ATLANTIC TESTING LABORATORIES, LIMITED

Box 29 Canton, N.Y. 13617 (315) 386-4578

> Box 356 Cicero, N.Y. 13039 (315) 699-5281

September 8, 1987

Pole-Lite Industries, Inc. R. D. 1, Box 143 Champlain, NY 12919

Attn: Mr. Antonio J. Gagliardi

Re: NYSDEC Site No. 510004

Pole-Lite Industries Manufacturing Facility

Rt. 11, Champlain, Clinton County

Report No. CTCD648-4-8-87

Gentlemen:

Enclosed is a copy of the report which describes the soil sampling program and includes the results of the environmental anlays is performed on the recovered soil samples. This program was performed after the removal of sawdust stockpiles and local surficial excavation of soils suspected to be contaminated.

Please do not hesitate to contact our office should you have any questions or comments.

Respectfully submitted,

Thomas A. H. Pahler, I.E. Geotechnical Engineer

TAMP/smf

encs.

cc: Mr. Kevin Young

Whiteman, Osterman, Hanna

REPORT OF SUBSURFACE INVESTIGATION AND

PHASE I ENVIRONMENTAL ANALYSIS

POLE-LITE INDUSTRIES, INC. NYSDEC SITE NO. 510004

CHAMPLAIN, NY (Clinton County)

Consent Order Index No. T060386

PREPARED FOR: Mr. Antonio J. Gagliardi Pole-Lite Industries, Inc. R. D. 1, Box 143 Champlain, NY 12919

And

Daniel Steenberge, P.E. NYSDEC Region 5 - Route 86 Raybrook, NY 12977

And

John Iannotti, P.E. NYSDEC, Division of Solid and Hazardous Waste 50 Wolf Road Albany, NY 12233

And

Mr. Joseph Forti NYSDEC, Division of Environmental Enforcement Rm. 618 50 Wolf Road Albany, NY 12233

PREPARED BY: Atlantic Testing Laboratories, Limited P.O. Box 29
Canton, NY 13617

Report No. CD648-4-8-87

September 9, 1987

REPORT OF SUBSURFACE INVESTIGATION AND

PHASE I ENVIRONMENTAL ANALYSIS

POLE-LITE INDUSTRIES, INC. NYSDEC SITE NO. 510004

CHAMPLAIN, NY (Clinton County)

INTRODUCTION

At the request and authorization of Mr. Antonio J. Gagliardi of Pole-Lite Industries, Inc., and in accordance with New York State Department of Environmental Conservation Consent Order No. T060386, a subsurface investigation and environmental analysis was performed during the period of July 1 through August 11, 1987.

The subsurface investigation consisted of advancing soil borings adjacent to the former sawdust stockpiles and barrel storage locations. The investigation took place subsequent to removal and excavation of soil suspected of being contaminated in these areas.

The environmental analysis consisted of the performance of EPA Method 624 with peak identification on soil samples which were representative of the in-situ soils located below the bottom of the sawdust stockpiles and the barrel storage area.

The purpose of this investigation was to determine the nature of the subsurface conditions and determine if there is significant evidence of contamination at each respective test location. The environmental analysis was performed to quantify the suspected contaminants at each boring location and assist in determining whether monitoring wells should be installed for a groundwater analysis.

The soil borings were advanced using 3-1/4" I.D. hollow stem augers in accordance with ASTM D-1452. Soil samples were obtained and standard penetration testing was performed utilizing a 2" O.D. split barrel sampler in accordance with ASTM D-1586.

The soil sampling tools were washed with acetone and hexane, and rinsed with potable water prior to and subsequent to the soil sampling.

The soil boring surface elevations were determined in the field using conventional survey techniques. The elevations are based on an assumed datum using the plant's finished floor as a referenced benchmark of elevation 100.0.

All the soil samples were visually classified in the laboratory by an Intern Geologist using the Burmister Soil Classification System in accordance with ASTM D-2488 (see "Classification of Material" on the boring logs). The soil classifications are based on visual and manual observations.

SITE HISTORY

Pole-Lite Industries, Inc. has been manufacturing tapered aluminum light poles at the referenced facility since 1973. The manufacturing process basically consists of spinning a straight aluminum stock on a lathe-type machine to taper the stock. In the machining process, a heavy weight machine oil is spread on the stock as a lubricant. Once the stock has been tapered, a cleaning solvent (mineral spirits) is used to wash the oil from the finished pole. The excess cleaning solvent and oil drips into a catch trough on the tapering machine. Occasionally, during movement of the finished piece, a small amount of oil and solvent drips onto the floor. Sawdust is spread on the floor to absorb the oil. From 1973 to 1985, the oil soaked sawdust was stored on the premises of Pole-Lite at the two locations shown on the boring location plan. As of March 1986, the sawdust is being stored in covered 55-gallon drums.

In other portions of the manufacturing process, such as welding of bases and arms to poles, another type of cleaning solvent is used. The solvent used for this process is 1, 1, 1 trichloroethane. The trichloroethane is applied to areas to be welded with sponges then spoiled into 5-gallon pails. The used trichloroethane is currently stored in 55-gallon drums along with the used lubricating oil and mineral spirits. From the period of 1973 to 1984, the majority of the used solvents and oils were taken off the site by employees and local farmers, and incinerated, the balance was stored on-site. Occasional spillage of this stored material is suspected.

In 1984, Pole-Lite began storing the used solvent in 55-gallon drums. In 1985, the supplier of the solvents suggested that Pole-Lite Industries register with the EPA and consult the EPA concerning proper handling and disposal of the waste products.

During the Spring of 1985, Pole-Lite obtained an EPA number (NYD062037726). The NYSDEC inspected the facility on May 30, 1985, and on June 21, 1985, an official report (Oil spill Report No. 850955) was made noting several deficiencies concerning the storage of waste products. The report also requested five primary clean-up measures.

Upon receipt of the report, Pole-Lite Industries contracted New England Marine Contractors, Inc. (NEMC) of Williston, Vermont, to perform the requested work. NEMC is a registered clean-up contractor, approved by the NYSDEC, and was recommended to Pole-Lite Industries by the local (Region 5) NYSDEC personnel.

After extensive and lengthy delays, NEMC reported the results of a preliminary sampling program to the NYSDEC office on September 30, 1985. This submission is contained in Attachment No. 3 of our formal Proposed Investigation Outline. These test results verified low level contamination of

the sawdust piles and surface soils. On October 21, 1985, the NYSDEC requested a groundwater investigation. Pole-Lite Industries engaged NEMC to perform the required investigation in early November 1985. Again, after length delays associated with NEMC, the NYSDEC requested Pole-Lite to proceed with the required investigation on February 14, 1986.

Upon receipt of this request, Pole-Lite contracted Atlantic Testing Laboratories, Limited (ATL) to proceed with the required investigation.

As the first step of the investigation, ATL sampled the two sawdust piles and the surface soils in the vicinity of the drum storage area on March 24, 1986. Duplicate samples were collected at each location and submitted to two separate laboratories (NYSDEC approved) for analysis. The report of this investigation was contained in Attachment No. 4 of our formal Proposed Investigation Outline, a copy of which is included in Appendix E.

Pole-lite has since been working with DEC and Atlantic Testing Laboratories, Limited, in order to conform with the regulatory requirements.

In March 1986, Pole-Lite contacted Safety Kleen, Inc. of Barrie, Vermont to properly dispose of the used solvents and oil. While investigating Safety Kleen's permits with the DEC in Raybrook, NY, Pole-Lite was informed by the DEC that a RCRA inspection would be performed.

The inspection was performed on March 14, 1986, with a report issued on March 27, 1986. The inspection was two-fold; one being an update on the previous year's oil spill (No. 850955), and the other a RCRA report.

The RCRA documented some deficiencies, namely, the storage of used solvents and oils (sixty 55-gallon drums). In compliance, the barrels were removed from the site within 60 days by Safety Kleen.

In June 1987, Pole-Lite contacted Clean Harbors, Inc., a hazardous waste contractor, for the removal of the sawdust piles.

During the period of June 22-26, 1987, the sawdust piles and surficial soils suspected of being contaminated were removed from the site by Clean Harbors, Inc.

During the period of July 1 through August 11, 1987, a soil sampling program and environmental analysis was performed by ATL as outlined in Phase I, Item No. 4 in the Scope of Services of ATL's formal Proposed Investigation Outline dated September 19, 1986. The results of this investigation are included herein.

SUBSURFACE CONDITIONS

Three soil borings were advanced adjacent to the sawdust stockpile locations and barrel storage area. These borings ranged from 6 ft to approximately 11.5 ft in depth. The sampling interval was continuous for each boring.

Boring B-7 was advanced near the northwest former sawdust stockpile. There was approximately six inches of surficial soil removed from this particular site, therefore, the soil sampling began six inches below the original surface. The soils generally consisted of silty clays and clayey silts in a stiff consistency. Auger refusal was encountered 5 ft below the surface, so the boring was relocated approximately 4 ft in a southerly direction. Auger refusal was encountered 6 ft below the surface at this location. Saturated soil was noted from 5 to 6 ft depth range directly overlying what is felt to be bedrock, but no water was noted in the bore hole.

