaminant mass in soil.

3.4. Institutional controls

Institutional Control on the site is current as described below:

3.4.1. Limit the use and development of the property to restricted residential use, which would also permit commercial or industrial uses;
"Restricted-residential use" is the land use category which shall only be considered when there is common ownership or a single owner/managing entity of the site. Restricted-residential use:

(a) shall, at a minimum, include restrictions which prohibit:
(1) any vegetable gardens on a site, although community vegetable gardens may be considered with department approval; and
(2) single-family housing;

The first floor was converted, prior to this PRR period, to a residential apartment from prior use as a drop-off service for off-site dry cleaning. A residential apartment also exists on the second floor. While this land use is residential in nature, it complies with the "Restricted-residential use" Institutional Control as defined above.

3.4.2. *Require compliance with the approved Site Management Plan*; Periodic monitoring, reporting, operation, and maintenance is conducted at the site in compliance with this periodic review report and the site management plan.

3.4.3. Restrict the uses of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the NYSDOH;

Public water is currently provided to the building.

4.0 MONITORING/OPERATION & MAINTENANCE

Site Monitoring helps evaluate the performance and effectiveness of the remedy:

- SSDS to control concentrations of Site contaminants in indoor air;
- SVES to reduce contamination at the Site;
- Soil cover and concrete cap to function as a barrier to receptor exposure to the remaining contamination; and
- Entire remedy for green remediation principles.

As described in the Site Management Plan and the table below, routine monitoring of the remedy is required.

Monitoring Program	Frequency*	Matrix	Analysis		
SVES	Initial baseline monitoring, followed by semi-annual monitoring for one year and annual monitoring thereafter	 Contaminant concentrations in soil vapor as represented by samples of influent to the SVES Vacuum maintained in each leg of the SVES collection system 	 VOCs in air by TO-15 Measurement of vacuum in each leg of the collection system using electronic system data 		
SSDS	Initial baseline monitoring, followed by semi-annual monitoring for one year and annual monitoring thereafter	Vacuum maintained under the basement slab of 1517/1519 Van Vranken Avenue	Measurement of SSDS vacuum, using the SSDS system output readings		
Groundwater	Initial baseline monitoring, followed by semi-annual monitoring for one year and one monitoring event every fifth quarter thereafter	Groundwater in the monitoring wells shown on Figure 3, (subject to adjustment by the NYSDEC	VOCs by EPA Method 8260B and groundwater elevations		
Soil Cover and Concrete Cap	Inspection at each monitoring event conducted for other media as identified herein	Soil Cover and Concrete Cap	Visual inspection		

* Frequency until otherwise approved by the NYSDEC and NYSDOH.

4.1 SSDS Monitoring

This task included general system review of blower, system controls and piping in the basement of the building.

4.2 SVES Monitoring

This task included general system review of blower, related equipment, and system components. Monitoring with the PID indicates contaminant removal continues to fluctuate. System monitoring and maintenance has not yielded significant deficiencies during the PRR period, other than vegetative growth (grape vines and possibly Japanese

Knotweed) over the concrete retaining wall and the Remediation Shed. These need to be cut back/removed soon so system effectiveness is not compromised.

4.3 Groundwater Monitoring

Groundwater monitoring includes water level measurements, monitory well inspection, and groundwater sampling. During this PRR period, groundwater sampling occurred August 16, 2017 and August 22, 2018. Since the SMP states monitoring every five quarters, it is suggested to provide sampling in November of this year.

Water levels in seven monitoring wells (MW-1R, MW-2R, MW-3, MW-4, MW-6, MW-7, and MW-10) were recorded to determine groundwater elevations. Elevations ranged from 185.05 feet (MW-10) to 196.56 (MW-3). These levels were generally consistent with prior years. The groundwater gauging and elevation data is presented in the attached Table 2 of the Appendix A report.

In addition to determining the depth to groundwater, select monitoring wells were purged of a minimum of three well volumes by manual repetitive bailing, allowed to re-charge to equilibration, and sampled. All samples were obtained by aseptic techniques, secured in clean laboratory supplied glassware, labeled, and placed on iced storage for subsequent submission under chain of custody to the NYS DEC contract laboratory, TestAmerica of Buffalo, NY. Analysis was via:

- EPA Method 8260B for VOCs;
- EPA Method 8270 SIM for 1,4-Dioxane;
- EPA Method 537 for Perflourinated Alkyl Substances (PFAS).

4.3.1 Volatile Organic Compounds

Per Table 4 of the report in Appendix A, constituents of concern, including PCE and its daughter compounds, were found in site monitoring wells. Four wells (MW-1R, MW-2R, MW-4 and MW-6) were at or above the standards established in the NYSDEC - *Division of Water Resources, Classes, and Quality Standards for Groundwater*, Chapter 10 of Title 6, Article 2, Part

703.5. Results from 2017 were generally lower than previous years, however, this may have been an anomaly since 2018 results were more consistent with prior years. While the data indicates the PCE contaminant plume is generally limited to the Dambrose Cleaners site and properties located immediately down gradient, it is of particular interest to point out contaminants in MW-4 increased from prior years results. MW-4 is immediately downstream of the site and no mechanism is in place to thwart the continued down gradient spread of the dissolved phase contaminants.

4.3.2 1,4-Dioxane and Perflourinated Alkyl Substances (PFAS)

In light of emerging contaminants in the environment, NYSDEC requested inclusion of 1,4 dioxane and PFAS compounds in groundwater monitoring.

As listed in Table 5 of the report in Appendix A, the only detection of 1,4diozane was in MW-1R at 0.19 μ g/L. This detection is below the NYSDEC internal screening value of 1 μ g/L.

PFOA and/or PFOS concentrations exceeded NYSDEC screening values in three (3) wells (MW-2R, MW-4, and MW-7), and concentrations of Perfluoropentanoic Acid (PFPeA) and 6:2-Fts exceeded screening values in four (4) wells (MW-2R, MW-3, MW-4, MW-7, and MW-10.

Total combined PFAS concentrations within monitoring well MW-7 (1,455.56 ppt) exceeded the internal screening value of 500 ppt. PFOS and PFOA combined accounted for 69 ppt and 6:2-Fts was reported at 1,300ppt.

The EPA established the health advisory level at 70 parts per trillion (ppt) or nanograms per liter (ng/l) for a lifetime exposure to PFOA and PFOS. No wells contained combined concentrations of PFOS and PFOA at 70ppt, however and as noted above, the combined concentrations of these compounds at MW-7 was 69 ppt.

4.4 Soil Cover and Concrete Cap Monitoring

At the time of each monitoring event, a visual inspection of the soil cover and concrete cap was conducted. The purpose of the visual inspection was to identify any changes, such as damage, to the surficial media which could compromise the functionality of the soil cover and/or concrete cap. In addition, cursory inspection was provided during monthly monitoring of the SVES.

No significant wear on the soil cover and concrete cap was observed. This control appears to be maintained in satisfactory condition. As noted previously, however, visual inspection of the retaining wall was not completed due to the thick vegetative growth.

5.0 CONCLUSIONS AND RECOMMENDATIONS

This Periodic Review Report described how all requirements of the SMP were met. This was accomplished through each component of the remedy - the respective monitoring, operation and maintenance of the following Engineering controls and Institutional Controls:

- soil cover and concrete;
- sub slab depressurization system;
- soil vapor extraction system.
- Site environmental easement.

Successful implementation of each component of the remedy contributed to achievement of remedial objectives for the site. Recommendations for the project are:

- Groundwater monitoring of VOCS indicate contaminants in MW-4 increased from prior years results. Since MW-4 is immediately downstream of the site, consideration should be given to supplemental remedial alternatives, such as carbon slurry injection, whereby spread of PCE and breakdown products will be reduced or eliminated, and natural attenuation can be enhanced via addition of nutrients or chemical oxidants.
- interior sampling of the basement air as well as the SSDS airstream should be completed to further document its effectiveness;
- continued monthly monitoring of the SVES and SSDS.
- Cut back vines and vegetation from retaining wall and remediation shed

FIGURES

APPENDIX A

2018 Summary Report

Via Electronic Mail: Aaron.Fischer@gw.dec.state.ny.us

March 4, 2019

Mr. Aaron Fischer, E.I.T. Assistant Environmental Engineer Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway, 12th Floor Albany, NY 12233-7013

Re: 2018 & 2019 Groundwater Monitoring and Remedial Status Report Dambrose Cleaners 1517 Van Vranken Avenue Schenectady, New York NYS DEC Site No.: 447030

Dear Mr. Fischer:

This letter serves as the status report for groundwater monitoring and ongoing remediation conducted at the former Dambrose Cleaners Site, located at 1517 Van Vranken Ave., City of Schenectady, NY (see attached Figure 1 for site location detail) during the time period of June 2018 to February 2019. Remedial efforts during the monitoring period consisted of monitoring and maintaining a SVE system that has been in operation at the site since January 2011. Groundwater monitoring consisting of well gauging and sampling occurred on August 22, 2018. Groundwater was sampled for site specific (volatile organic compounds) and emerging contaminants (1,4-Dioxane and Perfluorinated Alkyl Substances).

1.0 Soil Vapor Extraction System Status:

The purpose of the SVE system is to mitigate the contaminant mass documented within the vadose zone below the site and capture fugitive VOCs. The vacuum and airflow induced by the SVE blower draws the contaminant mass located within the vadose zone upward to three (3) horizontal SVE lines (see attached Figure 2 for additional SVE system layout detail). Following extraction by the SVE blower, the raw recovered vapor is then discharged to the atmosphere. Currently, no method of off-gas treatment has been applied.

Regular SVE system operation and maintenance (O&M) visits have been performed during the monitoring period. During the O&M visits, field screening of the SVE effluent air stream was performed and recorded via photo-ionization detector (PID) screening. The maximum concentration detected within the SVE effluent air stream during the current monitoring period was 150 parts per billion (ppb) which was recorded on August 23, 2018. A summary of the SVE effluent concentrations recorded during the monitoring period is included in the attached Table 1 (SVE System Removal Summary).

2.0 Well Gauging and Groundwater Gradient Determination:

PES personnel recorded the water level in seven monitoring wells (MW-1R, MW-2R, MW-3, MW-4, MW-6, MW-7, and MW-10) during the August 2018 monitoring event to determine the

depth to groundwater at each location. The documented depth to groundwater measurements in surveyed wells ranged from 1.49 feet (MW-4) to 6.61 feet (MW-1R).

The depth to groundwater data from each surveyed monitoring well was utilized to calculate the groundwater elevations at each respective location. The groundwater elevations in the gauged wells during the monitoring event ranged from 185.05 feet (MW-6) to 196.56 (MW-3). The groundwater gauging and elevation data is presented in the attached Table 2 (Summary of Groundwater Gauging and Elevation Data).

3.0 Groundwater Sampling Protocols and Laboratory Analysis Results:

In addition to determining the depth to groundwater, select monitoring wells were purged and subsequently sampled. Purging was achieved via peristaltic pump and dedicated high-density polyethylene (HDPE) tubing to remove a minimum of three well volumes or when equilibrium was reached with respect to physical parameters (including pH, Temperature, Total Disolved Solids, Dissolved Oxygen, Turbidity, Oxidation Reduction Potential and Conductivity) using low flow methods.

Following purge and recharge to equilibration groundwater samples were collected. All samples were obtained by aseptic techniques, secured in clean laboratory supplied glassware, labeled, and placed on iced storage for subsequent submission under chain of custody to the NYSDEC contract laboratory, TestAmerica of Buffalo, NY. Groundwater samples were analyzed via EPA Method 8260 B for VOCs, EPA Method 8270 SIM for 1,4-Dioxane, and EPA Method 537 for Perfluorinated Alkyl Substances (PFASs) including Perfluoroctanoic Acid (PFOA) and Perfluoroctanesulfonic Acid (PFOS).

All stabilized physical parameters were recorded prior to PFAS sampling. See attached Table 3 - Summary of Physical Field Parameters for details. PFAS samples were collected under both NYSDEC Sampling Guidelines and Protocols and PFC Groundwater Samples from Monitoring Wells Sample Protocol, which includes, but is not limited to the use of HDPE or Polypropylene bottles, separate coolers, HDPE tubing, nitrile gloves and non-waterproof clothing. Please see PFAs Sampling Checklist included in Attachment 1 for additional details.

As the attached Table 4 (Summary of Groundwater Analytical Results) indicates, site-specific constituents of concern, including Tetrachloroethene (PCE) and/or its daughter compounds Trichloroethene (TCE), cis-1,2-Dichloroethene (DCE) and Vinyl Chloride, were found in four monitoring wells (MW-1R, MW-2R, MW-4, and MW-6). Concentrations of these contaminants exceeded the standards established in the NYSDEC - *Division of Water Resources, Classes, and Quality Standards for Groundwater*, Chapter 10 of Title 6, Article 2, Part 703.5 in two (2) wells (MW-2R and MW-4). A copy of the laboratory analytical report for the collected samples is included in Attachment 2.

Table 5 contains a summary of laboratory analysis for emerging contaminants 1,4-Dioxane and PFASs. 1,4-Dioxane was only detected in a single sample from monitoring well MW-1R at a concentration (0.19 μ g/L) that is less than the NYSDEC internal screening value of 1 μ g/L (parts per billion).

There currently are no published groundwater standards for PFAS compounds; however, the NYSDEC does have internal screening values of 10 parts per trillion (ppt) for PFOA and PFOS each respectively. There are also screening values of 100 parts per trillion (ppt) for 19 other PFAS family compounds and a screening value of 500 parts per trillion (ppt) is used for the total of all 21 compunds tested under the 537 Modified Method. PFAS compounds were

detected in each of the seven (7) sampled wells. PFOA and/or PFOS concentrations exceeded the NYSDEC screening value in three (3) wells (MW-2R, MW-4, and MW-7), and concentrations of Perfluoropentanoic Acid (PFPeA) and 6:2-Fts exceeded screening values in four (4) wells (MW-2R, MW-3, MW-4, MW-7, and MW-10.

Total combined PFAS concentrations within monitoring well MW-7 (1,455.56 ppt) exceeded the internal screening value of 500 ppt. PFOS and PFOA combined accounted for 69 ppt and 6:2-Fts was reported at 1,300ppt.

In addition, and for comparative purposes, the EPA drinking water standard of 70 parts per trillion for combined concentrations of PFAS and PFOS can be used. The EPA has established the health advisory level at 70 parts per trillion (ppt) or nanograms per liter (ng/l) for a lifetime exposure to PFOA and PFOS. No wells contained combined concentrations of PFOS and PFOA at 70ppt, however and as noted above, the combined concentrations of these compounds at MW-7 was 69 ppt.

4.0 Conclusions/Recommendations:

PES has been conducting routine O&M at the former Dambrose Cleaners site, which includes SVE air effluent screening and groundwater sampling and analysis via EPA method 8260. Monitoring conducted of the remedial system indicates that the system continues to process contaminant mass. Data collected also indicates that concentrations of PCE in groundwater continues to fluctuate. A historical summary of groundwater sample results has been presented in Table 6. Trends in contaminant fluctuation have been graphically illiustatred in the attached Graphs 1-4. Data collected and included within this table and these graphs suggests that dissolved phase contaminants on site are degrading via natural attenuation and with the support of the SVE system. There exists, however, no mechanism to thwart the continued down gradient spread of the dissolved phase contaminants. This is evident in the increase in contaminants in MW-4. Data included in the graphs suggests PCE, TCE and cis-1/2-DCE are increasing in MW-4, which is immediately down gradient of the site. Attached Figure 3 provides additional detail regarding the location of off site wells.

Consideration should be given to supplemental remedial alternatives, such as carbon slurry injection, whereby spread of PCE and breakdown products will be reduced or elliminated, and natural attenuation can be enhanced via addition of nutrients or chemical oxidants. At a minimum and in order to continue to address the documented VOC contamination and monitor the reduction in contaminant concentrations, PES recommends further operation of the soil vapor extraction system and routine groundwater monitoring.

Additionally, PES also collected groundwater samples to be analyzed for emerging contaminants, 1,4-Dioxane and PFASs. 1,4-Dioxane was found in a single well at a concentration less than the internal screening value currently prescribed by NYSDEC. Numerous PFASs were documented in each of the seven (7) sampled site wells. Four (4) wells contained concentrations exceeding their respective internal screening values.

If you have any questions or comments regarding the above information, please contact the undersigned at (518) 885-4399.

Sincerely, PRECISION ENVIRONMENTAL SERVICES, INC.

Stephen M. Phelps, P.G. Project Manager

Johnathan Robinson

Johnathan Robinson Environmental Scientist

Enclosures Figures Tables & Graphs Attachments FIGURES

OFF SITE WELL LOCATIONS

DAMBROSE CLEANERS

PROJECT #:

LOCATION: 1517 VAN VRANKEN AVE., SCHENECTADY, NY

DATE: 2/27/2019

FIGURE: 3

SCALE: AS SHOWN

DRAWN BY: SMP

LEGEND

MW-1 MONITORING WELL

NOTES:

- AERIAL IMAGE SOURCE: GOOGLE
- ALL LOCATIONS ARE APPROXIMATE

TABLES

TABLE - 1SVE System Removal Summary

Dambrose Cleaners 1517 Van Vranken Avenue Schenectady, NY

	SVE Effluent Vapor	Air Flow
	Concentration*	AITFIOW
Date	(dqq)	(SCFM)
1/10/2011	650	96.00
1/11/2011	700	94.78
1/12/2011	1067	93.00
1/13/2011	750	94.82
1/14/2011**	1300	94.07
1/28/2011	400	94.59
3/4/2011	206	91.75
3/18/2011	121	91.33
4/1/2011	174	92.25
4/15/2011	700	93.36
5/20/2011	340	88.63
6/22/2011	810	87.89
7/27/2011	847	85.66
9/8/2012**	-	-
11/1/2011	284	92.00
12/14/2011	0	95.47
1/16/2012	500	94.91
1/30/2012	200	95.53
2/21/2012	400	99.21
3/15/2012	0	96.92
4/9/2012	400	93.81
5/24/2012	414	89.05
6/11/2013	144	88.43
8/22/2013	- 358	00.39 88.36
9/20/2013	217	88 74
10/24/2013	0	91.17
11/22/2013	131	95.16
12/30/2013	110	96.03
1/27/2014	200	95.70
3/7/2014	0	100.03
4/4/2014	0	94.14
5/12/2014 6/3/2014	200	91.71
7/7/2014	11	88.12
8/4/2014	500	89.09
9/2/2014	369	87.50
10/2/2014	636	92.38
11/3/2014	258	93.00
11/17/2014	0	95.22
1/26/2014	0	95.35
2/9/2015	263	96.98
3/3/2015	0	95.70
4/13/2015	0	94.57
5/29/2015	219	92.47
6/26/2015	0	90.86
7/22/2015	487	89.41
0/10/2015	Π/Ծ Ω	00.40 92.80
11/10/2015	23	95.94
3/9/2016	0	91.32
4/1/2016	42	89.71
5/7/2016	26	91.95
6/23/2016	165	89.38
7/22/2016	158	88.27
0/11/2016	122	90.80
3/14/2010 10/18/2016	<u> </u>	90.40
11/27/2016	2	94.76
1/11/2017	48	93.59
2/20/2017	0	94.22
3/13/2017	0	98.48
3/29/2017	0	96.18
4/13/2017	0	93.58
5/3/2017 6/6/2017	U 52	90.97 QD 21
7/21/2017	38	90.25
8/16/2017	347	89.14
9/5/2017	192	90.26
10/18/2017	407	92.39
11/20/2017	220	94.70
2/21/2018	55	91.79
4/24/2018	001 0	92.30 94 56
5/16/2018	70	90.56
6/19/2018	0	90.06
8/23/2018	150	92.36
9/17/2018	70	90.50
10/18/2018	0	94.25
12/3/2018	0	92.77
1/4/2019	U	95.10

* = As determined through field PID screening of airstream

Table 2Summary of Groundwater Gauging and Elevation DataDambrose Cleaners1517 Van Vranken AvenueSchenectady, NY

Monitoring	Top of	Depth to Water From	Watertable
Well	Casing	Top of Casing	Elevation
ID	Elevation	8/22/20)17
MW-1R	200.07	6.61	193.46
MW-2R	199.56	6.45	193.11
MW-3	202.91	6.35	196.56
MW-4	193.47	1.49	191.98
MW-5	197.78	-	-
MW-6	191.10	6.05	185.05
MW-7	195.04	3.45	191.59
MW-8	190.43	-	-
MW-9	190.99	-	-
MW-10	191.17	4.96	186.21
MW-11	200.13	-	-

All Values are expressed in feet Survey by others

Table 3 Groundwater Sampling Results Dambrose Cleaners 1517 Van Vranken Avenue Schenectady, NY

Groundwater Analytical Summary												
	Sample Designation											
Parameter MW-1R MW-2R MW-3 MW-4 MW-6 MW-7 MV												
рН	5.97	5.97	6.17	6.16	7.53	6.16	6.15					
Temp (°C)	15.44	17.75	18.93	17.26	15.72	15.97	16.43					
TDS (g/l)	0.46	0.69	0.89	0.47	1.05	0.30	0.49					
Disolved Oxygen (mg/L)	1.12	7.60	5.28	1.76	11.01	9.51	14.20					
Turbidity (NTU)	7.40	0.90	12.70	70.00	359.00	-	496.00					
ORP (mV)	-178	27	113	-100	-204	-82	-89					
Conductivity (mS/cm)	0.71	1.09	1.59	0.73	1.75	0.46	0.75					
NOTES												

NOTES:

- Parameters observed prior to sampling

- NA = No parameters taken (metal only samples)

- DMG = Well damaged, no samples or parameters taken

- Samples obtained on August 22, 2018

Table 4 Groundwater Sampling Results - Site Specific VOCs Dambrose Cleaners 1517 Van Vranken Avenue Schenectady, NY

		NYS DEC							
Parameter	MW-1R	MW-2R	DUPLICATE (MW-2R)	MW-3	MW-4	MW-6	MW-7	MW-10	Groundwater Standards
Volatile Organic Compounds (Meth	nod 8260)								
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	10
1,1,2,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	0.7
1,1,2-Trichloro-1,2,2-triflouroethane	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dibromo-3-Chloropropane	ND	ND	ND	ND	ND	ND	ND	ND	0.04
1,2-Dibromomethane	ND	ND	ND	ND	ND	ND	ND	ND	-
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	3
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	0.6
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	1
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	3
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	3
2-Hexanone	ND	ND	ND	ND	ND	ND	ND	ND	-
2-Butanone (MEK)	ND	ND	ND	ND	ND	ND	ND	ND	-
4-Methyl-2-pentanone (MIBK)	ND	ND	ND	ND	ND	ND	ND	ND	-
Acetone	ND	ND	ND	ND	ND	ND	3.7 J	7.5 J	-
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	0.7
Bromodichloromethane	ND	ND	ND	ND	ND	ND	ND	ND	-
Bromoform	ND	ND	ND	ND	ND	ND	ND	ND	-
Bromomethane	ND	ND	ND	ND	ND	ND	ND	ND	5
Carbon disulfide	ND	ND	ND	ND	ND	ND	ND	0.21 J	60
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	5
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	5
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	-
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	5
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	7
Chloromethane	ND	ND	ND	ND	ND	ND	ND	ND	-
cis-1,2-Dichloroethene	1.5	21	20	ND	15	ND	ND	ND	5
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	0.4
Cyclohexane	ND	ND	ND	ND	ND	ND	ND	ND	-
Dichlorodiflouromethane	ND	ND	ND	ND	ND	ND	ND	ND	5
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	5
Isopropylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	5
Methyl acetate	ND	ND	ND	ND	ND	ND	ND	ND	-
MTBE	ND	ND	ND	ND	ND	ND	ND	ND	10
Methylcyclohexane	ND	ND	ND	ND	ND	ND	ND	ND	-
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	ND	5
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	5
Tetrachloroethene	ND	190	180	ND	20	0.42 J	ND	ND	5
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	5
I richlorotlouromethane	ND	ND	ND	ND	ND	ND	ND	ND	5
Irichloroethene	ND	27	24	ND	5	ND	ND	ND	5
Vinyi chloride	3.3	ND	ND	ND	4	ND	ND	ND	2
m & p - Xylene	ND	ND	ND	ND	ND	ND	ND	ND	5
o-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	5
Xylenes (Total)	ND	ND	ND	ND	ND	ND	ND	ND	5

Samples collected on August 22 ,2018

All Values are Reported in ug/L (parts per billion - ppb)

ND = Not Detected

J - Result is less than the RL but greater than or equal to the MDL. Concentration is an approximate value.

