

New York State Electric & Gas Corporation

Bridge Street Former Manufactured Gas Plant Plattsburgh, New York

2005 ANNUAL OPERATION, MAINTENANCE, AND MONITORING SUMMARY REPORT

OCTOBER 28, 2005

Prepared For: New York State Electric & Gas Corporation Kirkwood Industrial Park Binghamton, New York

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 SCOPE OF WORK	2
2.1 ANNUAL WELL INSPECTION AND NAPL MONITORING	2
2.2 ANNUAL GROUNDWATER MONITORING	2
3.0 LABORATORY ANALYTICAL RESULTS	4
5.0 RECOMMENDATIONS	7
6.0 REFERENCES	8

LIST OF TABLES

Table 1 -	Summary	of Water Levels	s, NAPL	Checks,	and Purging	g Data
Table 2 –	Summary	of Groundwate	r Sampl	es Analyt	tical Results	

LIST OF FIGURES

Figure 1 – Site Location Map

Figure 2 – Monitoring Well Location Map

LIST OF APPENDICES

Appendix A – Groundwater Sample Field Data Sheets

Appendix B – Groundwater Sample Laboratory Analytical Report

Appendix C – Summary of Historic Bedrock Groundwater Analytical Results

1.0 INTRODUCTION

On behalf of NYSEG (New York State Electric and Gas Corporation), URS Corporation – New York (URS) has prepared this *2005 Annual Operation, Maintenance, and Monitoring Summary Report (2005 OM&M Report)* for NYSEG's former Manufactured Gas Plant (MGP) on Bridge Street in the City of Plattsburgh, Clinton County, New York (site ID #5-10-016). The site location is shown on Figure 1.

The New York State Department of Environmental Conservation (NYSDEC) and NYSEG entered into an Order on Consent (D0-0002-9309) on March 30, 1994 (the Order). Under this Order, NYSEG agreed to investigate and remediate 33 former MGP sites in New York State. The remedial investigation (RI) of the Plattsburgh-Bridge Street former MGP site has been completed under the Order. The *Remedial Investigation Report (RIR)*, dated January 15, 2004 presented the findings of the RI. In 2001, during the RI, NYSEG conducted an interim remedial measure (IRM) to locate the former gas holder and remove it and impacted soil at and near the site. The NYSDEC approved the *RIR* on January 20, 2004 and prepared a *Proposed Remedial Action Plan (PRAP)* for public review and comment. Following the public comment period, the NYSDEC issued its *Record of Decision (ROD)* in March 2004 that outlined the remedial plan for the site. NYSEG prepared an *Operation, Maintenance, & Monitoring Plan (OM&M Plan)*, which the NYSDEC approved on August 17, 2004.

The activities summarized in this 2005 OM&M Report were conducted in accordance with the approved OM&M Plan. Activities include well inspections, water level measurements, NAPL observations, and bedrock groundwater sampling.

This 2005 OM&M Report has six sections. The scope of field activities is summarized in Section 2.0. A summary of the laboratory analytical result is in Section 3.0. A summary of findings is in Section 4.0. Recommendations are in Section 5.0. Section 6.0 list the references used to prepare this report.

2.0 SCOPE OF WORK

This section describes the activities that were completed during the September 2005 annual site inspection and sampling event at the site in accordance with the March 2004 *ROD* and the *OM&M Plan*. The tasks completed in September 2005 include:

- Task 1 Annual Well Inspection and NAPL Monitoring
- Task 2 Annual Groundwater Monitoring

The following subsections describe each of these tasks.

2.1 ANNUAL WELL INSPECTION AND NAPL MONITORING

On September 20, 2005, URS measured water levels in each well using an electronic water level indicator and checked for the presence of NAPL. The observations are summarized on Table 1. The monitoring wells and general site conditions were inspected for damage. No physical damage was observed at any of the monitoring wells and site conditions were generally unchanged since URS' previous annual site visit on September 16, 2004.

2.2 ANNUAL GROUNDWATER MONITORING

On September 21, 2005 URS collected groundwater samples from nine bedrock groundwater monitoring wells (MW-1B, MW-2B, MW-3B, MW-6B, MW-7BS, MW-7BD, MW-9B, MW-10B, and MW-11B).

The monitoring wells were purged on September 20, 2005 using disposable bailers. Field parameters, including pH, specific conductivity, temperature, and turbidity, were monitored during purging. The field parameters were recorded on the groundwater purging and sampling forms (Appendix A). The monitoring wells were purged until dry or the field parameters had stabilized to within \pm 0.1 pH unit, \pm 0.2 degree Celsius (°C), and \pm 10 percent on the remaining parameters over three consecutive readings. Monitoring well purge data are summarized on Table 1.

The samples were collected on September 21, 2005 within 24 hours of purging using disposable bailers. The samples were placed into laboratory provided sampling containers in the following order: benzene, toluene ethylbenzene, and xylenes (BTEX); polycyclic aromatic hydrocarbons (PAHs); total phenols; and total cyanide. The samples were placed in coolers with sufficient ice to maintain a temperature of 4°C.

The nine groundwater samples, one field duplicate sample collected from monitoring well MW-02B, and one trip blank were shipped by Federal Express to Lancaster Laboratories, Inc. (Lancaster) in Lancaster, Pennsylvania. Five (MW-03B, MW-11B, MW-10B, MW-02B, and MW-7BS) of the nine groundwater samples and one field duplicate were analyzed for BTEX by USEPA SW-846 Method 8260B, PAHs by USEPA SW-846 Method 8270C, total phenol by USEPA SW-846 Method 9065M, and total cyanide by USEPA SW-846 Method 335.3. One groundwater sample (MW-01B) was

URS

analyzed for BTEX, total phenol, and total cyanide. Two groundwater samples (MW-06B and MW-07BD) were analyzed for BTEX and total cyanide. The remaining groundwater sample (MW-09B) was analyzed for BTEX only. Insufficient water volume in the monitoring wells resulted in limited analyses for monitoring wells MW-01B, 09B, 06B, and 07BD. The trip blank was analyzed for BTEX only. Lancaster provided standard analytical summary deliverable package (Appendix B). The laboratory analytical results are discussed in Section 3.0.

3.0 LABORATORY ANALYTICAL RESULTS

The groundwater analytical results for the bedrock groundwater samples collected on September 2005 are summarized in Table 2. The well locations are shown on Figure 2.

Benzene, Toluene, Ethybenzene, and Xylene

Concentrations of total BTEX ranged from not detected at MW-9B to 5,210 μ g/L at MW-7BD. The following BTEX compounds were detected in one or more bedrock groundwater sample.

Summary of BTEX Compounds Detected in Bedrock Groundwater (September 2005)

Compound	Number of Detects (out of 9)	NYSDEC GW Standard ^(a) (µg/L)	Number of Exceedences (out of 9)	Maximum Concentration (µg/L)
Benzene	8	1	7	870 at MW-2B (duplicate)*
Ethylbenzene	6	5	6	1,000 at MW-2B (duplicate)*
Toluene	6	5	6	1,400 at MW-2B (duplicate)*
Xylene, total	6	5	6	2,100 at MW-7BD*

Notes:

(a) NYSDEC Ambient Water Quality Standard (TOGS 1.1.1, NYSDEC, 1998)

*- NAPL has been detected in the monitoring well. The concentration may not be representative of groundwater quality.

The maximum concentrations of BTEX compounds were detected at MW-2B and MW-7BD. Traces of NAPL was detected in these two wells. Therefore, the reported concentrations may not be representative of actual groundwater concentrations. As shown in Appendix C, concentrations of BTEX compounds detected in September 2005 were comparable to the concentrations detected during previous sampling events.

Polyaromatic Hydrocarbons

PAHs were found in four of the five bedrock groundwater samples. Where detected, concentrations of total SVOCs ranged from 33 μ g/L at MW-11B to 1,166,000 μ g/L at MW-2B (duplicate sample). No PAHs were detected in the sample from MW-10B. The following compounds were detected in one or more bedrock groundwater sample.

Compound	Number of Detects (out of 5)	NYSDEC GW Standard ^(a) (µg/L)	Number of Exceedences (out of 5)	Maximum Concentration (µg/L)
Acenaphthene	4	[20]	3	19,000** at MW-2B (duplicate)*
Acenaphthylene	4	NS	0	120,000** at MW-2B (duplicate)*
Anthracene	2	[50]	1	43,000** at MW-2B (duplicate)*
Benzo(a)anthracene	2	[0.002]	2	31,000** at MW-2B (duplicate)*
Benzo(a)pyrene	2	[0.002]	2	30,000** at MW-2B (duplicate)*
Benzo(b)fluoranthene	2	[0.002]	2	21,000** at MW-2B (duplicate)*
Benzo(k)fluoranthene	2	[0.002]	2	7,500** at MW-2B (duplicate)*
Benzo(g,h,i)perylene	2	NS	0	17,000** at MW-2B (duplicate)*
Chrysene	2	[0.002]	2	28,000** at MW-2B (duplicate)*
Dibenzo(a,h)anthrancene	1	NS	0	2,500** at MW-2B (duplicate)*

Summary of PAHs Detected in Bedrock Groundwater (September 2005)

Compound	Number of Detects (out of 5)	NYSDEC GW Standard ^(a) (µg/L)	Number of Exceedences (out of 5)	Maximum Concentration (µg/L)
Fluoranthene	2	[50]	1	85,000** at MW-2B (duplicate)*
Fluorene	3	[50]	1	50,000** at MW-2B (duplicate)*
Indeno(1,2,3-cd)pyrene	2	[0.002]	2	12,000** at MW-2B (duplicate)*
Naphthalene	4	[10]	4	380,000** at MW-2B (duplicate)*
Phenanthrene	4	[50]	2	200,000** at MW-2B (duplicate)*
Pyrene	2	[50]	2	120,000** at MW-2B (duplicate)*

Notes:

(a) – NYSDEC Ambient Water Quality Standard (TOGS 1.1.1, NYSDEC, 1998)

NS – No standard

[] indicates guidance value

* - NAPL has been detected in the monitoring well. The concentration may not be representative of groundwater quality.

** - Maximum detected concentration is greater than reported solubility in water.

PAHs were detected at concentrations that exceed the NYSDEC's groundwater standards at four locations (MW-2B, MW-3B, MW-7BS, and MW-11B). Concentrations of all PAHs detected in monitoring well MW-2B where NAPL was observed, exceed solubility limits in water and are likely not representative of groundwater quality. As shown in Appendix C, concentrations of PAHs detected in September 2005 were generally higher than concentrations detected during previous sampling events.

Cyanide

Cyanide was not detected in any of the eight bedrock wells from which samples were collected and analyzed. As shown in Appendix C, the concentrations of cyanide detected in samples collected in September 2005 are similar to or less than concentrations detected during previous sampling events.

Phenol

Phenols were detected in three of the six wells from which samples were collected and analyzed for phenols. Detected concentrations of total phenol ranged from 15 μ g/L at MW-10B to 250 μ g/L at MW-11B. The NYSDEC groundwater standard for phenols is 1.0 μ g/L. As shown in Appendix C, the concentrations of phenols detected in samples collected in September 2005 are consistent with concentrations detected in during previous sampling events.

4.0 SUMMARY AND CONCLUSIONS

General Site Conditions

- No physical damage was observed at any of the monitoring wells and site conditions were generally unchanged since URS' previous annual site visit on September 16, 2004.
- During the September 2005 site inspection, no indications of NAPL were observed in monitoring wells MW-1B, MW-9B, MW-10B, or MW-11B. A strong tar-like odor was detected in MW-3B. Trace amounts of NAPL were observed in purge water from monitoring wells MW-2B, MW-6B, MW-7BS and MW-7BD. Recoverable amounts of NAPL were not found in any of the monitoring wells. The locations and amounts of NAPL observed is consistent with previous observations.

Bedrock Groundwater Samples

- Concentrations of BTEX compounds detected in September 2005 were generally consistent with concentrations detected during previous sampling events.
- Concentrations of PAH compounds detected were generally higher than concentrations detected during previous sampling events. Concentrations of all PAHs detected in monitoring well MW-2B where NAPL was observed exceed the solubility limits in water and are likely not representative of groundwater quality.
- Concentrations of cyanide and phenols detected in samples collected in September 2005 are consistent with or less than concentrations detected during previous sampling events.

5.0 RECOMMENDATIONS

Based on the results prescribed in this 2005 OM&M Report, URS makes the following recommendations.

• NYSEG will continue to perform annual site inspection and collect groundwater samples in accordance with the ROD and the OM&M Plan. The next event will be in September 2006.

6.0 REFERENCES

- New York State Department of Environmental Conservation, March 2004. Record of Decision – NYSEG Bridge Street Former MGP Site, Plattsburgh, Clinton County, New York – Site Number 5-10-016.
- URS Corporation, 2005. 2004 Annual Operation, Maintenance, & Monitoring Summary Report. June 3, 2005.
- URS Corporation, 2005. Active Soil Vapor Sampling Summary Report. June 3, 2005.
- URS Corporation, 2004. Operation, Maintenance, & Monitoring Plan. August 17, 2004.
- URS Corporation, 2004. Remedial Investigation Report, January 15, 2004.
- USEPA, 1987. A Compendium of Superfund Field Operations Methods, EPA/540/P-87-001, (OSWER Directive 9355.0-14). December. Cincinnati, OH: USEPA.
- USEPA SW-846. Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods.

TABLES

TABLE 1SUMMARY OF WATER LEVELS, NAPL CHECKS, AND PURGING DATASEPTEMBER 2005

NYSEG BRIDGE STREET FORMER MGP SITE PLATTSBURGH, NEW YORK

Well Number	Date	Depth to Water (ft bgs)	Water Elevation (ft msl)	Total Volume Purged (Liters)	NAPL Observations	Specific Conductivity (umhos/cm)	Temperature (°C)	рН	Turbidity	Notes
MW-1B	9/20/2005	7.87	114.93	85	ND	1,620	10.9	7.78	132	Purged dry
MW-2B	9/20/2005	4.92	117.40	79	odor, trace NAPL	-	-	-	-	No parameters collected due to NAPL in water
MW-3B	9/20/2005	18.52	101.59	104	odor	1,390	10.6	8.5	325	Purged dry
MW-6B	9/20/2005	14.26	107.64	64	odor, trace NAPL	1,280	12.9	8.82	342	Purged dry
MW-7BD	9/20/2005	12.52	108.54	97	odor, trace NAPL	840	11.0	9.32	>1,000	Purged dry
MW-7BS	9/21/2005	2.96	117.76	87	odor, trace NAPL	-	-	-	-	No parameters collected due to NAPL in water
MW-9B	9/20/2005	28.26	92.80	18	ND	1,750	11.2	8.04	>1,000	Purged dry
MW-10B	9/20/2005	7.60	114.55	136	ND	1,390	13.4	6.82	975	Purged dry
MW-11B	9/20/2005	4.42	115.39	117	ND	890	12.0	9.63	>1,000	Purged dry

ND - No indications of NAPL detected.

TABLE 2

SUMMARY OF BEDROCK GROUNDWATER ANALYTICAL RESULTS SEPTEMBER 2005

NYSEG FORMER MGP SITE

BRIDGE STREET PLATTSBURGH, NEW YORK

Sample Location Sample Date	NYSDEC GW Standard ^(a)	MW-1B 9/21/2005	MW-2B 9/21/2005	MW-2B 9/21/2005 Duplicate	MW-3B 9/21/2005	MW-6B 9/21/2005	MW-7BS 9/21/2005	MW-7BD 9/21/2005	MW-9B 9/21/2005	MW-10B 9/21/2005	MW-11B 9/21/2005
				ne, Toluene,	Ethylbenzene	e, and Xylene	s (ug/L)				
Benzene	1	0.9J	850	870	310	3J	35	830	< 0.5	2J	10
Ethylbenzene	5	<0.8	970	1,000	97	22	18	980	< 0.8	< 0.8	5J
Toluene	5	< 0.7	1,300	1,400	50	11	5J	1,300	< 0.7	< 0.7	14
Xylene, total	5	< 0.8	1,600	1,700	81	57	17	2,100	< 0.8	< 0.8	12
Total BTEX	-	0.9	4,720	4,970	538	93	75	5,210	ND	2.0	41
				Polyaroma	tic Hydrocar	bons (ug/L)					
Acenaphthene	[20]	NA	7,100	19,000	23	NA	130	NA	NA	<1	2J
Acenaphthylene	-	NA	45,000	120,000	3J	NA	39	NA	NA	<1	6
Anthracene	[50]	NA	16,000	43,000	<1	NA	25	NA	NA	<1	<1
Benzo(a)anthracene	[0.002]	NA	11,000	31,000	<1	NA	11	NA	NA	<1	<1
Benzo(a)pyrene	[0.002]	NA	11,000	30,000	<1	NA	13	NA	NA	<1	<1
Benzo(b)fluoranthene	[0.002]	NA	8,700	21,000	<1	NA	11	NA	NA	<1	<1
Benzo(g,h,i)perylene	-	NA	6,600	17,000	<1	NA	9	NA	NA	<1	<1
Benzo(k)fluoranthene	[0.002]	NA	4,200	7,500	<1	NA	4J	NA	NA	<1	<1
Chrysene	[0.002]	NA	9,800	28,000	<1	NA	11	NA	NA	<1	<1
Dibenzo(a,h)anthracene	-	NA	1,000	2,500	<1	NA	<1	NA	NA	<1	<1
Fluoranthene	[50]	NA	33,000	85,000	<1	NA	44	NA	NA	<1	<1
Fluorene	[50]	NA	18,000	50,000	2J	NA	40	NA	NA	<1	<1
Indeno(1,2,3-cd)pyrene	[0.002]	NA	4,500	12,000	<1	NA	6	NA	NA	<1	<1
Naphthalene	[10]	NA	150,000	380,000	440	NA	150	NA	NA	<1	24
Phenanthrene	[50]	NA	79,000	200,000	1J	NA	140	NA	NA	<1	1J
Pyrene	[50]	NA	45,000	120,000	<1	NA	56	NA	NA	<1	<1
Total PAHs	-	NA	449,900	1,166,000	469	NA	689	NA	NA	ND	33
General Chemistry Parameters (ug/L)											
Total Phenols	1	<24	<12	<12	27J	NA	<12	NA	NA	15J	250
Total Cyanide	-	<5	<5	<5	<5	<5	<5	<5	NA	<5	<5

Notes:

Samples analyzed by Lancaster Laboratories in Lancaster, PA.

(a) New York State Groundwater Quality Standard from Division of Water

Technical and Operational Guidance Series (NYSDEC, TOGS 1.1.1).

NA: Indicates the parameter was not analyzed for.

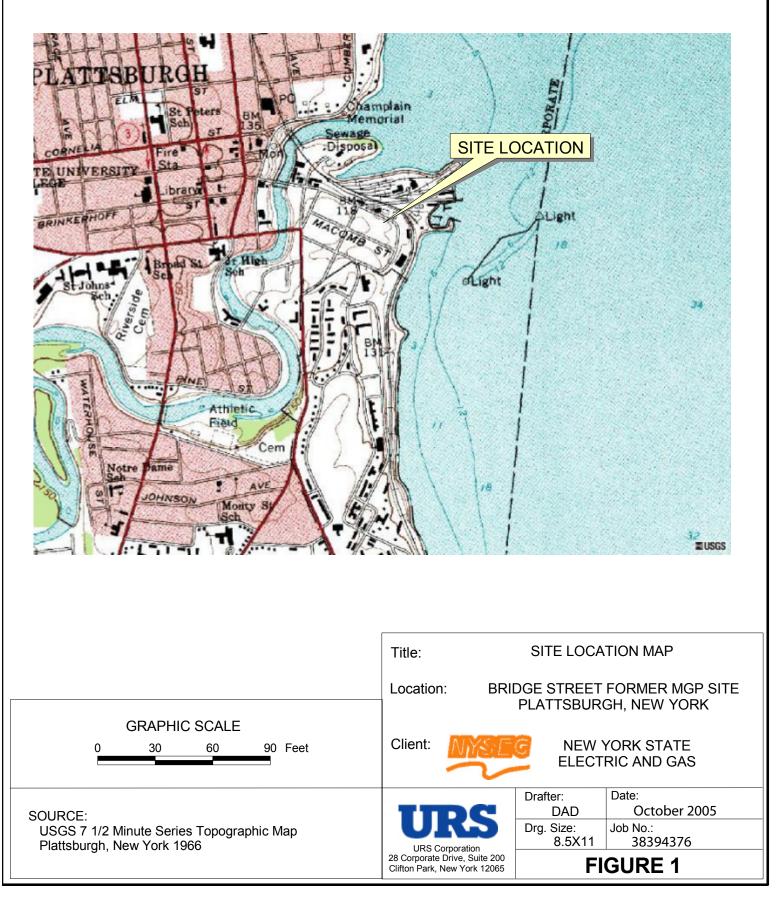
ND: Indicates parameter was not detected.

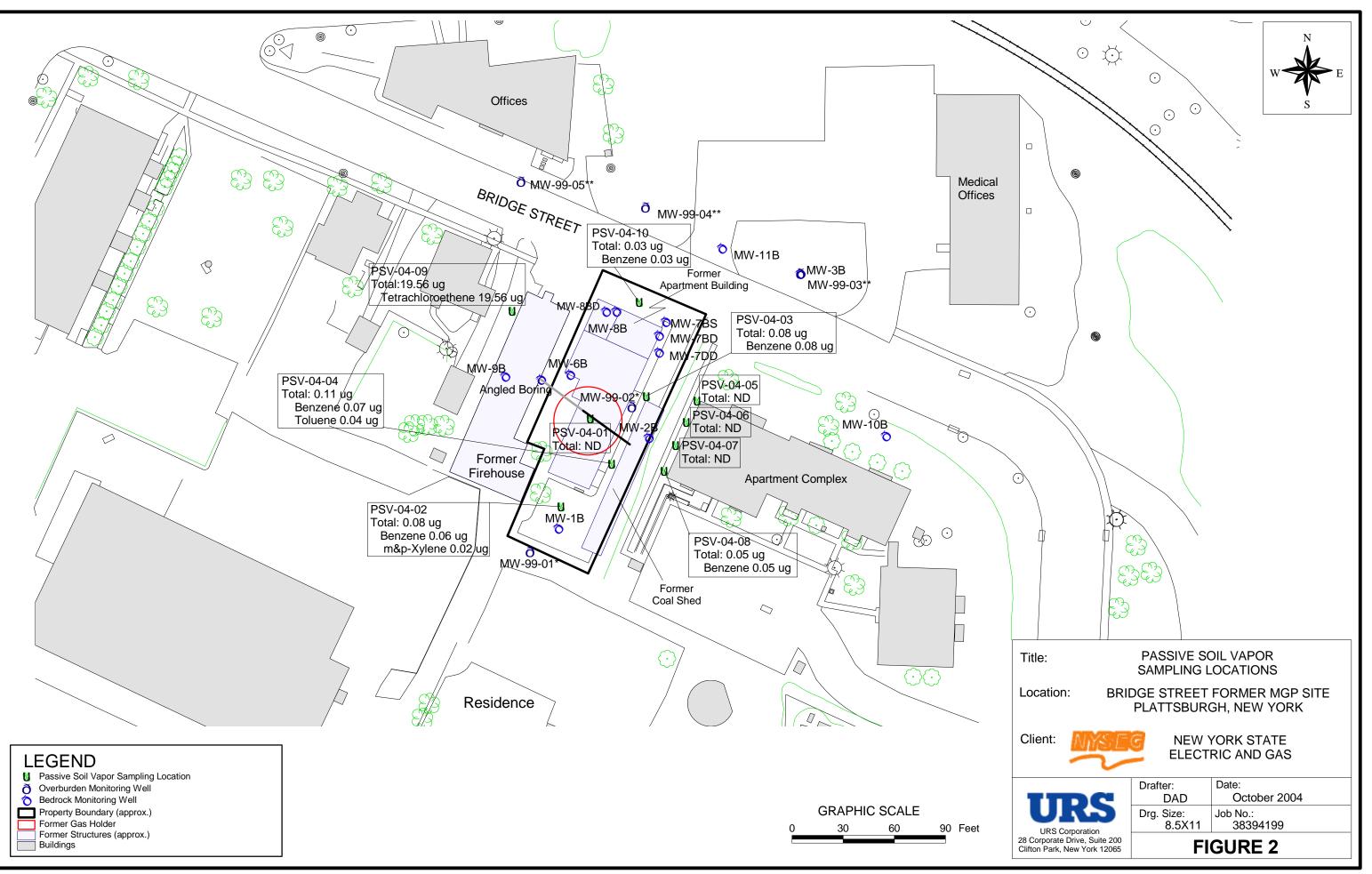
NYSEG - Bridge Street

38394376/Table 2 Summary GW Samples.xls/all analyses

<: Indicates the parameter was not detected above the PQL shown.

J: Indicates an estimated concentration between the MDL and PQL.


[]: Indicates a Guidance Value.


Bold indicates parameter was detected.

Shading indicates parameter exceeds standard.

FIGURES

APPENDIX A GROUNDWATER SAMPLE FIELD DATA SHEETS

NYSEG. Bridge St former MGF.