Boring B-8 is representative of the soils in the vicinity of the barrel storage area. The boring was carried to 11.7 ft below grade. Soil sampling began at 5 ft below the surface which was at the same elevation as the bottom of the adjacent soil excavation.

The soils were found to be a relatively compact gravelly, silty sand typical of a glacial till. The soils were noted to be saturated approximately 7 ft below grade but no water was evident in the bore hole.

Boring B-9 was advanced adjacent to the northeast sawdust stockpile excavation. The excavation was approximately 5 ft in depth, therefore, soil sampling began 5 ft below the surface. The boring was carried to 11 ft where it was terminated. The soil encountered was representative of a brown glacial till and was noted to be saturated 7 ft below the surface.

There were no noted groundwater observations during this investigation but based on the saturated soil samples, the groundwater table is expected to exist at 7 to 10 ft below the surface.

CHEMICAL ANALYSIS

Soil samples were analyzed by Aquatec Environmental Services, using EPA Method 624 with peak identification. The laboratory analytical report is included in Appendix D.

The B-7 samples obtained in the vicinity of the former northwest sawdust stockpile, which are representative of 0.5-2.0 ft, 2.0-4.0 ft, and 5.0-6.0 ft depth ranges, did not contain any detectable, quantifiable amounts of volatile organic compounds. Similarly, the B-9 samples obtained in the vicinity of the northeast sawdust stockpile, which are representative of 5.0-7.0 ft, 7.0-9.0 ft, and 9.0-11.0 ft, did not contain any detectable, quantifiable amounts of volatile organic compounds.

The B-8 samples obtained in the vicinity of the barrel storage area are representative of 5.0-7.0 ft, 7.0-7.7 ft, 8.0-10.0 ft, and 10.0-11.7 ft depth ranges. The results are summarized on Table 1. 1,1,1-trichloroethane. 1,1-dichloroethane and xylene, acetone and methylene chloride were detected at the

sampling location B-8 in varying depths at low concentrations. All of the concentrations were below 0.5 parts per million. In general, the concentrations decreased with depth.

Other volatile compounds not on the hazardous substance list of Appendix 23 of 6 NYCRR Part 371 were identified by relative peak locations. These chemicals are suspected components of the machine oil previously used and stored in barrels near the vicinity of B-8 sampling location.

TABLE 1
Volatile Organic Compounds in ug/l

B-8	1,1,1,-trichlorethane	1,1-dichloroethane	xylenes	acetone	methylene chloride
5.0-7.0	77	5	5	390c ¹	LCB ⁴
7.0-7.7	 140	39	96	ND3	LCB ⁴
8.0-10.0	 14	ND ³	3ت ²	58	15
10.0-11.7	 29	ND ³	ND ³	10c ¹	llc ^l
	 				l

- 1. "C" means the results have been corrected for the presence of the compound in the blank.
- 2. "J" means an estimated value. The mass spectrum indicates the presence of the compound, but the calculated result is less than the reliable detection limit for this compound.
- 3. "ND" means not detected.
- 4. "LCB" means compound was found but at low concentrations, comparable to that in the blank. Quantitation is not possible.

Acetone was present in several of the soil samples, but its significance is questionable because acetone was one of two solvents used in the field to clean equipment in order to prevent cross-contamination during sampling. The use of acetone and hexane as solvents was recommended by Mr. Steenberge because these solvents were typically not used in Pole-Lite's manufacturing process.

CONCLUSION

This program quantifies the contaminant concentrations within the soil matrices at each suspected local contamination site within the premises of Pole-Lite Industries. The results of the analysis indicate that the contaminant concentrations were found to be low.

At the B-7 sampling location (i.e., the former northwest sawdust pile) and at the B-9 sampling location (i.e., the former northeast sawdust pile), no contaminants were detected at levels of concern. The sampling program has demonstrated that the initial phase of the remedial program was successful in eliminating the source of contaminants. We do not feel there is a need to conduct any additional investigation or remedial work at these locations.

At the B-8 sampling location (i.e., the drum storage area), the concentration of contaminants detected are felt to be at levels that are not likely to pose significant environmental concern. With the exception of acetone (which was used in the field to clean sampling equipment), the highest concentration of total volatile organics were noted between 5.0 to 7.0 ft and 7.0 to 7.7 ft, where the concentrations were found to be 0.087 and 0.275 parts per million, respectively. At the lower depths (i.e., 8.0 to 10.0 ft and 10.0 to 11.6 ft), the total volatile organic chemical concentrations decreased to 0.017 and 0.029 parts per million, respectively. Based on the results of the environmental analysis and the relative size of the drum storage area (approximately 30-40 ft in diameter), we feel that there is no need to pursue

the balance of the proposed investigation (i.e., monitoring well installation).

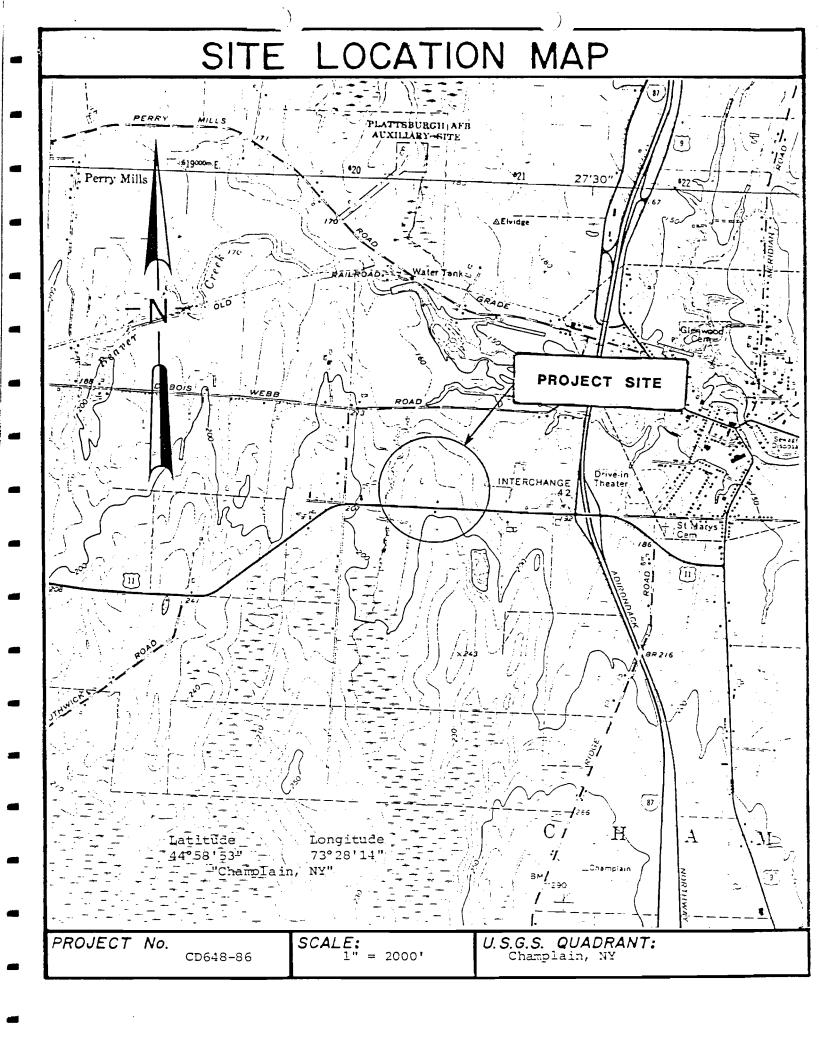
In lieu of the monitoring well installation, we recommend that Pole-Lite Industries sample its drilled well and other water supply wells in the vicinity of the site on a semi-annual or annual basis over an extended period of time and analyze the water samples using EPA method 624 (with peak identification) for aqueous solutions.

Included are a Site Location Map, Boring Location Plan, soil boring logs, Environmental Report and Sawdust Sampling Report.

Prepared by:

Thomas A. H. Pahler, I.E.