Analytical Facility - Test America - Buffalo

Highlighted values equal or exceed NYSDEC groundwater standards.

Table 5 Groundwater Sampling Results - Emerging Contaminants Dambrose Cleaners 1517 Van Vranken Avenue Schenectady, NY

Compound		Site Sample Locations								Samples	NYSDEC Internal
	MW-1R	MW-2R	DUPLICATE (MW-2R)	MW-3	MW-4	MW-6	MW-7	MW-10	Field Blank	Equipment Blank	EC Standards are Finalized)
Sample Date	8-22-18	8-22-18	8-22-19	8-22-18	8-22-18	8-22-18	8-22-18	8-22-18	8-22-18	8-22-18	
Semivolatile Organic Compounds (Method 8270 SIM)											
1,4-Dioxane	190 J	ND	ND	ND	ND	ND	ND	ND	N/A	N/A	1,000
Perfluorinated Alkyl Substances (Method 537, 1,1 Modified)											
6:2-Fts	ND	ND	4 J	ND	300	9.2 J	1,300	130	1.7 J	ND	100
8:2-Fts	ND	ND	ND	ND	ND	ND	2 J	ND	ND	ND	100
N-ethyl perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	100
N-methyl perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	100
Perfluorobutanesulfonic Acid (PFBS)	2.9	8.2	7.7	18	8.2	1.2 J	33	4	ND	ND	100
Perfluorobutanoic Acid (PFBA)	6	12	10	5.4	11.0	1.2 J	11	5.2	0.50 J	0.72 J	100
Perfluorodecanesulfonic acid (PFDS)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	100
Perfluorodecanoic acid (PFDA)	0.47 J	1.9	1.6	0.30 J	0.36 J	ND	2.6	0.25 J	ND	ND	100
Perfluorododecanoic acid (PFDoA)	ND	ND	ND	ND	ND	ND	1.5 J	ND	ND	ND	100
Perfluoroheptanesulfonic Acid (PFHpS)	ND	0.56 J	0.47 J	ND	0.56 J	ND	1.1 J	ND	ND	ND	100
Perfluoroheptanoic acid (PFHpA)	1.4 J	8.5	7.8	1.8	4.7	0.59 J	6.8	3.3	ND	ND	100
Perfluorohexanesulfonic acid (PFHxS)	0.96 JB	4.7 B	4.3 B	0.80 JB	4.5 B	0.76 JB	4.6 B	4 B	0.26 JB	0.30 JB	100
Perfluorohexanoic acid (PFHxA)	2	9.6	8.2	2.6	6.3	0.95 J	9.1	3.5	ND	ND	100
Perfluorononanoic acid (PFNA)	0.75 J	2.4	2.4	0.57 J	1.2 J	ND	3.7	ND	ND	ND	100
Perfluorooctanesulfonamide (FOSA)	ND	ND	ND	ND	ND	ND	0.36 J	ND	ND	ND	100
Perfluorooctanesulfonic Acid (PFOS)	6	34	31	4.2	24	1.3 J	52	5.8	ND	ND	10
Perfluorooctanoic acid (PFOA)	4.2	17	14	ND	10	1.5 J	17	9.3	ND	ND	10
Perfluoropentanoic acid (PFPeA)	1.2 J	11	10	3.5	7.6	0.98 J	9.4	4	ND	ND	100
Perfluorotetradecanoic acid (PFTeA)	0.32 J	ND	ND	ND	ND	0.29 J	1.4 J	0.26 J	ND	ND	100
Perfluorotridecanoic (PFTriA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	100
Perfluoroundecanoic acid (PFUnA)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	100
EPA Health Advisory Level for Drinking Water (For Comparision, Combined PFOS and PFOA)	10.20	51.00	45.00	4.20	34.00	2.80	69.00	15.10	ND	ND	70.00 PPT
Total PFAS (incl. PFOA/PFOS)	26.2	109.86	101.47	37.17	378.42	17.97	1,455.56	165.61	2.46	1.02	500.00 PPT
NOTES:											

All results reported in ng/L (Parts Per Trillion, PPT)
 Analysis performed by TestAmerica Environmental Laboratories, Inc via Eurofins Lancaster Laboratory

Highlighted values equal or exceed NYSDEC's Internal "Screening Levels"
 ND = Not Detected above method detection limit

Table 6 Summary of PCE in Groundwater Overtime Dambrose Cleaners 1517 Vasn Vranken Avenue Schenectady, NY

Historical Groundwater Analytical Summary												
Parameter	Sampling Data					1	Sample Poin	t				
Farameter	Samping Date	MW-1/1R	MW-2/2R	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11
	12/15/04	0.0	640.0	0.0	10.0	0.0	5.0	0.0	0.0	0.0	0.0	0.0
	5/6/11	0.8	360.0	0.7	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	4/19/12	0.0	6.5	0.0	2.6	-	0.0	0.0	-	-	0.0	-
PCE	8/23/13	0.55	270.0	0.0	3.7	-	0.0	0.0	-	-	0.0	-
	8/18/15	0.0	210.0	0.0	6.5	-	0.0	0.0	-	-	-	-
	8/16/17	0.0	110.0	0.0	3.7	-	1.8	0.0	-	-	0.0	-
	8/22/18	0.0	190.0	0.0	20.0	-	0.42	0.0	-	-	0.0	-
	12/15/04	0.9	54.0	0.0	4.0	0.0	6.0	0.0	0.0	0.0	0.0	0.0
	5/6/11	0.0	10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TCE	4/19/12	0.0	1.4	0.0	0.69	-	0.0	0.0	-	-	0.0	-
	8/23/13	0.0	18.0	0.0	1.2	-	0.0	0.0	-	-	0.0	-
	8/18/15	0.0	14.0	0.0	4.8	-	0.0	0.0	-	-	-	-
	8/16/17	0.0	8.6	0.0	1.2	-	1.2	0.0	-	-	0.0	-
	8/22/18	0.0	27.0	0.0	5.0	-	0.00	0.0	-	-	0.0	-
	12/15/04	45.0	56.0	0.0	21.0	0.0	70.0	5.0	0.0	0.0	0.0	0.0
	5/6/11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	4/19/12	9.8	5.0	0.0	4.3	-	33.0	0.86	-	-	0.0	-
cis-1,2-DCE	8/23/13	8.6	22.0	0.0	3.9	-	27.0	0.0	-	-	0.0	-
	8/18/15	3.1	21.0	0.0	14.0	-	21.0	0.0	-	-	-	-
	8/16/17	1.8	11.0	0.0	4.2	-	49.0	0.83	-	-	0.0	-
	8/22/18	1.5	21.0	0.0	15.0	-	0.00	0.0	-	-	0.0	-
	12/15/04	110.0	0.0	0.0	9.0	0.0	0.7	5.0	0.0	0.0	0.0	0.0
	5/6/11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	4/19/12	9.4	5.2	0.0	1.4	-	0.0	0.0	-	-	0.0	-
Vinyl Chloride	8/23/13	12.00	0.0	0.0	0.0	-	0.0	0.0	-	-	0.0	-
	8/18/15	6.1	0.0	0.0	4.5	-	0.0	0.0	-	-	-	-
	8/16/17	5.5	0.0	0.0	1.6	-	0.0	0.0	-	-	0.0	-
	8/22/18	3.3	0.0	0.0	4.0	-	0.0	0.0	-	-	0.0	-

NOTES:

- All results reported in ug/L

ATTACHMENT - 1 PFAS Sampling Checklist

PFAS Sampling Checklist

Date: Weather (temp!/precipitation):

SCATIENEY PAZN

Site Name: Former DAMBROK CLEMES

Field Clothing and PPE:

.....

	19 M	No clothing or boots containing Gore-Texm	2	Coolers filled with regular ice only. No chemical (blue) ice packs in possession				
		and PVC	San	ple Containers:				
		No materials containing Tyvek®		All sample containers made of HDPE or				
		Field crew has not used fabric softener on clothing		Caps are unlined and made of HDPE or				
		Field crew has not used cosmetics,		polypropylene				
		moisturizers, hand cream, or other related	Wet	t Weather (as applicable):				
		Field crew bas not applied upputhorized		Wet weather gear made of polyurethane				
		sunscreen or insect repellant	Eau	vipment Decontamination:				
	Field	d Equipment:		"PFC-free" water on-site for				
		No Teflon [®] or LDPE containing materials on-site		decontamination of sample equipment. No other water sources to be used.				
		All sample materials made from stainless steel, HDPE, acetate, silicon, or		Alconox and Liquinox to be used as decontamination materials				
		polypropylene	Food	d Considerations:				
		No waterproof field books on-site		No food or drink on-site with exception of				
	9	No plastic clipboards, binders, or spiral hard cover notebooks on-site		bottled water and/or hydration drinks (i.e., Gatorade and Powerade) that is available for consumption only in the staging area				

If any applicable boxes cannot be checked, the Field Lead shall describe the noncompliance issues below and work with field personnel to address noncompliance issues prior to commencement of that day's work. Corrective action shall include removal of noncompliance items from the site or removal of worker offsite until in compliance.

Describe the noncompliance issues (include personnel not in compliance) and action/outcome of noncompliance:

CHECKED	ALL	MAZN	GUAR	NO I	OLYENEL	IN ALE	IVC ONUL!	
COMPLEX	2	Comple ANI	Z Not	e) AN	A RECOL	nED.	,	
Field Lead Name:		JoHwAT	HAU M	R OSZNJOW				
Field Lead Signature		Ande	In M P	Chimm	Time:	8:45		

ATTACHMENT - 2

Laboratory Analytical Report

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-140808-1 Client Project/Site: DEC Dambrose Cleaners #447030

For:

..... Links

Review your project results through

Total Access

Have a Question?

Ask-

The

www.testamericainc.com

Visit us at:

Expert

Precision Environmental Services Inc. 831 State Route 67 Ste 38 Ballston Spa, New York 12020

Attn: Stephen Phelps

Judy tone

Authorized for release by: 9/10/2018 10:59:21 AM Judy Stone, Senior Project Manager

(484)685-0868 judy.stone@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Lab Chronicle	26
Certification Summary	29
Method Summary	30
Sample Summary	31
Chain of Custody	32
Receipt Checklists	34

Client: Precision Environmental Services Inc. Project/Site: DEC Dambrose Cleaners #447030

Qualifiers

0	\sim		0	\ /	0	
	/	IVI		v	IJ	-
-	•		•		-	

GC/MS VC		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
GC/MS Se	emi VOA	
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
LCMS		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	8
В	Compound was found in the blank and sample.	
		9
Glossary	У	

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

1 2 3 4 5 6 7 8 9 10

Job ID: 480-140808-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-140808-1

Receipt

The samples were received on 8/24/2018 1:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 0.7° C and 1.0° C.

Receipt Exceptions

Buffalo did not receive vials for the VOA MS/MSD; the 8260 analysis was cancelled for these.

The container label for the following samples did not match the information listed on the Chain-of-Custody (COC): MW-3 (480-140808-1), MW-1R (480-140808-2), MW-1R (480-140808-2[MS]), MW-1R (480-140808-2[MSD]), MW-2R (480-140808-3), DUPLICATE (480-140808-4), MW-10 (480-140808-5), MW-4 (480-140808-6), EQUIPMENT BLANK (480-140808-7), MW-7 (480-140808-8), FIELD BLANK (480-140808-9) and MW-6 (480-140808-10). None of the PFC 250ml containers had sample times listed on labels (Samples# 1-10), while each sample should have its own Sample Time as listed on COC. Samples were labeled according to COC.

GC/MS VOA

Method(s) 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-2R (480-140808-3) and DUPLICATE (480-140808-4). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-431413 recovered above the upper control limit for Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analyte, therefore, the data have been reported. The following samples are impacted: MW-3 (480-140808-1), MW-1R (480-140808-2), MW-2R (480-140808-3), DUPLICATE (480-140808-4), MW-10 (480-140808-5), MW-4 (480-140808-6), MW-7 (480-140808-8) and MW-6 (480-140808-10).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D SIM ID: The following samples were diluted due to color: MW-3 (480-140808-1), MW-7 (480-140808-8) and MW-6 (480-140808-10). Elevated reporting limits (RL) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

LCMS

Method(s) 537 (modified): Results for samples MW-4 (480-140808-6) and MW-7 (480-140808-8) were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method(s) 3535: The following samples had non-settleable particulate matter which plugged the SPE extraction disk: MW-1R (480-140808-2), MW-1R (480-140808-2[MSD]), MW-10 (480-140808-5), MW-4 (480-140808-6), MW-7 (480-140808-8) and MW-6 (480-140808-10). The amount of sample remaining plus the weight of the bottle are recorded in the "Notes" field of the prep batch. The "Tare Weight" recorded is the weight of the emptied bottle.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client: Precision Environmental Services Inc. Project/Site: DEC Dambrose Cleaners #447030 TestAmerica Job ID: 480-140808-1

Lab Sample ID: 480-140808-1 Matrix: Water

Date Collected: 08/22/18 09:40 Date Received: 08/24/18 01:00

Client Sample ID: MW-3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			08/24/18 22:23	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			08/24/18 22:23	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			08/24/18 22:23	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			08/24/18 22:23	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			08/24/18 22:23	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			08/24/18 22:23	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			08/24/18 22:23	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			08/24/18 22:23	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			08/24/18 22:23	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			08/24/18 22:23	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			08/24/18 22:23	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			08/24/18 22:23	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			08/24/18 22:23	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			08/24/18 22:23	1
2-Hexanone	ND		5.0	1.2	ug/L			08/24/18 22:23	1
2-Butanone (MEK)	ND		10	1.3	ug/L			08/24/18 22:23	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			08/24/18 22:23	1
Acetone	ND		10	3.0	ug/L			08/24/18 22:23	1
Benzene	ND		1.0	0.41	ua/L			08/24/18 22:23	1
Bromodichloromethane	ND		1.0	0.39	ua/L			08/24/18 22:23	1
Bromoform	ND		1.0	0.26	ua/L			08/24/18 22:23	1
Bromomethane	ND		1.0	0.69	ua/L			08/24/18 22:23	1
Carbon disulfide	ND		1.0	0.19	ug/l			08/24/18 22:23	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			08/24/18 22:23	1
Chlorobenzene	ND		10	0.75	ug/l			08/24/18 22:23	
Dibromochloromethane	ND		1.0	0.32	ug/L			08/24/18 22:23	. 1
Chloroethane	ND		1.0	0.32	ug/L			08/24/18 22:23	1
Chloroform	ND		1.0	0.34	ug/L			08/24/18 22:23	
Chloromethane	ND		1.0	0.35	ug/L			08/24/18 22:23	1
cis-1 2-Dichloroethene	ND		1.0	0.00	ug/L			08/24/18 22:23	1
cis-1 3-Dichloropropene	ND		1.0	0.36	ug/L			08/24/18 22:23	
Cyclobexane			1.0	0.00	ug/L			08/24/18 22:23	1
Dichlorodifluoromethane	ND		1.0	0.10	ug/L			08/24/18 22:23	1
Ethylbenzene	ND		1.0	0.00	ug/L			08/24/18 22:23	
Isopronylbenzene			1.0	0.74	ug/L			08/24/18 22:23	1
Mothyl acotato			2.5	13	ug/L			08/24/18 22:23	1
Methyl tert butyl ether			1.0	0.16	ug/L			08/24/18 22:23	
Methylevelebeyene			1.0	0.10	ug/L			00/24/10 22.23	1
Mothylono Chlorido			1.0	0.10	ug/L			08/24/10 22.23	1
Sturono			1.0	0.44	ug/L			00/24/10 22.23	1
			1.0	0.73	ug/L			00/24/10 22.23	1
Teluana			1.0	0.30	ug/L			00/24/10 22:23	1
rouerie			1.0	0.51	ug/∟			00/24/18 22:23	1
	ND		1.0	0.90	ug/L			08/24/18 22:23	1
trans-1,3-Dicnioropropene	ND		1.0	0.37	ug/L			08/24/18 22:23	1
	ND		1.0	0.46	ug/L			08/24/18 22:23	1
Irichlorofluoromethane	ND		1.0	0.88	ug/L			08/24/18 22:23	1
Vinyl chloride	ND		1.0	0.90	ug/L			08/24/18 22:23	1
Xylenes, Total	ND		2.0	0.66	ug/L			08/24/18 22:23	1

TestAmerica Buffalo

Lab Sample ID: 480-140808-1 Matrix: Water

5

Client Sample ID: MW-3	
Date Collected: 08/22/18 09:40	
Date Received: 08/24/18 01:00	