WELL NO: Man

Plattsburgh, New York	$\frac{1}{1}$
Field Personnel.	Date: 07/20/05
ERIC LOULADVINI	Job No.:
	Location: Platsburgh NY
	40.25
Total Well Depth (from top of casing):	35.05 leci
Depth to Water Surface Before Purging (from top of casing):	. <u>7.87</u> feet
Height of Water Column:	= <u>+9-67</u> fcet
Well Diameter (d). H inches Gals per ft: (d ² x 0.0408) =	x 0.653
Volume of Water Column Before Purging:	<u>= +7-75</u> gallons
Volume of Water Equal to three Well Volumes: (Volume of Column by 3.0)	gallons
Purging Method: Bailer/Witerra Pump/Submersible Pump/Peristaltic Pu	Imp

Well Volumes Time Specific Conduct. Frmp. pН Turbidity Dissolved Redox (Gallons) (mmhov/cm or (°F or °C) (SU) (NTU) Oxygen Potential mhos) (mg/L) (mV) 5818 1.0 <u>193</u> 53.9 7.49 198 ____ ___ P822 6.0 162 57.6 7.86 122 ----_ 7.85 1.59 11.0 55.3 129 المعين 51 16.7 53.Z ~ ł 137 7.81 0631 24.7 561 516 7.75 132 . ~ 1 レ p 2

Total Volume of Water Purged:

Total Volume of Water Purged:			22.5 gallons
Sampling Data:	 Sampling Method: Depth of Pump intak Sample Date/Time: Color: Odor: Sheen/Appearance: 	Baile or Pump + 70 	_feet - - -

Notes:

1 - Field parameters obtained before sampling

2 - Field papameters obtained after sampling

<u></u>	3. uods will for STER
	1-12 cleriglass of HeSOy for Planks,
	1- R. clevi glass of HeSON for Plum ls 1- 500 ml poly w/ NaDH + Ascordic Ac. I for Grande
unable to Fill remain	my botthes (PAH) He well is dry.
return c end of	
	(SIIE)
GWSamplingForms/gw sample sheet	U

_

	G		G. Bridge -	St Former MGT	SHEET	WELL NO:	MW-02B
Field Perso	nnel <u>- 40-1600/58</u>		angh, New	Yol K	Date: Job No.: Location:	<u>9/2.0/0</u> <u>Plattsburgh</u>	MW-02B 25
Total Well Dept	h (from top of cas	ing):			<u>36.75</u>	•	
Depth to Water S	Surface Before Pu	rging (from top of cash	ng):		. 1.92	feet	
Height of Water	Column:				= 01.83	feet	
Well Diameter (<u>1):</u> 4	Inches	Gals per fl:	(d ² x 0.0408) =			
Volume of Wate	r Column Before	Purging:			<u> </u>	gallons	
	r Equal to three W Column by 3.0)	/ell Volumes:				gallons	
Purging Method	" (Bailer/Waterra Pump/	Submersible P	ump/Peristaltic Pu	ımp		
Time	Well Volumes (Gallons)	Specific Conduct. (mmhos/cm or umhos)	Temp. (°F or °C)	pH (SU)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Redox Potential (mV)
	$- \mathbf{N}$	D-PARA	METER	25 50	P-B/	o	
	- 11	R ON		TER.		e	
					· · ·		
1				_			
Total Volume of V	Water Purged:		Ľł				
Sampling Data:		- Sampling Method: - Depth of Pump intake - Sample Date/Time: - Color:	e of bailer 9/21	Bailer or Pump 	fcei		

Notes:

.

1 - Field parameters obtained before sampling

- Odor:

- Sheen/Appearance:

2 - Field papameters obtained after sampling

"BSGADOIOZ" 3 vols w/HCI for RTEX 12 amber WI Nato Stor For PAH 12 clear gloss w/Hz Soy far Phrols 500 ml poly w/ NoOH+Ase Acid for Granich <u>105"</u> FIELD DUP "DUP 07/2 2 ŧ 1

TAR

TAR BLEBS

.

NYSEG Blidge St Former MGF

WELL NO: MW-03B

Plattskuit. New York	
Field Personnel.	Date: 60.5 9/20/05
EBIC LOULADVEN	Job No.:
	Location: Plattsburgh, NY
Total Well Depth (from top of casing):	_60. 37 ' feet
Depth to Water Surface Before Purging (from top of casing):	<u>- 19.52</u> feet
Height of Water Column:	= 42.29 feet
Well Diameter (d): 4 inches Gals per ft: $(d^2 \times 0.0408) =$	x 0.653
Volume of Water Column Before Purging:	<u>= 2</u> 7.4 _ gallons
Volume of Water Equal to three Well Volumes: (Volume of Column by 3.0)	gallons
Purging Method: Bailer/Waterra Pump/Submersible Pump/Peristaltic Pu	ump

Time	Well Volumes	Specific Conduct.	Temp.	рН	Turbidity	Dissolved	Redox
	(Gallons)	(mmhos/cm or	(°Ppr °C)	(SU)	(NTU)	Охудеп	Potential
		µmhos)				(mg/L)	(mV)
	1.5	1.20	56.1	5. <i>36</i>	53.9	-	-
	6.5	1.27	55.4	\$ 10	5/1	-	
	il.2	1.29	54-5	9.43	374		
	16.0	1.30	53.7	8.49	29	-	
	21.0	1.34	52.7	8:50	2.95		
_	26.0	1.39	511	8.50	325		
_		<u> </u>		0			
		DICY	10 30	1.el			

Total Volume of Water Purged:

Sampling Data:

<u>30</u> gallons

 Sampling Method: Depth of Pump intak 	e of bailer: Baile or Pump -57 feet
- Sample Date/Time:	7/21/05 1030
- Color:	Si cloudy SIET
- Odor:	Sulfur + for order
- Sheen/Appearance:	ND/ St. Claudy

Notes:

1 - Field parameters obtained before sampling

2 - Field papameters obtained after sampling

	"BSGDD0203"	BTEX
		PAH
		Phynols
·		Cyanide

		NYSE	G. Bridge	St Former MGF York		WELL NO:	<u> Mw-06</u>	
Field Perso <i>ER</i> O	onnel <u>こ </u>	Date:	9/20/05 Plattsbacgh					
otal Well Dep	th (from top of casi	ոք)։			39.0	feet		
epth to Water	Surface Before Pu	rging (from top of casi	ng):		- 14.26	feci		
eight of Water	Column:				= 24.79	feet		
'ell Diameter ((<u>d):</u> 4	inches	Gals per ft:	(d ² x 0.0408) =	<u>x 0.653</u>			
olume of Wate	er Column Before F	Purging:			<u>= 16-15 g</u> allons			
	er Equal to three W f Column by 3.0)	ell Volumes:			gallons			
irging Metho	d:	Bailer/Waterra Pump/	Submersible P	ump/Peristattic Pi	ітр			
Time	Well Volumes (Gallons)	Specific Conduct. (numbos)cm or umbos)	Temp. (°F or °C)	рН (SU)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Redox Potential (mV)	
	İσ	1.14	55.5	9.14	72.8			
	6.0	1.17	54.6	9.05	55.7			
 	11.0	1.21	55.3	8.95	29.2			
-	16.0		55.2	8.82	372	_	<u> </u>	
	P-7 @ 17.	<u> </u>			<u> </u>			
,			<u> </u>					
2	<u>├</u>		<u>├</u>		<u>}</u>			
4								

Sampling Data:

- Sampling Method: Bailer or Pump - Depth of Pump intake or bails 39 feet - Sample Date/Time; 9/21 1230 n - Color: Clove 4 gicy - Odor: TAR - Sheen/Appearance: TAL BLEBS + Hery sheen

Notes:

1 - Field parameters obtained before sampling

2 - Field papameters obtained after sampling

_ 	<u>"BSGDDO106"</u>	
	3- Voils ~/ HCL for BTEX	,
	1.500 ml poly w/ NoOH + Ase Ac	in for eyonide
	unable to fill remain bottles (PAH +Phunds) b/c	9
	well is dig.	
	Returned C and of day, still day	
_	(5/2)	
GWSamplingForms/gw sample sheet		URS

NYSEG Bridge St Former MGP

Date: Job No.:

Location:

23

gallons

WELL NO: <u>MW-07B</u>S <u>9/21/25</u>

Platts burgh NY

Plattstenish, New York	

F.B.C. G	o-LISDUSHI
----------	------------

Field Personnel.

Total Well Depth (from top of casing):		1.10 feet
Depth to Water Surface Before Purging (from top of casing):		. 7. 76 feet
Height of Water Column:		= 11.44fcc1
Well Diameter (d): 4 inches Gals per ft: (d ² x 0.0408) =	<u>x 0.653</u>
Volume of Water Column Before Purging:	= 7.5 gallons	
Volume of Water Equal to three Well Volumes: (Volume of Column by 3.0)		22. Y gallons

Purging Method:

Bailer/Waterra Pump/Submersible Pump/Peristaltic Pump

Time	Well Volumes (Gallons)	Specific Conduct. (mmhos/cm or µmhos)	Temp. (°F or °C)	рН (SU)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Redox Potential (mV)
	o Par	A METER	25	TAKEN) Ga	- of 1	۹ <i>۲</i>
n	tixe	w/wat4	n '				
2							

Total Volume of Water Purged:

Sampling Data:

- Sampling Method: Bailey or Pump - Depth of Pump intake or bailer ~1Z feet - Sample Date/Time: 120 - Color: bros 24 - Odor: TA 12 - Sheen/Appearance: <u>shun</u>. ta 61265

Notes:

1 - Field parameters obtained before sampling

2 - Field papameters obtained after sampling

3 VONS ~[Hel for RTED F. PA 2-12 omber 4, INO2 So Ma 12. cley glas ~ Hz Soy for Physics 1 -No OH+Ase. Acid for Cymide 500me poly LI

2

 $1 \omega - 7BD$

	NISEG-Bridge St former MGF Plattsburgh, New York		WELL NO: M
Field Personnel. <u>FRIC_40-UNDVSH</u>		Date: Job No.: Location:	<u>9/20/05</u> <u>Plattaburgt, NY</u>
Total Well Depth (from top of casing):		49.24	feet
Depth to Water Surface Before Purging (from	top of casing):	<u>- 12.52</u>	feet
Height of Water Column:		= 36-12	fect
Well Diameter (d): 4 inches	Gals pcr ft: (d ² x 0.0408) =	<u>x 0.653</u>	
Volume of Water Column Before Purging.		= 24.0	gallons
Volume of Water Equal to three Well Volume:	s:		gallons

Volume of Water Equal to three Well Volumes: (Volume of Column by 3.0)

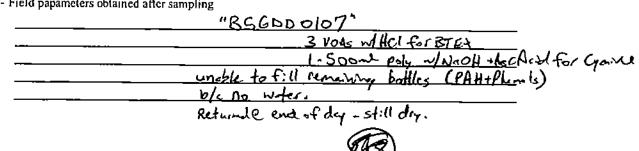
Purging Method:

Bailer/Waterra Pump/Submersible Pump/Peristaltic Pump

Time	Well Volumes (Gallons)	Specific Conduct. (mmhos/cm or µmhos)_	Temp. (Of or °C)	pH (SU)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Redox Potential (mV)
	1.0	0.85	55.3	2.58	925	-	
	6.0	0.88	54.4	7.39	700		\sim
	<u> </u>	0.67	53-7	9.3 <i>5</i>	825 B	<u> </u>	
	16.0	0.86	521	9.31	975		-
	3210	_ a.84	51.9	9.32	הטוור	~ _	L
	PRICZ5.5	94/					
		. ,					<u> </u>
				-			<u> </u>

~てら、S_gallons

Total Volume of Water Purged:


Sampling Data:

 Sampling Method: Depth of Pump intak Sample Date/Time: Color: 	e or bailer Bailer or Pump 47 feet 9/21/05 1300 Cloudy grey/brown
- Odor:	TAR
- Sheen/Appearance:	the -2 shung tor blebs

Notes:

I - Field parameters obtained before sampling

2 - Field papameters obtained after sampling

NTSEG Bridge St former MGF Plattsburgh, New York <u>GRIC 60.1100100011</u>	WELL NO: $\underline{MW \cdot 078}$ Date: $\underline{9/20/85}$ Job No.: Location: $\underline{Platter burgle, NY}$
Total Well Depth (from top of casing):	<u>35.05</u> feet
Depth to Water Surface Before Purging (from top of casing):	- <u>29. 26</u> feet
Height of Water Column:	=6.79feet
Well Diameter (d): 4 inches Gats per ft: (d ² x 0.0408) =	<u>x 0.653</u>
Volume of Water Column Before Purging:	<u>= 4. 4</u> gallons
Volume of Water Equal to three Well Volumes: (Volume of Column by 3.0)	gallons

Purging Method:

Bailer/Waterra Pump/Submersible Pump/Peristaltic Pump

Time	Well Volumes (Gallons)	Specific Conduct. (mmhos/cm or mhos)	Temp. (°F)r °C)	рН (SU)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Redox Potential (mV)
	10	1.69	53.0	<u>799</u>	521	·	
	4.5		521	8.04	71000		~
		Hy p-d	$\eta_{-\rho_{-}}$				
	<u> </u>	<u> </u>	1 pc		I		
					┼──┤		
	·				╀───╁		·
					┼╸──╁		

4.7

gallons

Total Volume of Water Purged:

Sampling Data:

Sampling Method: Depth of Pump intak	e or bai	ler:)	Baile	or Pump 35	feet
Sample Date/Time:	9/211	5	1000	<u> </u>	-
Color:	Cloud	4, 9,			-
Odor:	NÞ	- 7 J	/		-
Sheen/Appearance:	ND/a	chur	<u>ly</u>		-

Notes:

1 - Field parameters obtained before sampling

--

2 - Field papameters obtained after sampling

"BSGDDG 109" 3 VOAS W/ HCI For BTER Unable to fill remaining bottles b/cwell is dry. Return e end of day , well's still dry.

GWSamplingForms/gw sample sheet

URS

NYSEG-Bridge St Former MGF

Date: Job No.: Location: WELL NO: MIN-10B

9/20/05 Plattsburgh, NY

Plattsburgh, New York	
-----------------------	--

Field Personnel

ERIC .	LO. LIDVINI
--------	-------------

Total Well Depth (from top of casing):	<u>61.60</u> feet
Depth to Water Surface Before Purging (from top of casing):	. 7.60 feet
Height of Water Column:	= <u>54</u> 0 feet
Well Diameter (d): 4 inches Gals per ft: (d ² x 0.0408	= x O.653
Volume of Water Column Before Purging:	<u>= 35, 3</u> gallons
Volume of Water Equal to three Well Volumes: (Volume of Column by 3.0)	gallons

Purging Method:

Bailer/Waterra Pump/Submersible Pump/Peristaltic Pump

Time	Well Volumes (Gallons)	Sp <u>ecific</u> Conduct. ((mmhos/cm or µmhos)	Temp.	рН (SU)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Redox Potential (mV)
	1.0	1.44	37.4	7.67	352	-	(
	6.0	1.44	57.2	6.79	110)	{
	11.0	01:35×45	56.1	6.82	128		
	16.0	1.44	57.9	682	120	-	1
	21.0	1.92	57.9	6.82	182	~	\
	26.0	J. 4Z	57.5	6.8Z	447	<u> </u>	<u> </u>
	31.0	1.39	56.1	6.82	975	<i></i>	
	001	- 7 6	0		,		
Volume of	Water Purged:	-036g	oC		36	gallons	

Total Volume of Water Purged:

Sampling Data:

- Sampling Method: - Depth of Pump intak	c or bailer: 60 feet
	9/2/05 1136
- Color:	SI. cloud, brown
- Odor:	Sulfur
- Sheen/Appearance:	ND/Cloudy

Notes:

1 - Field parameters obtained before sampling

2 - Field papameters obtained after sampling

 BTEX	
 PAH	
 Phenols	
 Cyanide	

NYSEG-	Bridge St Former MGP		<u>WELL NO: العالم 8</u>
Plattsku	114. New York		
Field Personnel.		Date:	9/26/05
EBIC COULDVEDI		Job No.:	
		Location:	Platts borgh, NY
Total Well Depth (from top of casing):		39.10	feet
		ci la	
Depth to Water Surface Before Purging (from top of casing):	<u>- 7.4/</u>	feet
Height of Water Column:		= 34.68	feet
Well Diameter (d): 4 inches (Gals per ft: (d ² x 0.0408) =	<u>x 0</u> -653	
Volume of Water Column Before Purging:		= 22.(gailons
Volume of Water Equal to three Well Volumes: (Volume of Column by 3.0)			gallons
Purging Method: Bailcr/Waterra Pump/Su	bmersible Pump/Peristaltic Pu	mp	

Time	Well Volumes (Gallons)	Specific Conduct. (mmhos/cm or µmhos)	Temp. (%) or °C)	pH (SU)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Redox Potential (mV)
	1.0	E.84	56.3	9.70	43.1	1	<u> </u>
	6:0	0.85	582	9.69	129	_	<u>ب</u>
	11.0	D.45	59.9	9, 43	1.34		~
	16.0	D.BC	57.4	9.5z	410		-
	110	0.87	56.0	9.60	540		
	26.0	0.87	55.1	9.63	875	_	
	30.0	0.89	53.7	9.63	71100		
		NRY	0 21	0			

<u>3/</u> gallons

Total Volume of Water Purged:

Sampling Data:

- Sampling Method:	Bailer or Pump
- Depth of Pump intak	
- Sample Date/Time:	9/21/05 @ 1100
- Color:	SI. Cloudy br.
- Odor:	ND .
- Sheen/Appearance:	ND/chudz

Notes:

л. Э

1 - Field parameters obtained before sampling

2 - Field papameters obtained after sampling

PA 40 wb Cycaide

APPENDIX B GROUNDWATER SAMPLES LABORATORY ANALYTICAL REPORT

Data Package

NYSDEC ASP Category A Data Package

Analytical Data Report Package for URS Corporation

> Plattsburgh, NY Water Samples Collected on 09/21/05 Sample No. 4608587-4608599

> > SDG# PNY01

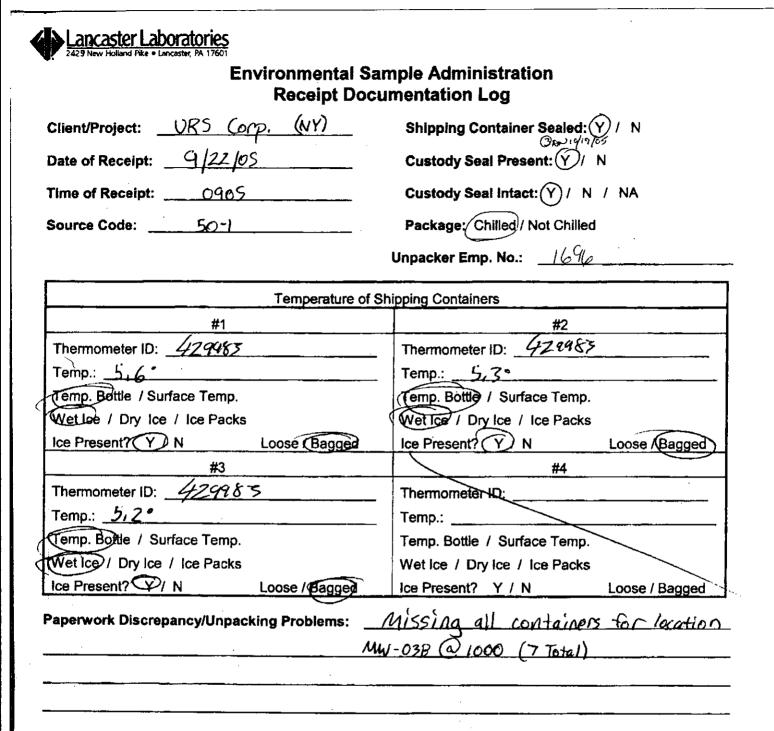
PA Cert. # 36-037 NY Cert. # 10670 NJ Cert. # PA011 NC Cert. # 521

arden A Prepared by Quality Assurance Review Date

TABLE OF CONTENTS

1.	Sample Reference List	.1
2.	Analysis Request, Field Chain-of-Custody Record	2
3.	Chain-of-Custody Record	.4
4.	Methodology Summary/Reference1	-3
5.	Analysis Reports/Laboratory Chronicles1	5
6.	Volatiles by GC/MS Data	36
	a. Case Narrative-Conformance/Nonconform. Summary3	37
	b. Sample Data4	12
7.	Semivolatiles by GC/MS Data	94
	a. Case Narrative-Conformance/Nonconform. Summary	€
	b. Sample Data10)1
8.	Instrumental Analysis Data11	⊾7
	a. Case Narrative-Conformance/Nonconform. Summary11	. 8

Sample Reference List for SDG Number PNY01 with a Data Package Type of NYSDEC A


08371 - URS Corporation

Plattsburgh, NY

Lab Sample	Lab Sample	
Number	Code	Client Sample Description
4608587	MW01B	MW-01B_BSGUD0101 Grab Water Sample
4608588	MW09B	MW-09B_BSGDD0109 Grab Water Sample
4608589	MW03B	MW-03B_BSGDD0203 Grab Water Sample
4608590	MW11B	MW-11B_BSGDD0111 Grab Water Sample
4608591	MW10B	MW-10B_BSGDD0210 Grab Water Sample
4608592	MW06B	MW-06B_BSGDD0106 Grab Water Sample
4608593	MW07B	MW-07BD_BSGDD0107 Grab Water Sample
4608594	MW02B	MW-02B_BSGDD0102 Grab Water Sample
4608595	MW07S	MW-07BS_BSGDIM0107 Grab Water Sample
4608596	FD921	DUPLICATE_DUP09/21/05 Grab Water Sample
4608597	TB921	TRIP_BLANK_TB050921 Water Sample
4608598	DRUM1	DRUM1 Grab Water Sample
4608599	DRUM2	DRUM2 Grab Water Sample

8601

		LAB Lencastic Laburatorics	COOLER 123 of 3	PAGE / of /	OL NO'N IN LEEL) IN LEEL) IN C	DEPTH (ENCING BEGINNI BEGINNI	· · ·	1 1 2	· · · · · · · · · · · · · · · · · · ·	· 1 2		> 12	12	1 1 1 2	N − 1	FRI ~ -	TBi < I			UH - HAZARDOUS LICUID WASTE UF - FLOATWOFFLEE PRODUCT ON GW TABLE	(# - SEQUENTIAL NUMBER (FROM 1 TO 8) TO ACCOMMODATE MULTIPLE SAMPLES IN A SINGLE DAY)	RUCTIONS Scatt Halsageple -/ grestions		· · ·	
# 1/608581-99	Ĥ	22 محر الا 23 عندان 24 عند 25 عندان 25 عندان 25 عند 27 محر		BOTTLE TYPE AND PRESERVATIVE	ماردی برید لادیم بر ۵۰،۱۸ ۲۰۰۶ ا	1051												2		WL - LEACHATE WO - OCEAN WATER GS - SOIL GAS WS - SURFACE WATER WC - DRILLING WATER WO - WATER FIELD OC		DATE TIME SPECIAL INSTRUCTIONS	DATE TIME 1/22/05 0905		
h#	RECORD	2 0)	118 1	BOT	526 3324 8190 00 10 10 10 10 10 10 10 10 10 10 10 10]≥ :⁄/ ₩0þ		σ	W6 7 3 2	WG 7 3 2	WG 7 3 2	WG 4 3	WG 4 3,	WG 7 3 2		WG 7 3 2	N& 2 2	NG Z Z	4	_	N# • NORMAL ENVRONMENTAL SAMPLE MS# • MATRIX SPIKE	RECEIVED BY (SIGNATURE)	LAB BY (SIGNATURE)		
and 8371 920 960 841		SITE NAME	N'JCU Dride	1 - f Emanul	AIRBILL NO.: 8526.3	AP/ SAMPLE ID	AS BSGUDOI01	& BSGDDolog	List Weak BSEDDOZ03	AB BSGDDOI 11	TANGAR BSGD DOZIO	CRAB 35GD DOLOG	ł		BSGNTMOIOT	GRAG DUP 09/21/05		DRUM-	DRVM-2	SL - SLUDGE WP - DRINKING WATER WW - WASTE WATER	AB# - RINSE BLANK FR# - FIELD REPLICATE	DATE TIME RECEIVED	DATE TIME RECEIVED FOR	ent, copy to coordinator well	
and 8371	CHAIN OF CUSTODY	PROJECT NO.	SAMPLERS (PRINT/SIGNATURE)	Eric Lovenduski	DELIVERY SERVICE: FED G	LOCATRON IDENTIFIER DATE TIME GRAB	MW.018 9/21/05 0920 CRAB	MW-09B 9/21/25 1000 (44)	MW-038 glades Hose wille	MW-113 7/21/05 1100 68AB	Mw-108 1/21/05 #20-WW	MW-068 9/21/05 1250 181 6R	MW-07B0 9/21/25 1300 6RAB	9/21/05	9/21/05 1430	9/21/25	There Bland 7/21/05 - Gave	9/21/05 1500	÷	MATRIX M - WIENT AR SE - SEDWENT SH - HAZARDOUS SOLID WASTE	SAMPLE TR# - TRIP BLANK TYPE CODES SO# - MATRIX SPIKE OUPLCATE	RELINQUISHED BY (SIGNATURE) 1	DUISHED BY (SIGNATURE) [Distribution: Original accompanies shipment, copy to coordinator weld files	URSF-075C/1 OF 1/ColCR/GCM

ample Administration Ir	nternal Chain of (Custody
Date	Time	Reason for Transfer
19/22/05	1420	Unpacking to Stalage
9/22/05	1919	Place in Storage or Entry
/ /		Remove from Storage
	,	Place in Storage or Entry
		Entry
	Date	

