

SOLID WASTE MANAGEMENT UNIT SAMPLING & ANALYSIS Report (SAR)

Chemical
Development
Pilot Plant

100AcademyStreet Rouses Point, NY

709 Westchester Avenue, Suite L2 White Plains, NY 10604 800-807-4080

woodardcurran.com

Pfizer Inc. 206910 April 2016

TABLE OF CONTENTS

SEC	TON	PAGE NO.		
1.	INTRODUCTION			
	1.1 Purpose			
2.	FACILITY DESCRIPTION AND PROJECT BACKGROUND			
	2.1 Facility Descriptions	2-1		
	2.2 RCRA Corrective Action Status and Environmental Conditions Summary			
	$2.3 \qquad \hbox{Historical Research \& Development Operations at Chemical Development Pilot Plant} \; .$	2-2		
	2.4 Summary of Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) at Chemical Development Pilot Plant			
3.	SAMPLING AND ANALYTICAL PROGRAM			
	3.1 Chemical Development Pilot Plant SWMU Investigation Approach	3-1		
	3.1.1 ChemD SWMU SAP	3-1		
	3.1.2 ChemD SWMU SAP Addendum			
	3.2 Field Screening and Soil Sample Collection			
	3.3 Sample Handling			
	3.5 Quality Assurance and Quality Control			
	3.5.1 Sampling QA/QC			
	3.5.2 Laboratory QA/QC			
	3.5.3 Data Validation			
	3.6 Equipment Decontamination			
4.	INVESTIGATION RESULTS			
	4.1 SWMU-1: Interim Drum Storage Area	4-1		
	4.1.1 SWMU-1 - Previous Soil Investigation Results			
	4.2 SWMU-4: Former Container Storage Area			
	4.2.1 SWMU-4 - Previous Soil Investigation Results			
	4.2.2 SWMU-4 - 2015 Investigation Results	4-4		
	4.3 SWMU-5: Container Storage Area			
	4.3.1 SWMU-5 - 2014-2015 Investigation Results			
	4.4 SWMU-6: Tank Farm	4-0 1-7		
	4.4.2 SWMU-6 - 2014-2015 Investigation Results			
	4.5 SWMU-7: Process Sewer			
	4.5.1 SWMU-7 - Previous ICM Results – Exterior Process Sewers (North & West Side Building 23)			
	4.5.2 SWMU-7 - Previous Soil Investigation Results - Exterior Process Sewers (East Building 23)	Side of		
	4.5.3 SWMU-7 - 2015 Investigation Results	4-10		
	4.5.3.1 Exterior Process Sewers (North & West Sides of Building 23)	4-10		

		4.5.3.2	Exterior Process Sewers (From Building 17C and 34)	4-10	
		4.5.3.3	Exterior Process Sewers (East Side of Building 23)		
		4.5.3.4	Interior Process Sewers (Buildings 16, 23, 24, 26, 31, 34, and 40)	4-11	
	4.6	SWMU-12: E	Building 16 Former Drywell	4-12	
	4	.6.1 SWM	U-12 - Previous Soil Investigation Results	4-12	
	4	.6.2 SWM	U-12 - 2015 Investigation Results	4-13	
	4.7		Building 16 Former Sanitary Sewer Holding Tanks		
	4	.7.1 SWM	U-13 - Previous Soil Investigation Results	4-14	
	4		U-13 - 2015 Investigation Results		
	4.8		Building 24 Wastewater Treatment Plant		
			U-15 - 2014-2015 Investigation Results		
	4.9		Building 40 Wastewater Steam Stripper Building		
			U-17 - 2015 Investigation Results		
			Building 16 Former Waste Storage Area in Northwest Corner		
			U-23 - Previous Soil Investigation Results		
			U-23 - 2015 Investigation Results		
			Building 31 Solvent Condensate System		
			U-24 - 2015 Investigation Results		
			Chemical Development Reactor Bay Drumming areas (Multiple Locations)		
			U-26 - 2015 Investigation Results		
	4.13	Current Grou	undwater Quality	4-22	
5.	SUMI	MARY OF FIN	IDINGS, CONCLUSIONS, AND RECOMMENDATIONS	5-1	
	5.1	Soil		5-1	
	5.2	Groundwate	r	5-3	
6.	REFE	RENCES		6-1	
			TABLES		
Table	1:	Summa	ry of Soil Investigation Activities – Chemical Development Pilot Plant		
Table 2: Sumn		Summa	ry of Soil Sampling and Analysis Activities – Chemical Development Pilot Plant		
Table	3:	SWMU-	1 - Interim Drum Storage Area Soil Sample Analytical Results		
			4 - Former Container Storage Area Soil Sample Analytical Results		
			5 - Container Storage Area Sample Analytical Results		
Table 6: SWMU			6 - Tank Farm Soil Sample Analytical Results		
Table 7: SWM			7 - Process Sewer Soil Sample Analytical Results		
			SWMU-12 - Building 16 Former Drywell Soil Sample Analytical Results		
Table			13 - Building 16 Former Sanitary Sewer Holding Tanks Soil Sample Analytical F	Results	
Table			15 - Building 24 Wastewater Treatment Plant Soil Sample Analytical Results		
Table 11:		SWMU-17 - Building 40 Wastewater Steam Stripper Building Soil Sample Analytical Results			
Table	12:	SWMU- Results	23 - Building 16 Former Waste Storage Area in Northwest Corner Soil Sample	Analytical	
Table	13:	SWMU-	24 - Building 31 Solvent Condensate System Soil Sample Analytical Results		
Table			26 - Chemical Development Reactor Bay Drumming Areas Soil Sample Analytic	cal Results	
Table	15:	Ground	water Monitoring Well Analytical Results – VOCs		
Table 16·			ry of Chemical Development Pilot Plant SWMLI/AOC Status		

FIGURES

Figure 1: Site Location Map

Figure 2: Site Plan

Figure 3: Locations of SWMUs and AOCs at Chemical Development Pilot Plant

Figure 4: Interim Corrective Measure Locations
Figure 5: Groundwater Monitoring Well Locations

Figure 6: Soil Investigation Locations – SWMU-1, SWMU-4, & SWMU-12

Figure 7: Soil Investigation Locations – SWMU-5

Figure 8: Soil Investigation Locations – SWMU-6, SWMU-13, SWMU-15, SWMU-17, SWMU-23, &

SWMU-24

Figure 9A: Soil Investigation Locations – SWMU-7 & SWMU-26 Figure 9B: Soil Investigation Locations – SWMU-7 & SWMU-26

Figure 10: 2015 Groundwater Sampling - VOC Results

APPENDICES

Appendix A: Inactive AOC No Further Action Requests

Appendix B: Test Pit/Soil Boring Logs
Appendix C: Laboratory Analtyical Reports
Appendix D: Data Validation Summaries

1. INTRODUCTION

This Chemical Development Pilot Plant-specific Solid Waste Management Unit (SWMU) Sampling & Analysis Report (hereafter referenced as the ChemD SWMU SAR) was prepared by Woodard & Curran Engineering PA PC (hereafter referred to as Woodard & Curran) on behalf of Pfizer for the former Chemical Development Pilot Plant facility located at 100 Academy Street in Rouses Point, New York. The former Chemical Development Pilot Plant and the adjoining Main Plant property located at 64 Maple Street (collectively referred to as the "Site") are currently owned by Pfizer. The location of the Site is depicted on **Figure 1**. The Chemical Development Pilot Plant and Main Plant portions of the Site are depicted on **Figure 2**.

1.1 PURPOSE

The purpose of this ChemD SWMU SAR is to document the results of field screening and soil sampling activities that were implemented during and following demolition of the Chemical Development Pilot Plant portion of the larger Pfizer facility (the "Site") at select SWMUs located at the Chemical Development Pilot Plant. The field screening and soil sampling activities summarized in this ChemD SWMU SAR were originally proposed in the Chemical Development Pilot Plant-specific SWMU Sampling & Analysis Plan (hereafter referenced as the ChemD SWMU SAP), dated September 18, 2104, (revised December 1, 2014), and the Addendum to the ChemD SWMU SAP (hereafter referenced as the ChemD SWMU SAP Addendum), dated September 22, 2015. The ChemD SWMU SAP and ChemD SWMU SAP Addendum were prepared in accordance with the New York State Department of Environmental Conservation (NYSDEC) 6 NYCRR Part 373 Hazardous Waste Management Permit Module II-Corrective Action Requirements for SWMUs and Areas of Concern (AOCs) for the Site issued by the NYSDEC and approved by the NYSDEC. Further details regarding the contents of each of the above-listed Work Plans is provided in **Section 3.1**.

In addition, this ChemD SWMU SAR summarizes current groundwater quality associated with the Chemical Development Pilot Plant and provides recommendations for future work at the Chemical Development Pilot Plant.

1.2 REPORT ORGANIZATION

This ChemD SWMU SAR has been prepared in summary format with all necessary detail and required information in the supporting appendices. The ChemD SWMU SAR is organized as follows:

- **Section 1** Provides an introduction to the ChemD SWMU SAR;
- Section 2 Provides a facility description and project background;
- **Section 3** Provides the SWMU sampling and analysis program approach overview and summarizes the SWMU sampling and analysis program tasks and procedures;
- **Section 4** Summarizes the results of all soil investigation activities conducted to date, as well as current groundwater quality at the Chemical Development Pilot Plant;
- Section 5 Presents the overall findings, conclusions, and recommendations; and
- Section 6 Lists the supporting documents and literature references used to prepare the ChemD SWMU SAR.

Data is presented in tables and on figures to convey the information while reducing the volume of text required. Tables are referenced in the text and include the following information:

- Methodologies for field screening and soil sampling activities;
- Summary of sampling analytical parameters and methods; and
- Laboratory analytical result summary tables.

Figures are referenced in the text and include the following information:

- Site plans;
- Sample locations maps; and
- Figures depicting detections of constituents and exceedances of applicable NYSDEC standards/guidance values in groundwater.

Appendices are referenced in the text and provide detailed supporting information including:

- Recommendations for no further action at select SWMUs and AOCs;
- Soil boring and test pit logs;
- Laboratory analytical data, including comprehensive Category B data deliverables per NYSDEC 2005 Analytical Services Protocol (ASP); and
- Data validation summaries.

2. FACILITY DESCRIPTION AND PROJECT BACKGROUND

The following sections provide:

- A background of the former Chemical Development Pilot Plant property at 100 Academy Street and the adjoining Main Plant property at 64 Maple Street;
- The RCRA corrective action status of the Site; and
- An environmental conditions summary of the Site and specifically the Chemical Development Pilot Plant portion of the Site.

2.1 FACILITY DESCRIPTIONS

The Site is located at the intersection of Maple Street (to the east) and Academy Street (to the south) in the Village of Rouses Point, Clinton County, New York. The Site is located approximately 800 feet west of the northern end of Lake Champlain and 3,300 feet south of the Canadian border. The Site includes land in the Village of Rouses Point and the Town of Champlain. The Site is zoned I-2, Industrial. The location of the Site is depicted on **Figure 1**.

The Site is currently owned and operated by Pfizer (successor to Wyeth) as a pharmaceutical manufacturing facility (see **Figure 2**) and contains one facility, the Main Plant, and the property associated with the former Chemical Development Pilot Plant, which was demolished between September 2014 and May 2015. The Main Plant (located primarily on the eastern portion of the Site) includes approximately 1 million square feet of manufacturing and supporting infrastructure space. The Main Plant portion of the facility maintains an address of 64 Maple Street. This portion of the Site was previously owned by Wyeth and sold to Akrimax Manufacturing, LLC in 2006, who then leased the plant back to Wyeth (later acquired by Pfizer) for pharmaceutical manufacturing operations. Pfizer re-acquired the Main Plant portion of the facility from Akrimax in 2011 and Akrimax no longer operates at the Site. Operations at the Main Plant include, or formerly included, the manufacturing, primary processing and packaging of over-the-counter and prescription pharmaceuticals.

The Chemical Development Pilot Plant property (located on the western portion of the Site) is owned by Pfizer and formerly included approximately 120,000 square feet of pharmaceutical research and development and warehouse space on 11.86 acres. The former Chemical Development Pilot Plant portion of the facility maintains an address of 100 Academy Street.

The Main Plant and former Chemical Development Pilot Plant were operated as semi-autonomous units, although much of the Site infrastructure is shared between the two properties including steam, process wastewater treatment facilities, and hazardous waste storage. The Main Plant facility includes the manufacturing buildings, boiler house, air treatment buildings, and general Site grounds including the unimproved portions of the Site. The Chemical Development Pilot Plant facility formerly included the process wastewater treatment plant, steam stripper, tank farm, various storage buildings, the fire water system, and the greater than 90-day hazardous waste storage facility.

The Site maintains a 6 NYCRR Part 373 Hazardous Waste Management Permit (NYSDEC Permit # 5-0928-00017/00175) and operates as a RCRA large quantity generator (LQG) under USEPA Generator ID # NYD002081396.

2.2 RCRA CORRECTIVE ACTION STATUS AND ENVIRONMENTAL CONDITIONS SUMMARY

The following summary has been developed to present the status of the RCRA hazardous waste management program at the Chemical Development Pilot Plant facility. The Chemical Development Pilot Plant (and the eastern adjoining Main Plant facility at 64 Maple Street) operated as a hazardous waste management facility under a NYSDEC 6 NYCRR Part 373 Hazardous Waste Management Permit (the "Part 373 Permit") and has been conducting corrective action activities at SWMUs and AOCs as defined in the Part 373 Permit, including a Site-wide Corrective Measures Study (CMS), which recommends corrective measures to be implemented to protect human health and the environment. The

Draft CMS Report for the Site, dated March 29, 2013, was submitted to NYSDEC, which summarizes the investigation of conditions in the soil and groundwater at and around the Site. The purpose of the CMS report is to detail the strategies, procedures, and results employed to evaluate the conditions at the Site and to document the selection of the corrective measures for the Site that will provide protection to human health and the environment.

Detailed descriptions of the previous RCRA corrective action investigation and remediation activities (through completion of Interim Corrective Measures or ICMs) and the subsequent findings conducted in support of the RCRA corrective action program at the Site are provided in the September 1, 2006 SWMU/AOC Assessment Report (which includes a summary of the final 1992 NYSDEC RCRA Facility Assessment (RFA)), April 5, 2007 Sampling and Analysis Report (SAR), March 12, 2010 Engineering Evaluation of Select SWMUs Report, the June 25, 2010 Supplemental SAR, and the March 29, 2013 Draft CMS Report previously submitted to the NYSDEC. In addition, detailed descriptions of geologic and hydrogeologic conditions at the Site are provided in the Draft CMS Report.

Currently, the NYSDEC is reviewing the Draft CMS Report. Review of this document could lead to a modification of the Part 373 Permit for the Rouses Point facility to account for the ongoing corrective action requirements. In a letter dated March 29, 2013, NYSDEC recommended that Pfizer implement one of the selected corrective measures (In-Situ Chemical Oxidation (ISCO) of volatile organic compounds (VOCs) in off-site groundwater near the Main Plant portion of the facility at the intersection of Maple Street and Academy Street) presented in the Draft CMS Report prior to completion of the review of the report, and this activity has been initiated as an ICM.

Numerous site investigations have been conducted at SWMUs/AOCs from 2006 to 2012 involving sampling of soil, soil vapor, and groundwater as summarized in the Draft CMS Report. The general locations and status of SWMUs and AOCs related to the Chemical Development Pilot Plant are shown on **Figures 3**. Remedial investigations and actions have been conducted at the Site on an as-needed basis to address "hot spots" identified through groundwater monitoring or soil investigations, in response to releases, or in response to facility driven improvements. The purpose of these ICM efforts was to investigate, and potentially remediate, areas where further risk reduction could be accomplished. As discussed in **Section 2.3**, ICMs involving soil excavation were conducted in relation to SWMU-7: Process Sewer system (north and west sides of the Chemical Development Pilot Plant), SWMU-14: Waste Toluene Management Area (east of the Tank Farm), and SWMU-6: Tank Farm Tanker Truck Unloading Area (see **Figure 4**). Groundwater is currently being monitored through a network of 14 on-site multi-level monitoring wells located around the perimeter of the Chemical Development Pilot Plant facility (see **Figure 5**).

Previously, a limited number of site-related chemical compounds have been detected in subsurface soils in a few areas of the Site (e.g., surrounding chemical storage areas), and in groundwater at depth below the Site. The primary chemical compounds detected include VOCs and semi-volatile organic compounds (SVOCs) associated with materials used in the manufacturing processes at the Site. A limited number of VOCs were detected at low concentrations (measured in parts per billion) in on-site soil vapor samples collected underneath buildings at the Site.

2.3 HISTORICAL RESEARCH & DEVELOPMENT OPERATIONS AT CHEMICAL DEVELOPMENT PILOT PLANT

The Chemical Development Pilot Plant was in operation from 1967 to 2013 conducting Research and Development (R&D) producing batches of Active Pharmaceutical Ingredients or API (between 5 and 100 kilogram) for research and clinical trials. The R&D processes were complex and generally occurred in state-of-the-art reactors, with sizes ranging between 30 and 2,000-gallons in capacity, located in 11 multi-level bays throughout the plant. The Chemical Development Pilot Plant produced approximately 250 batches of API per year. Chemical Development Pilot Plant operations occurred primarily in Buildings 16 and 23, with additional buildings providing support functions including raw and waste material storage, process wastewater treatment, vent condensers for air treatment, laboratories, and mechanical and office support areas. The layout of the Chemical Development Pilot Plant with identification of buildings is shown on **Figure 3**. The first building (Building 16) was constructed around 1967 and construction continued as the facility expanded through 2010.

The Chemical Development Pilot Plant handled API, solvents (with acetone the most common), acids, caustics, and other chemical raw materials in lesser amounts. A network of floor drains and sumps that conveyed process wastewaters were located throughout the plant and are collectively defined as SWMU-7: Process Sewers. All drains, except for sanitary piping from non-production related areas (e.g., restrooms), were piped to the onsite wastewater treatment system located in Building 24 (SWMU-15) and Building 40 steam stripper (SWMU-17) where the waste was treated prior to discharge to the Village of Rouses Point POTW under an Industrial User's Permit.

Raw and waste materials were previously stored outside in drums, located west and northwest of Buildings 16 and 23 (SWMU-1: Interim Drum Storage Area and SWMU-4: Former Container Storage Area). The Tank Farm (SWMU 6) was constructed in 1983 and had been used since that time to store bulk solvents and solvent waste for the Chemical Development Pilot Plant. An uncovered container storage area (SWMU-5: Container Storage Area) was constructed in 1985 and consisted of a six-inch-thick concrete base, sloped and diked to provide secondary containment. An impermeable membrane liner with an additional four inches of concrete on top was added to the container storage area in the late 1980s or early 1990s. In the mid-1990s, a roof was constructed over the container storage area and the location was called Building 17C, which was diked and included a containment sump for spill control. Building 17C was the former Part 373 permitted greater than 90-day hazardous waste drum storage area for the entire Site, including the Main Plant.

Between September 2014 and May 2015, demolition activities were conducted at the Chemical Development Pilot Plant including the removal of above-ground buildings, concrete floor slabs and footers, select asphalt paved areas, and underground utilities/structures.

2.4 SUMMARY OF SOLID WASTE MANAGEMENT UNITS (SWMUS) AND AREAS OF CONCERN (AOCS) AT CHEMICAL DEVELOPMENT PILOT PLANT

A total of 13 SWMUs and four (4) AOCs were identified at the Chemical Development Pilot Plant that met the SWMU/AOC definitions in the NYSDEC 6 NYCRR Part 373 Hazardous Waste Management Permit for the Site as follows:

- SWMU-1: Interim Drum Storage Area
- SWMU-4: Former Container Storage Area
- SWMU-5: Container Storage Area
- SWMU-6: Tank Farm
- SWMU-7: Process Sewer
- SWMU-12: Building 16 Former Drywell
- SWMU-13: Building 16 Former Sanitary Sewer Holding Tanks
- SWMU-14: Waste Toluene Management East of Tank Farm
- SWMU-15: Building 24 Wastewater Treatment Plant
- SWMU-17: Building 40 Wastewater Steam Stripper Building
- SWMU-23: Building 16 Former Waste Storage Area in Northwest Corner
- SWMU-24: Building 31 Solvent Condensate System
- SWMU-26: Chemical Development Reactor Bay Drumming Areas (Multiple Locations)
- AOC-5: Ethylene Dichloride Release Near Building 23 Loading Dock

- AOC-8: Release of Acetonitrile to the Concrete at Chemical Development
- AOC-9: Building 34 Loading Dock Mixed Alcohol Waste Release
- AOC-10: Building 23 Therminol Release to Soil

The NYSDEC was notified of the presence of these SWMUs/AOCs (along with additional SWMUs/AOCs at the Main Plant) per the requirements of the Part 373 permit in July 2006. The locations of SWMUs and AOCs at Chemical Development Pilot Plant are shown on **Figure 3**.

As documented in the Draft CMS Report, no further action status was approved by NYSDEC for: AOC-5 (Ethylene Dichloride Release Near Building 23 Loading Dock) and AOC-9 (Building 34 Loading Dock Mixed Alcohol Waste Release) based on the results of previous investigation activities. In addition, no further action status has been approved by NYSDEC for the following SWMUs at the Chemical Development Pilot Plant (see the Draft CMS Report):

- SWMU-6: Tank Farm (no further action status for the truck containment pad) based on an Interim Correct
 Measure (ICM) conducted in 2008 that consisted of the removal of the truck containment pad and associated
 soil remediation (see Section 4.4.1).
- SWMU-7: Process Sewer (no further action status for portions of exterior sewer piping on north and west sides of the Chemical Development Pilot Plant) based on an ICM conducted between 2008 to 2009 that consisted of the removal/abandonment of select exterior process sewer piping and associated soil remediation (see **Section 4.5.1**).
- SWMU-14: Waste Toluene Management East of Tank Farm based on an ICM conducted in 2009 that consisted of soil remediation.

The locations of SWMU-6, SWMU-7, and SWMU-14 that have received NYSDEC approval for no further action status are shown on **Figure 4**.

In addition, no further action status was previously recommended for the following AOCs at the Chemical Development Pilot Plant in the Draft CMS Report:

- AOC-8: Release of Acetonitrile to the Concrete at Chemical Development (see Appendix A1)
- AOC-10: Building 23 Therminol Release to Soil (see Appendix A2)

The additional supporting information and rationales for the recommendations for AOC-8 and AOC-10 are provided in **Appendix A**.

Finally, no further action status was previously recommended for SWMU-13 (Building 16 Former Sanitary Sewer Holding Tanks) and SWMU-23 (Building 16 Former Waste Storage Area in Northwest Corner) based on previous work at these locations. However, NYSDEC requested that additional field screening and soil sampling activities be conducted at these locations as part of the ChemD SWMU SAP (see **Section 3.1**).

3. SAMPLING AND ANALYTICAL PROGRAM

This section describes the field investigation activities and procedures implemented at the Chemical Development Pilot Plant between 2014 and 2015 in general accordance with the ChemD SWMU SAP and the ChemD SWMU SAP Addendum.

3.1 CHEMICAL DEVELOPMENT PILOT PLANT SWMU INVESTIGATION APPROACH

The following presents the investigation approach associated with the ChemD SWMU SAP and the ChemD SWMU SAP Addendum. For the SWMUs investigated as part of the ChemD SWMU SAP and ChemD SWMU SAP Addendum, **Table 1** summarizes field investigation, soil sampling, and analysis activities for investigation activities conducted in 2014 and 2015 as well as previous investigations.

3.1.1 ChemD SWMU SAP

The ChemD SWMU SAP outlined the general approach and methodologies to conduct field observations/documentation, field screening, sample collection, and laboratory analyses during and following demolition activities at the Chemical Development Pilot Plant to verify that a release to the environment has not occurred at select SWMUs or to further investigate SWMUs that have documented releases. The intent of the ChemD SWMU SAP was to integrate the investigation activities in a phased, flexible approach in conjunction with the dynamic and variable demolition activities that were planned to be conducted at the Chemical Development Pilot Plant.

Between September 2014 and May 2015, during and following active demolition activities at the Chemical Development Pilot Plant, investigation activities were completed in accordance with the ChemD SWMU SAP at the following SWMUs:

- SWMU-5: Container Storage Area
- SWMU-6: Tank Farm
- SWMU-7: Process Sewer Exterior Piping on North Side
- SWMU-7: Process Sewer Interior Sub-Slab Piping in Buildings 31 & 40
- SWMU-13: Building 16 Former Sanitary Sewer Holding Tanks
- SWMU-15: Building 24 Wastewater Treatment Plant
- SWMU-17: Building 40 Wastewater Steam Stripper Building
- SWMU-23: Building 16 Former Waste Storage Area in Northwest Corner
- SWMU-24: Building 31 Solvent Condensate System

In general, the ChemD SWMU SAP was implemented by conducting field observations/documentation and field screening of soil conditions beneath SWMUs during and/or following the active removal of the concrete slabs of the buildings, asphalt pavement, or associated underground infrastructure (such as process sewers/sumps). During implementation of the ChemD SWMU SAP at the SWMUs specified above, soil samples were collected beneath each SWMU using manual methods and/or mechanized excavation equipment (e.g., excavator, backhoe) to facilitate field screening and the collection of soil samples for laboratory analysis.

3.1.2 ChemD SWMU SAP Addendum

Following the completion of select demolition activities at the Chemical Development Pilot Plant, investigation activities were not completed at all SWMUs due to changes to the methods and/or timing associated with the active demolition process. As discussed above, the intent of the investigation approach presented in the ChemD SWMU SAP was to

conduct investigation activities at each SWMU during and following active demolition; and therefore, the ChemD SWMU SAP Addendum was prepared to propose a modified investigation approach to complete remaining investigation activities consistent with the original intent of the ChemD SWMU SAP. The modified investigation approach presented a change to the type of anticipated investigation method/activity at each SWMU; however, the number and type of samples proposed to be collected for laboratory analyses, analytical parameters, sampling objectives and rationale, and approximate sampling depth for SWMU investigation activities remained the same as originally proposed in the ChemD SWMU SAP.

Between October and November 2015, investigation activities were completed in accordance with the ChemD SWMU SAP Addendum at the following SWMUs:

- SWMU-1: Interim Drum Storage Area
- SWMU-4: Former Container Storage Area
- SWMU-7: Process Sewer Exterior Piping Segment from Building 17C
- SWMU-7: Process Sewer Exterior Piping on East Side from Building 23
- SWMU-7: Process Sewer Interior Sub-Slab Piping in Buildings 16, 23, 26, & 34
- SWMU-12: Building 16 Former Drywell
- SWMU-26: Chemical Development Reactor Bay Drumming Areas Multiple Locations (located in former Buildings 16 and 23)

In general, the ChemD SWMU SAP Addendum's modified investigation approach included relocating previously demolished and/or remaining subsurface site features and either:

- Using manual methods to facilitate field screening and the collection of soil samples for laboratory analysis;
- Using mechanized excavation equipment (e.g., excavator, backhoe) to excavate shallow test trenches to facilitate field screening and the collection of soil samples for laboratory analysis; or
- Advancing soil borings to facilitate field screening and the collection of soil samples for laboratory analysis.

3.2 FIELD SCREENING AND SOIL SAMPLE COLLECTION

As discussed in **Section 3.1**, field screening and soil sample collection activities were implemented at select SWMUs at the Chemical Development Pilot Plant consistent with the Chemical SWMU SAP or Chemical SWMU SAP Addendum, as described below:

ChemD SWMU SAP

- During and/or following the active removal of the concrete slabs of the buildings, asphalt pavement, or associated underground infrastructure (e.g., process sewers/sumps):
 - Using manual methods (i.e., scoops, shovels, trowels, augers) to inspect shallow soil conditions between depths ranging from approximately 1.5 to 3 feet below ground surface (ft bgs).
 - Using mechanized excavation equipment (e.g., excavator, backhoe) to inspect soil conditions between depths ranging from approximately 3 to 14.5 ft bgs.

ChemD SWMU SAP Addendum

- After relocating previously demolished and/or remaining subsurface site features (i.e., process sewers):
 - Using manual methods (i.e., scoops, shovels, trowels, augers) to inspect shallow soil conditions between depths ranging from approximately 0.5 to 6 ft bgs.

- Using mechanized excavation equipment (e.g., excavator, backhoe) to excavate shallow test pits (e.g., approximately 2 feet wide by 3 feet long) to depths ranging from approximately 1.75 to 8.5 ft bgs. Test pit logs are included in **Appendix B**.
- Using a Geoprobe® system with a model 7822DT track rig to advance a 5-foot Macro-Core sampler to depths of 4 ft bgs and retrieve soil samples in disposable acetate liners within the sampling equipment.
 Soil boring logs are included in **Appendix B**.

Following sample collection, soil samples were field screened for volatile organic vapors using a photoionization detector (PID) equipped with an 11.7 eV lamp to provide an initial assessment of potential presence of VOCs. PID readings were collected at the following minimum frequencies:

- For soil samples collected from all SWMUs except SWMU-7, 1 PID reading was collected at approximately 1000 square feet of SWMU-area.
- For soil samples collected from SWMU-7, 1 PID reading was collected at approximately 50 linear feet of process sewer piping.

At each SWMU, PID readings were collected at targeted depths based on the potential release mechanism associated with each SWMU over 1 to 2-foot depth increments and biased towards visual/olfactory indications of soil releases.

In addition, soil samples were submitted from each SWMU for laboratory analysis to verify that a release to soil had not occurred. Each soil sample selected for laboratory analysis was selected in the field based on field screening results or observations, or in the absence of any potential release indicators, from a representative location at each SWMU's targeted sampling depth interval. Soil samples for laboratory analysis were collected utilizing hand tools (i.e., scoops, shovels, trowels, augers) and/or EnCore sampling devices (for VOC analysis). All soil samples selected for VOC analysis were discrete samples (i.e., not composited) and were collected using EnCore sampling devices prior to mixing the sample. The soils for non-volatile analyses were homogenized using a stainless steel trowel or spoon prior to filling the appropriate laboratory sample jars. All soil samples selected for laboratory analysis were visually characterized for moisture content, color and grain size distribution based on the modified Burmister soil classification system.

A summary of the sampling and analysis activities is presented in **Table 2**, including number and type of samples collected for laboratory analysis, approximate sampling depths, and analytical parameters. Following soil sample collection, the horizontal location of each soil sample collected for laboratory analysis was measured in the field from existing site features and/or located using a Global Positioning System (GPS) unit.

Surficial Soil Sample Collection

In an email dated September 25, 2015, NYSDEC/DOH requested that surficial soil sampling be conducted to evaluate the potential for dermal exposure to any detected releases at the Chemical Development Pilot Plant. In accordance with NYSDEC/DOH's request, surficial soil sampling activities were conducted at 12 of the 13 SWMUs located at the Chemical Development Pilot Plant. No further action was previously approved by NYSDEC for SWMU-14; and therefore, additional sampling in this area was not conducted.

At each SWMU where investigation activities were conducted, surface soil samples were collected from 0-6 inches bgs for VOC analysis and 0-2 inches bgs for all other analytes using the methodology described above. At the time of the investigation, SWMU-1 and SWMU-4 were covered with asphalt pavement; and therefore, the surface soil samples were collected from a depth below the asphalt and gravel sub-base. A total of 12 surface soil samples were collected (i.e., one sample per SWMU investigated), as follows:

- SWMU1-SS-SURFACE-01
- SWMU4-SS-SURFACE-01

- SWMU5-SS-SURFACE-01
- SWMU6-SS-SURFACE-01
- SWMU7-SS-SURFACE-01
- SWMU12-SS-SURFACE-01
- SWMU13-SS-SURFACE-01
- SWMU15-SS-SURFACE-01
- SWMU17-SS-SURFACE-01
- SWMU23-SS-SURFACE-01
- SWMU24-SS-SURFACE-01
- SWMU26-SS-SURFACE-01

A summary of the sampling and analysis activities is presented in **Table 2**, including: number and type of samples collected for laboratory analysis, approximate sampling depths, and analytical parameters. Following soil sample collection, the horizontal location of each soil sample collected for laboratory analysis was measured in the field from existing site features and/or located using a GPS unit.

3.3 SAMPLE HANDLING

Following sample collection, all samples were appropriately labeled, logged on a chain of custody and placed in a cooler of ice prior to shipment to the analytical laboratory by W&C personnel. All soil samples were submitted to TestAmerica of Amherst, NY, a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) certified laboratory for Contract Laboratory Protocol (CLP) and Analytical Services Protocol (ASP) administered by the NYSDEC or another ELAP/ASP certified laboratory.

3.4 LABORATORY ANALYSIS

For all analyses, the laboratory followed the 2005 NYSDEC ASP Target Compound Lists (TCLs) and associated low level Contract Required Quantitation Limits (CRQLs) outlined in Part I and II in Exhibit C of the ASP document. The soil analyses included one or more of the following:

- VOCs by USEPA Method 8260C (TCL including Tetrahydrofuran):
- SVOCs by USEPA Method 8270D (TCL including Dimethylformamide);
- RCRA 8 Metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) by USEPA Method 6010B/7471A;
- Alcohols (ethanol, isobutyl alcohol, methanol, n-butanol, propanol, 2-butanol, isopropyl alcohol, t-butyl alcohol, and 2-hexanone) by USEPA Method 8015D; and
- Polychlorinated biphenyls (PCBs) by Method 8082.

3.5 QUALITY ASSURANCE AND QUALITY CONTROL

3.5.1 Sampling QA/QC

Quality assurance/quality control (QA/QC) samples were collected throughout the duration of the investigation activities to ensure the integrity of the data collected. Specific QA/QC field samples collected included:

- 11 trip blanks accompanying VOC soil samples;
- Eight (8) field equipment blanks;
- Six (6) duplicate soil samples; and
- Four (4) matrix spike/matrix spike duplicate soil samples.

3.5.2 Laboratory QA/QC

For all analytical services, the laboratory provided a Category B Data Package per the 2005 NYSDEC ASP including the narrative and end results plus all the associated laboratory QA/QC (calibration curves, chromatograms, sample prep forms, etc.). The analytical summary reports and full Category B data deliverables are included in **Appendix C**.

3.5.3 Data Validation

The laboratory analytical data was reviewed by a third party independent data validation contractor (Data Check, Inc. of New Durham, New Hampshire) in general accordance with the NYSDEC Data Usability Summary Report (DUSR) guidelines and USEPA Contract Laboratory Program National Functional Data Validation Standard Operating Procedures for Data Evaluation and Validation. Data validation criteria that were reviewed for representative samples included: sampling and analysis date, sample custody, holding times, sample handling and preservation procedures, field blank results, field and laboratory duplicate sample results, surrogate recoveries, matrix spike/matrix spike duplicate results, laboratory control standards, laboratory method blanks, lot assignment reports, and miscellaneous observations. Based on these results, data that did not meet performance criteria were flagged with qualifiers describing the data's usability for decisions. The appropriate data qualifiers were added to the analytical results summarized on the applicable tables and figures. The data validation summaries are included as **Appendix D**.

3.6 EQUIPMENT DECONTAMINATION

All expendable equipment (e.g., sample tubing, probe sleeves, etc.) were replaced prior to collection of each sample. Reusable equipment (e.g., hand augers, probing equipment, etc.) that comes in direct contact with the sampled media were decontaminated according to the procedures below. The following procedure were used prior to collecting the first sample, between samples, and after the final sample:

- Flush and rinse the equipment/pump with distilled water:
- Flush and rinse equipment with an Alconox solution;
- Flush and rinse with distilled water;
- Flush and rinse with methanol;
- Flush and rinse with distilled water; and
- Dry/wrap with paper towels; OR
- Flush and rinse with 10% HNO3 solution when sampling for metals; and
- Flush and rinse with distilled, then dry.

3.7 INVESTIGATION DERIVED WASTE MANAGEMENT

Liquid waste (e.g., decontamination water) was generated during investigation activities. Liquid wastes generated during drilling and sampling activities were containerized in closed top drums. The drums were characterized and shipped off-site for disposal by Pfizer facility personnel.

4. INVESTIGATION RESULTS

For each SMWU investigated as part of the ChemD SWMU SAP and ChemD SWMU SAP Addendum, **Section 4.1** through **Section 4.12** summarize the results of:

- Previous soil investigation activities conducted at each SWMU; and
- Investigation activities conducted between 2014 and 2015 to further evaluate soil conditions.

For these SWMUs, **Table 1** summarizes field investigation, soil sampling, and analysis activities for investigation activities conducted in 2014 and 2015 as well as previous investigations. A summary of the sampling and analysis activities is presented in **Table 2**, including number and type of samples collected for laboratory analysis, approximate sampling depths, and analytical parameters.

Soil analytical results were compared to the NYSDEC Unrestricted Use Soil Cleanup Objectives (SCOs) in 6 NYCRR Subpart 375-6.8(a) (hereafter referred to as Unrestricted Use SCOs) and Restricted Use – Residential SCOs in 6 NYCRR Subpart 375-6.8(b) (hereafter referred to as Restricted Use – Residential SCOs), where established. Where a value in Subpart 375-6.8(b) has not been established, values were taken from NYSDEC CP-51 Soil Cleanup Guidance, where established.

In addition, **Section 4.13** summarizes current groundwater quality associated with the Chemical Development Pilot Plant. Groundwater analytical results were compared to 6 NYCRR Part 703 Surface Water and Groundwater Quality Standards and Guidance Values and Groundwater Effluent Limitations, where established. Where a value in 6 NYCRR Part 703 has not been established, values were taken from NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

4.1 SWMU-1: INTERIM DRUM STORAGE AREA

SWMU-1 (Interim Drum Storage Area) was historically used to store drums of waste solvents including toluene, methanol, isopropyl alcohol, and other D001, D002, F002, F003, and F005 wastes. SWMU-1 was an L-shaped area (approximately 26,800 square feet) located west of Building 17A and the Tank Farm and was used for the accumulation of up to 600 drums of hazardous wastes prior to transfer to the permitted area (SWMU-5: Container Storage Area) prior to 1987. The approximate location of SWMU-1 is depicted on **Figure 6**.

4.1.1 SWMU-1 - Previous Soil Investigation Results

Initial soil sampling was conducted at the Interim Drum Storage Area in November 1989, by Roy F. Weston, Inc. (Weston) on behalf of Wyeth (predecessor to Pfizer) during a RCRA Facility Assessment (RFA). A total of five (5) borings were installed to 2 ft bgs using hand driven sampling equipment, west and north of the Tank Farm in open ground (i.e., not through the concrete pavement). Soil samples were collected from each boring from 0 to 1 ft bgs and from 1 to 2 ft bgs and analyzed for VOCs with 10 total soil samples analyzed. The results indicated that this area presented no threat to human health or the environment. Further sampling was not required by the NYSDEC for this area in the Final RFA dated September 1991 (revised December 1992).

As previously documented in the April 5, 2007 Sampling and Analysis Report (SAR) submitted to NYSDEC, 10 additional soil borings (see **Table 1**) were installed in 2006 to depths between 10 and 20 ft bgs to evaluate subsurface soil conditions within and immediately adjacent to the former Interim Drum Storage Area because operations continued after the 1989 RFA sampling activities. The locations of these soil borings are depicted on **Figure 6**. During these investigation activities, no field indications of a chemical release (e.g., odors, staining, or elevated PID field screening response) were observed. At each soil boring, one representative soil sample was collected at various depths ranging from 1 to 4 ft bgs and analyzed for VOCs, alcohols (isopropyl alcohol and methanol), and pH (see **Table 2**). In addition, one soil sample was analyzed for RCRA 8 Metals (see **Table 2**).

As presented in **Table 3**, the 2006 soil sample analytical results indicated that:

- Select VOCs (acetone, benzene, tetrachloroethene, and trichloroethene) were detected at low concentrations in several soil samples. No concentration of VOCs exceeded NYSDEC Unrestricted Use SCOs or Restricted Use – Residential SCOs, where established.
- Alcohols were not detected in any soil sample collected.
- Several metals (arsenic, barium, cadmium, chromium, lead, selenium, and mercury) were detected at low
 concentrations in the one (1) soil sample analyzed for RCRA 8 Metals. The concentration of total chromium
 (13.2 mg/kg) exceeded the NYSDEC Unrestricted Use SCO for hexavalent chromium of 1 mg/kg. No other
 concentration of metals exceeded NYSDEC Unrestricted Use SCOs or Restricted Use Residential SCOs.
- Soil pH ranged from 6.87 to 8.06.

4.1.2 SWMU-1 - 2015 Investigation Results

Following the 2014 to 2015 Chemical Development Pilot Plant demolition activities, the paved area at SWMU-1 remained in place. Between October and November 2015, the following investigation activities were conducted to further evaluate soil conditions beneath the paved area at SWMU-1:

- Using mechanized excavation equipment (e.g., excavator, backhoe), a total of five (5) test pits (see **Table 1**) were excavated to facilitate the collection of five (5) soil samples (SWMU1-SS-TP01-100 through SWMU1-SS-TP04-103 and SWMU1-SS-SURFACE-01) from various depths ranging from 0 to 2.5 ft bgs.
- A total of four (4) soil borings (see **Table 1**) were advanced to facilitate the collection of four (4) soil samples (SWMU1-SS-SB11-104 through SWMU1-SS-SB14-107) from various depths ranging from 1 to 3.5 ft bgs.

The locations of these soil samples are depicted on **Figure 6**. During these investigation activities, no field indications of a chemical release (e.g., odors, staining, or elevated PID field screening response) were observed; and therefore soil samples were collected from representative locations at targeted depth intervals based on the potential release mechanism associated with SWMU-1.

As presented in **Table 2**, the nine (9) soil samples collected in 2015 were all analyzed for VOCs, SVOCs, PCBs, RCRA 8 Metals, and alcohols. As presented in **Table 3**, 2015 analytical results indicated that:

- Several VOCs (2-butanone, acetone, benzene, cis-1,2-dichloroethene, styrene, toluene, total xylenes, and/or trichlorofluoromethane) were detected at low concentrations in four (4) of the nine (9) soil samples collected. No concentration of VOCs exceeded NYSDEC Unrestricted Use SCOs or Restricted Use – Residential SCOs, where established.
- Fluoranthene was detected in one (1) soil sample at a low concentration below its Unrestricted Use SCO and Restricted Use Residential SCO.
- Methanol and propanol were detected in one (1) soil sample at low concentrations. NYSDEC Unrestricted Use SCOs and Restricted Use Residential SCOs are not established for methanol and propanol.
- PCBs were not detected in any soil sample collected.
- Several metals (arsenic, barium, cadmium, chromium, lead, and/or mercury) were detected at low concentrations in the nine (9) soil samples collected. No concentration of metals exceeded NYSDEC Unrestricted Use SCOs or Restricted Use Residential SCOs with one exception. The reported concentration of total chromium in the nine (9) soil samples (ranging from 3.7 to 16.3 mg/kg) exceeded the NYSDEC Unrestricted Use SCO for hexavalent chromium of 1 mg/kg.

Based on the results of these sampling activities, no further action is recommended with regard to soil investigation or remediation activities for SWMU-1.

4.2 SWMU-4: FORMER CONTAINER STORAGE AREA

The Former Container Storage Area (SWMU-4) was located outside the western end of Building 16 (approximately 12,800 square feet) from 1967 to 1987 and was used to store drums of waste solvents including toluene, methanol, isopropyl alcohol, and other D001, D002, F002, F003, and F005 wastes. At least one release was reported for this area on September 4, 1985, when a stack of drums containing waste acetic acid and water collapsed, spilling 540 liters of waste. The approximate location of SWMU-4 is depicted on **Figure 6**. SWMU-4 is co-located with SWMU-12 (Building 16 Former Drywell; see **Section 4.6**).

4.2.1 SWMU-4 - Previous Soil Investigation Results

Initial soil sampling at SWMU-4 was conducted in November 1989, by Roy F. Weston on behalf of Wyeth (predecessor to Pfizer) during an RFA. Two (2) borings (see **Table 1**) were installed at SWMU-4 to 2 ft bgs using hand driven sampling equipment in a north-south trending line within the gravel area immediately west of the paved driveway, approximately 50 feet west of Building 16 and the Tank Farm. Soil samples were collected from each of the two borings from 0 to 1 ft bgs and from 1 to 2 ft bgs (total of 4 samples analyzed). Low concentrations of acetone and tetrachloroethene were detected in the shallow soil samples, with no concentrations of VOCs or SVOCs detected in the deeper soil samples. According to a letter from NYSDEC, the results indicated that this area presented no threat to human health or the environment. Further sampling was not required by the NYSDEC for this area in the Final RFA dated September 1991 (revised December 1992).

Based on the new identification of SWMU-12 in July 2006 and the previous results of the RFA sampling at SWMU-4, an additional investigation was conducted in 2006 (as previously documented in the April 2007 SAR submitted to NYSDEC). Due to the density of underground utilities in the vicinity of SWMU-4 (e.g., natural gas line and sewer lines), only a limited area was accessible to install additional soil borings in 2006 to evaluate subsurface conditions within and immediately adjacent to SWMU-4; and therefore, two (2) soil borings were advanced to depths between 6.5 to 10 ft bgs. The borings were located within the gravel-covered area to the west of the asphalt-paved driveway (see **Figure 6**). During these investigation activities, no field indications of a chemical release (e.g., odors, staining, or elevated PID field screening response) were observed. At each soil boring, one representative soil sample was collected from 1 to 2 ft bgs and analyzed for VOCs, alcohols (isopropyl alcohol and methanol), and pH (see **Table 2**). In addition, one soil sample was analyzed for RCRA 8 Metals (see **Table 2**).

As presented in **Table 4**, the 2006 soil sample analytical results indicated that:

- No VOCs were detected in the SWMU-4 soil samples collected in 2006, except for methylene chloride and tetrachloroethene, which were also detected in the laboratory blanks. No concentration of VOCs exceeded NYSDEC Unrestricted Use SCOs or Restricted Use – Residential SCOs.
- Alcohols were not detected in any soil sample collected.
- Several metals (arsenic, barium, cadmium, chromium, lead, selenium, and mercury) were detected at low
 concentrations in the one (1) soil sample analyzed for RCRA 8 Metals. No concentration of metals exceeded
 NYSDEC Unrestricted Use SCOs or Restricted Use Residential SCOs with one exception. The
 concentration of total chromium (23.9 mg/kg) exceeded the NYSDEC Unrestricted Use SCO for hexavalent
 chromium of 1 mg/kg.
- Soil pH ranged from 7.88 to 8.27.

4.2.2 SWMU-4 - 2015 Investigation Results

Following the 2014 to 2015 Chemical Development Pilot Plant demolition activities, the paved area at SWMU-4 remained in place. In November 2015, the following investigation activities were conducted to further evaluate soil conditions beneath the paved area at SWMU-4:

- Using mechanized excavation equipment (e.g., excavator, backhoe), one (1) test pit (see Table 1) was
 excavated to facilitate the collection of one (1) surficial soil sample (SWMU4-SS-SURFACE-01) from a depth
 of 0.5 to 1 ft bgs.
- A total of six (6) soil borings (see **Table 1**) were advanced to facilitate the collection of 6 soil samples (SWMU4-SS-SB03-100 through SWMU4-SS-SB08-105) from various depths ranging from 0.25 to 3.25 ft bgs.

The locations of these soil samples are depicted on **Figure 6**. During these investigation activities, no field indications of a chemical release (e.g., odors, staining, or elevated PID field screening response) were observed; and therefore soil samples were collected from representative locations at targeted depth intervals based on the potential release mechanism associated with SWMU-4.

As presented in **Table 2**, the seven (7) soil samples collected in 2015 were all analyzed for VOCs, SVOCs, PCBs, RCRA 8 Metals, and alcohols. As presented in **Table 4**, 2015 analytical results indicated that:

- VOCs were not detected in any soil samples collected.
- Bis(2-ethylhexyl)phthalate and/or fluoranthene were detected at low concentrations in two (2) of the seven (7) soil samples collected. No concentration of SVOCs exceeded NYSDEC Unrestricted Use SCOs or Restricted Use Residential SCOs, where established.
- Methanol was detected at a low concentration in one (1) soil sample. NYSDEC Unrestricted Use SCOs and Restricted Use Residential SCOs are not established for methanol.
- PCBs were not detected in any soil samples collected.
- Several metals (arsenic, barium, cadmium, chromium, lead, and/or mercury) were detected at low concentrations in the seven (7) soil samples collected. No concentration of metals exceeded NYSDEC Unrestricted Use SCOs or Restricted Use Residential SCOs with one exception. The reported concentration of total chromium in the seven (7) soil samples (ranging from 4.9 to 16 mg/kg) exceeded the NYSDEC Unrestricted Use SCO for hexavalent chromium of 1 mg/kg.

Based on the results of these sampling activities, no further action is recommended with regard to soil investigation or remediation activities for SWMU-4.

4.3 SWMU-5: CONTAINER STORAGE AREA

The Container Storage Area (also known as Building 17C) was the permitted NYSDEC Part 373 Hazardous Waste Management Permit greater than 90 day hazardous waste drum storage area for the entire Site (i.e., the Chemical Development Pilot Plant and the Main Plant). The Container Storage Area was included in the permit issued in 1988, the subsequent permit issued in 1994, and the permit renewals in 1999 and 2009. Building 17C consisted of a 10,000 square foot concrete containment pad and underlying spill containment sump (10,000-gallon capacity), a 1,200 square foot concrete truck containment pad adjacent to the east side of the building, and a 600 square foot asphalt access ramp adjacent to the west side of the building used by forklifts carrying waste containers into the containment pad for staging (11,800 square feet total). The former location of Building 17C is shown on Figure 7. As stated in the July 2013 Hazardous Waste Storage Secondary Containment System Integrity Assessment Annual Report, Building 17C was used to store hazardous waste containers generated throughout the Site which typically ranged in size from 5 gallons to 500 gallons (intermediate bulk containers). The building had a total maximum storage

capacity of 73,032 gallons, based on the field area of the containment pad, representing the equivalent of 1,432 55-gallon drums.

Originally, the Container Storage Area (1985-1993) consisted of an uncovered, reinforced concrete pad which measured 100-feet by 100-feet. The pad was sloped and diked and was used to store up to 600 drums. This area was included in the Part 373 permit pending at the time of the RFA in 1987. No staining was observed and the drums appeared in good condition during the RFA. No releases had been reported for this area and therefore, no sampling or analysis was conducted during the RFA. No further action was recommended by the NYSDEC for this SWMU in the RFA. A liner and cover slab were added in response to a request to coat the original slab during the renewal of the RCRA permit in 1988. Between 1994 and 1995, the area was covered by a roof and enclosed by closed chain link fencing limiting access and precipitation intrusion.

In 2001, a truck loading pad was constructed immediately adjacent to Building 17C to facilitate waste transfer operations. In 2003, concrete curbing was added to the truck containment pad. The truck containment pad was uncovered and was connected to the container storage building sump through an underground drain pipe. The truck containment pad was further improved in 2004 by adding a surface coating system for protection from intrusion by spills.

In 2007, a visual inspection of SWMU-5 was completed as documented in the 2010 Engineering Evaluation Report. Based on this visual inspection, there did not appear to be a historic or ongoing release, but proactive maintenance was recommended to prevent a potential release from occurring. Based on requirements of the latest renewal of the RCRA permit, the main containment area concrete was scarified and a coated in 2009.

Following cessation of waste storage activities in December 2013, decontamination of the Building 17C containment pad, asphalt access ramp, and truck containment pad was conducted between April 1 and 3, 2014 and the containment sump was decontaminated between April 30 and May 1, 2014 in accordance with the Part 373 HWM Permit Closure Plan (Attachment VII) and the NYSDEC approved Rinsate Sample Collection Plan. The Building 17C containment areas were inspected by NYSDEC and a Woodard & Curran Professional Engineer registered in the State of New York prior to decontamination on December 3, 2013 and by Woodard & Curran Professional Engineer following decontamination on May 21, 2014. All constituents detected in final rinsate samples were below applicable criteria (NYSDEC Groundwater Standard/Guidance). Based on the decontamination activities and results, the Building 17C regulated unit consisting of the containment pad, containment sump, access ramp, and truck containment pad were closed in substantial accordance with the Closure Plan (Attachment VII of the Part 373 HWM Permit) and no further decontamination was required. The Building 17C (Container Storage Building) Final Closure Report dated June 3, 2014 was submitted to NYSDEC. NYSDEC approved the Closure Report in a letter dated July 23, 2014 and terminated authorization to operate Building 17C as a permitted hazardous waste management unit.

4.3.1 SWMU-5 - 2014-2015 Investigation Results

Following removal of above-ground structures as part of the 2014 to 2015 Chemical Development Pilot Plant demolition activities, investigation activities were conducted between October 2014 and October 2015 to further evaluate soil conditions beneath former buildings/structures at SWMU-5. As summarized in **Table 1**, these investigation activities included:

- Using mechanized excavation equipment (e.g., excavator, backhoe) during and/or following active demolition activities to facilitate the collection of one (1) soil sample (BLDG17C-SS-SUMP-01) from a depth of 8 to 8.5 ft bgs.
- Using manual methods (i.e., scoops, shovels, trowels, augers) to inspect shallow soil conditions, a total of five (5) soil samples (BLDG17C-SS-TRUCK-01, BLDG17C-SS-PAD-01 through BLDG17C-SS-PAD-03, and SWMU5-SS-SURFACE-01) were collected from various depths ranging from 0 to 1.5 ft bgs.

The soil sampling locations are depicted on **Figure 7**. During these investigation activities, no field indications of a chemical release (e.g., odors, staining, or elevated PID field screening response) were observed; and therefore soil samples were collected from representative locations at targeted depth intervals based on the potential release mechanism associated with SWMU-5.

As presented in **Table 2**, the six (6) soil samples collected between October 2014 and October 2015 were all analyzed for VOCs, SVOCs, PCBs, RCRA 8 Metals, and alcohols. As presented in **Table 5**, 2014 and 2015 analytical results indicated that:

- Acetone and/or trichlorofluoromethane were detected at low concentrations in three (3) of the six (6) soil samples collected. The reported concentration of acetone in one (1) sample collected from 1 to 1.5 ft bgs exceeded its NYSDEC Unrestricted Use SCOs. No other concentration of VOCs exceeded NYSDEC Unrestricted Use SCOs or Restricted Use – Residential SCOs, where established.
- Acetophenone and/or benzaldehyde were detected at low concentrations in two (2) of the six (6) soil samples
 collected. NYSDEC Unrestricted Use SCOs and Restricted Use Residential SCOs are not established for
 acetophenone or benzaldehyde.
- Methanol was detected at a low concentration in one (1) soil sample. NYSDEC Unrestricted Use SCOs and Restricted Use – Residential SCOs are not established for methanol.
- PCBs were not detected in any soil samples collected.
- Several metals (arsenic, barium, chromium, lead, selenium and/or mercury) were detected at low concentrations in the six (6) soil samples collected. No other concentration of metals exceeded NYSDEC Unrestricted Use SCOs or Restricted Use Residential SCOs with one exception. The reported concentration of total chromium in every soil sample (ranging from 5.6 to 7.4 mg/kg) exceeded the NYSDEC Unrestricted Use SCO for hexavalent chromium of 1 mg/kg.

Based on the results of these sampling activities, no further action is recommended with regard to soil investigation or remediation activities for SWMU-5.

4.4 SWMU-6: TANK FARM

The Tank Farm was historically located west of Building 23 (see **Figure 8**) and was closed in accordance with the Part 373 HWM Permit Closure Plan (Attachment VII) between 2011 and 2013 as documented in the January 24, 2014 Tank Farm Final Closure Report approved by NYSDEC on March 19, 2014. The Tank Farm originally consisted of one hazardous waste storage tank designated ST-1, which was installed in 1983 to store waste organic solvents. By the time of the RFA, four hazardous waste storage tanks existed at the Tank Farm designated T-1005, T-1007, T-1008 (installed in 1986), and ST-1 (original tank installed in 1983). Wastes included toluene, methanol, and isopropyl alcohol. No releases had been reported for this area as of the RFA and therefore, no sampling or analysis was conducted. No further action was recommended by the NYSDEC for this SWMU in the RFA. During the RFA, cracks were noted in the concrete floor of the Tank Farm secondary containment. An old drain, which had been filled in with concrete, was observed within the containment area and reportedly connected to the storm sewer system. Past practice was to drain rainwater from the containment area through this pipe to the stormwater drainage system.

The Tank Farm was permitted to store up to 17,210 gallons total in three (3) stainless steel storage tanks designated T-1005 (7,560 gallons), T-1008 (4,450 gallons), and ST-1 (5,265 gallons operating capacity; 8,000-gallon total volume). Tank T-1005 was used to store waste solvents. Tank T-1008 was used to store waste toluene. Tank ST-1 was used to store waste solvents.

The tanks were located within a diked area constructed of 10-inch-thick poured concrete. The containment area provided a secondary containment volume of 42,639 gallons. The tanks were constructed of stainless steel. Tank thickness was monitored annually by using an ultrasonic thickness testing device.

The original 5,265-gallon tank ST-1 was replaced in October 1999 with a larger 8,000-gallon capacity tank. The application stated that the new tank had been installed, but would not be filled to greater than 5,265 gallons until the permit was modified to reflect the new tank volume. The containment for Tank ST-1 was upgraded in 1994 with a chemical resistant coating.

The storage tanks were equipped with a manhole and over pressure safety devices. Aboveground inlet pipes fed into the tanks, one each for Tanks T-1005 and T-1008, and carried solvent stream from the pump station east of the Tank Farm, and one carried solvent waste from inside Building 16 reactor area to Tank ST-1. Wastes were removed from the tanks through aboveground pipes connected to pumps located adjacent to each tank. The wastes were commonly pumped to the truck loading station for removal for off-site treatment.

The containment sump for the main containment area was pumped out manually, as necessary. The tank farm had an ancillary vehicle containment area (i.e., truck containment pad) constructed of reinforced concrete. The containment abutted the wall of the tank containment on the east side and had a curb for containment on the west side. It was sloped to the center from the north and south ends with the lowest elevation at the center where the drain grate was located. This containment was also rehabilitated in 2009 and finished with an epoxy based coating.

In addition to the tanks discussed above, there were additional tanks in the Tank Farm; however these tanks were used for storage of virgin materials, were not hazardous waste storage tanks or tank farm regulated units, and were previously emptied and cleaned.

4.4.1 SWMU-6 - Previous ICM Results

In 2008, an ICM involving soil and concrete excavation was conducted at the truck containment pad for the Tank Farm concurrently with SWMU-7 process sewer removal and soil excavation activities (see **Section 4.5.1**). Initially, the truck containment pad was decontaminated. Following decontamination of the truck containment pad, only a low concentration of acetone below the Contract Required Quantitation Limit (CRQL) was detected in the rinsate sample collected from the concrete surface. Based on these results, the approximately 1,650-square foot concrete truck containment pad was demolished and transported for off-site disposal.

Following truck containment pad demolition, approximately 300 tons of soil from the truck containment pad area were excavated and transported off-site for disposal (see **Figure 4**). During excavation activities, no elevated PID readings were noted in soil during field screening. Post-excavation confirmation soil sample analytical results indicated that the reported concentrations of VOCs (including acetone and methylene chloride) in nine (9) of 18 soil samples were below established NYSDEC Unrestricted Use SCOs or Restricted Use – Residential SCOs. In addition, three (3) of 18 soil samples contained low concentrations of alcohols (including methanol and ethanol). Based on the results of the ICM activities, no further action was recommended with regard to soil investigation or remedial excavation activities for the truck containment pad at SWMU-6 in the ICM Completion Report dated May 28, 2010. The NYSDEC concurred with the no further action recommendation in a letter dated August 26, 2010.

Following ICM activities, a new truck containment pad was constructed that consisted of approximately 10-inches of coated, reinforced concrete.

4.4.2 SWMU-6 - 2014-2015 Investigation Results

Following removal of above-ground structures as part of the 2014 to 2015 Chemical Development Pilot Plant demolition activities, investigation activities were conducted between November 2014 and October 2015 to further evaluate soil

conditions beneath former buildings/structures at SWMU-6. As summarized in **Table 1**, these investigation activities included:

 Using manual methods (i.e., scoops, shovels, trowels, augers) to inspect shallow soil conditions, a total of four (4) soil samples (TFARM-SS-SUMP-01, TFARM-SS-PAD-02, TFARM-SS-PAD-03, and SWMU6-SS-SURFACE-01) were collected from various depths ranging from 0 to 2.5 ft bgs.

The soil sampling locations are depicted on **Figure 8**. During these investigation activities, no field indications of a chemical release (e.g., odors, staining, or elevated PID field screening response) were observed; and therefore soil samples were collected from representative locations at targeted depth intervals based on the potential release mechanism associated with SWMU-6.

As presented in **Table 2**, the four (4) soil samples collected between November 2014 and October 2015 were all analyzed for VOCs, SVOCs, PCBs, RCRA 8 Metals, and alcohols. As presented in **Table 6**, 2014 and 2015 analytical results indicated that:

- Several VOCs (2-butanone, acetone, ethylbenzene, toluene, trichlorofluoromethane, and/or xylenes) were
 detected at low concentrations in three (3) of the four (4) soil samples collected. The reported concentration
 of acetone in one (1) sample collected from 1 to 1.5 ft bgs exceeded its NYSDEC Unrestricted Use SCOs. No
 other concentration of VOCs exceeded NYSDEC Unrestricted Use SCOs or Restricted Use Residential
 SCOs, where established.
- Bis(2-ethyhexyl)phthalate and butyl benzyl phthalate were detected at low concentrations in one (1) of the four (4) soil samples collected. No concentration of SVOCs exceeded NYSDEC Unrestricted Use SCOs or Restricted Use – Residential SCOs, where established.
- Alcohols and PCBs were not detected in any soil sample collected.
- Several metals (arsenic, barium, cadmium, chromium, lead, selenium and/or mercury) were detected at low concentrations in the four (4) soil samples collected. No concentration of metals exceeded NYSDEC Unrestricted Use SCOs or Restricted Use Residential SCOs with one exception. The reported concentration of total chromium in the four (4) soil samples (ranging from 3.3 to 13.6 mg/kg) exceeded the NYSDEC Unrestricted Use SCO for hexavalent chromium of 1 mg/kg.

Based on the results of these sampling activities, no further action is recommended with regard to soil investigation or remediation activities for SWMU-6.

4.5 SWMU-7: PROCESS SEWER

The process sewer at the Chemical Development Pilot Plant was initially installed in 1967 and consisted of an underground waste solvent piping system (interior and exterior). The approximate locations of the former interior and exterior process sewer piping networks at the Chemical Development Pilot Plant are depicted on **Figure 9A** and **9B**. Formerly, the Chemical Development Pilot Plant contained a network of interior sumps, floor drains, laterals, troughs, and trunk lines that conveyed process wastewater to exterior piping that subsequently conveyed wastewater to the onsite wastewater treatment building (Building 24) for treatment via a steam stripper in Building 40 prior to discharge to the Village of Rouses Point POTW under the existing Industrial Users Permit. During former operations, process wastewater from the Chemical Development Pilot Plant included two primary waste streams: secondary rinses and general process wastewater, and re-workable aqueous and scrubber blowdown wastewater.

A number of previous investigations have been conducted at SWMU-7 at the Chemical Development Pilot Plant from 1987 to 2007. The pre-2007 results of the previous investigations are summarized in the SWMU/AOC Assessment Report dated September 1, 2006 previously submitted to the NYSDEC, which generally included three phases of sewer integrity testing on interior and exterior process sewer pipes (including camera inspections and exfiltration testing) and

repairs between January 1990 and August 1991. Repairs were also conducted at select locations (lift station and manhole MH-14) in 2003. In addition, replacement of the former interior Pyrex sewer system under the floor of Building 16 at the Chemical Development Pilot Plant with a double walled stainless steel piping system with leak detection (700 feet of pipe, trunk line and subsystems, and reconstruction of manhole MH-11) occurred in the early 1990s. No further action was determined by the NYSDEC for SWMU-7 as documented in the final RFA Report dated December 1992.

In accordance with the corrective action module of the NYSDEC Part 373 Hazardous Waste Management Permit for the Site and due diligence related to a potential property transaction of the facility in 2006, the NYSDEC was notified regarding SWMU-7 in July 2006 along with other Site-specific SWMUs and AOCs. In September 2006, a SWMU/AOC Assessment Report was completed and submitted to the NYSDEC summarizing information regarding the SWMUs/AOCs at the facility and recommended further investigation activities, where warranted.

An Engineering Evaluation Work Plan (Appendix A of the April 5, 2007 SWMU/AOC Sampling and Analysis Report) was implemented for SWMU-7 at the Chemical Development Pilot Plant from September through October 2007, which included review of closed circuit television (CCTV) video results. The results of the camera inspection activities indicated that integrity issues were found in exterior pipes to the north, west, and east of Building 23. The locations of the pipe integrity findings (i.e., cracks, infiltrations, fractures), which were identified in exterior process sewer piping at the Chemical Development Pilot Plant. The results of the camera inspection activities are documented in the Engineering Evaluation of Select SWMUs Report dated March 12, 2010.

4.5.1 SWMU-7 - Previous ICM Results – Exterior Process Sewers (North & West Sides of Building 23)

An ICM Work Plan dated June 13, 2008, which proposed soil excavation and removal of the majority of the exterior process sewer piping system at the Chemical Development Pilot Plant, including exterior process sewer systems to the north, west, and east sides of Building 23, was submitted to the NYSDEC. Between 2008 and 2009, ICM activities were conducted on the north and west sides of Building 23, as summarized below. ICM activities for the process sewer system located on the east side of the Chemical Development Pilot Plant were not completed at that time due to the unknown operation status of the Site.

The ICM was conducted from June 2008 to December 2009 and consisted of the following primary activities: soil excavation, exterior process sewer piping and structures removal and abandonment, dewatering (including treatment and discharge), collection of post-excavation confirmatory soil samples for laboratory analysis, process sewer piping and structures decontamination, backfilling excavations, site restoration, excavated materials management and disposal, and community air monitoring (see **Figure 4**). Following ICM activities, a new exterior process sewer system consisting of approximately 900 linear feet of double-walled stainless steel piping, 22 coated manholes, and electrical controls was constructed to replace the sections that were removed from the north and west sides of the Chemical Development Pilot Plant.

Post-excavation confirmation soil sample analytical results indicated that VOCs (including tentatively identified compounds) were detected in 31 of 43 soil samples analyzed (see **Figure 4** for the soil sample locations). Of the 31 soil samples where VOCs were detected, six (6) samples exceeded NYSDEC Unrestricted Use SCOs, where established. No VOC concentrations exceeded NYSDEC Restricted Use – Residential SCOs, where established. Based on the results of the post-excavation confirmation soil sampling, no further action was recommended with regard to soil investigation or excavation activities for the north and west sides of SWMU-7: Process Sewer at the Chemical Development Pilot Plant in the ICM Completion Report dated May 14, 2010. The NYSDEC concurred with the no further action recommendation in a letter dated June 3, 2010.

4.5.2 SWMU-7 - Previous Soil Investigation Results - Exterior Process Sewers (East Side of Building 23)

As discussed in **Section 4.5.3.3**, the ICM for the process sewer system located on the east side of Building 23 was not completed due to the uncertain operation status of the Site at that time. In 2010, three (3) soil borings were installed to depths between 6 and 10 ft bgs (see **Table 1**) to evaluate subsurface soil conditions near previously identified process sewer integrity findings on the east side of the Chemical Development Pilot Plant. The locations of these soil borings are depicted on **Figure 9B**. During these investigation activities, no field indications of a chemical release (e.g., odors, staining, or elevated PID field screening response) were observed. At each soil boring, one representative soil sample was collected at various depths ranging from 6 to 9.5 ft bgs and analyzed for VOCs (see **Table 2**).

As presented in **Table 7**, the 2010 soil sample analytical results indicated that:

Acetone and/or methylene chloride were detected at low concentrations in all three (3) soil samples collected.
 No concentration of VOCs exceeded NYSDEC Unrestricted Use SCOs or Restricted Use – Residential SCOs.

4.5.3 SWMU-7 - 2015 Investigation Results

During the 2014 to 2015 Chemical Development Pilot Plant demolition activities, certain portions of the Process Sewer were removed. The following sections summarize the investigation activities that were conducted between 2014 and 2015 following demolition activities to further evaluate soil conditions at the following portions of the Chemical Development Plant's form process sewer:

- Exterior Process Sewers (North & West Sides of Building 23).
- Exterior Process Sewers (From Building 17C and 34).
- Exterior Process Sewers (East Side of Building 23).
- Interior Process Sewers (Buildings 16, 23, 24, 26, 31, 34, and 40).

4.5.3.1 Exterior Process Sewers (North & West Sides of Building 23)

As discussed above (see **Section 4.5.1**), this portion of the process sewer system consisted of double-walled stainless steel piping that was constructed during the implementation of an ICM program completed between 2008 to 2009 resulting in no further action for soil (see **Figures 4**, **9A**, and **9B**) and was only occasionally used since 2009. Based on field screening results during demolition activities (which indicated that a significant chemical release was not identified), additional soil sampling was not warranted in this area during 2014 to 2015 investigation activities.

4.5.3.2 Exterior Process Sewers (From Building 17C and 34)

This portion of the process sewer system was not included in the ICM program discussed in **Section 4.5.1**; and therefore, field screening and soil sampling activities were conducted in this area during 2014 to 2015 investigation activities. Between May and November 2015, the following investigation activities were conducted to further evaluate soil conditions at this portion of SWMU-7 (see **Table 1**):

- Using mechanized excavation equipment (e.g., excavator, backhoe) during and/or following active demolition activities to facilitate the collection of three (3) soil samples (SWMU7-SS-01 through SWMU7-SS-03) at 7 ft bgs.
- Using mechanized excavation equipment (e.g., excavator, backhoe), a total of three (3) test pits (see Table 1) were excavated to facilitate the collection of three (3) soil samples (SWMU7-SS-04 through SWMU7-SS-06) from various depths ranging from 4.5 to 6.5 ft bgs.

The locations of these soil sampling locations are depicted on **Figure 9A**. During these investigation activities, no field indications of a chemical release (e.g., odors, staining, or elevated PID field screening response) were observed; and therefore soil samples were collected from representative locations at targeted depth intervals based on the potential release mechanism associated with SWMU-7.

As presented in **Table 2**, the six (6) soil samples collected in 2015 were all analyzed for VOCs. As presented in **Table 7**, 2015 analytical results indicated that:

 Certain VOCs (methylene chloride, trichlorofluoromethane, and TICs) were detected at low concentrations in three (3) of the six (6) soil samples. No concentration of VOCs exceeded NYSDEC Unrestricted Use SCOs or Restricted Use – Residential SCOs, where established.

Based on the results of these sampling activities, no further action is recommended with regard to soil investigation or remediation activities for this portion of SWMU-7 (i.e., Exterior Process Sewers - From Building 17C and 34).

4.5.3.3 Exterior Process Sewers (East Side of Building 23)

This portion of the process sewer system was not included in the ICM program discussed in **Section 4.5.1**; and therefore, field screening and soil sampling activities were conducted in this area during 2014 to 2015 investigation activities. Between May and November 2015, the following investigation activities were conducted to further evaluate soil conditions at this portion of SWMU-7 (see **Table 1**):

- Using mechanized excavation equipment (e.g., excavator, backhoe) during and/or following active demolition activities to facilitate the collection of seven (7) soil samples (SWMU7-SS-BLDG23-01 through SWMU7-SS-BLDG23-07) from various depths ranging from 4.5 to 7 ft bgs.
- Using mechanized excavation equipment (e.g., excavator, backhoe), a total of three (3) test pits (see **Table 1**) were excavated to facilitate the collection of three (3) soil samples (SWMU7-SS-BLDG23-23 through SWMU7-SS-BLDG23-25) from various depths ranging from 4 to 6 ft bgs.

The locations of these soil sampling locations are depicted on **Figure 9B**. During these investigation activities, PID field screening responses were observed at four (4) sampling locations (SWMU-7-BLDG23-01, SWMU-7-BLDG23-02, SWMU-7-BLDG23-05, and SWMU-7-BLDG23-06) ranging from 1.8 to 310 ppm; and therefore, soil sampling activities at these locations were biased toward the location of the PID response. At all other sampling locations, no field indications of a chemical release (e.g., odors, staining, or elevated PID field screening response) were observed; and therefore soil samples were collected from representative locations at targeted depth intervals based on the potential release mechanism associated with SWMU-7.

As presented in **Table 2**, the 10 soil samples collected in 2015 were all analyzed for VOCs. As presented in **Table 7**, 2015 analytical results indicated that:

Several VOCs were detected at low concentrations in eight (8) of the 10 soil samples collected. The reported concentration of 1,1-dichloroethene (2 mg/kg) in one (1) soil sample exceeded its NYSDEC Unrestricted Use SCO (0.33 mg/kg). No other concentration of VOCs exceeded NYSDEC Unrestricted Use SCOs or Restricted Use – Residential SCOs, where established.

Based on the results of these sampling activities, no further action is recommended with regard to soil investigation or remediation activities for this portion of SWMU-7 (Exterior Process Sewers - East Side of Building 23).

4.5.3.4 Interior Process Sewers (Buildings 16, 23, 24, 26, 31, 34, and 40)

This portion of the process sewer system was not included in the ICM program discussed in **Section 4.5.1**; and therefore, field screening and soil sampling activities were conducted in this area during 2014 to 2015 investigation

activities. In November 2015, the following investigation activities were conducted to further evaluate soil conditions at this portion of SWMU-7 (see **Table 1**):

- Using mechanized excavation equipment (e.g., excavator, backhoe), a total of 34 test pits (see **Table 1**) were excavated to facilitate the collection of 34 soil samples (SWMU7-SS-BLDG16-01 through SWMU7-SS-BLDG16-15, SWMU7-SS-BLDG23-08 through SWMU7-SS-BLDG23-22, SWMU7-SS-BLDG26-01, and SWMU7-SS-BLDG34-01 through SWMU7-SS-BLDG34-03) from various depths ranging from 2 to 8.5 ft bgs.
- Using manual methods (i.e., scoops, shovels, trowels, augers) to inspect shallow soil conditions, one (1) soil sample (SWMU7-SS-SURFACE-01) was collected from a depth of 0 to 0.5 ft bgs.

The locations of these soil borings are depicted on **Figures 9A** and **9B**. During these investigation activities, PID field screening responses were noted at 10 of the 35 sampling locations (SWMU-7-BLDG16-05, SWMU-7-BLDG16-14, SWMU-7-BLDG16-15, SWMU-7-BLDG23-08, SWMU-7-BLDG23-12, SWMU-7-BLDG23-16 through SWMU-7-BLDG23-19, and SWMU-7-BLDG26-01) ranging from 0.1 to 1.7 ppm; and therefore, soil sampling activities at these locations were biased toward the location of the PID response. At all other sampling locations, no field indications of a chemical release (e.g., odors, staining, or elevated PID field screening response) were observed; and therefore soil samples were collected from representative locations at targeted depth intervals based on the potential release mechanism associated with SWMU-7.

As presented in **Table 2**, the 35 soil samples collected in 2015 were all analyzed for VOCs. In addition, the surficial soil sample was also analyzed for SVOCs, PCBs, RCRA 8 Metals, and alcohols (see **Table 2**). As presented in **Table 7**, 2015 analytical results indicated that:

- Several VOCs were detected at low concentrations in 20 of the 35 soil samples collected. No concentration
 of VOCs exceeded NYSDEC Unrestricted Use SCOs or Restricted Use Residential SCOs, where
 established.
- In the surficial soil sample, SVOCs, alcohols, and PCBs were not detected. Several metals (arsenic, barium, cadmium, chromium, lead, and mercury) were detected at low concentrations. No concentration of metals exceeded NYSDEC Unrestricted Use SCOs or Restricted Use Residential SCOs with one exception. The concentration of total chromium (7.9 mg/kg) exceeded the NYSDEC Unrestricted Use SCO for hexavalent chromium of 1 mg/kg.

Based on the results of these sampling activities, no further action is recommended with regard to soil investigation or remediation activities for this portion of SWMU-7 (Interior Process Sewers - Buildings 16, 23, 24, 26, 31, 34, and 40).

4.6 SWMU-12: BUILDING 16 FORMER DRYWELL

The Building 16 Former Drywell (SWMU-12) was connected to Building 16 until it was excavated and removed in the 1980s. The former dry well location was determined following review of historical site plans depicting the location and is co-located with SWMU-4 as depicted on **Figure 6**.

4.6.1 SWMU-12 - Previous Soil Investigation Results

In 2006, one (1) soil boring (see **Table 1**) was installed to evaluate subsurface conditions as close to the Building 16 Former Drywell as possible (as previously documented in the April 2007 SAR submitted to NYSDEC). However, due to the density of underground utilities in the vicinity of SWMU-12 (e.g., electrical and natural gas lines), the soil boring was located approximately 10 feet east of the actual drywell location (see **Figure 6**). The soil boring was advanced to 20 ft bgs, which corresponded to refusal of the drilling equipment. During these investigation activities, no field indications of a chemical release (e.g., odors, staining, or elevated PID field screening response) were observed. Two

soil samples were collected (one from 5 to 6 ft bgs and one from 14 to 15 ft bgs) and analyzed for VOCs, SVOCs, RCRA 8 Metals, and pH (see **Table 2**).

As presented in **Table 8**, the 2006 soil sample analytical results indicated that:

- Several VOCs were detected at low concentrations in both soil samples. The reported concentration of vinyl
 chloride in the sample collected from 14 to 15 ft bgs exceeded its NYSDEC Unrestricted Use SCOs. No other
 concentration of VOCs exceeded NYSDEC Unrestricted Use SCOs or Restricted Use Residential SCOs,
 where established.
- Certain SVOCs were detected at low concentrations in the soil sample collected from 5 to 6 ft bgs. No concentrations of SVOCs exceeded NYSDEC Unrestricted Use SCOs or Restricted Use – Residential SCOs.
- Several metals (arsenic, barium, cadmium, chromium, lead, selenium, and/or mercury) were detected at low
 concentrations in both soil samples. No concentration of metals exceeded NYSDEC Unrestricted Use SCOs
 or Restricted Use Residential SCOs with one exception. The reported concentration of total chromium in
 both soil samples (ranging from 7.6 to 14.6 mg/kg) exceeded the NYSDEC Unrestricted Use SCO for
 hexavalent chromium of 1 mg/kg.
- Soil pH ranged from 8.26 to 8.47.

In 2010, additional soil sampling activities were conducted at the Building 16 Former Drywell during implementation of the site-wide CMS program. One (1) soil boring (see **Table 1**) was advanced using vacuum excavation around the underground utilities in the vicinity and two (2) soil samples were collected (one at 2 ft bgs and one at 7 ft bgs) and analyzed for VOCs (see **Table 2**). The soil boring location is shown on **Figure 6**. During these investigation activities, no field indications of a chemical release (e.g., odors, staining, or elevated PID field screening response) were observed.

As presented in **Table 8**, the 2010 soil sample analytical results indicated that:

Several VOCs (methyl ethyl ketone (MEK), acetone, methylene chloride, and/or TICs) were detected at low
concentrations in both soil samples collected. No concentration of VOCs exceeded NYSDEC Unrestricted
Use SCOs or Restricted Use – Residential SCOs, where established.

4.6.2 SWMU-12 - 2015 Investigation Results

In November 2015, the following investigation activities were conducted to further evaluate soil conditions at SWMU-12 (see **Table 1**):

 Using manual methods (i.e., scoops, shovels, trowels, augers) to inspect shallow soil conditions, a total of five (5) soil samples (SWMU12-SS-SB03-100 through SWMU12-SS-SB06-103, and SWMU12-SS-SURFACE-01) were collected from various depths ranging from 0 to 6 ft bgs.

The soil sampling locations are depicted on **Figure 6**. During these investigation activities, no field indications of a chemical release (e.g., odors, staining, or elevated PID field screening response) were observed; and therefore soil samples were collected from representative locations at targeted depth intervals based on the potential release mechanism associated with SWMU-12.

As presented in **Table 2**, the five (5) soil samples collected in November 2015 were all analyzed for VOCs, SVOCs, PCBs, RCRA 8 Metals, and alcohols. As presented in **Table 8**, 2015 analytical results indicated that:

• Toluene was detected at a low concentration in one (1) of the five (5) soil samples collected. The concentration of toluene did not exceed NYSDEC Unrestricted Use SCOs or Restricted Use – Residential SCOs.

- Several SVOCs were detected at low concentrations in three (3) of the five (5) soil samples collected. No
 concentration of SVOCs exceeded NYSDEC Unrestricted Use SCOs or Restricted Use Residential SCOs,
 where established.
- Alcohols and PCBs were not detected in any soil sample collected.
- Several metals (arsenic, barium, cadmium, chromium, lead, selenium and/or mercury) were detected at low
 concentrations in the five (5) soil samples collected. No concentration of metals exceeded NYSDEC
 Unrestricted Use SCOs or Restricted Use Residential SCOs with one exception. The reported concentration
 of total chromium in the five (5) soil samples (ranging from 3.9 to 16.2 mg/kg) exceeded the NYSDEC
 Unrestricted Use SCO for hexavalent chromium of 1 mg/kg.

Based on the results of these sampling activities, no further action is recommended with regard to soil investigation or remediation activities for SWMU-12.

4.7 SWMU-13: BUILDING 16 FORMER SANITARY SEWER HOLDING TANKS

The Building 16 sanitary waste line was originally connected in 1967 directly to the sanitary sewer, with a piping tee connecting the line to a 1,000-gallon underground holding tank. Previously, flow could be manually diverted to the holding tank in the event of a spill or other releases to the wastewater system. The holding tank could then be pumped out and the product recovered or drummed for offsite disposal. Later, a larger 5,000-gallon underground holding tank was installed on the waste line for the same purpose. Use of these holding tanks was discontinued in 1985 when a process wastewater treatment system was constructed to treat the Chemical Development Pilot Plant wastewater. The holding tanks were located adjacent to each other off the southeast corner of Building 23 and the tanks and surrounding soils were excavated in 2004 as documented in the September 2006 SWMU/AOC Assessment Report previously submitted to NYSDEC. Building 43 was constructed in 2005 and covered the location of the former tanks. The approximate location of SWMU-13 is depicted on **Figure 8**.

4.7.1 SWMU-13 - Previous Soil Investigation Results

As previously documented in the April 2007 SAR submitted to NYSDEC, three (3) soil borings (see **Table 1**) were completed in 2006 to evaluate subsurface conditions underneath Building 43 at SWMU-13 (see **Figure 8**), as follows:

- One boring was advanced to 20 ft bgs in the current mechanical room for Building 43 at the reported western end of the former 1,000-gallon tank location and two soil samples were collected at 11 to 12 ft bgs and 15 to 16 ft bgs, respectively.
- One boring was advanced to 16 ft bgs adjacent to the exterior east wall of Building 43 at the reported eastern
 end of the former 1,000-gallon tank and two soil samples were collected from 11 to 12 ft bgs and 14 to
 15 ft bgs, respectively.
- One boring was advanced to 11 ft bgs (which corresponded to refusal due to the limited access for the drilling equipment) inside the southern stairwell for Building 43 at the former 5,000-gallon tank location and one soil sample was collected from 10 to 11 ft bgs.

All soil samples were analyzed for VOCs, SVOCs, PCBs, RCRA 8 Metals, and pH (see Table 2).

During these investigation activities, no field indications of a chemical release (e.g., odors, staining, or elevated PID field screening response) were observed. Fill material was noted in each of the borings to approximately 9 ft bgs, which was placed during construction of the existing Building 43 following the removal of the tanks; and therefore, the soil samples were collected below 9 ft bgs for laboratory analyses.

As presented in **Table 9**, the 2006 analytical results indicated that:

- Several VOCs (1,2-dichloroethane, dichlorodifluoromethane, methylene chloride, and/or TICs) were detected
 at low concentrations in every soil sample collected. No concentration of VOCs exceeded NYSDEC
 Unrestricted Use SCOs or Restricted Use Residential SCOs, where established.
- Several SVOCs were detected at low concentrations in three (3) of the five (5) soil samples. No concentration
 of SVOCs exceeded NYSDEC Unrestricted Use SCOs or Restricted Use Residential SCOs, where
 established.
- PCBs were not detected in any soil sample collected.
- Several metals (arsenic, barium, cadmium, chromium, lead, selenium, and/or mercury) were detected at low
 concentrations in the five (5) soil samples collected. No concentration of metals exceeded NYSDEC
 Unrestricted Use SCOs or Restricted Use Residential SCOs with one exception. The reported concentration
 of total chromium in the five (5) soil samples (ranging from 6.8 to 13 mg/kg) exceeded the NYSDEC
 Unrestricted Use SCO for hexavalent chromium of 1 mg/kg.
- Soil pH ranged from 7.67 to 8.25.

4.7.2 SWMU-13 - 2015 Investigation Results

Between May 2015 and October 2015, the following investigation activities were conducted to further evaluate soil conditions at SWMU-13 (see **Table 1**):

- Using mechanized excavation equipment (e.g., excavator, backhoe) during and/or following active demolition activities to facilitate the collection of one (1) soil sample (SWMU13-SS-01) from a depth of 2 ft bgs.
- Using manual methods (i.e., scoops, shovels, trowels, augers) to inspect shallow soil conditions, one (1) soil sample (SWMU13-SS-SURFACE-01) was collected from a depth of 0 to 0.5 ft bgs.

The soil sampling locations are depicted on **Figure 8**. During these investigation activities, no field indications of a chemical release (e.g., odors, staining, or elevated PID field screening response) were observed; and therefore soil samples were collected from representative locations at targeted depth intervals based on the potential release mechanism associated with SWMU-13.

As presented in **Table 2**, the two (2) soil samples collected between May 2015 and October 2015 were analyzed for VOCs, SVOCs, PCBs, RCRA 8 Metals, and/or alcohols. As presented in **Table 9**, 2015 analytical results indicated that:

- Certain VOCs (1,1-dichloroethene, trichlorofluoromethane, and TICs) were detected at low concentrations in one (1) soil sample. No concentration of VOCs exceeded NYSDEC Unrestricted Use SCOs or Restricted Use

 Residential SCOs, where established.
- Bis(2-ethyhexyl)phthalate was detected at a low concentration in one (1) soil sample. The concentration of bis(2-ethyhexyl)phthalate did not exceed NYSDEC Unrestricted Use SCOs or Restricted Use – Residential SCOs, where established.
- Alcohols and PCBs were not detected in any soil sample collected.
- Several metals (arsenic, barium, cadmium, chromium, lead, and mercury) were detected at low concentrations in one (1) soil sample. No concentration of metals exceeded NYSDEC Unrestricted Use SCOs or Restricted Use – Residential SCOs with one exception. The reported concentration of total chromium in the sample (9.1 mg/kg) exceeded the NYSDEC Unrestricted Use SCO for hexavalent chromium of 1 mg/kg.

Based on the results of these sampling activities, no further action is recommended with regard to soil investigation or remediation activities for SWMU-13.

4.8 SWMU-15: BUILDING 24 WASTEWATER TREATMENT PLANT

The Building 24 wastewater treatment plant (also known as the Effluent Control building) was constructed in 1985 and was approximately 2,500 square feet (see **Figure 8** for the SWMU-15 location). Formerly, this building received all process wastewater generated at the Chemical Development Pilot Plant and BMP sump discharge from the Main Plant. Process wastewater piping from the Chemical Development Pilot Plant discharged to a junction box (also referenced as a wastewater consolidation sump) located approximately 30 feet west of Building 24, within a small shed. The sump discharged to two sumps located outside and adjacent to the western wall of Building 24. These two below-ground, covered sumps discharged to a second junction box/sump located inside the western end of Building 24. Wastewater was pumped from the interior junction box into three 10,000-gallon fiberglass reinforced plastic above ground feed tanks, that were located along the northern wall of the building. Two pH neutralization chemical stock tanks (sodium hydroxide and sulfuric acid; 500-gallons each) were located south of the feed tanks. The feed tanks discharged to the steam stripper located in Building 40 (SWMU-17). Prior to construction of the steam stripper in 2003, process wastewater was conveyed to carbon absorption beds located in Building 24.

In 2007, a visual inspection was conducted as documented in the 2010 Engineering Evaluation Report for this SWMU. A detailed inspection of the sump walls and bases could not be performed due to the active nature of facility operations. Hairline cracks were observed in the concrete floor in Building 24. Liquid was observed on the floor from cleaning operations in the building. No evidence of pipeline or tank leakage was observed. During the visual inspection, no evidence of a historic or ongoing release was observed.

4.8.1 SWMU-15 - 2014-2015 Investigation Results

Following removal of above-ground structures as part of the 2014 to 2015 Chemical Development Pilot Plant demolition activities, investigation activities were conducted between October 2014 and October 2015 to further evaluate soil conditions beneath former buildings/structures at SWMU-15. As summarized in **Table 1**, these investigation activities included:

- Using mechanized excavation equipment (e.g., excavator, backhoe) during and/or following active demolition activities to facilitate the collection of two (2) soil samples (BLDG24-SS-SUMP-01 and BLDG24-SS-SUMP-02) from depths of 8 to 14.5 ft bgs.
- Using manual methods (i.e., scoops, shovels, trowels, augers) to inspect shallow soil conditions, a total of four (4) soil samples (BLDG24-SS-FLOOR-01 through BLDG24-SS-FLOOR-03, and SWMU15-SS-SURFACE-01) were collected from various depths ranging from 0 to 1.5 ft bgs.

The soil sampling locations are depicted on **Figure 8**. During these investigation activities, no field indications of a chemical release (e.g., odors, staining, or elevated PID field screening response) were observed; and therefore soil samples were collected from representative locations at targeted depth intervals based on the potential release mechanism associated with SWMU-15 with one exception. A PID field screening response was observed at BLDG24-SUMP-01 (1.5 ppm) at a depth of 14 to 14.5 ft bgs; and therefore, a soil sample was collected from this depth.

As presented in **Table 2**, the six (6) soil samples collected between October 2014 and October 2015 were analyzed for VOCs, SVOCs, PCBs, RCRA 8 Metals, and/or alcohols. As presented in **Table 10**, 2014 and 2015 analytical results indicated that:

- Certain VOCs (1,2-dichloroethane, acetone, and/or trichlorofluoromethane) were detected at low concentrations in four (4) of the six (6) soil samples collected. No concentration of VOCs exceeded NYSDEC Unrestricted Use SCOs or Restricted Use – Residential SCOs, where established.
- SVOCs, alcohols, and PCBs were not detected in any soil sample collected.

Several metals (arsenic, barium, cadmium, chromium, lead, and mercury) were detected at low concentrations in one (1) soil sample. No concentration of metals exceeded NYSDEC Unrestricted Use SCOs or Restricted Use – Residential SCOs with one exception. The reported concentration of total chromium in the sample (10.1 mg/kg) exceeded the NYSDEC Unrestricted Use SCO for hexavalent chromium of 1 mg/kg.

Based on the results of these sampling activities, no further action is recommended with regard to soil investigation or remediation activities for SWMU-15.

4.9 SWMU-17: BUILDING 40 WASTEWATER STEAM STRIPPER BUILDING

Building 40 (also known as the Steam Stripper building) was constructed in 2003 and was approximately 4,000 square feet (see **Figure 8** for the SWMU-17 location). Building 40 was adjacent to Building 24, to the north, and contained a steam stripper for wastewater treatment. Process wastewaters from the Chemical Development Pilot Plant (via Building 24 see **Section 4.8**) and from the Main Plant (piped in through overhead lines to a feed tank in Building 40) were treated by the steam stripper prior to discharge to the Village of Rouses Point POTW. The steam stripper was located in the northern portion of the building. Two 10,000 gallon stainless steel storage tanks that held wastewaters from the Main Plant prior to discharge to the stripper were located in the southern portion of Building 40.

The Steam Stripper combined the effects of steam and heat (typically 300 degrees Celsius) causing VOCs to transfer from the liquid to the vapor phase. The vapor discharge was then condensed and collected in a reflux tank equipped with a 3-phase decanter mechanism. A reflux pump returned aqueous distillate to the stripper. The top, solvent phase was directed to a distillate tank located in the eastern portion of the building over a "drumming room" (drum transfer station). Solvents were drained from the distillate tank into 55-gallon drums for off-site disposal. The "drumming room" was curbed with the floor and walls providing secondary containment.

Treated water left the bottom of the stripping tower and discharged to the POTW. Prior to discharge, the treated wastewater was monitored in accordance with Pharmaceutical Effluent Guidelines as specified in the Industrial User's Permit between the Village of Rouses Point and Wyeth (predecessor to Pfizer).

In 2007, a VI was conducted as documented in the 2010 Engineering Evaluation Report for this SWMU. During the VI of the steam stripper building, minor hairline cracks were observed in the concrete floor. The acid transfer area had some signs of spills, starting to deteriorate at the top of the floor. Based on conversations with facility operators, these stains most likely are from citric acid used during recent temporary shutdown cleaning procedures. No evidence of historic or ongoing releases was observed. No issues were noted in the drum transfer area.

4.9.1 SWMU-17 - 2015 Investigation Results

Following removal of above-ground structures as part of the 2014 to 2015 Chemical Development Pilot Plant demolition activities, investigation activities were conducted between May 2015 and October 2015 to further evaluate soil conditions beneath former buildings/structures at SWMU-17. As summarized in **Table 1**, these investigation activities included:

- Using mechanized excavation equipment (e.g., excavator, backhoe) during and/or following active demolition activities to facilitate the collection of four (4) soil samples (SWMU17-SS-BLDG40-01 through SWMU17-SS-BLDG40-04) from depths of 3 ft bgs.
- Using manual methods (i.e., scoops, shovels, trowels, augers) to inspect shallow soil conditions, one (1) soil sample (SWMU17-SS-SURFACE-01) was collected from a depth of 0 to 0.5 ft bgs.

The soil sampling locations are depicted on **Figure 8**. During these investigation activities, no field indications of a chemical release (e.g., odors, staining, or elevated PID field screening response) were observed; and therefore soil

samples were collected from representative locations at targeted depth intervals based on the potential release mechanism associated with SWMU-17.

As presented in **Table 2**, the five (5) soil samples collected between May 2015 and October 2015 were analyzed for VOCs, SVOCs, PCBs, RCRA 8 Metals, and/or alcohols. As presented in **Table 11**, 2015 analytical results indicated that:

- Certain VOCs (dichlorodifluoromethane, styrene, and/or trichlorofluoromethane) were detected at low concentrations in four (4) of the five (5) soil samples collected. NYSDEC Unrestricted Use SCOs and Restricted Use – Residential SCOs are not established for dichlorodifluoromethane, styrene, or trichlorofluoromethane.
- SVOCs, alcohols, and PCBs were not detected in any soil sample collected.
- Several metals (arsenic, barium, cadmium, chromium, and lead) were detected at low concentrations in one
 (1) soil sample. No concentration of metals exceeded NYSDEC Unrestricted Use SCOs or Restricted Use –
 Residential SCOs with one exception. The reported concentration of total chromium in the sample (9.7 mg/kg),
 exceeded the NYSDEC Unrestricted Use SCO for hexavalent chromium of 1 mg/kg.

Based on the results of these sampling activities, no further action is recommended with regard to soil investigation or remediation activities for SWMU-17.

4.10 SWMU-23: BUILDING 16 FORMER WASTE STORAGE AREA IN NORTHWEST CORNER

A room in the northwest corner of Building 16 (Room 1614) was formerly used as a solvent storage area from 1967 until the Tank Farm was constructed in 1983. No releases have been identified for this SWMU. At the time of demolition activities between 2014 to 2015, the room was a utility room containing mechanical equipment as well as used to wash and dry staff uniforms using household-type washer and dryer units (i.e., no longer used to store wastes. The approximate location of SWMU-23 is depicted on **Figure 8**.

In 2007, a visual inspection was conducted as documented in the 2010 Engineering Evaluation Report for this SWMU. Several cracks were observed in the concrete floor. During the visual inspection, no evidence of a historic or ongoing release was observed.

In July 2011, the concrete floor of the former storage area was cleaned in accordance with the NYSDEC approved CMS Work Plan because the SWMU was inactive and no evidence of a historic or ongoing release was identified. The room was initially broom swept then cleaned with water and detergent. To verify the effectiveness of the cleaning process, rinsate sampling was conducted following NYSDEC-provided guidance. Following cleaning, a rinsate sample was collected using distilled water and analyzed for VOCs. Acetone and MEK were detected at low estimated concentrations well below NYSDEC groundwater quality standards. During the cleaning activities, a crack was noted in the concrete floor leading to a floor drain, which was also noted during the 2007 visual inspection of SWMU-23, as discussed above. Water was observed to penetrate the crack during the cleaning activities.

4.10.1 SWMU-23 - Previous Soil Investigation Results

Based on the results of cleaning activities conducted in 2011 (which identified water penetrating a crack in the concrete floor at SWMU-23), a core of the concrete floor was removed at the location of the crack and soil sampling activities were conducted beneath the crack on October 19, 2011 (see **Figure 8**). During these investigation activities, no field indications of a chemical release (e.g., odors, staining, or elevated PID field screening response) were observed. One representative soil sample was collected from 0.5 to 1 ft bgs and analyzed for VOCs (see **Table 2**).

As presented in **Table 12**, the 2011 soil sample analytical results indicated that:

No VOCs were detected in the SWMU-4 soil samples collected in 2006, except for one TIC (hexane).
 NYSDEC Unrestricted Use SCOs and Restricted Use – Residential SCOs are not established for hexane.

4.10.2 SWMU-23 - 2015 Investigation Results

Following removal of above-ground structures as part of the 2014 to 2015 Chemical Development Pilot Plant demolition activities, investigation activities were conducted between May 2015 and October 2015 to further evaluate soil conditions beneath former buildings/structures at SWMU-23. As summarized in **Table 1**, these investigation activities included:

- Using mechanized excavation equipment (e.g., excavator, backhoe) to inspect soil conditions, a total of one
 (1) location (see Table 1) was utilized to facilitate the collection of one (1) soil sample (SWMU23-SS-01) from
 a depth of 2 ft bgs.
- Using manual methods (i.e., scoops, shovels, trowels, augers) to inspect shallow soil conditions, one (1) soil sample (SWMU23-SS-SURFACE-01) was collected from a depth of 0 to 0.5 ft bgs.

The soil sampling locations are depicted on **Figure 8**. During these investigation activities, no field indications of a chemical release (e.g., odors, staining, or elevated PID field screening response) were observed; and therefore soil samples were collected from representative locations at targeted depth intervals based on the potential release mechanism associated with SWMU-23.

As presented in **Table 2**, the two (2) soil samples collected between May 2015 and October 2015 were analyzed for VOCs, SVOCs, PCBs, RCRA 8 Metals, and/or alcohols. As presented in **Table 12**, 2015 analytical results indicated that:

- Trichlorofluoromethane was detected at a low concentration in both soil samples collected. NYSDEC Unrestricted Use SCOs or Restricted Use Residential SCOs are not established for trichlorofluoromethane.
- SVOCs, alcohols, and PCBs were not detected in any soil sample collected.
- Several metals (arsenic, barium, cadmium, chromium, lead, and mercury) were detected at low concentrations in one (1) soil sample. No concentration of metals exceeded NYSDEC Unrestricted Use SCOs or Restricted Use Residential SCOs with one exception. The reported concentration of total chromium in the sample (10.3 mg/kg) exceeded the NYSDEC Unrestricted Use SCO for hexavalent chromium of 1 mg/kg.

Based on the results of these sampling activities, no further action is recommended with regard to soil investigation or remediation activities for SWMU-23.

4.11 SWMU-24: BUILDING 31 SOLVENT CONDENSATE SYSTEM

Building 31 (also known as the Vent Condenser building) was constructed in 1996 and was approximately 3,000 square feet (see **Figure 8**). The building contained three floors and housed the primary condensate pumps and tanks connected to reactors in Building 23 (smaller process condensers were located at each of the reactors in Building 23 that were not connected to Building 31). The first floor contained two condensate tanks in the solvent collection room that received solvent condensate from the equipment located above on the second and third floors. Waste solvents were transferred from the tanks into 55-gallon drums for offsite disposal or reclamation. The second floor contained the condenser control units. The third floor contained more condensers.

Process vapors from the Chemical Development Pilot Plant were directed to the vent condensers in Building 31. The emission streams were cooled to change the organic vapors into liquid. The condensed water-soluble organic compounds were recovered and reused. The vent condenser discharge was directed to a scrubber system in

Building 31A to neutralize acids prior to discharge through a GEP stack. There were approximately 27 solvent vent condensers, two interior solvent condensate ASTs, and a waste solvent drumming area in Building 31.

In 2007, a VI was conducted as documented in the 2010 Engineering Evaluation Report for this SWMU. Room 3104-1 contained minor cracks in the concrete floors. Room 3103-2 contained concrete joint sealant that was peeling up in places. Room 3103-3 contained peeling paint on the floor. No evidence of historic or ongoing releases was observed.

4.11.1 SWMU-24 - 2015 Investigation Results

Following removal of above-ground structures as part of the 2014 to 2015 Chemical Development Pilot Plant demolition activities, investigation activities were conducted between May 2015 and October 2015 to further evaluate soil conditions beneath former buildings/structures at SWMU 24. As summarized in **Table 1**, these investigation activities included:

- Using mechanized excavation equipment (e.g., excavator, backhoe) during and/or following active demolition activities to facilitate the collection of three (3) soil samples (SWMU24-SS-BLDG31-01 through SWMU24-SS-BLDG31-03) from depths of 3 ft bgs.
- Using manual methods (i.e., scoops, shovels, trowels, augers) to inspect shallow soil conditions, one (1) soil sample (SWMU24-SS-SURFACE-01) was collected from a depth of 0 to 0.5 ft bgs.

The soil sampling locations are depicted on **Figure 8**. During these investigation activities, PID field screening responses were observed at three (3) sampling locations (SWMU-7-BLDG31-01, SWMU-7-BLDG31-02, and SWMU-7-BLDG31-03) ranging from 3.5 to 95 ppm; and therefore, soil sampling activities at these locations were biased toward the location of the PID response. At the surficial sampling location, no field indications of a chemical release (e.g., odors, staining, or elevated PID field screening response) were observed; and therefore a soil sample was collected from representative locations at targeted depth intervals based on the potential release mechanism associated with SWMU-24.

As presented in **Table 2**, the four (4) soil samples collected between May 2015 and October 2015 were analyzed for VOCs, SVOCs, PCBs, RCRA 8 Metals, and/or alcohols. As presented in **Table 13**, 2015 analytical results indicated that:

- Trichlorofluoromethane was detected at a low concentration in all four (4) soil samples collected, and a styrene
 was detected at a low concentration in one (1) soil sample collected. NYSDEC Unrestricted Use SCOs or
 Restricted Use Residential SCOs are not established for trichlorofluoromethane and styrene.
- SVOCs, alcohols, and PCBs were not detected in any soil sample collected.
- Several metals (arsenic, barium, cadmium, chromium, lead, and mercury) were detected at low concentrations in one (1) soil sample. No concentration of metals exceeded NYSDEC Unrestricted Use SCOs or Restricted Use Residential SCOs with one exception. The reported concentration of total chromium in the sample (16.3 mg/kg) exceeded the NYSDEC Unrestricted Use SCO for hexavalent chromium of 1 mg/kg.

Based on the results of these sampling activities, no further action is recommended with regard to soil investigation or remediation activities for SWMU-24.

4.12 SWMU-26: CHEMICAL DEVELOPMENT REACTOR BAY DRUMMING AREAS (MULTIPLE LOCATIONS)

Waste drumming/storage areas for the reactor bays within Chemical Development Pilot Plant existed in multiple locations within the following rooms within Building 16 (constructed in 1967) and Building 23 (constructed in 1985) prior

to storage in SWMU-1, SWMU-4, and/or SWMU-5 Container Storage Area (Building 17C) depending on the time period as summarized below:

- Building 16 Reactor Room 1615 and Centrifuge Room 1616; and
- Building 23 Reactor Rooms 2322C, 2322D, and 2325.

The former location of these areas are shown on Figure 9B.

In 2007, a visual inspection was conducted as documented in the 2010 Engineering Evaluation Report for this SWMU. Minor cracking was observed in floor tiles and grout lines, specifically in rooms 1615 and 1616 and at various locations in Building 23. No evidence of historic or ongoing releases was observed.

4.12.1 SWMU-26 - 2015 Investigation Results

Following removal of above-ground structures as part of the 2014 to 2015 Chemical Development Pilot Plant demolition activities, investigation activities were conducted in October 2015 to further evaluate soil conditions beneath former buildings/structures at SWMU-26. As summarized in **Table 1**, these investigation activities included:

- Using mechanized excavation equipment (e.g., excavator, backhoe), a total of eight (8) test pits (see Table 1) were excavated to facilitate the collection of eight (8) soil samples (SWMU26-SS-BLDG16-01 through SWMU26-SS-BLDG16-04 and SWMU26-SS-BLDG23-01 through SWMU26-SS-BLDG23-04) from various depths ranging from 2 to 3 ft bgs.
- Using manual methods (i.e., scoops, shovels, trowels, augers) to inspect shallow soil conditions, one (1) soil sample (SWMU26-SS-SURFACE-01) was collected from a depth of 0 to 0.5 ft bgs.

The locations of these soil borings are depicted on **Figure 9B**. During these investigation activities, no field indications of a chemical release (e.g., odors, staining, or elevated PID field screening response) were observed; and therefore soil samples were collected from representative locations at targeted depth intervals based on the potential release mechanism associated with SWMU-26.

As presented in **Table 2**, the nine (9) soil samples collected in October 2015 were all analyzed for VOCs, SVOCs, PCBs, RCRA 8 Metals, and alcohols. As presented in **Table 14**, 2015 analytical results indicated that:

- Certain VOCs (methylene chloride, toluene, and/or trichlorofluoromethane) were detected at low concentrations in six (6) of the nine (9) soil samples collected. No concentration of VOCs exceeded NYSDEC Unrestricted Use SCOs or Restricted Use – Residential SCOs, where established.
- Bis(2-ethylhexyl)phthalate was detected at a low concentration in one (1) soil sample below its Restricted Use
 Residential SCO. A NYSDEC Unrestricted Use SCO is not established for bis(2-ethylhexyl)phthalate.
- Methanol was detected at a low concentration in one (1) soil sample. A NYSDEC Unrestricted Use SCO and Restricted Use – Residential SCOs are not established for methanol.
- PCBs were not detected in any soil sample collected.
- Several metals (arsenic, barium, cadmium, chromium, lead, and/or mercury) were detected at low concentrations in the nine (9) soil samples collected. No concentration of metals exceeded NYSDEC Unrestricted Use SCOs or Restricted Use Residential SCOs with one exception. The reported concentration of total chromium in the nine (9) soil samples (ranging from 4.5 to 12.3 mg/kg) exceeded the NYSDEC Unrestricted Use SCO for hexavalent chromium of 1 mg/kg.

Based on the results of these sampling activities, no further action is recommended with regard to soil investigation or remediation activities for SWMU-26.

4.13 CURRENT GROUNDWATER QUALITY

Since 2006, groundwater on and downgradient from the Site (i.e., Chemical Development Pilot Plant and Main Plant) has been evaluated with an extensive network of on-site and off-site monitoring wells. Previous investigation activities (as documented in the April 2007 SAR, June 2010 Supplemental SAR, and March 2013 Draft CMS Report) have identified three lithologic units at the Site (upper till, lower till, and bedrock), with the lower till unit identified as the primary stratigraphic unit for potential contaminant migration.

Between 2006 and 2015, groundwater samples were collected from the Site-wide monitoring well network during at least fourteen groundwater monitoring events and, depending on the location, groundwater quality was evaluated for potential constituents of concern (COCs) including: VOCs, SVOCs, RCRA 8 Metals, PCBs, alcohols, total petroleum hydrocarbons (TPH), and/or pH. Based on these previous investigation activities (as documented in the April 2007 SAR, June 2010 Supplemental SAR, and March 2013 Draft CMS Report), the primary COCs for groundwater associated with the Chemical Development Pilot Plant are VOCs. The monitoring wells that have been used to monitor groundwater associated with the Chemical Development Pilot Plant include: MW-1/1S, MW-2 (decommissioned), MW-13 (upgradient on the Main Plant parcel), MW-14 (upgradient on the Main Plant parcel), MW-24/24S, MW-25/25S, MW-26/26S, MW-27/27S, MW-28/28S, and MW-29/29S. A comprehensive summary of VOC groundwater analytical results for these monitoring wells is provided in **Table 15**.

Historically, groundwater quality results for VOCs have indicated that:

- At upgradient monitoring wells MW-13 and MW-14, generally VOCs have not been detected.
- At the MW-1/1S monitoring well couplet:
 - MW-1 Concentrations of 1,2-dichloroethane and vinyl chloride have been consistently detected above the applicable NYSDEC Groundwater Standard/Guidance.
 - MW-1S Concentrations of 1,2-dichloroethane have been consistently detected above the applicable NYSDEC Groundwater Standard/Guidance.
- At the MW-29/29S monitoring well couplet:
 - MW-29 Concentrations of 1,2-dichloroethane have been consistently detected above the applicable NYSDEC Groundwater Standard/Guidance.
 - MW-29S Certain VOCs have been detected intermittently generally below the applicable NYSDEC Groundwater Standard/Guidance.
- At the MW-27/27S monitoring well couplet,
 - MW-27 Concentrations of 1,2-dichloroethane and trichloroethene have been consistently detected above the applicable NYSDEC Groundwater Standard/Guidance.
 - MW-27S Select VOCs have been detected intermittently below the applicable NYSDEC Groundwater Standard/Guidance.
- At the MW-24/24S and MW-25/25S monitoring well couplets, select VOCs have been detected intermittently
 with inconsistent exceedances of the applicable NYSDEC Groundwater Standard/Guidance during specific
 sampling events; however, there does not appear to be a consistent trend over time.
- At the MW-26/26S and MW-28/28S monitoring well couplets, generally no VOCs or only low concentrations
 of VOCs have been detected intermittently below the applicable NYSDEC Groundwater Standard/Guidance.

In general, the VOC concentrations detected in groundwater at Chemical Development Pilot Plant show stable or decreasing trends over time. Based on the results of the most recent groundwater sampling event conducted in

July 2015, the concentrations of select VOCs (most notably 1,2-dichloroethane, trichloroethene, and vinyl chloride) remain above the applicable NYSDEC Groundwater Standard/Guidance. **Figure 10** shows the July 2015 results for VOCs that exceed applicable NYSDEC Groundwater Standard/Guidance.

5. SUMMARY OF FINDINGS, CONCLUSIONS, AND RECOMMENDATIONS

This ChemD SWMU SAR was prepared for the former Chemical Development Pilot Plant facility located at 100 Academy Street in Rouses Point, New York. The purpose of this ChemD SWMU SAR is to document the results of field screening and soil sampling activities that were implemented during and following demolition of the Chemical Development Pilot Plant portion of the larger Pfizer facility (the "Site") at select SWMUs located at the Chemical Development Pilot Plant. The field screening and soil sampling activities summarized in this ChemD SWMU SAR were originally proposed in the ChemD SWMU SAP, dated September 18, 2104, (revised December 1, 2014), and the ChemD SWMU SAP Addendum, dated September 22, 2015. In addition, this ChemD SWMU SAR summarizes current groundwater quality associated with the Chemical Development Pilot Plant and provides recommendations for future work at the Chemical Development Pilot Plant.

The following presents the findings, conclusions, and recommendations for soil and groundwater at the Chemical Development Pilot Plant.

5.1 SOIL

A total of 13 SWMUs and four (4) AOCs have been identified at the Chemical Development Pilot Plant that meet the SWMU/AOC definitions in the NYSDEC 6 NYCRR Part 373 Hazardous Waste Management Permit for the Site. Previously, no further action status was approved by NYSDEC for AOC-5, AOC-9, a portion of SWMU-6 (no further action status for the truck containment pad), a portion of SWMU-7 (no further action status for portions of exterior sewer piping on north and west sides of the Chemical Development Pilot Plant), and SWMU-14. In addition, no further action status was previously recommended for AOC-8 and AOC-10 in the Draft CMS Report (the additional supporting information and rationales for this recommendation that was included in the Draft CMS Report is provided in **Appendix A**).

Between 2014 and 2015, investigation activities were conducted to evaluate soil quality at all SWMUs or portions of SMWUs that do not have an approved or recommended no further action status.

Of the 110 soil samples collected and analyzed for VOCs during 2014 to 2015 investigation activities, the reported concentration of acetone and/or 1,1-dichloroethene exceeded established NYSDEC Unrestricted Use SCOs at only three (3) soil sample locations. During all previous investigation activities, the only other exceedance of NYSDEC Unrestricted Use SCOs was a reported concentration of vinyl chloride at one (1) soil sample location.

In addition, the reported concentration of total chromium in every soil sample collected during investigation activities exceeded the NYSDEC Unrestricted Use SCO for hexavalent chromium (1 mg/kg), which is taken from NYSDEC 6 NYCRR Subpart 375-6.8(b) for Protection of Ecological Resources. During investigation activities, the soil samples analyzed for total chromium were not speciated to determine the concentration of hexavalent and trivalent chromium in each sample. It is unlikely that these detections are due to site-related releases given their ubiquitous distribution and relatively consistent range of concentrations. Based on this conclusion, the reported concentrations of total chromium are likely attributable to background concentrations.

Finally, no reported concentration for any other COCs exceeded established NYSDEC Unrestricted Use SCOs and no reported concentration for any COCs exceeded established Subpart 375-6.8(b) Restricted Use – Residential SCOs.

Based on the results of the 2014 to 2015 soil sampling activities, no further action is recommended with regard to soil investigation or remediation activities at all remaining SWMUs investigated at the Chemical Development Pilot Plant.

A summary of the 17 SWMUs and AOCs at the Chemical Development Pilot Plant along with their status is provided below:

Table 16: Summary of Chemical Development Pilot Plant SWMU/AOC Status

	S	WMU/AOC Name	Corrective Action Status	No Further Action (NFA) Approval/Request Date
SWMU 1	Interim Dr	um Storage Area	NFA Recommended	ChemD SWMU SAR dated April 8, 2016
SWMU 4	Former Co	ontainer Storage Area	NFA Recommended	ChemD SWMU SAR dated April 8, 2016
SWMU 5	Container	Storage Area	NFA Recommended	ChemD SWMU SAR dated April 8, 2016
SWMU 6	Tank	Truck Containment Pad	NFA Approved	NYSDEC Letter dated August 26, 2010
SVVIVIO 0	Farm	Tank Farm	NFA Recommended	ChemD SWMU SAR dated April 8, 2016
		Exterior sewer piping on north & west sides	NFA Approved	NYSDEC Letter dated June 3, 2010
SWMU 7	Process	Exterior conveyance piping from Building 17C and Building 34	NFA Recommended	ChemD SWMU SAR dated April 8, 2016
SVVIVIO 1	Sewer	Exterior sewer piping on east side of Building 23	NFA Recommended	ChemD SWMU SAR dated April 8, 2016
		Interior sewer piping in Buildings 16, 23, 26, and 34	NFA Recommended	ChemD SWMU SAR dated April 8, 2016
SWMU 12	Building 1	6 Former Drywell	NFA Recommended	ChemD SWMU SAR dated April 8, 2016
SWMU 13	Building 1 Tanks	6 Former Sanitary Sewer Holding	NFA Recommended	ChemD SWMU SAR dated April 8, 2016
SWMU 14	Waste Tol Farm	uene Management East of Tank	NFA Approved	NYSDEC Letter dated June 17, 2010
SWMU 15	Building 2	4 Wastewater Treatment Plant	NFA Recommended	ChemD SWMU SAR dated April 8, 2016
SWMU 17	Building 4 Building	0 Wastewater Steam Stripper	NFA Recommended	ChemD SWMU SAR dated April 8, 2016
SWMU 23	Building 1 Northwest	6 Former Waste Storage Area in Corner	NFA Recommended	ChemD SWMU SAR dated April 8, 2016
SWMU 24	Building 3	1 Solvent Condensate System	NFA Recommended	ChemD SWMU SAR dated April 8, 2016
SWMU 26		Development Reactor Bay Areas (Multiple Locations)	NFA Recommended	ChemD SWMU SAR dated April 8, 2016
AOC 5	Ethylene [Loading D	Dichloride Release Near Building 23 ock	NFA Approved	NYSDEC Letter dated May 8, 2007
AOC 8		f Acetonitrile to the Concrete at Development	NFA Recommended	Draft CMS Report dated March 29, 2013
AOC 9	Building 3- Waste Re	4 Loading Dock Mixed Alcohol lease	NFA Approved	NYSDEC Letter dated May 8, 2007
AOC 10	Building 2	3 Therminol Release to Soil	NFA Recommended	Draft CMS Report dated March 29, 2013

5.2 GROUNDWATER

Since 2006, 1,2-dichloroethane (MW-1/1S, MW-27, and MW-29), trichloroethene (MW-27), and vinyl chloride (MW-1) have been consistently detected in groundwater samples collected from select locations at the Chemical Development Pilot Plant at concentrations above the NYSDEC Groundwater Standard/Guidance. At certain monitoring well locations, the detection of VOCs may be attributed to certain SWMUs based on relative location and previous soil investigation results, as follows:

- MW-1/1S is located at SWMU-4 and downgradient of SWMU-12; and therefore, the detection of 1,2-dichloroethane and vinyl chloride at this location is likely associated with SWMU-4 and/or SWMU-12.
- MW-29/29S is located at the northern portion of SWMU-1; and therefore, the detection of 1,2-dichloroethane at this location is likely associated with SWMU-1.
- MW-27 is located at the downgradient Chemical Development Pilot Plant property boundary; and therefore
 the detection of 1,2-dichloroethane and trichloroethene at this location is likely associated with one or more
 upgradient SWMUs.

In general, the VOC concentrations detected in groundwater show stable or decreasing trends over time.

As described in the Draft CMS Report, the recommended remedial alternatives for Site groundwater are in-situ chemical oxidation (ISCO) and the continuation of a modified monitored natural attenuation (MNA) program. In areas that are not attenuating on their own in a timely manner and in perimeter areas of the Site where groundwater continues to exceed applicable groundwater cleanup criteria, the Draft CMS Report proposes localized remediation via ISCO. It appears that the areas in the vicinity of MW-1/1S, MW-27, and MW-29/29S may be appropriate locations for the implementation of ISCO in accordance with the Draft CMS Report. Depending on the regulatory status of the Site when these activities are proposed to be implemented, ISCO may be proposed as part of an ICM or as part of the Corrective Measures Implementation (CMI) program. Prior to ICM or CMI implementation, supplemental groundwater delineation activities may be warranted to further define the nature and extent of groundwater impacts.

6. REFERENCES

Fisher, Donald W, 1968. Geology of the Plattsburgh and Rouses Point, New York-Vermont Quadrangles: Map and Chart Series Number 10; New York State Museum and Science Service.

Huling, Scott G. and Pivetz, Bruce E., August 2006. "In-Situ Chemical Oxidation"; USEPA Office of Research and Development; Cincinnati, OH; EPA 600-R-06-072.

McDonald, M.G. and A.W. Harbaugh, 1988. A modular three-dimensional finite-difference flow model. Techniques of Water Resources Investigations, Book 6. USGS.

NYSDEC. August 4, 1999. Water Quality Regulations: Surface Water and Groundwater Classifications and Standards.

NYSDEC. December 14, 2006. 6 NYCRR Subpart 375-6: Remedial Program Soil Cleanup Objectives.

NYSDEC. February 5, 2009. 6 NYCRR Part 373 Hazardous Waste Management Permit, Appendix II-C, Scope of Work For a Corrective Measure Study.

NYSDEC. May 3, 2010. DER-10 Section 3.10.1, Fish and Wildlife Resources Impact Analysis (FWRIA) Part 1: Resource Characterization.

Pollock, D.W., 1989. Documentation of computer programs to compute and display pathlines using results from the U.S. Geological Survey modular three-dimensional finite-difference ground-water flow model, USGS Open FileReport 89-391.

USEPA. May 31, 1994. RCRA Corrective Action Plan. Office of Solid Waste and Emergency Response (OSWER) Directive 9902.3-2A.

USEPA. 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments, Interim Final.

USEPA. 1998. Guidelines for Ecological Risk Assessment.

USEPA. September 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater. Office of Research and Development (ORD) EPA/600/R-98/128.

USEPA. April 21, 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. OSWER Directive 9200.4-17P.

United States Geological Survey (USGS). Topographic Maps, Rouses Point NY-VT and Champlain NY. 7.5-minute Quadrangle.

Woodard & Curran. September 1, 2006. SWMU/AOC Assessment Report, Wyeth Pharmaceuticals, Rouses Point, NY.

Woodard & Curran. April 5, 2007. SWMU/AOC Sampling and Analysis Report, Wyeth Pharmaceuticals, Rouses Point, NY.

Woodard & Curran. June 29, 2007. Supplemental Sampling and Analysis Plan, Wyeth Pharmaceuticals, Rouses Point, NY.

Woodard & Curran. September 27, 2007. Supplemental Sampling and Analysis Plan Addendum No.1, Wyeth Pharmaceuticals, Rouses Point, NY.

Woodard & Curran. February 8, 2008. Vapor Intrusion Investigation Work Plan, Wyeth Pharmaceuticals, Rouses Point, NY.

Woodard & Curran. August 19, 2008. Vapor Intrusion Investigation Work Plan Addendum No.1, Wyeth Pharmaceuticals, Rouses Point, NY.

Woodard & Curran. September 16, 2008. Supplemental Sampling and Analysis Plan Addendum No.2, Wyeth Pharmaceuticals, Rouses Point, NY.

Woodard & Curran. December 10, 2008. Vapor Intrusion Investigation Work Plan Addendum No.2, Wyeth Pharmaceuticals, Rouses Point, NY.

Woodard & Curran. May 2009. Off-Site Soil Vapor Mitigation System Completion Report, Wyeth Pharmaceuticals, Rouses Point, NY.

Woodard & Curran. May 2009 (revision 1 July 2009; revision 2 March 15, 2010). Off-Site Soil Vapor Mitigation System Operation, Maintenance, & Monitoring (OM&M) Plan, Wyeth Pharmaceuticals, Rouses Point, NY.

Woodard & Curran. May 20, 2009. Vapor Intrusion Investigation Work Plan Addendum No.3, Wyeth Pharmaceuticals, Rouses Point, NY.

Woodard & Curran. March 12, 2010. Engineering Evaluation of Select SWMUs Report, Wyeth Pharmaceuticals, Rouses Point, NY.

Woodard & Curran. March 19, 2010 (revision 1 April, 29, 2010). ICM Completion Report, SWMU-10: North Field Fire Fighting Training Area 2, Wyeth Pharmaceuticals, Rouses Point, NY.

Woodard & Curran. March 22, 2010. Off-Site Soil Vapor Mitigation System OM&M Report, Wyeth Pharmaceuticals, Rouses Point, NY.

Woodard & Curran. April 20, 2010. Off-Site Soil Vapor Mitigation System Completion Report No.2, Wyeth Pharmaceuticals, Rouses Point, NY.

Woodard & Curran. May 14, 2010. ICM Completion Report, SWMU-7 Process Sewer, North and West Sides (Chemical Development Plant), Wyeth Pharmaceuticals, Rouses Point, NY.

Woodard & Curran. May 21, 2010. ICM Completion Report, SWMU-14 Waste Toluene Management, Wyeth Pharmaceuticals, Rouses Point, NY.

Woodard & Curran. May 28, 2010. ICM Completion Report, SWMU-6 Tank Farm (Truck Containment Pad), Wyeth Pharmaceuticals, Rouses Point, NY.

Woodard & Curran. June 4, 2010. ICM Completion Report, AOC-4 Petroleum AST Without Base Containment, Wyeth Pharmaceuticals, Rouses Point, NY.

Woodard & Curran. June 21, 2010. Supplemental Sampling and Analysis Plan Addendum No.3, Pfizer, Rouses Point, NY.

Woodard & Curran. June 25, 2010. Supplemental Sampling & Analysis Report, Wyeth Pharmaceuticals, Rouses Point, NY.

Woodard & Curran. October 8, 2010 (revised December 9, 2010). Corrective Measures Study Work Plan, Pfizer, Rouses Point, NY.

Woodard & Curran, February 25, 2011, Corrective Measures Study Progress Report No.1, Pfizer, Rouses Point, NY.

Woodard & Curran. May 4, 2011. Rinsate Sample Collection Plan, Pfizer, Rouses Point, NY.

Woodard & Curran. June 3, 2011. Corrective Measures Study Progress Report No.2, Pfizer, Rouses Point, NY.

Woodard & Curran. June 13, 2011. Rinsate Sample Locations, Pfizer, Rouses Point, NY.

Woodard & Curran. July 7, 2011. In-Situ Chemical Oxidation Pilot Study Work Plan, Pfizer, Rouses Point, NY.

Woodard & Curran. August 1, 2011. Request for Permit Modification, Pfizer, Rouses Point, NY.

Woodard & Curran. September 22, 2011. Corrective Measures Study Progress Report No.3, Pfizer, Rouses Point, NY.

Woodard & Curran. September 23, 2011. Rinsate Sample Collection Report, Pfizer, Rouses Point, NY.

Woodard & Curran. September 23, 2011. Vapor Intrusion Investigation Report, Chemical Development Pilot Plant, Pfizer, Rouses Point, NY.

Woodard & Curran. December 22, 2011. Corrective Measures Study Progress Report No.4, Pfizer, Rouses Point, NY.

Woodard & Curran. September 1, 2012. Corrective Measures Study Progress Report No.5, Pfizer, Rouses Point, NY.

Woodard & Curran. December 14, 2012. Corrective Measures Study Progress Report No.6, Pfizer, Rouses Point, NY.

Woodard & Curran. March 29, 2013. Draft Corrective Measures Study Report, Pfizer, Rouses Point, NY.

Woodard & Curran. November 22, 2013. Final Rinsate Sample Collection Plan, Tank Farm, Pfizer, Rouses Point, NY.

Woodard & Curran. January 24, 2014. Tank Farm Final Closure Report, Pfizer, Rouses Point, NY.

Woodard & Curran. February 25, 2014. Revised Final Rinsate Sample Collection Plan, Building 17C, Pfizer, Rouses Point, NY.

Woodard & Curran. April 9, 2014. 2013-2014 Annual Progress Report, Pfizer, Rouses Point, NY.

Woodard & Curran. June 10, 2014. Building 17C (Container Storage Building) Final Closure Report, Pfizer, Rouses Point, NY.

Woodard & Curran. September 18, 2104, (revised December 1, 2014). Solid Waste Management Unit Sampling & Analysis Plan Chemical Development Pilot Plant, Pfizer, Rouses Point, NY.

Woodard & Curran. September 18, 2015. 2014-2015 Annual Progress Report, Pfizer, Rouses Point, NY.

Woodard & Curran. September 22, 2015. Addendum to the Chemical Development Pilot Plant Solid Waste Management Unit Sampling & Analysis Plan, Pfizer, Rouses Point, NY.

TABLES

Area Description	Investigation Method	Number of Samples	Date	Location ID	Final Depth (ft bgs) ⁽¹⁾	Rationale/Objective
7.000 2000p	mourou	- Cumpico	10/25/2006	SWMU1-SB01	19	Tallonalo es jecuro
			10/25/2006	SWMU1-SB02	15	
			10/25/2006	SWMU1-SB03	10	
			10/25/2006	SWMU1-SB04	10	
			10/25/2006	SWMU1-SB05	10	
			10/25/2006	SWMU1-SB06	10	
	Soil Boring	14	10/25/2006	SWMU1-SB07	20	
			10/25/2006	SWMU1-SB08	10	
SWMU-1 - Interim Drum Storage Area – historic storage of drums/containers of solvents			10/25/2006	SWMU1-SB09	10	Determine the presence/absence of a
including toluene, methanol, isopropyl alcohol, and other D001, D002, F002, F003, and F005			10/26/2006	SWMU1-SB10	10	release to soil.
wastes.			11/2/2015	SWMU1-SB11	4	
			11/2/2015	SWMU1-SB12	4	
			11/2/2015	SWMU1-SB13	4	
			11/2/2015	SWMU1-SB14	4	
			10/28/2015	SWMU1-TP01	2.5	
			10/28/2015	SWMU1-TP02	2	
	Test Pit	5	10/28/2015	SWMU1-TP03	2	
			10/28/2015	SWMU1-TP04	2.5	
			10/29/2015	SWMU1-SURFACE	2	
			10/26/2006	SWMU4-SB01	10	
			10/26/2006	SWMU4-SB02	6.5	
			11/2/2015	SWMU4-SB03	4	
			11/2/2015	SWMU4-SB04	4	
SWMU-4 - Former Container Storage Area – stored drums of solvents including toluene, methanol, isopropyl alcohol, and other D001,	Soil Boring	8	11/3/2015	SWMU4-SB05	4	Determine the presence/absence of a release to soil.
D002, F002, F003, and F005 wastes.			11/3/2015	SWMU4-SB06	4	
			11/3/2015	SWMU4-SB07	4	
			11/3/2015	SWMU4-SB08	4	
	Test Pit	1	11/2/2015	SWMU4-SURFACE	1.75	

						Final	
Area De	scription	Investigation Method	Number of Samples	Date	Location ID	Depth (ft bgs) ⁽¹⁾	Rationale/Objective
		Mechanized Equipment Grab	1	10/28/2014	BLDG17C-SUMP-01	8.5	
				10/28/2014	BLDG17C-TRUCK-01	1.5	
	Storage Area – storage vastes including toluene,			10/28/2014	BLDG17C-PAD-01	1.5	Determine the presence/absence of a
methanol, isopropyl ale	cohol, and other D001, , and F005 wastes.	Manual	5	10/28/2014	BLDG17C-PAD-02	1.5	release to soil.
				10/28/2014	BLDG17C-PAD-03	1.5	
				10/26/2015	SWMU5-SURFACE	0.5	
				11/4/2014	TFARM-SUMP-01	3	
	- bulk storage of waste luene, methanol, and	Manual	4	11/4/2014	TFARM-PAD-02	2	Determine the presence/absence of a
	l alcohol.	Marida		11/4/2014	TFARM-PAD-03	2	release to soil.
	Exterior sewer piping on north & west sides			N/A			No further action required.
				5/20/2015	SWMU7-01	7	
	Exterior conveyance piping from Building 17C and Building 34	Mechanized Equipment Grab	3	5/20/2015	SWMU7-02	7	
				5/20/2015	SWMU7-03	7	This portion of the exterior process sewers were not included in the 2008-
				10/29/2015	SWMU7-04	4.5	 2009 ICM process sewer replacement program. Determine presence/absence of release to soil.
		Test Pit	3	10/29/2015	SWMU7-05	6.5	
				10/29/2015	SWMU7-06	6.5	
SWMU-7 - Process				8/24/2010	SWMU7-EAST-01	10	This portion of the exterior process
Sewer – handled process wastewater		Soil Boring	3	8/24/2010	SWMU7-EAST-02	10	sewers to the east of Building 23 were not included in the 2008-2009 ICM process sewer replacement program. Determine
containing hazardous constituents (includes exterior "yard" piping				8/24/2010	SWMU7-EAST-03	6	presence/absence of release to soil.
and catchment sumps)				5/19/2015	SWMU7-BLDG23-01	4.5	
				5/19/2015	SWMU7-BLDG23-02	4.5	
	Exterior sewer piping on east side of Building			5/19/2015	SWMU7-BLDG23-03	5	
	23	Mechanized Equipment Grab	7	5/19/2015	SWMU7-BLDG23-04	5.5	
				5/19/2015	SWMU7-BLDG23-05	7	Determine the presence/absence of a release to soil.
				5/19/2015	SWMU7-BLDG23-06	7	. 5,5000 10 0011.
				5/19/2015	SWMU7-BLDG23-07	7	
				10/29/2015	SWMU7-BLDG23-23	5.25	
		Test Pit	3	10/29/2015	SWMU7-BLDG23-24	4	
				10/29/2015	SWMU7-BLDG23-25	6	

Area Description		Investigation	Number of		Logation ID	Final Depth (ft bgs) ⁽¹⁾	Patienale/Objective
Area De	scription	Method	Samples	Date 10/26/2015	Location ID SWMU7-BLDG16-01	2.5	Rationale/Objective
				10/26/2015	SWMU7-BLDG16-02	3	
				10/26/2015	SWMU7-BLDG16-03	3	
				10/27/2015	SWMU7-BLDG16-04	3	
				10/27/2015	SWMU7-BLDG16-05	3.5	
				10/27/2015	SWMU7-BLDG16-06	3.25	
				10/27/2015	SWMU7-BLDG16-07	3.25	
				10/27/2015	SWMU7-BLDG16-08	3	
				10/27/2015	SWMU7-BLDG16-09	3.15	
				10/27/2015	SWMU7-BLDG16-10	3	
				10/27/2015	SWMU7-BLDG16-11	3	
				10/27/2015	SWMU7-BLDG16-12	3	
				10/27/2015	SWMU7-BLDG16-13	3	
				10/27/2015	SWMU7-BLDG16-14	3	
	Interior sewer piping in Buildings 16, 23, 26,			10/27/2015	SWMU7-BLDG16-15	3	
				10/27/2015	SWMU7-BLDG23-08	3	
SWMU-7 - Process Sewer - handled		T 450		10/27/2015	SWMU7-BLDG23-09	3	
process wastewater containing hazardous		Test Pit	34	10/27/2015	SWMU7-BLDG23-10	3	Determine the presence/absence of a release to soil.
constituents (includes exterior "yard" piping and catchment sumps)	and 34			10/27/2015	SWMU7-BLDG23-11	3	
and satement sampe,				10/28/2015	SWMU7-BLDG23-12	3	
				10/28/2015	SWMU7-BLDG23-13	3	
				10/28/2015	SWMU7-BLDG23-14	3	
				10/28/2015	SWMU7-BLDG23-15	3	
				10/28/2015	SWMU7-BLDG23-16	2	
				10/28/2015	SWMU7-BLDG23-17	3	
				10/28/2015	SWMU7-BLDG23-18	3	
				10/28/2015	SWMU7-BLDG23-19	3	
				10/28/2015	SWMU7-BLDG23-20	3	
				10/28/2015	SWMU7-BLDG23-21	3	
				10/28/2015	SWMU7-BLDG23-22	3	
				10/27/2015	SWMU7-BLDG26-01	3	
				10/28/2015	SWMU7-BLDG34-01	8.5	
				10/28/2015	SWMU7-BLDG34-02	3	
				10/28/2015	SWMU7-BLDG34-03	3	
		Manual	1	10/26/2015	SWMU7-SURFACE	0.5	

Final													
Area Description	Investigation Method	Number of Samples	Date	Location ID	Final Depth (ft bgs) ⁽¹⁾	Rationale/Objective							
			10/26/2006	SWMU12-SB01	20								
	Soil Boring	4	11/2/2010	SWMU12-SB02	7								
			11/3/2015	SWMU12-SB03	6								
SWMU-12 - Building 16 Former Drywell – accepted waste from Building 16. Excavated in 1980s.			11/3/2015	SWMU12-SB04	4	Determine the presence/absence of a release to soil.							
10003.	Manual	5	11/3/2015	SWMU12-SB05	3								
			11/3/2015	SWMU12-SB06	5								
			10/26/2015	SWMU12-SURFACE	0.5								
			11/14/2006	SWMU13-SB01	20								
SWMU-13 - Building 16 Former Sanitary	Soil Boring	5	11/14/2006	SWMU13-SB02	18								
Sewer Holding Tanks – accepted sanitary and process wastewater from Building 16 prior to 1985. Removed in 2004.			11/14/2006	SWMU13-SB03	12	Determine the presence/absence of a release to soil.							
1903. INeilioved III 2004.	Mechanized Equipment Grab	1	5/19/2015	SWMU13-01	5								
	Manual	1	10/26/2015	SWMU13-SURFACE	0.5								
	Mechanized	2	10/28/2014	BLDG24-SUMP-01	14.5								
	Equipment Grab		11/5/2014	BLDG24-SUMP-02	8.5								
SWMU-15 - Building 24 Wastewater Treatment Plant – handles process wastewater			10/28/2014	BLDG24-FLOOR-01	1.5	Determine the presence/absence of a							
from Chemical Development Plant prior to discharge to steam stripper.	Manual	4	10/28/2014	BLDG24-FLOOR-02	1.5	release to soil.							
	Wandai	7	10/28/2014	BLDG24-FLOOR-03	1.5								
			10/26/2015	SWMU15-SURFACE	0.5								
			5/20/2015	SWMU17-BLDG40-01	3								
	Mechanized	4	5/20/2015	SWMU17-BLDG40-02	3								
SWMU-17 - Building 40 Wastewater Steam Stripper Building	Equipment Grab	4	5/20/2015	SWMU17-BLDG40-03	3	Determine the presence/absence of a release to soil.							
			5/20/2015	SWMU17-BLDG40-04	3								
	Manual	1	10/26/2015	SWMU17-SURFACE	0.5								
	Mechanized Equipment Grab	1	5/19/2015	SWMU23-01	3								
SWMU-23 - Building 16 Former Waste Storage Area in Northwest Corner	Manual	2	10/19/2011	SWMU23-SB01	1	Determine the presence/absence of a release to soil.							
Storage Area in Northwest Corner	Manual	2	10/26/2015	SWMU23-SURFACE	0.5								
			5/20/2015	SWMU24-BLDG31-01	3								
SWMU-24 - Building 31 Solvent Condensate	Mechanized Equipment Grab	3	5/20/2015	SWMU24-BLDG31-02	3	Determine the presence/absence of a							
System			5/20/2015	SWMU24-BLDG31-03	3	release to soil.							
	Manual	1	10/26/2015	SWMU24-SURFACE	0.5								

Area Description	Investigation Method	Number of Samples	Date	Location ID	Final Depth (ft bgs) ⁽¹⁾	Rationale/Objective
			10/27/2015	SWMU26-BLDG16-01	3	
			10/27/2015	SWMU26-BLDG16-02	3	
			10/27/2015	SWMU26-BLDG16-03	3	
	Test Pit	8	10/27/2015	SWMU26-BLDG16-04	3	
SWMU-26 - Chemical Development Reactor Bay Drumming Areas	rest Fit	6	10/28/2015	SWMU26-BLDG23-01	3	Determine the presence/absence of a release to soil
			10/28/2015	SWMU26-BLDG23-02	3	
			10/28/2015	SWMU26-BLDG23-03	3	
			10/28/2015	SWMU26-BLDG23-04	3	
	Manual	1	10/26/2015	SWMU26-SURFACE	0.5	

Notes:

¹ = Depth in feet (ft) below ground surface (bgs). Depth indicated is the bottom of the soil boring, test pit, or manually sampled location. N/A = Not applicable.

		Rouses P			Parameters ⁽²⁾							
				Sample Depth			raiaiii	RCRA 8				
Area Description	Sample Date	Location ID	Sample ID	(ft bgs) ⁽¹⁾	VOCs	SVOCs	PCBs	Metals	Alcohols	рН		
	10/25/2006	SWMU1-SB01	SWMU1-SS-SB01-14	2-3	Х			Х	Х	Х		
	10/25/2006	SWMU1-SB02	SWMU1-SS-SB02-15	2-3	Х				Х	Х		
	10/25/2006	SWMU1-SB03	SWMU1-SS-SB03-16	3-4	Х				Х	Х		
	10/25/2006	SWMU1-SB04	SWMU1-SS-SB04-17	2-3	Х				Х	Х		
	10/25/2006	SWMU1-SB05	SWMU1-SS-SB05-18	1-2	Х				Х	Х		
	10/25/2006	SWMU1-SB06	SWMU1-SS-SB06-19	1-2	Х				Х	Х		
	10/25/2006	SWMU1-SB07	SWMU1-SS-SB07-20	1-2	Х				Х	Х		
	10/26/2006	SWMU1-SB08	SWMU1-SS-SB08-21	1-2	Х				Х	Х		
SWMU-1 - Interim Drum Storage Area – historic storage	10/25/2006	SWMU1-SB09	SWMU1-SS-SB09-22	1-2	Х				Х	Х		
of drums/containers of solvents including toluene, methanol, isopropyl alcohol, and other D001, D002, F002,	10/26/2006	SWMU1-SB10	SWMU1-SS-SB10-23	1-2	Х				Х	Х		
F003, and F005 wastes.	11/2/2015	SWMU1-SB11	SWMU1-SS-SB11-104	1.5-3.5	Х	Х	Х	Х	Х			
	11/2/2015	SWMU1-SB12	SWMU1-SS-SB12-105	1.5-3	Х	Х	Х	Х	Х			
	11/2/2015	SWMU1-SB13	SWMU1-SS-SB13-106	1-3	Х	Х	Х	Х	Х			
	11/2/2015	SWMU1-SB14	SWMU1-SS-SB14-107	1.5-3	Х	Х	Х	Х	Х			
	10/28/2015	SWMU1-TP01	SWMU1-SS-TP01-100	1.5-2	Х	Х	Х	Х	Х			
	10/28/2015	SWMU1-TP02	SWMU1-SS-TP02-101	1-1.5	Х	Х	Х	Х	Х			
	10/28/2015	SWMU1-TP03	SWMU1-SS-TP03-102	1-1.5	Х	Х	Х	Х	Х			
	10/28/2015	SWMU1-TP04	SWMU1-SS-TP04-103	2-2.5	Х	Х	Х	Х	Х			
	10/29/2015	SWMU1-SURFACE	SWMU1-SS-SURFACE-01	1.5-2	Х	Х	Х	Х	Х			
	10/26/2006	SWMU4-SB01	SWMU4-SS-SB01-24	1-2	х			Х	Х	Х		
	10/26/2006	SWMU4-SB02	SWMU4-SS-SB02-25	1-2	Х				Х	х		
	11/2/2015	SWMU4-SB03	SWMU4-SS-SB03-100	0.25-2.25	Х	Х	Х	Х	Х			
SWMU-4 - Former Container Storage Area – stored	11/2/2015	SWMU4-SB04	SWMU4-SS-SB04-101	1.5-2.5	Х	х	Х	х	х			
drums of solvents including toluene, methanol, isopropyl alcohol, and other D001, D002, F002, F003, and F005	11/3/2015	SWMU4-SB05	SWMU4-SS-SB05-102	1.0-3.0	Х	х	Х	х	х			
wastes.	11/3/2015	SWMU4-SB06	SWMU4-SS-SB06-103	1.5-3.0	Х	Х	Х	х	х			
	11/3/2015	SWMU4-SB07	SWMU4-SS-SB07-104	1.75-3.25	х	х	Х	Х	х			
	11/3/2015	SWMU4-SB08	SWMU4-SS-SB08-105	1.25-3.0	Х	Х	Х	Х	х			
	11/2/2015	SWMU4-SURFACE	SWMU4-SS-SURFACE-01	0.5-1	Х	Х	Х	х	Х			

		oint, NY				Param	eters ⁽²⁾				
					Sample Depth				RCRA 8		
Area Desc	ription	Sample Date	Location ID	Sample ID	(ft bgs) ⁽¹⁾		SVOCs	PCBs		Alcohols	рH
		10/28/2014	BLDG17C-TRUCK-01	BLDG17C-SS-TRUCK-01	1-1.5	Х	Х	Х	Х	Х	
SWMU-5 - Container Sto	rage Area – storage of	10/28/2014	BLDG17C-PAD-01	BLDG17C-SS-PAD-01	1-1.5	Х	Х	Х	Х	Х	
numerous drums of wastes in isopropyl alcohol, and other D0	cluding toluene, methanol,	10/28/2014	BLDG17C-PAD-02	BLDG17C-SS-PAD-02	1-1.5	Х	Х	Х	Х	Х	
F005 wa		10/28/2014	BLDG17C-PAD-03	BLDG17C-SS-PAD-03	1-1.5	Х	Х	Х	Х	Х	
		10/28/2014	BLDG17C-SUMP-01	BLDG17C-SS-SUMP-01	8-8.5	Х	Х	Х	Х	Х	
		10/26/2015	SWMU5-SURFACE	SWMU5-SS-SURFACE-01	0-0.5	Х	Х	Х	Х	Х	
		11/4/2014	TFARM-SUMP-01	TFARM-SS-SUMP-01	2.0-2.5	Х	Х	Х	Х	Х	
SWMU-6 - Tank Farm - bulk	storage of waste solvents	11/4/2014	TFARM-PAD-02	TFARM-SS-PAD-02	1.0-1.5	Х	Х	Х	х	Х	
including toluene, methano		11/4/2014	11/4/2014 TFARM-PAD-03 TFARM-SS-PAD-03 1.0-1.5					Х	х	х	
		10/26/2015	SWMU6-SURFACE	SWMU6-SS-SURFACE-01	0-0.5	х	х	х	х	×	
	Exterior sewer piping on north & west sides			N/A				N	//A		
		5/20/2015	SWMU7-01	SWMU7-SS-01	7	Х					
	Exterior conveyance piping from Building 17C and Building 34	5/20/2015	SWMU7-02	SWMU7-SS-02	7	Х					
		5/20/2015	SWMU7-03	SWMU7-SS-03	7	Х					
		10/29/2015	SWMU7-04	SWMU7-SS-04	4.5	Х					
		10/29/2015	SWMU7-05	SWMU7-SS-05	6.5	Х					
		10/29/2015	SWMU7-06	SWMU7-SS-06	6.5	Х					
		8/24/2010	SWMU7-EAST-01	SWMU7-SS-EAST-01	9.5	Х					
SWMU-7 - Process Sewer –		8/24/2010	SWMU7-EAST-02	SWMU7-SS-EAST-02	9.5	Х					
handled process wastewater containing hazardous		8/24/2010	SWMU7-EAST-03	SWMU7-SS-EAST-03	6	Х					
constituents (includes exterior "yard" piping and catchment		5/19/2015	SWMU7-BLDG23-01	SWMU7-SS-BLDG23-01	4.5	Х					
sumps)		5/19/2015	SWMU7-BLDG23-02	SWMU7-SS-BLDG23-02	4.5	Х					
		5/19/2015	SWMU7-BLDG23-03	SWMU7-SS-BLDG23-03	5	Х					
	Exterior sewer piping on east side of Building 23	5/19/2015	SWMU7-BLDG23-04	SWMU7-SS-BLDG23-04	5.5	Х					
		5/19/2015	SWMU7-BLDG23-05	SWMU7-SS-BLDG23-05	7	Х					
		5/19/2015	SWMU7-BLDG23-06	SWMU7-SS-BLDG23-06	7	Х					
		5/19/2015	SWMU7-BLDG23-07	SWMU7-SS-BLDG23-07	7	Х					
		10/29/2015	SWMU7-BLDG23-23	SWMU7-SS-BLDG23-23	5.25	Х					
		10/29/2015	SWMU7-BLDG23-24	SWMU7-SS-BLDG23-24	4	Х					
		10/29/2015	SWMU7-BLDG23-25	SWMU7-SS-BLDG23-25	6	Х					

					Daram	eters ⁽²⁾																
					Sample Depth				RCRA 8													
Area Desc	ription	10/26/2015	Location ID SWMU7-BLDG16-01	Sample ID SWMU7-SS-BLDG16-01	(ft bgs) ⁽¹⁾ 2.5		SVOCs	PCBs	Metals	Alcohols	pН											
						X																
		10/26/2015	SWMU7-BLDG16-02	SWMU7-SS-BLDG16-02	3	X																
		10/26/2015	SWMU7-BLDG16-03	SWMU7-SS-BLDG16-03	3	Х																
		10/27/2015	SWMU7-BLDG16-04	SWMU7-SS-BLDG16-04	2	Х																
		10/27/2015	SWMU7-BLDG16-05	SWMU7-SS-BLDG16-05	2	Х																
		10/27/2015	SWMU7-BLDG16-06	SWMU7-SS-BLDG16-06	2	Х																
		10/27/2015	SWMU7-BLDG16-07	SWMU7-SS-BLDG16-07	2	Х																
		10/27/2015	SWMU7-BLDG16-08	SWMU7-SS-BLDG16-08	2	Х																
		10/27/2015	SWMU7-BLDG16-09	SWMU7-SS-BLDG16-09	2	Х																
		10/27/2015	SWMU7-BLDG16-10	SWMU7-SS-BLDG16-10	2	Х																
		10/27/2015	SWMU7-BLDG16-11	SWMU7-SS-BLDG16-11	2	X																
		10/27/2015	SWMU7-BLDG16-12	SWMU7-SS-BLDG16-12	3	Х																
		10/27/2015	SWMU7-BLDG16-13	SWMU7-SS-BLDG16-13	2	Х																
	Interior sewer piping in Buildings 16, 23, 26, and 34										10/27/2015	SWMU7-BLDG16-14	SWMU7-SS-BLDG16-14	2	Х							
					10/27/2015	SWMU7-BLDG16-15	SWMU7-SS-BLDG16-15	2	Х													
			10/27/2015	SWMU7-BLDG23-08	SWMU7-SS-BLDG23-08	2	Х															
SWMU-7 - Process Sewer –					10/27/2015	SWMU7-BLDG23-09	SWMU7-SS-BLDG23-09	2	Х													
handled process wastewater containing hazardous constituents (includes exterior		10/27/2015	SWMU7-BLDG23-10	SWMU7-SS-BLDG23-10	2	Х																
"yard" piping and catchment sumps)		34	34	J.	34				ů.	04	34	10/27/2015	SWMU7-BLDG23-11	SWMU7-SS-BLDG23-11	2	Х						
									10/28/2015	SWMU7-BLDG23-12	SWMU7-SS-BLDG23-12	3	Х									
		10/28/2015	SWMU7-BLDG23-13	SWMU7-SS-BLDG23-13	2	Х																
		10/28/2015	SWMU7-BLDG23-14	SWMU7-SS-BLDG23-14	3	Х																
		10/28/2015	SWMU7-BLDG23-15	SWMU7-SS-BLDG23-15	3	Х																
		10/28/2015	SWMU7-BLDG23-16	SWMU7-SS-BLDG23-16	2	Х																
	_			-	10/28/2015	SWMU7-BLDG23-17	SWMU7-SS-BLDG23-17	3	Х													
		10/28/2015	SWMU7-BLDG23-18	SWMU7-SS-BLDG23-18	3	Х																
					10/28/2015	SWMU7-BLDG23-19	SWMU7-SS-BLDG23-19	3	Х													
					1	1	1						10/28/2015	SWMU7-BLDG23-20	SWMU7-SS-BLDG23-20	3	Х					
														<u> </u>			10/28/2015	SWMU7-BLDG23-21	SWMU7-SS-BLDG23-21	3	Х	
								10/28/2015	SWMU7-BLDG23-22	SWMU7-SS-BLDG23-22	2	Х										
		10/27/2015	SWMU7-BLDG26-01	SWMU7-SS-BLDG26-01	2	Х																
			10/28/2015	SWMU7-BLDG34-01	SWMU7-SS-BLDG34-01	8.5	Х															
			-		<u> </u>	10/28/2015	SWMU7-BLDG34-02	SWMU7-SS-BLDG34-02	3	X												
		10/28/2015	SWMU7-BLDG34-02	SWMU7-SS-BLDG34-03	3	×																
							V	V		~												
		10/26/2015	SWMU7-SURFACE	SWMU7-SS-SURFACE-01	0-0.5	Х	Х	Х	Х	Х												

		Rouses P	Jint, 141				Param	eters ⁽²⁾		
				Sample Depth			- urum	RCRA 8		
Area Description	Sample Date	Location ID	Sample ID	(ft bgs) ⁽¹⁾	VOCs		PCBs		Alcohols	
	10/26/2006	SWMU12-SB01	SWMU12-SS-SB01-26	5-6	Х	Х		Х		Х
			SWMU12-SS-SB01-27	14-15	Х	Х		х		х
	11/2/2010	SWMU12-SB02	SWMU12-SS-SB02-01	2	Х					
	11/2/2010	OW/MO12 0202	SWMU12-SS-SB02-02	7	Х					
SWMU-12 - Building 16 Former Drywell – accepted waste from Building 16. Excavated in 1980s.	11/3/2015	SWMU12-SB03	SWMU12-SS-SB03-100	5.5-6	Х	×	Х	х	Х	
	11/3/2015	SWMU12-SB04	SWMU12-SS-SB04-101	3.5-4	Х	х	Х	х	x	
	11/3/2015	SWMU12-SB05	SWMU12-SS-SB05-102	2.5-3	Х	Х	Х	х	х	
	11/3/2015	SWMU12-SB06	SWMU12-SS-SB06-103	4.5-5	Х	Х	Х	х	х	
	10/26/2015	SWMU12-SURFACE	SWMU12-SS-SURFACE-01	0-0.5	Х	х	Х	х	х	
	44/44/0000	0)4/4/1/40 0004	SWMU13-SS-SB01-51	11-12	Х	Х	Х	Х		Х
	11/14/2006	SWMU13-SB01	SWMU13-SS-SB01-47	15-16	Х	Х	Х	Х		Х
CWMU 40 Publica 40 Farmer Conitant Course Helding	44440000	0)4/4/1/40 0000	SWMU13-SS-SB02-52	11-12	Х	Х	Х	Х		Х
SWMU-13 - Building 16 Former Sanitary Sewer Holding Tanks – accepted sanitary and process wastewater from	11/14/2006	SWMU13-SB02	SWMU13-SS-SB02-48	14-15	Х	Х	Х	Х		Х
Building 16 prior to 1985. Removed in 2004.	11/14/2006	SWMU13-SB03	SWMU13-SS-SB03-49	10-11	Х	Х	Х	Х		Х
	5/19/2015	SWMU13-01	SWMU13-SS-01	2	Х					
	10/26/2015	SWMU13-SURFACE	SWMU13-SS-SURFACE-01	0-0.5	Х	Х	Х	Х	Х	
	10/28/2014	BLDG24-SUMP-01	BLDG24-SS-SUMP-01	14-14.5	Х					
	11/5/2014	BLDG24-SUMP-02	BLDG24-SS-SUMP-02	8-8.5	Х					
SWMU-15 - Building 24 Wastewater Treatment Plant – handles process wastewater from Chemical Development	10/28/2014	BLDG24-FLOOR-01	BLDG24-SS-FLOOR-01	1-1.5	Х					
Plant prior to discharge to steam stripper.	10/28/2014	BLDG24-FLOOR-02	BLDG24-SS-FLOOR-02	1-1.5	Х					
	10/28/2014	BLDG24-FLOOR-03	BLDG24-SS-FLOOR-03	1-1.5	Х					
	10/26/2015	SWMU15-SURFACE	SWMU15-SS-SURFACE-01	0-0.5	Х	Х	Х	Х	Х	
	5/20/2015	SWMU17-BLDG40-01	SWMU17-SS-BLDG40-01	3	Х					
	5/20/2015	SWMU17-BLDG40-02	SWMU17-SS-BLDG40-02	3	Х					
SWMU-17 - Building 40 Wastewater Steam Stripper Building	5/20/2015	SWMU17-BLDG40-03	SWMU17-SS-BLDG40-03	3	Х					
Ç	5/20/2015	SWMU17-BLDG40-04	SWMU17-SS-BLDG40-04	3	Х					
	10/26/2015	SWMU17-SURFACE	SWMU17-SS-SURFACE-01	0-0.5	Х	Х	Х	х	Х	
	5/19/2015	SWMU23-01	SWMU23-SS-01	2	Х					
SWMU-23 - Building 16 Former Waste Storage Area in Northwest Corner	10/19/2011	SWMU23-SB01	SWMU23-SS-SB01-01	0.5-1	Х					
	10/26/2015	SWMU23-SURFACE	SWMU23-SS-SURFACE-01	0-0.5	Х	Х	Х	Х	Х	
	5/20/2015	SWMU24-BLDG31-01	SWMU24-SS-BLDG31-01	3	Х					
SWMIL-24 - Ruilding 31 Solvent Condensate System	5/20/2015	SWMU24-BLDG31-02	SWMU24-SS-BLDG31-02	3	Х					
SWMU-24 - Building 31 Solvent Condensate System	5/20/2015 SWMU24-BLD0		SWMU24-SS-BLDG31-03	3	Х					
	10/26/2015	SWMU24-SURFACE	SWMU24-SS-SURFACE-01	0-0.5	Х	Х	Х	Х	Х	

							Param			
Area Description	Sample Date	Location ID	Sample ID	Sample Depth (ft bgs) ⁽¹⁾		SVOCs	PCBs	RCRA 8 Metals	Alcohols	рH
	10/27/2015	SWMU26-BLDG16-01	SWMU26-SS-BLDG16-01	2	Х	Х	Х	Х	Х	
	10/27/2015	SWMU26-BLDG16-02	SWMU26-SS-BLDG16-02	2	Х	Х	Х	Х	Х	
	10/27/2015	SWMU26-BLDG16-03	SWMU26-SS-BLDG16-03	2	Х	Х	Х	Х	Х	
	10/27/2015	SWMU26-BLDG16-04	SWMU26-SS-BLDG16-04	2	Х	Х	Х	Х	Х	
SWMU-26 - Chemical Development Reactor Bay Drumming Areas	10/28/2015	SWMU26-BLDG23-01	SWMU26-SS-BLDG23-01	3	Х	Х	Х	Х	Х	
, , , , , , , , , , , , , , , , , , ,	10/28/2015	SWMU26-BLDG23-02	SWMU26-SS-BLDG23-02	3	Х	Х	Х	Х	Х	
	10/28/2015	SWMU26-BLDG23-03	SWMU26-SS-BLDG23-03	3	Х	Х	Х	Х	Х	
	10/28/2015	SWMU26-BLDG23-04	SWMU26-SS-BLDG23-04	3	Х	Х	Х	Х	Х	
	10/26/2015	SWMU26-SURFACE	SWMU26-SS-SURFACE-01	0-0.5	х	Х	Х	Х	Х	

Notes:

Notes:

(i) Depth in feet (ft) below ground surface (bgs).

(ii) Depth in feet (ft) below ground surface (bgs).

(iii) Depth in feet (ft) below ground surface (bgs).

(iv) VOCs = Volatile Organic Compounds via EPA Method 8260B (Target Compound List + Tentatively Identified Compounds).

SVOCs = Semi-Volatile Organic Compounds via EPA Method 8270C (Target Compound List + Tentatively Identified Compounds).

RCRA 8 Metals = Arsenic, Barium, Cadmium, Chromium, Lead, Mercury, Selenium, Silver via EPA Methods 6010B/7471A.

PCBs = Polychlorinated biphenyls via EPA Method 8082.

Alcohols = Alcohols via EPA 8015B.

N/A = Not applicable

Table 3 SWMU-1 - Interim Drum Storage Area Soil Sample Analytical Results Pfizer Rouses Point, NY

		T	I	SWMU-1																				
	NYSDEC Unrestricted Use	NYSDEC Restricted Use Soil Cleanup Objectives -	NYSDEC	SWMU1-SS- SB01-14	SWMU1-SS- SB02-15	SWMU1-SS- SB03-16	SWMU1-SS- SB04-17	SWMU1-SS- SB05-18	SWMU1-SS- SB06-19	SWMU1-SS- SB07-20	SWMU1-SS- SB08-21	SWMU1-SS- SB09-22	SWMU1-SS- SB10-23	SWMU1-SS		SWMU1-SS- SB12-105	SWMU1-SS- SB13-106	SWMU1-SS- SB14-107	SWMU1-SS- TP01-100	SWMU1-SS- TP02-101	SWMU1-SS- TP03-102	SWMU1-SS		SWMU1-SS- SURFACE-01
	Soil Cleanup Objectives	Residential	2005	2-3 ft bgs	2-3 ft bgs	3-4 ft bgs	2-3 ft bgs	1-2 ft bgs	1.5-3.5		1.5-3.0 ft bgs	1.0-3.0 ft bgs	1.5-3.0 ft bgs	1.5-2.0 ft bgs	1-1.5 ft bgs	1-1.5 ft bgs	2-2.5		1.5-2 ft bgs					
Constituent	(6 NYCRR Part 375-6.8(a))	(6 NYCRR Part 375-6.8(b))	ASP CRQL	10/25/2006	10/25/2006	10/25/2006	10/25/2006	10/25/2006	10/25/2006	10/25/2006	10/26/2006	10/25/2006	10/26/2006	11/2/2015	11/2/2015 ⁽³⁾	11/2/2015	11/2/2015	11/2/2015	10/28/2015	10/28/2015	10/28/2015	10/28/2015	10/28/2015 ⁽³⁾	10/29/2015 ⁽⁴⁾
Volatile Organic Compounds (mg/kg)																								
2-Butanone (MEK)		100	0.01	ND	<0.023	<0.022	<0.023	<0.025	0.017 J	< 0.023	<0.026	<0.023	<0.026	<0.023	<0.023									
Acetone	0.05	100	0.01	ND	ND	ND	0.016	ND	0.019	0.009	0.03	ND	ND	<0.023	<0.022	<0.023	<0.025	0.044 B	0.028	<0.026	<0.023	<0.026	<0.023	<0.023
Benzene	0.06	2.9	0.005	ND	ND	ND	0.003 J	ND	ND	ND	ND	ND	ND	<0.0047	<0.0045	<0.0046	0.00070 J	0.0013 J	<0.0047	<0.0053	<0.0046	<0.0051	<0.0045	<0.0047
cis-1,2-Dichloroethene	0.25	59	0.005	ND	<0.0047	<0.0045	<0.0046	< 0.0050	0.0057 J	<0.0047	<0.0053	<0.0046	<0.0051	<0.0045	<0.0047									
Methylene chloride	0.05	51	0.005	0.002 BJ	0.004 BJ	0.004 BJ	0.004 BJ	0.005 B	0.004 BJ	0.004 B	0.005 B	0.003 BJ	0.005 B	<0.0047	<0.0045	< 0.0046	< 0.0050	< 0.0061	< 0.0047	< 0.0053	<0.0046	<0.0051	< 0.0045	< 0.0047
Styrene			0.005	ND	<0.0047	<0.0045	< 0.0046	< 0.0050	<0.0061	0.00029 J	< 0.0053	<0.0046	< 0.0051	<0.0045	< 0.0047									
Tetrachloroethene (PCE)	1.3	5.5	0.005	0.001 J	ND	ND	ND	ND	ND	ND	0.001 J	ND	0.001 BJ	<0.0047	< 0.0045	< 0.0046	< 0.0050	< 0.0061	< 0.0047	< 0.0053	<0.0046	< 0.0051	<0.0045	< 0.0047
Toluene	0.7	100	0.005	0.001 BJ	ND	0.002 BJ	0.002 BJ	0.002 BJ	ND	0.001 BJ	ND	0.001 BJ	ND	<0.0047	<0.0045	<0.0046	< 0.0050	0.00064 J	0.00062 J	< 0.0053	<0.0046	<0.0051	<0.0045	< 0.0047
Total Xylenes	0.26	100	0.005	0.002 BJ	ND	ND	ND	ND	ND	0.002 BJ	ND	ND	ND	<0.0047	<0.0045	< 0.0046	< 0.0050	<0.0061	0.0025 J	< 0.0053	<0.0046	<0.0051	<0.0045	< 0.0047
Trichloroethene (TCE)	0.47	10	0.005	ND	0.005	< 0.0047	< 0.0045	< 0.0046	< 0.0050	< 0.0061	< 0.0047	< 0.0053	<0.0046	< 0.0051	<0.0045	< 0.0047								
Trichlorofluoromethane			0.005	ND	< 0.0047	<0.0045	<0.0046	< 0.0050	< 0.0061	<0.0047	< 0.0053	<0.0046	0.0027 J	0.0033 J	< 0.0047									
Tentatively Identified Compounds (TICs)			•							•	•		•			•								
Trimethylnaphthalene Isomers (multiple)				ND	0.005 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND								
Total Unknown TICs				0	0	0	0	0	0	0.007 J	0	0.005 J	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Semi Volatile Organic Compounds (mg/k	(g)	•	•		•	•	•	•	•		•	•	•			•	•	•						
Fluoranthene	100	100	0.170	NA	ND<0.190	ND<0.190	ND<0.190	ND<0.200	ND<0.200	ND<0.950	ND<0.180	ND<0.940	0.120 J	NA	ND<1.8									
Alcohols (mg/kg) ⁽⁵⁾	1													1				1				1		
Methanol	_		l	ND	ND<1.1	ND<0.99	ND<1.0	ND<1.1	ND<1.1	1.9	ND<0.99	ND<0.99	ND<1.0	NA	ND<0.97									
Propanol				ND	ND<1.1	ND<0.99	ND<1.0	ND<1.1	ND<1.1	0.15 J	ND<0.99	ND<0.99	ND<1.0	NA	ND<0.97									
Polychlorinated Biphenyls (mg/kg)	-			ND	ND	IND	ND	IND	IND	ND	ND	IND	ND	ND VI.I	110 -0.33	ND 1.0	ND VI.I	ND VI.I	0.133	140.55	140.00	ND 1.0	INA	140.0.07
Total Polychlorinated Biphenyls	0.1	1 1	0.033	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	ND<0.250	ND<0.240	ND<0.270	ND<0.220	ND<0.250	ND<0.250	ND<0.210	ND<0.270	ND<0.210	NA	ND<0.190
Total Metals (mg/kg)		·												1				1				1		
Arsenic	13	16	0.003	3	NA	2.7	2.6	2.4	3.3	3.2	2.2	0.83 J	2.8	3.8	NA	2.0 J								
Barium	350	350	0.040	41.9 E	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	37.5	38.3	39.1	46.6	45.5	28.7	11.2	49.6	15.3	NA	10.5
Cadmium	2.5	2.5	0.001	0.14 B	NA.	NA.	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA.	0.14 J	0.15 J	0.15 J	0.17 J	0.25	0.059 J	0.038 J	0.11 J	0.041 J	NA	ND<2.2
Chromium	1(1) / 30(2)	22(1) / 36(2)	0.002	13.2	NA.	NA.	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA	10.5	10.5	10.4	16.3	14.1	8.1	3.7	11.1	6.5	NA	4.8
Lead	63	400	0.002	5.3	NA NA	NA NA	NA NA	NΔ	NA NA	NA NA	NA NA	NA NA	NA NA	6.7	6	6.3	8.2	46.6	57.6	1.6	7.4	8	NA NA	3.2
Selenium	3.9	36	0.002	0.97 B	NA NA	ND<4.5	ND<4.3	ND<4.3	ND<4.7	ND<4.6	ND<4.5	ND<4.1	ND<4.3	ND<4.3	NA NA	ND<4.5								

Mercury	0.18	0.81	0.0001	0.014 B	NA	0.012 J	0.010 J	ND<0.023	0.13 J	0.015 J	ND<0.023	ND<0.021	ND<0.020	ND<0.020	NA	ND<0.021								
pH (S.U.)		T	1																					
Leachable pH			-	7.75	7.93	7.94	7.21	7.58	6.87	7.37	7.4	7.85	8.06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:
Criteria Value = Criteria provided in 6 NYCRR Part 375/ Soil Cleanup Objectives dated December 14, 2006.

Criteria Value = Criteria provided in 6 NYCRR Part 375/ Soil Cleanup Objectives dated December 14, 2006.

Italicized Criteria Value: Criteria provided in CP-51 / Supplemental Soil Cleanup Objectives dated October 21, 2010.

Bold value indicates that the constituent was detected above the laboratory reporting limit

Bold outlined cell indicates that the concentration exceeds NYSDEC Unrestricted Use Soil Cleanup Objectives (6 NYCRR Subpart 375-6.8(a))

mg/kg = milligrams per kilogram

S.U. = standard units

-- = Not established

CRQL = Contract Required Quantitation Level from Exhibit C-Part I (Superfund-CLP Organics) and Part II (Superfund-CLP Inorganics) of Analytical Services Protocol (ASP), July 2005

ND = Not detected

NA = Not analyzed

ft bgs = feet below ground surface

Data Qualifiers

- It ogs = teet below ground surrace

 Data Qualifiers

 B = For Organics: Compound was found in a blank and sample; for Inorganics: Value greater than or equal to the instrument detection limit, but less than the quantitation limit.

 E = Value exceeded calibration range and the concentration is an approximate value.

 J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

 (1) = Value is established for hexavalent chromium

 (2) = Value is established for trivalent chromium

- (3) = Field Duplicate
 (4) = Soil sample was recollected on 12/17/2015 for additional analyses due to a lab error.
 (5) = Methanol and 2-Propanol were the only alcohols analyzed for in 2006.

Pfizer - Rouses Point (206910.00) Tbl 3 - SWMU-1 Soil Results.xls 1 of 1

Table 4 SWMU-4 - Former Container Storage Area Soil Sample Analytical Results Pfizer

Rouses Point, NY

	1		ı	ı								
					ı		1	SWMU-4		ı		
	NYSDEC Unrestricted Use	NYSDEC Restricted Use Soil Cleanup Objectives -	NYSDEC	SWMU4-SS- SB01-24	SWMU4-SS- SB02-25	SWMU4-SS- SB03-100	SWMU4-SS- SB04-101	SWMU4-SS- SB05-102	SWMU4-SS- SB06-103	SWMU4-SS- SB07-104	SWMU4-SS- SB08-105	SWMU4-SS- SURFACE-01
	Soil Cleanup Objectives	Residential	2005	1-2 ft bgs	1-2 ft bgs	0.25-2.25 ft bgs	1.5-2.5 ft bgs	1.0-3.0 ft bgs	1.5-3.0 ft bgs	1.75-3.25 ft bgs	1.25-3.0 ft bgs	0.5-1 ft bgs
Constituent	(6 NYCRR Part 375-6.8(a))	(6 NYCRR Part 375-6.8(b))	ASP CRQL	10/26/2006	10/26/2006	11/2/2015	11/2/2015	11/3/2015	11/3/2015	11/3/2015	11/3/2015	11/2/2015
Volatile Organic Compounds (mg/kg)												
Methylene chloride	0.05	51	0.005	0.005 BJ	0.006 B	ND<0.0048	ND<0.0048	ND<0.0050	ND<0.0058	ND<0.0052	ND<0.0050	ND<0.0049
Tetrachloroethene (PCE)	1.3	5.5	0.005	0.001 BJ	0.001 BJ	ND<0.0048	ND<0.0048	ND<0.0050	ND<0.0058	ND<0.0052	ND<0.0050	ND<0.0049
Semi Volatile Organic Compounds (mg/kg	1)											
Bis(2-ethylhexyl)phthalate		50	0.170	NA	NA	ND<0.190	ND<0.180	0.110 J	ND<0.190	ND<0.190	ND<0.190	ND<0.180
Fluoranthene	100	100	0.170	NA	NA	ND<0.190	ND<0.180	ND<0.190	ND<0.190	ND<0.190	ND<0.190	0.023 J
Alcohols (mg/kg) (3)							•	*				
Methanol				ND	ND	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	0.56 BJ	ND<0.096
Polychlorinated Biphenyls (mg/kg)												
Total Polychlorinated Biphenyls	0.1	1	0.033	NA	NA	ND<0.220	ND<0.250	ND<0.190	ND<0.230	ND<0.250	ND<0.280	ND<0.220
Total Metals (mg/kg)												
Arsenic	13	16	0.003	4.7	NA	2.7	2.5	3	3.6	3.6	4.1	3
Barium	350	350	0.040	128	NA	38.3	37.4	40.6	49.8	33.4	48.2	16
Cadmium	2.5	2.5	0.001	0.42	NA	0.17 J	0.15 J	0.10 J	0.11 J	0.086 J	0.14 J	0.16 J
Chromium	1 ⁽¹⁾ / 30 ⁽²⁾	22 ⁽¹⁾ / 36 ⁽²⁾	0.002	23.9	NA	11.6	10.5	13.5	16	11	15	4.9
Lead	63	400	0.002	7	NA	6.8	6.1	5.1	7.3	5.7	6.4	7.1
Selenium	3.9	36	0.007	2.1 B	NA	ND<4.5	ND<4.3	ND<4.4	ND<5.0	ND<4.4	ND<4.9	ND<4.2
Mercury	0.18	0.81	0.0001	0.015 B	NA	0.013 J	ND<0.022	0.0092 J	0.013 J	0.012 J	ND<0.023	ND<0.021
pH (S.U.)												
Leachable pH		-		7.88	8.27	NA						

1 of 1

Notes:

Criteria Value = Criteria provided in 6 NYCRR Part 375/ Soil Cleanup Objectives dated December 14, 2006.

Italicized Criteria Value: Criteria provided in CP-51 / Supplemental Soil Cleanup Objectives dated October 21, 2010.

Bold value indicates that the constituent was detected above the laboratory reporting limit

Bold outlined cell indicates that the concentration exceeds NYSDEC Unrestricted Use Soil Cleanup Objectives (6 NYCRR Subpart 375-6.8(a))

mg/kg = milligrams per kilogram

S.U. = standard units

-- = Not established

CRQL = Contract Required Quantitation Level from Exhibit C-Part I (Superfund-CLP Organics) and Part II (Superfund-CLP Inorganics) of Analytical Services Protocol (ASP), July 2005

ND = Not detected

NA = Not analyzed

ft bgs = feet below ground surface

Data Qualifiers

B = For Organics: Compound was found in a blank and sample; for Inorganics: Value greater than or equal to the instrument detection limit, but less than the quantitation limit.

J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

(1) = Value is established for hexavalent chromium

(2) = Value is established for trivalent chromium

(3) = Methanol and 2-Propanol were the only alcohols analyzed for in 2006.

Table 5 **SWMU-5 - Container Storage Area** Soil Sample Analytical Results Pfizer

Rouses Point, NY

							SWMU-5			
	NYSDEC Unrestricted Use	NYSDEC Restricted Use Soil Cleanup Objectives -	NYSDEC	BLDG17C-SS- TRUCK-01	BLDG17C-	-SS-PAD-01	BLDG17C-SS- PAD-02	BLDG17C-SS- PAD-03	BLDG17C-SS- SUMP-01	SWMU5-SS- SURFACE-01
	Soil Cleanup Objectives	Residential	2005	1.0 - 1.5 ft bgs	1.0 - 1.	5 ft bgs	1.0 - 1.5 ft bgs	1.0 - 1.5 ft bgs	8.0 - 8.5 ft bgs	0-0.5 ft bgs
Constituent	(6 NYCRR Part 375-6.8(a))	(6 NYCRR Part 375-6.8(b))	ASP CRQL	10/28/2014	10/28/2014	10/28/2014 ⁽³⁾	10/28/2014	10/28/2014	10/28/2014	10/26/2015
Volatile Organic Compounds (mg/kg)										
Acetone	0.05	100	0.01	ND<0.0045	0.013 J	0.0051 J	ND<0.063	0.068	ND<0.055	ND<0.023
Methylene chloride	0.05	51	0.005	ND<0.0045	ND<0.044	ND<0.049	ND<0.063	ND<0.060	ND<0.055	ND<0.0045
Trichlorfluoromethane			0.005	ND<0.0045	ND<0.044	ND<0.049	ND<0.063	ND<0.060	ND<0.055	0.0089 J
Semi Volatile Organic Compounds (mg/kg)										
Acetophenone			0.170	ND<0.026	ND<0.024	0.044 J	ND<0.18	ND<0.18	ND<0.17	ND<0.93
Benzaldehyde			0.170	ND<0.026	ND<0.024	ND<0.18	ND<0.18	ND<0.18	ND<0.17	1.2
Alcohols (mg/kg)			•			•	•	•	•	
Methanol				ND<1.1	0.00061 J	0.00072 J	ND<5.2	ND<10	ND<1.0	ND<0.96
Polychlorinated Biphenyls (mg/kg)										
Total PCBs	0.1	1	0.033	ND<0.260	ND<0.230	ND<0.250	ND<0.250	ND<0.230	ND<0.240	ND<0.250
Total Metals (mg/kg)										
Arsenic	13	16	0.003	2.5	3.2	2.4	3.1	3.7	2.9	3.1
Barium	350	350	0.040	24.5	31.5	27.5	36.9	31.8	32.9	30.8
Chromium	1 ⁽¹⁾ / 30 ⁽²⁾	22 ⁽¹⁾ / 36 ⁽²⁾	0.002	7.4	6.7	5.7	5.6	7.2	4.7	7.4
Lead	63	400	0.002	5	6.6	5.4	5.8	5.9	5.6	5.5
Selenium	3.9	36	0.007	0.47 J	ND<4.0	ND<4.2	ND<4.2	ND<4.1	ND<3.8	ND<4.3
Mercury	0.18	0.81	0.0001	0.022	0.012 J	0.013 J	0.014 J	0.012 J	0.011 J	0.0094 J

Notes:
Criteria Value = Criteria provided in 6 NYCRR Part 375/ Soil Cleanup Objectives dated December 14, 2006.

Bold value indicates that the constituent was detected above the laboratory reporting limit

Bold outlined cell indicates that the concentration exceeds NYSDEC Unrestricted Use Soil Cleanup Objectives (6 NYCRR Subpart 375-6.8(a))

mg/kg = milligrams per kilogram

-- = Not established

CRQL = Contract Required Quantitation Level from Exhibit C-Part I (Superfund-CLP Organics) and Part II (Superfund-CLP Inorganics) of Analytical Services Protocol (ASP), July 2005

ND = Not detected

ft bgs = feet below ground surface

Data Qualifiers

J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

(1) = Value is established for hexavalent chromium

 $^{(2)}$ = Value is established for trivalent chromium

(3) = Field Duplicate

Table 6 SWMU-6 - Tank Farm Soil Sample Analytical Results

Pfizer Rouses Point, NY

					SWMU-6	3	
	NYSDEC Unrestricted Use Soil Cleanup Objectives	NYSDEC Restricted Use Soil Cleanup Objectives - Residential	NYSDEC 2005 ASP	TFARM-SS- SUMP-01 2.0-2.5 ft bgs	TFARM-SS- PAD-02 1.0-1.5 ft bgs	TFARM-SS- PAD-03 1.0-1.5 ft bgs	SWMU6-SS- SURFACE-01 0-0.5 ft bgs
Constituent	(6 NYCRR Part 375-6.8(a))	(6 NYCRR Part 375-6.8(b))	CRQL	11/4/2014	11/4/2014	11/4/2014	10/26/2015
Volatile Organic Compounds (mg/kg)							
2-Butanone (MEK)	0.12	100	0.01	ND<0.025	0.011 J	ND<0.043	ND<0.027
Acetone	0.05	100	0.01	ND<0.025	0.054	0.02 J	ND<0.027
Ethylbenzene	1	41	0.005	ND<0.005	0.0054	0.00065 J	ND<0.0053
Toluene	0.7	100	0.005	ND<0.005	0.067	0.028	ND<0.0053
Trichlorofluoromethane			0.005	ND<0.005	ND<0.005	ND<0.043	0.0035 J
Xylenes, Total	0.26	100	0.005	ND<0.0099	0.0012	0.002 J	ND<0.011
Semi Volatile Organic Compounds (mg/kg)					•	•	
Bis(2-ethylhexyl)phthalate		50	0.170	ND<0.180	ND<0.180	ND<0.190	1.8 J
Butyl benzyl phthalate		100	0.170	ND<0.180	ND<0.180	ND<0.190	1.3 J
Alcohols (mg/kg)							
Total Alcohols	N/A	N/A	0.033	ND	ND	ND	ND
Polychlorinated Biphenyls (mg/kg)							
Total PCBs	0.1	1	0.033	ND<0.250	ND<0.220	ND<0.200	ND<0.570
Total Metals (mg/kg)							
Arsenic	13	16	0.003	1.2 J	2.4	2.1	2.9
Barium	350	350	0.040	14.9	21.4	19.7	69.4
Cadmium	2.5	2.5	0.001	0.09 J	0.15 J	0.14 J	1.6
Chromium	1 ⁽¹⁾ / 30 ⁽²⁾	22 ⁽¹⁾ / 36 ⁽²⁾	0.002	3.3	5.9	9.4	13.6
Lead	63	400	0.002	3.1	5.9	4.8	38.1
Selenium	3.9	36	0.007	ND<4.3	ND<4.2	0.74 J	ND<4.7
Mercury	0.18	0.81	0.0001	0.0085 J	0.014 J	0.0095 J	0.047

Notes:

Criteria Value = Criteria provided in 6 NYCRR Part 375/ Soil Cleanup Objectives dated December 14, 2006.

Italicized Criteria Value: Criteria provided in CP-51 / Supplemental Soil Cleanup Objectives dated October 21, 2010.

Bold value indicates that the constituent was detected above the laboratory reporting limit

Bold outlined cell indicates that the concentration exceeds NYSDEC Unrestricted Use Soil Cleanup Objectives (6 NYCRR Subpart 375-6.8(a))

-- = Not established

mg/kg = milligrams per kilogram

CRQL = Contract Required Quantitation Level from Exhibit C-Part I (Superfund-CLP Organics) and Part II (Superfund-CLP Inorganics) of Analytical Services Protocol (ASP), July 2005

N/A = Not Applicable

ND = Not detected

ft bgs = below ground surface

Data Qualifiers

J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

(1) = Value is established for hexavalent chromium

(2) = Value is established for trivalent chromium

Table 7 SWMU-7 - Process Sewer Soil Sample Analytical Results Pfizer Rouses Point, NY

												S	WMU-7							
		NYSDEC																		
	NYSDEC	Restricted Use		SWMU7-SS- EAST-01	SWMU7-SS- EAST-02	SWMU7-SS- EAST-03	SWMU7-SS- BLDG23-01	CWMII7 CC	-BLDG23-02	SWMU7-SS- BLDG23-03	SWMU7-SS- BLDG23-04	SWMU7-SS- BLDG23-05	SWMU7-SS- BLDG23-06	SWMU7-SS- BLDG23-07	SWMU7-SS-01	SWMU7-SS-02	SWMU7-SS-03	SWMU7-SS-04	SWMU7-SS-05	SWMU7-SS-06
	Unrestricted Use	Soil Cleanup Objectives -	NYSDEC	9.5 ft bgs	9.5 ft bas	6 ft bgs	4.5 ft bgs		t bgs	5.0 ft bgs	5.5 ft bgs	7.0 ft bgs	7.0 ft bas	7.0 ft bgs	7.0 ft bgs	7.0 ft bgs	7.0 ft bas	4.5 ft bas	6.5 ft bgs	6.5 ft bgs
Constituent	Soil Cleanup Objectives (6 NYCRR Part 375-6.8(a))	Residential (6 NYCRR Part 375-6.8(b))	2005 ASP CRQL	8/24/2010	8/24/2010	8/24/2010	5/19/2015	5/19/2015	5/19/2015 ⁽³⁾	5/19/2015	5/19/2015	5/19/2015	5/19/2015	5/19/2015	5/20/2015	5/20/2015	5/20/2015	10/29/2015	10/29/2015	10/29/2015
Volatile Organic Compounds (mg/kg)	(0 NTCKK Fait 373-0.0(a))	(0 N 1 CKK Fait 373-0.0(b))	ASF CRQL	6/24/2010	8/24/2010	8/24/2010	3/19/2013	3/19/2013	3/13/2013	3/19/2013	3/19/2013	3/19/2013	3/19/2013	3/19/2013	3/20/2013	3/20/2013	5/20/2015	10/29/2013	10/23/2013	10/29/2015
1.1-Dichloroethene	0.33	100	0.005	ND<0.0043	ND<0.0045	ND<0.0068	ND<0.0048	ND<0.005	ND<0.0047	ND<0.0057	ND<0.0052	ND<0.005	ND<0.0046	ND<0.005	ND<0.005	ND<0.0043	ND<0.005	ND<0.0051	ND<0.0056	ND<0.0047
2-Butanone (MEK)	0.33	100	0.003	ND<0.0043	ND<0.0043	ND<0.0000	ND<0.0046	ND<0.005	ND<0.0047	ND<0.0037	ND<0.0032	ND<0.005	ND<0.0040	ND<0.003	ND<0.005	ND<0.0043	ND<0.005	ND<0.0051	ND<0.0030	ND<0.0047
Acetone	0.12	100	0.01	0.0078 J	ND<0.022 ND<0.022	ND<0.034 ND<0.034	ND<0.024 ND<0.024	ND<0.025	ND<0.024 ND<0.024	ND<0.028	ND<0.026 ND<0.026	0.012 J	ND<0.0023	ND<0.025 ND<0.025	ND<0.025 ND<0.025	ND<0.022 ND<0.022	ND<0.025 ND<0.025	ND<0.025 ND<0.025	ND<0.028	ND<0.024 ND<0.024
Chlorobenzene	1.1	100	0.01	ND<0.0043	ND<0.022 ND<0.0045	ND<0.034 ND<0.0068	ND<0.024 ND<0.0048	ND<0.025	ND<0.024 ND<0.0047	ND<0.028	ND<0.026 ND<0.0052	ND<0.005	ND<0.0023	ND<0.025	ND<0.025	ND<0.022 ND<0.0043	ND<0.025 ND<0.005	ND<0.025 ND<0.0051	ND<0.026 ND<0.0056	ND<0.024 ND<0.0047
Dichlorodifluoromethane	• • • • • • • • • • • • • • • • • • • •		0.005	ND<0.0043	ND<0.0045 ND<0.0045	ND<0.0068	ND<0.0048	ND<0.005	ND<0.0047 ND<0.0047	ND<0.0057	ND<0.0052 ND<0.0052	ND<0.005 ND<0.005	ND<0.0046	ND<0.005	ND<0.005	ND<0.0043 ND<0.0043	ND<0.005 ND<0.005	ND<0.0051	ND<0.0056	ND<0.0047 ND<0.0047
Isopropylbenzene	-	100	0.005	ND<0.0043 ND<0.0043	ND<0.0045 ND<0.0045	ND<0.0068	ND<0.0048	ND<0.005	ND<0.0047	ND<0.0057	ND<0.0052 ND<0.0052	ND<0.005 ND<0.005	ND<0.0046	ND<0.005	ND<0.005	ND<0.0043 ND<0.0043	ND<0.005 ND<0.005	ND<0.0051	ND<0.0056	ND<0.0047 ND<0.0047
Methyl Acetate			0.005	ND<0.0043	ND<0.0045 ND<0.0045	ND<0.0068	ND<0.0048	ND<0.005	ND<0.0047 ND<0.0047	ND<0.0057	ND<0.0052 ND<0.0052	ND<0.005 ND<0.005	ND<0.0046	ND<0.005	ND<0.005	ND<0.0043 ND<0.0043	ND<0.005 ND<0.005	ND<0.0051	ND<0.0056	ND<0.0047 ND<0.0047
Methylene chloride	0.05	 51	0.005	0.0035 J	0.0031 J	0.0047 J	ND<0.0048	ND<0.005	ND<0.0047	ND<0.0057	ND<0.0052 ND<0.0052	ND<0.005 ND<0.005	ND<0.0046 ND<0.0046	ND<0.005	0.0039	0.0022	0.0028 BJ	ND<0.0051	ND<0.0056	ND<0.0047 ND<0.0047
Styrene			0.005	ND<0.0043	ND<0.0045	ND<0.0068	ND<0.0048	ND<0.005	ND<0.0047	ND<0.0057	ND<0.0052	ND<0.005	ND<0.0046	ND<0.005	ND<0.005	ND<0.0043	ND<0.005	ND<0.0051	ND<0.0056	ND<0.0047
Tetrachloroethene	1.3	5.5	0.005	ND<0.0043 ND<0.0043	ND<0.0045 ND<0.0045	ND<0.0068	ND<0.0048	ND<0.005	ND<0.0047	ND<0.0057	ND<0.0052 ND<0.0052	ND<0.005 ND<0.005	ND<0.0046 ND<0.0046	ND<0.005	ND<0.005	ND<0.0043 ND<0.0043	ND<0.005 ND<0.005	ND<0.0051	ND<0.0056	ND<0.0047 ND<0.0047
Total Xylenes	0.26	100	0.005	ND<0.0043 ND<0.0085	ND<0.0045	ND<0.0008	ND<0.0048	ND<0.005	ND<0.0047	ND<0.0057	ND<0.0052	ND<0.005	ND<0.0046	ND<0.005	ND<0.005	ND<0.0043 ND<0.0086	ND<0.005 ND<0.010	ND<0.0051	ND<0.0056	ND<0.0047 ND<0.0095
Total Ayleries Toluene	0.26	100	0.005	ND<0.0065 ND<0.0043	ND<0.0089	ND<0.014 ND<0.0068	ND<0.0096	ND<0.010	ND<0.0094 ND<0.0047	ND<0.011	ND<0.010	ND<0.010 ND<0.005	ND<0.0092 ND<0.0046	ND<0.010	ND<0.010	ND<0.0086 ND<0.0043	ND<0.010 ND<0.005	ND<0.010	ND<0.011 ND<0.0056	ND<0.0095 ND<0.0047
Trichlorofluoromethane	•		0.005	ND<0.0043	ND<0.0045 ND<0.0045		0.051	0.0088	0.0042 J	0.00078 J	0.044	ND<0.005 ND<0.005	0.012	0.0057 J	ND<0.005	0.00083 J	0.0019 J	ND<0.0051	ND<0.0056	ND<0.0047 ND<0.0047
Tentatively Identified Compounds (TICs)			0.005	ND<0.0043	ND<0.0045	ND<0.0068	0.051	0.0088	0.0042 J	0.00078 J	0.044	ND<0.005	0.012	0.0057 J	ND<0.005	0.00083 J	0.0019 J	ND<0.0051	ND<0.0056	ND<0.0047
1,6,7-Trimethylnaphthalene		_	I	0.0062	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.6-Dimethylnaphthalene				0.0062	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Naphthalene				0.014	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,3,6-Trimethylnaphthalene	-			0.0077	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dibromofluoromethane				ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	12 JN	ND ND	ND	ND ND	ND ND
Total Unknown TICs				0.0404	ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	14 J	4.5 J	12 J	ND ND	ND ND	ND ND
Semi Volatile Organic Compounds (mg/kg)	<u> </u>			0.0404	ND	ND	ND	IND	ND	ND	ND	ND	ND	IND	170	4.55	120	ND	IND	IND
Total Semi Volatile Organic Compounds	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Alcohols (mg/kg)	INA	IV/A	19/74	INA	1975	19/5	1973	INA	19/3	INA	IVA	1975	1975	INA	INA	INA	INA	IVA	INA	INA
Total Alcohols	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Polychlorinated Biphenyls (mg/kg)	1.07.		1471			1	1975	INA	1973				1975	INA	INA	INA	INA	IVA	INA	INA
Total PCBs	0.1	1	0.033	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
Total Metals (mg/kg)				ı.											I.	I.	l .	· L		
Arsenic	13	16	0.003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	350	350	0.040	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	2.5	2.5	0.001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	1 ⁽¹⁾ / 30 ⁽²⁾	22 ⁽¹⁾ / 36 ⁽²⁾	0.002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	63	400	0.002	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Mercury	0.18	0.81	0.002	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Morodry	0.10	0.01	0.0001	11/7	INA	INA	I W/C	14/7	11/7	INA	I W/T	11/7	19/7	14/7	I W/T	I N/A	14/7	11/7	IVA	

Notes:
Criteria Value = Criteria provided in 6 NYCRR Part 375/ Soil Cleanup Objectives dated December 14, 2006.
Italicized Criteria Value: Criteria provided in CP-51 / Supplemental Soil Cleanup Objectives dated October 21, 2010.

Bold value indicates that the constituent was detected above the laboratory reporting limit

Bold outlined cell indicates that the concentration exceeds NYSDEC Unrestricted Use Soil Cleanup Objectives (6 NYCRR Subpart 375-6.8(a))

mg/kg = milligrams per kilogram
-- = Not established

CRQL = Contract Required Quantitation Level from Exhibit C-Part I (Superfund-CLP Organics) and Part II (Superfund-CLP Inorganics) of Analytical Services Protocol (ASP), July 2005

N/A = Not Applicable NA = Not Analyzed
ND = Not detected
ft bgs = feet below ground surface

D = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. B = Compound was found in a blank sample.
F1 = MS and/or MSD Recovery is outside acceptance limits.

F2 = MS/MSD RPD exceeds control limits.

UJ = Compound was not detected above the reporting limit and the result is an estimate.

(1) = Value is established for hexavalent chromium

(2) = Value is established for trivalent chromium

(3) = Field Duplicate

SWMU Sampling and Analysis Plan (206910) Tbl 7 - SWMU-7 Soil Results.xls 1 of 3 Woodard & Curran April 2016

Table 7 SWMU-7 - Process Sewer Soil Sample Analytical Results Pfizer Rouses Point, NY

													SWMU-7									
		NYSDEC																		1		
	NYSDEC	Restricted Use											SWMU7-SS-				SWMU7-SS-	SWMU7-SS-	SWMU7-SS-			SWMU7-SS-
	Unrestricted Use	Soil Cleanup Objectives -	NYSDEC			1							BLDG16-10				BLDG16-14	BLDG16-15		SWMU7-SS-BLI		BLDG23-10
Constituent	Soil Cleanup Objectives (6 NYCRR Part 375-6.8(a))	Residential (6 NYCRR Part 375-6.8(b))	2005 ASP CRQL	2.5 ft bgs 10/26/2015	3.0 ft bgs 10/26/2015	3.0 ft bgs	2.0 ft bgs 10/27/2015	3.0 ft bgs 10/27/2015	2.0 ft bgs		2.0 ft bgs 10/27/2015											
	(6 NTCRR Fait 375-6.6(a))	(6 NTCRR Fait 375-6.6(b))	ASP CRUL	10/26/2015	10/26/2015	10/26/2015	10/2//2015	10/2//2015	10/2//2015	10/2//2015	10/2//2015	10/2//2015	10/2//2015	10/2//2015	10/2//2015	10/2//2015	10/2//2015	10/2//2015	10/2//2015	10/2//2015 10/	27/2015	10/2//2015
Volatile Organic Compounds (mg/kg)	0.33	400	0.005	ND<0.0045	ND<0.0056	ND 40 0055	ND<0.0052	ND 40 0044	ND<0.0057	ND<0.0048	ND<0.0059	ND<0.0057	ND<0.0046	ND<0.0047	ND<0.0043	ND<0.0047	ND<0.0052	ND<0.0051	ND<0.0052	ND<0.0045 NE	D<0.0046 N	ND<0.0056
1,1-Dichloroethene		100		_											1							
2-Butanone (MEK)	0.12	100	0.01	ND<0.022	ND<0.028	ND<0.027	ND<0.026	ND<0.022	ND<0.029	ND<0.024	ND<0.030	ND<0.029	ND<0.023	ND<0.023	ND<0.021	ND<0.024	ND<0.026	ND<0.026	0.014 UJ			ND<0.028
Acetone	0.05	100	0.01	ND<0.022	ND<0.028	ND<0.027	ND<0.026	ND<0.022	ND<0.029	ND<0.024	ND<0.030	ND<0.029	ND<0.023	ND<0.023	ND<0.021	ND<0.024	ND<0.026	ND<0.026	0.160 F1F2			ND<0.028
Chlorobenzene	1.1	100	0.005	ND<0.0045	ND<0.0056	ND<0.0055	ND<0.0052	ND<0.0044	ND<0.0057	ND<0.0048	ND<0.0059	ND<0.0057	ND<0.0046	ND<0.0047	ND<0.0043	ND<0.0047	ND<0.0052	ND<0.0051	ND<0.0052			ND<0.0056
Dichlorodifluoromethane			0.005	ND<0.0045	ND<0.0056	ND<0.0055		ND<0.0044	ND<0.0057	ND<0.0048	ND<0.0059	ND<0.0057	ND<0.0046	ND<0.0047	ND<0.0043	ND<0.0047	ND<0.0052	ND<0.0051	ND<0.0052			ND<0.0056
Isopropylbenzene		100	0.005	ND<0.0045	ND<0.0056	ND<0.0055		ND<0.0044	ND<0.0057	ND<0.0048	ND<0.0059	ND<0.0057	ND<0.0046	ND<0.0047	ND<0.0043	ND<0.0047	ND<0.0052	ND<0.0051	ND<0.0052			ND<0.0056
Methyl Acetate			0.005	ND<0.0045	ND<0.0056	ND<0.0055	ND<0.0052	ND<0.0044	ND<0.0057	ND<0.0048	ND<0.0059	ND<0.0057	ND<0.0046	ND<0.0047	ND<0.0043	ND<0.0047	ND<0.0052	ND<0.0051	ND<0.0052			ND<0.0056
Methylene chloride	0.05	51	0.005	0.0043 BJ	0.0059 B	ND<0.0055	0.0025 J	0.0023 J	0.003 J	0.0024 J	ND<0.0059	0.0028 J	ND<0.0046	ND<0.0047	0.002 J	ND<0.0047	0.0025 J	ND<0.0051	ND<0.0052			0.0028 J
Styrene		-	0.005	ND<0.0045	ND<0.0056	ND<0.0055		ND<0.0044	ND<0.0057	ND<0.0048	ND<0.0059	ND<0.0057	ND<0.0046	ND<0.0047	ND<0.0043	ND<0.0047	ND<0.0052	ND<0.0051	ND<0.0052			ND<0.0056
Tetrachloroethene	1.3	5.5	0.005	ND<0.0045	ND<0.0056	ND<0.0055		ND<0.0044	ND<0.0057	ND<0.0048	ND<0.0059	ND<0.0057	ND<0.0046	ND<0.0047	ND<0.0043	ND<0.0047	ND<0.0052	ND<0.0051	ND<0.0052			ND<0.0056
Total Xylenes	0.26	100	0.005	ND<0.0089	ND<0.011	ND<0.011	ND<0.010	ND<0.0088	ND<0.011	ND<0.0096	ND<0.012	ND<0.011	ND<0.0092	ND<0.0093	ND<0.0085	ND<0.0095	ND<0.010	ND<0.010	ND<0.010			ND<0.011
Toluene	0.7	100	0.005	ND<0.0045	ND<0.0056	ND<0.0055	ND<0.0052	ND<0.0044	ND<0.0057	ND<0.0048	ND<0.0059	ND<0.0057	ND<0.0046	ND<0.0047	ND<0.0043	ND<0.0047	ND<0.0052	ND<0.0051	ND<0.0052			ND<0.0056
Trichlorofluoromethane			0.005	0.0014 J	ND<0.0056	0.0013 J	ND<0.0052	ND<0.0044	ND<0.0057	0.00088 J	ND<0.0059	ND<0.0057	ND<0.0046	ND<0.0047	0.00068 J	ND<0.0047	ND<0.0052	ND<0.0051	0.001 J	ND<0.0045 NE	D<0.0046	0.027
Tentatively Identified Compounds (TICs)																						
1,6,7-Trimethylnaphthalene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,6-Dimethylnaphthalene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Naphthalene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,3,6-Trimethylnaphthalene		1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromofluoromethane		-		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Unknown TICs		1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Semi Volatile Organic Compounds (mg/kg)																						
Total Semi Volatile Organic Compounds	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Alcohols (mg/kg)																						
Total Alcohols	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Polychlorinated Biphenyls (mg/kg)							•	•						•								
Total PCBs	0.1	1	0.033	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Metals (mg/kg)																						
Arsenic	13	16	0.003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	350	350	0.040	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	2.5	2.5	0.001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	1 ⁽¹⁾ / 30 ⁽²⁾	22 ⁽¹⁾ / 36 ⁽²⁾	0.002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	63	400	0.002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	0.18	0.81	0.0001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

Criteria Value = Criteria provided in 6 NYCRR Part 375/ Soil Cleanup Objectives dated December 14, 2006.

Italicized Criteria Value: Criteria provided in CP-51 / Supplemental Soil Cleanup Objectives dated October 21, 2010.

Bold value indicates that the constituent was detected above the laboratory reporting limit

Bold outlined cell indicates that the concentration exceeds NYSDEC Unrestricted Use Soil Cleanup Objectives (6 NYCRR Subpart 375-6.8(a))

mg/kg = milligrams per kilogram
-- = Not established

CRQL = Contract Required Quantitation Level from Exhibit C-Part I (Superfund-CLP Organics) and Part II (Superfund-CLP Inorganics) of Analytical Services Protocol (ASP), July 2005

N/A = Not Applicable

NA = Not Analyzed ND = Not detected

ft bgs = feet below ground surface ft bgs = feet below ground surface

Data Qualifiers
J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
B = Compound was found in a blank sample.
F1 = MS and/or MSD Recovery is outside acceptance limits.
F2 = MS/MSD RPD exceeds control limits.
UJ = Compound was not detected above the reporting limit and the result is an estimate.

(1) = Value is established for hexavalent chromium

(2) = Value is established for trivalent chromium

(3) = Field Duplicate

SWMU Sampling and Analysis Plan (206910) Tbl 7 - SWMU-7 Soil Results.xls 2 of 3 Woodard & Curran April 2016

Table 7 SWMU-7 - Process Sewer Soil Sample Analytical Results Pfizer Rouses Point, NY

		NVODEO			1	1		T .	T .	1	I		1	SWMU-7		T .			1			1	
	NYSDEC	NYSDEC Restricted Use		SWMU7-SS-	SWMU7-SS-	SWMU7-SS	- SWMU7-SS	SWMU7-SS	SWMU7-SS-	SWMU7-SS-	SWMU7-SS-	SWMU7-SS-	SWMU7-SS-	SWMU7-SS-	SWMU7-SS-	SWMU7-SS-							
	Unrestricted Use	Soil Cleanup Objectives -	NYSDEC	BLDG23-11	BLDG23-12	BLDG23-13	BLDG23-14	BLDG23-15	BLDG23-16	BLDG23-17	BLDG23-18	BLDG23-19	BLDG23-20	BLDG23-21	BLDG23-22	BLDG23-23	BLDG23-24	BLDG23-25	BLDG26-01	BLDG34-01	BLDG34-02	BLDG34-03	SURFACE-01
	Soil Cleanup Objectives	Residential	2005	2.0 ft bgs	3.0 ft bgs	2.0 ft bgs	3.0 ft bgs	3.0 ft bgs	2.0 ft bgs	3.0 ft bgs	2.0 ft bgs	5.25 ft bgs	4.0 ft bgs	6.0 ft bgs	2.0 ft bgs	8.5 ft bgs	3.0 ft bgs	3.0 ft bgs	0-0.5 ft bgs				
Constituent	(6 NYCRR Part 375-6.8(a))	(6 NYCRR Part 375-6.8(b))	ASP CRQL	10/27/2015	10/28/2015	10/28/2015	10/28/2015	10/28/2015	10/28/2015	10/28/2015	10/28/2015	10/28/2015	10/28/2015	10/28/2015	10/28/2015	10/29/2015	10/29/2015	10/29/2015	10/27/2015	10/28/2015	10/28/2015	10/28/2015	10/26/2015
Volatile Organic Compounds (mg/kg)																							
1,1-Dichloroethene	0.33	100	0.005	ND<0.0061	ND<0.0047	ND<0.0045	ND<0.0049	ND<0.0053	ND<0.0056	ND<0.005	ND<0.0046	ND<0.0059	ND<0.0044	ND<0.0049	ND<0.005	ND<0.0052	2	ND<0.0049	ND<0.0079	ND<0.0051	ND<0.0045	ND<0.0052	ND<0.005
2-Butanone (MEK)	0.12	100	0.01	ND<0.030	ND<0.024	ND<0.023	ND<0.024	ND<0.026	ND<0.028	ND<0.025	ND<0.023	ND<0.029	ND<0.022	ND<0.024	ND<0.025	ND<0.026	ND<0.028	ND<0.024	ND<0.040	ND<0.026	ND<0.022	ND<0.026	ND<0.025
Acetone	0.05	100	0.01	ND<0.030	0.0051 J	ND<0.023	ND<0.024	ND<0.026	ND<0.028	ND<0.025	ND<0.023	ND<0.029	ND<0.022	ND<0.024	0.0067 J	ND<0.026	0.016 J	ND<0.024	ND<0.040	ND<0.026	ND<0.022	ND<0.026	ND<0.025
Chlorobenzene	1.1	100	0.005	ND<0.0061	ND<0.0047	ND<0.0045	ND<0.0049	ND<0.0053	ND<0.0056	ND<0.005	ND<0.0046	ND<0.0059	ND<0.0044	ND<0.0049	ND<0.005	ND<0.0052	0.0013 J	ND<0.0049	ND<0.0079	ND<0.0051	ND<0.0045	ND<0.0052	ND<0.005
Dichlorodifluoromethane			0.005	ND<0.0061	ND<0.0047	ND<0.0045	ND<0.0049	ND<0.0053	ND<0.0056	ND<0.005	0.0012 J	ND<0.0059	ND<0.0044	ND<0.0049	ND<0.005	ND<0.0052	ND<0.0056	ND<0.0049	ND<0.0079	ND<0.0051	ND<0.0045	ND<0.0052	ND<0.005
Isopropylbenzene		100	0.005	ND<0.0061	ND<0.0047	ND<0.0045	ND<0.0049	ND<0.0053	ND<0.0056	ND<0.005	ND<0.0046	ND<0.0059	ND<0.0044	ND<0.0049	ND<0.005	ND<0.0052	0.78	ND<0.0049	ND<0.0079	ND<0.0051	ND<0.0045	ND<0.0052	ND<0.005
Methyl Acetate			0.005	ND<0.0061	ND<0.0047	ND<0.0045	ND<0.0049	ND<0.0053	ND<0.0056	ND<0.005	ND<0.0046	ND<0.0059	ND<0.0044	ND<0.0049	ND<0.005	ND<0.0052	3	ND<0.0049	ND<0.0079	ND<0.0051	ND<0.0045	ND<0.0052	ND<0.005
Methylene chloride	0.05	51	0.005	ND<0.0061	ND<0.0047	ND<0.0045	ND<0.0049	ND<0.0053	ND<0.0056	ND<0.005	ND<0.0046	ND<0.0059	ND<0.0044	ND<0.0049	ND<0.005	ND<0.0052	ND<0.0056	ND<0.0049	0.0039 J	ND<0.0051	ND<0.0045	ND<0.0052	ND<0.005
Styrene			0.005	ND<0.0061	ND<0.0047	ND<0.0045	ND<0.0049	ND<0.0053	ND<0.0056	ND<0.005	ND<0.0046	ND<0.0059	ND<0.0044	ND<0.0049	ND<0.005	ND<0.0052	0.00040 J	ND<0.0049	ND<0.0079	ND<0.0051	ND<0.0045	ND<0.0052	ND<0.005
Tetrachloroethene	1.3	5.5	0.005	ND<0.0061	ND<0.0047	ND<0.0045	ND<0.0049	ND<0.0053	ND<0.0056	ND<0.005	ND<0.0046	ND<0.0059	ND<0.0044	ND<0.0049	ND<0.005	ND<0.0052	ND<0.0056	ND<0.0049	ND<0.0079	ND<0.0051	ND<0.0045	ND<0.0052	ND<0.005
Total Xylenes	0.26	100	0.005	ND<0.012	ND<0.0095	ND<0.0090	ND<0.0097	ND<0.011	ND<0.011	ND<0.010	ND<0.0093	ND<0.012	ND<0.0089	ND<0.0098	ND<0.010	ND<0.010	1.4	ND<0.0097	ND<0.016	ND<0.010	ND<0.0090	ND<0.010	ND<0.010
Toluene	0.7	100	0.005	ND<0.0061	ND<0.0047	ND<0.0045	ND<0.0049	ND<0.0053	ND<0.0056	ND<0.005	ND<0.0046	ND<0.0059	ND<0.0044	ND<0.0049	ND<0.005	ND<0.0052	0.00083 J	ND<0.0049	ND<0.0079	ND<0.0051	ND<0.0045	ND<0.0052	ND<0.005
Trichlorofluoromethane			0.005	ND<0.0061	ND<0.0047	ND<0.0045	ND<0.0049	ND<0.0053	ND<0.0056	0.0022 J	0.015	0.12	0.00084 J	0.0011 J	0.04	ND<0.0052	15	ND<0.0049	0.0053 J	ND<0.0051	ND<0.0045	ND<0.0052	ND<0.005
Tentatively Identified Compounds (TICs)																							
1,6,7-Trimethylnaphthalene				ND	ND	ND	ND	ND	ND	ND	ND												
1,6-Dimethylnaphthalene				ND	ND	ND	ND	ND	ND	ND	ND												
2-Naphthalene				ND	ND	ND	ND	ND	ND	ND	ND												
2,3,6-Trimethylnaphthalene				ND	ND	ND	ND	ND	ND	ND	ND												
Dibromofluoromethane				ND	ND	ND	ND	ND	ND	ND	ND												
Total Unknown TICs				ND	ND	ND	ND	ND	ND	ND	ND												
Semi Volatile Organic Compounds (mg/kg)																							
Total Semi Volatile Organic Compounds	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	ND												
Alcohols (mg/kg)													1		•								
Total Alcohols	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	ND												
Polychlorinated Biphenyls (mg/kg)																							
Total PCBs	0.1	1	0.033	NA	NA	NA	NA	NA	NA	NA	ND<0.240												
Total Metals (mg/kg)		T			T			T	T		T				T	T			1				
Arsenic	13	16	0.003	NA	NA	NA	NA	NA	NA	NA	2.3												
Barium	350	350	0.040	NA	NA	NA	NA	NA	NA	NA	33.2												
Cadmium	2.5	2.5	0.001	NA	NA	NA	NA	NA	NA	NA	0.22												
Chromium	1 ⁽¹⁾ / 30 ⁽²⁾	22 ⁽¹⁾ / 36 ⁽²⁾	0.002	NA	NA	NA	NA	NA	NA	NA	7.9												
Lead	63	400	0.002	NA	NA	NA	NA	NA	NA	NA	10.7												
Mercury	0.18	0.81	0.0001	NA	NA	NA	NA	NA	NA	NA	0.026												

Notes:
Criteria Value = Criteria provided in 6 NYCRR Part 375/ Soil Cleanup Objectives dated December 14, 2006.
Italicized Criteria Value: Criteria provided in CP-51 / Supplemental Soil Cleanup Objectives dated October 21, 2010.
Bold value indicates that the constituent was detected above the laboratory reporting limit

Bold outlined cell indicates that the concentration exceeds NYSDEC Unrestricted Use Soil Cleanup Objectives (6 NYCRR Subpart 375-6.8(a))

mg/kg = milligrams per kilogram
-- = Not established

CRQL = Contract Required Quantitation Level from Exhibit C-Part I (Superfund-CLP Organics) and Part II (Superfund-CLP Inorganics) of Analytical Services Protocol (ASP), July 2005

N/A = Not Applicable NA = Not Analyzed

ND = Not detected ft bgs = feet below ground surface

D = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

B = Compound was found in a blank sample.
F1 = MS and/or MSD Recovery is outside acceptance limits.

F2 = MS/MSD RPD exceeds control limits.

UJ = Compound was not detected above the reporting limit and the result is an estimate.

(1) = Value is established for hexavalent chromium

(2) = Value is established for trivalent chromium

(3) = Field Duplicate

SWMU Sampling and Analysis Plan (206910) Tbl 7 - SWMU-7 Soil Results.xls 3 of 3 Woodard & Curran April 2016

Table 8 SWMU-12 - Building 16 Former Drywell Soil Sample Analytical Results Pfizer

Rouses Point, NY

								SWMU-12				
	NYSDEC Unrestricted Use Soil Cleanup Objectives	NYSDEC Restricted Use Soil Cleanup Objectives - Residential	NYSDEC 2005	SWMU12-SS- SB01-26 5-6 ft bgs	SWMU12-SS- SB01-27 14-15 ft bgs	SWMU12-SS- SB02-01 2 ft bgs	SWMU12-SS- SB02-02 7 ft bgs	SWMU12-SS- SB03-100 5.5-6.0 ft bgs	SWMU12-SS- SB04-101 3.5-4.0 ft bgs	SWMU12-SS- SB05-102 2.5-3.0 ft bgs	SWMU12-SS- SB06-103 4.5-5.0 ft bgs	SWMU12-SS- SURFACE-01 0-0.5 ft bgs
Constituent	(6 NYCRR Part 375-6.8(a))	(6 NYCRR Part 375-6.8(b))	ASP CRQL	10/26/2006	10/26/2006	11/2/2010	11/2/2010	11/3/2015	11/3/2015	11/3/2015	11/3/2015	10/26/2015
Volatile Organic Compounds (mg/kg)					•	•	•	•	•	•	•	
1.1-Dichloroethene	0.33	100	0.005	ND	0.007	ND<0.0055	ND<0.0046	ND<0.0060	ND<0.0055	ND<0.0055	ND<0.0051	ND<0.0043
1,2-Dichloroethane	0.02	2.3	0.005	ND	0.003 J	ND<0.0055	ND<0.0046	ND<0.0060	ND<0.0055	ND<0.0055	ND<0.0051	ND<0.0043
2-Butanone (MEK)	0.12	100	0.01	ND	ND ND	ND<0.0055	0.0033 J	ND<0.0060	ND<0.0055	ND<0.028	ND<0.025	ND<0.022
Acetone	0.05	100	0.01	0.016	0.010	ND<0.0055	0.019 J	ND<0.0060	ND<0.0055	ND<0.028	ND<0.025	ND<0.022
Benzene	0.06	2.9	0.005	ND	0.005	ND<0.0055	ND<0.0046	ND<0.0060	ND<0.0055	ND<0.0055	ND<0.0051	ND<0.0043
cis-1,2-Dichloroethene	0.25	59	0.005	ND	0.002J	ND<0.0055	ND<0.0046	ND<0.0060	ND<0.0055	ND<0.0055	ND<0.0051	ND<0.0043
Methylene chloride	0.05	51	0.005	0.006 B	0.003 BJ	0.032 B	0.026 B	ND<0.0060	ND<0.0055	ND<0.0055	ND<0.0051	ND<0.0043
Tetrachloroethene (PCE)	1.3	5.5	0.005	0.001 BJ	0.001 BJ	ND<0.0055	ND<0.0046	ND<0.0060	ND<0.0055	ND<0.0055	ND<0.0051	ND<0.0043
Toluene	0.7	100	0.005	ND	0.002 BJ	ND<0.0055	ND<0.0046	ND<0.0060	ND<0.0055	0.00062 J	ND<0.0051	ND<0.0043
Vinyl chloride	0.02	0.21	0.005	ND	0.024	ND<0.0055	ND<0.0046	ND<0.0060	ND<0.0055	ND<0.0055	ND<0.0051	ND<0.0043
Tentatively Identified Compounds (TICs)												
Chlorodifluoromethane	_			ND	ND	ND	0.038 T11	ND	ND	ND	ND	ND
Ethyl Ether	_			ND	0.086 JN	ND	ND	ND	ND	ND	ND	ND
Hexane				ND	ND	0.0068 T11	ND	ND	ND	ND	ND	ND
Isopropyl Ether (DIPE)				ND	0.005 JN	ND	ND	ND	ND	ND	ND	ND
Semi Volatile Organic Compounds (mg/kg	g)				•		•					
Anthracene	100	100	0.170	0.020 J	ND	NA	NA	ND<0.980	ND<0.200	ND<0.200	ND<0.200	ND<0.880
Benzo(a)anthracene	1	1	0.170	ND	ND	NA	NA	ND<0.980	0.080 J	ND<0.200	0.035 J	ND<0.880
Benzo(a)pyrene	1	1	0.170	ND	ND	NA	NA	ND<0.980	0.096 J	ND<0.200	0.040 J	ND<0.880
Benzo(b)fluoranthene	1	1	0.170	ND	ND	NA	NA	ND<0.980	0.150 J	ND<0.200	0.067 J	ND<0.880
Benzo(ghi)perylene	100	100	0.170	ND	ND	NA	NA	ND<0.980	0.089 J	ND<0.200	0.042 J	ND<0.880
Benzo(k)fluoranthene	0.8	1	0.170	ND	ND	NA	NA	ND<0.980	0.077 J	ND<0.200	0.029 J	ND<0.880
Bis(2-ethylhexyl)phthalate		50	0.170	ND	ND	NA	NA	ND<0.980	0.190 J	0.120 J	0.120 J	ND<0.880
Chrysene	1	1	0.170	ND	ND	NA	NA	ND<0.980	0.130 J	ND<0.200	0.050 J	ND<0.880
Fluoranthene	100	100	0.170	0.049 J	ND	NA	NA	ND<0.980	0.23	ND<0.200	0.086 J	ND<0.880
Fluorene	30	100	0.170	0.019 J	ND	NA	NA	ND<0.980	ND<0.200	ND<0.200	ND<0.200	ND<0.880
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.170	ND	ND	NA	NA	ND<0.980	0.075	ND<0.200	0.034 J	ND<0.880
Phenanthrene	100	100	0.170	0.100 J	ND	NA	NA	ND<0.980	0.065 J	ND<0.200	ND<0.200	ND<0.880
Pyrene	100	100	0.170	0.030 J	ND	NA	NA	ND<0.980	0.160 J	ND<0.200	0.061 J	ND<0.880
Alcohols (mg/kg)												
Total Alcohols				NA	NA	NA	NA	ND	ND	ND	ND	ND
Polychlorinated Biphenyls (mg/kg)		<u></u>		INA	I INA	INA	I IVA	IND	I ND	I ND	I ND	IND
Total Polychlorinated Biphenyls	0.1	1	0.033	NA	NA NA	NA NA	NA NA	ND<0.300	ND<0.270	ND<0.280	ND<0.220	ND<0.250
Total Metals (mg/kg)	1	'	0.000	1773	1 177	1 17/1	1 17/1	115 .0.000	110 -0.270	110 -0.200	110 .0.220	115 -0.200
Arsenic	13	16	0.003	3.4	2.4	NA	NA	2.0 J	3.2	3.5	1.6 J	6.4
Barium	350	350	0.040	41.3	22.8	NA NA	NA NA	31.4	52.6	50.2	9.7	17.6
Cadmium	2.5	2.5	0.001	0.17 B	0.13 B	NA NA	NA NA	0.065 J	0.092 J	0.11 J	0.039 J	ND<0.210
Chromium	1 ⁽¹⁾ / 30 ⁽²⁾	22 ⁽¹⁾ / 36 ⁽²⁾	0.001	14.6	7.6	NA NA	NA NA	8.8	14.2	16.2	3.9	9.3
Lead	63	400	0.002	6.1	3.6	NA NA	NA NA	2.6	6.2	7.3	2	10.2
Selenium	3.9	36	0.002	1 B	1.8 B	NA NA	NA NA	ND<5.0	ND<5.3	0.75 J	ND<4.6	ND<4.2
Mercury	0.18	0.81	0.007	0.009 B	ND	NA NA	NA NA	ND<5.0 ND<0.024	0.012 J	0.75 J 0.020 J	ND<4.6 ND<0.023	ND<4.2 ND<0.02
pH (S.U.)	U.10	U.0 I	0.0001	0.008 B	עאו ן	INA	INA	ND~0.024	U.U12 J	U.UZU J	ND~0.023	ND~0.02
Leachable pH				8.26	8.47	NA NA	NA NA	l NA	NA	NA NA	NA	NA NA
∟еаынаые µ⊓				0.20	0.47	INA	INA	INA	INA	INA	INA	INA

Notes:

Criteria Value = Criteria provided in 6 NYCRR Part 375/ Soil Cleanup Objectives dated December 14, 2006.

Italicized Criteria Value: Criteria provided in CP-51 / Supplemental Soil Cleanup Objectives dated October 21, 2010.

Bold value indicates that the constituent was detected above the laboratory reporting limit

Bold outlined cell indicates that the concentration exceeds NYSDEC Unrestricted Use Soil Cleanup Objectives (6 NYCRR Subpart 375-6.8(a))

mg/kg = milligrams per kilogram

S.U. = standard units

-- = Not established

CRQL = Contract Required Quantitation Level from Exhibit C-Part I (Superfund-CLP Organics) and Part II (Superfund-CLP Inorganics) of Analytical Services Protocol (ASP), July 2005

ND = Not detected NA = Not analyzed

ft bgs = feet below ground surface

Data Qualifiers

B = For Organics: Compound was found in a blank and sample; for Inorganics: Value greater than or equal to the instrument detection limit, but less than the quantitation limit.

J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

T11 = Compound is a calibrated analyte and is quantitatively and qualitatively reported compared to a known standard that is in control.

(1) = Value is established for hexavalent chromium

(2) = Value is established for trivalent chromium

Table 9 SWMU-13 - Building 16 Former Sanitary Sewer Holding Tanks Soil Sample Analytical Results Pfizer

Rouses Point, NY

							SWMU-13			
0	NYSDEC Unrestricted Use Soil Cleanup Objectives	NYSDEC Restricted Use Soil Cleanup Objectives - Residential	NYSDEC 2005	SWMU13-SS- SB01-51 11-12 ft bgs	SWMU13-SS- SB01-47 15-16 ft bgs	SWMU13-SS- SB02-52 11-12 ft bgs	SWMU13-SS- SB02-48 14-15 ft bgs	SWMU13-SS- SB03-49 10-11 ft bgs	01 2.0 ft bgs	SWMU13-SS- SURFACE-01 0-0.5 ft bgs
Constituent	(6 NYCRR Part 375-6.8(a))	(6 NYCRR Part 375-6.8(b))	ASP CRQL	11/14/2006	11/14/2006	11/14/2006	11/14/2006	11/14/2006	5/19/2015	10/26/2015
Volatile Organic Compounds (mg/kg)		100	0.005	N.D.	N.D.	1 10		110		115 0 0044
1,1-Dichloroethene	0.33	100	0.005	ND	ND	ND	ND	ND	0.00056 J	ND<0.0044
1,2-Dichloroethane	0.02	2.3	0.005	ND	ND	0.002 J	0.005	ND	ND<0.0044	ND<0.0044
Dichlorodifluoromethane			0.005	0.001 J	ND	0.002 J	0.001 J	0.002 J	ND<0.0044	ND<0.0044
Methylene chloride	0.05	51	0.005	0.012	0.014	0.011	0.007	0.014	ND<0.0044	ND<0.0044
Trichlorofluoromethane			0.005	ND	ND	ND	ND	ND	0.013	ND<0.0044
Tentatively Identified Compounds (TICs)	<u> </u>									
Benzene, 1,3-diethyl				ND	ND	ND	ND	ND	0.031 JN	ND
Chlorodifluoromethane				ND	0.011 JN	ND	ND	ND	ND	ND
Hexane				ND	ND	ND	0.005 JN	ND	ND	ND
Limonene				ND	0.007 JN	ND	ND	ND	ND	ND
Methane, dibromofluoro				ND	ND	ND	ND	ND	0.019 JN	ND
Silanol, trimethyl				ND	ND	ND	ND	ND	0.029 JN	ND
Tetrasiloxane, decamethyl-				ND	ND	ND	ND	ND	0.053 JN	ND
Total Unknown TICs				0	0	0	0	0	0.1884 J	0
Semi Volatile Organic Compounds (mg/l		•	L							
Benzo(a)anthracene	1	1	0.170	ND	ND	ND	ND	0.093 J	NA	ND<3.8
Benzo(a)pyrene	1	1	0.170	ND	ND	ND ND	ND	0.096 J	NA NA	ND<3.8
Benzo(b)fluoranthene	1	1	0.170	ND	ND	ND ND	ND ND	0.081 J	NA NA	ND<3.8
Benzo(ghi)perylene	100	100	0.170	ND	ND	ND ND	ND	0.060 J	NA	ND<3.8
Benzo(k)fluoranthene	0.8	1	0.170	ND	ND	ND ND	ND	0.026 J	NA	ND<3.8
Bis(2-ethylhexyl)phthalate		50	0.170	0.060 J	ND	ND ND	0.076 J	ND	NA NA	1.7 J
Chrysene	1	1	0.170	ND	ND	ND ND	ND	0.130 J	NA NA	ND<3.8
Fluoranthene	100	100	0.170	ND	ND	ND ND	ND	0.050 J	NA NA	ND<3.8
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.170	ND	ND	ND ND	ND ND	0.030 J	NA NA	ND<3.8
Phenanthrene	100	100	0.170	ND	ND	ND ND	ND ND	0.022 J	NA NA	ND<3.8
	100	100		ND ND	ND ND	ND ND	ND ND		NA NA	1
Pyrene Alachala (resultan)	100	100	0.170	ND	ND	ND	ND	0.063 J	NA NA	ND<3.8
Alcohols (mg/kg)	N/A	N/A	N/A	NA	NA	1 114	NA	N/A	NIA.	ND
Total Alcohols	IN/A	IV/A	IN/A	INA	INA	NA	INA	NA	NA	ND
Polychlorinated Biphenyls (mg/kg) Total PCBs	0.1	1 1	0.033	ND	ND	ND	ND	I ND	l NA	ND<0.240
Total Metals (mg/kg)	1 0.1	1	0.033	IND	IND	חאו	טאו ו	רואו	INA	ND~U.24U
1 0 0/	13	16	0.003	4.7.B	2.4	2.4	478	2.0	NA	4.4
Arsenic		-		1.7 B	2.4		1.7 B	2.9	NA NA	4.4
Barium Cadmium	350	350 2.5	0.040 0.001	25.1	44.5	21.6 0.07	23.1	18.9	NA NA	27.2 0.060 J
	2.5 1 ⁽¹⁾ / 30 ⁽²⁾	2.5 22 ⁽¹⁾ / 36 ⁽²⁾		ND C R	0.10 B		ND	ND		
Chromium			0.002	6.8	13	7.1	7.2	8.8	NA	9.1
Lead	63	400	0.002	3.1	4.6	4.2	3.1	6.2	NA	10.4
Selenium	3.9	36	0.007	ND	0.93 B	ND	0.68 B	ND	NA	ND<4.4
Mercury	0.18	0.81	0.0001	ND	0.007 B	ND	ND	ND	NA	0.015 J
pH (S.U.)										
Leachable pH				8.07	8.25	8	7.67	7.67	NA	NA

Notes:

Criteria Value = Criteria provided in 6 NYCRR Part 375/ Soil Cleanup Objectives dated December 14, 2006.

Italicized Criteria Value: Criteria provided in CP-51 / Supplemental Soil Cleanup Objectives dated October 21, 2010.

Bold value indicates that the constituent was detected above the laboratory reporting limit Bold outlined cell indicates that the concentration exceeds NYSDEC Unrestricted Use Soil Cleanup Objectives (6 NYCRR Subpart 375-6.8(a))

mg/kg = milligrams per kilogram

S.U. = standard units

-- = Not established

CRQL = Contract Required Quantitation Level from Exhibit C-Part I (Superfund-CLP Organics) and Part II (Superfund-CLP Inorganics) of Analytical Services Protocol (ASP), July 2005

ND = Not detected

NA = Not analyzed

ft bgs = feet below ground surface Data Qualifiers

B = For Organics: Compound was found in a blank and sample; for Inorganics: Value greater than or equal to the instrument detection limit, but less than the quantitation limit.

J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

N = Presumptive evidence of material.

(1) = Value is established for hexavalent chromium

(2) = Value is established for trivalent chromium

Table 10 SWMU-15 - Building 24 Soil Sample Analytical Results Pfizer Rouses Point, NY

						SWN	IU-15		
	NYSDEC Unrestricted Use	NYSDEC Restricted Use Soil Cleanup Objectives -	NYSDEC 2005	BLDG24-SS- FLOOR-01	BLDG24-SS- FLOOR-02	BLDG24-SS- FLOOR-03	BLDG24-SS- SUMP-01	BLDG24-SS- SUMP-02	SWMU15-SS- SURFACE-01
Comptituent	Soil Cleanup Objectives	Residential	ASP	1.0-1.5 ft bgs	1.0-1.5 ft bgs	1.0-1.5 ft bgs	14.0-14.5 ft bgs	8.0-8.5 ft bgs	0-0.5 ft bgs
Constituent	(6 NYCRR Part 375-6.8(a))	(6 NYCRR Part 375-6.8(b))	CRQL	10/28/2014	10/28/2014	10/28/2014	10/28/2014	11/5/2014	10/26/2015
Volatile Organic Compounds (mg/kg)		T	_		1	1		ı	
1,2-Dichloroethane	0.02	2.3	0.005	ND<0.0047	ND<0.0049	ND<0.0053	0.002 J	ND<0.0052	ND<0.0056
Acetone	0.05	100	0.01	ND<0.024	ND<0.025	ND<0.026	ND<0.022	0.0072 J	ND<0.028
Trichlorofluoromethane			0.005	ND<0.0047	0.0079	ND<0.0053	ND<0.0045	ND<0.0052	0.001 J
Semi Volatile Organic Compounds (mg/kg)					•		•		
Total Semi Volatile Organic Compounds	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND
Alcohols (mg/kg)									
Total Alcohols	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND
Polychlorinated Biphenyls (mg/kg)									
Total PCBs	0.1	1	0.033	N/A	N/A	N/A	N/A	N/A	ND<0.220
Total Metals (mg/kg)			•		•	•	•		•
Arsenic	13	16	0.003	N/A	N/A	N/A	N/A	N/A	2.6
Barium	350	350	0.040	N/A	N/A	N/A	N/A	N/A	38.2
Cadmium	2.5	2.5	0.001	N/A	N/A	N/A	N/A	N/A	0.11 J
Chromium	1 ⁽¹⁾ / 30 ⁽²⁾	22 ⁽¹⁾ / 36 ⁽²⁾	0.002	N/A	N/A	N/A	N/A	N/A	10.1
Lead	63	400	0.002	N/A	N/A	N/A	N/A	N/A	6
Mercury	0.18	0.81	0.0001	N/A	N/A	N/A	N/A	N/A	0.011 J

Notes:
Criteria Value = Criteria provided in 6 NYCRR Part 375/ Soil Cleanup Objectives dated December 14, 2006.

Bold value indicates that the constituent was detected above the laboratory reporting limit

Bold outlined cell indicates that the concentration exceeds NYSDEC Unrestricted Use Soil Cleanup Objectives (6 NYCRR Subpart 375-6.8(a))

mg/kg = milligrams per kilogram
-- = Not established

CRQL = Contract Required Quantitation Level from Exhibit C-Part I (Superfund-CLP Organics) and Part II (Superfund-CLP Inorganics) of Analytical Services Protocol (ASP), July 2005

N/A = Not applicable

ND = Not detected

ft bgs = feet below ground surface

- Data Qualifiers

 J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- (1) = Value is established for hexavalent chromium
- (2) = Value is established for trivalent chromium

SWMU-17 - Building 40 Wastewater Steam Stripper Building Soil Sample Analytical Results

Pfizer

Rouses Point, NY

						SWMU	-17		
	NYSDEC Unrestricted Use	NYSDEC Restricted Use Soil Cleanup Objectives -	NYSDEC 2005	SWMU17-SS- BLDG40-01	SWMU17-SS- BLDG40-02	SWMU17-SS- BLDG40-03	SWMU17-SS- BLDG40-04	SWMU17-SS-	SURFACE-01
	Soil Cleanup Objectives	Residential	ASP	3.0 ft bgs	3.0 ft bgs	3.0 ft bgs	3.0 ft bgs	0-0.5	ft bgs
Constituent	(6 NYCRR Part 375-6.8(a))	(6 NYCRR Part 375-6.8(b))	CRQL	5/20/2015	5/20/2015	5/20/2015	5/20/2015	10/26/2015	10/26/2015 ⁽³⁾
Volatile Organic Compounds (mg/kg)									
Dichlorodifluoromethane			0.005	ND<0.0045	ND<0.0044	ND<0.0048	0.00044 J	ND<0.0048	ND<0.0045
Styrene			0.005	0.00043 J	ND<0.0044	ND<0.0048	ND<0.005	ND<0.0048	ND<0.0045
Trichlorofluoromethane			0.005	0.013	0.0054	0.016	0.013	ND<0.0048	ND<0.0045
Semi Volatile Organic Compounds (mg/kg)			•		•	•	•		•
Total Semi Volatile Organic Compounds	N/A	N/A	N/A	NA	NA	NA	NA	ND	ND
Alcohols (mg/kg)									
Total Alcohols	N/A	N/A	N/A	NA	NA	NA	NA	ND	ND
Polychlorinated Biphenyls (mg/kg)									
Total PCBs	0.1	1	0.033	NA	NA	NA	NA	ND<0.230	ND<0.250
Total Metals (mg/kg)									
Arsenic	13	16	0.003	NA	NA	NA	NA	2.8	2.2
Barium	350	350	0.040	NA	NA	NA	NA	29.5	31.3
Cadmium	2.5	2.5	0.001	NA	NA	NA	NA	0.077 J	0.063 J
Chromium	1 ⁽¹⁾ / 30 ⁽²⁾	22 ⁽¹⁾ / 36 ⁽²⁾	0.002	NA	NA	NA	NA	8.9	9.7
Lead	63	400	0.002	NA	NA	NA	NA	5.9	4.5

Criteria Value = Criteria provided in 6 NYCRR Part 375/ Soil Cleanup Objectives dated December 14, 2006.

Bold value indicates that the constituent was detected above the laboratory reporting limit

Bold outlined cell indicates that the concentration exceeds NYSDEC Unrestricted Use Soil Cleanup Objectives (6 NYCRR Subpart 375-6.8(a))

mg/kg = milligrams per kilogram

-- = Not established

CRQL = Contract Required Quantitation Level from Exhibit C-Part I (Superfund-CLP Organics) and Part II (Superfund-CLP Inorganics) of Analytical Services Protocol (ASP), July 2005

N/A = Not applicable

ND = Not detected

ft bgs = feet below ground surface

Data Qualifiers

- J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- (1) = Value is established for hexavalent chromium
- (2) = Value is established for trivalent chromium
- (3) = Field Duplicate

SWMU-23 - Building 16 Former Waste Storage Area in Northwest Corner Soil Sample Analytical Results

Pfizer Rouses Point, NY

		,				
					SWMU-23	
	NYSDEC Unrestricted Use	NYSDEC Restricted Use Soil Cleanup Objectives -	NYSDEC 2005	SWMU23-SS- SB01-01	SWMU23-SS-01	SWMU23-SS- SURFACE-01
	Soil Cleanup Objectives	Residential	ASP	0.5 - 1 ft bgs	2.0 ft bgs	0-0.5 ft bgs
Constituent	(6 NYCRR Part 375-6.8(a))	(6 NYCRR Part 375-6.8(b))	CRQL	10/19/2011	5/19/2015	10/26/2015
Volatile Organic Compounds (mg/kg)						
Trichlorofluoromethane			0.005	ND<0.0077	0.0006 J	0.0013 J
Tentatively Identified Compounds (TICs)						
Hexane	-			0.0053 JN	ND<0.0048	NA
Semi Volatile Organic Compounds (mg/kg)						
Total Semi Volatile Organic Compounds	N/A	N/A	N/A	NA	NA	ND
Alcohols (mg/kg)						
Total Alcohols	N/A	N/A	N/A	NA	NA	ND
Polychlorinated Biphenyls (mg/kg)						
Total PCBs	0.1	1	0.033	NA	NA	ND<0.230
Total Metals (mg/kg)						
Arsenic	13	16	0.003	NA	NA	2.3
Barium	350	350	0.040	NA	NA	29.1
Cadmium	2.5	2.5	0.001	NA	NA	0.10 J
Chromium	1 ⁽¹⁾ / 30 ⁽²⁾	22 ⁽¹⁾ / 36 ⁽²⁾	0.002	NA	NA	10.3
Lead	63	400	0.002	NA	NA	6.1
Mercury	0.18	0.81	0.0001	NA	NA	0.014

Notes:

Criteria Value = Criteria provided in 6 NYCRR Part 375/ Soil Cleanup Objectives dated December 14, 2006.

Bold value indicates that the constituent was detected above the laboratory reporting limit

Bold outlined cell indicates that the concentration exceeds NYSDEC Unrestricted Use Soil Cleanup Objectives (6 NYCRR Subpart 375-6.8(a))

mg/kg = milligrams per kilogram

-- = Not established

CRQL = Contract Required Quantitation Level from Exhibit C-Part I (Superfund-CLP Organics) and Part II (Superfund-CLP Inorganics) of Analytical Services Protocol (ASP), July 2005

N/A = Not applicable

ND = Not detected

ft bgs = feet below ground surface

Data Qualifiers

B = Compound was found in a blank and sample.

J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

N = Presumptive evidence of material.

(1) = Value is established for hexavalent chromium

(2) = Value is established for trivalent chromium

SWMU-24 - Building 31 Solvent Condensate System Soil Sample Analytical Results

Pfizer Rouses Point, NY

		· · · · · · · · · · · · · · · · · · ·					
					SWML	J-24	
	NYSDEC Unrestricted Use	NYSDEC Restricted Use Soil Cleanup Objectives -	NYSDEC 2005	SWMU24-SS- BLDG31-01	SWMU24-SS- BLDG31-02	SWMU24-SS- BLDG31-03	SWMU24-SS- SURFACE-01
	Soil Cleanup Objectives	Residential	ASP	3.0 ft bgs	3.0 ft bgs	3.0 ft bgs	0-0.5 ft bgs
Constituent	(6 NYCRR Part 375-6.8(a))	(6 NYCRR Part 375-6.8(b))	CRQL	5/20/2015	5/20/2015	5/20/2015	10/26/2015
Volatile Organic Compounds (mg/kg)							
Styrene			0.005	ND<0.0045	ND<0.0051	0.00026 J	ND<0.0051
Trichlorofluoromethane			0.005	0.0068	0.0062	0.0097	0.0022 J
Semi Volatile Organic Compounds (mg/kg)							
Total Semi Volatile Organic Compounds	N/A	N/A	N/A	NA	NA	NA	ND
Alcohols (mg/kg)							
Total Alcohols	N/A	N/A	N/A	NA	NA	NA	ND
Polychlorinated Biphenyls (mg/kg)						•	·
Total PCBs	0.1	1	0.033	NA	NA	NA	ND<0.240
Total Metals (mg/kg)							
Arsenic	13	16	0.003	NA	NA	NA	6.4
Barium	350	350	0.040	NA	NA	NA	44.5
Cadmium	2.5	2.5	0.001	NA	NA	NA	0.16 J
Chromium	1 ⁽¹⁾ / 30 ⁽²⁾	22 ⁽¹⁾ / 36 ⁽²⁾	0.002	NA	NA	NA	16.3
Lead	63	400	0.002	NA	NA	NA	7.1
Mercury	0.18	0.81	0.0001	NA	NA	NA	0.016 J

Notes:

Criteria Value = Criteria provided in 6 NYCRR Part 375/ Soil Cleanup Objectives dated December 14, 2006.

Bold value indicates that the constituent was detected above the laboratory reporting limit

Bold outlined cell indicates that the concentration exceeds NYSDEC Unrestricted Use Soil Cleanup Objectives (6 NYCRR Subpart 375-6.8(a))

mg/kg = milligrams per kilogram

-- = Not established

CRQL = Contract Required Quantitation Level from Exhibit C-Part I (Superfund-CLP Organics) and Part II (Superfund-CLP Inorganics) of Analytical Services Protocol (ASP), July 2005

N/A = Not applicable

ND = Not detected

ft bgs = below ground surface

Data Qualifiers

B = Compound was found in a blank and sample.

J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

(1) = Value is established for hexavalent chromium

(2) = Value is established for trivalent chromium

SWMU-26 - Chemical Development Reactor Bay Drumming Areas Soil Sample Analytical Results

Pfizer Rouses Point, NY

				Rouse	es Point, NT							
		NYSDEC Restricted Use Soil Cleanup Objectives -						SWMU-26				
	NYSDEC Unrestricted Use		NYSDEC	SWMU26-SS- BLDG16-01	SWMU26-SS- BLDG16-02	SWMU26-SS- BLDG16-03	SWMU26-SS- BLDG16-04	SWMU26-SS- BLDG23-01	SWMU26-SS- BLDG23-02	SWMU26-SS- BLDG23-03	SWMU26-SS- BLDG23-04	SWMU26-SS- SURFACE-01
	Soil Cleanup Objectives	Residential	2005	2.0 ft bgs	2.0 ft bgs	2.0 ft bgs	2.0 ft bgs	3.0 ft bgs	3.0 ft bgs	3.0 ft bgs	3.0 ft bgs	0-0.5 ft bgs
Constituent	(6 NYCRR Part 375-6.8(a))	(6 NYCRR Part 375-6.8(b))		10/27/2015	10/27/2015	10/27/2015	10/27/2015	10/28/2015	10/28/2015	10/28/2015	10/28/2015	10/26/2015
Volatile Organic Compounds (mg/kg)												
Methylene chloride	0.05	51	0.005	ND<0.0061	ND<0.0052	0.0028 J	ND<0.0044	ND<0.0052	ND<0.0049	ND<0.0046	ND<0.0051	ND<0.0051
Toluene	0.7	100	0.005	ND<0.0061	ND<0.0052	ND<0.0061	0.00033 UJ	ND<0.0052	ND<0.0049	ND<0.0046	ND<0.0051	ND<0.0051
Trichlorofluoromethane			0.005	ND<0.0061	0.0034 J	ND<0.0061	0.0018 J	0.0050 J	0.0077	0.0051	ND<0.0051	ND<0.0051
Semi Volatile Organic Compounds (mg/kg)												
Bis(2-ethylhexyl)phthalate		50	0.170	ND<0.920	ND<0.190	ND<1.000	0.076 J	ND<0.180	ND<0.180	ND<0.900	ND<0.180	ND<1.900
Alcohols (mg/kg)												
Methanol				ND<1.0	ND<1.0	ND<1.1	ND<1.1	ND<1.1	ND<1.0	ND<1.0	5.6 F1	ND<1.1
Polychlorinated Biphenyls (mg/kg)												
Total Polychlorinated Biphenyls	0.1	1	0.033	ND<0.250	ND<0.240	ND<0.230	ND<0.200	ND<0.200	ND<0.230	ND<0.200	ND<0.230	ND<0.260
Total Metals (mg/kg)												
Arsenic	13	16	0.003	2.3	2.2 J	2.2 J	2.8	3.2	1.8 J	1.3 J	2.0 J	3.1
Barium	350	350	0.040	30.7	34.5	39.3	39.9	38.6 F1	21.1	17	15.2 F1F2	38.4
Cadmium	2.5	2.5	0.001	0.10 J	0.086 J	0.12J	0.084 J	0.075 J	0.052 J	0.053 J	0.047 J	0.076 J
Chromium	1 ⁽¹⁾ / 30 ⁽²⁾	22 ⁽¹⁾ / 36 ⁽²⁾	0.002	10.3	9.8	12.3	11	7	4.5	4.8	4.6	9.6
Lead	63	400	0.002	5.5	6.8	6.7	6	5.8	3.8	3.2	3.4	8.8
Mercury	0.18	0.81	0.0001	0.11	0.032	0.029	0.011	ND<0.021	ND<0.021	ND<0.021	ND<0.020	0.013 J

1 of 1

Notes:

Criteria Value = Criteria provided in 6 NYCRR Part 375/ Soil Cleanup Objectives dated December 14, 2006.

Italicized Criteria Value: Criteria provided in CP-51 / Supplemental Soil Cleanup Objectives dated October 21, 2010.

Bold value indicates that the constituent was detected above the laboratory reporting limit

Bold outlined cell indicates that the concentration exceeds NYSDEC Unrestricted Use Soil Cleanup Objectives (6 NYCRR Subpart 375-6.8(a))

mg/kg = milligrams per kilogram

-- = Not established

CRQL = Contract Required Quantitation Level from Exhibit C-Part I (Superfund-CLP Organics) and Part II (Superfund-CLP Inorganics) of Analytical Services Protocol (ASP), July 2005

ND = Not detected

NA = Not analyzed

ft bgs = feet below ground surface

Data Qualifiers

B = Compound was found in a blank and sample.

F1 = MS and/or MSD Recovery is outside acceptance limits.

F2 = MS/MSD RPD exceeds control limits.

J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

N = Presumptive evidence of material.

UJ = Compound was not detected above the reporting limit and the result is an estimate.

(1) = Value is established for hexavalent chromium (2) = Value is established for trivalent chromium

Table 15 Groundwater Monitoring Well Analytical Results - VOCs 2006 to 2015

Pfizer Rouses Point, NY

	Rouses Point, NY																
Constituent	NYSDEC Groundwater Standard/Guidance	NYSDEC 2005 ASP CRQL	MW-1 11/14/2006	MW-1A ⁽¹⁾ 11/14/2006	MW-1 8/16/2007	MW-1 10/8/2007	MW-1 10/13/2009	MW-1 12/8/2010	MW-1 3/22/2011	MW-1 6/29/2011	MW-1 9/28/2011	MW-1 12/14/2011	MW-1 3/14/2012	MW-1 11/6/2012	MW-1 10/9/2013	MW-1 7/17/2014	MW-1 7/28/2015
Volatile Organic		•	via 8260B														
Compounds (μg/I)				via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260C	via 8260C	via 8260C
Acetone	50	10	5DJ	6DJ	<10	<10	<10	<10	<10	<10 U	<10	<10	<10	3.1 J	<10	<10	<10
1,1-Dichloroethene	5	5	2DJ	2J	2J	2J	1.4 J	1.7	1.2	1.4	1.5	1.5	1.1	1.4	1.8	1.2	1
1,2,3-Trichlorobenzene	5	5	1BDJ	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-Dichloroethane	0.6	5	<5	<5	4J	8	7.9	6.8	5.9	6.1	7.2	7.4	5.1	7.6	8.2	6.6	6.3
Benzene	1	5	0.5J	0.5J	0.7J	0.9J	0.72 J	0.67 J	<1	0.60 J	<1	0.72 J	<1	0.66 J	0.79 J	0.63 J	0.71 J
Bromodichloromethane	50	5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon Tetrachloride	5	5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	5	5	4DJ	2DJ	1J	3J	<5	<1	<1	<1	<1	<1	<1	0.35 J	<1	<1	<1
Chloroform	7	5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
cis-1,2-Dichloroethene	5	5	0.5J	<5	0.6J	0.7J	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dichlorodifluoromethane	5	5	<5	<5	< 5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methyl-t-Butyl Ether (MTBE) ⁽⁷⁾	10	5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methylene Chloride	5	5	<5	4DJ	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
trans-1,2-Dichloroethene	5	5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethene	5	5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorfluoromethane	5	5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vinyl Chloride	2	5	120D	47D	55	47	30	30	21	24	24	32	23	29	31	18	12
Tentatively Identified																	
Compound (TICs)																	1
Ethyl ether			2000JND	1900JND	910JN	430JN	1000	940	580 E	680 E	780 E	600 E	500 E		790 E	530 E	100
Trimethylsilanol			ND	ND	ND	ND	5.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropyl ether			ND	ND	ND	ND	ND	ND	0.68	0.82 J	0.87 J	0.91 J	ND	ND	0.99 J	0.79 J	ND
Hexachlorobutadiene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropyl Alcohol			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-Propanol			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Unknown TICs			ND	ND	ND	ND	ND	6.4	ND	ND	ND	7.2 TJ	4.9 TJ	ND	ND	ND	ND

1 of 12

Table 15 Groundwater Monitoring Well Analytical Results - VOCs 2006 to 2015

Pfizer Rouses Point, NY

	Rouges Form, Wi																	
O-matitude 4	NYSDEC Groundwater	NYSDEC 2005 ASP	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-2 ⁽²⁾	MW-2 ⁽²⁾	MW-13	MW-13	MW-13	MW-13	MW-13	MW-13
Constituent	Standard/Guidance	CRQL	12/9/2010	3/22/2011	6/29/2011	9/28/2011	12/13/2011	3/14/2012	7/17/2014	7/28/2015	11/13/2006	10/10/2007	11/12/2007	10/13/2009	10/13/2009	12/6/2010	3/22/2011	6/28/2011
Volatile Organic			via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 524.2	via 8260B	via 8260B	via 8260B	via 8260B				
Compounds (μg/l)																		
Acetone	50	10	<10 UJ	<10	<10 U	<10 U	<10	<10	<10	<10	<10	<10	<10	NA	<10	<10	<10	<10
1,1-Dichloroethene	5	5	1.0	<1	0.30 J	<1	0.37 J	<1	<1	<1	<5	<5	<5	<0.5	<5	<1	<1	<1
1,2,3-Trichlorobenzene	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<5	<5	<5	<0.5	<5	<1	<1	<1
1,2-Dichloroethane	0.6	5	6.3	4.0	4.0	6.0	4.2	3.1	2.4	2.5	<5	<5	<5	<0.5	<5	<1	<1	<1
Benzene	1	5	<1	<1	0.61 J	<1	0.46 J	<1	<1	<1	<5	<5	<5	<0.5	<5	<1	<1	<1
Bromodichloromethane	50	5	<1	<1	<1	<1	<1	<1	<1	<1	<5	<5	<5	<0.5	<5	<1	<1	<1
Carbon Tetrachloride	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<5	<5	<5	<0.5	<5	<1	<1	<1
Chloroethane	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<5	<5	<5	<0.5	<5	<1	<1	<1
Chloroform	7	5	1.5	<1	<1	<1	<1	<1	<1	<1	<5	<5	<5	<0.5	<5	<1	<1	<1
cis-1,2-Dichloroethene	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<5	<5	<5	<0.5	<5	<1	<1	<1
Dichlorodifluoromethane	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<5	<5	<5	NA	<5	<1	<1	<1
Methyl-t-Butyl Ether (MTBE) ⁽⁷⁾	10	5	<1	<1	<1	<1	<1	<1	<1	<1	<5	<5	<5	NA	<5	<1	<1	<1
Methylene Chloride	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<5	<5	<5	<0.5	<5	<1	<1	<1
trans-1,2-Dichloroethene	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<5	<5	<5	<0.5	<5	<1	<1	<1
Trichloroethene	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<5	<5	<5	<0.5	<5	<1	<1	<1
Trichlorfluoromethane	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<5	<5	<5	NA	<5	<1	<1	<1
Vinyl Chloride	2	5	1.2	<1	<1	<1	<1	<1	<1	<1	<5	<5	<5	<0.5	<5	<1	<1	<1
Tentatively Identified																		
Compound (TICs)																		
Ethyl ether			97	68	67	91	75	60	50	24 TJN	ND	ND	ND	ND	ND	ND	ND	ND
Trimethylsilanol			18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropyl ether			ND	1.1	0.92 J	1.3	1.3	0.71	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropyl Alcohol			ND	ND	ND	ND	ND	ND	11	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-Propanol			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Unknown TICs			ND	ND	ND	ND	ND	3.7	ND	3.1 TJ	2J	ND	ND	ND	ND	ND	ND	4.0 J

2 of 12

Pfizer Rouses Point, NY

							Ro	uses Point, N	1									
Constituent	NYSDEC Groundwater Standard/Guidance	NYSDEC 2005 ASP CRQL	MW-13 9/27/2011	MW-13 12/13/2011	MW-13 3/13/2012	MW-13 7/28/2015	MW-14 10/9/2007	MW-14 10/13/2009	MW-14 10/13/2009	MW-14 12/6/2010	MW-14 3/22/2011	MW-14 6/28/2011	MW-14 9/28/2011	MW-14 12/13/2011	MW-14 3/13/2012	MW-14 11/6/2012	MW-14 10/9/2013	MW-14 7/28/2015
Volatile Organic					wis cocop													
Compounds (μg/l)			via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 524.2	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260C	via 8260C
Acetone	50	10	<10	<10	<10	<10	<10	NA	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
1,1-Dichloroethene	5	5	<1	<1	<1	<1	<5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-Trichlorobenzene	5	5	<1	<1	<1	<1	<5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-Dichloroethane	0.6	5	<1	<1	<1	<1	<5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1
Benzene	1	5	<1	<1	<1	<1	<5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	50	5	<1	<1	<1	<1	<5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon Tetrachloride	5	5	<1	<1	<1	<1	<5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	5	5	<1	<1	<1	<1	<5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	7	5	<1	<1	<1	<1	<5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1
cis-1,2-Dichloroethene	5	5	<1	<1	<1	<1	<5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dichlorodifluoromethane	5	5	<1	<1	<1	<1	<5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methyl-t-Butyl Ether (MTBE) ⁽⁷⁾	10	5	<1	<1	<1	<1	<5	NA	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methylene Chloride	5	5	<1	<1	<1	<1	<5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1
trans-1,2-Dichloroethene	5	5	<1	<1	<1	<1	<5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethene	5	5	<1	<1	<1	<1	<5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorfluoromethane	5	5	<1	<1	<1	<1	<5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vinyl Chloride	2	5	<1	<1	<1	<1	<5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1
Tentatively Identified																		
Compound (TICs)																		
Ethyl ether			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trimethylsilanol			ND	ND	ND	ND	ND	ND	ND	ND	ND	8.2 JN	ND	ND	ND	ND	ND	ND
Isopropyl ether			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.38 J	ND	ND	ND	ND
Isopropyl Alcohol			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-Propanol			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Unknown TICs			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Pfizer Rouses Point, NY

			i e					<u> </u>					i e					
	NYSDEC	NYSDEC																
	Groundwater	2005 ASP	MW-24	MW-24	MW-24	MW-24	MW-24	MW-24	MW-24	MW-24	MW-24	MW-24	MW-24S	MW-24S	MW-24S	MW-24S	MW-24S	MW-24S
Constituent	Standard/Guidance	CRQL	9/21/2010	9/21/2010	12/10/2010	3/22/2011	6/28/2011	9/27/2011	12/13/2011	3/13/2012	7/17/2014	7/28/2015	12/13/2010	3/22/2011	6/29/2011	9/27/2011	7/17/2014	7/28/2015
Volatile Organic			via 524.2	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B
Compounds (μ g/l)			VIA 524.2	VIA 8200B	VIA 8200B	VIA 8200B	VIA 820UB	VIA 8200B	VIA 8200B	VIA 8200B	VIA 8200B	VIA 8200B	VIA 8200B	VIA 820UB	VIA 8200B	VIA 8200B	VIA 8200B	VIA 8200B
Acetone	50	10	NA	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10 U	<10	13 U	<10	<10	<10
1,1-Dichloroethene	5	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-Trichlorobenzene	5	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-Dichloroethane	0.6	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Benzene	1	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	50	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon Tetrachloride	5	5	<0.5 UJ	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	5	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	7	5	0.35 J	<5	<1	<1	<1	<1	<1	<1	<1	<1	1.6	0.53 J	0.44 J	<1	<1	<1
cis-1,2-Dichloroethene	5	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dichlorodifluoromethane	5	5	<0.5	<5	<1	<1	<1	36	<1	19	<1	<1	<1	<1	<1	<1	<1	6.1
Methyl-t-Butyl Ether (MTBE) ⁽⁷⁾	10	5	NA	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methylene Chloride	5	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
trans-1,2-Dichloroethene	5	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethene	5	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorfluoromethane	5	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vinyl Chloride	2	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Tentatively Identified																		
Compound (TICs)																		
Ethyl ether			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trimethylsilanol			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.7 JN	ND	ND	ND
2-Methylthiophene	-		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorodifluoromethane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-Chloro-1-propene	-		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Unknown TICs			140	ND	100	ND	4.8 J	ND	89	89	ND	ND	ND	ND	ND	ND	ND	ND

Pfizer Rouses Point, NY

							NO	uses Point, N										
Constituent	NYSDEC Groundwater Standard/Guidance	NYSDEC 2005 ASP CRQL	MW-25 9/21/2010	MW-25 9/21/2010	MW-25 12/9/2010	MW-25 3/23/2011	MW-25 6/29/2011	MW-25 9/27/2011	MW-25 12/14/2011	MW-25 3/13/2012	MW-25 7/17/2014	MW-25 7/28/2015	MW-25S 9/23/2010	MW-25S 9/23/2010	MW-25S 12/9/2010	MW-25S 3/23/2011	MW-25S 6/29/2011	MW-25S 9/27/2011
Volatile Organic	Otaliaal al Gallaalio	5.1.42									-							
Compounds (μg/l)			via 524.2	via 8260B	via 8260B	via 8260B	via 8260B	via 524.2	via 8260B									
Acetone	50	10	NA	<10	<10 U	<10	<10 U	<10	<10 UJ	<10	<10	<10	NA	<10	<10 U	<10	<10 U	<10 U
1.1-Dichloroethene	5	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1
1,2,3-Trichlorobenzene	5	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1
1,2-Dichloroethane	0.6	5	0.57	<5	<1	<1	0.41 J	<1	<1	0.37 J	0.61 J	0.73 J	0.58	<5	<1	<1	0.41 J	<1
Benzene	1	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1
Bromodichloromethane	50	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1
Carbon Tetrachloride	5	5	<0.5 UJ	<5	<1	<1	<1	<1	<1	<1	<1	<1	<0.5 UJ	<5	<1	<1	<1	<1
Chloroethane	5	5	<0.5	<5	<1	<1 UJ	<1 UJ	<1	<1	<1	<1	<1	<0.5 UJ	<5	<1	<1	<1	<1
Chloroform	7	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	0.33 J	<5	<1	<1	<1	<1
cis-1,2-Dichloroethene	5	5	0.51	<5	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1
Dichlorodifluoromethane	5	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1
Methyl-t-Butyl Ether (MTBE) ⁽⁷⁾	10	5	NA	<5	<1	<1	<1	<1	<1	<1	<1	<1	NA	<5	<1	<1	<1	<1
Methylene Chloride	5	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1
trans-1,2-Dichloroethene	5	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1
Trichloroethene	5	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1
Trichlorfluoromethane	5	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1
Vinyl Chloride	2	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1
Tentatively Identified																		
Compound (TICs)																		
Ethyl ether			ND	ND	ND	2.6	0.81 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.82 J	ND
Trimethylsilanol			ND	ND	ND	ND	11 JN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylthiophene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Chlorodifluoromethane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Hexachlorobutadiene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
3-Chloro-1-propene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Total Unknown TICs			1.3	ND	ND	3.5	3.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.9 J	ND

Pfizer Rouses Point, NY

			T															
	NYSDEC Groundwater	NYSDEC 2005 ASP	MW-25S	MW-25S	MW-25S	MW-25S	MW-26	MW-26	MW-26	MW-26	MW-26	MW-26	MW-26	MW-26	MW-26	MW-26	MW-26	MW-26
Constituent	Standard/Guidance	CRQL	12/14/2011	3/13/2012	7/17/2014	7/28/2015	9/21/2010	9/21/2010	12/10/2010	3/23/2011	6/29/2011	10/2/2011	12/14/2011	3/13/2012	11/6/2012	10/10/2013	7/16/2014	7/28/2015
Volatile Organic			via 8260B	via 8260B	via 8260B	via 8260B	via 524.2	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260C	via 8260C	via 8260C
Compounds (μ g/l)			VIA 020UD	VIA 0200B	VIA 0200B	VIA 0200B	VIA 524.2	VIA 0200D	VIA 0200B	VIA 0200B	VIA 0200B	VIA 0200B	VIA 020UD	VIA 020UD	VIA 020UD	VIA 6200C	VIA 6200C	VIA 0200C
Acetone	50	10	<10 UJ	<10	4.4 J	<10	NA	<10	<10	<10	<10 U	<10 U	<10 UJ	<10	3.7 J	<10	<10	<10
1,1-Dichloroethene	5	5	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-Trichlorobenzene	5	5	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-Dichloroethane	0.6	5	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Benzene	1	5	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	50	5	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon Tetrachloride	5	5	<1	<1	<1	<1	<0.5 UJ	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	5	5	<1	<1	<1	<1	<0.5	<5	<1	<1 UJ	<1 UJ	<1	<1	<1	<1	<1	<1	<1
Chloroform	7	5	<1	<1	<1	<1	0.49 J	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
cis-1,2-Dichloroethene	5	5	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dichlorodifluoromethane	5	5	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methyl-t-Butyl Ether (MTBE) ⁽⁷⁾	10	5	<1	<1	<1	<1	NA	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methylene Chloride	5	5	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
trans-1,2-Dichloroethene	5	5	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethene	5	5	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorfluoromethane	5	5	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vinyl Chloride	2	5	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Tentatively Identified																		
Compound (TICs)																		
Ethyl ether			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trimethylsilanol			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.67 JN	ND	ND	ND	ND
2-Methylthiophene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorodifluoromethane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-Chloro-1-propene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Unknown TICs			ND	ND	ND	ND	ND	ND	ND	ND	4.1 J	ND	ND	ND	ND	ND	ND	ND

Pfizer Rouses Point, NY

								uses Follit, N	<u></u>									
	NYSDEC	NYSDEC														(1)		40
	Groundwater	2005 ASP	MW-26S	MW-26S	MW-26S	MW-26S	MW-26S	MW-26S	MW-26S	MW-26S	MW-26S	MW-26S	MW-27	MW-27	MW-27	MW-102 ⁽¹⁾	MW-27	MW-102 ⁽¹⁾
Constituent	Standard/Guidance	CRQL	9/22/2010	9/22/2010	12/10/2010	3/24/2011	6/29/2011	9/28/2011	12/14/2011	3/13/2012	7/17/2014	7/28/2015	9/22/2010	9/22/2010	12/10/2010	12/10/2010	3/23/2011	3/23/2011
Volatile Organic			via 524.2	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 524.2	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B
Compounds (μg/l)			VIA 324.2	Via ozuub	Via ozuub	Via ozuub	Via ozuub	Via ozuub	VIA 0200B	VIA 0200B	Via 0200B	VIA 0200B	VIA 324.2	Via 0200B	Via 0200B	Via ozuub	VIA 0200B	VIA 0200B
Acetone	50	10	NA	<10	<10 UJ	<10	5.5 J	<10	<10 UJ	<10	<10	<10	NA	<10	<10	<10	<10	<10
1,1-Dichloroethene	5	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1
1,2,3-Trichlorobenzene	5	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1
1,2-Dichloroethane	0.6	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	2.1	1.8 J	4.6	4.7	4.3 J	4.6
Benzene	1	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1
Bromodichloromethane	50	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<5	<1	<1	<1 UJ	<1
Carbon Tetrachloride	5	5	<0.5 UJ	<5	<1	<1	<1	<1	<1	<1	<1	<1	3.3	2.6 J	1.4	1.4	<1 UJ	<1
Chloroethane	5	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<5	<1	<1	<1 UJ	<1 UJ
Chloroform	7	5	4.2	3.4 J	<1	<1	<1	<1	<1	<1	<1	<1	5.4	5.2	2.2	2.3	0.71 J	0.68 J
cis-1,2-Dichloroethene	5	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	0.86	0.84 J	2.2	2.2	2.1	2.1
Dichlorodifluoromethane	5	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1
Methyl-t-Butyl Ether (MTBE) ⁽⁷⁾	10	5	NA	<5	<1	<1	<1	<1	<1	<1	<1	<1	NA	<5	0.54 J	0.59 J	<1	<1
Methylene Chloride	5	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	0.34 J	<5	<1	<1	<1	<1
trans-1,2-Dichloroethene	5	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1
Trichloroethene	5	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	6.3	5.5	14	14	12	12
Trichlorfluoromethane	5	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<5	<1	<1	<1	<1
Vinyl Chloride	2	5	<0.5	<5	<1	<1	<1	<1	<1	<1	<1	<1	0.94	<5	1.6	1.7	1.8	1.9
Tentatively Identified																		
Compound (TICs)																		
Ethyl ether			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.77	ND	ND	ND	6.3	6.6
Trimethylsilanol			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylthiophene			ND	ND	ND	0.78 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorodifluoromethane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-Chloro-1-propene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Unknown TICs			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Pfizer Rouses Point, NY

							110	uses Point, N	•									
Constituent	NYSDEC Groundwater Standard/Guidance	NYSDEC 2005 ASP CRQL	MW-27 6/30/2011	MW-102 ⁽¹⁾ 6/30/2011	MW-27 9/28/2011	MW-102 ⁽¹⁾ 9/28/2011	MW-27 12/14/2011	MW-102 ⁽¹⁾ 12/14/2011	MW-27 3/14/2012	MW-102 ⁽¹⁾ 3/14/2012	MW-27 11/6/2012	MW-27 10/10/2013	MW-27 7/17/2014	MW-102 7/17/2014	MW-27 7/28/2015	MW-102 7/28/2015	MW-27S 9/22/2010	MW-27S 9/22/2010
Volatile Organic			via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260C	via 8260C	via 8260C	via 8260C	via 8260C	via 524.2	via 8260B
Compounds (μg/l)			VIA 6200B	VIA 0200B	VIA 6200B	VIA 6200B	VIA 0200B	VIA 0200B	VIA 0200B	VIA 6200B	VIA 0200B	VIA 6200C	VIA 0200C	VIA 6200C	VIA 6200C	VIA 6200C	VIA 524.2	VIA 0200B
Acetone	50	10	<10 UJ	<10 UJ	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	NA	<10
1,1-Dichloroethene	5	5	<1	<1	<1	<1	<1	<1	<1	<1	0.39 J	<1	<1	<1	<1	<1	<0.5	<5
1,2,3-Trichlorobenzene	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<5
1,2-Dichloroethane	0.6	5	4.9	4.7 J	3.9	3.9	4.5	4.7	4.0	4.3	4.8	5	4.2	4.6	3.6	3.6	<0.5	<5
Benzene	1	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<5
Bromodichloromethane	50	5	<1	<1 UJ	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	0.22 J	<5
Carbon Tetrachloride	5	5	<1	<1 UJ	<1	<1	0.57 J	0.47 J	0.52 J	0.56 J	0.80 J	<1	0.81 J	0.77 J	0.45 J	0.44 J	2.9	2.3 J
Chloroethane	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<5
Chloroform	7	5	<1	<1	<1	<1	0.77 J	0.73 J	0.53 J	0.61 J	0.82 J	1	0.68 J	0.67 J	0.41 J	0.40 J	3.4	3.3 J
cis-1,2-Dichloroethene	5	5	1.9	1.7	2.1	2.0	2.0	1.9	1.6	1.6	2.5	2.4	2.6	2.8	2.3	2.2	<0.5	<5
Dichlorodifluoromethane	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<5
Methyl-t-Butyl Ether (MTBE) ⁽⁷⁾	10	5	<1	<1	<1	<1	0.19 J	0.19 J	<1	<1	<1	<1	<1	<1	<1	<1	NA	<5
Methylene Chloride	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<5
trans-1,2-Dichloroethene	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<5
Trichloroethene	5	5	9.6	9.4	8.8	8.9	10	10	9.1	9.5	13	15	13	14	11	11	0.33 J	<5
Trichlorfluoromethane	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<5
Vinyl Chloride	2	5	2.1	1.8	1.6	1.5	2	1.9	1.9	2	2.4	3	1.9	1.9	1.6	1.6	<0.5	<5
Tentatively Identified																		
Compound (TICs)																		
Ethyl ether			6.4	6.1	5.5	5.6	3.7 JN	ND	4.4	ND	ND	6.3	6.2	6.4	ND	ND	ND	ND
Trimethylsilanol			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylthiophene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorodifluoromethane			2.8	2.7	2.3	2.3	ND	ND	1.6	ND	ND	1.7	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-Chloro-1-propene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Unknown TICs			5.5 J	ND	ND	ND	ND	3.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Pfizer Rouses Point, NY

			T															
	NYSDEC Groundwater	NYSDEC 2005 ASP	MW-27S	MW-27S	MW-27S	MW-27S	MW-27S	MW-27S	MW-27S	MW-27S	MW-28	MW-28	MW-28	MW-28	MW-28	MW-28	MW-28	MW-28
Constituent	Standard/Guidance	CRQL	12/10/2010	3/23/2011	6/30/2011	9/28/2011	12/14/2011	3/14/2012	7/16/2014	7/28/2015	12/14/2010	3/22/2011	3/22/2011	6/30/2011	9/29/2011	12/14/2011	3/14/2012	7/16/2014
Volatile Organic			via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 524.2	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B
Compounds (μ g/l)			VIA 020UD	VIA 0200B	VIA 0200B	VIA 0200B	VIA 0200B	VIA 0200B	VIA 0200B	VIA 0200B	VIA 0200B	VIA 324.2	VIA 020UD	VIA 0200B	VIA 020UD	VIA 020UD	VIA 020UB	VIA 0200B
Acetone	50	10	<10	<10	<10 UJ	<10	<10	<10	4.4 J	<10	<10 UJ	NA	<10	<10 UJ	<10	<10	<10	<10
1,1-Dichloroethene	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<1	<1	<1	<1	<1	<1
1,2,3-Trichlorobenzene	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<1	<1	<1	<1	<1	<1
1,2-Dichloroethane	0.6	5	<1	<1	<1 UJ	<1	<1	<1	<1	<1	<1	<0.5	<1	<1 UJ	<1	<1	<1	<1
Benzene	1	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<1	<1	<1	<1	<1	<1
Bromodichloromethane	50	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<1	<1	<1	<1	<1	<1
Carbon Tetrachloride	5	5	1.7	0.81 J	1.9 J	1.4	0.96 J	0.78 J	0.92 J	1.1	<1	<0.5	<1	<1 UJ	<1	<1	<1	<1
Chloroethane	5	5	<1	<1 UJ	<1	<1	<1	<1	<1	<1	<1	<0.5	<1	<1	<1	<1	<1	<1
Chloroform	7	5	1.6	0.79 J	1.2	0.97 J	0.73 J	0.67 J	0.59 J	0.71 J	<1	<0.5	<1	<1	<1	<1	<1	<1
cis-1,2-Dichloroethene	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<1	<1	<1	<1	<1	<1
Dichlorodifluoromethane	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<1	<1	<1	<1	<1	<1
Methyl-t-Butyl Ether (MTBE) ⁽⁷⁾	10	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	NA	<1	<1	<1	<1	<1	<1
Methylene Chloride	5	5	<1	<1	<1 UJ	<1	<1	<1	<1	<1	<1	<0.5	<1	<1 UJ	<1	<1	<1	<1
trans-1,2-Dichloroethene	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<1	<1	<1	<1	<1	<1
Trichloroethene	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<1	<1	<1	<1	<1	<1
Trichlorfluoromethane	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<1	<1	<1	<1	<1	<1
Vinyl Chloride	2	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<1	<1	<1	<1	<1	<1
Tentatively Identified																		
Compound (TICs)																		
Ethyl ether			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trimethylsilanol			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylthiophene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorodifluoromethane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-Chloro-1-propene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Unknown TICs			ND	ND	2.6 J	ND	ND	ND	ND	ND	ND	3.2	ND	3.3 J	ND	ND	3.2 J	ND

Pfizer Rouses Point, NY

								uses Point, N	•									
Constituent	NYSDEC Groundwater Standard/Guidance	NYSDEC 2005 ASP CRQL	MW-28 7/28/2015	MW-28S 12/14/2010	MW-28S 3/22/2011	MW-28S 6/30/2011	MW-28S 9/28/2011	MW-28S 12/14/2011	MW-28S 3/14/2012	MW-28S 7/16/2014	MW-28S 7/28/2015	MW-29 12/7/2010	MW-29 3/23/2011	MW-29 6/29/2011	MW-29 9/28/2011	MW-29 12/13/2011	MW-29 3/14/2012	MW-29 11/6/2012
Volatile Organic			via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B
Compounds (μ g/l)			VIA 6200B	VIA 0200B	VIA 0200B	VIA 0200B	VIA 0200B	VIA 0200B	VIA 0200B	VIA 0200B	VIA 0200B	VIA 0200B	VIA 0200B	VIA 0200B	VIA 6200B	VIA 6200B	VIA 0200B	VIA 0200B
Acetone	50	10	<10	<10 U	<10	<10 UJ	<10	<10	<10	<10	<10	<10 UJ	<10	<10 U	<10	<10	<10	<10
1,1-Dichloroethene	5	5	<1	<1	<1	<1	<1	<1	<1	<1	1.6	<1	<1	<1	<1	<1	<1	<1
1,2,3-Trichlorobenzene	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-Dichloroethane	0.6	5	<1	<1	<1	<1 UJ	<1	<1	<1	<1	<1	180 D	150 D	160 D	150 D	140	130	140
Benzene	1	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	50	5	<1	<1	<1	<1 UJ	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon Tetrachloride	5	5	<1	<1	<1	<1 UJ	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1 UJ	<1	<1	<1	<1	<1
Chloroform	7	5	<1	4.2	<1	<1	<1	<1	<1	<1	1.1	0.67 J	<1	<1	<1	<1	<1	<1
cis-1,2-Dichloroethene	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dichlorodifluoromethane	5	5	<1	<1	<1	<1	<1	<1	<1	<1	8.7	<1	<1	<1	<1	<1	<1	<1
Methyl-t-Butyl Ether (MTBE) ⁽⁷⁾	10	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methylene Chloride	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	1.1	<1	<1	<1	<1	<1	1.4 J
trans-1,2-Dichloroethene	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethene	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorfluoromethane	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vinyl Chloride	2	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Tentatively Identified																		
Compound (TICs)																		
Ethyl ether			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trimethylsilanol			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.2 JN	ND	ND	ND	ND
2-Methylthiophene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorodifluoromethane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-Chloro-1-propene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Unknown TICs			ND	ND	ND	4.1 J	ND	ND	ND	ND	ND	ND	4.2	ND	6.7 J	ND	5.8 TJ	ND

Pfizer Rouses Point, NY

				KU	uses Point, N							
Constituent Volatile Organic	NYSDEC Groundwater Standard/Guidance	NYSDEC 2005 ASP CRQL	MW-29 7/17/2014	MW-29 7/28/2015	MW-29S 12/7/2010	MW-29S 3/23/2011	MW-29S 6/29/2011	MW-29S 9/27/2011	MW-29S 12/13/2011	MW-29S 3/14/2012	MW-29S 7/17/2014	MW-29S 7/28/2015
Compounds (μg/l)			via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B	via 8260B
Acetone	50	10	<10	<10	<10 UJ	<10	<10 U	<10	<10	<10	<10	<10
1,1-Dichloroethene	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	0.78 J
1,2,3-Trichlorobenzene	5	5	<1	<1	<1	<1	<1	<1	0.42 J	<1	<1	<1
1,2-Dichloroethane	0.6	5	94	79	6.9	<1	0.44 J	<1	<1	<1	<1	<1
Benzene	1	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	50	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon Tetrachloride	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	5	5	<1	<1	<1	<1 UJ	<1	<1	<1	<1	<1	<1
Chloroform	7	5	<1	<1	6.8	1.3	0.79 J	<1	<1	<1	<1	<1
cis-1,2-Dichloroethene	5	5	<1	<1	1.5	<1	<1	<1	<1	<1	<1	<1
Dichlorodifluoromethane	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methyl-t-Butyl Ether (MTBE) ⁽⁷⁾	10	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methylene Chloride	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
trans-1,2-Dichloroethene	5	5	<1	<1	2.0	<1	<1	<1	<1	<1	<1	<1
Trichloroethene	5	5	<1	<1	3.4	0.77 J	1.3	1.9	<1	<1	1.1	<1
Trichlorfluoromethane	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	2.3
Vinyl Chloride	2	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Tentatively Identified Compound (TICs)												
Ethyl ether			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trimethylsilanol			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylthiophene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorodifluoromethane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene			ND	ND	ND	ND	ND	ND	0.42 J	ND	ND	ND
3-Chloro-1-propene			ND	ND	ND	ND	ND	ND	0.79 J	ND	ND	ND
Total Unknown TICs			ND	ND	ND	ND	3.2 J	ND	ND	ND	ND	2.8 TJ

Pfizer Rouses Point, NY

1)	' =	Dυ	nli	icate	sam	nle

 $^{(2)}$ = Monitoring well decommissioned on 5/21/09 due to new building construction.

(3) = Sample diluted due to high concentrations of target analyte(s).

⁽⁴⁾ = Monitoring well decommissioned on 8/10/2007 and replaced with MW-12.

(5) = Sample was not sufficiently preserved at time of collection (sample pH was >2).

(6) = Sample diluted due to excessive foaming.

(7) = MTBE reported by laboratory. TBME (t-butyl methyl ether) is a site constituent of concern.

"MW-XX" = Deeper monitoring well screened in the lower glacial till.

"MW-XXS" = Shallow monitoring well screened in the upper glacial till.

Volatile Organic Compound (VOC) analysis via EPA Methods 8260B and 524.2 as indicated.

All groundwater analyses conducted via NYSDEC 2005 Analytical Services Protocol.

Bold value indicates detection of constituent above the laboratory reporting limit.

= Concentration meets or exceeds applicable NYSDEC Groundwater Quality Standard or guidance value (6 NYCRR Part 703) for water class GA (amended last in August 1999).

ND = Analyte not detected at or above the laboratory reporting limit.

NA = Not analyzed.

-- = Not established.

μg/l = micrograms per liter or parts per billion (ppb).

CRQL = Contract Required Quantitation Level from Exhibit C-Part I (Superfund-CLP Organics) and Part II (Superfund-CLP Inorganics) of Analytical Services Protocol (ASP), July 2005.

Only constituents detected are shown in the above table. See laboratory analytical data sheets for complete analyte lists.

Samples were qualified by the laboratory, data validation, and/or EPA CLP National Functional Guidelines for Organic Data Review (October 1999).

Organic Data Qualifiers

D = Sample was diluted due to high concentration of target analyte(s).

J = Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.

E = Compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.

N = Indicates presumptive evidence of a compound. This flag is used only for TICs, where the identification is based on the mass spectral library search.

B = Analyte is found in the associated laboratory blank as well as in the sample.

U = Sample concentrations of target compounds less than 5X (less than 10X for acetone) the concentration detected in equipment blanks are considered undetected, "U".

UJ = Indicates an estimated non-detect value due to an exceedance of quality control limits in the continuing calibration verification (CCV).

Inorganic Data Qualifiers

B = Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.

FIGURES

APPENDIX A: INACTIVE AOC NO FURTHER ACTION REQUESTS

Appendix A1

Summary of Investigation Activities and No Further Action Rationale for AOC-8: Release of Acetonitrile to the Concrete at Chemical Development

On April 6, 2000, a release of 25-gallons of acetonitrile occurred to surficial soil from a pinhole leak in a drum while in transport between buildings at the Chemical Development Plant. The release was reportedly contained, immediately cleaned up, and occurred to the concrete, this Area of Concern (AOC) was not considered to be a significant source of a release at the Site. Interviews were conducted with site personnel to determine the location, which was reported to be on the north side of the Chemical Development Plant near the corner of Building 26 on an access driveway. This location was co-located within the area excavated during the NYSDEC-approved Interim Corrective Measure (ICM) for SWMU-7: Process Sewer at the Chemical Development Plant in 2008 (see **Figure A1**). Photographs of the soil excavation and process sewer removal/replacement activities for SWMU-7 in the reported area of AOC-8 are attached. Soil and process sewer piping were excavated to an approximate depth of 15 feet below ground surface at the reported AOC-8 location as part of SWMU-7 ICM activities. The SWMU-7 Process Sewer ICM Completion Report dated May 14, 2010 documenting the soil excavation and process sewer removal activities was submitted to NYSDEC. NYSDEC concurred with the no further action recommendation in a letter dated June 3, 2010.

Since the release at AOC-8 was cleaned up in 2000 and the underlying soil was excavated to an approximate depth of 15 feet bgs in 2008 as part of the SWMU-7 ICM, no further action is recommended for AOC-8: Release of Acetonitrile to Concrete at Chemical Development.

References

Woodard & Curran, SWMU/AOC Sampling and Analysis Plan, Wyeth Pharmaceuticals, 64 Maple Street, Rouses Point, NY. September 1, 2006.

Woodard & Curran, SWMU/AOC Sampling and Analysis Report, Wyeth Pharmaceuticals, 64 Maple Street, Rouses Point, NY. April 5, 2007.

Woodard & Curran, Interim Corrective Measure Completion Report, SWMU-7: Process Sewer (Chemical Development Plant-North and West Sides), Wyeth Pharmaceuticals, 100 Academy Street, Rouses Point, NY. May 14, 2010.

NYSDEC, Interim Corrective Measure Completion Report – SWMU 7 (Process Sewer – North and West Sides) dated May 14, 2010, Wyeth Pharmaceuticals, Rouses Point, New York Facility. June 3, 2010.

1. View southwest of AOC-8 area excavated during SWMU-7 Process Sewer ICM activities in 2008.

2. View southeast of AOC-8 area excavated during SWMU-7 Process Sewer ICM activities in 2008.

3. View west of AOC-8 area excavated during SWMU-7 Process Sewer ICM activities in 2008.

4. View south of AOC-8 area excavated during SWMU-7 Process Sewer ICM activities in 2008.

Appendix A2

Summary of Investigation Activities and No Further Action Rationale for AOC-10: Building 23 Therminol Release to Soil

On October 1, 2004, 40-gallons of Therminol (a heat transfer fluid) were released to the surficial soil east of Building 23. Building 43 has since been constructed over the release area and any impacted soil was likely excavated and removed at that time. Therminol is an aromatic hydrocarbon (see attached MSDS).

As previously documented in the April 5, 2007 Sampling and Analysis Report (SAR) submitted to NYSDEC, in 2006, three (3) soil borings were installed to evaluate subsurface conditions underneath Building 43 at SWMU-13, which is co-located with AOC-10, in accordance with the NYSDEC approved Sampling and Analysis Plan (SAP) dated September 1, 2006 (see **Figure A2**). One boring was advanced to 20 feet below ground surface (bgs) in the current mechanical room for Building 43 at the reported western end of the former 1,000-gallon tank location and two soil samples were collected at 11-12 feet bgs and 15-16 feet bgs, respectively. The second boring was advanced to 16 feet bgs adjacent to the exterior east wall of Building 43 at the reported eastern end of the former 1,000-gallon tank and two soil samples were collected from 11-12 feet bgs and 14-15 feet bgs, respectively. The third boring was advanced to 11 feet bgs (which corresponded to refusal due to the limited access for the drilling equipment) inside the southern stairwell for Building 43 at the former 5,000-gallon tank location and one soil sample was collected from 10-11 feet bgs. In addition, a groundwater sample from a temporary groundwater sample point (GP11-TW11) was collected outside and downgradient of Building 43 to investigate potential groundwater impacts in the upper till unit.

The 2006 analytical results are summarized below (see the April 2007 SAR for additional details) and were compared to the NYSDEC Unrestricted Use Soil Cleanup Objectives (SCOs) in 6 NYCRR Subpart 375-6.8(a) and Restricted Use – Residential SCOs in 6 NYCRR Subpart 375-6.8(b), where established. Where a value in Subpart 375-6.8(b) has not been established, values were taken from NYSDEC Technical and Administrative Guidance Manual (TAGM) 4046: Determination of Soil Cleanup Objectives and Cleanup Levels:

- No physical indications of a chemical release, such as odors, staining, or elevated photoionization detector (PID) field screening readings, were observed during the advancement of the soil borings.
- Fill material was noted in each of the borings to approximately 9 feet bgs, which was placed during construction of the existing Building 43 following the therminol release. Therefore, any impacted soil from the therminol release was likely removed during construction of the building.
- The soil analytical results indicated the presence of several low concentrations of volatile organic compounds (VOCs), primarily 1,2-dichloroethane (0.002J and 0.005 milligrams per kilogram or mg/kg), dichlorodifluoromethane (0.001J to 0.002J mg/kg), and methylene chloride (0.007 to 0.014 mg/kg). No concentrations of VOCs exceeded NYSDEC Unrestricted Use SCOs in 6 NYCRR Subpart 375-6.8(a).
- The soil analytical results indicated the presence of several low concentrations of semi-VOCs (SVOCs), primarily bis(2-ethylhexyl)phthalate (0.060J to 0.076J mg/kg), benzo(a)anthracene (0.093J mg/kg), benzo(a)pyrene (0.096J mg/kg), benzo(b)fluoranthene (0.081J mg/kg), benzo(ghi)perylene (0.060J mg/kg), benzo(k)fluoranthene (0.026J mg/kg), chrysene (0.130J mg/kg), fluoranthene (0.050J mg/kg), indeno(1,2,3-cd)pyrene (0.043J mg/kg), phenanthrene (0.022J mg/kg), and pyrene (0.063J mg/kg). No concentrations of SVOCs exceeded established NYSDEC Unrestricted Use SCOs in 6 NYCRR Subpart 375-6.8(a).
- Concentrations of metals were detected in select soil samples and included: arsenic (ranging from 1.7B to 2.9 mg/kg), barium (ranging from 18.9 to 44.5 mg/kg), cadmium (ranging from 0.07 to 0.10B mg/kg), chromium (ranging from 6.8 to 13 mg/kg), lead (ranging from 3.1 to 6.2 mg/kg), selenium (ranging from 0.068B to 0.93B mg/kg), and mercury (0.007B mg/kg). Only chromium exceeded the NYSDEC Unrestricted Use SCO for hexavalent chromium (which was not analyzed for) in 6 NYCRR Subpart 375-6.8(a), but were below the SCO for

trivalent chromium of 30 mg/kg and below the NYSDEC Restricted Use - Residential SCOs in 6 NYCRR Subpart 375-6.8 (b).

- Concentrations of VOCs were detected in groundwater from the temporary groundwater sample point (GP11-TW11) downgradient of Building 43 in the upper till unit including acetone (10 μg/L), chloroform (2J μg/L), and trichloroethene (1J μg/L) below applicable NYSDEC groundwater quality standards.
- Naphthalene was also detected in groundwater from the temporary groundwater sample point (GP11-TW11) at 0.3J µg/L. No concentrations of SVOCs in groundwater exceeded the applicable NYSDEC groundwater quality standards.
- The groundwater sample from the temporary groundwater sample point (GP11-TW11) contained arsenic (80.1 μg/L), barium (850 μg/L), cadmium (9.8 μg/L), chromium (290 μg/L), and lead (115 μg/L) all above the applicable groundwater quality standards, except for barium. The higher concentrations of metals in the temporary groundwater sample point (constructed without a sand filter pack) were most likely due to turbidity.
- PCBs were not detected in the soil samples analyzed from the three (3) soil borings or in the groundwater sample from the temporary groundwater sample point.

In August 2010, two permanent groundwater monitoring wells (MW-27 and MW-27S) were installed at the temporary groundwater sample point location downgradient of AOC-10, SWMU-13, and Building 43 in the lower till and upper till units, respectively. These monitoring wells have been sampled six (6) times from September 2010 through December 2011 and the analytical results are summarized below (See the March 2013 Draft Corrective Measures Study Report for additional details):

- Concentrations of several VOCs were detected in the lower till monitoring well MW-27 including 1,2-dichloroethane (1.8J to 4.9 μg/L), carbon tetrachloride (0.47J to 3.3 μg/L), chloroform (0.71J to 5.4 μg/L), cis-1,2-dichloroethene (0.84J to 2.2 μg/L), methyl tert-butyl ether or MTBE (0.19J to 0.59J μg/L), trichloroethene (5.5 to 14 μg/L), and vinyl chloride (0.94 to 2.1 μg/L). Several tentatively identified compounds including ethyl ether (0.77 to 6.6 μg/L) and chlorodifluoromethane (2.3 to 2.8 μg/L) were also sporadically detected. The concentrations of 1,2-dichloroethane and trichloroethene exceeded NYSDEC groundwater quality standards during all sampling events. The overall trends in the concentrations of the VOCs detected in MW-27 are either stable or decreasing.
- Concentrations of several VOCs were detected in the upper till monitoring well MW-27S including primarily carbon tetrachloride (0.81J to 2.9 μg/L), chloroform (0.73J to 3.4 μg/L), and trichloroethene (0.33J μg/L in the initial sampling event only). No concentrations of VOCs in MW-27S have exceeded NYSDEC groundwater quality standards. The overall trend in the concentrations of the VOCs detected in MW-27S is decreasing.

Based on the results of the investigation activities summarized above coupled with the extensive site construction activities (including soil excavation) conducted during the construction of Building 43 and the inaccessible location of AOC-10 underneath a large industrial building, no further action is recommended for AOC-10: Building 23 Therminol Release to Soil.

References

Woodard & Curran, SWMU/AOC Sampling and Analysis Plan, Wyeth Pharmaceuticals, 64 Maple Street, Rouses Point, NY. September 1, 2006.

Woodard & Curran, SWMU/AOC Sampling and Analysis Report, Wyeth Pharmaceuticals, 64 Maple Street, Rouses Point, NY. April 5, 2007.

Woodard & Curran, CMS Work Plan, Pfizer, Rouses Point, NY. October 8, 2010 (revised December 9, 2010).

Woodard & Curran. March 29, 2013. Draft Corrective Measures Study Report, Pfizer, Rouses Point, NY.

Solutia Inc. Material Safety Data Sheet Reference Number: 000000000197

Solutia Inc.

Material Safety Data Sheet

1. PRODUCT AND COMPANY IDENTIFICATION

Product name: THERMINOL® 59 Heat transfer fluid

Reference Number: 000000000197 Date: 05/15/2009

Company Information:

United States:

Solutia Inc. 575 Maryville Center Drive, P.O. Box 66760

St. Louis, MO 63166-6760

Emergency telephone: Chemtrec: 1-800-424-9300

International Emergency telephone: Chemtrec: 703-527-3887

Non-Emergency telephone: 1-314-674-6661

Mexico:

Solutia MEXICO, S. DE R.L. DE C.V.

Prol. Paseo de la Reforma 2654

Local 501, Piso-5 Col. Lomas Altas 11950 Mexico, D.F.

Emergency telephone: SETIQ: (in Mexico) 01-800-002-1400 Non-Emergency telephone: (in Mexico) 01-55-5259-6800

Canada:

Solutia Canada Inc. 6800 St. Patrick Street LaSalle, PQ H8N 2H3

Emergency telephone: CANUTEC: 1-613-996-6666

Page 1/8

Date: 05/15/2009

Version 5.2/E

Non-Emergency telephone: 1-314-674-6661

Brazil:

Solutia Brazil Ltd.

Avenue Carlos Marcondes, 1200

CEP: 12241-420-São José dos Campos/SP-Brazil Emergency telephone: 55 12 3932 7100 (PABX) Non-Emergency telephone: 55 11 3365 1800 (PABX)

2. HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW

Form: liquid Colour: pale yellow

Odour: aromatic, hydrocarbon

WARNING STATEMENTS

WARNING!

Causes skin irritation

Elevated processing temperatures may cause release of vapours which are irritating to eyes and upper respiratory tract

POTENTIAL HEALTH EFFECTS

Likely routes of exposure: eye and skin contact

Page 2/8 Solutia Inc. Material Safety Data Sheet Date: 05/15/2009 Reference Number: 000000000197 Version 5.2/E

inhalation

Eye contact: No more than slightly irritating to eyes.

Elevated processing temperatures may cause release of vapours which are

irritating.

Skin contact: Highly irritating to skin.

No more than slightly toxic if absorbed.

Prolonged or repeated skin contact may result in irritant dermatitis.

Inhalation: Elevated processing temperatures may cause release of vapours which are

irritating if inhaled.

No more than slightly toxic if inhaled.

Significant adverse health effects are not expected to develop under normal

conditions of exposure.

Ingestion: No more than slightly toxic if swallowed.

Significant adverse health effects are not expected to develop if only small

amounts (less than a mouthful) are swallowed.

Signs and symptoms of

overexposure:

headache

dizziness/incoordination

nausea/vomiting loss of consciousness

vertigo confusion anxiety

laboured breathing

drowsiness

Refer to Section 11 for toxicological information.

3. COMPOSITION/INFORMATION ON INGREDIENTS

<u>Components</u>	CAS No.	<u>Average</u>	Concentration	<u>Units</u>
		concentration	<u>range</u>	
ethyl diphenyl ethane	64800-83-5		>=30.0 - <=60.0	%
diphenyl ethane	38888-98-1		<=30.0	%
diethyl diphenyl ethane	68398-19-6		>=10.0 - <=30.0	%
ethylbenzene polymer	27536-89-6		>=7.0 - <=13.0	%

4. FIRST AID MEASURES

If in eyes: Immediately flush with plenty of water for at least 15 minutes.

If easy to do, remove any contact lenses.

Get medical attention.

Remove material from skin and clothing.

If on skin: Immediately flush the area with plenty of water.

Remove contaminated clothing.

Get medical attention. Wash clothing before reuse.

If inhaled: Remove patient to fresh air.

Solutia Inc. Material Safety Data Sheet Reference Number: 000000000197

If not breathing, give artificial respiration. If breathing is difficult give oxygen.

Remove material from eyes, skin and clothing.

If swallowed: Immediate first aid is not likely to be required.

A physician or Poison Control Center can be contacted for advice.

Page 3/8

Date: 05/15/2009

Version 5.2/E

Wash heavily contaminated clothing before reuse.

5. FIRE FIGHTING MEASURES

Fire point: 163 C Cleveland Open Cup

Hazardous products of combustion: carbon monoxide (CO); carbon dioxide; hydrocarbons; soot; smoke

Extinguishing media: Water spray, foam, dry chemical, or carbon dioxide

Unusual fire and explosion hazards: None known

Fire fighting equipment: Firefighters, and others exposed, wear self-contained breathing apparatus.

Equipment should be thoroughly decontaminated after use.

Miscellaneous advice: This product is not classified as a fire-resistant heat transfer fluid.

Precautions to avoid sources of ignitions should be taken.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions: Use personal protection recommended in section 8.

Environmental Keep out of drains and water courses.

precautions:

Methods for cleaning up: Contain large spills with dikes and transfer the material to appropriate containers for

reclamation or disposal. Absorb remaining material or small spills with an inert material

and then place in a chemical waste container. Flush spill area with water.

Refer to Section 13 for disposal information and Sections 14 and 15 for reportable quantity information.

7. HANDLING AND STORAGE

Handling

Avoid contact with eyes, skin and clothing.

Avoid breathing vapour or mist.

Keep container closed.

Use with adequate ventilation.

Wash thoroughly after handling.

Precautions against ignitions and fire should be taken with this product.

Heat transfer fluids are intended for INDIRECT heating purposes ONLY.

This product has not been approved for food grade use.

Emptied containers retain vapour and product residue. Observe all recommended safety precautions until container is cleaned, reconditioned or destroyed. Do not cut, drill, grind or weld on or near this container. The reuse of this material's container for non industrial purposes is prohibited and any reuse must be in consideration of the data provided in this material safety data sheet.

Storage

Page 4/8 Solutia Inc. Material Safety Data Sheet Date: 05/15/2009 Reference Number: 000000000197 Version 5.2/E

General: Stable under normal conditions of handling and storage.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Airborne exposure limits: (ml/m3 = ppm)

THERMINOL® 59 Solutia: 2.0 mg/m3; ; 8-hr TWA

Solutia established exposure guideline.

Eye protection: Wear chemical goggles.

Have eye flushing equipment available.

Hand protection: Wear chemical resistant gloves.

Consult the glove/clothing manufacturer to determine the appropriate type

glove/clothing for a given application. See Solutia Glove Facts for permeation data.

Wear suitable protective clothing. Body protection:

Wear full protective clothing if exposed to splashes.

Consult the glove/clothing manufacturer to determine the appropriate type

glove/clothing for a given application. Wash contaminated skin promptly.

Launder contaminated clothing and clean protective equipment before reuse. Have safety shower available at locations where skin contact can occur.

Wash thoroughly after handling.

Respiratory protection: Avoid breathing vapour or mist.

Use approved respiratory protection equipment (full facepiece recommended) when

airborne exposure limits are exceeded.

If used, full facepiece replaces the need for face shield and/or chemical goggles.

Consult the respirator manufacturer to determine the appropriate type of equipment for

a given application.

Observe respirator use limitations specified by the manufacturer.

Ventilation: Provide natural or mechanical ventilation to control exposure levels below airborne

exposure limits.

If practical, use local mechanical exhaust ventilation at sources of air contamination

such as processing equipment.

Components referred to herein may be regulated by specific Canadian provincial legislation. Please refer to exposure limits legislated for the province in which the substance will be used.

9. PHYSICAL AND CHEMICAL PROPERTIES

Flash point: > 138 C Cleveland Open Cup

Autoignition temperature: 404 C **ASTM D-2155**

Specific gravity: 0.971 @ 25 C

Boiling point : 289 C

Vapour pressure: 0.003 hPa @ 25 C

0.00055 g/l @ 20 C Water solubility:

Page 5/8 Solutia Inc. Material Safety Data Sheet Date: 05/15/2009 Reference Number: 000000000197 Version 5.2/E

Kinematic viscosity: 4.04 mm2/s @ 40 C

NOTE: These physical data are typical values based on material tested but may vary from sample to sample. Typical values should not be construed as a guaranteed analysis of any specific lot or as specifications for the product.

10. STABILITY AND REACTIVITY

Conditions to avoid: All sources of ignition.

Materials to avoid: None known

Hazardous reactions: Hazardous polymerization does not occur.

Hazardous decomposition

products:

None known;

11. TOXICOLOGICAL INFORMATION

Human experience: Prolonged or repeated skin contact may result in irritant dermatitis.

Elevated processing temperatures may cause release of vapours which are irritating to

eyes and upper respiratory tract

This product has been tested for toxicity. Results from Solutia sponsored studies or from the available public literature are described below.

Acute animal toxicity data

Oral: LD50, rat, > 5,000 mg/kg, Practically nontoxic following oral administration.

Dermal: LD50, rabbit, > 5,000 mg/kg, Practically nontoxic after skin application in animal

Eye irritation: rabbit, Slightly irritating to eyes (rabbit)., 24 h

Skin irritation: rabbit, Severely irritating, 24 h

rabbit, Moderately irritating to skin., 4 h

rat, , inhalation, 13 weeks, , Produced effects on body weight, serum enzymes Repeat dose toxicity:

and/or organ weights in repeat dose studies.

Repeat dose toxicity: rat, , inhalation, 28 days, , Produced effects on body weight, serum enzymes

and/or organ weights in repeat dose studies.

Developmental toxicity: rat, inhalation, , Effects on offspring only observed with maternal toxicity.

Effects only observed at very high dose levels.

Mutagenicity: No genetic effects were observed in standard tests using bacterial and animal cells.

Page 6/8 Solutia Inc. Material Safety Data Sheet Date: 05/15/2009 Reference Number: 000000000197 Version 5.2/E

Components

Data from Solutia studies and/or the available scientific literature on the components of this material which have been identified as hazardous chemicals under the criteria of the OSHA Hazard Communication Standard (29 CFR 1910.1200) or the Canadian Hazardous Products Act are discussed below.

12. ECOLOGICAL INFORMATION

Environmental Toxicity

48 h, EC50 Water flea (Daphnia magna) Invertebrates $0.77 \, \text{mg/l}$

EC50/LC50 greater than water solubility.

Fish: 96 h, LC50 Rainbow trout (Oncorhynchus mykiss) > 0.97 mg/l

EC50/LC50 greater than water solubility.

96 h, LC50 Fathead minnow (Pimephales promelas) > 16 mg/l

EC50/LC50 greater than water solubility.

96 h, EC50 Algae (Selenastrum capricornutum) 0.67 mg/l Algae:

EC50/LC50 greater than water solubility.

Environmental fate

Biodegradation

Resistant to biodegradation.

13. DISPOSAL CONSIDERATIONS

US EPA RCRA Status: This material when discarded may be a hazardous waste as that term is defined by the

> Resource Conservation and Recovery Act (RCRA), 40 CFR 261.24, due to its toxicity characteristic. This material should be analyzed in accordance with Method 1311 for the

compound(s) below.

US EPA RCRA D018 Compound/Characteristic: **BENZENE**

hazardous waste number:

Consult 40 CFR 268.40 or appropriate local regulations for concentration based Disposal considerations:

standards.

Miscellaneous advice: This product meets the criteria for a synthetic used oil under the U.S. EPA Standards for

> the Management of Used Oil (40 CFR 279). Those standards govern recycling and disposal in lieu of 40 CFR 260 -272 of the Federal hazardous waste program in states that have adopted these used oil regulations. Consult your attorney or appropriate regulatory official to be sure these standards have been adopted in your state. Recycle or

burn in accordance with the applicable standards.

Solutia operates a used fluid return program for certain fluids under these used oil

standards. Contact your Sales Representative for details.

This product should not be dumped, spilled, rinsed or washed into sewers or public

waterways.

14. TRANSPORT INFORMATION

The data provided in this section is for information only. Please apply the appropriate regulations to properly classify your shipment for transportation.

Page 7/8 Solutia Inc. Material Safety Data Sheet Date: 05/15/2009 Reference Number: 000000000197 Version 5.2/E

US DOT

Other: Not regulated for transport.

Canadian TDG

Other: Not regulated for transport.

15. REGULATORY INFORMATION

All components are in compliance with

the following inventories:

U.S. TSCA, EU EINECS, Canadian DSL, Korean

Other chemical inventory information: The polymer contained within this product is exempt from listing in the

> European Inventory. The monomers used to manufacture this polymer are listed as required, as are all other components of this product.

Canadian WHMIS classification: D2(B) - Materials Causing Other Toxic Effects

SARA Hazard Notification:

Hazard Categories Under Title III

Rules (40 CFR 370):

Immediate

Section 302 Extremely Hazardous

Substances:

Not applicable

Section 313 Toxic Chemical(s): Not applicable

CERCLA Reportable Quantity:

Not applicable

This product has been classified in accordance with the hazard criteria of the Canadian Controlled Products Regulation and the MSDS contains all the information required by the Canadian Controlled Products Regulation.

Refer to Section 11 for OSHA/HPA Hazardous Chemical(s) and Section 13 for RCRA classification.

Safety data sheet also created in accordance with Brazilian law NBR 14725

16. OTHER INFORMATION

Product use: Heat transferring agents

Reason for revision: Routine review and update

> Additional Information Health Fire Reactivity

Suggested NFPA Rating 1

0 Suggested HMIS Rating: 1 1 G Product name: THERMINOL® 59 Heat transfer fluid

Page 8 / 8 Solutia Inc. Material Safety Data Sheet Date: 05/15/2009 Reference Number: 000000000197 Version 5.2/E

Prepared by the Solutia Hazard Communication Group. Please consult Solutia @ 314-674-6661 if further information is needed.

> TM, ® is a registered trademark of Solutia Inc. SOLUTIA is a trademark of Solutia Inc. Responsible Care® is a registered trademark of the American Chemistry Council.

Although the information and recommendations set forth herein (hereinafter "Information") are presented in good faith and believed to be correct as of the date hereof, Solutia Inc. makes no representations as to the completeness or accuracy thereof. Information is supplied upon the condition that the persons receiving same will make their own determination as to its suitability for their purposes prior to use. In no event will Solutia Inc. be responsible for damages of any nature whatsoever resulting from the use of or reliance upon Information. NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OF ANY OTHER NATURE ARE MADE HEREUNDER WITH RESPECT TO INFORMATION OR THE PRODUCT TO WHICH INFORMATION REFERS.

APPENDIX B: TEST PIT/SOIL BORING LOGS

TEST PI	Woodard & Curran	TEST PIT ID: SWMU1-SU	JRFACE
	709 Westchester Avenue, Suite L2 White Plains, New York 10604 Telephone: 800.807.4080 Fax: 914.448.0147		AGE 1 OF 1
CLIE	NT <u>Pfizer</u>	PROJECT NAME Pfizer - Rouses Point, NY	
≥1	JECT NUMBER 206910		
<u>α</u>	ESTARTED 10/29/15 COMPLETED 10/29/15		
o l	AVATION CONTRACTOR Woodard & Curran		
EXC	AVATION METHOD _Test Pit		
	GED BY _Jared Port		
NOT	ES _Test Pit Dimensions: 3ft x 2ft x 2ft		
SAMP			
CRAICHEMD SWMU SAPISAMP DEPTH (ft)	%	TERIAL DESCRIPTION	Environmental Data
CRA	Asphalt		
2	100 Grey, coarse GRAVEL, dry		
ESS	Light brown, fine to coarse SAND, some coarse g	gravel and cobbles, dry Bottom of Test Pit at 2 feet.	
ASS	'	Bollotti of Test Fit at 2 leet.	
E I			
AT N			
NO NO NO NO NO NO NO NO NO NO NO NO NO N			
<u> </u>			
JSES			
J R S			
崱			
70 V			
72069			
ECTS			
NON I			
SHAF			
Š S			
-10-			
16 16			
- 3/9/			
GDT			
STD			
N N			
80			
S W			
TES			
SRAN			
Y OU			
RD 8			
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/8/16 16:10 - \(\)WC\SHARED\PROJECTS\206910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESS\(\)WPIR ASPESS\(\)WPIR ASPESS\			
ĭL			

॒						
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - \(\)WC\SHARED\PROJECTS\(\)206910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESS\(\)WPINFORM SYNENCHEMD SWMU SAP/SAMPLING AND ANALYSIS REPORTIGINTIPFIZER RP TEST			oodard & Curran 9 Westchester Avenue, Suite	L2	TEST PIT ID: SWMU	
ZERR	WOODA	Wh	nite Plains, New York 10604 ephone: 800.807.4080		PAC	GE 1 OF 1
IT/PFI	WOODA S∡CURR	AN Fa	x: 914.448.0147			
S CI		Pfizer				
					PROJECT LOCATION Rouses Point, NY	
SIS E			10/28/15 COMF		_	
YAN F			ONTRACTOR Woodard & C ETHOD Test Pit	urran	-	
			ared Port		-	
N ENG			t Dimensions: 3ft x 2ft x 2.5ft		_	
SAMP		%				
SAP						Environmental Data
SWMU	(#)	KECOVEKY		MAT	ERIAL DESCRIPTION	onm
SIMDS	i j) (c				Envir
A/CHE	0 '	Feet BGS				
% 			Concrete, some brown fi	ne to coarse sand, dry		
SWIP -	2 1	00				PID = 0.0p
SSES		<u>'</u>	_	Bo	ttom of Test Pit at 2.5 feet.	`
ITE A						
IALS						
MEN						
RON						
EN						
Ä						
ES PC						
ionsi						
Ŧ						
MYE						
06910						
TS\Z						
OPEC						
D\PR						
HAR						
VC\S						
-0						
6 16:1						
3/9/1						
- TÖ						
STD.0						
NC.						
Ø						
0/M						
PITS						
TEST						
RAN						
CUR						
ARD 8						
700D						
ĭ						

<u>~</u>			
MOODARI WOODARI		TEST PIT ID: SWMU1	I-TP02 E 1 OF 1
CLIENT F		PROJECT NAME Pfizer - Rouses Point, NY	
PROJECT	NUMBER 206910	PROJECT LOCATION Rouses Point, NY	
DATE STA	ARTED 10/28/15 COMPLETED 10/28/15	<u> </u>	
EXCAVAT	ION CONTRACTOR Woodard & Curran	_	
EXCAVAT	TION METHOD Test Pit	_	
LOGGED I	BY Jared Port		
NOTES T	Test Pit Dimensions: 3ft x 2ft x 2ft	_	
CCHEMD SWMU SAPISA DEPTH (ft) (ft) RECOVERY %	MA [*] Feet BGS	TERIAL DESCRIPTION	Environmental Data
CRA 	Dark brown/grey, concrete, some fine to coarse sa	and, dry	
100	0 Light brown, fine to coarse SAND, trace fine to coarse	arse gravel, dry	PID = 0.0
ESS.		ottom of Test Pit at 2 feet.	
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - WWCSHAREDIPROJECTS/206910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESS/WIPLRGAND SWANU SAPISAMPLING AND ANALYSIS REPORT/GINT/PFIZER RP TEST			

颪						
PFIZER RP TEST	709 Whi	odard & Curran Westchester Av te Plains, New Y ephone: 800.807 : 914.448.0147	ork 10604		TEST PIT ID: SWML	11-TP03 AGE 1 OF 1
	JRRAN Fax NT <u>Pfizer</u>	. 914.440.0147			PROJECT NAME _Pfizer - Rouses Point, NY	
DBU	JECT NUMBI	ID 206010			PROJECT LOCATION Rouses Point, NY	
DATE			COMPLETED		Rouses Folia, NT	
SI EXC			/oodard & Curran	10/20/13	-	
EXC		THOD Test Pit				
	GED BY Ja		•			
NOTI		Dimensions: 3ft	 x 2ft x 2ft			
AMP.	<u> </u>	Dimensions. on	XZII XZII		:	
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - WWC/SHARED/PROJECTS/2069/10 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESS/WIPIRCRA/CHEMD SWMU SAPISAM/PLING AND ANALYSIS REPORT/GINT/PFIZER RP TEST	RECOVERY %			MATI	ERIAL DESCRIPTION	Environmental Data
		Concrete sla	b			
¥ - 2 -	100			ND, trace cobbles	(with pieces of concrete and electrical conduit), dry	
ESS	<u></u>			Во	ttom of Test Pit at 2 feet.	PID = 0pp
E ASS						
ESITI ESITI						
ATA						
NM						
N N						
<u>-</u> E						
PON						
JSES						
I ROL						
빚						
910 W						
\2069						
ECTS						
NON I						
ÄED!F						
SHAF						
O N						
-10-						
16 16						
- 3/6/						
GDT.						
STD						
- M						
% 0						
S W						
F						
ES TES						
RRAN						
& CUI						
ARD ,						
00D.						
≥						

<u> </u>		
Woodard & Curran 709 Westchester Avenue, Suite L2 White Plains, New York 10604 Telephone: 800.807.4080	TEST PIT ID: SWM	IU1-TP04 PAGE 1 OF 1
&CURRAN Fax: 914.448.0147		
CLIENT Pfizer		
PROJECT NUMBER 206910		
DATE STARTED 10/28/15 COMPLETED		
EXCAVATION CONTRACTOR Woodard & Curran		
EXCAVATION METHOD Test Pit		
LOGGED BY Jared Port		
NOTES Test Pit Dimensions: 3ft x 2ft x 2.5ft		
RECOVERY %	MATERIAL DESCRIPTION	Environmental Data
Gray/black, fine to coarse SAND	, trace cobbles (with pieces of concrete), dry	
2 100		
Light brown, fine to coarse SAND	O (with pieces of geofabric, PVC, and poly tubing), dry	PID = 0.0p
	Bottom of Test Pit at 2.5 feet.	
WOODARD Fax: 914.448.0147 CLIENT Pfizer PROJECT NUMBER 206910 DATE STARTED 10/28/15 COMPLETED EXCAVATION METHOD Test Pit LOGGED BY Jared Port NOTES Test Pit Dimensions: 3ft x 2ft x 2.5ft Gray/black, fine to coarse SAND Light brown, fine to coarse SAND Light brown, fine to coarse SAND Light brown, fine to coarse SAND		

₫			
TEST	Woodard & Curran	TEST PIT ID: SWMU26-BLDG	16-01
A A	709 Westchester Avenue, Suite L White Plains, New York 10604		E 1 OF 1
	Telephone: 800.807.4080		
₩ &c	URRAN Fax: 914.448.0147		
E CLIE		PROJECT NAME Pfizer - Rouses Point, NY	
版 PRO		PROJECT LOCATION Rouses Point, NY	
DAT	E STARTED 10/27/15 COMP		
S EXC	AVATION CONTRACTOR Woodard & Cu	urran	
EXC.	AVATION METHOD Test Pit		
LOG	GED BY Jared Port		
≦ NOT	Test Pit Dimensions: 3ft x 2ft x 3ft		
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - WWC/SHARED/PROJECTS/200910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESS/WIP/RCRA/CHEMD SWM/U SAP/SAMPLING AND ANALYSIS REPORTIGINTIPFIZER RP TEST	%		ta l
E T	RECOVERY Feet		Environmental Data
DEPTH (ft)		MATERIAL DESCRIPTION	Dat
EMD C	L S C		E E
0 A	BGS		
RCR -	Brown, fine to coarse SAN	ND, some silt and fine to coarse gravel (with pieces of concrete and brick) dry	
<u></u>	100		
SESS	<u>-</u>		PID = 0.0p
E AS		Bottom of Test Pit at 3 feet.	
.IS			
ATA ATA			
MΜ			
VIRO			
EN.			
TNIC			
ES PC			
ISIOO			
王 조			
WYE			
910			
3/206			
EC T8			
NO.			
ËD			
HAR.			
WC.			
-0			
3 16:			
3/9/16			
5-1			
D.G			
CS			
× - ×			
0 6/			
M M			
T P I			
TES			
RAN			
CUR			
گ 8			
ODAF			
MOX			

砬			
RP TEST	Woodard & Curran 709 Westchester Avenue, Suite L2 White Plains, New York 10604	TEST PIT ID: SWMU26-BLDG1	
FIZER	Telephone: 800.807.4080		
LNIS CLIF	URRAN Fax: 914.448.0147 ENT Pfizer	PROJECT NAME Pfizer - Rouses Point, NY	
PRO		PROJECT LOCATION Rouses Point, NY	
DAT	E STARTED 10/27/15 COMPLETED 10/27/15		
EXC	AVATION CONTRACTOR Woodard & Curran		
EXC	AVATION METHOD Test Pit	_	
LOG	GGED BY Jared Port		
NOT	Test Pit Dimensions: 3ft x 2ft x 3ft		
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - WC/SHARED/PROJECTS/206910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESSWIP/PRCA/CHEMD SWM/U SAP/SAMPLING AND ANALYSIS REPORTIGINT/PFIZER RP TEST	MA WE Feet BGS	ATERIAL DESCRIPTION	Environmental Data
CRA)		o coarse gravel (with pieces of concrete and brick), dry	
M 2 -	†		
SESS			PID = 0.0pp
E AS:	E	Bottom of Test Pit at 3 feet.	
AL SI			
WENT WENT WENT WENT WENT WENT WENT WENT			
RON			
EN			
Ļ			
ES PC			
SOUS			
ᇤ			
M O			
20691			
CTS			
ROJE			
ZED!F			
SHAF			
MC MC			
6:10 -			
9/16 1			
D:G			
VC ST			
^ - W			
00 00 00 00 00 00 00 00 00 00 00 00 00			
PITS			
TEST			
RAN			
CURI			
& GRD &			
20DA			
ĭ <u></u>			

砬			
WOODARD & CURRAN TEST PITS W/O GW - WC STD, GDT - 3/9/16 16:10 - WWC/SHARED/PROJECTS/206910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESSWIP/RCRA/CHEMD SWM/U SAP/SAM/PLING AND ANALYSIS REPORTIGINT/PFIZER RP TEST	Woodard & Curran 709 Westchester Avenue, Suite L2	TEST PIT ID: SWMU26-BLDC	316-03 SE 1 OF 1
FIZER	White Plains, New York 10604 Telephone: 800.807.4080 Fax: 914.448.0147		,
CLIE	JRRAN Fax: 914.448.0147 NT <u>Pfizer</u>	PROJECT NAME Pfizer - Rouses Point, NY	
FRO.		PROJECT LOCATION Rouses Point, NY	
DATE	E STARTED 10/27/15 COMPLETED 10/27/15	_	
S EXC	AVATION CONTRACTOR Woodard & Curran	_	
EXC	AVATION METHOD _Test Pit GED BY _Jared Port	_	
NOTI	ES _Test Pit Dimensions: 3ft x 2ft x 3ft		
SAMPI			_
J SAP	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Environmental Data
DEPTH (ft)	MA' MA'	TERIAL DESCRIPTION	ironir Data
EMD D	U Feet		Envi
- 0 - 0	BGS	coarse gravel (with pieces of concrete and brick), dry	
J - 2 -	1	coarse graver (with pieces or concrete and brick), dry	
Z	100		PID = 0.0pp
ASSI	E	Bottom of Test Pit at 3 feet.	<u> </u>
L SIT			
ENTA			
N S S			
ENY ENY ENY ENY ENY ENY ENY ENY ENY ENY			
- LN			
ES PO			
SOUSI			
표			
0 W M			
\2069			
ECTS			
PROJ			
ARED			
/C/SH			
M -0			
9 16:11			
3/9/16			
GDT -			
STD			
- WC			
8 0			
TS W/			
ST PI			
Ä N			
URRA			
& O			
DDAR			
XX			

₫					
TEST	_		Woodard & Curran 709 Westchester Avenue, Suite L2	TEST PIT ID: SWMU26-BLDG	
R R			White Plains, New York 10604	PAG	E 1 OF 1
\PFIZI		DARD RRAN	Telephone: 800.807.4080 Fax: 914.448.0147		
₽ c	LIEN	T <u>Pf</u>	zer	PROJECT NAME Pfizer - Rouses Point, NY	
P R	ROJI	ECT N	UMBER _206910	PROJECT LOCATION Rouses Point, NY	
D SRE	ATE	STAF	TED _10/27/15	_	
E ALYSI	XCA	VATIC	N CONTRACTOR Woodard & Curran	-	
NA E			N METHOD Test Pit	_	
Ne D			/ <u>Jared Port</u>		
MP N	IOTE	S _Te	st Pit Dimensions: 3ft x 2ft x 3ft	-	
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - WWC/SHARED/PROJECTS/206910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESS/WIP/RCRA/CHEMD SWMU SAP/SAMPLING AND ANALYSIS REPORTIGINTIPFIZER RP TEST		γ %			ntal
MU S	(#)	RECOVERY	MAT	ERIAL DESCRIPTION	Environmental Data
D SW] [:CO			N Ki
SHEM SHEM	0		Feet BGS		<u>ы</u>
SCRA\ -				se gravel and cobbles (with pieces of concrete), dry	
MP/	2 -	100			
SESS/	\exists				PID = 0.1pp
E AS			Вс	ottom of Test Pit at 3 feet.	
AL SI					
ENT.					
SON S					
ENSE					
Ę					
S POI					
OUSE					
된					
WYE					
6910					
15/20					
) EC					
)PRC					
ARE					
C\SH					
<u>-</u>					
16:10					
/9/16					
T-3					
<u>D</u>					
VC S					
^- M					
0/O					
ITS \					
STF					
AN H					
URR					
0 & C					
DAR					
MOK					

₫							
LEST			dard & Curran			TEST PIT ID: SWMU26-BLDG	23-01
쮼			Westchester Avenue e Plains, New York				1 OF 1
ZER	WOO	Tolo	phone: 800.807.408				
TIPE			914.448.0147				
	CLIEN	T Pfizer				PROJECT NAME Pfizer - Rouses Point, NY	
i R	PROJI	ECT NUMBE	R 206910			PROJECT LOCATION Rouses Point, NY	
J. REF	DATE	STARTED	10/28/15	COMPLETED	10/28/15	_	
i Ki	EXCA	VATION CO	NTRACTOR Wood	ard & Curran		_	
₽ 	EXCA	VATION ME	THOD Test Pit			_	
AND I	_OGG	ED BY _Jar	ed Port				
S I			Dimensions: 3ft x 2ft	t x 3ft			
- AMP							
AP\S		% ≻					Environmental Data
S O N	DEPTH (ft)	RECOVERY			MAT	ERIAL DESCRIPTION	ata ata
SW	֓֡֓֓֞֓֓֓֓֡֓֓֓֡֡֓֓֡֓֓֡֓֡֓֡֓֡֡֡֡֡֡֡֡֡֡֡֡	8			IVIAT	ERIAL DESCRIF HON	įξα
EMC	_	Ж Feet					En
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - \\WC\SHARED\PROJECTS\206910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESS\\WIPIRCRA\CHEMD SWMU SAP\SAMPLING AND ANALYSIS REPORTIGINT\PPIZER RP TEST	0	BGS		<u> </u>	_		
2 2 2 2 2 2 2 4 2 4 7 7 7 7 7 7 7 7 7 7			Brown, fine to coa	arse SAND, som	e fine to coarse g	ravel and cobbles, dry	
∯L	2 -	100					
SES							
E AS					Во	ottom of Test Pit at 3 feet.	PID = 0.0p
LSIT							
NTA							
NME							
<u> </u>							
EN I							
Ė							
SPO							
OSE							
E E							
MET							
10 V							
2069							
CTS							
SOLE							
D P							
ARE							
C\S F							
<u> </u>							
6:10							
/16 1							
- 3/9							
GDT							
STD.							
Š N							
<u>\</u>							
000							
TS/							
STP							
RRAI							
Ž Č							
SD S							
ODA							
§L							

₫					
ZER RP TEST	100		Woodard & Curran 709 Westchester Avenue, Suite L2 White Plains, New York 10604 Telephone: 800.807.4080	TEST PIT ID: SWMU26-BLDG	23-02 1 OF 1
T\PFI	&cu		Fax: 914.448.0147		
.Vein	CLIEN	T _Pf	Zer	PROJECT NAME Pfizer - Rouses Point, NY	
POR	PROJI	ECT N	UMBER _206910	PROJECT LOCATION Rouses Point, NY	
SRE	DATE	STAF	TED 10/28/15 COMPLETED 10/28/15	_	
LYSI	EXCA'	VATIO	N CONTRACTOR Woodard & Curran	_	
ANA	EXCA	VATIO	N METHOD Test Pit	_	
3 AN	LOGG	ED B	Y _Jared Port		
PLIN	NOTE	S _Te	st Pit Dimensions: 3ft x 2ft x 3ft	_	
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - \(\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	o DEPTH (ft)	RECOVERY %	MAT Feet BGS	ERIAL DESCRIPTION	Environmental Data
S/WIP/RCRA	 	100	Brown, fine to coarse SAND, some fine to coarse of metal), dry	gravel, silt, clay, and cobbles (with pieces of concrete, plastic, rebar,	, and
SSES					PID = 0.0p
SITE /				ottom of Test Pit at 3 feet.	1.12 0.10
ŢĀ					
ZME					
/IRO					
Ë					
OINT					
ES P					
SOOS					
빏					
W.C					
0691					
TS/2					
ONEC					
DIPR					
HARE					
WC\S					
 -0					
3 16:1					
3/9/1(
Ę,					
TD.G					
WCS					
GW-					
M/O					
PITS					
EST					
ZAN 1					
CURF					
3D & (
ODAF					
ŏ N					

Woodard & Curran 709 Westchester Avenue, Suite L2 White Plains, New York 10604 Telephone: 800.807.4080 Fax: 914.448.0147	TEST PIT ID: SWMU26-BLDG23-03 PAGE 1 OF 1
CLIENT Pfizer	PROJECT NAME Pfizer - Rouses Point, NY
PROJECT NUMBER 206910	
DATE STARTED 10/28/15 COMPLETED 10/28/15	
EXCAVATION CONTRACTOR Woodard & Curran	
EXCAVATION METHOD Test Pit	
LOGGED BY _Jared Port	
NOTES Test Pit Dimensions: 3ft x 2ft x 3ft	
NOTES TEST IT DIFFICISIONS. SIT X ZIT X SIT	
DEPTH (ft) (RCOVERY % Peet BGS	NOITHIN TAIL TAIL TAIL TAIL TAIL TAIL TAIL TAIL
Brown, fine to coarse SAND, some fine to coarse metal), dry	gravel and cobbles, trace silt and clay (with pieces of brick, plastic, and
	Bottom of Test Pit at 3 feet.
WOODARD WOODAR	

Woodard & Curran 709 Westchester Avenue, S White Plains, New York 106 Telephone: 800.807.4080 Fax: 914.448.0147							
CLIENT Pfizer	PROJECT NAME Pfizer - Rouses Point, NY						
PROJECT NUMBER _206910	PROJECT LOCATION Rouses Point, NY						
DATE STARTED 10/28/15							
EXCAVATION CONTRACTOR Woodard							
EXCAVATION METHOD Test Pit							
LOGGED BY _Jared Port							
NOTES _Test Pit Dimensions: 3ft x 2ft x							
		\dashv					
C DEPTH (ft) (ft) (Essential Section of the section	MATERIAL DESCRIPTION MOID MO	Data					
Light brown, fine to metal pipe), dry	arse SAND, some cobbles, trace dark brown silt and clay (with pieces of concrete, rebar, metal, and						
	Bottom of Test Pit at 3 feet.	ID = 0.0p					
WOODARD TO WOODARD WOODARD WOODARD WOODARD White Plains, New York 10t Telephone: 800.807.4080 Fax: 914.448.0147 CLIENT Pfizer PROJECT NUMBER 206910 DATE STARTED 10/28/15 EXCAVATION CONTRACTOR Woodard EXCAVATION METHOD Test Pit LOGGED BY Jared Port NOTES Test Pit Dimensions: 3ft x 2ft x							

Woodard & Curran 709 Westchester Av White Plains, New Y Telephone: 800.80' Fax: 914.448.0147	'ork 10604	TEST PIT ID: SWMU4	1-SURFACE PAGE 1 OF
		PROJECT NAME Pfizer - Rouses Point, NY	
		PROJECT LOCATION Rouses Point, NY	
	COMPLETED 10/29/15		
XCAVATION CONTRACTOR <u>V</u>	/oodard & Curran		
XCAVATION METHOD Test Pi			
OGGED BY Jared Port			
Test Pit Dimensions: 3ft	x 2ft x 1.75ft		
RECOVERY %	MATE	FRIAL DESCRIPTION	Environmental Data
Asphalt	CDAVEL dov		
- Cray, coarse	GRAVEL, dry red, fine to coarse	gravel and cobbles, dry	PID=
	o coarse SAND, dry	om of Test Pit at 1.75 feet.	