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		77 - 120				08/24/18 22:23	1
Toluene-d8 (Surr)	100		80 - 120				08/24/18 22:23	1
4-Bromofluorobenzene (Surr)	100		73 - 120				08/24/18 22:23	1
Dibromofluoromethane (Surr)	96		75 - 123				08/24/18 22:23	1
Method: 8270D SIM ID - Semiv	olatile Orga	anic Comp	ounds (GC/MS	SIM /	Isotope Dil	ution)		
Analyte	Result	Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND		1.0	0.50	ug/L	08/25/18 08:02	09/01/18 07:09	5
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	25		15 - 110			08/25/18 08:02	09/01/18 07:09	5
_ Method: 537 (modified) - Eluor	inated Alky	/I Substan	C05					
Analyte	Result	Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PEBA)	5.4		1.6	0.28	ng/L	- 09/05/18 08:07	09/05/18 17:45	1
Perfluoropentanoic acid (PEPeA)	3.5		16	0.40	ng/L	09/05/18 08:07	09/05/18 17:45	1
Perfluorohexanoic acid (PEHxA)	2.6		1.6	0.47	ng/L	09/05/18 08:07	09/05/18 17:45	1
Perfluorohentanoic acid (PEHnA)	1.0		1.6	0.20	ng/L	09/05/18 08:07	09/05/18 17:45	
			1.0	0.20	ng/L	00/05/18 08:07	09/05/18 17:45	1
	0.57		1.0	0.03	ng/L	00/05/18 08:07	09/05/18 17:45	1
Perfluorononanoic acid (PFNA)	0.57		1.0	0.22	ng/L	09/05/18 08:07	09/05/18 17:45	
Perfluorodecanoic acid (PFDA)	0.30	J	1.0	0.25	ng/L	09/05/16 06.07	09/05/18 17.45	1
Periluoroundecanoic acid (PFOIA)	ND		1.0	0.90	ng/L	09/05/16 06.07	09/05/18 17.45	1
	ND		1.0	0.45	ng/L	09/05/18 08:07	09/05/18 17:45	
	ND		1.6	1.1	ng/L	09/05/18 08:07	09/05/18 17:45	1
Periluorotetradecanoic acid (PFTeA)	ND		1.6	0.24	ng/L	09/05/18 08:07	09/05/18 17:45	1
Perfluorobutanesulfonic acid (PFBS)	18		1.6	0.16	ng/L	09/05/18 08:07	09/05/18 17:45	1
Perfluorohexanesulfonic acid (PEHxS)	0.80	JB	1.6	0.14	ng/L	09/05/18 08:07	09/05/18 17:45	1
Perfluoroheptanesulfonic Acid	ND		1.6	0.15	ng/L	09/05/18 08:07	09/05/18 17:45	1
Perfluorooctanesulfonic acid	4.2		1.6	0.44	na/L	09/05/18 08:07	09/05/18 17:45	1
(PFOS)								
Perfluorodecanesulfonic acid (PFDS)	ND		1.6	0.26	ng/L	09/05/18 08:07	09/05/18 17:45	1
Perfluorooctane Sulfonamide (FOSA)	ND		1.6	0.28	ng/L	09/05/18 08:07	09/05/18 17:45	1
N-methyl perfluorooctane	ND		16	2.5	ng/L	09/05/18 08:07	09/05/18 17:45	1
sulfonamidoacetic acid (NMeFOSAA)								
N-ethyl perfluorooctane	ND		16	1.5	ng/L	09/05/18 08:07	09/05/18 17:45	1
6:2 FTS	ND		16	1.6	ng/L	09/05/18 08:07	09/05/18 17:45	1
8:2 FTS	ND		16	1.6	ng/L	09/05/18 08:07	09/05/18 17:45	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C4 PFBA	81		25 - 150			09/05/18 08:07	09/05/18 17:45	1
13C5 PFPeA	88		25 - 150			09/05/18 08:07	09/05/18 17:45	1
13C2 PFHxA	91		25 - 150			09/05/18 08:07	09/05/18 17:45	1
13C4-PFHpA	94		25 - 150			09/05/18 08:07	09/05/18 17:45	1
13C4 PFOA	95		25 - 150			09/05/18 08:07	09/05/18 17:45	1
13C5 PFNA	92		25 - 150			09/05/18 08:07	09/05/18 17:45	1
13C2 PFDA	98		25 - 150			09/05/18 08:07	09/05/18 17:45	
13C2 PFUnA	98		25 - 150			09/05/18 08:07	09/05/18 17:45	1
13C2 PFDoA	84		25 - 150			09/05/18 08:07	09/05/18 17:45	1
13C2-PFTeDA	81		25 - 150			09/05/18 08:07	09/05/18 17:45	1
	51							•

Client: Precision Environmental Services Inc. Project/Site: DEC Dambrose Cleaners #447030

Lab Sample ID: 480-140808-1 Matrix: Water

Lab Sample ID: 480-140808-2

Matrix: Water

5

Date Collected: 08/22/18 09:40 Date Received: 08/24/18 01:00

Client Sample ID: MW-3

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)								
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac		
13C3-PFBS	91		25 - 150	09/05/18 08:07	09/05/18 17:45	1		
18O2 PFHxS	101		25 - 150	09/05/18 08:07	09/05/18 17:45	1		
13C4 PFOS	93		25 - 150	09/05/18 08:07	09/05/18 17:45	1		
13C8 FOSA	89		25 - 150	09/05/18 08:07	09/05/18 17:45	1		
d3-NMeFOSAA	90		25 - 150	09/05/18 08:07	09/05/18 17:45	1		
d5-NEtFOSAA	90		25 - 150	09/05/18 08:07	09/05/18 17:45	1		
M2-6:2FTS	106		25 - 150	09/05/18 08:07	09/05/18 17:45	1		
M2-8:2FTS	84		25 - 150	09/05/18 08:07	09/05/18 17:45	1		

Client Sample ID: MW-1R

Date Collected: 08/22/18 10:35

Date	Received:	08/24/18	01:00

Method: 8260C - Volatile Organ Analyte	nic Compounds by GC/ Result Qualifier	MS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			08/24/18 22:46	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			08/24/18 22:46	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			08/24/18 22:46	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			08/24/18 22:46	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			08/24/18 22:46	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			08/24/18 22:46	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			08/24/18 22:46	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			08/24/18 22:46	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			08/24/18 22:46	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			08/24/18 22:46	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			08/24/18 22:46	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			08/24/18 22:46	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			08/24/18 22:46	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			08/24/18 22:46	1
2-Hexanone	ND	5.0	1.2	ug/L			08/24/18 22:46	1
2-Butanone (MEK)	ND	10	1.3	ug/L			08/24/18 22:46	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			08/24/18 22:46	1
Acetone	ND	10	3.0	ug/L			08/24/18 22:46	1
Benzene	ND	1.0	0.41	ug/L			08/24/18 22:46	1
Bromodichloromethane	ND	1.0	0.39	ug/L			08/24/18 22:46	1
Bromoform	ND	1.0	0.26	ug/L			08/24/18 22:46	1
Bromomethane	ND	1.0	0.69	ug/L			08/24/18 22:46	1
Carbon disulfide	ND	1.0	0.19	ug/L			08/24/18 22:46	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			08/24/18 22:46	1
Chlorobenzene	ND	1.0	0.75	ug/L			08/24/18 22:46	1
Dibromochloromethane	ND	1.0	0.32	ug/L			08/24/18 22:46	1
Chloroethane	ND	1.0	0.32	ug/L			08/24/18 22:46	1
Chloroform	ND	1.0	0.34	ug/L			08/24/18 22:46	1
Chloromethane	ND	1.0	0.35	ug/L			08/24/18 22:46	1
cis-1,2-Dichloroethene	1.5	1.0	0.81	ug/L			08/24/18 22:46	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			08/24/18 22:46	1
Cyclohexane	ND	1.0	0.18	ug/L			08/24/18 22:46	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			08/24/18 22:46	1
Ethylbenzene	ND	1.0	0.74	ug/L			08/24/18 22:46	1
Isopropylbenzene	ND	1.0	0.79	ug/L			08/24/18 22:46	1

Client: Precision Environmental Services Inc. Project/Site: DEC Dambrose Cleaners #447030

Lab Sample ID: 480-140808-2 Matrix: Water

Date Collected: 08/22/18 10:35 Date Received: 08/24/18 01:00

Client Sample ID: MW-1R

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl acetate	ND		2.5	1.3	ug/L			08/24/18 22:46	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			08/24/18 22:46	1
Methylcyclohexane	ND		1.0	0.16	ug/L			08/24/18 22:46	1
Methylene Chloride	ND		1.0	0.44	ug/L			08/24/18 22:46	1
Styrene	ND		1.0	0.73	ug/L			08/24/18 22:46	1
Tetrachloroethene	ND		1.0	0.36	ug/L			08/24/18 22:46	1
Toluene	ND		1.0	0.51	ug/L			08/24/18 22:46	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			08/24/18 22:46	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			08/24/18 22:46	1
Trichloroethene	ND		1.0	0.46	ug/L			08/24/18 22:46	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			08/24/18 22:46	1
Vinyl chloride	3.3		1.0	0.90	ug/L			08/24/18 22:46	1
Xylenes, Total	ND		2.0	0.66	ug/L			08/24/18 22:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		77 - 120			-		08/24/18 22:46	1

Toluene-d8 (Surr) 1	01	80 - 120	08/24/18 22:46	1
4-Bromofluorobenzene (Surr)	99	73 - 120	08/24/18 22:46	1
Dibromofluoromethane (Surr) 1	00	75 - 123	08/24/18 22:46	1

Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.19	J	0.20	0.10	ug/L		08/25/18 08:02	09/01/18 06:23	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Method: 537 (modified) - Fluorinated Alkyl Substances

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	6.0		1.6	0.28	ng/L		09/05/18 08:07	09/05/18 17:52	1
Perfluoropentanoic acid (PFPeA)	1.2	J	1.6	0.39	ng/L		09/05/18 08:07	09/05/18 17:52	1
Perfluorohexanoic acid (PFHxA)	2.0		1.6	0.47	ng/L		09/05/18 08:07	09/05/18 17:52	1
Perfluoroheptanoic acid (PFHpA)	1.4	J	1.6	0.20	ng/L		09/05/18 08:07	09/05/18 17:52	1
Perfluorooctanoic acid (PFOA)	4.2		1.6	0.68	ng/L		09/05/18 08:07	09/05/18 17:52	1
Perfluorononanoic acid (PFNA)	0.75	J	1.6	0.22	ng/L		09/05/18 08:07	09/05/18 17:52	1
Perfluorodecanoic acid (PFDA)	0.47	J	1.6	0.25	ng/L		09/05/18 08:07	09/05/18 17:52	1
Perfluoroundecanoic acid (PFUnA)	ND		1.6	0.89	ng/L		09/05/18 08:07	09/05/18 17:52	1
Perfluorododecanoic acid (PFDoA)	ND		1.6	0.44	ng/L		09/05/18 08:07	09/05/18 17:52	1
Perfluorotridecanoic Acid (PFTriA)	ND		1.6	1.0	ng/L		09/05/18 08:07	09/05/18 17:52	1
Perfluorotetradecanoic acid (PFTeA)	0.32	J	1.6	0.23	ng/L		09/05/18 08:07	09/05/18 17:52	1
Perfluorobutanesulfonic acid (PFBS)	2.9		1.6	0.16	ng/L		09/05/18 08:07	09/05/18 17:52	1
Perfluorohexanesulfonic acid (PFHxS)	0.96	JB	1.6	0.14	ng/L		09/05/18 08:07	09/05/18 17:52	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.6	0.15	ng/L		09/05/18 08:07	09/05/18 17:52	1
Perfluorooctanesulfonic acid (PFOS)	6.0		1.6	0.43	ng/L		09/05/18 08:07	09/05/18 17:52	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.6	0.26	ng/L		09/05/18 08:07	09/05/18 17:52	1
Perfluorooctane Sulfonamide (FOSA)	ND		1.6	0.28	ng/L		09/05/18 08:07	09/05/18 17:52	1

TestAmerica Buffalo

Client: Precision Environmental Services Inc. Project/Site: DEC Dambrose Cleaners #447030

Lab Sample ID: 480-140808-2 Matrix: Water

Lab Sample ID: 480-140808-3

Matrix: Water

Date Collected: 08/22/18 10:35 Date Received: 08/24/18 01:00

Client Sample ID: MW-1R

N-methyl perfluorooctane ND 16 2.5 ng/L 09/05/18 08:07 09/05/18 17:52 1 sulfonamidoacetic acid (NMeFOSAA) ND 16 1.5 ng/L 09/05/18 08:07 09/05/18 17:52 1 sulfonamidoacetic acid (NEtFOSAA) ND 16 1.5 ng/L 09/05/18 08:07 09/05/18 17:52 1 sulfonamidoacetic acid (NEtFOSAA) ND 16 1.6 ng/L 09/05/18 08:07 09/05/18 17:52 1 sulfonamidoacetic acid (NEtFOSAA) ND 16 1.6 ng/L 09/05/18 08:07 09/05/18 17:52 1 sulfonamidoacetic acid (NEtFOSAA) %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C4 PFEA 63 25 .150 09/05/18 08:07 09/05/18 17:52 1 13C4 PFDA 86 25 .150 09/05/18 08:07 09/05/18 17:52 1 13C4 PFDA 86 25 .150 09/05/18 08:07 09/05/18 17:52 1 13C2 PFDA 81 25 .150 09/05/18 08:07<	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sulfonamidoacetic acid (NMeFOSAA) ND 16 1.5 ng/L 09/05/18 08:07 09/05/18 17:52 1 6:2 FTS ND 16 1.6 ng/L 09/05/18 08:07 09/05/18 07:52 1 8:2 FTS ND 16 1.6 ng/L 09/05/18 08:07 09/05/18 09/05/18 17:52 1 Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C5 PFPeA 63 25 · 150 09/05/18 09/05/18 09/05/18 17:52 1 13C2 PFhxA 81 25 · 150 09/05/18 09/05/18 09/05/18 17:52 1 13C4 PFOA 86 25 · 150 09/05/18 08:07 09/05/18 17:52 1 13C2 PFhxA 82 25 · 150 09/05/18 08:07 09/05/18 17:52 1 13C4 PFOA 86 25 · 150 09/05/18 08:07 09/05/18 17:52 1 <td>N-methyl perfluorooctane</td> <td>ND</td> <td></td> <td>16</td> <td>2.5</td> <td>ng/L</td> <td></td> <td>09/05/18 08:07</td> <td>09/05/18 17:52</td> <td>1</td>	N-methyl perfluorooctane	ND		16	2.5	ng/L		09/05/18 08:07	09/05/18 17:52	1
N-ethyl perfluorooctane ND 16 1.5 ng/L 09/05/18 08:07 09/05/18 17:52 1 sulfonamidoacetic acid (NEIFOSAA) 6:2 FTS ND 16 1.6 ng/L 09/05/18 08:07 09/05/18 17:52 1 8:2 FTS ND 16 1.6 ng/L 09/05/18 08:07 09/05/18 17:52 1 Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C5 PFPeA 76 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C4 PFIAA 81 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C4 PFOA 86 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C4 PFOA 86 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C2 PFDA 86 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C4 PFOA 81 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C2 PFDA 81 25 - 150	sulfonamidoacetic acid (NMeFOSAA)									
sulfonamidoacetic acid (NEIFOSAA) ND 16 1.6 ng/L 09/05/18 08:07 09/05/18 17:52 1 8:2 FTS ND 16 1.6 ng/L 09/05/18 08:07 09/05/18 17:52 1 sotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C4 PFBA 63 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C2 PFHxA 81 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C4 PFDA 86 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C4 PFDA 86 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C4 PFDA 86 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C4 PFDA 82 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C2 PFDA 84 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C2 PFDA 81 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C	N-ethyl perfluorooctane	ND		16	1.5	ng/L		09/05/18 08:07	09/05/18 17:52	1
6:2 FTS ND 16 1.6 ng/L 09/05/18 08:07 09/05/18 17:52 1 8:2 FTS ND 16 1.6 ng/L 09/05/18 08:07 09/05/18 17:52 1 Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C4 PFBA 63 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C2 PFHxA 81 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C4 PFDA 86 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C4 PFDA 86 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C4 PFOA 80 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C2 PFDA 84 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C2 PFDA 84 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C2 PFDA 81 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C2 PFDA 8	sulfonamidoacetic acid (NEtFOSAA)									
8:2 FTS ND 16 1.6 ng/L 09/05/18 08:07 09/05/18 17:52 1 Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C4 PFBA 63 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C5 PFPeA 76 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C4 PFBA 81 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C4 PFDA 86 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C4 PFDA 86 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C5 PFNA 82 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C2 PFDA 84 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C2 PFDA 81 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C2 PFDA 81 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C2 PFDA 81 <td< td=""><td>6:2 F I S</td><td>ND</td><td></td><td>16</td><td>1.6</td><td>ng/L</td><td></td><td>09/05/18 08:07</td><td>09/05/18 17:52</td><td>1</td></td<>	6:2 F I S	ND		16	1.6	ng/L		09/05/18 08:07	09/05/18 17:52	1
Isotope Dilution%Recovery QualifierLimitsPreparedAnalyzedDil Fac13C4 PFBA6325 - 15009/05/18 08:0709/05/18 17:52113C5 PFPeA7625 - 15009/05/18 08:0709/05/18 17:52113C2 PFHxA8125 - 15009/05/18 08:0709/05/18 17:52113C4 PFOA8625 - 15009/05/18 08:0709/05/18 17:52113C4 PFOA8025 - 15009/05/18 08:0709/05/18 17:52113C4 PFOA8025 - 15009/05/18 08:0709/05/18 17:52113C5 PFNA8225 - 15009/05/18 08:0709/05/18 17:52113C2 PFDA8425 - 15009/05/18 08:0709/05/18 17:52113C2 PFUA8125 - 15009/05/18 08:0709/05/18 17:52113C2 PFDA8125 - 15009/05/18 08:0709/05/18 17:52113C2 PFDA8125 - 15009/05/18 08:0709/05/18 17:52113C2 PFLA8125 - 15009/05/18 08:0709/05/18 17:52113C2 PFLA8125 - 15009/05/18 08:0709/05/18 17:52113C3 PFES8125 - 15009/05/18 08:0709/05/18 17:52113C4 PFOS8325 - 15009/05/18 08:0709/05/18 17:52113C4 PFOS8325 - 15009/05/18 08:0709/05/18 17:52113C4 PFOS8325 - 15009/05/18 08:0709/05/18 17:52113C4 PFOSA	8:2 FTS	ND		16	1.6	ng/L		09/05/18 08:07	09/05/18 17:52	1
T3C4 PFBA 63 25-150 09/05/18 08:07 09/05/18 17:52 1 T3C5 PFPeA 76 25-150 09/05/18 08:07 09/05/18 17:52 1 T3C5 PFPeA 76 25-150 09/05/18 08:07 09/05/18 17:52 1 T3C4 PFHxA 81 25-150 09/05/18 08:07 09/05/18 17:52 1 T3C4 PFDA 86 25-150 09/05/18 08:07 09/05/18 17:52 1 T3C4 PFOA 80 25-150 09/05/18 08:07 09/05/18 17:52 1 T3C5 PFNA 82 25-150 09/05/18 08:07 09/05/18 17:52 1 T3C2 PFUA 81 25-150 09/05/18 08:07 09/05/18 17:52 1 T3C2 PFUA 81 25-150 09/05/18 08:07 09/05/18 17:52 1 T3C2 PFUA 81 25-150 09/05/18 08:07 09/05/18 17:52 1 T3C2 PFLDA 81 25-150 09/05/18 08:07 09/05/18 17:52 1 T3C2 PFLTEDA 77 25-150 09/05/18 08:07 09/05/18 1	Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C5 PFPeA7625.15009/05/18 08:0709/05/18 17:52113C2 PFHxA8125.15009/05/18 08:0709/05/18 17:52113C4-PFHpA8625.15009/05/18 08:0709/05/18 17:52113C4 PFOA8025.15009/05/18 08:0709/05/18 17:52113C5 PFNA8225.15009/05/18 08:0709/05/18 17:52113C2 PFDA8425.15009/05/18 08:0709/05/18 17:52113C2 PFDA8425.15009/05/18 08:0709/05/18 17:52113C2 PFUnA8125.15009/05/18 08:0709/05/18 17:52113C2 PFDAA8525.15009/05/18 08:0709/05/18 17:52113C2 PFDAA8125.15009/05/18 08:0709/05/18 17:52113C2 PFDAA8525.15009/05/18 08:0709/05/18 17:52113C2 PFTeDA7725.15009/05/18 08:0709/05/18 17:52113C2 PFTeDA7725.15009/05/18 08:0709/05/18 17:52113C2 PFTeDA7725.15009/05/18 08:0709/05/18 17:52113C4 PFOS8325.15009/05/18 08	13C4 PFBA	63		25 - 150				09/05/18 08:07	09/05/18 17:52	1
13C2 PFHxA8125.15009/05/18 08:0709/05/18 17:52113C4-PFHpA8625.15009/05/18 08:0709/05/18 17:52113C4 PFOA8025.15009/05/18 08:0709/05/18 17:52113C5 PFNA8225.15009/05/18 08:0709/05/18 17:52113C2 PFDA8425.15009/05/18 08:0709/05/18 17:52113C2 PFDA8425.15009/05/18 08:0709/05/18 17:52113C2 PFDA8125.15009/05/18 08:0709/05/18 17:52113C2 PFDA8525.15009/05/18 08:0709/05/18 17:52113C2 PFDA8525.15009/05/18 08:0709/05/18 17:52113C2 PFDA8525.15009/05/18 08:0709/05/18 17:52113C2 PFTeDA7725.15009/05/18 08:0709/05/18 17:52113C2 PFTeDA7725.15009/05/18 08:0709/05/18 17:52113C4 PFOS8325.15009/05/18 08:0709/05/18 17:52113C4 PFOS8325.15009/05/18 08:0709/05/18 17:52113C4 PFOSA7425.15009/05/18 08:0709/05/18 17:52113C5 FOSA7425.15009/05/18 08:0709/05/18 17:52113C5 FOSA7425.15009/05/18 08:0709/05/18 17:52113C5 FOSA7425.15009/05/18 08:0709/05/18 17:52113C5 FOSA7425.15009/05/18 08:07 <td>13C5 PFPeA</td> <td>76</td> <td></td> <td>25 - 150</td> <td></td> <td></td> <td></td> <td>09/05/18 08:07</td> <td>09/05/18 17:52</td> <td>1</td>	13C5 PFPeA	76		25 - 150				09/05/18 08:07	09/05/18 17:52	1
13C4-PFHpA 86 25.150 09/05/18 08:07 09/05/18 17:52 1 13C4 PFOA 80 25.150 09/05/18 08:07 09/05/18 17:52 1 13C5 PFNA 82 25.150 09/05/18 08:07 09/05/18 17:52 1 13C2 PFDA 84 25.150 09/05/18 08:07 09/05/18 17:52 1 13C2 PFUnA 81 25.150 09/05/18 08:07 09/05/18 17:52 1 13C2 PFDoA 85 25.150 09/05/18 08:07 09/05/18 17:52 1 13C2 PFDoA 85 25.150 09/05/18 08:07 09/05/18 17:52 1 13C2 PFTeDA 77 25.150 09/05/18 08:07 09/05/18 17:52 1 13C3-PFBS 81 25.150 09/05/18 08:07 09/05/18 17:52 1 13C4 PFOS 86 25.150 09/05/18 08:07 09/05/18 17:52 1 13C4 PFOS 83 25.150 09/05/18 08:07 09/05/18 17:52 1 13C4 PFOS 83 25.150 09/05/18 08:07 09/05/18 17:52 1 13C4 PFOS 83 25.150 09/05/18 08:	13C2 PFHxA	81		25 - 150				09/05/18 08:07	09/05/18 17:52	1
13C4 PFOA8025.15009/05/18 08:0709/05/18 17:52113C5 PFNA8225.15009/05/18 08:0709/05/18 17:52113C2 PFDA8425.15009/05/18 08:0709/05/18 17:52113C2 PFUnA8125.15009/05/18 08:0709/05/18 17:52113C2 PFDoA8525.15009/05/18 08:0709/05/18 17:52113C2 PFDoA8525.15009/05/18 08:0709/05/18 17:52113C2-PFTeDA7725.15009/05/18 08:0709/05/18 17:52113C3-PFBS8125.15009/05/18 08:0709/05/18 17:52113C4 PFOS8325.15009/05/18 08:0709/05/18 17:52113C8 FOSA7425.15009/05/18 08:0709/05/18 17:521d5-NEtFOSAA8625.15009/05/18 08:0709/05/18 17:521M2-6:2FTS9925.15009/05/18 08:0709/05/18 17:521M2-8:2FTS8125.15009/05/18 08:0709/05/18 17:521	13C4-PFHpA	86		25 - 150				09/05/18 08:07	09/05/18 17:52	1
13C5 PFNA8225.15009/05/18 08:0709/05/18 17:52113C2 PFDA8425.15009/05/18 08:0709/05/18 17:52113C2 PFUnA8125.15009/05/18 08:0709/05/18 17:52113C2 PFDoA8525.15009/05/18 08:0709/05/18 17:52113C2-PFTeDA7725.15009/05/18 08:0709/05/18 17:52113C3-PFBS8125.15009/05/18 08:0709/05/18 17:52118O2 PFHxS8625.15009/05/18 08:0709/05/18 17:52113C4 PFOS8325.15009/05/18 08:0709/05/18 17:52113C8 FOSA7425.15009/05/18 08:0709/05/18 17:521d5-NEtFOSAA8625.15009/05/18 08:0709/05/18 17:521M2-6:2FTS9925.15009/05/18 08:0709/05/18 17:521M2-8:2FTS8125.15009/05/18 08:0709/05/18 17:521	13C4 PFOA	80		25 - 150				09/05/18 08:07	09/05/18 17:52	1
13C2 PFDA8425.15009/05/18 08:0709/05/18 17:52113C2 PFUnA8125.15009/05/18 08:0709/05/18 17:52113C2 PFDoA8525.15009/05/18 08:0709/05/18 17:52113C2-PFTeDA7725.15009/05/18 08:0709/05/18 17:52113C3-PFBS8125.15009/05/18 08:0709/05/18 17:52118O2 PFHxS8625.15009/05/18 08:0709/05/18 17:52113C4 PFOS8325.15009/05/18 08:0709/05/18 17:52113C4 PFOS8325.15009/05/18 08:0709/05/18 17:52113C8 FOSA7425.15009/05/18 08:0709/05/18 17:521d3-NMeFOSAA7725.15009/05/18 08:0709/05/18 17:521d5-NEtFOSAA8625.15009/05/18 08:0709/05/18 17:521M2-6:2FTS9925.15009/05/18 08:0709/05/18 17:521M2-8:2FTS8125.15009/05/18 08:0709/05/18 17:521	13C5 PFNA	82		25 - 150				09/05/18 08:07	09/05/18 17:52	1
13C2 PFUnA8125.15009/05/18 08:0709/05/18 17:52113C2 PFDoA8525.15009/05/18 08:0709/05/18 17:52113C2-PFTeDA7725.15009/05/18 08:0709/05/18 17:52113C3-PFBS8125.15009/05/18 08:0709/05/18 17:52118O2 PFHxS8625.15009/05/18 08:0709/05/18 17:52113C4 PFOS8325.15009/05/18 08:0709/05/18 17:52113C8 FOSA7425.15009/05/18 08:0709/05/18 17:521d3-NMeFOSAA7725.15009/05/18 08:0709/05/18 17:521d5-NEtFOSAA8625.15009/05/18 08:0709/05/18 17:521M2-6:2FTS9925.15009/05/18 08:0709/05/18 17:521M2-8:2FTS8125.15009/05/18 08:0709/05/18 17:521	13C2 PFDA	84		25 - 150				09/05/18 08:07	09/05/18 17:52	1
13C2 PFDoA 85 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C2-PFTeDA 77 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C3-PFBS 81 25 - 150 09/05/18 08:07 09/05/18 17:52 1 18O2 PFHxS 86 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C4 PFOS 83 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C8 FOSA 74 25 - 150 09/05/18 08:07 09/05/18 17:52 1 d3-NMeFOSAA 77 25 - 150 09/05/18 08:07 09/05/18 17:52 1 d5-NEtFOSAA 86 25 - 150 09/05/18 08:07 09/05/18 17:52 1 M2-6:2FTS 99 25 - 150 09/05/18 08:07 09/05/18 17:52 1 M2-8:2FTS 81 25 - 150 09/05/18 08:07 09/05/18 17:52 1	13C2 PFUnA	81		25 - 150				09/05/18 08:07	09/05/18 17:52	1
13C2-PFTeDA 77 25.150 09/05/18 08:07 09/05/18 17:52 1 13C3-PFBS 81 25.150 09/05/18 08:07 09/05/18 17:52 1 18O2 PFHxS 86 25.150 09/05/18 08:07 09/05/18 17:52 1 13C4 PFOS 83 25.150 09/05/18 08:07 09/05/18 17:52 1 13C8 FOSA 74 25.150 09/05/18 08:07 09/05/18 17:52 1 d3-NMeFOSAA 77 25.150 09/05/18 08:07 09/05/18 17:52 1 d5-NEtFOSAA 86 25.150 09/05/18 08:07 09/05/18 17:52 1 M2-6:2FTS 99 25.150 09/05/18 08:07 09/05/18 17:52 1 M2-8:2FTS 81 25.150 09/05/18 08:07 09/05/18 17:52 1	13C2 PFDoA	85		25 - 150				09/05/18 08:07	09/05/18 17:52	1
13C3-PFBS 81 25 - 150 09/05/18 08:07 09/05/18 17:52 1 18O2 PFHxS 86 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C4 PFOS 83 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C8 FOSA 74 25 - 150 09/05/18 08:07 09/05/18 17:52 1 d3-NMeFOSAA 77 25 - 150 09/05/18 08:07 09/05/18 17:52 1 d5-NEtFOSAA 86 25 - 150 09/05/18 08:07 09/05/18 17:52 1 M2-6:2FTS 99 25 - 150 09/05/18 08:07 09/05/18 17:52 1 M2-8:2FTS 81 25 - 150 09/05/18 08:07 09/05/18 17:52 1	13C2-PFTeDA	77		25 - 150				09/05/18 08:07	09/05/18 17:52	1
1802 PFHxS 86 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C4 PFOS 83 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C8 FOSA 74 25 - 150 09/05/18 08:07 09/05/18 17:52 1 d3-NMeFOSAA 77 25 - 150 09/05/18 08:07 09/05/18 17:52 1 d5-NEtFOSAA 86 25 - 150 09/05/18 08:07 09/05/18 17:52 1 M2-6:2FTS 99 25 - 150 09/05/18 08:07 09/05/18 17:52 1 M2-8:2FTS 81 25 - 150 09/05/18 08:07 09/05/18 17:52 1	13C3-PFBS	81		25 - 150				09/05/18 08:07	09/05/18 17:52	1
13C4 PFOS 83 25 - 150 09/05/18 08:07 09/05/18 17:52 1 13C8 FOSA 74 25 - 150 09/05/18 08:07 09/05/18 17:52 1 d3-NMeFOSAA 77 25 - 150 09/05/18 08:07 09/05/18 17:52 1 d5-NEtFOSAA 86 25 - 150 09/05/18 08:07 09/05/18 17:52 1 M2-6:2FTS 99 25 - 150 09/05/18 08:07 09/05/18 17:52 1 M2-8:2FTS 81 25 - 150 09/05/18 08:07 09/05/18 17:52 1	18O2 PFHxS	86		25 - 150				09/05/18 08:07	09/05/18 17:52	1
13C8 FOSA 74 25 - 150 09/05/18 08:07 09/05/18 17:52 1 d3-NMeFOSAA 77 25 - 150 09/05/18 08:07 09/05/18 17:52 1 d5-NEtFOSAA 86 25 - 150 09/05/18 08:07 09/05/18 17:52 1 M2-6:2FTS 99 25 - 150 09/05/18 08:07 09/05/18 17:52 1 M2-8:2FTS 81 25 - 150 09/05/18 08:07 09/05/18 17:52 1	13C4 PFOS	83		25 - 150				09/05/18 08:07	09/05/18 17:52	
d3-NMeFOSAA7725 - 15009/05/18 08:0709/05/18 17:521d5-NEtFOSAA8625 - 15009/05/18 08:0709/05/18 17:521M2-6:2FTS9925 - 15009/05/18 08:0709/05/18 17:521M2-8:2FTS8125 - 15009/05/18 08:0709/05/18 17:521	13C8 FOSA	74		25 - 150				09/05/18 08:07	09/05/18 17:52	1
d5-NEtFOSAA 86 25 - 150 09/05/18 08:07 09/05/18 17:52 1 M2-6:2FTS 99 25 - 150 09/05/18 08:07 09/05/18 17:52 1 M2-8:2FTS 81 25 - 150 09/05/18 08:07 09/05/18 17:52 1	d3-NMeFOSAA	77		25 - 150				09/05/18 08:07	09/05/18 17:52	1
M2-6:2FTS 99 25 - 150 09/05/18 08:07 09/05/18 17:52 1 M2-8:2FTS 81 25 - 150 09/05/18 08:07 09/05/18 17:52 1	d5-NEtFOSAA	86		25 - 150				09/05/18 08:07	09/05/18 17:52	
M2-8:2FTS 81 25-150 09/05/18 08:07 09/05/18 17:52 1	M2-6:2FTS	99		25 - 150				09/05/18 08:07	09/05/18 17:52	1
	M2-8:2FTS	81		25 - 150				09/05/18 08:07	09/05/18 17:52	1