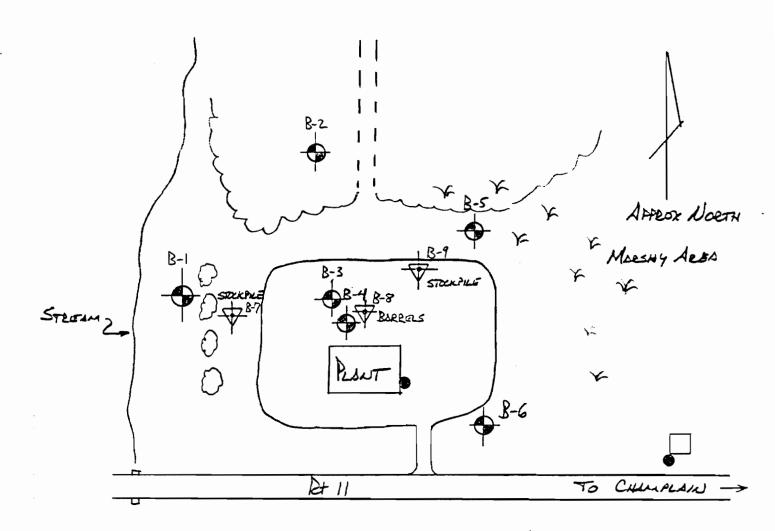
Geotechnical Engineer


Chemistry Consultation:

Marijean B. Remington'

/dh

APPENDIX A


SITE LOCATION MAP

APPENDIX B

BORING LOCATION PLAN

ATLANTIC	TESTING	LABORATORIES,	Limited	3-10-8		
JOB NO. CD 648-86	SUBJECT	ADSETS PORTUGICAL	Ive.	BY TAKE	ZIC CHK,D	APPROV'D

· Water West IN BERROCK AQUIFER

V SUSPECTED ALEX

(OBSERVETON NEW)

SOIL SAMPING (GFT IN DOPPN)

APPENDIX C

BORING LOGS

ATLANTIC TESTING LABORATORIES, Limited

				SU	BSU	RFACE IN	VEST	GATION	Re	eport No. CD64	<u>8-1-7-8</u>	37
CL	ENT.		e-Lite :		es,	Inc.	ι	Location of E	Boring _	See Plan		
PF	OJEC	T S	oill #8	5 - 0955								
•••	.0020	C	hamplai	n Manufa	ctur	ing Facility	у	Date, start _	7/1/87	Finish	7/1/87	7
Во	ring No	B-	7	Sheet1	of	1		_		er Observations	0	
	Cas	ing H	mmer		-	ler Hammer		Date None Obs	Time erved	Depth -	Casing (31 ——
			lbs			40 !bs.						
F	ail	_	in			30 in						
Gr	ound E	3ev	38.2			3-1/4" I.I	. -					
					S. Auge	BLOWS ON		CLASS	IFICATIO	N OF MATER	IAL	Z
Ŧ	CASING BLOWS/FT.	5	DEP		, i		# D	f-fine		and 35 some 20	-50 % -35 %	STANDARD PENETRATION NUMBER
DEPTH	CASING LOWB/!	BAMPLE NO.	SAMP	L E	TYPE	PER 6"_ SAMPLER	DEPTH OF CHANGE	m-medi		little — I O trace — O	-20%	BTANDAR Enetrat Number
		<u> </u>	FROM	TO		aa <u>*</u>		c -coors			-10 %	8 E Z
			0.0	0.5		VEL			Soils a		c	
	<u> </u>	1	0.5	2.0	SS	6			LAY; and et, plas	SILT; little	e I	
	R					8	1	SAND (W	et, pras	CIC		
	AUGE	2	2.0	4.0	ss	8]	Similar	Soil			
	AU					11						
		├				17						
		 	4.0	5.0	SS	64		No reco	very, re	fusal due to		
	/					62				ible bedrock		
		-					-		efusal a 4 ft sou	t 5 ft, moved	3	
								borring	4 IL SOU	LLII		_
		-	0.0	5.0	AUG	ER						
	~	3	5.0	6.0	SS	12	1	Brown S	ILT; lit	tle mf SAND;	little	
	됦					24]			RAVEL (satura		
	ΑŪ	ļ							ely plas		.	
	\forall						1			it 6 ft there: sinated at 6 :		
]	Doring	was corn	illiacca ac o		
		_										
		+					1					
]					
		-										
		ļ										
							-					
							1					
							<u> </u>					

U - UNDIS, SHELBY TUBE

DRILLERS _____Randy Todd, John Saarinen

U - UNDIS, SHELBY TUBE
P - PISTON TYPE SAMPLE

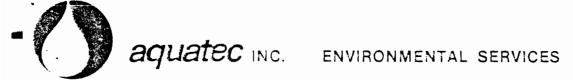
ATLANTIC TESTING LABORATORIES, Limited

				50	RSC	IRFACE IN	VES	HIGATION F	Report No. CD648	<u> </u>	_
		Cha	mmlain	Industr	ies,	Inc.		_Location of Boring _	See Plan		_
PR	AOJEC:	- Spi	11 #85-0	0955							
Fiv	.0020	Char	mplain I	Manufact	urir	g Facility			Finish	7/1/87	_
Вог	ring No	В-	- 8	Sheet	<u>1</u> _o	1		Ground Wo Date Time None Observed	ater Observations Depth	Casing a	t
	Cas	ing Ho	ımmer			ler Hammer	_	None Observed			
W	/t		lbs			<u>.0</u> lbs.		<u>-</u>			
F	ail —		in	. Fal	۱ <u> </u>	in.	_				
Gr	ound E	lev	99.1	Cas	sing	3-1/4" I.D	. –				_
					S. Auge	BLOWS ON		CLASSIFICATIO	ON OF MATER	RIAL	ž
	ׅ֓֞֝֞֜֜֝֡֡֝֜֝֡֓֓֓֓֓֓֓֡֡֝֟֝֓֓֓֓֡֡֡֡֡֝֟֜֜֓֓֓֓֓֡֡֡֡֡֡֡֡֡֡	w	DEP				1 .	f-fine	ond − 35	5 - 50 % 0 - 35 %	S T
DEPTH	CASING BLOWS/FT.	SAMPLE NO.	SAMP		TYPE SAMPLE	PER 6"	DEPTH	m -medium	little — I (0 - 35 %	STANDARD PENETRATION NUMBER
	<u> </u>		FROM	TO		00 2"	<u>`</u>	c -coarse	froce — (0-10%	8 H Z
	· ,		0.0	4.0	AU	GER		GRAVEL with Cob	bles and Boul	ders	
]				
	i	1	5.0	7.0	SS	10		Brown cmf SAND;		_	
	1					16		mf GRAVEL; trac		—	
						16	ł	very slightly p	lastic) Glaci	al Till	
	<u> </u>	2	7.0	7.7	SS	46	1	Similar Soils;	and mf GRAVET		
	UGER		7.0	/ · /	33	100/2-1/	2"	(saturated) Sam		1	
	4						Ī	cobbles			
			7.7	8.0	AUG	ER				Ţ	_
	1										
	i	3	8.0	10.0	SS			Soil similar to	sample No. 1		
	i					25		(saturated)		Ļ	
	:				-	34	-				
	4	4	10.0	11.7	ss	1.7	1	Similar Soils		[
					-	25	1			}	
					1	45	1			;	
						50/2	†			[
							<u> </u>	Boring Terminat	ed at 11.7'	1	
		_			-		1	NOTE: Augered f	irst 4 ft due	to E	
					-		1	adjacent excava			
							1				
							1				
								1			
								:		1	
					-			i		!	
					-	:	-	1		-	
							1	1		ř	
						1	†				
										Ī	
										Ĭ	
	ļ					1					

DRILLERS Randy Todd, John Saarinen

ATLANTIC TESTING LABORATORIES, Limited

				SU	BSU	IRFACE IN	VEST	IGATION F	Report No. <u>CD648</u>	-1-7-87		
CL	IENT		e-Lite molain,		ies,	Inc.		Location of Boring	See Plan			
PR	OJEC	r S	pill #8	5-0955					_		—	
• •	.0020	C	hamplai	n Manufa	ctur	ing Facility	v	Date, start 7/1/8	Finish	7/1/87	_	
Во	-			Sheet 1		1 ler Hammer		Ground Wo Date Time None Observed	Depth	Casing at	_	
W		-	lbs	. Wt		140 lbs.						
F	all		in	n. Fai	ı	in.						
Gr	ound E	lev.	97.8				_				_	
				н. 9	S. Auge	3-1/4" I.I	·					
	T.		DEP	тн		BLOWS ON		CLASSIFICATIO				
DEPTH	CASING BLOWS/FT.	SAMPLE NO.	OI SAMP		TYPE SAMPLE	SAMPLER PER 6"	DEPTH OF HANGE	f-fine m-medium	and — 35 some — 20 little — 10		PENETRATION NUMBER	
<u> </u>	2 2	8	FROM	то	si	SAMPLER	2 2	c -coarse	trace — C	-10%	PE'S	
			0.0	5.0	AUG			GRAVEL with Cob	bles and Boul	ders		
	!	1	5.0	7.0	SS	9		Brown cmf SAND;				
	24			-		12			cmf GRAVEL (wet, very stic) Glacial Till			
	UGER					18						
	A	2	7.0	9.0	SS			Similar Soil; s	some mf GRAVEL			
	 			+		26 26		(saturated)				
						21						
	1	3	9.0	11.0	ss			Brown cmf GRAVE				
-						22		SILT; trace CLA slightly plasti				
						27				_		
		_						Boring Terminat	ed at 11'			
										<u> </u>		
								NOTE: Augered fadjacent excava				
									con acpen of	J 10. E		
			<u> </u>				1			-		
										-		
				-						_		
				-						-		
				!			1					
				·						-		
			To the state of th							-		
				1								
			_	-						-		
										-		


SS-SPLIT SPOON SAMPLE

Randy Todd, John Saarinen DRILLERS _

P - PISTON TYPE SAMPLE

APPENDIX D

ENVIRONMENTAL REPORT

75 GREEN MOUNTAIN DRIVE, SOUTH BURLINGTON, VERMONT 05403, TELEPHONE (802) 658-1074

July 24, 1987

Mr. Tom Pahler Atlantic Testing Laboratories, Ltd. P.O. Box 29 Canton, NY 13617

Project 87400, ETR 10861

The results of the analysis by gas chromatography/mass spectrometry of ten soil samples received by Aquatec on July 6, 1987 are enclosed.