॒_								
ER RP TEST	1		709 V White	lard & Curran Vestchester Avenue Plains, New York 1	0604		TEST PIT ID: SV	VMU7-04 PAGE 1 OF 1
\PFIZI		DARD RRAN		hone: 800.807.408 914.448.0147	0			
GINT (CLIEN	T _Pf	izer				PROJECT NAME Pfizer - Rouses Point, NY	
g I	PROJE	ECT N	IUMBEF				PROJECT LOCATION Rouses Point, NY	
SREF	DATE	STAF	RTED _	10/29/15	COMPLETED _	10/29/15	_	
I K	EXCA	VATIO	ON CON	TRACTOR Woods	ard & Curran			
A A	EXCA	VATIO	ON MET	HOD Test Pit			-	
B AN			Y Jare					
N P I	NOTE	S Te	st Pit D	imensions: 3ft x 2ft	x 4.5ft		-	
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - \(\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	O DEPTH (ft)		Feet BGS			MATI	ERIAL DESCRIPTION	Environmental Data
SCRA				Black, coarse GR				
MP/R	2			Dark brown/black	, SILT and CLAY	, trace orange cla	ay, cobbles, dry	
SESS		100						
E AS	4 -							
TIS						Bot	tom of Test Pit at 4.5 feet.	PID = 0.0p
MENT								
RONI								
- EN								
OINT								
SES P								
ROUS								
/ETH								
10 W								
3/2069								
ECTS								
/PRO								
ARED								
C/SH								
<u></u>								
16:10								
3/9/16								
TQ.								
STD.6								
-WC								
MS C								
S W/C								
T PIT								
N TES								
JRRAI								
8 CL								
DARD								
ŌOM								

IN L			10/	11 0 0				
RP TE	/		709 V	dard & Curran Vestchester Avenu			TEST PIT ID: SWM	IU/-05 E 1 OF 1
-IZER	WOOI		Telep	Plains, New York phone: 800.807.40				
INT C	&CUI	rran T Pf		914.448.0147			PROJECT NAME Pfizer - Rouses Point, NY	
DRTIG D							PROJECT LOCATION Rouses Point, NY	
D REP					COMPLETED _			
SIS/I					dard & Curran			
¥N E	XCA	/ATIC	N MET	HOD Test Pit			_	
L G AN				ed Port	-			
MPLIN	IOTE	S _Te	st Pit D	imensions: 3ft x 2	ft x 6.5ft		_	
HEM	(#)	RECOVERY %	Feet BGS			MAT	TERIAL DESCRIPTION	Environmental Data
- CRA				Asphalt and coa	rse GRAVEL, dry			
S/WIP/I	2 -			Brown, fine to co	parse SAND, some	silt and claved	ry	
ASSESS 		100			T and CLAY, wet		,	
SITE	4 _	100		Dark blown, SIL	T and CLAT, wet			
INTAL	6							
SON ME						Bo	ottom of Test Pit at 6.5 feet.	PID = 0.0p
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - \\WC\SHARED\PROJECTS\206910 WYETH ROUSES POINT - ENVIRONMENTAL								ľ
-TNO								
SES P								
ROUS								
WETH								
910 W								
LS/206								
SUECT								
D/PR(
HARE								
(WC\S								
.10 - \								
/16 16								
T - 3/9								
D.GD								
VC ST								
7- MS								
0/M								
T PITS								
TEST								
JRRAN								
0 & CL								
DARE								
MOC								

Cr PUTNIPI Cr	Woodard & Curran 709 Westchester Avenue, Suite L2 White Plains, New York 10604 Telephone: 800.807.4080 Fax: 914.448.0147 CLIENT Pfizer PROJECT NUMBER 206910			PROJECT NAME Pfizer - Rouses Point, NY PROJECT LOCATION Rouses Point, NY	IU7-06 E 1 OF 1
MAPLING AND ANALYSIS RE	CAVA CAVA OGGEI	TIO TIO BY	COMPLETED 10/29/15 N CONTRACTOR Woodard & Curran N METHOD Test Pit Y Jared Port st Pit Dimensions: 3ft x 2ft x 6.5ft	-	
ANCHEMD SWMU SAP\S/ DEPTH	(#)	באם איטטיים א	Feet GGS	ERIAL DESCRIPTION	Environmental Data
NMENTAL SITE ASSESSIWIP/RCF	1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00		se gravel (with pieces of styrofoam and concrete), dry	
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - \(\text{- \text{WCOBARB PROJECTS\)}\) 206910 WYETH ROUSES POINT - ENVIRONMENTAL				om of Test Pit at 6.5 feet.	PID = 0.0p

₫				
TEST		Woodard & Curran	TEST PIT ID: SWMU7-BLDG	16-01
~ RP		709 Westchester Avenue, Suite L2 White Plains, New York 10604		1 OF 1
FIZE		Telephone: 800.807.4080		
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - \\WC\SHARED\PRO\ECTS\206910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESS\WIPIRCA STEAD SWMU SAP\SAMPLING AND ANALYSIS REPORT\GINT\PFIZER RP TEST		RRAN Fax: 914.448.0147 IT <u>Pfizer</u>	PROJECT NAME Pfizer - Rouses Point, NY	
DRT/G			PROJECT LOCATION Rouses Point, NY	
REPO		STARTED 10/26/15 COMPLETED 10/26/15	TROUBLE TO THE TRUE TRUE TO THE TRUE TO TH	
YSIS		VATION CONTRACTOR Woodard & Curran	_	
ANAL		VATION METHOD _Test Pit	_	
AND,		GED BY _Jared Port	_	
LING		S Test Pit Dimensions: 3ft x 2ft x 2.5ft	_	
SAMP				
SAP	_	% %		Environmental Data
VMU VM	DEPTH (ft)	MAT OO OO D WAT	ERIAL DESCRIPTION	onmo Data
ND SV	<u> </u>			N Viic
CHE	0	α Feet BGS		ū
3CRA			evel, trace cobbles (with pieces of rebar, concrete, and cobbles), dry	,
WIP	- 2 -	100		
SESS		Po	ttom of Toot Dit at 2.5 feet	PID = 0pp
E ASS		Во	ttom of Test Pit at 2.5 feet.	PID = Upp
EIS.				
NTA				
NME				
MR				
<u>_</u>				
Ö				
SES				
ROG				
ĒΞ				
<u>§</u>				
2069				
CTS				
SOLE				
HAR				
WC\S				
10 -				
9 16:				
3/9/1				
Ļ.				
1D.0				
WC				
GW-				
0/M				
PITS				
EST				
ZAN⊤				
J.R.R.				
D & C				
DAR				
ŏ N				

r F	▲ Woodard & Curran	TECT DIT ID. CWANTZ DI DA	246.00
유	709 Westchester Avenue, Suite L2 White Plains, New York 10604	TEST PIT ID: SWMU7-BLD0	516-U2 SE 1 OF 1
FIZER MOO	Telephone: 800.807.4080		
	NRAN Fax: 914.448.0147 NT Pfizer	PROJECT NAME Pfizer - Rouses Point, NY	
PRO.		PROJECT LOCATION Rouses Point, NY	
DATE	STARTED 10/26/15 COMPLETED 10/26/15		
EXC	AVATION CONTRACTOR Woodard & Curran		
EXC	AVATION METHOD Test Pit	<u></u>	
LOG	GED BY Jared Port		
≦ NOTI	Test Pit Dimensions: 3ft x 2ft x 3ft		
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - \(\text{-}\) W/CSHARED/PROJECTS/206910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESSWIP/RCRA/CHEMD SWA/LO AND ANALYSIS REPORTIGINT/PFIZER RP TEST	RECOVERY %	MATERIAL DESCRIPTION	Environmental Data
RCR4	Brown, fine SAND, some silt, fine to coarse	e gravel, and cobbles (with pieces of concrete), dry	
<u></u>	100		
SSESS —————————————————————————————————			
SITE A		Bottom of Test Pit at 3 feet.	PID = 0 p p
¥ F			
N M M			
NVIRO			
□ - -			
S POIL			
OUSE			
H K			
M √E			
206910			
CTS/S			
ROJE			
REDIE			
SHA			
- WO			
16:10			
3/9/16			
- T08			
STD.0			
-WC			
M9 C			
TS W/			
ST PI			
AN T			
URR			
3D & C			
OODA			
×			

۳ 	A Westerd 0 O man		0.40.00		
	Woodard & Curran 709 Westchester Avenue, Suite L2	TEST PIT ID: SWMU7-BLD	G16-03 GE 1 OF 1		
ZER F	White Plains, New York 10604 Telephone: 800.807.4080	.,,			
₩ ₩ ₩	JRRAN Fax: 914.448.0147				
E CLIE		PROJECT NAME Pfizer - Rouses Point, NY			
PRO		PROJECT LOCATION Rouses Point, NY			
B DAT	STARTED 10/26/15 COMPLETED 10/26/15				
EXC	AVATION CONTRACTOR Woodard & Curran				
	EXCAVATION METHOD Test Pit LOGGED BY Jared Port				
NOT	ES _Test Pit Dimensions: 3ft x 2ft x 3ft				
AMPL					
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - WWC/SHARED/PROJECTS/206910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESS/WIPIRCRA/CHEMD SWMU SAP/SAMPLING AND ANALYSIS REPORT/GINT/PFIZER RP TEST	L CO	MATERIAL DESCRIPTION	Environmental Data		
0 ACH	BGS				
RCR — -	Brown, fine SAND, some silt and fine to coarse	gravel, trace cobbles (with pieces of rebar and concrete), dry			
2	100				
SSES	<u></u>				
ITE A		Bottom of Test Pit at 3 feet.	PID = 0 0 p		
ZE S					
N W W W					
IRON N					
EN-					
NO N					
ES P					
ROUS					
E E					
0 ▼					
.5069					
ECTS					
ROJE					
WED!					
SHA					
MC					
6:10 -					
9/16 1					
- 3/6 - L					
D.GD					
/C ST					
×- ×-					
90/					
ITS /					
EST F					
NAN ⊢					
SURR					
Ω & C					
ODAF					
Ŏ M					

₫					
TEST			Woodard & Curran 709 Westchester Avenue, Suite L2	TEST PIT ID: SWMU7-BLDG	
R R			White Plains, New York 10604	PAG	E 1 OF 1
PFIZE		DARD RRAN	Telephone: 800.807.4080 Fax: 914.448.0147		
GINT	CLIEN		zer	PROJECT NAME Pfizer - Rouses Point, NY	
PORT	PROJ	ECT N		PROJECT LOCATION Rouses Point, NY	
SRE	DATE	STAR	TED 10/27/15 COMPLETED 10/27/15	_	
ALYS			N CONTRACTOR Woodard & Curran	-	
ND AN			N METHOD Test Pit	-	
NG A			/ <u>Jared Port</u> st Pit Dimensions: 3ft x 2ft x 3ft		
AMPLI	NOTE		SEPTE DIFFICISIONS. SIEX ZIEX SIE	-	
WOODARD & CURRAN TEST PITS W/O GW - WC STD. GDT - 3/9/16 16:10 - \(\)WC\SHARED\PROJECTS\200910 \(\)WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESSIVIPIRGACHEMD SWMU SAPISAMPLING AND ANALYSIS REPORTIGINT\(\)PFIZER RY TEST	_	٧٢ %			Environmental Data
WMU	DEPTH (ft)	RECOVERY	MAT	ERIAL DESCRIPTION	onm
S QW		ECC			invir I
A\CHE	0	ı ı	reet BGS		
\RCR			Brown, fine to coarse SAND, some silt and fine to c	coarse gravel (with pieces of concrete and brick), dry	
SSWIF	_ ₂ _	100			PID = 0.0pp
ASSE			Br	ottom of Test Pit at 3 feet.	F1D = 0.0pp
SIE.					
NTAL					
ONME					
NVIRC					
三二					
POIN					
USES					
H RO					
WYET					
6910					
TS\20					
OJEC					
D/PR					
HARE					
WC\S					
10 - 11					
16 16:					
- 3/9/					
GDT					
STD					
- WC					
O GW					
TS W/					
ST PII					
N TES					
JRRA					
& CU					
JARD					
100M					

RP TEST PI	Woodard & Curran 709 Westchester Avenue, Suite L2	TEST PIT ID: SWMU7-BLDG16-	
FIZER	White Plains, New York 10604 Telephone: 800.807.4080		
	URRAN Fax: 914.448.0147 ENT Pfizer	PROJECT NAME Pfizer - Rouses Point, NY	
PRO		PROJECT LOCATION Rouses Point, NY	
DAT	E STARTED 10/27/15 COMPLETED 10/27/15		
EXC	AVATION CONTRACTOR Woodard & Curran		
₹ EXC	AVATION METHOD Test Pit	<u></u>	
LOG	GED BY Jared Port		
NOT	Test Pit Dimensions: 3ft x 2ft x 3.5ft		
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - \(\)WC\SHAREDPROJECTS\(\)206910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESSWIPPRREAD SWMU SAP\SAMPLING AND ANALYSIS REPORT\(\)GIN O W - WC STD.GDT - 3/9/16 16:10 - \(\)WC\SHAREDPROJECTS\(\)206910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESSWIPPRREAD SWMU SAP\SAMPLING AND ANALYSIS REPORT\(\)GIN O W - WC STD.GDT - 3/9/16 16:10 - \(\)WC\SHAREDPROJECTS\(\)206910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESSWIPPRREAD SWMU SAP\SAMPLING AND ANALYSIS REPORT\(\)GIN O W - WC STD.GDT - 3/9/16 16:10 - \(\)WC\SHAREDPROJECTS\(\)206910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESSWIPPRREAD SWMU SAP\SAMPLING AND ANALYSIS REPORT\(\)GIN O W - WC STD.GDT - 3/9/16 16:10 - \(\)WC\SHAREDPROJECTS\(\)206910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESSWIPPRREAD SWMU SAP\(\)SAP\(\)ANALYSIS REPORT\(\)CONTO AND ANALYSIS REPORT\(\)CONTO AND ANALYSIS REPORT\(\)CONTO	W Reet BGS	MATERIAL DESCRIPTION Mental	Data
3CRA		to coarse gravel (with pieces of concrete, brick, rebar, and metal pipe), dry	\neg
<u></u>	100		
SESS	- 100 	P	ID = 0.5p
E AS		Bottom of Test Pit at 3.5 feet.	-+
AL SI			
MENT			
RON			
EN			
OINT			
SES P			
ROUS			
프			
910 W			
3/206			
JECT			
PRO			
ARED			
/C/SH			
<u>-</u> 0			
6 16:1			
3/9/1			
GDT -			
STD.			
- WC			
0 GW			
<u>%</u>			
ST PI			
Ä Ä			
URR			
0 & C			
DDAR			
MOC			

☲									
RP TEST			Woodard & Curran 709 Westchester Avenue, Suite L2 White Plains, New York 10604	TEST PIT ID: SWMU7-BLDG	G16-06				
FIZER	WOO &CU	DARD	Telephone: 800.807.4080 Fax: 914.448.0147						
GINT	CLIEN			PROJECT NAME Pfizer - Rouses Point, NY					
20RT∖	PROJI	ECT N	UMBER _206910	PROJECT LOCATION Rouses Point, NY					
IS REI			RTED 10/27/15 COMPLETED 10/27/15						
MLYS		EXCAVATION CONTRACTOR Woodard & Curran							
ND A		EXCAVATION METHOD Test Pit LOGGED BY Jared Port							
LING A			est Pit Dimensions: 3ft x 2ft x 3.25ft 3.25ft						
SAMP		%							
WOODARD & CURRAN TEST PITS W/O GW - WC STD, GDT - 3/9/16 16:10 - MWC/SHARED/PROJECTS/206910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESSIW/PRRAICHEMD SWMU SAP/SAMPLING AND ANALYSIS REPORTIGINT/PFIZER RP TEST	DEPTH (ff)	RECOVERY	Feet	TERIAL DESCRIPTION	Environmental Data				
SRA\C	0		BGS Rrown fine to coarse SAND some silt and fine to	coarse gravel (with pieces of concrete and metal pipe), dry					
WIP/R(- 2 -	100	2.5, to 554/55 5/ 115/, 50/116 5/11 till 11/16 10	- 11 grand (min. process of controlle and metal pipe), any					
SESS		100			PID = 0.0p				
TE AS			Bo	ottom of Test Pit at 3.25 feet.	' -				
AL S									
MENT									
RON									
- ENV									
DIN O									
SES P									
ROC									
WETH									
910 W									
S\206									
JECT									
D/PRC									
ARE									
WC\S									
10 -									
16 16:									
- 3/9/									
GDT.									
CST									
×- ×-									
W/0 G									
PITS \									
TEST									
RAN									
* CUR									
ARD 8									
/00D,									

EST PI		Woodard & Curran		TEST PIT ID: SWMU7-BLD0	G16-07
ZER RP 1	VOODA	709 Westchester Avenu White Plains, New York Telephone: 800.807.40	k 10604		GE 1 OF 1
IT/PFI.	VOODAF CURR/	AN Fax: 914.448.0147			
S CL				PROJECT NAME Pfizer - Rouses Point, NY	
BA PR				PROJECT LOCATION _Rouses Point, NY	
SIS DA			_ COMPLETED <u>10/27/15</u>		
XI EX		TION CONTRACTOR Wood	odard & Curran		
		TION METHOD Test Pit			
A PIC		DBY Jared Port Test Pit Dimensions: 3ft x 2	- 2ft v 3 25ft 3 25ft		
AMPL	1	Test it Dimensions. Sit x 2	11t X 0.201t 0.201t		
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - WWCSHARED/PROJECTS/200910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESSWIP/RCRA/CHEMD SWMU SAP/SAMPLING AND ANALYSIS REPORTIGINT/PFIZER RP TEST	"			MATERIAL DESCRIPTION	Environmental Data
CRA			oarse SAND, some silt, fine to	coarse gravel, and cobbles (with pieces of concrete), dry	
M 2	2 10	00			
SESS/	∃ "				PID = 0.0p
E ASS		<u>'</u>		Bottom of Test Pit at 3.25 feet.	' -
AL SIT					
1ENT/					
3ON NO NO					
ENVE					
Ę					
SPO					
OUSE					
H.					
WYE					
06910					
TS\Z					
SOJEC					
ED/PR					
SHAR					
(WC)					
.10 - \					
16 16					
- 3/9/					
GDT					
STD					
/- WC					
Q Q					
TS W,					
ST PI					
빌					
URRA					
0 & C					
DARE					
00M					

₫					
TEST			Woodard & Curran	TEST PIT ID: SWMU7-BLDG	16-08
R RP			709 Westchester Avenue, Suite L2 White Plains, New York 10604		E 1 OF 1
FIZE		DARD	Telephone: 800.807.4080 Fax: 914.448.0147		
TNIS	CLIEN	RRAN I T Pfi		PROJECT NAME _ Pfizer - Rouses Point, NY	
ORT/C				PROJECT LOCATION Rouses Point, NY	
REP			TED 10/27/15 COMPLETED 10/27/15		
LYSIS			N CONTRACTOR Woodard & Curran	_	
ANA	EXCA	VATIO	N METHOD Test Pit	-	
3 ANC	LOGG	ED BY			
Ă P	NOTE	S <u>Te</u>	et Pit Dimensions: 3ft x 2ft x 3ft	-	
P\SAN		%			tal
NU SA	Ŧ (RECOVERY		FRUI DESCRIPTION	Environmental Data
SWI	DEPTH (ft)	000	MAI	ERIAL DESCRIPTION	ironi Da
EMD TEMD	_	REC	reet		En
WOODARD & CURRAN TEST PITS W/O GW - WC STD, GDT - 3/9/16 16:10 - WWC/SHARED/PROJECTS/206910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESSIVE/PROFILED SWAND SAP/SAMPLING AND ANALYSIS REPORTIGINT/PFIZER RP TEST	0		3GS	se gravel, and cobbles (with pieces of concrete, pipe insulation, an	
VIP\RC		100	metal), dry	so graver, and coopies (with pieces or confidete, pipe moulditon, di	"
ESSW		100			PID = 0.0p
ASSI			Bo	ttom of Test Pit at 3 feet.	
AL SIT					
ENT/					
SONN					
ENVE					
Ä					
S POI					
SOC					
TH R					
WYE					
06910					
:TS/20					
ONEC					
D/PR					
HARE					
WC\S					
10 - 1					
6 16:					
3/9/1					
3DT-					
STD.					
-WC					
Q Q					
S W/C					
ŢĦŢ					
TES					
ZRAN					
& CUF					
ARD (
(00D)					
≥L					

ㅁ.			
TEST	4	Woodard & Curran 700 Woodshoots Avanue Suite L2	EST PIT ID: SWMU7-BLDG16-09
R RP		709 Westchester Avenue, Suite L2 White Plains, New York 10604	PAGE 1 OF 1
)FIZE		Telephone: 800.807.4080 CURRAN Fax: 914.448.0147	
GINT			Pfizer - Rouses Point, NY
ORT			ON Rouses Point, NY
SREP	DATE	TE STARTED 10/27/15 COMPLETED 10/27/15	
LYSIS	EXCA	CAVATION CONTRACTOR Woodard & Curran	
ANA	EXCA	CAVATION METHOD _Test Pit	
LOGGED BY _Jared Port		GGED BY Jared Port	
APLIN.	NOTE	TES Test Pit Dimensions: 3ft x 2ft x 3.15ft	
WOODARD & CURRAN TEST PITS W/O GW - WC STD GDT - 3/9/16 (6:10 - \\WC\SHARED\PROJECTS\200910\WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESS\WIPRCRA\CHEMD SWMU SAP\SAMPLING AND		% %	lata
MU S	DEPTH (ft)	MATERIAL DESCRIPTION WATERIAL DESCRIPTION WATERIAL DESCRIPTION	A Environmental Data
SW C		WATERIAL DESCRIPTION	ייסים מסים
HEME		I cot	ا قا
RCRA/(Brown, fine to coarse SAND, some silt and fine to coarse gravel, trace of	obbles (with pieces of concrete and glass), dry.
SWIP	_ 2 _	100	
SSES	$= \exists$	<u></u>	PID = 0.0pp
SITE		Bottom of Test Pit at 3.1	5 feet.
ITAL			
ME			
/IRO			
- EN			
OINT			
ES P			
ROUS			
ΈTΗ			
10 🚫			
5069			
ECTS/			
ROJE			
ZED F			
SHA			
WC			
6:10 -			
/16 1			
- 3/9			
GD.C			
STI			
×- ×-			
0 GV			
TS W,			
STPI			
Ľ Z			
JRRA			
& CL			
DARD			
σI			

P TES			podard & Curran Westchester Avenue, Suite L2 TEST PIT ID: SWMU7-BLDG	16-10
ER R		Wh	nite Plains, New York 10604	1 OF 1
\PFIZ			lephone: 800.807.4080 x: 914.448.0147	
GINT	CLIEN	T Pfizer	PROJECT NAME Pfizer - Rouses Point, NY	
ORT	PROJE	ECT NUMB	PROJECT LOCATION Rouses Point, NY	
SREP	DATE	STARTED	<u>10/27/15</u> COMPLETED <u>10/27/15</u>	
LYSIS	EXCA	VATION CO	ONTRACTOR Woodard & Curran	
ANA	EXCA'	VATION ME	ETHOD Test Pit	
AND S	LOGGED BY _Jared Port			
PLING	NOTE	S Test Pit	t Dimensions: 3ft x 2ft x 3ft	
\SAM		%		<u> </u>
SAP	₌			Environmental Data
SWML	DEPTH (ft)	RECOVERY	MATERIAL DESCRIPTION	Data
MD 8) E		ii
	0	Ƴ Feet BGS		"
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - WWC/SHARED/PROJECTS/206910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESSWIP/RCRAICHEMD SWMU SAP/SAMPLING AND ANALYSIS REPORT/GINT/PFIZER RP TEST		<u> </u>	Brown, fine to coarse SAND, some silt and fine to coarse gravel, trace cobbles (with pieces of metal pipe and glass), de	ry
WIP.	_ 2 _	100		
SESS				PID = 0.0p
TE AS			Bottom of Test Pit at 3 feet.	
AL SI				
/ENT				
SON				
N.				
Ä				
S POI				
USE				
H RO				
VYET				
910 \				
S\206				
JECT				
PRO				
RED				
SHA				
//WC				
9:10 -				
/16 1				
- 3/9				
GDT				
STD				
- WC				
GW				
S W/C				
TPIT				
TEST				
RAN				
CUR				
RD &				
ODA				
8				

₫					
TEST			Woodard & Curran	TEST PIT ID: SWMU7-BLDG	316-11
R RP			709 Westchester Avenue, Suite L2 White Plains, New York 10604	PAG	E 1 OF 1
JF IZE		DARD	Telephone: 800.807.4080 Fax: 914.448.0147		
SINT	CLIEN			PROJECT NAME Pfizer - Rouses Point, NY	
ORT/				PROJECT LOCATION Rouses Point, NY	
REP			TED 10/27/15 COMPLETED 10/27/15		
LYSIS			N CONTRACTOR Woodard & Curran		
ANA	EXCA'	VATIO	N METHOD Test Pit	_	
3 ANC	LOGG	ED B	Y _Jared Port		
Ž L	NOTE	S <u>Te</u>	st Pit Dimensions: 3ft x 2ft x 3ft		
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - WWC/SHARED/PROJECTS/206910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESSIVIP/RCRAICHEMD SWMU SAP/SAMPLING AND ANALYSIS REPORTIGINT/PFIZER RP TEST		%			tal
N SA	Ŧ.	RECOVERY			Environmental Data
SWN	DEPTH (ft)	Š	MAI	TERIAL DESCRIPTION	ironi Da
TEMD	٦	REC	Feet		Env
RA/CF	0		BGS	coarse gravel, trace dark brown/black clay and cobbles (with pieces	
/IP\RC	_ , _	100	concrete, brick, and metal pipe), dry	coarse graver, trace dark brown/black clay and cobbles (with pieces	5 01
ESSW	_ 2 _ 	100			PID = 0.0pp
ASSI			B	ottom of Test Pit at 3 feet.	
L SIT					
ENT					
NO ON ON					
N N					
Ä					
POI					
USE					
H R					
WYET					
9910					
LS/20					
LEC					
PRC					
AREC					
C/SH					
<u>}</u>					
16:10					
/9/16					
- T					
TD.GI					
VC S					
/- W					
000					
PITS					
EST					
MN⊒					
SURF					
3D & (
ODAF					
Ĭ.					1

₫					
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - \(WC\SHARED\PRO\JECTS\2069\10 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESS\(\text{SWIP\IRCPARCHEMD SWMU SAP\SAMP\ING AND ANALYSIS REPORT\(\text{GINT\PF\IZER RP\TEXT\)			Woodard & Curran 709 Westchester Avenue, Suite L2	TEST PIT ID: SWMU7-BLDG	
ER RF			White Plains, New York 10604	PAG	E 1 OF 1
\PFIZ		DARD RRAN	Telephone: 800.807.4080 Fax: 914.448.0147		
GINT	CLIEN	T Pfi	zer	PROJECT NAME Pfizer - Rouses Point, NY	
PORT	PROJ	ECT N	JMBER 206910	PROJECT LOCATION Rouses Point, NY	
IS RE			TED 10/27/15 COMPLETED 10/27/15	_	
ALYS			N CONTRACTOR Woodard & Curran	-	
ND A			N METHOD Test Pit	_	
ING A			/ <u>Jared Port</u> st Pit Dimensions: 3ft x 2ft x 3ft		
AMPL			AT IN DIFFICIENCE ON A ZICA ON	-	
SAP\S	_	% X>			Environmental Data
WMU	DEPTH (ft)	RECOVERY	MAT	ERIAL DESCRIPTION	onmo
S QWI		ECC			Envin
A/CHE	0	1.	eet GS		
"RCR/			Brown, fine to coarse SAND, some silt and fine to opipe), dry	coarse gravel with dark brown clay, trace cobbles (with pieces of m	etal
SWIP	_ 2 _	100	pipe), dry		
SSES				Albert of Total Division for the	PID = 0.0pp
SITE A			DO	ottom of Test Pit at 3 feet.	
TAL					
MEN					
/IRO					
- EN					
OINT					
SES P					
ROU					
YETH					
10 W					
\2069					
ECTS					
PROJ					
RED					
SHA					
- W					
16:10					
9/16					
T - 3/					
D.G					
VCST					
/- W					
W/O @					
PITS \					
EST					
ZAN T					
URR					
3D & C					
DAR					
ŏ N					

₫				
TEST	Woodard & Curran 709 Westchester Avenue, Suite L2	TEST PIT ID: SWMU7-BLD0		
띪	White Plains, New York 10604	PAG	E 1 OF 1	
WO &C	ODARD Telephone: 800.807.4080 URRAN Fax: 914.448.0147			
CLIE	NT Pfizer	PROJECT NAME Pfizer - Rouses Point, NY		
FRO		PROJECT LOCATION Rouses Point, NY		
DAT	E STARTED _10/27/15	_		
EXC	AVATION CONTRACTOR Woodard & Curran	_		
EXC	AVATION METHOD Test Pit	_		
Ne LOG	GED BY Jared Port			
NOT	ES Test Pit Dimensions: 3ft x 2ft x 3ft	_		
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - \(\text{WCSHARED}\)PROJECTS\(\text{200910}\) WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESSWIPIRCRA\(\text{CHRAN}\) SAWIUS AND GW - WC STD.GDT - 3/9/16 16:10 - \(\text{WCSHARED}\)PROJECTS\(\text{200910}\) WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESSSWIPIRCRA\(\text{CHRAN}\) DEPTH A D A D A D A D A D A D A D A D A D A	%		Environmental Data	
DEPTH (ft)	MA:	TERIAL DESCRIPTION	onmo	
MD S	ECC		invir	
일 0			Ш	
RCR/	Light brown, fine to coarse SAND, trace cobbles a	nd clay (with pieces of concrete), dry		
2	100			
SSES		Dathe was of Track Different	PID = 0.0pp	
E A	В	Bottom of Test Pit at 3 feet.		
TAL				
MEN				
RON				
EN				
Ļ				
S PC				
onsi				
E E				
WYE				
06910				
)TS/2				
COLEC				
PA (CI				
HAR				
WC/S				
10 -				
6 16:				
3/9/1				
- TOS				
STD.0				
WC				
GW				
0/M				
E E				
TEST				
SRAN				
Z CUF				
4RD &				
7 <u>0</u> 000				
				

₫					
TEST			Woodard & Curran	TEST PIT ID: SWMU7-BLDG	316-14
유			709 Westchester Avenue, Suite L2 White Plains, New York 10604	PAG	E 1 OF 1
FIZE		DARD	Telephone: 800.807.4080 Fax: 914.448.0147		
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - \(\)WC\SHARED\PROJECTS\200910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESSWIP\RCRACHEMD SWMU SAP\SAMPLING AND ANALYSIS REPORTIGINT\PFIZER RP TEST	CLIEN	RRAN T Pf		PROJECT NAME Pfizer - Rouses Point, NY	
ORT/(PROJECT LOCATION Rouses Point, NY	
S REP			TED 10/27/15 COMPLETED 10/27/15	_	
E YSIS	EXCA	VATIO	N CONTRACTOR Woodard & Curran	_	
A E	EXCA	VATIO	N METHOD Test Pit	-	
N L			Y _Jared Port		
MPL!	NOTE	S Te	st Pit Dimensions: 3ft x 2ft x 3ft		
\P\SA		%			Ital
γΩ.	E	RECOVERY	MAT	EDIAL DESCRIPTION	Environmental Data
SWI	DEPTH (ft)	200	MAT	ERIAL DESCRIPTION	lion Da
HEMC.	_		Feet		E
RA/C	0		BGS Brown/white, fine SAND, some silt and fine to coar.	se gravel (with nieces of metal nine), dry	
/IP\RC		100	DIOWINWING, THE OATED, Some Sill and the to Coal	oo graver (with proces of metal pipe), dry.	
SS:W	2	100			PID = 0.2p
ASSE			Bo	ottom of Test Pit at 3 feet.	· - ·
LSITE					
INTAI					
ONME					
NVIR					
H H					
POIN					
USES					
H RO					
VYET					
3910 \					
.S\206					
JECT					
)PRO					
AREC					
C\SH.					
M -					
16:10					
/9/16					
T- 3					
TD.GI					
VC S					
/- W					
W/0					
PITS					
EST					
NAN					
CURF					
3D & (
ODAF					
Ŏ M					

Woodard & Curren Westchester Averue, Suite 12 White Plans, New York 10004 PAGE 1 OF 1 PAG	₫					
AND STATE OF THE CONTRICT OF T	TEST			TEST PIT ID: SWMU7-BLD0	316-15	
CUERN Filter - Rouses Point, NY PROJECT LOCATION Rouses Point, NY PROJECT LOCATION Rouses Point, NY PROJECT LOCATION Rouses Point, NY DATE STARTED _10/27/15	RP.					
SCUENT PIEZE - Rouses Point, NY PROJECT NAME - Pieze - Rouses Point, NY DATE STARTED _ 1027/15			Telephone: 800.807.4080			
PROJECT NUMBER 208910 PROJECT LOCATION Rouses Point, NY DATE STARTED 10/27/15 COMPLETED 10/27/15 EXCAVATION CONTRACTOR Woodard & Curran EXCAVATION METHOD Test Pit LOGGED BY Jarcel Port NOTES _Test Pit Dimensions. 3ft x.2ft x.3ft MATERIAL DESCRIPTION Brown, fine to coarse SAND, some silt, clay, and fine to coarse gravel (with pieces of metal pipe and wood), dry Page 100 Brown, fine to coarse SAND, some silt, clay, and fine to coarse gravel (with pieces of metal pipe and wood), dry Page 200 Bottom of Test Pit at 3 feet.				PRO IECT NAME Prizer - Rouses Point NV		
DATE STARTED _1027/15	PRO					
EXCAVATION METHODtest_Pt. LOGGED BYstare Port	DA1			- 100000 - 100000 - 100000 - 100000 - 100000 - 10000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 10000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 100000000		
EXCAVATION METHOD. Test Pt LOGGED BY Jarded Port NOTES Test Ptt Dimensions: 3ft x 2ft x 3ft MATERIAL DESCRIPTION MATERIAL DESCRIPTION Brown, fine to coarse SAND, some silt, clay, and fine to coarse gravel (with pieces of metal pipe and wood), dry PID = 3.5 Bottom of Test Pit at 3 feet.	EXC					
NOTES Test Pti Dimensions: 3ft x 2ft x 3ft MATERIAL DESCRIPTION MATERIAL DESCRIPTION Brown, fine to coarse SAND, some silt, day, and fine to coarse gravel (with pieces of metal pipe and wood), dry PiD = 0.9 Bottom of Test Pit at 3 feet.	₹ EXC	CAVATIC	N METHOD Test Pit	_		
NOTES Test Pit Dimensions: 3ft x 2ft x 3ft MATERIAL DESCRIPTION Brown, fine to coarse SAND, some silt, clay, and fine to coarse gravel (with pieces of metal pipe and wood), dry PID = 0.5 Bottom of Test Pit at 3 feet.	KO LOC	GGED B				
MATERIAL DESCRIPTION Pip - 0.3 Pip - 0.3 Pip - 0.3	NO.	TES Te	st Pit Dimensions: 3ft x 2ft x 3ft	_		
MATERIAL DESCRIPTION Final Description Material Description M	⊃\SAN	%			a	
MATERIAL DESCRIPTION Brown, fine to coarse SAND, some silt, clay, and fine to coarse gravel (with pieces of metal pipe and wood), dry PID = 0.3 Bottom of Test Pit at 3 feet.	E SA	ΞRΥ			nent :a	
Brown, fine to coarse SAND, some silt, clay, and fine to coarse gravel (with pieces of metal pipe and wood), dry PID - 0 s Bottom of Test Pit at 3 feet.	SWM EP		MAT	FERIAL DESCRIPTION	ironr	
Brown, fine to coarse SAND, some silt, clay, and fine to coarse gravel (with pieces of metal pipe and wood), dry PID = 0.3 Brown, fine to coarse SAND, some silt, clay, and fine to coarse gravel (with pieces of metal pipe and wood), dry PID = 0.3	ĘWD	REC	eet		Env	
Bottom of Test Pit at 3 feet.	- R¥ - 0		3GS	in the control of the circumstance of the circ		
Bottom of Test Pit at 3 feet.	P/RC	∃	Brown, fine to coarse SAND, some slit, clay, and fi	ne to coarse gravel (with pieces of metal pipe and wood), dry		
Bottom of Test Pit at 3 feet.	M/SS	100			PID = 0.3n	
	ASSE;			ottom of Test Pit at 3 feet	F1D = 0.3p	
	III					
	TAL					
	N M M					
	VIRO					
	Ä					
	NO N					
	SESF					
	ROU					
	틴					
MODOWAYS CORRAND IEST IN SWO GW. WC SID GD 1 - 380 IB 1810 - WW CSID AND GW. WC SID GD 1 - 380 IB 1810 - WC SID GD 1 - 380 IB 1810 - WC SID GD 1 - 380 IB 1810 - WC SID GD 1 - 380 IB 1810 - WC SID GD 1 - 380 IB 1810 - WC SID GD 1 - 380 IB 1810 - WC SID GD 1 - 380 IB 1810 - WC SID GD 1 - 380 IB 1810 - WC SID GD 1 - 380 IB 1810 - WC SID GD 1 - 380 IB 1810 - WC SID GD 1 - 380 IB 1810 - WC SID GD 1 - WC SID GD	10 W					
MODELLA SECTION OF THE STATE OF	(2069					
WOODAND & CURRAN LEST PITS WOO GW. TWC SIDGDD - 388109 18:10 - INVOCSHAREDINGED - INVOCSH	ECTS					
WOODAND & CORKAN IEST PITS WO GW - WC STD.GDI - 38/16 18/10 - WOODAND & CORKAN IEST PITS WOODAND & COR	ROJE J					
WOODAND & CORRAN IEST PITS WO GW - WC STD GBT - 38/18 18/10 - IWC STD	ZED/F					
WOODAND & CURAKAN IESI PITS WOO GW -WC S ID. GSD 1 - Sign's 18:10 - MCC	SHAF					
WOODAND & CURRAN IESI PITS WOO GW - WC SID GDI - 396/16 16:10 - 31	(NC)					
WOODARD & CURRAN LESI PITS W/O GW - WC SID/GDI - 3/6/18 rg	:10 -					
WOODARD & CURKAN IEST PILS W/O GW - WC SID/GDT - 389	/16 16					
WOODARD & CURRAN LEST PILS W/O GW - WC SID.GD	- 3/8					
WOODARD & CURKAN IEST PITS W/O GW - WC SID	GDT					
WOODARD & CURRAN LEST PHIS W/O GW - WO	STE					
WOODARD & CURRAN IEST PITS W/O GW	- W					
WOODARD & CURRAN LESI PILS WA	Ø 0					
ACCOMAND & COURAND BEST OF THE STATE OF THE	W S					
WOODDARD & CURRAN IES	IZ IZ					
ACOUNTY OF STANKING AND ACTION OF STANKING AN	型 型					
S C C C C C C C C C C C C C C C C C C C	RRAI					
NOODBAKED AND AND AND AND AND AND AND AND AND AN	& CU					
	JARD					
	WOOL					

₫			
TEST	Woodard & Curran 709 Westchester Avenue, Suite L2	TEST PIT ID: SWMU7-BLD0	
照 🍆	White Plains, New York 10604	PAC	SE 1 OF 1
WOO &CL	Telephone: 800.807.4080 Fax: 914.448.0147		
CLIEI	IT Pfizer	PROJECT NAME Pfizer - Rouses Point, NY	
PRO.	ECT NUMBER 206910	PROJECT LOCATION Rouses Point, NY	
DATE	STARTED 10/27/15 COMPLETED 10/27/15	_	
EXC	VATION CONTRACTOR Woodard & Curran	_	
EXCA	VATION METHOD Test Pit	<u> </u>	
الاِ	GED BY Jared Port		
NOTE	S Test Pit Dimensions: 3ft x 2ft x 3ft	_	
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - WWC/SHARED/PROJECTS/206910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESSIW/PRRANCHEMD SWAMU SAP/SAM/PLING AND ANALYSIS REPORTIGINT/PFIZER RP TEST	% SECOOVER SECOOV	ITERIAL DESCRIPTION	Environmental Data
0	BGS	and with miner of vive plants, and market) do.	-
	Concrete, some brown fine to coarse sand and gr	avei (with pieces of wire, plastic, and metal), dry	
IM/SS	100		PID = 1.7pp
ASSE	<u> </u>	Bottom of Test Pit at 3 feet.	
SITE			
A L			
NO NO			
<u> </u>			
<u> </u>			
PO			
USES			
H R			
MYET			
6910 \			
TS/20(
-SIEC			
D/PR(
4ARE			
VC/SF			
-0			
9 16:1			
3/9/1			
- TOS			
STD.(
MC MC			
M Ø			
S/W S			
H H			
LES.			
RRAN			
& CUI			
ARD			
000			
>			

₫				
TEST		Woodard & Curran 709 Westchester Avenue, Suite L2	TEST PIT ID: SWMU7-BLD0	
띪		White Plains, New York 10604	PAG	SE 1 OF 1
PFIZE	OODARD	Telephone: 800.807.4080 Fax: 914.448.0147		
E CLI	IENT Pf	zer	PROJECT NAME Pfizer - Rouses Point, NY	
E PR	OJECT N	UMBER _206910	PROJECT LOCATION Rouses Point, NY	
DA.	TE STAF	TED _10/27/15	_	
EX(N CONTRACTOR Woodard & Curran	_	
₹ EX		N METHOD Test Pit	_	
NO LO		/ <u>Jared Port</u> st Pit Dimensions: 3ft x 2ft x 3ft		
MP NO		SEFIL DIMENSIONS. SIEX ZIEX SIE	_	
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - \(\)WC\SHARED\PROJECTS\2008910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESS\(\)WINDERLAND SWING SAWING AND ANALYSIS REPORTIGINTIPFIZER RP TEST	% Х			Environmental Data
DEPTH	(ff) RECOVERY	MAT	TERIAL DESCRIPTION	onme Jata
MD S/	ECO			inviro
일 - 0		Feet BGS		Ш
RCR4		Brown, fine to coarse SAND, some silt and clay, tra	ace cobbles (with pieces of concrete and metal pipe), dry	
<u> </u>	100			
SSESS	<u> </u>			PID = 0.0pp
TE AS		B	ottom of Test Pit at 3 feet.	
IAL S				
MEN				
RON				
- EN				
TNIO				
SES P				
ROUS				
王				
10 W				
2069.				
ECTS				
NOJE NOJE				
REDIE				
SHA				
MC MC				
6:10				
9/16 1				
T - 3/				
D.GD				
CST				
× ×				
0/0				
V STI				
ESTF				
AN H				
URR				
0 & C				
DAR				
MOC				

<u></u>							
IZER RP TEST	00D/	7 V	Voodard & Curran 709 Westchester Avenu Vhite Plains, New York Felephone: 800.807.40	10604		TEST PIT ID: SWMU7-BLDG	623-10 E 1 OF 1
₩ ₩	CURF	RAN	Fax: 914.448.0147				
E CLI		Pfize					
			MBER 206910	COMPLETED		PROJECT LOCATION Rouses Point, NY	
SIS EX			ED 10/27/15 CONTRACTOR Wood			_	
FX			METHOD Test Pit	laid & Cultail		-	
LO			Jared Port			-	
NO.			Pit Dimensions: 3ft x 2f	ft x 3ft		_	
SAMP		%					
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - \\WC\SHARED\PROJECTS\\Z06910 \WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESS\\WIND \READY \rightarrow \rightar	(H)	RECOVERY Feel BGS	t S		MAT	ERIAL DESCRIPTION	Environmental Data
- ACRA	\pm		Brown, fine to co	arse SAND, som	e silt and clay, tra	ace fine to coarse gravel and cobbles (with pieces of concrete, foar	n, and
_ 2	<u> </u>	100	fiberglass), dry				PID = 0.0p
ASSE					Вс	ottom of Test Pit at 3 feet.	
AL SIT							
MENT							
RON							
- EN							
LNO NO							
SESF							
ROOT							
YET T							
3910 V							
TS/206							
SZEC							
D)PR(
HARE							
(WC/S							
01:							
/16 16							
L - 3/9							
D.GD							
VCST							
^- MS							
0/M							
PITS							
TEST							
RRAN							
& CU							
DARD							
00M							

Woodard & Curren TEST PIT ID: SWMU7-BLDG23-11 PAGE 1 OF 1 PAGE 1 OF	₫				
The Performance Avenue Suide Land Concess of the Performance Avenu	TEST			TEST PIT ID: SWMU7-BLD0	G23-11
COLERA PÉRET : 800.8074/9880 SCURRAN PÉTET : ROUSES POINT, NY PROJECT NAME PÉTET : ROUSES POINT, NY PROJECT LOCATION ROUSES POINT, NY EXCAVATION WHITE PÉTET : ROUSES POINT, NY NOTES : TEST PÎT DIMENSIONS: SÎT X 2ÎT X 3ÎT MATERIAL DESCRIPTION Brown, fine to coarse SAND, some silît and clay, trace fine to coarse gravel (with pieces of metal), dry POINT : TEST PÎT DIMENSIONS: SÎT X 2ÎT X 3ÎT Brown, fine to coarse SAND, some silît and clay, trace fine to coarse gravel (with pieces of metal), dry POINT : TEST PÎT DIMENSIONS: SÎT X 2ÎT X 3ÎT Brown, fine to coarse SAND, some silît and clay, trace fine to coarse gravel (with pieces of metal), dry POINT : TEST PÎT DIMENSIONS: SÎT X 2ÎT X 3ÎT Brown, fine to coarse SAND, some silît and clay, trace fine to coarse gravel (with pieces of metal), dry POINT : TEST PÎT DIMENSIONS: SÎT X 2ÎT X 3ÎT Brown, fine to coarse SAND, some silît and clay, trace fine to coarse gravel (with pieces of metal), dry POINT : TEST PÎT DIMENSIONS: SÎT X 2ÎT X 3ÎT BROWN, fine to coarse SAND, some silît and clay, trace fine to coarse gravel (with pieces of metal), dry POINT : TEST PÎT DIMENSIONS: SÎT X 2ÎT X 3ÎT POINT : TEST PÎT DIMENSIONS: SÎT X 2ÎT X 3ÎT POÎNT : TEST PÎT DIMENSIONS: SÎT X 2ÎT X 3ÎT POÎNT : TEST PÎT DIMENSIONS: SÎT X 2ÎT X 3ÎT POÎNT : TEST PÎT DIMENSIONS: SÎT X 2ÎT X 3ÎT POÎNT : TEST PÎT DIMENSIONS: SÎT X 2ÎT X 3ÎT POÎNT : TEST PÎT DIMENSIONS: SÎT X 2ÎT X 3ÎT POÎNT : TEST PÎT DIMENSIONS: SÎT X 2ÎT X 3ÎT POÎNT : TEST PÎT DIMENSIONS: SÎT X 2ÎT X 3ÎT POÎNT : TEST PÎT DIMENSIONS: SÎT X 2ÎT X 3ÎT POÎNT : TEST PÎT DIMENSIONS: SÎT X 2ÎT X 3ÎT POÎNT : TEST PÎT DIMENSIONS: SÎT X 2ÎT X 3ÎT POÎNT : TEST PÎT DIMENSIONS: SÎT X 2ÎT X 3ÎT POÎNT : TEST PÎT DIMENSIONS: SÎT X 2ÎT X 3ÎT POÎNT : TEST PÎT DIMENSIONS: SÎT X 2ÎT X 3ÎT X 2ÎT X 3ÎT	RP.				
CILINIT PIECE 10082019 PROJECT NUMBER 2008910 DATE STATED 1027/15 EXCAVATION CONTRACTOR Woodard & Curran EXCAVATION METHOD 1018 Pit LOGGED BY Jard Port NOTES 1 Test Pit Dimensions: 3ft x 2ft x 3ft MATERIAL DESCRIPTION Brown, fine to coarse SAND, some silt and clay, trace fine to coarse gravel (with pieces of metal), dry PD = 0.0 Bottom of Test Pit at 3 feet.	PIZEI W		Telephone: 800.807.4080		
PROJECT NUMBER _ 208910 PROJECT LOCATION _ Rouses Point, NY DATE STARTED _ 102715 COMPLETED _ 102715 EXCAVATION METHOD _ Test Pit U.OGGED BY _ Jares Port _ NY NOTES _ Test Pit Dimensions: 3ft x 2ft x 3ft	d CLI			PROJECT NAME Pfizer - Rouses Point, NY	
DATE STARTED 1027/15 COMPLETED 1027/15 EXCAVATION MATERIAL DESCRIPTION EXCAVATION MATERIAL DESCRIPTION MATERIAL DESCRIPTION Brown, fine to coarse SAND, some silt and clay, trace fine to coarse gravel (with pieces of metal), dry Bottom of Test Pit at 3 feet.	PRI PRI				
EXCAVATION CONTRACTOR. Woodard & Curran EXCAVATION METHOD Test Pit LOGGED BY Jarrad Port NOTES Test Pit Dimensions: 3ft x 2ft x 3ft MATERIAL DESCRIPTION Brown, fine to coarse SAND, some silt and day, trace fine to coarse gravel (with pieces of metal), dry 2 100 Brown, fine to coarse SAND, some silt and day, trace fine to coarse gravel (with pieces of metal), dry PiD - 00 PiD - 00	MA DA				
EXCAVATION METHOD Test Pit LOGGED BY Jarde Port NOTES Test Pit Dimensions: 3ft x 2ft x 3ft MATERIAL DESCRIPTION Brown, fine to coarse SAND, some silt and day, trace fine to coarse gravel (with pieces of metal), dry Pio = 00 Bottom of Test Pit at 3 feet.	EX	CAVATI	ON CONTRACTOR Woodard & Curran	_	
NOTESTest Pt Dimensions: 3ft x 2ft x 3ft	EX (CAVATI	ON METHOD Test Pit	_	
NOTES Test Pit Dimensions: 3ft x 2ft x 9ft MATERIAL DESCRIPTION Brown, fine to coarse SAND, some silt and clay, trace fine to coarse gravel (with pieces of metal), dry PiD = 0.0	NA LO	GGED E	Y Jared Port		
MATERIAL DESCRIPTION Piggo Piggo	NO.	TES T	est Pit Dimensions: 3ft x 2ft x 3ft	_	
MATERIAL DESCRIPTION Brown, fine to coarse SAND, some silt and clay, trace fine to coarse gravel (with pieces of metal), dry Bottom of Test Pit at 3 feet.	IP\SAN				tal
Bottom of Test Pit at 3 feet.	\$ II			TEDIAL DECORPTION	men
Brown, fine to coarse SAND, some slit and clay, trace fine to coarse gravel (with pieces of metal), dry PID = 0.9 Bottom of Test Pit at 3 feet.	SWA	Ĕ ≷	MA	TERIAL DESCRIPTION	iron
Brown, fine to coarse SAND, some slit and clay, trace fine to coarse gravel (with pieces of metal), dry PID = 0.0 Bottom of Test Pit at 3 feet.		REC	Feet		Env
Bottom of Test Pit at 3 feet.	- RA		BGS	erace fine to coarse gravel (with pieces of metal), dry	
Bottom of Test Pit at 3 feet.	P. C.		Brown, line to coarse SAND, some silt and day, t	race line to coarse graver (with pieces of metal), dry	
Bottom of Test Pit at 3 feet.	MSS: 2	 100			PID = 0.0p
	ASSE		<u>'</u>	Bottom of Test Pit at 3 feet.	
	SI				
	NTAL				
	NM				
	N N				
	PON				
100 00 W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	JSES				
	L ROL				
	WET				
	910 W				
MODELLA SELLE SI TALIS MODELLA SELLE S	3/206				
MODAND & CURRAN LEST PITS WIND GW - WC STD CDD - 389/16 86:10 - 110 WO STANKED PRODUCTION OF THE	ECTS				
WOODAND & CORRANT IEST PITS WO GW - WC S ID GOT - SIGNED INCORRANGE IN THE STATE OF	PROJ				
WOODAND & CORRANT IEST PITS W/O GW - WC S ID GDT - SIGNE 16:10 - MWOSAND ACTOR AND GW - WC S ID GDT - SIGNE 16:10 - MWOSAND ACTOR AND GW - WC S ID GDT - SIGNE 16:10 - MWOSAND ACTOR AND GW - WC S ID GDT - SIGNE 16:10 - MWOSAND ACTOR AND GW - WC S ID GDT - SIGNE 16:10 - MWOSAND ACTOR AND GW - WC S ID GDT - SIGNE 16:10 - MWOSAND ACTOR AC	RED				
WOODAND & CURRAN IEST PITS WO GW - WC SID GDI - 386/16 16:10 - 1/WC	\SHA				
WOODARD & CURKAN IEST PITS W/O GW - WC SID GDI - 3/8/18 1410	M)				
WOODARD & CURRAN IEST PITS W/O GW - WC SID GBJ - 3/98/18 1	6:10				
WOODARD & CURKAN IEST PITS W/O GW - WC STD-GDT - SK	1,16 1				
WOODARD & CURRAN IEST PIIS WOODARD & WC SID. CENTER OF THE COMMON INCOME.	- 3/8				
WOODARD & CURKAN LEST PITS W/O GW - WC SITE	.GD				
WOODARD & CURRAN LEST PILS WOODARD	TS C				
WOODARD & CURRAN IEST PITS W/O GV	^ ^				
WOODARD & CURRAN LESI PILS WA	0 0				
VOODAAD & CURRAN IEST PI	<u>⊗</u>				
VOODDARD & CURRAN IE	TS PI				
VOODAKD & CURKAN					
S CO S CO S CO S CO S CO S CO S CO S CO	RRAI				
WOODAKD CONTROL OF THE CONTROL OF TH	& CU				
	JARD				
	VOOL				

Wooderd & Curren Wooderd & Curren Filter PROJECT NAME Plane, New York 10604 PROJECT NAME Plane, Rouses Point, NY PROJECT NAME Plane, Rouses Plane, NY PROJECT NAME Plane, Rouses Plane, NY PROJ	<u> </u>			
White Plains, New York 10804 Telephone: 800.807.4080 Fax: 914.448.0147 CLIENT Pfizer PROJECT NAME Pfizer - Rouses Point, NY PROJECT NUMBER 206910 PROJECT LOCATION Rouses Point, NY DATE STARTED 10/28/15 COMPLETED 10/28/15 EXCAVATION CONTRACTOR Woodard & Curran EXCAVATION METHOD Test Pit LOGGED BY Jared Port NOTES Test Pit Dimensions: 3ft x 2ft x 3ft MATERIAL DESCRIPTION MATERIAL DESCRIPTION Brown, fine to coarse SAND, some silt and clay (with pieces of concrete, brick, and metal pipe), dry 2 100 Brown, fine to coarse SAND, some silt and clay (with pieces of concrete, brick, and metal pipe), dry			TEST PIT ID: SWMU7-BL	DG23-12
Telephone: 800.807.4080 Fax: 914.448.0147 CLIENT Pfizer PROJECT NUMBER 206910 PROJECT LOCATION Rouses Point, NY PROJECT NUMBER 206910 PROJECT LOCATION Rouses Point, NY DATE STARTED 10/28/15 COMPLETED 10/28/15 EXCAVATION CONTRACTOR Woodard & Curran EXCAVATION METHOD Test Pit LOGGED BY Jared Port NOTES Test Pit Dimensions: 3ft x 2ft x 3ft MATERIAL DESCRIPTION WATERIAL DESCRIPTION Brown, fine to coarse SAND, some silt and clay (with pieces of concrete, brick, and metal pipe), dry 2 100 Brown, fine to coarse SAND, some silt and clay (with pieces of concrete, brick, and metal pipe), dry	_			
CLIENT Pfizer PROJECT NAME Pfizer - Rouses Point, NY PROJECT NUMBER 206910 PROJECT LOCATION Rouses Point, NY DATE STARTED 10/28/15 COMPLETED 10/28/15 EXCAVATION CONTRACTOR Woodard & Curran EXCAVATION METHOD Test Pit LOGGED BY Jared Port NOTES Test Pit Dimensions: 3ft x 2ft x 3ft MATERIAL DESCRIPTION MATERIAL DESCRIPTION Brown, fine to coarse SAND, some silt and clay (with pieces of concrete, brick, and metal pipe), dry	woo	Telephone: 800.807.4080		
PROJECT NUMBER 206910 PROJECT LOCATION Rouses Point, NY DATE STARTED 10/28/15 COMPLETED 10/28/15 EXCAVATION CONTRACTOR Woodard & Curran EXCAVATION METHOD Test Pit LOGGED BY Jared Port NOTES Test Pit Dimensions: 3ft x 2ft x 3ft MATERIAL DESCRIPTION Brown, fine to coarse SAND, some silt and clay (with pieces of concrete, brick, and metal pipe), dry 2 100 Brown, fine to coarse SAND, some silt and clay (with pieces of concrete, brick, and metal pipe), dry	CLIEN		PROJECT NAME Pfizer - Rouses Point NY	
DATE STARTED 10/28/15 COMPLETED 10/28/15 EXCAVATION CONTRACTOR Woodard & Curran EXCAVATION METHOD Test Pit LOGGED BY Jared Port NOTES Test Pit Dimensions: 3ft x 2ft x 3ft MATERIAL DESCRIPTION Brown, fine to coarse SAND, some silt and clay (with pieces of concrete, brick, and metal pipe), dry	PROJ			
EXCAVATION CONTRACTOR Woodard & Curran EXCAVATION METHOD Test Pit LOGGED BY Jared Port NOTES Test Pit Dimensions: 3ft x 2ft x 3ft MATERIAL DESCRIPTION Page Bos Brown, fine to coarse SAND, some silt and clay (with pieces of concrete, brick, and metal pipe), dry 100 Brown, fine to coarse SAND, some silt and clay (with pieces of concrete, brick, and metal pipe), dry	DATE			
NOTES Test Pit Dimensions: 3ft x 2ft x 3ft	EXCA			
NOTES Test Pit Dimensions: 3ft x 2ft x 3ft Hard State of Concrete, brick, and metal pipe), dry Brown, fine to coarse SAND, some silt and clay (with pieces of concrete, brick, and metal pipe), dry Brown, fine to coarse SAND, some silt and clay (with pieces of concrete, brick, and metal pipe), dry	EXCA	VATION METHOD Test Pit		
MATERIAL DESCRIPTION MATERIAL DESCRIPTION Feet BGS Brown, fine to coarse SAND, some silt and clay (with pieces of concrete, brick, and metal pipe), dry 100 100 100 100 100 100 100 1	LOG	GED BY _Jared Port		
MATERIAL DESCRIPTION MATERIAL DESCRIPTION Feet BGS Brown, fine to coarse SAND, some silt and clay (with pieces of concrete, brick, and metal pipe), dry 100 100	NOTE	S Test Pit Dimensions: 3ft x 2ft x 3ft	<u> </u>	
MATERIAL DESCRIPTION MATERIAL DESCRIPTION Feet BGS Brown, fine to coarse SAND, some silt and clay (with pieces of concrete, brick, and metal pipe), dry 100 100		%		<u> </u>
Bos Brown, fine to coarse SAND, some silt and clay (with pieces of concrete, brick, and metal pipe), dry 100 100 100 100 100 100 100 100 100 1	Š Į			a s
Bos Brown, fine to coarse SAND, some silt and clay (with pieces of concrete, brick, and metal pipe), dry 100 100 100 100 100 100 100 100 100 1	E E	M.	ATERIAL DESCRIPTION	onn Data
Bos Brown, fine to coarse SAND, some silt and clay (with pieces of concrete, brick, and metal pipe), dry 100 100 100 100 100 100 100 100 100 1		O H		Envii
<u>2</u> 100	0	l cct		
	CLIEN PROJUNE EXCA LOGGE (1) 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Brown, fine to coarse SAND, some silt and clay	(with pieces of concrete, brick, and metal pipe), dry	
Bottom of Test Pit at 3 feet. PID=0.6	2 -	100		
Bottom of Test Pit at 3 feet. PID = 0.5				
			Bottom of Test Pit at 3 feet.	PID = 0.5p
	4			
	3			
	2			
	2			
	2			
	6			
	<u>{</u>			
	5			
	2			
	-			
	=			
	5			
	3			

FIZER RP TEST	709 Wh Tele	odard & Curran Westchester Aven te Plains, New York phone: 800.807.40 914.448.0147	k 10604		TEST PIT ID: SWMU7-BLD(323-13 GE 1 OF 1
ZI CLIEN	IRRAN Fax IT <u>Pfizer</u>				PROJECT NAME Pfizer - Rouses Point, NY	
A DBU I					PROJECT LOCATION Rouses Point, NY	
DATE	STARTED		COMPLETED		ROJECT LOCATION ROUSES FOIRE, NT	
SI FYCA		NTRACTOR Woo		10/20/13	-	
EXCA		THOD Test Pit	dard & Curran			
LOGG	SED BY Ja					
UNOTE		Dimensions: 3ft x 2	– 2ft x 3ft			
AMPL		Birriorioriorio. Ore X 2	- I X OIL			
CHEMD SWMU SAP\S. DEPTH (ft)	RECOVERY %			MATE	ERIAL DESCRIPTION	Environmental Data
CRA		Light brown, fine	e to coarse SAND	(with pieces of brid	ck), dry	
¥ - 2 -	100					
ESSW —		Dark brown, SIL	_T and CLAY, (with	pieces of metal p	pipe), dry	PID = 0.0p
ASS				Bot	ttom of Test Pit at 3 feet.	
WOODARD & CURRAN TEST PITS W/O GW - WC STD, GDT - 3/9/16 16:10 - WWC/SHARED/PROJECTS/206910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESSWIP/RCRA/CHEMD SWM/U SAP/SAMPLING AND ANALYSIS REPORTIGINT/PFIZER RP TEST						

I L						
P TES			odard & Curran Westchester Avenue	e, Suite L2	TEST PIT ID: SWI	/IU7-BLDG23-14
ZER R		Tol	ite Plains, New York ephone: 800.807.408			PAGE 1 OF 1
I/PFI	WOOI		: 914.448.0147	,,		
ခြု C	LIEN	T Pfizer			PROJECT NAME Pfizer - Rouses Point, NY	
E P	ROJE	CT NUMB	ER 206910		PROJECT LOCATION Rouses Point, NY	
al la				COMPLETED 10/28/	5	
E ALYS			ONTRACTOR Wood	ard & Curran		
¥ E			Test Pit			
A L		ED BY <u>Ja</u>		26		
I MPLI	UTE	Test Pit	Dimensions: 3ft x 2ft	l X SIL		
HE	(ft)	RECOVERY %			MATERIAL DESCRIPTION	Environmental Data
RCRA			Brown, fine to coa	arse SAND, some fine t	coarse gravel and cobbles, trace silt and clay (with pieces	of concrete, styrpfoam,
MIN.	2 _	100	and metal), dry			
SESS						
TE AS					Bottom of Test Pit at 3 feet.	PID = 0.0p
IAL SI						
MEN						
IRON						
-EN						
NO						
ES P						
ROUS						
ΉŦ						
10 W						
2069						
ECTS/						
ROJE						
REDIE						
SHA						
//WC						
6:10						
9/16 1						
T - 3/						
D.GD						
VC ST						
V - V						
W/O G						
PITS						
EST						
ZAN 1						
CURF						
RD &						
OODA						
ĭ						

Woodan'd S. Curran Tibe Plains, New York 10004 Workschester Avenue, Suitle L2 White Plains, New York 10004 PAGE: 1 OF 1 PA	<u> </u>	Woodard & Curran	TECT DIT ID. CVANALIZ DI DOC	22.45
ROBOR Telephone 800 807 490 SCURRAN For 914 448 0147 CLENT Pfore PROJECT NUMBER 206810 PROJECT NUMBER 206810 PROJECT NUMBER 206810 PROJECT LOCATION Rouses Point, NY ROJECT LOCATION ROUSE ROUS		709 Westchester Avenue, Suite L2		
CLENT Prizer PROJECT NUMBER 208910 PROJECT NUMBER 208910 PROJECT LOCATION ROUSES Point, NY OATE STARTED 1028/15 COMPLETED 1028/15 EXCAVATION CONTRACTOR Woodard & Curren EXCAVATION METHOD 1028/15 ILLOGGED BY Jarred Port NOTES Test PR Dimensions: 38 x 28 x 38 II MATERIAL DESCRIPTION Brown, fine to medium SAND, some fine to coarse gravel and cobbies (with pieces of concrete), dry Bottom of Test Pit at 3 feet. PID-66	woo	DDARD Telephone: 800.807.4080		
PROJECT NUMBER 209910 DATE STARTED 1028/15 EXCAVATION METHODTest Pit LOGGED BYstreet Pot NOTESTest Pit Dimensions; 3ft x 2ft x 3ft ### Brown, fine to medium SAND, some fine to coarse gravel and cobbles (with pieces of concrete), dry ### Brown, fine to medium SAND, some fine to coarse gravel and cobbles (with pieces of concrete), dry ### Brown of Test Pit at 3 feet. ### PROJECT LOCATIONRouses Point, NY ### PROJECT LOCATIONRO	CLIE		PROJECT NAME Pfizer - Rouses Point, NY	
DATE STARTED 10/28/15 COMPLETED 10/28/15 EXCAVATION METHOD 15st Pit UoGGED BY Jared Port NOTES Test Pit Dimensions: 3ft x 2ft x 3ft MATERIAL DESCRIPTION Brown, fine to medium SAND, some fine to coarse gravel and cobbles (with pieces of concrete), dry Bottom of Test Pit at 3 feet. FID= 2.3	PROJ			
EXCAVATION CONTRACTOR	DATE	STARTED 10/28/15 COMPLETED 1	0/28/15	
EXCAVATION METHOD Test PIL LOGGED BY Jarde Port NOTES Test PIL Dimensions: 3ft x 2ft x 3ft MATERIAL DESCRIPTION Brown, fine to medium SAND, some fine to coarse gravel and cobbles (with pieces of concrete), dry Bottom of Test Pit at 3 feet. PID=0.5	EXCA			
NOTES TEST PIT Dimensions: 3ft x 2ft x 3ft MATERIAL DESCRIPTION Brown, fine to medium SAND, some fine to coarse gravel and coabbles (with pieces of concrete), dry Bottom of Test Pit at 3 feet. PID = 0.5	EXCA			
MATERIAL DESCRIPTION Brown, fine to medium SAND, some fine to coarse gravel and cobbles (with pieces of concrete), dry Bottom of Test Pit at 3 feet. PID-0.0	LOGO			
MATERIAL DESCRIPTION Brown, fine to medium SAND, some fine to coarse gravel and cobbles (with pieces of concrete). dry Bottom of Test Pit at 3 feet. PID-00	NOIE			
Brown, fine to medium SAND, some fine to coarse gravel and cobbles (with pieces of concrete), dry Bottom of Test Pit at 3 feet. PID = 0.0	DEPTH (ft)	A Feet	MATERIAL DESCRIPTION	Environmental Data
Bottom of Test Pit at 3 feet. PND=0.01			e fine to coarse gravel and cobbles (with pieces of concrete), dry	
Bottom of Test Pit at 3 feet. PID=0.0	2	100		
Bottom of Test Pit at 3 feet.				
	H H		Bottom of Test Pit at 3 feet.	PID = 0.0p
	" E			
	Z Z			
	\ \ ≥			
	2008			
	Ĭ			
	# 			
	2009			
	2			
	E CONTRACTOR OF THE CONTRACTOR			
	KEU THE THE THE THE THE THE THE THE THE THE			
	A L			
	A -			
	1.01			
	31/6/2			
	-			
) - 			
	90			
	≶ 			
	2			
	= 			
	200 200 200 200 200 200 200 200 200 200			
	Š Š			
	TOO O			

STPI		Wooda	ırd & Curran			TEST DIT ID. SWALLT DI DO	22.46
RP TE	>	709 W	estchester Avenue Plains, New York 1			TEST PIT ID: SWMU7-BLDG	23-10 1 OF 1
PF IZEF		DARD Teleph	one: 800.807.408 14.448.0147				
GINT		IT Pfizer				PROJECT NAME Pfizer - Rouses Point, NY	
ORT/		ECT NUMBER				PROJECT LOCATION Rouses Point, NY	
SREF	DATE	STARTED 10	0/28/15	COMPLETED _	10/28/15	_	
ALYSI			RACTOR Woods	ard & Curran		-	
AD AN		VATION METH				-	
NG A		SED BY Jared	Port nensions: 3ft x 2ft	v Off			
AMPLI	NOTE		Hensions. Sit x Zit	X ZII		-	
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - \\WC\SHARED\PROJECTS\\COOPIO \\ \text{STD} \\ \text{FINIONYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESSYMEND SWMU SAPISAMPLING AND ANALYSIS REPORT\\COOPIO \\ \text{GINDER RP TEST} \\ \text{TIST} \\	о DEPTH (ft)	RECOVERY %			MAT	ERIAL DESCRIPTION	Environmental Data
3/RCRA			Light brown, fine t	to coarse SAND,	some fine to coa	arse gravel and cobbles (with pieces of concrete and metal pipe), dry	/
SSWIF	2 -						PID = 0.6p
ASSE					Во	ottom of Test Pit at 2 feet.	
L SITE							
ENTA							
RON							
ENS							
Ţ							
ES P(
ROUS							
ÆTH							
910 W							
3/2069							
JECT							
PRO							
ARED							
VC\SH							
- 0							
6 16:1							
- 3/9/1							
GDT.							
CSTD							
W - W							
0/0 G							
PITS \							
TEST							
RAN							
* CUR							
ARD &							
MOOD							

IST I	▲ Woodard & Curran	TEST DIT ID. SWANIT DI DO	22.47
RP T	709 Westchester Avenue, Suite L2 White Plains, New York 10604	TEST PIT ID: SWMU7-BLDG	23-17 1 OF 1
PFIZE SO	ODARD Telephone: 800.807.4080 URRAN Fax: 914.448.0147		
CLIE		PROJECT NAME Pfizer - Rouses Point, NY	
PRO		PROJECT LOCATION Rouses Point, NY	
DAT	E STARTED <u>10/28/15</u> COMPLETED <u>10/2</u>	28/15	
EXC			
EXC	AVATION METHOD Test Pit		
E LOG	GED BY _Jared Port ES _Test Pit Dimensions: 3ft x 2ft x 3ft		
AMPLI			
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - WWC/SHARED/PROJECTS/206910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESS/WIPIRCRA/CHEMD SWMU SAP/SAMPLING AND ANALYSIS REPORT/GINT/PFIZER RP TEST	% KECO KERK BGS	MATERIAL DESCRIPTION	Environmental Data
WIP\RCRA'	Brown, fine to coarse SAND, some fin fiberglass), dry	e to coarse gravel, silt, clay, and cobbles (with pieces of concrete, brick, metal a	nd
SESS] '**		
TE AS		Bottom of Test Pit at 3 feet.	PID = 1.0p
IAL SI			
WEN			
/IRO			
E			
POIN			
JSES			
H RO			
WYET			
6910			
TS/20			
COJEC			
ED/PR			
SHARI			
WC/8			
9:10 -			
9/16 1			
- 3/6			
1D.GD			
MC S			
- MS			
0/M			
TPIT			
Z TES			
JRRA			
2 & CL			
DARE			
00M			

TEST PI	Woodard & Curran	TEST PIT ID: SWMU7-BLDG23-1	18
PFIZER RP	709 Westchester Avenue, Suite L2 White Plains, New York 10604 Telephone: 800.807.4080 Fax: 914.448.0147	PAGE 1 OF	F 1
		PROJECT NAME Pfizer - Rouses Point, NY	
PE PR		PROJECT LOCATION Rouses Point, NY	
DA	TE STARTED 10/28/15 COMPLETED 10/28/15		
SISY EX	CAVATION CONTRACTOR Woodard & Curran		
EX	CAVATION METHOD _Test Pit		
	GGED BY _Jared Port		
NC	TES _Test Pit Dimensions: 3ft x 2ft x 3ft		
AMPI			\dashv
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - \\WC\SHARED\PROJECTS\\Z06910 \WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESS\\WINDPART SITE ASSESS\\\WINDPART SITE ASSESS\\\WINDPART SITE ASSESS\\\WINDPART SITE ASSESS\\\WINDPART SITE ASSESS\\\WINDPART SITE ASSESS\\\\WINDPART SITE ASSESS\\\\\WINDPART SITE ASSESS\\\\\WINDPART SITE ASSESS\\\\\WINDPART SITE ASSESS\\\\\\WINDPART SITE ASSESS\\\\\\\WINDPART SITE ASSESS\\\\\\\\\\WINDPART SITE ASSESS\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	RECOVERY REC	MATERIAL DESCRIPTION MOITGIAN MATERIAL Data	
WIP\RCRA\	Light brown, fine to coarse SAND, some fine brick), dry	e to coarse gravel and cobbles, trace silt and clay (with pieces of concrete and	
SESS	<u>-</u>		_
IE AS		Bottom of Test Pit at 3 feet.) = 0.6p
AL SI			
MEN			
RON			
EN			
Į.			
SPO			
SOO			
王			
WYE			
6910			
rs/20			
L L			
PRO			
ARED			
C\SH			
M			
16:10			
9/16			
T-3			
D.G			
VCS			
^- M			
WO G			
VITS V			
EST F			
AN T			
URR			
D & C			
DDAR			
<u></u> МО			

E E					
TES			odard & Curran Westchester Avenue, Suite L2	TEST PIT ID: SWMU7-BLI	
R RP			ite Plains, New York 10604	F	PAGE 1 OF 1
FIZE			ephone: 800.807.4080 c: 914.448.0147		
INT				DDO IECT NAME Drizor Dougos Doint NV	
RT/G		IT <u>Pfizer</u>	ER 206910	PROJECT LOCATION Province Point, NY	
3EPO					
SISF					
NAL			ONTRACTOR Woodard & Curran ETHOD Test Pit		
ND A		SED BY Ja			
NG A			: Dimensions: 3ft x 2ft x 3ft		
AMPL	NOIL	103(1)	. Dimensions. Sit x 2it x 3it		
AP\S/		% *			Environmental Data
MU S	DEPTH (ft)	RECOVERY	ı	MATERIAL DESCRIPTION	ımeı ata
WS C	DEF (f	00		VIATENIAE DESCRIPTION	ja ja
HEML	_				Ë
RA/C	0	BGS	Danier fire to access OAND and fire to	and a shiple of the state of the section of the sec	+
P\RC			Brown, tine to coarse SAND, some fine to coar	se gravel and cobbles (with pieces of styrofoam), dry	
S/WI	_ 2 _	100			
SSES			_ Dark brown/black, fine to coarse SAND, some	cobbles	
TE A				Bottom of Test Pit at 3 feet.	PID = 0.1p
AL S					
VENT					
SON					
NY.					
F					
POII					
USES					
H RO					
YET					
310 W					
\206					
ECTS					
ROJ					
RED/F					
SHAF					
/WC/					
10 - \					
6 16:					
3/9/1					
Ĕ.					
STD.(
WC 8					
GW-					
M/O					
PITS					
EST I					
ANŢ					
URR					
S C					
WOODARD & CURRAN TEST PITS W/O GW - WC STD GDT - 3/9/16 16:10 - NWCSHARED/PROJECTS/208910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESS/WIP/RCRACHEMD SWMU SAP/SAMPLING AND ANALYSIS REPORTIGINT/PFIZER RP TEST					
W00					

₫					
TEST			Woodard & Curran 709 Westchester Avenue, Suite L2	TEST PIT ID: SWMU7-BLD0	
R R			White Plains, New York 10604	PAG	E 1 OF 1
PFIZE	WOO!	DARD	Telephone: 800.807.4080 Fax: 914.448.0147		
GINT	CLIEN	T Pfi	zer	PROJECT NAME Pfizer - Rouses Point, NY	
PORT	PROJE	ECT N	UMBER _206910	PROJECT LOCATION Rouses Point, NY	
SRE	DATE	STAR	TED 10/28/15 COMPLETED 10/28/15	-	
ALYS			N CONTRACTOR Woodard & Curran		
ND AN			N METHOD Test Pit		
NG A			/ <u>Jared Port</u> st Pit Dimensions: 3ft x 2ft x 3ft		
AMPLI	NOTE		St Fit Differsions. Sit X 2it X 3it	-	-
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - WWCISHAREDIPROJECTS/206910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESSIWIP/RCRAICHEMD SWMU SAPISAMPLING AND ANALYSIS REPORT/GINT/PFIZER RP TEST	_	% \.			Environmental Data
NMU.	DEPTH (ft)	RECOVERY	MATI	ERIAL DESCRIPTION	onme Jata
MD S	۱ ۵	ECC			invirc
CHE	0		Feet BGS		
RCRA			Brown, fine to coarse SAND, some fine to coarse go	ravel and cobbles (with pieces of concrete, brick, rebar, and metal	pipe),
S/WIP	_ 2 _	100	ury		
SSES					PID = 0.0 pp
ITE A			Во	ttom of Test Pit at 3 feet.	
TALS					
MEN					
IRON					
ĒN					
OINT					
SES P					
ROUS					
ÆTH					
10 W					
\2069					
ECTS					
PROJ					
REDI					
SHA					
- WC					
6:10					
9/16 1					
T - 3/					
D.G					
/C ST					
^- M					
0/0 0/0					
JTS V					
ESTF					
AN T					
URR.					
D & C					
DAR					
ŏ N					

ᄗ		A 147 1 10 0							
P TES		Woodard & Curran 709 Westchester Avenue	e, Suite L2	TEST PIT ID: SWMU7-BLDG	523-21 E 1 OF 1				
ZER F	Woo	White Plains, New York Telephone: 800.807.408		1 10					
T/PFI,		RRAN Fax: 914.448.0147							
NGIN.	CLIEN	IT Pfizer		PROJECT NAME Pfizer - Rouses Point, NY					
PORT	PROJI	ECT NUMBER 206910		PROJECT LOCATION Rouses Point, NY					
ISRE	DATE	STARTED 10/28/15	COMPLETED 10/28/15	_					
ALYS		VATION CONTRACTOR Wood	ard & Curran						
D AN		VATION METHOD Test Pit		<u> </u>					
LOGGED BY Jared Port									
MPLIN-	NOTE	Test Pit Dimensions: 3ft x 2ft	t x 3ft	_					
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/14 (6:10 - \\WC\SHARED\PROJECTS\206910 \WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESSWIPRCRA/CHEMD SWMU SAP\SAMPLING AND ANALYSIS REPORTYGINT/PFIZER RP TEST	o DEPTH (ft)	RECOVERY %	MA	ATERIAL DESCRIPTION	Environmental Data				
RCRA		Light brown, fine	to coarse SAND, some fine to c	coarse gravel, silt, and clay (with pieces of brick and asphalt), dry					
WIP.	_ 2 _	100							
SESS									
IE AS	•			Bottom of Test Pit at 3 feet.	PID = 0.0p				
AL SI									
JENT									
RON									
ENAI									
Ļ									
SPO									
OUSE									
THR									
WYE									
06910									
;TS/2(
OJEC									
D\PR									
HARE									
NC\S									
\\ - 01									
6 16:									
3/9/1									
GDT.									
STD									
-WC									
GW									
S W/C									
T PIT									
TES									
RRAN									
& CUI									
4RD									
~'					1				

⊡									
ZER RP TEST	1		Woodard & Curran 709 Westchester Avenue, Suite White Plains, New York 10604 Telephone: 800.807.4080	L2	TEST PIT ID: SWMU7-BLDG	623-22 E 1 OF 1			
IT/PFI;		DARD RRAN	Fax: 914.448.0147						
TIGIN		T _Pfi							
EPOR			JMBER 206910		PROJECT LOCATION Rouses Point, NY				
SISR				PLETED 10/28/15	_				
NAL I			N CONTRACTOR Woodard & C	urran	_				
ND A	EXCAVATION METHOD Test Pit LOGGED BY Jared Port								
ING A	NOTES Test Pit Dimensions: 3ft x 2ft x 3ft								
SAMPL									
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - \\WC\SHARED\PROJECTS\206910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESS\\WIPKREND SWMU SAP\SAMPLING AND ANALYSIS REPORT\GINT\PPIZER RP TEST	DEPTH (ft)	RECOVERY %	eet GS	MA	TERIAL DESCRIPTION	Environmental Data			
CRA	- –			se SAND, some silt and c	clay (with pieces of concrete, pipe, metal, brick, plastic, wire), dry				
WIP	2	100							
SESSV						PID = 0.0pp			
E AS			•	E	Bottom of Test Pit at 3 feet.				
AL SI									
MENT									
IRON									
- EN									
TNIC TNIC									
ES P(
ROUS									
ÊTH.									
10 WY									
20691									
ECTS									
ROJE									
REDI									
SHA									
- WC									
6:10									
9/16 1									
T - 3/									
D.G									
VCS									
- W6									
0/M									
PITS									
TEST									
RAN									
CUR									
ARD &									
00D/									
ĭL									

᠋				_							
TES			Woodard &	Curran ester Avenue	Cuito I O		TEST PIT ID: SWMU7-BLDG	23-23			
R R				s, New York 1			PAGE	E 1 OF 1			
텔		DARD		800.807.408	0						
		RRAN	Fax: 914.44				PROJECT NAME DESCRIPTION DESCRIPTION				
	LIEN	T <u>Pf</u>	zer				PROJECT NAME _ Pfizer - Rouses Point, NY PROJECT LOCATION _ Rouses Point, NY				
							PROJECT LOCATION Rouses Point, NY				
SIS D					COMPLETED		-				
¥ EX			N CONTRAC								
≨ E X			N METHOD _				-				
A LO			/ Jared Port								
	OTE:	S <u>Te</u>	st Pit Dimens	ions: 3ft x 2ft	x 5.25ft	-					
Woodard & Curran 709 Westchester Avenue, Suite L2 White Plains, New York 10604 Telephone: 800.807-4080 Fax: 914.448.0147 CLIENT Pfizer PROJECT NUMBER 206910 DATE STARTED 10/29/15 EXCAVATION CONTRACTOR Woodard & Curran EXCAVATION METHOD Test Pit LOGGED BY Jared Port NOTES Test Pit Dimensions: 3ft x 2ft x 5.25ft MATERIAL DESCRIPTION MATERIAL DESCRIPTION Asphalt Grey, coarse GRAVEL, dry Brown, fine to coarse SAND, some silt, clay, and cobbles, dry Dark brown, SILT and CLAY, dry								la la			
S I											
D SWMU S,	j€∣	OVE				MAT	ERIAL DESCRIPTION	Dat			
MI C							invi				
A/CHE	0		Feet BGS								
RCR.			Asph								
MP.	2			, coarse GRA	•	me silt, clay, and co	phbles dry				
SESS		100	שטום	, mie to too	213C OAIND, 301	no ont, clay, and co	Source, di y				
E AS	4										
LSIT					and CLAY, dry						
¥H-			Light	brown, fine t	to coarse SANI	D, some silt and cla	ay, dry om of Test Pit at 5.25 feet.	PID = 0.0p			
NO						ВОП	off of Test Pit at 5.25 feet.				
VIRC											
Ä											
TNO TNO											
ES P											
OUS											
王											
WYE											
6910											
-S\20											
PRO											
RED											
SHA											
MC											
-10											
16 16											
3/8/											
TÖ											
10.											
WC 8											
- WE											
0//0											
Light brown, fine to coarse SAND, some silt and clay, dry Bottom of Test Pit at 5.25 feet. THE Light brown, fine to coarse SAND, some silt and clay, dry Bottom of Test Pit at 5.25 feet.											
빌											
JRRA											
& CL											
ARD											
00D											
≶											

Woo & CU	W Te	oodard & Curran So Westchester Avenui hite Plains, New York elephone: 800.807.408 ax: 914.448.0147	10604	TEST PIT ID: SWMU7-BLDG	23-24 E 1 OF 1
CLIEN	NT Pfizer			PROJECT NAME Pfizer - Rouses Point, NY	
PROJ	ECT NUME			PROJECT LOCATION Rouses Point, NY	
DATE	STARTE	D _10/29/15	COMPLETED 10/29/	15	
EXCA			dard & Curran		
EXCA		METHOD Test Pit			
LOGO	SED BY _J				
NOTE		Pit Dimensions: 3ft x 2f	ft x 4ft		
CLIEN JAMES LOUIS TO THE CONTROLL OF THE CONTR	RECOVERY %			MATERIAL DESCRIPTION	Environmental Data
		Dark brown, fine	to coarse SAND and co	bbles (with pieces of concrete, brick, plastic, fiberglass, rebar, and metal), dr	,
<u> </u>	100				
4	<u>-</u>			Bottom of Test Pit at 4 feet.	PID = 0p
i					
3					
5					
2					
2					
5					
5					
2					
5					
5					
3					

STPI	▲ Woodard & Curran						TEGT DIT ID OWNER DI DO	200.05
RP TE	/		709 V	Nestchester Avenu			TEST PIT ID: SWMU7-BLDG	E 1 OF 1
IZER	WOOI	DARD	Telep	e Plains, New York phone: 800.807.40				
INT C		RRAN		914.448.0147			DDO IECT NAME Direct Dougge Deigt NIV	
IPITIGE D		T <u>Pf</u>					PROJECT NAME Pfizer - Rouses Point, NY PROJECT LOCATION Rouses Point, NY	
B B				10/29/15				
SISY. E				NTRACTOR Wood				
AN E				THOD Test Pit			-	
NA L	ogg	ED B	/ _Jare	ed Port	-			
N	OTE	S <u>Te</u>	st Pit D	Dimensions: 3ft x 2t	ft x 6ft			
HEM	Environmental							
RCR4				Asphalt				
WIP	2 -			Grey, coarse GR		MD coarso grave	el, and cobbles, dry	
SESS		100					•	
TE AS	4	100		Light brown, fine Brown, SILT and		, trace gravel, dry		
AL SI				Blown, SILT and	I CLAT, dry			
WEN-	6 🗆	l				- Ro	ottom of Test Pit at 6 feet.	PID = 0.0p
VIRON						Ь	outoni or rest Fit at 0 leet.	1 15 - 0.9
L EN								
POIN								
JSES								
H ROL								
WET								
910 W								
-2\206								
DECT								
) PRC								
1AREI								
VC\SI								
∥ - 01								
6 16:								
- 3/9/1								
GDT								
STD								
- W								
0 GV								
TS W								
STPI								
AN TE								
URR								
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - \\WC\SHARED\PROJECTS\206910 WYETH ROUSES POINT - ENVIRONMENTAL								
ODAR								
ŏ 								

L _									
TES			odard & Curran Westchester Avenue, Suite L2 TEST PIT ID: SWMU7-BL						
R RP			ite Plains, New York 10604	PAGE 1 OF 1					
)FIZE	WOO		ephone: 800.807.4080 c: 914.448.0147						
NINT.		T Pfizer	PROJECT NAME Pfizer - Rouses Point, NY						
JRT/G			ER 206910 PROJECT LOCATION Rouses Point, NY						
REP									
YSIS			DNTRACTOR Woodard & Curran						
ANAL	EXCAVATION METHOD Test Pit								
AND	LOGGED BY _Jared Port								
LING			: Dimensions: 3ft x 2ft x 3ft						
AMP.									
SAP	_	% }		Environmental Data					
NW N	DEPTH (ft)	RECOVERY	MATERIAL DESCRIPTION	nme ata					
ID SV) 	000		Siya					
SHEN	0	Feet BGS		<u> </u>					
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - \(\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1000	Brown, fine to coarse SAND, some silt, clay, and fine to coarse gravel (with pieces of concrete, brick, and insulati	on), dry					
MIP\R	- 2 -	100							
ESS		100		PID = 1.4p					
ASSI		<u> </u>	Bottom of Test Pit at 3 feet.	' - 					
SIE									
NTAL									
NME									
NIRC									
ļ.									
NO									
SES									
ROU									
ĒΤ									
0 W									
2069									
CTS									
ROJE									
EDIP									
HAR									
WC/8									
10 - "									
6 16:									
3/9/1									
ĎŢ.									
310.0									
WC 8									
GW-									
W/O									
PITS									
EST									
ZAN T									
URR									
D & C									
DAR									
WOC									

ER RP TEST P		Woodard & Curran 709 Westchester Avenue, Suite L2 White Plains, New York 10604 Telephone: 800 807 4080	TEST PIT ID: SWMU7-BLDG34-01 PAGE 1 OF 1				
VPFIZ 8		DARD Telephone: 800.807.4080 RRAN Fax: 914.448.0147					
E CL	.IEN		ROJECT NAME Pfizer - Rouses Point, NY				
NA PE	ROJE	ECT NUMBER _206910 PF	PROJECT LOCATION Rouses Point, NY				
别 D A	ΥΤΕ	STARTED _10/28/15					
SS EX	(CA)	VATION CONTRACTOR Woodard & Curran					
¥ EX	(CA)	VATION METHOD Test Pit					
	GG	ED BY _Jared Port					
NO S)TE	S Test Pit Dimensions: 3ft x 2ft x 8.5ft					
HEMD S	HL (#) MATERIAL DESCRIPTION Feet O BGS						
SRA T		Grey/black fine to coarse GRAVEL (with pieces of concrete a	nd asphalt), dry				
MP/R	=	Light brown, fine to coarse SAND, some cobbles (with pieces					
ESSW	\exists						
ASS	4	Dark brown/black, SILT and CLAY, some cobbles, dry					
SITE	-						
AT 6	3						
NME							
NING 8	3 –						
ΪE			Test Pit at 8.5 feet. PID = 0.0pr				
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - \(\)WC\SHARED\PROJECTS\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							

EST PI		Wood	dard & Curran			TEST PIT ID: SWMU7-BLDG34-02			
ER RP T		White	Westchester Avenue e Plains, New York	10604			E 1 OF 1		
\PFIZI			phone: 800.807.408 914.448.0147	30					
\GINT	CLIEN	T Pfizer				PROJECT NAME Pfizer - Rouses Point, NY			
POR		ECT NUMBE				PROJECT LOCATION Rouses Point, NY			
IS RE			10/28/15		10/28/15	_			
ALYS			NTRACTOR Wood	ard & Curran		-			
ND A			THOD Test Pit			_			
LOGGED BY _Jared Port									
AMPL	1012		JIII CHOIGHS. OIL X ZII	. X OIL		_			
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - \\WC\SHARED\PRO\ECTS\206910 \WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESS\WIP\RCRA\CHEMD SWMU SAP\SAMPLING AND ANALYSIS REPORTIGINT\PFIZER RP TEST	o DEPTH (ft)	RECOVERY %			MAT	TERIAL DESCRIPTION	Environmental Data		
3CRA		=======================================	Coarse GRAVEL	and COBBLES (v	with pieces of co	ncrete, metal, and rebar), dry			
WIP\F	- ₂ -	100		·					
SESS									
TE AS					В	ottom of Test Pit at 3 feet.	PID = 0.0p		
TALSI									
ZMEN									
VIRO									
- EN									
POIN									
JSES									
H RO									
WYET									
6910 \									
TS/20									
ONEC									
D\PR									
HARE									
NWC/S									
10-									
/16 16									
T - 3/9									
D.GD									
/CST									
۸- ۸-									
W/O									
PITS									
TEST									
RAN									
& CUF									
JARD									
WOOL									

ST PI		10/	oodard & Curran		TEGT BIT ID COMMUTE BI D.C.	204.00			
RP TE	>	70	9 Westchester Avenue		TEST PIT ID: SWMU7-BLDG	E 1 OF 1			
-IZER	WOO	DARD Te	hite Plains, New York elephone: 800.807.408						
NT/PF			ax: 914.448.0147		PPO JECT NAME Direct Dougle Doint MV				
RT/GI		T Pfizer			PROJECT NAME Pfizer - Rouses Point, NY PROJECT LOCATION Rouses Point, NY				
REPO				COMPLETED 10/28/15					
YSIS			CONTRACTOR Wood						
ANAL			Test Pit						
AND	LOGG	ED BY _	ared Port						
PLING	NOTES Test Pit Dimensions: 3ft x 2ft x 3ft								
WOODARD & CURRAN TEST PITS W/O GW - WC STD.GDT - 3/9/16 16:10 - W/WC/SHAREDIPROJECTS/206910 WYETH ROUSES POINT - ENVIRONMENTAL SITE ASSESS/WIPRCRA/CHEMD SWMU SAP/SAMPLING AND ANALYSIS REPORT/GINT/PFIZER RP TEST	o DEPTH (ft)	RECOVERY %			MATERIAL DESCRIPTION	Environmental Data			
S\WIP\RCK	 _ ₂ _	100	Brown, fine to coa	arse SAND, some fine to co	oarse gravel and cobbles (with pieces of concrete and styrofoam), dry				
SSES		-			Bottom of Test Pit at 3 feet.	PID = 0.0p			
LSITE									
ENTA									
SONM									
EN									
- LNC									
ES P(
ROUS									
YETH									
310 W									
3/2069									
JECT									
PRO									
ARED									
VC\SH									
- 01									
16 16:									
- 3/9/									
.GDT									
CSTE									
Μ- Μ									
0/0 G									
PITS \									
TEST									
RAN									
* CUR									
ARD 8									
MOOD									

BORING LOGS

WOODARD Telephone: 800.80 &CURRAN Fax: 914.448.0147

Woodard & Curran 709 Westchester Avenue, Suite L2 White Plains, New York 10604 Telephone: 800.807.4080

BORING/WEL NO.: SWMU1-SB11

PAGE 1 OF 1

PROJECT Pfizer - Rouses Point, NY PROJECT NUMBER 206910 SURFACE ELEVATION 0 ft DATUM NA **DATE STARTED** <u>11/2/15</u> **COMPLETED** <u>11/2/15</u> _____ **EASTING** 0 CONTRACTOR Zebra Environmental DRILLER Joseph Hutchins NORTHING 0 WELL CASING: INTERVAL NA SAMPLING METHOD 5ft Macrocore _ TYPE NA_ **DIAMETER** NA GEOLOGIST/ENGINEER Tom Ferrelli WELL SCREEN: INTERVAL NA DIAMETER NA WATER LEVEL NA DATE MEASURED 11/2/2015 TYPE NA SIZE NA

DEPTH (ft)	SAMPLE INTERVAL (ft)	RECOVERY %	PHYSICAL DESCRIPTION OF SOIL Feet	Old (mdd)	DEPTH (ft)
- 2 - - 2 - - 4 -	4	88	Asphalt Concrete Brown, fine SAND, little silt and clay, trace fine to coarse gravel, moist		0 <u>9</u> 4

White Plains, New York 10604
Telephone: 800.807.4080
Fax: 914.448.0147

Woodard & Curran 709 Westchester Avenue, Suite L2 PAGE 1 OF 1

BORING/WEL NO.: SWMU1-SB12

DAT CON DRII SAN GEO	ITRACTOR Zeb LING METHOD _ IPLING METHOD DLOGIST/ENGINE	/2/15 ra Environment 7822DT Geopro 5ft Macrocore ER Tom Ferre	COMPLETED 11/2/15 al DRILLER Joseph Hutchins obe	PROJECT NUMBER 206 SURFACE ELEVATIO NORTHING 0 WELL CASING: TYPE NA WELL SCREEN: TYPE NA	N <u>0 ft</u> DA	ATUM <u>NA</u> ASTING <u>0</u> SIZE <u>N</u> A	
DEPTH (ft)	SAMPLE INTERVAL (ff)	RECOVERY %	Feet BCS	PHYSICAL DESCRIPTION OF	[:] SOIL	c ē	PID (ppm) DEPTH
- 2 - 2 	4	81	Asphalt Concrete Brown, fine SAND, little silt and clay, trace fine to coarse gravel, moist - 0 - 2 - 2 0 0 - 4 0				
		_	<u> </u>	Bottom of boreho	le at 4.0 feet.		

Woodard & Curran PAGE 1 OF 1 709 Westchester Avenue, Suite L2 **BORING/WEL NO.: SWMU1-SB13** White Plains, New York 10604 Telephone: 800.807.4080 WOODARD Telephone: 800.80 &CURRAN Fax: 914.448.0147 PROJECT Pfizer - Rouses Point, NY PROJECT NUMBER 206910 SURFACE ELEVATION _0 ft DATUM _NA **DATE STARTED** <u>11/2/15</u> **COMPLETED** <u>11/2/15</u> EASTING 0 CONTRACTOR Zebra Environmental DRILLER Joseph Hutchins NORTHING 0 WELL CASING: INTERVAL NA SAMPLING METHOD 5ft Macrocore TYPE NA **DIAMETER** NA GEOLOGIST/ENGINEER Tom Ferrelli WELL SCREEN: INTERVAL NA WATER LEVEL NA DATE MEASURED 11/2/2015 TYPE NA DIAMETER NA SIZE NA RECOVERY % DEPTH (ft) **PHYSICAL** DESCRIPTION OF SOIL Feet Weathered concrete and fine to coarse GRAVEL, dry Brown, fine to medium SAND, some fine to coarse gravel, dry Olive grey, fine SAND, some silt, trace fine to coarse gravel, dry 81

Woodard & Curran 709 Westchester Avenue, Suite L2 White Plains, New York 10604 Telephone: 800.807.4080 WOODARD Telephone: 800.80 &CURRAN Fax: 914.448.0147

94

BORING/WEL NO.: SWMU1-SB14

PAGE 1 OF 1

PROJECT Pfizer - Rouses Point, NY PROJECT NUMBER 206910 **DATE STARTED** <u>11/2/15</u> **COMPLETED** <u>11/2/15</u> SURFACE ELEVATION _0 ft DATUM _NA EASTING 0 CONTRACTOR Zebra Environmental DRILLER Joseph Hutchins NORTHING 0 WELL CASING: INTERVAL NA SAMPLING METHOD 5ft Macrocore TYPE NA **DIAMETER** NA GEOLOGIST/ENGINEER Tom Ferrelli WELL SCREEN: INTERVAL NA WATER LEVEL NA DATE MEASURED 11/2/2015 TYPE NA DIAMETER NA SIZE NA RECOVERY % DEPTH (ft) PID (ppm) **PHYSICAL** DESCRIPTION OF SOIL Feet Asphalt Concrete

Olive grey, fine SAND, some silt, trace fine to coarse gravel, moist

Brown, fine SAND, trace coarse gravel, dry

Woodard & Curran PAGE 1 OF 1 709 Westchester Avenue, Suite L2 **BORING/WEL NO.: SWMU4-SB03** White Plains, New York 10604 Telephone: 800.807.4080 WOODARD Telephone: 800.80 &CURRAN Fax: 914.448.0147 PROJECT Pfizer - Rouses Point, NY PROJECT NUMBER 206910 **DATE STARTED** <u>11/2/15</u> **COMPLETED** <u>11/2/15</u> SURFACE ELEVATION _0 ft DATUM _NA EASTING 0 CONTRACTOR Zebra Environmental DRILLER Joseph Hutchins NORTHING 0 DRILLING METHOD 7822DT Geoprobe WELL CASING: INTERVAL NA SAMPLING METHOD 5ft Macrocore TYPE NA **DIAMETER** NA GEOLOGIST/ENGINEER Tom Ferrelli WELL SCREEN: INTERVAL NA WATER LEVEL NA DATE MEASURED 11/2/2015 TYPE NA DIAMETER NA SIZE NA RECOVERY % DEPTH (ft) PID (ppm) **PHYSICAL** DESCRIPTION OF SOIL Feet Asphalt Brown, fine SAND, some silt, little clay and fine to coarse gravel, moist 63 Bottom of borehole at 4.0 feet.

White Plains, New York 10604
Telephone: 800.807.4080
Fax: 914.448.0147

Woodard & Curran 709 Westchester Avenue, Suite L2

PAGE 1 OF 1 BORING/WEL NO.: SWMU4-SB04

DAT CON DRII SAN GEO	JECT Pfizer - Ro E STARTED 11. ITRACTOR Zeb LING METHOD _ IPLING METHOD DLOGIST/ENGINE TER LEVEL NA	ra Environment 7822DT Geopro 5ft Macrocore ER Tom Ferre	al DRILLER <u>Joseph Hutchins</u>	PROJECT NUMBER 200 SURFACE ELEVATIO NORTHING 0 WELL CASING: TYPE NA WELL SCREEN: TYPE NA	N <u>0 ft</u>		IA	
DEPTH (ft)	SAMPLE INTERVAL (ft)	RECOVERY %	Feet	PHYSICAL DESCRIPTION OF	F SOIL		PID (ppm) DEPTH	
 - 2 - - 4 -	4	100	Asphalt Brown, fine to coarse SAND and GRAVEL, dry Brown, fine SAND, some silt, little fine to coarse gravel, moist					
		-		Bottom of boreho	le at 4.0 feet.			

Woodard & Curran 709 Westchester Avenue, Suite L2 White Plains, New York 10604 Telephone: 800.807.4080

PAGE 1 OF 1 BORING/WEL NO.: SWMU4-SB05

PRODATICON DRILL SAM	URRAN Fax: 914 JECT Pfizer - Ro E STARTED 11.	/3/15 ra Environmenta 7822DT Geopro 5ft Macrocore ER Tom Ferrel	COMPLETED 11/3/15 al DRILLER Joseph Hutchins be	PROJECT NUMBER 200 SURFACE ELEVATIO NORTHING 0 WELL CASING: TYPE NA WELL SCREEN: TYPE NA	N <u>0 ft</u> <u> </u>	 A
DEPTH (ft)	SAMPLE INTERVAL (ft)	RECOVERY %	Feet	PHYSICAL DESCRIPTION OF	F SOIL	PID (ppm) DEPTH
- 2 - - 2 - - 4 -	4	75	·	SAND, some fine to coars ne silt, trace clay and fine	. ,	- 0 - 9 - 9 - 0 - 4

PROJECT Pfizer - Rouses Point, NY

Woodard & Curran 709 Westchester Avenue, Suite L2

BORING/WEL NO.: SWMU4-SB06

PAGE 1 OF 1

White Plains, New York 10604 WOODARD Telephone: 800.807.4080 Fax: 914.448.0147

PROJECT NUMBER 206910

COI	LLING METHOD _	ra Environmenta 7822DT Geopro	al DRILLER Joseph Hutchins	SURFACE ELEVATION NORTHING 0 WELL CASING:	INTERVAL	EASTING NA			_
SAMPLING METHOD <u>5ft Macrocore</u> GEOLOGIST/ENGINEER <u>Tom Ferrelli</u> WATER LEVEL <u>NA</u> DATE MEASURED <u>11/3/2015</u>				TYPE <u>NA</u> _ WELL SCREEN: _ TYPE <u>NA</u>	DIAMETER INTERVAL DIAMETER	NA	SIZE _	NA	L
DEPTH (ff)	SAMPLE INTERVAL (ft)	RECOVERY %	Feet	PHYSICAL DESCRIPTION O				PID (ppm) DEPTH	(11)
- 2 - - 2 - - 4 -	4	75	Asphalt Brown, fine to medium SAND, some fine to coarse gravel, dry Brown, fine SAND, some silt, little clay, trace fine to coarse gravel, dry - 2 - 0 - 4						
				Bottom of boreho	ole at 4.0 feet.				Γ-

Woodard & Curran 709 Westchester Avenue, Suite L2

PAGE 1 OF 1

BORING/WEL NO.: SWMU4-SB07 White Plains, New York 10604
Telephone: 800.807.4080
Fax: 914.448.0147

PROJECT Pfizer - Rouses Point, NY DATE STARTED 11/3/15 COMPLETED 11/3/15 CONTRACTOR Zebra Environmental DRILLER Joseph Hutchins DRILLING METHOD 7822DT Geoprobe SAMPLING METHOD 5ft Macrocore				PROJECT NUMBER 200 SURFACE ELEVATIO NORTHING 0 WELL CASING: TYPE NA	N <u>0 ft</u>		
		ER Tom Ferrel	li ATE MEASURED <u>11/3/2015</u>	WELL SCREEN: TYPE NA	INTERVAL NA		NA
DEPTH (ft)	SAMPLE INTERVAL (ft)	RECOVERY %	Feet PCS	PHYSICAL DESCRIPTION OF	F SOIL		PID (ppm) DEPTH
- 2 - - 2 - - 4 -	4	83	Asphalt Brown, fine to medium SAND, some fine to coarse gravel, dry Brown, fine SAND, little silt, trace clay and fine to coarse gravel, moist				
		_		Bottom of boreho	le at 4.0 feet.		

WOODARD & CURRAN PROJECT Pfi

Woodard & Curran 709 Westchester Avenue, Suite L2 White Plains, New York 10604 Telephone: 800.807.4080

PAGE 1 OF 1

PROD DAT CON DRIL SAM	JECT Pfizer - Ro	/3/15 ra Environmenta 7822DT Geopro 5ft Macrocore		PROJECT NUMBER 200 SURFACE ELEVATION NORTHING 0 WELL CASING: TYPE NA WELL SCREEN:	N _0 ft INTERVALI DIAMETER N		
WAT	ER LEVEL NA	DA	TE MEASURED <u>11/3/2015</u>	TYPE _NA	DIAMETER N	IA S	SIZE NA
DEPTH (ft)	SAMPLE INTERVAL (ft)	RECOVERY %	Feet	PHYSICAL DESCRIPTION OF	SOIL		PID (ppm) DEPTH
- 2 - - 2 - - 4 -	4	75	:	SAND, some fine to coars ne silt, little clay, trace fine		, moist	- 0 - 9 - 0 - 0 - 0 - 4

APPENDIX C: LABORATORY ANALTYICAL REPORTS

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-70307-1 Client Project/Site: Rouses Point

For:

Woodard & Curran Inc 64 Maple Street Rouses Point, New York 12979

Attn: Don Weeks

Authorized for release by: 12/5/2014 12:41:04 PM

Joe Giacomazza, Project Management Assistant II joe.giacomazza@testamericainc.com

Designee for

Becky Mason, Project Manager II (413)572-4000 becky.mason@testamericainc.com

·····LINKS ······

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	5
Detection Summary	7
Client Sample Results	9
Surrogate Summary	46
QC Sample Results	49
QC Association Summary	74
Lab Chronicle	80
Certification Summary	85
Method Summary	86
Sample Summary	87
Chain of Custody	88
Receipt Checklists	89

A

5

7

a

10

12

IC

a E

Definitions/Glossary

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70307-1

Qualifiers

GC/MS VOA

Qualifier Description	n
	Qualitier Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS VOA TICs

Qualifier	Qualifier Description
Н	Sample was prepped or analyzed beyond the specified holding time
J	Indicates an Estimated Value for TICs
T	Result is a tentatively identified compound (TIC) and an estimated value.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

Qualifier	Qualifier Description		
*	LCS or LCSD exceeds the control limits		
F1	MS and/or MSD Recovery exceeds the control limits		
E	Result exceeded calibration range.		
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.		
В	Compound was found in the blank and sample.		
CC/MC Servi VOA TICE			

GC/MS Semi VOA TICs

Qualifier	Qualifier Description
J	Indicates an Estimated Value for TICs
T	Result is a tentatively identified compound (TIC) and an estimated value.
N	Presumptive evidence of material.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
GC VOA	

GC VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio

TestAmerica Buffalo

Page 3 of 89 12/5/2014

3

А

5

_

8

4 4

12

13

13

Definitions/Glossary

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70307-1

Glossary (Continued)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

9

4

__

Q

9

11

12

14

Case Narrative

Client: Woodard & Curran Inc TestAmerica Job ID: 480-70307-1
Project/Site: Rouses Point

Job ID: 480-70307-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-70307-1

Receipt

The samples were received on 10/29/2014 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.2° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 211821 recovered above the upper control limit for 1,1,2-Trichloro-1,2,2-trifluoroethane. The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported. The following samples are impacted: (CCVIS 480-211821/3).

Method(s) 8260C: The following sample(s) were collected in properly preserved vials for analysis of volatile organic compounds (VOCs). However, the pH was outside the required criteria when verified by the laboratory, and corrective action was not possible: TRIP BLANK (480-70307-8).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 212423 recovered above the upper control limit for Carbon disulfide, Carbon tetrachloride, Dibromomethane, Dichlorobromomethane, 1,1,1-Trichloroethane, 1,2-Dichloroethane and/or 2,2-Dichloropropane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: (CCVIS 480-212423/3).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 212086 recovered outside acceptance criteria, low biased for Carbon tetrachloride, Cyclohexane, 1,1,1-Trichloroethane and Methyl tert-butyl ether. A reporting limit (RL) standard was analyzed, and the target analytes were detected. Since the associated samples were non-detect for these analytes, the data have been reported.

Method(s) 8260C: Reported analyte concentrations in the following sample(s) are below 200ug/kg and may be biased low due to the sample(s) not being collected according to 5035-L/5035A-L low-level specifications: BLDG17C-SS-TRUCK-01 (480-70307-2), BLDG24-SS-FLOOR-02 (480-70307-11), BLDG24-SS-FLOOR-03 (480-70307-12).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D: The continuing calibration verification (CCV) analyzed in batch 211378 was outside the method criteria for the following analyte: 2,2'-oxybis[1-chloropropane]. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated. (CCVIS 480-211378/10)

Method(s) 8270D: The following analytes have been identified, in the reference method and/or via historical data, to be poor and/or erratic performers: Benzidine, Benzaldehyde, Benzoic acid These analytes may have a %D >60% if the average %D of all the analytes in the continuing calibration verification (CCV) is 30%. (CCVIS 480-211661/3).

Method(s) 8270D: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for batch 210939 recovered outside control limits for the following analytes: Caprolactam These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method(s) 8270D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 210939 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

Method(s) 8015D: The following samples were diluted due to the nature of the sample matrix: BLDG17C-SS-PAD-02 (480-70307-5), BLDG17C-SS-PAD-03 (480-70307-6). Elevated reporting limits (RLs) are provided.

5

4

5

6

9

1 4

12

13

Case Narrative

Client: Woodard & Curran Inc Project/Site: Rouses Point TestAmerica Job ID: 480-70307-1

Job ID: 480-70307-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8082A: The surrogate percent difference in the associated continuing calibration verification (CCV 480-211582/14) for Decachlorobiphenyl was slightly decreased and exceeded 20% on the ZB-35 column, indicating a low bias.

Method(s) 8082A: All primary data is reported from the ZB-35 column.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

7

8

9

11

12

13

Client: Woodard & Curran Inc Project/Site: Rouses Point

Client Sample ID: BLDG17C-SS-TRUCK-01

Lab Sample ID: 480-70307-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	2.5		2.2	0.44	mg/Kg	1	₩	6010C	Total/NA
Barium	24.5		0.55	0.12	mg/Kg	1	₽	6010C	Total/NA
Cadmium	0.071	JB	0.22	0.033	mg/Kg	1	₽	6010C	Total/NA
Chromium	7.4		0.55	0.22	mg/Kg	1	₩	6010C	Total/NA
Lead	5.0		1.1	0.26	mg/Kg	1	₽	6010C	Total/NA
Selenium	0.47	J	4.4	0.44	mg/Kg	1	₩	6010C	Total/NA
Hg	0.022		0.021	0.0085	mg/Kg	1	₩.	7471B	Total/NA

Client Sample ID: BLDG17C-SS-PAD-01

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	13	J	22	3.7	ug/Kg	1	₩	8260C	Total/NA
Methanol	0.61	J	1.0	0.31	mg/Kg	1	₽	8015D	Soluble
Arsenic	3.2		2.0	0.40	mg/Kg	1	₩	6010C	Total/NA
Barium	31.5		0.50	0.11	mg/Kg	1	₽	6010C	Total/NA
Cadmium	0.074	JB	0.20	0.030	mg/Kg	1	₽	6010C	Total/NA
Chromium	6.7		0.50	0.20	mg/Kg	1	₩	6010C	Total/NA
Lead	6.6		1.0	0.24	mg/Kg	1	₽	6010C	Total/NA
Hg	0.012	J	0.021	0.0085	mg/Kg	1	₽	7471B	Total/NA

Client Sample ID: BLDG17C-SS-PAD-01A

Lab Sample ID: 480-70307-4

— Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	5.1	J	24	4.1	ug/Kg	1	₩	8260C	Total/NA
Acetophenone	44	J	180	24	ug/Kg	1	₩	8270D	Total/NA
Methanol	0.72	J	1.1	0.31	mg/Kg	1	₽	8015D	Soluble
Arsenic	2.4		2.1	0.42	mg/Kg	1	₩	6010C	Total/NA
Barium	27.5		0.52	0.11	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.067	JB	0.21	0.031	mg/Kg	1	₩	6010C	Total/NA
Chromium	5.7		0.52	0.21	mg/Kg	1	₩	6010C	Total/NA
Lead	5.4		1.0	0.25	mg/Kg	1	₩	6010C	Total/NA
Hg	0.013	J	0.021	0.0083	mg/Kg	1	₽	7471B	Total/NA

Client Sample ID: BLDG17C-SS-PAD-02

Lab Sample ID: 480-70307-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	3.1		2.1	0.42	mg/Kg		₩	6010C	Total/NA
Barium	36.9		0.53	0.12	mg/Kg	1	₽	6010C	Total/NA
Cadmium	0.064	JB	0.21	0.032	mg/Kg	1	₽	6010C	Total/NA
Chromium	5.6		0.53	0.21	mg/Kg	1	₽	6010C	Total/NA
Lead	5.8		1.1	0.25	mg/Kg	1	₽	6010C	Total/NA
Hg	0.014	J	0.021	0.0085	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: BLDG17C-SS-PAD-03

Lab Sample ID: 480-70307-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	68		30	5.1	ug/Kg	1	₩	8260C	Total/NA
Arsenic	3.7		2.0	0.41	mg/Kg	1	₩	6010C	Total/NA
Barium	31.8		0.51	0.11	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.044	JB	0.20	0.031	mg/Kg	1	₽	6010C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

12/5/2014

Page 7 of 89

5

7

_

10

12

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70307-1

Lab Sample ID: 480-70307-6

Analyte	Result Qualifier	RL MDL	Unit	Dil Fac D	Method	Prep Type
Chromium	7.2	0.51 0.20	mg/Kg	1 🌣	6010C	Total/NA
Lead	5.9	1.0 0.24	mg/Kg	1 [‡]	6010C	Total/NA
Hg	0.012 J	0.021 0.0087	mg/Kg	1 🌣	7471B	Total/NA

Client Sample ID: BLDG17C-SS-SUMP-01 Lab Sample ID: 480-70307-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	2.9		1.9	0.38	mg/Kg	1	\$	6010C	Total/NA
Barium	32.9		0.48	0.10	mg/Kg	1	₽	6010C	Total/NA
Cadmium	0.057	JB	0.19	0.029	mg/Kg	1	₽	6010C	Total/NA
Chromium	4.7		0.48	0.19	mg/Kg	1	\$	6010C	Total/NA
Lead	5.6		0.95	0.23	mg/Kg	1	₽	6010C	Total/NA
Hg	0.011	J	0.019	0.0077	mg/Kg	1	₽	7471B	Total/NA

Client Sample ID: TRIP BLANK Lab Sample ID: 480-70307-8

No Detections.

Client Sample ID: EB-01 Lab Sample ID: 480-70307-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Bis(2-ethylhexyl) phthalate	6.1	В	4.6	1.7	ug/L	1	_	8270D	 Total/NA
Barium	0.088		0.0020	0.00070	mg/L	1		6010C	Total/NA
Lead	0.0033	JB	0.010	0.0030	mg/L	1		6010C	Total/NA

Client Sample ID: BLDG24-SS-FLOOR-01 Lab Sample ID: 480-70307-10

No Detections.

Client Sample ID: BLDG24-SS-FLOOR-02 Lab Sample ID: 480-70307-11

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Trichlorofluoromethane	7.9	4.9	0.47 ug/Kg	1	≅ 8260C	Total/NA

Client Sample ID: BLDG24-SS-FLOOR-03 Lab Sample ID: 480-70307-12

No Detections.

Client Sample ID: BLDG24-SS-SUMP-01 Lab Sample ID: 480-70307-13

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	P	гер Туре
1,2-Dichloroethane	2.0	J	4.5	0.22	ug/Kg	1	₩	8260C		otal/NA

This Detection Summary does not include radiochemical test results.

12/5/2014

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 10/28/14 10:30

Date Received: 10/29/14 09:00

Client Sample ID: BLDG17C-SS-TRUCK-01

TestAmerica Job ID: 480-70307-1

Lab Sample ID: 480-70307-2

Matrix: Solid
Percent Solids: 87.5

Method: 8260C - Volatile Organic ^{Analyte}	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
1,1,1-Trichloroethane	ND		5.3	0.39	ug/Kg	— ¤	11/04/14 16:36	11/04/14 22:44	
1,1,2,2-Tetrachloroethane	ND		5.3		ug/Kg ug/Kg	₩	11/04/14 16:36	11/04/14 22:44	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND ND		5.3		ug/Kg ug/Kg	₩	11/04/14 16:36	11/04/14 22:44	
	ND		5.3	0.69	ug/Kg ug/Kg		11/04/14 16:36	11/04/14 22:44	
I,1,2-Trichloroethane	ND ND		5.3		ug/Kg ug/Kg	~ \$		11/04/14 22:44	
1,1-Dichloroethane						~ ⇔	11/04/14 16:36		
1,1-Dichloroethene	ND		5.3		ug/Kg	¥	11/04/14 16:36	11/04/14 22:44	
1,2,3-Trichlorobenzene	ND		5.3		ug/Kg		11/04/14 16:36	11/04/14 22:44	
1,2,4-Trichlorobenzene	ND		5.3		ug/Kg		11/04/14 16:36	11/04/14 22:44	
I,2-Dibromo-3-Chloropropane	ND		5.3		ug/Kg	<u>.</u>	11/04/14 16:36	11/04/14 22:44	
,2-Dichlorobenzene	ND		5.3		ug/Kg	₩.	11/04/14 16:36	11/04/14 22:44	
1,2-Dichloroethane	ND		5.3			₩.	11/04/14 16:36	11/04/14 22:44	
1,2-Dichloropropane	ND		5.3	2.7	ug/Kg		11/04/14 16:36	11/04/14 22:44	
1,3-Dichlorobenzene	ND		5.3	0.27	ug/Kg	₩	11/04/14 16:36	11/04/14 22:44	
1,4-Dichlorobenzene	ND		5.3	0.74	ug/Kg	₩	11/04/14 16:36	11/04/14 22:44	
1,4-Dioxane	ND		110	23	ug/Kg	₩	11/04/14 16:36	11/04/14 22:44	
2-Butanone (MEK)	ND		27	1.9	ug/Kg	₽	11/04/14 16:36	11/04/14 22:44	
2-Hexanone	ND		27	2.7	ug/Kg	₽	11/04/14 16:36	11/04/14 22:44	
4-Methyl-2-pentanone (MIBK)	ND		27	1.7	ug/Kg	₽	11/04/14 16:36	11/04/14 22:44	
Acetone	ND		27	4.5	ug/Kg		11/04/14 16:36	11/04/14 22:44	
Benzene	ND		5.3	0.26	ug/Kg	₽	11/04/14 16:36	11/04/14 22:44	
Bromoform	ND		5.3	2.7	ug/Kg	₽	11/04/14 16:36	11/04/14 22:44	
Bromomethane	ND		5.3		ug/Kg		11/04/14 16:36	11/04/14 22:44	
Carbon disulfide	ND		5.3	2.7	ug/Kg	₽	11/04/14 16:36	11/04/14 22:44	
Carbon tetrachloride	ND		5.3	0.51	ug/Kg	₽	11/04/14 16:36	11/04/14 22:44	
Chlorobenzene	ND		5.3	0.70	ug/Kg		11/04/14 16:36	11/04/14 22:44	
Bromochloromethane	ND		5.3	0.38	ug/Kg	₽	11/04/14 16:36	11/04/14 22:44	
Dibromochloromethane	ND		5.3	0.68	ug/Kg	₽	11/04/14 16:36	11/04/14 22:44	
Chloroethane	ND		5.3		ug/Kg		11/04/14 16:36	11/04/14 22:44	
Chloroform	ND		5.3	0.33	ug/Kg	₽	11/04/14 16:36	11/04/14 22:44	
Chloromethane	ND		5.3		ug/Kg ug/Kg	*	11/04/14 16:36	11/04/14 22:44	
is-1,2-Dichloroethene	ND		5.3		ug/Kg		11/04/14 16:36	11/04/14 22:44	
Cyclohexane	ND		5.3		ug/Kg ug/Kg		11/04/14 16:36	11/04/14 22:44	
Bromodichloromethane	ND		5.3			₩			
Dichlorodifluoromethane	ND ND			0.71	ug/Kg		11/04/14 16:36	11/04/14 22:44	
	ND ND		5.3		ug/Kg		11/04/14 16:36	11/04/14 22:44 11/04/14 22:44	
Ethylbenzene			5.3		ug/Kg	₩	11/04/14 16:36		
,2-Dibromoethane (EDB)	ND		5.3		ug/Kg		11/04/14 16:36	11/04/14 22:44	
sopropylbenzene	ND		5.3		ug/Kg	₩.	11/04/14 16:36	11/04/14 22:44	
Methyl acetate	ND		5.3		ug/Kg	₩	11/04/14 16:36	11/04/14 22:44	
Methyl tert-butyl ether	ND		5.3		ug/Kg		11/04/14 16:36	11/04/14 22:44	
Methylcyclohexane	ND		5.3	0.81	ug/Kg	₩.	11/04/14 16:36	11/04/14 22:44	
Methylene Chloride	ND		5.3	2.4	ug/Kg	₽	11/04/14 16:36	11/04/14 22:44	
etrachloroethene	ND		5.3	0.71	ug/Kg		11/04/14 16:36	11/04/14 22:44	
oluene	ND		5.3	0.40	ug/Kg	₩	11/04/14 16:36	11/04/14 22:44	
rans-1,2-Dichloroethene	ND		5.3	0.55	ug/Kg	₩	11/04/14 16:36	11/04/14 22:44	
rans-1,3-Dichloropropene	ND		5.3	2.3	ug/Kg	₩	11/04/14 16:36	11/04/14 22:44	
richloroethene	ND		5.3	1.2	ug/Kg	\$	11/04/14 16:36	11/04/14 22:44	
richlorofluoromethane	ND		5.3	0.50	ug/Kg	₩	11/04/14 16:36	11/04/14 22:44	
/inyl chloride	ND		5.3	0.65	ug/Kg	₽	11/04/14 16:36	11/04/14 22:44	
Kylenes, Total	ND		11		ug/Kg		11/04/14 16:36	11/04/14 22:44	

TestAmerica Buffalo

Page 9 of 89

12/5/2014

2

5

6

8

10

12

14

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 10/28/14 10:30

Date Received: 10/29/14 09:00

Client Sample ID: BLDG17C-SS-TRUCK-01

TestAmerica Job ID: 480-70307-1

Lab Sample ID: 480-70307-2

Matrix: Solid

Percent Solids: 87.5

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,3-Dichloropropene	ND		5.3		0.76	ug/Kg	\	11/04/14 16:36	11/04/14 22:44	1
Styrene	ND		5.3		0.27	ug/Kg	₩	11/04/14 16:36	11/04/14 22:44	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	<u></u>				11/04/14 16:36	11/04/14 22:44	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104	-	64 - 126					11/04/14 16:36	11/04/14 22:44	1
4-Bromofluorobenzene (Surr)	102		72 - 126					11/04/14 16:36	11/04/14 22:44	1
. 2.0										

- Consider de (Carr)	707	77-720				7 77 7 7 7 7 6.00	11/01/11/22:11	•
Method: 8270D - Semivolatile C	Organic Compounds (GC/M Result Qualifier	IS)	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND Result Qualifier	190	28	ug/Kg	— ¤	10/30/14 08:12	11/03/14 17:51	1
bis (2-chloroisopropyl) ether	ND	190	38	ug/Kg ug/Kg	₽	10/30/14 08:12	11/03/14 17:51	1
2,4,5-Trichlorophenol	ND	190		ug/Kg ug/Kg		10/30/14 08:12	11/03/14 17:51	1
2,4,6-Trichlorophenol	ND	190	38	ug/Kg ug/Kg		10/30/14 08:12	11/03/14 17:51	
2,4-Dichlorophenol	ND	190	20	ug/Kg ug/Kg	₩	10/30/14 08:12	11/03/14 17:51	1
2,4-Dimethylphenol	ND	190	46	ug/Kg ug/Kg		10/30/14 08:12	11/03/14 17:51	1
	ND ND	370	120			10/30/14 08:12	11/03/14 17:51	· · · · · · · · · · · · · · · · · · ·
2,4-Dinitrophenol				ug/Kg				
2,4-Dinitrotoluene	ND ND	190	40	ug/Kg	₩	10/30/14 08:12	11/03/14 17:51	1
2,6-Dinitrotoluene		190	23	ug/Kg		10/30/14 08:12	11/03/14 17:51	
2-Chloronaphthalene	ND	190		ug/Kg	~	10/30/14 08:12	11/03/14 17:51	1
Chlorophenol, o-	ND	190	35	ug/Kg	₩	10/30/14 08:12	11/03/14 17:51	1
2-Methylnaphthalene	ND	190	38	ug/Kg		10/30/14 08:12	11/03/14 17:51	
2-Methylphenol	ND	190	23	ug/Kg	*	10/30/14 08:12	11/03/14 17:51	1
2-Nitroaniline	ND	370	28	ug/Kg	₩.	10/30/14 08:12	11/03/14 17:51	1
2-Nitrophenol	ND	190	54	ug/Kg	<u></u>	10/30/14 08:12	11/03/14 17:51	1
3,3'-Dichlorobenzidine	ND	370	230	ug/Kg	*	10/30/14 08:12	11/03/14 17:51	1
3-Nitroaniline	ND	370	53	ug/Kg	*	10/30/14 08:12	11/03/14 17:51	1
4,6-Dinitro-2-methylphenol	ND	370	190	ug/Kg		10/30/14 08:12	11/03/14 17:51	1
4-Bromophenyl phenyl ether	ND	190	27	ug/Kg	₩	10/30/14 08:12	11/03/14 17:51	1
4-Chloro-3-methylphenol	ND	190	47	ug/Kg	₩	10/30/14 08:12	11/03/14 17:51	1
4-Chloroaniline	ND	190	47	ug/Kg	₩	10/30/14 08:12	11/03/14 17:51	1
4-Chlorophenyl phenyl ether	ND	190	24	ug/Kg	₩	10/30/14 08:12	11/03/14 17:51	1
4-Methylphenol	ND	370	23	ug/Kg	₩	10/30/14 08:12	11/03/14 17:51	1
4-Nitroaniline	ND	370	100	ug/Kg	₩	10/30/14 08:12	11/03/14 17:51	1
4-Nitrophenol	ND	370	130	ug/Kg	₩	10/30/14 08:12	11/03/14 17:51	1
Acenaphthene	ND	190	28	ug/Kg	₩	10/30/14 08:12	11/03/14 17:51	1
Acenaphthylene	ND	190	25	ug/Kg	₩	10/30/14 08:12	11/03/14 17:51	1
Acetophenone	ND	190	26	ug/Kg	₩	10/30/14 08:12	11/03/14 17:51	1
Anthracene	ND	190	47	ug/Kg	₩	10/30/14 08:12	11/03/14 17:51	1
Atrazine	ND	190	67	ug/Kg	₩	10/30/14 08:12	11/03/14 17:51	1
Benzaldehyde	ND	190	150	ug/Kg		10/30/14 08:12	11/03/14 17:51	1
Benzo(a)anthracene	ND	190	19	ug/Kg	₩	10/30/14 08:12	11/03/14 17:51	1
Benzo(a)pyrene	ND	190	28	ug/Kg	₩	10/30/14 08:12	11/03/14 17:51	1
Benzo(b)fluoranthene	ND	190	30	ug/Kg	ф.	10/30/14 08:12	11/03/14 17:51	1
Benzo(g,h,i)perylene	ND	190	20	ug/Kg	₩	10/30/14 08:12	11/03/14 17:51	1
Benzo(k)fluoranthene	ND	190	25	ug/Kg	₩	10/30/14 08:12	11/03/14 17:51	1
Bis(2-chloroethoxy)methane	ND	190		ug/Kg		10/30/14 08:12	11/03/14 17:51	1

TestAmerica Buffalo

3

6

8

10

11

1 /

Client: Woodard & Curran Inc Project/Site: Rouses Point

Naphthalene

Nitrobenzene

Phenanthrene

Phenol

Pyrene

Pentachlorophenol

Client Sample ID: BLDG17C-SS-TRUCK-01

Lab Sample ID: 480-70307-2 Date Collected: 10/28/14 10:30 Matrix: Solid Date Received: 10/29/14 09:00 Percent Solids: 87.5

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued) Dil Fac Analyte Result Qualifier MDL Unit D Prepared Analyzed Bis(2-chloroethyl)ether ND 190 25 ug/Kg 10/30/14 08:12 11/03/14 17:51 190 ug/Kg 10/30/14 08:12 Bis(2-ethylhexyl) phthalate ND 11/03/14 17:51 65 ф Butyl benzyl phthalate ND 190 ug/Kg 10/30/14 08:12 11/03/14 17:51 Caprolactam ND 190 ug/Kg 10/30/14 08:12 11/03/14 17:51 58 ₩ Carbazole ND 190 23 ug/Kg 10/30/14 08:12 11/03/14 17:51 Chrysene ND 190 10/30/14 08:12 11/03/14 17:51 43 ug/Kg ₽ Di-n-butyl phthalate ND 190 33 ug/Kg 10/30/14 08:12 11/03/14 17:51 Di-n-octyl phthalate ND 190 10/30/14 08:12 11/03/14 17:51 23 ug/Kg ND Dibenz(a,h)anthracene 190 ug/Kg 10/30/14 08:12 11/03/14 17:51 10/30/14 08:12 Dibenzofuran ND 190 23 ug/Kg 11/03/14 17:51 ₩ Diethyl phthalate ND 10/30/14 08:12 190 25 ug/Kg 11/03/14 17:51 ₽ Dimethyl phthalate ND 190 23 10/30/14 08:12 11/03/14 17:51 ug/Kg Fluoranthene ND 190 20 ug/Kg 10/30/14 08:12 11/03/14 17:51 ₽ Fluorene ND 190 23 ug/Kg 10/30/14 08:12 11/03/14 17:51 ND ug/Kg Hexachlorobenzene 190 10/30/14 08:12 11/03/14 17:51 26 Hexachlorobutadiene ND 190 10/30/14 08:12 11/03/14 17:51 ug/Kg 190 10/30/14 08:12 Hexachlorocyclopentadiene ND 26 ug/Kg 11/03/14 17:51 À Hexachloroethane ND 190 25 10/30/14 08:12 11/03/14 17:51 ug/Kg ND 190 10/30/14 08:12 11/03/14 17:51 Indeno(1,2,3-cd)pyrene 24 ug/Kg ₩ Isophorone ND 190 41 ug/Kg 10/30/14 08:12 11/03/14 17:51 N-Nitrosodi-n-propylamine ₽ 11/03/14 17:51 ND 190 33 ug/Kg 10/30/14 08:12 ND 10/30/14 08:12 N-Nitrosodiphenylamine 190 160 ug/Kg 11/03/14 17:51

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	3100	TJ	ug/Kg	-	2.38		10/30/14 08:12	11/03/14 17:51	1
Dimethylformamide	0.00	.1	ua/Ka	≎		68-12-2	10/30/14 08:12	11/03/14 17:51	1

190

190

370

190

190

190

25 ug/Kg

21 ug/Kg

23

ug/Kg

ug/Kg

ug/Kg

ug/Kg

10/30/14 08:12

10/30/14 08:12

10/30/14 08:12

10/30/14 08:12

10/30/14 08:12

10/30/14 08:12

₽

11/03/14 17:51

11/03/14 17:51

11/03/14 17:51

11/03/14 17:51

11/03/14 17:51

11/03/14 17:51

ND

ND

ND

ND

ND

ND

Surrogate	%Recovery Qualifi	er Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	85	39 - 146	10/30/14 08:12	11/03/14 17:51	1
2-Fluorobiphenyl	84	37 - 120	10/30/14 08:12	11/03/14 17:51	1
2-Fluorophenol	80	18 - 120	10/30/14 08:12	11/03/14 17:51	1
Nitrobenzene-d5	81	34 - 132	10/30/14 08:12	11/03/14 17:51	1
p-Terphenyl-d14	93	65 ₋ 153	10/30/14 08:12	11/03/14 17:51	1
Phenol-d5	84	11 - 120	10/30/14 08:12	11/03/14 17:51	1

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) - Soluble									
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Ethanol	ND ND	1.1	0.17	mg/Kg	- -		11/07/14 12:40	1	
Isobutyl alcohol	ND	1.1	0.28	mg/Kg	₩		11/07/14 12:40	1	
Methanol	ND	1.1	0.33	mg/Kg	₽		11/07/14 12:40	1	
n-Butanol	ND	1.1	0.26	mg/Kg	\$		11/07/14 12:40	1	
Propanol	ND	1.1	0.17	mg/Kg	₩		11/07/14 12:40	1	
2-Butanol	ND	1.1	0.18	mg/Kg	₩		11/07/14 12:40	1	
Isopropyl alcohol	ND	1.1	0.27	mg/Kg	Φ		11/07/14 12:40	1	

TestAmerica Buffalo

Page 11 of 89

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 10/28/14 10:30

Date Received: 10/29/14 09:00

Client Sample ID: BLDG17C-SS-TRUCK-01

TestAmerica Job ID: 480-70307-1

Lab Sample ID: 480-70307-2

Matrix: Solid Percent Solids: 87

7.5		

Method: 8015D - Nonhalogenated									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
t-Butyl alcohol	ND		1.1	0.30	mg/Kg	₩ -		11/07/14 12:40	1
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
2-Hexanone	92		30 - 137					11/07/14 12:40	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		260	51	ug/Kg	₩	10/30/14 10:33	10/31/14 17:36	1
PCB-1221	ND		260	51	ug/Kg	₽	10/30/14 10:33	10/31/14 17:36	1
PCB-1232	ND		260	51	ug/Kg	₩	10/30/14 10:33	10/31/14 17:36	1
PCB-1242	ND		260	51	ug/Kg	₽	10/30/14 10:33	10/31/14 17:36	1
PCB-1248	ND		260	51	ug/Kg	₽	10/30/14 10:33	10/31/14 17:36	1
PCB-1254	ND		260	120	ug/Kg	₩	10/30/14 10:33	10/31/14 17:36	1
PCB-1260	ND		260	120	ug/Kg	\$	10/30/14 10:33	10/31/14 17:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	99		46 - 175				10/30/14 10:33	10/31/14 17:36	1
DCB Decachlorobiphenyl	105		47 - 176				10/30/14 10:33	10/31/14 17:36	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.5		2.2	0.44	mg/Kg	*	10/30/14 14:48	11/01/14 00:27	1
Barium	24.5		0.55	0.12	mg/Kg	₩	10/30/14 14:48	11/01/14 00:27	1
Cadmium	0.071	JB	0.22	0.033	mg/Kg	₩	10/30/14 14:48	11/01/14 00:27	1
Chromium	7.4		0.55	0.22	mg/Kg	₽	10/30/14 14:48	11/01/14 00:27	1
Lead	5.0		1.1	0.26	mg/Kg	₩	10/30/14 14:48	11/03/14 14:01	1
Selenium	0.47	J	4.4	0.44	mg/Kg	₽	10/30/14 14:48	11/01/14 00:27	1
Silver	ND		0.66	0.22	mg/Kg	₽	10/30/14 14:48	11/01/14 00:27	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Hg	0.022		0.021	0.0085	mg/Kg	<u> </u>	11/17/14 10:55	11/17/14 15:23	1	

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 10/28/14 09:30

Date Received: 10/29/14 09:00

Client Sample ID: BLDG17C-SS-PAD-01

TestAmerica Job ID: 480-70307-1

Lab Sample ID: 480-70307-3

Matrix: Solid Percent Solids: 93.3

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	4.4	0.32	ug/Kg	\	10/29/14 16:33	11/04/14 16:20	
1,1,2,2-Tetrachloroethane	ND	4.4	0.71	ug/Kg	₽	10/29/14 16:33	11/04/14 16:20	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.4	1.0	ug/Kg	₩	10/29/14 16:33	11/04/14 16:20	
1,1,2-Trichloroethane	ND	4.4	0.57	ug/Kg	₽	10/29/14 16:33	11/04/14 16:20	
1,1-Dichloroethane	ND	4.4	0.54	ug/Kg	₽	10/29/14 16:33	11/04/14 16:20	
1,1-Dichloroethene	ND	4.4	0.54	ug/Kg	₽	10/29/14 16:33	11/04/14 16:20	
1,2,3-Trichlorobenzene	ND	4.4	0.47	ug/Kg	₽	10/29/14 16:33	11/04/14 16:20	
1,2,4-Trichlorobenzene	ND	4.4	0.27	ug/Kg	₽	10/29/14 16:33	11/04/14 16:20	
1,2-Dibromo-3-Chloropropane	ND	4.4	2.2	ug/Kg	₽	10/29/14 16:33	11/04/14 16:20	
1,2-Dichlorobenzene	ND	4.4	0.34	ug/Kg		10/29/14 16:33	11/04/14 16:20	
1,2-Dichloroethane	ND	4.4	0.22	ug/Kg	₩	10/29/14 16:33	11/04/14 16:20	
1,2-Dichloropropane	ND	4.4	2.2	ug/Kg	₩	10/29/14 16:33	11/04/14 16:20	
1,3-Dichlorobenzene	ND	4.4	0.23	ug/Kg	\$	10/29/14 16:33	11/04/14 16:20	
1,4-Dichlorobenzene	ND	4.4		ug/Kg	₽	10/29/14 16:33	11/04/14 16:20	
1,4-Dioxane	ND	88		ug/Kg	₽	10/29/14 16:33	11/04/14 16:20	
2-Hexanone	ND	22	2.2	ug/Kg		10/29/14 16:33	11/04/14 16:20	
Acetone	13 J	22		ug/Kg	₽	10/29/14 16:33	11/04/14 16:20	
Benzene	ND	4.4	0.22	ug/Kg	₽	10/29/14 16:33	11/04/14 16:20	
Bromoform	ND	4.4		ug/Kg		10/29/14 16:33	11/04/14 16:20	
Bromomethane	ND	4.4		ug/Kg	₽	10/29/14 16:33	11/04/14 16:20	
Carbon disulfide	ND	4.4		ug/Kg	₽	10/29/14 16:33	11/04/14 16:20	
Carbon tetrachloride	ND	4.4	0.43		 \$	10/29/14 16:33	11/04/14 16:20	
Chlorobenzene	ND	4.4	0.58	ug/Kg	₽	10/29/14 16:33	11/04/14 16:20	
Bromochloromethane	ND	4.4		ug/Kg	₽	10/29/14 16:33	11/04/14 16:20	
Dibromochloromethane	ND	4.4		ug/Kg		10/29/14 16:33	11/04/14 16:20	
Chloroethane	ND	4.4	1.0	ug/Kg	₽	10/29/14 16:33	11/04/14 16:20	
Chloroform	ND	4.4	0.27		₽	10/29/14 16:33	11/04/14 16:20	
Chloromethane	ND	4.4		ug/Kg		10/29/14 16:33	11/04/14 16:20	
cis-1,2-Dichloroethene	ND	4.4	0.56	ug/Kg ug/Kg	₽	10/29/14 16:33	11/04/14 16:20	
sis-1,3-Dichloropropene	ND	4.4		ug/Kg ug/Kg	₽	10/29/14 16:33	11/04/14 16:20	
Cyclohexane	ND	4.4		ug/Kg		10/29/14 16:33	11/04/14 16:20	
Bromodichloromethane	ND	4.4	0.59	ug/Kg ug/Kg	₩	10/29/14 16:33	11/04/14 16:20	
Dichlorodifluoromethane	ND	4.4	0.36	ug/Kg ug/Kg		10/29/14 16:33	11/04/14 16:20	
Ethylbenzene	ND ND	4.4	0.30	ug/Kg ug/Kg	· · · · · · · · · · · · · · · · · · ·	10/29/14 16:33	11/04/14 16:20	
•	ND	4.4		ug/Kg ug/Kg		10/29/14 16:33	11/04/14 16:20	
1,2-Dibromoethane (EDB)								
sopropylbenzene	ND	4.4		ug/Kg	₽ 	10/29/14 16:33	11/04/14 16:20	
Methyl acetate	ND	4.4		ug/Kg		10/29/14 16:33	11/04/14 16:20	
2-Butanone (MEK)	ND	22		ug/Kg	Ţ.	10/29/14 16:33	11/04/14 16:20	
4-Methyl-2-pentanone (MIBK)	ND	22		ug/Kg	. .	10/29/14 16:33	11/04/14 16:20	
Methyl tert-butyl ether	ND	4.4		ug/Kg	\$	10/29/14 16:33	11/04/14 16:20	
Methylcyclohexane	ND	4.4		ug/Kg	*	10/29/14 16:33	11/04/14 16:20	
Methylene Chloride	ND	4.4		ug/Kg	, .	10/29/14 16:33	11/04/14 16:20	
Styrene	ND	4.4		ug/Kg	\$	10/29/14 16:33	11/04/14 16:20	
Tetrachloroethene	ND	4.4		ug/Kg	φ.	10/29/14 16:33	11/04/14 16:20	
Foluene	ND	4.4		ug/Kg		10/29/14 16:33	11/04/14 16:20	
rans-1,2-Dichloroethene	ND	4.4		ug/Kg	*	10/29/14 16:33	11/04/14 16:20	
rans-1,3-Dichloropropene	ND	4.4		ug/Kg	#	10/29/14 16:33	11/04/14 16:20	
Trichloroethene	ND	4.4		ug/Kg		10/29/14 16:33	11/04/14 16:20	
Trichlorofluoromethane	ND	4.4	0.42	ug/Kg	₽	10/29/14 16:33	11/04/14 16:20	

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 10/28/14 09:30

Date Received: 10/29/14 09:00

Client Sample ID: BLDG17C-SS-PAD-01

TestAmerica Job ID: 480-70307-1

Lab Sample ID: 480-70307-3

Matrix: Solid

Percent Solids: 93.3

Analyte	Result	Qualifier	F	₹L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4	.4	0.54	ug/Kg	₽	10/29/14 16:33	11/04/14 16:20	1
Xylenes, Total	ND		8	8.8	0.74	ug/Kg	₩	10/29/14 16:33	11/04/14 16:20	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane	37		ug/Kg	-	1	.91	75-45-6	10/29/14 16:33	11/04/14 16:20	1
Unknown	5.0	TJ	ug/Kg	₩	4	.05		10/29/14 16:33	11/04/14 16:20	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			64 - 126	;				10/29/14 16:33	11/04/14 16:20	1
Toluene-d8 (Surr)	107		71 - 125	5				10/29/14 16:33	11/04/14 16:20	1
4-Bromofluorobenzene (Surr)	113		72 - 126	:				10/29/14 16:33	11/04/14 16:20	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND	180	26	ug/Kg	<u> </u>	10/30/14 08:12	11/03/14 13:52	1
bis (2-chloroisopropyl) ether	ND	180	36	ug/Kg	₩	10/30/14 08:12	11/03/14 13:52	1
2,4,5-Trichlorophenol	ND	180	49	ug/Kg	₩	10/30/14 08:12	11/03/14 13:52	1
2,4,6-Trichlorophenol	ND	180	36	ug/Kg	₽	10/30/14 08:12	11/03/14 13:52	1
2,4-Dichlorophenol	ND	180	19	ug/Kg	₩	10/30/14 08:12	11/03/14 13:52	1
2,4-Dimethylphenol	ND	180	43	ug/Kg	₩	10/30/14 08:12	11/03/14 13:52	1
2,4-Dinitrophenol	ND	350	110	ug/Kg		10/30/14 08:12	11/03/14 13:52	1
2,4-Dinitrotoluene	ND	180	37	ug/Kg	₩	10/30/14 08:12	11/03/14 13:52	1
2,6-Dinitrotoluene	ND	180	21	ug/Kg	₩	10/30/14 08:12	11/03/14 13:52	1
2-Chloronaphthalene	ND	180	30	ug/Kg	₩	10/30/14 08:12	11/03/14 13:52	1
Chlorophenol, o-	ND	180	33	ug/Kg	₩	10/30/14 08:12	11/03/14 13:52	1
2-Methylnaphthalene	ND	180	36	ug/Kg	₩	10/30/14 08:12	11/03/14 13:52	1
2-Methylphenol	ND	180	21	ug/Kg	₽	10/30/14 08:12	11/03/14 13:52	1
2-Nitroaniline	ND	350	26	ug/Kg	₩	10/30/14 08:12	11/03/14 13:52	1
2-Nitrophenol	ND	180	51	ug/Kg	₩	10/30/14 08:12	11/03/14 13:52	1
3,3'-Dichlorobenzidine	ND	350	210	ug/Kg	₽	10/30/14 08:12	11/03/14 13:52	1
3-Nitroaniline	ND	350	50	ug/Kg	₩	10/30/14 08:12	11/03/14 13:52	1
4,6-Dinitro-2-methylphenol	ND	350	180	ug/Kg	₽	10/30/14 08:12	11/03/14 13:52	1
4-Bromophenyl phenyl ether	ND	180	25	ug/Kg	₽	10/30/14 08:12	11/03/14 13:52	1
4-Chloro-3-methylphenol	ND	180	44	ug/Kg	₽	10/30/14 08:12	11/03/14 13:52	1
4-Chloroaniline	ND	180	44	ug/Kg	₽	10/30/14 08:12	11/03/14 13:52	1
4-Chlorophenyl phenyl ether	ND	180	22	ug/Kg	₽	10/30/14 08:12	11/03/14 13:52	1
4-Methylphenol	ND	350	21	ug/Kg	₽	10/30/14 08:12	11/03/14 13:52	1
4-Nitroaniline	ND	350	94	ug/Kg	₩	10/30/14 08:12	11/03/14 13:52	1
4-Nitrophenol	ND	350	130	ug/Kg	₽	10/30/14 08:12	11/03/14 13:52	1
Acenaphthene	ND	180	26	ug/Kg	≎	10/30/14 08:12	11/03/14 13:52	1
Acenaphthylene	ND	180	23	ug/Kg	₽	10/30/14 08:12	11/03/14 13:52	1
Acetophenone	ND	180	24	ug/Kg	\$	10/30/14 08:12	11/03/14 13:52	1
Anthracene	ND	180	44	ug/Kg	₩	10/30/14 08:12	11/03/14 13:52	1
Atrazine	ND	180	62	ug/Kg	₽	10/30/14 08:12	11/03/14 13:52	1
Benzaldehyde	ND	180	140	ug/Kg	₽	10/30/14 08:12	11/03/14 13:52	1
Benzo(a)anthracene	ND	180	18	ug/Kg	₽	10/30/14 08:12	11/03/14 13:52	1
Benzo(a)pyrene	ND	180	26	ug/Kg	₽	10/30/14 08:12	11/03/14 13:52	1
Benzo(b)fluoranthene	ND	180	29	ug/Kg	₩	10/30/14 08:12	11/03/14 13:52	1
Benzo(g,h,i)perylene	ND	180	19	ug/Kg	₩	10/30/14 08:12	11/03/14 13:52	1
Benzo(k)fluoranthene	ND	180	23	ug/Kg	₩	10/30/14 08:12	11/03/14 13:52	1

Client: Woodard & Curran Inc Project/Site: Rouses Point

Client Sample ID: BLDG17C-SS-PAD-01

Lab Sample ID: 480-70307-3 Date Collected: 10/28/14 09:30 Matrix: Solid

Date Received: 10/29/14 09:00 Percent Solids: 93.3

Analyte	Result	Qualifier	RL	_	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-chloroethoxy)methane	ND		180		38	ug/Kg	<u> </u>	10/30/14 08:12	11/03/14 13:52	1
Bis(2-chloroethyl)ether	ND		180		23	ug/Kg	\$	10/30/14 08:12	11/03/14 13:52	1
Bis(2-ethylhexyl) phthalate	ND		180		61	ug/Kg	₽	10/30/14 08:12	11/03/14 13:52	1
Butyl benzyl phthalate	ND		180		30	ug/Kg	φ	10/30/14 08:12	11/03/14 13:52	1
Caprolactam	ND	*	180		54	ug/Kg	₩	10/30/14 08:12	11/03/14 13:52	1
Carbazole	ND		180		21	ug/Kg	\$	10/30/14 08:12	11/03/14 13:52	1
Chrysene	ND		180		40	ug/Kg	φ	10/30/14 08:12	11/03/14 13:52	1
Di-n-butyl phthalate	ND		180		31	ug/Kg	₩	10/30/14 08:12	11/03/14 13:52	1
Di-n-octyl phthalate	ND		180		21	ug/Kg	₩	10/30/14 08:12	11/03/14 13:52	1
Dibenz(a,h)anthracene	ND		180		32	ug/Kg	\$	10/30/14 08:12	11/03/14 13:52	1
Dibenzofuran	ND		180		21	ug/Kg	₩	10/30/14 08:12	11/03/14 13:52	1
Diethyl phthalate	ND		180		23	ug/Kg	₩	10/30/14 08:12	11/03/14 13:52	1
Dimethyl phthalate	ND		180		21	ug/Kg	\$	10/30/14 08:12	11/03/14 13:52	1
Fluoranthene	ND		180		19	ug/Kg	₽	10/30/14 08:12	11/03/14 13:52	1
Fluorene	ND		180		21	ug/Kg	\$	10/30/14 08:12	11/03/14 13:52	1
Hexachlorobenzene	ND		180		24	ug/Kg	φ.	10/30/14 08:12	11/03/14 13:52	1
Hexachlorobutadiene	ND		180		26	ug/Kg	₽	10/30/14 08:12	11/03/14 13:52	1
Hexachlorocyclopentadiene	ND		180		24	ug/Kg	₽	10/30/14 08:12	11/03/14 13:52	1
Hexachloroethane	ND		180		23	ug/Kg	φ.	10/30/14 08:12	11/03/14 13:52	1
Indeno(1,2,3-cd)pyrene	ND		180		22	ug/Kg	₽	10/30/14 08:12	11/03/14 13:52	1
Isophorone	ND		180		38	ug/Kg	₽	10/30/14 08:12	11/03/14 13:52	1
N-Nitrosodi-n-propylamine	ND		180		31	ug/Kg	φ.	10/30/14 08:12	11/03/14 13:52	1
N-Nitrosodiphenylamine	ND		180		150	ug/Kg	₩	10/30/14 08:12	11/03/14 13:52	1
Naphthalene	ND		180		23	ug/Kg	₽	10/30/14 08:12	11/03/14 13:52	1
Nitrobenzene	ND		180		20	ug/Kg		10/30/14 08:12	11/03/14 13:52	1
Pentachlorophenol	ND		350		180	ug/Kg	₩	10/30/14 08:12	11/03/14 13:52	1
Phenanthrene	ND		180		26	ug/Kg	₽	10/30/14 08:12	11/03/14 13:52	1
Phenol	ND		180		27	ug/Kg	ф.	10/30/14 08:12	11/03/14 13:52	1
Pyrene	ND		180		21	ug/Kg	₽	10/30/14 08:12	11/03/14 13:52	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	1300	TJ	ug/Kg	₩	4	.11		10/30/14 08:12	11/03/14 13:52	1
Dimethylformamide	0.00	JN	ug/Kg	₩			68-12-2	10/30/14 08:12	11/03/14 13:52	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	52		39 - 146					10/30/14 08:12	11/03/14 13:52	1
2-Fluorobiphenyl	88		37 - 120					10/30/14 08:12	11/03/14 13:52	1
2-Fluorophenol	73		18 - 120					10/30/14 08:12	11/03/14 13:52	1
Nitrobenzene-d5	84		34 - 132					10/30/14 08:12	11/03/14 13:52	1
p-Terphenyl-d14	98		65 ₋ 153					10/30/14 08:12	11/03/14 13:52	1
Phenol-d5	85		11 - 120					10/30/14 08:12	11/03/14 13:52	1

Method: 8015D	- Nonhalogenated Organic Com	npounds - Dire	ect Injection (G	C) - So	luble				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		1.0	0.16	mg/Kg	₽		11/07/14 13:03	1
Isobutyl alcohol	ND		1.0	0.26	mg/Kg	₽		11/07/14 13:03	1
Methanol	0.61	J	1.0	0.31	mg/Kg	≎		11/07/14 13:03	1
n-Butanol	ND		1.0	0.24	mg/Kg	₽		11/07/14 13:03	1
Propanol	ND		1.0	0.16	mg/Kg	₽		11/07/14 13:03	1
2-Butanol	ND		1.0	0.17	mg/Kg	≎		11/07/14 13:03	1

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 10/28/14 09:30

Date Received: 10/29/14 09:00

Client Sample ID: BLDG17C-SS-PAD-01

TestAmerica Job ID: 480-70307-1

Lab Sample ID: 480-70307-3

Matrix: Solid

Percent Solids: 93

Jiiu	
3.3	

Method: 8015D - Nonhald	ogenated Organic Con	npounds - D	irect Injection ((GC) - So	luble (Co	ntinued)			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropyl alcohol	ND		1.0	0.25	mg/Kg	-		11/07/14 13:03	1
t-Butyl alcohol	ND		1.0	0.28	mg/Kg	\$		11/07/14 13:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	99	-	30 - 137			-		11/07/14 13:03	1

							11/0//14 13:03	•
ed Biphenvis (PC	Bs) by Gas	s Chromatogran	hv					
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		230	45	ug/Kg	\	10/30/14 10:33	10/31/14 17:51	1
ND		230	45	ug/Kg	₩	10/30/14 10:33	10/31/14 17:51	1
ND		230	45	ug/Kg	₽	10/30/14 10:33	10/31/14 17:51	1
ND		230	45	ug/Kg	₽	10/30/14 10:33	10/31/14 17:51	1
ND		230	45	ug/Kg	₩	10/30/14 10:33	10/31/14 17:51	1
ND		230	110	ug/Kg	₽	10/30/14 10:33	10/31/14 17:51	1
ND		230	110	ug/Kg	\$	10/30/14 10:33	10/31/14 17:51	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
104		46 - 175				10/30/14 10:33	10/31/14 17:51	1
110		47 - 176				10/30/14 10:33	10/31/14 17:51	1
	Result	Result Qualifier ND ND ND ND ND ND ND ND ND N	Result Qualifier RL ND 230 WRecovery Qualifier Limits 104 46 - 175	ND 230 45 ND 230 110 ND 230 110 WRecovery Qualifier Limits 104 46 - 175	Result Qualifier RL MDL ug/Kg ND 230 45 ug/Kg ND 230 110 ug/Kg ND 230 110 ug/Kg ND 230 110 ug/Kg WRecovery Qualifier Limits 104 46 - 175	Result Qualifier RL MDL Unit D ND 230 45 ug/Kg 5 ND 230 110 ug/Kg 5 ND 230 110 ug/Kg 5 **WRecovery Qualifier Limits 104 46 - 175 46 - 175	Result Qualifier RL MDL unit D ug/Kg Prepared ND 230 45 ug/Kg 10/30/14 10:33 ND 230 110 ug/Kg 10/30/14 10:33 ND 230 110 ug/Kg 10/30/14 10:33 WRecovery Qualifier Limits Prepared 104 46 - 175 10/30/14 10:33	Result Qualifier RL MDL unit D ug/Kg Prepared Analyzed ND 230 45 ug/Kg 10/30/14 10:33 10/31/14 17:51 ND 230 110 ug/Kg 10/30/14 10:33 10/31/14 17:51 ND 230 110 ug/Kg 10/30/14 10:33 10/31/14 17:51 MRecovery Qualifier Limits Prepared Analyzed 10/30/14 10:33 10/31/14 17:51 10/30/14 10:33 10/31/14 17:51

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.2		2.0	0.40	mg/Kg	₩	10/30/14 14:48	11/01/14 00:30	1
Barium	31.5		0.50	0.11	mg/Kg	₽	10/30/14 14:48	11/01/14 00:30	1
Cadmium	0.074	JB	0.20	0.030	mg/Kg	₽	10/30/14 14:48	11/01/14 00:30	1
Chromium	6.7		0.50	0.20	mg/Kg	\$	10/30/14 14:48	11/01/14 00:30	1
Lead	6.6		1.0	0.24	mg/Kg	₽	10/30/14 14:48	11/03/14 14:04	1
Selenium	ND		4.0	0.40	mg/Kg	₽	10/30/14 14:48	11/01/14 00:30	1
Silver	ND		0.60	0.20	mg/Kg	₽	10/30/14 14:48	11/01/14 00:30	1

Method: 7471B - Mercury in Solid	or Semisolid	Waste (Ma	nual Cold Va	por Technic	que)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	0.012	J	0.021	0.0085	mg/Kg		11/05/14 10:40	11/05/14 12:09	1

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 10/28/14 09:30

Date Received: 10/29/14 09:00

Client Sample ID: BLDG17C-SS-PAD-01A

TestAmerica Job ID: 480-70307-1

Lab Sample ID: 480-70307-4

Matrix: Solid Percent Solids: 93.5

Method: 8260C - Volatile Organic	Compounds	by GC/MS							
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		4.9	0.35	ug/Kg	<u></u>	10/29/14 16:33	11/05/14 12:21	1
1,1,2,2-Tetrachloroethane	ND		4.9	0.79	ug/Kg	₩	10/29/14 16:33	11/05/14 12:21	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.9	1.1	ug/Kg	₩	10/29/14 16:33	11/05/14 12:21	1
I,1,2-Trichloroethane	ND		4.9	0.63	ug/Kg	₩.	10/29/14 16:33	11/05/14 12:21	1
1,1-Dichloroethane	ND		4.9	0.59	ug/Kg	₩	10/29/14 16:33	11/05/14 12:21	1
1,1-Dichloroethene	ND		4.9	0.59	ug/Kg	₩	10/29/14 16:33	11/05/14 12:21	1
1,2,3-Trichlorobenzene	ND		4.9		ug/Kg		10/29/14 16:33	11/05/14 12:21	1
1,2,4-Trichlorobenzene	ND		4.9	0.30	ug/Kg	₩	10/29/14 16:33	11/05/14 12:21	1
1,2-Dibromo-3-Chloropropane	ND		4.9	2.4	ug/Kg	₩	10/29/14 16:33	11/05/14 12:21	1
1,2-Dichlorobenzene	ND		4.9	0.38	ug/Kg		10/29/14 16:33	11/05/14 12:21	 1
1,2-Dichloroethane	ND		4.9	0.24	ug/Kg	₩	10/29/14 16:33	11/05/14 12:21	1
1,2-Dichloropropane	ND		4.9		ug/Kg	₽	10/29/14 16:33	11/05/14 12:21	1
1,3-Dichlorobenzene	ND		4.9	0.25	ug/Kg		10/29/14 16:33	11/05/14 12:21	1
1.4-Dichlorobenzene	ND		4.9	0.68	ug/Kg	₩	10/29/14 16:33	11/05/14 12:21	1
1.4-Dioxane	ND		97	21	ug/Kg	₽	10/29/14 16:33	11/05/14 12:21	1
2-Hexanone	ND		24	2.4	ug/Kg		10/29/14 16:33	11/05/14 12:21	
Acetone	5.1	1	24	4.1	ug/Kg	₩	10/29/14 16:33	11/05/14 12:21	1
Benzene	ND.	•	4.9		ug/Kg	₩	10/29/14 16:33	11/05/14 12:21	1
Bromoform	ND		4.9		ug/Kg		10/29/14 16:33	11/05/14 12:21	
Bromomethane	ND		4.9		ug/Kg	₩	10/29/14 16:33	11/05/14 12:21	1
Carbon disulfide	ND		4.9		ug/Kg		10/29/14 16:33	11/05/14 12:21	1
Carbon tetrachloride	ND		4.9		ug/Kg ug/Kg		10/29/14 16:33	11/05/14 12:21	
	ND ND								,
Chlorobenzene			4.9		ug/Kg	₩	10/29/14 16:33	11/05/14 12:21	1
Bromochloromethane	ND		4.9		ug/Kg		10/29/14 16:33	11/05/14 12:21	
Dibromochloromethane	ND		4.9		ug/Kg		10/29/14 16:33	11/05/14 12:21	1
Chloroethane	ND		4.9	1.1	ug/Kg	*	10/29/14 16:33	11/05/14 12:21	1
Chloroform	ND		4.9	0.30	ug/Kg	<u></u>	10/29/14 16:33	11/05/14 12:21	1
Chloromethane	ND		4.9	0.29	ug/Kg	ф.	10/29/14 16:33	11/05/14 12:21	1
cis-1,2-Dichloroethene	ND		4.9	0.62	ug/Kg	.☆	10/29/14 16:33	11/05/14 12:21	1
cis-1,3-Dichloropropene	ND		4.9	0.70	ug/Kg	<u></u>	10/29/14 16:33	11/05/14 12:21	1
Cyclohexane	ND		4.9	0.68	ug/Kg	\$	10/29/14 16:33	11/05/14 12:21	1
Bromodichloromethane	ND		4.9	0.65	ug/Kg	₩	10/29/14 16:33	11/05/14 12:21	1
Dichlorodifluoromethane	ND		4.9	0.40	ug/Kg		10/29/14 16:33	11/05/14 12:21	1
Ethylbenzene	ND		4.9	0.34	ug/Kg	₩	10/29/14 16:33	11/05/14 12:21	1
1,2-Dibromoethane (EDB)	ND		4.9	0.62	ug/Kg	₩	10/29/14 16:33	11/05/14 12:21	1
sopropylbenzene	ND		4.9	0.73	ug/Kg	₩	10/29/14 16:33	11/05/14 12:21	1
Methyl acetate	ND		4.9	2.9	ug/Kg	₽	10/29/14 16:33	11/05/14 12:21	1
2-Butanone (MEK)	ND		24	1.8	ug/Kg	₩	10/29/14 16:33	11/05/14 12:21	1
4-Methyl-2-pentanone (MIBK)	ND		24	1.6	ug/Kg	₩	10/29/14 16:33	11/05/14 12:21	1
Methyl tert-butyl ether	ND		4.9	0.48	ug/Kg	₩	10/29/14 16:33	11/05/14 12:21	1
Methylcyclohexane	ND		4.9	0.74	ug/Kg	₩	10/29/14 16:33	11/05/14 12:21	1
Methylene Chloride	ND		4.9	2.2	ug/Kg	₩	10/29/14 16:33	11/05/14 12:21	1
Styrene	ND		4.9	0.24	ug/Kg	₩.	10/29/14 16:33	11/05/14 12:21	1
Tetrachloroethene	ND		4.9	0.65	ug/Kg	₽	10/29/14 16:33	11/05/14 12:21	1
Toluene	ND		4.9	0.37	ug/Kg	₩	10/29/14 16:33	11/05/14 12:21	1
rans-1,2-Dichloroethene	ND		4.9	0.50	ug/Kg		10/29/14 16:33	11/05/14 12:21	1
rans-1,3-Dichloropropene	ND		4.9	2.1	ug/Kg	₩	10/29/14 16:33	11/05/14 12:21	1
Trichloroethene	ND		4.9	1.1	ug/Kg	₩	10/29/14 16:33	11/05/14 12:21	1
Trichlorofluoromethane	ND		4.9		ug/Kg		10/29/14 16:33	11/05/14 12:21	1

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 10/28/14 09:30

Date Received: 10/29/14 09:00

Client Sample ID: BLDG17C-SS-PAD-01A

TestAmerica Job ID: 480-70307-1

Lab Sample ID: 480-70307-4

Matrix: Solid Percent Solids: 93.5

Analyte	Result	Qualifier	R	lL.	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4	.9	0.59	ug/Kg	\$	10/29/14 16:33	11/05/14 12:21	1
Xylenes, Total	ND		9	.7	0.82	ug/Kg	\$	10/29/14 16:33	11/05/14 12:21	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane	4.6	J	ug/Kg	\	1	.92	75-45-6	10/29/14 16:33	11/05/14 12:21	1
Tentatively Identified Compound	None		ug/Kg	₩				10/29/14 16:33	11/05/14 12:21	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		64 - 126	_				10/29/14 16:33	11/05/14 12:21	1
Toluene-d8 (Surr)	106		71 - 125					10/29/14 16:33	11/05/14 12:21	1
4-Bromofluorobenzene (Surr)	105		72 - 126					10/29/14 16:33	11/05/14 12:21	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND	180	26	ug/Kg	\tilde{\pi}	10/30/14 08:12	11/03/14 18:15	1
bis (2-chloroisopropyl) ether	ND	180	36	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	1
2,4,5-Trichlorophenol	ND	180	49	ug/Kg	₩	10/30/14 08:12	11/03/14 18:15	1
2,4,6-Trichlorophenol	ND	180	36	ug/Kg	\$	10/30/14 08:12	11/03/14 18:15	1
2,4-Dichlorophenol	ND	180	19	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	1
2,4-Dimethylphenol	ND	180	43	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	1
2,4-Dinitrophenol	ND	350	110	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	1
2,4-Dinitrotoluene	ND	180	37	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	1
2,6-Dinitrotoluene	ND	180	21	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	1
2-Chloronaphthalene	ND	180	30	ug/Kg	\$	10/30/14 08:12	11/03/14 18:15	1
Chlorophenol, o-	ND	180	33	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	1
2-Methylnaphthalene	ND	180	36	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	1
2-Methylphenol	ND	180	21	ug/Kg	\$	10/30/14 08:12	11/03/14 18:15	1
2-Nitroaniline	ND	350	26	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	1
2-Nitrophenol	ND	180	51	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	1
3,3'-Dichlorobenzidine	ND	350	210	ug/Kg	*	10/30/14 08:12	11/03/14 18:15	1
3-Nitroaniline	ND	350	50	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	1
4,6-Dinitro-2-methylphenol	ND	350	180	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	1
4-Bromophenyl phenyl ether	ND	180	25	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	1
4-Chloro-3-methylphenol	ND	180	44	ug/Kg	₩	10/30/14 08:12	11/03/14 18:15	1
4-Chloroaniline	ND	180	44	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	1
4-Chlorophenyl phenyl ether	ND	180	22	ug/Kg	\$	10/30/14 08:12	11/03/14 18:15	1
4-Methylphenol	ND	350	21	ug/Kg	₩	10/30/14 08:12	11/03/14 18:15	1
4-Nitroaniline	ND	350	94	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	1
4-Nitrophenol	ND	350	130	ug/Kg	*	10/30/14 08:12	11/03/14 18:15	1
Acenaphthene	ND	180	26	ug/Kg	₩	10/30/14 08:12	11/03/14 18:15	1
Acenaphthylene	ND	180	23	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	1
Acetophenone	44 J	180	24	ug/Kg	*	10/30/14 08:12	11/03/14 18:15	1
Anthracene	ND	180	44	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	1
Atrazine	ND	180	62	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	1
Benzaldehyde	ND	180	140	ug/Kg	\$	10/30/14 08:12	11/03/14 18:15	1
Benzo(a)anthracene	ND	180	18	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	1
Benzo(a)pyrene	ND	180	26	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	1
Benzo(b)fluoranthene	ND	180	29	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	1
Benzo(g,h,i)perylene	ND	180	19	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	1
Benzo(k)fluoranthene	ND	180	23	ug/Kg	☼	10/30/14 08:12	11/03/14 18:15	1

Client: Woodard & Curran Inc Project/Site: Rouses Point

Client Sample ID: BLDG17C-SS-PAD-01A

Lab Sample ID: 480-70307-4 Date Collected: 10/28/14 09:30 Matrix: Solid

Date Received: 10/29/14 09:00 Percent Solids: 93.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bis(2-chloroethoxy)methane	ND		180	38	ug/Kg	*	10/30/14 08:12	11/03/14 18:15	
Bis(2-chloroethyl)ether	ND		180	23	ug/Kg	*	10/30/14 08:12	11/03/14 18:15	
Bis(2-ethylhexyl) phthalate	ND		180	61	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	
Butyl benzyl phthalate	ND		180	30	ug/Kg		10/30/14 08:12	11/03/14 18:15	
Caprolactam	ND	*	180	54	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	
Carbazole	ND		180	21	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	
Chrysene	ND		180	40	ug/Kg	\$	10/30/14 08:12	11/03/14 18:15	
Di-n-butyl phthalate	ND		180	31	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	
Di-n-octyl phthalate	ND		180	21	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	
Dibenz(a,h)anthracene	ND		180	32	ug/Kg	\$	10/30/14 08:12	11/03/14 18:15	
Dibenzofuran	ND		180	21	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	
Diethyl phthalate	ND		180	23	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	
Dimethyl phthalate	ND		180	21	ug/Kg		10/30/14 08:12	11/03/14 18:15	
Fluoranthene	ND		180	19	ug/Kg	₩	10/30/14 08:12	11/03/14 18:15	
Fluorene	ND		180	21	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	
Hexachlorobenzene	ND		180	24	ug/Kg		10/30/14 08:12	11/03/14 18:15	
Hexachlorobutadiene	ND		180	26	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	
Hexachlorocyclopentadiene	ND		180	24	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	
Hexachloroethane	ND		180	23	ug/Kg	φ.	10/30/14 08:12	11/03/14 18:15	• • • • • • • • • • • • • • • • • • • •
Indeno(1,2,3-cd)pyrene	ND		180	22	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	
Isophorone	ND		180	38	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	
N-Nitrosodi-n-propylamine	ND		180	31	ug/Kg	Φ	10/30/14 08:12	11/03/14 18:15	· · · · · · · · ·
N-Nitrosodiphenylamine	ND		180	150	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	
Naphthalene	ND		180	23	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	
Nitrobenzene	ND		180	20	ug/Kg	Φ.	10/30/14 08:12	11/03/14 18:15	
Pentachlorophenol	ND		350	180	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	
Phenanthrene	ND		180	26	ug/Kg	₽	10/30/14 08:12	11/03/14 18:15	
Phenol	ND		180	27	ug/Kg		10/30/14 08:12	11/03/14 18:15	
Pyrene	ND		180	21	ug/Kg	₩	10/30/14 08:12	11/03/14 18:15	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Dimethylformamide	0.00	JN	ug/Kg	\$		68-12-2	10/30/14 08:12	11/03/14 18:15	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	48		39 - 146				10/30/14 08:12	11/03/14 18:15	
2-Fluorobiphenyl	94		37 - 120				10/30/14 08:12	11/03/14 18:15	
2-Fluorophenol	78		18 - 120				10/30/14 08:12	11/03/14 18:15	
Nitrobenzene-d5	89		34 - 132				10/30/14 08:12	11/03/14 18:15	
p-Terphenyl-d14	104		65 - 153				10/30/14 08:12	11/03/14 18:15	
Phenol-d5	92		11 - 120				10/30/14 08:12	11/03/14 18:15	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		1.1	0.16	mg/Kg	\		11/07/14 13:11	1
Isobutyl alcohol	ND		1.1	0.27	mg/Kg	₽		11/07/14 13:11	1
Methanol	0.72	J	1.1	0.31	mg/Kg	₽		11/07/14 13:11	1
n-Butanol	ND		1.1	0.25	mg/Kg	₽		11/07/14 13:11	1
Propanol	ND		1.1	0.16	mg/Kg	₽		11/07/14 13:11	1
2-Butanol	ND		1.1	0.17	mg/Kg	₽		11/07/14 13:11	1
Isopropyl alcohol	ND		1.1	0.26	mg/Kg	₽		11/07/14 13:11	1

TestAmerica Buffalo

Page 19 of 89

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 10/28/14 09:30 Date Received: 10/29/14 09:00

Client Sample ID: BLDG17C-SS-PAD-01A

TestAmerica Job ID: 480-70307-1

Lab Sample ID: 480-70307-4

Percent Solids: 93.5

Lub	Oumpic	10.	-1 00-1	0007	7
			Matr	ix: Soli	d

Method: 8015D - Nonha	logenated Organic Con	npounds - D	irect Injection ((GC) - So	luble (Co	ntinued)			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
t-Butyl alcohol	ND		1.1	0.28	mg/Kg	<u></u>		11/07/14 13:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	96	-	30 - 137			_		11/07/14 13:11	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		250	48	ug/Kg	₽	10/30/14 10:33	10/31/14 18:06	1
PCB-1221	ND		250	48	ug/Kg	₽	10/30/14 10:33	10/31/14 18:06	1
PCB-1232	ND		250	48	ug/Kg	₩	10/30/14 10:33	10/31/14 18:06	1
PCB-1242	ND		250	48	ug/Kg	₽	10/30/14 10:33	10/31/14 18:06	1
PCB-1248	ND		250	48	ug/Kg	₽	10/30/14 10:33	10/31/14 18:06	1
PCB-1254	ND		250	120	ug/Kg	₽	10/30/14 10:33	10/31/14 18:06	1
PCB-1260	ND		250	120	ug/Kg	\$	10/30/14 10:33	10/31/14 18:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	106		46 - 175				10/30/14 10:33	10/31/14 18:06	1
DCB Decachlorobiphenyl	112		47 - 176				10/30/14 10:33	10/31/14 18:06	1

Method: 6010C - Metals (ICP)									
Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.4		2.1	0.42	mg/Kg	*	10/30/14 14:48	11/01/14 00:33	1
Barium	27.5		0.52	0.11	mg/Kg	₽	10/30/14 14:48	11/01/14 00:33	1
Cadmium	0.067 J	В	0.21	0.031	mg/Kg	₽	10/30/14 14:48	11/01/14 00:33	1
Chromium	5.7		0.52	0.21	mg/Kg	*	10/30/14 14:48	11/01/14 00:33	1
Lead	5.4		1.0	0.25	mg/Kg	₽	10/30/14 14:48	11/03/14 14:07	1
Selenium	ND		4.2	0.42	mg/Kg	₽	10/30/14 14:48	11/01/14 00:33	1
Silver	ND		0.63	0.21	mg/Kg		10/30/14 14:48	11/01/14 00:33	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Hg	0.013	J	0.021	0.0083	mg/Kg	#	11/05/14 10:40	11/05/14 12:17	1

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 10/28/14 13:00

Date Received: 10/29/14 09:00

Trichlorofluoromethane

Client Sample ID: BLDG17C-SS-PAD-02

TestAmerica Job ID: 480-70307-1

Lab Sample ID: 480-70307-5

Matrix: Solid
Percent Solids: 93.4

Method: 8260C - Volatile Organic Analyte	Result Qualifier	RL	MD	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND Qualifier	6.3	0.45	ug/Kg	— ¤	10/29/14 16:33	11/04/14 17:12	— DII F
, ,	ND ND	6.3	1.0	ug/Kg ug/Kg	~ ⇔	10/29/14 16:33	11/04/14 17:12	
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	ND ND	6.3		ug/Kg ug/Kg		10/29/14 16:33	11/04/14 17:12	
			1.4					
1,1,2-Trichloroethane	ND	6.3	0.81	ug/Kg	₩	10/29/14 16:33	11/04/14 17:12	
1,1-Dichloroethane	ND	6.3	0.76	ug/Kg		10/29/14 16:33	11/04/14 17:12	
1,1-Dichloroethene	ND	6.3	0.77	ug/Kg	<u></u> .	10/29/14 16:33	11/04/14 17:12	
1,2,3-Trichlorobenzene	ND	6.3		ug/Kg	*	10/29/14 16:33	11/04/14 17:12	
1,2,4-Trichlorobenzene	ND	6.3	0.38	ug/Kg	*	10/29/14 16:33	11/04/14 17:12	
1,2-Dibromo-3-Chloropropane	ND	6.3	3.1	ug/Kg		10/29/14 16:33	11/04/14 17:12	
1,2-Dichlorobenzene	ND	6.3	0.49	ug/Kg	₽	10/29/14 16:33	11/04/14 17:12	
1,2-Dichloroethane	ND	6.3	0.31	ug/Kg	₽	10/29/14 16:33	11/04/14 17:12	
1,2-Dichloropropane	ND	6.3	3.1	ug/Kg		10/29/14 16:33	11/04/14 17:12	
1,3-Dichlorobenzene	ND	6.3	0.32	ug/Kg	₽	10/29/14 16:33	11/04/14 17:12	
1,4-Dichlorobenzene	ND	6.3	0.88	ug/Kg	₩	10/29/14 16:33	11/04/14 17:12	
1,4-Dioxane	ND	130	27	ug/Kg	₩	10/29/14 16:33	11/04/14 17:12	
2-Hexanone	ND	31	3.1	ug/Kg	₽	10/29/14 16:33	11/04/14 17:12	
Acetone	ND	31	5.3	ug/Kg	₽	10/29/14 16:33	11/04/14 17:12	
Benzene	ND	6.3	0.31	ug/Kg	☼	10/29/14 16:33	11/04/14 17:12	
Bromoform	ND	6.3	3.1	ug/Kg		10/29/14 16:33	11/04/14 17:12	
Bromomethane	ND	6.3	0.56	ug/Kg	₽	10/29/14 16:33	11/04/14 17:12	
Carbon disulfide	ND	6.3	3.1	ug/Kg	₽	10/29/14 16:33	11/04/14 17:12	
Carbon tetrachloride	ND	6.3	0.61	ug/Kg		10/29/14 16:33	11/04/14 17:12	
Chlorobenzene	ND	6.3	0.83	ug/Kg	₽	10/29/14 16:33	11/04/14 17:12	
Bromochloromethane	ND	6.3		ug/Kg	₽	10/29/14 16:33	11/04/14 17:12	
Dibromochloromethane	ND	6.3	0.80	ug/Kg		10/29/14 16:33	11/04/14 17:12	
Chloroethane	ND	6.3	1.4	ug/Kg	₽	10/29/14 16:33	11/04/14 17:12	
Chloroform	ND	6.3	0.39	ug/Kg	₽	10/29/14 16:33	11/04/14 17:12	
Chloromethane	ND	6.3	0.38	ug/Kg		10/29/14 16:33	11/04/14 17:12	
cis-1,2-Dichloroethene	ND	6.3	0.80	ug/Kg ug/Kg		10/29/14 16:33	11/04/14 17:12	
cis-1,3-Dichloropropene	ND	6.3	0.90	ug/Kg ug/Kg		10/29/14 16:33	11/04/14 17:12	
	ND							
Cyclohexane		6.3	0.88	ug/Kg	~ \$	10/29/14 16:33 10/29/14 16:33	11/04/14 17:12	
Bromodichloromethane	ND	6.3	0.84	ug/Kg	~ ⇔		11/04/14 17:12	
Dichlorodifluoromethane	ND	6.3		ug/Kg	¥	10/29/14 16:33	11/04/14 17:12	
Ethylbenzene	ND	6.3		ug/Kg		10/29/14 16:33	11/04/14 17:12	
1,2-Dibromoethane (EDB)	ND	6.3		ug/Kg		10/29/14 16:33	11/04/14 17:12	
sopropylbenzene	ND	6.3		ug/Kg	<u>.</u> .	10/29/14 16:33	11/04/14 17:12	
Methyl acetate	ND	6.3		ug/Kg	*	10/29/14 16:33	11/04/14 17:12	
2-Butanone (MEK)	ND	31		ug/Kg	₩.	10/29/14 16:33	11/04/14 17:12	
1-Methyl-2-pentanone (MIBK)	ND	31	2.1	ug/Kg		10/29/14 16:33	11/04/14 17:12	
Methyl tert-butyl ether	ND	6.3	0.62	ug/Kg	₽	10/29/14 16:33	11/04/14 17:12	
Methylcyclohexane	ND	6.3		ug/Kg	₩	10/29/14 16:33	11/04/14 17:12	
Methylene Chloride	ND	6.3	2.9	ug/Kg	₩	10/29/14 16:33	11/04/14 17:12	
Styrene	ND	6.3	0.31	ug/Kg	₩	10/29/14 16:33	11/04/14 17:12	
Tetrachloroethene	ND	6.3	0.84	ug/Kg	₩	10/29/14 16:33	11/04/14 17:12	
Toluene	ND	6.3	0.47	ug/Kg	₩	10/29/14 16:33	11/04/14 17:12	
rans-1,2-Dichloroethene	ND	6.3	0.65	ug/Kg		10/29/14 16:33	11/04/14 17:12	
rans-1,3-Dichloropropene	ND	6.3	2.8	ug/Kg	₽	10/29/14 16:33	11/04/14 17:12	
Trichloroethene	ND	6.3		ug/Kg	₽	10/29/14 16:33	11/04/14 17:12	

TestAmerica Buffalo

11/04/14 17:12

10/29/14 16:33

6.3

0.59 ug/Kg

ND

3

5

7

9

11

13

14

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 10/28/14 13:00

Date Received: 10/29/14 09:00

Client Sample ID: BLDG17C-SS-PAD-02

TestAmerica Job ID: 480-70307-1

Lab Sample ID: 480-70307-5

Matrix: Solid

Percent Solids: 93.4

Analyte	Result	Qualifier	R	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		6	3	0.76	ug/Kg	-	10/29/14 16:33	11/04/14 17:12	1
Xylenes, Total	ND		1	3	1.1	ug/Kg	\$	10/29/14 16:33	11/04/14 17:12	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane	12		ug/Kg	<u> </u>	1	.91	75-45-6	10/29/14 16:33	11/04/14 17:12	1
Tentatively Identified Compound	None		ug/Kg	₩				10/29/14 16:33	11/04/14 17:12	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		64 - 126	_				10/29/14 16:33	11/04/14 17:12	1
Toluene-d8 (Surr)	108		71 - 125					10/29/14 16:33	11/04/14 17:12	1
4-Bromofluorobenzene (Surr)	109		72 - 126					10/29/14 16:33	11/04/14 17:12	1

	109	72 - 120				10/29/14 10:00	11/04/14 17.12	,
Method: 8270D - Semivolatile O Analyte	rganic Compounds Result Qua		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND	180	26	ug/Kg		10/30/14 08:12	11/03/14 18:39	1
bis (2-chloroisopropyl) ether	ND	180	36	ug/Kg	₩	10/30/14 08:12	11/03/14 18:39	1
2,4,5-Trichlorophenol	ND	180	49	ug/Kg	₩	10/30/14 08:12	11/03/14 18:39	1
2,4,6-Trichlorophenol	ND	180	36	ug/Kg		10/30/14 08:12	11/03/14 18:39	1
2,4-Dichlorophenol	ND	180	19	ug/Kg	₩	10/30/14 08:12	11/03/14 18:39	1
2,4-Dimethylphenol	ND	180	43	ug/Kg	₩	10/30/14 08:12	11/03/14 18:39	1
2,4-Dinitrophenol	ND	350	110	ug/Kg		10/30/14 08:12	11/03/14 18:39	1
2,4-Dinitrotoluene	ND	180	37	ug/Kg	₩	10/30/14 08:12	11/03/14 18:39	1
2,6-Dinitrotoluene	ND	180	21	ug/Kg	₩	10/30/14 08:12	11/03/14 18:39	1
2-Chloronaphthalene	ND	180	30	ug/Kg		10/30/14 08:12	11/03/14 18:39	1
Chlorophenol, o-	ND	180	33	ug/Kg	₩	10/30/14 08:12	11/03/14 18:39	1
2-Methylnaphthalene	ND	180	36	ug/Kg	₩	10/30/14 08:12	11/03/14 18:39	1
2-Methylphenol	ND	180	21	ug/Kg	Φ	10/30/14 08:12	11/03/14 18:39	1
2-Nitroaniline	ND	350	26	ug/Kg	₩	10/30/14 08:12	11/03/14 18:39	1
2-Nitrophenol	ND	180	51	ug/Kg	₩	10/30/14 08:12	11/03/14 18:39	1
3,3'-Dichlorobenzidine	ND	350	210	ug/Kg		10/30/14 08:12	11/03/14 18:39	1
3-Nitroaniline	ND	350	50	ug/Kg	₩	10/30/14 08:12	11/03/14 18:39	1
4,6-Dinitro-2-methylphenol	ND	350	180	ug/Kg	₩	10/30/14 08:12	11/03/14 18:39	1
4-Bromophenyl phenyl ether	ND	180	25	ug/Kg		10/30/14 08:12	11/03/14 18:39	1
4-Chloro-3-methylphenol	ND	180	44	ug/Kg	₩	10/30/14 08:12	11/03/14 18:39	1
4-Chloroaniline	ND	180	44	ug/Kg	₩	10/30/14 08:12	11/03/14 18:39	1
4-Chlorophenyl phenyl ether	ND	180	22	ug/Kg		10/30/14 08:12	11/03/14 18:39	1
4-Methylphenol	ND	350	21	ug/Kg	₩	10/30/14 08:12	11/03/14 18:39	1
4-Nitroaniline	ND	350	94	ug/Kg	₩	10/30/14 08:12	11/03/14 18:39	1
4-Nitrophenol	ND	350	130	ug/Kg		10/30/14 08:12	11/03/14 18:39	1
Acenaphthene	ND	180	26	ug/Kg	₩	10/30/14 08:12	11/03/14 18:39	1
Acenaphthylene	ND	180	23	ug/Kg	₩	10/30/14 08:12	11/03/14 18:39	1
Acetophenone	ND	180	24	ug/Kg		10/30/14 08:12	11/03/14 18:39	1
Anthracene	ND	180	44	ug/Kg	₩	10/30/14 08:12	11/03/14 18:39	1
Atrazine	ND	180	63	ug/Kg	₩	10/30/14 08:12	11/03/14 18:39	1
Benzaldehyde	ND	180	140	ug/Kg		10/30/14 08:12	11/03/14 18:39	1
Benzo(a)anthracene	ND	180	18	ug/Kg	₩	10/30/14 08:12	11/03/14 18:39	1
Benzo(a)pyrene	ND	180	26	ug/Kg	₩	10/30/14 08:12	11/03/14 18:39	1
Benzo(b)fluoranthene	ND	180	29	ug/Kg		10/30/14 08:12	11/03/14 18:39	1
Benzo(g,h,i)perylene	ND	180	19	ug/Kg	₩	10/30/14 08:12	11/03/14 18:39	1
Benzo(k)fluoranthene	ND	180	23	ug/Kg	₽	10/30/14 08:12	11/03/14 18:39	1

Client: Woodard & Curran Inc Project/Site: Rouses Point

Client Sample ID: BLDG17C-SS-PAD-02

Lab Sample ID: 480-70307-5 Date Collected: 10/28/14 13:00 Matrix: Solid Date Received: 10/29/14 09:00 Percent Solids: 93.4

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued) Result Qualifier MDL Unit D Prepared Analyzed Dil Fac Analyte Bis(2-chloroethoxy)methane ND 180 38 ug/Kg 10/30/14 08:12 11/03/14 18:39 ND 180 ug/Kg 10/30/14 08:12 Bis(2-chloroethyl)ether 11/03/14 18:39 23 ä Bis(2-ethylhexyl) phthalate ND 180 ug/Kg 10/30/14 08:12 11/03/14 18:39 φ Butyl benzyl phthalate ND 180 30 ug/Kg 10/30/14 08:12 11/03/14 18:39 ₿ Caprolactam ND 180 54 ug/Kg 10/30/14 08:12 11/03/14 18:39 ₽ ND 180 ug/Kg 10/30/14 08:12 11/03/14 18:39 Carbazole 21 φ Chrysene ND 180 ug/Kg 10/30/14 08:12 11/03/14 18:39 ND 180 10/30/14 08:12 11/03/14 18:39 Di-n-butyl phthalate 31 ug/Kg ₽ ND Di-n-octyl phthalate 180 21 ug/Kg 10/30/14 08:12 11/03/14 18:39 φ 10/30/14 08:12 Dibenz(a,h)anthracene ND 180 32 ug/Kg 11/03/14 18:39 ₩ ND 10/30/14 08:12 Dibenzofuran 180 21 ug/Kg 11/03/14 18:39 Diethyl phthalate ND 180 ₩ 10/30/14 08:12 23 ug/Kg 11/03/14 18:39 ND Dimethyl phthalate 180 21 ug/Kg 10/30/14 08:12 11/03/14 18:39 Fluoranthene ND 180 19 ug/Kg ₽ 10/30/14 08:12 11/03/14 18:39 180 Fluorene ND 21 ug/Kg 10/30/14 08:12 11/03/14 18:39 à Hexachlorobenzene ND 180 10/30/14 08:12 11/03/14 18:39 ug/Kg ND 180 10/30/14 08:12 Hexachlorobutadiene 26 ug/Kg 11/03/14 18:39 ġ Hexachlorocyclopentadiene ND 180 ug/Kg 10/30/14 08:12 11/03/14 18:39 Hexachloroethane ND 180 ug/Kg ψ 10/30/14 08:12 11/03/14 18:39 23 ₩ Indeno(1,2,3-cd)pyrene ND 180 22 ug/Kg 10/30/14 08:12 11/03/14 18:39 ug/Kg ₩ Isophorone ND 180 38 10/30/14 08:12 11/03/14 18:39 ₩ ND 180 10/30/14 08:12 N-Nitrosodi-n-propylamine 31 ug/Kg 11/03/14 18:39 N-Nitrosodiphenylamine ND 180 150 ug/Kg 10/30/14 08:12 11/03/14 18:39 # 10/30/14 08:12 Naphthalene ND 180 23 ug/Kg 11/03/14 18:39 Nitrobenzene ND 180 20 ug/Kg 10/30/14 08:12 11/03/14 18:39 ND 350 Pentachlorophenol 180 10/30/14 08:12 11/03/14 18:39 ug/Kg Phenanthrene ND 180 10/30/14 08:12 11/03/14 18:39 26 ug/Kg 10/30/14 08:12 Phenol ND 180 28 ug/Kg 11/03/14 18:39 ₩ Pyrene ND 180 21 ug/Kg 10/30/14 08:12 11/03/14 18:39 Tentatively Identified Compound Analyzed Est. Result Qualifier Unit D RT CAS No. Prepared Dil Fac Dimetjylformamide 0.00 J N ug/Kg 6812-2 10/30/14 08:12 11/03/14 18:39

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	89	39 - 146	10/30/14 08:12	11/03/14 18:39	1
2-Fluorobiphenyl	91	37 - 120	10/30/14 08:12	11/03/14 18:39	1
2-Fluorophenol	86	18 - 120	10/30/14 08:12	11/03/14 18:39	1
Nitrobenzene-d5	85	34 - 132	10/30/14 08:12	11/03/14 18:39	1
p-Terphenyl-d14	97	65 - 153	10/30/14 08:12	11/03/14 18:39	1
Phenol-d5	92	11 - 120	10/30/14 08:12	11/03/14 18:39	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND ND	5.2	0.77	mg/Kg	-		11/07/14 13:59	5
Isobutyl alcohol	ND	5.2	1.3	mg/Kg	₽		11/07/14 13:59	5
Methanol	ND	5.2	1.5	mg/Kg	₩		11/07/14 13:59	5
n-Butanol	ND	5.2	1.2	mg/Kg	₽		11/07/14 13:59	5
Propanol	ND	5.2	0.77	mg/Kg	₩		11/07/14 13:59	5
2-Butanol	ND	5.2	0.83	mg/Kg	₩		11/07/14 13:59	5
Isopropyl alcohol	ND	5.2	1.3	mg/Kg			11/07/14 13:59	5

TestAmerica Buffalo

Page 23 of 89

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 10/28/14 13:00

Date Received: 10/29/14 09:00

Client Sample ID: BLDG17C-SS-PAD-02

TestAmerica Job ID: 480-70307-1

Lab Sample ID: 480-70307-5

Percent Solids: 93.4

Matrix: Solid

Method: 8015D - Nonhalogenated	Organic Con	ipounds - D	irect Injection	(GC) - So	luble (Coi	ntinued)			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
t-Butyl alcohol	ND		5.2	1.4	mg/Kg	<u> </u>		11/07/14 13:59	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	96		30 - 137			_		11/07/14 13:59	5

Method: 8082A - Polychlorin	ated Biphenyls (PC	Bs) by Gas	S Chromatograp	ohy					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		250	49	ug/Kg	<u></u>	10/30/14 10:33	10/31/14 18:20	1
PCB-1221	ND		250	49	ug/Kg	₽	10/30/14 10:33	10/31/14 18:20	1
PCB-1232	ND		250	49	ug/Kg	₽	10/30/14 10:33	10/31/14 18:20	1
PCB-1242	ND		250	49	ug/Kg	₽	10/30/14 10:33	10/31/14 18:20	1
PCB-1248	ND		250	49	ug/Kg	₽	10/30/14 10:33	10/31/14 18:20	1
PCB-1254	ND		250	120	ug/Kg	₽	10/30/14 10:33	10/31/14 18:20	1
PCB-1260	ND		250	120	ug/Kg	\$	10/30/14 10:33	10/31/14 18:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	106	-	46 - 175				10/30/14 10:33	10/31/14 18:20	1
DCB Decachlorobiphenyl	111		47 - 176				10/30/14 10:33	10/31/14 18:20	1

Prepared	Analyzed	Dil Fac	
10/30/14 10:33	10/31/14 18:20	1	
10/30/14 10:33	10/31/14 18:20	1	

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.1		2.1	0.42	mg/Kg	<u></u>	10/30/14 14:48	11/01/14 00:35	1
Barium	36.9		0.53	0.12	mg/Kg	₩	10/30/14 14:48	11/01/14 00:35	1
Cadmium	0.064	JB	0.21	0.032	mg/Kg	₩	10/30/14 14:48	11/01/14 00:35	1
Chromium	5.6		0.53	0.21	mg/Kg	₽	10/30/14 14:48	11/01/14 00:35	1
Lead	5.8		1.1	0.25	mg/Kg	₩	10/30/14 14:48	11/03/14 14:09	1
Selenium	ND		4.2	0.42	mg/Kg	₩	10/30/14 14:48	11/01/14 00:35	1
Silver	ND		0.63	0.21	mg/Kg	₩	10/30/14 14:48	11/01/14 00:35	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Hg	0.014	J	0.021	0.0085	mg/Kg	₩	11/05/14 10:40	11/05/14 12:18	1		

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 10/28/14 15:00

Date Received: 10/29/14 09:00

Client Sample ID: BLDG17C-SS-PAD-03

TestAmerica Job ID: 480-70307-1

Lab Sample ID: 480-70307-6

Matrix: Solid

Percent Solids: 93.6

Method: 8260C - Volatile Organic						_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
I,1,1-Trichloroethane	ND		6.0	0.44	ug/Kg	*	10/29/14 16:33	11/04/14 17:37	
I,1,2,2-Tetrachloroethane	ND		6.0		ug/Kg	₩	10/29/14 16:33	11/04/14 17:37	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		6.0		ug/Kg		10/29/14 16:33	11/04/14 17:37	
,1,2-Trichloroethane	ND		6.0	0.78	ug/Kg	#	10/29/14 16:33	11/04/14 17:37	
,1-Dichloroethane	ND		6.0	0.74	ug/Kg	#	10/29/14 16:33	11/04/14 17:37	
,1-Dichloroethene	ND		6.0	0.74	ug/Kg		10/29/14 16:33	11/04/14 17:37	
,2,3-Trichlorobenzene	ND		6.0	0.64	ug/Kg	₩	10/29/14 16:33	11/04/14 17:37	
,2,4-Trichlorobenzene	ND		6.0	0.37	ug/Kg	₩	10/29/14 16:33	11/04/14 17:37	
,2-Dibromo-3-Chloropropane	ND		6.0	3.0	ug/Kg	₩	10/29/14 16:33	11/04/14 17:37	
,2-Dichlorobenzene	ND		6.0	0.47	ug/Kg	₽	10/29/14 16:33	11/04/14 17:37	
,2-Dichloroethane	ND		6.0	0.30	ug/Kg	₩	10/29/14 16:33	11/04/14 17:37	
1,2-Dichloropropane	ND		6.0	3.0	ug/Kg	₩	10/29/14 16:33	11/04/14 17:37	
I,3-Dichlorobenzene	ND		6.0	0.31	ug/Kg	\$	10/29/14 16:33	11/04/14 17:37	
1,4-Dichlorobenzene	ND		6.0	0.84	ug/Kg	₽	10/29/14 16:33	11/04/14 17:37	
,4-Dioxane	ND		120	26	ug/Kg	₽	10/29/14 16:33	11/04/14 17:37	
P-Hexanone	ND		30		ug/Kg		10/29/14 16:33	11/04/14 17:37	
Acetone	68		30	5.1	ug/Kg	₽	10/29/14 16:33	11/04/14 17:37	
Benzene	ND		6.0	0.30	ug/Kg	₽	10/29/14 16:33	11/04/14 17:37	
Bromoform	ND		6.0	3.0	ug/Kg		10/29/14 16:33	11/04/14 17:37	
Bromomethane	ND		6.0	0.54	ug/Kg	₽	10/29/14 16:33	11/04/14 17:37	
Carbon disulfide	ND		6.0	3.0	ug/Kg	₩	10/29/14 16:33	11/04/14 17:37	
Carbon tetrachloride	ND		6.0	0.58	ug/Kg		10/29/14 16:33	11/04/14 17:37	
Chlorobenzene	ND		6.0	0.80	ug/Kg	₽	10/29/14 16:33	11/04/14 17:37	
Bromochloromethane	ND		6.0	0.44	ug/Kg	₽	10/29/14 16:33	11/04/14 17:37	
Dibromochloromethane	ND		6.0	0.77	ug/Kg		10/29/14 16:33	11/04/14 17:37	
Chloroethane	ND		6.0	1.4	ug/Kg	₩	10/29/14 16:33	11/04/14 17:37	
Chloroform	ND		6.0	0.37	ug/Kg	₩	10/29/14 16:33	11/04/14 17:37	
Chloromethane	ND		6.0		ug/Kg		10/29/14 16:33	11/04/14 17:37	
is-1,2-Dichloroethene	ND		6.0	0.30	ug/Kg ug/Kg		10/29/14 16:33	11/04/14 17:37	
sis-1,3-Dichloropropene	ND ND		6.0		ug/Kg ug/Kg		10/29/14 16:33	11/04/14 17:37	
	ND		6.0				10/29/14 16:33	11/04/14 17:37	
Cyclohexane					ug/Kg				
Bromodichloromethane	ND		6.0	0.81	ug/Kg		10/29/14 16:33	11/04/14 17:37	
Dichlorodifluoromethane	ND		6.0	0.50	ug/Kg	ф ф	10/29/14 16:33	11/04/14 17:37	
Ethylbenzene	ND		6.0		ug/Kg		10/29/14 16:33	11/04/14 17:37	
,2-Dibromoethane (EDB)	ND		6.0		ug/Kg	*	10/29/14 16:33	11/04/14 17:37	
sopropylbenzene	ND		6.0		ug/Kg	<u></u>	10/29/14 16:33	11/04/14 17:37	
Methyl acetate	ND		6.0		ug/Kg	*	10/29/14 16:33	11/04/14 17:37	
P-Butanone (MEK)	ND		30		ug/Kg	#	10/29/14 16:33	11/04/14 17:37	
-Methyl-2-pentanone (MIBK)	ND		30	2.0	ug/Kg		10/29/14 16:33	11/04/14 17:37	
Methyl tert-butyl ether	ND		6.0	0.59	ug/Kg	₩	10/29/14 16:33	11/04/14 17:37	
Methylcyclohexane	ND		6.0	0.92	ug/Kg	**	10/29/14 16:33	11/04/14 17:37	
Methylene Chloride	ND		6.0	2.8	ug/Kg		10/29/14 16:33	11/04/14 17:37	
Styrene	ND		6.0		ug/Kg	₩	10/29/14 16:33	11/04/14 17:37	
etrachloroethene	ND		6.0	0.81	ug/Kg	₩	10/29/14 16:33	11/04/14 17:37	
oluene	ND		6.0	0.46	ug/Kg	₽	10/29/14 16:33	11/04/14 17:37	
rans-1,2-Dichloroethene	ND		6.0	0.62	ug/Kg	₩	10/29/14 16:33	11/04/14 17:37	
rans-1,3-Dichloropropene	ND		6.0	2.7	ug/Kg	₩	10/29/14 16:33	11/04/14 17:37	
Trichloroethene	ND		6.0	1.3	ug/Kg	₩	10/29/14 16:33	11/04/14 17:37	
Frichlorofluoromethane	ND		6.0	0.57	ug/Kg		10/29/14 16:33	11/04/14 17:37	

Client: Woodard & Curran Inc Project/Site: Rouses Point TestAmerica Job ID: 480-70307-1

Client Sample ID: BLDG17C-SS-PAD-03

Date Collected: 10/28/14 15:00 Date Received: 10/29/14 09:00 Lab Sample ID: 480-70307-6

Matrix: Solid
Percent Solids: 93.6

Analyte	Result	Qualifier	R	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		6.	5	0.74	ug/Kg	₽	10/29/14 16:33	11/04/14 17:37	1
Xylenes, Total	ND		1	2	1.0	ug/Kg	₩	10/29/14 16:33	11/04/14 17:37	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane	14		ug/Kg	*	1	.92	75-45-6	10/29/14 16:33	11/04/14 17:37	1
Tentatively Identified Compound	None		ug/Kg	₽				10/29/14 16:33	11/04/14 17:37	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		64 - 126	_				10/29/14 16:33	11/04/14 17:37	1
Toluene-d8 (Surr)	105		71 - 125					10/29/14 16:33	11/04/14 17:37	1
4-Bromofluorobenzene (Surr)	107		72 - 126					10/29/14 16:33	11/04/14 17:37	

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND	180	27	ug/Kg	\	10/30/14 08:12	11/03/14 19:03	1
bis (2-chloroisopropyl) ether	ND	180	36	ug/Kg	₽	10/30/14 08:12	11/03/14 19:03	1
2,4,5-Trichlorophenol	ND	180	49	ug/Kg	₽	10/30/14 08:12	11/03/14 19:03	1
2,4,6-Trichlorophenol	ND	180	36	ug/Kg	₽	10/30/14 08:12	11/03/14 19:03	1
2,4-Dichlorophenol	ND	180	19	ug/Kg	₽	10/30/14 08:12	11/03/14 19:03	1
2,4-Dimethylphenol	ND	180	44	ug/Kg	₽	10/30/14 08:12	11/03/14 19:03	1
2,4-Dinitrophenol	ND	350	110	ug/Kg	\$	10/30/14 08:12	11/03/14 19:03	1
2,4-Dinitrotoluene	ND	180	37	ug/Kg	₽	10/30/14 08:12	11/03/14 19:03	1
2,6-Dinitrotoluene	ND	180	21	ug/Kg	₽	10/30/14 08:12	11/03/14 19:03	1
2-Chloronaphthalene	ND	180	30	ug/Kg	₽	10/30/14 08:12	11/03/14 19:03	1
Chlorophenol, o-	ND	180	33	ug/Kg	₽	10/30/14 08:12	11/03/14 19:03	1
2-Methylnaphthalene	ND	180	36	ug/Kg	₽	10/30/14 08:12	11/03/14 19:03	1
2-Methylphenol	ND	180	21	ug/Kg		10/30/14 08:12	11/03/14 19:03	1
2-Nitroaniline	ND	350	27	ug/Kg	₩	10/30/14 08:12	11/03/14 19:03	1
2-Nitrophenol	ND	180	51	ug/Kg	₩	10/30/14 08:12	11/03/14 19:03	1
3,3'-Dichlorobenzidine	ND	350	210	ug/Kg		10/30/14 08:12	11/03/14 19:03	1
3-Nitroaniline	ND	350	50	ug/Kg	₩	10/30/14 08:12	11/03/14 19:03	1
4,6-Dinitro-2-methylphenol	ND	350	180	ug/Kg	₩	10/30/14 08:12	11/03/14 19:03	1
4-Bromophenyl phenyl ether	ND	180	25	ug/Kg		10/30/14 08:12	11/03/14 19:03	1
4-Chloro-3-methylphenol	ND	180	45	ug/Kg	₩	10/30/14 08:12	11/03/14 19:03	1
4-Chloroaniline	ND	180	45	ug/Kg	₩	10/30/14 08:12	11/03/14 19:03	1
4-Chlorophenyl phenyl ether	ND	180	22	ug/Kg		10/30/14 08:12	11/03/14 19:03	1
4-Methylphenol	ND	350	21	ug/Kg	₩	10/30/14 08:12	11/03/14 19:03	1
4-Nitroaniline	ND	350	94	ug/Kg	₩	10/30/14 08:12	11/03/14 19:03	1
4-Nitrophenol	ND	350	130	ug/Kg		10/30/14 08:12	11/03/14 19:03	1
Acenaphthene	ND	180	27	ug/Kg	₩	10/30/14 08:12	11/03/14 19:03	1
Acenaphthylene	ND	180	23	ug/Kg	₩	10/30/14 08:12	11/03/14 19:03	1
Acetophenone	ND	180	24	ug/Kg		10/30/14 08:12	11/03/14 19:03	1
Anthracene	ND	180	45	ug/Kg	₩	10/30/14 08:12	11/03/14 19:03	1
Atrazine	ND	180	63	ug/Kg	₩	10/30/14 08:12	11/03/14 19:03	1
Benzaldehyde	ND	180	140	ug/Kg		10/30/14 08:12	11/03/14 19:03	1
Benzo(a)anthracene	ND	180	18	ug/Kg	₩	10/30/14 08:12	11/03/14 19:03	1
Benzo(a)pyrene	ND	180	27	ug/Kg	₩	10/30/14 08:12	11/03/14 19:03	1
Benzo(b)fluoranthene	ND	180	29	ug/Kg		10/30/14 08:12	11/03/14 19:03	1
Benzo(g,h,i)perylene	ND	180	19	ug/Kg	₩	10/30/14 08:12	11/03/14 19:03	1
Benzo(k)fluoranthene	ND	180	23	ug/Kg	⇔	10/30/14 08:12	11/03/14 19:03	1

TestAmerica Buffalo

2

6

8

10

11

13

Client: Woodard & Curran Inc Project/Site: Rouses Point

Phenol-d5

Client Sample ID: BLDG17C-SS-PAD-03

Lab Sample ID: 480-70307-6 Date Collected: 10/28/14 15:00

Matrix: Solid Date Received: 10/29/14 09:00 Percent Solids: 93.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-chloroethoxy)methane	ND		180	38	ug/Kg	<u> </u>	10/30/14 08:12	11/03/14 19:03	1
Bis(2-chloroethyl)ether	ND		180	23	ug/Kg	₽	10/30/14 08:12	11/03/14 19:03	1
Bis(2-ethylhexyl) phthalate	ND		180	62	ug/Kg	☼	10/30/14 08:12	11/03/14 19:03	1
Butyl benzyl phthalate	ND		180	30	ug/Kg	\$	10/30/14 08:12	11/03/14 19:03	1
Caprolactam	ND	*	180	54	ug/Kg	☼	10/30/14 08:12	11/03/14 19:03	1
Carbazole	ND		180	21	ug/Kg	☼	10/30/14 08:12	11/03/14 19:03	1
Chrysene	ND		180	40	ug/Kg	\$	10/30/14 08:12	11/03/14 19:03	1
Di-n-butyl phthalate	ND		180	31	ug/Kg	₽	10/30/14 08:12	11/03/14 19:03	1
Di-n-octyl phthalate	ND		180	21	ug/Kg	₽	10/30/14 08:12	11/03/14 19:03	1
Dibenz(a,h)anthracene	ND		180	32	ug/Kg	₽	10/30/14 08:12	11/03/14 19:03	1
Dibenzofuran	ND		180	21	ug/Kg	₽	10/30/14 08:12	11/03/14 19:03	1
Diethyl phthalate	ND		180	23	ug/Kg	₽	10/30/14 08:12	11/03/14 19:03	1
Dimethyl phthalate	ND		180	21	ug/Kg	₽	10/30/14 08:12	11/03/14 19:03	1
Fluoranthene	ND		180	19	ug/Kg	☼	10/30/14 08:12	11/03/14 19:03	1
Fluorene	ND		180	21	ug/Kg	₽	10/30/14 08:12	11/03/14 19:03	1
Hexachlorobenzene	ND		180	24	ug/Kg	₽	10/30/14 08:12	11/03/14 19:03	1
Hexachlorobutadiene	ND		180	27	ug/Kg	☼	10/30/14 08:12	11/03/14 19:03	1
Hexachlorocyclopentadiene	ND		180	24	ug/Kg	₽	10/30/14 08:12	11/03/14 19:03	1
Hexachloroethane	ND		180	23	ug/Kg	\$	10/30/14 08:12	11/03/14 19:03	1
Indeno(1,2,3-cd)pyrene	ND		180	22	ug/Kg	₽	10/30/14 08:12	11/03/14 19:03	1
Isophorone	ND		180	38	ug/Kg	☼	10/30/14 08:12	11/03/14 19:03	1
N-Nitrosodi-n-propylamine	ND		180	31	ug/Kg	₽	10/30/14 08:12	11/03/14 19:03	1
N-Nitrosodiphenylamine	ND		180	150	ug/Kg	☼	10/30/14 08:12	11/03/14 19:03	1
Naphthalene	ND		180	23	ug/Kg	₩	10/30/14 08:12	11/03/14 19:03	1
Nitrobenzene	ND		180	20	ug/Kg	*	10/30/14 08:12	11/03/14 19:03	1
Pentachlorophenol	ND		350	180	ug/Kg	₩	10/30/14 08:12	11/03/14 19:03	1
Phenanthrene	ND		180	27	ug/Kg	₩	10/30/14 08:12	11/03/14 19:03	1
Phenol	ND		180	28	ug/Kg	₽	10/30/14 08:12	11/03/14 19:03	1
Pyrene	ND		180	21	ug/Kg	₩	10/30/14 08:12	11/03/14 19:03	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Dimethylformamide	0.00	JN	ug/Kg	\$		12-2-68	10/30/14 08:12	11/03/14 19:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	80	-	39 _ 146				10/30/14 08:12	11/03/14 19:03	1
2-Fluorobiphenyl	84		37 - 120				10/30/14 08:12	11/03/14 19:03	1
2-Fluorophenol	78		18 - 120				10/30/14 08:12	11/03/14 19:03	1
Nitrobenzene-d5	79		34 - 132				10/30/14 08:12	11/03/14 19:03	1
p-Terphenyl-d14	93		65 - 153				10/30/14 08:12	11/03/14 19:03	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		10	1.6	mg/Kg	\		11/07/14 14:07	10
Isobutyl alcohol	ND		10	2.6	mg/Kg	₽		11/07/14 14:07	10
Methanol	ND		10	3.1	mg/Kg	₩		11/07/14 14:07	10
n-Butanol	ND		10	2.4	mg/Kg	₽		11/07/14 14:07	10
Propanol	ND		10	1.6	mg/Kg	₽		11/07/14 14:07	10
2-Butanol	ND		10	1.7	mg/Kg	₩		11/07/14 14:07	10
Isopropyl alcohol	ND		10	2.5	mg/Kg	₽		11/07/14 14:07	10

11 - 120

TestAmerica Buffalo

10/30/14 08:12

11/03/14 19:03

Client: Woodard & Curran Inc Project/Site: Rouses Point TestAmerica Job ID: 480-70307-1

7-6

Client Sample ID: BLDG17C-SS-PAD-03

Date Collected: 10/28/14 15:00 Date Received: 10/29/14 09:00 Lab Sample ID: 480-70307-6 Matrix: Solid

Percent Solids: 93.6

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) - Soluble (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
t-Butyl alcohol	ND		10	2.8	mg/Kg	₩		11/07/14 14:07	10
	0/5	0 ""							57.5
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
2-Hexanone	99		30 - 137					11/07/14 14:07	10
<u> </u>									

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		230	46	ug/Kg	\$	10/30/14 10:33	10/31/14 18:35	1
PCB-1221	ND		230	46	ug/Kg	₽	10/30/14 10:33	10/31/14 18:35	1
PCB-1232	ND		230	46	ug/Kg	₽	10/30/14 10:33	10/31/14 18:35	1
PCB-1242	ND		230	46	ug/Kg	₽	10/30/14 10:33	10/31/14 18:35	1
PCB-1248	ND		230	46	ug/Kg	₽	10/30/14 10:33	10/31/14 18:35	1
PCB-1254	ND		230	110	ug/Kg	₽	10/30/14 10:33	10/31/14 18:35	1
PCB-1260	ND		230	110	ug/Kg	\$	10/30/14 10:33	10/31/14 18:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	106		46 - 175				10/30/14 10:33	10/31/14 18:35	1
DCB Decachlorobiphenyl	112		47 - 176				10/30/14 10:33	10/31/14 18:35	1

Method: 6010C - Metals (IC	•	0 110	ъ.			_			B.: E
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.7		2.0	0.41	mg/Kg	*	10/30/14 14:48	11/01/14 00:38	1
Barium	31.8		0.51	0.11	mg/Kg	₽	10/30/14 14:48	11/01/14 00:38	1
Cadmium	0.044	JB	0.20	0.031	mg/Kg	₩	10/30/14 14:48	11/01/14 00:38	1
Chromium	7.2		0.51	0.20	mg/Kg	*	10/30/14 14:48	11/01/14 00:38	1
Lead	5.9		1.0	0.24	mg/Kg	₽	10/30/14 14:48	11/03/14 14:12	1
Selenium	ND		4.1	0.41	mg/Kg	₽	10/30/14 14:48	11/01/14 00:38	1
Silver	ND		0.61	0.20	mg/Kg		10/30/14 14:48	11/01/14 00:38	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Hg	0.012	J	0.021	0.0087	mg/Kg	*	11/05/14 10:40	11/05/14 12:20	1

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 10/28/14 10:00 Date Received: 10/29/14 09:00

Trichlorofluoromethane

Client Sample ID: BLDG17C-SS-SUMP-01

TestAmerica Job ID: 480-70307-1

Lab Sample ID: 480-70307-7

Matrix: Solid

watrix: Solid	
Percent Solids: 97.0	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.5	0.40	ug/Kg	<u></u>	10/29/14 16:33	11/04/14 18:03	1
1,1,2,2-Tetrachloroethane	ND		5.5	0.90	ug/Kg	₩	10/29/14 16:33	11/04/14 18:03	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.5	1.3	ug/Kg	₩	10/29/14 16:33	11/04/14 18:03	1
1,1,2-Trichloroethane	ND		5.5	0.72	ug/Kg	₽	10/29/14 16:33	11/04/14 18:03	1
1,1-Dichloroethane	ND		5.5	0.67	ug/Kg	₩	10/29/14 16:33	11/04/14 18:03	1
1,1-Dichloroethene	ND		5.5	0.68	ug/Kg	₽	10/29/14 16:33	11/04/14 18:03	1
1,2,3-Trichlorobenzene	ND		5.5	0.59	ug/Kg	₽	10/29/14 16:33	11/04/14 18:03	1
1,2,4-Trichlorobenzene	ND		5.5	0.34	ug/Kg	₽	10/29/14 16:33	11/04/14 18:03	1
1,2-Dibromo-3-Chloropropane	ND		5.5	2.8	ug/Kg	₽	10/29/14 16:33	11/04/14 18:03	1
1,2-Dichlorobenzene	ND		5.5	0.43	ug/Kg	₽	10/29/14 16:33	11/04/14 18:03	1
1,2-Dichloroethane	ND		5.5	0.28	ug/Kg	₩	10/29/14 16:33	11/04/14 18:03	1
1,2-Dichloropropane	ND		5.5	2.8	ug/Kg	₩	10/29/14 16:33	11/04/14 18:03	1
1,3-Dichlorobenzene	ND		5.5	0.28	ug/Kg		10/29/14 16:33	11/04/14 18:03	1
1,4-Dichlorobenzene	ND		5.5	0.77	ug/Kg	₩	10/29/14 16:33	11/04/14 18:03	1
1,4-Dioxane	ND		110	24	ug/Kg	₩	10/29/14 16:33	11/04/14 18:03	1
2-Hexanone	ND		28	2.8	ug/Kg		10/29/14 16:33	11/04/14 18:03	1
Acetone	ND		28	4.7	ug/Kg	₽	10/29/14 16:33	11/04/14 18:03	1
Benzene	ND		5.5	0.27	ug/Kg	₽	10/29/14 16:33	11/04/14 18:03	1
Bromoform	ND		5.5	2.8	ug/Kg	φ.	10/29/14 16:33	11/04/14 18:03	1
Bromomethane	ND		5.5	0.50	ug/Kg	₽	10/29/14 16:33	11/04/14 18:03	1
Carbon disulfide	ND		5.5		ug/Kg	₩	10/29/14 16:33	11/04/14 18:03	1
Carbon tetrachloride	ND		5.5		ug/Kg		10/29/14 16:33	11/04/14 18:03	1
Chlorobenzene	ND		5.5	0.73	ug/Kg	₩	10/29/14 16:33	11/04/14 18:03	1
Bromochloromethane	ND		5.5	0.40	ug/Kg	₩	10/29/14 16:33	11/04/14 18:03	1
Dibromochloromethane	ND		5.5	0.71	ug/Kg		10/29/14 16:33	11/04/14 18:03	1
Chloroethane	ND		5.5	1.2	ug/Kg	₩	10/29/14 16:33	11/04/14 18:03	1
Chloroform	ND		5.5	0.34	ug/Kg	₩	10/29/14 16:33	11/04/14 18:03	1
Chloromethane	ND		5.5		ug/Kg		10/29/14 16:33	11/04/14 18:03	1
cis-1,2-Dichloroethene	ND		5.5	0.71	ug/Kg	₩	10/29/14 16:33	11/04/14 18:03	1
cis-1,3-Dichloropropene	ND		5.5	0.80	ug/Kg	₩	10/29/14 16:33	11/04/14 18:03	1
Cyclohexane	ND		5.5		ug/Kg		10/29/14 16:33	11/04/14 18:03	1
Bromodichloromethane	ND		5.5		ug/Kg	₽	10/29/14 16:33	11/04/14 18:03	1
Dichlorodifluoromethane	ND		5.5		ug/Kg	₽	10/29/14 16:33	11/04/14 18:03	1
Ethylbenzene	ND		5.5		ug/Kg		10/29/14 16:33	11/04/14 18:03	1
1,2-Dibromoethane (EDB)	ND		5.5	0.71	ug/Kg	₩	10/29/14 16:33	11/04/14 18:03	1
Isopropylbenzene	ND		5.5		ug/Kg	₩	10/29/14 16:33	11/04/14 18:03	1
Methyl acetate	ND		5.5		ug/Kg		10/29/14 16:33	11/04/14 18:03	1
2-Butanone (MEK)	ND		28		ug/Kg	₩	10/29/14 16:33	11/04/14 18:03	1
4-Methyl-2-pentanone (MIBK)	ND		28		ug/Kg	₽	10/29/14 16:33	11/04/14 18:03	1
Methyl tert-butyl ether	ND		5.5		ug/Kg		10/29/14 16:33	11/04/14 18:03	
Methylcyclohexane	ND		5.5		ug/Kg	₽	10/29/14 16:33	11/04/14 18:03	1
Methylene Chloride	ND		5.5		ug/Kg	₽	10/29/14 16:33	11/04/14 18:03	1
Styrene	ND		5.5		ug/Kg		10/29/14 16:33	11/04/14 18:03	
Tetrachloroethene	ND ND		5.5		ug/Kg ug/Kg	~ \$	10/29/14 16:33	11/04/14 18:03	1
Toluene	ND ND		5.5		ug/Kg ug/Kg		10/29/14 16:33	11/04/14 18:03	1
trans-1,2-Dichloroethene	ND		5.5		ug/Kg ug/Kg		10/29/14 16:33	11/04/14 18:03	
trans-1,3-Dichloropropene	ND ND		5.5 5.5		ug/Kg ug/Kg	Ψ	10/29/14 16:33	11/04/14 18:03	1
Trichloroethene	ND ND					т Ф			
THOUGHOUSE	IND		5.5	1.2	ug/Kg		10/29/14 16:33	11/04/14 18:03	1

TestAmerica Buffalo

11/04/14 18:03

10/29/14 16:33

5.5

0.52 ug/Kg

ND

3

į

6

8

10

12

1 /

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70307-1

Lab Sample ID: 480-70307-7

Matrix: Solid

Percent Solids: 97.0

Client Sample ID: BLDG17C-SS-SUMP-01
Data Collected: 10/29/14 10:00

Date Collected: 10/28/14 10:00 Date Received: 10/29/14 09:00

Analyte	Result	Qualifier	R	-	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.	5	0.67	ug/Kg	\	10/29/14 16:33	11/04/14 18:03	1
Xylenes, Total	ND		1	1	0.93	ug/Kg	\$	10/29/14 16:33	11/04/14 18:03	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane			ug/Kg	\	1	.92	75-45-6	10/29/14 16:33	11/04/14 18:03	1
Unknown	5.6	TJ	ug/Kg	₩	4	.54		10/29/14 16:33	11/04/14 18:03	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		64 - 126	-				10/29/14 16:33	11/04/14 18:03	1
Toluene-d8 (Surr)	105		71 - 125					10/29/14 16:33	11/04/14 18:03	1
4-Bromofluorobenzene (Surr)	106		72 - 126					10/29/14 16:33	11/04/14 18:03	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND	170	26	ug/Kg	\tilde{\pi}	10/30/14 08:12	11/03/14 19:27	1
bis (2-chloroisopropyl) ether	ND	170	35	ug/Kg	₽	10/30/14 08:12	11/03/14 19:27	1
2,4,5-Trichlorophenol	ND	170	47	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	1
2,4,6-Trichlorophenol	ND	170	35	ug/Kg	\$	10/30/14 08:12	11/03/14 19:27	1
2,4-Dichlorophenol	ND	170	19	ug/Kg	₽	10/30/14 08:12	11/03/14 19:27	1
2,4-Dimethylphenol	ND	170	42	ug/Kg	₽	10/30/14 08:12	11/03/14 19:27	1
2,4-Dinitrophenol	ND	340	100	ug/Kg	₽	10/30/14 08:12	11/03/14 19:27	1
2,4-Dinitrotoluene	ND	170	36	ug/Kg	₽	10/30/14 08:12	11/03/14 19:27	1
2,6-Dinitrotoluene	ND	170	21	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	1
2-Chloronaphthalene	ND	170	29	ug/Kg	₽	10/30/14 08:12	11/03/14 19:27	1
Chlorophenol, o-	ND	170	32	ug/Kg	₽	10/30/14 08:12	11/03/14 19:27	1
2-Methylnaphthalene	ND	170	35	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	1
2-Methylphenol	ND	170	21	ug/Kg	ф.	10/30/14 08:12	11/03/14 19:27	1
2-Nitroaniline	ND	340	26	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	1
2-Nitrophenol	ND	170	49	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	1
3,3'-Dichlorobenzidine	ND	340	210	ug/Kg		10/30/14 08:12	11/03/14 19:27	1
3-Nitroaniline	ND	340	48	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	1
4,6-Dinitro-2-methylphenol	ND	340	170	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	1
4-Bromophenyl phenyl ether	ND	170	25	ug/Kg		10/30/14 08:12	11/03/14 19:27	1
4-Chloro-3-methylphenol	ND	170	43	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	1
4-Chloroaniline	ND	170	43	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	1
4-Chlorophenyl phenyl ether	ND	170	22	ug/Kg		10/30/14 08:12	11/03/14 19:27	1
4-Methylphenol	ND	340	21	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	1
4-Nitroaniline	ND	340	92	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	1
4-Nitrophenol	ND	340	120	ug/Kg		10/30/14 08:12	11/03/14 19:27	1
Acenaphthene	ND	170	26	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	1
Acenaphthylene	ND	170	23	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	1
Acetophenone	ND	170	24	ug/Kg		10/30/14 08:12	11/03/14 19:27	1
Anthracene	ND	170	43	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	1
Atrazine	ND	170	61	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	1
Benzaldehyde	ND	170	140	ug/Kg		10/30/14 08:12	11/03/14 19:27	1
Benzo(a)anthracene	ND	170	17	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	1
Benzo(a)pyrene	ND	170			₩	10/30/14 08:12	11/03/14 19:27	1
Benzo(b)fluoranthene	ND	170		ug/Kg		10/30/14 08:12	11/03/14 19:27	1
Benzo(g,h,i)perylene	ND	170	19	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	1
Benzo(k)fluoranthene	ND	170	23	ug/Kg	₽	10/30/14 08:12	11/03/14 19:27	1

TestAmerica Buffalo

3

5

O

8

10

11

Client: Woodard & Curran Inc Project/Site: Rouses Point

Client Sample ID: BLDG17C-SS-SUMP-01

Lab Sample ID: 480-70307-7 Date Collected: 10/28/14 10:00 Matrix: Solid

Date Received: 10/29/14 09:00 Percent Solids: 97.0

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bis(2-chloroethoxy)methane	ND		170		37	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	
Bis(2-chloroethyl)ether	ND		170		23	ug/Kg	₽	10/30/14 08:12	11/03/14 19:27	
Bis(2-ethylhexyl) phthalate	ND		170		60	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	
Butyl benzyl phthalate	ND		170		29	ug/Kg	₽	10/30/14 08:12	11/03/14 19:27	
Caprolactam	ND	*	170		52	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	
Carbazole	ND		170		21	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	
Chrysene	ND		170		39	ug/Kg	₩.	10/30/14 08:12	11/03/14 19:27	
Di-n-butyl phthalate	ND		170		30	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	
Di-n-octyl phthalate	ND		170		21	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	
Dibenz(a,h)anthracene	ND		170		31	ug/Kg	₽	10/30/14 08:12	11/03/14 19:27	
Dibenzofuran	ND		170		21	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	
Diethyl phthalate	ND		170		23	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	
Dimethyl phthalate	ND		170		21	ug/Kg	₽	10/30/14 08:12	11/03/14 19:27	
Fluoranthene	ND		170		19	ug/Kg	₽	10/30/14 08:12	11/03/14 19:27	
Fluorene	ND		170		21	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	
Hexachlorobenzene	ND		170		24	ug/Kg		10/30/14 08:12	11/03/14 19:27	
Hexachlorobutadiene	ND		170		26	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	
Hexachlorocyclopentadiene	ND		170		24	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	
Hexachloroethane	ND		170		23	ug/Kg	φ.	10/30/14 08:12	11/03/14 19:27	
Indeno(1,2,3-cd)pyrene	ND		170		22	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	
Isophorone	ND		170		37	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	
N-Nitrosodi-n-propylamine	ND		170		30	ug/Kg		10/30/14 08:12	11/03/14 19:27	
N-Nitrosodiphenylamine	ND		170			ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	
Naphthalene	ND		170		23	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	
Nitrobenzene	ND		170		20	ug/Kg		10/30/14 08:12	11/03/14 19:27	
Pentachlorophenol	ND		340		170	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	
Phenanthrene	ND		170		26	ug/Kg	₩	10/30/14 08:12	11/03/14 19:27	
Phenol	ND		170		27	ug/Kg	ф.	10/30/14 08:12	11/03/14 19:27	
Pyrene	ND		170		21	ug/Kg	₽	10/30/14 08:12	11/03/14 19:27	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fa
Unknown	4400	TJ	ug/Kg	\(\pi \)	2.	.22		10/30/14 08:12	11/03/14 19:27	
Dimethylformamide	0.00	JN	ug/Kg	₩			12-2-68	10/30/14 08:12	11/03/14 19:27	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	88		39 - 146					10/30/14 08:12	11/03/14 19:27	
2-Fluorobiphenyl	85		37 - 120					10/30/14 08:12	11/03/14 19:27	
2-Fluorophenol	80		18 - 120					10/30/14 08:12	11/03/14 19:27	
Nitrobenzene-d5	79		34 - 132					10/30/14 08:12	11/03/14 19:27	
p-Terphenyl-d14	92		65 ₋ 153					10/30/14 08:12	11/03/14 19:27	
Phenol-d5	85		11 - 120					10/30/14 08:12	11/03/14 19:27	

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		1.0	0.15	mg/Kg			11/07/14 13:19	1
Isobutyl alcohol	ND		1.0	0.25	mg/Kg	₽		11/07/14 13:19	1
Methanol	ND		1.0	0.30	mg/Kg	₽		11/07/14 13:19	1
n-Butanol	ND		1.0	0.24	mg/Kg	\$		11/07/14 13:19	1
Propanol	ND		1.0	0.15	mg/Kg	₽		11/07/14 13:19	1
2-Butanol	ND		1.0	0.16	mg/Kg	☼		11/07/14 13:19	1

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70307-1

Client Sample ID: BLDG17C-SS-SUMP-01

Lab Sample ID: 480-70307-7 Date Collected: 10/28/14 10:00 Matrix: Solid Date Received: 10/29/14 09:00

Percent Solids: 97.0

Method: 8015D - Nonhalogenated	Organic Com	ipounds - Di	rect Injection (GC) - So	luble (Co	ntinued)			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropyl alcohol	ND		1.0	0.24	mg/Kg	-		11/07/14 13:19	1
t-Butyl alcohol	ND		1.0	0.27	mg/Kg	₽		11/07/14 13:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	85		30 - 137			-		11/07/14 13:19	1

Analyte	orinated Biphenyls (PCBs) by Ga Result Qualifier	s Cilioniatograp RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
					— ¤			— diriac
PCB-1016	ND	240	47	ug/Kg	340	10/30/14 10:33	10/31/14 18:50	1
PCB-1221	ND	240	47	ug/Kg	₽	10/30/14 10:33	10/31/14 18:50	1
PCB-1232	ND	240	47	ug/Kg	₩	10/30/14 10:33	10/31/14 18:50	1
PCB-1242	ND	240	47	ug/Kg	₽	10/30/14 10:33	10/31/14 18:50	1
PCB-1248	ND	240	47	ug/Kg	≎	10/30/14 10:33	10/31/14 18:50	1
PCB-1254	ND	240	110	ug/Kg	₩	10/30/14 10:33	10/31/14 18:50	1
PCB-1260	ND	240	110	ug/Kg	*	10/30/14 10:33	10/31/14 18:50	1
Summa mata	9/ Bassame Ovalities	l inside				Duamanad	Amalumad	Dil 5

Surrogate	%Recovery	Qualifier	Limits	Prepare	ed	Analyzed	Dil Fac
Tetrachloro-m-xylene	108		46 - 175	10/30/14	10:33	10/31/14 18:50	1
DCB Decachlorobiphenyl	114		47 - 176	10/30/14 1	10:33	10/31/14 18:50	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.9		1.9	0.38	mg/Kg	<u> </u>	10/30/14 14:48	11/01/14 00:41	1
Barium	32.9		0.48	0.10	mg/Kg	₽	10/30/14 14:48	11/01/14 00:41	1
Cadmium	0.057	JB	0.19	0.029	mg/Kg	₽	10/30/14 14:48	11/01/14 00:41	1
Chromium	4.7		0.48	0.19	mg/Kg	₽	10/30/14 14:48	11/01/14 00:41	1
Lead	5.6		0.95	0.23	mg/Kg	₽	10/30/14 14:48	11/03/14 14:23	1
Selenium	ND		3.8	0.38	mg/Kg	₽	10/30/14 14:48	11/01/14 00:41	1
Silver	ND		0.57	0.19	mg/Kg		10/30/14 14:48	11/01/14 00:41	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	0.011	J	0.019	0.0077	mg/Kg	\	11/05/14 10:40	11/05/14 12:22	1

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70307-1

Lab Sample ID: 480-70307-8

Matrix: Water

Client Sample ID: TRIP BLANK

Date Collected: 10/28/14 00:00 Date Received: 10/29/14 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			11/06/14 19:42	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			11/06/14 19:42	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			11/06/14 19:42	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			11/06/14 19:42	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			11/06/14 19:42	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			11/06/14 19:42	1
1,2,3-Trichlorobenzene	ND		1.0	0.41	ug/L			11/06/14 19:42	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			11/06/14 19:42	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			11/06/14 19:42	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			11/06/14 19:42	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			11/06/14 19:42	1
1,2-Dichloroethane	ND		1.0		ug/L			11/06/14 19:42	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			11/06/14 19:42	1
1,3-Dichlorobenzene	ND		1.0		ug/L			11/06/14 19:42	1
1,4-Dichlorobenzene	ND		1.0		ug/L			11/06/14 19:42	1
1,4-Dioxane	ND		40		ug/L			11/06/14 19:42	1
2-Butanone (MEK)	ND		10		ug/L			11/06/14 19:42	1
2-Hexanone	ND		5.0		ug/L			11/06/14 19:42	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			11/06/14 19:42	1
Acetone	ND		10		ug/L			11/06/14 19:42	1
Benzene	ND		1.0		ug/L			11/06/14 19:42	1
Bromochloromethane	ND		1.0		ug/L			11/06/14 19:42	1
Bromodichloromethane	ND		1.0		ug/L			11/06/14 19:42	1
Bromoform	ND		1.0		ug/L			11/06/14 19:42	1
Bromomethane	ND		1.0		ug/L			11/06/14 19:42	
Carbon disulfide	ND		1.0		ug/L			11/06/14 19:42	1
Carbon tetrachloride	ND		1.0		ug/L			11/06/14 19:42	1
Chlorobenzene	ND		1.0		ug/L			11/06/14 19:42	· · · · · · · · · · · · · · · · · · ·
Chloroethane	ND		1.0		ug/L			11/06/14 19:42	1
Chloroform	ND		1.0		ug/L			11/06/14 19:42	1
Chloromethane	ND		1.0		ug/L ug/L			11/06/14 19:42	· · · · · · · · · · · · · · · · · · ·
cis-1,2-Dichloroethene	ND		1.0		ug/L			11/06/14 19:42	1
								11/06/14 19:42	
cis-1,3-Dichloropropene	ND		1.0		ug/L			11/06/14 19:42	
Cyclohexane	ND		1.0		ug/L			11/06/14 19:42	1
Dibromochloromethane	ND		1.0		ug/L				
Dichlorodifluoromethane	ND		1.0		ug/L			11/06/14 19:42	1
Ethylbenzene 	ND		1.0		ug/L			11/06/14 19:42	1
Isopropylbenzene	ND		1.0		ug/L			11/06/14 19:42	1
Methyl acetate	ND		2.5		ug/L			11/06/14 19:42	1
Methyl tert-butyl ether	ND		1.0		ug/L			11/06/14 19:42	1
Methylcyclohexane	ND		1.0		ug/L			11/06/14 19:42	1
Methylene Chloride	ND		1.0		ug/L			11/06/14 19:42	1
Styrene	ND		1.0		ug/L			11/06/14 19:42	1
Tetrachloroethene	ND		1.0		ug/L			11/06/14 19:42	1
Tetrahydrofuran	ND		5.0		ug/L			11/06/14 19:42	1
Toluene	ND		1.0		ug/L			11/06/14 19:42	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			11/06/14 19:42	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			11/06/14 19:42	1

TestAmerica Buffalo

4

6

8

10

12

1 /

Le

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70307-1

Lab Sample ID: 480-70307-8

Matrix: Water

Client Sample ID: TRIP BLANK
Date Collected: 10/28/14 00:00

Date Received: 10/29/14 09:00

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		1.0		0.88	ug/L			11/06/14 19:42	1
Vinyl chloride	ND		1.0		0.90	ug/L			11/06/14 19:42	1
Xylenes, Total	ND		2.0		0.66	ug/L			11/06/14 19:42	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L						11/06/14 19:42	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			66 - 137						11/06/14 19:42	1
4-Bromofluorobenzene (Surr)	103		73 - 120						11/06/14 19:42	1
Toluene-d8 (Surr)	90		71 - 126						11/06/14 19:42	

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70307-1

Lab Sample ID: 480-70307-9

Matrix: Water

Client Sample ID: EB-01

Date Collected: 10/28/14 16:30 Date Received: 10/29/14 09:00

Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2,4,5-Trichlorophenol		4.6	0.45	ug/L		10/30/14 07:47	11/01/14 17:13	
2,4,6-Trichlorophenol	ND	4.6	0.57	-		10/30/14 07:47	11/01/14 17:13	
2,4-Dichlorophenol	ND	4.6	0.47	-		10/30/14 07:47	11/01/14 17:13	
2,4-Dimethylphenol	ND	4.6				10/30/14 07:47	11/01/14 17:13	
2,4-Dinitrophenol	ND	9.3	2.1	ug/L		10/30/14 07:47	11/01/14 17:13	
2,4-Dinitrotoluene	ND	4.6		ug/L		10/30/14 07:47	11/01/14 17:13	
2,6-Dinitrotoluene	ND	4.6		ug/L		10/30/14 07:47	11/01/14 17:13	
2-Chloronaphthalene	ND	4.6		ug/L		10/30/14 07:47	11/01/14 17:13	
2-Chlorophenol	ND	4.6		ug/L		10/30/14 07:47	11/01/14 17:13	
2-Methylnaphthalene	ND	4.6		ug/L		10/30/14 07:47	11/01/14 17:13	
2-Methylphenol	ND	4.6		ug/L		10/30/14 07:47	11/01/14 17:13	
2-Nitroaniline	ND	9.3	0.39	ug/L		10/30/14 07:47	11/01/14 17:13	
2-Nitrophenol	ND	4.6		ug/L		10/30/14 07:47	11/01/14 17:13	
·				-				
3,3'-Dichlorobenzidine 3-Nitroaniline	ND ND	4.6 9.3	0.37	ug/L		10/30/14 07:47	11/01/14 17:13	
						10/30/14 07:47	11/01/14 17:13	
4,6-Dinitro-2-methylphenol	ND	9.3	2.0	ug/L		10/30/14 07:47	11/01/14 17:13	
4-Bromophenyl phenyl ether	ND	4.6		ug/L		10/30/14 07:47	11/01/14 17:13	
4-Chloro-3-methylphenol	ND	4.6		ug/L		10/30/14 07:47	11/01/14 17:13	
4-Chloroaniline	ND	4.6		•		10/30/14 07:47	11/01/14 17:13	
4-Chlorophenyl phenyl ether	ND	4.6		ug/L		10/30/14 07:47	11/01/14 17:13	
4-Methylphenol	ND	9.3		ug/L		10/30/14 07:47	11/01/14 17:13	
4-Nitroaniline	ND	9.3	0.23	ug/L		10/30/14 07:47	11/01/14 17:13	
4-Nitrophenol	ND	9.3	1.4	ug/L		10/30/14 07:47	11/01/14 17:13	
Acenaphthene	ND	4.6	0.38	ug/L		10/30/14 07:47	11/01/14 17:13	
Acenaphthylene	ND	4.6	0.35	ug/L		10/30/14 07:47	11/01/14 17:13	
Acetophenone	ND	4.6	0.50	ug/L		10/30/14 07:47	11/01/14 17:13	
Anthracene	ND	4.6	0.26	ug/L		10/30/14 07:47	11/01/14 17:13	
Atrazine	ND	4.6	0.43	ug/L		10/30/14 07:47	11/01/14 17:13	
Benzaldehyde	ND	4.6	0.25	ug/L		10/30/14 07:47	11/01/14 17:13	
Benzo(a)anthracene	ND	4.6	0.33	ug/L		10/30/14 07:47	11/01/14 17:13	
Benzo(a)pyrene	ND	4.6	0.44	ug/L		10/30/14 07:47	11/01/14 17:13	
Benzo(b)fluoranthene	ND	4.6	0.32	ug/L		10/30/14 07:47	11/01/14 17:13	
Benzo(g,h,i)perylene	ND	4.6	0.33	ug/L		10/30/14 07:47	11/01/14 17:13	
Benzo(k)fluoranthene	ND	4.6	0.68	ug/L		10/30/14 07:47	11/01/14 17:13	
Biphenyl	ND	4.6	0.61	ug/L		10/30/14 07:47	11/01/14 17:13	
bis (2-chloroisopropyl) ether	ND	4.6	0.48	ug/L		10/30/14 07:47	11/01/14 17:13	
Bis(2-chloroethoxy)methane	ND	4.6		ug/L		10/30/14 07:47	11/01/14 17:13	
Bis(2-chloroethyl)ether	ND	4.6		ug/L		10/30/14 07:47	11/01/14 17:13	
Bis(2-ethylhexyl) phthalate	6.1 B			ug/L		10/30/14 07:47	11/01/14 17:13	
Butyl benzyl phthalate	ND	4.6	0.39	ug/L		10/30/14 07:47	11/01/14 17:13	
Caprolactam	ND	4.6	2.0	ug/L		10/30/14 07:47	11/01/14 17:13	
Carbazole	ND	4.6		-		10/30/14 07:47	11/01/14 17:13	
Chrysene	ND	4.6		ug/L		10/30/14 07:47	11/01/14 17:13	
Dibenz(a,h)anthracene	ND	4.6	0.39	ug/L		10/30/14 07:47	11/01/14 17:13	
Diberiz(a,rr)antili acerie Dibenzofuran	ND			-				
		9.3		ug/L		10/30/14 07:47	11/01/14 17:13	
Diethyl phthalate	ND ND	4.6		-		10/30/14 07:47	11/01/14 17:13	
Dimethyl phthalate	ND	4.6		ug/L		10/30/14 07:47	11/01/14 17:13	
Di-n-butyl phthalate Di-n-octyl phthalate	ND ND	4.6		ug/L ug/L		10/30/14 07:47 10/30/14 07:47	11/01/14 17:13 11/01/14 17:13	

TestAmerica Buffalo

3

5

7

9

11

14

14

Client: Woodard & Curran Inc Project/Site: Rouses Point

Client Sample ID: EB-01

Lab Sample ID: 480-70307-9 Date Collected: 10/28/14 16:30

Matrix: Water

Date Received: 10/29/14 09:00

Analyte	Result	Qualifier	RL	ME	L Uni	t D	Prepared	Analyzed	Dil Fac
Fluoranthene	ND		4.6	0.3	7 ug/l		10/30/14 07:47	11/01/14 17:13	
Fluorene	ND		4.6	0.3	3 ug/l	_	10/30/14 07:47	11/01/14 17:13	•
Hexachlorobenzene	ND		4.6	0.4	7 ug/l		10/30/14 07:47	11/01/14 17:13	
Hexachlorobutadiene	ND		4.6	0.6	3 ug/l	_	10/30/14 07:47	11/01/14 17:13	•
Hexachlorocyclopentadiene	ND		4.6	0.5	55 ug/l	_	10/30/14 07:47	11/01/14 17:13	•
Hexachloroethane	ND		4.6	0.8	5 ug/l		10/30/14 07:47	11/01/14 17:13	
Indeno(1,2,3-cd)pyrene	ND		4.6	0.4	4 ug/l	_	10/30/14 07:47	11/01/14 17:13	1
Isophorone	ND		4.6	0.4	0 ug/l	_	10/30/14 07:47	11/01/14 17:13	1
Naphthalene	ND		4.6	0.7	'1 ug/l		10/30/14 07:47	11/01/14 17:13	1
Nitrobenzene	ND		4.6	0.2	?7 ug/l	_	10/30/14 07:47	11/01/14 17:13	•
N-Nitrosodi-n-propylamine	ND		4.6	0.8	60 ug/l	_	10/30/14 07:47	11/01/14 17:13	4
N-Nitrosodiphenylamine	ND		4.6	0.4	7 ug/l		10/30/14 07:47	11/01/14 17:13	
Pentachlorophenol	ND		9.3	2	.0 ug/l	_	10/30/14 07:47	11/01/14 17:13	4
Phenanthrene	ND		4.6	0.4	1 ug/l	_	10/30/14 07:47	11/01/14 17:13	4
Phenol	ND		4.6	0.3	6 ug/l		10/30/14 07:47	11/01/14 17:13	
Pyrene	ND		4.6	0.3	32 ug/l	-	10/30/14 07:47	11/01/14 17:13	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	140	TJ	ug/L		3.58		10/30/14 07:47	11/01/14 17:13	
Dimethylformamide	0.00	JN	ug/L			12-2-68	10/30/14 07:47	11/01/14 17:13	7
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	88		52 - 132				10/30/14 07:47	11/01/14 17:13	
2-Fluorobiphenyl	85		48 - 120				10/30/14 07:47	11/01/14 17:13	
2-Fluorophenol	90		20 - 120				10/30/14 07:47	11/01/14 17:13	1
Nitrobenzene-d5	86		46 - 120				10/30/14 07:47	11/01/14 17:13	1
Phenol-d5	52		16 - 120				10/30/14 07:47	11/01/14 17:13	
p-Terphenyl-d14	88		67 ₋ 150				10/30/14 07:47	11/01/14 17:13	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		1.0	0.14	mg/L			11/06/14 11:32	1
Isobutyl alcohol	ND		1.0	0.37	mg/L			11/06/14 11:32	1
Methanol	ND		1.0	0.41	mg/L			11/06/14 11:32	1
n-Butanol	ND		1.0	0.40	mg/L			11/06/14 11:32	1
Propanol	ND		1.0	0.16	mg/L			11/06/14 11:32	1
2-Butanol	ND		1.0	0.17	mg/L			11/06/14 11:32	1
Isopropyl alcohol	ND		1.0	0.12	mg/L			11/06/14 11:32	1
t-Butyl alcohol	ND		1.0	0.10	mg/L			11/06/14 11:32	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Hexanone	118		62 - 129		11/06/14 11:32	1

Method. 6062A - Polychiothiated biphenyis (PCBS) by Gas Chromatography											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
PCB-1016	ND		0.46	0.16	ug/L		10/31/14 08:16	11/03/14 11:22	1		
PCB-1221	ND		0.46	0.16	ug/L		10/31/14 08:16	11/03/14 11:22	1		
PCB-1232	ND		0.46	0.16	ug/L		10/31/14 08:16	11/03/14 11:22	1		
PCB-1242	ND		0.46	0.16	ug/L		10/31/14 08:16	11/03/14 11:22	1		
PCB-1248	ND		0.46	0.16	ug/L		10/31/14 08:16	11/03/14 11:22	1		
PCB-1254	ND		0.46	0.23	ug/L		10/31/14 08:16	11/03/14 11:22	1		

TestAmerica Buffalo

Page 36 of 89

Client: Woodard & Curran Inc Project/Site: Rouses Point

Client Sample ID: EB-01

Date Collected: 10/28/14 16:30

Date Received: 10/29/14 09:00

Mercury

TestAmerica Job ID: 480-70307-1

Lab Sample ID: 480-70307-9

11/03/14 13:38

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1260	ND		0.46	0.23	ug/L		10/31/14 08:16	11/03/14 11:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	88		23 - 127				10/31/14 08:16	11/03/14 11:22	1
DCB Decachlorobiphenyl	82		19 - 126				10/31/14 08:16	11/03/14 11:22	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		10/30/14 08:54	10/31/14 17:49	1
Barium	0.088		0.0020	0.00070	mg/L		10/30/14 08:54	10/31/14 17:49	1
Cadmium	ND		0.0020	0.00050	mg/L		10/30/14 08:54	10/31/14 17:49	1
Chromium	ND		0.0040	0.0010	mg/L		10/30/14 08:54	10/31/14 17:49	1
Lead	0.0033	JB	0.010	0.0030	mg/L		10/30/14 08:54	10/31/14 17:49	1
Selenium	ND		0.025	0.0087	mg/L		10/30/14 08:54	10/31/14 17:49	1
Silver -	ND		0.0060	0.0017	mg/L		10/30/14 08:54	10/31/14 17:49	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.00020

0.00012 mg/L

11/03/14 08:55

ND

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 10/28/14 11:15

Date Received: 10/29/14 09:00

Client Sample ID: BLDG24-SS-FLOOR-01

TestAmerica Job ID: 480-70307-1

Lab Sample ID: 480-70307-10

Matrix: Solid

Matrix: Solid Percent Solids: 91.7

Method: 8260C - Volatile Organic	Compounds	ov GC/MS							
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		4.7	0.34	ug/Kg	<u> </u>	10/29/14 16:33	11/04/14 18:29	1
1,1,2,2-Tetrachloroethane	ND		4.7	0.77	ug/Kg	₽	10/29/14 16:33	11/04/14 18:29	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.7	1.1	ug/Kg	₩	10/29/14 16:33	11/04/14 18:29	1
I,1,2-Trichloroethane	ND		4.7	0.61	ug/Kg		10/29/14 16:33	11/04/14 18:29	1
1,1-Dichloroethane	ND		4.7	0.58	ug/Kg	₽	10/29/14 16:33	11/04/14 18:29	1
1,1-Dichloroethene	ND		4.7	0.58	ug/Kg	₽	10/29/14 16:33	11/04/14 18:29	1
1,2,3-Trichlorobenzene	ND		4.7	0.50	ug/Kg	φ.	10/29/14 16:33	11/04/14 18:29	1
1,2,4-Trichlorobenzene	ND		4.7	0.29	ug/Kg	₩	10/29/14 16:33	11/04/14 18:29	1
1,2-Dibromo-3-Chloropropane	ND		4.7		ug/Kg	₩	10/29/14 16:33	11/04/14 18:29	1
1,2-Dichlorobenzene	ND		4.7		ug/Kg		10/29/14 16:33	11/04/14 18:29	1
1,2-Dichloroethane	ND		4.7		ug/Kg	₽	10/29/14 16:33	11/04/14 18:29	1
1,2-Dichloropropane	ND		4.7		ug/Kg	₽	10/29/14 16:33	11/04/14 18:29	1
1,3-Dichlorobenzene	ND		4.7		ug/Kg		10/29/14 16:33	11/04/14 18:29	· · · · · · · · · 1
1,4-Dichlorobenzene	ND		4.7	0.66	ug/Kg	₩	10/29/14 16:33	11/04/14 18:29	1
1.4-Dioxane	ND		95	21	ug/Kg	**	10/29/14 16:33	11/04/14 18:29	1
2-Hexanone	ND		24	2.4	ug/Kg		10/29/14 16:33	11/04/14 18:29	· · · · · · · · · · · · · · · · · · ·
Acetone	ND		24	4.0	ug/Kg		10/29/14 16:33	11/04/14 18:29	1
Benzene	ND		4.7		ug/Kg ug/Kg		10/29/14 16:33	11/04/14 18:29	1
Bromoform	ND		4.7		ug/Kg ug/Kg		10/29/14 16:33	11/04/14 18:29	
Bromomethane	ND ND		4.7			₽	10/29/14 16:33	11/04/14 18:29	1
Carbon disulfide	ND ND				ug/Kg		10/29/14 16:33		
			4.7		ug/Kg			11/04/14 18:29	
Carbon tetrachloride	ND		4.7		ug/Kg		10/29/14 16:33	11/04/14 18:29	1
Chlorobenzene	ND		4.7		ug/Kg	‡	10/29/14 16:33	11/04/14 18:29	1
Bromochloromethane	ND		4.7		ug/Kg	<u></u>	10/29/14 16:33	11/04/14 18:29	1
Dibromochloromethane	ND		4.7	0.61	ug/Kg		10/29/14 16:33	11/04/14 18:29	1
Chloroethane	ND		4.7	1.1	ug/Kg		10/29/14 16:33	11/04/14 18:29	1
Chloroform	ND		4.7	0.29	ug/Kg	· · · · ·	10/29/14 16:33	11/04/14 18:29	
Chloromethane	ND		4.7	0.29	ug/Kg	₽	10/29/14 16:33	11/04/14 18:29	1
cis-1,2-Dichloroethene	ND		4.7	0.61	ug/Kg	₽	10/29/14 16:33	11/04/14 18:29	1
cis-1,3-Dichloropropene	ND		4.7	0.68	ug/Kg		10/29/14 16:33	11/04/14 18:29	1
Cyclohexane	ND		4.7	0.66	ug/Kg	₽	10/29/14 16:33	11/04/14 18:29	1
Bromodichloromethane	ND		4.7	0.63	ug/Kg	₽	10/29/14 16:33	11/04/14 18:29	1
Dichlorodifluoromethane	ND		4.7	0.39	ug/Kg		10/29/14 16:33	11/04/14 18:29	1
Ethylbenzene	ND		4.7	0.33	ug/Kg	₩	10/29/14 16:33	11/04/14 18:29	1
1,2-Dibromoethane (EDB)	ND		4.7	0.61	ug/Kg	₽	10/29/14 16:33	11/04/14 18:29	1
Isopropylbenzene	ND		4.7	0.71	ug/Kg	₽	10/29/14 16:33	11/04/14 18:29	1
Methyl acetate	ND		4.7	2.9	ug/Kg	₽	10/29/14 16:33	11/04/14 18:29	1
2-Butanone (MEK)	ND		24	1.7	ug/Kg	₩	10/29/14 16:33	11/04/14 18:29	1
4-Methyl-2-pentanone (MIBK)	ND		24	1.6	ug/Kg	₩	10/29/14 16:33	11/04/14 18:29	1
Methyl tert-butyl ether	ND		4.7	0.46	ug/Kg	₽	10/29/14 16:33	11/04/14 18:29	1
Methylcyclohexane	ND		4.7	0.72	ug/Kg	₽	10/29/14 16:33	11/04/14 18:29	1
Methylene Chloride	ND		4.7	2.2	ug/Kg	₽	10/29/14 16:33	11/04/14 18:29	1
Styrene	ND		4.7	0.24	ug/Kg	\$	10/29/14 16:33	11/04/14 18:29	1
Tetrachloroethene	ND		4.7	0.63	ug/Kg	₩	10/29/14 16:33	11/04/14 18:29	1
Toluene	ND		4.7	0.36	ug/Kg	₽	10/29/14 16:33	11/04/14 18:29	1
rans-1,2-Dichloroethene	ND		4.7	0.49	ug/Kg		10/29/14 16:33	11/04/14 18:29	1
rans-1,3-Dichloropropene	ND		4.7	2.1	ug/Kg	₽	10/29/14 16:33	11/04/14 18:29	1
Trichloroethene	ND		4.7	1.0	ug/Kg	₽	10/29/14 16:33	11/04/14 18:29	1
Trichlorofluoromethane	ND		4.7		ug/Kg		10/29/14 16:33	11/04/14 18:29	1

TestAmerica Buffalo

2

5

7

9

11

13

14

Client: Woodard & Curran Inc
Project/Site: Rouses Point

TestAmerica Job ID: 480-70307-1

Client Sample ID: BLDG24-SS-FLOOR-01

Date Collected: 10/28/14 11:15 Date Received: 10/29/14 09:00 Lab Sample ID: 480-70307-10

Matrix: Solid

Percent Solids: 91.7

Analyte	Result	Qualifier	I	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND			1.7	0.58	ug/Kg	\$	10/29/14 16:33	11/04/14 18:29	1
Xylenes, Total	ND		9	9.5	0.79	ug/Kg	\$	10/29/14 16:33	11/04/14 18:29	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane	42		ug/Kg	-	1	.92	75-45-6	10/29/14 16:33	11/04/14 18:29	1
Tentatively Identified Compound	None		ug/Kg	≎				10/29/14 16:33	11/04/14 18:29	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		64 - 126	5				10/29/14 16:33	11/04/14 18:29	1
Toluene-d8 (Surr)	104		71 - 125	5				10/29/14 16:33	11/04/14 18:29	1
4-Bromofluorobenzene (Surr)	105		72 - 126	6				10/29/14 16:33	11/04/14 18:29	1

1

16

14

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 10/28/14 11:30 Date Received: 10/29/14 09:00

Client Sample ID: BLDG24-SS-FLOOR-02

TestAmerica Job ID: 480-70307-1

Lab Sample ID: 480-70307-11

Matrix: Solid			
Percent Solids: 93.0			

Method: 8260C - Volatile Organic (Compounds	by GC/MS							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
,1,1-Trichloroethane	ND		4.9	0.36	ug/Kg		11/04/14 16:36	11/04/14 23:10	
,1,2,2-Tetrachloroethane	ND		4.9	0.80	ug/Kg	₩	11/04/14 16:36	11/04/14 23:10	
,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.9	1.1	ug/Kg	₩	11/04/14 16:36	11/04/14 23:10	
,1,2-Trichloroethane	ND		4.9	0.64	ug/Kg	₩	11/04/14 16:36	11/04/14 23:10	
,1-Dichloroethane	ND		4.9	0.60	ug/Kg	₩	11/04/14 16:36	11/04/14 23:10	
,1-Dichloroethene	ND		4.9	0.60	ug/Kg	₩	11/04/14 16:36	11/04/14 23:10	
,2,3-Trichlorobenzene	ND		4.9	0.52	ug/Kg	\$	11/04/14 16:36	11/04/14 23:10	
,2,4-Trichlorobenzene	ND		4.9	0.30	ug/Kg	₩	11/04/14 16:36	11/04/14 23:10	
,2-Dibromo-3-Chloropropane	ND		4.9	2.5	ug/Kg	₩	11/04/14 16:36	11/04/14 23:10	
,2-Dichlorobenzene	ND		4.9	0.39	ug/Kg		11/04/14 16:36	11/04/14 23:10	
,2-Dichloroethane	ND		4.9	0.25	ug/Kg	₩	11/04/14 16:36	11/04/14 23:10	
,2-Dichloropropane	ND		4.9	2.5	ug/Kg	₩	11/04/14 16:36	11/04/14 23:10	
,3-Dichlorobenzene	ND		4.9	0.25	ug/Kg		11/04/14 16:36	11/04/14 23:10	
,4-Dichlorobenzene	ND		4.9	0.69	ug/Kg	₩	11/04/14 16:36	11/04/14 23:10	
,4-Dioxane	ND		99	22	ug/Kg	₽	11/04/14 16:36	11/04/14 23:10	
P-Butanone (MEK)	ND		25	1.8	ug/Kg		11/04/14 16:36	11/04/14 23:10	
2-Hexanone	ND		25	2.5	ug/Kg	₩	11/04/14 16:36	11/04/14 23:10	
-Methyl-2-pentanone (MIBK)	ND		25		ug/Kg	₽	11/04/14 16:36	11/04/14 23:10	
Acetone	ND		25		ug/Kg		11/04/14 16:36	11/04/14 23:10	
Benzene	ND		4.9		ug/Kg	₽	11/04/14 16:36	11/04/14 23:10	
romoform	ND		4.9		ug/Kg	₽	11/04/14 16:36	11/04/14 23:10	
romomethane	ND		4.9		ug/Kg		11/04/14 16:36	11/04/14 23:10	
Carbon disulfide	ND		4.9		ug/Kg	₩	11/04/14 16:36	11/04/14 23:10	
arbon tetrachloride	ND		4.9	0.48	ug/Kg	₩	11/04/14 16:36	11/04/14 23:10	
Chlorobenzene	ND		4.9		ug/Kg		11/04/14 16:36	11/04/14 23:10	
romochloromethane	ND		4.9	0.36	ug/Kg	₽	11/04/14 16:36	11/04/14 23:10	
ibromochloromethane	ND		4.9	0.63	ug/Kg ug/Kg	₩	11/04/14 16:36	11/04/14 23:10	
Chloroethane	ND		4.9	1.1	ug/Kg		11/04/14 16:36	11/04/14 23:10	
Chloroform	ND ND		4.9	0.31	ug/Kg ug/Kg	₽	11/04/14 16:36	11/04/14 23:10	
Chloromethane	ND ND		4.9	0.30	ug/Kg ug/Kg		11/04/14 16:36	11/04/14 23:10	
							11/04/14 16:36		
sis-1,2-Dichloroethene	ND ND		4.9	0.63	ug/Kg	₩		11/04/14 23:10	
Cyclohexane			4.9	0.69	ug/Kg	₩	11/04/14 16:36	11/04/14 23:10	
Bromodichloromethane	ND		4.9	0.66	ug/Kg		11/04/14 16:36	11/04/14 23:10	
Dichlorodifluoromethane	ND		4.9	0.41	ug/Kg		11/04/14 16:36	11/04/14 23:10	
Ethylbenzene	ND		4.9		ug/Kg	*	11/04/14 16:36	11/04/14 23:10	
,2-Dibromoethane (EDB)	ND		4.9		ug/Kg	<u></u>	11/04/14 16:36	11/04/14 23:10	
sopropylbenzene	ND		4.9		ug/Kg		11/04/14 16:36	11/04/14 23:10	
Methyl acetate	ND		4.9	3.0	ug/Kg	₩.	11/04/14 16:36	11/04/14 23:10	
Methyl tert-butyl ether	ND		4.9	0.49	ug/Kg	<u></u>	11/04/14 16:36	11/04/14 23:10	
Methylcyclohexane	ND		4.9	0.75	ug/Kg	‡	11/04/14 16:36	11/04/14 23:10	
Methylene Chloride	ND		4.9	2.3	ug/Kg	‡	11/04/14 16:36	11/04/14 23:10	
etrachloroethene	ND		4.9		ug/Kg		11/04/14 16:36	11/04/14 23:10	
oluene	ND		4.9	0.37		*	11/04/14 16:36	11/04/14 23:10	
rans-1,2-Dichloroethene	ND		4.9	0.51		₽	11/04/14 16:36	11/04/14 23:10	
rans-1,3-Dichloropropene	ND		4.9	2.2	ug/Kg	₽	11/04/14 16:36	11/04/14 23:10	
richloroethene	ND		4.9	1.1	ug/Kg	₩	11/04/14 16:36	11/04/14 23:10	
richlorofluoromethane	7.9		4.9	0.47	ug/Kg	₽	11/04/14 16:36	11/04/14 23:10	
/inyl chloride	ND		4.9	0.60	ug/Kg	☼	11/04/14 16:36	11/04/14 23:10	

TestAmerica Buffalo

3

Ė

6

0

10

12

14

1 E

Client: Woodard & Curran Inc
Project/Site: Rouses Point

TestAmerica Job ID: 480-70307-1

Client Sample ID: BLDG24-SS-FLOOR-02 Lab Sample ID: 480-70307-11

Date Collected: 10/28/14 11:30 Matrix: Solid

Date Received: 10/29/14 09:00 Percent Solids: 93.0

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,3-Dichloropropene	ND		4.9		0.71	ug/Kg		11/04/14 16:36	11/04/14 23:10	1
Styrene	ND		4.9		0.25	ug/Kg	☼	11/04/14 16:36	11/04/14 23:10	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\(\pi \)				11/04/14 16:36	11/04/14 23:10	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		64 - 126					11/04/14 16:36	11/04/14 23:10	1
4-Bromofluorobenzene (Surr)	101		72 - 126					11/04/14 16:36	11/04/14 23:10	1
Toluene-d8 (Surr)	102		71 - 125					11/04/14 16:36	11/04/14 23:10	1

9

10

12

4 4

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 10/28/14 11:45

Date Received: 10/29/14 09:00

Client Sample ID: BLDG24-SS-FLOOR-03

TestAmerica Job ID: 480-70307-1

Lab Sample ID: 480-70307-12

Matrix: Solid

Percent Solids: 94.3

Method: 8260C - Volatile Organic	Compounds b	ov GC/MS							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.3	0.38	ug/Kg	\	11/04/14 16:36	11/04/14 23:36	
1,1,2,2-Tetrachloroethane	ND		5.3	0.86	ug/Kg	₩	11/04/14 16:36	11/04/14 23:36	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.3	1.2	ug/Kg	₽	11/04/14 16:36	11/04/14 23:36	•
,1,2-Trichloroethane	ND		5.3	0.69	ug/Kg	₽	11/04/14 16:36	11/04/14 23:36	
,1-Dichloroethane	ND		5.3	0.64	ug/Kg	₩	11/04/14 16:36	11/04/14 23:36	
I,1-Dichloroethene	ND		5.3	0.65	ug/Kg	₩	11/04/14 16:36	11/04/14 23:36	
1,2,3-Trichlorobenzene	ND		5.3	0.56	ug/Kg		11/04/14 16:36	11/04/14 23:36	
1,2,4-Trichlorobenzene	ND		5.3	0.32	ug/Kg	₩	11/04/14 16:36	11/04/14 23:36	
1,2-Dibromo-3-Chloropropane	ND		5.3	2.6	ug/Kg	₩	11/04/14 16:36	11/04/14 23:36	
1,2-Dichlorobenzene	ND		5.3	0.41	ug/Kg	ф.	11/04/14 16:36	11/04/14 23:36	• • • • • • • •
1,2-Dichloroethane	ND		5.3	0.27	ug/Kg	₽	11/04/14 16:36	11/04/14 23:36	
1,2-Dichloropropane	ND		5.3	2.6	ug/Kg	₽	11/04/14 16:36	11/04/14 23:36	
1,3-Dichlorobenzene	ND		5.3	0.27	ug/Kg		11/04/14 16:36	11/04/14 23:36	,
1,4-Dichlorobenzene	ND		5.3		ug/Kg	₩	11/04/14 16:36	11/04/14 23:36	
1,4-Dioxane	ND		110		ug/Kg	₩	11/04/14 16:36	11/04/14 23:36	
2-Butanone (MEK)	ND		26		ug/Kg		11/04/14 16:36	11/04/14 23:36	
2-Hexanone	ND		26		ug/Kg	₽	11/04/14 16:36	11/04/14 23:36	
4-Methyl-2-pentanone (MIBK)	ND		26	1.7		₽	11/04/14 16:36	11/04/14 23:36	
Acetone	ND		26		ug/Kg		11/04/14 16:36	11/04/14 23:36	,
Benzene	ND		5.3		ug/Kg	₩	11/04/14 16:36	11/04/14 23:36	
Bromoform	ND		5.3		ug/Kg	₩	11/04/14 16:36	11/04/14 23:36	
Bromomethane	ND		5.3		ug/Kg		11/04/14 16:36	11/04/14 23:36	,
Carbon disulfide	ND		5.3		ug/Kg ug/Kg	₩	11/04/14 16:36	11/04/14 23:36	,
Carbon tetrachloride	ND		5.3		ug/Kg ug/Kg	₩	11/04/14 16:36	11/04/14 23:36	
Chlorobenzene	ND		5.3		ug/Kg		11/04/14 16:36	11/04/14 23:36	,
Bromochloromethane	ND		5.3	0.78			11/04/14 16:36	11/04/14 23:36	
Dibromochloromethane	ND ND		5.3		ug/Kg		11/04/14 16:36	11/04/14 23:36	
					ug/Kg				
Chloroethane	ND		5.3		ug/Kg	₩	11/04/14 16:36	11/04/14 23:36	,
Chloroform	ND		5.3		ug/Kg	₩	11/04/14 16:36	11/04/14 23:36	•
Chloromethane	ND		5.3		ug/Kg		11/04/14 16:36	11/04/14 23:36	
cis-1,2-Dichloroethene	ND		5.3		ug/Kg	₽	11/04/14 16:36	11/04/14 23:36	•
Cyclohexane	ND		5.3		ug/Kg	₽	11/04/14 16:36	11/04/14 23:36	
Bromodichloromethane	ND		5.3	0.71	ug/Kg	· · · · · · î. · ·	11/04/14 16:36	11/04/14 23:36	
Dichlorodifluoromethane	ND		5.3		ug/Kg	₩.	11/04/14 16:36	11/04/14 23:36	•
Ethylbenzene	ND		5.3		ug/Kg	*	11/04/14 16:36	11/04/14 23:36	Ź
1,2-Dibromoethane (EDB)	ND		5.3		ug/Kg	<u>.</u>	11/04/14 16:36	11/04/14 23:36	
Isopropylbenzene	ND		5.3		ug/Kg	₩	11/04/14 16:36	11/04/14 23:36	,
Methyl acetate	ND		5.3	3.2	ug/Kg	**	11/04/14 16:36	11/04/14 23:36	•
Methyl tert-butyl ether	ND		5.3		ug/Kg		11/04/14 16:36	11/04/14 23:36	
Methylcyclohexane	ND		5.3	0.80	ug/Kg	**	11/04/14 16:36	11/04/14 23:36	•
Methylene Chloride	ND		5.3	2.4	ug/Kg	₩	11/04/14 16:36	11/04/14 23:36	•
Tetrachloroethene	ND		5.3	0.71	ug/Kg		11/04/14 16:36	11/04/14 23:36	
Toluene	ND		5.3		ug/Kg	₽	11/04/14 16:36	11/04/14 23:36	
rans-1,2-Dichloroethene	ND		5.3		ug/Kg	₩	11/04/14 16:36	11/04/14 23:36	•
rans-1,3-Dichloropropene	ND		5.3	2.3	ug/Kg	₩	11/04/14 16:36	11/04/14 23:36	•
Trichloroethene	ND		5.3	1.2	ug/Kg	₩	11/04/14 16:36	11/04/14 23:36	
Trichlorofluoromethane	ND		5.3	0.50	ug/Kg	₩	11/04/14 16:36	11/04/14 23:36	
Vinyl chloride	ND		5.3	0.64	ug/Kg	₽	11/04/14 16:36	11/04/14 23:36	•
Xylenes, Total	ND		11	0.89	ug/Kg		11/04/14 16:36	11/04/14 23:36	

Client: Woodard & Curran Inc TestAmerica Job ID: 480-70307-1 Project/Site: Rouses Point

Client Sample ID: BLDG24-SS-FLOOR-03

Lab Sample ID: 480-70307-12 Date Collected: 10/28/14 11:45 Matrix: Solid

Date Received: 10/29/14 09:00 Percent Solids: 94.3

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,3-Dichloropropene	ND		5.3		0.76	ug/Kg	<u></u>	11/04/14 16:36	11/04/14 23:36	1
Styrene	ND		5.3		0.26	ug/Kg	₽	11/04/14 16:36	11/04/14 23:36	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None	Н	ug/Kg	\(\pi \)				11/04/14 16:36	11/04/14 23:36	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		64 - 126					11/04/14 16:36	11/04/14 23:36	1
4-Bromofluorobenzene (Surr)	103		72 - 126					11/04/14 16:36	11/04/14 23:36	1
Toluene-d8 (Surr)	103		71 - 125					11/04/14 16:36	11/04/14 23:36	1

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 10/28/14 15:30

Date Received: 10/29/14 09:00

Trichloroethene

Trichlorofluoromethane

Client Sample ID: BLDG24-SS-SUMP-01

TestAmerica Job ID: 480-70307-1

Lab Sample ID: 480-70307-13

Matrix: Solid
Percent Solids: 87.4

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND —	4.5	0.33	ug/Kg	<u>\$</u>	10/29/14 16:33	11/04/14 18:54	1
1,1,2,2-Tetrachloroethane	ND	4.5	0.73	ug/Kg	₽	10/29/14 16:33	11/04/14 18:54	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.5	1.0	ug/Kg	₽	10/29/14 16:33	11/04/14 18:54	1
1,1,2-Trichloroethane	ND	4.5	0.58	ug/Kg	\$	10/29/14 16:33	11/04/14 18:54	1
1,1-Dichloroethane	ND	4.5	0.55	ug/Kg	₽	10/29/14 16:33	11/04/14 18:54	1
1,1-Dichloroethene	ND	4.5	0.55	ug/Kg	₽	10/29/14 16:33	11/04/14 18:54	1
1,2,3-Trichlorobenzene	ND	4.5	0.48	ug/Kg	\$	10/29/14 16:33	11/04/14 18:54	1
1,2,4-Trichlorobenzene	ND	4.5	0.27	ug/Kg	₩	10/29/14 16:33	11/04/14 18:54	1
1,2-Dibromo-3-Chloropropane	ND	4.5	2.2	ug/Kg	₽	10/29/14 16:33	11/04/14 18:54	1
1,2-Dichlorobenzene	ND	4.5	0.35	ug/Kg		10/29/14 16:33	11/04/14 18:54	1
1,2-Dichloroethane	2.0 J	4.5	0.22	ug/Kg	₩	10/29/14 16:33	11/04/14 18:54	1
1,2-Dichloropropane	ND	4.5	2.2	ug/Kg	₽	10/29/14 16:33	11/04/14 18:54	1
1,3-Dichlorobenzene	ND	4.5	0.23	ug/Kg		10/29/14 16:33	11/04/14 18:54	1
1,4-Dichlorobenzene	ND	4.5	0.63	ug/Kg	₽	10/29/14 16:33	11/04/14 18:54	1
1,4-Dioxane	ND	90	20	ug/Kg	₽	10/29/14 16:33	11/04/14 18:54	1
2-Hexanone	ND	22	2.2	ug/Kg		10/29/14 16:33	11/04/14 18:54	1
Acetone	ND	22	3.8	ug/Kg	₽	10/29/14 16:33	11/04/14 18:54	1
Benzene	ND	4.5		ug/Kg	₽	10/29/14 16:33	11/04/14 18:54	1
Bromoform	ND	4.5	2.2	ug/Kg		10/29/14 16:33	11/04/14 18:54	1
Bromomethane	ND	4.5		ug/Kg	₽	10/29/14 16:33	11/04/14 18:54	1
Carbon disulfide	ND	4.5	2.2	ug/Kg	₽	10/29/14 16:33	11/04/14 18:54	1
Carbon tetrachloride	ND	4.5	0.43			10/29/14 16:33	11/04/14 18:54	1
Chlorobenzene	ND	4.5	0.59	ug/Kg	₽	10/29/14 16:33	11/04/14 18:54	1
Bromochloromethane	ND	4.5	0.32		₽	10/29/14 16:33	11/04/14 18:54	1
Dibromochloromethane	ND	4.5	0.57			10/29/14 16:33	11/04/14 18:54	1
Chloroethane	ND	4.5	1.0	ug/Kg	₽	10/29/14 16:33	11/04/14 18:54	1
Chloroform	ND	4.5	0.28		₽	10/29/14 16:33	11/04/14 18:54	1
Chloromethane	ND	4.5	0.27			10/29/14 16:33	11/04/14 18:54	1
cis-1,2-Dichloroethene	ND	4.5	0.57		₽	10/29/14 16:33	11/04/14 18:54	1
cis-1,3-Dichloropropene	ND	4.5		ug/Kg	₽	10/29/14 16:33	11/04/14 18:54	1
Cyclohexane	ND	4.5		ug/Kg		10/29/14 16:33	11/04/14 18:54	1
Bromodichloromethane	ND	4.5	0.60		₽	10/29/14 16:33	11/04/14 18:54	1
Dichlorodifluoromethane	ND	4.5	0.37	ug/Kg	₽	10/29/14 16:33	11/04/14 18:54	1
Ethylbenzene	ND	4.5	0.31	ug/Kg		10/29/14 16:33	11/04/14 18:54	1
1,2-Dibromoethane (EDB)	ND	4.5		ug/Kg	₽	10/29/14 16:33	11/04/14 18:54	1
Isopropylbenzene	ND	4.5		ug/Kg	₽	10/29/14 16:33	11/04/14 18:54	1
Methyl acetate	ND	4.5		ug/Kg		10/29/14 16:33	11/04/14 18:54	1
2-Butanone (MEK)	ND	22		ug/Kg	₽	10/29/14 16:33	11/04/14 18:54	1
4-Methyl-2-pentanone (MIBK)	ND	22		ug/Kg	₽	10/29/14 16:33	11/04/14 18:54	1
Methyl tert-butyl ether	ND	4.5		ug/Kg		10/29/14 16:33	11/04/14 18:54	1
Methylcyclohexane	ND	4.5		ug/Kg	₽	10/29/14 16:33	11/04/14 18:54	1
Methylene Chloride	ND	4.5		ug/Kg	₽	10/29/14 16:33	11/04/14 18:54	1
Styrene	ND	4.5		ug/Kg		10/29/14 16:33	11/04/14 18:54	1
Tetrachloroethene	ND	4.5		ug/Kg	₽	10/29/14 16:33	11/04/14 18:54	1
Toluene	ND	4.5		ug/Kg	₽	10/29/14 16:33	11/04/14 18:54	1
trans-1,2-Dichloroethene	ND	4.5		ug/Kg		10/29/14 16:33	11/04/14 18:54	· · · · · · · 1
trans-1,3-Dichloropropene	ND	4.5		ug/Kg	₽	10/29/14 16:33	11/04/14 18:54	. 1
							44/04/44 40 5 :	

TestAmerica Buffalo

11/04/14 18:54

11/04/14 18:54

10/29/14 16:33

10/29/14 16:33

4.5

4.5

0.99 ug/Kg

0.42 ug/Kg

ND

ND

2

E

6

8

10

12

1 1

15

12/5/2014

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70307-1

Client Sample ID: BLDG24-SS-SUMP-01

Date Collected: 10/28/14 15:30 Date Received: 10/29/14 09:00 Lab Sample ID: 480-70307-13

Matrix: Solid

Percent Solids: 87.4

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.5		0.55	ug/Kg	<u> </u>	10/29/14 16:33	11/04/14 18:54	1
Xylenes, Total	ND		9.0		0.75	ug/Kg	\$	10/29/14 16:33	11/04/14 18:54	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane	6.3		ug/Kg	☼	1	.92	75-45-6	10/29/14 16:33	11/04/14 18:54	1
Tentatively Identified Compound	None		ug/Kg	☼				10/29/14 16:33	11/04/14 18:54	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		64 - 126					10/29/14 16:33	11/04/14 18:54	1
Toluene-d8 (Surr)	106		71 - 125					10/29/14 16:33	11/04/14 18:54	1
4-Bromofluorobenzene (Surr)	108		72 - 126					10/29/14 16:33	11/04/14 18:54	1

9

. .

12

14

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

				Percent Surrog	ate Recove
		12DCE	TOL	BFB	
Lab Sample ID	Client Sample ID	(64-126)	(71-125)	(72-126)	
480-70307-2	BLDG17C-SS-TRUCK-01	104	101	102	
480-70307-3	BLDG17C-SS-PAD-01	121	107	113	
480-70307-4	BLDG17C-SS-PAD-01A	101	106	105	
480-70307-5	BLDG17C-SS-PAD-02	107	108	109	
480-70307-6	BLDG17C-SS-PAD-03	105	105	107	
480-70307-7	BLDG17C-SS-SUMP-01	104	105	106	
480-70307-10	BLDG24-SS-FLOOR-01	107	104	105	
480-70307-11	BLDG24-SS-FLOOR-02	106	102	101	
480-70307-12	BLDG24-SS-FLOOR-03	105	103	103	
480-70307-13	BLDG24-SS-SUMP-01	107	106	108	
LCS 480-211821/5	Lab Control Sample	102	103	110	
_CS 480-212086/5	Lab Control Sample	99	105	108	
MB 480-211821/8	Method Blank	95	104	105	
MB 480-212086/8	Method Blank	95	104	104	

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Surro	ate Recovery (Accept
		12DCE	BFB	TOL	
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)	
480-70307-8	TRIP BLANK	111	103	90	
LCS 480-212423/5	Lab Control Sample	104	105	92	
MB 480-212423/7	Method Blank	108	102	90	

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

_				Percent Sur	rogate Reco	very (Accept	ance Limits)
		TBP	FBP	2FP	NBZ	TPH	PHL
Lab Sample ID	Client Sample ID	(39-146)	(37-120)	(18-120)	(34-132)	(65-153)	(11-120)
480-70307-2	BLDG17C-SS-TRUCK-01	85	84	80	81	93	84
480-70307-3	BLDG17C-SS-PAD-01	52	88	73	84	98	85
480-70307-3 MS	BLDG17C-SS-PAD-01	51	97	81	93	109	94
180-70307-3 MSD	BLDG17C-SS-PAD-01	47	90	77	97	101	88
80-70307-4	BLDG17C-SS-PAD-01A	48	94	78	89	104	92
80-70307-5	BLDG17C-SS-PAD-02	89	91	86	85	97	92
80-70307-6	BLDG17C-SS-PAD-03	80	84	78	79	93	84
480-70307-7	BLDG17C-SS-SUMP-01	88	85	80	79	92	85
LCS 480-210939/2-A	Lab Control Sample	122	106	104	106	119	108

TestAmerica Buffalo

Page 46 of 89

6

3

_

10

12

1!

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid Prep Type: Total/NA

				Percent Su	rrogate Reco	very (Accept	ance Limits
		ТВР	FBP	2FP	NBZ	TPH	PHL
Lab Sample ID	Client Sample ID	(39-146)	(37-120)	(18-120)	(34-132)	(65-153)	(11-120)
MB 480-210939/1-A	Method Blank	96	94	88	89	97	90

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

TPH = p-Terphenyl-d14

PHL = Phenol-d5

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

•				Percent Sur	rogate Reco	very (Accepta	ance Limits)
		TBP	FBP	2FP	NBZ	PHL	TPH
Lab Sample ID	Client Sample ID	(52-132)	(48-120)	(20-120)	(46-120)	(16-120)	(67-150)
480-70307-9	EB-01	88	85	90	86	52	88
LCS 480-210924/2-A	Lab Control Sample	94	75	87	71	60	83
MB 480-210924/1-A	Method Blank	82	76	82	73	52	88

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPH = p-Terphenyl-d14

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC)

Matrix: Solid Prep Type: Soluble

			Percent Surrogate Recovery (Acceptance Limits)
		2HN1	
Lab Sample ID	Client Sample ID	(30-137)	
480-70307-2	BLDG17C-SS-TRUCK-01	92	
480-70307-2 MS	BLDG17C-SS-TRUCK-01	84	
480-70307-2 MSD	BLDG17C-SS-TRUCK-01	80	
480-70307-3	BLDG17C-SS-PAD-01	99	
480-70307-4	BLDG17C-SS-PAD-01A	96	
480-70307-5	BLDG17C-SS-PAD-02	96	
480-70307-6	BLDG17C-SS-PAD-03	99	
480-70307-7	BLDG17C-SS-SUMP-01	85	
LCS 480-212715/2-A	Lab Control Sample	86	
MB 480-212715/1-A	Method Blank	111	

2HN = 2-Hexanone

TestAmerica Buffalo

4

5

7

8

10

12

13

14

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		2HN1	
Lab Sample ID	Client Sample ID	(62-129)	
480-70307-9	EB-01	118	
LCS 480-212471/4	Lab Control Sample	116	
LCSD 480-212471/5	Lab Control Sample Dup	114	
MB 480-212471/3	Method Blank	115	
Surrogate Legend			
Surrogate Legend 2HN = 2-Hexanone			

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		TCX2	DCB2	
Lab Sample ID	Client Sample ID	(46-175)	(47-176)	
480-70307-2	BLDG17C-SS-TRUCK-01	99	105	
480-70307-2 MS	BLDG17C-SS-TRUCK-01	114	122	
480-70307-2 MSD	BLDG17C-SS-TRUCK-01	120	122	
480-70307-3	BLDG17C-SS-PAD-01	104	110	
480-70307-4	BLDG17C-SS-PAD-01A	106	112	
480-70307-5	BLDG17C-SS-PAD-02	106	111	
480-70307-6	BLDG17C-SS-PAD-03	106	112	
480-70307-7	BLDG17C-SS-SUMP-01	108	114	
LCS 480-211017/2-A	Lab Control Sample	120	123	
MB 480-211017/1-A	Method Blank	106	112	

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Water Prep Type: Total/NA

-		Percent Surrogate Recovery (Acceptance Limits)								
		TCX2	DCB2							
Lab Sample ID	Client Sample ID	(23-127)	(19-126)							
480-70307-9	EB-01	88	82							
LCS 480-211203/2-A	Lab Control Sample	80	56							
MB 480-211203/1-A	Method Blank	82	63							
Surrogate Legend										
TCX = Tetrachloro-m-xy	/lene									

DCB = DCB Decachlorobiphenyl

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-211821/8

Matrix: Solid

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.36	ug/Kg			11/04/14 15:17	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.81	ug/Kg			11/04/14 15:17	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0	1.1	ug/Kg			11/04/14 15:17	1
1,1,2-Trichloroethane	ND		5.0	0.65	ug/Kg			11/04/14 15:17	1
1,1-Dichloroethane	ND		5.0	0.61	ug/Kg			11/04/14 15:17	1
1,1-Dichloroethene	ND		5.0	0.61	ug/Kg			11/04/14 15:17	1
1,2,3-Trichlorobenzene	ND		5.0	0.53	ug/Kg			11/04/14 15:17	1
1,2,4-Trichlorobenzene	ND		5.0	0.30	ug/Kg			11/04/14 15:17	1
1,2-Dibromo-3-Chloropropane	ND		5.0	2.5	ug/Kg			11/04/14 15:17	1
1,2-Dichlorobenzene	ND		5.0	0.39	ug/Kg			11/04/14 15:17	1
1,2-Dichloroethane	ND		5.0	0.25	ug/Kg			11/04/14 15:17	1
1,2-Dichloropropane	ND		5.0	2.5	ug/Kg			11/04/14 15:17	1
1,3-Dichlorobenzene	ND		5.0	0.26	ug/Kg			11/04/14 15:17	1
1,4-Dichlorobenzene	ND		5.0		ug/Kg			11/04/14 15:17	1
1,4-Dioxane	ND		100		ug/Kg			11/04/14 15:17	1
2-Hexanone	ND		25		ug/Kg			11/04/14 15:17	1
Acetone	ND		25		ug/Kg			11/04/14 15:17	1
Benzene	ND		5.0	0.25	ug/Kg			11/04/14 15:17	1
Bromoform	ND		5.0		ug/Kg			11/04/14 15:17	1
Bromomethane	ND		5.0		ug/Kg			11/04/14 15:17	1
Bromochloromethane	ND		5.0		ug/Kg			11/04/14 15:17	1
Carbon disulfide	ND		5.0		ug/Kg			11/04/14 15:17	
Carbon tetrachloride	ND		5.0		ug/Kg			11/04/14 15:17	1
Chlorobenzene	ND		5.0		ug/Kg			11/04/14 15:17	1
Chloroethane	ND		5.0		ug/Kg			11/04/14 15:17	1
Chloroform	ND		5.0		ug/Kg			11/04/14 15:17	1
Chloromethane	ND		5.0		ug/Kg			11/04/14 15:17	1
cis-1,2-Dichloroethene	ND		5.0		ug/Kg			11/04/14 15:17	
Bromodichloromethane	ND		5.0		ug/Kg			11/04/14 15:17	1
Cyclohexane	ND		5.0		ug/Kg			11/04/14 15:17	1
Dibromochloromethane	ND		5.0		ug/Kg			11/04/14 15:17	
1,2-Dibromoethane (EDB)	ND		5.0		ug/Kg			11/04/14 15:17	1
2-Butanone (MEK)	ND		25		ug/Kg ug/Kg			11/04/14 15:17	1
Dichlorodifluoromethane	ND		5.0		ug/Kg			11/04/14 15:17	1
4-Methyl-2-pentanone (MIBK)	ND		25		ug/Kg ug/Kg			11/04/14 15:17	1
Ethylbenzene	ND		5.0		ug/Kg ug/Kg			11/04/14 15:17	1
Isopropylbenzene	ND		5.0		ug/Kg			11/04/14 15:17	1
Methyl acetate	ND ND		5.0		ug/Kg ug/Kg			11/04/14 15:17	1
Methyl tert-butyl ether	ND ND		5.0		ug/Kg ug/Kg			11/04/14 15:17	1
Methylogo Chlorida	ND		5.0		ug/Kg			11/04/14 15:17	1
Methylene Chloride	ND		5.0		ug/Kg			11/04/14 15:17	1
Tetrachloroethene	ND		5.0		ug/Kg			11/04/14 15:17	
Toluene	ND		5.0		ug/Kg			11/04/14 15:17	1
trans-1,2-Dichloroethene	ND		5.0		ug/Kg			11/04/14 15:17	1
trans-1,3-Dichloropropene	ND		5.0		ug/Kg			11/04/14 15:17	1
cis-1,3-Dichloropropene	ND		5.0		ug/Kg			11/04/14 15:17	1
Trichloroethene	ND		5.0	1.1	ug/Kg			11/04/14 15:17	1

TestAmerica Buffalo

Page 49 of 89

2

3

_

6

8

10

12

IJ

Client: Woodard & Curran Inc Project/Site: Rouses Point

6

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-211821/8

Matrix: Solid

Client Sample ID: Method Blank
Prep Type: Total/NA

Analysis Batch: 211821

Result	Qualifier		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND			5.0	0.47	ug/Kg			11/04/14 15:17	1
ND			5.0	0.61	ug/Kg			11/04/14 15:17	1
ND			10	0.84	ug/Kg			11/04/14 15:17	1
МВ	МВ								
Est. Result	Qualifier	Unit	D)	RT	CAS No.	Prepared	Analyzed	Dil Fac
None		ug/Kg						11/04/14 15:17	1
_	ND ND ND MB Est. Result	ND ND ND MB MB Est. Result Qualifier	ND ND ND MB MB Est. Result Qualifier Unit	ND 5.0 ND 5.0 ND 10 MB MB Est. Result Qualifier Unit D	ND 5.0 0.47 ND 5.0 0.61 ND 10 0.84 MB MB Est. Result Qualifier Unit D	ND 5.0 0.47 ug/Kg ND 5.0 0.61 ug/Kg ND 10 0.84 ug/Kg MB MB Est. Result Qualifier Unit D RT	ND 5.0 0.47 ug/Kg ND 5.0 0.61 ug/Kg ND 10 0.84 ug/Kg MB MB MB Est. Result Qualifier Unit D RT CAS No.	ND 5.0 0.47 ug/Kg ND 5.0 0.61 ug/Kg ND 10 0.84 ug/Kg MB MB Est. Result Qualifier Unit D RT CAS No. Prepared	ND 5.0 0.47 ug/Kg 11/04/14 15:17 ND 5.0 0.61 ug/Kg 11/04/14 15:17 ND 10 0.84 ug/Kg 11/04/14 15:17 MB MB Est. Result Qualifier Unit D RT CAS No. Prepared Analyzed

MB MB

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95	64 - 126		11/04/14 15:17	1
Toluene-d8 (Surr)	104	71 - 125		11/04/14 15:17	1
4-Bromofluorobenzene (Surr)	105	72 - 126		11/04/14 15:17	1

Lab Sample ID: LCS 480-211821/5

Matrix: Solid

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 211821	Spike	1.00	LCS				%Rec.	
Analyte	Added		Qualifier	Unit	D	%Rec	%Rec.	
1,1,1-Trichloroethane	50.0	43.2		ug/Kg	_ <u>-</u>	86	77 - 121	
1,1,2,2-Tetrachloroethane	50.0	50.6		ug/Kg		101	80 - 120	
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	61.9		ug/Kg		124	60 - 140	
ne				0 0				
1,1,2-Trichloroethane	50.0	52.3		ug/Kg		105	78 ₋ 122	
1,1-Dichloroethane	50.0	51.3		ug/Kg		103	73 - 126	
1,1-Dichloroethene	50.0	41.9		ug/Kg		84	59 - 125	
1,2,3-Trichlorobenzene	50.0	52.0		ug/Kg		104	60 - 120	
1,2,4-Trichlorobenzene	50.0	52.7		ug/Kg		105	64 - 120	
1,2-Dibromo-3-Chloropropane	50.0	44.8		ug/Kg		90	63 - 124	
1,2-Dichlorobenzene	50.0	49.1		ug/Kg		98	75 - 120	
1,2-Dichloroethane	50.0	51.3		ug/Kg		103	77 - 122	
1,2-Dichloropropane	50.0	54.5		ug/Kg		109	75 - 124	
1,3-Dichlorobenzene	50.0	48.4		ug/Kg		97	74 - 120	
1,4-Dichlorobenzene	50.0	48.1		ug/Kg		96	73 - 120	
2-Hexanone	250	266		ug/Kg		106	59 - 130	
Acetone	250	271		ug/Kg		109	61 - 137	
Benzene	50.0	50.8		ug/Kg		102	79 - 127	
Bromoform	50.0	47.0		ug/Kg		94	68 - 126	
Bromomethane	50.0	48.9		ug/Kg		98	37 - 149	
Bromochloromethane	50.0	57.4		ug/Kg		115	75 - 134	
Carbon disulfide	50.0	53.1		ug/Kg		106	64 - 131	
Carbon tetrachloride	50.0	43.5		ug/Kg		87	75 - 135	
Chlorobenzene	50.0	51.1		ug/Kg		102	76 - 124	
Chloroethane	50.0	47.4		ug/Kg		95	69 - 135	
Chloroform	50.0	50.0		ug/Kg		100	80 - 118	
Chloromethane	50.0	46.3		ug/Kg		93	63 - 127	
cis-1,2-Dichloroethene	50.0	53.0		ug/Kg		106	81 - 117	
Bromodichloromethane	50.0	54.9		ug/Kg		110	80 - 122	
Cyclohexane	50.0	40.1		ug/Kg		80	65 - 106	
Dibromochloromethane	50.0	47.6		ug/Kg		95	76 ₋ 125	

TestAmerica Buffalo

Page 50 of 89

12/5/2014

4

6

8

10

11

12

14

4 E

Client: Woodard & Curran Inc Project/Site: Rouses Point

4

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-211821/5

Matrix: Solid Analysis Batch: 211821 Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane (EDB)	50.0	54.9		ug/Kg		110	78 - 120	-
2-Butanone (MEK)	250	283		ug/Kg		113	70 - 134	
Dichlorodifluoromethane	50.0	51.5		ug/Kg		103	57 _ 142	
4-Methyl-2-pentanone (MIBK)	250	260		ug/Kg		104	65 _ 133	
Ethylbenzene	50.0	49.2		ug/Kg		98	80 _ 120	
Isopropylbenzene	50.0	47.9		ug/Kg		96	72 - 120	
Methyl acetate	250	275		ug/Kg		110	55 _ 136	
Methyl tert-butyl ether	50.0	47.9		ug/Kg		96	63 _ 125	
Methylcyclohexane	50.0	49.1		ug/Kg		98	60 - 140	
Methylene Chloride	50.0	49.8		ug/Kg		100	61 - 127	
Tetrachloroethene	50.0	52.4		ug/Kg		105	74 - 122	
Toluene	50.0	48.7		ug/Kg		97	74 - 128	
trans-1,2-Dichloroethene	50.0	52.0		ug/Kg		104	78 - 126	
trans-1,3-Dichloropropene	50.0	52.4		ug/Kg		105	73 _ 123	
cis-1,3-Dichloropropene	50.0	57.1		ug/Kg		114	82 - 120	
Trichloroethene	50.0	53.3		ug/Kg		107	77 - 129	
Styrene	50.0	54.4		ug/Kg		109	80 _ 120	
Trichlorofluoromethane	50.0	51.1		ug/Kg		102	65 - 146	
Vinyl chloride	50.0	47.2		ug/Kg		94	61 - 133	
Xylenes, Total	100	102		ug/Kg		102	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		64 - 126
Toluene-d8 (Surr)	103		71 - 125
4-Bromofluorobenzene (Surr)	110		72 - 126

Lab Sample ID: MB 480-212086/8

Matrix: Solid

Analysis Batch: 212086

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.36	ug/Kg			11/05/14 11:26	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.81	ug/Kg			11/05/14 11:26	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0	1.1	ug/Kg			11/05/14 11:26	1
1,1,2-Trichloroethane	ND		5.0	0.65	ug/Kg			11/05/14 11:26	1
1,1-Dichloroethane	ND		5.0	0.61	ug/Kg			11/05/14 11:26	1
1,1-Dichloroethene	ND		5.0	0.61	ug/Kg			11/05/14 11:26	1
1,2,3-Trichlorobenzene	ND		5.0	0.53	ug/Kg			11/05/14 11:26	1
1,2,4-Trichlorobenzene	ND		5.0	0.30	ug/Kg			11/05/14 11:26	1
1,2-Dibromo-3-Chloropropane	ND		5.0	2.5	ug/Kg			11/05/14 11:26	1
1,2-Dichlorobenzene	ND		5.0	0.39	ug/Kg			11/05/14 11:26	1
1,2-Dichloroethane	ND		5.0	0.25	ug/Kg			11/05/14 11:26	1
1,2-Dichloropropane	ND		5.0	2.5	ug/Kg			11/05/14 11:26	1
1,3-Dichlorobenzene	ND		5.0	0.26	ug/Kg			11/05/14 11:26	1
1,4-Dichlorobenzene	ND		5.0	0.70	ug/Kg			11/05/14 11:26	1
1,4-Dioxane	ND		100	22	ug/Kg			11/05/14 11:26	1
2-Hexanone	ND		25	2.5	ug/Kg			11/05/14 11:26	1
Acetone	ND		25	4.2	ug/Kg			11/05/14 11:26	1

TestAmerica Buffalo

Page 51 of 89

12/5/2014

-

8

9

11

13

14

Client: Woodard & Curran Inc Project/Site: Rouses Point

4-Bromofluorobenzene (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

ab Sample ID: MB 480-212086/8							Client S	ample ID: Metho	d Blank
Matrix: Solid								Prep Type: 1	Γotal/NA
Analysis Batch: 212086									
	MB	MB							
Analyte	Result	Qualifier	RL	MD	L Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		5.0	0.2	5 ug/Kg			11/05/14 11:26	1
Bromoform	ND		5.0	2.	5 ug/Kg			11/05/14 11:26	1
Bromomethane	ND		5.0	0.4	5 ug/Kg			11/05/14 11:26	1
Bromochloromethane	ND		5.0	0.3	6 ug/Kg			11/05/14 11:26	1
Carbon disulfide	ND		5.0	2.	5 ug/Kg			11/05/14 11:26	1
Carbon tetrachloride	ND		5.0	0.4	8 ug/Kg			11/05/14 11:26	1
Chlorobenzene	ND		5.0	0.6	6 ug/Kg			11/05/14 11:26	1
Chloroethane	ND		5.0	1.	1 ug/Kg			11/05/14 11:26	1
Chloroform	ND		5.0	0.3	1 ug/Kg			11/05/14 11:26	1
Chloromethane	ND		5.0	0.3	0 ug/Kg			11/05/14 11:26	1
cis-1,2-Dichloroethene	ND		5.0		4 ug/Kg			11/05/14 11:26	1
Bromodichloromethane	ND		5.0		7 ug/Kg			11/05/14 11:26	1
Cyclohexane	ND		5.0		0 ug/Kg			11/05/14 11:26	1
Dibromochloromethane	ND		5.0		4 ug/Kg			11/05/14 11:26	1
1,2-Dibromoethane (EDB)	ND		5.0		4 ug/Kg			11/05/14 11:26	1
2-Butanone (MEK)	ND		25		8 ug/Kg			11/05/14 11:26	1
Dichlorodifluoromethane	ND		5.0		1 ug/Kg			11/05/14 11:26	1
4-Methyl-2-pentanone (MIBK)	ND		25		6 ug/Kg			11/05/14 11:26	1
Ethylbenzene	ND		5.0		5 ug/Kg			11/05/14 11:26	1
Isopropylbenzene	ND		5.0		5 ug/Kg			11/05/14 11:26	1
Methyl acetate	ND		5.0		0 ug/Kg			11/05/14 11:26	1
Methyl tert-butyl ether	ND		5.0		9 ug/Kg			11/05/14 11:26	1
Methylcyclohexane	ND		5.0		6 ug/Kg			11/05/14 11:26	· · · · · · · · · · · · · · · · · · ·
Methylene Chloride	ND		5.0		3 ug/Kg			11/05/14 11:26	1
Tetrachloroethene	ND		5.0		7 ug/Kg			11/05/14 11:26	1
Toluene	ND		5.0		8 ug/Kg			11/05/14 11:26	· · · · · · · · · · · · · · · · · · ·
trans-1,2-Dichloroethene	ND		5.0		2 ug/Kg			11/05/14 11:26	. 1
trans-1,3-Dichloropropene	ND ND		5.0		2 ug/Kg			11/05/14 11:26	. 1
	ND		5.0					11/05/14 11:26	
cis-1,3-Dichloropropene					2 ug/Kg				
Trichloroethene	ND		5.0		1 ug/Kg			11/05/14 11:26	1
Styrene	ND		5.0		5 ug/Kg			11/05/14 11:26	1
Trichlorofluoromethane	ND		5.0		7 ug/Kg			11/05/14 11:26	1
Vinyl chloride	ND		5.0		1 ug/Kg			11/05/14 11:26	1
Xylenes, Total	ND		10	0.8	4 ug/Kg			11/05/14 11:26	1
	MB	MB							
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None	-	ug/Kg				-	11/05/14 11:26	1
_		MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		64 - 126					11/05/14 11:26	1
Toluene-d8 (Surr)	104		71 - 125					11/05/14 11:26	1

11/05/14 11:26

72 - 126

QC Sample Results

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70307-1

ica 300 iD. 400-70307-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-212086/5

Matrix: Solid

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	50.0	40.2		ug/Kg		80	77 - 121
1,1,2,2-Tetrachloroethane	50.0	44.4		ug/Kg		89	80 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	51.6		ug/Kg		103	60 - 140
ne							
1,1,2-Trichloroethane	50.0	45.3		ug/Kg		91	78 - 122
1,1-Dichloroethane	50.0	44.7		ug/Kg		89	73 - 126
1,1-Dichloroethene	50.0	43.0		ug/Kg		86	59 - 125
1,2,3-Trichlorobenzene	50.0	43.6		ug/Kg		87	60 - 120
1,2,4-Trichlorobenzene	50.0	44.8		ug/Kg		90	64 - 120
1,2-Dibromo-3-Chloropropane	50.0	37.8		ug/Kg		76	63 - 124
1,2-Dichlorobenzene	50.0	44.0		ug/Kg		88	75 ₋ 120
1,2-Dichloroethane	50.0	42.9		ug/Kg		86	77 - 122
1,2-Dichloropropane	50.0	46.6		ug/Kg		93	75 ₋ 124
1,3-Dichlorobenzene	50.0	44.4		ug/Kg		89	74 - 120
1,4-Dichlorobenzene	50.0	43.8		ug/Kg		88	73 - 120
2-Hexanone	250	230		ug/Kg		92	59 - 130
Acetone	250	227		ug/Kg		91	61 - 137
Benzene	50.0	44.0		ug/Kg		88	79 ₋ 127
Bromoform	50.0	39.6		ug/Kg		79	68 ₋ 126
Bromomethane	50.0	46.3		ug/Kg		93	37 _ 149
Bromochloromethane	50.0	46.9		ug/Kg		94	75 ₋ 134
Carbon disulfide	50.0	46.4		ug/Kg		93	64 - 131
Carbon tetrachloride	50.0	40.9		ug/Kg		82	75 ₋ 135
Chlorobenzene	50.0	45.8		ug/Kg		92	76 ₋ 124
Chloroethane	50.0	41.7		ug/Kg		83	69 - 135
Chloroform	50.0	43.0		ug/Kg		86	80 - 118
Chloromethane	50.0	40.2		ug/Kg		80	63 - 127
cis-1,2-Dichloroethene	50.0	45.2		ug/Kg		90	81 - 117
Bromodichloromethane	50.0	45.9		ug/Kg		92	80 - 122
Cyclohexane	50.0	33.4		ug/Kg		67	65 - 106
Dibromochloromethane	50.0	41.4		ug/Kg		83	76 ₋ 125
1,2-Dibromoethane (EDB)	50.0	46.9		ug/Kg		94	78 - 120
2-Butanone (MEK)	250	236		ug/Kg		94	70 - 134
Dichlorodifluoromethane	50.0	46.2		ug/Kg		92	57 - 142
4-Methyl-2-pentanone (MIBK)	250	230		ug/Kg		92	65 - 133
Ethylbenzene	50.0	44.5		ug/Kg		89	80 - 120
Isopropylbenzene	50.0	45.0		ug/Kg		90	72 - 120
Methyl acetate	250	241		ug/Kg		97	55 - 136
Methyl tert-butyl ether	50.0	36.8		ug/Kg		74	63 - 125
Methylcyclohexane	50.0	40.8		ug/Kg		82	60 - 140
Methylene Chloride	50.0	42.8		ug/Kg		86	61 - 127
Tetrachloroethene	50.0	46.5		ug/Kg		93	74 - 122
Toluene	50.0	44.5		ug/Kg ug/Kg		89	74 - 128
trans-1,2-Dichloroethene	50.0	45.8		ug/Kg		92	78 - 126
rans-1,3-Dichloropropene	50.0	45.6		ug/Kg ug/Kg		91	73 - 123
cis-1,3-Dichloropropene	50.0	47.8		ug/Kg ug/Kg		96	82 ₋ 120
Trichloroethene	50.0	45.0		ug/Kg ug/Kg		90	77 - 129
Styrene	50.0	48.0		ug/Kg ug/Kg		96	80 ₋ 120

TestAmerica Buffalo

3

8

9

11

13

14

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-212086/5

Matrix: Solid

Analysis Batch: 212086

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
50.0	45.3		ug/Kg		91	65 - 146	_
50.0	41.5		ug/Kg		83	61 - 133	
100	92.2		ug/Kg		92	70 _ 130	
	Added 50.0 50.0	Added Result 50.0 45.3 50.0 41.5	Added Result Qualifier 50.0 45.3 50.0 41.5	Added Result Qualifier Unit 50.0 45.3 ug/Kg 50.0 41.5 ug/Kg	Added Result 50.0 Qualifier 45.3 Unit ug/Kg D 50.0 41.5 ug/Kg	Added Result 50.0 Qualifier 45.3 Unit ug/Kg D 91 %Rec 91 50.0 41.5 ug/Kg 83	Added Result Qualifier Unit D %Rec Limits 50.0 45.3 ug/Kg 91 65 - 146 50.0 41.5 ug/Kg 83 61 - 133

LCS LCS %Recovery Qualifier Limits Surrogate 1,2-Dichloroethane-d4 (Surr) 99 64 - 126 105 71 - 125 Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr) 108 72 - 126

Lab Sample ID: MB 480-212423/7

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	- <u>-</u>	1.0	0.82	ug/L			11/06/14 11:59	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			11/06/14 11:59	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			11/06/14 11:59	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			11/06/14 11:59	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			11/06/14 11:59	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			11/06/14 11:59	1
1,2,3-Trichlorobenzene	ND		1.0	0.41	ug/L			11/06/14 11:59	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			11/06/14 11:59	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			11/06/14 11:59	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			11/06/14 11:59	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			11/06/14 11:59	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			11/06/14 11:59	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			11/06/14 11:59	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			11/06/14 11:59	1
1,4-Dioxane	ND		40	9.3	ug/L			11/06/14 11:59	1
2-Hexanone	ND		5.0	1.2	ug/L			11/06/14 11:59	1
Acetone	ND		10	3.0	ug/L			11/06/14 11:59	1
Benzene	ND		1.0	0.41	ug/L			11/06/14 11:59	1
Bromoform	ND		1.0	0.26	ug/L			11/06/14 11:59	1
Bromomethane	ND		1.0	0.69	ug/L			11/06/14 11:59	1
Bromochloromethane	ND		1.0	0.87	ug/L			11/06/14 11:59	1
Carbon disulfide	ND		1.0	0.19	ug/L			11/06/14 11:59	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			11/06/14 11:59	1
Chlorobenzene	ND		1.0	0.75	ug/L			11/06/14 11:59	1
Chloroethane	ND		1.0	0.32	ug/L			11/06/14 11:59	1
Chloroform	ND		1.0	0.34	ug/L			11/06/14 11:59	1
Chloromethane	ND		1.0	0.35	ug/L			11/06/14 11:59	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			11/06/14 11:59	1
Bromodichloromethane	ND		1.0	0.39	ug/L			11/06/14 11:59	1
Cyclohexane	ND		1.0	0.18	ug/L			11/06/14 11:59	1
Dibromochloromethane	ND		1.0	0.32	ug/L			11/06/14 11:59	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			11/06/14 11:59	1
2-Butanone (MEK)	ND		10		ug/L			11/06/14 11:59	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			11/06/14 11:59	1

TestAmerica Buffalo

Page 54 of 89

12/5/2014

Client: Woodard & Curran Inc Project/Site: Rouses Point

100 1000 100 100 1000 1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-212423/7

Client Sample ID: Method Blank
Matrix: Water

Prep Type: Total/NA

Analysis Batch: 212423

J									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			11/06/14 11:59	1
Ethylbenzene	ND		1.0	0.74	ug/L			11/06/14 11:59	1
Isopropylbenzene	ND		1.0	0.79	ug/L			11/06/14 11:59	1
Methyl acetate	ND		2.5	0.50	ug/L			11/06/14 11:59	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			11/06/14 11:59	1
Methylcyclohexane	ND		1.0	0.16	ug/L			11/06/14 11:59	1
Methylene Chloride	ND		1.0	0.44	ug/L			11/06/14 11:59	1
Tetrachloroethene	ND		1.0	0.36	ug/L			11/06/14 11:59	1
Tetrahydrofuran	ND		5.0	1.3	ug/L			11/06/14 11:59	1
Toluene	ND		1.0	0.51	ug/L			11/06/14 11:59	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			11/06/14 11:59	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			11/06/14 11:59	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			11/06/14 11:59	1
Trichloroethene	ND		1.0	0.46	ug/L			11/06/14 11:59	1
Styrene	ND		1.0	0.73	ug/L			11/06/14 11:59	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			11/06/14 11:59	1
Vinyl chloride	ND		1.0	0.90	ug/L			11/06/14 11:59	1
Xylenes, Total	ND		2.0	0.66	ug/L			11/06/14 11:59	1

 MB

 Tentatively Identified Compound
 Est. Result
 Qualifier
 Unit
 D
 RT
 CAS No.
 Prepared
 Analyzed
 Dil Fac

 Tentatively Identified Compound
 None
 ug/L
 11/06/14 11:59
 1

MB MB Surrogate Qualifier Limits Prepared Dil Fac %Recovery Analyzed 1,2-Dichloroethane-d4 (Surr) 108 66 - 137 11/06/14 11:59 Toluene-d8 (Surr) 90 71 - 126 11/06/14 11:59 73 - 120 4-Bromofluorobenzene (Surr) 102 11/06/14 11:59

Lab Sample ID: LCS 480-212423/5

Matrix: Water

Analysis Batch: 212423

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	25.0	28.1		ug/L		112	73 - 126
1,1,2,2-Tetrachloroethane	25.0	23.7		ug/L		95	70 - 126
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	27.5		ug/L		110	52 - 148
ne							
1,1,2-Trichloroethane	25.0	24.6		ug/L		98	76 - 122
1,1-Dichloroethane	25.0	26.7		ug/L		107	71 - 129
1,1-Dichloroethene	25.0	25.7		ug/L		103	58 - 121
1,2,3-Trichlorobenzene	25.0	23.5		ug/L		94	63 _ 138
1,2,4-Trichlorobenzene	25.0	23.2		ug/L		93	70 - 122
1,2-Dibromo-3-Chloropropane	25.0	22.3		ug/L		89	56 ₋ 134
1,2-Dichlorobenzene	25.0	23.8		ug/L		95	80 _ 124
1,2-Dichloroethane	25.0	28.4		ug/L		114	75 - 127
1,2-Dichloropropane	25.0	26.3		ug/L		105	76 - 120
1,3-Dichlorobenzene	25.0	23.2		ug/L		93	77 - 120
1,4-Dichlorobenzene	25.0	23.2		ug/L		93	75 ₋ 120
2-Hexanone	125	132		ug/L		106	65 _ 127

TestAmerica Buffalo

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Page 55 of 89

12/5/2014

<u>ي</u>

5

<u>____</u>

9

11

12

14

QC Sample Results

Client: Woodard & Curran Inc TestAmerica Job ID: 480-70307-1 Project/Site: Rouses Point

Spike

LCS LCS

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-212423/5 **Matrix: Water**

Analysis Batch: 212423

Client Sample ID: Lab Control Sample **Prep Type: Total/NA**

%Rec.