2174.01

Chain-of-Custody Record

•

8884

Secure Storage Chain of Custody Original Sample

		Ma	trix: WW		SDG: PNY01	
ample # Range of E	intry Group:	4608587-9	99	Bottle Typ	e: (38) 40mL vial	
Sample Number(s) in Custody	Released By	Received By	Date of Transfer	Time of Transfer	Reason for Change of Custody	Dist., Extr., or Digest Chain Created (X)
4608587-99	391 TIBadard	VOA Refrig.	9/22/05	2035 TIB	Entry to Storage	
4608587-99	VOA Refing	540/1551	09/23/05	08:15	transfer	
	540/1557	DEPT. 21 Refrig.	09/23/05	08:30	STORAGE	
1608587-99	DP21 Ryrig.	4192 0	9/26/05	09:00	prepare for analysis follintions)	
4608587-99	192 0 andale	HP07159 Archon	9/26/05	09:30	VOA analysis 2305/1163	
4608587-99	Archon	3ML 1693	9/26/05	15:15	continuation of analysis	
1608587-99	onniers	Dept21 Storage	9/26/05	18:00	analysis	
4608597	DP721 Storage	490 gridale	9/30/05	6:00		
4608597	Legs & amolale	h.polica Archon	9130/05	00:00	renalizait	
4608597	Hponry Archin	19sand dale	9130hr	11:00	рн	
Lleoster	490 andale	A 121			reanous 3 complete	
					•	
						· . ``.
						8885
	Sample Number(s) in Custody 4608587-99 4608587-99 4608587-99 4608587-99 4608587-99 4608587-99 4608587-99 4608587-99 4608587-99 4608587-99 4608597 4608597 4608597	Sample Number(s) in Custody Released By 4608587-99 391 Thodain 4608587-99 4608587-99 4608587-99 4608587-99 4608587-99 4608587-99 4608587-99 4608587-99 4608587-99 4608587-99 4608587-99 4608587-99 4608597 460859 4608597 4608597 460859 460859 460859 460859 460859 460859 460859 460859 460859 46085 4608	Sample Number(s) in Custody 4608587-99 4608587-99 4608587-99 4608587-99 17000 170000 17000 17000 1700000 17000 170000 1700000	Sample Number(s) Released Received Date of in Custody By By Transfer 4608587-99 391 VOA $9/22/05$ T/Bachard Refrig. 4608587-99 391 VOA $9/22/05T/Bachard Refrig.4608587-99$ 391 VOA $9/22/05Refrig.$ $09/a3/051608587-99$ $600/1557$ $Refrig.$ $09/a3/051608587-99$ $600/1557$ $Refrig.$ $09/a3/051608587-99$ $Refrig.$ $09/a501608587-99$ $Refrig.$ $09/a501608587-99$ $Refrig.$ $000/159$ $9/a6/051608587-99$ $Refrig.$ $000/159$ $9/a6/051608587-99$ $Refrig.$ $000/159$ $9/a6/051608597$ $000/159$ $Refrig.$ $9/a6/051608597$ 1000 $Refrig.$ 000 $Refrig.$ 0	Sample Number(s) Released Received Date of Transfer in Custody By By Transfer Transfer Transfer 4608587-99 391 VOA $9/22/05$ 2035 Thickelest Refrig. $9/22/05$ 2035 Thickelest Refrig. $9/22/05$ 2035 Thickelest Refrig. $9/22/05$ 2035 Thickelest Refrig. $9/22/05$ 08:15 4608587-99 900 , 500 , 1551 $09/23/05$ 08:30 1608587-99 900 , 1557 $8efrig.$ $09/23/05$ 08:30 1608587-99 900 , 1557 $8efrig.$ $09/23/05$ 08:30 1608587-99 921 492 492 $9126/05$ 09:00 4608587-99 921 492 492 $9126/05$ 09:00 4608587-99 1492 492 $9126/05$ 15:15 1608587-99 1921 1973 $3126/05$ 18:00 1608587-99 1921 1992 $9126/05$ 18:00 1608587-99 1924 1992 $9126/05$ 18:00 1608587-99 1924 1992 $9126/05$ 18:00 1608587 $9126/05$ $18:00$ 1608587 $9126/05$ $18:00$ 1608587 $9126/05$ $18:00$ 16:00 1160 1924 1920 9130 10 100	Sample Number(s) in Custody Released By Received Date of Time of Change of Custody $\frac{391}{4608587-99}$ $\frac{391}{716}$ VOA Refrig. $\frac{9/22/05}{716}$ Custody $\frac{391}{716}$ $\frac{7}{76}$ $\frac{391}{716}$ $\frac{7}{76}$ $\frac{391}{716}$ $\frac{7}{76}$ $\frac{391}{716}$ $\frac{7}{76}$ $\frac{7}{76}$ $\frac{7}{76}$ Entry to Storage $\frac{7}{76}$

Secure Storage Chain of Custody Original Sample

Client/Project: URS	Corporation	/Plattsburgh	, NY			<u> </u>			
Preservative: Na2S2	203	Ma	trix: WW	SDG: PNY01					
Sample # Range of E	ntry Group:	4608587-9	9	Bottle Typ	e: (45) 1000mL an	nber			
Sample Number(s) in Custody	Released By	Received By	Date of Transfer	Time of Transfer	Reason for Change of Custody	Dist., Extr., or Digest Chain Created (X)			
4608589-91,94-96	391 Ibedasd	SA Storage	9/22/05	2035 TIB	Entry to Storage				
4626589-91,94-96	5 1353	main	ବ.୪୨.୯୨	6161	Storage				
4628589-91,94-96	Main Horner-	Purage Trunky Trunky	9-7.6-05	0745 1305-	PAN Noo Prup	\times			
4601589-91, 94%	Pinnen 17	Main Storige	9/26/05	1305-	PAN Noo Prup Storage				
			<u> </u>						
· · · · · · · · · · · · · · · · · · ·									
						8886			

Secure Storage Chain of Custody Original Sample

Client/Project: URS	Corporation	/Plattsburgh	, NY			<u> </u>
Preservative: NaOH	/Ascorbic Ad	cid Ma	trix: WW		SDG: PNY01	
Sample # Range of E	intry Group:	4608587-9	99	Bottle Typ	e: (02) 500mL pla	stic
Sample Number(s) in Custody	Released By	Received By	Date of Transfer	Time of Transfer	Reason for Change of Custody	Dist., Extr., or Digest Chain Created (X)
4608587,89-96	391 Tíbidard	SA Storage	9/22/05	2035 716	Entry to Storage	
4662587,89-96 4662587,89-96 4662587,89-91	Force	SI383	9.BOS	1900	pharack storage	
41692387,89-94	Sinchor	main	9.23.05	BID	storage	
4662587-91	Mam Storage	0471an 1342	01-27-05	7:00 10:45 242 9/271.1	(N prep storaje	X
4608567,89-96	CyTian 1242	Main Storage	09-27-05	10:45	storaje	
	·					
				<i></i>	 	
	· · · · · · · · · · · · · · · · · · ·					
	<u>.</u>					9997

2016.01

Secure Storage Chain of Custody Original Sample

Client/Project: URS	Corporation	/Plattsburgh	, NY			
Preservative: H2SO	4	Ma	trix: WW		SDG: PNY01	
Sample # Range of E	ntry Group:	4608587-9	9	Bottle Type	e: (03) 1000mL gla	ISS
Sample Number(s) in Custody	Released By	Received By	Date of Transfer	Time of Transfer	Reason for Change of Custody	Dist., Extr., or Digest Chain Created (X)
4608587,89-91,94- 96	Thedahd	SA Storage	9/22/05	2035 Т.I,В	Entry to Storage	
LILOCESE7,89-91,94	SA	SIZED	93-05	1900	phenol prop Storage	
4602557,89-91,44-9	os.3300	main Storage	9.33.05	NID	Gtorage	
4608587,89,90,91, 94-96 4608587,89,90,91,	man	MIXSLOOP	9-27-05	1220	phenol prip	×
4608587,89,90,91, 94-96	ngshuip 12m	Man Storage	9-22-15	1515	Storage	
· · · · · · · · · · · · · · · · · · ·			· · · · · · · ·			
·						
						9998

Secure Storage Chain of Custody Original Sample

Client/Project: URS Preservative: HCI					SDG: PNY01	
Sample # Range of E					e: (38c) 40mL vial	
Sample Number(s) in Custody	Released By	Received By	Date of Transfer	Time of Transfer	Reason for Change of Custody	Dist., Extr., or Digest Chain Created (X)
4608587-96	391 Thedard	VOA Refrig.	9/22/05	2035 Т.Т.В	Entry to Storage	
4608587-96	Vea 1efist	JIM1532	9-23.05	00.10	for Pieschening	
4608587-96 4608587-96	JIM1532	JIM1532 voa Storuge	9-23-05	02:45	for fibscrang entry to voa storage	
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			
					<u> </u>	
·						
						8889

documpted 9-29.05 06:40

Organic Extraction

Secure Storage Chain of Custody

Extract

BATCH NO. 05267WAA026		
Client URS Corporation		
SDG: PNY01	Analysis:	
Sample IDs	PAH by GC/MS - Water	
4608589 4608590 4608591 4608594	4608595 4608596	

Sample Number(s)	Released by	Received by	Date	Time	Reason for Change of Custody
4608589,90-94-91	D. 14 Trun 277	Dept26 STONAGE	9/26/05	1430	storage
4608589-91,94-96	Dept 26 Sturage	Alabam	9 26/05	21:45	Internalization
4608589-91,9496	Haham.	4209910	9/26/05		Analysis
4608589-91,9496	HP09910	A haham	9127105	19:30	Re Cap Stevage
4608599-91,94-96	Ahahain	Dept 26 Storage	9/27/05	19:35	Stevage
	<u> </u>		 		
					9919

Lancaster Laboratories 2425 New Holland Pike • Lancaster, PA 17601-5994							
Department Storage Chain of Custody Water Quality							
Digest	Distillate	Extra	ct	Filtrate	Subsample		
Client/Project:ÜҚS () experation	/ Platts	burgh.	NY			
Sample # Range for Entry Gro			<u>)</u>	Bottle Type:	83		
		1	'				
Sample Number(s) in	Released By	Received By	Date of Transfer	Time of Transfer	Reason for Change of Custody		
-71-11-5 4608567,89-96	CyTian 1242	Pept27 Storage	09-27-05	11:50	CN distillation Completed / Storage		
391788557 89-96	Nept2n Staas	lickalk	9.28.05	1800	CN analepsis		
4608557, 89-96	Kichgde	HUMR	9.28.05	2130	CA GRANKIS		
					• •		
					· · · · · · · · · · · · · · · · · · ·		
· · - · · · · · · · · · · · · · · · · ·							
					PA11		

Department Storage Chain of Custody Water Quality

		water	Quality		
Digest	Distillate	Extra	ict F	Filtrate	Subsample
Client/Project: <u>URS</u> (Corp. / Pl	attsburg	h Ny.		
Sample # Range for Entry G	/	v	,		
SDG: PNYOI	·	, , <u>_</u>		lottle Type:	03 (40ml vial)
				1	
Sample Number(s) in Custody	Released By	Received By	Date of Transfer	Time of Transfer	Reason for Change of Custody
4608587,89,90,91 94-96	ngshow 12m	Dept 21	9-27:05	1835	Phy complete Storage Phenol acalysis
4608587,89-91,94-96	Repten Storage	1 1 1	9.27.05	1630	
39.27.05, 94-96 462.8557, 89-91, 94-96	Hefultor	Sterior	9.27.05	00.00	Phend Chalipsis auplete/Storase
					00+7
					8812

Where quality is a science.

METHODOLOGY SUMMARY/REFERENCE

1163 GC/MS Volatiles Water Preparation

An undiluted aliquot of the water sample is purged and the volatile compounds are collected on a sorbent trap that is subsequently desorbed onto a gas chromatographic column.

Reference: Test Methods for Evaluating Solid Waste, SW-846, Method 5030B, Revision 2, December 1996.

2300 UST - Unleaded Waters by 8260B

The water sample is purged and the volatile compounds are collected on a sorbent trap that is subsequently desorbed onto the GC/MS system for chromatographic and mass spectral analysis.

Reference: Test Methods for Evaluating Solid Waste, SW-846, Method 8260B, Revision 2, December 1996

7805 PAH's in Water by GC/MS

The sample is solvent extracted and then analyzed by GC/MS.

Reference: Test Methods for Evaluating Solid Waste SW-846, Method 8270C, December 1996

0492 Cyanide Water Distillation

The sample is acidified and distilled. Cyanide is released as hydrogen cyanide and is absorbed in a sodium hydroxide solution.

Reference: Methods for Chemical Analysis of Water and Wastes, USEPA 600/4-79-020, Method 335.4

0491 Phenol Distillation (water)

The sample is acidified and the phenols distilled from nonvolatile impurities.

Reference: Methods for Chemical Analysis of Water and Wastes USEPA 600/4-79-020, Method 420.1 Where quality is a science.

0434 Phenols (water) USEPA

This method is based on automated distillation of phenol and the subsequent reaction with 4-aminoantipyrine in basic buffer to produce a red-colored complex. The absorbance is read at 505 nm and is compared to a standard curve. An Autoanalyzer is used.

Reference: Methods for Chemical Analysis of Water and Wastes, USEPA 600/4-79-020, Method 420.2

0237 Total Cyanide (water)

Digestion and flash distillation of the sample aid in breaking down the complex cyanides to HCN. Simple cyanides are converted to cyanogen chloride by reaction with Chloramine T. This reacts with pyridine and barbituric acid reagent to give a red-colored complex. The absorbance is read at 570 nm and is compared to a standard curve. An Alpkem Autoanalyzer is used.

Reference: Methods for Chemical Analysis of Water and Wastes USEPA 600/4-79-020, Method 335.4

Lancaster Laboratories

ANALYTICAL RESULTS

Prepared for:

URS Corporation 28 Corporate Drive Suite 200 Clifton Park NY 12065

518-688-0015

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 960341. Samples arrived at the laboratory on Thursday, September 22, 2005. The PO# for this group is 38394376.100000 and the release number is 38374376.10000.

Client Description MW-01B_BSGUD0101 Grab Water Sample MW-09B_BSGDD0109 Grab Water Sample MW-03B_BSGDD0203 Grab Water Sample MW-11B_BSGDD0111 Grab Water Sample MW-10B_BSGDD0210 Grab Water Sample MW-06B_BSGDD0106 Grab Water Sample MW-07BD_BSGDD0107 Grab Water Sample MW-07BS_BSGDD0102 Grab Water Sample MW-07BS_BSGDD0107 Grab Water Sample DUPLICATE_DUP09/21/05 Grab Water Sample TRIP_BLANK_TB050921 Water Sample DRUM1 Grab Water Sample DRUM1 Grab Water Sample

4608599

METHODOLOGY

The specific methodologies used in obtaining the enclosed analytical results are indicated on the laboratory chronicles.

1 COPY TO	URS Corporation	Attn: Scott M. Hulseapple
1 COPY TO	URS Corporation	Attn: Scott M. Hulseapple
1 COPY TO	Data Package Group	

8615

Questions? Contact Environmental Client Services

Respectfully Submitted,

Robin C. Runke Senior Specialis:

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

Page 1 of 1

Lancaster Laboratories Sample No. WW 4608587

MW-01B_BSGUD0101 Grab Water Sample Plattsburgh, NY

Collected:09/21/2005 09:30 by EL

Submitted: 09/22/2005 09:05 Reported: 10/06/2005 at 14:40 Discard: 10/14/2005 URS Corporation 28 Corporate Drive Suite 200 Clifton Park NY 12065

Account Number: 08371

MW01B SDG#: PNY01-01

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
00237	Total Cyanide (water)	57-12-5	N.D.	0.0050	mg/l	1
00434	Phenols (water)	n.a.	N.D.	0.024	mg/l	1
	The quantitation limit for phen matrix.	nols was increa	used due to the n	ature of the samp	ble	
02300	UST-Unleaded Waters by 8260B					

05401	Benzene	71-43-2	0.9 J	0.5	ug/l	1
05407	Toluene	108-88-3	N.D.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.8	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.8	ug/l	1

Laboratory	Chronicle
------------	-----------

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
00237	Total Cyanide (water)	EPA 335.4	1	09/28/2005 19:48	Venia B McFadden	1
00434	Phenols (water)	EPA 420.2	l	09/28/2005 02:42	Venia B McFadden	1
02300	UST-Unleaded Waters by 8260B	SW-846 8260B	1	09/26/2005 11:34	Anita M Dale	1
00491	Phenol Distillation (water)	EPA 420.1	1	09/27/2005 14:25	Nancy J Shoop	1
00492	Cyanide Water Distillation	EPA 335.4	1	09/27/2005 09:25	Choon Y Tian	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	09/26/2005 11:34	Anita M Dale	n.a.

8817

Page 1 of 1

Lancaster Laboratories Sample No. WW 4608588

MW-09B_BSGDD0109 Grab Water Sample Plattsburgh, NY

Collected:09/21/2005 10:00 by EL

Submitted: 09/22/2005 09:05 Reported: 10/06/2005 at 14:40 Discard: 10/14/2005 Account Number: 08371

URS Corporation 28 Corporate Drive Suite 200 Clifton Park NY 12065

MW09B SDG#: PNY01-02

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Units	Dilution Factor
02300	UST-Unleaded Waters by 8260B					
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05407	Toluene	108-88-3	N.D.	0.7	ug/l	1
05415	Ethylbenzene	100 - 41 - 4	N.D.	0.8	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.8	ug/l	1

		Laborato	ry Chro	nicle		
CAT			-	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
02300	UST-Unleaded Waters by 8260B	SW-846 8260B	1	09/26/2005 13:52	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	09/26/2005 13:52	Anita M Dale	n.a.

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681 8818

T.

Page 1 of 2

Lancaster Laboratories Sample No. WW 4608589

MW-03B_BSGDD0203 Grab Water Sample Plattsburgh, NY

Collected:09/21/2005 11:30 by EL

Submitted: 09/22/2005 09:05 Reported: 10/06/2005 at 14:40 Discard: 10/14/2005 Account Number: 08371

URS Corporation 28 Corporate Drive Suite 200 Clifton Park NY 12065

MW03B SDG#: PNY01-03

					As Received		
CAT			As Re	ceived	Method		Dilution
No.	Analysis Name	CAS Number	Resul	t	Detection Limit	Units	Factor
00237	Total Cyanide (water)	57-12-5	N.D.		0.0050	mg/l	1
00434	Phenols (water)	n.a.	0.027	J	0.012	mg/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	440.		10.	ug/l	10
03951	Acenaphthylene	208-96-8	3.	J	1.	ug/l	1
03954	Acenaphthene	83-32-9	23.		1.	ug/l	1
03956	Fluorene	86-73-7	2.	J	1.	ug/l	1
03963	Phenanthrene	85-01-8	1.	J	1.	ug/l	1
03964	Anthracene	120-12-7	N.D.		1.	ug/l	1
03966	Fluoranthene	206-44-0	N.D.		1.	ug/l	1
03967	Pyrene	129-00-0	N.D.		1.	ug/l	1
03970	Benzo(a)anthracene	56-55-3	N.D.		1.	ug/l	1
03971	Chrysene	218-01-9	N.D.		1.	ug/l	1
03975	Benzo(b)fluoranthene	205-99-2	N.D.		1.	ug/l	1
03976	Benzo(k)fluoranthene	207-08-9	N.D.		1.	ug/l	1
03977	Benzo(a)pyrene	50-32-8	N.D.		1.	ug/l	1
03978	<pre>Indeno(1,2,3-cd)pyrene</pre>	193-39-5	N.D.		1.	ug/l	1
03979	Dibenz(a,h)anthracene	53-70-3	N.D.		1.	ug/l	1
03980	Benzo(g,h,i)perylene	191-24-2	N.D.		1.	ug/l	1
02300	UST-Unleaded Waters by 8260B						
05401	Benzene	71-43-2	310.		5.	ug/l	10
05407	Toluene	108-88-3	50.		0.7	ug/l	1
05415	Ethylbenzene	100-41-4	97.		0.8	ug/l	1
06310	Xylene (Total)	1330-20-7	81.		0.8	ug/l	1

Laboratory Chronicle

		Παροτάτο	ny onro			
CAT			_	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
00237	Total Cyanide (water)	EPA 335.4	1	09/28/2005 19:49	Venia B McFadden Venia B McFadden	1
00434	Phenols (water)	EPA 420.2	1	09/28/2005 02:43	Venia B McFadden	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	09/27/2005 01:42	Jolene M Graham	1

Page 2 of 2

Lancas	Lancaster Laboratories Sample No. WW 4608589						
	B_BSGDD0203 Grab Water S Bourgh, NY	ample					
Collec	cted:09/21/2005 11:30	by EL	A	ccount Number: ()8371		
Submit	ted: 09/22/2005 09:05		U	RS Corporation			
Report	ed: 10/06/2005 at 14:40	}	2	8 Corporate Driv	<i>r</i> e		
	d: 10/14/2005		S	uite 200			
DIGCU				lifton Park NY 1	2065		
	SDG#: PNY01-03		Q	LILCON LULX IN S			
		SW-846 8270C	1	09/27/2005 16:33	Jolene M Graham	10	
	PAHs in Water by GC/MS		1	09/26/2005 12:43		1	
02300	UST-Unleaded Waters by 8260B	SW-846 8260B	1	09/20/2003 12.43	Anica M Dale	T.	
02300	UST-Unleaded Waters by	SW-846 8260B	1	09/26/2005 13:06	Anita M Dale	10	
02000	8260B	5. 010 02002	-				
00491	Phenol Distillation (water)	EPA 420.1	1	09/27/2005 14:25	Nancy J Shoop	1	
00492	Cyanide Water Distillation	EPA 335.4	1	09/27/2005 09:25	Choon Y Tian	1	
01163	GC/MS VOA Water Prep	SW-846 5030B	1	09/26/2005 12:43	Anita M Dale	n.a.	
	GC/MS VOA Water Prep	SW-846 5030B	2	09/26/2005 13:06	Anita M Dale	n.a.	
07807	BNA Water Extraction	SW-846 3510C	1	09/26/2005 06:30	Denise L Trimby	1	

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

Page 1 of 2

Lancaster Laboratories Sample No. WW 4608590

MW-11B_BSGDD0111 Grab Water Sample Plattsburgh, NY

Collected:09/21/2005 11:00 by EL

Submitted: 09/22/2005 09:05 Reported: 10/06/2005 at 14:40 Discard: 10/14/2005 Account Number: 08371

URS Corporation 28 Corporate Drive Suite 200 Clifton Park NY 12065

MW11B SDG#: PNY01-04

CAT				ceived	As Received Method		Dilution
No.	Analysis Name	CAS Number	Resul	t	Detection Limit	Units	Factor
00237	Total Cyanide (water)	57-12-5	N.D.		0.0050	mg/l	1
00434	Phenols (water)	n.a.	0.25		0.012	mg/l	1
07805	PAHs in Water by GC/MS						
03947.	Naphthalene	91-20-3	24.		1.	ug/l	1
03951	Acenaphthylene	208-96-8	6.		1.	ug/l	1
03954	Acenaphthene	83-32-9	2.	J	1.	ug/l	1
03956	Fluorene	86-73-7	N.D.		1.	ug/l	1
03963	Phenanthrene	85-01-8	1.	J	1.	ug/l	1
03964	Anthracene	120-12-7	N.D.		1.	ug/l	1
03966	Fluoranthene	206-44-0	N.D.		1.	ug/l	1
03967	Pyrene	129-00-0	N.D.		1.	ug/l	1
03970	Benzo(a)anthracene	56-55-3	N.D.		1.	ug/l	1
03971	Chrysene	218-01-9	N.D.		1.	ug/l	1
03975	Benzo(b)fluoranthene	205-99-2	N.D.		1.	ug/l	1
03976	Benzo(k)fluoranthene	207-08-9	N.D.		1.	ug/l	1
03977	Benzo(a)pyrene	50-32-8	N.D.		1.	ug/l	1
03978	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.		1.	ug/l	1
03979	Dibenz(a,h)anthracene	53-70-3	N.D.		1.	ug/l	1
03980	<pre>Benzo(g,h,i)perylene</pre>	191-24-2	N.D.		1.	ug/l	1
02300	UST-Unleaded Waters by 8260B						
05401	Benzene	71-43-2	10.		0.5	ug/l	1
05407	Toluene	108-88-3	14.		0.7	ug/l	1
05415	Ethylbenzene	100-41-4	5.	J	0.8	ug/l	1
06310	Xylene (Total)	1330-20-7	12.		0.8	ug/l	1

Laboratory Chronicle

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
00237	Total Cyanide (water)	EPA 335.4	1	09/28/2005 19:51	Venia B Mo Fadden Venia B McFadden	1
00434	Phenols (water)	EPA 420.2	1	09/28/2005 02:47	Venia B McFadden	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	09/27/2005 02:03	Jolene M Graham	1

Page 2 of 2

Lancas	Lancaster Laboratories Sample No. WW 4608590					
	_BSGDD0111 Grab Water S burgh, NY	ample				
Collec	ted:09/21/2005 11:00	by EL	P	ccount Number: (08371	
	ted: 09/22/2005 09:05			RS Corporation		
	ed: 10/06/2005 at 14:40			8 Corporate Driv	ve	
Discar	d: 10/14/2005		S	uite 200		
			C	lifton Park NY 1	12065	
MW11B	SDG#: PNY01-04					
02300	UST-Unleaded Waters by 8260B	SW-846 8260B	1	09/26/2005 13:29	Anita M Dale	1
00491	Phenol Distillation (water)	EPA 420.1	1	09/27/2005 14:25	Nancy J Shoop	1
00492	Cyanide Water Distillation	EPA 335.4	1	09/27/2005 09:25	Choon Y Tian	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	09/26/2005 13:29	Anita M Dale	n.a.
07807	BNA Water Extraction	SW-846 3510C	1	09/26/2005 06:30	Denise L Trimby	1

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

Lancaster Laboratories Sample No. WW 4608591

MW-10B_BSGDD0210 Grab Water Sample Plattsburgh, NY

Collected:09/21/2005 12:00 by EL

Submitted: 09/22/2005 09:05 Reported: 10/06/2005 at 14:40 Discard: 10/14/2005 Account Number: 08371

URS Corporation 28 Corporate Drive Suite 200 Clifton Park NY 12065

MW10B SDG#: PNY01-05

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
00237	Total Cyanide (water)	57-12-5	N.D.	0.0050	mg/l	1
00434	Phenols (water)	n.a.	0.015 J	0.012	mg/l	1
07805	PAHs in Water by GC/MS					
03947	Naphthalene	91-20-3	N.D.	1.	ug/l	1
03951	Acenaphthylene	208-96-8	N.D.	1.	ug/l	1
03954	Acenaphthene	83-32-9	N.D.	1.	ug/l	1
03956	Fluorene	86-73-7	N.D.	1.	ug/l	1
03963	Phenanthrene	85-01-8	N.D.	1.	ug/l	1
03964	Anthracene	120-12-7	N.D.	1.	ug/l	1
03966	Fluoranthene	206-44-0	N.D.	1.	ug/l	1
03967	Pyrene	129-00-0	N.D.	1.	ug/l	1
03970	Benzo(a)anthracene	56-55-3	N.D.	1.	ug/l	1
03971	Chrysene	218 -01 -9	N.D.	1.	ug/l	1
03975	Benzo(b)fluoranthene	205-99-2	N.D.	1.	ug/l	1
03976	Benzo(k)fluoranthene	207-08-9	N.D.	1.	ug/l	1
03977	Benzo(a)pyrene	50-3 2- 8	N.D.	1.	ug/l	1
03978	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	1.	ug/l	1
03979	Dibenz(a,h)anthracene	53-70-3	N.D.	1.	ug/l	1
03980	Benzo(g,h,i)perylene	191-24-2	N.D.	1.	ug/l	1
02300	UST-Unleaded Waters by 8260B					
05401	Benzene	71-43-2	2. J	0.5	ug/l	1
05407	Toluene	108-88-3	N.D.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.8	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.8	ug/l	1

Laboratory Chronicle

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
00237	Total Cyanide (water)	EPA 335.4	1	09/28/2005 19:52	Venia B McFadden Venia B McFadden	I
00434	Phenols (water)	EPA 420.2	1	09/28/2005 02:48	Venia B McFádden	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	09/27/2005 02:24	Jolene M Graham	1

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681 Page 1 of 2

Page 2 of 2

1

Lancaster Laboratories Sample No. WW 4608591

MW-10B_BSGDD0210 Grab Water Sample Plattsburgh, NY

Collected:09/21/2005 12:00 by EL

Submitted: 09/22/2005 09:05 Reported: 10/06/2005 at 14:40 Discard: 10/14/2005

MW10B	SDG#: PNY01-05	
02300	UST-Unleaded Waters by	SW-846 8260B
	8260B	
00491	Phenol Distillation	EPA 420.1
	(water)	
00492	Cyanide Water Distillation	EPA 335.4
01163	GC/MS VOA Water Prep	SW-846 5030B
07807	BNA Water Extraction	SW-846 3510C

Account Number: 08371

URS Corporation 28 Corporate Drive Suite 200 Clifton Park NY 12065

1	09/26/2005 11:57	Anita M Dale	1
1	09/27/2005 14:25	Nancy J Shoop	1
1 1	09/27/2005 09:25 09/26/2005 11:57	Choon Y Tian Anita M Dale	1 n.a.