R. Maron Muller

R. Mason McNeer Chemist

RMM/kjn

Enclosures

75 Green Mountain Drive, So. Burlington, VT 35403 TEL, 802 658-1074

ANGARANGA HARANA

Date: 24 July 1987 Aquatec Lab No.: 72257

ETR No.: 10861

Sample Received On: 6 July 1987

Sample Identification: Atlantic Testing Laboratories, Ltd., soil sample

CD648, labeled B-7, S-1, elevation 0.5-2.0

Volatile Organic Compounds in ug/kgwet

benzene	5	U
carbon tetrachloride	5	Ū
chlorobenzene	5	Ū
1,2-dichloroethane	5	Ū
1,1,1-trichloroethane	5	U
1,1-dichloroethane	5	Ū
1,1,2-trichloroethane	5	U
1,1,2,2-tetrachloroethane	5	Ū
chlorcethane	10	Ü
2-chloroethyl vinyl ether	10	U
chloroform	5	Ū
1,1-dichloroethene	5	Ū
1,2-dichloroethene	5	Ū
1,2-dichloropropane	5	Ū
trans-1,3-dichloropropene	5	Ü
cis-1,3-dichloropropene	5	U
ethylbenzene	5	U
 		

methylene chloride	LCB		
chloromethane	_	10	Ū
bromomethane		10	Ū
bromoform		5	U
bromodichloromethane		5	U
dibromochloromethane		5	Ū
tetrachloroethene		5	Ū
toluene		5	Ū
trichloroethene		5	Ū
vinyl chloride		10	Ū
acetone		10	U
2-butanone		10	Ū
carbon disulfide		5	U
2-hexanone		10	U
4-methyl-2-pentanone	LCB		
styrene		5	Ū
vinyl acetate		10	Ū
total xylenes		5	Ū

No other volatile organic compounds were found in reportable concentrations.

Key to the letters used to qualify the results of the analysis:

- U The compound was analyzed for but not detected. The number is the detection limit for the compound.
- LCB Compound was found but at low concentration, comparable to that in the blank. Quantitation is not possible.
- J An estimated value. The mass spectrum indicates the presence of the compound, but the calculated result is less than the reliable detection limit for this compound.
- that in the blank. Quantitation C The result has been corrected is not possible. for the presence of the compound in the blank.

75 Green Mountain Drive, So. Burnington, VT 35403 TEL: 802 658-1074

Date: 24 July 1987 Aquatec Lab No.: 72253

ETR No.: 10861

Sample Received On: 6 July 1987

Sample Identification: Atlantic Testing Laboratories, Ltd., soil sample

CD643, labeled B-7, S-2, elevation 2.0-4.0

Volatile Organic Compounds in ug/l

benzene	5	U
carbon tetrachloride	5	Ū
chlorobenzene	5	Ü
1,2-dichloroethane	5	U
1,1,1-trichloroethane	- 5	Ū
1,1-dichloroethane	5	Ū
1,1,2-trichloroethane	5	U
1,1,2,2-tetrachloroethane	5	Ū
chlorcethane	10	Ü
2-chloroethyl vinyl ether	10	Ū
chloroform	5	Ū
1,1-dichloroethene	5	Ü
1,2-dichloroethene	5	Ū
1,2-dichloropropane	5	Ū
trans-1,3-dichloropropene	5	Ū
cis-1,3-dichloropropene	5	Ū
ethylbenzene	5	Ū
		

methylene chloride L	CB	
chloromethane	10	U C
bromomethane	10	U
bromoform		5 U
bromodichloromethane		Ū
dibromochloromethane		5 <u>U</u>
tetrachloroethene		5 U
toluene	ć	วี ปี
trichlorœthene		5 U
vinyl chloride	10	U C
acetone	10	<u>U</u>
2-butanone	10	Ū C
carbon disulfide		5 U
2-hexanone	10	U C
4-methy1-2-pentanone	10	U C
styrene		Ū
vinyl acetate	10	U C
total xylenes		5 U

No other volatile organic compounds were found in reportable concentrations.

Key to the letters used to qualify the results of the analysis:

- U The compound was analyzed for but not detected. The number is the detection limit for the compound.
- LC3 Compound was found but at low concentration, comparable to that in the blank. Quantitation C - The result has been corrected is not possible.
- J An estimated value. The mass spectrum indicates the presence of the compound, but the calculated result is less than the reliable detection limit for this compound.
 - for the presence of the compound in the blank.

75 Green Mountain Drive, So. Burlington, VT 05403 TEL, 802 r58-1074

Date: 24 July 1987

Aquatec Lab No.: 72266

ETR No.: 10861

Sample Received On: 6 July 1987

Sample Identification: Atlantic Testing Laboratories, Ltd., soil sample

CD648, labeled B-9, S-3, elevation 9.0-11.0

Volatile Organic Compounds in ug/kgwet

benzene	5	U
carbon tetrachloride	5	Ū
chlorobenzene	5	U
1,2-dichloroethane	5	Ū
1,1,1-trichloroethane	5	Ū
1,1-dichloroethane	5	U
1,1,2-trichloroethane	5	U
1,1,2,2-tetrachloroethane	5	Ū
chloroethane	10	Ü
2-chloroethyl vinyl ether	10	Ū
chloroform	5	U
1,1-dichlorcethene	5	Ū
1,2-dichloroethene	5	U
1,2-dichloropropane	5	Ü
trans-1,3-dichloropropene	5	Ū
cis-1,3-dichloropropene	5	Ü
ethylbenzene	5	Ü

methylene chloride	LCB		
chloromethane		10	Ū
bromomethane		10	U
bramoform		5	U
bromodichloromethane		5	Ü
dibromochloromethane		5	Ü
tetrachloroethene		5	U
toluene		5	U
trichloroethene		5	Ū
vinyl chloride		10	U
acetone	LCB		
2-butanone		10	U
carbon disulfide		5	U
2-hexanone		10	U
4-methyl-2-pentanone		10	U
styrene		- 5	Ū
vinyl acetate		10	Ū
total xylenes		5	U

No other volatile organic compounds were found in reportable concentrations.

Key to the letters used to qualify the results of the analysis:

- U The compound was analyzed for but not detected. The number is the detection limit for the compound.
- LCB Compound was found but at low concentration, comparable to that in the blank. Quantitation is not possible.
- J An estimated value. The mass spectrum indicates the presence of the compound, but the calculated result is less than the reliable detection limit for this compound.
- that in the blank. Quantitation C The result has been corrected for the presence of the compound in the blank.

75 Green Mountain Drive, So. Burlington, VT 05403 TEL, 902 658-1074

MANATON DESTINA

Date: 24 July 1987 Aquatec Lab No.: 72265

ETR 10: 10361

Sample Received On: 6 July 1987

Sample Identification: Atlantic Testing Laboratories, Ltd., soil sample

CD648, labeled B-9, S-2, elevation 7.0-9.0

Volatile Organic Compounds in ug/kgwet

benzene	5	U
carbon tetrachloride	5	Ū
chlorobenzene	5	Ū
1,2-dichloroethane	5	U
1,1,1-trichloroethane	5	Ū
1,1-dichloroethane	5	IJ
1,1,2-trichloroethane	5	Ū
1,1,2,2-tetrachloroethane	5	Ū
chloroethane	10	U
2-chloroethyl vinyl ether	10	U
chloroform	5	U
1,1-dichloroethene	5	Ū
1,2-dichloroethene	5	Ü
1,2-dichloropropane	5	Ū
trans-1,3-dichloropropene	5	U
cis-1,3-dichloropropene	5	Ū
ethylbenzene	5	U

methylene chloride	LCB		
chloromethane		10	Ū
bromomethane		10	Ū
bromoform		5	Ū
bromodichloromethane		5	Ū
dibromochloromethane		5	U
tetrachloroethene		5	U
toluene		5	Ū
trichloroethene		5	U
vinyl chloride		10	Ū
acetone	LCB		
2-butanone		10	U
carbon disulfide		5	Ū
2-hexanone		10	U
4-methyl-2-pentanone		10	Ü
styrene		5	U
vinyl acetate		10	Ū
total xylenes		5	U

No other volatile organic compounds were found in reportable concentrations.

Key to the letters used to qualify the results of the analysis:

- U The compound was analyzed for but not detected. The number is the detection limit for the compound.
- LCB Compound was found but at low concentration, comparable to that in the blank. Quantitation is not possible.
- J An estimated value. The mass spectrum indicates the presence of the compound, but the calculated result is less than the reliable detection limit for this compound.
- that in the blank. Quantitation C The result has been corrected for the presence of the compound in the blank.