Client Sample ID: MW-2R Date Collected: 08/22/18 11:10

Date Received: 08/24/18 01:00

Method: 8260C - Volatile Organ	nic Compound	ds by GC/MS						
Analyte	Result Qu	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	2.0	1.6	ug/L			08/24/18 23:10	2
1,1,2,2-Tetrachloroethane	ND	2.0	0.42	ug/L			08/24/18 23:10	2
1,1,2-Trichloroethane	ND	2.0	0.46	ug/L			08/24/18 23:10	2
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.0	0.62	ug/L			08/24/18 23:10	2
1,1-Dichloroethane	ND	2.0	0.76	ug/L			08/24/18 23:10	2
1,1-Dichloroethene	ND	2.0	0.58	ug/L			08/24/18 23:10	2
1,2,4-Trichlorobenzene	ND	2.0	0.82	ug/L			08/24/18 23:10	2
1,2-Dibromo-3-Chloropropane	ND	2.0	0.78	ug/L			08/24/18 23:10	2
1,2-Dibromoethane	ND	2.0	1.5	ug/L			08/24/18 23:10	2
1,2-Dichlorobenzene	ND	2.0	1.6	ug/L			08/24/18 23:10	2
1,2-Dichloroethane	ND	2.0	0.42	ug/L			08/24/18 23:10	2
1,2-Dichloropropane	ND	2.0	1.4	ug/L			08/24/18 23:10	2
1,3-Dichlorobenzene	ND	2.0	1.6	ug/L			08/24/18 23:10	2
1,4-Dichlorobenzene	ND	2.0	1.7	ug/L			08/24/18 23:10	2
2-Hexanone	ND	10	2.5	ug/L			08/24/18 23:10	2
2-Butanone (MEK)	ND	20	2.6	ug/L			08/24/18 23:10	2
4-Methyl-2-pentanone (MIBK)	ND	10	4.2	ug/L			08/24/18 23:10	2
Acetone	ND	20	6.0	ug/L			08/24/18 23:10	2

TestAmerica Buffalo

Client: Precision Environmental Services Inc. Project/Site: DEC Dambrose Cleaners #447030 TestAmerica Job ID: 480-140808-1

Lab Sample ID: 480-140808-3 Matrix: Water

Date Collected: 08/22/18 11:10 Date Received: 08/24/18 01:00

Dibromofluoromethane (Surr)

Client Sample ID: MW-2R

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS (Contin	ued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		2.0	0.82	ug/L			08/24/18 23:10	2
Bromodichloromethane	ND		2.0	0.78	ug/L			08/24/18 23:10	2
Bromoform	ND		2.0	0.52	ug/L			08/24/18 23:10	2
Bromomethane	ND		2.0	1.4	ug/L			08/24/18 23:10	2
Carbon disulfide	ND		2.0	0.38	ug/L			08/24/18 23:10	2
Carbon tetrachloride	ND		2.0	0.54	ug/L			08/24/18 23:10	2
Chlorobenzene	ND		2.0	1.5	ug/L			08/24/18 23:10	2
Dibromochloromethane	ND		2.0	0.64	ug/L			08/24/18 23:10	2
Chloroethane	ND		2.0	0.64	ug/L			08/24/18 23:10	2
Chloroform	ND		2.0	0.68	ug/L			08/24/18 23:10	2
Chloromethane	ND		2.0	0.70	ug/L			08/24/18 23:10	2
cis-1,2-Dichloroethene	21		2.0	1.6	ug/L			08/24/18 23:10	2
cis-1,3-Dichloropropene	ND		2.0	0.72	ug/L			08/24/18 23:10	2
Cyclohexane	ND		2.0	0.36	ug/L			08/24/18 23:10	2
Dichlorodifluoromethane	ND		2.0	1.4	ug/L			08/24/18 23:10	2
Ethylbenzene	ND		2.0	1.5	ug/L			08/24/18 23:10	2
Isopropylbenzene	ND		2.0	1.6	ug/L			08/24/18 23:10	2
Methyl acetate	ND		5.0	2.6	ug/L			08/24/18 23:10	2
Methyl tert-butyl ether	ND		2.0	0.32	ug/L			08/24/18 23:10	2
Methylcyclohexane	ND		2.0	0.32	ug/L			08/24/18 23:10	2
Methylene Chloride	ND		2.0	0.88	ug/L			08/24/18 23:10	2
Styrene	ND		2.0	1.5	ug/L			08/24/18 23:10	2
Tetrachloroethene	190		2.0	0.72	ug/L			08/24/18 23:10	2
Toluene	ND		2.0	1.0	ug/L			08/24/18 23:10	2
trans-1,2-Dichloroethene	ND		2.0	1.8	ug/L			08/24/18 23:10	2
trans-1,3-Dichloropropene	ND		2.0	0.74	ug/L			08/24/18 23:10	2
Trichloroethene	27		2.0	0.92	ug/L			08/24/18 23:10	2
Trichlorofluoromethane	ND		2.0	1.8	ug/L			08/24/18 23:10	2
Vinyl chloride	ND		2.0	1.8	ug/L			08/24/18 23:10	2
Xylenes, Total	ND		4.0	1.3	ug/L			08/24/18 23:10	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		77 - 120					08/24/18 23:10	2
Toluene-d8 (Surr)	99		80 - 120					08/24/18 23:10	2
4-Bromofluorobenzene (Surr)	97		73 - 120					08/24/18 23:10	2

Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

98

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND		0.20	0.10	ug/L		08/25/18 08:02	09/01/18 07:32	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	29		15 - 110				08/25/18 08:02	09/01/18 07:32	1

75 - 123

Method: 537 (modified) - Fluorinated Alkyl Substances										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Perfluorobutanoic acid (PFBA)	12		1.6	0.28	ng/L		09/05/18 08:07	09/05/18 18:15	1	
Perfluoropentanoic acid (PFPeA)	11		1.6	0.39	ng/L		09/05/18 08:07	09/05/18 18:15	1	
Perfluorohexanoic acid (PFHxA)	9.6		1.6	0.46	ng/L		09/05/18 08:07	09/05/18 18:15	1	
Perfluoroheptanoic acid (PFHpA)	8.5		1.6	0.20	ng/L		09/05/18 08:07	09/05/18 18:15	1	
Perfluorooctanoic acid (PFOA)	17		1.6	0.67	ng/L		09/05/18 08:07	09/05/18 18:15	1	

TestAmerica Buffalo

08/24/18 23:10

Client: Precision Environmental Services Inc. Project/Site: DEC Dambrose Cleaners #447030 TestAmerica Job ID: 480-140808-1

Lab Sample ID: 480-140808-3 er

Date Collected: 08/22/18 11:10 Date Received: 08/24/18 01:00

Client Sample ID: MW-2R

Method: 537 (modified) - Fluo	rinated Alky	/I Substan	ces (Continu	ed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorononanoic acid (PFNA)	2.4		1.6	0.21	ng/L		09/05/18 08:07	09/05/18 18:15	1
Perfluorodecanoic acid (PFDA)	1.9		1.6	0.24	ng/L		09/05/18 08:07	09/05/18 18:15	1
Perfluoroundecanoic acid (PFUnA)	ND		1.6	0.87	ng/L		09/05/18 08:07	09/05/18 18:15	1
Perfluorododecanoic acid (PFDoA)	ND		1.6	0.43	ng/L		09/05/18 08:07	09/05/18 18:15	1
Perfluorotridecanoic Acid (PFTriA)	ND		1.6	1.0	ng/L		09/05/18 08:07	09/05/18 18:15	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.6	0.23	ng/L		09/05/18 08:07	09/05/18 18:15	1
Perfluorobutanesulfonic acid (PFBS)	8.2		1.6	0.16	ng/L		09/05/18 08:07	09/05/18 18:15	1
Perfluorohexanesulfonic acid (PFHxS)	4.7	В	1.6	0.13	ng/L		09/05/18 08:07	09/05/18 18:15	1
Perfluoroheptanesulfonic Acid	0.56	J	1.6	0.15	ng/L		09/05/18 08:07	09/05/18 18:15	1
Perfluorooctanesulfonic acid (PFOS)	34		1.6	0.43	ng/L		09/05/18 08:07	09/05/18 18:15	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.6	0.25	ng/L		09/05/18 08:07	09/05/18 18:15	1
Perfluorooctane Sulfonamide (FOSA)	ND		1.6	0.28	ng/L		09/05/18 08:07	09/05/18 18:15	1
N-methyl perfluorooctane	ND		16	2.4	ng/L		09/05/18 08:07	09/05/18 18:15	1
N-ethyl perfluorooctane	ND		16	1.5	ng/L		09/05/18 08:07	09/05/18 18:15	1
6:2 FTS	ND		16	1.6	na/L		09/05/18 08:07	09/05/18 18:15	1
8:2 FTS	ND		16	1.6	na/L		09/05/18 08:07	09/05/18 18:15	1
Isotope Dilution	%Recovery	Qualifier	Limits		0		Prepared	Analyzed	Dil Fac
13C4 PFBA	70		25 - 150				09/05/18 08:07	09/05/18 18:15	1
13C5 PFPeA	83		25 - 150				09/05/18 08:07	09/05/18 18:15	1
13C2 PFHxA	85		25 - 150				09/05/18 08:07	09/05/18 18:15	1
13C4-PFHpA	85		25 - 150				09/05/18 08:07	09/05/18 18:15	1
13C4 PFOA	86		25 - 150				09/05/18 08:07	09/05/18 18:15	1
13C5 PFNA	88		25 - 150				09/05/18 08:07	09/05/18 18:15	1
13C2 PFDA	86		25 - 150				09/05/18 08:07	09/05/18 18:15	1
13C2 PFUnA	88		25 - 150				09/05/18 08:07	09/05/18 18:15	1
13C2 PFDoA	81		25 - 150				09/05/18 08:07	09/05/18 18:15	1
13C2-PFTeDA	83		25 - 150				09/05/18 08:07	09/05/18 18:15	1
13C3-PFBS	82		25 - 150				09/05/18 08:07	09/05/18 18:15	1
18O2 PFHxS	85		25 - 150				09/05/18 08:07	09/05/18 18:15	1
13C4 PFOS	82		25 - 150				09/05/18 08:07	09/05/18 18:15	1
13C8 FOSA	81		25 - 150				09/05/18 08:07	09/05/18 18:15	1
d3-NMeFOSAA	82		25 - 150				09/05/18 08:07	09/05/18 18:15	1
d5-NEtFOSAA	90		25 - 150				09/05/18 08:07	09/05/18 18:15	1
M2-6:2FTS	107		25 - 150				09/05/18 08:07	09/05/18 18:15	1
M2-8:2FTS	87		25 - 150				09/05/18 08:07	09/05/18 18:15	1

Client Sample ID: DUPLICATE Date Collected: 08/22/18 11:20 Date Received: 08/24/18 01:00

Method: 8260C - Volatile Organic Compounds by GC/MS Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 1,1,1-Trichloroethane ND 2.0 08/24/18 23:33 2 1.6 ug/L ND 2 1,1,2,2-Tetrachloroethane 2.0 0.42 ug/L 08/24/18 23:33 1,1,2-Trichloroethane ND 2.0 0.46 ug/L 08/24/18 23:33 2