1	09/26/2005	11:57	Anita M Dale
1	09/26/2005	06:30	Denise L Trimby

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

Page 1 of 1

Lancaster Laboratories Sample No. WW 4608592

MW-06B_BSGDD0106 Grab Water Sample Plattsburgh, NY

Collected:09/21/2005 12:30 by EL

Submitted: 09/22/2005 09:05 Reported: 10/06/2005 at 14:40 Discard: 10/14/2005 Account Number: 08371

URS Corporation 28 Corporate Drive Suite 200 Clifton Park NY 12065

MW06B	SDG#:	PNY01-06

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection	Units	Dilution Factor
00237	Total Cyanide (water)	57-12-5	N.D.	Limit 0.0050	mg/l	1
02300	UST-Unleaded Waters by 8260B					
05401	Benzene	71-43-2	з. ј	0.5	ug/l	1
05407	Toluene	108-88-3	11.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	22.	0.8	ug/l	1
06310	Xylene (Total)	1330-20-7	57.	0.8	ug/l	1

Laboratory Chronicle

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
00237	Total Cyanide (water)	EPA 335.4	1	09/28/2005 19:53	Venia B McFadden	1
02300	UST-Unleaded Waters by	SW-846 8260B	1	09/26/2005 14:15	Anita M Dale	1
	8260B					
00492	Cyanide Water Distillation	EPA 335.4	1	09/27/2005 09:25	Choon Y Tian	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	09/26/2005 14:15	Anita M Dale	n.a.
01163	GC/MS VOA Water Prep	SW-846 5030B	2	09/26/2005 14:39	Anita M Dale	n.a.

Page 1 of 1

Lancaster Laboratories Sample No. WW 4608593

MW-07BD_BSGDD0107 Grab Water Sample Plattsburgh, NY

Collected:09/21/2005 13:00 by EL

Submitted: 09/22/2005 09:05 Reported: 10/10/2005 at 08:27 Discard: 10/18/2005 Account Number: 08371

URS Corporation 28 Corporate Drive Suite 200 Clifton Park NY 12065

MW07B SDG#: PNY01-07

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
00237	Total Cyanide (water)	57-12-5	N.D.	0.0050	mg/l	1
02300	UST-Unleaded Waters by 8260B					
05401	Benzene	71-43-2	830.	5.	ug/l	10
05407	Toluene	108-88-3	1,300.	7.	ug/l	10
05415	Ethylbenzene	100-41-4	980.	8.	ug/l	10
06310	Xylene (Total)	1330-20-7	2,100.	8.	ug/l	10

		Laboratory	Chro	nicle		
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
00237	Total Cyanide (water)	EPA 335.4	1	09/28/2005 19:54	Venia B McFadden	1
02300	UST-Unleaded Waters by 8260B	SW-846 8260B	1	09/26/2005 15:02	Anita M Dale	10
00492	Cyanide Water Distillation	EPA 335.4	1	09/27/2005 09:25	Choon Y Tian	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	09/26/2005 15:02	Anita M Dale	n.a.
01163	GC/MS VOA Water Prep	SW-846 5030B	2	09/26/2005 15:25	Anita M Dale	n.a.

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

Page 1 of 2

Lancaster Laboratories Sample No. WW 4608594

MW-02B_BSGDD0102 Grab Water Sample Plattsburgh, NY

Collected:09/21/2005 13:30 by EL

Submitted: 09/22/2005 09:05 Reported: 10/10/2005 at 08:27 Discard: 10/18/2005 Account Number: 08371

URS Corporation 28 Corporate Drive Suite 200 Clifton Park NY 12065

MW02B SDG#: PNY01-08

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
00237	Total Cyanide (water)	57-12-5	N.D.	0.0050	mg/l	1
00434	Phenols (water)	n.a.	N.D.	0.012	mg/l	1
07805	PAHs in Water by GC/MS					
03947	Naphthalene	91-20-3	150,000.	1,700.	ug/l	200
03951	Acenaphthylene	208-96-8	45,000.	830.	ug/l	100
03954	Acenaphthene	83-32-9	7,100.	83.	ug/l	10
03956	Fluorene	86-73-7	18,000.	830.	ug/l	100
03963	Phenanthrene	85-01-8	79,000.	830.	ug/l	100
03964	Anthracene	120-12-7	16,000.	830.	ug/l	100
03966	Fluoranthene	206-44-0	33,000.	830.	ug/l	100
03967	Pyrene	129-00-0	45,000.	830.	ug/l	100
03970	Benzo(a) anthracene	56-55-3	11,000.	830.	ug/l	100
03971	Chrysene	218-01-9	9,800.	830.	ug/l	100
03975	Benzo(b)fluoranthene	205-99-2	8,700.	83.	ug/l	10
03976	Benzo(k)fluoranthene	207-08-9	4,200.	83.	ug/l	10
03977	Benzo(a)pyrene	50-32-8	11,000.	830.	ug/l	100
03978	Indeno(1,2,3-cd)pyrene	193-39-5	4,500.	83.	ug/l	10
03979	Dibenz(a,h)anthracene	53-70-3	1,000.	83.	ug/l	10
03980	Benzo(g,h,i)perylene	191-24-2	6,600.	83.	ug/l	10
	Due to sample matrix interfer	ences observed d	uring the extrac	tion, the		

Due to sample matrix interferences observed during the extraction, th normal reporting limits could not be obtained.

Due to the sample matrix an initial dilution was necessary to perform the analysis. Therefore, the reporting limits for the GC/MS semivolatile compounds were raised.

02300 UST-Unleaded Waters by 8260B

05401	Benzene	71-43-2	850.	5.	ug/l	10
05407	Toluene	108-88-3	1,300.	7.	ug/l	10
05415	Ethylbenzene	100-41-4	970.	8.	ug/l	10
06310	Xylene (Total)	1330-20-7	1,600.	8.	ug/l	10

8827

Page 2 of 2

Lancaster Laboratories Sample No. WW 4608594

MW-02B_BSGDD0102 Grab Water Sample Plattsburgh, NY

Collected:09/21/2005 13:30 by EL

Submitted: 09/22/2005 09:05 Reported: 10/10/2005 at 08:27 Discard: 10/18/2005

MW02B SDG#: PNY01-08

Account Number: 08371

URS Corporation 28 Corporate Drive . Suite 200 Clifton Park NY 12065

Laboratory Chronicle

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
00237	Total Cyanide (water)	EPA 335.4	1	09/28/2005 19:55	Venia B McFadden	1
00434	Phenols (water)	EPA 420.2	1	09/28/2005 02:49	Venia B McFadden	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	09/27/2005 16:54	Jolene M Graham	10
07805	PAHs in Water by GC/MS	SW-846 8270C	1	09/27/2005 17:16	Jolene M Graham	100
07805	PAHs in Water by GC/MS	SW-846 8270C	1	09/27/2005 18:41	Jolene M Graham	200
02300	UST-Unleaded Waters by 8260B	SW-846 8260B	1	09/26/2005 15:48	Anita M Dale	10
00491	Phenol Distillation (water)	EPA 420.1	1	09/27/2005 14:25	Nancy J Shoop	1
00492	Cyanide Water Distillation	EPA 335.4	1	09/27/2005 09:25	Choon Y Tian	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	09/26/2005 15:48	Anita M Dale	n.a.
01163	GC/MS VOA Water Prep	SW-846 5030B	2	09/26/2005 16:11	Anita M Dale	n.a.
07807	BNA Water Extraction	SW-846 3510C	1	09/26/2005 06:30	Denise L Trimby	1

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

Page 1 of 2

Lancaster Laboratories Sample No. WW 4608595

MW-07BS BSGDIM0107 Grab Water Sample Plattsburgh, NY

Collected:09/21/2005 14:30 by EL

Submitted: 09/22/2005 09:05 Reported: 10/10/2005 at 08:28 Discard: 10/18/2005

Account Number: 08371

URS Corporation 28 Corporate Drive Suite 200 Clifton Park NY 12065

SDG#: PNY01-09 MW07S

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
00237	Total Cyanide (water)	57-12-5	N.D.	0.0050	mg/l	1
00434	Phenols (water)	n.a.	N.D.	0.012	mg/l	1
07805	PAHs in Water by GC/MS					
03947	Naphthalene	91-20-3	150.	5.	ug/l	5
03951	Acenaphthylene	208-96-8	39.	1.	ug/l	1
03954	Acenaphthene	83-32-9	130.	5.	ug/l	5
03956	Fluorene	86-73-7	40.	1.	ug/l	1
03963	Phenanthrene	85-01-8	140.	5.	ug/l	5
03964	Anthracene	120-12-7	25.	1.	ug/l	1
03966	Fluoranthene	206-44-0	44.	1.	ug/l	1
03967	Pyrene	129-00-0	56.	1.	ug/l	1
03970	Benzo(a) anthracene	56-55-3	11.	1.	ug/l	1
03971	Chrysene	218-01-9	11.	1.	ug/l	1
03975	Benzo(b)fluoranthene	205-99-2	11.	1.	ug/l	1
03976	Benzo(k) fluoranthene	207-08-9	4. J	1.	ug/l	1
03977	Benzo(a)pyrene	50-32-8	13.	1.	ug/l	1
03978	Indeno(1,2,3-cd)pyrene	193-39-5	6.	1.	ug/l	1
03979	Dibenz (a,h) anthracene	53-70-3	N.D.	1.	ug/l	1
03980	Benzo(g,h,i)perylene	191-24-2	9.	1.	ug/l	1
02300	UST-Unleaded Waters by 8260B					
05401	Benzene	71-43-2	35.	0.5	ug/l	1
05407	Toluene	108-88-3	5. J	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	18.	0.8	ug/l	1
06310	Xylene (Total)	1330-20-7	17.	0.8	ug/l	1

Laboratory Chronicle • • • • • • • •

CAT			7	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
00237	Total Cyanide (water)	EPA 335.4	1	09/28/2005 19:56	Venia B McFaddeny g	1
00434	Phenols (water)	EPA 420.2	1	09/28/2005 02:51	Venia B McFadden	1
07805	PAHs in Water by GC/MS	SW-846 8270C	l	09/27/2005 03:07	Jolene M Graham	1

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

Page 2 of 2

Lancaster Laboratories Sample No. WW 4608595

MW-07BS_BSGDIM0107 Grab Water Sample Plattsburgh, NY

by EL	Account Number: 08371	
	URS Corporation	
	28 Corporate Drive	
	Suite 200	
	Clifton Park NY 12065	
SW-846 8270C	1 09/27/2005 17:37 Jolene M Graham 5	
SW-846 8260B	1 09/26/2005 16:34 Anita M Dale 1	
EPA 420.1	1 09/27/2005 14:25 Nancy J Shoop 1	
EPA 335.4	1 09/27/2005 09:25 Choon Y Tian 1	
SW-846 5030B	1 09/26/2005 16:34 Anita M Dale n.a	ł.
SW-846 3510C	1 09/26/2005 06:30 Denise L Trimby 1	
	SW-846 8270C SW-846 8260B EPA 420.1 EPA 335.4 SW-846 5030B	URS Corporation 28 Corporate Drive Suite 200 Clifton Park NY 12065 SW-846 8270C 1 09/27/2005 17:37 Jolene M Graham 5 SW-846 8260B 1 09/26/2005 16:34 Anita M Dale 1 EPA 420.1 1 09/27/2005 14:25 Nancy J Shoop 1 EPA 335.4 1 09/27/2005 09:25 Choon Y Tian 1 SW-846 5030B 1 09/26/2005 16:34 Anita M Dale n.a

Page 1 of 2

Lancaster Laboratories Sample No. WW 4608596

DUPLICATE_DUP09/21/05 Grab Water Sample Plattsburgh, NY

Collected:09/21/2005 by EL

Submitted: 09/22/2005 09:05 Reported: 10/10/2005 at 08:28 Discard: 10/18/2005

Account Number: 08371

URS Corporation 28 Corporate Drive Suite 200 Clifton Park NY 12065

FD921	SDG#:	PNY01-10FD

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result •	Detection Limit	Units	Factor
00237	Total Cyanide (water)	57-12-5	N.D.	0.0050	mg/l	l
00434	Phenols (water)	n.a.	N.D.	0.012	mg/l	1
07805	PAHs in Water by GC/MS					
03947	Naphthalene	91-20-3	380,000.	5,000.	ug/l	50
03951	Acenaphthylene	208-96-8	120,000.	5,000.	ug/l	50
03954	Acenaphthene	83-32-9	19,000.	1,000.	ug/l	10
03956	Fluorene	86-73-7	50,000.	1,000.	ug/l	10
03963	Phenanthrene	85-01-8	200,000.	5,000.	ug/l	50
03964	Anthracene	120-12-7	43,000.	1,000.	ug/l	10
03966	Fluoranthene	206-44-0	85,000.	1,000.	ug/l	10
03967	Pyrene	129-00-0	120,000.	1,000.	ug/l	10
03970	Benzo(a) anthracene	56-55~3	31,000.	1,000.	ug/l	10
03971	Chrysene	218-01-9	28,000.	1,000.	ug/l	10
03975	Benzo(b)fluoranthene	205-99-2	21,000.	1,000.	ug/l	10
03976	Benzo(k)fluoranthene	207-08-9	7,500.	100.	ug/l	1.
03977	Benzo(a)pyrene	50-32-8	30,000.	1,000.	ug/l	10
03978	Indeno(1,2,3-cd)pyrene	193-39-5	12,000.	100.	ug/l	1
03979	Dibenz (a,h) anthracene	53-70-3	2,500.	100.	ug/l	1
03980	Benzo(g,h,i)perylene	191-24-2	17,000.	1,000.	ug/l	10
	Due to sample matrix interferen	ces observed d	uring the extract	tion, the		
	normal reporting limits could n	ot be obtained				
02300	UST-Unleaded Waters by 8260B					
05401	Benzene	71-43-2	870.	5.	ug/l	10
05407	Toluene	108-88-3	1,400.	7.	ug/l	10
05415	Ethylbenzene	100-41-4	1,000.	8.	ug/l	10
06310	Xylene (Total)	1330-20-7	1,700.	8.	ug/l	10

Laboratory Chronicle

CAT				Analysis		8931	Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst		Factor

Page 2 of 2

Lancaster Laboratories Sample No. WW 4608596

DUPLICATE_DUP09/21/05 Grab Water Sample Plattsburgh, NY

Collec	ted:09/21/2005 by H	L	A	ccount Number: (08371	
Submit	ted: 09/22/2005 09:05		U	RS Corporation		
Report	ed: 10/10/2005 at 08:28	1	2	8 Corporate Driv	ve	
-	d: 10/18/2005			uite 200		
Dibeui				lifton Park NY 3	12065	
			, c	TILCON PAIR NI	12005	
FD921	SDG#: PNY01-10FD					
00237	Total Cyanide (water)	EPA 335.4	1	09/28/2005 20:00	Venia B McFadden	1
00434	Phenols (water)	EPA 420.2	1	09/28/2005 02:52	Venia B McFadden	l
07805	PAHs in Water by GC/MS	SW-846 8270C	1	09/27/2005 03:28	Jolene M Graham	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	09/27/2005 17:58	Jolene M Graham	10
07805	PAHs in Water by GC/MS	SW-846 8270C	1	09/27/2005 18:20	Jolene M Graham	50
02300	UST-Unleaded Waters by	SW-846 8260B	1	09/26/2005 16:56	Anita M Dale	10
	8260B					
00491	Phenol Distillation	EPA 420.1	1	09/27/2005 14:25	Nancy J Shoop	l
	(water)			· ·		
00492	Cyanide Water Distillation	EPA 335.4	1	09/27/2005 09:25	Choon Y Tian	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	09/26/2005 16:56	Anita M Dale	n.a.
01163	GC/MS VOA Water Prep	SW-846 5030B	2	09/26/2005 17:19	Anita M Dale	n.a.
07807	BNA Water Extraction	SW-846 3510C	1	09/26/2005 06:30	Denise L Trimby	1
			_		1	

Page 1 of 1

Lancaster Laboratories Sample No. WW 4608597

TRIP_BLANK_TB050921 Water Sample Plattsburgh, NY

Collected:09/21/2005

Submitted: 09/22/2005 09:05 Reported: 10/06/2005 at 14:41 Discard: 10/14/2005 Account Number: 08371

URS Corporation 28 Corporate Drive Suite 200 Clifton Park NY 12065

TB921 SDG#: PNY01-11TB

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Units	Dilution Factor
02300	UST-Unleaded Waters by 8260B					
05401	Benzene	71-43-2	N.D.	0.5	ug/l	l
05407	Toluene	108-88-3	N.D.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.8	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.8	ug/l	1

Laboratory Chronicle

CAT			Analysis				
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor	
02300	UST-Unleaded Waters by 8260B	SW-846 8260B	1	09/30/2005 10:45	Anita M Dale	1	
01163	GC/MS VOA Water Prep	SW-846 5030B	1	09/30/2005 10:45	Anita M Dale	n.a.	

Page 1 of 1

Lancaster Laboratories Sample No. WW 4608598

DRUM1 Grab Water Sample Plattsburgh, NY

Collected:09/21/2005 15:00 by EL

Submitted: 09/22/2005 09:05 Reported: 10/06/2005 at 14:41 Discard: 10/14/2005 URS Corporation 28 Corporate Drive Suite 200 Clifton Park NY 12065

Account Number: 08371

DRUM1 SDG#: PNY01-12

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Units	Dilution Factor
02300	UST-Unleaded Waters by 8260B					
05401	Benzene	71-43-2	610.	10.	ug/l	20

		Laboratory	Chro	nicle		
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
02300	UST-Unleaded Waters by 8260B	SW-846 8260B	1	10/05/2005 21:51	Susan McMahon-Luu	20
01163	GC/MS VOA Water Prep	SW-846 5030B	1	10/05/2005 21:51	Susan McMahon-Luu	n.a.

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

Page 1 of 1

Lancaster Laboratories Sample No. WW 4608599

DRUM2 Grab Water Sample Plattsburgh, NY

Collected:09/21/2005 15:10 by EL

Submitted: 09/22/2005 09:05 Reported: 10/06/2005 at 14:41 Discard: 10/14/2005 URS Corporation 28 Corporate Drive Suite 200 Clifton Park NY 12065

Account Number: 08371

DRUM2 SDG#: PNY01-13*

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Units	Dilution Factor
02300	UST-Unleaded Waters by 8260B					
05401	Benzene	71-43-2	200.	3.	ug/l	5

		Laboratory	Chro	nicle		
CAT		-		Analysis	- - .	Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
02300	UST-Unleaded Waters by 8260B	SW-846 8260B	1	10/05/2005 22:14	Susan McMahon-Luu	5
01163	GC/MS VOA Water Prep	SW-846 5030B	1	10/05/2005 22:14	Susan McMahon-Luu	n.a.

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

Volatiles by GC/MS Data

Case Narrative Conformance/Nonconformance Summary

CASE NARRATIVE

Client: URS Corporation SDG#: PNY01

LANCASTER LABORATORIES VOLATILES BY GC/MS

SAMPLE NUMBER(S) :

		Matrix	
<u>LL #'s</u>	Sample Code	<u>Water</u>	Comments
4608587	MW01B	Х	
4608588	MVV09B	Х	
4608589	MW03B	Х	
4608589	MW03BDL	Х	10 X Dilution
4608590	MW11B	Х	
4608591	MW10B	Х	Unspiked
4608591	MW10BMS	Х	Matrix Spike
4608592	MVV06B	Х	
4608592	MW06BDL	Х	10 X Dilution
4608593	MW07B	Х	10 X Dilution
4608593	MW07BDL	Х	100 X Dilution
4608594	MW02B	Х	10 X Dilution
4608594	MW02BDL	Х	100 X Dilution
4608595	MW07S	Х	
4608596	FD921	Х	10 X Dilution
4608596	FD921DL	Х	100 X Dilution
4608597	TB921	Х	Client Blank
4608598	DRUM1	Х	20 X Dilution
4608599	DRUM2	Х	5 X Dilution
LABORATORY	SUBMITTED QC:		
VBLKL31	VBLKL31	Х	Method Blank
VBLKN09	VBLKN09	Х	Method Blank
		X	Method Blank

VBLKN20	VBLKN20	Х	Method Blank
LCSL31	LCSL31	Х	Lab Control Sample
LCSN09	LCSN09	Х	Lab Control Sample
LCDN09	LCDN09	Х	Lab Control Sample Dup
LCSN20	LCSN20	Х	Lab Control Sample

SAMPLE PREPARATION:

No sample preparation was necessary for the VOA fraction.

ANALYSIS:

The method used for analysis was EPA SW846 Method 8260B, following NYSDEC Method 95-1 (10/95).

The vials submitted for several samples did not have a pH< 2 at the time of analysis. Due to the volatile nature of the analytes, it is not appropriate for the laboratory to adjust the pH at the time of sample receipt.

The reporting limits for several samples were raised because sample dilution was necessary to bring target compounds into the calibration range of the system.

No problems were encountered during the analysis of these samples.

QUALITY CONTROL and NONCONFORMANCE SUMMARY:

Only client requested compounds are addressed in this narrative.

Sufficient sample was not available to perform an MSD for this SDG. However, an MS was performed. In addition, an LCS/LCD was performed to demonstrate precision and accuracy at a batch level.

All QC was within specifications.

DATA INTERPRETATION:

The instrument performance check using 4-bromofluorobenzene was evaluated using the criteria in the NYSDEC method.

No further interpretation is necessary for the data submitted.

CALCULATIONS:

1. Relative response factor (RRF)

Where :

Ax = Area of the characteristic ion for the compound to be measured.Ais = Area of the characteristic ion for the specific internal standard to be measured. Cis = Concentration of the internal standard. Cx = Concentration of the compound to be measured.

0039

Lancaster Laboratories • 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • Phone: 717-656-2300 • Fax: 717-656-2681 • http:// www.LancasterLabs.com

Page 3 of 4

2. % Relative Standard Deviation (%RSD)

Standard deviation %RSD = ------ x 100 mean

3. % Difference (%D)

RRFc - RRFi %D = ----- x 100 RRFi

Where:

RRFc=Relative response factor from continuing calibration standard. RRFi = Mean relative response factor from the initial calibration.

4. Concentration

Where:

Ax , Ais, RRF are as given in 1. above. Is = Concentration of internal standard added in parts per billion (ug/l) Df = Dilution factor

5. % Recovery (%Rec)

SSR - SR %Rec = ----- x 100 SA

Where: SSR = Spiked sample result SR = Sample result SA = Spike added

6. Relative Percent Difference (RPD)

Where: MSR = Matrix spike recovery MSDR = Matrix spike duplicate recovery

8848

Lancaster Laboratories • 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • Phone: 717-656-2300 • Fax: 717-656-2681 • http:// www.LancasterLabs.com

Page 4 of 4

Case Narrative reviewed and approved by:

John F. Morton, M.S., GC/MS Volatiles Date 10/12/05

Sample Data

VOLATILE ORGANICS ANALYSIS DATA SHEET	
Lab Name: Lancaster Laboratories Contract:	MW01B
Lab Code: LANCAS Case No.: SAS No.: SDG	No.:
Matrix: (soil/water) WATER Lab Sample ID: 4608587	
Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/05se	p26a.b/ns26s06.d
Level: (low/med) LOW Date Received: 09/22/05	
Moisture: not dec Date Analyzed: 09/26/05	
Column: (pack/cap) CAP Dilution Factor: 1.0	

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

Q

1634-04-4Methyl Tertiary Butyl Ether	5	ע
71-43-2Benzene	0.9	J
108-88-3Toluene	5	U
100-41-4Ethylbenzene	5	ט
1330-20-7Xylene (Total)	5	U
98-82-8Isopropylbenzene	5	ប
91-20-3Naphthalene	5	U
51 20 5 1.0 <u>F</u>		1

CAS NO. COMPOUND

		1A		
VOLATILE	ORGANICS	ANALYSIS	DATA	SHEET
	•			

:

VOLATILE ORGANICS ANA	LYSIS DATA SHEET
Lab Name: Lancaster Laboratories	MW09B Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608588
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07159.i/05sep26a.b/ns26s12.d
Level: (low/med) LOW	Date Received: 09/22/05
Moisture: not dec	Date Analyzed: 09/26/05
Column: (pack/cap) CAP	Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

Q

1634-04-4Methyl Tertiary Butyl Ether	5	U U
71-43-2Benzene	5	U
108-88-3Toluene	5	ប
100-41-4Ethylbenzene	5	U
1330-20-7Xylene (Total)	5	U
98-82-8Isopropylbenzene	5	U
91-20-3Naphthalene	5	ט
		<u> </u>

CAS NO. COMPOUND

`

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

VOLATILE ORGANICS ANA	LYSIS DATA SHEET
	MW03B
Lab Name: Lancaster Laboratories	Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608589
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07159.i/05sep26a.b/ns26s09.d
Level: (low/med) LOW	Date Received: 09/22/05
Moisture: not dec.	Date Analyzed: 09/26/05
Column: (pack/cap) CAP	Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q

1634-04-4Methyl Tertiary Butyl Ether	5	U
71-43-2Benzene	360	E
108-88-3Toluene	50	
100-41-4Ethylbenzene	97	
1330-20-7Xylene (Total)	81	
98-82-8Isopropylbenzene	5	J

. . .