					,	
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	
Acetone	125	154	ug/L	123	56 - 142	
Benzene	25.0	25.6	ug/L	102	71 - 124	
Bromoform	25.0	22.8	ug/L	91	52 - 132	
Bromomethane	25.0	21.8	ug/L	87	55 - 144	
Bromochloromethane	25.0	27.3	ug/L	109	72 _ 130	
Carbon disulfide	25.0	31.0	ug/L	124	59 - 134	
Carbon tetrachloride	25.0	29.3	ug/L	117	72 _ 134	
Chlorobenzene	25.0	23.8	ug/L	95	72 - 120	
Chloroethane	25.0	25.2	ug/L	101	69 - 136	
Chloroform	25.0	27.1	ug/L	108	73 _ 127	
Chloromethane	25.0	23.9	ug/L	96	68 - 124	
cis-1,2-Dichloroethene	25.0	26.1	ug/L	104	74 - 124	
Bromodichloromethane	25.0	30.2	ug/L	121	80 - 122	
Cyclohexane	25.0	24.7	ug/L	99	59 - 135	
Dibromochloromethane	25.0	23.9	ug/L	95	75 - 125	
1,2-Dibromoethane (EDB)	25.0	25.1	ug/L	100	77 - 120	
2-Butanone (MEK)	125	142	ug/L	114	57 ₋ 140	
Dichlorodifluoromethane	25.0	23.4	ug/L	94	59 - 135	
4-Methyl-2-pentanone (MIBK)	125	126	ug/L	100	71 - 125	
Ethylbenzene	25.0	23.8	ug/L	95	77 - 123	
Isopropylbenzene	25.0	22.8	ug/L	91	77 - 122	
Methyl acetate	125	142	ug/L	113	74 - 133	
Methyl tert-butyl ether	25.0	28.5	ug/L	114	64 - 127	
Methylcyclohexane	25.0	24.1	ug/L	96	61 - 138	
Methylene Chloride	25.0	26.0	ug/L	104	57 ₋ 132	
Tetrachloroethene	25.0	23.4	ug/L	94	74 - 122	
Tetrahydrofuran	50.0	53.5	ug/L	107	62 - 132	
Toluene	25.0	23.4	ug/L	94	80 - 122	
trans-1,2-Dichloroethene	25.0	26.5	ug/L	106	73 - 127	
trans-1,3-Dichloropropene	25.0	25.7	ug/L	103	72 - 123	
cis-1,3-Dichloropropene	25.0	28.0	ug/L	112	74 - 124	
Trichloroethene	25.0	26.2	ug/L	105	74 - 123	
Styrene	25.0	24.7	ug/L	99	70 - 130	
Trichlorofluoromethane	25.0	25.7	ug/L	103	62 _ 152	
Vinyl chloride	25.0	24.5	ug/L	98	65 _ 133	
Xylenes, Total	50.0	47.8	ug/L	96	76 - 122	
• • • • • • • • • • • • • • • • • • • •			3			

. ~ ~	100

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		66 - 137
Toluene-d8 (Surr)	92		71 - 126
4-Bromofluorobenzene (Surr)	105		73 - 120

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-210924/1-A

Matrix: Water

Di-n-butyl phthalate

Analysis Batch: 211378

Client Sample ID: Method Blank
Prep Type: Total/NA
Drop Botoby 240024

Analysis Batch: 211378								Prep Batch:	210924
	MB M					_	_		
Analyte	Result Q	Qualifier ————————————————————————————————————	RL		Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		5.0	0.48	ug/L		10/30/14 07:47	10/31/14 23:17	1
2,4,6-Trichlorophenol	ND		5.0	0.61	ug/L 		10/30/14 07:47	10/31/14 23:17	1
2,4-Dichlorophenol	ND		5.0		ug/L		10/30/14 07:47	10/31/14 23:17	
2,4-Dimethylphenol	ND		5.0		ug/L		10/30/14 07:47	10/31/14 23:17	1
2,4-Dinitrophenol	ND		10		ug/L		10/30/14 07:47	10/31/14 23:17	1
2,4-Dinitrotoluene	ND		5.0		ug/L		10/30/14 07:47	10/31/14 23:17	1
2,6-Dinitrotoluene	ND		5.0		•		10/30/14 07:47	10/31/14 23:17	1
2-Chloronaphthalene	ND		5.0	0.46	ug/L		10/30/14 07:47	10/31/14 23:17	1
2-Chlorophenol	ND		5.0		ug/L		10/30/14 07:47	10/31/14 23:17	1
2-Methylnaphthalene	ND		5.0	0.60	ug/L		10/30/14 07:47	10/31/14 23:17	1
2-Methylphenol	ND		5.0	0.40	ug/L		10/30/14 07:47	10/31/14 23:17	1
2-Nitroaniline	ND		10	0.42	ug/L		10/30/14 07:47	10/31/14 23:17	1
2-Nitrophenol	ND		5.0	0.48	ug/L		10/30/14 07:47	10/31/14 23:17	1
3,3'-Dichlorobenzidine	ND		5.0	0.40	ug/L		10/30/14 07:47	10/31/14 23:17	1
3-Nitroaniline	ND		10	0.48	ug/L		10/30/14 07:47	10/31/14 23:17	1
4,6-Dinitro-2-methylphenol	ND		10	2.2	ug/L		10/30/14 07:47	10/31/14 23:17	1
4-Bromophenyl phenyl ether	ND		5.0	0.45	ug/L		10/30/14 07:47	10/31/14 23:17	1
4-Chloro-3-methylphenol	ND		5.0	0.45	ug/L		10/30/14 07:47	10/31/14 23:17	1
4-Chloroaniline	ND		5.0	0.59	ug/L		10/30/14 07:47	10/31/14 23:17	1
4-Chlorophenyl phenyl ether	ND		5.0	0.35	ug/L		10/30/14 07:47	10/31/14 23:17	1
4-Methylphenol	ND		10	0.36	ug/L		10/30/14 07:47	10/31/14 23:17	1
4-Nitroaniline	ND		10	0.25	ug/L		10/30/14 07:47	10/31/14 23:17	1
4-Nitrophenol	ND		10	1.5	ug/L		10/30/14 07:47	10/31/14 23:17	1
Acenaphthene	ND		5.0	0.41	ug/L		10/30/14 07:47	10/31/14 23:17	1
Acenaphthylene	ND		5.0	0.38	ug/L		10/30/14 07:47	10/31/14 23:17	1
Acetophenone	ND		5.0	0.54	ug/L		10/30/14 07:47	10/31/14 23:17	1
Anthracene	ND		5.0	0.28	ug/L		10/30/14 07:47	10/31/14 23:17	1
Atrazine	ND		5.0	0.46	ug/L		10/30/14 07:47	10/31/14 23:17	1
Benzaldehyde	ND		5.0		ug/L		10/30/14 07:47	10/31/14 23:17	1
Benzo(a)anthracene	ND		5.0		ug/L		10/30/14 07:47	10/31/14 23:17	1
Benzo(a)pyrene	ND		5.0		ug/L		10/30/14 07:47	10/31/14 23:17	1
Benzo(b)fluoranthene	ND		5.0		ug/L		10/30/14 07:47	10/31/14 23:17	1
Benzo(g,h,i)perylene	ND		5.0		ug/L		10/30/14 07:47	10/31/14 23:17	1
Benzo(k)fluoranthene	ND		5.0		ug/L		10/30/14 07:47	10/31/14 23:17	1
Biphenyl	ND		5.0		ug/L		10/30/14 07:47	10/31/14 23:17	1
bis (2-chloroisopropyl) ether	ND		5.0		ug/L		10/30/14 07:47	10/31/14 23:17	1
Bis(2-chloroethoxy)methane	ND		5.0		ug/L		10/30/14 07:47	10/31/14 23:17	
Bis(2-chloroethyl)ether	ND		5.0		ug/L		10/30/14 07:47	10/31/14 23:17	1
Bis(2-ethylhexyl) phthalate	4.01 J		5.0		ug/L		10/30/14 07:47	10/31/14 23:17	1
Butyl benzyl phthalate	ND		5.0		ug/L		10/30/14 07:47	10/31/14 23:17	
Caprolactam	ND ND		5.0		ug/L ug/L		10/30/14 07:47	10/31/14 23:17	1
•	ND		5.0		ug/L				
Carbazole							10/30/14 07:47	10/31/14 23:17	1 1
Chrysene Dihonz/a h)anthracono	ND ND		5.0 5.0		ug/L		10/30/14 07:47		
Dibenzefuran	ND ND		5.0		ug/L		10/30/14 07:47	10/31/14 23:17	1
Dibenzofuran	ND		10		ug/L		10/30/14 07:47	10/31/14 23:17	1
Diethyl phthalate	ND		5.0		ug/L		10/30/14 07:47	10/31/14 23:17	1
Dimethyl phthalate	ND		5.0	0.36	ug/L		10/30/14 07:47	10/31/14 23:17	1

TestAmerica Buffalo

10/31/14 23:17

10/30/14 07:47

Page 57 of 89

5.0

0.31 ug/L

ND

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-210924/1-A

Matrix: Water

Analysis Batch: 211378

MB MB

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 210924

Analysis Baton. 21 1010									i rop Batom	_ 100L-
	МВ	MB								
Analyte	Result	Qualifier	RI	-	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate	ND		5.0)	0.47	ug/L		10/30/14 07:47	10/31/14 23:17	1
Fluoranthene	ND		5.0)	0.40	ug/L		10/30/14 07:47	10/31/14 23:17	1
Fluorene	ND		5.0)	0.36	ug/L		10/30/14 07:47	10/31/14 23:17	1
Hexachlorobenzene	ND		5.0)	0.51	ug/L		10/30/14 07:47	10/31/14 23:17	1
Hexachlorobutadiene	ND		5.0)	0.68	ug/L		10/30/14 07:47	10/31/14 23:17	1
Hexachlorocyclopentadiene	ND		5.0)	0.59	ug/L		10/30/14 07:47	10/31/14 23:17	1
Hexachloroethane	ND		5.0)	0.59	ug/L		10/30/14 07:47	10/31/14 23:17	1
Indeno(1,2,3-cd)pyrene	ND		5.0)	0.47	ug/L		10/30/14 07:47	10/31/14 23:17	1
Isophorone	ND		5.0)	0.43	ug/L		10/30/14 07:47	10/31/14 23:17	1
Naphthalene	ND		5.0)	0.76	ug/L		10/30/14 07:47	10/31/14 23:17	1
Nitrobenzene	ND		5.0)	0.29	ug/L		10/30/14 07:47	10/31/14 23:17	1
N-Nitrosodi-n-propylamine	ND		5.0)	0.54	ug/L		10/30/14 07:47	10/31/14 23:17	1
N-Nitrosodiphenylamine	ND		5.0)	0.51	ug/L		10/30/14 07:47	10/31/14 23:17	1
Pentachlorophenol	ND		10)	2.2	ug/L		10/30/14 07:47	10/31/14 23:17	1
Phenanthrene	ND		5.0)	0.44	ug/L		10/30/14 07:47	10/31/14 23:17	1
Phenol	ND		5.0)	0.39	ug/L		10/30/14 07:47	10/31/14 23:17	1
Pyrene	ND		5.0)	0.34	ug/L		10/30/14 07:47	10/31/14 23:17	1
	МВ	МВ								
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac

	IVID	IVID							
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Benzyl alcohol	3.54	J	ug/L		6.28	100-51-6	10/30/14 07:47	10/31/14 23:17	1

	МВ	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	82		52 - 132	10/30/14 07:47	10/31/14 23:17	1
2-Fluorobiphenyl	76		48 - 120	10/30/14 07:47	10/31/14 23:17	1
2-Fluorophenol	82		20 - 120	10/30/14 07:47	10/31/14 23:17	1
Nitrobenzene-d5	73		46 - 120	10/30/14 07:47	10/31/14 23:17	1
p-Terphenyl-d14	88		67 - 150	10/30/14 07:47	10/31/14 23:17	1
Phenol-d5	52		16 - 120	10/30/14 07:47	10/31/14 23:17	1

Lab Sample ID: LCS 480-210924/2-A

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 211378

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 210924

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2,4,5-Trichlorophenol	16.0	14.3		ug/L		89	65 - 126
2,4,6-Trichlorophenol	16.0	13.3		ug/L		83	64 _ 120
2,4-Dichlorophenol	16.0	13.3		ug/L		83	64 _ 120
2,4-Dimethylphenol	16.0	12.8		ug/L		80	57 ₋ 120
2,4-Dinitrophenol	32.0	24.1		ug/L		75	42 - 153
2,4-Dinitrotoluene	16.0	13.3		ug/L		83	65 _ 154
2,6-Dinitrotoluene	16.0	13.5		ug/L		84	74 ₋ 134
2-Chloronaphthalene	16.0	12.4		ug/L		77	41 - 124
2-Chlorophenol	16.0	13.0		ug/L		81	48 - 120
2-Methylnaphthalene	16.0	12.4		ug/L		77	34 - 122
2-Methylphenol	16.0	12.9		ug/L		80	39 _ 120
2-Nitroaniline	16.0	13.3		ug/L		83	67 ₋ 136
2-Nitrophenol	16.0	12.0		ug/L		75	59 - 120

TestAmerica Buffalo

3

4

6

8

9

11

12

13

14

QC Sample Results

Client: Woodard & Curran Inc
Project/Site: Rouses Point

TestAmerica Job ID: 480-70307-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-210924/2-A

Client S

Matrix: Water Analysis Batch: 211378 Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 210924

Analysis Batch: 211378	.							atch: 21092
	Spike		LCS		_	a. =	%Rec.	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
3,3'-Dichlorobenzidine	32.0	29.4		ug/L		92	33 - 140	
3-Nitroaniline	16.0	11.0		ug/L		69	28 - 86	
4,6-Dinitro-2-methylphenol	32.0	27.5		ug/L 		86	64 - 159	
4-Bromophenyl phenyl ether	16.0	14.0		ug/L		88	71 - 126	
4-Chloro-3-methylphenol	16.0	14.5		ug/L		90	64 - 120	
4-Chloroaniline	16.0	11.0		ug/L		69	10 - 77	
4-Chlorophenyl phenyl ether	16.0	12.8		ug/L		80	71 - 122	
4-Methylphenol	16.0	12.3		ug/L		77	39 - 120	
4-Nitroaniline	16.0	12.3		ug/L		77	47 - 113	
4-Nitrophenol	32.0	14.4		ug/L		45	16 - 120	
Acenaphthene	16.0	12.9		ug/L		81	60 - 120	
Acenaphthylene	16.0	13.5		ug/L		85	63 - 120	
Acetophenone	16.0	11.9		ug/L		74	45 - 120	
Anthracene	16.0	14.5		ug/L		90	58 - 148	
Atrazine	32.0	29.0		ug/L		91	56 - 179	
Benzaldehyde	32.0	37.3		ug/L		116	30 - 140	
Benzo(a)anthracene	16.0	14.5		ug/L		91	55 ₋ 151	
Benzo(a)pyrene	16.0	13.5		ug/L		85	60 - 145	
Benzo(b)fluoranthene	16.0	13.2		ug/L		83	54 - 140	
Benzo(g,h,i)perylene	16.0	15.6		ug/L		98	66 - 152	
Benzo(k)fluoranthene	16.0	14.1		ug/L		88	51 - 153	
Biphenyl	16.0	13.2		ug/L		82	30 - 140	
bis (2-chloroisopropyl) ether	16.0	9.72		ug/L		61	28 - 136	
Bis(2-chloroethoxy)methane	16.0	11.9		ug/L		74	50 - 128	
Bis(2-chloroethyl)ether	16.0	10.7		ug/L		67	51 - 120	
Bis(2-ethylhexyl) phthalate	16.0	20.5		ug/L		128	53 - 158	
Butyl benzyl phthalate	16.0	15.0		ug/L		93	58 - 163	
Caprolactam	32.0	12.3		ug/L		38	14 _ 56	
Carbazole	16.0	18.3		ug/L		114	59 - 148	
Chrysene	16.0	14.8		ug/L		92	69 - 140	
Dibenz(a,h)anthracene	16.0	14.4		ug/L		90	57 - 148	
Dibenzofuran	16.0	13.5		ug/L		84	49 - 137	
Diethyl phthalate	16.0	13.8		ug/L		86	59 - 146	
Dimethyl phthalate	16.0	13.4		ug/L		84	59 ₋ 141	
Di-n-butyl phthalate	16.0	15.7		ug/L		98	58 ₋ 149	
Di-n-octyl phthalate	16.0	15.7		ug/L		98	55 - 167	
Fluoranthene	16.0	15.4		ug/L		96	55 ₋ 147	
Fluorene	16.0	13.2		ug/L		82	55 ₋ 143	
Hexachlorobenzene	16.0	14.2		ug/L		89	14 - 108	
Hexachlorobutadiene	16.0	11.0		ug/L		69	14 - 108	
Hexachlorocyclopentadiene	16.0	8.67		ug/L		54	13 - 119	
Hexachloroethane	16.0	10.1		ug/L		63	14 - 101	
Indeno(1,2,3-cd)pyrene	16.0	15.2		ug/L		95	69 - 146	
Isophorone	16.0	12.3		ug/L		77	48 - 133	
Naphthalene	16.0	12.2		ug/L		76	35 - 117	
Nitrobenzene	16.0	11.3		ug/L ug/L		71	45 - 123	
N-Nitrosodi-n-propylamine	16.0	11.7		ug/L ug/L		73	56 ₋ 120	
N-Nitrosodiphenylamine	32.0	28.2		ug/L		88	25 - 125	

TestAmerica Buffalo

-

5

b

8

3

11

13

14

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-210924/2-A Client Sample ID: Lab Control Sample **Matrix: Water Prep Type: Total/NA Prep Batch: 210924**

Analysis Batch: 211378

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Pentachlorophenol	32.0	27.0		ug/L		84	39 - 136	
Phenanthrene	16.0	15.0		ug/L		94	57 - 147	
Phenol	16.0	9.34		ug/L		58	17 - 120	
Pyrene	16.0	14.4		ug/L		90	58 - 136	

	LUS	LUS	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	94		52 - 132
2-Fluorobiphenyl	75		48 - 120
2-Fluorophenol	87		20 - 120
Nitrobenzene-d5	71		46 - 120
p-Terphenyl-d14	83		67 - 150
Phenol-d5	60		16 - 120

Lab Sample ID: MB 480-210939/1-A

Matrix: Solid

Client Sample ID: Method Blank	
Prep Type: Total/NA	
Prep Batch: 210939	

Analysis Batch: 211661	MP	МВ						Prep Batch:	210939
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		170	46	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
2,4,6-Trichlorophenol	ND		170	34	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
2,4-Dichlorophenol	ND		170	18	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
2,4-Dimethylphenol	ND		170	41	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
2,4-Dinitrophenol	ND		330	100	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
2,4-Dinitrotoluene	ND		170	35	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
2,6-Dinitrotoluene	ND		170	20	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
2-Chloronaphthalene	ND		170	28	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Chlorophenol, o-	ND		170	31	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
2-Methylnaphthalene	ND		170	34	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
2-Methylphenol	ND		170	20	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
2-Nitroaniline	ND		330	25	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
2-Nitrophenol	ND		170	48	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
3,3'-Dichlorobenzidine	ND		330	200	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
3-Nitroaniline	ND		330	47	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
4,6-Dinitro-2-methylphenol	ND		330	170	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
4-Bromophenyl phenyl ether	ND		170	24	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
4-Chloro-3-methylphenol	ND		170	42	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
4-Chloroaniline	ND		170	42	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
4-Chlorophenyl phenyl ether	ND		170	21	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
4-Methylphenol	ND		330	20	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
4-Nitroaniline	ND		330	88	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
4-Nitrophenol	ND		330	120	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Acenaphthene	ND		170	25	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Acenaphthylene	ND		170	22	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Acetophenone	ND		170	23	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Anthracene	ND		170	42	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Atrazine	ND		170	58	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Benzaldehyde	ND		170	130	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Benzo(a)anthracene	ND		170	17	ug/Kg		10/30/14 08:12	11/03/14 12:07	1

TestAmerica Buffalo

Page 60 of 89

12/5/2014

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-210939/1-A Client Sample ID: Method Blank Matrix: Solid **Prep Type: Total/NA**

Matrix. John								i iep Type.	Otalilita
Analysis Batch: 211661	•••							Prep Batch:	210939
Analyte		MB Qualifier	RL	MDI	. Unit	D	Prepared	Analyzed	Dil Fac
Benzo(a)pyrene	ND	- Qualifor	170				10/30/14 08:12	11/03/14 12:07	1
Benzo(b)fluoranthene	ND		170		ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Benzo(g,h,i)perylene	ND		170		ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Benzo(k)fluoranthene	ND		170		ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Biphenyl	ND		170		ug/Kg		10/30/14 08:12	11/03/14 12:07	1
bis (2-chloroisopropyl) ether	ND		170		ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Bis(2-chloroethoxy)methane	ND		170		ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Bis(2-chloroethyl)ether	ND		170		ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Bis(2-ethylhexyl) phthalate	ND		170		ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Butyl benzyl phthalate	ND		170		ug/Kg		10/30/14 08:12	11/03/14 12:07	
Caprolactam	ND		170		ug/Kg		10/30/14 08:12	11/03/14 12:07	
Carbazole	ND		170		ug/Kg ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Chrysene	ND		170		ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Dibenz(a,h)anthracene	ND ND		170		ug/Kg ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Dibenzofuran	ND ND		170		ug/Kg ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Diethyl phthalate	ND				ug/Kg		10/30/14 08:12	11/03/14 12:07	
* '	ND ND		170 170		ug/Kg ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Dimethyl phthalate Di-n-butyl phthalate	ND ND		170		ug/Kg ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Di-n-octyl phthalate	ND		170		ug/Kg ug/Kg		10/30/14 08:12	11/03/14 12:07	' 1
Fluoranthene	ND ND		170		ug/Kg ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Fluorene	ND ND		170				10/30/14 08:12	11/03/14 12:07	1
Hexachlorobenzene	ND		170		ug/Kg		10/30/14 08:12	11/03/14 12:07	' 1
Hexachlorobutadiene	ND ND		170		ug/Kg		10/30/14 08:12	11/03/14 12:07	1
	ND ND		170		ug/Kg				1
Hexachlorocyclopentadiene					ug/Kg		10/30/14 08:12	11/03/14 12:07	
Hexachloroethane	ND		170		ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Indeno(1,2,3-cd)pyrene	ND		170				10/30/14 08:12	11/03/14 12:07	1
Isophorone	ND		170		ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Naphthalene	ND		170		2 ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Nitrobenzene	ND		170		ug/Kg		10/30/14 08:12	11/03/14 12:07	1
N-Nitrosodi-n-propylamine	ND		170				10/30/14 08:12	11/03/14 12:07	1
N-Nitrosodiphenylamine	ND		170				10/30/14 08:12	11/03/14 12:07	1
Pentachlorophenol	ND		330				10/30/14 08:12	11/03/14 12:07	1
Phenanthrene	ND		170		ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Phenol	ND		170		ug/Kg		10/30/14 08:12	11/03/14 12:07	1
Pyrene	ND		170	20	ug/Kg		10/30/14 08:12	11/03/14 12:07	1
	MB	MB							
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg				10/30/14 08:12	11/03/14 12:07	1
Ourse water	MB		,				D	America	D =
Surrogate	— %Recovery	Qualifier	Limits				Prepared 10/20/44 00:40	Analyzed	Dil Fac
2,4,6-Tribromophenol	96		39 ₋ 146				10/30/14 08:12	11/03/14 12:07	1
2-Fluorobiphenyl	94		37 - 120				10/30/14 08:12	11/03/14 12:07	1
2-Fluorophenol	88		18 - 120				10/30/14 08:12	11/03/14 12:07	
Nitrobenzene-d5	89		34 - 132				10/30/14 08:12	11/03/14 12:07	1
p-Terphenyl-d14	97		65 - 153				10/30/14 08:12	11/03/14 12:07	1
Phenol-d5	90		11 - 120				10/30/14 08:12	11/03/14 12:07	1

Client: Woodard & Curran Inc Project/Site: Rouses Point

Matrix: Solid

Diethyl phthalate

Dimethyl phthalate

Di-n-butyl phthalate

Lab Sample ID: LCS 480-210939/2-A

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 210939

Analysis Batch: 211661					Prep Batch: 21093
	Spike	LCS LCS			%Rec.
Analyte	Added	Result Qualifier	Unit	D %Rec	Limits
2,4,5-Trichlorophenol	1620	1810	ug/Kg		59 - 126
2,4,6-Trichlorophenol	1620	1820	ug/Kg	112	59 - 123
2,4-Dichlorophenol	1620	1790	ug/Kg	110	52 - 120
2,4-Dimethylphenol	1620	1740	ug/Kg	107	36 - 120
2,4-Dinitrophenol	3250	3540	ug/Kg	109	35 - 146
2,4-Dinitrotoluene	1620	1850	ug/Kg	114	55 ₋ 125
2,6-Dinitrotoluene	1620	1830	ug/Kg	112	66 - 128
2-Chloronaphthalene	1620	1710	ug/Kg	105	57 - 120
Chlorophenol, o-	1620	1690	ug/Kg	104	38 - 120
2-Methylnaphthalene	1620	1690	ug/Kg	104	47 - 120
2-Methylphenol	1620	1720	ug/Kg	106	48 - 120
2-Nitroaniline	1620	1820	ug/Kg	112	61 - 130
2-Nitrophenol	1620	1630	ug/Kg	100	50 - 120
3,3'-Dichlorobenzidine	3250	3090	ug/Kg	95	48 - 126
3-Nitroaniline	1620	1610	ug/Kg	99	61 - 127
4,6-Dinitro-2-methylphenol	3250	3700	ug/Kg	114	49 - 155
4-Bromophenyl phenyl ether	1620	1840	ug/Kg	113	58 ₋ 131
4-Chloro-3-methylphenol	1620	1850	ug/Kg	114	49 - 125
4-Chloroaniline	1620	1500	ug/Kg	92	49 - 120
4-Chlorophenyl phenyl ether	1620	1840	ug/Kg	114	63 - 124
4-Methylphenol	1620	1750	ug/Kg	108	50 ₋ 119
4-Nitroaniline	1620	1830	ug/Kg	113	63 - 128
4-Nitrophenol	3250	3420	ug/Kg	105	43 - 137
Acenaphthene	1620	1750	ug/Kg	108	53 _ 120
Acenaphthylene	1620	1800	ug/Kg	111	58 ₋ 121
Acetophenone	1620	1670	ug/Kg	103	66 - 120
Anthracene	1620	1920	ug/Kg	118	62 - 129
Atrazine	3250	3590	ug/Kg	111	60 - 164
Benzaldehyde	3250	2640	ug/Kg	81	21 - 120
Benzo(a)anthracene	1620	1840	ug/Kg	113	65 - 133
Benzo(a)pyrene	1620	1960	ug/Kg	121	64 - 127
Benzo(b)fluoranthene	1620	2080	ug/Kg	128	64 - 135
Benzo(g,h,i)perylene	1620	1990	ug/Kg	122	50 ₋ 152
Benzo(k)fluoranthene	1620	1710	ug/Kg	105	58 - 138
Biphenyl	1620	1750	ug/Kg	108	71 - 120
bis (2-chloroisopropyl) ether	1620	1630	ug/Kg	101	44 - 120
Bis(2-chloroethoxy)methane	1620	1700	ug/Kg	104	61 - 133
Bis(2-chloroethyl)ether	1620	1630	ug/Kg	100	45 - 120
Bis(2-ethylhexyl) phthalate	1620	1900	ug/Kg	117	61 - 133
Butyl benzyl phthalate	1620	1900	ug/Kg	117	61 - 129
Caprolactam	3250	5200 E*	ug/Kg ug/Kg	160	54 - 133
Carbazole	1620	1910	ug/Kg ug/Kg	118	59 - 129
Chrysene	1620	1880	ug/Kg	116	64 - 131
Dibenz(a,h)anthracene	1620	2050	ug/Kg ug/Kg	126	54 ₋ 148
	1620				
Dibenzofuran	1020	1790	ug/Kg	110	56 - 120

TestAmerica Buffalo

12/5/2014

114

112

124

66 - 126

65 - 124

58 - 130

Page 62 of 89

1620

1620

1620

1860

1820

2010

ug/Kg

ug/Kg

ug/Kg

Spike

Added

1620

1620

1620

1620

1620

1620

1620

1620

1620

1620

1620

LCS LCS

2010

1970

1820

1870

1580

1420

1550

2010

1730

1690

1670

Result Qualifier

TestAmerica Job ID: 480-70307-1

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-210939/2-A

Matrix: Solid

Di-n-octyl phthalate

Hexachlorobenzene

Hexachlorobutadiene

Hexachloroethane

Isophorone

Naphthalene

Nitrobenzene

Indeno(1,2,3-cd)pyrene

N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene Phenol Pyrene

Hexachlorocyclopentadiene

Fluoranthene

Analyte

Fluorene

Analysis Batch: 211661

Client Sample ID: Lab Control Sample

		Prep Type: Total/NA
		Prep Batch: 210939
		%Rec.
D	%Rec	Limits
 _	124	62 - 133

ug/Kg	121	62 _ 131	
ug/Kg	112	63 - 126	
ug/Kg	115	60 - 132	
ug/Kg	97	45 - 120	
ug/Kg	88	31 - 120	
ug/Kg	96	41 - 120	
ug/Kg	124	56 - 149	
ug/Kg	107	56 - 120	
ug/Kg	104	46 - 120	
ug/Kg	103	49 - 120	
ug/Kg	103	46 - 120	

1620	1680	ug/Kg	103	46 - 120	
3250	3770	ug/Kg	116	20 - 119	
3250	2930	ug/Kg	90	33 - 136	
1620	1860	ug/Kg	115	60 - 130	
1620	1700	ug/Kg	105	36 - 120	
1620	1930	ua/Ka	119	51 - 133	

Unit

ug/Kg

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	122		39 - 146
2-Fluorobiphenyl	106		37 - 120
2-Fluorophenol	104		18 - 120
Nitrobenzene-d5	106		34 - 132
p-Terphenyl-d14	119		65 - 153
Phenol-d5	108		11 - 120

Lab Sample ID: 480-70307-3 MS

Matrix: Solid

Analysis Batch: 211661

Client Sample ID: BLDG17C-SS-PAD-01

Prep Type: Total/NA Prep Batch: 210939

Allalysis Datcil. 211001									Fieb Dat	CII. 2 10333
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4,5-Trichlorophenol	ND		1780	1060		ug/Kg	₩	60	59 - 126	
2,4,6-Trichlorophenol	ND		1780	778	F1	ug/Kg	≎	44	59 - 123	
2,4-Dichlorophenol	ND		1780	1440		ug/Kg	≎	81	52 - 120	
2,4-Dimethylphenol	ND		1780	1720		ug/Kg	\$	97	36 - 120	
2,4-Dinitrophenol	ND		3560	2040		ug/Kg	≎	57	35 - 146	
2,4-Dinitrotoluene	ND		1780	1840		ug/Kg	≎	103	55 - 125	
2,6-Dinitrotoluene	ND		1780	1840		ug/Kg	₽	104	66 - 128	
2-Chloronaphthalene	ND		1780	1720		ug/Kg	≎	97	57 ₋ 120	
Chlorophenol, o-	ND		1780	1520		ug/Kg	≎	85	38 - 120	
2-Methylnaphthalene	ND		1780	1660		ug/Kg	₩	93	47 - 120	
2-Methylphenol	ND		1780	1690		ug/Kg	₩	95	48 - 120	
2-Nitroaniline	ND		1780	1840		ug/Kg	≎	103	61 - 130	
2-Nitrophenol	ND		1780	1160		ug/Kg	₩	65	50 - 120	
3,3'-Dichlorobenzidine	ND		3560	3230		ug/Kg	₽	91	48 - 126	
3-Nitroaniline	ND		1780	1650		ug/Kg	≎	93	61 - 127	
4,6-Dinitro-2-methylphenol	ND		3560	2330		ug/Kg	₽	65	49 _ 155	
4-Bromophenyl phenyl ether	ND		1780	1820		ug/Kg	₩	102	58 - 131	

TestAmerica Buffalo

Page 63 of 89

QC Sample Results

Client: Woodard & Curran Inc Project/Site: Rouses Point TestAmerica Job ID: 480-70307-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-70307-3 MS

Matrix: Solid

Analysis Batch: 211661

Client Sample ID: BLDG17C-SS-PAD-01 Prep Type: Total/NA

Prep Batch: 210939

Analysis Batch: 211661	Sample	Sample S	pike	MS	MS				%Rec.	Batch: 210939
Analyte	•	•	dded		Qualifier	Unit	D	%Rec	Limits	
4-Chloro-3-methylphenol	ND		1780	1810	-	ug/Kg	— -	102	49 - 125	
4-Chloroaniline	ND		1780	1460		ug/Kg		82	49 - 120	
4-Chlorophenyl phenyl ether	ND		1780	1870		ug/Kg	₽	105	63 - 124	
4-Methylphenol	ND		1780	1710		ug/Kg	₽	96	50 - 119	
4-Nitroaniline	ND		1780	1830		ug/Kg		103	63 - 128	
4-Nitrophenol	ND		3560	1650		ug/Kg	₽	46	43 - 137	
Acenaphthene	ND		1780	1760		ug/Kg	₽	99	53 - 120	
Acenaphthylene	ND		1780	1820		ug/Kg		102	58 - 121	
Acetophenone	ND		1780	1610		ug/Kg	₽	91	66 - 120	
Anthracene	ND		1780	1970		ug/Kg	₽	111	62 - 129	
Atrazine	ND		3560	4030		ug/Kg		113	60 - 164	
Benzaldehyde	ND		3560	2470		ug/Kg	₽	69	21 - 120	
Benzo(a)anthracene	ND		1780	1880		ug/Kg	₽	106	65 - 133	
Benzo(a)pyrene	ND		1780	2000		ug/Kg		112	64 - 127	
Benzo(b)fluoranthene	ND		1780	1820		ug/Kg	₽	102	64 - 135	
Benzo(g,h,i)perylene	ND		1780	2150		ug/Kg	₽	121	50 - 152	
Benzo(k)fluoranthene	ND		1780	1900		ug/Kg		107	58 - 138	
Biphenyl	ND		1780	1770		ug/Kg	₽	99	71 - 120	
bis (2-chloroisopropyl) ether	ND		1780	1560		ug/Kg	₽	88	44 - 120	
Bis(2-chloroethoxy)methane	ND		1780	1640		ug/Kg		92	61 - 133	
Bis(2-chloroethyl)ether	ND		1780	1530		ug/Kg	₽	86	45 - 120	
Bis(2-ethylhexyl) phthalate	ND		1780	1930		ug/Kg	₽	108	61 - 133	
Butyl benzyl phthalate	ND		1780	1880		ug/Kg		106	61 - 129	
Caprolactam	ND	*	3560	4650	E	ug/Kg	₩	131	54 ₋ 133	
Carbazole	ND		1780	1770		ug/Kg	₽	100	59 ₋ 129	
Chrysene	ND		1780	1870		ug/Kg	₽	105	64 - 131	
Dibenz(a,h)anthracene	ND		1780	2170		ug/Kg	₽	122	54 ₋ 148	
Dibenzofuran	ND		1780	1810		ug/Kg	₽	102	56 - 120	
Diethyl phthalate	ND		1780	1880		ug/Kg	₽	106	66 - 126	
Dimethyl phthalate	ND		1780	1860		ug/Kg	₽	104	65 - 124	
Di-n-butyl phthalate	ND		1780	1910		ug/Kg	₽	107	58 - 130	
Di-n-octyl phthalate	ND		1780	2070		ug/Kg	ф.	116	62 _ 133	
Fluoranthene	ND		1780	1810		ug/Kg	₽	102	62 _ 131	
Fluorene	ND		1780	1850		ug/Kg	₽	104	63 _ 126	
Hexachlorobenzene	ND		1780	1860		ug/Kg	₩.	105	60 - 132	
Hexachlorobutadiene	ND		1780	1520		ug/Kg	₽	85	45 - 120	
Hexachlorocyclopentadiene	ND		1780	1320		ug/Kg	₽	74	31 - 120	
Hexachloroethane	ND		1780	1430		ug/Kg	₽	80	41 - 120	
Indeno(1,2,3-cd)pyrene	ND		1780	2130		ug/Kg	₽	120	56 - 149	
Isophorone	ND		1780	1670		ug/Kg	₽	94	56 - 120	
Naphthalene	ND		1780	1620		ug/Kg	\$	91	46 - 120	
Nitrobenzene	ND		1780	1570		ug/Kg	₽	88	49 - 120	
N-Nitrosodi-n-propylamine	ND		1780	1600		ug/Kg	₩	90	46 - 120	
N-Nitrosodiphenylamine	ND		3560	3550		ug/Kg		100	20 _ 119	
Pentachlorophenol	ND		3560	1220		ug/Kg	₩	34	33 - 136	
Phenanthrene	ND		1780	1900		ug/Kg	₩	107	60 - 130	
Phenol	ND		1780	1650		ug/Kg		93	36 _ 120	
Pyrene	ND		1780	1980		ug/Kg	₽	111	51 ₋ 133	

TestAmerica Buffalo

Page 64 of 89

3

F

7

0

10

12

14

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-70307-3 MS

Matrix: Solid

Analysis Batch: 211661

Client Sample ID: BLDG17C-SS-PAD-01

Prep Type: Total/NA **Prep Batch: 210939**

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	51		39 - 146
2-Fluorobiphenyl	97		37 - 120
2-Fluorophenol	81		18 - 120
Nitrobenzene-d5	93		34 - 132
p-Terphenyl-d14	109		65 - 153
Phenol-d5	94		11 - 120

Lab Sample ID: 480-70307-3 MSD

Matrix: Solid

Analysis Batch: 211661

Client Sample ID: BLDG17C-SS-PAD-01 Prep Type: Total/NA

Prep Batch: 210939

Analysis Batch: 211661	Sample	Sample	Spike	MSD	MSD				Prep I %Rec.	Batch: 2	10939 RPD
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4,5-Trichlorophenol	ND		1750	957	F1	ug/Kg	— ö	55	59 - 126	10	18
2,4,6-Trichlorophenol	ND		1750	692		ug/Kg	₩	40	59 ₋ 123	12	19
2,4-Dichlorophenol	ND		1750	1320		ug/Kg	₽	76	52 - 120	8	19
2,4-Dimethylphenol	ND		1750	1600		ug/Kg		91	36 - 120	8	42
2,4-Dinitrophenol	ND		3500	1860		ug/Kg	₽	53	35 - 146	9	22
2,4-Dinitrotoluene	ND		1750	1690		ug/Kg	₩	97	55 - 125	8	20
2,6-Dinitrotoluene	ND		1750	1690		ug/Kg		96	66 - 128	9	15
2-Chloronaphthalene	ND		1750	1530		ug/Kg	₩	87	57 ₋ 120	12	21
Chlorophenol, o-	ND		1750	1370		ug/Kg	₽	78	38 - 120	10	25
2-Methylnaphthalene	ND		1750	1520		ug/Kg		87	47 - 120	9	21
2-Methylphenol	ND		1750	1550		ug/Kg	₩	88	48 - 120	9	27
2-Nitroaniline	ND		1750	1630		ug/Kg	₽	93	61 - 130	12	15
2-Nitrophenol	ND		1750	1170		ug/Kg		67	50 - 120	1	18
3,3'-Dichlorobenzidine	ND		3500	2920		ug/Kg	₽	83	48 - 126	10	25
3-Nitroaniline	ND		1750	1490		ug/Kg	₩	85	61 - 127	10	19
4,6-Dinitro-2-methylphenol	ND		3500	2160		ug/Kg		62	49 - 155	7	15
4-Bromophenyl phenyl ether	ND		1750	1730		ug/Kg	₩	99	58 ₋ 131	5	15
4-Chloro-3-methylphenol	ND		1750	1660		ug/Kg	₩	95	49 - 125	9	27
4-Chloroaniline	ND		1750	1320		ug/Kg	₩	76	49 - 120	9	22
4-Chlorophenyl phenyl ether	ND		1750	1690		ug/Kg	₽	97	63 - 124	10	16
4-Methylphenol	ND		1750	1570		ug/Kg	₩	90	50 - 119	8	24
4-Nitroaniline	ND		1750	1670		ug/Kg		95	63 - 128	9	24
4-Nitrophenol	ND		3500	1490		ug/Kg	₽	43	43 - 137	10	25
Acenaphthene	ND		1750	1570		ug/Kg	₩	90	53 - 120	11	35
Acenaphthylene	ND		1750	1630		ug/Kg	₩.	93	58 - 121	11	18
Acetophenone	ND		1750	1470		ug/Kg	₩	84	66 - 120	9	20
Anthracene	ND		1750	1780		ug/Kg	₩	101	62 - 129	10	15
Atrazine	ND		3500	3660		ug/Kg	₩	104	60 - 164	10	20
Benzaldehyde	ND		3500	2260		ug/Kg	₩	65	21 - 120	9	20
Benzo(a)anthracene	ND		1750	1680		ug/Kg	₽	96	65 - 133	11	15
Benzo(a)pyrene	ND		1750	1760		ug/Kg	₩	100	64 - 127	13	15
Benzo(b)fluoranthene	ND		1750	1810		ug/Kg	₽	103	64 - 135	1	15
Benzo(g,h,i)perylene	ND		1750	1890		ug/Kg	₽	108	50 - 152	13	15
Benzo(k)fluoranthene	ND		1750	1520		ug/Kg	₩	87	58 - 138	22	22
Biphenyl	ND		1750	1570		ug/Kg	₽	89	71 - 120	12	20
bis (2-chloroisopropyl) ether	ND		1750	1430		ug/Kg	₽	81	44 - 120	9	24

TestAmerica Buffalo

Page 65 of 89

Client: Woodard & Curran Inc Project/Site: Rouses Point

Lab Sample ID: 480-70307-3 MSD

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid

Analysis Batch: 211661

Client Sample ID: BLDG17C-SS-PAD-01 Prep Type: Total/NA

Prep Batch: 210939

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bis(2-chloroethoxy)methane	ND		1750	1510		ug/Kg	₩	86	61 - 133	8	17
Bis(2-chloroethyl)ether	ND		1750	1460		ug/Kg	₩.	83	45 - 120	5	21
Bis(2-ethylhexyl) phthalate	ND		1750	1700		ug/Kg	₩	97	61 - 133	13	15
Butyl benzyl phthalate	ND		1750	1750		ug/Kg	₽	100	61 - 129	8	16
Caprolactam	ND	*	3500	5140	E F1	ug/Kg	₩	147	54 - 133	10	20
Carbazole	ND		1750	1750		ug/Kg	₩	100	59 - 129	1	20
Chrysene	ND		1750	1740		ug/Kg	₩.	99	64 - 131	7	15
Dibenz(a,h)anthracene	ND		1750	1930		ug/Kg	₩	110	54 - 148	12	15
Dibenzofuran	ND		1750	1630		ug/Kg	₩	93	56 - 120	10	15
Diethyl phthalate	ND		1750	1700		ug/Kg	₩	97	66 - 126	10	15
Dimethyl phthalate	ND		1750	1670		ug/Kg	₩	95	65 - 124	11	15
Di-n-butyl phthalate	ND		1750	1850		ug/Kg	₩	105	58 - 130	3	15
Di-n-octyl phthalate	ND		1750	1870		ug/Kg	₩	107	62 - 133	10	16
Fluoranthene	ND		1750	1780		ug/Kg	₩	102	62 - 131	2	15
Fluorene	ND		1750	1670		ug/Kg	₩	95	63 - 126	10	15
Hexachlorobenzene	ND		1750	1710		ug/Kg	*	97	60 - 132	9	15
Hexachlorobutadiene	ND		1750	1430		ug/Kg	₩	82	45 - 120	6	44
Hexachlorocyclopentadiene	ND		1750	1250		ug/Kg	₩	71	31 - 120	5	49
Hexachloroethane	ND		1750	1320		ug/Kg	₩	75	41 - 120	8	46
Indeno(1,2,3-cd)pyrene	ND		1750	1900		ug/Kg	₩	109	56 - 149	11	15
Isophorone	ND		1750	1690		ug/Kg	₩	97	56 - 120	2	17
Naphthalene	ND		1750	1470		ug/Kg	₩	84	46 - 120	10	29
Nitrobenzene	ND		1750	1610		ug/Kg	₩	92	49 - 120	2	24
N-Nitrosodi-n-propylamine	ND		1750	1490		ug/Kg	₩	85	46 - 120	7	31
N-Nitrosodiphenylamine	ND		3500	3160		ug/Kg	₩	90	20 - 119	12	15
Pentachlorophenol	ND		3500	1100	F1	ug/Kg	₩	31	33 - 136	10	35
Phenanthrene	ND		1750	1690		ug/Kg	₩	96	60 - 130	12	15
Phenol	ND		1750	1510		ug/Kg	*	86	36 - 120	8	35
Pyrene	ND		1750	1770		ug/Kg	₩	101	51 ₋ 133	11	35

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	47		39 - 146
2-Fluorobiphenyl	90		37 - 120
2-Fluorophenol	77		18 - 120
Nitrobenzene-d5	97		34 - 132
p-Terphenyl-d14	101		65 - 153
Phenol-d5	88		11 - 120

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC)

Lab Sample ID: MB 480-212471/3

Matrix: Water

Analysis Batch: 212471

Client Sample ID: Method Blank

Prep Type: Total/NA

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		1.0	0.14	mg/L			11/06/14 10:50	1
Isobutyl alcohol	ND		1.0	0.37	mg/L			11/06/14 10:50	1
Methanol	ND		1.0	0.41	mg/L			11/06/14 10:50	1

TestAmerica Buffalo

Page 66 of 89

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) (Continued)

Lab Sample ID: MB 480-212471/3

Matrix: Water

Analyte

n-Butanol

Propanol

2-Butanol

Isopropyl alcohol

t-Butyl alcohol

Analysis Batch: 212471

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed ND 1.0 0.40 mg/L 11/06/14 10:50 ND 1.0 0.16 mg/L 11/06/14 10:50 ND 1.0 0.17 mg/L 11/06/14 10:50 ND 1.0 0.12 mg/L 11/06/14 10:50 ND 1.0 0.10 mg/L 11/06/14 10:50

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 2-Hexanone 115 62 - 129 11/06/14 10:50

Lab Sample ID: LCS 480-212471/4

Matrix: Water

Analysis Batch: 212471

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Ethanol 20.0 21.5 108 72 - 133 mg/L 20.0 22.0 Isobutyl alcohol mg/L 110 69 - 139 20.0 Methanol 21.6 mg/L 108 71 - 132n-Butanol 20.0 20.7 mg/L 104 73 - 130 Propanol 20.0 21.6 mg/L 108 71 - 131 2-Butanol 20.0 21.1 mg/L 105 68 - 136 Isopropyl alcohol 20.0 21.5 mg/L 108 67 - 132 20.0 t-Butyl alcohol 21.5 mg/L 107 71 - 130

LCS LCS

Surrogate %Recovery Qualifier Limits 2-Hexanone 116 62 - 129

Lab Sample ID: LCSD 480-212471/5

Matrix: Water

Analysis Batch: 212471

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethanol	20.0	21.5		mg/L		107	72 - 133	0	30
Isobutyl alcohol	20.0	21.6		mg/L		108	69 - 139	2	30
Methanol	20.0	21.4		mg/L		107	71 - 132	1	30
n-Butanol	20.0	20.6		mg/L		103	73 - 130	1	30
Propanol	20.0	21.3		mg/L		106	71 - 131	1	30
2-Butanol	20.0	20.7		mg/L		104	68 - 136	2	30
Isopropyl alcohol	20.0	21.5		mg/L		107	67 - 132	0	30
t-Butyl alcohol	20.0	21.5		mg/L		107	71 - 130	0	30

LCSD LCSD

%Recovery Qualifier Surrogate Limits 2-Hexanone 114 62 - 129

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) (Continued)

Lab Sample ID: MB 480-212715/1-A

Matrix: Solid

Analysis Batch: 212768

Client Sample ID: Method Blank

Prep Type: Soluble

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		0.99	0.15	mg/Kg			11/07/14 12:25	1
Isobutyl alcohol	ND		0.99	0.25	mg/Kg			11/07/14 12:25	1
Methanol	ND		0.99	0.30	mg/Kg			11/07/14 12:25	1
n-Butanol	ND		0.99	0.23	mg/Kg			11/07/14 12:25	1
Propanol	ND		0.99	0.15	mg/Kg			11/07/14 12:25	1
2-Butanol	ND		0.99	0.16	mg/Kg			11/07/14 12:25	1
Isopropyl alcohol	ND		0.99	0.24	mg/Kg			11/07/14 12:25	1
t-Butyl alcohol	ND		0.99	0.26	mg/Kg			11/07/14 12:25	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Hexanone	111		30 - 137		11/07/14 12:25	1

Lab Sample ID: LCS 480-212715/2-A

Matrix: Solid

Analysis Batch: 212768

Client Sample ID: Lab Control Sample

Prep Type: Soluble

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethanol	19.9	21.6		mg/Kg		109	55 - 136	
Isobutyl alcohol	19.9	22.0		mg/Kg		111	51 - 130	
Methanol	19.9	21.8		mg/Kg		109	53 - 140	
n-Butanol	19.9	20.8		mg/Kg		105	54 - 141	
Propanol	19.9	21.4		mg/Kg		108	59 ₋ 139	
2-Butanol	19.9	21.1		mg/Kg		106	49 - 136	
Isopropyl alcohol	19.9	21.5		mg/Kg		108	50 - 131	
t-Butyl alcohol	19.9	21.4		mg/Kg		108	48 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
2-Hexanone	86	30 - 137

Lab Sample ID: 480-70307-2 MS

Matrix: Solid

Analysis Batch: 212768

Client Sample ID: BLDG17C-SS-TRUCK-01 **Prep Type: Soluble**

		Sample	Sample	Spike	MS	MS				%Rec.
ш	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
	Ethanol	ND		22.8	23.6		mg/Kg	\	104	70 - 130
	Isobutyl alcohol	ND		22.8	24.3		mg/Kg	₽	107	70 - 130
	Methanol	ND		22.8	23.7		mg/Kg	₽	104	70 - 130
	n-Butanol	ND		22.8	22.9		mg/Kg	\$	101	70 - 130
	Propanol	ND		22.8	23.6		mg/Kg	₽	104	70 - 130
	2-Butanol	ND		22.8	23.3		mg/Kg	₽	102	70 - 130
	Isopropyl alcohol	ND		22.8	23.5		mg/Kg	\$	103	70 - 130
	t-Butyl alcohol	ND		22.8	23.5		mg/Kg	☼	103	50 - 130

MS MS Surrogate %Recovery Qualifier Limits 2-Hexanone 30 - 137 84

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) (Continued)

Lab Sample ID: 480-70307-2 MSD

Matrix: Solid

Analysis Batch: 212768

Client Sample ID: BLDG17C-SS-TRUCK-01

Prep Type: Soluble

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethanol	ND		22.7	21.9		mg/Kg	₩	97	70 - 130	7	30
Isobutyl alcohol	ND		22.7	22.3		mg/Kg	₩	99	70 - 130	8	30
Methanol	ND		22.7	21.7		mg/Kg	₩	96	70 - 130	9	30
n-Butanol	ND		22.7	21.1		mg/Kg	₩.	93	70 - 130	8	30
Propanol	ND		22.7	21.5		mg/Kg	₩	95	70 - 130	9	30
2-Butanol	ND		22.7	21.3		mg/Kg	₩	94	70 - 130	9	30
Isopropyl alcohol	ND		22.7	22.1		mg/Kg	₩	97	70 - 130	6	30
t-Butyl alcohol	ND		22.7	21.9		mg/Kg	₩	97	50 - 130	7	30
	4400	4400									

MSD MSD

Limits Surrogate %Recovery Qualifier 2-Hexanone 80 30 - 137

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-211017/1-A

Matrix: Solid

Analysis Batch: 211223

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 211017

	MB MB							
Analyte	Result Qual	ifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	220	42	ug/Kg		10/30/14 10:33	10/31/14 16:36	1
PCB-1221	ND	220	42	ug/Kg		10/30/14 10:33	10/31/14 16:36	1
PCB-1232	ND	220	42	ug/Kg		10/30/14 10:33	10/31/14 16:36	1
PCB-1242	ND	220	42	ug/Kg		10/30/14 10:33	10/31/14 16:36	1
PCB-1248	ND	220	42	ug/Kg		10/30/14 10:33	10/31/14 16:36	1
PCB-1254	ND	220	100	ug/Kg		10/30/14 10:33	10/31/14 16:36	1
PCB-1260	ND	220	100	ug/Kg		10/30/14 10:33	10/31/14 16:36	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	106		46 - 175	10/30/14 10:33	10/31/14 16:36	1
DCB Decachlorobiphenyl	112		47 - 176	10/30/14 10:33	10/31/14 16:36	1

Lab Sample ID: LCS 480-211017/2-A

Matrix: Solid

Analysis Batch: 211223

Client Sample ID: Lab Control Sample Prep Type: Total/NA

> **Prep Batch: 211017** % Doc

ı		Spike	LCS	LUS				%Rec.	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	PCB-1016	2010	2540		ug/Kg		127	51 - 185	
	PCB-1260	2010	2600		ug/Kg		129	61 - 184	

100 100

Cnika

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	120		46 - 175
DCB Decachlorobiphenyl	123		47 - 176

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: 480-70307-2 MS

Matrix: Solid

Analysis Batch: 211223

Client Sample ID: BLDG17C-SS-TRUCK-01

Prep Type: Total/NA

Prep Batch: 211017 Sample Sample Spike MS MS

Analyte Result PCB-1016 Qualifier ND Added 1940 Result 1940 Qualifier Qualifier 2360 Unit Ug/Kg D wit VRec With Wig/Kg Limits 42 - 159 PCB-1260 ND 1940 2550 ug/Kg 3 131 47 - 153		•	•	•						
3 3	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
PCB-1260 ND 1940 2550 ug/Kg 🌣 131 47 - 153	PCB-1016	ND		1940	2360		ug/Kg	-	121	42 - 159
	PCB-1260	ND		1940	2550		ug/Kg	₽	131	47 - 153

MS MS %Recovery Qualifier Surrogate Limits Tetrachloro-m-xylene 114 46 - 175 DCB Decachlorobiphenyl 122 47 - 176

Lab Sample ID: 480-70307-2 MSD Client Sample ID: BLDG17C-SS-TRUCK-01

Matrix: Solid

Analy

	Analysis Batch: 211223									Prep	Batch: 2	11017
		Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	PCB-1016	ND		2240	2810		ug/Kg	\	125	42 - 159	17	50
I	PCB-1260	ND		2240	2960		ug/Kg	₩	132	47 - 153	15	50

MSD MSD Limits Surrogate %Recovery Qualifier Tetrachloro-m-xylene 120 46 - 175 DCB Decachlorobiphenyl 122 47 - 176

Lab Sample ID: MB 480-211203/1-A

Matrix: Water

Analysis Batch: 211582

Client Sample ID:	Method Blank
-------------------	--------------

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 211203

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.50	0.18	ug/L		10/31/14 08:16	11/03/14 09:34	1
PCB-1221	ND		0.50	0.18	ug/L		10/31/14 08:16	11/03/14 09:34	1
PCB-1232	ND		0.50	0.18	ug/L		10/31/14 08:16	11/03/14 09:34	1
PCB-1242	ND		0.50	0.18	ug/L		10/31/14 08:16	11/03/14 09:34	1
PCB-1248	ND		0.50	0.18	ug/L		10/31/14 08:16	11/03/14 09:34	1
PCB-1254	ND		0.50	0.25	ug/L		10/31/14 08:16	11/03/14 09:34	1
PCB-1260	ND		0.50	0.25	ug/L		10/31/14 08:16	11/03/14 09:34	1

	МВ	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	82		23 - 127	10/31/14 08:16	11/03/14 09:34	1
DCB Decachlorobiphenyl	63		19 - 126	10/31/14 08:16	11/03/14 09:34	1

Lab Sample ID: LCS 480-211203/2-A

Matrix: Water

Analysis Batch: 211582

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 211203

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	 4.00	3.91		ug/L		98	51 - 137	
PCB-1260	4.00	2.91		ua/L		73	45 - 139	

	LCS	LCS	;
		_	

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	80		23 - 127
DCB Decachlorobiphenyl	56		19 - 126

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-210955/1-A

Matrix: Water

Analysis Batch: 211649

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 210955

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		10/30/14 08:54	10/31/14 16:47	1
Barium	ND		0.0020	0.00070	mg/L		10/30/14 08:54	10/31/14 16:47	1
Cadmium	ND		0.0020	0.00050	mg/L		10/30/14 08:54	10/31/14 16:47	1
Chromium	ND		0.0040	0.0010	mg/L		10/30/14 08:54	10/31/14 16:47	1
Lead	0.00316	J	0.010	0.0030	mg/L		10/30/14 08:54	10/31/14 16:47	1
Selenium	ND		0.025	0.0087	mg/L		10/30/14 08:54	10/31/14 16:47	1
Silver	ND		0.0060	0.0017	mg/L		10/30/14 08:54	10/31/14 16:47	1

Lab Sample ID: LCS 480-210955/2-A

Matrix: Water

Analysis Batch: 211649

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 210955

7								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.201	0.169		mg/L		84	80 - 120	
Barium	0.200	0.184		mg/L		92	80 _ 120	
Cadmium	0.201	0.171		mg/L		85	80 _ 120	
Chromium	0.201	0.171		mg/L		85	80 _ 120	
Lead	0.201	0.174		mg/L		87	80 - 120	
Selenium	0.201	0.169		mg/L		84	80 _ 120	
Silver	0.0500	0.0434		mg/L		87	80 - 120	

Lab Sample ID: LCSD 480-210955/3-A

Matrix: Water

Analysis Batch: 211649

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 210955

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	0.201	0.186		mg/L		93	80 - 120	10	20
Barium	0.200	0.198		mg/L		99	80 - 120	8	20
Cadmium	0.201	0.184		mg/L		92	80 - 120	7	20
Chromium	0.201	0.185		mg/L		92	80 - 120	8	20
Lead	0.201	0.188		mg/L		94	80 - 120	7	20
Selenium	0.201	0.181		mg/L		90	80 - 120	7	20
Silver	0.0500	0.0463		mg/L		93	80 - 120	6	20

Lab Sample ID: MB 480-211057/1-A

Matrix: Solid

Analysis Batch: 211655

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 211057

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		1.9	0.38	mg/Kg		10/30/14 14:48	10/31/14 23:31	1
Barium	ND		0.47	0.10	mg/Kg		10/30/14 14:48	10/31/14 23:31	1
Cadmium	0.0492	J	0.19	0.028	mg/Kg		10/30/14 14:48	10/31/14 23:31	1
Chromium	ND		0.47	0.19	mg/Kg		10/30/14 14:48	10/31/14 23:31	1
Lead	ND		0.95	0.23	mg/Kg		10/30/14 14:48	10/31/14 23:31	1
Selenium	ND		3.8	0.38	mg/Kg		10/30/14 14:48	10/31/14 23:31	1
Silver	ND		0.57	0.19	mg/Kg		10/30/14 14:48	10/31/14 23:31	1

Client: Woodard & Curran Inc Project/Site: Rouses Point

Analysis Patch: 211655

Matrix: Solid

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCSSRM 480-211057/2-A

Client Sample ID: Lab Control Sample

Olient Gample ID. Lab Control Gample	•
Prep Type: Total/NA	•
Prep Batch: 211057	•

Analysis Batch: 211655							Ргер ва	tcn: 21105/
	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	150	138.1		mg/Kg		92.1	70.9 - 129.	
							8	
Barium	260	244.0		mg/Kg		93.7	73.7 - 126.	
							3	
Cadmium	151	137.0		mg/Kg		90.7	73.0 - 126.	
							3	
Chromium	116	105.4		mg/Kg		90.7	69.7 - 129.	
							9	
Lead	252	244.7		mg/Kg		96.9	75.6 - 124.	
							8	
Selenium	161	148.3		mg/Kg		92.1	67.3 - 132.	
							1	
Silver	44.0	41.15		mg/Kg		93.5	66.4 - 133.	
							9	

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-211568/1-A Client Sample ID: Method Blank

0.00020

MDL Unit

0.00012 mg/L

Matrix: Water

Analysis Batch: 211745 MB MB Prep Type: Total/NA

Analyzed

11/03/14 13:13

Prep Batch: 211568

Lab Sample ID: LCS 480-211568/2-A

Matrix: Water

Mercury

Analysis Batch: 211745

Client Sample ID: Lab Control Sample

Prepared

11/03/14 08:55

Prep Type: Total/NA

Prep Batch: 211568

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits 0.00667 0.00673 Mercury mg/L 101 80 - 120

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)

Result Qualifier

ND

Lab Sample ID: MB 480-212109/1-A

Matrix: Solid

Analysis Batch: 212204

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 212109

MB MB Result Qualifier RL Analyte MDL Unit Prepared Analyzed Dil Fac 0.019 11/05/14 10:40 Hg ND 0.0076 mg/Kg 11/05/14 12:06

Lab Sample ID: LCSSRM 480-212109/2-A

Matrix: Solid

Analysis Batch: 212204

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 212109

Spike LCSSRM LCSSRM %Rec. Analyte Added Result Qualifier Unit %Rec Limits Hg 5.76 4.96 mg/Kg 86.1 51.0 - 148.

8

QC Sample Results

Client: Woodard & Curran Inc TestAmerica Job ID: 480-70307-1 Project/Site: Rouses Point

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique) (Continued)

	Sample Sample	Spike	MS MS	%Rec.
Analysis Batch: 212204				Prep Batch: 212109
Matrix: Solid				Prep Type: Total/NA
Lab Sample ID: 480-70307-3 MS				Client Sample ID: BLDG17C-SS-PAD-01

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Hg	0.012	J	0.342	0.334		mg/Kg	-	94	80 - 120	

Lab Sample ID: 480-70307-3 MSI	D						Client S	ample I	D: BLDG1	7C-SS-P	AD-01
Matrix: Solid									Prep T	ype: To	tal/NA
Analysis Batch: 212204									Prep	Batch: 2	12109
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ha	0.012	J	0.340	0.346		ma/Ka	<u> </u>	98	80 - 120		20

Lab Sample ID: MB 480-214371/1-A						Client Samp	le ID: Method	Blank
Matrix: Solid						1	Prep Type: To	tal/NA
Analysis Batch: 214600							Prep Batch: 2	214371
MB	MB							
Analyte Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Hg	ND	0.020	0.0081 mg/Kg	11/17/14 10:55	11/17/14 15:12	1
Lab Sample ID: LCSSRM 480-2143 Matrix: Solid Analysis Batch: 214600	71/2-A			Client Sample II	D: Lab Control S Prep Type: To Prep Batch: 2	otal/NA
					A/ =	

Analysis Batch: 214600							Prep	Batch: 2	41437 1
	Spike	LCSSRM	LCSSRM				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Hg	5.76	6.06		mg/Kg	_	105.2	51.0 - 148.		
							0		

QC Association Summary

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70307-1

GC/MS VOA

Prep Batch: 210844

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-3	BLDG17C-SS-PAD-01	Total/NA	Solid	5035A	
480-70307-4	BLDG17C-SS-PAD-01A	Total/NA	Solid	5035A	
480-70307-5	BLDG17C-SS-PAD-02	Total/NA	Solid	5035A	
480-70307-6	BLDG17C-SS-PAD-03	Total/NA	Solid	5035A	
480-70307-7	BLDG17C-SS-SUMP-01	Total/NA	Solid	5035A	
480-70307-10	BLDG24-SS-FLOOR-01	Total/NA	Solid	5035A	
480-70307-13	BLDG24-SS-SUMP-01	Total/NA	Solid	5035A	

Analysis Batch: 211821

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-2	BLDG17C-SS-TRUCK-01	Total/NA	Solid	8260C	212007
480-70307-3	BLDG17C-SS-PAD-01	Total/NA	Solid	8260C	210844
480-70307-5	BLDG17C-SS-PAD-02	Total/NA	Solid	8260C	210844
480-70307-6	BLDG17C-SS-PAD-03	Total/NA	Solid	8260C	210844
480-70307-7	BLDG17C-SS-SUMP-01	Total/NA	Solid	8260C	210844
480-70307-10	BLDG24-SS-FLOOR-01	Total/NA	Solid	8260C	210844
480-70307-11	BLDG24-SS-FLOOR-02	Total/NA	Solid	8260C	212007
480-70307-12	BLDG24-SS-FLOOR-03	Total/NA	Solid	8260C	212007
480-70307-13	BLDG24-SS-SUMP-01	Total/NA	Solid	8260C	210844
LCS 480-211821/5	Lab Control Sample	Total/NA	Solid	8260C	
MB 480-211821/8	Method Blank	Total/NA	Solid	8260C	

Prep Batch: 212007

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-2	BLDG17C-SS-TRUCK-01	Total/NA	Solid	5035A	
480-70307-11	BLDG24-SS-FLOOR-02	Total/NA	Solid	5035A	
480-70307-12	BLDG24-SS-FLOOR-03	Total/NA	Solid	5035A	

Analysis Batch: 212086

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-4	BLDG17C-SS-PAD-01A	Total/NA	Solid	8260C	210844
LCS 480-212086/5	Lab Control Sample	Total/NA	Solid	8260C	
MB 480-212086/8	Method Blank	Total/NA	Solid	8260C	

Analysis Batch: 212423

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-8	TRIP BLANK	Total/NA	Water	8260C	
LCS 480-212423/5	Lab Control Sample	Total/NA	Water	8260C	
MB 480-212423/7	Method Blank	Total/NA	Water	8260C	

GC/MS Semi VOA

Prep Batch: 210924

Lab Sample ID 480-70307-9	Client Sample ID EB-01	Prep Type Total/NA	Matrix Water	Method 3510C	Prep Batch
LCS 480-210924/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 480-210924/1-A	Method Blank	Total/NA	Water	3510C	

Client: Woodard & Curran Inc Project/Site: Rouses Point

GC/MS Semi VOA (Continued)

Prep Batch: 210939

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-2	BLDG17C-SS-TRUCK-01	Total/NA	Solid	3550C	
480-70307-3	BLDG17C-SS-PAD-01	Total/NA	Solid	3550C	
480-70307-3 MS	BLDG17C-SS-PAD-01	Total/NA	Solid	3550C	
480-70307-3 MSD	BLDG17C-SS-PAD-01	Total/NA	Solid	3550C	
480-70307-4	BLDG17C-SS-PAD-01A	Total/NA	Solid	3550C	
480-70307-5	BLDG17C-SS-PAD-02	Total/NA	Solid	3550C	
480-70307-6	BLDG17C-SS-PAD-03	Total/NA	Solid	3550C	
480-70307-7	BLDG17C-SS-SUMP-01	Total/NA	Solid	3550C	
LCS 480-210939/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-210939/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 211378

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-210924/2-A	Lab Control Sample	Total/NA	Water	8270D	210924
MB 480-210924/1-A	Method Blank	Total/NA	Water	8270D	210924

Analysis Batch: 211472

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-9	EB-01	Total/NA	Water	8270D	210924

Analysis Batch: 211661

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-2	BLDG17C-SS-TRUCK-01	Total/NA	Solid	8270D	210939
480-70307-3	BLDG17C-SS-PAD-01	Total/NA	Solid	8270D	210939
480-70307-3 MS	BLDG17C-SS-PAD-01	Total/NA	Solid	8270D	210939
480-70307-3 MSD	BLDG17C-SS-PAD-01	Total/NA	Solid	8270D	210939
480-70307-4	BLDG17C-SS-PAD-01A	Total/NA	Solid	8270D	210939
480-70307-5	BLDG17C-SS-PAD-02	Total/NA	Solid	8270D	210939
480-70307-6	BLDG17C-SS-PAD-03	Total/NA	Solid	8270D	210939
480-70307-7	BLDG17C-SS-SUMP-01	Total/NA	Solid	8270D	210939
LCS 480-210939/2-A	Lab Control Sample	Total/NA	Solid	8270D	210939
MB 480-210939/1-A	Method Blank	Total/NA	Solid	8270D	210939

GC VOA

Analysis Batch: 212471

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-9	EB-01	Total/NA	Water	8015D	
LCS 480-212471/4	Lab Control Sample	Total/NA	Water	8015D	
LCSD 480-212471/5	Lab Control Sample Dup	Total/NA	Water	8015D	
MB 480-212471/3	Method Blank	Total/NA	Water	8015D	

Leach Batch: 212715

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-2	BLDG17C-SS-TRUCK-01	Soluble	Solid	DI Leach	_
480-70307-2 MS	BLDG17C-SS-TRUCK-01	Soluble	Solid	DI Leach	
480-70307-2 MSD	BLDG17C-SS-TRUCK-01	Soluble	Solid	DI Leach	
480-70307-3	BLDG17C-SS-PAD-01	Soluble	Solid	DI Leach	
480-70307-4	BLDG17C-SS-PAD-01A	Soluble	Solid	DI Leach	
480-70307-5	BLDG17C-SS-PAD-02	Soluble	Solid	DI Leach	

TestAmerica Buffalo

Page 75 of 89

9

6

_

12

13

14

Client: Woodard & Curran Inc Project/Site: Rouses Point

GC VOA (Continued)

Leach Batch: 212715 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Pr	ep Batch
480-70307-6	BLDG17C-SS-PAD-03	Soluble	Solid	DI Leach	
480-70307-7	BLDG17C-SS-SUMP-01	Soluble	Solid	DI Leach	
LCS 480-212715/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
MB 480-212715/1-A	Method Blank	Soluble	Solid	DI Leach	

Analysis Batch: 212768

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-2	BLDG17C-SS-TRUCK-01	Soluble	Solid	8015D	212715
480-70307-2 MS	BLDG17C-SS-TRUCK-01	Soluble	Solid	8015D	212715
480-70307-2 MSD	BLDG17C-SS-TRUCK-01	Soluble	Solid	8015D	212715
480-70307-3	BLDG17C-SS-PAD-01	Soluble	Solid	8015D	212715
480-70307-4	BLDG17C-SS-PAD-01A	Soluble	Solid	8015D	212715
480-70307-5	BLDG17C-SS-PAD-02	Soluble	Solid	8015D	212715
480-70307-6	BLDG17C-SS-PAD-03	Soluble	Solid	8015D	212715
480-70307-7	BLDG17C-SS-SUMP-01	Soluble	Solid	8015D	212715
LCS 480-212715/2-A	Lab Control Sample	Soluble	Solid	8015D	212715
MB 480-212715/1-A	Method Blank	Soluble	Solid	8015D	212715

GC Semi VOA

Prep Batch: 211017

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-2	BLDG17C-SS-TRUCK-01	Total/NA	Solid	3550C	<u> </u>
480-70307-2 MS	BLDG17C-SS-TRUCK-01	Total/NA	Solid	3550C	
480-70307-2 MSD	BLDG17C-SS-TRUCK-01	Total/NA	Solid	3550C	
480-70307-3	BLDG17C-SS-PAD-01	Total/NA	Solid	3550C	
480-70307-4	BLDG17C-SS-PAD-01A	Total/NA	Solid	3550C	
480-70307-5	BLDG17C-SS-PAD-02	Total/NA	Solid	3550C	
480-70307-6	BLDG17C-SS-PAD-03	Total/NA	Solid	3550C	
480-70307-7	BLDG17C-SS-SUMP-01	Total/NA	Solid	3550C	
LCS 480-211017/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-211017/1-A	Method Blank	Total/NA	Solid	3550C	

Prep Batch: 211203

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-9	EB-01	Total/NA	Water	3510C	
LCS 480-211203/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 480-211203/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 211223

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-2	BLDG17C-SS-TRUCK-01	Total/NA	Solid	8082A	211017
480-70307-2 MS	BLDG17C-SS-TRUCK-01	Total/NA	Solid	8082A	211017
480-70307-2 MSD	BLDG17C-SS-TRUCK-01	Total/NA	Solid	8082A	211017
480-70307-3	BLDG17C-SS-PAD-01	Total/NA	Solid	8082A	211017
480-70307-4	BLDG17C-SS-PAD-01A	Total/NA	Solid	8082A	211017
480-70307-5	BLDG17C-SS-PAD-02	Total/NA	Solid	8082A	211017
480-70307-6	BLDG17C-SS-PAD-03	Total/NA	Solid	8082A	211017
480-70307-7	BLDG17C-SS-SUMP-01	Total/NA	Solid	8082A	211017
LCS 480-211017/2-A	Lab Control Sample	Total/NA	Solid	8082A	211017

TestAmerica Buffalo

Page 76 of 89

QC Association Summary

Client: Woodard & Curran Inc Project/Site: Rouses Point TestAmerica Job ID: 480-70307-1

GC Semi VOA (Continued)

Analysis Batch: 211223 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-211017/1-A	Method Blank	Total/NA	Solid	8082A	211017

Analysis Batch: 211582

Lab Sa	ample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70	0307-9	EB-01	Total/NA	Water	8082A	211203
LCS 48	80-211203/2-A	Lab Control Sample	Total/NA	Water	8082A	211203
MB 48	0-211203/1-A	Method Blank	Total/NA	Water	8082A	211203

Metals

Prep Batch: 210955

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-9	EB-01	Total/NA	Water	3005A	
LCS 480-210955/2-A	Lab Control Sample	Total/NA	Water	3005A	
LCSD 480-210955/3-A	Lab Control Sample Dup	Total/NA	Water	3005A	
MB 480-210955/1-A	Method Blank	Total/NA	Water	3005A	

Prep Batch: 211057

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-2	BLDG17C-SS-TRUCK-01	Total/NA	Solid	3050B	-
480-70307-3	BLDG17C-SS-PAD-01	Total/NA	Solid	3050B	
480-70307-4	BLDG17C-SS-PAD-01A	Total/NA	Solid	3050B	
480-70307-5	BLDG17C-SS-PAD-02	Total/NA	Solid	3050B	
480-70307-6	BLDG17C-SS-PAD-03	Total/NA	Solid	3050B	
480-70307-7	BLDG17C-SS-SUMP-01	Total/NA	Solid	3050B	
LCSSRM 480-211057/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-211057/1-A	Method Blank	Total/NA	Solid	3050B	

Prep Batch: 211568

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-9	EB-01	Total/NA	Water	7470A	
LCS 480-211568/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-211568/1-A	Method Blank	Total/NA	Water	7470A	

Analysis Batch: 211649

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-9	EB-01	Total/NA	Water	6010C	210955
LCS 480-210955/2-A	Lab Control Sample	Total/NA	Water	6010C	210955
LCSD 480-210955/3-A	Lab Control Sample Dup	Total/NA	Water	6010C	210955
MB 480-210955/1-A	Method Blank	Total/NA	Water	6010C	210955

Analysis Batch: 211655

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-2	BLDG17C-SS-TRUCK-01	Total/NA	Solid	6010C	211057
480-70307-3	BLDG17C-SS-PAD-01	Total/NA	Solid	6010C	211057
480-70307-4	BLDG17C-SS-PAD-01A	Total/NA	Solid	6010C	211057
480-70307-5	BLDG17C-SS-PAD-02	Total/NA	Solid	6010C	211057
480-70307-6	BLDG17C-SS-PAD-03	Total/NA	Solid	6010C	211057
480-70307-7	BLDG17C-SS-SUMP-01	Total/NA	Solid	6010C	211057
LCSSRM 480-211057/2-A	Lab Control Sample	Total/NA	Solid	6010C	211057

TestAmerica Buffalo

Page 77 of 89

3

4

J

7

40

13

14

Client: Woodard & Curran Inc Project/Site: Rouses Point

Metals (Continued)

Analysis Batch: 211655 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-211057/1-A	Method Blank	Total/NA	Solid	6010C	211057

Analysis Batch: 211745

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-9	EB-01	Total/NA	Water	7470A	211568
LCS 480-211568/2-A	Lab Control Sample	Total/NA	Water	7470A	211568
MB 480-211568/1-A	Method Blank	Total/NA	Water	7470A	211568

Analysis Batch: 211874

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-2	BLDG17C-SS-TRUCK-01	Total/NA	Solid	6010C	211057
480-70307-3	BLDG17C-SS-PAD-01	Total/NA	Solid	6010C	211057
480-70307-4	BLDG17C-SS-PAD-01A	Total/NA	Solid	6010C	211057
480-70307-5	BLDG17C-SS-PAD-02	Total/NA	Solid	6010C	211057
480-70307-6	BLDG17C-SS-PAD-03	Total/NA	Solid	6010C	211057
480-70307-7	BLDG17C-SS-SUMP-01	Total/NA	Solid	6010C	211057

Prep Batch: 212109

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-3	BLDG17C-SS-PAD-01	Total/NA	Solid	7471B	 :
480-70307-3 MS	BLDG17C-SS-PAD-01	Total/NA	Solid	7471B	
480-70307-3 MSD	BLDG17C-SS-PAD-01	Total/NA	Solid	7471B	
480-70307-4	BLDG17C-SS-PAD-01A	Total/NA	Solid	7471B	
480-70307-5	BLDG17C-SS-PAD-02	Total/NA	Solid	7471B	
480-70307-6	BLDG17C-SS-PAD-03	Total/NA	Solid	7471B	
480-70307-7	BLDG17C-SS-SUMP-01	Total/NA	Solid	7471B	
LCSSRM 480-212109/2-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 480-212109/1-A	Method Blank	Total/NA	Solid	7471B	

Analysis Batch: 212204

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-3	BLDG17C-SS-PAD-01	Total/NA	Solid	7471B	212109
480-70307-3 MS	BLDG17C-SS-PAD-01	Total/NA	Solid	7471B	212109
480-70307-3 MSD	BLDG17C-SS-PAD-01	Total/NA	Solid	7471B	212109
480-70307-4	BLDG17C-SS-PAD-01A	Total/NA	Solid	7471B	212109
480-70307-5	BLDG17C-SS-PAD-02	Total/NA	Solid	7471B	212109
480-70307-6	BLDG17C-SS-PAD-03	Total/NA	Solid	7471B	212109
480-70307-7	BLDG17C-SS-SUMP-01	Total/NA	Solid	7471B	212109
LCSSRM 480-212109/2-A	Lab Control Sample	Total/NA	Solid	7471B	212109
MB 480-212109/1-A	Method Blank	Total/NA	Solid	7471B	212109

Prep Batch: 214371

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-2	BLDG17C-SS-TRUCK-01	Total/NA	Solid	7471B	
LCSSRM 480-214371/2-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 480-214371/1-A	Method Blank	Total/NA	Solid	7471B	

Analysis Batch: 214600

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-2	BLDG17C-SS-TRUCK-01	Total/NA	Solid	7471B	214371
LCSSRM 480-214371/2-A	Lab Control Sample	Total/NA	Solid	7471B	214371

TestAmerica Buffalo

Page 78 of 89

6

3

4

6

0

1 በ

13

14

QC Association Summary

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70307-1

Metals (Continued)

Analysis Batch: 214600 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-214371/1-A	Method Blank	Total/NA	Solid	7471B	214371

General Chemistry

Analysis Batch: 210862

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-2	BLDG17C-SS-TRUCK-01	Total/NA	Solid	Moisture	
480-70307-3	BLDG17C-SS-PAD-01	Total/NA	Solid	Moisture	
480-70307-4	BLDG17C-SS-PAD-01A	Total/NA	Solid	Moisture	
480-70307-5	BLDG17C-SS-PAD-02	Total/NA	Solid	Moisture	
480-70307-6	BLDG17C-SS-PAD-03	Total/NA	Solid	Moisture	
480-70307-7	BLDG17C-SS-SUMP-01	Total/NA	Solid	Moisture	

Analysis Batch: 210985

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70307-10	BLDG24-SS-FLOOR-01	Total/NA	Solid	Moisture	
480-70307-11	BLDG24-SS-FLOOR-02	Total/NA	Solid	Moisture	
480-70307-12	BLDG24-SS-FLOOR-03	Total/NA	Solid	Moisture	
480-70307-13	BLDG24-SS-SUMP-01	Total/NA	Solid	Moisture	

TestAmerica Buffalo

Client: Woodard & Curran Inc Project/Site: Rouses Point

Client Sample ID: BLDG17C-SS-TRUCK-01

Lab Sample ID: 480-70307-2

Date Collected: 10/28/14 10:30 Date Received: 10/29/14 09:00

Matrix: Solid Percent Solids: 87.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			212007	11/04/14 16:36	NMD1	TAL BUF
Total/NA	Analysis	8260C		1	211821	11/04/14 22:44	NMD1	TAL BUF
Total/NA	Prep	3550C			210939	10/30/14 08:12	CAM	TAL BUF
Total/NA	Analysis	8270D		1	211661	11/03/14 17:51	DMR	TAL BUF
Soluble	Leach	DI Leach			212715	11/07/14 09:31	DGB	TAL BUF
Soluble	Analysis	8015D		1	212768	11/07/14 12:40	DGB	TAL BUF
Total/NA	Prep	3550C			211017	10/30/14 10:33	GVF	TAL BUF
Total/NA	Analysis	8082A		1	211223	10/31/14 17:36	DLE	TAL BUF
Total/NA	Prep	3050B			211057	10/30/14 14:48	LED	TAL BUF
Total/NA	Analysis	6010C		1	211655	11/01/14 00:27	LMH	TAL BUF
Total/NA	Prep	3050B			211057	10/30/14 14:48	LED	TAL BUF
Total/NA	Analysis	6010C		1	211874	11/03/14 14:01	LMH	TAL BUF
Total/NA	Prep	7471B			214371	11/17/14 10:55	TAS	TAL BUF
Total/NA	Analysis	7471B		1	214600	11/17/14 15:23	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	210862	10/29/14 19:25	MAC	TAL BUF

Client Sample ID: BLDG17C-SS-PAD-01 Lab Sample ID: 480-70307-3

Date Collected: 10/28/14 09:30 Date Received: 10/29/14 09:00

Matrix: Solid Percent Solids: 93.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			210844	10/29/14 16:33	CXM	TAL BUF
Total/NA	Analysis	8260C		1	211821	11/04/14 16:20	NMD1	TAL BUF
Total/NA	Prep	3550C			210939	10/30/14 08:12	CAM	TAL BUF
Total/NA	Analysis	8270D		1	211661	11/03/14 13:52	DMR	TAL BUF
Soluble	Leach	DI Leach			212715	11/07/14 09:31	DGB	TAL BUF
Soluble	Analysis	8015D		1	212768	11/07/14 13:03	DGB	TAL BUF
Total/NA	Prep	3550C			211017	10/30/14 10:33	GVF	TAL BUF
Total/NA	Analysis	8082A		1	211223	10/31/14 17:51	DLE	TAL BUF
Total/NA	Prep	3050B			211057	10/30/14 14:48	LED	TAL BUF
Total/NA	Analysis	6010C		1	211655	11/01/14 00:30	LMH	TAL BUF
Total/NA	Prep	3050B			211057	10/30/14 14:48	LED	TAL BUF
Total/NA	Analysis	6010C		1	211874	11/03/14 14:04	LMH	TAL BUF
Total/NA	Prep	7471B			212109	11/05/14 10:40	LRK	TAL BUF
Total/NA	Analysis	7471B		1	212204	11/05/14 12:09	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	210862	10/29/14 19:25	MAC	TAL BUF

Client Sample ID: BLDG17C-SS-PAD-01A

Lab Sample ID: 480-70307-4

Date Collected: 10/28/14 09:30 Date Received: 10/29/14 09:00

Matrix: Solid Percent Solids: 93.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			210844	10/29/14 16:33	CXM	TAL BUF

TestAmerica Buffalo

Client: Woodard & Curran Inc Project/Site: Rouses Point

Lab Sample ID: 480-70307-4

Matrix: Solid Percent Solids: 93.5

Client Sample ID: BLDG17C-SS-PAD-01A

Date Collected: 10/28/14 09:30 Date Received: 10/29/14 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	212086	11/05/14 12:21	NMD1	TAL BUF
Total/NA	Prep	3550C			210939	10/30/14 08:12	CAM	TAL BUF
Total/NA	Analysis	8270D		1	211661	11/03/14 18:15	DMR	TAL BUF
Soluble	Leach	DI Leach			212715	11/07/14 09:31	DGB	TAL BUF
Soluble	Analysis	8015D		1	212768	11/07/14 13:11	DGB	TAL BUF
Total/NA	Prep	3550C			211017	10/30/14 10:33	GVF	TAL BUF
Total/NA	Analysis	8082A		1	211223	10/31/14 18:06	DLE	TAL BUF
Total/NA	Prep	3050B			211057	10/30/14 14:48	LED	TAL BUF
Total/NA	Analysis	6010C		1	211655	11/01/14 00:33	LMH	TAL BUF
Total/NA	Prep	3050B			211057	10/30/14 14:48	LED	TAL BUF
Total/NA	Analysis	6010C		1	211874	11/03/14 14:07	LMH	TAL BUF
Total/NA	Prep	7471B			212109	11/05/14 10:40	LRK	TAL BUF
Total/NA	Analysis	7471B		1	212204	11/05/14 12:17	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	210862	10/29/14 19:25	MAC	TAL BUF

Client Sample ID: BLDG17C-SS-PAD-02

Date Collected: 10/28/14 13:00 Date Received: 10/29/14 09:00

Lab Sample ID: 480-70307-5

Matrix: Solid Percent Solids: 93.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			210844	10/29/14 16:33	CXM	TAL BUF
Total/NA	Analysis	8260C		1	211821	11/04/14 17:12	NMD1	TAL BUF
Total/NA	Prep	3550C			210939	10/30/14 08:12	CAM	TAL BUF
Total/NA	Analysis	8270D		1	211661	11/03/14 18:39	DMR	TAL BUF
Soluble	Leach	DI Leach			212715	11/07/14 09:31	DGB	TAL BUF
Soluble	Analysis	8015D		5	212768	11/07/14 13:59	DGB	TAL BUF
Total/NA	Prep	3550C			211017	10/30/14 10:33	GVF	TAL BUF
Total/NA	Analysis	8082A		1	211223	10/31/14 18:20	DLE	TAL BUF
Total/NA	Prep	3050B			211057	10/30/14 14:48	LED	TAL BUF
Total/NA	Analysis	6010C		1	211655	11/01/14 00:35	LMH	TAL BUF
Total/NA	Prep	3050B			211057	10/30/14 14:48	LED	TAL BUF
Total/NA	Analysis	6010C		1	211874	11/03/14 14:09	LMH	TAL BUF
Total/NA	Prep	7471B			212109	11/05/14 10:40	LRK	TAL BUI
Total/NA	Analysis	7471B		1	212204	11/05/14 12:18	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	210862	10/29/14 19:25	MAC	TAL BU

Client Sample ID: BLDG17C-SS-PAD-03

Lab Sample ID: 480-70307-6 Date Collected: 10/28/14 15:00 Matrix: Solid Date Received: 10/29/14 09:00 Percent Solids: 93.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			210844	10/29/14 16:33	CXM	TAL BUF
Total/NA	Analysis	8260C		1	211821	11/04/14 17:37	NMD1	TAL BUF

TestAmerica Buffalo

Page 81 of 89

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 10/28/14 15:00

Date Received: 10/29/14 09:00

Client Sample ID: BLDG17C-SS-PAD-03

Matrix: Solid

Lab Sample ID: 480-70307-6

Percent Solids: 93.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			210939	10/30/14 08:12	CAM	TAL BUF
Total/NA	Analysis	8270D		1	211661	11/03/14 19:03	DMR	TAL BUF
Soluble	Leach	DI Leach			212715	11/07/14 09:31	DGB	TAL BUF
Soluble	Analysis	8015D		10	212768	11/07/14 14:07	DGB	TAL BUF
Total/NA	Prep	3550C			211017	10/30/14 10:33	GVF	TAL BUF
Total/NA	Analysis	8082A		1	211223	10/31/14 18:35	DLE	TAL BUF
Total/NA	Prep	3050B			211057	10/30/14 14:48	LED	TAL BUF
Total/NA	Analysis	6010C		1	211655	11/01/14 00:38	LMH	TAL BUF
Total/NA	Prep	3050B			211057	10/30/14 14:48	LED	TAL BUF
Total/NA	Analysis	6010C		1	211874	11/03/14 14:12	LMH	TAL BUF
Total/NA	Prep	7471B			212109	11/05/14 10:40	LRK	TAL BUF
Total/NA	Analysis	7471B		1	212204	11/05/14 12:20	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	210862	10/29/14 19:25	MAC	TAL BUF

Client Sample ID: BLDG17C-SS-SUMP-01

Date Collected: 10/28/14 10:00 Date Received: 10/29/14 09:00

Lab Sample ID: 480-70307-7

Matrix: Solid Percent Solids: 97.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			210844	10/29/14 16:33	CXM	TAL BUF
Total/NA	Analysis	8260C		1	211821	11/04/14 18:03	NMD1	TAL BUF
Total/NA	Prep	3550C			210939	10/30/14 08:12	CAM	TAL BUF
Total/NA	Analysis	8270D		1	211661	11/03/14 19:27	DMR	TAL BUF
Soluble	Leach	DI Leach			212715	11/07/14 09:31	DGB	TAL BUF
Soluble	Analysis	8015D		1	212768	11/07/14 13:19	DGB	TAL BUF
Total/NA	Prep	3550C			211017	10/30/14 10:33	GVF	TAL BUF
Total/NA	Analysis	8082A		1	211223	10/31/14 18:50	DLE	TAL BUF
Total/NA	Prep	3050B			211057	10/30/14 14:48	LED	TAL BUF
Total/NA	Analysis	6010C		1	211655	11/01/14 00:41	LMH	TAL BUF
Total/NA	Prep	3050B			211057	10/30/14 14:48	LED	TAL BUF
Total/NA	Analysis	6010C		1	211874	11/03/14 14:23	LMH	TAL BUF
Total/NA	Prep	7471B			212109	11/05/14 10:40	LRK	TAL BUF
Total/NA	Analysis	7471B		1	212204	11/05/14 12:22	LRK	TAL BUF
Total/NA	Analysis	Moisture		1	210862	10/29/14 19:25	MAC	TAL BUF

Client Sample ID: TRIP BLANK

Date Collected: 10/28/14 00:00

Date Received: 10/29/14 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	212423	11/06/14 19:42	CDC	TAL BUF

TestAmerica Buffalo

Lab Sample ID: 480-70307-8

Page 82 of 89

12/5/2014

Matrix: Water

Client: Woodard & Curran Inc Project/Site: Rouses Point

Lab Sample ID: 480-70307-9

Matrix: Water

Client Sample ID: EB-01

Date Collected: 10/28/14 16:30 Date Received: 10/29/14 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			210924	10/30/14 07:47	TRG	TAL BUF
Total/NA	Analysis	8270D		1	211472	11/01/14 17:13	PJQ	TAL BUF
Total/NA	Analysis	8015D		1	212471	11/06/14 11:32	DGB	TAL BUF
Total/NA	Prep	3510C			211203	10/31/14 08:16	JLS	TAL BUF
Total/NA	Analysis	8082A		1	211582	11/03/14 11:22	DLE	TAL BUF
Total/NA	Prep	3005A			210955	10/30/14 08:54	TRP	TAL BUF
Total/NA	Analysis	6010C		1	211649	10/31/14 17:49	LMH	TAL BUF
Total/NA	Prep	7470A			211568	11/03/14 08:55	LRK	TAL BUF
Total/NA	Analysis	7470A		1	211745	11/03/14 13:38	LRK	TAL BUF

Client Sample ID: BLDG24-SS-FLOOR-01

Date Collected: 10/28/14 11:15

Date Received: 10/29/14 09:00

Lab Sample ID: 480-70307-10

Matrix: Solid

Lab Sample ID: 480-70307-11

Percent Solids: 91.7

Matrix: Solid

Percent Solids: 93.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			210844	10/29/14 16:33	CXM	TAL BUF
Total/NA	Analysis	8260C		1	211821	11/04/14 18:29	NMD1	TAL BUF
Total/NA	Analysis	Moisture		1	210985	10/30/14 09:31	NMD1	TAL BUF

Client Sample ID: BLDG24-SS-FLOOR-02

Date Collected: 10/28/14 11:30

Date Received: 10/29/14 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			212007	11/04/14 16:36	NMD1	TAL BUF
Total/NA	Analysis	8260C		1	211821	11/04/14 23:10	NMD1	TAL BUF
Total/NA	Analysis	Moisture		1	210985	10/30/14 09:31	NMD1	TAL BUF

Client Sample ID: BLDG24-SS-FLOOR-03

Date Collected: 10/28/14 11:45

Date Received: 10/29/14 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			212007	11/04/14 16:36	NMD1	TAL BUF
Total/NA	Analysis	8260C		1	211821	11/04/14 23:36	NMD1	TAL BUF
Total/NA	Analysis	Moisture		1	210985	10/30/14 09:31	NMD1	TAL BUF

9

11

13

14

15

Lab Sample ID: 480-70307-12

Matrix: Solid

Percent Solids: 94.3

Lab Chronicle

Client: Woodard & Curran Inc Project/Site: Rouses Point

Client Sample ID: BLDG24-SS-SUMP-01

TestAmerica Job ID: 480-70307-1

Lab Sample ID: 480-70307-13

Date Collected: 10/28/14 15:30 Matrix: Solid Date Received: 10/29/14 09:00 Percent Solids: 87.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			210844	10/29/14 16:33	CXM	TAL BUF
Total/NA	Analysis	8260C		1	211821	11/04/14 18:54	NMD1	TAL BUF
Total/NA	Analysis	Moisture		1	210985	10/30/14 09:31	NMD1	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70307-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

uthority	Program		EPA Region	Certification ID	Expiration Date
ew York	NELAP		2	10026	03-31-15
The following analytes a	are included in this report, bu	it certification is not off	ered by the governing a	authority:	
Analysis Method	Prep Method	Matrix	Analyt	e	
8015D		Solid	2-Buta	anol	
8015D		Solid	Isopro	pyl alcohol	
8015D		Solid	Metha	nol	
8015D		Solid	n-Buta	anol	
8015D		Solid	Propa	nol	
8015D		Water	2-Buta	anol	
8015D		Water	Isopro	pyl alcohol	
8015D		Water	Metha	nol	
8015D		Water	n-Buta	anol	
8015D		Water	Propa	nol	
8260C		Water	Tetrah	iydrofuran	
8260C	5035A	Solid	Chloro	odifluoromethane	
Moisture		Solid	Perce	nt Moisture	
Moisture		Solid	Perce	nt Solids	

3

5

6

8

11

12

IR

Method Summary

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70307-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
8015D	Nonhalogenated Organic Compounds - Direct Injection (GC)	SW846	TAL BUF
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
7471B	Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

3

4

_

10

13

14

Sample Summary

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70307-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-70307-2	BLDG17C-SS-TRUCK-01	Solid	10/28/14 10:30	10/29/14 09:00
480-70307-3	BLDG17C-SS-PAD-01	Solid	10/28/14 09:30	10/29/14 09:00
480-70307-4	BLDG17C-SS-PAD-01A	Solid	10/28/14 09:30	10/29/14 09:00
480-70307-5	BLDG17C-SS-PAD-02	Solid	10/28/14 13:00	10/29/14 09:00
480-70307-6	BLDG17C-SS-PAD-03	Solid	10/28/14 15:00	10/29/14 09:00
480-70307-7	BLDG17C-SS-SUMP-01	Solid	10/28/14 10:00	10/29/14 09:00
480-70307-8	TRIP BLANK	Water	10/28/14 00:00	10/29/14 09:00
480-70307-9	EB-01	Water	10/28/14 16:30	10/29/14 09:00
480-70307-10	BLDG24-SS-FLOOR-01	Solid	10/28/14 11:15	10/29/14 09:00
480-70307-11	BLDG24-SS-FLOOR-02	Solid	10/28/14 11:30	10/29/14 09:00
480-70307-12	BLDG24-SS-FLOOR-03	Solid	10/28/14 11:45	10/29/14 09:00
480-70307-13	BLDG24-SS-SUMP-01	Solid	10/28/14 15:30	10/29/14 09:00

3

4

5

7

8

14

18 器之及1960

480-70307 Chain of Custody

Phone: 716.

Chain of Custody Record

Š

THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc.

TAL-8210 (0713) COC No: 8°-01 Date: Site Contact: SAME Other: RCRA ☐ DW ☐ NPDES Project Manager: JESSE Gr. AN OS atory Program:

Sample Specific Notes: COCs Sample Disposal (A fee may be assessed if samples are retained longer than 1 month For Lab Use Only: Sampler: NOE Job / SDG No.: Walk-in Client: -ab Sampling: Months ō Archive for MASON Carrier: FEDEX 3 9012D Lab Contact: Bをにはy Return to Client Perform MS / MSD (Y / N) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the TAT if different from Below STANDARD S \mathcal{A} ٥ J WORKING DAYS <u>ر</u> 8 Soil Matrix 3 3 Analysis Turnaround Time Unknown Type (C=Comp, G=Grab) Sample <u></u> 2 weeks 1 week 16- 604 2 days 1 day CATAGORY PO 630 1530 Sample Time 930 930 8 58 1130 1030 三ろ 000 CALENDAR DAYS 13° Poison B Sample Date 10/2B Tel/Fax: COPPAN servation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; Skin Irritant 0//290 Comments Section if the lab is to dispose of the sample. Special Instructions/QC Requirements & Comments 1206R-0 - PAD -OIA PAD-03 SUMP-O 60- 2007 - 55-460018 - FLOOK -OS - PAD - US 76-55-PAD-01 DV4 120024-55-FLOOR-01 なりが B-10-94-55-5001 20,75,0° Sample Identification Company Name: NOODARD + 15 SO HIGHLAND Client Contact City/State/Zip: CHESHIRE Flammable NVSDEC 2005 203-11-03 |Fax: トンス・ソフト・アダ | Project Name: アドロミア ossible Hazard Identification: 1360176-55-**「RIF 8258**ス SS-149078 Rouses EB-oi Non-Hazard 19078 BLOG Address: Phone: # O d Site:

SS

(0)29 (11) Date/Time:

Date/Time:

Company:

Received in Laboratory by:

Date/Time:

Date/Time: [730]

Company:

Company:

Company:

Company:

Concorded + Concord is 15/19/14

Custody Seals Intact

ed by:

elinquished by:

Relinquished by:

Company:

Therm ID No

Date/Time

Company:

Login Sample Receipt Checklist

Client: Woodard & Curran Inc Job Number: 480-70307-1

Login Number: 70307 List Source: TestAmerica Buffalo

List Number: 1 Creator: Janish, Carl M

oronton outnoing out in		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	W+C
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

5

9

111

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-70733-1 Client Project/Site: Rouses Point

For:

Woodard & Curran Inc 64 Maple Street Rouses Point, New York 12979

Attn: Don Weeks

Authorized for release by: 12/9/2014 9:26:43 AM

Joe Giacomazza, Project Management Assistant II joe.giacomazza@testamericainc.com

Designee for

Becky Mason, Project Manager II (413)572-4000 becky.mason@testamericainc.com

..... Links

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Woodard & Curran Inc Project/Site: Rouses Point TestAmerica Job ID: 480-70733-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	5
Detection Summary	7
Client Sample Results	8
Surrogate Summary	25
QC Sample Results	28
QC Association Summary	48
Lab Chronicle	52
Certification Summary	54
Method Summary	55
Sample Summary	56
Chain of Custody	57
Receipt Checklists	58

3

4

6

8

9

11

12

14

Definitions/Glossary

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70733-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description	
*	LCS or LCSD exceeds the control limits	

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS VOA TICs

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
*	LCS or LCSD exceeds the control limits
J	Indicates an Estimated Value for TICs
T	Result is a tentatively identified compound (TIC) and an estimated value.

GC/MS Semi VOA

Qualifier	Qualifier Description
*	LCS or LCSD exceeds the control limits
X	Surrogate is outside control limits
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
E	Result exceeded calibration range.

GC/MS Semi VOA TICs

Qualifier	Qualifier Description
J	Indicates an Estimated Value for TICs
N	Presumptive evidence of material.
Т	Result is a tentatively identified compound (TIC) and an estimated value.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Metals	

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

TestAmerica Buffalo

Page 3 of 58

Definitions/Glossary

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70733-1

Glossary (Continued)

Abbreviation These commonly used abbreviations may or may not be present in this report.

TEQ Toxicity Equivalent Quotient (Dioxin)

3

4

7

9

11

12

14

Case Narrative

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70733-1

Job ID: 480-70733-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-70733-1

Receipt

The samples were received on 11/5/2014 10:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.6° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 213546 recovered above the upper control limit for Carbon tetrachloride. The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported. The following samples are impacted: (CCVIS 480-213546/3).

Method(s) 8260C: The method blank for batch 213546 contained Methylene chloride above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 8260C: Due to the coelution of Ethyl Acetate with 2-Butanone in the full spike solution, 2-Butanone and/or Ethyl Acetate exceeded control limits in the laboratory control sample (LCS) and/or laboratory control sample duplicate (LCSD) associated with batch 213546.

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 213789 recovered above the upper control limit for Carbon Tetrachloride, Hexachlorobutadiene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: (CCVIS 480-213789/2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D: The continuing calibration verification (CCV) associated with batch 216823 recovered above the upper control limit for 3-Nitroaniline. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: (CCVIS 480-216823/3).

Method(s) 8270D: Surrogate recovery for the following sample(s) was outside control limits: EB-01 (480-70733-5). Re-analysis was performed with concurring results. The original analysis has been reported.

Method(s) 8270D: The laboratory control sample (LCS)) for batch 212534 recovered outside control limits for the following analytes: 3-Nitroaniline. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method(s) 8270D: The laboratory control sample (LCS) for batch 212534 recovered outside control limits for several analytes. These samples are beyond extraction holding times therefore the data has been reported. The LCS was re-analyzed with concurring results.

Method(s) 8270D: The analyte Benzaldehyde was outside of routine calibration acceptance limits for the initial calibration curve in analytical batch216530. As per the method, the calibration model is acceptable as long as no more than 20% of the analytes fail acceptance limits. All results for Benzaldehyde should be considered estimates. (CCVIS 480-216823/3)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

Method(s) 8015D: The following sample) were diluted due to the nature of the sample matrix: TFARM-SS-PAD-02 (480-70733-2), TFARM-SS-PAD-03 (480-70733-3). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8082A: All primary data is reported from the ZB-35 column.

Case Narrative

Client: Woodard & Curran Inc TestAmerica Job ID: 480-70733-1 Project/Site: Rouses Point

Job ID: 480-70733-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70733-1

Lab Sample ID: 480-70733-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	1.2	J	2.1	0.43	mg/Kg	1	₽	6010C	Total/NA
Barium	14.9		0.54	0.12	mg/Kg	1	₽	6010C	Total/NA
Cadmium	0.090	J	0.21	0.032	mg/Kg	1	₩	6010C	Total/NA
Chromium	3.3		0.54	0.21	mg/Kg	1	₽	6010C	Total/NA
Lead	3.1		1.1	0.26	mg/Kg	1	₽	6010C	Total/NA
Hg	0.0085	J	0.021	0.0085	mg/Kg	1	₽	7471B	Total/NA

Client Sample ID: TFARM-SS-PAD-02

Client Sample ID: TFARM-SS-SUMP-01

Lab Sample ID: 480-70733-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	54		25	4.2	ug/Kg	1	₩	8260C	Total/NA
Ethylbenzene	5.4		5.0	0.34	ug/Kg	1	₩	8260C	Total/NA
2-Butanone (MEK)	11	J *	25	1.8	ug/Kg	1	₩	8260C	Total/NA
Toluene	67		5.0	0.38	ug/Kg	1	₩	8260C	Total/NA
Xylenes, Total	12		9.9	0.84	ug/Kg	1	₩	8260C	Total/NA
Arsenic	2.4		2.1	0.42	mg/Kg	1	₽	6010C	Total/NA
Barium	21.4		0.52	0.12	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.15	J	0.21	0.031	mg/Kg	1	₽	6010C	Total/NA
Chromium	5.9		0.52	0.21	mg/Kg	1	₩	6010C	Total/NA
Lead	5.9		1.0	0.25	mg/Kg	1	₩	6010C	Total/NA
Hg	0.014	J	0.021	0.0087	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: TFARM-SS-PAD-03

Lab Sample ID: 480-70733-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	20	J	43	7.2	ug/Kg	1	₩	8260C	Total/NA
Ethylbenzene	0.65	J	8.5	0.59	ug/Kg	1	₽	8260C	Total/NA
Toluene	28		8.5	0.64	ug/Kg	1	₩	8260C	Total/NA
Xylenes, Total	2.0	J	17	1.4	ug/Kg	1	₽	8260C	Total/NA
Arsenic	2.1		2.1	0.42	mg/Kg	1	₽	6010C	Total/NA
Barium	19.7		0.53	0.12	mg/Kg	1	₽	6010C	Total/NA
Cadmium	0.14	J	0.21	0.032	mg/Kg	1	₽	6010C	Total/NA
Chromium	9.4		0.53	0.21	mg/Kg	1	₽	6010C	Total/NA
Lead	4.8		1.1	0.25	mg/Kg	1	₽	6010C	Total/NA
Selenium	0.74	J	4.2	0.42	mg/Kg	1	₽	6010C	Total/NA
Hg	0.0095	J	0.020	0.0083	mg/Kg	1	₽	7471B	Total/NA

Lab Sample ID: 480-70733-4

No Detections.

Client Sample ID: EB-01

Client Sample ID: Trip Blank

Lab Sample ID: 480-70733-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D N	Method	Prep Type
Benzaldehyde	1.1	J B	4.6	0.24	ug/L	1	- 8	3270D	Total/NA
Barium	0.13		0.0020	0.00070	mg/L	1	6	6010C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 11/04/14 13:00

Date Received: 11/05/14 10:00

Client Sample ID: TFARM-SS-SUMP-01

TestAmerica Job ID: 480-70733-1

Lab Sample ID: 480-70733-1

Matrix: Solid Percent Solids: 90.8

Method: 8260C - Volatile Organic Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND The state of th	5.0	0.36	ug/Kg	\	11/05/14 15:03	11/12/14 14:29	
1,1,2,2-Tetrachloroethane	ND	5.0	0.81	ug/Kg	₽	11/05/14 15:03	11/12/14 14:29	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	1.1	ug/Kg	₽	11/05/14 15:03	11/12/14 14:29	
,1,2-Trichloroethane	ND	5.0		ug/Kg	 \$	11/05/14 15:03	11/12/14 14:29	
,1-Dichloroethane	ND	5.0	0.61	ug/Kg	₽	11/05/14 15:03	11/12/14 14:29	
,1-Dichloroethene	ND	5.0	0.61	ug/Kg	₽	11/05/14 15:03	11/12/14 14:29	
,2,3-Trichlorobenzene	ND	5.0		ug/Kg		11/05/14 15:03	11/12/14 14:29	
,2,4-Trichlorobenzene	ND	5.0	0.30	ug/Kg	₽	11/05/14 15:03	11/12/14 14:29	
,2-Dibromo-3-Chloropropane	ND	5.0		ug/Kg	₩	11/05/14 15:03	11/12/14 14:29	
,2-Dichlorobenzene	ND	5.0		ug/Kg		11/05/14 15:03	11/12/14 14:29	
,2-Dichloroethane	ND	5.0	0.25	ug/Kg	₽	11/05/14 15:03	11/12/14 14:29	
I,2-Dichloropropane	ND	5.0		ug/Kg ug/Kg	₽	11/05/14 15:03	11/12/14 14:29	
,3-Dichlorobenzene	ND	5.0		ug/Kg		11/05/14 15:03	11/12/14 14:29	
,4-Dichlorobenzene	ND	5.0	0.20		₩	11/05/14 15:03	11/12/14 14:29	
,4-Dioxane	ND	99	22	ug/Kg	~ ⇔	11/05/14 15:03	11/12/14 14:29	
-Hexanone		25		ug/Kg		11/05/14 15:03	11/12/14 14:29	
	ND ND		2.5	ug/Kg	~ ⇔			
Acetone	ND	25		ug/Kg		11/05/14 15:03	11/12/14 14:29	
denzene	ND	5.0	0.24	ug/Kg	<u></u> .	11/05/14 15:03	11/12/14 14:29	
romoform	ND	5.0		ug/Kg	\$	11/05/14 15:03	11/12/14 14:29	
romomethane	ND	5.0		ug/Kg		11/05/14 15:03	11/12/14 14:29	
arbon disulfide	ND	5.0		ug/Kg	<u>.</u> .	11/05/14 15:03	11/12/14 14:29	
arbon tetrachloride	ND	5.0		ug/Kg	.	11/05/14 15:03	11/12/14 14:29	
hlorobenzene	ND	5.0	0.66	ug/Kg	*	11/05/14 15:03	11/12/14 14:29	
romochloromethane	ND	5.0	0.36	ug/Kg		11/05/14 15:03	11/12/14 14:29	
ibromochloromethane	ND	5.0	0.64	ug/Kg	₽	11/05/14 15:03	11/12/14 14:29	
nloroethane	ND	5.0	1.1	ug/Kg	₩	11/05/14 15:03	11/12/14 14:29	
nloroform	ND	5.0	0.31	ug/Kg		11/05/14 15:03	11/12/14 14:29	
hloromethane	ND	5.0	0.30	ug/Kg	₽	11/05/14 15:03	11/12/14 14:29	
s-1,2-Dichloroethene	ND	5.0	0.64	ug/Kg	₽	11/05/14 15:03	11/12/14 14:29	
s-1,3-Dichloropropene	ND	5.0	0.72	ug/Kg	₽	11/05/14 15:03	11/12/14 14:29	
yclohexane	ND	5.0	0.70	ug/Kg	\$	11/05/14 15:03	11/12/14 14:29	
romodichloromethane	ND	5.0	0.67	ug/Kg	₽	11/05/14 15:03	11/12/14 14:29	
ichlorodifluoromethane	ND	5.0	0.41	ug/Kg	₽	11/05/14 15:03	11/12/14 14:29	
thylbenzene	ND	5.0	0.34	ug/Kg		11/05/14 15:03	11/12/14 14:29	
2-Dibromoethane (EDB)	ND	5.0	0.64	ug/Kg	₩	11/05/14 15:03	11/12/14 14:29	
opropylbenzene	ND	5.0	0.75	ug/Kg	₽	11/05/14 15:03	11/12/14 14:29	
ethyl acetate	ND	5.0		ug/Kg	ф.	11/05/14 15:03	11/12/14 14:29	
Butanone (MEK)	ND *	25		ug/Kg	₩	11/05/14 15:03	11/12/14 14:29	
Methyl-2-pentanone (MIBK)	ND	25		ug/Kg	₩	11/05/14 15:03	11/12/14 14:29	
ethyl tert-butyl ether	ND	5.0		ug/Kg		11/05/14 15:03	11/12/14 14:29	
ethylcyclohexane	ND	5.0		ug/Kg	₽	11/05/14 15:03	11/12/14 14:29	
ethylene Chloride	ND	5.0		ug/Kg	₩	11/05/14 15:03	11/12/14 14:29	
tyrene	ND	5.0		ug/Kg		11/05/14 15:03	11/12/14 14:29	
etrachloroethene	ND	5.0		ug/Kg ug/Kg	₽	11/05/14 15:03	11/12/14 14:29	
oluene	ND	5.0		ug/Kg ug/Kg	₽	11/05/14 15:03	11/12/14 14:29	
ans-1,2-Dichloroethene								
,	ND ND	5.0 5.0		ug/Kg	₩	11/05/14 15:03	11/12/14 14:29	
rans-1,3-Dichloropropene	ND	5.0		ug/Kg		11/05/14 15:03	11/12/14 14:29	
richloroethene richlorofluoromethane	ND ND	5.0 5.0		ug/Kg ug/Kg	 \$	11/05/14 15:03 11/05/14 15:03	11/12/14 14:29 11/12/14 14:29	

TestAmerica Buffalo

Page 8 of 58

Client: Woodard & Curran Inc Project/Site: Rouses Point TestAmerica Job ID: 480-70733-1

Lab Sample ID: 480-70733-1

Matrix: Solid

Percent Solids: 90.8

Date Collected: 11/04/14 13:00
Date Received: 11/05/14 10:00

Analyte	Result	Qualifier	R	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5	0	0.61	ug/Kg	\$	11/05/14 15:03	11/12/14 14:29	1
Xylenes, Total	ND		9	9	0.83	ug/Kg	\$	11/05/14 15:03	11/12/14 14:29	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
n-Butanol		J	ug/Kg	<u> </u>	5	.63	71-36-3	11/05/14 15:03	11/12/14 14:29	1
Tentatively Identified Compound	None		ug/Kg	₩				11/05/14 15:03	11/12/14 14:29	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			64 - 126	_				11/05/14 15:03	11/12/14 14:29	1
Toluene-d8 (Surr)	98		71 - 125					11/05/14 15:03	11/12/14 14:29	1
4-Bromofluorobenzene (Surr)	99		72 - 126					11/05/14 15:03	11/12/14 14:29	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND	180	27	ug/Kg	\	11/06/14 08:01	11/07/14 19:51	1
bis (2-chloroisopropyl) ether	ND	180	37	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
2,4,5-Trichlorophenol	ND	180	50	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
2,4,6-Trichlorophenol	ND	180	37	ug/Kg	\$	11/06/14 08:01	11/07/14 19:51	1
2,4-Dichlorophenol	ND	180	19	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
2,4-Dimethylphenol	ND	180	44	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
2,4-Dinitrophenol	ND	360	110	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
2,4-Dinitrotoluene	ND	180	38	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
2,6-Dinitrotoluene	ND	180	22	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
2-Chloronaphthalene	ND	180	30	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
2-Chlorophenol	ND	180	33	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
2-Methylnaphthalene	ND	180	37	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
2-Methylphenol	ND	180	22	ug/Kg	\$	11/06/14 08:01	11/07/14 19:51	1
2-Nitroaniline	ND	360	27	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
2-Nitrophenol	ND	180	52	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
3,3'-Dichlorobenzidine	ND	360	220	ug/Kg	\$	11/06/14 08:01	11/07/14 19:51	1
3-Nitroaniline	ND	360	51	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
4,6-Dinitro-2-methylphenol	ND	360	180	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
4-Bromophenyl phenyl ether	ND	180	26	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
4-Chloro-3-methylphenol	ND	180	45	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
4-Chloroaniline	ND	180	45	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
4-Chlorophenyl phenyl ether	ND	180	23	ug/Kg		11/06/14 08:01	11/07/14 19:51	1
4-Methylphenol	ND	360	22	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
4-Nitroaniline	ND	360	96	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
4-Nitrophenol	ND	360	130	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
Acenaphthene	ND	180	27	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
Acenaphthylene	ND	180	24	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
Acetophenone	ND	180	25	ug/Kg	\$	11/06/14 08:01	11/07/14 19:51	1
Anthracene	ND	180	45	ug/Kg	☼	11/06/14 08:01	11/07/14 19:51	1
Atrazine	ND	180	64	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
Benzaldehyde	ND	180	150	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
Benzo(a)anthracene	ND	180	18	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
Benzo(a)pyrene	ND	180	27	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
Benzo(b)fluoranthene	ND	180	29	ug/Kg	₽	11/06/14 08:01	11/07/14 19:51	1
Benzo(g,h,i)perylene	ND	180	19	ug/Kg	₩	11/06/14 08:01	11/07/14 19:51	1
Benzo(k)fluoranthene	ND	180	24	ug/Kg	⇔	11/06/14 08:01	11/07/14 19:51	1

TestAmerica Buffalo

Page 9 of 58

12/9/2014

3

E

6

8

10

11 12

4 4

Client: Woodard & Curran Inc Project/Site: Rouses Point

Client Sample ID: TFARM-SS-SUMP-01

Lab Sample ID: 480-70733-1 Date Collected: 11/04/14 13:00 Matrix: Solid Date Received: 11/05/14 10:00 Percent Solids: 90.8

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued) Dil Fac Result Qualifier MDL Unit D Prepared Analyzed Analyte Bis(2-chloroethoxy)methane ND 180 39 ug/Kg 11/06/14 08:01 11/07/14 19:51 φ ND 180 ug/Kg 11/06/14 08:01 Bis(2-chloroethyl)ether 11/07/14 19:51 24 ä Bis(2-ethylhexyl) phthalate ND 180 ug/Kg 11/06/14 08:01 11/07/14 19:51 φ Butyl benzyl phthalate ND 180 30 ug/Kg 11/06/14 08:01 11/07/14 19:51 Caprolactam ND 180 55 ug/Kg 11/06/14 08:01 11/07/14 19:51 ₽ ND 180 11/06/14 08:01 Carbazole 22 ug/Kg 11/07/14 19:51 φ Chrysene ND 180 41 ug/Kg 11/06/14 08:01 11/07/14 19:51 ND 180 11/06/14 08:01 11/07/14 19:51 Di-n-butyl phthalate 31 ug/Kg ₽ ND Di-n-octyl phthalate 180 22 ug/Kg 11/06/14 08:01 11/07/14 19:51 φ 11/06/14 08:01 Dibenz(a,h)anthracene ND 180 32 ug/Kg 11/07/14 19:51 ₩ ND Dibenzofuran 180 22 ug/Kg 11/06/14 08:01 11/07/14 19:51 Diethyl phthalate ND 180 ₩ 11/06/14 08:01 24 ug/Kg 11/07/14 19:51 ġ ND 22 Dimethyl phthalate 180 ug/Kg 11/06/14 08:01 11/07/14 19:51 Fluoranthene ND 180 19 ug/Kg ₽ 11/06/14 08:01 11/07/14 19:51 Fluorene ND 180 22 ug/Kg 11/06/14 08:01 11/07/14 19:51 à Hexachlorobenzene ND 180 11/06/14 08:01 11/07/14 19:51 ug/Kg ND 180 11/06/14 08:01 Hexachlorobutadiene 27 ug/Kg 11/07/14 19:51 ġ Hexachlorocyclopentadiene ND 180 25 ug/Kg 11/06/14 08:01 11/07/14 19:51 Hexachloroethane ND 180 ug/Kg ψ 11/06/14 08:01 11/07/14 19:51 24 ₩ Indeno(1,2,3-cd)pyrene ND 180 23 ug/Kg 11/06/14 08:01 11/07/14 19:51 ₽ 11/06/14 08:01 Isophorone ND 180 39 ug/Kg 11/07/14 19:51 ψ ND 180 11/06/14 08:01 N-Nitrosodi-n-propylamine 31 ug/Kg 11/07/14 19:51 ug/Kg N-Nitrosodiphenylamine ND 180 150 11/06/14 08:01 11/07/14 19:51 # Naphthalene ND 180 24 ug/Kg 11/06/14 08:01 11/07/14 19:51 Nitrobenzene ND 180 20 ug/Kg 11/06/14 08:01 11/07/14 19:51 ND 360 Pentachlorophenol 180 11/06/14 08:01 11/07/14 19:51 ug/Kg Phenanthrene ND 180 11/06/14 08:01 11/07/14 19:51 27 ug/Kg 11/06/14 08:01 Phenol ND 180 28 ug/Kg 11/07/14 19:51 ₩ Pyrene ND 180 22 ug/Kg 11/06/14 08:01 11/07/14 19:51 Tentatively Identified Compound CAS No. Est. Result Qualifier Unit D RT Prepared Analyzed Dil Fac Dimethylformamide 0.00 \overline{JN} ug/Kg Ü 0.00 68-12-2 11/06/14 08:01 11/07/14 19:51 Ethane, 1,1,2,2-tetrachloro-500 TJN 4.84 79-34-5 11/06/14 08:01 11/07/14 19:51 ug/Kg Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac

2,4,6-Tribromophenol	79	39 - 146	11/06/14 08:01	11/07/14 19:51	1
2-Fluorobiphenyl	82	37 - 120	11/06/14 08:01	11/07/14 19:51	1
2-Fluorophenol	74	18 - 120	11/06/14 08:01	11/07/14 19:51	1
Nitrobenzene-d5	80	34 - 132	11/06/14 08:01	11/07/14 19:51	1
p-Terphenyl-d14	94	65 ₋ 153	11/06/14 08:01	11/07/14 19:51	1
Phenol-d5	83	11 - 120	11/06/14 08:01	11/07/14 19:51	1
<u> </u>					
Made at 004ED. Nambalana at al	O	also Discontinuis attended to the	ALC: A CONTRACT OF THE PROPERTY OF THE PROPERT		

ed Organic Com	pounds - Dire	ect Injection (GC) - So	luble				
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		1.1	0.16	mg/Kg	\$		11/07/14 13:27	1
ND		1.1	0.27	mg/Kg	₽		11/07/14 13:27	1
ND		1.1	0.32	mg/Kg	₽		11/07/14 13:27	1
ND		1.1	0.25	mg/Kg	\$		11/07/14 13:27	1
ND		1.1	0.16	mg/Kg	₽		11/07/14 13:27	1
ND		1.1	0.17	mg/Kg	₽		11/07/14 13:27	1
	Result ND ND ND ND ND ND	Result Qualifier ND ND ND ND ND ND	Result Qualifier RL ND 1.1 ND 1.1 ND 1.1 ND 1.1 ND 1.1 ND 1.1	Result Qualifier RL MDL ND 1.1 0.16 ND 1.1 0.27 ND 1.1 0.32 ND 1.1 0.25 ND 1.1 0.16	ND 1.1 0.16 mg/Kg ND 1.1 0.27 mg/Kg ND 1.1 0.32 mg/Kg ND 1.1 0.25 mg/Kg ND 1.1 0.16 mg/Kg	Result Qualifier RL MDL Unit D ND 1.1 0.16 mg/Kg ** ND 1.1 0.27 mg/Kg ** ND 1.1 0.32 mg/Kg ** ND 1.1 0.25 mg/Kg ** ND 1.1 0.16 mg/Kg **	Result Qualifier RL MDL mg/Kg Unit mg/Kg D mg/Kg Prepared ND 1.1 0.16 mg/Kg \$\frac{1}{2}\$ \$\frac{1}{2}\$	Result Qualifier RL MDL mg/Kg Unit D mepared Prepared Analyzed ND 1.1 0.16 mg/Kg 4 11/07/14 13:27 ND 1.1 0.27 mg/Kg 4 11/07/14 13:27 ND 1.1 0.32 mg/Kg 4 11/07/14 13:27 ND 1.1 0.25 mg/Kg 4 11/07/14 13:27 ND 1.1 0.16 mg/Kg 4 11/07/14 13:27 ND 1.1 0.16 mg/Kg 4 11/07/14 13:27

TestAmerica Buffalo

Page 10 of 58

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70733-1

11/10/14 15:58

11/06/14 11:48

Lab Sample ID: 480-70733-1

11/11/14 22:45

11/07/14 22:00

Matrix: Solid

Percent Solids: 90.8

Client Sample ID: TFARM-SS-SUMP-01	Ī
D-4- O-114-1-44/04/44 40:00	

Date Collected: 11/04/14 13:00 Date Received: 11/05/14 10:00

DCB Decachlorobiphenyl

Silver

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) - Soluble (Continued)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Isopropyl alcohol	ND		1.1	0.26	mg/Kg	-		11/07/14 13:27	1		
t-Butyl alcohol	ND		1.1	0.28	mg/Kg	\$		11/07/14 13:27	1		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac		
2-Hexanone	94	-	30 - 137			=		11/07/14 13:27	1		

Method: 8082A - Polychlori	inated Biphenyls (PC	Bs) by Gas	Chromatogra	phy					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		250	50	ug/Kg	\$	11/10/14 15:58	11/11/14 22:45	1
PCB-1221	ND		250	50	ug/Kg	₽	11/10/14 15:58	11/11/14 22:45	1
PCB-1232	ND		250	50	ug/Kg	₽	11/10/14 15:58	11/11/14 22:45	1
PCB-1242	ND		250	50	ug/Kg	₽	11/10/14 15:58	11/11/14 22:45	1
PCB-1248	ND		250	50	ug/Kg	₽	11/10/14 15:58	11/11/14 22:45	1
PCB-1254	ND		250	120	ug/Kg	₽	11/10/14 15:58	11/11/14 22:45	1
PCB-1260	ND		250	120	ug/Kg	*	11/10/14 15:58	11/11/14 22:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	103		46 - 175				11/10/14 15:58	11/11/14 22:45	1

<u> </u>									
Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.2	J	2.1	0.43	mg/Kg		11/06/14 11:48	11/07/14 22:00	1
Barium	14.9		0.54	0.12	mg/Kg	₽	11/06/14 11:48	11/07/14 22:00	1
Cadmium	0.090	J	0.21	0.032	mg/Kg	₩	11/06/14 11:48	11/07/14 22:00	1
Chromium	3.3		0.54	0.21	mg/Kg	\$	11/06/14 11:48	11/07/14 22:00	1
Lead	3.1		1.1	0.26	mg/Kg	₩	11/06/14 11:48	11/07/14 22:00	1
Selenium	ND		4.3	0.43	ma/Ka	☼	11/06/14 11:48	11/07/14 22:00	1

47 - 176

116

ND

— Method: 7471B - Mercury in Solid (or Semisolid Waste (Manu	al Cold Vapo	r Technique)				
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Hg	0.0085 J	0.021	0.0085 mg/Kg	₽	11/06/14 10:25	11/06/14 14:08	1

0.64

0.21 mg/Kg

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 11/04/14 14:00 Date Received: 11/05/14 10:00

Client Sample ID: TFARM-SS-PAD-02

TestAmerica Job ID: 480-70733-1

Lab Sample ID: 480-70733-2

Percent Solids: 94.0

Lab	Sample	יטו.	400-707	33-2	
			Matrix:	Solid	

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0	0.36	ug/Kg	□	11/05/14 15:03	11/12/14 14:55	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.81	ug/Kg	#	11/05/14 15:03	11/12/14 14:55	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	1.1	ug/Kg		11/05/14 15:03	11/12/14 14:55	1
1,1,2-Trichloroethane	ND	5.0	0.65	ug/Kg	**	11/05/14 15:03	11/12/14 14:55	1
1,1-Dichloroethane	ND	5.0	0.61	ug/Kg	₩	11/05/14 15:03	11/12/14 14:55	1
1,1-Dichloroethene	ND	5.0	0.61	ug/Kg		11/05/14 15:03	11/12/14 14:55	1
1,2,3-Trichlorobenzene	ND	5.0		ug/Kg	₩	11/05/14 15:03	11/12/14 14:55	1
1,2,4-Trichlorobenzene	ND	5.0	0.30	ug/Kg	₩	11/05/14 15:03	11/12/14 14:55	1
1,2-Dibromo-3-Chloropropane	ND	5.0	2.5	ug/Kg		11/05/14 15:03	11/12/14 14:55	1
1,2-Dichlorobenzene	ND	5.0	0.39	ug/Kg	₩	11/05/14 15:03	11/12/14 14:55	1
1,2-Dichloroethane	ND	5.0	0.25	ug/Kg	₩	11/05/14 15:03	11/12/14 14:55	1
1,2-Dichloropropane	ND	5.0	2.5	ug/Kg	₩	11/05/14 15:03	11/12/14 14:55	1
1,3-Dichlorobenzene	ND	5.0	0.26	ug/Kg	₽	11/05/14 15:03	11/12/14 14:55	1
1,4-Dichlorobenzene	ND	5.0	0.70	ug/Kg	₽	11/05/14 15:03	11/12/14 14:55	1
1,4-Dioxane	ND	99	22	ug/Kg	₩	11/05/14 15:03	11/12/14 14:55	1
2-Hexanone	ND	25	2.5	ug/Kg	*	11/05/14 15:03	11/12/14 14:55	1
Acetone	54	25	4.2	ug/Kg	₩	11/05/14 15:03	11/12/14 14:55	1
Benzene	ND	5.0	0.24	ug/Kg	₽	11/05/14 15:03	11/12/14 14:55	1
Bromoform	ND	5.0	2.5	ug/Kg	*	11/05/14 15:03	11/12/14 14:55	1
Bromomethane	ND	5.0	0.45	ug/Kg	₽	11/05/14 15:03	11/12/14 14:55	1
Carbon disulfide	ND	5.0	2.5	ug/Kg	₩	11/05/14 15:03	11/12/14 14:55	1
Carbon tetrachloride	ND	5.0	0.48	ug/Kg		11/05/14 15:03	11/12/14 14:55	1
Chlorobenzene	ND	5.0	0.66	ug/Kg	₩	11/05/14 15:03	11/12/14 14:55	1
Bromochloromethane	ND	5.0	0.36	ug/Kg	₩	11/05/14 15:03	11/12/14 14:55	1
Dibromochloromethane	ND	5.0	0.64	ug/Kg		11/05/14 15:03	11/12/14 14:55	1
Chloroethane	ND	5.0	1.1	ug/Kg	₩	11/05/14 15:03	11/12/14 14:55	1
Chloroform	ND	5.0	0.31	ug/Kg	₩	11/05/14 15:03	11/12/14 14:55	1
Chloromethane	ND	5.0	0.30	ug/Kg		11/05/14 15:03	11/12/14 14:55	1
cis-1,2-Dichloroethene	ND	5.0	0.64	ug/Kg	₩	11/05/14 15:03	11/12/14 14:55	1
cis-1,3-Dichloropropene	ND	5.0	0.72	ug/Kg	₩	11/05/14 15:03	11/12/14 14:55	1
Cyclohexane	ND	5.0	0.70	ug/Kg		11/05/14 15:03	11/12/14 14:55	1
Bromodichloromethane	ND	5.0	0.67	ug/Kg	₽	11/05/14 15:03	11/12/14 14:55	1
Dichlorodifluoromethane	ND	5.0	0.41	ug/Kg	₩	11/05/14 15:03	11/12/14 14:55	1
Ethylbenzene	5.4	5.0	0.34	ug/Kg	ф	11/05/14 15:03	11/12/14 14:55	1
1,2-Dibromoethane (EDB)	ND	5.0	0.64	ug/Kg	₩	11/05/14 15:03	11/12/14 14:55	1
Isopropylbenzene	ND	5.0		ug/Kg	₩	11/05/14 15:03	11/12/14 14:55	1
Methyl acetate	ND	5.0		ug/Kg		11/05/14 15:03	11/12/14 14:55	1
2-Butanone (MEK)	11 J*	25		ug/Kg	₽	11/05/14 15:03	11/12/14 14:55	1
4-Methyl-2-pentanone (MIBK)	ND	25		ug/Kg	₽	11/05/14 15:03	11/12/14 14:55	1
Methyl tert-butyl ether	ND	5.0		ug/Kg	_ф	11/05/14 15:03	11/12/14 14:55	1
Methylcyclohexane	ND	5.0		ug/Kg	₽	11/05/14 15:03	11/12/14 14:55	1
Methylene Chloride	ND	5.0		ug/Kg	₽	11/05/14 15:03	11/12/14 14:55	1
Styrene	ND	5.0		ug/Kg		11/05/14 15:03	11/12/14 14:55	· · · · · · · 1
Tetrachloroethene	ND	5.0		ug/Kg	₩	11/05/14 15:03	11/12/14 14:55	1
Toluene	67	5.0		ug/Kg	₽	11/05/14 15:03	11/12/14 14:55	1
trans-1,2-Dichloroethene	ND	5.0		ug/Kg		11/05/14 15:03	11/12/14 14:55	
trans-1,3-Dichloropropene	ND	5.0		ug/Kg ug/Kg	₽	11/05/14 15:03	11/12/14 14:55	1
Trichloroethene	ND ND				₽	11/05/14 15:03		
Trichlorofluoromethane	ND	5.0 5.0		ug/Kg ug/Kg	. \$	11/05/14 15:03	11/12/14 14:55 11/12/14 14:55	1 1

TestAmerica Buffalo

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 11/04/14 14:00

Date Received: 11/05/14 10:00

Client Sample ID: TFARM-SS-PAD-02

TestAmerica Job ID: 480-70733-1

Lab Sample ID: 480-70733-2

Matrix: Solid

Percent Solids: 94.0

Analyte	Result	Qualifier	RL		MDL	Unit	I) Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		0.61	ug/Kg	3	11/05/14 15:03	11/12/14 14:55	1
Xylenes, Total	12		9.9)	0.84	ug/Kg	3	11/05/14 15:03	11/12/14 14:55	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No	. Prepared	Analyzed	Dil Fac
Chlorodifluoromethane	1.7	J	ug/Kg	\$	1	.96	75-45-	6 11/05/14 15:03	11/12/14 14:55	1
Tetrahydrofuran	3.3	J *	ug/Kg	₽	4	.74	109-99-	9 11/05/14 15:03	11/12/14 14:55	1
1,3,5-Trimethylbenzene	0.43	J	ug/Kg	₽	9	.82	108-67-	3 11/05/14 15:03	11/12/14 14:55	1
1,2,4-Trimethylbenzene	5.0		ug/Kg	₽	10	.20	95-63-	6 11/05/14 15:03	11/12/14 14:55	1
1,2,3-Trimethylbenzene	1.7	J	ug/Kg	₽	10	.60	526-73-	3 11/05/14 15:03	11/12/14 14:55	1
Tentatively Identified Compound	None		ug/Kg	☼				11/05/14 15:03	11/12/14 14:55	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		64 - 126	-				11/05/14 15:03	11/12/14 14:55	1
Toluene-d8 (Surr)	101		71 - 125					11/05/14 15:03	11/12/14 14:55	1
4-Bromofluorobenzene (Surr)	103		72 - 126					11/05/14 15:03	11/12/14 14:55	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		180	26	ug/Kg	₩	11/06/14 08:01	11/07/14 20:15	1
bis (2-chloroisopropyl) ether	ND		180	36	ug/Kg	₽	11/06/14 08:01	11/07/14 20:15	1
2,4,5-Trichlorophenol	ND		180	49	ug/Kg	₽	11/06/14 08:01	11/07/14 20:15	1
2,4,6-Trichlorophenol	ND		180	36	ug/Kg	*	11/06/14 08:01	11/07/14 20:15	1
2,4-Dichlorophenol	ND		180	19	ug/Kg	₽	11/06/14 08:01	11/07/14 20:15	1
2,4-Dimethylphenol	ND		180	43	ug/Kg	₽	11/06/14 08:01	11/07/14 20:15	1
2,4-Dinitrophenol	ND		350	110	ug/Kg	\$	11/06/14 08:01	11/07/14 20:15	1
2,4-Dinitrotoluene	ND		180	37	ug/Kg	₽	11/06/14 08:01	11/07/14 20:15	1
2,6-Dinitrotoluene	ND		180	21	ug/Kg	₽	11/06/14 08:01	11/07/14 20:15	1
2-Chloronaphthalene	ND		180	30	ug/Kg	₽	11/06/14 08:01	11/07/14 20:15	1
2-Chlorophenol	ND		180	33	ug/Kg	₽	11/06/14 08:01	11/07/14 20:15	1
2-Methylnaphthalene	ND		180	36	ug/Kg	₽	11/06/14 08:01	11/07/14 20:15	1
2-Methylphenol	ND		180	21	ug/Kg		11/06/14 08:01	11/07/14 20:15	1
2-Nitroaniline	ND		350	26	ug/Kg	₽	11/06/14 08:01	11/07/14 20:15	1
2-Nitrophenol	ND		180	51	ug/Kg	☼	11/06/14 08:01	11/07/14 20:15	1
3,3'-Dichlorobenzidine	ND		350	210	ug/Kg	₽	11/06/14 08:01	11/07/14 20:15	1
3-Nitroaniline	ND		350	50	ug/Kg	₽	11/06/14 08:01	11/07/14 20:15	1
4,6-Dinitro-2-methylphenol	ND		350	180	ug/Kg	☼	11/06/14 08:01	11/07/14 20:15	1
4-Bromophenyl phenyl ether	ND		180	25	ug/Kg	\$	11/06/14 08:01	11/07/14 20:15	1
4-Chloro-3-methylphenol	ND		180	44	ug/Kg	☼	11/06/14 08:01	11/07/14 20:15	1
4-Chloroaniline	ND		180	44	ug/Kg	☼	11/06/14 08:01	11/07/14 20:15	1
4-Chlorophenyl phenyl ether	ND		180	22	ug/Kg		11/06/14 08:01	11/07/14 20:15	1
4-Methylphenol	ND		350	21	ug/Kg	☼	11/06/14 08:01	11/07/14 20:15	1
4-Nitroaniline	ND		350	94	ug/Kg	₽	11/06/14 08:01	11/07/14 20:15	1
4-Nitrophenol	ND		350	130	ug/Kg		11/06/14 08:01	11/07/14 20:15	1
Acenaphthene	ND		180	26	ug/Kg	₽	11/06/14 08:01	11/07/14 20:15	1
Acenaphthylene	ND		180	23	ug/Kg	₽	11/06/14 08:01	11/07/14 20:15	1
Acetophenone	ND		180	24	ug/Kg		11/06/14 08:01	11/07/14 20:15	1
Anthracene	ND		180	44	ug/Kg	☼	11/06/14 08:01	11/07/14 20:15	1
Atrazine	ND		180	62	ug/Kg	₽	11/06/14 08:01	11/07/14 20:15	1
Benzaldehyde	ND		180	140	ug/Kg	φ.	11/06/14 08:01	11/07/14 20:15	1
Benzo(a)anthracene	ND		180	18	ug/Kg	₽	11/06/14 08:01	11/07/14 20:15	1

TestAmerica Buffalo

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 11/04/14 14:00

Date Received: 11/05/14 10:00

Client Sample ID: TFARM-SS-PAD-02

TestAmerica Job ID: 480-70733-1

Lab Sample ID: 480-70733-2

Matrix: Solid

Percent Solids: 94.0

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo(a)pyrene	ND		180		26	ug/Kg	\	11/06/14 08:01	11/07/14 20:15	1
Benzo(b)fluoranthene	ND		180		29	ug/Kg	\$	11/06/14 08:01	11/07/14 20:15	1
Benzo(g,h,i)perylene	ND		180		19	ug/Kg	₽	11/06/14 08:01	11/07/14 20:15	1
Benzo(k)fluoranthene	ND		180		23	ug/Kg	₽	11/06/14 08:01	11/07/14 20:15	1
Bis(2-chloroethoxy)methane	ND		180		38	ug/Kg	\$	11/06/14 08:01	11/07/14 20:15	1
Bis(2-chloroethyl)ether	ND		180		23	ug/Kg	₽	11/06/14 08:01	11/07/14 20:15	1
Bis(2-ethylhexyl) phthalate	ND		180		61	ug/Kg	₽	11/06/14 08:01	11/07/14 20:15	1
Butyl benzyl phthalate	ND		180		30	ug/Kg	\$	11/06/14 08:01	11/07/14 20:15	1
Caprolactam	ND		180		54	ug/Kg	₽	11/06/14 08:01	11/07/14 20:15	1
Carbazole	ND		180		21	ug/Kg	₽	11/06/14 08:01	11/07/14 20:15	1
Chrysene	ND		180		40	ug/Kg	\$	11/06/14 08:01	11/07/14 20:15	1
Di-n-butyl phthalate	ND		180		31	ug/Kg	\$	11/06/14 08:01	11/07/14 20:15	1
Di-n-octyl phthalate	ND		180		21	ug/Kg	₽	11/06/14 08:01	11/07/14 20:15	1
Dibenz(a,h)anthracene	ND		180		32	ug/Kg	\$	11/06/14 08:01	11/07/14 20:15	1
Dibenzofuran	ND		180		21	ug/Kg	₩	11/06/14 08:01	11/07/14 20:15	1
Diethyl phthalate	ND		180		23	ug/Kg	₽	11/06/14 08:01	11/07/14 20:15	1
Dimethyl phthalate	ND		180		21	ug/Kg	\$	11/06/14 08:01	11/07/14 20:15	1
Fluoranthene	ND		180		19	ug/Kg	≎	11/06/14 08:01	11/07/14 20:15	1
Fluorene	ND		180		21	ug/Kg	≎	11/06/14 08:01	11/07/14 20:15	1
Hexachlorobenzene	ND		180		24	ug/Kg		11/06/14 08:01	11/07/14 20:15	1
Hexachlorobutadiene	ND		180		26	ug/Kg	₩	11/06/14 08:01	11/07/14 20:15	1
Hexachlorocyclopentadiene	ND		180		24	ug/Kg	≎	11/06/14 08:01	11/07/14 20:15	1
Hexachloroethane	ND		180		23	ug/Kg	\$	11/06/14 08:01	11/07/14 20:15	1
Indeno(1,2,3-cd)pyrene	ND		180		22	ug/Kg	≎	11/06/14 08:01	11/07/14 20:15	1
Isophorone	ND		180		38	ug/Kg	≎	11/06/14 08:01	11/07/14 20:15	1
N-Nitrosodi-n-propylamine	ND		180		31	ug/Kg	\$	11/06/14 08:01	11/07/14 20:15	1
N-Nitrosodiphenylamine	ND		180		150	ug/Kg	≎	11/06/14 08:01	11/07/14 20:15	1
Naphthalene	ND		180		23	ug/Kg	₩	11/06/14 08:01	11/07/14 20:15	1
Nitrobenzene	ND		180		20	ug/Kg		11/06/14 08:01	11/07/14 20:15	1
Pentachlorophenol	ND		350		180	ug/Kg	₩	11/06/14 08:01	11/07/14 20:15	1
Phenanthrene	ND		180		26	ug/Kg	₩	11/06/14 08:01	11/07/14 20:15	1
Phenol	ND		180		27	ug/Kg		11/06/14 08:01	11/07/14 20:15	1
Pyrene	ND		180		21	ug/Kg	₽	11/06/14 08:01	11/07/14 20:15	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Dimethylformamide	0.00	JN	ug/Kg	\(\pi \)	0	.00	68-12-2	11/06/14 08:01	11/07/14 20:15	1
1-Eicosanol	550	TJN	ug/Kg	#	13	.95	629-96-9	11/06/14 08:01	11/07/14 20:15	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	76		39 - 146					11/06/14 08:01	11/07/14 20:15	1
2-Fluorobiphenyl	81		37 - 120					11/06/14 08:01	11/07/14 20:15	1
2-Fluorophenol	74		18 - 120					11/06/14 08:01	11/07/14 20:15	1
Nitrobenzene-d5	78		34 - 132					11/06/14 08:01	11/07/14 20:15	1
p-Terphenyl-d14	90		65 - 153					11/06/14 08:01	11/07/14 20:15	1
Phenol-d5	83		11 - 120					11/06/14 08:01	11/07/14 20:15	1

Method: 8015D - Nonhalogenated	Organic Com	pounds - Di	rect Injectio	n (GC) - So	luble				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		10	1.5	mg/Kg			11/07/14 14:15	10
Isobutyl alcohol	ND		10	2.6	mg/Kg	₽		11/07/14 14:15	10

TestAmerica Buffalo

_

E

7

9

11

12

14

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70733-1

Client Sample ID: TFARM-SS-PAD-02

Date Collected: 11/04/14 14:00 Date Received: 11/05/14 10:00

Lab Sample ID: 480-70733-2

Matrix: Solid	
Percent Solids: 94.0	

nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Methanol	ND		10	3.1	mg/Kg	₩		11/07/14 14:15	1
-Butanol	ND		10	2.4	mg/Kg	\$		11/07/14 14:15	1
Propanol	ND		10	1.5	mg/Kg	₽		11/07/14 14:15	1
-Butanol	ND		10	1.7	mg/Kg	₽		11/07/14 14:15	1
sopropyl alcohol	ND		10	2.5	mg/Kg	\$		11/07/14 14:15	1
Butyl alcohol	ND		10	2.7	mg/Kg	₩		11/07/14 14:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
-Hexanone	125		30 - 137			-		11/07/14 14:15	1

2-Hexanone	125		30 - 137					11/07/14 14:15	10
Method: 8082A - Polychlorir	nated Biphenyls (PC	CBs) by Gas	s Chromatogra	phy					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		220	42	ug/Kg	\	11/10/14 15:58	11/11/14 23:03	1
PCB-1221	ND		220	42	ug/Kg	₽	11/10/14 15:58	11/11/14 23:03	1
PCB-1232	ND		220	42	ug/Kg	₽	11/10/14 15:58	11/11/14 23:03	1
PCB-1242	ND		220	42	ug/Kg	₽	11/10/14 15:58	11/11/14 23:03	1
PCB-1248	ND		220	42	ug/Kg	☼	11/10/14 15:58	11/11/14 23:03	1
PCB-1254	ND		220	100	ug/Kg	₽	11/10/14 15:58	11/11/14 23:03	1
PCB-1260	ND		220	100	ug/Kg		11/10/14 15:58	11/11/14 23:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	87	-	46 - 175				11/10/14 15:58	11/11/14 23:03	1
DCB Decachlorobiphenyl	98		47 - 176				11/10/14 15:58	11/11/14 23:03	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.4		2.1	0.42	mg/Kg	*	11/06/14 11:48	11/07/14 22:03	1
Barium	21.4		0.52	0.12	mg/Kg	₽	11/06/14 11:48	11/07/14 22:03	1
Cadmium	0.15	J	0.21	0.031	mg/Kg	₽	11/06/14 11:48	11/07/14 22:03	1
Chromium	5.9		0.52	0.21	mg/Kg	₽	11/06/14 11:48	11/07/14 22:03	1
Lead	5.9		1.0	0.25	mg/Kg	₽	11/06/14 11:48	11/07/14 22:03	1
Selenium	ND		4.2	0.42	mg/Kg	₩	11/06/14 11:48	11/07/14 22:03	1
Silver	ND		0.63	0.21	mg/Kg		11/06/14 11:48	11/07/14 22:03	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Hg	0.014	J	0.021	0.0087	mg/Kg	\	11/06/14 10:25	11/06/14 14:10	1	

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 11/04/14 14:30

Date Received: 11/05/14 10:00

Client Sample ID: TFARM-SS-PAD-03

TestAmerica Job ID: 480-70733-1

Lab Sample ID: 480-70733-3

Matrix: Solid

Percent Solids: 91.0

Method: 8260C - Volatile Organic Compounds by GC/MS Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac ₩ 1,1,1-Trichloroethane ND 8.5 0.62 ug/Kg 11/05/14 15:03 11/12/14 15:21 ND 1.1.2.2-Tetrachloroethane 8.5 1.4 ug/Kg 11/05/14 15:03 11/12/14 15:21 1,1,2-Trichloro-1,2,2-trifluoroethane ND 8.5 1.9 ug/Kg ₽ 11/05/14 15:03 11/12/14 15:21 ND 1,1,2-Trichloroethane 8.5 1.1 ug/Kg 11/05/14 15:03 11/12/14 15:21 1.1-Dichloroethane ND 8.5 ug/Kg ď 11/05/14 15:03 11/12/14 15:21 ND 11/05/14 15:03 11/12/14 15:21 1.1-Dichloroethene 8.5 1.0 ug/Kg 1,2,3-Trichlorobenzene ND 8.5 11/05/14 15:03 11/12/14 15:21 ug/Kg 1,2,4-Trichlorobenzene ND 11/05/14 15:03 11/12/14 15:21 8.5 0.52 ug/Kg ₩ 1,2-Dibromo-3-Chloropropane ND 8.5 4.3 ug/Kg 11/05/14 15:03 11/12/14 15:21 ₽ 1,2-Dichlorobenzene ND 8.5 0.66 ua/Ka 11/05/14 15:03 11/12/14 15:21 1,2-Dichloroethane ND 8.5 0.43 ug/Kg 11/05/14 15:03 11/12/14 15:21 ₩ 1,2-Dichloropropane ND 8.5 4.3 ug/Kg 11/05/14 15:03 11/12/14 15:21 ND à 1,3-Dichlorobenzene 8.5 0.44 ug/Kg 11/05/14 15:03 11/12/14 15:21 1,4-Dichlorobenzene ND 8.5 1.2 11/05/14 15:03 11/12/14 15:21 ug/Kg 170 ND 11/05/14 15:03 11/12/14 15:21 1.4-Dioxane ug/Kg ₽ 11/05/14 15:03 2-Hexanone ND 43 4.3 ug/Kg 11/12/14 15:21 43 7.2 11/05/14 15:03 11/12/14 15:21 Acetone 20 ug/Kg Benzene ND 8.5 11/05/14 15:03 11/12/14 15:21 0.42 ug/Kg φ Bromoform ND 8.5 4.3 ug/Kg 11/05/14 15:03 11/12/14 15:21 Bromomethane ND 8.5 11/05/14 15:03 11/12/14 15:21 ug/Kg ND 11/05/14 15:03 11/12/14 15:21 Carbon disulfide 8.5 4.3 ug/Kg ġ ug/Kg Carbon tetrachloride ND 8.5 0.82 11/05/14 15:03 11/12/14 15:21 ND 8.5 11/05/14 15:03 11/12/14 15:21 Chlorobenzene 1.1 ua/Ka ₽ Bromochloromethane ND 8.5 0.61 ug/Kg 11/05/14 15:03 11/12/14 15:21 Dibromochloromethane ND 8.5 ₽ 11/05/14 15:03 11/12/14 15:21 1.1 ua/Ka ₩ Chloroethane ND 8.5 1.9 ug/Kg 11/05/14 15:03 11/12/14 15:21 Chloroform ND 8.5 0.53 ug/Kg 11/05/14 15:03 11/12/14 15:21 ND Chloromethane 8.5 0.51 ug/Kg 11/05/14 15:03 11/12/14 15:21 1.1 ₽ cis-1,2-Dichloroethene ND 8.5 ug/Kg 11/05/14 15:03 11/12/14 15:21 ND ug/Kg cis-1,3-Dichloropropene 8.5 1.2 11/05/14 15:03 11/12/14 15:21 Cyclohexane ND 8.5 1.2 ug/Kg 11/05/14 15:03 11/12/14 15:21 ND 8.5 11/05/14 15:03 11/12/14 15:21 Bromodichloromethane 1 1 ug/Kg ä Dichlorodifluoromethane ND 8.5 ug/Kg 11/05/14 15:03 11/12/14 15:21 φ 8.5 0.59 11/05/14 15:03 11/12/14 15:21 ug/Kg Ethylbenzene 0.65 ŭ 1,2-Dibromoethane (EDB) ND 8.5 ug/Kg 11/05/14 15:03 11/12/14 15:21 ₽ ND 8.5 11/05/14 15:03 11/12/14 15:21 Isopropylbenzene 1.3 ua/Ka Methyl acetate ND 8.5 5.1 ug/Kg 11/05/14 15:03 11/12/14 15:21 2-Butanone (MEK) ND 43 3.1 ug/Kg 11/05/14 15:03 11/12/14 15:21 ₩ 2.8 4-Methyl-2-pentanone (MIBK) ND 43 ug/Kg 11/05/14 15:03 11/12/14 15:21 Methyl tert-butyl ether ND 8.5 0.83 ug/Kg 11/05/14 15:03 11/12/14 15:21 ND 11/05/14 15:03 Methylcyclohexane 8.5 1.3 ug/Kg 11/12/14 15:21 ND ä 11/05/14 15:03 Methylene Chloride 8.5 ug/Kg 11/12/14 15:21 ġ ND 8.5 11/05/14 15:03 11/12/14 15:21 Styrene 0.43 ug/Kg Ü Tetrachloroethene ND 11/05/14 15:03 11/12/14 15:21 8.5 1.1 ug/Kg 11/05/14 15:03 **Toluene** 28 8.5 0.64 ug/Kg 11/12/14 15:21 ₽ trans-1,2-Dichloroethene ND 8.5 0.88 ug/Kg 11/05/14 15:03 11/12/14 15:21 trans-1,3-Dichloropropene ND ug/Kg 11/05/14 15:03 8.5 3.7 11/12/14 15:21 ġ Trichloroethene ND 8.5 1.9 ug/Kg 11/05/14 15:03 11/12/14 15:21 Trichlorofluoromethane ND 8.5 11/05/14 15:03 11/12/14 15:21 0.80 ug/Kg

TestAmerica Buffalo

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70733-1

Lab Sample ID: 480-70733-3

Matrix: Solid

Percent Solids: 91.0

Client Sample	ID: TFARM	M-SS-PAD-03
---------------	-----------	-------------

Date Collected: 11/04/14 14:30 Date Received: 11/05/14 10:00

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		8.5		1.0	ug/Kg		11/05/14 15:03	11/12/14 15:21	1
Xylenes, Total	2.0	J	17		1.4	ug/Kg	\$	11/05/14 15:03	11/12/14 15:21	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	9.3	TJ	ug/Kg	\(\phi\)	3	.55		11/05/14 15:03	11/12/14 15:21	1
Unknown	12	TJ	ug/Kg	₩	4	.04		11/05/14 15:03	11/12/14 15:21	1
Unknown	16	TJ	ug/Kg	#	4	.51		11/05/14 15:03	11/12/14 15:21	1
Unknown	9.4	ΤJ	ug/Kg	₽	4	.76		11/05/14 15:03	11/12/14 15:21	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			64 - 126					11/05/14 15:03	11/12/14 15:21	1
Toluene-d8 (Surr)	100		71 - 125					11/05/14 15:03	11/12/14 15:21	1
4-Bromofluorobenzene (Surr)	102		72 - 126					11/05/14 15:03	11/12/14 15:21	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		190	27	ug/Kg	₩	11/06/14 08:01	11/07/14 20:38	1
bis (2-chloroisopropyl) ether	ND		190	37	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
2,4,5-Trichlorophenol	ND		190	50	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
2,4,6-Trichlorophenol	ND		190	37	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
2,4-Dichlorophenol	ND		190	20	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
2,4-Dimethylphenol	ND		190	45	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
2,4-Dinitrophenol	ND		360	110	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
2,4-Dinitrotoluene	ND		190	38	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
2,6-Dinitrotoluene	ND		190	22	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
2-Chloronaphthalene	ND		190	31	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
2-Chlorophenol	ND		190	34	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
2-Methylnaphthalene	ND		190	37	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
2-Methylphenol	ND		190	22	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
2-Nitroaniline	ND		360	27	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
2-Nitrophenol	ND		190	53	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
3,3'-Dichlorobenzidine	ND		360	220	ug/Kg	\$	11/06/14 08:01	11/07/14 20:38	1
3-Nitroaniline	ND		360	51	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
4,6-Dinitro-2-methylphenol	ND		360	190	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
4-Bromophenyl phenyl ether	ND		190	26	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
4-Chloro-3-methylphenol	ND		190	46	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
4-Chloroaniline	ND		190	46	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
4-Chlorophenyl phenyl ether	ND		190	23	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
4-Methylphenol	ND		360	22	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
4-Nitroaniline	ND		360	97	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
4-Nitrophenol	ND		360	130	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
Acenaphthene	ND		190	27	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
Acenaphthylene	ND		190	24	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
Acetophenone	ND		190	25	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
Anthracene	ND		190	46	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
Atrazine	ND		190	65	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
Benzaldehyde	ND		190	150	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
Benzo(a)anthracene	ND		190	19	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
Benzo(a)pyrene	ND		190	27	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
Benzo(b)fluoranthene	ND		190	30	ug/Kg	\$	11/06/14 08:01	11/07/14 20:38	1

TestAmerica Buffalo

3

<u>:</u>

6

8

10

11

13

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 11/04/14 14:30

Date Received: 11/05/14 10:00

Analyte

Ethanol

Methanol

n-Butanol

Isobutyl alcohol

Client Sample ID: TFARM-SS-PAD-03

TestAmerica Job ID: 480-70733-1

Lab Sample ID: 480-70733-3

Matrix: Solid

Percent Solids: 91.0

Analyte	Result	Qualifier	RL		MDL		D	Prepared	Analyzed	Dil Fac
Benzo(g,h,i)perylene	ND		190		20	ug/Kg	*	11/06/14 08:01	11/07/14 20:38	1
Benzo(k)fluoranthene	ND		190		24	ug/Kg	₩	11/06/14 08:01	11/07/14 20:38	1
Bis(2-chloroethoxy)methane	ND		190		39	ug/Kg	\$	11/06/14 08:01	11/07/14 20:38	1
Bis(2-chloroethyl)ether	ND		190		24	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
Bis(2-ethylhexyl) phthalate	ND		190		63	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
Butyl benzyl phthalate	ND		190		31	ug/Kg	\$	11/06/14 08:01	11/07/14 20:38	1
Caprolactam	ND		190		56	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
Carbazole	ND		190		22	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
Chrysene	ND		190		42	ug/Kg	\$	11/06/14 08:01	11/07/14 20:38	1
Di-n-butyl phthalate	ND		190		32	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
Di-n-octyl phthalate	ND		190		22	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
Dibenz(a,h)anthracene	ND		190		33	ug/Kg	φ.	11/06/14 08:01	11/07/14 20:38	1
Dibenzofuran	ND		190		22	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
Diethyl phthalate	ND		190		24	ug/Kg	₩	11/06/14 08:01	11/07/14 20:38	1
Dimethyl phthalate	ND		190		22	ug/Kg		11/06/14 08:01	11/07/14 20:38	1
Fluoranthene	ND		190		20	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
Fluorene	ND		190			ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
Hexachlorobenzene	ND		190		25	ug/Kg	φ.	11/06/14 08:01	11/07/14 20:38	1
Hexachlorobutadiene	ND		190		27	ug/Kg	\$	11/06/14 08:01	11/07/14 20:38	1
Hexachlorocyclopentadiene	ND		190		25	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
Hexachloroethane	ND		190		24	ug/Kg	φ.	11/06/14 08:01	11/07/14 20:38	1
Indeno(1,2,3-cd)pyrene	ND		190		23	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
Isophorone	ND		190		39	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
N-Nitrosodi-n-propylamine	ND		190		32	ug/Kg	φ.	11/06/14 08:01	11/07/14 20:38	1
N-Nitrosodiphenylamine	ND		190		150	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
Naphthalene	ND		190		24	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
Nitrobenzene	ND		190		21	ug/Kg	φ.	11/06/14 08:01	11/07/14 20:38	1
Pentachlorophenol	ND		360		190	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
Phenanthrene	ND		190		27	ug/Kg	₽	11/06/14 08:01	11/07/14 20:38	1
Phenol	ND		190			ug/Kg		11/06/14 08:01	11/07/14 20:38	1
Pyrene	ND		190		22	ug/Kg	₩	11/06/14 08:01	11/07/14 20:38	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Dimethylformamide	0.00	JN	ug/Kg	\tilde{\	0.	.00	68-12-2	11/06/14 08:01	11/07/14 20:38	1
1-Eicosanol	500	TJN	ug/Kg	₩	13.	.95	629-96-9	11/06/14 08:01	11/07/14 20:38	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	78		39 - 146					11/06/14 08:01	11/07/14 20:38	1
2-Fluorobiphenyl	81		37 - 120					11/06/14 08:01	11/07/14 20:38	1
2-Fluorophenol	70		18 - 120					11/06/14 08:01	11/07/14 20:38	1
Nitrobenzene-d5	78		34 - 132					11/06/14 08:01	11/07/14 20:38	1
p-Terphenyl-d14	90		65 ₋ 153					11/06/14 08:01	11/07/14 20:38	1
Phenol-d5	78		11 - 120					11/06/14 08:01	11/07/14 20:38	1

11/07/14 14:23	10
11/07/14 14:23	10

Analyzed

11/07/14 14:23

11/07/14 14:23

TestAmerica Buffalo

Dil Fac

10

10

RL

11

11

11

11

MDL Unit

1.6 mg/Kg

2.7 mg/Kg

3.2 mg/Kg

2.5 mg/Kg

D

₩

₩

₩

\$

Prepared

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) - Soluble

ND

ND

ND

ND

Result Qualifier

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70733-1

2

11/11/14 23:21

11/11/14 23:21

11/11/14 23:21

Client Sample ID: TFARM-SS-PAD-03

Date Collected: 11/04/14 14:30 Date Received: 11/05/14 10:00

PCB-1242

PCB-1248

DCB Decachlorobiphenyl

Lab Sample ID: 480-70733-3

Matrix: Solid Percent Solids: 91.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Propanol	ND		11	1.6	mg/Kg	₩		11/07/14 14:23	10
2-Butanol	ND		11	1.7	mg/Kg	≎		11/07/14 14:23	10
Isopropyl alcohol	ND		11	2.6	mg/Kg	\$		11/07/14 14:23	10
t-Butyl alcohol	ND		11	2.8	mg/Kg	₽		11/07/14 14:23	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	105		30 - 137					11/07/14 14:23	10
Method: 8082A - Polychl	orinated Biphenyls (PC	CBs) by Gas	S Chromatograp	hy					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		200	40	ug/Kg	\	11/10/14 15:58	11/11/14 23:21	1
PCB-1221	ND		200	40	ug/Kg	≎	11/10/14 15:58	11/11/14 23:21	1
I OD IZZI									

PCB-1254	ND	200	95 ug/Kg	₩	11/10/14 15:58	11/11/14 23:21	1
PCB-1260	ND	200	95 ug/Kg	₽	11/10/14 15:58	11/11/14 23:21	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	103	46 - 175			11/10/14 15:58	11/11/14 23:21	

47 - 176

200

200

40 ug/Kg

40 ug/Kg

11/10/14 15:58

11/10/14 15:58

11/10/14 15:58

ND

ND

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.1		2.1	0.42	mg/Kg	<u> </u>	11/06/14 11:48	11/07/14 22:05	1
Barium	19.7		0.53	0.12	mg/Kg	₩	11/06/14 11:48	11/07/14 22:05	1
Cadmium	0.14	J	0.21	0.032	mg/Kg	₩	11/06/14 11:48	11/07/14 22:05	1
Chromium	9.4		0.53	0.21	mg/Kg	₩.	11/06/14 11:48	11/07/14 22:05	1
Lead	4.8		1.1	0.25	mg/Kg	₩	11/06/14 11:48	11/07/14 22:05	1
Selenium	0.74	J	4.2	0.42	mg/Kg	₩	11/06/14 11:48	11/07/14 22:05	1
Silver	ND		0.63	0.21	mg/Kg		11/06/14 11:48	11/07/14 22:05	1

Method: 7471B - Mercury in Solid	or Semisolid	Waste (Mar	nual Cold Var	oor Technic	que)					
Analyte	Result	Qualifier	RL	MDL	Unit	D		Prepared	Analyzed	Dil Fac
Hg	0.0095	J	0.020	0.0083	mg/Kg	<u> </u>	1	11/06/14 10:25	11/06/14 14:12	1

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 11/04/14 12:30

Date Received: 11/05/14 10:00

Client Sample ID: Trip Blank

TestAmerica Job ID: 480-70733-1

Matrix: Water

Lab Sample ID: 480-70733-4

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			11/13/14 17:04	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			11/13/14 17:04	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			11/13/14 17:04	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			11/13/14 17:04	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			11/13/14 17:04	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			11/13/14 17:04	
1,2,3-Trichlorobenzene	ND	1.0	0.41	ug/L			11/13/14 17:04	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			11/13/14 17:04	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			11/13/14 17:04	
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			11/13/14 17:04	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			11/13/14 17:04	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			11/13/14 17:04	
1,2-Dichloropropane	ND	1.0	0.72	ug/L			11/13/14 17:04	
1,3-Dichlorobenzene	ND	1.0	0.78				11/13/14 17:04	
1,4-Dichlorobenzene	ND	1.0	0.84				11/13/14 17:04	
1,4-Dioxane	ND	40		ug/L			11/13/14 17:04	
2-Butanone (MEK)	ND	10		ug/L			11/13/14 17:04	
2-Hexanone	ND	5.0		ug/L			11/13/14 17:04	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			11/13/14 17:04	
Acetone	ND	10		ug/L			11/13/14 17:04	
Benzene	ND	1.0	0.41				11/13/14 17:04	
Bromochloromethane	ND	1.0	0.87	.			11/13/14 17:04	
Bromodichloromethane	ND	1.0	0.39				11/13/14 17:04	
Bromoform	ND	1.0	0.26				11/13/14 17:04	
Bromomethane	ND	1.0	0.69				11/13/14 17:04	
Carbon disulfide	ND	1.0	0.19				11/13/14 17:04	
Carbon tetrachloride	ND	1.0	0.19				11/13/14 17:04	
Chlorobenzene	ND	1.0	0.75				11/13/14 17:04	
Chloroethane	ND	1.0	0.73				11/13/14 17:04	
Chloroform	ND	1.0	0.34				11/13/14 17:04	
	ND	1.0					11/13/14 17:04	
Chloromethane			0.35	-				
cis-1,2-Dichloroethene	ND	1.0	0.81				11/13/14 17:04	
cis-1,3-Dichloropropene	ND	1.0	0.36				11/13/14 17:04	
Cyclohexane	ND	1.0	0.18	-			11/13/14 17:04	
Dibromochloromethane	ND	1.0	0.32				11/13/14 17:04	
Dichlorodifluoromethane	ND	1.0	0.68				11/13/14 17:04	
Ethylbenzene	ND	1.0	0.74				11/13/14 17:04	
sopropylbenzene	ND	1.0	0.79	-			11/13/14 17:04	
Methyl acetate	ND	2.5	0.50	_			11/13/14 17:04	
Methyl tert-butyl ether	ND	1.0	0.16				11/13/14 17:04	
Methylcyclohexane	ND	1.0	0.16	•			11/13/14 17:04	
Methylene Chloride	ND	1.0	0.44				11/13/14 17:04	
Styrene	ND	1.0	0.73	-			11/13/14 17:04	
Tetrachloroethene	ND	1.0	0.36	-			11/13/14 17:04	
Гoluene	ND	1.0	0.51				11/13/14 17:04	
trans-1,2-Dichloroethene	ND	1.0	0.90				11/13/14 17:04	
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			11/13/14 17:04	
Trichloroethene	ND	1.0	0.46	ug/L			11/13/14 17:04	
Trichlorofluoromethane	ND	1.0	0.88	ug/L			11/13/14 17:04	

TestAmerica Buffalo

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Received: 11/05/14 10:00

TestAmerica Job ID: 480-70733-1

Client Sample ID: Trip Blank

Lab Sample ID: 480-70733-4 Date Collected: 11/04/14 12:30

Matrix: Water

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		1.0		0.90	ug/L			11/13/14 17:04	1
Xylenes, Total	ND		2.0		0.66	ug/L			11/13/14 17:04	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Isopropyl alcohol	14		ug/L		2	.65	67-63-0	-	11/13/14 17:04	1
1-Chlorohexane	0.46	J	ug/L		7	.02	544-10-5		11/13/14 17:04	1
Tentatively Identified Compound	None		ug/L						11/13/14 17:04	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		66 - 137						11/13/14 17:04	1
4-Bromofluorobenzene (Surr)	108		73 - 120						11/13/14 17:04	1
Toluene-d8 (Surr)	103		71 - 126						11/13/14 17:04	1

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70733-1

Lab Sample ID: 480-70733-5

Matrix: Water

Client Sample ID: EB-01

Date Collected: 11/04/14 16:00

Date Received: 11/05/14 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2,4,5-Trichlorophenol	ND		4.6	0.44	ug/L		11/06/14 14:25	12/03/14 07:48	
2,4,6-Trichlorophenol	ND	*	4.6	0.56	ug/L		11/06/14 14:25	12/03/14 07:48	
2,4-Dichlorophenol	ND	*	4.6	0.47	ug/L		11/06/14 14:25	12/03/14 07:48	
2,4-Dimethylphenol	ND	*	4.6	0.46	ug/L		11/06/14 14:25	12/03/14 07:48	
2,4-Dinitrophenol	ND		9.2	2.0	ug/L		11/06/14 14:25	12/03/14 07:48	
2,4-Dinitrotoluene	ND		4.6	0.41	ug/L		11/06/14 14:25	12/03/14 07:48	
2,6-Dinitrotoluene	ND	*	4.6	0.37	ug/L		11/06/14 14:25	12/03/14 07:48	
2-Chloronaphthalene	ND		4.6	0.42	ug/L		11/06/14 14:25	12/03/14 07:48	
2-Chlorophenol	ND		4.6	0.49	ug/L		11/06/14 14:25	12/03/14 07:48	
2-Methylnaphthalene	ND		4.6	0.55	ug/L		11/06/14 14:25	12/03/14 07:48	
2-Methylphenol	ND		4.6	0.37	ug/L		11/06/14 14:25	12/03/14 07:48	
2-Nitroaniline	ND		9.2	0.39	ug/L		11/06/14 14:25	12/03/14 07:48	
2-Nitrophenol	ND		4.6		ug/L		11/06/14 14:25	12/03/14 07:48	
3,3'-Dichlorobenzidine	ND		4.6	0.37	-		11/06/14 14:25	12/03/14 07:48	
3-Nitroaniline	ND	*	9.2		ug/L		11/06/14 14:25	12/03/14 07:48	
4,6-Dinitro-2-methylphenol	ND		9.2	2.0	ug/L		11/06/14 14:25	12/03/14 07:48	
4-Bromophenyl phenyl ether	ND	*	4.6	0.41	ug/L		11/06/14 14:25	12/03/14 07:48	
4-Chloro-3-methylphenol	ND		4.6	0.41	ug/L		11/06/14 14:25	12/03/14 07:48	
4-Chloroaniline	ND		4.6		ug/L		11/06/14 14:25	12/03/14 07:48	
4-Chlorophenyl phenyl ether	ND	*	4.6		ug/L		11/06/14 14:25	12/03/14 07:48	
4-Methylphenol	ND		9.2		ug/L		11/06/14 14:25	12/03/14 07:48	
4-Nitroaniline	ND		9.2		ug/L		11/06/14 14:25	12/03/14 07:48	
4-Nitrophenol	ND		9.2		ug/L		11/06/14 14:25	12/03/14 07:48	
Acenaphthene	ND	*	4.6		ug/L		11/06/14 14:25	12/03/14 07:48	
Acenaphthylene	ND	*	4.6		ug/L		11/06/14 14:25	12/03/14 07:48	
Acetophenone	ND		4.6		ug/L		11/06/14 14:25	12/03/14 07:48	
Anthracene	ND		4.6		ug/L		11/06/14 14:25	12/03/14 07:48	
Atrazine	ND		4.6		ug/L		11/06/14 14:25	12/03/14 07:48	
Benzaldehyde		JB	4.6		ug/L		11/06/14 14:25	12/03/14 07:48	
Benzo(a)anthracene	ND	JB	4.6		ug/L		11/06/14 14:25	12/03/14 07:48	
Benzo(a)pyrene	ND		4.6		ug/L ug/L		11/06/14 14:25	12/03/14 07:48	
Benzo(b)fluoranthene	ND		4.6	0.43			11/06/14 14:25	12/03/14 07:48	
	ND ND	*	4.6		ug/L		11/06/14 14:25	12/03/14 07:48	
Benzo(g,h,i)perylene	ND		4.6		ug/L ug/L		11/06/14 14:25	12/03/14 07:48	
Benzo(k)fluoranthene	ND ND		4.6						
Biphenyl	ND ND				ug/L		11/06/14 14:25	12/03/14 07:48	
pis (2-chloroisopropyl) ether			4.6		ug/L		11/06/14 14:25	12/03/14 07:48	
Bis(2-chloroethoxy)methane	ND		4.6		ug/L		11/06/14 14:25	12/03/14 07:48	
Bis(2-chloroethyl)ether	ND		4.6		ug/L		11/06/14 14:25	12/03/14 07:48	
Bis(2-ethylhexyl) phthalate	ND		4.6		ug/L		11/06/14 14:25	12/03/14 07:48	
Butyl benzyl phthalate	ND		4.6		-		11/06/14 14:25	12/03/14 07:48	
Caprolactam	ND		4.6		•		11/06/14 14:25	12/03/14 07:48	
Carbazole	ND		4.6		ug/L		11/06/14 14:25	12/03/14 07:48	
Chrysene	ND		4.6		ug/L		11/06/14 14:25	12/03/14 07:48	
Dibenz(a,h)anthracene	ND		4.6		_		11/06/14 14:25	12/03/14 07:48	
Dibenzofuran	ND		9.2		ug/L		11/06/14 14:25	12/03/14 07:48	
Diethyl phthalate	ND		4.6		ug/L		11/06/14 14:25	12/03/14 07:48	
Dimethyl phthalate	ND		4.6	0.33	ug/L		11/06/14 14:25	12/03/14 07:48	
Di-n-butyl phthalate	ND		4.6	0.28	ug/L		11/06/14 14:25	12/03/14 07:48	

TestAmerica Buffalo

6

ŏ

10

12

14

Client: Woodard & Curran Inc Project/Site: Rouses Point

Client Sample ID: EB-01

Lab Sample ID: 480-70733-5 Date Collected: 11/04/14 16:00

Matrix: Water

Date Received: 11/05/14 10:00

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	ND		4.6		0.37	ug/L		11/06/14 14:25	12/03/14 07:48	1
Fluorene	ND		4.6		0.33	ug/L		11/06/14 14:25	12/03/14 07:48	1
Hexachlorobenzene	ND		4.6		0.47	ug/L		11/06/14 14:25	12/03/14 07:48	1
Hexachlorobutadiene	ND		4.6		0.62	ug/L		11/06/14 14:25	12/03/14 07:48	1
Hexachlorocyclopentadiene	ND		4.6		0.54	ug/L		11/06/14 14:25	12/03/14 07:48	1
Hexachloroethane	ND		4.6		0.54	ug/L		11/06/14 14:25	12/03/14 07:48	1
Indeno(1,2,3-cd)pyrene	ND	*	4.6		0.43	ug/L		11/06/14 14:25	12/03/14 07:48	1
Isophorone	ND		4.6		0.39	ug/L		11/06/14 14:25	12/03/14 07:48	1
Naphthalene	ND		4.6		0.70	ug/L		11/06/14 14:25	12/03/14 07:48	1
Nitrobenzene	ND		4.6		0.27	ug/L		11/06/14 14:25	12/03/14 07:48	1
N-Nitrosodi-n-propylamine	ND		4.6		0.50	ug/L		11/06/14 14:25	12/03/14 07:48	1
N-Nitrosodiphenylamine	ND		4.6		0.47	ug/L		11/06/14 14:25	12/03/14 07:48	1
Pentachlorophenol	ND		9.2		2.0	ug/L		11/06/14 14:25	12/03/14 07:48	1
Phenanthrene	ND		4.6		0.40	ug/L		11/06/14 14:25	12/03/14 07:48	1
Phenol	ND		4.6		0.36	ug/L		11/06/14 14:25	12/03/14 07:48	1
Pyrene	ND		4.6		0.31	ug/L		11/06/14 14:25	12/03/14 07:48	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	67	T J	ug/L		3.	.26		11/06/14 14:25	12/03/14 07:48	1
Dimethylformamide	0.00	J	ug/L				68-12-2	11/06/14 14:25	12/03/14 07:48	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	54		52 - 132					11/06/14 14:25	12/03/14 07:48	1
2-Fluorobiphenyl	47	X	48 - 120					11/06/14 14:25	12/03/14 07:48	1
2-Fluorophenol	45		20 - 120					11/06/14 14:25	12/03/14 07:48	1
Nitrobenzene-d5	52		46 - 120					11/06/14 14:25	12/03/14 07:48	1
Phenol-d5	31		16 - 120					11/06/14 14:25	12/03/14 07:48	1
p-Terphenyl-d14	56	X	67 ₋ 150					11/06/14 14:25	12/03/14 07:48	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		1.0	0.14	mg/L			11/06/14 11:55	1
Isobutyl alcohol	ND		1.0	0.37	mg/L			11/06/14 11:55	1
Methanol	ND		1.0	0.41	mg/L			11/06/14 11:55	1
n-Butanol	ND		1.0	0.40	mg/L			11/06/14 11:55	1
Propanol	ND		1.0	0.16	mg/L			11/06/14 11:55	1
2-Butanol	ND		1.0	0.17	mg/L			11/06/14 11:55	1
Isopropyl alcohol	ND		1.0	0.12	mg/L			11/06/14 11:55	1
t-Butyl alcohol	ND		1.0	0.10	mg/L			11/06/14 11:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	115		62 - 129			-		11/06/14 11:55	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.48	0.17	ug/L		11/07/14 14:18	11/09/14 05:05	1
PCB-1221	ND		0.48	0.17	ug/L		11/07/14 14:18	11/09/14 05:05	1
PCB-1232	ND		0.48	0.17	ug/L		11/07/14 14:18	11/09/14 05:05	1
PCB-1242	ND		0.48	0.17	ug/L		11/07/14 14:18	11/09/14 05:05	1
PCB-1248	ND		0.48	0.17	ug/L		11/07/14 14:18	11/09/14 05:05	1
PCB-1254	ND		0.48	0.24	ug/L		11/07/14 14:18	11/09/14 05:05	1

TestAmerica Buffalo

Page 23 of 58

Client Sample Results

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70733-1

Client Sample ID: EB-01

Lab Sample ID: 480-70733-5

Matrix: Water

Date Collected: 11/04/14 16:00 Date Received: 11/05/14 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1260	ND		0.48	0.24	ug/L		11/07/14 14:18	11/09/14 05:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	75		23 - 127				11/07/14 14:18	11/09/14 05:05	1
DCB Decachlorobiphenyl	99		19 - 126				11/07/14 14:18	11/09/14 05:05	1

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		11/06/14 08:00	11/11/14 21:41	1
Barium	0.13		0.0020	0.00070	mg/L		11/06/14 08:00	11/10/14 20:04	1
Cadmium	ND		0.0020	0.00050	mg/L		11/06/14 08:00	11/11/14 21:41	1
Chromium	ND		0.0040	0.0010	mg/L		11/06/14 08:00	11/11/14 21:41	1
Lead	ND		0.010	0.0030	mg/L		11/06/14 08:00	11/11/14 21:41	1
Selenium	ND		0.025	0.0087	mg/L		11/06/14 08:00	11/11/14 21:41	1
Silver	ND		0.0060	0.0017	mg/L		11/06/14 08:00	11/11/14 21:41	1

Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		11/06/14 08:20	11/06/14 13:28	1

3

4

8

9

10

12

13

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

_				Percent Surr
		12DCE	TOL	BFB
Lab Sample ID	Client Sample ID	(64-126)	(71-125)	(72-126)
480-70733-1	TFARM-SS-SUMP-01	112	98	99
480-70733-2	TFARM-SS-PAD-02	111	101	103
480-70733-3	TFARM-SS-PAD-03	110	100	102
LCS 480-213546/5	Lab Control Sample	112	97	99
LCSD 480-213546/6	Lab Control Sample Dup	111	100	101
MB 480-213546/8	Method Blank	103	100	98
Surrogate Legend				

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Surro	gate Recovery (Acceptan
		12DCE	BFB	TOL	
₋ab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)	
180-70733-4	Trip Blank	106	108	103	
CS 480-213789/3	Lab Control Sample	101	107	104	
MB 480-213789/5	Method Blank	104	105	101	

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

_				Percent Sui	rogate Reco	very (Accepta	ance Limits
		TBP	FBP	2FP	NBZ	TPH	PHL
Lab Sample ID	Client Sample ID	(39-146)	(37-120)	(18-120)	(34-132)	(65-153)	(11-120)
480-70733-1	TFARM-SS-SUMP-01	79	82	74	80	94	83
480-70733-2	TFARM-SS-PAD-02	76	81	74	78	90	83
480-70733-3	TFARM-SS-PAD-03	78	81	70	78	90	78
LCS 480-212381/2-A	Lab Control Sample	82	79	69	77	89	80
MB 480-212381/1-A	Method Blank	73	79	70	76	93	77

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

TPH = p-Terphenyl-d14

PHL = Phenol-d5

TestAmerica Buffalo

Page 25 of 58

12/9/2014

Client: Woodard & Curran Inc Project/Site: Rouses Point

2

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

TBP	FBP	055			
	1 01	2FP	NBZ	PHL	TPH
(52-132)	(48-120)	(20-120)	(46-120)	(16-120)	(67-150)
54	47 X	45	52	31	56 X
75	54	63	59	43	71
68	59	64	65	44	72
	54 75	54 47 X 75 54	54 47 X 45 75 54 63	54 47 X 45 52 75 54 63 59	54 47 X 45 52 31 75 54 63 59 43

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPH = p-Terphenyl-d14

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC)

Matrix: Solid Prep Type: Soluble

			Percent Surrogate Recovery (Acceptance Limits)
		2HN1	
Lab Sample ID	Client Sample ID	(30-137)	
480-70733-1	TFARM-SS-SUMP-01	94	
480-70733-2	TFARM-SS-PAD-02	125	
480-70733-3	TFARM-SS-PAD-03	105	
LCS 480-212715/2-A	Lab Control Sample	86	
MB 480-212715/1-A	Method Blank	111	
Surrogate Legend			

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		2HN1	
Lab Sample ID	Client Sample ID	(62-129)	
480-70733-5	EB-01	115	
LCS 480-212471/4	Lab Control Sample	116	
LCSD 480-212471/5	Lab Control Sample Dup	114	
MB 480-212471/3	Method Blank	115	
Surrogate Legend			

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		TCX2	DCB2	
Lab Sample ID	Client Sample ID	(46-175)	(47-176)	
480-70733-1	TFARM-SS-SUMP-01	103	116	
480-70733-1 MS	TFARM-SS-SUMP-01	111	125	
480-70733-1 MSD	TFARM-SS-SUMP-01	108	123	

Surrogate Summary

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70733-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		TCX2	DCB2	
Lab Sample ID	Client Sample ID	(46-175)	(47-176)	
480-70733-2	TFARM-SS-PAD-02	87	98	
480-70733-3	TFARM-SS-PAD-03	103	112	
LCS 480-213179/2-A	Lab Control Sample	109	122	
MB 480-213179/1-A	Method Blank	99	110	

TCX = Tetrachloro-m-xylene DCB = DCB Decachlorobiphenyl

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Water Prep Type: Total/NA

TCX2	DCB2	
(23-127)	(19-126)	
75	99	
61	84	
69	96	
	75 61	75 99 61 84

DCB = DCB Decachlorobiphenyl

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS

MB MB

ND

ND

ND

ND

Lab Sample ID: MB 480-213546/8

Matrix: Solid

1,2-Dichlorobenzene
1.2-Dichloroethane

1,2-Dichloropropane

Bromomethane

Carbon disulfide

Chlorobenzene

Chloroethane

Carbon tetrachloride

Bromodichloromethane

Analysis Batch: 213546

Client Sample ID: Method Blank Prep Type: Total/NA

Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.36	ug/Kg			11/12/14 12:19	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.81	ug/Kg			11/12/14 12:19	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0	1.1	ug/Kg			11/12/14 12:19	1
1,1,2-Trichloroethane	ND		5.0	0.65	ug/Kg			11/12/14 12:19	1
1,1-Dichloroethane	ND		5.0	0.61	ug/Kg			11/12/14 12:19	1
1,1-Dichloroethene	ND		5.0	0.61	ug/Kg			11/12/14 12:19	1
1,2,3-Trichlorobenzene	ND		5.0	0.53	ug/Kg			11/12/14 12:19	1
1,2,4-Trichlorobenzene	ND		5.0	0.30	ug/Kg			11/12/14 12:19	1
1,2-Dibromo-3-Chloropropane	ND		5.0	2.5	ug/Kg			11/12/14 12:19	1

5.0

5.0

5.0

11/12/14 12:19
11/12/14 12:19
11/12/14 12:19
11/12/14 12:19
11/12/14 12:19
11/12/14 12:19
11/12/14 12:19
11/12/14 12:19

11/12/14 12:19

1,3-Dichlorobenzene ND 5.0 0.26 ug/Kg 1,4-Dichlorobenzene ND 5.0 0.70 ug/Kg 11/12/14 12:19 1,4-Dioxane ND 100 22 ug/Kg 2-Hexanone ND 25 2.5 ug/Kg 11/12/14 12:19 Acetone ND 25 4.2 ug/Kg 11/12/14 12:19 Benzene ND 5.0 0.25 ug/Kg 11/12/14 12:19 Bromochloromethane ND 5.0 0.36 ug/Kg 11/12/14 12:19 Bromoform

ND 5.0 2.5 ug/Kg 11/12/14 12:19 ND 5.0 0.45 ug/Kg 11/12/14 12:19 ND 5.0 2.5 ug/Kg 11/12/14 12:19 ND 5.0 0.48 ug/Kg 11/12/14 12:19 ND 5.0 0.66 ug/Kg 11/12/14 12:19 ND 5.0 1.1 ug/Kg 11/12/14 12:19

ug/Kg

0.67

0.39 ug/Kg

0.25 ug/Kg

2.5 ug/Kg

Chloroform ND 5.0 0.31 ug/Kg 11/12/14 12:19 Chloromethane ND 5.0 0.30 ug/Kg 11/12/14 12:19 cis-1,2-Dichloroethene ND 5.0 0.64 ug/Kg 11/12/14 12:19 1,2-Dibromoethane (EDB) ND 5.0 0.64 ug/Kg 11/12/14 12:19 ND cis-1,3-Dichloropropene 5.0 0.72 ug/Kg 11/12/14 12:19 Cyclohexane ND 5.0 0.70 ua/Ka 11/12/14 12:19 Dibromochloromethane ND 5.0 0.64 ug/Kg 11/12/14 12:19

5.0

2-Butanone (MEK) ND 25 1.8 ug/Kg 11/12/14 12:19 Dichlorodifluoromethane ND 5.0 0.41 ug/Kg 11/12/14 12:19 4-Methyl-2-pentanone (MIBK) ND 25 11/12/14 12:19 1.6 ug/Kg ND Ethylbenzene 5.0 0.35 ug/Kg 11/12/14 12:19 Isopropylbenzene ND 5.0 11/12/14 12:19 0.75 ug/Kg ND Methyl acetate 5.0 3.0 ug/Kg 11/12/14 12:19

Methyl tert-butyl ether ND 5.0 0.49 ug/Kg 11/12/14 12:19 Methylcyclohexane ND 5.0 0.76 ug/Kg 11/12/14 12:19 Methylene Chloride 3.11 5.0 2.3 ug/Kg 11/12/14 12:19 Styrene ND 5.0 0.25 ug/Kg 11/12/14 12:19 ND Tetrachloroethene 5.0 0.67 ug/Kg 11/12/14 12:19

Toluene ND 5.0 0.38 ug/Kg 11/12/14 12:19 trans-1,2-Dichloroethene ND 5.0 0.52 ug/Kg 11/12/14 12:19 trans-1,3-Dichloropropene ND 5.0 2.2 ug/Kg 11/12/14 12:19 Trichloroethene ND 11/12/14 12:19 5.0 1.1 ug/Kg

TestAmerica Buffalo

3

4

6

8

1.0

11

13

14

IJ

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-213546/8

Matrix: Solid

Client Sample ID: Method Blank
Prep Type: Total/NA

Analysis Batch: 213546

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		5.0	0.47	ug/Kg			11/12/14 12:19	1
Vinyl chloride	ND		5.0	0.61	ug/Kg			11/12/14 12:19	1
Xylenes, Total	ND		10	0.84	ug/Kg			11/12/14 12:19	1
	МВ	МВ							

MB MB

MR MR

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1,2-Dichloroethane-d4 (Surr)	103		64 - 126	 	11/12/14 12:19	1
	Toluene-d8 (Surr)	100		71 - 125		11/12/14 12:19	1
l	4-Bromofluorobenzene (Surr)	98		72 - 126		11/12/14 12:19	1

Lab Sample ID: LCS 480-213546/5

Matrix: Solid

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch: 213546

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	50.0	54.0		ug/Kg		108	77 _ 121
1,1,2,2-Tetrachloroethane	50.0	50.0		ug/Kg		100	80 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	50.5		ug/Kg		101	60 - 140
ne							
1,1,2-Trichloroethane	50.0	48.1		ug/Kg		96	78 - 122
1,1-Dichloroethane	50.0	53.2		ug/Kg		106	73 - 126
1,1-Dichloroethene	50.0	50.9		ug/Kg		102	59 - 125
1,2,3-Trichlorobenzene	50.0	50.8		ug/Kg		102	60 _ 120
1,2,4-Trichlorobenzene	50.0	52.1		ug/Kg		104	64 _ 120
1,2-Dibromo-3-Chloropropane	50.0	48.4		ug/Kg		97	63 - 124
1,2-Dichlorobenzene	50.0	48.8		ug/Kg		98	75 - 120
1,2-Dichloroethane	50.0	51.2		ug/Kg		102	77 - 122
1,2-Dichloropropane	50.0	52.5		ug/Kg		105	75 ₋ 124
1,3-Dichlorobenzene	50.0	49.2		ug/Kg		98	74 - 120
1,4-Dichlorobenzene	50.0	48.2		ug/Kg		96	73 _ 120
2-Hexanone	250	237		ug/Kg		95	59 ₋ 130
Acetone	250	226		ug/Kg		90	61 - 137
Benzene	50.0	51.7		ug/Kg		103	79 ₋ 127
Bromochloromethane	50.0	52.3		ug/Kg		105	75 ₋ 134
Bromoform	50.0	47.5		ug/Kg		95	68 - 126
Bromomethane	50.0	48.4		ug/Kg		97	37 ₋ 149
Carbon disulfide	50.0	53.1		ug/Kg		106	64 - 131
Carbon tetrachloride	50.0	57.6		ug/Kg		115	75 - 135
Chlorobenzene	50.0	48.6		ug/Kg		97	76 ₋ 124
Chloroethane	50.0	50.1		ug/Kg		100	69 - 135
Bromodichloromethane	50.0	55.6		ug/Kg		111	80 - 122
Chloroform	50.0	52.0		ug/Kg		104	80 - 118
Chloromethane	50.0	52.9		ug/Kg		106	63 - 127
cis-1,2-Dichloroethene	50.0	52.5		ug/Kg		105	81 - 117
1,2-Dibromoethane (EDB)	50.0	49.4		ug/Kg		99	78 ₋ 120
cis-1,3-Dichloropropene	50.0	57.8		ug/Kg		116	82 - 120

TestAmerica Buffalo

Page 29 of 58

2

5

5

6

8

9

11

12

13

14

Client: Woodard & Curran Inc Project/Site: Rouses Point

Lab Sample ID: LCS 480-213546/5

Matrix: Solid

Analysis Batch: 213546

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Cyclohexane	50.0	52.5		ug/Kg		105	65 - 106
Dibromochloromethane	50.0	54.1		ug/Kg		108	76 ₋ 125
2-Butanone (MEK)	250	409	*	ug/Kg		163	70 - 134
Dichlorodifluoromethane	50.0	56.3		ug/Kg		113	57 ₋ 142
4-Methyl-2-pentanone (MIBK)	250	240		ug/Kg		96	65 _ 133
Ethylbenzene	50.0	49.7		ug/Kg		99	80 - 120
Isopropylbenzene	50.0	51.1		ug/Kg		102	72 ₋ 120
Methyl acetate	250	294		ug/Kg		117	55 ₋ 136
Methyl tert-butyl ether	50.0	51.9		ug/Kg		104	63 - 125
Methylcyclohexane	50.0	53.4		ug/Kg		107	60 - 140
Methylene Chloride	50.0	50.3		ug/Kg		101	61 - 127
Styrene	50.0	51.9		ug/Kg		104	80 - 120
Tetrachloroethene	50.0	50.6		ug/Kg		101	74 - 122
Toluene	50.0	47.8		ug/Kg		96	74 - 128
trans-1,2-Dichloroethene	50.0	50.8		ug/Kg		102	78 ₋ 126
trans-1,3-Dichloropropene	50.0	53.1		ug/Kg		106	73 - 123
Trichloroethene	50.0	53.4		ug/Kg		107	77 ₋ 129
Trichlorofluoromethane	50.0	50.2		ug/Kg		100	65 - 146
Vinyl chloride	50.0	53.1		ug/Kg		106	61 - 133
Xylenes, Total	100	102		ug/Kg		102	70 - 130

LCS LCS

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery Qualifie	r Limits
1,2-Dichloroethane-d4 (Surr)	112	64 - 126
Toluene-d8 (Surr)	97	71 - 125
4-Bromofluorobenzene (Surr)	99	72 - 126

Lab Sample ID: LCSD 480-213546/6

Matrix: Solid

Analysis Batch: 213546

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	50.0	51.0		ug/Kg		102	77 - 121	6	20
1,1,2,2-Tetrachloroethane	50.0	51.7		ug/Kg		103	80 - 120	3	20
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	48.0		ug/Kg		96	60 - 140	5	20
ne									
1,1,2-Trichloroethane	50.0	48.2		ug/Kg		96	78 - 122	0	20
1,1-Dichloroethane	50.0	50.9		ug/Kg		102	73 - 126	4	20
1,1-Dichloroethene	50.0	48.6		ug/Kg		97	59 - 125	5	20
1,2,3-Trichlorobenzene	50.0	49.8		ug/Kg		100	60 - 120	2	20
1,2,4-Trichlorobenzene	50.0	50.8		ug/Kg		102	64 - 120	3	20
1,2-Dibromo-3-Chloropropane	50.0	50.3		ug/Kg		101	63 - 124	4	20
1,2-Dichlorobenzene	50.0	49.2		ug/Kg		98	75 - 120	1	20
1,2-Dichloroethane	50.0	49.6		ug/Kg		99	77 - 122	3	20
1,2-Dichloropropane	50.0	50.5		ug/Kg		101	75 - 124	4	20
1,3-Dichlorobenzene	50.0	49.3		ug/Kg		99	74 - 120	0	20
1,4-Dichlorobenzene	50.0	48.5		ug/Kg		97	73 - 120	1	20
2-Hexanone	250	245		ug/Kg		98	59 - 130	3	20
Acetone	250	223		ug/Kg		89	61 - 137	1	20

Page 30 of 58

TestAmerica Job ID: 480-70733-1

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 480-213546/6

Matrix: Solid

Analysis Batch: 213546

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch. 213546	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.0	49.3		ug/Kg		99	79 - 127	5	20
Bromochloromethane	50.0	50.5		ug/Kg		101	75 ₋ 134	4	20
Bromoform	50.0	47.3		ug/Kg		95	68 - 126	0	20
Bromomethane	50.0	45.9		ug/Kg		92	37 - 149	5	20
Carbon disulfide	50.0	48.8		ug/Kg		98	64 - 131	8	20
Carbon tetrachloride	50.0	54.5		ug/Kg		109	75 - 135	6	20
Chlorobenzene	50.0	47.4		ug/Kg		95	76 - 124	2	20
Chloroethane	50.0	46.2		ug/Kg		92	69 - 135	8	20
Bromodichloromethane	50.0	53.4		ug/Kg		107	80 - 122	4	20
Chloroform	50.0	49.5		ug/Kg		99	80 - 118	5	20
Chloromethane	50.0	49.8		ug/Kg		100	63 - 127	6	20
cis-1,2-Dichloroethene	50.0	49.9		ug/Kg		100	81 - 117	5	20
1,2-Dibromoethane (EDB)	50.0	49.6		ug/Kg		99	78 ₋ 120	0	20
cis-1,3-Dichloropropene	50.0	56.0		ug/Kg		112	82 - 120	3	20
Cyclohexane	50.0	49.6		ug/Kg		99	65 - 106	6	20
Dibromochloromethane	50.0	55.1		ug/Kg		110	76 - 125	2	20
2-Butanone (MEK)	250	408	*	ug/Kg		163	70 - 134	0	20
Dichlorodifluoromethane	50.0	50.8		ug/Kg		102	57 - 142	10	20
4-Methyl-2-pentanone (MIBK)	250	246		ug/Kg		98	65 - 133	3	20
Ethylbenzene	50.0	48.8		ug/Kg		98	80 - 120	2	20
Isopropylbenzene	50.0	50.8		ug/Kg		102	72 - 120	1	20
Methyl acetate	250	294		ug/Kg		118	55 ₋ 136	0	20
Methyl tert-butyl ether	50.0	51.2		ug/Kg		102	63 - 125	1	20
Methylcyclohexane	50.0	49.9		ug/Kg		100	60 - 140	7	20
Methylene Chloride	50.0	49.7		ug/Kg		99	61 - 127	1	20
Styrene	50.0	50.9		ug/Kg		102	80 - 120	2	20
Tetrachloroethene	50.0	49.7		ug/Kg		99	74 - 122	2	20
Toluene	50.0	47.1		ug/Kg		94	74 - 128	1	20
trans-1,2-Dichloroethene	50.0	48.4		ug/Kg		97	78 - 126	5	20
trans-1,3-Dichloropropene	50.0	53.5		ug/Kg		107	73 - 123	1	20
Trichloroethene	50.0	51.0		ug/Kg		102	77 - 129	5	20
Trichlorofluoromethane	50.0	46.9		ug/Kg		94	65 - 146	7	20
Vinyl chloride	50.0	49.4		ug/Kg		99	61 - 133	7	20
Xylenes, Total	100	99.1		ug/Kg		99	70 ₋ 130	2	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	111		64 - 126
Toluene-d8 (Surr)	100		71 - 125
4-Bromofluorobenzene (Surr)	101		72 - 126

Lab Sample ID: MB 480-213789/5

Matrix: Water

Analysis Batch: 213789

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB MB						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	1.0	0.82 ug/L			11/13/14 09:02	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21 ug/L			11/13/14 09:02	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31 ug/L			11/13/14 09:02	1

TestAmerica Buffalo

Page 31 of 58

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-213789/5

Matrix: Water

Analysis Batch: 213789

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 213789	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			11/13/14 09:02	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			11/13/14 09:02	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			11/13/14 09:02	1
1,2,3-Trichlorobenzene	ND		1.0	0.41	ug/L			11/13/14 09:02	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			11/13/14 09:02	1
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			11/13/14 09:02	1
1,2-Dichlorobenzene	ND		1.0		ug/L			11/13/14 09:02	1
1.2-Dichloroethane	ND		1.0		ug/L			11/13/14 09:02	1
1,2-Dichloropropane	ND		1.0		ug/L			11/13/14 09:02	1
1,3-Dichlorobenzene	ND		1.0		ug/L			11/13/14 09:02	
1,4-Dichlorobenzene	ND		1.0	0.84	-			11/13/14 09:02	1
1,4-Dioxane	ND		40		ug/L			11/13/14 09:02	1
2-Hexanone	ND		5.0		ug/L			11/13/14 09:02	· · · · · · · · · 1
Acetone	ND		10					11/13/14 09:02	1
Benzene	ND		1.0		_			11/13/14 09:02	1
					ug/L				
Bromochloromethane	ND		1.0		ug/L			11/13/14 09:02	1
Bromoform	ND		1.0		ug/L			11/13/14 09:02	1
Bromomethane	ND		1.0		ug/L			11/13/14 09:02	
Carbon disulfide	ND		1.0		ug/L			11/13/14 09:02	1
Carbon tetrachloride	ND		1.0		ug/L			11/13/14 09:02	1
Chlorobenzene	ND		1.0		ug/L			11/13/14 09:02	
Chloroethane	ND		1.0		ug/L			11/13/14 09:02	1
Bromodichloromethane	ND		1.0		ug/L			11/13/14 09:02	1
Chloroform	ND		1.0		ug/L			11/13/14 09:02	1
Chloromethane	ND		1.0	0.35	-			11/13/14 09:02	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			11/13/14 09:02	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	.			11/13/14 09:02	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			11/13/14 09:02	1
Cyclohexane	ND		1.0	0.18	ug/L			11/13/14 09:02	1
Dibromochloromethane	ND		1.0	0.32	ug/L			11/13/14 09:02	1
2-Butanone (MEK)	ND		10	1.3	ug/L			11/13/14 09:02	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			11/13/14 09:02	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			11/13/14 09:02	1
Ethylbenzene	ND		1.0	0.74	ug/L			11/13/14 09:02	1
Isopropylbenzene	ND		1.0	0.79	ug/L			11/13/14 09:02	1
Methyl acetate	ND		2.5	0.50	ug/L			11/13/14 09:02	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			11/13/14 09:02	1
Methylcyclohexane	ND		1.0	0.16	ug/L			11/13/14 09:02	1
Methylene Chloride	ND		1.0	0.44	ug/L			11/13/14 09:02	1
Styrene	ND		1.0	0.73	ug/L			11/13/14 09:02	1
Tetrachloroethene	ND		1.0		ug/L			11/13/14 09:02	1
Toluene	ND		1.0		ug/L			11/13/14 09:02	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			11/13/14 09:02	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			11/13/14 09:02	1
Trichloroethene	ND		1.0		ug/L			11/13/14 09:02	1
Trichlorofluoromethane	ND		1.0		ug/L			11/13/14 09:02	
Vinyl chloride	ND ND		1.0		ug/L ug/L			11/13/14 09:02	1
•					-				
Xylenes, Total	ND		2.0	0.66	ug/L			11/13/14 09:02	1

TestAmerica Buffalo

Page 32 of 58

12/9/2014

3

4

7

10

12

. .

QC Sample Results

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70733-1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB

Lab Sample ID: MB 480-213789/5

Matrix: Water

Analysis Batch: 213789

Client Sample ID: Method Blank Prep Type: Total/NA

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					11/13/14 09:02	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		66 - 137			-		11/13/14 09:02	1
Toluene-d8 (Surr)	101		71 - 126					11/13/14 09:02	1
4-Bromofluorobenzene (Surr)	105		73 - 120					11/13/14 09:02	1

Lab Sample ID: LCS 480-213789/3

Matrix: Water

Analysis Batch: 213789

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	25.0	27.7		ug/L		111	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	26.8		ug/L		107	70 - 126	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	27.6		ug/L		110	52 - 148	
ne								
1,1,2-Trichloroethane	25.0	26.3		ug/L		105	76 - 122	
1,1-Dichloroethane	25.0	27.0		ug/L		108	71 - 129	
1,1-Dichloroethene	25.0	26.3		ug/L		105	58 - 121	
1,2,3-Trichlorobenzene	25.0	27.8		ug/L		111	63 - 138	
1,2,4-Trichlorobenzene	25.0	28.5		ug/L		114	70 - 122	
1,2-Dibromo-3-Chloropropane	25.0	27.4		ug/L		110	56 - 134	
1,2-Dichlorobenzene	25.0	27.3		ug/L		109	80 - 124	
1,2-Dichloroethane	25.0	25.2		ug/L		101	75 - 127	
1,2-Dichloropropane	25.0	26.8		ug/L		107	76 - 120	
1,3-Dichlorobenzene	25.0	27.2		ug/L		109	77 - 120	
1,4-Dichlorobenzene	25.0	27.0		ug/L		108	75 - 120	
2-Hexanone	125	132		ug/L		106	65 - 127	
Acetone	125	131		ug/L		105	56 - 142	
Benzene	25.0	26.6		ug/L		106	71 - 124	
Bromochloromethane	25.0	25.7		ug/L		103	72 - 130	
Bromoform	25.0	29.0		ug/L		116	52 - 132	
Bromomethane	25.0	29.2		ug/L		117	55 - 144	
Carbon disulfide	25.0	28.7		ug/L		115	59 - 134	
Carbon tetrachloride	25.0	29.5		ug/L		118	72 - 134	
Chlorobenzene	25.0	26.2		ug/L		105	72 - 120	
Chloroethane	25.0	27.4		ug/L		110	69 - 136	
Bromodichloromethane	25.0	27.4		ug/L		110	80 - 122	
Chloroform	25.0	26.2		ug/L		105	73 - 127	
Chloromethane	25.0	24.0		ug/L		96	68 - 124	
cis-1,2-Dichloroethene	25.0	26.4		ug/L		106	74 - 124	
1,2-Dibromoethane (EDB)	25.0	25.7		ug/L		103	77 - 120	
cis-1,3-Dichloropropene	25.0	27.6		ug/L		110	74 ₋ 124	
Cyclohexane	25.0	28.4		ug/L		114	59 - 135	
Dibromochloromethane	25.0	27.8		ug/L		111	75 - 125	
2-Butanone (MEK)	125	125		ug/L		100	57 - 140	
Dichlorodifluoromethane	25.0	20.5		ug/L		82	59 - 135	
4-Methyl-2-pentanone (MIBK)	125	131		ug/L		104	71 ₋ 125	

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-213789/3

Matrix: Water

Analysis Batch: 213789

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	25.0	27.2		ug/L		109	77 - 123	
Isopropylbenzene	25.0	28.3		ug/L		113	77 - 122	
Methyl acetate	125	126		ug/L		101	74 - 133	
Methyl tert-butyl ether	25.0	27.1		ug/L		108	64 - 127	
Methylcyclohexane	25.0	28.3		ug/L		113	61 - 138	
Methylene Chloride	25.0	25.7		ug/L		103	57 - 132	
Styrene	25.0	27.0		ug/L		108	70 - 130	
Tetrachloroethene	25.0	27.2		ug/L		109	74 - 122	
Toluene	25.0	26.4		ug/L		106	80 - 122	
trans-1,2-Dichloroethene	25.0	26.6		ug/L		107	73 - 127	
trans-1,3-Dichloropropene	25.0	29.0		ug/L		116	72 - 123	
Trichloroethene	25.0	25.9		ug/L		104	74 - 123	
Trichlorofluoromethane	25.0	28.5		ug/L		114	62 _ 152	
Vinyl chloride	25.0	25.0		ug/L		100	65 _ 133	
Xylenes, Total	50.0	53.9		ug/L		108	76 - 122	

LCS LCS

Surrogate	%Recovery Qualit	ier Limits
1,2-Dichloroethane-d4 (Surr)	101	66 - 137
Toluene-d8 (Surr)	104	71 - 126
4-Bromofluorobenzene (Surr)	107	73 - 120

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-212381/1-A

Matrix: Solid

Analysis Batch: 212699

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 212381

	МВ	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		170	46	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
2,4,6-Trichlorophenol	ND		170	34	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
2,4-Dichlorophenol	ND		170	18	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
2,4-Dimethylphenol	ND		170	41	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
2,4-Dinitrophenol	ND		330	100	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
2,4-Dinitrotoluene	ND		170	35	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
2,6-Dinitrotoluene	ND		170	20	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
2-Chloronaphthalene	ND		170	28	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
2-Chlorophenol	ND		170	31	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
2-Methylnaphthalene	ND		170	34	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
2-Methylphenol	ND		170	20	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
2-Nitroaniline	ND		330	25	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
2-Nitrophenol	ND		170	48	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
3,3'-Dichlorobenzidine	ND		330	200	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
3-Nitroaniline	ND		330	47	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
4,6-Dinitro-2-methylphenol	ND		330	170	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
4-Bromophenyl phenyl ether	ND		170	24	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
4-Chloro-3-methylphenol	ND		170	42	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
4-Chloroaniline	ND		170	42	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
4-Chlorophenyl phenyl ether	ND		170	21	ug/Kg		11/06/14 08:01	11/07/14 16:16	1

TestAmerica Buffalo

Page 34 of 58

9

3

<u>____</u>

9

11

13

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-212381/1-A

Matrix: Solid

Analysis Batch: 212699

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 212381

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Methylphenol	ND		330	20	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
4-Nitroaniline	ND		330	89	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
4-Nitrophenol	ND		330	120	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Acenaphthene	ND		170	25	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Acenaphthylene	ND		170	22	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Acetophenone	ND		170	23	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Anthracene	ND		170	42	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Atrazine	ND		170	59	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Benzaldehyde	ND		170	130	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Benzo(a)anthracene	ND		170	17	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Benzo(a)pyrene	ND		170	25	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Benzo(b)fluoranthene	ND		170	27	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Benzo(g,h,i)perylene	ND		170	18	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Benzo(k)fluoranthene	ND		170	22	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Biphenyl	ND		170	25	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
bis (2-chloroisopropyl) ether	ND		170	34	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Bis(2-chloroethoxy)methane	ND		170		ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Bis(2-chloroethyl)ether	ND		170		ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Bis(2-ethylhexyl) phthalate	ND		170		ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Butyl benzyl phthalate	ND		170		ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Caprolactam	ND		170		ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Carbazole	ND		170	20	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Chrysene	ND		170	38			11/06/14 08:01	11/07/14 16:16	
Dibenz(a,h)anthracene	ND		170	30	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Dibenzofuran	ND		170	20	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Diethyl phthalate	ND		170		ug/Kg		11/06/14 08:01	11/07/14 16:16	
Dimethyl phthalate	ND		170	20	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Di-n-butyl phthalate	ND		170	29	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Di-n-octyl phthalate	ND		170		ug/Kg		11/06/14 08:01	11/07/14 16:16	
Fluoranthene	ND		170	18			11/06/14 08:01	11/07/14 16:16	1
Fluorene	ND		170	20			11/06/14 08:01	11/07/14 16:16	1
Hexachlorobenzene	ND		170		ug/Kg		11/06/14 08:01	11/07/14 16:16	
Hexachlorobutadiene	ND		170		ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Hexachlorocyclopentadiene	ND		170		ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Hexachloroethane	ND		170		ug/Kg		11/06/14 08:01	11/07/14 16:16	
Indeno(1,2,3-cd)pyrene	ND		170		ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Isophorone	ND		170		ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Naphthalene	ND		170	22			11/06/14 08:01	11/07/14 16:16	
Nitrobenzene	ND		170	19	ug/Kg		11/06/14 08:01	11/07/14 16:16	1
N-Nitrosodi-n-propylamine	ND		170	29			11/06/14 08:01	11/07/14 16:16	1
N-Nitrosodiphenylamine	ND		170	140			11/06/14 08:01	11/07/14 16:16	
Pentachlorophenol	ND		330	170			11/06/14 08:01	11/07/14 16:16	1
Phenanthrene	ND		170		ug/Kg ug/Kg		11/06/14 08:01	11/07/14 16:16	1
Phenol	ND		170		ug/Kg ug/Kg		11/06/14 08:01	11/07/14 16:16	
Pyrene	ND		170		ug/Kg ug/Kg		11/06/14 08:01	11/07/14 16:16	1
i yielie	ND		170	20	ug/Ng		1 1/00/ 14 00.0 1	11/07/14 10.10	ı
	MB	MB							
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac

TestAmerica Buffalo

Page 35 of 58

12/9/2014

QC Sample Results

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Client: Woodard & Curran Inc Project/Site: Rouses Point

Analysis Batch: 212699

Lab Sample ID: MB 480-212381/1-A

TestAmerica Job ID: 480-70733-1

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 212381**

Dil Fac

MB MB Tentatively Identified Compound Est. Result Qualifier RT CAS No. Prepared Unit Analyzed 11/06/14 08:01 Tentatively Identified Compound None ug/Kg 11/07/14 16:16 MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 73 39 - 146 11/06/14 08:01 11/07/14 16:16

2,4,6-Tribromophenol 2-Fluorobiphenyl 79 37 - 120 11/06/14 08:01 11/07/14 16:16 70 18 - 120 11/06/14 08:01 11/07/14 16:16 2-Fluorophenol Nitrobenzene-d5 76 34 - 132 11/06/14 08:01 11/07/14 16:16 p-Terphenyl-d14 93 65 - 153 11/06/14 08:01 11/07/14 16:16 Phenol-d5 77 11 - 120 11/06/14 08:01 11/07/14 16:16

Lab Sample ID: LCS 480-212381/2-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 212699

Client Sample ID: Lab Control Sample	
Prep Type: Total/NA	
Prep Batch: 212381	

Analyse Added Result Qualifier Unit D Result 2.4.5-Trichlorophenol 1620 1420 ug/Kg 88 59-128 2.4.6-Trichlorophenol 1620 1330 ug/Kg 81 59-123 2.4-Dinkhorophenol 1620 1320 ug/Kg 78 35-146 2.4-Dinkhorophenol 3230 2530 ug/Kg 78 35-146 2.4-Dinkhorophenol 3230 2530 ug/Kg 85 55-125 2.4-Dinkhorophenol 1620 1370 ug/Kg 85 55-125 2.4-Dinkhorophenol 1620 1370 ug/Kg 85 66-128 2.6-Dinkhorophenol 1620 1370 ug/Kg 75 77-120 2Chlorophenol 1620 1260 ug/Kg 77 88-120 2-Methylphenol 1620 1240 ug/Kg 77 48-120 2-Methylphenol 1620 1240 ug/Kg 76 61-130 2-Methylphenol	Analysis Batch. 212000	Spike	LCS	LCS				%Rec.
2.4.6.Trichlorophenol 1620 1310 ug/Kg 81 59-123 2.4-Dichlorophenol 1620 1320 ug/Kg 81 52-120 2.4-Dinitrophenol 3230 2530 ug/Kg 78 35-146 2.4-Dinitrophenol 3230 2530 ug/Kg 85 55-145 2.4-Dinitrotoluene 1620 1370 ug/Kg 85 65-128 2.6-Dinitrotoluene 1620 1370 ug/Kg 85 65-128 2.6-Dinitrotoluene 1620 120 ug/Kg 78 87-120 2.Chlorophenol 1620 1210 ug/Kg 75 38-120 2.Methylpaphthalene 1620 1210 ug/Kg 75 47-120 2.Methylpaphthalene 1620 1210 ug/Kg 75 47-120 2.Methylpaphthalene 1620 1210 ug/Kg 77 48-120 2.Methylpaphenol 1620 1220 ug/Kg 86 61-130 2.Methylpaphenol 3230 2360 ug/Kg 87 48-126 2.Horophylpaphtylp	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2.4-Dichlorophenol 1620 1320 ug/kg 81 52 - 120 2.4-Dimethylphenol 1620 1270 ug/kg 79 36 - 120 2.4-Dinitrophenol 3230 2530 ug/kg 85 55 - 125 2.4-Dinitrotoluene 1620 1370 ug/kg 85 66 - 128 2.6-Dinitrotoluene 1620 1370 ug/kg 78 57 - 120 2-Chlorophenol 1620 1210 ug/kg 75 38 - 120 2-Chlorophenol 1620 1210 ug/kg 75 38 - 120 2-Methylphenol 1620 1240 ug/kg 75 47 - 120 2-Methylphenol 1620 1240 ug/kg 76 50 - 120 2-Mitrophenol 1620 1240 ug/kg 76 50 - 120 2-Mitrophenol 1620 1220 ug/kg 76 50 - 120 3-3-Dichlorobenzidine 3230 2360 ug/kg 77 61 - 127 4-Bornophenyl phenyl ether 1620 1290 ug/kg 80 58 - 131 4-C	2,4,5-Trichlorophenol	1620	1420		ug/Kg		88	59 - 126
2.4-Dimethylphenol 1620 1270 ug/kg 79 36-120 2.4-Dimitophenol 3230 2530 ug/kg 78 35-146 2.4-Dinitroplenol 1620 1370 ug/kg 85 55-125 2.6-Dinitrobluene 1620 1370 ug/kg 85 66-128 2.Chloronaphthalene 1620 1260 ug/kg 75 38-120 2-Chlorophenol 1620 1210 ug/kg 75 38-120 2-Methylpaphthalene 1620 1210 ug/kg 75 48-120 2-Methylphenol 1620 1240 ug/kg 75 48-120 2-Nitrophenol 1620 1400 ug/kg 76 50-120 3.3-Dichorbenzidine 3230 2360 ug/kg 76 50-120 3.3-Dichorbenzidine 3230 2620 ug/kg 77 61-127 4-Bromophenyl phenyl ether 1620 1240 ug/kg 81 49-155 4-Bromophenyl phenyl ether	2,4,6-Trichlorophenol	1620	1310		ug/Kg		81	59 ₋ 123
2.4-Dinitrophenol 3230 2530 ug/Kg 78 35 - 146 2.4-Dinitrophenol 1620 1370 ug/Kg 85 55 - 125 2.6-Dinitrophenol 1620 1370 ug/Kg 85 66 - 128 2-Chloronaphthalene 1620 1260 ug/Kg 78 57 - 120 2-Methylpaphol 1620 1210 ug/Kg 75 38 - 120 2-Methylphenol 1620 1240 ug/Kg 75 47 - 120 2-Methylphenol 1620 1240 ug/Kg 76 48 - 120 2-Nitrophenol 1620 1240 ug/Kg 76 50 - 120 3-Nitrophenol 1620 1220 ug/Kg 76 50 - 120 3-Nitrophenol 1620 1240 ug/Kg 76 50 - 120 3-Nitropalline 1620 1240 ug/Kg 77 48 - 126 4-Bromophenyl phenyl ether 1620 1240 ug/Kg 81 49 - 155 4-Chloro-3-methylphenol 1620 1350 ug/Kg 83 49 - 125 4-Chlor	2,4-Dichlorophenol	1620	1320		ug/Kg		81	52 - 120
2.4-Dinitrotoluene 1620 1370 ug/Kg 85 55. 125 2.6-Dinitrotoluene 1820 1370 ug/Kg 85 66. 128 2-Chloronaphthalene 1620 1260 ug/Kg 75 75. 7.20 2-Chlorophenol 1620 1210 ug/Kg 75 38. 120 2-Methylphanol 1620 1210 ug/Kg 75 47. 120 2-Methylphenol 1620 1240 ug/Kg 76 47. 120 2-Nitroaniline 1620 1240 ug/Kg 76 50. 120 2-Nitroaniline 1620 1220 ug/Kg 76 50. 120 3-3-Dichlorobenzidine 3230 2360 ug/Kg 73 48. 126 3-Nitroaniline 1620 1240 ug/Kg 77 61. 127 4-G-Dinitro-2-methylphenol 3230 2820 ug/Kg 81 49. 155 4-Bromophenyl phenyl ether 1620 1350 ug/Kg 80 58. 131 4-Chloro-3-methylpheno	2,4-Dimethylphenol	1620	1270		ug/Kg		79	36 - 120
2.6-Dinitrotoluene 1620 1370 ug/Kg 85 66 - 128 2-Chloronaphthalene 1620 1260 ug/Kg 78 57 - 120 2-Chlorophenol 1620 1210 ug/Kg 75 38 - 120 2-Methylpaphtalene 1620 1210 ug/Kg 75 47 - 120 2-Methylphenol 1620 1240 ug/Kg 77 48 - 120 2-Nitroaniline 1620 1400 ug/Kg 76 50 - 120 3.3-Dichlorobenzidine 3230 2360 ug/Kg 73 48 - 126 3.3-Dichlorobenzidine 3230 2360 ug/Kg 77 61 - 127 4.6-Dinitro-2-methylphenol 3230 2620 ug/Kg 77 61 - 127 4.6-Dinitro-2-methylphenol 1620 1290 ug/Kg 81 49 - 155 4-Bromophenyl phenyl ether 1620 1350 ug/Kg 83 49 - 125 4-Chlorophenyl phenyl ether 1620 1170 ug/Kg 80 63 - 124	2,4-Dinitrophenol	3230	2530		ug/Kg		78	35 - 146
2-Chloronaphthalene 1620 1260 ug/Kg 78 57 - 120 2-Chlorophenol 1620 1210 ug/Kg 75 38 - 120 2-Methylnaphthalene 1620 1210 ug/Kg 75 47 - 120 2-Methylphenol 1620 1240 ug/Kg 77 48 - 120 2-Nitrophenol 1620 1400 ug/Kg 86 61 - 130 2-Nitrophenol 1620 1220 ug/Kg 76 50 - 120 3,3'-Dichlorobenzidine 3230 2360 ug/Kg 73 48 - 126 3-Nitroaniline 1620 1240 ug/Kg 73 48 - 126 3-Nitroaniline 1620 1240 ug/Kg 77 61 - 127 4-Bomophenyl phenyl ether 1620 1290 ug/Kg 80 58 - 131 4-Chloro-3-methylphenol 1620 1170 ug/Kg 80 63 - 124 4-Chlorophenyl phenyl ether 1620 1170 ug/Kg 80 63 - 124 4-Meth	2,4-Dinitrotoluene	1620	1370		ug/Kg		85	55 _ 125
2-Chlorophenol 1620 1210 ug/Kg 75 38-120 2-Methylnaphthalene 1620 1210 ug/Kg 75 47-120 2-Methylphenol 1620 1240 ug/Kg 77 48-120 2-Nitropaniline 1620 1400 ug/Kg 76 50-120 2-Nitrophenol 1620 1220 ug/Kg 76 50-120 3,3'-Dichlorobenzidine 3230 2360 ug/Kg 77 61-127 3-Nitroaniline 1620 1240 ug/Kg 77 61-127 4,6-Dinitro-2-methylphenol 3230 2620 ug/Kg 81 49-155 4-Bromophenyl ether 1620 1290 ug/Kg 83 49-125 4-Chloro-3-methylphenol 1620 1170 ug/Kg 83 49-125 4-Chloro-3-methylphenol 1620 1170 ug/Kg 80 63-124 4-Chloro-3-methylphenol 1620 1170 ug/Kg 80 63-124 4-Mitrophenol	2,6-Dinitrotoluene	1620	1370		ug/Kg		85	66 - 128
2-Methylnaphthalene 1620 1210 ug/Kg 75 47-120 2-Methylphenol 1620 1240 ug/Kg 77 48-120 2-Nitroaniline 1620 1400 ug/Kg 86 61-130 2-Nitrophenol 1620 1220 ug/Kg 76 50-120 3,3'-Dichlorobenzidine 3230 2360 ug/Kg 77 61-127 4,6'-Dinitro-2-methylphenol 3230 2620 ug/Kg 81 49-155 4-Bromophenyl phenyl ether 1620 1290 ug/Kg 83 49-125 4-Chloro-3-methylphenol 1620 1350 ug/Kg 83 49-125 4-Chlorophenyl phenyl ether 1620 1170 ug/Kg 80 63-124 4-Chlorophenyl phenyl ether 1620 1170 ug/Kg 80 63-124 4-Methylphenol 1620 1370 ug/Kg 80 63-124 4-Methylphenol 1620 1370 ug/Kg 85 63-128 4-Nitrophenol 3230 2450 ug/Kg 81 53-120	2-Chloronaphthalene	1620	1260		ug/Kg		78	57 ₋ 120
2-Methylphenol 1620 1240 ug/kg 77 48-120 2-Nitroaniline 1620 1400 ug/kg 86 61 - 130 2-Nitrophenol 1620 1220 ug/kg 76 50 - 120 3,3'-Dichlorobenzidine 3230 2360 ug/kg 73 48 - 126 3-Nitroaniline 1620 1240 ug/kg 77 61 - 127 4-B-Dinitro-2-methylphenol 3230 2620 ug/kg 81 49 - 155 4-Bromophenyl phenyl ether 1620 1290 ug/kg 83 49 - 125 4-Chloro-3-methylphenol 1620 1350 ug/kg 83 49 - 125 4-Chlorophenyl phenyl ether 1620 1170 ug/kg 80 63 - 124 4-Chlorophenyl phenyl ether 1620 1290 ug/kg 80 63 - 124 4-Methylphenol 1620 1370 ug/kg 80 63 - 124 4-Nitrophenol 3230 2450 ug/kg 76 43 - 137 Acenaphthylene 1620 1310 ug/kg 76 43 - 137 <	2-Chlorophenol	1620	1210		ug/Kg		75	38 - 120
2-Nitroaniline 1620 1400 ug/Kg 86 61 - 130 2-Nitrophenol 1620 1220 ug/Kg 76 50 - 120 3,3'-Dichlorobenzidine 3230 2360 ug/Kg 73 48 - 126 3-Nitroaniline 1620 1240 ug/Kg 77 61 - 127 4,6'-Dinitro-2-methylphenol 3230 2620 ug/Kg 81 49 - 155 4-Bromophenyl phenyl ether 1620 1290 ug/Kg 83 49 - 125 4-Chloro-3-methylphenol 1620 1350 ug/Kg 83 49 - 125 4-Chloro-3-methylphenol 1620 1170 ug/Kg 83 49 - 125 4-Chlorophenyl phenyl ether 1620 1170 ug/Kg 83 49 - 125 4-Chlorophenyl phenyl ether 1620 1170 ug/Kg 80 63 - 124 4-Methylphenol 1620 1290 ug/Kg 80 63 - 124 4-Methylphenol 1620 1290 ug/Kg 80 63 - 124 4-Methylphenol 1620 1290 ug/Kg 80 63 - 124 4-Methylphenol 1620 1370 ug/Kg 80 63 - 124 4-Methylphenol 1620 1370 ug/Kg 80 50 - 119 4-Nitroaniline 1620 1370 ug/Kg 85 63 - 128 4-Nitrophenol 1620 1310 ug/Kg 85 63 - 128 4-Cenaphthylene 1620 1310 ug/Kg 81 53 - 120 4-Cenaphthylene 1620 1330 ug/Kg 82 58 - 121 4-Cetophenone 1620 1330 ug/Kg 82 58 - 121 4-Cetophenone 1620 1410 ug/Kg 75 66 - 120 4-Ritracene 1620 1410 ug/Kg 75 66 - 120 4-Ritracene 1620 1410 ug/Kg 75 66 - 120 4-Ritracene 1620 1410 ug/Kg 81 60 - 164 4-Ritracene 1620 1440 ug/Kg 81 60 - 164	2-Methylnaphthalene	1620	1210		ug/Kg		75	47 - 120
2-Nitrophenol 1620 1220 ug/Kg 76 50 - 120 3,3'-Dichlorobenzidine 3230 2360 ug/Kg 73 48 - 126 3-Nitroanilline 1620 1240 ug/Kg 77 61 - 127 4,6-Dinitro-2-methylphenol 3230 2620 ug/Kg 81 49 - 155 4-Bromophenyl phenyl ether 1620 1290 ug/Kg 83 49 - 125 4-Chloro-3-methylphenol 1620 1350 ug/Kg 83 49 - 125 4-Chloro-3-methylphenol 1620 1350 ug/Kg 72 49 - 120 4-Chloroanilline 1620 1170 ug/Kg 72 49 - 120 4-Chlorophenyl phenyl ether 1620 1290 ug/Kg 80 63 - 124 4-Methylphenol 1620 1290 ug/Kg 80 63 - 124 4-Methylphenol 1620 1290 ug/Kg 80 50 - 119 4-Nitroanilline 1620 1370 ug/Kg 85 63 - 128 4-Nitrophenyl 1620 1310 ug/Kg 81 53 - 120 4-Nitrophenol 1620 1310 ug/Kg 81 53 - 120 4-Cenaphthylene 1620 1330 ug/Kg 82 58 - 121 4-Cenaphthylene 1620 1330 ug/Kg 82 58 - 121 4-Cetophenone 1620 1410 ug/Kg 87 62 - 129 4-Nitrozene 1620 1440 ug/Kg 89 65 - 133 4-Nitrozene 1620 1440 ug/Kg 89 65 - 133	2-Methylphenol	1620	1240		ug/Kg		77	48 - 120
3.3'-Dichlorobenzidine 3230 2360 ug/Kg 73 48 - 126 3-Nitroaniline 1620 1240 ug/Kg 77 61 - 127 4,6-Dinitro-2-methylphenol 3230 2620 ug/Kg 81 49 - 155 4-Bromophenyl phenyl ether 1620 1290 ug/Kg 80 58 - 131 4-Chloro-3-methylphenol 1620 1350 ug/Kg 83 49 - 125 4-Chloropaniline 1620 1170 ug/Kg 72 49 - 120 4-Chlorophenyl phenyl ether 1620 1290 ug/Kg 80 63 - 124 4-Methylphenol 1620 1290 ug/Kg 80 50 - 119 4-Nitroaniline 1620 1370 ug/Kg 85 63 - 124 4-Nitrophenol 3230 2450 ug/Kg 85 63 - 128 4-Nitrophenol 3230 2450 ug/Kg 81 53 - 120 Acenaphthene 1620 1330 ug/Kg 81 53 - 120 Acenaphthylene 1620 1330 ug/Kg 75 66 - 120 <t< td=""><td>2-Nitroaniline</td><td>1620</td><td>1400</td><td></td><td>ug/Kg</td><td></td><td>86</td><td>61 - 130</td></t<>	2-Nitroaniline	1620	1400		ug/Kg		86	61 - 130
3-Nitroaniline 1620 1240 ug/Kg 77 61 - 127 4,6-Dinitro-2-methylphenol 3230 2620 ug/Kg 81 49 - 155 4-Bromophenyl phenyl ether 1620 1290 ug/Kg 83 49 - 125 4-Chloro-3-methylphenol 1620 1170 ug/Kg 72 49 - 125 4-Chlorophenyl phenyl ether 1620 1170 ug/Kg 80 63 - 124 4-Methylphenol 1620 1290 ug/Kg 80 50 - 119 4-Nitroaniline 1620 1370 ug/Kg 85 63 - 128 4-Nitrophenol 3230 2450 ug/Kg 76 43 - 137 Acenaphthene 1620 1310 ug/Kg 81 53 - 128 Acenaphthylene 1620 1310 ug/Kg 81 53 - 120 Aceaphthylene 1620 1330 ug/Kg 82 58 - 121 Acetophenone 1620 1210 ug/Kg 87 62 - 129 Altrazine 3230 2960 ug/Kg 87 62 - 129 Atra	2-Nitrophenol	1620	1220		ug/Kg		76	50 - 120
4,6-Dinitro-2-methylphenol 3230 2620 ug/Kg 81 49 - 155 4-Bromophenyl phenyl ether 1620 1290 ug/Kg 80 58 - 131 4-Chloro-3-methylphenol 1620 1350 ug/Kg 83 49 - 125 4-Chlorophenyl phenyl ether 1620 1170 ug/Kg 80 63 - 124 4-Methylphenol 1620 1290 ug/Kg 80 50 - 119 4-Nitroaniline 1620 1370 ug/Kg 85 63 - 128 4-Nitrophenol 3230 2450 ug/Kg 85 63 - 128 4-Nitrophenol 3230 2450 ug/Kg 81 53 - 120 Acenaphthylene 1620 1310 ug/Kg 81 53 - 120 Acenaphthylene 1620 1330 ug/Kg 82 58 - 121 Acetophenone 1620 1210 ug/Kg 87 62 - 129 Artrazine 3230 2960 ug/Kg 91 60 - 164 Benzaldehyde 3230 1640 ug/Kg 51 21 - 120 Benz	3,3'-Dichlorobenzidine	3230	2360		ug/Kg		73	48 - 126
4-Bromophenyl phenyl ether 1620 1290 ug/kg 80 58 - 131 4-Chloro-3-methylphenol 1620 1350 ug/kg 83 49 - 125 4-Chlorophenyl phenyl ether 1620 1170 ug/kg 80 63 - 124 4-Methylphenol 1620 1290 ug/kg 80 50 - 119 4-Nitroaniline 1620 1370 ug/kg 85 63 - 128 4-Nitrophenol 3230 2450 ug/kg 76 43 - 137 Acenaphthene 1620 1310 ug/kg 81 53 - 120 Acenaphthylene 1620 1330 ug/kg 82 58 - 121 Acetophenone 1620 1210 ug/kg 75 66 - 120 Anthracene 1620 1410 ug/kg 87 62 - 129 Atrazine 3230 2960 ug/kg 51 21 - 120 Benzaldehyde 3230 1640 ug/kg 51 21 - 120 Benzo(a)anthracene 1620 1440 ug/kg 87 64 - 127	3-Nitroaniline	1620	1240		ug/Kg		77	61 ₋ 127
4-Chloro-3-methylphenol 1620 1350 ug/Kg 83 49 - 125 4-Chloroaniline 1620 1170 ug/Kg 72 49 - 120 4-Chlorophenyl phenyl ether 1620 1290 ug/Kg 80 63 - 124 4-Methylphenol 1620 1290 ug/Kg 80 50 - 119 4-Nitroaniline 1620 1370 ug/Kg 85 63 - 128 4-Nitrophenol 3230 2450 ug/Kg 76 43 - 137 Acenaphthene 1620 1310 ug/Kg 81 53 - 120 Acenaphthylene 1620 1330 ug/Kg 82 58 - 121 Acetophenone 1620 1210 ug/Kg 75 66 - 120 Anthracene 1620 1410 ug/Kg 87 62 - 129 Atrazine 3230 2960 ug/Kg 91 60 - 164 Benzaldehyde 3230 1640 ug/Kg 51 21 - 120 Benzo(a)anthracene 1620 1410 ug/Kg 87 64 - 127	4,6-Dinitro-2-methylphenol	3230	2620		ug/Kg		81	49 - 155
4-Chloroaniline 1620 1170 ug/kg 72 49 - 120 4-Chlorophenyl phenyl ether 1620 1290 ug/kg 80 63 - 124 4-Methylphenol 1620 1290 ug/kg 80 50 - 119 4-Nitroaniline 1620 1370 ug/kg 85 63 - 128 4-Nitrophenol 3230 2450 ug/kg 76 43 - 137 Acenaphthene 1620 1310 ug/kg 81 53 - 120 Acenaphthylene 1620 1330 ug/kg 82 58 - 121 Acetophenone 1620 1210 ug/kg 75 66 - 120 Anthracene 1620 1410 ug/kg 87 62 - 129 Atrazine 3230 2960 ug/kg 91 60 - 164 Benzaldehyde 3230 1640 ug/kg 51 21 - 120 Benzo(a)anthracene 1620 1440 ug/kg 89 65 - 133 Benzo(a)pyrene 1620 1410 ug/kg 87 64 - 127	4-Bromophenyl phenyl ether	1620	1290		ug/Kg		80	58 - 131
4-Chlorophenyl phenyl ether 1620 1290 ug/Kg 80 63 - 124 4-Methylphenol 1620 1290 ug/Kg 80 50 - 119 4-Nitroaniline 1620 1370 ug/Kg 85 63 - 128 4-Nitrophenol 3230 2450 ug/Kg 76 43 - 137 Acenaphthene 1620 1310 ug/Kg 81 53 - 120 Acenaphthylene 1620 1330 ug/Kg 82 58 - 121 Acetophenone 1620 1210 ug/Kg 75 66 - 120 Anthracene 1620 1410 ug/Kg 87 62 - 129 Atrazine 3230 2960 ug/Kg 91 60 - 164 Benzaldehyde 3230 1640 ug/Kg 51 21 - 120 Benzo(a)anthracene 1620 1440 ug/Kg 89 65 - 133 Benzo(a)pyrene 1620 1410 ug/Kg 87 64 - 127	4-Chloro-3-methylphenol	1620	1350		ug/Kg		83	49 - 125
4-Methylphenol 1620 1290 ug/Kg 80 50 - 119 4-Nitroaniline 1620 1370 ug/Kg 85 63 - 128 4-Nitrophenol 3230 2450 ug/Kg 76 43 - 137 Acenaphthene 1620 1310 ug/Kg 81 53 - 120 Acenaphthylene 1620 1330 ug/Kg 82 58 - 121 Acetophenone 1620 1210 ug/Kg 75 66 - 120 Anthracene 1620 1410 ug/Kg 87 62 - 129 Atrazine 3230 2960 ug/Kg 91 60 - 164 Benzaldehyde 3230 1640 ug/Kg 51 21 - 120 Benzo(a)anthracene 1620 1440 ug/Kg 89 65 - 133 Benzo(a)pyrene 1620 1410 ug/Kg 87 64 - 127	4-Chloroaniline	1620	1170		ug/Kg		72	49 - 120
4-Nitroaniline 1620 1370 ug/Kg 85 63 - 128 4-Nitrophenol 3230 2450 ug/Kg 76 43 - 137 Acenaphthene 1620 1310 ug/Kg 81 53 - 120 Acenaphthylene 1620 1330 ug/Kg 82 58 - 121 Acetophenone 1620 1210 ug/Kg 75 66 - 120 Anthracene 1620 1410 ug/Kg 87 62 - 129 Atrazine 3230 2960 ug/Kg 91 60 - 164 Benzaldehyde 3230 1640 ug/Kg 51 21 - 120 Benzo(a)anthracene 1620 1440 ug/Kg 89 65 - 133 Benzo(a)pyrene 1620 1410 ug/Kg 87 64 - 127	4-Chlorophenyl phenyl ether	1620	1290		ug/Kg		80	63 - 124
4-Nitrophenol 3230 2450 ug/Kg 76 43 - 137 Acenaphthene 1620 1310 ug/Kg 81 53 - 120 Acenaphthylene 1620 1330 ug/Kg 82 58 - 121 Acetophenone 1620 1210 ug/Kg 75 66 - 120 Anthracene 1620 1410 ug/Kg 87 62 - 129 Atrazine 3230 2960 ug/Kg 91 60 - 164 Benzaldehyde 3230 1640 ug/Kg 51 21 - 120 Benzo(a)anthracene 1620 1440 ug/Kg 89 65 - 133 Benzo(a)pyrene 1620 1410 ug/Kg 87 64 - 127	4-Methylphenol	1620	1290		ug/Kg		80	50 _ 119
Acenaphthene 1620 1310 ug/Kg 81 53 - 120 Acenaphthylene 1620 1330 ug/Kg 82 58 - 121 Acetophenone 1620 1210 ug/Kg 75 66 - 120 Anthracene 1620 1410 ug/Kg 87 62 - 129 Atrazine 3230 2960 ug/Kg 91 60 - 164 Benzaldehyde 3230 1640 ug/Kg 51 21 - 120 Benzo(a)anthracene 1620 1440 ug/Kg 89 65 - 133 Benzo(a)pyrene 1620 1410 ug/Kg 87 64 - 127	4-Nitroaniline	1620	1370		ug/Kg		85	63 - 128
Acenaphthylene 1620 1330 ug/Kg 82 58 - 121 Acetophenone 1620 1210 ug/Kg 75 66 - 120 Anthracene 1620 1410 ug/Kg 87 62 - 129 Atrazine 3230 2960 ug/Kg 91 60 - 164 Benzaldehyde 3230 1640 ug/Kg 51 21 - 120 Benzo(a)anthracene 1620 1440 ug/Kg 89 65 - 133 Benzo(a)pyrene 1620 1410 ug/Kg 87 64 - 127	4-Nitrophenol	3230	2450		ug/Kg		76	43 - 137
Acetophenone 1620 1210 ug/Kg 75 66 - 120 Anthracene 1620 1410 ug/Kg 87 62 - 129 Atrazine 3230 2960 ug/Kg 91 60 - 164 Benzaldehyde 3230 1640 ug/Kg 51 21 - 120 Benzo(a)anthracene 1620 1440 ug/Kg 89 65 - 133 Benzo(a)pyrene 1620 1410 ug/Kg 87 64 - 127	Acenaphthene	1620	1310		ug/Kg		81	53 - 120
Anthracene 1620 1410 ug/Kg 87 62 - 129 Atrazine 3230 2960 ug/Kg 91 60 - 164 Benzaldehyde 3230 1640 ug/Kg 51 21 - 120 Benzo(a)anthracene 1620 1440 ug/Kg 89 65 - 133 Benzo(a)pyrene 1620 1410 ug/Kg 87 64 - 127	Acenaphthylene	1620	1330		ug/Kg		82	58 - 121
Atrazine 3230 2960 ug/Kg 91 60 - 164 Benzaldehyde 3230 1640 ug/Kg 51 21 - 120 Benzo(a)anthracene 1620 1440 ug/Kg 89 65 - 133 Benzo(a)pyrene 1620 1410 ug/Kg 87 64 - 127	Acetophenone	1620	1210		ug/Kg		75	66 - 120
Benzaldehyde 3230 1640 ug/Kg 51 21 - 120 Benzo(a)anthracene 1620 1440 ug/Kg 89 65 - 133 Benzo(a)pyrene 1620 1410 ug/Kg 87 64 - 127	Anthracene	1620	1410		ug/Kg		87	62 _ 129
Benzo(a)anthracene 1620 1440 ug/Kg 89 65 - 133 Benzo(a)pyrene 1620 1410 ug/Kg 87 64 - 127	Atrazine	3230	2960		ug/Kg		91	60 - 164
Benzo(a)pyrene 1620 1410 ug/Kg 87 64 - 127	Benzaldehyde	3230	1640		ug/Kg		51	21 - 120
<i>(11)</i>	Benzo(a)anthracene	1620	1440		ug/Kg		89	65 _ 133
Benzo(b)fluoranthene 1620 1390 ug/Kg 86 64 - 135	Benzo(a)pyrene	1620	1410		ug/Kg		87	64 - 127
(/\text{	Benzo(b)fluoranthene	1620	1390		ug/Kg		86	64 - 135

TestAmerica Buffalo

Page 36 of 58

Spike

LCS LCS

TestAmerica Job ID: 480-70733-1

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-212381/2-A

Matrix: Solid

Analysis Batch: 212699

Client Sample ID: Lab Control Sample

	· • • • • • • • • • • • • • • • • • • •	Prep Type: Total/NA
		Prep Batch: 212381
		%Rec.
D	%Rec	Limits
 _		

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzo(g,h,i)perylene	1620	1390		ug/Kg		86	50 - 152	
Benzo(k)fluoranthene	1620	1470		ug/Kg		91	58 - 138	
Biphenyl	1620	1300		ug/Kg		81	71 - 120	
bis (2-chloroisopropyl) ether	1620	1360		ug/Kg		84	44 - 120	
Bis(2-chloroethoxy)methane	1620	1310		ug/Kg		81	61 - 133	
Bis(2-chloroethyl)ether	1620	1160		ug/Kg		72	45 - 120	
Bis(2-ethylhexyl) phthalate	1620	1470		ug/Kg		91	61 - 133	
Butyl benzyl phthalate	1620	1480		ug/Kg		91	61 - 129	
Caprolactam	3230	3980	E	ug/Kg		123	54 - 133	
Carbazole	1620	1450		ug/Kg		90	59 - 129	
Chrysene	1620	1470		ug/Kg		91	64 - 131	
Dibenz(a,h)anthracene	1620	1350		ug/Kg		84	54 - 148	
Dibenzofuran	1620	1350		ug/Kg		83	56 - 120	
Diethyl phthalate	1620	1400		ug/Kg		87	66 - 126	
Dimethyl phthalate	1620	1370		ug/Kg		84	65 - 124	
Di-n-butyl phthalate	1620	1410		ug/Kg		87	58 - 130	
Di-n-octyl phthalate	1620	1510		ug/Kg		93	62 _ 133	
Fluoranthene	1620	1380		ug/Kg		86	62 - 131	
Fluorene	1620	1340		ug/Kg		83	63 - 126	
Hexachlorobenzene	1620	1320		ug/Kg		82	60 - 132	
Hexachlorobutadiene	1620	1080		ug/Kg		67	45 - 120	
Hexachlorocyclopentadiene	1620	1040		ug/Kg		64	31 - 120	
Hexachloroethane	1620	1090		ug/Kg		67	41 - 120	
Indeno(1,2,3-cd)pyrene	1620	1370		ug/Kg		85	56 - 149	
Isophorone	1620	1330		ug/Kg		82	56 - 120	
Naphthalene	1620	1200		ug/Kg		74	46 - 120	
Nitrobenzene	1620	1260		ug/Kg		78	49 - 120	
N-Nitrosodi-n-propylamine	1620	1260		ug/Kg		78	46 - 120	
N-Nitrosodiphenylamine	3230	2730		ug/Kg		84	20 _ 119	
Pentachlorophenol	3230	2410		ug/Kg		74	33 _ 136	
Phenanthrene	1620	1390		ug/Kg		86	60 - 130	
Phenol	1620	1240		ug/Kg		77	36 _ 120	
Pyrene	1620	1470		ug/Kg		91	51 ₋ 133	

LCS	LCS	
%Recovery	Qualifier	Limits
82		39 - 146
79		37 - 120
69		18 - 120
77		34 - 132
89		65 ₋ 153
80		11 - 120
	%Recovery 82 79 69 77 89	82 79 69 77 89

Lab Sample ID: MB 480-212534/1-A

Matrix: Water

Analysis Batch: 216823

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 212534

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		5.0	0.48	ug/L		11/06/14 14:25	12/03/14 04:27	1

QC Sample Results

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70733-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-212534/1-A

Matrix: Water

Analysis Batch: 216823

	Client Sample ID: Method Blank
	Prep Type: Total/NA
	Prep Batch: 212534
MD	

	MB	МВ							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
2,4,6-Trichlorophenol	ND		5.0	0.61	ug/L		11/06/14 14:25	12/03/14 04:27	1
2,4-Dichlorophenol	ND		5.0	0.51	ug/L		11/06/14 14:25	12/03/14 04:27	1
2,4-Dimethylphenol	ND		5.0	0.50	ug/L		11/06/14 14:25	12/03/14 04:27	1
2,4-Dinitrophenol	ND		10	2.2	ug/L		11/06/14 14:25	12/03/14 04:27	1
2,4-Dinitrotoluene	ND		5.0	0.45	ug/L		11/06/14 14:25	12/03/14 04:27	1
2,6-Dinitrotoluene	ND		5.0	0.40	ug/L		11/06/14 14:25	12/03/14 04:27	1
2-Chloronaphthalene	ND		5.0	0.46	ug/L		11/06/14 14:25	12/03/14 04:27	1
2-Chlorophenol	ND		5.0	0.53	ug/L		11/06/14 14:25	12/03/14 04:27	1
2-Methylnaphthalene	ND		5.0	0.60	ug/L		11/06/14 14:25	12/03/14 04:27	1
2-Methylphenol	ND		5.0	0.40	ug/L		11/06/14 14:25	12/03/14 04:27	1
2-Nitroaniline	ND		10	0.42	ug/L		11/06/14 14:25	12/03/14 04:27	1
2-Nitrophenol	ND		5.0	0.48	ug/L		11/06/14 14:25	12/03/14 04:27	1
3,3'-Dichlorobenzidine	ND		5.0		ug/L		11/06/14 14:25	12/03/14 04:27	1
3-Nitroaniline	ND		10		ug/L		11/06/14 14:25	12/03/14 04:27	1
4,6-Dinitro-2-methylphenol	ND		10		ug/L		11/06/14 14:25	12/03/14 04:27	1
4-Bromophenyl phenyl ether	ND		5.0		ug/L		11/06/14 14:25	12/03/14 04:27	1
4-Chloro-3-methylphenol	ND		5.0		ug/L		11/06/14 14:25	12/03/14 04:27	1
4-Chloroaniline	ND		5.0		ug/L		11/06/14 14:25	12/03/14 04:27	1
4-Chlorophenyl phenyl ether	ND		5.0		ug/L		11/06/14 14:25	12/03/14 04:27	1
4-Methylphenol	ND		10		ug/L		11/06/14 14:25	12/03/14 04:27	1
4-Nitroaniline	ND		10		ug/L		11/06/14 14:25	12/03/14 04:27	
	ND ND		10				11/06/14 14:25	12/03/14 04:27	1
4-Nitrophenol					ug/L				
Acenaphthene	ND		5.0				11/06/14 14:25	12/03/14 04:27	
Acetachanas	ND		5.0	0.38	ug/L		11/06/14 14:25	12/03/14 04:27	1
Acetophenone	ND		5.0		ug/L		11/06/14 14:25	12/03/14 04:27	1
Anthracene	ND		5.0		ug/L		11/06/14 14:25	12/03/14 04:27	
Atrazine	ND		5.0		ug/L		11/06/14 14:25	12/03/14 04:27	1
Benzaldehyde	1.06	J	5.0	0.27	ug/L		11/06/14 14:25	12/03/14 04:27	1
Benzo(a)anthracene	ND		5.0		ug/L		11/06/14 14:25	12/03/14 04:27	1
Benzo(a)pyrene	ND		5.0		ug/L		11/06/14 14:25	12/03/14 04:27	1
Benzo(b)fluoranthene	ND		5.0		ug/L		11/06/14 14:25	12/03/14 04:27	1
Benzo(g,h,i)perylene	ND		5.0		ug/L		11/06/14 14:25	12/03/14 04:27	1
Benzo(k)fluoranthene	ND		5.0	0.73	ug/L		11/06/14 14:25	12/03/14 04:27	1
Biphenyl	ND		5.0	0.65	ug/L		11/06/14 14:25	12/03/14 04:27	1
bis (2-chloroisopropyl) ether	ND		5.0	0.52	ug/L		11/06/14 14:25	12/03/14 04:27	1
Bis(2-chloroethoxy)methane	ND		5.0	0.35	ug/L		11/06/14 14:25	12/03/14 04:27	1
Bis(2-chloroethyl)ether	ND		5.0	0.40	ug/L		11/06/14 14:25	12/03/14 04:27	1
Bis(2-ethylhexyl) phthalate	ND		5.0	1.8	ug/L		11/06/14 14:25	12/03/14 04:27	1
Butyl benzyl phthalate	ND		5.0	0.42	ug/L		11/06/14 14:25	12/03/14 04:27	1
Caprolactam	ND		5.0	2.2	ug/L		11/06/14 14:25	12/03/14 04:27	1
Carbazole	ND		5.0	0.30	ug/L		11/06/14 14:25	12/03/14 04:27	1
Chrysene	ND		5.0	0.33	ug/L		11/06/14 14:25	12/03/14 04:27	1
Dibenz(a,h)anthracene	ND		5.0		ug/L		11/06/14 14:25	12/03/14 04:27	1
Dibenzofuran	ND		10	0.51	ug/L		11/06/14 14:25	12/03/14 04:27	1
Diethyl phthalate	ND		5.0		ug/L		11/06/14 14:25	12/03/14 04:27	1
Dimethyl phthalate	ND		5.0		ug/L		11/06/14 14:25	12/03/14 04:27	1
Di-n-butyl phthalate	ND		5.0		ug/L		11/06/14 14:25	12/03/14 04:27	1
Di-n-octyl phthalate	ND		5.0		ug/L		11/06/14 14:25	12/03/14 04:27	1

Client: Woodard & Curran Inc Project/Site: Rouses Point

Benzyl alcohol

con uniched deb ib. 100 7 07 00 1

12/03/14 04:27

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

1.07 J

Lab Sample ID: MB 480-212534/1-A

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 216823

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 212534

Analysis Batom 210020									i rop Batom	212004
	MB	MB								
Analyte	Result	Qualifier	RI	. N	IDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	ND		5.0	0	.40	ug/L		11/06/14 14:25	12/03/14 04:27	1
Fluorene	ND		5.0	0	.36	ug/L		11/06/14 14:25	12/03/14 04:27	1
Hexachlorobenzene	ND		5.0	0	.51	ug/L		11/06/14 14:25	12/03/14 04:27	1
Hexachlorobutadiene	ND		5.0	0	.68	ug/L		11/06/14 14:25	12/03/14 04:27	1
Hexachlorocyclopentadiene	ND		5.0	0	.59	ug/L		11/06/14 14:25	12/03/14 04:27	1
Hexachloroethane	ND		5.0	0	.59	ug/L		11/06/14 14:25	12/03/14 04:27	1
Indeno(1,2,3-cd)pyrene	ND		5.0	0	.47	ug/L		11/06/14 14:25	12/03/14 04:27	1
Isophorone	ND		5.0	0	.43	ug/L		11/06/14 14:25	12/03/14 04:27	1
Naphthalene	ND		5.0	0	.76	ug/L		11/06/14 14:25	12/03/14 04:27	1
Nitrobenzene	ND		5.0	0	.29	ug/L		11/06/14 14:25	12/03/14 04:27	1
N-Nitrosodi-n-propylamine	ND		5.0	0	.54	ug/L		11/06/14 14:25	12/03/14 04:27	1
N-Nitrosodiphenylamine	ND		5.0	0	.51	ug/L		11/06/14 14:25	12/03/14 04:27	1
Pentachlorophenol	ND		10)	2.2	ug/L		11/06/14 14:25	12/03/14 04:27	1
Phenanthrene	ND		5.0	0	.44	ug/L		11/06/14 14:25	12/03/14 04:27	1
Phenol	ND		5.0	0	.39	ug/L		11/06/14 14:25	12/03/14 04:27	1
Pyrene	ND		5.0	0	.34	ug/L		11/06/14 14:25	12/03/14 04:27	1
	МВ	МВ								
Tentatively Identified Compound	Fst Result	Qualifier	Unit	D		RT	CAS No	Prepared	Analyzed	Dil Fac

	440	440				
Surrogate	мв %Recovery	MB Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	68		52 - 132	11/06/14 14:25	12/03/14 04:27	
2-Fluorobiphenyl	59		48 - 120	11/06/14 14:25	12/03/14 04:27	1
2-Fluorophenol	64		20 - 120	11/06/14 14:25	12/03/14 04:27	1
Nitrobenzene-d5	65		46 - 120	11/06/14 14:25	12/03/14 04:27	1
p-Terphenyl-d14	72		67 - 150	11/06/14 14:25	12/03/14 04:27	1
Phenol-d5	44		16 - 120	11/06/14 14:25	12/03/14 04:27	1
2-Fluorophenol Nitrobenzene-d5 p-Terphenyl-d14	64 65 72		20 - 120 46 - 120 67 - 150	11/06/14 14:25 11/06/14 14:25 11/06/14 14:25	12/03/14 04:27 12/03/14 04:27 12/03/14 04:27	1 1 1 1

6.15

100-51-6 11/06/14 14:25

ug/L

Lab Sample ID: LCS 480-212534/2-A

Client Sample ID: Lab Control Sample

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 216823 Prep Batch: 212534

Analysis Batch: 216823							Prep Batch: 212	534
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4,5-Trichlorophenol	16.0	10.8		ug/L		68	65 - 126	
2,4,6-Trichlorophenol	16.0	9.98	*	ug/L		62	64 - 120	
2,4-Dichlorophenol	16.0	9.90	*	ug/L		62	64 - 120	
2,4-Dimethylphenol	16.0	7.42	*	ug/L		46	57 ₋ 120	
2,4-Dinitrophenol	32.0	23.2		ug/L		73	42 _ 153	
2,4-Dinitrotoluene	16.0	10.6		ug/L		66	65 _ 154	
2,6-Dinitrotoluene	16.0	11.4	*	ug/L		71	74 ₋ 134	
2-Chloronaphthalene	16.0	8.96		ug/L		56	41 _ 124	
2-Chlorophenol	16.0	9.63		ug/L		60	48 - 120	
2-Methylnaphthalene	16.0	9.62		ug/L		60	34 _ 122	
2-Methylphenol	16.0	9.48		ug/L		59	39 - 120	
2-Nitroaniline	16.0	11.3		ug/L		70	67 ₋ 136	
2-Nitrophenol	16.0	10.2		ug/L		64	59 - 120	
3,3'-Dichlorobenzidine	32.0	36.3		ug/L		113	33 - 140	

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-212534/2-A			Client Sample ID: Lab Control Sample
Matrix: Water			Prep Type: Total/NA
Analysis Batch: 216823			Prep Batch: 212534
	Cmiles	100 100	9/ Pag

Analysis Batch: 216823							Prep Batch: 21253
Accelede	Spike		LCS	1114	_	0/ D	%Rec.
Analyte	Added	22.3	Qualifier *	Unit	D	%Rec	Limits
				ug/L		139	28 - 86
4,6-Dinitro-2-methylphenol	32.0	21.2		ug/L		66	64 - 159
4-Bromophenyl phenyl ether	16.0	10.2	*	ug/L		64	71 - 126
4-Chloro-3-methylphenol	16.0	10.8		ug/L		68	64 - 120
4-Chloroaniline	16.0	11.3		ug/L		71	10 - 77
4-Chlorophenyl phenyl ether	16.0	9.72		ug/L		61	71 - 122
4-Methylphenol	16.0	9.46	J	ug/L		59	39 - 120
4-Nitroaniline	16.0	13.5		ug/L		84	47 - 113
4-Nitrophenol	32.0	14.8		ug/L		46	16 - 120
Acenaphthene	16.0	9.26	*	ug/L		58	60 - 120
Acenaphthylene	16.0	9.44	*	ug/L		59	63 - 120
Acetophenone	16.0	9.39		ug/L		59	45 - 120
Anthracene	16.0	10.6		ug/L		67	58 - 148
Atrazine	32.0	26.4		ug/L		83	56 - 179
Benzaldehyde	32.0	35.9		ug/L		112	30 - 140
Benzo(a)anthracene	16.0	11.0		ug/L		68	55 - 151
Benzo(a)pyrene	16.0	10.6		ug/L		66	60 - 145
Benzo(b)fluoranthene	16.0	10.9		ug/L		68	54 - 140
Benzo(g,h,i)perylene	16.0	10.1	*	ug/L		63	66 - 152
Benzo(k)fluoranthene	16.0	11.0		ug/L		69	51 ₋ 153
Biphenyl	16.0	9.22		ug/L		58	30 - 140
bis (2-chloroisopropyl) ether	16.0	9.07		ug/L		57	28 - 136
Bis(2-chloroethoxy)methane	16.0	9.55		ug/L		60	50 - 128
Bis(2-chloroethyl)ether	16.0	9.02		ug/L		56	51 ₋ 120
Bis(2-ethylhexyl) phthalate	16.0	12.1		ug/L		76	53 - 158
Butyl benzyl phthalate	16.0	11.9		ug/L		74	58 - 163
Caprolactam	32.0	8.01		ug/L		25	14 - 56
Carbazole	16.0	19.2		ug/L		120	59 - 148
Chrysene	16.0	11.3		ug/L		71	69 - 140
Dibenz(a,h)anthracene	16.0	10.0		ug/L		63	57 ₋ 148
Dibenzofuran	16.0	9.51		ug/L		59	49 - 137
Diethyl phthalate	16.0	10.4				65	59 ₋ 146
• •	16.0	10.4		ug/L			
Dimethyl phthalate				ug/L		63	59 ₋ 141
Di-n-butyl phthalate	16.0	11.7		ug/L		73	58 - 149
Di-n-octyl phthalate	16.0	11.6		ug/L		72	55 - 167
Fluoranthene	16.0	11.2		ug/L		70	55 - 147
Fluorene	16.0	9.65		ug/L		60	55 - 143
Hexachlorobenzene	16.0	10.2		ug/L		64	14 - 108
Hexachlorobutadiene	16.0	8.02		ug/L		50	14 - 108
Hexachlorocyclopentadiene	16.0	6.19		ug/L		39	13 - 119
Hexachloroethane	16.0	7.36		ug/L		46	14 - 101
Indeno(1,2,3-cd)pyrene	16.0	9.40	*	ug/L		59	69 - 146
Isophorone	16.0	9.78		ug/L		61	48 - 133
Naphthalene	16.0	8.47		ug/L		53	35 - 117
Nitrobenzene	16.0	9.31		ug/L		58	45 - 123
N-Nitrosodi-n-propylamine	16.0	9.58		ug/L		60	56 - 120
N-Nitrosodiphenylamine	32.0	19.6		ug/L		61	25 _ 125
Pentachlorophenol	32.0	19.9		ug/L		62	39 - 136

TestAmerica Buffalo

Page 40 of 58

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-212534/2-A

Matrix: Water

Analysis Batch: 216823

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 212534

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Phenanthrene 16.0 10.5 57 - 147 ug/L 66 Phenol 16.0 7.39 ug/L 46 17 - 120 Pyrene 16.0 73 58 - 136 11.7 ug/L

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	75		52 - 132
2-Fluorobiphenyl	54		48 - 120
2-Fluorophenol	63		20 - 120
Nitrobenzene-d5	59		46 - 120
p-Terphenyl-d14	71		67 - 150
Phenol-d5	43		16 - 120

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC)

Lab Sample ID: MB 480-212471/3

Matrix: Water

Analysis Batch: 212471

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		1.0	0.14	mg/L			11/06/14 10:50	1
Isobutyl alcohol	ND		1.0	0.37	mg/L			11/06/14 10:50	1
Methanol	ND		1.0	0.41	mg/L			11/06/14 10:50	1
n-Butanol	ND		1.0	0.40	mg/L			11/06/14 10:50	1
Propanol	ND		1.0	0.16	mg/L			11/06/14 10:50	1
2-Butanol	ND		1.0	0.17	mg/L			11/06/14 10:50	1
Isopropyl alcohol	ND		1.0	0.12	mg/L			11/06/14 10:50	1
t-Butyl alcohol	ND		1.0	0.10	mg/L			11/06/14 10:50	1

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 2-Hexanone 115 62 - 129 11/06/14 10:50

Lab Sample ID: LCS 480-212471/4

Matrix: Water

Analysis Batch: 212471

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Ethanol	20.0	21.5		mg/L		108	72 - 133
Isobutyl alcohol	20.0	22.0		mg/L		110	69 - 139
Methanol	20.0	21.6		mg/L		108	71 - 132
n-Butanol	20.0	20.7		mg/L		104	73 - 130
Propanol	20.0	21.6		mg/L		108	71 - 131
2-Butanol	20.0	21.1		mg/L		105	68 - 136
Isopropyl alcohol	20.0	21.5		mg/L		108	67 _ 132
t-Butyl alcohol	20.0	21.5		mg/L		107	71 - 130

LCS LCS

Surrogate %Recovery Qualifier Limits 2-Hexanone 116 62 - 129

Client: Woodard & Curran Inc Project/Site: Rouses Point

1000 11101100 000 10. 100 10100

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) (Continued)

Lab Sample ID: LCSD 480-212471/5

Matrix: Water

Analysis Batch: 212471

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethanol	20.0	21.5		mg/L		107	72 - 133	0	30
Isobutyl alcohol	20.0	21.6		mg/L		108	69 - 139	2	30
Methanol	20.0	21.4		mg/L		107	71 - 132	1	30
n-Butanol	20.0	20.6		mg/L		103	73 - 130	1	30
Propanol	20.0	21.3		mg/L		106	71 - 131	1	30
2-Butanol	20.0	20.7		mg/L		104	68 - 136	2	30
Isopropyl alcohol	20.0	21.5		mg/L		107	67 - 132	0	30
t-Butyl alcohol	20.0	21.5		mg/L		107	71 - 130	0	30

LCSD LCSD

 Surrogate
 %Recovery
 Qualifier
 Limits

 2-Hexanone
 114
 62 - 129

Lab Sample ID: MB 480-212715/1-A

Matrix: Solid

Analysis Batch: 212768

Client Sample ID: Method Blank

Prep Type: Soluble

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		0.99	0.15	mg/Kg			11/07/14 12:25	1
Isobutyl alcohol	ND		0.99	0.25	mg/Kg			11/07/14 12:25	1
Methanol	ND		0.99	0.30	mg/Kg			11/07/14 12:25	1
n-Butanol	ND		0.99	0.23	mg/Kg			11/07/14 12:25	1
Propanol	ND		0.99	0.15	mg/Kg			11/07/14 12:25	1
2-Butanol	ND		0.99	0.16	mg/Kg			11/07/14 12:25	1
Isopropyl alcohol	ND		0.99	0.24	mg/Kg			11/07/14 12:25	1
t-Butyl alcohol	ND		0.99	0.26	mg/Kg			11/07/14 12:25	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Hexanone	111		30 - 137		11/07/14 12:25	

Lab Sample ID: LCS 480-212715/2-A

Matrix: Solid

Analysis Batch: 212768

Client Sample ID: Lab Control Sample
Prep Type: Soluble

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethanol	19.9	21.6		mg/Kg		109	55 - 136	
Isobutyl alcohol	19.9	22.0		mg/Kg		111	51 - 130	
Methanol	19.9	21.8		mg/Kg		109	53 - 140	
n-Butanol	19.9	20.8		mg/Kg		105	54 - 141	
Propanol	19.9	21.4		mg/Kg		108	59 - 139	
2-Butanol	19.9	21.1		mg/Kg		106	49 - 136	
Isopropyl alcohol	19.9	21.5		mg/Kg		108	50 _ 131	
t-Butyl alcohol	19.9	21.4		mg/Kg		108	48 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Hexanone	86		30 - 137

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70733-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-212799/1-A

Matrix: Water

Analysis Batch: 212896

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 212799

	мв	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.50	0.18	ug/L		11/07/14 14:18	11/09/14 03:46	1
PCB-1221	ND		0.50	0.18	ug/L		11/07/14 14:18	11/09/14 03:46	1
PCB-1232	ND		0.50	0.18	ug/L		11/07/14 14:18	11/09/14 03:46	1
PCB-1242	ND		0.50	0.18	ug/L		11/07/14 14:18	11/09/14 03:46	1
PCB-1248	ND		0.50	0.18	ug/L		11/07/14 14:18	11/09/14 03:46	1
PCB-1254	ND		0.50	0.25	ug/L		11/07/14 14:18	11/09/14 03:46	1
PCB-1260	ND		0.50	0.25	ug/L		11/07/14 14:18	11/09/14 03:46	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	69	23 - 127	11/07/14 14:18	11/09/14 03:46	1
DCB Decachlorobiphenyl	96	19 - 126	11/07/14 14:18	11/09/14 03:46	1

Lab Sample ID: LCS 480-212799/2-A

Matrix: Water

Analysis Batch: 212896

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 212799

	Зріке	LUS	LUS			%Rec.	
Analyte	Added	Result	Qualifier Un	it D	%Rec	Limits	
PCB-1016	4.00	3.30	ug	/L	83	51 - 137	
PCB-1260	4.00	3.46	ug	/L	87	45 - 139	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
Tetrachloro-m-xylene	61	23 - 127
DCB Decachlorobiphenyl	84	19 - 126

Lab Sample ID: MB 480-213179/1-A

Matrix: Solid

Analysis Batch: 213263

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 213179

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		180	35	ug/Kg		11/10/14 15:58	11/11/14 21:34	1
PCB-1221	ND		180	35	ug/Kg		11/10/14 15:58	11/11/14 21:34	1
PCB-1232	ND		180	35	ug/Kg		11/10/14 15:58	11/11/14 21:34	1
PCB-1242	ND		180	35	ug/Kg		11/10/14 15:58	11/11/14 21:34	1
PCB-1248	ND		180	35	ug/Kg		11/10/14 15:58	11/11/14 21:34	1
PCB-1254	ND		180	84	ug/Kg		11/10/14 15:58	11/11/14 21:34	1
PCB-1260	ND		180	84	ug/Kg		11/10/14 15:58	11/11/14 21:34	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	99		46 - 175	11/10/14 15:58	11/11/14 21:34	1
DCB Decachlorobiphenyl	110		47 - 176	11/10/14 15:58	11/11/14 21:34	1

Lab Sample ID: LCS 480-213179/2-A

Matrix: Solid

Analysis Batch: 213263

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 213179

Alialysis Dalcii. 213203							Lieh	Fieb Datcii. 21317		
	Spike	LCS	LCS				%Rec.			
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits			
PCB-1016	1680	2100		ug/Kg		125	51 - 185			

TestAmerica Buffalo

Page 43 of 58

12/9/2014

Client: Woodard & Curran Inc Project/Site: Rouses Point

Lab Sample ID: 480-70733-1 MS

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCS 480-213179/2-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 213263** Prep Batch: 213179

LCS LCS Spike Result Qualifier Analyte Added Unit D %Rec Limits PCB-1260 1680 2190 131 61 - 184 ug/Kg

LCS LCS Surrogate %Recovery Qualifier Limits 109 46 - 175 Tetrachloro-m-xylene 122 47 - 176 DCB Decachlorobiphenyl

Client Sample ID: TFARM-SS-SUMP-01

Prep Type: Total/NA

Matrix: Solid Analysis Batch: 213263 Prep Batch: 213179 MS MS

Sample Sample Spike %Rec. Added Analyte Result Qualifier Result Qualifier Unit D %Rec Limits # PCB-1016 ND 2560 3150 ug/Kg 123 42 - 159 PCB-1260 ND 2560 3410 ug/Kg ₩ 133 47 - 153 MS MS

Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 111 46 - 175 47 - 176 DCB Decachlorobiphenyl 125

Client Sample ID: TFARM-SS-SUMP-01 Lab Sample ID: 480-70733-1 MSD **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 213263

Prep Batch: 213179 Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit ₩ PCB-1016 ND 2100 123 50 2580 ug/Kg 42 _ 159 20 PCB-1260 ND 2100 ď 2720 ug/Kg 129 47 - 153 23 50

MSD MSD %Recovery Qualifier Limits Surrogate Tetrachloro-m-xylene 108 46 - 175 DCB Decachlorobiphenyl 123 47 - 176

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-212278/1-A Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA Analysis Batch: 213290 Prep Batch: 212278

MR MR Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Barium ND 0.0020 0.00070 mg/L 11/06/14 08:00 11/10/14 19:29

Lab Sample ID: MB 480-212278/1-A Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA Analysis Batch: 213540 Prep Batch: 212278

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac ND 0.015 11/06/14 08:00 11/11/14 21:07 Arsenic 0.0056 mg/L Cadmium ND 0.0020 0.00050 mg/L 11/06/14 08:00 11/11/14 21:07 NΠ 0.0040 11/06/14 08:00 11/11/14 21:07 Chromium 0.0010 mg/L

TestAmerica Buffalo

Page 44 of 58

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-212278/1-A

Lab Sample ID: LCS 480-212278/2-A

Matrix: Water

Analysis Batch: 213540

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 212278

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.010	0.0030	mg/L		11/06/14 08:00	11/11/14 21:07	1
Selenium	ND		0.025	0.0087	mg/L		11/06/14 08:00	11/11/14 21:07	1
Silver	ND		0.0060	0.0017	mg/L		11/06/14 08:00	11/11/14 21:07	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 212278

Spike LCS LCS Result Qualifier Analyte Added Limits Unit %Rec Barium 0.200 0.215 107 80 - 120 mg/L

MR MR

Lab Sample ID: LCS 480-212278/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water

Matrix: Water

Analysis Batch: 213540

Analysis Batch: 213290

						Prep Type: Total/NA
						Prep Batch: 212278
Spike	LCS	LCS				%Rec.
Added	Result	Qualifier	Unit	D	%Rec	Limits
0.004	0.040				405	

Analyte Add Arsenic 0.201 0.210 80 - 120 mg/L 105 Cadmium 0.201 108 0.217 80 - 120 mg/L Chromium 0.201 0.208 mg/L 104 80 - 120 Lead 0.201 0.207 103 80 - 120 mg/L Selenium 0.201 0.222 mg/L 111 80 - 120 Silver 0.0500 0.0537 mg/L 107 80 - 120

Lab Sample ID: MB 480-212473/1-A Client Sample ID: Method Blank **Matrix: Solid**

Analysis Batch: 212912

	Prep Type: Total/NA
	Prep Batch: 212473
MB MB	

Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND	1.9	0.39	mg/Kg		11/06/14 11:48	11/07/14 21:01	1
Barium	ND	0.48	0.11	mg/Kg		11/06/14 11:48	11/07/14 21:01	1
Cadmium	ND	0.19	0.029	mg/Kg		11/06/14 11:48	11/07/14 21:01	1
Chromium	ND	0.48	0.19	mg/Kg		11/06/14 11:48	11/07/14 21:01	1
Lead	ND	0.96	0.23	mg/Kg		11/06/14 11:48	11/07/14 21:01	1
Selenium	ND	3.9	0.39	mg/Kg		11/06/14 11:48	11/07/14 21:01	1
Silver	ND	0.58	0.19	mg/Kg		11/06/14 11:48	11/07/14 21:01	1

Lab Sample ID: LCDSRM 480-212473/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 212912

Analysis Batch: 212912							Prep I	Batch: 2	12473						
	Spike	LCDSRM	LCDSRM				%Rec.		RPD						
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit						
Arsenic	151	135.3		mg/Kg		89.8	70.9 - 129.	4	20						
							8								
Barium	261	248.8		mg/Kg		95.2	73.7 - 126.	4	20						
							3								
Cadmium	152	135.5		mg/Kg		89.4	73.0 - 126.	5	20						
							3								
Chromium	117	102.7		mg/Kg		88.0	69.7 - 129.	4	20						

TestAmerica Buffalo

9

Page 45 of 58

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCDSRM 480-212473/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA Prep Batch: 212473

Analysis Batch: 212912

,													
	Spike	LCDSRM	LCDSRM				%Rec.		RPD				
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit				
Lead	253	232.1		mg/Kg	_	91.6	75.6 - 124.	4	20				
							8						
Selenium	162	145.5		mg/Kg		90.1	67.3 - 132.	4	20				
							1						
Silver	44.2	40.10		mg/Kg		90.8	66.4 - 133.	4	20				
							•						

Lab Sample ID: LCSSRM 480-212473/2-A **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 212912							Prep Batc	h: 212473
	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	148	130.2		mg/Kg		87.8	70.9 - 129.	
							8	
Barium	257	239.6		mg/Kg		93.1	73.7 - 126.	
							3	
Cadmium	149	128.8		mg/Kg		86.2	73.0 - 126.	
							3	
Chromium	115	98.22		mg/Kg		85.4	69.7 - 129.	
							9	
Lead	250	223.9		mg/Kg		89.7	75.6 - 124.	
- · ·							8	
Selenium	159	139.5		mg/Kg		87.6	67.3 - 132.	
							<u></u>	
Silver	43.5	38.57		mg/Kg		88.6	66.4 - 133.	
							9	

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-212358/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 212520

	MB	MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		_	11/06/14 08:20	11/06/14 13:01	1

Lab Sample ID: LCS 480-212358/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 212520 Prep Batch: 212358

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits 0.00667 Mercury 0.00702 mg/L 105 80 - 120

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)

Lab Sample ID: MB 480-212465/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 212543 Prep Batch: 212465

MB MB MDL Unit Result Qualifier RL Prepared Dil Fac Analyte Analyzed ND 0.020 11/06/14 10:25 11/06/14 14:03 Hg 0.0081 mg/Kg

TestAmerica Buffalo

Prep Type: Total/NA

Prep Batch: 212358

QC Sample Results

Client: Woodard & Curran Inc
Project/Site: Rouses Point
TestAmerica Job ID: 480-70733-1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique) (Continued)

Lab Sample ID: LCSSRM 480-212465/2-A		Client Sample ID: Lab Control Sa						
Matrix: Solid							Prep T	ype: Total/NA
Analysis Batch: 212543							Prep l	Batch: 212465
	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Hg	5.76	5.78		mg/Kg		100.4	51.0 - 148.	
							8	

Lab Sample ID: 480-70733-3 M	S						Clien	t Sampl	e ID: TFAF	RM-SS-PAD-03
Matrix: Solid									Prep 1	Type: Total/NA
Analysis Batch: 212543									Prep	Batch: 212465
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Hg	0.0095	J	0.344	0.354		mg/Kg	\	100	80 - 120	

Lab Sample ID: 480-70733-3 MSD							Clier	ոt Samp	le ID: TFAF	RM-SS-P	AD-03
Matrix: Solid									Prep 1	Type: To	tal/NA
Analysis Batch: 212543									Prep	Batch: 2	12465
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Hg	0.0095	J	0.369	0.379		mg/Kg	₩	100	80 - 120	7	20

12/9/2014

_

Δ

9

10

11

12

QC Association Summary

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70733-1

GC/MS VOA

Prep Batch: 212250

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70733-1	TFARM-SS-SUMP-01	Total/NA	Solid	5035A	
480-70733-2	TFARM-SS-PAD-02	Total/NA	Solid	5035A	
480-70733-3	TFARM-SS-PAD-03	Total/NA	Solid	5035A	

Analysis Batch: 213546

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70733-1	TFARM-SS-SUMP-01	Total/NA	Solid	8260C	212250
480-70733-2	TFARM-SS-PAD-02	Total/NA	Solid	8260C	212250
480-70733-3	TFARM-SS-PAD-03	Total/NA	Solid	8260C	212250
LCS 480-213546/5	Lab Control Sample	Total/NA	Solid	8260C	
LCSD 480-213546/6	Lab Control Sample Dup	Total/NA	Solid	8260C	
MB 480-213546/8	Method Blank	Total/NA	Solid	8260C	

Analysis Batch: 213789

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70733-4	Trip Blank	Total/NA	Water	8260C	
LCS 480-213789/3	Lab Control Sample	Total/NA	Water	8260C	
MB 480-213789/5	Method Blank	Total/NA	Water	8260C	

GC/MS Semi VOA

Prep Batch: 212381

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70733-1	TFARM-SS-SUMP-01	Total/NA	Solid	3550C	
480-70733-2	TFARM-SS-PAD-02	Total/NA	Solid	3550C	
480-70733-3	TFARM-SS-PAD-03	Total/NA	Solid	3550C	
LCS 480-212381/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-212381/1-A	Method Blank	Total/NA	Solid	3550C	

Prep Batch: 212534

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70733-5	EB-01	Total/NA	Water	3510C	
LCS 480-212534/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 480-212534/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 212699

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70733-1	TFARM-SS-SUMP-01	Total/NA	Solid	8270D	212381
480-70733-2	TFARM-SS-PAD-02	Total/NA	Solid	8270D	212381
480-70733-3	TFARM-SS-PAD-03	Total/NA	Solid	8270D	212381
LCS 480-212381/2-A	Lab Control Sample	Total/NA	Solid	8270D	212381
MB 480-212381/1-A	Method Blank	Total/NA	Solid	8270D	212381

Analysis Batch: 216823

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70733-5	EB-01	Total/NA	Water	8270D	212534
LCS 480-212534/2-A	Lab Control Sample	Total/NA	Water	8270D	212534
MB 480-212534/1-A	Method Blank	Total/NA	Water	8270D	212534

TestAmerica Buffalo

Page 48 of 58

Client: Woodard & Curran Inc Project/Site: Rouses Point

GC VOA

Analysis Batch: 212471

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep B	atch
480-70733-5	EB-01	Total/NA	Water	8015D	
LCS 480-212471/4	Lab Control Sample	Total/NA	Water	8015D	
LCSD 480-212471/5	Lab Control Sample Dup	Total/NA	Water	8015D	
MB 480-212471/3	Method Blank	Total/NA	Water	8015D	

Leach Batch: 212715

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70733-1	TFARM-SS-SUMP-01	Soluble	Solid	DI Leach	
480-70733-2	TFARM-SS-PAD-02	Soluble	Solid	DI Leach	
480-70733-3	TFARM-SS-PAD-03	Soluble	Solid	DI Leach	
LCS 480-212715/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
MB 480-212715/1-A	Method Blank	Soluble	Solid	DI Leach	

Analysis Batch: 212768

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
TFARM-SS-SUMP-01	Soluble	Solid	8015D	212715
TFARM-SS-PAD-02	Soluble	Solid	8015D	212715
TFARM-SS-PAD-03	Soluble	Solid	8015D	212715
Lab Control Sample	Soluble	Solid	8015D	212715
Method Blank	Soluble	Solid	8015D	212715
	TFARM-SS-SUMP-01 TFARM-SS-PAD-02 TFARM-SS-PAD-03 Lab Control Sample	TFARM-SS-SUMP-01 Soluble TFARM-SS-PAD-02 Soluble TFARM-SS-PAD-03 Soluble Lab Control Sample Soluble	TFARM-SS-SUMP-01 Soluble Solid TFARM-SS-PAD-02 Soluble Solid TFARM-SS-PAD-03 Soluble Solid Lab Control Sample Soluble Solid	TFARM-SS-SUMP-01 Soluble Solid 8015D TFARM-SS-PAD-02 Soluble Solid 8015D TFARM-SS-PAD-03 Soluble Solid 8015D Lab Control Sample Soluble Solid 8015D

GC Semi VOA

Prep Batch: 212799

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70733-5	EB-01	Total/NA	Water	3510C	
LCS 480-212799/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 480-212799/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 212896

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70733-5	EB-01	Total/NA	Water	8082A	212799
LCS 480-212799/2-A	Lab Control Sample	Total/NA	Water	8082A	212799
MB 480-212799/1-A	Method Blank	Total/NA	Water	8082A	212799

Prep Batch: 213179

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
480-70733-1	TFARM-SS-SUMP-01	Total/NA	Solid	3550C	
480-70733-1 MS	TFARM-SS-SUMP-01	Total/NA	Solid	3550C	
480-70733-1 MSD	TFARM-SS-SUMP-01	Total/NA	Solid	3550C	
480-70733-2	TFARM-SS-PAD-02	Total/NA	Solid	3550C	
480-70733-3	TFARM-SS-PAD-03	Total/NA	Solid	3550C	
LCS 480-213179/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-213179/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 213263

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70733-1	TFARM-SS-SUMP-01	Total/NA	Solid	8082A	213179
480-70733-1 MS	TFARM-SS-SUMP-01	Total/NA	Solid	8082A	213179
480-70733-1 MSD	TFARM-SS-SUMP-01	Total/NA	Solid	8082A	213179

TestAmerica Buffalo

Page 49 of 58

6

0

8

40

11

12

14

QC Association Summary

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70733-1

GC Semi VOA (Continued)

Analysis Batch: 213263 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70733-2	TFARM-SS-PAD-02	Total/NA	Solid	8082A	213179
480-70733-3	TFARM-SS-PAD-03	Total/NA	Solid	8082A	213179
LCS 480-213179/2-A	Lab Control Sample	Total/NA	Solid	8082A	213179
MB 480-213179/1-A	Method Blank	Total/NA	Solid	8082A	213179

Metals

Prep Batch: 212278

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70733-5	EB-01	Total/NA	Water	3005A	
LCS 480-212278/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-212278/1-A	Method Blank	Total/NA	Water	3005A	

Prep Batch: 212358

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70733-5	EB-01	Total/NA	Water	7470A	
LCS 480-212358/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-212358/1-A	Method Blank	Total/NA	Water	7470A	

Prep Batch: 212465

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70733-1	TFARM-SS-SUMP-01	Total/NA	Solid	7471B	
480-70733-2	TFARM-SS-PAD-02	Total/NA	Solid	7471B	
480-70733-3	TFARM-SS-PAD-03	Total/NA	Solid	7471B	
480-70733-3 MS	TFARM-SS-PAD-03	Total/NA	Solid	7471B	
480-70733-3 MSD	TFARM-SS-PAD-03	Total/NA	Solid	7471B	
LCSSRM 480-212465/2-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 480-212465/1-A	Method Blank	Total/NA	Solid	7471B	

Prep Batch: 212473

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70733-1	TFARM-SS-SUMP-01	Total/NA	Solid	3050B	
480-70733-2	TFARM-SS-PAD-02	Total/NA	Solid	3050B	
480-70733-3	TFARM-SS-PAD-03	Total/NA	Solid	3050B	
LCDSRM 480-212473/3-A	Lab Control Sample Dup	Total/NA	Solid	3050B	
LCSSRM 480-212473/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-212473/1-A	Method Blank	Total/NA	Solid	3050B	

Analysis Batch: 212520

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70733-5	EB-01	Total/NA	Water	7470A	212358
LCS 480-212358/2-A	Lab Control Sample	Total/NA	Water	7470A	212358
MB 480-212358/1-A	Method Blank	Total/NA	Water	7470A	212358

Analysis Batch: 212543

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70733-1	TFARM-SS-SUMP-01	Total/NA	Solid	7471B	212465
480-70733-2	TFARM-SS-PAD-02	Total/NA	Solid	7471B	212465
480-70733-3	TFARM-SS-PAD-03	Total/NA	Solid	7471B	212465
480-70733-3 MS	TFARM-SS-PAD-03	Total/NA	Solid	7471B	212465

TestAmerica Buffalo

Page 50 of 58

QC Association Summary

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70733-1

Metals (Continued)

Analysis Batch: 212543 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70733-3 MSD	TFARM-SS-PAD-03	Total/NA	Solid	7471B	212465
LCSSRM 480-212465/2-A	Lab Control Sample	Total/NA	Solid	7471B	212465
MB 480-212465/1-A	Method Blank	Total/NA	Solid	7471B	212465

Analysis Batch: 212912

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70733-1	TFARM-SS-SUMP-01	Total/NA	Solid	6010C	212473
480-70733-2	TFARM-SS-PAD-02	Total/NA	Solid	6010C	212473
480-70733-3	TFARM-SS-PAD-03	Total/NA	Solid	6010C	212473
LCDSRM 480-212473/3-A	Lab Control Sample Dup	Total/NA	Solid	6010C	212473
LCSSRM 480-212473/2-A	Lab Control Sample	Total/NA	Solid	6010C	212473
MB 480-212473/1-A	Method Blank	Total/NA	Solid	6010C	212473

Analysis Batch: 213290

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70733-5	EB-01	Total/NA	Water	6010C	212278
LCS 480-212278/2-A	Lab Control Sample	Total/NA	Water	6010C	212278
MB 480-212278/1-A	Method Blank	Total/NA	Water	6010C	212278

Analysis Batch: 213540

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70733-5	EB-01	Total/NA	Water	6010C	212278
LCS 480-212278/2-A	Lab Control Sample	Total/NA	Water	6010C	212278
MB 480-212278/1-A	Method Blank	Total/NA	Water	6010C	212278

General Chemistry

Analysis Batch: 212331

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70733-1	TFARM-SS-SUMP-01	Total/NA	Solid	Moisture	
480-70733-2	TFARM-SS-PAD-02	Total/NA	Solid	Moisture	
480-70733-3	TFARM-SS-PAD-03	Total/NA	Solid	Moisture	

TestAmerica Buffalo

2

Ţ

6

8

10

11

12

Client: Woodard & Curran Inc Project/Site: Rouses Point

Lab Sample ID: 480-70733-1

Matrix: Solid

Percent Solids: 90.8

Client Sample ID: TFARM-SS-SUMP-01 Date Collected: 11/04/14 13:00

Date Received: 11/05/14 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			212250	11/05/14 15:03	RAS	TAL BUF
Total/NA	Analysis	8260C		1	213546	11/12/14 14:29	CDC	TAL BUF
Total/NA	Prep	3550C			212381	11/06/14 08:01	JLS	TAL BUF
Total/NA	Analysis	8270D		1	212699	11/07/14 19:51	LMW	TAL BUF
Soluble	Leach	DI Leach			212715	11/07/14 09:31	DGB	TAL BUF
Soluble	Analysis	8015D		1	212768	11/07/14 13:27	DGB	TAL BUF
Total/NA	Prep	3550C			213179	11/10/14 15:58	RJS	TAL BUF
Total/NA	Analysis	8082A		1	213263	11/11/14 22:45	DLE	TAL BUF
Total/NA	Prep	3050B			212473	11/06/14 11:48	EJT	TAL BUF
Total/NA	Analysis	6010C		1	212912	11/07/14 22:00	LMH	TAL BUF
Total/NA	Prep	7471B			212465	11/06/14 10:25	LRK	TAL BUF
Total/NA	Analysis	7471B		1	212543	11/06/14 14:08	TAS	TAL BUF
Total/NA	Analysis	Moisture		1	212331	11/05/14 21:54	MAC	TAL BUF
_								

Client Sample ID: TFARM-SS-PAD-02

Date Collected: 11/04/14 14:00 Date Received: 11/05/14 10:00

Lab Sample ID: 480-70733-2

Percent Solids: 94.0

Matrix: Solid

Batch Batch Dilution Batch Prepared or Analyzed **Prep Type** Туре Method Run Factor Number Analyst Lab Total/NA Prep 5035A 212250 11/05/14 15:03 RAS TAL BUF Total/NA Analysis 8260C 213546 11/12/14 14:55 CDC TAL BUF 1 Total/NA Prep 3550C 212381 11/06/14 08:01 JLS TAL BUF Total/NA 8270D 212699 11/07/14 20:15 I MW TAL BUF Analysis 1 Soluble Leach DI Leach 212715 11/07/14 09:31 DGB TAL BUF Soluble Analysis 8015D 10 212768 11/07/14 14:15 DGB TAL BUF Total/NA Prep 3550C 213179 11/10/14 15:58 RJS TAL BUF Total/NA 11/11/14 23:03 TAL BUF 8082A 213263 DLE Analysis 1 Total/NA Prep 3050B 212473 11/06/14 11:48 EJT TAL BUF Total/NA 6010C 212912 11/07/14 22:03 LMH TAL BUF Analysis 1 Total/NA 7471B 212465 11/06/14 10:25 LRK TAL BUF Prep TAL BUF Total/NA 7471B 212543 11/06/14 14:10 TAS Analysis Total/NA Analysis Moisture 212331 11/05/14 21:54 MAC TAL BUF

Client Sample ID: TFARM-SS-PAD-03

Date Collected: 11/04/14 14:30 Date Received: 11/05/14 10:00

Lab Sample ID: 480-70733-3

Matrix: Solid Percent Solids: 91.0

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Prep 5035A 212250 11/05/14 15:03 RAS TAL BUF 8260C 11/12/14 15:21 CDC TAL BUF Analysis 213546

Total/NA Total/NA Total/NA 3550C 11/06/14 08:01 JLS TAL BUF Prep 212381 Total/NA 8270D TAL BUF Analysis 212699 11/07/14 20:38 LMW Soluble DI Leach 212715 11/07/14 09:31 DGB TAL BUF Leach

TestAmerica Buffalo

Page 52 of 58

Client: Woodard & Curran Inc Project/Site: Rouses Point

Lab Sample ID: 480-70733-3

Client Sample ID: TFARM-SS-PAD-03

Matrix: Solid

Percent Solids: 91.0

Date Collected: 11/04/14 14:30 Date Received: 11/05/14 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Soluble	Analysis	8015D		10	212768	11/07/14 14:23	DGB	TAL BUF
Total/NA	Prep	3550C			213179	11/10/14 15:58	RJS	TAL BUF
Total/NA	Analysis	8082A		1	213263	11/11/14 23:21	DLE	TAL BUF
Total/NA	Prep	3050B			212473	11/06/14 11:48	EJT	TAL BUF
Total/NA	Analysis	6010C		1	212912	11/07/14 22:05	LMH	TAL BUF
Total/NA	Prep	7471B			212465	11/06/14 10:25	LRK	TAL BUF
Total/NA	Analysis	7471B		1	212543	11/06/14 14:12	TAS	TAL BUF
Total/NA	Analysis	Moisture		1	212331	11/05/14 21:54	MAC	TAL BUF

Lab Sample ID: 480-70733-4

Client Sample ID: Trip Blank

Date Collected: 11/04/14 12:30 **Matrix: Water** Date Received: 11/05/14 10:00

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 213789 11/13/14 17:04 GTG TAL BUF

Client Sample ID: EB-01 Lab Sample ID: 480-70733-5

Date Collected: 11/04/14 16:00 **Matrix: Water** Date Received: 11/05/14 10:00

212358

212520

11/06/14 08:20

11/06/14 13:28

LRK

TAL BUF

TAL BUF

Batch Batch Dilution Batch Prepared Method Prep Type Type Run Factor Number or Analyzed Analyst Lab Total/NA Prep 3510C 212534 11/06/14 14:25 RJS TAL BUF Total/NA Analysis 8270D 1 216823 12/03/14 07:48 PJQ TAL BUF Total/NA 8015D 212471 11/06/14 11:55 DGB TAL BUF Analysis TAL BUF Total/NA Prep 3510C 212799 11/07/14 14:18 R.IS Total/NA 11/09/14 05:05 DLE TAL BUF Analysis 8082A 212896 Total/NA Prep 3005A 212278 11/06/14 08:00 LED TAL BUF Total/NA Analysis 6010C 213290 11/10/14 20:04 LMH TAL BUF Total/NA Prep 3005A 212278 11/06/14 08:00 LED TAL BUF Total/NA Analysis 6010C 213540 11/11/14 21:41 LMH TAL BUF

Laboratory References:

Total/NA

Total/NA

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

7470A

7470A

Prep

Analysis

TestAmerica Buffalo

Certification Summary

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70733-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

thority	Program		EPA Region	Certification ID	Expiration Date
w York	NELAP		2	10026	03-31-15
The following analytes	are included in this report, bu	ut are not certified unde	er this certification:		
Analysis Method	Prep Method	Matrix	Analy	e	
8260C		Water	Isopro	pyl alcohol	
The following analytes	are included in this report, bu	ut certification is not off	ered by the governing	authority:	
Analysis Method	Prep Method	Matrix	Analy	e	
8015D		Solid	2-Buta	anol	
8015D		Solid	Isopro	pyl alcohol	
8015D		Solid	Metha	nol	
8015D		Solid	n-Buta	anol	
8015D		Solid	Propa	nol	
8015D		Water	2-Buta	anol	
8015D		Water	Isopro	pyl alcohol	
8015D		Water	Metha	nol	
8015D		Water	n-Buta	anol	
8015D		Water	Propa	nol	
8260C	5035A	Solid	1,2,3-	Trimethylbenzene	
8260C	5035A	Solid	Chlore	odifluoromethane	
8260C	5035A	Solid	n-Buta	anol	
8260C	5035A	Solid	Tetral	ydrofuran	
Moisture		Solid	Perce	nt Moisture	
Moisture		Solid	Perce	nt Solids	

TestAmerica Buffalo

E

6

8

10

11

Method Summary

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70733-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
8015D	Nonhalogenated Organic Compounds - Direct Injection (GC)	SW846	TAL BUF
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
7471B	Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

7

10

11

12

14

Sample Summary

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70733-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-70733-1	TFARM-SS-SUMP-01	Solid	11/04/14 13:00	11/05/14 10:00
480-70733-2	TFARM-SS-PAD-02	Solid	11/04/14 14:00	11/05/14 10:00
480-70733-3	TFARM-SS-PAD-03	Solid	11/04/14 14:30	11/05/14 10:00
480-70733-4	Trip Blank	Water	11/04/14 12:30	11/05/14 10:00
480-70733-5	EB-01	Water	11/04/14 16:00	11/05/14 10:00

2

4

5

O

8

9

4 4

12

4 4

8	野連
	建砂 差
	326
, Si	

	爾
60 64	燃
11.0	
100	1044
i de la constante de la consta	
	133
ffbra	
機	響
delican	BCHO!
4.	A.
	, 4
E 14	
7	
tion.	200
782	100
-	쮶
##	400
-(32	12

	480

Chain of Custody Record

Other:

RCRA

☐ DW ☐ NPDES

::

040145

THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc. TAL-8210 (0713)

			ľ	IAL-6210 (U/13)
Client Contact	16	ş	Date: 11 4 14	COC No:
Company Name: Worden & Current	TellFax: スしろみテト・0279	SEACO.	Carrier: かをひ をか	of COCs
	Turnaro			Sampler: DIV
Jٽ	☐ CALENDAR DAYS ☐ WORKING DAYS	Q		For Lab Use Only:
pt 80-140	TAT if different from Below 5+cocked	ピ		Walk-in Client:
Fax: 203 -371 - 7952	2 weeks	177		Lab Sampling:
	1 week	1) 0 50 50 50 50 50		
Revises Poi	2 days	Эц 28 С 1811		Job / SDG No.:
70# DOCONIO	1 day) 9 - 8 /Si		
Sample Identification	Sample Sample (C=Comp.) Date Time G=Grab) Matrix Cont.	Filtered Say		Sample Specific Notes:
TFG.P.M.55 5 WMP-01	114/14 1300 G SP S	スメイナ		
TFARM. 55-PAD-02	11/4/14 1400 1 5015	トメメンオ		
TFARM 55- AND-03	11/4/14 1430 50/5	マヤヤ オ		
Diro Blank	11/4/H 1230	**		
-01	11414 16co 1 22 86	** *** ***		
7 w (8) w / 57	>			
of 5				
8				
				- Community (MV) (Community (MV))
Preservation Used 1= fce, 2= HCl; 3= H2SD4; 4=HN03; 5=NaOH; 6= Other	5=NaOH; 6= Other			
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes Comments Section if the lab is to dispose of the sample.	se List any EPA Waste Codes for the sample in the	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	assessed if samples are retaine	d longer than 1 month)
Won-Hazard Hammable Skin Infant	Poison B	Return to Client	Disposal by Lab	Months
Special Instructions/QC Requirements & Comments:	TSP/ Cato C. Ou B	was fema	Blank	Mecon
Custody Seals Intact: Tes No	ieal No.:	Cooler Temp. (°C): Obs'd:		Therm ID No.:
Relinquished by:	Sate/Time:	Received by: A Ship	Company:	Date/Time:
सिक्षीमर्त्पाshed by: (ठ)	1	Received by:	Company:	Date/Time:
Belinquished by:	Company: Date/Time:	(Received in Laboratory by:	Company:	Date/Time:
1				

Login Sample Receipt Checklist

Client: Woodard & Curran Inc Job Number: 480-70733-1

Login Number: 70733 List Source: TestAmerica Buffalo

List Number: 1 Creator: Janish, Carl M

Creator. Jamish, Carr W		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and he COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
f necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	w+c
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

4

0

4 6

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-70850-1 Client Project/Site: Rouses Point

For:

Woodard & Curran Inc 64 Maple Street Rouses Point, New York 12979

Attn: Don Weeks

Authorized for release by: 11/30/2014 8:55:41 PM

Joe Giacomazza, Project Management Assistant II joe.giacomazza@testamericainc.com

Designee for

Becky Mason, Project Manager II (413)572-4000

becky.mason@testamericainc.com

..... Links

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Woodard & Curran Inc Project/Site: Rouses Point TestAmerica Job ID: 480-70850-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	18
Lab Chronicle	19
Certification Summary	20
Method Summary	21
Sample Summary	22
Chain of Custody	23
Receipt Checklists	24

Definitions/Glossary

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70850-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
*	LCS or LCSD exceeds the control limits

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS VOA TICs

Qualifier	Qualifier Description
J	Indicates an Estimated Value for TICs
N	Presumptive evidence of material.
Т	Result is a tentatively identified compound (TIC) and an estimated value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
α	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated

QC **Quality Control** RER Relative error ratio

ND

PQL

Reporting Limit or Requested Limit (Radiochemistry) RL

Practical Quantitation Limit

RPD Relative Percent Difference, a measure of the relative difference between two points

Not detected at the reporting limit (or MDL or EDL if shown)

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

Case Narrative

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70850-1

Job ID: 480-70850-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-70850-1

Receipt

The samples were received on 11/6/2014 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.1° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 213546 recovered above the upper control limit for Carbon tetrachloride. The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported. The following samples are impacted: (CCVIS 480-213546/3).

Method(s) 8260C: The method blank for batch 213546 contained Methylene chloride above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 8260C: Due to the coelution of Ethyl Acetate with 2-Butanone in the full spike solution, 2-Butanone and/or Ethyl Acetate exceeded control limits in the laboratory control sample (LCS) and/or laboratory control sample duplicate (LCSD) associated with batch 213546.

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 214006 recovered above the upper control limit for Carbon Tetrachloride, Hexane, 2,2-Dichloropropane, 1,1,2-Trichloro-1,2,2-Trifluoroethane, Trichlorofluoromethane and Methylcyclohexane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: (CCVIS 480-214006/2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

6

4

6

1

9

11

12

16

Detection Summary

Client: Woodard & Curran Inc Project/Site: Rouses Point TestAmerica Job ID: 480-70850-1

Client Sample ID: BLDG24-SS-SUMP-02

Lab Sample ID: 480-70850-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	7.2	J	26	4.4	ug/Kg	1	₩	8260C	Total/NA

Client Sample ID: TB-01 Lab Sample ID: 480-70850-2

No Detections.

4

5

6

_

9

11

13

14

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Received: 11/06/14 09:00

Trichlorofluoromethane

TestAmerica Job ID: 480-70850-1

Lab Sample ID: 480-70850-1

Matrix: Solid Percent Solids: 91.3

Client Sample ID: BLDG24-SS-SUMP-02

Date Collected: 11/05/14 13:45

Lab Sample

1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ND		5.2	0.38	ug/Kg		11/06/14 15:26	11/12/14 15:47	
					~9,9		11/00/14 10.20	11/12/14 10.47	1
	ND		5.2	0.85	ug/Kg	₩	11/06/14 15:26	11/12/14 15:47	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.2	1.2	ug/Kg	₩	11/06/14 15:26	11/12/14 15:47	1
1,1,2-Trichloroethane	ND		5.2	0.68	ug/Kg	₩	11/06/14 15:26	11/12/14 15:47	1
1,1-Dichloroethane	ND		5.2	0.64	ug/Kg	₩	11/06/14 15:26	11/12/14 15:47	1
1,1-Dichloroethene	ND		5.2	0.64	ug/Kg	₩	11/06/14 15:26	11/12/14 15:47	1
1,2,3-Trichlorobenzene	ND		5.2	0.55	ug/Kg	Φ.	11/06/14 15:26	11/12/14 15:47	1
1,2,4-Trichlorobenzene	ND		5.2	0.32	ug/Kg	₩	11/06/14 15:26	11/12/14 15:47	1
1,2-Dibromo-3-Chloropropane	ND		5.2	2.6	ug/Kg	₩	11/06/14 15:26	11/12/14 15:47	1
1,2-Dichlorobenzene	ND		5.2	0.41	ug/Kg		11/06/14 15:26	11/12/14 15:47	1
1,2-Dichloroethane	ND		5.2	0.26	ug/Kg	₩	11/06/14 15:26	11/12/14 15:47	1
1,2-Dichloropropane	ND		5.2	2.6	ug/Kg	₩	11/06/14 15:26	11/12/14 15:47	1
1,3-Dichlorobenzene	ND		5.2	0.27	ug/Kg		11/06/14 15:26	11/12/14 15:47	1
1,4-Dichlorobenzene	ND		5.2	0.73	ug/Kg	₩	11/06/14 15:26	11/12/14 15:47	1
1,4-Dioxane	ND		100	23	ug/Kg	₩	11/06/14 15:26	11/12/14 15:47	1
2-Hexanone	ND		26		ug/Kg		11/06/14 15:26	11/12/14 15:47	1
Acetone	7.2	J	26		ug/Kg	₩	11/06/14 15:26	11/12/14 15:47	1
Benzene	ND		5.2		ug/Kg	₽	11/06/14 15:26	11/12/14 15:47	1
Bromoform	ND		5.2		ug/Kg		11/06/14 15:26	11/12/14 15:47	1
Bromomethane	ND		5.2		ug/Kg	₽	11/06/14 15:26	11/12/14 15:47	1
Carbon disulfide	ND		5.2		ug/Kg	₩	11/06/14 15:26	11/12/14 15:47	1
Carbon tetrachloride	ND		5.2		ug/Kg		11/06/14 15:26	11/12/14 15:47	
Chlorobenzene	ND		5.2	0.69	ug/Kg	₩	11/06/14 15:26	11/12/14 15:47	1
Bromochloromethane	ND		5.2	0.38	ug/Kg	₩	11/06/14 15:26	11/12/14 15:47	1
Dibromochloromethane	ND		5.2	0.67	ug/Kg		11/06/14 15:26	11/12/14 15:47	
Chloroethane	ND		5.2		ug/Kg	₩	11/06/14 15:26	11/12/14 15:47	1
Chloroform	ND		5.2		ug/Kg ug/Kg	₩	11/06/14 15:26	11/12/14 15:47	1
Chloromethane	ND		5.2	0.31	ug/Kg		11/06/14 15:26	11/12/14 15:47	
cis-1,2-Dichloroethene	ND		5.2	0.67	ug/Kg ug/Kg	₩	11/06/14 15:26	11/12/14 15:47	1
cis-1,3-Dichloropropene	ND		5.2		ug/Kg ug/Kg	₩	11/06/14 15:26	11/12/14 15:47	1
Cyclohexane	ND		5.2		ug/Kg		11/06/14 15:26	11/12/14 15:47	
Bromodichloromethane	ND ND		5.2		ug/Kg ug/Kg	₽	11/06/14 15:26	11/12/14 15:47	1
Dichlorodifluoromethane	ND ND		5.2				11/06/14 15:26		
	ND		5.2		ug/Kg		11/06/14 15:26	11/12/14 15:47 11/12/14 15:47	1 1
Ethylbenzene 1.3 Dibromoethono (EDB)	ND ND		5.2	0.67	ug/Kg		11/06/14 15:26	11/12/14 15:47	1
1,2-Dibromoethane (EDB)	ND ND		5.2		ug/Kg	₩			
Isopropylbenzene Methyl acetata					ug/Kg		11/06/14 15:26	11/12/14 15:47	
Methyl acetate	ND	*	5.2		ug/Kg	₩	11/06/14 15:26	11/12/14 15:47	1
2-Butanone (MEK)	ND		26	1.9	ug/Kg		11/06/14 15:26	11/12/14 15:47	1
4-Methyl-2-pentanone (MIBK)	ND		26			X	11/06/14 15:26	11/12/14 15:47	
Methyl tert-butyl ether	ND		5.2	0.51	ug/Kg	*	11/06/14 15:26	11/12/14 15:47	1
Methylcyclohexane Mathylcyclohexane	ND		5.2		ug/Kg	*	11/06/14 15:26	11/12/14 15:47	1
Methylene Chloride	ND		5.2		ug/Kg	, ,	11/06/14 15:26	11/12/14 15:47	1
Styrene	ND		5.2		ug/Kg	*	11/06/14 15:26	11/12/14 15:47	1
Tetrachloroethene	ND		5.2		ug/Kg	₩	11/06/14 15:26	11/12/14 15:47	1
Toluene	ND		5.2		ug/Kg		11/06/14 15:26	11/12/14 15:47	
	ND		5.2	0.54	ug/Kg	₽	11/06/14 15:26	11/12/14 15:47	1
trans-1,2-Dichloroethene						₩			
trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene	ND ND		5.2 5.2	2.3	ug/Kg ug/Kg	\$	11/06/14 15:26 11/06/14 15:26	11/12/14 15:47 11/12/14 15:47	1

TestAmerica Buffalo

11/12/14 15:47

11/06/14 15:26

5.2

0.49 ug/Kg

ND

3

5

6

0

10

12

1 A

Client: Woodard & Curran Inc Project/Site: Rouses Point

Date Collected: 11/05/14 13:45

Date Received: 11/06/14 09:00

Client Sample ID: BLDG24-SS-SUMP-02

TestAmerica Job ID: 480-70850-1

Lab Sample ID: 480-70850-1

Matrix: Solid

Percent Solids: 91.3

Method: 8260C - Volatile Organic C	ompounds l	by GC/MS	(Continued)							
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.2		0.64	ug/Kg	₽	11/06/14 15:26	11/12/14 15:47	1
Xylenes, Total	ND		10		0.88	ug/Kg	\$	11/06/14 15:26	11/12/14 15:47	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	9.4	TJ	ug/Kg	\$	4	.37		11/06/14 15:26	11/12/14 15:47	1
Trisiloxane, octamethyl-	580	TJN	ug/Kg	₩	7	.86	107-51-7	11/06/14 15:26	11/12/14 15:47	1
Cyclotetrasiloxane, octamethyl-	71	TJN	ug/Kg	₩	9	.41	556-67-2	11/06/14 15:26	11/12/14 15:47	1
Unknown	2400	ΤJ	ug/Kg	₩	10	.26		11/06/14 15:26	11/12/14 15:47	1
Unknown	59	TJ	ug/Kg	₩	11	.13		11/06/14 15:26	11/12/14 15:47	1
4-Nitro-4'-chlorodiphenylsulphoxide	940	TJN	ug/Kg	₩	11	.80	24535-53-3	11/06/14 15:26	11/12/14 15:47	1
Unknown	1400	ΤJ	ug/Kg	₩	11	.83		11/06/14 15:26	11/12/14 15:47	1
Unknown	160	TJ	ug/Kg	☼	13	.10		11/06/14 15:26	11/12/14 15:47	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		64 - 126					11/06/14 15:26	11/12/14 15:47	1
Toluene-d8 (Surr)	93		71 - 125					11/06/14 15:26	11/12/14 15:47	1
4-Bromofluorobenzene (Surr)	98		72 - 126					11/06/14 15:26	11/12/14 15:47	1

TestAmerica Buffalo

3

5

9

11

12

13

Client: Woodard & Curran Inc Project/Site: Rouses Point TestAmerica Job ID: 480-70850-1

Lab Sample ID: 480-70850-2

Matrix: Water

Client Sample ID: TB-01

Date Collected: 11/05/14 06:45 Date Received: 11/06/14 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			11/14/14 05:27	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			11/14/14 05:27	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			11/14/14 05:27	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			11/14/14 05:27	
1,1-Dichloroethane	ND		1.0	0.38	ug/L			11/14/14 05:27	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			11/14/14 05:27	
1,2,3-Trichlorobenzene	ND		1.0		ug/L			11/14/14 05:27	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			11/14/14 05:27	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			11/14/14 05:27	
1,2-Dibromoethane (EDB)	ND		1.0		ug/L			11/14/14 05:27	
1,2-Dichlorobenzene	ND		1.0		ug/L			11/14/14 05:27	
1,2-Dichloroethane	ND		1.0		ug/L			11/14/14 05:27	
1,2-Dichloropropane	ND		1.0		ug/L			11/14/14 05:27	
1,3-Dichlorobenzene	ND		1.0		ug/L			11/14/14 05:27	
1,4-Dichlorobenzene	ND		1.0		ug/L			11/14/14 05:27	
1,4-Dioxane	ND		40		ug/L ug/L			11/14/14 05:27	
2-Butanone (MEK)	ND		10		ug/L			11/14/14 05:27	
2-Hexanone	ND		5.0		ug/L ug/L			11/14/14 05:27	
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L ug/L			11/14/14 05:27	
* ' ' '	ND		10		-				
Acetone					ug/L			11/14/14 05:27	
Benzene	ND		1.0		ug/L			11/14/14 05:27	
Bromochloromethane	ND		1.0		ug/L			11/14/14 05:27	
Bromodichloromethane	ND		1.0		ug/L			11/14/14 05:27	
Bromoform	ND		1.0		ug/L			11/14/14 05:27	
Bromomethane	ND		1.0	0.69				11/14/14 05:27	
Carbon disulfide	ND		1.0	0.19				11/14/14 05:27	
Carbon tetrachloride	ND		1.0		ug/L			11/14/14 05:27	
Chlorobenzene	ND		1.0		ug/L			11/14/14 05:27	
Chloroethane	ND		1.0	0.32				11/14/14 05:27	
Chloroform	ND		1.0		ug/L			11/14/14 05:27	
Chloromethane	ND		1.0	0.35				11/14/14 05:27	
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			11/14/14 05:27	
cis-1,3-Dichloropropene	ND		1.0		ug/L			11/14/14 05:27	
Cyclohexane	ND		1.0	0.18	ug/L			11/14/14 05:27	
Dibromochloromethane	ND		1.0	0.32	ug/L			11/14/14 05:27	
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			11/14/14 05:27	
Ethylbenzene	ND		1.0	0.74	ug/L			11/14/14 05:27	
sopropylbenzene	ND		1.0	0.79	ug/L			11/14/14 05:27	
Methyl acetate	ND		2.5	0.50	ug/L			11/14/14 05:27	
Nethyl tert-butyl ether	ND		1.0	0.16	ug/L			11/14/14 05:27	
Methylcyclohexane	ND		1.0	0.16	ug/L			11/14/14 05:27	
Methylene Chloride	ND		1.0	0.44	ug/L			11/14/14 05:27	
Styrene	ND		1.0	0.73	ug/L			11/14/14 05:27	
Γetrachloroethene	ND		1.0	0.36	ug/L			11/14/14 05:27	
Fetrahydrofuran	ND		5.0		ug/L			11/14/14 05:27	
Foluene	ND		1.0		ug/L			11/14/14 05:27	
trans-1,2-Dichloroethene	ND		1.0		ug/L			11/14/14 05:27	
trans-1,3-Dichloropropene	ND		1.0		ug/L			11/14/14 05:27	
Trichloroethene	ND		1.0		ug/L			11/14/14 05:27	

TestAmerica Buffalo

3

5

9

10

12

14

1 E

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70850-1

Lab Sample ID: 480-70850-2

Matrix: Water

Client Sample ID: TB-01	C	lient	: Samp	le IE): T	B-01
-------------------------	---	-------	--------	-------	------	------

Date Collected: 11/05/14 06:45 Date Received: 11/06/14 09:00

Analyte	Result	Qualifier	F	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		1	.0	0.88	ug/L			11/14/14 05:27	1
Vinyl chloride	ND		1	.0	0.90	ug/L			11/14/14 05:27	1
Xylenes, Total	ND		2	.0	0.66	ug/L			11/14/14 05:27	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Isopropyl alcohol			ug/L		6	.99	67-63-0		11/14/14 05:27	1
Tentatively Identified Compound	None		ug/L						11/14/14 05:27	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		66 - 137	_					11/14/14 05:27	1
4-Bromofluorobenzene (Surr)	98		73 - 120						11/14/14 05:27	1
Toluene-d8 (Surr)	89		71 - 126						11/14/14 05:27	1

Surrogate Summary

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70850-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

				Percent Surre	gate Recov
		12DCE	TOL	BFB	
Lab Sample ID	Client Sample ID	(64-126)	(71-125)	(72-126)	
480-70850-1	BLDG24-SS-SUMP-02	108	93	98	
LCS 480-213546/5	Lab Control Sample	112	97	99	
LCSD 480-213546/6	Lab Control Sample Dup	111	100	101	
MB 480-213546/8	Method Blank	103	100	98	

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

TestAmerica Buffalo

TestAmerica Job ID: 480-70850-1

Client: Woodard & Curran Inc Project/Site: Rouses Point

1101104 005 1B. 100 7 0000 1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-213546/8

Matrix: Solid

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.36	ug/Kg			11/12/14 12:19	
1,1,2,2-Tetrachloroethane	ND		5.0	0.81	ug/Kg			11/12/14 12:19	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0	1.1	ug/Kg			11/12/14 12:19	1
1,1,2-Trichloroethane	ND		5.0	0.65	ug/Kg			11/12/14 12:19	1
1,1-Dichloroethane	ND		5.0	0.61	ug/Kg			11/12/14 12:19	•
1,1-Dichloroethene	ND		5.0	0.61	ug/Kg			11/12/14 12:19	•
1,2,3-Trichlorobenzene	ND		5.0	0.53	ug/Kg			11/12/14 12:19	
1,2,4-Trichlorobenzene	ND		5.0	0.30	ug/Kg			11/12/14 12:19	
1,2-Dibromo-3-Chloropropane	ND		5.0	2.5	ug/Kg			11/12/14 12:19	
1,2-Dichlorobenzene	ND		5.0	0.39	ug/Kg			11/12/14 12:19	
1,2-Dichloroethane	ND		5.0	0.25	ug/Kg			11/12/14 12:19	
1,2-Dichloropropane	ND		5.0		ug/Kg			11/12/14 12:19	
1,3-Dichlorobenzene	ND		5.0	0.26	ug/Kg			11/12/14 12:19	
1,4-Dichlorobenzene	ND		5.0		ug/Kg			11/12/14 12:19	
1,4-Dioxane	ND		100		ug/Kg			11/12/14 12:19	
2-Hexanone	ND		25		ug/Kg			11/12/14 12:19	· · · · · · .
Acetone	ND		25		ug/Kg			11/12/14 12:19	
Benzene	ND		5.0		ug/Kg			11/12/14 12:19	
Bromochloromethane	ND		5.0		ug/Kg			11/12/14 12:19	
Bromoform	ND		5.0		ug/Kg			11/12/14 12:19	
Bromomethane	ND		5.0		ug/Kg			11/12/14 12:19	
Carbon disulfide	ND		5.0		ug/Kg			11/12/14 12:19	
Carbon tetrachloride	ND		5.0		ug/Kg			11/12/14 12:19	
Chlorobenzene	ND		5.0		ug/Kg			11/12/14 12:19	
Chloroethane	ND		5.0		ug/Kg			11/12/14 12:19	
Bromodichloromethane	ND		5.0		ug/Kg			11/12/14 12:19	
Chloroform	ND		5.0		ug/Kg			11/12/14 12:19	
Chloromethane	ND		5.0		ug/Kg			11/12/14 12:19	
cis-1,2-Dichloroethene	ND		5.0		ug/Kg			11/12/14 12:19	
1,2-Dibriomoethane (EDB)	ND		5.0		ug/Kg ug/Kg			11/12/14 12:19	,
cis-1,3-Dichloropropene	ND		5.0		ug/Kg			11/12/14 12:19	,
Cyclohexane	ND		5.0		ug/Kg ug/Kg			11/12/14 12:19	
Dibromochloromethane	ND		5.0		ug/Kg ug/Kg			11/12/14 12:19	
2-Butanone (MEK)	ND		25		ug/Kg ug/Kg			11/12/14 12:19	,
Dichlorodifluoromethane	ND		5.0					11/12/14 12:19	
	ND		25		ug/Kg				,
4-Methyl-2-pentanone (MIBK) Ethylbenzene					ug/Kg			11/12/14 12:19	
•	ND		5.0		ug/Kg			11/12/14 12:19	
Isopropylbenzene	ND		5.0		ug/Kg			11/12/14 12:19	
Methyl acetate	ND		5.0		ug/Kg			11/12/14 12:19	
Methyl tert-butyl ether	ND		5.0		ug/Kg			11/12/14 12:19	•
Methylcyclohexane	ND		5.0		ug/Kg			11/12/14 12:19	
Methylene Chloride	3.11	J	5.0		ug/Kg			11/12/14 12:19	
Styrene	ND		5.0		ug/Kg			11/12/14 12:19	ĺ
Tetrachloroethene	ND		5.0		ug/Kg			11/12/14 12:19	
Toluene	ND		5.0		ug/Kg			11/12/14 12:19	
trans-1,2-Dichloroethene	ND		5.0		ug/Kg			11/12/14 12:19	1
trans-1,3-Dichloropropene	ND ND		5.0	2.2	ug/Kg ug/Kg			11/12/14 12:19	•

TestAmerica Buffalo

Page 11 of 24

11/30/2014

3

_

6

8

10

12

14

TestAmerica Job ID: 480-70850-1

Client: Woodard & Curran Inc Project/Site: Rouses Point

2

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MR MR

Lab Sample ID: MB 480-213546/8

Matrix: Solid

Client Sample ID: Method Blank
Prep Type: Total/NA

Analysis Batch: 213546

		_						
Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND	5.0	0.47	ug/Kg			11/12/14 12:19	1
Vinyl chloride	ND	5.0	0.61	ug/Kg			11/12/14 12:19	1
Xylenes, Total	ND	10	0.84	ug/Kg			11/12/14 12:19	1
	MP M	D						

Tentatively Identified Compound Est. Result Qualifier Unit D RT CAS No. Prepared Analyzed Dil Fac Tentatively Identified Compound None ug/Kg 11/12/14 12:19 1

MB MB

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1,2-Dichloroethane-d4 (Surr)	103		64 - 126	 	11/12/14 12:19	1
	Toluene-d8 (Surr)	100		71 - 125		11/12/14 12:19	1
l	4-Bromofluorobenzene (Surr)	98		72 - 126		11/12/14 12:19	1

Lab Sample ID: LCS 480-213546/5

Matrix: Solid

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch: 213546

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	50.0	54.0		ug/Kg		108	77 _ 121
1,1,2,2-Tetrachloroethane	50.0	50.0		ug/Kg		100	80 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	50.5		ug/Kg		101	60 - 140
ne							
1,1,2-Trichloroethane	50.0	48.1		ug/Kg		96	78 - 122
1,1-Dichloroethane	50.0	53.2		ug/Kg		106	73 - 126
1,1-Dichloroethene	50.0	50.9		ug/Kg		102	59 - 125
1,2,3-Trichlorobenzene	50.0	50.8		ug/Kg		102	60 _ 120
1,2,4-Trichlorobenzene	50.0	52.1		ug/Kg		104	64 _ 120
1,2-Dibromo-3-Chloropropane	50.0	48.4		ug/Kg		97	63 - 124
1,2-Dichlorobenzene	50.0	48.8		ug/Kg		98	75 - 120
1,2-Dichloroethane	50.0	51.2		ug/Kg		102	77 - 122
1,2-Dichloropropane	50.0	52.5		ug/Kg		105	75 ₋ 124
1,3-Dichlorobenzene	50.0	49.2		ug/Kg		98	74 - 120
1,4-Dichlorobenzene	50.0	48.2		ug/Kg		96	73 _ 120
2-Hexanone	250	237		ug/Kg		95	59 ₋ 130
Acetone	250	226		ug/Kg		90	61 - 137
Benzene	50.0	51.7		ug/Kg		103	79 ₋ 127
Bromochloromethane	50.0	52.3		ug/Kg		105	75 ₋ 134
Bromoform	50.0	47.5		ug/Kg		95	68 - 126
Bromomethane	50.0	48.4		ug/Kg		97	37 ₋ 149
Carbon disulfide	50.0	53.1		ug/Kg		106	64 - 131
Carbon tetrachloride	50.0	57.6		ug/Kg		115	75 - 135
Chlorobenzene	50.0	48.6		ug/Kg		97	76 ₋ 124
Chloroethane	50.0	50.1		ug/Kg		100	69 - 135
Bromodichloromethane	50.0	55.6		ug/Kg		111	80 - 122
Chloroform	50.0	52.0		ug/Kg		104	80 - 118
Chloromethane	50.0	52.9		ug/Kg		106	63 - 127
cis-1,2-Dichloroethene	50.0	52.5		ug/Kg		105	81 - 117
1,2-Dibromoethane (EDB)	50.0	49.4		ug/Kg		99	78 ₋ 120
cis-1,3-Dichloropropene	50.0	57.8		ug/Kg		116	82 - 120

TestAmerica Buffalo

5

6

8

10

13

TestAmerica Job ID: 480-70850-1

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-213546/5

Matrix: Solid

Analysis Batch: 213546

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Cyclohexane	50.0	52.5		ug/Kg		105	65 - 106
Dibromochloromethane	50.0	54.1		ug/Kg		108	76 - 125
2-Butanone (MEK)	250	409	*	ug/Kg		163	70 - 134
Dichlorodifluoromethane	50.0	56.3		ug/Kg		113	57 - 142
4-Methyl-2-pentanone (MIBK)	250	240		ug/Kg		96	65 - 133
Ethylbenzene	50.0	49.7		ug/Kg		99	80 - 120
Isopropylbenzene	50.0	51.1		ug/Kg		102	72 - 120
Methyl acetate	250	294		ug/Kg		117	55 - 136
Methyl tert-butyl ether	50.0	51.9		ug/Kg		104	63 - 125
Methylcyclohexane	50.0	53.4		ug/Kg		107	60 - 140
Methylene Chloride	50.0	50.3		ug/Kg		101	61 - 127
Styrene	50.0	51.9		ug/Kg		104	80 - 120
Tetrachloroethene	50.0	50.6		ug/Kg		101	74 - 122
Toluene	50.0	47.8		ug/Kg		96	74 - 128
trans-1,2-Dichloroethene	50.0	50.8		ug/Kg		102	78 ₋ 126
trans-1,3-Dichloropropene	50.0	53.1		ug/Kg		106	73 - 123
Trichloroethene	50.0	53.4		ug/Kg		107	77 - 129
Trichlorofluoromethane	50.0	50.2		ug/Kg		100	65 - 146
Vinyl chloride	50.0	53.1		ug/Kg		106	61 - 133
Xylenes, Total	100	102		ug/Kg		102	70 - 130

LCS LCS

Surrogate	%Recovery Qualifie	r Limits
1,2-Dichloroethane-d4 (Surr)	112	64 - 126
Toluene-d8 (Surr)	97	71 - 125
4-Bromofluorobenzene (Surr)	99	72 - 126

Lab Sample ID: LCSD 480-213546/6

Matrix: Solid

Analysis Batch: 213546

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	50.0	51.0		ug/Kg		102	77 - 121	6	20
1,1,2,2-Tetrachloroethane	50.0	51.7		ug/Kg		103	80 - 120	3	20
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	48.0		ug/Kg		96	60 - 140	5	20
ne									
1,1,2-Trichloroethane	50.0	48.2		ug/Kg		96	78 - 122	0	20
1,1-Dichloroethane	50.0	50.9		ug/Kg		102	73 - 126	4	20
1,1-Dichloroethene	50.0	48.6		ug/Kg		97	59 - 125	5	20
1,2,3-Trichlorobenzene	50.0	49.8		ug/Kg		100	60 - 120	2	20
1,2,4-Trichlorobenzene	50.0	50.8		ug/Kg		102	64 - 120	3	20
1,2-Dibromo-3-Chloropropane	50.0	50.3		ug/Kg		101	63 - 124	4	20
1,2-Dichlorobenzene	50.0	49.2		ug/Kg		98	75 - 120	1	20
1,2-Dichloroethane	50.0	49.6		ug/Kg		99	77 - 122	3	20
1,2-Dichloropropane	50.0	50.5		ug/Kg		101	75 - 124	4	20
1,3-Dichlorobenzene	50.0	49.3		ug/Kg		99	74 - 120	0	20
1,4-Dichlorobenzene	50.0	48.5		ug/Kg		97	73 - 120	1	20
2-Hexanone	250	245		ug/Kg		98	59 - 130	3	20
Acetone	250	223		ug/Kg		89	61 - 137	1	20

TestAmerica Buffalo

Page 13 of 24

11/30/2014

TestAmerica Job ID: 480-70850-1

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 480-213546/6

Matrix: Solid

Analysis Batch: 213546

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.0	49.3		ug/Kg		99	79 - 127	5	20
Bromochloromethane	50.0	50.5		ug/Kg		101	75 - 134	4	20
Bromoform	50.0	47.3		ug/Kg		95	68 - 126	0	20
Bromomethane	50.0	45.9		ug/Kg		92	37 - 149	5	20
Carbon disulfide	50.0	48.8		ug/Kg		98	64 - 131	8	20
Carbon tetrachloride	50.0	54.5		ug/Kg		109	75 - 135	6	20
Chlorobenzene	50.0	47.4		ug/Kg		95	76 - 124	2	20
Chloroethane	50.0	46.2		ug/Kg		92	69 - 135	8	20
Bromodichloromethane	50.0	53.4		ug/Kg		107	80 - 122	4	20
Chloroform	50.0	49.5		ug/Kg		99	80 - 118	5	20
Chloromethane	50.0	49.8		ug/Kg		100	63 - 127	6	20
cis-1,2-Dichloroethene	50.0	49.9		ug/Kg		100	81 - 117	5	20
1,2-Dibromoethane (EDB)	50.0	49.6		ug/Kg		99	78 - 120	0	20
cis-1,3-Dichloropropene	50.0	56.0		ug/Kg		112	82 - 120	3	20
Cyclohexane	50.0	49.6		ug/Kg		99	65 - 106	6	20
Dibromochloromethane	50.0	55.1		ug/Kg		110	76 - 125	2	20
2-Butanone (MEK)	250	408	*	ug/Kg		163	70 - 134	0	20
Dichlorodifluoromethane	50.0	50.8		ug/Kg		102	57 ₋ 142	10	20
4-Methyl-2-pentanone (MIBK)	250	246		ug/Kg		98	65 - 133	3	20
Ethylbenzene	50.0	48.8		ug/Kg		98	80 - 120	2	20
Isopropylbenzene	50.0	50.8		ug/Kg		102	72 - 120	1	20
Methyl acetate	250	294		ug/Kg		118	55 ₋ 136	0	20
Methyl tert-butyl ether	50.0	51.2		ug/Kg		102	63 - 125	1	20
Methylcyclohexane	50.0	49.9		ug/Kg		100	60 - 140	7	20
Methylene Chloride	50.0	49.7		ug/Kg		99	61 - 127	1	20
Styrene	50.0	50.9		ug/Kg		102	80 - 120	2	20
Tetrachloroethene	50.0	49.7		ug/Kg		99	74 - 122	2	20
Toluene	50.0	47.1		ug/Kg		94	74 - 128	1	20
trans-1,2-Dichloroethene	50.0	48.4		ug/Kg		97	78 - 126	5	20
trans-1,3-Dichloropropene	50.0	53.5		ug/Kg		107	73 - 123	1	20
Trichloroethene	50.0	51.0		ug/Kg		102	77 - 129	5	20
Trichlorofluoromethane	50.0	46.9		ug/Kg		94	65 - 146	7	20
Vinyl chloride	50.0	49.4		ug/Kg		99	61 - 133	7	20
Xylenes, Total	100	99.1		ug/Kg		99	70 - 130	2	20

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	111		64 - 126
Toluene-d8 (Surr)	100		71 - 125
4-Bromofluorobenzene (Surr)	101		72 - 126

Lab Sample ID: MB 480-214006/6

Matrix: Water

Analysis Batch: 214006

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Result Qualifier RL MDL Unit Dil Fac Analyte Prepared Analyzed ND 1.0 11/14/14 00:06 1,1,1-Trichloroethane 0.82 ug/L 1,1,2,2-Tetrachloroethane ND 1.0 0.21 ug/L 11/14/14 00:06 $1, 1, 2\hbox{-}Trichloro\hbox{-}1, 2, 2\hbox{-}trifluoroethane$ ND 1.0 0.31 ug/L 11/14/14 00:06

TestAmerica Buffalo

Page 14 of 24

TestAmerica Job ID: 480-70850-1

Client: Woodard & Curran Inc Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-214006/6

Matrix: Water

Client Sam	ple ID: N	Method	Blank
	Prep Ty	ype: To	tal/NA

	MB	MB							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			11/14/14 00:06	
1,1-Dichloroethane	ND		1.0	0.38	ug/L			11/14/14 00:06	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			11/14/14 00:06	
1,2,3-Trichlorobenzene	ND		1.0	0.41	ug/L			11/14/14 00:06	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			11/14/14 00:06	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			11/14/14 00:06	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			11/14/14 00:06	
1,2-Dichloroethane	ND		1.0	0.21	ug/L			11/14/14 00:06	
1,2-Dichloropropane	ND		1.0	0.72	ug/L			11/14/14 00:06	
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			11/14/14 00:06	
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			11/14/14 00:06	
1,4-Dioxane	ND		40	9.3	ug/L			11/14/14 00:06	
2-Hexanone	ND		5.0	1.2	ug/L			11/14/14 00:06	
Acetone	ND		10		ug/L			11/14/14 00:06	
Benzene	ND		1.0		ug/L			11/14/14 00:06	
Bromochloromethane	ND		1.0		ug/L			11/14/14 00:06	
Bromoform	ND		1.0		ug/L			11/14/14 00:06	
Bromomethane	ND		1.0		ug/L			11/14/14 00:06	
Carbon disulfide	ND		1.0		ug/L			11/14/14 00:06	
Carbon tetrachloride	ND		1.0		ug/L			11/14/14 00:06	
Chlorobenzene	ND		1.0		ug/L			11/14/14 00:06	
Chloroethane	ND		1.0		ug/L			11/14/14 00:06	
Bromodichloromethane	ND		1.0		ug/L			11/14/14 00:06	
Chloroform	ND		1.0		ug/L			11/14/14 00:06	
Chloromethane	ND		1.0		ug/L			11/14/14 00:06	
cis-1,2-Dichloroethene	ND		1.0		ug/L			11/14/14 00:06	
1,2-Dibromoethane (EDB)	ND		1.0		ug/L			11/14/14 00:06	
cis-1,3-Dichloropropene	ND		1.0		ug/L			11/14/14 00:06	
Cyclohexane	ND		1.0		ug/L			11/14/14 00:06	
Dibromochloromethane	ND		1.0		ug/L			11/14/14 00:06	
			10					11/14/14 00:06	
2-Butanone (MEK)	ND				ug/L				
Dichlorodifluoromethane	ND		1.0		ug/L			11/14/14 00:06 11/14/14 00:06	
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L				
Ethylbenzene	ND		1.0		ug/L			11/14/14 00:06	
Isopropylbenzene	ND		1.0		ug/L			11/14/14 00:06	
Methyl acetate	ND		2.5		ug/L			11/14/14 00:06	
Methyl tert-butyl ether	ND		1.0		ug/L			11/14/14 00:06	
Methylcyclohexane	ND		1.0		ug/L			11/14/14 00:06	
Methylene Chloride	ND		1.0		ug/L			11/14/14 00:06	
Styrene	ND		1.0		ug/L			11/14/14 00:06	
Tetrachloroethene	ND		1.0		ug/L			11/14/14 00:06	
Tetrahydrofuran	ND		5.0		ug/L			11/14/14 00:06	
Toluene	ND		1.0		ug/L			11/14/14 00:06	
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			11/14/14 00:06	
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			11/14/14 00:06	
Trichloroethene	ND		1.0	0.46	ug/L			11/14/14 00:06	
Trichlorofluoromethane	ND		1.0	0.88	ug/L			11/14/14 00:06	
Vinyl chloride	ND		1.0	0.90	ug/L			11/14/14 00:06	

TestAmerica Buffalo

Page 15 of 24

11/30/2014

3

5

8

10

12

1 /

QC Sample Results

Client: Woodard & Curran Inc Project/Site: Rouses Point

Lab Sample ID: MB 480-214006/6

TestAmerica Job ID: 480-70850-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB

Matrix: Water

Analysis Batch: 214006

Client Sample ID: Method Blank Prep Type: Total/NA

AnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacXylenes, TotalND2.00.66ug/L11/14/14 00:061

Tentatively Identified Compound

Est. Result Qualifier Unit D RT CAS No. Prepared Analyzed Dil Fac
Tentatively Identified Compound

None ug/L

11/14/14 00:06 1

MB MB Qualifier %Recovery Limits Dil Fac Surrogate Prepared Analyzed 1,2-Dichloroethane-d4 (Surr) 100 66 - 137 11/14/14 00:06 Toluene-d8 (Surr) 88 71 - 126 11/14/14 00:06 4-Bromofluorobenzene (Surr) 98 73 - 120 11/14/14 00:06

Lab Sample ID: LCS 480-214006/4

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch: 214006

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits 1,1,1-Trichloroethane 25.0 28.0 ug/L 112 73 - 126 25.0 70 - 1261,1,2,2-Tetrachloroethane 21.9 ug/L 88 1,1,2-Trichloro-1,2,2-trifluoroetha 25.0 30.4 ug/L 122 52 - 148 ne 1,1,2-Trichloroethane 25.0 24.4 ug/L 98 76 - 1221,1-Dichloroethane 25.0 26.1 ug/L 104 71 - 129 1.1-Dichloroethene 25.0 28 2 ug/L 113 58 - 121 63 - 138 1,2,3-Trichlorobenzene 25.0 22.5 ug/L 90 1,2,4-Trichlorobenzene 25.0 22.1 88 70 - 122ug/L 1,2-Dibromo-3-Chloropropane 25.0 21.3 85 56 - 134 ug/L 25.0 22 1 ug/L 88 80 - 124 1.2-Dichlorobenzene 1,2-Dichloroethane 25.0 24.7 ug/L 99 75 - 127 1,2-Dichloropropane 25.0 25.7 ug/L 103 76 - 120 77 - 120 1,3-Dichlorobenzene 25.0 22.3 ug/L 89 1,4-Dichlorobenzene 25.0 22.0 88 75 - 120 ug/L 2-Hexanone 125 113 ug/L 91 65 - 127 Acetone 125 126 ug/L 101 56 - 142 26.5 Benzene 25.0 ug/L 106 71 - 124Bromochloromethane 25.0 29.5 ug/L 118 72 - 130 Bromoform 25.0 27.1 108 52 - 132ug/L Bromomethane 25.0 26.5 ug/L 106 55 - 144Carbon disulfide 25.0 26.2 ug/L 105 59 _ 134 Carbon tetrachloride 25.0 28.7 ug/L 115 72 - 134 25.0 Chlorobenzene 23.7 95 72 - 120 ug/L Chloroethane 25.0 26.6 106 69 - 136 ug/L Bromodichloromethane 25.0 27.2 ug/L 109 80 - 122Chloroform 25.0 25.7 ug/L 103 73 - 127Chloromethane 25.0 21.8 87 68 - 124 ug/L cis-1,2-Dichloroethene 25.0 26.9 ug/L 108 74 - 124 1,2-Dibromoethane (EDB) 25.0 25.0 ug/L 100 77 - 120 25.0 cis-1,3-Dichloropropene 27.4 ug/L 109 74 - 124 Cyclohexane 25.0 28.3 ug/L 113 59 - 135 25.0 75 - 125 Dibromochloromethane 25.7 ug/L 103

TestAmerica Buffalo

5

7

9

4 4

12

1 /

4 E

QC Sample Results

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70850-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-214006/4

Matrix: Water

Analysis Batch: 214006

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2-Butanone (MEK)	125	127		ug/L		101	57 _ 140	
Dichlorodifluoromethane	25.0	21.1		ug/L		84	59 ₋ 135	
4-Methyl-2-pentanone (MIBK)	125	113		ug/L		90	71 ₋ 125	
Ethylbenzene	25.0	23.7		ug/L		95	77 - 123	
Isopropylbenzene	25.0	23.0		ug/L		92	77 _ 122	
Methyl acetate	125	128		ug/L		102	74 - 133	
Methyl tert-butyl ether	25.0	27.4		ug/L		109	64 - 127	
Methylcyclohexane	25.0	29.9		ug/L		120	61 _ 138	
Methylene Chloride	25.0	26.3		ug/L		105	57 - 132	
Styrene	25.0	25.5		ug/L		102	70 - 130	
Tetrachloroethene	25.0	24.9		ug/L		100	74 - 122	
Tetrahydrofuran	50.0	49.2		ug/L		98	62 _ 132	
Toluene	25.0	24.0		ug/L		96	80 _ 122	
trans-1,2-Dichloroethene	25.0	26.8		ug/L		107	73 _ 127	
trans-1,3-Dichloropropene	25.0	25.1		ug/L		100	72 _ 123	
Trichloroethene	25.0	27.2		ug/L		109	74 - 123	
Trichlorofluoromethane	25.0	28.6		ug/L		114	62 _ 152	
Vinyl chloride	25.0	25.3		ug/L		101	65 _ 133	
Xylenes, Total	50.0	50.2		ug/L		100	76 - 122	

LCS LCS

Surrogate	%Recovery Qu	alifier Limits
1,2-Dichloroethane-d4 (Surr)	104	66 - 137
Toluene-d8 (Surr)	99	71 - 126
4-Bromofluorobenzene (Surr)	107	73 - 120

QC Association Summary

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70850-1

GC/MS VOA

Prep Batch: 212562

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70850-1	BLDG24-SS-SUMP-02	Total/NA	Solid	5035A	

Analysis Batch: 213546

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70850-1	BLDG24-SS-SUMP-02	Total/NA	Solid	8260C	212562
LCS 480-213546/5	Lab Control Sample	Total/NA	Solid	8260C	
LCSD 480-213546/6	Lab Control Sample Dup	Total/NA	Solid	8260C	
MB 480-213546/8	Method Blank	Total/NA	Solid	8260C	

Analysis Batch: 214006

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70850-2	TB-01	Total/NA	Water	8260C	
LCS 480-214006/4	Lab Control Sample	Total/NA	Water	8260C	
MB 480-214006/6	Method Blank	Total/NA	Water	8260C	

General Chemistry

Analysis Batch: 212609

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-70850-1	BLDG24-SS-SUMP-02	Total/NA	Solid	Moisture	

TestAmerica Buffalo

Lab Chronicle

Client: Woodard & Curran Inc Project/Site: Rouses Point TestAmerica Job ID: 480-70850-1

Lab Sample ID: 480-70850-1

Matrix: Solid

Percent Solids: 91.3

Client Sample ID: BLDG24-SS-SUMP-02	Lab Sam
Date Collected: 11/05/14 13:45	
Date Received: 11/06/14 09:00	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			212562	11/06/14 15:26	RAS	TAL BUF
Total/NA	Analysis	8260C		1	213546	11/12/14 15:47	CDC	TAL BUF
Total/NA	Analysis	Moisture		1	212609	11/06/14 21:35	MAC	TAL BUF

Client Sample ID: TB-01

Date Collected: 11/05/14 06:45

Lab Sample ID: 480-70850-2

Matrix: Water

Date Received: 11/06/14 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	214006	11/14/14 05:27	LCH	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

5

7

Ŏ

10

11

13

14

Certification Summary

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70850-1

C31/AITICITCA 30D ID. +00-70030-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
New York	NELAP		2	10026	03-31-15
The following analytes	are included in this report, bu	t are not certified under	this certification:		
Analysis Method	Prep Method	Matrix	Analyt	e	
8260C		Water	Isopro	pyl alcohol	
The following analytes Analysis Method	are included in this report, bu Prep Method	t certification is not offe Matrix	ered by the governing a	,	
,	• •		Analyt	,	
Analysis Method	• •	Matrix	Analyt Tetrah	e	

5

6

ا

46

11

13

14

Method Summary

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70850-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

6

9

. .