Page 11 of 35

TestAmerica Buffalo

Matrix: Water

Lab Sample ID: 480-140808-4

9/10/2018

Client: Precision Environmental Services Inc. Project/Site: DEC Dambrose Cleaners #447030

Client Sample ID: DUPLICATE Date Collected: 08/22/18 11:20 Date Received: 08/24/18 01:00

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

Lab Sample ID: 480-140808-4 Matrix: Water

5

Method: 8260C - Volatile Org	anic Compo	unds by G	C/MS (Conti	nued) איסא	Unit	п	Proparad	Analyzod	Dil Fac
1 1 2-Trichloro-1 2 2-trifluoroethane		Quaimer	20	0.62		<u> </u>	Fiepaieu		2011 Fac
1 1-Dichloroethane	ND		2.0	0.02	ug/L			08/24/18 23:33	2
1.1 Dichloroothono			2.0	0.70	ug/L			09/24/10 23:33	2
			2.0	0.00	ug/L			00/24/10 23.33	· · · · · · · · · · · · · · · · · · ·
1,2,4-Thchlorobenzene			2.0	0.02	ug/L			00/24/10 23.33	2
1,2-Dibromo-3-Chloroproparie	ND		2.0	0.70	ug/L			00/24/10 23.33	2
1,2-Dibromoetnane	ND		2.0	1.5	ug/L			08/24/18 23:33	
1,2-Dichlorobenzene	ND		2.0	1.6	ug/L			08/24/18 23:33	2
1,2-Dichloroethane	ND		2.0	0.42	ug/L			08/24/18 23:33	2
1,2-Dichloropropane	ND		2.0	1.4	ug/L			08/24/18 23:33	2
1,3-Dichlorobenzene	ND		2.0	1.6	ug/L			08/24/18 23:33	2
1,4-Dichlorobenzene	ND		2.0	1.7	ug/L			08/24/18 23:33	2
2-Hexanone	ND		10	2.5	ug/L			08/24/18 23:33	2
2-Butanone (MEK)	ND		20	2.6	ug/L			08/24/18 23:33	2
4-Methyl-2-pentanone (MIBK)	ND		10	4.2	ug/L			08/24/18 23:33	2
Acetone	ND		20	6.0	ug/L			08/24/18 23:33	2
Benzene	ND		2.0	0.82	ug/L			08/24/18 23:33	2
Bromodichloromethane	ND		2.0	0.78	ug/L			08/24/18 23:33	2
Bromoform	ND		2.0	0.52	ug/L			08/24/18 23:33	2
Bromomethane	ND		2.0	1.4	ug/L			08/24/18 23:33	2
Carbon disulfide	ND		2.0	0.38	ug/L			08/24/18 23:33	2
Carbon tetrachloride	ND		2.0	0.54	ug/L			08/24/18 23:33	2
Chlorobenzene	ND		2.0	1.5	ug/L			08/24/18 23:33	2
Dibromochloromethane	ND		2.0	0.64	ug/L			08/24/18 23:33	2
Chloroethane	ND		2.0	0.64	ug/L			08/24/18 23:33	2
Chloroform	ND		2.0	0.68	ug/L			08/24/18 23:33	2
Chloromethane	ND		2.0	0.70	ug/L			08/24/18 23:33	2
cis-1,2-Dichloroethene	20		2.0	1.6	ug/L			08/24/18 23:33	2
cis-1,3-Dichloropropene	ND		2.0	0.72	ug/L			08/24/18 23:33	2
Cyclohexane	ND		2.0	0.36	ug/L			08/24/18 23:33	2
Dichlorodifluoromethane	ND		2.0	1.4	ug/L			08/24/18 23:33	2
Ethylbenzene	ND		2.0	1.5	ug/L			08/24/18 23:33	2
Isopropylbenzene	ND		2.0	1.6	ug/L			08/24/18 23:33	2
Methyl acetate	ND		5.0	2.6	ug/L			08/24/18 23:33	2
Methyl tert-butyl ether	ND		2.0	0.32	ug/L			08/24/18 23:33	2
Methylcyclohexane	ND		2.0	0.32	ua/L			08/24/18 23:33	2
Methylene Chloride	ND		2.0	0.88	ua/L			08/24/18 23:33	2
Styrene	ND		2.0	1.5	ua/L			08/24/18 23:33	2
Tetrachloroethene	180		2.0	0.72	ua/l			08/24/18 23:33	2
Toluene			2.0	10	ua/l			08/24/18 23:33	2
trans-1 2-Dichloroethene	ND		2.0	1.0	ug/l			08/24/18 23:33	2
trans-1.3-Dichloropropene			2.0	0.74				08/24/18 23:33	2
Trichloroethene	24		2.0	0.74	ug/L			08/24/18 23:33	2
Trichlorofluoromethane	24 ND		2.0	1.02	ug/L			08/24/18 23.33	· · · · · · · · · · · · · · · · · · ·
Vinvl chloride	חא		2.0	1.0	ug/L			08/24/18 23.33	2
			2.0	1.0	ug/L			00/27/10 20.00	2
Ayiches, i olaí	IND		4.0	1.3	uy/L			0012411023.33	2
Surrogate	%Recovery	Qualifier	Limits			-	Prepared	Analyzed	Dil Fac
1,2-DICHIOIOEINANE-04 (SUIT)	105		11-120					UO/24/10 23:33	2

08/24/18 23:33

08/24/18 23:33

80 - 120

73 - 120

102

101

2

Client: Precision Environmental Services Inc. Project/Site: DEC Dambrose Cleaners #447030

Lab Sample ID: 480-140808-4 Matrix: Water

5

Date Collected: 08/22/18 11:20 Date Received: 08/24/18 01:00

Client Sample ID: DUPLICATE

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	103		75 - 123					08/24/18 23:33	2
Mathadi 2270D SIM ID Sami	veletile Orm	onio Comu	oundo (CC/I		lectore	D:1.4	a m)		
Analyte	Result	Qualifier	RL	MDL	Unit	Diluti	On) Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND		0.20	0.10	ug/L		08/25/18 08:02	09/01/18 07:56	1
Isotope Dilution	%Recoverv	Qualifier	Limits				Prepared	Analvzed	Dil Fac
1,4-Dioxane-d8	28		15 - 110				08/25/18 08:02	09/01/18 07:56	1
Method: 537 (modified) - Fluo	rinated Alky Result	/I SUDStan	Ces RI	МП	Unit	п	Prepared	Analyzod	Dil Fac
Borfluorobutanoic acid (BEBA)	10	Quaimer	<u>16</u>	0.28			09/05/18 08·07	<u>109/05/18 18:22</u>	1
Perfluoropentanoic acid (PEPeA)	10		1.0	0.20	ng/L		09/05/18 08:07	09/05/18 18:22	י 1
Perfluorobevanoic acid (PEHvA)	8.2		1.6	0.40	ng/L		09/05/18 08:07	09/05/18 18:22	1
Porfluorohontanoic acid (PEHnA)	7.9		1.6	0.47	ng/L		09/05/18 08:07	09/05/18 18:22	י 1
Perhuoroneptanoic acid (PEOA)	1.0		1.0	0.20	ng/L		09/05/18 08:07	09/05/18 18:22	1
Perfluorooctanoic acid (PFOA)	14		1.0	0.09	ng/L		09/05/18 08:07	00/05/10 10.22	1
Perfluorononanoic acid (PFNA)	2.4		1.0	0.22	ng/L		09/05/18 08.07	09/05/16 16.22	ا ہ
Perfluorodecanoic acid (PFDA)	1.6		1.0	0.25	ng/∟		09/05/18 08.07	09/05/16 16.22	1
Periluoroundecanoic acid (PFOIA)	ND		1.0	0.69	ng/∟		09/05/18 08.07	09/05/16 16.22	1
	ND		1.6	0.45	ng/L		09/05/18 08:07	09/05/18 18:22	1 د · · · · · ·
Perfluorotridecanoic Acid (PFTriA)	ND		1.6	1.1	ng/L		09/05/18 08:07	09/05/18 18:22	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.6	0.23	ng/L		09/05/18 08:07	09/05/18 18:22	1
Perfluorobutanesulfonic acid (PFBS)	7.7		1.6	0.16	ng/L		09/05/18 08:07	09/05/18 18:22	1
Perfluorohexanesulfonic acid (PFHxS)	4.3	В	1.6	0.14	ng/L		09/05/18 08:07	09/05/18 18:22	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.47	J	1.6	0.15	ng/L		09/05/18 08:07	09/05/18 18:22	1
Perfluorooctanesulfonic acid (PFOS)	31		1.6	0.44	ng/L		09/05/18 08:07	09/05/18 18:22	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.6	0.26	ng/L		09/05/18 08:07	09/05/18 18:22	1
Perfluorooctane Sulfonamide (FOSA)	ND		1.6	0.28	ng/L		09/05/18 08:07	09/05/18 18:22	1
N-methyl perfluorooctane	ND		16	2.5	ng/L		09/05/18 08:07	09/05/18 18:22	1
sulfonamidoacetic acid (NMeFOSAA)									
N-ethyl perfluorooctane	ND		16	1.5	ng/L		09/05/18 08:07	09/05/18 18:22	1
6:2 FTS	4.0	л	16	16	na/l		09/05/18 08:07	09/05/18 18:22	1
8:2 FTS	ND		16	1.6	ng/L		09/05/18 08:07	09/05/18 18:22	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	79		25 - 150				09/05/18 08:07	09/05/18 18:22	1
13C5 PFPeA	88		25 - 150				09/05/18 08:07	09/05/18 18:22	1
13C2 PFHxA	95		25 - 150				09/05/18 08:07	09/05/18 18:22	1
13C4-PFHpA	92		25 - 150				09/05/18 08:07	09/05/18 18:22	1
13C4 PFOA	94		25 - 150				09/05/18 08:07	09/05/18 18:22	1
13C5 PFNA	91		25 - 150				09/05/18 08:07	09/05/18 18:22	1
13C2 PFDA	97		25 - 150				09/05/18 08:07	09/05/18 18:22	1
13C2 PFUnA	95		25 - 150				09/05/18 08:07	09/05/18 18:22	1
13C2 PFDoA	85		25 - 150				09/05/18 08:07	09/05/18 18:22	1
13C2-PFTeDA	87		25 - 150				09/05/18 08:07	09/05/18 18:22	
13C3-PFBS	91		25 - 150				09/05/18 08:07	09/05/18 18:22	1
1802 PEHxS	95		25 - 150				09/05/18 08.07	09/05/18 18:22	1

TestAmerica Buffalo

Lab Sample ID: 480-140808-4 Matrix: Water

Date Collected: 08/22/18 11:20 Date Received: 08/24/18 01:00

Client Sample ID: DUPLICATE

Method: 537 (modified)	Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)								
Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac				
13C4 PFOS	89	25 - 150	09/05/18 08:07	09/05/18 18:22	1				
13C8 FOSA	90	25 - 150	09/05/18 08:07	09/05/18 18:22	1				
d3-NMeFOSAA	90	25 - 150	09/05/18 08:07	09/05/18 18:22	1				
d5-NEtFOSAA	94	25 - 150	09/05/18 08:07	09/05/18 18:22	1				
M2-6:2FTS	104	25 - 150	09/05/18 08:07	09/05/18 18:22	1				
M2-8:2FTS	85	25 - 150	09/05/18 08:07	09/05/18 18:22	1				

Client Sample ID: MW-10 Date Collected: 08/22/18 12:00 Date Received: 08/24/18 01:00

Lab Sample ID: 480-140808-5

Matrix: Water

5

Method: 8260C - Volatile Orga Analyte	anic Compounds by GC/ Result Qualifier	MS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			08/24/18 23:56	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			08/24/18 23:56	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			08/24/18 23:56	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			08/24/18 23:56	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			08/24/18 23:56	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			08/24/18 23:56	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			08/24/18 23:56	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			08/24/18 23:56	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			08/24/18 23:56	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			08/24/18 23:56	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			08/24/18 23:56	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			08/24/18 23:56	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			08/24/18 23:56	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			08/24/18 23:56	1
2-Hexanone	ND	5.0	1.2	ug/L			08/24/18 23:56	1
2-Butanone (MEK)	ND	10	1.3	ug/L			08/24/18 23:56	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			08/24/18 23:56	1
Acetone	7.5 J	10	3.0	ug/L			08/24/18 23:56	1
Benzene	ND	1.0	0.41	ug/L			08/24/18 23:56	1
Bromodichloromethane	ND	1.0	0.39	ug/L			08/24/18 23:56	1
Bromoform	ND	1.0	0.26	ug/L			08/24/18 23:56	1
Bromomethane	ND	1.0	0.69	ug/L			08/24/18 23:56	1
Carbon disulfide	0.21 J	1.0	0.19	ug/L			08/24/18 23:56	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			08/24/18 23:56	1
Chlorobenzene	ND	1.0	0.75	ug/L			08/24/18 23:56	1
Dibromochloromethane	ND	1.0	0.32	ug/L			08/24/18 23:56	1
Chloroethane	ND	1.0	0.32	ug/L			08/24/18 23:56	1
Chloroform	ND	1.0	0.34	ug/L			08/24/18 23:56	1
Chloromethane	ND	1.0	0.35	ug/L			08/24/18 23:56	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			08/24/18 23:56	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			08/24/18 23:56	1
Cyclohexane	ND	1.0	0.18	ug/L			08/24/18 23:56	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			08/24/18 23:56	1
Ethylbenzene	ND	1.0	0.74	ug/L			08/24/18 23:56	1
Isopropylbenzene	ND	1.0	0.79	ug/L			08/24/18 23:56	1
Methyl acetate	ND	2.5	1.3	ug/L			08/24/18 23:56	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			08/24/18 23:56	1

Client: Precision Environmental Services Inc. Project/Site: DEC Dambrose Cleaners #447030

Lab Sample ID: 480-140808-5 Matrix: Water

5

Client Sample ID: MW-10 Date Collected: 08/22/18 12:00 Date Received: 08/24/18 01:00

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS (Contin	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methylcyclohexane	ND		1.0	0.16	ug/L			08/24/18 23:56	1
Methylene Chloride	ND		1.0	0.44	ug/L			08/24/18 23:56	1
Styrene	ND		1.0	0.73	ug/L			08/24/18 23:56	1
Tetrachloroethene	ND		1.0	0.36	ug/L			08/24/18 23:56	1
Toluene	ND		1.0	0.51	ug/L			08/24/18 23:56	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			08/24/18 23:56	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			08/24/18 23:56	1
Trichloroethene	ND		1.0	0.46	ug/L			08/24/18 23:56	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			08/24/18 23:56	1
Vinyl chloride	ND		1.0	0.90	ug/L			08/24/18 23:56	1
Xylenes, Total	ND		2.0	0.66	ug/L			08/24/18 23:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		77 - 120					08/24/18 23:56	1
Toluene-d8 (Surr)	101		80 - 120					08/24/18 23:56	1
4-Bromofluorobenzene (Surr)	100		73 - 120					08/24/18 23:56	1
Dibromofluoromethane (Surr)	100		75 - 123					08/24/18 23:56	1

Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Analyte	Result	Qualifier	RL	MDL	Unit	 Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND		0.20	0.10	ug/L	 08/25/18 08:02	09/01/18 08:19	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	28		15_110			08/25/18 08:02	09/01/18 08:19	1

Method: 537 (modified) - Fluorinated AlkvI Substances

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	5.2		1.6	0.28	ng/L		09/05/18 08:07	09/05/18 18:30	1
Perfluoropentanoic acid (PFPeA)	4.0		1.6	0.39	ng/L		09/05/18 08:07	09/05/18 18:30	1
Perfluorohexanoic acid (PFHxA)	3.5		1.6	0.46	ng/L		09/05/18 08:07	09/05/18 18:30	1
Perfluoroheptanoic acid (PFHpA)	3.3		1.6	0.20	ng/L		09/05/18 08:07	09/05/18 18:30	1
Perfluorooctanoic acid (PFOA)	9.3		1.6	0.68	ng/L		09/05/18 08:07	09/05/18 18:30	1
Perfluorononanoic acid (PFNA)	ND		1.6	0.21	ng/L		09/05/18 08:07	09/05/18 18:30	1
Perfluorodecanoic acid (PFDA)	0.25	J	1.6	0.25	ng/L		09/05/18 08:07	09/05/18 18:30	1
Perfluoroundecanoic acid (PFUnA)	ND		1.6	0.87	ng/L		09/05/18 08:07	09/05/18 18:30	1
Perfluorododecanoic acid (PFDoA)	ND		1.6	0.44	ng/L		09/05/18 08:07	09/05/18 18:30	1
Perfluorotridecanoic Acid (PFTriA)	ND		1.6	1.0	ng/L		09/05/18 08:07	09/05/18 18:30	1
Perfluorotetradecanoic acid (PFTeA)	0.26	J	1.6	0.23	ng/L		09/05/18 08:07	09/05/18 18:30	1
Perfluorobutanesulfonic acid (PFBS)	4.0		1.6	0.16	ng/L		09/05/18 08:07	09/05/18 18:30	1
Perfluorohexanesulfonic acid (PFHxS)	4.0	В	1.6	0.14	ng/L		09/05/18 08:07	09/05/18 18:30	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.6	0.15	ng/L		09/05/18 08:07	09/05/18 18:30	1
Perfluorooctanesulfonic acid (PFOS)	5.8		1.6	0.43	ng/L		09/05/18 08:07	09/05/18 18:30	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.6	0.25	ng/L		09/05/18 08:07	09/05/18 18:30	1
Perfluorooctane Sulfonamide (FOSA)	ND		1.6	0.28	ng/L		09/05/18 08:07	09/05/18 18:30	1
N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	ND		16	2.5	ng/L		09/05/18 08:07	09/05/18 18:30	1
N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	ND		16	1.5	ng/L		09/05/18 08:07	09/05/18 18:30	1

Client Sample ID: MW-10

Date Collected: 08/22/18 12:00

Date Received: 08/24/18 01:00

Lab Sample ID: 480-140808-5 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
6:2 FTS	130		16	1.6	ng/L		09/05/18 08:07	09/05/18 18:30	1
8:2 FTS	ND		16	1.6	ng/L		09/05/18 08:07	09/05/18 18:30	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	58		25 - 150				09/05/18 08:07	09/05/18 18:30	1
13C5 PFPeA	67		25 - 150				09/05/18 08:07	09/05/18 18:30	1
13C2 PFHxA	71		25 - 150				09/05/18 08:07	09/05/18 18:30	1
13C4-PFHpA	71		25 - 150				09/05/18 08:07	09/05/18 18:30	1
13C4 PFOA	73		25 - 150				09/05/18 08:07	09/05/18 18:30	1
13C5 PFNA	69		25 - 150				09/05/18 08:07	09/05/18 18:30	1
13C2 PFDA	71		25 - 150				09/05/18 08:07	09/05/18 18:30	1
13C2 PFUnA	65		25 - 150				09/05/18 08:07	09/05/18 18:30	1
13C2 PFDoA	59		25 - 150				09/05/18 08:07	09/05/18 18:30	1
13C2-PFTeDA	56		25 - 150				09/05/18 08:07	09/05/18 18:30	1
13C3-PFBS	70		25 - 150				09/05/18 08:07	09/05/18 18:30	1
18O2 PFHxS	71		25 - 150				09/05/18 08:07	09/05/18 18:30	1
13C4 PFOS	70		25 - 150				09/05/18 08:07	09/05/18 18:30	1
13C8 FOSA	65		25 - 150				09/05/18 08:07	09/05/18 18:30	1
d3-NMeFOSAA	68		25 - 150				09/05/18 08:07	09/05/18 18:30	1
d5-NEtFOSAA	70		25 - 150				09/05/18 08:07	09/05/18 18:30	1
M2-6:2FTS	77		25 - 150				09/05/18 08:07	09/05/18 18:30	1
M2-8:2FTS	62		25 - 150				09/05/18 08:07	09/05/18 18:30	1

Client Sample ID: MW-4 Date Collected: 08/22/18 13:15 Date Received: 08/24/18 01:00

Lab Sample ID: 480-140808-6

Matrix: Water

5

Method: 8260C - Volatile Organic Compounds by GC/MS										
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			08/25/18 00:19	1		
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			08/25/18 00:19	1		
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			08/25/18 00:19	1		
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			08/25/18 00:19	1		
1,1-Dichloroethane	ND	1.0	0.38	ug/L			08/25/18 00:19	1		
1,1-Dichloroethene	ND	1.0	0.29	ug/L			08/25/18 00:19	1		
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			08/25/18 00:19	1		
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			08/25/18 00:19	1		
1,2-Dibromoethane	ND	1.0	0.73	ug/L			08/25/18 00:19	1		
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			08/25/18 00:19	1		
1,2-Dichloroethane	ND	1.0	0.21	ug/L			08/25/18 00:19	1		
1,2-Dichloropropane	ND	1.0	0.72	ug/L			08/25/18 00:19	1		
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			08/25/18 00:19	1		
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			08/25/18 00:19	1		
2-Hexanone	ND	5.0	1.2	ug/L			08/25/18 00:19	1		
2-Butanone (MEK)	ND	10	1.3	ug/L			08/25/18 00:19	1		
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			08/25/18 00:19	1		
Acetone	ND	10	3.0	ug/L			08/25/18 00:19	1		
Benzene	ND	1.0	0.41	ug/L			08/25/18 00:19	1		
Bromodichloromethane	ND	1.0	0.39	ug/L			08/25/18 00:19	1		
Bromoform	ND	1.0	0.26	ug/L			08/25/18 00:19	1		