VOLATILE ORGANICS ANAL	LYSIS DATA SHEET
Lab Name: Lancaster Laboratories	MW03BDL
Lab Code: LANCAS Case No.:	SAS No.:SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608589
Sample wt/vol: 0.50 (g/mL) mL	Lab File ID: HP07159.i/05sep26a.b/ns26s10.d
Level: (low/med) LOW	Date Received: 09/22/05
Moisture: not dec.	Date Analyzed: 09/26/05
Column: (pack/cap) CAP	Dilution Factor: 10.0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L Q

1634-04-4Methyl Tertiary Butyl Ether	50	U
71-43-2Benzene	310	D
108-88-3Toluene	40	JD
100-41-4Ethylbenzene	79	D
1330-20-7Xylene (Total)	64	D
98-82-8Isopropylbenzene	50	υ
91-20-3Naphthalene	360	ם
		Ì

CAS NO. COMPOUND

		1A		
VOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

VOLATILE ORGANICS ANAL	YSIS DATA SHEET
Lab Name: Lancaster Laboratories	Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608590
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07159.i/05sep26a.b/ns26s11.d
Level: (low/med) LOW	Date Received: 09/22/05
Moisture: not dec	Date Analyzed: 09/26/05
Column: (pack/cap) CAP	Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

Q

1634-04-4Methyl Tertiary Butyl Ether	5	υ
71-43-2Benzene	10	
108-88-3Toluene	14	1
100-41-4Ethylbenzene	5	J
1330-20-7Xylene (Total)	12	
98-82-8Isopropylbenzene	1	J
91-20-3Naphthalene	26	

CAS NO. COMPOUND

1A		EPA SAMPLE NO.
VOLATILE ORGANICS ANA	ALYSIS DATA SHEET	· 1
		MW10B
Lab Name: Lancaster Laboratories	Contract:	
Lab Code: LANCAS Case No.:	SAS No.:	SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608591	
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07159.i/0	5sep26a.b/ns26s07.d
Level: (low/med) LOW	Date Received: 09/22/05	
Moisture: not dec.	Date Analyzed: 09/26/05	

Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

Q

5

5

2

5 U

5

5

5

U

J

U

U

U

U

Column: (pack/cap) CAP

CAS NO.

COMPOUND

71-43-2----Benzene

100-41-4----Ethylbenzene

91-20-3-----Naphthalene

1330-20-7-----Xylene (Total)

98-82-8-----Isopropylbenzene

108-88-3----Toluene

1634-04-4-----Methyl Tertiary Butyl Ether

0648

	1A		EPA SAMPLE NO.
VOLATILE	ORGANICS ANALY	SIS DATA SHEET	MW06B
Lab Name: Lancaster Labo	oratories	Contract:	
Lab Code: LANCAS (Case No.:	SAS No.:	SDG No.:
Matrix: (soil/water) WAT	TER L	ab Sample ID: 460859	92

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/05sep26a.b/ns26s13.d Level: (low/med) LOW Date Received: 09/22/05

Moisture: not dec. _____ Date Analyzed: 09/26/05

Column: (pack/cap) CAP Dilution Factor: 1.0

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

Q

1634-04-4Methyl Tertiary Butyl Ether	5	U U
71-43-2Benzene	3	J
108-88-3Toluene	11	ļ
100-41-4Ethylbenzene	22	
1330-20-7Xylene (Total)	57	
98-82-8Isopropylbenzene	3	J
91-20-3Naphthalene	430	E

1A VOLATILE ORGANICS ANAI	LYSIS DATA SHEET	EPA SAMPLE NO.
Lab Name: Lancaster Laboratories	Contract:	
Lab Code: LANCAS Case No.:	SAS No.: SAS No.:	SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608592	
Sample wt/vol: 0.50 (g/mL) mL	Lab File ID: HP07159.i/09	5sep26a.b/ns26s14.d
Level: (low/med) LOW	Date Received: 09/22/05	
Moisture: not dec.	Date Analyzed: 09/26/05	
Column: (pack/cap) CAP	Dilution Factor: 10.0	

(ug/L or ug/Kg) ug/L Q COMPOUND CAS NO. U 1634-04-4-----Methyl Tertiary Butyl Ether 50 50 U 71-43-2----Benzene JD 9 108-88-3----Toluene 21 JD 100-41-4----Ethylbenzene 52 D 1330-20-7-----Xylene (Total) U 50 98-82-8----Isopropylbenzene 880 D 91-20-3-----Naphthalene

lA		EPA SAMPLE NO.
VOLATILE ORGANICS ANA	LYSIS DATA SHEET	1
		MW07B
Lab Name: Lancaster Laboratories	Contract:	
Lab Code: LANCAS Case No.:	SAS No.:	5DG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608593	
Sample wt/vol: 0.50 (g/mL) mL	Lab File ID: HP07159.i/0	5sep26a.b/ns26s15.d
Level: (low/med) LOW	Date Received: 09/22/05	
Moisture: not dec.	Date Analyzed: 09/26/05	
Column: (pack/cap) CAP	Dilution Factor: 10.0	

(ug/L or ug/Kg) ug/L Q COMPOUND CAS NO. 1634-04-4-----Methyl Tertiary Butyl Ether U 50 830 71-43-2----Benzene 1300 108-88-3----Toluene 980 100-41-4----Ethylbenzene 2100 1330-20-7-----Xylene (Total) 44 J 98-82-8----Isopropylbenzene Ε 4800 91-20-3-----Naphthalene

8851

VOLATILE ORGANICS ANAL	YSIS DATA SHEET
	MW07BDL
Lab Name: Lancaster Laboratories	Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608593
Sample wt/vol: 0.05 (g/mL) mL	Lab File ID: HP07159.i/05sep26a.b/ns26s16.d
Level: (low/med) LOW	Date Received: 09/22/05
Moisture: not dec.	Date Analyzed: 09/26/05
Column: (pack/cap) CAP	Dilution Factor: 100.0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

Q Q

1634-04-4Methyl Tertiary Butyl Ether	500	U
71-43-2Benzene	900	D
108-88-3Toluene	1400	D
100-41-4Ethylbenzene	1000	D
1330-20-7Xylene (Total)	2300	j d
98-82-8Isopropylbenzene	500	U
91-20-3Naphthalene	9600	D
91-20-2-2-2-2-Maphenatene		i

CAS NO. COMPOUND

...

		1A		
VOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

Q

Lab Name: Lancaster Laboratories	MW02B
Lab Code: LANCAS Case No.:	SAS No.:SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608594
Sample wt/vol: 0.50 (g/mL) mL	Lab File ID: HP07159.i/05sep26a.b/ns26s17.d
Level: (low/med) LOW	Date Received: 09/22/05
Moisture: not dec.	Date Analyzed: 09/26/05
Column: (pack/cap) CAP	Dilution Factor: 10.0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

1634-04-4-----Methyl Tertiary Butyl Ether U 50 850 71-43-2----Benzene 1300 108-88-3-----Toluene 970 100-41-4----Ethylbenzene 1600 1330-20-7----Xylene (Total) J 49 98-82-8-----Isopropylbenzene 4200 Ε 91-20-3-----Naphthalene

COMPOUND

CAS NO.

lA	
----	--

Q

VOLATILE ORGANICS ANA	LYSIS DATA SHEET
Lab Name: Lancaster Laboratories	MW02BDL Contract:
Lab Code: LANCAS Case No.:	SAS NO.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608594
Sample wt/vol: 0.05 (g/mL) mL	Lab File ID: HP07159.i/05sep26a.b/ns26s18.d
Level: (low/med) LOW	Date Received: 09/22/05
Moisture: not dec.	Date Analyzed: 09/26/05
Column: (pack/cap) CAP	Dilution Factor: 100.0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

1634-04-4Methyl Tertiary Butyl Ether	500	U
71-43-2Benzene	930	D
108-88-3Toluene	1400	D
100-41-4Ethylbenzene	1000	D
1330-20-7Xylene (Total)	1700	D
98-82-8Isopropylbenzene	500	U
91-20-3Naphthalene	6900	D

CAS NO. COMPOUND

• •

IA VOLATILE ORGANICS ANA	EPA SAMPLE NO. LYSIS DATA SHEET
Lab Name: Lancaster Laboratories	
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608595
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07159.i/05sep26a.b/ns26s19.d
Level: (low/med) LOW	Date Received: 09/22/05
Moisture: not dec	Date Analyzed: 09/26/05
Column: (pack/cap) CAP	Dilution Factor: 1.0

CONCENTRATION UNITS: (uq/L or ug/Kg) ug/L

CAS NO.	COMPOUND	(ug/L or ug/Kg)	ug/L	Q	
1634-04-4-	Methyl Tert:	iary Butyl Ether	5	U U	1
71-43-2	Benzene		35		
108-88-3	Toluene		5	J	
100-41-4	Ethylbenzene	e	18		
1330-20-7-	Xylene (Tota	al)	17		
98-82-8	Isopropylber	nzené	5	J	
91-20-3	Naphthalene		210		
	-				1

. ·

`

...

VOLATILE ORGANICS ANA	LYSIS DATA SHEET
Lab Name: Lancaster Laboratories	FD921
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608596
Sample wt/vol: 0.50 (g/mL) mL	Lab File ID: HP07159.i/05sep26a.b/ns26s20.d
Level: (low/med) LOW	Date Received: 09/22/05
Moisture: not dec.	Date Analyzed: 09/26/05
Column: (pack/cap) CAP	Dilution Factor: 10.0

CAS NO.	COMPOUND	(ug/L or ug/Kg) ug/I	L .	Q ·
1634-04-4-	Methyl Tertia	ary Butyl Ether	50	ע
•	Benzene		870	
108-88-3	Toluene	Í	1400	
100-41-4	Ethylbenzene	İ	1000	
	Xylene (Tota)	1)	1700	
1	Isopropylben:		54	ļ l
•	Naphthalene		4200	E

IA VOLATILE ORGANICS ANA		1
Lab Name: Lancaster Laboratories	Contract:	1DL
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:_	
Matrix: (soil/water) WATER	Lab Sample ID: 4608596	
Sample wt/vol: 0.05 (g/mL) mL	Lab File ID: HP07159.i/05sep26a.b	/ns26s21.d
Level: (low/med) LOW	Date Received: 09/22/05	
Moisture: not dec.	Date Analyzed: 09/26/05	
Column: (pack/cap) CAP	Dilution Factor: 100.0	

CAS NO.	COMPOUND	(ug/L or ug/Kg)	ıg/L	Q	
1634-04-4-	Methyl Tert	iary Butyl Ether	500	U	
71-43-2	Benzene	1	960		D
108-88-3	Toluene		1500	l	D
100-41-4	Ethylbenzen	e	1100		D
1330-20-7-	Xylene (Tot	al)	1900		D
	Isopropylbe		500	ע	
	Naphthalene		6700	1	D
	×		<u></u>	.	

.

.

...

_

1A	EPA SAMPLE NO.
VOLATILE ORGANICS ANA	ALYSIS DATA SHEET
	TB921
Lab Name: Lancaster Laboratories	Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608597
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07159.i/05sep30a.b/ns30s04.d
Level: (low/med) LOW	Date Received: 09/22/05
Moisture: not dec	Date Analyzed: 09/30/05
Column: (pack/cap) CAP	Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

Q

CAS NO. 5 U | 1634-04-4-----Methyl Tertiary Butyl Ether | U 5 71-43-2----Benzene 5 | U 108-88-3----Toluene 5 | U 100-41-4----Ethylbenzene 1330-20-7-----Xylene (Total) 5 ן ט 5 U 98-82-8----Isopropylbenzene 5 | U 91-20-3----Naphthalene

COMPOUND

IA VOLATILE ORGANICS ANA	LVGIG DATA SHEFT
Lab Name: Lancaster Laboratories	DRUM1
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608598
Sample wt/vol: 0.25 (g/mL) mL	Lab File ID: HP09915.i/05oct05a.b/lc05s31.d
Level: (low/med) LOW	Date Received: 09/22/05
Moisture: not dec.	Date Analyzed: 10/05/05
Column: (pack/cap) CAP	Dilution Factor: 20.0
	CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg) ug/L	Q	
71-43-2	Benzene		610	

1A		EPA SAMPLE NO.
VOLATILE ORGANICS ANA	LYSIS DATA SHEET	
		DRUM2
Lab Name: Lancaster Laboratories	Contract:	
Lab Code: LANCAS Case No.:	SAS No.: S	SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608599	
Sample wt/vol: 1.00 (g/mL) mL	Lab File ID: HP09915.i/05	5oct05a.b/lc05s29.d
Level: (low/med) LOW	Date Received: 09/22/05	
Moisture: not dec.	Date Analyzed: 10/05/05	
Column: (pack/cap) CAP	Dilution Factor: 5.0	

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q 71-43-2----Benzene 200

. | _

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Q

đ

	MWIOBMS
Lab Name: Lancaster Laboratories	Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608591
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07159.i/05sep26a.b/ns26s08.
Level: (low/med) LOW	Date Received: 09/22/05
Moisture: not dec	Date Analyzed: 09/26/05
Column: (pack/cap) CAP	Dilution Factor: 1.0

CONCENTRATION UNITS:

(ug/L or ug/Kg) ug/L

22 75-71-8-----Dichlorodifluoromethane 16 74-87-3----Chloromethane 19 75-01-4-----Vinyl Chloride 16 74-83-9----Bromomethane 13 75-00-3----Chloroethane 19 75-69-4-----Trichlorofluoromethane 480 64-17-5----Ethanol 100 107-02-8----Acrolein 24 75-35-4-----1,1-Dichloroethene 23 76-13-1----Freon 113 120 67-64-1----Acetone 120 67-63-0----2-Propanol 22 74-88-4----Methyl Iodide 24 75-15-0-----Carbon Disulfide 16 79-20-9-----Methyl Acetate 19 107-05-1----Allyl Chloride 21 75-09-2-----Methylene Chloride 190 75-65-0----t-Butyl Alcohol 80 107-13-1----Acrylonitrile 22 156-60-5-----trans-1,2-Dichloroethene 19 1634-04-4-----Methyl Tertiary Butyl Ether 43 540-59-0-----1,2-Dichloroethene (total) 21 110-54-3----n-Hexane 20 75-34-3-----l,1-Dichloroethane 18 108-20-3-----di-Isopropyl Ether 17 126-99-8-----2-Chloro-1,3-Butadiene 18 637-92-3-----Ethyl t-Butyl Ether 120 78-93-3-----2-Butanone 156-59-2----cis-1,2-Dichloroethene 21 20 594-20-7----2,2-Dichloropropane

CAS NO.

COMPOUND

1A VOLATILE ORGANICS ANAN	
Lab Name: Lancaster Laboratories	Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608591
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07159.i/05sep26a.b/ns26s08.d
Level: (low/med) LOW	Date Received: 09/22/05
Moisture: not dec.	Date Analyzed: 09/26/05
Column: (pack/cap) CAP	Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NO.	COMPOUND	(ug/L or ug/Kg)	ug/L	Q
107-12-0	Propionitrile		130	
	Methacrylonitr:	ile	130	
	Bromochlorometh		21	
	Tetrahydrofura		71	
	Chloroform		20	
	1,1,1-Trichloro	bethane	21	
	Cyclohexane		22	ł
	1,1-Dichloropro	opene	21	
	Carbon Tetrach		21	
	Isobutyl Alcoho		400	
71-43-2			23	
	1,2-Dichloroet	hane	19	
	t-Amyl Methyl		19	1
	n-Heptane		22	
	n-Butanol	ļ	830	
	Trichloroethen	e	20	
	Methylcyclohex		22	
	1,2-Dichloropr		19	
	Methyl Methacr		17	ł
	Dibromomethane		20	
	1,4-Dioxane		440	
	Bromodichlorom	ethane	19	
	2-Nitropropane	1	14	
	2-Chloroethyl	Vinyl Ether	10	ט
	cis-1,3-Dichlo		19	!
	4-Methyl-2-Pen		75	1
	Toluene		19	
	trans-1,3-Dich	loropropene	17	ļ
	Ethyl Methacry		17	
	1,1,2-Trichlor		19	

1A VOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

VOLATILE ORGANICS ANA	LYSIS DATA SHEET	i
Lab Name: Lancaster Laboratories	Contract:	MW10BMS
Lab Code: LANCAS Case No.:	SAS No.:	SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4	608591
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HPO	7159.i/05sep26a.b/ns26s08.d
Level: (low/med) LOW	Date Received: 0	9/22/05
Moisture: not dec	Date Analyzed: 0	9/26/05
Column: (pack/cap) CAP	Dilution Factor:	1.0

CONCENTRATION UNITS:

	CONCENTRATION UNITS:			
CAS NO.	COMPOUND (ug	/L or ug/Kg)	ug/L	Q
127-18-4	Tetrachloroethene		20	
142-28-9	1,3-Dichloropropan	e	18	
591-78-6	2-Hexanone	1	68	
124-48-1	Dibromochlorometha	ne	18	
106-93-4	1,2-Dibromoethane		18	
	Chlorobenzene	ļ	19	
630-20-6	1,1,1,2-Tetrachlor	oethane	19	
	Ethylbenzene		19	
	m+p-Xylene		39	
	Xylene (Total)		59	
	O-Xylene		20	
	Styrene		19	
	Bromoform		18	1
	Isopropylbenzene		20	
	Cyclohexanone	ĺ	230	- U
	1,1,2,2-Tetrachlor	oethane	17	1
	Bromobenzene		19	
	trans-1,4-Dichlord	-2-Butene	86	
	1,2,3-Trichloropro		17	ŀ
	n-Propylbenzene		19	1
	2-Chlorotoluene	ĺ	19	
	1,3,5-Trimethylber	nzene	18	
	4-Chlorotoluene	ļ	19	1
- · ·	tert-Butylbenzene	ĺ	19	
	Pentachloroethane	ĺ	18	
	1,2,4-Trimethylber	izene	19	1
	sec-Butylbenzene	Ì	19	Ì
	p-Isopropyltoluene	e	19	
	1,3-Dichlorobenzer		19	1
	1,4-Dichlorobenzer		19	ĺ
1	2,2 22000-230000-0	i		
I				

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VOLATILE ORGANICS ANAL	JYSIS DATA SHEET
Lab Name: Lancaster Laboratories	MW10BMS
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608591
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07159.i/05sep26a.b/ns26s08.d
Level: (low/med) LOW	Date Received: 09/22/05
Moisture: not dec.	Date Analyzed: 09/26/05
Column: (pack/cap) CAP	Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg) u	g/L Q
526-73-8	1,2,3-Trime	thylbenzene	18
100-44-7	Benzyl Chlo	oride	17
104-51-8	n-Butylbenz	zene	18
 95-50-1	1,2-Dichlor	obenzene	19
	1,2-Dibromo		15
	1,2,4-Trich		18
	Hexachlorob		17
	Naphthalene	,	16 j
	1,2,3-Trick		18
1			

lΑ			

VOLATILE ORGANICS ANA	LYSIS DATA SHEET
Lab Name: Lancaster Laboratories	Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: VBLKN09
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07159.i/05sep26a.b/ns26b01.d
Level: (low/med) LOW	Date Received:
Moisture: not dec	Date Analyzed: 09/26/05
Column: (pack/cap) CAP	Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) MDL ug/L Q

75-71-8Dichlorodifluoromethane	2	U
74-87-3Chloromethane	1 1	U
75-01-4Vinyl Chloride	1	U
74-83-9Bromomethane	1	U
75-00-3Chloroethane	1	U
75-69-4Trichlorofluoromethane	2	υļ
64-17-5Ethanol	50	U
107-02-8Acrolein	40	U
75-35-41,1-Dichloroethene	0.8	υ
76-13-1Freon 113	2	U
67-64-1Acetone	6	U
67-63-02-Propanol	50	U
74-88-4Methyl Iodide	1	U
75-15-0Carbon Disulfide	1	U
79-20-9Methyl Acetate	· 1	υ
107-05-1Allyl Chloride	1	U
75-09-2Methylene Chloride	2	U
75-65-0t-Butyl Alcohol	10	ט (
107-13-1Acrylonitrile	4	ט
156-60-5trans-1,2-Dichloroethene	0.8	ט
1634-04-4Methyl Tertiary Butyl Ether	0.5	U
540-59-01,2-Dichloroethene (total)	0.8	บ
110-54-3n-Hexane	2	ט
75-34-31,1-Dichloroethane	1	ט
108-20-3di-Isopropyl Ether	0.8	ן ע
126-99-82-Chloro-1,3-Butadiene	1	ט
637-92-3Ethyl t-Butyl Ether	0.8	ט
78-93-32-Butanone	3	U U
156-59-2cis-1,2-Dichloroethene	0.8	ប
594-20-72,2-Dichloropropane	1	บ
	İ	

VOLATILE ORGANICS ANALYSIS DATA SHEET

CAS NO. COMPOUND

EPA SAMPLE NO.

Q

VOLATILE ORGANICS ANA	LYSIS DATA SHEET
Lab Name: Lancaster Laboratories	Contract:
Lab Name: Lancaster Laboratories	
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: VBLKN09
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07159.i/05sep26a.b/ns26b01.d
Level: (low/med) LOW	Date Received:
Moisture: not dec.	Date Analyzed: 09/26/05
Column: (pack/cap) CAP	Dilution Factor: 1.0

CONCENTRATION UNITS:

(ug/L	or	ug/Kg)	MDL	ug/L

107-12-0Propionitrile	30	ប
126-98-7Methacrylonitrile	10	U
74-97-5Bromochloromethane	1	U
109-99-9Tetrahydrofuran	4	U
67-66-3Chloroform	0.8	U
71-55-61,1,1-Trichloroethane	0.8	ט
110-82-7Cyclohexane	2	U U
563-58-61,1-Dichloropropene	1	υ
56-23-5Carbon Tetrachloride	1	ט
78-83-1Isobutyl Alcohol	100	ט
71-43-2Benzene	0.5	U U
107-06-21,2-Dichloroethane	1	ן ט
994-05-8t-Amyl Methyl Ether	0.8	ט
142-82-5n-Heptane	2	ט
71-36-3n-Butanol	100	U
79-01-6Trichloroethene	1	ប
108-87-2Methylcyclohexane	1	ט
78-87-51,2-Dichloropropane	1	U
80-62-6Methyl Methacrylate	1	ប
74-95-3Dibromomethane	1.	บ
123-91-11,4-Dioxane	70	ט
75-27-4Bromodichloromethane	1	ן ת
79-46-92-Nitropropane	2	ט
110-75-82-Chloroethyl Vinyl Ether	2	U
10061-01-5cis-1,3-Dichloropropene	1	ប
108-10-14-Methyl-2-Pentanone	3	ט
108-88-3Toluene	0.7	ប
10061-02-6trans-1,3-Dichloropropene	1	U
97-63-2Ethyl Methacrylate	1	ט
79-00-51,1,2-Trichloroethane	0.8	U
/ / / / / / / / / / / / / / / / / / /		İ

		1A		
VOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

CAS NO. COMPOUND

EPA SAMPLE NO.

VOLATILE ORGANICS ANA	LYSIS DATA SHEET	
Lab Name: Lancaster Laboratories	Contract:	VBLKN09
Lab Code: LANCAS Case No.:	SAS No.:	SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: VBLKN09	
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07159.i/	D5sep26a.b/ns26b01.d
Level: (low/med) LOW	Date Received:	
Moisture: not dec.	Date Analyzed: 09/26/05	
Column: (pack/cap) CAP	Dilution Factor: 1.0	

CONCENTRATION UNITS:

(ug/L or ug/Kg) MDL ug/L Q

127-18-4Tetrachloroethene	0.8	υ
142-28-91,3-Dichloropropane	1	υ
591-78-62-Hexanone	3	U
124-48-1Dibromochloromethane	1	U
106-93-41,2-Dibromoethane	1	U
108-90-7Chlorobenzene	0.8	ט ו
630-20-61,1,1,2-Tetrachloroethane	1	υ
100-41-4Ethylbenzene	0.8	U U
1330-20-7m+p-Xylene	0.8	υ
1330-20-7Xylene (Total)	0.8	ប
95-47-6o-Xylene	0.8	ប
100-42-5Styrene	1	U
75-25-2Bromoform	j 1	ប
98-82-8Isopropylbenzene	1	ט
108-94-1Cyclohexanone	· 55	ט
79-34-51,1,2,2-Tetrachloroethane	j 1	ט
108-86-1Bromobenzene	. 1	U
110-57-6trans-1,4-Dichloro-2-Butene	15	ប
96-18-41,2,3-Trichloropropane	j 1	ט
103-65-1n-Propylbenzene	1	ט
95-49-82-Chlorotoluene	1	U
108-67-81,3,5-Trimethylbenzene	1	U
106-43-44-Chlorotoluene	1	ט
98-06-6tert-Butylbenzene	1	U
76-01-7Pentachloroethane	1	U
95-63-61,2,4-Trimethylbenzene	1	U
135-98-8sec-Butylbenzene	1	U
99-87-6p-Isopropyltoluene	1	U
541-73-11,3-Dichlorobenzene	1	U
106-46-71,4-Dichlorobenzene	1	ט ו
	İ	

.