13

14

Sample Summary

Client: Woodard & Curran Inc Project/Site: Rouses Point

TestAmerica Job ID: 480-70850-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-70850-1	BLDG24-SS-SUMP-02	Solid	11/05/14 13:45	11/06/14 09:00
480-70850-2	TB-01	Water	11/05/14 06:45	11/06/14 09:00

_

4

5

10

11

13

14

TestAmerica Laboratories, Inc. THE LEADER IN ENVIRONMENTAL TESTING TO THE TOTAL TAL-8210 (0713) A 0000 Sample Specific Notes: SOCS Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) For Lab Use Only: 7 Job / SDG No.: Walk-in Client: ab Sampling: Months ₹ Therm ID No. 11 6 Date/Time: Date/Time Date/Time: COC No: Archive for Ź 051828 4 Corr'd 11/5/ Company: T.∱ Company: Company 4 Disposal by Lab Site Contact: Terral Date: Carrier Cooler Temp. (°C): Obs'd Chain of Custody Record Repeived in Laboratory by: Other: Return to Client Lab Contact RCRA Receiy ১ ১ ১ ১ ১ ১ シロク Perform MS / MSD (Y / N) Filtered Sample (Y / N) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the NPDES # of Cont. 4 Date/Time: Date/Time: oject Manager: Jesse Edmands Date/Time: WORKING DAYS TAT if different from Below Standers 清水 Matrix R Regulatory Program: Dw Analysis Turnaround Time oll Fax: 20 3.371.6379 Unknown Type (C=Comp, G=Grab) Sample V J 2 weeks 1 week 2 days 1 day ジェブ Sample 84 ☐ CALENDAR DAYS Time Preservation Used: 1=1ce, 2=HCl; 3=H2SO4, 4=HNO3; 5=NaOH; 6=Other Custody Seal No. Poison B 115/14 Sample Company: Company: Company: Date Special Instructions/QC Requirements & Comments: Comments Section if the lab is to dispose of the sample. CT 06410 10 Company Name: Wooder C Chrism Revers of 0 480-70850 Chain of Custody Sample Identification Phone: **多**03-3+1-03+4 1530 Highland BLDG24-55-5wmp THE CLASS Yes Possible Hazard Identification: City/State/Zip: Chesh 1 2ac Custody Seals Intact: 10-0 30/2014 Relinquished by: Relinquished by: Project Name: Non-Hazard Anthers Photos: Address: # O d Site: ä

Login Sample Receipt Checklist

Client: Woodard & Curran Inc Job Number: 480-70850-1

Login Number: 70850 List Source: TestAmerica Buffalo

List Number: 1 Creator: Janish, Carl M

Creator. Janish, Carr W		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	W+C
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

4

7

9

4 4

12

a

IJ

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-80693-1 Client Project/Site: Rouses Point

For:

Woodard & Curran, Inc. 64 Maple Street Rouses Point, New York 12979

Attn: Don Weeks

Authorized for release by: 6/5/2015 2:30:34 PM

Joe Giacomazza, Project Management Assistant II joe.giacomazza@testamericainc.com

Designee for

Becky Mason, Project Manager II (413)572-4000 becky.mason@testamericainc.com

•

·····LINKS ·······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	28
QC Sample Results	29
QC Association Summary	36
Lab Chronicle	38
Certification Summary	41
Method Summary	42
Sample Summary	43
Chain of Custody	44
Receipt Checklists	45

Definitions/Glossary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80693-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits

GC/MS VOA TICs

Qualifier	Qualifier Description
J	Indicates an Estimated Value for TICs
N	Presumptive evidence of material.
T	Result is a tentatively identified compound (TIC) and an estimated value.

Glossary

PQL

QC

RER

RPD

TEF

TEQ

RL

Practical Quantitation Limit

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Quality Control

Relative error ratio

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)

TestAmerica Buffalo

6/5/2015

Page 3 of 45

-

J

7

8

9

1 1

12

10

Case Narrative

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80693-1

Job ID: 480-80693-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-80693-1

Receipt

The samples were received on 5/20/2015 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.7° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-245024 recovered outside acceptance criteria, low biased, for Carbon disulfide. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported. The following samples are impacted: TRIP BLANK (480-80693-11)

Method(s) 8260C: The following samples do not have results for the Method Blank (MB) for prep batch 480-243659: SWMU7-SS-BLDG 23-01 (480-80693-1), SWMU7-SS-BLDG 23-02 (480-80693-2), SWMU7-SS-BLDG 23-100 (480-80693-3), SWMU7-SS-BLDG 23-03 (480-80693-4), SWMU7-SS-BLDG 23-04 (480-80693-5), SWMU7-SS-BLDG 23-05 (480-80693-6), SWMU7-SS-BLDG 23-06 (480-80693-7), SWMU7-SS-BLDG 23-07 (480-80693-8[MS]), SWMU7-SS-BLDG 23-07 (480-80693-8[MS]), SWMU7-SS-BLDG 23-07 (480-80693-8[MSD]), SWMU13-SS-01 (480-80693-9) and SWMU23-SS-01 (480-80693-10). Due to instrument error, the data file for the MB was lost. There was insufficient sample to perform a re-analysis; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

-

4

5

6

7

8

9

11

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80693-1

Client Sample ID: SWM	U7-SS-BLDG 23-01				Lab Sample ID: 4	180-80693- 1
_ Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Trichlorofluoromethane	51	4.8	0.46	ug/Kg	1 ≅ 8260C	Total/NA
NI' - 1 O I - ID OM/M	UZ 00 DI D0 00 00					100 00000 4
Client Sample ID: SWM	U7-SS-BLDG 23-02				Lab Sample ID: 4	180-80693-2
Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Trichlorofluoromethane	8.8	5.0	0.47	ug/Kg	1 ≅ 8260C	Total/NA
Client Sample ID: SWM	U7-SS-BLDG 23-100				Lab Sample ID: 4	180-80693-
Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Trichlorofluoromethane	4.2 J	4.7	0.45	ug/Kg	1 ≅ 8260C	Total/NA
Client Sample ID: SWM	U7-SS-BLDG 23-03				Lab Sample ID: 4	l80-80693 - ₄
- Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Trichlorofluoromethane	0.78 J	5.7		ug/Kg	1 🌣 8260C	Total/NA
Client Sample ID: SWM	U7-SS-BLDG 23-04				Lab Sample ID: 4	I80-80693-
- Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Trichlorofluoromethane	44	5.2		ug/Kg	1 × 8260C	Total/NA
Client Sample ID: SWM	U7-SS-BLDG 23-05				Lab Sample ID: 4	I80-80693-
_ Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Acetone	12 J	25		ug/Kg	1 × 8260C	Total/NA
Client Sample ID: SWM	U7-SS-BLDG 23-06				Lab Sample ID: 4	180-80693-
Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Trichlorofluoromethane	12	4.6	0.44	ug/Kg	1 ≅ 8260C	Total/NA
Client Sample ID: SWM	U7-SS-BLDG 23-07				Lab Sample ID: 4	180-80693-
- Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Trichlorofluoromethane	5.7 F2	5.0		ug/Kg	1 ≅ 8260C	Total/NA
Client Sample ID: SWM	U13-SS-01				Lab Sample ID: 4	180-80693-
Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
1,1-Dichloroethene		4.4	0.54	ug/Kg	1 ≅ 8260C	Total/NA
Trichlorofluoromethane	13	4.4	0.42	ug/Kg	1 🌣 8260C	Total/NA
Client Sample ID: SWM	U23-SS-01				Lab Sample ID: 48	80-80693-1
Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Trichlorofluoromethane	0.60 J	4.8	0.46	ug/Kg	1 ≅ 8260C	Total/NA
Client Sample ID: TRIP	BLANK				Lab Sample ID: 48	30-80693-1
No Detections.						

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80693-1

Client Sample ID: SWMU7-SS-BLDG 23-01 Lab Sample ID: 480-80693-1

Date Collected: 05/19/15 08:25
Date Received: 05/20/15 09:00
Matrix: Solid
Percent Solids: 95.9

1,1,1-Trichioroethane	thod: 8260C - Volatile Organ	Result Q	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1.1.2.2 Terkarbinorethane ND 4.8 0.79 ug/Kg 0 5520/15 14.42 0527/15 18 1.1.2-Trichloro-1.2.2-tirfluoroethane ND 4.8 0.59 ug/Kg 0 0520/15 14.42 0527/15 18 1.1.1-Dichloroethane ND 4.8 0.59 ug/Kg 0 0520/15 14.42 0527/15 18 1.1.1-Dichloroethane ND 4.8 0.59 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Trichlorobethane ND 4.8 0.59 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Trichlorobethane ND 4.8 0.59 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Trichlorobethane ND 4.8 0.59 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Trichlorobethane ND 4.8 0.29 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Trichlorobethane ND 4.8 0.39 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Trichlorobethane ND 4.8 0.39 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Trichlorobethane ND 4.8 0.39 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Dichlorobethane ND 4.8 0.34 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Dichlorobethane ND 4.8 0.25 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Dichlorobethane ND 4.8 0.25 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Dichlorobethane ND 4.8 0.25 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Dichlorobethane ND 4.8 0.25 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Dichlorobethane ND 4.8 0.25 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Dichlorobethane ND 4.8 0.25 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Dichlorobethane ND 4.8 0.25 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Dichlorobethane ND 4.8 0.25 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Dichlorobethane ND 4.8 0.24 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Dichlorobethane ND 4.8 0.24 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Dichlorobethane ND 4.8 0.24 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Dichlorobethane ND 4.8 0.24 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Dichlorobethane ND 4.8 0.24 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Dichlorobethane ND 4.8 0.24 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Dichlorobethane ND 4.8 0.24 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Dichlorobethane ND 4.8 0.25 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Dichlorobethane ND 4.8 0.26 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Dichlorobethane ND 4.8 0.26 ug/Kg 0 0520/15 14.42 0527/15 18 12.3-Dichlorobethane ND 4.8 0.26 ug/K	<u> </u>		 						Diriac
1.1.2-Trichioro-1.2.2-trifluoroethane ND 4.8 0.63 ug/Kg 0.05/20/15 14.42 05/27/15 18 1.1.1-Dichioroethane ND 4.8 0.63 ug/Kg 0.05/20/15 14.42 05/27/15 18 1.1.1-Dichioroethane ND 4.8 0.63 ug/Kg 0.05/20/15 14.42 05/27/15 18 1.1-Dichioroethane ND 4.8 0.63 ug/Kg 0.05/20/15 14.42 05/27/15 18 1.1-Dichioroethane ND 4.8 0.63 ug/Kg 0.05/20/15 14.42 05/27/15 18 1.1-Dichioroethane ND 4.8 0.63 ug/Kg 0.05/20/15 14.42 05/27/15 18 1.2-Dichioroethane ND 4.8 0.63 ug/Kg 0.05/20/15 14.42 05/27/15 18 1.2-Dichioroethane ND 4.8 0.63 ug/Kg 0.05/20/15 14.42 05/27/15 18 1.2-Dichioroethane ND 4.8 0.63 ug/Kg 0.05/20/15 14.42 05/27/15 18 1.2-Dichioroethane ND 4.8 0.63 ug/Kg 0.05/20/15 14.42 05/27/15 18 1.2-Dichioroethane ND 4.8 0.63 ug/Kg 0.05/20/15 14.42 05/27/15 18 1.2-Dichioroethane ND 4.8 0.63 ug/Kg 0.05/20/15 14.42 05/27/15 18 1.3-Dichioroethane ND 4.8 0.65 ug/Kg 0.05/20/15 14.42 05/27/15 18 1.3-Dichioroethane ND 4.8 0.65 ug/Kg 0.05/20/15 14.42 05/27/15 18 1.3-Dichioroethane ND 4.8 0.65 ug/Kg 0.05/20/15 14.42 05/27/15 18 1.3-Dichioroethane ND 4.8 0.65 ug/Kg 0.05/20/15 14.42 05/27/15 18 1.3-Dichioroethane ND 4.8 0.65 ug/Kg 0.05/20/15 14.42 05/27/15 18 1.3-Dichioroethane ND 4.8 0.64 ug/Kg 0.05/20/15 14.42 05/27/15 18 18 18-Denamentane ND 4.8 0.64 ug/Kg 0.05/20/15 14.42 05/27/15 18 18 18-Denamentane ND 4.8 0.64 ug/Kg 0.05/20/15 14.42 05/27/15 18 18 18-Denamentane ND 4.8 0.64 ug/Kg 0.05/20/15 14.42 05/27/15 18 18 18-Denamentane ND 4.8 0.64 ug/Kg 0.05/20/15 14.42 05/27/15 18 18 18-Denamentane ND 4.8 0.64 ug/Kg 0.05/20/15 14.42 05/27/15 18 18 18-Denamentane ND 4.8 0.65 ug/Kg 0.05/20/15 14.42 05/27/15 18 18 18-Denamentane ND 4.8 0.65 ug/Kg 0.05/20/15 14.42 05/27/15 18 18 18-Dichioroethane ND 4.8 0.65 ug/Kg 0.05/20/15 14.42 05/27/15 18 18 18-Dichioroethane ND 4.8 0.65 ug/Kg 0.05/20/15 14.42 05/27/15 18 18 18-Dichioroethane ND 4.8 0.65 ug/Kg 0.05/20/15 14.42 05/27/15 18 18 18-Dichioroethane ND 4.8 0.65 ug/Kg 0.05/20/15 14.42 05/27/15 18 18 18-Dichioroethane ND 4.8 0.65 ug/Kg 0.05/20/15 14.42 05/27/15 18 18 18-Dichioroethane ND 4.8 0.65 ug/Kg 0						₩			1
1.1.2-Trichloroethane ND 4.8 0.63 ug/Kg 0.0520/15 14-42 0.527/15 18 1.1-Dichloroethane ND 4.8 0.59 ug/Kg 0.0520/15 14-42 0.527/15 18 1.2.3-Trichloroethane ND 4.8 0.59 ug/Kg 0.0520/15 14-42 0.527/15 18 1.2.3-Trichlorobenzene ND 4.8 0.29 ug/Kg 0.0520/15 14-42 0.527/15 18 1.2.3-Trichlorobenzene ND 4.8 0.29 ug/Kg 0.0520/15 14-42 0.527/15 18 1.2.2-Dibromo-3-Chloropropane ND 4.8 0.29 ug/Kg 0.0520/15 14-42 0.527/15 18 1.2.2-Dibromo-3-Chloropropane ND 4.8 0.24 ug/Kg 0.0520/15 14-42 0.527/15 18 1.2-Dichlorobenzene ND 4.8 0.24 ug/Kg 0.0520/15 14-42 0.527/15 18 1.2-Dichlorobenzene ND 4.8 0.24 ug/Kg 0.0520/15 14-42 0.527/15 18 1.2-Dichlorobenzene ND 4.8 0.25 ug/Kg 0.0520/15 14-42 0.527/15 18 1.2-Dichlorobenzene ND 4.8 0.25 ug/Kg 0.0520/15 14-42 0.527/15 18 1.2-Dichlorobenzene ND 4.8 0.25 ug/Kg 0.0520/15 14-42 0.527/15 18 1.2-Dichlorobenzene ND 4.8 0.26 ug/Kg 0.0520/15 14-42 0.527/15 18 1.4-Dichlorobenzene ND 4.8 0.26 ug/Kg 0.0520/15 14-42 0.527/15 18 1.4-Dichlorobenzene ND 4.8 0.26 ug/Kg 0.0520/15 14-42 0.527/15 18 1.4-Dichlorobenzene ND 4.8 0.26 ug/Kg 0.0520/15 14-42 0.527/15 18 1.4-Dichlorobenzene ND 4.8 0.24 ug/Kg 0.0520/15 14-42 0.527/15 18 1.4-Dichlorobenzene ND 4.8 0.24 ug/Kg 0.0520/15 14-42 0.527/15 18 1.4-Dichlorobenzene ND 4.8 0.24 ug/Kg 0.0520/15 14-42 0.527/15 18 1.4-Dichlorobenzene ND 4.8 0.24 ug/Kg 0.0520/15 14-42 0.527/15 18 1.4-Dichlorobenzene ND 4.8 0.24 ug/Kg 0.0520/15 14-42 0.527/15 18 1.4-Dichlorobenzene ND 4.8 0.24 ug/Kg 0.0520/15 14-42 0.527/15 18 1.4-Dichlorobenzene ND 4.8 0.24 ug/Kg 0.0520/15 14-42 0.527/15 18 1.4-Dichlorobenzene ND 4.8 0.24 ug/Kg 0.0520/15 14-42 0.527/15 18 1.4-Dichlorobenzene ND 4.8 0.24 ug/Kg 0.0520/15 14-42 0.527/15 18 1.4-Dichlorobenzene ND 4.8 0.24 ug/Kg 0.0520/15 14-42 0.527/15 18 1.4-Dichlorobenzene ND 4.8 0.24 ug/Kg 0.0520/15 14-42 0.527/15 18 1.4-Dichlorobenzene ND 4.8 0.24 ug/Kg 0.0520/15 14-42 0.527/15 18 1.4-Dichlorobenzene ND 4.8 0.24 ug/Kg 0.0520/15 14-42 0.527/15 18 1.4-Dichlorobenzene ND 4.8 0.25 ug/Kg 0.0520/15 14-42 0.527/15 18 1.4-Dichlorobenzene ND 4.8 0.25 ug/Kg	•					₩			1
1.1-Dichloroethane						· · · · · · · · · · · · · · · · · · ·			
1,1-Dichloroethene ND 4.8 0.59 yg/kg 0 05/20/15 14:42 05/27/15 18 12,3-Trichlorobenzene ND 4.8 0.51 yg/kg 0 05/20/15 14:42 05/27/15 18 12,3-Trichlorobenzene ND 4.8 0.29 yg/kg 0 05/20/15 14:42 05/27/15 18 12,3-Trichlorobenzene ND 4.8 0.29 yg/kg 0 05/20/15 14:42 05/27/15 18 12,3-Dichlorobenzene ND 4.8 0.29 yg/kg 0 05/20/15 14:42 05/27/15 18 12,3-Dichlorobenzene ND 4.8 0.24 yg/kg 0 05/20/15 14:42 05/27/15 18 12,3-Dichlorobenzene ND 4.8 0.24 yg/kg 0 05/20/15 14:42 05/27/15 18 12,3-Dichlorobenzene ND 4.8 0.24 yg/kg 0 05/20/15 14:42 05/27/15 18 12,3-Dichlorobenzene ND 4.8 0.25 yg/kg 0 05/20/15 14:42 05/27/15 18 13,3-Dichlorobenzene ND 4.8 0.25 yg/kg 0 05/20/15 14:42 05/27/15 18 14,3-Dichlorobenzene ND 4.8 0.68 yg/kg 0 05/20/15 14:42 05/27/15 18 14,4-Dichlorobenzene ND 97 21 yg/kg 0 05/20/15 14:42 05/27/15 18 14,4-Dichlorobenzene ND 97 21 yg/kg 0 05/20/15 14:42 05/27/15 18 14,4-Dichlorobenzene ND 24 2.4 yg/kg 0 05/20/15 14:42 05/27/15 18 06/20/20 14:44 05/27/						.⇔			-
12.3-Trichlorobenzene ND 4.8 0.51 ug/Kg 0 05/20/15 14-42 05/27/15 18 1.2.4-Trichlorobenzene ND 4.8 0.29 ug/Kg 0 05/20/15 14-42 05/27/15 18 1.2-Dichloro-3-Chloropropane ND 4.8 0.38 ug/Kg 0 05/20/15 14-42 05/27/15 18 1.2-Dichloropropane ND 4.8 0.24 ug/Kg 0 05/20/15 14-42 05/27/15 18 1.2-Dichloropropane ND 4.8 0.25 ug/Kg 0 05/20/15 14-42 05/27/15 18 1.3-Dichlorobenzene ND 4.8 0.68 ug/Kg 0 05/20/15 14-42 05/27/15 18 1.4-Dioxane ND 97 21 ug/Kg 0 05/20/15 14-42 05/27/15 18 1.4-Dioxane ND 4.8 0.84 ug/Kg 0 05/20/15 14-42 05/27/15 18 2-Hexanone ND 24 4.1 ug/Kg 0 05/20/15 14-42 05/27/15 18 Berzene ND						±			1
12,4-Trichlorobenzene ND 4.8 0.29 ug/kg 0 05/20/15 14-42 05/27/15 18									
1,2-Dibromo-3-Chloropropane ND 4.8 2.4 ug/Kg 0 05/20/15 14.42 05/27/15 18 1.2-Dichlorobenzene ND 4.8 0.38 ug/Kg 0 05/20/15 14.42 05/27/15 18 1.2-Dichlorobenzene ND 4.8 0.24 ug/Kg 0 05/20/15 14.42 05/27/15 18 1.2-Dichlorobenzene ND 4.8 0.25 ug/Kg 0 05/20/15 14.42 05/27/15 18 1.2-Dichloropropane ND 4.8 0.25 ug/Kg 0 05/20/15 14.42 05/27/15 18 1.3-Dichlorobenzene ND 4.8 0.88 ug/Kg 0 05/20/15 14.42 05/27/15 18 1.4-Dibromobenzene ND 4.8 0.88 ug/Kg 0 05/20/15 14.42 05/27/15 18 1.4-Dibromobenzene ND 97 21 ug/Kg 0 05/20/15 14.42 05/27/15 18 1.4-Dibromobenzene ND 24 2.4 ug/Kg 0 05/20/15 14.42 05/27/15 18 1.4-Dibromobenzene ND 24 2.4 ug/Kg 0 05/20/15 14.42 05/27/15 18 1.4-Dibromobenzene ND 24 4.1 ug/Kg 0 05/20/15 14.42 05/27/15 18 05/20/15 14.42 05/27						÷ö-			-
1,2-Dichlorobenzene ND 4.8 0.38 ug/Kg 0 05/20/15 14:42 05/27/15 18 1,2-Dichlorocethane ND 4.8 0.24 ug/Kg 0 05/20/15 14:42 05/27/15 18 1,2-Dichlorocethane ND 4.8 0.24 ug/Kg 0 05/20/15 14:42 05/27/15 18 1,3-Dichlorobenzene ND 4.8 0.25 ug/Kg 0 05/20/15 14:42 05/27/15 18 1,3-Dichlorobenzene ND 4.8 0.68 ug/Kg 0 05/20/15 14:42 05/27/15 18 1,3-Dichlorobenzene ND 4.8 0.68 ug/Kg 0 05/20/15 14:42 05/27/15 18 1,4-Dichlorobenzene ND 4.8 0.68 ug/Kg 0 05/20/15 14:42 05/27/15 18 1,4-Dichlorobenzene ND 97 21 ug/Kg 0 05/20/15 14:42 05/27/15 18 2-Hexanone ND 24 2.4 ug/Kg 0 05/20/15 14:42 05/27/15 18 2-Hexanone ND 24 4.1 ug/Kg 0 05/20/15 14:42 05/27/15 18 2-Hexanone ND 24 4.1 ug/Kg 0 05/20/15 14:42 05/27/15 18 Benzene ND 4.8 0.24 ug/Kg 0 05/20/15 14:42 05/27/15 18 Benzene ND 4.8 0.44 ug/Kg 0 05/20/15 14:42 05/27/15 18 Bromoform ND 4.8 0.44 ug/Kg 0 05/20/15 14:42 05/27/15 18 Bromomethane ND 4.8 0.44 ug/Kg 0 05/20/15 14:42 05/27/15 18 Carbon disulfide ND 4.8 0.44 ug/Kg 0 05/20/15 14:42 05/27/15 18 Carbon disulfide ND 4.8 0.49 ug/Kg 0 05/20/15 14:42 05/27/15 18 Carbon tetrachloride ND 4.8 0.49 ug/Kg 0 05/20/15 14:42 05/27/15 18 Carbon tetrachloride ND 4.8 0.49 ug/Kg 0 05/20/15 14:42 05/27/15 18 Carbon tetrachloride ND 4.8 0.49 ug/Kg 0 05/20/15 14:42 05/27/15 18 Chlorobenzene ND 4.8 0.49 ug/Kg 0 05/20/15 14:42 05/27/15 18 Chlorobentane ND 4.8 0.62 ug/Kg 0 05/20/15 14:42 05/27/15 18 Chlorotethane ND 4.8 0.69 ug/Kg 0 05/20/15 14:42 05/27/15 18 Chlorotethane ND 4.8 0.69 ug/Kg 0 05/20/15 14:42 05/27/15 18 Chlorotethane ND 4.8 0.69 ug/Kg 0 05/20/15 14:42 05/27/15 18 Chlorotethane ND 4.8 0.69 ug/Kg 0 05/20/15 14:42 05/27/15 18 Chlorotethane ND 4.8 0.69 ug/Kg 0 05/20/15 14:42 05/27/15 18 Chlorotethane ND 4.8 0.69 ug/Kg 0 05/20/15 14:42 05/27/15 18 Chlorotethane ND 4.8 0.69 ug/Kg 0 05/20/15 14:42 05/27/15 18 Chlorotethane ND 4.8 0.69 ug/Kg 0 05/20/15 14:42 05/27/15 18 Chlorotethane ND 4.8 0.69 ug/Kg 0 05/20/15 14:42 05/27/15 18 Chlorotethane ND 4.8 0.69 ug/Kg 0 05/20/15 14:42 05/27/15 18 Chlorotethane ND 4.8 0.69 ug/Kg 0 05/20/15 14:42 05/27									
1,2-Dichloroethane ND 4,8 0,24 ug/Kg 0,520/15 14.42 0,5/27/15 18 1,2-Dichloropropeane ND 4,8 0,25 ug/Kg 0,5/20/15 14.42 0,5/27/15 18 1,2-Dichloropropeane ND 4,8 0,25 ug/Kg 0,5/20/15 14.42 0,5/27/15 18 1,4-Dichlorobenzene ND 4,8 0,68 ug/Kg 0,5/20/15 14.42 0,5/27/15 18 1,4-Dichlorobenzene ND 7,2 1,4-Dichlorobenzene ND 7,4 1,4-Dichlorobenzene ND 7,5 1,4-Dichlo						· · · · · · · · · · · · · · · · · · ·			
1,2-Dichloropropane ND 4.8 2.4 ug/Kg 0.5/20/15 14:42						~ ~			-
1,3-Dichlorobenzene ND 4.8 0.25 ug/Kg 05/20/15 14:42 05/27/15 18 1.4-Dichlorobenzene ND 4.8 0.88 ug/Kg 05/20/15 14:42 05/27/15 18 1.4-Dichlorobenzene ND 97 21 ug/Kg 05/20/15 14:42 05/27/15 18 2-Hexanone ND 97 21 ug/Kg 05/20/15 14:42 05/27/15 18 2-Hexanone ND 24 2.4 ug/Kg 05/20/15 14:42 05/27/15 18 2-Hexanone ND 24 4.1 ug/Kg 05/20/15 14:42 05/27/15 18 Benzene ND 4.8 0.24 ug/Kg 05/20/15 14:42 05/27/15 18 Benzene ND 4.8 0.24 ug/Kg 05/20/15 14:42 05/27/15 18 Bromoform ND 4.8 0.44 ug/Kg 05/20/15 14:42 05/27/15 18 Bromomethane ND 4.8 0.44 ug/Kg 05/20/15 14:42 05/27/15 18 Bromomethane ND 4.8 0.44 ug/Kg 05/20/15 14:42 05/27/15 18 Bromomethane ND 4.8 0.44 ug/Kg 05/20/15 14:42 05/27/15 18 Carbon disulfide ND 4.8 0.44 ug/Kg 05/20/15 14:42 05/27/15 18 Carbon disulfide ND 4.8 0.44 ug/Kg 05/20/15 14:42 05/27/15 18 Chlorobenzene ND 4.8 0.64 ug/Kg 05/20/15 14:42 05/27/15 18 Bromochloromethane ND 4.8 0.64 ug/Kg 05/20/15 14:42 05/27/15 18 Bromochloromethane ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Bromochloromethane ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Chlorobenzene ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Chlorochlane ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Chlorochlane ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Chlorochlane ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Chlorochlane ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 Chlorochlane ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 Chlorochlane ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 0s-1,3-Dichloropropene ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 0s-1,3-Dichloropropene ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 0s-1,3-Dichloropropene ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 0s-1,3-Dichloromethane ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 0s-1,3-Dichloromethane ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 0s-1,3-Dichloromethane (EDB) ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 0s-1,3-Dichloromethane (EDB) ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 0s-1,2-Dichloromethane ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 0s-1,2-Dichlorometha									
1.4-Dichlorobenzene ND 4.8 0.68 ug/Kg 0 05/20/15 14:42 05/27/15 18 1.4-Dichlorobenzene ND 97 21 ug/Kg 0 05/20/15 14:42 05/27/15 18 2-Hexanone ND 24 2.4 ug/Kg 0 05/20/15 14:42 05/27/15 18 2-Hexanone ND 24 4.1 ug/Kg 0 05/20/15 14:42 05/27/15 18 2-Benzene ND 4.8 0.24 ug/Kg 0 05/20/15 14:42 05/27/15 18 2-Benzene ND 4.8 0.24 ug/Kg 0 05/20/15 14:42 05/27/15 18 2-Benzene ND 4.8 0.24 ug/Kg 0 05/20/15 14:42 05/27/15 18 2-Benzene ND 4.8 0.44 ug/Kg 0 05/20/15 14:42 05/27/15 18 2-Benzene ND 4.8 0.44 ug/Kg 0 05/20/15 14:42 05/27/15 18 05/20/									1
1,4-Dioxane ND 97 21 ug/kg % 05/20/15 14:42 05/27/15 18 2-Hexanone ND 24 2.4 ug/kg % 05/20/15 14:42 05/27/15 18 2-Hexanone ND 24 2.4 ug/kg % 05/20/15 14:42 05/27/15 18 3-Retanone ND 24 2.4 ug/kg % 05/20/15 14:42 05/27/15 18 3-Retanone ND 4.8 0.24 ug/kg % 05/20/15 14:42 05/27/15 18 3-Retanone ND 4.8 0.24 ug/kg % 05/20/15 14:42 05/27/15 18 3-Retanone ND 4.8 0.44 ug/kg % 05/20/15 14:42 05/27/15 18 3-Retanone ND 4.8 0.44 ug/kg % 05/20/15 14:42 05/27/15 18 3-Retanone ND 4.8 0.44 ug/kg % 05/20/15 14:42 05/27/15 18 3-Retanone Ug/									•
2-Hexanone									•
Acetone ND 24 4.1 ug/Kg									
Benzene ND 4.8 0.24 ug/Kg 05/20/15 14:42 05/27/15 18 Bromoform ND 4.8 0.44 ug/Kg 05/20/15 14:42 05/27/15 18 Bromoform ND 4.8 0.44 ug/Kg 05/20/15 14:42 05/27/15 18 Bromomethane ND 4.8 0.44 ug/Kg 05/20/15 14:42 05/27/15 18 Carbon disulfide ND 4.8 0.44 ug/Kg 05/20/15 14:42 05/27/15 18 Carbon disulfide ND 4.8 0.47 ug/Kg 05/20/15 14:42 05/27/15 18 Carbon tetrachloride ND 4.8 0.47 ug/Kg 05/20/15 14:42 05/27/15 18 Bromochloromethane ND 4.8 0.64 ug/Kg 05/20/15 14:42 05/27/15 18 Bromochloromethane ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Dibromochloromethane ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Chloroethane ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Chloroethane ND 4.8 0.30 ug/Kg 05/20/15 14:42 05/27/15 18 Chloroethane ND 4.8 0.30 ug/Kg 05/20/15 14:42 05/27/15 18 Chloroethane ND 4.8 0.30 ug/Kg 05/20/15 14:42 05/27/15 18 Chloroethane ND 4.8 0.30 ug/Kg 05/20/15 14:42 05/27/15 18 Chloroethane ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 Chloroethane ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 Cis-1,3-Dichloropropene ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 Eithylbenzene ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Dichlorodifluoromethane ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Eithylbenzene ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Eithylbenzene ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Eithylbenzene ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Eithylbenzene ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Eithylbenzene ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Eithylbenzene ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Eithylbenzene ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Eithylbenzene ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Eithylbenzene ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Eithylbenzene ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Eithylbenzene ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Eithylbenzene ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Methyl tert-butyl ether ND 4.8 0.48 ug/Kg 05/20/15 14:42 05/27/15 18 Methyl tert-butyl ether ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/2									•
Bromoform ND 4.8 2.4 ug/Kg 05/20/15 14:42 05/27/15 18 Bromomethane ND 4.8 0.44 ug/Kg 05/20/15 14:42 05/27/15 18 Bromomethane ND 4.8 0.44 ug/Kg 05/20/15 14:42 05/27/15 18 Carbon disulfide ND 4.8 0.47 ug/Kg 05/20/15 14:42 05/27/15 18 Carbon tetrachloride ND 4.8 0.47 ug/Kg 05/20/15 14:42 05/27/15 18 Chlorobenzene ND 4.8 0.64 ug/Kg 05/20/15 14:42 05/27/15 18 Bromochloromethane ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Bromochloromethane ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 Chlorobenzene ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 Chlorotehane ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 Chloromethane ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 Chloromethane ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 Chloromethane ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 Chloromethane ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 Chloromethane ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 Bromochloromethane ND 4.8 0.68 ug/Kg 05/20/15 14:42 05/27/15 18 Bromodichloromethane ND 4.8 0.68 ug/Kg 05/20/15 14:42 05/27/15 18 Bromodichloromethane ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Bromodichloromethane ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Bromodichloromethane ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Bromodichloromethane ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Bromodichloromethane ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Bromodichloromethane ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Bromodichloromethane ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Bromodichloromethane ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Bromodichloromethane ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Bromodichloromethane ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Bromodichloromethane ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Bromodichloromethane ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Bromodichloromethane ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Bromodichloromethane ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Bromodichloromethane ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Bromodichloromethane ND 4.8 0									•
Bromomethane									
Carbon disulfide ND 4.8 2.4 ug/Kg 05/20/15 14:42 05/27/15 18 Carbon tetrachloride ND 4.8 0.47 ug/Kg 05/20/15 14:42 05/27/15 18 Chlorobenzene ND 4.8 0.64 ug/Kg 05/20/15 14:42 05/27/15 18 Chlorobenzene ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Chloroethane ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Chloroethane ND 4.8 0.60 ug/Kg 05/20/15 14:42 05/27/15 18 Chloroethane ND 4.8 0.11 ug/Kg 05/20/15 14:42 05/27/15 18 Chloroethane ND 4.8 0.30 ug/Kg 05/20/15 14:42 05/27/15 18 Chloroethane ND 4.8 0.30 ug/Kg 05/20/15 14:42 05/27/15 18 Chloroethane ND 4.8 0.29 ug/Kg 05/20/15 14:42 05/27/15 18 Chloroethane ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 Chloroethane ND 4.8 0.70 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.70 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.80 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.80 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.60 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.80 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.80 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.80 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.80 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.80 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.80 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.80 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.80 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.80 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.80 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.80 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.80 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohex									•
Carbon tetrachloride ND 4.8 0.47 ug/Kg 05/20/15 14:42 05/27/15 18 Chlorobenzene ND 4.8 0.64 ug/Kg 05/20/15 14:42 05/27/15 18 Bromochloromethane ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Dibromochloromethane ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 Chloroethane ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 Chloroethane ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 Chloroethane ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 Chloroethane ND 4.8 0.30 ug/Kg 05/20/15 14:42 05/27/15 18 Chloromethane ND 4.8 0.30 ug/Kg 05/20/15 14:42 05/27/15 18 Chloromethane ND 4.8 0.29 ug/Kg 05/20/15 14:42 05/27/15 18 cis-1,2-Dichloroethene ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 cis-1,3-Dichloropropene ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 cis-1,3-Dichloropropene ND 4.8 0.70 ug/Kg 05/20/15 14:42 05/27/15 18 cis-1,3-Dichloropropene ND 4.8 0.70 ug/Kg 05/20/15 14:42 05/27/15 18 cis-1,3-Dichloromethane ND 4.8 0.68 ug/Kg 05/20/15 14:42 05/27/15 18 Dichlorodifluoromethane ND 4.8 0.68 ug/Kg 05/20/15 14:42 05/27/15 18 Dichlorodifluoromethane ND 4.8 0.68 ug/Kg 05/20/15 14:42 05/27/15 18 Dichlorodifluoromethane ND 4.8 0.63 ug/Kg 05/20/15 14:42 05/27/15 18 Isopropylbenzene ND 4.8 0.33 ug/Kg 05/20/15 14:42 05/27/15 18 Isopropylbenzene ND 4.8 0.33 ug/Kg 05/20/15 14:42 05/27/15 18 Isopropylbenzene ND 4.8 0.73 ug/Kg 05/20/15 14:42 05/27/15 18 Isopropylbenzene ND 4.8 0.73 ug/Kg 05/20/15 14:42 05/27/15 18 Isopropylbenzene ND 4.8 0.73 ug/Kg 05/20/15 14:42 05/27/15 18 Isopropylbenzene ND 4.8 0.73 ug/Kg 05/20/15 14:42 05/27/15 18 Isopropylbenzene ND 4.8 0.74 ug/Kg 05/20/15 14:42 05/27/15 18 Methyl cert-butyl ether ND 4.8 0.48 ug/Kg 05/20/15 14:42 05/27/15 18 Methyl cert-butyl ether ND 4.8 0.48 ug/Kg 05/20/15 14:42 05/27/15 18 Methyloechokane ND 4.8 0.48 ug/Kg 05/20/15 14:42 05/27/15 18 Methyloechokane ND 4.8 0.48 ug/Kg 05/20/15 14:42 05/27/15 18 Methyloechokane ND 4.8 0.48 ug/Kg 05/20/15 14:42 05/27/15 18 Methyloechokane ND 4.8 0.48 ug/Kg 05/20/15 14:42 05/27/15 18 Methyloechokane ND 4.8 0.48 ug/Kg 05/20/15 14:42 05/27/15 18 Methyloechoka									•
Chlorobenzene ND									
Bromochloromethane						.			•
Dibromochloromethane ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 Chloroethane ND 4.8 1.1 ug/Kg 05/20/15 14:42 05/27/15 18 Chloroform ND 4.8 0.30 ug/Kg 05/20/15 14:42 05/27/15 18 Chloromethane ND 4.8 0.29 ug/Kg 05/20/15 14:42 05/27/15 18 05/20/15 14	orobenzene		4.8			☼	05/20/15 14:42	05/27/15 18:39	•
Chloroethane ND 4.8 1.1 ug/Kg 05/20/15 14:42 05/27/15 18 Chloroform ND 4.8 0.30 ug/Kg 05/20/15 14:42 05/27/15 18 Chloromethane ND 4.8 0.29 ug/Kg 05/20/15 14:42 05/27/15 18 cis-1,2-Dichloroethene ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 cis-1,2-Dichloroptopene ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.68 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.68 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.40 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.33 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.33 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.33 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.33 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.33 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.73 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.73 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.73 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.74 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.74 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.74 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.24 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.24 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.24 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.24 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.24 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.24 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.24 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.24 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.24 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.24 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.24 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.25 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.25 ug/	mochloromethane		4.8	0.35	ug/Kg		05/20/15 14:42	05/27/15 18:39	
Chloroform ND 4.8 0.30 ug/Kg © 05/20/15 14:42 05/27/15 18 Chloromethane ND 4.8 0.29 ug/Kg © 05/20/15 14:42 05/27/15 18 Cis-1,2-Dichloroethene ND 4.8 0.62 ug/Kg © 05/20/15 14:42 05/27/15 18 cis-1,3-Dichloropropene ND 4.8 0.70 ug/Kg © 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.68 ug/Kg © 05/20/15 14:42 05/27/15 18 Bromodichloromethane ND 4.8 0.65 ug/Kg © 05/20/15 14:42 05/27/15 18 Eithylbenzene ND 4.8 0.65 ug/Kg © 05/20/15 14:42 05/27/15 18 Ethylbenzene ND 4.8 0.40 ug/Kg © 05/20/15 14:42 05/27/15 18 Ethylbenzene ND 4.8 0.40 ug/Kg © 05/20/15 14:42 05/27/15 18 Isopropylbenzene ND 4.8 0.62 ug/Kg © 05/20/15 14:42 05/27/15 18 Isopropylbe	romochloromethane	ND	4.8	0.62	ug/Kg	☼	05/20/15 14:42	05/27/15 18:39	•
Chloromethane ND 4.8 0.29 ug/Kg 05/20/15 14:42 05/27/15 18 cis-1,2-Dichloroethene ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 cis-1,3-Dichloropropene ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 cis-1,3-Dichloropropene ND 4.8 0.68 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Dichlorodifluoromethane ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Dichlorodifluoromethane ND 4.8 0.40 ug/Kg 05/20/15 14:42 05/27/15 18 Dichlorodifluoromethane ND 4.8 0.33 ug/Kg 05/20/15 14:42 05/27/15 18 14,2-Dibromoethane (EDB) ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 sopropylbenzene ND 4.8 0.73 ug/Kg 05/20/15 14:42 05/27/15 18 sopropylbenzene ND 4.8 0.73 ug/Kg 05/20/15 14:42 05/27/15 18 Uspropylbenzene ND 4.8 0.73 ug/Kg 05/20/15 14:42 05/27/15 18 Uspropylbenzene ND 4.8 0.73 ug/Kg 05/20/15 14:42 05/27/15 18 Uspropylbenzene ND 4.8 0.74 ug/Kg 05/20/15 14:42 05/27/15 18 Uspropylbenzene ND 4.8 0.74 ug/Kg 05/20/15 14:42 05/27/15 18 Uspropylbenzene ND 4.8 0.74 ug/Kg 05/20/15 14:42 05/27/15 18 Uspropylbenzene ND 4.8 0.74 ug/Kg 05/20/15 14:42 05/27/15 18 Uspropylbenzene ND 4.8 0.74 ug/Kg 05/20/15 14:42 05/27/15 18 Uspropylbenzene ND 4.8 0.74 ug/Kg 05/20/15 14:42 05/27/15 18 Uspropylbenzene ND 4.8 0.74 ug/Kg 05/20/15 14:42 05/27/15 18 Uspropylbenzene ND 4.8 0.74 ug/Kg 05/20/15 14:42 05/27/15 18 Uspropylbenzene ND 4.8 0.74 ug/Kg 05/20/15 14:42 05/27/15 18 Uspropylbenzene ND 4.8 0.74 ug/Kg 05/20/15 14:42 05/27/15 18 Uspropylbenzene ND 4.8 0.74 ug/Kg 05/20/15 14:42 05/27/15 18 Uspropylbenzene ND 4.8 0.74 ug/Kg 05/20/15 14:42 05/27/15 18 Uspropylbenzene ND 4.8 0.74 ug/Kg 05/20/15 14:42 05/27/15 18 Uspropylbenzene ND 4.8 0.74 ug/Kg 05/20/15 14:42 05/27/15 18 Uspropylbenzene ND 4.8 0.74 ug/Kg 05/20/15 14:42 05/27/15 18 Uspropylbenzene ND 4.8 0.74 ug/Kg 05/20/15 14:42 05/27/15 18 Uspropylbenzene ND 4.8 0.74 ug/Kg 05/20/15 14:42 05/27/15 18 Uspropylbenzene ND 4.8 0.74 ug/Kg 05/20/15 14:42 05/27/15 18 Uspropylbenzene ND 4.8 0.75 ug/Kg 05/20/15 14:42 05/27/15 18 Uspropylbenzene ND 4.8 0.75 ug/Kg 05/20/15 1	oroethane		4.8	1.1	ug/Kg	₽	05/20/15 14:42	05/27/15 18:39	•
cis-1,2-Dichloroethene ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 cis-1,3-Dichloropropene ND 4.8 0.70 ug/Kg 05/20/15 14:42 05/27/15 18 Cyclohexane ND 4.8 0.68 ug/Kg 05/20/15 14:42 05/27/15 18 Bromodichloromethane ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Dichlorodifluoromethane ND 4.8 0.40 ug/Kg 05/20/15 14:42 05/27/15 18 Ethylbenzene ND 4.8 0.33 ug/Kg 05/20/15 14:42 05/27/15 18 Ethylbenzene ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 Isopropylbenzene ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 Isopropylbenzene ND 4.8 0.73 ug/Kg 05/20/15 14:42 05/27/15 18 Isopropylbenzene ND 4.8 0.73 ug/Kg 05/20/15 14:42 05/27/15 18 Hethyl acetate ND 4.8 2.9 ug/Kg 05/20/15 14:42 05/27/15 18 2-	oroform	ND	4.8	0.30	ug/Kg	₽	05/20/15 14:42	05/27/15 18:39	•
ND 4.8 0.70 ug/Kg 05/20/15 14:42 05/27/15 18	oromethane	ND	4.8	0.29	ug/Kg	≎	05/20/15 14:42	05/27/15 18:39	
Cyclohexane ND 4.8 0.68 ug/Kg © 05/20/15 14:42 05/27/15 18 Bromodichloromethane ND 4.8 0.65 ug/Kg © 05/20/15 14:42 05/27/15 18 Dichlorodifluoromethane ND 4.8 0.40 ug/Kg © 05/20/15 14:42 05/27/15 18 Ethylbenzene ND 4.8 0.33 ug/Kg © 05/20/15 14:42 05/27/15 18 Itapibromoethane (EDB) ND 4.8 0.62 ug/Kg © 05/20/15 14:42 05/27/15 18 Isopropylbenzene ND 4.8 0.73 ug/Kg © 05/20/15 14:42 05/27/15 18 Isopropylbenzene ND 4.8 0.73 ug/Kg © 05/20/15 14:42 05/27/15 18 Isopropylbenzene ND 4.8 0.9 ug/Kg © 05/20/15 14:42 05/27/15 18 Isopropylbenzene ND 4.8 0.9 ug/Kg © 05/20/15 14:42 05/27/15 18 Methyl acetate ND 4.8 0.9 ug/Kg 05/20/15 14:42 05/27/15 18 4-	1,2-Dichloroethene	ND	4.8	0.62	ug/Kg	☼	05/20/15 14:42	05/27/15 18:39	
ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18	1,3-Dichloropropene	ND	4.8	0.70	ug/Kg	☼	05/20/15 14:42	05/27/15 18:39	•
Dichlorodifluoromethane ND 4.8 0.40 ug/Kg © 05/20/15 14:42 05/27/15 18 Ethylbenzene ND 4.8 0.33 ug/Kg © 05/20/15 14:42 05/27/15 18 1,2-Dibromoethane (EDB) ND 4.8 0.62 ug/Kg © 05/20/15 14:42 05/27/15 18 Isopropylbenzene ND 4.8 0.73 ug/Kg © 05/20/15 14:42 05/27/15 18 Methyl acetate ND 4.8 2.9 ug/Kg © 05/20/15 14:42 05/27/15 18 2-Butanone (MEK) ND 24 1.8 ug/Kg © 05/20/15 14:42 05/27/15 18 4-Methyl-2-pentanone (MIBK) ND 24 1.6 ug/Kg © 05/20/15 14:42 05/27/15 18 Methyl tert-butyl ether ND 4.8 0.48 ug/Kg © 05/20/15 14:42 05/27/15 18 Methylcyclohexane ND 4.8 0.74 ug/Kg © 05/20/15 14:42 05/27/15 18 Styrene ND 4.8 0.24 ug/Kg © 05/20/15 14:42 05/27/15 18	clohexane	ND	4.8	0.68	ug/Kg	\$	05/20/15 14:42	05/27/15 18:39	
Ethylbenzene ND 4.8 0.33 ug/Kg 05/20/15 14:42 05/27/15 18 1,2-Dibromoethane (EDB) ND 4.8 0.62 ug/Kg 05/20/15 14:42 05/27/15 18 lsopropylbenzene ND 4.8 0.73 ug/Kg 05/20/15 14:42 05/27/15 18 Methyl acetate ND 4.8 2.9 ug/Kg 05/20/15 14:42 05/27/15 18 2-Butanone (MEK) ND 24 1.8 ug/Kg 05/20/15 14:42 05/27/15 18 4-Methyl-2-pentanone (MIBK) ND 24 1.6 ug/Kg 05/20/15 14:42 05/27/15 18 Methyl tert-butyl ether ND 4.8 0.48 ug/Kg 05/20/15 14:42 05/27/15 18 Methylcyclohexane ND 4.8 0.48 ug/Kg 05/20/15 14:42 05/27/15 18 Methylene Chloride ND 4.8 0.74 ug/Kg 05/20/15 14:42 05/27/15 18 Methylene Chloride ND 4.8 0.24 ug/Kg 05/20/15 14:42 05/27/15 18 Tetrachloroethene ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Tetrachloroethene ND 4.8 0.37 ug/Kg 05/20/15 14:42 05/27/15 18 Toluene ND 4.8 0.37 ug/Kg 05/20/15 14:42 05/27/15 18 Trans-1,2-Dichloroethene ND 4.8 0.50 ug/Kg 05/20/15 14:42 05/27/15 18	modichloromethane	ND	4.8	0.65	ug/Kg	₽	05/20/15 14:42	05/27/15 18:39	•
1,2-Dibromoethane (EDB) ND 4.8 0.62 ug/Kg © 05/20/15 14:42 05/27/15 18 Isopropylbenzene ND 4.8 0.73 ug/Kg © 05/20/15 14:42 05/27/15 18 Methyl acetate ND 4.8 2.9 ug/Kg © 05/20/15 14:42 05/27/15 18 2-Butanone (MEK) ND 24 1.8 ug/Kg © 05/20/15 14:42 05/27/15 18 4-Methyl-2-pentanone (MIBK) ND 24 1.6 ug/Kg © 05/20/15 14:42 05/27/15 18 Methyl tert-butyl ether ND 4.8 0.48 ug/Kg © 05/20/15 14:42 05/27/15 18 Methylcyclohexane ND 4.8 0.74 ug/Kg © 05/20/15 14:42 05/27/15 18 Methylene Chloride ND 4.8 0.24 ug/Kg © 05/20/15 14:42 05/27/15 18 Styrene ND 4.8 0.24 ug/Kg © 05/20/15 14:42 05/27/15 18 Tetrachloroethene ND 4.8 0.65 ug/Kg © 05/20/15 14:42 05/27/15 18 Toluene ND 4.8 0.37 ug/Kg © 05/20/15 14:42 05/27/15 18 trans-1,2-Dichloroethene ND 4.8 0.50 ug/Kg © 05/20/15 14:42 05/27/15 18	hlorodifluoromethane	ND	4.8	0.40	ug/Kg	☼	05/20/15 14:42	05/27/15 18:39	
Sopropylbenzene ND 4.8 0.73 ug/Kg	ylbenzene	ND	4.8	0.33	ug/Kg		05/20/15 14:42	05/27/15 18:39	
Methyl acetate ND 4.8 2.9 ug/Kg © 05/20/15 14:42 05/27/15 18 2-Butanone (MEK) ND 24 1.8 ug/Kg © 05/20/15 14:42 05/27/15 18 4-Methyl-2-pentanone (MIBK) ND 24 1.6 ug/Kg © 05/20/15 14:42 05/27/15 18 Methyl tert-butyl ether ND 4.8 0.48 ug/Kg © 05/20/15 14:42 05/27/15 18 Methylcyclohexane ND 4.8 0.74 ug/Kg © 05/20/15 14:42 05/27/15 18 Methylene Chloride ND 4.8 2.2 ug/Kg © 05/20/15 14:42 05/27/15 18 Styrene ND 4.8 0.24 ug/Kg © 05/20/15 14:42 05/27/15 18 Tetrachloroethene ND 4.8 0.65 ug/Kg © 05/20/15 14:42 05/27/15 18 Toluene ND 4.8 0.37 ug/Kg © 05/20/15 14:42 05/27/15 18 trans-1,2-Dichloroethene ND 4.8 0.50 ug/Kg © 05/20/15 14:42 05/27/15 18	-Dibromoethane (EDB)	ND	4.8	0.62	ug/Kg	₽	05/20/15 14:42	05/27/15 18:39	
Methyl acetate ND 4.8 2.9 ug/Kg © 05/20/15 14:42 05/27/15 18 2-Butanone (MEK) ND 24 1.8 ug/Kg © 05/20/15 14:42 05/27/15 18 4-Methyl-2-pentanone (MIBK) ND 24 1.6 ug/Kg © 05/20/15 14:42 05/27/15 18 Methyl tert-butyl ether ND 4.8 0.48 ug/Kg © 05/20/15 14:42 05/27/15 18 Methylcyclohexane ND 4.8 0.74 ug/Kg © 05/20/15 14:42 05/27/15 18 Methylene Chloride ND 4.8 2.2 ug/Kg © 05/20/15 14:42 05/27/15 18 Styrene ND 4.8 0.24 ug/Kg © 05/20/15 14:42 05/27/15 18 Tetrachloroethene ND 4.8 0.65 ug/Kg © 05/20/15 14:42 05/27/15 18 Toluene ND 4.8 0.37 ug/Kg © 05/20/15 14:42 05/27/15 18 trans-1,2-Dichloroethene ND 4.8 0.50 ug/Kg © 05/20/15 14:42 05/27/15 18	propylbenzene	ND	4.8	0.73	ug/Kg	₽	05/20/15 14:42	05/27/15 18:39	
2-Butanone (MEK) ND 24 1.8 ug/Kg 05/20/15 14:42 05/27/15 18 4-Methyl-2-pentanone (MIBK) ND 24 1.6 ug/Kg 05/20/15 14:42 05/27/15 18 Methyl tert-butyl ether ND 4.8 0.48 ug/Kg 05/20/15 14:42 05/27/15 18 Methylcyclohexane ND 4.8 0.74 ug/Kg 05/20/15 14:42 05/27/15 18 Methylene Chloride ND 4.8 0.24 ug/Kg 05/20/15 14:42 05/27/15 18 Methylene Chloride ND 4.8 0.24 ug/Kg 05/20/15 14:42 05/27/15 18 Methylene Chloride ND 4.8 0.24 ug/Kg 05/20/15 14:42 05/27/15 18 Tetrachloroethene ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Toluene ND 4.8 0.37 ug/Kg 05/20/15 14:42 05/27/15 18 Toluene ND 4.8 0.50 ug/Kg 05/20/15 14:42 05/27/15 18	thyl acetate	ND	4.8			ф.	05/20/15 14:42	05/27/15 18:39	· · · · · · · · ·
4-Methyl-2-pentanone (MIBK) ND 24 1.6 ug/Kg 05/20/15 14:42 05/27/15 18 Methyl tert-butyl ether ND 4.8 0.48 ug/Kg 05/20/15 14:42 05/27/15 18 Methylcyclohexane ND 4.8 0.74 ug/Kg 05/20/15 14:42 05/27/15 18 Methylene Chloride ND 4.8 0.24 ug/Kg 05/20/15 14:42 05/27/15 18 Methylene Chloride ND 4.8 0.24 ug/Kg 05/20/15 14:42 05/27/15 18 Methylene Chloride ND 4.8 0.24 ug/Kg 05/20/15 14:42 05/27/15 18 Methylene Chloride ND 4.8 0.24 ug/Kg 05/20/15 14:42 05/27/15 18 Methylene Chloride ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Methylene Chloride ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Methylene Chloride ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Methylene Chloride ND 4.8 0.65 ug/Kg 05/20/15 14:42 05/27/15 18 Methylene Chloride ND 4.8 0.50 ug/Kg 05/20/15 14:42 05/27/15 18		ND				☼	05/20/15 14:42	05/27/15 18:39	
Methyl tert-butyl ether ND 4.8 0.48 ug/Kg © 05/20/15 14:42 05/27/15 18 Methylcyclohexane ND 4.8 0.74 ug/Kg © 05/20/15 14:42 05/27/15 18 Methylene Chloride ND 4.8 2.2 ug/Kg © 05/20/15 14:42 05/27/15 18 Styrene ND 4.8 0.24 ug/Kg © 05/20/15 14:42 05/27/15 18 Tetrachloroethene ND 4.8 0.65 ug/Kg © 05/20/15 14:42 05/27/15 18 Toluene ND 4.8 0.37 ug/Kg © 05/20/15 14:42 05/27/15 18 trans-1,2-Dichloroethene ND 4.8 0.50 ug/Kg © 05/20/15 14:42 05/27/15 18						☼	05/20/15 14:42	05/27/15 18:39	
Methylcyclohexane ND 4.8 0.74 ug/Kg © 05/20/15 14:42 05/27/15 18 Methylene Chloride ND 4.8 2.2 ug/Kg © 05/20/15 14:42 05/27/15 18 Styrene ND 4.8 0.24 ug/Kg © 05/20/15 14:42 05/27/15 18 Tetrachloroethene ND 4.8 0.65 ug/Kg © 05/20/15 14:42 05/27/15 18 Toluene ND 4.8 0.37 ug/Kg © 05/20/15 14:42 05/27/15 18 trans-1,2-Dichloroethene ND 4.8 0.50 ug/Kg © 05/20/15 14:42 05/27/15 18									
Methylene Chloride ND 4.8 2.2 ug/Kg © 05/20/15 14:42 05/27/15 18 Styrene ND 4.8 0.24 ug/Kg © 05/20/15 14:42 05/27/15 18 Tetrachloroethene ND 4.8 0.65 ug/Kg © 05/20/15 14:42 05/27/15 18 Toluene ND 4.8 0.37 ug/Kg © 05/20/15 14:42 05/27/15 18 trans-1,2-Dichloroethene ND 4.8 0.50 ug/Kg © 05/20/15 14:42 05/27/15 18	•					₽			
Styrene ND 4.8 0.24 ug/Kg © 05/20/15 14:42 05/27/15 18 Tetrachloroethene ND 4.8 0.65 ug/Kg © 05/20/15 14:42 05/27/15 18 Toluene ND 4.8 0.37 ug/Kg © 05/20/15 14:42 05/27/15 18 trans-1,2-Dichloroethene ND 4.8 0.50 ug/Kg © 05/20/15 14:42 05/27/15 18						₩			
Tetrachloroethene ND 4.8 0.65 ug/Kg © 05/20/15 14:42 05/27/15 18 Toluene ND 4.8 0.37 ug/Kg © 05/20/15 14:42 05/27/15 18 trans-1,2-Dichloroethene ND 4.8 0.50 ug/Kg © 05/20/15 14:42 05/27/15 18									
Toluene ND 4.8 0.37 ug/Kg									
trans-1,2-Dichloroethene ND 4.8 0.50 ug/Kg * 05/20/15 14:42 05/27/15 18									
									· · · · · · .
11 בוועסוטווטוטווטוטווטוטוטוטוטוטוטוטוט עוו שוו שוו שוועסוטווטוטוטוטווטוטטווטוטטווטוטטווטוטטווט עוו שוועסוטווטט	,								
	• •								•
Trichloroethene ND 4.8 1.1 ug/Kg \$\preceq\$ 05/20/15 14:42 05/27/15 18 Trichlorofluoromethane 51 4.8 0.46 ug/Kg \$\preceq\$ 05/20/15 14:42 05/27/15 18						· · · · · · · · · · · · · · · · · · ·			1

TestAmerica Buffalo

6/5/2015

Page 6 of 45

2

3

5

6

q

11

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 05/19/15 08:25

Date Received: 05/20/15 09:00

Client Sample ID: SWMU7-SS-BLDG 23-01

TestAmerica Job ID: 480-80693-1

Lab Sample ID: 480-80693-1

Matrix: Solid

Percent Solids: 95.9

Analyte	Result	Qualifier	F	L.	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4	.8	0.59	ug/Kg	\	05/20/15 14:42	05/27/15 18:39	1
Xylenes, Total	ND		9	.7	0.81	ug/Kg	÷	05/20/15 14:42	05/27/15 18:39	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Methane, dibromofluoro-	21	TJN	ug/Kg	<u></u>	9	.26	1868-53-7	05/20/15 14:42	05/27/15 18:39	1
Benzene, 1,2-diethyl-	19	TJN	ug/Kg	☼	17	.20	135-01-3	05/20/15 14:42	05/27/15 18:39	1
Benzene, 1,4-diethyl-	7.7	TJN	ug/Kg	☼	17	.31	105-05-5	05/20/15 14:42	05/27/15 18:39	1
Unknown	10	ΤJ	ug/Kg	\$	18	.62		05/20/15 14:42	05/27/15 18:39	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		64 - 126	3				05/20/15 14:42	05/27/15 18:39	1
Toluene-d8 (Surr)	101		71 - 125	5				05/20/15 14:42	05/27/15 18:39	1
4-Bromofluorobenzene (Surr)	95		72 - 126	6				05/20/15 14:42	05/27/15 18:39	1

3

6

0

10

11

13

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 05/19/15 08:45

Date Received: 05/20/15 09:00

Client Sample ID: SWMU7-SS-BLDG 23-02

TestAmerica Job ID: 480-80693-1

Lab Sample ID: 480-80693-2

Matrix: Solid
Percent Solids: 84.5

Method: 8260C - Volatile Orgar Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0	0.36	ug/Kg	<u>∓</u>	05/20/15 14:42	05/27/15 19:06	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.81	ug/Kg	≎	05/20/15 14:42	05/27/15 19:06	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	1.1	ug/Kg	≎	05/20/15 14:42	05/27/15 19:06	1
1,1,2-Trichloroethane	ND	5.0	0.65	ug/Kg	₩	05/20/15 14:42	05/27/15 19:06	1
1,1-Dichloroethane	ND	5.0	0.61	ug/Kg	☆	05/20/15 14:42	05/27/15 19:06	1
1,1-Dichloroethene	ND	5.0	0.61	ug/Kg	₩	05/20/15 14:42	05/27/15 19:06	1
1,2,3-Trichlorobenzene	ND	5.0	0.53	ug/Kg	₩	05/20/15 14:42	05/27/15 19:06	1
1,2,4-Trichlorobenzene	ND	5.0	0.30	ug/Kg	☼	05/20/15 14:42	05/27/15 19:06	1
1,2-Dibromo-3-Chloropropane	ND	5.0	2.5	ug/Kg	₩	05/20/15 14:42	05/27/15 19:06	1
1,2-Dichlorobenzene	ND	5.0	0.39	ug/Kg	≎	05/20/15 14:42	05/27/15 19:06	1
1,2-Dichloroethane	ND	5.0	0.25	ug/Kg	≎	05/20/15 14:42	05/27/15 19:06	1
1,2-Dichloropropane	ND	5.0	2.5	ug/Kg	≎	05/20/15 14:42	05/27/15 19:06	1
1,3-Dichlorobenzene	ND	5.0	0.26	ug/Kg	₽	05/20/15 14:42	05/27/15 19:06	1
1,4-Dichlorobenzene	ND	5.0	0.70	ug/Kg	≎	05/20/15 14:42	05/27/15 19:06	1
1,4-Dioxane	ND	99	22	ug/Kg	₽	05/20/15 14:42	05/27/15 19:06	1
2-Hexanone	ND	25	2.5	ug/Kg	₩.	05/20/15 14:42	05/27/15 19:06	1
Acetone	ND	25	4.2	ug/Kg	₩	05/20/15 14:42	05/27/15 19:06	1
Benzene	ND	5.0	0.24	ug/Kg	₩	05/20/15 14:42	05/27/15 19:06	1
Bromoform	ND	5.0	2.5	ug/Kg		05/20/15 14:42	05/27/15 19:06	1
Bromomethane	ND	5.0	0.45	ug/Kg	☼	05/20/15 14:42	05/27/15 19:06	1
Carbon disulfide	ND	5.0	2.5	ug/Kg	₽	05/20/15 14:42	05/27/15 19:06	1
Carbon tetrachloride	ND	5.0	0.48	ug/Kg		05/20/15 14:42	05/27/15 19:06	1
Chlorobenzene	ND	5.0	0.66	ug/Kg	₽	05/20/15 14:42	05/27/15 19:06	1
Bromochloromethane	ND	5.0	0.36	ug/Kg	₽	05/20/15 14:42	05/27/15 19:06	1
Dibromochloromethane	ND	5.0	0.64	ug/Kg	.	05/20/15 14:42	05/27/15 19:06	1
Chloroethane	ND	5.0		ug/Kg	₩	05/20/15 14:42	05/27/15 19:06	1
Chloroform	ND	5.0	0.31	ug/Kg	₩	05/20/15 14:42	05/27/15 19:06	1
Chloromethane	ND	5.0		ug/Kg		05/20/15 14:42	05/27/15 19:06	1
cis-1,2-Dichloroethene	ND	5.0		ug/Kg	₩	05/20/15 14:42	05/27/15 19:06	1
cis-1,3-Dichloropropene	ND	5.0		ug/Kg	₩	05/20/15 14:42	05/27/15 19:06	1
Cyclohexane	ND	5.0		ug/Kg	 	05/20/15 14:42	05/27/15 19:06	1
Bromodichloromethane	ND	5.0		ug/Kg	₩	05/20/15 14:42	05/27/15 19:06	1
Dichlorodifluoromethane	ND	5.0		ug/Kg	₽		05/27/15 19:06	1
Ethylbenzene	ND	5.0		ug/Kg			05/27/15 19:06	1
1,2-Dibromoethane (EDB)	ND	5.0		ug/Kg	⇔		05/27/15 19:06	1
Isopropylbenzene	ND	5.0		ug/Kg	⇔	05/20/15 14:42	05/27/15 19:06	1
Methyl acetate	ND	5.0		ug/Kg	 \$		05/27/15 19:06	1
2-Butanone (MEK)	ND	25		ug/Kg	₩		05/27/15 19:06	1
4-Methyl-2-pentanone (MIBK)	ND	25		ug/Kg	₩		05/27/15 19:06	1
Methyl tert-butyl ether	ND	5.0		ug/Kg			05/27/15 19:06	
Methylcyclohexane	ND	5.0		ug/Kg	₽		05/27/15 19:06	1
Methylene Chloride	ND	5.0		ug/Kg	₽		05/27/15 19:06	1
Styrene	ND	5.0		ug/Kg			05/27/15 19:06	
Tetrachloroethene	ND ND	5.0		ug/Kg ug/Kg	₽		05/27/15 19:06	1
Toluene	ND ND	5.0		ug/Kg ug/Kg	₽		05/27/15 19:06	1
trans-1,2-Dichloroethene	ND	5.0		ug/Kg ug/Kg			05/27/15 19:06	
·	ND ND				≎		05/27/15 19:06	1
trans-1,3-Dichloropropene Trichloroethene	ND ND	5.0 5.0		ug/Kg ug/Kg	₩		05/27/15 19:06	1 1
								- 1

TestAmerica Buffalo

Page 8 of 45

2

5

7

9

11

12

Client: Woodard & Curran, Inc.
Project/Site: Rouses Point

TestAmerica Job ID: 480-80693-1

Client Sample ID: SWMU7-SS-BLDG 23-02 Lab Sample ID: 480-80693-2

 Date Collected: 05/19/15 08:45
 Matrix: Solid

 Date Received: 05/20/15 09:00
 Percent Solids: 84.5

Analyte	Result	Qualifier	RL		MDL	Unit		D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		0.61	ug/Kg		\	05/20/15 14:42	05/27/15 19:06	1
Xylenes, Total	ND		9.9)	0.83	ug/Kg		₩	05/20/15 14:42	05/27/15 19:06	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS N	ο.	Prepared	Analyzed	Dil Fac
Unknown	11	TJ	ug/Kg	₩	8.	.35		_	05/20/15 14:42	05/27/15 19:06	1
Methane, dibromofluoro-	22	TJN	ug/Kg	₩	9.	26	1868-53	-7	05/20/15 14:42	05/27/15 19:06	1
Trisiloxane, octamethyl-	15	TJN	ug/Kg	₩	13.	40	107-51	-7	05/20/15 14:42	05/27/15 19:06	1
Tetrasiloxane, decamethyl-	9.3	TJN	ug/Kg	₩	16.	38	141-62	-8	05/20/15 14:42	05/27/15 19:06	1
Unknown	5.8	TJ	ug/Kg	₩	18.	62			05/20/15 14:42	05/27/15 19:06	1
Surrogate	%Recovery	Qualifier	Limits						Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		64 - 126						05/20/15 14:42	05/27/15 19:06	1
Toluene-d8 (Surr)	101		71 - 125						05/20/15 14:42	05/27/15 19:06	1
4-Bromofluorobenzene (Surr)	95		72 - 126						05/20/15 14:42	05/27/15 19:06	1

_

6

0

9

11

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 05/19/15 08:45

Date Received: 05/20/15 09:00

4-Methyl-2-pentanone (MIBK)

Methyl tert-butyl ether

Methylcyclohexane

Methylene Chloride

Tetrachloroethene

Trichloroethene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Styrene

Toluene

Client Sample ID: SWMU7-SS-BLDG 23-100

TestAmerica Job ID: 480-80693-1

Lab Sample ID: 480-80693-3

Matrix: Solid
Percent Solids: 86.5

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4.7	0.34	ug/Kg	<u> </u>	05/20/15 14:42	05/27/15 19:33	1
1,1,2,2-Tetrachloroethane	ND	4.7	0.77	ug/Kg	≎	05/20/15 14:42	05/27/15 19:33	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.7	1.1	ug/Kg	≎	05/20/15 14:42	05/27/15 19:33	1
1,1,2-Trichloroethane	ND	4.7	0.62	ug/Kg	☆	05/20/15 14:42	05/27/15 19:33	1
1,1-Dichloroethane	ND	4.7	0.58	ug/Kg	≎	05/20/15 14:42	05/27/15 19:33	1
1,1-Dichloroethene	ND	4.7	0.58	ug/Kg	₩	05/20/15 14:42	05/27/15 19:33	1
1,2,3-Trichlorobenzene	ND	4.7	0.50	ug/Kg		05/20/15 14:42	05/27/15 19:33	1
1,2,4-Trichlorobenzene	ND	4.7	0.29	ug/Kg	₩	05/20/15 14:42	05/27/15 19:33	1
1,2-Dibromo-3-Chloropropane	ND	4.7	2.4	ug/Kg	₩	05/20/15 14:42	05/27/15 19:33	1
1,2-Dichlorobenzene	ND	4.7	0.37	ug/Kg		05/20/15 14:42	05/27/15 19:33	1
1,2-Dichloroethane	ND	4.7	0.24	ug/Kg	₩	05/20/15 14:42	05/27/15 19:33	1
1,2-Dichloropropane	ND	4.7	2.4	ug/Kg	₩	05/20/15 14:42	05/27/15 19:33	1
1,3-Dichlorobenzene	ND	4.7	0.24	ug/Kg		05/20/15 14:42	05/27/15 19:33	1
1,4-Dichlorobenzene	ND	4.7	0.66	ug/Kg	₩	05/20/15 14:42	05/27/15 19:33	1
1,4-Dioxane	ND	95	21	ug/Kg	₩	05/20/15 14:42	05/27/15 19:33	1
2-Hexanone	ND	24	2.4	ug/Kg		05/20/15 14:42	05/27/15 19:33	1
Acetone	ND	24	4.0	ug/Kg	₩	05/20/15 14:42	05/27/15 19:33	1
Benzene	ND	4.7	0.23	ug/Kg	≎	05/20/15 14:42	05/27/15 19:33	1
Bromoform	ND	4.7	2.4	ug/Kg		05/20/15 14:42	05/27/15 19:33	1
Bromomethane	ND	4.7	0.43	ug/Kg	₩	05/20/15 14:42	05/27/15 19:33	1
Carbon disulfide	ND	4.7	2.4	ug/Kg	₩	05/20/15 14:42	05/27/15 19:33	1
Carbon tetrachloride	ND	4.7	0.46	ug/Kg		05/20/15 14:42	05/27/15 19:33	1
Chlorobenzene	ND	4.7	0.63	ug/Kg	₩	05/20/15 14:42	05/27/15 19:33	1
Bromochloromethane	ND	4.7	0.34	ug/Kg	₩	05/20/15 14:42	05/27/15 19:33	1
Dibromochloromethane	ND	4.7	0.61	ug/Kg		05/20/15 14:42	05/27/15 19:33	1
Chloroethane	ND	4.7	1.1	ug/Kg	₩	05/20/15 14:42	05/27/15 19:33	1
Chloroform	ND	4.7	0.29	ug/Kg	₩	05/20/15 14:42	05/27/15 19:33	1
Chloromethane	ND	4.7	0.29	ug/Kg		05/20/15 14:42	05/27/15 19:33	1
cis-1,2-Dichloroethene	ND	4.7	0.61	ug/Kg	₩	05/20/15 14:42	05/27/15 19:33	1
cis-1,3-Dichloropropene	ND	4.7	0.68	ug/Kg	₩	05/20/15 14:42	05/27/15 19:33	1
Cyclohexane	ND	4.7	0.66	ug/Kg		05/20/15 14:42	05/27/15 19:33	1
Bromodichloromethane	ND	4.7	0.64	ug/Kg	₩	05/20/15 14:42	05/27/15 19:33	1
Dichlorodifluoromethane	ND	4.7	0.39	ug/Kg	≎	05/20/15 14:42	05/27/15 19:33	1
Ethylbenzene	ND	4.7	0.33	ug/Kg		05/20/15 14:42	05/27/15 19:33	1
1,2-Dibromoethane (EDB)	ND	4.7		ug/Kg	₽	05/20/15 14:42	05/27/15 19:33	1
Isopropylbenzene	ND	4.7	0.71	ug/Kg	☼	05/20/15 14:42	05/27/15 19:33	1
Methyl acetate	ND	4.7	2.9	ug/Kg	φ.	05/20/15 14:42	05/27/15 19:33	1
2-Butanone (MEK)	ND	24		ug/Kg	☆	05/20/15 14:42	05/27/15 19:33	1
, ,								

TestAmerica Buffalo

© 05/20/15 14:42 05/27/15 19:33

© 05/20/15 14:42 05/27/15 19:33

© 05/20/15 14:42 05/27/15 19:33

© 05/20/15 14:42 05/27/15 19:33

☼ 05/20/15 14:42 05/27/15 19:33

☼ 05/20/15 14:42 05/27/15 19:33
 ☼ 05/20/15 14:42 05/27/15 19:33

05/20/15 14:42 05/27/15 19:33

05/20/15 14:42 05/27/15 19:33

05/20/15 14:42 05/27/15 19:33

05/20/15 14:42 05/27/15 19:33

24

4.7

4.7

4.7

4.7

4.7

4.7

4.7

4.7

4.7

4.7

1.6 ug/Kg

0.47 ug/Kg

0.72 ug/Kg

2.2 ug/Kg

0.24 ug/Kg

0.64 ug/Kg

0.36 ug/Kg

0.49 ug/Kg

2.1 ug/Kg

1.0 ug/Kg

0.45 ug/Kg

ND

4.2 J

3

6

8

10

12

4 4

Client: Woodard & Curran, Inc.

Project/Site: Rouses Point

TestAmerica Job ID: 480-80693-1

Client Sample ID: SWMU7-SS-BLDG 23-100 Lab Sample ID: 480-80693-3

Date Collected: 05/19/15 08:45

Matrix: Solid

Date Received: 05/20/15 09:00 Percent Solids: 86.5

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.7		0.58	ug/Kg	₩	05/20/15 14:42	05/27/15 19:33	1
Xylenes, Total	ND		9.5		0.80	ug/Kg	÷	05/20/15 14:42	05/27/15 19:33	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Silanol, trimethyl-	11	TJN	ug/Kg	\tilde{\	8.	34	1066-40-6	05/20/15 14:42	05/27/15 19:33	1
Methane, dibromofluoro-	21	TJN	ug/Kg	₩	9.	26	1868-53-7	05/20/15 14:42	05/27/15 19:33	1
Unknown	18	TJ	ug/Kg	₩	13.	40		05/20/15 14:42	05/27/15 19:33	1
Tetrasiloxane, decamethyl-	16	TJN	ug/Kg	₩	16.	38	141-62-8	05/20/15 14:42	05/27/15 19:33	1
Unknown	13	TJ	ug/Kg	₩	18.	62		05/20/15 14:42	05/27/15 19:33	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		64 - 126					05/20/15 14:42	05/27/15 19:33	1
Toluene-d8 (Surr)	101		71 - 125					05/20/15 14:42	05/27/15 19:33	1
4-Bromofluorobenzene (Surr)	96		72 - 126					05/20/15 14:42	05/27/15 19:33	1

2

4

6

9

10

11

12

1 /

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 05/19/15 09:35

Date Received: 05/20/15 09:00

Trichlorofluoromethane

Client Sample ID: SWMU7-SS-BLDG 23-03

TestAmerica Job ID: 480-80693-1

Lab Sample ID: 480-80693-4

Matrix: Solid Percent Solids: 94.0

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.7	0.41	ug/Kg	<u> </u>	05/20/15 14:42	05/27/15 20:01	1
1,1,2,2-Tetrachloroethane	ND	5.7	0.92	ug/Kg	₽	05/20/15 14:42	05/27/15 20:01	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.7	1.3	ug/Kg	≎	05/20/15 14:42	05/27/15 20:01	1
1,1,2-Trichloroethane	ND	5.7	0.74	ug/Kg	φ.	05/20/15 14:42	05/27/15 20:01	1
1,1-Dichloroethane	ND	5.7	0.69	ug/Kg	₩	05/20/15 14:42	05/27/15 20:01	1
1,1-Dichloroethene	ND	5.7	0.70	ug/Kg	₩	05/20/15 14:42	05/27/15 20:01	1
1,2,3-Trichlorobenzene	ND	5.7	0.60	ug/Kg	ф.	05/20/15 14:42	05/27/15 20:01	1
1,2,4-Trichlorobenzene	ND	5.7	0.35	ug/Kg	₩	05/20/15 14:42	05/27/15 20:01	1
1,2-Dibromo-3-Chloropropane	ND	5.7	2.8	ug/Kg	₩	05/20/15 14:42	05/27/15 20:01	1
1,2-Dichlorobenzene	ND	5.7	0.45	ug/Kg		05/20/15 14:42	05/27/15 20:01	1
1,2-Dichloroethane	ND	5.7	0.29	ug/Kg	₩	05/20/15 14:42	05/27/15 20:01	1
1,2-Dichloropropane	ND	5.7	2.8	ug/Kg	₩	05/20/15 14:42	05/27/15 20:01	1
1,3-Dichlorobenzene	ND	5.7	0.29	ug/Kg		05/20/15 14:42	05/27/15 20:01	1
1,4-Dichlorobenzene	ND	5.7	0.80	ug/Kg	☼	05/20/15 14:42	05/27/15 20:01	1
1,4-Dioxane	ND	110	25	ug/Kg	☼	05/20/15 14:42	05/27/15 20:01	1
2-Hexanone	ND	28	2.8	ug/Kg		05/20/15 14:42	05/27/15 20:01	1
Acetone	ND	28	4.8	ug/Kg	≎	05/20/15 14:42	05/27/15 20:01	1
Benzene	ND	5.7	0.28	ug/Kg	₽	05/20/15 14:42	05/27/15 20:01	1
Bromoform	ND	5.7	2.8	ug/Kg		05/20/15 14:42	05/27/15 20:01	1
Bromomethane	ND	5.7		ug/Kg	₽	05/20/15 14:42	05/27/15 20:01	1
Carbon disulfide	ND	5.7	2.8	ug/Kg	₽	05/20/15 14:42	05/27/15 20:01	1
Carbon tetrachloride	ND	5.7		ug/Kg	ф.	05/20/15 14:42	05/27/15 20:01	1
Chlorobenzene	ND	5.7		ug/Kg	₩	05/20/15 14:42	05/27/15 20:01	1
Bromochloromethane	ND	5.7		ug/Kg	₽	05/20/15 14:42	05/27/15 20:01	1
Dibromochloromethane	ND	5.7	0.73	ug/Kg	.	05/20/15 14:42	05/27/15 20:01	1
Chloroethane	ND	5.7	1.3	ug/Kg	₽	05/20/15 14:42	05/27/15 20:01	1
Chloroform	ND	5.7		ug/Kg	₽	05/20/15 14:42	05/27/15 20:01	1
Chloromethane	ND	5.7		ug/Kg	ф.	05/20/15 14:42	05/27/15 20:01	1
cis-1,2-Dichloroethene	ND	5.7		ug/Kg	₽	05/20/15 14:42	05/27/15 20:01	1
cis-1,3-Dichloropropene	ND	5.7		ug/Kg	₽	05/20/15 14:42	05/27/15 20:01	1
Cyclohexane	ND	5.7	0.80	ug/Kg		05/20/15 14:42	05/27/15 20:01	1
Bromodichloromethane	ND	5.7		ug/Kg	₩	05/20/15 14:42	05/27/15 20:01	1
Dichlorodifluoromethane	ND	5.7		ug/Kg	₩	05/20/15 14:42	05/27/15 20:01	1
Ethylbenzene	ND	5.7		ug/Kg		05/20/15 14:42	05/27/15 20:01	1
1,2-Dibromoethane (EDB)	ND	5.7		ug/Kg	₩	05/20/15 14:42	05/27/15 20:01	1
Isopropylbenzene	ND	5.7		ug/Kg	₩	05/20/15 14:42	05/27/15 20:01	1
Methyl acetate	ND	5.7		ug/Kg			05/27/15 20:01	1
2-Butanone (MEK)	ND	28		ug/Kg	⇔		05/27/15 20:01	1
4-Methyl-2-pentanone (MIBK)	ND	28		ug/Kg	≎		05/27/15 20:01	1
Methyl tert-butyl ether	ND	5.7		ug/Kg			05/27/15 20:01	1
Methylcyclohexane	ND	5.7		ug/Kg	₽		05/27/15 20:01	1
Methylene Chloride	ND	5.7		ug/Kg	≎		05/27/15 20:01	1
Styrene	ND	5.7		ug/Kg			05/27/15 20:01	1
Tetrachloroethene	ND	5.7		ug/Kg	₩		05/27/15 20:01	1
Toluene	ND	5.7		ug/Kg	₩		05/27/15 20:01	1
trans-1,2-Dichloroethene	ND	5.7		ug/Kg			05/27/15 20:01	· · · · · · · 1
trans-1,3-Dichloropropene	ND	5.7		ug/Kg	₩		05/27/15 20:01	1
Trichloroethene	ND	5.7		ug/Kg	₩		05/27/15 20:01	1
		· · · · · · · · · · · · · · · · · · ·		-58	· · · · · ›	05/00/45 44.40	05/07/45 00:04	

TestAmerica Buffalo

© 05/20/15 14:42 05/27/15 20:01

5.7

0.54 ug/Kg

0.78 J

3

4

6

8

10

12

1 /

1 E

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 05/19/15 09:35

Date Received: 05/20/15 09:00

Surrogate

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Client Sample ID: SWMU7-SS-BLDG 23-03

TestAmerica Job ID: 480-80693-1

Lab Sample ID: 480-80693-4

Prepared

05/20/15 14:42 05/27/15 20:01

05/20/15 14:42 05/27/15 20:01

05/20/15 14:42 05/27/15 20:01

Matrix: Solid

Percent Solids: 94.0

Analyzed

Method: 8260C - Volatile Orga	anic Compo	unds by (GC/MS (C	Contin	ued)					
Analyte	Result	Qualifier		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND			5.7	0.69	ug/Kg	\	05/20/15 14:42	05/27/15 20:01	1
Xylenes, Total	ND			11	0.96	ug/Kg	₩	05/20/15 14:42	05/27/15 20:01	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Methane, dibromofluoro-	25	TJN	ug/Kg	☼	9.	.26	1868-53-7	05/20/15 14:42	05/27/15 20:01	1

Limits

64 - 126

71 - 125

72 - 126

%Recovery Qualifier

110

98

99

0

Dil Fac

1

10

11

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 05/19/15 10:35

Date Received: 05/20/15 09:00

trans-1,3-Dichloropropene

Trichlorofluoromethane

Trichloroethene

Client Sample ID: SWMU7-SS-BLDG 23-04

TestAmerica Job ID: 480-80693-1

Lab Sample ID: 480-80693-5

Matrix: Solid Percent Solids: 91.7

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.2	0.38	ug/Kg	<u></u>	05/20/15 14:42	05/27/15 20:28	1
1,1,2,2-Tetrachloroethane	ND	5.2	0.85	ug/Kg	☼	05/20/15 14:42	05/27/15 20:28	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.2	1.2	ug/Kg	₩	05/20/15 14:42	05/27/15 20:28	1
1,1,2-Trichloroethane	ND	5.2	0.68	ug/Kg	₩	05/20/15 14:42	05/27/15 20:28	1
1,1-Dichloroethane	ND	5.2	0.64	ug/Kg	≎	05/20/15 14:42	05/27/15 20:28	1
1,1-Dichloroethene	ND	5.2	0.64	ug/Kg	₩	05/20/15 14:42	05/27/15 20:28	1
1,2,3-Trichlorobenzene	ND	5.2	0.56	ug/Kg	₽	05/20/15 14:42	05/27/15 20:28	1
1,2,4-Trichlorobenzene	ND	5.2	0.32	ug/Kg	≎	05/20/15 14:42	05/27/15 20:28	1
1,2-Dibromo-3-Chloropropane	ND	5.2	2.6	ug/Kg	≎	05/20/15 14:42	05/27/15 20:28	1
1,2-Dichlorobenzene	ND	5.2	0.41	ug/Kg	₽	05/20/15 14:42	05/27/15 20:28	1
1,2-Dichloroethane	ND	5.2	0.26	ug/Kg	≎	05/20/15 14:42	05/27/15 20:28	1
1,2-Dichloropropane	ND	5.2	2.6	ug/Kg	≎	05/20/15 14:42	05/27/15 20:28	1
1,3-Dichlorobenzene	ND	5.2	0.27	ug/Kg	₽	05/20/15 14:42	05/27/15 20:28	1
1,4-Dichlorobenzene	ND	5.2	0.73	ug/Kg	₩	05/20/15 14:42	05/27/15 20:28	1
1,4-Dioxane	ND	100	23	ug/Kg	₩	05/20/15 14:42	05/27/15 20:28	1
2-Hexanone	ND	26	2.6	ug/Kg		05/20/15 14:42	05/27/15 20:28	1
Acetone	ND	26	4.4	ug/Kg	≎	05/20/15 14:42	05/27/15 20:28	1
Benzene	ND	5.2	0.26	ug/Kg	₽	05/20/15 14:42	05/27/15 20:28	1
Bromoform	ND	5.2	2.6	ug/Kg	ф.	05/20/15 14:42	05/27/15 20:28	1
Bromomethane	ND	5.2		ug/Kg	₽	05/20/15 14:42	05/27/15 20:28	1
Carbon disulfide	ND	5.2		ug/Kg	₩	05/20/15 14:42	05/27/15 20:28	1
Carbon tetrachloride	ND	5.2		ug/Kg		05/20/15 14:42	05/27/15 20:28	1
Chlorobenzene	ND	5.2	0.69	ug/Kg	₩	05/20/15 14:42	05/27/15 20:28	1
Bromochloromethane	ND	5.2	0.38	ug/Kg	₩	05/20/15 14:42	05/27/15 20:28	1
Dibromochloromethane	ND	5.2		ug/Kg		05/20/15 14:42	05/27/15 20:28	1
Chloroethane	ND	5.2		ug/Kg	₩	05/20/15 14:42	05/27/15 20:28	1
Chloroform	ND	5.2		ug/Kg	₩	05/20/15 14:42	05/27/15 20:28	1
Chloromethane	ND	5.2		ug/Kg		05/20/15 14:42	05/27/15 20:28	1
cis-1,2-Dichloroethene	ND	5.2		ug/Kg	₩	05/20/15 14:42	05/27/15 20:28	1
cis-1,3-Dichloropropene	ND	5.2		ug/Kg	₩	05/20/15 14:42	05/27/15 20:28	1
Cyclohexane	ND	5.2		ug/Kg		05/20/15 14:42	05/27/15 20:28	1
Bromodichloromethane	ND	5.2		ug/Kg	≎		05/27/15 20:28	1
Dichlorodifluoromethane	ND	5.2		ug/Kg	≎	05/20/15 14:42	05/27/15 20:28	1
Ethylbenzene	ND	5.2		ug/Kg			05/27/15 20:28	1
1,2-Dibromoethane (EDB)	ND	5.2		ug/Kg	₽		05/27/15 20:28	1
Isopropylbenzene	ND	5.2		ug/Kg	₽	05/20/15 14:42		1
Methyl acetate	ND	5.2		ug/Kg			05/27/15 20:28	1
2-Butanone (MEK)	ND	26		ug/Kg	₽		05/27/15 20:28	1
4-Methyl-2-pentanone (MIBK)	ND	26		ug/Kg	₽		05/27/15 20:28	1
Methyl tert-butyl ether	ND	5.2		ug/Kg	 ☆		05/27/15 20:28	1
Methylcyclohexane	ND	5.2		ug/Kg	☼		05/27/15 20:28	1
Methylene Chloride	ND	5.2		ug/Kg	₩		05/27/15 20:28	1
Styrene	ND	5.2		ug/Kg			05/27/15 20:28	· · · · · · 1
Tetrachloroethene	ND	5.2		ug/Kg	₽		05/27/15 20:28	1
Toluene	ND	5.2		ug/Kg	#		05/27/15 20:28	1
trans-1,2-Dichloroethene	ND	5.2		ug/Kg	· · · · · · · · · · · · · · · · · · ·		05/27/15 20:28	
110115-1,2-DIGHOLOGUICHC	IND	J.Z	0.54	ug/itg	~	03/20/13 14.42	03/2//10/20.20	ı

TestAmerica Buffalo

© 05/20/15 14:42 05/27/15 20:28

☼ 05/20/15 14:42 05/27/15 20:28

© 05/20/15 14:42 05/27/15 20:28

Page 14 of 45

5.2

5.2

5.2

2.3 ug/Kg

1.2 ug/Kg

0.50 ug/Kg

ND

ND

44

2

3

+

6

8

10

12

14

18

Client: Woodard & Curran, Inc.

Project/Site: Rouses Point

TestAmerica Job ID: 480-80693-1

Client Sample ID: SWMU7-SS-BLDG 23-04 Lab Sample ID: 480-80693-5

Date Collected: 05/19/15 10:35 Matrix: Solid
Date Received: 05/20/15 09:00 Percent Solids: 91.7

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.2		0.64	ug/Kg		05/20/15 14:42	05/27/15 20:28	1
Xylenes, Total	ND		10)	0.88	ug/Kg	÷	05/20/15 14:42	05/27/15 20:28	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Methane, dibromofluoro-	24	TJN	ug/Kg	☼	9.	26	1868-53-7	05/20/15 14:42	05/27/15 20:28	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109	-	64 - 126	-				05/20/15 14:42	05/27/15 20:28	1
Toluene-d8 (Surr)	98		71 - 125					05/20/15 14:42	05/27/15 20:28	1
4-Bromofluorobenzene (Surr)	100		72 - 126						05/27/15 20:28	

2

5

7

8

9

11

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 05/19/15 12:55

Date Received: 05/20/15 09:00

Trichlorofluoromethane

Client Sample ID: SWMU7-SS-BLDG 23-05

TestAmerica Job ID: 480-80693-1

Lab Sample ID: 480-80693-6

Matrix: Solid Percent Solids: 85.2

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0	0.37	ug/Kg	<u> </u>	05/20/15 14:42	05/27/15 20:56	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.82	ug/Kg	≎	05/20/15 14:42	05/27/15 20:56	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	1.1	ug/Kg	≎	05/20/15 14:42	05/27/15 20:56	1
1,1,2-Trichloroethane	ND	5.0	0.66	ug/Kg	☆	05/20/15 14:42	05/27/15 20:56	1
1,1-Dichloroethane	ND	5.0	0.62	ug/Kg	≎	05/20/15 14:42	05/27/15 20:56	1
1,1-Dichloroethene	ND	5.0	0.62	ug/Kg	≎	05/20/15 14:42	05/27/15 20:56	1
1,2,3-Trichlorobenzene	ND	5.0	0.54	ug/Kg		05/20/15 14:42	05/27/15 20:56	1
1,2,4-Trichlorobenzene	ND	5.0	0.31	ug/Kg	₩	05/20/15 14:42	05/27/15 20:56	1
1,2-Dibromo-3-Chloropropane	ND	5.0	2.5	ug/Kg	₽	05/20/15 14:42	05/27/15 20:56	1
1,2-Dichlorobenzene	ND	5.0	0.39	ug/Kg	₩	05/20/15 14:42	05/27/15 20:56	1
1,2-Dichloroethane	ND	5.0	0.25	ug/Kg	₩	05/20/15 14:42	05/27/15 20:56	1
1,2-Dichloropropane	ND	5.0	2.5	ug/Kg	₩	05/20/15 14:42	05/27/15 20:56	1
1,3-Dichlorobenzene	ND	5.0	0.26	ug/Kg		05/20/15 14:42	05/27/15 20:56	1
1,4-Dichlorobenzene	ND	5.0	0.71	ug/Kg	☼	05/20/15 14:42	05/27/15 20:56	1
1,4-Dioxane	ND	100	22	ug/Kg	≎	05/20/15 14:42	05/27/15 20:56	1
2-Hexanone	ND	25	2.5	ug/Kg		05/20/15 14:42	05/27/15 20:56	1
Acetone	12 J	25		ug/Kg	≎	05/20/15 14:42	05/27/15 20:56	1
Benzene	ND	5.0	0.25	ug/Kg	₩	05/20/15 14:42	05/27/15 20:56	1
Bromoform	ND	5.0		ug/Kg	 ☆ -	05/20/15 14:42	05/27/15 20:56	1
Bromomethane	ND	5.0	0.45	ug/Kg	₽	05/20/15 14:42	05/27/15 20:56	1
Carbon disulfide	ND	5.0		ug/Kg	₩	05/20/15 14:42	05/27/15 20:56	1
Carbon tetrachloride	ND	5.0		ug/Kg		05/20/15 14:42	05/27/15 20:56	1
Chlorobenzene	ND	5.0		ug/Kg	₩	05/20/15 14:42	05/27/15 20:56	1
Bromochloromethane	ND	5.0		ug/Kg	₩	05/20/15 14:42	05/27/15 20:56	1
Dibromochloromethane	ND	5.0	0.65	ug/Kg		05/20/15 14:42	05/27/15 20:56	1
Chloroethane	ND	5.0		ug/Kg	₩	05/20/15 14:42	05/27/15 20:56	1
Chloroform	ND	5.0			₩	05/20/15 14:42	05/27/15 20:56	1
Chloromethane	ND	5.0		ug/Kg		05/20/15 14:42	05/27/15 20:56	1
cis-1,2-Dichloroethene	ND	5.0		ug/Kg	₩	05/20/15 14:42	05/27/15 20:56	1
cis-1,3-Dichloropropene	ND	5.0		ug/Kg	₩	05/20/15 14:42	05/27/15 20:56	1
Cyclohexane	ND	5.0		ug/Kg	 	05/20/15 14:42	05/27/15 20:56	1
Bromodichloromethane	ND	5.0		ug/Kg	≎		05/27/15 20:56	1
Dichlorodifluoromethane	ND	5.0		ug/Kg	⇔		05/27/15 20:56	1
Ethylbenzene	ND	5.0		ug/Kg	 \$		05/27/15 20:56	1
1,2-Dibromoethane (EDB)	ND	5.0		ug/Kg	₽		05/27/15 20:56	1
Isopropylbenzene	ND	5.0		ug/Kg	₽		05/27/15 20:56	1
Methyl acetate	ND	5.0		ug/Kg	 .		05/27/15 20:56	······································
2-Butanone (MEK)	ND	25		ug/Kg	₽		05/27/15 20:56	1
4-Methyl-2-pentanone (MIBK)	ND	25		ug/Kg	₩		05/27/15 20:56	1
Methyl tert-butyl ether	ND	5.0		ug/Kg			05/27/15 20:56	
Methylcyclohexane	ND	5.0		ug/Kg	₩		05/27/15 20:56	1
Methylene Chloride	ND	5.0		ug/Kg	₩		05/27/15 20:56	1
Styrene	ND	5.0		ug/Kg			05/27/15 20:56	
Tetrachloroethene	ND	5.0		ug/Kg	₽		05/27/15 20:56	1
Toluene	ND	5.0		ug/Kg ug/Kg			05/27/15 20:56	1
trans-1,2-Dichloroethene	ND ND	5.0		ug/Kg ug/Kg	· · · · · · · · · · · · · · · · · · ·		05/27/15 20:56	
trans-1,3-Dichloropropene	ND ND	5.0 5.0		ug/Kg ug/Kg	₩		05/27/15 20:56	1
• •								
Trichloroethene	ND	5.0	1.1	ug/Kg	-Q-	05/20/15 14:42	05/27/15 20:56	1

TestAmerica Buffalo

© 05/20/15 14:42 05/27/15 20:56

5.0

0.48 ug/Kg

ND

3

6

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80693-1

Client Sample ID: SWMU7-SS-BLDG 23-05 Lab Sample ID: 480-80693-6

Date Collected: 05/19/15 12:55 **Matrix: Solid** Date Received: 05/20/15 09:00

Percent Solids: 85.2

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		0.62	ug/Kg		05/20/15 14:42	05/27/15 20:56	1
Xylenes, Total	ND		10)	0.85	ug/Kg	÷	05/20/15 14:42	05/27/15 20:56	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	1	R <i>T</i>	CAS No.	Prepared	Analyzed	Dil Fac
Silanol, trimethyl-	24	TJN	ug/Kg	☼	8.	34	1066-40-6	05/20/15 14:42	05/27/15 20:56	1
Methane, dibromofluoro-	23	TJN	ug/Kg	☼	9.	26	1868-53-7	05/20/15 14:42	05/27/15 20:56	1
Unknown	5.8	TJ	ug/Kg	☼	12.	81		05/20/15 14:42	05/27/15 20:56	1
Trisiloxane, octamethyl-	99	TJN	ug/Kg	**	13.	40	107-51-7	05/20/15 14:42	05/27/15 20:56	1
Cyclotetrasiloxane, octamethyl-	7.5	TJN	ug/Kg	₩	15.	31	556-67-2	05/20/15 14:42	05/27/15 20:56	1
Tetrasiloxane, decamethyl-	440	TJN	ug/Kg	₩	16.	38	141-62-8	05/20/15 14:42	05/27/15 20:56	1
Unknown	5.3	ΤJ	ug/Kg	₩	17.	61		05/20/15 14:42	05/27/15 20:56	1
Unknown	780	TJ	ug/Kg	₩	18.	63		05/20/15 14:42	05/27/15 20:56	1
Unknown	41	ΤJ	ug/Kg	₽	20.	89		05/20/15 14:42	05/27/15 20:56	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		64 - 126	-				05/20/15 14:42	05/27/15 20:56	1
Toluene-d8 (Surr)	96		71 - 125					05/20/15 14:42	05/27/15 20:56	1
4-Bromofluorobenzene (Surr)	98		72 ₋ 126					05/20/15 14:42	05/27/15 20:56	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 05/19/15 13:30

Date Received: 05/20/15 09:00

Client Sample ID: SWMU7-SS-BLDG 23-06

TestAmerica Job ID: 480-80693-1

Lab Sample ID: 480-80693-7

Matrix: Solid
Percent Solids: 88.9

Analyte	Result Qualifier	RL		Unit	— D ∓	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	4.6		0 0			05/27/15 21:23	•
1,1,2,2-Tetrachloroethane	ND	4.6		ug/Kg	☼		05/27/15 21:23	•
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.6		ug/Kg	·····*·		05/27/15 21:23	
1,1,2-Trichloroethane	ND	4.6		ug/Kg	☆		05/27/15 21:23	•
1,1-Dichloroethane	ND	4.6		ug/Kg	ψ.		05/27/15 21:23	•
1,1-Dichloroethene	ND	4.6		ug/Kg			05/27/15 21:23	
1,2,3-Trichlorobenzene	ND	4.6		ug/Kg	ψ.		05/27/15 21:23	•
1,2,4-Trichlorobenzene	ND	4.6		ug/Kg	Ţ.		05/27/15 21:23	•
1,2-Dibromo-3-Chloropropane	ND	4.6		ug/Kg			05/27/15 21:23	
1,2-Dichlorobenzene	ND	4.6		ug/Kg	*		05/27/15 21:23	•
1,2-Dichloroethane	ND	4.6		ug/Kg	₩		05/27/15 21:23	•
1,2-Dichloropropane	ND	4.6		ug/Kg	 		05/27/15 21:23	
1,3-Dichlorobenzene	ND	4.6		ug/Kg	*		05/27/15 21:23	•
1,4-Dichlorobenzene	ND	4.6		ug/Kg	*		05/27/15 21:23	•
1,4-Dioxane	ND	93		ug/Kg			05/27/15 21:23	
2-Hexanone	ND	23		ug/Kg	☆	05/20/15 14:42	05/27/15 21:23	•
Acetone	ND	23	3.9	ug/Kg	☆	05/20/15 14:42	05/27/15 21:23	•
Benzene	ND	4.6	0.23	ug/Kg	₩	05/20/15 14:42	05/27/15 21:23	•
Bromoform	ND	4.6	2.3	ug/Kg	₩	05/20/15 14:42	05/27/15 21:23	
Bromomethane	ND	4.6	0.42	ug/Kg	☆	05/20/15 14:42	05/27/15 21:23	
Carbon disulfide	ND	4.6	2.3	ug/Kg	₩	05/20/15 14:42	05/27/15 21:23	
Carbon tetrachloride	ND	4.6	0.45	ug/Kg	₩	05/20/15 14:42	05/27/15 21:23	
Chlorobenzene	ND	4.6	0.61	ug/Kg	₩	05/20/15 14:42	05/27/15 21:23	•
Bromochloromethane	ND	4.6	0.33	ug/Kg	₩	05/20/15 14:42	05/27/15 21:23	•
Dibromochloromethane	ND	4.6	0.59	ug/Kg	₽	05/20/15 14:42	05/27/15 21:23	
Chloroethane	ND	4.6	1.0	ug/Kg	≎	05/20/15 14:42	05/27/15 21:23	
Chloroform	ND	4.6	0.29	ug/Kg	≎	05/20/15 14:42	05/27/15 21:23	
Chloromethane	ND	4.6	0.28	ug/Kg		05/20/15 14:42	05/27/15 21:23	•
cis-1,2-Dichloroethene	ND	4.6	0.59	ug/Kg	₩	05/20/15 14:42	05/27/15 21:23	
cis-1,3-Dichloropropene	ND	4.6	0.67	ug/Kg	₩	05/20/15 14:42	05/27/15 21:23	
Cyclohexane	ND	4.6	0.65	ug/Kg		05/20/15 14:42	05/27/15 21:23	• • • • • • • • •
Bromodichloromethane	ND	4.6		ug/Kg	☆	05/20/15 14:42	05/27/15 21:23	
Dichlorodifluoromethane	ND	4.6		ug/Kg	≎	05/20/15 14:42	05/27/15 21:23	
Ethylbenzene	ND	4.6		ug/Kg		05/20/15 14:42	05/27/15 21:23	
1,2-Dibromoethane (EDB)	ND	4.6		ug/Kg	₩	05/20/15 14:42	05/27/15 21:23	
Isopropylbenzene	ND	4.6		ug/Kg	₩	05/20/15 14:42	05/27/15 21:23	
Methyl acetate	ND	4.6		ug/Kg			05/27/15 21:23	· · · · · · .
2-Butanone (MEK)	ND	23		ug/Kg	≎		05/27/15 21:23	
4-Methyl-2-pentanone (MIBK)	ND	23		ug/Kg	≎		05/27/15 21:23	
Methyl tert-butyl ether	ND	4.6		ug/Kg	 \$		05/27/15 21:23	
Methylcyclohexane	ND	4.6		ug/Kg	₩		05/27/15 21:23	
Methylene Chloride	ND	4.6		ug/Kg	☼		05/27/15 21:23	
Styrene	ND	4.6		ug/Kg	 \$		05/27/15 21:23	· · · · · · .
Tetrachloroethene	ND	4.6		ug/Kg	₩		05/27/15 21:23	
Toluene	ND	4.6		ug/Kg	₩		05/27/15 21:23	
trans-1,2-Dichloroethene	ND	4.6		ug/Kg			05/27/15 21:23	· · · · · · .
trans-1,3-Dichloropropene	ND	4.6		ug/Kg ug/Kg	≎		05/27/15 21:23	
Trichloroethene	ND ND	4.6			☆		05/27/15 21:23	
Trichlorofluoromethane	12	4.6		ug/Kg ug/Kg	. .		05/27/15 21:23	· · · · · · · .

TestAmerica Buffalo

3

E

6

8

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80693-1

Client Sample ID: SWMU7-SS-BLDG 23-06 Lab Sample ID: 480-80693-7

Date Collected: 05/19/15 13:30 **Matrix: Solid** Date Received: 05/20/15 09:00

Percent Solids: 88.9

Analyte	Result	Qualifier	RI	-	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.6	3	0.56	ug/Kg	<u></u>	05/20/15 14:42	05/27/15 21:23	1
Xylenes, Total	ND		9.3	3	0.78	ug/Kg	\$	05/20/15 14:42	05/27/15 21:23	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Silanol, trimethyl-	160	TJN	ug/Kg	\$	8.	35	1066-40-6	05/20/15 14:42	05/27/15 21:23	1
Disiloxane, hexamethyl-	36	TJN	ug/Kg	☼	9.	36	107-46-0	05/20/15 14:42	05/27/15 21:23	1
Unknown	130	TJ	ug/Kg	☼	12.	.82		05/20/15 14:42	05/27/15 21:23	1
Unknown	5500	ΤJ	ug/Kg	☼	13.	41		05/20/15 14:42	05/27/15 21:23	1
Unknown	1500	TJ	ug/Kg	☼	13.	.53		05/20/15 14:42	05/27/15 21:23	1
Unknown	1900	ΤJ	ug/Kg	☼	15.	.32		05/20/15 14:42	05/27/15 21:23	1
Unknown	56	ΤJ	ug/Kg	₩.	15.	85		05/20/15 14:42	05/27/15 21:23	1
Unknown	3800	TJ	ug/Kg	☼	16.	.38		05/20/15 14:42	05/27/15 21:23	1
Unknown	84	ΤJ	ug/Kg	☼	17.	61		05/20/15 14:42	05/27/15 21:23	1
Unknown	790	ΤJ	ug/Kg	\\$	18.	62		05/20/15 14:42	05/27/15 21:23	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		64 - 126	-				05/20/15 14:42	05/27/15 21:23	1
Toluene-d8 (Surr)	106		71 - 125					05/20/15 14:42	05/27/15 21:23	1
4-Bromofluorobenzene (Surr)	105		72 - 126					05/20/15 14:42	05/27/15 21:23	1

6/5/2015

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 05/19/15 15:35

Date Received: 05/20/15 09:00

Methyl acetate

2-Butanone (MEK)

Methyl tert-butyl ether

Methylcyclohexane

Methylene Chloride

Tetrachloroethene

Trichloroethene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Styrene

Toluene

4-Methyl-2-pentanone (MIBK)

Client Sample ID: SWMU7-SS-BLDG 23-07

TestAmerica Job ID: 480-80693-1

Lab Sample ID: 480-80693-8

Matrix: Solid Percent Solids: 93.3

Method: 8260C - Volatile Organ				Mars.	1114	_		A	D!! E- :
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.37	ug/Kg	*		05/27/15 21:51	1
1,1,2,2-Tetrachloroethane	ND	F1	5.0		ug/Kg	*		05/27/15 21:51	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0		ug/Kg			05/27/15 21:51	1
1,1,2-Trichloroethane	ND	F1	5.0		ug/Kg	☼		05/27/15 21:51	1
1,1-Dichloroethane	ND		5.0		ug/Kg	₽		05/27/15 21:51	1
1,1-Dichloroethene	ND		5.0	0.62	ug/Kg	₩	05/20/15 14:42	05/27/15 21:51	1
1,2,3-Trichlorobenzene	ND	F1	5.0	0.54	ug/Kg	₩	05/20/15 14:42	05/27/15 21:51	1
1,2,4-Trichlorobenzene	ND	F1	5.0	0.31	ug/Kg	₩	05/20/15 14:42	05/27/15 21:51	1
1,2-Dibromo-3-Chloropropane	ND	F1	5.0	2.5	ug/Kg	₽	05/20/15 14:42	05/27/15 21:51	1
1,2-Dichlorobenzene	ND	F1	5.0	0.39	ug/Kg	₩	05/20/15 14:42	05/27/15 21:51	1
1,2-Dichloroethane	ND	F1	5.0	0.25	ug/Kg	₩	05/20/15 14:42	05/27/15 21:51	1
1,2-Dichloropropane	ND		5.0	2.5	ug/Kg	₩	05/20/15 14:42	05/27/15 21:51	1
1,3-Dichlorobenzene	ND	F1	5.0	0.26	ug/Kg	₽	05/20/15 14:42	05/27/15 21:51	1
1,4-Dichlorobenzene	ND	F1	5.0	0.71	ug/Kg	☼	05/20/15 14:42	05/27/15 21:51	1
1,4-Dioxane	ND	F1	100	22	ug/Kg	☼	05/20/15 14:42	05/27/15 21:51	1
2-Hexanone	ND	F1	25	2.5	ug/Kg	₩	05/20/15 14:42	05/27/15 21:51	1
Acetone	ND	F1	25	4.2	ug/Kg	₽	05/20/15 14:42	05/27/15 21:51	1
Benzene	ND	F1	5.0	0.25	ug/Kg	☼	05/20/15 14:42	05/27/15 21:51	1
Bromoform	ND		5.0	2.5	ug/Kg		05/20/15 14:42	05/27/15 21:51	1
Bromomethane	ND		5.0	0.45	ug/Kg	₩	05/20/15 14:42	05/27/15 21:51	1
Carbon disulfide	ND		5.0	2.5	ug/Kg	☼	05/20/15 14:42	05/27/15 21:51	1
Carbon tetrachloride	ND	F1	5.0	0.49	ug/Kg	φ.	05/20/15 14:42	05/27/15 21:51	1
Chlorobenzene	ND		5.0	0.67	ug/Kg	☼	05/20/15 14:42	05/27/15 21:51	1
Bromochloromethane	ND		5.0	0.36	ug/Kg	☼	05/20/15 14:42	05/27/15 21:51	1
Dibromochloromethane	ND		5.0	0.65	ug/Kg	₩	05/20/15 14:42	05/27/15 21:51	1
Chloroethane	ND		5.0	1.1	ug/Kg	☼	05/20/15 14:42	05/27/15 21:51	1
Chloroform	ND	F1	5.0	0.31	ug/Kg	₩	05/20/15 14:42	05/27/15 21:51	1
Chloromethane	ND		5.0	0.30	ug/Kg	₽	05/20/15 14:42	05/27/15 21:51	1
cis-1,2-Dichloroethene	ND	F1	5.0	0.65	ug/Kg	☼	05/20/15 14:42	05/27/15 21:51	1
cis-1,3-Dichloropropene	ND	F1	5.0	0.73	ug/Kg	☼	05/20/15 14:42	05/27/15 21:51	1
Cyclohexane	ND	F1	5.0	0.71	ug/Kg		05/20/15 14:42	05/27/15 21:51	1
Bromodichloromethane	ND		5.0	0.68	ug/Kg	☼	05/20/15 14:42	05/27/15 21:51	1
Dichlorodifluoromethane	ND		5.0	0.42	ug/Kg	₩	05/20/15 14:42	05/27/15 21:51	1
Ethylbenzene	ND	F1	5.0	0.35	ug/Kg	φ.	05/20/15 14:42	05/27/15 21:51	1
1,2-Dibromoethane (EDB)	ND	F1	5.0		ug/Kg	₩	05/20/15 14:42	05/27/15 21:51	1
Isopropylbenzene	ND		5.0		ug/Kg	₩	05/20/15 14:42	05/27/15 21:51	1
					.				

TestAmerica Buffalo

05/20/15 14:42 05/27/15 21:51

05/20/15 14:42 05/27/15 21:51

05/20/15 14:42 05/27/15 21:51

05/20/15 14:42 05/27/15 21:51
 05/20/15 14:42 05/27/15 21:51

05/20/15 14:42 05/27/15 21:51

© 05/20/15 14:42 05/27/15 21:51

☼ 05/20/15 14:42 05/27/15 21:51

☼ 05/20/15 14:42 05/27/15 21:51

05/20/15 14:42 05/27/15 21:51

05/20/15 14:42 05/27/15 21:51

05/20/15 14:42 05/27/15 21:51

05/20/15 14:42 05/27/15 21:51

Page 20 of 45

5.0

25

25

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

3.0 ug/Kg

1.8 ug/Kg

0.50 ug/Kg

0.77 ug/Kg

2.3 ug/Kg

0.25 ug/Kg

0.68 ug/Kg

0.38 ug/Kg

0.52 ug/Kg

2.2 ug/Kg

1.1 ug/Kg

0.48 ug/Kg

1.7 ug/Kg

ND

ND

ND

ND

ND

ND

ND F1

ND F1

ND F1

ND F1

5.7 F2

ND F1

ND F1

_

9

11

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Received: 05/20/15 09:00

4-Bromofluorobenzene (Surr)

TestAmerica Job ID: 480-80693-1

05/20/15 14:42 05/27/15 21:51

Client Sample ID: SWMU7-SS-BLDG 23-07 Lab Sample ID: 480-80693-8

101

Date Collected: 05/19/15 15:35

Matrix: Solid

Percent Solids: 93.3

Analyte	Result	Qualifier	RL		MDL	Unit		D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		0.62	ug/Kg		₩	05/20/15 14:42	05/27/15 21:51	1
Xylenes, Total	ND	F1	10		0.85	ug/Kg		₩	05/20/15 14:42	05/27/15 21:51	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS N	o.	Prepared	Analyzed	Dil Fac
Unknown	110	TJ	ug/Kg	\	8.	34			05/20/15 14:42	05/27/15 21:51	1
Methane, dibromofluoro-	21	TJN	ug/Kg	≎	9.	26	1868-53	-7	05/20/15 14:42	05/27/15 21:51	1
Unknown	37	TJ	ug/Kg	≎	12.	.81			05/20/15 14:42	05/27/15 21:51	1
Trisiloxane, octamethyl-	120	TJN	ug/Kg	₩.	13.	40	107-51	-7	05/20/15 14:42	05/27/15 21:51	1
Cyclotetrasiloxane, octamethyl-	18	TJN	ug/Kg	₩	15.	.31	556-67	-2	05/20/15 14:42	05/27/15 21:51	1
Unknown	16	TJ	ug/Kg	≎	15.	.85			05/20/15 14:42	05/27/15 21:51	1
Unknown	1200	ΤJ	ug/Kg	₩.	16.	38			05/20/15 14:42	05/27/15 21:51	1
Unknown	20	TJ	ug/Kg	₩	17.	61			05/20/15 14:42	05/27/15 21:51	1
Unknown	1000	TJ	ug/Kg	₩	18.	.63			05/20/15 14:42	05/27/15 21:51	1
Unknown	11	ΤJ	ug/Kg	₽	20.	89			05/20/15 14:42	05/27/15 21:51	1
Surrogate	%Recovery	Qualifier	Limits						Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		64 - 126						05/20/15 14:42	05/27/15 21:51	1
Toluene-d8 (Surr)	94		71 - 125						05/20/15 14:42	05/27/15 21:51	1

72 - 126

6/5/2015

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80693-1

Client Sample ID: SWMU13-SS-01 Lab Sample ID: 480-80693-9

Date Collected: 05/19/15 16:10

Matrix: Solid

Date Received: 05/20/15 09:00

Percent Solids: 91.3

Method: 8260C - Volatile Organ		Qualifier	RL	MDL	Unit	D	Droparad	Analyzod	Dil Fa
Analyte	ND	Qualifier			ug/Kg	— ¤	Prepared 05/20/15 14:42	Analyzed	DII Fa
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ND ND		4.4 4.4			≎		05/27/15 22:18	
	ND ND				ug/Kg	~			
1,1,2-Trichloro-1,2,2-trifluoroethane			4.4		ug/Kg	· · · · · · · .		05/27/15 22:18	
1,1,2-Trichloroethane	ND ND		4.4		ug/Kg			05/27/15 22:18	
1,1-Dichloroethane			4.4		ug/Kg	₩		05/27/15 22:18	
1,1-Dichloroethene	0.56	J	4.4		ug/Kg			05/27/15 22:18	
1,2,3-Trichlorobenzene	ND		4.4		ug/Kg			05/27/15 22:18	
1,2,4-Trichlorobenzene	ND		4.4		ug/Kg	₩.		05/27/15 22:18	
1,2-Dibromo-3-Chloropropane	ND		4.4		ug/Kg			05/27/15 22:18	
1,2-Dichlorobenzene	ND		4.4		ug/Kg	*		05/27/15 22:18	
1,2-Dichloroethane	ND		4.4		ug/Kg	₽		05/27/15 22:18	
1,2-Dichloropropane	ND		4.4		ug/Kg			05/27/15 22:18	
1,3-Dichlorobenzene	ND		4.4		ug/Kg	☼		05/27/15 22:18	
1,4-Dichlorobenzene	ND		4.4		ug/Kg	☼	05/20/15 14:42	05/27/15 22:18	
1,4-Dioxane	ND		88	19	ug/Kg	₩	05/20/15 14:42	05/27/15 22:18	
2-Hexanone	ND		22	2.2	ug/Kg	₽	05/20/15 14:42	05/27/15 22:18	
Acetone	ND		22	3.7	ug/Kg	☼	05/20/15 14:42	05/27/15 22:18	
Benzene	ND		4.4	0.22	ug/Kg	₩	05/20/15 14:42	05/27/15 22:18	
3romoform Sromoform	ND		4.4	2.2	ug/Kg	₽	05/20/15 14:42	05/27/15 22:18	
Bromomethane	ND		4.4	0.40	ug/Kg	≎	05/20/15 14:42	05/27/15 22:18	
Carbon disulfide	ND		4.4	2.2	ug/Kg	☼	05/20/15 14:42	05/27/15 22:18	
Carbon tetrachloride	ND		4.4	0.43	ug/Kg	\$	05/20/15 14:42	05/27/15 22:18	
Chlorobenzene	ND		4.4	0.58	ug/Kg	☼	05/20/15 14:42	05/27/15 22:18	
Bromochloromethane	ND		4.4	0.32	ug/Kg	☼	05/20/15 14:42	05/27/15 22:18	
Dibromochloromethane	ND		4.4	0.57	ug/Kg		05/20/15 14:42	05/27/15 22:18	
Chloroethane	ND		4.4	1.0	ug/Kg	☼	05/20/15 14:42	05/27/15 22:18	
Chloroform	ND		4.4		ug/Kg	₽	05/20/15 14:42	05/27/15 22:18	
Chloromethane	ND		4.4		ug/Kg	 ф	05/20/15 14:42	05/27/15 22:18	
cis-1,2-Dichloroethene	ND		4.4		ug/Kg	₽		05/27/15 22:18	
cis-1,3-Dichloropropene	ND		4.4		ug/Kg	₽	05/20/15 14:42	05/27/15 22:18	
Cyclohexane	ND		4.4		ug/Kg	· · · · · · · · · · · · · · · · · · ·		05/27/15 22:18	
Bromodichloromethane	ND		4.4		ug/Kg	☆		05/27/15 22:18	
Dichlorodifluoromethane	ND		4.4		ug/Kg	₽		05/27/15 22:18	
Ethylbenzene	ND		4.4	0.31	ug/Kg			05/27/15 22:18	
1,2-Dibromoethane (EDB)	ND		4.4		ug/Kg	₽		05/27/15 22:18	
sopropylbenzene	ND		4.4		ug/Kg	₩	05/20/15 14:42		
Methyl acetate	ND		4.4		ug/Kg			05/27/15 22:18	
2-Butanone (MEK)	ND		22			☼		05/27/15 22:18	
, ,	ND		22		ug/Kg	γ. Υ		05/27/15 22:18	
4-Methyl-2-pentanone (MIBK)					ug/Kg	 بير			
Methyl tert-butyl ether	ND		4.4		ug/Kg	ж ж		05/27/15 22:18	
Methylcyclohexane	ND		4.4		ug/Kg	Ψ.		05/27/15 22:18	
Methylene Chloride	ND		4.4		ug/Kg	V .		05/27/15 22:18	
Styrene	ND		4.4		ug/Kg	Ψ.		05/27/15 22:18	
Tetrachloroethene	ND		4.4		ug/Kg	φ.		05/27/15 22:18	
Toluene	ND		4.4		ug/Kg	· · · · · · · · ·		05/27/15 22:18	
rans-1,2-Dichloroethene	ND		4.4		ug/Kg	₩.		05/27/15 22:18	
rans-1,3-Dichloropropene	ND		4.4		ug/Kg	*		05/27/15 22:18	
Trichloroethene	ND		4.4	0.97	ug/Kg	₩	05/20/15 14:42	05/27/15 22:18	

TestAmerica Buffalo

6/5/2015

2

4

6

0

11

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80693-1

Client Sample ID: SWMU13-SS-01 Lab Sample ID: 480-80693-9

Date Collected: 05/19/15 16:10 Matrix: Solid

Date Received: 05/20/15 09:00 Percent Solids: 91.3

Analyte	Result	Qualifier	RI	_	MDL	Unit		D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.4	4	0.54	ug/Kg		\	05/20/15 14:42	05/27/15 22:18	1
Xylenes, Total	ND		8.8	3	0.74	ug/Kg		₩	05/20/15 14:42	05/27/15 22:18	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS N	o.	Prepared	Analyzed	Dil Fac
Silanol, trimethyl-	29	TJN	ug/Kg	\	8.	.34	1066-40	-6	05/20/15 14:42	05/27/15 22:18	1
Methane, dibromofluoro-	19	TJN	ug/Kg	☆	9.	.26	1868-53	-7	05/20/15 14:42	05/27/15 22:18	1
Unknown	8.4	TJ	ug/Kg	☆	12	.81			05/20/15 14:42	05/27/15 22:18	1
Tetrasiloxane, decamethyl-	53	TJN	ug/Kg	₩	16	.37	141-62	-8	05/20/15 14:42	05/27/15 22:18	1
Benzene, 1,3-diethyl-	31	TJN	ug/Kg	☆	17.	.19	141-93	-5	05/20/15 14:42	05/27/15 22:18	1
Unknown	180	ΤJ	ug/Kg	₩	18	.62			05/20/15 14:42	05/27/15 22:18	1
Surrogate	%Recovery	Qualifier	Limits						Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		64 - 126	_					05/20/15 14:42	05/27/15 22:18	1
Toluene-d8 (Surr)	98		71 - 125						05/20/15 14:42	05/27/15 22:18	1
4-Bromofluorobenzene (Surr)	100		72 - 126						05/20/15 14:42	05/27/15 22:18	1

3

4

7

0

10

11

13

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 05/19/15 16:27

Date Received: 05/20/15 09:00

Trichloroethene

Trichlorofluoromethane

Client Sample ID: SWMU23-SS-01

TestAmerica Job ID: 480-80693-1

Lab Sample ID: 480-80693-10

Matrix: Solid Percent Solids: 93.2

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
1,1,1-Trichloroethane	ND	4.8	0.35	ug/Kg	₩	05/20/15 14:42	05/27/15 22:46	
1,1,2,2-Tetrachloroethane	ND	4.8	0.78	ug/Kg	₩	05/20/15 14:42	05/27/15 22:46	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.8	1.1	ug/Kg	☼	05/20/15 14:42	05/27/15 22:46	
1,1,2-Trichloroethane	ND	4.8	0.63	ug/Kg	\$	05/20/15 14:42	05/27/15 22:46	
1,1-Dichloroethane	ND	4.8	0.59	ug/Kg	☼	05/20/15 14:42	05/27/15 22:46	
1,1-Dichloroethene	ND	4.8	0.59	ug/Kg	☼	05/20/15 14:42	05/27/15 22:46	
I,2,3-Trichlorobenzene	ND	4.8	0.51	ug/Kg	₽	05/20/15 14:42	05/27/15 22:46	
,2,4-Trichlorobenzene	ND	4.8	0.29	ug/Kg	≎	05/20/15 14:42	05/27/15 22:46	
1,2-Dibromo-3-Chloropropane	ND	4.8	2.4	ug/Kg	☼	05/20/15 14:42	05/27/15 22:46	
1,2-Dichlorobenzene	ND	4.8	0.38	ug/Kg	Ф	05/20/15 14:42	05/27/15 22:46	
1,2-Dichloroethane	ND	4.8		ug/Kg	₽	05/20/15 14:42	05/27/15 22:46	
1,2-Dichloropropane	ND	4.8		ug/Kg	₽	05/20/15 14:42	05/27/15 22:46	
1,3-Dichlorobenzene	ND	4.8		ug/Kg	 ф	05/20/15 14:42	05/27/15 22:46	
1,4-Dichlorobenzene	ND	4.8		ug/Kg	₽		05/27/15 22:46	
1,4-Dioxane	ND	96	21	ug/Kg	₽		05/27/15 22:46	
2-Hexanone	ND	24		ug/Kg	· · · · · · · · · · · · · · · · · · ·		05/27/15 22:46	
Acetone	ND	24		ug/Kg	☆		05/27/15 22:46	
Benzene	ND	4.8		ug/Kg	₽		05/27/15 22:46	
Bromoform	ND	4.8		ug/Kg			05/27/15 22:46	
Bromomethane	ND	4.8		ug/Kg	₽		05/27/15 22:46	
Carbon disulfide	ND	4.8		ug/Kg	₩		05/27/15 22:46	
Carbon tetrachloride	ND	4.8		ug/Kg	· · · · · · · · · · · · · · · · · · ·		05/27/15 22:46	
Chlorobenzene	ND	4.8		ug/Kg	₽		05/27/15 22:46	
Bromochloromethane	ND	4.8		ug/Kg ug/Kg	ŭ		05/27/15 22:46	
Dibromochloromethane	ND	4.8		ug/Kg			05/27/15 22:46	
Chloroethane	ND	4.8	1.1	ug/Kg	₽		05/27/15 22:46	
Chloroform	ND ND	4.8		ug/Kg ug/Kg	т ф		05/27/15 22:46	
Chloromethane	ND	4.8		ug/Kg ug/Kg			05/27/15 22:46	
cis-1,2-Dichloroethene	ND ND	4.8		ug/Kg ug/Kg	т ф		05/27/15 22:46	
•	ND ND	4.0 4.8		ug/Kg ug/Kg	~ ☆		05/27/15 22:46	
cis-1,3-Dichloropropene					· · · · · · · · · · · · · · · · · · ·			
Cyclohexane Bromodichloromethane	ND ND	4.8		ug/Kg	₩		05/27/15 22:46 05/27/15 22:46	
		4.8		ug/Kg				
Dichlorodifluoromethane	ND	4.8		ug/Kg			05/27/15 22:46	
Ethylbenzene	ND	4.8		ug/Kg	φ.		05/27/15 22:46	
I,2-Dibromoethane (EDB)	ND	4.8		ug/Kg	☆		05/27/15 22:46	
sopropylbenzene	ND	4.8		ug/Kg			05/27/15 22:46	
Methyl acetate	ND	4.8		ug/Kg	±.		05/27/15 22:46	
2-Butanone (MEK)	ND	24		ug/Kg	φ.		05/27/15 22:46	
l-Methyl-2-pentanone (MIBK)	ND	24		ug/Kg	: .		05/27/15 22:46	
Methyl tert-butyl ether	ND	4.8		ug/Kg	₽.		05/27/15 22:46	
Methylcyclohexane	ND	4.8		ug/Kg	₽.		05/27/15 22:46	
Methylene Chloride	ND	4.8		ug/Kg			05/27/15 22:46	
Styrene	ND	4.8		ug/Kg	Ď.		05/27/15 22:46	
Гetrachloroethene	ND	4.8		ug/Kg	☼		05/27/15 22:46	
Toluene	ND	4.8	0.36	ug/Kg	₩	05/20/15 14:42	05/27/15 22:46	
rans-1,2-Dichloroethene	ND	4.8	0.50	ug/Kg	₽	05/20/15 14:42	05/27/15 22:46	
rans-1,3-Dichloropropene	ND	4.8	2.1	ug/Kg	₩	05/20/15 14:42	05/27/15 22:46	
Totale Lanca a Alexandra	ND	4.0	4.4		**	05/00/45 44:40	05/27/15 22:46	

TestAmerica Buffalo

6/5/2015

☼ 05/20/15 14:42 05/27/15 22:46

© 05/20/15 14:42 05/27/15 22:46

Page 24 of 45

4.8

4.8

1.1 ug/Kg

0.46 ug/Kg

ND

0.60 J

2

2

5

7

0

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU23-SS-01

Date Collected: 05/19/15 16:27

Date Received: 05/20/15 09:00

TestAmerica Job ID: 480-80693-1

Lab Sample ID: 480-80693-10

Matrix: Solid

Percent Solids: 93.2

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Co	ntinu	(baı					
Analyte	Result	Qualifier	RL		MDL	Unit	[Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.8		0.59	ug/Kg	3	05/20/15 14:42	05/27/15 22:46	1
Xylenes, Total	ND		9.6		0.81	ug/Kg	3	05/20/15 14:42	05/27/15 22:46	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No	. Prepared	Analyzed	Dil Fac
Unknown	20	TJ	ug/Kg	\	8	.34		05/20/15 14:42	05/27/15 22:46	1
Methane, dibromofluoro-	22	TJN	ug/Kg	☼	9	.26	1868-53-	7 05/20/15 14:42	05/27/15 22:46	1
Unknown	6.5	TJ	ug/Kg	☼	12	.81		05/20/15 14:42	05/27/15 22:46	1
Trisiloxane, octamethyl-	61	TJN	ug/Kg	\$	13	.40	107-51-	7 05/20/15 14:42	05/27/15 22:46	1
Tetrasiloxane, decamethyl-	79	TJN	ug/Kg	☼	16	.38	141-62-	3 05/20/15 14:42	05/27/15 22:46	1
Unknown	100	ΤJ	ug/Kg	₩	18	.62		05/20/15 14:42	05/27/15 22:46	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	112		64 - 126					05/20/15 14:42	05/27/15 22:46	1
Toluene-d8 (Surr)	97		71 - 125					05/20/15 14:42	05/27/15 22:46	1
4-Bromofluorobenzene (Surr)	98		72 - 126					05/20/15 14:42	05/27/15 22:46	1

TestAmerica Buffalo

3

5

7

ŏ

46

11

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80693-1

Lab Sample ID: 480-80693-11

Matrix: Water

Client Sample ID: TRIP BLANK

Date Collected: 05/19/15 00:00 Date Received: 05/20/15 09:00

Method: 8260C - Volatile Orgar ^{Analyte}	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND —	1.0	0.82	ug/L			05/29/15 01:00	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			05/29/15 01:00	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			05/29/15 01:00	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			05/29/15 01:00	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			05/29/15 01:00	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			05/29/15 01:00	1
1,2,3-Trichlorobenzene	ND	1.0	0.41	ug/L			05/29/15 01:00	1
1,2,4-Trichlorobenzene	ND	1.0		ug/L			05/29/15 01:00	1
1,2-Dibromo-3-Chloropropane	ND	1.0		ug/L			05/29/15 01:00	1
1,2-Dibromoethane (EDB)	ND	1.0		ug/L			05/29/15 01:00	1
1,2-Dichlorobenzene	ND	1.0		ug/L			05/29/15 01:00	1
1,2-Dichloroethane	ND	1.0	0.21	-			05/29/15 01:00	1
1,2-Dichloropropane	ND	1.0		ug/L			05/29/15 01:00	1
1,3-Dichlorobenzene	ND	1.0	0.78	-			05/29/15 01:00	1
1,4-Dichlorobenzene	ND	1.0	0.84	-			05/29/15 01:00	1
1,4-Dioxane	ND	40		ug/L			05/29/15 01:00	· · · · · · · · · · · · · · · · · · ·
2-Butanone (MEK)	ND	10		ug/L			05/29/15 01:00	1
2-Hexanone	ND	5.0		ug/L			05/29/15 01:00	1
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			05/29/15 01:00	1
Acetone	ND	10		ug/L			05/29/15 01:00	1
Benzene	ND	1.0	0.41	-			05/29/15 01:00	1
Bromochloromethane	ND	1.0		ug/L			05/29/15 01:00	
Bromodichloromethane	ND	1.0	0.39				05/29/15 01:00	1
Bromoform	ND ND	1.0	0.39	-			05/29/15 01:00	1
Bromomethane	ND ND	1.0	0.20	-			05/29/15 01:00	
Carbon disulfide	ND ND	1.0	0.09	-			05/29/15 01:00	
Carbon disullide Carbon tetrachloride	ND ND	1.0	0.19	-			05/29/15 01:00	1
Chlorophana	ND ND	1.0	0.75	-			05/29/15 01:00	1
Chloroethane		1.0	0.32	-			05/29/15 01:00	1
Chloroform	ND	1.0	0.34	-			05/29/15 01:00	
Chloromethane	ND	1.0		ug/L			05/29/15 01:00	1
cis-1,2-Dichloroethene	ND	1.0	0.81	_			05/29/15 01:00	1
cis-1,3-Dichloropropene	ND	1.0	0.36	-			05/29/15 01:00	1
Cyclohexane	ND	1.0	0.18				05/29/15 01:00	1
Dibromochloromethane	ND	1.0	0.32	-			05/29/15 01:00	1
Dichlorodifluoromethane	ND	1.0		ug/L			05/29/15 01:00	1
Ethylbenzene	ND	1.0		ug/L			05/29/15 01:00	1
sopropylbenzene	ND	1.0		ug/L			05/29/15 01:00	1
Methyl acetate	ND	2.5		ug/L			05/29/15 01:00	1
Methyl tert-butyl ether	ND	1.0		ug/L			05/29/15 01:00	1
Methylcyclohexane	ND	1.0		ug/L			05/29/15 01:00	1
Methylene Chloride	ND	1.0		ug/L			05/29/15 01:00	1
Styrene	ND	1.0	0.73	ug/L			05/29/15 01:00	1
Tetrachloroethene	ND	1.0	0.36	ug/L			05/29/15 01:00	1
Toluene	ND	1.0	0.51	ug/L			05/29/15 01:00	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			05/29/15 01:00	1
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			05/29/15 01:00	1
Trichloroethene	ND	1.0	0.46	ug/L			05/29/15 01:00	1

TestAmerica Buffalo

2

5

7

9

11

13

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80693-1

Lab Sample ID: 480-80693-11

Matrix: Water

Client Sample ID: TRIP BLANK
Date Collected: 05/19/15 00:00

Date Received: 05/20/15 09:00

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		1.0		0.90	ug/L			05/29/15 01:00	1
Xylenes, Total	ND		2.0		0.66	ug/L			05/29/15 01:00	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L						05/29/15 01:00	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		66 - 137						05/29/15 01:00	1
4-Bromofluorobenzene (Surr)	98		73 - 120						05/29/15 01:00	1
Toluene-d8 (Surr)	97		71 - 126						05/29/15 01:00	1
Dibromofluoromethane (Surr)	9.3		60 - 140						05/29/15 01:00	

TestAmerica Job ID: 480-80693-1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surr
		12DCE	TOL	BFB
Lab Sample ID	Client Sample ID	(64-126)	(71-125)	(72-126)
480-80693-1	SWMU7-SS-BLDG 23-01	102	101	95
480-80693-2	SWMU7-SS-BLDG 23-02	104	101	95
480-80693-3	SWMU7-SS-BLDG 23-100	103	101	96
480-80693-4	SWMU7-SS-BLDG 23-03	110	98	99
480-80693-5	SWMU7-SS-BLDG 23-04	109	98	100
480-80693-6	SWMU7-SS-BLDG 23-05	110	96	98
480-80693-7	SWMU7-SS-BLDG 23-06	106	106	105
480-80693-8	SWMU7-SS-BLDG 23-07	102	94	101
480-80693-8 MS	SWMU7-SS-BLDG 23-07	87	97	93
480-80693-8 MSD	SWMU7-SS-BLDG 23-07	85	102	97
480-80693-9	SWMU13-SS-01	107	98	100
480-80693-10	SWMU23-SS-01	112	97	98
LCS 480-243659/1-A	Lab Control Sample	106	103	99

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)							
		12DCE	BFB	TOL	DBFM				
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)	(60-140)				
480-80693-11	TRIP BLANK	101	98	97	93				
LCS 480-245024/4	Lab Control Sample	97	102	101	100				
MB 480-245024/6	Method Blank	95	96	98	93				

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Page 28 of 45

TestAmerica Job ID: 480-80693-1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

4

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: LCS 480-243659/1-A Matrix: Solid							: Lab Control Sample Prep Type: Total/NA
Analysis Batch: 244705							Prep Batch: 243659
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	49.8	45.3		ug/Kg		91	77 - 121
1,1,2,2-Tetrachloroethane	49.8	52.8		ug/Kg		106	80 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	49.8	42.8		ug/Kg		86	60 - 140
ne						400	70 400
1,1,2-Trichloroethane	49.8	49.6		ug/Kg		100	78 ₋ 122
1,1-Dichloroethane	49.8	46.3		ug/Kg		93	73 - 126
1,1-Dichloroethene	49.8	44.4		ug/Kg		89	59 - 125
1,2,3-Trichlorobenzene	49.8	45.3		ug/Kg		91	60 - 120
1,2,4-Trichlorobenzene	49.8	46.6		ug/Kg		94	64 - 120
1,2-Dibromo-3-Chloropropane	49.8	57.2		ug/Kg		115	63 - 124
1,2-Dichlorobenzene	49.8	46.1		ug/Kg		93	75 - 120
1,2-Dichloroethane	49.8	47.7		ug/Kg		96	77 - 122 75 - 124
1,2-Dichloropropane	49.8	46.2		ug/Kg		93	75 - 124
1,3-Dichlorobenzene	49.8	45.3		ug/Kg		91	74 - 120
1,4-Dichlorobenzene	49.8	44.7		ug/Kg		90	73 - 120
2-Hexanone	249	286		ug/Kg		115	59 - 130
Acetone	249	270		ug/Kg		109	61 - 137
Benzene	49.8	45.6		ug/Kg		92	79 - 127
Bromochloromethane	49.8	48.3		ug/Kg		97	75 - 134
Bromoform	49.8	53.5		ug/Kg		107	68 - 126
Bromomethane	49.8	46.6		ug/Kg		93	37 - 149
Carbon disulfide	49.8	43.9		ug/Kg		88	64 - 131
Carbon tetrachloride	49.8	45.5		ug/Kg		91	75 - 135
Chlorobenzene	49.8	45.4		ug/Kg		91	76 - 124
Chloroethane	49.8	45.6		ug/Kg		91	69 - 135
Bromodichloromethane	49.8	48.6		ug/Kg		98	80 - 122
Chloroform	49.8	46.0		ug/Kg		92	80 - 118
Chloromethane	49.8	42.7		ug/Kg		86	63 - 127
cis-1,2-Dichloroethene	49.8	46.2		ug/Kg		93	81 - 117
1,2-Dibromoethane (EDB)	49.8	51.2		ug/Kg		103	78 - 120
cis-1,3-Dichloropropene	49.8	48.8		ug/Kg		98	82 - 120
Cyclohexane	49.8	43.7		ug/Kg		88	65 - 106
Dibromochloromethane	49.8	52.4		ug/Kg		105	76 - 125
2-Butanone (MEK)	249	285		ug/Kg		115	70 - 134
Dichlorodifluoromethane	49.8	43.2		ug/Kg		87	57 - 142
4-Methyl-2-pentanone (MIBK)	249	284		ug/Kg		114	65 - 133
Ethylbenzene	49.8	44.9		ug/Kg		90	80 - 120
Isopropylbenzene	49.8	46.5		ug/Kg		93	72 - 120
Methyl acetate	249	275		ug/Kg		110	55 - 136
Methyl tert-butyl ether	49.8	50.8		ug/Kg		102	63 - 125
Methylcyclohexane	49.8	42.8		ug/Kg		86	60 - 140
Methylene Chloride	49.8	48.0		ug/Kg		96	61 - 127
Styrene	49.8	46.5		ug/Kg		93	80 - 120
Tetrachloroethene	49.8	44.1		ug/Kg		89	74 - 122
Toluene	49.8	45.5		ug/Kg		91	74 - 128
trans-1,2-Dichloroethene	49.8	44.9		ug/Kg		90	78 ₋ 126
trans-1,3-Dichloropropene	49.8	50.2		ug/Kg		101	73 - 123
Trichloroethene	49.8	46.1		ug/Kg		93	77 - 129

TestAmerica Buffalo

3

4

6

8

10

11

Client: Woodard & Curran, Inc.

Project/Site: Rouses Point

TestAmerica Job ID: 480-80693-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

100 100

ND

ND F1

Lab Sample ID: LCS 480-243659/1-A

Client Sample ID: Lab Control Sample
Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 244705

Dichlorodifluoromethane

Ethylbenzene

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Trichlorofluoromethane	49.8	43.8		ug/Kg		88	65 - 146	
Vinyl chloride	49.8	47.7		ug/Kg		96	61 - 133	
Xylenes, Total	99.6	91.1		ug/Kg		91	70 - 130	

	LUS	LUS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	106		64 - 126
Toluene-d8 (Surr)	103		71 - 125
4-Bromofluorobenzene (Surr)	99		72 - 126

Lab Sample ID: 480-80693-8 MS Client Sample ID: SWMU7-SS-BLDG 23-07

Matrix: Solid									Prep Type: Total/NA
Analysis Batch: 244705	Sample	Sample	Spike	MS	MS				Prep Batch: 243659 %Rec.
Analyte	-	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	ND		47.9	36.9		ug/Kg	<u>−</u>	77	77 - 121
1,1,2,2-Tetrachloroethane	ND		47.9	33.3	F1	ug/Kg	☆	70	80 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		47.9	31.1		ug/Kg	☆	65	60 - 140
ne						3 3			
1,1,2-Trichloroethane	ND	F1	47.9	37.8		ug/Kg	₩	79	78 - 122
1,1-Dichloroethane	ND		47.9	38.7		ug/Kg	≎	81	73 - 126
1,1-Dichloroethene	ND		47.9	34.9		ug/Kg	≎	73	59 ₋ 125
1,2,3-Trichlorobenzene	ND	F1	47.9	24.6	F1	ug/Kg	₩.	51	60 - 120
1,2,4-Trichlorobenzene	ND	F1	47.9	27.7	F1	ug/Kg	☆	58	64 - 120
1,2-Dibromo-3-Chloropropane	ND	F1	47.9	30.0	F1	ug/Kg	☆	62	63 - 124
1,2-Dichlorobenzene	ND	F1	47.9	35.2	F1	ug/Kg	\$	73	75 - 120
1,2-Dichloroethane	ND	F1	47.9	36.5	F1	ug/Kg	≎	76	77 - 122
1,2-Dichloropropane	ND		47.9	39.0		ug/Kg	≎	81	75 ₋ 124
1,3-Dichlorobenzene	ND	F1	47.9	35.0	F1	ug/Kg	₩	73	74 - 120
1,4-Dichlorobenzene	ND		47.9	34.4		ug/Kg	☆	72	73 - 120
2-Hexanone	ND	F1	240	153		ug/Kg	≎	64	59 - 130
Acetone	ND		240	134	F1	ug/Kg		56	61 - 137
Benzene	ND	F1	47.9	38.2		ug/Kg	☆	80	79 - 127
Bromoform	ND		47.9	34.1		ug/Kg	≎	71	68 - 126
Bromomethane	ND		47.9	40.3		ug/Kg		84	37 - 149
Carbon disulfide	ND		47.9	33.2		ug/Kg	₩	69	64 - 131
Carbon tetrachloride	ND	F1	47.9	35.3	F1	ug/Kg	₩	74	75 ₋ 135
Chlorobenzene	ND		47.9	37.7		ug/Kg		79	76 - 124
Bromochloromethane	ND		47.9	38.6		ug/Kg	₩	81	75 - 134
Dibromochloromethane	ND		47.9	40.5		ug/Kg	₩	84	76 ₋ 125
Chloroethane	ND		47.9	38.8		ug/Kg		81	69 - 135
Chloroform	ND	F1	47.9	38.8		ug/Kg ug/Kg	₩	81	80 - 118
Chloromethane	ND		47.9	36.4		ug/Kg ug/Kg	≎	76	63 - 127
cis-1,2-Dichloroethene	ND		47.9	38.6	F1	ug/Kg		80	81 - 117
cis-1,3-Dichloropropene	ND ND		47.9 47.9	38.6		ug/Kg ug/Kg	☆	81	82 - 120
Cyclohexane	ND ND		47.9	31.7	1 1			66	65 - 106
Bromodichloromethane	ND ND	1.1	47.9	39.9		ug/Kg		83	80 - 122
ыоточения	ND		47.9	39.9		ug/Kg	244	63	00 - 122

TestAmerica Buffalo

₩

64

74

57 - 142

80 - 120

ug/Kg

ug/Kg

47.9

47.9

30.9

35.4 F1

3

4

Prep Batch: 243659

6

8

46

11

12

TestAmerica Job ID: 480-80693-1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-80693-8 MS

Matrix: Solid

Analysis Batch: 244705

Client Sample ID: SWMU7-SS-BLDG 23-07

Prep Type: Total/NA **Prep Batch: 243659**

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane (EDB)	ND	F1	47.9	36.8	F1	ug/Kg	\	77	78 - 120	
Isopropylbenzene	ND		47.9	38.4		ug/Kg		80	72 - 120	
Methyl acetate	ND		240	152		ug/Kg	☼	63	55 - 136	
2-Butanone (MEK)	ND	F1	240	142	F1	ug/Kg		59	70 - 134	
4-Methyl-2-pentanone (MIBK)	ND	F1	240	151	F1	ug/Kg	☼	63	65 - 133	
Methyl tert-butyl ether	ND		47.9	37.7		ug/Kg	₩	79	63 - 125	
Methylcyclohexane	ND		47.9	30.0		ug/Kg		63	60 - 140	
Methylene Chloride	ND		47.9	39.7		ug/Kg	☼	83	61 - 127	
Styrene	ND	F1	47.9	34.3	F1	ug/Kg	₩	72	80 - 120	
Tetrachloroethene	ND	F1	47.9	35.1	F1	ug/Kg		73	74 - 122	
Toluene	ND		47.9	35.4		ug/Kg	₩	74	74 - 128	
trans-1,2-Dichloroethene	ND	F1	47.9	37.2		ug/Kg	₩	78	78 - 126	
trans-1,3-Dichloropropene	ND		47.9	37.6		ug/Kg	₩.	79	73 - 123	
Trichloroethene	ND	F1	47.9	38.9		ug/Kg	☼	81	77 - 129	
Trichlorofluoromethane	5.7	F2	47.9	67.1		ug/Kg	₩	128	65 - 146	
Vinyl chloride	ND		47.9	35.1		ug/Kg		73	61 - 133	

MS MS

Surrogate	%Recovery (Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	87		64 - 126
Toluene-d8 (Surr)	97		71 - 125
4-Bromofluorobenzene (Surr)	93		72 - 126

Client Sample ID: SWMU7-SS-BLDG 23-07

Matrix: Solid

Lab Sample ID: 480-80693-8 MSD

ment oumpie ib. on	INIOT OO DEDO EO OT
	Prep Type: Total/NA
	Pron Batch: 243659

Analysis Batch: 244705									Prep Ba	atch: 24	43659
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND	F1	53.1	39.8	F1	ug/Kg	<u></u>	75	77 - 121	7	30
1,1,2,2-Tetrachloroethane	ND	F1	53.1	38.1	F1	ug/Kg	☼	72	80 - 120	13	30
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		53.1	33.7		ug/Kg	₩	63	60 - 140	8	30
ne 1,1,2-Trichloroethane	ND.		53.1	40.1	F1	ug/Kg		75	78 - 122	6	30
1,1-Dichloroethane	ND		53.1	41.9		ug/Kg	₩	79	73 - 126	8	30
1,1-Dichloroethene	ND		53.1	38.3		ug/Kg	☼	72	59 - 125	9	30
1,2,3-Trichlorobenzene	ND	F1	53.1	28.1	F1	ug/Kg	₩.	53	60 - 120	13	30
1,2,4-Trichlorobenzene	ND	F1	53.1	31.5	F1	ug/Kg	₩	59	64 - 120	13	30
1,2-Dibromo-3-Chloropropane	ND	F1	53.1	31.9	F1	ug/Kg	₩	60	63 - 124	6	30
1,2-Dichlorobenzene	ND	F1	53.1	39.1	F1	ug/Kg	₩.	74	75 - 120	11	30
1,2-Dichloroethane	ND	F1	53.1	39.1	F1	ug/Kg	₩	74	77 - 122	7	30
1,2-Dichloropropane	ND		53.1	43.3		ug/Kg	₩	82	75 - 124	10	30
1,3-Dichlorobenzene	ND	F1	53.1	39.2		ug/Kg	₩.	74	74 - 120	11	30
1,4-Dichlorobenzene	ND	F1	53.1	38.8		ug/Kg	₩	73	73 - 120	12	30
2-Hexanone	ND	F1	265	153	F1	ug/Kg	₩	58	59 - 130	0	30
Acetone	ND	F1	265	138	F1	ug/Kg	₩.	52	61 - 137	3	30
Benzene	ND	F1	53.1	41.5	F1	ug/Kg	☼	78	79 - 127	8	30
Bromoform	ND		53.1	39.6		ug/Kg	₩	75	68 - 126	15	30
Bromomethane	ND		53.1	45.0		ug/Kg	₩	85	37 - 149	11	30
Carbon disulfide	ND		53.1	37.8		ug/Kg	☼	71	64 - 131	13	30

TestAmerica Buffalo

Page 31 of 45

6/5/2015

TestAmerica Job ID: 480-80693-1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-80693-8 MSD

Matrix: Solid

Analysis Batch: 244705

Client Sample ID: SWMU7-SS-BLDG 23-07

Prep Type: Total/NA

Prep Batch: 243659

_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Carbon tetrachloride	ND	F1	53.1	37.8	F1	ug/Kg	<u> </u>	71	75 - 135	7	30
Chlorobenzene	ND		53.1	41.5		ug/Kg	₩.	78	76 - 124	10	30
Bromochloromethane	ND		53.1	41.6		ug/Kg	☼	78	75 - 134	7	30
Dibromochloromethane	ND		53.1	42.8		ug/Kg	₩	81	76 - 125	6	30
Chloroethane	ND		53.1	43.2		ug/Kg		81	69 - 135	11	30
Chloroform	ND	F1	53.1	41.9	F1	ug/Kg	₩	79	80 - 118	8	30
Chloromethane	ND		53.1	39.3		ug/Kg	☼	74	63 - 127	8	30
cis-1,2-Dichloroethene	ND	F1	53.1	42.7	F1	ug/Kg	₽	80	81 - 117	10	30
cis-1,3-Dichloropropene	ND	F1	53.1	42.5	F1	ug/Kg	₩	80	82 - 120	10	30
Cyclohexane	ND	F1	53.1	34.0	F1	ug/Kg	☼	64	65 - 106	7	30
Bromodichloromethane	ND		53.1	43.3		ug/Kg	₩.	82	80 - 122	8	30
Dichlorodifluoromethane	ND		53.1	34.0		ug/Kg	₩	64	57 - 142	10	30
Ethylbenzene	ND	F1	53.1	39.7	F1	ug/Kg	☼	75	80 - 120	11	30
1,2-Dibromoethane (EDB)	ND	F1	53.1	39.9	F1	ug/Kg	₩.	75	78 - 120	8	30
Isopropylbenzene	ND		53.1	41.0		ug/Kg	☼	77	72 - 120	6	30
Methyl acetate	ND		265	169		ug/Kg	☼	64	55 - 136	10	30
2-Butanone (MEK)	ND	F1	265	146	F1	ug/Kg	₩.	55	70 - 134	3	30
4-Methyl-2-pentanone (MIBK)	ND	F1	265	166	F1	ug/Kg	₩	62	65 - 133	9	30
Methyl tert-butyl ether	ND		53.1	41.9		ug/Kg	☼	79	63 - 125	11	30
Methylcyclohexane	ND		53.1	31.9		ug/Kg	₩.	60	60 - 140	6	30
Methylene Chloride	ND		53.1	44.0		ug/Kg	☼	83	61 - 127	10	30
Styrene	ND	F1	53.1	40.7	F1	ug/Kg	☼	77	80 - 120	17	30
Tetrachloroethene	ND	F1	53.1	37.7	F1	ug/Kg	₩.	71	74 - 122	7	30
Toluene	ND		53.1	40.9		ug/Kg	☼	77	74 - 128	14	30
trans-1,2-Dichloroethene	ND	F1	53.1	40.4	F1	ug/Kg	☼	76	78 ₋ 126	8	30
trans-1,3-Dichloropropene	ND		53.1	40.4		ug/Kg	₩.	76	73 - 123	7	30
Trichloroethene	ND	F1	53.1	40.5	F1	ug/Kg	₩	76	77 - 129	4	30
Trichlorofluoromethane	5.7	F2	53.1	44.3	F2	ug/Kg	₩	73	65 - 146	41	30
Vinyl chloride	ND		53.1	41.9		ug/Kg	₩	79	61 - 133	18	30

MSD MSD

MB MB

%Recovery	Qualifier	Limits
85		64 - 126
102		71 - 125
97		72 - 126
	85 102	102

Lab Sample ID: MB 480-245024/6

Matrix: Water

Analysis Batch: 245024

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			05/28/15 23:16	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			05/28/15 23:16	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			05/28/15 23:16	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			05/28/15 23:16	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			05/28/15 23:16	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			05/28/15 23:16	1
1,2,3-Trichlorobenzene	ND		1.0	0.41	ug/L			05/28/15 23:16	1
1.2.4-Trichlorobenzene	ND		1.0	0.41	ua/L			05/28/15 23:16	1

TestAmerica Buffalo

Page 32 of 45

Client: Woodard & Curran, Inc.

Project/Site: Rouses Point

TestAmerica Job ID: 480-80693-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-245024/6
Matrix: Water

Client Sample ID: Method Blank
Prep Type: Total/NA

Analysis Batch: 245024	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L		-	05/28/15 23:16	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			05/28/15 23:16	
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/28/15 23:16	•
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/28/15 23:16	•
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			05/28/15 23:16	
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			05/28/15 23:16	
1,4-Dioxane	ND		40	9.3	ug/L			05/28/15 23:16	•
2-Hexanone	ND		5.0	1.2	ug/L			05/28/15 23:16	
Acetone	ND		10	3.0	ug/L			05/28/15 23:16	•
Benzene	ND		1.0	0.41	ug/L			05/28/15 23:16	•
Bromochloromethane	ND		1.0	0.87	ug/L			05/28/15 23:16	,
Bromoform	ND		1.0	0.26	ug/L			05/28/15 23:16	
Bromomethane	ND		1.0	0.69	ug/L			05/28/15 23:16	•
Carbon disulfide	ND		1.0	0.19	ug/L			05/28/15 23:16	• • • • • • •
Carbon tetrachloride	ND		1.0	0.27	ug/L			05/28/15 23:16	
Chlorobenzene	ND		1.0	0.75	ug/L			05/28/15 23:16	
Chloroethane	ND		1.0		ug/L			05/28/15 23:16	• • • • • • • • • • • • • • • • • • • •
Bromodichloromethane	ND		1.0		ug/L			05/28/15 23:16	
Chloroform	ND		1.0		ug/L			05/28/15 23:16	
Chloromethane	ND		1.0		ug/L			05/28/15 23:16	
cis-1,2-Dichloroethene	ND		1.0		ug/L			05/28/15 23:16	
1,2-Dibromoethane (EDB)	ND		1.0		ug/L			05/28/15 23:16	
cis-1,3-Dichloropropene	ND		1.0		ug/L			05/28/15 23:16	· · · · · .
Cyclohexane	ND		1.0		ug/L			05/28/15 23:16	
Dibromochloromethane	ND		1.0		ug/L			05/28/15 23:16	
2-Butanone (MEK)	ND		10		ug/L			05/28/15 23:16	
Dichlorodifluoromethane	ND		1.0		ug/L			05/28/15 23:16	
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			05/28/15 23:16	
Ethylbenzene	ND		1.0		ug/L			05/28/15 23:16	
Isopropylbenzene	ND		1.0		ug/L			05/28/15 23:16	
Methyl acetate	ND		2.5		ug/L			05/28/15 23:16	
Methyl tert-butyl ether	ND		1.0		ug/L			05/28/15 23:16	
Methylcyclohexane	ND		1.0		ug/L			05/28/15 23:16	
Methylene Chloride	ND		1.0		ug/L			05/28/15 23:16	
Styrene	ND		1.0		ug/L			05/28/15 23:16	
Tetrachloroethene	ND		1.0		ug/L			05/28/15 23:16	
Toluene	ND		1.0		ug/L			05/28/15 23:16	
trans-1,2-Dichloroethene	ND		1.0		ug/L			05/28/15 23:16	,
trans-1,3-Dichloropropene	ND		1.0		ug/L			05/28/15 23:16	
Trichloroethene	ND		1.0		ug/L			05/28/15 23:16	
Trichlorofluoromethane	ND		1.0		ug/L			05/28/15 23:16	,
Vinyl chloride	ND		1.0		ug/L			05/28/15 23:16	
Xylenes, Total	ND		2.0		ug/L			05/28/15 23:16	
Aylonos, Total	ND		2.0	0.00	ug/L			33/20/13/23.10	
	MB	MB							
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac

TestAmerica Buffalo

Page 33 of 45

2

3

5

7

g

11

13

Client: Woodard & Curran, Inc. TestAmerica Job ID: 480-80693-1 Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-245024/6

Matrix: Water

Analysis Batch: 245024

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB MB					
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	95	66 - 137		05/28/15 23:16	1	
Toluene-d8 (Surr)	98	71 - 126		05/28/15 23:16	1	
4-Bromofluorobenzene (Surr)	96	73 - 120		05/28/15 23:16	1	
Dibromofluoromethane (Surr)	93	60 - 140		05/28/15 23:16	1	
` ′						

Lab Sample ID: LCS 480-245024/4

Matrix: Water

Analysis Batch: 245024

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	25.0	22.8		ug/L		91	73 - 126
1,1,2,2-Tetrachloroethane	25.0	23.8		ug/L		95	70 - 126
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	22.5		ug/L		90	52 - 148
ne							
1,1,2-Trichloroethane	25.0	25.1		ug/L		100	76 - 122
1,1-Dichloroethane	25.0	23.0		ug/L		92	71 - 129
1,1-Dichloroethene	25.0	20.6		ug/L		82	58 - 121
1,2,3-Trichlorobenzene	25.0	23.1		ug/L		93	63 - 138
1,2,4-Trichlorobenzene	25.0	22.2		ug/L		89	70 - 122
1,2-Dibromo-3-Chloropropane	25.0	17.8		ug/L		71	56 - 134
1,2-Dichlorobenzene	25.0	23.2		ug/L		93	80 - 124
1,2-Dichloroethane	25.0	21.1		ug/L		84	75 - 127
1,2-Dichloropropane	25.0	23.3		ug/L		93	76 - 120
1,3-Dichlorobenzene	25.0	23.8		ug/L		95	77 - 120
1,4-Dichlorobenzene	25.0	23.6		ug/L		94	75 - 120
2-Hexanone	125	128		ug/L		102	65 - 127
Acetone	125	136		ug/L		109	56 - 142
Benzene	25.0	23.2		ug/L		93	71 - 124
Bromochloromethane	25.0	25.4		ug/L		101	72 - 130
Bromoform	25.0	20.2		ug/L		81	52 - 132
Bromomethane	25.0	20.1		ug/L		80	55 - 144
Carbon disulfide	25.0	16.8		ug/L		67	59 - 134
Carbon tetrachloride	25.0	21.4		ug/L		86	72 - 134
Chlorobenzene	25.0	23.3		ug/L		93	72 - 120
Chloroethane	25.0	26.7		ug/L		107	69 - 136
Bromodichloromethane	25.0	20.9		ug/L		84	80 - 122
Chloroform	25.0	22.7		ug/L		91	73 - 127
Chloromethane	25.0	25.1		ug/L		100	68 - 124
cis-1,2-Dichloroethene	25.0	22.3		ug/L		89	74 - 124
1,2-Dibromoethane (EDB)	25.0	23.8		ug/L		95	77 - 120
cis-1,3-Dichloropropene	25.0	22.2		ug/L		89	74 - 124
Cyclohexane	25.0	22.5		ug/L		90	59 - 135
Dibromochloromethane	25.0	22.0		ug/L		88	75 - 125
2-Butanone (MEK)	125	125		ug/L		100	57 - 140
Dichlorodifluoromethane	25.0	18.5		ug/L		74	59 - 135
4-Methyl-2-pentanone (MIBK)	125	123		ug/L		99	71 - 125
Ethylbenzene	25.0	23.1		ug/L		93	77 - 123
Isopropylbenzene	25.0	21.3		ug/L		85	77 - 122

TestAmerica Buffalo

Page 34 of 45

Client: Woodard & Curran, Inc.
Project/Site: Rouses Point

TestAmerica Job ID: 480-80693-1

4

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-245024/4

Matrix: Water

Analysis Batch: 245024

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl acetate	125	126		ug/L		101	74 - 133	
Methyl tert-butyl ether	25.0	21.6		ug/L		86	64 - 127	
Methylcyclohexane	25.0	22.0		ug/L		88	61 - 138	
Methylene Chloride	25.0	22.2		ug/L		89	57 - 132	
Styrene	25.0	22.2		ug/L		89	70 - 130	
Tetrachloroethene	25.0	24.0		ug/L		96	74 - 122	
Toluene	25.0	22.6		ug/L		90	80 - 122	
trans-1,2-Dichloroethene	25.0	22.7		ug/L		91	73 - 127	
trans-1,3-Dichloropropene	25.0	22.7		ug/L		91	72 - 123	
Trichloroethene	25.0	22.7		ug/L		91	74 - 123	
Trichlorofluoromethane	25.0	23.9		ug/L		96	62 - 152	
Vinyl chloride	25.0	22.3		ug/L		89	65 - 133	
Xylenes, Total	50.0	47.4		ug/L		95	76 - 122	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		66 - 137
Toluene-d8 (Surr)	101		71 - 126
4-Bromofluorobenzene (Surr)	102		73 - 120
Dibromofluoromethane (Surr)	100		60 - 140

5

6

8

9

10

11

40

14

TestAmerica Job ID: 480-80693-1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

GC/MS VOA

Prep Batch: 243659

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80693-1	SWMU7-SS-BLDG 23-01	Total/NA	Solid	5035A	_
480-80693-2	SWMU7-SS-BLDG 23-02	Total/NA	Solid	5035A	
480-80693-3	SWMU7-SS-BLDG 23-100	Total/NA	Solid	5035A	
480-80693-4	SWMU7-SS-BLDG 23-03	Total/NA	Solid	5035A	
480-80693-5	SWMU7-SS-BLDG 23-04	Total/NA	Solid	5035A	
480-80693-6	SWMU7-SS-BLDG 23-05	Total/NA	Solid	5035A	
480-80693-7	SWMU7-SS-BLDG 23-06	Total/NA	Solid	5035A	
480-80693-8	SWMU7-SS-BLDG 23-07	Total/NA	Solid	5035A	
480-80693-8 MS	SWMU7-SS-BLDG 23-07	Total/NA	Solid	5035A	
480-80693-8 MSD	SWMU7-SS-BLDG 23-07	Total/NA	Solid	5035A	
480-80693-9	SWMU13-SS-01	Total/NA	Solid	5035A	
480-80693-10	SWMU23-SS-01	Total/NA	Solid	5035A	
LCS 480-243659/1-A	Lab Control Sample	Total/NA	Solid	5035A	

Analysis Batch: 244705

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80693-1	SWMU7-SS-BLDG 23-01	Total/NA	Solid	8260C	243659
480-80693-2	SWMU7-SS-BLDG 23-02	Total/NA	Solid	8260C	243659
480-80693-3	SWMU7-SS-BLDG 23-100	Total/NA	Solid	8260C	243659
480-80693-4	SWMU7-SS-BLDG 23-03	Total/NA	Solid	8260C	243659
480-80693-5	SWMU7-SS-BLDG 23-04	Total/NA	Solid	8260C	243659
480-80693-6	SWMU7-SS-BLDG 23-05	Total/NA	Solid	8260C	243659
480-80693-7	SWMU7-SS-BLDG 23-06	Total/NA	Solid	8260C	243659
480-80693-8	SWMU7-SS-BLDG 23-07	Total/NA	Solid	8260C	243659
480-80693-8 MS	SWMU7-SS-BLDG 23-07	Total/NA	Solid	8260C	243659
480-80693-8 MSD	SWMU7-SS-BLDG 23-07	Total/NA	Solid	8260C	243659
480-80693-9	SWMU13-SS-01	Total/NA	Solid	8260C	243659
480-80693-10	SWMU23-SS-01	Total/NA	Solid	8260C	243659
LCS 480-243659/1-A	Lab Control Sample	Total/NA	Solid	8260C	243659

Analysis Batch: 245024

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80693-11	TRIP BLANK	Total/NA	Water	8260C	
LCS 480-245024/4	Lab Control Sample	Total/NA	Water	8260C	
MB 480-245024/6	Method Blank	Total/NA	Water	8260C	

General Chemistry

Analysis Batch: 243703

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80693-1	SWMU7-SS-BLDG 23-01	Total/NA	Solid	Moisture	_
480-80693-2	SWMU7-SS-BLDG 23-02	Total/NA	Solid	Moisture	
480-80693-3	SWMU7-SS-BLDG 23-100	Total/NA	Solid	Moisture	
480-80693-4	SWMU7-SS-BLDG 23-03	Total/NA	Solid	Moisture	
480-80693-5	SWMU7-SS-BLDG 23-04	Total/NA	Solid	Moisture	
480-80693-6	SWMU7-SS-BLDG 23-05	Total/NA	Solid	Moisture	
480-80693-7	SWMU7-SS-BLDG 23-06	Total/NA	Solid	Moisture	
480-80693-8	SWMU7-SS-BLDG 23-07	Total/NA	Solid	Moisture	
480-80693-8 MS	SWMU7-SS-BLDG 23-07	Total/NA	Solid	Moisture	
480-80693-8 MSD	SWMU7-SS-BLDG 23-07	Total/NA	Solid	Moisture	

TestAmerica Buffalo

Page 36 of 45

-

9

_

Q

10

12

4 4

QC Association Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80693-1

General Chemistry (Continued)

Analysis Batch: 243703 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80693-9	SWMU13-SS-01	Total/NA	Solid	Moisture	
480-80693-10	SWMU23-SS-01	Total/NA	Solid	Moisture	

4

5

40

11

13

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Lab Sample ID: 480-80693-1

Matrix: Solid

Client Sample ID: SWMU7-SS-BLDG 23-01 Date Collected: 05/19/15 08:25 Date Received: 05/20/15 09:00 Percent Solids: 95.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			243659	05/20/15 14:42	RAS	TAL BUF
Total/NA	Analysis	8260C		1	244705	05/27/15 18:39	RAS	TAL BUF
Total/NA	Analysis	Moisture		1	243703	05/20/15 17:34	RAS	TAL BUF

Client Sample ID: SWMU7-SS-BLDG 23-02 Lab Sample ID: 480-80693-2

Matrix: Solid

Date Collected: 05/19/15 08:45 Date Received: 05/20/15 09:00 Percent Solids: 84.5

10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			243659	05/20/15 14:42	RAS	TAL BUF
Total/NA	Analysis	8260C		1	244705	05/27/15 19:06	RAS	TAL BUF
Total/NA	Analysis	Moisture		1	243703	05/20/15 17:34	RAS	TAL BUF

Client Sample ID: SWMU7-SS-BLDG 23-100 Lab Sample ID: 480-80693-3

Matrix: Solid

Date Collected: 05/19/15 08:45 Date Received: 05/20/15 09:00 Percent Solids: 86.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			243659	05/20/15 14:42	RAS	TAL BUF
Total/NA	Analysis	8260C		1	244705	05/27/15 19:33	RAS	TAL BUF
Total/NA	Analysis	Moisture		1	243703	05/20/15 17:34	RAS	TAL BUF

Client Sample ID: SWMU7-SS-BLDG 23-03

Lab Sample ID: 480-80693-4 Matrix: Solid

Date Collected: 05/19/15 09:35 Date Received: 05/20/15 09:00

Percent Solids: 94.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			243659	05/20/15 14:42	RAS	TAL BUF
Total/NA	Analysis	8260C		1	244705	05/27/15 20:01	RAS	TAL BUF
Total/NA	Analysis	Moisture		1	243703	05/20/15 17:34	RAS	TAL BUF

Client Sample ID: SWMU7-SS-BLDG 23-04

Lab Sample ID: 480-80693-5

Matrix: Solid

Date Collected: 05/19/15 10:35 Date Received: 05/20/15 09:00

Percent Solids: 91.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			243659	05/20/15 14:42	RAS	TAL BUF
Total/NA	Analysis	8260C		1	244705	05/27/15 20:28	RAS	TAL BUF
Total/NA	Analysis	Moisture		1	243703	05/20/15 17:34	RAS	TAL BUF

TestAmerica Job ID: 480-80693-1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU7-SS-BLDG 23-05

Lab Sample ID: 480-80693-6 Date Collected: 05/19/15 12:55 **Matrix: Solid** Date Received: 05/20/15 09:00 Percent Solids: 85.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			243659	05/20/15 14:42	RAS	TAL BUF
Total/NA	Analysis	8260C		1	244705	05/27/15 20:56	RAS	TAL BUF
Total/NA	Analysis	Moisture		1	243703	05/20/15 17:34	RAS	TAL BUF

Client Sample ID: SWMU7-SS-BLDG 23-06 Lab Sample ID: 480-80693-7

Date Collected: 05/19/15 13:30 **Matrix: Solid** Date Received: 05/20/15 09:00 Percent Solids: 88.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			243659	05/20/15 14:42	RAS	TAL BUF
Total/NA	Analysis	8260C		1	244705	05/27/15 21:23	RAS	TAL BUF
Total/NA	Analysis	Moisture		1	243703	05/20/15 17:34	RAS	TAL BUF

Client Sample ID: SWMU7-SS-BLDG 23-07 Lab Sample ID: 480-80693-8

Date Collected: 05/19/15 15:35 **Matrix: Solid** Date Received: 05/20/15 09:00 Percent Solids: 93.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			243659	05/20/15 14:42	RAS	TAL BUF
Total/NA	Analysis	8260C		1	244705	05/27/15 21:51	RAS	TAL BUF
Total/NA	Analysis	Moisture		1	243703	05/20/15 17:34	RAS	TAL BUF

Client Sample ID: SWMU13-SS-01 Lab Sample ID: 480-80693-9

Date Collected: 05/19/15 16:10 **Matrix: Solid** Date Received: 05/20/15 09:00 Percent Solids: 91.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			243659	05/20/15 14:42	RAS	TAL BUF
Total/NA	Analysis	8260C		1	244705	05/27/15 22:18	RAS	TAL BUF
Total/NA	Analysis	Moisture		1	243703	05/20/15 17:35	RAS	TAL BUF

Client Sample ID: SWMU23-SS-01 Lab Sample ID: 480-80693-10

Date Collected: 05/19/15 16:27 **Matrix: Solid** Date Received: 05/20/15 09:00 Percent Solids: 93.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			243659	05/20/15 14:42	RAS	TAL BUF
Total/NA	Analysis	8260C		1	244705	05/27/15 22:46	RAS	TAL BUF
Total/NA	Analysis	Moisture		1	243703	05/20/15 17:35	RAS	TAL BUF

TestAmerica Buffalo

Page 39 of 45

Lab Chronicle

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80693-1

Lab Sample ID: 480-80693-11

Matrix: Water

Date Collected: 05/19/15 00:00

Date Received: 05/20/15 09:00

Client Sample ID: TRIP BLANK

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	245024	05/29/15 01:00	LJF	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80693-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
New York	NELAP		2	10026	03-31-16
The following analytes	s are included in this repo	rt, but certification is	s not offered by the g	overning authority:	
Analysis Method	Prep Method	Matrix	Analyt	e	
Moisture		Solid	Perce	nt Moisture	
Moisture Solid Perce		nt Solids			

3

4

5

6

8

10

11

13

14

Method Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80693-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

Δ

6

7

8

10

11

12

14

Sample Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80693-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-80693-1	SWMU7-SS-BLDG 23-01	Solid	05/19/15 08:25	05/20/15 09:00
480-80693-2	SWMU7-SS-BLDG 23-02	Solid	05/19/15 08:45	05/20/15 09:00
480-80693-3	SWMU7-SS-BLDG 23-100	Solid	05/19/15 08:45	05/20/15 09:00
480-80693-4	SWMU7-SS-BLDG 23-03	Solid	05/19/15 09:35	05/20/15 09:00
480-80693-5	SWMU7-SS-BLDG 23-04	Solid	05/19/15 10:35	05/20/15 09:00
480-80693-6	SWMU7-SS-BLDG 23-05	Solid	05/19/15 12:55	05/20/15 09:00
480-80693-7	SWMU7-SS-BLDG 23-06	Solid	05/19/15 13:30	05/20/15 09:00
480-80693-8	SWMU7-SS-BLDG 23-07	Solid	05/19/15 15:35	05/20/15 09:00
480-80693-9	SWMU13-SS-01	Solid	05/19/15 16:10	05/20/15 09:00
480-80693-10	SWMU23-SS-01	Solid	05/19/15 16:27	05/20/15 09:00
480-80693-11	TRIP BLANK	Water	05/19/15 00:00	05/20/15 09:00

3

4

O

7

8

9

10

10

13

14

Custody Record Chain of

Temperature on Receipt

Drinking Water? Yes □ No[文

[estAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Special Instructions/ Conditions of Receipt (A fee may be assessed if samples are retained — Months longer than 1 month) Time chain of Custody Number 293226 30ff | 5/20/1 Page Date Ash of Category B 480-80693 Chain of Custody Date 5-19-15 more space is needed) Analysis (Attach list il Lab Number Archive For ___ Sas 79/ 5-5 HOBN HOBN 2 2 2 2 <u>></u> <u> 9</u> R R 9 9-<u>ب</u> ጷ Z Q <u>R</u> 2 3 3 W OC Requirements (Specify) ç~ 9 VX)EC Lab Contact Beeky Musen X)Disposal By Lab Containers & Preservatives HOBN Received By IOH Explored Manager

Telephone Number (Area Code)/Fax Number

AC 3-27)-0379 1 EONH †OSZH seudun Duknown | Return To_lClient Time Site Contact
Sc. 14 SurviceMy
Camer/Wayofil Number Sample Disposa ع Ø ٩ 1105 A Other Standary Time Matrix redio pes S-M-15 R 888 833/ 1535 S S S SK20 Date 284V 1855 162 Cka7 Date Time 1035/ 1330 🗌 21 Days ☐ Poison B 5-19-15 06410 Date Š VVOCONU Address 1520 Hapland Any State Zip Code Jader Coloner ☐ 14 Days Sample I.D. No. and Description (Containers for each sample may be combined on one line) ☐ Flammable ☐ Skin Irritant Project Name and Location (State) 7 Days 4 - 25-818-35-CUMMY 68 - 818,23-160 25 Swmvz 55- Bldg23-05 5mm2-55-84933-07 5wmv7-55-810923-06 Swmuz-55- Bldg 23-02 Swmv23 - 55-0 Swar7-55-8169 23-01 Possible Hazard Identification Swmu13-55-01 Tum Around Time Required Cheshine Jobano Non-Hazard 24 Hours

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Login Sample Receipt Checklist

Client: Woodard & Curran, Inc. Job Number: 480-80693-1

Login Number: 80693 List Source: TestAmerica Buffalo

List Number: 1

Creator: Janish, Carl M

Creator. Jamish, Carr W		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	W+C
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

4

6

8

10

12

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-80785-1 Client Project/Site: Rouses Point

For:

Woodard & Curran, Inc. 64 Maple Street Rouses Point, New York 12979

Attn: Don Weeks

Authorized for release by: 6/5/2015 4:03:41 PM

Joe Giacomazza, Project Management Assistant II joe.giacomazza@testamericainc.com

Designee for

Becky Mason, Project Manager II (413)572-4000 becky.mason@testamericainc.com

·····LINKS ······

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Surrogate Summary	29
QC Sample Results	30
QC Association Summary	37
Lab Chronicle	38
Certification Summary	41
Method Summary	42
Sample Summary	43
Chain of Custody	44
Receipt Checklists	45

4

8

9

11

12

14

Definitions/Glossary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80785-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS VOA TICs

Qualifier	Qualifier Description
J	Indicates an Estimated Value for TICs
N	Presumptive evidence of material.
T	Result is a tentatively identified compound (TIC) and an estimated value.

Glossary Abbreviation

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)

NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL **Practical Quantitation Limit**

QC **Quality Control RER** Relative error ratio

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80785-1

Job ID: 480-80785-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-80785-1

Receipt

The samples were received on 5/21/2015 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.3° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-245024 recovered outside acceptance criteria, low biased, for Carbon disulfide. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported. The following samples are impacted: TRIP BLANK (480-80785-11)

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-245120 recovered above the upper control limit for 2-Hexanone. The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported. The following samples are impacted: SWMU24-SS-BLDG31-01 (480-80785-1), SWMU24-SS-BLDG31-02 (480-80785-2), SWMU24-SS-BLDG31-03 (480-80785-3), SWMU17-SS-BLDG40-01 (480-80785-4), SWMU17-SS-BLDG40-02 (480-80785-5), SWMU17-SS-BLDG40-03 (480-80785-6), SWMU17-SS-BLDG40-04 (480-80785-7), SWMU17-SS-01 (480-80785-8), SWMU7-SS-02 (480-80785-9) and SWMU7-SS-03 (480-80785-10).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-245120 recovered outside acceptance criteria, low biased, for Benzene. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were not detected above the reporting limit for this analyte, the data have been reported for the following samples: SWMU24-SS-BLDG31-01 (480-80785-1), SWMU24-SS-BLDG31-02 (480-80785-2), SWMU24-SS-BLDG31-03 (480-80785-3), SWMU17-SS-BLDG40-01 (480-80785-4), SWMU17-SS-BLDG40-02 (480-80785-5), SWMU17-SS-BLDG40-03 (480-80785-6), SWMU17-SS-BLDG40-04 (480-80785-7), SWMU17-SS-01 (480-80785-8), SWMU7-SS-02 (480-80785-9) and SWMU7-SS-03 (480-80785-10).

Method(s) 8260C: The laboratory control sample duplicate (LCSD) for 480-243930 recovered outside acceptance limits for Benzene. There was insufficient sample to perform a re-extraction or re-analysis; therefore, the data have been reported. The following samples are affected: SWMU24-SS-BLDG31-01 (480-80785-1), SWMU24-SS-BLDG31-02 (480-80785-2), SWMU24-SS-BLDG31-03 (480-80785-3), SWMU17-SS-BLDG40-01 (480-80785-4), SWMU17-SS-BLDG40-02 (480-80785-5), SWMU17-SS-BLDG40-03 (480-80785-6), SWMU17-SS-BLDG40-04 (480-80785-7), SWMU17-SS-01 (480-80785-8), SWMU7-SS-02 (480-80785-9) and SWMU7-SS-03 (480-80785-10).

Method(s) 8260C: The method blank for 480-243930 contained Acetone and Methylene Chloride above the method detection limit. These target analyte concentrations were less than the reporting limit (RL); therefore, re-analysis of the following samples was not performed: SWMU24-SS-BLDG31-01 (480-80785-1), SWMU24-SS-BLDG31-02 (480-80785-2), SWMU24-SS-BLDG31-03 (480-80785-3), SWMU17-SS-BLDG40-01 (480-80785-4), SWMU17-SS-BLDG40-02 (480-80785-5), SWMU17-SS-BLDG40-03 (480-80785-6), SWMU17-SS-BLDG40-04 (480-80785-7), SWMU17-SS-01 (480-80785-8), SWMU7-SS-02 (480-80785-9) and SWMU7-SS-03 (480-80785-10).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

-

6

0

9

11

12

Client Sample ID: SWMU24-SS-BLDG31-01 Lab Sample ID: 480-80785-1 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method Prep Type 3.0 JB ₩ 8260C Methylene Chloride 4.5 2.1 ug/Kg Total/NA 1 ☆ 8260C Total/NA Trichlorofluoromethane 6.8 4.5 0.43 ug/Kg Client Sample ID: SWMU24-SS-BLDG31-02 Lab Sample ID: 480-80785-2 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method Prep Type Methylene Chloride 3.1 JB 5.1 2.3 ug/Kg ☼ 8260C Total/NA 1 ♡ 8260C Trichlorofluoromethane 6.2 5.1 0.48 ug/Kg Total/NA Client Sample ID: SWMU24-SS-BLDG31-03 Lab Sample ID: 480-80785-3 Result Qualifier RL **MDL** Unit Dil Fac D Method Analyte Prep Type 8.4 JB 24 ₩ 8260C Total/NA Acetone 4.0 ug/Kg 1 1 ♡ Methylene Chloride 3.6 JB 2.2 ug/Kg 8260C Total/NA 4.7 1 ♡ 8260C Total/NA Styrene 0.26 J 4.7 0.24 ug/Kg 1 * 8260C Trichlorofluoromethane 9.7 4.7 0.45 ug/Kg Total/NA Client Sample ID: SWMU17-SS-BLDG40-01 Lab Sample ID: 480-80785-4 Result Qualifier RL **MDL** Unit Dil Fac D Method **Analyte Prep Type** 5.3 JB 22 ₩ 8260C Total/NA Acetone 3.8 ug/Kg 1 Methylene Chloride 3.5 JB 4.5 2.1 ug/Kg 1 ♡ 8260C Total/NA Total/NA Styrene 0.43 J 4.5 0.22 ug/Kg 1 ♡ 8260C Trichlorofluoromethane 13 4.5 0.42 ug/Kg 1 \$ 8260C Total/NA Client Sample ID: SWMU17-SS-BLDG40-02 Lab Sample ID: 480-80785-5 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method Prep Type ₩ 13 JB 22 1 8260C Total/NA Acetone 3.7 ug/Kg Methylene Chloride 3.1 JB ₩ 8260C Total/NA 4.4 2.0 ug/Kg Trichlorofluoromethane 1 \$ 8260C Total/NA 5.4 4.4 0.42 ug/Kg Client Sample ID: SWMU17-SS-BLDG40-03 Lab Sample ID: 480-80785-6 Analyte **MDL** Unit Dil Fac D Method Result Qualifier RL Prep Type Methylene Chloride 3.8 JB ₩ 8260C 4.8 2.2 ug/Kg 1 Total/NA Trichlorofluoromethane 16 4.8 1 # 8260C Total/NA 0.46 ug/Kg Client Sample ID: SWMU17-SS-BLDG40-04 Lab Sample ID: 480-80785-7 Result Qualifier Prep Type Analyte RL **MDL** Unit Dil Fac D Method 11 JB 25 4.2 ug/Kg ₩ 8260C Total/NA Acetone Dichlorodifluoromethane 0.44 5.0 ₽ 8260C Total/NA 0.41 ug/Kg Methylene Chloride ₽ 8260C Total/NA 4.0 JB 5.0 2.3 ug/Kg Trichlorofluoromethane 13 5.0 0.47 ug/Kg ₩ 8260C Total/NA Client Sample ID: SWMU17-SS-01 Lab Sample ID: 480-80785-8 **MDL** Unit Dil Fac D Method Analyte Result Qualifier RLPrep Type 3.9 JB 5.0 <u>1</u> ∓ 8260C Total/NA Methylene Chloride 2.3 ug/Kg

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

6/5/2015

Detection Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80785-1

Lab Sample ID: 480-80785-9

Client Sample ID: SWMU7-SS-02

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Methylene Chloride	2.2 JB	4.3	2.0 ug/Kg	1	[♀] 8260C	Total/NA
Trichlorofluoromethane	0.83 J	4.3	0.41 ug/Kg	1	[⊈] 8260C	Total/NA

Client Sample ID: SWMU7-SS-03

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Methylene Chloride	2.8 JB	4.5	2.0 ug/Kg		8260C	Total/NA
Trichlorofluoromethane	1.9 J	4.5	0.42 ug/Kg	1 [‡]	8260C	Total/NA

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-80785-11

Lab Sample ID: 480-80785-10

No Detections.

This Detection Summary does not include radiochemical test results.

9

11

13

1 4

1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 05/20/15 07:55

Date Received: 05/21/15 09:00

Client Sample ID: SWMU24-SS-BLDG31-01

TestAmerica Job ID: 480-80785-1

Lab Sample ID: 480-80785-1

Matrix: Solid
Percent Solids: 92.1

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4.5	0.33	ug/Kg			05/29/15 15:45	•
1,1,2,2-Tetrachloroethane	ND	4.5		ug/Kg	₩.		05/29/15 15:45	ĺ
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.5		ug/Kg	<u>.</u>		05/29/15 15:45	
1,1,2-Trichloroethane	ND	4.5		ug/Kg	₩.		05/29/15 15:45	ŕ
1,1-Dichloroethane	ND	4.5		ug/Kg	☆		05/29/15 15:45	,
1,1-Dichloroethene	ND	4.5		ug/Kg	, .		05/29/15 15:45	
1,2,3-Trichlorobenzene	ND	4.5		ug/Kg	₩		05/29/15 15:45	•
1,2,4-Trichlorobenzene	ND	4.5	0.28	ug/Kg	☼	05/21/15 14:14	05/29/15 15:45	•
1,2-Dibromo-3-Chloropropane	ND	4.5	2.3	ug/Kg	☼	05/21/15 14:14	05/29/15 15:45	•
1,2-Dichlorobenzene	ND	4.5	0.35	ug/Kg	₩	05/21/15 14:14	05/29/15 15:45	•
1,2-Dichloroethane	ND	4.5	0.23	ug/Kg	☼	05/21/15 14:14	05/29/15 15:45	•
1,2-Dichloropropane	ND	4.5	2.3	ug/Kg	₩	05/21/15 14:14	05/29/15 15:45	
1,3-Dichlorobenzene	ND	4.5	0.23	ug/Kg	₽	05/21/15 14:14	05/29/15 15:45	•
1,4-Dichlorobenzene	ND	4.5	0.63	ug/Kg	☼	05/21/15 14:14	05/29/15 15:45	•
1,4-Dioxane	ND	91	20	ug/Kg	☼	05/21/15 14:14	05/29/15 15:45	•
2-Hexanone	ND	23	2.3	ug/Kg		05/21/15 14:14	05/29/15 15:45	
Acetone	ND	23	3.8	ug/Kg	₽	05/21/15 14:14	05/29/15 15:45	
Benzene	ND *	4.5	0.22	ug/Kg	₩	05/21/15 14:14	05/29/15 15:45	
Bromoform	ND	4.5		ug/Kg		05/21/15 14:14	05/29/15 15:45	,
Bromomethane	ND	4.5		ug/Kg	☼	05/21/15 14:14	05/29/15 15:45	
Carbon disulfide	ND	4.5		ug/Kg	₩		05/29/15 15:45	
Carbon tetrachloride	ND	4.5		ug/Kg			05/29/15 15:45	
Chlorobenzene	ND	4.5		ug/Kg	₩		05/29/15 15:45	
Bromochloromethane	ND	4.5		ug/Kg	₩		05/29/15 15:45	
Dibromochloromethane	ND	4.5		ug/Kg			05/29/15 15:45	
Chloroethane	ND	4.5	1.0	ug/Kg	₩		05/29/15 15:45	
Chloroform	ND	4.5		ug/Kg	₽		05/29/15 15:45	
Chloromethane	ND	4.5		ug/Kg			05/29/15 15:45	,
	ND ND	4.5	0.58		₽		05/29/15 15:45	
cis-1,2-Dichloroethene	ND ND	4.5 4.5		ug/Kg ug/Kg	≎		05/29/15 15:45	
cis-1,3-Dichloropropene								
Cyclohexane	ND	4.5		ug/Kg			05/29/15 15:45	
Bromodichloromethane	ND	4.5		ug/Kg	₩.		05/29/15 15:45	
Dichlorodifluoromethane	ND	4.5		ug/Kg			05/29/15 15:45	
Ethylbenzene	ND	4.5		ug/Kg	ψ.		05/29/15 15:45	
1,2-Dibromoethane (EDB)	ND	4.5		ug/Kg	₩		05/29/15 15:45	•
Isopropylbenzene	ND	4.5		ug/Kg	<u>.</u> .		05/29/15 15:45	
Methyl acetate	ND	4.5		ug/Kg	: D :		05/29/15 15:45	•
2-Butanone (MEK)	ND	23		ug/Kg	Đ.		05/29/15 15:45	•
4-Methyl-2-pentanone (MIBK)	ND	23		ug/Kg			05/29/15 15:45	
Methyl tert-butyl ether	ND	4.5		ug/Kg	₩		05/29/15 15:45	•
Methylcyclohexane	ND	4.5	0.69	ug/Kg	☼	05/21/15 14:14	05/29/15 15:45	•
Methylene Chloride	3.0 JB	4.5	2.1	ug/Kg	₩	05/21/15 14:14	05/29/15 15:45	•
Styrene	ND	4.5	0.23	ug/Kg	₽	05/21/15 14:14	05/29/15 15:45	
Tetrachloroethene	ND	4.5	0.61	ug/Kg	₩	05/21/15 14:14	05/29/15 15:45	•
Toluene	ND	4.5	0.34	ug/Kg	₩	05/21/15 14:14	05/29/15 15:45	
trans-1,2-Dichloroethene	ND	4.5	0.47	ug/Kg	₽	05/21/15 14:14	05/29/15 15:45	
trans-1,3-Dichloropropene	ND	4.5	2.0	ug/Kg	☼	05/21/15 14:14	05/29/15 15:45	•
Trichloroethene	ND	4.5	1.0	ug/Kg	₩	05/21/15 14:14	05/29/15 15:45	
Trichlorofluoromethane	6.8	4.5		ug/Kg	· · · · · · · · · · · · · · · · · · ·	05/21/15 14:14	05/29/15 15:45	• • • • • • • •

TestAmerica Buffalo

Page 7 of 45

6/5/2015

3

4

6

8

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80785-1

Client Sample ID: SWMU24-SS-BLDG31-01

Date Collected: 05/20/15 07:55 Date Received: 05/21/15 09:00 Lab Sample ID: 480-80785-1

Matrix: Solid

Percent Solids: 92.1

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.5	<u> </u>	0.55	ug/Kg	₩	05/21/15 14:14	05/29/15 15:45	1
Xylenes, Total	ND		9.1		0.76	ug/Kg	₩	05/21/15 14:14	05/29/15 15:45	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Silanol, trimethyl-	410	TJN	ug/Kg	₩	4.	34	1066-40-6	05/21/15 14:14	05/29/15 15:45	1
Disiloxane, hexamethyl-	550	TJN	ug/Kg	₩	4.	92	107-46-0	05/21/15 14:14	05/29/15 15:45	1
Cyclotrisiloxane, hexamethyl-	9.7	TJN	ug/Kg	₩	6.	.99	541-05-9	05/21/15 14:14	05/29/15 15:45	1
Unknown	12	ΤJ	ug/Kg	₩	7.	47		05/21/15 14:14	05/29/15 15:45	• • • • • • • • • • • • • • • • • • • •
Trisiloxane, octamethyl-	1300	TJN	ug/Kg	₩	7.	.83	107-51-7	05/21/15 14:14	05/29/15 15:45	1
Cyclotetrasiloxane, octamethyl-	240	TJN	ug/Kg	₩	9.	.38	556-67-2	05/21/15 14:14	05/29/15 15:45	
Unknown	2400	ΤJ	ug/Kg	₩	10.	23		05/21/15 14:14	05/29/15 15:45	
Unknown	60	TJ	ug/Kg	₩	11.	.11		05/21/15 14:14	05/29/15 15:45	1
Unknown	1900	TJ	ug/Kg	₩	11.	79		05/21/15 14:14	05/29/15 15:45	1
Unknown	130	ΤJ	ug/Kg	₩	13.	.07		05/21/15 14:14	05/29/15 15:45	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	99		64 - 126	•				05/21/15 14:14	05/29/15 15:45	1
Toluene-d8 (Surr)	96		71 - 125					05/21/15 14:14	05/29/15 15:45	1
4-Bromofluorobenzene (Surr)	104		72 - 126					05/21/15 14:14	05/29/15 15:45	1

3

5

7

8

10

11

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 05/20/15 08:05

Date Received: 05/21/15 09:00

Client Sample ID: SWMU24-SS-BLDG31-02

TestAmerica Job ID: 480-80785-1

Lab Sample ID: 480-80785-2

Matrix: Solid Percent Solids: 89.9

Method: 8260C - Volatile Orgar Analyte	Result C	_	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND ND	5.1	0.37	ug/Kg	— ğ	05/21/15 14:14		
1,1,2,2-Tetrachloroethane	ND	5.1		ug/Kg	₩		05/29/15 16:12	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.1		ug/Kg	ά		05/29/15 16:12	
1,1,2-Trichloroethane	ND	5.1		ug/Kg			05/29/15 16:12	
1,1-Dichloroethane	ND	5.1		ug/Kg	₽		05/29/15 16:12	
1,1-Dichloroethene	ND	5.1		ug/Kg	₩		05/29/15 16:12	
1,2,3-Trichlorobenzene	ND	5.1		ug/Kg ug/Kg			05/29/15 16:12	
1,2,4-Trichlorobenzene	ND	5.1		ug/Kg ug/Kg			05/29/15 16:12	
1,2-Dibromo-3-Chloropropane	ND	5.1			Tr.		05/29/15 16:12	
· · · · · · · · · · · · · · · · · · ·	ND ND	5.1		ug/Kg	· · · · · · · · · · · · · · · · · · ·		05/29/15 16:12	
1,2-Dichlorobenzene				ug/Kg	*			
1,2-Dichloroethane	ND	5.1		ug/Kg	φ. ×		05/29/15 16:12	
1,2-Dichloropropane	ND	5.1		ug/Kg			05/29/15 16:12	
1,3-Dichlorobenzene	ND	5.1		ug/Kg	₩		05/29/15 16:12	
1,4-Dichlorobenzene	ND	5.1	0.71	ug/Kg	₩		05/29/15 16:12	
1,4-Dioxane	ND	100		ug/Kg			05/29/15 16:12	
2-Hexanone	ND	25		ug/Kg			05/29/15 16:12	
Acetone	ND	25		ug/Kg			05/29/15 16:12	
Benzene	ND *	5.1		ug/Kg			05/29/15 16:12	
Bromoform	ND	5.1		ug/Kg	*		05/29/15 16:12	
Bromomethane	ND	5.1		ug/Kg	*		05/29/15 16:12	
Carbon disulfide	ND	5.1		ug/Kg			05/29/15 16:12	
Carbon tetrachloride	ND	5.1	0.49	ug/Kg	☼	05/21/15 14:14	05/29/15 16:12	
Chlorobenzene	ND	5.1	0.67	ug/Kg	₩	05/21/15 14:14	05/29/15 16:12	
Bromochloromethane	ND	5.1		ug/Kg	₩	05/21/15 14:14	05/29/15 16:12	
Dibromochloromethane	ND	5.1		ug/Kg	₽	05/21/15 14:14	05/29/15 16:12	
Chloroethane	ND	5.1	1.1	ug/Kg	☼	05/21/15 14:14	05/29/15 16:12	
Chloroform	ND	5.1	0.31	ug/Kg	☼	05/21/15 14:14	05/29/15 16:12	
Chloromethane	ND	5.1	0.31	ug/Kg	₽	05/21/15 14:14	05/29/15 16:12	
cis-1,2-Dichloroethene	ND	5.1	0.65	ug/Kg	₩	05/21/15 14:14	05/29/15 16:12	
cis-1,3-Dichloropropene	ND	5.1	0.73	ug/Kg	₩	05/21/15 14:14	05/29/15 16:12	
Cyclohexane	ND	5.1	0.71	ug/Kg	₽	05/21/15 14:14	05/29/15 16:12	
Bromodichloromethane	ND	5.1	0.68	ug/Kg	☼	05/21/15 14:14	05/29/15 16:12	
Dichlorodifluoromethane	ND	5.1	0.42	ug/Kg	☼	05/21/15 14:14	05/29/15 16:12	
Ethylbenzene	ND	5.1	0.35	ug/Kg		05/21/15 14:14	05/29/15 16:12	
1,2-Dibromoethane (EDB)	ND	5.1	0.65	ug/Kg	☼	05/21/15 14:14	05/29/15 16:12	
sopropylbenzene	ND	5.1	0.77	ug/Kg	☼	05/21/15 14:14	05/29/15 16:12	
Methyl acetate	ND	5.1		ug/Kg	φ.	05/21/15 14:14	05/29/15 16:12	
2-Butanone (MEK)	ND	25		ug/Kg	☼	05/21/15 14:14	05/29/15 16:12	
4-Methyl-2-pentanone (MIBK)	ND	25		ug/Kg	☼	05/21/15 14:14	05/29/15 16:12	
Methyl tert-butyl ether	ND	5.1		ug/Kg	φ.	05/21/15 14:14	05/29/15 16:12	
Methylcyclohexane	ND	5.1		ug/Kg	₩		05/29/15 16:12	
Methylene Chloride	3.1 J			ug/Kg	₩		05/29/15 16:12	
Styrene	ND	5.1		ug/Kg			05/29/15 16:12	
Tetrachloroethene	ND	5.1		ug/Kg	☼		05/29/15 16:12	
Toluene	ND	5.1		ug/Kg ug/Kg	₽		05/29/15 16:12	
rans-1,2-Dichloroethene	ND	5.1		ug/Kg			05/29/15 16:12	
trans-1,3-Dichloropropene	ND ND	5.1		ug/Kg ug/Kg	~ \$		05/29/15 16:12	
···	ND ND	5.1			≎		05/29/15 16:12	
Trichloroethene Trichlorofluoromethane	6.2	5.1		ug/Kg ug/Kg	ф.		05/29/15 16:12	

TestAmerica Buffalo

Page 9 of 45

2

3

6

8

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 05/20/15 08:05

Date Received: 05/21/15 09:00

Client Sample ID: SWMU24-SS-BLDG31-02

TestAmerica Job ID: 480-80785-1

Lab Sample ID: 480-80785-2

Matrix: Solid

Percent Solids: 89.9

Method: 8260C - Volatile Org Analyte		Qualifier	RI		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.	<u> </u>	0.62	ug/Kg	₩	05/21/15 14:14	05/29/15 16:12	1
Xylenes, Total	ND		1	0	0.85	ug/Kg	₩	05/21/15 14:14	05/29/15 16:12	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	ı	R <i>T</i>	CAS No.	Prepared	Analyzed	Dil Fac
Silanol, trimethyl-	91	TJN	ug/Kg	₩	4	34	1066-40-6	05/21/15 14:14	05/29/15 16:12	1
Unknown	15	TJ	ug/Kg	☼	4.	87		05/21/15 14:14	05/29/15 16:12	1
Unknown	13	TJ	ug/Kg	☼	4.	92		05/21/15 14:14	05/29/15 16:12	1
Unknown	37	ΤJ	ug/Kg	₽	7.	83		05/21/15 14:14	05/29/15 16:12	1
Tetrasiloxane, decamethyl-	580	TJN	ug/Kg	≎	10.	21	141-62-8	05/21/15 14:14	05/29/15 16:12	1
Benzene, 1,3-diethyl-	34	TJN	ug/Kg	₩	10.	72	141-93-5	05/21/15 14:14	05/29/15 16:12	1
Benzene, 1,4-diethyl-	11	TJN	ug/Kg	\$	10.	79	105-05-5	05/21/15 14:14	05/29/15 16:12	1
Unknown	6.6	TJ	ug/Kg	≎	11.	11		05/21/15 14:14	05/29/15 16:12	1
Unknown	730	TJ	ug/Kg	≎	11.	78		05/21/15 14:14	05/29/15 16:12	1
Unknown	240	ΤJ	ug/Kg	₩.	13.	07		05/21/15 14:14	05/29/15 16:12	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		64 - 126	_				05/21/15 14:14	05/29/15 16:12	1
Toluene-d8 (Surr)	102		71 - 125					05/21/15 14:14	05/29/15 16:12	1
4-Bromofluorobenzene (Surr)	104		72 - 126					05/21/15 14:14	05/29/15 16:12	1

3

5

O

8

10

11

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 05/20/15 08:20

Date Received: 05/21/15 09:00

Trichloroethene

Trichlorofluoromethane

Client Sample ID: SWMU24-SS-BLDG31-03

TestAmerica Job ID: 480-80785-1

Lab Sample ID: 480-80785-3

Matrix: Solid
Percent Solids: 92.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		4.7	0.34	ug/Kg	₩	05/21/15 14:14	05/29/15 16:38	1
1,1,2,2-Tetrachloroethane	ND		4.7	0.77	ug/Kg	₩	05/21/15 14:14	05/29/15 16:38	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.7	1.1	ug/Kg	₽	05/21/15 14:14	05/29/15 16:38	1
1,1,2-Trichloroethane	ND		4.7	0.62	ug/Kg	₽	05/21/15 14:14	05/29/15 16:38	1
1,1-Dichloroethane	ND		4.7	0.58	ug/Kg	₽	05/21/15 14:14	05/29/15 16:38	1
1,1-Dichloroethene	ND		4.7	0.58	ug/Kg	☼	05/21/15 14:14	05/29/15 16:38	1
1,2,3-Trichlorobenzene	ND		4.7	0.50	ug/Kg	ф.	05/21/15 14:14	05/29/15 16:38	1
1,2,4-Trichlorobenzene	ND		4.7	0.29	ug/Kg	☼	05/21/15 14:14	05/29/15 16:38	1
1,2-Dibromo-3-Chloropropane	ND		4.7	2.4	ug/Kg	☼	05/21/15 14:14	05/29/15 16:38	1
1,2-Dichlorobenzene	ND		4.7	0.37	ug/Kg		05/21/15 14:14	05/29/15 16:38	1
1,2-Dichloroethane	ND		4.7	0.24	ug/Kg	☼	05/21/15 14:14	05/29/15 16:38	1
1,2-Dichloropropane	ND		4.7	2.4	ug/Kg	☼	05/21/15 14:14	05/29/15 16:38	1
1,3-Dichlorobenzene	ND		4.7	0.24	ug/Kg		05/21/15 14:14	05/29/15 16:38	1
1,4-Dichlorobenzene	ND		4.7	0.66	ug/Kg	≎	05/21/15 14:14	05/29/15 16:38	1
1,4-Dioxane	ND		95	21	ug/Kg	≎	05/21/15 14:14	05/29/15 16:38	1
2-Hexanone	ND		24	2.4	ug/Kg	ф.	05/21/15 14:14	05/29/15 16:38	1
Acetone	8.4	JB	24		ug/Kg	₽	05/21/15 14:14	05/29/15 16:38	1
Benzene	ND	*	4.7	0.23	ug/Kg	₩	05/21/15 14:14	05/29/15 16:38	1
Bromoform	ND		4.7		ug/Kg		05/21/15 14:14	05/29/15 16:38	1
Bromomethane	ND		4.7		ug/Kg	₩	05/21/15 14:14	05/29/15 16:38	1
Carbon disulfide	ND		4.7	2.4	ug/Kg	₩	05/21/15 14:14	05/29/15 16:38	1
Carbon tetrachloride	ND		4.7		ug/Kg		05/21/15 14:14	05/29/15 16:38	1
Chlorobenzene	ND		4.7		ug/Kg	₩	05/21/15 14:14	05/29/15 16:38	1
Bromochloromethane	ND		4.7		ug/Kg	₩	05/21/15 14:14	05/29/15 16:38	1
Dibromochloromethane	ND		4.7		ug/Kg		05/21/15 14:14	05/29/15 16:38	1
Chloroethane	ND		4.7		ug/Kg	₩	05/21/15 14:14	05/29/15 16:38	1
Chloroform	ND		4.7		ug/Kg	₩	05/21/15 14:14	05/29/15 16:38	1
Chloromethane	ND		4.7		ug/Kg		05/21/15 14:14	05/29/15 16:38	1
cis-1,2-Dichloroethene	ND		4.7		ug/Kg	₩	05/21/15 14:14	05/29/15 16:38	1
cis-1,3-Dichloropropene	ND		4.7		ug/Kg	₩	05/21/15 14:14	05/29/15 16:38	1
Cyclohexane	ND		4.7		ug/Kg		05/21/15 14:14	05/29/15 16:38	1
Bromodichloromethane	ND		4.7		ug/Kg	₩		05/29/15 16:38	1
Dichlorodifluoromethane	ND		4.7		ug/Kg	₽		05/29/15 16:38	1
Ethylbenzene	ND		4.7		ug/Kg			05/29/15 16:38	1
1,2-Dibromoethane (EDB)	ND		4.7		ug/Kg	₽		05/29/15 16:38	1
Isopropylbenzene	ND		4.7		ug/Kg	₽		05/29/15 16:38	1
Methyl acetate	ND		4.7		ug/Kg		05/21/15 14:14		1
2-Butanone (MEK)	ND		24		ug/Kg	₽		05/29/15 16:38	1
4-Methyl-2-pentanone (MIBK)	ND		24		ug/Kg	₽		05/29/15 16:38	1
Methyl tert-butyl ether	ND		4.7		ug/Kg			05/29/15 16:38	1
Methylcyclohexane	ND		4.7		ug/Kg	₽		05/29/15 16:38	1
Methylene Chloride		JB	4.7		ug/Kg	☼		05/29/15 16:38	1
Styrene	0.26		4.7		ug/Kg			05/29/15 16:38	
Tetrachloroethene	ND	-	4.7		ug/Kg	₩		05/29/15 16:38	1
Toluene	ND		4.7		ug/Kg	‡		05/29/15 16:38	1
trans-1,2-Dichloroethene	ND		4.7		ug/Kg			05/29/15 16:38	
trans-1,3-Dichloropropene	ND		4.7		ug/Kg	₩		05/29/15 16:38	1
traile 1,0 Diomoroproporte	IND		7.1	۷.۱	49,119		55/21/10 17.14	33/20/10 10:00	'

TestAmerica Buffalo

☼ 05/21/15 14:14 05/29/15 16:38

© 05/21/15 14:14 05/29/15 16:38

4.7

4.7

1.0 ug/Kg

0.45 ug/Kg

ND

9.7

2

5

7

9

11

11

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80785-1

Client Sample ID: SWMU24-SS-BLDG31-03 Lab Sample ID: 480-80785-3

Date Collected: 05/20/15 08:20 **Matrix: Solid** Date Received: 05/21/15 09:00 Percent Solids: 92.8

Method: 8260C - Volatile Org Analyte	•	unds by (Qualifier	GC/MS (Co Ri			Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	- ND	- Qualifier	4.7			ug/Kg				1
Xylenes, Total	ND		9.5	5		ug/Kg		05/21/15 14:14	05/29/15 16:38	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	6.7	TJ	ug/Kg	₩ -	2.	.94		05/21/15 14:14	05/29/15 16:38	1
Silanol, trimethyl-	22	TJN	ug/Kg	≎	4.	.34	1066-40-6	05/21/15 14:14	05/29/15 16:38	1
Unknown	12	TJ	ug/Kg	≎	4.	.86		05/21/15 14:14	05/29/15 16:38	1
Tetrasiloxane, decamethyl-	16	TJN	ug/Kg		10	.21	141-62-8	05/21/15 14:14	05/29/15 16:38	1
Benzene, 1,4-diethyl-	66	TJN	ug/Kg	₩	10	.72	105-05-5	05/21/15 14:14	05/29/15 16:38	1
Benzene, 1,3-diethyl-	28	TJN	ug/Kg	₩	10.	.80	141-93-5	05/21/15 14:14	05/29/15 16:38	1
Benzene, 1,2-diethyl-	6.0	TJN	ug/Kg	₩.	10	.91	135-01-3	05/21/15 14:14	05/29/15 16:38	1
Unknown	29	TJ	ug/Kg	₩	11.	.78		05/21/15 14:14	05/29/15 16:38	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		64 - 126	-				05/21/15 14:14	05/29/15 16:38	1
Toluene-d8 (Surr)	103		71 - 125					05/21/15 14:14	05/29/15 16:38	1
4-Bromofluorobenzene (Surr)	102		72 - 126					05/21/15 14:14	05/29/15 16:38	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 05/20/15 08:55

Date Received: 05/21/15 09:00

Client Sample ID: SWMU17-SS-BLDG40-01

TestAmerica Job ID: 480-80785-1

Lab Sample ID: 480-80785-4

Matrix: Solid Percent Solids: 90.0

Method: 8260C - Volatile Organ	nic Compou	inds by GC/	MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		4.5	0.32	ug/Kg	<u> </u>	05/21/15 14:14	05/29/15 17:04	1
1,1,2,2-Tetrachloroethane	ND		4.5	0.73	ug/Kg	₩	05/21/15 14:14	05/29/15 17:04	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.5	1.0	ug/Kg	☼	05/21/15 14:14	05/29/15 17:04	1
1,1,2-Trichloroethane	ND		4.5	0.58	ug/Kg		05/21/15 14:14	05/29/15 17:04	1
1,1-Dichloroethane	ND		4.5	0.55	ug/Kg	☼	05/21/15 14:14	05/29/15 17:04	1
1,1-Dichloroethene	ND		4.5	0.55	ug/Kg	☼	05/21/15 14:14	05/29/15 17:04	1
1,2,3-Trichlorobenzene	ND		4.5	0.47	ug/Kg	₽	05/21/15 14:14	05/29/15 17:04	1
1,2,4-Trichlorobenzene	ND		4.5	0.27	ug/Kg	☼	05/21/15 14:14	05/29/15 17:04	1
1,2-Dibromo-3-Chloropropane	ND		4.5	2.2	ug/Kg	☼	05/21/15 14:14	05/29/15 17:04	1
1,2-Dichlorobenzene	ND		4.5	0.35	ug/Kg	₽	05/21/15 14:14	05/29/15 17:04	1
1,2-Dichloroethane	ND		4.5	0.22	ug/Kg	☼	05/21/15 14:14	05/29/15 17:04	1
1,2-Dichloropropane	ND		4.5	2.2	ug/Kg	☼	05/21/15 14:14	05/29/15 17:04	1
1,3-Dichlorobenzene	ND		4.5	0.23	ug/Kg		05/21/15 14:14	05/29/15 17:04	1
1,4-Dichlorobenzene	ND		4.5	0.63	ug/Kg	☼	05/21/15 14:14	05/29/15 17:04	1
1,4-Dioxane	ND		89	19	ug/Kg	☼	05/21/15 14:14	05/29/15 17:04	1
2-Hexanone	ND		22	2.2	ug/Kg	₽	05/21/15 14:14	05/29/15 17:04	1
Acetone	5.3	JB	22	3.8	ug/Kg	☼	05/21/15 14:14	05/29/15 17:04	1
Benzene	ND	*	4.5	0.22	ug/Kg	☼	05/21/15 14:14	05/29/15 17:04	1
Bromoform	ND		4.5	2.2	ug/Kg		05/21/15 14:14	05/29/15 17:04	1
Bromomethane	ND		4.5	0.40	ug/Kg	☼	05/21/15 14:14	05/29/15 17:04	1
Carbon disulfide	ND		4.5	2.2	ug/Kg	☼	05/21/15 14:14	05/29/15 17:04	1

i, i-Dichioroethane	ND	4.5	0.55 ug/kg	~	03/21/13 14.14	03/29/13 17.04	
1,1-Dichloroethene	ND	4.5	0.55 ug/Kg	₩	05/21/15 14:14	05/29/15 17:04	1
1,2,3-Trichlorobenzene	ND	4.5	0.47 ug/Kg	φ.	05/21/15 14:14	05/29/15 17:04	1
1,2,4-Trichlorobenzene	ND	4.5	0.27 ug/Kg	₩	05/21/15 14:14	05/29/15 17:04	1
1,2-Dibromo-3-Chloropropane	ND	4.5	2.2 ug/Kg	₩	05/21/15 14:14	05/29/15 17:04	1
1,2-Dichlorobenzene	ND	4.5	0.35 ug/Kg		05/21/15 14:14	05/29/15 17:04	1
1,2-Dichloroethane	ND	4.5	0.22 ug/Kg	₩	05/21/15 14:14	05/29/15 17:04	1
1,2-Dichloropropane	ND	4.5	2.2 ug/Kg	☼	05/21/15 14:14	05/29/15 17:04	1
1,3-Dichlorobenzene	ND	4.5	0.23 ug/Kg		05/21/15 14:14	05/29/15 17:04	1
1,4-Dichlorobenzene	ND	4.5	0.63 ug/Kg	☼	05/21/15 14:14	05/29/15 17:04	1
1,4-Dioxane	ND	89	19 ug/Kg	☼	05/21/15 14:14	05/29/15 17:04	1
2-Hexanone	ND	22	2.2 ug/Kg		05/21/15 14:14	05/29/15 17:04	1
Acetone	5.3 JB	22	3.8 ug/Kg	₩	05/21/15 14:14	05/29/15 17:04	1
Benzene	ND *	4.5	0.22 ug/Kg	₩	05/21/15 14:14	05/29/15 17:04	1
Bromoform	ND	4.5	2.2 ug/Kg	ф.	05/21/15 14:14	05/29/15 17:04	1
Bromomethane	ND	4.5	0.40 ug/Kg	₩	05/21/15 14:14	05/29/15 17:04	1
Carbon disulfide	ND	4.5	2.2 ug/Kg	₩	05/21/15 14:14	05/29/15 17:04	1
Carbon tetrachloride	ND	4.5	0.43 ug/Kg		05/21/15 14:14	05/29/15 17:04	1
Chlorobenzene	ND	4.5	0.59 ug/Kg	₩	05/21/15 14:14	05/29/15 17:04	1
Bromochloromethane	ND	4.5	0.32 ug/Kg	₩	05/21/15 14:14	05/29/15 17:04	1
Dibromochloromethane	ND	4.5	0.57 ug/Kg		05/21/15 14:14	05/29/15 17:04	1
Chloroethane	ND	4.5	1.0 ug/Kg	₩	05/21/15 14:14	05/29/15 17:04	1
Chloroform	ND	4.5	0.28 ug/Kg	₩	05/21/15 14:14	05/29/15 17:04	1
Chloromethane	ND	4.5	0.27 ug/Kg		05/21/15 14:14	05/29/15 17:04	1
cis-1,2-Dichloroethene	ND	4.5	0.57 ug/Kg		05/21/15 14:14		1
cis-1,3-Dichloropropene	ND	4.5	0.64 ug/Kg	₩	05/21/15 14:14	05/29/15 17:04	1
Cyclohexane	ND	4.5	0.63 ug/Kg		05/21/15 14:14	05/29/15 17:04	1
Bromodichloromethane	ND	4.5	0.60 ug/Kg	₩	05/21/15 14:14	05/29/15 17:04	1
Dichlorodifluoromethane	ND	4.5	0.37 ug/Kg	₩	05/21/15 14:14	05/29/15 17:04	1
Ethylbenzene	ND	4.5	0.31 ug/Kg		05/21/15 14:14	05/29/15 17:04	1
1,2-Dibromoethane (EDB)	ND	4.5	0.57 ug/Kg	₩	05/21/15 14:14	05/29/15 17:04	1
Isopropylbenzene	ND	4.5	0.67 ug/Kg	₩	05/21/15 14:14	05/29/15 17:04	1
Methyl acetate	ND	4.5	2.7 ug/Kg		05/21/15 14:14	05/29/15 17:04	1
2-Butanone (MEK)	ND	22	1.6 ug/Kg	₩	05/21/15 14:14	05/29/15 17:04	1
4-Methyl-2-pentanone (MIBK)	ND	22	1.5 ug/Kg		05/21/15 14:14		1
Methyl tert-butyl ether	ND	4.5	0.44 ug/Kg		05/21/15 14:14	05/29/15 17:04	1
Methylcyclohexane	ND	4.5	0.68 ug/Kg	₩	05/21/15 14:14	05/29/15 17:04	1
Methylene Chloride	3.5 JB	4.5	2.1 ug/Kg		05/21/15 14:14		1
Styrene	0.43 J	4.5	0.22 ug/Kg		05/21/15 14:14	05/29/15 17:04	1
Tetrachloroethene	ND	4.5	0.60 ug/Kg		05/21/15 14:14		1
Toluene	ND	4.5	0.34 ug/Kg		05/21/15 14:14		1
trans-1,2-Dichloroethene	ND	4.5	0.46 ug/Kg		05/21/15 14:14		1
trans-1,3-Dichloropropene	ND	4.5	2.0 ug/Kg		05/21/15 14:14		1
Trichloroethene	ND	4.5	0.98 ug/Kg		05/21/15 14:14		1
Trichlorofluoromethane	13	4.5	0.42 ug/Kg		05/21/15 14:14		1

TestAmerica Buffalo

Client: Woodard & Curran, Inc. TestAmerica Job ID: 480-80785-1 Project/Site: Rouses Point

Lab Sample ID: 480-80785-4

Client Sample ID: SWMU17-SS-BLDG40-01 Date Collected: 05/20/15 08:55

Matrix: Solid

Date Received: 05/21/15 09:00 Percent Solids: 90.0

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.5		0.55	ug/Kg	<u> </u>	05/21/15 14:14	05/29/15 17:04	1
Xylenes, Total	ND		8.9		0.75	ug/Kg	☆	05/21/15 14:14	05/29/15 17:04	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	53	TJ	ug/Kg	₩	2.	94		05/21/15 14:14	05/29/15 17:04	1
Unknown	7.1	ΤJ	ug/Kg	₩	4.	34		05/21/15 14:14	05/29/15 17:04	1
Methane, dibromofluoro-	12	TJN	ug/Kg	☼	4.	87	1868-53-7	05/21/15 14:14	05/29/15 17:04	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		64 - 126					05/21/15 14:14	05/29/15 17:04	1
Toluene-d8 (Surr)	104		71 - 125					05/21/15 14:14	05/29/15 17:04	1
4-Bromofluorobenzene (Surr)	102		72 - 126					05/21/15 14:14	05/29/15 17:04	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 05/20/15 09:08

Date Received: 05/21/15 09:00

Client Sample ID: SWMU17-SS-BLDG40-02

TestAmerica Job ID: 480-80785-1

Lab Sample ID: 480-80785-5

Matrix: Solid
Percent Solids: 91.6

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	4.4		ug/Kg	₩	05/21/15 14:14	05/29/15 17:29	
1,1,2,2-Tetrachloroethane	ND	4.4		ug/Kg	₩	05/21/15 14:14	05/29/15 17:29	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.4	1.0	ug/Kg	☆	05/21/15 14:14	05/29/15 17:29	
1,1,2-Trichloroethane	ND	4.4	0.57	ug/Kg	₩	05/21/15 14:14	05/29/15 17:29	
1,1-Dichloroethane	ND	4.4	0.54	ug/Kg	₩	05/21/15 14:14	05/29/15 17:29	
1,1-Dichloroethene	ND	4.4	0.54	ug/Kg	☆	05/21/15 14:14	05/29/15 17:29	
1,2,3-Trichlorobenzene	ND	4.4	0.47	ug/Kg	₩	05/21/15 14:14	05/29/15 17:29	
1,2,4-Trichlorobenzene	ND	4.4	0.27	ug/Kg	₩	05/21/15 14:14	05/29/15 17:29	
1,2-Dibromo-3-Chloropropane	ND	4.4	2.2	ug/Kg	₩	05/21/15 14:14	05/29/15 17:29	
1,2-Dichlorobenzene	ND	4.4	0.35	ug/Kg	☆	05/21/15 14:14	05/29/15 17:29	
1,2-Dichloroethane	ND	4.4	0.22	ug/Kg	☆	05/21/15 14:14	05/29/15 17:29	
1,2-Dichloropropane	ND	4.4	2.2	ug/Kg	≎	05/21/15 14:14	05/29/15 17:29	
1,3-Dichlorobenzene	ND	4.4	0.23	ug/Kg		05/21/15 14:14	05/29/15 17:29	
1,4-Dichlorobenzene	ND	4.4	0.62	ug/Kg	₩	05/21/15 14:14	05/29/15 17:29	
1,4-Dioxane	ND	88	19	ug/Kg	₽	05/21/15 14:14	05/29/15 17:29	
2-Hexanone	ND	22		ug/Kg		05/21/15 14:14	05/29/15 17:29	
Acetone	13 JB	22		ug/Kg	≎	05/21/15 14:14	05/29/15 17:29	
Benzene	ND *	4.4		ug/Kg	☆	05/21/15 14:14	05/29/15 17:29	
Bromoform	ND	4.4		ug/Kg		05/21/15 14:14	05/29/15 17:29	
Bromomethane	ND	4.4		ug/Kg	☆	05/21/15 14:14	05/29/15 17:29	
Carbon disulfide	ND	4.4		ug/Kg	≎	05/21/15 14:14		
Carbon tetrachloride	ND	4.4		ug/Kg			05/29/15 17:29	
Chlorobenzene	ND	4.4		ug/Kg	₩		05/29/15 17:29	
Bromochloromethane	ND	4.4		ug/Kg	☼		05/29/15 17:29	
Dibromochloromethane	ND	4.4		ug/Kg	 \$		05/29/15 17:29	
Chloroethane	ND	4.4		ug/Kg	☆		05/29/15 17:29	
Chloroform	ND	4.4		ug/Kg	☆		05/29/15 17:29	
Chloromethane	ND	4.4		ug/Kg			05/29/15 17:29	
cis-1,2-Dichloroethene	ND	4.4		ug/Kg	₽	05/21/15 14:14		
cis-1,3-Dichloropropene	ND	4.4		ug/Kg	₩	05/21/15 14:14		
Cyclohexane	ND	4.4		ug/Kg		05/21/15 14:14		
Bromodichloromethane	ND	4.4		ug/Kg	₩		05/29/15 17:29	
Dichlorodifluoromethane	ND	4.4		ug/Kg	₩.		05/29/15 17:29	
Ethylbenzene	ND	4.4		ug/Kg			05/29/15 17:29	
1,2-Dibromoethane (EDB)	ND ND	4.4		ug/Kg ug/Kg			05/29/15 17:29	
. ,					*		05/29/15 17:29	
Isopropylbenzene	ND ND	4.4		ug/Kg	· · · · · · ›			
Methyl acetate	ND	4.4		ug/Kg	*	05/21/15 14:14		
2-Butanone (MEK)	ND ND	22		ug/Kg	☆		05/29/15 17:29	
4-Methyl-2-pentanone (MIBK)	ND	22		ug/Kg	¥.		05/29/15 17:29	
Methyl tert-butyl ether	ND	4.4		ug/Kg	☆		05/29/15 17:29	
Methylcyclohexane	ND	4.4		ug/Kg	☆		05/29/15 17:29	
Methylene Chloride	3.1 JB	4.4		ug/Kg			05/29/15 17:29	
Styrene	ND	4.4		ug/Kg	☆		05/29/15 17:29	
Tetrachloroethene	ND	4.4		ug/Kg	ψ.		05/29/15 17:29	
Toluene	ND	4.4		ug/Kg			05/29/15 17:29	
trans-1,2-Dichloroethene	ND	4.4		ug/Kg	Ţ.		05/29/15 17:29	
trans-1,3-Dichloropropene	ND	4.4		ug/Kg	*		05/29/15 17:29	
Trichloroethene	ND	4.4		ug/Kg			05/29/15 17:29	
Trichlorofluoromethane	5.4	4.4	0.42	ug/Kg	₽	05/21/15 14:14	05/29/15 17:29	

TestAmerica Buffalo

3

6

8

9

11

Client: Woodard & Curran, Inc. TestAmerica Job ID: 480-80785-1 Project/Site: Rouses Point

Client Sample ID: SWMU17-SS-BLDG40-02 Lab Sample ID: 480-80785-5

Date Collected: 05/20/15 09:08 **Matrix: Solid** Date Received: 05/21/15 09:00 Percent Solids: 91.6

Analyte	Result	Qualifier	R	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4	4	0.54	ug/Kg)	05/21/15 14:14	05/29/15 17:29	1
Xylenes, Total	ND		8	.8	0.74	ug/Kg)	05/21/15 14:14	05/29/15 17:29	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	5.2	TJ	ug/Kg	\$	4	35		05/21/15 14:14	05/29/15 17:29	1
Methane, dibromofluoro-	12	TJN	ug/Kg	☼	4.	.87	1868-53-7	05/21/15 14:14	05/29/15 17:29	1
Tetrasiloxane, decamethyl-	9.1	TJN	ug/Kg	₩	10.	.21	141-62-8	05/21/15 14:14	05/29/15 17:29	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	-	64 - 126	-				05/21/15 14:14	05/29/15 17:29	1
Toluene-d8 (Surr)	103		71 - 125	j				05/21/15 14:14	05/29/15 17:29	1
4-Bromofluorobenzene (Surr)	106		72 - 126	ì				05/21/15 14:14	05/29/15 17:29	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 05/20/15 09:25

Date Received: 05/21/15 09:00

Dibromochloromethane

cis-1,2-Dichloroethene

Chloroethane

Chloromethane

Chloroform

Client Sample ID: SWMU17-SS-BLDG40-03

TestAmerica Job ID: 480-80785-1

Lab Sample ID: 480-80785-6

05/21/15 14:14 05/29/15 17:55

05/21/15 14:14 05/29/15 17:55

05/21/15 14:14 05/29/15 17:55

05/21/15 14:14 05/29/15 17:55

05/21/15 14:14 05/29/15 17:55

Matrix: Solid Percent Solids: 94.1

Method: 8260C - Volatile Organic Compounds by GC/MS RL Result Qualifier **MDL** Unit D Prepared Analyzed Dil Fac Analyte ₩ 1,1,1-Trichloroethane $\overline{\mathsf{ND}}$ 4.8 05/21/15 14:14 05/29/15 17:55 0.35 ug/Kg ND 1.1.2.2-Tetrachloroethane 4.8 ug/Kg 05/21/15 14:14 05/29/15 17:55 0.79 1,1,2-Trichloro-1,2,2-trifluoroethane ND 4.8 1.1 ug/Kg 05/21/15 14:14 05/29/15 17:55 ND 4.8 0.63 05/21/15 14:14 05/29/15 17:55 1.1.2-Trichloroethane ug/Kg 1,1-Dichloroethane ND 4.8 0.59 ug/Kg 05/21/15 14:14 05/29/15 17:55 1.1-Dichloroethene ND 4.8 0.59 ug/Kg 05/21/15 14:14 05/29/15 17:55 1,2,3-Trichlorobenzene ND 4.8 0.51 ug/Kg 05/21/15 14:14 05/29/15 17:55 1,2,4-Trichlorobenzene ND 4.8 0.29 ug/Kg 05/21/15 14:14 05/29/15 17:55 1,2-Dibromo-3-Chloropropane ND ₩ 4.8 2.4 ug/Kg 05/21/15 14:14 05/29/15 17:55 1,2-Dichlorobenzene ND 4.8 0.38 ug/Kg 05/21/15 14:14 05/29/15 17:55 1,2-Dichloroethane ND 4.8 0.24 ug/Kg 05/21/15 14:14 05/29/15 17:55 1,2-Dichloropropane ND 4.8 2.4 ug/Kg 05/21/15 14:14 05/29/15 17:55 1,3-Dichlorobenzene ND 4.8 0.25 05/21/15 14:14 05/29/15 17:55 ug/Kg 0.68 05/21/15 14:14 05/29/15 17:55 1,4-Dichlorobenzene ND 4.8 ug/Kg 1 4-Dioxane ND 97 21 05/21/15 14:14 05/29/15 17:55 ug/Kg 2-Hexanone ND 24 2.4 05/21/15 14:14 05/29/15 17:55 ug/Kg Acetone NΠ 24 4.1 ug/Kg 05/21/15 14:14 05/29/15 17:55 Benzene ND 4.8 0.24 ug/Kg 05/21/15 14:14 05/29/15 17:55 Bromoform ND 4.8 05/21/15 14:14 05/29/15 17:55 2.4 ug/Kg Bromomethane ND 4.8 0.44 ug/Kg 05/21/15 14:14 05/29/15 17:55 Carbon disulfide ND 4.8 2.4 05/21/15 14:14 05/29/15 17:55 ug/Kg ND Carbon tetrachloride 4.8 0.47 ug/Kg 05/21/15 14:14 05/29/15 17:55 Chlorobenzene ND 4.8 0.64 ug/Kg 05/21/15 14:14 05/29/15 17:55 Bromochloromethane ND 4.8 0.35 ug/Kg 05/21/15 14:14 05/29/15 17:55

4.8

4.8

4.8

4.8

4.8

0.62

1.1

0.30

ug/Kg

ug/Kg

ug/Kg

0.29 ug/Kg

0.62 ug/Kg

₩

ND

ND

ND

ND

ND

olo 1,2 Diomoroculono	110	4.0	0.02 ug/ng	00/21/10 14.14	00/20/10 17.00
cis-1,3-Dichloropropene	ND	4.8	0.70 ug/Kg	Ф 05/21/15 14:14	05/29/15 17:55
Cyclohexane	ND	4.8	0.68 ug/Kg	© 05/21/15 14:14	05/29/15 17:55
Bromodichloromethane	ND	4.8	0.65 ug/Kg	Ф 05/21/15 14:14	05/29/15 17:55
Dichlorodifluoromethane	ND	4.8	0.40 ug/Kg	05/21/15 14:14	05/29/15 17:55
Ethylbenzene	ND	4.8	0.33 ug/Kg	© 05/21/15 14:14	05/29/15 17:55
1,2-Dibromoethane (EDB)	ND	4.8	0.62 ug/Kg	05/21/15 14:14	05/29/15 17:55
Isopropylbenzene	ND	4.8	0.73 ug/Kg	Ф 05/21/15 14:14	05/29/15 17:55
Methyl acetate	ND	4.8	2.9 ug/Kg	© 05/21/15 14:14	05/29/15 17:55
2-Butanone (MEK)	ND	24	1.8 ug/Kg	Ф 05/21/15 14:14	05/29/15 17:55
4-Methyl-2-pentanone (MIBK)	ND	24	1.6 ug/Kg	© 05/21/15 14:14	05/29/15 17:55
Methyl tert-butyl ether	ND	4.8	0.48 ug/Kg	© 05/21/15 14:14	05/29/15 17:55
Methylcyclohexane	ND	4.8	0.74 ug/Kg	© 05/21/15 14:14	05/29/15 17:55
Methylene Chloride	3.8 JB	4.8	2.2 ug/Kg	© 05/21/15 14:14	05/29/15 17:55
Styrene	ND	4.8	0.24 ug/Kg	© 05/21/15 14:14	05/29/15 17:55
Tetrachloroethene	ND	4.8	0.65 ug/Kg	© 05/21/15 14:14	05/29/15 17:55
Toluene	ND	4.8	0.37 ug/Kg	© 05/21/15 14:14	05/29/15 17:55
trans-1,2-Dichloroethene	ND	4.8	0.50 ug/Kg	© 05/21/15 14:14	05/29/15 17:55
trans-1,3-Dichloropropene	ND	4.8	2.1 ug/Kg	© 05/21/15 14:14	05/29/15 17:55
Trichloroethene	ND	4.8	1.1 ug/Kg	© 05/21/15 14:14	05/29/15 17:55
Trichlorofluoromethane	16	4.8	0.46 ug/Kg	☼ 05/21/15 14:14	05/29/15 17:55
•					
					TestAmerica Buffa

Client: Woodard & Curran, Inc.

Project/Site: Rouses Point

TestAmerica Job ID: 480-80785-1

Client Sample ID: SWMU17-SS-BLDG40-03 Lab Sample ID: 480-80785-6

Date Collected: 05/20/15 09:25

Date Received: 05/21/15 09:00

Matrix: Solid
Percent Solids: 94.1

Method: 8260C - Volatile Org	•	•	•			l lmi4		Dremered	A malumad	Dil Fac
Analyte		Qualifier	R			Unit	D		Analyzed	Dil Fac
Vinyl chloride	ND		4.	8	0.59	ug/Kg	₽	05/21/15 14:14	05/29/15 17:55	1
Xylenes, Total	ND		9.	7	0.81	ug/Kg	☆	05/21/15 14:14	05/29/15 17:55	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	8.8	TJ	ug/Kg	₩	2	.94		05/21/15 14:14	05/29/15 17:55	1
Methane, dibromofluoro-	13	TJN	ug/Kg	₩	4	.86	1868-53-7	05/21/15 14:14	05/29/15 17:55	1
Tetrasiloxane, decamethyl-	36	TJN	ug/Kg	₩	10	.21	141-62-8	05/21/15 14:14	05/29/15 17:55	1
Unknown	120	ΤJ	ug/Kg	₩	11	.78		05/21/15 14:14	05/29/15 17:55	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	-	64 - 126	_				05/21/15 14:14	05/29/15 17:55	
Toluene-d8 (Surr)	103		71 - 125					05/21/15 14:14	05/29/15 17:55	1
4-Bromofluorobenzene (Surr)	102		72 - 126					05/21/15 14:14	05/29/15 17:55	1

_

4

5

7

10

13

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 05/20/15 09:50

Date Received: 05/21/15 09:00

Client Sample ID: SWMU17-SS-BLDG40-04

TestAmerica Job ID: 480-80785-1

Lab Sample ID: 480-80785-7

Matrix: Solid
Percent Solids: 89.6

Analyte	Result Qualifier	RL _	MDL		— D ※	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0		ug/Kg		05/21/15 14:14		1
1,1,2,2-Tetrachloroethane	ND	5.0		ug/Kg	☆		05/29/15 18:21	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0		ug/Kg	:		05/29/15 18:21	1
1,1,2-Trichloroethane	ND	5.0		ug/Kg	☆		05/29/15 18:21	1
1,1-Dichloroethane	ND	5.0		ug/Kg	₩.		05/29/15 18:21	1
1,1-Dichloroethene	ND	5.0		ug/Kg			05/29/15 18:21	1
1,2,3-Trichlorobenzene	ND	5.0		ug/Kg	☆		05/29/15 18:21	1
1,2,4-Trichlorobenzene	ND	5.0		ug/Kg	:		05/29/15 18:21	1
1,2-Dibromo-3-Chloropropane	ND	5.0		ug/Kg			05/29/15 18:21	1
1,2-Dichlorobenzene	ND	5.0		ug/Kg	₩	05/21/15 14:14	05/29/15 18:21	1
1,2-Dichloroethane	ND	5.0	0.25	ug/Kg	₩	05/21/15 14:14	05/29/15 18:21	1
1,2-Dichloropropane	ND	5.0		ug/Kg	₩	05/21/15 14:14	05/29/15 18:21	1
1,3-Dichlorobenzene	ND	5.0	0.26	ug/Kg	₽	05/21/15 14:14	05/29/15 18:21	1
1,4-Dichlorobenzene	ND	5.0	0.70	ug/Kg	₩	05/21/15 14:14	05/29/15 18:21	1
1,4-Dioxane	ND	100	22	ug/Kg	₩	05/21/15 14:14	05/29/15 18:21	1
2-Hexanone	ND	25	2.5	ug/Kg	₩.	05/21/15 14:14	05/29/15 18:21	1
Acetone	11 JB	25	4.2	ug/Kg	₩	05/21/15 14:14	05/29/15 18:21	1
Benzene	ND *	5.0	0.24	ug/Kg	☼	05/21/15 14:14	05/29/15 18:21	1
Bromoform	ND	5.0	2.5	ug/Kg		05/21/15 14:14	05/29/15 18:21	1
Bromomethane	ND	5.0	0.45	ug/Kg	₩	05/21/15 14:14	05/29/15 18:21	1
Carbon disulfide	ND	5.0		ug/Kg	₩	05/21/15 14:14	05/29/15 18:21	1
Carbon tetrachloride	ND	5.0		ug/Kg		05/21/15 14:14	05/29/15 18:21	1
Chlorobenzene	ND	5.0		ug/Kg	₩	05/21/15 14:14	05/29/15 18:21	1
Bromochloromethane	ND	5.0		ug/Kg	₩	05/21/15 14:14	05/29/15 18:21	1
Dibromochloromethane	ND	5.0		ug/Kg	.		05/29/15 18:21	1
Chloroethane	ND	5.0		ug/Kg	₩		05/29/15 18:21	1
Chloroform	ND	5.0		ug/Kg	₩	05/21/15 14:14		1
Chloromethane	ND	5.0		ug/Kg			05/29/15 18:21	1
cis-1,2-Dichloroethene	ND	5.0		ug/Kg	₩		05/29/15 18:21	1
cis-1,3-Dichloropropene	ND	5.0		ug/Kg	₩		05/29/15 18:21	1
Cyclohexane	ND	5.0		ug/Kg			05/29/15 18:21	1
Bromodichloromethane	ND	5.0		ug/Kg	₽		05/29/15 18:21	1
Dichlorodifluoromethane	0.44 J	5.0		ug/Kg ug/Kg	₩		05/29/15 18:21	1
Ethylbenzene	0.44 J ND			ug/Kg ug/Kg			05/29/15 18:21	1
•	ND ND	5.0 5.0			₩		05/29/15 18:21	1
1,2-Dibromoethane (EDB)				ug/Kg	₩			1
Isopropylbenzene	ND	5.0		ug/Kg		05/21/15 14:14		
Methyl acetate	ND	5.0		ug/Kg	₩		05/29/15 18:21	1
2-Butanone (MEK)	ND	25		ug/Kg	₩		05/29/15 18:21	1
4-Methyl-2-pentanone (MIBK)	ND	25		ug/Kg			05/29/15 18:21	1
Methyl tert-butyl ether	ND	5.0		ug/Kg	ψ.		05/29/15 18:21	1
Methylcyclohexane	ND	5.0		ug/Kg	₽		05/29/15 18:21	1
Methylene Chloride	4.0 JB	5.0		ug/Kg			05/29/15 18:21	1
Styrene	ND	5.0		ug/Kg	₽		05/29/15 18:21	1
Tetrachloroethene	ND	5.0		ug/Kg	*		05/29/15 18:21	1
Toluene	ND	5.0		ug/Kg			05/29/15 18:21	1
trans-1,2-Dichloroethene	ND	5.0		ug/Kg	₽		05/29/15 18:21	1
trans-1,3-Dichloropropene	ND	5.0	2.2	ug/Kg	₩	05/21/15 14:14	05/29/15 18:21	1
Trichloroethene	ND	5.0	1.1	ug/Kg	☼	05/21/15 14:14	05/29/15 18:21	1
Trichlorofluoromethane	13	5.0	0.47	ug/Kg	☼	05/21/15 14:14	05/29/15 18:21	1

TestAmerica Buffalo

2

6

Ö

10

12

14

Client: Woodard & Curran, Inc. TestAmerica Job ID: 480-80785-1 Project/Site: Rouses Point

Client Sample ID: SWMU17-SS-BLDG40-04

Lab Sample ID: 480-80785-7 Date Collected: 05/20/15 09:50 **Matrix: Solid**

Date Received: 05/21/15 09:00 Percent Solids: 89.6

Analyte	Result	Qualifier	RL	-	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0)	0.61	ug/Kg	₩	05/21/15 14:14	05/29/15 18:21	1
Xylenes, Total	ND		10)	0.84	ug/Kg	\$	05/21/15 14:14	05/29/15 18:21	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	10	TJ	ug/Kg	₩	2	.94		05/21/15 14:14	05/29/15 18:21	1
Unknown	14	ΤJ	ug/Kg	₩	4	.34		05/21/15 14:14	05/29/15 18:21	1
Methane, dibromofluoro-	13	TJN	ug/Kg	☼	4	.86	1868-53-7	05/21/15 14:14	05/29/15 18:21	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		64 - 126	-				05/21/15 14:14	05/29/15 18:21	1
Toluene-d8 (Surr)	103		71 - 125					05/21/15 14:14	05/29/15 18:21	1
4-Bromofluorobenzene (Surr)	103		72 - 126					05/21/15 14:14	05/29/15 18:21	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80785-1

Client Sample ID: SWMU17-SS-01 Lab Sample ID: 480-80785-8

Date Collected: 05/20/15 10:25

Date Received: 05/21/15 09:00

Matrix: Solid
Percent Solids: 93.9

Method: 8260C - Volatile Organ Analyte	Result Qua	_	MDI	Unit	D	Prepared	Analyzed	Dil F
1,1,1-Trichloroethane	ND Que	5.0	0.36	ug/Kg	— ğ	05/21/15 14:14		
1,1,2,2-Tetrachloroethane	ND	5.0	0.81	ug/Kg	₽		05/29/15 18:47	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	1.1	ug/Kg	₩		05/29/15 18:47	
1,1,2-Trichloroethane	ND	5.0		ug/Kg			05/29/15 18:47	
1,1-Dichloroethane	ND	5.0	0.61	ug/Kg	₽		05/29/15 18:47	
1,1-Dichloroethane	ND	5.0	0.61	ug/Kg			05/29/15 18:47	
•	ND ND	5.0					05/29/15 18:47	
1,2,3-Trichlorobenzene				ug/Kg	₩			
1,2,4-Trichlorobenzene	ND	5.0		ug/Kg	ж ж		05/29/15 18:47	
1,2-Dibromo-3-Chloropropane	ND	5.0		ug/Kg			05/29/15 18:47	
1,2-Dichlorobenzene	ND	5.0		0 0	*		05/29/15 18:47	
1,2-Dichloroethane	ND	5.0		ug/Kg	₩.		05/29/15 18:47	
1,2-Dichloropropane	ND	5.0					05/29/15 18:47	
1,3-Dichlorobenzene	ND	5.0		ug/Kg	₽		05/29/15 18:47	
1,4-Dichlorobenzene	ND	5.0	0.70	ug/Kg	₩.		05/29/15 18:47	
1,4-Dioxane	ND	100					05/29/15 18:47	
2-Hexanone	ND	25		ug/Kg	₩	05/21/15 14:14	05/29/15 18:47	
Acetone	ND	25	4.2	ug/Kg	₩	05/21/15 14:14	05/29/15 18:47	
Benzene	ND *	5.0	0.24	ug/Kg	₩	05/21/15 14:14	05/29/15 18:47	
Bromoform	ND	5.0	2.5	ug/Kg	₩	05/21/15 14:14	05/29/15 18:47	
Bromomethane	ND	5.0	0.45	ug/Kg	₩	05/21/15 14:14	05/29/15 18:47	
Carbon disulfide	ND	5.0	2.5	ug/Kg	☼	05/21/15 14:14	05/29/15 18:47	
Carbon tetrachloride	ND	5.0	0.48	ug/Kg	₽	05/21/15 14:14	05/29/15 18:47	
Chlorobenzene	ND	5.0	0.66	ug/Kg	≎	05/21/15 14:14	05/29/15 18:47	
Bromochloromethane	ND	5.0	0.36	ug/Kg	≎	05/21/15 14:14	05/29/15 18:47	
Dibromochloromethane	ND	5.0	0.64	ug/Kg		05/21/15 14:14	05/29/15 18:47	
Chloroethane	ND	5.0	1.1	ug/Kg	₩	05/21/15 14:14	05/29/15 18:47	
Chloroform	ND	5.0	0.31		≎	05/21/15 14:14	05/29/15 18:47	
Chloromethane	ND	5.0	0.30	ug/Kg		05/21/15 14:14	05/29/15 18:47	
cis-1,2-Dichloroethene	ND	5.0		ug/Kg	₽		05/29/15 18:47	
cis-1,3-Dichloropropene	ND	5.0		ug/Kg	₽		05/29/15 18:47	
Cyclohexane	ND	5.0		ug/Kg	 \$		05/29/15 18:47	
Bromodichloromethane	ND	5.0		ug/Kg	₩		05/29/15 18:47	
Dichlorodifluoromethane	ND	5.0		ug/Kg	Ö		05/29/15 18:47	
Ethylbenzene	ND	5.0		ug/Kg	 \$		05/29/15 18:47	
I,2-Dibromoethane (EDB)	ND	5.0		ug/Kg			05/29/15 18:47	
	ND	5.0			₽	05/21/15 14:14		
sopropylbenzene				ug/Kg	· · · · · · _{**} .			
Methyl acetate	ND	5.0		ug/Kg	γ. γ.		05/29/15 18:47	
2-Butanone (MEK)	ND	25		ug/Kg	₩		05/29/15 18:47	
l-Methyl-2-pentanone (MIBK)	ND	25		ug/Kg			05/29/15 18:47	
Methyl tert-butyl ether	ND	5.0		ug/Kg	14:		05/29/15 18:47	
Methylcyclohexane	ND	5.0		ug/Kg	ψ. 		05/29/15 18:47	
Methylene Chloride	3.9 JB	5.0		ug/Kg			05/29/15 18:47	
Styrene	ND	5.0		ug/Kg	₩.		05/29/15 18:47	
Tetrachloroethene	ND	5.0		ug/Kg	*		05/29/15 18:47	
oluene	ND	5.0		ug/Kg	₩		05/29/15 18:47	
rans-1,2-Dichloroethene	ND	5.0		ug/Kg	≎		05/29/15 18:47	
rans-1,3-Dichloropropene	ND	5.0	2.2	ug/Kg	₩	05/21/15 14:14	05/29/15 18:47	
Frichloroethene	ND	5.0	1.1	ug/Kg	☼	05/21/15 14:14	05/29/15 18:47	
Trichlorofluoromethane	ND	5.0	0.47	ug/Kg		05/21/15 14:14	05/29/15 18:47	

TestAmerica Buffalo

3

5

7

9

11

4 4

4 1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80785-1

Client Sample ID: SWMU17-SS-01 Lab Sample ID: 480-80785-8

Date Collected: 05/20/15 10:25 Matrix: Solid Dat

ate Received: 05/21/15 09:00	Percent Solids: 93.9

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		0.61	ug/Kg		05/21/15 14:14	05/29/15 18:47	1
Xylenes, Total	ND		10		0.84	ug/Kg	₩	05/21/15 14:14	05/29/15 18:47	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	14	TJ	ug/Kg	₩ -	4.	.86		05/21/15 14:14	05/29/15 18:47	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	-	64 - 126					05/21/15 14:14	05/29/15 18:47	1
Toluene-d8 (Surr)	103		71 - 125					05/21/15 14:14	05/29/15 18:47	1
4-Bromofluorobenzene (Surr)	102		72 - 126					05/21/15 14:14	05/29/15 18:47	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 05/20/15 10:42

Date Received: 05/21/15 09:00

Client Sample ID: SWMU7-SS-02

TestAmerica Job ID: 480-80785-1

Lab Sample ID: 480-80785-9

Matrix: Solid
Percent Solids: 86.6

Method: 8260C - Volatile Organic Compounds by GC/MS RL Dil Fac Result Qualifier **MDL** Unit D Prepared Analyzed Analyte ₩ $\overline{\mathsf{ND}}$ 4.3 05/21/15 14:14 05/29/15 19:13 1,1,1-Trichloroethane 0.31 ug/Kg ND 1.1.2.2-Tetrachloroethane 43 ug/Kg 05/21/15 14:14 05/29/15 19:13 0.70 1,1,2-Trichloro-1,2,2-trifluoroethane ND 4.3 0.99 ug/Kg 05/21/15 14:14 05/29/15 19:13 ND 4.3 0.56 ug/Kg 05/21/15 14:14 05/29/15 19:13 1.1.2-Trichloroethane 1,1-Dichloroethane ND 4.3 0.53 ug/Kg 05/21/15 14:14 05/29/15 19:13 1 1-Dichloroethene ND 43 0.53 ug/Kg 05/21/15 14:14 05/29/15 19:13 1,2,3-Trichlorobenzene ND 4.3 0.46 ug/Kg 05/21/15 14:14 05/29/15 19:13 1,2,4-Trichlorobenzene ND 4.3 0.26 ug/Kg 05/21/15 14:14 05/29/15 19:13 ₩ ND 1,2-Dibromo-3-Chloropropane 4.3 2.2 ug/Kg 05/21/15 14:14 05/29/15 19:13 1,2-Dichlorobenzene ND 4.3 0.34 ug/Kg 05/21/15 14:14 05/29/15 19:13 05/21/15 14:14 05/29/15 19:13 1,2-Dichloroethane ND 4.3 0.22 ug/Kg 1,2-Dichloropropane NΩ 4.3 2.2 ug/Kg 05/21/15 14:14 05/29/15 19:13 ND 4.3 0.22 05/21/15 14:14 05/29/15 19:13 1.3-Dichlorobenzene ug/Kg 0.61 05/21/15 14:14 05/29/15 19:13 1.4-Dichlorobenzene ND 4.3 ug/Kg 1 4-Dioxane ND 87 19 05/21/15 14:14 05/29/15 19:13 ug/Kg 2-Hexanone ND 22 2.2 05/21/15 14:14 05/29/15 19:13 ug/Kg 22 Acetone ND 3.6 ug/Kg 05/21/15 14:14 05/29/15 19:13 Benzene ND 4.3 0.21 ug/Kg 05/21/15 14:14 05/29/15 19:13 Bromoform ND 4.3 05/21/15 14:14 05/29/15 19:13 2.2 ug/Kg Bromomethane ND 4.3 0.39 ug/Kg 05/21/15 14:14 05/29/15 19:13 Carbon disulfide ND 4.3 2.2 05/21/15 14:14 05/29/15 19:13 ug/Kg ND 4.3 Carbon tetrachloride 0.42 ug/Kg 05/21/15 14:14 05/29/15 19:13 Chlorobenzene ND 4.3 0.57 ug/Kg 05/21/15 14:14 05/29/15 19:13 Bromochloromethane ND 4.3 0.31 ug/Kg 05/21/15 14:14 05/29/15 19:13 Dibromochloromethane ND 43 0.55 ug/Kg 05/21/15 14:14 05/29/15 19:13 ND 4.3 05/21/15 14:14 05/29/15 19:13 Chloroethane 0.98 ug/Kg Chloroform ND 4.3 0.27 ug/Kg 05/21/15 14:14 05/29/15 19:13 ND 4.3 05/21/15 14:14 05/29/15 19:13 Chloromethane 0.26 ug/Kg cis-1,2-Dichloroethene ND 4.3 0.55 ug/Kg 05/21/15 14:14 05/29/15 19:13 ND 4.3 cis-1,3-Dichloropropene 0.62 ug/Kg 05/21/15 14:14 05/29/15 19:13 Cyclohexane ND 4.3 0.61 ug/Kg 05/21/15 14:14 05/29/15 19:13 Bromodichloromethane ND 4.3 0.58 ug/Kg 05/21/15 14:14 05/29/15 19:13 Dichlorodifluoromethane ND 4.3 0.36 ug/Kg 05/21/15 14:14 05/29/15 19:13 Ethylbenzene ND 4.3 0.30 ug/Kg 05/21/15 14:14 05/29/15 19:13 1,2-Dibromoethane (EDB) ND 4.3 0.56 ₩ 05/21/15 14:14 05/29/15 19:13 ug/Kg Isopropylbenzene ND 4.3 0.65 ug/Kg 05/21/15 14:14 05/29/15 19:13 Methyl acetate ND 4.3 2.6 05/21/15 14:14 05/29/15 19:13 ug/Kg 2-Butanone (MEK) ND 22 1.6 ug/Kg 05/21/15 14:14 05/29/15 19:13 4-Methyl-2-pentanone (MIBK) ND 22 1.4 ug/Kg 05/21/15 14:14 05/29/15 19:13 ND 4.3 05/21/15 14:14 05/29/15 19:13 Methyl tert-butyl ether 0.43 ug/Kg ND Methylcyclohexane 4.3 0.66 ug/Kg 05/21/15 14:14 05/29/15 19:13 4.3 2.0 ug/Kg 05/21/15 14:14 05/29/15 19:13 **Methylene Chloride** 2.2 J_B ND 05/21/15 14:14 05/29/15 19:13 Styrene 43 0.22 ug/Kg ₩ Tetrachloroethene ND 4.3 0.58 ug/Kg 05/21/15 14:14 05/29/15 19:13 Toluene ND 4.3 0.33 ug/Kg 05/21/15 14:14 05/29/15 19:13 trans-1,2-Dichloroethene ND 4.3 0.45 ug/Kg 05/21/15 14:14 05/29/15 19:13 trans-1,3-Dichloropropene ND 4.3 1.9 ug/Kg 05/21/15 14:14 05/29/15 19:13 Trichloroethene ND 4.3 0.95 ug/Kg 05/21/15 14:14 05/29/15 19:13 4.3 0.41 ug/Kg 05/21/15 14:14 05/29/15 19:13 Trichlorofluoromethane 0.83

TestAmerica Buffalo

3

4

6

8

10

11

1 /

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80785-1

Client Sample ID: SWMU7-SS-02 Lab Sample ID: 480-80785-9 Date Collected: 05/20/15 10:42

Matrix: Solid

Percent Solids: 86.6 Date Received: 05/21/15 09:00

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.3		0.53	ug/Kg		05/21/15 14:14	05/29/15 19:13	1
Xylenes, Total	ND		8.7		0.73	ug/Kg	₩	05/21/15 14:14	05/29/15 19:13	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	4.5	TJ	ug/Kg	\$	2.	95		05/21/15 14:14	05/29/15 19:13	1
Methane, dibromofluoro-	12	TJN	ug/Kg	☼	4.	.87	1868-53-7	05/21/15 14:14	05/29/15 19:13	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		64 - 126					05/21/15 14:14	05/29/15 19:13	1
Toluene-d8 (Surr)	102		71 - 125					05/21/15 14:14	05/29/15 19:13	1
4-Bromofluorobenzene (Surr)	103		72 - 126					05/21/15 14:14	05/29/15 19:13	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 05/20/15 10:50

Client Sample ID: SWMU7-SS-03

TestAmerica Job ID: 480-80785-1

Lab Sample ID: 480-80785-10

Matrix: Solid
Percent Solids: 88.6

Date Received: 05/21/15 09:	00

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
1,1,1-Trichloroethane	ND	4.5	0.32	ug/Kg	₩	05/21/15 14:14	05/29/15 19:39	
1,1,2,2-Tetrachloroethane	ND	4.5	0.72	ug/Kg	₩	05/21/15 14:14	05/29/15 19:39	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.5	1.0	ug/Kg	₩	05/21/15 14:14	05/29/15 19:39	
1,1,2-Trichloroethane	ND	4.5	0.58	ug/Kg		05/21/15 14:14	05/29/15 19:39	
1,1-Dichloroethane	ND	4.5	0.54	ug/Kg	☼	05/21/15 14:14	05/29/15 19:39	
1,1-Dichloroethene	ND	4.5	0.55	ug/Kg	₩	05/21/15 14:14	05/29/15 19:39	
1,2,3-Trichlorobenzene	ND	4.5	0.47	ug/Kg		05/21/15 14:14	05/29/15 19:39	
1,2,4-Trichlorobenzene	ND	4.5	0.27	ug/Kg	₩	05/21/15 14:14	05/29/15 19:39	
1,2-Dibromo-3-Chloropropane	ND	4.5	2.2	ug/Kg	₩	05/21/15 14:14	05/29/15 19:39	
1,2-Dichlorobenzene	ND	4.5		ug/Kg	 ∳-	05/21/15 14:14	05/29/15 19:39	
I,2-Dichloroethane	ND	4.5		ug/Kg	₩	05/21/15 14:14	05/29/15 19:39	
1,2-Dichloropropane	ND	4.5		ug/Kg	₩		05/29/15 19:39	
1,3-Dichlorobenzene	ND	4.5		ug/Kg	 		05/29/15 19:39	
1,4-Dichlorobenzene	ND	4.5		ug/Kg	₩		05/29/15 19:39	
1,4-Dioxane	ND	89		ug/Kg	₩		05/29/15 19:39	
2-Hexanone	ND	22		ug/Kg	 \$		05/29/15 19:39	
Acetone	ND	22		ug/Kg	☼		05/29/15 19:39	
Benzene	ND *	4.5		ug/Kg	₩		05/29/15 19:39	
Bromoform	ND	4.5		ug/Kg			05/29/15 19:39	
Bromomethane	ND	4.5		ug/Kg	₩		05/29/15 19:39	
Carbon disulfide	ND	4.5		ug/Kg	₩		05/29/15 19:39	
Carbon tetrachloride	ND	4.5		ug/Kg			05/29/15 19:39	
Chlorobenzene	ND ND	4.5		ug/Kg	₩		05/29/15 19:39	
Bromochloromethane	ND	4.5		ug/Kg ug/Kg	- T		05/29/15 19:39	
Dibromochloromethane	ND	4.5		ug/Kg			05/29/15 19:39	
Chloroethane	ND	4.5		ug/Kg	☼		05/29/15 19:39	
Chloroform	ND ND	4.5		ug/Kg ug/Kg	☼		05/29/15 19:39	
	ND	4.5					05/29/15 19:39	
Chloromethane				ug/Kg	₩			
cis-1,2-Dichloroethene	ND ND	4.5		ug/Kg	₩		05/29/15 19:39	
cis-1,3-Dichloropropene	ND	4.5		ug/Kg	 .		05/29/15 19:39	
Cyclohexane	ND	4.5		ug/Kg	₩		05/29/15 19:39	
Bromodichloromethane	ND	4.5		ug/Kg			05/29/15 19:39	
Dichlorodifluoromethane	ND	4.5		ug/Kg	#. #		05/29/15 19:39	
Ethylbenzene	ND	4.5		ug/Kg	φ.		05/29/15 19:39	
1,2-Dibromoethane (EDB)	ND	4.5		ug/Kg	ψ.		05/29/15 19:39	
sopropylbenzene	ND	4.5		ug/Kg	<u>.</u> .		05/29/15 19:39	
Methyl acetate	ND	4.5		ug/Kg	₽		05/29/15 19:39	
2-Butanone (MEK)	ND	22		ug/Kg	:D:		05/29/15 19:39	
4-Methyl-2-pentanone (MIBK)	ND	22		ug/Kg			05/29/15 19:39	
Methyl tert-butyl ether	ND	4.5		ug/Kg	Đ.		05/29/15 19:39	
Methylcyclohexane	ND	4.5		ug/Kg	Đ.		05/29/15 19:39	
Methylene Chloride	2.8 JB	4.5		ug/Kg			05/29/15 19:39	
Styrene	ND	4.5		ug/Kg	₩		05/29/15 19:39	
Tetrachloroethene	ND	4.5		ug/Kg	☼		05/29/15 19:39	
Гoluene	ND	4.5	0.34	ug/Kg	₩	05/21/15 14:14	05/29/15 19:39	
rans-1,2-Dichloroethene	ND	4.5	0.46	ug/Kg	₩		05/29/15 19:39	
rans-1,3-Dichloropropene	ND	4.5	2.0	ug/Kg	₩	05/21/15 14:14	05/29/15 19:39	
Trichloroethene	ND	4.5	0.98	ug/Kg	☼	05/21/15 14:14	05/29/15 19:39	
Trichlorofluoromethane	1.9 J	4.5	0.42	ug/Kg		05/21/15 14:14	05/29/15 19:39	

TestAmerica Buffalo

2

6

<u>a</u>

11

13

Client: Woodard & Curran, Inc. TestAmerica Job ID: 480-80785-1 Project/Site: Rouses Point

Client Sample ID: SWMU7-SS-03

Lab Sample ID: 480-80785-10 Date Collected: 05/20/15 10:50

Matrix: Solid

Date Received: 05/21/15 09:00 Percent Solids: 88.6

Analyte	Result	Qualifier	R	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.	5	0.54	ug/Kg	<u> </u>	05/21/15 14:14	05/29/15 19:39	1
Xylenes, Total	ND		8.	9	0.75	ug/Kg	\$	05/21/15 14:14	05/29/15 19:39	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	12	TJ	ug/Kg	\	4.	.86		05/21/15 14:14	05/29/15 19:39	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		64 - 126	_				05/21/15 14:14	05/29/15 19:39	1
Toluene-d8 (Surr)	102		71 - 125					05/21/15 14:14	05/29/15 19:39	1
4-Bromofluorobenzene (Surr)	103		72 - 126					05/21/15 14:14	05/29/15 19:39	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80785-1

Lab Sample ID: 480-80785-11

Matrix: Water

Client Sample ID: TRIP BLANK

Date Collected: 05/20/15 00:00 Date Received: 05/21/15 09:00

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND —	1.0	0.82	ug/L		-	05/29/15 01:46	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			05/29/15 01:46	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			05/29/15 01:46	
,1,2-Trichloroethane	ND	1.0	0.23	ug/L			05/29/15 01:46	
,1-Dichloroethane	ND	1.0	0.38	-			05/29/15 01:46	
1,1-Dichloroethene	ND	1.0	0.29	-			05/29/15 01:46	
1,2,3-Trichlorobenzene	ND	1.0	0.41	ug/L			05/29/15 01:46	
1,2,4-Trichlorobenzene	ND	1.0		ug/L			05/29/15 01:46	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	_			05/29/15 01:46	
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			05/29/15 01:46	
1,2-Dichlorobenzene	ND	1.0	0.79	_			05/29/15 01:46	
1,2-Dichloroethane	ND	1.0		ug/L			05/29/15 01:46	
1,2-Dichloropropane	ND	1.0		ug/L			05/29/15 01:46	
1,3-Dichlorobenzene	ND	1.0	0.78	-			05/29/15 01:46	
1,4-Dichlorobenzene	ND	1.0		ug/L			05/29/15 01:46	
1,4-Dioxane	ND	40		ug/L			05/29/15 01:46	
2-Butanone (MEK)	ND	10		ug/L			05/29/15 01:46	
2-Hexanone	ND	5.0		ug/L			05/29/15 01:46	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			05/29/15 01:46	
Acetone	ND	10		ug/L			05/29/15 01:46	
Benzene	ND	1.0	0.41	_			05/29/15 01:46	
Bromochloromethane	ND	1.0		ug/L			05/29/15 01:46	
Bromodichloromethane	ND	1.0		ug/L			05/29/15 01:46	
Bromoform	ND	1.0		ug/L			05/29/15 01:46	
Bromomethane	ND	1.0		ug/L			05/29/15 01:46	
Carbon disulfide	ND	1.0	0.19	-			05/29/15 01:46	
Carbon tetrachloride	ND	1.0		ug/L			05/29/15 01:46	
Chlorobenzene	ND	1.0		ug/L			05/29/15 01:46	
Chloroethane	ND	1.0		ug/L			05/29/15 01:46	
Chloroform	ND	1.0		ug/L			05/29/15 01:46	
Chloromethane	ND	1.0		ug/L			05/29/15 01:46	
cis-1,2-Dichloroethene	ND	1.0	0.81	_			05/29/15 01:46	
cis-1,3-Dichloropropene	ND	1.0	0.36				05/29/15 01:46	
Cyclohexane	ND	1.0		ug/L			05/29/15 01:46	
Dibromochloromethane	ND	1.0	0.10	-			05/29/15 01:46	
Dichlorodifluoromethane	ND	1.0		ug/L			05/29/15 01:46	
Ethylbenzene	ND			ug/L			05/29/15 01:46	
sopropylbenzene	ND ND	1.0 1.0		ug/L ug/L			05/29/15 01:46	
				-			05/29/15 01:46	
Methyl acetate	ND	2.5		ug/L				
Methyl tert-butyl ether	ND	1.0		ug/L			05/29/15 01:46	
Methylcyclohexane	ND	1.0		ug/L			05/29/15 01:46	
Methylene Chloride	ND	1.0		ug/L			05/29/15 01:46	
Styrene	ND	1.0		ug/L			05/29/15 01:46	
Tetrachloroethene	ND	1.0		ug/L			05/29/15 01:46	
Toluene	ND	1.0		ug/L			05/29/15 01:46	
rans-1,2-Dichloroethene	ND	1.0		ug/L			05/29/15 01:46	
rans-1,3-Dichloropropene	ND	1.0		ug/L			05/29/15 01:46	
Trichloroethene Trichlorofluoromethane	ND ND	1.0		ug/L ug/L			05/29/15 01:46 05/29/15 01:46	

TestAmerica Buffalo

3

6

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80785-1

Client Sample ID: TRIP BLANK Lab Sample ID: 480-80785-11

Date Collected: 05/20/15 00:00

Matrix: Water

Date Received: 05/21/15 09:00

Method: 8260C - Volatile Org Analyte		Qualifier	` RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		1.0		0.90	ug/L			05/29/15 01:46	1
Xylenes, Total	ND		2.0		0.66	ug/L			05/29/15 01:46	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	ı	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L						05/29/15 01:46	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		66 - 137				•		05/29/15 01:46	1
4-Bromofluorobenzene (Surr)	95		73 - 120						05/29/15 01:46	1
Toluene-d8 (Surr)	97		71 - 126						05/29/15 01:46	1
Dibromofluoromethane (Surr)	95		60 - 140						05/29/15 01:46	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surr
		12DCE	TOL	BFB
Lab Sample ID	Client Sample ID	(64-126)	(71-125)	(72-126)
480-80785-1	SWMU24-SS-BLDG31-01	99	96	104
480-80785-2	SWMU24-SS-BLDG31-02	99	102	104
480-80785-3	SWMU24-SS-BLDG31-03	98	103	102
480-80785-4	SWMU17-SS-BLDG40-01	98	104	102
480-80785-5	SWMU17-SS-BLDG40-02	101	103	106
480-80785-6	SWMU17-SS-BLDG40-03	98	103	102
480-80785-7	SWMU17-SS-BLDG40-04	99	103	103
480-80785-8	SWMU17-SS-01	100	103	102
480-80785-9	SWMU7-SS-02	102	102	103
480-80785-10	SWMU7-SS-03	101	102	103
LCS 480-243930/1-A	Lab Control Sample	98	102	108
LCSD 480-243930/2-A	Lab Control Sample Dup	95	102	105
MB 480-243930/3-A	Method Blank	96	102	100

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)							
		12DCE	BFB	TOL	DBFM				
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)	(60-140)				
480-80785-11	TRIP BLANK	96	95	97	95				
LCS 480-245024/4	Lab Control Sample	97	102	101	100				
MB 480-245024/6	Method Blank	95	96	98	93				

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

TestAmerica Buffalo

Page 29 of 45

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-243930/3-A

Matrix: Solid

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 243930

Analysis Batch: 245120	MP	MD						Prep Batch:	4393 0
Analyta		MB	DI	MDI	Linit	D	Dranarad	Analyzad	Dil Eco
Analyte	ND	Qualifier	RL 5.0	MDL	ug/Kg	D	Prepared	Analyzed 05/29/15 14:27	Dil Fac
1,1,2,2-Tetrachloroethane	ND ND		5.0 5.0		ug/Kg ug/Kg			05/29/15 14:27	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND ND		5.0					05/29/15 14:27	1
					ug/Kg				
1,1,2-Trichloroethane	ND		5.0		ug/Kg			05/29/15 14:27	1
1,1-Dichloroethane	ND		5.0		ug/Kg			05/29/15 14:27	1
1,1-Dichloroethene	ND		5.0		ug/Kg			05/29/15 14:27	1
1,2,3-Trichlorobenzene	ND		5.0		ug/Kg			05/29/15 14:27	1
1,2,4-Trichlorobenzene	ND		5.0		ug/Kg			05/29/15 14:27	1
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/Kg			05/29/15 14:27	1
1,2-Dichlorobenzene	ND		5.0		ug/Kg			05/29/15 14:27	1
1,2-Dichloroethane	ND		5.0		ug/Kg			05/29/15 14:27	1
1,2-Dichloropropane	ND		5.0		ug/Kg			05/29/15 14:27	1
1,3-Dichlorobenzene	ND		5.0		ug/Kg			05/29/15 14:27	1
1,4-Dichlorobenzene	ND		5.0		ug/Kg			05/29/15 14:27	1
1,4-Dioxane	ND		99		ug/Kg			05/29/15 14:27	1
2-Hexanone	ND		25		ug/Kg			05/29/15 14:27	1
Acetone	5.22	J	25		ug/Kg		05/21/15 14:14	05/29/15 14:27	1
Benzene	ND		5.0		ug/Kg		05/21/15 14:14	05/29/15 14:27	1
Bromochloromethane	ND		5.0	0.36	ug/Kg		05/21/15 14:14	05/29/15 14:27	1
Bromoform	ND		5.0	2.5	ug/Kg		05/21/15 14:14	05/29/15 14:27	1
Bromomethane	ND		5.0	0.45	ug/Kg		05/21/15 14:14	05/29/15 14:27	1
Carbon disulfide	ND		5.0	2.5	ug/Kg		05/21/15 14:14	05/29/15 14:27	1
Carbon tetrachloride	ND		5.0	0.48	ug/Kg		05/21/15 14:14	05/29/15 14:27	1
Chlorobenzene	ND		5.0	0.65	ug/Kg		05/21/15 14:14	05/29/15 14:27	1
Chloroethane	ND		5.0	1.1	ug/Kg		05/21/15 14:14	05/29/15 14:27	1
Bromodichloromethane	ND		5.0	0.66	ug/Kg		05/21/15 14:14	05/29/15 14:27	1
Chloroform	ND		5.0	0.31	ug/Kg		05/21/15 14:14	05/29/15 14:27	1
Chloromethane	ND		5.0	0.30	ug/Kg		05/21/15 14:14	05/29/15 14:27	1
cis-1,2-Dichloroethene	ND		5.0	0.63	ug/Kg		05/21/15 14:14	05/29/15 14:27	1
1,2-Dibromoethane (EDB)	ND		5.0	0.64	ug/Kg		05/21/15 14:14	05/29/15 14:27	1
cis-1,3-Dichloropropene	ND		5.0	0.71	ug/Kg		05/21/15 14:14	05/29/15 14:27	1
Cyclohexane	ND		5.0	0.69	ug/Kg		05/21/15 14:14	05/29/15 14:27	1
Dibromochloromethane	ND		5.0		ug/Kg		05/21/15 14:14	05/29/15 14:27	1
2-Butanone (MEK)	ND		25		ug/Kg		05/21/15 14:14	05/29/15 14:27	1
Dichlorodifluoromethane	ND		5.0		ug/Kg		05/21/15 14:14	05/29/15 14:27	1
4-Methyl-2-pentanone (MIBK)	ND		25		ug/Kg			05/29/15 14:27	1
Ethylbenzene	ND		5.0		ug/Kg			05/29/15 14:27	1
Isopropylbenzene	ND		5.0		ug/Kg			05/29/15 14:27	1
Methyl acetate	ND		5.0		ug/Kg			05/29/15 14:27	1
Methyl tert-butyl ether	ND		5.0		ug/Kg			05/29/15 14:27	
Methylcyclohexane	ND		5.0		ug/Kg			05/29/15 14:27	1
Methylene Chloride	2.65	1	5.0		ug/Kg			05/29/15 14:27	1
Styrene	ND		5.0		ug/Kg			05/29/15 14:27	
Tetrachloroethene	ND ND		5.0		ug/Kg ug/Kg			05/29/15 14:27	1
Toluene	ND ND		5.0		ug/Kg ug/Kg			05/29/15 14:27	1
trans-1,2-Dichloroethene	ND		5.0		ug/Kg ug/Kg			05/29/15 14:27	ا 1
•									
trans-1,3-Dichloropropene Trichloroethene	ND ND		5.0 5.0		ug/Kg ug/Kg			05/29/15 14:27 05/29/15 14:27	1

TestAmerica Buffalo

Page 30 of 45

3

_

8

46

40

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

•

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-243930/3-A
Matrix: Solid
Analysis Batch: 245120
MB MB

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 243930

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		5.0	0.47	ug/Kg		05/21/15 14:14	05/29/15 14:27	1
Vinyl chloride	ND		5.0	0.60	ug/Kg		05/21/15 14:14	05/29/15 14:27	1
Xylenes, Total	ND		9.9	0.83	ug/Kg		05/21/15 14:14	05/29/15 14:27	1

	MB	MB							
Tentatively Identified Compound Tentatively Identified Compound	Est. Result None	Qualifier	Unit ug/Kg	_ D _	RT -	CAS No.	Prepared 05/21/15 14:14	Analyzed 05/29/15 14:27	Dil Fac
	MB	МВ							

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96	64 - 126	05/21/15 14:14	05/29/15 14:27	1
Toluene-d8 (Surr)	102	71 - 125	05/21/15 14:14	05/29/15 14:27	1
4-Bromofluorobenzene (Surr)	100	72 - 126	05/21/15 14:14	05/29/15 14:27	1

Lab Sample ID: LCS 480-243930/1-A

Matrix: Solid

Analysis Batch: 245120

Spike

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 243930
%Rec.

Analysis Batch: 245120	Spike	LCS LCS	3		%Rec. 243930
Analyte	Added	Result Qua		D %Rec	Limits
1,1,1-Trichloroethane	49.2	44.6	ug/Kg	91	77 - 121
1,1,2,2-Tetrachloroethane	49.2	51.7	ug/Kg	105	80 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	49.2	44.2	ug/Kg	90	60 - 140
ne					
1,1,2-Trichloroethane	49.2	51.7	ug/Kg	105	78 - 122
1,1-Dichloroethane	49.2	45.5	ug/Kg	92	73 - 126
1,1-Dichloroethene	49.2	44.9	ug/Kg	91	59 - 125
1,2,3-Trichlorobenzene	49.2	50.1	ug/Kg	102	60 - 120
1,2,4-Trichlorobenzene	49.2	48.5	ug/Kg	99	64 - 120
1,2-Dibromo-3-Chloropropane	49.2	50.5	ug/Kg	103	63 - 124
1,2-Dichlorobenzene	49.2	49.9	ug/Kg	101	75 - 120
1,2-Dichloroethane	49.2	48.0	ug/Kg	98	77 - 122
1,2-Dichloropropane	49.2	46.2	ug/Kg	94	75 ₋ 124
1,3-Dichlorobenzene	49.2	49.8	ug/Kg	101	74 - 120
1,4-Dichlorobenzene	49.2	49.5	ug/Kg	101	73 - 120
2-Hexanone	246	275	ug/Kg	112	59 - 130
Acetone	246	235	ug/Kg	95	61 - 137
Benzene	49.2	39.3	ug/Kg	80	79 ₋ 127
Bromochloromethane	49.2	48.8	ug/Kg	99	75 ₋ 134
Bromoform	49.2	48.5	ug/Kg	99	68 - 126
Bromomethane	49.2	46.6	ug/Kg	95	37 - 149
Carbon disulfide	49.2	42.6	ug/Kg	87	64 - 131
Carbon tetrachloride	49.2	44.3	ug/Kg	90	75 ₋ 135
Chlorobenzene	49.2	49.2	ug/Kg	100	76 ₋ 124
Chloroethane	49.2	46.0	ug/Kg	93	69 - 135
Bromodichloromethane	49.2	46.2	ug/Kg	94	80 - 122
Chloroform	49.2	46.0	ug/Kg	93	80 - 118
Chloromethane	49.2	45.9	ug/Kg	93	63 - 127
cis-1,2-Dichloroethene	49.2	46.0	ug/Kg	93	81 - 117
1,2-Dibromoethane (EDB)	49.2	52.1	ug/Kg	106	78 - 120
cis-1,3-Dichloropropene	49.2	46.0	ug/Kg	93	82 - 120
, 	.0.2		~59	00	· - -

TestAmerica Buffalo

3

F

6

8

10

11

14

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-243930/1-A

Matrix: Solid

Analysis Batch: 245120

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prop Ratch: 2/3030

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D ^c	%Rec	Limits	
Cyclohexane	49.2	44.1		ug/Kg		90	65 - 106	
Dibromochloromethane	49.2	50.1		ug/Kg		102	76 - 125	
2-Butanone (MEK)	246	250		ug/Kg		102	70 - 134	
Dichlorodifluoromethane	49.2	42.4		ug/Kg		86	57 ₋ 142	
4-Methyl-2-pentanone (MIBK)	246	268		ug/Kg		109	65 - 133	
Ethylbenzene	49.2	48.7		ug/Kg		99	80 - 120	
Isopropylbenzene	49.2	48.2		ug/Kg		98	72 - 120	
Methyl acetate	246	239		ug/Kg		97	55 - 136	
Methyl tert-butyl ether	49.2	47.2		ug/Kg		96	63 - 125	
Methylcyclohexane	49.2	43.4		ug/Kg		88	60 - 140	
Methylene Chloride	49.2	46.1		ug/Kg		94	61 - 127	
Styrene	49.2	49.9		ug/Kg		101	80 - 120	
Tetrachloroethene	49.2	48.9		ug/Kg		99	74 - 122	
Toluene	49.2	45.1		ug/Kg		92	74 - 128	
trans-1,2-Dichloroethene	49.2	45.2		ug/Kg		92	78 ₋ 126	
trans-1,3-Dichloropropene	49.2	50.4		ug/Kg		102	73 - 123	
Trichloroethene	49.2	45.0		ug/Kg		91	77 - 129	
Trichlorofluoromethane	49.2	45.1		ug/Kg		92	65 - 146	
Vinyl chloride	49.2	45.2		ug/Kg		92	61 - 133	
Xylenes, Total	98.4	97.2		ug/Kg		99	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		64 - 126
Toluene-d8 (Surr)	102		71 - 125
4-Bromofluorobenzene (Surr)	108		72 - 126

Lab Sample ID: LCSD 480-243930/2-A

Matrix: Solid

Analysis Batch: 245120

Client	Sample	ID: Lab	Contr	ol Sam	iple Dup
			Prep '	Type: ⁻	Γotal/NA
			Duan	Datab	. 242020

Analysis Batch: 245120							Prep Ba	itcn: 24	13930
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	49.5	44.4		ug/Kg		90	77 - 121	0	20
1,1,2,2-Tetrachloroethane	49.5	50.3		ug/Kg		102	80 - 120	3	20
1,1,2-Trichloro-1,2,2-trifluoroetha	49.5	43.8		ug/Kg		88	60 - 140	1	20
ne									
1,1,2-Trichloroethane	49.5	49.9		ug/Kg		101	78 - 122	4	20
1,1-Dichloroethane	49.5	45.2		ug/Kg		91	73 - 126	0	20
1,1-Dichloroethene	49.5	44.4		ug/Kg		90	59 - 125	1	20
1,2,3-Trichlorobenzene	49.5	51.5		ug/Kg		104	60 - 120	3	20
1,2,4-Trichlorobenzene	49.5	49.8		ug/Kg		101	64 - 120	3	20
1,2-Dibromo-3-Chloropropane	49.5	49.9		ug/Kg		101	63 - 124	1	20
1,2-Dichlorobenzene	49.5	50.5		ug/Kg		102	75 - 120	1	20
1,2-Dichloroethane	49.5	46.6		ug/Kg		94	77 - 122	3	20
1,2-Dichloropropane	49.5	45.6		ug/Kg		92	75 - 124	1	20
1,3-Dichlorobenzene	49.5	49.8		ug/Kg		101	74 - 120	0	20
1,4-Dichlorobenzene	49.5	50.1		ug/Kg		101	73 - 120	1	20
2-Hexanone	248	251		ug/Kg		101	59 - 130	9	20
Acetone	248	218		ug/Kg		88	61 - 137	7	20

TestAmerica Buffalo

Page 32 of 45

6/5/2015

Client: Woodard & Curran, Inc.

Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 480-243930/2-A **Client Sample ID: Lab Control Sample Dup Matrix: Solid Prep Type: Total/NA Prep Batch: 243930**

Analysis Batch: 245120

Analysis Datcii. 243120	Spike	LCSD	LCSD				%Rec.	aton. 2	RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	49.5	38.7		ug/Kg		78	79 - 127	1	20
Bromochloromethane	49.5	48.0		ug/Kg		97	75 ₋ 134	2	20
Bromoform	49.5	47.0		ug/Kg		95	68 - 126	3	20
Bromomethane	49.5	47.8		ug/Kg		97	37 - 149	3	20
Carbon disulfide	49.5	43.2		ug/Kg		87	64 - 131	1	20
Carbon tetrachloride	49.5	43.8		ug/Kg		89	75 - 135	1	20
Chlorobenzene	49.5	48.8		ug/Kg		99	76 - 124	1	20
Chloroethane	49.5	47.0		ug/Kg		95	69 - 135	2	20
Bromodichloromethane	49.5	45.7		ug/Kg		92	80 - 122	1	20
Chloroform	49.5	45.2		ug/Kg		91	80 - 118	2	20
Chloromethane	49.5	45.3		ug/Kg		92	63 - 127	1	20
cis-1,2-Dichloroethene	49.5	46.0		ug/Kg		93	81 - 117	0	20
1,2-Dibromoethane (EDB)	49.5	50.6		ug/Kg		102	78 ₋ 120	3	20
cis-1,3-Dichloropropene	49.5	45.7		ug/Kg		92	82 - 120	1	20
Cyclohexane	49.5	43.3		ug/Kg		87	65 - 106	2	20
Dibromochloromethane	49.5	48.9		ug/Kg		99	76 - 125	2	20
2-Butanone (MEK)	248	229		ug/Kg		92	70 - 134	9	20
Dichlorodifluoromethane	49.5	41.5		ug/Kg		84	57 - 142	2	20
4-Methyl-2-pentanone (MIBK)	248	248		ug/Kg		100	65 - 133	8	20
Ethylbenzene	49.5	48.3		ug/Kg		97	80 - 120	1	20
Isopropylbenzene	49.5	48.4		ug/Kg		98	72 - 120	0	20
Methyl acetate	248	223		ug/Kg		90	55 ₋ 136	7	20
Methyl tert-butyl ether	49.5	45.4		ug/Kg		92	63 - 125	4	20
Methylcyclohexane	49.5	42.8		ug/Kg		86	60 - 140	1	20
Methylene Chloride	49.5	45.8		ug/Kg		93	61 - 127	1	20
Styrene	49.5	49.3		ug/Kg		100	80 - 120	1	20
Tetrachloroethene	49.5	48.1		ug/Kg		97	74 - 122	2	20
Toluene	49.5	44.6		ug/Kg		90	74 - 128	1	20
trans-1,2-Dichloroethene	49.5	45.0		ug/Kg		91	78 - 126	0	20
trans-1,3-Dichloropropene	49.5	49.3		ug/Kg		100	73 - 123	2	20
Trichloroethene	49.5	44.9		ug/Kg		91	77 - 129	0	20
Trichlorofluoromethane	49.5	44.2		ug/Kg		89	65 - 146	2	20
Vinyl chloride	49.5	44.5		ug/Kg		90	61 - 133	1	20
Xylenes, Total	99.0	96.4		ug/Kg		97	70 - 130	1	20

Surrogate	%Recovery Qualifie	r Limits
1,2-Dichloroethane-d4 (Surr)	95	64 - 126
Toluene-d8 (Surr)	102	71 - 125
4-Bromofluorobenzene (Surr)	105	72 - 126

Lab Sample ID: MB 480-245024/6

Matrix: Water

Analysis Batch: 245024

Client Samp	le ID:	Meth	od Blank
	Prep T	vpe:	Total/NA

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			05/28/15 23:16	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			05/28/15 23:16	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			05/28/15 23:16	1

TestAmerica Buffalo

Page 33 of 45

QC Sample Results

Client: Woodard & Curran, Inc.

Project/Site: Rouses Point

TestAmerica Job ID: 480-80785-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-245024/6

Matrix: Water

Client Sample ID: Method Blank
Prep Type: Total/NA

Analysis Batch: 245024	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			05/28/15 23:16	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			05/28/15 23:16	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			05/28/15 23:16	1
1,2,3-Trichlorobenzene	ND		1.0	0.41	ug/L			05/28/15 23:16	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			05/28/15 23:16	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			05/28/15 23:16	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			05/28/15 23:16	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/28/15 23:16	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/28/15 23:16	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			05/28/15 23:16	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			05/28/15 23:16	1
1,4-Dioxane	ND		40	9.3	ug/L			05/28/15 23:16	1
2-Hexanone	ND		5.0	1.2	ug/L			05/28/15 23:16	1
Acetone	ND		10	3.0	ug/L			05/28/15 23:16	1
Benzene	ND		1.0	0.41	ug/L			05/28/15 23:16	1
Bromochloromethane	ND		1.0	0.87	ug/L			05/28/15 23:16	1
Bromoform	ND		1.0	0.26	-			05/28/15 23:16	1
Bromomethane	ND		1.0	0.69	-			05/28/15 23:16	1
Carbon disulfide	ND		1.0	0.19	-			05/28/15 23:16	1
Carbon tetrachloride	ND		1.0	0.27	-			05/28/15 23:16	1
Chlorobenzene	ND		1.0	0.75	-			05/28/15 23:16	1
Chloroethane	ND		1.0	0.32	_			05/28/15 23:16	1
Bromodichloromethane	ND		1.0	0.39	_			05/28/15 23:16	1
Chloroform	ND		1.0	0.34	-			05/28/15 23:16	1
Chloromethane	ND		1.0	0.35	-			05/28/15 23:16	1
cis-1,2-Dichloroethene	ND		1.0	0.81	_			05/28/15 23:16	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	-			05/28/15 23:16	1
cis-1,3-Dichloropropene	ND		1.0	0.36	-			05/28/15 23:16	1
Cyclohexane	ND		1.0	0.18	_			05/28/15 23:16	1
Dibromochloromethane	ND		1.0	0.32	_			05/28/15 23:16	1
2-Butanone (MEK)	ND		10		ug/L			05/28/15 23:16	1
Dichlorodifluoromethane	ND		1.0	0.68	-			05/28/15 23:16	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			05/28/15 23:16	1
Ethylbenzene	ND		1.0	0.74	ū			05/28/15 23:16	1
Isopropylbenzene	ND		1.0	0.79				05/28/15 23:16	1
Methyl acetate	ND		2.5	0.50	-			05/28/15 23:16	1
Methyl tert-butyl ether	ND		1.0		ug/L			05/28/15 23:16	1
Methylcyclohexane	ND		1.0	0.16				05/28/15 23:16	1
Methylene Chloride	ND		1.0	0.44	_			05/28/15 23:16	1
Styrene	ND		1.0	0.73	-			05/28/15 23:16	1
Tetrachloroethene	ND		1.0	0.36				05/28/15 23:16	1
Toluene	ND		1.0	0.51	-			05/28/15 23:16	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			05/28/15 23:16	
trans-1,3-Dichloropropene	ND		1.0	0.37				05/28/15 23:16	1
Trichloroethene	ND		1.0	0.46	•			05/28/15 23:16	1
Trichlorofluoromethane	ND		1.0	0.88				05/28/15 23:16	
Vinyl chloride	ND		1.0	0.90				05/28/15 23:16	1
Xylenes, Total	ND		2.0		ug/L			05/28/15 23:16	1

TestAmerica Buffalo

Page 34 of 45

9

11

12

14

Le

QC Sample Results

Client: Woodard & Curran, Inc. TestAmerica Job ID: 480-80785-1 Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-245024/6

Matrix: Water

Analysis Batch: 245024

Tentatively Identified Compound

Client Sample ID: Method Blank Prep Type: Total/NA

Analyzed

05/28/15 23:16

MB MB Est. Result Qualifier

93

Tentatively Identified Compound	None		ug/L	 		05/28/15 23:16	1
	МВ	MB					
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		66 - 137			05/28/15 23:16	1
Toluene-d8 (Surr)	98		71 - 126			05/28/15 23:16	1
4-Bromofluorobenzene (Surr)	96		73 - 120			05/28/15 23:16	1

60 - 140

Spike

D

RT

LCS LCS

CAS No.

Prepared

Unit

Lab Sample ID: LCS 480-245024/4

Matrix: Water

Analysis Batch: 245024

Dichlorodifluoromethane

Dibromofluoromethane (Surr)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

%Rec.

	эріке	LUS	LUS		%Rec.	
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	
1,1,1-Trichloroethane	25.0	22.8	ug/L	91	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	23.8	ug/L	95	70 - 126	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	22.5	ug/L	90	52 - 148	
ne						
1,1,2-Trichloroethane	25.0	25.1	ug/L	100	76 - 122	
1,1-Dichloroethane	25.0	23.0	ug/L	92	71 - 129	
1,1-Dichloroethene	25.0	20.6	ug/L	82	58 - 121	
1,2,3-Trichlorobenzene	25.0	23.1	ug/L	93	63 - 138	
1,2,4-Trichlorobenzene	25.0	22.2	ug/L	89	70 - 122	
1,2-Dibromo-3-Chloropropane	25.0	17.8	ug/L	71	56 - 134	
1,2-Dichlorobenzene	25.0	23.2	ug/L	93	80 - 124	
1,2-Dichloroethane	25.0	21.1	ug/L	84	75 ₋ 127	
1,2-Dichloropropane	25.0	23.3	ug/L	93	76 - 120	
1,3-Dichlorobenzene	25.0	23.8	ug/L	95	77 - 120	
1,4-Dichlorobenzene	25.0	23.6	ug/L	94	75 - 120	
2-Hexanone	125	128	ug/L	102	65 - 127	
Acetone	125	136	ug/L	109	56 - 142	
Benzene	25.0	23.2	ug/L	93	71 - 124	
Bromochloromethane	25.0	25.4	ug/L	101	72 - 130	
Bromoform	25.0	20.2	ug/L	81	52 - 132	
Bromomethane	25.0	20.1	ug/L	80	55 - 144	
Carbon disulfide	25.0	16.8	ug/L	67	59 - 134	
Carbon tetrachloride	25.0	21.4	ug/L	86	72 - 134	
Chlorobenzene	25.0	23.3	ug/L	93	72 - 120	
Chloroethane	25.0	26.7	ug/L	107	69 - 136	
Bromodichloromethane	25.0	20.9	ug/L	84	80 - 122	
Chloroform	25.0	22.7	ug/L	91	73 - 127	
Chloromethane	25.0	25.1	ug/L	100	68 - 124	
cis-1,2-Dichloroethene	25.0	22.3	ug/L	89	74 - 124	
1,2-Dibromoethane (EDB)	25.0	23.8	ug/L	95	77 - 120	
cis-1,3-Dichloropropene	25.0	22.2	ug/L	89	74 - 124	
Cyclohexane	25.0	22.5	ug/L	90	59 - 135	
Dibromochloromethane	25.0	22.0	ug/L	88	75 - 125	
2-Butanone (MEK)	125	125	ug/L	100	57 ₋ 140	

TestAmerica Buffalo

Page 35 of 45

18.5

ug/L

74

59 - 135

25.0

Dil Fac

QC Sample Results

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80785-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-245024/4

Matrix: Water

Analysis Batch: 245024

Client Sample ID: Lab Control Sample Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D %	Rec	Limits	
4-Methyl-2-pentanone (MIBK)	125	123		ug/L		99	71 - 125	
Ethylbenzene	25.0	23.1		ug/L		93	77 - 123	
Isopropylbenzene	25.0	21.3		ug/L		85	77 - 122	
Methyl acetate	125	126		ug/L		101	74 - 133	
Methyl tert-butyl ether	25.0	21.6		ug/L		86	64 - 127	
Methylcyclohexane	25.0	22.0		ug/L		88	61 - 138	
Methylene Chloride	25.0	22.2		ug/L		89	57 ₋ 132	
Styrene	25.0	22.2		ug/L		89	70 - 130	
Tetrachloroethene	25.0	24.0		ug/L		96	74 - 122	
Toluene	25.0	22.6		ug/L		90	80 - 122	
trans-1,2-Dichloroethene	25.0	22.7		ug/L		91	73 - 127	
trans-1,3-Dichloropropene	25.0	22.7		ug/L		91	72 - 123	
Trichloroethene	25.0	22.7		ug/L		91	74 - 123	
Trichlorofluoromethane	25.0	23.9		ug/L		96	62 - 152	
Vinyl chloride	25.0	22.3		ug/L		89	65 - 133	
Xylenes, Total	50.0	47.4		ug/L		95	76 - 122	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		66 - 137
Toluene-d8 (Surr)	101		71 - 126
4-Bromofluorobenzene (Surr)	102		73 - 120
Dibromofluoromethane (Surr)	100		60 - 140

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

GC/MS VOA

Prep Batch: 243930

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80785-1	SWMU24-SS-BLDG31-01	Total/NA	Solid	5035A	
480-80785-2	SWMU24-SS-BLDG31-02	Total/NA	Solid	5035A	
480-80785-3	SWMU24-SS-BLDG31-03	Total/NA	Solid	5035A	
480-80785-4	SWMU17-SS-BLDG40-01	Total/NA	Solid	5035A	
480-80785-5	SWMU17-SS-BLDG40-02	Total/NA	Solid	5035A	
480-80785-6	SWMU17-SS-BLDG40-03	Total/NA	Solid	5035A	
480-80785-7	SWMU17-SS-BLDG40-04	Total/NA	Solid	5035A	
480-80785-8	SWMU17-SS-01	Total/NA	Solid	5035A	
480-80785-9	SWMU7-SS-02	Total/NA	Solid	5035A	
480-80785-10	SWMU7-SS-03	Total/NA	Solid	5035A	
LCS 480-243930/1-A	Lab Control Sample	Total/NA	Solid	5035A	
LCSD 480-243930/2-A	Lab Control Sample Dup	Total/NA	Solid	5035A	
MB 480-243930/3-A	Method Blank	Total/NA	Solid	5035A	

Analysis Batch: 245024

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80785-11	TRIP BLANK	Total/NA	Water	8260C	
LCS 480-245024/4	Lab Control Sample	Total/NA	Water	8260C	
MB 480-245024/6	Method Blank	Total/NA	Water	8260C	

Analysis Batch: 245120

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80785-1	SWMU24-SS-BLDG31-01	Total/NA	Solid	8260C	243930
480-80785-2	SWMU24-SS-BLDG31-02	Total/NA	Solid	8260C	243930
480-80785-3	SWMU24-SS-BLDG31-03	Total/NA	Solid	8260C	243930
480-80785-4	SWMU17-SS-BLDG40-01	Total/NA	Solid	8260C	243930
480-80785-5	SWMU17-SS-BLDG40-02	Total/NA	Solid	8260C	243930
480-80785-6	SWMU17-SS-BLDG40-03	Total/NA	Solid	8260C	243930
480-80785-7	SWMU17-SS-BLDG40-04	Total/NA	Solid	8260C	243930
480-80785-8	SWMU17-SS-01	Total/NA	Solid	8260C	243930
480-80785-9	SWMU7-SS-02	Total/NA	Solid	8260C	243930
480-80785-10	SWMU7-SS-03	Total/NA	Solid	8260C	243930
LCS 480-243930/1-A	Lab Control Sample	Total/NA	Solid	8260C	243930
LCSD 480-243930/2-A	Lab Control Sample Dup	Total/NA	Solid	8260C	243930
MB 480-243930/3-A	Method Blank	Total/NA	Solid	8260C	243930

General Chemistry

Analysis Batch: 244744

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80785-1	SWMU24-SS-BLDG31-01	Total/NA	Solid	Moisture	_
480-80785-2	SWMU24-SS-BLDG31-02	Total/NA	Solid	Moisture	
480-80785-3	SWMU24-SS-BLDG31-03	Total/NA	Solid	Moisture	
480-80785-4	SWMU17-SS-BLDG40-01	Total/NA	Solid	Moisture	
480-80785-5	SWMU17-SS-BLDG40-02	Total/NA	Solid	Moisture	
480-80785-6	SWMU17-SS-BLDG40-03	Total/NA	Solid	Moisture	
480-80785-7	SWMU17-SS-BLDG40-04	Total/NA	Solid	Moisture	
480-80785-8	SWMU17-SS-01	Total/NA	Solid	Moisture	
480-80785-9	SWMU7-SS-02	Total/NA	Solid	Moisture	
480-80785-10	SWMU7-SS-03	Total/NA	Solid	Moisture	

TestAmerica Buffalo

Page 37 of 45

10

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Lab Sample ID: 480-80785-1

Matrix: Solid Percent Solids: 92.1

Client Sample ID: SWMU24-SS-BLDG31-01 Date Collected: 05/20/15 07:55

Date Received: 05/21/15 09:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			243930	05/21/15 14:14	RAS	TAL BUF
Total/NA	Analysis	8260C		1	245120	05/29/15 15:45	RAS	TAL BUF
Total/NA	Analysis	Moisture		1	244744	05/27/15 15:13	RAS	TAL BUF

Client Sample ID: SWMU24-SS-BLDG31-02 Lab Sample ID: 480-80785-2

Date Collected: 05/20/15 08:05 Date Received: 05/21/15 09:00

Matrix: Solid Percent Solids: 89.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			243930	05/21/15 14:14	RAS	TAL BUF
Total/NA	Analysis	8260C		1	245120	05/29/15 16:12	RAS	TAL BUF
Total/NA	Analysis	Moisture		1	244744	05/27/15 15:13	RAS	TAL BUF

Client Sample ID: SWMU24-SS-BLDG31-03 Lab Sample ID: 480-80785-3

Date Collected: 05/20/15 08:20

Matrix: Solid Date Received: 05/21/15 09:00 Percent Solids: 92.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			243930	05/21/15 14:14	RAS	TAL BUF
Total/NA	Analysis	8260C		1	245120	05/29/15 16:38	RAS	TAL BUF
Total/NA	Analysis	Moisture		1	244744	05/27/15 15:13	RAS	TAL BUF

Lab Sample ID: 480-80785-4 Client Sample ID: SWMU17-SS-BLDG40-01

Date Collected: 05/20/15 08:55 **Matrix: Solid** Date Received: 05/21/15 09:00 Percent Solids: 90.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			243930	05/21/15 14:14	RAS	TAL BUF
Total/NA	Analysis	8260C		1	245120	05/29/15 17:04	RAS	TAL BUF
Total/NA	Analysis	Moisture		1	244744	05/27/15 15:13	RAS	TAL BUF

Client Sample ID: SWMU17-SS-BLDG40-02 Lab Sample ID: 480-80785-5

Date Collected: 05/20/15 09:08

Matrix: Solid Date Received: 05/21/15 09:00 Percent Solids: 91.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			243930	05/21/15 14:14	RAS	TAL BUF
Total/NA	Analysis	8260C		1	245120	05/29/15 17:29	RAS	TAL BUF
Total/NA	Analysis	Moisture		1	244744	05/27/15 15:13	RAS	TAL BUF

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 05/20/15 09:25

Date Received: 05/21/15 09:00

Date Collected: 05/20/15 09:50

Date Received: 05/21/15 09:00

Prep Type

Total/NA

Total/NA

Total/NA

Lab Sample ID: 480-80785-6

Matrix: Solid

Percent Solids: 94.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			243930	05/21/15 14:14	RAS	TAL BUF
Total/NA	Analysis	8260C		1	245120	05/29/15 17:55	RAS	TAL BUF
Total/NA	Analysis	Moisture		1	244744	05/27/15 15:13	RAS	TAL BUF

Run

Dilution

Factor

1

1

Batch

Prepared

Number or Analyzed Analyst

243930 05/21/15 14:14 RAS

245120 05/29/15 18:21 RAS

244744 05/27/15 15:13 RAS

Client Sample ID: SWMU17-SS-BLDG40-04

Batch

5035A

8260C

Moisture

Method

Client Sample ID: SWMU17-SS-BLDG40-03

Lab Sample ID: 480-80785-7

Matrix: Solid

Percent Solids: 89.6

Lab TAL BUF TAL BUF

10

Client Sample ID: SWMU17-SS-01

Batch

Туре

Prep

Analysis

Analysis

Lab Sample ID: 480-80785-8

TAL BUF

Matrix: Solid

Date Collected: 05/20/15 10:25 Date Received: 05/21/15 09:00

Date Collected: 05/20/15 10:42

Date Collected: 05/20/15 10:50

Date Received: 05/21/15 09:00

Percent Solids: 93.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			243930	05/21/15 14:14	RAS	TAL BUF
Total/NA	Analysis	8260C		1	245120	05/29/15 18:47	RAS	TAL BUF
Total/NA	Analysis	Moisture		1	244744	05/27/15 15:13	RAS	TAL BUF

Client Sample ID: SWMU7-SS-02

Lab Sample ID: 480-80785-9

Matrix: Solid

Date Received: 05/21/15 09:00

Percent Solids: 86.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			243930	05/21/15 14:14	RAS	TAL BUF
Total/NA	Analysis	8260C		1	245120	05/29/15 19:13	RAS	TAL BUF
Total/NA	Analysis	Moisture		1	244744	05/27/15 15:13	RAS	TAL BUF

Client Sample ID: SWMU7-SS-03

Lab Sample ID: 480-80785-10 **Matrix: Solid**

Percent Solids: 88.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A	 -		243930	05/21/15 14:14	RAS	TAL BUF
Total/NA	Analysis	8260C		1	245120	05/29/15 19:39	RAS	TAL BUF
Total/NA	Analysis	Moisture		1	244744	05/27/15 15:13	RAS	TAL BUF

TestAmerica Buffalo

Lab Chronicle

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80785-1

Lab Sample ID: 480-80785-11

Matrix: Water

Date Collected: 05/20/15 00:00 Date Received: 05/21/15 09:00

Client Sample ID: TRIP BLANK

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	245024	05/29/15 01:46	LJF	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80785-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority Pr New York NE			EPA Region 2	Certification ID 10026	Expiration Date 03-31-16
The following analyte	s are included in this repo	rt, but certification is	not offered by the go	overning authority:	
Analysis Method	Prep Method	Matrix	Analyt	e	
Moisture		Solid	Percer	nt Moisture	
Moisture		Solid	D	nt Solids	

Ĺ

E

6

8

10

11

13

14

Method Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80785-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

S

3

4

Ī

£

7

8

9

11

12

1A

Sample Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-80785-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
480-80785-1	SWMU24-SS-BLDG31-01	Solid	05/20/15 07:55 05/21/15 09:00
480-80785-2	SWMU24-SS-BLDG31-02	Solid	05/20/15 08:05 05/21/15 09:00
480-80785-3	SWMU24-SS-BLDG31-03	Solid	05/20/15 08:20 05/21/15 09:00
480-80785-4	SWMU17-SS-BLDG40-01	Solid	05/20/15 08:55 05/21/15 09:00
480-80785-5	SWMU17-SS-BLDG40-02	Solid	05/20/15 09:08 05/21/15 09:00
480-80785-6	SWMU17-SS-BLDG40-03	Solid	05/20/15 09:25 05/21/15 09:00
480-80785-7	SWMU17-SS-BLDG40-04	Solid	05/20/15 09:50 05/21/15 09:00
480-80785-8	SWMU17-SS-01	Solid	05/20/15 10:25 05/21/15 09:00
480-80785-9	SWMU7-SS-02	Solid	05/20/15 10:42 05/21/15 09:00
480-80785-10	SWMU7-SS-03	Solid	05/20/15 10:50 05/21/15 09:00
480-80785-11	TRIP BLANK	Water	05/20/15 00:00 05/21/15 09:00

3

4

5

7

8

Q

10

11

13

14

Chain of Custody Record

Temperature on Receipt —

Drinking Water? Yes□ No□

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Winder Poly States of the state	Client	Project				Date	
	74	Υ	off Sonte	Mi		5-30-2015	7 293225
19 200	7	ordenez (ne Number (Area Coo	e)Fax Number	-	Lab Number	Page l of /
Containers & Con	State		ntact 75 Section 18	Lab Contact		Analysis (Attach list if more space is needed)	
Containers & Con	Port N		Waybill Number	With the second	-4.7 5,0		Snavial Instructions/
14 Days 21 Days 17 Date 17 Date 17 Days 17 Days 17 Days 17 Date 17 D	ase Orden/Quote No.		Matrix	Containers & Preservatives	1622 167-8		Conditions of Receipt
Signature Sign	tple I.D. No. and Description sach sample may be combined on one line)		snoenby	HOBN HOI EONH POSZH	1 Kg 978 11 5-5		
0805			D.		χ		
0820	1-55-810431-02	1 0805	٨	,000	R		
035-5 P 1 3 P 7 1 3 P 7 1 3 P 7 1 3 P 7 1 3 P 7 1 3 P 7 1 3 P 7 1 3 P 7 1 3 P 7 1 3 P 7 1 3 P 7 1 3 P 7 1 1 1 1 1 1 1 1 1	-55-Dldg31-03	0830	.~		۶		
09635	55- Bldybo-01	0855	2		92		
0435	55 - Blok 16- 02	0103	2		8		
1. 61246-64 1. 6125	55-6124 m-03	6925	*		92	480-80785 CF	nain of Custody
10 12 12 12 12 13 14 15 15 15 15 15 15 15	55- हीवेन्फ़-०4	0450	マ		2		
5-03 6-03 1042 1	55-61	1025	ጷ	5	2		
	-02	1, 642	*	4350	ع		
Millication Gold Land Part Marker Marke	50-35	V losa	٨		2		
Intification Fammable Stin Intlant Foison B Puthnown Sample Disposal Fammable Stin Intlant Foison B Puthnown Sample Disposal Fammable Stin Intlant Foison B Puthnown Sample Disposal Fammable Stin Intlant Foison B Foison B Foison B Foison B		1 Pa	٩	R R			
Infinition Infinition Skin timinant Poison B & Unknown Petum to Client Disposal By Lab Archive For - Flammable Skin timinant Poison B & Unknown Petum to Client Disposal By Lab Archive For - As Hours 7 Days 21 Days Date Time 1. Received By - Date Time 2 Received By - Date Time A Received By - Date Time Time Time Time - Date Time Time Time Time Time Time - Date Time Time							
Fequired 1 Toays 14 Days 21 Days 18 Other Start 1 Recaived By 1 Toays 15 Date 17 Time 2 Received By	motho Chin Irritant				4.56	(A fee may b	e assessed if samples are retained
Date Time 1. Received By Date Time 2. Received By Date Time 2. Received By	The state of the s	□ 21 Days	-/ امٰ	CC Requirements (Sp. N. Y. N. E.C.	Archive roll	Montais longer than 1	month) (S
Date Time 2 Received By Late Time & Received By	Joseph J.		1	1. Received By	1/1/14	14 Call	Date Time Sale Sale
Date Time (A. Received By	,	Date		2 hecewed By			3
4 2	Ву	Date	Time	A. Received By			Date Time
					7	4	

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Login Sample Receipt Checklist

Client: Woodard & Curran, Inc.

Job Number: 480-80785-1

Login Number: 80785 List Source: TestAmerica Buffalo

List Number: 1

Creator: Janish. Carl M

Creator: Janish, Carl M		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	W+C
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

5

4

_

7

9

11

40

14

2

3

6

8

10

12

14

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-89883-1 Client Project/Site: Rouses Point

For:

Woodard & Curran, Inc. 64 Maple Street Rouses Point, New York 12979

Attn: Don Weeks

Authorized for release by: 11/18/2015 5:03:21 PM

Ane Putzu

Anne Pridgeon, Project Management Assistant I anne.pridgeon@testamericainc.com

Designee for

Becky Mason, Project Manager II (413)572-4000

becky.mason@testamericainc.com

..... Links

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	5
Detection Summary	8
Client Sample Results	11
Surrogate Summary	72
QC Sample Results	76
QC Association Summary	109
Lab Chronicle	116
Certification Summary	124
Method Summary	125
Sample Summary	126
Chain of Custody	127
Receipt Checklists	130

4

6

8

9

10

12

IR

Definitions/Glossary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS VOA TICs

Qualifier	Qualifier Description
J	Indicates an Estimated Value for TICs
N	Presumptive evidence of material.
Т	Result is a tentatively identified compound (TIC) and an estimated value.
	J

GC/MS Semi VOA

Qualifier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.
*	LCS or LCSD is outside acceptance limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Н	Sample was prepped or analyzed beyond the specified holding time
*	RPD of the LCS and LCSD exceeds the control limits
Χ	Surrogate is outside control limits
E	Result exceeded calibration range.
GC/MS Se	mi VOA TICs

Qualifier	Qualifier Description
J	Indicates an Estimated Value for TICs
T	Result is a tentatively identified compound (TIC) and an estimated value.
N	Presumptive evidence of material.
Н	Sample was prepped or analyzed beyond the specified holding time
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
GC VOA	
Qualifier	Qualifier Description

Qualifici	Qualifier Besonption
X Surrogate is outside control limits	
Metals	
Qualifier Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)

Page 3 of 130

Definitions/Glossary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Glossary (Continued)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

3

4

5

6

9

10

12

Case Narrative

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Job ID: 480-89883-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-89883-1

Comments

No additional comments.

Receipt

The samples were received on 10/27/2015 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.8° C.

GC/MS VOA

Method(s) 8260C: The laboratory control sample duplicate (LCSD) for preparation batch 480-271446 and analytical batch 480-272636 recovered outside acceptance limits for 1,1,2,2-Tetrachloroethane, 1,2-Dichloroethane, 1,1,1-Trichloroethane, Chloroform, and Carbon tetrachloride. There was insufficient sample to perform a re-extraction or re-analysis; therefore, the data have been reported. The following samples are impacted: SWMU 26-SURFACE-SS-01 (480-89883-1), SWMU 23-SURFACE-SS-01 (480-89883-2), SWMU 7-SURFACE-SS-01 (480-89883-3), SWMU 13-SURFACE-SS-01 (480-89883-4), SWMU 12-SURFACE-SS-01 (480-89883-5), SWMU 6-SURFACE-SS-01 (480-89883-6), SWMU 24-SURFACE-SS-01 (480-89883-7), SWMU 5-SURFACE-SS-01 (480-89883-8), SWMU 15-SURFACE-SS-01 (480-89883-9), SWMU 17-SURFACE-SS-01 (480-89883-10), SWMU 17-SURFACE-SS-99 (480-89883-11), SWMU 7-BLDG16-01 (480-89883-12), SWMU 7-BLDG16-02 (480-89883-13) and SWMU 7-BLDG16-03 (480-89883-14).

Method(s) 8260C: The following samples contained Methylene Chloride in preparation batch 480-271446 and analytical batch 480-272636 above the MDL level and around the RL of the method: SWMU 26-SURFACE-SS-01 (480-89883-1), SWMU 23-SURFACE-SS-01 (480-89883-2), SWMU 7-SURFACE-SS-01 (480-89883-3), SWMU 13-SURFACE-SS-01 (480-89883-4), SWMU 12-SURFACE-SS-01 (480-89883-5), SWMU 6-SURFACE-SS-01 (480-89883-6), SWMU 24-SURFACE-SS-01 (480-89883-7), SWMU 5-SURFACE-SS-01 (480-89883-8), SWMU 15-SURFACE-SS-01 (480-89883-9), SWMU 17-SURFACE-SS-01 (480-89883-10), SWMU 17-SURFACE-SS-01 (480-89883-11), SWMU 7-BLDG16-01 (480-89883-12), SWMU 7-BLDG16-02 (480-89883-13) and SWMU 7-BLDG16-03 (480-89883-14). Methylene Chloride is a common lab contaminant. The detections in the samples are consistent with the levels in the QC and therefore can be concluded that the sample detections are a lab artifact of contamination.

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-273201 recovered above the upper control limit for Carbon Tetrachloride and 1,1,2-Trichloro-1,2,2-trifluoroethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: EB01 (480-89883-15) and TB01 (480-89883-16).

Method(s) 8260C: Due to the co-elution of n-butyl Acetate with 2-Hexanone in the full spike solution, these analytes exceeded control limits in the laboratory control sample (LCS) associated with batch 480-273201. The following samples are impacted: EB01 (480-89883-15) and TB01 (480-89883-16)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D: The laboratory control sample (LCS) for preparation batch 480-272209 and analytical batch 480-274040 recovered outside control limits for the following analyte: Benzaldehyde. This analyte was biased high in the LCS and not detected in the associated samples; therefore, the data have been reported.

Method(s) 8270D: The following sample required a dilution due to the nature of the sample matrix: SWMU 13-SURFACE-SS-01 (480-89883-4), SWMU 6-SURFACE-SS-01 (480-89883-6), SWMU 24-SURFACE-SS-01 (480-89883-7) and SWMU 15-SURFACE-SS-01 (480-89883-9). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

Method(s) 8270D: The following samples were diluted due to color and viscosity: SWMU 26-SURFACE-SS-01 (480-89883-1), SWMU 7-SURFACE-SS-01 (480-89883-3), SWMU 12-SURFACE-SS-01 (480-89883-5), SWMU 5-SURFACE-SS-01 (480-89883-8), SWMU 17-SURFACE-SS-01 (480-89883-11), (480-89883-A-1-H MS) and (480-89883-A-1-I MSD). Elevated reporting limits (RL) are provided.

4

6

9

1 1

12

1 1

A E

TestAmerica Buffalo 11/18/2015

TestAmerica Job ID: 480-89883-1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Job ID: 480-89883-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

Method(s) 8270D: The continuing calibration verification (CCV) analyzed in batch 480-274040 was outside the method criteria for the following analyte(s): Pentachlorophenol. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method(s) 8270D: The following samples were diluted due to appearance and viscosity: SWMU 5-SURFACE-SS-01 (480-89883-8) RE. Elevated reporting limits (RL) are provided.

Method(s) 8270D: The following samples was prepared outside of preparation holding time due to a high LCS (LCS 480-272209) recovery of Benzaldehyde in the initial extraction and a detection in the original analysis: SWMU 5-SURFACE-SS-01 (480-89883-8). Both sets of data have been reported.

Method(s) 8270D: Re-extraction and reanalysis of the following samples were performed outside of the preparation holding time due low recoveries of the LCS/LCSD (LCS 480-271548/LCSD 480-271548) in the original extraction: EB01 (480-89883-15). Both sets of data have been reported.

Method(s) 8270D: The laboratory control sample and/or the laboratory control sample duplicate (LCS/LCSD) for preparation batch 480-275176 and analytical batch 480-275230 recovered outside control limits for the following analytes: 4,6- Dinitro- 2- methylphenol and 2.4-Dinitrophenol. 4.6- Dinitro- 2- methylphenol and 2.4-Dinitrophenol have been identified as poor performing analytes when analyzed using this method; therefore, re-extraction/re-analysis was not performed.

Method(s) 8270D: The %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch 480-275176 recovered outside control limits for multiple analytes which are flagged and reported accordingly.

Method(s) 8270D: The continuing calibration verification (CCV) analyzed in batch 480-275230 was outside the method criteria for the following analytes: Pentachlorophenol, 2,4-Dinitrophenol, Diethyl phthalate and Hexachlorocyclopentadiene. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method(s) 8270D: The continuing calibration verification (CCV) associated with batch 480-275230 recovered above the upper control limit for Bis(2-ethylhexyl) phthalate, 2,2'-oxybis[1-chloropropane], 2-nitroaniline and Di-n-octyl phthalate. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: EB01 (480-89883-15).

Method(s) 8270D: The laboratory control sample duplicate (LCSD) for preparation batch 480-275176 and analytical batch 480-275230 recovered outside control limits for the following analytes: Diethyl phthalate. The associated sample(s) was qualified and reported.

Method(s) 8270D: The initial calibration curve analyzed in analytical batch 271208 was outside method criteria for the analyte Benzaldehyde. As indicated in the reference method, sample analysis may proceed; however, any detection or non-detection for the affected analyte(s) is considered an estimated concentration.

Method(s) 8270D: The initial calibration curve analyzed in analytical batch 274891 was outside method criteria for the analyte Benzaldehyde. As indicated in the reference method, sample analysis may proceed; however, any detection or non-detection for the affected analyte(s) is considered an estimated concentration.

Method(s) 8270D: The continuing calibration verification (CCV) associated with analytical batch 273999 recovered above the upper control limit for the analytes Hexachlorobutadiene, 4-Nitrophenol and Hexachlorobenzene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: (CCVIS 480-273999/3).

Method(s) 8270D: The continuing calibration verification (CCV) analyzed in analytical batch 273999 was outside the method criteria for the analytes Benzaldehyde, 4-Chloroaniline and Pentachlorophenol. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analytes is considered estimated. (CCVIS 480-273999/3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Case Narrative

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Job ID: 480-89883-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

GC VOA

Method(s) 8015D: The following sample was diluted due to the abundance of target analytes: EB01 (480-89883-15). As such, surrogate recoveries are below the calibration range or are not reported, and elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8082A: The following sample required a dilution due to the matrix effects and is reported as elevated non-detections for all target analytes (Aroclors); SWMU 6-SURFACE-SS-01 (480-89883-6). The reported values represent the lowest limit that can be ascertained given the sample composition.

Method(s) 8082A: All water primary data is reported from the ZB-35 column, while all soil primary data is reported from the ZB-35 column

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method(s) 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with analytical batch 480-271548.

Method(s) 3510C: Re-extraction of the following sample was performed outside of the analytical holding time due to compounds failing low: EB01 (480-89883-15).

Method(s) 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with 275176.

Method(s) 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with analytical batch 480-271561.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Δ

5

6

q

10

12

13

TestAmerica Job ID: 480-89883-1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU 26-SURFACE-SS-01

Lab Sample ID: 480-89883-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	3.6	JB	5.1	2.4	ug/Kg	1	₩	8260C	Total/NA
Arsenic	3.1		2.2	0.45	mg/Kg	1	₩	6010C	Total/NA
Barium	38.4		0.56	0.12	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.076	J	0.22	0.034	mg/Kg	1	т Ф	6010C	Total/NA
Chromium	9.6		0.56	0.22	mg/Kg	1	₩	6010C	Total/NA
Lead	8.8		1.1	0.27	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.013	J	0.021	0.0085	mg/Kg	1	D	7471B	Total/NA

Client Sample ID: SWMU 23-SURFACE-SS-01

Lab Sample ID: 480-8	39883-2
----------------------	---------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	6.8	JB	6.9	3.2	ug/Kg	1	₹	8260C	Total/NA
Trichlorofluoromethane	1.3	J	6.9	0.65	ug/Kg	1	₩	8260C	Total/NA
Arsenic	2.3		2.2	0.44	mg/Kg	1	₩	6010C	Total/NA
Barium	29.1		0.55	0.12	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.10	J	0.22	0.033	mg/Kg	1	₩	6010C	Total/NA
Chromium	10.3		0.55	0.22	mg/Kg	1	₩	6010C	Total/NA
Lead	6.1		1.1	0.26	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.014	J	0.020	0.0082	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SWMU 7-SURFACE-SS-01

Lab Sample ID: 480-89883-3

Analyte	Result Q	ualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	4.0 J	В	5.0	2.3	ug/Kg	1	₩	8260C	Total/NA
Arsenic	2.3		2.2	0.44	mg/Kg	1	₩	6010C	Total/NA
Barium	33.2		0.55	0.12	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.22		0.22	0.033	mg/Kg	1	₽	6010C	Total/NA
Chromium	7.9		0.55	0.22	mg/Kg	1	₩	6010C	Total/NA
Lead	10.7		1.1	0.26	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.026		0.022	0.0090	ma/Ka	1	ф	7471B	Total/NA

Client Sample ID: SWMU 13-SURFACE-SS-01

Lab Sample ID: 480-89883-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	3.1	JB	4.4	2.0	ug/Kg		₩	8260C	Total/NA
Bis(2-ethylhexyl) phthalate	1700	J	3800	1300	ug/Kg	20	₩	8270D	Total/NA
Arsenic	4.4		2.2	0.44	mg/Kg	1	☆	6010C	Total/NA
Barium	27.2		0.55	0.12	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.060	J	0.22	0.033	mg/Kg	1	₩	6010C	Total/NA
Chromium	9.1		0.55	0.22	mg/Kg	1	₩	6010C	Total/NA
Lead	10.4		1.1	0.26	mg/Kg	1	₽	6010C	Total/NA
Mercury	0.015	J	0.021	0.0085	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SWMU 12-SURFACE-SS-01

Lab Sample ID: 480-89883-5

Analyte	Result Qualifier	RL	MDL Unit	t	Dil Fac	D	Method	Prep Type
Methylene Chloride	2.9 JB	4.3	2.0 ug/k	Kg	1	₩	8260C	Total/NA
Arsenic	6.4	2.1	0.42 mg/l	'Kg	1	₩	6010C	Total/NA
Barium	17.6	0.52	0.12 mg/l	'Kg	1	₩	6010C	Total/NA
Chromium	9.3	0.52	0.21 mg/l	Kg .	1	₩	6010C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

3

Client Sample ID: SWMU 12-SURFACE-SS-01 (Continued)

Lab Sample ID: 480-89883-5

AnalyteResult
LeadQualifierRLMDL
1.0UnitDil Fac
mg/KgDMethodPrep TypeLead10.21.00.25mg/Kg1\$\overline{\pi}\$\$ 6010CTotal/NA

Lab Sample ID: 480-89883-6

Client Sample ID: SWMU 6-SURFACE-SS-01

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	4.3	JB	5.3	2.4	ug/Kg		苺	8260C	Total/NA
Trichlorofluoromethane	3.5	J	5.3	0.50	ug/Kg	1	₩	8260C	Total/NA
Bis(2-ethylhexyl) phthalate	1800	J	4100	1400	ug/Kg	20	₩	8270D	Total/NA
Butyl benzyl phthalate	1300	J	4100	670	ug/Kg	20	₩.	8270D	Total/NA
Arsenic	2.9		2.4	0.47	mg/Kg	1	₩	6010C	Total/NA
Barium	69.4		0.59	0.13	mg/Kg	1	₩	6010C	Total/NA
Cadmium	1.6		0.24	0.036	mg/Kg	1	₩.	6010C	Total/NA
Chromium	13.6		0.59	0.24	mg/Kg	1	₩	6010C	Total/NA
Lead	38.1		1.2	0.28	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.047		0.023	0.0094	mg/Kg	1	₩.	7471B	Total/NA

Client Sample ID: SWMU 24-SURFACE-SS-01

Lab Sample ID: 480-89883-7

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	4.5 JB	5.1	2.4	ug/Kg		₩	8260C	Total/NA
Trichlorofluoromethane	2.2 J	5.1	0.49	ug/Kg	1	₩	8260C	Total/NA
Arsenic	6.4	2.3	0.46	mg/Kg	1	₩	6010C	Total/NA
Barium	44.5	0.57	0.13	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.16 J	0.23	0.034	mg/Kg	1	₽	6010C	Total/NA
Chromium	16.3	0.57	0.23	mg/Kg	1	₩	6010C	Total/NA
Lead	7.1	1.1	0.28	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.016 J	0.022	0.0089	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SWMU 5-SURFACE-SS-01

1	^	10	400 00000
ı an	Samnia	11).	480-89883-8
Lab	Campic	ıD.	T00-03003-0

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	4.2	JB	4.5	2.1	ug/Kg	1	₩	8260C	Total/NA
Trichlorofluoromethane	0.89	J	4.5	0.43	ug/Kg	1	₩	8260C	Total/NA
Benzaldehyde	1200	*	930	730	ug/Kg	5	₩	8270D	Total/NA
Arsenic	3.1		2.2	0.43	mg/Kg	1	₩	6010C	Total/NA
Barium	30.8		0.54	0.12	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.082	J	0.22	0.032	mg/Kg	1	₩	6010C	Total/NA
Chromium	7.4		0.54	0.22	mg/Kg	1		6010C	Total/NA
Lead	5.5		1.1	0.26	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.0094	J	0.021	0.0087	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SWMU 15-SURFACE-SS-01

I ah Sar	nnle IF)· 4 80-	89883-9
Eur Oui		, TUU	

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	4.7	JB	5.6	2.6	ug/Kg		₩	8260C	Total/NA
Trichlorofluoromethane	1.0	J	5.6	0.53	ug/Kg	1	₩	8260C	Total/NA
Arsenic	2.6		2.4	0.47	mg/Kg	1	₩	6010C	Total/NA
Barium	38.2		0.59	0.13	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.11	J	0.24	0.035	mg/Kg	1	₩	6010C	Total/NA
Chromium	10.1		0.59	0.24	mg/Kg	1	☼	6010C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Page 9 of 130

6

6

8

10

12

A E

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Analyte		Qualifier	RL	MDL				Method	Prep Type
Lead	6.0		1.2		mg/Kg	1			Total/NA
Mercury	0.011	J	0.022	0.0090	mg/Kg	1	Đ.	7471B	Total/NA
Client Sample ID: SWMU 1	17-SURFA	CE-SS-01				Lab Sa	an	ple ID: 4	80-89883-1
Analyte		Qualifier	RL		Unit	Dil Fac		Method	Prep Type
Methylene Chloride		JB	4.8	2.2	ug/Kg	1	₩	8260C	Total/NA
Arsenic	2.8		2.2		mg/Kg	1	₩	6010C	Total/NA
Barium	29.5		0.55		mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.077	J	0.22	0.033	mg/Kg	1	₩	6010C	Total/NA
Chromium	8.9		0.55	0.22	mg/Kg	1	₩	6010C	Total/NA
Lead _	5.9		1.1	0.26	mg/Kg	1	₩	6010C	Total/NA
Client Sample ID: SWMU 1	17-SURFA	CE-SS-99				Lab Sa	an	ple ID: 4	80-89883-1
Analyte	Result	Qualifier	RL	MDL	Unit			Method	Prep Type
Methylene Chloride	4.0	JB	4.5	2.1	ug/Kg	1	₩	8260C	Total/NA
Arsenic	2.2		2.2	0.45	mg/Kg	1	₩	6010C	Total/NA
Barium	31.3		0.56	0.12	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.063	J	0.22	0.033	mg/Kg	1	₩	6010C	Total/NA
Chromium	9.7		0.56	0.22	mg/Kg	1	₩	6010C	Total/NA
Lead	4.5		1.1	0.27	mg/Kg	1	₩	6010C	Total/NA
Client Sample ID: SWMU 7	-BLDG16	-01				Lab Sa	an	ple ID: 4	80-89883-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	4.3	J B	4.5	2.1	ug/Kg	1	₩	8260C	Total/NA
Trichlorofluoromethane	1.4	J	4.5	0.42	ug/Kg	1	₩	8260C	Total/NA
Client Sample ID: SWMU 7	-BLDG16	-02				Lab Sa	an	ple ID: 4	80-89883-1
_ Analyte	Result	Qualifier	RL	MDL	Unit			Method	Prep Type
Methylene Chloride	5.9	В	5.6	2.6	ug/Kg	1	₩	8260C	Total/NA
Client Sample ID: SWMU 7	-BLDG16	-03				Lab Sa	an	ple ID: 4	80-89883-1
_ Analyte	Result	Qualifier	RL	MDL	Unit			Method	Prep Type
Methylene Chloride	5.3	JB	5.5	2.5	ug/Kg		₩	8260C	Total/NA
Trichlorofluoromethane	1.3	J	5.5	0.52	ug/Kg	1	₩	8260C	Total/NA
Client Sample ID: EB01						Lab Sa	an	ple ID: 4	80-89883-1
Analyte	Result	Qualifier	RL	MDI	Unit	Dil Fac	D	Method	Prep Type
Allalyte	rtoouit	audiiiio.		111.0	••		_	Method	

This Detection Summary does not include radiochemical test results.