Page 16 of 35

Client: Precision Environmental Services Inc. Project/Site: DEC Dambrose Cleaners #447030 TestAmerica Job ID: 480-140808-1

Lab Sample ID: 480-140808-6 Matrix: Water

5

Date Collected: 08/22/18 13:15 Date Received: 08/24/18 01:00

Client Sample ID: MW-4

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromomethane	ND		1.0	0.69	ug/L			08/25/18 00:19	1
Carbon disulfide	ND		1.0	0.19	ug/L			08/25/18 00:19	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			08/25/18 00:19	1
Chlorobenzene	ND		1.0	0.75	ug/L			08/25/18 00:19	1
Dibromochloromethane	ND		1.0	0.32	ug/L			08/25/18 00:19	1
Chloroethane	ND		1.0	0.32	ug/L			08/25/18 00:19	1
Chloroform	ND		1.0	0.34	ug/L			08/25/18 00:19	1
Chloromethane	ND		1.0	0.35	ug/L			08/25/18 00:19	1
cis-1,2-Dichloroethene	15		1.0	0.81	ug/L			08/25/18 00:19	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			08/25/18 00:19	1
Cyclohexane	ND		1.0	0.18	ug/L			08/25/18 00:19	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			08/25/18 00:19	1
Ethylbenzene	ND		1.0	0.74	ug/L			08/25/18 00:19	1
Isopropylbenzene	ND		1.0	0.79	ug/L			08/25/18 00:19	1
Methyl acetate	ND		2.5	1.3	ug/L			08/25/18 00:19	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			08/25/18 00:19	1
Methylcyclohexane	ND		1.0	0.16	ug/L			08/25/18 00:19	1
Methylene Chloride	ND		1.0	0.44	ug/L			08/25/18 00:19	1
Styrene	ND		1.0	0.73	ug/L			08/25/18 00:19	1
Tetrachloroethene	20		1.0	0.36	ug/L			08/25/18 00:19	1
Toluene	ND		1.0	0.51	ug/L			08/25/18 00:19	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			08/25/18 00:19	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			08/25/18 00:19	1
Trichloroethene	5.0		1.0	0.46	ug/L			08/25/18 00:19	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			08/25/18 00:19	1
Vinyl chloride	4.0		1.0	0.90	ug/L			08/25/18 00:19	1
Xylenes, Total	ND		2.0	0.66	ug/L			08/25/18 00:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		77 - 120			-		08/25/18 00:19	1
Toluene-d8 (Surr)	101		80 - 120					08/25/18 00:19	1

Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

99

98

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND		0.20	0.10	ug/L		08/25/18 08:02	09/01/18 08:42	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	20		15 - 110				08/25/18 08:02	09/01/18 08:42	1
_ Method: 537 (modified) - Fluo	rinated Alky	/I Substan	ces						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	11		1.6	0.28	ng/L		09/05/18 08:07	09/05/18 18:45	1
Perfluoropentanoic acid (PFPeA)	7.6		1.6	0.39	ng/L		09/05/18 08:07	09/05/18 18:45	1
Perfluorohexanoic acid (PFHxA)	6.3		1.6	0.46	ng/L		09/05/18 08:07	09/05/18 18:45	1
Perfluoroheptanoic acid (PFHpA)	4.7		1.6	0.20	ng/L		09/05/18 08:07	09/05/18 18:45	1
Perfluorooctanoic acid (PFOA)	10		1.6	0.68	ng/L		09/05/18 08:07	09/05/18 18:45	1
Perfluorononanoic acid (PFNA)	1.2	J	1.6	0.22	ng/L		09/05/18 08:07	09/05/18 18:45	1
Perfluorodecanoic acid (PFDA)	0.36	J	1.6	0.25	ng/L		09/05/18 08:07	09/05/18 18:45	1
Perfluoroundecanoic acid (PFUnA)	ND		1.6	0.88	ng/L		09/05/18 08:07	09/05/18 18:45	1

73 - 120

75 - 123

TestAmerica Buffalo

1

1

08/25/18 00:19

08/25/18 00:19

Client: Precision Environmental Services Inc. Project/Site: DEC Dambrose Cleaners #447030

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: 480-140808-6 Matrix: Water

Date Collected: 08/22/18 13:15 Date Received: 08/24/18 01:00

Client Sample ID: MW-4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorododecanoic acid (PFDoA)	ND		1.6	0.44	ng/L		09/05/18 08:07	09/05/18 18:45	1
Perfluorotridecanoic Acid (PFTriA)	ND		1.6	1.0	ng/L		09/05/18 08:07	09/05/18 18:45	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.6	0.23	ng/L		09/05/18 08:07	09/05/18 18:45	1
Perfluorobutanesulfonic acid (PFBS)	8.2		1.6	0.16	ng/L		09/05/18 08:07	09/05/18 18:45	1
Perfluorohexanesulfonic acid (PFHxS)	4.5	В	1.6	0.14	ng/L		09/05/18 08:07	09/05/18 18:45	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.56	J	1.6	0.15	ng/L		09/05/18 08:07	09/05/18 18:45	1
Perfluorooctanesulfonic acid (PFOS)	24		1.6	0.43	ng/L		09/05/18 08:07	09/05/18 18:45	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.6	0.26	ng/L		09/05/18 08:07	09/05/18 18:45	1
Perfluorooctane Sulfonamide (FOSA)	ND		1.6	0.28	ng/L		09/05/18 08:07	09/05/18 18:45	1
N-methyl perfluorooctane	ND		16	2.5	ng/L		09/05/18 08:07	09/05/18 18:45	1
sulfonamidoacetic acid (NMeFOSAA)					<u>.</u>				
N-ethyl perfluorooctane	ND		16	1.5	ng/L		09/05/18 08:07	09/05/18 18:45	1
sulfonamidoacetic acid (NEtFOSAA) 8:2 FTS	ND		16	1.6	ng/L		09/05/18 08:07	09/05/18 18:45	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	59		25 - 150				09/05/18 08:07	09/05/18 18:45	1
13C5 PFPeA	72		25 - 150				09/05/18 08:07	09/05/18 18:45	1
13C2 PFHxA	79		25 - 150				09/05/18 08:07	09/05/18 18:45	1
13C4-PFHpA	80		25 - 150				09/05/18 08:07	09/05/18 18:45	1
13C4 PFOA	78		25 - 150				09/05/18 08:07	09/05/18 18:45	1
13C5 PFNA	80		25 - 150				09/05/18 08:07	09/05/18 18:45	1
13C2 PFDA	79		25 - 150				09/05/18 08:07	09/05/18 18:45	1
13C2 PFUnA	72		25 - 150				09/05/18 08:07	09/05/18 18:45	1
13C2 PFDoA	68		25 - 150				09/05/18 08:07	09/05/18 18:45	1
13C2-PFTeDA	72		25 - 150				09/05/18 08:07	09/05/18 18:45	1
13C3-PFBS	72		25 - 150				09/05/18 08:07	09/05/18 18:45	1
18O2 PFHxS	77		25 - 150				09/05/18 08:07	09/05/18 18:45	1
13C4 PFOS	77		25 - 150				09/05/18 08:07	09/05/18 18:45	1
13C8 FOSA	71		25 - 150				09/05/18 08:07	09/05/18 18:45	1
d3-NMeFOSAA	74		25 - 150				09/05/18 08:07	09/05/18 18:45	1
d5-NEtFOSAA	78		25 - 150				09/05/18 08:07	09/05/18 18:45	1
M2-8:2FTS	72		25 - 150				09/05/18 08:07	09/05/18 18:45	1
Method: 537 (modified) - Fluo	rinated Alky	yl Substan	ces - DL			-	_ .		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
6:2 FTS	300		160	16	ng/L		09/05/18 08:07	09/06/18 21:23	10
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
M2-6:2FTS	96		25 - 150				09/05/18 08:07	09/06/18 21:23	10

Client Sample ID: EQUIPMENT BLANK Date Collected: 08/22/18 13:35 Date Received: 08/24/18 01:00

Method: 537 (modified) - Fluorinated Alkyl Substances Result Qualifier Analyte RL MDL Unit D Prepared Dil Fac Analyzed Perfluorobutanoic acid (PFBA) 0.72 J 1.6 0.29 ng/L 09/05/18 08:07 09/06/18 21:31 1 Perfluoropentanoic acid (PFPeA) ND 09/05/18 08:07 09/06/18 21:31 1.6 0.40 ng/L 1

TestAmerica Buffalo

Matrix: Water

Lab Sample ID: 480-140808-7

Lab Sample ID: 480-140808-7 Matrix: Water

Date Collected: 08/22/18 13:35 Date Received: 08/24/18 01:00

Client: Precision Environmental Services Inc.

Project/Site: DEC Dambrose Cleaners #447030

Client Sample ID: EQUIPMENT BLANK

Method: 537 (modified) - Fluor	rinated Alky	I Substan	ces (Continu	ed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.6	0.48	ng/L		09/05/18 08:07	09/06/18 21:31	1
Perfluoroheptanoic acid (PFHpA)	ND		1.6	0.21	ng/L		09/05/18 08:07	09/06/18 21:31	1
Perfluorooctanoic acid (PFOA)	ND		1.6	0.70	ng/L		09/05/18 08:07	09/06/18 21:31	1
Perfluorononanoic acid (PFNA)	ND		1.6	0.22	ng/L		09/05/18 08:07	09/06/18 21:31	1
Perfluorodecanoic acid (PFDA)	ND		1.6	0.26	ng/L		09/05/18 08:07	09/06/18 21:31	1
Perfluoroundecanoic acid (PFUnA)	ND		1.6	0.91	ng/L		09/05/18 08:07	09/06/18 21:31	1
Perfluorododecanoic acid (PFDoA)	ND		1.6	0.45	ng/L		09/05/18 08:07	09/06/18 21:31	1
Perfluorotridecanoic Acid (PFTriA)	ND		1.6	1.1	ng/L		09/05/18 08:07	09/06/18 21:31	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.6	0.24	ng/L		09/05/18 08:07	09/06/18 21:31	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.6	0.16	ng/L		09/05/18 08:07	09/06/18 21:31	1
Perfluorohexanesulfonic acid (PFHxS)	0.30	JB	1.6	0.14	ng/L		09/05/18 08:07	09/06/18 21:31	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.6	0.16	ng/L		09/05/18 08:07	09/06/18 21:31	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.6	0.44	ng/L		09/05/18 08:07	09/06/18 21:31	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.6	0.26	ng/L		09/05/18 08:07	09/06/18 21:31	1
Perfluorooctane Sulfonamide (FOSA)	ND		1.6	0.29	ng/L		09/05/18 08:07	09/06/18 21:31	1
N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	ND		16	2.6	ng/L		09/05/18 08:07	09/06/18 21:31	1
N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	ND		16	1.6	ng/L		09/05/18 08:07	09/06/18 21:31	1
6:2 FTS	ND		16	1.6	ng/L		09/05/18 08:07	09/06/18 21:31	1
8:2 FTS	ND		16	1.6	ng/L		09/05/18 08:07	09/06/18 21:31	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	108		25 - 150				09/05/18 08:07	09/06/18 21:31	1
13C5 PFPeA	113		25 - 150				09/05/18 08:07	09/06/18 21:31	1
13C2 PFHxA	109		25 - 150				09/05/18 08:07	09/06/18 21:31	1
13C4-PFHpA	102		25 - 150				09/05/18 08:07	09/06/18 21:31	1
13C4 PFOA	101		25 - 150				09/05/18 08:07	09/06/18 21:31	1
13C5 PFNA	104		25 - 150				09/05/18 08:07	09/06/18 21:31	1
13C2 PFDA	101		25 - 150				09/05/18 08:07	09/06/18 21:31	1
13C2 PFUnA	103		25 - 150				09/05/18 08:07	09/06/18 21:31	1
13C2 PFDoA	96		25 - 150				09/05/18 08:07	09/06/18 21:31	1
13C2-PFTeDA	83		25 - 150				09/05/18 08:07	09/06/18 21:31	1
13C3-PFBS	108		25 - 150				09/05/18 08:07	09/06/18 21:31	1
18O2 PFHxS	88		25 - 150				09/05/18 08:07	09/06/18 21:31	1
13C4 PFOS	100		25 - 150				09/05/18 08:07	09/06/18 21:31	1
13C8 FOSA	98		25 - 150				09/05/18 08:07	09/06/18 21:31	1
d3-NMeFOSAA	106		25 - 150				09/05/18 08:07	09/06/18 21:31	1
d5-NEtFOSAA	105		25 - 150				09/05/18 08:07	09/06/18 21:31	1
M2-6:2FTS	122		25 - 150				09/05/18 08:07	09/06/18 21:31	1
M2-8:2FTS	114		25 - 150				09/05/18 08:07	09/06/18 21:31	1

Client Sample ID: MW-7

Date Collected: 08/22/18 13:55 Date Received: 08/24/18 01:00

Method: 8260C - Volatile Organic Compounds by GC/MS								
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
1,1,1-Trichloroethane	ND	1.0	0.82 ug/L			08/25/18 00:43	1	

TestAmerica Buffalo

Matrix: Water

Lab Sample ID: 480-140808-8

Client: Precision Environmental Services Inc. Project/Site: DEC Dambrose Cleaners #447030

Lab Sample ID: 480-140808-8 Matrix: Water

5

Date Collected: 08/22/18 13:55 Date Received: 08/24/18 01:00

Client Sample ID: MW-7

Method: 8260C - Volatile Org Analyte	<mark>ganic Compo</mark> Result	unds by (Qualifier	GC/MS (Continu RL	l <mark>ed)</mark> MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L		-	08/25/18 00:43	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			08/25/18 00:43	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			08/25/18 00:43	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			08/25/18 00:43	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			08/25/18 00:43	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			08/25/18 00:43	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			08/25/18 00:43	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			08/25/18 00:43	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			08/25/18 00:43	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			08/25/18 00:43	1
1.2-Dichloropropane	ND		1.0	0.72	ua/L			08/25/18 00:43	1
1.3-Dichlorobenzene	ND		1.0	0.78	ua/L			08/25/18 00:43	1
1.4-Dichlorobenzene	ND		1.0	0.84	ua/L			08/25/18 00:43	1
2-Hexanone	ND		5.0	1.2	ua/L			08/25/18 00:43	1
2-Butanone (MEK)	ND		10	1.3	ua/L			08/25/18 00:43	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	21	ua/l			08/25/18 00.43	1
Acetone	3.7	л	10	3.0	ua/l			08/25/18 00:43	1
Benzene	ND	• • • • • • • • • • •	10	0.41	ug/l			08/25/18 00.43	
Bromodichloromethane	ND		1.0	0.39	ug/L			08/25/18 00:43	1
Bromoform	ND		1.0	0.26	ug/L			08/25/18 00:43	1
Bromomethane	ND		1.0	0.69	ug/L			08/25/18 00:43	· · · · · · · · · · · · · · · · · · ·
Carbon disulfide	ND		1.0	0.00	ug/L			08/25/18 00:43	1
Carbon tetrachloride			1.0	0.10	ug/L			08/25/18 00:43	1
Chlorobenzene	ND		1.0	0.27	ug/L			08/25/18 00:43	
Dibromochloromethane			1.0	0.73	ug/L			08/25/18 00:43	1
Chloroethane			1.0	0.32	ug/L			08/25/18 00:43	1
Chloroform			1.0	0.32	ug/L			08/25/18 00:43	· · · · · · · · · · · · · · · · · · ·
Chloromethane			1.0	0.34	ug/L			08/25/18 00:43	1
cis_1 2-Dichloroethene			1.0	0.55	ug/L			08/25/18 00:43	1
cis-1,2-Dichloropropene			1.0	0.01	ug/L			08/25/18 00:43	
Cyclobexane			1.0	0.50	ug/L			08/25/18 00:43	1
Dichlorodifluoromethane			1.0	0.10	ug/L			08/25/18 00:43	1
Ethylbonzono			1.0	0.00	ug/L			08/25/18 00:43	
			1.0	0.74	ug/L			08/25/18 00:43	1
Mothyl acotato			1.0	0.79	ug/L			08/25/18 00:43	1
Methyl tort butyl othor			2.5	0.16	ug/L			08/25/18 00:43	· · · · · · · · · · · · · · · · · · ·
Methyleveloboxano			1.0	0.10	ug/L			08/25/18 00:43	1
Methylene Chleride			1.0	0.10	ug/L			08/25/18 00:43	1
Sturana	ND		1.0	0.44	ug/L			08/25/18 00:43	· · · · · · · · · · · · · · · · · · ·
Styrene	ND		1.0	0.73	ug/L			08/25/18 00:43	1
Teluachioroethene			1.0	0.50	ug/L			08/25/18 00:43	1
trone 1.2 Disblarasthana	ND		1.0	0.01	ug/L			08/25/18 00:43	· · · · · · · · · · · · · · · · · · ·
	ND		1.0	0.90	ug/L			00/25/10 00.43	ا م
	ND		1.0	0.37	ug/L			00/25/18 00:43	1
	ND		1.0	0.46	ug/L			00/25/18 00:43	1
	ND		1.0	0.88	ug/L			08/25/18 00:43	1
vinyi chionae	ND		1.0	0.90	ug/L			08/25/18 00:43	1
Aylenes, 10tal	ND		2.0	0.66	ug/L			08/25/18 00:43	1
Surrogate	%Recovery	Qualifier	Limits			-	Prepared	Analyzed	Dil Fac
, E Biomorocanane-ut (Sum)	103		11 - 120					00/20/10 00.43	1

Client Sample ID: MW-7 Date Collected: 08/22/18 13:55 Date Received: 08/24/18 01:00

Lab Sample ID: 480-140808-8 Matrix: Water

5

Method: 8260C - Volatile Orga	anic Compo	unds by G	C/MS (Contir	nued)					
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		80 - 120					08/25/18 00:43	1
4-Bromofluorobenzene (Surr)	101		73 - 120					08/25/18 00:43	1
Dibromofluoromethane (Surr)	101		75 - 123					08/25/18 00:43	1
Method: 8270D SIM ID - Semiv	volatile Orga Result	anic Comp Qualifier	ounds (GC/N RL	/IS SIM / MDL	Isotope I Unit	Diluti D	on) Prepared	Analvzed	Dil Fac
1.4-Dioxane	ND		2.0	1.0	ua/L		08/25/18 08:02	09/01/18 09:05	10
Isotopo Dilution	% Pacovoru	Qualifier	Limite				Broparod	Analyzod	Dil Eac
$\frac{14 \text{ Diavana d8}}{14 \text{ Diavana d8}}$	70Recovery	Quaimer	<u> </u>				<u></u>		10
	10		13-110				00/23/10 00.02	09/01/18 09.03	10
Method: 537 (modified) - Fluo	rinated Alky	/I Substan	ces			_			
Analyte	Result	Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	11		1.7	0.30	ng/L		09/05/18 08:07	09/05/18 19:00	1
Pertluoropentanoic acid (PFPeA)	9.4		1.7	0.42	ng/L		09/05/18 08:07	09/05/18 19:00	1
Pertluorohexanoic acid (PFHxA)	9.1		1.7	0.49	ng/L		09/05/18 08:07	09/05/18 19:00	1
Perfluoroheptanoic acid (PFHpA)	6.8		1.7	0.21	ng/L		09/05/18 08:07	09/05/18 19:00	1
Perfluorooctanoic acid (PFOA)	17		1.7	0.72	ng/L		09/05/18 08:07	09/05/18 19:00	1
Perfluorononanoic acid (PFNA)	3.7		1.7	0.23	ng/L		09/05/18 08:07	09/05/18 19:00	1
Perfluorodecanoic acid (PFDA)	2.6		1.7	0.26	ng/L		09/05/18 08:07	09/05/18 19:00	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.94	ng/L		09/05/18 08:07	09/05/18 19:00	1
Perfluorododecanoic acid (PFDoA)	1.5	J	1.7	0.47	ng/L		09/05/18 08:07	09/05/18 19:00	1
Perfluorotridecanoic Acid (PFTriA)	ND		1.7	1.1	ng/L		09/05/18 08:07	09/05/18 19:00	1
Perfluorotetradecanoic acid (PFTeA)	1.4	J	1.7	0.25	ng/L		09/05/18 08:07	09/05/18 19:00	1
Perfluorobutanesulfonic acid (PFBS)	33		1.7	0.17	ng/L		09/05/18 08:07	09/05/18 19:00	1
Perfluorohexanesulfonic acid (PFHxS)	4.6	В	1.7	0.14	ng/L		09/05/18 08:07	09/05/18 19:00	1
Perfluoroheptanesulfonic Acid (PFHpS)	1.1	J	1.7	0.16	ng/L		09/05/18 08:07	09/05/18 19:00	1
Perfluorooctanesulfonic acid (PFOS)	52		1.7	0.46	ng/L		09/05/18 08:07	09/05/18 19:00	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.7	0.27	ng/L		09/05/18 08:07	09/05/18 19:00	1
Perfluorooctane Sulfonamide (FOSA)	0.36	J	1.7	0.30	ng/L		09/05/18 08:07	09/05/18 19:00	1
N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	ND		17	2.6	ng/L		09/05/18 08:07	09/05/18 19:00	1
N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	ND		17	1.6	ng/L		09/05/18 08:07	09/05/18 19:00	1
8:2 FTS	2.0	J	17	1.7	ng/L		09/05/18 08:07	09/05/18 19:00	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	47		25 - 150				09/05/18 08:07	09/05/18 19:00	1
13C5 PFPeA	58		25 - 150				09/05/18 08:07	09/05/18 19:00	1
13C2 PFHxA	67		25 - 150				09/05/18 08:07	09/05/18 19:00	1
13C4-PFHpA	71		25 - 150				09/05/18 08:07	09/05/18 19:00	1
13C4 PFOA	68		25 - 150				09/05/18 08:07	09/05/18 19:00	1
13C5 PFNA	71		25 - 150				09/05/18 08:07	09/05/18 19:00	1
13C2 PFDA	70		25 - 150				09/05/18 08:07	09/05/18 19:00	1
13C2 PFUnA	63		25 - 150				09/05/18 08:07	09/05/18 19:00	1
13C2 PFDoA	51		25 - 150				09/05/18 08:07	09/05/18 19:00	1