1A VOLATILE ORGANICS ANA	
Lab Name: Lancaster Laboratories	Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: VBLKN09
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07159.i/05sep26a.b/ns26b01.d
Level: (low/med) LOW	Date Received:
Moisture: not dec.	Date Analyzed: 09/26/05
Column: (pack/cap) CAP	Dilution Factor: 1.0

CAS NO.	COMPOUND	(ug/L or ug/Kg)		Q
526-73-8	1,2,3-Trime	thylbenzene	1	U
	Benzyl Chlo		1	ט
	n-Butylbenz		1	ט
	1,2-Dichlor		1	ע
	1,2-Dibromo		2	ט
	1,2,4-Trick		1	ប
	Hexachlorob		2	U
-	Naphthalene	1	1	ט
	1,2,3-Trich		1	U
			<u> </u>	_

ł

1A VOLATILE ORGANICS ANA	
Lab Name: Lancaster Laboratories	VBLKN20 Contract:
Lab Code: LANCAS Case No.:	SAS No.:SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: VBLKN20
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07159.i/05sep30a.b/ns30b01.d
Level: (low/med) LOW	Date Received:
Moisture: not dec	Date Analyzed: 09/30/05
Column: (pack/cap) CAP	Dilution Factor: 1.0

1

2 U

1 | U

1 | U

(ug/L or ug/Kg) MDL ug/L Q CAS NO. COMPOUND 75-71-8-----Dichlorodifluoromethane 74-87-3-----Chloromethane 75-01-4-----Vinvl Chloride

	75-01-4Vinyl Chioride	- 1	0	ļ
ì	74-83-9Bromomethane	1	U	
i	75-00-3Chloroethane	1	Ŭ	
i	75-69-4Trichlorofluoromethane	2	U	
i	64-17-5Ethanol	50	Ŭ	
Ì	107-02-8Acrolein	40	U	ļ
1	75-35-41,1-Dichloroethene	0.8	U	ļ
ì	76-13-1Freon 113	2	U	1
i	67-64-1Acetone	6	U	ļ
	67-63-02-Propanol	50	U	
ì	74-88-4Methyl Iodide	1	U	
ì	75-15-0Carbon Disulfide	1	U	
Ì	79-20-9Methyl Acetate	1	U	
1	107-05-1Allyl Chloride	1	U	
-1	75-09-2Methylene Chloride	2	U	
İ	75-65-0t-Butyl Alcohol	10	U	
1	107-13-1Acrylonitrile	4	U	
i	156-60-5trans-1,2-Dichloroethene	0.8	ប	
i	1634-04-4Methyl Tertiary Butyl Ether	0.5	U	
i	540-59-01,2-Dichloroethene (total)	0.8	U	
i	110-54-3n-Hexane	2	U	
ļ	75-34-31,1-Dichloroethane	1	U	
ĺ	108-20-3di-Isopropyl Ether	0.8	υ	
i	126-99-82-Chloro-1,3-Butadiene	1	ប	
	637-92-3Ethyl t-Butyl Ether	0.8	ប	
ĺ	78-93-32-Butanone	ļ 3	ប	
i	156-59-2cis-1,2-Dichloroethene	0.8	ט	
1	594-20-72,2-Dichloropropane	1	υ	
		1		

8869

.....

l

EPA SAMPLE NO. _____

VOLATILE ORGANICS ANA	LYSIS DATA SHEET
	VBLKN20
Lab Name: Lancaster Laboratories	Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: VBLKN20
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07159.i/05sep30a.b/ns30b01.d
Level: (low/med) LOW	Date Received:
Moisture: not dec.	Date Analyzed: 09/30/05
Column: (pack/cap) CAP	Dilution Factor: 1.0

1A

CAS NO. COMPOUND

CONCENTRATION UNITS:

(ug/L or ug/Kg) MDL ug/L Q

107-12-0Propionitrile	30	U
126-98-7Methacrylonitrile	10	U
74-97-5Bromochloromethane	1	U
109-99-9Tetrahydrofuran	4	U
67-66-3Chloroform	0.8	U
71-55-61,1,1-Trichloroethane	0.8	U
110-82-7Cyclohexane	2	U
563-58-61,1-Dichloropropene	1	U
56-23-5Carbon Tetrachloride	1	U
78-83-1Isobutyl Alcohol	100	U
71-43-2Benzene	0.5	U
107-06-21,2-Dichloroethane	1	U
994-05-8t-Amyl Methyl Ether	0.8	υ
142-82-5n-Heptane	2	U
71-36-3n-Butanol	100	U
79-01-6Trichloroethene	1	U
108-87-2Methylcyclohexane	1	U
78-87-51,2-Dichloropropane	1	U
80-62-6Methyl Methacrylate	1	U
74-95-3Dibromomethane	1	U
123-91-11,4-Dioxane	70	υ
75-27-4Bromodichloromethane	1	U
79-46-92-Nitropropane	2	ע
110-75-82-Chloroethyl Vinyl Ether	2	U
10061-01-5cis-1,3-Dichloropropene	1	U
108-10-14-Methyl-2-Pentanone	3	ט
108-88-3Toluene	0.7	ן ט
10061-02-6trans-1,3-Dichloropropene	1	ט
97-63-2Ethyl Methacrylate	í 1	U
79-00-51,1,2-Trichloroethane	0.8	ט
/ / / / / / / / / / / / / / / / / / / /	İ	I

VOLATILE ORGANICS ANA	LYSIS DATA SHEET
Lab Name: Lancaster Laboratories	VBLKN20
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: VBLKN20
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07159.i/05sep30a.b/ns30b01.d
Level: (low/med) LOW	Date Received:
Moisture: not dec.	Date Analyzed: 09/30/05
Column: (pack/cap) CAP	Dilution Factor: 1.0

1A

CONCENTRATION UNITS:

	CONCEN	TRATION	UNTIS:	
CAS NO.	COMPOUND (ug/L or	ug/Kg) l	MDL ug/L	Q
127-18-4	Tetrachloroethene		0.8	U
142-28-9	1,3-Dichloropropane		1	ט
591-78-6	2-Hexanone		3	ប
124-48-1	Dibromochloromethane		1	υ
106-93-4	1,2-Dibromoethane		1	ប
108-90-7	Chlorobenzene		0.8	ט
	1,1,1,2-Tetrachloroetha	ne	1	ע
	Ethylbenzene		0.8	U
	m+p-Xylene		0.8	ט
	Xylene (Total)		0.8	ប
	o-Xylene	[0.8	ט
	Styrene	1	1	U
	Bromoform	ĺ	1	ט
	Isopropylbenzene	Í	1	U
	Cyclohexanone	Í	55	ט
	1,1,2,2-Tetrachloroetha	ne	1	U
	Bromobenzene	1	1	ប
	trans-1,4-Dichloro-2-Bu	tene	15	ט
	1,2,3-Trichloropropane	j	1	U
	n-Propylbenzene	j	1	ប
	2-Chlorotoluene	l	1	ប
	1,3,5-Trimethylbenzene	Í	1	ט
	4-Chlorotoluene	i	1	U [
	tert-Butylbenzene		1	ן ט
	Pentachloroethane	i	1	ט
	1,2,4-Trimethylbenzene	İ	1	ט
	sec-Butylbenzene	İ	1	ប
	p-Isopropyltoluene	i	1	υ
	1,3-Dichlorobenzene	j	1	Įυ
	1,4-Dichlorobenzene	i	1	U

8071

.

· —

 VOLATILE ORGANICS ANALYSIS DATA SHEET

 Lab Name: Lancaster Laboratories
 Contract:

 Lab Code: LANCAS
 Case No.:

 SAS No.:
 SDG No.:

 Matrix: (soil/water) WATER
 Lab Sample ID: VBLKN20

 Sample wt/vol: 5.00 (g/mL) mL
 Lab File ID: HP07159.i/05sep30a.b/ns30b01.d

 Level: (low/med) LOW
 Date Received:

 Moisture: not dec.
 Date Analyzed: 09/30/05

 Column: (pack/cap) CAP
 Dilution Factor: 1.0

1A

CONCENTRATION UNITS:

EPA SAMPLE NO.

CAS NO.	COMPOUND	(ug/L or ug/Kg)	MDL ug/L	Q
526-73-8	1,2,3-Trime	ethylbenzene	1	ט
	Benzyl Chlo		1	ט
	n-Butylbenz		1	ט
	1,2-Dichlon		1	U
		-3-Chloropropane	2	ט
	1,2,4-Trich		1	ן ט
	Hexachlorob		2	ט
	Naphthalene		1	ע
	1,2,3-Trick		1	J
		l		_

page 4 of 4

8872

		1A		
VOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

CAS NO. COMPOUND

EPA SAMPLE NO.

	VBLKL31
Lab Name: Lancaster Laboratories	Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: VBLKL31
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP09915.i/05oct05a.b/lc05b01.d
Level: (low/med) LOW	Date Received:
Moisture: not dec	Date Analyzed: 10/05/05
Column: (pack/cap) CAP	Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) MDL ug/L Q

75-71-8Dichlorodifluoromethane	2	U
74-87-3Chloromethane	1	υ
75-01-4Vinyl Chloride	1	U
74-83-9Bromomethane	1	U
75-00-3Chloroethane	1	U
75-69-4Trichlorofluoromethane	2	U
60-29-7Ethyl Ether	2	U
107-02-8Acrolein	40	υ
75-35-41,1-Dichloroethene	0.8	υ
76-13-1Freon 113	2	υ
67-64-1Acetone	6	U
74-88-4Methyl Iodide	1	U
67-63-02-Propanol	50	U
75-15-0Carbon Disulfide	1	U
107-05-1Allyl Chloride	1	ប
79-20-9Methyl Acetate	1	U
75-09-2Methylene Chloride	2	U
75-65-0t-Butyl Alcohol	10	U
107-13-1Acrylonitrile	4	U
156-60-5trans-1,2-Dichloroethene	0.8	υ
1634-04-4Methyl Tertiary Butyl Ether	0.5	U
110-54-3n-Hexane	2	U
, 75-34-31,1-Dichloroethane	1	U
108-20-3di-Isopropyl Ether	0.8	U
126-99-82-Chloro-1,3-Butadiene	1	U
540-59-01,2-Dichloroethene (total)	0.8	U
637-92-3Ethyl t-Butyl Ether	0.8	U
156-59-2cis-1,2-Dichloroethene	0.8	U
78-93-32-Butanone	3	υ
594-20-72,2-Dichloropropane	1	υ

CONCENTRATION UNITS:

		CONCENT	TRATION	UNITS	S:	
CAS NO.	COMPOUND (u	g/L or	ug/Kg)	MDL 1	ug/L	Q
107-12-0	Propionitrile		······		30	U
126-98-7	Methacrylonitrile	1			10	U
74-97-5	Bromochloromethan	.e	ĺ		1	U
67-66-3	Chloroform				0.8	ប
71-55-6	1,1,1-Trichloroet	hane	1		0.8	U
110-82-7	Cyclohexane				2	U
563-58-6	l, 1-Dichloroprope	ne			1	ប
56-23-5	Carbon Tetrachlor	ide			1	υ
78-83-1	Isobutyl Alcohol		ĺ		100	υ
71-43-2	Benzene				0.5	υ
107-06-2	l,2-Dichloroethan	e	ĺ		1	U
994-05-8	t-Amyl Methyl Eth	er	Í		0.8	υ
142-82-5	n-Heptane		Ì		2	υ
	n-Butanol		Í		100	ប
79-01-6	Trichloroethene		Ì		1	U
108-87-2	Methylcyclohexane	:	Í		1	υ
	l,2-Dichloropropa		Í		1	U
74-95-3	Dibromomethane		Ì		1	U
80-62-6	Methyl Methacryla	te	Í		1	U
	1,4-Dioxane		Í		70	U
	Bromodichlorometh	ane	Í		1	U
79-46-9	2-Nitropropane		İ		2	U
110-75-8	2-Chloroethyl Vin	yl Ethe	er		2	U
	cis-1,3-Dichlorop	-	ĺ		1	U
108-10-1		one	Ì		3	U
108-88-3	Toluene		ĺ		0.7	U
	trans-1,3-Dichlor	oproper	ne		1	U
	Ethyl Methacrylat				1	U
	1,1,2-Trichloroet		İ		0.8	ប
	Tetrachloroethene		İ		0.8	υ
			Ì			_

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VOLATILE ORGANICS ANA.	LYSIS DATA SHEBT
Lab Name: Lancaster Laboratories	VBLKL31
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: VBLKL31
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP09915.i/05oct05a.b/lc05b01.d
Level: (low/med) LOW	Date Received:
Moisture: not dec.	Date Analyzed: 10/05/05
Column: (pack/cap) CAP	Dilution Factor: 1.0

		CONCENT	FRATION	UNI	rs:	
CAS NO.	COMPOUND	(ug/L or	ug/Kg)	MDL	ug/L	Q
142-28-9	1,3-Dichlorop	ropane			1	U
591-78-6	2-Hexanone	-	Í		3	U
124-48-1	Dibromochloro	methane	Í		1	U
106-93-4	1,2-Dibromoet	hane			1	ប
108-90-7	Chlorobenzene				0.8	U
630-20-6	1,1,1,2-Tetra	chloroethar	ne		1	U
100-41-4	Ethylbenzene		l l		0.8	U
1330-20-7-	m+p-Xylene		Í		0.8	ប
1330-20-7-	Xylene (Total)	Í		0.8	ប
95-47-6	Vylene		Í		0.8	U
100-42-5	Styrene		İ		1	U
75-25-2	Bromoform		i i		1	ប
98-82-8	Isopropylbenz	ene	Í		1	U
79-34-5	1,1,2,2-Tetra	chloroetham	ie		1	U
108-86-1	Bromobenzene				1	U
110-57-6	trans-1,4-Dic	hloro-2-But	ene		15	U
96-18-4	1,2,3-Trichlo	ropropane			1	U
103-65-1	n-Propylbenze	ne			1	U
95-49-8	2-Chlorotolue	ne	I		1	U
108-67-8	1,3,5-Trimeth	ylbenzene	1		1	U
106-43-4	4-Chlorotolue	ne	1		1	U
98-06-6	tert-Butylben	zene			1	U
76-01-7	Pentachloroet	hane	Ì		1	ប
95-63-6	1,2,4-Trimeth	ylbenzene			1	U
135-98-8	sec-Butylbenz	ene	ĺ		1	U
99-87-6	p-Isopropylto	luene			1	U
541-73-1	1,3-Dichlorob	enzene			1	U
			i		_	í

8875

1 U

1 U

U [

1

106-46-7----1,4-Dichlorobenzene 526-73-8-----1,2,3-Trimethylbenzene

100-44-7----Benzyl Chloride

IA VOLATILE ORGANICS AN	-
Lab Name: Lancaster Laboratories	VBLKL31
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: VBLKL31
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP09915.i/05oct05a.b/lc05b01.d
Level: (low/med) LOW	Date Received:
Moisture: not dec.	Date Analyzed: 10/05/05
Column: (pack/cap) CAP	Dilution Factor: 1.0

CAS NO.	COMPOUND	(ug/L or ug/Kg	g) MDL ug/L	2	Q
141-93-5	1,3-Diethylb	enzene		1	U
105-05-5	1,4-Diethylb	enzene		1	U
104-51-8	n-Butylbenzer	ne		1	U
95-50-1	1,2-Dichloro	benzene		1	ប
135-01-3	1,2-Diethylb	1,2-Diethylbenzene			ע
96-12-8	1,2-Dibromo-		2	ប	
120-82-1	1,2,4-Trichle	orobenzene		1	ប
87-68-3	Hexachlorobu	tadiene		2	ט
91-20-3	Naphthalene			1	U
87-61-6	1,2,3-Trichle	orobenzene		1	U
91-57-6	2-Methylnaph	thalene		2	U U
25340-17-4	Diethylbenze	ne (total)		1	U
					.

		1A		
VOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

VOLATILE ORGANICS ANAL	LYSIS DATA SHEET
Lab Name: Lancaster Laboratories	MW10BMS
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608591
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07159.i/05sep26a.b/ns26s08.d
Level: (low/med) LOW	Date Received: 09/22/05
Moisture: not dec.	Date Analyzed: 09/26/05
Column: (pack/cap) CAP	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCEN (ug/L or	TRATION ug/Kg)		Q
75-71-8	Dichlorodiflu	oromethane		22	
74-87-3	Chloromethane	2		16	
75-01-4	Vinyl Chlorid	le	1	19	
74-83-9	Bromomethane			16	
75-00-3	Chloroethane			13	
75-69-4	Trichlorofluc	promethane	İ	19	
64-17-5	Ethanol		1	480	
107-02-8	Acrolein		Í	100	
75-35-4	1,1-Dichloroe	thene	ĺ	24	
76-13-1	Freon 113		į.	23	1
67-64-1			ļ	120	
4	2-Propanol		Ì	120	
74-88-4	Methyl Iodide	e	İ	22	
1	Carbon Disulf		Í	24	
	-9Methyl Acetate		i	16	
	Allyl Chlorid		Í	19	1
	Methylene Chl		i	21	
	t-Butyl Alcol		i	190	ĺ
	Acrylonitrile		i i	80	ĺ
1	trans-1,2-Dic		e i	22	Ì
	Methyl Tertia			19	ĺ
	1,2-Dichloroe			43	
110-54-3		· · ·	ĺ	21	İ
	1,1-Dichloroe	ethane	i	20	İ
•	di-Isopropyl		Í	1.8	i
	2-Chloro-1,3-			17	İ
1	Ethyl t-Butyl		ĺ	18	i
1	2-Butanone		í	120	i
	cis-1,2-Dichl	oroethene	İ	21	í
T C C C C C C C C C C C C C C C C C C C	2,2-Dichlorop			20	

1

1A VOLATILE ORGANICS ANALYSIS DATA SHEET MW10BMS Lab Name: Lancaster Laboratories Contract: Lab Code: LANCAS Case No.:_____ SAS No.:_____ SDG No.:_____ Matrix: (soil/water) WATER Lab Sample ID: 4608591 Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/05sep26a.b/ns26s08.d Date Received: 09/22/05 Level: (low/med) LOW Date Analyzed: 09/26/05 Moisture: not dec. _____ Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

EPA SAMPLE NO.

		NCENTRALION	OTNICIO.	
CAS NO.	COMPOUND (ug/	L or ug/Kg)	ug/L	Q
107-12-0	Propionitrile		130	
126-98-7	Methacrylonitrile		130	1
74-97-5	Bromochloromethane		21	
109-99-9	Tetrahydrofuran		71	
67-66-3	Chloroform		20	
71-55-6	1,1,1-Trichloroetha	ne	21	
110-82-7	Cyclohexane		22	
563-58-6	1,1-Dichloropropene		21	
56-23-5	Carbon Tetrachlorid	e	21	
78-83-1	Isobutyl Alcohol		400	
71-43-2	Benzene	Ì	23	
107-06-2	1,2-Dichloroethane		19	
994-05-8	t-Amyl Methyl Ether	ĺ	19	
	n-Heptane	Í	22	1
	n-Butanol		830	
	Trichloroethene	ĺ	20	
108-87-2	Methylcyclohexane	Í	22	
78-87-5	1,2-Dichloropropane		19	
	Methyl Methacrylate		17	
	Dibromomethane	Í	20	ł
	1,4-Dioxane	i	440	1
	Bromodichloromethan	e Í	19	1
	2-Nitropropane	i	14	1
	2-Chloroethyl Vinyl	Ether	10	U 1
	cis-1,3-Dichloropro		19	Í
	4-Methyl-2-Pentanon		75	i
	Toluene	İ	19	
	trans-1,3-Dichlorop	ropene	17	j
	Ethyl Methacrylate	- i	17	Ì
	1,1,2-Trichloroetha	ne	19	İ
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,1,2 1			_

		lA			
VOLATILE	ORGANICS	ANALYSIS	DATA	SHEET	

	MW10BMS
Lab Name: Lancaster Laboratories	Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608591
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07159.i/05sep26a.b/ns26s08.d
Level: (low/med) LOW	Date Received: 09/22/05
Moisture: not dec.	Date Analyzed: 09/26/05
Column: (pack/cap) CAP	Dilution Factor: 1.0

CONCENTRATION UNITS

	CONCENTRATION UNITS:				
CAS NO.	COMPOUND	(ug/L or u	ıg/Kg)	ug/L	Q
127-18-4	Tetrachloro	ethene		20	
142-28-9	1,3-Dichlore	opropane		18	
591-78-6	2-Hexanone			68	
124-48-1	Dibromochlo	romethane	ļ	18	
106-93-4	1,2-Dibromo	ethane	}	18	1
108-90-7	Chlorobenze:	ne	1	19	
	1,1,1,2-Tet:		∋	19	
	Ethylbenzen			19	
	m+p-Xylene		ł	39	
	Xylene (Tot	al)	1	59	
	o-Xylene		1	20	
	Styrene			19	1
	Bromoform		Í	18	Į
	Isopropylbe	nzene	Í	20	
	Cyclohexano		İ	230	J
	1,1,2,2-Tet		e	17	
	Bromobenzen		Í	19	
	trans-1,4-D		ene	86	ł
	1,2,3-Trich		İ	17	
	n-Propylben		i	19	
	2-Chlorotol		ĺ	19	
	1,3,5-Trime		i	18	1
	4-Chlorotol		i	19	1
	tert-Butylb		Í	19	1
	Pentachloro		ļ	18	Í
	1,2,4-Trime		Í	19	Í
	sec-Butylbe		Í	19	1
	p-Isopropyl		i	19	1
	1,3-Dichlor		l l	19	
	1,4-Dichlor		ĺ	19	
1 200 20 7	_,		i		1

.

.

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg) ug	J/L Q
526-73-8	1,2,3-Trime	ethylbenzene	18
	Benzyl Chlo		17
104-51-8	n-Butylbenz	zene	18
95-50-1	1,2-Dichlon	robenzene	19
	1,2-Dibromo		15
	1,2,4-Trick		18
	Hexachloro		17
	Naphthalene	,	16
	1,2,3-Trick		18
		ĺ	l

1A	

VOLATILE ORGANICS ANA	LYSIS DATA SHEET
Lab Name: Lancaster Laboratories	LCSN09
Lab Name: Lancaster Laboratories	
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: LCSN09
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07159.i/05sep26a.b/ns26l01.d
Level: (low/med) LOW	Date Received:
Moisture: not dec	Date Analyzed: 09/26/05
Column: (pack/cap) CAP	Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q

75-71-8Dichlorodifluoromethane	19
74-87-3Chloromethane	16
75-01-4Vinyl Chloride	17
74-83-9Bromomethane	13
75-00-3Chloroethane	13
75-69-4Trichlorofluoromethane	18
64-17-5Ethanol	600
107-02-8Acrolein	110
75-35-41,1-Dichloroethene	22
76-13-1Freon 113	19
67-64-1Acetone	140
57-63-02-Propanol	100
74-88-4Methyl Iodide	22
75-15-0Carbon Disulfide	21
79-20-9Methyl Acetate	16
107-05-1Allyl Chloride	18
75-09-2Methylene Chloride	21
75-65-0t-Butyl Alcohol	190
107-13-1Acrylonitrile	78
156-60-5trans-1,2-Dichloroethene	21
1634-04-4Methyl Tertiary Butyl Ether	19
540-59-01,2-Dichloroethene (total)	41
110-54-3n-Hexane	18
75-34-31,1-Dichloroethane	20
108-20-3di-Isopropyl Ether	18
126-99-82-Chloro-1,3-Butadiene	16
637-92-3Ethyl t-Butyl Ether	18
78-93-32-Butanone	120
156-59-2cis-1,2-Dichloroethene	20
594-20-72,2-Dichloropropane	19
993-20-7 272 Dichtoropropund	

1A		EPA SAMPLE NO.
VOLATILE ORGANICS AND	ALYSIS DATA SHEET	
		LCSN09
Lab Name: Lancaster Laboratories	Contract:	
Lab Code: LANCAS Case No.:	SAS No.:	SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: LCSN09	
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07159.i/	05sep26a.b/ns26101.d
Level: (low/med) LOW	Date Received:	

Date Analyzed: 09/26/05 Moisture: not dec.

Dilution Factor: 1.0 Column: (pack/cap) CAP

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

Q

107-12-0Propionitrile	120	
126-98-7Methacrylonitrile	130	
74-97-5Bromochloromethane	21	
109-99-9Tetrahydrofuran	68	
67-66-3Chloroform	19 j	
71-55-61,1,1-Trichloroethane	19	
110-82-7Cyclohexane	19	
563-58-61,1-Dichloropropene	19	
56-23-5Carbon Tetrachloride	20	
78-83-1Isobutyl Alcohol	370	
71-43-2Benzene	20	
107-06-21,2-Dichloroethane	18	
994-05-8t-Amyl Methyl Ether	19	
142-82-5n-Heptane	18	
71-36-3n-Butanol	790	
79-01-6Trichloroethene	20	
108-87-2Methylcyclohexane	19	
78-87-51,2-Dichloropropane	19	
80-62-6Methyl Methacrylate	17	
74-95-3Dibromomethane	20	
123-91-11,4-Dioxane	490	
75-27-4Bromodichloromethane	19	
79-46-92-Nitropropane	13	
110-75-82-Chloroethyl Vinyl Ether	17	
10061-01-5cis-1,3-Dichloropropene	19	
108-10-14-Methyl-2-Pentanone	73 (
108-88-3Toluene	19	
10061-02-6trans-1,3-Dichloropropene	18	
97-63-2Ethyl Methacrylate	17	
79-00-51,1,2-Trichloroethane	19	

1A VOLATILE ORGANICS ANAI	EPA SAMPLE NO.
Lab Name: Lancaster Laboratories	Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: LCSN09
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07159.i/05sep26a.b/ns26101.d
Level: (low/med) LOW	Date Received:
Moisture: not dec	Date Analyzed: 09/26/05
Column: (pack/cap) CAP	Dilution Factor: 1.0

CONCENTRATION UNITS:

	L. L. L. L. L. L. L. L. L. L. L. L. L. L	ONCENTRATION ONTIO:	
CAS NO.	COMPOUND (ug	/Lorug/Kg)ug/L Q	
127-18-4	Tetrachloroethene	21	
142-28-9	1,3-Dichloropropan	ie 18	
591-78-6	2-Hexanone	69	
124-48-1	Dibromochlorometha		
106-93-4	1,2-Dibromoethane	18	
108-90-7	Chlorobenzene	19	
630-20-6	1,1,1,2-Tetrachlor	coethane 19	
100-41-4	Ethylbenzene	19	
1330-20-7-	m+p-Xylene	39	
	Xylene (Total)	58	
	O-Xylene	19	
	Styrene	19	
	Bromoform	19	
	Isopropylbenzene	19	
	Cyclohexanone	370	
	1,1,2,2-Tetrachlon	roethane 17	
	Bromobenzene	19	
	trans-1,4-Dichloro	D-2-Butene 96	
	1,2,3-Trichloropro		
	n-Propylbenzene	18	
	2-Chlorotoluene	19	
	1,3,5-Trimethylber	nzene 18	
	4-Chlorotoluene	19	
	tert-Butylbenzene	19	
	Pentachloroethane	. 18	
	1,2,4-Trimethylber	nzene 18	
	sec-Butylbenzene	18	
	p-Isopropyltoluen	e 18	
	1,3-Dichlorobenze		
	1,4-Dichlorobenze		
100-40-1	<i>x, z 2x 2x 3</i>	i i	

1A VOLATILE ORGANICS ANA	LYSIS DATA SHEET
Lab Name: Lancaster Laboratories	Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: LCSN09
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07159.i/05sep26a.b/ns26l01.d
Level: (low/med) LOW	Date Received:
Moisture: not dec.	Date Analyzed: 09/26/05
Column: (pack/cap) CAP	Dilution Factor: 1.0

CONCENTRATION UNITS:

(ug/L or ug/Kg) ug/L

\sim
υ.