75 Green Mountain Drive, So. Burlington, VT 05403 TEL, 802 658-1074

ANALYSISTA CLICITA

Date: 24 July 1987

Aquatec Lab No.: 72264

ETR No.: 10861

Sample Received On: 6 July 1987

Sample Identification: Atlantic Testing Laboratories, Ltd., soil sample

CD643, labeled 3-9, S-1, elevation 5.0-7.0

Volatile Organic Compounds in ug/kgwet

benzene	5	U
carbon tetrachloride	5	U
chlorobenzene	5	Ū
1,2-dichloroethane	5	U
1,1,1-trichloroethane	5	Ū
1,1-dichloroethane	5	Ū
1,1,2-trichloroethane	5	Ü
1,1,2,2-tetrachloroethane	5	U
chloroethane	10	U
2-chloroethyl vinyl ether	10	Ū
chloroform	5	U
1,1-dichloroethene	5	Ū
1,2-dichloroethene	5	U
1,2-dichloropropane	5	U
trans-1,3-dichloropropene	5	Ü
cis-1,3-dichloropropene	5	Ū
ethylbenzene	5	U

methylene chloride	8 C		
chloramethane		10	Ū
bromomethane		10	Ū
bromoform		5	Ū
bromodichloromethane		5	U
dibromochloromethane		5	U
tetrachloroethene		5	U
toluene		5	U
trichloroethene		5	U
vinyl chloride		10	Ū
acetone	LCB		
2-butanone		10	Ū
carbon disulfide		5	U
2-hexanone		10	U
4-methy1-2-pentanone		10	Ū
styrene		5	U
vinyl acetate		10	U
total xylenes		5	Ū

Wo other volatile organic compounds were found in reportable concentrations.

Key to the letters used to qualify the results of the analysis:

- U The compound was analyzed for but not detected. The number is the detection limit for the compound.
- LCB Compound was found but at low concentration, comparable to that in the blank. Quantitation is not possible.
- J An estimated value. The mass spectrum indicates the presence of the compound, but the calculated result is less than the reliable detection limit for this compound.
- that in the blank. Quantitation C The result has been corrected is not possible. for the presence of the compound in the blank.

75 Green Mountain Drive, So. Burlington, VT 15403 TEL: 802 658-1074

Date: 24 July 1987 Aquatec Lab No.: 72263

ETR No.: 10861

Sample Received On: 6 July 1987

Sample Identification: Atlantic Testing Laboratories, Ltd., soil sample

CD648, labeled B-8, S-4, elevation 10.0-11.7

Volatile Organic Compounds in ug/kgwet

benzene		5	U
carbon tetrachloride		5	U
chlorobenzene		5	Ū
1,2-dichloroethane		5	Ū
1,1,1-trichloroethane	29		
1,1-dichloroethane		5	U
1,1,2-trichloroethane		5	Ū
1,1,2,2-tetrachloroethane		5	Ū
chloroethane		10	Ū
2-chloroethyl vinyl ether		10	Ū
chloroform		5	U
1,1-dichloroethene		5	Ū
1,2-dichloroethene		5	Ū
1,2-dichloropropane		5	IJ
trans-1,3-dichloropropene		5	Ū
cis-1,3-dichloropropene		5	Ū
ethylbenzene		5	Ū

methylene chloride	11 C		
chloromethane		10	U
bromomethane		10	Ū
bromoform		5	U
bromodichloromethane		5	Ū
dibromochloromethane		5	Ü
tetrachloroethene	LCB		
toluene		5	Ū
trichloroethene		5	U
vinyl chloride		10	U
acetone	10 C		
2-butanone		10	U
carbon disulfide		5	Ū
2-hexanone		10	Ū
4-methy1-2-pentanone		10	U
styrene		5	U
vinyl acetate		10	Ū
total xylenes		5	Ü

No other volatile organic compounds were found in reportable concentrations.

Key to the letters used to qualify the results of the analysis:

- U The compound was analyzed for but not detected. The number is the detection limit for the compound.
- LC3 Compound was found but at low concentration, comparable to that in the blank. Quantitation is not possible.
- J An estimated value. The mass spectrum indicates the presence of the compound, but the calculated result is less than the reliable detection limit for this compound.
- that in the blank. Quantitation C The result has been corrected is not possible. for the presence of the compound in the blank.

75 Green Mountain Drive, So. Burlington, VT 05403 TEL: 802 658-1074

Date: 24 July 1987

Aquatec Lab No.: 72262

ETR No.: 10861

Sample Received On: 6 July 1987

Sample Identification: Atlantic Testing Laboratories, Ltd., soil

sample CD648, labeled B-8, S-3, elevation

3.0-10.0

Volatile Compounds not on the Hazardous Substances List

Scan No.*	<u>Name</u>	Estimated Conc.** (ug/kg _{wet})
324	hexane	2
466	1,1,3-trimethylcyclohexane	6
471	octahydroindene	8
4 91	an ethyl-methylcyclohexane	7
531	a C, substituted cyclohexane	29
557	a C ₄ substituted cyclohexane	24
581	a C ₁₁ unsaturated hydrocarbon	11
609	decahydronaphthalene	10

- * Indicates relative location of chromatographic peak in a total of 700 scans in the chromatogram, at three seconds per scan.
- ** Concentration estimated from ratio of Enhanced Reconstructed Ion Chromatogram (ERIC) of compound to ERIC of nearest internal standard, assuming a response factor of 1.

75 Green Mountain Drive, So. Burlington, VT 05403 TEL: 802 n58-1074

Date: 24 July 1987 Aquatec Lab No.: 72262

ETR No.: 10861

Sample Received On: 6 July 1987

Sample Identification: Atlantic Testing Laboratories, Ltd., soil sample

CD648, labeled B-8, S-3, elevation 8.0-10.0

Volatile Organic Compounds in ug/kgwet

benzene		5	U
carbon tetrachloride		5	U
chlorobenzene		5	Ū
1,2-dichloroethane		5	Ū
1,1,1-trichloroethane	14		
1,1-dichlorcethane		5	Ū
1,1,2-trichloroethane		5	Ū
1,1,2,2-tetrachloroethane		5	Ū
chloroethane		10	Ū
2-chloroethyl vinyl ether		10	U
chloroform		5	U
1,1-dichloroethene		5	Ū
1,2-dichloroethene		5	Ū
1,2-dichloropropane		5	Ü
trans-1,3-dichloropropene		5	U
cis-1,3-dichloropropene		5	U
ethylbenzene		5	U

methylene chloride	15 C			
chloromethane			10	U
bromomethane			10	U
bromoform			5	Ū
bromodichloromethane			5	U
dibromochloromethane			5	Ū
tetrachloroethene	LCB			
toluene			5	U
trichloroethene			5	U
vinyl chloride			10	Ū
acetone	58	C		
2-butanone			10	U
carbon disulfide			5	U
2-hexanone			10	U
4-methyl-2-pentanone			10	Ū
styrene			5	Ū
vinyl acetate			10	Ū
total xylenes	3	J		

See enclosed report of other volatile organic compounds found.

Key to the letters used to qualify the results of the analysis:

- U The compound was analyzed for but not detected. The number is the detection limit for the compound.
- LC3 Compound was found but at low concentration, comparable to that in the blank. Quantitation is not possible.
- J An estimated value. The mass spectrum indicates the presence of the compound, but the calculated result is less than the reliable detection limit for this compound.
- that in the blank. Quantitation C The result has been corrected for the presence of the compound in the blank.

75 Green Mountain Drive, So. Burlington, VT 05403 TEL: 802 658-1074

Date: 24 July 1987 Aquatec Lab No.: 72261

ETR No.: 10861

Sample Received On: 6 July 1987

Sample Identification: Atlantic Testing Laboratories, Ltd., soil

sample CD648, labeled B-8, S-2, elevation

7.0-7.7

Volatile Compounds not on the Hazardous Substances List

Scan No.*	Name	Estimated Conc.** (ug/kg _{wet})
323	hexane	12
376	cis-octahydropentalene	14
407	a dimethylcyclohexane	11
434		73
466	a C ₈ H ₁₆ hydrocarbon 1,1,3-trimethylcyclohexane	92
470	octahydroindene	140
491	an ethyl-methylcyclohexane	90
503	a C ₂ substituted cyclohexane	63
530	a C ₃ substituted cyclohexane	330
565	a hydrocarbon	36
606	a C ₂ substituted benzene	79
621	nonane	230
645	a C ₄ substituted benzene	85

- * Indicates relative location of chromatographic peak in a total of 700 scans in the chromatogram, at three seconds per scan.
- ** Concentration estimated from ratio of Enhanced Reconstructed Ion Chromatogram (ERIC) of compound to ERIC of nearest internal standard, assuming a response factor of 1.

75 Green Mountain Drive, So. Burlington, VT 05403 TEL, 802 658-1074

ANTANATIONAL PARTOTE

Date: 24 July 1987 Aquatec Lab No.: 72261

ETR No.: 10861

Sample Received On: 6 July 1987

Sample Identification: Atlantic Testing Laboratories, Ltd., soil sample

CD648, labeled B-8, S-2, elevation 7.0-7.7

Volatile Organic Compounds in ug/kgwet

benzene	5	U
carbon tetrachloride	5	Ū
chlorobenzene	5	Ū
1,2-dichloroethane	5	Ü
1,1,1-trichloroethane 140		
1,1-dichloroethane 39		
1,1,2-trichloroethane	5	Ū
1,1,2,2-tetrachloroethane	5	Ū
chloroethane	10	Ū
2-chloroethyl vinyl ether	10	Ū
chloroform	5	Ū
l,l-dichloroethene	5	U
1,2-dichloroethene	5	Ū
1,2-dichloropropane	5	Ü
trans-1,3-dichloropropene	5	U
cis-1,3-dichloropropene	5	U
ethylbenzene	5	Ü

methylene chloride	LCB		
chloromethane		10	Ū
bromomethane		10	Ū
bromoform		5	Ū
bromodichloromethane		5	Ū
dibromochloromethane		5	Ü
tetrachloroethene		5	Ū
toluene		5	U
trichloroethene		5	Ū
vinyl chloride		10	Ü
acetone		10	Ū
2-butanone		10	Ū
carbon disulfide		5	U
2-hexanone		10	Ū
4-methyl-2-pentanone		10	U
styrene		5	Ü
vinyl acetate		10	Ū
total xylenes	96		

See enclosed report of other volatile organic compounds found.