Client Sample ID: TB01

No Detections.

TestAmerica Buffalo

Lab Sample ID: 480-89883-16

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Client Sample ID: SWMU 26-SURFACE-SS-01 Lab Sample ID: 480-89883-1

 Date Collected: 10/26/15 11:15
 Matrix: Solid

 Date Received: 10/27/15 09:00
 Percent Solids: 88.4

Method: 8260C - Volatile Orgar ^{Analyte}		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	*	5.1	0.37	ug/Kg	— -		11/02/15 23:09	
1,1,2,2-Tetrachloroethane	ND	*	5.1		ug/Kg	₩		11/02/15 23:09	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.1		ug/Kg	₩		11/02/15 23:09	
1,1,2-Trichloroethane	ND		5.1		ug/Kg	φ.		11/02/15 23:09	
1,1-Dichloroethane	ND		5.1		ug/Kg	₽		11/02/15 23:09	
1,1-Dichloroethene	ND		5.1		ug/Kg	₩		11/02/15 23:09	
1,2,3-Trichlorobenzene	ND		5.1		ug/Kg			11/02/15 23:09	
1,2,4-Trichlorobenzene	ND		5.1		ug/Kg	₩		11/02/15 23:09	
1,2-Dibromo-3-Chloropropane	ND		5.1		ug/Kg	 \$		11/02/15 23:09	
1.2-Dichlorobenzene	ND		5.1		ug/Kg			11/02/15 23:09	
1,2-Dichloroethane	ND	*	5.1		ug/Kg			11/02/15 23:09	
<i>'</i>	ND ND		5.1					11/02/15 23:09	
1,2-Dichloropropane					ug/Kg	· · · · · · · · · · · · · · · · · · ·			
1,3-Dichlorobenzene	ND		5.1		ug/Kg	*		11/02/15 23:09	
1,4-Dichlorobenzene	ND		5.1		ug/Kg	☆		11/02/15 23:09	
1,4-Dioxane	ND		100		ug/Kg	. .		11/02/15 23:09	
2-Hexanone	ND		26		ug/Kg	φ.		11/02/15 23:09	
Acetone	ND		26		ug/Kg	Ψ.		11/02/15 23:09	
Benzene	ND		5.1					11/02/15 23:09	
Bromoform	ND		5.1		ug/Kg	*		11/02/15 23:09	
Bromomethane	ND		5.1		ug/Kg	÷.		11/02/15 23:09	
Carbon disulfide	ND		5.1		ug/Kg			11/02/15 23:09	
Carbon tetrachloride	ND	*	5.1	0.50	ug/Kg	☼	10/27/15 16:40	11/02/15 23:09	
Chlorobenzene	ND		5.1	0.68	ug/Kg	≎	10/27/15 16:40	11/02/15 23:09	
Bromochloromethane	ND		5.1	0.37	ug/Kg	₩	10/27/15 16:40	11/02/15 23:09	
Dibromochloromethane	ND		5.1	0.65	ug/Kg	₽	10/27/15 16:40	11/02/15 23:09	
Chloroethane	ND		5.1	1.2	ug/Kg	₩	10/27/15 16:40	11/02/15 23:09	
Chloroform	ND	*	5.1	0.32	ug/Kg	₩	10/27/15 16:40	11/02/15 23:09	
Chloromethane	ND		5.1	0.31	ug/Kg	₩	10/27/15 16:40	11/02/15 23:09	
cis-1,2-Dichloroethene	ND		5.1	0.65	ug/Kg	☼	10/27/15 16:40	11/02/15 23:09	
cis-1,3-Dichloropropene	ND		5.1	0.74	ug/Kg	≎	10/27/15 16:40	11/02/15 23:09	
Cyclohexane	ND		5.1	0.72	ug/Kg	₽	10/27/15 16:40	11/02/15 23:09	
Bromodichloromethane	ND		5.1	0.69	ug/Kg	₩	10/27/15 16:40	11/02/15 23:09	
Dichlorodifluoromethane	ND		5.1	0.42	ug/Kg	☼	10/27/15 16:40	11/02/15 23:09	
Ethylbenzene	ND		5.1		ug/Kg	φ.	10/27/15 16:40	11/02/15 23:09	
1,2-Dibromoethane (EDB)	ND		5.1		ug/Kg	☼	10/27/15 16:40	11/02/15 23:09	
sopropylbenzene	ND		5.1		ug/Kg	₩	10/27/15 16:40	11/02/15 23:09	
Methyl acetate	ND		5.1		ug/Kg	φ.		11/02/15 23:09	
2-Butanone (MEK)	ND		26			☆		11/02/15 23:09	
4-Methyl-2-pentanone (MIBK)	ND		26		ug/Kg	☼		11/02/15 23:09	
Methyl tert-butyl ether	ND		5.1		ug/Kg			11/02/15 23:09	
Methylcyclohexane	ND		5.1		ug/Kg	☆		11/02/15 23:09	
Methylene Chloride		JB	5.1		ug/Kg	☆		11/02/15 23:09	
	ND	JB	5.1		ug/Kg	· · · · · · · · · · · · · · · · · · ·	10/27/15 16:40		
Styrene Fetrachloroethene	ND ND		5.1 5.1			≎		11/02/15 23:09	
					ug/Kg		10/27/15 16:40		
Foluene	ND		5.1		ug/Kg				
rans-1,2-Dichloroethene	ND		5.1		ug/Kg	₩	10/27/15 16:40		
rans-1,3-Dichloropropene	ND		5.1		ug/Kg	₩		11/02/15 23:09	
Trichloroethene	ND		5.1	1.1	ug/Kg	æ	10/27/15 16:40	11/02/15 23:09	

TestAmerica Buffalo

9

3

4

6

9

11

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Client Sample ID: SWMU 26-SURFACE-SS-01

Date Collected: 10/26/15 11:15 Date Received: 10/27/15 09:00 Lab Sample ID: 480-89883-1

Matrix: Solid Percent Solids: 88.4

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Cor	ntinu	ed)					
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.1		0.62	ug/Kg	\	10/27/15 16:40	11/02/15 23:09	1
Xylenes, Total	ND		10		0.86	ug/Kg	₩	10/27/15 16:40	11/02/15 23:09	1
Tetrahydrofuran	ND		10		3.0	ug/Kg	₽	10/27/15 16:40	11/02/15 23:09	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	₩ -				10/27/15 16:40	11/02/15 23:09	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		64 - 126					10/27/15 16:40	11/02/15 23:09	1
Toluene-d8 (Surr)	101		71 - 125					10/27/15 16:40	11/02/15 23:09	1
4-Bromofluorobenzene (Surr)	98		72 - 126					10/27/15 16:40	11/02/15 23:09	1
Dibromofluoromethane (Surr)	101		60 - 140					10/27/15 16:40	11/02/15 23:09	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		1900	280	ug/Kg	<u> </u>	10/30/15 14:03	11/10/15 12:11	10
bis (2-chloroisopropyl) ether	ND		1900	370	ug/Kg	₩	10/30/15 14:03	11/10/15 12:11	10
2,4,5-Trichlorophenol	ND	F1	1900	510	ug/Kg	≎	10/30/15 14:03	11/10/15 12:11	10
2,4,6-Trichlorophenol	ND		1900	370	ug/Kg	₩	10/30/15 14:03	11/10/15 12:11	10
2,4-Dichlorophenol	ND		1900	200	ug/Kg	☼	10/30/15 14:03	11/10/15 12:11	10
2,4-Dimethylphenol	ND		1900	450	ug/Kg	≎	10/30/15 14:03	11/10/15 12:11	10
2,4-Dinitrophenol	ND		18000	8600	ug/Kg	≎	10/30/15 14:03	11/10/15 12:11	10
2,4-Dinitrotoluene	ND		1900	390	ug/Kg	₽	10/30/15 14:03	11/10/15 12:11	10
2,6,Dinitrotoluene	ND		1900	220	ug/Kg	₽	10/30/15 14:03	11/10/15 12:11	10
2-Chloronaphthalene	ND		1900	310	ug/Kg		10/30/15 14:03	11/10/15 12:11	10
2-Chlorophenol	ND		1900	340	ug/Kg	₩	10/30/15 14:03	11/10/15 12:11	10
2-Methylnaphthalene	ND		1900	370	ug/Kg	₽	10/30/15 14:03	11/10/15 12:11	10
2-Methylphenol	ND		1900	220	ug/Kg	₽	10/30/15 14:03	11/10/15 12:11	10
2-Nitroaniline	ND		3600	280	ug/Kg	₩	10/30/15 14:03	11/10/15 12:11	10
2-Nitrophenol	ND		1900	530	ug/Kg	₩	10/30/15 14:03	11/10/15 12:11	10
3,3'-Dichlorobenzidine	ND		3600	2200	ug/Kg	₽	10/30/15 14:03	11/10/15 12:11	10
3-Nitroaniline	ND		3600	520	ug/Kg	₩	10/30/15 14:03	11/10/15 12:11	10
4,6-Dinitro-2-methylphenol	ND		3600	1900	ug/Kg	☼	10/30/15 14:03	11/10/15 12:11	10
4-Bromophenyl phenyl ether	ND		1900	260	ug/Kg	ф	10/30/15 14:03	11/10/15 12:11	10
4-Chloro-3-methylphenol	ND		1900	460	ug/Kg	₩	10/30/15 14:03	11/10/15 12:11	10
4-Chloroaniline	ND		1900	460	ug/Kg	₩	10/30/15 14:03	11/10/15 12:11	10
4-Chlorophenyl phenyl ether	ND		1900	230	ug/Kg	₽	10/30/15 14:03	11/10/15 12:11	10
4-Methylphenol	ND		3600	220	ug/Kg	₩	10/30/15 14:03	11/10/15 12:11	10
4-Nitroaniline	ND		3600	980	ug/Kg	₩	10/30/15 14:03	11/10/15 12:11	10
4-Nitrophenol	ND		3600	1300	ug/Kg	₽	10/30/15 14:03	11/10/15 12:11	10
Acenaphthene	ND		1900	280	ug/Kg	₩	10/30/15 14:03	11/10/15 12:11	10
Acenaphthylene	ND		1900	240	ug/Kg	₩	10/30/15 14:03	11/10/15 12:11	10
Acetophenone	ND		1900	250	ug/Kg	₽	10/30/15 14:03	11/10/15 12:11	10
Anthracene	ND		1900	460	ug/Kg	₩	10/30/15 14:03	11/10/15 12:11	10
Atrazine	ND		1900	650	ug/Kg	₩	10/30/15 14:03	11/10/15 12:11	10
Benzaldehyde	ND	F1 *	1900	1500	ug/Kg		10/30/15 14:03	11/10/15 12:11	10
Benzo(a)anthracene	ND		1900	190	ug/Kg	☼	10/30/15 14:03	11/10/15 12:11	10
Benzo(a)pyrene	ND		1900	280	ug/Kg	☼	10/30/15 14:03	11/10/15 12:11	10
Benzo(b)fluoranthene	ND		1900	300	ug/Kg		10/30/15 14:03	11/10/15 12:11	10
Benzo(g,h,i)perylene	ND		1900	200	ug/Kg	₩	10/30/15 14:03	11/10/15 12:11	10

TestAmerica Buffalo

3

4

6

8

10

12

1 1

1 E

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/26/15 11:15

Date Received: 10/27/15 09:00

Client Sample ID: SWMU 26-SURFACE-SS-01

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-1

Matrix: Solid Percent Solids: 88.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo(k)fluoranthene	ND		1900	240	ug/Kg	₩	10/30/15 14:03	11/10/15 12:11	10
Bis(2-chloroethoxy)methane	ND		1900	400	ug/Kg		10/30/15 14:03	11/10/15 12:11	10
Bis(2-chloroethyl)ether	ND		1900	240	ug/Kg	₽	10/30/15 14:03	11/10/15 12:11	10
Bis(2-ethylhexyl) phthalate	ND		1900	640	ug/Kg	₽	10/30/15 14:03	11/10/15 12:11	10
Butyl benzyl phthalate	ND		1900	310	ug/Kg	\$	10/30/15 14:03	11/10/15 12:11	10
Caprolactam	ND		1900	560	ug/Kg	₽	10/30/15 14:03	11/10/15 12:11	10
Carbazole	ND		1900	220	ug/Kg	₽	10/30/15 14:03	11/10/15 12:11	10
Chrysene	ND		1900	420	ug/Kg	₽	10/30/15 14:03	11/10/15 12:11	10
Di-n-butyl phthalate	ND		1900	320	ug/Kg	≎	10/30/15 14:03	11/10/15 12:11	10
Di-n-octyl phthalate	ND		1900	220	ug/Kg	₽	10/30/15 14:03	11/10/15 12:11	10
Dibenz(a,h)anthracene	ND		1900	330	ug/Kg	\$	10/30/15 14:03	11/10/15 12:11	10
Dibenzofuran	ND		1900	220	ug/Kg	≎	10/30/15 14:03	11/10/15 12:11	10
Diethyl phthalate	ND		1900	240	ug/Kg	₽	10/30/15 14:03	11/10/15 12:11	10
Dimethyl phthalate	ND		1900	220	ug/Kg		10/30/15 14:03	11/10/15 12:11	10
Fluoranthene	ND		1900	200	ug/Kg	₽	10/30/15 14:03	11/10/15 12:11	10
Fluorene	ND		1900	220	ug/Kg	₽	10/30/15 14:03	11/10/15 12:11	10
Hexachlorobenzene	ND		1900	250	ug/Kg		10/30/15 14:03	11/10/15 12:11	10
Hexachlorobutadiene	ND		1900	280	ug/Kg	₽	10/30/15 14:03	11/10/15 12:11	10
Hexachlorocyclopentadiene	ND		1900	250	ug/Kg	≎	10/30/15 14:03	11/10/15 12:11	10
Hexachloroethane	ND		1900	240	ug/Kg	\$	10/30/15 14:03	11/10/15 12:11	10
Indeno(1,2,3-cd)pyrene	ND		1900	230	ug/Kg	₽	10/30/15 14:03	11/10/15 12:11	10
Isophorone	ND		1900	400	ug/Kg	≎	10/30/15 14:03	11/10/15 12:11	10
N-Nitrosodi-n-propylamine	ND		1900	320	ug/Kg	\$	10/30/15 14:03	11/10/15 12:11	10
N-Nitrosodiphenylamine	ND		1900	1500	ug/Kg	₽	10/30/15 14:03	11/10/15 12:11	10
Naphthalene	ND		1900	240	ug/Kg	₽	10/30/15 14:03	11/10/15 12:11	10
Nitrobenzene	ND		1900	210	ug/Kg	₽	10/30/15 14:03	11/10/15 12:11	10
Pentachlorophenol	ND		3600	1900	ug/Kg	₽	10/30/15 14:03	11/10/15 12:11	10
Phenanthrene	ND		1900	280	ug/Kg	₽	10/30/15 14:03	11/10/15 12:11	10
Phenol	ND		1900	290	ug/Kg		10/30/15 14:03	11/10/15 12:11	10
Pyrene	ND		1900	220	ug/Kg	☼	10/30/15 14:03	11/10/15 12:11	10
Dimethylformamide	ND		7300	830	ug/Kg	₩	10/30/15 14:03	11/10/15 12:11	10
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	2700	TJ	ug/Kg	<u> </u>	2.46		10/30/15 14:03	11/10/15 12:11	10
Unknown	2300	ΤJ	ug/Kg	₩	4.98		10/30/15 14:03	11/10/15 12:11	10
Unknown	1800	ΤJ	ug/Kg	₩	11.89		10/30/15 14:03	11/10/15 12:11	10

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	81		39 - 146	10/30/15 14:03	11/10/15 12:11	10
2-Fluorobiphenyl	82		37 - 120	10/30/15 14:03	11/10/15 12:11	10
2-Fluorophenol	73		18 - 120	10/30/15 14:03	11/10/15 12:11	10
Nitrobenzene-d5	70		34 - 132	10/30/15 14:03	11/10/15 12:11	10
p-Terphenyl-d14	83		65 - 153	10/30/15 14:03	11/10/15 12:11	10
Phenol-d5	78		11 - 120	10/30/15 14:03	11/10/15 12:11	10

monioai oo iob	monnaiogonatoa organio compoun	ac D.1.00		. (00)	Colubio			
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND ND	1.1	0.17	mg/Kg	\		10/30/15 11:14	1
Isobutyl alcohol	ND	1.1	0.28	mg/Kg	₽		10/30/15 11:14	1
Methanol	ND	1.1	0.33	mg/Kg	₽		10/30/15 11:14	1

TestAmerica Buffalo

Page 13 of 130

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Client Sample ID: SWMU 26-SURFACE-SS-01

Lab Sample ID: 480-89883-1 Date Collected: 10/26/15 11:15 **Matrix: Solid** Date Received: 10/27/15 09:00

Percent Solids: 88.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
n-Butanol	ND		1.1	0.26	mg/Kg	<u> </u>		10/30/15 11:14	1
Propanol	ND		1.1	0.17	mg/Kg			10/30/15 11:14	1
2-Butanol	ND		1.1	0.18	mg/Kg	₩		10/30/15 11:14	1
Isopropyl alcohol	ND		1.1	0.27	mg/Kg	ф.		10/30/15 11:14	1
t-Butyl alcohol	ND		1.1	0.30	mg/Kg	₩		10/30/15 11:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	99		30 - 137					10/30/15 11:14	1

	,,	-,						· · · · · · · · · · · · · · · · · · ·	
2-Hexanone	99		30 - 137					10/30/15 11:14	1
- Method: 8082A - Polychl	orinated Bipheny	/Is (PCBs)	by Gas Chro	matogr	aphv				
Analyte		Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		260	50	ug/Kg	<u> </u>	10/28/15 07:52	10/28/15 16:04	1
PCB-1221	ND		260	50	ug/Kg	☼	10/28/15 07:52	10/28/15 16:04	1
PCB-1232	ND		260	50	ug/Kg	☼	10/28/15 07:52	10/28/15 16:04	1
PCB-1242	ND		260	50	ug/Kg	₽	10/28/15 07:52	10/28/15 16:04	1
PCB-1248	ND		260	50	ug/Kg	☼	10/28/15 07:52	10/28/15 16:04	1
PCB-1254	ND		260	120	ug/Kg	☼	10/28/15 07:52	10/28/15 16:04	1
PCB-1260	ND		260	120	ug/Kg	₽	10/28/15 07:52	10/28/15 16:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	100		60 - 154				10/28/15 07:52	10/28/15 16:04	1
DCB Decachlorobiphenyl	101		65 - 174				10/28/15 07:52	10/28/15 16:04	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.1		2.2	0.45	mg/Kg	<u></u>	10/28/15 14:05	10/29/15 17:15	1
Barium	38.4		0.56	0.12	mg/Kg	☼	10/28/15 14:05	10/29/15 17:15	1
Cadmium	0.076	J	0.22	0.034	mg/Kg	☼	10/28/15 14:05	10/29/15 17:15	1
Chromium	9.6		0.56	0.22	mg/Kg	₽	10/28/15 14:05	10/29/15 17:15	1
Lead	8.8		1.1	0.27	mg/Kg	☼	10/28/15 14:05	10/29/15 17:15	1
Selenium	ND		4.5	0.45	mg/Kg	₩	10/28/15 14:05	10/29/15 17:15	1
Silver	ND		0.67	0.22	mg/Kg		10/28/15 14:05	10/29/15 17:15	1

Method: 7471B - Mercury (CVAA)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	0.013	J	0.021	0.0085	ma/Ka	\	10/28/15 12:05	10/28/15 15:48	1	

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/26/15 11:40

Date Received: 10/27/15 09:00

Toluene

Trichloroethene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Client Sample ID: SWMU 23-SURFACE-SS-01

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-2

Matrix: Solid
Percent Solids: 90.7

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	*	6.9	0.50	ug/Kg	₩	10/27/15 16:40	11/02/15 23:34	
1,1,2,2-Tetrachloroethane	ND	*	6.9		ug/Kg	₩	10/27/15 16:40	11/02/15 23:34	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		6.9	1.6	ug/Kg	₽	10/27/15 16:40	11/02/15 23:34	
1,1,2-Trichloroethane	ND		6.9	0.89	ug/Kg	₩	10/27/15 16:40	11/02/15 23:34	
1,1-Dichloroethane	ND		6.9	0.84	ug/Kg	₩	10/27/15 16:40	11/02/15 23:34	
1,1-Dichloroethene	ND		6.9	0.84	ug/Kg	₩	10/27/15 16:40	11/02/15 23:34	
1,2,3-Trichlorobenzene	ND		6.9	0.73	ug/Kg	₩	10/27/15 16:40	11/02/15 23:34	
1,2,4-Trichlorobenzene	ND		6.9	0.42	ug/Kg	₩	10/27/15 16:40	11/02/15 23:34	
1,2-Dibromo-3-Chloropropane	ND		6.9	3.4	ug/Kg	₩	10/27/15 16:40	11/02/15 23:34	
1,2-Dichlorobenzene	ND		6.9	0.54	ug/Kg	₩.	10/27/15 16:40	11/02/15 23:34	
1,2-Dichloroethane	ND	*	6.9	0.34	ug/Kg	☼	10/27/15 16:40	11/02/15 23:34	
1,2-Dichloropropane	ND		6.9	3.4	ug/Kg	☼	10/27/15 16:40	11/02/15 23:34	
1,3-Dichlorobenzene	ND		6.9		ug/Kg		10/27/15 16:40	11/02/15 23:34	
1,4-Dichlorobenzene	ND		6.9		ug/Kg	☼	10/27/15 16:40	11/02/15 23:34	
1,4-Dioxane	ND		140		ug/Kg	₩	10/27/15 16:40	11/02/15 23:34	
2-Hexanone	ND		34		ug/Kg		10/27/15 16:40	11/02/15 23:34	
Acetone	ND		34		ug/Kg	₩	10/27/15 16:40	11/02/15 23:34	
Benzene	ND		6.9	0.34	ug/Kg	₩	10/27/15 16:40	11/02/15 23:34	
Bromoform	ND		6.9		ug/Kg		10/27/15 16:40	11/02/15 23:34	
Bromomethane	ND		6.9		ug/Kg	₩	10/27/15 16:40	11/02/15 23:34	
Carbon disulfide	ND		6.9		ug/Kg	₩		11/02/15 23:34	
Carbon tetrachloride	ND	*	6.9		ug/Kg			11/02/15 23:34	
Chlorobenzene	ND		6.9		ug/Kg	₩		11/02/15 23:34	
Bromochloromethane	ND		6.9		ug/Kg	₩		11/02/15 23:34	
Dibromochloromethane	ND		6.9		ug/Kg			11/02/15 23:34	
Chloroethane	ND		6.9		ug/Kg	₩		11/02/15 23:34	
Chloroform	ND	*	6.9		ug/Kg	₩		11/02/15 23:34	
Chloromethane	ND		6.9		ug/Kg	 ☆		11/02/15 23:34	
cis-1,2-Dichloroethene	ND		6.9		ug/Kg	☼		11/02/15 23:34	
cis-1,3-Dichloropropene	ND		6.9		ug/Kg	- ' '		11/02/15 23:34	
Cyclohexane	ND		6.9		ug/Kg			11/02/15 23:34	
Bromodichloromethane	ND ND		6.9		ug/Kg ug/Kg	₽		11/02/15 23:34	
	ND ND					₽			
Dichlorodifluoromethane			6.9		ug/Kg	· · · · · · .		11/02/15 23:34	
Ethylbenzene	ND		6.9		ug/Kg			11/02/15 23:34	
1,2-Dibromoethane (EDB)	ND		6.9		ug/Kg	₩		11/02/15 23:34	
sopropylbenzene	ND		6.9		ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/02/15 23:34	
Methyl acetate	ND		6.9		ug/Kg			11/02/15 23:34	
2-Butanone (MEK)	ND		34		ug/Kg	₽		11/02/15 23:34	
4-Methyl-2-pentanone (MIBK)	ND		34		ug/Kg	T.		11/02/15 23:34	
Methyl tert-butyl ether	ND		6.9		ug/Kg			11/02/15 23:34	
Methylcyclohexane	ND		6.9		ug/Kg	*		11/02/15 23:34	
Methylene Chloride	6.8	JB	6.9		ug/Kg			11/02/15 23:34	
Styrene	ND		6.9		ug/Kg	₩		11/02/15 23:34	
Tetrachloroethene	ND		6.9	0.92	ug/Kg	₩	10/27/15 16:40	11/02/15 23:34	

TestAmerica Buffalo

10/27/15 16:40 11/02/15 23:3410/27/15 16:40 11/02/15 23:34

□ 10/27/15 16:40 11/02/15 23:34□ 10/27/15 16:40 11/02/15 23:34

10/27/15 16:40 11/02/15 23:34

Page 15 of 130

6.9

6.9

6.9

6.9

6.9

0.52 ug/Kg

0.71 ug/Kg

3.0 ug/Kg

1.5 ug/Kg

0.65 ug/Kg

ND

ND

ND

ND

1.3 J

4

3

5

7

9

11

14

<u>I</u>k

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Client Sample ID: SWMU 23-SURFACE-SS-01 Lab Sample ID: 480-89883-2

Date Collected: 10/26/15 11:40

Matrix: Solid
Date Received: 10/27/15 09:00

Percent Solids: 90.7

Method: 8260C - Volatile Org Analyte	-	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		6.9		0.84	ug/Kg	\	10/27/15 16:40	11/02/15 23:34	1
Xylenes, Total	ND		14		1.2	ug/Kg	₽	10/27/15 16:40	11/02/15 23:34	1
Tetrahydrofuran	ND		14		4.0	ug/Kg		10/27/15 16:40	11/02/15 23:34	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	1	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	₩				10/27/15 16:40	11/02/15 23:34	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		64 - 126					10/27/15 16:40	11/02/15 23:34	1
Toluene-d8 (Surr)	104		71 - 125					10/27/15 16:40	11/02/15 23:34	1
	0.4		72 - 126					10/27/15 16:40	11/02/15 23:34	1
4-Bromofluorobenzene (Surr)	94		12 - 120					10/21/13 10.40	11/02/13 23.34	,

-	101	00 - 1 - 10				10/21/10 10:40	7 17 027 10 20:01	,
Method: 8270D - Semivolatil Analyte	e Organic Compound Result Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND	190	27	ug/Kg	<u> </u>	10/30/15 14:03	11/10/15 12:38	1
bis (2-chloroisopropyl) ether	ND	190	37	ug/Kg	₩	10/30/15 14:03	11/10/15 12:38	1
2,4,5-Trichlorophenol	ND	190	50	ug/Kg	☼	10/30/15 14:03	11/10/15 12:38	1
2,4,6-Trichlorophenol	ND	190	37	ug/Kg		10/30/15 14:03	11/10/15 12:38	1
2,4-Dichlorophenol	ND	190	20	ug/Kg	₩	10/30/15 14:03	11/10/15 12:38	1
2,4-Dimethylphenol	ND	190	45	ug/Kg	₩	10/30/15 14:03	11/10/15 12:38	1
2,4-Dinitrophenol	ND	1800	860	ug/Kg		10/30/15 14:03	11/10/15 12:38	1
2,4-Dinitrotoluene	ND	190	38	ug/Kg	₩	10/30/15 14:03	11/10/15 12:38	1
2,6,Dinitrotoluene	ND	190	22	ug/Kg	₩	10/30/15 14:03	11/10/15 12:38	1
2-Chloronaphthalene	ND	190	31	ug/Kg		10/30/15 14:03	11/10/15 12:38	1
2-Chlorophenol	ND	190	34	ug/Kg	☼	10/30/15 14:03	11/10/15 12:38	1
2-Methylnaphthalene	ND	190	37	ug/Kg	₩	10/30/15 14:03	11/10/15 12:38	1
2-Methylphenol	ND	190	22	ug/Kg		10/30/15 14:03	11/10/15 12:38	1
2-Nitroaniline	ND	360	27	ug/Kg	₩	10/30/15 14:03	11/10/15 12:38	1
2-Nitrophenol	ND	190	53	ug/Kg	☼	10/30/15 14:03	11/10/15 12:38	1
3,3'-Dichlorobenzidine	ND	360	220	ug/Kg		10/30/15 14:03	11/10/15 12:38	1
3-Nitroaniline	ND	360	51	ug/Kg	₩	10/30/15 14:03	11/10/15 12:38	1
4,6-Dinitro-2-methylphenol	ND	360	190	ug/Kg	₩	10/30/15 14:03	11/10/15 12:38	1
4-Bromophenyl phenyl ether	ND	190	26	ug/Kg		10/30/15 14:03	11/10/15 12:38	1
4-Chloro-3-methylphenol	ND	190	46	ug/Kg	₩	10/30/15 14:03	11/10/15 12:38	1
4-Chloroaniline	ND	190	46	ug/Kg	₩	10/30/15 14:03	11/10/15 12:38	1
4-Chlorophenyl phenyl ether	ND	190	23	ug/Kg		10/30/15 14:03	11/10/15 12:38	1
4-Methylphenol	ND	360	22	ug/Kg	₩	10/30/15 14:03	11/10/15 12:38	1
4-Nitroaniline	ND	360	97	ug/Kg	₩	10/30/15 14:03	11/10/15 12:38	1
4-Nitrophenol	ND	360	130	ug/Kg		10/30/15 14:03	11/10/15 12:38	1
Acenaphthene	ND	190	27	ug/Kg	₩	10/30/15 14:03	11/10/15 12:38	1
Acenaphthylene	ND	190	24	ug/Kg	₩	10/30/15 14:03	11/10/15 12:38	1
Acetophenone	ND	190	25	ug/Kg		10/30/15 14:03	11/10/15 12:38	1
Anthracene	ND	190	46	ug/Kg	≎	10/30/15 14:03	11/10/15 12:38	1
Atrazine	ND	190	65	ug/Kg	≎	10/30/15 14:03	11/10/15 12:38	1
Benzaldehyde	ND *	190	150	ug/Kg		10/30/15 14:03	11/10/15 12:38	1
Benzo(a)anthracene	ND	190	19	ug/Kg	₽	10/30/15 14:03	11/10/15 12:38	1
Benzo(a)pyrene	ND	190		ug/Kg	₽	10/30/15 14:03	11/10/15 12:38	1
Benzo(b)fluoranthene	ND	190	30	ug/Kg	φ.		11/10/15 12:38	1
Benzo(g,h,i)perylene	ND	190	20	ug/Kg	₩	10/30/15 14:03	11/10/15 12:38	1

TestAmerica Buffalo

Page 16 of 130

2

3

Ē

6

8

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Analyte

Ethanol

Client Sample ID: SWMU 23-SURFACE-SS-01

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-2

Date Collected: 10/26/15 11:40 **Matrix: Solid** Date Received: 10/27/15 09:00 Percent Solids: 90.7

Analyte	Result	Qualifier	R	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo(k)fluoranthene	ND		19	90	24	ug/Kg		10/30/15 14:03	11/10/15 12:38	1
Bis(2-chloroethoxy)methane	ND		19	90	39	ug/Kg		10/30/15 14:03	11/10/15 12:38	1
Bis(2-chloroethyl)ether	ND		19	90	24	ug/Kg	≎	10/30/15 14:03	11/10/15 12:38	1
Bis(2-ethylhexyl) phthalate	ND		19	90	64	ug/Kg	≎	10/30/15 14:03	11/10/15 12:38	1
Butyl benzyl phthalate	ND		19	90	31	ug/Kg	ф	10/30/15 14:03	11/10/15 12:38	1
Caprolactam	ND		19	90	56	ug/Kg	₩	10/30/15 14:03	11/10/15 12:38	1
Carbazole	ND		19	90		ug/Kg	₩	10/30/15 14:03	11/10/15 12:38	1
Chrysene	ND		19	90		ug/Kg		10/30/15 14:03	11/10/15 12:38	1
Di-n-butyl phthalate	ND		19	90		ug/Kg	₩	10/30/15 14:03	11/10/15 12:38	1
Di-n-octyl phthalate	ND		19	90		ug/Kg	☼	10/30/15 14:03	11/10/15 12:38	1
Dibenz(a,h)anthracene	ND		19	90		ug/Kg		10/30/15 14:03	11/10/15 12:38	1
Dibenzofuran	ND			90	22		≎		11/10/15 12:38	1
Diethyl phthalate	ND		19			ug/Kg	₩		11/10/15 12:38	1
Dimethyl phthalate	ND			90		ug/Kg			11/10/15 12:38	· · · · · · · · · · · · · · · · · · ·
Fluoranthene	ND		19			ug/Kg	₩		11/10/15 12:38	1
Fluorene	ND		19			ug/Kg	₩		11/10/15 12:38	1
Hexachlorobenzene	ND			90		ug/Kg			11/10/15 12:38	· · · · · · · · · · 1
Hexachlorobutadiene	ND		19			ug/Kg	₩		11/10/15 12:38	1
Hexachlorocyclopentadiene	ND			90		ug/Kg	₩		11/10/15 12:38	
Hexachloroethane	ND		19			ug/Kg			11/10/15 12:38	
ndeno(1,2,3-cd)pyrene	ND			90		ug/Kg			11/10/15 12:38	
sophorone	ND ND		19			ug/Kg	₩		11/10/15 12:38	
N-Nitrosodi-n-propylamine	ND		19			ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/10/15 12:38	
	ND ND		19		150		₩		11/10/15 12:38	
N-Nitrosodiphenylamine Naphthalene	ND ND		19			ug/Kg	₩		11/10/15 12:38	
· · · · · · · · · · · · · · · · · · ·						ug/Kg	· · · · · · · · · ·			
Nitrobenzene	ND		19		21	0 0	₩		11/10/15 12:38	,
Pentachlorophenol	ND			00	190	ug/Kg			11/10/15 12:38	1
Phenanthrene	ND		19			ug/Kg			11/10/15 12:38	1
Phenol	ND		19			ug/Kg	₩		11/10/15 12:38	1
Pyrene	ND		19			ug/Kg	☆		11/10/15 12:38	1
Dimethylformamide	ND		72	20	82	ug/Kg	₩	10/30/15 14:03	11/10/15 12:38	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Jnknown	1000	TJ	ug/Kg	— ☆ –	2.	27		10/30/15 14:03	11/10/15 12:38	•
Unknown	480	ΤJ	ug/Kg	₩	2.	50		10/30/15 14:03	11/10/15 12:38	1
Unknown	770	TJ	ug/Kg	₩	2.	61		10/30/15 14:03	11/10/15 12:38	1
Unknown	2300	ΤJ	ug/Kg	\$	4.	98		10/30/15 14:03	11/10/15 12:38	1
Ethane, 1,1,2,2-tetrachloro-	440	TJN	ug/Kg	₩	5.	97	79-34-5	10/30/15 14:03	11/10/15 12:38	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	89		39 - 146	3					11/10/15 12:38	
2-Fluorobiphenyl	89		37 - 120						11/10/15 12:38	
2-Fluorophenol	82		18 - 120						11/10/15 12:38	
Nitrobenzene-d5	78		34 - 132						11/10/15 12:38	
o-Terphenyl-d14	91		65 - 153						11/10/15 12:38	
Phenol-d5	87		11 - 120						11/10/15 12:38	

10/30/15 11:22

Analyzed

RL

1.1

Result Qualifier

 $\overline{\mathsf{ND}}$

MDL Unit

0.16 mg/Kg

D

₩

Prepared

TestAmerica Buffalo

Dil Fac

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Received: 10/27/15 09:00

Tetrachloro-m-xylene

DCB Decachlorobiphenyl

TestAmerica Job ID: 480-89883-1

3

Client Sample ID: SWMU 23-SURFACE-SS-01

Date Collected: 10/26/15 11:40

Lab Sample ID: 480-89883-2 Matrix: Solid

<u>10/28/15 07:52</u> <u>10/28/15 16:19</u>

10/28/15 07:52 10/28/15 16:19

Percent Solids: 90.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isobutyl alcohol	ND ND		1.1	0.26	mg/Kg	<u> </u>		10/30/15 11:22	1
Methanol	ND		1.1	0.31	mg/Kg	₩		10/30/15 11:22	1
n-Butanol	ND		1.1	0.24	mg/Kg	\$		10/30/15 11:22	1
Propanol	ND		1.1	0.16	mg/Kg	₩		10/30/15 11:22	1
2-Butanol	ND		1.1	0.17	mg/Kg	₩		10/30/15 11:22	1
Isopropyl alcohol	ND		1.1	0.25	mg/Kg	\$		10/30/15 11:22	1
t-Butyl alcohol	ND		1.1	0.28	mg/Kg	₩		10/30/15 11:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	100		30 - 137			-		10/30/15 11:22	1

_ · · · · · · · · · · · · · · · · · · ·		00 - 707						•
Method: 8082A - Polyo Analyte	chlorinated Biphenyls (PCBs) Result Qualifier	by Gas Chro	matogr MDL		D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	230	45	ug/Kg	<u> </u>	10/28/15 07:52	10/28/15 16:19	1
PCB-1221	ND	230	45	ug/Kg	☼	10/28/15 07:52	10/28/15 16:19	1
PCB-1232	ND	230	45	ug/Kg	☼	10/28/15 07:52	10/28/15 16:19	1
PCB-1242	ND	230	45	ug/Kg		10/28/15 07:52	10/28/15 16:19	1
PCB-1248	ND	230	45	ug/Kg	≎	10/28/15 07:52	10/28/15 16:19	1
PCB-1254	ND	230	110	ug/Kg	₩	10/28/15 07:52	10/28/15 16:19	1
PCB-1260	ND	230	110	ug/Kg	\$	10/28/15 07:52	10/28/15 16:19	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac

60 - 154

65 - 174

97

98

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.3		2.2	0.44	mg/Kg	<u></u>	10/28/15 14:05	10/29/15 17:19	1
Barium	29.1		0.55	0.12	mg/Kg	☼	10/28/15 14:05	10/29/15 17:19	1
Cadmium	0.10	J	0.22	0.033	mg/Kg	₩	10/28/15 14:05	10/29/15 17:19	1
Chromium	10.3		0.55	0.22	mg/Kg		10/28/15 14:05	10/29/15 17:19	1
Lead	6.1		1.1	0.26	mg/Kg	₩	10/28/15 14:05	10/29/15 17:19	1
Selenium	ND		4.4	0.44	mg/Kg	₩	10/28/15 14:05	10/29/15 17:19	1
Silver	ND		0.66	0.22	mg/Kg	ф.	10/28/15 14:05	10/29/15 17:19	1

Method: 7471B - Mercury (CVA/Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.014	J	0.020	0.0082	mg/Kg	\	10/28/15 12:05	10/28/15 15:58	1

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/26/15 12:05

Date Received: 10/27/15 09:00

Trichlorofluoromethane

Client Sample ID: SWMU 7-SURFACE-SS-01

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-3

Matrix: Solid
Percent Solids: 90.4

Method: 8260C - Volatile Organ Analyte	Result Qualifier	r RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0		ug/Kg	<u>₩</u>		11/03/15 00:00	1
1,1,2,2-Tetrachloroethane	ND *	5.0		ug/Kg	.		11/03/15 00:00	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0		ug/Kg			11/03/15 00:00	1
1,1,2-Trichloroethane	ND	5.0		ug/Kg	₩.		11/03/15 00:00	1
1,1-Dichloroethane	ND	5.0	0.61	ug/Kg	.		11/03/15 00:00	1
1,1-Dichloroethene	ND	5.0		ug/Kg			11/03/15 00:00	1
1,2,3-Trichlorobenzene	ND	5.0		ug/Kg	*		11/03/15 00:00	1
1,2,4-Trichlorobenzene	ND	5.0		ug/Kg	₽		11/03/15 00:00	1
1,2-Dibromo-3-Chloropropane	ND	5.0		ug/Kg			11/03/15 00:00	1
1,2-Dichlorobenzene	ND	5.0	0.39	ug/Kg	**		11/03/15 00:00	1
1,2-Dichloroethane	ND *	5.0		ug/Kg	₩	10/27/15 16:40	11/03/15 00:00	1
1,2-Dichloropropane	ND	5.0		ug/Kg	≎	10/27/15 16:40	11/03/15 00:00	1
1,3-Dichlorobenzene	ND	5.0	0.26	ug/Kg	₩	10/27/15 16:40	11/03/15 00:00	1
1,4-Dichlorobenzene	ND	5.0	0.70	ug/Kg	₽	10/27/15 16:40	11/03/15 00:00	1
1,4-Dioxane	ND	100	22	ug/Kg	₽	10/27/15 16:40	11/03/15 00:00	1
2-Hexanone	ND	25	2.5	ug/Kg	₽	10/27/15 16:40	11/03/15 00:00	1
Acetone	ND	25	4.2	ug/Kg	☼	10/27/15 16:40	11/03/15 00:00	1
Benzene	ND	5.0	0.24	ug/Kg	≎	10/27/15 16:40	11/03/15 00:00	1
Bromoform	ND	5.0	2.5	ug/Kg	₽	10/27/15 16:40	11/03/15 00:00	1
Bromomethane	ND	5.0	0.45	ug/Kg	₽	10/27/15 16:40	11/03/15 00:00	1
Carbon disulfide	ND	5.0	2.5	ug/Kg	☼	10/27/15 16:40	11/03/15 00:00	1
Carbon tetrachloride	ND *	5.0	0.48	ug/Kg	ф.	10/27/15 16:40	11/03/15 00:00	1
Chlorobenzene	ND	5.0	0.66	ug/Kg	☼	10/27/15 16:40	11/03/15 00:00	1
Bromochloromethane	ND	5.0	0.36	ug/Kg	☼	10/27/15 16:40	11/03/15 00:00	1
Dibromochloromethane	ND	5.0	0.64	ug/Kg		10/27/15 16:40	11/03/15 00:00	1
Chloroethane	ND	5.0	1.1	ug/Kg	☼	10/27/15 16:40	11/03/15 00:00	1
Chloroform	ND *	5.0	0.31	ug/Kg	☼	10/27/15 16:40	11/03/15 00:00	1
Chloromethane	ND	5.0	0.30	ug/Kg		10/27/15 16:40	11/03/15 00:00	1
cis-1,2-Dichloroethene	ND	5.0	0.64	ug/Kg	≎	10/27/15 16:40	11/03/15 00:00	1
cis-1,3-Dichloropropene	ND	5.0	0.72	ug/Kg	≎	10/27/15 16:40	11/03/15 00:00	1
Cyclohexane	ND	5.0	0.70	ug/Kg		10/27/15 16:40	11/03/15 00:00	1
Bromodichloromethane	ND	5.0	0.67	ug/Kg	₽	10/27/15 16:40	11/03/15 00:00	1
Dichlorodifluoromethane	ND	5.0	0.41	ug/Kg	₩	10/27/15 16:40	11/03/15 00:00	1
Ethylbenzene	ND	5.0	0.34	ug/Kg	ф.	10/27/15 16:40	11/03/15 00:00	1
1,2-Dibromoethane (EDB)	ND	5.0		ug/Kg	₩	10/27/15 16:40	11/03/15 00:00	1
Isopropylbenzene	ND	5.0		ug/Kg	≎	10/27/15 16:40	11/03/15 00:00	1
Methyl acetate	ND	5.0		ug/Kg			11/03/15 00:00	1
2-Butanone (MEK)	ND	25		ug/Kg	₽		11/03/15 00:00	1
4-Methyl-2-pentanone (MIBK)	ND	25		ug/Kg	₽		11/03/15 00:00	1
Methyl tert-butyl ether	ND	5.0		ug/Kg			11/03/15 00:00	1
Methylcyclohexane	ND	5.0		ug/Kg	₽		11/03/15 00:00	1
Methylene Chloride	4.0 JB	5.0		ug/Kg	₽		11/03/15 00:00	1
Styrene	ND	5.0		ug/Kg			11/03/15 00:00	
Tetrachloroethene	ND	5.0		ug/Kg	₽		11/03/15 00:00	1
Toluene	ND	5.0		ug/Kg	₽		11/03/15 00:00	1
trans-1,2-Dichloroethene	ND	5.0		ug/Kg			11/03/15 00:00	
trans-1,3-Dichloropropene	ND	5.0		ug/Kg	₩		11/03/15 00:00	1
Trichloroethene	ND	5.0		ug/Kg			11/03/15 00:00	1
	· · · · · · · · · · · · · · · · · · ·		1.1	49,119		10/21/10 10:40	11/00/10 00:00	

TestAmerica Buffalo

* 10/27/15 16:40 11/03/15 00:00

5.0

0.47 ug/Kg

ND

_

6

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Dibromofluoromethane (Surr)

TestAmerica Job ID: 480-89883-1

10/27/15 16:40 11/03/15 00:00

Client Sample ID: SWMU 7-SURFACE-SS-01

Lab Sample ID: 480-89883-3 Date Collected: 10/26/15 12:05 **Matrix: Solid**

Percent Solids: 90.4

Date Received: 10/27/15 09:00 Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

	,		,					
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND	5.0	0.61	ug/Kg		10/27/15 16:40	11/03/15 00:00	1
Xylenes, Total	ND	10	0.84	ug/Kg	☼	10/27/15 16:40	11/03/15 00:00	1
Tetrahydrofuran	ND	10	2.9	ug/Kg	≎	10/27/15 16:40	11/03/15 00:00	1

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\			10/27/15 16:40	11/03/15 00:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		64 - 126				10/27/15 16:40	11/03/15 00:00	1
Toluene-d8 (Surr)	104		71 - 125				10/27/15 16:40	11/03/15 00:00	1
4-Bromofluorobenzene (Surr)	95		72 - 126				10/27/15 16:40	11/03/15 00:00	1

60 - 140

102

Analyte	Result Qualifier	ŔL		Unit	D	Prepared	Analyzed	Dil Fa
Biphenyl	ND ND	930	140	ug/Kg		10/30/15 14:03	11/10/15 13:04	
bis (2-chloroisopropyl) ether	ND	930	190	ug/Kg	☼	10/30/15 14:03	11/10/15 13:04	
2,4,5-Trichlorophenol	ND	930	250	ug/Kg	☼	10/30/15 14:03	11/10/15 13:04	į
2,4,6-Trichlorophenol	ND	930	190	ug/Kg	≎	10/30/15 14:03	11/10/15 13:04	
2,4-Dichlorophenol	ND	930	98	ug/Kg	≎	10/30/15 14:03	11/10/15 13:04	į
2,4-Dimethylphenol	ND	930	220	ug/Kg	≎	10/30/15 14:03	11/10/15 13:04	
2,4-Dinitrophenol	ND	9000	4300	ug/Kg	≎	10/30/15 14:03	11/10/15 13:04	
2,4-Dinitrotoluene	ND	930	190	ug/Kg	₩	10/30/15 14:03	11/10/15 13:04	
2,6,Dinitrotoluene	ND	930	110	ug/Kg	≎	10/30/15 14:03	11/10/15 13:04	
2-Chloronaphthalene	ND	930	150	ug/Kg	₽	10/30/15 14:03	11/10/15 13:04	
2-Chlorophenol	ND	930	170	ug/Kg	≎	10/30/15 14:03	11/10/15 13:04	
2-Methylnaphthalene	ND	930	190	ug/Kg	≎	10/30/15 14:03	11/10/15 13:04	
2-Methylphenol	ND	930	110	ug/Kg	₽	10/30/15 14:03	11/10/15 13:04	
2-Nitroaniline	ND	1800	140	ug/Kg	≎	10/30/15 14:03	11/10/15 13:04	
2-Nitrophenol	ND	930	260	ug/Kg	₽	10/30/15 14:03	11/10/15 13:04	
3,3'-Dichlorobenzidine	ND	1800	1100	ug/Kg	₽	10/30/15 14:03	11/10/15 13:04	
3-Nitroaniline	ND	1800	260	ug/Kg	≎	10/30/15 14:03	11/10/15 13:04	
4,6-Dinitro-2-methylphenol	ND	1800	930	ug/Kg	₽	10/30/15 14:03	11/10/15 13:04	
4-Bromophenyl phenyl ether	ND	930	130	ug/Kg		10/30/15 14:03	11/10/15 13:04	
4-Chloro-3-methylphenol	ND	930	230	ug/Kg	₽	10/30/15 14:03	11/10/15 13:04	
4-Chloroaniline	ND	930	230	ug/Kg	₽	10/30/15 14:03	11/10/15 13:04	
4-Chlorophenyl phenyl ether	ND	930	110	ug/Kg	\$	10/30/15 14:03	11/10/15 13:04	
4-Methylphenol	ND	1800	110	ug/Kg	₽	10/30/15 14:03	11/10/15 13:04	
4-Nitroaniline	ND	1800	480	ug/Kg	₩	10/30/15 14:03	11/10/15 13:04	
4-Nitrophenol	ND	1800	650	ug/Kg	₽	10/30/15 14:03	11/10/15 13:04	
Acenaphthene	ND	930	140	ug/Kg	₩	10/30/15 14:03	11/10/15 13:04	
Acenaphthylene	ND	930	120	ug/Kg	≎	10/30/15 14:03	11/10/15 13:04	
Acetophenone	ND	930	130	ug/Kg	₽	10/30/15 14:03	11/10/15 13:04	
Anthracene	ND	930	230	ug/Kg	≎	10/30/15 14:03	11/10/15 13:04	
Atrazine	ND	930	320	ug/Kg	₽	10/30/15 14:03	11/10/15 13:04	
Benzaldehyde	ND *	930	740	ug/Kg	.	10/30/15 14:03	11/10/15 13:04	
Benzo(a)anthracene	ND	930	93	ug/Kg	☼	10/30/15 14:03	11/10/15 13:04	
Benzo(a)pyrene	ND	930	140	ug/Kg	₩	10/30/15 14:03	11/10/15 13:04	
Benzo(b)fluoranthene	ND	930	150	ug/Kg	.	10/30/15 14:03	11/10/15 13:04	
Benzo(g,h,i)perylene	ND	930	98	ug/Kg	☼	10/30/15 14:03	11/10/15 13:04	į

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/26/15 12:05

Date Received: 10/27/15 09:00

2-Fluorophenol

Nitrobenzene-d5

p-Terphenyl-d14

Phenol-d5

Client Sample ID: SWMU 7-SURFACE-SS-01

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-3

Matrix: Solid

Percent Solids: 90.4

Method: 8270D - Semivolatile Analyte		mpounds Qualifier	(GC/MS) (RL		d) . Unit	D	Prepared	Analyzed	Dil Fac
Benzo(k)fluoranthene	ND		930		ug/Kg			11/10/15 13:04	5
Bis(2-chloroethoxy)methane	ND		930		ug/Kg		10/30/15 14:03	11/10/15 13:04	5
Bis(2-chloroethyl)ether	ND		930		ug/Kg	₩	10/30/15 14:03	11/10/15 13:04	5
Bis(2-ethylhexyl) phthalate	ND		930		ug/Kg	₩	10/30/15 14:03	11/10/15 13:04	5
Butyl benzyl phthalate	ND		930	150	ug/Kg		10/30/15 14:03	11/10/15 13:04	5
Caprolactam	ND		930		ug/Kg	₽	10/30/15 14:03	11/10/15 13:04	5
Carbazole	ND		930		ug/Kg	₽	10/30/15 14:03	11/10/15 13:04	5
Chrysene	ND		930	210	ug/Kg		10/30/15 14:03	11/10/15 13:04	5
Di-n-butyl phthalate	ND		930	160	ug/Kg	≎	10/30/15 14:03	11/10/15 13:04	5
Di-n-octyl phthalate	ND		930	110	ug/Kg	₽	10/30/15 14:03	11/10/15 13:04	5
Dibenz(a,h)anthracene	ND		930	160	ug/Kg		10/30/15 14:03	11/10/15 13:04	5
Dibenzofuran	ND		930	110	ug/Kg	₩	10/30/15 14:03	11/10/15 13:04	5
Diethyl phthalate	ND		930	120	ug/Kg	₽	10/30/15 14:03	11/10/15 13:04	5
Dimethyl phthalate	ND		930	110	ug/Kg		10/30/15 14:03	11/10/15 13:04	5
Fluoranthene	ND		930	98	ug/Kg	₽	10/30/15 14:03	11/10/15 13:04	5
Fluorene	ND		930	110	ug/Kg	≎	10/30/15 14:03	11/10/15 13:04	5
Hexachlorobenzene	ND		930	130	ug/Kg		10/30/15 14:03	11/10/15 13:04	5
Hexachlorobutadiene	ND		930	140	ug/Kg	≎	10/30/15 14:03	11/10/15 13:04	5
Hexachlorocyclopentadiene	ND		930	130	ug/Kg	₩	10/30/15 14:03	11/10/15 13:04	5
Hexachloroethane	ND		930	120	ug/Kg		10/30/15 14:03	11/10/15 13:04	5
Indeno(1,2,3-cd)pyrene	ND		930	110	ug/Kg	₩	10/30/15 14:03	11/10/15 13:04	5
Isophorone	ND		930	200	ug/Kg	₩	10/30/15 14:03	11/10/15 13:04	5
N-Nitrosodi-n-propylamine	ND		930	160	ug/Kg		10/30/15 14:03	11/10/15 13:04	5
N-Nitrosodiphenylamine	ND		930	750	ug/Kg	₩	10/30/15 14:03	11/10/15 13:04	5
Naphthalene	ND		930	120	ug/Kg	₩	10/30/15 14:03	11/10/15 13:04	5
Nitrobenzene	ND		930	100	ug/Kg		10/30/15 14:03	11/10/15 13:04	5
Pentachlorophenol	ND		1800	930	ug/Kg	₽	10/30/15 14:03	11/10/15 13:04	5
Phenanthrene	ND		930	140	ug/Kg	₽	10/30/15 14:03	11/10/15 13:04	5
Phenol	ND		930	140	ug/Kg	₽	10/30/15 14:03	11/10/15 13:04	5
Pyrene	ND		930	110	ug/Kg	☼	10/30/15 14:03	11/10/15 13:04	5
Dimethylformamide	ND		3600	410	ug/Kg	₩	10/30/15 14:03	11/10/15 13:04	5
Tentatively Identified Compound	Est. Result		Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	1600	TJ	ug/Kg	\(\alpha\)	2.28		10/30/15 14:03	11/10/15 13:04	5
Unknown	2000	ΤJ	ug/Kg	*	4.98		10/30/15 14:03	11/10/15 13:04	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	84		39 - 146					11/10/15 13:04	5
2-Fluorobiphenyl	84		37 - 120				10/30/15 14:03	11/10/15 13:04	5

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) - Soluble										
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac				
Ethanol	ND	0.95	0.14 mg/Kg	\$	10/30/15 11:30	1				
Isobutyl alcohol	ND	0.95	0.24 mg/Kg	\$	10/30/15 11:30	1				
Methanol	ND	0.95	0.28 mg/Kg	\$	10/30/15 11:30	1				
n-Butanol	ND	0.95	0.22 mg/Kg	ф.	10/30/15 11:30	1				

18 - 120

34 - 132

65 - 153

11 - 120

71

68

86

78

TestAmerica Buffalo

10/30/15 14:03 11/10/15 13:04

10/30/15 14:03 11/10/15 13:04

10/30/15 14:03 11/10/15 13:04

10/30/15 14:03 11/10/15 13:04

Page 21 of 130

5

5

5

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

2

Client Sample ID: SWMU 7-SURFACE-SS-01

Date Collected: 10/26/15 12:05 Date Received: 10/27/15 09:00 Lab Sample ID: 480-89883-3

Matrix: Solid Percent Solids: 90.4

Method: 8015D - Nonhalog	genated Organic Comp	ounds - Direct	Injection	(GC) - S	Soluble	(Continue	d)	
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Propanol	ND ND	0.95	0.14	mg/Kg	<u> </u>		10/30/15 11:30	1
2-Butanol	ND	0.95	0.15	mg/Kg	☼		10/30/15 11:30	1
Isopropyl alcohol	ND	0.95	0.23	mg/Kg	₽		10/30/15 11:30	1
t-Butyl alcohol	ND	0.95	0.25	mg/Kg	₽		10/30/15 11:30	1
	0/5 0 15							5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Hexanone	92		30 - 137		10/30/15 11:30	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		240	47	ug/Kg	<u> </u>	10/28/15 07:52	10/28/15 16:33	1
PCB-1221	ND		240	47	ug/Kg	☼	10/28/15 07:52	10/28/15 16:33	1
PCB-1232	ND		240	47	ug/Kg	☼	10/28/15 07:52	10/28/15 16:33	1
PCB-1242	ND		240	47	ug/Kg	φ.	10/28/15 07:52	10/28/15 16:33	1
PCB-1248	ND		240	47	ug/Kg	☼	10/28/15 07:52	10/28/15 16:33	1
PCB-1254	ND		240	110	ug/Kg	☼	10/28/15 07:52	10/28/15 16:33	1
PCB-1260	ND		240	110	ug/Kg	₩	10/28/15 07:52	10/28/15 16:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	100		60 - 154				10/28/15 07:52	10/28/15 16:33	1
DCB Decachlorobiphenyl	100		65 - 174				10/28/15 07:52	10/28/15 16:33	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.3	2.2	0.44	mg/Kg	<u> </u>	10/28/15 14:05	10/29/15 17:22	1
Barium	33.2	0.55	0.12	mg/Kg	☼	10/28/15 14:05	10/29/15 17:22	1
Cadmium	0.22	0.22	0.033	mg/Kg	☼	10/28/15 14:05	10/29/15 17:22	1
Chromium	7.9	0.55	0.22	mg/Kg	₩	10/28/15 14:05	10/29/15 17:22	1
Lead	10.7	1.1	0.26	mg/Kg	☼	10/28/15 14:05	10/29/15 17:22	1
Selenium	ND	4.4	0.44	mg/Kg	☼	10/28/15 14:05	10/29/15 17:22	1
Silver	ND	0.66	0.22	mg/Kg	₩.	10/28/15 14:05	10/29/15 17:22	1

Method: 7471B - Mercury (CVAA	A)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	0.026		0.022	0.0090	mg/Kg	<u> </u>	10/28/15 12:05	10/28/15 16:00	1	

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/26/15 12:15

Date Received: 10/27/15 09:00

Client Sample ID: SWMU 13-SURFACE-SS-01

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-4

Matrix: Solid Percent Solids: 90.3

Method: 8260C - Volatile Organ Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	*	4.4	0.32	ug/Kg		10/27/15 16:40	11/03/15 00:26	1
1,1,2,2-Tetrachloroethane	ND	*	4.4	0.71	ug/Kg	₩	10/27/15 16:40	11/03/15 00:26	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.4	1.0	ug/Kg	☼	10/27/15 16:40	11/03/15 00:26	1
1,1,2-Trichloroethane	ND		4.4	0.57	ug/Kg	☼	10/27/15 16:40	11/03/15 00:26	1
1,1-Dichloroethane	ND		4.4	0.54	ug/Kg	☼	10/27/15 16:40	11/03/15 00:26	1
1,1-Dichloroethene	ND		4.4	0.54	ug/Kg	₩	10/27/15 16:40	11/03/15 00:26	1
1,2,3-Trichlorobenzene	ND		4.4	0.47	ug/Kg	\$	10/27/15 16:40	11/03/15 00:26	1
1,2,4-Trichlorobenzene	ND		4.4	0.27	ug/Kg	₩	10/27/15 16:40	11/03/15 00:26	1
1,2-Dibromo-3-Chloropropane	ND		4.4	2.2	ug/Kg	₩	10/27/15 16:40	11/03/15 00:26	1
1,2-Dichlorobenzene	ND		4.4	0.34	ug/Kg	\$	10/27/15 16:40	11/03/15 00:26	1
1,2-Dichloroethane	ND	*	4.4	0.22	ug/Kg	☼	10/27/15 16:40	11/03/15 00:26	1
1,2-Dichloropropane	ND		4.4	2.2	ug/Kg	☼	10/27/15 16:40	11/03/15 00:26	1
1,3-Dichlorobenzene	ND		4.4	0.23	ug/Kg		10/27/15 16:40	11/03/15 00:26	1
1,4-Dichlorobenzene	ND		4.4	0.62	ug/Kg	☼	10/27/15 16:40	11/03/15 00:26	1
1,4-Dioxane	ND		88	19	ug/Kg	₩	10/27/15 16:40	11/03/15 00:26	1
2-Hexanone	ND		22	2.2	ug/Kg	₩.	10/27/15 16:40	11/03/15 00:26	1
Acetone	ND		22	3.7	ug/Kg	☼	10/27/15 16:40	11/03/15 00:26	1
Benzene	ND		4.4	0.22	ug/Kg	☼	10/27/15 16:40	11/03/15 00:26	1
Bromoform	ND		4.4	2.2	ug/Kg		10/27/15 16:40	11/03/15 00:26	1
Bromomethane	ND		4.4	0.40	ug/Kg	₩	10/27/15 16:40	11/03/15 00:26	1
Carbon disulfide	ND		4.4		ug/Kg	₩	10/27/15 16:40	11/03/15 00:26	1
Carbon tetrachloride	ND	*	4.4		ug/Kg	-	10/27/15 16:40	11/03/15 00:26	1
Chlorobenzene	ND		4.4		ug/Kg	₩	10/27/15 16:40	11/03/15 00:26	1
Bromochloromethane	ND		4.4		ug/Kg	₩	10/27/15 16:40	11/03/15 00:26	1
Dibromochloromethane	ND		4.4	0.56	ug/Kg		10/27/15 16:40	11/03/15 00:26	1
Chloroethane	ND		4.4	0.99	ug/Kg	₩	10/27/15 16:40	11/03/15 00:26	1
Chloroform	ND	*	4.4	0.27	ug/Kg	₩	10/27/15 16:40	11/03/15 00:26	1
Chloromethane	ND		4.4		ug/Kg		10/27/15 16:40	11/03/15 00:26	1
cis-1,2-Dichloroethene	ND		4.4		ug/Kg	₩	10/27/15 16:40	11/03/15 00:26	1
cis-1,3-Dichloropropene	ND		4.4		ug/Kg	₩	10/27/15 16:40	11/03/15 00:26	1
Cyclohexane	ND		4.4		ug/Kg		10/27/15 16:40	11/03/15 00:26	1
Bromodichloromethane	ND		4.4		ug/Kg	₩	10/27/15 16:40	11/03/15 00:26	1
Dichlorodifluoromethane	ND		4.4		ug/Kg	☼	10/27/15 16:40	11/03/15 00:26	1
Ethylbenzene	ND		4.4		ug/Kg	ф.	10/27/15 16:40	11/03/15 00:26	1
1,2-Dibromoethane (EDB)	ND		4.4		ug/Kg	₩	10/27/15 16:40	11/03/15 00:26	1
Isopropylbenzene	ND		4.4		ug/Kg	☼	10/27/15 16:40	11/03/15 00:26	1
Methyl acetate	ND		4.4	2.7			10/27/15 16:40	11/03/15 00:26	1
2-Butanone (MEK)	ND		22		ug/Kg	₩		11/03/15 00:26	1
4-Methyl-2-pentanone (MIBK)	ND		22		ug/Kg	₩		11/03/15 00:26	1
Methyl tert-butyl ether	ND		4.4		ug/Kg			11/03/15 00:26	1
Methylcyclohexane	ND		4.4		ug/Kg	₩		11/03/15 00:26	1
Methylene Chloride	3.1	JB	4.4		ug/Kg	₩		11/03/15 00:26	1
Styrene	ND	. 	4.4		ug/Kg			11/03/15 00:26	
Tetrachloroethene	ND		4.4		ug/Kg	₩		11/03/15 00:26	1
Toluene	ND		4.4		ug/Kg	₩		11/03/15 00:26	1
trans-1,2-Dichloroethene	ND		4.4		ug/Kg			11/03/15 00:26	
trans-1,3-Dichloropropene	ND		4.4		ug/Kg	₩		11/03/15 00:26	1
Trichloroethene	ND		4.4		ug/Kg	₩		11/03/15 00:26	1
	. 10			0.01	~aa				

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Client Sample ID: SWMU 13-SURFACE-SS-01 Lab Sample ID: 480-89883-4

Date Collected: 10/26/15 12:15

Date Received: 10/27/15 09:00 Percent Solids: 90.3

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.4		0.54	ug/Kg	<u> </u>	10/27/15 16:40	11/03/15 00:26	1
Xylenes, Total	ND		8.8		0.74	ug/Kg	₽	10/27/15 16:40	11/03/15 00:26	1
Tetrahydrofuran	ND		8.8		2.5	ug/Kg	\$	10/27/15 16:40	11/03/15 00:26	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	₩ -				10/27/15 16:40	11/03/15 00:26	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		64 - 126					10/27/15 16:40	11/03/15 00:26	1
Toluene-d8 (Surr)	102		71 - 125					10/27/15 16:40	11/03/15 00:26	1
4-Bromofluorobenzene (Surr)	99		72 - 126					10/27/15 16:40	11/03/15 00:26	1

Dibromofluoromethane (Surr) -	103		60 - 140				10/2//15 16:40	11/03/15 00:26	1
Method: 8270D - Semivolatile Analyte		mpounds Qualifier	(GC/MS) RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND	- Qualifier	3800		ug/Kg	— ğ	•	11/10/15 13:30	20
bis (2-chloroisopropyl) ether	ND		3800		ug/Kg	₩		11/10/15 13:30	20
2,4,5-Trichlorophenol	ND		3800		ug/Kg	₩		11/10/15 13:30	20
2,4,6-Trichlorophenol	ND		3800		ug/Kg			11/10/15 13:30	20
2,4-Dichlorophenol	ND		3800		ug/Kg	₩		11/10/15 13:30	20
2,4-Dimethylphenol	ND		3800		ug/Kg	₽		11/10/15 13:30	20
2,4-Dinitrophenol	ND		37000		ug/Kg		10/30/15 14:03	11/10/15 13:30	20
2,4-Dinitrotoluene	ND		3800		ug/Kg	₽	10/30/15 14:03	11/10/15 13:30	20
2,6,Dinitrotoluene	ND		3800		ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
2-Chloronaphthalene	ND		3800		ug/Kg		10/30/15 14:03	11/10/15 13:30	20
2-Chlorophenol	ND		3800	680	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
2-Methylnaphthalene	ND		3800		ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
2-Methylphenol	ND		3800	440	ug/Kg		10/30/15 14:03	11/10/15 13:30	20
2-Nitroaniline	ND		7300	550	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
2-Nitrophenol	ND		3800	1100	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
3,3'-Dichlorobenzidine	ND		7300	4400	ug/Kg		10/30/15 14:03	11/10/15 13:30	20
3-Nitroaniline	ND		7300	1000	ug/Kg	☼	10/30/15 14:03	11/10/15 13:30	20
4,6-Dinitro-2-methylphenol	ND		7300	3800	ug/Kg	☼	10/30/15 14:03	11/10/15 13:30	20
4-Bromophenyl phenyl ether	ND		3800	530	ug/Kg	*	10/30/15 14:03	11/10/15 13:30	20
4-Chloro-3-methylphenol	ND		3800	930	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
4-Chloroaniline	ND		3800	930	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
4-Chlorophenyl phenyl ether	ND		3800	460	ug/Kg		10/30/15 14:03	11/10/15 13:30	20
4-Methylphenol	ND		7300	440	ug/Kg	☼	10/30/15 14:03	11/10/15 13:30	20
4-Nitroaniline	ND		7300	2000	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
4-Nitrophenol	ND		7300	2600	ug/Kg	\$	10/30/15 14:03	11/10/15 13:30	20
Acenaphthene	ND		3800	550	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
Acenaphthylene	ND		3800	490	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
Acetophenone	ND		3800	510	ug/Kg	₽	10/30/15 14:03	11/10/15 13:30	20
Anthracene	ND		3800	930	ug/Kg	☼	10/30/15 14:03	11/10/15 13:30	20
Atrazine	ND		3800	1300	ug/Kg	☼	10/30/15 14:03	11/10/15 13:30	20
Benzaldehyde	ND	*	3800	3000	ug/Kg	☼	10/30/15 14:03	11/10/15 13:30	20
Benzo(a)anthracene	ND		3800	380	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
Benzo(a)pyrene	ND		3800	550	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
Benzo(b)fluoranthene	ND		3800	600	ug/Kg	\$	10/30/15 14:03	11/10/15 13:30	20
Benzo(g,h,i)perylene	ND		3800	400	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20

TestAmerica Buffalo

Page 24 of 130

2

3

5

7

0

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Propanol

TestAmerica Job ID: 480-89883-1

Client Sample ID: SWMU 13-SURFACE-SS-01 Lab Sample ID: 480-89883-4

Date Collected: 10/26/15 12:15

Date Received: 10/27/15 09:00

Matrix: Solid
Percent Solids: 90.3

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo(k)fluoranthene	ND		3800		490	ug/Kg	\	10/30/15 14:03	11/10/15 13:30	2
Bis(2-chloroethoxy)methane	ND		3800		790	ug/Kg	\$	10/30/15 14:03	11/10/15 13:30	20
Bis(2-chloroethyl)ether	ND		3800		490	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
Bis(2-ethylhexyl) phthalate	1700	J	3800		1300	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
Butyl benzyl phthalate	ND		3800		620	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
Caprolactam	ND		3800		1100	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
Carbazole	ND		3800		440	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
Chrysene	ND		3800		840	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
Di-n-butyl phthalate	ND		3800		640	ug/Kg	☆	10/30/15 14:03	11/10/15 13:30	20
Di-n-octyl phthalate	ND		3800		440	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
Dibenz(a,h)anthracene	ND		3800		660	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
Dibenzofuran	ND		3800		440	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
Diethyl phthalate	ND		3800		490	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
Dimethyl phthalate	ND		3800		440	ug/Kg		10/30/15 14:03	11/10/15 13:30	20
Fluoranthene	ND		3800		400	ug/Kg	☼	10/30/15 14:03	11/10/15 13:30	20
Fluorene	ND		3800		440	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
Hexachlorobenzene	ND		3800		510	ug/Kg		10/30/15 14:03	11/10/15 13:30	20
Hexachlorobutadiene	ND		3800		550	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
Hexachlorocyclopentadiene	ND		3800		510	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
Hexachloroethane	ND		3800		490	ug/Kg	₽	10/30/15 14:03	11/10/15 13:30	20
Indeno(1,2,3-cd)pyrene	ND		3800		460	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
Isophorone	ND		3800		790	ug/Kg	☆	10/30/15 14:03	11/10/15 13:30	20
N-Nitrosodi-n-propylamine	ND		3800		640	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
N-Nitrosodiphenylamine	ND		3800		3000	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
Naphthalene	ND		3800		490	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
Nitrobenzene	ND		3800		420	ug/Kg		10/30/15 14:03	11/10/15 13:30	20
Pentachlorophenol	ND		7300		3800	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
Phenanthrene	ND		3800		550	ug/Kg	☆	10/30/15 14:03	11/10/15 13:30	20
Phenol	ND		3800		570	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
Pyrene	ND		3800		440	ug/Kg	₩	10/30/15 14:03	11/10/15 13:30	20
Dimethylformamide	ND		15000		1700	ug/Kg	☼	10/30/15 14:03	11/10/15 13:30	20
Tentatively Identified Compound	Est. Result		Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fa
Unknown	4500	TJ	ug/Kg	₩ -	2.	.48		10/30/15 14:03	11/10/15 13:30	2
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	120		39 - 146					10/30/15 14:03	11/10/15 13:30	20
2-Fluorobiphenyl	87		37 - 120					10/30/15 14:03	11/10/15 13:30	2

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	120		39 - 146	10/30/15 14:03	11/10/15 13:30	2
2-Fluorobiphenyl	87		37 - 120	10/30/15 14:03	11/10/15 13:30	20
2-Fluorophenol	75		18 - 120	10/30/15 14:03	11/10/15 13:30	20
Nitrobenzene-d5	73		34 - 132	10/30/15 14:03	11/10/15 13:30	20
p-Terphenyl-d14	84		65 - 153	10/30/15 14:03	11/10/15 13:30	20
Phenol-d5	80		11 - 120	10/30/15 14:03	11/10/15 13:30	20

Method: 8015D - Nonhald	ogenated Organic Compound	ls - Direct I	njection	(GC) - S	oluble			
Analyte	Result Qualifier	RL	MDL	Unit	D P	repared	Analyzed	Dil Fac
Ethanol	ND ND	1.0	0.16	mg/Kg	₩ —		10/30/15 11:38	1
Isobutyl alcohol	ND	1.0	0.26	mg/Kg	≎		10/30/15 11:38	1
Methanol	ND	1.0	0.31	mg/Kg	₽		10/30/15 11:38	1
n-Butanol	ND	1.0	0.24	mg/Kg	\$		10/30/15 11:38	1

1.0

0.16 mg/Kg

ND

TestAmerica Buffalo

10/30/15 11:38

Page 25 of 130

2

3

5

7

10

11 12

14

4 6

11/18/2015

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/26/15 12:15

Method: 7471B - Mercury (CVAA)

Analyte

Mercury

Client Sample ID: SWMU 13-SURFACE-SS-01

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-4

Matrix: Solid

Method: 8015D - Nonhalo	genated Organi	c Compou	nds - Direct l	njection	ı (GC) -	Solubl	e (Continued	I)	
Analyte		Qualifier	RL		Ùnit	D	Prepared	Analyzed	Dil Fac
2-Butanol	ND		1.0	0.17	mg/Kg	<u> </u>		10/30/15 11:38	1
Isopropyl alcohol	ND		1.0	0.25	mg/Kg	ф.		10/30/15 11:38	1
t-Butyl alcohol	ND		1.0	0.28	mg/Kg	₩		10/30/15 11:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	81		30 - 137					10/30/15 11:38	1
Method: 8082A - Polychio	orinated Bipheny	ıls (PCBs)	by Gas Chro	matogr	anhv				
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		240	47	ug/Kg	<u> </u>	10/28/15 07:52	10/28/15 16:48	1
PCB-1221	ND		240	47	ug/Kg	₩	10/28/15 07:52	10/28/15 16:48	1
PCB-1232	ND		240	47	ug/Kg	₩	10/28/15 07:52	10/28/15 16:48	1
PCB-1242	ND		240	47	ug/Kg		10/28/15 07:52	10/28/15 16:48	1
PCB-1248	ND		240	47	ug/Kg	₩	10/28/15 07:52	10/28/15 16:48	1
PCB-1254	ND		240	110	ug/Kg	₩	10/28/15 07:52	10/28/15 16:48	1
PCB-1260	ND		240	110	ug/Kg	₽	10/28/15 07:52	10/28/15 16:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	95		60 - 154				10/28/15 07:52	10/28/15 16:48	1
DCB Decachlorobiphenyl	98		65 - 174				10/28/15 07:52	10/28/15 16:48	1
Method: 6010C - Metals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.4		2.2	0.44	mg/Kg		10/28/15 14:05	10/29/15 17:34	1
Barium	27.2		0.55	0.12	mg/Kg	₩	10/28/15 14:05	10/29/15 17:34	1
Cadmium	0.060	J	0.22	0.033	mg/Kg	₩	10/28/15 14:05	10/29/15 17:34	1
Chromium	9.1		0.55	0.22	mg/Kg	₩	10/28/15 14:05	10/29/15 17:34	1
Lead	10.4		1.1	0.26	mg/Kg	₩	10/28/15 14:05	10/29/15 17:34	1
Selenium	ND		4.4	0.44	mg/Kg	₩	10/28/15 14:05	10/29/15 17:34	1
Silver	ND		0.66	0.22	mg/Kg	☆	10/28/15 14:05	10/29/15 17:34	1

RL

0.021

MDL Unit

0.0085 mg/Kg

Prepared

 Image: Triangle of the properties of the pr

Analyzed

Dil Fac

Result Qualifier

0.015 J

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/26/15 12:30

Date Received: 10/27/15 09:00

Client Sample ID: SWMU 12-SURFACE-SS-01

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-5

Matrix: Solid Percent Solids: 94.8

Method: 8260C - Volatile Organ	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND *	4.3	0.31	0 0	₩	10/27/15 16:40	11/03/15 00:52	1
1,1,2,2-Tetrachloroethane	ND *	4.3		ug/Kg	₽		11/03/15 00:52	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.3	0.99	ug/Kg		10/27/15 16:40	11/03/15 00:52	1
1,1,2-Trichloroethane	ND	4.3		ug/Kg	☼	10/27/15 16:40	11/03/15 00:52	1
1,1-Dichloroethane	ND	4.3	0.53	ug/Kg	₩	10/27/15 16:40	11/03/15 00:52	1
1,1-Dichloroethene	ND	4.3	0.53	ug/Kg	₩	10/27/15 16:40	11/03/15 00:52	1
1,2,3-Trichlorobenzene	ND	4.3	0.46	ug/Kg	₽	10/27/15 16:40	11/03/15 00:52	1
1,2,4-Trichlorobenzene	ND	4.3	0.26	ug/Kg	₩	10/27/15 16:40	11/03/15 00:52	1
1,2-Dibromo-3-Chloropropane	ND	4.3	2.2	ug/Kg	₩	10/27/15 16:40	11/03/15 00:52	1
1,2-Dichlorobenzene	ND	4.3	0.34	ug/Kg	₽	10/27/15 16:40	11/03/15 00:52	1
1,2-Dichloroethane	ND *	4.3	0.22	ug/Kg	₩	10/27/15 16:40	11/03/15 00:52	1
1,2-Dichloropropane	ND	4.3	2.2	ug/Kg	₩	10/27/15 16:40	11/03/15 00:52	1
1,3-Dichlorobenzene	ND	4.3	0.22	ug/Kg	₽	10/27/15 16:40	11/03/15 00:52	1
1,4-Dichlorobenzene	ND	4.3	0.61	ug/Kg	₩	10/27/15 16:40	11/03/15 00:52	1
1,4-Dioxane	ND	87	19	ug/Kg	☼	10/27/15 16:40	11/03/15 00:52	1
2-Hexanone	ND	22	2.2	ug/Kg	₽	10/27/15 16:40	11/03/15 00:52	1
Acetone	ND	22	3.6	ug/Kg	₩	10/27/15 16:40	11/03/15 00:52	1
Benzene	ND	4.3	0.21	ug/Kg	☼	10/27/15 16:40	11/03/15 00:52	1
Bromoform	ND	4.3	2.2	ug/Kg		10/27/15 16:40	11/03/15 00:52	1
Bromomethane	ND	4.3	0.39	ug/Kg	☼	10/27/15 16:40	11/03/15 00:52	1
Carbon disulfide	ND	4.3	2.2	ug/Kg	☼	10/27/15 16:40	11/03/15 00:52	1
Carbon tetrachloride	ND *	4.3	0.42	ug/Kg		10/27/15 16:40	11/03/15 00:52	1
Chlorobenzene	ND	4.3	0.57	ug/Kg	₩	10/27/15 16:40	11/03/15 00:52	1
Bromochloromethane	ND	4.3	0.31	ug/Kg	₩	10/27/15 16:40	11/03/15 00:52	1
Dibromochloromethane	ND	4.3	0.55	ug/Kg	ф.	10/27/15 16:40	11/03/15 00:52	1
Chloroethane	ND	4.3	0.98	ug/Kg	₩	10/27/15 16:40	11/03/15 00:52	1
Chloroform	ND *	4.3	0.27	ug/Kg	₩	10/27/15 16:40	11/03/15 00:52	1
Chloromethane	ND	4.3		ug/Kg		10/27/15 16:40	11/03/15 00:52	1
cis-1,2-Dichloroethene	ND	4.3		ug/Kg	₩	10/27/15 16:40	11/03/15 00:52	1
cis-1,3-Dichloropropene	ND	4.3	0.62	ug/Kg	₩	10/27/15 16:40	11/03/15 00:52	1
Cyclohexane	ND	4.3	0.61	ug/Kg		10/27/15 16:40	11/03/15 00:52	1
Bromodichloromethane	ND	4.3		ug/Kg	₩	10/27/15 16:40	11/03/15 00:52	1
Dichlorodifluoromethane	ND	4.3		ug/Kg	₩	10/27/15 16:40	11/03/15 00:52	1
Ethylbenzene	ND	4.3		ug/Kg			11/03/15 00:52	1
1,2-Dibromoethane (EDB)	ND	4.3		ug/Kg	₽	10/27/15 16:40	11/03/15 00:52	1
Isopropylbenzene	ND	4.3		ug/Kg	₽	10/27/15 16:40		1
Methyl acetate	ND	4.3		ug/Kg		10/27/15 16:40		1
2-Butanone (MEK)	ND	22		ug/Kg	₽	10/27/15 16:40		1
4-Methyl-2-pentanone (MIBK)	ND	22		ug/Kg	₩	10/27/15 16:40		1
Methyl tert-butyl ether	ND	4.3		ug/Kg		10/27/15 16:40		
Methylcyclohexane	ND	4.3		ug/Kg	₩	10/27/15 16:40		1
Methylene Chloride	2.9 JB	4.3		ug/Kg	₩	10/27/15 16:40		1
Styrene	ND	4.3		ug/Kg		10/27/15 16:40		· · · · · · · · · · · · · · · · · · ·
Tetrachloroethene	ND	4.3		ug/Kg ug/Kg	≎		11/03/15 00:52	1
Toluene	ND ND	4.3		ug/Kg ug/Kg	☼	10/27/15 16:40		1
trans-1,2-Dichloroethene	ND	4.3		ug/Kg ug/Kg		10/27/15 16:40		
trans-1,3-Dichloropropene	ND ND	4.3		ug/Kg ug/Kg	≎	10/27/15 16:40		1
Trichloroethene	ND ND	4.3		ug/Kg ug/Kg	≎	10/27/15 16:40		1
THURSOUGHERE	טאו	4.3	บ.ษอ	uu/NU	244	10/2//10 10.40	11/03/13 00.32	1

TestAmerica Buffalo

3

4

6

8

10

12

1 1

1 F

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Client Sample ID: SWMU 12-SURFACE-SS-01 Lab Sample ID: 480-89883-5

 Date Collected: 10/26/15 12:30
 Matrix: Solid

 Date Received: 10/27/15 09:00
 Percent Solids: 94.8

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.3		0.53	ug/Kg	₩	10/27/15 16:40	11/03/15 00:52	1
Xylenes, Total	ND		8.7		0.73	ug/Kg	₽	10/27/15 16:40	11/03/15 00:52	1
Tetrahydrofuran	ND		8.7		2.5	ug/Kg	\$	10/27/15 16:40	11/03/15 00:52	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	₩ -				10/27/15 16:40	11/03/15 00:52	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		64 - 126					10/27/15 16:40	11/03/15 00:52	1
Toluene-d8 (Surr)	102		71 - 125					10/27/15 16:40	11/03/15 00:52	1
4-Bromofluorobenzene (Surr)	98		72 - 126					10/27/15 16:40	11/03/15 00:52	1
Dibromofluoromethane (Surr)	103		60 - 140					10/27/15 16:40	11/03/15 00:52	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND —	880	130	ug/Kg	<u> </u>	10/30/15 14:03	11/10/15 13:56	5
bis (2-chloroisopropyl) ether	ND	880	180	ug/Kg	₩	10/30/15 14:03	11/10/15 13:56	5
2,4,5-Trichlorophenol	ND	880	240	ug/Kg	₩	10/30/15 14:03	11/10/15 13:56	5
2,4,6-Trichlorophenol	ND	880	180	ug/Kg	₩	10/30/15 14:03	11/10/15 13:56	5
2,4-Dichlorophenol	ND	880	93	ug/Kg	₩	10/30/15 14:03	11/10/15 13:56	5
2,4-Dimethylphenol	ND	880	210	ug/Kg	₩	10/30/15 14:03	11/10/15 13:56	5
2,4-Dinitrophenol	ND	8600	4100	ug/Kg	φ.	10/30/15 14:03	11/10/15 13:56	5
2,4-Dinitrotoluene	ND	880	180	ug/Kg	₩	10/30/15 14:03	11/10/15 13:56	5
2,6,Dinitrotoluene	ND	880	100	ug/Kg	₩	10/30/15 14:03	11/10/15 13:56	5
2-Chloronaphthalene	ND	880	140	ug/Kg		10/30/15 14:03	11/10/15 13:56	5
2-Chlorophenol	ND	880	160	ug/Kg	₩	10/30/15 14:03	11/10/15 13:56	5
2-Methylnaphthalene	ND	880	180	ug/Kg	₩	10/30/15 14:03	11/10/15 13:56	5
2-Methylphenol	ND	880	100	ug/Kg		10/30/15 14:03	11/10/15 13:56	5
2-Nitroaniline	ND	1700	130	ug/Kg	₩	10/30/15 14:03	11/10/15 13:56	5
2-Nitrophenol	ND	880	250	ug/Kg	₩	10/30/15 14:03	11/10/15 13:56	5
3,3'-Dichlorobenzidine	ND	1700	1000	ug/Kg		10/30/15 14:03	11/10/15 13:56	5
3-Nitroaniline	ND	1700	240	ug/Kg	₩	10/30/15 14:03	11/10/15 13:56	5
4,6-Dinitro-2-methylphenol	ND	1700	880	ug/Kg	₩	10/30/15 14:03	11/10/15 13:56	5
4-Bromophenyl phenyl ether	ND	880	120	ug/Kg	₽	10/30/15 14:03	11/10/15 13:56	5
4-Chloro-3-methylphenol	ND	880	220	ug/Kg	₩	10/30/15 14:03	11/10/15 13:56	5
4-Chloroaniline	ND	880	220	ug/Kg	₩	10/30/15 14:03	11/10/15 13:56	5
4-Chlorophenyl phenyl ether	ND	880	110	ug/Kg	₽	10/30/15 14:03	11/10/15 13:56	5
4-Methylphenol	ND	1700	100	ug/Kg	₩	10/30/15 14:03	11/10/15 13:56	5
4-Nitroaniline	ND	1700	460	ug/Kg	₩	10/30/15 14:03	11/10/15 13:56	5
4-Nitrophenol	ND	1700	610	ug/Kg		10/30/15 14:03	11/10/15 13:56	5
Acenaphthene	ND	880	130	ug/Kg	₩	10/30/15 14:03	11/10/15 13:56	5
Acenaphthylene	ND	880	110	ug/Kg	₩	10/30/15 14:03	11/10/15 13:56	5
Acetophenone	ND	880	120	ug/Kg		10/30/15 14:03	11/10/15 13:56	5
Anthracene	ND	880	220	ug/Kg	₩	10/30/15 14:03	11/10/15 13:56	5
Atrazine	ND	880	300	ug/Kg	₩	10/30/15 14:03	11/10/15 13:56	5
Benzaldehyde	ND *	880	700	ug/Kg	φ.	10/30/15 14:03	11/10/15 13:56	5
Benzo(a)anthracene	ND	880	88	ug/Kg	≎	10/30/15 14:03	11/10/15 13:56	5
Benzo(a)pyrene	ND	880	130	ug/Kg	☼	10/30/15 14:03	11/10/15 13:56	5
Benzo(b)fluoranthene	ND	880	140	ug/Kg	\	10/30/15 14:03	11/10/15 13:56	5
Benzo(g,h,i)perylene	ND	880	93	ug/Kg	₩	10/30/15 14:03	11/10/15 13:56	5

TestAmerica Buffalo

3

4

6

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-5

Client Sample ID: SWMU 12-SURFACE-SS-01

Date Collected: 10/26/15 12:30

Matrix: Solid Date Received: 10/27/15 09:00 Percent Solids: 94.8

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued) MDL Unit Analyte Result Qualifier RLD Prepared Analyzed Dil Fac Benzo(k)fluoranthene $\overline{\mathsf{ND}}$ 880 110 ug/Kg 10/30/15 14:03 11/10/15 13:56 5 Bis(2-chloroethoxy)methane ф ND 880 10/30/15 14:03 11/10/15 13:56 5 190 ug/Kg Ö 5 Bis(2-chloroethyl)ether ND 880 110 ug/Kg 10/30/15 14:03 11/10/15 13:56 Bis(2-ethylhexyl) phthalate ND 880 300 ug/Kg 10/30/15 14:03 11/10/15 13:56 5 Butyl benzyl phthalate ND 880 À 10/30/15 14:03 11/10/15 13:56 5 140 ug/Kg Caprolactam ND 880 260 ug/Kg 10/30/15 14:03 11/10/15 13:56 5 ġ 5 Carbazole ND 880 100 ug/Kg 10/30/15 14:03 11/10/15 13:56 Chrysene ND 880 200 ug/Kg 10/30/15 14:03 11/10/15 13:56 5 880 10/30/15 14:03 5 Di-n-butyl phthalate ND 150 11/10/15 13:56 ug/Kg Di-n-octyl phthalate 880 10/30/15 14:03 5 ND 100 ug/Kg 11/10/15 13:56 5 Dibenz(a,h)anthracene ND 880 160 ug/Kg 10/30/15 14:03 11/10/15 13:56 Dibenzofuran ND 880 100 10/30/15 14:03 11/10/15 13:56 5 ug/Kg 880 5 Diethyl phthalate ND ug/Kg 10/30/15 14:03 11/10/15 13:56 110 Dimethyl phthalate ND 880 100 ug/Kg 10/30/15 14:03 11/10/15 13:56 5 Fluoranthene ND 880 10/30/15 14:03 11/10/15 13:56 5 93 ug/Kg 880 5 Fluorene ND 100 ug/Kg 10/30/15 14:03 11/10/15 13:56 120 Hexachlorobenzene ND 880 10/30/15 14:03 11/10/15 13:56 5 ug/Kg Hexachlorobutadiene ND 880 130 ug/Kg 10/30/15 14:03 11/10/15 13:56 5 Hexachlorocyclopentadiene ND 880 120 ug/Kg 10/30/15 14:03 11/10/15 13:56 5 880 ₩ 5 Hexachloroethane ND 10/30/15 14:03 11/10/15 13:56 110 ug/Kg Indeno(1,2,3-cd)pyrene ug/Kg 10/30/15 14:03 11/10/15 13:56 ND 880 110 5 ND 880 5 Isophorone 190 ug/Kg 10/30/15 14:03 11/10/15 13:56 880 10/30/15 14:03 5 N-Nitrosodi-n-propylamine ND 150 ug/Kg 11/10/15 13:56 N-Nitrosodiphenylamine ND 880 10/30/15 14:03 11/10/15 13:56 5 710 ug/Kg Naphthalene ND 880 110 ug/Kg 10/30/15 14:03 11/10/15 13:56 5 Nitrobenzene ND 880 10/30/15 14:03 11/10/15 13:56 5 98 ug/Kg Pentachlorophenol ND 1700 880 ug/Kg 10/30/15 14:03 11/10/15 13:56 5 Phenanthrene 880 10/30/15 14:03 11/10/15 13:56 5 ND 130 ug/Kg À 5 Phenol ND 880 130 ug/Kg 10/30/15 14:03 11/10/15 13:56 Pyrene ND 880 100 ug/Kg 10/30/15 14:03 11/10/15 13:56 5 ₩ 3400 10/30/15 14:03 11/10/15 13:56 5 Dimethylformamide ND 390 ug/Kg Tentatively Identified Compound Est. Result Qualifier D RT CAS No. Dil Fac Unit Prepared Analyzed ₩ Unknown 720 ΤJ ug/Kg 2.48 10/30/15 14:03 11/10/15 13:56 5 ₩ Unknown 790 TJ ug/Kg 2.61 10/30/15 14:03 11/10/15 13:56 5 Unknown 2200 TJ ug/Kg 4.98 10/30/15 14:03 11/10/15 13:56 5 Qualifier Dil Fac Surrogate %Recovery Limits Prepared Analyzed 10/30/15 14:03 11/10/15 13:56 2,4,6-Tribromophenol 81 39 - 146 5 2-Fluorobiphenyl 5 83 10/30/15 14:03 11/10/15 13:56 37 - 120 2-Fluorophenol 75 18 - 120 10/30/15 14:03 11/10/15 13:56 5 71 5 Nitrobenzene-d5 34 - 132 10/30/15 14:03 11/10/15 13:56 p-Terphenyl-d14 84 65 - 153 10/30/15 14:03 11/10/15 13:56 5 Phenol-d5 76 11 - 120 10/30/15 14:03 11/10/15 13:56 5

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) - Soluble

			,					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared Ana	alyzed	Dil Fac	
Ethanol	ND ND	1.0	0.16 mg/Kg	\$	10/30/	15 11:45	1	
Isobutyl alcohol	ND	1.0	0.26 mg/Kg	₽	10/30/	15 11:45	1	
Methanol	ND	1.0	0.31 mg/Kg	₩	10/30/	15 11:45	1	

TestAmerica Buffalo

Page 29 of 130

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/26/15 12:30

Client Sample ID: SWMU 12-SURFACE-SS-01

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-5

Percent Solids: 94.8

Matrix: Solid

Pate Received: 10/27/15 09							-	Percent Solid	
Method: 8015D - Nonhalo							•	•	
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
n-Butanol	ND		1.0		mg/Kg	<u> </u>		10/30/15 11:45	
Propanol	ND		1.0	0.16	mg/Kg	₩		10/30/15 11:45	•
2-Butanol	ND		1.0	0.17	mg/Kg	₩		10/30/15 11:45	•
Isopropyl alcohol	ND		1.0	0.25	mg/Kg	₽		10/30/15 11:45	
t-Butyl alcohol	ND		1.0	0.27	mg/Kg	₩		10/30/15 11:45	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Hexanone	86		30 - 137					10/30/15 11:45	
Method: 8082A - Polychio Analyte		yls (PCBs) Qualifier	by Gas Chro	matogr MDL		D	Prepared	Analyzed	Dil Fa
PCB-1016	ND	Quanner	250		ug/Kg	— -		10/28/15 17:03	- Dill a
PCB-1221	ND.		250		ug/Kg	₩		10/28/15 17:03	
PCB-1232	ND.		250		ug/Kg	₩		10/28/15 17:03	
PCB-1242	ND		250		ug/Kg			10/28/15 17:03	
PCB-1248	ND.		250		ug/Kg	₩		10/28/15 17:03	
PCB-1254	ND.		250		ug/Kg	₩		10/28/15 17:03	
PCB-1260	ND		250		ug/Kg			10/28/15 17:03	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene	97		60 - 154				10/28/15 07:52	10/28/15 17:03	
DCB Decachlorobiphenyl	102		65 - 174				10/28/15 07:52	10/28/15 17:03	
Method: 6010C - Metals (I	ICP)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	6.4		2.1	0.42	mg/Kg	-	10/28/15 14:05	10/29/15 17:38	
Barium	17.6		0.52	0.12	mg/Kg	₩	10/28/15 14:05	10/29/15 17:38	
	ND		0.04	0.004	",	*	40/00/45 44:05	40/00/45 47 00	

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	6.4		2.1	0.42	mg/Kg	<u></u>	10/28/15 14:05	10/29/15 17:38	1
Barium	17.6		0.52	0.12	mg/Kg	☼	10/28/15 14:05	10/29/15 17:38	1
Cadmium	ND		0.21	0.031	mg/Kg	☼	10/28/15 14:05	10/29/15 17:38	1
Chromium	9.3		0.52	0.21	mg/Kg	₩	10/28/15 14:05	10/29/15 17:38	1
Lead	10.2		1.0	0.25	mg/Kg	☼	10/28/15 14:05	10/29/15 17:38	1
Selenium	ND		4.2	0.42	mg/Kg	☼	10/28/15 14:05	10/29/15 17:38	1
Silver	ND		0.63	0.21	mg/Kg		10/28/15 14:05	10/29/15 17:38	1

Method: 7471B - Mercury (CVA)	4)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	ND		0.020	0.0082	mg/Kg	\	10/28/15 12:05	10/28/15 16:03	1	

TestAmerica Buffalo

Page 30 of 130

11/18/2015

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Client Sample ID: SWMU 6-SURFACE-SS-01 Lab Sample ID: 480-89883-6

Date Collected: 10/26/15 12:45
Date Received: 10/27/15 09:00
Matrix: Solid
Percent Solids: 83.3

Method: 8260C - Volatile Orgai									
Analyte	Result		RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND '		5.3		ug/Kg	\	10/27/15 16:40		•
1,1,2,2-Tetrachloroethane	ND '	*	5.3		ug/Kg	**		11/03/15 01:18	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.3		ug/Kg	☼	10/27/15 16:40	11/03/15 01:18	
1,1,2-Trichloroethane	ND		5.3		ug/Kg	☆	10/27/15 16:40	11/03/15 01:18	
I,1-Dichloroethane	ND		5.3	0.65	ug/Kg	☼	10/27/15 16:40	11/03/15 01:18	
1,1-Dichloroethene	ND		5.3	0.65	ug/Kg	₽	10/27/15 16:40	11/03/15 01:18	
1,2,3-Trichlorobenzene	ND		5.3	0.56	ug/Kg	₽	10/27/15 16:40	11/03/15 01:18	
1,2,4-Trichlorobenzene	ND		5.3	0.32	ug/Kg	₩	10/27/15 16:40	11/03/15 01:18	
1,2-Dibromo-3-Chloropropane	ND		5.3	2.7	ug/Kg	₩	10/27/15 16:40	11/03/15 01:18	
1,2-Dichlorobenzene	ND		5.3	0.42	ug/Kg	₩	10/27/15 16:40	11/03/15 01:18	
1,2-Dichloroethane	ND '	*	5.3	0.27	ug/Kg	₩	10/27/15 16:40	11/03/15 01:18	
1,2-Dichloropropane	ND		5.3	2.7	ug/Kg	₩	10/27/15 16:40	11/03/15 01:18	
1,3-Dichlorobenzene	ND		5.3	0.27	ug/Kg	₽	10/27/15 16:40	11/03/15 01:18	
1,4-Dichlorobenzene	ND		5.3	0.74	ug/Kg	☼	10/27/15 16:40	11/03/15 01:18	
1,4-Dioxane	ND		110		ug/Kg	☼	10/27/15 16:40	11/03/15 01:18	
2-Hexanone	ND		27		ug/Kg	ф	10/27/15 16:40	11/03/15 01:18	
Acetone	ND		27	4.5	ug/Kg	☼	10/27/15 16:40	11/03/15 01:18	
Benzene	ND		5.3	0.26	ug/Kg	☼	10/27/15 16:40	11/03/15 01:18	
Bromoform	ND		5.3		ug/Kg		10/27/15 16:40	11/03/15 01:18	
Bromomethane	ND		5.3		ug/Kg	☼	10/27/15 16:40	11/03/15 01:18	
Carbon disulfide	ND		5.3		ug/Kg	☼	10/27/15 16:40	11/03/15 01:18	
Carbon tetrachloride	ND '	*	5.3		ug/Kg		10/27/15 16:40	11/03/15 01:18	
Chlorobenzene	ND		5.3		ug/Kg	₽		11/03/15 01:18	
Bromochloromethane	ND		5.3		ug/Kg	≎		11/03/15 01:18	
Dibromochloromethane	ND		5.3		ug/Kg	 \$		11/03/15 01:18	
Chloroethane	ND		5.3		ug/Kg	₽		11/03/15 01:18	
Chloroform	ND '	*	5.3		ug/Kg	₽		11/03/15 01:18	
Chloromethane	ND		5.3		ug/Kg	 ☆		11/03/15 01:18	
cis-1,2-Dichloroethene	ND		5.3		ug/Kg	₩		11/03/15 01:18	
cis-1,3-Dichloropropene	ND		5.3		ug/Kg	₩		11/03/15 01:18	
Cyclohexane	ND		5.3		ug/Kg	 ф		11/03/15 01:18	
Bromodichloromethane	ND		5.3	0.74	ug/Kg	₩		11/03/15 01:18	
Dichlorodifluoromethane	ND		5.3		ug/Kg	₩		11/03/15 01:18	
Ethylbenzene	ND		5.3		ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/03/15 01:18	
1,2-Dibromoethane (EDB)	ND ND		5.3		ug/Kg ug/Kg			11/03/15 01:18	
						≎			
sopropylbenzene	ND		5.3		ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/03/15 01:18	
Methyl acetate	ND		5.3		ug/Kg			11/03/15 01:18	
2-Butanone (MEK)	ND		27		ug/Kg	₽		11/03/15 01:18	
I-Methyl-2-pentanone (MIBK)	ND		27		ug/Kg	% .		11/03/15 01:18	
Methyl tert-butyl ether	ND		5.3		ug/Kg	₩ ₩		11/03/15 01:18	
Methylcyclohexane	ND		5.3		ug/Kg			11/03/15 01:18	
Methylene Chloride	4.3	JB	5.3		ug/Kg			11/03/15 01:18	
Styrene	ND		5.3		ug/Kg	₩ ₩		11/03/15 01:18	
Tetrachloroethene	ND		5.3		ug/Kg	ά. Έ		11/03/15 01:18	
Foluene	ND		5.3		ug/Kg			11/03/15 01:18	
rans-1,2-Dichloroethene	ND		5.3		ug/Kg	*		11/03/15 01:18	
rans-1,3-Dichloropropene	ND		5.3		ug/Kg	₩		11/03/15 01:18	
Trichloroethene	ND		5.3	1.2	ug/Kg	₩	10/27/15 16:40	11/03/15 01:18	
Trichlorofluoromethane	3.5	J	5.3	0.50	ug/Kg	₽	10/27/15 16:40	11/03/15 01:18	

TestAmerica Buffalo

_

_

9

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Client Sample ID: SWMU 6-SURFACE-SS-01 Lab Sample ID: 480-89883-6

Date Collected: 10/26/15 12:45 Matrix: Solid

Date Received: 10/27/15 09:00 Percent Solids: 83.3

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.3		0.65	ug/Kg	<u> </u>	10/27/15 16:40	11/03/15 01:18	1
Xylenes, Total	ND		11		0.89	ug/Kg	☼	10/27/15 16:40	11/03/15 01:18	1
Tetrahydrofuran	ND		11		3.1	ug/Kg	₩	10/27/15 16:40	11/03/15 01:18	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\				10/27/15 16:40	11/03/15 01:18	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		64 - 126					10/27/15 16:40	11/03/15 01:18	1
Toluene-d8 (Surr)	104		71 - 125					10/27/15 16:40	11/03/15 01:18	1
4-Bromofluorobenzene (Surr)	91		72 - 126					10/27/15 16:40	11/03/15 01:18	1

-	702		00 - 140					1170071001110	•
Method: 8270D - Semivolati Analyte		mpounds Qualifier	(GC/MS)	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	- ND	- Qualifier	4100		ug/Kg	— ~	•	11/10/15 14:22	20
bis (2-chloroisopropyl) ether	ND		4100		ug/Kg	₽		11/10/15 14:22	20
2,4,5-Trichlorophenol	ND		4100		ug/Kg	₽		11/10/15 14:22	20
2,4,6-Trichlorophenol	ND		4100		ug/Kg			11/10/15 14:22	20
2,4-Dichlorophenol	ND		4100		ug/Kg	₽		11/10/15 14:22	20
2,4-Dimethylphenol	ND		4100		ug/Kg	₽		11/10/15 14:22	20
2,4-Dinitrophenol	ND		40000	19000		 	10/30/15 14:03	11/10/15 14:22	20
2,4-Dinitrotoluene	ND		4100		ug/Kg	₽		11/10/15 14:22	20
2,6,Dinitrotoluene	ND		4100		ug/Kg	₩	10/30/15 14:03	11/10/15 14:22	20
2-Chloronaphthalene	ND		4100		ug/Kg			11/10/15 14:22	20
2-Chlorophenol	ND		4100		ug/Kg	₩	10/30/15 14:03	11/10/15 14:22	20
2-Methylnaphthalene	ND		4100		ug/Kg	☼		11/10/15 14:22	20
2-Methylphenol	ND		4100		ug/Kg		10/30/15 14:03	11/10/15 14:22	20
2-Nitroaniline	ND		7900		ug/Kg	₩	10/30/15 14:03	11/10/15 14:22	20
2-Nitrophenol	ND		4100		ug/Kg	₩	10/30/15 14:03	11/10/15 14:22	20
3,3'-Dichlorobenzidine	ND		7900	4800	ug/Kg		10/30/15 14:03	11/10/15 14:22	20
3-Nitroaniline	ND		7900		ug/Kg	₩	10/30/15 14:03	11/10/15 14:22	20
4,6-Dinitro-2-methylphenol	ND		7900	4100	ug/Kg	₩	10/30/15 14:03	11/10/15 14:22	20
4-Bromophenyl phenyl ether	ND		4100	570	ug/Kg		10/30/15 14:03	11/10/15 14:22	20
4-Chloro-3-methylphenol	ND		4100	1000	ug/Kg	₩	10/30/15 14:03	11/10/15 14:22	20
4-Chloroaniline	ND		4100	1000	ug/Kg	₩	10/30/15 14:03	11/10/15 14:22	20
4-Chlorophenyl phenyl ether	ND		4100	500	ug/Kg	ф.	10/30/15 14:03	11/10/15 14:22	20
4-Methylphenol	ND		7900	480	ug/Kg	₩	10/30/15 14:03	11/10/15 14:22	20
4-Nitroaniline	ND		7900	2100	ug/Kg	☼	10/30/15 14:03	11/10/15 14:22	20
4-Nitrophenol	ND		7900	2900	ug/Kg	₩.	10/30/15 14:03	11/10/15 14:22	20
Acenaphthene	ND		4100	600	ug/Kg	☼	10/30/15 14:03	11/10/15 14:22	20
Acenaphthylene	ND		4100	530	ug/Kg	☼	10/30/15 14:03	11/10/15 14:22	20
Acetophenone	ND		4100	550	ug/Kg	₩.	10/30/15 14:03	11/10/15 14:22	20
Anthracene	ND		4100	1000	ug/Kg	☼	10/30/15 14:03	11/10/15 14:22	20
Atrazine	ND		4100	1400	ug/Kg	☼	10/30/15 14:03	11/10/15 14:22	20
Benzaldehyde	ND	*	4100	3200	ug/Kg		10/30/15 14:03	11/10/15 14:22	20
Benzo(a)anthracene	ND		4100	410	ug/Kg	☼	10/30/15 14:03	11/10/15 14:22	20
Benzo(a)pyrene	ND		4100	600	ug/Kg	☼	10/30/15 14:03	11/10/15 14:22	20
Benzo(b)fluoranthene	ND		4100	650	ug/Kg		10/30/15 14:03	11/10/15 14:22	20
Benzo(g,h,i)perylene	ND		4100	430	ug/Kg	☆	10/30/15 14:03	11/10/15 14:22	20

TestAmerica Buffalo

Page 32 of 130

2

3

5

6

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Analyte

Ethanol

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-6

Client Sample ID: SWMU 6-SURFACE-SS-01

Date Collected: 10/26/15 12:45

Matrix: Solid Date Received: 10/27/15 09:00 Percent Solids: 83.3

Analyte	Result	Qualifier	RI	-	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo(k)fluoranthene	ND		4100	5	530	ug/Kg	<u> </u>	10/30/15 14:03	11/10/15 14:22	
Bis(2-chloroethoxy)methane	ND		4100)	860	ug/Kg		10/30/15 14:03	11/10/15 14:22	2
Bis(2-chloroethyl)ether	ND		4100)	530	ug/Kg	₩	10/30/15 14:03	11/10/15 14:22	2
Bis(2-ethylhexyl) phthalate	1800	J	4100)	1400	ug/Kg	☼	10/30/15 14:03	11/10/15 14:22	2
Butyl benzyl phthalate	1300	J	4100)	670	ug/Kg		10/30/15 14:03	11/10/15 14:22	2
Caprolactam	ND		4100)	1200	ug/Kg	₩	10/30/15 14:03	11/10/15 14:22	2
Carbazole	ND		4100)		ug/Kg	₩	10/30/15 14:03	11/10/15 14:22	2
Chrysene	ND		4100)		ug/Kg		10/30/15 14:03	11/10/15 14:22	2
Di-n-butyl phthalate	ND		4100)		ug/Kg	☼	10/30/15 14:03	11/10/15 14:22	2
Di-n-octyl phthalate	ND		4100)		ug/Kg	≎	10/30/15 14:03	11/10/15 14:22	2
Dibenz(a,h)anthracene	ND		4100)		ug/Kg	· · · · · · · · · · · · · · · · · · ·	10/30/15 14:03	11/10/15 14:22	2
Dibenzofuran	ND		4100			ug/Kg	≎		11/10/15 14:22	2
Diethyl phthalate	ND		4100			ug/Kg	₽		11/10/15 14:22	2
Dimethyl phthalate	ND		4100			ug/Kg			11/10/15 14:22	<u>.</u> 2
Fluoranthene	ND		4100			ug/Kg	₩		11/10/15 14:22	2
Fluorene	ND		4100			ug/Kg	₩		11/10/15 14:22	2
Hexachlorobenzene	ND		4100			ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/10/15 14:22	2
Hexachlorobutadiene	ND		4100			ug/Kg	☼		11/10/15 14:22	2
Hexachlorocyclopentadiene	ND		4100			ug/Kg			11/10/15 14:22	2
Hexachloroethane	ND		4100			ug/Kg			11/10/15 14:22	2
	ND ND		4100				₩		11/10/15 14:22	2
Indeno(1,2,3-cd)pyrene					500	ug/Kg	₩			
Isophorone	ND		4100			ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/10/15 14:22	
N-Nitrosodi-n-propylamine	ND		4100			ug/Kg	₩		11/10/15 14:22	2
N-Nitrosodiphenylamine	ND		4100		3300	ug/Kg			11/10/15 14:22	2
Naphthalene	ND		4100			ug/Kg			11/10/15 14:22	
Nitrobenzene	ND		4100			ug/Kg	₩		11/10/15 14:22	2
Pentachlorophenol	ND		7900			ug/Kg	‡		11/10/15 14:22	2
Phenanthrene	ND		4100			ug/Kg			11/10/15 14:22	
Phenol	ND		4100			ug/Kg	☆		11/10/15 14:22	2
Pyrene	ND		4100			ug/Kg	\$		11/10/15 14:22	2
Dimethylformamide	ND		16000)	1800	ug/Kg	₩	10/30/15 14:03	11/10/15 14:22	2
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fa
Unknown	6100	TJ	ug/Kg	-	11.	31		10/30/15 14:03	11/10/15 14:22	
Unknown	7900		ug/Kg	≎	11.			10/30/15 14:03	11/10/15 14:22	2
Unknown	6300		ug/Kg	₩	12.				11/10/15 14:22	2
Unknown	5000	<u></u>	ug/Kg		12.				11/10/15 14:22	2
Eicosane		TJN	ug/Kg	☼	13.		112-95-8	10/30/15 14:03		2
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	122		39 - 146	-				10/30/15 14:03	11/10/15 14:22	
2-Fluorobiphenyl	73		37 - 120					10/30/15 14:03	11/10/15 14:22	2
2-Fluorophenol	65		18 - 120					10/30/15 14:03	11/10/15 14:22	2
Nitrobenzene-d5	58		34 - 132					10/30/15 14:03	11/10/15 14:22	2
p-Terphenyl-d14	74		65 - 153						11/10/15 14:22	2
Phenol-d5	69		11 - 120						11/10/15 14:22	2

TestAmerica Buffalo

11/18/2015

Analyzed

10/30/15 11:53

RL

1.2

MDL Unit

0.17 mg/Kg

D

₩

Prepared

Result Qualifier

 $\overline{\mathsf{ND}}$

Dil Fac

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/26/15 12:45

Date Received: 10/27/15 09:00

Tetrachloro-m-xylene

DCB Decachlorobiphenyl

TestAmerica Job ID: 480-89883-1

2

2

Client Sample ID: SWMU 6-SURFACE-SS-01

Lab Sample ID: 480-89883-6

Matrix: Solid

Percent Solids: 83.3

<u>10/28/15 07:52</u> <u>10/28/15 17:18</u>

10/28/15 07:52 10/28/15 17:18

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isobutyl alcohol	ND		1.2	0.29	mg/Kg	<u> </u>		10/30/15 11:53	1
Methanol	ND		1.2	0.35	mg/Kg	₽		10/30/15 11:53	1
n-Butanol	ND		1.2	0.27	mg/Kg	\$		10/30/15 11:53	1
Propanol	ND		1.2	0.17	mg/Kg	₽		10/30/15 11:53	1
2-Butanol	ND		1.2	0.19	mg/Kg	₽		10/30/15 11:53	1
Isopropyl alcohol	ND		1.2	0.28	mg/Kg	₩.		10/30/15 11:53	1
t-Butyl alcohol	ND		1.2	0.31	mg/Kg	₩		10/30/15 11:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	88		30 - 137			-		10/30/15 11:53	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		570	110	ug/Kg	₩	10/28/15 07:52	10/28/15 17:18	2
PCB-1221	ND		570	110	ug/Kg	☼	10/28/15 07:52	10/28/15 17:18	2
PCB-1232	ND		570	110	ug/Kg	☼	10/28/15 07:52	10/28/15 17:18	2
PCB-1242	ND		570	110	ug/Kg	₽	10/28/15 07:52	10/28/15 17:18	2
PCB-1248	ND		570	110	ug/Kg	☼	10/28/15 07:52	10/28/15 17:18	2
PCB-1254	ND		570	270	ug/Kg	☼	10/28/15 07:52	10/28/15 17:18	2
PCB-1260	ND		570	270	ug/Kg	₩	10/28/15 07:52	10/28/15 17:18	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.9	2.4	0.47	mg/Kg	<u> </u>	10/28/15 14:05	10/29/15 17:41	1
Barium	69.4	0.59	0.13	mg/Kg	₩	10/28/15 14:05	10/29/15 17:41	1
Cadmium	1.6	0.24	0.036	mg/Kg	₩	10/28/15 14:05	10/29/15 17:41	1
Chromium	13.6	0.59	0.24	mg/Kg		10/28/15 14:05	10/29/15 17:41	1
Lead	38.1	1.2	0.28	mg/Kg	☆	10/28/15 14:05	10/29/15 17:41	1
Selenium	ND	4.7	0.47	mg/Kg	₩	10/28/15 14:05	10/29/15 17:41	1
Silver	ND	0.71	0.24	mg/Kg		10/28/15 14:05	10/29/15 17:41	1

60 - 154

65 - 174

94

98

Method: 7471B - Mercury (CVAA Analyte	•	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Mercury	0.047		0.023	0.0094	mg/Kg	\$	\	10/28/15 12:05	10/28/15 16:04	1

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/26/15 13:00

Date Received: 10/27/15 09:00

Client Sample ID: SWMU 24-SURFACE-SS-01

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-7

Matrix: Solid Percent Solids: 86.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	*	5.1	0.37	ug/Kg	<u> </u>	10/27/15 16:40	11/03/15 01:44	1
1,1,2,2-Tetrachloroethane	ND	*	5.1	0.83	ug/Kg	☼	10/27/15 16:40	11/03/15 01:44	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.1	1.2	ug/Kg	☼	10/27/15 16:40	11/03/15 01:44	1
1,1,2-Trichloroethane	ND		5.1	0.67	ug/Kg	₽	10/27/15 16:40	11/03/15 01:44	1
1,1-Dichloroethane	ND		5.1	0.63	ug/Kg	☼	10/27/15 16:40	11/03/15 01:44	1
1,1-Dichloroethene	ND		5.1	0.63	ug/Kg	☼	10/27/15 16:40	11/03/15 01:44	1
1,2,3-Trichlorobenzene	ND		5.1	0.55	ug/Kg	₽	10/27/15 16:40	11/03/15 01:44	1
1,2,4-Trichlorobenzene	ND		5.1	0.31	ug/Kg	☼	10/27/15 16:40	11/03/15 01:44	1
1,2-Dibromo-3-Chloropropane	ND		5.1	2.6	ug/Kg	☼	10/27/15 16:40	11/03/15 01:44	1
1,2-Dichlorobenzene	ND		5.1	0.40	ug/Kg	₽	10/27/15 16:40	11/03/15 01:44	1
1,2-Dichloroethane	ND	*	5.1	0.26	ug/Kg	☼	10/27/15 16:40	11/03/15 01:44	1
1,2-Dichloropropane	ND		5.1	2.6	ug/Kg	☼	10/27/15 16:40	11/03/15 01:44	1
1,3-Dichlorobenzene	ND		5.1	0.26	ug/Kg	₽	10/27/15 16:40	11/03/15 01:44	1
1,4-Dichlorobenzene	ND		5.1	0.72	ug/Kg	☼	10/27/15 16:40	11/03/15 01:44	1
1,4-Dioxane	ND		100	22	ug/Kg	☼	10/27/15 16:40	11/03/15 01:44	1
2-Hexanone	ND		26	2.6	ug/Kg	*	10/27/15 16:40	11/03/15 01:44	1
Acetone	ND		26	4.3	ug/Kg	≎	10/27/15 16:40	11/03/15 01:44	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	*	5.1	0.37	ug/Kg	<u> </u>	10/27/15 16:40	11/03/15 01:44	1
1,1,2,2-Tetrachloroethane	ND	*	5.1	0.83	ug/Kg	₩	10/27/15 16:40	11/03/15 01:44	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.1	1.2	ug/Kg	₩	10/27/15 16:40	11/03/15 01:44	1
1,1,2-Trichloroethane	ND		5.1	0.67	ug/Kg	₩	10/27/15 16:40	11/03/15 01:44	1
1,1-Dichloroethane	ND		5.1	0.63	ug/Kg	₩	10/27/15 16:40	11/03/15 01:44	1
1,1-Dichloroethene	ND		5.1	0.63	ug/Kg	≎	10/27/15 16:40	11/03/15 01:44	1
1,2,3-Trichlorobenzene	ND		5.1	0.55	ug/Kg	₩	10/27/15 16:40	11/03/15 01:44	1
1,2,4-Trichlorobenzene	ND		5.1	0.31	ug/Kg	₩	10/27/15 16:40	11/03/15 01:44	1
1,2-Dibromo-3-Chloropropane	ND		5.1	2.6	ug/Kg	₩	10/27/15 16:40	11/03/15 01:44	1
1,2-Dichlorobenzene	ND		5.1	0.40	ug/Kg	₽	10/27/15 16:40	11/03/15 01:44	1
1,2-Dichloroethane	ND	*	5.1	0.26	ug/Kg	≎	10/27/15 16:40	11/03/15 01:44	1
1,2-Dichloropropane	ND		5.1	2.6	ug/Kg	≎	10/27/15 16:40	11/03/15 01:44	1
1,3-Dichlorobenzene	ND		5.1	0.26	ug/Kg	ф	10/27/15 16:40	11/03/15 01:44	1
1,4-Dichlorobenzene	ND		5.1	0.72	ug/Kg	☼	10/27/15 16:40	11/03/15 01:44	1
1,4-Dioxane	ND		100	22	ug/Kg	☼	10/27/15 16:40	11/03/15 01:44	1
2-Hexanone	ND		26	2.6	ug/Kg	₩.	10/27/15 16:40	11/03/15 01:44	1
Acetone	ND		26	4.3		≎	10/27/15 16:40	11/03/15 01:44	1
Benzene	ND		5.1	0.25	ug/Kg	☼	10/27/15 16:40	11/03/15 01:44	1
Bromoform	ND		5.1		ug/Kg	 \$	10/27/15 16:40	11/03/15 01:44	1
Bromomethane	ND		5.1		ug/Kg	☼	10/27/15 16:40	11/03/15 01:44	1
Carbon disulfide	ND		5.1		ug/Kg	₩	10/27/15 16:40	11/03/15 01:44	1
Carbon tetrachloride	ND	*	5.1		ug/Kg	 ф		11/03/15 01:44	1
Chlorobenzene	ND		5.1		ug/Kg	☼		11/03/15 01:44	1
Bromochloromethane	ND		5.1		ug/Kg	☼		11/03/15 01:44	1
Dibromochloromethane	ND		5.1		ug/Kg			11/03/15 01:44	· · · · · · · · · · · · · · · · · · ·
Chloroethane	ND		5.1		ug/Kg	₩		11/03/15 01:44	1
Chloroform	ND	*	5.1		ug/Kg	☼		11/03/15 01:44	1
Chloromethane	ND		5.1		ug/Kg	 		11/03/15 01:44	· · · · · · 1
cis-1,2-Dichloroethene	ND		5.1		ug/Kg	₩		11/03/15 01:44	1
cis-1,3-Dichloropropene	ND		5.1	0.74		☼		11/03/15 01:44	1
Cyclohexane	ND		5.1		ug/Kg			11/03/15 01:44	
Bromodichloromethane	ND		5.1		ug/Kg	₩		11/03/15 01:44	1
Dichlorodifluoromethane	ND		5.1		ug/Kg	₩		11/03/15 01:44	1
Ethylbenzene	ND		5.1		ug/Kg			11/03/15 01:44	
1,2-Dibromoethane (EDB)	ND ND		5.1		ug/Kg ug/Kg			11/03/15 01:44	1
· · ·	ND ND		5.1		ug/Kg ug/Kg	~ ☆		11/03/15 01:44	
Isopropylbenzene						· · · · · .			1
Methyl acetate	ND		5.1		ug/Kg	*		11/03/15 01:44	1
2-Butanone (MEK)	ND		26		ug/Kg	** **		11/03/15 01:44	1
4-Methyl-2-pentanone (MIBK)	ND		26		ug/Kg	<u>.</u>		11/03/15 01:44	1
Methyl tert-butyl ether	ND		5.1		ug/Kg	₩		11/03/15 01:44	1
Methylcyclohexane	ND		5.1		ug/Kg	φ.		11/03/15 01:44	1
Methylene Chloride		JB	5.1		ug/Kg	 . 		11/03/15 01:44	
Styrene	ND		5.1		ug/Kg	☆		11/03/15 01:44	1
Tetrachloroethene	ND		5.1		ug/Kg	₽.		11/03/15 01:44	1
Toluene	ND		5.1		ug/Kg			11/03/15 01:44	1
trans-1,2-Dichloroethene	ND		5.1		ug/Kg	₿		11/03/15 01:44	1
trans-1,3-Dichloropropene	ND		5.1		ug/Kg	₩		11/03/15 01:44	1
Trichloroethene	ND		5.1		ug/Kg	₩		11/03/15 01:44	1
Trichlorofluoromethane	2.2	J	5.1	0.49	ug/Kg	☆	10/27/15 16:40	11/03/15 01:44	1

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Client Sample ID: SWMU 24-SURFACE-SS-01

Date Collected: 10/26/15 13:00 Date Received: 10/27/15 09:00 Lab Sample ID: 480-89883-7

Matrix: Solid Percent Solids: 86.6

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Coi	าtinu	ied)					
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.1		0.63	ug/Kg	₩	10/27/15 16:40	11/03/15 01:44	1
Xylenes, Total	ND		10		0.86	ug/Kg	≎	10/27/15 16:40	11/03/15 01:44	1
Tetrahydrofuran	ND		10		3.0	ug/Kg	₽	10/27/15 16:40	11/03/15 01:44	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\				10/27/15 16:40	11/03/15 01:44	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		64 - 126					10/27/15 16:40	11/03/15 01:44	1
Toluene-d8 (Surr)	105		71 - 125					10/27/15 16:40	11/03/15 01:44	1
4-Bromofluorobenzene (Surr)	94		72 - 126					10/27/15 16:40	11/03/15 01:44	1
Dibromofluoromethane (Surr)	103		60 - 140					10/27/15 16:40	11/03/15 01:44	1

Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND	9700	1400	ug/Kg	<u> </u>	10/30/15 14:03	11/10/15 14:49	50
bis (2-chloroisopropyl) ether	ND	9700	1900	ug/Kg	₩	10/30/15 14:03	11/10/15 14:49	50
2,4,5-Trichlorophenol	ND	9700	2600	ug/Kg	≎	10/30/15 14:03	11/10/15 14:49	50
2,4,6-Trichlorophenol	ND	9700	1900	ug/Kg	₽	10/30/15 14:03	11/10/15 14:49	50
2,4-Dichlorophenol	ND	9700	1000	ug/Kg	≎	10/30/15 14:03	11/10/15 14:49	50
2,4-Dimethylphenol	ND	9700	2300	ug/Kg	≎	10/30/15 14:03	11/10/15 14:49	50
2,4-Dinitrophenol	ND	95000	45000	ug/Kg		10/30/15 14:03	11/10/15 14:49	50
2,4-Dinitrotoluene	ND	9700	2000	ug/Kg	₩	10/30/15 14:03	11/10/15 14:49	50
2,6,Dinitrotoluene	ND	9700	1100	ug/Kg	₩	10/30/15 14:03	11/10/15 14:49	50
2-Chloronaphthalene	ND	9700	1600	ug/Kg	\$	10/30/15 14:03	11/10/15 14:49	50
2-Chlorophenol	ND	9700	1800	ug/Kg	₩	10/30/15 14:03	11/10/15 14:49	50
2-Methylnaphthalene	ND	9700	1900	ug/Kg	₩	10/30/15 14:03	11/10/15 14:49	50
2-Methylphenol	ND	9700	1100	ug/Kg		10/30/15 14:03	11/10/15 14:49	50
2-Nitroaniline	ND	19000	1400	ug/Kg	₩	10/30/15 14:03	11/10/15 14:49	50
2-Nitrophenol	ND	9700	2700	ug/Kg	≎	10/30/15 14:03	11/10/15 14:49	50
3,3'-Dichlorobenzidine	ND	19000	11000	ug/Kg	☆	10/30/15 14:03	11/10/15 14:49	50
3-Nitroaniline	ND	19000	2700	ug/Kg	₩	10/30/15 14:03	11/10/15 14:49	50
4,6-Dinitro-2-methylphenol	ND	19000	9700	ug/Kg	≎	10/30/15 14:03	11/10/15 14:49	50
4-Bromophenyl phenyl ether	ND	9700	1400	ug/Kg		10/30/15 14:03	11/10/15 14:49	50
4-Chloro-3-methylphenol	ND	9700	2400	ug/Kg	≎	10/30/15 14:03	11/10/15 14:49	50
4-Chloroaniline	ND	9700	2400	ug/Kg	≎	10/30/15 14:03	11/10/15 14:49	50
4-Chlorophenyl phenyl ether	ND	9700	1200	ug/Kg		10/30/15 14:03	11/10/15 14:49	50
4-Methylphenol	ND	19000	1100	ug/Kg	≎	10/30/15 14:03	11/10/15 14:49	50
4-Nitroaniline	ND	19000	5100	ug/Kg	₩	10/30/15 14:03	11/10/15 14:49	50
4-Nitrophenol	ND	19000	6800	ug/Kg		10/30/15 14:03	11/10/15 14:49	50
Acenaphthene	ND	9700	1400	ug/Kg	₩	10/30/15 14:03	11/10/15 14:49	50
Acenaphthylene	ND	9700	1300	ug/Kg	₩	10/30/15 14:03	11/10/15 14:49	50
Acetophenone	ND	9700	1300	ug/Kg		10/30/15 14:03	11/10/15 14:49	50
Anthracene	ND	9700	2400	ug/Kg	≎	10/30/15 14:03	11/10/15 14:49	50
Atrazine	ND	9700	3400	ug/Kg	≎	10/30/15 14:03	11/10/15 14:49	50
Benzaldehyde	ND *	9700	7700	ug/Kg		10/30/15 14:03	11/10/15 14:49	50
Benzo(a)anthracene	ND	9700	970	ug/Kg	☼	10/30/15 14:03	11/10/15 14:49	50
Benzo(a)pyrene	ND	9700	1400	ug/Kg	₩	10/30/15 14:03	11/10/15 14:49	50
Benzo(b)fluoranthene	ND	9700	1500	ug/Kg		10/30/15 14:03	11/10/15 14:49	50
Benzo(g,h,i)perylene	ND	9700	1000	ug/Kg	☆	10/30/15 14:03	11/10/15 14:49	50

TestAmerica Buffalo

3

4

6

1

9

11

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU 24-SURFACE-SS-01

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-7

Date Collected: 10/26/15 13:00 Matrix: Solid
Date Received: 10/27/15 09:00 Percent Solids: 86.6

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo(k)fluoranthene	ND		9700		1300	ug/Kg	₩	10/30/15 14:03	11/10/15 14:49	50
Bis(2-chloroethoxy)methane	ND		9700		2100	ug/Kg		10/30/15 14:03	11/10/15 14:49	50
Bis(2-chloroethyl)ether	ND		9700		1300	ug/Kg	₽	10/30/15 14:03	11/10/15 14:49	50
Bis(2-ethylhexyl) phthalate	ND		9700		3300	ug/Kg	₽	10/30/15 14:03	11/10/15 14:49	50
Butyl benzyl phthalate	ND		9700		1600	ug/Kg		10/30/15 14:03	11/10/15 14:49	50
Caprolactam	ND		9700		2900	ug/Kg	₽	10/30/15 14:03	11/10/15 14:49	50
Carbazole	ND		9700		1100	ug/Kg	₽	10/30/15 14:03	11/10/15 14:49	50
Chrysene	ND		9700		2200	ug/Kg	\$	10/30/15 14:03	11/10/15 14:49	50
Di-n-butyl phthalate	ND		9700		1700	ug/Kg	₽	10/30/15 14:03	11/10/15 14:49	50
Di-n-octyl phthalate	ND		9700		1100	ug/Kg	₽	10/30/15 14:03	11/10/15 14:49	50
Dibenz(a,h)anthracene	ND		9700		1700	ug/Kg	₽	10/30/15 14:03	11/10/15 14:49	50
Dibenzofuran	ND		9700		1100	ug/Kg	₽	10/30/15 14:03	11/10/15 14:49	50
Diethyl phthalate	ND		9700		1300	ug/Kg	₽	10/30/15 14:03	11/10/15 14:49	50
Dimethyl phthalate	ND		9700		1100	ug/Kg		10/30/15 14:03	11/10/15 14:49	50
Fluoranthene	ND		9700		1000	ug/Kg	₽	10/30/15 14:03	11/10/15 14:49	50
Fluorene	ND		9700		1100	ug/Kg	₽	10/30/15 14:03	11/10/15 14:49	50
Hexachlorobenzene	ND		9700		1300	ug/Kg		10/30/15 14:03	11/10/15 14:49	50
Hexachlorobutadiene	ND		9700		1400	ug/Kg	₽	10/30/15 14:03	11/10/15 14:49	50
Hexachlorocyclopentadiene	ND		9700		1300	ug/Kg	₽	10/30/15 14:03	11/10/15 14:49	50
Hexachloroethane	ND		9700		1300	ug/Kg	\$	10/30/15 14:03	11/10/15 14:49	50
Indeno(1,2,3-cd)pyrene	ND		9700		1200	ug/Kg	₽	10/30/15 14:03	11/10/15 14:49	50
Isophorone	ND		9700		2100	ug/Kg	≎	10/30/15 14:03	11/10/15 14:49	50
N-Nitrosodi-n-propylamine	ND		9700		1700	ug/Kg	₽	10/30/15 14:03	11/10/15 14:49	50
N-Nitrosodiphenylamine	ND		9700		7900	ug/Kg	₽	10/30/15 14:03	11/10/15 14:49	50
Naphthalene	ND		9700		1300	ug/Kg	₽	10/30/15 14:03	11/10/15 14:49	50
Nitrobenzene	ND		9700		1100	ug/Kg	\$	10/30/15 14:03	11/10/15 14:49	50
Pentachlorophenol	ND		19000		9700	ug/Kg	₽	10/30/15 14:03	11/10/15 14:49	50
Phenanthrene	ND		9700		1400	ug/Kg	₽	10/30/15 14:03	11/10/15 14:49	50
Phenol	ND		9700		1500	ug/Kg		10/30/15 14:03	11/10/15 14:49	50
Pyrene	ND		9700		1100	ug/Kg	₩	10/30/15 14:03	11/10/15 14:49	50
Dimethylformamide	ND		38000		4300	ug/Kg	₩	10/30/15 14:03	11/10/15 14:49	50
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	1	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	9800	TI	ua/Ka	₩ -	2	48		10/30/15 14:03	11/10/15 14:49	50

Unknown	9800	IJ	ug/Kg	¥	2.48	10/30/15 14:03	11/10/15 14:49	50
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol		X	39 - 146			10/30/15 14:03	11/10/15 14:49	50
2-Fluorobiphenyl	0	X	37 - 120			10/30/15 14:03	11/10/15 14:49	50
2-Fluorophenol	0	Χ	18 - 120			10/30/15 14:03	11/10/15 14:49	50
Nitrobenzene-d5	0	X	34 - 132			10/30/15 14:03	11/10/15 14:49	50
p-Terphenyl-d14	0	Χ	65 - 153			10/30/15 14:03	11/10/15 14:49	50
Phenol-d5	0	X	11 - 120			10/30/15 14:03	11/10/15 14:49	50

Method. 00 13D - Normalogena	teu Organic (Compounds	- Direct i	ngection	1 (OO) - 0	Olubie			
Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		1.1	0.16	mg/Kg	☆ _		10/30/15 12:09	1
Isobutyl alcohol	ND		1.1	0.27	mg/Kg	₩		10/30/15 12:09	1
Methanol	ND		1.1	0.32	mg/Kg	₩		10/30/15 12:09	1
n-Butanol	ND		1.1	0.25	mg/Kg	≎		10/30/15 12:09	1
Propanol	ND		1.1	0.16	mg/Kg	₩		10/30/15 12:09	1

TestAmerica Buffalo

Page 37 of 130

9

3

5

7

9

11

13

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 7471B - Mercury (CVAA)

Analyte

Mercury

TestAmerica Job ID: 480-89883-1

Client Sample ID: SWMU 24-SURFACE-SS-01 Lab Sample ID: 480-89883-7

Date Collected: 10/26/15 13:00 **Matrix: Solid** Date Received: 10/27/15 09:00

Percent Solids: 86.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Butanol	ND		1.1	0.17	mg/Kg	<u> </u>		10/30/15 12:09	1
Isopropyl alcohol	ND		1.1	0.26	mg/Kg	ф.		10/30/15 12:09	1
t-Butyl alcohol	ND		1.1	0.28	mg/Kg	₩		10/30/15 12:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	88		30 - 137					10/30/15 12:09	1
Method: 8082A - Polychlorina	ted Bipheny	/Is (PCBs)	by Gas Chro	matogr	aphy				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		240	47	ug/Kg	<u> </u>	10/28/15 07:52	10/28/15 17:33	1
PCB-1221	ND		240	47	ug/Kg	₩	10/28/15 07:52	10/28/15 17:33	1
PCB-1232	ND		240	47	ug/Kg	₩	10/28/15 07:52	10/28/15 17:33	1
PCB-1242	ND		240	47	ug/Kg	₩	10/28/15 07:52	10/28/15 17:33	1
PCB-1248	ND		240	47	ug/Kg	₩	10/28/15 07:52	10/28/15 17:33	1
PCB-1254	ND		240	110	ug/Kg	₩	10/28/15 07:52	10/28/15 17:33	1
PCB-1260	ND		240	110	ug/Kg	₽	10/28/15 07:52	10/28/15 17:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	95		60 - 154				10/28/15 07:52	10/28/15 17:33	1
DCB Decachlorobiphenyl	95		65 - 174				10/28/15 07:52	10/28/15 17:33	1
Method: 6010C - Metals (ICP)									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	6.4		2.3	0.46	mg/Kg	\	10/28/15 14:05	10/29/15 17:44	1
Barium	44.5		0.57		mg/Kg	‡	10/28/15 14:05	10/29/15 17:44	1
Cadmium	0.16	J	0.23		mg/Kg	₩		10/29/15 17:44	1
Chromium	16.3		0.57	0.23	mg/Kg	₽		10/29/15 17:44	1
Lead	7.1		1.1		mg/Kg	₩	10/28/15 14:05	10/29/15 17:44	•
Selenium	ND		4.6	0.46	mg/Kg	₩	10/28/15 14:05	10/29/15 17:44	•
Silver	ND		0.69	0.23	mg/Kg	₩	10/28/15 14:05	10/29/15 17:44	1

RL

0.022

MDL Unit

0.0089 mg/Kg

Prepared

□ 10/28/15 12:05 □ 10/28/15 16:06

Analyzed

Dil Fac

Result Qualifier

0.016 J

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/26/15 14:40

Date Received: 10/27/15 09:00

Client Sample ID: SWMU 5-SURFACE-SS-01

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-8

Matrix: Solid
Percent Solids: 91.7

1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-Chloropropane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Hexanone Acetone	ND * ND * ND	4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	1.0 0.59 0.55 0.55 0.48 0.27 2.3 0.35 0.23 2.3 0.63	ug/Kg		10/27/15 16:40 10/27/15 16:40 10/27/15 16:40 10/27/15 16:40 10/27/15 16:40 10/27/15 16:40	11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10	
1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-Chloropropane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Hexanone Acetone	ND N	4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	1.0 0.59 0.55 0.55 0.48 0.27 2.3 0.35 0.23 2.3 0.63	ug/Kg	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	10/27/15 16:40 10/27/15 16:40 10/27/15 16:40 10/27/15 16:40 10/27/15 16:40 10/27/15 16:40 10/27/15 16:40 10/27/15 16:40	11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10	
1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-Chloropropane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Hexanone Acetone	ND N	4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	0.59 0.55 0.55 0.48 0.27 2.3 0.35 0.23 2.3 0.23 0.63	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	10/27/15 16:40 10/27/15 16:40 10/27/15 16:40 10/27/15 16:40 10/27/15 16:40 10/27/15 16:40 10/27/15 16:40 10/27/15 16:40	11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10	
1,1-Dichloroethane 1,1-Dichloroethene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-Chloropropane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Pioxane 2-Hexanone Acetone	ND N	4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	0.55 0.55 0.48 0.27 2.3 0.35 0.23 2.3 0.23 0.63	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$ \$ \$	10/27/15 16:40 10/27/15 16:40 10/27/15 16:40 10/27/15 16:40 10/27/15 16:40 10/27/15 16:40 10/27/15 16:40	11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10	
1,1-Dichloroethene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-Chloropropane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Hexanone Acetone	ND N	4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 90	0.55 0.48 0.27 2.3 0.35 0.23 2.3 0.23 0.63	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$ \$	10/27/15 16:40 10/27/15 16:40 10/27/15 16:40 10/27/15 16:40 10/27/15 16:40 10/27/15 16:40	11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10	
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-Chloropropane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Hexanone Acetone	ND ND ND ND ND * ND	4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 90	0.48 0.27 2.3 0.35 0.23 2.3 0.23 0.63	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$	10/27/15 16:40 10/27/15 16:40 10/27/15 16:40 10/27/15 16:40 10/27/15 16:40	11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10	
1,2,4-Trichlorobenzene 1,2-Dibromo-3-Chloropropane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Hexanone Acetone	ND ND ND ND * ND	4.5 4.5 4.5 4.5 4.5 4.5 4.5 90	0.27 2.3 0.35 0.23 2.3 0.23 0.63	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$	10/27/15 16:40 10/27/15 16:40 10/27/15 16:40 10/27/15 16:40	11/03/15 02:10 11/03/15 02:10 11/03/15 02:10 11/03/15 02:10	
1,2-Dibromo-3-Chloropropane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Hexanone Acetone	ND ND ND * ND	4.5 4.5 4.5 4.5 4.5 4.5 90	2.3 0.35 0.23 2.3 0.23 0.63	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$	10/27/15 16:40 10/27/15 16:40 10/27/15 16:40	11/03/15 02:10 11/03/15 02:10 11/03/15 02:10	
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Hexanone Acetone	ND ND * ND	4.5 4.5 4.5 4.5 4.5 90	0.35 0.23 2.3 0.23 0.63	ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$	10/27/15 16:40 10/27/15 16:40	11/03/15 02:10 11/03/15 02:10	
1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Hexanone Acetone	ND * ND ND ND ND ND ND ND ND	4.5 4.5 4.5 4.5 90	0.23 2.3 0.23 0.63	ug/Kg ug/Kg ug/Kg	‡	10/27/15 16:40	11/03/15 02:10	
1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Hexanone Acetone	ND ND ND ND ND ND	4.5 4.5 4.5 90	2.3 0.23 0.63	ug/Kg ug/Kg	₩			
1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Hexanone Acetone	ND ND ND ND ND	4.5 4.5 90	0.23 0.63	ug/Kg		10/27/15 16:40	11/03/15 02:10	
1,4-Dichlorobenzene 1,4-Dioxane 2-Hexanone Acetone	ND ND ND ND	4.5 90	0.63	0 0	₽			
1,4-Dioxane 2-Hexanone Acetone	ND ND ND	90				10/27/15 16:40	11/03/15 02:10	
2-Hexanone Acetone	ND ND		20	ug/Kg	₩	10/27/15 16:40	11/03/15 02:10	
Acetone	ND	23	∠0	ug/Kg	☼	10/27/15 16:40	11/03/15 02:10	
			2.3	ug/Kg	₽	10/27/15 16:40	11/03/15 02:10	
D	ND	23	3.8	ug/Kg	☼	10/27/15 16:40	11/03/15 02:10	
Benzene		4.5	0.22	ug/Kg	☼	10/27/15 16:40	11/03/15 02:10	
Bromoform	ND	4.5	2.3	ug/Kg	ф	10/27/15 16:40	11/03/15 02:10	
Bromomethane	ND	4.5	0.41	ug/Kg	₽	10/27/15 16:40	11/03/15 02:10	
Carbon disulfide	ND	4.5	2.3	ug/Kg	₽	10/27/15 16:40	11/03/15 02:10	
Carbon tetrachloride	ND *	4.5		ug/Kg	· · · · · · · · · · · · · · · · · · ·	10/27/15 16:40	11/03/15 02:10	
Chlorobenzene	ND	4.5	0.60		☼	10/27/15 16:40	11/03/15 02:10	
Bromochloromethane	ND	4.5		ug/Kg	≎	10/27/15 16:40	11/03/15 02:10	
Dibromochloromethane	ND	4.5		ug/Kg	 ф	10/27/15 16:40	11/03/15 02:10	
Chloroethane	ND	4.5		ug/Kg	☼	10/27/15 16:40	11/03/15 02:10	
Chloroform	ND *	4.5		ug/Kg	₽		11/03/15 02:10	
Chloromethane	ND	4.5		ug/Kg			11/03/15 02:10	
cis-1,2-Dichloroethene	ND	4.5		ug/Kg	₽		11/03/15 02:10	
cis-1,3-Dichloropropene	ND	4.5		ug/Kg	₽		11/03/15 02:10	
Cyclohexane	ND	4.5		ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/03/15 02:10	
Bromodichloromethane	ND	4.5		ug/Kg	₩		11/03/15 02:10	
Dichlorodifluoromethane	ND	4.5		ug/Kg	☼		11/03/15 02:10	
Ethylbenzene	ND	4.5		ug/Kg			11/03/15 02:10	
1,2-Dibromoethane (EDB)	ND	4.5		ug/Kg	₽		11/03/15 02:10	
sopropylbenzene	ND	4.5		ug/Kg	₩		11/03/15 02:10	
Methyl acetate	ND	4.5		ug/Kg		10/27/15 16:40		
2-Butanone (MEK)	ND	23	1.7	ug/Kg	₽	10/27/15 16:40		
4-Methyl-2-pentanone (MIBK)	ND	23		ug/Kg	₽	10/27/15 16:40		
Methyl tert-butyl ether	ND	4.5		ug/Kg			11/03/15 02:10	
Methylcyclohexane	ND	4.5		ug/Kg ug/Kg	₽		11/03/15 02:10	
				ug/Kg ug/Kg	₽		11/03/15 02:10	
Methylene Chloride	4.2 JB	4.5						
Styrene	ND ND	4.5		ug/Kg			11/03/15 02:10	
Tetrachloroethene	ND ND	4.5		ug/Kg	☆		11/03/15 02:10	
Foluene	ND	4.5		ug/Kg	. .		11/03/15 02:10	
rans-1,2-Dichloroethene	ND	4.5		ug/Kg	₩		11/03/15 02:10	
rans-1,3-Dichloropropene	ND	4.5		ug/Kg	φ.		11/03/15 02:10	
Trichloroethene Trichlorofluoromethane	ND 0.89 J	4.5 4.5		ug/Kg ug/Kg	₩.	10/27/15 16:40 10/27/15 16:40	11/03/15 02:10	

TestAmerica Buffalo

3

4

6

8

10

12

4 4

4 E

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Client Sample ID: SWMU 5-SURFACE-SS-01

Lab Sample ID: 480-89883-8 Date Collected: 10/26/15 14:40 **Matrix: Solid**

Date Received: 10/27/15 09:00 Percent Solids: 91.7

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (C	ontinu	ıed)					
Analyte	Result	Qualifier	F	₹L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND			1.5	0.55	ug/Kg	₩	10/27/15 16:40	11/03/15 02:10	1
Xylenes, Total	ND		9	9.0	0.76	ug/Kg	₽	10/27/15 16:40	11/03/15 02:10	1
Tetrahydrofuran	ND		Ş	9.0	2.6	ug/Kg	\$	10/27/15 16:40	11/03/15 02:10	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	4.8	TJ	ug/Kg	<u> </u>	2.	.88		10/27/15 16:40	11/03/15 02:10	1
3-Octanone	6.0	TJN	ug/Kg	₩	10.	.15	106-68-3	10/27/15 16:40	11/03/15 02:10	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		64 - 12	6				10/27/15 16:40	11/03/15 02:10	1
Toluene-d8 (Surr)	104		71 - 12	5				10/27/15 16:40	11/03/15 02:10	1
4-Bromofluorobenzene (Surr)	90		72 - 12	6				10/27/15 16:40	11/03/15 02:10	1
Dibromofluoromethane (Surr)	104		60 - 14	0				10/27/15 16:40	11/03/15 02:10	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		930	140	ug/Kg	\	10/30/15 14:03	11/10/15 15:15	- 5
bis (2-chloroisopropyl) ether	ND		930	190	ug/Kg	≎	10/30/15 14:03	11/10/15 15:15	5
2,4,5-Trichlorophenol	ND		930	250	ug/Kg	≎	10/30/15 14:03	11/10/15 15:15	5
2,4,6-Trichlorophenol	ND		930	190	ug/Kg	₽	10/30/15 14:03	11/10/15 15:15	5
2,4-Dichlorophenol	ND		930	98	ug/Kg	≎	10/30/15 14:03	11/10/15 15:15	5
2,4-Dimethylphenol	ND		930	220	ug/Kg	≎	10/30/15 14:03	11/10/15 15:15	5
2,4-Dinitrophenol	ND		9000	4300	ug/Kg	₽	10/30/15 14:03	11/10/15 15:15	5
2,4-Dinitrotoluene	ND		930	190	ug/Kg	≎	10/30/15 14:03	11/10/15 15:15	5
2,6,Dinitrotoluene	ND		930	110	ug/Kg	₽	10/30/15 14:03	11/10/15 15:15	5
2-Chloronaphthalene	ND		930	150	ug/Kg	☆	10/30/15 14:03	11/10/15 15:15	5
2-Chlorophenol	ND		930	170	ug/Kg	≎	10/30/15 14:03	11/10/15 15:15	5
2-Methylnaphthalene	ND		930	190	ug/Kg	₽	10/30/15 14:03	11/10/15 15:15	5
2-Methylphenol	ND		930	110	ug/Kg	\$	10/30/15 14:03	11/10/15 15:15	5
2-Nitroaniline	ND		1800	140	ug/Kg	₩	10/30/15 14:03	11/10/15 15:15	5
2-Nitrophenol	ND		930	260	ug/Kg	₽	10/30/15 14:03	11/10/15 15:15	5
3,3'-Dichlorobenzidine	ND		1800	1100	ug/Kg		10/30/15 14:03	11/10/15 15:15	5
3-Nitroaniline	ND		1800	260	ug/Kg	₩	10/30/15 14:03	11/10/15 15:15	5
4,6-Dinitro-2-methylphenol	ND		1800	930	ug/Kg	≎	10/30/15 14:03	11/10/15 15:15	5
4-Bromophenyl phenyl ether	ND		930	130	ug/Kg	₩	10/30/15 14:03	11/10/15 15:15	5
4-Chloro-3-methylphenol	ND		930	230	ug/Kg	₽	10/30/15 14:03	11/10/15 15:15	5
4-Chloroaniline	ND		930	230	ug/Kg	₽	10/30/15 14:03	11/10/15 15:15	5
4-Chlorophenyl phenyl ether	ND		930	110	ug/Kg	₩.	10/30/15 14:03	11/10/15 15:15	5
4-Methylphenol	ND		1800	110	ug/Kg	₩	10/30/15 14:03	11/10/15 15:15	5
4-Nitroaniline	ND		1800	480	ug/Kg	₩	10/30/15 14:03	11/10/15 15:15	5
4-Nitrophenol	ND		1800	650	ug/Kg	₩.	10/30/15 14:03	11/10/15 15:15	5
Acenaphthene	ND		930	140	ug/Kg	₩	10/30/15 14:03	11/10/15 15:15	5
Acenaphthylene	ND		930	120	ug/Kg	₩	10/30/15 14:03	11/10/15 15:15	5
Acetophenone	ND		930	130	ug/Kg		10/30/15 14:03	11/10/15 15:15	5
Anthracene	ND		930	230	ug/Kg	≎	10/30/15 14:03	11/10/15 15:15	5
Atrazine	ND		930	320	ug/Kg	₩	10/30/15 14:03	11/10/15 15:15	5
Benzaldehyde	1200	*	930	730	ug/Kg	φ.	10/30/15 14:03	11/10/15 15:15	5
Benzo(a)anthracene	ND		930	93	ug/Kg	☼	10/30/15 14:03	11/10/15 15:15	5
Benzo(a)pyrene	ND		930		ug/Kg	☼	10/30/15 14:03	11/10/15 15:15	5
Benzo(b)fluoranthene	ND		930		ug/Kg		10/30/15 14:03	11/10/15 15:15	5

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/26/15 14:40

Date Received: 10/27/15 09:00

Biphenyl

Client Sample ID: SWMU 5-SURFACE-SS-01

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-8

Matrix: Solid

Percent Solids: 91.7

Analyte		Qualifier	RL		MDL		D	Prepared	Analyzed	Dil Fa
Benzo(g,h,i)perylene	ND		930			0 0	₩		11/10/15 15:15	
Benzo(k)fluoranthene	ND		930		120	ug/Kg		10/30/15 14:03	11/10/15 15:15	
Bis(2-chloroethoxy)methane	ND		930			ug/Kg	☼	10/30/15 14:03	11/10/15 15:15	
Bis(2-chloroethyl)ether	ND		930		120	ug/Kg	₩	10/30/15 14:03	11/10/15 15:15	
Bis(2-ethylhexyl) phthalate	ND		930		320	ug/Kg	₩	10/30/15 14:03	11/10/15 15:15	
Butyl benzyl phthalate	ND		930		150	ug/Kg	₩	10/30/15 14:03	11/10/15 15:15	
Caprolactam	ND		930		280	ug/Kg	☼	10/30/15 14:03	11/10/15 15:15	
Carbazole	ND		930		110	ug/Kg	₩	10/30/15 14:03	11/10/15 15:15	
Chrysene	ND		930		210	ug/Kg	₽	10/30/15 14:03	11/10/15 15:15	
Di-n-butyl phthalate	ND		930		160	ug/Kg	₩	10/30/15 14:03	11/10/15 15:15	
Di-n-octyl phthalate	ND		930		110	ug/Kg	₩	10/30/15 14:03	11/10/15 15:15	
Dibenz(a,h)anthracene	ND		930		160	ug/Kg		10/30/15 14:03	11/10/15 15:15	
Dibenzofuran	ND		930		110	ug/Kg	☼	10/30/15 14:03	11/10/15 15:15	
Diethyl phthalate	ND		930		120	ug/Kg	☼	10/30/15 14:03	11/10/15 15:15	
Dimethyl phthalate	ND		930			ug/Kg	φ.	10/30/15 14:03	11/10/15 15:15	
Fluoranthene	ND		930			ug/Kg	₩	10/30/15 14:03	11/10/15 15:15	
Fluorene	ND		930			ug/Kg	₩	10/30/15 14:03	11/10/15 15:15	
Hexachlorobenzene	ND		930			ug/Kg		10/30/15 14:03	11/10/15 15:15	
Hexachlorobutadiene	ND		930			ug/Kg	₽		11/10/15 15:15	
Hexachlorocyclopentadiene	ND		930			ug/Kg	₩	10/30/15 14:03	11/10/15 15:15	
Hexachloroethane	ND		930			ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/10/15 15:15	
Indeno(1,2,3-cd)pyrene	ND		930			ug/Kg	₩		11/10/15 15:15	
Isophorone	ND		930			ug/Kg	₩		11/10/15 15:15	
N-Nitrosodi-n-propylamine	ND		930			ug/Kg			11/10/15 15:15	
N-Nitrosodiphenylamine	ND		930			ug/Kg	₩		11/10/15 15:15	
Naphthalene	ND		930			ug/Kg	₩		11/10/15 15:15	
Nitrobenzene	ND		930			ug/Kg			11/10/15 15:15	
Pentachlorophenol	ND		1800			ug/Kg	₩		11/10/15 15:15	
Phenanthrene	ND		930			ug/Kg			11/10/15 15:15	
Phenol	ND		930			ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/10/15 15:15	
	ND ND		930				₩		11/10/15 15:15	
Pyrene						ug/Kg	₩			
Dimethylformamide	ND		3600		410	ug/Kg	*	10/30/15 14:03	11/10/15 15:15	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	ı	RT	CAS No.	Prepared	Analyzed	Dil Fa
Unknown	3500	TJ	ug/Kg	₩	2.	28		10/30/15 14:03	11/10/15 15:15	
Unknown	970	TJ	ug/Kg	₩	2.	62		10/30/15 14:03	11/10/15 15:15	
Unknown	860	TJ	ug/Kg	₩	4.	99		10/30/15 14:03	11/10/15 15:15	
Unknown	2100	TJ	ug/Kg	*	10.	96		10/30/15 14:03	11/10/15 15:15	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	84		39 - 146					10/30/15 14:03	11/10/15 15:15	
2-Fluorobiphenyl	87		37 - 120					10/30/15 14:03	11/10/15 15:15	
2-Fluorophenol	74		18 - 120					10/30/15 14:03	11/10/15 15:15	
Nitrobenzene-d5	70		34 - 132					10/30/15 14:03	11/10/15 15:15	
p-Terphenyl-d14	82		65 ₋ 153					10/30/15 14:03	11/10/15 15:15	
Phenol-d5	81		11 - 120					10/30/15 14:03	11/10/15 15:15	
Method: 8270D - Semivolatile	organic Co	mpounds	(GC/MS) -	RE						

TestAmerica Buffalo

920

130 ug/Kg

ND H

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU 5-SURFACE-SS-01

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-8

Date Collected: 10/26/15 14:40

Date Received: 10/27/15 09:00

Matrix: Solid
Percent Solids: 91.7

Method: 8270D - Semivolat ^{Analyte}	_	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
bis (2-chloroisopropyl) ether	ND	Н	920	180	ug/Kg	<u> </u>	11/12/15 07:51	11/13/15 10:45	
2,4,5-Trichlorophenol	ND	Н	920	250	ug/Kg	☼	11/12/15 07:51	11/13/15 10:45	
2,4,6-Trichlorophenol	ND	Н	920	180	ug/Kg	₩	11/12/15 07:51	11/13/15 10:45	
2,4-Dichlorophenol	ND	Н	920	97	ug/Kg	₩	11/12/15 07:51	11/13/15 10:45	
2,4-Dimethylphenol	ND	Н	920	220	ug/Kg	₩	11/12/15 07:51	11/13/15 10:45	
2,4-Dinitrophenol	ND	Н	9000	4200	ug/Kg	₩.	11/12/15 07:51	11/13/15 10:45	
2,4-Dinitrotoluene	ND	Н	920	190	ug/Kg	₩	11/12/15 07:51	11/13/15 10:45	
2,6,Dinitrotoluene	ND	Н	920	110	ug/Kg	☼	11/12/15 07:51	11/13/15 10:45	
2-Chloronaphthalene	ND	Н	920	150	ug/Kg		11/12/15 07:51	11/13/15 10:45	
2-Chlorophenol	ND	Н	920	170	ug/Kg	☼	11/12/15 07:51	11/13/15 10:45	
2-Methylnaphthalene	ND	Н	920	180	ug/Kg	☼	11/12/15 07:51	11/13/15 10:45	
2-Methylphenol	ND	Н	920	110	ug/Kg		11/12/15 07:51	11/13/15 10:45	
2-Nitroaniline	ND	Н	1800	130	ug/Kg	☆	11/12/15 07:51	11/13/15 10:45	
2-Nitrophenol	ND	Н	920	260	ug/Kg	☆	11/12/15 07:51	11/13/15 10:45	
3,3'-Dichlorobenzidine	ND	Н	1800		ug/Kg		11/12/15 07:51	11/13/15 10:45	
3-Nitroaniline	ND	Н	1800		ug/Kg	₩	11/12/15 07:51	11/13/15 10:45	
1,6-Dinitro-2-methylphenol	ND	Н	1800		ug/Kg	₩	11/12/15 07:51	11/13/15 10:45	
I-Bromophenyl phenyl ether	ND	Н	920	130	ug/Kg	₩.	11/12/15 07:51	11/13/15 10:45	
I-Chloro-3-methylphenol	ND	Н	920		ug/Kg	₩	11/12/15 07:51	11/13/15 10:45	
l-Chloroaniline	ND	Н	920		ug/Kg	☼	11/12/15 07:51	11/13/15 10:45	
-Chlorophenyl phenyl ether	ND	Н	920		ug/Kg		11/12/15 07:51	11/13/15 10:45	
-Methylphenol	ND	Н	1800		ug/Kg	☼	11/12/15 07:51	11/13/15 10:45	
-Nitroaniline	ND	Н	1800		ug/Kg	₩		11/13/15 10:45	
-Nitrophenol	ND		1800		ug/Kg	ф		11/13/15 10:45	
cenaphthene	ND		920		ug/Kg	₩		11/13/15 10:45	
cenaphthylene	ND		920		ug/Kg	₩		11/13/15 10:45	
Acetophenone	ND		920		ug/Kg	ф.		11/13/15 10:45	
Anthracene	ND		920		ug/Kg	₩		11/13/15 10:45	
Atrazine	ND	Н	920		ug/Kg	₩		11/13/15 10:45	
Benzaldehyde	ND	 Н	920		ug/Kg			11/13/15 10:45	
Benzo(a)anthracene	ND	Н	920		ug/Kg	₩		11/13/15 10:45	
Benzo(a)pyrene	ND	Н	920		ug/Kg	₩		11/13/15 10:45	
Benzo(b)fluoranthene	ND	H	920		ug/Kg			11/13/15 10:45	
Benzo(g,h,i)perylene	ND	Н	920		ug/Kg	₩		11/13/15 10:45	
Benzo(k)fluoranthene	ND	Н	920		ug/Kg	₩		11/13/15 10:45	
Bis(2-chloroethoxy)methane	ND		920		ug/Kg			11/13/15 10:45	
Bis(2-chloroethyl)ether	ND	н	920		ug/Kg			11/13/15 10:45	
Bis(2-ethylhexyl) phthalate	ND		920		ug/Kg			11/13/15 10:45	
Butyl benzyl phthalate	ND		920		ug/Kg			11/13/15 10:45	
Caprolactam	ND		920		ug/Kg	₩		11/13/15 10:45	
Carbazole	ND		920		ug/Kg ug/Kg			11/13/15 10:45	
Chrysene	ND		920		ug/Kg ug/Kg			11/13/15 10:45	
Di-n-butyl phthalate	ND		920		ug/Kg ug/Kg	≎		11/13/15 10:45	
Di-n-octyl phthalate	ND ND		920		ug/Kg ug/Kg	Φ.		11/13/15 10:45	
Dibenz(a,h)anthracene	ND		920					11/13/15 10:45	
Dibenzofuran	ND ND		920		ug/Kg	*		11/13/15 10:45	
					ug/Kg				
Diethyl phthalate	ND		920		ug/Kg	.		11/13/15 10:45	
Dimethyl phthalate Fluoranthene	ND ND		920 920		ug/Kg ug/Kg	- D -		11/13/15 10:45 11/13/15 10:45	

TestAmerica Buffalo

3

_

8

10

12

14

<u>I</u>k

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/26/15 14:40

Date Received: 10/27/15 09:00

Client Sample ID: SWMU 5-SURFACE-SS-01

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-8

Matrix: Solid

Percent Solids: 91.7

Analyte	Result	Qualifier	F	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluorene	ND	Н	9:	20	110	ug/Kg	₩	11/12/15 07:51	11/13/15 10:45	5
Hexachlorobenzene	ND	Н	9:	20	120	ug/Kg	≎	11/12/15 07:51	11/13/15 10:45	5
Hexachlorobutadiene	ND	Н	9:	20	130	ug/Kg	₽	11/12/15 07:51	11/13/15 10:45	5
Hexachlorocyclopentadiene	ND	Н	9:	20	120	ug/Kg	₽	11/12/15 07:51	11/13/15 10:45	5
Hexachloroethane	ND	Н	9:	20	120	ug/Kg	≎	11/12/15 07:51	11/13/15 10:45	5
Indeno(1,2,3-cd)pyrene	ND	Н	9:	20	110	ug/Kg	≎	11/12/15 07:51	11/13/15 10:45	5
Isophorone	ND	Н	9:	20	190	ug/Kg	☼	11/12/15 07:51	11/13/15 10:45	5
N-Nitrosodi-n-propylamine	ND	Н	9:	20	160	ug/Kg	≎	11/12/15 07:51	11/13/15 10:45	5
N-Nitrosodiphenylamine	ND	Н	9:	20	740	ug/Kg	☼	11/12/15 07:51	11/13/15 10:45	5
Naphthalene	ND	Н	9:	20	120	ug/Kg	₽	11/12/15 07:51	11/13/15 10:45	5
Nitrobenzene	ND	Н	9:	20	100	ug/Kg	≎	11/12/15 07:51	11/13/15 10:45	5
Pentachlorophenol	ND	Н	18	00	920	ug/Kg	☼	11/12/15 07:51	11/13/15 10:45	5
Phenanthrene	ND	Н	9:	20	130	ug/Kg	≎	11/12/15 07:51	11/13/15 10:45	5
Phenol	ND	Н	9:	20	140	ug/Kg	≎	11/12/15 07:51	11/13/15 10:45	5
Pyrene	ND	Н	9:	20	110	ug/Kg	☼	11/12/15 07:51	11/13/15 10:45	5
Dimethylformamide	ND	Н	36	00	400	ug/Kg	☼	11/12/15 07:51	11/13/15 10:45	5
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	3000	THJ	ug/Kg	<u> </u>	2.	.00		11/12/15 07:51	11/13/15 10:45	5
Unknown	830	THJ	ug/Kg	₩	2.	.12		11/12/15 07:51	11/13/15 10:45	5
Unknown	870	THJ	ug/Kg	☼	4.	.62		11/12/15 07:51	11/13/15 10:45	5
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	76		39 - 14	6				11/12/15 07:51	11/13/15 10:45	5
2-Fluorobiphenyl	78		37 - 12	0				11/12/15 07:51	11/13/15 10:45	5
2-Fluorophenol	71		18 - 12	0				11/12/15 07:51	11/13/15 10:45	5
Nitrobenzene-d5	67		34 - 13	2				11/12/15 07:51	11/13/15 10:45	5
p-Terphenyl-d14	81		65 - 15	3				11/12/15 07:51	11/13/15 10:45	5
Phenol-d5	74		11 - 12	0				11/12/15 07:51	11/13/15 10:45	5

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND ND	0.96	0.14	mg/Kg	₩		10/30/15 12:17	1
Isobutyl alcohol	ND	0.96	0.24	mg/Kg	₽		10/30/15 12:17	1
Methanol	ND	0.96	0.29	mg/Kg	₽		10/30/15 12:17	1
n-Butanol	ND	0.96	0.22	mg/Kg	₽		10/30/15 12:17	1
Propanol	ND	0.96	0.14	mg/Kg	₽		10/30/15 12:17	1
2-Butanol	ND	0.96	0.15	mg/Kg	₩		10/30/15 12:17	1
Isopropyl alcohol	ND	0.96	0.23	mg/Kg	₽		10/30/15 12:17	1
t-Butyl alcohol	ND	0.96	0.25	mg/Kg	₩		10/30/15 12:17	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	93	30 - 137			-		10/30/15 12:17	1

Method: 8082A - Polyc								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	250	48	ug/Kg	₩	10/28/15 07:52	10/28/15 18:17	1
PCB-1221	ND	250	48	ug/Kg	₩	10/28/15 07:52	10/28/15 18:17	1
PCB-1232	ND	250	48	ug/Kg	≎	10/28/15 07:52	10/28/15 18:17	1
PCB-1242	ND	250	48	ug/Kg		10/28/15 07:52	10/28/15 18:17	1
PCB-1248	ND	250	48	ug/Kg	₩	10/28/15 07:52	10/28/15 18:17	1

TestAmerica Buffalo

Page 43 of 130

11/18/2015

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Mercury

TestAmerica Job ID: 480-89883-1

Client Sample ID: SWMU 5-SURFACE-SS-01

Lab Sample ID: 480-89883-8 Date Collected: 10/26/15 14:40 **Matrix: Solid**

Analyte		Qualifier	by Gas Chro	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1254	ND		250	110	ug/Kg	<u> </u>	10/28/15 07:52	10/28/15 18:17	1
PCB-1260	ND		250	110	ug/Kg		10/28/15 07:52	10/28/15 18:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene	97		60 - 154				10/28/15 07:52	10/28/15 18:17	
DCB Decachlorobiphenyl	102		65 - 174				10/28/15 07:52	10/28/15 18:17	
•	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
•	•								
Method: 6010C - Metals (I Analyte Arsenic	•	Qualifier		MDL 0.43		D			Dil Fa
Analyte Arsenic	Result 3.1	Qualifier	RL	0.43	mg/Kg	D	Prepared	Analyzed 10/29/15 17:47	Dil Fa
Analyte Arsenic Barium	Result		RL 2.2	0.43 0.12		— D	Prepared 10/28/15 14:05	Analyzed 10/29/15 17:47	Dil Fa
Analyte Arsenic Barium Cadmium	Result 3.1 30.8		RL 2.2 0.54	0.43 0.12 0.032	mg/Kg mg/Kg	D \$\frac{1}{27}\$	Prepared 10/28/15 14:05 10/28/15 14:05	Analyzed 10/29/15 17:47 10/29/15 17:47	Dil Fa
Analyte Arsenic Barium Cadmium Chromium	Result 3.1 30.8 0.082		RL 2.2 0.54 0.22	0.43 0.12 0.032 0.22	mg/Kg mg/Kg mg/Kg	D	Prepared 10/28/15 14:05 10/28/15 14:05 10/28/15 14:05	Analyzed 10/29/15 17:47 10/29/15 17:47 10/29/15 17:47 10/29/15 17:47	Dil Fa
Analyte	Result 3.1 30.8 0.082 7.4		RL 2.2 0.54 0.22 0.54	0.43 0.12 0.032 0.22 0.26	mg/Kg mg/Kg mg/Kg mg/Kg	D	Prepared 10/28/15 14:05 10/28/15 14:05 10/28/15 14:05 10/28/15 14:05	Analyzed 10/29/15 17:47 10/29/15 17:47 10/29/15 17:47 10/29/15 17:47	Dil Fa

0.021

0.0087 mg/Kg

0.0094 J

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/26/15 15:00

Date Received: 10/27/15 09:00

Client Sample ID: SWMU 15-SURFACE-SS-01

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-9

Matrix: Solid Percent Solids: 84.2

Method: 8260C - Volatile Organ Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
1,1,1-Trichloroethane	ND	*	5.6	0.40	ug/Kg	**	10/27/15 16:40		
1,1,2,2-Tetrachloroethane	ND	*	5.6		ug/Kg	₽		11/03/15 02:36	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.6		ug/Kg			11/03/15 02:36	
1,1,2-Trichloroethane	ND		5.6	0.72	ug/Kg	☼	10/27/15 16:40	11/03/15 02:36	
1,1-Dichloroethane	ND		5.6	0.68	ug/Kg	₩	10/27/15 16:40	11/03/15 02:36	
1,1-Dichloroethene	ND		5.6		ug/Kg	₩	10/27/15 16:40	11/03/15 02:36	
1,2,3-Trichlorobenzene	ND		5.6	0.59	ug/Kg	₽	10/27/15 16:40	11/03/15 02:36	
1,2,4-Trichlorobenzene	ND		5.6	0.34	ug/Kg	₩	10/27/15 16:40	11/03/15 02:36	
1,2-Dibromo-3-Chloropropane	ND		5.6	2.8	ug/Kg	₩	10/27/15 16:40	11/03/15 02:36	
1,2-Dichlorobenzene	ND		5.6	0.44	ug/Kg	₽	10/27/15 16:40	11/03/15 02:36	
1,2-Dichloroethane	ND	*	5.6	0.28	ug/Kg	☼	10/27/15 16:40	11/03/15 02:36	
1,2-Dichloropropane	ND		5.6	2.8	ug/Kg	☼	10/27/15 16:40	11/03/15 02:36	
1,3-Dichlorobenzene	ND		5.6	0.29	ug/Kg	₩	10/27/15 16:40	11/03/15 02:36	
1,4-Dichlorobenzene	ND		5.6	0.78	ug/Kg	☼	10/27/15 16:40	11/03/15 02:36	
1,4-Dioxane	ND		110	24	ug/Kg	☼	10/27/15 16:40	11/03/15 02:36	
2-Hexanone	ND		28	2.8	ug/Kg		10/27/15 16:40	11/03/15 02:36	
Acetone	ND		28		ug/Kg	☼	10/27/15 16:40	11/03/15 02:36	
Benzene	ND		5.6		ug/Kg	₩	10/27/15 16:40	11/03/15 02:36	
Bromoform	ND		5.6		ug/Kg	· · · · · · · · · · · · · · · · · · ·	10/27/15 16:40	11/03/15 02:36	
Bromomethane	ND		5.6		ug/Kg	₩		11/03/15 02:36	
Carbon disulfide	ND		5.6		ug/Kg	₩		11/03/15 02:36	
Carbon tetrachloride	ND	*	5.6		ug/Kg	φ.		11/03/15 02:36	
Chlorobenzene	ND		5.6		ug/Kg	₩		11/03/15 02:36	
Bromochloromethane	ND		5.6		ug/Kg	ά		11/03/15 02:36	
Dibromochloromethane	ND		5.6		ug/Kg			11/03/15 02:36	
Chloroethane	ND		5.6		ug/Kg ug/Kg			11/03/15 02:36	
Chloroform	ND	*	5.6		ug/Kg ug/Kg			11/03/15 02:36	
	ND		5.6		ug/Kg ug/Kg			11/03/15 02:36	
Chloromethane					0 0	<i>~</i>			
cis-1,2-Dichloroethene	ND		5.6		ug/Kg	*		11/03/15 02:36	
cis-1,3-Dichloropropene	ND		5.6		ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/03/15 02:36	
Cyclohexane	ND		5.6		ug/Kg	*		11/03/15 02:36	
Bromodichloromethane	ND		5.6		ug/Kg	₩		11/03/15 02:36	
Dichlorodifluoromethane	ND		5.6		ug/Kg			11/03/15 02:36	
Ethylbenzene	ND		5.6		ug/Kg	1,4		11/03/15 02:36	
1,2-Dibromoethane (EDB)	ND		5.6		ug/Kg		10/27/15 16:40		
sopropylbenzene	ND		5.6		ug/Kg	::::::::::::::::::::::::::::::::::::::	10/27/15 16:40		
Methyl acetate	ND		5.6		ug/Kg	: D	10/27/15 16:40		
2-Butanone (MEK)	ND		28		ug/Kg	₽		11/03/15 02:36	
4-Methyl-2-pentanone (MIBK)	ND		28		ug/Kg	₩		11/03/15 02:36	
Methyl tert-butyl ether	ND		5.6		ug/Kg	☼		11/03/15 02:36	
Methylcyclohexane	ND		5.6	0.85	ug/Kg	₩	10/27/15 16:40	11/03/15 02:36	
Methylene Chloride	4.7	JB	5.6		ug/Kg	.		11/03/15 02:36	
Styrene	ND		5.6		ug/Kg	₽	10/27/15 16:40	11/03/15 02:36	
Tetrachloroethene	ND		5.6	0.75	ug/Kg	₩	10/27/15 16:40	11/03/15 02:36	
Toluene	ND		5.6	0.42	ug/Kg	☼	10/27/15 16:40	11/03/15 02:36	
rans-1,2-Dichloroethene	ND		5.6	0.57	ug/Kg	₽	10/27/15 16:40	11/03/15 02:36	
rans-1,3-Dichloropropene	ND		5.6	2.5	ug/Kg	☼	10/27/15 16:40	11/03/15 02:36	
Frichloroethene	ND		5.6	1.2	ug/Kg	☼	10/27/15 16:40	11/03/15 02:36	
Trichlorofluoromethane	1.0	J	5.6		ug/Kg		10/27/15 16:40	11/03/15 02:36	

Page 45 of 130

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Client Sample ID: SWMU 15-SURFACE-SS-01

Lab Sample ID: 480-89883-9 Date Collected: 10/26/15 15:00 **Matrix: Solid**

Date Received: 10/27/15 09:00 Percent Solids: 84.2

Method: 8260C - Volatile Org Analyte		Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.6		0.68	ug/Kg	<u> </u>	10/27/15 16:40	11/03/15 02:36	1
Xylenes, Total	ND		11		0.94	ug/Kg	₩	10/27/15 16:40	11/03/15 02:36	1
Tetrahydrofuran	ND		11		3.2	ug/Kg	\$	10/27/15 16:40	11/03/15 02:36	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\(\pi \)				10/27/15 16:40	11/03/15 02:36	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		64 - 126					10/27/15 16:40	11/03/15 02:36	1
Toluene-d8 (Surr)	105		71 - 125					10/27/15 16:40	11/03/15 02:36	1
4-Bromofluorobenzene (Surr)	92		72 - 126					10/27/15 16:40	11/03/15 02:36	1
Dibromofluoromethane (Surr)	103		60 - 140					10/07/15 16:10	11/03/15 02:36	

Analyte	Result Qual	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND	4000	580	ug/Kg	<u> </u>	10/30/15 14:03	11/10/15 15:41	20
bis (2-chloroisopropyl) ether	ND	4000	790	ug/Kg	≎	10/30/15 14:03	11/10/15 15:41	20
2,4,5-Trichlorophenol	ND	4000	1100	ug/Kg	≎	10/30/15 14:03	11/10/15 15:41	20
2,4,6-Trichlorophenol	ND	4000	790	ug/Kg	.	10/30/15 14:03	11/10/15 15:41	20
2,4-Dichlorophenol	ND	4000	420	ug/Kg	₩	10/30/15 14:03	11/10/15 15:41	20
2,4-Dimethylphenol	ND	4000	960	ug/Kg	≎	10/30/15 14:03	11/10/15 15:41	20
2,4-Dinitrophenol	ND	39000	18000	ug/Kg		10/30/15 14:03	11/10/15 15:41	20
2,4-Dinitrotoluene	ND	4000	820	ug/Kg	₩	10/30/15 14:03	11/10/15 15:41	20
2,6,Dinitrotoluene	ND	4000	470	ug/Kg	≎	10/30/15 14:03	11/10/15 15:41	20
2-Chloronaphthalene	ND	4000	650	ug/Kg	₽	10/30/15 14:03	11/10/15 15:41	20
2-Chlorophenol	ND	4000	720	ug/Kg	₩	10/30/15 14:03	11/10/15 15:41	20
2-Methylnaphthalene	ND	4000	790	ug/Kg	☼	10/30/15 14:03	11/10/15 15:41	20
2-Methylphenol	ND	4000	470	ug/Kg	₩	10/30/15 14:03	11/10/15 15:41	20
2-Nitroaniline	ND	7700	580	ug/Kg	₩	10/30/15 14:03	11/10/15 15:41	20
2-Nitrophenol	ND	4000	1100	ug/Kg	₩	10/30/15 14:03	11/10/15 15:41	20
3,3'-Dichlorobenzidine	ND	7700	4700	ug/Kg	₽	10/30/15 14:03	11/10/15 15:41	20
3-Nitroaniline	ND	7700	1100	ug/Kg	≎	10/30/15 14:03	11/10/15 15:41	20
4,6-Dinitro-2-methylphenol	ND	7700	4000	ug/Kg	₩	10/30/15 14:03	11/10/15 15:41	20
4-Bromophenyl phenyl ether	ND	4000	560	ug/Kg	₽	10/30/15 14:03	11/10/15 15:41	20
4-Chloro-3-methylphenol	ND	4000	980	ug/Kg	₩	10/30/15 14:03	11/10/15 15:41	20
4-Chloroaniline	ND	4000	980	ug/Kg	₩	10/30/15 14:03	11/10/15 15:41	20
4-Chlorophenyl phenyl ether	ND	4000	490	ug/Kg	₽	10/30/15 14:03	11/10/15 15:41	20
4-Methylphenol	ND	7700	470	ug/Kg	₩	10/30/15 14:03	11/10/15 15:41	20
4-Nitroaniline	ND	7700	2100	ug/Kg	☼	10/30/15 14:03	11/10/15 15:41	20
4-Nitrophenol	ND	7700	2800	ug/Kg	₽	10/30/15 14:03	11/10/15 15:41	20
Acenaphthene	ND	4000	580	ug/Kg	₩	10/30/15 14:03	11/10/15 15:41	20
Acenaphthylene	ND	4000	510	ug/Kg	₩	10/30/15 14:03	11/10/15 15:41	20
Acetophenone	ND	4000	540	ug/Kg	☼	10/30/15 14:03	11/10/15 15:41	20
Anthracene	ND	4000	980	ug/Kg	₩	10/30/15 14:03	11/10/15 15:41	20
Atrazine	ND	4000	1400	ug/Kg	☼	10/30/15 14:03	11/10/15 15:41	20
Benzaldehyde	ND *	4000	3100	ug/Kg	₩	10/30/15 14:03	11/10/15 15:41	20
Benzo(a)anthracene	ND	4000	400	ug/Kg	₩	10/30/15 14:03	11/10/15 15:41	20
Benzo(a)pyrene	ND	4000	580	ug/Kg	₩	10/30/15 14:03	11/10/15 15:41	20
Benzo(b)fluoranthene	ND	4000	630	ug/Kg		10/30/15 14:03	11/10/15 15:41	20
Benzo(g,h,i)perylene	ND	4000	420	ug/Kg	₩	10/30/15 14:03	11/10/15 15:41	20

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/26/15 15:00

Date Received: 10/27/15 09:00

Client Sample ID: SWMU 15-SURFACE-SS-01

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-9

Matrix: Solid

Percent Solids: 84.2

Method: 8270D - Semivolatile		s (GC/MS) (Continued	l)				
Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Benzo(k)fluoranthene	ND	4000	510	- 5	 	10/30/15 14:03		20
Bis(2-chloroethoxy)methane	ND	4000	840	0 0	₽	10/30/15 14:03	11/10/15 15:41	20
Bis(2-chloroethyl)ether	ND	4000	510	0 0	☼	10/30/15 14:03	11/10/15 15:41	20
Bis(2-ethylhexyl) phthalate	ND	4000		ug/Kg			11/10/15 15:41	20
Butyl benzyl phthalate	ND	4000	650	ug/Kg	≎	10/30/15 14:03	11/10/15 15:41	20
Caprolactam	ND	4000	1200	ug/Kg	≎	10/30/15 14:03	11/10/15 15:41	20
Carbazole	ND	4000	470	ug/Kg	≎	10/30/15 14:03	11/10/15 15:41	20
Chrysene	ND	4000	890	ug/Kg	₽	10/30/15 14:03	11/10/15 15:41	20
Di-n-butyl phthalate	ND	4000	680	ug/Kg	₽	10/30/15 14:03	11/10/15 15:41	20
Di-n-octyl phthalate	ND	4000	470	ug/Kg	≎	10/30/15 14:03	11/10/15 15:41	20
Dibenz(a,h)anthracene	ND	4000	700	ug/Kg		10/30/15 14:03	11/10/15 15:41	20
Dibenzofuran	ND	4000	470	ug/Kg	≎	10/30/15 14:03	11/10/15 15:41	20
Diethyl phthalate	ND	4000	510	ug/Kg	₩	10/30/15 14:03	11/10/15 15:41	20
Dimethyl phthalate	ND	4000	470	ug/Kg		10/30/15 14:03	11/10/15 15:41	20
Fluoranthene	ND	4000	420	ug/Kg	₩	10/30/15 14:03	11/10/15 15:41	20
Fluorene	ND	4000	470	ug/Kg	₩	10/30/15 14:03	11/10/15 15:41	20
Hexachlorobenzene	ND	4000	540	ug/Kg		10/30/15 14:03	11/10/15 15:41	20
Hexachlorobutadiene	ND	4000	580	ug/Kg	₽	10/30/15 14:03	11/10/15 15:41	20
Hexachlorocyclopentadiene	ND	4000	540	ug/Kg	₩	10/30/15 14:03	11/10/15 15:41	20
Hexachloroethane	ND	4000	510	ug/Kg	₽	10/30/15 14:03	11/10/15 15:41	20
Indeno(1,2,3-cd)pyrene	ND	4000	490	ug/Kg	₽	10/30/15 14:03	11/10/15 15:41	20
Isophorone	ND	4000	840	ug/Kg	₽	10/30/15 14:03	11/10/15 15:41	20
N-Nitrosodi-n-propylamine	ND	4000	680	ug/Kg	₽	10/30/15 14:03	11/10/15 15:41	20
N-Nitrosodiphenylamine	ND	4000	3200	ug/Kg	₩	10/30/15 14:03	11/10/15 15:41	20
Naphthalene	ND	4000	510	ug/Kg	☼	10/30/15 14:03	11/10/15 15:41	20
Nitrobenzene	ND	4000	440	ug/Kg		10/30/15 14:03	11/10/15 15:41	20
Pentachlorophenol	ND	7700	4000	ug/Kg	☼	10/30/15 14:03	11/10/15 15:41	20
Phenanthrene	ND	4000	580	ug/Kg	☼	10/30/15 14:03	11/10/15 15:41	20
Phenol	ND	4000	610	ug/Kg		10/30/15 14:03	11/10/15 15:41	20
Pyrene	ND	4000	470	ug/Kg	₽	10/30/15 14:03	11/10/15 15:41	20
Dimethylformamide	ND	15000	1700	ug/Kg	₩	10/30/15 14:03	11/10/15 15:41	20
Tentatively Identified Compound	Est. Result Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	4900 T J	ug/Kg		2.48		10/30/15 14:03	11/10/15 15:41	20

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	125		39 - 146	10/30/15 14:03	11/10/15 15:41	20
2-Fluorobiphenyl	83		37 - 120	10/30/15 14:03	11/10/15 15:41	20
2-Fluorophenol	78		18 - 120	10/30/15 14:03	11/10/15 15:41	20
Nitrobenzene-d5	71		34 - 132	10/30/15 14:03	11/10/15 15:41	20
p-Terphenyl-d14	80		65 - 153	10/30/15 14:03	11/10/15 15:41	20
Phenol-d5	68		11 - 120	10/30/15 14:03	11/10/15 15:41	20

l	Method: 8015D -	Nonhalogenated Organi	ic Compounds - Di	rect Injection	(GC) - Soluble
ı	A a lt a	D I4	O	DI MDI	Half D

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND —	1.0	0.15	mg/Kg	<u></u>		10/30/15 12:25	1
Isobutyl alcohol	ND	1.0	0.26	mg/Kg	₩		10/30/15 12:25	1
Methanol	ND	1.0	0.31	mg/Kg	₩		10/30/15 12:25	1
n-Butanol	ND	1.0	0.24	mg/Kg	₽		10/30/15 12:25	1
Propanol	ND	1.0	0.15	mg/Kg	₩		10/30/15 12:25	1

TestAmerica Buffalo

Page 47 of 130

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/26/15 15:00

Date Received: 10/27/15 09:00

Silver

Analyte

Mercury

Method: 7471B - Mercury (CVAA)

Client Sample ID: SWMU 15-SURFACE-SS-01

TestAmerica Job ID: 480-89883-1

3

Lab Sample ID: 480-89883-9

10/28/15 14:05 10/29/15 17:51

□ 10/28/15 12:05 □ 10/28/15 16:10

Analyzed

Dil Fac

Prepared

Matrix: Solid

Percent Solids: 84.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Butanol	ND		1.0	0.16	mg/Kg	<u> </u>		10/30/15 12:25	1
Isopropyl alcohol	ND		1.0	0.25	mg/Kg	ф.		10/30/15 12:25	1
t-Butyl alcohol	ND		1.0	0.27	mg/Kg	☼		10/30/15 12:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	87		30 - 137					10/30/15 12:25	1
Method: 8082A - Polychlorir	nated Bipheny	vis (PCBs)	by Gas Chro	matogr	aphv				
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		220	44	ug/Kg	<u> </u>	10/28/15 07:52	10/28/15 18:32	1
PCB-1221	ND		220	44	ug/Kg	₩	10/28/15 07:52	10/28/15 18:32	1
PCB-1232	ND		220	44	ug/Kg	₩	10/28/15 07:52	10/28/15 18:32	1
PCB-1242	ND		220	44	ug/Kg	₩	10/28/15 07:52	10/28/15 18:32	1
PCB-1248	ND		220	44	ug/Kg	₩	10/28/15 07:52	10/28/15 18:32	1
PCB-1254	ND		220	110	ug/Kg	₩	10/28/15 07:52	10/28/15 18:32	1
PCB-1260	ND		220	110	ug/Kg	\$	10/28/15 07:52	10/28/15 18:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	101		60 - 154				10/28/15 07:52	10/28/15 18:32	1
DCB Decachlorobiphenyl	100		65 - 174				10/28/15 07:52	10/28/15 18:32	1
Method: 6010C - Metals (ICP	')								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.6		2.4	0.47	mg/Kg	\	10/28/15 14:05	10/29/15 17:51	1
Barium	38.2		0.59	0.13	mg/Kg	₩	10/28/15 14:05	10/29/15 17:51	1
Cadmium	0.11	J	0.24	0.035	mg/Kg	₩	10/28/15 14:05	10/29/15 17:51	1
Chromium	10.1		0.59	0.24	mg/Kg	₩	10/28/15 14:05	10/29/15 17:51	1
Lead	6.0		1.2	0.28	mg/Kg	₩	10/28/15 14:05	10/29/15 17:51	1
Selenium	ND		4.7	0.47	mg/Kg	₩	10/29/15 14:05	10/29/15 17:51	1

0.71

RL

0.022

0.24 mg/Kg

MDL Unit

0.0090 mg/Kg

ND

0.011 J

Result Qualifier

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/26/15 15:15

Date Received: 10/27/15 09:00

trans-1,3-Dichloropropene

Trichlorofluoromethane

Trichloroethene

Client Sample ID: SWMU 17-SURFACE-SS-01

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-10

Matrix: Solid
Percent Solids: 90.0

Method: 8260C - Volatile Organ Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	*	4.8	0.35	ug/Kg	\	10/27/15 16:40	11/03/15 03:01	1
1,1,2,2-Tetrachloroethane	ND	*	4.8	0.78	ug/Kg	≎	10/27/15 16:40	11/03/15 03:01	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.8	1.1	ug/Kg	≎	10/27/15 16:40	11/03/15 03:01	1
1,1,2-Trichloroethane	ND		4.8	0.62	ug/Kg	≎	10/27/15 16:40	11/03/15 03:01	1
1,1-Dichloroethane	ND		4.8	0.58	ug/Kg	≎	10/27/15 16:40	11/03/15 03:01	1
1,1-Dichloroethene	ND		4.8	0.59	ug/Kg	≎	10/27/15 16:40	11/03/15 03:01	1
1,2,3-Trichlorobenzene	ND		4.8	0.51	ug/Kg	\$	10/27/15 16:40	11/03/15 03:01	1
1,2,4-Trichlorobenzene	ND		4.8	0.29	ug/Kg	☼	10/27/15 16:40	11/03/15 03:01	1
1,2-Dibromo-3-Chloropropane	ND		4.8	2.4	ug/Kg	₩	10/27/15 16:40	11/03/15 03:01	1
1,2-Dichlorobenzene	ND		4.8	0.37	ug/Kg		10/27/15 16:40	11/03/15 03:01	1
1,2-Dichloroethane	ND	*	4.8	0.24	ug/Kg	₩	10/27/15 16:40	11/03/15 03:01	1
1,2-Dichloropropane	ND		4.8	2.4	ug/Kg	☼	10/27/15 16:40	11/03/15 03:01	1
1,3-Dichlorobenzene	ND		4.8	0.25	ug/Kg	₩.	10/27/15 16:40	11/03/15 03:01	1
1,4-Dichlorobenzene	ND		4.8	0.67	ug/Kg	₩	10/27/15 16:40	11/03/15 03:01	1
1,4-Dioxane	ND		96	21	ug/Kg	₩	10/27/15 16:40	11/03/15 03:01	1
2-Hexanone	ND		24	2.4	ug/Kg	₩.	10/27/15 16:40	11/03/15 03:01	1
Acetone	ND		24	4.0	ug/Kg	☼	10/27/15 16:40	11/03/15 03:01	1
Benzene	ND		4.8	0.23	ug/Kg	₩	10/27/15 16:40	11/03/15 03:01	1
Bromoform	ND		4.8	2.4	ug/Kg		10/27/15 16:40	11/03/15 03:01	1
Bromomethane	ND		4.8	0.43	ug/Kg	☼	10/27/15 16:40	11/03/15 03:01	1
Carbon disulfide	ND		4.8	2.4	ug/Kg	₩	10/27/15 16:40	11/03/15 03:01	1
Carbon tetrachloride	ND	*	4.8	0.46	ug/Kg		10/27/15 16:40	11/03/15 03:01	1
Chlorobenzene	ND		4.8	0.63	ug/Kg	₩	10/27/15 16:40	11/03/15 03:01	1
Bromochloromethane	ND		4.8	0.35	ug/Kg	☼	10/27/15 16:40	11/03/15 03:01	1
Dibromochloromethane	ND		4.8	0.61	ug/Kg		10/27/15 16:40	11/03/15 03:01	1
Chloroethane	ND		4.8	1.1	ug/Kg	₩	10/27/15 16:40	11/03/15 03:01	1
Chloroform	ND	*	4.8	0.30	ug/Kg	☼	10/27/15 16:40	11/03/15 03:01	1
Chloromethane	ND		4.8	0.29	ug/Kg		10/27/15 16:40	11/03/15 03:01	1
cis-1,2-Dichloroethene	ND		4.8	0.61	ug/Kg	☼	10/27/15 16:40	11/03/15 03:01	1
cis-1,3-Dichloropropene	ND		4.8	0.69	ug/Kg	☼	10/27/15 16:40	11/03/15 03:01	1
Cyclohexane	ND		4.8	0.67	ug/Kg		10/27/15 16:40	11/03/15 03:01	1
Bromodichloromethane	ND		4.8	0.64	ug/Kg	₩	10/27/15 16:40	11/03/15 03:01	1
Dichlorodifluoromethane	ND		4.8	0.39	ug/Kg	☼	10/27/15 16:40	11/03/15 03:01	1
Ethylbenzene	ND		4.8	0.33	ug/Kg		10/27/15 16:40	11/03/15 03:01	1
1,2-Dibromoethane (EDB)	ND		4.8	0.61	ug/Kg	₩	10/27/15 16:40	11/03/15 03:01	1
Isopropylbenzene	ND		4.8	0.72	ug/Kg	₩	10/27/15 16:40	11/03/15 03:01	1
Methyl acetate	ND		4.8	2.9	ug/Kg		10/27/15 16:40	11/03/15 03:01	1
2-Butanone (MEK)	ND		24		ug/Kg	₩	10/27/15 16:40	11/03/15 03:01	1
4-Methyl-2-pentanone (MIBK)	ND		24		ug/Kg	₩	10/27/15 16:40	11/03/15 03:01	1
Methyl tert-butyl ether	ND		4.8	0.47	ug/Kg		10/27/15 16:40	11/03/15 03:01	1
Methylcyclohexane	ND		4.8	0.73	ug/Kg	₩	10/27/15 16:40	11/03/15 03:01	1
Methylene Chloride	4.5	JB	4.8		ug/Kg	₩	10/27/15 16:40	11/03/15 03:01	1
Styrene	ND		4.8		ug/Kg			11/03/15 03:01	1
Tetrachloroethene	ND		4.8		ug/Kg	☼		11/03/15 03:01	1
Toluene	ND		4.8		ug/Kg	☼		11/03/15 03:01	1
trans-1,2-Dichloroethene	ND		4.8		ug/Kg			11/03/15 03:01	1
,				2	5 .5				

TestAmerica Buffalo

☼ 10/27/15 16:40 11/03/15 03:01

* 10/27/15 16:40 11/03/15 03:01

10/27/15 16:40 11/03/15 03:01

Page 49 of 130

4.8

4.8

4.8

2.1 ug/Kg

1.1 ug/Kg

0.45 ug/Kg

ND

ND

ND

2

3

6

11

13

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Client Sample ID: SWMU 17-SURFACE-SS-01

Lab Sample ID: 480-89883-10 Date Collected: 10/26/15 15:15 **Matrix: Solid**

Date Received: 10/27/15 09:00 Percent Solids: 90.0

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.8		0.58	ug/Kg	₩	10/27/15 16:40	11/03/15 03:01	1
Xylenes, Total	ND		9.6		0.80	ug/Kg	₽	10/27/15 16:40	11/03/15 03:01	1
Tetrahydrofuran	ND		9.6		2.8	ug/Kg	≎	10/27/15 16:40	11/03/15 03:01	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	₩ -				10/27/15 16:40	11/03/15 03:01	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		64 - 126					10/27/15 16:40	11/03/15 03:01	1
Toluene-d8 (Surr)	103		71 - 125					10/27/15 16:40	11/03/15 03:01	1
4-Bromofluorobenzene (Surr)	94		72 - 126					10/27/15 16:40	11/03/15 03:01	1
Dibromofluoromethane (Surr)	106		60 - 140					10/27/15 16:40	11/03/15 03:01	

	700	00 - 1 10				10/21/10 10.40	11/00/10 00:01	,
Method: 8270D - Semivolatil Analyte	e Organic Compou Result Qualifi		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND	920	140	ug/Kg	<u></u>	10/30/15 14:03	11/10/15 16:07	5
bis (2-chloroisopropyl) ether	ND	920	180	ug/Kg	☼	10/30/15 14:03	11/10/15 16:07	5
2,4,5-Trichlorophenol	ND	920	250	ug/Kg	≎	10/30/15 14:03	11/10/15 16:07	5
2,4,6-Trichlorophenol	ND	920	180	ug/Kg		10/30/15 14:03	11/10/15 16:07	5
2,4-Dichlorophenol	ND	920	98	ug/Kg	☼	10/30/15 14:03	11/10/15 16:07	5
2,4-Dimethylphenol	ND	920	220	ug/Kg	☼	10/30/15 14:03	11/10/15 16:07	5
2,4-Dinitrophenol	ND	9000	4300	ug/Kg		10/30/15 14:03	11/10/15 16:07	5
2,4-Dinitrotoluene	ND	920	190	ug/Kg	☼	10/30/15 14:03	11/10/15 16:07	5
2,6,Dinitrotoluene	ND	920	110	ug/Kg	☼	10/30/15 14:03	11/10/15 16:07	5
2-Chloronaphthalene	ND	920	150	ug/Kg	\$	10/30/15 14:03	11/10/15 16:07	5
2-Chlorophenol	ND	920	170	ug/Kg	☼	10/30/15 14:03	11/10/15 16:07	5
2-Methylnaphthalene	ND	920	180	ug/Kg	₩	10/30/15 14:03	11/10/15 16:07	5
2-Methylphenol	ND	920	110	ug/Kg		10/30/15 14:03	11/10/15 16:07	5
2-Nitroaniline	ND	1800	140	ug/Kg	₩	10/30/15 14:03	11/10/15 16:07	5
2-Nitrophenol	ND	920	260	ug/Kg	☼	10/30/15 14:03	11/10/15 16:07	5
3,3'-Dichlorobenzidine	ND	1800	1100	ug/Kg	₩.	10/30/15 14:03	11/10/15 16:07	5
3-Nitroaniline	ND	1800	260	ug/Kg	₩	10/30/15 14:03	11/10/15 16:07	5
4,6-Dinitro-2-methylphenol	ND	1800	920	ug/Kg	₩	10/30/15 14:03	11/10/15 16:07	5
4-Bromophenyl phenyl ether	ND	920	130	ug/Kg		10/30/15 14:03	11/10/15 16:07	5
4-Chloro-3-methylphenol	ND	920	230	ug/Kg	₩	10/30/15 14:03	11/10/15 16:07	5
4-Chloroaniline	ND	920	230	ug/Kg	₩	10/30/15 14:03	11/10/15 16:07	5
4-Chlorophenyl phenyl ether	ND	920	110	ug/Kg		10/30/15 14:03	11/10/15 16:07	5
4-Methylphenol	ND	1800	110	ug/Kg	₩	10/30/15 14:03	11/10/15 16:07	5
4-Nitroaniline	ND	1800	480	ug/Kg	₩	10/30/15 14:03	11/10/15 16:07	5
4-Nitrophenol	ND	1800	650	ug/Kg	₩	10/30/15 14:03	11/10/15 16:07	5
Acenaphthene	ND	920	140	ug/Kg	₩	10/30/15 14:03	11/10/15 16:07	5
Acenaphthylene	ND	920	120	ug/Kg	₩	10/30/15 14:03	11/10/15 16:07	5
Acetophenone	ND	920	120	ug/Kg	₩.	10/30/15 14:03	11/10/15 16:07	5
Anthracene	ND	920	230	ug/Kg	₩	10/30/15 14:03	11/10/15 16:07	5
Atrazine	ND	920	320	ug/Kg	☼	10/30/15 14:03	11/10/15 16:07	5
Benzaldehyde	ND *	920	730	ug/Kg	₩.	10/30/15 14:03	11/10/15 16:07	5
Benzo(a)anthracene	ND	920	92	ug/Kg	☼	10/30/15 14:03	11/10/15 16:07	5
Benzo(a)pyrene	ND	920	140	ug/Kg	☼	10/30/15 14:03	11/10/15 16:07	5
Benzo(b)fluoranthene	ND	920	150	ug/Kg		10/30/15 14:03	11/10/15 16:07	5
Benzo(g,h,i)perylene	ND	920	98	ug/Kg	☼	10/30/15 14:03	11/10/15 16:07	5

TestAmerica Buffalo

11/18/2015

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Client Sample ID: SWMU 17-SURFACE-SS-01

Lab Sample ID: 480-89883-10

Date Collected: 10/26/15 15:15 **Matrix: Solid** Date Received: 10/27/15 09:00 Percent Solids: 90.0

Analyte	Result Qual	ifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo(k)fluoranthene	ND	920	120	ug/Kg	₩	10/30/15 14:03	11/10/15 16:07	5
Bis(2-chloroethoxy)methane	ND	920	200	ug/Kg		10/30/15 14:03	11/10/15 16:07	5
Bis(2-chloroethyl)ether	ND	920	120	ug/Kg	₽	10/30/15 14:03	11/10/15 16:07	5
Bis(2-ethylhexyl) phthalate	ND	920	310	ug/Kg	₽	10/30/15 14:03	11/10/15 16:07	5
Butyl benzyl phthalate	ND	920	150	ug/Kg		10/30/15 14:03	11/10/15 16:07	5
Caprolactam	ND	920	280	ug/Kg	₽	10/30/15 14:03	11/10/15 16:07	5
Carbazole	ND	920	110	ug/Kg	₽	10/30/15 14:03	11/10/15 16:07	5
Chrysene	ND	920	210	ug/Kg	₽	10/30/15 14:03	11/10/15 16:07	5
Di-n-butyl phthalate	ND	920	160	ug/Kg	₽	10/30/15 14:03	11/10/15 16:07	5
Di-n-octyl phthalate	ND	920	110	ug/Kg	₩	10/30/15 14:03	11/10/15 16:07	5
Dibenz(a,h)anthracene	ND	920	160	ug/Kg		10/30/15 14:03	11/10/15 16:07	5
Dibenzofuran	ND	920	110	ug/Kg	₩	10/30/15 14:03	11/10/15 16:07	5
Diethyl phthalate	ND	920	120	ug/Kg	☼	10/30/15 14:03	11/10/15 16:07	5
Dimethyl phthalate	ND	920	110	ug/Kg		10/30/15 14:03	11/10/15 16:07	5
Fluoranthene	ND	920	98	ug/Kg	☼	10/30/15 14:03	11/10/15 16:07	5
Fluorene	ND	920	110	ug/Kg	☼	10/30/15 14:03	11/10/15 16:07	5
Hexachlorobenzene	ND	920	120	ug/Kg		10/30/15 14:03	11/10/15 16:07	5
Hexachlorobutadiene	ND	920	140	ug/Kg	≎	10/30/15 14:03	11/10/15 16:07	5
Hexachlorocyclopentadiene	ND	920	120	ug/Kg	☼	10/30/15 14:03	11/10/15 16:07	5
Hexachloroethane	ND	920	120	ug/Kg		10/30/15 14:03	11/10/15 16:07	5
Indeno(1,2,3-cd)pyrene	ND	920	110	ug/Kg	☼	10/30/15 14:03	11/10/15 16:07	5
Isophorone	ND	920	200	ug/Kg	☼	10/30/15 14:03	11/10/15 16:07	5
N-Nitrosodi-n-propylamine	ND	920	160	ug/Kg		10/30/15 14:03	11/10/15 16:07	5
N-Nitrosodiphenylamine	ND	920	750	ug/Kg	☼	10/30/15 14:03	11/10/15 16:07	5
Naphthalene	ND	920	120	ug/Kg	≎	10/30/15 14:03	11/10/15 16:07	5
Nitrobenzene	ND	920	100	ug/Kg		10/30/15 14:03	11/10/15 16:07	5
Pentachlorophenol	ND	1800	920	ug/Kg	☼	10/30/15 14:03	11/10/15 16:07	5
Phenanthrene	ND	920	140	ug/Kg	≎	10/30/15 14:03	11/10/15 16:07	5
Phenol	ND	920	140	ug/Kg		10/30/15 14:03	11/10/15 16:07	5
Pyrene	ND	920		ug/Kg	₽	10/30/15 14:03	11/10/15 16:07	5
Dimethylformamide	ND	3600		ug/Kg	₩	10/30/15 14:03	11/10/15 16:07	5
Tentatively Identified Compound	Est. Result Qual	ifier Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	2600 TJ	ug/Kg	⊕2	.28		10/30/15 14:03	11/10/15 16:07	5

Unknown	2600	TJ	ug/Kg	☼	2.28	10/30/15 14:03	11/10/15 16:07	5
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	78		39 - 146			10/30/15 14:03	11/10/15 16:07	5
2-Fluorobiphenyl	82		37 - 120			10/30/15 14:03	11/10/15 16:07	5
2-Fluorophenol	74		18 - 120			10/30/15 14:03	11/10/15 16:07	5
Nitrobenzene-d5	68		34 - 132			10/30/15 14:03	11/10/15 16:07	5
p-Terphenyl-d14	83		65 - 153			10/30/15 14:03	11/10/15 16:07	5
Phenol-d5	80		11 - 120			10/30/15 14:03	11/10/15 16:07	5

Method. 00 13D - Normalogena	teu Organic (Compounds	- Dilect	nijectioi	1 (OO) - 0	Olubie			
Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		1.0	0.15	mg/Kg	- -		10/30/15 12:32	1
Isobutyl alcohol	ND		1.0	0.26	mg/Kg	≎		10/30/15 12:32	1
Methanol	ND		1.0	0.31	mg/Kg	₽		10/30/15 12:32	1
n-Butanol	ND		1.0	0.24	mg/Kg	≎		10/30/15 12:32	1
Propanol	ND		1.0	0.15	mg/Kg	₩		10/30/15 12:32	1

TestAmerica Buffalo

Page 51 of 130

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU 17-SURFACE-SS-01

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-10 **Matrix: Solid**

oate Collected: 10/26/15 15							-	Matrix	c: Soli
Pate Received: 10/27/15 09								Percent Solid	15. 90.
Method: 8015D - Nonhalog Analyte		c Compou Qualifier	nds - Direct RL	Injectior MDL		Solubl D	e (Continued Prepared	l) Analyzed	Dil Fa
2-Butanol	ND		1.0	0.16	mg/Kg	<u></u>		10/30/15 12:32	
Isopropyl alcohol	ND		1.0	0.25	mg/Kg	ф.		10/30/15 12:32	
t-Butyl alcohol	ND		1.0		mg/Kg	₩		10/30/15 12:32	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
2-Hexanone	88		30 - 137					10/30/15 12:32	
Method: 8082A - Polychlo	rinated Bipheny	/Is (PCBs)	by Gas Chro	omatogr	aphy				
Analyte		Qualifier	RL	MDL	-	D	Prepared	Analyzed	Dil Fa
PCB-1016	ND		230	45	ug/Kg	<u> </u>	10/28/15 07:52	10/28/15 18:47	
PCB-1221	ND		230	45	ug/Kg	₽	10/28/15 07:52	10/28/15 18:47	
PCB-1232	ND		230	45	ug/Kg	₽	10/28/15 07:52	10/28/15 18:47	
PCB-1242	ND		230	45	ug/Kg		10/28/15 07:52	10/28/15 18:47	
PCB-1248	ND		230	45	ug/Kg	☼	10/28/15 07:52	10/28/15 18:47	
PCB-1254	ND		230	110	ug/Kg	≎	10/28/15 07:52	10/28/15 18:47	
PCB-1260	ND		230	110	ug/Kg		10/28/15 07:52	10/28/15 18:47	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Tetrachloro-m-xylene	92		60 - 154				10/28/15 07:52	10/28/15 18:47	
DCB Decachlorobiphenyl	95		65 - 174				10/28/15 07:52	10/28/15 18:47	
Method: 6010C - Metals (I									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Arsenic	2.8		2.2		mg/Kg	₩	10/28/15 14:05	10/29/15 17:54	
Barium	29.5		0.55		mg/Kg	☼	10/28/15 14:05	10/29/15 17:54	
Cadmium	0.077	J	0.22	0.033	mg/Kg		10/28/15 14:05	10/29/15 17:54	
Chromium	8.9		0.55	0.22	mg/Kg	₽	10/28/15 14:05	10/29/15 17:54	
Lead	5.9		1.1	0.26	mg/Kg	₩	10/28/15 14:05	10/29/15 17:54	
Selenium	ND		4.4	0.44	mg/Kg	₩	10/28/15 14:05	10/29/15 17:54	
Silver	ND		0.66	0.22	mg/Kg	₽	10/28/15 14:05	10/29/15 17:54	
Method: 7471B - Mercury									
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.023	0.0091	mg/Kg	\	10/28/15 12:05	10/28/15 16:14	

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/26/15 15:15

Date Received: 10/27/15 09:00

Trichloroethene

Trichlorofluoromethane

Client Sample ID: SWMU 17-SURFACE-SS-99

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-11

Matrix: Solid
Percent Solids: 88.9

Method: 8260C - Volatile Organ Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	IND	*	4.5		ug/Kg	₩.		11/03/15 03:27	1
1,1,2,2-Tetrachloroethane	ND	*	4.5		ug/Kg	.		11/03/15 03:27	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.5		ug/Kg	, .		11/03/15 03:27	
1,1,2-Trichloroethane	ND		4.5		ug/Kg	₽		11/03/15 03:27	1
1,1-Dichloroethane	ND		4.5		ug/Kg	₽	10/27/15 16:40	11/03/15 03:27	1
1,1-Dichloroethene	ND		4.5		ug/Kg	.		11/03/15 03:27	1
1,2,3-Trichlorobenzene	ND		4.5		ug/Kg	₩	10/27/15 16:40	11/03/15 03:27	1
1,2,4-Trichlorobenzene	ND		4.5	0.27	ug/Kg	≎	10/27/15 16:40	11/03/15 03:27	1
1,2-Dibromo-3-Chloropropane	ND		4.5	2.2	ug/Kg	≎	10/27/15 16:40	11/03/15 03:27	1
1,2-Dichlorobenzene	ND		4.5	0.35	ug/Kg	₩	10/27/15 16:40	11/03/15 03:27	1
1,2-Dichloroethane	ND	*	4.5	0.22	ug/Kg	≎	10/27/15 16:40	11/03/15 03:27	1
1,2-Dichloropropane	ND		4.5	2.2	ug/Kg	≎	10/27/15 16:40	11/03/15 03:27	1
1,3-Dichlorobenzene	ND		4.5	0.23	ug/Kg	₽	10/27/15 16:40	11/03/15 03:27	1
1,4-Dichlorobenzene	ND		4.5	0.63	ug/Kg	₩	10/27/15 16:40	11/03/15 03:27	1
1,4-Dioxane	ND		90	20	ug/Kg	₩	10/27/15 16:40	11/03/15 03:27	1
2-Hexanone	ND		22	2.2	ug/Kg		10/27/15 16:40	11/03/15 03:27	1
Acetone	ND		22	3.8	ug/Kg	≎	10/27/15 16:40	11/03/15 03:27	1
Benzene	ND		4.5	0.22	ug/Kg	₽	10/27/15 16:40	11/03/15 03:27	1
Bromoform	ND		4.5		ug/Kg		10/27/15 16:40	11/03/15 03:27	1
Bromomethane	ND		4.5		ug/Kg	₩	10/27/15 16:40	11/03/15 03:27	1
Carbon disulfide	ND		4.5		ug/Kg	⇔	10/27/15 16:40	11/03/15 03:27	1
Carbon tetrachloride	ND	*	4.5		ug/Kg	 .		11/03/15 03:27	1
Chlorobenzene	ND		4.5		ug/Kg	₩		11/03/15 03:27	1
Bromochloromethane	ND		4.5		ug/Kg	₩		11/03/15 03:27	
Dibromochloromethane	ND		4.5		ug/Kg			11/03/15 03:27	· · · · · · · · 1
Chloroethane	ND		4.5		ug/Kg	₽		11/03/15 03:27	
Chloroform	ND	*	4.5		ug/Kg	₩		11/03/15 03:27	1
Chloromethane	ND		4.5		ug/Kg	.		11/03/15 03:27	
	ND		4.5					11/03/15 03:27	1
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	ND ND		4.5 4.5		ug/Kg	☆		11/03/15 03:27	
					ug/Kg				1
Cyclohexane	ND		4.5		ug/Kg			11/03/15 03:27	1
Bromodichloromethane	ND		4.5		ug/Kg	₽		11/03/15 03:27	1
Dichlorodifluoromethane	ND		4.5		ug/Kg			11/03/15 03:27	
Ethylbenzene	ND		4.5	0.31	0 0	₩.		11/03/15 03:27	1
1,2-Dibromoethane (EDB)	ND		4.5		ug/Kg	₩.		11/03/15 03:27	1
Isopropylbenzene	ND		4.5		ug/Kg			11/03/15 03:27	
Methyl acetate	ND		4.5		ug/Kg	:		11/03/15 03:27	1
2-Butanone (MEK)	ND		22		ug/Kg	₽		11/03/15 03:27	1
4-Methyl-2-pentanone (MIBK)	ND		22		ug/Kg			11/03/15 03:27	1
Methyl tert-butyl ether	ND		4.5		ug/Kg	₩		11/03/15 03:27	1
Methylcyclohexane	ND		4.5		ug/Kg	₩	10/27/15 16:40	11/03/15 03:27	1
Methylene Chloride	4.0	JB	4.5	2.1	ug/Kg	₩	10/27/15 16:40	11/03/15 03:27	1
Styrene	ND		4.5	0.22	ug/Kg	≎	10/27/15 16:40	11/03/15 03:27	1
Tetrachloroethene	ND		4.5	0.60	ug/Kg	₩	10/27/15 16:40	11/03/15 03:27	1
Toluene	ND		4.5	0.34	ug/Kg	₩	10/27/15 16:40	11/03/15 03:27	1
trans-1,2-Dichloroethene	ND		4.5	0.46	ug/Kg		10/27/15 16:40	11/03/15 03:27	1
trans-1,3-Dichloropropene	ND		4.5	2.0	ug/Kg	₩	10/27/15 16:40	11/03/15 03:27	1
						, L,			

TestAmerica Buffalo

☼ 10/27/15 16:40 11/03/15 03:27

10/27/15 16:40 11/03/15 03:27

4.5

4.5

0.99 ug/Kg

0.42 ug/Kg

ND

ND

<u>ی</u>

6

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Client Sample ID: SWMU 17-SURFACE-SS-99

Date Collected: 10/26/15 15:15

104

Lab Sample ID: 480-89883-11

Matrix: Solid

Percent Solids: 88.9

10/27/15 16:40 11/03/15 03:27

Date Received: 10/27/15 09:00

Dibromofluoromethane (Surr)

Method: 8260C - Volatile Org	anic Compo	unds by (3C/MS (Co	ntinu	ıed)					
Analyte	Result	Qualifier	RI	-	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.5	5	0.55	ug/Kg	<u> </u>	10/27/15 16:40	11/03/15 03:27	1
Xylenes, Total	ND		9.0)	0.75	ug/Kg	≎	10/27/15 16:40	11/03/15 03:27	1
Tetrahydrofuran	ND		9.0)	2.6	ug/Kg	≎	10/27/15 16:40	11/03/15 03:27	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\tilde{\pi}				10/27/15 16:40	11/03/15 03:27	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		64 - 126	-				10/27/15 16:40	11/03/15 03:27	1
Toluene-d8 (Surr)	105		71 - 125					10/27/15 16:40	11/03/15 03:27	1
4-Bromofluorobenzene (Surr)	93		72 - 126					10/27/15 16:40	11/03/15 03:27	1

60 - 140

Analyte	Result C	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND		1900	280	ug/Kg	₩	10/30/15 14:03	11/10/15 16:33	10
bis (2-chloroisopropyl) ether	ND		1900	380	ug/Kg	☼	10/30/15 14:03	11/10/15 16:33	10
2,4,5-Trichlorophenol	ND		1900	520	ug/Kg	≎	10/30/15 14:03	11/10/15 16:33	10
2,4,6-Trichlorophenol	ND		1900	380	ug/Kg	≎	10/30/15 14:03	11/10/15 16:33	10
2,4-Dichlorophenol	ND		1900	200	ug/Kg	₩	10/30/15 14:03	11/10/15 16:33	10
2,4-Dimethylphenol	ND		1900	460	ug/Kg	≎	10/30/15 14:03	11/10/15 16:33	10
2,4-Dinitrophenol	ND	19	9000	8800	ug/Kg	≎	10/30/15 14:03	11/10/15 16:33	10
2,4-Dinitrotoluene	ND		1900	390	ug/Kg	≎	10/30/15 14:03	11/10/15 16:33	10
2,6,Dinitrotoluene	ND		1900	220	ug/Kg	≎	10/30/15 14:03	11/10/15 16:33	10
2-Chloronaphthalene	ND		1900	310	ug/Kg	≎	10/30/15 14:03	11/10/15 16:33	10
2-Chlorophenol	ND		1900	350	ug/Kg	≎	10/30/15 14:03	11/10/15 16:33	10
2-Methylnaphthalene	ND		1900	380	ug/Kg	≎	10/30/15 14:03	11/10/15 16:33	10
2-Methylphenol	ND		1900	220	ug/Kg	≎	10/30/15 14:03	11/10/15 16:33	10
2-Nitroaniline	ND	;	3700	280	ug/Kg	≎	10/30/15 14:03	11/10/15 16:33	10
2-Nitrophenol	ND		1900	540	ug/Kg	₽	10/30/15 14:03	11/10/15 16:33	10
3,3'-Dichlorobenzidine	ND		3700	2200	ug/Kg	₽	10/30/15 14:03	11/10/15 16:33	10
3-Nitroaniline	ND	;	3700	530	ug/Kg	≎	10/30/15 14:03	11/10/15 16:33	10
4,6-Dinitro-2-methylphenol	ND	;	3700	1900	ug/Kg	₩	10/30/15 14:03	11/10/15 16:33	10
4-Bromophenyl phenyl ether	ND		1900	270	ug/Kg	≎	10/30/15 14:03	11/10/15 16:33	10
4-Chloro-3-methylphenol	ND		1900	470	ug/Kg	₽	10/30/15 14:03	11/10/15 16:33	10
4-Chloroaniline	ND		1900	470	ug/Kg	₩	10/30/15 14:03	11/10/15 16:33	10
4-Chlorophenyl phenyl ether	ND		1900	240	ug/Kg	₽	10/30/15 14:03	11/10/15 16:33	10
4-Methylphenol	ND	;	3700	220	ug/Kg	≎	10/30/15 14:03	11/10/15 16:33	10
4-Nitroaniline	ND	;	3700	1000	ug/Kg	≎	10/30/15 14:03	11/10/15 16:33	10
4-Nitrophenol	ND	;	3700	1300	ug/Kg	≎	10/30/15 14:03	11/10/15 16:33	10
Acenaphthene	ND		1900	280	ug/Kg	≎	10/30/15 14:03	11/10/15 16:33	10
Acenaphthylene	ND		1900	250	ug/Kg	☼	10/30/15 14:03	11/10/15 16:33	10
Acetophenone	ND		1900	260	ug/Kg	≎	10/30/15 14:03	11/10/15 16:33	10
Anthracene	ND		1900	470	ug/Kg	≎	10/30/15 14:03	11/10/15 16:33	10
Atrazine	ND		1900	660	ug/Kg	≎	10/30/15 14:03	11/10/15 16:33	10
Benzaldehyde	ND *		1900	1500	ug/Kg	.	10/30/15 14:03	11/10/15 16:33	10
Benzo(a)anthracene	ND		1900	190	ug/Kg	₩	10/30/15 14:03	11/10/15 16:33	10
Benzo(a)pyrene	ND		1900	280	ug/Kg	☼	10/30/15 14:03	11/10/15 16:33	10
Benzo(b)fluoranthene	ND		1900	300	ug/Kg		10/30/15 14:03	11/10/15 16:33	10
Benzo(g,h,i)perylene	ND		1900	200	ug/Kg	₽	10/30/15 14:03	11/10/15 16:33	10

TestAmerica Buffalo

3

5

6

Q

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/26/15 15:15

Date Received: 10/27/15 09:00

Client Sample ID: SWMU 17-SURFACE-SS-99

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-11

Matrix: Solid

Percent Solids: 88.9

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo(k)fluoranthene	ND		1900		250	ug/Kg	\	10/30/15 14:03	11/10/15 16:33	10
Bis(2-chloroethoxy)methane	ND		1900		400	ug/Kg	☼	10/30/15 14:03	11/10/15 16:33	10
Bis(2-chloroethyl)ether	ND		1900		250	ug/Kg	☆	10/30/15 14:03	11/10/15 16:33	10
Bis(2-ethylhexyl) phthalate	ND		1900		650	ug/Kg	☆	10/30/15 14:03	11/10/15 16:33	10
Butyl benzyl phthalate	ND		1900		310	ug/Kg	₽	10/30/15 14:03	11/10/15 16:33	10
Caprolactam	ND		1900		570	ug/Kg	₩	10/30/15 14:03	11/10/15 16:33	10
Carbazole	ND		1900		220	ug/Kg	☆	10/30/15 14:03	11/10/15 16:33	10
Chrysene	ND		1900		430	ug/Kg	₽	10/30/15 14:03	11/10/15 16:33	10
Di-n-butyl phthalate	ND		1900		320	ug/Kg	₩	10/30/15 14:03	11/10/15 16:33	10
Di-n-octyl phthalate	ND		1900		220	ug/Kg	☼	10/30/15 14:03	11/10/15 16:33	10
Dibenz(a,h)anthracene	ND		1900		340	ug/Kg	₽	10/30/15 14:03	11/10/15 16:33	10
Dibenzofuran	ND		1900		220	ug/Kg	☼	10/30/15 14:03	11/10/15 16:33	10
Diethyl phthalate	ND		1900		250	ug/Kg	₩	10/30/15 14:03	11/10/15 16:33	10
Dimethyl phthalate	ND		1900		220	ug/Kg		10/30/15 14:03	11/10/15 16:33	10
Fluoranthene	ND		1900		200	ug/Kg	☆	10/30/15 14:03	11/10/15 16:33	10
Fluorene	ND		1900		220	ug/Kg	☼	10/30/15 14:03	11/10/15 16:33	10
Hexachlorobenzene	ND		1900		260	ug/Kg		10/30/15 14:03	11/10/15 16:33	10
Hexachlorobutadiene	ND		1900		280	ug/Kg	₩	10/30/15 14:03	11/10/15 16:33	10
Hexachlorocyclopentadiene	ND		1900		260	ug/Kg	☼	10/30/15 14:03	11/10/15 16:33	10
Hexachloroethane	ND		1900		250	ug/Kg		10/30/15 14:03	11/10/15 16:33	10
Indeno(1,2,3-cd)pyrene	ND		1900		240	ug/Kg	☼	10/30/15 14:03	11/10/15 16:33	10
Isophorone	ND		1900		400	ug/Kg	₽	10/30/15 14:03	11/10/15 16:33	10
N-Nitrosodi-n-propylamine	ND		1900		320	ug/Kg	₩	10/30/15 14:03	11/10/15 16:33	10
N-Nitrosodiphenylamine	ND		1900		1500	ug/Kg	☼	10/30/15 14:03	11/10/15 16:33	10
Naphthalene	ND		1900		250	ug/Kg	☆	10/30/15 14:03	11/10/15 16:33	10
Nitrobenzene	ND		1900		210	ug/Kg		10/30/15 14:03	11/10/15 16:33	10
Pentachlorophenol	ND		3700		1900	ug/Kg	₩	10/30/15 14:03	11/10/15 16:33	10
Phenanthrene	ND		1900		280	ug/Kg	☆	10/30/15 14:03	11/10/15 16:33	10
Phenol	ND		1900		290	ug/Kg		10/30/15 14:03	11/10/15 16:33	10
Pyrene	ND		1900		220	ug/Kg	₩	10/30/15 14:03	11/10/15 16:33	10
Dimethylformamide	ND		7400		840	ug/Kg	₽	10/30/15 14:03	11/10/15 16:33	10
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	2800	TJ	ug/Kg	\tilde{\	2.	.27		10/30/15 14:03	11/10/15 16:33	10

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	93		39 - 146	10/30/15 14:03	11/10/15 16:33	10
2-Fluorobiphenyl	82		37 - 120	10/30/15 14:03	11/10/15 16:33	10
2-Fluorophenol	76		18 - 120	10/30/15 14:03	11/10/15 16:33	10
Nitrobenzene-d5	62		34 - 132	10/30/15 14:03	11/10/15 16:33	10
p-Terphenyl-d14	81		65 - 153	10/30/15 14:03	11/10/15 16:33	10
Phenol-d5	76		11 - 120	10/30/15 14:03	11/10/15 16:33	10

Method: 8015D - Nonha		-	inds - Direct	Injection (0	ЭС) - Soluble	е
Analyte	Result	Qualifier	RL _	MDL Ur	nit D	Pre

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND	1.1	0.16	mg/Kg	- -		10/30/15 12:40	1
Isobutyl alcohol	ND	1.1	0.27	mg/Kg	≎		10/30/15 12:40	1
Methanol	ND	1.1	0.32	mg/Kg	₩		10/30/15 12:40	1
n-Butanol	ND	1.1	0.25	mg/Kg	\$		10/30/15 12:40	1
Propanol	ND	1.1	0.16	mg/Kg	₩		10/30/15 12:40	1

TestAmerica Buffalo

Page 55 of 130

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Mercury

TestAmerica Job ID: 480-89883-1

Client Sample ID: SWMU 17-SURFACE-SS-99 Lab Sample ID: 480-89883-11

Date Collected: 10/26/15 15:15 Mat Date Received: 10/27/15 09:00 **Percent Sc**

trix: Solid	
olids: 88.9	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Butanol	ND		1.1	0.17	mg/Kg	<u></u>		10/30/15 12:40	1
Isopropyl alcohol	ND		1.1	0.26	mg/Kg	☆		10/30/15 12:40	1
t-Butyl alcohol	ND		1.1	0.28	mg/Kg	₩		10/30/15 12:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	91		30 - 137					10/30/15 12:40	1
Method: 8082A - Polychlo	rinated Bipheny	yls (PCBs)	by Gas Chro	matogr	aphy				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		250	48	ug/Kg	₩	10/28/15 07:52	10/28/15 19:02	1
PCB-1221	ND		250	48	ug/Kg	☆	10/28/15 07:52	10/28/15 19:02	1
PCB-1232	ND		250	48	ug/Kg	≎	10/28/15 07:52	10/28/15 19:02	1
PCB-1242	ND		250	48	ug/Kg	₩	10/28/15 07:52	10/28/15 19:02	1
PCB-1248	ND		250	48	ug/Kg	☆	10/28/15 07:52	10/28/15 19:02	1
PCB-1254	ND		250	120	ug/Kg	≎	10/28/15 07:52	10/28/15 19:02	1
PCB-1260	ND		250	120	ug/Kg	φ.	10/28/15 07:52	10/28/15 19:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	100		60 - 154				10/28/15 07:52	10/28/15 19:02	
DCB Decachlorobiphenyl	101		65 - 174				10/28/15 07:52	10/28/15 19:02	•
Method: 6010C - Metals (I									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.2		2.2	0.45	mg/Kg	₩	10/28/15 14:05	10/29/15 17:57	1
Barium	31.3		0.56		mg/Kg	₩	10/28/15 14:05	10/29/15 17:57	1
Cadmium	0.063	J	0.22	0.033	mg/Kg	₩	10/28/15 14:05	10/29/15 17:57	1
Chromium	9.7		0.56	0.22	mg/Kg	₩	10/28/15 14:05	10/29/15 17:57	1
Lead	4.5		1.1	0.27	mg/Kg	₩	10/28/15 14:05	10/29/15 17:57	1
Selenium	ND		4.5	0.45	mg/Kg	₩	10/28/15 14:05	10/29/15 17:57	1
Silver	ND		0.67	0.22	mg/Kg		10/28/15 14:05	10/29/15 17:57	1
Mathada 7474D - Massassa	(0)(4.4)								
Method: 7471B - Mercury	(CVAA)								

0.022

0.0089 mg/Kg

ND

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/26/15 15:35

Date Received: 10/27/15 09:00

Client Sample ID: SWMU 7-BLDG16-01

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-12

Matrix: Solid
Percent Solids: 90.0

Method: 8260C - Volatile Organ Analyte		unds by GC/N Qualifier	/IS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane		*	4.5		ug/Kg	— -	10/27/15 16:40	11/03/15 03:52	
1,1,2,2-Tetrachloroethane		*	4.5		ug/Kg	₩		11/03/15 03:52	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.5		ug/Kg	☆		11/03/15 03:52	
1,1,2-Trichloroethane	ND		4.5		ug/Kg			11/03/15 03:52	
1,1-Dichloroethane	ND		4.5		ug/Kg	₩		11/03/15 03:52	
1.1-Dichloroethene	ND		4.5		ug/Kg	₩		11/03/15 03:52	
1,2,3-Trichlorobenzene	ND		4.5		ug/Kg			11/03/15 03:52	
1,2,4-Trichlorobenzene	ND		4.5		ug/Kg	₩		11/03/15 03:52	
1,2-Dibromo-3-Chloropropane	ND		4.5		ug/Kg	₩		11/03/15 03:52	
1,2-Dichlorobenzene	ND		4.5		ug/Kg			11/03/15 03:52	
1,2-Dichloroethane	ND	*	4.5		ug/Kg	₩		11/03/15 03:52	
1,2-Dichloropropane	ND		4.5		ug/Kg ug/Kg	Ď.		11/03/15 03:52	
	ND		4.5		ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/03/15 03:52	
1,3-Dichlorobenzene	ND ND		4.5 4.5			~ ⇔		11/03/15 03:52	
1,4-Dichlorobenzene	ND ND		4.5 89		ug/Kg	~ ⇔		11/03/15 03:52	
1,4-Dioxane					ug/Kg	· · · · · · · · · · · · · · · · · · ·			
2-Hexanone	ND		22		ug/Kg			11/03/15 03:52	
Acetone	ND		22		ug/Kg	₩		11/03/15 03:52	
Benzene	ND		4.5	0.22				11/03/15 03:52	
Bromoform	ND		4.5		ug/Kg	φ.		11/03/15 03:52	
Bromomethane	ND		4.5	0.40		Ψ.		11/03/15 03:52	
Carbon disulfide	ND		4.5		ug/Kg			11/03/15 03:52	
Carbon tetrachloride	ND	*	4.5		ug/Kg	☆		11/03/15 03:52	
Chlorobenzene	ND		4.5	0.59	ug/Kg	*		11/03/15 03:52	
Bromochloromethane	ND		4.5		ug/Kg			11/03/15 03:52	
Dibromochloromethane	ND		4.5		ug/Kg	☼	10/27/15 16:40	11/03/15 03:52	
Chloroethane	ND		4.5	1.0	ug/Kg	₩	10/27/15 16:40	11/03/15 03:52	
Chloroform	ND	*	4.5	0.28	ug/Kg	₩	10/27/15 16:40	11/03/15 03:52	
Chloromethane	ND		4.5	0.27	ug/Kg	₽	10/27/15 16:40	11/03/15 03:52	
cis-1,2-Dichloroethene	ND		4.5	0.57	ug/Kg	₩	10/27/15 16:40	11/03/15 03:52	
cis-1,3-Dichloropropene	ND		4.5	0.64	ug/Kg	₩	10/27/15 16:40	11/03/15 03:52	
Cyclohexane	ND		4.5	0.62	ug/Kg	₩	10/27/15 16:40	11/03/15 03:52	
Bromodichloromethane	ND		4.5	0.60	ug/Kg	☼	10/27/15 16:40	11/03/15 03:52	
Dichlorodifluoromethane	ND		4.5	0.37	ug/Kg	☼	10/27/15 16:40	11/03/15 03:52	
Ethylbenzene	ND		4.5	0.31	ug/Kg	₽	10/27/15 16:40	11/03/15 03:52	
1,2-Dibromoethane (EDB)	ND		4.5	0.57	ug/Kg	☼	10/27/15 16:40	11/03/15 03:52	
Isopropylbenzene	ND		4.5	0.67	ug/Kg	☼	10/27/15 16:40	11/03/15 03:52	
Methyl acetate	ND		4.5		ug/Kg			11/03/15 03:52	
2-Butanone (MEK)	ND		22		ug/Kg	☼	10/27/15 16:40	11/03/15 03:52	
4-Methyl-2-pentanone (MIBK)	ND		22		ug/Kg	☼	10/27/15 16:40	11/03/15 03:52	
Methyl tert-butyl ether	ND		4.5		ug/Kg	· · · · · · · · · · · · · · · · · · ·	10/27/15 16:40	11/03/15 03:52	
Methylcyclohexane	ND		4.5		ug/Kg	≎		11/03/15 03:52	
Methylene Chloride	4.3	JB	4.5		ug/Kg	₩		11/03/15 03:52	
Styrene	ND	∴ 	4.5		ug/Kg			11/03/15 03:52	
Tetrachloroethene	ND		4.5		ug/Kg	☼		11/03/15 03:52	
Toluene	ND		4.5		ug/Kg	₽		11/03/15 03:52	
trans-1,2-Dichloroethene	ND		4.5		ug/Kg			11/03/15 03:52	
trans-1,3-Dichloropropene	ND ND		4.5 4.5		ug/Kg ug/Kg	≎		11/03/15 03:52	
• •	ND ND		4.5 4.5			≎		11/03/15 03:52	
Trichloroethene Trichlorofluoromethane	1.4		4.5		ug/Kg ug/Kg	· · · · · · · .		11/03/15 03:52	

TestAmerica Buffalo

3

4

6

8

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/26/15 15:35

Date Received: 10/27/15 09:00

Client Sample ID: SWMU 7-BLDG16-01

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-12

Matrix: Solid

Percent Solids: 90.0

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Coi	ntinu	ed)					
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.5		0.54	ug/Kg		10/27/15 16:40	11/03/15 03:52	1
Xylenes, Total	ND		8.9		0.75	ug/Kg	₽	10/27/15 16:40	11/03/15 03:52	1
Tetrahydrofuran	ND		8.9		2.6	ug/Kg	ф	10/27/15 16:40	11/03/15 03:52	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\				10/27/15 16:40	11/03/15 03:52	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		64 - 126					10/27/15 16:40	11/03/15 03:52	1
Toluene-d8 (Surr)	105		71 - 125					10/27/15 16:40	11/03/15 03:52	1
4-Bromofluorobenzene (Surr)	95		72 - 126					10/27/15 16:40	11/03/15 03:52	1
Dibromofluoromethane (Surr)	105		60 - 140					10/27/15 16:40	11/03/15 03:52	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/26/15 15:45

Date Received: 10/27/15 09:00

Trichloroethene

Trichlorofluoromethane

Client Sample ID: SWMU 7-BLDG16-02

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-13

Matrix: Solid
Percent Solids: 86.6

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	*	5.6	0.41	ug/Kg	<u> </u>	10/27/15 16:40	11/03/15 04:18	
1,1,2,2-Tetrachloroethane	ND	*	5.6	0.91	ug/Kg	₩	10/27/15 16:40	11/03/15 04:18	•
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.6	1.3	ug/Kg	₩	10/27/15 16:40	11/03/15 04:18	•
1,1,2-Trichloroethane	ND		5.6	0.73	ug/Kg	₩	10/27/15 16:40	11/03/15 04:18	,
1,1-Dichloroethane	ND		5.6	0.69	ug/Kg	₩	10/27/15 16:40	11/03/15 04:18	•
1,1-Dichloroethene	ND		5.6	0.69	ug/Kg	₩	10/27/15 16:40	11/03/15 04:18	
1,2,3-Trichlorobenzene	ND		5.6	0.60	ug/Kg	₩	10/27/15 16:40	11/03/15 04:18	,
1,2,4-Trichlorobenzene	ND		5.6	0.34	ug/Kg	₩	10/27/15 16:40	11/03/15 04:18	•
1,2-Dibromo-3-Chloropropane	ND		5.6	2.8	ug/Kg	₩	10/27/15 16:40	11/03/15 04:18	
1,2-Dichlorobenzene	ND		5.6	0.44	ug/Kg	₽	10/27/15 16:40	11/03/15 04:18	
1,2-Dichloroethane	ND	*	5.6	0.28	ug/Kg	☼	10/27/15 16:40	11/03/15 04:18	•
1,2-Dichloropropane	ND		5.6	2.8	ug/Kg	☼	10/27/15 16:40	11/03/15 04:18	•
1,3-Dichlorobenzene	ND		5.6	0.29	ug/Kg	₩	10/27/15 16:40	11/03/15 04:18	
1,4-Dichlorobenzene	ND		5.6	0.79	ug/Kg	☼	10/27/15 16:40	11/03/15 04:18	•
1,4-Dioxane	ND		110	25	ug/Kg	☼	10/27/15 16:40	11/03/15 04:18	•
2-Hexanone	ND		28	2.8	ug/Kg		10/27/15 16:40	11/03/15 04:18	,
Acetone	ND		28	4.7	ug/Kg	₩	10/27/15 16:40	11/03/15 04:18	
Benzene	ND		5.6	0.28	ug/Kg	₩	10/27/15 16:40	11/03/15 04:18	
Bromoform	ND		5.6	2.8	ug/Kg		10/27/15 16:40	11/03/15 04:18	
Bromomethane	ND		5.6	0.51	ug/Kg	☼	10/27/15 16:40	11/03/15 04:18	
Carbon disulfide	ND		5.6	2.8	ug/Kg	☼	10/27/15 16:40	11/03/15 04:18	
Carbon tetrachloride	ND	*	5.6	0.54	ug/Kg		10/27/15 16:40	11/03/15 04:18	• • • • • • • •
Chlorobenzene	ND		5.6	0.74	ug/Kg	₩	10/27/15 16:40	11/03/15 04:18	
Bromochloromethane	ND		5.6	0.41	ug/Kg	☼	10/27/15 16:40	11/03/15 04:18	
Dibromochloromethane	ND		5.6		ug/Kg		10/27/15 16:40	11/03/15 04:18	• • • • • • • •
Chloroethane	ND		5.6		ug/Kg	₩	10/27/15 16:40	11/03/15 04:18	
Chloroform	ND	*	5.6	0.35	ug/Kg	₩	10/27/15 16:40	11/03/15 04:18	
Chloromethane	ND		5.6		ug/Kg		10/27/15 16:40	11/03/15 04:18	,
cis-1,2-Dichloroethene	ND		5.6		ug/Kg	₩	10/27/15 16:40	11/03/15 04:18	
cis-1,3-Dichloropropene	ND		5.6		ug/Kg	₩	10/27/15 16:40	11/03/15 04:18	
Cyclohexane	ND		5.6		ug/Kg	· · · · · · · · · · · · · · · · · · ·	10/27/15 16:40	11/03/15 04:18	,
Bromodichloromethane	ND		5.6		ug/Kg	☼	10/27/15 16:40	11/03/15 04:18	
Dichlorodifluoromethane	ND		5.6		ug/Kg	₩	10/27/15 16:40	11/03/15 04:18	
Ethylbenzene	ND		5.6		ug/Kg	· · · · · · · · · · · · · · · · · · ·	10/27/15 16:40	11/03/15 04:18	
1,2-Dibromoethane (EDB)	ND		5.6		ug/Kg	₩	10/27/15 16:40	11/03/15 04:18	
Isopropylbenzene	ND		5.6		ug/Kg	₩	10/27/15 16:40	11/03/15 04:18	
Methyl acetate	ND		5.6		ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/03/15 04:18	
2-Butanone (MEK)	ND		28		ug/Kg	₩		11/03/15 04:18	
4-Methyl-2-pentanone (MIBK)	ND		28		ug/Kg	₩		11/03/15 04:18	
Methyl tert-butyl ether	ND		5.6		ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/03/15 04:18	,
Methylcyclohexane	ND		5.6		ug/Kg	₩		11/03/15 04:18	
Methylene Chloride	5.9	В	5.6		ug/Kg	₩		11/03/15 04:18	
Styrene	ND		5.6		ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/03/15 04:18	,
Tetrachloroethene	ND		5.6		ug/Kg	₩		11/03/15 04:18	
Toluene	ND		5.6		ug/Kg	₩		11/03/15 04:18	
trans-1,2-Dichloroethene	ND		5.6		ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/03/15 04:18	,
trans-1,3-Dichloropropene	ND		5.6		ug/Kg	₽		11/03/15 04:18	

TestAmerica Buffalo

☼ 10/27/15 16:40 11/03/15 04:18

* 10/27/15 16:40 11/03/15 04:18

Page 59 of 130

5.6

5.6

1.2 ug/Kg

0.53 ug/Kg

ND

ND

9

3

5

7

9

11

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Client Sample ID: SWMU 7-BLDG16-02 Lab Sample ID: 480-89883-13

Date Collected: 10/26/15 15:45 **Matrix: Solid**

Percent Solids: 86.6 Date Received: 10/27/15 09:00

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.6		0.69	ug/Kg	-	10/27/15 16:40	11/03/15 04:18	1
Xylenes, Total	ND		11		0.95	ug/Kg	₩	10/27/15 16:40	11/03/15 04:18	1
Tetrahydrofuran	ND		11		3.3	ug/Kg	\$	10/27/15 16:40	11/03/15 04:18	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	₩ -				10/27/15 16:40	11/03/15 04:18	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		64 - 126					10/27/15 16:40	11/03/15 04:18	1
Toluene-d8 (Surr)	105		71 - 125					10/27/15 16:40	11/03/15 04:18	1
4-Bromofluorobenzene (Surr)	97		72 - 126					10/27/15 16:40	11/03/15 04:18	1
Dibromofluoromethane (Surr)	107		60 - 140					10/27/15 16:40	11/03/15 04:18	

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-14

Matrix: Solid
Percent Solids: 89.9

Client Sample ID: SWMU 7-BLDG16-03 Date Collected: 10/26/15 16:00

Date Received: 10/27/15 09:00

Method: 8260C - Volatile Organ		Inds by GC/N Qualifier	RL	MDL	Unit	D	Dropared	Analyzad	Dil Fa
Analyte		Qualifier *	5.5 —			— ¤	Prepared	Analyzed 11/03/15 04:43	
1,1,1-Trichloroethane	ND	*			ug/Kg	☆		11/03/15 04:43	
1,1,2,2-Tetrachloroethane			5.5 5.5		ug/Kg				
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.5		ug/Kg	· · · · · · ›		11/03/15 04:43	
1,1,2-Trichloroethane	ND		5.5		ug/Kg	1.tr		11/03/15 04:43	
1,1-Dichloroethane	ND		5.5		ug/Kg	φ.		11/03/15 04:43	
1,1-Dichloroethene	ND		5.5		ug/Kg	بن - ن ن		11/03/15 04:43	
1,2,3-Trichlorobenzene	ND		5.5		ug/Kg	.		11/03/15 04:43	
1,2,4-Trichlorobenzene	ND		5.5		ug/Kg	*		11/03/15 04:43	
1,2-Dibromo-3-Chloropropane	ND		5.5		ug/Kg			11/03/15 04:43	
1,2-Dichlorobenzene	ND		5.5		ug/Kg	₩.		11/03/15 04:43	
1,2-Dichloroethane	ND	*	5.5		ug/Kg	☼	10/27/15 16:40	11/03/15 04:43	
1,2-Dichloropropane	ND		5.5	2.7	ug/Kg	☼	10/27/15 16:40	11/03/15 04:43	
1,3-Dichlorobenzene	ND		5.5	0.28	ug/Kg	₽	10/27/15 16:40	11/03/15 04:43	
1,4-Dichlorobenzene	ND		5.5	0.77	ug/Kg	₩	10/27/15 16:40	11/03/15 04:43	
1,4-Dioxane	ND		110	24	ug/Kg	₩	10/27/15 16:40	11/03/15 04:43	
2-Hexanone	ND		27	2.7	ug/Kg	₽	10/27/15 16:40	11/03/15 04:43	
Acetone	ND		27	4.6	ug/Kg	☼	10/27/15 16:40	11/03/15 04:43	
Benzene	ND		5.5	0.27	ug/Kg	₩	10/27/15 16:40	11/03/15 04:43	
3romoform	ND		5.5	2.7	ug/Kg	₽	10/27/15 16:40	11/03/15 04:43	
Bromomethane	ND		5.5	0.49	ug/Kg	₽	10/27/15 16:40	11/03/15 04:43	
Carbon disulfide	ND		5.5	2.7	ug/Kg	☼	10/27/15 16:40	11/03/15 04:43	
Carbon tetrachloride	ND	*	5.5	0.53	ug/Kg		10/27/15 16:40	11/03/15 04:43	
Chlorobenzene	ND		5.5	0.72	ug/Kg	≎	10/27/15 16:40	11/03/15 04:43	
Bromochloromethane	ND		5.5	0.40	ug/Kg	≎	10/27/15 16:40	11/03/15 04:43	
Dibromochloromethane	ND		5.5	0.70	ug/Kg	₽	10/27/15 16:40	11/03/15 04:43	
Chloroethane	ND		5.5	1.2	ug/Kg	₽	10/27/15 16:40	11/03/15 04:43	
Chloroform	ND	*	5.5	0.34	ug/Kg	₩	10/27/15 16:40	11/03/15 04:43	
Chloromethane	ND		5.5		ug/Kg		10/27/15 16:40	11/03/15 04:43	
cis-1,2-Dichloroethene	ND		5.5		ug/Kg	☼	10/27/15 16:40	11/03/15 04:43	
cis-1,3-Dichloropropene	ND		5.5		ug/Kg	≎	10/27/15 16:40	11/03/15 04:43	
Cyclohexane	ND		5.5		ug/Kg	 \$		11/03/15 04:43	
Bromodichloromethane	ND		5.5		ug/Kg	₽		11/03/15 04:43	
Dichlorodifluoromethane	ND		5.5		ug/Kg	₩		11/03/15 04:43	
Ethylbenzene	ND		5.5		ug/Kg			11/03/15 04:43	
1,2-Dibromoethane (EDB)	ND		5.5		ug/Kg	₩		11/03/15 04:43	
sopropylbenzene	ND		5.5		ug/Kg		10/27/15 16:40		
Methyl acetate	ND		5.5		ug/Kg		10/27/15 16:40		
2-Butanone (MEK)	ND ND		27		ug/Kg ug/Kg	≎		11/03/15 04:43	
I-Methyl-2-pentanone (MIBK)	ND		27		ug/Kg ug/Kg	☼		11/03/15 04:43	
								11/03/15 04:43	
Methyl tert-butyl ether	ND		5.5		ug/Kg				
Methylcyclohexane	ND		5.5		ug/Kg	₽		11/03/15 04:43	
Methylene Chloride	5.3	JB	5.5		ug/Kg			11/03/15 04:43	
Styrene	ND		5.5		ug/Kg	₽		11/03/15 04:43	
Tetrachloroethene	ND		5.5		ug/Kg	φ.		11/03/15 04:43	
Foluene	ND		5.5		ug/Kg	<u>.</u> .		11/03/15 04:43	
rans-1,2-Dichloroethene	ND		5.5		ug/Kg	₩.		11/03/15 04:43	
rans-1,3-Dichloropropene	ND		5.5		ug/Kg	*		11/03/15 04:43	
Trichloroethene	ND		5.5		ug/Kg			11/03/15 04:43	
Trichlorofluoromethane	1.3	J	5.5	0.52	ug/Kg	₽	10/27/15 16:40	11/03/15 04:43	

TestAmerica Buffalo

2

4

6

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Client Sample ID: SWMU 7-BLDG16-03

Date Collected: 10/26/15 16:00

Lab Sample ID: 480-89883-14

Matrix: Solid Percent Solids: 89.9

Date Received: 10/27/15 09:00 Po

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.5		0.67	ug/Kg	-	10/27/15 16:40	11/03/15 04:43	1
Xylenes, Total	ND		11		0.92	ug/Kg	÷	10/27/15 16:40	11/03/15 04:43	1
Tetrahydrofuran	ND		11		3.2	ug/Kg	ф	10/27/15 16:40	11/03/15 04:43	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\				10/27/15 16:40	11/03/15 04:43	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		64 - 126					10/27/15 16:40	11/03/15 04:43	1
Toluene-d8 (Surr)	105		71 - 125					10/27/15 16:40	11/03/15 04:43	1
4-Bromofluorobenzene (Surr)	89		72 - 126					10/27/15 16:40	11/03/15 04:43	1
Dibromofluoromethane (Surr)	106		60 - 140					10/27/15 16:40	11/03/15 04:43	1

4

6

8

9

10

12

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-15

Matrix: Water

Client Sample ID: EB01 Date Collected: 10/26/15 16:30

Method: 8260C - Volatile Organ Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Ana
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			11/05/
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			11/05/
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			11/05/
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			11/05/
1,1-Dichloroethane	ND		1.0	0.38	ug/L			11/05/
1,1-Dichloroethene	ND		1.0	0.29	ug/L			11/05/
1,2,3-Trichlorobenzene	ND		1.0	0.41	ug/L			11/05/
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			11/05/
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			11/05/
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			11/05/
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			11/05/
1,2-Dichloroethane	ND		1.0	0.21	ug/L			11/05/
1,2-Dichloropropane	ND		1.0	0.72	ug/L			11/05/
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			11/05/
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			11/05/
1,4-Dioxane	ND		40	9.3	ug/L			11/05/
2-Butanone (MEK)	ND		10	1.3	ug/L			11/05/
2-Hexanone	ND	*	5.0	1.2	ug/L			11/05/
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			11/05/
Acetone	ND		10	3.0	ug/L			11/05/
Benzene	ND		1.0	0.41	ug/L			11/05/
Bromochloromethane	ND		1.0	0.87	ug/L			11/05/
Bromodichloromethane	ND		1.0	0.39	ug/L			11/05/
Bromoform	ND		1.0	0.26	ug/L			11/05/
Bromomethane	ND		1.0	0.69	ug/L			11/05/
Carbon disulfide	ND		1.0	0.19	ug/L			11/05/
Carbon tetrachloride	ND		1.0	0.27	-			11/05/
Chlorobenzene	ND		1.0	0.75	ug/L			11/05/
Chloroethane	ND		1.0	0.32	ug/L			11/05/
								:

Analyte	Result (MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			11/05/15 12:47	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			11/05/15 12:47	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			11/05/15 12:47	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			11/05/15 12:47	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			11/05/15 12:47	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			11/05/15 12:47	1
1,2,3-Trichlorobenzene	ND	1.0	0.41	ug/L			11/05/15 12:47	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			11/05/15 12:47	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			11/05/15 12:47	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			11/05/15 12:47	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			11/05/15 12:47	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			11/05/15 12:47	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			11/05/15 12:47	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			11/05/15 12:47	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			11/05/15 12:47	1
1,4-Dioxane	ND	40	9.3	ug/L			11/05/15 12:47	1
2-Butanone (MEK)	ND	10	1.3	ug/L			11/05/15 12:47	1
2-Hexanone	ND *	5.0	1.2	ug/L			11/05/15 12:47	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			11/05/15 12:47	1
Acetone	ND	10	3.0	ug/L			11/05/15 12:47	1
Benzene	ND	1.0	0.41	ug/L			11/05/15 12:47	1
Bromochloromethane	ND	1.0	0.87	ug/L			11/05/15 12:47	1
Bromodichloromethane	ND	1.0	0.39	ug/L			11/05/15 12:47	1
Bromoform	ND	1.0	0.26	ug/L			11/05/15 12:47	1
Bromomethane	ND	1.0	0.69	ug/L			11/05/15 12:47	1
Carbon disulfide	ND	1.0	0.19	ug/L			11/05/15 12:47	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			11/05/15 12:47	1
Chlorobenzene	ND	1.0	0.75	ug/L			11/05/15 12:47	1
Chloroethane	ND	1.0	0.32	ug/L			11/05/15 12:47	1
Chloroform	ND	1.0	0.34	ug/L			11/05/15 12:47	1
Chloromethane	ND	1.0	0.35	ug/L			11/05/15 12:47	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			11/05/15 12:47	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			11/05/15 12:47	1
Cyclohexane	ND	1.0	0.18	ug/L			11/05/15 12:47	1
Dibromochloromethane	ND	1.0	0.32	ug/L			11/05/15 12:47	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			11/05/15 12:47	1
Ethylbenzene	ND	1.0	0.74	ug/L			11/05/15 12:47	1
Isopropylbenzene	ND	1.0	0.79	ug/L			11/05/15 12:47	1
Methyl acetate	ND	2.5	1.3	ug/L			11/05/15 12:47	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			11/05/15 12:47	1
Methylcyclohexane	ND	1.0	0.16	ug/L			11/05/15 12:47	1
Methylene Chloride	ND	1.0	0.44	ug/L			11/05/15 12:47	1
Styrene	ND	1.0	0.73	ug/L			11/05/15 12:47	1
Tetrachloroethene	ND	1.0	0.36	ug/L			11/05/15 12:47	1
Tetrahydrofuran	ND	5.0	1.3	ug/L			11/05/15 12:47	1
Toluene	ND	1.0	0.51	ug/L			11/05/15 12:47	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			11/05/15 12:47	1
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			11/05/15 12:47	1
Trichloroethene	ND	1.0	0.46	ug/L			11/05/15 12:47	1

TestAmerica Buffalo

Page 63 of 130

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-15

Matrix: Water

Client Sample ID: EB01 Date Collected: 10/26/15 16:30

Date Received: 10/27/15 09:00

Method: 8260C - Volatile Org Analyte	•	Qualifier	RL	itiiiue	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		1.0		0.88	ug/L			11/05/15 12:47	1
Vinyl chloride	ND		1.0		0.90	ug/L			11/05/15 12:47	1
Xylenes, Total	ND		2.0		0.66	ug/L			11/05/15 12:47	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	ı	R <i>T</i>	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L						11/05/15 12:47	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		66 - 137						11/05/15 12:47	1
4-Bromofluorobenzene (Surr)	91		73 - 120						11/05/15 12:47	1
Toluene-d8 (Surr)	92		71 - 126						11/05/15 12:47	1
()										

Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND	5.1	0.49	ug/L		10/28/15 08:14	11/10/15 13:03	1
2,4,6-Trichlorophenol	ND	5.1	0.62	ug/L		10/28/15 08:14	11/10/15 13:03	1
2,4-Dichlorophenol	ND	5.1	0.52	ug/L		10/28/15 08:14	11/10/15 13:03	1
2,4-Dimethylphenol	ND *	5.1	0.51	ug/L		10/28/15 08:14	11/10/15 13:03	1
2,4-Dinitrophenol	ND	10	2.3	ug/L		10/28/15 08:14	11/10/15 13:03	1
2,4-Dinitrotoluene	ND	5.1	0.46	ug/L		10/28/15 08:14	11/10/15 13:03	1
2,6-Dinitrotoluene	ND	5.1	0.41	ug/L		10/28/15 08:14	11/10/15 13:03	1
2-Chloronaphthalene	ND	5.1	0.47	ug/L		10/28/15 08:14	11/10/15 13:03	1
2-Chlorophenol	ND	5.1	0.54	ug/L		10/28/15 08:14	11/10/15 13:03	1
2-Methylnaphthalene	ND	5.1	0.61	ug/L		10/28/15 08:14	11/10/15 13:03	1
2-Methylphenol	ND	5.1	0.41	ug/L		10/28/15 08:14	11/10/15 13:03	1
2-Nitroaniline	ND	10	0.43	ug/L		10/28/15 08:14	11/10/15 13:03	1
2-Nitrophenol	ND	5.1	0.49	ug/L		10/28/15 08:14	11/10/15 13:03	1
3,3'-Dichlorobenzidine	ND	5.1	0.41	ug/L		10/28/15 08:14	11/10/15 13:03	1
3-Nitroaniline	ND	10	0.49	ug/L		10/28/15 08:14	11/10/15 13:03	1
4,6-Dinitro-2-methylphenol	ND	10	2.2	ug/L		10/28/15 08:14	11/10/15 13:03	1
4-Bromophenyl phenyl ether	ND	5.1	0.46	ug/L		10/28/15 08:14	11/10/15 13:03	1
4-Chloro-3-methylphenol	ND	5.1	0.46	ug/L		10/28/15 08:14	11/10/15 13:03	1
4-Chloroaniline	ND	5.1	0.60	ug/L		10/28/15 08:14	11/10/15 13:03	1
4-Chlorophenyl phenyl ether	ND	5.1	0.36	ug/L		10/28/15 08:14	11/10/15 13:03	1
4-Methylphenol	ND	10	0.37	ug/L		10/28/15 08:14	11/10/15 13:03	1
4-Nitroaniline	ND	10	0.26	ug/L		10/28/15 08:14	11/10/15 13:03	1
4-Nitrophenol	ND	10	1.6	ug/L		10/28/15 08:14	11/10/15 13:03	1
Acenaphthene	ND	5.1	0.42	ug/L		10/28/15 08:14	11/10/15 13:03	1
Acenaphthylene	ND	5.1	0.39	ug/L		10/28/15 08:14	11/10/15 13:03	1
Acetophenone	ND	5.1	0.55	ug/L		10/28/15 08:14	11/10/15 13:03	1
Anthracene	ND	5.1	0.29	ug/L		10/28/15 08:14	11/10/15 13:03	1
Atrazine	ND	5.1	0.47	ug/L		10/28/15 08:14	11/10/15 13:03	1
Benzaldehyde	ND	5.1	0.27	ug/L		10/28/15 08:14	11/10/15 13:03	1
Benzo(a)anthracene	ND	5.1	0.37	ug/L		10/28/15 08:14	11/10/15 13:03	1
Benzo(a)pyrene	ND	5.1	0.48	ug/L		10/28/15 08:14	11/10/15 13:03	1
Benzo(b)fluoranthene	ND	5.1	0.35	ug/L		10/28/15 08:14	11/10/15 13:03	1
Benzo(g,h,i)perylene	ND	5.1	0.36	ug/L		10/28/15 08:14	11/10/15 13:03	1
Benzo(k)fluoranthene	ND	5.1	0.74	ug/L		10/28/15 08:14	11/10/15 13:03	1
Biphenyl	ND	5.1	0.67	ug/L		10/28/15 08:14	11/10/15 13:03	1

TestAmerica Buffalo

Page 64 of 130

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: EB01

Date Collected: 10/26/15 16:30

Date Received: 10/27/15 09:00

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-15

Matrix: Water

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued	d)
motious de la communicación de la composition (communicación)	~,

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
bis (2-chloroisopropyl) ether	ND		5.1	0.53	ug/L		10/28/15 08:14	11/10/15 13:03	1
Bis(2-chloroethoxy)methane	ND		5.1	0.36	ug/L		10/28/15 08:14	11/10/15 13:03	1
Bis(2-chloroethyl)ether	ND		5.1	0.41	ug/L		10/28/15 08:14	11/10/15 13:03	1
Bis(2-ethylhexyl) phthalate	ND		5.1	1.8	ug/L		10/28/15 08:14	11/10/15 13:03	1
Butyl benzyl phthalate	ND		5.1	0.43	ug/L		10/28/15 08:14	11/10/15 13:03	1
Caprolactam	ND		5.1	2.2	ug/L		10/28/15 08:14	11/10/15 13:03	1
Carbazole	ND		5.1	0.31	ug/L		10/28/15 08:14	11/10/15 13:03	1
Chrysene	ND		5.1	0.34	ug/L		10/28/15 08:14	11/10/15 13:03	1
Dibenz(a,h)anthracene	ND		5.1	0.43	ug/L		10/28/15 08:14	11/10/15 13:03	1
Dibenzofuran	ND		10	0.52	ug/L		10/28/15 08:14	11/10/15 13:03	1
Diethyl phthalate	ND		5.1	0.22	ug/L		10/28/15 08:14	11/10/15 13:03	1
Dimethyl phthalate	ND		5.1	0.37	ug/L		10/28/15 08:14	11/10/15 13:03	1
Di-n-butyl phthalate	ND		5.1	0.32	ug/L		10/28/15 08:14	11/10/15 13:03	1
Di-n-octyl phthalate	ND		5.1	0.48	ug/L		10/28/15 08:14	11/10/15 13:03	1
Fluoranthene	ND		5.1	0.41	ug/L		10/28/15 08:14	11/10/15 13:03	1
Fluorene	ND		5.1	0.37	ug/L		10/28/15 08:14	11/10/15 13:03	1
Hexachlorobenzene	ND		5.1	0.52	ug/L		10/28/15 08:14	11/10/15 13:03	1
Hexachlorobutadiene	ND		5.1	0.69	ug/L		10/28/15 08:14	11/10/15 13:03	1
Hexachlorocyclopentadiene	ND		5.1	0.60	ug/L		10/28/15 08:14	11/10/15 13:03	1
Hexachloroethane	ND		5.1	0.60	ug/L		10/28/15 08:14	11/10/15 13:03	1
Indeno(1,2,3-cd)pyrene	ND		5.1	0.48	ug/L		10/28/15 08:14	11/10/15 13:03	1
Isophorone	ND		5.1	0.44	ug/L		10/28/15 08:14	11/10/15 13:03	1
Naphthalene	ND		5.1	0.78	ug/L		10/28/15 08:14	11/10/15 13:03	1
Nitrobenzene	ND		5.1	0.30	ug/L		10/28/15 08:14	11/10/15 13:03	1
N-Nitrosodi-n-propylamine	ND		5.1	0.55	ug/L		10/28/15 08:14	11/10/15 13:03	1
N-Nitrosodiphenylamine	ND		5.1	0.52	ug/L		10/28/15 08:14	11/10/15 13:03	1
Pentachlorophenol	ND		10		ug/L		10/28/15 08:14	11/10/15 13:03	1
Phenanthrene	ND		5.1	0.45	ug/L		10/28/15 08:14	11/10/15 13:03	1
Phenol	ND		5.1	0.40	ug/L		10/28/15 08:14	11/10/15 13:03	1
Pyrene	ND		5.1		ug/L		10/28/15 08:14	11/10/15 13:03	1
Dimethylformamide	ND		20		ug/L		10/28/15 08:14	11/10/15 13:03	1

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	4.4	TJ	ug/L		3.25		10/28/15 08:14	11/10/15 13:03	1
Cyclohexane	33	TJN	ug/L		3.50	110-82-7	10/28/15 08:14	11/10/15 13:03	1
Unknown	290	TJ	ug/L		3.66		10/28/15 08:14	11/10/15 13:03	1
Unknown	3.3	TJ	ug/L		5.42		10/28/15 08:14	11/10/15 13:03	1
Decane	4.6	TJN	ug/L		6.66	124-18-5	10/28/15 08:14	11/10/15 13:03	1
Unknown	3.8	TJ	ug/L		10.71		10/28/15 08:14	11/10/15 13:03	1
Unknown	4.7	ΤJ	ug/L		11.30		10/28/15 08:14	11/10/15 13:03	1
Unknown	56	TJ	ug/L		11.70		10/28/15 08:14	11/10/15 13:03	1
Unknown	3.6	TJ	ug/L		12.05		10/28/15 08:14	11/10/15 13:03	1
Unknown	19	ΤJ	ug/L		12.32		10/28/15 08:14	11/10/15 13:03	1
Unknown	32	TJ	ug/L		12.77		10/28/15 08:14	11/10/15 13:03	1
Unknown	9.0	TJ	ug/L		13.22		10/28/15 08:14	11/10/15 13:03	1
Unknown	32	TJ	ug/L		13.55		10/28/15 08:14	11/10/15 13:03	1
Unknown	13	TJ	ug/L		14.01		10/28/15 08:14	11/10/15 13:03	1
Unknown	7.4	TJ	ug/L		14.59		10/28/15 08:14	11/10/15 13:03	1
Unknown	7.7	ΤJ	ug/L		14.93		10/28/15 08:14	11/10/15 13:03	1
Unknown	27	ΤJ	ug/L		14.96		10/28/15 08:14	11/10/15 13:03	1

TestAmerica Buffalo

Page 65 of 130

11/18/2015

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: EB01

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-15

Matrix: Water

Date Collected: 10/26/15 16:30 Date Received: 10/27/15 09:00

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continu

	_								
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	4.5	TJ	ug/L		15.43		10/28/15 08:14	11/10/15 13:03	1
Unknown	8.6	ΤJ	ug/L		16.11		10/28/15 08:14	11/10/15 13:03	1
Unknown	4.2	ΤJ	ug/L		16.48		10/28/15 08:14	11/10/15 13:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	84		52 - 132	-			10/28/15 08:14	11/10/15 13:03	1
2-Fluorobiphenyl	87		48 - 120				10/28/15 08:14	11/10/15 13:03	1
2-Fluorophenol	50		20 - 120				10/28/15 08:14	11/10/15 13:03	1
Nitrobenzene-d5	83		46 - 120				10/28/15 08:14	11/10/15 13:03	1
Phenol-d5	32		16 - 120				10/28/15 08:14	11/10/15 13:03	1
p-Terphenyl-d14	96		67 - 150				10/28/15 08:14	11/10/15 13:03	1

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND	H	5.0	0.48	ug/L		11/16/15 11:20	11/17/15 01:10	1
2,4,6-Trichlorophenol	ND	Н	5.0	0.61	ug/L		11/16/15 11:20	11/17/15 01:10	1
2,4-Dichlorophenol	ND	H *	5.0	0.51	ug/L		11/16/15 11:20	11/17/15 01:10	1
2,4-Dimethylphenol	ND	Н	5.0	0.50	ug/L		11/16/15 11:20	11/17/15 01:10	1
2,4-Dinitrophenol	ND	H *	10	2.2	ug/L		11/16/15 11:20	11/17/15 01:10	1
2,4-Dinitrotoluene	ND	Н	5.0	0.45	ug/L		11/16/15 11:20	11/17/15 01:10	1
2,6-Dinitrotoluene	ND	Н	5.0	0.40	ug/L		11/16/15 11:20	11/17/15 01:10	1
2-Chloronaphthalene	ND	Н	5.0	0.46	ug/L		11/16/15 11:20	11/17/15 01:10	1
2-Chlorophenol	ND	Н	5.0	0.53	ug/L		11/16/15 11:20	11/17/15 01:10	1
2-Methylnaphthalene	ND	Н	5.0	0.60	ug/L		11/16/15 11:20	11/17/15 01:10	1
2-Methylphenol	ND	Н	5.0	0.40	ug/L		11/16/15 11:20	11/17/15 01:10	1
2-Nitroaniline	ND	H *	10	0.42	ug/L		11/16/15 11:20	11/17/15 01:10	1
2-Nitrophenol	ND	H *	5.0	0.48	ug/L		11/16/15 11:20	11/17/15 01:10	1
3,3'-Dichlorobenzidine	ND	Н	5.0	0.40	ug/L		11/16/15 11:20	11/17/15 01:10	1
3-Nitroaniline	ND	Н	10	0.48	ug/L		11/16/15 11:20	11/17/15 01:10	1
4,6-Dinitro-2-methylphenol	ND	H *	10	2.2	ug/L		11/16/15 11:20	11/17/15 01:10	1
4-Bromophenyl phenyl ether	ND	H *	5.0	0.45	ug/L		11/16/15 11:20	11/17/15 01:10	1
4-Chloro-3-methylphenol	ND	Н	5.0	0.45	ug/L		11/16/15 11:20	11/17/15 01:10	1
4-Chloroaniline	ND	Н	5.0	0.59	ug/L		11/16/15 11:20	11/17/15 01:10	1
4-Chlorophenyl phenyl ether	ND	H *	5.0	0.35	ug/L		11/16/15 11:20	11/17/15 01:10	1
4-Methylphenol	ND	Н	10	0.36	ug/L		11/16/15 11:20	11/17/15 01:10	1
4-Nitroaniline	ND	Н	10	0.25	ug/L		11/16/15 11:20	11/17/15 01:10	1
4-Nitrophenol	ND	Н	10	1.5	ug/L		11/16/15 11:20	11/17/15 01:10	1
Acenaphthene	ND	Н	5.0	0.41	ug/L		11/16/15 11:20	11/17/15 01:10	1
Acenaphthylene	ND	Н	5.0	0.38	ug/L		11/16/15 11:20	11/17/15 01:10	1
Acetophenone	ND	Н	5.0	0.54	ug/L		11/16/15 11:20	11/17/15 01:10	1
Anthracene	ND	H *	5.0	0.28	ug/L		11/16/15 11:20	11/17/15 01:10	1
Atrazine	ND	Н	5.0	0.46	ug/L		11/16/15 11:20	11/17/15 01:10	1
Benzaldehyde	ND	Н	5.0	0.27	ug/L		11/16/15 11:20	11/17/15 01:10	1
Benzo(a)anthracene	ND	H *	5.0	0.36	ug/L		11/16/15 11:20	11/17/15 01:10	1
Benzo(a)pyrene	ND	H *	5.0	0.47	ug/L		11/16/15 11:20	11/17/15 01:10	1
Benzo(b)fluoranthene	ND	Н	5.0	0.34	ug/L		11/16/15 11:20	11/17/15 01:10	1
Benzo(g,h,i)perylene	ND	H *	5.0	0.35	ug/L		11/16/15 11:20	11/17/15 01:10	1
Benzo(k)fluoranthene	ND	Н	5.0	0.73	ug/L		11/16/15 11:20	11/17/15 01:10	1
Biphenyl	ND	Н	5.0		ug/L		11/16/15 11:20	11/17/15 01:10	1

TestAmerica Buffalo

3

4

6

8

10

4.0

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

TestAmerica Job ID: 480-89883-1

Client Sample ID: EB01 Lab Sample ID: 480-89883-15

Date Collected: 10/26/15 16:30 Matrix: Water
Date Received: 10/27/15 09:00

Method: 8270D - Semivolatile Analyte	Result	Qualifier	ŘL		Unit	D	Prepared	Analyzed	Dil Fac
bis (2-chloroisopropyl) ether	ND	Н	5.0	0.52	ug/L		11/16/15 11:20	11/17/15 01:10	1
Bis(2-chloroethoxy)methane	ND	Н	5.0	0.35	ug/L		11/16/15 11:20	11/17/15 01:10	1
Bis(2-chloroethyl)ether	ND	Н	5.0	0.40	ug/L		11/16/15 11:20	11/17/15 01:10	1
Bis(2-ethylhexyl) phthalate	ND	Н	5.0	1.8	ug/L		11/16/15 11:20	11/17/15 01:10	1
Butyl benzyl phthalate	ND	H *	5.0	0.42	ug/L		11/16/15 11:20	11/17/15 01:10	1
Caprolactam	ND	Н	5.0	2.2	ug/L		11/16/15 11:20	11/17/15 01:10	1
Carbazole	ND	Н	5.0	0.30	ug/L		11/16/15 11:20	11/17/15 01:10	1
Chrysene	ND	H *	5.0	0.33	ug/L		11/16/15 11:20	11/17/15 01:10	1
Dibenz(a,h)anthracene	ND	H *	5.0	0.42	ug/L		11/16/15 11:20	11/17/15 01:10	1
Dibenzofuran	ND	Н	10	0.51	ug/L		11/16/15 11:20	11/17/15 01:10	1
Diethyl phthalate	ND	H *	5.0	0.22	ug/L		11/16/15 11:20	11/17/15 01:10	1
Dimethyl phthalate	ND	Н	5.0	0.36	ug/L		11/16/15 11:20	11/17/15 01:10	1
Di-n-butyl phthalate	ND	H *	5.0	0.31	ug/L		11/16/15 11:20	11/17/15 01:10	1
Di-n-octyl phthalate	ND	Н	5.0	0.47	ug/L		11/16/15 11:20	11/17/15 01:10	1
Fluoranthene	ND	H *	5.0	0.40	ug/L		11/16/15 11:20	11/17/15 01:10	1
Fluorene	ND	Н	5.0	0.36	ug/L		11/16/15 11:20	11/17/15 01:10	1
Hexachlorobenzene	ND	Н	5.0	0.51	ug/L		11/16/15 11:20	11/17/15 01:10	1
Hexachlorobutadiene	ND	Н	5.0	0.68	ug/L		11/16/15 11:20	11/17/15 01:10	1
Hexachlorocyclopentadiene	ND	Н	5.0		ug/L		11/16/15 11:20	11/17/15 01:10	1
Hexachloroethane	ND	Н	5.0	0.59	ug/L		11/16/15 11:20	11/17/15 01:10	1
Indeno(1,2,3-cd)pyrene	ND	H *	5.0	0.47	ug/L		11/16/15 11:20	11/17/15 01:10	1
Isophorone	ND	H *	5.0	0.43	ug/L		11/16/15 11:20	11/17/15 01:10	1
Naphthalene	ND	Н	5.0	0.76	ug/L		11/16/15 11:20	11/17/15 01:10	1
Nitrobenzene	ND		5.0	0.29	-		11/16/15 11:20	11/17/15 01:10	1
N-Nitrosodi-n-propylamine	ND	Н	5.0	0.54	ug/L		11/16/15 11:20	11/17/15 01:10	1
N-Nitrosodiphenylamine	ND	H *	5.0	0.51	ug/L		11/16/15 11:20	11/17/15 01:10	1
Pentachlorophenol	ND	Н	10		ug/L		11/16/15 11:20	11/17/15 01:10	1
Phenanthrene	ND	H *	5.0		ug/L		11/16/15 11:20	11/17/15 01:10	1
Phenol	ND	Н	5.0	0.39	ug/L		11/16/15 11:20	11/17/15 01:10	1
Pyrene	ND	Н	5.0		ug/L		11/16/15 11:20	11/17/15 01:10	1
Dimethylformamide	ND	Н	20		ug/L		11/16/15 11:20	11/17/15 01:10	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown		THJ	ug/L	_	.43			11/17/15 01:10	
Unknown		THJ	ug/L	3	.45		11/16/15 11:20	11/17/15 01:10	1
Unknown	80	THJ	ug/L	3	.62		11/16/15 11:20	11/17/15 01:10	1
Cyclotetrasiloxane, octamethyl-		THJN	ug/L		.44	556-67-2		11/17/15 01:10	1
Unknown		THJ	ug/L		.64			11/17/15 01:10	1
Cyclohexasiloxane, dodecamethyl-		THJN	ug/L		.27	540-97-6		11/17/15 01:10	1
Unknown		THJ	ug/L		.73			11/17/15 01:10	1
Unknown		THJ	ug/L		.69			11/17/15 01:10	1
Unknown		THJ	ug/L		.30			11/17/15 01:10	1
Unknown		THJ	ug/L		.18			11/17/15 01:10	
Unknown		THJ	ug/L ug/L		.53			11/17/15 01:10	1
Unknown		T U I	ug/L		.00			11/17/15 01:10	,

TestAmerica Buffalo

11/16/15 11:20 11/17/15 01:10 11/16/15 11:20 11/17/15 01:10

11/16/15 11:20 11/17/15 01:10

11/16/15 11:20 11/17/15 01:10

11/16/15 11:20 11/17/15 01:10

11/16/15 11:20 11/17/15 01:10

Page 67 of 130

14.04

14.18

14.57

14.71

14.86

14.91

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

21 THJ

5.6 THJ

4.5 THJ

6.5 THJ

6.8 THJ

6.2 THJ

2

3

5

7

9

11

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: EB01

Date Collected: 10/26/15 16:30

Date Received: 10/27/15 09:00

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-15

Matrix: Water

	•	•	,	•		•			
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	17	THJ	ug/L		14.94		11/16/15 11:20	11/17/15 01:10	1
Eicosane	4.2	THJN	ug/L		15.27	112-95-8	11/16/15 11:20	11/17/15 01:10	1
Unknown	8.1	THJ	ug/L		16.45		11/16/15 11:20	11/17/15 01:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	71		52 - 132	-			11/16/15 11:20	11/17/15 01:10	1
2-Fluorobiphenyl	77		48 - 120				11/16/15 11:20	11/17/15 01:10	1
2-Fluorophenol	50		20 - 120				11/16/15 11:20	11/17/15 01:10	1
Nitrobenzene-d5	71		46 - 120				11/16/15 11:20	11/17/15 01:10	1
Phenol-d5	36		16 - 120				11/16/15 11:20	11/17/15 01:10	1
p-Terphenyl-d14	95		67 - 150				11/16/15 11:20	11/17/15 01:10	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	24	5.0	0.70	mg/L			10/29/15 09:07	5
Isobutyl alcohol	ND	5.0	1.9	mg/L			10/29/15 09:07	5
Methanol	ND	5.0	2.0	mg/L			10/29/15 09:07	5
n-Butanol	ND	5.0	2.0	mg/L			10/29/15 09:07	5
Propanol	ND	5.0	0.80	mg/L			10/29/15 09:07	5
2-Butanol	ND	5.0	0.85	mg/L			10/29/15 09:07	5
Isopropyl alcohol	ND	5.0	0.60	mg/L			10/29/15 09:07	5
t-Butyl alcohol	ND	5.0	0.50	mg/L			10/29/15 09:07	5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Hexanone	22	X	62 - 129		10/29/15 09:07	5

Method: 8082A - Polych	Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography										
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
PCB-1016	ND -	0.47	0.17	ug/L		10/28/15 08:58	10/28/15 20:28	1			
PCB-1221	ND	0.47	0.17	ug/L		10/28/15 08:58	10/28/15 20:28	1			
PCB-1232	ND	0.47	0.17	ug/L		10/28/15 08:58	10/28/15 20:28	1			
PCB-1242	ND	0.47	0.17	ug/L		10/28/15 08:58	10/28/15 20:28	1			
PCB-1248	ND	0.47	0.17	ug/L		10/28/15 08:58	10/28/15 20:28	1			
PCB-1254	ND	0.47	0.24	ug/L		10/28/15 08:58	10/28/15 20:28	1			
PCB-1260	ND	0.47	0.24	ug/L		10/28/15 08:58	10/28/15 20:28	1			

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	104		24 - 137	10/28/15 08:58	10/28/15 20:28	1
DCB Decachlorobiphenyl	52		19 - 125	10/28/15 08:58	10/28/15 20:28	1

Method:	6010C	- Metal	s (ICP)
---------	-------	---------	---------

Welliou. 60 100 - Welais (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		10/28/15 08:10	10/28/15 20:18	1
Barium	ND		0.0020	0.00070	mg/L		10/28/15 08:10	10/28/15 20:18	1
Cadmium	ND		0.0020	0.00050	mg/L		10/28/15 08:10	10/28/15 20:18	1
Chromium	ND		0.0040	0.0010	mg/L		10/28/15 08:10	10/28/15 20:18	1
Lead	ND		0.010	0.0030	mg/L		10/28/15 08:10	10/28/15 20:18	1
Selenium	ND		0.025	0.0087	mg/L		10/28/15 08:10	10/28/15 20:18	1
Silver	ND		0.0060	0.0017	mg/L		10/28/15 08:10	10/28/15 20:18	1

TestAmerica Buffalo

Page 68 of 130

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Client Sample ID: EB01

Lab Sample ID: 480-89883-15

Matrix: Water

Date Collected: 10/26/15 16:30 Date Received: 10/27/15 09:00

Method: 7470A - Mercury (CVAA)

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	ma/l		10/29/15 12:00	10/29/15 17:34	

3

4

5

b

8

10

11

13

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Lab Sample ID: 480-89883-16

Matrix: Water

Client Sample ID: TB01
Date Collected: 10/26/15 00:00
Date Received: 10/27/15 09:00

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			11/05/15 13:14	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			11/05/15 13:14	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			11/05/15 13:14	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			11/05/15 13:14	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			11/05/15 13:14	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			11/05/15 13:14	
1,2,3-Trichlorobenzene	ND	1.0	0.41	ug/L			11/05/15 13:14	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			11/05/15 13:14	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			11/05/15 13:14	
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			11/05/15 13:14	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			11/05/15 13:14	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			11/05/15 13:14	
1,2-Dichloropropane	ND	1.0	0.72	ug/L			11/05/15 13:14	
1,3-Dichlorobenzene	ND	1.0		ug/L			11/05/15 13:14	
1,4-Dichlorobenzene	ND	1.0		ug/L			11/05/15 13:14	
1,4-Dioxane	ND	40		ug/L			11/05/15 13:14	
2-Butanone (MEK)	ND	10		ug/L			11/05/15 13:14	
2-Hexanone	ND *	5.0		ug/L			11/05/15 13:14	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			11/05/15 13:14	
Acetone	ND	10		ug/L			11/05/15 13:14	
Benzene	ND	1.0		ug/L			11/05/15 13:14	
Bromochloromethane	ND	1.0		ug/L			11/05/15 13:14	
Bromodichloromethane	ND	1.0		ug/L			11/05/15 13:14	
Bromoform	ND	1.0		ug/L			11/05/15 13:14	
3romomethane	ND	1.0		ug/L			11/05/15 13:14	
Carbon disulfide	ND	1.0		ug/L			11/05/15 13:14	
Carbon tetrachloride	ND	1.0		ug/L			11/05/15 13:14	
Chlorobenzene	ND	1.0		ug/L			11/05/15 13:14	
Chloroethane	ND	1.0		ug/L			11/05/15 13:14	
Chloroform	ND	1.0		ug/L			11/05/15 13:14	
Chloromethane	ND	1.0		ug/L			11/05/15 13:14	
cis-1,2-Dichloroethene	ND	1.0		ug/L			11/05/15 13:14	
cis-1,3-Dichloropropene	ND	1.0		ug/L			11/05/15 13:14	
Cyclohexane	ND	1.0		ug/L			11/05/15 13:14	
Dibromochloromethane	ND	1.0		ug/L			11/05/15 13:14	
Dichlorodifluoromethane	ND	1.0		ug/L			11/05/15 13:14	
Ethylbenzene	ND	1.0		ug/L			11/05/15 13:14	
sopropylbenzene	ND	1.0		ug/L			11/05/15 13:14	
Methyl acetate	ND ND	2.5		ug/L ug/L			11/05/15 13:14	
				-				
Methyl tert-butyl ether	ND ND	1.0		ug/L			11/05/15 13:14	
Methylcyclohexane	ND ND	1.0		ug/L			11/05/15 13:14 11/05/15 13:14	
Methylene Chloride	ND ND	1.0		ug/L				
Styrene	ND ND	1.0		ug/L			11/05/15 13:14	
Tetrachloroethene	ND ND	1.0		ug/L			11/05/15 13:14	
Fetrahydrofuran	ND	5.0		ug/L			11/05/15 13:14	
Toluene	ND	1.0		ug/L			11/05/15 13:14	
trans-1,2-Dichloroethene	ND	1.0		ug/L			11/05/15 13:14	
trans-1,3-Dichloropropene	ND	1.0		ug/L			11/05/15 13:14	
Trichloroethene	ND	1.0	0.46	ug/L			11/05/15 13:14	

TestAmerica Buffalo

3

4

6

8

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Client Sample ID: TB01 Lab Sample ID: 480-89883-16

Date Collected: 10/26/15 00:00 Matrix: Water Date Received: 10/27/15 09:00

Analyte	Result	Qualifier	RL		MDL	Unit		Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		1.0		0.88	ug/L			11/05/15 13:14	1
Vinyl chloride	ND		1.0		0.90	ug/L			11/05/15 13:14	1
Xylenes, Total	ND		2.0		0.66	ug/L			11/05/15 13:14	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L						11/05/15 13:14	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		66 - 137						11/05/15 13:14	1
4-Bromofluorobenzene (Surr)	90		73 - 120						11/05/15 13:14	1
Toluene-d8 (Surr)	91		71 - 126						11/05/15 13:14	1
Dibromofluoromethane (Surr)	105		60 - 140						11/05/15 13:14	

_

5

7

8

10

13

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Red
		12DCE	TOL	BFB	DBFM
Lab Sample ID	Client Sample ID	(64-126)	(71-125)	(72-126)	(60-140)
480-89883-1	SWMU 26-SURFACE-SS-01	100	101	98	101
480-89883-2	SWMU 23-SURFACE-SS-01	99	104	94	101
480-89883-3	SWMU 7-SURFACE-SS-01	99	104	95	102
480-89883-4	SWMU 13-SURFACE-SS-01	102	102	99	103
480-89883-5	SWMU 12-SURFACE-SS-01	103	102	98	103
480-89883-6	SWMU 6-SURFACE-SS-01	99	104	91	102
480-89883-7	SWMU 24-SURFACE-SS-01	97	105	94	103
480-89883-8	SWMU 5-SURFACE-SS-01	102	104	90	104
480-89883-9	SWMU 15-SURFACE-SS-01	99	105	92	103
480-89883-10	SWMU 17-SURFACE-SS-01	101	103	94	106
480-89883-11	SWMU 17-SURFACE-SS-99	100	105	93	104
480-89883-12	SWMU 7-BLDG16-01	101	105	95	105
480-89883-13	SWMU 7-BLDG16-02	101	105	97	107
480-89883-14	SWMU 7-BLDG16-03	102	105	89	106
LCS 480-271446/1-A	Lab Control Sample	97	104	100	101
LCSD 480-271446/2-A	Lab Control Sample Dup	94	103	99	100
MB 480-271446/3-A	Method Blank	95	102	97	100
Surrogate Legend					

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

_		Percent Surrogate Recovery (Acceptance Limits)							
		12DCE	BFB	TOL	DBFM				
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)	(60-140)				
480-89883-15	EB01	98	91	92	103				
480-89883-16	TB01	99	90	91	105				
LCS 480-273201/4	Lab Control Sample	94	95	91	88				
MB 480-273201/7	Method Blank	98	92	92	102				

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)							
		TBP	FBP	2FP	NBZ	TPH	PHL			
Lab Sample ID	Client Sample ID	(39-146)	(37-120)	(18-120)	(34-132)	(65-153)	(11-120)			
480-89883-1	SWMU 26-SURFACE-SS-01	81	82	73	70	83	78			
480-89883-1 MS	SWMU 26-SURFACE-SS-01	84	83	70	71	84	78			
480-89883-1 MSD	SWMU 26-SURFACE-SS-01	81	84	72	71	80	77			

TestAmerica Buffalo

Page 72 of 130

6

3

4

6

0

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)							
		TBP	FBP	2FP	NBZ	TPH	PHL			
Lab Sample ID	Client Sample ID	(39-146)	(37-120)	(18-120)	(34-132)	(65-153)	(11-120)			
480-89883-2	SWMU 23-SURFACE-SS-01	89	89	82	78	91	87			
480-89883-3	SWMU 7-SURFACE-SS-01	84	84	71	68	86	78			
180-89883-4	SWMU 13-SURFACE-SS-01	120	87	75	73	84	80			
480-89883-5	SWMU 12-SURFACE-SS-01	81	83	75	71	84	76			
480-89883-6	SWMU 6-SURFACE-SS-01	122	73	65	58	74	69			
180-89883-7	SWMU 24-SURFACE-SS-01	0 X	0 X	0 X	0 X	0 X	0 X			
180-89883-8	SWMU 5-SURFACE-SS-01	84	87	74	70	82	81			
180-89883-8 - RE	SWMU 5-SURFACE-SS-01	76	78	71	67	81	74			
80-89883-9	SWMU 15-SURFACE-SS-01	125	83	78	71	80	68			
80-89883-10	SWMU 17-SURFACE-SS-01	78	82	74	68	83	80			
180-89883-11	SWMU 17-SURFACE-SS-99	93	82	76	62	81	76			
_CS 480-272209/2-A	Lab Control Sample	97	92	88	86	95	93			
CS 480-274556/2-A	Lab Control Sample	92	83	75	79	92	80			
/IB 480-272209/1-A	Method Blank	80	95	89	84	99	93			
MB 480-274556/1-A	Method Blank	82	80	73	76	99	78			

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

TPH = p-Terphenyl-d14

PHL = Phenol-d5

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)								
		TBP	FBP	2FP	NBZ	PHL	TPH			
Lab Sample ID	Client Sample ID	(52-132)	(48-120)	(20-120)	(46-120)	(16-120)	(67-150)			
480-89883-15	EB01	84	87	50	83	32	96			
480-89883-15 - RE	EB01	71	77	50	71	36	95			
LCS 480-271548/2-A	Lab Control Sample	85	87	56	72	43	97			
LCS 480-275176/2-A	Lab Control Sample	85	83	69	91	51	100			
LCSD 480-271548/3-A	Lab Control Sample Dup	85	87	57	74	43	96			
LCSD 480-275176/3-A	Lab Control Sample Dup	69	73	57	75	42	85			
MB 480-271548/1-A	Method Blank	75	91	50	81	35	95			
MB 480-275176/1-A	Method Blank	73	79	60	81	41	97			

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPH = p-Terphenyl-d14

Page 73 of 130

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC)

Matrix: Solid Prep Type: Soluble

			Percent Surrogate Recovery (Acceptance Limits)
		2HN1	
Lab Sample ID	Client Sample ID	(30-137)	
480-89883-1	SWMU 26-SURFACE-SS-01	99	
480-89883-1 MS	SWMU 26-SURFACE-SS-01	92	
480-89883-1 MSD	SWMU 26-SURFACE-SS-01	89	
480-89883-2	SWMU 23-SURFACE-SS-01	100	
480-89883-3	SWMU 7-SURFACE-SS-01	92	
480-89883-4	SWMU 13-SURFACE-SS-01	81	
480-89883-5	SWMU 12-SURFACE-SS-01	86	
480-89883-6	SWMU 6-SURFACE-SS-01	88	
480-89883-7	SWMU 24-SURFACE-SS-01	88	
480-89883-8	SWMU 5-SURFACE-SS-01	93	
480-89883-9	SWMU 15-SURFACE-SS-01	87	
480-89883-10	SWMU 17-SURFACE-SS-01	88	
480-89883-11	SWMU 17-SURFACE-SS-99	91	
LCS 480-271929/2-A	Lab Control Sample	100	
MB 480-271929/1-A	Method Blank	115	
Surrogate Legend			

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)							
		2HN1							
Lab Sample ID	Client Sample ID	(62-129)							
480-89883-15	EB01	22 X							
LCS 480-271828/5	Lab Control Sample	116							
MB 480-271828/4	Method Blank	121							
Surrogate Legend									
2HN = 2-Hexanone									

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

			Perce	Percent Surrogate Recovery (Acceptance Limit				
		TCX2	DCB2					
₋ab Sample ID	Client Sample ID	(60-154)	(65-174)					
80-89883-1	SWMU 26-SURFACE-SS-01	100	101					
80-89883-2	SWMU 23-SURFACE-SS-01	97	98					
80-89883-3	SWMU 7-SURFACE-SS-01	100	100					
80-89883-4	SWMU 13-SURFACE-SS-01	95	98					
80-89883-5	SWMU 12-SURFACE-SS-01	97	102					
80-89883-6	SWMU 6-SURFACE-SS-01	94	98					
30-89883-7	SWMU 24-SURFACE-SS-01	95	95					
30-89883-8	SWMU 5-SURFACE-SS-01	97	102					
80-89883-9	SWMU 15-SURFACE-SS-01	101	100					
80-89883-10	SWMU 17-SURFACE-SS-01	92	95					
80-89883-11	SWMU 17-SURFACE-SS-99	100	101					
CS 480-271532/2-A	Lab Control Sample	109	116					

TestAmerica Buffalo

Page 74 of 130

G

3

4

_

Ö

10

12

4 4

Surrogate Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

DCB = DCB Decachlorobiphenyl

TestAmerica Job ID: 480-89883-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Matrix: Solid Prep Type: Total/NA

		TOVO		
Lab Sample ID Client	Sample ID	TCX2 (60-154)	DCB2 (65-174)	
MB 480-271532/1-A Method	l Blank	101	102	

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)							
		TCX1	DCB1						
Lab Sample ID	Client Sample ID	(24-137)	(19-125)						
480-89883-15	EB01	104	52						
LCS 480-271561/2-A	Lab Control Sample	107	56						
LCSD 480-271561/3-A	Lab Control Sample Dup	92	51						
MB 480-271561/1-A	Method Blank	97	63						

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

TestAmerica Buffalo

2

4

7

0

- -

12

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-271446/3-A

Matrix: Solid

Analysis Batch: 272636

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 271446

Analysis Betaly 272020								Deep Detake	
Analysis Batch: 272636	MB	MB						Prep Batch:	2/1446
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		4.9		ug/Kg	— <u> </u>		11/02/15 22:43	1
1,1,2,2-Tetrachloroethane	ND		4.9		ug/Kg		10/27/15 16:40	11/02/15 22:43	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.9		ug/Kg		10/27/15 16:40	11/02/15 22:43	1
1,1,2-Trichloroethane	ND		4.9		ug/Kg		10/27/15 16:40	11/02/15 22:43	1
1,1-Dichloroethane	ND		4.9		ug/Kg			11/02/15 22:43	1
1,1-Dichloroethene	ND		4.9		ug/Kg			11/02/15 22:43	1
1,2,3-Trichlorobenzene	ND		4.9		ug/Kg			11/02/15 22:43	1
1,2,4-Trichlorobenzene	ND		4.9		ug/Kg			11/02/15 22:43	1
1,2-Dibromo-3-Chloropropane	ND		4.9		ug/Kg			11/02/15 22:43	1
1,2-Dichlorobenzene	ND		4.9		ug/Kg			11/02/15 22:43	1
1,2-Dichloroethane	ND		4.9		ug/Kg			11/02/15 22:43	1
1,2-Dichloropropane	ND		4.9		ug/Kg			11/02/15 22:43	1
1,3-Dichlorobenzene	ND		4.9		ug/Kg			11/02/15 22:43	
1,4-Dichlorobenzene	ND		4.9		ug/Kg			11/02/15 22:43	1
1,4-Dioxane	ND		98		ug/Kg			11/02/15 22:43	1
2-Hexanone	ND		25		ug/Kg			11/02/15 22:43	
Acetone	ND		25		ug/Kg			11/02/15 22:43	1
Benzene	ND		4.9		ug/Kg			11/02/15 22:43	1
Bromochloromethane	ND		4.9		ug/Kg			11/02/15 22:43	
Bromoform	ND ND		4.9		ug/Kg ug/Kg			11/02/15 22:43	
Bromomethane	ND ND		4.9		ug/Kg ug/Kg			11/02/15 22:43	1
Carbon disulfide									1
	ND		4.9		ug/Kg			11/02/15 22:43	1
Carbon tetrachloride	ND ND		4.9		ug/Kg			11/02/15 22:43	1
Chlorobenzene			4.9		ug/Kg			11/02/15 22:43	1
Chloroethane	ND		4.9		ug/Kg			11/02/15 22:43	1
Bromodichloromethane	ND		4.9		ug/Kg			11/02/15 22:43	1
Chloroform	ND		4.9		ug/Kg			11/02/15 22:43	1
Chloromethane	ND		4.9		ug/Kg			11/02/15 22:43	1
cis-1,2-Dichloroethene	ND		4.9		ug/Kg			11/02/15 22:43	1
1,2-Dibromoethane (EDB)	ND		4.9		ug/Kg			11/02/15 22:43	1
cis-1,3-Dichloropropene	ND		4.9		ug/Kg			11/02/15 22:43	1
Cyclohexane	ND		4.9		ug/Kg			11/02/15 22:43	1
Dibromochloromethane	ND		4.9		ug/Kg			11/02/15 22:43	1
2-Butanone (MEK)	ND		25		ug/Kg			11/02/15 22:43	1
Dichlorodifluoromethane	ND		4.9		ug/Kg			11/02/15 22:43	1
4-Methyl-2-pentanone (MIBK)	ND		25		ug/Kg			11/02/15 22:43	
Ethylbenzene	ND		4.9		ug/Kg			11/02/15 22:43	1
Isopropylbenzene	ND		4.9		ug/Kg			11/02/15 22:43	1
Methyl acetate	ND		4.9		ug/Kg			11/02/15 22:43	1
Methyl tert-butyl ether	ND		4.9		ug/Kg			11/02/15 22:43	1
Methylcyclohexane	ND		4.9		ug/Kg			11/02/15 22:43	1
Methylene Chloride	5.53		4.9		ug/Kg			11/02/15 22:43	1
Styrene	ND		4.9		ug/Kg			11/02/15 22:43	1
Tetrachloroethene	ND		4.9		ug/Kg		10/27/15 16:40	11/02/15 22:43	1
Toluene	ND		4.9		ug/Kg			11/02/15 22:43	1
trans-1,2-Dichloroethene	ND		4.9		ug/Kg			11/02/15 22:43	1
trans-1,3-Dichloropropene	ND		4.9		ug/Kg			11/02/15 22:43	1
Trichloroethene	ND		4.9	1.1	ug/Kg		10/27/15 16:40	11/02/15 22:43	1

TestAmerica Buffalo

Page 76 of 130

9

3

4

6

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-2714 Matrix: Solid	46/3-A							•	le ID: Method Prep Type: To	
Analysis Batch: 272636	•••								Prep Batch:	271446
	MB	MB					_			
Analyte		Qualifier	RL			Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		4.9		0.46	ug/Kg		10/27/15 16:40	11/02/15 22:43	1
Vinyl chloride	ND		4.9		0.60	ug/Kg		10/27/15 16:40	11/02/15 22:43	1
Xylenes, Total	ND		9.8		0.83	ug/Kg		10/27/15 16:40	11/02/15 22:43	1
Tetrahydrofuran	ND		9.8		2.8	ug/Kg		10/27/15 16:40	11/02/15 22:43	1
	МВ	MB								
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg					10/27/15 16:40	11/02/15 22:43	1
	МВ	MB								
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		64 - 126					10/27/15 16:40	11/02/15 22:43	1
Toluene-d8 (Surr)	102		71 - 125					10/27/15 16:40	11/02/15 22:43	1
4-Bromofluorobenzene (Surr)	97		72 - 126					10/27/15 16:40	11/02/15 22:43	1
Dibromofluoromethane (Surr)	100		60 - 140					10/27/15 16:40	11/02/15 22:43	1

Lab Sample ID: LCS 480-271446/1-A Matrix: Solid				Clie	nt Sa	mple ID	: Lab Control Sample
							Prep Type: Total/NA Prep Batch: 271446
Analysis Batch: 272636	Spike	LCS	LCS				%Rec.
Analyte	Added	_	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	49.0	37.5		ug/Kg		77	
1,1,2,2-Tetrachloroethane	49.0	42.5		ug/Kg		87	80 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha ne	49.0	35.0		ug/Kg		71	60 - 140
1,1,2-Trichloroethane	49.0	42.6		ug/Kg		87	78 ₋ 122
1,1-Dichloroethane	49.0	39.5		ug/Kg		81	73 - 126
1,1-Dichloroethene	49.0	37.7		ug/Kg		77	59 - 125
1,2,3-Trichlorobenzene	49.0	38.5		ug/Kg		79	60 - 120
1,2,4-Trichlorobenzene	49.0	40.4		ug/Kg		82	64 - 120
1,2-Dibromo-3-Chloropropane	49.0	38.2		ug/Kg		78	63 - 124
1,2-Dichlorobenzene	49.0	42.0		ug/Kg		86	75 - 120
1,2-Dichloroethane	49.0	38.3		ug/Kg		78	77 - 122
1,2-Dichloropropane	49.0	40.9		ug/Kg		83	75 ₋ 124
1,3-Dichlorobenzene	49.0	42.3		ug/Kg		86	74 ₋ 120
1,4-Dichlorobenzene	49.0	42.0		ug/Kg		86	73 - 120
2-Hexanone	245	203		ug/Kg		83	59 ₋ 130
Acetone	245	174		ug/Kg		71	61 - 137
Benzene	49.0	40.9		ug/Kg		83	79 ₋ 127
Bromochloromethane	49.0	41.8		ug/Kg		85	75 ₋ 134
Bromoform	49.0	45.4		ug/Kg		93	68 - 126
Bromomethane	49.0	41.2		ug/Kg		84	37 - 149
Carbon disulfide	49.0	39.0		ug/Kg		80	64 - 131
Carbon tetrachloride	49.0	37.7		ug/Kg		77	75 ₋ 135
Chlorobenzene	49.0	43.2		ug/Kg		88	76 ₋ 124
Chloroethane	49.0	39.4		ug/Kg		80	69 - 135
Bromodichloromethane	49.0	43.0		ug/Kg		88	80 - 122
Chloroform	49.0	40.2		ug/Kg		82	80 - 118
Chloromethane	49.0	37.4		ug/Kg		76	63 - 127
cis-1,2-Dichloroethene	49.0	41.3		ug/Kg		84	81 - 117

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Matrix: Solid

Lab Sample ID: LCS 480-271446/1-A

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 271446

Analysis Batch: 272636	Spike	LCS	LCS				Prep Batch: 27144 %Rec.
Analyte	Added	_	Qualifier	Unit	D	%Rec	Limits
1,2-Dibromoethane (EDB)	49.0	43.4		ug/Kg	— –	89	78 - 120
cis-1,3-Dichloropropene	49.0	43.3		ug/Kg		88	82 - 120
Cyclohexane	49.0	34.6		ug/Kg		71	65 - 106
Dibromochloromethane	49.0	45.6		ug/Kg		93	76 - 125
2-Butanone (MEK)	245	199		ug/Kg		81	70 - 134
Dichlorodifluoromethane	49.0	32.4		ug/Kg		66	57 - 142
4-Methyl-2-pentanone (MIBK)	245	197		ug/Kg		80	65 - 133
Ethylbenzene	49.0	42.5		ug/Kg		87	80 - 120
Isopropylbenzene	49.0	41.8		ug/Kg		85	72 - 120
Methyl acetate	245	177		ug/Kg		72	55 - 136
Methyl tert-butyl ether	49.0	39.8		ug/Kg		81	63 - 125
Methylcyclohexane	49.0	35.7		ug/Kg		73	60 - 140
Methylene Chloride	49.0	39.4		ug/Kg		80	61 - 127
Styrene	49.0	44.0		ug/Kg		90	80 - 120
Tetrachloroethene	49.0	41.0		ug/Kg		84	74 - 122
Toluene	49.0	42.2		ug/Kg		86	74 - 128
trans-1,2-Dichloroethene	49.0	40.0		ug/Kg		82	78 - 126
trans-1,3-Dichloropropene	49.0	43.9		ug/Kg		90	73 - 123
Trichloroethene	49.0	40.7		ug/Kg		83	77 - 129
Trichlorofluoromethane	49.0	35.8		ug/Kg		73	65 - 146
Vinyl chloride	49.0	36.1		ug/Kg		74	61 - 133
Xylenes, Total	98.0	85.9		ug/Kg		88	70 - 130
Tetrahydrofuran	98.0	75.0		ug/Kg		77	64 - 113

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		64 - 126
Toluene-d8 (Surr)	104		71 - 125
4-Bromofluorobenzene (Surr)	100		72 - 126
Dibromofluoromethane (Surr)	101		60 - 140

Lab Sample ID: LCSD 480-271446/2-A

Matrix: Solid

Analysis Batch: 272636

Client Sample	ID: Lab	Control	Sample Dup)
		Prep Ty	/pe: Total/NA	

Prep Batch: 271446

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	48.6	35.6	*	ug/Kg		73	77 - 121	5	20
1,1,2,2-Tetrachloroethane	48.6	38.6	*	ug/Kg		79	80 - 120	10	20
1,1,2-Trichloro-1,2,2-trifluoroetha	48.6	32.4		ug/Kg		67	60 - 140	8	20
ne									
1,1,2-Trichloroethane	48.6	40.6		ug/Kg		83	78 - 122	5	20
1,1-Dichloroethane	48.6	37.7		ug/Kg		77	73 - 126	5	20
1,1-Dichloroethene	48.6	35.8		ug/Kg		74	59 - 125	5	20
1,2,3-Trichlorobenzene	48.6	37.7		ug/Kg		78	60 - 120	2	20
1,2,4-Trichlorobenzene	48.6	39.6		ug/Kg		81	64 - 120	2	20
1,2-Dibromo-3-Chloropropane	48.6	34.6		ug/Kg		71	63 - 124	10	20
1,2-Dichlorobenzene	48.6	40.5		ug/Kg		83	75 - 120	4	20
1,2-Dichloroethane	48.6	36.4	*	ug/Kg		75	77 - 122	5	20
1,2-Dichloropropane	48.6	39.5		ug/Kg		81	75 - 124	3	20

TestAmerica Buffalo

11/18/2015

Page 78 of 130

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 480-271446/2-A

Matrix: Solid

Analysis Batch: 272636

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 271446

	Spike LCSD LCS		LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,3-Dichlorobenzene	48.6	40.5		ug/Kg		83	74 - 120	5	20
1,4-Dichlorobenzene	48.6	40.4		ug/Kg		83	73 - 120	4	20
2-Hexanone	243	174		ug/Kg		72	59 - 130	15	20
Acetone	243	150		ug/Kg		62	61 - 137	15	20
Benzene	48.6	39.1		ug/Kg		80	79 - 127	5	20
Bromochloromethane	48.6	40.1		ug/Kg		82	75 - 134	4	20
Bromoform	48.6	41.8		ug/Kg		86	68 - 126	8	20
Bromomethane	48.6	49.5		ug/Kg		102	37 - 149	18	20
Carbon disulfide	48.6	37.6		ug/Kg		77	64 - 131	4	20
Carbon tetrachloride	48.6	35.5	*	ug/Kg		73	75 - 135	6	20
Chlorobenzene	48.6	41.2		ug/Kg		85	76 - 124	5	20
Chloroethane	48.6	41.5		ug/Kg		85	69 - 135	5	20
Bromodichloromethane	48.6	40.9		ug/Kg		84	80 - 122	5	20
Chloroform	48.6	38.5	*	ug/Kg		79	80 - 118	4	20
Chloromethane	48.6	34.1		ug/Kg		70	63 - 127	9	20
cis-1,2-Dichloroethene	48.6	39.7		ug/Kg		82	81 - 117	4	20
1,2-Dibromoethane (EDB)	48.6	40.5		ug/Kg		83	78 - 120	7	20
cis-1,3-Dichloropropene	48.6	41.0		ug/Kg		84	82 - 120	5	20
Cyclohexane	48.6	32.5		ug/Kg		67	65 - 106	6	20
Dibromochloromethane	48.6	43.4		ug/Kg		89	76 - 125	5	20
2-Butanone (MEK)	243	171		ug/Kg		70	70 - 134	15	20
Dichlorodifluoromethane	48.6	29.8		ug/Kg		61	57 - 142	9	20
4-Methyl-2-pentanone (MIBK)	243	170		ug/Kg		70	65 - 133	14	20
Ethylbenzene	48.6	40.2		ug/Kg		83	80 - 120	6	20
Isopropylbenzene	48.6	39.1		ug/Kg		80	72 - 120	7	20
Methyl acetate	243	154		ug/Kg		63	55 - 136	14	20
Methyl tert-butyl ether	48.6	37.5		ug/Kg		77	63 - 125	6	20
Methylcyclohexane	48.6	33.2		ug/Kg		68	60 - 140	7	20
Methylene Chloride	48.6	37.9		ug/Kg		78	61 - 127	4	20
Styrene	48.6	42.2		ug/Kg		87	80 - 120	4	20
Tetrachloroethene	48.6	38.5		ug/Kg		79	74 - 122	6	20
Toluene	48.6	40.0		ug/Kg		82	74 - 128	5	20
trans-1,2-Dichloroethene	48.6	38.3		ug/Kg		79	78 - 126	4	20
trans-1,3-Dichloropropene	48.6	41.8		ug/Kg		86	73 - 123	5	20
Trichloroethene	48.6	38.1		ug/Kg		78	77 - 129	7	20
Trichlorofluoromethane	48.6	31.9		ug/Kg		66	65 - 146	11	20
Vinyl chloride	48.6	33.0		ug/Kg		68	61 - 133	9	20
Xylenes, Total	97.3	82.3		ug/Kg		85	70 - 130	4	20
Tetrahydrofuran	97.3	64.4		ug/Kg		66	64 - 113	15	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		64 - 126
Toluene-d8 (Surr)	103		71 - 125
4-Bromofluorobenzene (Surr)	99		72 - 126
Dibromofluoromethane (Surr)	100		60 - 140

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-273201/7

Matrix: Water

Analysis Batch: 273201

Client Sample ID: Method Blank

Prep Type: Total/NA

Ameliate		MB			1114	_		A •	D.: -
Analyte		Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0		ug/L			11/05/15 10:16	1
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			11/05/15 10:16	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0		ug/L			11/05/15 10:16	1
1,1,2-Trichloroethane	ND		1.0		ug/L			11/05/15 10:16	1
1,1-Dichloroethane	ND		1.0		ug/L			11/05/15 10:16	1
1,1-Dichloroethene	ND		1.0		ug/L			11/05/15 10:16	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			11/05/15 10:16	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			11/05/15 10:16	1
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			11/05/15 10:16	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			11/05/15 10:16	1
1,2-Dichloroethane	ND		1.0		ug/L			11/05/15 10:16	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			11/05/15 10:16	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			11/05/15 10:16	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			11/05/15 10:16	1
1,4-Dioxane	ND		40	9.3	ug/L			11/05/15 10:16	1
2-Hexanone	ND		5.0	1.2	ug/L			11/05/15 10:16	1
Acetone	ND		10	3.0	ug/L			11/05/15 10:16	1
Benzene	ND		1.0	0.41	ug/L			11/05/15 10:16	1
Bromochloromethane	ND		1.0	0.87	ug/L			11/05/15 10:16	1
Bromoform	ND		1.0	0.26	ug/L			11/05/15 10:16	1
Bromomethane	ND		1.0		ug/L			11/05/15 10:16	1
Carbon disulfide	ND		1.0		ug/L			11/05/15 10:16	1
Carbon tetrachloride	ND		1.0		ug/L			11/05/15 10:16	1
Chlorobenzene	ND		1.0		ug/L			11/05/15 10:16	1
Chloroethane	ND		1.0		ug/L			11/05/15 10:16	1
Bromodichloromethane	ND		1.0		ug/L			11/05/15 10:16	1
Chloroform	ND		1.0		ug/L			11/05/15 10:16	1
Chloromethane	ND		1.0		ug/L			11/05/15 10:16	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			11/05/15 10:16	1
1,2-Dibromoethane (EDB)	ND		1.0		ug/L			11/05/15 10:16	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			11/05/15 10:16	1
Cyclohexane	ND		1.0		ug/L			11/05/15 10:16	1
Dibromochloromethane	ND		1.0		ug/L			11/05/15 10:16	1
2-Butanone (MEK)	ND		10		ug/L			11/05/15 10:16	1
Dichlorodifluoromethane	ND		1.0		ug/L			11/05/15 10:16	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			11/05/15 10:16	
Ethylbenzene	ND		1.0		ug/L			11/05/15 10:16	· · · · · · · · · · · · · · · · · · ·
Isopropylbenzene	ND		1.0		ug/L			11/05/15 10:16	1
Methyl acetate	ND		2.5		ug/L			11/05/15 10:16	1
Methyl tert-butyl ether	ND		1.0		ug/L			11/05/15 10:16	· · · · · · · · · · · · · · · · · · ·
Methylcyclohexane	ND		1.0		ug/L			11/05/15 10:16	1
Methylene Chloride	ND		1.0		ug/L			11/05/15 10:16	1
	ND							11/05/15 10:16	
Styrene Tetrachloroethene	ND ND		1.0 1.0		ug/L			11/05/15 10:16	1
					ug/L				1
Toluene	ND		1.0		ug/L			11/05/15 10:16	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			11/05/15 10:16	1
trans-1,3-Dichloropropene Trichloroethene	ND ND		1.0 1.0		ug/L ug/L			11/05/15 10:16 11/05/15 10:16	1 1

TestAmerica Buffalo

Page 80 of 130

11/05/15 10:16

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

2

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

102

Lab Sample ID: MB 480-273201/7

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 273201										
•	MB	MB								
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		1.0		0.88	ug/L			11/05/15 10:16	1
Vinyl chloride	ND		1.0		0.90	ug/L			11/05/15 10:16	1
Xylenes, Total	ND		2.0		0.66	ug/L			11/05/15 10:16	1
Tetrahydrofuran	ND		5.0		1.3	ug/L			11/05/15 10:16	1
	MB	МВ								
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L						11/05/15 10:16	1
	МВ	МВ								
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		66 - 137				•		11/05/15 10:16	1
Toluene-d8 (Surr)	92		71 - 126						11/05/15 10:16	1
4-Bromofluorobenzene (Surr)	92		73 - 120						11/05/15 10:16	1

Lab Sample ID: LCS 480-273201/4

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

60 - 140

Analysis Batch: 273201

cis-1,2-Dichloroethene

Dibromofluoromethane (Surr)

Spike Added 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	24.4 24.1 27.3 24.5 23.1 24.6	Qualifier	Unit ug/L ug/L ug/L ug/L ug/L	<u>D</u>	97 96 109 98 93	73 - 126 70 - 126 52 - 148 76 - 122
25.0 25.0 25.0 25.0 25.0 25.0	24.1 27.3 24.5 23.1 24.6		ug/L ug/L ug/L		96 109 98	70 - 126 52 - 148 76 - 122
25.0 25.0 25.0 25.0 25.0	27.3 24.5 23.1 24.6		ug/L		109	52 ₋ 148 76 ₋ 122
25.0 25.0 25.0 25.0	24.5 23.1 24.6		ug/L		98	76 - 122
25.0 25.0 25.0	23.1 24.6		•			
25.0 25.0 25.0	23.1 24.6		•			
25.0 25.0	24.6		ug/L		0.3	
25.0					90	71 - 129
	25.0		ug/L		98	58 - 121
25.0	25.6		ug/L		102	63 - 138
20.0	25.9		ug/L		104	70 - 122
25.0	22.3		ug/L		89	56 - 134
25.0	24.6		ug/L		99	80 - 124
25.0	22.2		ug/L		89	75 - 127
25.0	23.0		ug/L		92	76 - 120
25.0	25.1		ug/L		100	77 - 120
25.0	24.4		ug/L		98	75 - 120
125	170	*	ug/L		136	65 - 127
125	122		ug/L		97	56 - 142
25.0	23.0		ug/L		92	71 - 124
25.0	23.2		ug/L		93	72 - 130
25.0	24.8		ug/L		99	52 - 132
25.0	20.8		ug/L		83	55 ₋ 144
25.0	23.0		ug/L		92	59 - 134
25.0	26.3		ug/L		105	72 - 134
25.0	25.1		ug/L		100	72 - 120
25.0	21.8		ug/L		87	69 - 136
25.0	23.2		ug/L		93	80 - 122
25.0	22.6		ug/L		90	73 - 127
25.0	18.7		ug/L		75	68 - 124
	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	25.0 25.9 25.0 22.3 25.0 24.6 25.0 23.0 25.0 25.1 25.0 24.4 125 170 125 122 25.0 23.0 25.0 23.2 25.0 24.8 25.0 23.0 25.0 26.3 25.0 25.1 25.0 25.1 25.0 21.8 25.0 23.2 25.0 23.2 25.0 23.2 25.0 22.6	25.0 25.9 25.0 22.3 25.0 24.6 25.0 22.2 25.0 23.0 25.0 25.1 25.0 24.4 125 170 * 125 122 25.0 23.0 25.0 23.0 25.0 23.0 25.0 23.0 25.0 23.2 25.0 20.8 25.0 20.8 25.0 23.0 25.0 25.1 25.0 26.3 25.0 25.1 25.0 26.3 25.0 25.1 25.0 21.8 25.0 23.2 25.0 23.2	25.0 25.9 ug/L 25.0 22.3 ug/L 25.0 24.6 ug/L 25.0 22.2 ug/L 25.0 23.0 ug/L 25.0 25.1 ug/L 25.0 24.4 ug/L 125 170 * ug/L 125 122 ug/L 25.0 23.0 ug/L 25.0 23.2 ug/L 25.0 24.8 ug/L 25.0 20.8 ug/L 25.0 20.8 ug/L 25.0 25.1 ug/L 25.0 21.8 ug/L 25.0 25.1 ug/L 25.0 25.0 23.2 ug/L	25.0 25.9 ug/L 25.0 22.3 ug/L 25.0 24.6 ug/L 25.0 22.2 ug/L 25.0 23.0 ug/L 25.0 25.1 ug/L 25.0 24.4 ug/L 125 170 * ug/L 125 122 ug/L 25.0 23.0 ug/L 25.0 23.2 ug/L 25.0 24.8 ug/L 25.0 20.8 ug/L 25.0 25.1 ug/L 25.0 21.8 ug/L 25.0 25.1 ug/L 25.0 25.0 25.1 ug/L 25.0 25.0 25.1 ug/L 25.0 25.0 25.1 ug/L	25.0 25.9 ug/L 104 25.0 22.3 ug/L 89 25.0 24.6 ug/L 99 25.0 22.2 ug/L 89 25.0 23.0 ug/L 92 25.0 25.1 ug/L 100 25.0 24.4 ug/L 98 125 170 * ug/L 98 136 125 122 ug/L 97 25.0 23.0 ug/L 92 25.0 23.2 ug/L 93 25.0 24.8 ug/L 99 25.0 23.0 ug/L 83 25.0 23.0 ug/L 92 25.0 26.3 ug/L 92 25.0 25.1 ug/L 105 25.0 25.1 ug/L 90 25.0 21.8 ug/L 97 25.0 23.2 ug/L 93 25.0 22.6 ug/L 90

TestAmerica Buffalo

74 - 124

92

Page 81 of 130

23.1

ug/L

25.0

2

2

8

9

11

13

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-273201/4

Matrix: Water

Analysis Batch: 273201

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane (EDB)	25.0	24.2		ug/L		97	77 - 120	
cis-1,3-Dichloropropene	25.0	22.9		ug/L		92	74 - 124	
Cyclohexane	25.0	25.5		ug/L		102	59 - 135	
Dibromochloromethane	25.0	25.2		ug/L		101	75 - 125	
2-Butanone (MEK)	125	142		ug/L		114	57 - 140	
Dichlorodifluoromethane	25.0	19.2		ug/L		77	59 - 135	
4-Methyl-2-pentanone (MIBK)	125	118		ug/L		94	71 - 125	
Ethylbenzene	25.0	25.1		ug/L		100	77 - 123	
Isopropylbenzene	25.0	25.5		ug/L		102	77 - 122	
Methyl acetate	125	116		ug/L		93	74 - 133	
Methyl tert-butyl ether	25.0	21.2		ug/L		85	64 - 127	
Methylcyclohexane	25.0	27.5		ug/L		110	61 - 138	
Methylene Chloride	25.0	22.2		ug/L		89	57 - 132	
Styrene	25.0	24.7		ug/L		99	70 - 130	
Tetrachloroethene	25.0	27.7		ug/L		111	74 - 122	
Toluene	25.0	24.0		ug/L		96	80 - 122	
trans-1,2-Dichloroethene	25.0	23.4		ug/L		94	73 - 127	
trans-1,3-Dichloropropene	25.0	24.6		ug/L		98	72 - 123	
Trichloroethene	25.0	24.5		ug/L		98	74 - 123	
Trichlorofluoromethane	25.0	25.4		ug/L		102	62 - 152	
Vinyl chloride	25.0	21.9		ug/L		87	65 - 133	
Xylenes, Total	50.0	50.1		ug/L		100	76 - 122	
Tetrahydrofuran	50.0	43.3		ug/L		87	62 - 132	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		66 - 137
Toluene-d8 (Surr)	91		71 - 126
4-Bromofluorobenzene (Surr)	95		73 - 120
Dibromofluoromethane (Surr)	88		60 - 140

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-271548/1-A

Matrix: Water

Analysis Batch: 273999

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 271548**

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		5.0	0.48	ug/L		10/28/15 08:14	11/10/15 12:34	1
2,4,6-Trichlorophenol	ND		5.0	0.61	ug/L		10/28/15 08:14	11/10/15 12:34	1
2,4-Dichlorophenol	ND		5.0	0.51	ug/L		10/28/15 08:14	11/10/15 12:34	1
2,4-Dimethylphenol	ND		5.0	0.50	ug/L		10/28/15 08:14	11/10/15 12:34	1
2,4-Dinitrophenol	ND		10	2.2	ug/L		10/28/15 08:14	11/10/15 12:34	1
2,4-Dinitrotoluene	ND		5.0	0.45	ug/L		10/28/15 08:14	11/10/15 12:34	1
2,6-Dinitrotoluene	ND		5.0	0.40	ug/L		10/28/15 08:14	11/10/15 12:34	1
2-Chloronaphthalene	ND		5.0	0.46	ug/L		10/28/15 08:14	11/10/15 12:34	1
2-Chlorophenol	ND		5.0	0.53	ug/L		10/28/15 08:14	11/10/15 12:34	1
2-Methylnaphthalene	ND		5.0	0.60	ug/L		10/28/15 08:14	11/10/15 12:34	1
2-Methylphenol	ND		5.0	0.40	ug/L		10/28/15 08:14	11/10/15 12:34	1
I control of the cont									

TestAmerica Buffalo

Page 82 of 130

11/18/2015

QC Sample Results

Client: Woodard & Curran, Inc.