526-73-81,2,3-Trimethylbenzene	18	
100-44-7Benzyl Chloride	17	
104-51-8n-Butylbenzene	18	
95-50-11,2-Dichlorobenzene	19	
96-12-81,2-Dibromo-3-Chloropropane	14	
120-82-11,2,4-Trichlorobenzene	19	
87-68-3Hexachlorobutadiene	17	
91-20-3Naphthalene	17	
87-61-61,2,3-Trichlorobenzene	18	

.

CAS NO.

COMPOUND

1A		EPA SAMPLE NO.
VOLATILE ORGANICS ANAL	LYSIS DATA SHEET	LCDN09
Lab Name: Lancaster Laboratories	Contract:	
Lab Code: LANCAS Case No.:	SAS No.:S	DG No.:
Matrix: (soil/water) WATER	Lab Sample ID: LCDN09	
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07159.i/05	sep26a.b/ns26102.d
Level: (low/med) LOW	Date Received:	
Moisture: not dec.	Date Analyzed: 09/26/05	
Column: (pack/cap) CAP	Dilution Factor: 1.0	

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q

75-71-8Dichlorodifluoromethane	17	
74-87-3Chloromethane	17	
75-01-4Vinyl Chloride	17	
74-83-9Bromomethane	13	
75-00-3Chloroethane	13	
75-69-4Trichlorofluoromethane	17	
64-17-5Ethanol	610	
107-02-8Acrolein	110	
75-35-41,1-Dichloroethene	21	
76-13-1Freon 113	18	
67-64-1Acetone	130	
67-63-02-Propanol	110	
74-88-4Methyl Iodide	21	
75-15-0Carbon Disulfide	20	
79-20-9Methyl Acetate	17	
107-05-1Allyl Chloride	17	
75-09-2Methylene Chloride	20	
75-65-0t-Butyl Alcohol	190	
107-13-1Acrylonitrile	77	
156-60-5trans-1,2-Dichloroethene	19	
1634-04-4Methyl Tertiary Butyl Ether	18	
540-59-01,2-Dichloroethene (total)	39	
110-54-3n-Hexane	16	
75-34-31,1-Dichloroethane	18	
108-20-3di-Isopropyl Ether	17	
126-99-82-Chloro-1,3-Butadiene	15	
637-92-3Ethyl t-Butyl Ether	18	
78-93-32-Butanone	120	
156-59-2cis-1,2-Dichloroethene	19	
594-20-72,2-Dichloropropane	18	
	۱I	

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VOLATILE ORGANICS A	NALYSIS DATA SHEET
Lab Name: Lancaster Laboratories	Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: LCDN09
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07159.i/05sep26a.b/ns26102.d
Level: (low/med) LOW	Date Received:
Moisture: not dec	Date Analyzed: 09/26/05
Column: (pack/cap) CAP	Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	ug/L	Q
107-12-0	Propionitrile		120	
126-98-7	Methacrylonitri	le	130	
74-97-5	Bromochlorometha	ane	20	
, 109-99-9	Tetrahydrofuran		67	
67-66-3	Chloroform		18	
71-55-6	1,1,1-Trichloro	ethane	18	
110-82-7	Cyclohexane	1	17	
563-58-6	1,1-Dichloropro	pene	18	
	Carbon Tetrachle		18	
78-83-1	Isobutyl Alcoho	1	370	
71-43-2	Benzene	1	19	
	1,2-Dichloroeth	ane	18	
	t-Amyl Methyl E		19	
	n-Heptane		17	
	n-Butanol		770	
	Trichloroethene		19	
	Methylcyclohexa	ne	18	
	1,2-Dichloropro		18	
	Methyl Methacry		17	
	Dibromomethane		19	1
	1,4-Dioxane	ĺ	490	
	Bromodichlorome	thane	18	1
	2-Nitropropane	1	13	
	2-Chloroethyl V	inyl Ether	17	
	cis-1,3-Dichlor		18	1
	4-Methyl-2-Pent		73	
	Toluene	ĺ	18	
	trans-1,3-Dichl	oropropene	17	
	Ethyl Methacryl		17	1
	1,1,2-Trichloro		18	
,,, ,,, ,,	-,-,	Í		_

VOLATILE ORGANICS ANA	VOIC DATA SHEFT	
VULATILE ORGANICS ANAL	LISIS DATA SILLEI	
		LCDN09
Lab Name: Lancaster Laboratories	Contract:	
Lab Code: LANCAS Case No.:	SAS No.: SI	DG No.:
Matrix: (soil/water) WATER	Lab Sample ID: LCDN09	
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07159.i/05	sep26a.b/ns26102.d
Level: (low/med) LOW	Date Received:	
Moisture: not dec.	Date Analyzed: 09/26/05	
Column: (pack/cap) CAP	Dilution Factor: 1.0	

٦Δ

CONCENTRATION UNITS:

EPA SAMPLE NO.

Q (ug/L or ug/Kg) ug/L COMPOUND CAS NO. 19 127-18-4----Tetrachloroethene 18 142-28-9----1,3-Dichloropropane 68 591-78-6----2-Hexanone 124-48-1----Dibromochloromethane 18 18 106-93-4----1,2-Dibromoethane 19 108-90-7----Chlorobenzene 19 630-20-6-----1,1,1,2-Tetrachloroethane 18 100-41-4----Ethylbenzene 37 1330-20-7----m+p-Xylene 56 1330-20-7-----Xylene (Total) 19 95-47-6----o-Xylene 19 100-42-5----Styrene 18 75-25-2----Bromoform 18 98-82-8----Isopropylbenzene 350 108-94-1----Cyclohexanone 17 79-34-5-----1,1,2,2-Tetrachloroethane 18 108-86-1----Bromobenzene 95 110-57-6----trans-1,4-Dichloro-2-Butene 17 96-18-4----1,2,3-Trichloropropane 17 103-65-1----n-Propylbenzene 18 95-49-8-----2-Chlorotoluene 17 108-67-8-----1,3,5-Trimethylbenzene 18 106-43-4----4-Chlorotoluene 18 98-06-6----tert-Butylbenzene 18 76-01-7----Pentachloroethane 17 95-63-6----1,2,4-Trimethylbenzene 17 135-98-8----sec-Butylbenzene 17 99-87-6----p-Isopropyltoluene 18 541-73-1-----1,3-Dichlorobenzene

18

106-46-7-----1,4-Dichlorobenzene

17 VOLATILE ORGANICS AN		EPA SAMPLE NO.
Lab Name: Lancaster Laboratories	Contract:	
Lab Code: LANCAS Case No.:	SAS No.:	SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: LCDN09	
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP07159.i	1/05sep26a.b/ns26102.d
Level: (low/med) LOW	Date Received:	
Moisture: not dec.	Date Analyzed: 09/26/0	05
Column: (pack/cap) CAP	Dilution Factor: 1.0	

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg) ug/L	Q
526-73-8	1,2,3-Trime	ethylbenzene	18
	Benzyl Chlo		17
	n-Butylbenz		17
	1,2-Dichlon		18
		o-3-Chloropropane	14
	1,2,4-Trick		18
	Hexachlorob		16
	Naphthalene		17
	1,2,3-Tricl		18
			<u> </u>

lA		EPA	SAMPLE NO.
VOLATILE ORGANICS ANA	LYSIS DATA SHEET	, 	
Lab Name: Lancaster Laboratories	Contract:		LCSN20
Lab Code: LANCAS Case No.:	SAS No.:	SDG No	D.:
Matrix: (soil/water) WATER	Lab Sample ID: L	CSN20	
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HPO	7159.i/05sep3	0a.b/ns30101.d
Level: (low/med) LOW	Date Received:		
Moisture: not dec.	Date Analyzed: 0	9/30/05	
Column: (pack/cap) CAP	Dilution Factor:	1.0	
	CONCENTRATION	UNITS:	
CAS NO. COMPOUND	(ug/L or ug/Kg)	ug/L	Q
1634-04-4Methyl Tertia	ry Butyl Ether	19	
71-43-2Benzene	ļ	20	
108-88-3Toluene		20 20	
100-41-4Ethylbenzene 1330-20-7m+p-Xylene		41	
1330-20-7Xylene (Total)	61	
95-47-6o-Xylene	·	20	į į
91-20-3Naphthalene		16	

IA VOLATILE ORGANICS ANA	EPA SAMPLE NO.
Lab Name: Lancaster Laboratories	LCSL31
Lab Code: LANCAS Case No.:	SAS NO.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: LCSL31
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP09915.i/05oct05a.b/lc05l01.d
Level: (low/med) LOW	Date Received:
Moisture: not dec.	Date Analyzed: 10/05/05
Column: (pack/cap) CAP	Dilution Factor: 1.0

CONCENTRATION UNITS:

		NCENTRATION	, onerio.	
CAS NO.	COMPOUND (ug/	L or ug/Kg)	ug/L	Q
75-71-8	Dichlorodifluoromet	hane	16	
74-87-3	Chloromethane		15	
75-01-4	Vinyl Chloride		16	
74-83-9	Bromomethane	ł	15	
75-00-3	Chloroethane	1	15	İ
75-69-4	Trichlorofluorometh	ane	17	
60-29-7	Ethyl Ether		18	
107-02-8	Acrolein		130	
75-35-4	1,1-Dichloroethene		18	
	Freon 113	ļ	17	ļ
	Acetone	1	150	1
	Methyl Iodide	1	17	
	2-Propanol	ĺ	160	1
	Carbon Disulfide	Í	16	
	Allyl Chloride	Í	19	
	Methyl Acetate	i	20	1
75-09-2	Methylene Chloride	Ì	18	ļ
	t-Butyl Alcohol	Í	190	
	Acrylonitrile	i	87	Í
	trans-1,2-Dichloroe	thene	18	i
	Methyl Tertiary But		18	i
	n-Hexane		15	i
	1,1-Dichloroethane		18	i
	di-Isopropyl Ether		17	İ
	2-Chloro-1,3-Butadi	ene	16	i
	1,2-Dichloroethene		36	i
	Ethyl t-Butyl Ether		17	i
	cis-1,2-Dichloroeth		18	i
	2-Butanone		140	İ
	2,2-Dichloropropane	·	19	i
JJ4 20 /	2,2 210020-1910p			

8898

•

1A VOLATILE ORGANICS ANA	ALYSIS DATA SHEET
Lab Name: Lancaster Laboratories	LCSL31
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: LCSL31
Sample wt/vol: 5.00 (g/mL) mL	Lab File ID: HP09915.i/05oct05a.b/lc05l01.d
Level: (low/med) LOW	Date Received:
Moisture: not dec.	Date Analyzed: 10/05/05
Column: (pack/cap) CAP	Dilution Factor: 1.0

CONCENTRATION UNITS:

		ONCENTRATION (~
CAS NO.	COMPOUND (ug	J/L or ug/Kg) រ	ıg/L	Q
107-12-0	Propionitrile		140	
126-98-7	Methacrylonitrile		140	
74-97-5	Bromochloromethane	è	20	
67-66-3	Chloroform		19	
71-55-6	1,1,1-Trichloroeth	nane	19	
110-82-7	Cyclohexane		16	
563-58-6	1,1-Dichloroproper	ie	18	
56-23-5	Carbon Tetrachlori	lde	18	
78-83-1	Isobutyl Alcohol	*****	490	
71-43-2	Benzene	1	19	
107-06-2	1,2-Dichloroethane	e	19	
994-05-8	t-Amyl Methyl Ethe	er	17	
	n-Heptane		17	
71-36-3	n-Butanol		910	
79-01-6	Trichloroethene		18	
108-87-2	Methylcyclohexane		19	
78-87-5	1,2-Dichloropropar	ne	18	
74-95-3	Dibromomethane		18	
80-62-6	Methyl Methacrylat	:e	17	
123-91-1	1,4-Dioxane		500	
75-27-4	Bromodichlorometha	ane	18	
79-46-9	2-Nitropropane		16	
110-75-8	2-Chloroethyl Viny	/l Ether	17	
10061-01-5	cis-1,3-Dichlorop	copene	17	
108-10-1	4-Methyl-2-Pentand	one	88	
108-88-3	Toluene	ĺ	18	
10061-02-6-	trans-1,3-Dichlord	opropene	17	
1	Ethyl Methacrylate		17	
•	1,1,2-Trichloroet		18	
127-18-4	Tetrachloroethene	ļ	18	
1		ll		l

1A

CONCENTRATION UNITS:

EPA SAMPLE NO.

CAS NO.	COMPOUND	(ug/L or 1	ug/Kg)	ug/L	Q
142-28-9	1,3-Dichloropro	pane		18]
591-78-6	2-Hexanone			88	
124-48-1	Dibromochlorome	ethane		17	
106-93-4	1,2-Dibromoetha	ine		18	
108-90-7	Chlorobenzene			18	
630-20-6	1,1,1,2-Tetrach	loroethan	e	18	
100-41-4	Ethylbenzene		ł	18	
1330-20-7	m+p-Xylene		{	37	
1330-20-7	Xylene (Total)			55	
95-47-6	o-Xylene			18	
100-42-5	Styrene			18	
75-25-2	Bromoform			16	
98-82-8	Isopropylbenzer	ne		18	
79-34-5	1,1,2,2-Tetrach	loroethan	e	18	
108-86-1	Bromobenzene			17	1
110-57-6	trans-1,4-Dichl	oro-2-But	ene	76	
96-18-4	1,2,3-Trichlord	propane		19	
103-65-1	n-Propylbenzene	2	-	18	
95-49-8	2-Chlorotoluene	2	t	17	
108-67-8	1,3,5-Trimethy]	benzene		18	
106-43-4	4-Chlorotoluene	2		18	-
98-06-6	tert-Butylbenze	ene	1	18	
76-01-7	Pentachloroetha	ane		19	
95-63-6	1,2,4-Trimethyl	lbenzene		18	
135-98-8	sec-Butylbenzer	ne	1	17	
99-87-6	p-Isopropyltol	lene		17	
•	1,3-Dichlorober		Í	18	
106-46-7	1,4-Dichlorober	nzene	Í	18	
526-73-8	1,2,3-Trimethy!	lbenzene	ĺ	19	
100-44-7	Benzyl Chloride	2	ŀ	17	
	-		I		_

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/K	g) ug/L		Q
141-93-5	1,3-Diethyl	lbenzene	1	19	
105-05-5	1,4-Diethy	lbenzene	ĺ	19	Ì
104-51-8	n-Butylben:	zene	Ì	18	1
95-50-1	1,2-Dichlor	robenzene	Ì	18	1
135-01-3	1,2-Diethy	lbenzene	Ì	19	İ
96-12-8	1,2-Dibrom	o-3-Chloropropane	Ì	16	
120-82-1	1,2,4-Trick	lorobenzene	Ì	17	1
87-68-3	Hexachloro	outadiene		17	ļ
91-20-3	Naphthalene	5		17	ł
87-61-6	1,2,3-Trick	lorobenzene	Ì	18	
91-57-6	2-Methylnap	ohthalene	Ì	17	Ì
25340-17-4-	Diethylben:	zene (total)	1	56	
			l		

Semivolatiles by GC/MS Data

.

.

Case Narrative Conformance/Nonconformance Summary

CASE NARRATIVE

Client: URS Corporation SDG #: PNY01

LANCASTER LABORATORIES SEMIVOLATILES BY GC/MS

SAMPLE NUMBER(S) :

	(0):	Matrix	
<u>LL #'s</u>	Sample Code	<u>Water</u>	<u>Comments</u>
4608589	MW03B	Х	
4608589DL	MW03BDL	Х	10X Dilution
4608590	MW11B	Х	
4608591	MW10B	Х	
4608594	MW02B	Х	10X Dilution
4608594DL	MW02BDL	Х	100X Dilution
4608594DL2	MW02BDL2	Х	200X Dilution
4608595	MW07S	Х	
4608595DL	MW07SDL	Х	5X Dilution
4608596	FD921	Х	
4608596DL	FD921DL	Х	10X Dilution
4608596DL2	FD921DL2	Х	50X Dilution
LABORATORY SU	BMITTED QC:		
SBLKWA267	SBLKWA267O	Х	Method Blank
267WALCS	267WALCSO	Х	Lab Control Sample
267WALCSD	267WALCSDO	Х	Lab Control Sample Dup

SAMPLE PREPARATION:

Reduced volumes were used in the extraction of the following samples.

Sample Code	<u>Volume</u>	
MW11B	861 mls	0096

Case Narrative (continued) SDG: PNY01

Sample Code	<u>Volume</u>
MW02B	599 mls
FD921	100 mls

Due to the nature of the sample matrix, the following samples were concentrated to final volumes greater than 1.0 ml.

Sample Code	Final Volume
MW02B	5 mls
FD921	10 mls

No other problems were encountered during the extraction of these samples.

ANALYSIS:

The method used for analysis was SW-846 8270C.

Sufficient sample volume was not available to perform a MS/MSD for this analysis. Therefore, a LCS/LCSD was performed to demonstrate precision and accuracy at a batch level.

MW02B was analyzed at an initial 10X dilution due to the nature of the sample matrix.

No other problems were encountered during the analysis of these samples.

QUALITY CONTROL AND NONCONFORMANCE SUMMARY:

All QC was within specifications.

DATA INTERPRETATION:

Only non-conformances for client requested compounds are addressed in this case narrative.

Case Narrative (continued) SDG: PNY01

No further interpretation is necessary for the data submitted.

Case Narrative Reviewed and Approved by:

m dan Date: 10-12-05 Charles J. Neslund

Manager, GC/MS Semivolatiles

8898

GC/MS Semivolatiles CALCULATIONS:

1. Relative response factor (RRF)

	AX		Cis
RRF =		x	
KUL -	Ais		Cx

÷. .

ŧ,

Where: Ax = Area of the characteristic ion for the compound to be measured Ais = Area of the characteristic ion for the specific internal standard to be measured Cis = Concentration of the internal standard Cx = Concentration of the compound to be measured

% Relative Standard Deviation (%RPD)

standard deviation %RSD = ----- x 100 mean

3. % Difference (%D)

RRFC - RRFi D = ---- x 100 RRFi

Where: RRFc = Relative response factor from continuing calibration standard RRFi = Mean relative response factor form the initial calibration

4. Concentration Concentration (ug/l) = (Ax) (Is) (Df) (Vt)(Ais) (RRF) (Vo) (Vi)

Where: Ax, Ais, and RRF are as given in 1. above Is = Amount of internal standard added in parts per billion (ng) Df = Dilution factor Vt = volume of the concentrated extract (ul) Vo = volume of water extracted (ml) Vi = volume of extract injected (ul)

5. % Recovery SSR - SR %Rec = ----- x 100 SA

> Where: SSR = Spiked sample result SR = Sample result SA = Spike added

GC/MS Semivolatiles CALCULATIONS (continued):

```
6. Relative Percent Difference (RPD)

RPD = | MSR - MSDR |

(1/2) (MSR + MSDR)

Where:

MSR = Matrix spike recovery

MSDR = Matrix spike duplicate recovery
```

.

Sample Data

.

Q

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

	MW03B
Lab Name: Lancaster Laboratories	Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608589
Sample wt/vol: 1040 (g/mL)ML	Lab File ID: oi0603.d
Level: (low/med) LOW	Date Received: 09/22/05
<pre>% Moisture: not dec: dec:</pre>	Date Extracted: 09/26/05
Concentrated Extract Volume: 1000 (uL) Date Analyzed: 09/27/05
Injection Volume: 1 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Extraction: Sepf

CONCENTRATION UNITS: (ug/L or ug/Kg) LOQ UG/L

CAS	NO.	

COMPOUND

Е 440 91-20-3----- Naphthalene 3 J 208-96-8---- Acenaphthylene_ 23 | 83-32-9----- Acenaphthene___ J 2 | 86-73-7----- Fluorene 1 J 85-01-8----- Phenanthrene_ 5 U 120-12-7----- Anthracene___ 5 U 206-44-0----- Fluoranthene 5 U 129-00-0---- Pyrene_ 5 U 56-55-3----- Benzo(a)anthracene_ 5 U 218-01-9----- Chrysene_ 5 U 205-99-2----- Benzo(b)fluoranthene_ 5 U 207-08-9----- Benzo(k)fluoranthene_ 5 U 50-32-8----- Benzo(a)pyrene_ 1 U 5 193-39-5----- Indeno(1,2,3-cd)pyrene_ 5 U 53-70-3----- Dibenz(a,h)anthracene_ 5 U 191-24-2---- Benzo(g,h,i)perylene_

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: Lancaster Laboratories Contr	ract:
Lab Code: LANCAS Case No.: SAS	No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608589DL
Sample wt/vol: 1040 (g/mL)ML	Lab File ID: oi0622.d
Level: (low/med) LOW	Date Received: 09/22/05
% Moisture: not dec: dec:	Date Extracted: 09/26/05
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 09/27/05
Injection Volume: 1 (uL)	Dilution Factor: 10.0
GPC Cleanup: (Y/N) N pH:	Extraction: Sepf

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) LOQ UG/L Q

91-20-3	Naphthalene	440	D
208-96-8	Acenaphthylene	48	U
83-32-9	Acenaphthene	20	JD
86-73-7	Fluorene	48	U
85-01-8	Phenanthrene	48	U
120-12-7	Anthracene	48	U
206-44-0	Fluoranthene	48	U
129-00-0	Pyrene	48	U
56-55-3	Benzo(a) anthracene	48	U
218-01-9	Chrysene	48	U
205-99-2	Benzo(b) fluoranthene	48	U
207-08-9	Benzo(k)fluoranthene	48	U
50-32-8	Benzo (a) pyrene	48	U
193-39-5	Indeno(1,2,3-cd)pyrene	48	U
53-70-3	Dibenz(a,h)anthracene	48	U
191-24-2	Benzo(g,h,i)perylene	48	U
			l

_

_____.

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

	MW11B
Lab Name: Lancaster Laboratories	Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608590
Sample wt/vol: 861 (g/mL)ML	Lab File ID: oi0604.d
Level: (low/med) LOW	Date Received: 09/22/05
<pre>% Moisture: not dec: dec:</pre>	Date Extracted: 09/26/05
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 09/27/05
Injection Volume: 1 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Extraction: Sepf

CONCENTRATION UNITS:

LAS NO.	CA	s	NO	
---------	----	---	----	--

COMPOUND

(ug/L or ug/Kg) LOQ UG/L Q

91-20-3 Naphthalene	24	4
	47	
208-96-8 Acenaphthylene	6	
83-32-9 Acenaphthene	2	J
86-73-7 Fluorene	6	U
85-01-8 Phenanthrene	1	J
120-12-7 Anthracene	6	U
206-44-0 Fluoranthene	6	U
129-00-0 Pyrene	6	U
56-55-3 Benzo(a)anthracene	6	U
218-01-9 Chrysene	6	U
205-99-2 Benzo(b)fluoranthene	6	U
207-08-9 Benzo(k)fluoranthene	6	U
50-32-8 Benzo(a)pyrene	6	U
193-39-5 Indeno(1,2,3-cd)pyrene	6	U U
53-70-3 Dibenz(a,h)anthracene	6	U
191-24-2 Benzo(g,h,i)perylene	6	U

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

1B

SEMIVULATILE ORGANICS ANALIS	
Lab Name: Lancaster Laboratories	Contract: MW10B
Dab Mane. Duncubeer Euboracorreb	
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608591
Sample wt/vol: 1044 (g/mL)ML	Lab File ID: oi0605.d
Level: (low/med) LOW	Date Received: 09/22/05
<pre>% Moisture: not dec: dec:</pre>	Date Extracted: 09/26/05
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 09/27/05
Injection Volume: 1 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Extraction: Sepf

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) LOQ UG/L Q

I	91-20-3	Naphthalene	5	U
i	208-96-8	Acenaphthylene	5	U
İ	83-32-9	Acenaphthene	5	U
i	86-73-7	Fluorene	5	U
i	85-01-8	Phenanthrene	5	U
ì	120-12-7	Anthracene	5	U
i	206-44-0	Fluoranthene	5	U
i	129-00-0	Pyrene	5	U
Í	56-55-3	Benzo(a) anthracene	5	U
í	218-01-9	Chrysene	5	U
i	205-99-2	Benzo(b)fluoranthene	5	υ
i	207-08-9	Benzo(k)fluoranthene	5	U
i	50-32-8	Benzo(a)pyrene	5	U
i	193-39-5	Indeno(1,2,3-cd)pyrene	5	U
i	,	Dibenz(a,h)anthracene	5	U
1	191-24-2	Benzo(g,h,i)perylene	5	ט
ì				

	1B			
SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

SEMIVOLATILE ORGANICS ANALYSIS DAT	A SHEET
Lab Name: Lancaster Laboratories Contra	MW02B
Lab Code: LANCAS Case No.: SAS N	No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608594
Sample wt/vol: 599 (g/mL)ML	Lab File ID: oi0623.d
Level: (low/med) LOW	Date Received: 09/22/05
<pre>% Moisture: not dec: dec:</pre>	Date Extracted: 09/26/05
Concentrated Extract Volume: 5000 (uL)	Date Analyzed: 09/27/05
Injection Volume: 1 (uL)	Dilution Factor: 10.0
GPC Cleanup: (Y/N) N pH:	Extraction: Sepf

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) LOQ UG/L Q

I	91-20-3	Naphthalene	72000	Е
i	208-96-8	Acenaphthylene	37000	Ε
i	83-32-9	Acenaphthene	7100	
i	86-73-7	Fluorene	17000	E
i	85-01-8	Phenanthrene	45000	E
i	120-12-7	Anthracene	16000	E
i	206-44-0	Fluoranthene	25000	E
1	129-00-0	Pyrene	36000	E
1	56-55-3	Benzo(a)anthracene	12000	E
ļ	218-01-9	Chrysene	10000	E
1		Benzo(b)fluoranthene	8700	
ĺ	207-08-9	Benzo(k)fluoranthene	4200	
í	50-32-8	Benzo(a)pyrene	11000	E
i	193-39-5	Indeno(1,2,3-cd)pyrene	4500	
í	53-70-3	Dibenz(a,h)anthracene	1000	
i	191-24-2	Benzo(g,h,i)perylene	6600	
i	· · ·			

1

_|

	1B			
SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

	MW02BDL
Lab Name: Lancaster Laboratories	Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608594DL
Sample wt/vol: 599 (g/mL)ML	Lab File ID: oi0624.d
Level: (low/med) LOW	Date Received: 09/22/05
% Moisture: not dec: dec:	Date Extracted: 09/26/05
Concentrated Extract Volume: 5000 (uL)	Date Analyzed: 09/27/05
Injection Volume: 1 (uL)	Dilution Factor: 100.0
GPC Cleanup: (Y/N) N pH:	Extraction: Sepf

CONCENTRATION UNITS:

CAS NO. COMPOUND

.