Key to the letters used to qualify the results of the analysis:

- U The compound was analyzed for but not detected. The number is the detection limit for the compound.
- LCB Compound was found but at low concentration, comparable to that in the blank. Quantitation is not possible.
- J An estimated value. The mass spectrum indicates the presence of the compound, but the calculated result is less than the reliable letection limit for this compound.
- that in the blank. Quantitation C The result has been corrected for the presence of the compound in the blank.

75 Green Mountain Drive, So. Burlington, VT 25403 TEL: 802 658-1074

MANAGER PROPERTY

Date: 24 July 1987 Aquatec Lab No.: 72260

ETR No.: 10861

Sample Received On: 6 July 1987

Sample Identification: Atlantic Testing Laboratories, Ltd., soil sample

CD648, labeled B-8, S-1, elevation 5.0-7.0

Volatile Organic Compounds in ug/kgwet

benzene		5	U
		<u> </u>	<u> </u>
carbon tetrachloride		5	U
chlorobenzene		5	U
1,2-dichloroethane		5	Ū
1,1,1-trichloroethane	77		
1,1-dichloroethane	5		
1,1,2-trichloroethane		5	Ū
1,1,2,2-tetrachloroethane		5	U
chloroethane		10	Ū
2-chloroethyl vinyl ether		10	U
chloroform		5	Ū
1,1-dichloroethene		5	U
1,2-dichloroethene		5	Ū
1,2-dichloropropane		5	U
trans-1,3-dichloropropene		5	Ü
cis-1,3-dichloropropene		5	Ū
ethylbenzene		5	U
		•	

methylene chloride	LCB		
chloromethane		10	Ū
bromomethane		10	Ū
bromoform		5	U
bromodichloromethane		5	Ū
dibromochloromethane		5	Ū
tetrachloroethene		5	Ü
toluene		5	U
trichloroethene		5	U
vinyl chloride		10	Ū
acetone	390 (2	
2-butanone		10	Ū
carbon disulfide		5	Ū
2-hexanone		10	U
4-methyl-2-pentanone		10	U
styrene		5	Ū
vinyl acetate	_	10	Ū
total xylenes	5		

See enclosed report of other volatile organic compounds found.

Key to the letters used to qualify the results of the analysis:

- U The compound was analyzed for but not detected. The number is the detection limit for the compound.
- LCB Compound was found but at low concentration, comparable to that in the blank. Quantitation is not possible.
- J An estimated value. The mass spectrum indicates the presence of the compound, but the calculated result is less than the reliable detection limit for this compound.
- that in the blank. Quantitation C The result has been corrected is not possible. for the presence of the compound in the blank.

75 Green Mountain Drive, So. Burlington, VT 05403 TEL, 802-658-1074

MANAGER PROPERTY OF THE PROPER

Date: 24 July 1987

Aquatec Lab No.: 72260

ETR No.: 10861

Sample Received On: 6 July 1987

Sample Identification: Atlantic Testing, soil sample CD648,

labeled B8, S-1, elevation 5.0-7.0

Volatile Compounds not on the Hazardous Substances List

Scan No.*

Name

Estimated Conc.**

(ug/kg_wet)

622

a C9 saturated hydrocarbon

4

- * Indicates relative location of chromatographic peak in a total of 800 scans in the chromatogram, at three seconds per scan.
- ** Concentration estimated from ratio of Enhanced Reconstructed Ion Chromatogram (ERIC) of compound to ERIC of nearest internal standard, assuming a response factor of 1.

75 Green Mountain Drive, So. Burlington, VT 05403 TEL, 802 658-1074

MANATARIO PARA DE LA PARTICIO DE LA

Date: 24 July 1987 Aquatec Lab No.: 72259

ETR No.: 10361

Sample Received On: 6 July 1987

Sample Identification: Atlantic Testing Laboratories, Ltd., soil sample

CD648, labeled B-7A, S-3, elevation 5.0-6.0

Volatile Organic Compounds in ug/kgwet

	_	
benzene	5	U
carbon tetrachloride	5	U
chlorobenzene	5	Ü
1,2-dichloroethane	5	Ū
1,1,1-trichlorcethane	5	Ü
1,1-dichlorcethane	5	U
1,1,2-trichlorcethane	5	Ū
1,1,2,2-tetrachloroethane	5	Ū
chloroethane	10	U
2-chloroethyl vinyl ether	10	U
chloroform	5	U
1,1-dichlorcethene	5	Ū
1,2-dichloroethene	5	Ū
1,2-dichloropropane	5	U
trans-1,3-dichloropropene	5	Ū
cis-1,3-dichloropropene	5	Ū
ethylbenzene	5	Ū

methylene chloride	LCB		
chloromethane		10	Ū
bromomethane		10	U
bromoform		5	Ū
bromodichloromethane		5	Ū
dibromochloromethane		5	U
tetrachloroethene		5	Ū
toluene		5	Ü
trichloroethene		5	U
vinyl chloride		10	Ü
acetone		10	Ū
2-butanone		10	Ū
carbon disulfide		5	Ū
2-hexanone		10	Ū
4-methyl-2-pentanone		10	U
styrene		5	Ū
vinyl acetate		10	Ū
total xylenes		5	Ū

No other volatile organic compounds were found in reportable concentrations.

Key to the letters used to qualify the results of the analysis:

- U The compound was analyzed for but not detected. The number is the detection limit for the compound.
- LCB Compound was found but at low concentration, comparable to that in the blank. Quantitation is not possible.
- J An estimated value. The mass spectrum indicates the presence of the compound, but the calculated result is less than the reliable detection limit for this compound.
- that in the blank. Quantitation C The result has been corrected for the presence of the compound in the blank.

APPENDIX E

SAWDUST SAMPLING REPORT

ATTACHMENT NO. 4

SECONDARY SOIL AND SAWDUST SAMPLING RESULTS

SAMPLING

- On March 24, 1986, our Mr. Thomas A. Custeau, a Certified Enginering Technician, collected three samples at the Pole-Lite manufacturing facility. The samples are identified as follows:
 - SAMPLE NO. CD648-1: This sample was taken from the sawdust stockpile located in the northwestern corner of the site. The sample consisted of four separate quart jars.
 - SAMPLE NO. CD648-2: This sample was composed of soil excavated from several locations in the drum storage area. The soil was sampled to a depth of eight inches. The sample consisted of four separate quart jars.
 - SAMPLE NO. CD648-3: This sample was collected from the sawdust stockpile located in the northeastern corner of the site, and consisted of four separate quart jars.

ANALYSIS

Each sample consisting of four quart jars were randomly split into lots of two jars each. Two jars from each sample were submitted to separate laboratories for analysis (EPA Method No. 624 with peak identification). The test reports are attached.

CONCLUSION

SAMPLE NO. CD648-1:

The sawdust stockpile in the northwest corner of the site contains low levels of methylene chloride, 2-butanone, pentane, hexane and a hydrocarbon as well as slightly higher concentrations of acetone.

SAMPLE NO. CD648-2:

- The soil in the vicinity of the drum storage area contains significant concentrations of the following hazardous substances:
 - 1, 1, 1 trichloroethane
 1,1 dichloroethane
 tetrachloroethane
 xylene
 - Other volatile compounds (non-hazardous) are also present (probably due to the use of heavy machine oil).

SAMPLE NO. CD648-3:

The sawdust stockpile located in the northeast corner of the site contains small amounts of 1, 1, 1 trichloroethane and tetrachloroethane, as well as several non-hazardous volatile compounds.

ENVIRONMENTAL SERVICES

75 GREEN MOUNTAIN DRIVE, SOUTH BURLINGTON, VERMONT 05401, TELEPHONE (802) 658-1074

May 1, 1986

John Carr Atlantic Testing Laboratories Box 29 Canton, NY 13617

Project 86500, ETR 7230

The results of the analysis by gas chromatography/mass spectrometry of three samples received by Aquatec on April 2, 1986 are enclosed.