Project/Site: Rouses Point

TestAme

TestAmerica Job ID: 480-89883-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-271548/1-A

Matrix: Water

Analysis Batch: 273999

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 271548

Analysis Batch: 273999	MD	МВ						Prep Batch:	271548
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Nitroaniline	ND	- Qualifier	10		ug/L		•	11/10/15 12:34	1
2-Nitrophenol	ND		5.0		ug/L			11/10/15 12:34	
3,3'-Dichlorobenzidine	ND		5.0		ug/L			11/10/15 12:34	1
3-Nitroaniline	ND ND		10	0.48	U			11/10/15 12:34	1
					Ū				
4,6-Dinitro-2-methylphenol	ND		10		ug/L			11/10/15 12:34	1
4-Bromophenyl phenyl ether	ND		5.0		ug/L			11/10/15 12:34	1
4-Chloro-3-methylphenol	ND		5.0		ug/L			11/10/15 12:34	
4-Chloroaniline	ND		5.0		ug/L			11/10/15 12:34	1
4-Chlorophenyl phenyl ether	ND		5.0	0.35	-			11/10/15 12:34	1
4-Methylphenol	ND		10		ug/L			11/10/15 12:34	1
4-Nitroaniline	ND		10		ug/L			11/10/15 12:34	1
4-Nitrophenol	ND		10		ug/L			11/10/15 12:34	1
Acenaphthene	ND		5.0	0.41	-		10/28/15 08:14	11/10/15 12:34	1
Acenaphthylene	ND		5.0	0.38	-		10/28/15 08:14	11/10/15 12:34	1
Acetophenone	ND		5.0	0.54	ug/L		10/28/15 08:14	11/10/15 12:34	1
Anthracene	ND		5.0	0.28	ug/L		10/28/15 08:14	11/10/15 12:34	1
Atrazine	ND		5.0	0.46	ug/L		10/28/15 08:14	11/10/15 12:34	1
Benzaldehyde	ND		5.0	0.27	ug/L		10/28/15 08:14	11/10/15 12:34	1
Benzo(a)anthracene	ND		5.0	0.36	ug/L		10/28/15 08:14	11/10/15 12:34	1
Benzo(a)pyrene	ND		5.0	0.47	ug/L		10/28/15 08:14	11/10/15 12:34	1
Benzo(b)fluoranthene	ND		5.0	0.34	ug/L		10/28/15 08:14	11/10/15 12:34	1
Benzo(g,h,i)perylene	ND		5.0	0.35	-		10/28/15 08:14	11/10/15 12:34	1
Benzo(k)fluoranthene	ND		5.0		ug/L		10/28/15 08:14	11/10/15 12:34	1
Biphenyl	ND		5.0	0.65	-		10/28/15 08:14	11/10/15 12:34	1
bis (2-chloroisopropyl) ether	ND		5.0		ug/L			11/10/15 12:34	1
Bis(2-chloroethoxy)methane	ND		5.0		ug/L			11/10/15 12:34	1
Bis(2-chloroethyl)ether	ND		5.0		ug/L			11/10/15 12:34	1
Bis(2-ethylhexyl) phthalate	ND		5.0		ug/L			11/10/15 12:34	1
Butyl benzyl phthalate	ND		5.0	0.42	-			11/10/15 12:34	 1
Caprolactam	ND		5.0		ug/L			11/10/15 12:34	1
Carbazole	ND ND		5.0		ug/L			11/10/15 12:34	1
	ND		5.0		ug/L ug/L				
Chrysene					-			11/10/15 12:34	1
Dibenz(a,h)anthracene	ND		5.0	0.42	-			11/10/15 12:34	1
Dibenzofuran	ND		10	0.51	-			11/10/15 12:34	
Diethyl phthalate	ND		5.0	0.22	-			11/10/15 12:34	1
Dimethyl phthalate	ND		5.0	0.36				11/10/15 12:34	1
Di-n-butyl phthalate	ND		5.0		ug/L			11/10/15 12:34	
Di-n-octyl phthalate	ND		5.0		ug/L			11/10/15 12:34	1
Fluoranthene	ND		5.0		ug/L			11/10/15 12:34	1
Fluorene	ND		5.0		ug/L		10/28/15 08:14	11/10/15 12:34	1
Hexachlorobenzene	ND		5.0	0.51	ug/L		10/28/15 08:14	11/10/15 12:34	1
Hexachlorobutadiene	ND		5.0	0.68	ug/L		10/28/15 08:14	11/10/15 12:34	1
Hexachlorocyclopentadiene	ND		5.0	0.59	ug/L		10/28/15 08:14	11/10/15 12:34	1
Hexachloroethane	ND		5.0	0.59	ug/L		10/28/15 08:14	11/10/15 12:34	1
Indeno(1,2,3-cd)pyrene	ND		5.0	0.47	ug/L		10/28/15 08:14	11/10/15 12:34	1
Isophorone	ND		5.0	0.43	ug/L		10/28/15 08:14	11/10/15 12:34	1
Naphthalene	ND		5.0	0.76	ug/L		10/28/15 08:14	11/10/15 12:34	1
Nitrobenzene	ND		5.0		ug/L			11/10/15 12:34	1

TestAmerica Buffalo

Page 83 of 130

2

3

5

7

8

10

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

2-Nitroaniline

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-27154	48/1-A						•	le ID: Method	
Matrix: Water								Prep Type: To	
Analysis Batch: 273999								Prep Batch:	271548
		MB					_		
Analyte		Qualifier	RL		MDL Uni		Prepared	Analyzed	Dil Fac
N-Nitrosodi-n-propylamine	ND		5.0		0.54 ug/			11/10/15 12:34	1
N-Nitrosodiphenylamine	ND		5.0		0.51 ug/			11/10/15 12:34	1
Pentachlorophenol	ND		10		2.2 ug/			11/10/15 12:34	1
Phenanthrene	ND		5.0		0.44 ug/			11/10/15 12:34	1
Phenol	ND		5.0		0.39 ug/		10/28/15 08:14	11/10/15 12:34	1
Pyrene	ND		5.0		0.34 ug/		10/28/15 08:14	11/10/15 12:34	1
Dimethylformamide	ND		20		1.7 ug/	L	10/28/15 08:14	11/10/15 12:34	1
	МВ	МВ							
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Cyclohexane	14.1	TJN	ug/L		3.51	110-82-7	10/28/15 08:14	11/10/15 12:34	1
Unknown	244	TJ	ug/L		3.70		10/28/15 08:14	11/10/15 12:34	1
Pyridine	0.667	J	ug/L		4.47	110-86-1	10/28/15 08:14	11/10/15 12:34	1
Unknown	17.7	TJ	ug/L		5.43		10/28/15 08:14	11/10/15 12:34	1
Unknown	59.4	TJ	ug/L		11.70		10/28/15 08:14	11/10/15 12:34	1
Unknown	19.2	TJ	ug/L		12.32		10/28/15 08:14	11/10/15 12:34	1
Unknown	31.2	TJ	ug/L		12.77		10/28/15 08:14	11/10/15 12:34	1
Unknown	31.8	ΤJ	ug/L		13.55		10/28/15 08:14	11/10/15 12:34	1
Unknown	26.2	TJ	ug/L		14.05		10/28/15 08:14	11/10/15 12:34	1
Unknown	12.4	ΤJ	ug/L		14.93		10/28/15 08:14	11/10/15 12:34	1
Unknown	27.5	TJ	ug/L		14.96		10/28/15 08:14	11/10/15 12:34	1
Unknown	11.9	TJ	ug/L		16.10		10/28/15 08:14	11/10/15 12:34	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	75		52 - 132				10/28/15 08:14	11/10/15 12:34	1
2-Fluorobiphenyl	91		48 - 120				10/28/15 08:14	11/10/15 12:34	1
2-Fluorophenol	50		20 - 120				10/28/15 08:14	11/10/15 12:34	1
Nitrobenzene-d5	81		46 - 120				10/28/15 08:14	11/10/15 12:34	1
p-Terphenyl-d14	95		67 - 150				10/28/15 08:14	11/10/15 12:34	1
Phenol-d5	35		16 - 120				10/28/15 08:14	11/10/15 12:34	1

						Prep Type: Total/NA Prep Batch: 271548
Spike	LCS	LCS				%Rec.
Added	Result	Qualifier	Unit	D	%Rec	Limits
16.0	15.4		ug/L		96	65 - 126
16.0	15.3		ug/L		96	64 - 120
16.0	14.6		ug/L		91	64 - 120
16.0	8.01	*	ug/L		50	57 - 120
32.0	27.4		ug/L		85	42 - 153
16.0	15.6		ug/L		97	65 ₋ 154
16.0	15.1		ug/L		94	74 - 134
16.0	13.3		ug/L		83	41 - 124
16.0	12.1		ug/L		75	48 - 120
16.0	13.3		ug/L		83	34 - 122
16.0	9.87		ug/L		62	39 - 120
	Added 16.0 16.0 16.0 32.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0	Added Result 16.0 15.4 16.0 15.3 16.0 14.6 16.0 8.01 32.0 27.4 16.0 15.6 16.0 15.1 16.0 13.3 16.0 13.3 16.0 13.3	Added Result Qualifier 16.0 15.4 16.0 15.3 16.0 14.6 16.0 8.01 * 32.0 27.4 16.0 15.6 16.0 15.1 16.0 13.3 16.0 12.1 16.0 13.3	Added Result Qualifier Unit 16.0 15.4 ug/L 16.0 15.3 ug/L 16.0 14.6 ug/L 32.0 27.4 ug/L 16.0 15.6 ug/L 16.0 15.1 ug/L 16.0 13.3 ug/L 16.0 12.1 ug/L 16.0 13.3 ug/L	Added Result Qualifier Unit D 16.0 15.4 ug/L ug/L 16.0 15.3 ug/L ug/L 16.0 8.01 ug/L ug/L 32.0 27.4 ug/L 16.0 15.6 ug/L 16.0 15.1 ug/L 16.0 13.3 ug/L 16.0 12.1 ug/L 16.0 13.3 ug/L	Added Result Qualifier Unit D %Rec 16.0 15.4 ug/L 96 16.0 15.3 ug/L 96 16.0 14.6 ug/L 91 16.0 8.01 ug/L 50 32.0 27.4 ug/L 85 16.0 15.6 ug/L 97 16.0 15.1 ug/L 94 16.0 13.3 ug/L 83 16.0 12.1 ug/L 75 16.0 13.3 ug/L 83

TestAmerica Buffalo

Page 84 of 130

12.5

ug/L

78

67 - 136

16.0

QC Sample Results

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-271548/2-A Matrix: Water

Client Sample ID: L	ab Control Sample
P	rep Type: Total/NA
F	ren Batch: 271548

			ch: 271548	
D %F	% Rec Li	Rec. imits		

Analysis Batch: 273810	Spike	LCS	LCS				Prep Batch: 271548 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2-Nitrophenol	16.0	13.9		ug/L		87	59 - 120
3,3'-Dichlorobenzidine	32.0	32.1		ug/L		100	33 - 140
3-Nitroaniline	16.0	12.0		ug/L		75	28 - 130
4,6-Dinitro-2-methylphenol	32.0	29.9		ug/L		94	64 - 159
4-Bromophenyl phenyl ether	16.0	14.9		ug/L		93	71 - 126
4-Chloro-3-methylphenol	16.0	13.3		ug/L		83	64 - 120
4-Chloroaniline	16.0	7.13		ug/L		45	10 - 130
4-Chlorophenyl phenyl ether	16.0	15.0		ug/L		94	71 - 122
4-Methylphenol	16.0	10.5		ug/L		66	39 - 120
4-Nitroaniline	16.0	14.3		ug/L		89	47 - 130
4-Nitrophenol	32.0	21.2		ug/L		66	16 - 120
Acenaphthene	16.0	13.6		ug/L		85	60 - 120
Acenaphthylene	16.0	14.0		ug/L		87	63 - 120
Acetophenone	16.0	11.7		ug/L		73	45 - 120
Anthracene	16.0	14.7		ug/L		92	58 ₋ 148
Atrazine	32.0	31.7		ug/L		99	56 - 179
Benzaldehyde	32.0	10.9		ug/L		34	30 - 140
Benzo(a)anthracene	16.0	15.4		ug/L		96	55 ₋ 151
Benzo(a)pyrene	16.0	14.7		ug/L		92	60 - 145
Benzo(b)fluoranthene	16.0	15.0		ug/L		94	54 - 140
Benzo(g,h,i)perylene	16.0	20.8		ug/L		130	66 - 152
Benzo(k)fluoranthene	16.0	15.1		ug/L		94	51 - 153
Biphenyl	16.0	13.2		ug/L		83	30 - 140
bis (2-chloroisopropyl) ether	16.0	8.45		ug/L		53	28 - 136
Bis(2-chloroethoxy)methane	16.0	11.8		ug/L		74	50 - 128
Bis(2-chloroethyl)ether	16.0	10.6		ug/L		66	51 - 120
Bis(2-ethylhexyl) phthalate	16.0	16.7		ug/L		104	53 - 158
Butyl benzyl phthalate	16.0	15.0		ug/L		94	58 - 163
Caprolactam	32.0	9.41		ug/L		29	14 - 130
Carbazole	16.0	14.2		ug/L		89	59 - 148
Chrysene	16.0	15.0		ug/L		94	69 - 140
Dibenz(a,h)anthracene	16.0	17.7		ug/L		110	57 - 148
Dibenzofuran	16.0	14.1		ug/L		88	49 - 137
Diethyl phthalate	16.0	14.8		ug/L		92	59 - 146
Dimethyl phthalate	16.0	14.2		ug/L		89	59 ₋ 141
Di-n-butyl phthalate	16.0	14.6		ug/L		91	58 - 149
Di-n-octyl phthalate	16.0	16.6		ug/L		103	55 - 167
Fluoranthene	16.0	14.9		ug/L		93	55 ₋ 147
Fluorene	16.0	14.3		ug/L		89	55 ₋ 143
Hexachlorobenzene	16.0	13.7				86	14 - 130
Hexachlorobutadiene	16.0	14.5		ug/L ug/L		90	14 - 130
Hexachlorocyclopentadiene	16.0	14.5		_		90 74	13 - 130
				ug/L			
Hexachloroethane	16.0	11.3		ug/L		71 113	14 - 130 60 146
Indeno(1,2,3-cd)pyrene	16.0	18.1		ug/L		113	69 ₋ 146
Isophorone	16.0	11.8		ug/L		74	48 - 133
Naphthalene	16.0	12.5		ug/L		78 70	35 - 130 45 - 100
Nitrobenzene	16.0	11.5		ug/L		72	45 ₋ 123
N-Nitrosodi-n-propylamine	16.0	10.3		ug/L		64	56 - 120

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-271548/2-A **Matrix: Water**

Analysis Batch: 273810

N-Nitrosodiphenylamine

Pentachlorophenol

Phenanthrene

Analyte

Phenol

Pyrene

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 271548**

LCS LCS Spike %Rec. Result Qualifier Added Unit %Rec Limits 32.0 27.9 ug/L 87 25 - 125 32.0 22.6 ug/L 71 39 - 136 16.0 144 ug/L 90 57 - 147 16.0 6.69 ug/L 42 17 - 120 16.0 15.9 ug/L 99 58 - 136

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	85		52 - 132
2-Fluorobiphenyl	87		48 - 120
2-Fluorophenol	56		20 - 120
Nitrobenzene-d5	72		46 - 120
p-Terphenyl-d14	97		67 - 150
Phenol-d5	43		16 - 120

Client Sample ID: Lab Control Sample Dup

Matrix: Water

Anthracene

Benzaldehyde

Atrazine

Analysis Batch: 273810

Lab Sample ID: LCSD 480-271548/3-A

Prep Type: Total/NA **Prep Batch: 271548**

LCSD LCSD Spike %Rec. **RPD** Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit 18 2,4,5-Trichlorophenol 16.0 15.4 ug/L 96 65 - 126 n 2,4,6-Trichlorophenol 16.0 15.2 ug/L 95 64 - 120 0 19 2,4-Dichlorophenol 16.0 ug/L 93 64 - 120 19 149 2 2,4-Dimethylphenol 16.0 7.82 ug/L 49 57 - 120 2 42 2,4-Dinitrophenol 32.0 28.8 90 42 - 153 22 ug/L 5 101 65 - 1542,4-Dinitrotoluene 16.0 16.1 ug/L 3 20 2.6-Dinitrotoluene 16.0 15.0 ug/L 94 74 - 134 15 2-Chloronaphthalene 16.0 13.8 ug/L 86 41 - 124 3 21 2-Chlorophenol 16.0 12.4 ug/L 78 48 - 120 25 34 - 122 2-Methylnaphthalene 16.0 13.6 ug/L 85 2 21 2-Methylphenol 67 39 - 120 27 16.0 10.8 ug/L 75 2-Nitroaniline 16.0 ug/L 67 - 13615 12.1 2-Nitrophenol 16.0 14.4 ug/L 90 59 - 120 3 18 3,3'-Dichlorobenzidine 32.0 32.1 ug/L 100 33 - 140 O 25 3-Nitroaniline 16.0 11.8 ug/L 73 28 - 130 19 4,6-Dinitro-2-methylphenol 32.0 30.1 ug/L 94 64 - 159 15 4-Bromophenyl phenyl ether 16.0 14.6 ug/L 91 71 - 126 15 4-Chloro-3-methylphenol 16.0 13.4 84 64 - 120 27 ug/L 4-Chloroaniline 16.0 6.70 ug/L 42 10 - 130 6 22 4-Chlorophenyl phenyl ether 16.0 15.2 ug/L 95 71 - 12216 4-Methylphenol 16.0 10.6 ug/L 66 39 - 120 24 4-Nitroaniline 16.0 14.4 ug/L 90 47 - 130 24 4-Nitrophenol 32.0 21.4 ug/L 67 16 - 120 48 87 Acenaphthene 16.0 13.9 ug/L 60 - 120 24 86 2 Acenaphthylene 16.0 13.7 ug/L 63 - 120 18 Acetophenone 16.0 12.4 ug/L 78 45 - 120 20

TestAmerica Buffalo

2

15

20

20

90

98

36

58 - 148

56 - 179

30 - 140

Page 86 of 130

143

31.3

11.6

ug/L

ug/L

ug/L

16.0

32.0

32.0

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-271548/3-A

Matrix: Water

Analysis Batch: 273810

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 271548

•	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzo(a)anthracene	16.0	15.5		ug/L		97	55 - 151	1	15	
Benzo(a)pyrene	16.0	14.3		ug/L		89	60 - 145	3	15	
Benzo(b)fluoranthene	16.0	14.7		ug/L		92	54 - 140	2	15	
Benzo(g,h,i)perylene	16.0	20.1		ug/L		126	66 - 152	3	15	
Benzo(k)fluoranthene	16.0	14.8		ug/L		93	51 - 153	2	22	
Biphenyl	16.0	13.3		ug/L		83	30 - 140	1	20	
bis (2-chloroisopropyl) ether	16.0	8.88		ug/L		56	28 - 136	5	24	
Bis(2-chloroethoxy)methane	16.0	12.1		ug/L		76	50 - 128	2	17	
Bis(2-chloroethyl)ether	16.0	11.5		ug/L		72	51 - 120	9	21	
Bis(2-ethylhexyl) phthalate	16.0	16.7		ug/L		105	53 - 158	0	15	
Butyl benzyl phthalate	16.0	15.0		ug/L		94	58 - 163	0	16	
Caprolactam	32.0	10.5		ug/L		33	14 - 130	11	20	
Carbazole	16.0	13.8		ug/L		86	59 ₋ 148	3	20	
Chrysene	16.0	14.8		ug/L		93	69 - 140	1	15	
Dibenz(a,h)anthracene	16.0	16.9		ug/L		105	57 ₋ 148	5	15	
Dibenzofuran	16.0	14.2		ug/L		89	49 - 137	1	15	
Diethyl phthalate	16.0	14.6		ug/L		91	59 ₋ 146	1	15	
Dimethyl phthalate	16.0	14.5		ug/L		91	59 - 141	2	15	
Di-n-butyl phthalate	16.0	14.7		ug/L		92	58 - 149	1	15	
Di-n-octyl phthalate	16.0	16.1		ug/L		101	55 - 167	3	16	
Fluoranthene	16.0	15.2		ug/L		95	55 - 147	1	15	
Fluorene	16.0	14.3		ug/L		89	55 - 143	0	15	
Hexachlorobenzene	16.0	14.1		ug/L		88	14 - 130	3	15	
Hexachlorobutadiene	16.0	15.1		ug/L		94	14 - 130	4	44	
Hexachlorocyclopentadiene	16.0	11.9		ug/L		75	13 - 130	1	49	
Hexachloroethane	16.0	12.1		ug/L		75	14 - 130	6	46	
Indeno(1,2,3-cd)pyrene	16.0	17.7		ug/L		110	69 - 146	3	15	
Isophorone	16.0	12.1		ug/L		76	48 - 133	3	17	
Naphthalene	16.0	12.9		ug/L		81	35 - 130	3	29	
Nitrobenzene	16.0	11.9		ug/L		75	45 - 123	4	24	
N-Nitrosodi-n-propylamine	16.0	11.0		ug/L		69	56 - 120	7	31	
N-Nitrosodiphenylamine	32.0	27.2		ug/L		85	25 - 125	2	15	
Pentachlorophenol	32.0	22.8		ug/L		71	39 - 136	1	37	
Phenanthrene	16.0	13.9		ug/L		87	57 - 147	4	15	
Phenol	16.0	7.02		ug/L		44	17 - 120	5	34	
Pyrene	16.0	15.4		ug/L		96	58 - 136	3	19	

LCSD	LCSD

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	85		52 - 132
2-Fluorobiphenyl	87		48 - 120
2-Fluorophenol	57		20 - 120
Nitrobenzene-d5	74		46 - 120
p-Terphenyl-d14	96		67 ₋ 150
Phenol-d5	43		16 - 120

TestAmerica Buffalo

QC Sample Results

Client: Woodard & Curran, Inc. TestAmerica Job ID: 480-89883-1 Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-272209/1-A

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 272209

MB Result ND	Qualifier	RL 170 170 170 170 1600	34	Unit ug/Kg ug/Kg	D	Prepared 10/30/15 14:03	Analyzed 11/10/15 10:26	Dil Fac
ND ND ND ND ND ND		170 170 170 170	45 34	ug/Kg				1
ND ND ND ND		170 170	34	0 0				
ND ND ND ND		170		ug/Kg		10/30/15 14:03	11/10/15 10:26	1
ND ND ND		170	10	ug/Kg		10/30/15 14:03	11/10/15 10:26	1
ND ND ND				ug/Kg			11/10/15 10:26	· · · · · · · · 1
ND ND				ug/Kg			11/10/15 10:26	1
ND		170		ug/Kg			11/10/15 10:26	1
		170		ug/Kg			11/10/15 10:26	1
		170		ug/Kg			11/10/15 10:26	1
ND		170	31				11/10/15 10:26	1
ND		170		ug/Kg			11/10/15 10:26	1
ND		170		ug/Kg			11/10/15 10:26	1
								1
								1
								1
								1
								· · · · · · · · 1
								. 1
								1
								1
								 1
								1
								1
								1
								1
								1
								1
								1
								1
								1
								1
				0 0				
								1
								1
								·········· 1
								1
								1
								1
								1
								1
								1
								1
	ND N	ND N	ND 330 ND 170 ND 330 ND 330 ND 330 ND 170 ND 170 ND 170 ND 330 ND 330 ND 330 ND 170 ND 170 <td< td=""><td>ND 330 25 ND 170 47 ND 330 200 ND 330 200 ND 330 46 ND 330 170 ND 170 24 ND 170 41 ND 170 41 ND 170 21 ND 330 20 ND 330 88 ND 330 88 ND 330 88 ND 330 88 ND 170 25 ND 170 25 ND 170 22 ND 170 23 ND 170 23 ND 170 23 ND 170 23 ND 170 25 ND</td><td>ND 330 25 ug/Kg ND 170 47 ug/Kg ND 330 200 ug/Kg ND 330 200 ug/Kg ND 330 46 ug/Kg ND 170 24 ug/Kg ND 170 41 ug/Kg ND 170 41 ug/Kg ND 170 41 ug/Kg ND 170 21 ug/Kg ND 170 21 ug/Kg ND 330 20 ug/Kg ND 330 88 ug/Kg ND 330 120 ug/Kg ND 170 25 ug/Kg ND 170 22 ug/Kg ND 170 22 ug/Kg ND 170 41 ug/Kg ND 170 130 ug/Kg ND 170 130</td><td>ND 330 25 ug/Kg ND 170 47 ug/Kg ND 330 200 ug/Kg ND 330 46 ug/Kg ND 330 170 ug/Kg ND 170 24 ug/Kg ND 170 41 ug/Kg ND 170 41 ug/Kg ND 170 21 ug/Kg ND 170 21 ug/Kg ND 170 21 ug/Kg ND 170 21 ug/Kg ND 330 20 ug/Kg ND 330 88 ug/Kg ND 330 120 ug/Kg ND 330 120 ug/Kg ND 170 25 ug/Kg ND 170 25 ug/Kg ND 170 22 ug/Kg ND 170 130 ug/Kg ND 170 25 ug/Kg ND <</td><td>ND 330 25 ug/kg 10/30/15 14:03 ND 170 47 ug/kg 10/30/15 14:03 ND 330 200 ug/kg 10/30/15 14:03 ND 330 46 ug/kg 10/30/15 14:03 ND 330 170 ug/kg 10/30/15 14:03 ND 330 170 ug/kg 10/30/15 14:03 ND 170 24 ug/kg 10/30/15 14:03 ND 170 41 ug/kg 10/30/15 14:03 ND 170 21 ug/kg 10/30/15 14:03 ND 330 20 ug/kg 10/30/15 14:03 ND 330 88 ug/kg 10/30/15 14:03 ND 330 88 ug/kg 10/30/15 14:03 ND 330 120 ug/kg 10/30/15 14:03 ND 330 120 ug/kg 10/30/15 14:03 ND 170 25 ug/kg 10/30/15 14:03 ND 170 25 ug/kg 10/30/15 14:03 ND 170 23 ug/kg 10/30/15 14:03 ND 170 41 ug/kg 10/30/15 14:03 ND 170 41 ug/kg 10/30/15 14:03 ND 170 58 ug/kg 10/30/15 14:03 ND 170 58 ug/kg 10/30/15 14:03 ND 170 130 ug/kg 10/30/15 14:03 ND 170 130 ug/kg 10/30/15 14:03 ND 170 130 ug/kg 10/30/15 14:03 ND 170 27 ug/kg 10/30/15 14:03 ND 170 27 ug/kg 10/30/15 14:03 ND 170 28 ug/kg 10/30/15 14:03 ND 170 29 ug/kg 10/30/15 14:03 ND 170 29 ug/kg 10/30/15 14:03 ND 170 36 ug/kg 10/30/15 14:03 ND 170 38 ug/kg 10/30/15 14:03 ND 170 39 ug/kg 10/30/15 14:03 ND 170 39 ug/kg 10/30/15 14:03 ND 170 30 ug/kg 10/30/15 14:03</td><td>ND 330 25 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 47 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 330 200 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 330 46 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 330 170 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 330 170 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 24 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 41 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 41 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 41 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 21 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 21 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 330 20 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 330 20 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 330 88 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 330 88 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 330 120 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 25 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 25 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 22 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 23 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 23 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 41 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 130 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 27 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 28 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 29 ug/K</td></td<>	ND 330 25 ND 170 47 ND 330 200 ND 330 200 ND 330 46 ND 330 170 ND 170 24 ND 170 41 ND 170 41 ND 170 21 ND 330 20 ND 330 88 ND 330 88 ND 330 88 ND 330 88 ND 170 25 ND 170 25 ND 170 22 ND 170 23 ND 170 23 ND 170 23 ND 170 23 ND 170 25 ND	ND 330 25 ug/Kg ND 170 47 ug/Kg ND 330 200 ug/Kg ND 330 200 ug/Kg ND 330 46 ug/Kg ND 170 24 ug/Kg ND 170 41 ug/Kg ND 170 41 ug/Kg ND 170 41 ug/Kg ND 170 21 ug/Kg ND 170 21 ug/Kg ND 330 20 ug/Kg ND 330 88 ug/Kg ND 330 120 ug/Kg ND 170 25 ug/Kg ND 170 22 ug/Kg ND 170 22 ug/Kg ND 170 41 ug/Kg ND 170 130 ug/Kg ND 170 130	ND 330 25 ug/Kg ND 170 47 ug/Kg ND 330 200 ug/Kg ND 330 46 ug/Kg ND 330 170 ug/Kg ND 170 24 ug/Kg ND 170 41 ug/Kg ND 170 41 ug/Kg ND 170 21 ug/Kg ND 170 21 ug/Kg ND 170 21 ug/Kg ND 170 21 ug/Kg ND 330 20 ug/Kg ND 330 88 ug/Kg ND 330 120 ug/Kg ND 330 120 ug/Kg ND 170 25 ug/Kg ND 170 25 ug/Kg ND 170 22 ug/Kg ND 170 130 ug/Kg ND 170 25 ug/Kg ND <	ND 330 25 ug/kg 10/30/15 14:03 ND 170 47 ug/kg 10/30/15 14:03 ND 330 200 ug/kg 10/30/15 14:03 ND 330 46 ug/kg 10/30/15 14:03 ND 330 170 ug/kg 10/30/15 14:03 ND 330 170 ug/kg 10/30/15 14:03 ND 170 24 ug/kg 10/30/15 14:03 ND 170 41 ug/kg 10/30/15 14:03 ND 170 21 ug/kg 10/30/15 14:03 ND 330 20 ug/kg 10/30/15 14:03 ND 330 88 ug/kg 10/30/15 14:03 ND 330 88 ug/kg 10/30/15 14:03 ND 330 120 ug/kg 10/30/15 14:03 ND 330 120 ug/kg 10/30/15 14:03 ND 170 25 ug/kg 10/30/15 14:03 ND 170 25 ug/kg 10/30/15 14:03 ND 170 23 ug/kg 10/30/15 14:03 ND 170 41 ug/kg 10/30/15 14:03 ND 170 41 ug/kg 10/30/15 14:03 ND 170 58 ug/kg 10/30/15 14:03 ND 170 58 ug/kg 10/30/15 14:03 ND 170 130 ug/kg 10/30/15 14:03 ND 170 130 ug/kg 10/30/15 14:03 ND 170 130 ug/kg 10/30/15 14:03 ND 170 27 ug/kg 10/30/15 14:03 ND 170 27 ug/kg 10/30/15 14:03 ND 170 28 ug/kg 10/30/15 14:03 ND 170 29 ug/kg 10/30/15 14:03 ND 170 29 ug/kg 10/30/15 14:03 ND 170 36 ug/kg 10/30/15 14:03 ND 170 38 ug/kg 10/30/15 14:03 ND 170 39 ug/kg 10/30/15 14:03 ND 170 39 ug/kg 10/30/15 14:03 ND 170 30 ug/kg 10/30/15 14:03	ND 330 25 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 47 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 330 200 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 330 46 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 330 170 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 330 170 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 24 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 41 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 41 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 41 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 21 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 21 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 330 20 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 330 20 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 330 88 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 330 88 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 330 120 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 25 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 25 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 22 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 23 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 23 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 41 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 130 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 27 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 28 ug/Kg 10/30/15 14:03 11/10/15 10:26 ND 170 29 ug/K

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-272209/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Total/NA Prep Batch: 272209 Analysis Batch: 274040**

	MBI	MR							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate	ND		170	20	ug/Kg		10/30/15 14:03	11/10/15 10:26	1
Fluoranthene	ND		170	18	ug/Kg		10/30/15 14:03	11/10/15 10:26	1
Fluorene	ND		170	20	ug/Kg		10/30/15 14:03	11/10/15 10:26	1
Hexachlorobenzene	ND		170	23	ug/Kg		10/30/15 14:03	11/10/15 10:26	1
Hexachlorobutadiene	ND		170	25	ug/Kg		10/30/15 14:03	11/10/15 10:26	1
Hexachlorocyclopentadiene	ND		170	23	ug/Kg		10/30/15 14:03	11/10/15 10:26	1
Hexachloroethane	ND		170	22	ug/Kg		10/30/15 14:03	11/10/15 10:26	1
Indeno(1,2,3-cd)pyrene	ND		170	21	ug/Kg		10/30/15 14:03	11/10/15 10:26	1
Isophorone	ND		170	36	ug/Kg		10/30/15 14:03	11/10/15 10:26	1
Naphthalene	ND		170	22	ug/Kg		10/30/15 14:03	11/10/15 10:26	1
Nitrobenzene	ND		170	19	ug/Kg		10/30/15 14:03	11/10/15 10:26	1
N-Nitrosodi-n-propylamine	ND		170	29	ug/Kg		10/30/15 14:03	11/10/15 10:26	1
N-Nitrosodiphenylamine	ND		170	140	ug/Kg		10/30/15 14:03	11/10/15 10:26	1
Pentachlorophenol	ND		330	170	ug/Kg		10/30/15 14:03	11/10/15 10:26	1
Phenanthrene	ND		170	25	ug/Kg		10/30/15 14:03	11/10/15 10:26	1
Phenol	ND		170	26	ug/Kg		10/30/15 14:03	11/10/15 10:26	1
Pyrene	ND		170	20	ug/Kg		10/30/15 14:03	11/10/15 10:26	1
Dimethylformamide	ND		650	74	ug/Kg		10/30/15 14:03	11/10/15 10:26	1
	=				-99				· ·

	MB	MB							
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	1370	TJ	ug/Kg		2.27		10/30/15 14:03	11/10/15 10:26	1
Unknown	459	ΤJ	ug/Kg		2.50		10/30/15 14:03	11/10/15 10:26	1
Unknown	808	ΤJ	ug/Kg		2.61		10/30/15 14:03	11/10/15 10:26	1
Unknown	2410	ΤJ	ug/Kg		4.98		10/30/15 14:03	11/10/15 10:26	1

	MB	MB				
Surrogate	%Recovery	Qualifier Li	mits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	80		0 - 146	10/30/15 14:03	11/10/15 10:26	1
2-Fluorobiphenyl	95	37	' - 120	10/30/15 14:03	11/10/15 10:26	1
2-Fluorophenol	89	18	3 - 120	10/30/15 14:03	11/10/15 10:26	1
Nitrobenzene-d5	84	34	! - 132	10/30/15 14:03	11/10/15 10:26	1
p-Terphenyl-d14	99	65	5 - 153	10/30/15 14:03	11/10/15 10:26	1
Phenol-d5	93	11	- 120	10/30/15 14:03	11/10/15 10:26	1

Lab Sample ID: LCS 480-272209/2-A

Matrix: Solid

Analysis Batch: 274040

			Prep Type: Total/NA
			Prep Batch: 272209
			%Rec.
nit	D	%Rec	Limits
g/Kg		97	59 - 126
a/Ka		01	50 123

Client Sample ID: Lab Control Sample

7 , 0.0	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2,4,5-Trichlorophenol	1620	1580		ug/Kg		97	59 - 126
2,4,6-Trichlorophenol	1620	1470		ug/Kg		91	59 - 123
2,4-Dichlorophenol	1620	1540		ug/Kg		95	52 - 120
2,4-Dimethylphenol	1620	1570		ug/Kg		97	36 - 120
2,4-Dinitrophenol	3250	2390		ug/Kg		73	35 - 146
2,4-Dinitrotoluene	1620	1510		ug/Kg		93	55 - 125
2,6,Dinitrotoluene	1620	1540		ug/Kg		95	66 - 128
2-Chloronaphthalene	1620	1460		ug/Kg		90	57 - 120
2-Chlorophenol	1620	1440		ug/Kg		89	38 - 120

TestAmerica Buffalo

Page 89 of 130

QC Sample Results

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-272209/2-A

Matrix: Solid

Client Sample ID: Lab C	Control Sample
Prep '	Type: Total/NA
Pren	Batch: 272209

Analysis Batch: 274040 LCS LCS %Rec. Spike Analyte Added Result Qualifier Unit %Rec Limits 1620 1440 89 47 - 120 2-Methylnaphthalene ug/Kg 2-Methylphenol 1620 1470 ug/Kg 90 48 - 120 95 2-Nitroaniline 1620 1550 61 - 130 ug/Kg 2-Nitrophenol 1620 1430 ug/Kg 88 50 - 120 3.3'-Dichlorobenzidine 3250 2820 87 48 - 126 ug/Kg 3-Nitroaniline 1620 1290 ug/Kg 79 61 - 127 4,6-Dinitro-2-methylphenol 3250 2730 ug/Kg 84 49 - 155 98 4-Bromophenyl phenyl ether 1620 1590 ug/Kg 58 - 131 4-Chloro-3-methylphenol 1620 1630 ug/Kg 100 49 - 125 1620 76 49 - 120 4-Chloroaniline 1240 ug/Kg 4-Chlorophenyl phenyl ether 1620 1540 ug/Kg 95 63 - 124 1620 1520 94 50 - 119 4-Methylphenol ug/Kg 4-Nitroaniline 99 1620 1610 ug/Kg 63 - 1283250 103 4-Nitrophenol 3340 43 - 137ug/Kg Acenaphthene 1620 1500 93 53 - 120 ug/Kg 58 - 121 Acenaphthylene 1620 1510 ug/Kg 93 Acetophenone 1620 1470 90 66 - 120 ug/Kg Anthracene 1620 1600 98 62 - 129 ug/Kg Atrazine 3250 3340 E ug/Kg 103 60 - 164 Benzaldehyde 3250 4510 E* 139 ug/Kg 21 - 120Benzo(a)anthracene 1620 1630 ug/Kg 100 65 - 133Benzo(a)pyrene 1620 1630 101 64 - 127 ug/Kg Benzo(b)fluoranthene 1620 1700 ug/Kg 104 64 - 135 Benzo(g,h,i)perylene 1620 1670 ug/Kg 103 50 - 152 96 Benzo(k)fluoranthene 1620 1570 ug/Kg 58 - 138 Biphenyl 1620 1490 ug/Kg 92 71 - 120 1620 1260 78 44 - 120 bis (2-chloroisopropyl) ether ug/Kg Bis(2-chloroethoxy)methane 1620 1450 ug/Kg 89 61 - 133 Bis(2-chloroethyl)ether 1620 1400 86 45 - 120 ug/Kg Bis(2-ethylhexyl) phthalate 1620 1560 ug/Kg 96 61 - 133Butyl benzyl phthalate 1620 1640 101 61 - 129 ug/Kg Caprolactam 3250 2970 ug/Kg 92 54 - 133 Carbazole 1620 1620 ug/Kg 100 59 - 129 Chrysene 1620 1580 ug/Kg 98 64 - 131 Dibenz(a,h)anthracene 1620 1660 ug/Kg 102 54 - 148 1620 1520 56 - 120 Dibenzofuran ug/Kg 94 Diethyl phthalate 1620 1640 ug/Kg 101 66 - 126Dimethyl phthalate 1620 1580 97 65 - 124ug/Kg 99 Di-n-butyl phthalate 1620 1600 ug/Kg 58 - 130 62 - 133 Di-n-octyl phthalate 1620 1600 98 ug/Kg Fluoranthene 100 1620 1630 ug/Kg 62 - 131Fluorene 1620 1530 94 63 - 126ug/Kg Hexachlorobenzene 1620 1600 99 60 - 132 ug/Kg 1450 Hexachlorobutadiene 1620 ug/Kg 89 45 - 120Hexachlorocyclopentadiene 1620 1420 ug/Kg 87 31 - 120Hexachloroethane 1620 1350 ug/Kg 83 41 - 120 Indeno(1,2,3-cd)pyrene 1620 1660 ug/Kg 103 56 - 149 Isophorone 1620 1510 ug/Kg 93 56 - 120

TestAmerica Buffalo

Page 90 of 130

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-272209/2-A

Lab Sample ID: 480-89883-1 MS

Matrix: Solid

Analysis Batch: 274040

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Pren Batch: 272209

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	1620	1440		ug/Kg		89	46 - 120	
Nitrobenzene	1620	1450		ug/Kg		89	49 - 120	
N-Nitrosodi-n-propylamine	1620	1490		ug/Kg		91	46 - 120	
N-Nitrosodiphenylamine	3250	3150		ug/Kg		97	20 - 119	
Pentachlorophenol	3250	2290		ug/Kg		71	33 - 136	
Phenanthrene	1620	1570		ug/Kg		97	60 - 130	
Phenol	1620	1470		ug/Kg		91	36 - 120	
Pyrene	1620	1600		ug/Kg		98	51 - 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	97		39 - 146
2-Fluorobiphenyl	92		37 - 120
2-Fluorophenol	88		18 - 120
Nitrobenzene-d5	86		34 - 132
p-Terphenyl-d14	95		65 - 153
Phenol-d5	93		11 - 120

Client Sample ID: SWMU 26-SURFACE-SS-01

Prep Type: Total/NA Prep Batch: 272209

Matrix: Solid Analysis Batch: 274040 Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier D %Rec Limits Analyte Unit ☼ F1 2,4,5-Trichlorophenol ND 1860 1070 JF1 ug/Kg 58 59 - 126 ug/Kg ₩ 2,4,6-Trichlorophenol ND 1860 1240 J 67 59 - 123 ₩ ND 1860 1270 J 68 2,4-Dichlorophenol ug/Kg 52 - 120₩ 2,4-Dimethylphenol ND 1860 1450 J ug/Kg 78 36 - 120 ₩ 2,4-Dinitrophenol ND 3710 ND ug/Kg NC 35 - 146 2,4-Dinitrotoluene ND 1860 1540 J ug/Kg ₩ 83 55 - 125 ΞĊ ND 66 2,6,Dinitrotoluene 1860 1220 J 66 - 128 ug/Kg 2-Chloronaphthalene ND 1860 ₩ 84 57 - 120 1560 J ug/Kg ₩ ND 72 2-Chlorophenol 1860 1330 J ug/Kg 38 - 120 Ö 2-Methylnaphthalene ND 1860 1430 J 77 47 - 120 ug/Kg 1860 48 - 120 2-Methylphenol ND 1410 J ug/Kg 76 2-Nitroaniline ND 1860 1820 J ug/Kg ₩ 98 61 - 130 2-Nitrophenol ND 1860 1160 J ug/Kg ₩ 63 50 - 120 Ö 3,3'-Dichlorobenzidine ND 3710 2980 J ug/Kg 80 48 - 126 ₩ 3-Nitroaniline ND 1860 1820 J 98 61 - 127 ug/Kg . . 75 4,6-Dinitro-2-methylphenol ND 3710 2790 J ug/Kg 49 - 155 ₩ 4-Bromophenyl phenyl ether ND 1860 1520 J ug/Kg 82 58 - 131 ☼ 80 4-Chloro-3-methylphenol ND 1860 1490 J ug/Kg 49 - 125 ₩ 4-Chloroaniline ND 1860 1190 J ug/Kg 64 49 - 120 4-Chlorophenyl phenyl ether ND 1860 1600 J ug/Kg 86 63 - 1241860 Ö 76 4-Methylphenol ND 1420 J ug/Kg 50 - 119 Ţ ND 1860 71 4-Nitroaniline 1320 J ug/Kg 63 - 128∜ 4-Nitrophenol ND 3710 3250 J ug/Kg 88 43 - 137 ☼ ND 86 Acenaphthene 1860 1590 J ug/Kg 53 - 120. ₩ Acenaphthylene ND 1860 1430 ug/Kg 77 58 - 121 Acetophenone ND 1860 1420 J ug/Kg 76 66 - 120

TestAmerica Buffalo

Page 91 of 130

11/18/2015

Client: Woodard & Curran, Inc.

Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample	ID: 480-89883-1	MS
------------	-----------------	----

Matrix: Solid

Analysis Batch: 274040

Client Sample ID: SWMU 26-SURFACE-SS-01 **Prep Type: Total/NA**

Prep Batch: 272209

Analysis Batch: 2/4040	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	-	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
Anthracene	ND		1860	1570		ug/Kg	<u></u>	85	62 - 129
Atrazine	ND		3710	3330		ug/Kg		90	60 - 164
Benzaldehyde		F1 *	3710	4820	F1	ug/Kg	₩	130	21 - 120
Benzo(a)anthracene	ND		1860	1660	J	ug/Kg	₩	89	65 - 133
Benzo(a)pyrene	ND		1860	1600	j	ug/Kg	· · · · · · · · · · · · · · · · · · ·	86	64 - 127
Benzo(b)fluoranthene	ND		1860	1600	J	ug/Kg	☼	86	64 - 135
Benzo(g,h,i)perylene	ND		1860	1660	J	ug/Kg	₩	89	50 ₋ 152
Benzo(k)fluoranthene	ND		1860	1550	J	ug/Kg		83	58 ₋ 138
Biphenyl	ND		1860	1550	J	ug/Kg	₩	84	71 - 120
bis (2-chloroisopropyl) ether	ND		1860	1200	J	ug/Kg	₩	64	44 - 120
Bis(2-chloroethoxy)methane	ND		1860	1360	j	ug/Kg	₩.	73	61 - 133
Bis(2-chloroethyl)ether	ND		1860	1350	J	ug/Kg	₩	73	45 ₋ 120
Bis(2-ethylhexyl) phthalate	ND		1860	2010		ug/Kg	☼	108	61 - 133
Butyl benzyl phthalate	ND		1860	1660	J	ug/Kg	₩.	90	61 - 129
Caprolactam	ND		3710	3140		ug/Kg	₩	84	54 ₋ 133
Carbazole	ND		1860	1600	J	ug/Kg	₩	86	59 - 129
Chrysene	ND		1860	1620	J	ug/Kg	₩.	87	64 - 131
Dibenz(a,h)anthracene	ND		1860	1560	J	ug/Kg	₩	84	54 ₋ 148
Dibenzofuran	ND		1860	1610	J	ug/Kg	☼	87	56 - 120
Diethyl phthalate	ND		1860	1610	j	ug/Kg	₩.	87	66 - 126
Dimethyl phthalate	ND		1860	1660	J	ug/Kg	☼	90	65 - 124
Di-n-butyl phthalate	ND		1860	1720	J	ug/Kg	₩	93	58 ₋ 130
Di-n-octyl phthalate	ND		1860	2000		ug/Kg	₩	108	62 - 133
Fluoranthene	ND		1860	1680	J	ug/Kg	₩	90	62 _ 131
Fluorene	ND		1860	1530	J	ug/Kg	₩	82	63 - 126
Hexachlorobenzene	ND		1860	1550	J	ug/Kg	₩	83	60 - 132
Hexachlorobutadiene	ND		1860	1460	J	ug/Kg	₩	79	45 - 120
Hexachlorocyclopentadiene	ND		1860	963	J	ug/Kg	₩	52	31 - 120
Hexachloroethane	ND		1860	1230	J	ug/Kg	₩	66	41 - 120
Indeno(1,2,3-cd)pyrene	ND		1860	1610	J	ug/Kg	☼	87	56 ₋ 149
Isophorone	ND		1860	1350	J	ug/Kg	₩	73	56 - 120
Naphthalene	ND		1860	1450	J	ug/Kg	₩	78	46 - 120
Nitrobenzene	ND		1860	1340	J	ug/Kg	₩	72	49 - 120
N-Nitrosodi-n-propylamine	ND		1860	1270	J	ug/Kg	☼	68	46 - 120
N-Nitrosodiphenylamine	ND		3710	3070		ug/Kg	₩	83	20 - 119
Pentachlorophenol	ND		3710	2060	J	ug/Kg	₩	56	33 - 136
Phenanthrene	ND		1860	1640	J	ug/Kg	₩	89	60 - 130
Phenol	ND		1860	1360	J	ug/Kg	₩	73	36 - 120
Pyrene	ND		1860	1520	J	ug/Kg	☼	82	51 ₋ 133

MS MS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	84		39 - 146
2-Fluorobiphenyl	83		37 - 120
2-Fluorophenol	70		18 - 120
Nitrobenzene-d5	71		34 - 132
p-Terphenyl-d14	84		65 - 153
Phenol-d5	78		11 - 120

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid Analysis Batch: 274040									Prep Tyl Prep Ba		
Analysis Batch. 214040	Sample	Sample	Spike	MSD	MSD				%Rec.	alcii. Zi	RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4,5-Trichlorophenol	ND	F1 -	1870	1080	J F1	ug/Kg	<u> </u>	57	59 - 126	1	18
2,4,6-Trichlorophenol	ND		1870	1100	J	ug/Kg	₩	59	59 - 123	12	19
2,4-Dichlorophenol	ND		1870	1310	J	ug/Kg	₽	70	52 - 120	3	19
2,4-Dimethylphenol	ND		1870	1580	J	ug/Kg	₩.	84	36 - 120	9	42
2,4-Dinitrophenol	ND		3750	ND		ug/Kg	₽	NC	35 - 146	NC	22
2,4-Dinitrotoluene	ND		1870	1730	J	ug/Kg	☼	93	55 ₋ 125	12	20
2,6,Dinitrotoluene	ND		1870	1340	J	ug/Kg		72	66 - 128	10	15
2-Chloronaphthalene	ND		1870	1530	J	ug/Kg	₩	82	57 ₋ 120	2	21
2-Chlorophenol	ND		1870	1460	J	ug/Kg	☼	78	38 - 120	9	25
2-Methylnaphthalene	ND		1870	1510	J	ug/Kg		81	47 - 120	6	21
2-Methylphenol	ND		1870	1540		ug/Kg	☼	82	48 - 120	9	27
2-Nitroaniline	ND		1870	1890		ug/Kg	₽	101	61 - 130	4	15
2-Nitrophenol	ND		1870	1160		ug/Kg		62	50 - 120	0	18
3,3'-Dichlorobenzidine	ND		3750	3110		ug/Kg	₽	83	48 - 126	4	25
3-Nitroaniline	ND		1870	1930	J	ug/Kg	₽	103	61 - 127	6	19
4,6-Dinitro-2-methylphenol	ND		3750	2920		ug/Kg		78	49 - 155	5	15
4-Bromophenyl phenyl ether	ND		1870	1600		ug/Kg	☼	86	58 - 131	5	15
4-Chloro-3-methylphenol	ND		1870	1580		ug/Kg	₽	84	49 - 125	6	27
4-Chloroaniline	ND		1870	1200		ug/Kg		64	49 - 120		22
4-Chlorophenyl phenyl ether	ND		1870	1660		ug/Kg ug/Kg	₽	89	63 - 124	4	16
4-Methylphenol	ND		1870	1520		ug/Kg ug/Kg	₽	81	50 - 119	7	24
4-Nitroaniline	ND		1870	1390		ug/Kg		74	63 - 128	5	24
4-Nitrophenol	ND		3750	3330		ug/Kg ug/Kg	₽	89	43 - 137	2	25
Acenaphthene	ND		1870	1580		ug/Kg ug/Kg	₽	84	53 - 120	1	35
Acenaphthylene	ND		1870	1520		ug/Kg ug/Kg		81	58 - 121	6	18
Acetophenone	ND ND		1870	1530		ug/Kg ug/Kg	₽	82	66 - 120	8	20
Anthracene	ND ND		1870	1580		ug/Kg ug/Kg		84	62 - 129	1	15
Atrazine	ND		3750	3650	J			97	60 - 164	9	20
		F1 *	3750	5040	E1	ug/Kg	₩	135	21 - 120	5	20
Benzaldehyde		ГІ	1870			ug/Kg	₩				
Benzo(a)anthracene	ND			1700		ug/Kg		91	65 - 133 64 - 127	3	15 15
Benzo(a)pyrene	ND		1870	1630		ug/Kg	☆	87		2	
Benzo(b)fluoranthene	ND		1870	1630		ug/Kg	₩	87	64 - 135	2	15
Benzo(g,h,i)perylene	ND		1870	1730		ug/Kg	. 	93	50 ₋ 152	4	15
Benzo(k)fluoranthene	ND		1870	1600		ug/Kg		86	58 ₋ 138	3	22
Biphenyl	ND		1870	1590		ug/Kg	≎	85	71 - 120	2	20
bis (2-chloroisopropyl) ether	ND		1870	1330		ug/Kg		71	44 - 120	10	24
Bis(2-chloroethoxy)methane	ND		1870	1460		ug/Kg	₩	78	61 - 133	7	17
Bis(2-chloroethyl)ether	ND		1870	1390	J	ug/Kg	☆	74	45 - 120	3	21
Bis(2-ethylhexyl) phthalate	ND		1870	2150		ug/Kg		115	61 - 133		15
Butyl benzyl phthalate	ND		1870	1650	J	ug/Kg	₩	88	61 - 129	1	16
Caprolactam	ND		3750	3140		ug/Kg	*	84	54 - 133	0	20
Carbazole	ND		1870	1660		ug/Kg		89	59 - 129	4	20
Chrysene	ND		1870	1670		ug/Kg	₽	89	64 - 131	3	15
Dibenz(a,h)anthracene	ND		1870	1700		ug/Kg	≎	91	54 - 148	9	15
Dibenzofuran	ND		1870	1640		ug/Kg	₩	87	56 - 120	2	15
Diethyl phthalate	ND		1870	1590	J	ug/Kg	₽	85	66 - 126	1	15
Dimethyl phthalate	ND		1870	1640	J	ug/Kg	☼	87	65 - 124	2	15
Di-n-butyl phthalate	ND		1870	1850	.I	ug/Kg	₩	99	58 ₋ 130	8	15

TestAmerica Buffalo

Page 93 of 130

11/18/2015

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-89883-1 MSD

Matrix: Solid

Analysis Batch: 274040

Client Sample ID: SWMU 26-SURFACE-SS-01

Prep Type: Total/NA

Prep Batch: 272209

7 maryolo Batom 21-10-10	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	•	Added	_	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Di-n-octyl phthalate	ND		1870	2160		ug/Kg	<u></u>	115	62 - 133	8	16
Fluoranthene	ND		1870	1760	J	ug/Kg	₩	94	62 - 131	5	15
Fluorene	ND		1870	1620	J	ug/Kg	₩	87	63 - 126	6	15
Hexachlorobenzene	ND		1870	1630	J	ug/Kg	₩	87	60 - 132	5	15
Hexachlorobutadiene	ND		1870	1470	J	ug/Kg	₩	78	45 - 120	0	44
Hexachlorocyclopentadiene	ND		1870	976	J	ug/Kg	☆	52	31 - 120	1	49
Hexachloroethane	ND		1870	1180	J	ug/Kg	₽	63	41 - 120	4	46
Indeno(1,2,3-cd)pyrene	ND		1870	1650	J	ug/Kg	☆	88	56 - 149	3	15
Isophorone	ND		1870	1430	J	ug/Kg	₩	76	56 - 120	6	17
Naphthalene	ND		1870	1540	J	ug/Kg	₩	82	46 - 120	6	29
Nitrobenzene	ND		1870	1360	J	ug/Kg	☆	73	49 - 120	1	24
N-Nitrosodi-n-propylamine	ND		1870	1390	J	ug/Kg	₩	74	46 - 120	9	31
N-Nitrosodiphenylamine	ND		3750	3290		ug/Kg	☆	88	20 - 119	7	15
Pentachlorophenol	ND		3750	2170	J	ug/Kg	₩	58	33 - 136	5	35
Phenanthrene	ND		1870	1680	J	ug/Kg	₩	90	60 - 130	2	15
Phenol	ND		1870	1430	J	ug/Kg	☆	76	36 - 120	5	35
Pyrene	ND		1870	1560	J	ug/Kg	₩	83	51 - 133	2	35

MSD MSD

MB MB Result Qualifier

ND

ND

ND

ND

ND

ND

ND

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	81		39 - 146
2-Fluorobiphenyl	84		37 - 120
2-Fluorophenol	72		18 - 120
Nitrobenzene-d5	71		34 - 132
p-Terphenyl-d14	80		65 - 153
Phenol-d5	77		11 - 120

Lab Sample ID: MB 480-274556/1-A **Client Sample ID: Method Blank** Prep Type: Total/NA **Matrix: Solid**

Analyte

2-Methylphenol

2-Nitroaniline

2-Nitrophenol

3-Nitroaniline

3,3'-Dichlorobenzidine

4,6-Dinitro-2-methylphenol

4-Bromophenyl phenyl ether

Analysis Batch: 274806

ı	, ,				•		, ,	
	2,4,5-Trichlorophenol	ND	170	45	ug/Kg	11/12/15 07:51	11/13/15 09:51	1
	2,4,6-Trichlorophenol	ND	170	33	ug/Kg	11/12/15 07:51	11/13/15 09:51	1
	2,4-Dichlorophenol	ND	170	17	ug/Kg	11/12/15 07:51	11/13/15 09:51	1
	2,4-Dimethylphenol	ND	170	40	ug/Kg	11/12/15 07:51	11/13/15 09:51	1
	2,4-Dinitrophenol	ND	1600	760	ug/Kg	11/12/15 07:51	11/13/15 09:51	1
	2,4-Dinitrotoluene	ND	170	34	ug/Kg	11/12/15 07:51	11/13/15 09:51	1
	2,6,Dinitrotoluene	ND	170	19	ug/Kg	11/12/15 07:51	11/13/15 09:51	1
	2-Chloronaphthalene	ND	170	27	ug/Kg	11/12/15 07:51	11/13/15 09:51	1
	2-Chlorophenol	ND	170	30	ug/Kg	11/12/15 07:51	11/13/15 09:51	1
	2-Methylnaphthalene	ND	170	33	ug/Kg	11/12/15 07:51	11/13/15 09:51	1

MDL Unit

ug/Kg

24 ug/Kg

47 ug/Kg

190 ug/Kg

46 ug/Kg

170 ug/Kg

23 ug/Kg

19

RL

170

320

170

320

320

320

170

TestAmerica Buffalo

Prep Batch: 274556

Analyzed

Prepared

11/12/15 07:51 11/13/15 09:51

11/12/15 07:51 11/13/15 09:51

11/12/15 07:51 11/13/15 09:51

11/12/15 07:51 11/13/15 09:51

11/12/15 07:51 11/13/15 09:51

11/12/15 07:51 11/13/15 09:51

11/12/15 07:51 11/13/15 09:51

Dil Fac

Page 94 of 130

QC Sample Results

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-274556/1-A

Matrix: Solid

Analysis Batch: 274806

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 274556

Analysis Batch: 274806	MR	MB						Prep Batch:	274556
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Chloro-3-methylphenol	ND		170	41	ug/Kg		•	11/13/15 09:51	1
4-Chloroaniline	ND		170	41	ug/Kg			11/13/15 09:51	
4-Chlorophenyl phenyl ether	ND		170		ug/Kg			11/13/15 09:51	1
4-Methylphenol	ND		320		ug/Kg			11/13/15 09:51	1
4-Nitroaniline	ND		320		ug/Kg			11/13/15 09:51	··········· 1
4-Nitrophenol	ND		320		ug/Kg			11/13/15 09:51	1
Acenaphthene	ND		170		ug/Kg			11/13/15 09:51	1
Acenaphthylene	ND		170		ug/Kg			11/13/15 09:51	· · · · · · · · · · · · · · · · · · ·
Acetophenone	ND ND		170		ug/Kg ug/Kg			11/13/15 09:51	1
Anthracene	ND ND		170	41	ug/Kg ug/Kg			11/13/15 09:51	1
Atrazine	ND		170		ug/Kg ug/Kg			11/13/15 09:51	
	ND ND		170	130				11/13/15 09:51	1
Benzaldehyde	ND ND		170		ug/Kg			11/13/15 09:51	1
Benzo(a)anthracene					ug/Kg				
Benzo(a)pyrene	ND		170		ug/Kg			11/13/15 09:51	1
Benzo(b)fluoranthene	ND		170		ug/Kg			11/13/15 09:51	1
Benzo(g,h,i)perylene	ND		170		ug/Kg			11/13/15 09:51	1
Benzo(k)fluoranthene	ND		170		ug/Kg			11/13/15 09:51	1
Biphenyl	ND		170		ug/Kg			11/13/15 09:51	1
bis (2-chloroisopropyl) ether	ND		170		ug/Kg			11/13/15 09:51	
Bis(2-chloroethoxy)methane	ND		170		ug/Kg			11/13/15 09:51	1
Bis(2-chloroethyl)ether	ND		170		ug/Kg			11/13/15 09:51	1
Bis(2-ethylhexyl) phthalate	ND		170		ug/Kg			11/13/15 09:51	1
Butyl benzyl phthalate	ND		170		ug/Kg		11/12/15 07:51	11/13/15 09:51	1
Caprolactam	ND		170		ug/Kg			11/13/15 09:51	1
Carbazole	ND		170		ug/Kg		11/12/15 07:51	11/13/15 09:51	1
Chrysene	ND		170	37	ug/Kg		11/12/15 07:51	11/13/15 09:51	1
Dibenz(a,h)anthracene	ND		170	29	ug/Kg		11/12/15 07:51	11/13/15 09:51	1
Dibenzofuran	ND		170	19	ug/Kg		11/12/15 07:51	11/13/15 09:51	1
Diethyl phthalate	ND		170	21	ug/Kg		11/12/15 07:51	11/13/15 09:51	1
Dimethyl phthalate	ND		170	19	ug/Kg		11/12/15 07:51	11/13/15 09:51	1
Di-n-butyl phthalate	ND		170	28	ug/Kg		11/12/15 07:51	11/13/15 09:51	1
Di-n-octyl phthalate	ND		170	19	ug/Kg		11/12/15 07:51	11/13/15 09:51	1
Fluoranthene	ND		170	17	ug/Kg		11/12/15 07:51	11/13/15 09:51	1
Fluorene	ND		170	19	ug/Kg		11/12/15 07:51	11/13/15 09:51	1
Hexachlorobenzene	ND		170	22	ug/Kg		11/12/15 07:51	11/13/15 09:51	1
Hexachlorobutadiene	ND		170	24	ug/Kg		11/12/15 07:51	11/13/15 09:51	1
Hexachlorocyclopentadiene	ND		170	22	ug/Kg		11/12/15 07:51	11/13/15 09:51	1
Hexachloroethane	ND		170	21	ug/Kg		11/12/15 07:51	11/13/15 09:51	1
Indeno(1,2,3-cd)pyrene	ND		170	20	ug/Kg		11/12/15 07:51	11/13/15 09:51	1
Isophorone	ND		170	35	ug/Kg		11/12/15 07:51	11/13/15 09:51	1
Naphthalene	ND		170	21	ug/Kg		11/12/15 07:51	11/13/15 09:51	1
Nitrobenzene	ND		170	18	ug/Kg		11/12/15 07:51	11/13/15 09:51	1
N-Nitrosodi-n-propylamine	ND		170		ug/Kg		11/12/15 07:51	11/13/15 09:51	1
N-Nitrosodiphenylamine	ND		170		ug/Kg		11/12/15 07:51	11/13/15 09:51	1
Pentachlorophenol	ND		320		ug/Kg			11/13/15 09:51	1
Phenanthrene	ND		170		ug/Kg			11/13/15 09:51	1
Phenol	ND		170		ug/Kg			11/13/15 09:51	1
Pyrene	ND		170		ug/Kg			11/13/15 09:51	1

TestAmerica Buffalo

2

5

5

7

0

1 U

12

1 1

Analyzed

Prepared

Client: Woodard & Curran, Inc.

Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

Result Qualifier

Lab Sample ID: MB 480-274556/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Total/NA Analysis Batch: 274806 Prep Batch: 274556**

RL

MDL Unit

Dimethylformamide	ND	640		73 ug/K	g	11/12/15 07:51	11/13/15 09:51	1
	MB MB							
Tentatively Identified Compound	Est. Result Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	1470 TJ	ug/Kg	-	1.83		11/12/15 07:51	11/13/15 09:51	1
Unknown	650 T J	ug/Kg		2.01		11/12/15 07:51	11/13/15 09:51	1
Unknown	2510 TJ	ug/Kg		2.12		11/12/15 07:51	11/13/15 09:51	1
Unknown	822 TJ	ug/Kg		4.61		11/12/15 07:51	11/13/15 09:51	1
Unknown Benzene Derivative	219 TJ	ug/Kg		5.10		11/12/15 07:51	11/13/15 09:51	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	82		39 - 146	11/12/15 07:51	11/13/15 09:51	1
2-Fluorobiphenyl	80		37 - 120	11/12/15 07:51	11/13/15 09:51	1
2-Fluorophenol	73		18 - 120	11/12/15 07:51	11/13/15 09:51	1
Nitrobenzene-d5	76		34 - 132	11/12/15 07:51	11/13/15 09:51	1
p-Terphenyl-d14	99		65 ₋ 153	11/12/15 07:51	11/13/15 09:51	1
Phenol-d5	78		11 - 120	11/12/15 07:51	11/13/15 09:51	1
p-Terphenyl-d14	99		65 - 153	11/12/15 07:51	11/13/15 09:51	1 1 1

Lab Sample ID: LCS 480-274556/2-A

Matrix: Solid

Analyte

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 274556

Analysis Batch: 274806							Prep Batch: 274556
	Spike	_	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2,4,5-Trichlorophenol	1620	1380		ug/Kg		85	59 - 126
2,4,6-Trichlorophenol	1620	1350		ug/Kg		83	59 - 123
2,4-Dichlorophenol	1620	1290		ug/Kg		80	52 - 120
2,4-Dimethylphenol	1620	1310		ug/Kg		80	36 - 120
2,4-Dinitrophenol	3240	2770		ug/Kg		85	35 - 146
2,4-Dinitrotoluene	1620	1420		ug/Kg		87	55 - 125
2,6,Dinitrotoluene	1620	1380		ug/Kg		85	66 - 128
2-Chloronaphthalene	1620	1310		ug/Kg		80	57 - 120
2-Chlorophenol	1620	1250		ug/Kg		77	38 - 120
2-Methylnaphthalene	1620	1300		ug/Kg		80	47 - 120
2-Methylphenol	1620	1310		ug/Kg		81	48 - 120
2-Nitroaniline	1620	1420		ug/Kg		88	61 - 130
2-Nitrophenol	1620	1240		ug/Kg		76	50 - 120
3,3'-Dichlorobenzidine	3240	2580		ug/Kg		80	48 - 126
3-Nitroaniline	1620	1270		ug/Kg		79	61 - 127
4,6-Dinitro-2-methylphenol	3240	2890		ug/Kg		89	49 - 155
4-Bromophenyl phenyl ether	1620	1400		ug/Kg		87	58 - 131
4-Chloro-3-methylphenol	1620	1370		ug/Kg		84	49 - 125
4-Chloroaniline	1620	1170		ug/Kg		72	49 - 120
4-Chlorophenyl phenyl ether	1620	1370		ug/Kg		84	63 - 124
4-Methylphenol	1620	1310		ug/Kg		81	50 - 119
4-Nitroaniline	1620	1360		ug/Kg		84	63 - 128
4-Nitrophenol	3240	2870		ug/Kg		88	43 - 137
Acenaphthene	1620	1330		ug/Kg		82	53 - 120
Acenaphthylene	1620	1350		ug/Kg		84	58 - 121

TestAmerica Buffalo

Page 96 of 130

Dil Fac

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

•

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-274556/2-A

Matrix: Solid

Phenol

Pyrene

Analysis Batch: 274806

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 274556

Analysis Batch: 274606	Spike	LCS L	.cs		%Rec.
Analyte	Added	Result C	Qualifier Unit	D %Rec	Limits
Acetophenone	1620	1310	ug/Kg		66 - 120
Anthracene	1620	1530	ug/Kg	94	62 - 129
Atrazine	3240	3030	ug/Kg	93	60 - 164
Benzaldehyde	3240	2680	ug/Kg	83	21 - 120
Benzo(a)anthracene	1620	1520	ug/Kg	94	65 - 133
Benzo(a)pyrene	1620	1440	ug/Kg	89	64 - 127
Benzo(b)fluoranthene	1620	1530	ug/Kg	94	64 - 135
Benzo(g,h,i)perylene	1620	1430	ug/Kg	88	50 - 152
Benzo(k)fluoranthene	1620	1420	ug/Kg	88	58 - 138
Biphenyl	1620	1340	ug/Kg	82	71 - 120
bis (2-chloroisopropyl) ether	1620	1260	ug/Kg	77	44 - 120
Bis(2-chloroethoxy)methane	1620	1310	ug/Kg	81	61 - 133
Bis(2-chloroethyl)ether	1620	1220	ug/Kg	75	45 - 120
Bis(2-ethylhexyl) phthalate	1620	1570	ug/Kg	97	61 - 133
Butyl benzyl phthalate	1620	1470	ug/Kg	91	61 - 129
Caprolactam	3240	2780	ug/Kg	86	54 - 133
Carbazole	1620	1460	ug/Kg	90	59 - 129
Chrysene	1620	1450	ug/Kg	89	64 - 131
Dibenz(a,h)anthracene	1620	1420	ug/Kg	88	54 - 148
Dibenzofuran	1620	1390	ug/Kg	85	56 - 120
Diethyl phthalate	1620	1430	ug/Kg	88	66 - 126
Dimethyl phthalate	1620	1410	ug/Kg	87	65 - 124
Di-n-butyl phthalate	1620	1490	ug/Kg	92	58 - 130
Di-n-octyl phthalate	1620	1470	ug/Kg	91	62 - 133
Fluoranthene	1620	1450	ug/Kg	89	62 - 131
Fluorene	1620	1420	ug/Kg	88	63 - 126
Hexachlorobenzene	1620	1460	ug/Kg	90	60 - 132
Hexachlorobutadiene	1620	1210	ug/Kg	75	45 - 120
Hexachlorocyclopentadiene	1620	1220	ug/Kg	76	31 - 120
Hexachloroethane	1620	1160	ug/Kg	71	41 - 120
Indeno(1,2,3-cd)pyrene	1620	1460	ug/Kg	90	56 - 149
Isophorone	1620	1330	ug/Kg	82	56 - 120
Naphthalene	1620	1280	ug/Kg	79	46 - 120
Nitrobenzene	1620	1280	ug/Kg	79	49 - 120
N-Nitrosodi-n-propylamine	1620	1340	ug/Kg	82	46 - 120
N-Nitrosodiphenylamine	3240	2910	ug/Kg	90	20 - 119
Pentachlorophenol	3240	3190	ug/Kg	98	33 - 136
Phenanthrene	1620	1540	ug/Kg	95	60 - 130

LUS	LUS	
%Recovery	Qualifier	Limits
92		39 - 146
83		37 - 120
75		18 - 120
79		34 - 132
92		65 - 153
80		11 - 120
	%Recovery 92 83 75 79 92	83 75 79 92

TestAmerica Buffalo

Page 97 of 130

1620

1620

1310

1530

ug/Kg

ug/Kg

81

94

36 - 120

51 - 133

E

6

8

11

13

14

QC Sample Results

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Lab Sample ID: MB 480-275176/1-A

Matrix: Water

Analysis Batch: 275230

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 275176							
repared	Analyzed	Dil Fac					
6/15 08:57	11/16/15 23:44	1					
6/15 08:57	11/16/15 23:44	1					
6/15 08:57	11/16/15 23:44	1					
6/15 08:57	11/16/15 23:44	1					
6/15 08:57	11/16/15 23:44	1					
6/15 08:57	11/16/15 23:44	1					
6/15 08:57	11/16/15 23:44	1					
6/15 08:57	11/16/15 23:44	1					
6/15 08:57	11/16/15 23:44	1					

Analysis	MB		D!	MEN	l lmit	_	Duencer	A mal	Du F-
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
2,4,5-Trichlorophenol	ND ND		5.0 5.0		ug/L			11/16/15 23:44 11/16/15 23:44	
2,4,6-Trichlorophenol	ND ND				ug/L			11/16/15 23:44	
2,4-Dichlorophenol			5.0		ug/L				
2,4-Dimethylphenol	ND ND		5.0		ug/L			11/16/15 23:44	
2,4-Dinitrophenol			10		ug/L			11/16/15 23:44	
2,4-Dinitrotoluene	ND		5.0		ug/L			11/16/15 23:44	
2,6-Dinitrotoluene	ND		5.0		ug/L			11/16/15 23:44	
2-Chloronaphthalene	ND		5.0		ug/L			11/16/15 23:44	
2-Chlorophenol	ND		5.0		ug/L			11/16/15 23:44	
2-Methylnaphthalene	ND		5.0		ug/L			11/16/15 23:44	
2-Methylphenol	ND		5.0		ug/L			11/16/15 23:44	
2-Nitroaniline	ND		10		ug/L			11/16/15 23:44	
2-Nitrophenol	ND		5.0		ug/L			11/16/15 23:44	
3,3'-Dichlorobenzidine	ND		5.0		ug/L			11/16/15 23:44	
3-Nitroaniline	ND		10		ug/L			11/16/15 23:44	
4,6-Dinitro-2-methylphenol	ND		10		ug/L			11/16/15 23:44	
4-Bromophenyl phenyl ether	ND		5.0		ug/L			11/16/15 23:44	
4-Chloro-3-methylphenol	ND		5.0		ug/L			11/16/15 23:44	
4-Chloroaniline	ND		5.0		ug/L			11/16/15 23:44	
4-Chlorophenyl phenyl ether	ND		5.0		ug/L			11/16/15 23:44	
4-Methylphenol	ND		10		ug/L			11/16/15 23:44	
4-Nitroaniline	ND		10		ug/L			11/16/15 23:44	
4-Nitrophenol	ND		10		ug/L			11/16/15 23:44	
Acenaphthene	ND		5.0		ug/L		11/16/15 08:57	11/16/15 23:44	
Acenaphthylene	ND		5.0		ug/L			11/16/15 23:44	
Acetophenone	ND		5.0		ug/L			11/16/15 23:44	
Anthracene	ND		5.0		ug/L		11/16/15 08:57	11/16/15 23:44	
Atrazine	ND		5.0		ug/L			11/16/15 23:44	
Benzaldehyde	ND		5.0	0.27	ug/L		11/16/15 08:57	11/16/15 23:44	
Benzo(a)anthracene	ND		5.0		ug/L		11/16/15 08:57	11/16/15 23:44	
Benzo(a)pyrene	ND		5.0	0.47	ug/L		11/16/15 08:57	11/16/15 23:44	
Benzo(b)fluoranthene	ND		5.0	0.34	ug/L		11/16/15 08:57	11/16/15 23:44	
Benzo(g,h,i)perylene	ND		5.0		ug/L		11/16/15 08:57	11/16/15 23:44	
Benzo(k)fluoranthene	ND		5.0	0.73	ug/L		11/16/15 08:57	11/16/15 23:44	
Biphenyl	ND		5.0	0.65	-		11/16/15 08:57	11/16/15 23:44	
bis (2-chloroisopropyl) ether	ND		5.0	0.52	ug/L		11/16/15 08:57	11/16/15 23:44	
Bis(2-chloroethoxy)methane	ND		5.0	0.35	ug/L		11/16/15 08:57	11/16/15 23:44	
Bis(2-chloroethyl)ether	ND		5.0	0.40	ug/L		11/16/15 08:57	11/16/15 23:44	
Bis(2-ethylhexyl) phthalate	ND		5.0	1.8	ug/L		11/16/15 08:57	11/16/15 23:44	
Butyl benzyl phthalate	ND		5.0	0.42	ug/L		11/16/15 08:57	11/16/15 23:44	
Caprolactam	ND		5.0	2.2	ug/L		11/16/15 08:57	11/16/15 23:44	
Carbazole	ND		5.0	0.30	ug/L		11/16/15 08:57	11/16/15 23:44	
Chrysene	ND		5.0	0.33	ug/L		11/16/15 08:57	11/16/15 23:44	
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		11/16/15 08:57	11/16/15 23:44	
Dibenzofuran	ND		10	0.51	ug/L		11/16/15 08:57	11/16/15 23:44	
Diethyl phthalate	ND		5.0		ug/L		11/16/15 08:57	11/16/15 23:44	
Dimethyl phthalate	ND		5.0		ug/L		11/16/15 08:57	11/16/15 23:44	
Di-n-butyl phthalate	ND		5.0		ug/L		11/16/15 08:57	11/16/15 23:44	
Di-n-octyl phthalate	ND		5.0		ug/L			11/16/15 23:44	
Fluoranthene	ND		5.0		ug/L			11/16/15 23:44	

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-275176/1-A **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA** Analysis Batch: 275230 **Prep Batch: 275176**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluorene	ND		5.0	0.36	ug/L		11/16/15 08:57	11/16/15 23:44	1
Hexachlorobenzene	ND		5.0	0.51	ug/L		11/16/15 08:57	11/16/15 23:44	1
Hexachlorobutadiene	ND		5.0	0.68	ug/L		11/16/15 08:57	11/16/15 23:44	1
Hexachlorocyclopentadiene	ND		5.0	0.59	ug/L		11/16/15 08:57	11/16/15 23:44	1
Hexachloroethane	ND		5.0	0.59	ug/L		11/16/15 08:57	11/16/15 23:44	1
Indeno(1,2,3-cd)pyrene	ND		5.0	0.47	ug/L		11/16/15 08:57	11/16/15 23:44	1
Isophorone	ND		5.0	0.43	ug/L		11/16/15 08:57	11/16/15 23:44	1
Naphthalene	ND		5.0	0.76	ug/L		11/16/15 08:57	11/16/15 23:44	1
Nitrobenzene	ND		5.0	0.29	ug/L		11/16/15 08:57	11/16/15 23:44	1
N-Nitrosodi-n-propylamine	ND		5.0	0.54	ug/L		11/16/15 08:57	11/16/15 23:44	1
N-Nitrosodiphenylamine	ND		5.0	0.51	ug/L		11/16/15 08:57	11/16/15 23:44	1
Pentachlorophenol	ND		10	2.2	ug/L		11/16/15 08:57	11/16/15 23:44	1
Phenanthrene	ND		5.0	0.44	ug/L		11/16/15 08:57	11/16/15 23:44	1
Phenol	ND		5.0	0.39	ug/L		11/16/15 08:57	11/16/15 23:44	1
Pyrene	ND		5.0	0.34	ug/L		11/16/15 08:57	11/16/15 23:44	1
Dimethylformamide	ND		20	1.7	ug/L		11/16/15 08:57	11/16/15 23:44	1

	MB	MB							
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	41.8	TJ	ug/L		3.45		11/16/15 08:57	11/16/15 23:44	1
Unknown	89.0	TJ	ug/L		3.61		11/16/15 08:57	11/16/15 23:44	1
Pyridine	0.486	J	ug/L		4.42	110-86-1	11/16/15 08:57	11/16/15 23:44	1
Unknown	6.49	ΤJ	ug/L		5.40		11/16/15 08:57	11/16/15 23:44	1
Cyclotetrasiloxane, octamethyl-	3.76	TJN	ug/L		6.44	556-67-2	11/16/15 08:57	11/16/15 23:44	1
Benzyl alcohol	0.550	J	ug/L		6.92	100-51-6	11/16/15 08:57	11/16/15 23:44	1
Unknown	2.22	ΤJ	ug/L		8.27		11/16/15 08:57	11/16/15 23:44	1
Unknown	5.41	TJ	ug/L		11.69		11/16/15 08:57	11/16/15 23:44	1
Unknown	4.05	TJ	ug/L		12.31		11/16/15 08:57	11/16/15 23:44	1
Unknown	2.66	TJ	ug/L		12.75		11/16/15 08:57	11/16/15 23:44	1
Unknown	2.23	TJ	ug/L		13.20		11/16/15 08:57	11/16/15 23:44	1
Unknown	9.02	TJ	ug/L		13.53		11/16/15 08:57	11/16/15 23:44	1
Unknown	2.39	ΤJ	ug/L		14.57		11/16/15 08:57	11/16/15 23:44	1
Erucylamide	5.71	TJN	ug/L		14.70	112-84-5	11/16/15 08:57	11/16/15 23:44	1

MB	MB				
%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
73		52 - 132	11/16/15 08:57	11/16/15 23:44	1
79		48 - 120	11/16/15 08:57	11/16/15 23:44	1
60		20 - 120	11/16/15 08:57	11/16/15 23:44	1
81		46 - 120	11/16/15 08:57	11/16/15 23:44	1
97		67 - 150	11/16/15 08:57	11/16/15 23:44	1
41		16 - 120	11/16/15 08:57	11/16/15 23:44	1
	%Recovery 73 79 60 81 97	79 60 81 97	%Recovery Qualifier Limits 73 52 - 132 79 48 - 120 60 20 - 120 81 46 - 120 97 67 - 150	%Recovery Qualifier Limits Prepared 73 52 - 132 11/16/15 08:57 79 48 - 120 11/16/15 08:57 60 20 - 120 11/16/15 08:57 81 46 - 120 11/16/15 08:57 97 67 - 150 11/16/15 08:57	%Recovery Qualifier Limits Prepared Analyzed 73 52 - 132 11/16/15 08:57 11/16/15 23:44 79 48 - 120 11/16/15 08:57 11/16/15 23:44 60 20 - 120 11/16/15 08:57 11/16/15 23:44 81 46 - 120 11/16/15 08:57 11/16/15 08:57 11/16/15 23:44 97 67 - 150 11/16/15 08:57 11/16/15 23:44

Lab Sample ID: LCS 480-275176/2-A

Matrix: Water

Analysis Batch: 275230							Prep Ba	atch: 275176
-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4,5-Trichlorophenol	16.0	14.0		ug/L		87	65 - 126	

TestAmerica Buffalo

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Page 99 of 130

Client: Woodard & Curran, Inc.

Project/Site: Rouses Point

Di-n-butyl phthalate

Di-n-octyl phthalate

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-275176/2-A Matrix: Water				Clie	ent Sample ID	Prep Type: Total/NA Prep Batch: 275176
Analysis Batch: 275230	Spike	LCS	LCS			%Rec.
Analyte	Added		Qualifier	Unit	D %Rec	Limits
2,4,6-Trichlorophenol	16.0	13.8	Quanner	ug/L	— B ///// 86	64 - 120
2,4-Dichlorophenol	16.0	13.4		ug/L ug/L	84	64 - 120
2,4-Dimethylphenol	16.0	13.1		ug/L	82	57 - 120
2,4-Dinitrophenol	32.0	14.4		ug/L ug/L	45	42 - 153
2,4-Dinitrofoluene	16.0	14.7		ug/L ug/L	92	65 ₋ 154
2,6-Dinitrotoluene	16.0	14.7		ug/L	93	74 - 134
2-Chloronaphthalene	16.0	13.8		ug/L ug/L	93 86	41 ₋ 124
2-Chlorophenol	16.0	13.3		ug/L ug/L	83	48 - 120
2-Methylnaphthalene	16.0	12.9			81	34 - 122
2-Methylphenol	16.0	12.9		ug/L ug/L	78	39 ₋ 120
2-Nitroaniline	16.0	18.1		-	113	67 ₋ 136
		14.3		ug/L	89	59 - 120
2-Nitrophenol 3,3'-Dichlorobenzidine	16.0 32.0	30.7		ug/L	89 96	33 - 140
		30. <i>1</i> 14.2		ug/L		
3-Nitroaniline	16.0			ug/L	89	28 - 130
4,6-Dinitro-2-methylphenol	32.0	18.9		ug/L	59	64 ₋ 159
4-Bromophenyl phenyl ether	16.0	14.2		ug/L	89	71 - 126
4-Chloro-3-methylphenol	16.0	14.8		ug/L	93	64 - 120
4-Chloroaniline	16.0	12.1		ug/L	75	10 - 130
4-Chlorophenyl phenyl ether	16.0	13.9		ug/L	87	71 - 122
4-Methylphenol	16.0	12.2		ug/L	76	39 - 120
4-Nitroaniline	16.0	14.9		ug/L	93	47 - 130
4-Nitrophenol	32.0	22.9		ug/L	71	16 - 120
Acenaphthene	16.0	14.5		ug/L	91	60 - 120
Acenaphthylene	16.0	14.4		ug/L	90	63 - 120
Acetophenone	16.0	14.6		ug/L	91	45 - 120
Anthracene	16.0	15.2		ug/L	95	58 - 148
Atrazine	32.0	31.5		ug/L	98	56 - 179
Benzaldehyde	32.0	20.7		ug/L	65	30 - 140
Benzo(a)anthracene	16.0	15.1		ug/L	94	55 - 151
Benzo(a)pyrene	16.0	14.9		ug/L	93	60 - 145
Benzo(b)fluoranthene	16.0	15.1		ug/L	95	54 - 140
Benzo(g,h,i)perylene	16.0	16.3		ug/L	102	66 - 152
Benzo(k)fluoranthene	16.0	15.0		ug/L	94	51 - 153
Biphenyl	16.0	13.9		ug/L	87	30 - 140
bis (2-chloroisopropyl) ether	16.0	16.0		ug/L	100	28 - 136
Bis(2-chloroethoxy)methane	16.0	14.2		ug/L	89	50 - 128
Bis(2-chloroethyl)ether	16.0	12.5		ug/L	78	51 ₋ 120
Bis(2-ethylhexyl) phthalate	16.0	18.3		ug/L	115	53 - 158
Butyl benzyl phthalate	16.0	17.8		ug/L	111	58 - 163
Caprolactam	32.0	12.8		ug/L	40	14 - 130
Carbazole	16.0	15.6		ug/L	97	59 - 148
Chrysene	16.0	15.7		ug/L	98	69 - 140
Dibenz(a,h)anthracene	16.0	16.1		ug/L	100	57 - 148
Dibenzofuran	16.0	14.3		ug/L	89	49 - 137
Diethyl phthalate	16.0	9.42		ug/L	59	59 - 146
Dimethyl phthalate	16.0	14.6		ug/L	91	59 - 141
• • • • • • • • • • • • • • • • • • •				-		

TestAmerica Buffalo

17.3

18.9

ug/L

ug/L

108

118

58 - 149

55 - 167

16.0

16.0

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-275176/2-A

Matrix: Water

Analysis Batch: 275230

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 275176 %Rec.

	- Pine				,	
Analyte	Added	Result (Qualifier Unit	D %Rec	Limits	
Fluoranthene	16.0	15.2	ug/L	95	55 - 147	
Fluorene	16.0	14.2	ug/L	89	55 ₋ 143	
Hexachlorobenzene	16.0	14.0	ug/L	87	14 - 130	
Hexachlorobutadiene	16.0	12.0	ug/L	75	14 - 130	
Hexachlorocyclopentadiene	16.0	6.61	ug/L	41	13 - 130	
Hexachloroethane	16.0	12.8	ug/L	80	14 - 130	
Indeno(1,2,3-cd)pyrene	16.0	15.8	ug/L	99	69 - 146	
Isophorone	16.0	14.7	ug/L	92	48 - 133	
Naphthalene	16.0	13.7	ug/L	86	35 - 130	
Nitrobenzene	16.0	15.5	ug/L	97	45 - 123	
N-Nitrosodi-n-propylamine	16.0	14.5	ug/L	91	56 - 120	
N-Nitrosodiphenylamine	32.0	30.6	ug/L	96	25 - 125	
Pentachlorophenol	32.0	23.8	ug/L	74	39 - 136	
Phenanthrene	16.0	15.3	ug/L	95	57 - 147	
Phenol	16.0	8.22	ug/L	51	17 - 120	
Pyrene	16.0	16.2	ug/L	102	58 - 136	

Spike

LCS LCS

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	85		52 - 132
2-Fluorobiphenyl	83		48 - 120
2-Fluorophenol	69		20 - 120
Nitrobenzene-d5	91		46 - 120
p-Terphenyl-d14	100		67 - 150
Phenol-d5	51		16 - 120

Lab Sample ID: LCSD 480-275176/3-A

Matrix: Water

Client Sample ID: L	.ab	Control Sample Dup
		Pron Type: Total/NA

Prep Type: Total/NA

Analysis Batch: 275230							Prep Ba	atch: 27	75176
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4,5-Trichlorophenol	16.0	12.6		ug/L		79	65 - 126	10	18
2,4,6-Trichlorophenol	16.0	12.0		ug/L		75	64 - 120	14	19
2,4-Dichlorophenol	16.0	10.8	*	ug/L		67	64 - 120	21	19
2,4-Dimethylphenol	16.0	10.1		ug/L		63	57 - 120	26	42
2,4-Dinitrophenol	32.0	12.6	*	ug/L		39	42 - 153	13	22
2,4-Dinitrotoluene	16.0	13.1		ug/L		82	65 - 154	12	20
2,6-Dinitrotoluene	16.0	13.8		ug/L		86	74 - 134	7	15
2-Chloronaphthalene	16.0	12.2		ug/L		76	41 - 124	12	21
2-Chlorophenol	16.0	11.6		ug/L		72	48 - 120	14	25
2-Methylnaphthalene	16.0	11.0		ug/L		69	34 - 122	16	21
2-Methylphenol	16.0	10.6		ug/L		66	39 - 120	16	27
2-Nitroaniline	16.0	14.8	*	ug/L		93	67 - 136	20	15
2-Nitrophenol	16.0	11.7	*	ug/L		73	59 - 120	20	18
3,3'-Dichlorobenzidine	32.0	24.9		ug/L		78	33 - 140	21	25
3-Nitroaniline	16.0	12.1		ug/L		76	28 - 130	16	19
4,6-Dinitro-2-methylphenol	32.0	15.5	*	ug/L		49	64 - 159	20	15
4-Bromophenyl phenyl ether	16.0	11.6	*	ug/L		72	71 - 126	20	15
4-Chloro-3-methylphenol	16.0	12.4		ug/L		77	64 - 120	18	27

TestAmerica Buffalo

Page 101 of 130

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-275176/3-A	Client Sample ID: Lab Control Sample Dup
Matrix: Water	Prep Type: Total/NA

Analysis Batch: 275230 Analyte	Spike		LCSD Qualifier	Unit	D	%Rec	Prep Batch: 275176 %Rec. RPD		
	Added						Limits	RPD	Limit
4-Chloroaniline	16.0	9.70		ug/L		61	10 - 130	22	22
4-Chlorophenyl phenyl ether	16.0	11.6	*	ug/L		72	71 - 122	18	16
4-Methylphenol	16.0	10.2		ug/L		63	39 - 120	18	24
4-Nitroaniline	16.0	12.9		ug/L		81	47 - 130	14	24
4-Nitrophenol	32.0	20.3		ug/L		63	16 - 120	12	48
Acenaphthene	16.0	12.4		ug/L		78	60 - 120	15	24
Acenaphthylene	16.0	12.3		ug/L		77	63 - 120	15	18
Acetophenone	16.0	12.7		ug/L		79	45 - 120	14	20
Anthracene	16.0	12.3	*	ug/L		77	58 - 148	22	15
Atrazine	32.0	27.6		ug/L		86	56 - 179	13	20
Benzaldehyde	32.0	18.9		ug/L		59	30 - 140	9	20
Benzo(a)anthracene	16.0	12.5	*	ug/L		78	55 ₋ 151	19	15
Benzo(a)pyrene	16.0	12.6	*	ug/L		79	60 - 145	17	15
Benzo(b)fluoranthene	16.0	13.1		ug/L		82	54 - 140	14	15
Benzo(g,h,i)perylene	16.0	13.9	*	ug/L		87	66 - 152	16	15
Benzo(k)fluoranthene	16.0	12.9		ug/L		81	51 - 153	15	22
Biphenyl	16.0	12.2		ug/L		76	30 - 140	13	20
bis (2-chloroisopropyl) ether	16.0	13.7		ug/L		86	28 - 136	15	24
Bis(2-chloroethoxy)methane	16.0	12.1		ug/L		76	50 - 128	16	17
Bis(2-chloroethyl)ether	16.0	12.9		ug/L		81	51 ₋ 120	4	21
Bis(2-ethylhexyl) phthalate	16.0	16.4		ug/L		103	53 - 158	11	15
Butyl benzyl phthalate	16.0	15.0	*	ug/L		94	58 - 163	17	16
Caprolactam	32.0	10.7		ug/L		34	14 - 130	17	20
Carbazole	16.0	13.0		ug/L		81	59 ₋ 148	18	20
Chrysene	16.0	13.1	*	ug/L		82	69 - 140	18	15
Dibenz(a,h)anthracene	16.0	13.4		ug/L		84	57 - 148	18	15
Dibenzofuran	16.0	12.7		ug/L		79	49 - 137	12	15
Diethyl phthalate	16.0	7.92	*	ug/L		49	59 ₋ 146	17	15
Dimethyl phthalate	16.0	12.8		ug/L		80	59 ₋ 141	13	15
Di-n-butyl phthalate	16.0	14.2	*	ug/L		89	58 - 149	19	15
Di-n-octyl phthalate	16.0	16.1		ug/L		101	55 - 167	16	16
Fluoranthene	16.0	12.4	*	ug/L		77	55 - 147	21	15
Fluorene	16.0	12.7		ug/L		79	55 - 143	12	15
Hexachlorobenzene	16.0	12.2		ug/L		76	14 - 130	14	15
Hexachlorobutadiene	16.0	9.61		ug/L		60	14 - 130	22	44
Hexachlorocyclopentadiene	16.0	5.61		ug/L		35	13 - 130	16	49
Hexachloroethane	16.0	10.4		ug/L		65	14 - 130	21	46
Indeno(1,2,3-cd)pyrene	16.0	13.3	*	ug/L		83	69 - 146	17	15
Isophorone	16.0	11.8		ug/L		74	48 - 133	22	17
Naphthalene	16.0	11.6		ug/L		72	35 - 130	17	29
Nitrobenzene	16.0	12.9		ug/L		81	45 - 123	18	24
N-Nitrosodi-n-propylamine	16.0	12.5		ug/L ug/L		78	56 ₋ 120	15	31
N-Nitrosodiphenylamine	32.0	25.0	*	ug/L		78	25 - 125	20	15
Pentachlorophenol	32.0	19.8		ug/L ug/L		62	39 - 136	19	37
Phenanthrene	16.0	12.3	*	ug/L ug/L		77	57 ₋ 147	21	15
Phenol		7.12				44	17 - 120	14	34
Pyrene	16.0 16.0	13.6		ug/L ug/L		44 85	17 - 120 58 - 136	18	34 19

TestAmerica Buffalo

2

5

7

0

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-275176/3-A

Matrix: Water

Analysis Batch: 275230

Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

Prep Batch: 275176

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	69		52 - 132
2-Fluorobiphenyl	73		48 - 120
2-Fluorophenol	57		20 - 120
Nitrobenzene-d5	75		46 - 120
p-Terphenyl-d14	85		67 - 150
Phenol-d5	42		16 - 120

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC)

Lab Sample ID: MB 480-271828/4

Matrix: Water

Analysis Batch: 271828

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Ethanol $\overline{\mathsf{ND}}$ 1.0 0.14 mg/L 10/29/15 08:52 Isobutyl alcohol ND 1.0 0.37 mg/L 10/29/15 08:52 Methanol ND 1.0 0.41 mg/L 10/29/15 08:52 ND n-Butanol 1.0 0.40 mg/L 10/29/15 08:52 Propanol ND 1.0 0.16 mg/L 10/29/15 08:52 ND 2-Butanol 1.0 0.17 mg/L 10/29/15 08:52 Isopropyl alcohol ND 1.0 0.12 mg/L 10/29/15 08:52 t-Butyl alcohol ND 1.0 0.10 mg/L 10/29/15 08:52

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
2-Hexanone	121		62 - 129		10/29/15 08:52	 1	

Lab Sample ID: LCS 480-271828/5

Matrix: Water

Analysis Batch: 271828

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethanol	20.0	21.1		mg/L		106	72 - 133	
Isobutyl alcohol	20.0	22.6		mg/L		113	69 - 139	
Methanol	20.0	22.3		mg/L		111	71 - 132	
n-Butanol	20.0	21.5		mg/L		108	73 - 130	
Propanol	20.0	20.9		mg/L		105	71 - 131	
2-Butanol	20.0	21.7		mg/L		109	68 - 136	
Isopropyl alcohol	20.0	22.1		mg/L		110	67 - 132	
t-Butyl alcohol	20.0	22.3		mg/L		111	71 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Hexanone	116		62 - 129

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) (Continued)

Lab Sample ID: MB 480-271929/1-A

Matrix: Solid

Analysis Batch: 272152

Client Sample ID: Method Blank

Prep Type: Soluble

	MB M	IB							
Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		0.94	0.14	mg/Kg			10/30/15 10:20	1
Isobutyl alcohol	ND		0.94	0.24	mg/Kg			10/30/15 10:20	1
Methanol	ND		0.94	0.28	mg/Kg			10/30/15 10:20	1
n-Butanol	ND		0.94	0.22	mg/Kg			10/30/15 10:20	1
Propanol	ND		0.94	0.14	mg/Kg			10/30/15 10:20	1
2-Butanol	ND		0.94	0.15	mg/Kg			10/30/15 10:20	1
Isopropyl alcohol	ND		0.94	0.23	mg/Kg			10/30/15 10:20	1
t-Butyl alcohol	ND		0.94	0.25	mg/Kg			10/30/15 10:20	1
I and the second									

MB MB

Limits Surrogate %Recovery Qualifier Prepared Analyzed Dil Fac 2-Hexanone 30 - 137 10/30/15 10:20 115

Lab Sample ID: LCS 480-271929/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

Analysis Batch: 272152

LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit D %Rec Limits Ethanol 18.3 20.0 mg/Kg 110 55 - 136 Isobutyl alcohol 18.3 20.8 mg/Kg 114 51 - 130 Methanol 18.3 20.0 mg/Kg 109 53 - 140 n-Butanol 18.3 19.9 mg/Kg 109 54 - 141 Propanol mg/Kg 18.3 20.4 112 59 - 139 2-Butanol 18.3 19.7 mg/Kg 108 49 - 136 20.2 Isopropyl alcohol 18.3 mg/Kg 50 - 131 110 t-Butyl alcohol 18.3 20.3 mg/Kg 111 48 - 130

LCS LCS

Surrogate %Recovery Qualifier Limits 30 - 137 2-Hexanone 100

Lab Sample ID: 480-89883-1 MS Client Sample ID: SWMU 26-SURFACE-SS-01 **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 272152

_	Sample Sa	mple Spike	MS	MS				%Rec.	
Analyte	Result Qu	ıalifier Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethanol	ND	22.2	21.7	1	mg/Kg	\	98	70 - 130	
Isobutyl alcohol	ND	22.2	23.5		mg/Kg	₩	106	70 - 130	
Methanol	ND	22.2	21.8		mg/Kg	₩	98	70 - 130	
n-Butanol	ND	22.2	22.0		mg/Kg	₩.	99	70 - 130	
Propanol	ND	22.2	22.7		mg/Kg	₩	102	70 - 130	
2-Butanol	ND	22.2	22.2		mg/Kg	₩	100	70 - 130	
Isopropyl alcohol	ND	22.2	22.1		mg/Kg	₩.	99	70 - 130	
t-Butyl alcohol	ND	22.2	23.7		mg/Kg	₩	107	50 - 130	
	MS MS	3							

Limits Surrogate %Recovery Qualifier 2-Hexanone 30 - 137 92

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) (Continued)

Lab Sample ID: 480-89883-1 MSD

Matrix: Solid

Analysis Batch: 272152

Client Sample ID: SWMU 26-SURFACE-SS-01

Prep Type: Soluble

Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit **Analyte** ₩ ND 21.3 96 70 - 130 Ethanol 20.4 mg/Kg 6 30 ND 21.3 22.6 ₩ 70 - 130 Isobutyl alcohol mg/Kg 106 30 ☼ ND Methanol 21.3 20.6 97 70 - 130 6 30 mg/Kg n-Butanol ND ₩ 97 70 - 130 30 21.3 20.7 mg/Kg 6 ₩ Propanol ND 21.3 21.5 mg/Kg 101 70 - 130 5 30 2-Butanol ND 21.3 20.0 mg/Kg Ö 94 70 - 130 10 30 ND 21.3 20.5 96 70 - 130 8 Isopropyl alcohol mg/Kg 30 ∜ t-Butyl alcohol ND 21.3 mg/Kg 100 50 - 130 30 21.3

> MSD MSD %Recovery Qualifier Limits

Surrogate 2-Hexanone 30 - 137 89

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-271532/1-A

Matrix: Solid

Analysis Batch: 271611

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 271532

MB MB Result Qualifier RL **MDL** Unit Prepared **Analyte** Analyzed Dil Fac 210 PCB-1016 $\overline{\mathsf{ND}}$ 41 ug/Kg 10/28/15 07:52 10/28/15 12:32 PCB-1221 ND 210 10/28/15 07:52 10/28/15 12:32 41 ug/Kg PCB-1232 ND 210 ug/Kg 10/28/15 07:52 10/28/15 12:32 PCB-1242 ND 210 41 ug/Kg 10/28/15 07:52 10/28/15 12:32 10/28/15 07:52 10/28/15 12:32 ND PCB-1248 210 ug/Kg PCB-1254 ND 210 98 ug/Kg 10/28/15 07:52 10/28/15 12:32 PCB-1260 ND 10/28/15 07:52 10/28/15 12:32 210 98 ug/Kg

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Tetrachloro-m-xylene 101 60 - 154 10/28/15 07:52 10/28/15 12:32 65 - 174 10/28/15 07:52 10/28/15 12:32 DCB Decachlorobiphenyl 102

LCS LCS

Lab Sample ID: LCS 480-271532/2-A

Matrix: Solid

Analysis Batch: 271611

Client Sample ID: Lab Control Sample Prep Type: Total/NA

> **Prep Batch: 271532** %Rec.

Spike Added Result Qualifier Limits Analyte Unit D %Rec PCB-1016 2200 2650 ug/Kg 120 51 - 185 PCB-1260 2200 2690 ug/Kg 122 61 - 184

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	109		60 - 154
DCB Decachlorobiphenyl	116		65 ₋ 174

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: MB 480-271561/1-A

Matrix: Water

Analysis Batch: 271674

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 271561

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.50	0.18	ug/L		10/28/15 08:58	10/28/15 16:30	1
PCB-1221	ND		0.50	0.18	ug/L		10/28/15 08:58	10/28/15 16:30	1
PCB-1232	ND		0.50	0.18	ug/L		10/28/15 08:58	10/28/15 16:30	1
PCB-1242	ND		0.50	0.18	ug/L		10/28/15 08:58	10/28/15 16:30	1
PCB-1248	ND		0.50	0.18	ug/L		10/28/15 08:58	10/28/15 16:30	1
PCB-1254	ND		0.50	0.25	ug/L		10/28/15 08:58	10/28/15 16:30	1
PCB-1260	ND		0.50	0.25	ug/L		10/28/15 08:58	10/28/15 16:30	1

MB MB

Surrogate	%Recovery Qualifie	er Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	97	24 - 137	10/28/15 08:58	10/28/15 16:30	1
DCB Decachlorobiphenyl	63	19 - 125	10/28/15 08:58	10/28/15 16:30	1

Lab Sample ID: LCS 480-271561/2-A

Matrix: Water

Analysis Batch: 271674

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 271561

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	 	4.00	4.24		ug/L		106	62 - 130	
PCB-1260		4.00	4.12		ug/L		103	56 - 123	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	107		24 - 137
DCB Decachlorobiphenvl	56		19 - 125

Lab Sample ID: LCSD 480-271561/3-A

Matrix: Water

Analysis Batch: 271674

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 271561

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016	4.00	3.78		ug/L		95	62 - 130	11	50
PCB-1260	4.00	3.74		ug/L		94	56 - 123	10	50

LCSD LCSD

MD MD

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	92		24 - 137
DCB Decachlorobiphenyl	51		19 - 125

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-271435/1-A

Matrix: Water

Analysis Batch: 271773

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 271435

l		MB	MR							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Arsenic	ND		0.015	0.0056	mg/L		10/28/15 08:10	10/28/15 19:34	1
	Barium	ND		0.0020	0.00070	mg/L		10/28/15 08:10	10/28/15 19:34	1
l	Cadmium	ND		0.0020	0.00050	mg/L		10/28/15 08:10	10/28/15 19:34	1
	Chromium	ND		0.0040	0.0010	mg/L		10/28/15 08:10	10/28/15 19:34	1

TestAmerica Buffalo

Page 106 of 130

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-271435/1-A

Matrix: Water

Analysis Batch: 271773

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 271435

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.010	0.0030	mg/L		10/28/15 08:10	10/28/15 19:34	1
Selenium	ND		0.025	0.0087	mg/L		10/28/15 08:10	10/28/15 19:34	1
Silver	ND		0.0060	0.0017	mg/L		10/28/15 08:10	10/28/15 19:34	1

MB MB

Lab Sample ID: LCS 480-271435/2-A

Matrix: Water

Analysis Batch: 271773

Client Sample	ID: Lab Control Sample
	Prep Type: Total/NA
	D D () OT () OT

Prep Batch: 271435

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.200	0.191		mg/L		95	80 - 120	
Barium	0.200	0.198		mg/L		99	80 - 120	
Cadmium	0.200	0.193		mg/L		96	80 - 120	
Chromium	0.200	0.202		mg/L		101	80 - 120	
Lead	0.200	0.197		mg/L		99	80 - 120	
Selenium	0.200	0.194		mg/L		97	80 - 120	
Silver	0.0500	0.0493		mg/L		99	80 - 120	

Lab Sample ID: MB 480-271624/1-A

Matrix: Solid

Analysis Batch: 272104

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 271624

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		2.0	0.40	mg/Kg		10/28/15 14:05	10/29/15 17:09	1
Barium	ND		0.50	0.11	mg/Kg		10/28/15 14:05	10/29/15 17:09	1
Cadmium	ND		0.20	0.030	mg/Kg		10/28/15 14:05	10/29/15 17:09	1
Chromium	ND		0.50	0.20	mg/Kg		10/28/15 14:05	10/29/15 17:09	1
Lead	ND		1.0	0.24	mg/Kg		10/28/15 14:05	10/29/15 17:09	1
Selenium	ND		4.0	0.40	mg/Kg		10/28/15 14:05	10/29/15 17:09	1
Silver	ND		0.60	0.20	mg/Kg		10/28/15 14:05	10/29/15 17:09	1

Lab Sample ID: LCSSRM 480-271624/2-A

Matrix: Solid

Client Sample ID:	Lab Control Samp	le
	Prep Type: Total/N	IA

Analysis Batch: 272104	Spike	LCSSRM	LCSSRM				Prep Batch: 271624 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	113	101.4		mg/Kg		89.7	69.7 - 142. 5
Barium	155	138.8		mg/Kg		89.5	72.9 - 127. 1
Cadmium	67.5	62.39		mg/Kg		92.4	73.2 - 126. 8
Chromium	164	147.4		mg/Kg		89.9	70.7 - 129. 9
Lead	90.1	85.81		mg/Kg		95.2	70.1 - 129. 9
Selenium	156	138.9		mg/Kg		89.1	67.3 - 132. 1
Silver	52.6	44.16		mg/Kg		83.9	66.7 - 133.

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-271871/1-A Client Sample ID: Method Blank **Matrix: Water**

Analysis Batch: 272120

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared 0.00020 10/29/15 12:00 10/29/15 17:31 ND 0.00012 mg/L Mercury

LCS LCS

0.00667

RL

0.020

Result Qualifier

MDL Unit

0.0083 mg/Kg

LCDSRM LCDSRM

LCSSRM LCSSRM

MS MS

0.379

Result Qualifier

10.39

Result Qualifier

8.95

Result Qualifier

Unit

mg/L

Unit

Unit

Unit

mg/Ka

mg/Kg

mg/Kg

Spike

Added

0.00667

Spike

Added

8.37

Spike

Added

8.37

Spike

Added

0.360

Lab Sample ID: LCS 480-271871/2-A

Matrix: Water

Analysis Batch: 272120

Analyte Mercury **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

%Rec

Prepared

D %Rec

%Rec

%Rec

102

Client Sample ID: SWMU 26-SURFACE-SS-01

Prep Batch: 271871

Prep Type: Total/NA

Prep Batch: 271578

Prep Type: Total/NA

Prep Batch: 271578

Prep Type: Total/NA **Prep Batch: 271578**

Prep Type: Total/NA Prep Batch: 271578

Prep Type: Total/NA

Prep Batch: 271578

RPD

Limit

20

RPD

15

Analyzed

Prep Type: Total/NA

Prep Batch: 271871

%Rec. Limits

Client Sample ID: Method Blank

10/28/15 12:05 10/28/15 16:56

%Rec.

Limits

107.0 51.3 - 148.

Client Sample ID: Lab Control Sample

%Rec.

Limits

1

%Rec.

Limits

80 - 120

%Rec.

124.1 51.3 - 148.

Client Sample ID: SWMU 26-SURFACE-SS-01

Client Sample ID: Lab Control Sample Dup

100 80 - 120

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 480-271578/1-A

Matrix: Solid

Analysis Batch: 271788

MB MB

Analyte

Result Qualifier $\overline{\mathsf{ND}}$

Mercury

Lab Sample ID: LCDSRM 480-271578/3-A

Matrix: Solid

Analysis Batch: 271788

Analyte

Lab Sample ID: LCSSRM 480-271578/2-A

Matrix: Solid

Mercury

Mercury

Analysis Batch: 271788

Analyte

Lab Sample ID: 480-89883-1 MS

Matrix: Solid

Analysis Batch: 271788

Analyte Mercury

Lab Sample ID: 480-89883-1 MSD **Matrix: Solid**

Analysis Batch: 271788

Analyte

Result Qualifier 0.013 J Mercury

Sample Sample Spike Added 0.369

Sample Sample

0.013 J

Result Qualifier

Result Qualifier 0.371

MSD MSD Unit mg/Kg

D %Rec

97

Limits RPD 80 - 120 2

TestAmerica Buffalo

Dil Fac

RPD

Limit

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

GC/MS VOA

Prep Batch: 271446

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-1	SWMU 26-SURFACE-SS-01	Total/NA	Solid	5035A	
480-89883-2	SWMU 23-SURFACE-SS-01	Total/NA	Solid	5035A	
480-89883-3	SWMU 7-SURFACE-SS-01	Total/NA	Solid	5035A	
480-89883-4	SWMU 13-SURFACE-SS-01	Total/NA	Solid	5035A	
480-89883-5	SWMU 12-SURFACE-SS-01	Total/NA	Solid	5035A	
480-89883-6	SWMU 6-SURFACE-SS-01	Total/NA	Solid	5035A	
480-89883-7	SWMU 24-SURFACE-SS-01	Total/NA	Solid	5035A	
480-89883-8	SWMU 5-SURFACE-SS-01	Total/NA	Solid	5035A	
480-89883-9	SWMU 15-SURFACE-SS-01	Total/NA	Solid	5035A	
480-89883-10	SWMU 17-SURFACE-SS-01	Total/NA	Solid	5035A	
480-89883-11	SWMU 17-SURFACE-SS-99	Total/NA	Solid	5035A	
480-89883-12	SWMU 7-BLDG16-01	Total/NA	Solid	5035A	
480-89883-13	SWMU 7-BLDG16-02	Total/NA	Solid	5035A	
480-89883-14	SWMU 7-BLDG16-03	Total/NA	Solid	5035A	
LCS 480-271446/1-A	Lab Control Sample	Total/NA	Solid	5035A	
LCSD 480-271446/2-A	Lab Control Sample Dup	Total/NA	Solid	5035A	
MB 480-271446/3-A	Method Blank	Total/NA	Solid	5035A	

Analysis Batch: 272636

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-1	SWMU 26-SURFACE-SS-01	Total/NA	Solid	8260C	271446
480-89883-2	SWMU 23-SURFACE-SS-01	Total/NA	Solid	8260C	271446
480-89883-3	SWMU 7-SURFACE-SS-01	Total/NA	Solid	8260C	271446
480-89883-4	SWMU 13-SURFACE-SS-01	Total/NA	Solid	8260C	271446
480-89883-5	SWMU 12-SURFACE-SS-01	Total/NA	Solid	8260C	271446
480-89883-6	SWMU 6-SURFACE-SS-01	Total/NA	Solid	8260C	271446
480-89883-7	SWMU 24-SURFACE-SS-01	Total/NA	Solid	8260C	271446
480-89883-8	SWMU 5-SURFACE-SS-01	Total/NA	Solid	8260C	271446
480-89883-9	SWMU 15-SURFACE-SS-01	Total/NA	Solid	8260C	271446
480-89883-10	SWMU 17-SURFACE-SS-01	Total/NA	Solid	8260C	271446
480-89883-11	SWMU 17-SURFACE-SS-99	Total/NA	Solid	8260C	271446
480-89883-12	SWMU 7-BLDG16-01	Total/NA	Solid	8260C	271446
480-89883-13	SWMU 7-BLDG16-02	Total/NA	Solid	8260C	271446
480-89883-14	SWMU 7-BLDG16-03	Total/NA	Solid	8260C	271446
LCS 480-271446/1-A	Lab Control Sample	Total/NA	Solid	8260C	271446
LCSD 480-271446/2-A	Lab Control Sample Dup	Total/NA	Solid	8260C	271446
MB 480-271446/3-A	Method Blank	Total/NA	Solid	8260C	271446

Analysis Batch: 273201

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-15	EB01	Total/NA	Water	8260C	
480-89883-16	TB01	Total/NA	Water	8260C	
LCS 480-273201/4	Lab Control Sample	Total/NA	Water	8260C	
MB 480-273201/7	Method Blank	Total/NA	Water	8260C	

GC/MS Semi VOA

Prep Batch: 271548

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-15	EB01	Total/NA	Water	3510C	

TestAmerica Buffalo

Page 109 of 130

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

GC/MS Semi VOA (Continued)

Prep Batch: 271548 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-271548/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-271548/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
MB 480-271548/1-A	Method Blank	Total/NA	Water	3510C	

Prep Batch: 272209

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-1	SWMU 26-SURFACE-SS-01	Total/NA	Solid	3550C	
480-89883-1 MS	SWMU 26-SURFACE-SS-01	Total/NA	Solid	3550C	
480-89883-1 MSD	SWMU 26-SURFACE-SS-01	Total/NA	Solid	3550C	
480-89883-2	SWMU 23-SURFACE-SS-01	Total/NA	Solid	3550C	
480-89883-3	SWMU 7-SURFACE-SS-01	Total/NA	Solid	3550C	
480-89883-4	SWMU 13-SURFACE-SS-01	Total/NA	Solid	3550C	
480-89883-5	SWMU 12-SURFACE-SS-01	Total/NA	Solid	3550C	
480-89883-6	SWMU 6-SURFACE-SS-01	Total/NA	Solid	3550C	
480-89883-7	SWMU 24-SURFACE-SS-01	Total/NA	Solid	3550C	
480-89883-8	SWMU 5-SURFACE-SS-01	Total/NA	Solid	3550C	
480-89883-9	SWMU 15-SURFACE-SS-01	Total/NA	Solid	3550C	
480-89883-10	SWMU 17-SURFACE-SS-01	Total/NA	Solid	3550C	
480-89883-11	SWMU 17-SURFACE-SS-99	Total/NA	Solid	3550C	
LCS 480-272209/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-272209/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 273810

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-271548/2-A	Lab Control Sample	Total/NA	Water	8270D	271548
LCSD 480-271548/3-A	Lab Control Sample Dup	Total/NA	Water	8270D	271548

Analysis Batch: 273999

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-15	EB01	Total/NA	Water	8270D	271548
MB 480-271548/1-A	Method Blank	Total/NA	Water	8270D	271548

Analysis Batch: 274040

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-1	SWMU 26-SURFACE-SS-01	Total/NA	Solid	8270D	272209
480-89883-1 MS	SWMU 26-SURFACE-SS-01	Total/NA	Solid	8270D	272209
480-89883-1 MSD	SWMU 26-SURFACE-SS-01	Total/NA	Solid	8270D	272209
480-89883-2	SWMU 23-SURFACE-SS-01	Total/NA	Solid	8270D	272209
480-89883-3	SWMU 7-SURFACE-SS-01	Total/NA	Solid	8270D	272209
480-89883-4	SWMU 13-SURFACE-SS-01	Total/NA	Solid	8270D	272209
480-89883-5	SWMU 12-SURFACE-SS-01	Total/NA	Solid	8270D	272209
480-89883-6	SWMU 6-SURFACE-SS-01	Total/NA	Solid	8270D	272209
480-89883-7	SWMU 24-SURFACE-SS-01	Total/NA	Solid	8270D	272209
480-89883-8	SWMU 5-SURFACE-SS-01	Total/NA	Solid	8270D	272209
480-89883-9	SWMU 15-SURFACE-SS-01	Total/NA	Solid	8270D	272209
480-89883-10	SWMU 17-SURFACE-SS-01	Total/NA	Solid	8270D	272209
480-89883-11	SWMU 17-SURFACE-SS-99	Total/NA	Solid	8270D	272209
LCS 480-272209/2-A	Lab Control Sample	Total/NA	Solid	8270D	272209
MB 480-272209/1-A	Method Blank	Total/NA	Solid	8270D	272209

TestAmerica Buffalo

Page 110 of 130

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

GC/MS Semi VOA (Continued)

Prep Batch: 274556

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-8 - RE	SWMU 5-SURFACE-SS-01	Total/NA	Solid	3550C	
LCS 480-274556/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-274556/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 274806

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-8 - RE	SWMU 5-SURFACE-SS-01	Total/NA	Solid	8270D	274556
LCS 480-274556/2-A	Lab Control Sample	Total/NA	Solid	8270D	274556
MB 480-274556/1-A	Method Blank	Total/NA	Solid	8270D	274556

Prep Batch: 275176

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-15 - RE	EB01	Total/NA	Water	3510C	
LCS 480-275176/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-275176/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
MB 480-275176/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 275230

Lab Sample ID 480-89883-15 - RE	Client Sample ID EB01	Prep Type Total/NA	Matrix Water	Method 8270D	Prep Batch 275176
LCS 480-275176/2-A	Lab Control Sample	Total/NA	Water	8270D	275176
LCSD 480-275176/3-A	Lab Control Sample Dup	Total/NA	Water	8270D	275176
MB 480-275176/1-A	Method Blank	Total/NA	Water	8270D	275176

GC VOA

Analysis Batch: 271828

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-15	EB01	Total/NA	Water	8015D	
LCS 480-271828/5	Lab Control Sample	Total/NA	Water	8015D	
MB 480-271828/4	Method Blank	Total/NA	Water	8015D	

Leach Batch: 271929

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-1	SWMU 26-SURFACE-SS-01	Soluble	Solid	DI Leach	
480-89883-1 MS	SWMU 26-SURFACE-SS-01	Soluble	Solid	DI Leach	
480-89883-1 MSD	SWMU 26-SURFACE-SS-01	Soluble	Solid	DI Leach	
480-89883-2	SWMU 23-SURFACE-SS-01	Soluble	Solid	DI Leach	
480-89883-3	SWMU 7-SURFACE-SS-01	Soluble	Solid	DI Leach	
480-89883-4	SWMU 13-SURFACE-SS-01	Soluble	Solid	DI Leach	
480-89883-5	SWMU 12-SURFACE-SS-01	Soluble	Solid	DI Leach	
480-89883-6	SWMU 6-SURFACE-SS-01	Soluble	Solid	DI Leach	
480-89883-7	SWMU 24-SURFACE-SS-01	Soluble	Solid	DI Leach	
480-89883-8	SWMU 5-SURFACE-SS-01	Soluble	Solid	DI Leach	
480-89883-9	SWMU 15-SURFACE-SS-01	Soluble	Solid	DI Leach	
480-89883-10	SWMU 17-SURFACE-SS-01	Soluble	Solid	DI Leach	
480-89883-11	SWMU 17-SURFACE-SS-99	Soluble	Solid	DI Leach	
LCS 480-271929/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
MB 480-271929/1-A	Method Blank	Soluble	Solid	DI Leach	

Page 111 of 130

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

GC VOA (Continued)

Analysis Batch: 272152

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-1	SWMU 26-SURFACE-SS-01	Soluble	Solid	8015D	271929
480-89883-1 MS	SWMU 26-SURFACE-SS-01	Soluble	Solid	8015D	271929
480-89883-1 MSD	SWMU 26-SURFACE-SS-01	Soluble	Solid	8015D	271929
480-89883-2	SWMU 23-SURFACE-SS-01	Soluble	Solid	8015D	271929
480-89883-3	SWMU 7-SURFACE-SS-01	Soluble	Solid	8015D	271929
480-89883-4	SWMU 13-SURFACE-SS-01	Soluble	Solid	8015D	271929
480-89883-5	SWMU 12-SURFACE-SS-01	Soluble	Solid	8015D	271929
480-89883-6	SWMU 6-SURFACE-SS-01	Soluble	Solid	8015D	271929
480-89883-7	SWMU 24-SURFACE-SS-01	Soluble	Solid	8015D	271929
480-89883-8	SWMU 5-SURFACE-SS-01	Soluble	Solid	8015D	271929
480-89883-9	SWMU 15-SURFACE-SS-01	Soluble	Solid	8015D	271929
480-89883-10	SWMU 17-SURFACE-SS-01	Soluble	Solid	8015D	271929
480-89883-11	SWMU 17-SURFACE-SS-99	Soluble	Solid	8015D	271929
LCS 480-271929/2-A	Lab Control Sample	Soluble	Solid	8015D	271929
MB 480-271929/1-A	Method Blank	Soluble	Solid	8015D	271929

GC Semi VOA

Prep Batch: 271532

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-1	SWMU 26-SURFACE-SS-01	Total/NA	Solid	3550C	_
480-89883-2	SWMU 23-SURFACE-SS-01	Total/NA	Solid	3550C	
480-89883-3	SWMU 7-SURFACE-SS-01	Total/NA	Solid	3550C	
480-89883-4	SWMU 13-SURFACE-SS-01	Total/NA	Solid	3550C	
480-89883-5	SWMU 12-SURFACE-SS-01	Total/NA	Solid	3550C	
480-89883-6	SWMU 6-SURFACE-SS-01	Total/NA	Solid	3550C	
480-89883-7	SWMU 24-SURFACE-SS-01	Total/NA	Solid	3550C	
480-89883-8	SWMU 5-SURFACE-SS-01	Total/NA	Solid	3550C	
480-89883-9	SWMU 15-SURFACE-SS-01	Total/NA	Solid	3550C	
480-89883-10	SWMU 17-SURFACE-SS-01	Total/NA	Solid	3550C	
480-89883-11	SWMU 17-SURFACE-SS-99	Total/NA	Solid	3550C	
LCS 480-271532/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-271532/1-A	Method Blank	Total/NA	Solid	3550C	

Prep Batch: 271561

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-15	EB01	Total/NA	Water	3510C	
LCS 480-271561/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-271561/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
MB 480-271561/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 271611

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-1	SWMU 26-SURFACE-SS-01	Total/NA	Solid	8082A	271532
480-89883-2	SWMU 23-SURFACE-SS-01	Total/NA	Solid	8082A	271532
480-89883-3	SWMU 7-SURFACE-SS-01	Total/NA	Solid	8082A	271532
480-89883-4	SWMU 13-SURFACE-SS-01	Total/NA	Solid	8082A	271532
480-89883-5	SWMU 12-SURFACE-SS-01	Total/NA	Solid	8082A	271532
480-89883-6	SWMU 6-SURFACE-SS-01	Total/NA	Solid	8082A	271532
480-89883-7	SWMU 24-SURFACE-SS-01	Total/NA	Solid	8082A	271532

TestAmerica Buffalo

noa Banaio

.

4

6

8

9

11

14

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

GC Semi VOA (Continued)

Analysis Batch: 271611 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-8	SWMU 5-SURFACE-SS-01	Total/NA	Solid	8082A	271532
480-89883-9	SWMU 15-SURFACE-SS-01	Total/NA	Solid	8082A	271532
480-89883-10	SWMU 17-SURFACE-SS-01	Total/NA	Solid	8082A	271532
480-89883-11	SWMU 17-SURFACE-SS-99	Total/NA	Solid	8082A	271532
LCS 480-271532/2-A	Lab Control Sample	Total/NA	Solid	8082A	271532
MB 480-271532/1-A	Method Blank	Total/NA	Solid	8082A	271532

Analysis Batch: 271674

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-15	EB01	Total/NA	Water	8082A	271561
LCS 480-271561/2-A	Lab Control Sample	Total/NA	Water	8082A	271561
LCSD 480-271561/3-A	Lab Control Sample Dup	Total/NA	Water	8082A	271561
MB 480-271561/1-A	Method Blank	Total/NA	Water	8082A	271561

Metals

Prep Batch: 271435

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-15	EB01	Total/NA	Water	3005A	
LCS 480-271435/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-271435/1-A	Method Blank	Total/NA	Water	3005A	

Prep Batch: 271578

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-89883-1	SWMU 26-SURFACE-SS-01	Total/NA	Solid	7471B	_
480-89883-1 MS	SWMU 26-SURFACE-SS-01	Total/NA	Solid	7471B	
480-89883-1 MSD	SWMU 26-SURFACE-SS-01	Total/NA	Solid	7471B	
480-89883-2	SWMU 23-SURFACE-SS-01	Total/NA	Solid	7471B	
480-89883-3	SWMU 7-SURFACE-SS-01	Total/NA	Solid	7471B	
480-89883-4	SWMU 13-SURFACE-SS-01	Total/NA	Solid	7471B	
480-89883-5	SWMU 12-SURFACE-SS-01	Total/NA	Solid	7471B	
480-89883-6	SWMU 6-SURFACE-SS-01	Total/NA	Solid	7471B	
480-89883-7	SWMU 24-SURFACE-SS-01	Total/NA	Solid	7471B	
480-89883-8	SWMU 5-SURFACE-SS-01	Total/NA	Solid	7471B	
480-89883-9	SWMU 15-SURFACE-SS-01	Total/NA	Solid	7471B	
480-89883-10	SWMU 17-SURFACE-SS-01	Total/NA	Solid	7471B	
480-89883-11	SWMU 17-SURFACE-SS-99	Total/NA	Solid	7471B	
LCDSRM 480-271578/3-A	Lab Control Sample Dup	Total/NA	Solid	7471B	
LCSSRM 480-271578/2-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 480-271578/1-A	Method Blank	Total/NA	Solid	7471B	

Prep Batch: 271624

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-1	SWMU 26-SURFACE-SS-01	Total/NA	Solid	3050B	_
480-89883-2	SWMU 23-SURFACE-SS-01	Total/NA	Solid	3050B	
480-89883-3	SWMU 7-SURFACE-SS-01	Total/NA	Solid	3050B	
480-89883-4	SWMU 13-SURFACE-SS-01	Total/NA	Solid	3050B	
480-89883-5	SWMU 12-SURFACE-SS-01	Total/NA	Solid	3050B	
480-89883-6	SWMU 6-SURFACE-SS-01	Total/NA	Solid	3050B	
480-89883-7	SWMU 24-SURFACE-SS-01	Total/NA	Solid	3050B	

TestAmerica Buffalo

Page 113 of 130

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Metals (Continued)

Prep Batch: 271624 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-8	SWMU 5-SURFACE-SS-01	Total/NA	Solid	3050B	
480-89883-9	SWMU 15-SURFACE-SS-01	Total/NA	Solid	3050B	
480-89883-10	SWMU 17-SURFACE-SS-01	Total/NA	Solid	3050B	
480-89883-11	SWMU 17-SURFACE-SS-99	Total/NA	Solid	3050B	
LCSSRM 480-271624/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-271624/1-A	Method Blank	Total/NA	Solid	3050B	

Analysis Batch: 271773

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-15	EB01	Total/NA	Water	6010C	271435
LCS 480-271435/2-A	Lab Control Sample	Total/NA	Water	6010C	271435
MB 480-271435/1-A	Method Blank	Total/NA	Water	6010C	271435

Analysis Batch: 271788

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-1	SWMU 26-SURFACE-SS-01	Total/NA	Solid	7471B	271578
480-89883-1 MS	SWMU 26-SURFACE-SS-01	Total/NA	Solid	7471B	271578
480-89883-1 MSD	SWMU 26-SURFACE-SS-01	Total/NA	Solid	7471B	271578
480-89883-2	SWMU 23-SURFACE-SS-01	Total/NA	Solid	7471B	271578
480-89883-3	SWMU 7-SURFACE-SS-01	Total/NA	Solid	7471B	271578
480-89883-4	SWMU 13-SURFACE-SS-01	Total/NA	Solid	7471B	271578
480-89883-5	SWMU 12-SURFACE-SS-01	Total/NA	Solid	7471B	271578
480-89883-6	SWMU 6-SURFACE-SS-01	Total/NA	Solid	7471B	271578
480-89883-7	SWMU 24-SURFACE-SS-01	Total/NA	Solid	7471B	271578
480-89883-8	SWMU 5-SURFACE-SS-01	Total/NA	Solid	7471B	271578
480-89883-9	SWMU 15-SURFACE-SS-01	Total/NA	Solid	7471B	271578
480-89883-10	SWMU 17-SURFACE-SS-01	Total/NA	Solid	7471B	271578
480-89883-11	SWMU 17-SURFACE-SS-99	Total/NA	Solid	7471B	271578
LCDSRM 480-271578/3-A	Lab Control Sample Dup	Total/NA	Solid	7471B	271578
LCSSRM 480-271578/2-A	Lab Control Sample	Total/NA	Solid	7471B	271578
MB 480-271578/1-A	Method Blank	Total/NA	Solid	7471B	271578

Prep Batch: 271871

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-15	EB01	Total/NA	Water	7470A	
LCS 480-271871/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-271871/1-A	Method Blank	Total/NA	Water	7470A	

Analysis Batch: 272104

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-1	SWMU 26-SURFACE-SS-01	Total/NA	Solid	6010C	271624
480-89883-2	SWMU 23-SURFACE-SS-01	Total/NA	Solid	6010C	271624
480-89883-3	SWMU 7-SURFACE-SS-01	Total/NA	Solid	6010C	271624
480-89883-4	SWMU 13-SURFACE-SS-01	Total/NA	Solid	6010C	271624
480-89883-5	SWMU 12-SURFACE-SS-01	Total/NA	Solid	6010C	271624
480-89883-6	SWMU 6-SURFACE-SS-01	Total/NA	Solid	6010C	271624
480-89883-7	SWMU 24-SURFACE-SS-01	Total/NA	Solid	6010C	271624
480-89883-8	SWMU 5-SURFACE-SS-01	Total/NA	Solid	6010C	271624
480-89883-9	SWMU 15-SURFACE-SS-01	Total/NA	Solid	6010C	271624
480-89883-10	SWMU 17-SURFACE-SS-01	Total/NA	Solid	6010C	271624
480-89883-11	SWMU 17-SURFACE-SS-99	Total/NA	Solid	6010C	271624

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Metals (Continued)

Analysis Batch: 272104 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSSRM 480-271624/2-A	Lab Control Sample	Total/NA	Solid	6010C	271624
MB 480-271624/1-A	Method Blank	Total/NA	Solid	6010C	271624

Analysis Batch: 272120

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-15	EB01	Total/NA	Water	7470A	271871
LCS 480-271871/2-A	Lab Control Sample	Total/NA	Water	7470A	271871
MB 480-271871/1-A	Method Blank	Total/NA	Water	7470A	271871

General Chemistry

Analysis Batch: 271489

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-1	SWMU 26-SURFACE-SS-01	Total/NA	Solid	Moisture	
480-89883-2	SWMU 23-SURFACE-SS-01	Total/NA	Solid	Moisture	
480-89883-3	SWMU 7-SURFACE-SS-01	Total/NA	Solid	Moisture	
480-89883-4	SWMU 13-SURFACE-SS-01	Total/NA	Solid	Moisture	
480-89883-5	SWMU 12-SURFACE-SS-01	Total/NA	Solid	Moisture	
480-89883-6	SWMU 6-SURFACE-SS-01	Total/NA	Solid	Moisture	
480-89883-7	SWMU 24-SURFACE-SS-01	Total/NA	Solid	Moisture	
480-89883-8	SWMU 5-SURFACE-SS-01	Total/NA	Solid	Moisture	
480-89883-9	SWMU 15-SURFACE-SS-01	Total/NA	Solid	Moisture	
480-89883-10	SWMU 17-SURFACE-SS-01	Total/NA	Solid	Moisture	
480-89883-11	SWMU 17-SURFACE-SS-99	Total/NA	Solid	Moisture	

Analysis Batch: 272925

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89883-12	SWMU 7-BLDG16-01	Total/NA	Solid	Moisture	
480-89883-13	SWMU 7-BLDG16-02	Total/NA	Solid	Moisture	
480-89883-14	SWMU 7-BLDG16-03	Total/NA	Solid	Moisture	

3

4

5

6

9

4 4

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU 26-SURFACE-SS-01 Lab Sample ID: 480-89883-1

Date Collected: 10/26/15 11:15 **Matrix: Solid**

Date Received: 10/27/15 09:00

Batch Batch Dilution Batch Prepared **Prep Type** Method **Factor** Number or Analyzed Analyst Type Run Lab 271489 10/27/15 22:16 CMK TAL BUF Total/NA Analysis Moisture

Client Sample ID: SWMU 26-SURFACE-SS-01 Lab Sample ID: 480-89883-1

Date Collected: 10/26/15 11:15 **Matrix: Solid** Date Received: 10/27/15 09:00 Percent Solids: 88.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			271446	10/27/15 16:40	NQN	TAL BUF
Total/NA	Analysis	8260C		1	272636	11/02/15 23:09	LCH	TAL BUF
Total/NA	Prep	3550C			272209	10/30/15 14:03	CPH	TAL BUF
Total/NA	Analysis	8270D		10	274040	11/10/15 12:11	CAS	TAL BUF
Soluble	Leach	DI Leach			271929	10/29/15 14:00	AJM	TAL BUF
Soluble	Analysis	8015D		1	272152	10/30/15 11:14	AJM	TAL BUF
Total/NA	Prep	3550C			271532	10/28/15 07:52	CAM	TAL BUF
Total/NA	Analysis	8082A		1	271611	10/28/15 16:04	KS	TAL BUF
Total/NA	Prep	3050B			271624	10/28/15 14:05	CNS	TAL BUF
Total/NA	Analysis	6010C		1	272104	10/29/15 17:15	AMH	TAL BUF
Total/NA	Prep	7471B			271578	10/28/15 12:05	TAS	TAL BUF
Total/NA	Analysis	7471B		1	271788	10/28/15 15:48	TAS	TAL BUF

Client Sample ID: SWMU 23-SURFACE-SS-01 Lab Sample ID: 480-89883-2

Date Collected: 10/26/15 11:40 **Matrix: Solid**

Date Received: 10/27/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	271489	10/27/15 22:16	CMK	TAL BUF

Client Sample ID: SWMU 23-SURFACE-SS-01 Lab Sample ID: 480-89883-2

Date Collected: 10/26/15 11:40 **Matrix: Solid** Date Received: 10/27/15 09:00 Percent Solids: 90.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			271446	10/27/15 16:40	NQN	TAL BUF
Total/NA	Analysis	8260C		1	272636	11/02/15 23:34	LCH	TAL BUF
Total/NA	Prep	3550C			272209	10/30/15 14:03	CPH	TAL BUF
Total/NA	Analysis	8270D		1	274040	11/10/15 12:38	CAS	TAL BUF
Soluble	Leach	DI Leach			271929	10/29/15 14:00	AJM	TAL BUF
Soluble	Analysis	8015D		1	272152	10/30/15 11:22	AJM	TAL BUF
Total/NA	Prep	3550C			271532	10/28/15 07:52	CAM	TAL BUF
Total/NA	Analysis	8082A		1	271611	10/28/15 16:19	KS	TAL BUF
Total/NA	Prep	3050B			271624	10/28/15 14:05	CNS	TAL BUF
Total/NA	Analysis	6010C		1	272104	10/29/15 17:19	AMH	TAL BUF
Total/NA	Prep	7471B			271578	10/28/15 12:05	TAS	TAL BUF

10

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU 23-SURFACE-SS-01

Lab Sample ID: 480-89883-2 Date Collected: 10/26/15 11:40 **Matrix: Solid** Percent Solids: 90.7

Date Received: 10/27/15 09:00

Batch Batch Dilution Batch Prepared Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 7471B 271788 10/28/15 15:58 TAS TAL BUF

Client Sample ID: SWMU 7-SURFACE-SS-01 Lab Sample ID: 480-89883-3

Date Collected: 10/26/15 12:05 **Matrix: Solid**

Date Received: 10/27/15 09:00

Batch Dilution Batch Batch **Prepared** Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab 271489 10/27/15 22:16 CMK TAL BUF Total/NA Analysis Moisture

Client Sample ID: SWMU 7-SURFACE-SS-01 Lab Sample ID: 480-89883-3

Date Collected: 10/26/15 12:05 **Matrix: Solid** Date Received: 10/27/15 09:00 Percent Solids: 90.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			271446	10/27/15 16:40	NQN	TAL BUF
Total/NA	Analysis	8260C		1	272636	11/03/15 00:00	LCH	TAL BUF
Total/NA	Prep	3550C			272209	10/30/15 14:03	CPH	TAL BUF
Total/NA	Analysis	8270D		5	274040	11/10/15 13:04	CAS	TAL BUF
Soluble	Leach	DI Leach			271929	10/29/15 14:00	AJM	TAL BUF
Soluble	Analysis	8015D		1	272152	10/30/15 11:30	AJM	TAL BUF
Total/NA	Prep	3550C			271532	10/28/15 07:52	CAM	TAL BUF
Total/NA	Analysis	8082A		1	271611	10/28/15 16:33	KS	TAL BUF
Total/NA	Prep	3050B			271624	10/28/15 14:05	CNS	TAL BUF
Total/NA	Analysis	6010C		1	272104	10/29/15 17:22	AMH	TAL BUF
Total/NA	Prep	7471B			271578	10/28/15 12:05	TAS	TAL BUF
Total/NA	Analysis	7471B		1	271788	10/28/15 16:00	TAS	TAL BUF

Client Sample ID: SWMU 13-SURFACE-SS-01 Lab Sample ID: 480-89883-4

Date Collected: 10/26/15 12:15 **Matrix: Solid**

Date Received: 10/27/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	271489	10/27/15 22:16	CMK	TAL BUF

Client Sample ID: SWMU 13-SURFACE-SS-01 Lab Sample ID: 480-89883-4

Date Collected: 10/26/15 12:15 **Matrix: Solid** Date Received: 10/27/15 09:00 Percent Solids: 90.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			271446	10/27/15 16:40	NQN	TAL BUF
Total/NA	Analysis	8260C		1	272636	11/03/15 00:26	LCH	TAL BUF
Total/NA	Prep	3550C			272209	10/30/15 14:03	CPH	TAL BUF
Total/NA	Analysis	8270D		20	274040	11/10/15 13:30	CAS	TAL BUF

Client: Woodard & Curran, Inc.

Project/Site: Rouses Point

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			271929	10/29/15 14:00	AJM	TAL BUF
Soluble	Analysis	8015D		1	272152	10/30/15 11:38	AJM	TAL BUF
Total/NA	Prep	3550C			271532	10/28/15 07:52	CAM	TAL BUF
Total/NA	Analysis	8082A		1	271611	10/28/15 16:48	KS	TAL BUF
Total/NA	Prep	3050B			271624	10/28/15 14:05	CNS	TAL BUF
Total/NA	Analysis	6010C		1	272104	10/29/15 17:34	AMH	TAL BUF
Total/NA	Prep	7471B			271578	10/28/15 12:05	TAS	TAL BUF
Total/NA	Analysis	7471B		1	271788	10/28/15 16:01	TAS	TAL BUF

Client Sample ID: SWMU 12-SURFACE-SS-01 Lab Sample ID: 480-89883-5

Date Collected: 10/26/15 12:30

Date Received: 10/27/15 09:00

_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture			271489	10/27/15 22:16	CMK	TAL BUF	

Client Sample ID: SWMU 12-SURFACE-SS-01 Lab Sample ID: 480-89883-5

Date Collected: 10/26/15 12:30 **Matrix: Solid**

Date Received: 10/27/15 09:00 Percent Solids: 94.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			271446	10/27/15 16:40	NQN	TAL BUF
Total/NA	Analysis	8260C		1	272636	11/03/15 00:52	LCH	TAL BUF
Total/NA	Prep	3550C			272209	10/30/15 14:03	CPH	TAL BUF
Total/NA	Analysis	8270D		5	274040	11/10/15 13:56	CAS	TAL BUF
Soluble	Leach	DI Leach			271929	10/29/15 14:00	AJM	TAL BUF
Soluble	Analysis	8015D		1	272152	10/30/15 11:45	AJM	TAL BUF
Total/NA	Prep	3550C			271532	10/28/15 07:52	CAM	TAL BUF
Total/NA	Analysis	8082A		1	271611	10/28/15 17:03	KS	TAL BUF
Total/NA	Prep	3050B			271624	10/28/15 14:05	CNS	TAL BUF
Total/NA	Analysis	6010C		1	272104	10/29/15 17:38	AMH	TAL BUF
Total/NA	Prep	7471B			271578	10/28/15 12:05	TAS	TAL BUF
Total/NA	Analysis	7471B		1	271788	10/28/15 16:03	TAS	TAL BUF

Client Sample ID: SWMU 6-SURFACE-SS-01 Lab Sample ID: 480-89883-6

Date Collected: 10/26/15 12:45

Date Received: 10/27/15 09:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	271489	10/27/15 22:16	CMK	TAL BUF

Client Sample ID: SWMU 6-SURFACE-SS-01 Lab Sample ID: 480-89883-6

Date Collected: 10/26/15 12:45

Matrix: Solid Date Received: 10/27/15 09:00 Percent Solids: 83.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			271446	10/27/15 16:40	NQN	TAL BUF

TestAmerica Buffalo

Page 118 of 130

10

Matrix: Solid

Matrix: Solid

Lab Sample ID: 480-89883-6

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU 6-SURFACE-SS-01

Date Collected: 10/26/15 12:45

Matrix: Solid Date Received: 10/27/15 09:00 Percent Solids: 83.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	272636	11/03/15 01:18	LCH	TAL BUF
Total/NA	Prep	3550C			272209	10/30/15 14:03	CPH	TAL BUF
Total/NA	Analysis	8270D		20	274040	11/10/15 14:22	CAS	TAL BUF
Soluble	Leach	DI Leach			271929	10/29/15 14:00	AJM	TAL BUF
Soluble	Analysis	8015D		1	272152	10/30/15 11:53	AJM	TAL BUF
Total/NA	Prep	3550C			271532	10/28/15 07:52	CAM	TAL BUF
Total/NA	Analysis	8082A		2	271611	10/28/15 17:18	KS	TAL BUF
Total/NA	Prep	3050B			271624	10/28/15 14:05	CNS	TAL BUF
Total/NA	Analysis	6010C		1	272104	10/29/15 17:41	AMH	TAL BUF
Total/NA	Prep	7471B			271578	10/28/15 12:05	TAS	TAL BUF
Total/NA	Analysis	7471B		1	271788	10/28/15 16:04	TAS	TAL BUF

Client Sample ID: SWMU 24-SURFACE-SS-01 Lab Sample ID: 480-89883-7

Date Collected: 10/26/15 13:00 **Matrix: Solid**

Date Received: 10/27/15 09:00

Batch Batch Dilution **Batch** Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA 271489 10/27/15 22:16 CMK TAL BUF Analysis Moisture

Client Sample ID: SWMU 24-SURFACE-SS-01 Lab Sample ID: 480-89883-7

Date Collected: 10/26/15 13:00 **Matrix: Solid** Date Received: 10/27/15 09:00 Percent Solids: 86.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			271446	10/27/15 16:40	NQN	TAL BUF
Total/NA	Analysis	8260C		1	272636	11/03/15 01:44	LCH	TAL BUF
Total/NA	Prep	3550C			272209	10/30/15 14:03	CPH	TAL BUF
Total/NA	Analysis	8270D		50	274040	11/10/15 14:49	CAS	TAL BUF
Soluble	Leach	DI Leach			271929	10/29/15 14:00	AJM	TAL BUF
Soluble	Analysis	8015D		1	272152	10/30/15 12:09	AJM	TAL BUF
Total/NA	Prep	3550C			271532	10/28/15 07:52	CAM	TAL BUF
Total/NA	Analysis	8082A		1	271611	10/28/15 17:33	KS	TAL BUF
Total/NA	Prep	3050B			271624	10/28/15 14:05	CNS	TAL BUF
Total/NA	Analysis	6010C		1	272104	10/29/15 17:44	AMH	TAL BUF
Total/NA	Prep	7471B			271578	10/28/15 12:05	TAS	TAL BUF
Total/NA	Analysis	7471B		1	271788	10/28/15 16:06	TAS	TAL BUF

Client Sample ID: SWMU 5-SURFACE-SS-01 Lab Sample ID: 480-89883-8

Date Collected: 10/26/15 14:40 Date Received: 10/27/15 09:00

Batch Batch Dilution **Batch** Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis Moisture 271489 10/27/15 22:16 CMK TAL BUF

TestAmerica Buffalo

Page 119 of 130

Matrix: Solid

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU 5-SURFACE-SS-01

Lab Sample ID: 480-89883-8 Date Collected: 10/26/15 14:40 **Matrix: Solid** Date Received: 10/27/15 09:00 Percent Solids: 91.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			271446	10/27/15 16:40	NQN	TAL BUF
Total/NA	Analysis	8260C		1	272636	11/03/15 02:10	LCH	TAL BUF
Total/NA	Prep	3550C			272209	10/30/15 14:03	CPH	TAL BUF
Total/NA	Analysis	8270D		5	274040	11/10/15 15:15	CAS	TAL BUF
Total/NA	Prep	3550C	RE		274556	11/12/15 07:51	TRG	TAL BUF
Total/NA	Analysis	8270D	RE	5	274806	11/13/15 10:45	LMW	TAL BUF
Soluble	Leach	DI Leach			271929	10/29/15 14:00	AJM	TAL BUF
Soluble	Analysis	8015D		1	272152	10/30/15 12:17	AJM	TAL BUF
Total/NA	Prep	3550C			271532	10/28/15 07:52	CAM	TAL BUF
Total/NA	Analysis	8082A		1	271611	10/28/15 18:17	KS	TAL BUF
Total/NA	Prep	3050B			271624	10/28/15 14:05	CNS	TAL BUF
Total/NA	Analysis	6010C		1	272104	10/29/15 17:47	AMH	TAL BUF
Total/NA	Prep	7471B			271578	10/28/15 12:05	TAS	TAL BUF
Total/NA	Analysis	7471B		1	271788	10/28/15 16:08	TAS	TAL BUF

Client Sample ID: SWMU 15-SURFACE-SS-01

Lab Sample ID: 480-89883-9 Date Collected: 10/26/15 15:00 **Matrix: Solid**

Date Received: 10/27/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			271489	10/27/15 22:16	CMK	TAL BUF

Client Sample ID: SWMU 15-SURFACE-SS-01

Lab Sample ID: 480-89883-9 Date Collected: 10/26/15 15:00 **Matrix: Solid** Date Received: 10/27/15 09:00 Percent Solids: 84.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			271446	10/27/15 16:40	NQN	TAL BUF
Total/NA	Analysis	8260C		1	272636	11/03/15 02:36	LCH	TAL BUF
Total/NA	Prep	3550C			272209	10/30/15 14:03	CPH	TAL BUF
Total/NA	Analysis	8270D		20	274040	11/10/15 15:41	CAS	TAL BUF
Soluble	Leach	DI Leach			271929	10/29/15 14:00	AJM	TAL BUF
Soluble	Analysis	8015D		1	272152	10/30/15 12:25	AJM	TAL BUF
Total/NA	Prep	3550C			271532	10/28/15 07:52	CAM	TAL BUF
Total/NA	Analysis	8082A		1	271611	10/28/15 18:32	KS	TAL BUF
Total/NA	Prep	3050B			271624	10/28/15 14:05	CNS	TAL BUF
Total/NA	Analysis	6010C		1	272104	10/29/15 17:51	AMH	TAL BUF
Total/NA	Prep	7471B			271578	10/28/15 12:05	TAS	TAL BUF
Total/NA	Analysis	7471B		1	271788	10/28/15 16:10	TAS	TAL BUF

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU 17-SURFACE-SS-01

Lab Sample ID: 480-89883-10 Date Collected: 10/26/15 15:15 Matrix: Solid

Date Received: 10/27/15 09:00

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Total/NA TAL BUF Analysis Moisture 271489 10/27/15 22:16 CMK

Client Sample ID: SWMU 17-SURFACE-SS-01 Lab Sample ID: 480-89883-10

Date Collected: 10/26/15 15:15 Matrix: Solid Date Received: 10/27/15 09:00 Percent Solids: 90.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			271446	10/27/15 16:40	NQN	TAL BUF
Total/NA	Analysis	8260C		1	272636	11/03/15 03:01	LCH	TAL BUF
Total/NA	Prep	3550C			272209	10/30/15 14:03	CPH	TAL BUF
Total/NA	Analysis	8270D		5	274040	11/10/15 16:07	CAS	TAL BUF
Soluble	Leach	DI Leach			271929	10/29/15 14:00	AJM	TAL BUF
Soluble	Analysis	8015D		1	272152	10/30/15 12:32	AJM	TAL BUF
Total/NA	Prep	3550C			271532	10/28/15 07:52	CAM	TAL BUF
Total/NA	Analysis	8082A		1	271611	10/28/15 18:47	KS	TAL BUF
Total/NA	Prep	3050B			271624	10/28/15 14:05	CNS	TAL BUF
Total/NA	Analysis	6010C		1	272104	10/29/15 17:54	AMH	TAL BUF
Total/NA	Prep	7471B			271578	10/28/15 12:05	TAS	TAL BUF
Total/NA	Analysis	7471B		1	271788	10/28/15 16:14	TAS	TAL BUF

Client Sample ID: SWMU 17-SURFACE-SS-99 Lab Sample ID: 480-89883-11

Date Collected: 10/26/15 15:15

Date Received: 10/27/15 09:00

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture			271489	10/27/15 22:16	CMK	TAL BUF	-

Client Sample ID: SWMU 17-SURFACE-SS-99 Lab Sample ID: 480-89883-11

Date Collected: 10/26/15 15:15 **Matrix: Solid** Date Received: 10/27/15 09:00 Percent Solids: 88.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			271446	10/27/15 16:40	NQN	TAL BUF
Total/NA	Analysis	8260C		1	272636	11/03/15 03:27	LCH	TAL BUF
Total/NA	Prep	3550C			272209	10/30/15 14:03	CPH	TAL BUF
Total/NA	Analysis	8270D		10	274040	11/10/15 16:33	CAS	TAL BUF
Soluble	Leach	DI Leach			271929	10/29/15 14:00	AJM	TAL BUF
Soluble	Analysis	8015D		1	272152	10/30/15 12:40	AJM	TAL BUF
Total/NA	Prep	3550C			271532	10/28/15 07:52	CAM	TAL BUF
Total/NA	Analysis	8082A		1	271611	10/28/15 19:02	KS	TAL BUF
Total/NA	Prep	3050B			271624	10/28/15 14:05	CNS	TAL BUF
Total/NA	Analysis	6010C		1	272104	10/29/15 17:57	AMH	TAL BUF
Total/NA	Prep	7471B			271578	10/28/15 12:05	TAS	TAL BUF

TestAmerica Buffalo

Page 121 of 130

Matrix: Solid

11/18/2015

Lab Sample ID: 480-89883-11

Lab Sample ID: 480-89883-12

Lab Sample ID: 480-89883-12

Lab Sample ID: 480-89883-13

Lab Sample ID: 480-89883-13

Lab Sample ID: 480-89883-14

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Percent Solids: 86.6

Percent Solids: 90.0

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU 17-SURFACE-SS-99

Date Collected: 10/26/15 15:15

Matrix: Solid Date Received: 10/27/15 09:00 Percent Solids: 88.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7471B		1	271788	10/28/15 16:16	TAS	TAL BUF

Client Sample ID: SWMU 7-BLDG16-01

Date Collected: 10/26/15 15:35

Date Received: 10/27/15 09:00

	_	Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
ı	Total/NA	Analysis	Moisture		1	272925	11/04/15 02:23	CDC	TAL BUF

Client Sample ID: SWMU 7-BLDG16-01

Date Collected: 10/26/15 15:35

Date Received: 10/27/15 09:00

Γ	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			271446	10/27/15 16:40	NQN	TAL BUF
Total/NA	Analysis	8260C		1	272636	11/03/15 03:52	LCH	TAL BUF

Client Sample ID: SWMU 7-BLDG16-02

Date Collected: 10/26/15 15:45

Date Received: 10/27/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			272925	11/04/15 02:23	CDC	TAL BUF

Client Sample ID: SWMU 7-BLDG16-02

Date Collected: 10/26/15 15:45

Date Received: 10/27/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			271446	10/27/15 16:40	NQN	TAL BUF
Total/NA	Analysis	8260C		1	272636	11/03/15 04:18	LCH	TAL BUF

Client Sample ID: SWMU 7-BLDG16-03

Date Collected: 10/26/15 16:00

Date Received: 10/27/15 09:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	272925	11/04/15 02:23	CDC	TAL BUF

2

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU 7-BLDG16-03

Date Collected: 10/26/15 16:00 Date Received: 10/27/15 09:00 Lab Sample ID: 480-89883-14

Matrix: Solid Percent Solids: 89.9

Batch Prepared

Batch Batch Dilution **Prep Type** Туре Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Prep 5035A 271446 10/27/15 16:40 NQN TAL BUF Total/NA Analysis 8260C 272636 11/03/15 04:43 LCH TAL BUF 1

Client Sample ID: EB01 Lab Sample ID: 480-89883-15

Date Collected: 10/26/15 16:30 Matrix: Water

Date Received: 10/27/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			273201	11/05/15 12:47	GVF	TAL BUF
Total/NA	Prep	3510C			271548	10/28/15 08:14	MCZ	TAL BUF
Total/NA	Analysis	8270D		1	273999	11/10/15 13:03	DMR	TAL BUF
Total/NA	Prep	3510C	RE		275176	11/16/15 11:20	JIL	TAL BUF
Total/NA	Analysis	8270D	RE	1	275230	11/17/15 01:10	DMR	TAL BUF
Total/NA	Analysis	8015D		5	271828	10/29/15 09:07	AJM	TAL BUF
Total/NA	Prep	3510C			271561	10/28/15 08:58	RMZ	TAL BUF
Total/NA	Analysis	8082A		1	271674	10/28/15 20:28	KS	TAL BUF
Total/NA	Prep	3005A			271435	10/28/15 08:10	CNS	TAL BUF
Total/NA	Analysis	6010C		1	271773	10/28/15 20:18	AMH	TAL BUF
Total/NA	Prep	7470A			271871	10/29/15 12:00	TAS	TAL BUF
Total/NA	Analysis	7470A		1	272120	10/29/15 17:34	JRK	TAL BUF

Client Sample ID: TB01 Lab Sample ID: 480-89883-16

Date Collected: 10/26/15 00:00

Date Received: 10/27/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			273201	11/05/15 13:14	GVF	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

Matrix: Water

Certification Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

uthority	Program		EPA Region	Certification ID	Expiration Date
ew York	NELAP		2	10026	03-31-16
The following analytes	s are included in this repo	rt, but certification is	s not offered by the g	overning authority:	
Analysis Method	Prep Method	Matrix	Analyt	te	
8015D		Solid	2-Buta	anol	
8015D		Solid	Isopro	pyl alcohol	
8015D		Solid	Metha	inol	
8015D		Solid	n-Buta	anol	
8015D		Solid	Propa	nol	
8015D		Water	2-Buta	anol	
8015D		Water	Isopro	pyl alcohol	
8015D		Water	Metha	inol	
8015D		Water	n-Buta	anol	
8015D		Water	Propa	nol	
8260C		Water	Tetrah	nydrofuran	
8260C	5035A	Solid	Tetrah	nydrofuran	
8270D	3510C	Water	Dimet	hylformamide	
8270D	3550C	Solid	Dimet	hylformamide	
Moisture		Solid	Perce	nt Moisture	
Moisture		Solid	Perce	nt Solids	

9

4

5

7

Ö

10

-

13

14

Method Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
8015D	Nonhalogenated Organic Compounds - Direct Injection (GC)	SW846	TAL BUF
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
7471B	Mercury (CVAA)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

6

8

9

10

12

13

4.5

Sample Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89883-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
480-89883-1	SWMU 26-SURFACE-SS-01	Solid	10/26/15 11:15 10/27/15 09:0
480-89883-2	SWMU 23-SURFACE-SS-01	Solid	10/26/15 11:40 10/27/15 09:0
480-89883-3	SWMU 7-SURFACE-SS-01	Solid	10/26/15 12:05 10/27/15 09:0
480-89883-4	SWMU 13-SURFACE-SS-01	Solid	10/26/15 12:15 10/27/15 09:0
480-89883-5	SWMU 12-SURFACE-SS-01	Solid	10/26/15 12:30 10/27/15 09:0
480-89883-6	SWMU 6-SURFACE-SS-01	Solid	10/26/15 12:45 10/27/15 09:0
480-89883-7	SWMU 24-SURFACE-SS-01	Solid	10/26/15 13:00 10/27/15 09:0
480-89883-8	SWMU 5-SURFACE-SS-01	Solid	10/26/15 14:40 10/27/15 09:0
480-89883-9	SWMU 15-SURFACE-SS-01	Solid	10/26/15 15:00 10/27/15 09:0
480-89883-10	SWMU 17-SURFACE-SS-01	Solid	10/26/15 15:15 10/27/15 09:0
480-89883-11	SWMU 17-SURFACE-SS-99	Solid	10/26/15 15:15 10/27/15 09:0
480-89883-12	SWMU 7-BLDG16-01	Solid	10/26/15 15:35 10/27/15 09:0
480-89883-13	SWMU 7-BLDG16-02	Solid	10/26/15 15:45 10/27/15 09:0
480-89883-14	SWMU 7-BLDG16-03	Solid	10/26/15 16:00 10/27/15 09:0
480-89883-15	EB01	Water	10/26/15 16:30 10/27/15 09:0
480-89883-16	TB01	Water	10/26/15 00:00 10/27/15 09:0

3

4

4.6

11

14

Custody Record Chain of

Temperature on Receipt

Drinking Water? Yes⊟ No∯

FestAme

480-89883 Chain of Custody

THE LEADER IN ENVIRONM

* SUOCS - 8270D/TCL deliverestes, + Dinethitornanide *Take Teapvia されななとなることがない Metals-RCRAS Alcohols-8015D 6010B/1471A ろどらでに Special Instructions/ Conditions of Receipt 8360C-TCL+ Time Orco tend blank PCBS 8080 (A fee may be assessed if samples are retained longer than 1 month) time Chain of Custody Number 287327 ŏ Тіте (00 Fr 0 1.0 B 10/27/15 Ö Page Date specify analysis will be conducted atory analytical Protocol (456) with Cat. (10/20/15 more space is needed) Analysis (Attach list if Lab Numbe Months * K <u>ধ</u> 8 8 8 8 Y 970 √ B 8 8 8 <u>४</u> ४ ₹ 8 <u>۷</u> <u>४</u> ४ <u>ठ</u> ४ ४ 火 8 ☐ Archive For <u>४</u> 8 ~ 6220 8 7 709es ४ R Q 8 Sie Contact
Scott Societies Beehy Meson HOBY A Qisposal By Lab Containers & Preservatives ろんろろ 303 271 2. Received By 3. Received By IOH Telephone Number (Area Code)/Fax Number EONH tOSZH sə.idu// Don K Unknown | | Return To Client 1700 Comer Standar of 8 Sample Disposa X प्र B ₹ Z < 6 < 1105 Time Matrix Carrier/Waybill Number :pes Project Manager 15 40 1500 1215 1115 SOCI 1515 12451 1300 1535 1230 1140 1515 Date Time 1520 Highland ALC 1520 Highland State 1000 06410 🗌 21 Days 10,26.15 ☐ Poison B Rouses Point NY Date Lillian Allescep ☐ 14 Days (Containers for each sample may be combined on one line) SWMU 26-50, face - 55-01 SWMU 17 - Surface -55:99 5WMU 7-55-BIDG16-01 SWMV 33-Surface -55-01 woodan 8 Cinca | Flammable | Skin Irritant SUMU15-50, Perz. 55.0 SUMU 13-50, Face -55.01 SWMUG-SUFFICE-55,01 5UMU 17-5USAGG - 55.01 54MU 7-Surface -SS.01 54MW12-54Rece - 55.01 5wmV 5-500 face -55.01 5WMV 24 -501 P. CE-55. 01 Sample I.D. No. and Description 🗌 7 Days 206010 Project Name and Location (State) Contract/Purchase Order/Quote No. ☐ 48 Hours Possible Hazard Identification Turn Around Time Required 1. Relinquished By Non-Hazard 3. Relinquished By 24 Hours TAL-4124 (1007) Client 11/18/2015 Page 127 of 130

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Comments

2,5%

T

Chain of Custody Record

Temperature on Receipt ____

Drinking Water? Yes□ No@\

٤	
₹	
<u>б</u>	

THE LEADER IN ENVIRONMENTAL TESTING

TAL-4124 (1007)				/							
Client , 0 0 0		Project Manager		j				Date i		Chain of Custody Number	Vumber
Woodard D (crich			Vor L	Wreh &				~	15	28/3	87
Address High 100		Telephone Number (Area Code)/Fax Number $30.5 - 37i - 6$	ar (Area Code)/F	mber (Area Code)/Fax Number 303 - 271 - 637 9	٠,			Lab Number		E BORD	C #6
State	Zip Code	Site Contact	<u>87</u>	Lab Contact			Analy	Analysis (Attach list if more space is needed)	ji ,		
(State)	27.50	Carrier/Waybill Number	Number	\$		<u>&</u> *					
		W	Matrix	Containers & Preservatives			yene			Special	Special Instructions/ Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time Air suoeupA	Soil Soil	HOEN IOH EONH POSZH	HOBN	72W 205 DCL	か) <u>A</u> おっら				
SWAU 7-55-B18416-02	10,26.15 1	1545	¥		~					* 83co	* 8760 C - TCL T
5WAU 7-55- BIDZ 16-03	1	1,000	8		ષ્ઠ 📗					10404	tetra hydro foran
	<i>₁</i> 1	1630 K		×	×	8	<u>ار</u> ار			>005×	*50005-8270p/Ta
10501	(as p	0,0		ᆶ	×					+ Dine+	+ Dinethleornaride
ŧ										* Meta	* Metals - RCRA 8
f 13										6010 B	6010 B /7471 A
0										* Alcot	* Alcohols - 80150
										45 PCB3	8080
Possible Hazard Identification Non-Hazard Flammable Skin Intlant	B Poison B ☐	Sample Sample Her	Sample Disposal Return To Client	A Disposal By Lab	□ 4	Archive For		(A fe Months long	e may be ass er than 1 mon	(A fee may be assessed if samples are retained longer than 1 month)	retained
Turn Around Time Required 24 Hours	ys 🗌 21 Days	Homer Stendard	Lack	And Laboratory and yes will be And Laboratory and yes will be	Specify)	inaly ecal	7 5.5 1	11 50 CO	2 September 1 Bank	CONDUCTED NIA NYSDEC :	DEC 2005
1. Relinquished By	Alascot	Date 10/26/15	Time () 00	1. Received By	2	7	1	,		Col Extrig	Time
2. Relinquished By		Date	Timę	2. Received By	0				•	Dâte	Типе
3. Relinquished By		Date	Time	3. Received By						Date	Time
Comments							1	8,5			

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

	١	
	Ģ	D)
	3	
	ı	
	ı	
	ű	
	3	
	-	
	1	
	ı	
	ı	
	ı	
	ı	
	1	
	1	
	ł	
	Ì	
	ı	
	1	
	1	
	1	
	1	
	ı	Ŀ
	1	
	1	
	ń	
Z	1	7
		4
	ı	
	1	
		,
1		Į
1		Į.
ŕ	1	
		Ę
		E
		Ę
		Ę
		Ę
		Ę
		Ę
		Ę
		Ę
		Ę
		5
		E
		5
		E
		E
		Ę
	A STATE OF THE PERSON NAMED IN COLUMN NAMED IN	5
		5
		5
		5

Chain of	. Te	Temperature on Receipt	<i>ot</i>	Test/	<u>TestAme</u>		
Custody Hecord Tal-4124 (1007)	ď	Drinking Water? Yes□	Dow □	THE LEADER IN ENVIRONMEN		480-89883 Chain of Custody	of Custody
Client Woodard & Curran	4	Project Manager 0_{C}	70/60	\ \sigma_{\sqrt{1}}	Date 10 (3)	10/27/15	Chairte 287318
	Te	Telephone Number (Area Code)/Fax Number 203 - 271 . 037 9	del/Fax Number		Lab Number		Page 3 of
Cheshire Cool		Site Contact Scott Sor. Kell .	Sortell Cachy Peson	7	Analysis (Attach list if more space is needed)		
-		Carrier/Waybill Number					Consider many loisons
Contract/Purchase Order/Quote No.		Matrix	Containers & Preservatives	00 86 100 100	5104a 5104a 5104a		Special Insuracions Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	te Time	IIOS snoenby	HOBN IOH EONH POSZH Sejdun	OOS OVUZ	100 A SOL		
SWALL 15. 810616-01 1012745	745 170i	8					* 5360 - TCL +
50,MU7: 55. BLDG 16:03 10:37.15	7.15 (705	5 4			7		totaly duteran
35 MU 7 . 55 - 13606 16, 02 10.27 115	2061 1700	8			8		\$ SVOC > 7270p/TRL
n 12							
9 of							* Metals - PCRA 8
130							(colo B) 7471 A
							12 A(10) - 20151)
							x 1265 - 8080
	-						
							* tale try via
							fay blans in
•							Cooler
Possible Hazard Identification Non-Hazard	18 J HARDOWN	Sample Disposal Own Hetum To Client	nt Kpisposal By Lab	ab 🗌 Archive For	Months	ee may be asses ter than 1 month,	(A fee may be assessed if samples are retained longer than 1 month)
Turn Around Time Required 24 Hours		Nomer Studen		ts (Specify)			
2		Date 10/56/01			1		16/18/10 Time
2. Relinquished By	ZQ	Date. Time	2. Received By)	•		2 ≟
3. Relinquished By	<i>I</i> 00	Date	3. Received By	-			Date Time
Comments 2		_	-				

DISTRIBUTION: WHITE - Returned to Client with Report, CANARY - Stays with the Sample; PINK - Field Copy

Client: Woodard & Curran, Inc.

Job Number: 480-89883-1

Login Number: 89883 List Source: TestAmerica Buffalo

List Number: 1

Creator: Janish, Carl M

Creator: Janish, Cari M		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	w+c
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

3

6

8

10

12

14

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-89971-1 Client Project/Site: Rouses Point

For:

Woodard & Curran, Inc. 64 Maple Street Rouses Point, New York 12979

Attn: Don Weeks

h Mase

Authorized for release by: 11/12/2015 3:33:45 PM

Becky Mason, Project Manager II (413)572-4000

becky.mason@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	5
Detection Summary	7
Client Sample Results	10
Surrogate Summary	68
QC Sample Results	72
QC Association Summary	105
Lab Chronicle	111
Certification Summary	120
Method Summary	121
Sample Summary	122
Chain of Custody	123
Receipt Checklists	125

4

9

10

12

1

Definitions/Glossary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
*	LCS or LCSD is outside acceptance limits.
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits
X	Surrogate is outside control limits

GC/MS VOA TICs

Qualifier	Qualifier Description
J	Indicates an Estimated Value for TICs
Т	Result is a tentatively identified compound (TIC) and an estimated value.
N	Presumptive evidence of material.

GC/MS Semi VOA

Qualifier	Qualifier Description
*	RPD of the LCS and LCSD exceeds the control limits
F2	MS/MSD RPD exceeds control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
E	Result exceeded calibration range.
_	

GC/MS Semi VOA TICs

Qualifier Description

Qualifier	Qualifier Description
J	Indicates an Estimated Value for TICs
T	Result is a tentatively identified compound (TIC) and an estimated value.
N	Presumptive evidence of material.
001/01	

GC VOA Qualifier

J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Metals	
Qualifier	Qualifier Description
ī	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
PQL	Practical Quantitation Limit

11/12/2015

Page 3 of 125

Definitions/Glossary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Glossary (Continued)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

_

4

5

6

8

11

12

14

Case Narrative

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Job ID: 480-89971-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-89971-1

Receipt

The samples were received on 10/28/2015 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.0° C.

Receipt Exceptions

No container for dry weight received for sample SWMU7-SS-BLDG23-98 (480-89971-19) Per client request we will use dry weight number from SWMU7-SS-BLDG23-09.

GC/MS VOA

Method 8260C: The method blank for preparation batch 480-271703 and analytical batch 480-271991 contained Tetrachloroethene above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-analysis of samples was not performed.SWMU26-SS-BLDG16-01 (480-89971-1), SWMU26-SS-BLDG16-02 (480-89971-2), SWMU26-SS-BLDG16-03 (480-89971-3), SWMU26-SS-BLDG16-04 (480-89971-4), SWMU7-SS-BLDG16-04 (480-89971-5), SWMU7-SS-BLDG16-05 (480-89971-6) and SWMU7-SS-BLDG16-06 (480-89971-7)

Method 8260C: Due to the coelution of Methacrylonitrile with Tetrahydrofuran in the full spike solution, Tetrahydrofuran exceeded control limits in the laboratory control sample (LCS) associated with preparation batch 480-271703 and analytical batch 480-271991. The following samples are impacted: SWMU26-SS-BLDG16-01 (480-89971-1), SWMU26-SS-BLDG16-02 (480-89971-2), SWMU26-SS-BLDG16-03 (480-89971-3), SWMU26-SS-BLDG16-04 (480-89971-4), SWMU7-SS-BLDG16-04 (480-89971-5), SWMU7-SS-BLDG16-05 (480-89971-6) and SWMU7-SS-BLDG16-06 (480-89971-7).

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-272282 recovered above the upper control limit for 2-Butanone (MEK), 2-Hexanone and Tetrahydrofuran. The samples associated with this CCV were not detected above the reporting limit for the affected analytes; therefore, the data have been reported. The following samples are impacted: SWMU7-SS-BLDG16-07 (480-89971-8), SWMU7-SS-BLDG16-08 (480-89971-9), SWMU7-SS-BLDG16-09 (480-89971-10), SWMU7-SS-BLDG16-10 (480-89971-11), SWMU7-SS-BLDG16-11 (480-89971-12), SWMU7-SS-BLDG16-12 (480-89971-13), SWMU7-SS-BLDG16-13 (480-89971-14), SWMU7-SS-BLDG16-14 (480-89971-15), SWMU7-SS-BLDG16-15 (480-89971-16), SWMU7-SS-BLDG23-08 (480-89971-17), SWMU7-SS-BLDG23-09 (480-89971-18), SWMU7-SS-BLDG23-10 (480-89971-20), SWMU7-SS-BLDG26-01 (480-89971-21) and SWMU7-SS-BLDG23-11 (480-89971-22).

Method 8260C: The laboratory control sample (LCS) for preparation batch 480-271991 and analytical batch 272282 recovered outside control limits for the following analyte: Tetrahydrofuran. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported. The following samples are impacted: SWMU7-SS-BLDG16-07 (480-89971-8), SWMU7-SS-BLDG16-08 (480-89971-9), SWMU7-SS-BLDG16-09 (480-89971-10), SWMU7-SS-BLDG16-10 (480-89971-11), SWMU7-SS-BLDG16-11 (480-89971-12), SWMU7-SS-BLDG16-12 (480-89971-13), SWMU7-SS-BLDG16-13 (480-89971-14), SWMU7-SS-BLDG16-14 (480-89971-15), SWMU7-SS-BLDG16-15 (480-89971-16), SWMU7-SS-BLDG23-08 (480-89971-17) and SWMU7-SS-BLDG23-09 (480-89971-18).

Method 8260C: The method blank for preparation batch 480-271703 and analytical batch 480-272282 contained Tetrachloroethene above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-analysis of samples was not performed. The following samples are impacted:SWMU7-SS-BLDG16-07 (480-89971-8), SWMU7-SS-BLDG16-08 (480-89971-9), SWMU7-SS-BLDG16-09 (480-89971-10), SWMU7-SS-BLDG16-10 (480-89971-11), SWMU7-SS-BLDG16-11 (480-89971-12), SWMU7-SS-BLDG16-12 (480-89971-13), SWMU7-SS-BLDG16-13 (480-89971-14), SWMU7-SS-BLDG16-14 (480-89971-15), SWMU7-SS-BLDG16-15 (480-89971-16), SWMU7-SS-BLDG23-08 (480-89971-17) and SWMU7-SS-BLDG23-09 (480-89971-18).

Method 8260C: Surrogate recovery for the following samples were outside control limits: SWMU7-SS-BLDG23-08 (480-89971-17) and SWMU7-SS-BLDG23-08 (480-89971-17[MS]). Evidence of matrix interference is present; therefore, re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

3

4

5

6

_

9

10

12

TestAmerica Job ID: 480-89971-1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Job ID: 480-89971-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-273884 recovered above the upper control limit for Diethyl phthalate. The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported. The following samples are impacted: SWMU26-SS-BLDG16-01 (480-89971-1), SWMU26-SS-BLDG16-02 (480-89971-2) and SWMU26-SS-BLDG16-03 (480-89971-3).

Method 8270D: The following samples were diluted due to appearance and viscosity: SWMU26-SS-BLDG16-01 (480-89971-1) and SWMU26-SS-BLDG16-03 (480-89971-3). Elevated reporting limits (RL) are provided.

Method 8270D: The continuing calibration verification (CCV) analyzed in batch 480-273999 was outside the method criteria for the following analytes: 2,4-Dinitrophenol, 4-Chloroaniline, Pentachlorophenol and, Benzaldehyde. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method 8270D: The initial calibration curve analyzed in analytical batch 271208 was outside method criteria for the following analyte(s): Benzaldehyde. As indicated in the reference method, sample analysis may proceed; however, any detection or non-detection for the affected analyte(s) is considered an estimated concentration.

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-273999 recovered above the upper control limit for Hexachlorobenzene, 4-Nitrophenol and, Hexachlorobutadiene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: EB-02 (480-89971-23).

Method 8270D: The %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch 480-271824 recovered outside control limits for the following analytes: 4-Methylphenol, Acetophenone, Phenol, N-Nitrosodi-n-propylamine and, 2-Methylphenol.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

Method 8015D: The following samples were collected in proper vials for analysis of volatile organic compounds (VOCs). However, the pH was outside the required criteria when verified by the laboratory, and corrective action was not possible: EB-02 (480-89971-23).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method 8082A: All primary data for the water analysis is reported from the ZB-5 column, while all primary data for the soil analysis is reported from the ZB-35 column,

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with analytical batch 480-271824.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

_

5

6

g

9

11

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-1

Lab Sample ID: 480-89971-2

Lab Sample ID: 480-89971-3

Lab Sample ID: 480-89971-4

Lab Sample ID: 480-89971-5

Client Sample ID: SWMU26-SS-BLDG16-01

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	0.93 JB	6.1	0.82	ug/Kg		₩	8260C	Total/NA
Arsenic	2.3	2.2	0.44	mg/Kg	1	₩	6010C	Total/NA
Barium	30.7	0.55	0.12	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.10 J	0.22	0.033	mg/Kg	1	₩	6010C	Total/NA
Chromium	10.3	0.55	0.22	mg/Kg	1	₩	6010C	Total/NA
Lead	5.5	1.1	0.26	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.11	0.022	0.0091	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SWMU26-SS-BLDG16-02

Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
3.4	J	5.2	0.49	ug/Kg		₩	8260C	Total/NA
0.88	J	1.1	0.32	mg/Kg	1	₩	8015D	Soluble
2.2	J	2.3	0.45	mg/Kg	1	₩	6010C	Total/NA
34.5		0.57	0.12	mg/Kg	1	₩.	6010C	Total/NA
0.086	J	0.23	0.034	mg/Kg	1	₩	6010C	Total/NA
9.8		0.57	0.23	mg/Kg	1	₩	6010C	Total/NA
6.8		1.1	0.27	mg/Kg	1	ф	6010C	Total/NA
0.032		0.022	0.0087	mg/Kg	1	₩	7471B	Total/NA
	3.4 0.88 2.2 34.5 0.086 9.8 6.8	0.086 J 9.8 6.8	3.4 J 5.2 0.88 J 1.1 2.2 J 2.3 34.5 0.57 0.086 J 0.23 9.8 0.57 6.8 1.1	3.4 J 5.2 0.49 0.88 J 1.1 0.32 2.2 J 2.3 0.45 34.5 0.57 0.12 0.086 J 0.23 0.034 9.8 0.57 0.23 6.8 1.1 0.27	3.4 J 5.2 0.49 ug/Kg 0.88 J 1.1 0.32 mg/Kg 2.2 J 2.3 0.45 mg/Kg 34.5 0.57 0.12 mg/Kg 0.086 J 0.23 0.034 mg/Kg 9.8 0.57 0.23 mg/Kg 6.8 1.1 0.27 mg/Kg	3.4 J 5.2 0.49 ug/Kg 1 0.88 J 1.1 0.32 mg/Kg 1 2.2 J 2.3 0.45 mg/Kg 1 34.5 0.57 0.12 mg/Kg 1 0.086 J 0.23 0.034 mg/Kg 1 9.8 0.57 0.23 mg/Kg 1 6.8 1.1 0.27 mg/Kg 1	3.4 J 5.2 0.49 ug/Kg 1 \$\tilde{\tilde{\tilde{K}}}\$ 0.88 J 1.1 0.32 mg/Kg 1 \$\tilde{\tilde{K}}\$ 2.2 J 2.3 0.45 mg/Kg 1 \$\tilde{\tilde{K}}\$ 34.5 0.57 0.12 mg/Kg 1 \$\tilde{\tilde{K}}\$ 0.086 J 0.23 0.034 mg/Kg 1 \$\tilde{\tilde{K}}\$ 9.8 0.57 0.23 mg/Kg 1 \$\tilde{\tilde{K}}\$ 6.8 1.1 0.27 mg/Kg 1 \$\tilde{\tilde{K}}\$	3.4 J 5.2 0.49 ug/Kg 1 8260C 0.88 J 1.1 0.32 mg/Kg 1 8015D 2.2 J 2.3 0.45 mg/Kg 1 6010C 34.5 0.57 0.12 mg/Kg 1 6010C 0.086 J 0.23 0.034 mg/Kg 1 6010C 9.8 0.57 0.23 mg/Kg 1 6010C 6.8 1.1 0.27 mg/Kg 1 6010C

Client Sample ID: SWMU26-SS-BLDG16-03

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	2.8		6.1	2.8	ug/Kg	1	₩	8260C	Total/NA
Arsenic	2.2	J	2.4	0.47	mg/Kg	1	₩	6010C	Total/NA
Barium	39.3		0.59	0.13	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.12	J	0.24	0.035	mg/Kg	1	₩.	6010C	Total/NA
Chromium	12.3		0.59	0.24	mg/Kg	1	₩	6010C	Total/NA
Lead	6.7		1.2	0.28	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.029		0.023	0.0093	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SWMU26-SS-BLDG16-04

								<u> </u>	
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	0.61	JB	4.4	0.59	ug/Kg		₩	8260C	Total/NA
Toluene	0.33	J	4.4	0.33	ug/Kg	1	₩	8260C	Total/NA
Trichlorofluoromethane	1.8	J	4.4	0.42	ug/Kg	1	₩	8260C	Total/NA
Bis(2-ethylhexyl) phthalate	76	J	180	63	ug/Kg	1	₽	8270D	Total/NA
Methanol	0.36	J	0.99	0.30	mg/Kg	1	₩	8015D	Soluble
Arsenic	2.8		2.1	0.43	mg/Kg	1	₩	6010C	Total/NA
Barium	39.9		0.54	0.12	mg/Kg	1	₽	6010C	Total/NA
Cadmium	0.084	J	0.21	0.032	mg/Kg	1	₩	6010C	Total/NA
Chromium	11.0		0.54	0.21	mg/Kg	1	₩	6010C	Total/NA
Lead	6.0		1.1	0.26	mg/Kg	1	₽	6010C	Total/NA
Mercury	0.011	J	0.022	0.0087	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SWMU7-SS-BLDG16-04

_					
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Methylene Chloride	2.5 J	5.2	2.4 ua/Ka	1 🌣 8260C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

5

0

ŏ

10

12

Client: Woodard & Curran, Inc.
Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Client Sample ID: SWM	U7-SS-BLDG16-05				Lab Sample	ID: 480-89971-6
Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D Metho	d Prep Type
Methylene Chloride	2.3 J	4.4	2.0	ug/Kg	1 🌣 8260C	Total/NA
Tetrachloroethene	0.62 JB	4.4	0.59	ug/Kg	1 ☼ 8260C	Total/NA
Client Sample ID: SWM	U7-SS-BLDG16-06				Lab Sample	ID: 480-89971-7
 Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D Metho	d Prep Type
Methylene Chloride	3.0 J	5.7	2.6	ug/Kg	1 🌣 8260C	Total/NA
Client Sample ID: SWM	U7-SS-BLDG16-07				Lab Sample	ID: 480-89971-8
Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D Metho	d Prep Type
Methylene Chloride		4.8	2.2	ug/Kg	1 ≅ 8260C	
Trichlorofluoromethane	0.88 J	4.8		ug/Kg	1 🌣 8260C	Total/NA
Client Sample ID: SWM	U7-SS-BLDG16-08				Lab Sample	ID: 480-89971-9
No Detections.						
Client Sample ID: SWM	U7-SS-BLDG16-09				Lab Sample I	D: 480-89971-10
Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D Metho	d Prep Type
Methylene Chloride	2.8 J	5.7	2.6	ug/Kg	1 🌣 8260C	Total/NA
Client Sample ID: SWM	U7-SS-BLDG16-10				Lab Sample l	D: 480-89971-11
No Detections.						
Client Sample ID: SWM	U7-SS-BLDG16-11				Lab Sample I	D: 480-89971-12
No Detections.						
Client Sample ID: SWM	U7-SS-BLDG16-12				Lab Sample I	D: 480-89971-13
Analyte	Result Qualifier	RL		Unit	Dil Fac D Metho	
Methylene Chloride	2.0 J	4.3		ug/Kg	1 ≅ 8260C	Total/NA
Trichlorofluoromethane	0.68 J	4.3	0.40	ug/Kg	1 🌣 8260C	Total/NA
Client Sample ID: SWM	U7-SS-BLDG16-13				Lab Sample l	D: 480-89971-14
No Detections.						
Client Sample ID: SWM	U7-SS-BLDG16-14				Lab Sample I	D: 480-89971-15
Analyte	Result Qualifier	RL		Unit	Dil Fac D Metho	
Methylene Chloride	2.5 J	5.2	2.4	ug/Kg	1 ≅ 8260C	Total/NA
Client Sample ID: SWM	U7-SS-BLDG16-15				Lab Sample I	D: 480-89971-16
No Detections.						
Client Sample ID: SWM	U7-SS-BLDG23-08				Lab Sample I	D: 480-89971-17
-					•	

This Detection Summary does not include radiochemical test results.

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

J7-SS-BLDG23-08 (Co	ntinued)			Lab Sample ID: 4	80-89971-1
Result Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
160 F1 F2	26	4.4	ug/Kg	1 ₹ 8260C	Total/NA
14 JF1	26	1.9	ug/Kg	1 🌣 8260C	Total/NA
1.0 J	5.2	0.49	ug/Kg	1 🌣 8260C	Total/NA
J7-SS-BLDG23-09				Lab Sample ID: 4	80-89971-1
J7-SS-BLDG23-98				Lab Sample ID: 4	80-89971-1
J7-SS-BLDG23-10				Lab Sample ID: 4	80-89971-2
Result Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
2.8 J	5.6	2.6	ug/Kg	1 ₹ 8260C	Total/NA
27	5.6	0.53	ug/Kg	1 ☼ 8260C	Total/NA
J7-SS-BLDG26-01				Lab Sample ID: 4	80-89971-2
Result Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
3.9 J	7.9	3.6	ug/Kg	1 ₹ 8260C	Total/NA
5.3 J	7.9	0.75	ug/Kg	1 ☼ 8260C	Total/NA
J7-SS-BLDG23-11				Lab Sample ID: 4	80-89971-2
				Lab Sample ID: 4	80-89971-2
Result Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
0.93 J	1.0	0.41	mg/L	1 8015D	Total/NA
	Result Qualifier 160 F1 F2 14 J F1 1.0 J	160 F1 F2 26 14 J F1 26 1.0 J 5.2 J7-SS-BLDG23-09 J7-SS-BLDG23-98 J7-SS-BLDG23-10 Result Qualifier RL 2.8 J 5.6 27 5.6 J7-SS-BLDG26-01 Result Qualifier RL 3.9 J 7.9 5.3 J 7.9 J7-SS-BLDG23-11 Result Qualifier RL	Result Qualifier RL MDL	Result Qualifier RL MDL Unit ug/Kg 14 JF1 26 1.9 ug/Kg 1.0 J 5.2 0.49 ug/Kg Unit Unit	Result Qualifier RL MDL Unit Dil Fac D Method

No Detections.

Client Sample ID: TB-02

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 480-89971-24

11/12/2015

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 08:30

Date Received: 10/28/15 09:00

Client Sample ID: SWMU26-SS-BLDG16-01

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-1

Matrix: Solid
Percent Solids: 90.3

Method: 8260C - Volatile Orgar Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	6.1	0.44	ug/Kg	<u> </u>		10/29/15 23:13	1
1,1,2,2-Tetrachloroethane	ND	6.1	0.99	0 0	.		10/29/15 23:13	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	6.1		ug/Kg			10/29/15 23:13	1
1,1,2-Trichloroethane	ND	6.1		ug/Kg	.		10/29/15 23:13	1
1,1-Dichloroethane	ND	6.1	0.74	ug/Kg	₩	10/28/15 17:37	10/29/15 23:13	1
1,1-DCE	ND	6.1	0.75	ug/Kg	₩	10/28/15 17:37	10/29/15 23:13	1
1,2,3-Trichlorobenzene	ND	6.1	0.65	ug/Kg	₩	10/28/15 17:37	10/29/15 23:13	1
1,2,4-Trichlorobenzene	ND	6.1		ug/Kg	₽	10/28/15 17:37	10/29/15 23:13	1
1,2-Dibromo-3-Chloropropane	ND	6.1	3.0	ug/Kg	₩	10/28/15 17:37	10/29/15 23:13	1
1,2-Dichlorobenzene	ND	6.1	0.48	ug/Kg	₽	10/28/15 17:37	10/29/15 23:13	1
1,2-Dichloroethane	ND	6.1	0.31	ug/Kg	₩	10/28/15 17:37	10/29/15 23:13	1
1,2-Dichloropropane	ND	6.1	3.0	ug/Kg	₩	10/28/15 17:37	10/29/15 23:13	1
1,3-Dichlorobenzene	ND	6.1	0.31	ug/Kg	₩	10/28/15 17:37	10/29/15 23:13	1
1,4-Dichlorobenzene	ND	6.1	0.85	ug/Kg	₩	10/28/15 17:37	10/29/15 23:13	1
1,4-Dioxane	ND	120	27	ug/Kg	₩	10/28/15 17:37	10/29/15 23:13	1
2-Hexanone	ND	30	3.0	ug/Kg	₩.	10/28/15 17:37	10/29/15 23:13	1
Acetone	ND	30	5.1	ug/Kg	₩	10/28/15 17:37	10/29/15 23:13	1
Benzene	ND	6.1	0.30	ug/Kg	☼	10/28/15 17:37	10/29/15 23:13	1
Bromoform	ND	6.1	3.0	ug/Kg	₩	10/28/15 17:37	10/29/15 23:13	1
Bromomethane	ND	6.1	0.55	ug/Kg	₩	10/28/15 17:37	10/29/15 23:13	1
Carbon disulfide	ND	6.1	3.0	ug/Kg	₩	10/28/15 17:37	10/29/15 23:13	1
Carbon tetrachloride	ND	6.1	0.59	ug/Kg		10/28/15 17:37	10/29/15 23:13	1
Chlorobenzene	ND	6.1		ug/Kg	₩	10/28/15 17:37	10/29/15 23:13	1
Bromochloromethane	ND	6.1		ug/Kg	₩	10/28/15 17:37	10/29/15 23:13	1
Dibromochloromethane	ND	6.1		ug/Kg		10/28/15 17:37	10/29/15 23:13	1
Chloroethane	ND	6.1		ug/Kg	₩	10/28/15 17:37	10/29/15 23:13	1
Chloroform	ND	6.1		ug/Kg	₩	10/28/15 17:37	10/29/15 23:13	1
Chloromethane	ND	6.1		ug/Kg		10/28/15 17:37	10/29/15 23:13	1
cis-1,2-Dichloroethene	ND	6.1		ug/Kg	₩		10/29/15 23:13	1
cis-1,3-Dichloropropene	ND	6.1		ug/Kg	₩		10/29/15 23:13	1
Cyclohexane	ND	6.1		ug/Kg			10/29/15 23:13	1
Bromodichloromethane	ND	6.1		ug/Kg	₩		10/29/15 23:13	1
Dichlorodifluoromethane	ND	6.1		ug/Kg	₩		10/29/15 23:13	1
Ethylbenzene	ND	6.1		ug/Kg			10/29/15 23:13	
1,2-Dibromoethane (EDB)	ND	6.1		ug/Kg	₩		10/29/15 23:13	1
Isopropylbenzene	ND	6.1		ug/Kg	₩		10/29/15 23:13	1
Methyl acetate	ND	6.1		ug/Kg			10/29/15 23:13	
2-Butanone (MEK)	ND	30		ug/Kg	₩		10/29/15 23:13	1
4-Methyl-2-pentanone (MIBK)	ND	30		ug/Kg	÷		10/29/15 23:13	1
Methyl tert-butyl ether	ND	6.1		ug/Kg			10/29/15 23:13	
Methylcyclohexane	ND	6.1		ug/Kg	₩		10/29/15 23:13	1
Methylene Chloride	ND	6.1		ug/Kg	₩		10/29/15 23:13	1
Styrene	ND	6.1		ug/Kg			10/29/15 23:13	
Tetrachloroethene	0.93 JB	6.1		ug/Kg	≎		10/29/15 23:13	1
Toluene	ND	6.1			☼			_
				ug/Kg	· · · · · · · · · · · · · · · · · · ·		10/29/15 23:13	1
trans-1,2-Dichloroethene	ND ND	6.1		ug/Kg	**		10/29/15 23:13	1
trans-1,3-Dichloropropene Trichloroethene	ND ND	6.1 6.1		ug/Kg ug/Kg	₽		10/29/15 23:13 10/29/15 23:13	1

TestAmerica Buffalo

3

4

6

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Client Sample ID: SWMU26-SS-BLDG16-01 Lab Sample ID: 480-89971-1

Date Collected: 10/27/15 08:30 Matrix: Solid
Date Received: 10/28/15 09:00 Percent Solids: 90.3

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		6.1		0.74	ug/Kg	₩	10/28/15 17:37	10/29/15 23:13	1
Xylenes, Total	ND		12		1.0	ug/Kg	≎	10/28/15 17:37	10/29/15 23:13	1
Tetrahydrofuran	ND	*	12		3.5	ug/Kg	\$	10/28/15 17:37	10/29/15 23:13	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\				10/28/15 17:37	10/29/15 23:13	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	97		60 - 140					10/28/15 17:37	10/29/15 23:13	1
1,2-Dichloroethane-d4 (Surr)	96		64 - 126					10/28/15 17:37	10/29/15 23:13	1
Toluene-d8 (Surr)	102		71 - 125					10/28/15 17:37	10/29/15 23:13	1
4-Bromofluorobenzene (Surr)	95		72 - 126					10/28/15 17:37	10/29/15 23:13	

Analyte	Result Qualif	ier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND	920	140	ug/Kg	<u> </u>	11/04/15 07:44	11/09/15 18:17	5
bis (2-chloroisopropyl) ether	ND	920	180	ug/Kg	₩	11/04/15 07:44	11/09/15 18:17	5
2,4,5-Trichlorophenol	ND	920	250	ug/Kg	₩	11/04/15 07:44	11/09/15 18:17	5
2,4,6-Trichlorophenol	ND	920	180	ug/Kg	φ.	11/04/15 07:44	11/09/15 18:17	5
2,4-Dichlorophenol	ND	920	97	ug/Kg	₩	11/04/15 07:44	11/09/15 18:17	5
2,4-Dimethylphenol	ND	920	220	ug/Kg	₩	11/04/15 07:44	11/09/15 18:17	5
2,4-Dinitrophenol	ND	9000	4200	ug/Kg		11/04/15 07:44	11/09/15 18:17	5
2,4-Dinitrotoluene	ND	920	190	ug/Kg	₩	11/04/15 07:44	11/09/15 18:17	5
2,6-Dinitrotoluene	ND	920	110	ug/Kg	₩	11/04/15 07:44	11/09/15 18:17	5
2-Chloronaphthalene	ND	920	150	ug/Kg		11/04/15 07:44	11/09/15 18:17	5
2-Chlorophenol	ND	920	170	ug/Kg	☼	11/04/15 07:44	11/09/15 18:17	5
2-Methylnaphthalene	ND	920	180	ug/Kg	₩	11/04/15 07:44	11/09/15 18:17	5
2-Methylphenol	ND	920	110	ug/Kg	₽	11/04/15 07:44	11/09/15 18:17	5
2-Nitroaniline	ND	1800	140	ug/Kg	☼	11/04/15 07:44	11/09/15 18:17	5
2-Nitrophenol	ND	920	260	ug/Kg	₩	11/04/15 07:44	11/09/15 18:17	5
3,3'-Dichlorobenzidine	ND	1800	1100	ug/Kg		11/04/15 07:44	11/09/15 18:17	5
3-Nitroaniline	ND	1800	250	ug/Kg	₩	11/04/15 07:44	11/09/15 18:17	5
4,6-Dinitro-2-methylphenol	ND	1800	920	ug/Kg	☼	11/04/15 07:44	11/09/15 18:17	5
4-Bromophenyl phenyl ether	ND	920	130	ug/Kg		11/04/15 07:44	11/09/15 18:17	5
4-Chloro-3-methylphenol	ND	920	230	ug/Kg	₩	11/04/15 07:44	11/09/15 18:17	5
4-Chloroaniline	ND	920	230	ug/Kg	☼	11/04/15 07:44	11/09/15 18:17	5
4-Chlorophenyl phenyl ether	ND	920	110	ug/Kg		11/04/15 07:44	11/09/15 18:17	5
4-Methylphenol	ND	1800	110	ug/Kg	₩	11/04/15 07:44	11/09/15 18:17	5
4-Nitroaniline	ND	1800	480	ug/Kg	₩	11/04/15 07:44	11/09/15 18:17	5
4-Nitrophenol	ND	1800	640	ug/Kg	₽	11/04/15 07:44	11/09/15 18:17	5
Acenaphthene	ND	920	140	ug/Kg	₩	11/04/15 07:44	11/09/15 18:17	5
Acenaphthylene	ND	920	120	ug/Kg	₩	11/04/15 07:44	11/09/15 18:17	5
Acetophenone	ND	920	120	ug/Kg	₽	11/04/15 07:44	11/09/15 18:17	5
Anthracene	ND	920	230	ug/Kg	₩	11/04/15 07:44	11/09/15 18:17	5
Atrazine	ND	920	320	ug/Kg	₩	11/04/15 07:44	11/09/15 18:17	5
Benzaldehyde	ND	920	730	ug/Kg		11/04/15 07:44	11/09/15 18:17	5
Benzo(a)anthracene	ND	920	92	ug/Kg	≎	11/04/15 07:44	11/09/15 18:17	5
Benzo(a)pyrene	ND	920	140	ug/Kg	≎	11/04/15 07:44	11/09/15 18:17	5
Benzo(b)fluoranthene	ND	920	150	ug/Kg		11/04/15 07:44	11/09/15 18:17	5
Benzo(g,h,i)perylene	ND	920		ug/Kg	₩	11/04/15 07:44	11/09/15 18:17	5

TestAmerica Buffalo

2

4

6

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Client Sample ID: SWMU26-SS-BLDG16-01

Date Collected: 10/27/15 08:30 Date Received: 10/28/15 09:00

Unknown

Unknown

Lab Sample ID: 480-89971-1

Matrix: Solid Percent Solids: 90.3

Method: 8270D - Semivolatile	Organic Compounds	s (GC/MS) (C	ontinued)				
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo(k)fluoranthene	ND	920	120	ug/Kg	₩	11/04/15 07:44	11/09/15 18:17	5
Bis(2-chloroethoxy)methane	ND	920	190	ug/Kg	₽	11/04/15 07:44	11/09/15 18:17	5
Bis(2-chloroethyl)ether	ND	920	120	ug/Kg	☼	11/04/15 07:44	11/09/15 18:17	5
Bis(2-ethylhexyl) phthalate	ND	920	310	ug/Kg	☼	11/04/15 07:44	11/09/15 18:17	5
Butyl benzyl phthalate	ND	920	150	ug/Kg	≎	11/04/15 07:44	11/09/15 18:17	5
Caprolactam	ND	920	280	ug/Kg	≎	11/04/15 07:44	11/09/15 18:17	5
Carbazole	ND	920	110	ug/Kg	≎	11/04/15 07:44	11/09/15 18:17	5
Chrysene	ND	920	210	ug/Kg	₽	11/04/15 07:44	11/09/15 18:17	5
Di-n-butyl phthalate	ND	920	160	ug/Kg	₽	11/04/15 07:44	11/09/15 18:17	5
Di-n-octyl phthalate	ND	920	110	ug/Kg	₽	11/04/15 07:44	11/09/15 18:17	5
Dibenz(a,h)anthracene	ND	920	160	ug/Kg	₽	11/04/15 07:44	11/09/15 18:17	5
Dibenzofuran	ND	920	110	ug/Kg	≎	11/04/15 07:44	11/09/15 18:17	5
Diethyl phthalate	ND	920	120	ug/Kg	₽	11/04/15 07:44	11/09/15 18:17	5
Dimethyl phthalate	ND	920	110	ug/Kg	\$	11/04/15 07:44	11/09/15 18:17	5
Fluoranthene	ND	920	97	ug/Kg	₽	11/04/15 07:44	11/09/15 18:17	5
Fluorene	ND	920	110	ug/Kg	₽	11/04/15 07:44	11/09/15 18:17	5
Hexachlorobenzene	ND	920	120	ug/Kg		11/04/15 07:44	11/09/15 18:17	5
Hexachlorobutadiene	ND	920	140	ug/Kg	₽	11/04/15 07:44	11/09/15 18:17	5
Hexachlorocyclopentadiene	ND	920	120	ug/Kg	₽	11/04/15 07:44	11/09/15 18:17	5
Hexachloroethane	ND	920	120	ug/Kg	₽	11/04/15 07:44	11/09/15 18:17	5
Indeno(1,2,3-cd)pyrene	ND	920	110	ug/Kg	₽	11/04/15 07:44	11/09/15 18:17	5
Isophorone	ND	920	190	ug/Kg	₽	11/04/15 07:44	11/09/15 18:17	5
N-Nitrosodi-n-propylamine	ND	920	160	ug/Kg	₽	11/04/15 07:44	11/09/15 18:17	5
N-Nitrosodiphenylamine	ND	920	750	ug/Kg	₽	11/04/15 07:44	11/09/15 18:17	5
Naphthalene	ND	920	120	ug/Kg	₽	11/04/15 07:44	11/09/15 18:17	5
Nitrobenzene	ND	920	100	ug/Kg	\$	11/04/15 07:44	11/09/15 18:17	5
Pentachlorophenol	ND	1800	920	ug/Kg	₽	11/04/15 07:44	11/09/15 18:17	5
Phenanthrene	ND	920	140	ug/Kg	☼	11/04/15 07:44	11/09/15 18:17	5
Phenol	ND	920	140	ug/Kg	₽	11/04/15 07:44	11/09/15 18:17	5
Pyrene	ND	920	110	ug/Kg	₩	11/04/15 07:44	11/09/15 18:17	5
Dimethylformamide	ND	3600	410	ug/Kg	₩	11/04/15 07:44	11/09/15 18:17	5
Tentatively Identified Compound	Est. Result Qualifier	Unit I	D i	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	1600 T J	ug/Kg	□ 1.	87		11/04/15 07:44	11/09/15 18:17	5
Unknown	2600 TJ	ug/Kg	☼ 2 .	05		11/04/15 07:44	11/09/15 18:17	5

Surrogate %	Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	75		39 - 146	11/04/15 07:44	11/09/15 18:17	5
2-Fluorobiphenyl	84		37 - 120	11/04/15 07:44	11/09/15 18:17	5
2-Fluorophenol	70		18 - 120	11/04/15 07:44	11/09/15 18:17	5
Nitrobenzene-d5	71		34 - 132	11/04/15 07:44	11/09/15 18:17	5
p-Terphenyl-d14	93		65 ₋ 153	11/04/15 07:44	11/09/15 18:17	5
Phenol-d5	75		11 - 120	11/04/15 07:44	11/09/15 18:17	5

ug/Kg

ug/Kg

1300 TJ

1100 TJ

☼

2.17

4.67

Method: 8015D - Nonhalogena	ted Organic Compour	nds - Direct In	jection (G	SC) - Soluble			
Analyte	Result Qualifier	RL	MDL Un	it D	Prepared	Analyzed	Dil Fac
Ethanol	ND	1.0	0.16 mg	ı/Kg □ □		10/30/15 12:48	1
Isobutyl alcohol	ND	1.0	0.26 mg	ı/Kg ☼		10/30/15 12:48	1

TestAmerica Buffalo

11/04/15 07:44 11/09/15 18:17

11/04/15 07:44 11/09/15 18:17

Page 12 of 125

11/12/2015

3

4

6

8

10

12

1 1

5

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU26-SS-BLDG16-01

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-1

Date Collected: 10/27/15 08:30 **Matrix: Solid** Date Received: 10/28/15 09:00 Percent Solids: 90.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methanol	ND		1.0	0.31	mg/Kg	<u> </u>		10/30/15 12:48	1
n-Butanol	ND		1.0	0.24	mg/Kg	ф.		10/30/15 12:48	1
Propanol	ND		1.0	0.16	mg/Kg	₩		10/30/15 12:48	1
2-Butanol	ND		1.0	0.17	mg/Kg	₩		10/30/15 12:48	1
Isopropyl alcohol	ND		1.0	0.25	mg/Kg	₩		10/30/15 12:48	1
t-Butyl alcohol	ND		1.0	0.28	mg/Kg	₩		10/30/15 12:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	97		30 - 137					10/30/15 12:48	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		250	48	ug/Kg	₩	10/30/15 08:37	10/30/15 19:38	1
PCB-1221	ND		250	48	ug/Kg	☼	10/30/15 08:37	10/30/15 19:38	1
PCB-1232	ND		250	48	ug/Kg	☼	10/30/15 08:37	10/30/15 19:38	1
PCB-1242	ND		250	48	ug/Kg	₽	10/30/15 08:37	10/30/15 19:38	1
PCB-1248	ND		250	48	ug/Kg	☼	10/30/15 08:37	10/30/15 19:38	1
PCB-1254	ND		250	110	ug/Kg	☼	10/30/15 08:37	10/30/15 19:38	1
PCB-1260	ND		250	110	ug/Kg	₽	10/30/15 08:37	10/30/15 19:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	87		60 - 154				10/30/15 08:37	10/30/15 19:38	1
DCB Decachlorobiphenyl	91		65 - 174				10/30/15 08:37	10/30/15 19:38	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.3		2.2	0.44	mg/Kg	<u> </u>	10/29/15 16:19	10/31/15 11:18	1
Barium	30.7		0.55	0.12	mg/Kg	₩	10/29/15 16:19	10/31/15 11:18	1
Cadmium	0.10	J	0.22	0.033	mg/Kg	₩	10/29/15 16:19	10/31/15 11:18	1
Chromium	10.3		0.55	0.22	mg/Kg	₩.	10/29/15 16:19	10/31/15 11:18	1
Lead	5.5		1.1	0.26	mg/Kg	₩	10/29/15 16:19	10/31/15 11:18	1
Selenium	ND		4.4	0.44	mg/Kg	₩	10/29/15 16:19	10/31/15 11:18	1
Silver	ND		0.66	0.22	mg/Kg	ф.	10/29/15 16:19	10/31/15 11:18	1

Method: 7471B - Mercury (CVA	A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.11		0.022	0.0091	mg/Kg	<u> </u>	10/29/15 13:30	10/29/15 15:58	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 08:35

Date Received: 10/28/15 09:00

Toluene

Trichloroethene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Client Sample ID: SWMU26-SS-BLDG16-02

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-2

Matrix: Solid
Percent Solids: 87.5

Method: 8260C - Volatile Orgar Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.2	0.38	ug/Kg	<u> </u>	10/28/15 17:37	10/29/15 23:39	1
1,1,2,2-Tetrachloroethane	ND		5.2	0.84	ug/Kg	₩	10/28/15 17:37	10/29/15 23:39	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.2	1.2	ug/Kg	₩	10/28/15 17:37	10/29/15 23:39	1
1,1,2-Trichloroethane	ND		5.2	0.67	ug/Kg	ф.	10/28/15 17:37	10/29/15 23:39	1
1,1-Dichloroethane	ND		5.2	0.63	ug/Kg	₩	10/28/15 17:37	10/29/15 23:39	1
1,1-DCE	ND		5.2	0.63	ug/Kg	₩	10/28/15 17:37	10/29/15 23:39	1
1,2,3-Trichlorobenzene	ND		5.2	0.55	ug/Kg		10/28/15 17:37	10/29/15 23:39	1
1,2,4-Trichlorobenzene	ND		5.2	0.32	ug/Kg	☼	10/28/15 17:37	10/29/15 23:39	1
1,2-Dibromo-3-Chloropropane	ND		5.2	2.6	ug/Kg	☼	10/28/15 17:37	10/29/15 23:39	1
1,2-Dichlorobenzene	ND		5.2	0.41	ug/Kg		10/28/15 17:37	10/29/15 23:39	1
1,2-Dichloroethane	ND		5.2	0.26	ug/Kg	☼	10/28/15 17:37	10/29/15 23:39	1
1,2-Dichloropropane	ND		5.2	2.6	ug/Kg	☼	10/28/15 17:37	10/29/15 23:39	1
1,3-Dichlorobenzene	ND		5.2	0.27	ug/Kg		10/28/15 17:37	10/29/15 23:39	1
1,4-Dichlorobenzene	ND		5.2	0.73	ug/Kg	☼	10/28/15 17:37	10/29/15 23:39	1
1,4-Dioxane	ND		100	23	ug/Kg	☼	10/28/15 17:37	10/29/15 23:39	1
2-Hexanone	ND		26	2.6	ug/Kg		10/28/15 17:37	10/29/15 23:39	1
Acetone	ND		26	4.4	ug/Kg	☼	10/28/15 17:37	10/29/15 23:39	1
Benzene	ND		5.2		ug/Kg	₩	10/28/15 17:37	10/29/15 23:39	1
Bromoform	ND		5.2	2.6	ug/Kg	 ф	10/28/15 17:37	10/29/15 23:39	1
Bromomethane	ND		5.2		ug/Kg	₽	10/28/15 17:37	10/29/15 23:39	1
Carbon disulfide	ND		5.2		ug/Kg	₩	10/28/15 17:37	10/29/15 23:39	1
Carbon tetrachloride	ND		5.2		ug/Kg	_ф .	10/28/15 17:37	10/29/15 23:39	1
Chlorobenzene	ND		5.2	0.68	ug/Kg	₩	10/28/15 17:37	10/29/15 23:39	1
Bromochloromethane	ND		5.2	0.37	ug/Kg	₩	10/28/15 17:37	10/29/15 23:39	1
Dibromochloromethane	ND		5.2		ug/Kg		10/28/15 17:37	10/29/15 23:39	1
Chloroethane	ND		5.2		ug/Kg	₩	10/28/15 17:37	10/29/15 23:39	1
Chloroform	ND		5.2		ug/Kg	₩	10/28/15 17:37	10/29/15 23:39	1
Chloromethane	ND		5.2		ug/Kg		10/28/15 17:37	10/29/15 23:39	1
cis-1,2-Dichloroethene	ND		5.2		ug/Kg	₩	10/28/15 17:37	10/29/15 23:39	1
cis-1,3-Dichloropropene	ND		5.2		ug/Kg	₩	10/28/15 17:37	10/29/15 23:39	1
Cyclohexane	ND		5.2		ug/Kg		10/28/15 17:37	10/29/15 23:39	1
Bromodichloromethane	ND		5.2		ug/Kg	₩	10/28/15 17:37	10/29/15 23:39	1
Dichlorodifluoromethane	ND		5.2		ug/Kg	₩	10/28/15 17:37	10/29/15 23:39	1
Ethylbenzene	ND		5.2		ug/Kg			10/29/15 23:39	1
1,2-Dibromoethane (EDB)	ND		5.2		ug/Kg	₩		10/29/15 23:39	1
Isopropylbenzene	ND		5.2		ug/Kg	₩	10/28/15 17:37	10/29/15 23:39	1
Methyl acetate	ND		5.2	3.1	ug/Kg			10/29/15 23:39	1
2-Butanone (MEK)	ND		26		ug/Kg	₽		10/29/15 23:39	1
4-Methyl-2-pentanone (MIBK)	ND		26		ug/Kg	₽		10/29/15 23:39	1
Methyl tert-butyl ether	ND		5.2		ug/Kg			10/29/15 23:39	1
Methylcyclohexane	ND		5.2		ug/Kg	₽		10/29/15 23:39	1
Methylene Chloride	ND		5.2		ug/Kg	₽		10/29/15 23:39	1
Styrene	ND		5.2		ug/Kg			10/29/15 23:39	
Tetrachloroethene	ND		5.2		ug/Kg	≎		10/29/15 23:39	1
	110		5.2	0.70	ag/13g		13/20/10 17:07	13/20/10/20:00	

TestAmerica Buffalo

10/28/15 17:37 10/29/15 23:39

10/28/15 17:37 10/29/15 23:39

10/28/15 17:37 10/29/15 23:3910/28/15 17:37 10/29/15 23:39

10/28/15 17:37 10/29/15 23:39

5.2

5.2

5.2

5.2

5.2

0.39 ug/Kg

0.54 ug/Kg

2.3 ug/Kg

1.1 ug/Kg

0.49 ug/Kg

ND

ND

ND

ND

3.4 J

8

10

12

. .

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Client Sample ID: SWMU26-SS-BLDG16-02

Date Collected: 10/27/15 08:35 Date Received: 10/28/15 09:00 Lab Sample ID: 480-89971-2

Matrix: Solid Percent Solids: 87.5

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Co	ntinu	ed)					
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.2		0.63	ug/Kg	<u> </u>	10/28/15 17:37	10/29/15 23:39	1
Xylenes, Total	ND		10		0.87	ug/Kg	₽	10/28/15 17:37	10/29/15 23:39	1
Tetrahydrofuran	ND	*	10		3.0	ug/Kg	ф	10/28/15 17:37	10/29/15 23:39	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\				10/28/15 17:37	10/29/15 23:39	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	99		60 - 140					10/28/15 17:37	10/29/15 23:39	1
1,2-Dichloroethane-d4 (Surr)	101		64 - 126					10/28/15 17:37	10/29/15 23:39	1
Toluene-d8 (Surr)	102		71 - 125					10/28/15 17:37	10/29/15 23:39	1
4-Bromofluorobenzene (Surr)	95		72 - 126					10/28/15 17:37	10/29/15 23:39	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		190	28	ug/Kg	₩	11/04/15 07:44	11/09/15 18:43	1
bis (2-chloroisopropyl) ether	ND		190	38	ug/Kg	☼	11/04/15 07:44	11/09/15 18:43	1
2,4,5-Trichlorophenol	ND		190	52	ug/Kg	≎	11/04/15 07:44	11/09/15 18:43	1
2,4,6-Trichlorophenol	ND		190	38	ug/Kg	₽	11/04/15 07:44	11/09/15 18:43	1
2,4-Dichlorophenol	ND		190	20	ug/Kg	☼	11/04/15 07:44	11/09/15 18:43	1
2,4-Dimethylphenol	ND		190	46	ug/Kg	≎	11/04/15 07:44	11/09/15 18:43	1
2,4-Dinitrophenol	ND		1900	880	ug/Kg	₽	11/04/15 07:44	11/09/15 18:43	1
2,4-Dinitrotoluene	ND		190	39	ug/Kg	≎	11/04/15 07:44	11/09/15 18:43	1
2,6-Dinitrotoluene	ND		190	22	ug/Kg	☼	11/04/15 07:44	11/09/15 18:43	1
2-Chloronaphthalene	ND		190	31	ug/Kg	₽	11/04/15 07:44	11/09/15 18:43	1
2-Chlorophenol	ND		190	35	ug/Kg	≎	11/04/15 07:44	11/09/15 18:43	1
2-Methylnaphthalene	ND		190	38	ug/Kg	☼	11/04/15 07:44	11/09/15 18:43	1
2-Methylphenol	ND		190	22	ug/Kg	₽	11/04/15 07:44	11/09/15 18:43	1
2-Nitroaniline	ND		370	28	ug/Kg	☼	11/04/15 07:44	11/09/15 18:43	1
2-Nitrophenol	ND		190	54	ug/Kg	☼	11/04/15 07:44	11/09/15 18:43	1
3,3'-Dichlorobenzidine	ND		370	220	ug/Kg	\$	11/04/15 07:44	11/09/15 18:43	1
3-Nitroaniline	ND		370	53	ug/Kg	≎	11/04/15 07:44	11/09/15 18:43	1
4,6-Dinitro-2-methylphenol	ND		370	190	ug/Kg	₽	11/04/15 07:44	11/09/15 18:43	1
4-Bromophenyl phenyl ether	ND		190	27	ug/Kg	φ.	11/04/15 07:44	11/09/15 18:43	1
4-Chloro-3-methylphenol	ND		190	47	ug/Kg	☼	11/04/15 07:44	11/09/15 18:43	1
4-Chloroaniline	ND		190	47	ug/Kg	☼	11/04/15 07:44	11/09/15 18:43	1
4-Chlorophenyl phenyl ether	ND		190	24	ug/Kg	₽	11/04/15 07:44	11/09/15 18:43	1
4-Methylphenol	ND		370	22	ug/Kg	☼	11/04/15 07:44	11/09/15 18:43	1
4-Nitroaniline	ND		370	100	ug/Kg	☼	11/04/15 07:44	11/09/15 18:43	1
4-Nitrophenol	ND		370	130	ug/Kg	₽	11/04/15 07:44	11/09/15 18:43	1
Acenaphthene	ND		190	28	ug/Kg	≎	11/04/15 07:44	11/09/15 18:43	1
Acenaphthylene	ND		190	25	ug/Kg	☼	11/04/15 07:44	11/09/15 18:43	1
Acetophenone	ND		190	26	ug/Kg	₽	11/04/15 07:44	11/09/15 18:43	1
Anthracene	ND		190	47	ug/Kg	≎	11/04/15 07:44	11/09/15 18:43	1
Atrazine	ND		190	66	ug/Kg	≎	11/04/15 07:44	11/09/15 18:43	1
Benzaldehyde	ND		190	150	ug/Kg	₽	11/04/15 07:44	11/09/15 18:43	1
Benzo(a)anthracene	ND		190	19	ug/Kg	☼	11/04/15 07:44	11/09/15 18:43	1
Benzo(a)pyrene	ND		190	28	ug/Kg	☼	11/04/15 07:44	11/09/15 18:43	1
Benzo(b)fluoranthene	ND		190	30	ug/Kg	\$	11/04/15 07:44	11/09/15 18:43	1
Benzo(g,h,i)perylene	ND		190	20	ug/Kg	₩	11/04/15 07:44	11/09/15 18:43	1

TestAmerica Buffalo

Page 15 of 125

-

9

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 08:35

Date Received: 10/28/15 09:00

p-Terphenyl-d14

Phenol-d5

Client Sample ID: SWMU26-SS-BLDG16-02

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-2

Matrix: Solid

Percent Solids: 87.5

Analyte	Result	Qualifier	R	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo(k)fluoranthene	ND		19	00	25	ug/Kg		11/04/15 07:44	11/09/15 18:43	1
Bis(2-chloroethoxy)methane	ND		19	00	40	ug/Kg	φ.	11/04/15 07:44	11/09/15 18:43	1
Bis(2-chloroethyl)ether	ND		19	00	25	ug/Kg	₩	11/04/15 07:44	11/09/15 18:43	1
Bis(2-ethylhexyl) phthalate	ND		19	00	65	ug/Kg	☼	11/04/15 07:44	11/09/15 18:43	1
Butyl benzyl phthalate	ND		19	00	31	ug/Kg	φ.	11/04/15 07:44	11/09/15 18:43	1
Caprolactam	ND		19	00	57	ug/Kg	≎	11/04/15 07:44	11/09/15 18:43	1
Carbazole	ND		19	00	22	ug/Kg	≎	11/04/15 07:44	11/09/15 18:43	1
Chrysene	ND		19	00	43	ug/Kg	ф.	11/04/15 07:44	11/09/15 18:43	1
Di-n-butyl phthalate	ND		19	00		ug/Kg		11/04/15 07:44	11/09/15 18:43	1
Di-n-octyl phthalate	ND		19	00		ug/Kg		11/04/15 07:44	11/09/15 18:43	1
Dibenz(a,h)anthracene	ND		19	00		ug/Kg		11/04/15 07:44	11/09/15 18:43	1
Dibenzofuran	ND		19	00		ug/Kg		11/04/15 07:44	11/09/15 18:43	1
Diethyl phthalate	ND		19			ug/Kg			11/09/15 18:43	1
Dimethyl phthalate	ND		19			ug/Kg			11/09/15 18:43	1
Fluoranthene	ND		19			ug/Kg			11/09/15 18:43	1
Fluorene	ND		19			ug/Kg			11/09/15 18:43	
Hexachlorobenzene	ND		19			ug/Kg			11/09/15 18:43	· · · · · · · · · · · · · · · · · · ·
Hexachlorobutadiene	ND		19			ug/Kg			11/09/15 18:43	1
Hexachlorocyclopentadiene	ND		19			ug/Kg			11/09/15 18:43	1
Hexachloroethane	ND		19			ug/Kg			11/09/15 18:43	· · · · · · · · · · · · · · · · · · ·
Indeno(1,2,3-cd)pyrene	ND		19			ug/Kg			11/09/15 18:43	1
Isophorone	ND		19			ug/Kg			11/09/15 18:43	1
N-Nitrosodi-n-propylamine	ND		19			ug/Kg			11/09/15 18:43	· · · · · · · · · · · · · · · · · · ·
N-Nitrosodiphenylamine	ND		19			ug/Kg			11/09/15 18:43	1
Naphthalene	ND		19		25				11/09/15 18:43	1
Nitrobenzene	ND		19		21	ug/Kg			11/09/15 18:43	· · · · · · · · · · · · · · · · · · ·
Pentachlorophenol	ND ND		37			ug/Kg ug/Kg			11/09/15 18:43	1
Phenanthrene	ND		19		28				11/09/15 18:43	1
Phenol	ND		19		29				11/09/15 18:43	
	ND ND		19			0 0			11/09/15 18:43	1
Pyrene						ug/Kg				-
Dimethylformamide	ND		74	Ю	84	ug/Kg	**	11/04/15 07:44	11/09/15 18:43	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Chloroform	220	TJN	ug/Kg	<u>∓</u> -	1.	.64	67-66-3	11/04/15 07:44	11/09/15 18:43	1
Unknown	1600	TJ	ug/Kg	₩	1.	.88		11/04/15 07:44	11/09/15 18:43	1
Unknown	600	TJ	ug/Kg	₩	2.	.06		11/04/15 07:44	11/09/15 18:43	1
Unknown	1300	TJ	ug/Kg		2.	.18		11/04/15 07:44	11/09/15 18:43	1
Unknown	1200	TJ	ug/Kg	₩	4.	.67		11/04/15 07:44	11/09/15 18:43	1
Unknown Benzene Derivative	480	ΤJ	ug/Kg	₩		.15		11/04/15 07:44	11/09/15 18:43	1
Ethane, 1,1,2,2-tetrachloro-	240	TJN	ug/Kg	₩	5.	.70	79-34-5	11/04/15 07:44	11/09/15 18:43	
5-Eicosene, (E)-	460	TJN	ug/Kg	₩			74685-30-6	11/04/15 07:44	11/09/15 18:43	1
1-Eicosanol	630	TJN	ug/Kg	₩		.62	629-96-9	11/04/15 07:44	11/09/15 18:43	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	90		39 - 146	3				11/04/15 07:44	11/09/15 18:43	
2-Fluorobiphenyl	91		37 - 120)				11/04/15 07:44	11/09/15 18:43	1
2-Fluorophenol	79		18 - 120)				11/04/15 07:44	11/09/15 18:43	1
Nitrobenzene-d5	79		34 - 132					11/04/15 07:44	11/09/15 18:43	1

TestAmerica Buffalo

11/12/2015

11/04/15 07:44 11/09/15 18:43

11/04/15 07:44 11/09/15 18:43

65 - 153

11 - 120

108

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 08:35

Client Sample ID: SWMU26-SS-BLDG16-02

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-2

Matrix: Solid

Method: 8015D - Nonhalog	nonated Organi	c Compan	nde - Diroct	Injection	(GC) = 9	alubi	•		
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		1.1	0.16	mg/Kg	<u> </u>		10/30/15 12:56	
Isobutyl alcohol	ND		1.1	0.27	mg/Kg	₩		10/30/15 12:56	1
Methanol	0.88	J	1.1	0.32	mg/Kg	₩		10/30/15 12:56	1
n-Butanol	ND		1.1	0.25	mg/Kg	₩.		10/30/15 12:56	1
Propanol	ND		1.1	0.16	mg/Kg	₩		10/30/15 12:56	1
2-Butanol	ND		1.1	0.17	mg/Kg	₩		10/30/15 12:56	1
Isopropyl alcohol	ND		1.1	0.26	mg/Kg	φ.		10/30/15 12:56	1
t-Butyl alcohol	ND		1.1	0.28	mg/Kg	₩		10/30/15 12:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	90		30 - 137					10/30/15 12:56	
Method: 8082A - Polychlo	rinated Bipheny	vis (PCBs)	by Gas Chr	omatogr	aphy				
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		240	46	ug/Kg	<u></u>	10/30/15 08:37	10/30/15 19:55	1
PCB-1221	ND		240	46	ug/Kg	₩	10/30/15 08:37	10/30/15 19:55	1
PCB-1232	ND		240	46	ug/Kg	₩	10/30/15 08:37	10/30/15 19:55	1
PCB-1242	ND		240	46	ug/Kg		10/30/15 08:37	10/30/15 19:55	1
PCB-1248	ND		240	46	ug/Kg	₩	10/30/15 08:37	10/30/15 19:55	1
PCB-1254	ND		240	110	ug/Kg	₩	10/30/15 08:37	10/30/15 19:55	1
PCB-1260	ND		240	110	ug/Kg		10/30/15 08:37	10/30/15 19:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	91		60 - 154				10/30/15 08:37	10/30/15 19:55	
DCB Decachlorobiphenyl	99		65 - 174				10/30/15 08:37	10/30/15 19:55	1
Method: 6010C - Metals (I	CP)								
Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.2	J	2.3	0.45	mg/Kg	<u> </u>	10/29/15 16:19	10/31/15 11:21	1
Barium	34.5		0.57	0.12	mg/Kg	☼	10/29/15 16:19	10/31/15 11:21	1
Cadmium	0.086	J	0.23	0.034	mg/Kg	☼	10/29/15 16:19	10/31/15 11:21	1
Chromium	9.8		0.57	0.23	mg/Kg		10/29/15 16:19	10/31/15 11:21	1
Lead	6.8		1.1	0.27	mg/Kg	☼	10/29/15 16:19	10/31/15 11:21	1
Selenium	ND		4.5	0.45	mg/Kg	₩	10/29/15 16:19	10/31/15 11:21	1
Silver	ND		0.68	0.23	mg/Kg	₽	10/29/15 16:19	10/31/15 11:21	
Method: 7471B - Mercury	(CVAA)								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.032		0.022	0.0087	ma/Ka	<u>₩</u>	10/20/15 13:30	10/29/15 16:00	-

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 08:45

Date Received: 10/28/15 09:00

Trichloroethene

Trichlorofluoromethane

Client Sample ID: SWMU26-SS-BLDG16-03

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-3

Matrix: Solid
Percent Solids: 84.5

Method: 8260C - Volatile Orga Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		6.1	0.45	ug/Kg	\	10/28/15 17:37	10/30/15 00:05	1
1,1,2,2-Tetrachloroethane	ND		6.1	1.0	ug/Kg	☼	10/28/15 17:37	10/30/15 00:05	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		6.1	1.4	ug/Kg	≎	10/28/15 17:37	10/30/15 00:05	1
1,1,2-Trichloroethane	ND		6.1	0.80	ug/Kg	\$	10/28/15 17:37	10/30/15 00:05	1
1,1-Dichloroethane	ND		6.1	0.75	ug/Kg	≎	10/28/15 17:37	10/30/15 00:05	1
1,1-DCE	ND		6.1	0.75	ug/Kg	₩	10/28/15 17:37	10/30/15 00:05	1
1,2,3-Trichlorobenzene	ND		6.1	0.65	ug/Kg	φ.	10/28/15 17:37	10/30/15 00:05	1
1,2,4-Trichlorobenzene	ND		6.1	0.37	ug/Kg	☼	10/28/15 17:37	10/30/15 00:05	1
1,2-Dibromo-3-Chloropropane	ND		6.1	3.1	ug/Kg	☼	10/28/15 17:37	10/30/15 00:05	1
1,2-Dichlorobenzene	ND		6.1	0.48	ug/Kg		10/28/15 17:37	10/30/15 00:05	1
1,2-Dichloroethane	ND		6.1	0.31	ug/Kg	☼	10/28/15 17:37	10/30/15 00:05	1
1,2-Dichloropropane	ND		6.1	3.1	ug/Kg	☼	10/28/15 17:37	10/30/15 00:05	1
1,3-Dichlorobenzene	ND		6.1	0.32	ug/Kg		10/28/15 17:37	10/30/15 00:05	1
1,4-Dichlorobenzene	ND		6.1	0.86	ug/Kg	☼	10/28/15 17:37	10/30/15 00:05	1
1,4-Dioxane	ND		120	27	ug/Kg	₩	10/28/15 17:37	10/30/15 00:05	1
2-Hexanone	ND		31	3.1	ug/Kg		10/28/15 17:37	10/30/15 00:05	1
Acetone	ND		31	5.2	ug/Kg	☼	10/28/15 17:37	10/30/15 00:05	1
Benzene	ND		6.1	0.30	ug/Kg	≎	10/28/15 17:37	10/30/15 00:05	1
Bromoform	ND		6.1	3.1	ug/Kg		10/28/15 17:37	10/30/15 00:05	1
Bromomethane	ND		6.1	0.55	ug/Kg	≎	10/28/15 17:37	10/30/15 00:05	1
Carbon disulfide	ND		6.1	3.1	ug/Kg	₩	10/28/15 17:37	10/30/15 00:05	1
Carbon tetrachloride	ND		6.1	0.59	ug/Kg	ф.	10/28/15 17:37	10/30/15 00:05	1
Chlorobenzene	ND		6.1		ug/Kg	₩	10/28/15 17:37	10/30/15 00:05	1
Bromochloromethane	ND		6.1	0.44	ug/Kg	₩	10/28/15 17:37	10/30/15 00:05	1
Dibromochloromethane	ND		6.1		ug/Kg	· · · · · · · · · · · · · · · · · · ·	10/28/15 17:37	10/30/15 00:05	1
Chloroethane	ND		6.1		ug/Kg	₩	10/28/15 17:37	10/30/15 00:05	1
Chloroform	ND		6.1		ug/Kg	₩	10/28/15 17:37	10/30/15 00:05	1
Chloromethane	ND		6.1		ug/Kg	ф.	10/28/15 17:37	10/30/15 00:05	1
cis-1,2-Dichloroethene	ND		6.1	0.79		₩	10/28/15 17:37	10/30/15 00:05	1
cis-1,3-Dichloropropene	ND		6.1	0.88	ug/Kg	₩	10/28/15 17:37	10/30/15 00:05	1
Cyclohexane	ND		6.1	0.86	ug/Kg		10/28/15 17:37	10/30/15 00:05	1
Bromodichloromethane	ND		6.1		ug/Kg	₩	10/28/15 17:37	10/30/15 00:05	1
Dichlorodifluoromethane	ND		6.1		ug/Kg	₩	10/28/15 17:37	10/30/15 00:05	1
Ethylbenzene	ND		6.1		ug/Kg		10/28/15 17:37	10/30/15 00:05	1
1,2-Dibromoethane (EDB)	ND		6.1	0.79		☼	10/28/15 17:37	10/30/15 00:05	1
Isopropylbenzene	ND		6.1	0.93	ug/Kg	☼	10/28/15 17:37	10/30/15 00:05	1
Methyl acetate	ND		6.1		ug/Kg		10/28/15 17:37	10/30/15 00:05	1
2-Butanone (MEK)	ND		31		ug/Kg	☼		10/30/15 00:05	1
4-Methyl-2-pentanone (MIBK)	ND		31		ug/Kg	☼	10/28/15 17:37	10/30/15 00:05	1
Methyl tert-butyl ether	ND		6.1		ug/Kg			10/30/15 00:05	1
Methylcyclohexane	ND		6.1		ug/Kg	≎	10/28/15 17:37	10/30/15 00:05	1
Methylene Chloride	2.8	J	6.1		ug/Kg	₩		10/30/15 00:05	1
Styrene	ND		6.1		ug/Kg	 ☆-		10/30/15 00:05	1
Tetrachloroethene	ND		6.1		ug/Kg	≎		10/30/15 00:05	1
Toluene	ND		6.1		ug/Kg	≎		10/30/15 00:05	1
trans-1,2-Dichloroethene	ND		6.1		ug/Kg			10/30/15 00:05	1
trans-1,3-Dichloropropene	ND		6.1		ug/Kg	≎		10/30/15 00:05	1
T : 11	.15		2		-99	**	40/00/45 47:07	40/00/45 00:05	

TestAmerica Buffalo

☼ 10/28/15 17:37 10/30/15 00:05

☼ 10/28/15 17:37 10/30/15 00:05

6.1

6.1

1.4 ug/Kg

0.58 ug/Kg

ND

ND

3

4

6

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Received: 10/28/15 09:00

TestAmerica Job ID: 480-89971-1

Client Sample ID: SWMU26-SS-BLDG16-03

Lab Sample ID: 480-89971-3 Date Collected: 10/27/15 08:45

Matrix: Solid Percent Solids: 84.5

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND —	6.1	0.75	ug/Kg	<u> </u>	10/28/15 17:37	10/30/15 00:05	1
Xylenes, Total	ND	12	1.0	ug/Kg	≎	10/28/15 17:37	10/30/15 00:05	1
Tetrahydrofuran	ND *	12	3.6	ug/Kg	φ.	10/28/15 17:37	10/30/15 00:05	1

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	-			10/28/15 17:37	10/30/15 00:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	100		60 - 140				10/28/15 17:37	10/30/15 00:05	1
1,2-Dichloroethane-d4 (Surr)	98		64 - 126				10/28/15 17:37	10/30/15 00:05	1
Toluene-d8 (Surr)	103		71 - 125				10/28/15 17:37	10/30/15 00:05	1
4-Bromofluorobenzene (Surr)	93		72 - 126				10/28/15 17:37	10/30/15 00:05	1

Analyte	Result Qualifier	ŘL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND	1000	150	ug/Kg	₽	11/04/15 07:44	11/09/15 19:09	5
bis (2-chloroisopropyl) ether	ND	1000	200	ug/Kg	₩	11/04/15 07:44	11/09/15 19:09	5
2,4,5-Trichlorophenol	ND	1000	270	ug/Kg	☼	11/04/15 07:44	11/09/15 19:09	5
2,4,6-Trichlorophenol	ND	1000	200	ug/Kg	φ.	11/04/15 07:44	11/09/15 19:09	5
2,4-Dichlorophenol	ND	1000	110	ug/Kg	☼	11/04/15 07:44	11/09/15 19:09	5
2,4-Dimethylphenol	ND	1000	240	ug/Kg	☼	11/04/15 07:44	11/09/15 19:09	5
2,4-Dinitrophenol	ND	9700	4600	ug/Kg	φ.	11/04/15 07:44	11/09/15 19:09	5
2,4-Dinitrotoluene	ND	1000	210	ug/Kg	☼	11/04/15 07:44	11/09/15 19:09	5
2,6-Dinitrotoluene	ND	1000	120	ug/Kg	☼	11/04/15 07:44	11/09/15 19:09	5
2-Chloronaphthalene	ND	1000	160	ug/Kg	₽	11/04/15 07:44	11/09/15 19:09	5
2-Chlorophenol	ND	1000	180	ug/Kg	☼	11/04/15 07:44	11/09/15 19:09	5
2-Methylnaphthalene	ND	1000	200	ug/Kg	☼	11/04/15 07:44	11/09/15 19:09	5
2-Methylphenol	ND	1000	120	ug/Kg	₽	11/04/15 07:44	11/09/15 19:09	5
2-Nitroaniline	ND	1900	150	ug/Kg	₩	11/04/15 07:44	11/09/15 19:09	5
2-Nitrophenol	ND	1000	280	ug/Kg	☼	11/04/15 07:44	11/09/15 19:09	5
3,3'-Dichlorobenzidine	ND	1900	1200	ug/Kg	₽	11/04/15 07:44	11/09/15 19:09	5
3-Nitroaniline	ND	1900	280	ug/Kg	₩	11/04/15 07:44	11/09/15 19:09	5
4,6-Dinitro-2-methylphenol	ND	1900	1000	ug/Kg	☼	11/04/15 07:44	11/09/15 19:09	5
4-Bromophenyl phenyl ether	ND	1000	140	ug/Kg	₽	11/04/15 07:44	11/09/15 19:09	5
4-Chloro-3-methylphenol	ND	1000	250	ug/Kg	☼	11/04/15 07:44	11/09/15 19:09	5
4-Chloroaniline	ND	1000	250	ug/Kg	☼	11/04/15 07:44	11/09/15 19:09	5
4-Chlorophenyl phenyl ether	ND	1000	120	ug/Kg	₽	11/04/15 07:44	11/09/15 19:09	5
4-Methylphenol	ND	1900	120	ug/Kg	☼	11/04/15 07:44	11/09/15 19:09	5
4-Nitroaniline	ND	1900	520	ug/Kg	☼	11/04/15 07:44	11/09/15 19:09	5
4-Nitrophenol	ND	1900	700	ug/Kg	₽	11/04/15 07:44	11/09/15 19:09	5
Acenaphthene	ND	1000	150	ug/Kg	☼	11/04/15 07:44	11/09/15 19:09	5
Acenaphthylene	ND	1000	130	ug/Kg	☼	11/04/15 07:44	11/09/15 19:09	5
Acetophenone	ND	1000	130	ug/Kg	₽	11/04/15 07:44	11/09/15 19:09	5
Anthracene	ND	1000	250	ug/Kg	☼	11/04/15 07:44	11/09/15 19:09	5
Atrazine	ND	1000	350	ug/Kg	☼	11/04/15 07:44	11/09/15 19:09	5
Benzaldehyde	ND	1000	790	ug/Kg	₽	11/04/15 07:44	11/09/15 19:09	5
Benzo(a)anthracene	ND	1000	100	ug/Kg	☼	11/04/15 07:44	11/09/15 19:09	5
Benzo(a)pyrene	ND	1000	150	ug/Kg	☼	11/04/15 07:44	11/09/15 19:09	5
Benzo(b)fluoranthene	ND	1000	160	ug/Kg		11/04/15 07:44	11/09/15 19:09	5
Benzo(g,h,i)perylene	ND	1000	110	ug/Kg	☼	11/04/15 07:44	11/09/15 19:09	5

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Client Sample ID: SWMU26-SS-BLDG16-03 Lab Sample ID: 480-89971-3

Date Collected: 10/27/15 08:45

Date Received: 10/28/15 09:00

Matrix: Solid
Percent Solids: 84.5

Analyte		Qualifier	RL		MDL		D	Prepared	Analyzed	Dil Fa
Benzo(k)fluoranthene	ND		1000)	130	ug/Kg	₩	11/04/15 07:44	11/09/15 19:09	
Bis(2-chloroethoxy)methane	ND		1000)		ug/Kg	₩		11/09/15 19:09	
Bis(2-chloroethyl)ether	ND		1000)		ug/Kg	☆	11/04/15 07:44	11/09/15 19:09	
Bis(2-ethylhexyl) phthalate	ND		1000)		ug/Kg		11/04/15 07:44	11/09/15 19:09	
Butyl benzyl phthalate	ND		1000)		ug/Kg	☆	11/04/15 07:44	11/09/15 19:09	
Caprolactam	ND		1000)	300	ug/Kg	₩	11/04/15 07:44	11/09/15 19:09	
Carbazole	ND		1000)	120	ug/Kg	₩	11/04/15 07:44	11/09/15 19:09	
Chrysene	ND		1000)	220	ug/Kg	☼	11/04/15 07:44	11/09/15 19:09	
Di-n-butyl phthalate	ND		1000)	170	ug/Kg	₩	11/04/15 07:44	11/09/15 19:09	
Di-n-octyl phthalate	ND		1000)	120	ug/Kg	₩	11/04/15 07:44	11/09/15 19:09	
Dibenz(a,h)anthracene	ND		1000)	180	ug/Kg	₽	11/04/15 07:44	11/09/15 19:09	
Dibenzofuran	ND		1000)	120	ug/Kg	₽	11/04/15 07:44	11/09/15 19:09	
Diethyl phthalate	ND		1000)	130	ug/Kg	☆	11/04/15 07:44	11/09/15 19:09	
Dimethyl phthalate	ND		1000)		ug/Kg		11/04/15 07:44	11/09/15 19:09	
Fluoranthene	ND		1000)		ug/Kg	₩	11/04/15 07:44	11/09/15 19:09	
Fluorene	ND		1000)	120	ug/Kg	₩	11/04/15 07:44	11/09/15 19:09	
Hexachlorobenzene	ND		1000)		ug/Kg	ф.	11/04/15 07:44	11/09/15 19:09	
Hexachlorobutadiene	ND		1000)		ug/Kg	₩	11/04/15 07:44	11/09/15 19:09	
Hexachlorocyclopentadiene	ND		1000)		ug/Kg	₩	11/04/15 07:44	11/09/15 19:09	
Hexachloroethane	ND		1000)		ug/Kg		11/04/15 07:44	11/09/15 19:09	
Indeno(1,2,3-cd)pyrene	ND		1000			ug/Kg	₽	11/04/15 07:44	11/09/15 19:09	
Isophorone	ND		1000			ug/Kg	₩	11/04/15 07:44	11/09/15 19:09	
N-Nitrosodi-n-propylamine	ND		1000			ug/Kg			11/09/15 19:09	
N-Nitrosodiphenylamine	ND		1000			ug/Kg	₽		11/09/15 19:09	
Naphthalene	ND		1000			ug/Kg	₩	11/04/15 07:44		
Nitrobenzene	ND		1000			ug/Kg		11/04/15 07:44		
Pentachlorophenol	ND		1900			ug/Kg	₩		11/09/15 19:09	
Phenanthrene	ND		1000			ug/Kg	₩		11/09/15 19:09	
Phenol	ND		1000			ug/Kg			11/09/15 19:09	
Pyrene	ND		1000			ug/Kg	₩		11/09/15 19:09	
Dimethylformamide	ND		3900			ug/Kg	₩		11/09/15 19:09	
Difficultyfformathiae	ND		0000	,	440	uging		11/04/10 07:44	11/00/10 10:00	
Tentatively Identified Compound Unknown	Est. Result	-	Unit	- D - ☆ -		RT	CAS No.	Prepared	Analyzed 11/09/15 19:09	Dil Fa
	3200	TJ	ug/Kg	<i>~</i> ⇔		88				
Unknown	3400	T J	ug/Kg	₩		05			11/09/15 19:09	
Unknown	2700		ug/Kg			18			11/09/15 19:09	
Unknown	1200	1 J	ug/Kg	☼	4.	67		11/04/15 07:44	11/09/15 19:09	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	83		39 - 146	-				11/04/15 07:44	11/09/15 19:09	
2-Fluorobiphenyl	92		37 - 120					11/04/15 07:44	11/09/15 19:09	
2-Fluorophenol	76		18 - 120					11/04/15 07:44	11/09/15 19:09	
Nitrobenzene-d5	79		34 - 132					11/04/15 07:44	11/09/15 19:09	
p-Terphenyl-d14	102		65 - 153					11/04/15 07:44	11/09/15 19:09	
Phenol-d5	82		11 - 120					11/04/15 07:44	11/09/15 19:09	

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) - Soluble											
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac				
Ethanol	ND —	1.1	0.16 mg/Kg	\		10/30/15 13:04	1				
Isobutyl alcohol	ND	1.1	0.27 mg/Kg	₩		10/30/15 13:04	1				

TestAmerica Buffalo

Page 20 of 125

6

8

44

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 08:45

Date Received: 10/28/15 09:00

Client Sample ID: SWMU26-SS-BLDG16-03

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-3

Matrix: Solid

Percent Solids: 84.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methanol	ND		1.1	0.32	mg/Kg	<u> </u>		10/30/15 13:04	1
n-Butanol	ND		1.1	0.25	mg/Kg	ф.		10/30/15 13:04	1
Propanol	ND		1.1	0.16	mg/Kg	₽		10/30/15 13:04	1
2-Butanol	ND		1.1	0.17	mg/Kg	₽		10/30/15 13:04	1
Isopropyl alcohol	ND		1.1	0.26	mg/Kg	₽		10/30/15 13:04	1
t-Butyl alcohol	ND		1.1	0.28	mg/Kg	₩		10/30/15 13:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	91		30 - 137					10/30/15 13:04	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		230	44	ug/Kg	<u></u>	10/30/15 08:37	10/30/15 20:12	1
PCB-1221	ND		230	44	ug/Kg	☼	10/30/15 08:37	10/30/15 20:12	1
PCB-1232	ND		230	44	ug/Kg	₽	10/30/15 08:37	10/30/15 20:12	1
PCB-1242	ND		230	44	ug/Kg	φ.	10/30/15 08:37	10/30/15 20:12	1
PCB-1248	ND		230	44	ug/Kg	₽	10/30/15 08:37	10/30/15 20:12	1
PCB-1254	ND		230	110	ug/Kg	☼	10/30/15 08:37	10/30/15 20:12	1
PCB-1260	ND		230	110	ug/Kg	☼	10/30/15 08:37	10/30/15 20:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	98		60 - 154				10/30/15 08:37	10/30/15 20:12	1
DCB Decachlorobiphenyl	99		65 - 174				10/30/15 08:37	10/30/15 20:12	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.2	J	2.4	0.47	mg/Kg	<u></u>	10/29/15 16:19	10/31/15 11:34	1
Barium	39.3		0.59	0.13	mg/Kg	₩	10/29/15 16:19	10/31/15 11:34	1
Cadmium	0.12	J	0.24	0.035	mg/Kg	₩	10/29/15 16:19	10/31/15 11:34	1
Chromium	12.3		0.59	0.24	mg/Kg	₩.	10/29/15 16:19	10/31/15 11:34	1
Lead	6.7		1.2	0.28	mg/Kg	☼	10/29/15 16:19	10/31/15 11:34	1
Selenium	ND		4.7	0.47	mg/Kg	₩	10/29/15 16:19	10/31/15 11:34	1
Silver	ND		0.71	0.24	mg/Kg		10/29/15 16:19	10/31/15 11:34	1

Method: 7471B - Mercury (CVA)	4)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.029		0.023	0.0093	mg/Kg		10/29/15 13:30	10/29/15 16:01	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 08:50

Date Received: 10/28/15 09:00

Client Sample ID: SWMU26-SS-BLDG16-04

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-4

Matrix: Solid
Percent Solids: 90.4

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4.4		ug/Kg	₩	10/28/15 17:37	10/30/15 00:31	•
1,1,2,2-Tetrachloroethane	ND	4.4		ug/Kg	☼	10/28/15 17:37	10/30/15 00:31	•
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.4	1.0	ug/Kg	☼	10/28/15 17:37	10/30/15 00:31	
1,1,2-Trichloroethane	ND	4.4	0.57	ug/Kg	₽	10/28/15 17:37	10/30/15 00:31	
1,1-Dichloroethane	ND	4.4	0.54	ug/Kg	≎	10/28/15 17:37	10/30/15 00:31	•
1,1-DCE	ND	4.4	0.54	ug/Kg	₩	10/28/15 17:37	10/30/15 00:31	
1,2,3-Trichlorobenzene	ND	4.4	0.47	ug/Kg	₽	10/28/15 17:37	10/30/15 00:31	
1,2,4-Trichlorobenzene	ND	4.4	0.27	ug/Kg	☼	10/28/15 17:37	10/30/15 00:31	
1,2-Dibromo-3-Chloropropane	ND	4.4	2.2	ug/Kg	☼	10/28/15 17:37	10/30/15 00:31	
1,2-Dichlorobenzene	ND	4.4	0.34	ug/Kg	₽	10/28/15 17:37	10/30/15 00:31	
1,2-Dichloroethane	ND	4.4	0.22	ug/Kg	≎	10/28/15 17:37	10/30/15 00:31	
1,2-Dichloropropane	ND	4.4	2.2	ug/Kg	≎	10/28/15 17:37	10/30/15 00:31	
1,3-Dichlorobenzene	ND	4.4	0.23	ug/Kg	₽	10/28/15 17:37	10/30/15 00:31	
1,4-Dichlorobenzene	ND	4.4	0.62	ug/Kg	₩	10/28/15 17:37	10/30/15 00:31	
1,4-Dioxane	ND	88	19	ug/Kg	☼	10/28/15 17:37	10/30/15 00:31	
2-Hexanone	ND	22	2.2	ug/Kg	ф	10/28/15 17:37	10/30/15 00:31	
Acetone	ND	22	3.7	ug/Kg	☼	10/28/15 17:37	10/30/15 00:31	
Benzene	ND	4.4	0.22	ug/Kg	₩	10/28/15 17:37	10/30/15 00:31	
Bromoform	ND	4.4		ug/Kg		10/28/15 17:37	10/30/15 00:31	
Bromomethane	ND	4.4		ug/Kg	≎	10/28/15 17:37	10/30/15 00:31	
Carbon disulfide	ND	4.4		ug/Kg	☼	10/28/15 17:37	10/30/15 00:31	
Carbon tetrachloride	ND	4.4		ug/Kg		10/28/15 17:37	10/30/15 00:31	
Chlorobenzene	ND	4.4		ug/Kg	₽	10/28/15 17:37	10/30/15 00:31	
Bromochloromethane	ND	4.4		ug/Kg	₽		10/30/15 00:31	
Dibromochloromethane	ND	4.4		ug/Kg	 ģ		10/30/15 00:31	
Chloroethane	ND	4.4		ug/Kg	₩		10/30/15 00:31	
Chloroform	ND	4.4		ug/Kg	₩		10/30/15 00:31	
Chloromethane	ND	4.4		ug/Kg			10/30/15 00:31	
cis-1,2-Dichloroethene	ND	4.4		ug/Kg	₩		10/30/15 00:31	
cis-1,3-Dichloropropene	ND	4.4		ug/Kg	₩		10/30/15 00:31	
Cyclohexane	ND	4.4		ug/Kg			10/30/15 00:31	
Bromodichloromethane	ND	4.4		ug/Kg	₩		10/30/15 00:31	
Dichlorodifluoromethane	ND	4.4		ug/Kg	₩		10/30/15 00:31	
Ethylbenzene	ND	4.4	0.30				10/30/15 00:31	
1,2-Dibromoethane (EDB)	ND	4.4		ug/Kg	₽		10/30/15 00:31	
Isopropylbenzene	ND	4.4			≎		10/30/15 00:31	
Methyl acetate	ND	4.4		ug/Kg ug/Kg		10/28/15 17:37		
2-Butanone (MEK)	ND	22		ug/Kg	₽	10/28/15 17:37		
` '	ND ND	22			₽	10/28/15 17:37		
4-Methyl-2-pentanone (MIBK) Methyl tert-butyl ether	ND ND			ug/Kg			10/30/15 00:31	
•		4.4		ug/Kg	₩			
Methylcyclohexane	ND	4.4		ug/Kg	₽		10/30/15 00:31	
Methylene Chloride	ND	4.4		ug/Kg			10/30/15 00:31	
Styrene	ND	4.4		ug/Kg	☆		10/30/15 00:31	
Tetrachloroethene	0.61 JB	4.4		ug/Kg	☆		10/30/15 00:31	
Toluene	0.33 J	4.4		ug/Kg	.		10/30/15 00:31	
trans-1,2-Dichloroethene	ND	4.4		ug/Kg	₩		10/30/15 00:31	
trans-1,3-Dichloropropene	ND	4.4		ug/Kg	ψ.		10/30/15 00:31	•
Trichloroethene	ND	4.4		ug/Kg	<u>.</u> .	10/28/15 17:37		
Trichlorofluoromethane	1.8 J	4.4	0.42	ug/Kg	₽	10/28/15 17:37	10/30/15 00:31	

TestAmerica Buffalo

4

6

0

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Client Sample ID: SWMU26-SS-BLDG16-04

Date Collected: 10/27/15 08:50 Date Received: 10/28/15 09:00 Lab Sample ID: 480-89971-4

Matrix: Solid Percent Solids: 90.4

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.4		0.54	ug/Kg	<u> </u>	10/28/15 17:37	10/30/15 00:31	1
Xylenes, Total	ND		8.8		0.74	ug/Kg	₽	10/28/15 17:37	10/30/15 00:31	1
Tetrahydrofuran	ND	*	8.8		2.6	ug/Kg	\$	10/28/15 17:37	10/30/15 00:31	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\				10/28/15 17:37	10/30/15 00:31	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	100		60 - 140					10/28/15 17:37	10/30/15 00:31	1
1,2-Dichloroethane-d4 (Surr)	102		64 - 126					10/28/15 17:37	10/30/15 00:31	1
Toluene-d8 (Surr)	102		71 - 125					10/28/15 17:37	10/30/15 00:31	1
4-Bromofluorobenzene (Surr)	97		72 - 126					10/28/15 17:37	10/30/15 00:31	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		180	27	ug/Kg	₩	11/02/15 08:32	11/11/15 11:49	1
bis (2-chloroisopropyl) ether	ND		180	37	ug/Kg	☼	11/02/15 08:32	11/11/15 11:49	1
2,4,5-Trichlorophenol	ND		180	50	ug/Kg	≎	11/02/15 08:32	11/11/15 11:49	1
2,4,6-Trichlorophenol	ND		180	37	ug/Kg	₽	11/02/15 08:32	11/11/15 11:49	1
2,4-Dichlorophenol	ND		180	19	ug/Kg	≎	11/02/15 08:32	11/11/15 11:49	1
2,4-Dimethylphenol	ND		180	44	ug/Kg	≎	11/02/15 08:32	11/11/15 11:49	1
2,4-Dinitrophenol	ND	F2	1800	850	ug/Kg	\$	11/02/15 08:32	11/11/15 11:49	1
2,4-Dinitrotoluene	ND		180	38	ug/Kg	≎	11/02/15 08:32	11/11/15 11:49	1
2,6-Dinitrotoluene	ND		180	22	ug/Kg	≎	11/02/15 08:32	11/11/15 11:49	1
2-Chloronaphthalene	ND		180	30	ug/Kg	₽	11/02/15 08:32	11/11/15 11:49	1
2-Chlorophenol	ND		180	33	ug/Kg	≎	11/02/15 08:32	11/11/15 11:49	1
2-Methylnaphthalene	ND		180	37	ug/Kg	☼	11/02/15 08:32	11/11/15 11:49	1
2-Methylphenol	ND		180	22	ug/Kg	₽	11/02/15 08:32	11/11/15 11:49	1
2-Nitroaniline	ND		360	27	ug/Kg	≎	11/02/15 08:32	11/11/15 11:49	1
2-Nitrophenol	ND		180	52	ug/Kg	☼	11/02/15 08:32	11/11/15 11:49	1
3,3'-Dichlorobenzidine	ND		360	220	ug/Kg	₽	11/02/15 08:32	11/11/15 11:49	1
3-Nitroaniline	ND		360	51	ug/Kg	☼	11/02/15 08:32	11/11/15 11:49	1
4,6-Dinitro-2-methylphenol	ND		360	180	ug/Kg	≎	11/02/15 08:32	11/11/15 11:49	1
4-Bromophenyl phenyl ether	ND		180	26	ug/Kg	\$	11/02/15 08:32	11/11/15 11:49	1
4-Chloro-3-methylphenol	ND		180	45	ug/Kg	≎	11/02/15 08:32	11/11/15 11:49	1
4-Chloroaniline	ND		180	45	ug/Kg	☼	11/02/15 08:32	11/11/15 11:49	1
4-Chlorophenyl phenyl ether	ND		180	23	ug/Kg	₽	11/02/15 08:32	11/11/15 11:49	1
4-Methylphenol	ND		360	22	ug/Kg	≎	11/02/15 08:32	11/11/15 11:49	1
4-Nitroaniline	ND		360	96	ug/Kg	☼	11/02/15 08:32	11/11/15 11:49	1
4-Nitrophenol	ND		360	130	ug/Kg	₽	11/02/15 08:32	11/11/15 11:49	1
Acenaphthene	ND		180	27	ug/Kg	☼	11/02/15 08:32	11/11/15 11:49	1
Acenaphthylene	ND		180	24	ug/Kg	☼	11/02/15 08:32	11/11/15 11:49	1
Acetophenone	ND		180	25	ug/Kg	₽	11/02/15 08:32	11/11/15 11:49	1
Anthracene	ND		180	45	ug/Kg	☼	11/02/15 08:32	11/11/15 11:49	1
Atrazine	ND		180	64	ug/Kg	☼	11/02/15 08:32	11/11/15 11:49	1
Benzaldehyde	ND		180	150	ug/Kg	φ.	11/02/15 08:32	11/11/15 11:49	1
Benzo(a)anthracene	ND		180	18	ug/Kg	☼	11/02/15 08:32	11/11/15 11:49	1
Benzo(a)pyrene	ND		180	27	ug/Kg	₽	11/02/15 08:32	11/11/15 11:49	1
Benzo(b)fluoranthene	ND		180	29	ug/Kg	₽	11/02/15 08:32	11/11/15 11:49	1

TestAmerica Buffalo

3

4

6

8

9

11

16

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Analyte

Ethanol

Methanol

Isobutyl alcohol

TestAmerica Job ID: 480-89971-1

Client Sample ID: SWMU26-SS-BLDG16-04

Lab Sample ID: 480-89971-4 Date Collected: 10/27/15 08:50 **Matrix: Solid** Date Received: 10/28/15 09:00

Percent Solids: 90.4

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo(k)fluoranthene	ND		180		24	ug/Kg		11/02/15 08:32	11/11/15 11:49	1
3is(2-chloroethoxy)methane	ND		180		39	ug/Kg	ф.	11/02/15 08:32	11/11/15 11:49	1
Bis(2-chloroethyl)ether	ND		180		24	ug/Kg	₩	11/02/15 08:32	11/11/15 11:49	1
3is(2-ethylhexyl) phthalate	76	J	180		63	ug/Kg	₩	11/02/15 08:32	11/11/15 11:49	1
Butyl benzyl phthalate	ND		180		30	ug/Kg		11/02/15 08:32	11/11/15 11:49	1
Caprolactam	ND		180		55	ug/Kg	₩	11/02/15 08:32	11/11/15 11:49	1
Carbazole	ND		180		22	ug/Kg	₩	11/02/15 08:32	11/11/15 11:49	1
Chrysene	ND		180		41	ug/Kg		11/02/15 08:32	11/11/15 11:49	,
Di-n-butyl phthalate	ND		180		31	ug/Kg	☆	11/02/15 08:32	11/11/15 11:49	
Di-n-octyl phthalate	ND		180		22	ug/Kg	₽	11/02/15 08:32	11/11/15 11:49	1
Dibenz(a,h)anthracene	ND		180		32	ug/Kg	ф.	11/02/15 08:32	11/11/15 11:49	1
Dibenzofuran	ND		180				₽	11/02/15 08:32	11/11/15 11:49	1
Diethyl phthalate	ND		180			ug/Kg	₩	11/02/15 08:32	11/11/15 11:49	1
Dimethyl phthalate	ND		180			ug/Kg		11/02/15 08:32	11/11/15 11:49	1
Fluoranthene	ND		180			ug/Kg	₩	11/02/15 08:32	11/11/15 11:49	1
Fluorene	ND		180			ug/Kg	₩	11/02/15 08:32	11/11/15 11:49	
Hexachlorobenzene	ND		180			ug/Kg		11/02/15 08:32		· · · · · .
Hexachlorobutadiene	ND		180			ug/Kg	₽		11/11/15 11:49	
Hexachlorocyclopentadiene	ND		180			ug/Kg	₩	11/02/15 08:32		
Hexachloroethane	ND		180			ug/Kg		11/02/15 08:32		
ndeno(1,2,3-cd)pyrene	ND		180			ug/Kg	₩		11/11/15 11:49	
sophorone	ND		180			ug/Kg	₩		11/11/15 11:49	
N-Nitrosodi-n-propylamine	ND		180			ug/Kg			11/11/15 11:49	
N-Nitrosodiphenylamine	ND		180			ug/Kg	₩		11/11/15 11:49	
Naphthalene	ND		180			ug/Kg			11/11/15 11:49	
Vitrobenzene	ND		180			ug/Kg			11/11/15 11:49	· · · · ·
Pentachlorophenol	ND		360			ug/Kg	₩		11/11/15 11:49	
Phenanthrene	ND		180			0 0			11/11/15 11:49	
Phenol	ND		180			ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/11/15 11:49	
Pyrene	ND		180			ug/Kg	*	11/02/15 08:32		,
Dimethylformamide	ND		710			ug/Kg		11/02/15 08:32		,
Difficultyfiormatflide	ND		710		01	ug/Kg	7	11/02/15 00.52	11/11/13 11.49	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	1	RT	CAS No.	Prepared	Analyzed	Dil Fac
Inknown	1700	TJ	ug/Kg	\	2.	27		11/02/15 08:32	11/11/15 11:49	-
Unknown	1000	TJ	ug/Kg	₩	2.	61		11/02/15 08:32	11/11/15 11:49	
Unknown	1100	TJ	ug/Kg	₩	4.	98		11/02/15 08:32	11/11/15 11:49	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	81		39 - 146					11/02/15 08:32	11/11/15 11:49	
2-Fluorobiphenyl	81		37 - 120					11/02/15 08:32	11/11/15 11:49	
?-Fluorophenol	71		18 - 120					11/02/15 08:32	11/11/15 11:49	
Nitrobenzene-d5	72		34 - 132					11/02/15 08:32	11/11/15 11:49	
p-Terphenyl-d14	94		65 ₋ 153					11/02/15 08:32	11/11/15 11:49	
Phenol-d5	76		11 - 120					11/02/15 08:32	11/11/15 11:49	

TestAmerica Buffalo

Analyzed

10/30/15 13:12

10/30/15 13:12

10/30/15 13:12

Prepared

D

☼

₩

₩

RL

0.99

0.99

0.99

MDL Unit

0.15 mg/Kg

0.25 mg/Kg

0.30 mg/Kg

Result Qualifier

ND

ND

0.36 J

Dil Fac

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 08:50 Date Received: 10/28/15 09:00

Client Sample ID: SWMU26-SS-BLDG16-04

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-4

Lab Gample ID. 400-0337 1-4	
Matrix: Solid	
Percent Solids: 90.4	
i crociit conas: co	

Method: 8015D - Nonh	nalogenated Organic Compou	ınds - Direct	Injection	n (GC) - S	Soluble	(Continue	d)	
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
n-Butanol	ND ND	0.99	0.23	mg/Kg	<u></u>		10/30/15 13:12	1
Propanol	ND	0.99	0.15	mg/Kg			10/30/15 13:12	1
2-Butanol	ND	0.99	0.16	mg/Kg	₩		10/30/15 13:12	1
Isopropyl alcohol	ND	0.99	0.24	mg/Kg	₩		10/30/15 13:12	1
t-Butyl alcohol	ND	0.99	0.26	mg/Kg	₽		10/30/15 13:12	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits				Preparea	Anaiyzea	DII Fac
2-Hexanone	91		30 - 137					10/30/15 13:12	1
Method: 8082A - Polychio	orinated Bipheny	/Is (PCBs)	by Gas Chro	matogr	aphy				
Analyte		Qualifier	RL	_	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		200	39	ug/Kg	₩	10/30/15 10:11	10/30/15 23:33	1
PCB-1221	ND		200	39	ug/Kg	☆	10/30/15 10:11	10/30/15 23:33	1
PCB-1232	ND		200	39	ug/Kg	☆	10/30/15 10:11	10/30/15 23:33	1
PCB-1242	ND		200	39	ug/Kg	₩	10/30/15 10:11	10/30/15 23:33	1
PCB-1248	ND		200	39	ug/Kg	₩	10/30/15 10:11	10/30/15 23:33	1
PCB-1254	ND		200	92	ug/Kg	≎	10/30/15 10:11	10/30/15 23:33	1
PCB-1260	ND		200	92	ug/Kg	₽	10/30/15 10:11	10/30/15 23:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	94		60 - 154				10/30/15 10:11	10/30/15 23:33	1
DCB Decachlorobiphenyl	100		65 - 174				10/30/15 10:11	10/30/15 23:33	1

Method: 6010C - Metals (ICP) Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.8		2.1	0.43	mg/Kg	<u> </u>	10/29/15 16:19	10/31/15 11:37	1
Barium	39.9		0.54	0.12	mg/Kg	☼	10/29/15 16:19	10/31/15 11:37	1
Cadmium	0.084 J		0.21	0.032	mg/Kg	₩	10/29/15 16:19	10/31/15 11:37	1
Chromium	11.0		0.54	0.21	mg/Kg	₩	10/29/15 16:19	10/31/15 11:37	1
Lead	6.0		1.1	0.26	mg/Kg	☼	10/29/15 16:19	10/31/15 11:37	1
Selenium	ND		4.3	0.43	mg/Kg	₩	10/29/15 16:19	10/31/15 11:37	1
Silver	ND		0.64	0.21	mg/Kg	₽	10/29/15 16:19	10/31/15 11:37	1

Method: 7471B - Mercury (CVAA	()								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.011	J	0.022	0.0087	mg/Kg	₩	11/02/15 11:10	11/02/15 13:33	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Client Sample ID: SWMU7-SS-BLDG16-04

Lab Sample ID: 480-89971-5 Date Collected: 10/27/15 09:35 **Matrix: Solid** Date Received: 10/28/15 09:00 Percent Solids: 92.8

Method: 8260C - Volatile Organ Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
1,1,1-Trichloroethane	ND		5.2	0.38	ug/Kg	— -	10/28/15 17:37		
1,1,2,2-Tetrachloroethane	ND		5.2		ug/Kg	₽		10/30/15 00:57	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.2		ug/Kg	₩		10/30/15 00:57	
1,1,2-Trichloroethane	ND		5.2		ug/Kg			10/30/15 00:57	
1,1-Dichloroethane	ND		5.2		ug/Kg	₩		10/30/15 00:57	
1,1-DCE	ND		5.2		ug/Kg ug/Kg	 \$		10/30/15 00:57	
	ND		5.2					10/30/15 00:57	
1,2,3-Trichlorobenzene					ug/Kg	~ \$		10/30/15 00:57	
1,2,4-Trichlorobenzene	ND		5.2		ug/Kg	₩			
1,2-Dibromo-3-Chloropropane	ND		5.2		ug/Kg			10/30/15 00:57	
1,2-Dichlorobenzene	ND		5.2		ug/Kg	☆		10/30/15 00:57	
1,2-Dichloroethane	ND		5.2		ug/Kg	φ.		10/30/15 00:57	
1,2-Dichloropropane	ND		5.2		ug/Kg			10/30/15 00:57	
1,3-Dichlorobenzene	ND		5.2		ug/Kg	*		10/30/15 00:57	
1,4-Dichlorobenzene	ND		5.2	0.73	ug/Kg			10/30/15 00:57	
1,4-Dioxane	ND		100	23	ug/Kg	, .		10/30/15 00:57	
2-Hexanone	ND		26		ug/Kg	₽		10/30/15 00:57	
Acetone	ND		26	4.4	ug/Kg	₩	10/28/15 17:37	10/30/15 00:57	
Benzene	ND		5.2	0.26	ug/Kg	₽	10/28/15 17:37	10/30/15 00:57	
Bromoform	ND		5.2	2.6	ug/Kg	₩	10/28/15 17:37	10/30/15 00:57	
Bromomethane	ND		5.2	0.47	ug/Kg	₩	10/28/15 17:37	10/30/15 00:57	
Carbon disulfide	ND		5.2	2.6	ug/Kg	☼	10/28/15 17:37	10/30/15 00:57	
Carbon tetrachloride	ND		5.2	0.51	ug/Kg	₽	10/28/15 17:37	10/30/15 00:57	
Chlorobenzene	ND		5.2	0.69	ug/Kg	₩	10/28/15 17:37	10/30/15 00:57	
Bromochloromethane	ND		5.2	0.38	ug/Kg	☼	10/28/15 17:37	10/30/15 00:57	
Dibromochloromethane	ND		5.2	0.67	ug/Kg	φ.	10/28/15 17:37	10/30/15 00:57	
Chloroethane	ND		5.2	1.2	ug/Kg	₽	10/28/15 17:37	10/30/15 00:57	
Chloroform	ND		5.2		ug/Kg	☼	10/28/15 17:37	10/30/15 00:57	
Chloromethane	ND		5.2		ug/Kg		10/28/15 17:37	10/30/15 00:57	
sis-1,2-Dichloroethene	ND		5.2		ug/Kg	₩		10/30/15 00:57	
cis-1,3-Dichloropropene	ND		5.2		ug/Kg	₩		10/30/15 00:57	
Cyclohexane	ND		5.2		ug/Kg	· · · · · · · · · · · · · · · · · · ·		10/30/15 00:57	
Bromodichloromethane	ND		5.2		ug/Kg	₩		10/30/15 00:57	
Dichlorodifluoromethane	ND		5.2		ug/Kg	₩		10/30/15 00:57	
Ethylbenzene	ND		5.2		ug/Kg	· · · · · · · · · · · · · · · · · · ·		10/30/15 00:57	
,2-Dibromoethane (EDB)	ND		5.2		ug/Kg	 \$		10/30/15 00:57	
	ND		5.2			≎			
sopropylbenzene					ug/Kg	· · · · · · · · · · · · · · · · · · ·		10/30/15 00:57	
Methyl acetate	ND		5.2		ug/Kg			10/30/15 00:57 10/30/15 00:57	
P-Butanone (MEK)	ND		26		ug/Kg	φ. ×			
-Methyl-2-pentanone (MIBK)	ND		26		ug/Kg			10/30/15 00:57	
Methyl tert-butyl ether	ND		5.2		ug/Kg	φ.		10/30/15 00:57	
Methylcyclohexane	ND		5.2		ug/Kg	φ.		10/30/15 00:57	
Methylene Chloride	2.5	J	5.2		ug/Kg	. .		10/30/15 00:57	
Styrene	ND		5.2		ug/Kg			10/30/15 00:57	
Tetrachloroethene	ND		5.2		ug/Kg	*		10/30/15 00:57	
oluene	ND		5.2		ug/Kg	☼		10/30/15 00:57	
rans-1,2-Dichloroethene	ND		5.2		ug/Kg	₽		10/30/15 00:57	
rans-1,3-Dichloropropene	ND		5.2		ug/Kg	₩		10/30/15 00:57	
richloroethene	ND		5.2	1.2	ug/Kg	₩	10/28/15 17:37	10/30/15 00:57	
Trichlorofluoromethane	ND		5.2	0.50	ug/Kg	₽	10/28/15 17:37	10/30/15 00:57	

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 09:35

Client Sample ID: SWMU7-SS-BLDG16-04

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-5

Lab Sample ID: 460-69971-5
Matrix: Solid

Percent Solids: 92.8

Date Received: 10/28/15 09:00

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.2		0.64	ug/Kg		10/28/15 17:37	10/30/15 00:57	1
Xylenes, Total	ND		10		0.88	ug/Kg	₩	10/28/15 17:37	10/30/15 00:57	1
Tetrahydrofuran	ND	*	10		3.0	ug/Kg	\$	10/28/15 17:37	10/30/15 00:57	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	₩ -				10/28/15 17:37	10/30/15 00:57	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	100		60 - 140					10/28/15 17:37	10/30/15 00:57	1
1,2-Dichloroethane-d4 (Surr)	98		64 - 126					10/28/15 17:37	10/30/15 00:57	1
Toluene-d8 (Surr)	101		71 - 125					10/28/15 17:37	10/30/15 00:57	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 09:50

Date Received: 10/28/15 09:00

Toluene

Trichloroethene

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

Client Sample ID: SWMU7-SS-BLDG16-05

Method: 8260C - Volatile Organic Compounds by GC/MS

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-6

Matrix: Solid
Percent Solids: 91.8

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4.4	0.32	ug/Kg	 	10/28/15 17:37	10/30/15 01:23	1
1,1,2,2-Tetrachloroethane	ND	4.4	0.72	ug/Kg	₩	10/28/15 17:37	10/30/15 01:23	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.4	1.0	ug/Kg	₩	10/28/15 17:37	10/30/15 01:23	1
1,1,2-Trichloroethane	ND	4.4	0.57	ug/Kg	₩	10/28/15 17:37	10/30/15 01:23	1
1,1-Dichloroethane	ND	4.4	0.54	ug/Kg	₩	10/28/15 17:37	10/30/15 01:23	1
1,1-DCE	ND	4.4	0.54	ug/Kg	₩	10/28/15 17:37	10/30/15 01:23	•
1,2,3-Trichlorobenzene	ND	4.4	0.47	ug/Kg	₩	10/28/15 17:37	10/30/15 01:23	1
1,2,4-Trichlorobenzene	ND	4.4	0.27	ug/Kg	₩	10/28/15 17:37	10/30/15 01:23	1
1,2-Dibromo-3-Chloropropane	ND	4.4	2.2	ug/Kg	₩	10/28/15 17:37	10/30/15 01:23	
1,2-Dichlorobenzene	ND	4.4	0.35	ug/Kg	₽	10/28/15 17:37	10/30/15 01:23	•
1,2-Dichloroethane	ND	4.4	0.22	ug/Kg	☼	10/28/15 17:37	10/30/15 01:23	
1,2-Dichloropropane	ND	4.4	2.2	ug/Kg	☼	10/28/15 17:37	10/30/15 01:23	1
1,3-Dichlorobenzene	ND	4.4	0.23	ug/Kg		10/28/15 17:37	10/30/15 01:23	1
1,4-Dichlorobenzene	ND	4.4	0.62	ug/Kg	₩	10/28/15 17:37	10/30/15 01:23	1
1,4-Dioxane	ND	88	19	ug/Kg	☼	10/28/15 17:37	10/30/15 01:23	
2-Hexanone	ND	22	2.2	ug/Kg	÷.	10/28/15 17:37	10/30/15 01:23	
Acetone	ND	22	3.7	ug/Kg	₩	10/28/15 17:37	10/30/15 01:23	
Benzene	ND	4.4		ug/Kg	₩	10/28/15 17:37	10/30/15 01:23	
Bromoform	ND	4.4	2.2	ug/Kg		10/28/15 17:37	10/30/15 01:23	
Bromomethane	ND	4.4		ug/Kg	₩	10/28/15 17:37	10/30/15 01:23	
Carbon disulfide	ND	4.4	2.2	ug/Kg	₩	10/28/15 17:37	10/30/15 01:23	
Carbon tetrachloride	ND	4.4	0.43	ug/Kg	 	10/28/15 17:37	10/30/15 01:23	
Chlorobenzene	ND	4.4		ug/Kg	₩	10/28/15 17:37	10/30/15 01:23	
Bromochloromethane	ND	4.4		ug/Kg	₩	10/28/15 17:37	10/30/15 01:23	
Dibromochloromethane	ND	4.4		ug/Kg		10/28/15 17:37	10/30/15 01:23	
Chloroethane	ND	4.4		ug/Kg	₽	10/28/15 17:37	10/30/15 01:23	
Chloroform	ND	4.4		ug/Kg	₽		10/30/15 01:23	
Chloromethane	ND	4.4		ug/Kg		10/28/15 17:37	10/30/15 01:23	
cis-1,2-Dichloroethene	ND	4.4		ug/Kg	₽		10/30/15 01:23	
cis-1,3-Dichloropropene	ND	4.4		ug/Kg	₽		10/30/15 01:23	
Cyclohexane	ND	4.4		ug/Kg			10/30/15 01:23	· · · · · .
Bromodichloromethane	ND	4.4		ug/Kg	₩		10/30/15 01:23	
Dichlorodifluoromethane	ND	4.4		ug/Kg	₩	10/28/15 17:37	10/30/15 01:23	
Ethylbenzene	ND	4.4		ug/Kg			10/30/15 01:23	· · · · · .
1,2-Dibromoethane (EDB)	ND	4.4		ug/Kg	₩		10/30/15 01:23	
Isopropylbenzene	ND	4.4		ug/Kg	₩		10/30/15 01:23	
Methyl acetate	ND	4.4		ug/Kg		10/28/15 17:37		
2-Butanone (MEK)	ND	22		ug/Kg	₩		10/30/15 01:23	
4-Methyl-2-pentanone (MIBK)	ND	22		ug/Kg	₩		10/30/15 01:23	
Methyl tert-butyl ether	ND	4.4		ug/Kg			10/30/15 01:23	
Methylcyclohexane	ND	4.4		ug/Kg	₩		10/30/15 01:23	
Methylene Chloride	2.3 J	4.4		ug/Kg	₩		10/30/15 01:23	
Styrene	ND	4.4		ug/Kg			10/30/15 01:23	
Tetrachloroethene	0.62 JB	4.4		ug/Kg ug/Kg	≎		10/30/15 01:23	
- ·	0.02 J D	7.7	0.58	ug/itg		10120110 11.01	10/00/10 01.20	

TestAmerica Buffalo

☼ 10/28/15 17:37 10/30/15 01:23
 ☼ 10/28/15 17:37 10/30/15 01:23

☼ 10/28/15 17:37 10/30/15 01:23

☼ 10/28/15 17:37 10/30/15 01:23

☼ 10/28/15 17:37 10/30/15 01:23

4.4

4.4

4.4

4.4

4.4

0.33 ug/Kg

0.46 ug/Kg

1.9 ug/Kg

0.97 ug/Kg

0.42 ug/Kg

ND

ND

ND

ND

ND

2

6

q

11

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Client Sample ID: SWMU7-SS-BLDG16-05 Lab Sample ID: 480-89971-6

Date Collected: 10/27/15 09:50 **Matrix: Solid**

Date Received: 10/28/15 09:00 Percent Solids: 91.8

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.4		0.54	ug/Kg	\$	10/28/15 17:37	10/30/15 01:23	1
Xylenes, Total	ND		8.8		0.74	ug/Kg	₩	10/28/15 17:37	10/30/15 01:23	1
Tetrahydrofuran	ND	*	8.8		2.6	ug/Kg	₽	10/28/15 17:37	10/30/15 01:23	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\(\overline{\pi} \)				10/28/15 17:37	10/30/15 01:23	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	102		60 - 140					10/28/15 17:37	10/30/15 01:23	1
1,2-Dichloroethane-d4 (Surr)	100		64 - 126					10/28/15 17:37	10/30/15 01:23	1
Toluene-d8 (Surr)	103		71 - 125					10/28/15 17:37	10/30/15 01:23	1
4-Bromofluorobenzene (Surr)	95		72 - 126					10/28/15 17:37	10/30/15 01:23	

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Client Sample ID: SWMU7-SS-BLDG16-06 Lab Sample ID: 480-89971-7

 Date Collected: 10/27/15 10:05
 Matrix: Solid

 Date Received: 10/28/15 09:00
 Percent Solids: 92.9

Method: 8260C - Volatile Organ Analyte	Result Q	_	MDL	Unit	D	Prepared	Analyzed	Dil F
1,1,1-Trichloroethane	ND Testin	5.7	0.42	ug/Kg	— -	10/28/15 17:37	10/30/15 01:49	
1,1,2,2-Tetrachloroethane	ND	5.7		ug/Kg	₽		10/30/15 01:49	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.7		ug/Kg	₩		10/30/15 01:49	
1,1,2-Trichloroethane	ND	5.7		ug/Kg			10/30/15 01:49	
1,1-Dichloroethane	ND	5.7		ug/Kg	₩		10/30/15 01:49	
1,1-DCE	ND	5.7		ug/Kg	 \$		10/30/15 01:49	
1,1-DCE 1,2,3-Trichlorobenzene	ND	5.7					10/30/15 01:49	
	ND ND			ug/Kg	~ \$			
1,2,4-Trichlorobenzene		5.7		ug/Kg	₩		10/30/15 01:49	
1,2-Dibromo-3-Chloropropane	ND	5.7		ug/Kg			10/30/15 01:49	
1,2-Dichlorobenzene	ND	5.7		ug/Kg	☆		10/30/15 01:49	
1,2-Dichloroethane	ND	5.7	0.29	ug/Kg	φ.		10/30/15 01:49	
1,2-Dichloropropane	ND	5.7	2.9	ug/Kg			10/30/15 01:49	
1,3-Dichlorobenzene	ND	5.7	0.29	ug/Kg	*		10/30/15 01:49	
1,4-Dichlorobenzene	ND	5.7	0.80	ug/Kg			10/30/15 01:49	
1,4-Dioxane	ND	110	25	ug/Kg	, .		10/30/15 01:49	
2-Hexanone	ND	29	2.9	ug/Kg	☼	10/28/15 17:37	10/30/15 01:49	
Acetone	ND	29	4.8	ug/Kg	₩	10/28/15 17:37	10/30/15 01:49	
Benzene	ND	5.7	0.28	ug/Kg	₩	10/28/15 17:37	10/30/15 01:49	
Bromoform	ND	5.7	2.9	ug/Kg	₩	10/28/15 17:37	10/30/15 01:49	
Bromomethane	ND	5.7	0.52	ug/Kg	₩	10/28/15 17:37	10/30/15 01:49	
Carbon disulfide	ND	5.7	2.9	ug/Kg	☼	10/28/15 17:37	10/30/15 01:49	
Carbon tetrachloride	ND	5.7	0.55	ug/Kg	₽	10/28/15 17:37	10/30/15 01:49	
Chlorobenzene	ND	5.7	0.76	ug/Kg	☼	10/28/15 17:37	10/30/15 01:49	
Bromochloromethane	ND	5.7	0.41	ug/Kg	☼	10/28/15 17:37	10/30/15 01:49	
Dibromochloromethane	ND	5.7	0.73	ug/Kg	φ.	10/28/15 17:37	10/30/15 01:49	
Chloroethane	ND	5.7	1.3	ug/Kg	₽	10/28/15 17:37	10/30/15 01:49	
Chloroform	ND	5.7		ug/Kg	☼	10/28/15 17:37	10/30/15 01:49	
Chloromethane	ND	5.7		ug/Kg		10/28/15 17:37	10/30/15 01:49	
cis-1,2-Dichloroethene	ND	5.7		ug/Kg	₩		10/30/15 01:49	
cis-1,3-Dichloropropene	ND	5.7		ug/Kg	₩		10/30/15 01:49	
Cyclohexane	ND	5.7		ug/Kg	· · · · · · · · · · · · · · · · · · ·		10/30/15 01:49	
Bromodichloromethane	ND	5.7		ug/Kg	₩		10/30/15 01:49	
Dichlorodifluoromethane	ND	5.7		ug/Kg	₩		10/30/15 01:49	
Ethylbenzene	ND	5.7		ug/Kg	· · · · · · · · · · · · · · · · · · ·		10/30/15 01:49	
,2-Dibromoethane (EDB)	ND ND	5.7		ug/Kg	 \$		10/30/15 01:49	
	ND	5.7			т ф			
sopropylbenzene /lethyl acetate		5.7		ug/Kg	· · · · · · · · · · · · · · · · · · ·		10/30/15 01:49 10/30/15 01:49	
•	ND			ug/Kg				
2-Butanone (MEK)	ND	29	2.1	ug/Kg	φ. ×		10/30/15 01:49	
I-Methyl-2-pentanone (MIBK)	ND	29		ug/Kg			10/30/15 01:49	
Methyl tert-butyl ether	ND	5.7		ug/Kg	₩		10/30/15 01:49	
Methylcyclohexane	ND	5.7		ug/Kg	₩		10/30/15 01:49	
Methylene Chloride	3.0 J	5.7		ug/Kg	<u>.</u> .		10/30/15 01:49	
Styrene	ND	5.7		ug/Kg			10/30/15 01:49	
Tetrachloroethene	ND	5.7		ug/Kg	*		10/30/15 01:49	
oluene	ND	5.7		ug/Kg	☼		10/30/15 01:49	
rans-1,2-Dichloroethene	ND	5.7		ug/Kg	₽		10/30/15 01:49	
rans-1,3-Dichloropropene	ND	5.7		ug/Kg	₩		10/30/15 01:49	
Frichloroethene	ND	5.7	1.3	ug/Kg	₩	10/28/15 17:37	10/30/15 01:49	
Trichlorofluoromethane	ND	5.7	0.54	ug/Kg	₩.	10/28/15 17:37	10/30/15 01:49	

TestAmerica Buffalo

9

3

5

7

9

11

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Client Sample ID: SWMU7-SS-BLDG16-06

Lab Sample ID: 480-89971-7 Date Collected: 10/27/15 10:05

Matrix: Solid

Date Received: 10/28/15 09:00 Percent Solids: 92.9

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.7		0.70	ug/Kg	<u> </u>	10/28/15 17:37	10/30/15 01:49	1
Xylenes, Total	ND		11		0.96	ug/Kg	₽	10/28/15 17:37	10/30/15 01:49	1
Tetrahydrofuran	ND	*	11		3.3	ug/Kg	\$	10/28/15 17:37	10/30/15 01:49	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	₩ -				10/28/15 17:37	10/30/15 01:49	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	102		60 - 140					10/28/15 17:37	10/30/15 01:49	1
1,2-Dichloroethane-d4 (Surr)	100		64 - 126					10/28/15 17:37	10/30/15 01:49	1
Taluana do (Cum)	102		71 - 125					10/28/15 17:37	10/30/15 01:49	1
Toluene-d8 (Surr)	102		77-720					10,20,10 11.01	10,00,1001.10	

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 10:15

Date Received: 10/28/15 09:00

Client Sample ID: SWMU7-SS-BLDG16-07

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-8

Matrix: Solid
Percent Solids: 91.9

Method: 8260C - Volatile Orga Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND —	4.8	0.35	ug/Kg	<u>₩</u>	10/28/15 17:37	10/30/15 21:49	1
1,1,2,2-Tetrachloroethane	ND	4.8	0.78	ug/Kg	₩	10/28/15 17:37	10/30/15 21:49	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.8	1.1	ug/Kg	☼	10/28/15 17:37	10/30/15 21:49	1
1,1,2-Trichloroethane	ND	4.8	0.63	ug/Kg		10/28/15 17:37	10/30/15 21:49	1
1,1-Dichloroethane	ND	4.8	0.59	ug/Kg	₩	10/28/15 17:37	10/30/15 21:49	1
1,1-DCE	ND	4.8	0.59	ug/Kg	₩	10/28/15 17:37	10/30/15 21:49	1
1,2,3-Trichlorobenzene	ND	4.8	0.51	ug/Kg		10/28/15 17:37	10/30/15 21:49	1
1,2,4-Trichlorobenzene	ND	4.8		ug/Kg	₩	10/28/15 17:37	10/30/15 21:49	1
1,2-Dibromo-3-Chloropropane	ND	4.8		ug/Kg	₩	10/28/15 17:37	10/30/15 21:49	1
1,2-Dichlorobenzene	ND	4.8		ug/Kg		10/28/15 17:37	10/30/15 21:49	1
1,2-Dichloroethane	ND	4.8		ug/Kg	₩	10/28/15 17:37	10/30/15 21:49	1
1,2-Dichloropropane	ND	4.8		ug/Kg	₩	10/28/15 17:37	10/30/15 21:49	1
1,3-Dichlorobenzene	ND	4.8		ug/Kg		10/28/15 17:37	10/30/15 21:49	1
1,4-Dichlorobenzene	ND	4.8	0.67		₩		10/30/15 21:49	1
1,4-Dioxane	ND	96	21		₩		10/30/15 21:49	1
2-Hexanone	ND	24		ug/Kg	₩		10/30/15 21:49	1
Acetone	ND	24		ug/Kg	₽	10/28/15 17:37	10/30/15 21:49	1
Benzene	ND	4.8		ug/Kg	₩		10/30/15 21:49	1
Bromoform	ND	4.8		ug/Kg			10/30/15 21:49	1
Bromomethane	ND	4.8		ug/Kg	₩		10/30/15 21:49	1
Carbon disulfide	ND	4.8		ug/Kg	₩		10/30/15 21:49	1
Carbon tetrachloride	ND	4.8		ug/Kg			10/30/15 21:49	· · · · · · · · 1
Chlorobenzene	ND	4.8		ug/Kg	₩		10/30/15 21:49	1
Bromochloromethane	ND	4.8		ug/Kg	₩		10/30/15 21:49	1
Dibromochloromethane	ND	4.8		ug/Kg			10/30/15 21:49	
Chloroethane	ND	4.8		ug/Kg	₩		10/30/15 21:49	1
Chloroform	ND	4.8		ug/Kg	₩		10/30/15 21:49	1
Chloromethane	ND	4.8	0.29				10/30/15 21:49	
cis-1,2-Dichloroethene	ND	4.8		ug/Kg	₩		10/30/15 21:49	1
cis-1,3-Dichloropropene	ND	4.8		ug/Kg	₩		10/30/15 21:49	1
Cyclohexane	ND	4.8		ug/Kg			10/30/15 21:49	
Bromodichloromethane	ND	4.8		ug/Kg	₩		10/30/15 21:49	1
Dichlorodifluoromethane	ND	4.8		ug/Kg	₩		10/30/15 21:49	1
Ethylbenzene	ND	4.8		ug/Kg ug/Kg			10/30/15 21:49	
1,2-Dibromoethane (EDB)	ND	4.8		ug/Kg ug/Kg	₩.		10/30/15 21:49	1
Isopropylbenzene	ND	4.8		ug/Kg ug/Kg	☼		10/30/15 21:49	1
Methyl acetate	ND	4.8					10/30/15 21:49	
2-Butanone (MEK)	ND	24		ug/Kg	₽			_
4-Methyl-2-pentanone (MIBK)	ND ND	24		ug/Kg			10/30/15 21:49 10/30/15 21:49	1
				ug/Kg				
Methyl tert-butyl ether	ND	4.8		ug/Kg	Ţ.		10/30/15 21:49	1
Methylcyclohexane	ND	4.8		ug/Kg	₽		10/30/15 21:49	1
Methylene Chloride	2.4 J	4.8		ug/Kg	¥.		10/30/15 21:49	
Styrene	ND ND	4.8		ug/Kg	₽		10/30/15 21:49	1
Tetrachloroethene	ND	4.8		ug/Kg	₩		10/30/15 21:49	1
Toluene	ND	4.8		ug/Kg	* 		10/30/15 21:49	1
trans-1,2-Dichloroethene	ND	4.8		ug/Kg	₽		10/30/15 21:49	1
trans-1,3-Dichloropropene	ND	4.8		ug/Kg	₽		10/30/15 21:49	1
Trichloroethene	ND	4.8		ug/Kg			10/30/15 21:49	
Trichlorofluoromethane	0.88 J	4.8	0.45	ug/Kg	☼	10/28/15 17:37	10/30/15 21:49	1

TestAmerica Buffalo

4

6

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 10:15

Date Received: 10/28/15 09:00

Client Sample ID: SWMU7-SS-BLDG16-07

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-8

. Matrix: Solid

Percent Solids: 91.9

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.8		0.59	ug/Kg	\	10/28/15 17:37	10/30/15 21:49	1
Xylenes, Total	ND		9.6		0.81	ug/Kg	₩	10/28/15 17:37	10/30/15 21:49	1
Tetrahydrofuran	ND	*	9.6		2.8	ug/Kg	ά	10/28/15 17:37	10/30/15 21:49	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	₩ -				10/28/15 17:37	10/30/15 21:49	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	97		60 - 140					10/28/15 17:37	10/30/15 21:49	1
1,2-Dichloroethane-d4 (Surr)	95		64 - 126					10/28/15 17:37	10/30/15 21:49	1
Toluene-d8 (Surr)	106		71 - 125					10/28/15 17:37	10/30/15 21:49	1

5

9

1 4

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-9

Client Sample ID: SWMU7-SS-BLDG16-08

 Date Collected: 10/27/15 10:30
 Matrix: Solid

 Date Received: 10/28/15 09:00
 Percent Solids: 88.8

Method: 8260C - Volatile Orgar Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		5.9	0.43	ug/Kg	— -	10/28/15 17:37	-	
1,1,2,2-Tetrachloroethane	ND		5.9		ug/Kg	₩		10/30/15 22:15	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.9		ug/Kg	₩		10/30/15 22:15	
1,1,2-Trichloroethane	ND		5.9		ug/Kg	· · · · · · · · · · · · · · · · · · ·		10/30/15 22:15	
1,1-Dichloroethane	ND		5.9		ug/Kg	₩		10/30/15 22:15	
1,1-DCE	ND		5.9		ug/Kg	₩		10/30/15 22:15	
1,2,3-Trichlorobenzene	ND		5.9		ug/Kg	· · · · · · · · · · · · · · · · · · ·		10/30/15 22:15	
1,2,4-Trichlorobenzene	ND ND		5.9		ug/Kg ug/Kg			10/30/15 22:15	
1,2-Dibromo-3-Chloropropane	ND ND		5.9			☆		10/30/15 22:15	
·	ND		5.9		ug/Kg	· · · · · · · · · · · · · · · · · · ·		10/30/15 22:15	
1,2-Dichlorobenzene					ug/Kg	~ ☆			
1,2-Dichloroethane	ND		5.9		ug/Kg			10/30/15 22:15	
1,2-Dichloropropane	ND		5.9		ug/Kg			10/30/15 22:15	
1,3-Dichlorobenzene	ND		5.9		ug/Kg	☆		10/30/15 22:15	
1,4-Dichlorobenzene	ND		5.9	0.83	ug/Kg	☆		10/30/15 22:15	
1,4-Dioxane	ND		120		ug/Kg	<u>.</u>		10/30/15 22:15	
2-Hexanone	ND		30		ug/Kg			10/30/15 22:15	
Acetone	ND		30		ug/Kg	*		10/30/15 22:15	
Benzene	ND		5.9	0.29	ug/Kg	, .		10/30/15 22:15	
Bromoform	ND		5.9		ug/Kg	₽		10/30/15 22:15	
Bromomethane	ND		5.9		ug/Kg	₽	10/28/15 17:37	10/30/15 22:15	
Carbon disulfide	ND		5.9	3.0	ug/Kg	₩	10/28/15 17:37	10/30/15 22:15	
Carbon tetrachloride	ND		5.9	0.57	ug/Kg	≎	10/28/15 17:37	10/30/15 22:15	
Chlorobenzene	ND		5.9	0.78	ug/Kg	₩	10/28/15 17:37	10/30/15 22:15	
Bromochloromethane	ND		5.9	0.43	ug/Kg	₩	10/28/15 17:37	10/30/15 22:15	
Dibromochloromethane	ND		5.9	0.76	ug/Kg	₩	10/28/15 17:37	10/30/15 22:15	
Chloroethane	ND		5.9	1.3	ug/Kg	₩	10/28/15 17:37	10/30/15 22:15	
Chloroform	ND		5.9	0.37	ug/Kg	₩	10/28/15 17:37	10/30/15 22:15	
Chloromethane	ND		5.9	0.36	ug/Kg	₽	10/28/15 17:37	10/30/15 22:15	
cis-1,2-Dichloroethene	ND		5.9	0.76	ug/Kg	☼	10/28/15 17:37	10/30/15 22:15	
cis-1,3-Dichloropropene	ND		5.9	0.85	ug/Kg	≎	10/28/15 17:37	10/30/15 22:15	
Cyclohexane	ND		5.9	0.83	ug/Kg	₩	10/28/15 17:37	10/30/15 22:15	
Bromodichloromethane	ND		5.9	0.79	ug/Kg	₩	10/28/15 17:37	10/30/15 22:15	
Dichlorodifluoromethane	ND		5.9	0.49	ug/Kg	☼	10/28/15 17:37	10/30/15 22:15	
Ethylbenzene	ND		5.9	0.41	ug/Kg		10/28/15 17:37	10/30/15 22:15	
1,2-Dibromoethane (EDB)	ND		5.9		ug/Kg	₽	10/28/15 17:37	10/30/15 22:15	
Isopropylbenzene	ND		5.9		ug/Kg	₩	10/28/15 17:37	10/30/15 22:15	
Methyl acetate	ND		5.9		ug/Kg			10/30/15 22:15	
2-Butanone (MEK)	ND		30		ug/Kg	₩		10/30/15 22:15	
4-Methyl-2-pentanone (MIBK)	ND		30		ug/Kg	₩		10/30/15 22:15	
Methyl tert-butyl ether	ND		5.9		ug/Kg			10/30/15 22:15	
Methylcyclohexane	ND		5.9		ug/Kg	₩		10/30/15 22:15	
Methylene Chloride	ND		5.9		ug/Kg	₩		10/30/15 22:15	
Styrene	ND		5.9		ug/Kg	· · · · · · · · · · · · · · · · · · ·		10/30/15 22:15	
Tetrachloroethene	ND		5.9		ug/Kg	₽		10/30/15 22:15	
Toluene	ND		5.9		ug/Kg ug/Kg	₽		10/30/15 22:15	
trans-1,2-Dichloroethene	ND		5.9		ug/Kg ug/Kg	· · · · · · · · · · · · · · · · · · ·		10/30/15 22:15	
trans-1,3-Dichloropropene	ND		5.9 5.9		ug/Kg ug/Kg	≎		10/30/15 22:15	
• •	ND ND		5.9 5.9		ug/Kg ug/Kg	卒		10/30/15 22:15	
Trichloroethene Trichlorofluoromethane	ND ND		5.9		ug/Kg ug/Kg	· · · · · · · .		10/30/15 22:15	

TestAmerica Buffalo

3

5

5

0

10

16

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 10:30

Date Received: 10/28/15 09:00

Client Sample ID: SWMU7-SS-BLDG16-08

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-9

. Matrix: Solid

Percent Solids: 88.8

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Co	ntinu	ıed)					
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.9		0.72	ug/Kg	<u> </u>	10/28/15 17:37	10/30/15 22:15	1
Xylenes, Total	ND		12		1.0	ug/Kg	₽	10/28/15 17:37	10/30/15 22:15	1
Tetrahydrofuran	ND	*	12		3.4	ug/Kg	.	10/28/15 17:37	10/30/15 22:15	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	₩ -				10/28/15 17:37	10/30/15 22:15	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	100		60 - 140					10/28/15 17:37	10/30/15 22:15	1
1,2-Dichloroethane-d4 (Surr)	99		64 - 126					10/28/15 17:37	10/30/15 22:15	1
Toluene-d8 (Surr)	104		71 - 125					10/28/15 17:37	10/30/15 22:15	1
4-Bromofluorobenzene (Surr)	96		72 - 126					10/28/15 17:37	10/30/15 22:15	1

TestAmerica Buffalo

_

3

_

0

9

10

12

11

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 10:40

Date Received: 10/28/15 09:00

Client Sample ID: SWMU7-SS-BLDG16-09

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-10

Matrix: Solid
Percent Solids: 93.5

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	5.7		ug/Kg	<u> </u>		10/30/15 22:41	
1,1,2,2-Tetrachloroethane	ND	5.7		ug/Kg	*		10/30/15 22:41	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.7		ug/Kg			10/30/15 22:41	
1,1,2-Trichloroethane	ND	5.7		ug/Kg	*		10/30/15 22:41	
1,1-Dichloroethane	ND	5.7	0.70	ug/Kg	₩	10/28/15 17:37	10/30/15 22:41	
1,1-DCE	ND	5.7	0.70	ug/Kg		10/28/15 17:37	10/30/15 22:41	
1,2,3-Trichlorobenzene	ND	5.7	0.61	ug/Kg	≎	10/28/15 17:37	10/30/15 22:41	
1,2,4-Trichlorobenzene	ND	5.7	0.35	ug/Kg	₽	10/28/15 17:37	10/30/15 22:41	
1,2-Dibromo-3-Chloropropane	ND	5.7	2.9	ug/Kg	₩	10/28/15 17:37	10/30/15 22:41	
1,2-Dichlorobenzene	ND	5.7	0.45	ug/Kg	≎	10/28/15 17:37	10/30/15 22:41	
1,2-Dichloroethane	ND	5.7	0.29	ug/Kg	≎	10/28/15 17:37	10/30/15 22:41	
1,2-Dichloropropane	ND	5.7	2.9	ug/Kg	₩	10/28/15 17:37	10/30/15 22:41	
1,3-Dichlorobenzene	ND	5.7	0.29	ug/Kg		10/28/15 17:37	10/30/15 22:41	
1,4-Dichlorobenzene	ND	5.7	0.80	ug/Kg	≎	10/28/15 17:37	10/30/15 22:41	
1,4-Dioxane	ND	110	25	ug/Kg	≎	10/28/15 17:37	10/30/15 22:41	
2-Hexanone	ND	29		ug/Kg		10/28/15 17:37	10/30/15 22:41	
Acetone	ND	29		ug/Kg	≎	10/28/15 17:37	10/30/15 22:41	
Benzene	ND	5.7		ug/Kg	⇔		10/30/15 22:41	
Bromoform	ND	5.7		ug/Kg			10/30/15 22:41	
Bromomethane	ND	5.7		ug/Kg	₩		10/30/15 22:41	
Carbon disulfide	ND	5.7		ug/Kg	₩		10/30/15 22:41	
Carbon tetrachloride	ND	5.7		ug/Kg			10/30/15 22:41	
Chlorobenzene	ND	5.7		ug/Kg	₽		10/30/15 22:41	
Bromochloromethane	ND	5.7		ug/Kg			10/30/15 22:41	
Dibromochloromethane	ND	5.7		ug/Kg ug/Kg			10/30/15 22:41	
	ND				☆			
Chloroform		5.7		ug/Kg			10/30/15 22:41	
Chloroform	ND	5.7		ug/Kg	% .		10/30/15 22:41	
Chloromethane	ND	5.7		ug/Kg	☆		10/30/15 22:41	
cis-1,2-Dichloroethene	ND	5.7		ug/Kg	φ.		10/30/15 22:41	
cis-1,3-Dichloropropene	ND	5.7		ug/Kg	<u>.</u>		10/30/15 22:41	
Cyclohexane	ND	5.7		ug/Kg	*		10/30/15 22:41	
Bromodichloromethane	ND	5.7		ug/Kg	Ď.		10/30/15 22:41	
Dichlorodifluoromethane	ND	5.7		ug/Kg			10/30/15 22:41	
Ethylbenzene	ND	5.7		ug/Kg	₩	10/28/15 17:37	10/30/15 22:41	
1,2-Dibromoethane (EDB)	ND	5.7	0.74	ug/Kg	≎		10/30/15 22:41	
Isopropylbenzene	ND	5.7	0.87	ug/Kg	≎	10/28/15 17:37	10/30/15 22:41	
Methyl acetate	ND	5.7	3.5	ug/Kg	☆	10/28/15 17:37	10/30/15 22:41	
2-Butanone (MEK)	ND	29	2.1	ug/Kg	≎	10/28/15 17:37	10/30/15 22:41	
4-Methyl-2-pentanone (MIBK)	ND	29	1.9	ug/Kg	≎	10/28/15 17:37	10/30/15 22:41	
Methyl tert-butyl ether	ND	5.7	0.56	ug/Kg	₽	10/28/15 17:37	10/30/15 22:41	
Methylcyclohexane	ND	5.7	0.87	ug/Kg	₩	10/28/15 17:37	10/30/15 22:41	
Methylene Chloride	2.8 J	5.7	2.6	ug/Kg	₩	10/28/15 17:37	10/30/15 22:41	
Styrene	ND	5.7	0.29	ug/Kg		10/28/15 17:37	10/30/15 22:41	
Tetrachloroethene	ND	5.7		ug/Kg	₩		10/30/15 22:41	
Toluene	ND	5.7		ug/Kg	₽	10/28/15 17:37	10/30/15 22:41	
trans-1,2-Dichloroethene	ND	5.7		ug/Kg			10/30/15 22:41	
trans-1,3-Dichloropropene	ND	5.7		ug/Kg	☼		10/30/15 22:41	
Trichloroethene	ND	5.7		ug/Kg	₽		10/30/15 22:41	
Trichlorofluoromethane	ND	5.7		ug/Kg	· · · · · · · · · · · · · · ·		10/30/15 22:41	

TestAmerica Buffalo

3

_

6

8

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Client Sample ID: SWMU7-SS-BLDG16-09 Lab Sample ID: 480-89971-10

Date Collected: 10/27/15 10:40 Matrix: Solid

Date Received: 10/28/15 09:00 Percent Solids: 93.5

Analyte	Result	Qualifier	RL	ı	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.7		0.70	ug/Kg	\	10/28/15 17:37	10/30/15 22:41	1
Xylenes, Total	ND		11		0.96	ug/Kg	₽	10/28/15 17:37	10/30/15 22:41	1
Tetrahydrofuran	ND	*	11		3.3	ug/Kg	\$	10/28/15 17:37	10/30/15 22:41	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	ı	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\tilde{\				10/28/15 17:37	10/30/15 22:41	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	100		60 - 140					10/28/15 17:37	10/30/15 22:41	1
1,2-Dichloroethane-d4 (Surr)	98		64 - 126					10/28/15 17:37	10/30/15 22:41	1
Toluene-d8 (Surr)	102		71 - 125					10/28/15 17:37	10/30/15 22:41	1
4-Bromofluorobenzene (Surr)	96		72 - 126					40/00/45 47:07	10/30/15 22:41	

3

4

6

9

10

12

1 J

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 11:05

Date Received: 10/28/15 09:00

Client Sample ID: SWMU7-SS-BLDG16-10

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-11

. Matrix: Solid Percent Solids: 93.0

Method: 8260C - Volatile Orgar Analyte	Result (•	MDI	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND ND	4.6	0.34	ug/Kg	— ~	10/28/15 17:37	-	DII F
1,1,2,2-Tetrachloroethane	ND ND	4.6		ug/Kg ug/Kg	₽		10/30/15 23:07	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND ND	4.6	1.1	ug/Kg	₩		10/30/15 23:07	
	ND	4.6		ug/Kg			10/30/15 23:07	
1,1,2-Trichloroethane	ND ND	4.6		ug/Kg ug/Kg	≎		10/30/15 23:07	
1,1-Dichloroethane					₩			
1,1-DCE	ND	4.6		ug/Kg	· · · · · · .		10/30/15 23:07	
1,2,3-Trichlorobenzene	ND	4.6		ug/Kg			10/30/15 23:07	
1,2,4-Trichlorobenzene	ND	4.6		ug/Kg	₩		10/30/15 23:07	
1,2-Dibromo-3-Chloropropane	ND	4.6		ug/Kg	<u>.</u> .		10/30/15 23:07	
1,2-Dichlorobenzene	ND	4.6		ug/Kg	₩		10/30/15 23:07	
1,2-Dichloroethane	ND	4.6	0.23	• •	₩.		10/30/15 23:07	
1,2-Dichloropropane	ND	4.6	2.3	0 0			10/30/15 23:07	
1,3-Dichlorobenzene	ND	4.6		ug/Kg	*		10/30/15 23:07	
1,4-Dichlorobenzene	ND	4.6	0.65	ug/Kg	*		10/30/15 23:07	
1,4-Dioxane	ND	92	20	ug/Kg			10/30/15 23:07	
2-Hexanone	ND	23	2.3	0 0	₩	10/28/15 17:37	10/30/15 23:07	
Acetone	ND	23	3.9	ug/Kg	☼	10/28/15 17:37	10/30/15 23:07	
Benzene	ND	4.6	0.23	ug/Kg	₩	10/28/15 17:37	10/30/15 23:07	
Bromoform	ND	4.6	2.3	ug/Kg	₩	10/28/15 17:37	10/30/15 23:07	
Bromomethane	ND	4.6	0.42	ug/Kg	₩	10/28/15 17:37	10/30/15 23:07	
Carbon disulfide	ND	4.6	2.3	ug/Kg	₩	10/28/15 17:37	10/30/15 23:07	
Carbon tetrachloride	ND	4.6	0.45	ug/Kg	φ.	10/28/15 17:37	10/30/15 23:07	
Chlorobenzene	ND	4.6	0.61	ug/Kg	☼	10/28/15 17:37	10/30/15 23:07	
Bromochloromethane	ND	4.6	0.33	ug/Kg	☼	10/28/15 17:37	10/30/15 23:07	
Dibromochloromethane	ND	4.6	0.59	ug/Kg		10/28/15 17:37	10/30/15 23:07	
Chloroethane	ND	4.6	1.0	ug/Kg	☼	10/28/15 17:37	10/30/15 23:07	
Chloroform	ND	4.6	0.29	ug/Kg	☼	10/28/15 17:37	10/30/15 23:07	
Chloromethane	ND	4.6	0.28	ug/Kg		10/28/15 17:37	10/30/15 23:07	
cis-1,2-Dichloroethene	ND	4.6	0.59		₩	10/28/15 17:37	10/30/15 23:07	
cis-1,3-Dichloropropene	ND	4.6	0.67	ug/Kg	₩	10/28/15 17:37	10/30/15 23:07	
Cyclohexane	ND	4.6	0.65	ug/Kg		10/28/15 17:37	10/30/15 23:07	
Bromodichloromethane	ND	4.6		ug/Kg	₩		10/30/15 23:07	
Dichlorodifluoromethane	ND	4.6		ug/Kg	₩	10/28/15 17:37	10/30/15 23:07	
Ethylbenzene	ND	4.6		ug/Kg			10/30/15 23:07	
1,2-Dibromoethane (EDB)	ND	4.6		ug/Kg	☼		10/30/15 23:07	
sopropylbenzene	ND	4.6		ug/Kg	₩		10/30/15 23:07	
Methyl acetate	ND	4.6		ug/Kg			10/30/15 23:07	
2-Butanone (MEK)	ND	23	1.7		₩		10/30/15 23:07	
4-Methyl-2-pentanone (MIBK)	ND ND	23		ug/Kg	₩		10/30/15 23:07	
Methyl tert-butyl ether	ND	4.6		ug/Kg	 \$		10/30/15 23:07	
					≎		10/30/15 23:07	
Methylogo Chlorido	ND	4.6	0.70	0 0				
Methylene Chloride	ND	4.6	2.1		% .		10/30/15 23:07	
Styrene	ND	4.6		ug/Kg	☆		10/30/15 23:07	
Tetrachloroethene	ND	4.6		ug/Kg	☆		10/30/15 23:07	
Toluene	ND	4.6		ug/Kg	<u>.</u> .		10/30/15 23:07	
trans-1,2-Dichloroethene	ND	4.6		ug/Kg	₩.		10/30/15 23:07	
rans-1,3-Dichloropropene	ND	4.6		ug/Kg	*		10/30/15 23:07	
Trichloroethene	ND	4.6	1.0	ug/Kg	₩	10/28/15 17:37	10/30/15 23:07	

TestAmerica Buffalo

3

4

6

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Client Sample ID: SWMU7-SS-BLDG16-10 Lab Sample ID: 480-89971-11

Date Collected: 10/27/15 11:05 Matrix: Solid
Date Received: 10/28/15 09:00 Percent Solids: 93.0

Method: 8260C - Volatile Org Analyte	•	Qualifier	RL	·	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.6		0.56	ug/Kg	<u> </u>	10/28/15 17:37	10/30/15 23:07	1
Xylenes, Total	ND		9.2		0.78	ug/Kg	₽	10/28/15 17:37	10/30/15 23:07	1
Tetrahydrofuran	ND	*	9.2		2.7	ug/Kg	φ	10/28/15 17:37	10/30/15 23:07	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\				10/28/15 17:37	10/30/15 23:07	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	102		60 - 140					10/28/15 17:37	10/30/15 23:07	1
1,2-Dichloroethane-d4 (Surr)	103		64 - 126					10/28/15 17:37	10/30/15 23:07	1
Toluene-d8 (Surr)	103		71 - 125					10/28/15 17:37	10/30/15 23:07	1
rolacile do (Gall)	, 00									

3

4

6

9

10

12

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 11:15

Date Received: 10/28/15 09:00

Client Sample ID: SWMU7-SS-BLDG16-11

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-12

Matrix: Solid
Percent Solids: 90.1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND —	4.7	0.34	ug/Kg	<u> </u>	10/28/15 17:37	10/30/15 23:33	1
1,1,2,2-Tetrachloroethane	ND	4.7	0.76	ug/Kg	₩	10/28/15 17:37	10/30/15 23:33	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.7	1.1	ug/Kg	₩	10/28/15 17:37	10/30/15 23:33	1
1,1,2-Trichloroethane	ND	4.7	0.61	ug/Kg		10/28/15 17:37	10/30/15 23:33	1
1,1-Dichloroethane	ND	4.7	0.57	ug/Kg	≎	10/28/15 17:37	10/30/15 23:33	1
1,1-DCE	ND	4.7	0.57	ug/Kg	₽	10/28/15 17:37	10/30/15 23:33	1
1,2,3-Trichlorobenzene	ND	4.7		ug/Kg		10/28/15 17:37	10/30/15 23:33	1
1,2,4-Trichlorobenzene	ND	4.7		ug/Kg	₩	10/28/15 17:37	10/30/15 23:33	1
1,2-Dibromo-3-Chloropropane	ND	4.7		ug/Kg	₩	10/28/15 17:37	10/30/15 23:33	1
1,2-Dichlorobenzene	ND	4.7		ug/Kg		10/28/15 17:37	10/30/15 23:33	1
1,2-Dichloroethane	ND	4.7		ug/Kg	≎	10/28/15 17:37	10/30/15 23:33	1
1,2-Dichloropropane	ND	4.7		ug/Kg	≎		10/30/15 23:33	1
1,3-Dichlorobenzene	ND	4.7		ug/Kg	 \$		10/30/15 23:33	1
1,4-Dichlorobenzene	ND	4.7		ug/Kg	⇔		10/30/15 23:33	1
1,4-Dioxane	ND	93		ug/Kg	⇔		10/30/15 23:33	1
2-Hexanone	ND	23		ug/Kg			10/30/15 23:33	· · · · · · · · · · · · · · · · · · ·
Acetone	ND	23		ug/Kg	₩		10/30/15 23:33	1
Benzene	ND	4.7		ug/Kg	₩		10/30/15 23:33	1
Bromoform	ND	4.7		ug/Kg			10/30/15 23:33	···········i
Bromomethane	ND	4.7		ug/Kg	₩		10/30/15 23:33	1
Carbon disulfide	ND	4.7		ug/Kg	₩		10/30/15 23:33	1
Carbon tetrachloride	ND	4.7		ug/Kg			10/30/15 23:33	
Chlorobenzene	ND	4.7		ug/Kg			10/30/15 23:33	1
Bromochloromethane	ND ND	4.7		ug/Kg ug/Kg			10/30/15 23:33	1
Dibromochloromethane	ND	4.7		ug/Kg ug/Kg			10/30/15 23:33	
Chloroethane	ND ND	4.7			☆		10/30/15 23:33	
Chloroform	ND ND	4.7		ug/Kg	☆		10/30/15 23:33	1 1
	ND ND			ug/Kg				
Chloromethane	ND ND	4.7		ug/Kg	<i>₩</i>		10/30/15 23:33	1
cis-1,2-Dichloroethene		4.7		ug/Kg	**		10/30/15 23:33	1
cis-1,3-Dichloropropene	ND	4.7		ug/Kg	· · · · · · · · · · · · · · · · · · ·		10/30/15 23:33	1
Cyclohexane	ND	4.7		ug/Kg			10/30/15 23:33	1
Bromodichloromethane	ND	4.7		ug/Kg	₽		10/30/15 23:33	1
Dichlorodifluoromethane	ND	4.7		ug/Kg			10/30/15 23:33	1
Ethylbenzene	ND	4.7		ug/Kg	φ.		10/30/15 23:33	1
1,2-Dibromoethane (EDB)	ND	4.7		ug/Kg	φ.		10/30/15 23:33	1
Isopropylbenzene	ND	4.7		ug/Kg	<u>.</u> .		10/30/15 23:33	1
Methyl acetate	ND	4.7		ug/Kg	Д: 		10/30/15 23:33	1
2-Butanone (MEK)	ND	23		ug/Kg	.		10/30/15 23:33	1
4-Methyl-2-pentanone (MIBK)	ND	23		ug/Kg	::::::::::::::::::::::::::::::::::::::		10/30/15 23:33	1
Methyl tert-butyl ether	ND	4.7		ug/Kg	₽		10/30/15 23:33	1
Methylcyclohexane	ND	4.7		ug/Kg	₽		10/30/15 23:33	1
Methylene Chloride	ND	4.7		ug/Kg			10/30/15 23:33	1
Styrene	ND	4.7		ug/Kg	₽		10/30/15 23:33	1
Tetrachloroethene	ND	4.7		ug/Kg	₽		10/30/15 23:33	1
Toluene	ND	4.7		ug/Kg	₩		10/30/15 23:33	1
trans-1,2-Dichloroethene	ND	4.7	0.48	ug/Kg	₽	10/28/15 17:37	10/30/15 23:33	1
trans-1,3-Dichloropropene	ND	4.7	2.1	ug/Kg	₽	10/28/15 17:37	10/30/15 23:33	1
Trichloroethene	ND	4.7	1.0	ug/Kg	₩	10/28/15 17:37	10/30/15 23:33	1
Trichlorofluoromethane	ND	4.7	0.44	ug/Kg		10/28/15 17:37	10/30/15 23:33	1

TestAmerica Buffalo

4

6

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Client Sample ID: SWMU7-SS-BLDG16-11 Lab Sample ID: 480-89971-12

Date Collected: 10/27/15 11:15 **Matrix: Solid** Percent Solids: 90.1 Date Received: 10/28/15 09:00

Method: 8260C - Volatile Org Analyte	•	Qualifier	` RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.7		0.57	ug/Kg		10/28/15 17:37	10/30/15 23:33	1
Xylenes, Total	ND		9.3		0.78	ug/Kg	₽	10/28/15 17:37	10/30/15 23:33	1
Tetrahydrofuran	ND	*	9.3		2.7	ug/Kg	φ.	10/28/15 17:37	10/30/15 23:33	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\				10/28/15 17:37	10/30/15 23:33	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	102		60 - 140					10/28/15 17:37	10/30/15 23:33	1
1,2-Dichloroethane-d4 (Surr)	102		64 - 126					10/28/15 17:37	10/30/15 23:33	1
Toluene-d8 (Surr)	104		71 - 125					10/28/15 17:37	10/30/15 23:33	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 11:40

Date Received: 10/28/15 09:00

Trichlorofluoromethane

Client Sample ID: SWMU7-SS-BLDG16-12

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-13

. Matrix: Solid Percent Solids: 90.5

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
1,1,1-Trichloroethane	ND	4.3	0.31	ug/Kg			10/30/15 23:59	
1,1,2,2-Tetrachloroethane	ND	4.3		0 0	₩		10/30/15 23:59	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.3		ug/Kg			10/30/15 23:59	
1,1,2-Trichloroethane	ND	4.3		ug/Kg	*		10/30/15 23:59	
1,1-Dichloroethane	ND	4.3		ug/Kg	**		10/30/15 23:59	
1,1-DCE	ND	4.3		ug/Kg			10/30/15 23:59	
1,2,3-Trichlorobenzene	ND	4.3		ug/Kg	₩		10/30/15 23:59	
1,2,4-Trichlorobenzene	ND	4.3	0.26	ug/Kg	☼	10/28/15 17:37	10/30/15 23:59	
1,2-Dibromo-3-Chloropropane	ND	4.3	2.1	ug/Kg	☼	10/28/15 17:37	10/30/15 23:59	
1,2-Dichlorobenzene	ND	4.3	0.33	ug/Kg	₽	10/28/15 17:37	10/30/15 23:59	
1,2-Dichloroethane	ND	4.3	0.21	0 0	☼	10/28/15 17:37	10/30/15 23:59	
1,2-Dichloropropane	ND	4.3	2.1	ug/Kg	☼	10/28/15 17:37	10/30/15 23:59	
1,3-Dichlorobenzene	ND	4.3	0.22	ug/Kg	₩	10/28/15 17:37	10/30/15 23:59	
1,4-Dichlorobenzene	ND	4.3	0.60	ug/Kg	₩	10/28/15 17:37	10/30/15 23:59	
1,4-Dioxane	ND	85	19	ug/Kg	₩	10/28/15 17:37	10/30/15 23:59	
2-Hexanone	ND	21	2.1	ug/Kg		10/28/15 17:37	10/30/15 23:59	
Acetone	ND	21	3.6	ug/Kg	☼	10/28/15 17:37	10/30/15 23:59	
Benzene	ND	4.3	0.21	ug/Kg	₩	10/28/15 17:37	10/30/15 23:59	
Bromoform	ND	4.3	2.1	ug/Kg		10/28/15 17:37	10/30/15 23:59	
Bromomethane	ND	4.3		ug/Kg	₩	10/28/15 17:37	10/30/15 23:59	
Carbon disulfide	ND	4.3			☼	10/28/15 17:37	10/30/15 23:59	
Carbon tetrachloride	ND	4.3		ug/Kg	 		10/30/15 23:59	
Chlorobenzene	ND	4.3		ug/Kg	₩	10/28/15 17:37	10/30/15 23:59	
Bromochloromethane	ND	4.3		ug/Kg	₩		10/30/15 23:59	
Dibromochloromethane	ND	4.3		ug/Kg			10/30/15 23:59	
Chloroethane	ND	4.3		ug/Kg	₩	10/28/15 17:37	10/30/15 23:59	
Chloroform	ND	4.3		ug/Kg	₩		10/30/15 23:59	
Chloromethane	ND	4.3		ug/Kg			10/30/15 23:59	
sis-1,2-Dichloroethene	ND	4.3		ug/Kg	₩		10/30/15 23:59	
sis-1,3-Dichloropropene	ND	4.3		ug/Kg	₩		10/30/15 23:59	
Cyclohexane	ND	4.3		ug/Kg			10/30/15 23:59	
Bromodichloromethane	ND	4.3		ug/Kg	₽		10/30/15 23:59	
Dichlorodifluoromethane	ND	4.3		ug/Kg	₽		10/30/15 23:59	
Ethylbenzene	ND	4.3		ug/Kg			10/30/15 23:59	
,2-Dibromoethane (EDB)	ND	4.3		ug/Kg ug/Kg	☼		10/30/15 23:59	
. ,					≎			
sopropylbenzene	ND	4.3		ug/Kg			10/30/15 23:59	
Methyl acetate	ND	4.3		ug/Kg	Ф ж		10/30/15 23:59	
-Butanone (MEK)	ND	21		ug/Kg	₩ ₩		10/30/15 23:59	
-Methyl-2-pentanone (MIBK)	ND	21		ug/Kg	% .		10/30/15 23:59	
Methyl tert-butyl ether	ND	4.3		ug/Kg	₩.		10/30/15 23:59	
Methylcyclohexane	ND	4.3		ug/Kg	₩.		10/30/15 23:59	
Methylene Chloride	2.0 J	4.3		ug/Kg	.		10/30/15 23:59	
Styrene	ND	4.3		ug/Kg	₩.		10/30/15 23:59	
etrachloroethene	ND	4.3		ug/Kg	ψ.		10/30/15 23:59	
oluene	ND	4.3		ug/Kg			10/30/15 23:59	
rans-1,2-Dichloroethene	ND	4.3		ug/Kg	*		10/30/15 23:59	
rans-1,3-Dichloropropene	ND	4.3		ug/Kg	☆		10/30/15 23:59	
richloroethene	ND	4.3	0.94	ug/Kg	☆	10/28/15 17:37	10/30/15 23:59	

TestAmerica Buffalo

10/28/15 17:37 10/30/15 23:59

4.3

0.40 ug/Kg

0.68 J

0

10

12

A A

1

3

4

U

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Client Sample ID: SWMU7-SS-BLDG16-12 Lab Sample ID: 480-89971-13

Date Collected: 10/27/15 11:40

Matrix: Solid
Date Received: 10/28/15 09:00

Percent Solids: 90.5

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Coi	ntinu	ed)					
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.3		0.52	ug/Kg	<u> </u>	10/28/15 17:37	10/30/15 23:59	1
Xylenes, Total	ND		8.5		0.72	ug/Kg	☼	10/28/15 17:37	10/30/15 23:59	1
Tetrahydrofuran	ND	*	8.5		2.5	ug/Kg	\$	10/28/15 17:37	10/30/15 23:59	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\				10/28/15 17:37	10/30/15 23:59	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	103		60 - 140					10/28/15 17:37	10/30/15 23:59	1
1,2-Dichloroethane-d4 (Surr)	104		64 - 126					10/28/15 17:37	10/30/15 23:59	1
Toluene-d8 (Surr)	104		71 - 125					10/28/15 17:37	10/30/15 23:59	1
4-Bromofluorobenzene (Surr)	99		72 - 126					10/28/15 17:37	10/30/15 23:59	1

3

__

6

8

9

10

12

1 <u>4</u>

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-14

Matrix: Solid
Percent Solids: 93.6

Client	Sample	ID: SWM	U7-SS-BL	DG16-13

Date Collected: 10/27/15 12:05 Date Received: 10/28/15 09:00

Method: 8260C - Volatile Orgar Analyte	Result (L MDI	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND ND	4			— ÿ	•	10/31/15 00:25	
1,1,2,2-Tetrachloroethane	ND	4		0 0	☼		10/31/15 00:25	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4			≎		10/31/15 00:25	
1,1,2-Trichloroethane	ND	4			· · · · · · · · · · · · · · · · · · ·		10/31/15 00:25	
1,1-Dichloroethane	ND ND	4		ug/Kg ug/Kg	~ \$		10/31/15 00:25	
1,1-DCE	ND ND	4		ug/Kg ug/Kg	Ť.		10/31/15 00:25	
	ND	4			· · · · · · · · · · · · · · · · · · ·		10/31/15 00:25	
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	ND ND	4		ug/Kg	₩		10/31/15 00:25	
• •	ND ND			ug/Kg	☆		10/31/15 00:25	
1,2-Dibromo-3-Chloropropane		4		ug/Kg				
1,2-Dichlorobenzene	ND	4		ug/Kg	☆		10/31/15 00:25	
1,2-Dichloroethane	ND	4		ug/Kg	☆		10/31/15 00:25	
1,2-Dichloropropane	ND	4		ug/Kg			10/31/15 00:25	
1,3-Dichlorobenzene	ND	4		ug/Kg	φ.		10/31/15 00:25	
1,4-Dichlorobenzene	ND	4		ug/Kg			10/31/15 00:25	
1,4-Dioxane	ND		5 21				10/31/15 00:25	
2-Hexanone	ND			ug/Kg	₽		10/31/15 00:25	
Acetone	ND		4.0	0 0	₩		10/31/15 00:25	
Benzene	ND	4		ug/Kg	₩		10/31/15 00:25	
Bromoform	ND	4		ug/Kg	₩	10/28/15 17:37	10/31/15 00:25	
Bromomethane	ND	4	7 0.43	ug/Kg	☼	10/28/15 17:37	10/31/15 00:25	
Carbon disulfide	ND	4	7 2.4	ug/Kg	₩	10/28/15 17:37	10/31/15 00:25	
Carbon tetrachloride	ND	4	7 0.46	ug/Kg	☼	10/28/15 17:37	10/31/15 00:25	
Chlorobenzene	ND	4	7 0.62	ug/Kg	₩	10/28/15 17:37	10/31/15 00:25	
Bromochloromethane	ND	4	7 0.34	ug/Kg	₩	10/28/15 17:37	10/31/15 00:25	
Dibromochloromethane	ND	4	7 0.60	ug/Kg	₩	10/28/15 17:37	10/31/15 00:25	
Chloroethane	ND	4	.7 1.1	ug/Kg	≎	10/28/15 17:37	10/31/15 00:25	
Chloroform	ND	4	7 0.29	ug/Kg	₩	10/28/15 17:37	10/31/15 00:25	
Chloromethane	ND	4	7 0.29	ug/Kg	₩	10/28/15 17:37	10/31/15 00:25	
cis-1,2-Dichloroethene	ND	4	7 0.60	ug/Kg	₩	10/28/15 17:37	10/31/15 00:25	
cis-1,3-Dichloropropene	ND	4	7 0.68	ug/Kg	☼	10/28/15 17:37	10/31/15 00:25	
Cyclohexane	ND	4	7 0.66	ug/Kg		10/28/15 17:37	10/31/15 00:25	
Bromodichloromethane	ND	4	7 0.63	ug/Kg	≎	10/28/15 17:37	10/31/15 00:25	
Dichlorodifluoromethane	ND	4		ug/Kg	₩	10/28/15 17:37	10/31/15 00:25	
Ethylbenzene	ND	4		ug/Kg		10/28/15 17:37	10/31/15 00:25	
1,2-Dibromoethane (EDB)	ND	4		ug/Kg	≎	10/28/15 17:37	10/31/15 00:25	
Isopropylbenzene	ND	4		ug/Kg	₩	10/28/15 17:37	10/31/15 00:25	
Methyl acetate	ND	4		ug/Kg			10/31/15 00:25	
2-Butanone (MEK)	ND			ug/Kg	₩		10/31/15 00:25	
4-Methyl-2-pentanone (MIBK)	ND			ug/Kg	₩		10/31/15 00:25	
Methyl tert-butyl ether	ND	4		ug/Kg			10/31/15 00:25	
Methylcyclohexane	ND	4		ug/Kg	₽		10/31/15 00:25	
Methylene Chloride	ND ND	4		ug/Kg ug/Kg			10/31/15 00:25	
							10/31/15 00:25	
Styrene	ND	4		ug/Kg	₩		10/31/15 00:25	
Tetrachloroethene	ND	4		ug/Kg				
Toluene	ND	4		ug/Kg			10/31/15 00:25	
trans-1,2-Dichloroethene	ND	4		ug/Kg	☆		10/31/15 00:25	
trans-1,3-Dichloropropene	ND	4			☆		10/31/15 00:25	
Trichloroethene Trichlorofluoromethane	ND ND	4		ug/Kg ug/Kg	 \$		10/31/15 00:25 10/31/15 00:25	