Client: Precision Environmental Services Inc. Project/Site: DEC Dambrose Cleaners #447030 TestAmerica Job ID: 480-140808-1

Lab Sample ID: 480-140808-8 Matrix: Water

Lab Sample ID: 480-140808-9

Matrix: Water

5

Client Sample ID: MW-7 Date Collected: 08/22/18 13:55 Date Received: 08/24/18 01:00

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2-PFTeDA	36	25 - 150	09/05/18 08:07	09/05/18 19:00	1
13C3-PFBS	64	25 - 150	09/05/18 08:07	09/05/18 19:00	1
18O2 PFHxS	69	25 - 150	09/05/18 08:07	09/05/18 19:00	1
13C4 PFOS	69	25 - 150	09/05/18 08:07	09/05/18 19:00	1
13C8 FOSA	58	25 - 150	09/05/18 08:07	09/05/18 19:00	1
d3-NMeFOSAA	64	25 - 150	09/05/18 08:07	09/05/18 19:00	1
d5-NEtFOSAA	70	25 - 150	09/05/18 08:07	09/05/18 19:00	1
M2-8:2FTS	79	25 - 150	09/05/18 08:07	09/05/18 19:00	1

Method: 537 (modified) - Fluorinated Alkyl Substances - DL										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
6:2 FTS	1300		170	17	ng/L		09/05/18 08:07	09/06/18 21:38	10	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
M2-6:2FTS	90		25 - 150				09/05/18 08:07	09/06/18 21:38	10	

Client Sample ID: FIELD BLANK Date Collected: 08/22/18 14:00 Date Received: 08/24/18 01:00

Method: 537 (modified) - Fluo	rinated Alkyl	Substance	S						
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	0.50	J	1.6	0.27	ng/L		09/05/18 08:07	09/06/18 21:46	1
Perfluoropentanoic acid (PFPeA)	ND		1.6	0.38	ng/L		09/05/18 08:07	09/06/18 21:46	1
Perfluorohexanoic acid (PFHxA)	ND		1.6	0.45	ng/L		09/05/18 08:07	09/06/18 21:46	1
Perfluoroheptanoic acid (PFHpA)	ND		1.6	0.20	ng/L		09/05/18 08:07	09/06/18 21:46	1
Perfluorooctanoic acid (PFOA)	ND		1.6	0.67	ng/L		09/05/18 08:07	09/06/18 21:46	1
Perfluorononanoic acid (PFNA)	ND		1.6	0.21	ng/L		09/05/18 08:07	09/06/18 21:46	1
Perfluorodecanoic acid (PFDA)	ND		1.6	0.24	ng/L		09/05/18 08:07	09/06/18 21:46	1
Perfluoroundecanoic acid (PFUnA)	ND		1.6	0.86	ng/L		09/05/18 08:07	09/06/18 21:46	1
Perfluorododecanoic acid (PFDoA)	ND		1.6	0.43	ng/L		09/05/18 08:07	09/06/18 21:46	1
Perfluorotridecanoic Acid (PFTriA)	ND		1.6	1.0	ng/L		09/05/18 08:07	09/06/18 21:46	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.6	0.23	ng/L		09/05/18 08:07	09/06/18 21:46	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.6	0.16	ng/L		09/05/18 08:07	09/06/18 21:46	1
Perfluorohexanesulfonic acid (PFHxS)	0.26 J	JB	1.6	0.13	ng/L		09/05/18 08:07	09/06/18 21:46	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.6	0.15	ng/L		09/05/18 08:07	09/06/18 21:46	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.6	0.42	ng/L		09/05/18 08:07	09/06/18 21:46	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.6	0.25	ng/L		09/05/18 08:07	09/06/18 21:46	1
Perfluorooctane Sulfonamide (FOSA)	ND		1.6	0.27	ng/L		09/05/18 08:07	09/06/18 21:46	1
N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	ND		16	2.4	ng/L		09/05/18 08:07	09/06/18 21:46	1
N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	ND		16	1.5	ng/L		09/05/18 08:07	09/06/18 21:46	1
6:2 FTS	1.7 J	J	16	1.6	ng/L		09/05/18 08:07	09/06/18 21:46	1
8:2 FTS	ND		16	1.6	ng/L		09/05/18 08:07	09/06/18 21:46	1
Isotope Dilution	%Recovery (Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	108		25 - 150				09/05/18 08:07	09/06/18 21:46	1
13C5 PFPeA	112		25 - 150				09/05/18 08:07	09/06/18 21:46	1
13C2 PFHxA	114		25 - 150				09/05/18 08:07	09/06/18 21:46	1

TestAmerica Buffalo

Page 22 of 35

Client: Precision Environmental Services Inc. Project/Site: DEC Dambrose Cleaners #447030

Client Sample ID: FIELD BLANK Date Collected: 08/22/18 14:00 Date Received: 08/24/18 01:00

Method: 537 (modified	d) - Fluorinated Alkyl Substa	nces (Continued)			
Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C4-PFHpA	103	25 - 150	09/05/18 08:07	09/06/18 21:46	1
13C4 PFOA	101	25 - 150	09/05/18 08:07	09/06/18 21:46	1
13C5 PFNA	101	25 - 150	09/05/18 08:07	09/06/18 21:46	1
13C2 PFDA	98	25 - 150	09/05/18 08:07	09/06/18 21:46	1
13C2 PFUnA	99	25 - 150	09/05/18 08:07	09/06/18 21:46	1
13C2 PFDoA	89	25 - 150	09/05/18 08:07	09/06/18 21:46	1
13C2-PFTeDA	68	25 - 150	09/05/18 08:07	09/06/18 21:46	1
13C3-PFBS	105	25 - 150	09/05/18 08:07	09/06/18 21:46	1
18O2 PFHxS	87	25 - 150	09/05/18 08:07	09/06/18 21:46	1
13C4 PFOS	95	25 - 150	09/05/18 08:07	09/06/18 21:46	1
13C8 FOSA	95	25 - 150	09/05/18 08:07	09/06/18 21:46	1
d3-NMeFOSAA	101	25 - 150	09/05/18 08:07	09/06/18 21:46	1
d5-NEtFOSAA	103	25 - 150	09/05/18 08:07	09/06/18 21:46	1

25 - 150

25 - 150

127

115

Client Sample ID: MW-6

M2-6:2FTS

M2-8:2FTS

Date Collected: 08/22/18 15:10 Date Received: 08/24/18 01:00

Method: 8260C - Volatile Organ	nic Compo	unds by GC	/MS	MDI	11		Durana da	Amelyneed	
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DIIFac
1,1,1-Irichloroethane	ND		1.0	0.82	ug/L			08/25/18 01:06	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			08/25/18 01:06	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			08/25/18 01:06	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			08/25/18 01:06	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			08/25/18 01:06	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			08/25/18 01:06	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			08/25/18 01:06	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			08/25/18 01:06	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			08/25/18 01:06	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			08/25/18 01:06	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			08/25/18 01:06	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			08/25/18 01:06	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			08/25/18 01:06	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			08/25/18 01:06	1
2-Hexanone	ND		5.0	1.2	ug/L			08/25/18 01:06	1
2-Butanone (MEK)	ND		10	1.3	ug/L			08/25/18 01:06	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			08/25/18 01:06	1
Acetone	ND		10	3.0	ug/L			08/25/18 01:06	1
Benzene	ND		1.0	0.41	ug/L			08/25/18 01:06	1
Bromodichloromethane	ND		1.0	0.39	ug/L			08/25/18 01:06	1
Bromoform	ND		1.0	0.26	ug/L			08/25/18 01:06	1
Bromomethane	ND		1.0	0.69	ug/L			08/25/18 01:06	1
Carbon disulfide	ND		1.0	0.19	ug/L			08/25/18 01:06	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			08/25/18 01:06	1
Chlorobenzene	ND		1.0	0.75	ug/L			08/25/18 01:06	1
Dibromochloromethane	ND		1.0	0.32	ug/L			08/25/18 01:06	1
Chloroethane	ND		1.0	0.32	ug/L			08/25/18 01:06	1
Chloroform	ND		1.0	0.34	ug/L			08/25/18 01:06	1

TestAmerica Buffalo

Lab Sample ID: 480-140808-9 Matrix: Water

09/05/18 08:07 09/06/18 21:46

09/05/18 08:07 09/06/18 21:46

Lab Sample ID: 480-140808-10

1

1

Matrix: Water

Page 23 of 35

Client: Precision Environmental Services Inc. Project/Site: DEC Dambrose Cleaners #447030

Lab Sample ID: 480-140808-10 Matrix: Water

5

Client Sample ID: MW-6 Date Collected: 08/22/18 15:10 Date Received: 08/24/18 01:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	ND		1.0	0.35	ug/L			08/25/18 01:06	1
cis-1,2-Dichloroethene	22		1.0	0.81	ug/L			08/25/18 01:06	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			08/25/18 01:06	1
Cyclohexane	ND		1.0	0.18	ug/L			08/25/18 01:06	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			08/25/18 01:06	1
Ethylbenzene	ND		1.0	0.74	ug/L			08/25/18 01:06	1
Isopropylbenzene	ND		1.0	0.79	ug/L			08/25/18 01:06	1
Methyl acetate	ND		2.5	1.3	ug/L			08/25/18 01:06	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			08/25/18 01:06	1
Methylcyclohexane	ND		1.0	0.16	ug/L			08/25/18 01:06	1
Methylene Chloride	ND		1.0	0.44	ug/L			08/25/18 01:06	1
Styrene	ND		1.0	0.73	ug/L			08/25/18 01:06	1
Tetrachloroethene	0.42	J	1.0	0.36	ug/L			08/25/18 01:06	1
Toluene	ND		1.0	0.51	ug/L			08/25/18 01:06	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			08/25/18 01:06	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			08/25/18 01:06	1
Trichloroethene	ND		1.0	0.46	ug/L			08/25/18 01:06	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			08/25/18 01:06	1
Vinyl chloride	ND		1.0	0.90	ug/L			08/25/18 01:06	1
Xylenes, Total	ND		2.0	0.66	ug/L			08/25/18 01:06	1

Surrogate	%Recovery	Qualifier	Limits	Prepa	ared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		77 - 120		08	3/25/18 01:06	1
Toluene-d8 (Surr)	100		80 - 120		08	3/25/18 01:06	1
4-Bromofluorobenzene (Surr)	99		73 - 120		08	8/25/18 01:06	1
Dibromofluoromethane (Surr)	105		75 - 123		08	3/25/18 01:06	1

Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND		2.0	1.0	ug/L		08/25/18 08:02	09/01/18 09:29	10
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	17		15 - 110				08/25/18 08:02	09/01/18 09:29	10

Method: 537 (modified) - Fluorinated Alkyl Substances

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	1.2	<u> </u>	1.6	0.28	ng/L		09/05/18 08:07	09/05/18 19:15	1
Perfluoropentanoic acid (PFPeA)	0.98	J	1.6	0.39	ng/L		09/05/18 08:07	09/05/18 19:15	1
Perfluorohexanoic acid (PFHxA)	0.95	J	1.6	0.46	ng/L		09/05/18 08:07	09/05/18 19:15	1
Perfluoroheptanoic acid (PFHpA)	0.59	J	1.6	0.20	ng/L		09/05/18 08:07	09/05/18 19:15	1
Perfluorooctanoic acid (PFOA)	1.5	J	1.6	0.68	ng/L		09/05/18 08:07	09/05/18 19:15	1
Perfluorononanoic acid (PFNA)	ND		1.6	0.21	ng/L		09/05/18 08:07	09/05/18 19:15	1
Perfluorodecanoic acid (PFDA)	ND		1.6	0.25	ng/L		09/05/18 08:07	09/05/18 19:15	1
Perfluoroundecanoic acid (PFUnA)	ND		1.6	0.87	ng/L		09/05/18 08:07	09/05/18 19:15	1
Perfluorododecanoic acid (PFDoA)	ND		1.6	0.44	ng/L		09/05/18 08:07	09/05/18 19:15	1
Perfluorotridecanoic Acid (PFTriA)	ND		1.6	1.0	ng/L		09/05/18 08:07	09/05/18 19:15	1
Perfluorotetradecanoic acid (PFTeA)	0.29	J	1.6	0.23	ng/L		09/05/18 08:07	09/05/18 19:15	1
Perfluorobutanesulfonic acid (PFBS)	1.2	J	1.6	0.16	ng/L		09/05/18 08:07	09/05/18 19:15	1
Perfluorohexanesulfonic acid (PFHxS)	0.76	JB	1.6	0.14	ng/L		09/05/18 08:07	09/05/18 19:15	1

Client: Precision Environmental Services Inc. Project/Site: DEC Dambrose Cleaners #447030

Lab Sample ID: 480-140808-10 Matrix: Water

Date Collected: 08/22/18 15:10 Date Received: 08/24/18 01:00

Client Sample ID: MW-6

Method: 537 (modified) - Fluor	rinated Alky	/I Substan	ces (Continu	ed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanesulfonic Acid	ND		1.6	0.15	ng/L		09/05/18 08:07	09/05/18 19:15	1
(PFHpS)									
Perfluorooctanesulfonic acid	1.3	J	1.6	0.43	ng/L		09/05/18 08:07	09/05/18 19:15	1
(PFOS) Perfluorodecanesulfonic acid (PEDS)	ND		16	0.25	na/l		09/05/18 08:07	09/05/18 19:15	1
Perfluorooctane Sulfonamide (EOSA)	ND		1.6	0.28	ng/l		09/05/18 08:07	09/05/18 19:15	1
	ND		16	2.5	ng/L		09/05/18 08:07	09/05/18 19:15	1
sulfonamidoacetic acid (NMeFOSAA)	ne ine		10	2.0	119/1				
N-ethyl perfluorooctane	ND		16	1.5	ng/L		09/05/18 08:07	09/05/18 19:15	1
sulfonamidoacetic acid (NEtFOSAA)									
6:2 FTS	9.2	J	16	1.6	ng/L		09/05/18 08:07	09/05/18 19:15	1
8:2 FTS	ND		16	1.6	ng/L		09/05/18 08:07	09/05/18 19:15	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	73		25 - 150				09/05/18 08:07	09/05/18 19:15	1
13C5 PFPeA	95		25 - 150				09/05/18 08:07	09/05/18 19:15	1
13C2 PFHxA	95		25 - 150				09/05/18 08:07	09/05/18 19:15	1
13C4-PFHpA	98		25 - 150				09/05/18 08:07	09/05/18 19:15	1
13C4 PFOA	90		25 - 150				09/05/18 08:07	09/05/18 19:15	1
13C5 PFNA	95		25 - 150				09/05/18 08:07	09/05/18 19:15	1
13C2 PFDA	96		25 - 150				09/05/18 08:07	09/05/18 19:15	1
13C2 PFUnA	95		25 - 150				09/05/18 08:07	09/05/18 19:15	1
13C2 PFDoA	87		25 - 150				09/05/18 08:07	09/05/18 19:15	1
13C2-PFTeDA	79		25 - 150				09/05/18 08:07	09/05/18 19:15	1
13C3-PFBS	93		25 - 150				09/05/18 08:07	09/05/18 19:15	1
18O2 PFHxS	97		25 - 150				09/05/18 08:07	09/05/18 19:15	1
13C4 PFOS	97		25 - 150				09/05/18 08:07	09/05/18 19:15	1
13C8 FOSA	94		25 - 150				09/05/18 08:07	09/05/18 19:15	1
d3-NMeFOSAA	93		25 - 150				09/05/18 08:07	09/05/18 19:15	1
d5-NEtFOSAA	95		25 - 150				09/05/18 08:07	09/05/18 19:15	1
M2-6:2FTS	91		25 - 150				09/05/18 08:07	09/05/18 19:15	1
M2-8:2FTS	86		25 - 150				09/05/18 08:07	09/05/18 19:15	1

Dilution

Factor

1

5

1

Run

Batch

Number

Prepared

or Analyzed

431413 08/24/18 22:23 AMM

431438 08/25/18 08:02 JRD

432509 09/01/18 07:09 DMR

243859 09/05/18 08:07 TWL

244021 09/05/18 17:45 S1M

Analyst

Lab

TAL BUF

TAL BUF

TAL BUF TAL SAC

TAL SAC

Client: Precision Environmental Services Inc. Project/Site: DEC Dambrose Cleaners #447030

Batch

Туре

Prep

Prep

Analysis

Analysis

Analysis

Batch

Method

8260C

3510C

3535

8270D SIM ID

537 (modified)

Lab Sample ID: 480-140808-1

5 6

Lab Sample ID: 480-140808-2 Matrix: Water

Matrix: Water

Date Collected: 08/22/18 10:35 Date Received: 08/24/18 01:00

Client Sample ID: MW-1R

Client Sample ID: MW-3

Date Collected: 08/22/18 09:40

Date Received: 08/24/18 01:00

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	431413	08/24/18 22:46	AMM	TAL BUF
Total/NA	Prep	3510C			431438	08/25/18 08:02	JRD	TAL BUF
Total/NA	Analysis	8270D SIM ID		1	432509	09/01/18 06:23	DMR	TAL BUF
Total/NA	Prep	3535			243859	09/05/18 08:07	TWL	TAL SAC
Total/NA	Analysis	537 (modified)		1	244021	09/05/18 17:52	S1M	TAL SAC

Client Sample ID: MW-2R Date Collected: 08/22/18 11:10 Date Received: 08/24/18 01:00

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		2	431413	08/24/18 23:10	AMM	TAL BUF
Total/NA	Prep	3510C			431438	08/25/18 08:02	JRD	TAL BUF
Total/NA	Analysis	8270D SIM ID		1	432509	09/01/18 07:32	DMR	TAL BUF
Total/NA	Prep	3535			243859	09/05/18 08:07	TWL	TAL SAC
Total/NA	Analysis	537 (modified)		1	244021	09/05/18 18:15	S1M	TAL SAC

Client Sample ID: DUPLICATE Date Collected: 08/22/18 11:20 Date Received: 08/24/18 01:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		2	431413	08/24/18 23:33	AMM	TAL BUF
Total/NA	Prep	3510C			431438	08/25/18 08:02	JRD	TAL BUF
Total/NA	Analysis	8270D SIM ID		1	432509	09/01/18 07:56	DMR	TAL BUF
Total/NA	Prep	3535			243859	09/05/18 08:07	TWL	TAL SAC
Total/NA	Analysis	537 (modified)		1	244021	09/05/18 18:22	S1M	TAL SAC

Lab Sample ID: 480-140808-3

Lab Sample ID: 480-140808-4

Matrix: Water

Matrix: Water

Dilution

Factor

1

1

1

Run

Batch

Number

Batch

Prepared

431438 08/25/18 08:02 JRD

432509 09/01/18 08:19 DMR

243859 09/05/18 08:07 TWL

244021 09/05/18 18:30 S1M

Prepared

431413 08/24/18 23:56

or Analyzed

Analyst

AMM

Lab

TAL BUF

TAL BUF

TAL BUF TAL SAC

TAL SAC

Lab Sample ID: 480-140808-7

Lab Sample ID: 480-140808-8

Client: Precision Environmental Services Inc. Project/Site: DEC Dambrose Cleaners #447030

Batch

Туре

Prep

Prep

Analysis

Analysis

Analysis

Client Sample ID: MW-10 Date Collected: 08/22/18 12:00

Date Received: 08/24/18 01:00

Client Sample ID: MW-4

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Lab Sample ID: 480-140808-5

6

Lab Sample ID: 480-140808-6

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Date Collected: 08/22/18 13:15 Date Received: 08/24/18 01:00 Batch Batch Dilution

Batch

Method

8260C

3510C

3535

8270D SIM ID

537 (modified)

Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	431413	08/25/18 00:19	AMM	TAL BUF
Total/NA	Prep	3510C			431438	08/25/18 08:02	JRD	TAL BUF
Total/NA	Analysis	8270D SIM ID		1	432509	09/01/18 08:42	DMR	TAL BUF
Total/NA	Prep	3535	DL		243859	09/05/18 08:07	TWL	TAL SAC
Total/NA	Analysis	537 (modified)	DL	10	244278	09/06/18 21:23	S1M	TAL SAC
Total/NA	Prep	3535			243859	09/05/18 08:07	TWL	TAL SAC
Total/NA	Analysis	537 (modified)		1	244021	09/05/18 18:45	S1M	TAL SAC

Client Sample ID: EQUIPMENT BLANK Date Collected: 08/22/18 13:35 Date Received: 08/24/18 01:00

Pren Tyne	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Δnalvst	lah
Total/NA	Prep	3535			243859	09/05/18 08:07	TWL	TAL SAC
Total/NA	Analysis	537 (modified)		1	244278	09/06/18 21:31	S1M	TAL SAC