Moson Museen R. Mason McNeer Chemist

Enclosures

•

75 Green Mountain Drive, So. Burlington, VT 05401 TEL, 802/658-1074

ANALYTICAL REPORT

Aquatec Lab No.: 57130

ETR No.: 7230

Sample Received On: 2 April 1986

Sample Identification: Atlantic Testing Laboratories, sample soil 0-8"

CD648-2, 3/24/86

Volatile Organic Compounds in ug/kg

benzene	25000	U
carbon tetrachloride	25000	U
chlorobenzene	25000	U
1,2-dichloroethane	25000	U
1,1,1-trichloroethane 1,	300,000	
1,1-dichloroethane	25000	U
1,1,2-trichloroethane	25000	U
1,1,2,2-tetrachloroethane	25000	Ū
chloroethane	50000	U
2-chloroethyl vinyl ether	50000	U
chloroform	25000	U
1,1-dichloroethene	130,000	
1,2-dichloroethene	25000	U
1,2-dichloropropane	25000	U
trans-1,3-dichloropropene	25000	U
cis-1,3-dichloropropene	25000	U
ethylbenzene	25000	U

methylene chloride	NDB	
chloromethane	50000	U
bromomethane	50000	U
bromoform	25000	U
bromodichloromethane	25000	U
dibromochloromethane	25000	Ū
tetrachloroethene 26	,000c	
toluene 25.	,000K	
trichloroethene	25000	U
vinyl chloride	50000	Ū
acetone	NDB	
2-butanone	50000	U
carbon disulfide	25000	Ū
2-hexanone	50000	U
4-methy1-2-pentanone	50000	U
styrene	25000	U
vinyl acetate	50000	U
total xylenes 91.	,000	

Sample was extracted into methanol and diluted 5000 fold for analysis.

Key to the letters used to qualify the results of the analysis:

- U The compound was analyzed for but not detected. The number is the detection limit for the compound.
- NDB Quantitation is not possible due to the relative concentration of the compound in the blank.
- K The compound was analyzed for and detected, but at a concentration not reliably quantifiable. The number is the detection limit for the compound.
- C The result has been corrected for the presence of the compound in the blank.

Quality controls were analyzed with the sample as part of Aquatec's standard analytical procedures. The results of these are maintained on file at Aquatec.

75 Green Mountain Drive, So. Burlington, VT 05401 TEL 802/658-1074

ANALYTICAL REPORT

Aquatec Lab No.: 57130

ETR No.: 7230

Sample Received On: 2 April 1986

Sample Identification: Atlantic Testing Laboratories, sample

soil 0-8" CD648-2, 3/24/86

Volatile Compounds not on the Hazardous Substances List

Scan No.*	Name	Estimated Conc.**(ug/kg)
510	a C ₉ hydrocarbon unknown	130,000
534	unkńown	84,000
548	a C ₂ substituted cyclohexane	58,000
569	unknown	55,000
587	a C ₂ substituted cyclohexane	290,000
623	a C ₃ substituted cyclohexane an unsaturated hydrocarbon	190,000
660	unknown	76,000
698	a C ₃ substituted benzene	59,000
724	nonane	140,000

^{*} Indicates relative location of chromatographic peak in a total of 750 scans in the chromatogram, at three seconds per peak.

^{**} Concentration estimated from ratio of Enhanced Reconstructed Ion Chromatogram (ERIC) of compound to ERIC of nearest internal standard, assuming a response factor of 1.

ENVIRONMENTAL SERVICES

75 Green Mountain Drive, So. Burlington, VT 05401 TEL, 802/658-1074

ANALYTICAL REPORT

Aquatec Lab No.: 57129

ETR No.: 7230

Sample Received On: 2 April 1986

Sample Identification: Atlantic Testing Laboratories, sample labeled N.W.

site sawdust CD648-1, 3/24/86

Volatile Organic Compounds in ug/kg

benzene_	50	Ŭ
carbon tetrachloride	50	Ū
chlorobenzene	50	U
1,2-dichloroethane	50	U
1,1,1-trichloroethane	50	U
1,1-dichloroethane	50	Ū
1,1,2-trichloroethane	50	U
1,1,2,2-tetrachloroethane	50	Ū
chloroethane	100	U
2-chloroethyl vinyl ether	100	U
chloroform	50	U
1,1-dichloroethene	50	U
1,2-dichloroethene	50	Ū
1,2-dichloropropane	50	Ū
trans-1,3-dichloropropene	50	U
cis-1,3-dichloropropene	50	U
ethylbenzene	50	U

methylene chloride	75C	
chloromethane	100	U
bromomethane	100	U
bromoform	50	U
bromodichloromethane	50	Ū
dibromochloromethane	50	U
tetrachloroethene	50	U
toluene	50	U
trichloroethene	50	U
vinyl chloride	100	U
acetone	1700C	
2-butanone	110	
carbon disulfide	50	U
2-hexanone	100	U
4-methy1-2-pentanone	100	U
styrene	50	U
vinyl acetate	100	Ŭ
total xylenes	50	U

Sample was diluted 10 fold for analysis.

Key to the letters used to qualify the results of the analysis:

- U The compound was analyzed for but not detected. The number is the detection limit for the compound.
- NDB Quantitation is not possible due to the relative concentration of the compound in the blank.
- K The compound was analyzed for and detected, but at a concentration not reliably quantifiable. The number is the detection limit for the compound.
- C The result has been corrected for the presence of the compound in the blank.

Quality controls were analyzed with the sample as part of Aquatec's standard analytical procedures. The results of these are maintained on file at Aquatec.

ENVIRONMENTAL SERVICES

75 Green Mountain Drive, So. Burlington, VT 05401 TEL, 802/658-1074

ANALYTICAL REPORT

Aquatec Lab No.: 57129

ETR No.: 7230

Sample Received On: 2 April 1986

Sample Identification: Atlantic Testing Laboratories, sample

labeled N.W. site sawdust CD648-1,

3/24/86

Volatile Compounds not on the Hazardous Substances List

Scan No.*	Name	Estimated Conc.** (ug/kg)	
247	pentane	30	
358	hexane	19	
702	a hydrocarbon	70	

- * Indicates relative location of chromatographic peak in a total of 750 scans in the chromatogram, at three seconds per peak.
- ** Concentration estimated from ratio of Enhanced Reconstructed Ion Chromatogram (ERIC) of compound to ERIC of nearest internal standard, assuming a response factor of 1.

75 Green Mountain Drive, So. Burlington, VT 05401 TEL. 802/658-1074

ANALYTICAL REPORT

Aquatec Lab No.: 57128

ETR No.: 7230

Sample Received On: 2 April 1986

Sample Identification: Atlantic Testing Laboratories, sample labeled N.E.

site sawdust CD648-3, 3/24/86

Volatile Organic Compounds in ug/kg

benzene	500	U
carbon tetrachloride	500	Ŭ
chlorobenzene	500	Ŭ
1,2-dichloroethane	500	Ŭ
1,1,1-trichloroethane 11	.00	
1,1-dichloroethane	500	U
1,1,2-trichloroethane	500	Ū
1,1,2,2-tetrachloroethane	500	U
chloroethane	1000	U
2-chloroethyl vinyl ether	1000	Ū
chloroform	500	U
1,1-dichloroethene	500	U
1,2-dichloroethene	500	Ū
1.2-dichloropropane	500	U
trans-1,3-dichloropropene	500	U
cis-1,3-dichloropropene	500	U
ethylbenzene	500	U

methylene chloride	NDB	
chloromethane	1000	Ū
bromomethane	1000	Ū
bromoform	500	Ū
bromodichloromethane	500	Ū
dibromochloromethane	500	U
tetrachloroethene	500K	
toluene	500	Ū
trichloroethene	500	U
vinyl chloride	1000	Ū
acetone	NDB	
2-butanone	NDB	
carbon disulfide	500	Ū
2-hexanone	1000	U
4-methyl-2-pentanone	1000	Ū
styrene	500	Ū
vinyl acetate	1000	U
total xylenes	500	Ū

Sample was extracted into methanol and diluted 100 fold for analysis.

Key to the letters used to qualify the results of the analysis:

- U The compound was analyzed for but not detected. The number is the detection limit for the compound.
- NDB Quantitation is not possible due to the relative concentration of the compound in the blank.
- K The compound was analyzed for and detected, but at a concentration not reliably quantifiable. The number is the detection limit for the compound.
- C The result has been corrected for the presence of the compound in the blank.

Quality controls were analyzed with the sample as part of Aquatec's standard analytical procedures. The results of these are maintained on file at Aquatec.

75 Green Mountain Drive, So. Burlington, VT 05401

TEL 802/658-1074

ANALYTICAL REPORT

Aquatec Lab No.: 57128

ETR No.: 7230

Sample Received On: 2 April 1986

Sample Identification: Atlantic Testing Laboratories, sample

labeled N.E. site sawdust CD648-3,

3/24/86

Volatile Compounds not on the Hazardous Substances List

Scan No.*	<u>Name</u> .	Estimated Conc.** (ug/kg)
514	a hydrocarbon	1500
536	a C ₂ substituted cyclohexane	580
550	a C ₃ substituted cyclohexane a substituted cyclohexane	410
591	a substituted cyclohexane	2700
610	unknown	790
629	an unsaturated hydrocarbon	1800
640	unknown	1200
667	unknown	710
705	a C ₂ substituted benzene	2000
729	a C ₃ substituted benzene a C ₃ substituted benzene	2300

^{*} Indicates relative location of chromatographic peak in a total of 800 scans in the chromatogram, at three seconds per peak.

^{**} Concentration estimated from ratio of Enhanced Reconstructed Ion Chromatogram (ERIC) of compound to ERIC of nearest internal standard, assuming a response factor of 1.