TestAmerica Buffalo

3

6

8

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 12:05

Date Received: 10/28/15 09:00

Client Sample ID: SWMU7-SS-BLDG16-13

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-14

Matrix: Solid

Percent Solids: 93.6

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.7		0.58	ug/Kg	<u> </u>	10/28/15 17:37	10/31/15 00:25	1
Xylenes, Total	ND		9.5		0.79	ug/Kg	₽	10/28/15 17:37	10/31/15 00:25	1
Tetrahydrofuran	ND	*	9.5		2.7	ug/Kg	\$	10/28/15 17:37	10/31/15 00:25	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\				10/28/15 17:37	10/31/15 00:25	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	103		60 - 140					10/28/15 17:37	10/31/15 00:25	1
1,2-Dichloroethane-d4 (Surr)	103		64 - 126					10/28/15 17:37	10/31/15 00:25	1
								10/00/15 15 05	40/04/45 00 05	
Toluene-d8 (Surr)	103		71 - 125					10/28/15 17:37	10/31/15 00:25	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 12:20

Date Received: 10/28/15 09:00

Client Sample ID: SWMU7-SS-BLDG16-14

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-15

Matrix: Solid **Percent Sol**

lix. Joliu	
lids: 94.8	

Analyte	Result Qualifier	RL _	MDL Unit	D <u>₩</u>	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	5.2	0.38 ug/Kg			10/31/15 00:51	
1,1,2,2-Tetrachloroethane	ND	5.2	0.84 ug/Kg	₩		10/31/15 00:51	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.2	1.2 ug/Kg			10/31/15 00:51	
1,1,2-Trichloroethane	ND	5.2	0.67 ug/Kg	₩		10/31/15 00:51	
1,1-Dichloroethane	ND	5.2	0.63 ug/Kg	₽.		10/31/15 00:51	
1,1-DCE	ND	5.2	0.64 ug/Kg			10/31/15 00:51	
1,2,3-Trichlorobenzene	ND	5.2	0.55 ug/Kg	₽		10/31/15 00:51	
1,2,4-Trichlorobenzene	ND	5.2	0.32 ug/Kg	☼		10/31/15 00:51	
1,2-Dibromo-3-Chloropropane	ND	5.2	2.6 ug/Kg	₩		10/31/15 00:51	
1,2-Dichlorobenzene	ND	5.2	0.41 ug/Kg	≎	10/28/15 17:37	10/31/15 00:51	
1,2-Dichloroethane	ND	5.2	0.26 ug/Kg	≎	10/28/15 17:37	10/31/15 00:51	
1,2-Dichloropropane	ND	5.2	2.6 ug/Kg	≎	10/28/15 17:37	10/31/15 00:51	
1,3-Dichlorobenzene	ND	5.2	0.27 ug/Kg	₽	10/28/15 17:37	10/31/15 00:51	
1,4-Dichlorobenzene	ND	5.2	0.73 ug/Kg	₩	10/28/15 17:37	10/31/15 00:51	
1,4-Dioxane	ND	100	23 ug/Kg	₩	10/28/15 17:37	10/31/15 00:51	
2-Hexanone	ND	26	2.6 ug/Kg	\$	10/28/15 17:37	10/31/15 00:51	
Acetone	ND	26	4.4 ug/Kg	₽	10/28/15 17:37	10/31/15 00:51	
Benzene	ND	5.2	0.25 ug/Kg	☼	10/28/15 17:37	10/31/15 00:51	
Bromoform	ND	5.2	2.6 ug/Kg		10/28/15 17:37	10/31/15 00:51	
Bromomethane	ND	5.2	0.47 ug/Kg	≎	10/28/15 17:37	10/31/15 00:51	
Carbon disulfide	ND	5.2	2.6 ug/Kg	₽	10/28/15 17:37	10/31/15 00:51	
Carbon tetrachloride	ND	5.2	0.50 ug/Kg	ф.	10/28/15 17:37	10/31/15 00:51	
Chlorobenzene	ND	5.2	0.69 ug/Kg	₽	10/28/15 17:37	10/31/15 00:51	
Bromochloromethane	ND	5.2	0.37 ug/Kg	₽	10/28/15 17:37	10/31/15 00:51	
Dibromochloromethane	ND	5.2	0.66 ug/Kg			10/31/15 00:51	
Chloroethane	ND	5.2	1.2 ug/Kg	₽		10/31/15 00:51	
Chloroform	ND	5.2	0.32 ug/Kg	₩		10/31/15 00:51	
Chloromethane	ND	5.2	0.31 ug/Kg	· · · · · · · · · · · · · · · · · · ·		10/31/15 00:51	
cis-1,2-Dichloroethene	ND	5.2	0.66 ug/Kg	₩		10/31/15 00:51	
cis-1,3-Dichloropropene	ND	5.2	0.75 ug/Kg	₩		10/31/15 00:51	
Cyclohexane	ND	5.2	0.73 ug/Kg	· · · · · · · · · · · · · · · · · · ·		10/31/15 00:51	
Bromodichloromethane	ND	5.2	0.70 ug/Kg	₩		10/31/15 00:51	
Dichlorodifluoromethane	ND	5.2	0.43 ug/Kg	₩		10/31/15 00:51	
Ethylbenzene	ND	5.2	0.45 ug/Kg 0.36 ug/Kg	· · · · · · · · · · · · · · · · · · ·		10/31/15 00:51	
1,2-Dibromoethane (EDB)	ND	5.2	0.67 ug/Kg	*		10/31/15 00:51	
. ,	ND	5.2	0.78 ug/Kg		10/28/15 17:37		
Isopropylbenzene Methyl acetate							
Methyl acetate	ND	5.2	3.1 ug/Kg	**		10/31/15 00:51	
2-Butanone (MEK)	ND	26	1.9 ug/Kg	₩ ₩		10/31/15 00:51	
4-Methyl-2-pentanone (MIBK)	ND	26	1.7 ug/Kg	.₩		10/31/15 00:51	
Methyl tert-butyl ether	ND	5.2	0.51 ug/Kg	₩		10/31/15 00:51	
Methylcyclohexane	ND	5.2	0.79 ug/Kg	\$		10/31/15 00:51	
Methylene Chloride	2.5 J	5.2	2.4 ug/Kg	₩ 		10/31/15 00:51	
Styrene	ND	5.2	0.26 ug/Kg	\$		10/31/15 00:51	
Tetrachloroethene	ND	5.2	0.70 ug/Kg	₩.		10/31/15 00:51	
Toluene	ND	5.2	0.39 ug/Kg		10/28/15 17:37		
trans-1,2-Dichloroethene	ND	5.2	0.54 ug/Kg	₽		10/31/15 00:51	
trans-1,3-Dichloropropene	ND	5.2	2.3 ug/Kg	₩	10/28/15 17:37	10/31/15 00:51	
Trichloroethene	ND ND	5.2 5.2	1.1 ug/Kg 0.49 ug/Kg	₩		10/31/15 00:51 10/31/15 00:51	

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 12:20

Date Received: 10/28/15 09:00

Client Sample ID: SWMU7-SS-BLDG16-14

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-15

Matrix: Solid

Percent Solids: 94.8

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.2		0.63	ug/Kg	-	10/28/15 17:37	10/31/15 00:51	1
Xylenes, Total	ND		10		0.87	ug/Kg	÷	10/28/15 17:37	10/31/15 00:51	1
Tetrahydrofuran	ND	*	10		3.0	ug/Kg	₽	10/28/15 17:37	10/31/15 00:51	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	₩ -				10/28/15 17:37	10/31/15 00:51	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	99		60 - 140					10/28/15 17:37	10/31/15 00:51	1
1,2-Dichloroethane-d4 (Surr)	98		64 - 126					10/28/15 17:37	10/31/15 00:51	1
Toluene-d8 (Surr)	102		71 - 125					10/28/15 17:37	10/31/15 00:51	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Client Sample ID: SWMU7-SS-BLDG16-15

Lab Sample ID: 480-89971-16

 Date Collected: 10/27/15 12:30
 Matrix: Solid

 Date Received: 10/28/15 09:00
 Percent Solids: 89.5

Method: 8260C - Volatile Orgar Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		5.1	0.37	ug/Kg	— -	•	10/31/15 01:16	
1,1,2,2-Tetrachloroethane	ND		5.1		ug/Kg	₩		10/31/15 01:16	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.1		ug/Kg	₩		10/31/15 01:16	
1,1,2-Trichloroethane	ND		5.1		ug/Kg			10/31/15 01:16	
1,1-Dichloroethane	ND		5.1		ug/Kg	₩		10/31/15 01:16	
1,1-DCE	ND		5.1		ug/Kg	₩		10/31/15 01:16	
1,2,3-Trichlorobenzene	ND		5.1		ug/Kg	· · · · · · · · · · · · · · · · · · ·		10/31/15 01:16	
1,2,4-Trichlorobenzene	ND		5.1		ug/Kg	₩		10/31/15 01:16	
1,2-Dibromo-3-Chloropropane	ND		5.1		ug/Kg	.;;		10/31/15 01:16	
1,2-Dichlorobenzene	ND		5.1		ug/Kg			10/31/15 01:16	
1,2-Dichloroethane	ND		5.1		ug/Kg ug/Kg	☼		10/31/15 01:16	
•	ND ND		5.1			☼		10/31/15 01:16	
1,2-Dichloropropane	ND				ug/Kg				
1,3-Dichlorobenzene			5.1		ug/Kg	بد بد		10/31/15 01:16	
1,4-Dichlorobenzene	ND		5.1		0 0	₽		10/31/15 01:16	
1,4-Dioxane	ND		100		ug/Kg			10/31/15 01:16	
2-Hexanone	ND		26		ug/Kg	ψ.		10/31/15 01:16	
Acetone	ND		26		ug/Kg	₩.		10/31/15 01:16	
Benzene	ND		5.1		ug/Kg			10/31/15 01:16	
Bromoform	ND		5.1		ug/Kg	*		10/31/15 01:16	
Bromomethane	ND		5.1		ug/Kg	*		10/31/15 01:16	
Carbon disulfide	ND		5.1		ug/Kg	☼	10/28/15 17:37	10/31/15 01:16	
Carbon tetrachloride	ND		5.1	0.50	ug/Kg	₩	10/28/15 17:37	10/31/15 01:16	
Chlorobenzene	ND		5.1	0.68	ug/Kg	₩	10/28/15 17:37	10/31/15 01:16	
Bromochloromethane	ND		5.1	0.37	ug/Kg	₩	10/28/15 17:37	10/31/15 01:16	
Dibromochloromethane	ND		5.1	0.66	ug/Kg	₽	10/28/15 17:37	10/31/15 01:16	
Chloroethane	ND		5.1	1.2	ug/Kg	₩	10/28/15 17:37	10/31/15 01:16	
Chloroform	ND		5.1	0.32	ug/Kg	☼	10/28/15 17:37	10/31/15 01:16	
Chloromethane	ND		5.1	0.31	ug/Kg	₽	10/28/15 17:37	10/31/15 01:16	
cis-1,2-Dichloroethene	ND		5.1	0.66	ug/Kg	₩	10/28/15 17:37	10/31/15 01:16	
cis-1,3-Dichloropropene	ND		5.1	0.74	ug/Kg	☼	10/28/15 17:37	10/31/15 01:16	
Cyclohexane	ND		5.1	0.72	ug/Kg	₩	10/28/15 17:37	10/31/15 01:16	
Bromodichloromethane	ND		5.1	0.69	ug/Kg	₩	10/28/15 17:37	10/31/15 01:16	
Dichlorodifluoromethane	ND		5.1	0.42	ug/Kg	₩	10/28/15 17:37	10/31/15 01:16	
Ethylbenzene	ND		5.1		ug/Kg		10/28/15 17:37	10/31/15 01:16	
1,2-Dibromoethane (EDB)	ND		5.1		ug/Kg	₩	10/28/15 17:37	10/31/15 01:16	
Isopropylbenzene	ND		5.1		ug/Kg	₩	10/28/15 17:37	10/31/15 01:16	
Methyl acetate	ND		5.1		ug/Kg			10/31/15 01:16	
2-Butanone (MEK)	ND		26		ug/Kg	₩		10/31/15 01:16	
4-Methyl-2-pentanone (MIBK)	ND		26		ug/Kg	₩		10/31/15 01:16	
Methyl tert-butyl ether	ND		5.1		ug/Kg			10/31/15 01:16	
Methylcyclohexane	ND		5.1		ug/Kg	₩		10/31/15 01:16	
Methylene Chloride	ND		5.1		ug/Kg	₩		10/31/15 01:16	
Styrene	ND		5.1		ug/Kg ug/Kg	· · · · · · · .		10/31/15 01:16	
Styrene Tetrachloroethene	ND ND		5.1		ug/Kg ug/Kg	<i>∓</i>		10/31/15 01:16	
Tetrachioroethene Toluene	ND ND		5.1 5.1			₽		10/31/15 01:16	
					ug/Kg				
trans-1,2-Dichloroethene	ND		5.1		ug/Kg	Ď n		10/31/15 01:16	
trans-1,3-Dichloropropene	ND		5.1		ug/Kg	☆		10/31/15 01:16	
Trichloroethene	ND ND		5.1 5.1		ug/Kg ug/Kg	☼		10/31/15 01:16 10/31/15 01:16	

TestAmerica Buffalo

4

6

8

11

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Toluene-d8 (Surr)

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-16

10/28/15 17:37 10/31/15 01:16

10/28/15 17:37 10/31/15 01:16

10/28/15 17:37 10/31/15 01:16

Matrix: Solid

Client Sample ID: SWMU7-SS-BLDG16-15 Date Collected: 10/27/15 12:30 Date Received: 10/28/15 09:00 Percent Solids: 89.5

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

102

102

97

memoral error relative erg	u p -	aa, .	, (a a		٠.,					
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.1		0.63	ug/Kg	₩	10/28/15 17:37	10/31/15 01:16	1
Xylenes, Total	ND		10)	0.86	ug/Kg	₽	10/28/15 17:37	10/31/15 01:16	1
Tetrahydrofuran	ND	*	10)	3.0	ug/Kg	₩	10/28/15 17:37	10/31/15 01:16	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\tilde{\				10/28/15 17:37	10/31/15 01:16	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	103		60 - 140	-				10/28/15 17:37	10/31/15 01:16	1

64 - 126

71 - 125

72 - 126

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Client Sample ID: SWMU7-SS-BLDG23-08 Lab Sample ID: 480-89971-17

 Date Collected: 10/27/15 15:30
 Matrix: Solid

 Date Received: 10/28/15 09:00
 Percent Solids: 87.6

Method: 8260C - Volatile Organ		unds by GC/I Qualifier		MIN	l Init	-	Dropered	Analyzad	חוור
Analyte	ND	Qualifier	RL 5.2	MDL 0.38		D <u>₩</u>	Prepared 10/28/15 17:37	Analyzed 10/31/15 01:42	Dil Fa
1,1,1-Trichloroethane	ND ND	Г4	5.2 5.2		ug/Kg	~ ☆		10/31/15 01:42	
1,1,2,2-Tetrachloroethane		FI			ug/Kg				
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.2		ug/Kg	· · · · · ·		10/31/15 01:42	
1,1,2-Trichloroethane	ND	F1	5.2		ug/Kg	☆		10/31/15 01:42	
1,1-Dichloroethane	ND		5.2		ug/Kg	φ.		10/31/15 01:42	
1,1-DCE	ND	. <u></u>	5.2		ug/Kg			10/31/15 01:42	
1,2,3-Trichlorobenzene	ND	F1	5.2		ug/Kg	*		10/31/15 01:42	
1,2,4-Trichlorobenzene	ND		5.2		ug/Kg	:		10/31/15 01:42	
1,2-Dibromo-3-Chloropropane	ND	F1	5.2		ug/Kg			10/31/15 01:42	
1,2-Dichlorobenzene	ND		5.2		ug/Kg	☼	10/28/15 17:37	10/31/15 01:42	
1,2-Dichloroethane	ND		5.2		ug/Kg	₩	10/28/15 17:37	10/31/15 01:42	
1,2-Dichloropropane	ND		5.2	2.6	ug/Kg	₩	10/28/15 17:37	10/31/15 01:42	
1,3-Dichlorobenzene	ND		5.2	0.27	ug/Kg	₽	10/28/15 17:37	10/31/15 01:42	
1,4-Dichlorobenzene	ND		5.2	0.73	ug/Kg	₩	10/28/15 17:37	10/31/15 01:42	
1,4-Dioxane	ND	F1	100	23	ug/Kg	₩	10/28/15 17:37	10/31/15 01:42	
2-Hexanone	ND		26	2.6	ug/Kg	₽	10/28/15 17:37	10/31/15 01:42	
Acetone	160	F1 F2	26	4.4	ug/Kg	₩	10/28/15 17:37	10/31/15 01:42	
Benzene	ND		5.2	0.26	ug/Kg	☼	10/28/15 17:37	10/31/15 01:42	
3romoform Sromoform	ND		5.2	2.6	ug/Kg		10/28/15 17:37	10/31/15 01:42	
Bromomethane	ND		5.2	0.47	ug/Kg	☼	10/28/15 17:37	10/31/15 01:42	
Carbon disulfide	ND		5.2	2.6	ug/Kg	₩	10/28/15 17:37	10/31/15 01:42	
Carbon tetrachloride	ND		5.2		ug/Kg		10/28/15 17:37	10/31/15 01:42	
Chlorobenzene	ND		5.2	0.69	ug/Kg	≎	10/28/15 17:37	10/31/15 01:42	
Bromochloromethane	ND		5.2	0.38	ug/Kg	☼	10/28/15 17:37	10/31/15 01:42	
Dibromochloromethane	ND		5.2		ug/Kg		10/28/15 17:37	10/31/15 01:42	
Chloroethane	ND		5.2		ug/Kg	₩	10/28/15 17:37	10/31/15 01:42	
Chloroform	ND		5.2		ug/Kg	☼	10/28/15 17:37	10/31/15 01:42	
Chloromethane	ND		5.2		ug/Kg		10/28/15 17:37	10/31/15 01:42	
cis-1,2-Dichloroethene	ND		5.2		ug/Kg	₩		10/31/15 01:42	
cis-1,3-Dichloropropene	ND		5.2		ug/Kg	₩		10/31/15 01:42	
Cyclohexane	ND		5.2		ug/Kg			10/31/15 01:42	
Bromodichloromethane	ND		5.2		ug/Kg	₩		10/31/15 01:42	
Dichlorodifluoromethane	ND		5.2		ug/Kg	₩		10/31/15 01:42	
Ethylbenzene	ND		5.2		ug/Kg	· · · · · · · · · · · · · · · · · · ·		10/31/15 01:42	
1,2-Dibromoethane (EDB)	ND		5.2		ug/Kg	₩		10/31/15 01:42	
sopropylbenzene	ND		5.2		ug/Kg ug/Kg	т Ф		10/31/15 01:42	
Methyl acetate	ND		5.2		ug/Kg ug/Kg	· · · · · · · · · · · · · · · · · · ·		10/31/15 01:42	
· ·						₽			
2-Butanone (MEK)		J F1	26		ug/Kg			10/31/15 01:42	
4-Methyl-2-pentanone (MIBK)	ND		26		ug/Kg	. .		10/31/15 01:42	
Methyl tert-butyl ether	ND		5.2		ug/Kg	₩		10/31/15 01:42	
Methylcyclohexane	ND		5.2		ug/Kg	₩		10/31/15 01:42	
Methylene Chloride	ND		5.2		ug/Kg			10/31/15 01:42	
Styrene	ND		5.2		ug/Kg	₩		10/31/15 01:42	
Tetrachloroethene	ND		5.2		ug/Kg	₩.		10/31/15 01:42	
Foluene	ND		5.2		ug/Kg			10/31/15 01:42	
rans-1,2-Dichloroethene	ND		5.2		ug/Kg	☼		10/31/15 01:42	
rans-1,3-Dichloropropene	ND		5.2		ug/Kg	☼		10/31/15 01:42	
Trichloroethene	ND	F1	5.2	1.2	ug/Kg	₩	10/28/15 17:37	10/31/15 01:42	

TestAmerica Buffalo

3

4

6

Ö

10

12

14

Lk

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Received: 10/28/15 09:00

TestAmerica Job ID: 480-89971-1

3

Client Sample ID: SWMU7-SS-BLDG23-08 Date Collected: 10/27/15 15:30

Lab Sample ID: 480-89971-17

Matrix: Solid

Percent Solids: 87.6

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Co	ntinu	ıed)					
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.2		0.64	ug/Kg	<u> </u>	10/28/15 17:37	10/31/15 01:42	1
Xylenes, Total	ND		10		0.88	ug/Kg	☼	10/28/15 17:37	10/31/15 01:42	1
Tetrahydrofuran	ND	F1 *	10		3.0	ug/Kg	\$	10/28/15 17:37	10/31/15 01:42	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown Benzene Derivative	37	TJ	ug/Kg	₩ -	10.	.72		10/28/15 17:37	10/31/15 01:42	1
Unknown Benzene Derivative	13	TJ	ug/Kg	₩	10.	.79		10/28/15 17:37	10/31/15 01:42	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	58	X	60 - 140	•				10/28/15 17:37	10/31/15 01:42	1
1,2-Dichloroethane-d4 (Surr)	103		64 - 126					10/28/15 17:37	10/31/15 01:42	1
Toluene-d8 (Surr)	102		71 - 125					10/28/15 17:37	10/31/15 01:42	1
4-Bromofluorobenzene (Surr)	98		72 - 126					10/28/15 17:37	10/31/15 01:42	1

0

8

4.0

11

12

11

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 15:50

Date Received: 10/28/15 09:00

Dibromochloromethane

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Chloroethane

Chloromethane

Cyclohexane

Chloroform

Client Sample ID: SWMU7-SS-BLDG23-09

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-18

Matrix: Solid Percent Solids: 93.6

10/28/15 17:37 10/31/15 02:08

☼ 10/28/15 17:37 10/31/15 02:08

10/28/15 17:37 10/31/15 02:08

* 10/28/15 17:37 10/31/15 02:08 ☼ 10/28/15 17:37 10/31/15 02:08

☼ 10/28/15 17:37 10/31/15 02:08

* 10/28/15 17:37 10/31/15 02:08

 Method: 8260C - Volatile Organ	ic Compounds by GC	MS						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4.5	0.33	ug/Kg	<u> </u>	10/28/15 17:37	10/31/15 02:08	1
1,1,2,2-Tetrachloroethane	ND	4.5	0.73	ug/Kg	☼	10/28/15 17:37	10/31/15 02:08	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.5	1.0	ug/Kg	☼	10/28/15 17:37	10/31/15 02:08	1
1,1,2-Trichloroethane	ND	4.5	0.59	ug/Kg		10/28/15 17:37	10/31/15 02:08	1
1,1-Dichloroethane	ND	4.5	0.55	ug/Kg	☼	10/28/15 17:37	10/31/15 02:08	1
1,1-DCE	ND	4.5	0.55	ug/Kg	₩	10/28/15 17:37	10/31/15 02:08	1
1,2,3-Trichlorobenzene	ND	4.5	0.48	ug/Kg	φ.	10/28/15 17:37	10/31/15 02:08	1
1,2,4-Trichlorobenzene	ND	4.5	0.27	ug/Kg	☼	10/28/15 17:37	10/31/15 02:08	1
1,2-Dibromo-3-Chloropropane	ND	4.5	2.3	ug/Kg	₩	10/28/15 17:37	10/31/15 02:08	1
1,2-Dichlorobenzene	ND	4.5	0.35	ug/Kg	₩	10/28/15 17:37	10/31/15 02:08	1
1,2-Dichloroethane	ND	4.5	0.23	ug/Kg	☼	10/28/15 17:37	10/31/15 02:08	1
1,2-Dichloropropane	ND	4.5	2.3	ug/Kg	₩	10/28/15 17:37	10/31/15 02:08	1
1,3-Dichlorobenzene	ND	4.5	0.23	ug/Kg	₩	10/28/15 17:37	10/31/15 02:08	1
1,4-Dichlorobenzene	ND	4.5	0.63	ug/Kg	₩	10/28/15 17:37	10/31/15 02:08	1
1,4-Dioxane	ND	90	20	ug/Kg	☼	10/28/15 17:37	10/31/15 02:08	1
2-Hexanone	ND	23	2.3	ug/Kg	₩	10/28/15 17:37	10/31/15 02:08	1
Acetone	ND	23	3.8	ug/Kg	₩	10/28/15 17:37	10/31/15 02:08	1
Benzene	ND	4.5	0.22	ug/Kg	☼	10/28/15 17:37	10/31/15 02:08	1
Bromoform	ND	4.5	2.3	ug/Kg	₩	10/28/15 17:37	10/31/15 02:08	1
Bromomethane	ND	4.5	0.41	ug/Kg	☼	10/28/15 17:37	10/31/15 02:08	1
Carbon disulfide	ND	4.5	2.3	ug/Kg	☼	10/28/15 17:37	10/31/15 02:08	1
Carbon tetrachloride	ND	4.5	0.44	ug/Kg		10/28/15 17:37	10/31/15 02:08	1
Chlorobenzene	ND	4.5	0.59	ug/Kg	☼	10/28/15 17:37	10/31/15 02:08	1
Bromochloromethane	ND	4.5	0.33	ug/Kg	☼	10/28/15 17:37	10/31/15 02:08	1

4.5

4.5

4.5

4.5

4.5

4.5

4.5

0.58 ug/Kg

1.0 ug/Kg

0.28 ug/Kg

0.27 ug/Kg

0.58 ug/Kg

0.65 ug/Kg

0.63 ug/Kg

					TestAmerica Buffa
	5		oo agritg	.5/20/10 17.0/	
Trichlorofluoromethane	ND	4.5	0.43 ug/Kg	□ 10/28/15 17:37	
Trichloroethene	ND	4.5	0.99 ug/Kg	☼ 10/28/15 17:37	10/31/15 02:08
trans-1,3-Dichloropropene	ND	4.5	2.0 ug/Kg	10/28/15 17:37	10/31/15 02:08
trans-1,2-Dichloroethene	ND	4.5	0.46 ug/Kg	÷ 10/28/15 17:37	10/31/15 02:08
Toluene	ND	4.5	0.34 ug/Kg	10/28/15 17:37	10/31/15 02:08
Tetrachloroethene	ND	4.5	0.60 ug/Kg	10/28/15 17:37	10/31/15 02:08
Styrene	ND	4.5	0.23 ug/Kg	□ 10/28/15 17:37	10/31/15 02:08
Methylene Chloride	ND	4.5	2.1 ug/Kg	10/28/15 17:37	10/31/15 02:08
Methylcyclohexane	ND	4.5	0.68 ug/Kg	10/28/15 17:37	10/31/15 02:08
Methyl tert-butyl ether	ND	4.5	0.44 ug/Kg	÷ 10/28/15 17:37	10/31/15 02:08
4-Methyl-2-pentanone (MIBK)	ND	23	1.5 ug/Kg	10/28/15 17:37	10/31/15 02:08
2-Butanone (MEK)	ND	23	1.6 ug/Kg	10/28/15 17:37	10/31/15 02:08
Methyl acetate	ND	4.5	2.7 ug/Kg	÷ 10/28/15 17:37	10/31/15 02:08
Isopropylbenzene	ND	4.5	0.68 ug/Kg	10/28/15 17:37	10/31/15 02:08
1,2-Dibromoethane (EDB)	ND	4.5	0.58 ug/Kg	10/28/15 17:37	10/31/15 02:08
Ethylbenzene	ND	4.5	0.31 ug/Kg	÷ 10/28/15 17:37	10/31/15 02:08
Dichlorodifluoromethane	ND	4.5	0.37 ug/Kg	10/28/15 17:37	10/31/15 02:08
Bromodichloromethane	ND	4.5	0.60 ug/Kg	10/28/15 17:37	10/31/15 02:08
•			0 0		

ND

ND

ND

ND

ND

ND

ND

falo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 15:50

Date Received: 10/28/15 09:00

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-18

Client Sample ID: SWMU7-SS-BLDG23-09 **Matrix: Solid**

Percent Solids: 93.6

Method: 8260C - Volatile Org		•	GC/MS (Co	ntinu	ied)					
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.5		0.55	ug/Kg	<u> </u>	10/28/15 17:37	10/31/15 02:08	1
Xylenes, Total	ND		9.0		0.76	ug/Kg	≎	10/28/15 17:37	10/31/15 02:08	1
Tetrahydrofuran	ND	*	9.0		2.6	ug/Kg	\$	10/28/15 17:37	10/31/15 02:08	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	4.6	TJ	ug/Kg	<u> </u>	4.	.02		10/28/15 17:37	10/31/15 02:08	1
Unknown	9.5	ΤJ	ug/Kg	₩	4.	.49		10/28/15 17:37	10/31/15 02:08	1
Benzene, 1,1'-ethylidenebis-	15	TJN	ug/Kg	₩	11.	.31	612-00-0	10/28/15 17:37	10/31/15 02:08	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	103		60 - 140					10/28/15 17:37	10/31/15 02:08	1
1,2-Dichloroethane-d4 (Surr)	102		64 - 126					10/28/15 17:37	10/31/15 02:08	1
Toluene-d8 (Surr)	104		71 - 125					10/28/15 17:37	10/31/15 02:08	1
4-Bromofluorobenzene (Surr)	98		72 - 126					10/28/15 17:37	10/31/15 02:08	1

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 15:50

Date Received: 10/28/15 09:00

Client Sample ID: SWMU7-SS-BLDG23-98

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-19

Matrix: Solid Percent Solids: 93.6

Method: 8260C - Volatile Organ	Result Qualifier	RL	MDL		D — ≅	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	4.6	0.34	ug/Kg			10/31/15 03:52	
1,1,2,2-Tetrachloroethane	ND	4.6		ug/Kg	☆		10/31/15 03:52	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.6					10/31/15 03:52	
1,1,2-Trichloroethane	ND	4.6		0 0	☆		10/31/15 03:52	
1,1-Dichloroethane	ND	4.6		ug/Kg	ψ.		10/31/15 03:52	
1,1-DCE	ND	4.6		ug/Kg			10/31/15 03:52	
1,2,3-Trichlorobenzene	ND	4.6		ug/Kg	ψ.		10/31/15 03:52	,
1,2,4-Trichlorobenzene	ND	4.6		ug/Kg	φ.		10/31/15 03:52	
1,2-Dibromo-3-Chloropropane	ND	4.6		ug/Kg	<u>.</u> .		10/31/15 03:52	
1,2-Dichlorobenzene	ND	4.6		ug/Kg	*		10/31/15 03:52	
1,2-Dichloroethane	ND	4.6		ug/Kg	\		10/31/15 03:52	
1,2-Dichloropropane	ND	4.6		ug/Kg	, .		10/31/15 03:52	
1,3-Dichlorobenzene	ND	4.6		ug/Kg	₽		10/31/15 03:52	
1,4-Dichlorobenzene	ND	4.6		ug/Kg	₽		10/31/15 03:52	
1,4-Dioxane	ND	93		ug/Kg		10/28/15 18:07	10/31/15 03:52	
2-Hexanone	ND	23	2.3	ug/Kg	≎	10/28/15 18:07	10/31/15 03:52	
Acetone	ND	23	3.9	ug/Kg	₽	10/28/15 18:07	10/31/15 03:52	
Benzene	ND	4.6	0.23	ug/Kg	₩	10/28/15 18:07	10/31/15 03:52	
Bromoform	ND	4.6	2.3	ug/Kg	₩	10/28/15 18:07	10/31/15 03:52	
Bromomethane	ND	4.6	0.42	ug/Kg	≎	10/28/15 18:07	10/31/15 03:52	
Carbon disulfide	ND	4.6	2.3	ug/Kg	≎	10/28/15 18:07	10/31/15 03:52	
Carbon tetrachloride	ND	4.6	0.45	ug/Kg		10/28/15 18:07	10/31/15 03:52	
Chlorobenzene	ND	4.6	0.61	ug/Kg	₩	10/28/15 18:07	10/31/15 03:52	
Bromochloromethane	ND	4.6	0.34	ug/Kg	₩	10/28/15 18:07	10/31/15 03:52	
Dibromochloromethane	ND	4.6	0.59	ug/Kg		10/28/15 18:07	10/31/15 03:52	
Chloroethane	ND	4.6	1.0	ug/Kg	≎	10/28/15 18:07	10/31/15 03:52	
Chloroform	ND	4.6	0.29	ug/Kg	≎	10/28/15 18:07	10/31/15 03:52	
Chloromethane	ND	4.6	0.28	ug/Kg	☆	10/28/15 18:07	10/31/15 03:52	
cis-1,2-Dichloroethene	ND	4.6			≎	10/28/15 18:07	10/31/15 03:52	
cis-1,3-Dichloropropene	ND	4.6	0.67	ug/Kg	≎	10/28/15 18:07	10/31/15 03:52	
Cyclohexane	ND	4.6		ug/Kg		10/28/15 18:07	10/31/15 03:52	
Bromodichloromethane	ND	4.6		ug/Kg	☆	10/28/15 18:07	10/31/15 03:52	
Dichlorodifluoromethane	ND	4.6		ug/Kg	₩	10/28/15 18:07	10/31/15 03:52	
Ethylbenzene	ND	4.6		ug/Kg		10/28/15 18:07	10/31/15 03:52	
1,2-Dibromoethane (EDB)	ND	4.6		ug/Kg	≎	10/28/15 18:07	10/31/15 03:52	
Isopropylbenzene	ND	4.6		ug/Kg	≎	10/28/15 18:07	10/31/15 03:52	
Methyl acetate	ND	4.6		ug/Kg	 \$		10/31/15 03:52	
2-Butanone (MEK)	ND	23		ug/Kg	₽		10/31/15 03:52	
4-Methyl-2-pentanone (MIBK)	ND	23		ug/Kg	₽		10/31/15 03:52	
Methyl tert-butyl ether	ND	4.6		ug/Kg			10/31/15 03:52	
Methylcyclohexane	ND	4.6		ug/Kg	₩		10/31/15 03:52	
Methylene Chloride	ND	4.6		ug/Kg	₩		10/31/15 03:52	
Styrene	ND	4.6		ug/Kg			10/31/15 03:52	
Tetrachloroethene	ND	4.6		ug/Kg	₽		10/31/15 03:52	
Toluene	ND	4.6		ug/Kg	₩.		10/31/15 03:52	
trans-1,2-Dichloroethene	ND	4.6		ug/Kg ug/Kg			10/31/15 03:52	
	ND				₩		10/31/15 03:52	
trans-1,3-Dichloropropene		4.6		ug/Kg				
Trichloroethene Trichlorofluoromethane	ND ND	4.6 4.6		ug/Kg ug/Kg			10/31/15 03:52 10/31/15 03:52	

TestAmerica Buffalo

_

_

6

8

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Received: 10/28/15 09:00

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-19

Client Sample ID: SWMU7-SS-BLDG23-98 Date Collected: 10/27/15 15:50 **Matrix: Solid**

Percent Solids: 93.6

Method: 8260C - Volatile Org Analyte	•	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.6		0.57	ug/Kg	\	10/28/15 18:07	10/31/15 03:52	1
Xylenes, Total	ND		9.3		0.78	ug/Kg	₽	10/28/15 18:07	10/31/15 03:52	1
Tetrahydrofuran	ND		9.3		2.7	ug/Kg	\$	10/28/15 18:07	10/31/15 03:52	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	5.9	TJ	ug/Kg	₩ -	4.	.51		10/28/15 18:07	10/31/15 03:52	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	101		60 - 140					10/28/15 18:07	10/31/15 03:52	1
1,2-Dichloroethane-d4 (Surr)	101		64 - 126					10/28/15 18:07	10/31/15 03:52	1
Toluene-d8 (Surr)	102		71 - 125					10/28/15 18:07	10/31/15 03:52	1
` /										

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 16:10

Date Received: 10/28/15 09:00

Dichlorodifluoromethane

1,2-Dibromoethane (EDB)

4-Methyl-2-pentanone (MIBK)

Ethylbenzene

Isopropylbenzene

2-Butanone (MEK)

Methyl tert-butyl ether

Methylene Chloride

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Methylcyclohexane

Tetrachloroethene

Trichloroethene

Styrene

Toluene

Methyl acetate

Client Sample ID: SWMU7-SS-BLDG23-10

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-20

Matrix: Solid Percent Solids: 88.7

Method: 8260C - Volatile Organ								
Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.6	0.41	ug/Kg	₩.	10/28/15 18:07		1
1,1,2,2-Tetrachloroethane	ND	5.6	0.91	ug/Kg	₽		10/31/15 04:17	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.6		ug/Kg	₩		10/31/15 04:17	1
1,1,2-Trichloroethane	ND	5.6	0.73	ug/Kg	☼		10/31/15 04:17	1
1,1-Dichloroethane	ND	5.6	0.69	ug/Kg	☼	10/28/15 18:07	10/31/15 04:17	1
1,1-DCE	ND	5.6	0.69	ug/Kg	₩	10/28/15 18:07	10/31/15 04:17	1
1,2,3-Trichlorobenzene	ND	5.6	0.60	ug/Kg	₩	10/28/15 18:07	10/31/15 04:17	1
1,2,4-Trichlorobenzene	ND	5.6	0.34	ug/Kg	☼	10/28/15 18:07	10/31/15 04:17	1
1,2-Dibromo-3-Chloropropane	ND	5.6	2.8	ug/Kg	≎	10/28/15 18:07	10/31/15 04:17	1
1,2-Dichlorobenzene	ND	5.6	0.44	ug/Kg	₩	10/28/15 18:07	10/31/15 04:17	1
1,2-Dichloroethane	ND	5.6	0.28	ug/Kg	₩	10/28/15 18:07	10/31/15 04:17	1
1,2-Dichloropropane	ND	5.6	2.8	ug/Kg	₩	10/28/15 18:07	10/31/15 04:17	1
1,3-Dichlorobenzene	ND	5.6	0.29	ug/Kg	₽	10/28/15 18:07	10/31/15 04:17	1
1,4-Dichlorobenzene	ND	5.6	0.79	ug/Kg	☼	10/28/15 18:07	10/31/15 04:17	1
1,4-Dioxane	ND	110	25	ug/Kg	☼	10/28/15 18:07	10/31/15 04:17	1
2-Hexanone	ND	28	2.8	ug/Kg	₽	10/28/15 18:07	10/31/15 04:17	1
Acetone	ND	28	4.7	ug/Kg	☼	10/28/15 18:07	10/31/15 04:17	1
Benzene	ND	5.6	0.28	ug/Kg	☼	10/28/15 18:07	10/31/15 04:17	1
Bromoform	ND	5.6	2.8	ug/Kg	₽	10/28/15 18:07	10/31/15 04:17	1
Bromomethane	ND	5.6	0.51	ug/Kg	₩	10/28/15 18:07	10/31/15 04:17	1
Carbon disulfide	ND	5.6	2.8	ug/Kg	☼	10/28/15 18:07	10/31/15 04:17	1
Carbon tetrachloride	ND	5.6	0.54	ug/Kg	₽	10/28/15 18:07	10/31/15 04:17	1
Chlorobenzene	ND	5.6	0.74	ug/Kg	☼	10/28/15 18:07	10/31/15 04:17	1
Bromochloromethane	ND	5.6	0.41	ug/Kg	☼	10/28/15 18:07	10/31/15 04:17	1
Dibromochloromethane	ND	5.6	0.72	ug/Kg	₽	10/28/15 18:07	10/31/15 04:17	1
Chloroethane	ND	5.6	1.3	ug/Kg	≎	10/28/15 18:07	10/31/15 04:17	1
Chloroform	ND	5.6	0.35	ug/Kg	≎	10/28/15 18:07	10/31/15 04:17	1
Chloromethane	ND	5.6	0.34	ug/Kg	ф	10/28/15 18:07	10/31/15 04:17	1
cis-1,2-Dichloroethene	ND	5.6	0.72	ug/Kg	₩	10/28/15 18:07	10/31/15 04:17	1
cis-1,3-Dichloropropene	ND	5.6	0.81	ug/Kg	₩	10/28/15 18:07	10/31/15 04:17	1
Cyclohexane	ND	5.6		ug/Kg	₩.	10/28/15 18:07	10/31/15 04:17	1
Bromodichloromethane	ND	5.6	0.75	ug/Kg	₩	10/28/15 18:07	10/31/15 04:17	1

5.6

5.6

5.6

5.6

5.6

28

28

5.6

5.6

5.6

5.6

5.6

5.6

5.6

5.6

5.6

5.6

0.46 ug/Kg

0.39 ug/Kg

0.72 ug/Kg

0.85 ug/Kg

3.4 ug/Kg

2.1 ug/Kg

1.8 ug/Kg

0.55 ug/Kg

0.86 ug/Kg

2.6 ug/Kg

0.28 ug/Kg

0.76 ug/Kg

0.43 ug/Kg

0.58 ug/Kg

2.5 ug/Kg

1.2 ug/Kg

0.53 ug/Kg

ND

ND

ND

ND

ND

ND

ND

ND

ND

2.8

ND

ND

ND

ND

ND

ND

27

10/28/15 18:07 10/31/15 04:17 1

10/28/15 18:07 10/31/15 04:17

10/28/15 18:07 10/31/15 04:17

10/28/15 18:07 10/31/15 04:17

10/28/15 18:07 10/31/15 04:17

10/28/15 18:07 10/31/15 04:17

10/28/15 18:07 10/31/15 04:17

10/28/15 18:07 10/31/15 04:17

10/28/15 18:07 10/31/15 04:17

10/28/15 18:07 10/31/15 04:17

10/28/15 18:07 10/31/15 04:17

10/28/15 18:07 10/31/15 04:17

10/28/15 18:07 10/31/15 04:17

10/28/15 18:07 10/31/15 04:17

10/28/15 18:07 10/31/15 04:17

10/28/15 18:07 10/31/15 04:17

☼ 10/28/15 18:07 10/31/15 04:17

Page 56 of 125

2

3

5

6

8

10

1 1

1 /

II e

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 16:10

Date Received: 10/28/15 09:00

Client Sample ID: SWMU7-SS-BLDG23-10

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-20

Matrix: Solid Percent Solids: 88.7

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Coi	ntinu	ed)					
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.6		0.69	ug/Kg	<u> </u>	10/28/15 18:07	10/31/15 04:17	1
Xylenes, Total	ND		11		0.95	ug/Kg	≎	10/28/15 18:07	10/31/15 04:17	1
Tetrahydrofuran	ND		11		3.3	ug/Kg	\$	10/28/15 18:07	10/31/15 04:17	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	₩ -				10/28/15 18:07	10/31/15 04:17	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	99		60 - 140					10/28/15 18:07	10/31/15 04:17	1
1,2-Dichloroethane-d4 (Surr)	98		64 - 126					10/28/15 18:07	10/31/15 04:17	1
Toluene-d8 (Surr)	103		71 - 125					10/28/15 18:07	10/31/15 04:17	1
4-Bromofluorobenzene (Surr)	93		72 - 126					10/28/15 18:07	10/31/15 04:17	1

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 16:25

Date Received: 10/28/15 09:00

Client Sample ID: SWMU7-SS-BLDG26-01

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-21

Matrix: Solid Percent Solids: 93.6

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	7.9	0.58	ug/Kg	<u> </u>	10/28/15 18:07	10/31/15 04:44	1
1,1,2,2-Tetrachloroethane	ND	7.9	1.3	ug/Kg	₩	10/28/15 18:07	10/31/15 04:44	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	7.9	1.8	ug/Kg	☼	10/28/15 18:07	10/31/15 04:44	1
1,1,2-Trichloroethane	ND	7.9	1.0	ug/Kg	₽	10/28/15 18:07	10/31/15 04:44	1
1,1-Dichloroethane	ND	7.9	0.97	ug/Kg	₩	10/28/15 18:07	10/31/15 04:44	1
1,1-DCE	ND	7.9	0.97	ug/Kg	₩	10/28/15 18:07	10/31/15 04:44	1
1,2,3-Trichlorobenzene	ND	7.9	0.84	ug/Kg	₩	10/28/15 18:07	10/31/15 04:44	1
1,2,4-Trichlorobenzene	ND	7.9	0.48	ug/Kg	₩	10/28/15 18:07	10/31/15 04:44	1
1,2-Dibromo-3-Chloropropane	ND	7.9	4.0	ug/Kg	≎	10/28/15 18:07	10/31/15 04:44	1
1,2-Dichlorobenzene	ND	7.9	0.62	ug/Kg	₽	10/28/15 18:07	10/31/15 04:44	1
1,2-Dichloroethane	ND	7.9	0.40	ug/Kg	₩	10/28/15 18:07	10/31/15 04:44	1
1,2-Dichloropropane	ND	7.9	4.0	ug/Kg	₩	10/28/15 18:07	10/31/15 04:44	1
1,3-Dichlorobenzene	ND	7.9	0.41	ug/Kg	₩.	10/28/15 18:07	10/31/15 04:44	1
1,4-Dichlorobenzene	ND	7.9	1.1	ug/Kg	₩	10/28/15 18:07	10/31/15 04:44	1
1,4-Dioxane	ND	160	35	ug/Kg	₩	10/28/15 18:07	10/31/15 04:44	1
2-Hexanone	ND	40	4.0	ug/Kg		10/28/15 18:07	10/31/15 04:44	1
Acetone	ND	40	6.7	ug/Kg	☼	10/28/15 18:07	10/31/15 04:44	1
Benzene	ND	7.9	0.39	ug/Kg	₩	10/28/15 18:07	10/31/15 04:44	1
Bromoform	ND	7.9	4.0	ug/Kg		10/28/15 18:07	10/31/15 04:44	1
Bromomethane	ND	7.9		ug/Kg	₩	10/28/15 18:07	10/31/15 04:44	1
Carbon disulfide	ND	7.9		ug/Kg	₩	10/28/15 18:07	10/31/15 04:44	1
Carbon tetrachloride	ND	7.9		ug/Kg	· · · · · · · · · · · · · · · · · · ·	10/28/15 18:07	10/31/15 04:44	1
Chlorobenzene	ND	7.9		ug/Kg	₩	10/28/15 18:07	10/31/15 04:44	1
Bromochloromethane	ND	7.9		ug/Kg	₩	10/28/15 18:07	10/31/15 04:44	1
Dibromochloromethane	ND	7.9		ug/Kg		10/28/15 18:07	10/31/15 04:44	1
Chloroethane	ND	7.9		ug/Kg	₩	10/28/15 18:07	10/31/15 04:44	1
Chloroform	ND	7.9		ug/Kg	₩		10/31/15 04:44	1
Chloromethane	ND	7.9		ug/Kg	₩		10/31/15 04:44	1
cis-1,2-Dichloroethene	ND	7.9		ug/Kg	₩		10/31/15 04:44	1
cis-1,3-Dichloropropene	ND	7.9		ug/Kg	₩		10/31/15 04:44	1
Cyclohexane	ND	7.9		ug/Kg	· · · · · · · · · · · · · · · · · · ·		10/31/15 04:44	1
Bromodichloromethane	ND	7.9		ug/Kg	₩		10/31/15 04:44	1
Dichlorodifluoromethane	ND	7.9		ug/Kg	₩		10/31/15 04:44	1
Ethylbenzene	ND	7.9		ug/Kg			10/31/15 04:44	· · · · · · · · · · · · · · · · · · ·
1,2-Dibromoethane (EDB)	ND	7.9		ug/Kg	₩		10/31/15 04:44	1
Isopropylbenzene	ND	7.9		ug/Kg	#		10/31/15 04:44	1
Methyl acetate	ND	7.9		ug/Kg			10/31/15 04:44	· · · · · · · · · · · · · · · · · · ·
2-Butanone (MEK)	ND	40		ug/Kg	₩		10/31/15 04:44	1
4-Methyl-2-pentanone (MIBK)	ND	40		ug/Kg	₩		10/31/15 04:44	1
Methyl tert-butyl ether	ND	7.9		ug/Kg			10/31/15 04:44	· · · · · · · · · · · · · · · · · · ·
Methylcyclohexane	ND	7.9		ug/Kg	₩		10/31/15 04:44	1
Methylene Chloride	3.9 J	7.9		ug/Kg ug/Kg	₩		10/31/15 04:44	1
					· · · · · · · · · · · · · · · · · · ·		10/31/15 04:44	
Styrene Tetrachloroethene	ND ND	7.9 7.9		ug/Kg	₩			1
				ug/Kg			10/31/15 04:44	1
Toluene	ND	7.9		ug/Kg			10/31/15 04:44	1
trans-1,2-Dichloroethene	ND	7.9		ug/Kg	¾		10/31/15 04:44	1
trans-1,3-Dichloropropene	ND	7.9	3.5	ug/Kg	Đ:		10/31/15 04:44	1
Trichloroethene	ND	7.9	4 -	ug/Kg	₩	10/28/15 18:07	40/04/45 04:44	1

TestAmerica Buffalo

2

1

6

8

10

12

1 <u>/</u>

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/27/15 16:25

Date Received: 10/28/15 09:00

Client Sample ID: SWMU7-SS-BLDG26-01

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-21

Matrix: Solid

Percent Solids: 93.6

Method: 8260C - Volatile Org Analyte	•	unds by (Qualifier	GC/MS (Co			Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND	Qualifier	- - 7 .		0.97	ug/Kg	\	10/28/15 18:07	10/31/15 04:44	1
Xylenes, Total	ND		1			ug/Kg	☆	10/28/15 18:07	10/31/15 04:44	1
Tetrahydrofuran	ND		······································			ug/Kg	φ.	10/28/15 18:07	10/31/15 04:44	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	200	TJ	ug/Kg	- \tilde{\tilie}\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde	4.	33 —		10/28/15 18:07	10/31/15 04:44	1
Unknown	14	ΤJ	ug/Kg	₩	4.	91		10/28/15 18:07	10/31/15 04:44	1
Trisiloxane, octamethyl-	17	TJN	ug/Kg	₩	7.	83	107-51-7	10/28/15 18:07	10/31/15 04:44	1
Tetrasiloxane, decamethyl-	180	TJN	ug/Kg		10.	21	141-62-8	10/28/15 18:07	10/31/15 04:44	1
Unknown	230	TJ	ug/Kg	₩	11.	78		10/28/15 18:07	10/31/15 04:44	1
Unknown	68	TJ	ug/Kg	₩	13.	07		10/28/15 18:07	10/31/15 04:44	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	101		60 - 140	_				10/28/15 18:07	10/31/15 04:44	1
1,2-Dichloroethane-d4 (Surr)	98		64 - 126					10/28/15 18:07	10/31/15 04:44	1
Toluene-d8 (Surr)	100		71 - 125					10/28/15 18:07	10/31/15 04:44	1
4-Bromofluorobenzene (Surr)	94		72 - 126					10/28/15 18:07	10/31/15 04:44	1

TestAmerica Buffalo

3

4

6

9

10

12

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Client Sample ID: SWMU7-SS-BLDG23-11 Lab Sample ID: 480-89971-22

 Date Collected: 10/27/15 16:40
 Matrix: Solid

 Date Received: 10/28/15 09:00
 Percent Solids: 74.4

Method: 8260C - Volatile Orgai	nic Compound Result Qu		MDi	Unit	D	Prepared	Analyzed	Dil Fa
Analyte	ND Result Qu	6.1 RL			— \overline{\pi}		10/31/15 05:09	
1,1,1-Trichloroethane	ND ND			ug/Kg	₩		10/31/15 05:09	
1,1,2,2-Tetrachloroethane		6.1		ug/Kg				
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	6.1		ug/Kg	 .		10/31/15 05:09	
1,1,2-Trichloroethane	ND	6.1		ug/Kg	*		10/31/15 05:09	•
1,1-Dichloroethane	ND	6.1		ug/Kg	φ.		10/31/15 05:09	•
1,1-DCE	ND	6.1		ug/Kg	- 1, 		10/31/15 05:09	
1,2,3-Trichlorobenzene	ND	6.1		ug/Kg	.;.		10/31/15 05:09	
1,2,4-Trichlorobenzene	ND	6.1		ug/Kg	₩		10/31/15 05:09	
1,2-Dibromo-3-Chloropropane	ND	6.1		ug/Kg			10/31/15 05:09	
1,2-Dichlorobenzene	ND	6.1		ug/Kg	: \$		10/31/15 05:09	
1,2-Dichloroethane	ND	6.1		ug/Kg	₩	10/28/15 18:07	10/31/15 05:09	
1,2-Dichloropropane	ND	6.1	3.0	ug/Kg	₩	10/28/15 18:07	10/31/15 05:09	
1,3-Dichlorobenzene	ND	6.1		ug/Kg	₽	10/28/15 18:07	10/31/15 05:09	
1,4-Dichlorobenzene	ND	6.1	0.85	ug/Kg	₩	10/28/15 18:07	10/31/15 05:09	
1,4-Dioxane	ND	120	27	ug/Kg	₩	10/28/15 18:07	10/31/15 05:09	
2-Hexanone	ND	30	3.0	ug/Kg	≎	10/28/15 18:07	10/31/15 05:09	
Acetone	ND	30	5.1	ug/Kg	₩	10/28/15 18:07	10/31/15 05:09	
Benzene	ND	6.1	0.30	ug/Kg	☼	10/28/15 18:07	10/31/15 05:09	
Bromoform	ND	6.1	3.0	ug/Kg	ф.	10/28/15 18:07	10/31/15 05:09	
Bromomethane	ND	6.1	0.55	ug/Kg	₩	10/28/15 18:07	10/31/15 05:09	
Carbon disulfide	ND	6.1	3.0	ug/Kg	₩	10/28/15 18:07	10/31/15 05:09	
Carbon tetrachloride	ND	6.1		ug/Kg		10/28/15 18:07	10/31/15 05:09	
Chlorobenzene	ND	6.1		ug/Kg	₩	10/28/15 18:07	10/31/15 05:09	
Bromochloromethane	ND	6.1		ug/Kg	₩	10/28/15 18:07	10/31/15 05:09	
Dibromochloromethane	ND	6.1		ug/Kg		10/28/15 18:07	10/31/15 05:09	
Chloroethane	ND	6.1		ug/Kg	₩	10/28/15 18:07	10/31/15 05:09	
Chloroform	ND	6.1		ug/Kg	₽		10/31/15 05:09	
Chloromethane	ND	6.1		ug/Kg	 ☆		10/31/15 05:09	
cis-1,2-Dichloroethene	ND	6.1		ug/Kg	₽		10/31/15 05:09	
cis-1,3-Dichloropropene	ND	6.1		ug/Kg	₽		10/31/15 05:09	
Cyclohexane	ND	6.1		ug/Kg			10/31/15 05:09	
Bromodichloromethane	ND	6.1		ug/Kg	≎		10/31/15 05:09	
Dichlorodifluoromethane	ND	6.1		ug/Kg	ŭ		10/31/15 05:09	
Ethylbenzene	ND	6.1		ug/Kg			10/31/15 05:09	
1,2-Dibromoethane (EDB)	ND ND	6.1		ug/Kg ug/Kg			10/31/15 05:09	
				0 0				
sopropylbenzene	ND	6.1		ug/Kg	% .		10/31/15 05:09	
Methyl acetate	ND	6.1		ug/Kg	₩		10/31/15 05:09	
2-Butanone (MEK)	ND	30		ug/Kg	☆		10/31/15 05:09	
4-Methyl-2-pentanone (MIBK)	ND	30		ug/Kg			10/31/15 05:09	
Methyl tert-butyl ether	ND	6.1		ug/Kg	ψ.		10/31/15 05:09	
Methylcyclohexane	ND	6.1		ug/Kg	φ. 		10/31/15 05:09	
Methylene Chloride	ND	6.1		ug/Kg			10/31/15 05:09	
Styrene	ND	6.1		ug/Kg	₩.		10/31/15 05:09	
Tetrachloroethene	ND	6.1		ug/Kg	₽		10/31/15 05:09	
Гoluene	ND	6.1		ug/Kg	≎		10/31/15 05:09	
rans-1,2-Dichloroethene	ND	6.1		ug/Kg	≎		10/31/15 05:09	
trans-1,3-Dichloropropene	ND	6.1	2.7	ug/Kg	₩	10/28/15 18:07	10/31/15 05:09	
Trichloroethene	ND	6.1	1.3	ug/Kg	☼	10/28/15 18:07	10/31/15 05:09	
Trichlorofluoromethane	ND	6.1	0.58	ug/Kg		10/28/15 18:07	10/31/15 05:09	

TestAmerica Buffalo

4

6

11

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Client Sample ID: SWMU7-SS-BLDG23-11 Lab Sample ID: 480-89971-22

Date Collected: 10/27/15 16:40 **Matrix: Solid** Date Received: 10/28/15 09:00 Percent Solids: 74.4

Method: 8260C - Volatile Org Analyte	•	Qualifier	` RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		6.1		0.74	ug/Kg		10/28/15 18:07	10/31/15 05:09	1
Xylenes, Total	ND		12		1.0	ug/Kg	÷	10/28/15 18:07	10/31/15 05:09	1
Tetrahydrofuran	ND		12		3.5	ug/Kg	¢	10/28/15 18:07	10/31/15 05:09	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\				10/28/15 18:07	10/31/15 05:09	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	101		60 - 140					10/28/15 18:07	10/31/15 05:09	1
1,2-Dichloroethane-d4 (Surr)	103		64 - 126					10/28/15 18:07	10/31/15 05:09	1
Toluene-d8 (Surr)	100		71 - 125					10/28/15 18:07	10/31/15 05:09	1
4-Bromofluorobenzene (Surr)	95		72 - 126					10/28/15 18:07	10/31/15 05:09	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-23

Matrix: Water

Client Sample ID: EB-02
Date Collected: 10/27/15 17:07
Date Received: 10/28/15 09:00

Analyte	ic Compounds by Go Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND Qualific	1.0		ug/L	— <u>-</u> -	. ropurou	11/07/15 12:41	
1,1,2,2-Tetrachloroethane	ND	1.0		ug/L			11/07/15 12:41	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0		ug/L			11/07/15 12:41	
1,1,2-Trichloroethane	ND	1.0		ug/L			11/07/15 12:41	
1,1-Dichloroethane	ND	1.0		ug/L			11/07/15 12:41	
1,1-Dichloroethene	ND	1.0		ug/L			11/07/15 12:41	
1,2,3-Trichlorobenzene	ND	1.0		ug/L			11/07/15 12:41	
1,2,4-Trichlorobenzene	ND	1.0		ug/L			11/07/15 12:41	
1,2-Dibromo-3-Chloropropane	ND	1.0		ug/L			11/07/15 12:41	
·	ND	1.0		ug/L ug/L			11/07/15 12:41	
1,2-Dibromoethane (EDB)	ND ND			-			11/07/15 12:41	
1,2-Dichlorobenzene	ND ND	1.0		ug/L			11/07/15 12:41	
1,2-Dichloroethane		1.0		ug/L				
1,2-Dichloropropane	ND	1.0		ug/L			11/07/15 12:41	
1,3-Dichlorobenzene	ND	1.0		ug/L			11/07/15 12:41	
1,4-Dichlorobenzene	ND	1.0		ug/L			11/07/15 12:41	
1,4-Dioxane	ND	40		ug/L			11/07/15 12:41	
2-Butanone (MEK)	ND	10		ug/L			11/07/15 12:41	
2-Hexanone	ND	5.0		ug/L			11/07/15 12:41	
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	J			11/07/15 12:41	
Acetone	ND	10	3.0	J			11/07/15 12:41	
Benzene	ND	1.0		ug/L			11/07/15 12:41	
Bromochloromethane	ND	1.0		ug/L			11/07/15 12:41	
Bromodichloromethane	ND	1.0		ug/L			11/07/15 12:41	
Bromoform	ND	1.0		ug/L			11/07/15 12:41	
Bromomethane	ND	1.0	0.69	ug/L			11/07/15 12:41	
Carbon disulfide	ND	1.0	0.19	ug/L			11/07/15 12:41	
Carbon tetrachloride	ND	1.0	0.27	ug/L			11/07/15 12:41	
Chlorobenzene	ND	1.0	0.75	ug/L			11/07/15 12:41	
Chloroethane	ND	1.0	0.32	ug/L			11/07/15 12:41	
Chloroform	ND	1.0	0.34	ug/L			11/07/15 12:41	
Chloromethane	ND	1.0	0.35	ug/L			11/07/15 12:41	
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			11/07/15 12:41	
cis-1,3-Dichloropropene	ND	1.0		ug/L			11/07/15 12:41	
Cyclohexane	ND	1.0	0.18	ug/L			11/07/15 12:41	
Dibromochloromethane	ND	1.0		ug/L			11/07/15 12:41	
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			11/07/15 12:41	
Ethylbenzene	ND	1.0		ug/L			11/07/15 12:41	
sopropylbenzene	ND	1.0		ug/L			11/07/15 12:41	
Methyl acetate	ND	2.5		ug/L			11/07/15 12:41	
Methyl tert-butyl ether	ND	1.0		ug/L			11/07/15 12:41	
Methylcyclohexane	ND	1.0		ug/L			11/07/15 12:41	
Methylene Chloride	ND	1.0		ug/L			11/07/15 12:41	
Styrene	ND	1.0		ug/L			11/07/15 12:41	
Tetrachloroethene	ND ND	1.0		ug/L ug/L			11/07/15 12:41	
Toluene	ND ND	1.0		ug/L ug/L			11/07/15 12:41	
rans-1,2-Dichloroethene	ND ND	1.0		ug/L			11/07/15 12:41	
trans-1,3-Dichloropropene	ND ND	1.0		ug/L			11/07/15 12:41	
Trichloroethene Trichlorofluoromethane	ND ND	1.0		ug/L ug/L			11/07/15 12:41 11/07/15 12:41	

TestAmerica Buffalo

3

5

6

0

10

12

14

J.

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Client Sample ID: EB-02

Lab Sample ID: 480-89971-23 Date Collected: 10/27/15 17:07 **Matrix: Water**

Date Received: 10/28/15 09:00

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Co	ntinu	ed)						
Analyte	Result	Qualifier	RL		MDL	Unit	D	Pre	pared	Analyzed	Dil Fac
Vinyl chloride	ND		1.0		0.90	ug/L				11/07/15 12:41	1
Xylenes, Total	ND		2.0		0.66	ug/L				11/07/15 12:41	1
Tetrahydrofuran	ND		5.0		1.3	ug/L				11/07/15 12:41	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Pre	pared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L							11/07/15 12:41	1
Surrogate	%Recovery	Qualifier	Limits					Pre	pared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		66 - 137							11/07/15 12:41	1
4-Bromofluorobenzene (Surr)	96		73 - 120							11/07/15 12:41	1
Toluene-d8 (Surr)	96		71 - 126							11/07/15 12:41	1
Dibromofluoromethane (Surr)	97		60 - 140							11/07/15 12:41	1

Dibromondoromethane (Surr)	97	00 - 140					11/0//15 12.41	,
Method: 8270D - Semivolatile Analyte	e Organic Com Result Q		MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND ND	5.0	0.48	ug/L		•	11/10/15 15:27	1
2,4,6-Trichlorophenol	ND	5.0	0.61	ug/L		10/29/15 08:34	11/10/15 15:27	1
2,4-Dichlorophenol	ND	5.0	0.51	ug/L		10/29/15 08:34	11/10/15 15:27	1
2,4-Dimethylphenol	ND	5.0	0.50	ug/L		10/29/15 08:34	11/10/15 15:27	1
2,4-Dinitrophenol	ND	10	2.2	ug/L		10/29/15 08:34	11/10/15 15:27	1
2,4-Dinitrotoluene	ND	5.0	0.45	ug/L		10/29/15 08:34	11/10/15 15:27	1
2,6-Dinitrotoluene	ND	5.0	0.40	ug/L		10/29/15 08:34	11/10/15 15:27	1
2-Chloronaphthalene	ND	5.0	0.46	ug/L		10/29/15 08:34	11/10/15 15:27	1
2-Chlorophenol	ND	5.0	0.53	ug/L		10/29/15 08:34	11/10/15 15:27	1
2-Methylnaphthalene	ND	5.0	0.60	ug/L		10/29/15 08:34	11/10/15 15:27	1
2-Methylphenol	ND *	5.0	0.40	ug/L		10/29/15 08:34	11/10/15 15:27	1
2-Nitroaniline	ND	10	0.42	ug/L		10/29/15 08:34	11/10/15 15:27	1
2-Nitrophenol	ND	5.0	0.48	ug/L		10/29/15 08:34	11/10/15 15:27	1
3,3'-Dichlorobenzidine	ND	5.0	0.40	ug/L		10/29/15 08:34	11/10/15 15:27	1
3-Nitroaniline	ND	10	0.48	ug/L		10/29/15 08:34	11/10/15 15:27	1
4,6-Dinitro-2-methylphenol	ND	10	2.2	ug/L		10/29/15 08:34	11/10/15 15:27	1
4-Bromophenyl phenyl ether	ND	5.0	0.45	ug/L		10/29/15 08:34	11/10/15 15:27	1
4-Chloro-3-methylphenol	ND	5.0	0.45	ug/L		10/29/15 08:34	11/10/15 15:27	1
4-Chloroaniline	ND	5.0	0.59	ug/L		10/29/15 08:34	11/10/15 15:27	1
4-Chlorophenyl phenyl ether	ND	5.0	0.35	ug/L		10/29/15 08:34	11/10/15 15:27	1
4-Methylphenol	ND *	10	0.36	ug/L		10/29/15 08:34	11/10/15 15:27	1
4-Nitroaniline	ND	10	0.25	ug/L		10/29/15 08:34	11/10/15 15:27	1
4-Nitrophenol	ND	10	1.5	ug/L		10/29/15 08:34	11/10/15 15:27	1
Acenaphthene	ND	5.0	0.41	ug/L		10/29/15 08:34	11/10/15 15:27	1
Acenaphthylene	ND	5.0	0.38	ug/L		10/29/15 08:34	11/10/15 15:27	1
Acetophenone	ND *	5.0	0.54	ug/L		10/29/15 08:34	11/10/15 15:27	1
Anthracene	ND	5.0	0.28	ug/L		10/29/15 08:34	11/10/15 15:27	1
Atrazine	ND	5.0	0.46	ug/L		10/29/15 08:34	11/10/15 15:27	1
Benzaldehyde	ND	5.0	0.27	ug/L		10/29/15 08:34	11/10/15 15:27	1
Benzo(a)anthracene	ND	5.0	0.36	ug/L		10/29/15 08:34	11/10/15 15:27	1
Benzo(a)pyrene	ND	5.0	0.47	ug/L		10/29/15 08:34	11/10/15 15:27	1
Benzo(b)fluoranthene	ND	5.0	0.34	ug/L		10/29/15 08:34	11/10/15 15:27	1
Benzo(g,h,i)perylene	ND	5.0	0.35	ug/L		10/29/15 08:34	11/10/15 15:27	1
Benzo(k)fluoranthene	ND	5.0	0.73	ug/L		10/29/15 08:34	11/10/15 15:27	1
Biphenyl	ND	5.0		ug/L		10/29/15 08:34	11/10/15 15:27	1

TestAmerica Buffalo

Page 63 of 125

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Unknown

Unknown

TestAmerica Job ID: 480-89971-1

Client Sample ID: EB-02 Lab Sample ID: 480-89971-23

Date Collected: 10/27/15 17:07

Date Received: 10/28/15 09:00

Matrix: Water

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Analyte		Qualifier		RL		Unit	D	Prepared	Analyzed	Dil Fac
bis (2-chloroisopropyl) ether	ND			5.0	0.52	ug/L		10/29/15 08:34	11/10/15 15:27	1
Bis(2-chloroethoxy)methane	ND			5.0	0.35	ug/L		10/29/15 08:34	11/10/15 15:27	1
Bis(2-chloroethyl)ether	ND			5.0	0.40	ug/L		10/29/15 08:34	11/10/15 15:27	1
Bis(2-ethylhexyl) phthalate	ND			5.0	1.8	ug/L		10/29/15 08:34	11/10/15 15:27	1
Butyl benzyl phthalate	ND			5.0	0.42	ug/L		10/29/15 08:34	11/10/15 15:27	1
Caprolactam	ND			5.0	2.2	ug/L		10/29/15 08:34	11/10/15 15:27	1
Carbazole	ND			5.0	0.30	ug/L		10/29/15 08:34	11/10/15 15:27	1
Chrysene	ND			5.0	0.33	ug/L		10/29/15 08:34	11/10/15 15:27	1
Dibenz(a,h)anthracene	ND			5.0	0.42	ug/L		10/29/15 08:34	11/10/15 15:27	1
Dibenzofuran	ND			10	0.51	ug/L		10/29/15 08:34	11/10/15 15:27	1
Diethyl phthalate	ND			5.0	0.22	ug/L		10/29/15 08:34	11/10/15 15:27	1
Dimethyl phthalate	ND			5.0	0.36	ug/L		10/29/15 08:34	11/10/15 15:27	1
Di-n-butyl phthalate	ND			5.0	0.31	ug/L		10/29/15 08:34	11/10/15 15:27	1
Di-n-octyl phthalate	ND			5.0	0.47	ug/L		10/29/15 08:34	11/10/15 15:27	1
Fluoranthene	ND			5.0	0.40	ug/L		10/29/15 08:34	11/10/15 15:27	1
Fluorene	ND			5.0	0.36	ug/L		10/29/15 08:34	11/10/15 15:27	1
Hexachlorobenzene	ND			5.0	0.51	ug/L		10/29/15 08:34	11/10/15 15:27	1
Hexachlorobutadiene	ND			5.0	0.68	ug/L		10/29/15 08:34	11/10/15 15:27	
Hexachlorocyclopentadiene	ND			5.0	0.59	ug/L		10/29/15 08:34	11/10/15 15:27	1
Hexachloroethane	ND			5.0	0.59	ug/L		10/29/15 08:34	11/10/15 15:27	1
Indeno(1,2,3-cd)pyrene	ND			5.0	0.47	ug/L		10/29/15 08:34	11/10/15 15:27	1
Isophorone	ND			5.0	0.43	ug/L		10/29/15 08:34	11/10/15 15:27	1
Naphthalene	ND			5.0	0.76	ug/L		10/29/15 08:34	11/10/15 15:27	
Nitrobenzene	ND			5.0	0.29	ug/L		10/29/15 08:34	11/10/15 15:27	1
N-Nitrosodi-n-propylamine	ND	*		5.0	0.54	ug/L		10/29/15 08:34	11/10/15 15:27	1
N-Nitrosodiphenylamine	ND			5.0	0.51	ug/L		10/29/15 08:34	11/10/15 15:27	1
Pentachlorophenol	ND			10	2.2	ug/L		10/29/15 08:34	11/10/15 15:27	1
Phenanthrene	ND			5.0	0.44	ug/L		10/29/15 08:34	11/10/15 15:27	1
Phenol	ND	*		5.0	0.39	ug/L		10/29/15 08:34	11/10/15 15:27	1
Pyrene	ND			5.0	0.34	ug/L		10/29/15 08:34	11/10/15 15:27	1
Dimethylformamide	ND			20	1.7	ug/L		10/29/15 08:34	11/10/15 15:27	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Cyclohexane	110	TJN	ug/L		3.	49	110-82-7	10/29/15 08:34	11/10/15 15:27	
Unknown	150	TJ	ug/L		3.	.66		10/29/15 08:34	11/10/15 15:27	1
n-Hexadecanoic acid	8.6	TJN	ug/L		11.	.03	57-10-3	10/29/15 08:34	11/10/15 15:27	
Unknown	32	TJ	ug/L		11.	70		10/29/15 08:34	11/10/15 15:27	
Unknown	12	T J	ug/L		12.	.33		10/29/15 08:34	11/10/15 15:27	-
Unknown	18	ΤJ	ug/L		12.	.77		10/29/15 08:34	11/10/15 15:27	
Unknown	20	TJ	ug/L		13.	55		10/29/15 08:34	11/10/15 15:27	
Unknown	8.3	ΤJ	ug/L		14.	.00		10/29/15 08:34	11/10/15 15:27	
			٠,,							

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	110	52 - 132	10/29/15 08:34	11/10/15 15:27	1
2-Fluorobiphenyl	79	48 - 120	10/29/15 08:34	11/10/15 15:27	1
2-Fluorophenol	45	20 - 120	10/29/15 08:34	11/10/15 15:27	1
Nitrobenzene-d5	73	46 - 120	10/29/15 08:34	11/10/15 15:27	1
Phenol-d5	28	16 - 120	10/29/15 08:34	11/10/15 15:27	1

ug/L

ug/L

14.96

16.50

25 TJ

7.8 T J

TestAmerica Buffalo

10/29/15 08:34 11/10/15 15:27

10/29/15 08:34 11/10/15 15:27

Page 64 of 125

3

5

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

-23

Client Sample ID: EB-02 Date Collected: 10/27/15 17:07 Lab Sample ID: 480-89971-23

Matrix: Water

Date Received: 10/28/15 09:00	

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
p-Terphenyl-d14	100		67 - 150	10/29/15 08:34	11/10/15 15:27	1

Method: 8015D - Nonh			nds - Direct	•					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		1.0	0.14	mg/L			11/02/15 13:14	1
Isobutyl alcohol	ND		1.0	0.37	mg/L			11/02/15 13:14	1
Methanol	0.93	J	1.0	0.41	mg/L			11/02/15 13:14	1
n-Butanol	ND		1.0	0.40	mg/L			11/02/15 13:14	1
Propanol	ND		1.0	0.16	mg/L			11/02/15 13:14	1
2-Butanol	ND		1.0	0.17	mg/L			11/02/15 13:14	1
Isopropyl alcohol	ND		1.0	0.12	mg/L			11/02/15 13:14	1
t-Butyl alcohol	ND		1.0	0.10	mg/L			11/02/15 13:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	114		62 - 129			-		11/02/15 13:14	1

Method: 8082A - Polych	hlorinated Biphenyls (PCBs) by	y Gas Chro	matogra	aphy				
Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	0.50	0.18	ug/L		10/29/15 08:43	10/29/15 19:12	1
PCB-1221	ND	0.50	0.18	ug/L		10/29/15 08:43	10/29/15 19:12	1
PCB-1232	ND	0.50	0.18	ug/L		10/29/15 08:43	10/29/15 19:12	1
PCB-1242	ND	0.50	0.18	ug/L		10/29/15 08:43	10/29/15 19:12	1
PCB-1248	ND	0.50	0.18	ug/L		10/29/15 08:43	10/29/15 19:12	1
PCB-1254	ND	0.50	0.25	ug/L		10/29/15 08:43	10/29/15 19:12	1
PCB-1260	ND	0.50	0.25	ug/L		10/29/15 08:43	10/29/15 19:12	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	82	24 - 137	10/29/15 08:43	10/29/15 19:12	1
Tetrachloro-m-xylene	84	24 - 137	10/29/15 08:43	10/29/15 19:12	1
DCB Decachlorobiphenyl	74	19 - 125	10/29/15 08:43	10/29/15 19:12	1
DCB Decachlorobiphenyl	73	19 - 125	10/29/15 08:43	10/29/15 19:12	1

Method. 00100 - Metais (ICF)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Arsenic	ND		0.015	0.0056	mg/L		10/30/15 07:55	10/30/15 19:15	1	
Barium	ND		0.0020	0.00070	mg/L		10/30/15 07:55	10/30/15 19:15	1	
Cadmium	ND		0.0020	0.00050	mg/L		10/30/15 07:55	10/30/15 19:15	1	
Chromium	ND		0.0040	0.0010	mg/L		10/30/15 07:55	10/30/15 19:15	1	
Lead	ND		0.010	0.0030	mg/L		10/30/15 07:55	10/30/15 19:15	1	
Selenium	ND		0.025	0.0087	mg/L		10/30/15 07:55	10/30/15 19:15	1	
Silver	ND		0.0060	0.0017	mg/L		10/30/15 07:55	10/30/15 19:15	1	

Method: 7470A - Mercury (CVAA)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	0.00020	0.00012 mg/L		10/29/15 10:00	10/29/15 15:03	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Lab Sample ID: 480-89971-24

Matrix: Water

Client Sample ID: TB-02 Date Collected: 10/27/15 00:00

Date Received: 10/28/15 09:00

Analyte	nic Compound Result Qua	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L		-	11/07/15 13:05	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			11/07/15 13:05	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	-			11/07/15 13:05	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			11/07/15 13:05	
1,1-DCA	ND	1.0	0.38	-			11/07/15 13:05	
1,1-Dichloroethene	ND	1.0	0.29	_			11/07/15 13:05	
1,2,3-Trichlorobenzene	ND	1.0		ug/L			11/07/15 13:05	
1,2,4-Trichlorobenzene	ND	1.0	0.41	-			11/07/15 13:05	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	_			11/07/15 13:05	
1,2-Dibromoethane (EDB)	ND	1.0	0.73				11/07/15 13:05	
1,2-Dichlorobenzene	ND	1.0	0.79	_			11/07/15 13:05	
1,2-Dichloroethane	ND	1.0	0.21	-			11/07/15 13:05	
1,2-Dichloropropane	ND	1.0	0.72	-			11/07/15 13:05	
1,3-Dichlorobenzene	ND	1.0	0.72				11/07/15 13:05	
1,4-Dichlorobenzene	ND	1.0		ug/L			11/07/15 13:05	
1,4-Dioxane	ND	40		ug/L			11/07/15 13:05	
2-Butanone (MEK)	ND ND	10		ug/L ug/L			11/07/15 13:05	
2-Butanone (MER)	ND ND	5.0		ug/L ug/L			11/07/15 13:05	
							11/07/15 13:05	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L				
Acetone	ND	10		ug/L			11/07/15 13:05	
Benzene	ND	1.0	0.41	-			11/07/15 13:05	
Bromochloromethane	ND	1.0		ug/L			11/07/15 13:05	
Bromodichloromethane	ND	1.0	0.39	-			11/07/15 13:05	
Bromoform	ND	1.0	0.26	-			11/07/15 13:05	
Bromomethane	ND	1.0		ug/L			11/07/15 13:05	
Carbon disulfide	ND	1.0	0.19	Ū			11/07/15 13:05	
Carbon tetrachloride	ND	1.0		ug/L			11/07/15 13:05	
Chlorobenzene	ND	1.0	0.75	-			11/07/15 13:05	
Chloroethane	ND	1.0		ug/L			11/07/15 13:05	
Chloroform	ND	1.0		ug/L			11/07/15 13:05	
Chloromethane	ND	1.0		ug/L			11/07/15 13:05	
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			11/07/15 13:05	
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			11/07/15 13:05	
Cyclohexane	ND	1.0	0.18	ug/L			11/07/15 13:05	
Dibromochloromethane	ND	1.0	0.32	ug/L			11/07/15 13:05	
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			11/07/15 13:05	
Ethylbenzene	ND	1.0	0.74	ug/L			11/07/15 13:05	
Isopropylbenzene	ND	1.0	0.79	ug/L			11/07/15 13:05	
Methyl acetate	ND	2.5	1.3	ug/L			11/07/15 13:05	
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			11/07/15 13:05	
Methylcyclohexane	ND	1.0	0.16	ug/L			11/07/15 13:05	
Methylene Chloride	ND	1.0		ug/L			11/07/15 13:05	
Styrene	ND	1.0		ug/L			11/07/15 13:05	
Tetrachloroethene	ND	1.0		ug/L			11/07/15 13:05	
Toluene	ND	1.0		ug/L			11/07/15 13:05	
rans-1,2-Dichloroethene	ND	1.0		ug/L			11/07/15 13:05	
trans-1,3-Dichloropropene	ND	1.0		ug/L			11/07/15 13:05	
Trichloroethene	ND	1.0		ug/L			11/07/15 13:05	
Trichlorofluoromethane	ND	1.0		ug/L ug/L			11/07/15 13:05	

TestAmerica Buffalo

_

4

6

8

10

12

1 1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Client Sample ID: TB-02

Lab Sample ID: 480-89971-24

Matrix: Water

Date Collected: 10/27/15 00:00 Date Received: 10/28/15 09:00

Analyte	Result	Qualifier	RL		MDL	Unit	I	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		1.0		0.90	ug/L				11/07/15 13:05	1
Xylenes, Total	ND		2.0		0.66	ug/L				11/07/15 13:05	1
Tetrahydrofuran	ND		5.0		1.3	ug/L				11/07/15 13:05	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No	ο.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L							11/07/15 13:05	1
Surrogate	%Recovery	Qualifier	Limits						Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		66 - 137					_		11/07/15 13:05	1
4-Bromofluorobenzene (Surr)	96		73 - 120							11/07/15 13:05	1
Toluene-d8 (Surr)	92		71 - 126							11/07/15 13:05	1
Dibromofluoromethane (Surr)	95		60 - 140							11/07/15 13:05	

TestAmerica Buffalo

3

-

6

9

10

12

13

-

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surro	ogate Reco	Percent Surrogate Recovery			
		DBFM	12DCE	TOL	BFB				
Lab Sample ID	Client Sample ID	(60-140)	(64-126)	(71-125)	(72-126))			
180-89971-1	SWMU26-SS-BLDG16-01	97	96	102	95				
80-89971-2	SWMU26-SS-BLDG16-02	99	101	102	95				
180-89971-3	SWMU26-SS-BLDG16-03	100	98	103	93				
480-89971-4	SWMU26-SS-BLDG16-04	100	102	102	97				
180-89971-5	SWMU7-SS-BLDG16-04	100	98	101	93				
180-89971-6	SWMU7-SS-BLDG16-05	102	100	103	95				
180-89971-7	SWMU7-SS-BLDG16-06	102	100	102	95				
480-89971-8	SWMU7-SS-BLDG16-07	97	95	106	86				
480-89971-9	SWMU7-SS-BLDG16-08	100	99	104	96				
180-89971-10	SWMU7-SS-BLDG16-09	100	98	102	96				
480-89971-11	SWMU7-SS-BLDG16-10	102	103	103	98				
180-89971-12	SWMU7-SS-BLDG16-11	102	102	104	98				
180-89971-13	SWMU7-SS-BLDG16-12	103	104	104	99				
180-89971-14	SWMU7-SS-BLDG16-13	103	103	103	97				
180-89971-15	SWMU7-SS-BLDG16-14	99	98	102	96				
180-89971-16	SWMU7-SS-BLDG16-15	103	102	102	97				
80-89971-17	SWMU7-SS-BLDG23-08	58 X	103	102	98				
180-89971-17 MS	SWMU7-SS-BLDG23-08	59 X	85	105	98				
80-89971-17 MSD	SWMU7-SS-BLDG23-08	69	89	105	96				
80-89971-18	SWMU7-SS-BLDG23-09	103	102	104	98				
80-89971-19	SWMU7-SS-BLDG23-98	101	101	102	96				
80-89971-20	SWMU7-SS-BLDG23-10	99	98	103	93				
180-89971-21	SWMU7-SS-BLDG26-01	101	98	100	94				
480-89971-22	SWMU7-SS-BLDG23-11	101	103	100	95				
CS 480-271703/1-A	Lab Control Sample	101	101	102	99				
.CS 480-271725/1-A	Lab Control Sample	98	97	101	98				
_CSD 480-271725/2-A	Lab Control Sample Dup	100	96	102	99				
MB 480-271703/2-A	Method Blank	100	101	102	97				
MB 480-271725/3-A	Method Blank	98	94	101	96				

Surrogate Legend

DBFM = Dibromofluoromethane (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

_			Pe	ercent Surre	ogate Reco
		12DCE	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)	(60-140)
480-89971-23	EB-02	105	96	96	97
480-89971-24	TB-02	106	96	92	95
LCS 480-273742/5	Lab Control Sample	102	99	95	97
MB 480-273742/7	Method Blank	98	95	95	93
Surragata Lagand					

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TestAmerica Buffalo

Page 68 of 125

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

			Pe	rcent Surre	ogate Reco	very (Acce	otance Lin
		TBP	FBP	2FP	NBZ	TPH	PHL
Lab Sample ID	Client Sample ID	(39-146)	(37-120)	(18-120)	(34-132)	(65-153)	(11-120)
180-89971-1	SWMU26-SS-BLDG16-01	75	84	70	71	93	75
80-89971-2	SWMU26-SS-BLDG16-02	90	91	79	79	108	82
180-89971-3	SWMU26-SS-BLDG16-03	83	92	76	79	102	82
180-89971-4	SWMU26-SS-BLDG16-04	81	81	71	72	94	76
80-89971-4 MS	SWMU26-SS-BLDG16-04	94	91	79	85	93	82
80-89971-4 MSD	SWMU26-SS-BLDG16-04	105	95	82	87	101	89
CS 480-272492/2-A	Lab Control Sample	85	80	68	74	85	70
.CS 480-272950/2-A	Lab Control Sample	96	86	72	77	95	73
/IB 480-272492/1-A	Method Blank	70	80	77	72	84	78
/IB 480-272950/1-A	Method Blank	89	83	72	73	93	74

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

TPH = p-Terphenyl-d14

PHL = Phenol-d5

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco	very (Acce	otance Lim
		TBP	FBP	2FP	NBZ	PHL	TPH
Lab Sample ID	Client Sample ID	(52-132)	(48-120)	(20-120)	(46-120)	(16-120)	(67-150)
480-89971-23	EB-02	110	79	45	73	28	100
LCS 480-271824/2-A	Lab Control Sample	105	77	51	74	42	96
LCSD 480-271824/3-A	Lab Control Sample Dup	105	76	54	69	61	96
MB 480-271824/1-A	Method Blank	104	73	44	69	29	95

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5 TPH = p-Terphenyl-d14

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC)

Matrix: Solid Prep Type: Soluble

Γ			Percent Surrogate Recovery (Acceptance Limits)
		2HN1	
Lab Sample ID	Client Sample ID	(30-137)	
480-89971-1	SWMU26-SS-BLDG16-01	97	
480-89971-2	SWMU26-SS-BLDG16-02	90	
480-89971-3	SWMU26-SS-BLDG16-03	91	

Page 69 of 125

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

DCB = DCB Decachlorobiphenyl

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) (Continued)

Matrix: Solid **Prep Type: Soluble**

			Percent Surrogate Recovery (Acceptance Limits)
		2HN1	
Lab Sample ID	Client Sample ID	(30-137)	
480-89971-4	SWMU26-SS-BLDG16-04	91	
LCS 480-271929/2-A	Lab Control Sample	100	
MB 480-271929/1-A	Method Blank	115	
Surrogate Legend			
2HN = 2-Hexanone			

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		2HN1	
Lab Sample ID	Client Sample ID	(62-129)	
480-89971-23	EB-02	114	
480-89971-23 MS	EB-02	106	
480-89971-23 MSD	EB-02	109	
LCS 480-272574/5	Lab Control Sample	112	
MB 480-272574/4	Method Blank	112	
Surrogate Legend			
2HN = 2-Hexanone			

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

			Percent	Surrogate Recovery (Acceptance Limits)
		TCX2	DCB2	
Lab Sample ID	Client Sample ID	(60-154)	(65-174)	
480-89971-1	SWMU26-SS-BLDG16-01	87	91	
480-89971-2	SWMU26-SS-BLDG16-02	91	99	
480-89971-3	SWMU26-SS-BLDG16-03	98	99	
480-89971-4	SWMU26-SS-BLDG16-04	94	100	
LCS 480-272091/2-A	Lab Control Sample	108	115	
MB 480-272091/1-A	Method Blank	96	100	
Surrogate Legend				

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Water Prep Type: Total/NA

_			Pe	ercent Surr	ogate Reco
		TCX1	TCX2	DCB1	DCB2
Lab Sample ID	Client Sample ID	(24-137)	(24-137)	(19-125)	(19-125)
480-89971-23	EB-02	82	84	74	73
LCS 480-271827/2-A	Lab Control Sample	94	100	42	43
MB 480-271827/1-A	Method Blank	82	86	63	62
Surrogate Legend					
TCX = Tetrachloro-m-	xylene				

Page 70 of 125

Surrogate Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

DCB = DCB Decachlorobiphenyl

TestAmerica Job ID: 480-89971-1

3

4

7

10

11

4.0

11

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-271703/2-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 271991								Prep Type: 10 Prep Batch:	
Analysis Baton. 27 1001	MB	MB						r rep Buten.	
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		4.9	0.36	ug/Kg		10/28/15 17:37	10/29/15 22:44	1
1,1,2,2-Tetrachloroethane	ND		4.9	0.80	ug/Kg		10/28/15 17:37	10/29/15 22:44	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.9	1.1	ug/Kg		10/28/15 17:37	10/29/15 22:44	1
1,1,2-Trichloroethane	ND		4.9	0.64	ug/Kg		10/28/15 17:37	10/29/15 22:44	1
1,1-Dichloroethane	ND		4.9	0.60	ug/Kg		10/28/15 17:37	10/29/15 22:44	1
1,1-DCE	ND		4.9	0.60	ug/Kg		10/28/15 17:37	10/29/15 22:44	1
1,2,3-Trichlorobenzene	ND		4.9	0.52	ug/Kg		10/28/15 17:37	10/29/15 22:44	1
1,2,4-Trichlorobenzene	ND		4.9	0.30	ug/Kg		10/28/15 17:37	10/29/15 22:44	1
1,2-Dibromo-3-Chloropropane	ND		4.9	2.5	ug/Kg		10/28/15 17:37	10/29/15 22:44	1
1,2-Dichlorobenzene	ND		4.9	0.38	ug/Kg		10/28/15 17:37	10/29/15 22:44	1
1,2-Dichloroethane	ND		4.9	0.25	ug/Kg		10/28/15 17:37	10/29/15 22:44	1
1,2-Dichloropropane	ND		4.9	2.5	ug/Kg		10/28/15 17:37	10/29/15 22:44	1
1,3-Dichlorobenzene	ND		4.9	0.25	ug/Kg		10/28/15 17:37	10/29/15 22:44	1
1,4-Dichlorobenzene	ND		4.9	0.69	ug/Kg		10/28/15 17:37	10/29/15 22:44	1
1,4-Dioxane	ND		98	21	ug/Kg		10/28/15 17:37	10/29/15 22:44	1
2-Hexanone	ND		25		ug/Kg		10/28/15 17:37	10/29/15 22:44	1
Acetone	ND		25		ug/Kg		10/28/15 17:37	10/29/15 22:44	1
Benzene	ND		4.9		ug/Kg			10/29/15 22:44	1
Bromochloromethane	ND		4.9		ug/Kg			10/29/15 22:44	1
Bromoform	ND		4.9		ug/Kg			10/29/15 22:44	1
Bromomethane	ND		4.9		ug/Kg			10/29/15 22:44	1
Carbon disulfide	ND		4.9		ug/Kg			10/29/15 22:44	· · · · · · · · · · · · · · · · · · ·
Carbon tetrachloride	ND		4.9		ug/Kg			10/29/15 22:44	1
Chlorobenzene	ND		4.9		ug/Kg			10/29/15 22:44	1
Chloroethane	ND		4.9		ug/Kg			10/29/15 22:44	· · · · · · · · · · · · · · · · · · ·
Chloroform	ND		4.9		ug/Kg			10/29/15 22:44	1
Bromodichloromethane	ND		4.9		ug/Kg			10/29/15 22:44	1
Chloromethane	ND		4.9		ug/Kg			10/29/15 22:44	
cis-1,2-Dichloroethene	ND		4.9		ug/Kg			10/29/15 22:44	1
cis-1,3-Dichloropropene	ND		4.9		ug/Kg			10/29/15 22:44	. 1
1,2-Dibromoethane (EDB)	ND		4.9		ug/Kg			10/29/15 22:44	· · · · · · · · · · · · · · · · · · ·
	ND							10/29/15 22:44	1
Cyclohexane Dibromochloromethane	ND ND		4.9		ug/Kg			10/29/15 22:44	
Dichlorodifluoromethane	ND		4.9		ug/Kg			10/29/15 22:44	1 1
			4.9		ug/Kg				1
2-Butanone (MEK)	ND		25		ug/Kg			10/29/15 22:44	1
Ethylbenzene	ND		4.9		ug/Kg			10/29/15 22:44	1
4-Methyl-2-pentanone (MIBK)	ND		25		ug/Kg			10/29/15 22:44	1
Isopropylbenzene	ND		4.9		ug/Kg			10/29/15 22:44	1
Methyl acetate	ND		4.9		ug/Kg			10/29/15 22:44	1
Methyl tert-butyl ether	ND		4.9		ug/Kg			10/29/15 22:44	1
Methylcyclohexane	ND		4.9		ug/Kg			10/29/15 22:44	1
Methylene Chloride	ND		4.9		ug/Kg			10/29/15 22:44	1
Styrene	ND		4.9		ug/Kg			10/29/15 22:44	1
Tetrachloroethene	0.679	J	4.9		ug/Kg			10/29/15 22:44	1
Toluene	ND		4.9		ug/Kg			10/29/15 22:44	1
trans-1,2-Dichloroethene	ND		4.9		ug/Kg			10/29/15 22:44	1
trans-1,3-Dichloropropene	ND		4.9		ug/Kg			10/29/15 22:44	1
Trichloroethene	ND		4.9	1.1	ug/Kg		10/28/15 17:37	10/29/15 22:44	1

TestAmerica Buffalo

Page 72 of 125

11/12/2015

Analyzed

10/28/15 17:37 10/29/15 22:44

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Tentatively Identified Compound

4-Bromofluorobenzene (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Est. Result Qualifier

Lab Sample ID: MB 480-271703/2-A **Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA Analysis Batch: 271991 Prep Batch: 271703** MB MB

Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND	4.9	0.47	ug/Kg		10/28/15 17:37	10/29/15 22:44	1
Vinyl chloride	ND	4.9	0.60	ug/Kg		10/28/15 17:37	10/29/15 22:44	1
Xylenes, Total	ND	9.8	0.83	ug/Kg		10/28/15 17:37	10/29/15 22:44	1
Tetrahydrofuran	ND	9.8	2.9	ug/Kg		10/28/15 17:37	10/29/15 22:44	1
	MB MB							

Tentatively Identified Compound	None		ug/Kg	10/28/15 17:37	10/29/15 22:44	1
	МВ	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		64 - 126	10/28/15 17:37	10/29/15 22:44	1
Toluene-d8 (Surr)	102		71 - 125	10/28/15 17:37	10/29/15 22:44	1
Dibromofluoromethane (Surr)	100		60 140	10/28/15 17:37	10/20/15 22:44	1

72 - 126

Unit

CAS No.

Prepared

Lab Sample ID: LCS 480-271703/1-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 271991							Prep Batch: 271703
	Spike	LCS					%Rec.
Analyte	Added		Qualifier	Unit	_ D	%Rec	Limits
1,1,1-Trichloroethane	47.7	42.0		ug/Kg		88	77 - 121
1,1,2,2-Tetrachloroethane	47.7	54.2		ug/Kg		114	80 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	47.7	40.0		ug/Kg		84	60 - 140
ne							70.400
1,1,2-Trichloroethane	47.7	50.0		ug/Kg		105	78 ₋ 122
1,1-Dichloroethane	47.7	43.2		ug/Kg		91	73 - 126
1,1-DCE	47.7	42.2		ug/Kg		88	59 - 125
1,2,3-Trichlorobenzene	47.7	44.3		ug/Kg		93	60 - 120
1,2,4-Trichlorobenzene	47.7	46.0		ug/Kg		97	64 - 120
1,2-Dibromo-3-Chloropropane	47.7	55.6		ug/Kg		117	63 - 124
1,2-Dichlorobenzene	47.7	47.4		ug/Kg		99	75 - 120
1,2-Dichloroethane	47.7	43.9		ug/Kg		92	77 - 122
1,2-Dichloropropane	47.7	46.3		ug/Kg		97	75 - 124
1,3-Dichlorobenzene	47.7	47.0		ug/Kg		99	74 - 120
1,4-Dichlorobenzene	47.7	47.0		ug/Kg		98	73 - 120
2-Hexanone	239	293		ug/Kg		123	59 - 130
Acetone	239	243		ug/Kg		102	61 - 137
Benzene	47.7	45.4		ug/Kg		95	79 - 127
Bromochloromethane	47.7	46.6		ug/Kg		98	75 - 134
Bromoform	47.7	55.7		ug/Kg		117	68 - 126
Bromomethane	47.7	48.0		ug/Kg		101	37 - 149
Carbon disulfide	47.7	42.8		ug/Kg		90	64 - 131
Carbon tetrachloride	47.7	42.4		ug/Kg		89	75 - 135
Chlorobenzene	47.7	46.9		ug/Kg		98	76 - 124
Chloroethane	47.7	43.1		ug/Kg		90	69 ₋ 135
Chloroform	47.7	43.5		ug/Kg		91	80 - 118
Bromodichloromethane	47.7	47.6		ug/Kg		100	80 - 122
Chloromethane	47.7	37.6		ug/Kg		79	63 - 127
cis-1,2-Dichloroethene	47.7	45.5		ug/Kg		95	81 - 117

TestAmerica Buffalo

Dil Fac

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Matrix: Solid

Analysis Batch: 271991

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 271703

•	Spike	LCS LC	S		%Rec.
Analyte	Added	Result Qu	alifier Unit	D %Rec	Limits
cis-1,3-Dichloropropene	47.7	49.0	ug/Kg	103	82 - 120
1,2-Dibromoethane (EDB)	47.7	51.7	ug/Kg	108	78 ₋ 120
Cyclohexane	47.7	40.8	ug/Kg	85	65 - 106
Dibromochloromethane	47.7	52.2	ug/Kg	109	76 - 125
Dichlorodifluoromethane	47.7	34.1	ug/Kg	71	57 ₋ 142
2-Butanone (MEK)	239	293	ug/Kg	123	70 - 134
Ethylbenzene	47.7	46.3	ug/Kg	97	80 - 120
4-Methyl-2-pentanone (MIBK)	239	274	ug/Kg	115	65 - 133
Isopropylbenzene	47.7	47.1	ug/Kg	99	72 - 120
Methyl acetate	239	246	ug/Kg	103	55 ₋ 136
Methyl tert-butyl ether	47.7	48.0	ug/Kg	101	63 - 125
Methylcyclohexane	47.7	42.5	ug/Kg	89	60 - 140
Methylene Chloride	47.7	40.2	ug/Kg	84	61 - 127
Styrene	47.7	48.9	ug/Kg	103	80 - 120
Tetrachloroethene	47.7	45.4	ug/Kg	95	74 - 122
Toluene	47.7	45.9	ug/Kg	96	74 - 128
trans-1,2-Dichloroethene	47.7	44.3	ug/Kg	93	78 ₋ 126
trans-1,3-Dichloropropene	47.7	50.0	ug/Kg	105	73 - 123
Trichloroethene	47.7	45.8	ug/Kg	96	77 - 129
Trichlorofluoromethane	47.7	34.3	ug/Kg	72	65 ₋ 146
Vinyl chloride	47.7	37.0	ug/Kg	77	61 - 133
Xylenes, Total	95.4	94.1	ug/Kg	99	70 - 130
Tetrahydrofuran	95.4	113 *	ug/Kg	119	64 - 113

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		64 - 126
Toluene-d8 (Surr)	102		71 - 125
Dibromofluoromethane (Surr)	101		60 - 140
4-Bromofluorobenzene (Surr)	99		72 - 126

Lab Sample ID: 480-89971-17 MS

Matrix: Solid

Analysis Batch: 272282

Client Sample	ID: SWMU7-SS-BLDG23-08	
	Prep Type: Total/NA	

Prep Batch: 271703

7 maryono Batom 272202	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	ND		54.5	50.7		ug/Kg	₩	93	77 - 121
1,1,2,2-Tetrachloroethane	ND	F1	54.5	ND	F1	ug/Kg	≎	0	80 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		54.5	49.2		ug/Kg	≎	90	60 - 140
ne									
1,1,2-Trichloroethane	ND	F1	54.5	39.0	F1	ug/Kg	₩	72	78 - 122
1,1-Dichloroethane	ND		54.5	51.0		ug/Kg	≎	94	73 - 126
1,1-DCE	ND		54.5	60.2		ug/Kg	≎	111	59 - 125
1,2,3-Trichlorobenzene	ND	F1	54.5	37.2		ug/Kg	₽	68	60 - 120
1,2,4-Trichlorobenzene	ND		54.5	41.7		ug/Kg	≎	76	64 - 120
1,2-Dibromo-3-Chloropropane	ND	F1	54.5	28.6	F1	ug/Kg	₩	53	63 - 124
1,2-Dichlorobenzene	ND		54.5	49.6		ug/Kg	*	91	75 - 120
1,2-Dichloroethane	ND		54.5	45.1		ug/Kg	₩	83	77 - 122
1,2-Dichloropropane	ND		54.5	52.0		ug/Kg	≎	95	75 - 124

TestAmerica Buffalo

Page 74 of 125

3

5

9

11

13

14

MS MS

Spike

TestAmerica Job ID: 480-89971-1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Sample Sample

Lab Sample ID: 480-89971-17 MS

Matrix: Solid

Analysis Batch: 272282

Client Sample ID: SWMU7-SS-BLDG23-08
Prep Type: Total/NA

Prep Batch: 271703 %Rec.

	Sample	Sample	Spike	IVIO	IVIO				MREC.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,3-Dichlorobenzene	ND		54.5	50.8		ug/Kg	\	93	74 - 120	
1,4-Dichlorobenzene	ND		54.5	49.8		ug/Kg	₩	91	73 - 120	
2-Hexanone	ND		272	178		ug/Kg	☼	65	59 - 130	
Acetone	160	F1 F2	272	232	F1	ug/Kg	₩	27	61 - 137	
Benzene	ND		54.5	52.8		ug/Kg	☼	97	79 - 127	
Bromoform	ND		54.5	46.4		ug/Kg	₩	85	68 - 126	
Bromomethane	ND		54.5	57.0		ug/Kg	₩.	105	37 - 149	
Carbon disulfide	ND		54.5	43.9		ug/Kg	₩	81	64 - 131	
Carbon tetrachloride	ND		54.5	51.0		ug/Kg	₩	94	75 - 135	
Chlorobenzene	ND		54.5	54.0		ug/Kg	₩.	99	76 - 124	
Bromochloromethane	ND		54.5	49.4		ug/Kg	☼	91	75 - 134	
Dibromochloromethane	ND		54.5	51.2		ug/Kg	₩	94	76 - 125	
Chloroethane	ND		54.5	61.7		ug/Kg		113	69 - 135	
Chloroform	ND		54.5	50.9		ug/Kg	☼	93	80 - 118	
Chloromethane	ND		54.5	43.7		ug/Kg	☼	80	63 - 127	
cis-1,2-Dichloroethene	ND		54.5	51.8		ug/Kg		95	81 - 117	
cis-1,3-Dichloropropene	ND		54.5	50.8		ug/Kg	☼	93	82 - 120	
Cyclohexane	ND		54.5	47.0		ug/Kg	₩	86	65 - 106	
Bromodichloromethane	ND		54.5	49.6		ug/Kg		91	80 - 122	
Dichlorodifluoromethane	ND		54.5	41.8		ug/Kg	₩	77	57 - 142	
Ethylbenzene	ND		54.5	54.3		ug/Kg	₩	100	80 - 120	
1,2-Dibromoethane (EDB)	ND		54.5	46.9		ug/Kg		86	78 - 120	
Isopropylbenzene	ND		54.5	54.5		ug/Kg	₩	100	72 - 120	
Methyl acetate	ND	F1	272	ND	F1	ug/Kg	☼	0	55 - 136	
2-Butanone (MEK)	14	J F1	272	177	F1	ug/Kg	₩.	60	70 - 134	
4-Methyl-2-pentanone (MIBK)	ND		272	183		ug/Kg	₩	67	65 - 133	
Methyl tert-butyl ether	ND		54.5	44.7		ug/Kg	₩	82	63 - 125	
Methylcyclohexane	ND		54.5	46.6		ug/Kg	₩	86	60 - 140	
Methylene Chloride	ND		54.5	45.6		ug/Kg	☼	84	61 - 127	
Styrene	ND		54.5	54.9		ug/Kg	☼	101	80 - 120	
Tetrachloroethene	ND		54.5	53.3		ug/Kg	₩	98	74 - 122	
Toluene	ND		54.5	54.6		ug/Kg	☼	100	74 - 128	
trans-1,2-Dichloroethene	ND		54.5	50.8		ug/Kg	☼	93	78 - 126	
trans-1,3-Dichloropropene	ND		54.5	48.6		ug/Kg	₩.	89	73 - 123	
Trichloroethene	ND	F1	54.5	96.6	F1	ug/Kg	☼	177	77 - 129	
Trichlorofluoromethane	1.0	J	54.5	49.1		ug/Kg	₩	88	65 - 146	
Vinyl chloride	ND		54.5	45.0		ug/Kg		83	61 - 133	

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	59	X	60 - 140
1,2-Dichloroethane-d4 (Surr)	85		64 - 126
Toluene-d8 (Surr)	105		71 - 125
4-Bromofluorobenzene (Surr)	98		72 - 126

TestAmerica Buffalo

11/12/2015

Page 75 of 125

6

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-89971-1 Matrix: Solid						23 0	P-1	- .	NMU7-SS Prep Ty		
Analysis Batch: 272282									Prep Ba		71703
	-	Sample	Spike	_	MSD				%Rec.		RPD
Analyte		Qualifier	Added		Qualifier		D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		53.2	46.2		ug/Kg	<u>₩</u>	87	77 - 121	9	30
1,1,2,2-Tetrachloroethane	ND	F1	53.2	ND	F1	ug/Kg	₽	0	80 - 120	NC	30
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		53.2	43.4		ug/Kg	₽	82	60 - 140	12	30
ne 1,1,2-Trichloroethane	ND	F1	53.2	39.2	F1	ug/Kg		74	78 - 122	1	30
1,1-Dichloroethane	ND		53.2	47.5		ug/Kg	≎	89	73 - 126	7	30
1.1-DCE	ND		53.2	53.0		ug/Kg	≎	100	59 - 125	13	30
1,2,3-Trichlorobenzene	ND	F1	53.2	31.3	F1	ug/Kg		59	60 - 120	17	30
1,2,4-Trichlorobenzene	ND		53.2	34.1		ug/Kg	₩	64	64 - 120	20	30
1,2-Dibromo-3-Chloropropane	ND	F1	53.2	29.8	F1	ug/Kg	≎	56	63 - 124	4	30
1,2-Dichlorobenzene	ND		53.2	43.6		ug/Kg		82	75 - 120	13	30
1,2-Dichloroethane	ND		53.2	43.5		ug/Kg	☼	82	77 - 122	4	30
1,2-Dichloropropane	ND		53.2	49.1		ug/Kg	₽	92	75 - 124	6	30
1,3-Dichlorobenzene	ND		53.2	43.6		ug/Kg	\$	82	74 - 120	15	30
1,4-Dichlorobenzene	ND		53.2	43.2		ug/Kg	₩	81	73 - 120	14	30
2-Hexanone	ND		266	183		ug/Kg	≎	69	59 ₋ 130	3	30
Acetone	160	F1 F2	266	168	F1 F2	ug/Kg	₩.	4	61 - 137	32	30
Benzene	ND		53.2	48.7		ug/Kg	≎	92	79 - 127	8	30
Bromoform	ND		53.2	44.6		ug/Kg	₩	84	68 - 126	4	30
Bromomethane	ND		53.2	61.1		ug/Kg		115	37 - 149	7	30
Carbon disulfide	ND		53.2	38.4		ug/Kg	≎	72	64 - 131	13	30
Carbon tetrachloride	ND		53.2	45.7		ug/Kg	≎	86	75 - 135	11	30
Chlorobenzene	ND		53.2	47.2		ug/Kg		89	76 - 124	13	30
Bromochloromethane	ND		53.2	47.1		ug/Kg	≎	89	75 - 134	5	30
Dibromochloromethane	ND		53.2	48.2		ug/Kg	☼	91	76 - 125	6	30
Chloroethane	ND		53.2	54.6		ug/Kg		103	69 - 135	12	30
Chloroform	ND		53.2	47.5		ug/Kg	₩	89	80 - 118	7	30
Chloromethane	ND		53.2	41.1		ug/Kg	₩	77	63 - 127	6	30
cis-1,2-Dichloroethene	ND		53.2	47.6		ug/Kg	₩	89	81 - 117	9	30
cis-1,3-Dichloropropene	ND		53.2	48.2		ug/Kg	₩	91	82 - 120	5	30
Cyclohexane	ND		53.2	40.1		ug/Kg	≎	75	65 - 106	16	30
Bromodichloromethane	ND		53.2	48.3		ug/Kg	₩	91	80 - 122	3	30
Dichlorodifluoromethane	ND		53.2	38.0		ug/Kg	≎	71	57 - 142	9	30
Ethylbenzene	ND		53.2	46.5		ug/Kg	≎	87	80 - 120	15	30
1,2-Dibromoethane (EDB)	ND		53.2	44.5		ug/Kg	₩	84	78 - 120	5	30
Isopropylbenzene	ND		53.2	47.1		ug/Kg	₩	89	72 - 120	15	30
Methyl acetate	ND	F1	266	ND	F1	ug/Kg	☼	0	55 - 136	NC	30
2-Butanone (MEK)	14	J F1	266	174	F1	ug/Kg	₩	60	70 - 134	2	30
4-Methyl-2-pentanone (MIBK)	ND		266	186		ug/Kg	≎	70	65 - 133	1	30
Methyl tert-butyl ether	ND		53.2	45.3		ug/Kg	₩	85	63 - 125	1	30
Methylcyclohexane	ND		53.2	38.1		ug/Kg		72	60 - 140	20	30
Methylene Chloride	ND		53.2	43.2		ug/Kg	☼	81	61 - 127	5	30
Styrene	ND		53.2	48.0		ug/Kg	₩	90	80 - 120	13	30
Tetrachloroethene	ND		53.2	44.8		ug/Kg	₩	84	74 - 122	17	30
Toluene	ND		53.2	47.9		ug/Kg	₩	90	74 - 128	13	30
trans-1,2-Dichloroethene	ND		53.2	45.5		ug/Kg	₩	86	78 - 126	11	30
trans-1,3-Dichloropropene	ND		53.2	45.2		ug/Kg	₩	85	73 - 123	7	30
Trichloroethene	ND	F1	53.2	87.9	F1	ug/Kg	₩	165	77 - 129	9	30

TestAmerica Buffalo

Page 76 of 125

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-89971-17 MSD

Matrix: Solid

Analysis Batch: 272282

Client Sample ID: SWMU7-SS-BLDG23-08

Prep Type: Total/NA Prep Batch: 271703

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Trichlorofluoromethane	1.0	J	53.2	46.9		ug/Kg	₩	86	65 - 146	4	30
Vinyl chloride	ND		53.2	40.6		ug/Kg	\$	76	61 - 133	10	30
Tetrahydrofuran	ND	F1 *	106	68.6	*	ug/Kg	☼	65	64 - 113	8	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	69		60 - 140
1,2-Dichloroethane-d4 (Surr)	89		64 - 126
Toluene-d8 (Surr)	105		71 - 125
4-Bromofluorobenzene (Surr)	96		72 - 126

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 271725

Analysis Batch: 272282

Matrix: Solid

Lab Sample ID: MB 480-271725/3-A

•	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		4.9	0.36	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
1,1,2,2-Tetrachloroethane	ND		4.9	0.80	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.9	1.1	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
1,1,2-Trichloroethane	ND		4.9	0.64	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
1,1-Dichloroethane	ND		4.9	0.60	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
1,1-DCE	ND		4.9	0.60	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
1,2,3-Trichlorobenzene	ND		4.9	0.52	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
1,2,4-Trichlorobenzene	ND		4.9	0.30	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
1,2-Dibromo-3-Chloropropane	ND		4.9	2.5	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
1,2-Dichlorobenzene	ND		4.9	0.38	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
1,2-Dichloroethane	ND		4.9	0.25	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
1,2-Dichloropropane	ND		4.9	2.5	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
1,3-Dichlorobenzene	ND		4.9	0.25	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
1,4-Dichlorobenzene	ND		4.9	0.69	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
1,4-Dioxane	ND		98	21	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
2-Hexanone	ND		25	2.5	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Acetone	ND		25	4.1	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Benzene	ND		4.9	0.24	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Bromochloromethane	ND		4.9	0.35	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Bromoform	ND		4.9	2.5	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Bromomethane	ND		4.9	0.44	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Carbon disulfide	ND		4.9	2.5	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Carbon tetrachloride	ND		4.9	0.48	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Chlorobenzene	ND		4.9	0.65	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Chloroethane	ND		4.9	1.1	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Chloroform	ND		4.9	0.30	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Bromodichloromethane	ND		4.9	0.66	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Chloromethane	ND		4.9	0.30	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
cis-1,2-Dichloroethene	ND		4.9	0.63	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
cis-1,3-Dichloropropene	ND		4.9	0.71	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
1,2-Dibromoethane (EDB)	ND		4.9	0.63	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Cyclohexane	ND		4.9	0.69	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
	ND		4.9	0.63			10/28/15 18:07		

TestAmerica Buffalo

Page 77 of 125

11/12/2015

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

e

1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-271725/3-A

Matrix: Solid

Analysis Batch: 272282

MB MB

Analyte

Result Qualifier

RL MDL Unit

D Prepared Analyzed Dil Fac

	1410	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		4.9	0.41	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
2-Butanone (MEK)	ND		25	1.8	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Ethylbenzene	ND		4.9	0.34	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
4-Methyl-2-pentanone (MIBK)	ND		25	1.6	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Isopropylbenzene	ND		4.9	0.74	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Methyl acetate	ND		4.9	3.0	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Methyl tert-butyl ether	ND		4.9	0.48	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Methylcyclohexane	ND		4.9	0.75	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Methylene Chloride	ND		4.9	2.3	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Styrene	ND		4.9	0.25	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Tetrachloroethene	ND		4.9	0.66	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Toluene	ND		4.9	0.37	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
trans-1,2-Dichloroethene	ND		4.9	0.51	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
trans-1,3-Dichloropropene	ND		4.9	2.2	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Trichloroethene	ND		4.9	1.1	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Trichlorofluoromethane	ND		4.9	0.46	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Vinyl chloride	ND		4.9	0.60	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Xylenes, Total	ND		9.8	0.83	ug/Kg		10/28/15 18:07	10/30/15 21:24	1
Tetrahydrofuran	ND		9.8	2.8	ug/Kg		10/28/15 18:07	10/30/15 21:24	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94	64 - 126	10/28/15 18:07 10/30/15 21:24	1
Toluene-d8 (Surr)	101	71 - 125	10/28/15 18:07 10/30/15 21:24	1
Dibromofluoromethane (Surr)	98	60 - 140	10/28/15 18:07 10/30/15 21:24	1
4-Bromofluorobenzene (Surr)	96	72 - 126	10/28/15 18:07 10/30/15 21:24	1

Lab Sample ID: LCS 480-271725/1-A

Client Sample ID: Lab Control Sample
Matrix: Solid

Prep Type: Total/NA

Matrix: Solid
Analysis Batch: 272282

Spike

Prep Type: Total/NA
Prep Batch: 271725
%Rec.

Analysis Baton. 272202	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	47.8	43.4	-	ug/Kg		91	77 - 121
1,1,2,2-Tetrachloroethane	47.8	50.2		ug/Kg		105	80 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	47.8	39.5		ug/Kg		83	60 - 140
ne 1,1,2-Trichloroethane	47.8	49.4		ug/Kg		103	78 ₋ 122
1,1-Dichloroethane	47.8	44.9		ug/Kg		94	73 - 126
1,1-DCE	47.8	43.7		ug/Kg		91	59 - 125
1,2,3-Trichlorobenzene	47.8	46.1		ug/Kg		96	60 - 120
1,2,4-Trichlorobenzene	47.8	47.4		ug/Kg		99	64 - 120
1,2-Dibromo-3-Chloropropane	47.8	50.5		ug/Kg		106	63 - 124
1,2-Dichlorobenzene	47.8	48.2		ug/Kg		101	75 - 120
1,2-Dichloroethane	47.8	44.1		ug/Kg		92	77 - 122
1,2-Dichloropropane	47.8	47.1		ug/Kg		99	75 - 124
1,3-Dichlorobenzene	47.8	48.2		ug/Kg		101	74 - 120

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-271725/1-A

Matrix: Solid

Methylcyclohexane

Methylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

Tetrahydrofuran

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

Styrene

Toluene

Analysis Batch: 272282

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 271725

88

86

106

98

98

97

107

98

76

81

102

100

60 - 140

61 - 127

80 - 120

74 - 122 74 - 128

78 - 126

73 - 123

77 - 129

65 - 146

61 - 133

70 - 130

64 - 113

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dichlorobenzene	47.8	47.9		ug/Kg		100	73 - 120	
2-Hexanone	239	253		ug/Kg		106	59 - 130	
Acetone	239	209		ug/Kg		88	61 - 137	
Benzene	47.8	46.9		ug/Kg		98	79 - 127	
Bromochloromethane	47.8	47.6		ug/Kg		100	75 - 134	
Bromoform	47.8	53.9		ug/Kg		113	68 - 126	
Bromomethane	47.8	53.0		ug/Kg		111	37 - 149	
Carbon disulfide	47.8	44.9		ug/Kg		94	64 - 131	
Carbon tetrachloride	47.8	43.5		ug/Kg		91	75 - 135	
Chlorobenzene	47.8	48.5		ug/Kg		101	76 - 124	
Chloroethane	47.8	47.8		ug/Kg		100	69 - 135	
Chloroform	47.8	45.1		ug/Kg		94	80 - 118	
Bromodichloromethane	47.8	49.8		ug/Kg		104	80 - 122	
Chloromethane	47.8	39.5		ug/Kg		83	63 - 127	
cis-1,2-Dichloroethene	47.8	47.0		ug/Kg		98	81 - 117	
cis-1,3-Dichloropropene	47.8	50.2		ug/Kg		105	82 - 120	
1,2-Dibromoethane (EDB)	47.8	50.4		ug/Kg		105	78 - 120	
Cyclohexane	47.8	40.7		ug/Kg		85	65 - 106	
Dibromochloromethane	47.8	52.4		ug/Kg		110	76 - 125	
Dichlorodifluoromethane	47.8	35.1		ug/Kg		73	57 - 142	
2-Butanone (MEK)	239	246		ug/Kg		103	70 - 134	
Ethylbenzene	47.8	48.1		ug/Kg		101	80 - 120	
4-Methyl-2-pentanone (MIBK)	239	240		ug/Kg		100	65 - 133	
Isopropylbenzene	47.8	48.4		ug/Kg		101	72 - 120	
Methyl acetate	239	214		ug/Kg		90	55 - 136	
Methyl tert-butyl ether	47.8	47.4		ug/Kg		99	63 - 125	

47.8

47.8

47.8

47.8

47.8

47.8

47.8

47.8

47.8

47.8

95.6

95.6

42.1

41.2

50.6

46.7

47.1

46.2

51.1

46.9

36.1

38.8

97.5

95.9

ug/Kg

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		64 - 126
Toluene-d8 (Surr)	101		71 - 125
Dibromofluoromethane (Surr)	98		60 - 140
4-Bromofluorobenzene (Surr)	98		72 - 126

TestAmerica Buffalo

Page 79 of 125

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 480-271725/2-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 272282 Prep Batch: 271725** Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Unit %Rec Limits RPD Limit **Analyte** 49.9 1,1,1-Trichloroethane 43.8 ug/Kg 88 77 - 1211 20 49.9 53.5 107 1,1,2,2-Tetrachloroethane ug/Kg 80 - 120 6 20 49.9 39.5 79 60 - 14020 1,1,2-Trichloro-1,2,2-trifluoroetha ug/Kg 0 1,1,2-Trichloroethane 49.9 50.4 101 78 - 122 2 20 ug/Kg 1,1-Dichloroethane 49.9 44.9 90 73 - 126 0 20 ug/Kg 20 1.1-DCE 49 9 43 9 88 59 - 125O ug/Kg 1,2,3-Trichlorobenzene 49.9 47.5 ug/Kg 95 60 - 1203 20 1.2.4-Trichlorobenzene 49.9 48.4 ug/Kg 97 64 - 1202 20 1,2-Dibromo-3-Chloropropane 49.9 52.9 ug/Kg 106 63 - 124 5 20 1,2-Dichlorobenzene 49.9 49.4 ug/Kg 99 75 - 120 20 1,2-Dichloroethane 49.9 44.6 ug/Kg 89 77 - 122 20 1,2-Dichloropropane 49.9 48.2 ug/Kg 97 75 - 1242 20 2 20 49.9 49.3 99 74 - 1201,3-Dichlorobenzene ug/Kg 1,4-Dichlorobenzene 49.9 48.9 ug/Kg 98 73 - 1202 20 2-Hexanone 250 267 107 59 _ 130 5 20 ug/Kg 250 88 20 Acetone 218 ug/Kg 61 - 137 Benzene 49.9 47.1 94 79 - 127 20 ug/Kg Bromochloromethane 49.9 48.2 ug/Kg 97 75 - 13420 49.9 20 Bromoform 56.3 113 68 - 126 ug/Kg Bromomethane 49.9 55.1 110 37 - 14920 ug/Kg Carbon disulfide 49.9 45.5 91 20 ug/Kg 64 - 131Carbon tetrachloride 49.9 44.2 ug/Kg 89 75 - 135 20 Chlorobenzene 49.9 48.9 98 76 - 124 20 ug/Kg Chloroethane 49.9 46.3 ug/Kg 93 69 - 135 3 20 Chloroform 49.9 45.5 ug/Kg 91 80 - 118 20 49.9 100 80 - 122 20 Bromodichloromethane 49.7 ug/Kg Chloromethane 49.9 39.3 ug/Kg 79 63 - 12720 cis-1,2-Dichloroethene 20 49 9 95 47 4 ug/Kg 81 - 117 cis-1,3-Dichloropropene 49.9 512 ug/Kg 103 82 - 120 20 1,2-Dibromoethane (EDB) 49.9 51.7 104 78 - 120 3 20 ug/Kg Cyclohexane 49.9 40.8 ug/Kg 82 65 - 106 0 20 Dibromochloromethane 49.9 53 4 107 76 - 1252 20 ug/Kg Dichlorodifluoromethane 49.9 35.3 ug/Kg 71 57 - 142 20 2-Butanone (MEK) 250 256 103 70 - 134 20 ug/Kg Ethylbenzene 49.9 48.3 ug/Kg 97 80 - 1200 20 4-Methyl-2-pentanone (MIBK) 250 251 ug/Kg 100 65 - 13320 2 20 Isopropylbenzene 49.9 49.2 ug/Kg 99 72 - 120250 90 20 Methyl acetate 226 ug/Kg 55 - 136 Methyl tert-butyl ether 49.9 49.0 98 63 - 1253 20 ug/Kg Methylcyclohexane 49.9 84 20 41.7 ug/Kg 60 - 140 Methylene Chloride 49.9 84 61 - 12720 41.7 ug/Kg Styrene 49.9 50.9 102 80 - 12020 ug/Kg 74 - 122 Tetrachloroethene 49.9 46.5 ug/Kg 93 n 20 Toluene 49.9 47.6 95 74 - 128 20 ug/Kg 49.9 46.2 93 20 trans-1,2-Dichloroethene ug/Kg 78 - 126O trans-1,3-Dichloropropene 49.9 52.0 ug/Kg 104 73 - 123 2 20 Trichloroethene 49.9 47.0 94 77 - 129 20 ug/Kg

TestAmerica Buffalo

Page 80 of 125

3

7

0

10

12

13

Client: Woodard & Curran, Inc.

TestAmerica Job ID: 480-89971-1

Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 480-271725/2-A

Matrix: Solid

Analysis Batch: 272282

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 271725

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Trichlorofluoromethane	49.9	36.1		ug/Kg		72	65 - 146	0	20
Vinyl chloride	49.9	38.9		ug/Kg		78	61 - 133	0	20
Xylenes, Total	99.8	98.1		ug/Kg		98	70 - 130	1	20
Tetrahydrofuran	99.8	99.4		ug/Kg		100	64 - 113	4	20
	Analyte Trichlorofluoromethane Vinyl chloride Xylenes, Total	AnalyteAddedTrichlorofluoromethane49.9Vinyl chloride49.9Xylenes, Total99.8	Analyte Added Trichlorofluoromethane August Added Ages ult Trichlorofluoromethane 49.9 36.1 Vinyl chloride 49.9 38.9 Xylenes, Total 99.8 98.1	Analyte Added Trichlorofluoromethane Applied Trichlorofluoromethane </td <td>Analyte Added Result qualifier Unit Trichlorofluoromethane 49.9 36.1 ug/Kg Vinyl chloride 49.9 38.9 ug/Kg Xylenes, Total 99.8 98.1 ug/Kg</td> <td>Analyte Added Result Result Result (Qualifier Principle) Unit Principle D Trichlorofluoromethane 49.9 36.1 ug/Kg Vinyl chloride 49.9 38.9 ug/Kg Xylenes, Total 99.8 98.1 ug/Kg</td> <td>Analyte Added Result Qualifier Unit D %Rec Trichlorofluoromethane 49.9 36.1 ug/Kg 72 Vinyl chloride 49.9 38.9 ug/Kg 78 Xylenes, Total 99.8 98.1 ug/Kg 98</td> <td>Analyte Added Result Prichlorofluoromethane Qualifier Added Unit Upik D MRec Limits Trichlorofluoromethane 49.9 36.1 ug/Kg 72 65 - 146 Vinyl chloride 49.9 38.9 ug/Kg 78 61 - 133 Xylenes, Total 99.8 98.1 ug/Kg 98 70 - 130</td> <td>Analyte Added Result Public Qualifier Unit Unit Unit Unit Unit Unit Unit Unit</td>	Analyte Added Result qualifier Unit Trichlorofluoromethane 49.9 36.1 ug/Kg Vinyl chloride 49.9 38.9 ug/Kg Xylenes, Total 99.8 98.1 ug/Kg	Analyte Added Result Result Result (Qualifier Principle) Unit Principle D Trichlorofluoromethane 49.9 36.1 ug/Kg Vinyl chloride 49.9 38.9 ug/Kg Xylenes, Total 99.8 98.1 ug/Kg	Analyte Added Result Qualifier Unit D %Rec Trichlorofluoromethane 49.9 36.1 ug/Kg 72 Vinyl chloride 49.9 38.9 ug/Kg 78 Xylenes, Total 99.8 98.1 ug/Kg 98	Analyte Added Result Prichlorofluoromethane Qualifier Added Unit Upik D MRec Limits Trichlorofluoromethane 49.9 36.1 ug/Kg 72 65 - 146 Vinyl chloride 49.9 38.9 ug/Kg 78 61 - 133 Xylenes, Total 99.8 98.1 ug/Kg 98 70 - 130	Analyte Added Result Public Qualifier Unit Unit Unit Unit Unit Unit Unit Unit

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		64 - 126
Toluene-d8 (Surr)	102		71 - 125
Dibromofluoromethane (Surr)	100		60 - 140
4-Bromofluorobenzene (Surr)	99		72 - 126

Client Sample ID: Method Blank

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 273742

Lab Sample ID: MB 480-273742/7

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			11/07/15 12:05	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			11/07/15 12:05	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			11/07/15 12:05	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			11/07/15 12:05	1
1,1-DCA	ND		1.0	0.38	ug/L			11/07/15 12:05	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			11/07/15 12:05	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			11/07/15 12:05	1
1,2,3-Trichlorobenzene	ND		1.0	0.41	ug/L			11/07/15 12:05	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			11/07/15 12:05	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			11/07/15 12:05	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			11/07/15 12:05	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			11/07/15 12:05	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			11/07/15 12:05	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			11/07/15 12:05	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			11/07/15 12:05	1
1,4-Dioxane	ND		40	9.3	ug/L			11/07/15 12:05	1
2-Hexanone	ND		5.0	1.2	ug/L			11/07/15 12:05	1
Acetone	ND		10	3.0	ug/L			11/07/15 12:05	1
Benzene	ND		1.0	0.41	ug/L			11/07/15 12:05	1
Bromochloromethane	ND		1.0	0.87	ug/L			11/07/15 12:05	1
Bromoform	ND		1.0	0.26	ug/L			11/07/15 12:05	1
Bromomethane	ND		1.0	0.69	ug/L			11/07/15 12:05	1
Carbon disulfide	ND		1.0	0.19	ug/L			11/07/15 12:05	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			11/07/15 12:05	1
Chlorobenzene	ND		1.0	0.75	ug/L			11/07/15 12:05	1
Chloroethane	ND		1.0	0.32	ug/L			11/07/15 12:05	1
Chloroform	ND		1.0	0.34	ug/L			11/07/15 12:05	1
Bromodichloromethane	ND		1.0	0.39	ug/L			11/07/15 12:05	1
Chloromethane	ND		1.0	0.35	ug/L			11/07/15 12:05	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			11/07/15 12:05	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			11/07/15 12:05	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			11/07/15 12:05	1

TestAmerica Buffalo

Page 81 of 125

3

6

8

10

1 0

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-273742/7 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA Analysis Batch: 273742

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyclohexane	ND		1.0	0.18	ug/L			11/07/15 12:05	1
Dibromochloromethane	ND		1.0	0.32	ug/L			11/07/15 12:05	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			11/07/15 12:05	1
2-Butanone (MEK)	ND		10	1.3	ug/L			11/07/15 12:05	1
Ethylbenzene	ND		1.0	0.74	ug/L			11/07/15 12:05	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			11/07/15 12:05	1
Isopropylbenzene	ND		1.0	0.79	ug/L			11/07/15 12:05	1
Methyl acetate	ND		2.5	1.3	ug/L			11/07/15 12:05	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			11/07/15 12:05	1
Methylcyclohexane	ND		1.0	0.16	ug/L			11/07/15 12:05	1
Methylene Chloride	ND		1.0	0.44	ug/L			11/07/15 12:05	1
Styrene	ND		1.0	0.73	ug/L			11/07/15 12:05	1
Tetrachloroethene	ND		1.0	0.36	ug/L			11/07/15 12:05	1
Toluene	ND		1.0	0.51	ug/L			11/07/15 12:05	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			11/07/15 12:05	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			11/07/15 12:05	1
Trichloroethene	ND		1.0	0.46	ug/L			11/07/15 12:05	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			11/07/15 12:05	1
Vinyl chloride	ND		1.0	0.90	ug/L			11/07/15 12:05	1
Xylenes, Total	ND		2.0	0.66	ug/L			11/07/15 12:05	1
Tetrahydrofuran	ND		5.0	1.3	ug/L			11/07/15 12:05	1

	MB	MB							
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None	-	ug/L					11/07/15 12:05	1

	MB	MB					
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	98		66 - 137		11/07/15 12:05	1	
Toluene-d8 (Surr)	95		71 - 126		11/07/15 12:05	1	
Dibromofluoromethane (Surr)	93		60 - 140		11/07/15 12:05	1	
4-Bromofluorobenzene (Surr)	95		73 - 120		11/07/15 12:05	1	

Lab Sample ID: LCS 480-273742/5

Matrix: Water

Analysis Batch: 273742

/ illuly old Butolli 21 01 42								
•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	25.0	24.8		ug/L		99	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	25.9		ug/L		103	70 - 126	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	26.3		ug/L		105	52 - 148	
ne								
1,1,2-Trichloroethane	25.0	25.3		ug/L		101	76 - 122	
1,1-DCA	25.0	25.2		ug/L		101	71 - 129	
1,1-Dichloroethane	25.0	25.2		ug/L		101	71 - 129	
1,1-Dichloroethene	25.0	25.8		ug/L		103	58 - 121	
1,2,3-Trichlorobenzene	25.0	23.9		ug/L		96	63 - 138	
1,2,4-Trichlorobenzene	25.0	25.1		ug/L		100	70 - 122	
1,2-Dibromo-3-Chloropropane	25.0	25.1		ug/L		101	56 - 134	
1,2-Dichlorobenzene	25.0	24.7		ug/L		99	80 - 124	

TestAmerica Buffalo

Page 82 of 125

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-273742/5

Matrix: Water

Analysis Batch: 273742

Client Sample ID: Lab Control Sample Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dichloroethane	25.0	25.6		ug/L		102	75 - 127
1,2-Dichloropropane	25.0	24.5		ug/L		98	76 - 120
1,3-Dichlorobenzene	25.0	23.7		ug/L		95	77 - 120
1,4-Dichlorobenzene	25.0	24.5		ug/L		98	75 - 120
2-Hexanone	125	141		ug/L		113	65 - 127
Acetone	125	136		ug/L		109	56 - 142
Benzene	25.0	25.2		ug/L		101	71 - 124
Bromochloromethane	25.0	24.3		ug/L		97	72 - 130
Bromoform	25.0	22.7		ug/L		91	52 - 132
Bromomethane	25.0	28.0		ug/L		112	55 - 144
Carbon disulfide	25.0	24.5		ug/L		98	59 - 134
Carbon tetrachloride	25.0	25.1		ug/L		100	72 - 134
Chlorobenzene	25.0	24.6		ug/L		98	72 - 120
Chloroethane	25.0	28.8		ug/L		115	69 - 136
Chloroform	25.0	25.0		ug/L		100	73 - 127
Bromodichloromethane	25.0	24.0		ug/L		96	80 - 122
Chloromethane	25.0	18.9		ug/L		75	68 - 124
cis-1,2-Dichloroethene	25.0	23.5		ug/L		94	74 - 124
cis-1,3-Dichloropropene	25.0	24.5		ug/L		98	74 - 124
1,2-Dibromoethane (EDB)	25.0	24.5		ug/L		98	77 - 120
Cyclohexane	25.0	23.8		ug/L		95	59 - 135
Dibromochloromethane	25.0	23.5		ug/L		94	75 - 125
Dichlorodifluoromethane	25.0	16.4		ug/L		66	59 - 135
2-Butanone (MEK)	125	138		ug/L		111	57 - 140
Ethylbenzene	25.0	24.9		ug/L		100	77 - 123
4-Methyl-2-pentanone (MIBK)	125	128		ug/L		102	71 - 125
Isopropylbenzene	25.0	25.1		ug/L		100	77 - 122
Methyl acetate	125	138		ug/L		110	74 - 133
Methyl tert-butyl ether	25.0	24.6		ug/L		98	64 - 127
Methylcyclohexane	25.0	25.1		ug/L		100	61 - 138
Methylene Chloride	25.0	26.0		ug/L		104	57 - 132
Styrene	25.0	24.1		ug/L		97	70 - 130
Tetrachloroethene	25.0	24.3		ug/L		97	74 - 122
Toluene	25.0	24.0		ug/L		96	80 - 122
trans-1,2-Dichloroethene	25.0	24.6		ug/L		98	73 - 127
trans-1,3-Dichloropropene	25.0	25.1		ug/L		100	72 - 123
Trichloroethene	25.0	23.7		ug/L		95	74 - 123
Trichlorofluoromethane	25.0	25.9		ug/L		104	62 - 152
Vinyl chloride	25.0	20.8		ug/L		83	65 - 133
Xylenes, Total	50.0	47.5		ug/L		95	76 - 122
Tetrahydrofuran	50.0	50.5		ug/L		101	62 - 132

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		66 - 137
Toluene-d8 (Surr)	95		71 - 126
Dibromofluoromethane (Surr)	97		60 - 140
4-Bromofluorobenzene (Surr)	99		73 - 120

TestAmerica Buffalo

6

8

10

12

4 4

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-271824/1-A

Matrix: Water

Analysis Batch: 273999

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 271824

Watrix: water								Prep Type: 10	
Analysis Batch: 273999	MB	МВ						Prep Batch:	2/1824
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		5.0	0.48	ug/L		10/29/15 08:34	11/10/15 14:58	1
2,4,6-Trichlorophenol	ND		5.0	0.61	ug/L		10/29/15 08:34	11/10/15 14:58	1
2,4-Dichlorophenol	ND		5.0	0.51	ug/L		10/29/15 08:34	11/10/15 14:58	1
2,4-Dimethylphenol	ND		5.0	0.50	ug/L		10/29/15 08:34	11/10/15 14:58	1
2,4-Dinitrophenol	ND		10	2.2	ug/L		10/29/15 08:34	11/10/15 14:58	1
2,4-Dinitrotoluene	ND		5.0	0.45	ug/L		10/29/15 08:34	11/10/15 14:58	1
2,6-Dinitrotoluene	ND		5.0	0.40	ug/L		10/29/15 08:34	11/10/15 14:58	1
2-Chloronaphthalene	ND		5.0	0.46	ug/L		10/29/15 08:34	11/10/15 14:58	1
2-Chlorophenol	ND		5.0	0.53	ug/L		10/29/15 08:34	11/10/15 14:58	1
2-Methylnaphthalene	ND		5.0	0.60	ug/L		10/29/15 08:34	11/10/15 14:58	1
2-Methylphenol	ND		5.0		ug/L		10/29/15 08:34	11/10/15 14:58	1
2-Nitroaniline	ND		10		ug/L		10/29/15 08:34	11/10/15 14:58	1
2-Nitrophenol	ND		5.0		ug/L		10/29/15 08:34	11/10/15 14:58	1
3,3'-Dichlorobenzidine	ND		5.0		ug/L			11/10/15 14:58	1
3-Nitroaniline	ND		10		ug/L			11/10/15 14:58	1
4,6-Dinitro-2-methylphenol	ND		10		ug/L			11/10/15 14:58	1
4-Bromophenyl phenyl ether	ND		5.0		ug/L			11/10/15 14:58	1
4-Chloro-3-methylphenol	ND		5.0		ug/L			11/10/15 14:58	1
4-Chloroaniline	ND		5.0		ug/L			11/10/15 14:58	
4-Chlorophenyl phenyl ether	ND		5.0		ug/L			11/10/15 14:58	
4-Methylphenol	ND		10		ug/L			11/10/15 14:58	1
4-Nitroaniline	ND		10		ug/L			11/10/15 14:58	
4-Nitrophenol	ND.		10		ug/L			11/10/15 14:58	1
Acenaphthene	ND		5.0		ug/L			11/10/15 14:58	1
Acenaphthylene	ND		5.0		ug/L			11/10/15 14:58	· · · · · · · · · · · · · · · · · · ·
Acetophenone	ND.		5.0		ug/L			11/10/15 14:58	1
Anthracene	ND.		5.0		ug/L			11/10/15 14:58	1
Atrazine	ND		5.0		ug/L			11/10/15 14:58	
Benzaldehyde	ND.		5.0		ug/L			11/10/15 14:58	1
Benzo(a)anthracene	ND		5.0		ug/L			11/10/15 14:58	1
Benzo(a)pyrene	ND		5.0		ug/L			11/10/15 14:58	
,	ND ND		5.0		_			11/10/15 14:58	
Benzo(b)fluoranthene	ND ND		5.0		ug/L			11/10/15 14:58	1
Benzo(g,h,i)perylene	ND		5.0		ug/L			11/10/15 14:58	1 1
Benzo(k)fluoranthene	ND ND		5.0	0.73	ug/L			11/10/15 14:58	1
Biphenyl					•				1
bis (2-chloroisopropyl) ether	ND		5.0		ug/L			11/10/15 14:58 11/10/15 14:58	1
Bis(2-chloroethoxy)methane	ND		5.0		ug/L				1
Bis(2-chloroethyl)ether	ND		5.0		ug/L			11/10/15 14:58	1
Bis(2-ethylhexyl) phthalate	ND 0.074		5.0		ug/L			11/10/15 14:58	1
Butyl benzyl phthalate	0.671	J	5.0		ug/L			11/10/15 14:58	1
Caprolactam	ND		5.0		ug/L			11/10/15 14:58	1
Carbazole	ND		5.0		ug/L			11/10/15 14:58	1
Chrysene	ND		5.0		ug/L			11/10/15 14:58	1
Dibenz(a,h)anthracene	ND		5.0		ug/L			11/10/15 14:58	1
Dibenzofuran	ND		10		ug/L			11/10/15 14:58	1
Diethyl phthalate	ND		5.0		ug/L			11/10/15 14:58	1
Dimethyl phthalate	ND		5.0		ug/L			11/10/15 14:58	1
Di-n-butyl phthalate	ND		5.0	0.31	ug/L		10/29/15 08:34	11/10/15 14:58	1

TestAmerica Buffalo

Page 84 of 125

3

_

6

Ö

10

12

1 1

Client Sample ID: Method Blank

10/29/15 08:34 11/10/15 14:58

10/29/15 08:34 11/10/15 14:58

Client Sample ID: Lab Control Sample

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Lab Sample ID: MB 480-271824/1-A

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

ND

ND

MR MR

Matrix: Water Prep Type: Total/NA **Analysis Batch: 273999 Prep Batch: 271824** MB MB **MDL** Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac Di-n-octyl phthalate $\overline{\mathsf{ND}}$ 5.0 0.47 ug/L 10/29/15 08:34 11/10/15 14:58 Fluoranthene ND 5.0 0.40 ug/L 10/29/15 08:34 11/10/15 14:58 Fluorene NΠ 5.0 0.36 ug/L 10/29/15 08:34 11/10/15 14:58 Hexachlorobenzene ND 5.0 0.51 ug/L 10/29/15 08:34 11/10/15 14:58 Hexachlorobutadiene ND 5.0 0.68 ug/L 10/29/15 08:34 11/10/15 14:58 Hexachlorocyclopentadiene ND 5.0 0.59 ug/L 10/29/15 08:34 11/10/15 14:58 Hexachloroethane ND 5.0 10/29/15 08:34 11/10/15 14:58 0.59 ug/L

Indeno(1,2,3-cd)pyrene ND 5.0 0.47 ug/L 10/29/15 08:34 11/10/15 14:58 Isophorone ND 5.0 0.43 ug/L 10/29/15 08:34 11/10/15 14:58 ND 5.0 Naphthalene 0.76 ug/L 10/29/15 08:34 11/10/15 14:58 Nitrobenzene ND 5.0 0.29 ug/L 10/29/15 08:34 11/10/15 14:58 ND 5.0 0.54 ug/L N-Nitrosodi-n-propylamine 10/29/15 08:34 11/10/15 14:58 ND 5.0 10/29/15 08:34 11/10/15 14:58 N-Nitrosodiphenylamine 0.51 ug/L ND 2.2 Pentachlorophenol 10 10/29/15 08:34 11/10/15 14:58 ug/L Phenanthrene ND 5.0 ug/L 10/29/15 08:34 11/10/15 14:58 0.44 Phenol ND 5.0 0.39 ug/L 10/29/15 08:34 11/10/15 14:58

MB MB Tentatively Identified Compound Est. Result Qualifier RT CAS No. Dil Fac Unit Prepared Analyzed Cyclohexane 10.1 TJN ug/L 3.50 110-82-7 10/29/15 08:34 11/10/15 14:58 Unknown 126 TJ ug/L 3.67 10/29/15 08:34 11/10/15 14:58 Cyclotetrasiloxane, octamethyl-33.5 TJN 6.46 556-67-2 10/29/15 08:34 11/10/15 14:58 ug/L Cyclopentasiloxane, decamethyl-26.9 TJN ug/L 7.40 541-02-6 10/29/15 08:34 11/10/15 14:58 Unknown 35.0 TJ ug/L 11.70 10/29/15 08:34 11/10/15 14:58 Unknown 14.3 TJ 12.32 10/29/15 08:34 11/10/15 14:58 ug/L Unknown 19.8 TJ ug/L 12.77 10/29/15 08:34 11/10/15 14:58 Unknown 19.3 TJ ua/L 13.55 10/29/15 08:34 11/10/15 14:58 Unknown 10/29/15 08:34 11/10/15 14:58 8.64 T J ug/L 16.10 Unknown 12.7 TJ ug/L 16.53 10/29/15 08:34 11/10/15 14:58

5.0

20

0.34 ug/L

1.7 ug/L

	IVID	IVID					
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
2,4,6-Tribromophenol	104		52 - 132	10/29/15 08:34	11/10/15 14:58	1	
2-Fluorobiphenyl	73		48 - 120	10/29/15 08:34	11/10/15 14:58	1	
2-Fluorophenol	44		20 - 120	10/29/15 08:34	11/10/15 14:58	1	
Nitrobenzene-d5	69		46 - 120	10/29/15 08:34	11/10/15 14:58	1	
p-Terphenyl-d14	95		67 - 150	10/29/15 08:34	11/10/15 14:58	1	
Phenol-d5	29		16 - 120	10/29/15 08:34	11/10/15 14:58	1	

Lab Sample ID: LCS 480-271824/2-A

Pyrene

Dimethylformamide

Matrix: Water Analysis Batch: 273019							Prep Type: Total/NA Prep Batch: 271824
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2,4,5-Trichlorophenol	16.0	15.0		ug/L		93	65 - 126
2,4,6-Trichlorophenol	16.0	14.5		ug/L		91	64 - 120
2,4-Dichlorophenol	16.0	13.6		ug/L		85	64 - 120

TestAmerica Buffalo

Page 85 of 125

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-271824/2-A

Matrix: Water

Analysis Batch: 273019

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 271824

Analysis Batch: 273019	Spike	LCS	LCS				Prep Batch: %Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4-Dimethylphenol	16.0	10.2		ug/L		64	57 - 120	
2,4-Dinitrophenol	32.0	24.8		ug/L		77	42 - 153	
2,4-Dinitrotoluene	16.0	14.7		ug/L		92	65 - 154	
2,6-Dinitrotoluene	16.0	13.8		ug/L		87	74 - 134	
2-Chloronaphthalene	16.0	12.1		ug/L		76	41 - 124	
2-Chlorophenol	16.0	10.6		ug/L		66	48 - 120	
2-Methylnaphthalene	16.0	12.4		ug/L		77	34 - 122	
2-Methylphenol	16.0	10.2		ug/L		64	39 - 120	
2-Nitroaniline	16.0	14.1		ug/L		88	67 - 136	
2-Nitrophenol	16.0	12.7		ug/L		79	59 - 120	
3,3'-Dichlorobenzidine	32.0	28.7		ug/L		90	33 - 140	
3-Nitroaniline	16.0	11.9		ug/L		74	28 - 130	
4,6-Dinitro-2-methylphenol	32.0	27.5		ug/L		86	64 - 159	
4-Bromophenyl phenyl ether	16.0	13.9		ug/L		87	71 - 126	
4-Chloro-3-methylphenol	16.0	15.7		ug/L		98	64 - 120	
4-Chloroaniline	16.0	7.85		ug/L		49	10 - 130	
4-Chlorophenyl phenyl ether	16.0	14.0		ug/L		87	71 - 122	
4-Methylphenol	16.0	10.7		ug/L		67	39 - 120	
4-Nitroaniline	16.0	12.9		ug/L		81	47 - 130	
4-Nitrophenol	32.0	21.5		ug/L		67	16 - 120	
Acenaphthene	16.0	13.0		ug/L		81	60 - 120	
Acenaphthylene	16.0	13.5		ug/L		84	63 - 120	
Acetophenone	16.0	12.2		ug/L		76	45 - 120	
Anthracene	16.0	13.5		ug/L		84	58 ₋ 148	
Atrazine	32.0	33.0		ug/L		103	56 - 179	
Benzaldehyde	32.0	11.4		ug/L		36	30 - 140	
Benzo(a)anthracene	16.0	14.2		ug/L		89	55 ₋ 151	
Benzo(a)pyrene	16.0	13.9		ug/L		87	60 - 145	
Benzo(b)fluoranthene	16.0	14.1		ug/L		88	54 - 140	
Benzo(g,h,i)perylene	16.0	16.6		ug/L		104	66 - 152	
Benzo(k)fluoranthene	16.0	13.9		ug/L		87	51 - 153	
Biphenyl	16.0	12.2		ug/L		76	30 - 140	
bis (2-chloroisopropyl) ether	16.0	9.44		ug/L		59	28 - 136	
Bis(2-chloroethoxy)methane	16.0	11.3		ug/L		71	50 - 128	
Bis(2-chloroethyl)ether	16.0	10.1		ug/L		63	51 - 120	
Bis(2-ethylhexyl) phthalate	16.0	15.7		ug/L		98	53 - 158	
Butyl benzyl phthalate	16.0	15.7		ug/L		100	58 ₋ 163	
Caprolactam	32.0	12.1		ug/L		38	14 - 130	
Carbazole	16.0	14.0		ug/L		87	59 - 148	
Chrysene	16.0	14.3		ug/L		89	69 - 140	
Dibenz(a,h)anthracene	16.0	15.5		ug/L		97	57 - 148	
Dibenzofuran	16.0	14.0		ug/L ug/L		97 88	49 ₋ 137	
Diethyl phthalate	16.0	10.4				65	59 - 146	
Dimethyl phthalate	16.0	14.5		ug/L		90	59 - 140 59 - 141	
Di-n-butyl phthalate	16.0	15.0		ug/L ug/L		93	59 - 141 58 - 149	
Di-n-octyl phthalate	16.0					96		
Fluoranthene	16.0	15.4 14.2		ug/L		96 89	55 - 167 55 - 147	
				ug/L				
Fluorene	16.0	13.7		ug/L		85	55 - 143	

TestAmerica Buffalo

Page 86 of 125

9

3

5

7

O

10

12

11

Spike

Added

16.0

16.0

16.0

16.0

16.0

16.0

16.0

16.0

16.0

32.0

32.0

16.0

16.0

16.0

LCS LCS

14.0

11.7

8.37

10.4

15.7

12.0

11.8

11.9

11.6

27.3

21.1

13.8

6.89

14.9

ug/L

ug/L

TestAmerica Job ID: 480-89971-1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-271824/2-A

Matrix: Water

Hexachlorobenzene

Hexachlorobutadiene

Indeno(1,2,3-cd)pyrene

N-Nitrosodi-n-propylamine

N-Nitrosodiphenylamine

Pentachlorophenol

Phenanthrene

Phenol

Pyrene

Hexachloroethane

Isophorone

Naphthalene

Nitrobenzene

Hexachlorocyclopentadiene

Analyte

Analysis Batch: 273019

Client Sample ID: La	ab Control Sample
Pr	ep Type: Total/NA
P	ren Batch: 271824

%Rec. Result Qualifier Unit D %Rec Limits ug/L 88 14 - 130 ug/L 73 14 - 130 52 13 - 130 ug/L ug/L 65 14 - 130 ug/L 98 69 - 146

ug/L 75 48 - 133 ug/L 74 35 - 130 ug/L 74 45 - 123 73 ug/L 56 - 120 85 25 - 125 ug/L ug/L 66 39 - 136 ug/L 86 57 - 147

43

93

Client Sample ID: Lab Control Sample Dup

17 - 120

58 - 136

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	105		52 - 132
2-Fluorobiphenyl	77		48 - 120
2-Fluorophenol	51		20 - 120
Nitrobenzene-d5	74		46 - 120
p-Terphenyl-d14	96		67 - 150
Phenol-d5	42		16 - 120

Lab Sample ID: LCSD 480-271824/3-A

Matrix: Water Analysis Batch: 273019							Prep Typ		
Analysis Baton. 2700 to	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4,5-Trichlorophenol	16.0	14.6		ug/L		91	65 - 126	2	18
2,4,6-Trichlorophenol	16.0	14.3		ug/L		89	64 - 120	1	19
2,4-Dichlorophenol	16.0	14.2		ug/L		89	64 - 120	4	19
2,4-Dimethylphenol	16.0	11.7		ug/L		73	57 - 120	14	42
2,4-Dinitrophenol	32.0	25.6		ug/L		80	42 - 153	3	22
2,4-Dinitrotoluene	16.0	14.3		ug/L		89	65 - 154	3	20
2,6-Dinitrotoluene	16.0	14.1		ug/L		88	74 - 134	2	15
2-Chloronaphthalene	16.0	12.1		ug/L		76	41 - 124	0	21
2-Chlorophenol	16.0	13.6		ug/L		85	48 - 120	25	25
2-Methylnaphthalene	16.0	13.2		ug/L		82	34 - 122	6	21
2-Methylphenol	16.0	15.5	*	ug/L		97	39 - 120	41	27
2-Nitroaniline	16.0	13.3		ug/L		83	67 - 136	6	15
2-Nitrophenol	16.0	13.0		ug/L		81	59 - 120	3	18
3,3'-Dichlorobenzidine	32.0	28.3		ug/L		88	33 - 140	1	25
3-Nitroaniline	16.0	11.1		ug/L		70	28 - 130	7	19
4,6-Dinitro-2-methylphenol	32.0	27.6		ug/L		86	64 - 159	0	15
4-Bromophenyl phenyl ether	16.0	14.0		ug/L		88	71 - 126	0	15
4-Chloro-3-methylphenol	16.0	17.7		ug/L		111	64 - 120	12	27
4-Chloroaniline	16.0	8.18		ug/L		51	10 - 130	4	22
4-Chlorophenyl phenyl ether	16.0	13.9		ug/L		87	71 - 122	0	16

Client: Woodard & Curran, Inc.

Project/Site: Rouses Point

Surrogate

2,4,6-Tribromophenol

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-271824/3-A Matrix: Water				onent Sa	anipie	ID. Lät	Control Prep Ty	pe: Tot	al/NA
Analysis Batch: 273019	Spike	LCSD	LCSD				Prep Ba	atch: 27	71824 RPC
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
4-Methylphenol	16.0	16.8	*	ug/L		105	39 - 120	45	24
4-Nitroaniline	16.0	12.9		ug/L		81	47 - 130	0	24
4-Nitrophenol	32.0	23.3		ug/L		73	16 - 120	8	48
Acenaphthene	16.0	13.0		ug/L		81	60 - 120	0	24
Acenaphthylene	16.0	13.2		ug/L		83	63 - 120	2	18
Acetophenone	16.0	18.0	*	ug/L		113	45 - 120	39	20
Anthracene	16.0	13.7		ug/L		86	58 - 148	2	1:
Atrazine	32.0	32.8		ug/L		103	56 - 179	<u>-</u>	20
Benzaldehyde	32.0	11.7		ug/L		37	30 - 140	3	20
Benzo(a)anthracene	16.0	14.3		ug/L		89	55 - 151	1	1:
Benzo(a)pyrene	16.0	13.9		ug/L		87	60 - 145	0	15
Benzo(b)fluoranthene	16.0	14.2		ug/L		89	54 ₋ 140	0	15
Benzo(g,h,i)perylene	16.0	16.5		ug/L		103	66 - 152	0	15
Benzo(k)fluoranthene	16.0	14.0		ug/L		87	51 - 153	1	22
Biphenyl	16.0	12.2		ug/L		76	30 - 140	0	20
bis (2-chloroisopropyl) ether	16.0	10.9		ug/L		68	28 - 136	14	24
Bis(2-chloroethoxy)methane	16.0	12.0		ug/L		75	50 - 128	6	<u>2</u> -
Bis(2-chloroethyl)ether	16.0	11.4		ug/L		73	51 - 120	12	2
Bis(2-ethylhexyl) phthalate	16.0	15.6		ug/L		98	53 - 158	1	15
Butyl benzyl phthalate	16.0	15.7		ug/L		98	58 ₋ 163	2	16
Caprolactam	32.0	12.4		ug/L		39	14 - 130	3	20
Carbazole	16.0	14.3		ug/L ug/L		89	59 ₋ 148	2	20
Chrysene	16.0	14.4		ug/L		90	69 - 140	1	15
Dibenz(a,h)anthracene	16.0	15.5		ug/L		97	57 ₋ 148	0	15
Dibenz(a,r)antinacene Dibenzofuran	16.0	13.6		ug/L ug/L		85	49 - 137	4	15
Diethyl phthalate	16.0	10.2		ug/L		64	59 - 146	2	15
	16.0	14.3		_		89	59 - 140 59 - 141	1	15
Dimethyl phthalate	16.0	15.1		ug/L ug/L		94	59 - 141 58 - 149	1	15
Di-n-butyl phthalate Di-n-octyl phthalate	16.0	15.1		ū			55 ₋ 149		16
Fluoranthene	16.0	14.7		ug/L		97 92	55 ₋ 167	3	15
				ug/L				3 1	
Fluorene Hexachlorobenzene	16.0 16.0	13.5 14.5		ug/L		85 91	55 - 143 14 - 130		15
	16.0	14.5		ug/L		64	14 - 130 14 - 130	14	44
Hexachlorobutadiene				ug/L			14 - 130 13 - 130		
Hexachlorocyclopentadiene	16.0	8.40		ug/L		52		0	49
Hexachloroethane	16.0	11.1		ug/L		70	14 - 130	7	46
Indeno(1,2,3-cd)pyrene	16.0	15.6		ug/L		97	69 - 146	1	15
Isophorone	16.0	12.8		ug/L		80	48 - 133	6	17
Naphthalene	16.0	11.7		ug/L		73	35 - 130	0	29
Nitrobenzene	16.0	11.6	*	ug/L		73	45 ₋ 123	2	24
N-Nitrosodi-n-propylamine	16.0	17.2		ug/L		108	56 - 120	39	3′
N-Nitrosodiphenylamine	32.0	27.5		ug/L		86	25 - 125	1	15
Pentachlorophenol	32.0	22.3		ug/L		70	39 - 136	5	37
Phenanthrene	16.0	14.0		ug/L		88	57 - 147	2	15
Phenol	16.0	11.1	r.	ug/L		69	17 - 120	47	34
Pyrene	16.0	15.1		ug/L		95	58 ₋ 136	2	19

TestAmerica Buffalo

Page 88 of 125

Limits

52 - 132

%Recovery Qualifier

Client: Woodard & Curran, Inc.
Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-271824/3-A

Matrix: Water

Analysis Batch: 273019

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 271824

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	76		48 - 120
2-Fluorophenol	54		20 - 120
Nitrobenzene-d5	69		46 - 120
p-Terphenyl-d14	96		67 - 150
Phenol-d5	61		16 - 120

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 272492

Lab Sample ID: MB 480-272492/1-A

Matrix: Solid

Analysis Batch: 274286

Analysis Baton. 214200	МВ	МВ						Trop Baton.	Z1 Z40Z
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		170	46	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
2,4,6-Trichlorophenol	ND		170	34	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
2,4-Dichlorophenol	ND		170	18	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
2,4-Dimethylphenol	ND		170	41	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
2,4-Dinitrophenol	ND		1600	780	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
2,4-Dinitrotoluene	ND		170	35	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
2,6-Dinitrotoluene	ND		170	20	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
2-Chloronaphthalene	ND		170	28	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
2-Chlorophenol	ND		170	31	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
2-Methylnaphthalene	ND		170	34	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
2-Methylphenol	ND		170	20	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
2-Nitroaniline	ND		330	25	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
2-Nitrophenol	ND		170	47	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
3,3'-Dichlorobenzidine	ND		330	200	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
3-Nitroaniline	ND		330	47	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
4,6-Dinitro-2-methylphenol	ND		330	170	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
4-Bromophenyl phenyl ether	ND		170	24	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
4-Chloro-3-methylphenol	ND		170	42	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
4-Chloroaniline	ND		170	42	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
4-Chlorophenyl phenyl ether	ND		170	21	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
4-Methylphenol	ND		330	20	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
4-Nitroaniline	ND		330	88	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
4-Nitrophenol	ND		330	120	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
Acenaphthene	ND		170	25	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
Acenaphthylene	ND		170	22	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
Acetophenone	ND		170	23	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
Anthracene	ND		170	42	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
Atrazine	ND		170	58	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
Benzaldehyde	ND		170	130	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
Benzo(a)anthracene	ND		170	17	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
Benzo(a)pyrene	ND		170	25	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
Benzo(b)fluoranthene	ND		170	27	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
Benzo(g,h,i)perylene	ND		170	18	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
Benzo(k)fluoranthene	ND		170	22	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
Biphenyl	ND		170		ug/Kg		11/02/15 08:32	11/11/15 10:30	1
bis (2-chloroisopropyl) ether	ND		170	34	ug/Kg		11/02/15 08:32	11/11/15 10:30	1
Bis(2-chloroethoxy)methane	ND		170	36	ug/Kg		11/02/15 08:32	11/11/15 10:30	1

TestAmerica Buffalo

Page 89 of 125

2

3

4

6

0

10

12

14

Client: Woodard & Curran, Inc.

Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-272492/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 274286 Prep Batch: 272492** MR MR **MDL** Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac Bis(2-chloroethyl)ether $\overline{\mathsf{ND}}$ 170 22 ug/Kg 11/02/15 08:32 11/11/15 10:30 Bis(2-ethylhexyl) phthalate ND 170 ug/Kg 11/02/15 08:32 11/11/15 10:30 Butyl benzyl phthalate ND 170 28 ug/Kg 11/02/15 08:32 11/11/15 10:30 Caprolactam ND 170 ug/Kg 11/02/15 08:32 11/11/15 10:30 Carbazole ND 170 20 ug/Kg 11/02/15 08:32 11/11/15 10:30 Chrysene ND 170 ug/Kg 11/02/15 08:32 11/11/15 10:30 Dibenz(a,h)anthracene ND 170 11/02/15 08:32 11/11/15 10:30 30 ug/Kg ND Dibenzofuran 170 20 ug/Kg 11/02/15 08:32 11/11/15 10:30 Diethyl phthalate ND 170 22 ug/Kg 11/02/15 08:32 11/11/15 10:30 Dimethyl phthalate ND 170 20 ug/Kg 11/02/15 08:32 11/11/15 10:30 Di-n-butyl phthalate ND 170 29 ug/Kg 11/02/15 08:32 11/11/15 10:30 Di-n-octyl phthalate ND 170 11/02/15 08:32 11/11/15 10:30 ug/Kg Fluoranthene 11/02/15 08:32 11/11/15 10:30 ND 170 ug/Kg Fluorene ND 170 20 ug/Kg 11/02/15 08:32 11/11/15 10:30 Hexachlorobenzene ND 170 23 11/02/15 08:32 11/11/15 10:30 ug/Kg Hexachlorobutadiene NΠ 170 25 ug/Kg 11/02/15 08:32 11/11/15 10:30 Hexachlorocyclopentadiene ND 170 23 ug/Kg 11/02/15 08:32 11/11/15 10:30 Hexachloroethane ND 170 22 ug/Kg 11/02/15 08:32 11/11/15 10:30 Indeno(1,2,3-cd)pyrene ND 170 ug/Kg 11/02/15 08:32 11/11/15 10:30 Isophorone ND 170 36 11/02/15 08:32 11/11/15 10:30 ug/Kg Naphthalene ND 170 ug/Kg 11/02/15 08:32 11/11/15 10:30 Nitrobenzene ND 170 19 ug/Kg 11/02/15 08:32 11/11/15 10:30 N-Nitrosodi-n-propylamine ND 170 29 ug/Kg 11/02/15 08:32 11/11/15 10:30 N-Nitrosodiphenylamine ND 170 140 ug/Kg 11/02/15 08:32 11/11/15 10:30 Pentachlorophenol ND 330 170 ug/Kg 11/02/15 08:32 11/11/15 10:30 Phenanthrene ND 170 25 ug/Kg 11/02/15 08:32 11/11/15 10:30 Phenol ND 170 26 ug/Kg 11/02/15 08:32 11/11/15 10:30 Pyrene ND 170 20 ug/Kg 11/02/15 08:32 11/11/15 10:30 ND 650 11/02/15 08:32 11/11/15 10:30 Dimethylformamide 74 ug/Kg MB MB Tentatively Identified Compound Est. Result Qualifier CAS No. Unit D RT Prepared Analyzed Dil Fac Tentatively Identified Compound None ug/Kg <u>11/02/15 08:32</u> <u>11/11/15 10:30</u> MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 70 2,4,6-Tribromophenol 39 - 146 11/02/15 08:32 11/11/15 10:30

2-Fluorophenol	77	18 - 120	11/02/15 08:32	11/11/15 10:30	1
Nitrobenzene-d5	72	34 - 132	11/02/15 08:32	11/11/15 10:30	1
p-Terphenyl-d14	84	65 ₋ 153	11/02/15 08:32	11/11/15 10:30	1
Phenol-d5	78	11 - 120	11/02/15 08:32	11/11/15 10:30	1

37 - 120

80

Lab Sample ID: LCS 480-272492/2-A

Matrix: Solid

2-Fluorobiphenyl

Analysis Batch: 272717							Prep Batch:	
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4,5-Trichlorophenol	1640	1320		ug/Kg		80	59 - 126	_

TestAmerica Buffalo

Prep Type: Total/NA

11/02/15 08:32 11/11/15 10:30

Client Sample ID: Lab Control Sample

Page 90 of 125

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample	D: LCS	3 480-27 2	2492/2-A
Matrix: Calid			

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 272492

Analysis Batch: 272717	Spike		LCS				Prep Batch: 2 %Rec.	2724
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
2,4,6-Trichlorophenol	1640	1300		ug/Kg		79	59 - 123	
2,4-Dichlorophenol	1640	1230		ug/Kg		75	52 - 120	
2,4-Dimethylphenol	1640	1240		ug/Kg		76	36 - 120	
2,4-Dinitrophenol	3280	2390		ug/Kg		73	35 - 146	
2,4-Dinitrotoluene	1640	1270		ug/Kg		77	55 - 125	
2,6-Dinitrotoluene	1640	1310		ug/Kg		80	66 - 128	
2-Chloronaphthalene	1640	1330		ug/Kg		81	57 ₋ 120	
2-Chlorophenol	1640	1150		ug/Kg		70	38 - 120	
2-Methylnaphthalene	1640	1260		ug/Kg		77	47 - 120	
2-Methylphenol	1640	1130		ug/Kg		69	48 - 120	
2-Nitroaniline	1640	1230		ug/Kg		75	61 - 130	
2-Nitrophenol	1640	1210		ug/Kg		74	50 - 120	
3,3'-Dichlorobenzidine	3280	2420		ug/Kg		74	48 - 126	
3-Nitroaniline	1640	1210		ug/Kg		74	61 - 127	
4,6-Dinitro-2-methylphenol	3280	2570		ug/Kg		78	49 - 155	
4-Bromophenyl phenyl ether	1640	1370		ug/Kg		84	58 - 131	
4-Chloro-3-methylphenol	1640	1250		ug/Kg		76	49 - 125	
4-Chloroaniline	1640	1080		ug/Kg		66	49 - 120	
4-Chlorophenyl phenyl ether	1640	1340		ug/Kg		82	63 - 124	
4-Methylphenol	1640	1160		ug/Kg		71	50 - 119	
4-Nitroaniline	1640	1260		ug/Kg		77	63 - 128	
4-Nitrophenol	3280	2530		ug/Kg		77	43 - 137	
Acenaphthene	1640	1330		ug/Kg		81	53 - 120	
Acenaphthylene	1640	1350		ug/Kg		82	58 - 121	
Acetophenone	1640	1140		ug/Kg		69	66 - 120	
Anthracene	1640	1420		ug/Kg		87	62 - 129	
Atrazine	3280	2690		ug/Kg		82	60 - 164	
Benzaldehyde	3280	3440		ug/Kg		105	21 - 120	
Benzo(a)anthracene	1640	1380		ug/Kg		84	65 - 133	
Benzo(a)pyrene	1640	1340		ug/Kg		82	64 - 127	
Benzo(b)fluoranthene	1640	1440		ug/Kg		88	64 - 135	
Benzo(g,h,i)perylene	1640	1370		ug/Kg		83	50 - 152	
Benzo(k)fluoranthene	1640	1320		ug/Kg		81	58 - 138	
Biphenyl	1640	1330		ug/Kg		81	71 - 120	
bis (2-chloroisopropyl) ether	1640	968		ug/Kg		59	44 - 120	
Bis(2-chloroethoxy)methane	1640	1160		ug/Kg		70	61 - 133	
Bis(2-chloroethyl)ether	1640	1140		ug/Kg		70	45 - 120	
Bis(2-ethylhexyl) phthalate	1640	1300		ug/Kg		79	61 - 133	
Butyl benzyl phthalate	1640	1300		ug/Kg		79	61 - 129	
Caprolactam	3280	2380		ug/Kg ug/Kg		73	54 - 133	
Carbazole	1640	1370		ug/Kg ug/Kg		84	59 - 129	
Chrysene	1640	1370		ug/Kg ug/Kg		85	64 - 131	
Dibenz(a,h)anthracene	1640	1350				82	54 ₋ 148	
Dibenzofuran	1640	1340		ug/Kg			56 ₋ 120	
				ug/Kg		82	66 - 126	
Diethyl phthalate	1640	1310		ug/Kg		80 92	65 - 124	
Dimethyl phthalate	1640	1350		ug/Kg		82		
Di-n-butyl phthalate	1640	1340		ug/Kg		82	58 - 130	
Di-n-octyl phthalate	1640	1380		ug/Kg		84	62 - 133	

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-272492/2-A

Matrix: Solid

Analysis Batch: 272717

Client Sample ID: I	Lab Control Sample
F	Prep Type: Total/NA
	Pren Batch: 272492

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Fluoranthene	1640	1410	-	ug/Kg		86	62 - 131	
Fluorene	1640	1350		ug/Kg		83	63 - 126	
Hexachlorobenzene	1640	1380		ug/Kg		84	60 - 132	
Hexachlorobutadiene	1640	1200		ug/Kg		73	45 - 120	
Hexachlorocyclopentadiene	1640	1290		ug/Kg		79	31 - 120	
Hexachloroethane	1640	1070		ug/Kg		65	41 - 120	
Indeno(1,2,3-cd)pyrene	1640	1360		ug/Kg		83	56 - 149	
Isophorone	1640	1230		ug/Kg		75	56 - 120	
Naphthalene	1640	1230		ug/Kg		75	46 - 120	
Nitrobenzene	1640	1180		ug/Kg		72	49 - 120	
N-Nitrosodi-n-propylamine	1640	1100		ug/Kg		67	46 - 120	
N-Nitrosodiphenylamine	3280	2770		ug/Kg		85	20 - 119	
Pentachlorophenol	3280	2890		ug/Kg		88	33 - 136	
Phenanthrene	1640	1440		ug/Kg		88	60 - 130	
Phenol	1640	1150		ug/Kg		70	36 - 120	
Pyrene	1640	1450		ug/Kg		88	51 - 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	85		39 - 146
2-Fluorobiphenyl	80		37 - 120
2-Fluorophenol	68		18 - 120
Nitrobenzene-d5	74		34 - 132
p-Terphenyl-d14	85		65 - 153
Phenol-d5	70		11 - 120

Lab Sample ID: 480-89971-4 MS

Matrix: Solid

Client Sample ID: SWMU26-SS-BLDG16-04

Prep Type: Total/NA Prep Batch: 272492

Analysis Batch: 274286 Sample Sample MS MS Spike %Rec. Result Qualifier Added Result Qualifier %Rec Analyte Unit D Limits ₩ 2,4,5-Trichlorophenol ND 1820 89 59 - 126 1610 ug/Kg Ö 2,4,6-Trichlorophenol ND 1820 1580 ug/Kg 87 59 - 123 ND 1820 1550 2,4-Dichlorophenol ug/Kg 85 52 - 120 2,4-Dimethylphenol ND 1820 1550 ug/Kg ₩ 85 36 - 120 2,4-Dinitrophenol ND F2 3640 1700 J ug/Kg 47 35 - 146 Ö 90 2,4-Dinitrotoluene ND 1820 1640 ug/Kg 55 - 125 ₩ 2,6-Dinitrotoluene ND 1820 1710 94 66 - 128 ug/Kg ₩ 2-Chloronaphthalene ND 1820 1620 ug/Kg 89 57 - 120₩ 2-Chlorophenol ND 1820 1450 ug/Kg 38 - 120 ₩ 83 2-Methylnaphthalene ND 1820 1520 ug/Kg 47 - 120 ₩ 2-Methylphenol ND 1820 1460 ug/Kg 80 48 - 120 61 - 130 2-Nitroaniline ND 1820 1590 ug/Kg 88 2-Nitrophenol ND 1820 1490 Ö 82 50 - 120 ug/Kg 3,3'-Dichlorobenzidine ND 3640 3460 95 48 - 126 ug/Kg ∜ 3-Nitroaniline ND 1820 1510 ug/Kg 83 61 - 1273640 ₩ ND 80 4,6-Dinitro-2-methylphenol 2910 ug/Kg 49 - 155 ₩ 4-Bromophenyl phenyl ether ND 1820 1730 ug/Kg 95 58 - 1314-Chloro-3-methylphenol ND 1820 1640 ug/Kg 90 49 - 125

TestAmerica Buffalo

Page 92 of 125

2

3

5

7

9

11

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-89971-4 MS

Matrix: Solid

Analysis Batch: 274286

Client Sample ID: SW	MU26-SS-BLDG16-04
	Prep Type: Total/NA

Prep Batch: 272492

Analysis Batch: 2/4286	Sample	Sample	Spike	MS	MS				%Rec.
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
4-Chloroaniline	ND	<u> </u>	1820	1350		ug/Kg	— ∓	75	49 - 120
4-Chlorophenyl phenyl ether	ND		1820	1660		ug/Kg		91	63 - 124
4-Methylphenol	ND		1820	1530		ug/Kg	₩	84	50 - 119
4-Nitroaniline	ND		1820	1680		ug/Kg	₩.	93	63 - 128
4-Nitrophenol	ND		3640	3560		ug/Kg	₩	98	43 - 137
Acenaphthene	ND		1820	1650		ug/Kg	₩	91	53 - 120
Acenaphthylene	ND		1820	1650		ug/Kg		91	58 - 121
Acetophenone	ND		1820	1510		ug/Kg	₩	83	66 ₋ 120
Anthracene	ND		1820	1770		ug/Kg	₩	97	62 - 129
Atrazine	ND		3640	3600		ug/Kg		99	60 - 164
Benzaldehyde	ND		3640	4120	Е	ug/Kg	₩	113	21 - 120
Benzo(a)anthracene	ND		1820	1780		ug/Kg	₩	98	65 - 133
Benzo(a)pyrene	ND		1820	1750		ug/Kg		96	64 - 127
Benzo(b)fluoranthene	ND		1820	1750		ug/Kg	₩	96	64 - 135
Benzo(g,h,i)perylene	ND		1820	1840		ug/Kg	₩	101	50 - 152
Benzo(k)fluoranthene	ND		1820	1770		ug/Kg		97	58 - 138
Biphenyl	ND		1820	1620		ug/Kg	₩	89	71 - 120
bis (2-chloroisopropyl) ether	ND		1820	1190		ug/Kg	₩	66	44 - 120
Bis(2-chloroethoxy)methane	ND		1820	1450		ug/Kg		80	61 - 133
Bis(2-chloroethyl)ether	ND		1820	1420		ug/Kg	₩	78	45 - 120
Bis(2-ethylhexyl) phthalate	76	J	1820	1710		ug/Kg	₩	90	61 - 133
Butyl benzyl phthalate	ND		1820	1790		ug/Kg		99	61 - 129
Caprolactam	ND		3640	3030		ug/Kg	₩	83	54 - 133
Carbazole	ND		1820	1760		ug/Kg	₩	97	59 ₋ 129
Chrysene	ND		1820	1740		ug/Kg		96	64 - 131
Dibenz(a,h)anthracene	ND		1820	1810		ug/Kg	₩	100	54 - 148
Dibenzofuran	ND		1820	1680		ug/Kg	₩	92	56 - 120
Diethyl phthalate	ND		1820	1770		ug/Kg		97	66 - 126
Dimethyl phthalate	ND		1820	1730		ug/Kg	₩	95	65 - 124
Di-n-butyl phthalate	ND		1820	1760		ug/Kg ug/Kg	₩	97	58 ₋ 130
Di-n-octyl phthalate	ND		1820	1710		ug/Kg		94	62 - 133
Fluoranthene	ND ND		1820	1710		ug/Kg ug/Kg	≎	97	62 - 131
Fluorene	ND ND		1820	1660		ug/Kg ug/Kg	☼	92	63 - 126
Hexachlorobenzene	ND		1820	1760		ug/Kg		97	60 - 132
Hexachlorobutadiene	ND ND		1820	1510		ug/Kg ug/Kg	☼	83	45 ₋ 120
	ND ND		1820				☼	85	31 - 120
Hexachlorocyclopentadiene	ND			1540		ug/Kg	.		41 - 120
Hexachloroethane Indeno(1,2,3-cd)pyrene	ND ND		1820 1820	1320 1800		ug/Kg	≎	72 99	
,						ug/Kg	₩		56 ₋ 149
Isophorone	ND		1820	1530		ug/Kg	.	84	56 - 120
Naphthalene	ND		1820	1490		ug/Kg	≎	82	46 - 120
Nitrobenzene	ND		1820	1480		ug/Kg	₩	81	49 - 120
N-Nitrosodi-n-propylamine	ND		1820	1500		ug/Kg		82	46 - 120
N-Nitrosodiphenylamine	ND		3640	3490		ug/Kg	₩	96	20 - 119
Pentachlorophenol	ND		3640	2160		ug/Kg	☆	59 06	33 - 136
Phenanthrene	ND		1820	1740		ug/Kg	¥	96	60 - 130
Phenol	ND		1820	1480		ug/Kg	₩	81	36 - 120
Pyrene	ND		1820	1740		ug/Kg	☼	96	51 ₋ 133

Client: Woodard & Curran, Inc. TestAmerica Job ID: 480-89971-1 Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-89971-4 MS

Matrix: Solid

Analysis Batch: 274286

Client Sample ID: SWMU26-SS-BLDG16-04 **Prep Type: Total/NA**

Prep Batch: 272492

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	94		39 - 146
2-Fluorobiphenyl	91		37 - 120
2-Fluorophenol	79		18 - 120
Nitrobenzene-d5	85		34 - 132
p-Terphenyl-d14	93		65 - 153
Phenol-d5	82		11 - 120

Client Sample ID: SWMU26-SS-BLDG16-04 Lab Sample ID: 480-89971-4 MSD

Prep Type: Total/NA

Matrix: Solid									Prep Ty		
Analysis Batch: 274286	0	0	0	мор	1400				Prep Ba	itch: 27	
Amalista	-	Sample	Spike		MSD	l lmi4	_	0/ Doo	%Rec.	DDD	RPD
Analyte 2,4,5-Trichlorophenol	ND	Qualifier	Added	1750	Qualifier	Unit	— D	%Rec 98	59 - 126	RPD 8	Limit 18
•						ug/Kg	☆				
2,4,6-Trichlorophenol	ND		1800	1700		ug/Kg	₩ ₩	95	59 ₋ 123	7	19
2,4-Dichlorophenol	ND		1800	1650		ug/Kg		92	52 - 120	6	19
2,4-Dimethylphenol	ND	F0	1800	1640	F0	ug/Kg	☆	91	36 - 120	6	42
2,4-Dinitrophenol	ND	F2	3590	2320	F2	ug/Kg		64	35 - 146	31	22
2,4-Dinitrotoluene	ND		1800	1870		ug/Kg		104	55 - 125	13	20
2,6-Dinitrotoluene	ND		1800	1870		ug/Kg	₽	104	66 - 128	9	15
2-Chloronaphthalene	ND		1800	1620		ug/Kg	‡	90	57 ₋ 120	0	21
2-Chlorophenol	ND		1800	1500		ug/Kg		83	38 - 120	3	25
2-Methylnaphthalene	ND		1800	1570		ug/Kg	₩	88	47 - 120	4	21
2-Methylphenol	ND		1800	1560		ug/Kg	☆	87	48 - 120	7	27
2-Nitroaniline	ND		1800	1810		ug/Kg	≎	101	61 - 130	13	15
2-Nitrophenol	ND		1800	1510		ug/Kg	₩	84	50 - 120	1	18
3,3'-Dichlorobenzidine	ND		3590	3860	E	ug/Kg	₩	107	48 - 126	11	25
3-Nitroaniline	ND		1800	1690		ug/Kg	₩	94	61 - 127	11	19
4,6-Dinitro-2-methylphenol	ND		3590	3290		ug/Kg	₽	92	49 - 155	12	15
4-Bromophenyl phenyl ether	ND		1800	1870		ug/Kg	≎	104	58 - 131	7	15
4-Chloro-3-methylphenol	ND		1800	1900		ug/Kg	₩	106	49 - 125	15	27
4-Chloroaniline	ND		1800	1450		ug/Kg	₩	81	49 - 120	7	22
4-Chlorophenyl phenyl ether	ND		1800	1800		ug/Kg	☆	100	63 - 124	8	16
4-Methylphenol	ND		1800	1640		ug/Kg	☆	91	50 - 119	7	24
4-Nitroaniline	ND		1800	1930		ug/Kg	₩	108	63 - 128	14	24
4-Nitrophenol	ND		3590	4160		ug/Kg	≎	116	43 - 137	15	25
Acenaphthene	ND		1800	1740		ug/Kg	≎	97	53 - 120	5	35
Acenaphthylene	ND		1800	1710		ug/Kg		95	58 - 121	3	18
Acetophenone	ND		1800	1550		ug/Kg	☆	86	66 - 120	2	20
Anthracene	ND		1800	1820		ug/Kg	☆	102	62 - 129	3	15
Atrazine	ND		3590	4110	Ē	ug/Kg		115	60 - 164	13	20
Benzaldehyde	ND		3590	4110	E	ug/Kg	≎	115	21 - 120	0	20
Benzo(a)anthracene	ND		1800	1900		ug/Kg	≎	106	65 ₋ 133	7	15
Benzo(a)pyrene	ND		1800	1900		ug/Kg	· · · · · · · · · · · · · · · · · · ·	106	64 - 127	8	15
Benzo(b)fluoranthene	ND		1800	1880		ug/Kg	≎	105	64 - 135	7	15
Benzo(g,h,i)perylene	ND		1800	1990		ug/Kg	☆	111	50 - 152	8	15
Benzo(k)fluoranthene	ND		1800	1930		ug/Kg		108	58 - 138	9	22
Biphenyl	ND		1800	1650		ug/Kg	₩	92	71 - 120	2	20
bis (2-chloroisopropyl) ether	ND		1800	1210		ug/Kg	☆	67	44 - 120	1	24

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-89971-4 MSD

Matrix: Solid

Analysis Batch: 274286

Client Sample ID: SWMU26-SS-BLDG16-04

Prep Type: Total/NA Prep Batch: 272492

•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bis(2-chloroethoxy)methane	ND		1800	1490	-	ug/Kg	<u></u>	83	61 - 133	3	17
Bis(2-chloroethyl)ether	ND		1800	1410		ug/Kg	₩.	79	45 - 120	0	21
Bis(2-ethylhexyl) phthalate	76	J	1800	1880		ug/Kg	₩	101	61 - 133	9	15
Butyl benzyl phthalate	ND		1800	1950		ug/Kg	₩.	109	61 - 129	9	16
Caprolactam	ND		3590	3590		ug/Kg	₩	100	54 - 133	17	20
Carbazole	ND		1800	1910		ug/Kg	₩	106	59 - 129	8	20
Chrysene	ND		1800	1850		ug/Kg	₩.	103	64 - 131	6	15
Dibenz(a,h)anthracene	ND		1800	1980		ug/Kg	☼	110	54 - 148	9	15
Dibenzofuran	ND		1800	1770		ug/Kg	₩	98	56 - 120	5	15
Diethyl phthalate	ND		1800	1970		ug/Kg	₩.	110	66 - 126	11	15
Dimethyl phthalate	ND		1800	1900		ug/Kg	₩	106	65 - 124	9	15
Di-n-butyl phthalate	ND		1800	1950		ug/Kg	₩	108	58 - 130	10	15
Di-n-octyl phthalate	ND		1800	1900		ug/Kg	₩	106	62 - 133	10	16
Fluoranthene	ND		1800	1970		ug/Kg	₩	110	62 - 131	11	15
Fluorene	ND		1800	1830		ug/Kg	₩	102	63 - 126	9	15
Hexachlorobenzene	ND		1800	1850		ug/Kg	₩.	103	60 - 132	5	15
Hexachlorobutadiene	ND		1800	1500		ug/Kg	₩	84	45 - 120	1	44
Hexachlorocyclopentadiene	ND		1800	1500		ug/Kg	☼	83	31 - 120	3	49
Hexachloroethane	ND		1800	1240		ug/Kg	₩.	69	41 - 120	6	46
Indeno(1,2,3-cd)pyrene	ND		1800	1990		ug/Kg	₩	111	56 - 149	10	15
Isophorone	ND		1800	1610		ug/Kg	₩	90	56 - 120	5	17
Naphthalene	ND		1800	1490		ug/Kg	₩	83	46 - 120	0	29
Nitrobenzene	ND		1800	1470		ug/Kg	₩	82	49 - 120	0	24
N-Nitrosodi-n-propylamine	ND		1800	1570		ug/Kg	₩	88	46 - 120	5	31
N-Nitrosodiphenylamine	ND		3590	3610		ug/Kg	₩.	100	20 - 119	3	15
Pentachlorophenol	ND		3590	2570		ug/Kg	₩	71	33 - 136	17	35
Phenanthrene	ND		1800	1830		ug/Kg	₩	102	60 - 130	5	15
Phenol	ND		1800	1540		ug/Kg	₩.	86	36 - 120	4	35
Pyrene	ND		1800	1810		ug/Kg	₩	101	51 - 133	4	35

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	105		39 - 146
2-Fluorobiphenyl	95		37 - 120
2-Fluorophenol	82		18 - 120
Nitrobenzene-d5	87		34 - 132
p-Terphenyl-d14	101		65 - 153
Phenol-d5	89		11 - 120

Lab Sample ID: MB 480-272950/1-A

Matrix: Solid

Analysis Batch: 273884

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 272950

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		170	46	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
2,4,6-Trichlorophenol	ND		170	34	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
2,4-Dichlorophenol	ND		170	18	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
2,4-Dimethylphenol	ND		170	41	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
2,4-Dinitrophenol	ND		1600	780	ug/Kg		11/04/15 07:44	11/09/15 12:09	1

TestAmerica Buffalo

Page 95 of 125

Client: Woodard & Curran, Inc.

Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-272950/1-A

Matrix: Solid

Analysis Batch: 273884

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 272950

Analysis Batch: 273884								Prep Batch:	
Analysis Baton. 270004	MB	MB						Trep Baten.	272300
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-Dinitrotoluene	ND		170	35	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
2,6-Dinitrotoluene	ND		170	20	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
2-Chloronaphthalene	ND		170	28	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
2-Chlorophenol	ND		170	31	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
2-Methylnaphthalene	ND		170	34	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
2-Methylphenol	ND		170	20	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
2-Nitroaniline	ND		330	25	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
2-Nitrophenol	ND		170		ug/Kg		11/04/15 07:44	11/09/15 12:09	1
3,3'-Dichlorobenzidine	ND		330		ug/Kg		11/04/15 07:44	11/09/15 12:09	1
3-Nitroaniline	ND		330		ug/Kg		11/04/15 07:44	11/09/15 12:09	1
4,6-Dinitro-2-methylphenol	ND		330		ug/Kg			11/09/15 12:09	1
4-Bromophenyl phenyl ether	ND		170		ug/Kg			11/09/15 12:09	1
4-Chloro-3-methylphenol	ND		170		ug/Kg			11/09/15 12:09	1
4-Chloroaniline	ND		170		ug/Kg			11/09/15 12:09	1
4-Chlorophenyl phenyl ether	ND		170		ug/Kg			11/09/15 12:09	1
4-Methylphenol	ND		330		ug/Kg			11/09/15 12:09	1
4-Nitroaniline	ND		330		ug/Kg			11/09/15 12:09	·······່ 1
4-Nitrophenol	ND		330					11/09/15 12:09	1
Acenaphthene	ND		170		ug/Kg			11/09/15 12:09	1
Acenaphthylene	ND		170		ug/Kg			11/09/15 12:09	
Acetophenone	ND ND		170		ug/Kg ug/Kg			11/09/15 12:09	
Anthracene	ND ND		170		0 0			11/09/15 12:09	1
	ND		170		ug/Kg			11/09/15 12:09	
Atrazine					ug/Kg				1
Benzaldehyde	ND		170		ug/Kg			11/09/15 12:09	1
Benzo(a)anthracene	ND		170		ug/Kg			11/09/15 12:09	1
Benzo(a)pyrene	ND		170		ug/Kg			11/09/15 12:09	1
Benzo(b)fluoranthene	ND		170		ug/Kg			11/09/15 12:09	1
Benzo(g,h,i)perylene	ND		170		ug/Kg			11/09/15 12:09	
Benzo(k)fluoranthene	ND		170		ug/Kg			11/09/15 12:09	1
Biphenyl	ND		170		ug/Kg			11/09/15 12:09	1
bis (2-chloroisopropyl) ether	ND		170		ug/Kg			11/09/15 12:09	1
Bis(2-chloroethoxy)methane	ND		170		ug/Kg			11/09/15 12:09	1
Bis(2-chloroethyl)ether	ND		170		ug/Kg			11/09/15 12:09	1
Bis(2-ethylhexyl) phthalate	ND		170		ug/Kg			11/09/15 12:09	1
Butyl benzyl phthalate	ND		170	28	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Caprolactam	ND		170		ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Carbazole	ND		170	20	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Chrysene	ND		170	38	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Dibenz(a,h)anthracene	ND		170	30	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Dibenzofuran	ND		170	20	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Diethyl phthalate	122	J	170	22	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Dimethyl phthalate	ND		170	20	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Di-n-butyl phthalate	ND		170	29	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Di-n-octyl phthalate	ND		170		ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Fluoranthene	ND		170		ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Fluorene	ND		170		ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Hexachlorobenzene	ND		170		ug/Kg			11/09/15 12:09	1
Hexachlorobutadiene	ND		170		ug/Kg			11/09/15 12:09	1

TestAmerica Buffalo

Page 96 of 125

2

3

4

6

8

10

12

1 1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 480-272950/1-A Client Sample ID: Method Blank Matrix: Solid **Prep Type: Total/NA** Analysis Batch: 273884 **Prep Batch: 272950**

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hexachlorocyclopentadiene	ND		170	23	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Hexachloroethane	ND		170	22	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Indeno(1,2,3-cd)pyrene	ND		170	21	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Isophorone	ND		170	36	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Naphthalene	ND		170	22	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Nitrobenzene	ND		170	19	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
N-Nitrosodi-n-propylamine	ND		170	29	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
N-Nitrosodiphenylamine	ND		170	140	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Pentachlorophenol	ND		330	170	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Phenanthrene	ND		170	25	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Phenol	ND		170	26	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Pyrene	ND		170	20	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Dimethylformamide	ND		650	74	ug/Kg		11/04/15 07:44	11/09/15 12:09	1

	MB	MB							
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	2780	TJ	ug/Kg		1.88		11/04/15 07:44	11/09/15 12:09	1
Unknown	404	TJ	ug/Kg		2.06		11/04/15 07:44	11/09/15 12:09	1
Unknown	1030	TJ	ug/Kg		2.18		11/04/15 07:44	11/09/15 12:09	1
Unknown	848	ΤJ	ug/Kg		4.66		11/04/15 07:44	11/09/15 12:09	1
p-Xylene	133	TJN	ug/Kg		5.14	106-42-3	11/04/15 07:44	11/09/15 12:09	1
Ethane, 1,1,2,2-tetrachloro-	154	TJN	ug/Kg		5.69	79-34-5	11/04/15 07:44	11/09/15 12:09	1
Indene	5.03		ug/Kg		7.05	95-13-6	11/04/15 07:44	11/09/15 12:09	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	89		39 - 146	11/04/15 07:44	11/09/15 12:09	1
2-Fluorobiphenyl	83		37 - 120	11/04/15 07:44	11/09/15 12:09	1
2-Fluorophenol	72		18 - 120	11/04/15 07:44	11/09/15 12:09	1
Nitrobenzene-d5	73		34 - 132	11/04/15 07:44	11/09/15 12:09	1
p-Terphenyl-d14	93		65 - 153	11/04/15 07:44	11/09/15 12:09	1
Phenol-d5	74		11 - 120	11/04/15 07:44	11/09/15 12:09	1

Lab Sample ID: LCS 480-272950/2-A

Matrix: Solid Prep Type: Total/NA Analysis Batch: 273884 **Prep Batch: 272950**

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4,5-Trichlorophenol	1640	1340		ug/Kg		81	59 - 126	
2,4,6-Trichlorophenol	1640	1370		ug/Kg		83	59 - 123	
2,4-Dichlorophenol	1640	1330		ug/Kg		81	52 - 120	
2,4-Dimethylphenol	1640	1300		ug/Kg		79	36 - 120	
2,4-Dinitrophenol	3290	2590		ug/Kg		79	35 - 146	
2,4-Dinitrotoluene	1640	1340		ug/Kg		81	55 - 125	
2,6-Dinitrotoluene	1640	1630		ug/Kg		99	66 - 128	
2-Chloronaphthalene	1640	1360		ug/Kg		83	57 - 120	
2-Chlorophenol	1640	1210		ug/Kg		74	38 - 120	
2-Methylnaphthalene	1640	1330		ug/Kg		81	47 - 120	
2-Methylphenol	1640	1220		ug/Kg		75	48 - 120	

TestAmerica Buffalo

Client Sample ID: Lab Control Sample

Page 97 of 125

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample	ID: LCS	480-2729	50/2-A

Matrix: Solid

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 272950

Analysis Batch: 273884 LCS LCS %Rec. Spike Added Result Qualifier Analyte Unit %Rec Limits 2-Nitroaniline 1640 1260 77 ug/Kg 61 - 130 2-Nitrophenol 1640 1270 ug/Kg 77 50 - 120 3,3'-Dichlorobenzidine 3290 2650 81 48 - 126 ug/Kg 3-Nitroaniline 1640 1230 ug/Kg 75 61 - 127 4,6-Dinitro-2-methylphenol 3290 2780 ug/Kg 85 49 - 155 4-Bromophenyl phenyl ether 1640 1520 ug/Kg 93 58 - 131 4-Chloro-3-methylphenol 1640 1330 81 49 - 125 ug/Kg 4-Chloroaniline 1640 69 49 - 120 1130 ug/Kg 4-Chlorophenyl phenyl ether 1640 1410 ug/Kg 86 63 - 124 1640 75 4-Methylphenol 1230 ug/Kg 50 - 119 4-Nitroaniline 1640 1300 ug/Kg 79 63 - 128 4-Nitrophenol 3290 2640 80 43 - 137 ug/Kg 1640 1370 83 53 - 120 Acenaphthene ug/Kg 1640 1350 82 58 - 121 Acenaphthylene ug/Kg Acetophenone 1640 1200 73 66 - 120 ug/Kg 92 Anthracene 1640 1510 ug/Kg 62 _ 129 Atrazine 3290 2830 86 60 - 164 ug/Kg Benzaldehyde 3290 3190 97 21 - 120 ug/Kg Benzo(a)anthracene 1640 1470 ug/Kg 89 65 - 133 1640 1460 89 64 - 127 Benzo(a)pyrene ug/Kg Benzo(b)fluoranthene 1640 1510 ug/Kg 92 64 - 135Benzo(g,h,i)perylene 1640 1410 ug/Kg 86 50 - 152 91 Benzo(k)fluoranthene 1640 1490 ug/Kg 58 - 138 Biphenyl 1640 1370 83 71 - 120 ug/Kg 1640 63 bis (2-chloroisopropyl) ether 1030 ug/Kg 44 - 120 Bis(2-chloroethoxy)methane 1640 1260 ug/Kg 77 61 - 133 Bis(2-chloroethyl)ether 1640 1180 72 45 - 120 ug/Kg Bis(2-ethylhexyl) phthalate 1640 1560 ug/Kg 95 61 - 133 1640 92 Butyl benzyl phthalate 1510 61 - 129ug/Kg Caprolactam 3290 2460 ug/Kg 75 54 - 133Carbazole 1640 1430 87 59 - 129 ug/Kg Chrysene 1640 1470 ug/Kg 89 64 - 131 Dibenz(a,h)anthracene 1640 1430 ug/Kg 87 54 - 148 Dibenzofuran 1640 1380 ug/Kg 84 56 - 120 91 Diethyl phthalate 1640 1500 ug/Kg 66 - 126 1640 1390 65 - 124 Dimethyl phthalate ug/Kg 85 Di-n-butyl phthalate 1640 1520 ug/Kg 93 58 - 130 Di-n-octyl phthalate 1640 1530 93 62 - 133 ug/Kg Fluoranthene 1640 88 62 - 131 1440 ug/Kg Fluorene 85 63 - 126 1640 1400 ug/Kg Hexachlorobenzene 1640 1520 93 60 - 132 ug/Kg 82 Hexachlorobutadiene 1640 1340 45 _ 120 ug/Kg Hexachlorocyclopentadiene 1640 1300 ug/Kg 79 31 - 1201640 1150 ug/Kg 70 41 - 120 Hexachloroethane Indeno(1,2,3-cd)pyrene 1640 1420 ug/Kg 86 56 - 149 Isophorone 1640 1290 ug/Kg 79 56 - 120 Naphthalene 1640 1310 ug/Kg 80 46 - 120 Nitrobenzene 1640 1220 ug/Kg 74 49 - 120

TestAmerica Buffalo

3

4

6

8

40

11

13

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

LCS LCS

%Recovery Qualifier

96

86

72

77

95

73

Lab Sample ID: LCS 480-272950/2-A

Matrix: Solid

Surrogate

2,4,6-Tribromophenol

2-Fluorobiphenyl

2-Fluorophenol

Nitrobenzene-d5

p-Terphenyl-d14

Phenol-d5

Analysis Batch: 273884

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 272950

7 maryone Battern 21 eee :	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
N-Nitrosodi-n-propylamine	1640	1200		ug/Kg		73	46 - 120
N-Nitrosodiphenylamine	3290	2930		ug/Kg		89	20 - 119
Pentachlorophenol	3290	3030		ug/Kg		92	33 - 136
Phenanthrene	1640	1520		ug/Kg		92	60 - 130
Phenol	1640	1190		ug/Kg		72	36 - 120
Pyrene	1640	1550		ug/Kg		94	51 - 133

Limits

39 - 146

37 - 120

18 - 120

34 - 132

65 - 153

11 - 120

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC)

Lab Sample ID: MB 480-272574/4

Matrix: Water

Analysis Batch: 272574

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		1.0	0.14	mg/L			11/02/15 12:23	1
Isobutyl alcohol	ND		1.0	0.37	mg/L			11/02/15 12:23	1
Methanol	ND		1.0	0.41	mg/L			11/02/15 12:23	1
n-Butanol	ND		1.0	0.40	mg/L			11/02/15 12:23	1
Propanol	ND		1.0	0.16	mg/L			11/02/15 12:23	1
2-Butanol	ND		1.0	0.17	mg/L			11/02/15 12:23	1
Isopropyl alcohol	ND		1.0	0.12	mg/L			11/02/15 12:23	1
t-Butyl alcohol	ND		1.0	0.10	mg/L			11/02/15 12:23	1
I .									

MB MB %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed 62 - 129 11/02/15 12:23 2-Hexanone 112

Lab Sample ID: LCS 480-272574/5

Matrix: Water

Analysis Batch: 272574

Client Sample ID: Lab Control Sample Prep Type: Total/NA

7 maryolo Batom 21 2014								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethanol	20.0	22.3		mg/L		112	72 - 133	
Isobutyl alcohol	20.0	23.1		mg/L		115	69 - 139	
Methanol	20.0	22.4		mg/L		112	71 - 132	
n-Butanol	20.0	21.7		mg/L		109	73 - 130	
Propanol	20.0	22.6		mg/L		113	71 - 131	
2-Butanol	20.0	22.1		mg/L		110	68 - 136	
Isopropyl alcohol	20.0	22.6		mg/L		113	67 - 132	
t-Butyl alcohol	20.0	23.0		mg/L		115	71 - 130	

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client Sample ID: EB-02

Client Sample ID: Method Blank

Prep Type: Total/NA

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) (Continued)

Lab Sample ID: LCS 480-272574/5

Matrix: Water

Analysis Batch: 272574

LCS LCS

%Recovery Qualifier Surrogate Limits 2-Hexanone 62 - 129 112

Lab Sample ID: 480-89971-23 MS

Matrix: Water

Analysis Batch: 272574

Client Sample ID: EB-02 Prep Type: Total/NA

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Ethanol ND 20.0 20.4 mg/L 102 76 - 120 ND 20.0 21.6 108 Isobutyl alcohol mg/L 77 - 120Methanol 0.93 20.0 20.8 mg/L 100 75 - 120n-Butanol ND 20.0 20.6 103 75 - 120 mg/L Propanol ND 20.0 21.4 mg/L 107 79 - 120 2-Butanol ND 20.0 20.6 mg/L 103 77 - 120 Isopropyl alcohol ND 20.0 103 20.6 mg/L 72 - 120t-Butyl alcohol ND 20.0 21.6 mg/L 108 60 - 130

MS MS

Surrogate %Recovery Qualifier Limits 62 - 129 2-Hexanone 106

Lab Sample ID: 480-89971-23 MSD

Matrix: Water

Analysis Batch: 272574											
_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethanol	ND		20.0	20.2		mg/L		101	76 - 120	1	30
Isobutyl alcohol	ND		20.0	20.8		mg/L		104	77 - 120	4	30
Methanol	0.93	J	20.0	20.9		mg/L		100	75 - 120	0	30
n-Butanol	ND		20.0	19.7		mg/L		99	75 - 120	4	30
Propanol	ND		20.0	20.5		mg/L		102	79 - 120	5	30
2-Butanol	ND		20.0	19.9		mg/L		100	77 - 120	4	30
Isopropyl alcohol	ND		20.0	20.5		mg/L		102	72 - 120	0	30
t-Butyl alcohol	ND		20.0	20.6		mg/L		103	60 - 130	4	30

MSD MSD

%Recovery Qualifier Limits Surrogate 2-Hexanone 109 62 - 129

Lab Sample ID: MB 480-271929/1-A

Matrix: Solid

Analysis Batch: 272152

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		0.94	0.14	mg/Kg			10/30/15 10:20	1
Isobutyl alcohol	ND		0.94	0.24	mg/Kg			10/30/15 10:20	1
Methanol	ND		0.94	0.28	mg/Kg			10/30/15 10:20	1
n-Butanol	ND		0.94	0.22	mg/Kg			10/30/15 10:20	1
Propanol	ND		0.94	0.14	mg/Kg			10/30/15 10:20	1
2-Butanol	ND		0.94	0.15	mg/Kg			10/30/15 10:20	1

TestAmerica Buffalo

Prep Type: Soluble

Page 100 of 125

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) (Continued)

Lab Sample ID: MB 480-271929/1-A

Matrix: Solid

Analysis Batch: 272152

Client Sample ID: Method Blank Prep Type: Soluble

MB MB **MDL** Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac Isopropyl alcohol $\overline{\mathsf{ND}}$ 0.94 0.23 mg/Kg 10/30/15 10:20 t-Butyl alcohol ND 0.94 0.25 mg/Kg 10/30/15 10:20

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 2-Hexanone 30 - 137 10/30/15 10:20 115

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 480-271929/2-A **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 272152

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits D Ethanol 18.3 20.0 mg/Kg 110 55 - 136 Isobutyl alcohol 18.3 20.8 mg/Kg 114 51 - 130 Methanol 20.0 18.3 mg/Kg 109 53 - 140n-Butanol 18.3 19.9 mg/Kg 109 54 - 141 Propanol 18.3 20.4 59 - 139 mg/Kg 112 2-Butanol 19.7 108 49 - 136 18.3 mg/Kg Isopropyl alcohol 18.3 20.2 mg/Kg 110 50 - 131 t-Butyl alcohol 18.3 20.3 mg/Kg 111 48 - 130

LCS LCS

Surrogate %Recovery Qualifier Limits 2-Hexanone 100 30 - 137

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-271827/1-A

Matrix: Water

Analysis Batch: 271936

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 271827

	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.50	0.18	ug/L		10/29/15 08:43	10/29/15 17:54	1
PCB-1221	ND		0.50	0.18	ug/L		10/29/15 08:43	10/29/15 17:54	1
PCB-1232	ND		0.50	0.18	ug/L		10/29/15 08:43	10/29/15 17:54	1
PCB-1242	ND		0.50	0.18	ug/L		10/29/15 08:43	10/29/15 17:54	1
PCB-1248	ND		0.50	0.18	ug/L		10/29/15 08:43	10/29/15 17:54	1
PCB-1254	ND		0.50	0.25	ug/L		10/29/15 08:43	10/29/15 17:54	1
PCB-1260	ND		0.50	0.25	ug/L		10/29/15 08:43	10/29/15 17:54	1

	MB M	1B			
Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	82	24 - 137	10/29/15 08:43	10/29/15 17:54	1
Tetrachloro-m-xylene	86	24 - 137	10/29/15 08:43	10/29/15 17:54	1
DCB Decachlorobiphenyl	63	19 - 125	10/29/15 08:43	10/29/15 17:54	1
DCB Decachlorobiphenyl	62	19 - 125	10/29/15 08:43	10/29/15 17:54	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

2

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCS 480-271827/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 271936** Prep Batch: 271827 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 4.00 PCB-1016 3.46 ug/L 87 62 - 130 PCB-1260 4.00 2.64 66 56 - 123 ug/L LCS LCS Qualifier Surrogate %Recovery I imits

 Tetrachloro-m-xylene
 94
 24 - 137

 Tetrachloro-m-xylene
 100
 24 - 137

 DCB Decachlorobiphenyl
 42
 19 - 125

 DCB Decachlorobiphenyl
 43
 19 - 125

ND

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 272091

Analysis Batch: 272235 MR MR Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac PCB-1016 $\overline{\mathsf{ND}}$ 210 ug/Kg 10/30/15 08:37 10/30/15 15:43 41 ND PCB-1221 210 ug/Kg 10/30/15 08:37 10/30/15 15:43 PCB-1232 ND 210 41 ug/Kg 10/30/15 08:37 10/30/15 15:43 ND 210 PCB-1242 41 ug/Kg 10/30/15 08:37 10/30/15 15:43 PCB-1248 ND 210 41 ug/Kg 10/30/15 08:37 10/30/15 15:43 PCB-1254 ND 210 ug/Kg 10/30/15 08:37 10/30/15 15:43

MB MB Surrogate Qualifier Limits Prepared Dil Fac %Recovery Analyzed Tetrachloro-m-xylene 96 60 - 154 <u>10/30/15 08:37</u> <u>10/30/15 15:43</u> DCB Decachlorobiphenyl 100 65 - 174 10/30/15 08:37 10/30/15 15:43

210

99 ug/Kg

Lab Sample ID: LCS 480-272091/2-A Matrix: Solid

Lab Sample ID: MB 480-272091/1-A

Matrix: Solid

PCB-1260

Analysis Batch: 272235

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 272091

Client Sample ID: Method Blank

10/30/15 08:37 10/30/15 15:43

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits ug/Kg PCB-1016 2240 2610 117 51 - 185 PCB-1260 2240 2670 ug/Kg 119 61 - 184

Surrogate%RecoveryQualifierLimitsTetrachloro-m-xylene10860 - 154DCB Decachlorobiphenyl11565 - 174

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-271919/1-A

Matrix: Solid

Analysis Batch: 272494

Prep Type: Total/NA

4 Prep Batch: 271919

MB MB

Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Factor

 Arsenic
 ND
 2.0
 0.40
 mg/Kg
 10/29/15 16:19
 10/31/15 10:16
 1

 Barium
 ND
 0.50
 0.11
 mg/Kg
 10/29/15 16:19
 10/31/15 10:16
 1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-271919/1-A

Lab Sample ID: LCSSRM 480-271919/2-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 272494

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 271919

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.20	0.030	mg/Kg		10/29/15 16:19	10/31/15 10:16	1
Chromium	ND		0.50	0.20	mg/Kg		10/29/15 16:19	10/31/15 10:16	1
Lead	ND		0.99	0.24	mg/Kg		10/29/15 16:19	10/31/15 10:16	1
Selenium	ND		4.0	0.40	mg/Kg		10/29/15 16:19	10/31/15 10:16	1
Silver	ND		0.60	0.20	mg/Kg		10/29/15 16:19	10/31/15 10:16	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 272494	Spike	LCSSRM	LCSSRM				Prep Batch: 271919
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	113	102.7		mg/Kg		90.9	69.7 - 142.
Barium	155	142.9		mg/Kg		92.2	72.9 - 127. 1
Cadmium	67.5	59.85		mg/Kg		88.7	73.2 - 126. 8
Chromium	164	148.3		mg/Kg		90.4	70.7 - 129. 9
Lead	90.1	92.39		mg/Kg		102.5	70.1 - 129. 9
Selenium	156	137.2		mg/Kg		88.0	67.3 - 132. 1
Silver	52.6	46.34		mg/Kg		88.1	66.7 ₋ 133.

Lab Sample ID: MB 480-271941/1-A

Matrix: Water

Analysis Batch: 272333

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 271941

	МВ	з мв							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		10/30/15 07:55	10/30/15 18:10	1
Barium	ND		0.0020	0.00070	mg/L		10/30/15 07:55	10/30/15 18:10	1
Cadmium	ND		0.0020	0.00050	mg/L		10/30/15 07:55	10/30/15 18:10	1
Chromium	ND		0.0040	0.0010	mg/L		10/30/15 07:55	10/30/15 18:10	1
Lead	ND		0.010	0.0030	mg/L		10/30/15 07:55	10/30/15 18:10	1
Selenium	ND		0.025	0.0087	mg/L		10/30/15 07:55	10/30/15 18:10	1
Silver	ND		0.0060	0.0017	mg/L		10/30/15 07:55	10/30/15 18:10	1

Lab Sample ID: LCS 480-271941/2-A

Matrix: Water

Analysis Batch: 272333

Client Sample I	D: Lab Control Sample	
	Prep Type: Total/NA	

Prep Batch: 271941

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.200	0.203		mg/L		102	80 - 120	
Barium	0.200	0.200		mg/L		100	80 - 120	
Cadmium	0.200	0.201		mg/L		101	80 - 120	
Chromium	0.200	0.205		mg/L		102	80 - 120	
Lead	0.200	0.205		mg/L		102	80 - 120	
Selenium	0.200	0.203		mg/L		101	80 - 120	
Silver	0.0500	0.0492		mg/L		98	80 - 120	

TestAmerica Buffalo

Page 103 of 125

Client: Woodard & Curran, Inc.

Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-271820/1-A

Matrix: Water

Analysis Batch: 271994

Client Sample ID: Method Blank
Prep Type: Total/NA

Prep Batch: 271820

MB MB

 Analyte
 Result Mercury
 Qualifier
 RL ND
 MDL ND
 Unit MDL MDL MIT
 D Mercury
 Prepared T0/29/15 10:00
 Analyzed Malyzed T0/29/15 14:25
 Dil Fac T0/29/15 10:00

Lab Sample ID: LCS 480-271820/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 271994 Prep Batch: 271820** Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit %Rec Mercury 0.00667 0.00648 mg/L 97 80 - 120

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 480-271866/1-A

Matrix: Solid

Analysis Batch: 271988

Client Sample ID: Method Blank
Prep Type: Total/NA

Prep Batch: 271866

MB MB

 Analyte
 Result Morcury
 Qualifier
 RL 0.020
 MDL 0.020
 Unit mg/Kg
 D 10/29/15 13:30
 Prepared 10/29/15 13:30
 Analyzed 10/29/15 15:52
 Dil Fac

Lab Sample ID: LCSSRM 480-271866/2-A

Matrix: Solid

Analysis Batch: 271988

Spike LCSSRM LCSSRM

Analyte

Added

Result Qualifier Unit D %Rec Limits

Mercury 8.37 11.96 mg/Kg 142.9 51.3 - 148.

Lab Sample ID: MB 480-272519/1-A

Matrix: Solid

Analysis Batch: 272601

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 272519

MB MB

Mercury ND 0.020 0.0080 mg/Kg 11/02/15 11:10 11/02/15 12:59 1

Lab Sample ID: LCDSRM 480-272519/20-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid Prep Type: Total/NA Analysis Batch: 272601 Prep Batch: 272519 Spike LCDSRM LCDSRM RPD %Rec. Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit

Mercury 8.37 10.12 mg/Kg 121.0 51.3 - 148. 0 20

Lab Sample ID: LCSSRM 480-272519/2-A

Client Sample ID: Lab Control Sample

Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 272601 Prep Batch: 272519 Spike LCSSRM LCSSRM %Rec. Analyte Added Result Qualifier Unit %Rec Limits 8.37 10.17 121.5 51.3 - 148. Mercury mg/Kg

TestAmerica Buffalo

4

5

0

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

GC/MS VOA

Prep Batch: 271703

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-1	SWMU26-SS-BLDG16-01	Total/NA	Solid	5035A	
480-89971-2	SWMU26-SS-BLDG16-02	Total/NA	Solid	5035A	
480-89971-3	SWMU26-SS-BLDG16-03	Total/NA	Solid	5035A	
480-89971-4	SWMU26-SS-BLDG16-04	Total/NA	Solid	5035A	
480-89971-5	SWMU7-SS-BLDG16-04	Total/NA	Solid	5035A	
480-89971-6	SWMU7-SS-BLDG16-05	Total/NA	Solid	5035A	
480-89971-7	SWMU7-SS-BLDG16-06	Total/NA	Solid	5035A	
480-89971-8	SWMU7-SS-BLDG16-07	Total/NA	Solid	5035A	
480-89971-9	SWMU7-SS-BLDG16-08	Total/NA	Solid	5035A	
480-89971-10	SWMU7-SS-BLDG16-09	Total/NA	Solid	5035A	
480-89971-11	SWMU7-SS-BLDG16-10	Total/NA	Solid	5035A	
480-89971-12	SWMU7-SS-BLDG16-11	Total/NA	Solid	5035A	
480-89971-13	SWMU7-SS-BLDG16-12	Total/NA	Solid	5035A	
480-89971-14	SWMU7-SS-BLDG16-13	Total/NA	Solid	5035A	
480-89971-15	SWMU7-SS-BLDG16-14	Total/NA	Solid	5035A	
480-89971-16	SWMU7-SS-BLDG16-15	Total/NA	Solid	5035A	
480-89971-17	SWMU7-SS-BLDG23-08	Total/NA	Solid	5035A	
480-89971-17 MS	SWMU7-SS-BLDG23-08	Total/NA	Solid	5035A	
480-89971-17 MSD	SWMU7-SS-BLDG23-08	Total/NA	Solid	5035A	
480-89971-18	SWMU7-SS-BLDG23-09	Total/NA	Solid	5035A	
LCS 480-271703/1-A	Lab Control Sample	Total/NA	Solid	5035A	
MB 480-271703/2-A	Method Blank	Total/NA	Solid	5035A	

Prep Batch: 271725

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-19	SWMU7-SS-BLDG23-98	Total/NA	Solid	5035A	
480-89971-20	SWMU7-SS-BLDG23-10	Total/NA	Solid	5035A	
480-89971-21	SWMU7-SS-BLDG26-01	Total/NA	Solid	5035A	
480-89971-22	SWMU7-SS-BLDG23-11	Total/NA	Solid	5035A	
LCS 480-271725/1-A	Lab Control Sample	Total/NA	Solid	5035A	
LCSD 480-271725/2-A	Lab Control Sample Dup	Total/NA	Solid	5035A	
MB 480-271725/3-A	Method Blank	Total/NA	Solid	5035A	

Analysis Batch: 271991

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-1	SWMU26-SS-BLDG16-01	Total/NA	Solid	8260C	271703
480-89971-2	SWMU26-SS-BLDG16-02	Total/NA	Solid	8260C	271703
480-89971-3	SWMU26-SS-BLDG16-03	Total/NA	Solid	8260C	271703
480-89971-4	SWMU26-SS-BLDG16-04	Total/NA	Solid	8260C	271703
480-89971-5	SWMU7-SS-BLDG16-04	Total/NA	Solid	8260C	271703
480-89971-6	SWMU7-SS-BLDG16-05	Total/NA	Solid	8260C	271703
480-89971-7	SWMU7-SS-BLDG16-06	Total/NA	Solid	8260C	271703
LCS 480-271703/1-A	Lab Control Sample	Total/NA	Solid	8260C	271703
MB 480-271703/2-A	Method Blank	Total/NA	Solid	8260C	271703

Analysis Batch: 272282

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-8	SWMU7-SS-BLDG16-07	Total/NA	Solid	8260C	271703
480-89971-9	SWMU7-SS-BLDG16-08	Total/NA	Solid	8260C	271703
480-89971-10	SWMU7-SS-BLDG16-09	Total/NA	Solid	8260C	271703
480-89971-11	SWMU7-SS-BLDG16-10	Total/NA	Solid	8260C	271703

TestAmerica Buffalo

11/12/2015

ioa Bailaio

Page 105 of 125

6

8

4 4

11

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

00/110 1/04 /0 //

GC/MS VOA (Continued)

Analysis Batch: 272282 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-12	SWMU7-SS-BLDG16-11	Total/NA	Solid	8260C	271703
480-89971-13	SWMU7-SS-BLDG16-12	Total/NA	Solid	8260C	271703
480-89971-14	SWMU7-SS-BLDG16-13	Total/NA	Solid	8260C	271703
480-89971-15	SWMU7-SS-BLDG16-14	Total/NA	Solid	8260C	271703
480-89971-16	SWMU7-SS-BLDG16-15	Total/NA	Solid	8260C	271703
480-89971-17	SWMU7-SS-BLDG23-08	Total/NA	Solid	8260C	271703
480-89971-17 MS	SWMU7-SS-BLDG23-08	Total/NA	Solid	8260C	271703
480-89971-17 MSD	SWMU7-SS-BLDG23-08	Total/NA	Solid	8260C	271703
480-89971-18	SWMU7-SS-BLDG23-09	Total/NA	Solid	8260C	271703
480-89971-19	SWMU7-SS-BLDG23-98	Total/NA	Solid	8260C	271725
480-89971-20	SWMU7-SS-BLDG23-10	Total/NA	Solid	8260C	271725
480-89971-21	SWMU7-SS-BLDG26-01	Total/NA	Solid	8260C	271725
480-89971-22	SWMU7-SS-BLDG23-11	Total/NA	Solid	8260C	271725
LCS 480-271725/1-A	Lab Control Sample	Total/NA	Solid	8260C	271725
LCSD 480-271725/2-A	Lab Control Sample Dup	Total/NA	Solid	8260C	271725
MB 480-271725/3-A	Method Blank	Total/NA	Solid	8260C	271725

Analysis Batch: 273742

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-23	EB-02	Total/NA	Water	8260C	
480-89971-24	TB-02	Total/NA	Water	8260C	
LCS 480-273742/5	Lab Control Sample	Total/NA	Water	8260C	
MB 480-273742/7	Method Blank	Total/NA	Water	8260C	

GC/MS Semi VOA

Prep Batch: 271824

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-23	EB-02	Total/NA	Water	3510C	
LCS 480-271824/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-271824/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
MB 480-271824/1-A	Method Blank	Total/NA	Water	3510C	

Prep Batch: 272492

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-4	SWMU26-SS-BLDG16-04	Total/NA	Solid	3550C	
480-89971-4 MS	SWMU26-SS-BLDG16-04	Total/NA	Solid	3550C	
480-89971-4 MSD	SWMU26-SS-BLDG16-04	Total/NA	Solid	3550C	
LCS 480-272492/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-272492/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 272717

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-272492/2-A	Lab Control Sample	Total/NA	Solid	8270D	272492

Prep Batch: 272950

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-1	SWMU26-SS-BLDG16-01	Total/NA	Solid	3550C	
480-89971-2	SWMU26-SS-BLDG16-02	Total/NA	Solid	3550C	
480-89971-3	SWMU26-SS-BLDG16-03	Total/NA	Solid	3550C	

TestAmerica Buffalo

Page 106 of 125

6

3

6

1

9

10

12

1 0

4 [

1

.....

11/12/2015

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

GC/MS Semi VOA (Continued)

Prep Batch: 272950 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-272950/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-272950/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 273019

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-271824/2-A	Lab Control Sample	Total/NA	Water	8270D	271824
LCSD 480-271824/3-A	Lab Control Sample Dup	Total/NA	Water	8270D	271824

Analysis Batch: 273884

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-1	SWMU26-SS-BLDG16-01	Total/NA	Solid	8270D	272950
480-89971-2	SWMU26-SS-BLDG16-02	Total/NA	Solid	8270D	272950
480-89971-3	SWMU26-SS-BLDG16-03	Total/NA	Solid	8270D	272950
LCS 480-272950/2-A	Lab Control Sample	Total/NA	Solid	8270D	272950
MB 480-272950/1-A	Method Blank	Total/NA	Solid	8270D	272950

Analysis Batch: 273999

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-23	EB-02	Total/NA	Water	8270D	271824
MB 480-271824/1-A	Method Blank	Total/NA	Water	8270D	271824

Analysis Batch: 274286

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-4	SWMU26-SS-BLDG16-04	Total/NA	Solid	8270D	272492
480-89971-4 MS	SWMU26-SS-BLDG16-04	Total/NA	Solid	8270D	272492
480-89971-4 MSD	SWMU26-SS-BLDG16-04	Total/NA	Solid	8270D	272492
MB 480-272492/1-A	Method Blank	Total/NA	Solid	8270D	272492

GC VOA

Leach Batch: 271929

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-1	SWMU26-SS-BLDG16-01	Soluble	Solid	DI Leach	
480-89971-2	SWMU26-SS-BLDG16-02	Soluble	Solid	DI Leach	
480-89971-3	SWMU26-SS-BLDG16-03	Soluble	Solid	DI Leach	
480-89971-4	SWMU26-SS-BLDG16-04	Soluble	Solid	DI Leach	
LCS 480-271929/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
MB 480-271929/1-A	Method Blank	Soluble	Solid	DI Leach	

Analysis Batch: 272152

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-1	SWMU26-SS-BLDG16-01	Soluble	Solid	8015D	271929
480-89971-2	SWMU26-SS-BLDG16-02	Soluble	Solid	8015D	271929
480-89971-3	SWMU26-SS-BLDG16-03	Soluble	Solid	8015D	271929
480-89971-4	SWMU26-SS-BLDG16-04	Soluble	Solid	8015D	271929
LCS 480-271929/2-A	Lab Control Sample	Soluble	Solid	8015D	271929
MB 480-271929/1-A	Method Blank	Soluble	Solid	8015D	271929

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

GC VOA (Continued)

Analysis Batch: 272574

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-23	EB-02	Total/NA	Water	8015D	
480-89971-23 MS	EB-02	Total/NA	Water	8015D	
480-89971-23 MSD	EB-02	Total/NA	Water	8015D	
LCS 480-272574/5	Lab Control Sample	Total/NA	Water	8015D	
MB 480-272574/4	Method Blank	Total/NA	Water	8015D	

GC Semi VOA

Prep Batch: 271827

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-23	EB-02	Total/NA	Water	3510C	
LCS 480-271827/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 480-271827/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 271936

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-23	EB-02	Total/NA	Water	8082A	271827
LCS 480-271827/2-A	Lab Control Sample	Total/NA	Water	8082A	271827
MB 480-271827/1-A	Method Blank	Total/NA	Water	8082A	271827

Prep Batch: 272091

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-1	SWMU26-SS-BLDG16-01	Total/NA	Solid	3550C	_
480-89971-2	SWMU26-SS-BLDG16-02	Total/NA	Solid	3550C	
480-89971-3	SWMU26-SS-BLDG16-03	Total/NA	Solid	3550C	
480-89971-4	SWMU26-SS-BLDG16-04	Total/NA	Solid	3550C	
LCS 480-272091/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-272091/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 272235

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-1	SWMU26-SS-BLDG16-01	Total/NA	Solid	8082A	272091
480-89971-2	SWMU26-SS-BLDG16-02	Total/NA	Solid	8082A	272091
480-89971-3	SWMU26-SS-BLDG16-03	Total/NA	Solid	8082A	272091
480-89971-4	SWMU26-SS-BLDG16-04	Total/NA	Solid	8082A	272091
LCS 480-272091/2-A	Lab Control Sample	Total/NA	Solid	8082A	272091
MB 480-272091/1-A	Method Blank	Total/NA	Solid	8082A	272091

Metals

Prep Batch: 271820

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-23	EB-02	Total/NA	Water	7470A	
LCS 480-271820/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-271820/1-A	Method Blank	Total/NA	Water	7470A	

Prep Batch: 271866

=					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-1	SWMU26-SS-BLDG16-01	Total/NA	Solid	7471B	
480-89971-2	SWMU26-SS-BLDG16-02	Total/NA	Solid	7471B	

TestAmerica Buffalo

11/12/2015

6

8

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Metals (Continued)

Prep Batch: 271866 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-3	SWMU26-SS-BLDG16-03	Total/NA	Solid	7471B	<u> </u>
LCSSRM 480-271866/2-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 480-271866/1-A	Method Blank	Total/NA	Solid	7471B	

Prep Batch: 271919

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-1	SWMU26-SS-BLDG16-01	Total/NA	Solid	3050B	_
480-89971-2	SWMU26-SS-BLDG16-02	Total/NA	Solid	3050B	
480-89971-3	SWMU26-SS-BLDG16-03	Total/NA	Solid	3050B	
480-89971-4	SWMU26-SS-BLDG16-04	Total/NA	Solid	3050B	
LCSSRM 480-271919/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-271919/1-A	Method Blank	Total/NA	Solid	3050B	

Prep Batch: 271941

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-23	EB-02	Total/NA	Water	3005A	
LCS 480-271941/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-271941/1-A	Method Blank	Total/NA	Water	3005A	

Analysis Batch: 271988

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-1	SWMU26-SS-BLDG16-01	Total/NA	Solid	7471B	271866
480-89971-2	SWMU26-SS-BLDG16-02	Total/NA	Solid	7471B	271866
480-89971-3	SWMU26-SS-BLDG16-03	Total/NA	Solid	7471B	271866
LCSSRM 480-271866/2-A	Lab Control Sample	Total/NA	Solid	7471B	271866
MB 480-271866/1-A	Method Blank	Total/NA	Solid	7471B	271866

Analysis Batch: 271994

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-23	EB-02	Total/NA	Water	7470A	271820
LCS 480-271820/2-A	Lab Control Sample	Total/NA	Water	7470A	271820
MB 480-271820/1-A	Method Blank	Total/NA	Water	7470A	271820

Analysis Batch: 272333

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-23	EB-02	Total/NA	Water	6010C	271941
LCS 480-271941/2-A	Lab Control Sample	Total/NA	Water	6010C	271941
MB 480-271941/1-A	Method Blank	Total/NA	Water	6010C	271941

Analysis Batch: 272494

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-1	SWMU26-SS-BLDG16-01	Total/NA	Solid	6010C	271919
480-89971-2	SWMU26-SS-BLDG16-02	Total/NA	Solid	6010C	271919
480-89971-3	SWMU26-SS-BLDG16-03	Total/NA	Solid	6010C	271919
480-89971-4	SWMU26-SS-BLDG16-04	Total/NA	Solid	6010C	271919
LCSSRM 480-271919/2-A	Lab Control Sample	Total/NA	Solid	6010C	271919
MB 480-271919/1-A	Method Blank	Total/NA	Solid	6010C	271919

Prep Batch: 272519

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-4	SWMU26-SS-BLDG16-04	Total/NA	Solid	7471B	

TestAmerica Buffalo

Page 109 of 125

QC Association Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Metals (Continued)

Prep Batch: 272519 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCDSRM 480-272519/20-A	Lab Control Sample Dup	Total/NA	Solid	7471B	
LCSSRM 480-272519/2-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 480-272519/1-A	Method Blank	Total/NA	Solid	7471B	

Analysis Batch: 272601

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-4	SWMU26-SS-BLDG16-04	Total/NA	Solid	7471B	272519
LCDSRM 480-272519/20-A	Lab Control Sample Dup	Total/NA	Solid	7471B	272519
LCSSRM 480-272519/2-A	Lab Control Sample	Total/NA	Solid	7471B	272519
MB 480-272519/1-A	Method Blank	Total/NA	Solid	7471B	272519

General Chemistry

Analysis Batch: 271751

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-1	SWMU26-SS-BLDG16-01	Total/NA	Solid	Moisture	
480-89971-2	SWMU26-SS-BLDG16-02	Total/NA	Solid	Moisture	
480-89971-3	SWMU26-SS-BLDG16-03	Total/NA	Solid	Moisture	
480-89971-4	SWMU26-SS-BLDG16-04	Total/NA	Solid	Moisture	

Analysis Batch: 272666

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89971-5	SWMU7-SS-BLDG16-04	Total/NA	Solid	Moisture	_
480-89971-6	SWMU7-SS-BLDG16-05	Total/NA	Solid	Moisture	
480-89971-7	SWMU7-SS-BLDG16-06	Total/NA	Solid	Moisture	
480-89971-8	SWMU7-SS-BLDG16-07	Total/NA	Solid	Moisture	
480-89971-9	SWMU7-SS-BLDG16-08	Total/NA	Solid	Moisture	
480-89971-10	SWMU7-SS-BLDG16-09	Total/NA	Solid	Moisture	
480-89971-11	SWMU7-SS-BLDG16-10	Total/NA	Solid	Moisture	
480-89971-12	SWMU7-SS-BLDG16-11	Total/NA	Solid	Moisture	
480-89971-13	SWMU7-SS-BLDG16-12	Total/NA	Solid	Moisture	
480-89971-14	SWMU7-SS-BLDG16-13	Total/NA	Solid	Moisture	
480-89971-15	SWMU7-SS-BLDG16-14	Total/NA	Solid	Moisture	
480-89971-16	SWMU7-SS-BLDG16-15	Total/NA	Solid	Moisture	
480-89971-17	SWMU7-SS-BLDG23-08	Total/NA	Solid	Moisture	
480-89971-17 MS	SWMU7-SS-BLDG23-08	Total/NA	Solid	Moisture	
480-89971-17 MSD	SWMU7-SS-BLDG23-08	Total/NA	Solid	Moisture	
480-89971-18	SWMU7-SS-BLDG23-09	Total/NA	Solid	Moisture	
480-89971-19	SWMU7-SS-BLDG23-98	Total/NA	Solid	Moisture	
480-89971-20	SWMU7-SS-BLDG23-10	Total/NA	Solid	Moisture	
480-89971-21	SWMU7-SS-BLDG26-01	Total/NA	Solid	Moisture	
480-89971-22	SWMU7-SS-BLDG23-11	Total/NA	Solid	Moisture	

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU26-SS-BLDG16-01

Lab Sample ID: 480-89971-1 Date Collected: 10/27/15 08:30

Matrix: Solid

Date Received: 10/28/15 09:00

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture		1	271751	10/28/15 22:33	CMK	TAL BUF	

Client Sample ID: SWMU26-SS-BLDG16-01 Lab Sample ID: 480-89971-1

Matrix: Solid

Date Collected: 10/27/15 08:30 Date Received: 10/28/15 09:00 Percent Solids: 90.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			271703	10/28/15 17:37	NQN	TAL BUF
Total/NA	Analysis	8260C		1	271991	10/29/15 23:13	NMD1	TAL BUF
Total/NA	Prep	3550C			272950	11/04/15 07:44	TRG	TAL BUF
Total/NA	Analysis	8270D		5	273884	11/09/15 18:17	LMW	TAL BUF
Soluble	Leach	DI Leach			271929	10/29/15 14:00	AJM	TAL BUF
Soluble	Analysis	8015D		1	272152	10/30/15 12:48	AJM	TAL BUF
Total/NA	Prep	3550C			272091	10/30/15 08:37	JLS	TAL BUF
Total/NA	Analysis	8082A		1	272235	10/30/15 19:38	KS	TAL BUF
Total/NA	Prep	3050B			271919	10/29/15 16:19	CMM	TAL BUF
Total/NA	Analysis	6010C		1	272494	10/31/15 11:18	AMH	TAL BUF
Total/NA	Prep	7471B			271866	10/29/15 13:30	TAS	TAL BUF
Total/NA	Analysis	7471B		1	271988	10/29/15 15:58	TAS	TAL BUF

Client Sample ID: SWMU26-SS-BLDG16-02 Lab Sample ID: 480-89971-2

Date Collected: 10/27/15 08:35 **Matrix: Solid**

Date Received: 10/28/15 09:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			271751	10/28/15 22:33	CMK	TAL BUF

Lab Sample ID: 480-89971-2 Client Sample ID: SWMU26-SS-BLDG16-02

Date Collected: 10/27/15 08:35 Matrix: Solid

Date Received: 10/28/15 09:00 Percent Solids: 87.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			271703	10/28/15 17:37	NQN	TAL BUF
Total/NA	Analysis	8260C		1	271991	10/29/15 23:39	NMD1	TAL BUF
Total/NA	Prep	3550C			272950	11/04/15 07:44	TRG	TAL BUF
Total/NA	Analysis	8270D		1	273884	11/09/15 18:43	LMW	TAL BUF
Soluble	Leach	DI Leach			271929	10/29/15 14:00	AJM	TAL BUF
Soluble	Analysis	8015D		1	272152	10/30/15 12:56	AJM	TAL BUF
Total/NA	Prep	3550C			272091	10/30/15 08:37	JLS	TAL BUF
Total/NA	Analysis	8082A		1	272235	10/30/15 19:55	KS	TAL BUF
Total/NA	Prep	3050B			271919	10/29/15 16:19	CMM	TAL BUF
Total/NA	Analysis	6010C		1	272494	10/31/15 11:21	AMH	TAL BUF
Total/NA	Prep	7471B			271866	10/29/15 13:30	TAS	TAL BUF

Lab Sample ID: 480-89971-2

Lab Sample ID: 480-89971-3

Lab Sample ID: 480-89971-3

Lab Sample ID: 480-89971-4

Matrix: Solid

Matrix: Solid

Percent Solids: 87.5

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU26-SS-BLDG16-02

Date Collected: 10/27/15 08:35

Date Received: 10/28/15 09:00

Prep Type

Total/NA

Batch

Type

Analysis

Batch Dilution Batch Prepared Method Run **Factor** Number or Analyzed Analyst Lab 7471B 271988 10/29/15 16:00 TAS TAL BUF

Client Sample ID: SWMU26-SS-BLDG16-03

Date Collected: 10/27/15 08:45

Date Received: 10/28/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			271751	10/28/15 22:33	CMK	TAL BUF

Client Sample ID: SWMU26-SS-BLDG16-03

Date Collecte		Matrix: Solid Percent Solids: 84.5							
Prop Type	Batch	Batch	Pun	Dilution	Batch	Prepared	Analyst	Lab	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			271703	10/28/15 17:37	NQN	TAL BUF
Total/NA	Analysis	8260C		1	271991	10/30/15 00:05	NMD1	TAL BUF
Total/NA	Prep	3550C			272950	11/04/15 07:44	TRG	TAL BUF
Total/NA	Analysis	8270D		5	273884	11/09/15 19:09	LMW	TAL BUF
Soluble	Leach	DI Leach			271929	10/29/15 14:00	AJM	TAL BUF
Soluble	Analysis	8015D		1	272152	10/30/15 13:04	AJM	TAL BUF
Total/NA	Prep	3550C			272091	10/30/15 08:37	JLS	TAL BUF
Total/NA	Analysis	8082A		1	272235	10/30/15 20:12	KS	TAL BUF
Total/NA	Prep	3050B			271919	10/29/15 16:19	CMM	TAL BUF
Total/NA	Analysis	6010C		1	272494	10/31/15 11:34	AMH	TAL BUF
Total/NA	Prep	7471B			271866	10/29/15 13:30	TAS	TAL BUF
Total/NA	Analysis	7471B		1	271988	10/29/15 16:01	TAS	TAL BUF

Client Sample ID: SWMU26-SS-BLDG16-04

Date Collected: 10/27/15 08:50

Date Received: 10/28/15 09:00

_	ato itoconioai i	0,20,100	0.00						
Γ		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	Moisture		1	271751	10/28/15 22:33	CMK	TAL BUF

Lab Sample ID: 480-89971-4
Matrix: Solid
Percent Solids: 90.4

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			271703	10/28/15 17:37	NQN	TAL BUF
Total/NA	Analysis	8260C		1	271991	10/30/15 00:31	NMD1	TAL BUF
Total/NA	Prep	3550C			272492	11/02/15 08:32	CAM	TAL BUF
Total/NA	Analysis	8270D		1	274286	11/11/15 11:49	CAS	TAL BUF

TestAmerica Buffalo

Page 112 of 125

Matrix: Solid

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU26-SS-BLDG16-04

Lab Sample ID: 480-89971-4 Date Collected: 10/27/15 08:50 **Matrix: Solid** Date Received: 10/28/15 09:00

Percent Solids: 90.4

Matrix: Solid

Batch Dilution Batch Batch **Prepared** Method Number **Prep Type** Type Run **Factor** or Analyzed Analyst Lab Soluble Leach DI Leach 271929 10/29/15 14:00 AJM TAL BUF Soluble 8015D 272152 10/30/15 13:12 AJM Analysis TAL BUF 1 Total/NA Prep 3550C 272091 10/30/15 10:11 TAL BUF Total/NA 8082A 272235 10/30/15 23:33 KS TAL BUF Analysis 1 Total/NA 3050B 271919 10/29/15 16:19 CMM **TAL BUF** Prep Total/NA Analysis 6010C 1 272494 10/31/15 11:37 AMH TAL BUF Total/NA 7471B 272519 11/02/15 11:10 TAS TAL BUF Prep Total/NA 272601 11/02/15 13:33 TAS TAL BUF Analysis 7471B 1

Client Sample ID: SWMU7-SS-BLDG16-04 Lab Sample ID: 480-89971-5

Date Collected: 10/27/15 09:35 **Matrix: Solid**

Date Received: 10/28/15 09:00

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Total/NA Analysis Moisture 272666 11/02/15 23:09 NMD1 TAL BUF

Client Sample ID: SWMU7-SS-BLDG16-04 Lab Sample ID: 480-89971-5

Date Collected: 10/27/15 09:35

Date Received: 10/28/15 09:00 Percent Solids: 92.8

Batch Batch Dilution **Batch Prepared** Method Run Number or Analyzed **Prep Type** Type Factor Analyst Lab Total/NA Prep 5035A 271703 10/28/15 17:37 NQN TAL BUF Total/NA Analysis 8260C 1 271991 10/30/15 00:57 NMD1 TAL BUF

Client Sample ID: SWMU7-SS-BLDG16-05 Lab Sample ID: 480-89971-6

Date Collected: 10/27/15 09:50 Matrix: Solid

Date Received: 10/28/15 09:00

Batch Batch Dilution Batch Prepared Method Number Type Run Factor or Analyzed **Prep Type Analyst** Lab Total/NA 272666 11/02/15 22:39 NMD1 TAL BUF Analysis Moisture

Lab Sample ID: 480-89971-6 Client Sample ID: SWMU7-SS-BLDG16-05

Date Collected: 10/27/15 09:50 Matrix: Solid

Date Received: 10/28/15 09:00 Percent Solids: 91.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			271703	10/28/15 17:37	NQN	TAL BUF
Total/NA	Analysis	8260C		1	271991	10/30/15 01:23	NMD1	TAL BUF

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU7-SS-BLDG16-06

Lab Sample ID: 480-89971-7 Date Collected: 10/27/15 10:05

Matrix: Solid

Matrix: Solid

Date Received: 10/28/15 09:00

Dilution Batch Batch Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Total/NA Analysis Moisture 272666 11/02/15 22:39 NMD1 TAL BUF

Lab Sample ID: 480-89971-7

Client Sample ID: SWMU7-SS-BLDG16-06 Date Collected: 10/27/15 10:05

Matrix: Solid Percent Solids: 92.9

Date Received: 10/28/15 09:00

Batch Batch Dilution **Batch Prepared** Prep Type Type Method Run Factor Number or Analyzed Analyst Lab 5035A 10/28/15 17:37 NQN TAL BUF Total/NA Prep 271703 Total/NA Analysis 8260C 1 271991 10/30/15 01:49 NMD1 TAL BUF

Client Sample ID: SWMU7-SS-BLDG16-07 Lab Sample ID: 480-89971-8

Date Collected: 10/27/15 10:15 Matrix: Solid

Date Received: 10/28/15 09:00

Batch Batch Dilution **Batch** Prepared Method Run Factor Number or Analyzed Analyst **Prep Type** Type Lab 11/02/15 22:39 NMD1 TAL BUF Total/NA Analysis Moisture 272666

Client Sample ID: SWMU7-SS-BLDG16-07 Lab Sample ID: 480-89971-8

Date Collected: 10/27/15 10:15 Date Received: 10/28/15 09:00

Percent Solids: 91.9

Batch Batch Dilution Batch **Prepared** Prep Type Type Method Run Factor Number or Analyzed **Analyst** Lab Total/NA Prep 5035A 271703 10/28/15 17:37 NON TAL BUF 8260C 272282 10/30/15 21:49 NMD1 TAL BUF Total/NA Analysis 1

Client Sample ID: SWMU7-SS-BLDG16-08 Lab Sample ID: 480-89971-9

Date Collected: 10/27/15 10:30 Matrix: Solid

Date Received: 10/28/15 09:00

Dilution Batch Batch Batch Prepared Prep Type Method Factor Number or Analyzed Type Run **Analyst** 11/02/15 22:39 NMD1 TAL BUF Total/NA Analysis Moisture 272666

Client Sample ID: SWMU7-SS-BLDG16-08 Lab Sample ID: 480-89971-9

Date Collected: 10/27/15 10:30 Matrix: Solid

Date Received: 10/28/15 09:00 Percent Solids: 88.8

Batch Batch Dilution **Batch** Prepared **Prep Type** Method Run Number or Analyzed Type **Factor** Analyst Lab Total/NA 5035A 271703 10/28/15 17:37 NQN TAL BUF Prep 8260C Total/NA 272282 10/30/15 22:15 NMD1 TAL BUF Analysis 1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Lab Sample ID: 480-89971-10

Matrix: Solid

Matrix: Solid

Client Sample ID: SWMU7-SS-BLDG16-09

Date Collected: 10/27/15 10:40 Date Received: 10/28/15 09:00

Dilution Batch Batch Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Total/NA Analysis Moisture 272666 11/02/15 22:39 NMD1 TAL BUF

Lab Sample ID: 480-89971-10

Client Sample ID: SWMU7-SS-BLDG16-09 Date Collected: 10/27/15 10:40 Matrix: Solid Date Received: 10/28/15 09:00 Percent Solids: 93.5

Batch Batch Dilution **Batch Prepared** Method Prep Type Type Run Factor Number or Analyzed Analyst Lab 5035A 10/28/15 17:37 NQN TAL BUF Total/NA Prep 271703 Total/NA 8260C 272282 10/30/15 22:41 NMD1 TAL BUF

Client Sample ID: SWMU7-SS-BLDG16-10 Lab Sample ID: 480-89971-11

1

Date Collected: 10/27/15 11:05 Date Received: 10/28/15 09:00

Analysis

Batch Batch Dilution **Batch** Prepared

Method Run Factor Number or Analyzed Analyst **Prep Type** Type Lab 11/02/15 22:39 NMD1 TAL BUF Total/NA Analysis Moisture 272666

Client Sample ID: SWMU7-SS-BLDG16-10 Lab Sample ID: 480-89971-11

Date Collected: 10/27/15 11:05 **Matrix: Solid** Date Received: 10/28/15 09:00 Percent Solids: 93.0

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed **Analyst** Lab Total/NA Prep 5035A 271703 10/28/15 17:37 NON TAL BUF 8260C 272282 10/30/15 23:07 NMD1 TAL BUF Total/NA Analysis 1

Client Sample ID: SWMU7-SS-BLDG16-11 Lab Sample ID: 480-89971-12

Date Collected: 10/27/15 11:15 Matrix: Solid

Date Received: 10/28/15 09:00

Dilution Batch Batch Batch Prepared Prep Type Method Factor Number or Analyzed Type Run **Analyst** NMD1 TAL BUF Total/NA Analysis Moisture 272666 11/02/15 22:39

Client Sample ID: SWMU7-SS-BLDG16-11 Lab Sample ID: 480-89971-12

Date Collected: 10/27/15 11:15 Matrix: Solid Date Received: 10/28/15 09:00 Percent Solids: 90.1

Batch Batch Dilution **Batch** Prepared **Prep Type** Method Run Number or Analyzed Type **Factor** Analyst Lab Total/NA 5035A 271703 10/28/15 17:37 NQN TAL BUF Prep 8260C Total/NA 272282 10/30/15 23:33 NMD1 TAL BUF Analysis 1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Lab Sample ID: 480-89971-13

Client Sample ID: SWMU7-SS-BLDG16-12 Date Collected: 10/27/15 11:40

Client Sample ID: SWMU7-SS-BLDG16-12

Date Received: 10/28/15 09:00

Matrix: Solid

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Total/NA Analysis Moisture 272666 11/02/15 22:39 NMD1 TAL BUF

Lab Sample ID: 480-89971-13

Date Collected: 10/27/15 11:40 Matrix: Solid Date Received: 10/28/15 09:00

Percent Solids: 90.5

Batch Batch Dilution **Batch Prepared** Method Prep Type Type Run Factor Number or Analyzed Analyst Lab 5035A NQN TAL BUF Total/NA Prep 271703 10/28/15 17:37 Total/NA Analysis 8260C 1 272282 10/30/15 23:59 NMD1 TAL BUF

Client Sample ID: SWMU7-SS-BLDG16-13 Lab Sample ID: 480-89971-14

Date Collected: 10/27/15 12:05 **Matrix: Solid**

Date Received: 10/28/15 09:00

Lab

Batch Batch Dilution Batch Prepared Method Run Factor Number or Analyzed Analyst **Prep Type** Type

11/02/15 22:39 NMD1 TAL BUF Total/NA Analysis Moisture 272666

Client Sample ID: SWMU7-SS-BLDG16-13 Lab Sample ID: 480-89971-14

Date Collected: 10/27/15 12:05 **Matrix: Solid** Date Received: 10/28/15 09:00 Percent Solids: 93.6

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Prep 5035A 271703 10/28/15 17:37 NON TAL BUF Total/NA 8260C 272282 10/31/15 00:25 NMD1 TAL BUF Analysis 1

Client Sample ID: SWMU7-SS-BLDG16-14 Lab Sample ID: 480-89971-15

Date Collected: 10/27/15 12:20 Matrix: Solid

Date Received: 10/28/15 09:00

Batch Batch Batch Dilution Prepared Prep Type Method Factor Number or Analyzed Type Run **Analyst** Total/NA Analysis Moisture 272666 11/02/15 22:39 NMD1 TAL BUF

Client Sample ID: SWMU7-SS-BLDG16-14 Lab Sample ID: 480-89971-15

Date Collected: 10/27/15 12:20 **Matrix: Solid**

Date Received: 10/28/15 09:00 Percent Solids: 94.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			271703	10/28/15 17:37	NQN	TAL BUF
Total/NA	Analysis	8260C		1	272282	10/31/15 00:51	NMD1	TAL BUF

10

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Lab Sample ID: 480-89971-16

Matrix: Solid

Client Sample ID: SWMU7-SS-BLDG16-15

Client Sample ID: SWMU7-SS-BLDG16-15

Date Collected: 10/27/15 12:30 Date Received: 10/28/15 09:00

Date Collected: 10/27/15 12:30

Date Received: 10/28/15 09:00

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Total/NA Analysis Moisture 272666 11/02/15 22:39 NMD1 TAL BUF

Lab Sample ID: 480-89971-16

Matrix: Solid

Percent Solids: 89.5

Batch Batch Dilution **Batch Prepared** Method **Prep Type** Type Run Factor Number or Analyzed Analyst Lab NQN 5035A 10/28/15 17:37 TAL BUF Total/NA Prep 271703 Total/NA Analysis 8260C 1 272282 10/31/15 01:16 NMD1 TAL BUF

Client Sample ID: SWMU7-SS-BLDG23-08 Lab Sample ID: 480-89971-17

Date Collected: 10/27/15 15:30 Matrix: Solid

Date Received: 10/28/15 09:00

Batch Batch Dilution Batch Prepared Method Run Factor Number or Analyzed Analyst **Prep Type** Type Lab 11/02/15 22:39 NMD1 TAL BUF Total/NA Analysis Moisture 272666

Client Sample ID: SWMU7-SS-BLDG23-08 Lab Sample ID: 480-89971-17

Date Collected: 10/27/15 15:30 **Matrix: Solid**

Date Received: 10/28/15 09:00 Percent Solids: 87.6

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Prep 5035A 271703 10/28/15 17:37 NON TAL BUF Total/NA 8260C 272282 10/31/15 01:42 NMD1 TAL BUF Analysis 1

Client Sample ID: SWMU7-SS-BLDG23-09 Lab Sample ID: 480-89971-18

Date Collected: 10/27/15 15:50 Matrix: Solid

Date Received: 10/28/15 09:00

Batch Batch Batch Dilution Prepared Prep Type Method Factor Number or Analyzed Type Run **Analyst** TAL BUF Total/NA Analysis Moisture 272666 11/02/15 22:39 NMD1

Client Sample ID: SWMU7-SS-BLDG23-09 Lab Sample ID: 480-89971-18

Date Collected: 10/27/15 15:50 **Matrix: Solid**

Date Received: 10/28/15 09:00 Percent Solids: 93.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			271703	10/28/15 17:37	NQN	TAL BUF
Total/NA	Analysis	8260C		1	272282	10/31/15 02:08	NMD1	TAL BUF

TestAmerica Buffalo

10

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU7-SS-BLDG23-98

Lab Sample ID: 480-89971-19

Matrix: Solid

Date Collected: 10/27/15 15:50 Date Received: 10/28/15 09:00

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Total/NA Analysis Moisture 272666 11/03/15 18:09 NMD1 TAL BUF

Lab Sample ID: 480-89971-19

Client Sample ID: SWMU7-SS-BLDG23-98 Date Collected: 10/27/15 15:50 Matrix: Solid

Percent Solids: 93.6

Date Received: 10/28/15 09:00

Batch Batch Dilution **Batch Prepared** Method **Prep Type** Type Run Factor Number or Analyzed Analyst Lab 5035A 10/28/15 18:07 NQN TAL BUF Total/NA Prep 271725 Total/NA Analysis 8260C 1 272282 10/31/15 03:52 NMD1 TAL BUF

Client Sample ID: SWMU7-SS-BLDG23-10 Lab Sample ID: 480-89971-20

Date Collected: 10/27/15 16:10 Matrix: Solid

Date Received: 10/28/15 09:00

Batch Batch Dilution Batch Prepared Method Run Factor Number or Analyzed Analyst **Prep Type** Type Lab 11/02/15 22:39 NMD1 TAL BUF Total/NA Analysis Moisture 272666

Client Sample ID: SWMU7-SS-BLDG23-10 Lab Sample ID: 480-89971-20

Date Collected: 10/27/15 16:10 **Matrix: Solid**

Date Received: 10/28/15 09:00 Percent Solids: 88.7

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Prep 5035A 271725 10/28/15 18:07 NON TAL BUF Total/NA 8260C 272282 10/31/15 04:17 NMD1 TAL BUF Analysis 1

Client Sample ID: SWMU7-SS-BLDG26-01 Lab Sample ID: 480-89971-21

Date Collected: 10/27/15 16:25 Matrix: Solid

Date Received: 10/28/15 09:00

Batch Batch Batch Dilution Prepared Prep Type Method Factor Number or Analyzed Type Run **Analyst** Total/NA Analysis Moisture 272666 11/02/15 22:39 NMD1 TAL BUF

Client Sample ID: SWMU7-SS-BLDG26-01 Lab Sample ID: 480-89971-21

Date Collected: 10/27/15 16:25 **Matrix: Solid**

Date Received: 10/28/15 09:00 Percent Solids: 93.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			271725	10/28/15 18:07	NQN	TAL BUF
Total/NA	Analysis	8260C		1	272282	10/31/15 04:44	NMD1	TAL BUF

TestAmerica Buffalo

2

10

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU7-SS-BLDG23-11 Lab Sample ID: 480-89971-22

Date Collected: 10/27/15 16:40 Matrix: Solid

Date Received: 10/28/15 09:00

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Total/NA Analysis Moisture 272666 11/02/15 22:43 NMD1 TAL BUF

Client Sample ID: SWMU7-SS-BLDG23-11 Lab Sample ID: 480-89971-22

 Date Collected: 10/27/15 16:40
 Matrix: Solid

 Date Received: 10/28/15 09:00
 Percent Solids: 74.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			271725	10/28/15 18:07	NQN	TAL BUF
Total/NA	Analysis	8260C		1	272282	10/31/15 05:09	NMD1	TAL BUF

Client Sample ID: EB-02 Lab Sample ID: 480-89971-23

Date Collected: 10/27/15 17:07 Matrix: Water

Date Received: 10/28/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			273742	11/07/15 12:41	JWG	TAL BUF
Total/NA	Prep	3510C			271824	10/29/15 08:34	RMZ	TAL BUF
Total/NA	Analysis	8270D		1	273999	11/10/15 15:27	DMR	TAL BUF
Total/NA	Analysis	8015D		1	272574	11/02/15 13:14	AJM	TAL BUF
Total/NA	Prep	3510C			271827	10/29/15 08:43	RMZ	TAL BUF
Total/NA	Analysis	8082A		1	271936	10/29/15 19:12	JMO	TAL BUF
Total/NA	Prep	3005A			271941	10/30/15 07:55	CNS	TAL BUF
Total/NA	Analysis	6010C		1	272333	10/30/15 19:15	SLB	TAL BUF
Total/NA	Prep	7470A			271820	10/29/15 10:00	TAS	TAL BUF
Total/NA	Analysis	7470A		1	271994	10/29/15 15:03	TAS	TAL BUF

Client Sample ID: TB-02 Lab Sample ID: 480-89971-24

273742 11/07/15 13:05 JWG

Date Collected: 10/27/15 00:00 Matrix: Water

Batch Batch Dilution Batch Prepared
Prep Type Type Method Run Factor Number or Analyzed Analyst Lab

Laboratory References:

Total/NA

Date Received: 10/28/15 09:00

Analysis

8260C

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

TAL BUF

Certification Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

uthority	Program		EPA Region	Certification ID	Expiration Date
lew York	NELAP		2	10026	03-31-16
The following analytes	s are included in this repo	ort, but certification is	s not offered by the g	overning authority:	
Analysis Method	Prep Method	Matrix	Analy	te	
8015D		Solid	2-Buta	anol	
8015D		Solid	Isopro	pyl alcohol	
8015D		Solid	Metha	inol	
8015D		Solid	n-Buta	anol	
8015D		Solid	Propa	nol	
8015D		Water	2-Buta	anol	
8015D		Water	Isopro	pyl alcohol	
8015D		Water	Metha	inol	
8015D		Water	n-Buta	anol	
8015D		Water	Propa	nol	
8260C		Water	Tetral	nydrofuran	
8260C	5035A	Solid	Tetral	nydrofuran	
8270D	3510C	Water	Dimet	hylformamide	
8270D	3550C	Solid	Dimet	hylformamide	
Moisture		Solid	Perce	nt Moisture	
Moisture		Solid	Perce	nt Solids	

2

3

5

7

10

13

14

Method Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
8015D	Nonhalogenated Organic Compounds - Direct Injection (GC)	SW846	TAL BUF
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
7471B	Mercury (CVAA)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

6

R

9

10

12

13

Sample Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-89971-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-89971-1	SWMU26-SS-BLDG16-01	Solid	10/27/15 08:30	10/28/15 09:00
480-89971-2	SWMU26-SS-BLDG16-02	Solid	10/27/15 08:35	10/28/15 09:00
480-89971-3	SWMU26-SS-BLDG16-03	Solid	10/27/15 08:45	10/28/15 09:00
480-89971-4	SWMU26-SS-BLDG16-04	Solid	10/27/15 08:50	10/28/15 09:00
480-89971-5	SWMU7-SS-BLDG16-04	Solid	10/27/15 09:35	10/28/15 09:00
480-89971-6	SWMU7-SS-BLDG16-05	Solid	10/27/15 09:50	10/28/15 09:00
480-89971-7	SWMU7-SS-BLDG16-06	Solid	10/27/15 10:05	10/28/15 09:00
480-89971-8	SWMU7-SS-BLDG16-07	Solid	10/27/15 10:15	10/28/15 09:00
480-89971-9	SWMU7-SS-BLDG16-08	Solid	10/27/15 10:30	10/28/15 09:00
480-89971-10	SWMU7-SS-BLDG16-09	Solid	10/27/15 10:40	10/28/15 09:00
480-89971-11	SWMU7-SS-BLDG16-10	Solid	10/27/15 11:05	10/28/15 09:00
480-89971-12	SWMU7-SS-BLDG16-11	Solid	10/27/15 11:15	10/28/15 09:00
480-89971-13	SWMU7-SS-BLDG16-12	Solid	10/27/15 11:40	10/28/15 09:00
480-89971-14	SWMU7-SS-BLDG16-13	Solid	10/27/15 12:05	10/28/15 09:00
480-89971-15	SWMU7-SS-BLDG16-14	Solid	10/27/15 12:20	10/28/15 09:00
480-89971-16	SWMU7-SS-BLDG16-15	Solid	10/27/15 12:30	10/28/15 09:00
480-89971-17	SWMU7-SS-BLDG23-08	Solid	10/27/15 15:30	10/28/15 09:00
480-89971-18	SWMU7-SS-BLDG23-09	Solid	10/27/15 15:50	10/28/15 09:00
480-89971-19	SWMU7-SS-BLDG23-98	Solid	10/27/15 15:50	10/28/15 09:00
480-89971-20	SWMU7-SS-BLDG23-10	Solid	10/27/15 16:10	10/28/15 09:00
480-89971-21	SWMU7-SS-BLDG26-01	Solid	10/27/15 16:25	10/28/15 09:00
480-89971-22	SWMU7-SS-BLDG23-11	Solid	10/27/15 16:40	10/28/15 09:00
480-89971-23	EB-02	Water	10/27/15 17:07	10/28/15 09:00
480-89971-24	TB-02	Water	10/27/15 00:00	10/28/15 09:00

Chain of Custody Record

Temperature on Receipt ___

Drinking Water? Yes□ Noed

	480 80074 6:
	480
<u>~</u>	
	, ·
1	
芸	
\smile ι	

480-89971 Chain of Custody THE LEADER IN ENVIRONMENT

TAL-4124 (1007))					
Woodard & Corran		Project Manager Oscol	in Major	on Dar Weeks	ielis	Date 10 127/15	Chain of Qustody Number 287321
1530 Hichland Ave		Тејерћопе М.	みん	Fax Number 79		Lab Number	Page l of
State	To Code	Site Contact	7 . 11.2.40		An	Analysis (Attach list if more space is needed)	
State) O'n t	λ Λ	Carrier/Waybill Number	III Number	TIX	* * *		Special Instructions/
10			Matrix	Containers & Preservatives	६ १०५८ ६ १४२		Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time 🔄	I/OS 'PAS	HOBN SeidnU	?1√ +'W >n5 >28	1961 1961	
54MV26-55-BIDG16.01	(0.27,15	0830	४		8 8 8	8	*8360 -TCL+
SWAVZ6-55- BIDG16, 02	يسن	0835	В		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \	tetrahy doloran
854MU36-55, BID 16, 03		2845	<		8	*	* SUOCS - 82700/
\$4MU26155, BLOG16, OY	Martin Martin	0850	8		8 8 8 8	X	TCL + Dimeth 1 Forman
055mv7,55. BLOGIG. 04	-	0935	ે.લ		ষ্ঠ	~	*Metals - RCRASiac
よいれて SS, DLDC (6, 05		0950	¥		8	8	6010 B/7471A
Sware 155-Bulle 16,06		1005	₹		4	8	*Alcohols-80150
SWMU 7 155. BLDG 16:07		1015	~		8	8	* PCB5 - 8080
Sym 7.55, BLD616.08		1030	×		*	ğ	
Sum 7:55.13LD616:09	***************************************	0,01	8		~~	ষ্ঠ	Wate Trapusia
54MU 7:55.91016:10		1105	₹		ヾ	*	temp black in
SWAW 7:55 BLDG: 66:11	>	1115	マ		8	X	cooler
Possible Hazard Identification Non-Hazard Elammable Skin Initant	□ Poison B	Sar W Unknown	Sample Disposal Return To Client	Disposal By Lab	Archive For	(A fee may be as — Months longer than 1 mc	(A fee may be assessed if samples are retained longer than 1 month)
Tum Around Time Required 24 Hours		s domer S	Former Standard	OC Requirements (Special A)	andlysi's	will be conduct	OCHOQUIENTENS (Specify) and 1751'S will be conducted via NYSDEC 2005 All laboratory Control (459) with Cot B Oute Officer (150
1. Relinquished By		Date 10/57/15	0 £ 2 1				Date (5) 28 (5) 64 10
2. Relinquished By		Date	Time	2. Received By			Dats: Time
3. Relinquished By		Date	Time	3. Received By			Date Time
Comments							7,0 %

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

3,0

Custody Record Chain of

Temperature on Receipt

Drinking Water? Yes□ Nord

TestAmerico

THE LEADER IN ENVIRONMENTAL TESTING

Via NYSDEC 2005 Deliverables
Time
Of w & Metals - RCRA8 rectoinethleonaride 4A1cohols - 80150 ETake Tenp via GO10B / 7471A Special Instructions/ Conditions of Receipt tetratifian Fran * 50005 - 82703 tend black in * KZZOO - TCL + (A fee may be assessed if samples are retained Months longer than 1 month) 200120 *PCG3with (at 0 Data will be conducted I (ASP) with Cat 10/27/15 Analysis (Attach list if more space is needed) Lab Number 6 5 x 8 8 8 8 OC Requirements (Specify) and (155) \$
And (4 + 3 color) And (4 to 6) Archive For ___ * 600 05 * 600 05 X К NOBN HOBN P Disposal By Lab Soft Sorice (1) Berly Majon Containers & Preservatives HOBN DON Weeys 2. Received By 303 371 0379 Lab Contact ЮH Telephone Number (Area Code)/Fax Number EONH 区 Las Pracidas A | | Joiner Staled 3 ४ Matrix Tres pes 8 Project Manager 21/15/01 40 orei 1775 1530 55,0 12051 1330 569 1550 019 Time 250 🗌 21 Days 10:37.15 Paint NY Date 06410 1530 Highlan & Ave ☐ 14 Days Sample I.D. No. and Description (Containers for each sample may be combined on one line) Skin Irritant " Woodard & Como 54 55 000 1 55 CUMUS JSWAU 7.55. 6LDG 23.0 8 BUAU 7.55 , ALDE 23, OF SUMU 7 ,55 - GLOG \$3110 51 , 010666 , 15 Ö DE 1001616114 5WMU 7 55. BLOG " 23 - 11 5wMU7.55.B2D6.16:13 SWMV 7,55.010016-13 ☐ 7 Days 016908 (COU) 255 54MU7 155,136,0676. Non-Hazard Teammable Contract/Purchase Order/Quote No. Cicshive ☐ 48 Hours 1. Relinquished By Possible Hazard Identification Turn Around Time Required 2. Relinquished By TB:02 EB.02 Address 11/12/2015

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

3. Received By

Time

3. Relinquished By

Ž 0 0

Date

Client: Woodard & Curran, Inc.

List Source: TestAmerica Buffalo

Job Number: 480-89971-1

Login Number: 89971 List Number: 1

Creator: Janish, Carl M

Radioactivity either was not measured or, if measured, is at or below background True The cooler's custody seal, if present, is intact. The cooler's custody seal, if present, is intact. The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice. Cooler Temperature is acceptable. True Cooler Temperature is recorded. True Cool is filled out in ink and legible. True CoC is filled out in ink and legible. True CoC is filled out with all pertinent information. True Is the Field Sampler's name present on COC? True There are no discrepancies between the sample IDs on the containers and the CoC. Samples are received within Holding Time. True Sample containers have legible labels. True Sample containers have legible labels. True Sample containers are not broken or leaking. True Sample containers are used. True Sample bottles are completely filled. Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT reads Multiphasic samples are not present. True Samples received within 48 hours of sampling. True Samples received within 48 hours of sampling. True Samples received within 48 hours of sampling. True	0 (:		
background The cooler's custody seal, if present, is intact. The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice. Cooler Temperature is acceptable. Cooler Temperature is recorded. COC is present. COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? True True Sample are received within Holding Time. Sample are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. True Sample collection date/times are provided. True Sample bottles are completely filled. Sample Preservation Verified True Sample visits do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. True Samples do not require splitting or compositing. Samples on require splitting or compositing. Samples received within 48 hours of sampling. True Samples received within 48 hours of sampling.	Question	Answer	Comment
The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice. Cooler Temperature is acceptable. Cooler Temperature is recorded. Cooler Temperature is recorded. Cooler Tirue Cool is present. Cool is filled out in ink and legible. Cool is filled out with all pertinent information. Is the Field Sampler's name present on Cooler. There are no discrepancies between the sample IDs on the containers and the Cool. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample breservation Verified True Sample Preservation Verified True Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. Samples Gompany provided. Samples received within 48 hours of sampling. Samples received within 48 hours of sampling. Samples received within 48 hours of sampling. True True True W+c Samples received within 48 hours of sampling.	Radioactivity either was not measured or, if measured, is at or below background	Irue	
tampered with. Samples were received on ice. Cooler Temperature is acceptable. Cooler Temperature is recorded. COC is present. COC is present. COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? There are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample bottles are completely filled. Sample Preservation Verified True Sample sufficient vol. for all requested analyses, incl. any requested MS/MSDS VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. True Samples do not require splitting or compositing. True Samples received within 48 hours of sampling. Samples received within 48 hours of sampling. Samples received within 48 hours of sampling.	The cooler's custody seal, if present, is intact.	True	
Cooler Temperature is acceptable. Cooler Temperature is recorded. CoC is present. COC is present. COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? True There are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. True Samples received within 48 hours of sampling. True Samples received within 48 hours of sampling.	The cooler or samples do not appear to have been compromised or tampered with.	True	
Cooler Temperature is recorded. COC is present. COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? True There are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. Sample containers have legible labels. True Sample containers have legible labels. True Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. True Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT are Samples are not present. Samples are not present. True Samples do not require splitting or compositing. True Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field. N/A	Samples were received on ice.	True	
COC is present. COC is filled out in ink and legible. COC is filled out with all pertinent information. In true COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? True There are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified True Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Samples on or require splitting or compositing. True Samples company provided. True Samples received within 48 hours of sampling. Samples received within 48 hours of sampling.	Cooler Temperature is acceptable.	True	
COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? True There are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. True Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field. N/A	Cooler Temperature is recorded.	True	
COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? True There are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. True Samples focmpany provided. True Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field. True True Samples requiring field filtration have been filtered in the field. True True N/A	COC is present.	True	
Is the Field Sampler's name present on COC? True There are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. True Sample containers have legible labels. True Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. True Sample Preservation Verified There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. True Samples do not require splitting or compositing. True Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field. N/A	COC is filled out in ink and legible.	True	
There are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified True Sample Preservation Verified There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. True Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field. N/A	COC is filled out with all pertinent information.	True	
the COC. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field. True True True Samples requiring field filtration have been filtered in the field. N/A	Is the Field Sampler's name present on COC?	True	
Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. True Samples Company provided. True Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field. N/A	There are no discrepancies between the sample IDs on the containers and the COC.	True	
Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field. True True True W+c Samples requiring field filtration have been filtered in the field. N/A	Samples are received within Holding Time.	True	
Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field. True True True W+c Samples requiring field filtration have been filtered in the field.	Sample containers have legible labels.	True	
Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field. True True Samples requiring field filtration have been filtered in the field.	Containers are not broken or leaking.	True	
Sample bottles are completely filled. Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field. True True True W+c True Samples requiring field filtration have been filtered in the field. N/A	Sample collection date/times are provided.	True	
Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. True Samples do not require splitting or compositing. True Samples received within 48 hours of sampling. True Samples requiring field filtration have been filtered in the field. N/A	Appropriate sample containers are used.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. True Sampling Company provided. True Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field. N/A	Sample bottles are completely filled.	True	
MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in True diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. True Sampling Company provided. True Samples received within 48 hours of sampling. True Samples requiring field filtration have been filtered in the field. N/A	Sample Preservation Verified	True	
diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. True Sampling Company provided. Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field. N/A	There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	False	no dw volume for -19
needs Multiphasic samples are not present. Samples do not require splitting or compositing. Sampling Company provided. Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field. True W+c N/A	VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Samples do not require splitting or compositing. Sampling Company provided. Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field. N/A	If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Sampling Company provided. Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field. N/A	Multiphasic samples are not present.	True	
Samples received within 48 hours of sampling. True Samples requiring field filtration have been filtered in the field. N/A	Samples do not require splitting or compositing.	True	
Samples requiring field filtration have been filtered in the field. N/A	Sampling Company provided.	True	w+c
	Samples received within 48 hours of sampling.	True	
Oblavia Davidual sheeted	Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked. N/A	Chlorine Residual checked.	N/A	

TestAmerica Buffalo

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-90114-1 Client Project/Site: Rouses Point

For:

Woodard & Curran, Inc. 64 Maple Street Rouses Point, New York 12979

Attn: Don Weeks

Authorized for release by: 11/16/2015 3:06:57 PM

Joe Giacomazza, Project Management Assistant II joe.giacomazza@testamericainc.com

Designee for

Becky Mason, Project Manager II (413)572-4000 becky.mason@testamericainc.com

·····LINKS ······

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	5
Detection Summary	7
Client Sample Results	11
Surrogate Summary	80
QC Sample Results	84
QC Association Summary	123
Lab Chronicle	131
Certification Summary	141
Method Summary	142
Sample Summary	143
Chain of Custody	144
Receipt Checklists	147

3

4

e

9

10

12

13

Definitions/Glossary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F1	MS and/or MSD Recovery is outside acceptance limits

Compound was found in the blank and sample.

GC/MS VOA TICs

Qualifier	Qualifier Description
J	Indicates an Estimated Value for TICs
N	Presumptive evidence of material.
T	Result is a tentatively identified compound (TIC) and an estimated value.

GC/MS Semi VOA

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA TICs

Qualifier	Qualifier Description
J	Indicates an Estimated Value for TICs
N	Presumptive evidence of material.
T	Result is a tentatively identified compound (TIC) and an estimated value.
GC VOA	

Qualitier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits

Glossary Abbreviation

RL

¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio

These commonly used abbreviations may or may not be present in this report.

Reporting Limit or Requested Limit (Radiochemistry)

TestAmerica Buffalo

Page 3 of 147

Definitions/Glossary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Glossary (Continued)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

-

0

46

11

13

14

Case Narrative

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Job ID: 480-90114-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-90114-1

Receipt

The samples were received on 10/29/2015 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 4.1° C and 4.3° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-273296 recovered outside acceptance criteria, low biased, for Chloromethane. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported. The following samples are impacted: SMWU7-SS-BLDG23-16 (480-90114-5), SMWU7-SS-BLDG23-20 (480-90114-10), SMWU26-SS-BLDG23-02 (480-90114-11), SMWU26-SS-BLDG23-03 (480-90114-12), SMWU7-SS-BLDG23-21 (480-90114-13), SMWU26-SS-BLDG23-04 (480-90114-14), SMWU7-SS-BLDG23-22 (480-90114-15), SMWU7-SS-BLDG34-01 (480-90114-16), SMWU7-SS-BLDG34-02 (480-90114-17), SMWU7-SS-BLDG34-03 (480-90114-18), SMWU1-SS-TP01-100 (480-90114-19), SMWU1-SS-TP02-101 (480-90114-20), SMWU1-SS-TP03-102 (480-90114-21), SMWU1-SS-TP04-103 (480-90114-22) and SMWU1-SS-TP04-200 (480-90114-23).

Method(s) 8260C: The method blank for preparation batch 480-272053 and analytical batch 480-273296 contained Toluene above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D: The continuing calibration verification (CCV) associated with batch 480-273884 recovered above the upper control limit for Diethyl phthalate. The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported. The following samples are impacted: SMWU26-SS-BLDG23-01 (480-90114-9), SMWU26-SS-BLDG23-01 (480-90114-9[MS]), SMWU26-SS-BLDG23-01 (480-90114-9[MSD]), SMWU26-SS-BLDG23-02 (480-90114-11), SMWU26-SS-BLDG23-03 (480-90114-12), SMWU26-SS-BLDG23-04 (480-90114-14), SMWU26-SS-BLDG23-04 (480-90114-14[MS]), SMWU26-SS-BLDG23-04 (480-90114-14), SMWU1-SS-TP01-100 (480-90114-19), SMWU1-SS-TP02-101 (480-90114-20), SMWU1-SS-TP03-102 (480-90114-21) and SMWU1-SS-TP04-103 (480-90114-22).

Method(s) 8270D: The following samples were diluted due to appearance and viscosity: SMWU26-SS-BLDG23-03 (480-90114-12), SMWU1-SS-TP01-100 (480-90114-19), SMWU1-SS-TP03-102 (480-90114-21) and SMWU1-SS-TP04-103 (480-90114-22). Elevated reporting limits (RL) are provided.

Method(s) 8270D: The continuing calibration verification (CCV) analyzed in batch 480-274392 was outside the method criteria for the following analytes: 4-Chloroaniline and Benzaldehyde. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method(s) 8270D: The initial calibration curve analyzed in analytical batch 271208 was outside method criteria for the following analyte: Benzaldehyde. As indicated in the reference method, sample analysis may proceed; however, any detection or non-detection for the affected analyte is considered an estimated concentration.

Method(s) 8270D: The continuing calibration verification (CCV) associated with batch 480-274392 recovered above the upper control limit for 4-Nitrophenol and Hexachlorobutadiene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: EB-03 (480-90114-24).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

Method(s) 8015D: The following samples were collected in proper vials for analysis of volatile organic compounds (VOCs). However, the pH was outside the required criteria when verified by the laboratory, and corrective action was not possible: EB-03 (480-90114-24) and (480-89971-I-23).

2

4

7

10

12

13

14

Case Narrative

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Job ID: 480-90114-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8082A: All primary data is reported from the ZB-35 column.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010C: The Serial Dilution (480-90114-A-9-E SD ^) in batch 480-272189, exhibited results outside the quality control limits for Total Barium and Chromium. However, the Post Digestion Spike was compliant so no corrective action was necessary

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method(s) 3510C: Elevated reporting limits are provided for the following samples due to insufficient sample provided for preparation: EB-03 (480-90114-24).

Method(s) 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with analytical batch 480-272344.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

2

J

4

5

Q

9

10

4.0

13

14

TestAmerica Job ID: 480-90114-1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SMW	U7-SS-BLDG	23-12				Lab Sai	mple ID:	480-90114-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D		Prep Type
Acetone	5.1	J	24	4.0	ug/Kg	<u>1</u>	8260C	Total/NA
Trichlorofluoromethane	2.7	J	4.7	0.45	ug/Kg	1 ♡	8260C	Total/NA
Client Sample ID: SMW	U7-SS-BLDG	23-13				Lab Sa	mple ID:	480-90114-2
No Detections.								
Client Sample ID: SMW	U7-SS-BLDG	23-15				Lab Sa	mple ID:	480-90114-3
No Detections.								
Client Sample ID: SMW	U7-SS-BLDG	23-14				Lab Sai	mple ID:	480-90114-4
No Detections.								
Client Sample ID: SMW	U7-SS-BLDG	23-16				Lab Sa	mple ID:	480-90114-5
No Detections.								
Client Sample ID: SMW	U7-SS-BLDG	23-17				Lab Sa	mple ID:	480-90114-6
Analyte		Qualifier	RL		Unit	Dil Fac D		Prep Type
Trichlorofluoromethane	2.2	J	5.0	0.47	ug/Kg	1 🌣	8260C	Total/NA
Client Sample ID: SMW	U7-SS-BLDG	23-18				Lab Sa	mple ID:	480-90114-7
Analyte		Qualifier	RL		Unit	Dil Fac D		Prep Type
Dichlorodifluoromethane	1.2	J	4.6	0.38	ug/Kg		8260C	Total/NA
Trichlorofluoromethane	15		4.6	0.44	ug/Kg	1 [‡]	8260C	Total/NA
Client Sample ID: SMW	U7-SS-BLDG	23-19				Lab Sa	mple ID:	480-90114-8
Analyte		Qualifier	RL		Unit	Dil Fac D		Prep Type
Trichlorofluoromethane	120		5.9	0.56	ug/Kg	1 \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	8260C	Total/NA
Client Sample ID: SMW	U26-SS-BLD	G23-01				Lab Sa	mple ID:	480-90114-9
Analyte		Qualifier	RL	MDL	Unit	Dil Fac D		Prep Type
Trichlorofluoromethane		J	5.2		ug/Kg		8260C	Total/NA
Diethyl phthalate	35	JB	180		ug/Kg		8270D	Total/NA
Arsenic	3.2		2.1		mg/Kg		6010C	Total/NA
Barium	38.6	F1	0.53	0.12	mg/Kg	1 ∜	6010C	Total/NA
Cadmium	0.075	J	0.21	0.032	mg/Kg	1 ☼	6010C	Total/NA
Chromium	7.0		0.53	0.21	mg/Kg	1 ❖	6010C	Total/NA
1 == 4	E 0			0.26	ma/l/a	4 8	60400	Total/NIA

Analyte	Result	Qualifier	RL	MDL	Unit	ı	Dil Fac	D	Method	Prep Type
Trichlorofluoromethane	0.84	J	4.4	0.42	ug/Kg		1	₩	8260C	Total/NA

1.1

0.021

0.26 mg/Kg

0.0085 mg/Kg

This Detection Summary does not include radiochemical test results.

Client Sample ID: SMWU7-SS-BLDG23-20

5.8

0.013 J

Lead

Mercury

TestAmerica Buffalo

3

4

J

1

10

46

13

4 -

15

Total/NA

Total/NA

1 * 6010C

1 🌣 7471B

Lab Sample ID: 480-90114-10

TestAmerica Job ID: 480-90114-1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SMWU26-SS-BLDG23-02

Lab Sample ID: 480-90114-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichlorofluoromethane	7.7		4.9	0.46	ug/Kg		₩	8260C	Total/NA
Arsenic	1.8	J	2.1	0.42	mg/Kg	1	₩	6010C	Total/NA
Barium	21.1		0.52	0.11	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.052	J	0.21	0.031	mg/Kg	1	₽	6010C	Total/NA
Chromium	4.5		0.52	0.21	mg/Kg	1	₩	6010C	Total/NA
Lead	3.8		1.0	0.25	mg/Kg	1	₽	6010C	Total/NA

Client Sample ID: SMWU26-SS-BLDG23-03

Lab Sample ID: 480-90114-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichlorofluoromethane	5.1		4.6	0.44	ug/Kg	1	₩	8260C	Total/NA
Arsenic	1.3	J	2.1	0.42	mg/Kg	1	₩	6010C	Total/NA
Barium	17.0		0.53	0.12	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.053	J	0.21	0.032	mg/Kg	1	₽	6010C	Total/NA
Chromium	4.8		0.53	0.21	mg/Kg	1	₩	6010C	Total/NA
Lead	3.2		1.1	0.25	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: SMWU7-SS-BLDG23-21

Lab Sample ID: 480-90114-13

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Trichlorofluoromethane	1.1 J	4.9	0.46 ug/Kg	1 🌣 8260C	Total/NA

Client Sample ID: SMWU26-SS-BLDG23-04

Lab Sample ID: 480-90114-14

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Toluene	1.5	JB	5.1	0.38	ug/Kg		₩	8260C	Total/NA
Diethyl phthalate	25	JB	180	23	ug/Kg	1	₩	8270D	Total/NA
Methanol	5.6	F1	0.97	0.29	mg/Kg	1	₩	8015D	Soluble
Arsenic	2.0	J	2.1	0.41	mg/Kg	1	₩	6010C	Total/NA
Barium	15.2	F2 F1	0.52	0.11	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.047	J	0.21	0.031	mg/Kg	1	₩	6010C	Total/NA
Chromium	4.6		0.52	0.21	mg/Kg	1	₩	6010C	Total/NA
Lead	3.4		1.0	0.25	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: SMWU7-SS-BLDG23-22

Lab Sample ID: 480-90114-15

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	6.7	J	25	4.2	ug/Kg		☼	8260C	Total/NA
Trichlorofluoromethane	40		5.0	0.48	ug/Kg	1	₩	8260C	Total/NA

Client Sample ID: SMWU7-SS-BLDG34-01

Lab Sample ID: 480-90114-16

No Detections.

Client Sample ID: SMWU7-SS-BLDG34-02

Lab Sample ID: 480-90114-17

No Detections.

Client Sample ID: SMWU7-SS-BLDG34-03

Lab Sample ID: 480-90114-18

No Detections.

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

5

8

1 N

40

13

14

TestAmerica Job ID: 480-90114-1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SMWU1-SS-TP01-100

Client Sample ID: SMWU1-SS-TP02-101

Lab Sample ID: 480-90114-19

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	28		23	3.9	ug/Kg	1	₩	8260C	Total/NA
Styrene	0.29	J	4.7	0.23	ug/Kg	1	₩	8260C	Total/NA
Toluene	0.62	J	4.7	0.35	ug/Kg	1	₩	8260C	Total/NA
Xylenes, Total	2.5	J	9.4	0.79	ug/Kg	1	₽	8260C	Total/NA
Methanol	1.9		0.97	0.29	mg/Kg	1	₩	8015D	Soluble
Propanol	0.15	J	0.97	0.15	mg/Kg	1	₩	8015D	Soluble
Arsenic	2.2		2.2	0.45	mg/Kg	1	₩.	6010C	Total/NA
Barium	28.7		0.56	0.12	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.059	J	0.22	0.034	mg/Kg	1	₩	6010C	Total/NA
Chromium	8.1		0.56	0.22	mg/Kg	1	₩.	6010C	Total/NA
Lead	57.6		1.1	0.27	mg/Kg	1	₩	6010C	Total/NA

Lab Sample ID: 480-90114-20

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Toluene	1.7	JB	5.3	0.40	ug/Kg	1	₩	8260C	Total/NA
Methanol	0.41	J	0.99	0.29	mg/Kg	1	₩	8015D	Soluble
Arsenic	0.83	J	2.1	0.41	mg/Kg	1	₩	6010C	Total/NA
Barium	11.2		0.52	0.11	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.038	J	0.21	0.031	mg/Kg	1	₩	6010C	Total/NA
Chromium	3.7		0.52	0.21	mg/Kg	1	₩	6010C	Total/NA
Lead	1.6		1.0	0.25	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: SMWU1-SS-TP03-102 Lab Sample ID: 480-90114-21

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Toluene	0.88	JB	4.6	0.35	ug/Kg		₩	8260C	Total/NA
Arsenic	2.8		2.2	0.43	mg/Kg	1	₩	6010C	Total/NA
Barium	49.6		0.54	0.12	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.11	J	0.22	0.032	mg/Kg	1		6010C	Total/NA
Chromium	11.1		0.54	0.22	mg/Kg	1	₩	6010C	Total/NA
Lead	7.4		1.1	0.26	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.021	J	0.023	0.0093	mg/Kg	1	₩.	7471B	Total/NA

Client Sample ID: SMWU1-SS-TP04-103 Lab Sample ID: 480-90114-22

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Toluene	1.1	JB	5.1	0.39	ug/Kg	1	₩	8260C	Total/NA
Trichlorofluoromethane	2.7	J	5.1	0.49	ug/Kg	1	₩	8260C	Total/NA
Fluoranthene	120	J	900	95	ug/Kg	5	₩	8270D	Total/NA
Arsenic	3.8		2.1	0.43	mg/Kg	1	₩	6010C	Total/NA
Barium	15.3		0.53	0.12	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.041	J	0.21	0.032	mg/Kg	1	₩	6010C	Total/NA
Chromium	6.5		0.53	0.21	mg/Kg	1	₽	6010C	Total/NA
Lead	8.0		1.1	0.26	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: SMWU1-SS-TP04-200 Lab Sample ID: 480-90114-23

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Toluene	1.4 JB	4.5	0.34 ug/Kg	1 ≅ 8260C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

11/16/2015

Detection Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SMWU1-SS-TP04-200 (Continued)

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-23

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Trichlorofluoromethane	3.3 J	4.5	0.43 ug/Kg	1 ≅ 8260C	Total/NA

Client Sample ID: EB-03 Lab Sample ID: 480-90114-24

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Butyl benzyl phthalate	0.72	J	6.4	0.54	ug/L	1	_	8270D	Total/NA
Methanol	1.3		1.0	0.41	mg/L	1		8015D	Total/NA
Mercury	0.00017	J	0.00020	0.00012	mg/L	1		7470A	Total/NA

Client Sample ID: TB03 Lab Sample ID: 480-90114-25

No Detections.