Client Sample ID: MW-7 Date Collected: 08/22/18 13:55 Date Received: 08/24/18 01:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	431413	08/25/18 00:43	AMM	TAL BUF
Total/NA	Prep	3510C			431438	08/25/18 08:02	JRD	TAL BUF
Total/NA	Analysis	8270D SIM ID		10	432509	09/01/18 09:05	DMR	TAL BUF
Total/NA	Prep	3535	DL		243859	09/05/18 08:07	TWL	TAL SAC
Total/NA	Analysis	537 (modified)	DL	10	244278	09/06/18 21:38	S1M	TAL SAC
Total/NA	Prep	3535			243859	09/05/18 08:07	TWL	TAL SAC
Total/NA	Analysis	537 (modified)		1	244021	09/05/18 19:00	S1M	TAL SAC

Lab Sample ID: 480-140808-9

Matrix: Water

2 3 4 5 6 7 8

Lab Sample ID: 480-140808-10 Matrix: Water

Client Sample ID: FIELD BLANK
Date Collected: 08/22/18 14:00
Date Received: 08/24/18 01:00

_			.		B 11 //				
		Batch	Batch		Dilution	Batch	Prepared		
Prep Ty	ре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	1	Prep	3535			243859	09/05/18 08:07	TWL	TAL SAC
Total/NA	١	Analysis	537 (modified)		1	244278	09/06/18 21:46	S1M	TAL SAC

Client Sample ID: MW-6 Date Collected: 08/22/18 15:10 Date Received: 08/24/18 01:00

-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	431413	08/25/18 01:06	AMM	TAL BUF
Total/NA	Prep	3510C			431438	08/25/18 08:02	JRD	TAL BUF
Total/NA	Analysis	8270D SIM ID		10	432509	09/01/18 09:29	DMR	TAL BUF
Total/NA	Prep	3535			243859	09/05/18 08:07	TWL	TAL SAC
Total/NA	Analysis	537 (modified)		1	244021	09/05/18 19:15	S1M	TAL SAC

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Accreditation/Certification Summary

Client: Precision Environmental Services Inc. Project/Site: DEC Dambrose Cleaners #447030

537 (modified)

3535

3535

3535

3535

3535

3535

3535

3535

Water

Water

Water

Water

Water

Water

Water

Water

Laboratory: TestAmerica Buffalo The accreditations/certifications listed below are applicable to this report. Authority Program EPA Region **Identification Number Expiration Date** New York NELAP 2 10026 03-31-19 Laboratory: TestAmerica Sacramento Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. Authority Identification Number **Expiration Date** Program EPA Region 7 New York NELAP 2 11666 03-31-19 The following analytes are included in this report, but accreditation/certification is not offered by the governing authority: Analysis Method Prep Method Analyte Matrix 3535 537 (modified) Water 6:2 FTS Water 8:2 FTS 537 (modified) 3535 537 (modified) 3535 Water N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA) 537 (modified) 3535 Water N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA) 537 (modified) 3535 Water Perfluorobutanesulfonic acid (PFBS) 537 (modified) 3535 Water Perfluorobutanoic acid (PFBA) 537 (modified) 3535 Water Perfluorodecanesulfonic acid (PFDS) 537 (modified) 3535 Water Perfluorodecanoic acid (PFDA) 537 (modified) 3535 Water Perfluorododecanoic acid (PFDoA) 537 (modified) 3535 Water Perfluoroheptanesulfonic Acid (PFHpS) 537 (modified) 3535 Water Perfluoroheptanoic acid (PFHpA) 537 (modified) 3535 Water Perfluorohexanesulfonic acid (PFHxS) 537 (modified) 3535 Water Perfluorohexanoic acid (PFHxA)

Perfluorononanoic acid (PFNA)

Perfluorooctanoic acid (PFOA)

Perfluoropentanoic acid (PFPeA)

Perfluorooctane Sulfonamide (FOSA)

Perfluorooctanesulfonic acid (PFOS)

Perfluorotetradecanoic acid (PFTeA)

Perfluorotridecanoic Acid (PFTriA)

Perfluoroundecanoic acid (PFUnA)

Client: Precision Environmental Services Inc. Project/Site: DEC Dambrose Cleaners #447030

Method Description

Purge and Trap

EPA = US Environmental Protection Agency

Fluorinated Alkyl Substances

Solid-Phase Extraction (SPE)

Volatile Organic Compounds by GC/MS

Liquid-Liquid Extraction (Separatory Funnel)

Laboratory

TAL BUF

TAL BUF

TAL SAC

TAL BUF

TAL SAC

TAL BUF

Protocol

SW846

SW846

SW846

SW846

SW846

EPA

5
8

Laboratory References:

Protocol References:

Method

8270D SIM ID

537 (modified)

8260C

3510C

5030C

3535

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Sample Summary

Client: Precision Environmental Services Inc. Project/Site: DEC Dambrose Cleaners #447030 TestAmerica Job ID: 480-140808-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
480-140808-1	MW-3	Water	08/22/18 09:40	08/24/18 01:00	
480-140808-2	MW-1R	Water	08/22/18 10:35	08/24/18 01:00	
480-140808-3	MW-2R	Water	08/22/18 11:10	08/24/18 01:00	5
480-140808-4	DUPLICATE	Water	08/22/18 11:20	08/24/18 01:00	
480-140808-5	MW-10	Water	08/22/18 12:00	08/24/18 01:00	
480-140808-6	MW-4	Water	08/22/18 13:15	08/24/18 01:00	
480-140808-7	EQUIPMENT BLANK	Water	08/22/18 13:35	08/24/18 01:00	
480-140808-8	MW-7	Water	08/22/18 13:55	08/24/18 01:00	
480-140808-9	FIELD BLANK	Water	08/22/18 14:00	08/24/18 01:00	
480-140808-10	MW-6	Water	08/22/18 15:10	08/24/18 01:00	8
					9

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298	N. C	hain c	of Cust	ody R	ecord				TestAI	
Phone (716) 691-2600 Fax (716) 691-7991	Sampler:			Lab PI			Carr	KANAN	COC No.	
Client Information	Ho C	WATTAN	Kolj Zwjan	Stone	, Judy L			, A	480-116609-269	43.1
Client Contact: Stephen Phelps	Phone: 518 -	868 -625	4	E-Mail judy.	tone@tes	americaind	com	ň	Page: Page 1 of 1	
Company: Precision Environmental Services Inc.							Analysis Reque	480-140808 COC	Job #;	
Address 831 State Route 67 Ste 38	Due Date Requeste	:pa	P						Preservation Coc	les: M - Havana
City: Ballston Spa	TAT Requested (da	ays):							B - NaOH C - Zn Acetate	N - None 0 - AsNaO2
State, Zip: NY, 12020	STA	CIEVER	TURN		(sə)				D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3
Phone: 518-885-4399(Tel)	PO #; Spill #447030				(ol VlanA				F - MeOH G - Amchlor H - Ascorbic Acid	K - Na2S2O3 S - H2SO4 T - TSP Dodecahydrate
Email: sphelps@pesnyinc.com	# OM	,			4 70 8 (0N 121 (21	ans			I - Ice	U - Acetone V - MCAA
Project Name: DEC Dambrose Cleaners #447030	Project #: 48018629				es or (es or	xoiQ-4,			ntaine L - EDA	W - pH 4-5 Z - other (specify)
Site: 1517 VAN URAWHEN AVE, SCHEWECHAN!	SSOW#:	1			Samp (Y) DSN (Y	eAOV 1			of Other:	
	Commission Date	Sample	Sample Type (C=comp,	Matrix (w=water, s=solid, O=waste/oli,	ield Filtered erform MS/M FC_IDA - PFA	260C - TCL IIsi			nədmuN listo C	
			Preservati	on Code:		8 Z	日本であるのである	A CONTRACTOR OF		su ucuolis/Mole.
mw-3	8/24/18.	oh:b	9	Water	~	XX			- Bing	
mw -IR	8/22/18	10:35	6	Water	×	XX				
mw - 2R	8/22/18	01:11	9	Water	X	XX				
DUPLZCATE	8/22/18	11:20	9	Water	×	××				
01 - 10	8/22/18	12:60	G	Water	X	××				
mw-4	8/22/18	13:15	0	Water	×	××				
FOURTHAIR RLANK	8/22/18	13:35	6	Water	X					
mu - 7	8 /22/18	13:55	6	Water	X	XX			cono *	E#48013288 *
FIELD DLAWK	8/22/18	17:00	9	Water	X					
MW-6	8/22/18	15:10	C	Water	×	XX			* OULY XI	205 87CT
	11								mu-6	, RAU DRY *
Possible Hazard Identification	son B Junkn	own R	adiological		Samp	e Disposa Return To (I (A fee may be asse Client Dispo	ssed if samples ar	e retained longer than 1	month) Months
Deliverable Requested: I, II, III, IV, Other (specify)	ATEGORY B	n DELL	UE 2ABLE		Specia	I Instruction	ns/QC Requirements:	PLEASE CC	a scolicitor (esnyinc.com ALCO
Empty Kit Relinquished by:		Date:			Time:			Method of Shipment:		~ RETURDS
Relinquished by: Juylo 2032w1000 (To FR205E)	Date/Time:	18	7:30	Company	Re	Aquel by:	Lorda	Date/Time	3-18 0715	Company
Relinquished by Lach Lachure	Date/Time(/ 8-33-/	2	800	Company	Re	Alled by	~	Date/Time	010 JI-h	Company
Relinquished by:	Date/Time:			Company	All and a second	ceived by:		Date/Time		Company
Custody Seals Intact: Custody Seal No.:					1 100	oler Tempera	ture(s) °C and Other Remar	ks:	0,7.1,0	1#
									. /.	Ver: 08/04/2016
I estAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991	Chain	of Custo	dy Red	tord			TestAmerica			
---	--------------------------------	-------------------	--	--	--------------------	--------------------------	--			
Client Information	Sampler. Juin ATHAN	Koi)21004	Lab PM. Stone, Ji	ldy L		Carrier Tracking No(s)	COC No: 480-116609-26943.1			
Client Contact: Stephen Phelps	Phone: 518 - 868 -62	45	E-Mail: judy.ston	e@testamericainc.	com	1	Page Page 1 of 1			
Company: Precision Environmental Services Inc.					Analysis Re	quested	Jab #:			
Address: 831 State Route 67 Ste 38	Due Date Requested:	P	200	Lawer -			Preservation Codes:			
City: Bailston Spa	TAT Requested (days):			in the second			B - NaOH N - None C - Zh Acetate O - AsNaO2			
State, Zp. NY, 12020	USVGNYLS	Mani		(soj.			D - Nitric Acid P - Na204S E - NaHSO4 Q - Na2SO3			
Phone: 518-885-4399(Tel)	PO# Spill #447030		(0)	γisnA			F - MeUH K - Na25203 G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecativitiate			
Emait sphelps@pesnyinc.com	+ OM		s or N	ans: 12) 121. (OV	_		1 - Ice U - Acetone J - DI Water V - MCAA			
Project Name: DEC Dambrose Cleaners #447030	Project # 48018629		eY) elo	10 29) 1 bisbr 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			L-EDA W - PH 4-5 L-EDA Z - ather (specify)			
Site 1517 VAN URNWHEN ANE, SCHEWERNON	SSOW#:		qms2) G2N 1612 (2) 14 VOA 1 - 01_6			. of co			
Sample Identification	Sample Date Time	Type ((C=comp, o.	Matrix dewater, pseelid, wasteroli, teur, AeArr) I.	Репога аму 2010 PFC_IDA - PFA 811 JDT - J0526 812 DD - JDL - 20256 8270D_SIM_MIS_			Total Number Snecial Instructions/Note			
	X	Preservation	Code: X	X A N						
mw-3	8/11/18 9.40	Ġ	Vater	XXX			· 1 1			
mw-1R	8/22/18 10:35	6	Vater	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX						
mw-2R	elzelis 11:10	9	Vater	× × ×						
Durls care .	8/22/18 11:20	6	Vater	×××		480-140808	8 Chain of Custody			
01 - MW	8/22/18 12:00	6	Vater	X X X		-				
mw-4	8/22/19 13.15	6	Vater	×××						
ROUTINE LANGUE	8/22/19 13:35	6	Vater	×						
t- mm	8 /22/18 13:55	6 I	Vater	××××			* Quert # 48018288 >			
FIELD NLANK	8/22/18 17:00	6. 1	Vater	X	-					
84-6	8/22/18 15:10	C	Vater	× × ×			Set STET /X KRO *			
Possible Hazard Identification				ample Disposal (A fee may be	ssessed if samples are r	retained longer than 1 month)			
Non-Hazard Flammable Skin Irritant Poisc	on B Unknown F	Radiological		Return To Cli	ent en	Disposal By Lab	Archive For Months			
	ATEGON B" DELL	UE EAGLE S			and requireme	MS. PERE CC) con a pesay of un der			
Empty Kit Relinquished by:	Date:		Ē	e;		Method of Shipment,	sconste /m			
Reinquished by J-HAD R.J. 22 Nices (73 FARME) Reinquished by	Date/Time: $\frac{2}{3}/22/18$	7: J& Com	oany PES oany	Received by	(and	Se.23	-15 CY15 Company			
Reinquished by	Date/Time	Con	any	Received by:	Ň	Date/Time:	110 130 111 - 241			
Custody Seals Intact: Custody Seal No.: 01235	Sa			Cooler Temperature	(s) °C and Other R	emarks 0.8				
No Time Listed on PFC 2	290ml contacure	DH El	11/18		1	8 9 1	Ver: 08/04/2016			
					1	8 9 0				

.

Login Sample Receipt Checklist

Client: Precision Environmental Services Inc.

Login Number: 140808 List Number: 1 Creator: Williams, Christopher S

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	False	no vials for MS/MSD for VOA
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	PES
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Job Number: 480-140808-1

List Source: TestAmerica Buffalo

Login Sample Receipt Checklist

Client: Precision Environmental Services Inc.

Job Number: 480-140808-1

Login Number: 140808	List Source: TestAmerica Sacramento
List Number: 2	List Creation: 08/25/18 04:23 PM
Creator: Her, David A	

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	512382
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.8c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Refer to Job Narrative for details.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

APPENDIX B

QEP CERTIFICATION

Enclosure 1 Engineering Controls - Standby Consultant/Contractor Certification Form

79	- Ski			E.s.
	Sit	e No. 447030		Box 1
	SI	e Name Dambrose Cleaners		
	Sit Cit Co Sit	e Address: 1517 VanVranken Avenue Zip Code: 12308 y/Town: Schenectady unty: Schenectady e Acreage: 0.1		
	Re	porting Period: June 30, 2016 to June 30, 2019		
		Contraction Contraction Contraction of the Contractions Phase Management Contraction Contraction		
			YES	NO
	1.	Is the information above correct?	X	
		If NO, include handwritten above or on a separate sheet.		
	2.	To your knowledge has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		×
	3.	To your knowledge has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		×
	4.	To your knowledge have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		X
		If you answered YES to questions 2 thru 4, include documentation or evide that documentation has been previously submitted with this certification for	orm.	
	5.	To your knowledge is the site currently undergoing development?		X
-				Box 2
			YES	NO
	6.	Is the current site use consistent with the use(s) listed below? Restricted-Residential, Commercial, and Industrial	×	
	7.	Are all ICs/ECs in place and functioning as designed?	×	
	IF 1 DE	THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and co C PM regarding the development of a Corrective Measures Work Plain to address	ntact the sthese iss	ues.
		Mittening A. 9/5/1	19	
			And a second sec	

SITE NO. 447030		Bo
Description of	Institutional Controls	
Parcel 39.58-1-9	<u>Owner</u> Natasha Polishchuk	Institutional Control
		Ground Water Use Restriction Landuse Restriction
		Soil Management Plan Monitoring Plan Site Management Plan O&M Plan IC/EC Plan
From ROD:		
groundwater as a sol determined by NYSE	urce of potable or process water, witho OH; and (d) periodic certification of ins	out necessary water quality treatment as stitutional and engineering controls.
Development of a si controis: (a) continue site, including provisi (b) continued operat is occupied; (c) moni site; and (e) provision remedy.	te management plan which will include ad evaluation of the potential for vapor ion for mitigation of any impacts identifi tion of the sub-slab depressurization sy toring of groundwater and soll vapor, (na for the continued proper operation a	the following institutional and engineering intrusion for any buildings developed on the ied; vatem at the Dambrose building whenever i d) identification of any use restrictions on the and maintenance of the components of the
Development of a si controis: (a) continue site, Including provisi (b) continued operati is occupied; (c) moni site; and (e) provision remedy. The Department will determines that this of the institutional contr from the previous ce that nothing has occu- environment, or cons- otherwise approved l	te management plan which will include ad evaluation of the potential for vapor ion for mitigation of any impacts identifi- tion of the sub-slab depressurization sy toring of groundwater and soll vapor, (ins for the continued proper operation a periodically certify the institutional and certification is no longer needed. This to rols and engineering controls put in pla rtification or are compliant with Departs urred that would impair the ability of the attitute a violation or failure to comply w by the Department.	the following institutional and engineering intrusion for any buildings developed on the ied; yatem at the Dambrose building whenever i d) identification of any use restrictions on the and maintenance of the components of the d engineering controls until the Department submittal will: (a) contain certification that ce are still in place and are either unchange ment-approved modifications; and (b) state e control to protect public health or the ith the site management plan unless
Development of a si controls: (a) continue site, Including provisi (b) continued operati is occupled; (c) moni site; and (e) provision remedy. The Department will determines that this the institutional contri from the previous ce that nothing has occu- environment, or cons- otherwise approved I	te management plan which will include ad evaluation of the potential for vapor ion for mitigation of any impacts identifi- tion of the sub-slab depressurization ay itoring of groundwater and soll vapor, (na for the continued proper operation a periodically certify the institutional and certification is no longer needed. This a rols and engineering controls put in pla rtification or are compliant with Departs urred that would impair the ability of the stitute a violation or fallure to comply w by the Department.	the following institutional and engineering intrusion for any buildings developed on the ied; yatem at the Dambrose building whenever i d) identification of any use restrictions on the and maintenance of the components of the d engineering controls until the Department submittal will: (a) contain certification that ce are still in place and are either unchange ment-approved modifications; and (b) state e control to protect public health or the ith the site management plan unless Box
Development of a si controis: (a) continue site, Including provisi (b) continued operal is occupied; (c) moni- site; and (e) provision remedy. The Department will determines that this the institutional contr from the previous ce that nothing has occu- environment, or cons- otherwise approved in Description of	te management plan which will include ad evaluation of the potential for vapor ion for mitigation of any impacts identifi- tion of the sub-slab depressurization sy toring of groundwater and soll vapor, (na for the continued proper operation a periodically certify the institutional and certification is no longer needed. This to ols and engineering controls put in pla rification or are compliant with Departu- urred that would impair the ability of the atitute a violation or fallure to comply w by the Department.	the following institutional and engineering intrusion for any buildings developed on the ied; vatem at the Dambrose building whenever i d) identification of any use restrictions on the and maintenance of the components of the d engineering controls until the Department submittal will: (a) contain certification that ce are still in place and are either unchange ment-approved modifications; and (b) state e control to protect public health or the ith the site management plan unless Box
Development of a si controis: (a) continue site, Including provisi (b) continued operati is occupied; (c) moni site; and (e) provision remedy. The Department will determines that this the institutional contr from the previous ce that nothing has occu- environment, or cons- otherwise approved in Description of Parcel	te management plan which will include ad evaluation of the potential for vapor ion for mitigation of any impacts identifi- tion of the sub-slab depressurization sy toring of groundwater and soll vapor, (in a for the continued proper operation a periodically certify the institutional and certification is no longer needed. This is rols and engineering controls put in pla- ntification or are compliant with Departs urred that would impair the ability of the attute a violation or failure to comply w by the Department.	the following institutional and engineering intrusion for any buildings developed on the ied; vatem at the Dambrose building whenever i d) identification of any use restrictions on the and maintenance of the components of the d engineering controls until the Department submittal will: (a) contain certification that ce are still in place and are either unchangement-approved modifications; and (b) state e control to protect public health or the ith the site management plan unless Box
Development of a si controls: (a) continue site, Including provisi (b) continued operal is occupled; (c) moni site; and (e) provision remedy. The Department will determines that this the institutional contr from the previous ce that nothing has occu- environment, or cons- otherwise approved I Description of Parcel 39.58-1-9	te management plan which will include ad evaluation of the potential for vapor ion for mitigation of any impacts identifi- tion of the sub-slab depressurization sy toring of groundwater and soll vapor, (ins for the continued proper operation a periodically certify the institutional and certification is no longer needed. This to rols and engineering controls put in pla- ntification or are compliant with Departu- urred that would impair the ability of the stitute a violation or fallure to comply w by the Department. Engineering Controls Engineering Controls Over Mitigation	the following institutional and engineering intrusion for any buildings developed on the ied; vatem at the Dambrose building whenever i d) identification of any use restrictions on the and maintenance of the components of the d engineering controls until the Department submittal will: (a) contain certification that ce are still in place and are either unchange ment-approved modifications; and (b) state e control to protect public health or the ith the site management plan unless Box

r

IC/EC CERTIFICATIONS

Qualified Environmental Professional Signature

I certify that all information in Boxes 2 through 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

ENVIROUMEN NEGGY at PRECISION print name 831 Ponte 67. # 38A 2020 (print business address) am certifying as a Qualified Environmental Professional. enre

Signature of Qualified Environmental Professional

Stamp (Required for PE)

Date

Box 6