(ug/L or ug/Kg) LOQ UG/L Q

91-20-3 Naphthalene	150000	E
208-96-8 Acenaphthylene	45000	D
83-32-9 Acenaphthene	7200	D
86-73-7 Fluorene	18000	D
85-01-8 Phenanthrene	79000	D
120-12-7 Anthracene	16000	D
206-44-0 Fluoranthene	33000	D
129-00-0 Pyrene	45000	D
56-55-3 Benzo(a)anthracene	11000	D
218-01-9 Chrysene	9800	D
205-99-2 Benzo(b) fluoranthene	8400	D
207-08-9 Benzo(k)fluoranthene	3900	JD
50-32-8 Benzo(a)pyrene	11000	D
193-39-5 Indeno(1,2,3-cd)pyrene	4600	D
53-70-3 Dibenz(a,h)anthracene	1000	JD
191-24-2 Benzo(g,h,i)perylene	6300	D
		<u> </u>

EPA SAMPLE NO. |_____|

SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

1B

	MW02BDL2
Lab Name: Lancaster Laboratories	Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608594DL2
Sample wt/vol: 599 (g/mL)ML	Lab File ID: oi0628.d
Level: (low/med) LOW	Date Received: 09/22/05
% Moisture: not dec: dec:	Date Extracted: 09/26/05
Concentrated Extract Volume: 5000 (uL) Date Analyzed: 09/27/05
Injection Volume: 1 (uL)	Dilution Factor: 200.0
GPC Cleanup: (Y/N) N pH:	Extraction: Sepf

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) LOQ UG/L Q

91-20-3	Naphthalene	150000	Ð
208-96-8	Acenaphthylene	45000	D
83-32-9	Acenaphthene	7100	JD
86-73-7	Fluorene	17000	D
85-01-8	Phenanthrene	75000	D
120-12-7	Anthracene	15000	D
206-44-0	Fluoranthene	31000	D
129-00-0	Pyrene	42000	D
56-55-3	Benzo(a) anthracene	11000	D
218-01-9	Chrysene	9300	D
205-99-2	Benzo(b) fluoranthene	7300	JD
207-08-9	Benzo(k)fluoranthene	3900	JD
50-32-8	Benzo(a)pyrene	11000	D
193-39-5	Indeno(1,2,3-cd)pyrene	4000	JD
53-70-3	Dibenz(a,h)anthracene	8300	U
191-24-2	Benzo(q,h,i)perylene	5900	JD
	Dibenz(a,h)anthracene	8300	י ע

	1B			
SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

SEMIVOLATILE ORGANICS ANALYSI	S DATA SHEET
Lab Name: Lancaster Laboratories C	Ontract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608595
Sample wt/vol: 1035 (g/mL)ML	Lab File ID: oi0607.d
Level: (low/med) LOW	Date Received: 09/22/05
<pre>% Moisture: not dec: dec:</pre>	Date Extracted: 09/26/05
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 09/27/05
Injection Volume: 1 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Extraction: Sepf

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) LOQ UG/L Q

91-20-3 Naphthalene	150	E
208-96-8 Acenaphthylene	39	i i
83-32-9 Acenaphthene	130	E
86-73-7 Fluorene	40	į į
85-01-8 Phenanthrene	130	E
120-12-7 Anthracene	25	
206-44-0 Fluoranthene	44	
129-00-0 Pyrene	56	
56-55-3 Benzo(a) anthracene	11	
218-01-9 Chrysene	11	
205-99-2 Benzo(b) fluoranthene	11	
207-08-9 Benzo(k)fluoranthene	4	J
50-32-8 Benzo(a)pyrene	13	
193-39-5 Indeno (1, 2, 3-cd) pyrene	6	
53-70-3 Dibenz(a,h)anthracene	5	U
191-24-2 Benzo(g,h,i)perylene	9	

•

.

SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEET
00111100111100	••••	• • • • • • • • • • • • • • • • • • • •		

1B

SEMIVOLATILE ORGANICS ANALISIS DAT	
Lab Name: Lancaster Laboratories Contra	MW07SDL
Lab Code: LANCAS Case No.: SAS N	O.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608595DL
Sample wt/vol: 1035 (g/mL)ML	Lab File ID: oi0625.d
Level: (low/med) LOW	Date Received: 09/22/05
<pre>% Moisture: not dec: dec:</pre>	Date Extracted: 09/26/05
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 09/27/05
Injection Volume: 1 (uL)	Dilution Factor: 5.0
GPC Cleanup: (Y/N) N pH:	Extraction: Sepf

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) LOQ UG/L Q

91-20-3	Naphthalene	150	D
208-96-8	Acenaphthylene	34	D
83-32-9	Acenaphthene	130	D
86-73-7	Fluorene	39	D
85-01-8	Phenanthrene	140	D
120-12-7	Anthracene	24	JD
206-44-0	Fluoranthene	43	D
129-00-0	Pyrene	55	D
56-55-3	Benzo(a)anthracene	12	JD
218-01-9	Chrysene	10	JD
205-99-2	Benzo(b)fluoranthene	9	JD
207-08-9	Benzo(k)fluoranthene	24	U
50-32-8	Benzo(a)pyrene	11	JD
193-39-5	Indeno(1,2,3-cd)pyrene	5	JD
53-70-3-+	Dibenz (a, h) anthracene	24	U
. 191-24-2	Benzo(g,h,i)perylene	8	JD
1			

1

1

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

	FD921
Lab Name: Lancaster Laboratories	Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608596
Sample wt/vol: 100 (g/mL)ML	Lab File ID: oi0608.d
Level: (low/med) LOW	Date Received: 09/22/05
<pre>% Moisture: not dec: dec:</pre>	Date Extracted: 09/26/05
Concentrated Extract Volume: 10000 (uL) Date Analyzed: 09/27/05
Injection Volume: 1 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Extraction: Sepf

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) LOQ UG/L Q

I	91-20-3	Naphthalene	150000	E
i	208-96-8	Acenaphthylene	76000	E
i	83-32-9	Acenaphthene	19000	E
i	86-73 -7	Fluorene	40000	E
i	85-01-8	Phenanthrene	110000	Е
ì	120-12-7	Anthracene	38000	E
i	206-44-0	Fluoranthene	57000	E
i	129-00-0	Pyrene	81000	Е
Ì	56-55-3	Benzo(a) anthracene	27000	Е
i	218-01-9	Chrysene	30000	E
İ	205-99-2	Benzo(b)fluoranthene	22000	E
i	207-08-9	Benzo(k)fluoranthene	7500	
Ì	50-32-8	Benzo(a)pyrene	25000	E
í	193-39-5	Indeno(1,2,3-cd)pyrene	12000	
i	53-70-3	Dibenz(a,h)anthracene	2500	
i	191-24-2	Benzo(g,h,i)perylene	17000	E
i				I

.

1

	1B			
SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

	FD921DL
Lab Name: Lancaster Laboratories Contr	act:
Lab Code: LANCAS Case No.: SAS	No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608596DL
Sample wt/vol: 100 (g/mL)ML	Lab File ID: oi0626.d
Level: (low/med) LOW	Date Received: 09/22/05
<pre>% Moisture: not dec: dec:</pre>	Date Extracted: 09/26/05
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 09/27/05
Injection Volume: 1 (uL)	Dilution Factor: 10.0
GPC Cleanup: (Y/N) N pH:	Extraction: Sepf

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) LOQ UG/L Q

91-20-3 Naphthalene	370000	E
208-96-8 Acenaphthylene	120000	E
83-32-9 Acenaphthene	19000	D
86-73-7 Fluorene	50000	D
85-01-8 Phenanthrene	200000	E
120-12-7 Anthracene	43000	D
206-44-0 Fluoranthene	85000	D
129-00-0 Pyrene	120000	D
56-55-3 Benzo(a)anthracene	31000	D
218-01-9 Chrysene	28000	D
205-99-2 Benzo(b)fluoranthene	21000	D
207-08-9 Benzo(k)fluoranthene	12000	D
50-32-8 Benzo(a)pyrene	30000	D
193-39-5 Indeno(1,2,3-cd)pyrene	11000	D
53-70-3 Dibenz(a,h)anthracene	2700	JD
191-24-2 Benzo(g,h,i)perylene	17000	D
		i

	1B			
SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

	FD921DL2
Lab Name: Lancaster Laboratories	Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 4608596DL2
Sample wt/vol: 100 (g/mL)ML	Lab File ID: oi0627.d
Level: (low/med) LOW	Date Received: 09/22/05
% Moisture: not dec: dec:	Date Extracted: 09/26/05
Concentrated Extract Volume: 10000 (u)	L) Date Analyzed: 09/27/05
Injection Volume: 1 (uL)	Dilution Factor: 50.0
GPC Cleanup: (Y/N) N pH:	Extraction: Sepf

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) LOQ UG/L Q

91-20-3 Naphthalene	380000	D
208-96-8 Acenaphthylene	120000	D
83-32-9 Acenaphthene	19000	JD
86-73-7 Fluorene	47000	D
85-01-8 Phenanthrene	200000	D
120-12-7 Anthracene	40000	D
206-44-0 Fluoranthene	83000	D
129-00-0 Pyrene	110000	D
56-55-3 Benzo(a)anthracene	29000	D
218-01-9 Chrysene	25000	JD
205-99-2 Benzo (b) fluoranthene	21000	JD
207-08-9 Benzo(k)fluoranthene	10000	JD
50-32-8 Benzo(a)pyrene	28000	D
193-39-5 Indeno (1, 2, 3-cd) pyrene	12000	JD
53-70-3 Dibenz(a,h)anthracene	25000	U
191-24-2 Benzo(g,h,i)perylene	16000	JD
		I

1

	1B			
TVOLATIE	ORGANICS	ANALYSTS	DATA	SHEE

SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEET
--------------	----------	----------	------	-------

	SBLKWA2670
Lab Name: Lancaster Laboratories Co	ontract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: SBLKWA267
Sample wt/vol: 1000 (g/mL)ML	Lab File ID: oi0599.d
Level: (low/med) LOW	Date Received:
<pre>% Moisture: not dec: dec:</pre>	Date Extracted: 09/26/05
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 09/27/05
Injection Volume: 1 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Extraction: Sepf

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) MDL UG/L Q

	91-20-3	Naphthalene	1	U
i	208-96-8	Acenaphthylene	1	U
i	83-32-9	Acenaphthene	1	Ŭ
i	86-73-7	Fluorene	1	U
i	85-01-8	Phenanthrene	1	U
i	120-12-7	Anthracene	1	U
í	206-44-0	Fluoranthene	1	U
i	129-00-0	Pyrene	1	U
i	56-55-3	Benzo (a) anthracene	1	U
i	218-01-9	Chrysene	1	υ
		Benzo(b)fluoranthene	1	U
1	207-08-9	Benzo(k)fluoranthene	1	U
i	50-32-8	Benzo(a)pyrene	l	U
i	193-39-5	Indeno(1,2,3-cd)pyrene	1	U
i	53-70-3	Dibenz(a,h)anthracene	1	U
ļ		Benzo(g,h,i)perylene	1	U
i				

.

1

	1B			
SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

	267WALCSO
Lab Name: Lancaster Laboratories Cont	tract:
Lab Code: LANCAS Case No.: SAS	S No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 267WALCS
Sample wt/vol: 1000 (g/mL)ML	Lab File ID: oi0600.d
Level: (low/med) LOW	Date Received:
<pre>% Moisture: not dec: dec:</pre>	Date Extracted: 09/26/05
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 09/27/05
Injection Volume: 1 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Extraction: Sepf

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) LOQ UG/L Q

91-20)-3	Naphthalene	83	
208-9	96-8	Acenaphthylene	100	
83-32	2-9	Acenaphthene	91	
86-73	8 - 7	Fluorene	87	
85-01	-8	Phenanthrene	95	
120-1	2-7	Anthracene	91	
206-4	4-0	Fluoranthene	90	
129-0)0-0	Pyrene	95	
56-55	5-3	Benzo(a) anthracene	88	
218-0)1-9	Chrysene	92	
205-9	99-2	Benzo(b) fluoranthene	82	
		Benzo(k)fluoranthene	95	
50-32	2-8	Benzo(a)pyrene	92	
193-3	39-5 -	Indeno(1,2,3-cd)pyrene	87	
		Dibenz(a,h)anthracene	92	
191-2	24-2	Benzo(g,h,i)perylene	91	
· .				

-

	1B			
SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

	267WALCSDO
Lab Name: Lancaster Laboratories	Contract:
Lab Code: LANCAS Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 267WALCSD
Sample wt/vol: 1000 (g/mL)ML	Lab File ID: oi0601.d
Level: (low/med) LOW	Date Received:
<pre>% Moisture: not dec: dec:</pre>	Date Extracted: 09/26/05
Concentrated Extract Volume: 1000 (uI	Date Analyzed: 09/27/05
Injection Volume: 1 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Extraction: Sepf

CONCENTRATION UNITS:

-

COMPOUND

(ug/L or ug/Kg) LOQ UG/L Q

91-20-3 Naphthalene	72	
208-96-8 Acenaphthylene	100	
83-32-9 Acenaphthene	91	
86-73-7 Fluorene	90	
85-01-8 Phenanthrene	99	
120-12-7 Anthracene	94	
206-44-0 Fluoranthene	93	
129-00-0 Pyrene	100	ļ
56-55-3 Benzo(a)anthracene	93	
218-01-9 Chrysene	98	
205-99-2 Benzo(b) fluoranthene	84	
207-08-9 Benzo(k)fluoranthene	94	
50-32-8 Benzo(a)pyrene	94	
193-39-5 Indeno(1,2,3-cd)pyrene	90	
53-70-3 Dibenz(a,h)anthracene	96	
191-24-2 Benzo(q,h,i)perylene	93	

Instrumental Analysis Data

Case Narrative Conformance/Nonconformance Summary

Lancaster Laboratories

Where quality is a science.

CLIENT: URS Corporation SDG: PNY01

LANCASTER LABORATORIES

INSTRUMENTAL WET CHEMISTRY

SAMPLE NUMBERS:

Sample #	Sample Code	<u>Comments</u>
4608587	MW01B	
4608589	MW03B	
4608590	MW11B	
4608591	MW10B	
4608592	MW06B	
4608593	MW07B	
4608594	MW02B	
4608595	MW07S	
4608596	FD921	

ANALYSIS:

No problems were encountered during analysis.

QUALITY CONTROL AND NONCONFORMANCE SUMMARY:

QC was within specifications.

DATA INTERPRETATION:

Due to the limitations of the data package software, form I's are not available for the Instrumental Analysis data. Please refer to the analysis reports for this information.

Total Cyanide (water) = result X dilution factor X 50 ml / volume of sample (ml)

Phenols water (mg/l) = result X dilution factor X 500 ml / volume of sample

Case Narrative Reviewed and Approved by:

Date: 10-19-05 Sandra J. Miller Specialist

APPENDIX C SUMMARY OF HISTORIC BEDROCK GROUNDWATER ANALYTICAL RESULTS

APPENDIX C HISTORIC BEDROCK GROUNDWATER ANALYTICAL RESULTS

NYSEG-BRIDGE STREET FORMER MGP SITE PLATTSBURGH, NEW YORK

		MW-1B			MW	/-2B	MW-3B			
Parameter	1/28/2002	9/16/2004	9/21/2005	1/30/2002	9/16/2004	9/21/2005	9/21/2005 Duplicate	10/4/2002	9/16/2004	9/21/2005
	Benzene, Toluene, Ethylbenzene, Xylenes (µg/L)									
Benzene	4	0.643J	0.9J	1,300	910	850	870	64	6.59	310
Ethylbenzene	<1	<1	< 0.8	1,500	1,520	970	1,000	<1	0.317J	97
Toluene	<1	0.382J	< 0.7	2,600	1,790	1,300	1,400	4	0.768J	50
Xylene, total	<1	<2	< 0.8	2,800	2,800	1,600	1,700	<1	<2	81
Total BTEX	4	1.03	0.9	8,200	7,020	4,720	4,970	68	7.68	538
				Poly	aromatic Hya	lrocarbons (µ	g/L)			
2-Methylnaphthalene	<10	<9.43	NA	170J	457	NA	NA	<10	<9.52	NA
Acenaphthene	<10	<9.43	NA	26J	94.2J	7,100	19,000	<10	<9.52	23
Acenaphthylene	<10	<9.43	NA	280	497	45,000	120,000	<10	<9.52	3J
Anthracene	<10	<9.43	NA	<200	190J	16,000	43,000	<10	<9.52	<1
Benzo(a)anthracene	<10	<9.43	NA	<200	122J	11,000	31,000	<10	<9.52	<1
Benzo(a)pyrene	<10	<9.43	NA	<200	128J	11,000	30,000	<10	<9.52	<1
Benzo(b)fluoranthene	<10	<9.43	NA	<200	31.6J	8,700	21,000	<10	<9.52	<1
Benzo(g,h,i)perylene	<10	<9.43	NA	<200	92.9J	6,600	17,000	<10	<9.52	<1
Benzo(k)fluoranthene	<10	<9.43	NA	<200	37.4J	4,200	7,500	<10	<9.52	<1
Chrysene	<10	<9.43	NA	<200	117J	9,800	28,000	<10	<9.52	<1
Dibenz(a,h)anthracene	<10	<9.43	NA	<200	<243	1,000	2,500	<10	<9.52	<1
Fluoranthene	<10	<9.43	NA	<200	208	33,000	85,000	<10	<9.52	<1
Fluorene	<10	<9.43	NA	34J	161	18,000	50,000	<10	<9.52	2J
Indeno(1,2,3-cd)pyrene	<10	<9.43	NA	<200	55.5J	4,500	12,000	<10	<9.52	<1
Naphthalene	<10	<9.43	NA	3,000	4,030	150,000	380,000	<10	<9.52	440
Phenanthrene	<10	<9.43	NA	68J	30J	79,000	200,000	<10	<9.52	1J
Pyrene	<10	<9.43	NA	<200	299	45,000	120,000	<10	<9.52	<1
Total PAHs	ND	ND	NA	3,578	6,550	449,900	1,166,000	ND	ND	469
	General Chemistry (µg/L)									
Total Phenols	<2	7.13	<24	36	118	<12	<12	NA	23.4	27J
Free Cyanide	<10	NA	NA	<10	NA	NA	NA	NA	NA	NA
Total Cyanide	<10	<10	<5	<10	<10	<5	<5	110	<10	<5

Notes:

NA - Not Analyzed

ND - Not Detected

< - Indicates the parameter was not detected above the PQL shown

J - Indicates an estimated concentration between the MDL and PQL

APPENDIX C HISTORIC BEDROCK GROUNDWATER ANALYTICAL RESULTS

NYSEG-BRIDGE STREET FORMER MGP SITE PLATTSBURGH, NEW YORK

		MW-6B			MW-7BD			MW-7BS	MW-7DD	MW-8B	
Parameter	1/28/2002	9/16/2004	9/21/2005	1/30/2002	9/16/2004	9/21/2005	1/29/2002	9/16/2004	9/21/2005	10/16/2002	12/28/2001
	Benzene, Toluene, Ethylbenzene, Xylenes (µg/L)										
Benzene	1.00	1.58	3J	1,300	464	830	86	29.1	35	< 0.5	< 0.5
Ethylbenzene	<1	1.71	22	930	279	980	79	20.8	18	<1	<1
Toluene	<1	1.61	11	1,900	581	1,300	45	6.1	5J	<1	<1
Xylene, total	<1	4.22	57	2,300	855	2,100	111	19.6	17	<1	<1
Total BTEX	1.00	9.12	93	6,430	2,179	5,210	321	75.6	75	ND	ND
					Polyarom	atic Hydroca	rbons (µg/L)				
2-Methylnaphthalene	<10	5.51J	NA	640	222J	NA	69	13.1	NA	<10	<10
Acenaphthene	<10	<9.8	NA	160J	39.4	NA	114	66	130	<10	<10
Acenaphthylene	<10	4.89J	NA	920	230J	NA	35	21.8	39	<10	<10
Anthracene	<10	<9.8	NA	240J	26.6	NA	23	8.3J	25	<10	<10
Benzo(a)anthracene	<10	<9.8	NA	100J	11.9	NA	<10	1.29J	11	<10	<10
Benzo(a)pyrene	<10	<9.8	NA	40J	10.6	NA	<10	0.982J	13	<10	<10
Benzo(b)fluoranthene	<10	<9.8	NA	44J	4.94J	NA	<10	<9.52	11	<10	<10
Benzo(g,h,i)perylene	<10	<9.8	NA	<400	8.08J	NA	<10	<9.52	9	<10	<10
Benzo(k)fluoranthene	<10	<9.8	NA	48J	5.8J	NA	<10	<9.52	4J	<10	<10
Chrysene	<10	<9.8	NA	100J	11.2	NA	<10	1.2J	11	<10	<10
Dibenz(a,h)anthracene	<10	<9.8	NA	<400	1.31J	NA	<10	<9.52	<1	<10	<10
Fluoranthene	<10	<9.8	NA	300J	46.9	NA	6J	8.69J	44	<10	<10
Fluorene	<10	<9.8	NA	300J	62.6	NA	33	17.7	40	<10	<10
Indeno(1,2,3-cd)pyrene	<10	<9.8	NA	<400	12.4	NA	<10	<9.52	6	<10	<10
Naphthalene	<10	11.1	NA	6,400	2,420	NA	380	147	150	<10	<10
Phenanthrene	<10	2.79J	NA	1,000	6.06J	NA	61	52.9	140	<10	<10
Pyrene	<10	<9.8	NA	560	56	NA	6J	11	56	<10	<10
Total PAHs	ND	24.3	NA	10,852	3,176	NA	727	350	689	ND	ND
	General Chemistry (µg/L)										
Total Phenols	234	42.5	NA	207	31.1	NA	28	167	<12	NA	<2
Free Cyanide	<10	NA	NA	<10	NA	NA	<10	NA	NA	NA	<10
Total Cyanide	<10	<10	<5	<10	<10	<5	40	7.97J	<5	20	<10

Notes:

NA - Not Analyzed

ND - Not Detected

< - Indicates the parameter was not detected above the PQL shown

J - Indicates an estimated concentration between the MDL and PQL

APPENDIX C HISTORIC BEDROCK GROUNDWATER ANALYTICAL RESULTS

NYSEG-BRIDGE STREET FORMER MGP SITE PLATTSBURGH, NEW YORK

	MW-8BD		MW-9B			MW-10B		MW-11B		
Parameter	2/27/2002	1/30/2002	9/16/2004	9/21/2005	10/4/2002	9/16/2004	9/21/2005	1/28/2002	9/16/2004	9/21/2005
	Benzene, Toluene, Ethylbenzene, Xylenes (µg/L)									
Benzene	< 0.5	3	0.434J	< 0.5	6.00	1.68	2J	< 0.5	2.82	10
Ethylbenzene	<1	<1	<1	< 0.8	<1	0.292J	< 0.8	<1	1.93	5J
Toluene	<1	<1	0.357J	< 0.7	<1	0.475J	< 0.7	<1	5.32	14
Xylene, total	<1	8	<2	< 0.8	<1	<2	< 0.8	<1	5.58	12
Total BTEX	ND	11	0.791	ND	6.00	2.45	2.0	ND	15.7	41
				Poly	aromatic Hya	lrocarbons (µ	g/L)			
2-Methylnaphthalene	<17	<10	<9.62	NA	<10	<9.8	NA	<10	<9.71	NA
Acenaphthene	<17	<10	<9.62	NA	<10	<9.8	<1	<10	<9.71	2J
Acenaphthylene	<17	<10	1.87J	NA	<10	<9.8	<1	<10	1.17J	6
Anthracene	<17	<10	<9.62	NA	<10	<9.8	<1	<10	<9.71	<1
Benzo(a)anthracene	<17	<10	<9.62	NA	<10	<9.8	<1	<10	<9.71	<1
Benzo(a)pyrene	<17	<10	<9.62	NA	<10	<9.8	<1	<10	<9.71	<1
Benzo(b)fluoranthene	<17	<10	<9.62	NA	<10	<9.8	<1	<10	<9.71	<1
Benzo(g,h,i)perylene	<17	<10	<9.62	NA	<10	<9.8	<1	<10	<9.71	<1
Benzo(k)fluoranthene	<17	<10	<9.62	NA	<10	<9.8	<1	<10	<9.71	<1
Chrysene	<17	<10	<9.62	NA	<10	<9.8	<1	<10	<9.71	<1
Dibenz(a,h)anthracene	<17	<10	<9.62	NA	<10	<9.8	<1	<10	<9.71	<1
Fluoranthene	<17	<10	<9.62	NA	<10	<9.8	<1	<10	<9.71	<1
Fluorene	<17	<10	<9.62	NA	<10	<9.8	<1	<10	<9.71	<1
Indeno(1,2,3-cd)pyrene	<17	<10	<9.62	NA	<10	<9.8	<1	<10	<9.71	<1
Naphthalene	<17	4.5J	<9.62	NA	<10	1.58J	<1	<10	2.42J	24
Phenanthrene	<17	<10	<9.62	NA	<10	<9.8	<1	<10	<9.71	1J
Pyrene	<17	<10	<9.62	NA	<10	<9.8	<1	<10	<9.71	<1
Total PAHs	ND	4.50	1.87	NA	ND	1.58	ND	ND	3.59	33
	General Chemistry ($\mu g/L$)									
Total Phenols	7	123	3.72J	NA	NA	6.92	15J	247	18.7	250
Free Cyanide	NA	130	NA	NA	NA	NA	NA	<10	NA	NA
Total Cyanide	NA	130	<10	NA	<10	<10	<5	<10	3.75J	<5

Notes:

NA - Not Analyzed

ND - Not Detected

< - Indicates the parameter was not detected above the PQL shown

J - Indicates an estimated concentration between the MDL and PQL