ATLANTIC TESTING LABS-LIMITED To:

13617

Jul 15 1986 Date:

85 XO8

CANTON, NY

Attention: JOHN CARR

SAMPLE #2101

LABORATORY ANALYSIS REPORT

SAMPLE SUMMARY

CLIENT : ATLANTIC TESTING LABS-LIMITED DATE RECEIVED : 03/27/86

JOB # : 405.146.01 DATE COLLECTED : NA

LOCATION : SOILS 0-8 CD64882 TIME COLLECTED : NA

METHOD :NA

PARAMETER	RESULTS	UNITS
METHYCYOLOHEXANE	PENDING	
OCTAHYDROPENTALENE ACETONE	PENDING PENDING	
2-BUTANONE	PENDING	
TOTAL XYLENES	150.	ug/g
METHYLENE CHLORIDE	(0.4	ug/g
1,1-DICHLOROETHYLENE	PENDING	
1,1-DICHLOROETHANE	5. 6	و/وي
ETHYLBENZENE	(10.	ug/g
1,1,1-TRICHLOROETHANE	1800.	ug/g
TETRACHLOROETHYLENE	(0.4	ug/g
a - C ₃ Cyclohexane	Pending	
a - CzBenzene	Pending	
a - Nonane	Pending	

Note:

Analysis performed by outside laboratory.

CS warrants that any sampling and analyses conducted as part of this report are performed in accordance with the analytical industries recognized methodologies and professional standards. CS will not assume liability for any damages resulting from deficient work other than reperformance or cost of said work and will not accept any liability as a result of data interpretation by the client.

APPROVED BY: Come of Joseph DATE: JUL 15 1986

To: ATLANTIC TESTING LABS-LIMITED

Date: Jul 15 1986

BOX 28

CANTON, NY

13617

Attention:

JOHN CARR

SAMPLE #2102

LABORATORY ANALYSIS REPORT

SAMPLE SUMMARY

CLIENT : ATLANTIC TESTING LABS-LIMITED

DATE RECEIVED : 03/27/86

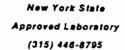
JOB # :

: 405.146.01

DATE COLLECTED : NA

LOCATION : NORTHWEST SAWDUST

TIME COLLECTED : NA


METHOD :NA

PARAMETER	RESULTS	UNITS
METHYCYOLOHEXANE	PENDING	
OCTAHYDROPENTALENE	PENDING	
ACETONE	PENDING	
2-BUTANONE	PENDING	
TOTAL XYLENES	(0.6	ug/g
METHYLENE CHLORIDE	(0.2	ug/g
1, 1-DICHLOROETHYLENE	PENDING	
1,1-DICHLOROETHANE	(0.2	ug/g
ETHYLBENZENE	(0.2	ug/g
1,1,1-TRICHLOROETHANE	PENDING	
TETRACHLOROETHYLENE	(0.2	ug/g
a - CʒCyclohexane	Pending	
a - C ₃ Benzene	Pending	
a - Nonane	Pending	

Note:

Analysis performed by outside laboratory.

CS warrants that any sampling and analyses conducted as part of this report are performed in accordance with the analytical industries recognized methodologies and professional standards. CS will not assume liability for any damages resulting from deficient work other than reperformance or cost of said work and will not accept any liability as a result of data interpretation by the client.

To: ATLANTIC TESTING LABS-LIMITED

Date: Jul 15 1986

BOX 28

CANTON, NY 13617

Attention: JOHN CARR

SAMPLE #2103

LABORATORY ANALYSIS REPORT ******************

SAMPLE SUMMARY

CLIENT : ATLANTIC TESTING LABS-LIMITED

03/27/86 DATE RECEIVED :

JOB # : 405.146.01 DATE COLLECTED : NΑ

LOCATION : N.E. SITE SAND TIME COLLECTED :

METHOD :NA

PARAMETER	RESULTS	UNITS
METHYCYOLOHEXANE	PENDING	
OCTAHYDROPENTALENE	PENDING	
ACETONE	PENDING	
2-BUTANONE	PENDING	
TOTAL XYLENES	2.3	ug/g
METHYLENE CHLORIDE	(0.2	ug/g
i, i-DICHLOROETHYLENE	PENDING	
1,1-DICHLOROETHANE	(0.2	ug/g
ETHYLBENZENE	(0.4	ug/g
1,1,1-TRICHLOROETHANE	1.5	ug/g
TETRACHLOROETHYLENE	(0.2	ug/g
a - CzCyclohexane	Pending	
a - CzBenzene	Pending	
a - Nonane	Pending	

Note:

Analysis performed by outside laboratory.

CS warrants that any sampling and analyses conducted as part of this report are performed in accordance with the analytical industries recognized methodologies and professional standards. CS will not assume liability for any damages resulting from deficient work other than reperformance or cost of said work and will not accept any liability as a result of data interpretation by the client.

Polelite

August 4, 1986

Mr. John Carr Atlantic Testing Labs - Limited Box 28 Canton, New York 13617

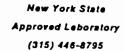
Re: CS sample #'s 2101-2103

File: 405.146.01

Dear Mr. Carr:

Enclosed please find laboratory analysis report for your samples: 1) Soils 0-8 CD64882/CS sample #2101, 2) Northwest Sawdust/CS sample #2102, 3) Northeast Site Sand/CS sample #2103.

As we discussed, these samples were subcontracted to Syracuse Research Corporation for analysis since our GC/MS did not have the library capabilities needed to analyze some of the organic compounds. If you have any technical questions concerning the analysis please contact our organic chemist, Tim Brown. I hope these results will satisfy your needs.


Very truly yours,

CS ENVIRONMENTAL LABORATORY, INC.

Conrad Teufel, Jr. Laboratory Manager

Comad Deskl

CT:plh Enclosure

Enclosure

To:	Atlantic Testing Labs, Limited P.O. Box 28 Canton, New York 13617	RE: Organic Analysis CS Sample # 2101-2103		
		FILE: 405.146.01		
ATTENTION: Mr. John Carr		DATE: September 11, 1986		
W E ARE	SENDING YOU X HEREWITH UNDER	R SEPARATE COVER VIA		
	Copies of request :for analy of soil samples.	ysis, and cover sheet for SRC analysis report,		
THE ABO	OVE ARE FOR X INFORMATION SAM	PLINGANALYSIS		
F	RETURNREVISIONAPPROVAL	OTHER		
REMARK	^{(S:} As requested. If you have any o	questions, do not hesitate to call.		
IF ENCL	OSED ARE NOT AS NOTED, PLEASE NOTIFY US	AT ONCE.		
		ES ENVIRONMENTAL LABORATORY, INC.		
		Conrad Teufel, Jr.		
	CT:plh	Laboratory Manager		

TRANSMITTAL

COMPREHENSIVE

ANALYSIS REPORT

Prepared for:

CS Environmental Laboratory

5854 Butternut Drive East Syracuse, NY 13057 Attn: Mr. Conrad Teufel

Prepared by:

Life and Environmental Sciences Laboratories

Dr. Alison Carter, Manager Syracuse Research Corporation

Merrill Lane

Syracuse, New York 13210-4080 SRC Project Number L1371-50

Customer Purchase Order Number - B5-45015

Date of Report:

July] 1, 1986

Analysis Performed by:

Craig N. Turner

Research Associate

Catherine M. Plumb

Chemist

Report Approved by:

Ronald Rosse

Quality Assurance Unit

Work Performed:

Three samples submitted for partial volatile scan.

(SRC ID Nos. 86-0868 to 86-0870).

The test results and procedures utilized and laboratory interpretations of the data obtained by Syracuse Besearch Corporation as contained in this report are believed by Syracuse Besearch Corporation to be accurate and reliable. In accepting this report, the client agrees that the full extent of any and all liability will be limited to an amount equal to the fee charged to the client.

The information contained berein is for the axclusive use of the client to whom it is addrassed and its communication to any others, or the use of the name of Syracuse Bassarch Corporation, must receive prior written approval. The information and the name of the Syracuse Bassarch Corporation or its seel or issignis are not to be used under any circumstances is advertising to the general public.

Results of the Analysis CS Environmental Laboratory Mr. Conrad Teufel L1371-50 July 21, 1986 Page 2

SRC ID No.	86-0868 *	86-0869*	86-0870*
	2101	2102	2103
	(μg/g)	(µg/g)	(μg/g)
Methylene Chloride 1,1-Dichloroethene 1,1-Dichloroethane 1,1,1-Trichloroethane Tetrachloroethylene Toluene Ethylbenzene Total Xylenes	<0.4 0.4 5.6 1800 <0.4 15 <10	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 1.5 <0.2 <0.4 <0.4 2.3

^{*}As received

Tentative identification of five major peaks in each run through GC/MS library searches. Approximation of concentration assuming a response factor of 1.0.

Identification	Compound	Result
SRC ID No. 86-0868 CS ID No. 2101	Octahydro-2-methylpentalene Propylcyclohexane Trimethylbenzene Methylpropylbenzene Ethyldimethylbenzene	300 µg/g 430 µg/g 450 µg/g 450 µg/g 450 µg/g
SRC ID No. 86-0869 CS ID No. 2102	Nonane Propylcyclohexane Decane Decahydronaphthalene Methylpropyl pentanol	56 µg/g 45 µg/g 160 µg/g 17 µg/g 88 µg/g
SRC ID No. 86-0870 CS ID No. 2103	Methylethylbenzene Methylethylbenzene Methylethylbenzene Methylethylbenzene Ethyldimethylbenzene	89 µg/g 87 µg/g 270 µg/g 80 µg/g 41 µg/g