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 07:55

Date Received: 10/29/15 09:00

Client Sample ID: SMWU7-SS-BLDG23-12

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-1

Matrix: Solid
Percent Solids: 88.3

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4.7	0.34	ug/Kg		10/30/15 00:15	11/05/15 03:38	1
1,1,2,2-Tetrachloroethane	ND	4.7	0.77	ug/Kg	₽	10/30/15 00:15	11/05/15 03:38	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.7	1.1	ug/Kg	₩	10/30/15 00:15	11/05/15 03:38	1
1,1,2-Trichloroethane	ND	4.7	0.62	ug/Kg	₽	10/30/15 00:15	11/05/15 03:38	1
1,1-Dichloroethane	ND	4.7	0.58	ug/Kg	₩	10/30/15 00:15	11/05/15 03:38	1
1,1-Dichloroethene	ND	4.7	0.58	ug/Kg	≎	10/30/15 00:15	11/05/15 03:38	1
1,2,3-Trichlorobenzene	ND	4.7	0.50	ug/Kg	≎	10/30/15 00:15	11/05/15 03:38	1
1,2,4-Trichlorobenzene	ND	4.7	0.29	ug/Kg	₩	10/30/15 00:15	11/05/15 03:38	1
1,2-Dibromo-3-Chloropropane	ND	4.7	2.4	ug/Kg	≎	10/30/15 00:15	11/05/15 03:38	1
1,2-Dichlorobenzene	ND	4.7	0.37	ug/Kg	₽	10/30/15 00:15	11/05/15 03:38	1
1,2-Dichloroethane	ND	4.7	0.24	ug/Kg	₩	10/30/15 00:15	11/05/15 03:38	1
1,2-Dichloropropane	ND	4.7	2.4	ug/Kg	≎	10/30/15 00:15	11/05/15 03:38	1
1,3-Dichlorobenzene	ND	4.7	0.24	ug/Kg	₽	10/30/15 00:15	11/05/15 03:38	1
1,4-Dichlorobenzene	ND	4.7	0.66	ug/Kg	₽	10/30/15 00:15	11/05/15 03:38	1
1,4-Dioxane	ND	95	21	ug/Kg	₩	10/30/15 00:15	11/05/15 03:38	1
2-Hexanone	ND	24	2.4	ug/Kg		10/30/15 00:15	11/05/15 03:38	1
Acetone	5.1 J	24	4.0	ug/Kg	☼	10/30/15 00:15	11/05/15 03:38	1
Benzene	ND	4.7	0.23	ug/Kg	☼	10/30/15 00:15	11/05/15 03:38	1
Bromoform	ND	4.7	2.4	ug/Kg		10/30/15 00:15	11/05/15 03:38	1
Bromomethane	ND	4.7	0.43	ug/Kg	₩	10/30/15 00:15	11/05/15 03:38	1
Carbon disulfide	ND	4.7	2.4	ug/Kg	₩	10/30/15 00:15	11/05/15 03:38	1
Carbon tetrachloride	ND	4.7	0.46	ug/Kg		10/30/15 00:15	11/05/15 03:38	1
Chlorobenzene	ND	4.7	0.63	ug/Kg	≎	10/30/15 00:15	11/05/15 03:38	1
Bromochloromethane	ND	4.7	0.34	ug/Kg	≎	10/30/15 00:15	11/05/15 03:38	1
Dibromochloromethane	ND	4.7	0.61	ug/Kg	ф.	10/30/15 00:15	11/05/15 03:38	1
Chloroethane	ND	4.7	1.1	ug/Kg	₽	10/30/15 00:15	11/05/15 03:38	1
Chloroform	ND	4.7	0.29	ug/Kg	₽	10/30/15 00:15	11/05/15 03:38	1
Chloromethane	ND	4.7		ug/Kg	ф.	10/30/15 00:15	11/05/15 03:38	1
cis-1,2-Dichloroethene	ND	4.7		ug/Kg	₽	10/30/15 00:15	11/05/15 03:38	1
cis-1,3-Dichloropropene	ND	4.7	0.68	ug/Kg	₩	10/30/15 00:15	11/05/15 03:38	1
Cyclohexane	ND	4.7	0.66	ug/Kg		10/30/15 00:15	11/05/15 03:38	1
Bromodichloromethane	ND	4.7	0.64	ug/Kg	₽	10/30/15 00:15	11/05/15 03:38	1
Dichlorodifluoromethane	ND	4.7	0.39	ug/Kg	₽	10/30/15 00:15	11/05/15 03:38	1
Ethylbenzene	ND	4.7		ug/Kg	ф.	10/30/15 00:15	11/05/15 03:38	1
1,2-Dibromoethane (EDB)	ND	4.7		ug/Kg	₽	10/30/15 00:15	11/05/15 03:38	1
Isopropylbenzene	ND	4.7	0.72	ug/Kg	₽	10/30/15 00:15	11/05/15 03:38	1
Methyl acetate	ND	4.7		ug/Kg		10/30/15 00:15	11/05/15 03:38	1
2-Butanone (MEK)	ND	24		ug/Kg	₩		11/05/15 03:38	1
4-Methyl-2-pentanone (MIBK)	ND	24		ug/Kg	₩		11/05/15 03:38	1
Methyl tert-butyl ether	ND	4.7		ug/Kg			11/05/15 03:38	1
Methylcyclohexane	ND	4.7		ug/Kg	₩		11/05/15 03:38	1
Methylene Chloride	ND	4.7		ug/Kg	₩		11/05/15 03:38	1
Styrene	ND	4.7		ug/Kg			11/05/15 03:38	· · · · · · · 1
Tetrachloroethene	ND	4.7		ug/Kg	☼		11/05/15 03:38	1
Toluene	ND	4.7		ug/Kg	₽		11/05/15 03:38	1
trans-1,2-Dichloroethene	ND	4.7		ug/Kg			11/05/15 03:38	· · · · · · 1
trans-1,3-Dichloropropene	ND	4.7		ug/Kg	₽		11/05/15 03:38	1
Trichloroethene	ND	4.7		ug/Kg	₽		11/05/15 03:38	1
Trichlorofluoromethane	2.7 J	4.7		ug/Kg		10/30/15 00:15		

TestAmerica Buffalo

4

6

8

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 07:55

Date Received: 10/29/15 09:00

Client Sample ID: SMWU7-SS-BLDG23-12

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-1

. Matrix: Solid

Percent Solids: 88.3

Analyte	Result	Qualifier	RL	-	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.7	7	0.58	ug/Kg	\	10/30/15 00:15	11/05/15 03:38	1
Xylenes, Total	ND		9.5	5	0.80	ug/Kg	☆	10/30/15 00:15	11/05/15 03:38	1
Tetrahydrofuran	ND		9.5	5	2.8	ug/Kg	\$	10/30/15 00:15	11/05/15 03:38	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown Substituted Naphthalene	18	TJ	ug/Kg	\	8.	50		10/30/15 00:15	11/05/15 03:38	1
Unknown Substituted Naphthalene	57	TJ	ug/Kg	☼	9.	.66		10/30/15 00:15	11/05/15 03:38	1
Unknown Substituted Naphthalene	31	ΤJ	ug/Kg	☼	9.	.84		10/30/15 00:15	11/05/15 03:38	1
Unknown Substituted Naphthalene	14	ΤJ	ug/Kg	₩.	10.	61		10/30/15 00:15	11/05/15 03:38	1
Unknown Substituted Naphthalene	6.7	ΤJ	ug/Kg	₩	11.	.06		10/30/15 00:15	11/05/15 03:38	1
Naphthalene, 1,4,6-trimethyl-	5.8	TJN	ug/Kg	₩	11.	.83	2131-42-2	10/30/15 00:15	11/05/15 03:38	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	98		60 - 140	-				10/30/15 00:15	11/05/15 03:38	1
1,2-Dichloroethane-d4 (Surr)	96		64 - 126					10/30/15 00:15	11/05/15 03:38	1
Toluene-d8 (Surr)	105		71 - 125					10/30/15 00:15	11/05/15 03:38	1
4-Bromofluorobenzene (Surr)	90		72 - 126					10/30/15 00:15	11/05/15 03:38	1
General Chemistry										
Analyte	Result	Qualifier	RL	-	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	12		0.10)	0.10	%			10/29/15 22:21	1
Percent Solids	88		0.10)	0.10	%			10/29/15 22:21	1

3

5

7

9

11

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Client Sample ID: SMWU7-SS-BLDG23-13 Lab Sample ID: 480-90114-2

 Date Collected: 10/28/15 08:15
 Matrix: Solid

 Date Received: 10/29/15 09:00
 Percent Solids: 86.1

Method: 8260C - Volatile Organ Analyte	Result Qualifier	C/IVIS RL	MDi	Unit	ь.	Prepared	Analyzad	Dil Fa
<u> </u>	ND Qualifier	4.5			— D <u>₩</u>		Analyzed 11/05/15 04:04	DII Fa
1,1,1-Trichloroethane	ND ND		0.33	ug/Kg	₩			
1,1,2,2-Tetrachloroethane		4.5		ug/Kg			11/05/15 04:04	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.5					11/05/15 04:04	
1,1,2-Trichloroethane	ND	4.5		ug/Kg	☆		11/05/15 04:04	
1,1-Dichloroethane	ND	4.5		ug/Kg	ψ.		11/05/15 04:04	
1,1-Dichloroethene	ND	4.5		ug/Kg	<u>.</u> .		11/05/15 04:04	
1,2,3-Trichlorobenzene	ND	4.5		0 0	₩		11/05/15 04:04	
1,2,4-Trichlorobenzene	ND	4.5		ug/Kg	.		11/05/15 04:04	
1,2-Dibromo-3-Chloropropane	ND	4.5		ug/Kg			11/05/15 04:04	
1,2-Dichlorobenzene	ND	4.5	0.35	ug/Kg	☼	10/30/15 00:15	11/05/15 04:04	
1,2-Dichloroethane	ND	4.5		ug/Kg	₩	10/30/15 00:15	11/05/15 04:04	
1,2-Dichloropropane	ND	4.5	2.3	ug/Kg	₩	10/30/15 00:15	11/05/15 04:04	
1,3-Dichlorobenzene	ND	4.5	0.23	ug/Kg	₩	10/30/15 00:15	11/05/15 04:04	
1,4-Dichlorobenzene	ND	4.5	0.63	ug/Kg	₩	10/30/15 00:15	11/05/15 04:04	
1,4-Dioxane	ND	90	20	ug/Kg	≎	10/30/15 00:15	11/05/15 04:04	
2-Hexanone	ND	23	2.3	ug/Kg	₩.	10/30/15 00:15	11/05/15 04:04	
Acetone	ND	23	3.8	ug/Kg	₩	10/30/15 00:15	11/05/15 04:04	
Benzene	ND	4.5	0.22	ug/Kg	₩	10/30/15 00:15	11/05/15 04:04	
Bromoform	ND	4.5	2.3	ug/Kg		10/30/15 00:15	11/05/15 04:04	
Bromomethane	ND	4.5	0.41	ug/Kg	☼	10/30/15 00:15	11/05/15 04:04	
Carbon disulfide	ND	4.5	2.3	ug/Kg	₩	10/30/15 00:15	11/05/15 04:04	
Carbon tetrachloride	ND	4.5		ug/Kg	 	10/30/15 00:15	11/05/15 04:04	
Chlorobenzene	ND	4.5	0.60		₩	10/30/15 00:15	11/05/15 04:04	
Bromochloromethane	ND	4.5	0.33	ug/Kg	≎	10/30/15 00:15	11/05/15 04:04	
Dibromochloromethane	ND	4.5		ug/Kg	-		11/05/15 04:04	
Chloroethane	ND	4.5		ug/Kg	₩		11/05/15 04:04	
Chloroform	ND	4.5		ug/Kg	₩		11/05/15 04:04	
Chloromethane	ND	4.5		ug/Kg			11/05/15 04:04	
cis-1,2-Dichloroethene	ND	4.5		ug/Kg	₩		11/05/15 04:04	
cis-1,3-Dichloropropene	ND	4.5		ug/Kg	₩		11/05/15 04:04	
Cyclohexane	ND	4.5		ug/Kg			11/05/15 04:04	
Bromodichloromethane	ND	4.5		ug/Kg	₽		11/05/15 04:04	
Dichlorodifluoromethane	ND	4.5		ug/Kg	₽		11/05/15 04:04	
Ethylbenzene	ND	4.5	0.31				11/05/15 04:04	
1,2-Dibromoethane (EDB)	ND ND	4.5 4.5		ug/Kg ug/Kg	₩		11/05/15 04:04	
, ,								
Isopropylbenzene	ND	4.5		ug/Kg	. .		11/05/15 04:04	
Methyl acetate	ND	4.5		ug/Kg	**		11/05/15 04:04	
2-Butanone (MEK)	ND	23		ug/Kg	₩		11/05/15 04:04	
4-Methyl-2-pentanone (MIBK)	ND	23		ug/Kg			11/05/15 04:04	
Methyl tert-butyl ether	ND	4.5		ug/Kg	ψ. 		11/05/15 04:04	
Methylcyclohexane	ND	4.5		ug/Kg	₩.		11/05/15 04:04	
Methylene Chloride	ND	4.5		ug/Kg			11/05/15 04:04	
Styrene	ND	4.5		ug/Kg	₩.		11/05/15 04:04	
Tetrachloroethene	ND	4.5		ug/Kg	*		11/05/15 04:04	
Toluene	ND	4.5		ug/Kg	☼		11/05/15 04:04	
trans-1,2-Dichloroethene	ND	4.5		ug/Kg	₩		11/05/15 04:04	
trans-1,3-Dichloropropene	ND	4.5	2.0	ug/Kg	₩	10/30/15 00:15	11/05/15 04:04	
Trichloroethene	ND	4.5	0.99	ug/Kg	₩	10/30/15 00:15	11/05/15 04:04	
Trichlorofluoromethane	ND	4.5		ug/Kg	.		11/05/15 04:04	

TestAmerica Buffalo

3

4

6

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 08:15

Date Received: 10/29/15 09:00

Client Sample ID: SMWU7-SS-BLDG23-13

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-2

Matrix: Solid

Percent Solids: 86.1

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Cor	ntinu	ıed)					
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.5		0.55	ug/Kg	<u> </u>	10/30/15 00:15	11/05/15 04:04	
Xylenes, Total	ND		9.0		0.76	ug/Kg	₩	10/30/15 00:15	11/05/15 04:04	•
Tetrahydrofuran	ND		9.0		2.6	ug/Kg	\$	10/30/15 00:15	11/05/15 04:04	· · · · · · · · · · · ·
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	₩ -				10/30/15 00:15	11/05/15 04:04	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	102		60 - 140					10/30/15 00:15	11/05/15 04:04	
1,2-Dichloroethane-d4 (Surr)	101		64 - 126					10/30/15 00:15	11/05/15 04:04	1
Toluene-d8 (Surr)	103		71 - 125					10/30/15 00:15	11/05/15 04:04	1
4-Bromofluorobenzene (Surr)	91		72 - 126					10/30/15 00:15	11/05/15 04:04	1
General Chemistry										
Analyte	Result	Qualifier	RL		RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	14		0.10		0.10	%			10/29/15 22:21	1
Percent Solids	86		0.10		0.10	%			10/29/15 22:21	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 08:30

Date Received: 10/29/15 09:00

Client Sample ID: SMWU7-SS-BLDG23-15

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-3

Matrix: Solid
Percent Solids: 96.4

Method: 8260C - Volatile Orga Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND —	5.3	0.38	ug/Kg	<u> </u>	10/30/15 00:15	11/05/15 04:30	1
1,1,2,2-Tetrachloroethane	ND	5.3	0.85	ug/Kg	₩	10/30/15 00:15	11/05/15 04:30	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.3	1.2	ug/Kg	₩	10/30/15 00:15	11/05/15 04:30	1
1,1,2-Trichloroethane	ND	5.3	0.68	ug/Kg		10/30/15 00:15	11/05/15 04:30	1
1,1-Dichloroethane	ND	5.3	0.64	ug/Kg	₩	10/30/15 00:15	11/05/15 04:30	1
1,1-Dichloroethene	ND	5.3	0.64	ug/Kg	☼	10/30/15 00:15	11/05/15 04:30	1
1,2,3-Trichlorobenzene	ND	5.3	0.56	ug/Kg		10/30/15 00:15	11/05/15 04:30	1
1,2,4-Trichlorobenzene	ND	5.3	0.32	ug/Kg	☼	10/30/15 00:15	11/05/15 04:30	1
1,2-Dibromo-3-Chloropropane	ND	5.3	2.6	ug/Kg	☼	10/30/15 00:15	11/05/15 04:30	1
1,2-Dichlorobenzene	ND	5.3	0.41	ug/Kg		10/30/15 00:15	11/05/15 04:30	1
1,2-Dichloroethane	ND	5.3	0.26	ug/Kg	☼	10/30/15 00:15	11/05/15 04:30	1
1,2-Dichloropropane	ND	5.3	2.6	ug/Kg	☼	10/30/15 00:15	11/05/15 04:30	1
1,3-Dichlorobenzene	ND	5.3	0.27	ug/Kg	÷	10/30/15 00:15	11/05/15 04:30	1
1,4-Dichlorobenzene	ND	5.3		ug/Kg	₩	10/30/15 00:15	11/05/15 04:30	1
1,4-Dioxane	ND	110		ug/Kg	₩	10/30/15 00:15	11/05/15 04:30	1
2-Hexanone	ND	26	2.6	ug/Kg	ф.	10/30/15 00:15	11/05/15 04:30	1
Acetone	ND	26		ug/Kg	₩	10/30/15 00:15	11/05/15 04:30	1
Benzene	ND	5.3	0.26	ug/Kg	₩	10/30/15 00:15	11/05/15 04:30	1
Bromoform	ND	5.3		ug/Kg		10/30/15 00:15	11/05/15 04:30	1
Bromomethane	ND	5.3		ug/Kg	₩	10/30/15 00:15	11/05/15 04:30	1
Carbon disulfide	ND	5.3		ug/Kg	☼	10/30/15 00:15	11/05/15 04:30	1
Carbon tetrachloride	ND	5.3		ug/Kg		10/30/15 00:15	11/05/15 04:30	1
Chlorobenzene	ND	5.3		ug/Kg	₩	10/30/15 00:15	11/05/15 04:30	1
Bromochloromethane	ND	5.3		ug/Kg	₩		11/05/15 04:30	1
Dibromochloromethane	ND	5.3		ug/Kg	- -		11/05/15 04:30	1
Chloroethane	ND	5.3		ug/Kg	₩	10/30/15 00:15	11/05/15 04:30	1
Chloroform	ND	5.3		ug/Kg	₩		11/05/15 04:30	1
Chloromethane	ND	5.3		ug/Kg	-		11/05/15 04:30	1
cis-1,2-Dichloroethene	ND	5.3		ug/Kg	₽		11/05/15 04:30	1
cis-1,3-Dichloropropene	ND	5.3		ug/Kg	☼		11/05/15 04:30	1
Cyclohexane	ND	5.3		ug/Kg		10/30/15 00:15	11/05/15 04:30	1
Bromodichloromethane	ND	5.3		ug/Kg	₩		11/05/15 04:30	1
Dichlorodifluoromethane	ND	5.3		ug/Kg	₩		11/05/15 04:30	1
Ethylbenzene	ND	5.3		ug/Kg			11/05/15 04:30	1
1,2-Dibromoethane (EDB)	ND	5.3		ug/Kg	₩		11/05/15 04:30	1
Isopropylbenzene	ND	5.3		ug/Kg	₩		11/05/15 04:30	1
Methyl acetate	ND	5.3		ug/Kg			11/05/15 04:30	1
2-Butanone (MEK)	ND	26		ug/Kg	₩		11/05/15 04:30	1
4-Methyl-2-pentanone (MIBK)	ND	26		ug/Kg	₩		11/05/15 04:30	1
Methyl tert-butyl ether	ND	5.3		ug/Kg			11/05/15 04:30	······································
Methylcyclohexane	ND	5.3		ug/Kg	₩		11/05/15 04:30	1
Methylene Chloride	ND	5.3		ug/Kg	₩		11/05/15 04:30	1
Styrene	ND	5.3		ug/Kg			11/05/15 04:30	······································
Tetrachloroethene	ND	5.3		ug/Kg ug/Kg	☼		11/05/15 04:30	1
Toluene	ND	5.3		ug/Kg ug/Kg	☼		11/05/15 04:30	1
trans-1,2-Dichloroethene	ND	5.3		ug/Kg ug/Kg	.		11/05/15 04:30	
trans-1,2-Dichloropropene	ND ND	5.3 5.3			₩		11/05/15 04:30	1
				ug/Kg	₩			
Trichloroethene Trichlorofluoromethano	ND	5.3		ug/Kg			11/05/15 04:30	1
Trichlorofluoromethane	ND	5.3	0.50	ug/Kg	₩.	10/30/15 00:15	11/05/15 04:30	1

TestAmerica Buffalo

G

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Client Sample ID: SMWU7-SS-BLDG23-15

Lab Sample ID: 480-90114-3

Matrix: Solid

Date Collected: 10/28/15 08:30 Date Received: 10/29/15 09:00 Percent Solids: 96.4

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.3		0.64	ug/Kg	\	10/30/15 00:15	11/05/15 04:30	1
Xylenes, Total	ND		11		0.89	ug/Kg	₩	10/30/15 00:15	11/05/15 04:30	1
Tetrahydrofuran	ND		11		3.1	ug/Kg	₽	10/30/15 00:15	11/05/15 04:30	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	ı	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\tilde{\pi}				10/30/15 00:15	11/05/15 04:30	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	102		60 - 140					10/30/15 00:15	11/05/15 04:30	1
1,2-Dichloroethane-d4 (Surr)	99		64 - 126					10/30/15 00:15	11/05/15 04:30	1
Toluene-d8 (Surr)	102		71 - 125					10/30/15 00:15	11/05/15 04:30	1
4-Bromofluorobenzene (Surr)	96		72 - 126					10/30/15 00:15	11/05/15 04:30	1
General Chemistry										
Analyte	Result	Qualifier	RL		RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	3.6		0.10		0.10	%			10/29/15 22:21	1
Percent Solids	96		0.10		0.10	0/2			10/29/15 22:21	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 08:45 Date Received: 10/29/15 09:00

Client Sample ID: SMWU7-SS-BLDG23-14

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-4

Matrix: Solid
Percent Solids: 92.1

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4.9		ug/Kg	₩	10/30/15 00:15	11/05/15 04:55	1
1,1,2,2-Tetrachloroethane	ND	4.9		ug/Kg	₩	10/30/15 00:15	11/05/15 04:55	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.9	1.1	ug/Kg	₩	10/30/15 00:15	11/05/15 04:55	1
1,1,2-Trichloroethane	ND	4.9	0.63	ug/Kg	₽	10/30/15 00:15	11/05/15 04:55	1
1,1-Dichloroethane	ND	4.9	0.59	ug/Kg	☼	10/30/15 00:15	11/05/15 04:55	1
1,1-Dichloroethene	ND	4.9	0.59	ug/Kg	≎	10/30/15 00:15	11/05/15 04:55	1
1,2,3-Trichlorobenzene	ND	4.9	0.52	ug/Kg	≎	10/30/15 00:15	11/05/15 04:55	1
1,2,4-Trichlorobenzene	ND	4.9	0.30	ug/Kg	₽	10/30/15 00:15	11/05/15 04:55	1
1,2-Dibromo-3-Chloropropane	ND	4.9	2.4	ug/Kg	₽	10/30/15 00:15	11/05/15 04:55	1
1,2-Dichlorobenzene	ND	4.9	0.38	ug/Kg		10/30/15 00:15	11/05/15 04:55	1
1,2-Dichloroethane	ND	4.9	0.24	ug/Kg	☼	10/30/15 00:15	11/05/15 04:55	1
1,2-Dichloropropane	ND	4.9	2.4	ug/Kg	☼	10/30/15 00:15	11/05/15 04:55	1
1,3-Dichlorobenzene	ND	4.9	0.25	ug/Kg		10/30/15 00:15	11/05/15 04:55	1
1,4-Dichlorobenzene	ND	4.9	0.68	ug/Kg	≎	10/30/15 00:15	11/05/15 04:55	1
1,4-Dioxane	ND	97		ug/Kg	₽	10/30/15 00:15	11/05/15 04:55	1
2-Hexanone	ND	24		ug/Kg		10/30/15 00:15	11/05/15 04:55	1
Acetone	ND	24		ug/Kg	₩	10/30/15 00:15	11/05/15 04:55	1
Benzene	ND	4.9		ug/Kg	₽		11/05/15 04:55	1
Bromoform	ND	4.9		ug/Kg			11/05/15 04:55	1
Bromomethane	ND	4.9		ug/Kg	₩		11/05/15 04:55	1
Carbon disulfide	ND	4.9		ug/Kg	₩		11/05/15 04:55	1
Carbon tetrachloride	ND	4.9		ug/Kg			11/05/15 04:55	
Chlorobenzene	ND	4.9		ug/Kg	₩		11/05/15 04:55	1
Bromochloromethane	ND	4.9		ug/Kg	₩		11/05/15 04:55	1
Dibromochloromethane	ND	4.9		ug/Kg			11/05/15 04:55	
Chloroethane	ND	4.9		ug/Kg	≎		11/05/15 04:55	1
Chloroform	ND	4.9		ug/Kg ug/Kg	☆		11/05/15 04:55	1
	ND						11/05/15 04:55	
Chloromethane	ND ND	4.9		ug/Kg	☆			1
cis-1,2-Dichloroethene	ND ND	4.9		ug/Kg	☆		11/05/15 04:55	1
cis-1,3-Dichloropropene		4.9		ug/Kg			11/05/15 04:55	1
Cyclohexane	ND	4.9		ug/Kg	₽		11/05/15 04:55	1
Bromodichloromethane	ND	4.9		ug/Kg	₽		11/05/15 04:55	1
Dichlorodifluoromethane	ND	4.9		ug/Kg			11/05/15 04:55	
Ethylbenzene	ND	4.9		ug/Kg	₩.		11/05/15 04:55	1
1,2-Dibromoethane (EDB)	ND	4.9		ug/Kg	₩.		11/05/15 04:55	1
Isopropylbenzene	ND	4.9		ug/Kg			11/05/15 04:55	1
Methyl acetate	ND	4.9		ug/Kg	: D		11/05/15 04:55	1
2-Butanone (MEK)	ND	24		ug/Kg	- D -	10/30/15 00:15	11/05/15 04:55	1
4-Methyl-2-pentanone (MIBK)	ND	24		ug/Kg			11/05/15 04:55	1
Methyl tert-butyl ether	ND	4.9		ug/Kg	₩		11/05/15 04:55	1
Methylcyclohexane	ND	4.9	0.74	ug/Kg	₩	10/30/15 00:15	11/05/15 04:55	1
Methylene Chloride	ND	4.9	2.2	ug/Kg	☼	10/30/15 00:15	11/05/15 04:55	1
Styrene	ND	4.9		ug/Kg	₩	10/30/15 00:15	11/05/15 04:55	1
Tetrachloroethene	ND	4.9	0.65	ug/Kg	₩	10/30/15 00:15	11/05/15 04:55	1
Toluene	ND	4.9	0.37	ug/Kg	☼	10/30/15 00:15	11/05/15 04:55	1
trans-1,2-Dichloroethene	ND	4.9	0.50	ug/Kg	☆	10/30/15 00:15	11/05/15 04:55	1
trans-1,3-Dichloropropene	ND	4.9	2.1	ug/Kg	☼	10/30/15 00:15	11/05/15 04:55	1
Trichloroethene	ND	4.9	1.1	ug/Kg	☼	10/30/15 00:15	11/05/15 04:55	1
Trichlorofluoromethane	ND	4.9	0.46	ug/Kg		10/30/15 00:15	11/05/15 04:55	1

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Client Sample ID: SMWU7-SS-BLDG23-14 Lab Sample ID: 480-90114-4

Date Collected: 10/28/15 08:45 **Matrix: Solid** Date Received: 10/29/15 09:00

Percent Solids: 92.1

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.9		0.59	ug/Kg	₩	10/30/15 00:15	11/05/15 04:55	
Xylenes, Total	ND		9.7		0.82	ug/Kg	₽	10/30/15 00:15	11/05/15 04:55	
Tetrahydrofuran	ND		9.7		2.8	ug/Kg	₩	10/30/15 00:15	11/05/15 04:55	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\overline{\pi}				10/30/15 00:15	11/05/15 04:55	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
Dibromofluoromethane (Surr)	104		60 - 140					10/30/15 00:15	11/05/15 04:55	
1,2-Dichloroethane-d4 (Surr)	101		64 - 126					10/30/15 00:15	11/05/15 04:55	
Toluene-d8 (Surr)	103		71 - 125					10/30/15 00:15	11/05/15 04:55	
4-Bromofluorobenzene (Surr)	99		72 - 126					10/30/15 00:15	11/05/15 04:55	•
General Chemistry										
Analyte	Result	Qualifier	RL		RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	7.9		0.10		0.10	%			10/29/15 22:21	
Percent Solids	92		0.10		0.10	%			10/29/15 22:21	

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 09:00

Date Received: 10/29/15 09:00

Client Sample ID: SMWU7-SS-BLDG23-16

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-5

Matrix: Solid Percent Solids: 95.6

Analyte	Result Qualifier	RL	MDL		D <u>₩</u>	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	5.6		ug/Kg			11/05/15 16:41	
1,1,2,2-Tetrachloroethane	ND	5.6		ug/Kg	φ.		11/05/15 16:41	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.6		ug/Kg	<u>.</u> .		11/05/15 16:41	
1,1,2-Trichloroethane	ND	5.6		ug/Kg	φ.		11/05/15 16:41	
1,1-Dichloroethane	ND	5.6		ug/Kg	₩.		11/05/15 16:41	
1,1-Dichloroethene	ND	5.6		ug/Kg	<u>.</u> .		11/05/15 16:41	
1,2,3-Trichlorobenzene	ND	5.6		ug/Kg	*		11/05/15 16:41	
1,2,4-Trichlorobenzene	ND	5.6		ug/Kg	*		11/05/15 16:41	
1,2-Dibromo-3-Chloropropane	ND	5.6		ug/Kg			11/05/15 16:41	
1,2-Dichlorobenzene	ND	5.6		ug/Kg	*		11/05/15 16:41	
1,2-Dichloroethane	ND	5.6		ug/Kg	₽		11/05/15 16:41	
1,2-Dichloropropane	ND	5.6		ug/Kg		10/30/15 00:18	11/05/15 16:41	
1,3-Dichlorobenzene	ND	5.6	0.29	ug/Kg	₩	10/30/15 00:18	11/05/15 16:41	
1,4-Dichlorobenzene	ND	5.6	0.78	ug/Kg	≎	10/30/15 00:18	11/05/15 16:41	
1,4-Dioxane	ND	110	24	ug/Kg	≎	10/30/15 00:18	11/05/15 16:41	
2-Hexanone	ND	28	2.8	ug/Kg	☆	10/30/15 00:18	11/05/15 16:41	
Acetone	ND	28	4.7	ug/Kg	☆	10/30/15 00:18	11/05/15 16:41	
Benzene	ND	5.6	0.27	ug/Kg	₩	10/30/15 00:18	11/05/15 16:41	
Bromoform	ND	5.6	2.8	ug/Kg	≎	10/30/15 00:18	11/05/15 16:41	
Bromomethane	ND	5.6	0.50	ug/Kg	≎	10/30/15 00:18	11/05/15 16:41	
Carbon disulfide	ND	5.6	2.8	ug/Kg	₩	10/30/15 00:18	11/05/15 16:41	
Carbon tetrachloride	ND	5.6	0.54	ug/Kg		10/30/15 00:18	11/05/15 16:41	
Chlorobenzene	ND	5.6	0.73	ug/Kg	₩	10/30/15 00:18	11/05/15 16:41	
Bromochloromethane	ND	5.6	0.40	ug/Kg	≎	10/30/15 00:18	11/05/15 16:41	
Dibromochloromethane	ND	5.6	0.71	ug/Kg	☆	10/30/15 00:18	11/05/15 16:41	
Chloroethane	ND	5.6	1.3	ug/Kg	≎	10/30/15 00:18	11/05/15 16:41	
Chloroform	ND	5.6		ug/Kg	≎	10/30/15 00:18	11/05/15 16:41	
Chloromethane	ND	5.6		ug/Kg		10/30/15 00:18	11/05/15 16:41	
cis-1,2-Dichloroethene	ND	5.6	0.71	ug/Kg	₩	10/30/15 00:18	11/05/15 16:41	
cis-1,3-Dichloropropene	ND	5.6		ug/Kg	≎	10/30/15 00:18	11/05/15 16:41	
Cyclohexane	ND	5.6	0.78	ug/Kg		10/30/15 00:18	11/05/15 16:41	
Bromodichloromethane	ND	5.6		ug/Kg	₩	10/30/15 00:18	11/05/15 16:41	
Dichlorodifluoromethane	ND	5.6		ug/Kg	≎	10/30/15 00:18	11/05/15 16:41	
Ethylbenzene	ND	5.6		ug/Kg		10/30/15 00:18	11/05/15 16:41	
1,2-Dibromoethane (EDB)	ND	5.6		ug/Kg	₩		11/05/15 16:41	
Isopropylbenzene	ND	5.6		ug/Kg	₩	10/30/15 00:18		
Methyl acetate	ND	5.6		ug/Kg			11/05/15 16:41	
2-Butanone (MEK)	ND	28		ug/Kg	₩		11/05/15 16:41	
4-Methyl-2-pentanone (MIBK)	ND	28		ug/Kg	₽		11/05/15 16:41	
Methyl tert-butyl ether	ND	5.6		ug/Kg			11/05/15 16:41	
Methylcyclohexane	ND	5.6		ug/Kg	₽		11/05/15 16:41	
Methylene Chloride	ND	5.6		ug/Kg	₽		11/05/15 16:41	
Styrene	ND	5.6		ug/Kg	· · · · · · · · · · · · · · · ·		11/05/15 16:41	
Tetrachloroethene	ND ND	5.6		ug/Kg ug/Kg	т Ф		11/05/15 16:41	
Toluene	ND ND	5.6		ug/Kg ug/Kg	.∵ 	10/30/15 00:18		
	ND				* .		11/05/15 16:41	
trans-1,2-Dichloroptopene	ND	5.6 5.6		ug/Kg	₩		11/05/15 16:41	
trans-1,3-Dichloropropene				ug/Kg				
Trichloroethene Trichlorofluoromethane	ND ND	5.6 5.6		ug/Kg ug/Kg	Q 		11/05/15 16:41 11/05/15 16:41	

TestAmerica Buffalo

4

6

9

11

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 09:00

Date Received: 10/29/15 09:00

Percent Solids

Client Sample ID: SMWU7-SS-BLDG23-16

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-5

. Matrix: Solid

10/29/15 22:21

Percent Solids: 95.6

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.6		0.68	ug/Kg	₩	10/30/15 00:18	11/05/15 16:41	1
Xylenes, Total	ND		11		0.93	ug/Kg	₽	10/30/15 00:18	11/05/15 16:41	1
Tetrahydrofuran	ND		11		3.2	ug/Kg	\$	10/30/15 00:18	11/05/15 16:41	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	₩ -				10/30/15 00:18	11/05/15 16:41	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	103		60 - 140					10/30/15 00:18	11/05/15 16:41	1
1,2-Dichloroethane-d4 (Surr)	98		64 - 126					10/30/15 00:18	11/05/15 16:41	1
Toluene-d8 (Surr)	103		71 - 125					10/30/15 00:18	11/05/15 16:41	1
4-Bromofluorobenzene (Surr)	98		72 - 126					10/30/15 00:18	11/05/15 16:41	1
General Chemistry										
Analyte	Result	Qualifier	RL		RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	4.4		0.10		0.10	0/			10/29/15 22:21	

0.10

0.10 %

TestAmerica Buffalo

3

5

7

8

10

11

16

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 09:30

Date Received: 10/29/15 09:00

Client Sample ID: SMWU7-SS-BLDG23-17

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-6

Matrix: Solid
Percent Solids: 91.2

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0	0.36	ug/Kg	₩	10/30/15 00:15	11/05/15 05:48	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.81	ug/Kg	₩	10/30/15 00:15	11/05/15 05:48	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	1.1	ug/Kg	₩	10/30/15 00:15	11/05/15 05:48	1
1,1,2-Trichloroethane	ND	5.0	0.65	ug/Kg	☆	10/30/15 00:15	11/05/15 05:48	1
1,1-Dichloroethane	ND	5.0	0.61	ug/Kg	≎	10/30/15 00:15	11/05/15 05:48	1
1,1-Dichloroethene	ND	5.0	0.61	ug/Kg	☼	10/30/15 00:15	11/05/15 05:48	1
1,2,3-Trichlorobenzene	ND	5.0	0.53	ug/Kg	.	10/30/15 00:15	11/05/15 05:48	1
1,2,4-Trichlorobenzene	ND	5.0	0.30	ug/Kg	₩	10/30/15 00:15	11/05/15 05:48	1
1,2-Dibromo-3-Chloropropane	ND	5.0	2.5	ug/Kg	₩	10/30/15 00:15	11/05/15 05:48	1
1,2-Dichlorobenzene	ND	5.0	0.39	ug/Kg	₽	10/30/15 00:15	11/05/15 05:48	1
1,2-Dichloroethane	ND	5.0	0.25	ug/Kg	☼	10/30/15 00:15	11/05/15 05:48	1
1,2-Dichloropropane	ND	5.0	2.5	ug/Kg	≎	10/30/15 00:15	11/05/15 05:48	1
1,3-Dichlorobenzene	ND	5.0	0.26	ug/Kg	☆	10/30/15 00:15	11/05/15 05:48	1
1,4-Dichlorobenzene	ND	5.0	0.70	ug/Kg	≎	10/30/15 00:15	11/05/15 05:48	1
1,4-Dioxane	ND	100	22	ug/Kg	≎	10/30/15 00:15	11/05/15 05:48	1
2-Hexanone	ND	25	2.5	ug/Kg	₩	10/30/15 00:15	11/05/15 05:48	1
Acetone	ND	25	4.2	ug/Kg	☼	10/30/15 00:15	11/05/15 05:48	1
Benzene	ND	5.0	0.25	ug/Kg	☼	10/30/15 00:15	11/05/15 05:48	1
Bromoform	ND	5.0	2.5	ug/Kg	₩	10/30/15 00:15	11/05/15 05:48	1
Bromomethane	ND	5.0	0.45	ug/Kg	₩	10/30/15 00:15	11/05/15 05:48	1
Carbon disulfide	ND	5.0	2.5	ug/Kg	₩	10/30/15 00:15	11/05/15 05:48	1
Carbon tetrachloride	ND	5.0	0.48	ug/Kg	.	10/30/15 00:15	11/05/15 05:48	1
Chlorobenzene	ND	5.0	0.66	ug/Kg	₩	10/30/15 00:15	11/05/15 05:48	1
Bromochloromethane	ND	5.0	0.36	ug/Kg	≎	10/30/15 00:15	11/05/15 05:48	1
Dibromochloromethane	ND	5.0	0.64	ug/Kg		10/30/15 00:15	11/05/15 05:48	1
Chloroethane	ND	5.0	1.1	ug/Kg	≎	10/30/15 00:15	11/05/15 05:48	1
Chloroform	ND	5.0	0.31	ug/Kg	≎	10/30/15 00:15	11/05/15 05:48	1
Chloromethane	ND	5.0	0.30	ug/Kg		10/30/15 00:15	11/05/15 05:48	1
cis-1,2-Dichloroethene	ND	5.0	0.64	ug/Kg	₩	10/30/15 00:15	11/05/15 05:48	1
cis-1,3-Dichloropropene	ND	5.0	0.72	ug/Kg	₩	10/30/15 00:15	11/05/15 05:48	1
Cyclohexane	ND	5.0	0.70	ug/Kg	\$	10/30/15 00:15	11/05/15 05:48	1
Bromodichloromethane	ND	5.0	0.67	ug/Kg	☼	10/30/15 00:15	11/05/15 05:48	1
Dichlorodifluoromethane	ND	5.0	0.41	ug/Kg	₩	10/30/15 00:15	11/05/15 05:48	1
Ethylbenzene	ND	5.0	0.35	ug/Kg		10/30/15 00:15	11/05/15 05:48	1
1,2-Dibromoethane (EDB)	ND	5.0	0.64	ug/Kg	≎	10/30/15 00:15	11/05/15 05:48	1
Isopropylbenzene	ND	5.0	0.75	ug/Kg	₩	10/30/15 00:15	11/05/15 05:48	1
Methyl acetate	ND	5.0	3.0	ug/Kg		10/30/15 00:15	11/05/15 05:48	1
2-Butanone (MEK)	ND	25		ug/Kg	₩	10/30/15 00:15	11/05/15 05:48	1
4-Methyl-2-pentanone (MIBK)	ND	25		ug/Kg	₩	10/30/15 00:15	11/05/15 05:48	1
Methyl tert-butyl ether	ND	5.0	0.49	ug/Kg		10/30/15 00:15	11/05/15 05:48	1
Methylcyclohexane	ND	5.0	0.76	ug/Kg	≎	10/30/15 00:15	11/05/15 05:48	1
Methylene Chloride	ND	5.0	2.3	ug/Kg	≎	10/30/15 00:15	11/05/15 05:48	1
Styrene	ND	5.0		ug/Kg		10/30/15 00:15	11/05/15 05:48	1
Tetrachloroethene	ND	5.0		ug/Kg	₩	10/30/15 00:15	11/05/15 05:48	1
Toluene	ND	5.0		ug/Kg	₩	10/30/15 00:15	11/05/15 05:48	1
trans-1,2-Dichloroethene	ND	5.0		ug/Kg			11/05/15 05:48	1
trans-1,3-Dichloropropene	ND	5.0		ug/Kg	₩		11/05/15 05:48	1
Trichloroethene	ND	5.0		ug/Kg	₽		11/05/15 05:48	1
Trichlorofluoromethane	2.2 J	5.0		ug/Kg			11/05/15 05:48	1

TestAmerica Buffalo

3

6

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 09:30

Date Received: 10/29/15 09:00

Client Sample ID: SMWU7-SS-BLDG23-17

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-6

Matrix: Solid

Percent Solids: 91.2

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		0.61	ug/Kg	₩	10/30/15 00:15	11/05/15 05:48	1
Xylenes, Total	ND		10		0.84	ug/Kg	≎	10/30/15 00:15	11/05/15 05:48	1
Tetrahydrofuran	ND		10		2.9	ug/Kg	.	10/30/15 00:15	11/05/15 05:48	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Silanol, trimethyl-	310	TJN	ug/Kg	₩ -	4.	33	1066-40-6	10/30/15 00:15	11/05/15 05:48	1
Unknown	5.4	ΤJ	ug/Kg	☼	4.	91		10/30/15 00:15	11/05/15 05:48	1
Cyclotrisiloxane, hexamethyl-	5.9	TJN	ug/Kg	₩	6.	99	541-05-9	10/30/15 00:15	11/05/15 05:48	1
Tetrasiloxane, decamethyl-	45	TJN	ug/Kg	☆	10.	21	141-62-8	10/30/15 00:15	11/05/15 05:48	1
Unknown	84	ΤJ	ug/Kg	₩	11.	78		10/30/15 00:15	11/05/15 05:48	1
Unknown	7.3	TJ	ug/Kg	₩	13.	07		10/30/15 00:15	11/05/15 05:48	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	104		60 - 140					10/30/15 00:15	11/05/15 05:48	1
1,2-Dichloroethane-d4 (Surr)	101		64 - 126					10/30/15 00:15	11/05/15 05:48	1
Toluene-d8 (Surr)	102		71 - 125					10/30/15 00:15	11/05/15 05:48	1
4-Bromofluorobenzene (Surr)	99		72 - 126					10/30/15 00:15	11/05/15 05:48	1
General Chemistry										
Analyte	Result	Qualifier	RL		RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	8.8		0.10		0.10	%			10/29/15 22:21	1
Percent Solids	91		0.10		0.10	%			10/29/15 22:21	1

1

5

7

8

40

11

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Client Sample ID: SMWU7-SS-BLDG23-18 Lab Sample ID: 480-90114-7

 Date Collected: 10/28/15 09:40
 Matrix: Solid

 Date Received: 10/29/15 09:00
 Percent Solids: 90.4

Method: 8260C - Volatile Organ				11:4	_	D	A	D:: -
Analyte	Result Qual			Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	4.6		0 0	<u>₩</u>		11/05/15 06:14	
1,1,2,2-Tetrachloroethane	ND	4.6		ug/Kg	☆		11/05/15 06:14	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.6	1.1	ug/Kg	<u>.</u> .		11/05/15 06:14	
1,1,2-Trichloroethane	ND	4.6		ug/Kg	φ.		11/05/15 06:14	
1,1-Dichloroethane	ND	4.6		ug/Kg	φ.		11/05/15 06:14	
1,1-Dichloroethene	ND	4.6		ug/Kg			11/05/15 06:14	
1,2,3-Trichlorobenzene	ND	4.6	0.49	ug/Kg	☆		11/05/15 06:14	
1,2,4-Trichlorobenzene	ND	4.6		ug/Kg	:		11/05/15 06:14	
1,2-Dibromo-3-Chloropropane	ND	4.6		ug/Kg			11/05/15 06:14	
1,2-Dichlorobenzene	ND	4.6	0.36	ug/Kg	≎	10/30/15 00:15	11/05/15 06:14	
1,2-Dichloroethane	ND	4.6		ug/Kg	₽	10/30/15 00:15	11/05/15 06:14	
1,2-Dichloropropane	ND	4.6	2.3	ug/Kg	₽	10/30/15 00:15	11/05/15 06:14	
1,3-Dichlorobenzene	ND	4.6	0.24	ug/Kg	₩	10/30/15 00:15	11/05/15 06:14	
1,4-Dichlorobenzene	ND	4.6	0.65	ug/Kg	₩	10/30/15 00:15	11/05/15 06:14	
1,4-Dioxane	ND	93	20	ug/Kg	₩	10/30/15 00:15	11/05/15 06:14	
2-Hexanone	ND	23	2.3	ug/Kg	\$	10/30/15 00:15	11/05/15 06:14	
Acetone	ND	23	3.9	ug/Kg	₽	10/30/15 00:15	11/05/15 06:14	
Benzene	ND	4.6	0.23	ug/Kg	₩	10/30/15 00:15	11/05/15 06:14	
Bromoform	ND	4.6	2.3	ug/Kg		10/30/15 00:15	11/05/15 06:14	
Bromomethane	ND	4.6	0.42	ug/Kg	₩	10/30/15 00:15	11/05/15 06:14	
Carbon disulfide	ND	4.6	2.3	ug/Kg	≎	10/30/15 00:15	11/05/15 06:14	
Carbon tetrachloride	ND	4.6		ug/Kg		10/30/15 00:15	11/05/15 06:14	
Chlorobenzene	ND	4.6	0.61	ug/Kg	₩	10/30/15 00:15	11/05/15 06:14	
Bromochloromethane	ND	4.6	0.33	ug/Kg	₩	10/30/15 00:15	11/05/15 06:14	
Dibromochloromethane	ND	4.6	0.59	ug/Kg		10/30/15 00:15	11/05/15 06:14	
Chloroethane	ND	4.6		ug/Kg	≎	10/30/15 00:15	11/05/15 06:14	
Chloroform	ND	4.6		ug/Kg	≎		11/05/15 06:14	
Chloromethane	ND	4.6		ug/Kg		10/30/15 00:15	11/05/15 06:14	
cis-1,2-Dichloroethene	ND	4.6		ug/Kg	₽		11/05/15 06:14	
cis-1,3-Dichloropropene	ND	4.6		ug/Kg	₽		11/05/15 06:14	
Cyclohexane	ND	4.6		ug/Kg			11/05/15 06:14	
Bromodichloromethane	ND	4.6		ug/Kg	☼		11/05/15 06:14	
Dichlorodifluoromethane	1.2 J	4.6		ug/Kg	₩		11/05/15 06:14	
Ethylbenzene	ND	4.6		ug/Kg			11/05/15 06:14	
1,2-Dibromoethane (EDB)	ND	4.6		ug/Kg	₽		11/05/15 06:14	
Isopropylbenzene	ND	4.6		ug/Kg	т Ф		11/05/15 00:14	
Methyl acetate	ND	4.6		ug/Kg ug/Kg			11/05/15 06:14	
•					₽			
2-Butanone (MEK)	ND	23		ug/Kg			11/05/15 06:14	
4-Methyl-2-pentanone (MIBK)	ND	23		ug/Kg	.		11/05/15 06:14	
Methyl tert-butyl ether	ND	4.6		ug/Kg	☆		11/05/15 06:14	
Methylcyclohexane	ND	4.6		ug/Kg	₩		11/05/15 06:14	
Methylene Chloride	ND	4.6		ug/Kg	<u>.</u> .		11/05/15 06:14	
Styrene	ND	4.6		ug/Kg	₩		11/05/15 06:14	
Tetrachloroethene	ND	4.6		ug/Kg	φ.		11/05/15 06:14	
Toluene	ND	4.6		ug/Kg			11/05/15 06:14	
trans-1,2-Dichloroethene	ND	4.6		ug/Kg	*		11/05/15 06:14	
rans-1,3-Dichloropropene	ND	4.6		ug/Kg	₽		11/05/15 06:14	
Trichloroethene	ND	4.6	1.0	ug/Kg	☼	10/30/15 00:15	11/05/15 06:14	
Trichlorofluoromethane	15	4.6	0.44	ug/Kg	☆	10/30/15 00:15	11/05/15 06:14	

TestAmerica Buffalo

4

6

9

11 12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 09:40

Date Received: 10/29/15 09:00

Percent Moisture

Percent Solids

Client Sample ID: SMWU7-SS-BLDG23-18

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-7

Matrix: Solid

Percent Solids: 90.4

10/29/15 22:21

10/29/15 22:21

Analyte	Result	Qualifier	F	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4	6	0.56	ug/Kg	\	10/30/15 00:15	11/05/15 06:14	1
Xylenes, Total	ND		9	.3	0.78	ug/Kg	₽	10/30/15 00:15	11/05/15 06:14	1
Tetrahydrofuran	ND		9	.3	2.7	ug/Kg	\$	10/30/15 00:15	11/05/15 06:14	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	14	TJ	ug/Kg	- -	2	.93		10/30/15 00:15	11/05/15 06:14	1
Silanol, trimethyl-	170	TJN	ug/Kg	₩	4.	.33	1066-40-6	10/30/15 00:15	11/05/15 06:14	1
Tetrasiloxane, decamethyl-	9.3	TJN	ug/Kg	☼	10.	.21	141-62-8	10/30/15 00:15	11/05/15 06:14	1
Unknown	16	ΤJ	ug/Kg	₩	11.	.78		10/30/15 00:15	11/05/15 06:14	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	103		60 - 14	0				10/30/15 00:15	11/05/15 06:14	1
1,2-Dichloroethane-d4 (Surr)	100		64 - 12	6				10/30/15 00:15	11/05/15 06:14	1
Toluene-d8 (Surr)	100		71 - 12	5				10/30/15 00:15	11/05/15 06:14	1
4-Bromofluorobenzene (Surr)	97		72 - 12	6				10/30/15 00:15	11/05/15 06:14	1
General Chemistry										
Analyte	Result	Qualifier	F	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac

0.10

0.10

9.6

90

0.10 %

0.10 %

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 09:50

Date Received: 10/29/15 09:00

Client Sample ID: SMWU7-SS-BLDG23-19

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-8

Matrix: Solid
Percent Solids: 81.5

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	5.9	0.43	ug/Kg	<u> </u>		11/05/15 06:39	
1,1,2,2-Tetrachloroethane	ND	5.9		ug/Kg	₩.		11/05/15 06:39	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.9		ug/Kg	<u>.</u>		11/05/15 06:39	
1,1,2-Trichloroethane	ND	5.9		ug/Kg	φ.		11/05/15 06:39	
1,1-Dichloroethane	ND	5.9		ug/Kg	₩.		11/05/15 06:39	
1,1-Dichloroethene	ND	5.9		ug/Kg			11/05/15 06:39	
1,2,3-Trichlorobenzene	ND	5.9		ug/Kg	*		11/05/15 06:39	
1,2,4-Trichlorobenzene	ND	5.9		ug/Kg	₽		11/05/15 06:39	
1,2-Dibromo-3-Chloropropane	ND	5.9		ug/Kg			11/05/15 06:39	
1,2-Dichlorobenzene	ND	5.9	0.46	ug/Kg	₩	10/30/15 00:15	11/05/15 06:39	
1,2-Dichloroethane	ND	5.9		ug/Kg	≎	10/30/15 00:15	11/05/15 06:39	
1,2-Dichloropropane	ND	5.9	2.9	ug/Kg	≎	10/30/15 00:15	11/05/15 06:39	
1,3-Dichlorobenzene	ND	5.9	0.30	ug/Kg	₽	10/30/15 00:15	11/05/15 06:39	
1,4-Dichlorobenzene	ND	5.9	0.82	ug/Kg	₽	10/30/15 00:15	11/05/15 06:39	
1,4-Dioxane	ND	120	26	ug/Kg	☆	10/30/15 00:15	11/05/15 06:39	
2-Hexanone	ND	29	2.9	ug/Kg	≎	10/30/15 00:15	11/05/15 06:39	
Acetone	ND	29	4.9	ug/Kg	≎	10/30/15 00:15	11/05/15 06:39	
Benzene	ND	5.9	0.29	ug/Kg	₩	10/30/15 00:15	11/05/15 06:39	
Bromoform	ND	5.9	2.9	ug/Kg		10/30/15 00:15	11/05/15 06:39	
Bromomethane	ND	5.9	0.53	ug/Kg	₩	10/30/15 00:15	11/05/15 06:39	
Carbon disulfide	ND	5.9	2.9	ug/Kg	₽	10/30/15 00:15	11/05/15 06:39	
Carbon tetrachloride	ND	5.9		ug/Kg		10/30/15 00:15	11/05/15 06:39	
Chlorobenzene	ND	5.9		ug/Kg	₩	10/30/15 00:15	11/05/15 06:39	
Bromochloromethane	ND	5.9		ug/Kg	₩	10/30/15 00:15	11/05/15 06:39	
Dibromochloromethane	ND	5.9		ug/Kg		10/30/15 00:15	11/05/15 06:39	
Chloroethane	ND	5.9		ug/Kg	≎	10/30/15 00:15	11/05/15 06:39	
Chloroform	ND	5.9		ug/Kg	⇔		11/05/15 06:39	
Chloromethane	ND	5.9		ug/Kg			11/05/15 06:39	
cis-1,2-Dichloroethene	ND	5.9		ug/Kg	₩		11/05/15 06:39	
cis-1,3-Dichloropropene	ND	5.9		ug/Kg	₩		11/05/15 06:39	
Cyclohexane	ND	5.9		ug/Kg			11/05/15 06:39	
Bromodichloromethane	ND	5.9		ug/Kg	₩		11/05/15 06:39	
Dichlorodifluoromethane	ND	5.9		ug/Kg	₩		11/05/15 06:39	
Ethylbenzene	ND	5.9		ug/Kg			11/05/15 06:39	
1,2-Dibromoethane (EDB)	ND	5.9		ug/Kg	₩		11/05/15 06:39	
Isopropylbenzene	ND	5.9		ug/Kg	₽		11/05/15 06:39	
Methyl acetate	ND	5.9		ug/Kg			11/05/15 06:39	
2-Butanone (MEK)	ND	29		ug/Kg	₽		11/05/15 06:39	
,	ND ND	29			≎		11/05/15 06:39	
4-Methyl-2-pentanone (MIBK)				ug/Kg				
Methyl tert-butyl ether	ND	5.9		ug/Kg	₩		11/05/15 06:39	
Methylcyclohexane	ND	5.9		ug/Kg	₩ ₩		11/05/15 06:39	
Methylene Chloride	ND	5.9		ug/Kg	¥.		11/05/15 06:39	
Styrene	ND	5.9		ug/Kg	☆		11/05/15 06:39	
Tetrachloroethene	ND	5.9		ug/Kg	₽		11/05/15 06:39	
Toluene	ND	5.9		ug/Kg			11/05/15 06:39	
trans-1,2-Dichloroethene	ND	5.9		ug/Kg	φ.		11/05/15 06:39	
trans-1,3-Dichloropropene	ND	5.9		ug/Kg	.		11/05/15 06:39	
Trichloroethene	ND	5.9	1.3	ug/Kg	₩	10/30/15 00:15	11/05/15 06:39	

TestAmerica Buffalo

3

4

6

8

10

12

1 /

1 E

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 09:50

Date Received: 10/29/15 09:00

Percent Solids

Client Sample ID: SMWU7-SS-BLDG23-19

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-8

Matrix: Solid

10/29/15 22:21

Percent Solids: 81.5

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.9		0.72	ug/Kg	<u> </u>	10/30/15 00:15	11/05/15 06:39	1
Xylenes, Total	ND		12	2	0.99	ug/Kg	₽	10/30/15 00:15	11/05/15 06:39	1
Tetrahydrofuran	ND		12)	3.4	ug/Kg	₩	10/30/15 00:15	11/05/15 06:39	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	5.9	TJ	ug/Kg	₩	2.	.93		10/30/15 00:15	11/05/15 06:39	1
Unknown	12	TJ	ug/Kg	₩	4.	.34		10/30/15 00:15	11/05/15 06:39	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	103	-	60 - 140	-				10/30/15 00:15	11/05/15 06:39	1
1,2-Dichloroethane-d4 (Surr)	97		64 - 126					10/30/15 00:15	11/05/15 06:39	1
Toluene-d8 (Surr)	108		71 - 125					10/30/15 00:15	11/05/15 06:39	1
4-Bromofluorobenzene (Surr)	84		72 - 126					10/30/15 00:15	11/05/15 06:39	1
General Chemistry										
Analyte	Result	Qualifier	RL		RL	Unit	D	Prepared	Analyzed	Dil Fac

0.10

0.10 %

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 10:45

Date Received: 10/29/15 09:00

Client Sample ID: SMWU26-SS-BLDG23-01

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-9

Matrix: Solid
Percent Solids: 93.0

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	5.2		ug/Kg	<u> </u>		11/05/15 07:05	
1,1,2,2-Tetrachloroethane	ND F1	5.2		ug/Kg	*		11/05/15 07:05	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.2		ug/Kg			11/05/15 07:05	
1,1,2-Trichloroethane	ND	5.2		ug/Kg			11/05/15 07:05	
1,1-Dichloroethane	ND	5.2		ug/Kg	₽	10/30/15 00:15	11/05/15 07:05	
1,1-Dichloroethene	ND	5.2		ug/Kg	.	10/30/15 00:15	11/05/15 07:05	
1,2,3-Trichlorobenzene	ND	5.2		ug/Kg	≎	10/30/15 00:15	11/05/15 07:05	
1,2,4-Trichlorobenzene	ND F1	5.2	0.32	ug/Kg	≎	10/30/15 00:15	11/05/15 07:05	
1,2-Dibromo-3-Chloropropane	ND F1	5.2	2.6	ug/Kg	☆	10/30/15 00:15	11/05/15 07:05	
1,2-Dichlorobenzene	ND	5.2	0.41	ug/Kg	₩	10/30/15 00:15	11/05/15 07:05	
1,2-Dichloroethane	ND	5.2	0.26	ug/Kg	≎	10/30/15 00:15	11/05/15 07:05	
1,2-Dichloropropane	ND	5.2	2.6	ug/Kg	≎	10/30/15 00:15	11/05/15 07:05	
1,3-Dichlorobenzene	ND	5.2	0.27	ug/Kg		10/30/15 00:15	11/05/15 07:05	
1,4-Dichlorobenzene	ND	5.2	0.73	ug/Kg	₩	10/30/15 00:15	11/05/15 07:05	
1,4-Dioxane	ND F1	100	23	ug/Kg	≎	10/30/15 00:15	11/05/15 07:05	
2-Hexanone	ND	26		ug/Kg		10/30/15 00:15	11/05/15 07:05	
Acetone	ND F1	26		ug/Kg	₩	10/30/15 00:15	11/05/15 07:05	
Benzene	ND	5.2		ug/Kg	≎	10/30/15 00:15	11/05/15 07:05	
Bromoform	ND	5.2		ug/Kg	 	10/30/15 00:15	11/05/15 07:05	
Bromomethane	ND	5.2		ug/Kg	⇔		11/05/15 07:05	
Carbon disulfide	ND	5.2		ug/Kg	₩		11/05/15 07:05	
Carbon tetrachloride	ND	5.2		ug/Kg			11/05/15 07:05	
Chlorobenzene	ND	5.2			₽		11/05/15 07:05	
Bromochloromethane	ND	5.2		ug/Kg	₽		11/05/15 07:05	
Dibromochloromethane	ND	5.2		ug/Kg			11/05/15 07:05	
Chloroethane	ND	5.2		ug/Kg	₩		11/05/15 07:05	
Chloroform	ND	5.2		ug/Kg ug/Kg	₩		11/05/15 07:05	
Chloromethane	ND	5.2 5.2		ug/Kg	☆		11/05/15 07:05	
cis-1,2-Dichloroethene	ND						11/05/15 07:05	
cis-1,3-Dichloropropene	ND	5.2		ug/Kg	% .		11/05/15 07:05	
Cyclohexane	ND	5.2		ug/Kg	₽		11/05/15 07:05	
Bromodichloromethane	ND	5.2		ug/Kg	φ.		11/05/15 07:05	
Dichlorodifluoromethane	ND	5.2		ug/Kg			11/05/15 07:05	
Ethylbenzene	ND	5.2		ug/Kg	.		11/05/15 07:05	
1,2-Dibromoethane (EDB)	ND F1	5.2		ug/Kg			11/05/15 07:05	
Isopropylbenzene	ND	5.2		ug/Kg	, .	10/30/15 00:15		
Methyl acetate	ND	5.2		ug/Kg	₽	10/30/15 00:15	11/05/15 07:05	
2-Butanone (MEK)	ND F1	26		ug/Kg	₩		11/05/15 07:05	
4-Methyl-2-pentanone (MIBK)	ND F1	26		ug/Kg			11/05/15 07:05	
Methyl tert-butyl ether	ND	5.2	0.51	ug/Kg	≎	10/30/15 00:15	11/05/15 07:05	
Methylcyclohexane	ND	5.2	0.80	ug/Kg	≎	10/30/15 00:15	11/05/15 07:05	
Methylene Chloride	ND	5.2	2.4	ug/Kg	₽	10/30/15 00:15	11/05/15 07:05	
Styrene	ND	5.2	0.26	ug/Kg	₽	10/30/15 00:15	11/05/15 07:05	
Tetrachloroethene	ND	5.2	0.70	ug/Kg	₩	10/30/15 00:15	11/05/15 07:05	
Toluene	ND	5.2	0.40	ug/Kg	☼	10/30/15 00:15	11/05/15 07:05	
trans-1,2-Dichloroethene	ND	5.2	0.54	ug/Kg		10/30/15 00:15	11/05/15 07:05	
trans-1,3-Dichloropropene	ND	5.2		ug/Kg	₩	10/30/15 00:15	11/05/15 07:05	
Trichloroethene	ND	5.2		ug/Kg	₩	10/30/15 00:15	11/05/15 07:05	
Trichlorofluoromethane	5.0 J	5.2		ug/Kg			11/05/15 07:05	

TestAmerica Buffalo

3

6

9

11

13

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Client Sample ID: SMWU26-SS-BLDG23-01 Lab Sample ID: 480-90114-9

Date Collected: 10/28/15 10:45

Date Received: 10/29/15 09:00

Matrix: Solid
Percent Solids: 93.0

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.2		0.64	ug/Kg	<u> </u>	10/30/15 00:15	11/05/15 07:05	1
Xylenes, Total	ND		10		0.88	ug/Kg	₩	10/30/15 00:15	11/05/15 07:05	1
Tetrahydrofuran	ND	F1	10		3.0	ug/Kg	\$	10/30/15 00:15	11/05/15 07:05	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	6.1	TJ	ug/Kg	₩ -	4.	.50		10/30/15 00:15	11/05/15 07:05	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	106		60 - 140					10/30/15 00:15	11/05/15 07:05	1
1,2-Dichloroethane-d4 (Surr)	102		64 - 126					10/30/15 00:15	11/05/15 07:05	1
Toluene-d8 (Surr)	105		71 - 125					10/30/15 00:15	11/05/15 07:05	1
4-Bromofluorobenzene (Surr)	95		72 - 126					10/30/15 00:15	11/05/15 07:05	

- Eromonaeresenzene (Gan)	30	72-720				10/00/10 00:10	11/00/10 07:00	,
Method: 8270D - Semivolatil Analyte	e Organic Compo Result Qua		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND -	180	26	ug/Kg	<u> </u>	11/04/15 07:44	11/09/15 14:46	1
bis (2-chloroisopropyl) ether	ND	180	35	ug/Kg	☼	11/04/15 07:44	11/09/15 14:46	1
2,4,5-Trichlorophenol	ND	180	48	ug/Kg	₽	11/04/15 07:44	11/09/15 14:46	1
2,4,6-Trichlorophenol	ND	180	35	ug/Kg	Φ.	11/04/15 07:44	11/09/15 14:46	1
2,4-Dichlorophenol	ND	180	19	ug/Kg	≎	11/04/15 07:44	11/09/15 14:46	1
2,4-Dimethylphenol	ND	180	43	ug/Kg	☼	11/04/15 07:44	11/09/15 14:46	1
2,4-Dinitrophenol	ND	1700	820	ug/Kg	Φ.	11/04/15 07:44	11/09/15 14:46	1
2,4-Dinitrotoluene	ND	180	37	ug/Kg	☼	11/04/15 07:44	11/09/15 14:46	1
2,6-Dinitrotoluene	ND	180	21	ug/Kg	☼	11/04/15 07:44	11/09/15 14:46	1
2-Chloronaphthalene	ND	180	29	ug/Kg	\$	11/04/15 07:44	11/09/15 14:46	1
2-Chlorophenol	ND	180	32	ug/Kg	☼	11/04/15 07:44	11/09/15 14:46	1
2-Methylnaphthalene	ND	180	35	ug/Kg	₽	11/04/15 07:44	11/09/15 14:46	1
2-Methylphenol	ND	180	21	ug/Kg	Φ.	11/04/15 07:44	11/09/15 14:46	1
2-Nitroaniline	ND	340	26	ug/Kg	☼	11/04/15 07:44	11/09/15 14:46	1
2-Nitrophenol	ND	180	50	ug/Kg	☼	11/04/15 07:44	11/09/15 14:46	1
3,3'-Dichlorobenzidine	ND	340	210	ug/Kg	Φ.	11/04/15 07:44	11/09/15 14:46	1
3-Nitroaniline	ND	340	49	ug/Kg	₽	11/04/15 07:44	11/09/15 14:46	1
4,6-Dinitro-2-methylphenol	ND	340	180	ug/Kg	₽	11/04/15 07:44	11/09/15 14:46	1
4-Bromophenyl phenyl ether	ND	180	25	ug/Kg	φ.	11/04/15 07:44	11/09/15 14:46	1
4-Chloro-3-methylphenol	ND	180	44	ug/Kg	₽	11/04/15 07:44	11/09/15 14:46	1
4-Chloroaniline	ND	180	44	ug/Kg	₽	11/04/15 07:44	11/09/15 14:46	1
4-Chlorophenyl phenyl ether	ND	180	22	ug/Kg	Φ.	11/04/15 07:44	11/09/15 14:46	1
4-Methylphenol	ND	340	21	ug/Kg	₽	11/04/15 07:44	11/09/15 14:46	1
4-Nitroaniline	ND	340	93	ug/Kg	₽	11/04/15 07:44	11/09/15 14:46	1
4-Nitrophenol	ND	340	120	ug/Kg	\$	11/04/15 07:44	11/09/15 14:46	1
Acenaphthene	ND	180	26	ug/Kg	₽	11/04/15 07:44	11/09/15 14:46	1
Acenaphthylene	ND	180	23	ug/Kg	₽	11/04/15 07:44	11/09/15 14:46	1
Acetophenone	ND	180	24	ug/Kg		11/04/15 07:44	11/09/15 14:46	1
Anthracene	ND	180	44	ug/Kg	₽	11/04/15 07:44	11/09/15 14:46	1
Atrazine	ND	180	62	ug/Kg	☼	11/04/15 07:44	11/09/15 14:46	1
Benzaldehyde	ND	180	140	ug/Kg	Φ.	11/04/15 07:44	11/09/15 14:46	1
Benzo(a)anthracene	ND	180	18	ug/Kg	₩	11/04/15 07:44	11/09/15 14:46	1
Benzo(a)pyrene	ND	180	26	ug/Kg	₩	11/04/15 07:44	11/09/15 14:46	1
Benzo(b)fluoranthene	ND	180	28	ug/Kg	φ.	11/04/15 07:44	11/09/15 14:46	1
Benzo(g,h,i)perylene	ND	180	19	ug/Kg	₽	11/04/15 07:44	11/09/15 14:46	1

TestAmerica Buffalo

Page 28 of 147

9

3

<u>+</u>

6

8

10

12

14

<u>I</u>k

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 10:45

Date Received: 10/29/15 09:00

Nitrobenzene-d5

p-Terphenyl-d14

Phenol-d5

Client Sample ID: SMWU26-SS-BLDG23-01

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-9

Matrix: Solid Percent Solids: 93.0

Method: 8270D - Semivolatile Analyte		Qualifier	RI	-	MDL		D	Prepared	Analyzed	Dil Fa
Benzo(k)fluoranthene	ND		18	<u> </u>	23	ug/Kg	₩	11/04/15 07:44	11/09/15 14:46	
Bis(2-chloroethoxy)methane	ND		18)		ug/Kg		11/04/15 07:44	11/09/15 14:46	
Bis(2-chloroethyl)ether	ND		18)	23	ug/Kg	☼	11/04/15 07:44	11/09/15 14:46	
Bis(2-ethylhexyl) phthalate	ND		18)	61	ug/Kg	☼	11/04/15 07:44	11/09/15 14:46	
Butyl benzyl phthalate	ND		18)	29	ug/Kg		11/04/15 07:44	11/09/15 14:46	
Caprolactam	ND		18)	53	ug/Kg	☼	11/04/15 07:44	11/09/15 14:46	
Carbazole	ND		18)	21	ug/Kg	₩	11/04/15 07:44	11/09/15 14:46	
Chrysene	ND		18)	40	ug/Kg		11/04/15 07:44	11/09/15 14:46	
Di-n-butyl phthalate	ND		18)	30	ug/Kg	₩	11/04/15 07:44	11/09/15 14:46	
Di-n-octyl phthalate	ND		18)	21	ug/Kg	₩	11/04/15 07:44	11/09/15 14:46	
Dibenz(a,h)anthracene	ND		18)	31	ug/Kg		11/04/15 07:44	11/09/15 14:46	
Dibenzofuran	ND		18)	21	ug/Kg	₩	11/04/15 07:44	11/09/15 14:46	
Diethyl phthalate	35	JB	18)	23	ug/Kg	₩	11/04/15 07:44	11/09/15 14:46	
Dimethyl phthalate	ND		18)	21	ug/Kg		11/04/15 07:44	11/09/15 14:46	
Fluoranthene	ND		18)	19	ug/Kg	₩	11/04/15 07:44	11/09/15 14:46	
Fluorene	ND		18)	21	ug/Kg	₩	11/04/15 07:44	11/09/15 14:46	
Hexachlorobenzene	ND		18)	24	ug/Kg		11/04/15 07:44	11/09/15 14:46	
Hexachlorobutadiene	ND		18)	26	ug/Kg	₩	11/04/15 07:44	11/09/15 14:46	
Hexachlorocyclopentadiene	ND		18)	24	ug/Kg	₽	11/04/15 07:44	11/09/15 14:46	
Hexachloroethane	ND		18)	23	ug/Kg		11/04/15 07:44	11/09/15 14:46	
Indeno(1,2,3-cd)pyrene	ND		18)	22	ug/Kg	₽	11/04/15 07:44	11/09/15 14:46	
Isophorone	ND		18)	38	ug/Kg	₽	11/04/15 07:44	11/09/15 14:46	
N-Nitrosodi-n-propylamine	ND		18)	30	ug/Kg	\$	11/04/15 07:44	11/09/15 14:46	
N-Nitrosodiphenylamine	ND		18)	140	ug/Kg	☼	11/04/15 07:44	11/09/15 14:46	
Naphthalene	ND		18)	23	ug/Kg	₩	11/04/15 07:44	11/09/15 14:46	
Nitrobenzene	ND		18)	20	ug/Kg	₽	11/04/15 07:44	11/09/15 14:46	
Pentachlorophenol	ND		34)	180	ug/Kg	₽	11/04/15 07:44	11/09/15 14:46	
Phenanthrene	ND		18)	26	ug/Kg	₽	11/04/15 07:44	11/09/15 14:46	
Phenol	ND		18)	27	ug/Kg		11/04/15 07:44	11/09/15 14:46	
Pyrene	ND		18	0	21	ug/Kg	₽	11/04/15 07:44	11/09/15 14:46	
Dimethylformamide	ND		69)	78	ug/Kg	₩	11/04/15 07:44	11/09/15 14:46	
Tentatively Identified Compound	Est. Result	-	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fa
Unknown	2100	TJ	ug/Kg	- -	1.	.87		11/04/15 07:44	11/09/15 14:46	
Unknown	470	ΤJ	ug/Kg	₩	2.	.05		11/04/15 07:44	11/09/15 14:46	
Unknown	1200		ug/Kg	₩	2.	16		11/04/15 07:44	11/09/15 14:46	
Unknown	690	ΤJ	ug/Kg	₩	4.	66		11/04/15 07:44	11/09/15 14:46	
Unknown Benzene Derivative	240	ΤJ	ug/Kg	₩	5.	.15		11/04/15 07:44	11/09/15 14:46	
Ethane, 1,1,2,2-tetrachloro-	180	TJN	ug/Kg	₩	5.	70	79-34-5	11/04/15 07:44	11/09/15 14:46	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	80		39 - 146	_				11/04/15 07:44	11/09/15 14:46	
2-Fluorobiphenyl	80		37 - 120					11/04/15 07:44	11/09/15 14:46	
2-Fluorophenol	67		18 - 120					11/04/15 07:44	11/09/15 14:46	

TestAmerica Buffalo

11/04/15 07:44 11/09/15 14:46 11/04/15 07:44 11/09/15 14:46

11/04/15 07:44 11/09/15 14:46

34 - 132

65 - 153

11 - 120

69

99

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Received: 10/29/15 09:00

TestAmerica Job ID: 480-90114-1

2

Client Sample ID: SMWU26-SS-BLDG23-01 Date Collected: 10/28/15 10:45

Lab Sample ID: 480-90114-9

Matrix: Solid Percent Solids: 93.0

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND	1.1	0.16	mg/Kg	<u> </u>		10/31/15 10:56	1
Isobutyl alcohol	ND	1.1	0.27	mg/Kg	₩		10/31/15 10:56	1
Methanol	ND	1.1	0.31	mg/Kg	☼		10/31/15 10:56	1
n-Butanol	ND	1.1	0.25	mg/Kg	ф.		10/31/15 10:56	1
Propanol	ND	1.1	0.16	mg/Kg	☼		10/31/15 10:56	1
2-Butanol	ND	1.1	0.17	mg/Kg	☼		10/31/15 10:56	1
Isopropyl alcohol	ND	1.1	0.26	mg/Kg	ф.		10/31/15 10:56	1
t-Butyl alcohol	ND	1.1	0.28	mg/Kg	₩		10/31/15 10:56	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Hexanone	97		30 - 137		10/31/15 10:56	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	200	39	ug/Kg	<u> </u>	10/30/15 08:37	10/30/15 17:24	1
PCB-1221	ND	200	39	ug/Kg	☼	10/30/15 08:37	10/30/15 17:24	1
PCB-1232	ND	200	39	ug/Kg	☼	10/30/15 08:37	10/30/15 17:24	1
PCB-1242	ND	200	39	ug/Kg	₽	10/30/15 08:37	10/30/15 17:24	1
PCB-1248	ND	200	39	ug/Kg	☼	10/30/15 08:37	10/30/15 17:24	1
PCB-1254	ND	200	93	ug/Kg	₩	10/30/15 08:37	10/30/15 17:24	1
PCB-1260	ND	200	93	ug/Kg	ф.	10/30/15 08:37	10/30/15 17:24	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Ana	lyzed	Dil Fac
Tetrachloro-m-xylene	89		60 - 154	10/30/15 08:37 10/30/	15 17:24	1
DCB Decachlorobiphenyl	94		65 - 174	10/30/15 08:37 10/30/	15 17:24	1

Method: 6010C - Metals (ICP)									
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.2		2.1	0.43	mg/Kg	₩	10/30/15 11:43	10/31/15 16:33	1
Barium	38.6	F1	0.53	0.12	mg/Kg	₩	10/30/15 11:43	10/31/15 16:33	1
Cadmium	0.075	J	0.21	0.032	mg/Kg	₩	10/30/15 11:43	10/31/15 16:33	1
Chromium	7.0		0.53	0.21	mg/Kg	₽	10/30/15 11:43	10/31/15 16:33	1
Lead	5.8		1.1	0.26	mg/Kg	₩	10/30/15 11:43	10/31/15 16:33	1
Selenium	ND		4.3	0.43	mg/Kg	₩	10/30/15 11:43	10/31/15 16:33	1
Silver	ND		0.64	0.21	mg/Kg	*	10/30/15 11:43	10/31/15 16:33	1

Method: 7471B - Mercury (CVAA)	D 14	O P.C	Б.	MDI	1114	_	D	Amalamad	D" F
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.013	J	0.021	0.0085	mg/Kg	₩	11/02/15 11:10	11/02/15 13:05	1

General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	7.0		0.10	0.10	%			10/29/15 22:21	1
Percent Solids	93		0.10	0.10	%			10/29/15 22:21	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 11:15 Date Received: 10/29/15 09:00

Client Sample ID: SMWU7-SS-BLDG23-20

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-10

-	Matrix: Solid
	Percent Solids: 95.1

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	4.4	0.32	ug/Kg	-	10/30/15 00:15	11/05/15 17:07	
1,1,2,2-Tetrachloroethane	ND	4.4	0.72	ug/Kg	₩	10/30/15 00:15	11/05/15 17:07	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.4	1.0	ug/Kg	₩	10/30/15 00:15	11/05/15 17:07	
1,1,2-Trichloroethane	ND	4.4	0.58	ug/Kg	₩	10/30/15 00:15	11/05/15 17:07	
1,1-Dichloroethane	ND	4.4	0.54	ug/Kg	≎	10/30/15 00:15	11/05/15 17:07	
1,1-Dichloroethene	ND	4.4	0.54	ug/Kg	₽	10/30/15 00:15	11/05/15 17:07	
1,2,3-Trichlorobenzene	ND	4.4	0.47	ug/Kg	≎	10/30/15 00:15	11/05/15 17:07	
1,2,4-Trichlorobenzene	ND	4.4	0.27	ug/Kg	₩	10/30/15 00:15	11/05/15 17:07	
1,2-Dibromo-3-Chloropropane	ND	4.4	2.2	ug/Kg	₽	10/30/15 00:15	11/05/15 17:07	
1,2-Dichlorobenzene	ND	4.4	0.35	ug/Kg		10/30/15 00:15	11/05/15 17:07	
1,2-Dichloroethane	ND	4.4	0.22	ug/Kg	₩	10/30/15 00:15	11/05/15 17:07	
1,2-Dichloropropane	ND	4.4	2.2	ug/Kg	₩	10/30/15 00:15	11/05/15 17:07	
1,3-Dichlorobenzene	ND	4.4	0.23	ug/Kg		10/30/15 00:15	11/05/15 17:07	
1,4-Dichlorobenzene	ND	4.4	0.62	ug/Kg	☼	10/30/15 00:15	11/05/15 17:07	
1,4-Dioxane	ND	89	19	ug/Kg	☼	10/30/15 00:15	11/05/15 17:07	
2-Hexanone	ND	22	2.2	ug/Kg		10/30/15 00:15	11/05/15 17:07	
Acetone	ND	22	3.7	ug/Kg	≎	10/30/15 00:15	11/05/15 17:07	
Benzene	ND	4.4	0.22	ug/Kg	₽	10/30/15 00:15	11/05/15 17:07	
Bromoform	ND	4.4		ug/Kg		10/30/15 00:15	11/05/15 17:07	
Bromomethane	ND	4.4		ug/Kg	₩	10/30/15 00:15	11/05/15 17:07	
Carbon disulfide	ND	4.4		ug/Kg	₩	10/30/15 00:15	11/05/15 17:07	
Carbon tetrachloride	ND	4.4	0.43	ug/Kg		10/30/15 00:15	11/05/15 17:07	
Chlorobenzene	ND	4.4		ug/Kg	≎	10/30/15 00:15	11/05/15 17:07	
Bromochloromethane	ND	4.4		ug/Kg	≎		11/05/15 17:07	
Dibromochloromethane	ND	4.4		ug/Kg		10/30/15 00:15	11/05/15 17:07	
Chloroethane	ND	4.4		ug/Kg	≎	10/30/15 00:15	11/05/15 17:07	
Chloroform	ND	4.4		ug/Kg	≎		11/05/15 17:07	
Chloromethane	ND	4.4		ug/Kg	 \$		11/05/15 17:07	
cis-1,2-Dichloroethene	ND	4.4		ug/Kg	≎		11/05/15 17:07	
cis-1,3-Dichloropropene	ND	4.4		ug/Kg	₽		11/05/15 17:07	
Cyclohexane	ND	4.4		ug/Kg	 \$		11/05/15 17:07	
Bromodichloromethane	ND	4.4		ug/Kg	₽		11/05/15 17:07	
Dichlorodifluoromethane	ND	4.4		ug/Kg	₩		11/05/15 17:07	
Ethylbenzene	ND	4.4		ug/Kg	 \$		11/05/15 17:07	
1,2-Dibromoethane (EDB)	ND	4.4		ug/Kg	₩		11/05/15 17:07	
Isopropylbenzene	ND	4.4		ug/Kg	₩		11/05/15 17:07	
Methyl acetate	ND	4.4		ug/Kg			11/05/15 17:07	
2-Butanone (MEK)	ND	22		ug/Kg	☼		11/05/15 17:07	
4-Methyl-2-pentanone (MIBK)	ND	22		ug/Kg	☼		11/05/15 17:07	
Methyl tert-butyl ether	ND	4.4		ug/Kg			11/05/15 17:07	
Methylcyclohexane	ND	4.4		ug/Kg	☼		11/05/15 17:07	
Methylene Chloride	ND	4.4		ug/Kg	☼		11/05/15 17:07	
Styrene	ND	4.4		ug/Kg			11/05/15 17:07	
Tetrachloroethene	ND	4.4		ug/Kg	₽		11/05/15 17:07	
Toluene	ND	4.4		ug/Kg	₽		11/05/15 17:07	
trans-1,2-Dichloroethene	ND	4.4		ug/Kg ug/Kg			11/05/15 17:07	
trans-1,3-Dichloropropene	ND ND	4.4		ug/Kg ug/Kg	₽		11/05/15 17:07	
Trichloroethene	ND ND			ug/Kg ug/Kg	₽		11/05/15 17:07	
Trichlorofluoromethane	0.84 J	4.4		ug/Kg ug/Kg			11/05/15 17:07	

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 11:15

Date Received: 10/29/15 09:00

Percent Solids

Client Sample ID: SMWU7-SS-BLDG23-20

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-10

Percent Solids: 95.1

10/29/15 22:21

Matrix: Solid

Method: 8260C - Volatile Org	anic Compo	unas by (3C/NIS (CO	ntint	ied)					
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.4		0.54	ug/Kg	\	10/30/15 00:15	11/05/15 17:07	1
Xylenes, Total	ND		8.9		0.74	ug/Kg	₩	10/30/15 00:15	11/05/15 17:07	1
Tetrahydrofuran	ND		8.9		2.6	ug/Kg	\$	10/30/15 00:15	11/05/15 17:07	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	6.4	TJ	ug/Kg	₩ -	4.	.01		10/30/15 00:15	11/05/15 17:07	1
Unknown	9.6	TJ	ug/Kg	☼	4.	48		10/30/15 00:15	11/05/15 17:07	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	103		60 - 140					10/30/15 00:15	11/05/15 17:07	1
1,2-Dichloroethane-d4 (Surr)	100		64 - 126					10/30/15 00:15	11/05/15 17:07	1
Toluene-d8 (Surr)	103		71 - 125					10/30/15 00:15	11/05/15 17:07	1
4-Bromofluorobenzene (Surr)	96		72 - 126					10/30/15 00:15	11/05/15 17:07	1
	96		72 - 126					10/30/15 00:15	11/05/15 17:07	1
4-Bromofluorobenzene (Surr) General Chemistry Analyte		Qualifier	72 - 126 R L		RL	Unit	D	10/30/15 00:15 Prepared	11/05/15 17:07 Analyzed	1 Dil Fac

0.10

95

0.10 %

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 11:25

Date Received: 10/29/15 09:00

Tetrachloroethene

Trichloroethene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Toluene

Client Sample ID: SMWU26-SS-BLDG23-02

Method: 8260C - Volatile Organic Compounds by GC/MS

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-11

Matrix: Solid
Percent Solids: 94.1

Analyte I	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		4.9	0.35	ug/Kg	<u> </u>	10/30/15 00:15	11/05/15 17:33	1
1,1,2,2-Tetrachloroethane	ND		4.9	0.79	ug/Kg	≎	10/30/15 00:15	11/05/15 17:33	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.9	1.1	ug/Kg	₩	10/30/15 00:15	11/05/15 17:33	1
1,1,2-Trichloroethane	ND		4.9	0.63	ug/Kg	☆	10/30/15 00:15	11/05/15 17:33	1
1,1-Dichloroethane	ND		4.9	0.59	ug/Kg	₩	10/30/15 00:15	11/05/15 17:33	1
1,1-Dichloroethene	ND		4.9	0.60	ug/Kg	₩	10/30/15 00:15	11/05/15 17:33	1
1,2,3-Trichlorobenzene	ND		4.9	0.52	ug/Kg	.	10/30/15 00:15	11/05/15 17:33	1
1,2,4-Trichlorobenzene	ND		4.9	0.30	ug/Kg	☼	10/30/15 00:15	11/05/15 17:33	1
1,2-Dibromo-3-Chloropropane	ND		4.9	2.4	ug/Kg	≎	10/30/15 00:15	11/05/15 17:33	1
1,2-Dichlorobenzene	ND		4.9	0.38	ug/Kg	₽	10/30/15 00:15	11/05/15 17:33	1
1,2-Dichloroethane	ND		4.9	0.24	ug/Kg	≎	10/30/15 00:15	11/05/15 17:33	1
1,2-Dichloropropane	ND		4.9	2.4	ug/Kg	≎	10/30/15 00:15	11/05/15 17:33	1
1,3-Dichlorobenzene	ND		4.9	0.25	ug/Kg	₽	10/30/15 00:15	11/05/15 17:33	1
1,4-Dichlorobenzene	ND		4.9	0.68	ug/Kg	☼	10/30/15 00:15	11/05/15 17:33	1
1,4-Dioxane	ND		97	21	ug/Kg	₩	10/30/15 00:15	11/05/15 17:33	1
2-Hexanone	ND		24	2.4	ug/Kg		10/30/15 00:15	11/05/15 17:33	1
Acetone	ND		24	4.1	ug/Kg	₩	10/30/15 00:15	11/05/15 17:33	1
Benzene	ND		4.9	0.24	ug/Kg	₩	10/30/15 00:15	11/05/15 17:33	1
Bromoform	ND		4.9	2.4	ug/Kg		10/30/15 00:15	11/05/15 17:33	1
Bromomethane	ND		4.9	0.44	ug/Kg	₩	10/30/15 00:15	11/05/15 17:33	1
Carbon disulfide	ND		4.9	2.4	ug/Kg	₩	10/30/15 00:15	11/05/15 17:33	1
Carbon tetrachloride	ND		4.9	0.47	ug/Kg		10/30/15 00:15	11/05/15 17:33	1
Chlorobenzene	ND		4.9	0.64	ug/Kg	₩	10/30/15 00:15	11/05/15 17:33	1
Bromochloromethane	ND		4.9	0.35	ug/Kg	₩	10/30/15 00:15	11/05/15 17:33	1
Dibromochloromethane	ND		4.9	0.62	ug/Kg		10/30/15 00:15	11/05/15 17:33	1
Chloroethane	ND		4.9	1.1	ug/Kg	☼	10/30/15 00:15	11/05/15 17:33	1
Chloroform	ND		4.9	0.30	ug/Kg	₩	10/30/15 00:15	11/05/15 17:33	1
Chloromethane	ND		4.9	0.29	ug/Kg		10/30/15 00:15	11/05/15 17:33	1
cis-1,2-Dichloroethene	ND		4.9	0.62	ug/Kg	₩	10/30/15 00:15	11/05/15 17:33	1
cis-1,3-Dichloropropene	ND		4.9	0.70	ug/Kg	₩	10/30/15 00:15	11/05/15 17:33	1
Cyclohexane	ND		4.9	0.68	ug/Kg	₩.	10/30/15 00:15	11/05/15 17:33	1
Bromodichloromethane	ND		4.9	0.65	ug/Kg	₩	10/30/15 00:15	11/05/15 17:33	1
Dichlorodifluoromethane	ND		4.9	0.40	ug/Kg	₩	10/30/15 00:15	11/05/15 17:33	1
Ethylbenzene	ND		4.9		ug/Kg		10/30/15 00:15	11/05/15 17:33	1
1,2-Dibromoethane (EDB)	ND		4.9	0.63	ug/Kg	₩	10/30/15 00:15	11/05/15 17:33	1
Isopropylbenzene	ND		4.9	0.73	ug/Kg	₩	10/30/15 00:15	11/05/15 17:33	1
Methyl acetate	ND		4.9		ug/Kg		10/30/15 00:15	11/05/15 17:33	1
2-Butanone (MEK)	ND		24	1.8	ug/Kg	≎	10/30/15 00:15	11/05/15 17:33	1
4-Methyl-2-pentanone (MIBK)	ND		24		ug/Kg	≎		11/05/15 17:33	1
Methyl tert-butyl ether	ND		4.9		ug/Kg	₩	10/30/15 00:15	11/05/15 17:33	1
Methylcyclohexane	ND		4.9		ug/Kg	₩	10/30/15 00:15	11/05/15 17:33	1
Methylene Chloride	ND		4.9		ug/Kg	≎		11/05/15 17:33	1
Styrene	ND		4.9		ug/Kg		10/30/15 00:15	11/05/15 17:33	1

TestAmerica Buffalo

11/16/2015

10/30/15 00:15 11/05/15 17:33

☼ 10/30/15 00:15 11/05/15 17:33☼ 10/30/15 00:15 11/05/15 17:33

☼ 10/30/15 00:15 11/05/15 17:33

□ 10/30/15 00:15 11/05/15 17:33□ 10/30/15 00:15 11/05/15 17:33

4.9

4.9

4.9

4.9

4.9

4.9

0.65 ug/Kg0.37 ug/Kg

0.50 ug/Kg

2.1 ug/Kg

1.1 ug/Kg

0.46 ug/Kg

ND

ND

ND

ND

ND

7.7

2

3

5

7

9

11

1 *1*

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 11:25

Client Sample ID: SMWU26-SS-BLDG23-02

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-11

Matrix: Solid Percent Solids: 94.1

Date Received: 10/29/15 09:00
Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.9	0.59	ug/Kg	\	10/30/15 00:15	11/05/15 17:33	1
Xylenes, Total	ND		9.7	0.82	ug/Kg	₩	10/30/15 00:15	11/05/15 17:33	1
Tetrahydrofuran	ND		9.7	2.8	ug/Kg	₽	10/30/15 00:15	11/05/15 17:33	1

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	8.1	TJ	ug/Kg		4.01		10/30/15 00:15	11/05/15 17:33	1
Unknown	5.6	TJ	ug/Kg	☼	4.34		10/30/15 00:15	11/05/15 17:33	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	102		60 - 140	10/30/15 00:15	11/05/15 17:33	1
1,2-Dichloroethane-d4 (Surr)	98		64 - 126	10/30/15 00:15	11/05/15 17:33	1
Toluene-d8 (Surr)	103		71 - 125	10/30/15 00:15	11/05/15 17:33	1
4-Bromofluorobenzene (Surr)	95		72 - 126	10/30/15 00:15	11/05/15 17:33	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND	180	26	ug/Kg	₩	11/04/15 07:44	11/09/15 15:39	1
bis (2-chloroisopropyl) ether	ND	180	36	ug/Kg	☼	11/04/15 07:44	11/09/15 15:39	1
2,4,5-Trichlorophenol	ND	180	48	ug/Kg	☼	11/04/15 07:44	11/09/15 15:39	1
2,4,6-Trichlorophenol	ND	180	36	ug/Kg	₽	11/04/15 07:44	11/09/15 15:39	1
2,4-Dichlorophenol	ND	180	19	ug/Kg	☼	11/04/15 07:44	11/09/15 15:39	1
2,4-Dimethylphenol	ND	180	43	ug/Kg	☼	11/04/15 07:44	11/09/15 15:39	1
2,4-Dinitrophenol	ND	1700	820	ug/Kg	₽	11/04/15 07:44	11/09/15 15:39	1
2,4-Dinitrotoluene	ND	180	37	ug/Kg	≎	11/04/15 07:44	11/09/15 15:39	1
2,6-Dinitrotoluene	ND	180	21	ug/Kg	☼	11/04/15 07:44	11/09/15 15:39	1
2-Chloronaphthalene	ND	180	29	ug/Kg	₽	11/04/15 07:44	11/09/15 15:39	1
2-Chlorophenol	ND	180	32	ug/Kg	≎	11/04/15 07:44	11/09/15 15:39	1
2-Methylnaphthalene	ND	180	36	ug/Kg	☼	11/04/15 07:44	11/09/15 15:39	1
2-Methylphenol	ND	180	21	ug/Kg	₽	11/04/15 07:44	11/09/15 15:39	1
2-Nitroaniline	ND	350	26	ug/Kg	☼	11/04/15 07:44	11/09/15 15:39	1
2-Nitrophenol	ND	180	50	ug/Kg	☼	11/04/15 07:44	11/09/15 15:39	1
3,3'-Dichlorobenzidine	ND	350	210	ug/Kg	\$	11/04/15 07:44	11/09/15 15:39	1
3-Nitroaniline	ND	350	49	ug/Kg	☼	11/04/15 07:44	11/09/15 15:39	1
4,6-Dinitro-2-methylphenol	ND	350	180	ug/Kg	≎	11/04/15 07:44	11/09/15 15:39	1
4-Bromophenyl phenyl ether	ND	180	25	ug/Kg	₽	11/04/15 07:44	11/09/15 15:39	1
4-Chloro-3-methylphenol	ND	180	44	ug/Kg	☼	11/04/15 07:44	11/09/15 15:39	1
4-Chloroaniline	ND	180	44	ug/Kg	≎	11/04/15 07:44	11/09/15 15:39	1
4-Chlorophenyl phenyl ether	ND	180	22	ug/Kg	₽	11/04/15 07:44	11/09/15 15:39	1
4-Methylphenol	ND	350	21	ug/Kg	≎	11/04/15 07:44	11/09/15 15:39	1
4-Nitroaniline	ND	350	93	ug/Kg	☼	11/04/15 07:44	11/09/15 15:39	1
4-Nitrophenol	ND	350	120	ug/Kg	₽	11/04/15 07:44	11/09/15 15:39	1
Acenaphthene	ND	180	26	ug/Kg	☼	11/04/15 07:44	11/09/15 15:39	1
Acenaphthylene	ND	180	23	ug/Kg	☼	11/04/15 07:44	11/09/15 15:39	1
Acetophenone	ND	180	24	ug/Kg	₽	11/04/15 07:44	11/09/15 15:39	1
Anthracene	ND	180	44	ug/Kg	₽	11/04/15 07:44	11/09/15 15:39	1
Atrazine	ND	180	62	ug/Kg	₽	11/04/15 07:44	11/09/15 15:39	1
Benzaldehyde	ND	180	140	ug/Kg	₽	11/04/15 07:44	11/09/15 15:39	1
Benzo(a)anthracene	ND	180	18	ug/Kg	☼	11/04/15 07:44	11/09/15 15:39	1
Benzo(a)pyrene	ND	180	26	ug/Kg	☼	11/04/15 07:44	11/09/15 15:39	1
Benzo(b)fluoranthene	ND	180	28	ug/Kg		11/04/15 07:44	11/09/15 15:39	1

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 11:25

Date Received: 10/29/15 09:00

N-Nitrosodi-n-propylamine

N-Nitrosodiphenylamine

Naphthalene

Nitrobenzene

Phenanthrene

Phenol

Pyrene

Pentachlorophenol

Dimethylformamide

Client Sample ID: SMWU26-SS-BLDG23-02

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-11

Matrix: Solid
Percent Solids: 94.1

11/04/15 07:44 11/09/15 15:39

☼ 11/04/15 07:44 11/09/15 15:39☼ 11/04/15 07:44 11/09/15 15:39

11/04/15 07:44 11/09/15 15:39

☆ 11/04/15 07:44 11/09/15 15:39☆ 11/04/15 07:44 11/09/15 15:39

11/04/15 07:44 11/09/15 15:39

11/04/15 07:44 11/09/15 15:39

11/04/15 07:44 11/09/15 15:39

3

5

10

12

14

Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo(g,h,i)perylene	ND ND	180	19	ug/Kg	<u></u>	11/04/15 07:44	11/09/15 15:39	1
Benzo(k)fluoranthene	ND	180	23	ug/Kg	₩	11/04/15 07:44	11/09/15 15:39	1
Bis(2-chloroethoxy)methane	ND	180	38	ug/Kg	₽	11/04/15 07:44	11/09/15 15:39	1
Bis(2-chloroethyl)ether	ND	180	23	ug/Kg	₩	11/04/15 07:44	11/09/15 15:39	1
Bis(2-ethylhexyl) phthalate	ND	180	61	ug/Kg	₩	11/04/15 07:44	11/09/15 15:39	1
Butyl benzyl phthalate	ND	180	29	ug/Kg	☆	11/04/15 07:44	11/09/15 15:39	1
Caprolactam	ND	180	53	ug/Kg	₩	11/04/15 07:44	11/09/15 15:39	1
Carbazole	ND	180	21	ug/Kg	☆	11/04/15 07:44	11/09/15 15:39	1
Chrysene	ND	180	40	ug/Kg	₩	11/04/15 07:44	11/09/15 15:39	1
Di-n-butyl phthalate	ND	180	30	ug/Kg	☆	11/04/15 07:44	11/09/15 15:39	1
Di-n-octyl phthalate	ND	180	21	ug/Kg	₩	11/04/15 07:44	11/09/15 15:39	1
Dibenz(a,h)anthracene	ND	180	31	ug/Kg	₩	11/04/15 07:44	11/09/15 15:39	1
Dibenzofuran	ND	180	21	ug/Kg	₩	11/04/15 07:44	11/09/15 15:39	1
Diethyl phthalate	ND	180	23	ug/Kg	₩	11/04/15 07:44	11/09/15 15:39	1
Dimethyl phthalate	ND	180	21	ug/Kg	☆	11/04/15 07:44	11/09/15 15:39	1
Fluoranthene	ND	180	19	ug/Kg	₩	11/04/15 07:44	11/09/15 15:39	1
Fluorene	ND	180	21	ug/Kg	₩	11/04/15 07:44	11/09/15 15:39	1
Hexachlorobenzene	ND	180	24	ug/Kg	₩	11/04/15 07:44	11/09/15 15:39	1
Hexachlorobutadiene	ND	180	26	ug/Kg	₩	11/04/15 07:44	11/09/15 15:39	1
Hexachlorocyclopentadiene	ND	180	24	ug/Kg	☆	11/04/15 07:44	11/09/15 15:39	1
Hexachloroethane	ND	180	23	ug/Kg	₩	11/04/15 07:44	11/09/15 15:39	1
Indeno(1,2,3-cd)pyrene	ND	180	22	ug/Kg	₩	11/04/15 07:44	11/09/15 15:39	1
Isophorone	ND	180	38	ug/Kg	₩	11/04/15 07:44	11/09/15 15:39	1

ND

ND

ND

ND

ND

ND

ND

ND

ND

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Oxirane, trimethyl-	150	TJN	ug/Kg	₩	1.63	5076-19-7	11/04/15 07:44	11/09/15 15:39	1
Unknown	3200	TJ	ug/Kg	₩	1.89		11/04/15 07:44	11/09/15 15:39	1
Unknown	370	ΤJ	ug/Kg	₽	2.05		11/04/15 07:44	11/09/15 15:39	1
Unknown	1400	ΤJ	ug/Kg	₩	2.19		11/04/15 07:44	11/09/15 15:39	1
Ethane, 1,1,2-trichloro-	280	TJN	ug/Kg	₽	3.78	79-00-5	11/04/15 07:44	11/09/15 15:39	1
Unknown	670	ΤJ	ug/Kg	₽	4.68		11/04/15 07:44	11/09/15 15:39	1
Unknown Benzene Derivative	180	TJ	ug/Kg	₩	5.15		11/04/15 07:44	11/09/15 15:39	1
Ethane, 1,1,2,2-tetrachloro-	580	TJN	ug/Kg	₽	5.70	79-34-5	11/04/15 07:44	11/09/15 15:39	1
Cycloeicosane	280	TJN	ug/Kg	₩	14.63	296-56-0	11/04/15 07:44	11/09/15 15:39	1

180

180

180

180

350

180

180

180

690

30 ug/Kg

140 ug/Kg

23 ug/Kg

180 ug/Kg

26 ug/Kg

27 ug/Kg

21 ug/Kg

78 ug/Kg

ug/Kg

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	88	39 - 146	11/04/15 07:44	11/09/15 15:39	1
2-Fluorobiphenyl	85	37 - 120	11/04/15 07:44	11/09/15 15:39	1
2-Fluorophenol	74	18 - 120	11/04/15 07:44	11/09/15 15:39	1
Nitrobenzene-d5	78	34 - 132	11/04/15 07:44	11/09/15 15:39	1
p-Terphenyl-d14	103	65 - 153	11/04/15 07:44	11/09/15 15:39	1

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 11:25

Date Received: 10/29/15 09:00

Client Sample ID: SMWU26-SS-BLDG23-02

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-11

Matrix: Solid Percent Solids: 94.1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Phenol-d5	74	11 - 120	11/04/15 07:44	11/09/15 15:39	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		1.0	0.15	mg/Kg	₩.		10/31/15 11:04	1
Isobutyl alcohol	ND		1.0	0.25	mg/Kg	₩		10/31/15 11:04	1
Methanol	ND		1.0	0.30	mg/Kg	₩		10/31/15 11:04	1
n-Butanol	ND		1.0	0.23	mg/Kg	₽		10/31/15 11:04	1
Propanol	ND		1.0	0.15	mg/Kg	₩		10/31/15 11:04	1
2-Butanol	ND		1.0	0.16	mg/Kg	₩		10/31/15 11:04	1
Isopropyl alcohol	ND		1.0	0.24	mg/Kg	\$		10/31/15 11:04	1
t-Butyl alcohol	ND		1.0	0.26	mg/Kg	☼		10/31/15 11:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	99		30 - 137					10/31/15 11:04	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	230	44	ug/Kg	<u> </u>	10/30/15 08:37	10/30/15 21:02	1
PCB-1221	ND	230	44	ug/Kg	☼	10/30/15 08:37	10/30/15 21:02	1
PCB-1232	ND	230	44	ug/Kg	₩	10/30/15 08:37	10/30/15 21:02	1
PCB-1242	ND	230	44	ug/Kg	φ.	10/30/15 08:37	10/30/15 21:02	1
PCB-1248	ND	230	44	ug/Kg	☼	10/30/15 08:37	10/30/15 21:02	1
PCB-1254	ND	230	110	ug/Kg	☼	10/30/15 08:37	10/30/15 21:02	1
PCB-1260	ND	230	110	ug/Kg		10/30/15 08:37	10/30/15 21:02	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	93	60 - 154	10/30/15 08:37	10/30/15 21:02	1
DCB Decachlorobiphenyl	98	65 - 174	10/30/15 08:37	10/30/15 21:02	1

Method: 6010C - Metals Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.8	J	2.1	0.42	mg/Kg	<u></u>	10/30/15 11:43	10/31/15 16:59	1
Barium	21.1		0.52	0.11	mg/Kg	₩	10/30/15 11:43	10/31/15 16:59	1
Cadmium	0.052	J	0.21	0.031	mg/Kg	₩	10/30/15 11:43	10/31/15 16:59	1
Chromium	4.5		0.52	0.21	mg/Kg	₩.	10/30/15 11:43	10/31/15 16:59	1
Lead	3.8		1.0	0.25	mg/Kg	₩	10/30/15 11:43	10/31/15 16:59	1
Selenium	ND		4.2	0.42	mg/Kg	₩	10/30/15 11:43	10/31/15 16:59	1
Silver	ND		0.62	0.21	ma/Ka	 ☆	10/30/15 11:43	10/31/15 16:59	1

Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.021	0.0087	mg/Kg		11/02/15 11:10	11/02/15 13:11	1
General Chemistry									

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	5.9		0.10	0.10	%			10/29/15 22:21	1
Percent Solids	94		0.10	0.10	%			10/29/15 22:21	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-12

Client Sample ID: SMWU26-SS-BLDG23-03

 Date Collected: 10/28/15 11:45
 Matrix: Solid

 Date Received: 10/29/15 09:00
 Percent Solids: 93.3

Method: 8260C - Volatile Organ					_			
Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
,1,1-Trichloroethane	ND	4.6		ug/Kg	₩	10/30/15 00:15		•
1,1,2,2-Tetrachloroethane	ND	4.6		ug/Kg	*		11/05/15 17:59	•
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.6	1.1	ug/Kg			11/05/15 17:59	
I,1,2-Trichloroethane	ND	4.6		ug/Kg	*	10/30/15 00:15	11/05/15 17:59	•
1,1-Dichloroethane	ND	4.6		ug/Kg	₩	10/30/15 00:15	11/05/15 17:59	
1,1-Dichloroethene	ND	4.6		ug/Kg			11/05/15 17:59	
1,2,3-Trichlorobenzene	ND	4.6		ug/Kg	₩		11/05/15 17:59	
1,2,4-Trichlorobenzene	ND	4.6	0.28	ug/Kg	₩	10/30/15 00:15	11/05/15 17:59	
1,2-Dibromo-3-Chloropropane	ND	4.6		ug/Kg	₩	10/30/15 00:15	11/05/15 17:59	
1,2-Dichlorobenzene	ND	4.6	0.36	ug/Kg	₽	10/30/15 00:15	11/05/15 17:59	
1,2-Dichloroethane	ND	4.6	0.23	ug/Kg	₩	10/30/15 00:15	11/05/15 17:59	•
1,2-Dichloropropane	ND	4.6	2.3	ug/Kg	₩	10/30/15 00:15	11/05/15 17:59	
1,3-Dichlorobenzene	ND	4.6	0.24	ug/Kg	₽	10/30/15 00:15	11/05/15 17:59	•
1,4-Dichlorobenzene	ND	4.6	0.65	ug/Kg	₩	10/30/15 00:15	11/05/15 17:59	
1,4-Dioxane	ND	93	20	ug/Kg	☼	10/30/15 00:15	11/05/15 17:59	
2-Hexanone	ND	23	2.3	ug/Kg	₽	10/30/15 00:15	11/05/15 17:59	
Acetone	ND	23	3.9	ug/Kg	₩	10/30/15 00:15	11/05/15 17:59	
Benzene	ND	4.6	0.23	ug/Kg	₩	10/30/15 00:15	11/05/15 17:59	
Bromoform	ND	4.6	2.3	ug/Kg	₽	10/30/15 00:15	11/05/15 17:59	
Bromomethane	ND	4.6	0.42	ug/Kg	₩	10/30/15 00:15	11/05/15 17:59	
Carbon disulfide	ND	4.6	2.3	ug/Kg	₩	10/30/15 00:15	11/05/15 17:59	
Carbon tetrachloride	ND	4.6	0.45	ug/Kg		10/30/15 00:15	11/05/15 17:59	
Chlorobenzene	ND	4.6		ug/Kg	₩	10/30/15 00:15	11/05/15 17:59	
Bromochloromethane	ND	4.6		ug/Kg	₩	10/30/15 00:15	11/05/15 17:59	
Dibromochloromethane	ND	4.6		ug/Kg	ф.	10/30/15 00:15	11/05/15 17:59	· · · · · · .
Chloroethane	ND	4.6		ug/Kg	₩	10/30/15 00:15	11/05/15 17:59	
Chloroform	ND	4.6	0.29	ug/Kg	₩		11/05/15 17:59	
Chloromethane	ND	4.6		ug/Kg			11/05/15 17:59	· · · · · · .
cis-1,2-Dichloroethene	ND	4.6		ug/Kg	₽		11/05/15 17:59	
cis-1,3-Dichloropropene	ND	4.6		ug/Kg	₽	10/30/15 00:15		
Cyclohexane	ND	4.6		ug/Kg	 ф		11/05/15 17:59	
Bromodichloromethane	ND	4.6		ug/Kg	₩		11/05/15 17:59	
Dichlorodifluoromethane	ND	4.6		ug/Kg	₩		11/05/15 17:59	
Ethylbenzene	ND	4.6		ug/Kg	· · · · · · · · · · · · · · · · · · ·	10/30/15 00:15		
1,2-Dibromoethane (EDB)	ND	4.6		ug/Kg	₩		11/05/15 17:59	
sopropylbenzene	ND	4.6		ug/Kg		10/30/15 00:15		
Methyl acetate	ND	4.6		ug/Kg ug/Kg	· · · · · · · · · · · · · · · · · · ·	10/30/15 00:15		
2-Butanone (MEK)	ND	23			т Ф	10/30/15 00:15		
,				ug/Kg	≎			
I-Methyl-2-pentanone (MIBK)	ND ND	23		ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/05/15 17:59	
Methyl tert-butyl ether	ND	4.6		ug/Kg		10/30/15 00:15		
Methylcyclohexane	ND	4.6		ug/Kg	Ţ.	10/30/15 00:15		
Methylene Chloride	ND	4.6	2.1	ug/Kg	% .		11/05/15 17:59	
Styrene	ND ND	4.6		ug/Kg	Ď n		11/05/15 17:59	
Tetrachloroethene	ND	4.6		ug/Kg	φ.		11/05/15 17:59	
Foluene	ND	4.6		ug/Kg			11/05/15 17:59	
rans-1,2-Dichloroethene	ND	4.6		ug/Kg	ψ.		11/05/15 17:59	
trans-1,3-Dichloropropene	ND	4.6		ug/Kg	*		11/05/15 17:59	•
Trichloroethene	ND	4.6	1.0	ug/Kg	₩	10/30/15 00:15	11/05/15 17:59	•

TestAmerica Buffalo

<u>:</u>

6

9

11

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 11:45

Date Received: 10/29/15 09:00

Client Sample ID: SMWU26-SS-BLDG23-03

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-12

Matrix: Solid

Percent Solids: 93.3

Method: 8260C - Volatile Org Analyte	•	unds by (Qualifier	GC/MS (Cor RL		ed) MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.6		0.57	ug/Kg	<u> </u>	10/30/15 00:15	11/05/15 17:59	1
Xylenes, Total	ND		9.3		0.78	ug/Kg	₩	10/30/15 00:15	11/05/15 17:59	1
Tetrahydrofuran	ND		9.3		2.7	ug/Kg	\$	10/30/15 00:15	11/05/15 17:59	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	16	TJ	ug/Kg	₩ -	4.	34		10/30/15 00:15	11/05/15 17:59	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	103		60 - 140					10/30/15 00:15	11/05/15 17:59	1
1,2-Dichloroethane-d4 (Surr)	103		64 - 126					10/30/15 00:15	11/05/15 17:59	1
Toluene-d8 (Surr)	102		71 - 125					10/30/15 00:15	11/05/15 17:59	1
4-Bromofluorobenzene (Surr)	97		72 - 126					10/30/15 00:15	11/05/15 17:59	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		900	130	ug/Kg	<u> </u>	11/04/15 07:44	11/09/15 16:05	5
bis (2-chloroisopropyl) ether	ND		900	180	ug/Kg	₩	11/04/15 07:44	11/09/15 16:05	5
2,4,5-Trichlorophenol	ND		900	240	ug/Kg	≎	11/04/15 07:44	11/09/15 16:05	5
2,4,6-Trichlorophenol	ND		900	180	ug/Kg	₽	11/04/15 07:44	11/09/15 16:05	5
2,4-Dichlorophenol	ND		900	95	ug/Kg	≎	11/04/15 07:44	11/09/15 16:05	5
2,4-Dimethylphenol	ND		900	220	ug/Kg	≎	11/04/15 07:44	11/09/15 16:05	5
2,4-Dinitrophenol	ND		8800	4100	ug/Kg	≎	11/04/15 07:44	11/09/15 16:05	5
2,4-Dinitrotoluene	ND		900	190	ug/Kg	₽	11/04/15 07:44	11/09/15 16:05	5
2,6-Dinitrotoluene	ND		900	110	ug/Kg	₽	11/04/15 07:44	11/09/15 16:05	5
2-Chloronaphthalene	ND		900	150	ug/Kg	₽	11/04/15 07:44	11/09/15 16:05	5
2-Chlorophenol	ND		900	160	ug/Kg	₽	11/04/15 07:44	11/09/15 16:05	5
2-Methylnaphthalene	ND		900	180	ug/Kg	₽	11/04/15 07:44	11/09/15 16:05	5
2-Methylphenol	ND		900	110	ug/Kg		11/04/15 07:44	11/09/15 16:05	5
2-Nitroaniline	ND		1700	130	ug/Kg	₽	11/04/15 07:44	11/09/15 16:05	5
2-Nitrophenol	ND		900	250	ug/Kg	₩	11/04/15 07:44	11/09/15 16:05	5
3,3'-Dichlorobenzidine	ND		1700	1100	ug/Kg	₽	11/04/15 07:44	11/09/15 16:05	5
3-Nitroaniline	ND		1700	250	ug/Kg	₽	11/04/15 07:44	11/09/15 16:05	5
4,6-Dinitro-2-methylphenol	ND		1700	900	ug/Kg	₩	11/04/15 07:44	11/09/15 16:05	5
4-Bromophenyl phenyl ether	ND		900	130	ug/Kg		11/04/15 07:44	11/09/15 16:05	5
4-Chloro-3-methylphenol	ND		900	220	ug/Kg	₩	11/04/15 07:44	11/09/15 16:05	5
4-Chloroaniline	ND		900	220	ug/Kg	₩	11/04/15 07:44	11/09/15 16:05	5
4-Chlorophenyl phenyl ether	ND		900	110	ug/Kg		11/04/15 07:44	11/09/15 16:05	5
4-Methylphenol	ND		1700	110	ug/Kg	☼	11/04/15 07:44	11/09/15 16:05	5
4-Nitroaniline	ND		1700	470	ug/Kg	₩	11/04/15 07:44	11/09/15 16:05	5
4-Nitrophenol	ND		1700	630	ug/Kg		11/04/15 07:44	11/09/15 16:05	5
Acenaphthene	ND		900	130	ug/Kg	₩	11/04/15 07:44	11/09/15 16:05	5
Acenaphthylene	ND		900	120	ug/Kg	☼	11/04/15 07:44	11/09/15 16:05	5
Acetophenone	ND		900	120	ug/Kg		11/04/15 07:44	11/09/15 16:05	5
Anthracene	ND		900	220	ug/Kg	₩	11/04/15 07:44	11/09/15 16:05	5
Atrazine	ND		900	310	ug/Kg	☼	11/04/15 07:44	11/09/15 16:05	5
Benzaldehyde	ND		900	710	ug/Kg		11/04/15 07:44	11/09/15 16:05	5
Benzo(a)anthracene	ND		900	90	ug/Kg	₽	11/04/15 07:44	11/09/15 16:05	5
Benzo(a)pyrene	ND		900	130	ug/Kg	☼	11/04/15 07:44	11/09/15 16:05	5
Benzo(b)fluoranthene	ND		900	140	ug/Kg		11/04/15 07:44	11/09/15 16:05	5
Benzo(g,h,i)perylene	ND		900	95	ug/Kg	₩	11/04/15 07:44	11/09/15 16:05	5

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 11:45

Date Received: 10/29/15 09:00

Analyte

Ethanol

Methanol

Isobutyl alcohol

Client Sample ID: SMWU26-SS-BLDG23-03

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-12

Matrix: Solid

Percent Solids: 93.3

Method: 8270D - Semivolatile Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo(k)fluoranthene	ND		900		120	ug/Kg	₩	11/04/15 07:44	11/09/15 16:05	
Bis(2-chloroethoxy)methane	ND		900		190	ug/Kg	☼	11/04/15 07:44	11/09/15 16:05	į.
Bis(2-chloroethyl)ether	ND		900		120	ug/Kg	₩	11/04/15 07:44	11/09/15 16:05	
Bis(2-ethylhexyl) phthalate	ND		900		310	ug/Kg	₩	11/04/15 07:44	11/09/15 16:05	
Butyl benzyl phthalate	ND		900		150	ug/Kg	☼	11/04/15 07:44	11/09/15 16:05	
Caprolactam	ND		900		270	ug/Kg	☼	11/04/15 07:44	11/09/15 16:05	į
Carbazole	ND		900		110	ug/Kg	☆	11/04/15 07:44	11/09/15 16:05	
Chrysene	ND		900		200	ug/Kg	₽	11/04/15 07:44	11/09/15 16:05	
Di-n-butyl phthalate	ND		900		150	ug/Kg	₩	11/04/15 07:44	11/09/15 16:05	
Di-n-octyl phthalate	ND		900		110	ug/Kg	₩	11/04/15 07:44	11/09/15 16:05	
Dibenz(a,h)anthracene	ND		900		160	ug/Kg	₩	11/04/15 07:44	11/09/15 16:05	
Dibenzofuran	ND		900		110	ug/Kg	☼	11/04/15 07:44	11/09/15 16:05	
Diethyl phthalate	ND		900		120	ug/Kg	☼	11/04/15 07:44	11/09/15 16:05	į
Dimethyl phthalate	ND		900		110	ug/Kg		11/04/15 07:44	11/09/15 16:05	
Fluoranthene	ND		900		95	ug/Kg	☆	11/04/15 07:44	11/09/15 16:05	į
Fluorene	ND		900		110	ug/Kg	☆	11/04/15 07:44	11/09/15 16:05	į
Hexachlorobenzene	ND		900		120	ug/Kg		11/04/15 07:44	11/09/15 16:05	
Hexachlorobutadiene	ND		900		130	ug/Kg	₩	11/04/15 07:44	11/09/15 16:05	
Hexachlorocyclopentadiene	ND		900			ug/Kg	₩	11/04/15 07:44	11/09/15 16:05	
Hexachloroethane	ND		900			ug/Kg		11/04/15 07:44	11/09/15 16:05	
Indeno(1,2,3-cd)pyrene	ND		900		110	ug/Kg	₩	11/04/15 07:44	11/09/15 16:05	
Isophorone	ND		900			ug/Kg	₩	11/04/15 07:44	11/09/15 16:05	į.
N-Nitrosodi-n-propylamine	ND		900		150	ug/Kg		11/04/15 07:44	11/09/15 16:05	
N-Nitrosodiphenylamine	ND		900			ug/Kg	₩	11/04/15 07:44	11/09/15 16:05	į
Naphthalene	ND		900			ug/Kg	₩	11/04/15 07:44	11/09/15 16:05	
Nitrobenzene	ND		900			ug/Kg		11/04/15 07:44	11/09/15 16:05	
Pentachlorophenol	ND		1700			ug/Kg	₩	11/04/15 07:44	11/09/15 16:05	į
Phenanthrene	ND		900		130	ug/Kg	₩	11/04/15 07:44	11/09/15 16:05	į
Phenol	ND		900			ug/Kg		11/04/15 07:44	11/09/15 16:05	
Pyrene	ND		900			ug/Kg	₩	11/04/15 07:44	11/09/15 16:05	
Dimethylformamide	ND		3500			ug/Kg	₽	11/04/15 07:44	11/09/15 16:05	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fa
Unknown	3800	TJ	ug/Kg	₩	2.	05		11/04/15 07:44	11/09/15 16:05	
Unknown	5500	ΤJ	ug/Kg	☼	2.	18		11/04/15 07:44	11/09/15 16:05	
Unknown	1200	TJ	ug/Kg	₩	4.	67		11/04/15 07:44	11/09/15 16:05	;
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	88		39 - 146					11/04/15 07:44	11/09/15 16:05	
2-Fluorobiphenyl	84		37 - 120					11/04/15 07:44	11/09/15 16:05	
2-Fluorophenol	70		18 - 120					11/04/15 07:44	11/09/15 16:05	
Nitrobenzene-d5	72		34 - 132					11/04/15 07:44	11/09/15 16:05	
p-Terphenyl-d14	93		65 - 153					11/04/15 07:44	11/09/15 16:05	
Phenol-d5	72		11 - 120					11/04/15 07:44	11/09/15 16:05	

TestAmerica Buffalo

Analyzed

10/31/15 11:12

10/31/15 11:12

10/31/15 11:12

RL

1.0

1.0

1.0

MDL Unit

0.15 mg/Kg

0.25 mg/Kg

0.30 mg/Kg

D

☼

₩

₩

Prepared

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) - Soluble

Result Qualifier

ND

ND

ND

Dil Fac

1

_

_

_

0

4.0

12

. .

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Percent Moisture

Percent Solids

TestAmerica Job ID: 480-90114-1

Client Sample ID: SMWU26-SS-BLDG23-03

Lab Sample ID: 480-90114-12

Matrix: Solid Percent Solids: 93.3

Date Collected: 10/28/15 11:45 Date Received: 10/29/15 09:00

Method: 8015D - Nonha	logenated Organic Compou	nds - Direct	Injection	1 (GC) - S	Soluble	(Continue	d)	
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
n-Butanol	ND	1.0	0.23	mg/Kg	<u></u>		10/31/15 11:12	1
Propanol	ND	1.0	0.15	mg/Kg	ф.		10/31/15 11:12	1
2-Butanol	ND	1.0	0.16	mg/Kg	☼		10/31/15 11:12	1
Isopropyl alcohol	ND	1.0	0.24	mg/Kg			10/31/15 11:12	1
t-Butyl alcohol	ND	1.0	0.27	mg/Kg	₩		10/31/15 11:12	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analvzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	96		30 - 137					10/31/15 11:12	1
- Method: 8082A - Polychic	orinated Bipheny	/Is (PCBs)	by Gas Chro	matogr	aphy				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		200	40	ug/Kg	<u> </u>	10/30/15 08:37	10/30/15 21:19	1
PCB-1221	ND		200	40	ug/Kg	☼	10/30/15 08:37	10/30/15 21:19	1
PCB-1232	ND		200	40	ug/Kg	☼	10/30/15 08:37	10/30/15 21:19	1
PCB-1242	ND		200	40	ug/Kg	₽	10/30/15 08:37	10/30/15 21:19	1
PCB-1248	ND		200	40	ug/Kg	☼	10/30/15 08:37	10/30/15 21:19	1
PCB-1254	ND		200	95	ug/Kg	☼	10/30/15 08:37	10/30/15 21:19	1
PCB-1260	ND		200	95	ug/Kg	₽	10/30/15 08:37	10/30/15 21:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	90		60 - 154				10/30/15 08:37	10/30/15 21:19	1
DCB Decachlorobiphenyl	95		65 - 174				10/30/15 08:37	10/30/15 21:19	1

Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1.3 J		2.1	0.42	mg/Kg	<u></u>	10/30/15 11:43	10/31/15 17:02	1
17.0		0.53	0.12	mg/Kg	₩	10/30/15 11:43	10/31/15 17:02	1
0.053 J	J	0.21	0.032	mg/Kg	₩	10/30/15 11:43	10/31/15 17:02	1
4.8		0.53	0.21	mg/Kg	Φ.	10/30/15 11:43	10/31/15 17:02	1
3.2		1.1	0.25	mg/Kg	₩	10/30/15 11:43	10/31/15 17:02	1
ND		4.2	0.42	mg/Kg	₩	10/30/15 11:43	10/31/15 17:02	1
ND		0.63	0.21	mg/Kg	₽	10/30/15 11:43	10/31/15 17:02	1
	1.3 17.0 0.053 4.8 3.2 ND	0.053 J 4.8 3.2 ND	1.3 J 2.1 17.0 0.53 0.053 J 0.21 4.8 0.53 3.2 1.1 ND 4.2	1.3 J 2.1 0.42 17.0 0.53 0.12 0.053 J 0.21 0.032 4.8 0.53 0.21 3.2 1.1 0.25 ND 4.2 0.42	1.3 J 2.1 0.42 mg/Kg 17.0 0.53 0.12 mg/Kg 0.053 J 0.21 0.032 mg/Kg 4.8 0.53 0.21 mg/Kg 3.2 1.1 0.25 mg/Kg ND 4.2 0.42 mg/Kg	1.3 J 2.1 0.42 mg/Kg ☼ 17.0 0.53 0.12 mg/Kg ☼ 0.053 J 0.21 0.032 mg/Kg ☼ 4.8 0.53 0.21 mg/Kg ☼ 3.2 1.1 0.25 mg/Kg ☼ ND 4.2 0.42 mg/Kg ☼	1.3 J 2.1 0.42 mg/Kg □ 10/30/15 11:43 17.0 0.53 0.12 mg/Kg □ 10/30/15 11:43 0.053 J 0.21 0.032 mg/Kg □ 10/30/15 11:43 4.8 0.53 0.21 mg/Kg □ 10/30/15 11:43 3.2 1.1 0.25 mg/Kg □ 10/30/15 11:43 ND 4.2 0.42 mg/Kg □ 10/30/15 11:43	1.3 J 2.1 0.42 mg/Kg □ 10/30/15 11:43 10/31/15 17:02 17.0 0.53 0.12 mg/Kg □ 10/30/15 11:43 10/31/15 17:02 0.053 J 0.21 0.032 mg/Kg □ 10/30/15 11:43 10/31/15 17:02 4.8 0.53 0.21 mg/Kg □ 10/30/15 11:43 10/31/15 17:02 3.2 1.1 0.25 mg/Kg □ 10/30/15 11:43 10/31/15 17:02 ND 4.2 0.42 mg/Kg □ 10/30/15 11:43 10/31/15 17:02

Method: 7471B - Mercury (CVAA) Analyte Mercury	Result ND	Qualifier	RL 0.021	MDL 0.0084		D <u>₩</u>	Prepared 11/02/15 11:10	Analyzed 11/02/15 13:14	Dil Fac
General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac

0.10

0.10

0.10 %

0.10 %

6.7

93

10/29/15 22:21

10/29/15 22:21

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 12:05

Date Received: 10/29/15 09:00

Toluene

Trichloroethene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Client Sample ID: SMWU7-SS-BLDG23-21

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-13

. Matrix: Solid Percent Solids: 95.6

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4.9	0.36	ug/Kg	<u> </u>	10/30/15 00:15	11/05/15 18:25	1
1,1,2,2-Tetrachloroethane	ND	4.9	0.79	ug/Kg	₩	10/30/15 00:15	11/05/15 18:25	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.9	1.1	ug/Kg	₩	10/30/15 00:15	11/05/15 18:25	1
1,1,2-Trichloroethane	ND	4.9	0.64	ug/Kg	☆	10/30/15 00:15	11/05/15 18:25	1
1,1-Dichloroethane	ND	4.9	0.60	ug/Kg	☆	10/30/15 00:15	11/05/15 18:25	1
1,1-Dichloroethene	ND	4.9	0.60	ug/Kg	₩	10/30/15 00:15	11/05/15 18:25	1
1,2,3-Trichlorobenzene	ND	4.9	0.52	ug/Kg	₩	10/30/15 00:15	11/05/15 18:25	1
1,2,4-Trichlorobenzene	ND	4.9	0.30	ug/Kg	≎	10/30/15 00:15	11/05/15 18:25	1
1,2-Dibromo-3-Chloropropane	ND	4.9	2.4	ug/Kg	≎	10/30/15 00:15	11/05/15 18:25	1
1,2-Dichlorobenzene	ND	4.9	0.38	ug/Kg	₽	10/30/15 00:15	11/05/15 18:25	1
1,2-Dichloroethane	ND	4.9	0.25	ug/Kg	≎	10/30/15 00:15	11/05/15 18:25	1
1,2-Dichloropropane	ND	4.9	2.4	ug/Kg	≎	10/30/15 00:15	11/05/15 18:25	1
1,3-Dichlorobenzene	ND	4.9	0.25	ug/Kg	₽	10/30/15 00:15	11/05/15 18:25	1
1,4-Dichlorobenzene	ND	4.9	0.69	ug/Kg	☆	10/30/15 00:15	11/05/15 18:25	1
1,4-Dioxane	ND	98	21	ug/Kg	₩	10/30/15 00:15	11/05/15 18:25	1
2-Hexanone	ND	24	2.4	ug/Kg		10/30/15 00:15	11/05/15 18:25	1
Acetone	ND	24	4.1	ug/Kg	≎	10/30/15 00:15	11/05/15 18:25	1
Benzene	ND	4.9	0.24	ug/Kg	₽	10/30/15 00:15	11/05/15 18:25	1
Bromoform	ND	4.9	2.4	ug/Kg	ф.	10/30/15 00:15	11/05/15 18:25	1
Bromomethane	ND	4.9	0.44	ug/Kg	₽	10/30/15 00:15	11/05/15 18:25	1
Carbon disulfide	ND	4.9		ug/Kg	₩	10/30/15 00:15	11/05/15 18:25	1
Carbon tetrachloride	ND	4.9		ug/Kg	ф.	10/30/15 00:15	11/05/15 18:25	1
Chlorobenzene	ND	4.9	0.65	ug/Kg	₩	10/30/15 00:15	11/05/15 18:25	1
Bromochloromethane	ND	4.9		ug/Kg	₩	10/30/15 00:15	11/05/15 18:25	1
Dibromochloromethane	ND	4.9	0.63	ug/Kg		10/30/15 00:15	11/05/15 18:25	1
Chloroethane	ND	4.9	1.1	ug/Kg	₩	10/30/15 00:15	11/05/15 18:25	1
Chloroform	ND	4.9	0.30	ug/Kg	₩	10/30/15 00:15	11/05/15 18:25	1
Chloromethane	ND	4.9	0.30	ug/Kg		10/30/15 00:15	11/05/15 18:25	1
cis-1,2-Dichloroethene	ND	4.9		ug/Kg	₩	10/30/15 00:15	11/05/15 18:25	1
cis-1,3-Dichloropropene	ND	4.9	0.71	ug/Kg	₩	10/30/15 00:15	11/05/15 18:25	1
Cyclohexane	ND	4.9		ug/Kg		10/30/15 00:15	11/05/15 18:25	1
Bromodichloromethane	ND	4.9		ug/Kg	₩	10/30/15 00:15	11/05/15 18:25	1
Dichlorodifluoromethane	ND	4.9		ug/Kg	₩	10/30/15 00:15	11/05/15 18:25	1
Ethylbenzene	ND	4.9		ug/Kg			11/05/15 18:25	1
1,2-Dibromoethane (EDB)	ND	4.9		ug/Kg	₽	10/30/15 00:15	11/05/15 18:25	1
Isopropylbenzene	ND	4.9		ug/Kg	₩	10/30/15 00:15		1
Methyl acetate	ND	4.9		ug/Kg			11/05/15 18:25	1
2-Butanone (MEK)	ND	24		ug/Kg	₽		11/05/15 18:25	1
4-Methyl-2-pentanone (MIBK)	ND	24		ug/Kg	☼		11/05/15 18:25	1
Methyl tert-butyl ether	ND	4.9		ug/Kg			11/05/15 18:25	
Methylcyclohexane	ND	4.9		ug/Kg	₽		11/05/15 18:25	1
Methylene Chloride	ND	4.9		ug/Kg	₽		11/05/15 18:25	1
Styrene	ND	4.9		ug/Kg			11/05/15 18:25	· · · · · · · · · · · · · · · · · · ·
Tetrachloroethene	ND	4.9		ug/Kg	₩		11/05/15 18:25	1
1 Strashior Octrione	ND	7.5	0.00	49/119		13/33/13/00.13	11/00/10 10.20	'

TestAmerica Buffalo

☼ 10/30/15 00:15 11/05/15 18:25

☼ 10/30/15 00:15 11/05/15 18:25

10/30/15 00:15 11/05/15 18:25

☼ 10/30/15 00:15 11/05/15 18:25☼ 10/30/15 00:15 11/05/15 18:25

4.9

4.9

4.9

4.9

4.9

ND

ND

ND

ND

1.1 J

0.37 ug/Kg

0.51 ug/Kg

2.2 ug/Kg

1.1 ug/Kg

0.46 ug/Kg

2

6

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Client Sample ID: SMWU7-SS-BLDG23-21 Lab Sample ID: 480-90114-13

Date Collected: 10/28/15 12:05 **Matrix: Solid** Date Received: 10/29/15 09:00 Percent Solids: 95.6

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.9		0.60	ug/Kg	₩	10/30/15 00:15	11/05/15 18:25	1
Xylenes, Total	ND		9.8		0.82	ug/Kg	≎	10/30/15 00:15	11/05/15 18:25	1
Tetrahydrofuran	ND		9.8		2.8	ug/Kg	☼	10/30/15 00:15	11/05/15 18:25	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\tilde{\pi}				10/30/15 00:15	11/05/15 18:25	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	105		60 - 140					10/30/15 00:15	11/05/15 18:25	1
1,2-Dichloroethane-d4 (Surr)	102		64 - 126					10/30/15 00:15	11/05/15 18:25	1
Toluene-d8 (Surr)	103		71 - 125					10/30/15 00:15	11/05/15 18:25	1
4-Bromofluorobenzene (Surr)	98		72 - 126					10/30/15 00:15	11/05/15 18:25	1
General Chemistry										
Analyte	Result	Qualifier	RL		RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	4.4		0.10		0.10	%			10/29/15 22:21	1
Percent Solids	96		0.10		0.10	0/			10/29/15 22:21	4

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 12:20

Date Received: 10/29/15 09:00

Client Sample ID: SMWU26-SS-BLDG23-04

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-14

Matrix: Solid
Percent Solids: 94.7

Method: 8260C - Volatile Organ Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.1	0.37	ug/Kg	₩	10/30/15 01:30	11/05/15 22:43	1
1,1,2,2-Tetrachloroethane	ND	F1	5.1	0.82	ug/Kg	₩	10/30/15 01:30	11/05/15 22:43	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.1	1.2	ug/Kg	₩	10/30/15 01:30	11/05/15 22:43	1
1,1,2-Trichloroethane	ND		5.1	0.66	ug/Kg		10/30/15 01:30	11/05/15 22:43	1
1,1-Dichloroethane	ND		5.1	0.62	ug/Kg	☼	10/30/15 01:30	11/05/15 22:43	1
1,1-Dichloroethene	ND		5.1	0.62	ug/Kg	₩	10/30/15 01:30	11/05/15 22:43	1
1,2,3-Trichlorobenzene	ND		5.1	0.54	ug/Kg		10/30/15 01:30	11/05/15 22:43	1
1,2,4-Trichlorobenzene	ND		5.1	0.31	ug/Kg	₩	10/30/15 01:30	11/05/15 22:43	1
1,2-Dibromo-3-Chloropropane	ND	F1	5.1		ug/Kg	₩	10/30/15 01:30	11/05/15 22:43	1
1,2-Dichlorobenzene	ND		5.1		ug/Kg		10/30/15 01:30	11/05/15 22:43	1
1,2-Dichloroethane	ND		5.1		ug/Kg	₩	10/30/15 01:30	11/05/15 22:43	1
1,2-Dichloropropane	ND		5.1		ug/Kg	₩		11/05/15 22:43	1
1,3-Dichlorobenzene	ND		5.1		ug/Kg	 		11/05/15 22:43	1
1,4-Dichlorobenzene	ND		5.1		ug/Kg	₽		11/05/15 22:43	1
1,4-Dioxane	ND	F1	100		ug/Kg	₩		11/05/15 22:43	1
2-Hexanone	ND		25		ug/Kg			11/05/15 22:43	
Acetone	ND	F1	25		ug/Kg	₩		11/05/15 22:43	1
Benzene	ND		5.1		ug/Kg	☼		11/05/15 22:43	1
Bromoform	ND		5.1		ug/Kg			11/05/15 22:43	
Bromomethane	ND ND		5.1		ug/Kg ug/Kg	☼		11/05/15 22:43	1
Carbon disulfide	ND ND		5.1			☼		11/05/15 22:43	1
Carbon tetrachloride	ND		5.1		ug/Kg ug/Kg	*		11/05/15 22:43	
						₩			1
Chlorobenzene	ND		5.1		ug/Kg	₩		11/05/15 22:43	1
Bromochloromethane	ND		5.1		ug/Kg			11/05/15 22:43	1
Dibromochloromethane	ND		5.1		ug/Kg	☆		11/05/15 22:43	1
Chloroethane	ND		5.1		ug/Kg	₩ ₩		11/05/15 22:43	1
Chloroform	ND	,	5.1		ug/Kg			11/05/15 22:43	1
Chloromethane	ND	F1	5.1		ug/Kg	ψ.		11/05/15 22:43	1
cis-1,2-Dichloroethene	ND		5.1		ug/Kg	ψ.		11/05/15 22:43	1
cis-1,3-Dichloropropene	ND	. <u> </u>	5.1		ug/Kg			11/05/15 22:43	
Cyclohexane	ND	F1	5.1		ug/Kg	:¤:		11/05/15 22:43	1
Bromodichloromethane	ND		5.1		ug/Kg	₽		11/05/15 22:43	1
Dichlorodifluoromethane	ND	F1	5.1		ug/Kg			11/05/15 22:43	1
Ethylbenzene	ND		5.1		ug/Kg	₩		11/05/15 22:43	1
1,2-Dibromoethane (EDB)	ND		5.1		ug/Kg	₩		11/05/15 22:43	1
Isopropylbenzene	ND		5.1	0.76	ug/Kg	☼	10/30/15 01:30	11/05/15 22:43	1
Methyl acetate	ND		5.1	3.1	ug/Kg	₽	10/30/15 01:30	11/05/15 22:43	1
2-Butanone (MEK)	ND	F1	25	1.9	ug/Kg	₩	10/30/15 01:30	11/05/15 22:43	1
4-Methyl-2-pentanone (MIBK)	ND	F1	25	1.7	ug/Kg	₩		11/05/15 22:43	1
Methyl tert-butyl ether	ND		5.1	0.50	ug/Kg	₩	10/30/15 01:30	11/05/15 22:43	1
Methylcyclohexane	ND		5.1	0.77	ug/Kg	≎	10/30/15 01:30	11/05/15 22:43	1
Methylene Chloride	ND		5.1	2.3	ug/Kg	≎	10/30/15 01:30	11/05/15 22:43	1
Styrene	ND		5.1	0.25	ug/Kg	₩	10/30/15 01:30	11/05/15 22:43	1
Tetrachloroethene	ND		5.1	0.68	ug/Kg	☼	10/30/15 01:30	11/05/15 22:43	1
Toluene	1.5	JB	5.1		ug/Kg	₩	10/30/15 01:30	11/05/15 22:43	1
trans-1,2-Dichloroethene	ND		5.1		ug/Kg		10/30/15 01:30	11/05/15 22:43	1
trans-1,3-Dichloropropene	ND		5.1		ug/Kg	☼		11/05/15 22:43	1
Trichloroethene	ND		5.1		ug/Kg	₩		11/05/15 22:43	1

TestAmerica Buffalo

2

4

6

8

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 12:20

Date Received: 10/29/15 09:00

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

Client Sample ID: SMWU26-SS-BLDG23-04

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-14

Matrix: Solid
Percent Solids: 94.7

10/30/15 01:30 11/05/15 22:43

10/30/15 01:30 11/05/15 22:43

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Cor	ntinue	ed)					
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND	F1	5.1		0.62	ug/Kg	\	10/30/15 01:30	11/05/15 22:43	1
Xylenes, Total	ND		10		0.85	ug/Kg	₩	10/30/15 01:30	11/05/15 22:43	1
Tetrahydrofuran	ND	F1	10		2.9	ug/Kg	\$	10/30/15 01:30	11/05/15 22:43	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	ı	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound Tentatively Identified Compound	None	Qualifier	ug/Kg	D →		RT	CAS No.	Prepared 10/30/15 01:30	Analyzed 11/05/15 22:43	Dil Fac
						RT	CAS No.			Dil Fac Dil Fac
Tentatively Identified Compound	None		ug/Kg			<u> </u>	CAS No.	10/30/15 01:30	11/05/15 22:43	1

71 - 125

72 - 126

102

97

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND	180	26	ug/Kg	<u>₩</u>	11/04/15 07:44	11/09/15 15:13	1
bis (2-chloroisopropyl) ether	ND	180	36	ug/Kg	≎	11/04/15 07:44	11/09/15 15:13	1
2,4,5-Trichlorophenol	ND	180	48	ug/Kg	₩	11/04/15 07:44	11/09/15 15:13	1
2,4,6-Trichlorophenol	ND	180	36	ug/Kg	₽	11/04/15 07:44	11/09/15 15:13	1
2,4-Dichlorophenol	ND	180	19	ug/Kg	₩	11/04/15 07:44	11/09/15 15:13	1
2,4-Dimethylphenol	ND	180	43	ug/Kg	₩	11/04/15 07:44	11/09/15 15:13	1
2,4-Dinitrophenol	ND	1700	830	ug/Kg	₩	11/04/15 07:44	11/09/15 15:13	1
2,4-Dinitrotoluene	ND	180	37	ug/Kg	₩	11/04/15 07:44	11/09/15 15:13	1
2,6-Dinitrotoluene	ND	180	21	ug/Kg	₩	11/04/15 07:44	11/09/15 15:13	1
2-Chloronaphthalene	ND	180	29	ug/Kg	☆	11/04/15 07:44	11/09/15 15:13	1
2-Chlorophenol	ND	180	33	ug/Kg	☆	11/04/15 07:44	11/09/15 15:13	1
2-Methylnaphthalene	ND	180	36	ug/Kg	₩	11/04/15 07:44	11/09/15 15:13	1
2-Methylphenol	ND	180	21	ug/Kg	☆	11/04/15 07:44	11/09/15 15:13	1
2-Nitroaniline	ND	350	26	ug/Kg	☆	11/04/15 07:44	11/09/15 15:13	1
2-Nitrophenol	ND	180	51	ug/Kg	☆	11/04/15 07:44	11/09/15 15:13	1
3,3'-Dichlorobenzidine	ND	350	210	ug/Kg	☆	11/04/15 07:44	11/09/15 15:13	1
3-Nitroaniline	ND	350	49	ug/Kg	₩	11/04/15 07:44	11/09/15 15:13	1
4,6-Dinitro-2-methylphenol	ND	350	180	ug/Kg	☆	11/04/15 07:44	11/09/15 15:13	1
4-Bromophenyl phenyl ether	ND	180	25	ug/Kg	☆	11/04/15 07:44	11/09/15 15:13	1
4-Chloro-3-methylphenol	ND	180	44	ug/Kg	≎	11/04/15 07:44	11/09/15 15:13	1
4-Chloroaniline	ND	180	44	ug/Kg	☆	11/04/15 07:44	11/09/15 15:13	1
4-Chlorophenyl phenyl ether	ND	180	22	ug/Kg	₽	11/04/15 07:44	11/09/15 15:13	1
4-Methylphenol	ND	350	21	ug/Kg	≎	11/04/15 07:44	11/09/15 15:13	1
4-Nitroaniline	ND	350	94	ug/Kg	☆	11/04/15 07:44	11/09/15 15:13	1
4-Nitrophenol	ND	350	130	ug/Kg	₽	11/04/15 07:44	11/09/15 15:13	1
Acenaphthene	ND	180	26	ug/Kg	≎	11/04/15 07:44	11/09/15 15:13	1
Acenaphthylene	ND	180	23	ug/Kg	☆	11/04/15 07:44	11/09/15 15:13	1
Acetophenone	ND	180	24	ug/Kg	₩	11/04/15 07:44	11/09/15 15:13	1
Anthracene	ND	180	44	ug/Kg	≎	11/04/15 07:44	11/09/15 15:13	1
Atrazine	ND	180	62	ug/Kg	₩	11/04/15 07:44	11/09/15 15:13	1
Benzaldehyde	ND	180	140	ug/Kg		11/04/15 07:44	11/09/15 15:13	1
Benzo(a)anthracene	ND	180	18	ug/Kg	₩	11/04/15 07:44	11/09/15 15:13	1
Benzo(a)pyrene	ND	180	26	ug/Kg	₩	11/04/15 07:44	11/09/15 15:13	1
Benzo(b)fluoranthene	ND	180	28	ug/Kg		11/04/15 07:44	11/09/15 15:13	1
Benzo(g,h,i)perylene	ND	180	19	ug/Kg	₽	11/04/15 07:44	11/09/15 15:13	1

TestAmerica Buffalo

Page 44 of 147

3

4

6

8

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

2-Fluorobiphenyl

2-Fluorophenol

Nitrobenzene-d5

p-Terphenyl-d14

Phenol-d5

TestAmerica Job ID: 480-90114-1

Client Sample ID: SMWU26-SS-BLDG23-04 Lab Sample ID: 480-90114-14

Date Collected: 10/28/15 12:20

Matrix: Solid
Date Received: 10/29/15 09:00

Percent Solids: 94.7

Method: 8270D - Semivolatile Analyte	Result	Qualifier	. RI	-	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo(k)fluoranthene	ND		180	5	23	ug/Kg		11/04/15 07:44	11/09/15 15:13	
Bis(2-chloroethoxy)methane	ND		180)	38	ug/Kg	₽	11/04/15 07:44	11/09/15 15:13	1
Bis(2-chloroethyl)ether	ND		180)	23	ug/Kg	₩	11/04/15 07:44	11/09/15 15:13	1
Bis(2-ethylhexyl) phthalate	ND		180)	61	ug/Kg	₩	11/04/15 07:44	11/09/15 15:13	1
Butyl benzyl phthalate	ND		180)	29	ug/Kg	≎	11/04/15 07:44	11/09/15 15:13	1
Caprolactam	ND		180)	54	ug/Kg	₩	11/04/15 07:44	11/09/15 15:13	1
Carbazole	ND		180)	21	ug/Kg	₩	11/04/15 07:44	11/09/15 15:13	1
Chrysene	ND		180)	40	ug/Kg	₩	11/04/15 07:44	11/09/15 15:13	1
Di-n-butyl phthalate	ND		180)	31	ug/Kg	₩	11/04/15 07:44	11/09/15 15:13	1
Di-n-octyl phthalate	ND		180)	21	ug/Kg	≎	11/04/15 07:44	11/09/15 15:13	1
Dibenz(a,h)anthracene	ND		180)	32	ug/Kg	≎	11/04/15 07:44	11/09/15 15:13	1
Dibenzofuran	ND		180)	21	ug/Kg	≎	11/04/15 07:44	11/09/15 15:13	1
Diethyl phthalate	25	JB	180	0	23	ug/Kg	☼	11/04/15 07:44	11/09/15 15:13	1
Dimethyl phthalate	ND		180)	21	ug/Kg		11/04/15 07:44	11/09/15 15:13	1
Fluoranthene	ND		180	0	19	ug/Kg	₽	11/04/15 07:44	11/09/15 15:13	1
Fluorene	ND		180)	21	ug/Kg	₽	11/04/15 07:44	11/09/15 15:13	1
Hexachlorobenzene	ND		180)	24	ug/Kg	\$	11/04/15 07:44	11/09/15 15:13	1
Hexachlorobutadiene	ND		180)	26	ug/Kg	₩	11/04/15 07:44	11/09/15 15:13	1
Hexachlorocyclopentadiene	ND		180)	24	ug/Kg	☼	11/04/15 07:44	11/09/15 15:13	1
Hexachloroethane	ND		180)	23	ug/Kg		11/04/15 07:44	11/09/15 15:13	1
Indeno(1,2,3-cd)pyrene	ND		180)	22	ug/Kg	₩	11/04/15 07:44	11/09/15 15:13	1
Isophorone	ND		180)	38	ug/Kg	☼	11/04/15 07:44	11/09/15 15:13	1
N-Nitrosodi-n-propylamine	ND		180)	31	ug/Kg		11/04/15 07:44	11/09/15 15:13	1
N-Nitrosodiphenylamine	ND		180)	150	ug/Kg	☼	11/04/15 07:44	11/09/15 15:13	1
Naphthalene	ND		180)	23	ug/Kg	≎	11/04/15 07:44	11/09/15 15:13	1
Nitrobenzene	ND		180)	20	ug/Kg		11/04/15 07:44	11/09/15 15:13	1
Pentachlorophenol	ND		350)	180	ug/Kg	☼	11/04/15 07:44	11/09/15 15:13	1
Phenanthrene	ND		180)	26	ug/Kg	☼	11/04/15 07:44	11/09/15 15:13	1
Phenol	ND		180)		ug/Kg		11/04/15 07:44	11/09/15 15:13	1
Pyrene	ND		180)	21	ug/Kg	₽	11/04/15 07:44	11/09/15 15:13	1
Dimethylformamide	ND		700)	79	ug/Kg	₽	11/04/15 07:44	11/09/15 15:13	1
Tentatively Identified Compound	Est. Result		Unit	D	ı	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	3000	TJ	ug/Kg	- ☆ -	1.	.88		11/04/15 07:44	11/09/15 15:13	1
Unknown	480	ΤJ	ug/Kg	☼	2.	.05		11/04/15 07:44	11/09/15 15:13	1
Unknown	1100	TJ	ug/Kg	₩	2.	.17		11/04/15 07:44	11/09/15 15:13	1
Ethane, 1,1,2-trichloro-	220	TJN	ug/Kg	₩	3.	77	79-00-5	11/04/15 07:44	11/09/15 15:13	1
Unknown	850	TJ	ug/Kg	₩	4.	.67		11/04/15 07:44	11/09/15 15:13	1
Unknown Benzene Derivative	190	TJ	ug/Kg	₩	5.	15		11/04/15 07:44	11/09/15 15:13	1
Ethane, 1,1,2,2-tetrachloro-	450	TJN	ug/Kg	÷	5.	70	79-34-5	11/04/15 07:44	11/09/15 15:13	
1-Nonadecene	460	TJN	ug/Kg	☼	14.	.04	18435-45-5	11/04/15 07:44	11/09/15 15:13	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	87		39 - 146	_				11/04/15 07:44	11/09/15 15:13	-

TestAmerica Buffalo

11/04/15 07:44 11/09/15 15:13

11/04/15 07:44 11/09/15 15:13

11/04/15 07:44 11/09/15 15:13

11/04/15 07:44 11/09/15 15:13

11/04/15 07:44 11/09/15 15:13

37 - 120

18 - 120

34 - 132

65 - 153

11 - 120

84

72

74

100

76

10

1 /

4 6

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 12:20

Percent Solids

Client Sample ID: SMWU26-SS-BLDG23-04

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-14

Matrix: Solid
Percent Solids: 94.7

А

5

10

11 12

14

10

Method: 8015D - Nonhalogena								A a l a al	D:: F-
Analyte Ethanol	ND	Qualifier	RL 0.97	MDL	mg/Kg	D <u>∓</u>	Prepared	Analyzed 10/31/15 11:20	Dil Fa
	ND ND		0.97			≎			
Isobutyl alcohol		E4			mg/Kg	₩		10/31/15 11:20	
Methanol	5.6	F1	0.97		mg/Kg	· · · · · · · · · · · · · · · · · · ·		10/31/15 11:20	
n-Butanol	ND		0.97		mg/Kg	¥ \$		10/31/15 11:20	
Propanol	ND		0.97		mg/Kg	₩		10/31/15 11:20	
2-Butanol	ND		0.97		mg/Kg			10/31/15 11:20	
Isopropyl alcohol	ND		0.97		mg/Kg			10/31/15 11:20	
t-Butyl alcohol	ND		0.97	0.26	mg/Kg	☼		10/31/15 11:20	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Hexanone	102		30 - 137					10/31/15 11:20	
Method: 8082A - Polychlorina	ted Bipheny	vis (PCBs) by	Gas Chr	omatogr	aphy				
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
PCB-1016	ND		230	44	ug/Kg	₩	10/30/15 08:37	10/30/15 17:41	
PCB-1221	ND		230	44	ug/Kg	☼	10/30/15 08:37	10/30/15 17:41	
PCB-1232	ND		230	44	ug/Kg	☼	10/30/15 08:37	10/30/15 17:41	
PCB-1242	ND		230	44	ug/Kg		10/30/15 08:37	10/30/15 17:41	
PCB-1248	ND		230	44	ug/Kg	☼	10/30/15 08:37	10/30/15 17:41	
PCB-1254	ND		230	110	ug/Kg	☼	10/30/15 08:37	10/30/15 17:41	
PCB-1260	ND		230	110	ug/Kg		10/30/15 08:37	10/30/15 17:41	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene	98		60 - 154				10/30/15 08:37	10/30/15 17:41	
DCB Decachlorobiphenyl	102		65 - 174				10/30/15 08:37	10/30/15 17:41	
Method: 6010C - Metals (ICP)									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Arsenic	2.0	J	2.1	0.41	mg/Kg	\	10/30/15 11:43	10/31/15 17:05	
Barium	15.2	F2 F1	0.52	0.11	mg/Kg	₩	10/30/15 11:43	10/31/15 17:05	
Cadmium	0.047	J	0.21	0.031	mg/Kg	₩	10/30/15 11:43	10/31/15 17:05	
Chromium	4.6		0.52	0.21	mg/Kg	₩	10/30/15 11:43	10/31/15 17:05	
Lead	3.4		1.0	0.25	mg/Kg	₩	10/30/15 11:43	10/31/15 17:05	
Selenium	ND		4.1	0.41	mg/Kg	₩	10/30/15 11:43	10/31/15 17:05	
Silver	ND		0.62	0.21	mg/Kg	‡	10/30/15 11:43	10/31/15 17:05	
Method: 7471B - Mercury (CV)	AA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.020	0.0080			11/02/15 11:10	11/02/15 13:15	
General Chemistry									
Analyte	Result	Qualifier	RL	RI	Unit	D	Prepared	Analyzed	Dil Fa
Percent Moisture	5.3		0.10	0.10				10/29/15 22:21	
. U. UUIII MUIUIUIU	0.0		0.10	0.10	, 0			. 5, 25, 10 22.21	

10/29/15 22:21

0.10

0.10 %

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 12:35

Date Received: 10/29/15 09:00

Client Sample ID: SMWU7-SS-BLDG23-22

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-15

Matrix: Solid
Percent Solids: 90.7

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0		ug/Kg	₩.		11/05/15 18:51	1
1,1,2,2-Tetrachloroethane	ND	5.0		ug/Kg	₽.		11/05/15 18:51	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0		ug/Kg	, .		11/05/15 18:51	1
1,1,2-Trichloroethane	ND	5.0		ug/Kg	*		11/05/15 18:51	1
1,1-Dichloroethane	ND	5.0		ug/Kg	÷.		11/05/15 18:51	1
1,1-Dichloroethene	ND	5.0		ug/Kg			11/05/15 18:51	1
1,2,3-Trichlorobenzene	ND	5.0		ug/Kg	☼	10/30/15 00:15	11/05/15 18:51	1
1,2,4-Trichlorobenzene	ND	5.0	0.31	ug/Kg	₩	10/30/15 00:15	11/05/15 18:51	1
1,2-Dibromo-3-Chloropropane	ND	5.0	2.5	ug/Kg	₩	10/30/15 00:15	11/05/15 18:51	1
1,2-Dichlorobenzene	ND	5.0		ug/Kg	₽	10/30/15 00:15	11/05/15 18:51	1
1,2-Dichloroethane	ND	5.0		ug/Kg	₩	10/30/15 00:15	11/05/15 18:51	1
1,2-Dichloropropane	ND	5.0	2.5	ug/Kg	₽	10/30/15 00:15	11/05/15 18:51	1
1,3-Dichlorobenzene	ND	5.0	0.26	ug/Kg	₽	10/30/15 00:15	11/05/15 18:51	1
1,4-Dichlorobenzene	ND	5.0	0.70	ug/Kg	₩	10/30/15 00:15	11/05/15 18:51	1
1,4-Dioxane	ND	100	22	ug/Kg	₩	10/30/15 00:15	11/05/15 18:51	•
2-Hexanone	ND	25	2.5	ug/Kg	₽	10/30/15 00:15	11/05/15 18:51	
Acetone	6.7 J	25	4.2	ug/Kg	☼	10/30/15 00:15	11/05/15 18:51	•
Benzene	ND	5.0	0.25	ug/Kg	☼	10/30/15 00:15	11/05/15 18:51	•
Bromoform	ND	5.0	2.5	ug/Kg		10/30/15 00:15	11/05/15 18:51	• • • • • • • • • • • • • • • • • • • •
Bromomethane	ND	5.0	0.45	ug/Kg	≎	10/30/15 00:15	11/05/15 18:51	
Carbon disulfide	ND	5.0	2.5	ug/Kg	☼	10/30/15 00:15	11/05/15 18:51	
Carbon tetrachloride	ND	5.0		ug/Kg	· · · · · · · · · · · · · · · · · · ·	10/30/15 00:15	11/05/15 18:51	
Chlorobenzene	ND	5.0		ug/Kg	☼	10/30/15 00:15	11/05/15 18:51	
Bromochloromethane	ND	5.0	0.36	ug/Kg	₩	10/30/15 00:15	11/05/15 18:51	1
Dibromochloromethane	ND	5.0		ug/Kg	φ.	10/30/15 00:15	11/05/15 18:51	,
Chloroethane	ND	5.0		ug/Kg	₩	10/30/15 00:15	11/05/15 18:51	
Chloroform	ND	5.0		ug/Kg	₩		11/05/15 18:51	
Chloromethane	ND	5.0		ug/Kg			11/05/15 18:51	,
cis-1,2-Dichloroethene	ND	5.0		ug/Kg	₩		11/05/15 18:51	
cis-1,3-Dichloropropene	ND	5.0		ug/Kg	₩		11/05/15 18:51	
Cyclohexane	ND	5.0		ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/05/15 18:51	
Bromodichloromethane	ND	5.0		ug/Kg	₩		11/05/15 18:51	
Dichlorodifluoromethane	ND	5.0		ug/Kg	₩		11/05/15 18:51	
Ethylbenzene	ND	5.0		ug/Kg	φ.		11/05/15 18:51	· · · · · .
1,2-Dibromoethane (EDB)	ND	5.0		ug/Kg	₩	10/30/15 00:15		
Isopropylbenzene	ND	5.0		ug/Kg	₩		11/05/15 18:51	
Methyl acetate	ND	5.0		ug/Kg		10/30/15 00:15		
2-Butanone (MEK)	ND	25		ug/Kg	₽		11/05/15 18:51	
4-Methyl-2-pentanone (MIBK)	ND	25		ug/Kg	₽	10/30/15 00:15		
Methyl tert-butyl ether	ND	5.0		ug/Kg ug/Kg			11/05/15 18:51	
Methylcyclohexane	ND	5.0		ug/Kg ug/Kg			11/05/15 18:51	,
• •	ND ND	5.0			~ ☆		11/05/15 18:51	
Methylene Chloride				ug/Kg	· · · · · · · · · · · · · · · · · · ·			
Styrene	ND	5.0		ug/Kg	~ ☆		11/05/15 18:51	•
Tetrachloroethene Toluene	ND ND	5.0		ug/Kg			11/05/15 18:51	
	ND	5.0		ug/Kg			11/05/15 18:51	
trans-1,2-Dichloroethene	ND	5.0		ug/Kg	₩ ₩		11/05/15 18:51	•
trans-1,3-Dichloropropene	ND	5.0	2.2	ug/Kg	æ	10/30/15 00:15	11/05/15 18:51	1
Trichloroethene	ND	5.0		ug/Kg	₩	40/00/45 00 15	11/05/15 18:51	1

TestAmerica Buffalo

2

4

6

9

11

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 12:35

Date Received: 10/29/15 09:00

Client Sample ID: SMWU7-SS-BLDG23-22

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-15

Matrix: Solid

Percent Solids: 90.7

Analyte	Result	Qualifier	R	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.	0	0.61	ug/Kg		10/30/15 00:15	11/05/15 18:51	1
Xylenes, Total	ND		1	0	0.84	ug/Kg	₽	10/30/15 00:15	11/05/15 18:51	1
Tetrahydrofuran	ND		1	0	2.9	ug/Kg	₽	10/30/15 00:15	11/05/15 18:51	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	78	TJ	ug/Kg	<u> </u>	4.	.33		10/30/15 00:15	11/05/15 18:51	1
Unknown	9.3	ΤJ	ug/Kg	☼	4.	.91		10/30/15 00:15	11/05/15 18:51	1
Cyclotrisiloxane, hexamethyl-	11	TJN	ug/Kg	₩	6.	.99	541-05-9	10/30/15 00:15	11/05/15 18:51	1
Unknown Benzene Derivative	40	TJ	ug/Kg	₩	10.	.72		10/30/15 00:15	11/05/15 18:51	1
Unknown Benzene Derivative	18	ΤJ	ug/Kg	₩	10.	.79		10/30/15 00:15	11/05/15 18:51	1
Unknown	8.6	TJ	ug/Kg	₩	11.	.78		10/30/15 00:15	11/05/15 18:51	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	97		60 - 140					10/30/15 00:15	11/05/15 18:51	1
1,2-Dichloroethane-d4 (Surr)	99		64 - 126					10/30/15 00:15	11/05/15 18:51	1
Toluene-d8 (Surr)	104		71 - 125					10/30/15 00:15	11/05/15 18:51	1
4-Bromofluorobenzene (Surr)	95		72 - 126					10/30/15 00:15	11/05/15 18:51	1
General Chemistry										
Analyte	Result	Qualifier	R	L	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	9.3		0.1	0	0.10	%			10/29/15 22:21	1
Percent Solids	91		0.1	0	0.10	%			10/29/15 22:21	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-16

Client Sample ID: SMWU7-SS-BLDG34-01

 Date Collected: 10/28/15 13:15
 Matrix: Solid

 Date Received: 10/29/15 09:00
 Percent Solids: 92.1

Method: 8260C - Volatile Organ			MD.	l lmi4	_	Duam and d	A mal:	Di E-
Analyte	Result Q	<u> </u>	MDL		— D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	5.1		ug/Kg	☆		11/07/15 00:50	
1,1,2,2-Tetrachloroethane	ND	5.1		ug/Kg			11/07/15 00:50	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.1		ug/Kg	· · · · · · ›		11/07/15 00:50	
I,1,2-Trichloroethane	ND	5.1		ug/Kg	☆		11/07/15 00:50	
1,1-Dichloroethane	ND	5.1		ug/Kg	φ.		11/07/15 00:50	
1,1-Dichloroethene	ND	5.1		ug/Kg	<u>.</u> .		11/07/15 00:50	
I,2,3-Trichlorobenzene	ND	5.1		ug/Kg	*		11/07/15 00:50	
1,2,4-Trichlorobenzene	ND	5.1	0.31	0 0	:		11/07/15 00:50	
1,2-Dibromo-3-Chloropropane	ND	5.1		ug/Kg			11/07/15 00:50	
,2-Dichlorobenzene	ND	5.1		ug/Kg	₽	10/30/15 00:18	11/07/15 00:50	
1,2-Dichloroethane	ND	5.1	0.26	ug/Kg	₩	10/30/15 00:18	11/07/15 00:50	
1,2-Dichloropropane	ND	5.1	2.6	ug/Kg	₩	10/30/15 00:18	11/07/15 00:50	
1,3-Dichlorobenzene	ND	5.1	0.26	ug/Kg	₽	10/30/15 00:18	11/07/15 00:50	
1,4-Dichlorobenzene	ND	5.1	0.72	ug/Kg	₩	10/30/15 00:18	11/07/15 00:50	
1,4-Dioxane	ND	100	22	ug/Kg	₩	10/30/15 00:18	11/07/15 00:50	
2-Hexanone	ND	26	2.6	ug/Kg	≎	10/30/15 00:18	11/07/15 00:50	
Acetone	ND	26	4.3	ug/Kg	☼	10/30/15 00:18	11/07/15 00:50	
Benzene	ND	5.1	0.25	ug/Kg	≎	10/30/15 00:18	11/07/15 00:50	
Bromoform	ND	5.1	2.6	ug/Kg	φ.	10/30/15 00:18	11/07/15 00:50	
Bromomethane	ND	5.1		ug/Kg	☼	10/30/15 00:18	11/07/15 00:50	
Carbon disulfide	ND	5.1		ug/Kg	₩	10/30/15 00:18	11/07/15 00:50	
Carbon tetrachloride	ND	5.1		ug/Kg		10/30/15 00:18	11/07/15 00:50	
Chlorobenzene	ND	5.1		ug/Kg	≎	10/30/15 00:18	11/07/15 00:50	
Bromochloromethane	ND	5.1	0.37	0 0	₩		11/07/15 00:50	
Dibromochloromethane	ND	5.1		ug/Kg	 ☆		11/07/15 00:50	
Chloroethane	ND	5.1		ug/Kg	₩		11/07/15 00:50	
Chloroform	ND	5.1		ug/Kg	₩		11/07/15 00:50	
Chloromethane	ND	5.1		ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/07/15 00:50	
cis-1,2-Dichloroethene	ND	5.1		ug/Kg	₩		11/07/15 00:50	
cis-1,3-Dichloropropene	ND	5.1		ug/Kg	₩		11/07/15 00:50	
Cyclohexane	ND	5.1		ug/Kg ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/07/15 00:50	
Bromodichloromethane	ND	5.1		ug/Kg ug/Kg			11/07/15 00:50	
					~ \$			
Dichlorodifluoromethane	ND	5.1		ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/07/15 00:50	
Ethylbenzene	ND	5.1		ug/Kg			11/07/15 00:50	
1,2-Dibromoethane (EDB)	ND	5.1		ug/Kg	☆		11/07/15 00:50	
sopropylbenzene	ND	5.1		ug/Kg	<u>.</u> .		11/07/15 00:50	
Methyl acetate	ND	5.1	3.1	ug/Kg	Ψ.		11/07/15 00:50	
2-Butanone (MEK)	ND	26		ug/Kg	.;.		11/07/15 00:50	
l-Methyl-2-pentanone (MIBK)	ND	26		ug/Kg			11/07/15 00:50	
Methyl tert-butyl ether	ND	5.1		ug/Kg	☼		11/07/15 00:50	
Methylcyclohexane	ND	5.1	0.78	ug/Kg	₩	10/30/15 00:18	11/07/15 00:50	
Methylene Chloride	ND	5.1	2.4	ug/Kg	₩	10/30/15 00:18	11/07/15 00:50	
Styrene	ND	5.1		ug/Kg	₩		11/07/15 00:50	
etrachloroethene	ND	5.1		ug/Kg	₩		11/07/15 00:50	
oluene	ND	5.1	0.39	ug/Kg	☼	10/30/15 00:18	11/07/15 00:50	
rans-1,2-Dichloroethene	ND	5.1	0.53	ug/Kg	₩.	10/30/15 00:18	11/07/15 00:50	
rans-1,3-Dichloropropene	ND	5.1		ug/Kg	☼	10/30/15 00:18	11/07/15 00:50	
Trichloroethene	ND	5.1	1.1	ug/Kg	☼	10/30/15 00:18	11/07/15 00:50	
Trichlorofluoromethane	ND	5.1		ug/Kg			11/07/15 00:50	

TestAmerica Buffalo

4

6

0

11

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Client Sample ID: SMWU7-SS-BLDG34-01

Lab Sample ID: 480-90114-16 Date Collected: 10/28/15 13:15 **Matrix: Solid** Date Received: 10/29/15 09:00

Percent Solids: 92.1

Method: 8260C - Volatile Org	•	unds by (Qualifier	GC/MS (Cor RL		•	Unit	n	Dranarad	Analyzad	Dil Fac
Analyte		Quaimer					D	Prepared	Analyzed	DII Fac
Vinyl chloride	ND		5.1		0.62	ug/Kg	₩	10/30/15 00:18	11/07/15 00:50	1
Xylenes, Total	ND		10		0.86	ug/Kg	☼	10/30/15 00:18	11/07/15 00:50	1
Tetrahydrofuran	ND		10		3.0	ug/Kg	₽	10/30/15 00:18	11/07/15 00:50	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\tilde{\pi} _				10/30/15 00:18	11/07/15 00:50	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
Dibromofluoromethane (Surr)	111		60 - 140					10/30/15 00:18	11/07/15 00:50	
1,2-Dichloroethane-d4 (Surr)	105		64 - 126					10/30/15 00:18	11/07/15 00:50	1
Toluene-d8 (Surr)	101		71 - 125					10/30/15 00:18	11/07/15 00:50	1
4-Bromofluorobenzene (Surr)	97		72 - 126					10/30/15 00:18	11/07/15 00:50	1
General Chemistry										
Analyte	Result	Qualifier	RL		RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	7.9		0.10		0.10	%			10/29/15 22:21	
Percent Solids	92		0.10		0.10	%			10/29/15 22:21	1

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 13:35

Date Received: 10/29/15 09:00

Trichloroethene

Trichlorofluoromethane

Client Sample ID: SMWU7-SS-BLDG34-02

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-17

Matrix: Solid
Percent Solids: 90.6

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4.5	0.33 ug/Kg	<u> </u>	10/30/15 00:15	11/05/15 19:42	1
1,1,2,2-Tetrachloroethane	ND	4.5	0.73 ug/Kg	₽	10/30/15 00:15	11/05/15 19:42	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.5	1.0 ug/Kg	₩	10/30/15 00:15	11/05/15 19:42	1
1,1,2-Trichloroethane	ND	4.5	0.58 ug/Kg	₽	10/30/15 00:15	11/05/15 19:42	1
1,1-Dichloroethane	ND	4.5	0.55 ug/Kg	₽	10/30/15 00:15	11/05/15 19:42	1
1,1-Dichloroethene	ND	4.5	0.55 ug/Kg	₩	10/30/15 00:15	11/05/15 19:42	1
1,2,3-Trichlorobenzene	ND	4.5	0.48 ug/Kg		10/30/15 00:15	11/05/15 19:42	1
1,2,4-Trichlorobenzene	ND	4.5	0.27 ug/Kg	₩	10/30/15 00:15	11/05/15 19:42	1
1,2-Dibromo-3-Chloropropane	ND	4.5	2.2 ug/Kg	₩	10/30/15 00:15	11/05/15 19:42	1
1,2-Dichlorobenzene	ND	4.5	0.35 ug/Kg		10/30/15 00:15	11/05/15 19:42	1
1,2-Dichloroethane	ND	4.5	0.23 ug/Kg	₩	10/30/15 00:15	11/05/15 19:42	1
1,2-Dichloropropane	ND	4.5	2.2 ug/Kg	≎	10/30/15 00:15	11/05/15 19:42	1
1,3-Dichlorobenzene	ND	4.5	0.23 ug/Kg	₽	10/30/15 00:15	11/05/15 19:42	1
1,4-Dichlorobenzene	ND	4.5	0.63 ug/Kg	≎	10/30/15 00:15	11/05/15 19:42	1
1,4-Dioxane	ND	90	20 ug/Kg	≎	10/30/15 00:15	11/05/15 19:42	1
2-Hexanone	ND	22	2.2 ug/Kg	₽	10/30/15 00:15	11/05/15 19:42	1
Acetone	ND	22	3.8 ug/Kg	₽	10/30/15 00:15	11/05/15 19:42	1
Benzene	ND	4.5	0.22 ug/Kg	₩	10/30/15 00:15	11/05/15 19:42	1
Bromoform	ND	4.5	2.2 ug/Kg	₩.	10/30/15 00:15	11/05/15 19:42	1
Bromomethane	ND	4.5	0.40 ug/Kg	₩	10/30/15 00:15	11/05/15 19:42	1
Carbon disulfide	ND	4.5	2.2 ug/Kg	₩	10/30/15 00:15	11/05/15 19:42	1
Carbon tetrachloride	ND	4.5	0.43 ug/Kg		10/30/15 00:15	11/05/15 19:42	1
Chlorobenzene	ND	4.5	0.59 ug/Kg	₩	10/30/15 00:15	11/05/15 19:42	1
Bromochloromethane	ND	4.5	0.32 ug/Kg	₩	10/30/15 00:15	11/05/15 19:42	1
Dibromochloromethane	ND	4.5	0.58 ug/Kg		10/30/15 00:15	11/05/15 19:42	1
Chloroethane	ND	4.5	1.0 ug/Kg	☼	10/30/15 00:15	11/05/15 19:42	1
Chloroform	ND	4.5	0.28 ug/Kg	₩	10/30/15 00:15	11/05/15 19:42	1
Chloromethane	ND	4.5	0.27 ug/Kg		10/30/15 00:15	11/05/15 19:42	1
cis-1,2-Dichloroethene	ND	4.5	0.58 ug/Kg	₩	10/30/15 00:15	11/05/15 19:42	1
cis-1,3-Dichloropropene	ND	4.5	0.65 ug/Kg	₩	10/30/15 00:15	11/05/15 19:42	1
Cyclohexane	ND	4.5	0.63 ug/Kg		10/30/15 00:15	11/05/15 19:42	1
Bromodichloromethane	ND	4.5	0.60 ug/Kg	☼	10/30/15 00:15	11/05/15 19:42	1
Dichlorodifluoromethane	ND	4.5	0.37 ug/Kg	☼	10/30/15 00:15	11/05/15 19:42	1
Ethylbenzene	ND	4.5	0.31 ug/Kg		10/30/15 00:15	11/05/15 19:42	1
1,2-Dibromoethane (EDB)	ND	4.5	0.58 ug/Kg	₩	10/30/15 00:15	11/05/15 19:42	1
Isopropylbenzene	ND	4.5	0.68 ug/Kg	₩	10/30/15 00:15	11/05/15 19:42	1
Methyl acetate	ND	4.5	2.7 ug/Kg		10/30/15 00:15	11/05/15 19:42	1
2-Butanone (MEK)	ND	22	1.6 ug/Kg	☼	10/30/15 00:15	11/05/15 19:42	1
4-Methyl-2-pentanone (MIBK)	ND	22	1.5 ug/Kg	☼	10/30/15 00:15	11/05/15 19:42	1
Methyl tert-butyl ether	ND	4.5	0.44 ug/Kg	φ.	10/30/15 00:15	11/05/15 19:42	1
Methylcyclohexane	ND	4.5	0.68 ug/Kg	☼	10/30/15 00:15	11/05/15 19:42	1
Methylene Chloride	ND	4.5	2.1 ug/Kg	☼	10/30/15 00:15	11/05/15 19:42	1
Styrene	ND	4.5	0.22 ug/Kg	φ.	10/30/15 00:15	11/05/15 19:42	1
Tetrachloroethene	ND	4.5	0.60 ug/Kg	≎	10/30/15 00:15	11/05/15 19:42	1
Toluene	ND	4.5	0.34 ug/Kg	₽	10/30/15 00:15	11/05/15 19:42	1
trans-1,2-Dichloroethene	ND	4.5	0.46 ug/Kg	φ.	10/30/15 00:15	11/05/15 19:42	1
trans-1,3-Dichloropropene	ND	4.5	2.0 ug/Kg	₽	10/30/15 00:15	11/05/15 19:42	1
· · ·			~ ~				

TestAmerica Buffalo

* 10/30/15 00:15 11/05/15 19:42

10/30/15 00:15 11/05/15 19:42

4.5

4.5

0.99 ug/Kg

0.43 ug/Kg

ND

ND

11/16/2015

_

4

6

ð

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Received: 10/29/15 09:00

Percent Solids

TestAmerica Job ID: 480-90114-1

Client Sample ID: SMWU7-SS-BLDG34-02 Date Collected: 10/28/15 13:35

Lab Sample ID: 480-90114-17

Matrix: Solid

Percent Solids: 90.6

10/29/15 22:21

Analyte	anic Compo Result	Qualifier	` RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.5		0.55	ug/Kg	₩	10/30/15 00:15	11/05/15 19:42	1
Xylenes, Total	ND		9.0		0.75	ug/Kg	₩	10/30/15 00:15	11/05/15 19:42	1
Tetrahydrofuran	ND		9.0		2.6	ug/Kg	₽	10/30/15 00:15	11/05/15 19:42	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	4.9	TJ	ug/Kg	₩ -	4.	34		10/30/15 00:15	11/05/15 19:42	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	104		60 - 140					10/30/15 00:15	11/05/15 19:42	1
1,2-Dichloroethane-d4 (Surr)	100		64 - 126					10/30/15 00:15	11/05/15 19:42	1
Toluene-d8 (Surr)	102		71 - 125					10/30/15 00:15	11/05/15 19:42	1
4-Bromofluorobenzene (Surr)	98		72 - 126					10/30/15 00:15	11/05/15 19:42	1
- General Chemistry										
Analyte	Result	Qualifier	RL		RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	9.4		0.10		0.10	%			10/29/15 22:21	1

0.10

0.10 %

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 13:45

Date Received: 10/29/15 09:00

Tetrachloroethene

Trichloroethene

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

Toluene

Client Sample ID: SMWU7-SS-BLDG34-03

Method: 8260C - Volatile Organic Compounds by GC/MS

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-18

Matrix: Solid
Percent Solids: 98.0

Analyte	Result Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.2	0.38 u	ıg/Kg	<u>∓</u>	10/30/15 00:15	11/05/15 20:08	1
1,1,2,2-Tetrachloroethane	ND	5.2	0.85 u	ıg/Kg	☼	10/30/15 00:15	11/05/15 20:08	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.2	1.2 u	ıg/Kg	₩	10/30/15 00:15	11/05/15 20:08	1
1,1,2-Trichloroethane	ND	5.2	0.68 u	ıg/Kg	₽	10/30/15 00:15	11/05/15 20:08	1
1,1-Dichloroethane	ND	5.2	0.64 u	ıg/Kg	₩	10/30/15 00:15	11/05/15 20:08	1
1,1-Dichloroethene	ND	5.2	0.64 u	ıg/Kg	☼	10/30/15 00:15	11/05/15 20:08	1
1,2,3-Trichlorobenzene	ND	5.2	0.55 u	ıg/Kg	φ.	10/30/15 00:15	11/05/15 20:08	1
1,2,4-Trichlorobenzene	ND	5.2	0.32 u	ıg/Kg	₩	10/30/15 00:15	11/05/15 20:08	1
1,2-Dibromo-3-Chloropropane	ND	5.2	2.6 u	ıg/Kg	₩	10/30/15 00:15	11/05/15 20:08	1
1,2-Dichlorobenzene	ND	5.2	0.41 u	ıg/Kg	₽	10/30/15 00:15	11/05/15 20:08	1
1,2-Dichloroethane	ND	5.2	0.26 u	ıg/Kg	☼	10/30/15 00:15	11/05/15 20:08	1
1,2-Dichloropropane	ND	5.2	2.6 u	ıg/Kg	₩	10/30/15 00:15	11/05/15 20:08	1
1,3-Dichlorobenzene	ND	5.2	0.27 u	ıg/Kg		10/30/15 00:15	11/05/15 20:08	1
1,4-Dichlorobenzene	ND	5.2	0.73 u	ıg/Kg	₩	10/30/15 00:15	11/05/15 20:08	1
1,4-Dioxane	ND	100	23 u	ıg/Kg	₩	10/30/15 00:15	11/05/15 20:08	1
2-Hexanone	ND	26	2.6 u	ıg/Kg	.	10/30/15 00:15	11/05/15 20:08	1
Acetone	ND	26	4.4 u	ıg/Kg	₩	10/30/15 00:15	11/05/15 20:08	1
Benzene	ND	5.2	0.26 u	ıg/Kg	☼	10/30/15 00:15	11/05/15 20:08	1
Bromoform	ND	5.2	2.6 u	ıg/Kg	.	10/30/15 00:15	11/05/15 20:08	1
Bromomethane	ND	5.2	0.47 u	ıg/Kg	☼	10/30/15 00:15	11/05/15 20:08	1
Carbon disulfide	ND	5.2	2.6 u	ıg/Kg	☼	10/30/15 00:15	11/05/15 20:08	1
Carbon tetrachloride	ND	5.2	0.51 u	ıg/Kg		10/30/15 00:15	11/05/15 20:08	1
Chlorobenzene	ND	5.2	0.69 u	ıg/Kg	☼	10/30/15 00:15	11/05/15 20:08	1
Bromochloromethane	ND	5.2	0.38 u	ıg/Kg	☼	10/30/15 00:15	11/05/15 20:08	1
Dibromochloromethane	ND	5.2	0.67 u	ıg/Kg	.	10/30/15 00:15	11/05/15 20:08	1
Chloroethane	ND	5.2	1.2 u	ıg/Kg	☼	10/30/15 00:15	11/05/15 20:08	1
Chloroform	ND	5.2	0.32 u	ıg/Kg	☼	10/30/15 00:15	11/05/15 20:08	1
Chloromethane	ND	5.2	0.32 u	ıg/Kg		10/30/15 00:15	11/05/15 20:08	1
cis-1,2-Dichloroethene	ND	5.2	0.67 u		☼	10/30/15 00:15	11/05/15 20:08	1
cis-1,3-Dichloropropene	ND	5.2	0.75 u	ıg/Kg	☼	10/30/15 00:15	11/05/15 20:08	1
Cyclohexane	ND	5.2	0.73 u	ıg/Kg		10/30/15 00:15	11/05/15 20:08	1
Bromodichloromethane	ND	5.2	0.70 u	ıg/Kg	☼	10/30/15 00:15	11/05/15 20:08	1
Dichlorodifluoromethane	ND	5.2	0.43 u	ıg/Kg	☼	10/30/15 00:15	11/05/15 20:08	1
Ethylbenzene	ND	5.2	0.36 u	ıg/Kg	.	10/30/15 00:15	11/05/15 20:08	1
1,2-Dibromoethane (EDB)	ND	5.2	0.67 u		☼	10/30/15 00:15	11/05/15 20:08	1
Isopropylbenzene	ND	5.2	0.79 u	ıg/Kg	☼	10/30/15 00:15	11/05/15 20:08	1
Methyl acetate	ND	5.2	3.2 u	ıg/Kg		10/30/15 00:15	11/05/15 20:08	1
2-Butanone (MEK)	ND	26	1.9 u	ıg/Kg	☼	10/30/15 00:15	11/05/15 20:08	1
4-Methyl-2-pentanone (MIBK)	ND	26	1.7 u		₩		11/05/15 20:08	1
Methyl tert-butyl ether	ND	5.2	0.51 u			10/30/15 00:15	11/05/15 20:08	1
Methylcyclohexane	ND	5.2	0.79 u		₩		11/05/15 20:08	1
Methylene Chloride	ND	5.2	2.4 u		₩		11/05/15 20:08	1
Styrene	ND	5.2	0.26 u				11/05/15 20:08	1
Totrophlaraethana	ND	- 0	0.70		ж.	40/00/45 00:45	44/05/45 00:00	

TestAmerica Buffalo

☼ 10/30/15 00:15 11/05/15 20:08

10/30/15 00:15 11/05/15 20:08

10/30/15 00:15 11/05/15 20:08

☼ 10/30/15 00:15 11/05/15 20:08

☼ 10/30/15 00:15 11/05/15 20:08

10/30/15 00:15 11/05/15 20:08

5.2

5.2

5.2

5.2

5.2

5.2

0.70 ug/Kg

0.39 ug/Kg

0.54 ug/Kg

2.3 ug/Kg

1.1 ug/Kg

0.49 ug/Kg

ND

ND

ND

ND

ND

ND

2

3

5

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 13:45

Date Received: 10/29/15 09:00

Percent Solids

Client Sample ID: SMWU7-SS-BLDG34-03

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-18

Matrix: Solid

Percent Solids: 98.0

10/29/15 22:21

Analyte	Result	Qualifier	F	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5	.2	0.64	ug/Kg	₩	10/30/15 00:15	11/05/15 20:08	1
Xylenes, Total	ND		•	10	0.88	ug/Kg	≎	10/30/15 00:15	11/05/15 20:08	1
Tetrahydrofuran	ND			10	3.0	ug/Kg	₽	10/30/15 00:15	11/05/15 20:08	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	1	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	8.2	TJ	ug/Kg	<u>₩</u> -	4.	02		10/30/15 00:15	11/05/15 20:08	1
Unknown	5.6	TJ	ug/Kg	₽	4.	20		10/30/15 00:15	11/05/15 20:08	1
Unknown	15	TJ	ug/Kg	☼	4.	51		10/30/15 00:15	11/05/15 20:08	1
Unknown	7.2	ΤJ	ug/Kg	\$	4.	73		10/30/15 00:15	11/05/15 20:08	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	107	-	60 - 140)				10/30/15 00:15	11/05/15 20:08	1
1,2-Dichloroethane-d4 (Surr)	99		64 - 126	ĵ				10/30/15 00:15	11/05/15 20:08	1
Toluene-d8 (Surr)	104		71 - 125	5				10/30/15 00:15	11/05/15 20:08	1
4-Bromofluorobenzene (Surr)	100		72 - 126	5				10/30/15 00:15	11/05/15 20:08	1
General Chemistry										
Analyte	Result	Qualifier	F	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	2.0		0.	10	0.10	%			10/29/15 22:21	

0.10

0.10 %

98

TestAmerica Buffalo

4

5

9

11

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 14:00 Date Received: 10/29/15 09:00

Client Sample ID: SMWU1-SS-TP01-100

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-19

Lab	oumpic 15. 400-30114-13
	Matrix: Solid
	Percent Solids: 88.8

Method: 8260C - Volatile Orgar Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	4.7		ug/Kg	<u>\$</u>		11/05/15 20:34	
1,1,2,2-Tetrachloroethane	ND	4.7		ug/Kg	₩.		11/05/15 20:34	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.7		ug/Kg	<u>.</u> .		11/05/15 20:34	
1,1,2-Trichloroethane	ND	4.7		ug/Kg	₩.		11/05/15 20:34	
1,1-Dichloroethane	ND	4.7		ug/Kg	*		11/05/15 20:34	
1,1-Dichloroethene	ND	4.7		ug/Kg	, .		11/05/15 20:34	
1,2,3-Trichlorobenzene	ND	4.7		ug/Kg	₩		11/05/15 20:34	
1,2,4-Trichlorobenzene	ND	4.7		ug/Kg	☼	10/30/15 00:15	11/05/15 20:34	
1,2-Dibromo-3-Chloropropane	ND	4.7	2.3	ug/Kg	≎	10/30/15 00:15	11/05/15 20:34	
1,2-Dichlorobenzene	ND	4.7	0.37	ug/Kg	₽	10/30/15 00:15	11/05/15 20:34	
1,2-Dichloroethane	ND	4.7	0.23	ug/Kg	☼	10/30/15 00:15	11/05/15 20:34	
1,2-Dichloropropane	ND	4.7	2.3	ug/Kg	☼	10/30/15 00:15	11/05/15 20:34	
1,3-Dichlorobenzene	ND	4.7	0.24	ug/Kg	₽	10/30/15 00:15	11/05/15 20:34	
1,4-Dichlorobenzene	ND	4.7	0.66	ug/Kg	₩	10/30/15 00:15	11/05/15 20:34	
1,4-Dioxane	ND	94	20	ug/Kg	☼	10/30/15 00:15	11/05/15 20:34	
2-Hexanone	ND	23	2.3	ug/Kg		10/30/15 00:15	11/05/15 20:34	
Acetone	28	23	3.9	ug/Kg	≎	10/30/15 00:15	11/05/15 20:34	
Benzene	ND	4.7	0.23	ug/Kg	₩	10/30/15 00:15	11/05/15 20:34	
Bromoform	ND	4.7		ug/Kg		10/30/15 00:15	11/05/15 20:34	
Bromomethane	ND	4.7		ug/Kg	₩	10/30/15 00:15	11/05/15 20:34	
Carbon disulfide	ND	4.7		ug/Kg	≎	10/30/15 00:15	11/05/15 20:34	
Carbon tetrachloride	ND	4.7		ug/Kg	 \$		11/05/15 20:34	
Chlorobenzene	ND	4.7		ug/Kg	☼		11/05/15 20:34	
Bromochloromethane	ND	4.7		ug/Kg	☼		11/05/15 20:34	
Dibromochloromethane	ND	4.7		ug/Kg			11/05/15 20:34	
Chloroethane	ND	4.7		ug/Kg	₩		11/05/15 20:34	
Chloroform	ND	4.7		ug/Kg	₩		11/05/15 20:34	
Chloromethane	ND	4.7		ug/Kg			11/05/15 20:34	
cis-1,2-Dichloroethene	ND	4.7		ug/Kg ug/Kg	₩		11/05/15 20:34	
cis-1,3-Dichloropropene	ND	4.7		ug/Kg ug/Kg	₩		11/05/15 20:34	
				ug/Kg ug/Kg			11/05/15 20:34	
Cyclohexane Bromodichloromethane	ND ND	4.7		0 0	☆			
		4.7		ug/Kg			11/05/15 20:34	
Dichlorodifluoromethane	ND	4.7		ug/Kg			11/05/15 20:34	
Ethylbenzene	ND	4.7		ug/Kg	φ.		11/05/15 20:34	
1,2-Dibromoethane (EDB)	ND	4.7		ug/Kg	ψ.		11/05/15 20:34	
Isopropylbenzene	ND	4.7		ug/Kg	<u>.</u> .		11/05/15 20:34	
Methyl acetate	ND	4.7		ug/Kg	Đ.		11/05/15 20:34	
2-Butanone (MEK)	ND	23		ug/Kg	: :		11/05/15 20:34	
4-Methyl-2-pentanone (MIBK)	ND	23		ug/Kg			11/05/15 20:34	
Methyl tert-butyl ether	ND	4.7	0.46	ug/Kg	≎		11/05/15 20:34	
Methylcyclohexane	ND	4.7	0.71	ug/Kg	☼	10/30/15 00:15	11/05/15 20:34	
Methylene Chloride	ND	4.7	2.2	ug/Kg		10/30/15 00:15	11/05/15 20:34	
Styrene	0.29 J	4.7		ug/Kg	₽	10/30/15 00:15	11/05/15 20:34	
Tetrachloroethene	ND	4.7	0.63	ug/Kg	₩	10/30/15 00:15	11/05/15 20:34	
Toluene	0.62 J	4.7	0.35	ug/Kg	₩	10/30/15 00:15	11/05/15 20:34	
trans-1,2-Dichloroethene	ND	4.7	0.48	ug/Kg	₩	10/30/15 00:15	11/05/15 20:34	
trans-1,3-Dichloropropene	ND	4.7		ug/Kg	₩	10/30/15 00:15	11/05/15 20:34	
Trichloroethene	ND	4.7		ug/Kg	₩	10/30/15 00:15	11/05/15 20:34	
Trichlorofluoromethane	ND	4.7		ug/Kg			11/05/15 20:34	

TestAmerica Buffalo

3

5

7

9

11

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 14:00

Date Received: 10/29/15 09:00

Client Sample ID: SMWU1-SS-TP01-100

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-19

Matrix: Solid

Percent Solids: 88.8

anic Compo	unds by (GC/MS (Co	ntinu	ed)					
Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		4.7		0.57	ug/Kg	\	10/30/15 00:15	11/05/15 20:34	1
2.5	J	9.4		0.79	ug/Kg	₩	10/30/15 00:15	11/05/15 20:34	1
ND		9.4		2.7	ug/Kg	\$	10/30/15 00:15	11/05/15 20:34	1
Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
4.7	TJ	ug/Kg	\	3.	.72		10/30/15 00:15	11/05/15 20:34	1
7.5	TJ	ug/Kg	₩	4.	.02		10/30/15 00:15	11/05/15 20:34	1
31	ΤJ	ug/Kg	₩	4.	.34		10/30/15 00:15	11/05/15 20:34	1
%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
90		60 - 140					10/30/15 00:15	11/05/15 20:34	1
106		64 - 126					10/30/15 00:15	11/05/15 20:34	1
102		71 - 125					10/30/15 00:15	11/05/15 20:34	1
100		72 - 126					10/30/15 00:15	11/05/15 20:34	1
	Result ND 2.5 ND Est. Result 4.7 7.5 31 %Recovery 90 106 102	Result Qualifier ND 2.5 J ND	Result Qualifier RL	Result Qualifier RL	ND	Result ND Qualifier RL 4.7 MDL unit ug/Kg ug/Kg 2.5 J 9.4 0.79 ug/Kg ND 9.4 2.7 ug/Kg Est. Result 4.7 TJ ug/Kg Unit ug/Kg D RT 3.72 7.5 TJ ug/Kg 4.02 31 TJ ug/Kg 4.34 %Recovery 90 Qualifier Limits 60 - 140 106 64 - 126 102 71 - 125	Result ND Qualifier RL 4.7 MDL unit ug/Kg D wg/Kg 2.5 J 9.4 0.79 ug/Kg □ ND 9.4 2.7 ug/Kg □ Est. Result 4.7 TJ ug/Kg □ RT CAS No. 4.7 TJ ug/Kg □ 4.02 31 TJ ug/Kg □ 4.34 **Recovery 90 and 106 60 - 140 60 - 140 106 64 - 126 71 - 125	Result ND Qualifier RL 4.7 MDL unit ug/Kg D 40/30/15 00:15 2.5 J 9.4 0.79 ug/Kg 10/30/15 00:15 ND 9.4 2.7 ug/Kg 10/30/15 00:15 Est. Result 4.7 TJ Unit ug/Kg D RT CAS No. Prepared 4.7 TJ ug/Kg 3.72 10/30/15 00:15 7.5 TJ ug/Kg 4.02 10/30/15 00:15 31 TJ ug/Kg 4.34 10/30/15 00:15 %Recovery 90 Qualifier Limits 60 - 140 Frepared 10/30/15 00:15 106 64 - 126 102 10/30/15 00:15 10/30/15 00:15 102 71 - 125 10/30/15 00:15	Result ND Qualifier RL 4.7 MDL ug/Kg Unit ug/Kg D 10/30/15 00:15 Analyzed 11/05/15 20:34 2.5 J 9.4 0.79 ug/Kg 10/30/15 00:15 11/05/15 20:34 ND 9.4 2.7 ug/Kg 10/30/15 00:15 11/05/15 20:34 Est. Result Qualifier Unit Ug/Kg D RT CAS No. Prepared Prepar

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		950	140	ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	5
bis (2-chloroisopropyl) ether	ND		950	190	ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	5
2,4,5-Trichlorophenol	ND		950	260	ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	5
2,4,6-Trichlorophenol	ND		950	190	ug/Kg	≎	11/04/15 07:44	11/09/15 16:32	5
2,4-Dichlorophenol	ND		950	100	ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	5
2,4-Dimethylphenol	ND		950	230	ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	5
2,4-Dinitrophenol	ND		9300	4400	ug/Kg	≎	11/04/15 07:44	11/09/15 16:32	5
2,4-Dinitrotoluene	ND		950	200	ug/Kg	₩	11/04/15 07:44	11/09/15 16:32	5
2,6-Dinitrotoluene	ND		950	110	ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	5
2-Chloronaphthalene	ND		950	160	ug/Kg	₩	11/04/15 07:44	11/09/15 16:32	5
2-Chlorophenol	ND		950	170	ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	5
2-Methylnaphthalene	ND		950	190	ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	5
2-Methylphenol	ND		950	110	ug/Kg	≎	11/04/15 07:44	11/09/15 16:32	5
2-Nitroaniline	ND		1900	140	ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	5
2-Nitrophenol	ND		950	270	ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	5
3,3'-Dichlorobenzidine	ND		1900	1100	ug/Kg	≎	11/04/15 07:44	11/09/15 16:32	5
3-Nitroaniline	ND		1900	260	ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	5
4,6-Dinitro-2-methylphenol	ND		1900	950	ug/Kg	₩	11/04/15 07:44	11/09/15 16:32	5
4-Bromophenyl phenyl ether	ND		950	130	ug/Kg	₩	11/04/15 07:44	11/09/15 16:32	5
4-Chloro-3-methylphenol	ND		950	240	ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	5
4-Chloroaniline	ND		950	240	ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	5
4-Chlorophenyl phenyl ether	ND		950	120	ug/Kg	₩	11/04/15 07:44	11/09/15 16:32	5
4-Methylphenol	ND		1900	110	ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	5
4-Nitroaniline	ND		1900	500	ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	5
4-Nitrophenol	ND		1900	670	ug/Kg	₽	11/04/15 07:44	11/09/15 16:32	5
Acenaphthene	ND		950	140	ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	5
Acenaphthylene	ND		950	120	ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	5
Acetophenone	ND		950	130	ug/Kg	≎	11/04/15 07:44	11/09/15 16:32	5
Anthracene	ND		950	240	ug/Kg	₩	11/04/15 07:44	11/09/15 16:32	5
Atrazine	ND		950	330	ug/Kg	₩	11/04/15 07:44	11/09/15 16:32	5
Benzaldehyde	ND		950	760	ug/Kg	₩	11/04/15 07:44	11/09/15 16:32	5
Benzo(a)anthracene	ND		950	95	ug/Kg	₩	11/04/15 07:44	11/09/15 16:32	5
Benzo(a)pyrene	ND		950	140	ug/Kg	₩	11/04/15 07:44	11/09/15 16:32	5

TestAmerica Buffalo

Page 56 of 147

3

<u>+</u>

6

8

10

12

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Client Sample ID: SMWU1-SS-TP01-100

Lab Sample ID: 480-90114-19 Date Collected: 10/28/15 14:00

Matrix: Solid Date Received: 10/29/15 09:00 Percent Solids: 88.8

Analyte		Qualifier	RL			Unit	D	Prepared	Analyzed	Dil Fa
Benzo(b)fluoranthene	ND		950			ug/Kg			11/09/15 16:32	
Benzo(g,h,i)perylene	ND		950			ug/Kg	₽		11/09/15 16:32	
Benzo(k)fluoranthene	ND		950			ug/Kg			11/09/15 16:32	
Bis(2-chloroethoxy)methane	ND		950			ug/Kg	\$		11/09/15 16:32	
Bis(2-chloroethyl)ether	ND		950			ug/Kg	\$		11/09/15 16:32	
Bis(2-ethylhexyl) phthalate	ND		950			ug/Kg			11/09/15 16:32	
Butyl benzyl phthalate	ND		950			ug/Kg	\$		11/09/15 16:32	;
Caprolactam	ND		950			ug/Kg	\$		11/09/15 16:32	;
Carbazole	ND		950			ug/Kg			11/09/15 16:32	
Chrysene	ND		950			ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	
Di-n-butyl phthalate	ND		950			ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	:
Di-n-octyl phthalate	ND		950		110	ug/Kg		11/04/15 07:44	11/09/15 16:32	
Dibenz(a,h)anthracene	ND		950			ug/Kg	☼		11/09/15 16:32	
Dibenzofuran	ND		950			ug/Kg	**		11/09/15 16:32	:
Diethyl phthalate	ND		950			ug/Kg			11/09/15 16:32	
Dimethyl phthalate	ND		950			ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	;
Fluoranthene	ND		950		100	ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	:
Fluorene	ND		950		110	ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	
Hexachlorobenzene	ND		950		130	ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	;
Hexachlorobutadiene	ND		950			ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	
Hexachlorocyclopentadiene	ND		950		130	ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	
Hexachloroethane	ND		950		120	ug/Kg	≎	11/04/15 07:44	11/09/15 16:32	;
Indeno(1,2,3-cd)pyrene	ND		950		120	ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	
Isophorone	ND		950		200	ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	
N-Nitrosodi-n-propylamine	ND		950		160	ug/Kg	≎	11/04/15 07:44	11/09/15 16:32	
N-Nitrosodiphenylamine	ND		950		770	ug/Kg	₩	11/04/15 07:44	11/09/15 16:32	
Naphthalene	ND		950		120	ug/Kg	₩	11/04/15 07:44	11/09/15 16:32	
Nitrobenzene	ND		950			ug/Kg	≎	11/04/15 07:44	11/09/15 16:32	
Pentachlorophenol	ND		1900		950	ug/Kg	₩	11/04/15 07:44	11/09/15 16:32	
Phenanthrene	ND		950		140	ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	
Phenol	ND		950		150	ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	
Pyrene	ND		950		110	ug/Kg	☼	11/04/15 07:44	11/09/15 16:32	
Dimethylformamide	ND		3700		420	ug/Kg	₩	11/04/15 07:44	11/09/15 16:32	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	1	RT	CAS No.	Prepared	Analyzed	Dil Fa
Unknown	2900	TJ	ug/Kg	\	2.	05		11/04/15 07:44	11/09/15 16:32	
Unknown	1800	TJ	ug/Kg	₩	2.	17		11/04/15 07:44	11/09/15 16:32	
Unknown	1200	TJ	ug/Kg	₩	4.	67		11/04/15 07:44	11/09/15 16:32	
Benzyl Alcohol	8000	TJN	ug/Kg	₩	6.	88	100-51-6	11/04/15 07:44	11/09/15 16:32	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	47		39 - 146					11/04/15 07:44	11/09/15 16:32	-
2-Fluorobiphenyl	99		37 - 120					11/04/15 07:44	11/09/15 16:32	
2-Fluorophenol	77		18 - 120					11/04/15 07:44	11/09/15 16:32	
Nitrobenzene-d5	81		34 - 132					11/04/15 07:44	11/09/15 16:32	

TestAmerica Buffalo

11/04/15 07:44 11/09/15 16:32

11/04/15 07:44 11/09/15 16:32

65 - 153

11 - 120

107

83

p-Terphenyl-d14 Phenol-d5

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

DCB Decachlorobiphenyl

Client Sample ID: SMWU1-SS-TP01-100

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-19

10/30/15 08:37 10/30/15 21:36

Date Collected: 10/28/15 14:00	Matrix: Solid
Date Received: 10/29/15 09:00	Percent Solids: 88.8
Mothod: 8015D - Nonhalogonated Organic Compounds - Direct Injection (GC) - Soluble	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		0.97	0.15	mg/Kg	- -		10/31/15 11:36	1
Isobutyl alcohol	ND		0.97	0.25	mg/Kg	₩		10/31/15 11:36	1
Methanol	1.9		0.97	0.29	mg/Kg	☼		10/31/15 11:36	1
n-Butanol	ND		0.97	0.23	mg/Kg	ф.		10/31/15 11:36	1
Propanol	0.15	J	0.97	0.15	mg/Kg	☼		10/31/15 11:36	1
2-Butanol	ND		0.97	0.16	mg/Kg	₩		10/31/15 11:36	1
Isopropyl alcohol	ND		0.97	0.24	mg/Kg	ф.		10/31/15 11:36	1
t-Butyl alcohol	ND		0.97	0.26	mg/Kg	≎		10/31/15 11:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	96		30 - 137			-		10/31/15 11:36	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	250	50	ug/Kg	<u></u>	10/30/15 08:37	10/30/15 21:36	1
PCB-1221	ND	250	50	ug/Kg	☼	10/30/15 08:37	10/30/15 21:36	1
PCB-1232	ND	250	50	ug/Kg	₽	10/30/15 08:37	10/30/15 21:36	1
PCB-1242	ND	250	50	ug/Kg	₽	10/30/15 08:37	10/30/15 21:36	1
PCB-1248	ND	250	50	ug/Kg	☼	10/30/15 08:37	10/30/15 21:36	1
PCB-1254	ND	250	120	ug/Kg	₽	10/30/15 08:37	10/30/15 21:36	1
PCB-1260	ND	250	120	ug/Kg	☼	10/30/15 08:37	10/30/15 21:36	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	91	60 - 154				10/30/15 08:37	10/30/15 21:36	1

65 - 174

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.2		2.2	0.45	mg/Kg	<u> </u>	10/30/15 11:43	10/31/15 17:15	1
Barium	28.7		0.56	0.12	mg/Kg	₩	10/30/15 11:43	10/31/15 17:15	1
Cadmium	0.059	J	0.22	0.034	mg/Kg	₩	10/30/15 11:43	10/31/15 17:15	1
Chromium	8.1		0.56	0.22	mg/Kg	₩	10/30/15 11:43	10/31/15 17:15	1
Lead	57.6		1.1	0.27	mg/Kg	₩	10/30/15 11:43	10/31/15 17:15	1
Selenium	ND		4.5	0.45	mg/Kg	₩	10/30/15 11:43	10/31/15 17:15	1
Silver	ND		0.67	0.22	mg/Kg		10/30/15 11:43	10/31/15 17:15	1

Method: 7471B - Mercury (CVAA)									
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.023	0.0092	mg/Kg		11/02/15 11:10	11/02/15 13:26	1
General Chemistry									

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	11		0.10	0.10	%			10/29/15 22:21	1
Percent Solids	89		0.10	0.10	%			10/29/15 22:21	1

TestAmerica Buffalo

3

4

6

8

10

11

12

14

1 E

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 14:25

Date Received: 10/29/15 09:00

Client Sample ID: SMWU1-SS-TP02-101

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-20

Matrix: Solid
Percent Solids: 95.7

Result Qualifier	RL			D	Prepared	Analyzed	Dil Fa
				₽			
ND		0.69	ug/Kg	☼	10/30/15 01:30	11/05/15 21:00	
ND	5.3			₩	10/30/15 01:30	11/05/15 21:00	
ND	5.3	0.65	ug/Kg	₩	10/30/15 01:30	11/05/15 21:00	
ND	5.3	0.56	ug/Kg	₽	10/30/15 01:30	11/05/15 21:00	
ND	5.3	0.32	ug/Kg	₩	10/30/15 01:30	11/05/15 21:00	
ND	5.3	2.6	ug/Kg	₩	10/30/15 01:30	11/05/15 21:00	
ND	5.3	0.41	ug/Kg	₽	10/30/15 01:30	11/05/15 21:00	
ND	5.3	0.27	ug/Kg	₩	10/30/15 01:30	11/05/15 21:00	
ND	5.3	2.6	ug/Kg	₩	10/30/15 01:30	11/05/15 21:00	
ND	5.3	0.27	ug/Kg	₽	10/30/15 01:30	11/05/15 21:00	
ND	5.3	0.74	ug/Kg	☼	10/30/15 01:30	11/05/15 21:00	
ND	110	23	ug/Kg	☼	10/30/15 01:30	11/05/15 21:00	
ND	26	2.6	ug/Kg	₽	10/30/15 01:30	11/05/15 21:00	
ND	26	4.5	ug/Kg	☼	10/30/15 01:30	11/05/15 21:00	
ND	5.3	0.26	ug/Kg	☼	10/30/15 01:30	11/05/15 21:00	
ND	5.3	2.6	ug/Kg		10/30/15 01:30	11/05/15 21:00	
ND	5.3	0.48	ug/Kg	≎	10/30/15 01:30	11/05/15 21:00	
ND	5.3			☼	10/30/15 01:30	11/05/15 21:00	
ND	5.3			· · · · · · · · · · · · · · · · · · ·	10/30/15 01:30	11/05/15 21:00	
ND	5.3			☼	10/30/15 01:30	11/05/15 21:00	
ND	5.3	0.38	0 0	☼	10/30/15 01:30	11/05/15 21:00	
ND	5.3			φ.	10/30/15 01:30	11/05/15 21:00	
ND				₩	10/30/15 01:30	11/05/15 21:00	
				₩			
				₩			
				☆			
				· · · · · · · · · · · · · · · · · · ·			
				☆			
				₩			
				φ.			
				₩			
				ά			
				æ	2012014E 04.20	11/05/15 21:00	
	ND N	ND 5.3 ND 5.3 <td< td=""><td>ND 5.3 0.38 ND 5.3 0.86 ND 5.3 0.69 ND 5.3 0.65 ND 5.3 0.65 ND 5.3 0.56 ND 5.3 0.32 ND 5.3 0.32 ND 5.3 0.41 ND 5.3 0.27 ND 5.3 0.26 ND 5.3 0.26 ND 5.3 0.26 ND 5.3 0.26 ND 5.3 0.51 ND 5.3 0.51</td><td>ND</td><td>ND 5.3 0.38 ug/Kg □ ND 5.3 0.86 ug/Kg □ ND 5.3 1.2 ug/Kg □ ND 5.3 0.69 ug/Kg □ ND 5.3 0.65 ug/Kg □ ND 5.3 0.65 ug/Kg □ ND 5.3 0.65 ug/Kg □ ND 5.3 0.66 ug/Kg □ ND 5.3 0.56 ug/Kg □ ND 5.3 0.56 ug/Kg □ ND 5.3 0.41 ug/Kg □ ND 5.3 0.41 ug/Kg □ ND 5.3 0.41 ug/Kg □ ND 5.3 0.27 ug/Kg □ ND 5.3 0.24 ug/Kg □ ND 5.3 0.24 ug/Kg □ ND 5.3 <t< td=""><td> ND</td><td> ND</td></t<></td></td<>	ND 5.3 0.38 ND 5.3 0.86 ND 5.3 0.69 ND 5.3 0.65 ND 5.3 0.65 ND 5.3 0.56 ND 5.3 0.32 ND 5.3 0.32 ND 5.3 0.41 ND 5.3 0.27 ND 5.3 0.26 ND 5.3 0.26 ND 5.3 0.26 ND 5.3 0.26 ND 5.3 0.51 ND 5.3 0.51	ND	ND 5.3 0.38 ug/Kg □ ND 5.3 0.86 ug/Kg □ ND 5.3 1.2 ug/Kg □ ND 5.3 0.69 ug/Kg □ ND 5.3 0.65 ug/Kg □ ND 5.3 0.65 ug/Kg □ ND 5.3 0.65 ug/Kg □ ND 5.3 0.66 ug/Kg □ ND 5.3 0.56 ug/Kg □ ND 5.3 0.56 ug/Kg □ ND 5.3 0.41 ug/Kg □ ND 5.3 0.41 ug/Kg □ ND 5.3 0.41 ug/Kg □ ND 5.3 0.27 ug/Kg □ ND 5.3 0.24 ug/Kg □ ND 5.3 0.24 ug/Kg □ ND 5.3 <t< td=""><td> ND</td><td> ND</td></t<>	ND	ND

TestAmerica Buffalo

3

5

7

9

11

10

4 E

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Client Sample ID: SMWU1-SS-TP02-101

Date Collected: 10/28/15 14:25 Date Received: 10/29/15 09:00 Lab Sample ID: 480-90114-20

Matrix: Solid
Percent Solids: 95.7

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Coi	ntinu	ed)					
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.3		0.65	ug/Kg	<u> </u>	10/30/15 01:30	11/05/15 21:00	1
Xylenes, Total	ND		11		0.89	ug/Kg	₽	10/30/15 01:30	11/05/15 21:00	1
Tetrahydrofuran	ND		11		3.1	ug/Kg	φ	10/30/15 01:30	11/05/15 21:00	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\				10/30/15 01:30	11/05/15 21:00	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	103		60 - 140					10/30/15 01:30	11/05/15 21:00	1
1,2-Dichloroethane-d4 (Surr)	98		64 - 126					10/30/15 01:30	11/05/15 21:00	1
Toluene-d8 (Surr)	102		71 - 125					10/30/15 01:30	11/05/15 21:00	1
4-Bromofluorobenzene (Surr)	97		72 - 126					10/30/15 01:30	11/05/15 21:00	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		180	26	ug/Kg	₩	11/04/15 07:44	11/09/15 16:58	1
bis (2-chloroisopropyl) ether	ND		180	35	ug/Kg	≎	11/04/15 07:44	11/09/15 16:58	1
2,4,5-Trichlorophenol	ND		180	48	ug/Kg	≎	11/04/15 07:44	11/09/15 16:58	1
2,4,6-Trichlorophenol	ND		180	35	ug/Kg	.	11/04/15 07:44	11/09/15 16:58	1
2,4-Dichlorophenol	ND		180	19	ug/Kg	≎	11/04/15 07:44	11/09/15 16:58	1
2,4-Dimethylphenol	ND		180	43	ug/Kg	≎	11/04/15 07:44	11/09/15 16:58	1
2,4-Dinitrophenol	ND		1700	810	ug/Kg	≎	11/04/15 07:44	11/09/15 16:58	1
2,4-Dinitrotoluene	ND		180	36	ug/Kg	≎	11/04/15 07:44	11/09/15 16:58	1
2,6-Dinitrotoluene	ND		180	21	ug/Kg	₩	11/04/15 07:44	11/09/15 16:58	1
2-Chloronaphthalene	ND		180	29	ug/Kg	₽	11/04/15 07:44	11/09/15 16:58	1
2-Chlorophenol	ND		180	32	ug/Kg	≎	11/04/15 07:44	11/09/15 16:58	1
2-Methylnaphthalene	ND		180	35	ug/Kg	₩	11/04/15 07:44	11/09/15 16:58	1
2-Methylphenol	ND		180	21	ug/Kg	₽	11/04/15 07:44	11/09/15 16:58	1
2-Nitroaniline	ND		340	26	ug/Kg	≎	11/04/15 07:44	11/09/15 16:58	1
2-Nitrophenol	ND		180	50	ug/Kg	☼	11/04/15 07:44	11/09/15 16:58	1
3,3'-Dichlorobenzidine	ND		340	210	ug/Kg	☆	11/04/15 07:44	11/09/15 16:58	1
3-Nitroaniline	ND		340	49	ug/Kg	₩	11/04/15 07:44	11/09/15 16:58	1
4,6-Dinitro-2-methylphenol	ND		340	180	ug/Kg	≎	11/04/15 07:44	11/09/15 16:58	1
4-Bromophenyl phenyl ether	ND		180	25	ug/Kg	.	11/04/15 07:44	11/09/15 16:58	1
4-Chloro-3-methylphenol	ND		180	44	ug/Kg	≎	11/04/15 07:44	11/09/15 16:58	1
4-Chloroaniline	ND		180	44	ug/Kg	₩	11/04/15 07:44	11/09/15 16:58	1
4-Chlorophenyl phenyl ether	ND		180	22	ug/Kg	₽	11/04/15 07:44	11/09/15 16:58	1
4-Methylphenol	ND		340	21	ug/Kg	≎	11/04/15 07:44	11/09/15 16:58	1
4-Nitroaniline	ND		340	92	ug/Kg	₩	11/04/15 07:44	11/09/15 16:58	1
4-Nitrophenol	ND		340	120	ug/Kg	₽	11/04/15 07:44	11/09/15 16:58	1
Acenaphthene	ND		180	26	ug/Kg	≎	11/04/15 07:44	11/09/15 16:58	1
Acenaphthylene	ND		180	23	ug/Kg	≎	11/04/15 07:44	11/09/15 16:58	1
Acetophenone	ND		180	24	ug/Kg	☆	11/04/15 07:44	11/09/15 16:58	1
Anthracene	ND		180	44	ug/Kg	≎	11/04/15 07:44	11/09/15 16:58	1
Atrazine	ND		180	61	ug/Kg	≎	11/04/15 07:44	11/09/15 16:58	1
Benzaldehyde	ND		180	140	ug/Kg	☆	11/04/15 07:44	11/09/15 16:58	1
Benzo(a)anthracene	ND		180	18	ug/Kg	₩	11/04/15 07:44	11/09/15 16:58	1
Benzo(a)pyrene	ND		180	26	ug/Kg	₩	11/04/15 07:44	11/09/15 16:58	1
Benzo(b)fluoranthene	ND		180	28	ug/Kg	₽	11/04/15 07:44	11/09/15 16:58	1
Benzo(g,h,i)perylene	ND		180	19	ug/Kg	≎	11/04/15 07:44	11/09/15 16:58	1

TestAmerica Buffalo

Page 60 of 147

J

5

7

0

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 14:25

Date Received: 10/29/15 09:00

Nitrobenzene-d5

p-Terphenyl-d14

Phenol-d5

Client Sample ID: SMWU1-SS-TP02-101

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-20

Matrix: Solid

Percent Solids: 95.7

Analyte		Qualifier	RL		MDL		D	Prepared	Analyzed	Dil Fa
Benzo(k)fluoranthene	ND		180		23	ug/Kg	₩	11/04/15 07:44	11/09/15 16:58	
Bis(2-chloroethoxy)methane	ND		180		37	ug/Kg	☼	11/04/15 07:44	11/09/15 16:58	
Bis(2-chloroethyl)ether	ND		180		23	ug/Kg	☼	11/04/15 07:44	11/09/15 16:58	
Bis(2-ethylhexyl) phthalate	ND		180		60	ug/Kg	☼	11/04/15 07:44	11/09/15 16:58	
Butyl benzyl phthalate	ND		180		29	ug/Kg	₽	11/04/15 07:44	11/09/15 16:58	
Caprolactam	ND		180		53	ug/Kg	☼	11/04/15 07:44	11/09/15 16:58	
Carbazole	ND		180		21	ug/Kg	☼	11/04/15 07:44	11/09/15 16:58	
Chrysene	ND		180		39	ug/Kg	☼	11/04/15 07:44	11/09/15 16:58	
Di-n-butyl phthalate	ND		180		30	ug/Kg	☼	11/04/15 07:44	11/09/15 16:58	
Di-n-octyl phthalate	ND		180		21	ug/Kg	₩	11/04/15 07:44	11/09/15 16:58	
Dibenz(a,h)anthracene	ND		180		31	ug/Kg	₩	11/04/15 07:44	11/09/15 16:58	
Dibenzofuran	ND		180		21	ug/Kg	₩	11/04/15 07:44	11/09/15 16:58	
Diethyl phthalate	ND		180		23	ug/Kg	☼	11/04/15 07:44	11/09/15 16:58	
Dimethyl phthalate	ND		180		21	ug/Kg	₩.	11/04/15 07:44	11/09/15 16:58	
Fluoranthene	ND		180		19	ug/Kg	☼	11/04/15 07:44	11/09/15 16:58	
Fluorene	ND		180		21	ug/Kg	☼	11/04/15 07:44	11/09/15 16:58	
Hexachlorobenzene	ND		180		24	ug/Kg	\$	11/04/15 07:44	11/09/15 16:58	
Hexachlorobutadiene	ND		180		26	ug/Kg	₩	11/04/15 07:44	11/09/15 16:58	
Hexachlorocyclopentadiene	ND		180		24	ug/Kg	₩	11/04/15 07:44	11/09/15 16:58	
Hexachloroethane	ND		180		23	ug/Kg	₽	11/04/15 07:44	11/09/15 16:58	
Indeno(1,2,3-cd)pyrene	ND		180		22	ug/Kg	☼	11/04/15 07:44	11/09/15 16:58	
Isophorone	ND		180		37	ug/Kg	₩	11/04/15 07:44	11/09/15 16:58	
N-Nitrosodi-n-propylamine	ND		180		30	ug/Kg	₽	11/04/15 07:44	11/09/15 16:58	
N-Nitrosodiphenylamine	ND		180		140	ug/Kg	☼	11/04/15 07:44	11/09/15 16:58	
Naphthalene	ND		180		23	ug/Kg	₩	11/04/15 07:44	11/09/15 16:58	
Nitrobenzene	ND		180		20	ug/Kg	₽	11/04/15 07:44	11/09/15 16:58	
Pentachlorophenol	ND		340		180	ug/Kg	₩	11/04/15 07:44	11/09/15 16:58	
Phenanthrene	ND		180		26	ug/Kg	₩	11/04/15 07:44	11/09/15 16:58	
Phenol	ND		180		27	ug/Kg		11/04/15 07:44	11/09/15 16:58	
Pyrene	ND		180		21	ug/Kg	₩	11/04/15 07:44	11/09/15 16:58	
Dimethylformamide	ND		680		78	ug/Kg	₩	11/04/15 07:44	11/09/15 16:58	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	ı	R <i>T</i>	CAS No.	Prepared	Analyzed	Dil F
Unknown	980	TJ	ug/Kg	\	1.	88		11/04/15 07:44	11/09/15 16:58	
Unknown	470	TJ	ug/Kg	☼	2.	06		11/04/15 07:44	11/09/15 16:58	
Unknown	1100	TJ	ug/Kg	☼	2.	17		11/04/15 07:44	11/09/15 16:58	
Ethane, 1,1,2-trichloro-	180	TJN	ug/Kg		3.	77	79-00-5	11/04/15 07:44	11/09/15 16:58	
Unknown	830	TJ	ug/Kg	₩	4.	66		11/04/15 07:44	11/09/15 16:58	
Unknown Benzene Derivative	200	TJ	ug/Kg	₩	5.	15		11/04/15 07:44	11/09/15 16:58	
Ethane, 1,1,2,2-tetrachloro-	380	TJN	ug/Kg	₩	5.	70	79-34-5	11/04/15 07:44	11/09/15 16:58	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil F
2,4,6-Tribromophenol	87		39 - 146					•	11/09/15 16:58	
2-Fluorobiphenyl	81		37 - 120						11/09/15 16:58	
2-Fluorophenol	68		18 - 120						11/09/15 16:58	

TestAmerica Buffalo

11/04/15 07:44 11/09/15 16:58

11/04/15 07:44 11/09/15 16:58

11/04/15 07:44 11/09/15 16:58

34 - 132

65 - 153

11 - 120

70

104

73

3

4

6

8

10

12

14

RL

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Percent Solids: 95.7

Analyzed

10/31/15 11:43

10/31/15 11:43

10/31/15 11:43

10/31/15 11:43

10/31/15 11:43

10/31/15 11:43

10/31/15 11:43

10/31/15 11:43

Analyzed

10/31/15 11:43

Analyzed

10/30/15 22:26

10/30/15 22:26

10/30/15 22:26

10/30/15 22:26

10/30/15 22:26

10/30/15 22:26

10/30/15 22:26

Lab Sample ID: 480-90114-20 **Matrix: Solid**

Dil Fac

Dil Fac

Dil Fac

Dil Fac

Analyzed	Dil Fac

Analyzed	Dil Fac
10/29/15 22:21	1
10/20/15 22:21	4

Client Sample ID: SMWU1-SS-TP02-101

Date Collected: 10/28/15 14:25

Date Received: 10/29/15 09:00

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) - Soluble **Analyte**

Ethanol

Isopropyl alcohol

Analyte

PCB-1016

PCB-1221

PCB-1232

PCB-1242

PCB-1248

PCB-1254

PCB-1260

Surrogate

Tetrachloro-m-xylene DCB Decachlorobiphenyl

Isobutyl alcohol ND Methanol 0.41 n-Butanol ND Propanol ND 2-Butanol ND

t-Butyl alcohol ND Surrogate %Recovery 2-Hexanone 102

Qualifier

Result Qualifier

 $\overline{\mathsf{ND}}$

ND

ND

ND

ND

ND

ND

99

104

%Recovery

Qualifier

Result Qualifier

 $\overline{\mathsf{ND}}$

ND

30 - 137

Limits

210

210

210

210

210

210

Limits

60 - 154

65 - 174

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography RL

MDL Unit 210

MDL Unit

0.25 mg/Kg

0.29 mg/Kg

0.23 mg/Kg

0.15 mg/Kg

0.16 mg/Kg

0.24 mg/Kg

0.26 mg/Kg

mg/Kg

0.15

D

₩

₩

₩

ф

₩

₽

D

₩

Prepared

Prepared

Prepared

10/30/15 08:37

10/30/15 08:37

10/30/15 08:37

10/30/15 08:37

10/30/15 08:37

10/30/15 08:37

10/30/15 08:37

ug/Kg 41 ug/Kg 41 ug/Kg 41 ug/Kg

ug/Kg 41 98 ug/Kg ug/Kg

Prepared Analyzed 10/30/15 08:37

10/30/15 22:26 10/30/15 08:37 10/30/15 22:26

Method: 6010C - Metals (ICP)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.83	J	2.1	0.41	mg/Kg	₩	10/30/15 11:43	10/31/15 17:28	1
Barium	11.2		0.52	0.11	mg/Kg	☼	10/30/15 11:43	10/31/15 17:28	1
Cadmium	0.038	J	0.21	0.031	mg/Kg	☼	10/30/15 11:43	10/31/15 17:28	1
Chromium	3.7		0.52	0.21	mg/Kg	₽	10/30/15 11:43	10/31/15 17:28	1
Lead	1.6		1.0	0.25	mg/Kg	☼	10/30/15 11:43	10/31/15 17:28	1
Selenium	ND		4.1	0.41	mg/Kg	☼	10/30/15 11:43	10/31/15 17:28	1
Silver	ND		0.62	0.21	ma/Ka		10/30/15 11:43	10/31/15 17:28	1

Method: 7471B - Mercury (CVAA)

D Analyte Result Qualifier RL **MDL** Unit Prepared 11/02/15 11:10 11/02/15 13:27 Mercury ND 0.021 0.0084 mg/Kg

General Chemistry

Analyte Unit Result Qualifier RL RL D Prepared 0.10 0.10 % **Percent Moisture** 4.3 **Percent Solids** 96 0.10 0.10 10/29/15 22:21

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 14:50

Date Received: 10/29/15 09:00

Toluene

Trichloroethene

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

Client Sample ID: SMWU1-SS-TP03-102

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-21

Matrix: Solid Percent Solids: 89.3

Analyte	Result (Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		4.6		ug/Kg	<u> </u>	10/30/15 01:30	11/05/15 21:26	1
1,1,2,2-Tetrachloroethane	ND		4.6	0.74	ug/Kg	≎	10/30/15 01:30	11/05/15 21:26	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.6	1.0	ug/Kg	₽	10/30/15 01:30	11/05/15 21:26	1
1,1,2-Trichloroethane	ND		4.6	0.60	ug/Kg	₽	10/30/15 01:30	11/05/15 21:26	1
1,1-Dichloroethane	ND		4.6	0.56	ug/Kg	₽	10/30/15 01:30	11/05/15 21:26	1
1,1-Dichloroethene	ND		4.6	0.56	ug/Kg	₩	10/30/15 01:30	11/05/15 21:26	1
1,2,3-Trichlorobenzene	ND		4.6	0.49	ug/Kg	₩	10/30/15 01:30	11/05/15 21:26	1
1,2,4-Trichlorobenzene	ND		4.6	0.28	ug/Kg	≎	10/30/15 01:30	11/05/15 21:26	1
1,2-Dibromo-3-Chloropropane	ND		4.6	2.3	ug/Kg	≎	10/30/15 01:30	11/05/15 21:26	1
1,2-Dichlorobenzene	ND		4.6	0.36	ug/Kg	₽	10/30/15 01:30	11/05/15 21:26	1
1,2-Dichloroethane	ND		4.6	0.23	ug/Kg	≎	10/30/15 01:30	11/05/15 21:26	1
1,2-Dichloropropane	ND		4.6	2.3	ug/Kg	₩	10/30/15 01:30	11/05/15 21:26	1
1,3-Dichlorobenzene	ND		4.6	0.24	ug/Kg	\$	10/30/15 01:30	11/05/15 21:26	1
1,4-Dichlorobenzene	ND		4.6	0.64	ug/Kg	☼	10/30/15 01:30	11/05/15 21:26	1
1,4-Dioxane	ND		92	20	ug/Kg	₩	10/30/15 01:30	11/05/15 21:26	1
2-Hexanone	ND		23	2.3	ug/Kg		10/30/15 01:30	11/05/15 21:26	1
Acetone	ND		23	3.9	ug/Kg	≎	10/30/15 01:30	11/05/15 21:26	1
Benzene	ND		4.6		ug/Kg	₩	10/30/15 01:30	11/05/15 21:26	1
Bromoform	ND		4.6	2.3	ug/Kg		10/30/15 01:30	11/05/15 21:26	
Bromomethane	ND		4.6	0.41	ug/Kg	₽	10/30/15 01:30	11/05/15 21:26	1
Carbon disulfide	ND		4.6		ug/Kg	₩	10/30/15 01:30	11/05/15 21:26	1
Carbon tetrachloride	ND		4.6		ug/Kg		10/30/15 01:30	11/05/15 21:26	1
Chlorobenzene	ND		4.6		ug/Kg	₩	10/30/15 01:30	11/05/15 21:26	1
Bromochloromethane	ND		4.6		ug/Kg	₩	10/30/15 01:30	11/05/15 21:26	1
Dibromochloromethane	ND		4.6		ug/Kg		10/30/15 01:30	11/05/15 21:26	1
Chloroethane	ND		4.6		ug/Kg	≎	10/30/15 01:30	11/05/15 21:26	1
Chloroform	ND		4.6		ug/Kg	₩		11/05/15 21:26	1
Chloromethane	ND		4.6		ug/Kg			11/05/15 21:26	1
cis-1,2-Dichloroethene	ND		4.6		ug/Kg	≎		11/05/15 21:26	1
cis-1,3-Dichloropropene	ND		4.6		ug/Kg	≎		11/05/15 21:26	1
Cyclohexane	ND		4.6		ug/Kg	 \$		11/05/15 21:26	1
Bromodichloromethane	ND		4.6		ug/Kg	₽		11/05/15 21:26	
Dichlorodifluoromethane	ND		4.6		ug/Kg	₽		11/05/15 21:26	1
Ethylbenzene	ND		4.6		ug/Kg			11/05/15 21:26	
1,2-Dibromoethane (EDB)	ND		4.6		ug/Kg	☆		11/05/15 21:26	
Isopropylbenzene	ND		4.6		ug/Kg	₩		11/05/15 21:26	
Methyl acetate	ND		4.6		ug/Kg			11/05/15 21:26	
2-Butanone (MEK)	ND		23		ug/Kg	₽		11/05/15 21:26	
4-Methyl-2-pentanone (MIBK)	ND ND		23		ug/Kg ug/Kg	₽		11/05/15 21:26	
Methyl tert-butyl ether	ND		4.6		ug/Kg ug/Kg			11/05/15 21:26	
Methylcyclohexane	ND ND		4.6		ug/Kg ug/Kg	₩		11/05/15 21:26	
	ND ND		4.6			₩			1
Methylene Chloride					ug/Kg			11/05/15 21:26 11/05/15 21:26	1
Styrene	ND		4.6		ug/Kg	₩			1
Tetrachloroethene	ND		4.6	0.61	ug/Kg	7.ft	10/30/15 01:30	11/05/15 21:26	1

TestAmerica Buffalo

10/30/15 01:30 11/05/15 21:26

☼ 10/30/15 01:30 11/05/15 21:26

☼ 10/30/15 01:30 11/05/15 21:26

☼ 10/30/15 01:30 11/05/15 21:26

Page 63 of 147

4.6

4.6

4.6

4.6

4.6

0.35 ug/Kg

0.47 ug/Kg

2.0 ug/Kg

1.0 ug/Kg

0.43 ug/Kg

0.88 JB

ND

ND

ND

ND

9

3

4

6

0

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Client Sample ID: SMWU1-SS-TP03-102 Lab Sample ID: 480-90114-21

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Coi	ntinu	ed)					
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.6		0.56	ug/Kg	<u> </u>	10/30/15 01:30	11/05/15 21:26	1
Xylenes, Total	ND		9.2		0.77	ug/Kg	₽	10/30/15 01:30	11/05/15 21:26	1
Tetrahydrofuran	ND		9.2		2.7	ug/Kg	\$	10/30/15 01:30	11/05/15 21:26	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	₩ -				10/30/15 01:30	11/05/15 21:26	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	104		60 - 140					10/30/15 01:30	11/05/15 21:26	1
1,2-Dichloroethane-d4 (Surr)	96		64 - 126					10/30/15 01:30	11/05/15 21:26	1
Toluene-d8 (Surr)	103		71 - 125					10/30/15 01:30	11/05/15 21:26	1
4-Bromofluorobenzene (Surr)	90		72 - 126					10/30/15 01:30	11/05/15 21:26	1

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		940	140	ug/Kg	<u>₩</u>	11/04/15 07:44	11/09/15 17:24	5
bis (2-chloroisopropyl) ether	ND		940	190	ug/Kg	₩	11/04/15 07:44	11/09/15 17:24	5
2,4,5-Trichlorophenol	ND		940	250	ug/Kg	☼	11/04/15 07:44	11/09/15 17:24	5
2,4,6-Trichlorophenol	ND		940	190	ug/Kg	₩	11/04/15 07:44	11/09/15 17:24	5
2,4-Dichlorophenol	ND		940	100	ug/Kg	≎	11/04/15 07:44	11/09/15 17:24	5
2,4-Dimethylphenol	ND		940	230	ug/Kg	≎	11/04/15 07:44	11/09/15 17:24	5
2,4-Dinitrophenol	ND		9200	4300	ug/Kg	☆	11/04/15 07:44	11/09/15 17:24	5
2,4-Dinitrotoluene	ND		940	190	ug/Kg	☆	11/04/15 07:44	11/09/15 17:24	5
2,6-Dinitrotoluene	ND		940	110	ug/Kg	☆	11/04/15 07:44	11/09/15 17:24	5
2-Chloronaphthalene	ND		940	150	ug/Kg	\$	11/04/15 07:44	11/09/15 17:24	5
2-Chlorophenol	ND		940	170	ug/Kg	₩	11/04/15 07:44	11/09/15 17:24	5
2-Methylnaphthalene	ND		940	190	ug/Kg	₩	11/04/15 07:44	11/09/15 17:24	5
2-Methylphenol	ND		940	110	ug/Kg		11/04/15 07:44	11/09/15 17:24	5
2-Nitroaniline	ND		1800	140	ug/Kg	₩	11/04/15 07:44	11/09/15 17:24	5
2-Nitrophenol	ND		940	270	ug/Kg	≎	11/04/15 07:44	11/09/15 17:24	5
3,3'-Dichlorobenzidine	ND		1800	1100	ug/Kg	☆	11/04/15 07:44	11/09/15 17:24	5
3-Nitroaniline	ND		1800	260	ug/Kg	₩	11/04/15 07:44	11/09/15 17:24	5
4,6-Dinitro-2-methylphenol	ND		1800	940	ug/Kg	₽	11/04/15 07:44	11/09/15 17:24	5
4-Bromophenyl phenyl ether	ND		940	130	ug/Kg	☆	11/04/15 07:44	11/09/15 17:24	5
4-Chloro-3-methylphenol	ND		940	230	ug/Kg	₽	11/04/15 07:44	11/09/15 17:24	5
4-Chloroaniline	ND		940	230	ug/Kg	≎	11/04/15 07:44	11/09/15 17:24	5
4-Chlorophenyl phenyl ether	ND		940	120	ug/Kg		11/04/15 07:44	11/09/15 17:24	5
4-Methylphenol	ND		1800	110	ug/Kg	≎	11/04/15 07:44	11/09/15 17:24	5
4-Nitroaniline	ND		1800	490	ug/Kg	≎	11/04/15 07:44	11/09/15 17:24	5
4-Nitrophenol	ND		1800	660	ug/Kg	\$	11/04/15 07:44	11/09/15 17:24	5
Acenaphthene	ND		940	140	ug/Kg	₽	11/04/15 07:44	11/09/15 17:24	5
Acenaphthylene	ND		940	120	ug/Kg	≎	11/04/15 07:44	11/09/15 17:24	5
Acetophenone	ND		940	130	ug/Kg	ф.	11/04/15 07:44	11/09/15 17:24	5
Anthracene	ND		940	230	ug/Kg	₽	11/04/15 07:44	11/09/15 17:24	5
Atrazine	ND		940	330	ug/Kg	₩	11/04/15 07:44	11/09/15 17:24	5
Benzaldehyde	ND		940	750		ф.	11/04/15 07:44	11/09/15 17:24	5
Benzo(a)anthracene	ND		940		ug/Kg	₩	11/04/15 07:44	11/09/15 17:24	5
Benzo(a)pyrene	ND		940	140	ug/Kg	₩	11/04/15 07:44	11/09/15 17:24	5
Benzo(b)fluoranthene	ND		940	150	ug/Kg	· · · · · · · · · · · · · · · · · · ·	11/04/15 07:44	11/09/15 17:24	5
Benzo(g,h,i)perylene	ND		940		ug/Kg	☆	11/04/15 07:44	11/09/15 17:24	5

TestAmerica Buffalo

3

4

6

9

11

13

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Analyte

Ethanol

Isobutyl alcohol

TestAmerica Job ID: 480-90114-1

Client Sample ID: SMWU1-SS-TP03-102 Lab Sample ID: 480-90114-21

Date Collected: 10/28/15 14:50

Date Received: 10/29/15 09:00

Matrix: Solid
Percent Solids: 89.3

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil F
Benzo(k)fluoranthene	ND		940		120	ug/Kg	\	11/04/15 07:44	11/09/15 17:24	
Bis(2-chloroethoxy)methane	ND		940		200	ug/Kg	φ.	11/04/15 07:44	11/09/15 17:24	
Bis(2-chloroethyl)ether	ND		940		120	ug/Kg	☼	11/04/15 07:44	11/09/15 17:24	
Bis(2-ethylhexyl) phthalate	ND		940		320	ug/Kg	≎	11/04/15 07:44	11/09/15 17:24	
Butyl benzyl phthalate	ND		940		150	ug/Kg	ф.	11/04/15 07:44	11/09/15 17:24	
Caprolactam	ND		940		280	ug/Kg	₩	11/04/15 07:44	11/09/15 17:24	
Carbazole	ND		940			ug/Kg	₩	11/04/15 07:44	11/09/15 17:24	
Chrysene	ND		940			ug/Kg	· · · · · · · · · · · · · · · · · · ·	11/04/15 07:44	11/09/15 17:24	
Di-n-butyl phthalate	ND		940			ug/Kg	₩	11/04/15 07:44	11/09/15 17:24	
Di-n-octyl phthalate	ND		940			ug/Kg	₩	11/04/15 07:44	11/09/15 17:24	
Dibenz(a,h)anthracene	ND		940			ug/Kg	ф.	11/04/15 07:44	11/09/15 17:24	
Dibenzofuran	ND		940			ug/Kg	₩		11/09/15 17:24	
Diethyl phthalate	ND		940			ug/Kg	₩		11/09/15 17:24	
Dimethyl phthalate	ND		940			ug/Kg			11/09/15 17:24	
Fluoranthene	ND		940			ug/Kg	₩		11/09/15 17:24	
Fluorene	ND		940			ug/Kg			11/09/15 17:24	
Hexachlorobenzene	ND		940			ug/Kg			11/09/15 17:24	
Hexachlorobutadiene	ND		940			ug/Kg	☼		11/09/15 17:24	
Hexachlorocyclopentadiene	ND ND		940			ug/Kg ug/Kg	₩		11/09/15 17:24	
Hexachloroethane	ND		940			ug/Kg ug/Kg			11/09/15 17:24	
	ND ND		940				₩		11/09/15 17:24	
ndeno(1,2,3-cd)pyrene						ug/Kg	*		11/09/15 17:24	
sophorone	ND		940			ug/Kg				
N-Nitrosodi-n-propylamine	ND		940			ug/Kg	₩		11/09/15 17:24	
N-Nitrosodiphenylamine	ND		940			ug/Kg	₩		11/09/15 17:24	
Naphthalene	ND		940			ug/Kg			11/09/15 17:24	
Nitrobenzene	ND		940			ug/Kg	₩		11/09/15 17:24	
Pentachlorophenol	ND		1800			ug/Kg	₩		11/09/15 17:24	
Phenanthrene	ND		940			ug/Kg			11/09/15 17:24	
Phenol	ND		940			ug/Kg	₽		11/09/15 17:24	
Pyrene	ND		940			ug/Kg	₽		11/09/15 17:24	
Dimethylformamide	ND		3600		410	ug/Kg	₩	11/04/15 07:44	11/09/15 17:24	
Fentatively Identified Compound	Est. Result	Qualifier	Unit	D	ı	RT	CAS No.	Prepared	Analyzed	Dil F
Inknown	1000	TJ	ug/Kg	\	1.	88		11/04/15 07:44	11/09/15 17:24	
Jnknown	2600	ΤJ	ug/Kg	₩	2.	05		11/04/15 07:44	11/09/15 17:24	
Inknown	2700	TJ	ug/Kg	₩	2.	18		11/04/15 07:44	11/09/15 17:24	
Unknown	950	TJ	ug/Kg	₩	4.	67		11/04/15 07:44	11/09/15 17:24	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil F
2,4,6-Tribromophenol	83		39 - 146					11/04/15 07:44	11/09/15 17:24	-
2-Fluorobiphenyl	94		37 - 120					11/04/15 07:44	11/09/15 17:24	
2-Fluorophenol	76		18 - 120					11/04/15 07:44	11/09/15 17:24	
Nitrobenzene-d5	77		34 - 132					11/04/15 07:44	11/09/15 17:24	
o-Terphenyl-d14	97		65 - 153					11/04/15 07:44	11/09/15 17:24	
Phenol-d5	78		11 - 120					11/04/15 07:44	11/09/15 17:24	

TestAmerica Buffalo

Analyzed

10/31/15 11:51

10/31/15 11:51

RL

0.99

0.99

MDL Unit

0.15 mg/Kg

0.25 mg/Kg

D

☼

Prepared

Result Qualifier

ND

ND

Dil Fac

_

6

8

10

12

14

1 E

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 14:50

Date Received: 10/29/15 09:00

Cadmium

Chromium

Lead

Silver

Selenium

Client Sample ID: SMWU1-SS-TP03-102

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-21

☼ 10/30/15 11:43 10/31/15 17:31

* 10/30/15 11:43 10/31/15 17:31

10/30/15 11:43 10/31/15 17:31

10/30/15 11:43 10/31/15 17:31

☼ 10/30/15 11:43 10/31/15 17:31

Matrix: Solid

Percent Solids: 89.3

Method: 8015D - Nonhalo Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Methanol	ND	- Qualifier	0.99		mg/Kg	— ğ		10/31/15 11:51	1
n-Butanol	ND		0.99		mg/Kg			10/31/15 11:51	· · · · · · · · · · · · · · · · · · ·
Propanol	ND.		0.99		mg/Kg	₩.		10/31/15 11:51	
2-Butanol	ND ND		0.99		mg/Kg	₩.		10/31/15 11:51	1
Isopropyl alcohol	ND		0.99		mg/Kg			10/31/15 11:51	
t-Butyl alcohol	ND		0.99		mg/Kg	₩		10/31/15 11:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	91		30 - 137					10/31/15 11:51	1
Analyte PCR-1016		Qualifier	RL	MDL 52		D <u>∓</u>	Prepared 10/30/15 08:37	Analyzed	Dil Fac
Method: 8082A - Polychio									
PCB-1016	ND		270	52	ug/Kg	<u> </u>	10/30/15 08:37	10/30/15 22:43	1
PCB-1221	ND		270	52	ug/Kg	₩	10/30/15 08:37	10/30/15 22:43	1
PCB-1232	ND		270	52	ug/Kg	☼	10/30/15 08:37	10/30/15 22:43	1
PCB-1242	ND		270	52	ug/Kg		10/30/15 08:37	10/30/15 22:43	1
PCB-1248	ND		270	52	ug/Kg	☼	10/30/15 08:37	10/30/15 22:43	1
PCB-1254	ND		270	120	ug/Kg	☼	10/30/15 08:37	10/30/15 22:43	1
PCB-1260	ND		270	120	ug/Kg	ф.	10/30/15 08:37	10/30/15 22:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	98		60 - 154				10/30/15 08:37	10/30/15 22:43	1
DCB Decachlorobiphenyl	95		65 - 174				10/30/15 08:37	10/30/15 22:43	1
Method: 6010C - Metals (I	CP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.8		2.2	0.43	mg/Kg	\	10/30/15 11:43	10/31/15 17:31	1
Barium	49.6		0.54	0.12	mg/Kg	₩	10/30/15 11:43	10/31/15 17:31	1

Method: 7471B - Mercury (CV Analyte Mercury	•	Qualifier J	RL 0.023	MDL 0.0093		D <u>₩</u>	Prepared 11/02/15 11:10	Analyzed 11/02/15 13:29	Dil Fac
General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analvzed	Dil Fac
Percent Moisture	11		0.10	0.10	%	— <u> </u>		10/29/15 22:21	1
Percent Solids	89		0.10	0.10	%			10/29/15 22:21	1

0.22

0.54

1.1

4.3

0.65

0.11 J

11.1

7.4

ND

ND

0.032 mg/Kg

0.22 mg/Kg

0.26 mg/Kg

0.43 mg/Kg

0.22 mg/Kg

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 15:00

Date Received: 10/29/15 09:00

Trichloroethene

Trichlorofluoromethane

Client Sample ID: SMWU1-SS-TP04-103

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-22

Matrix: Solid
Percent Solids: 93.1

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
1,1,1-Trichloroethane	ND	5.1	0.37	ug/Kg	<u></u>	10/30/15 01:30	11/05/15 21:52	
1,1,2,2-Tetrachloroethane	ND	5.1	0.83	ug/Kg	₩	10/30/15 01:30	11/05/15 21:52	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.1	1.2	ug/Kg	☼	10/30/15 01:30	11/05/15 21:52	
1,1,2-Trichloroethane	ND	5.1	0.67	ug/Kg	₽	10/30/15 01:30	11/05/15 21:52	
1,1-Dichloroethane	ND	5.1	0.63	ug/Kg	☼	10/30/15 01:30	11/05/15 21:52	
1,1-Dichloroethene	ND	5.1	0.63	ug/Kg	☼	10/30/15 01:30	11/05/15 21:52	
1,2,3-Trichlorobenzene	ND	5.1	0.55	ug/Kg	φ.	10/30/15 01:30	11/05/15 21:52	
1,2,4-Trichlorobenzene	ND	5.1	0.31	ug/Kg	☼	10/30/15 01:30	11/05/15 21:52	
1,2-Dibromo-3-Chloropropane	ND	5.1	2.6	ug/Kg	☼	10/30/15 01:30	11/05/15 21:52	
,2-Dichlorobenzene	ND	5.1	0.40	ug/Kg	φ.	10/30/15 01:30	11/05/15 21:52	
1,2-Dichloroethane	ND	5.1	0.26	ug/Kg	☼	10/30/15 01:30	11/05/15 21:52	
I,2-Dichloropropane	ND	5.1		ug/Kg	☼	10/30/15 01:30	11/05/15 21:52	
I,3-Dichlorobenzene	ND	5.1	0.26	ug/Kg		10/30/15 01:30	11/05/15 21:52	
1,4-Dichlorobenzene	ND	5.1		ug/Kg	₽	10/30/15 01:30	11/05/15 21:52	
1,4-Dioxane	ND	100	22	ug/Kg	₽	10/30/15 01:30	11/05/15 21:52	
2-Hexanone	ND	26		ug/Kg	.	10/30/15 01:30	11/05/15 21:52	
Acetone	ND	26		ug/Kg	₽		11/05/15 21:52	
Benzene	ND	5.1		ug/Kg	₩	10/30/15 01:30	11/05/15 21:52	
Bromoform	ND	5.1		ug/Kg			11/05/15 21:52	
Bromomethane	ND	5.1		ug/Kg	₩		11/05/15 21:52	
Carbon disulfide	ND	5.1		ug/Kg	₽		11/05/15 21:52	
Carbon tetrachloride	ND	5.1		ug/Kg			11/05/15 21:52	
Chlorobenzene	ND	5.1		ug/Kg	₩		11/05/15 21:52	
Bromochloromethane	ND	5.1		ug/Kg	₽		11/05/15 21:52	
Dibromochloromethane	ND	5.1		ug/Kg			11/05/15 21:52	
Chloroethane	ND	5.1		ug/Kg	₩		11/05/15 21:52	
Chloroform	ND	5.1		ug/Kg	₽		11/05/15 21:52	
Chloromethane	ND	5.1		ug/Kg			11/05/15 21:52	
cis-1,2-Dichloroethene	ND ND	5.1		ug/Kg ug/Kg	₽		11/05/15 21:52	
sis-1,3-Dichloropropene	ND	5.1		ug/Kg	₽		11/05/15 21:52	
Cyclohexane	ND	5.1		ug/Kg			11/05/15 21:52	
Bromodichloromethane	ND ND	5.1		0 0	₽		11/05/15 21:52	
				ug/Kg	₩			
Dichlorodifluoromethane Ethylbenzene	ND ND	5.1 5.1		ug/Kg			11/05/15 21:52 11/05/15 21:52	
•	ND ND			ug/Kg	₩		11/05/15 21:52	
,2-Dibromoethane (EDB)		5.1		ug/Kg	₩			
sopropylbenzene	ND	5.1		ug/Kg		10/30/15 01:30		
Methyl acetate	ND	5.1		ug/Kg	₩		11/05/15 21:52	
2-Butanone (MEK)	ND	26		ug/Kg	₩.		11/05/15 21:52	
-Methyl-2-pentanone (MIBK)	ND	26		ug/Kg			11/05/15 21:52	
Methyl tert-butyl ether	ND	5.1		ug/Kg	₩		11/05/15 21:52	
Methylcyclohexane	ND	5.1		ug/Kg	₩.		11/05/15 21:52	
Methylene Chloride	ND	5.1		ug/Kg			11/05/15 21:52	
Styrene	ND	5.1		ug/Kg	₩.		11/05/15 21:52	
Tetrachloroethene	ND	5.1		ug/Kg	₩		11/05/15 21:52	
Γoluene	1.1 JB	5.1		ug/Kg	, .		11/05/15 21:52	
rans-1,2-Dichloroethene	ND	5.1		ug/Kg	₽		11/05/15 21:52	
rans-1,3-Dichloropropene	ND	5.1	2.3	ug/Kg	₽		11/05/15 21:52	
e · · · · · · · · · · · · · · · · · · ·	ND	- 4			*	40/00/45 04:00	11/05/15 01:50	

TestAmerica Buffalo

☼ 10/30/15 01:30 11/05/15 21:52

10/30/15 01:30 11/05/15 21:52

5.1

5.1

1.1 ug/Kg

0.49 ug/Kg

ND

2.7 J

<u>5</u>

9

11

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Client Sample ID: SMWU1-SS-TP04-103

Date Collected: 10/28/15 15:00 Date Received: 10/29/15 09:00 Lab Sample ID: 480-90114-22

Matrix: Solid Percent Solids: 93.1

Method: 8260C - Volatile Org Analyte	•	Qualifier	RL	ıtıııu		Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.1		0.63	ug/Kg	<u> </u>	10/30/15 01:30	11/05/15 21:52	1
Xylenes, Total	ND		10		0.86	ug/Kg	₽	10/30/15 01:30	11/05/15 21:52	1
Tetrahydrofuran	ND		10		3.0	ug/Kg	\$	10/30/15 01:30	11/05/15 21:52	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	₩ -				10/30/15 01:30	11/05/15 21:52	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	107		60 - 140					10/30/15 01:30	11/05/15 21:52	1
1,2-Dichloroethane-d4 (Surr)	102		64 - 126					10/30/15 01:30	11/05/15 21:52	1
			74 405					10/30/15 01:30	11/05/15 21:52	1
Toluene-d8 (Surr)	103		71 - 125					10/30/15 01.30	11/05/15 21.52	1

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		900	130	ug/Kg	<u>₩</u>	11/04/15 07:44	11/09/15 17:50	5
bis (2-chloroisopropyl) ether	ND		900	180	ug/Kg	₩	11/04/15 07:44	11/09/15 17:50	5
2,4,5-Trichlorophenol	ND		900	240	ug/Kg	☼	11/04/15 07:44	11/09/15 17:50	5
2,4,6-Trichlorophenol	ND		900	180	ug/Kg	₩	11/04/15 07:44	11/09/15 17:50	5
2,4-Dichlorophenol	ND		900	95	ug/Kg	≎	11/04/15 07:44	11/09/15 17:50	5
2,4-Dimethylphenol	ND		900	220	ug/Kg	≎	11/04/15 07:44	11/09/15 17:50	5
2,4-Dinitrophenol	ND	8	800	4200	ug/Kg	☆	11/04/15 07:44	11/09/15 17:50	5
2,4-Dinitrotoluene	ND		900	190	ug/Kg	☆	11/04/15 07:44	11/09/15 17:50	5
2,6-Dinitrotoluene	ND		900	110	ug/Kg	☆	11/04/15 07:44	11/09/15 17:50	5
2-Chloronaphthalene	ND		900	150	ug/Kg		11/04/15 07:44	11/09/15 17:50	5
2-Chlorophenol	ND		900	160	ug/Kg	₩	11/04/15 07:44	11/09/15 17:50	5
2-Methylnaphthalene	ND		900	180	ug/Kg	₩	11/04/15 07:44	11/09/15 17:50	5
2-Methylphenol	ND		900	110	ug/Kg		11/04/15 07:44	11/09/15 17:50	5
2-Nitroaniline	ND	1	700	130	ug/Kg	₩	11/04/15 07:44	11/09/15 17:50	5
2-Nitrophenol	ND		900	250	ug/Kg	≎	11/04/15 07:44	11/09/15 17:50	5
3,3'-Dichlorobenzidine	ND	1	700	1100	ug/Kg	☆	11/04/15 07:44	11/09/15 17:50	5
3-Nitroaniline	ND	1	700	250	ug/Kg	₩	11/04/15 07:44	11/09/15 17:50	5
4,6-Dinitro-2-methylphenol	ND	1	700	900	ug/Kg	₽	11/04/15 07:44	11/09/15 17:50	5
4-Bromophenyl phenyl ether	ND		900	130	ug/Kg	☆	11/04/15 07:44	11/09/15 17:50	5
4-Chloro-3-methylphenol	ND		900	220	ug/Kg	₩	11/04/15 07:44	11/09/15 17:50	5
4-Chloroaniline	ND		900	220	ug/Kg	≎	11/04/15 07:44	11/09/15 17:50	5
4-Chlorophenyl phenyl ether	ND		900	110	ug/Kg		11/04/15 07:44	11/09/15 17:50	5
4-Methylphenol	ND	1	700	110	ug/Kg	≎	11/04/15 07:44	11/09/15 17:50	5
4-Nitroaniline	ND	1	700	470	ug/Kg	≎	11/04/15 07:44	11/09/15 17:50	5
4-Nitrophenol	ND	1	700	630	ug/Kg	\$	11/04/15 07:44	11/09/15 17:50	5
Acenaphthene	ND		900	130	ug/Kg	₽	11/04/15 07:44	11/09/15 17:50	5
Acenaphthylene	ND		900	120	ug/Kg	≎	11/04/15 07:44	11/09/15 17:50	5
Acetophenone	ND		900	120	ug/Kg	ф.	11/04/15 07:44	11/09/15 17:50	5
Anthracene	ND		900	220	ug/Kg	₽	11/04/15 07:44	11/09/15 17:50	5
Atrazine	ND		900	310	ug/Kg	₽	11/04/15 07:44	11/09/15 17:50	5
Benzaldehyde	ND		900			ф.	11/04/15 07:44	11/09/15 17:50	5
Benzo(a)anthracene	ND		900	90	ug/Kg	₩	11/04/15 07:44	11/09/15 17:50	5
Benzo(a)pyrene	ND		900	130	ug/Kg	₩	11/04/15 07:44	11/09/15 17:50	5
Benzo(b)fluoranthene	ND		900	140	ug/Kg	· · · · · · · · · · · · · · · · · · ·	11/04/15 07:44	11/09/15 17:50	5
Benzo(g,h,i)perylene	ND		900		ug/Kg	₽	11/04/15 07:44	11/09/15 17:50	5

TestAmerica Buffalo

Page 68 of 147

-

5

6

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 15:00

Date Received: 10/29/15 09:00

Client Sample ID: SMWU1-SS-TP04-103

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-22

Matrix: Solid Percent Solids: 93.1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Analyte	_	Qualifier	ŔĹ	MDL	•	D	Prepared	Analyzed	Dil Fac
Benzo(k)fluoranthene	ND		900	120	ug/Kg	<u> </u>	11/04/15 07:44	11/09/15 17:50	5
Bis(2-chloroethoxy)methane	ND		900	190	ug/Kg	₿	11/04/15 07:44	11/09/15 17:50	5
Bis(2-chloroethyl)ether	ND		900	120	ug/Kg	☼	11/04/15 07:44	11/09/15 17:50	5
Bis(2-ethylhexyl) phthalate	ND		900	310	ug/Kg	☼	11/04/15 07:44	11/09/15 17:50	5
Butyl benzyl phthalate	ND		900	150	ug/Kg	₽	11/04/15 07:44	11/09/15 17:50	5
Caprolactam	ND		900	270	ug/Kg	☼	11/04/15 07:44	11/09/15 17:50	5
Carbazole	ND		900	110	ug/Kg	≎	11/04/15 07:44	11/09/15 17:50	5
Chrysene	ND		900	200	ug/Kg	₽	11/04/15 07:44	11/09/15 17:50	5
Di-n-butyl phthalate	ND		900	150	ug/Kg	≎	11/04/15 07:44	11/09/15 17:50	5
Di-n-octyl phthalate	ND		900	110	ug/Kg	☼	11/04/15 07:44	11/09/15 17:50	5
Dibenz(a,h)anthracene	ND		900	160	ug/Kg	☆	11/04/15 07:44	11/09/15 17:50	5
Dibenzofuran	ND		900	110	ug/Kg	₩	11/04/15 07:44	11/09/15 17:50	5
Diethyl phthalate	ND		900	120	ug/Kg	☼	11/04/15 07:44	11/09/15 17:50	5
Dimethyl phthalate	ND		900	110	ug/Kg	☆	11/04/15 07:44	11/09/15 17:50	5
Fluoranthene	120	J	900	95	ug/Kg	☼	11/04/15 07:44	11/09/15 17:50	5
Fluorene	ND		900	110	ug/Kg	₩	11/04/15 07:44	11/09/15 17:50	5
Hexachlorobenzene	ND		900	120	ug/Kg	≎	11/04/15 07:44	11/09/15 17:50	5
Hexachlorobutadiene	ND		900	130	ug/Kg	₩	11/04/15 07:44	11/09/15 17:50	5
Hexachlorocyclopentadiene	ND		900	120	ug/Kg	≎	11/04/15 07:44	11/09/15 17:50	5
Hexachloroethane	ND		900	120	ug/Kg	₽	11/04/15 07:44	11/09/15 17:50	5
Indeno(1,2,3-cd)pyrene	ND		900	110	ug/Kg	≎	11/04/15 07:44	11/09/15 17:50	5
Isophorone	ND		900	190	ug/Kg	₩	11/04/15 07:44	11/09/15 17:50	5
N-Nitrosodi-n-propylamine	ND		900	150	ug/Kg	₽	11/04/15 07:44	11/09/15 17:50	5
N-Nitrosodiphenylamine	ND		900	730	ug/Kg	☼	11/04/15 07:44	11/09/15 17:50	5
Naphthalene	ND		900	120	ug/Kg	₩	11/04/15 07:44	11/09/15 17:50	5
Nitrobenzene	ND		900	100	ug/Kg	≎	11/04/15 07:44	11/09/15 17:50	5
Pentachlorophenol	ND		1700	900	ug/Kg	₩	11/04/15 07:44	11/09/15 17:50	5
Phenanthrene	ND		900	130	ug/Kg	≎	11/04/15 07:44	11/09/15 17:50	5
Phenol	ND		900	140	ug/Kg		11/04/15 07:44	11/09/15 17:50	5
Pyrene	ND		900	110	ug/Kg	₩	11/04/15 07:44	11/09/15 17:50	5
Dimethylformamide	ND		3500	400	ug/Kg	☆	11/04/15 07:44	11/09/15 17:50	5

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	2300	TJ	ug/Kg	<u> </u>	1.87		11/04/15 07:44	11/09/15 17:50	5
Unknown	1500	TJ	ug/Kg	₩	2.04		11/04/15 07:44	11/09/15 17:50	5
Unknown	1200	TJ	ug/Kg	₩	2.16		11/04/15 07:44	11/09/15 17:50	5
Unknown	870	ΤJ	ug/Kg	₩	4.67		11/04/15 07:44	11/09/15 17:50	5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	75		39 - 146	11/04/15 07:44	11/09/15 17:50	5
2-Fluorobiphenyl	83		37 - 120	11/04/15 07:44	11/09/15 17:50	5
2-Fluorophenol	67		18 - 120	11/04/15 07:44	11/09/15 17:50	5
Nitrobenzene-d5	66		34 - 132	11/04/15 07:44	11/09/15 17:50	5
p-Terphenyl-d14	98		65 - 153	11/04/15 07:44	11/09/15 17:50	5
Phenol-d5	72		11 - 120	11/04/15 07:44	11/09/15 17:50	5

	N O - /	Compounds - Direct Injection (GC) - Soluble
Method. 00 13D -		

Michiga, ou lob - It	ominarogenatea organi	c compounds	Direct	. mjechon	· (00)	Colubic			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		1.0	0.15	mg/Kg	<u></u>		10/31/15 11:59	1
Isobutyl alcohol	ND		1.0	0.25	mg/Kg	₽		10/31/15 11:59	1

TestAmerica Buffalo

Page 69 of 147

11/16/2015

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 15:00

Date Received: 10/29/15 09:00

Percent Solids

Client Sample ID: SMWU1-SS-TP04-103

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-22

Matrix: Solid

Percent Solids: 93.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Methanol	ND		1.0	0.30	mg/Kg	<u> </u>		10/31/15 11:59	
n-Butanol	ND		1.0	0.23	mg/Kg	₽		10/31/15 11:59	
Propanol	ND		1.0	0.15	mg/Kg	☼		10/31/15 11:59	
2-Butanol	ND		1.0	0.16	mg/Kg	₽		10/31/15 11:59	
Isopropyl alcohol	ND		1.0	0.24	mg/Kg	₽		10/31/15 11:59	
t-Butyl alcohol	ND		1.0	0.27	mg/Kg	☼		10/31/15 11:59	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Hexanone	94		30 - 137					10/31/15 11:59	
Method: 8082A - Polychlorina	ated Biphen	yls (PCBs)	by Gas Chro	omatogr	aphy				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
PCB-1016	ND		210	41	ug/Kg	₩	10/30/15 08:37	10/30/15 23:00	
PCB-1221	ND		210	41	ug/Kg	₩	10/30/15 08:37	10/30/15 23:00	
PCB-1232	ND		210	41	ug/Kg	₩	10/30/15 08:37	10/30/15 23:00	
PCB-1242	ND		210	41	ug/Kg	₽	10/30/15 08:37	10/30/15 23:00	
PCB-1248	ND		210	41	ug/Kg	≎	10/30/15 08:37	10/30/15 23:00	
PCB-1254	ND		210	98	ug/Kg	☼	10/30/15 08:37	10/30/15 23:00	
PCB-1260	ND		210	98	ug/Kg	₩	10/30/15 08:37	10/30/15 23:00	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene	98		60 - 154				10/30/15 08:37	10/30/15 23:00	
DCB Decachlorobiphenyl	101		65 - 174				10/30/15 08:37	10/30/15 23:00	
Method: 6010C - Metals (ICP))								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	3.8		2.1	0.43	mg/Kg	₩	10/30/15 11:43	10/31/15 17:34	
Barium	15.3		0.53	0.12	mg/Kg	☼	10/30/15 11:43	10/31/15 17:34	
Cadmium	0.041	J	0.21	0.032	mg/Kg	₩	10/30/15 11:43	10/31/15 17:34	
Chromium	6.5		0.53	0.21	mg/Kg	₽	10/30/15 11:43	10/31/15 17:34	
Lead	8.0		1.1	0.26	mg/Kg	☼	10/30/15 11:43	10/31/15 17:34	
Selenium	ND		4.3	0.43	mg/Kg	₩	10/30/15 11:43	10/31/15 17:34	
Silver	ND		0.64	0.21	mg/Kg	☼	10/30/15 11:43	10/31/15 17:34	
Method: 7471B - Mercury (CV	/AA)								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.020	0.0082	mg/Kg		11/02/15 11:10	11/02/15 13:31	
General Chemistry									
		0 1161	ъ.		1114	_	Barra and all	A I	DH E-
Analyte	Result	Qualifier	RL	0.10	Unit	D	Prepared	Analyzed	Dil Fa

10/29/15 22:21

0.10

0.10 %

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/28/15 15:00

Client Sample ID: SMWU1-SS-TP04-200

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-23

Matrix: Solid

Analyzed	Dil Fac	5
1/05/15 22:18	1	
1/05/15 22:18	1	6
1/05/15 22:18	1	
1/05/15 22:18	1	
1/05/15 22:18	1	
1/05/15 22:18	1	Ω

Method: 8260C - Volatile Orgar	nic Compounds by GC/I	/IS						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4.5	0.33	ug/Kg	<u>₩</u>	10/30/15 01:30	11/05/15 22:18	1
1,1,2,2-Tetrachloroethane	ND	4.5	0.74	ug/Kg	☆	10/30/15 01:30	11/05/15 22:18	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.5	1.0	ug/Kg	₩	10/30/15 01:30	11/05/15 22:18	1
1,1,2-Trichloroethane	ND	4.5	0.59	ug/Kg	₩	10/30/15 01:30	11/05/15 22:18	1
1,1-Dichloroethane	ND	4.5	0.55	ug/Kg	☆	10/30/15 01:30	11/05/15 22:18	1
1,1-Dichloroethene	ND	4.5	0.56	ug/Kg	≎	10/30/15 01:30	11/05/15 22:18	1
1,2,3-Trichlorobenzene	ND	4.5	0.48	ug/Kg	₩	10/30/15 01:30	11/05/15 22:18	1
1,2,4-Trichlorobenzene	ND	4.5	0.28	ug/Kg	≎	10/30/15 01:30	11/05/15 22:18	1
1,2-Dibromo-3-Chloropropane	ND	4.5	2.3	ug/Kg	≎	10/30/15 01:30	11/05/15 22:18	1
1,2-Dichlorobenzene	ND	4.5	0.35	ug/Kg	₩.	10/30/15 01:30	11/05/15 22:18	1
1,2-Dichloroethane	ND	4.5	0.23	ug/Kg	☆	10/30/15 01:30	11/05/15 22:18	1
1,2-Dichloropropane	ND	4.5		ug/Kg	☆	10/30/15 01:30	11/05/15 22:18	1
1,3-Dichlorobenzene	ND	4.5		ug/Kg		10/30/15 01:30	11/05/15 22:18	1
1,4-Dichlorobenzene	ND	4.5		ug/Kg	₩		11/05/15 22:18	1
1,4-Dioxane	ND	91		ug/Kg	₩		11/05/15 22:18	1
2-Hexanone	ND	23		ug/Kg			11/05/15 22:18	1
Acetone	ND	23		ug/Kg	≎		11/05/15 22:18	1
Benzene	ND	4.5		ug/Kg	₩		11/05/15 22:18	1
Bromoform	ND	4.5		ug/Kg			11/05/15 22:18	1
Bromomethane	ND	4.5		ug/Kg	₩		11/05/15 22:18	1
Carbon disulfide	ND	4.5		ug/Kg	₩		11/05/15 22:18	1
Carbon tetrachloride	ND	4.5		ug/Kg			11/05/15 22:18	
Chlorobenzene	ND	4.5		ug/Kg	☆		11/05/15 22:18	1
Bromochloromethane	ND	4.5		ug/Kg ug/Kg	☼		11/05/15 22:18	1
Dibromochloromethane	ND	4.5		ug/Kg ug/Kg			11/05/15 22:18	
Chloroethane	ND	4.5		ug/Kg ug/Kg	☆		11/05/15 22:18	1
Chloroform	ND	4.5		ug/Kg ug/Kg	Ť ťř		11/05/15 22:18	1
	ND							
Chloromethane	ND ND	4.5		ug/Kg	₩		11/05/15 22:18	1
cis-1,2-Dichloroethene	ND ND	4.5		ug/Kg	₩		11/05/15 22:18	1
cis-1,3-Dichloropropene		4.5		ug/Kg			11/05/15 22:18	1
Cyclohexane	ND	4.5		ug/Kg	₩		11/05/15 22:18	1
Bromodichloromethane	ND	4.5		ug/Kg	₩		11/05/15 22:18	1
Dichlorodifluoromethane	ND	4.5		ug/Kg	* 		11/05/15 22:18	1
Ethylbenzene	ND	4.5		ug/Kg	;;; ;;		11/05/15 22:18	1
1,2-Dibromoethane (EDB)	ND	4.5		ug/Kg	₽		11/05/15 22:18	1
Isopropylbenzene	ND	4.5		ug/Kg		10/30/15 01:30		
Methyl acetate	ND	4.5		ug/Kg	₩	10/30/15 01:30		1
2-Butanone (MEK)	ND	23		ug/Kg	₩.		11/05/15 22:18	1
4-Methyl-2-pentanone (MIBK)	ND	23		ug/Kg	₩	10/30/15 01:30		1
Methyl tert-butyl ether	ND	4.5		ug/Kg	*	10/30/15 01:30		1
Methylcyclohexane	ND	4.5		ug/Kg	₩		11/05/15 22:18	1
Methylene Chloride	ND	4.5		ug/Kg	₩	10/30/15 01:30	11/05/15 22:18	1
Styrene	ND	4.5	0.23	ug/Kg	☆		11/05/15 22:18	1
Tetrachloroethene	ND	4.5		ug/Kg	₩		11/05/15 22:18	1
Toluene	1.4 JB	4.5		ug/Kg	☆	10/30/15 01:30	11/05/15 22:18	1
trans-1,2-Dichloroethene	ND	4.5	0.47	ug/Kg	₩	10/30/15 01:30	11/05/15 22:18	1
trans-1,3-Dichloropropene	ND	4.5	2.0	ug/Kg	₩	10/30/15 01:30	11/05/15 22:18	1
Trichloroethene	ND	4.5	1.0	ug/Kg	☆	10/30/15 01:30	11/05/15 22:18	1
Trichlorofluoromethane	3.3 J	4.5	0.43	ug/Kg		10/30/15 01:30	11/05/15 22:18	1

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Received: 10/29/15 09:00

TestAmerica Job ID: 480-90114-1

Client Sample ID: SMWU1-SS-TP04-200

Lab Sample ID: 480-90114-23 Date Collected: 10/28/15 15:00 **Matrix: Solid**

Percent Solids: 92.3

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.5		0.55	ug/Kg	\	10/30/15 01:30	11/05/15 22:18	1
Xylenes, Total	ND		9.1		0.76	ug/Kg	₽	10/30/15 01:30	11/05/15 22:18	1
Tetrahydrofuran	ND		9.1		2.6	ug/Kg	₽	10/30/15 01:30	11/05/15 22:18	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\tilde{\				10/30/15 01:30	11/05/15 22:18	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	109		60 - 140					10/30/15 01:30	11/05/15 22:18	1
1,2-Dichloroethane-d4 (Surr)	106		64 - 126					10/30/15 01:30	11/05/15 22:18	1
Toluene-d8 (Surr)	102		71 - 125					10/30/15 01:30	11/05/15 22:18	1
4-Bromofluorobenzene (Surr)	99		72 - 126					10/30/15 01:30	11/05/15 22:18	1
General Chemistry										
Analyte	Result	Qualifier	RL		RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	7.7		0.10		0.10	%			10/29/15 22:27	1
Percent Solids	92		0.10		0.10	%			10/29/15 22:27	1

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-24

Matrix: Water

Client Sample ID: EB-03 Date Collected: 10/28/15 16:00

Date Received: 10/29/15 09:00

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			11/07/15 13:29	1
1,1,2,2-Tetrachloroethane	ND	1.0		ug/L			11/07/15 13:29	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			11/07/15 13:29	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			11/07/15 13:29	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			11/07/15 13:29	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			11/07/15 13:29	1
1,2,3-Trichlorobenzene	ND	1.0	0.41	ug/L			11/07/15 13:29	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			11/07/15 13:29	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			11/07/15 13:29	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			11/07/15 13:29	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			11/07/15 13:29	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			11/07/15 13:29	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			11/07/15 13:29	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			11/07/15 13:29	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			11/07/15 13:29	1
1,4-Dioxane	ND	40	9.3	ug/L			11/07/15 13:29	1
2-Butanone (MEK)	ND	10	1.3	ug/L			11/07/15 13:29	1
2-Hexanone	ND	5.0	1.2	ug/L			11/07/15 13:29	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			11/07/15 13:29	1
Acetone	ND	10	3.0	ug/L			11/07/15 13:29	1
Benzene	ND	1.0	0.41	ug/L			11/07/15 13:29	1
Bromochloromethane	ND	1.0	0.87	ug/L			11/07/15 13:29	1
Bromodichloromethane	ND	1.0	0.39	ug/L			11/07/15 13:29	1
Bromoform	ND	1.0		ug/L			11/07/15 13:29	1
Bromomethane	ND	1.0		ug/L			11/07/15 13:29	1
Carbon disulfide	ND	1.0		ug/L			11/07/15 13:29	1
Carbon tetrachloride	ND	1.0		ug/L			11/07/15 13:29	1
Chlorobenzene	ND	1.0		ug/L			11/07/15 13:29	1
Chloroethane	ND	1.0		ug/L			11/07/15 13:29	1
Chloroform	ND	1.0		ug/L			11/07/15 13:29	1
Chloromethane	ND	1.0		ug/L			11/07/15 13:29	1
cis-1,2-Dichloroethene	ND	1.0		ug/L			11/07/15 13:29	1
cis-1,3-Dichloropropene	ND	1.0		ug/L			11/07/15 13:29	1
Cyclohexane	ND	1.0		ug/L			11/07/15 13:29	1
Dibromochloromethane	ND	1.0		ug/L			11/07/15 13:29	1
Dichlorodifluoromethane	ND	1.0	0.68	-			11/07/15 13:29	1
Ethylbenzene	ND	1.0		ug/L			11/07/15 13:29	1
Isopropylbenzene	ND	1.0		ug/L			11/07/15 13:29	1
Methyl acetate	ND	2.5		ug/L			11/07/15 13:29	1
Methyl tert-butyl ether	ND	1.0		ug/L			11/07/15 13:29	1
Methylcyclohexane	ND	1.0		ug/L			11/07/15 13:29	1
Methylene Chloride	ND	1.0		ug/L			11/07/15 13:29	1
Styrene	ND	1.0		ug/L			11/07/15 13:29	1
Tetrachloroethene	ND	1.0		ug/L			11/07/15 13:29	1
Tetrahydrofuran	ND	5.0		ug/L			11/07/15 13:29	1
Toluene	ND	1.0		ug/L			11/07/15 13:29	
trans-1,2-Dichloroethene	ND	1.0		ug/L			11/07/15 13:29	1
trans-1,3-Dichloropropene	ND	1.0		ug/L ug/L			11/07/15 13:29	1
Trichloroethene	ND	1.0		ug/L ug/L			11/07/15 13:29	

TestAmerica Buffalo

3

5

6

8

10

12

4 E

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Client Sample ID: EB-03

Lab Sample ID: 480-90114-24 Date Collected: 10/28/15 16:00

Matrix: Water

Date Received: 10/29/15 09:00

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Co	ntinu	ed)					
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		1.0		0.88	ug/L			11/07/15 13:29	1
Vinyl chloride	ND		1.0		0.90	ug/L			11/07/15 13:29	1
Xylenes, Total	ND		2.0		0.66	ug/L			11/07/15 13:29	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	ı	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L						11/07/15 13:29	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		66 - 137						11/07/15 13:29	1
4-Bromofluorobenzene (Surr)	92		73 - 120						11/07/15 13:29	1
Toluene-d8 (Surr)	93		71 - 126						11/07/15 13:29	1
Dibromofluoromethane (Surr)	95		60 - 140						11/07/15 13:29	1

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		6.4	0.62	ug/L		11/02/15 09:42	11/11/15 16:12	1
2,4,6-Trichlorophenol	ND		6.4	0.78	ug/L		11/02/15 09:42	11/11/15 16:12	1
2,4-Dichlorophenol	ND		6.4	0.66	ug/L		11/02/15 09:42	11/11/15 16:12	1
2,4-Dimethylphenol	ND		6.4	0.64	ug/L		11/02/15 09:42	11/11/15 16:12	1
2,4-Dinitrophenol	ND		13	2.9	ug/L		11/02/15 09:42	11/11/15 16:12	1
2,4-Dinitrotoluene	ND		6.4	0.57	ug/L		11/02/15 09:42	11/11/15 16:12	1
2,6-Dinitrotoluene	ND		6.4	0.51	ug/L		11/02/15 09:42	11/11/15 16:12	1
2-Chloronaphthalene	ND		6.4	0.59	ug/L		11/02/15 09:42	11/11/15 16:12	1
2-Chlorophenol	ND		6.4	0.68	ug/L		11/02/15 09:42	11/11/15 16:12	1
2-Methylnaphthalene	ND		6.4	0.77	ug/L		11/02/15 09:42	11/11/15 16:12	1
2-Methylphenol	ND		6.4	0.51	ug/L		11/02/15 09:42	11/11/15 16:12	1
2-Nitroaniline	ND		13	0.54	ug/L		11/02/15 09:42	11/11/15 16:12	1
2-Nitrophenol	ND		6.4	0.62	ug/L		11/02/15 09:42	11/11/15 16:12	1
3,3'-Dichlorobenzidine	ND		6.4	0.51	ug/L		11/02/15 09:42	11/11/15 16:12	1
3-Nitroaniline	ND		13	0.62	ug/L		11/02/15 09:42	11/11/15 16:12	1
4,6-Dinitro-2-methylphenol	ND		13	2.8	ug/L		11/02/15 09:42	11/11/15 16:12	1
4-Bromophenyl phenyl ether	ND		6.4	0.58	ug/L		11/02/15 09:42	11/11/15 16:12	1
4-Chloro-3-methylphenol	ND		6.4	0.58	ug/L		11/02/15 09:42	11/11/15 16:12	1
4-Chloroaniline	ND		6.4	0.76	ug/L		11/02/15 09:42	11/11/15 16:12	1
4-Chlorophenyl phenyl ether	ND		6.4	0.45	ug/L		11/02/15 09:42	11/11/15 16:12	1
4-Methylphenol	ND		13	0.46	ug/L		11/02/15 09:42	11/11/15 16:12	1
4-Nitroaniline	ND		13	0.32	ug/L		11/02/15 09:42	11/11/15 16:12	1
4-Nitrophenol	ND		13	2.0	ug/L		11/02/15 09:42	11/11/15 16:12	1
Acenaphthene	ND		6.4	0.53	ug/L		11/02/15 09:42	11/11/15 16:12	1
Acenaphthylene	ND		6.4	0.49	ug/L		11/02/15 09:42	11/11/15 16:12	1
Acetophenone	ND		6.4	0.69	ug/L		11/02/15 09:42	11/11/15 16:12	1
Anthracene	ND		6.4	0.36	ug/L		11/02/15 09:42	11/11/15 16:12	1
Atrazine	ND		6.4	0.59	ug/L		11/02/15 09:42	11/11/15 16:12	1
Benzaldehyde	ND		6.4	0.34	ug/L		11/02/15 09:42	11/11/15 16:12	1
Benzo(a)anthracene	ND		6.4	0.46	ug/L		11/02/15 09:42	11/11/15 16:12	1
Benzo(a)pyrene	ND		6.4	0.60	ug/L		11/02/15 09:42	11/11/15 16:12	1
Benzo(b)fluoranthene	ND		6.4	0.44	ug/L		11/02/15 09:42	11/11/15 16:12	1
Benzo(g,h,i)perylene	ND		6.4	0.45	ug/L		11/02/15 09:42	11/11/15 16:12	1
Benzo(k)fluoranthene	ND		6.4	0.94	ug/L		11/02/15 09:42	11/11/15 16:12	1
Biphenyl	ND		6.4	0.84	ug/L		11/02/15 09:42	11/11/15 16:12	1

TestAmerica Buffalo

Page 74 of 147

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-24

Matrix: Water

Client Sample ID: EB-03

Date Collected: 10/28/15 16:00 Date Received: 10/29/15 09:00

Analyte	Result	Qualifier	RL	MDI	_ Unit	D	Prepared	Analyzed	Dil Fac
bis (2-chloroisopropyl) ether	ND		6.4	0.6	7 ug/L		11/02/15 09:42	11/11/15 16:12	1
Bis(2-chloroethoxy)methane	ND		6.4	0.4	5 ug/L		11/02/15 09:42	11/11/15 16:12	1
Bis(2-chloroethyl)ether	ND		6.4	0.5	1 ug/L		11/02/15 09:42	11/11/15 16:12	1
Bis(2-ethylhexyl) phthalate	ND		6.4	2.	3 ug/L		11/02/15 09:42	11/11/15 16:12	1
Butyl benzyl phthalate	0.72	J	6.4	0.5	4 ug/L		11/02/15 09:42	11/11/15 16:12	1
Caprolactam	ND		6.4	2.	B ug/L		11/02/15 09:42	11/11/15 16:12	1
Carbazole	ND		6.4	0.3	9 ug/L		11/02/15 09:42	11/11/15 16:12	1
Chrysene	ND		6.4	0.4	2 ug/L		11/02/15 09:42	11/11/15 16:12	1
Dibenz(a,h)anthracene	ND		6.4	0.5	4 ug/L		11/02/15 09:42	11/11/15 16:12	1
Dibenzofuran	ND		13	0.6	6 ug/L		11/02/15 09:42	11/11/15 16:12	1
Diethyl phthalate	ND		6.4	0.2	8 ug/L		11/02/15 09:42	11/11/15 16:12	1
Dimethyl phthalate	ND		6.4	0.4	6 ug/L		11/02/15 09:42	11/11/15 16:12	1
Di-n-butyl phthalate	ND		6.4	0.4	0 ug/L		11/02/15 09:42	11/11/15 16:12	1
Di-n-octyl phthalate	ND		6.4	0.6	0 ug/L		11/02/15 09:42	11/11/15 16:12	1
Fluoranthene	ND		6.4	0.5	1 ug/L		11/02/15 09:42	11/11/15 16:12	1
Fluorene	ND		6.4	0.4	6 ug/L		11/02/15 09:42	11/11/15 16:12	1
Hexachlorobenzene	ND		6.4	0.6	6 ug/L		11/02/15 09:42	11/11/15 16:12	1
Hexachlorobutadiene	ND		6.4	0.8	7 ug/L		11/02/15 09:42	11/11/15 16:12	1
Hexachlorocyclopentadiene	ND		6.4	0.7	6 ug/L		11/02/15 09:42	11/11/15 16:12	1
Hexachloroethane	ND		6.4	0.7	6 ug/L		11/02/15 09:42	11/11/15 16:12	1
Indeno(1,2,3-cd)pyrene	ND		6.4	0.6	0 ug/L		11/02/15 09:42	11/11/15 16:12	1
Isophorone	ND		6.4	0.5	5 ug/L		11/02/15 09:42	11/11/15 16:12	1
Naphthalene	ND		6.4	0.9	8 ug/L		11/02/15 09:42	11/11/15 16:12	1
Nitrobenzene	ND		6.4	0.3	7 ug/L		11/02/15 09:42	11/11/15 16:12	1
N-Nitrosodi-n-propylamine	ND		6.4	0.6	9 ug/L		11/02/15 09:42	11/11/15 16:12	1
N-Nitrosodiphenylamine	ND		6.4	0.6	6 ug/L		11/02/15 09:42	11/11/15 16:12	1
Pentachlorophenol	ND		13	2.	8 ug/L		11/02/15 09:42	11/11/15 16:12	1
Phenanthrene	ND		6.4	0.5	7 ug/L		11/02/15 09:42	11/11/15 16:12	1
Phenol	ND		6.4	0.5	0 ug/L		11/02/15 09:42	11/11/15 16:12	1
Pyrene	ND		6.4	0.4	4 ug/L		11/02/15 09:42	11/11/15 16:12	1
Dimethylformamide	ND		26	2.:	2 ug/L		11/02/15 09:42	11/11/15 16:12	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Cyclohexane	36	TJN	ug/L		3.46	110-82-7	11/02/15 09:42	11/11/15 16:12	1
Unknown	130	ΤJ	ug/L		3.63		11/02/15 09:42	11/11/15 16:12	1
Unknown	4.4	TJ	ug/L		5.40		11/02/15 09:42	11/11/15 16:12	1
Cyclotetrasiloxane, octamethyl-	98	TJN	ug/L		6.45	556-67-2	11/02/15 09:42	11/11/15 16:12	1
Decane	3.9	TJN	ug/L		6.65	124-18-5	11/02/15 09:42	11/11/15 16:12	1
Cyclopentasiloxane, decamethyl-	13	TJN	ug/L		7.39	541-02-6	11/02/15 09:42	11/11/15 16:12	1
Cyclohexasiloxane, dodecamethyl-	4.6	TJN	ug/L		8.27	540-97-6	11/02/15 09:42	11/11/15 16:12	1
Unknown	3.4	TJ	ug/L		10.71		11/02/15 09:42	11/11/15 16:12	1
Unknown	3.7	TJ	ug/L		11.29		11/02/15 09:42	11/11/15 16:12	1
Unknown	30	ΤJ	ug/L		11.70		11/02/15 09:42	11/11/15 16:12	1
Unknown	11	TJ	ug/L		12.32		11/02/15 09:42	11/11/15 16:12	1
Unknown	12	TJ	ug/L		12.76		11/02/15 09:42	11/11/15 16:12	1
Unknown	5.7	ΤJ	ug/L		13.21		11/02/15 09:42	11/11/15 16:12	1
Unknown	18	TJ	ug/L		13.54		11/02/15 09:42	11/11/15 16:12	1
Unknown	16	TJ	ug/L		14.04		11/02/15 09:42	11/11/15 16:12	1
Unknown	6.3	ΤJ	ug/L		14.58		11/02/15 09:42	11/11/15 16:12	1
Unknown	3.7	ΤJ	ug/L		14.88		11/02/15 09:42	11/11/15 16:12	1

TestAmerica Buffalo

Page 75 of 147

11/16/2015

3

4

6

8

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: EB-03

Date Collected: 10/28/15 16:00

Date Received: 10/29/15 09:00

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-24

Matrix: Water

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	31	TJ	ug/L		14.95		11/02/15 09:42	11/11/15 16:12	1
Unknown	3.7	TJ	ug/L		16.47		11/02/15 09:42	11/11/15 16:12	1
Unknown	14	TJ	ug/L		16.52		11/02/15 09:42	11/11/15 16:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	112		52 - 132	•			11/02/15 09:42	11/11/15 16:12	1
2-Fluorobiphenyl	82		48 - 120				11/02/15 09:42	11/11/15 16:12	1
2-Fluorophenol	61		20 - 120				11/02/15 09:42	11/11/15 16:12	1
Nitrobenzene-d5	81		46 - 120				11/02/15 09:42	11/11/15 16:12	1
Phenol-d5	42		16 - 120				11/02/15 09:42	11/11/15 16:12	1
p-Terphenyl-d14	96		67 - 150				11/02/15 09:42	11/11/15 16:12	1

Method: 8015D - Nonhalo	genated Organic Compoun	nds - Direct Injection (GC)
Method, ourse - Normaio	uenaleu Oruanic Comboui	ius - Direct infection (GC)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND ND	1.0	0.14	mg/L			11/02/15 14:33	1
Isobutyl alcohol	ND	1.0	0.37	mg/L			11/02/15 14:33	1
Methanol	1.3	1.0	0.41	mg/L			11/02/15 14:33	1
n-Butanol	ND	1.0	0.40	mg/L			11/02/15 14:33	1
Propanol	ND	1.0	0.16	mg/L			11/02/15 14:33	1
2-Butanol	ND	1.0	0.17	mg/L			11/02/15 14:33	1
Isopropyl alcohol	ND	1.0	0.12	mg/L			11/02/15 14:33	1
t-Butyl alcohol	ND	1.0	0.10	mg/L			11/02/15 14:33	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analy	zed Dil Fac	С
2-Hexanone	115	62 - 129	11/02/15	5 14:33	ī

Method: 8082A - Polychlorinated Biphen	iyis (PCBs) by Gas	s Chromatography
--	--------------------	------------------

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND —	0.46	0.16	ug/L		10/31/15 09:09	11/02/15 11:36	1
PCB-1221	ND	0.46	0.16	ug/L		10/31/15 09:09	11/02/15 11:36	1
PCB-1232	ND	0.46	0.16	ug/L		10/31/15 09:09	11/02/15 11:36	1
PCB-1242	ND	0.46	0.16	ug/L		10/31/15 09:09	11/02/15 11:36	1
PCB-1248	ND	0.46	0.16	ug/L		10/31/15 09:09	11/02/15 11:36	1
PCB-1254	ND	0.46	0.23	ug/L		10/31/15 09:09	11/02/15 11:36	1
PCB-1260	ND	0.46	0.23	ug/L		10/31/15 09:09	11/02/15 11:36	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	82	24 - 137	10/31/15 09:09	11/02/15 11:36	1
DCB Decachlorobiphenyl	55	19 - 125	10/31/15 09:09	11/02/15 11:36	1

Method: 6010C - Metals (ICP)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND —	0.015	0.0056	mg/L		10/30/15 11:45	10/31/15 21:30	1
Barium	ND	0.0020	0.00070	mg/L		10/30/15 11:45	10/31/15 21:30	1
Cadmium	ND	0.0020	0.00050	mg/L		10/30/15 11:45	10/31/15 21:30	1
Chromium	ND	0.0040	0.0010	mg/L		10/30/15 11:45	10/31/15 21:30	1
Lead	ND	0.010	0.0030	mg/L		10/30/15 11:45	10/31/15 21:30	1
Selenium	ND	0.025	0.0087	mg/L		10/30/15 11:45	10/31/15 21:30	1
Silver	ND	0.0060	0.0017	mg/L		10/30/15 11:45	10/31/15 21:30	1

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Client Sample ID: EB-03

Lab Sample ID: 480-90114-24 Date Collected: 10/28/15 16:00

Matrix: Water

Date Received: 10/29/15 09:00

Method: 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac

Mercury 0.00017 J 0.00020 0.00012 mg/L 11/02/15 09:05 11/02/15 15:36

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Lab Sample ID: 480-90114-25

Matrix: Water

Client Sample ID: TB03
Date Collected: 10/28/15 00:00
Date Received: 10/29/15 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			11/07/15 13:53	
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			11/07/15 13:53	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	-			11/07/15 13:53	1
1,1,2-Trichloroethane	ND		1.0		ug/L			11/07/15 13:53	1
1,1-Dichloroethane	ND		1.0	0.38	-			11/07/15 13:53	1
1.1-Dichloroethene	ND		1.0	0.29	_			11/07/15 13:53	1
1,2,3-Trichlorobenzene	ND		1.0	0.41	-			11/07/15 13:53	
1,2,4-Trichlorobenzene	ND		1.0	0.41	-			11/07/15 13:53	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	-			11/07/15 13:53	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73				11/07/15 13:53	1
1,2-Dichlorobenzene	ND		1.0	0.79	-			11/07/15 13:53	1
1,2-Dichloroethane	ND		1.0	0.21	-			11/07/15 13:53	1
1,2-Dichloropropane	ND		1.0	0.72	_			11/07/15 13:53	
1,3-Dichlorobenzene	ND		1.0	0.72	-			11/07/15 13:53	1
1,4-Dichlorobenzene	ND ND		1.0	0.78	-			11/07/15 13:53	1
1,4-Dioxane	ND		40		ug/L ug/L			11/07/15 13:53	
					-				
2-Butanone (MEK)	ND		10		ug/L			11/07/15 13:53	1
2-Hexanone	ND		5.0		ug/L			11/07/15 13:53	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			11/07/15 13:53	1
Acetone	ND		10		ug/L			11/07/15 13:53	1
Benzene	ND		1.0	0.41	-			11/07/15 13:53	1
Bromochloromethane	ND		1.0		ug/L			11/07/15 13:53	1
Bromodichloromethane	ND		1.0	0.39	-			11/07/15 13:53	1
Bromoform	ND		1.0	0.26	-			11/07/15 13:53	1
Bromomethane	ND		1.0		ug/L			11/07/15 13:53	1
Carbon disulfide	ND		1.0	0.19	-			11/07/15 13:53	1
Carbon tetrachloride	ND		1.0	0.27	-			11/07/15 13:53	1
Chlorobenzene	ND		1.0	0.75	ug/L			11/07/15 13:53	1
Chloroethane	ND		1.0	0.32	ug/L			11/07/15 13:53	1
Chloroform	ND		1.0	0.34	ug/L			11/07/15 13:53	1
Chloromethane	ND		1.0	0.35	ug/L			11/07/15 13:53	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			11/07/15 13:53	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			11/07/15 13:53	1
Cyclohexane	ND		1.0	0.18	ug/L			11/07/15 13:53	1
Dibromochloromethane	ND		1.0	0.32	ug/L			11/07/15 13:53	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			11/07/15 13:53	1
Ethylbenzene	ND		1.0		ug/L			11/07/15 13:53	1
Isopropylbenzene	ND		1.0		ug/L			11/07/15 13:53	1
Methyl acetate	ND		2.5		ug/L			11/07/15 13:53	1
Methyl tert-butyl ether	ND		1.0		ug/L			11/07/15 13:53	1
Methylcyclohexane	ND		1.0		ug/L			11/07/15 13:53	1
Methylene Chloride	ND		1.0		ug/L			11/07/15 13:53	1
Styrene	ND		1.0		ug/L			11/07/15 13:53	· · · · · · · · · · · · · · · · · · ·
Tetrachloroethene	ND		1.0		ug/L			11/07/15 13:53	1
Tetrahydrofuran	ND		5.0		ug/L			11/07/15 13:53	1
Toluene	ND		1.0		ug/L			11/07/15 13:53	· · · · · · · · · · · · · · · · · · ·
trans-1,2-Dichloroethene	ND ND		1.0		ug/L ug/L			11/07/15 13:53	1
trans-1,3-Dichloropropene	ND ND		1.0		ug/L ug/L			11/07/15 13:53	1
Trichloroethene	ND		1.0	0.37	-			11/07/15 13:53	

TestAmerica Buffalo

3

6

8

10

12

4 4

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Toluene-d8 (Surr)

Dibromofluoromethane (Surr)

TestAmerica Job ID: 480-90114-1

11/07/15 13:53

11/07/15 13:53

Lab Sample ID: 480-90114-25

Client Sample ID: TB03 Date Collected: 10/28/15 00:00

Matrix: Water

Date Received: 10/29/15 09:00 Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

95

Analyte	Result	Qualifier	RL		MDL	Unit		D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		1.0		0.88	ug/L				11/07/15 13:53	1
Vinyl chloride	ND		1.0		0.90	ug/L				11/07/15 13:53	1
Xylenes, Total	ND		2.0		0.66	ug/L				11/07/15 13:53	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	ı	R <i>T</i>	CAS N	o.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L							11/07/15 13:53	1
Surrogate	%Recovery	Qualifier	Limits						Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		66 - 137					-		11/07/15 13:53	1
4-Bromofluorobenzene (Surr)	97		73 - 120							11/07/15 13:53	1

71 - 126

60 - 140

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surro	gate Recovery	(Acceptance Lim
		DBFM	12DCE	TOL	BFB	
ab Sample ID	Client Sample ID	(60-140)	(64-126)	(71-125)	(72-126)	
30-90114-1	SMWU7-SS-BLDG23-12	98	96	105	90	
0-90114-2	SMWU7-SS-BLDG23-13	102	101	103	91	
0-90114-3	SMWU7-SS-BLDG23-15	102	99	102	96	
0-90114-4	SMWU7-SS-BLDG23-14	104	101	103	99	
0-90114-5	SMWU7-SS-BLDG23-16	103	98	103	98	
0-90114-6	SMWU7-SS-BLDG23-17	104	101	102	99	
0-90114-7	SMWU7-SS-BLDG23-18	103	100	100	97	
0-90114-8	SMWU7-SS-BLDG23-19	103	97	108	84	
80-90114-9	SMWU26-SS-BLDG23-01	106	102	105	95	
0-90114-9 MS	SMWU26-SS-BLDG23-01	106	92	106	101	
80-90114-9 MSD	SMWU26-SS-BLDG23-01	103	88	104	97	
0-90114-10	SMWU7-SS-BLDG23-20	103	100	103	96	
0-90114-11	SMWU26-SS-BLDG23-02	102	98	103	95	
)-90114-12	SMWU26-SS-BLDG23-03	103	103	102	97	
90114-13	SMWU7-SS-BLDG23-21	105	102	103	98	
)-90114-14	SMWU26-SS-BLDG23-04	107	102	102	97	
)-90114-14 MS	SMWU26-SS-BLDG23-04	103	90	104	101	
-90114-14 MSD	SMWU26-SS-BLDG23-04	103	89	105	102	
0-90114-15	SMWU7-SS-BLDG23-22	97	99	104	95	
0-90114-16	SMWU7-SS-BLDG34-01	111	105	101	97	
0-90114-17	SMWU7-SS-BLDG34-02	104	100	102	98	
0-90114-18	SMWU7-SS-BLDG34-03	107	99	104	100	
0-90114-19	SMWU1-SS-TP01-100	90	106	102	100	
0-90114-20	SMWU1-SS-TP02-101	103	98	102	97	
-90114-21	SMWU1-SS-TP03-102	104	96	103	90	
0-90114-22	SMWU1-SS-TP04-103	107	102	103	96	
0-90114-23	SMWU1-SS-TP04-200	109	106	102	99	
CS 480-272044/1-A	Lab Control Sample	102	94	103	100	
CS 480-272045/1-A	Lab Control Sample	101	94	103	102	
S 480-272053/1-A	Lab Control Sample	101	96	105	102	
B 480-272044/2-A	Method Blank	104	102	102	99	
3 480-272045/2-A	Method Blank	104	97	103	98	
B 480-272053/2-A	Method Blank	101	97	103	98	

Surrogate Legend

DBFM = Dibromofluoromethane (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		12DCE	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)	(60-140)
480-90114-24	EB-03	100	92	93	95
480-90114-25	TB03	105	97	95	95
LCS 480-273742/5	Lab Control Sample	102	99	95	97

TestAmerica Buffalo

Page 80 of 147

6

3

4

0

10

12

11

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)						
		12DCE	BFB	TOL	DBFM				
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)	(60-140)				
MB 480-273742/7	Method Blank	98	95	95	93				

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

			Pe	rcent Surre	ogate Reco	very (Acce	otance Limits
		TBP	FBP	2FP	NBZ	TPH	PHL
Lab Sample ID	Client Sample ID	(39-146)	(37-120)	(18-120)	(34-132)	(65-153)	(11-120)
480-90114-9	SMWU26-SS-BLDG23-01	80	80	67	69	99	69
480-90114-9 MS	SMWU26-SS-BLDG23-01	100	86	73	75	103	76
480-90114-9 MSD	SMWU26-SS-BLDG23-01	103	88	72	78	104	75
480-90114-11	SMWU26-SS-BLDG23-02	88	85	74	78	103	74
480-90114-12	SMWU26-SS-BLDG23-03	88	84	70	72	93	72
480-90114-14	SMWU26-SS-BLDG23-04	87	84	72	74	100	76
480-90114-14 MS	SMWU26-SS-BLDG23-04	98	87	72	77	99	74
480-90114-14 MSD	SMWU26-SS-BLDG23-04	102	89	72	78	105	75
480-90114-19	SMWU1-SS-TP01-100	47	99	77	81	107	83
480-90114-20	SMWU1-SS-TP02-101	87	81	68	70	104	73
480-90114-21	SMWU1-SS-TP03-102	83	94	76	77	97	78
480-90114-22	SMWU1-SS-TP04-103	75	83	67	66	98	72
LCS 480-272950/2-A	Lab Control Sample	96	86	72	77	95	73
MB 480-272950/1-A	Method Blank	89	83	72	73	93	74

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

TPH = p-Terphenyl-d14

PHL = Phenol-d5

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		TBP	FBP	2FP	NBZ	PHL	TPH	
Lab Sample ID	Client Sample ID	(52-132)	(48-120)	(20-120)	(46-120)	(16-120)	(67-150)	
480-90114-24	EB-03	112	82	61	81	42	96	
LCS 480-272533/2-A	Lab Control Sample	113	85	56	76	48	98	
MB 480-272533/1-A	Method Blank	70	78	45	75	34	92	
Surrogate Legend								

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

TestAmerica Buffalo

Page 81 of 147

9

3

6

9

11

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPH = p-Terphenyl-d14

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC)

Matrix: Solid Prep Type: Soluble

			Percent Surrogate Recovery (Acceptance Limits)
		2HN1	
Lab Sample ID	Client Sample ID	(30-137)	
480-90114-9	SMWU26-SS-BLDG23-01	97	
480-90114-9 MS	SMWU26-SS-BLDG23-01	95	
480-90114-9 MSD	SMWU26-SS-BLDG23-01	95	
480-90114-11	SMWU26-SS-BLDG23-02	99	
480-90114-12	SMWU26-SS-BLDG23-03	96	
480-90114-14	SMWU26-SS-BLDG23-04	102	
480-90114-14 MS	SMWU26-SS-BLDG23-04	97	
480-90114-14 MSD	SMWU26-SS-BLDG23-04	96	
480-90114-19	SMWU1-SS-TP01-100	96	
480-90114-20	SMWU1-SS-TP02-101	102	
480-90114-21	SMWU1-SS-TP03-102	91	
480-90114-22	SMWU1-SS-TP04-103	94	
LCS 480-272198/2-A	Lab Control Sample	107	
	Method Blank	108	

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		2HN1						
Lab Sample ID	Client Sample ID	(62-129)						
480-90114-24	EB-03	115						
LCS 480-272574/5	Lab Control Sample	112						
MB 480-272574/4	Method Blank	112						
Surrogate Legend								
2HN = 2-Hexanone								

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

			Percent	Surrogate Recovery (Acceptance Limits)
		TCX2	DCB2	
Lab Sample ID	Client Sample ID	(60-154)	(65-174)	
480-90114-9	SMWU26-SS-BLDG23-01	89	94	
480-90114-9 MS	SMWU26-SS-BLDG23-01	111	117	
480-90114-9 MSD	SMWU26-SS-BLDG23-01	98	105	
480-90114-11	SMWU26-SS-BLDG23-02	93	98	
480-90114-12	SMWU26-SS-BLDG23-03	90	95	
480-90114-14	SMWU26-SS-BLDG23-04	98	102	
480-90114-14 MS	SMWU26-SS-BLDG23-04	108	114	
480-90114-14 MSD	SMWU26-SS-BLDG23-04	103	114	

Page 82 of 147

Surrogate Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Matrix: Solid Prep Type: Total/NA

		TCX2	DCB2	
Lab Sample ID	Client Sample ID	(60-154)	(65-174)	
480-90114-19	SMWU1-SS-TP01-100	91	94	
480-90114-20	SMWU1-SS-TP02-101	99	104	
480-90114-21	SMWU1-SS-TP03-102	98	95	
480-90114-22	SMWU1-SS-TP04-103	98	101	
LCS 480-272091/2-A	Lab Control Sample	108	115	
MB 480-272091/1-A	Method Blank	96	100	
Surrogate Legend				

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)					
		TCX2	DCB2				
Lab Sample ID	Client Sample ID	(24-137)	(19-125)				
480-90114-24	EB-03	82	55				
LCS 480-272344/2-A	Lab Control Sample	85	61				
LCSD 480-272344/3-A	Lab Control Sample Dup	81	55				
MB 480-272344/1-A	Method Blank	114	65				

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

TestAmerica Buffalo

Page 83 of 147

5

4

5

7

a

10

12

13

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

2

1631America 300 iD. 400-901 14-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-272044/2-A

Matrix: Solid

Analysis Batch: 273159

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 272044

Analysis Batch: 273159	MD	МВ						Prep Batch:	272044
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		4.7	0.34	ug/Kg		10/30/15 00:15	11/05/15 01:14	1
1,1,2,2-Tetrachloroethane	ND		4.7	0.77	ug/Kg		10/30/15 00:15	11/05/15 01:14	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.7	1.1	ug/Kg		10/30/15 00:15	11/05/15 01:14	1
1,1,2-Trichloroethane	ND		4.7	0.62	ug/Kg		10/30/15 00:15	11/05/15 01:14	1
1,1-Dichloroethane	ND		4.7	0.58	ug/Kg		10/30/15 00:15	11/05/15 01:14	1
1,1-Dichloroethene	ND		4.7	0.58	ug/Kg		10/30/15 00:15	11/05/15 01:14	1
1,2,3-Trichlorobenzene	ND		4.7	0.50	ug/Kg		10/30/15 00:15	11/05/15 01:14	1
1,2,4-Trichlorobenzene	ND		4.7	0.29	ug/Kg		10/30/15 00:15	11/05/15 01:14	1
1,2-Dibromo-3-Chloropropane	ND		4.7	2.4	ug/Kg		10/30/15 00:15	11/05/15 01:14	1
1,2-Dichlorobenzene	ND		4.7	0.37	ug/Kg		10/30/15 00:15	11/05/15 01:14	1
1,2-Dichloroethane	ND		4.7	0.24	ug/Kg		10/30/15 00:15	11/05/15 01:14	1
1,2-Dichloropropane	ND		4.7	2.4	ug/Kg		10/30/15 00:15	11/05/15 01:14	1
1,3-Dichlorobenzene	ND		4.7	0.24	ug/Kg		10/30/15 00:15	11/05/15 01:14	1
1,4-Dichlorobenzene	ND		4.7		ug/Kg		10/30/15 00:15	11/05/15 01:14	1
1,4-Dioxane	ND		95		ug/Kg		10/30/15 00:15	11/05/15 01:14	1
2-Hexanone	ND		24		ug/Kg		10/30/15 00:15	11/05/15 01:14	1
Acetone	ND		24		ug/Kg		10/30/15 00:15	11/05/15 01:14	1
Benzene	ND		4.7		ug/Kg		10/30/15 00:15	11/05/15 01:14	1
Bromochloromethane	ND		4.7		ug/Kg			11/05/15 01:14	1
Bromoform	ND		4.7		ug/Kg			11/05/15 01:14	1
Bromomethane	ND		4.7		ug/Kg			11/05/15 01:14	1
Carbon disulfide	ND		4.7		ug/Kg			11/05/15 01:14	1
Carbon tetrachloride	ND		4.7		ug/Kg			11/05/15 01:14	1
Chlorobenzene	ND		4.7		ug/Kg			11/05/15 01:14	1
Chloroethane	ND		4.7		ug/Kg			11/05/15 01:14	1
Chloroform	ND		4.7		ug/Kg			11/05/15 01:14	1
Bromodichloromethane	ND		4.7		ug/Kg			11/05/15 01:14	1
Chloromethane	ND		4.7		ug/Kg			11/05/15 01:14	1
cis-1,2-Dichloroethene	ND		4.7		ug/Kg			11/05/15 01:14	
cis-1,3-Dichloropropene	ND		4.7		ug/Kg			11/05/15 01:14	1
1,2-Dibromoethane (EDB)	ND		4.7		ug/Kg			11/05/15 01:14	
Cyclohexane	ND		4.7		ug/Kg			11/05/15 01:14	1
Dibromochloromethane	ND		4.7		ug/Kg			11/05/15 01:14	1
Dichlorodifluoromethane	ND		4.7		ug/Kg			11/05/15 01:14	
2-Butanone (MEK)	ND		24		ug/Kg			11/05/15 01:14	1
Ethylbenzene	ND		4.7		ug/Kg			11/05/15 01:14	1
4-Methyl-2-pentanone (MIBK)	ND		24					11/05/15 01:14	' 1
Isopropylbenzene	ND ND		4.7		ug/Kg ug/Kg			11/05/15 01:14	1
Methyl acetate	ND ND		4.7		ug/Kg			11/05/15 01:14	1
Methyl tert-butyl ether	ND		4.7		ug/Kg			11/05/15 01:14	' 1
Methylcyclohexane	ND ND		4.7		ug/Kg ug/Kg			11/05/15 01:14	1
• •									
Methylene Chloride	ND		4.7		ug/Kg			11/05/15 01:14	1
Styrene Totrachloroothono	ND		4.7 4.7		ug/Kg			11/05/15 01:14	1
Tetrachloroethene	ND		4.7		ug/Kg			11/05/15 01:14	1
Toluene	ND		4.7		ug/Kg			11/05/15 01:14	1
trans-1,2-Dichloroethene	ND		4.7		ug/Kg			11/05/15 01:14	1
trans-1,3-Dichloropropene	ND		4.7		ug/Kg			11/05/15 01:14	1
Trichloroethene	ND		4.7	1.0	ug/Kg		10/30/15 00:15	11/05/15 01:14	1

TestAmerica Buffalo

4

6

8

9

11

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

2

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-272044/2-A **Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA** Prep Batch: 272044 **Analysis Batch: 273159** MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Trichlorofluoromethane $\overline{\mathsf{ND}}$ 4.7 0.45 ug/Kg 10/30/15 00:15 11/05/15 01:14 Tetrahydrofuran ND 9.5 2.8 ug/Kg 10/30/15 00:15 11/05/15 01:14 Vinyl chloride ND 4.7 0.58 ug/Kg 10/30/15 00:15 11/05/15 01:14 Xylenes, Total ND 9.5 0.80 ug/Kg 10/30/15 00:15 11/05/15 01:14 MB MB Tentatively Identified Compound Est. Result Qualifier Unit RT CAS No. Prepared D Analyzed Dil Fac <u>10/30/15 00:15</u> <u>11/05/15 01:14</u> Tentatively Identified Compound None ug/Kg

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		64 - 126	10/30/15 00:15	11/05/15 01:14	1
Toluene-d8 (Surr)	102		71 - 125	10/30/15 00:15	11/05/15 01:14	1
4-Bromofluorobenzene (Surr)	99		72 - 126	10/30/15 00:15	11/05/15 01:14	1
Dibromofluoromethane (Surr)	104		60 - 140	10/30/15 00:15	11/05/15 01:14	1
_						

Lab Sample ID: LCS 480-272044/1-A

Matrix: Solid

Analysis Batch: 273159

Spike

Analyte

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Prep Batch: 272044

Kec.

Added

Result Qualifier Unit D %Rec Limits

Analysis Batch: 273159	Spike	LCS	LCS				%Rec. 272044
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	48.9	46.6		ug/Kg		95	77 - 121
1,1,2,2-Tetrachloroethane	48.9	46.4		ug/Kg		95	80 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	48.9	46.2		ug/Kg		94	60 - 140
ne							
1,1,2-Trichloroethane	48.9	47.8		ug/Kg		98	78 - 122
1,1-Dichloroethane	48.9	46.4		ug/Kg		95	73 - 126
1,1-Dichloroethene	48.9	47.9		ug/Kg		98	59 - 125
1,2,3-Trichlorobenzene	48.9	46.3		ug/Kg		95	60 - 120
1,2,4-Trichlorobenzene	48.9	48.5		ug/Kg		99	64 - 120
1,2-Dibromo-3-Chloropropane	48.9	44.0		ug/Kg		90	63 - 124
1,2-Dichlorobenzene	48.9	47.9		ug/Kg		98	75 - 120
1,2-Dichloroethane	48.9	43.8		ug/Kg		90	77 - 122
1,2-Dichloropropane	48.9	47.5		ug/Kg		97	75 - 124
1,3-Dichlorobenzene	48.9	48.3		ug/Kg		99	74 - 120
1,4-Dichlorobenzene	48.9	47.9		ug/Kg		98	73 - 120
2-Hexanone	245	221		ug/Kg		91	59 - 130
Acetone	245	191		ug/Kg		78	61 - 137
Benzene	48.9	48.0		ug/Kg		98	79 - 127
Bromochloromethane	48.9	47.8		ug/Kg		98	75 ₋ 134
Bromoform	48.9	50.8		ug/Kg		104	68 - 126
Bromomethane	48.9	48.0		ug/Kg		98	37 - 149
Carbon disulfide	48.9	47.5		ug/Kg		97	64 - 131
Carbon tetrachloride	48.9	48.0		ug/Kg		98	75 ₋ 135
Chlorobenzene	48.9	48.5		ug/Kg		99	76 ₋ 124
Chloroethane	48.9	46.9		ug/Kg		96	69 - 135
Chloroform	48.9	46.5		ug/Kg		95	80 - 118
Bromodichloromethane	48.9	49.0		ug/Kg		100	80 - 122
Chloromethane	48.9	40.3		ug/Kg		82	63 - 127
cis-1,2-Dichloroethene	48.9	48.6		ug/Kg		99	81 - 117

TestAmerica Buffalo

о Л

2

8

9

11

3

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-272044/1-A

Matrix: Solid

Analysis Batch: 273159

Client Sample ID: I	_ab Control Sample
F	Prep Type: Total/NA
	Prep Batch: 272044

%Rec

Analysis Batch. 273139	Spike	LCS I	LCS			%Rec.
Analyte	Added	Result (Qualifier Unit	D	%Rec	Limits
cis-1,3-Dichloropropene	48.9	50.0	ug/Kg	 I	102	82 - 120
1,2-Dibromoethane (EDB)	48.9	48.4	ug/Kg		99	78 ₋ 120
Cyclohexane	48.9	45.9	ug/Kg		94	65 - 106
Dibromochloromethane	48.9	51.5	ug/Kg		105	76 - 125
Dichlorodifluoromethane	48.9	34.2	ug/Kg		70	57 ₋ 142
2-Butanone (MEK)	245	215	ug/Kg		88	70 - 134
Ethylbenzene	48.9	49.1	ug/Kg		100	80 - 120
4-Methyl-2-pentanone (MIBK)	245	213	ug/Kg		87	65 - 133
Isopropylbenzene	48.9	49.0	ug/Kg		100	72 - 120
Methyl acetate	245	196	ug/Kg		80	55 ₋ 136
Methyl tert-butyl ether	48.9	46.5	ug/Kg		95	63 - 125
Methylcyclohexane	48.9	47.3	ug/Kg		97	60 - 140
Methylene Chloride	48.9	41.8	ug/Kg		85	61 - 127
Styrene	48.9	50.3	ug/Kg		103	80 - 120
Tetrachloroethene	48.9	48.0	ug/Kg		98	74 - 122
Toluene	48.9	48.1	ug/Kg		98	74 - 128
trans-1,2-Dichloroethene	48.9	47.9	ug/Kg		98	78 ₋ 126
trans-1,3-Dichloropropene	48.9	49.4	ug/Kg		101	73 - 123
Trichloroethene	48.9	48.9	ug/Kg		100	77 - 129
Trichlorofluoromethane	48.9	45.8	ug/Kg		94	65 - 146
Tetrahydrofuran	97.8	83.1	ug/Kg		85	64 - 113
Vinyl chloride	48.9	43.3	ug/Kg		88	61 ₋ 133
Xylenes, Total	97.8	98.7	ug/Kg		101	70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		64 - 126
Toluene-d8 (Surr)	103		71 - 125
4-Bromofluorobenzene (Surr)	100		72 - 126
Dibromofluoromethane (Surr)	102		60 - 140

Lab Sample ID: 480-90114-9 MS

Matrix: Solid

Client Sample ID: SMWU26-SS-BLDG23-01

Prep Type: Total/NA Prep Batch: 272044

Analysis Batch: 273159	Sample	Sample	Spike	MS	MS				Prep Batch: 272044 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	ND		45.6	40.2		ug/Kg	<u> </u>	88	77 - 121
1,1,2,2-Tetrachloroethane	ND	F1	45.6	33.9	F1	ug/Kg	₩	74	80 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		45.6	37.9		ug/Kg	₩	83	60 - 140
ne									
1,1,2-Trichloroethane	ND		45.6	38.3		ug/Kg	₩	84	78 - 122
1,1-Dichloroethane	ND		45.6	40.9		ug/Kg	₩	90	73 - 126
1,1-Dichloroethene	ND		45.6	41.1		ug/Kg	≎	90	59 - 125
1,2,3-Trichlorobenzene	ND		45.6	29.3		ug/Kg	₽	64	60 - 120
1,2,4-Trichlorobenzene	ND	F1	45.6	30.3		ug/Kg	₩	67	64 - 120
1,2-Dibromo-3-Chloropropane	ND	F1	45.6	28.1	F1	ug/Kg	☼	62	63 - 124
1,2-Dichlorobenzene	ND		45.6	35.6		ug/Kg	₽	78	75 - 120
1,2-Dichloroethane	ND		45.6	36.7		ug/Kg	≎	81	77 - 122
1,2-Dichloropropane	ND		45.6	41.2		ug/Kg	≎	91	75 - 124

Page 86 of 147

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-90114-9 MS

Matrix: Solid

Analysis Batch: 273159

Client Sample ID: SMWU26-SS-BLDG23-01 **Prep Type: Total/NA**

Prep Batch: 272044 %Rec.

Analysis Batch: 273159	Sample	Sample	Spike	MS	MS				%Rec.
Analyte		Qualifier	Added	_	Qualifier	Unit	D	%Rec	Limits
1,3-Dichlorobenzene	ND		45.6	35.4		ug/Kg	<u></u>	78	74 - 120
1,4-Dichlorobenzene	ND		45.6	35.1		ug/Kg		77	73 - 120
2-Hexanone	ND		228	144		ug/Kg	₩	63	59 ₋ 130
Acetone	ND	F1	228	125	F1	ug/Kg		55	61 - 137
Benzene	ND		45.6	41.7		ug/Kg	☼	91	79 - 127
Bromoform	ND		45.6	36.9		ug/Kg	☼	81	68 - 126
Bromomethane	ND		45.6	55.2		ug/Kg		121	37 - 149
Carbon disulfide	ND		45.6	40.6		ug/Kg	☼	89	64 - 131
Carbon tetrachloride	ND		45.6	40.8		ug/Kg	₩	89	75 - 135
Chlorobenzene	ND		45.6	39.7		ug/Kg		87	76 - 124
Bromochloromethane	ND		45.6	41.6		ug/Kg	₩	91	75 - 134
Dibromochloromethane	ND		45.6	41.3		ug/Kg	₩	91	76 ₋ 125
Chloroethane	ND		45.6	47.8		ug/Kg	₽	105	69 - 135
Chloroform	ND		45.6	41.2		ug/Kg	₩	90	80 - 118
Chloromethane	ND		45.6	34.5		ug/Kg	₩	76	63 - 127
cis-1,2-Dichloroethene	ND		45.6	42.3		ug/Kg	₩	93	81 - 117
cis-1,3-Dichloropropene	ND		45.6	40.5		ug/Kg	₩	89	82 - 120
Cyclohexane	ND		45.6	36.8		ug/Kg	₩	81	65 - 106
Bromodichloromethane	ND		45.6	42.9		ug/Kg	₩	94	80 - 122
Dichlorodifluoromethane	ND		45.6	29.3		ug/Kg	₩	64	57 ₋ 142
Ethylbenzene	ND		45.6	39.2		ug/Kg	₩	86	80 - 120
1,2-Dibromoethane (EDB)	ND	F1	45.6	36.5		ug/Kg	₩.	80	78 - 120
Isopropylbenzene	ND		45.6	38.1		ug/Kg	₩	84	72 - 120
Methyl acetate	ND		228	133		ug/Kg	₩	58	55 - 136
2-Butanone (MEK)	ND	F1	228	143	F1	ug/Kg	₩.	63	70 - 134
4-Methyl-2-pentanone (MIBK)	ND	F1	228	147	F1	ug/Kg	₩	64	65 - 133
Methyl tert-butyl ether	ND		45.6	38.5		ug/Kg	₩	85	63 - 125
Methylcyclohexane	ND		45.6	35.6		ug/Kg	₩	78	60 - 140
Methylene Chloride	ND		45.6	37.3		ug/Kg	₩	82	61 - 127
Styrene	ND		45.6	39.7		ug/Kg	₩	87	80 - 120
Tetrachloroethene	ND		45.6	38.1		ug/Kg	₩	84	74 - 122
Toluene	ND		45.6	40.1		ug/Kg	₩	88	74 - 128
trans-1,2-Dichloroethene	ND		45.6	41.3		ug/Kg	☼	91	78 ₋ 126
trans-1,3-Dichloropropene	ND		45.6	38.3		ug/Kg	₩	84	73 - 123
Trichloroethene	ND		45.6	40.3		ug/Kg	₩	88	77 - 129
Trichlorofluoromethane	5.0	J	45.6	45.5		ug/Kg	₩	89	65 - 146
Vinyl chloride	ND		45.6	35.6		ug/Kg	₩.	78	61 - 133
Tetrahydrofuran	ND	F1	91.1	55.7	F1	ug/Kg	₩	61	64 - 113

MS MS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	106		60 - 140
1,2-Dichloroethane-d4 (Surr)	92		64 - 126
Toluene-d8 (Surr)	106		71 - 125
4-Bromofluorobenzene (Surr)	101		72 - 126

TestAmerica Buffalo

Page 87 of 147

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

ab Sample ID: 480-90114-9 MSD	Client Sample ID: SMWU26-SS-BLDG23-0
Matrix: Solid	Prep Type: Total/N/

Matrix: Solid Analysis Batch: 273159	Sample	Sample	Spike		D MSD				Prep Typ Prep Ba %Rec.		2044 RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		41.6	35.3		ug/Kg	<u>∓</u>	85	77 - 121	13	30
1,1,2,2-Tetrachloroethane	ND	F1	41.6	30.4	F1	ug/Kg	₩	73	80 - 120	11	30
1,1,2-Trichloro-1,2,2-trifluoroetha ne	ND		41.6	32.9		ug/Kg	₽	79	60 - 140	14	30
1,1,2-Trichloroethane	ND		41.6	34.0		ug/Kg	· · · · · · · · · · · · · · · · · · ·	82	78 - 122	12	30
1,1-Dichloroethane	ND		41.6	36.4		ug/Kg	₩	88	73 - 126	11	30
1.1-Dichloroethene	ND		41.6	34.9		ug/Kg	₩	84	59 - 125	16	30
1,2,3-Trichlorobenzene	ND		41.6	24.9		ug/Kg		60	60 - 120	17	30
1,2,4-Trichlorobenzene	ND	F1	41.6	25.8	F1	ug/Kg	₩	62	64 - 120	16	30
1,2-Dibromo-3-Chloropropane	ND		41.6	23.4		ug/Kg	₩	56	63 - 124	18	30
1,2-Dichlorobenzene	ND		41.6	32.2		ug/Kg		77	75 - 120	10	30
1,2-Dichloroethane	ND		41.6	32.2		ug/Kg	₩	77	77 - 122	13	30
1,2-Dichloropropane	ND		41.6	36.7		ug/Kg	₩	88	75 ₋ 124	12	30
1,3-Dichlorobenzene	ND		41.6	31.9		ug/Kg		77	74 - 120	10	30
1,4-Dichlorobenzene	ND		41.6	31.5		ug/Kg		76	73 - 120	11	30
2-Hexanone	ND		208	122		ug/Kg ug/Kg		59	59 ₋ 130	16	30
Acetone	ND		208	106			. .	51	61 - 137	16	30
Benzene	ND ND	гі	41.6	37.1	ГІ	ug/Kg	☆	89	79 ₋ 127	12	30
Bromoform	ND ND		41.6	32.6		ug/Kg	≎	78	68 ₋ 126	12	30
						ug/Kg	· · · · · · · ·				
Bromomethane	ND		41.6	48.5		ug/Kg		117	37 - 149	13	30
Carbon disulfide	ND		41.6	34.3		ug/Kg	*	82	64 - 131	17	30
Carbon tetrachloride	ND.		41.6	35.8		ug/Kg		86	75 - 135	13	30
Chlorobenzene	ND		41.6	35.1		ug/Kg	\$	84	76 ₋ 124	12	30
Bromochloromethane	ND		41.6	36.9		ug/Kg		89	75 - 134	12	30
Dibromochloromethane	ND		41.6	37.0		ug/Kg		89	76 - 125	11	30
Chloroethane	ND		41.6	43.4		ug/Kg	₽	104	69 - 135	10	30
Chloroform	ND		41.6	36.6		ug/Kg	₩	88	80 - 118	12	30
Chloromethane	ND		41.6	30.3		ug/Kg	∵	73	63 - 127	13	30
cis-1,2-Dichloroethene	ND		41.6	37.8		ug/Kg	₩	91	81 - 117	11	30
cis-1,3-Dichloropropene	ND		41.6	36.3		ug/Kg	#	87	82 - 120	11	30
Cyclohexane	ND		41.6	32.6		ug/Kg		78	65 - 106	12	30
Bromodichloromethane	ND		41.6	38.1		ug/Kg	₩	91	80 - 122	12	30
Dichlorodifluoromethane	ND		41.6	25.1		ug/Kg	₩	60	57 - 142	15	30
Ethylbenzene	ND		41.6	35.2		ug/Kg	₩	85	80 - 120	11	30
1,2-Dibromoethane (EDB)	ND	F1	41.6	32.1	F1	ug/Kg	₩	77	78 - 120	13	30
Isopropylbenzene	ND		41.6	35.4		ug/Kg	₩	85	72 - 120	7	30
Methyl acetate	ND		208	114		ug/Kg	₩	55	55 - 136	15	30
2-Butanone (MEK)	ND	F1	208	122	F1	ug/Kg	₩	59	70 - 134	15	30
4-Methyl-2-pentanone (MIBK)	ND	F1	208	126	F1	ug/Kg	₩	61	65 - 133	15	30
Methyl tert-butyl ether	ND		41.6	34.0		ug/Kg	₩	82	63 - 125	13	30
Methylcyclohexane	ND		41.6	32.3		ug/Kg	₩.	78	60 - 140	10	30
Methylene Chloride	ND		41.6	33.4		ug/Kg	₩	80	61 - 127	11	30
Styrene	ND		41.6	35.2		ug/Kg	₩	84	80 - 120	12	30
Tetrachloroethene	ND		41.6	33.9		ug/Kg		82	74 - 122	12	30
Toluene	ND		41.6	36.1		ug/Kg	₩	87	74 - 128	10	30
trans-1,2-Dichloroethene	ND		41.6	36.5		ug/Kg	₩	88	78 ₋ 126	12	30
trans-1,3-Dichloropropene	ND		41.6	33.8		ug/Kg		81	73 - 123	12	30
Trichloroethene	ND		41.6	35.4		ug/Kg	₩	85	77 - 129	13	30

TestAmerica Buffalo

Page 88 of 147

e

3

5

-

ŏ

10

1 1

IJ

QC Sample Results

Client: Woodard & Curran, Inc. TestAmerica Job ID: 480-90114-1 Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-90114-9 MSD

Matrix: Solid

Analysis Batch: 273159

Client Sample ID: SMWU26-SS-BLDG23-01

Prep Type: Total/NA

Prep Batch: 272044

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Trichlorofluoromethane	5.0	J	41.6	37.0		ug/Kg	₩	77	65 - 146	21	30	
Vinyl chloride	ND		41.6	31.0		ug/Kg	₩	74	61 - 133	14	30	
Tetrahydrofuran	ND	F1	83.2	47.9	F1	ug/Kg	₩	58	64 - 113	15	30	

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	103		60 - 140
1,2-Dichloroethane-d4 (Surr)	88		64 - 126
Toluene-d8 (Surr)	104		71 - 125
4-Bromofluorobenzene (Surr)	97		72 - 126

Lab Sample ID: MB 480-272045/2-A **Client Sample ID: Method Blank**

Prep Type: Total/NA

Matrix: Solid Analysis Batch: 273296 **Prep Batch: 272045**

•	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		4.9	0.36	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
1,1,2,2-Tetrachloroethane	ND		4.9	0.80	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.9	1.1	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
1,1,2-Trichloroethane	ND		4.9	0.64	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
1,1-Dichloroethane	ND		4.9	0.60	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
1,1-Dichloroethene	ND		4.9	0.60	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
1,2,3-Trichlorobenzene	ND		4.9	0.52	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
1,2,4-Trichlorobenzene	ND		4.9	0.30	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
1,2-Dibromo-3-Chloropropane	ND		4.9	2.5	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
1,2-Dichlorobenzene	ND		4.9	0.38	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
1,2-Dichloroethane	ND		4.9	0.25	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
1,2-Dichloropropane	ND		4.9	2.5	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
1,3-Dichlorobenzene	ND		4.9	0.25	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
1,4-Dichlorobenzene	ND		4.9	0.69	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
1,4-Dioxane	ND		98	21	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
2-Hexanone	ND		25	2.5	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
Acetone	ND		25	4.1	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
Benzene	ND		4.9	0.24	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
Bromochloromethane	ND		4.9	0.35	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
Bromoform	ND		4.9	2.5	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
Bromomethane	ND		4.9	0.44	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
Carbon disulfide	ND		4.9	2.5	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
Carbon tetrachloride	ND		4.9	0.47	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
Chlorobenzene	ND		4.9	0.65	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
Chloroethane	ND		4.9	1.1	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
Chloroform	ND		4.9	0.30	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
Bromodichloromethane	ND		4.9	0.66	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
Chloromethane	ND		4.9	0.30	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
cis-1,2-Dichloroethene	ND		4.9	0.63	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
cis-1,3-Dichloropropene	ND		4.9	0.71	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
1,2-Dibromoethane (EDB)	ND		4.9	0.63	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
Cyclohexane	ND		4.9	0.69	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
					0 0				

TestAmerica Buffalo

11/16/2015

Page 89 of 147

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: Lab Control Sample

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-272045/2-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Total/NA** Analysis Batch: 273296 **Prep Batch: 272045** MB MB ac

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		4.9	0.40	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
2-Butanone (MEK)	ND		25	1.8	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
Ethylbenzene	ND		4.9	0.34	ug/Kg		10/30/15 00:18	11/05/15 15:40	•
4-Methyl-2-pentanone (MIBK)	ND		25	1.6	ug/Kg		10/30/15 00:18	11/05/15 15:40	
Isopropylbenzene	ND		4.9	0.74	ug/Kg		10/30/15 00:18	11/05/15 15:40	•
Methyl acetate	ND		4.9	3.0	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
Methyl tert-butyl ether	ND		4.9	0.48	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
Methylcyclohexane	ND		4.9	0.75	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
Methylene Chloride	ND		4.9	2.3	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
Styrene	ND		4.9	0.25	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
Tetrachloroethene	ND		4.9	0.66	ug/Kg		10/30/15 00:18	11/05/15 15:40	•
Toluene	ND		4.9	0.37	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
trans-1,2-Dichloroethene	ND		4.9	0.51	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
trans-1,3-Dichloropropene	ND		4.9	2.2	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
Trichloroethene	ND		4.9	1.1	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
Trichlorofluoromethane	ND		4.9	0.46	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
Tetrahydrofuran	ND		9.8	2.8	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
Vinyl chloride	ND		4.9	0.60	ug/Kg		10/30/15 00:18	11/05/15 15:40	1
Xylenes, Total	ND		9.8	0.82	ug/Kg		10/30/15 00:18	11/05/15 15:40	1

MB MB Tentatively Identified Compound Est. Result Qualifier Unit RT CAS No. Prepared Analyzed Dil Fac Tentatively Identified Compound ug/Kg <u>10/30/15 00:18</u> <u>11/05/15 15:40</u> None MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	64 - 126	10/30/15 00:18	11/05/15 15:40	1
Toluene-d8 (Surr)	103	71 - 125	10/30/15 00:18	11/05/15 15:40	1
4-Bromofluorobenzene (Surr)	98	72 - 126	10/30/15 00:18	11/05/15 15:40	1
Dibromofluoromethane (Surr)	101	60 - 140	10/30/15 00:18	11/05/15 15:40	1

Lab Sample ID: LCS 480-272045/1-A

Matrix: Solid Analysis Batch: 273296							Prep Type: Total/NA Prep Batch: 272045
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	46.6	43.2		ug/Kg		93	77 - 121
1,1,2,2-Tetrachloroethane	46.6	45.7		ug/Kg		98	80 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	46.6	39.6		ug/Kg		85	60 - 140
ne							
1,1,2-Trichloroethane	46.6	45.6		ug/Kg		98	78 ₋ 122
1,1-Dichloroethane	46.6	43.9		ug/Kg		94	73 - 126
1,1-Dichloroethene	46.6	44.2		ug/Kg		95	59 - 125
1,2,3-Trichlorobenzene	46.6	45.2		ug/Kg		97	60 - 120
1,2,4-Trichlorobenzene	46.6	47.3		ug/Kg		102	64 - 120
1,2-Dibromo-3-Chloropropane	46.6	42.5		ug/Kg		91	63 - 124
1,2-Dichlorobenzene	46.6	46.9		ug/Kg		101	75 - 120
1,2-Dichloroethane	46.6	41.2		ug/Kg		89	77 - 122
1,2-Dichloropropane	46.6	44.6		ug/Kg		96	75 - 124
1,3-Dichlorobenzene	46.6	46.7		ug/Kg		100	74 - 120

TestAmerica Buffalo

Page 90 of 147

11/16/2015

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: Lab Control Sample

ep Type: Total/NA rep Batch: 272

2045	Į

Lab Sample ID: LCS 480-272045/1-A			Client Sample ID: Lab Co
Matrix: Solid			Prep Ty
Analysis Batch: 273296			Prep E
	Spike	LCS LCS	%Rec.

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dichlorobenzene	46.6	45.9		ug/Kg		99	73 - 120	
2-Hexanone	233	209		ug/Kg		90	59 ₋ 130	
Acetone	233	187		ug/Kg		80	61 - 137	
Benzene	46.6	45.2		ug/Kg		97	79 - 127	
Bromochloromethane	46.6	46.2		ug/Kg		99	75 ₋ 134	
Bromoform	46.6	49.5		ug/Kg		106	68 - 126	
Bromomethane	46.6	39.9		ug/Kg		86	37 - 149	
Carbon disulfide	46.6	44.6		ug/Kg		96	64 - 131	
Carbon tetrachloride	46.6	43.9		ug/Kg		94	75 - 135	
Chlorobenzene	46.6	47.2		ug/Kg		101	76 - 124	
Chloroethane	46.6	38.2		ug/Kg		82	69 - 135	
Chloroform	46.6	43.9		ug/Kg		94	80 - 118	
Bromodichloromethane	46.6	46.7		ug/Kg		100	80 - 122	
Chloromethane	46.6	35.8		ug/Kg		77	63 - 127	
cis-1,2-Dichloroethene	46.6	46.1		ug/Kg		99	81 - 117	
cis-1,3-Dichloropropene	46.6	46.9		ug/Kg		101	82 - 120	
1,2-Dibromoethane (EDB)	46.6	46.4		ug/Kg		100	78 - 120	
Cyclohexane	46.6	38.8		ug/Kg		83	65 - 106	
Dibromochloromethane	46.6	49.6		ug/Kg		107	76 - 125	
Dichlorodifluoromethane	46.6	29.9		ug/Kg		64	57 ₋ 142	
2-Butanone (MEK)	233	205		ug/Kg		88	70 - 134	
Ethylbenzene	46.6	46.7		ug/Kg		100	80 - 120	
4-Methyl-2-pentanone (MIBK)	233	204		ug/Kg		88	65 - 133	
Isopropylbenzene	46.6	46.7		ug/Kg		100	72 - 120	
Methyl acetate	233	188		ug/Kg		81	55 ₋ 136	
Methyl tert-butyl ether	46.6	44.2		ug/Kg		95	63 - 125	
Methylcyclohexane	46.6	40.1		ug/Kg		86	60 - 140	
Methylene Chloride	46.6	40.9		ug/Kg		88	61 - 127	
Styrene	46.6	48.0		ug/Kg		103	80 - 120	
Tetrachloroethene	46.6	45.3		ug/Kg		97	74 - 122	
Toluene	46.6	46.1		ug/Kg		99	74 - 128	
trans-1,2-Dichloroethene	46.6	45.5		ug/Kg		98	78 ₋ 126	
trans-1,3-Dichloropropene	46.6	47.0		ug/Kg		101	73 - 123	
Trichloroethene	46.6	45.0		ug/Kg		97	77 - 129	
Trichlorofluoromethane	46.6	37.6		ug/Kg		81	65 - 146	
Tetrahydrofuran	93.1	79.3		ug/Kg		85	64 - 113	
Vinyl chloride	46.6	37.1		ug/Kg		80	61 - 133	
Xylenes, Total	93.1	94.4		ug/Kg		101	70 - 130	
	LCS							

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		64 - 126
Toluene-d8 (Surr)	103		71 - 125
4-Bromofluorobenzene (Surr)	102		72 - 126
Dibromofluoromethane (Surr)	101		60 - 140

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-272053/2-A

Matrix: Solid

Analysis Ratch: 273296

Prep Ratch: 273296

Analysis Batch: 273296	MB	MB						Prep Batch:	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		4.9		ug/Kg		10/30/15 01:30	11/05/15 16:06	1
1,1,2,2-Tetrachloroethane	ND		4.9	0.79	ug/Kg		10/30/15 01:30	11/05/15 16:06	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.9	1.1	ug/Kg		10/30/15 01:30	11/05/15 16:06	1
1,1,2-Trichloroethane	ND		4.9	0.64	ug/Kg		10/30/15 01:30	11/05/15 16:06	1
1,1-Dichloroethane	ND		4.9	0.60	ug/Kg		10/30/15 01:30	11/05/15 16:06	1
1,1-Dichloroethene	ND		4.9	0.60	ug/Kg		10/30/15 01:30	11/05/15 16:06	1
1,2,3-Trichlorobenzene	ND		4.9	0.52	ug/Kg		10/30/15 01:30	11/05/15 16:06	1
1,2,4-Trichlorobenzene	ND		4.9	0.30	ug/Kg		10/30/15 01:30	11/05/15 16:06	1
1,2-Dibromo-3-Chloropropane	ND		4.9	2.4	ug/Kg		10/30/15 01:30	11/05/15 16:06	1
1,2-Dichlorobenzene	ND		4.9	0.38	ug/Kg		10/30/15 01:30	11/05/15 16:06	1
1,2-Dichloroethane	ND		4.9	0.25	ug/Kg		10/30/15 01:30	11/05/15 16:06	1
1,2-Dichloropropane	ND		4.9	2.4	ug/Kg		10/30/15 01:30	11/05/15 16:06	1
1,3-Dichlorobenzene	ND		4.9	0.25	ug/Kg		10/30/15 01:30	11/05/15 16:06	1
1,4-Dichlorobenzene	ND		4.9		ug/Kg		10/30/15 01:30	11/05/15 16:06	1
1,4-Dioxane	ND		98	21	ug/Kg		10/30/15 01:30	11/05/15 16:06	1
2-Hexanone	ND		24		ug/Kg		10/30/15 01:30	11/05/15 16:06	
Acetone	ND		24		ug/Kg		10/30/15 01:30	11/05/15 16:06	1
Benzene	ND		4.9		ug/Kg			11/05/15 16:06	1
Bromochloromethane	ND		4.9		ug/Kg			11/05/15 16:06	1
Bromoform	ND		4.9		ug/Kg			11/05/15 16:06	1
Bromomethane	ND		4.9		ug/Kg			11/05/15 16:06	1
Carbon disulfide	ND		4.9		ug/Kg			11/05/15 16:06	· · · · · · · · · · · · · · · · · · ·
Carbon tetrachloride	ND		4.9		ug/Kg			11/05/15 16:06	1
Chlorobenzene	ND		4.9		ug/Kg			11/05/15 16:06	1
Chloroethane	ND		4.9		ug/Kg			11/05/15 16:06	· · · · · · · · · · · · · · · · · · ·
Chloroform	ND		4.9		ug/Kg			11/05/15 16:06	1
Bromodichloromethane	ND		4.9		ug/Kg			11/05/15 16:06	1
Chloromethane	ND		4.9		ug/Kg			11/05/15 16:06	
cis-1,2-Dichloroethene	ND		4.9		ug/Kg ug/Kg			11/05/15 16:06	1
•	ND ND		4.9					11/05/15 16:06	1
cis-1,3-Dichloropropene	ND ND				ug/Kg			11/05/15 16:06	1
1,2-Dibromoethane (EDB)			4.9		ug/Kg				
Cyclohexane	ND		4.9		ug/Kg			11/05/15 16:06	1
District of the second state of the second stat	ND		4.9		ug/Kg			11/05/15 16:06	1
Dichlorodifluoromethane	ND		4.9		ug/Kg			11/05/15 16:06	1
2-Butanone (MEK)	ND		24		ug/Kg			11/05/15 16:06	1
Ethylbenzene	ND		4.9		ug/Kg			11/05/15 16:06	1
4-Methyl-2-pentanone (MIBK)	ND		24		ug/Kg			11/05/15 16:06	1
Isopropylbenzene	ND		4.9		ug/Kg			11/05/15 16:06	1
Methyl acetate	ND		4.9		ug/Kg			11/05/15 16:06	1
Methyl tert-butyl ether	ND		4.9		ug/Kg			11/05/15 16:06	1
Methylcyclohexane	ND		4.9		ug/Kg			11/05/15 16:06	1
Methylene Chloride	ND		4.9		ug/Kg			11/05/15 16:06	1
Styrene	ND		4.9	0.24	ug/Kg		10/30/15 01:30	11/05/15 16:06	1
Tetrachloroethene	ND		4.9	0.66	ug/Kg		10/30/15 01:30	11/05/15 16:06	1
Toluene	0.626	J	4.9	0.37	ug/Kg			11/05/15 16:06	1
trans-1,2-Dichloroethene	ND		4.9	0.50	ug/Kg		10/30/15 01:30	11/05/15 16:06	1
trans-1,3-Dichloropropene	ND		4.9	2.2	ug/Kg		10/30/15 01:30	11/05/15 16:06	1
Trichloroethene	ND		4.9	1.1	ug/Kg		10/30/15 01:30	11/05/15 16:06	1

TestAmerica Buffalo

Page 92 of 147

2

3

_

6

8

10

12

14

Client: Woodard & Curran, Inc.

Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-272053/2-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Total/NA** Analysis Batch: 273296 **Prep Batch: 272053**

	MB	MB								
Analyte	Result	Qualifier		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND			4.9	0.46	ug/Kg		10/30/15 01:30	11/05/15 16:06	1
Tetrahydrofuran	ND			9.8	2.8	ug/Kg		10/30/15 01:30	11/05/15 16:06	1
Vinyl chloride	ND			4.9	0.60	ug/Kg		10/30/15 01:30	11/05/15 16:06	1
Xylenes, Total	ND			9.8	0.82	ug/Kg		10/30/15 01:30	11/05/15 16:06	1
	МВ	MB								
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg					10/30/15 01:30	11/05/15 16:06	1

		MB	MB				
Surroga	te	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichl	oroethane-d4 (Surr)	97		64 - 126	10/30/15 01:30	11/05/15 16:06	1
Toluene-	d8 (Surr)	102		71 - 125	10/30/15 01:30	11/05/15 16:06	1
4-Bromo	fluorobenzene (Surr)	98		72 - 126	10/30/15 01:30	11/05/15 16:06	1
Dibromo	fluoromethane (Surr)	102		60 - 140	10/30/15 01:30	11/05/15 16:06	1

Lab Sample ID: LCS 480-272053/1-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Analysis Batch: 273296 Prep Batch: 272053

Analysis Batch: 273296	Spike	LCS	LCS		%Rec.
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits
1,1,1-Trichloroethane	50.0	43.9	ug/Kg	<u>j</u> – <u>88</u>	77 - 121
1,1,2,2-Tetrachloroethane	50.0	49.2	ug/Kg	98	80 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	38.9	ug/Kg	78	60 - 140
ne					
1,1,2-Trichloroethane	50.0	49.2	ug/Kg		78 - 122
1,1-Dichloroethane	50.0	45.2	ug/Kg	90	73 - 126
1,1-Dichloroethene	50.0	43.6	ug/Kg	87	59 - 125
1,2,3-Trichlorobenzene	50.0	48.9	ug/Kg	98	60 - 120
1,2,4-Trichlorobenzene	50.0	50.3	ug/Kg	101	64 - 120
1,2-Dibromo-3-Chloropropane	50.0	46.5	ug/Kg	93	63 - 124
1,2-Dichlorobenzene	50.0	49.3	ug/Kg	99	75 - 120
1,2-Dichloroethane	50.0	44.2	ug/Kg	88	77 - 122
1,2-Dichloropropane	50.0	47.1	ug/Kg	94	75 ₋ 124
1,3-Dichlorobenzene	50.0	48.8	ug/Kg	98	74 - 120
1,4-Dichlorobenzene	50.0	48.6	ug/Kg	97	73 - 120
2-Hexanone	250	231	ug/Kg	92	59 ₋ 130
Acetone	250	204	ug/Kg	j 81	61 - 137
Benzene	50.0	46.9	ug/Kg	94	79 ₋ 127
Bromochloromethane	50.0	48.9	ug/Kg	98	75 ₋ 134
Bromoform	50.0	53.2	ug/Kg	106	68 - 126
Bromomethane	50.0	50.4	ug/Kg	101	37 - 149
Carbon disulfide	50.0	45.5	ug/Kg	91	64 - 131
Carbon tetrachloride	50.0	44.2	ug/Kg	j 88	75 ₋ 135
Chlorobenzene	50.0	48.7	ug/Kg	97	76 ₋ 124
Chloroethane	50.0	45.8	ug/Kg	92	69 - 135
Chloroform	50.0	46.2	ug/Kg	92	80 - 118
Bromodichloromethane	50.0	49.0	ug/Kg	98	80 - 122
Chloromethane	50.0	36.4	ug/Kg		63 - 127
cis-1,2-Dichloroethene	50.0	47.8	ug/Kg	96	81 - 117

TestAmerica Buffalo

Page 93 of 147

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: SMWU26-SS-BLDG23-04

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-272053/1-A

Matrix: Solid

Analysis Batch: 273296	Spike	LCS	LCS				Prep Batch: 272053 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
cis-1,3-Dichloropropene	50.0	49.7		ug/Kg		99	82 - 120
1,2-Dibromoethane (EDB)	50.0	50.1		ug/Kg		100	78 - 120
Cyclohexane	50.0	39.4		ug/Kg		79	65 - 106
Dibromochloromethane	50.0	52.7		ug/Kg		105	76 - 125
Dichlorodifluoromethane	50.0	28.9		ug/Kg		58	57 - 142
2-Butanone (MEK)	250	226		ug/Kg		90	70 - 134
Ethylbenzene	50.0	47.8		ug/Kg		96	80 - 120
4-Methyl-2-pentanone (MIBK)	250	223		ug/Kg		89	65 - 133
Isopropylbenzene	50.0	47.9		ug/Kg		96	72 - 120
Methyl acetate	250	206		ug/Kg		83	55 - 136
Methyl tert-butyl ether	50.0	47.5		ug/Kg		95	63 - 125
Methylcyclohexane	50.0	40.1		ug/Kg		80	60 - 140
Methylene Chloride	50.0	43.1		ug/Kg		86	61 - 127
Styrene	50.0	50.2		ug/Kg		100	80 - 120
Tetrachloroethene	50.0	46.5		ug/Kg		93	74 - 122
Toluene	50.0	48.3		ug/Kg		97	74 - 128
trans-1,2-Dichloroethene	50.0	46.4		ug/Kg		93	78 - 126
trans-1,3-Dichloropropene	50.0	50.3		ug/Kg		101	73 - 123
Trichloroethene	50.0	45.9		ug/Kg		92	77 - 129
Trichlorofluoromethane	50.0	37.5		ug/Kg		75	65 - 146
Tetrahydrofuran	100	86.3		ug/Kg		86	64 - 113
Vinyl chloride	50.0	37.0		ug/Kg		74	61 - 133
Xylenes, Total	100	97.7		ug/Kg		98	70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		64 - 126
Toluene-d8 (Surr)	105		71 - 125
4-Bromofluorobenzene (Surr)	102		72 - 126
Dibromofluoromethane (Surr)	101		60 - 140

Lab Sample ID: 480-90114-14 MS

Matrix: Solid

Analysis Batch: 273296									Prep Batch: 272053
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	ND		47.3	38.6		ug/Kg	☼	82	77 - 121
1,1,2,2-Tetrachloroethane	ND	F1	47.3	36.1	F1	ug/Kg	₩	76	80 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		47.3	33.0		ug/Kg	☼	70	60 - 140
ne									
1,1,2-Trichloroethane	ND		47.3	40.7		ug/Kg	₩	86	78 - 122
1,1-Dichloroethane	ND		47.3	39.5		ug/Kg	₩	84	73 - 126
1,1-Dichloroethene	ND		47.3	37.0		ug/Kg	₩	78	59 - 125
1,2,3-Trichlorobenzene	ND		47.3	34.1		ug/Kg	₩	72	60 - 120
1,2,4-Trichlorobenzene	ND		47.3	34.1		ug/Kg	₩	72	64 - 120
1,2-Dibromo-3-Chloropropane	ND	F1	47.3	30.2		ug/Kg	₩	64	63 - 124
1,2-Dichlorobenzene	ND		47.3	38.7		ug/Kg	₩	82	75 - 120
1,2-Dichloroethane	ND		47.3	39.2		ug/Kg	₩	83	77 - 122
1,2-Dichloropropane	ND		47.3	40.2		ug/Kg	≎	85	75 - 124

Prep Type: Total/NA

Spike

MS MS

%Rec.

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Sample Sample

Lab Sample ID: 480-90114-14 MS

Matrix: Solid

Analysis Batch: 273296

Client Sample ID: SMWU26-SS-BLDG23-04 **Prep Type: Total/NA**

Prep Batch: 272053

	•	•	•							
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,3-Dichlorobenzene	ND		47.3	38.2		ug/Kg	₩	81	74 - 120	
1,4-Dichlorobenzene	ND		47.3	37.7		ug/Kg	₽	80	73 - 120	
2-Hexanone	ND		236	152		ug/Kg	₩	64	59 - 130	
Acetone	ND	F1	236	140	F1	ug/Kg	≎	59	61 - 137	
Benzene	ND		47.3	40.5		ug/Kg	₩	86	79 - 127	
Bromoform	ND		47.3	41.0		ug/Kg	≎	87	68 - 126	
Bromomethane	ND		47.3	44.2		ug/Kg		93	37 - 149	
Carbon disulfide	ND		47.3	37.1		ug/Kg	₽	79	64 - 131	
Carbon tetrachloride	ND		47.3	38.2		ug/Kg	₽	81	75 - 135	
Chlorobenzene	ND		47.3	41.7		ug/Kg	₩.	88	76 - 124	
Bromochloromethane	ND		47.3	44.3		ug/Kg	≎	94	75 - 134	
Dibromochloromethane	ND		47.3	45.1		ug/Kg	₽	95	76 ₋ 125	
Chloroethane	ND		47.3	36.4		ug/Kg	₩.	77	69 - 135	
Chloroform	ND		47.3	41.4		ug/Kg	≎	88	80 - 118	
Chloromethane	ND	F1	47.3	29.5	F1	ug/Kg	≎	62	63 - 127	
cis-1,2-Dichloroethene	ND		47.3	42.1		ug/Kg	₩	89	81 - 117	
cis-1,3-Dichloropropene	ND		47.3	41.2		ug/Kg	₩	87	82 - 120	
Cyclohexane	ND	F1	47.3	30.0	F1	ug/Kg	☼	63	65 - 106	
Bromodichloromethane	ND		47.3	44.1		ug/Kg		93	80 - 122	
Dichlorodifluoromethane	ND	F1	47.3	24.7	F1	ug/Kg	₩	52	57 ₋ 142	
Ethylbenzene	ND		47.3	39.6		ug/Kg	₩	84	80 - 120	
1,2-Dibromoethane (EDB)	ND		47.3	39.9		ug/Kg		84	78 - 120	
Isopropylbenzene	ND		47.3	37.5		ug/Kg	₩	79	72 - 120	
Methyl acetate	ND		236	151		ug/Kg	₩	64	55 - 136	
2-Butanone (MEK)	ND	F1	236	151	F1	ug/Kg	₩.	64	70 - 134	
4-Methyl-2-pentanone (MIBK)	ND	F1	236	155		ug/Kg	₩	65	65 - 133	
Methyl tert-butyl ether	ND		47.3	40.2		ug/Kg	₩	85	63 - 125	
Methylcyclohexane	ND		47.3	30.7		ug/Kg	₩.	65	60 - 140	
Methylene Chloride	ND		47.3	39.5		ug/Kg	₩	83	61 - 127	
Styrene	ND		47.3	41.5		ug/Kg	₩	88	80 - 120	
Tetrachloroethene	ND		47.3	37.3		ug/Kg	₩.	79	74 - 122	
Toluene	1.5	JB	47.3	39.8		ug/Kg	₩	81	74 - 128	
trans-1,2-Dichloroethene	ND		47.3	40.0		ug/Kg	≎	85	78 - 126	
trans-1,3-Dichloropropene	ND		47.3	40.8		ug/Kg		86	73 - 123	
Trichloroethene	ND		47.3	39.3		ug/Kg	☼	83	77 - 129	
Trichlorofluoromethane	ND		47.3	34.6		ug/Kg	₽	73	65 - 146	
Vinyl chloride	ND	F1	47.3	29.4		ug/Kg		62	61 - 133	
Tetrahydrofuran	ND	F1	94.6	57.2	F1	ug/Kg	☼	60	64 - 113	

MS MS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	103		60 - 140
1,2-Dichloroethane-d4 (Surr)	90		64 - 126
Toluene-d8 (Surr)	104		71 - 125
4-Bromofluorobenzene (Surr)	101		72 - 126

TestAmerica Buffalo

Page 95 of 147

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-90114-14 MSD Matrix: Solid Client Sample ID: SMWU26-SS-BLDG23-04

Matrix: Solid Analysis Batch: 273296	Sample	Sample	Spike	MSD	MSD				Prep Typ Prep Ba %Rec.		
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		48.0	38.0		ug/Kg	<u>₩</u>	79	77 - 121	2	30
1,1,2,2-Tetrachloroethane	ND	F1	48.0	35.2	F1	ug/Kg	₩	73	80 - 120	3	30
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		48.0	31.4		ug/Kg	₩	66	60 - 140	5	30
1,1,2-Trichloroethane	ND		48.0	41.2		ug/Kg		86	78 - 122	1	30
1,1-Dichloroethane	ND		48.0	39.6		ug/Kg	₩	82	73 - 126	0	30
1,1-Dichloroethene	ND		48.0	36.4		ug/Kg	₩	76	59 - 125	2	30
1,2,3-Trichlorobenzene	ND.		48.0	33.1		ug/Kg	· · · · · · · · · · · · · · · · · · ·	69	60 - 120	3	30
1,2,4-Trichlorobenzene	ND		48.0	33.7		ug/Kg	₩	70	64 - 120	1	30
1,2-Dibromo-3-Chloropropane	ND	F1	48.0	28.8	F1	ug/Kg	₩	60	63 - 124	5	30
1,2-Dichlorobenzene	ND		48.0	39.1		ug/Kg	· · · · · · · · · · · · · · · · · · ·	81	75 - 120	1	30
1,2-Dichloroethane	ND		48.0	39.2		ug/Kg	₩	82	77 ₋ 122	0	30
1,2-Dichloropropane	ND		48.0	41.4		ug/Kg	₩	86	75 ₋ 124	3	30
1,3-Dichlorobenzene	ND		48.0	38.1		ug/Kg		79	74 - 120	0	30
1,4-Dichlorobenzene	ND		48.0	37.6			₽	78	73 - 120	0	30
2-Hexanone	ND ND		240	152		ug/Kg	≎	63	73 - 120 59 - 130	0	30
						ug/Kg	· · · · · · · · · · · · · · · · · · ·				
Acetone	ND	FI	240	135	FT	ug/Kg	₩	56	61 - 137	4	30
Benzene	ND		48.0	40.4		ug/Kg		84	79 - 127	0	30
Bromoform	ND		48.0	40.7		ug/Kg	· · · · · · · · · · · · · · · · · · ·	85	68 - 126	1	30
Bromomethane	ND		48.0	44.7		ug/Kg	☆	93	37 - 149	1	30
Carbon disulfide	ND		48.0	36.3		ug/Kg	☆	76	64 - 131	2	30
Carbon tetrachloride	ND		48.0	36.9		ug/Kg		77	75 - 135	3	30
Chlorobenzene	ND		48.0	42.6		ug/Kg	*	89	76 - 124	2	30
Bromochloromethane	ND		48.0	43.6		ug/Kg	‡	91	75 - 134	2	30
Dibromochloromethane	ND		48.0	45.0		ug/Kg		94	76 - 125	0	30
Chloroethane	ND		48.0	36.6		ug/Kg	₩	76	69 - 135	1	30
Chloroform	ND		48.0	41.6		ug/Kg	☼	87	80 - 118	1	30
Chloromethane	ND	F1	48.0	29.3	F1	ug/Kg		61	63 - 127	1	30
cis-1,2-Dichloroethene	ND		48.0	42.3		ug/Kg	₩	88	81 - 117	0	30
cis-1,3-Dichloropropene	ND		48.0	42.3		ug/Kg	₩	88	82 - 120	3	30
Cyclohexane	ND	F1	48.0	29.9	F1	ug/Kg	₩	62	65 - 106	1	30
Bromodichloromethane	ND		48.0	44.4		ug/Kg	₽	93	80 - 122	1	30
Dichlorodifluoromethane	ND	F1	48.0	23.1	F1	ug/Kg	₩	48	57 - 142	7	30
Ethylbenzene	ND		48.0	39.6		ug/Kg	₩	83	80 - 120	0	30
1,2-Dibromoethane (EDB)	ND		48.0	40.0		ug/Kg	₩	83	78 - 120	0	30
Isopropylbenzene	ND		48.0	37.2		ug/Kg	₩	78	72 - 120	1	30
Methyl acetate	ND		240	144		ug/Kg	₩	60	55 - 136	5	30
2-Butanone (MEK)	ND	F1	240	146	F1	ug/Kg	₩.	61	70 - 134	4	30
4-Methyl-2-pentanone (MIBK)	ND	F1	240	151	F1	ug/Kg	☼	63	65 - 133	2	30
Methyl tert-butyl ether	ND		48.0	39.9		ug/Kg	☼	83	63 - 125	1	30
Methylcyclohexane	ND		48.0	30.3		ug/Kg		63	60 - 140	1	30
Methylene Chloride	ND		48.0	40.1		ug/Kg	₩	84	61 - 127	2	30
Styrene	ND		48.0	42.3		ug/Kg	₩	88	80 - 120	2	30
Tetrachloroethene	ND		48.0	37.3		ug/Kg	· · · · · · · · · · · · · · · · · · ·	78	74 - 122	0	30
Toluene		JB	48.0	40.8		ug/Kg	₩	82	74 ₋ 128	2	30
trans-1,2-Dichloroethene	ND		48.0	39.0		ug/Kg	₩	81	78 - 126	2	30
trans-1,3-Dichloropropene	ND		48.0	41.1		ug/Kg		86	73 - 123	1	30
Trichloroethene	ND		48.0	39.4		ug/Kg	₩	82	77 ₋ 129	0	30

TestAmerica Buffalo

Page 96 of 147

QC Sample Results

Client: Woodard & Curran, Inc. TestAmerica Job ID: 480-90114-1 Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-90114-14 MSD

Matrix: Solid

Analysis Batch: 273296

Client Sample ID: SMWU26-SS-BLDG23-04

Prep Type: Total/NA

Prep Batch: 272053

Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
ND		48.0	32.7		ug/Kg	<u></u>	68	65 - 146	6	30	
ND	F1	48.0	27.4	F1	ug/Kg	☼	57	61 - 133	7	30	
ND	F1	96.0	55.7	F1	ug/Kg	₩	58	64 - 113	3	30	
	Result ND ND	ND F1	Result Qualifier Added ND 48.0 ND F1 48.0	Result Qualifier Added Result ND 48.0 32.7 ND F1 48.0 27.4	Result Qualifier Added Result Qualifier ND 48.0 32.7 ND F1 48.0 27.4 F1	Result Qualifier Added Result Qualifier Unit ND 48.0 32.7 ug/Kg ND F1 48.0 27.4 F1 ug/Kg	Result Qualifier Added Result Qualifier Unit D ND 48.0 32.7 ug/Kg x ND F1 48.0 27.4 F1 ug/Kg x	Result Qualifier Added Result Qualifier Unit D %Rec ND 48.0 32.7 ug/Kg 68 ND F1 48.0 27.4 F1 ug/Kg 57	Result Qualifier Added Result Qualifier Unit D %Rec Limits ND 48.0 32.7 ug/Kg 32.7 68 65 - 146 ND F1 48.0 27.4 F1 ug/Kg 57 61 - 133	Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD ND 48.0 32.7 ug/Kg 68 65 - 146 6 ND F1 48.0 27.4 F1 ug/Kg 57 61 - 133 7	Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit ND 48.0 32.7 ug/Kg 30 68 65 - 146 6 30 ND F1 48.0 27.4 F1 ug/Kg 57 61 - 133 7 30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	103		60 - 140
1,2-Dichloroethane-d4 (Surr)	89		64 - 126
Toluene-d8 (Surr)	105		71 - 125
4-Bromofluorobenzene (Surr)	102		72 - 126

Client Sample ID: Method Blank

Prep Type: Total/NA

Lab Sample ID: MB 480-273742/7
Matrix: Water

Analysis Batch: 273742									
Analyte		MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0		ug/L	<u> </u>	Tropulcu	11/07/15 12:05	1
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			11/07/15 12:05	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0		ug/L			11/07/15 12:05	1
1,1,2-Trichloroethane	ND		1.0		ug/L			11/07/15 12:05	1
1,1-Dichloroethane	ND		1.0		ug/L			11/07/15 12:05	1
1,1-Dichloroethene	ND		1.0		ug/L			11/07/15 12:05	1
1,2,3-Trichlorobenzene	ND		1.0	0.41	ug/L			11/07/15 12:05	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			11/07/15 12:05	1
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			11/07/15 12:05	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			11/07/15 12:05	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			11/07/15 12:05	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			11/07/15 12:05	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			11/07/15 12:05	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			11/07/15 12:05	1
1,4-Dioxane	ND		40	9.3	ug/L			11/07/15 12:05	1
2-Hexanone	ND		5.0	1.2	ug/L			11/07/15 12:05	1
Acetone	ND		10	3.0	ug/L			11/07/15 12:05	1
Benzene	ND		1.0	0.41	ug/L			11/07/15 12:05	1
Bromochloromethane	ND		1.0	0.87	ug/L			11/07/15 12:05	1
Bromoform	ND		1.0	0.26	ug/L			11/07/15 12:05	1
Bromomethane	ND		1.0	0.69	ug/L			11/07/15 12:05	1
Carbon disulfide	ND		1.0	0.19	ug/L			11/07/15 12:05	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			11/07/15 12:05	1
Chlorobenzene	ND		1.0	0.75	ug/L			11/07/15 12:05	1
Chloroethane	ND		1.0	0.32	ug/L			11/07/15 12:05	1
Chloroform	ND		1.0	0.34	ug/L			11/07/15 12:05	1
Bromodichloromethane	ND		1.0	0.39	ug/L			11/07/15 12:05	1
Chloromethane	ND		1.0	0.35	ug/L			11/07/15 12:05	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			11/07/15 12:05	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			11/07/15 12:05	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			11/07/15 12:05	1
Cyclohexane	ND		1.0	0.18	ug/L			11/07/15 12:05	1
Dibromochloromethane	ND		1.0	0.32	ug/L			11/07/15 12:05	1

TestAmerica Buffalo

Client Sample ID: Method Blank

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Matrix: Water

Lab Sample ID: MB 480-273742/7

11/07/15 12:05

11/07/15 12:05

11/07/15 12:05

11/07/15 12:05

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

ND

ND

ND

ND

MR MR

Analysis Batch: 273742 MB MB Result Qualifier **MDL** Unit Analyte RL Prepared Analyzed Dil Fac Dichlorodifluoromethane $\overline{\mathsf{ND}}$ 1.0 0.68 ug/L 11/07/15 12:05 2-Butanone (MEK) ND 10 1.3 ug/L 11/07/15 12:05 Ethylbenzene ND 1.0 0.74 ug/L 11/07/15 12:05 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 ug/L 11/07/15 12:05 Isopropylbenzene ND 1.0 0.79 ug/L 11/07/15 12:05 Methyl acetate ND 2.5 1.3 ug/L 11/07/15 12:05 Methyl tert-butyl ether ND 1.0 0.16 ug/L 11/07/15 12:05 Methylcyclohexane ND 0.16 ug/L 1.0 11/07/15 12:05 Methylene Chloride ND 1.0 0.44 ug/L 11/07/15 12:05 ND 0.73 ug/L Styrene 1.0 11/07/15 12:05 Tetrachloroethene ND 1.0 0.36 ug/L 11/07/15 12:05 Toluene ND 0.51 ug/L 1.0 11/07/15 12:05 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 11/07/15 12:05 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 11/07/15 12:05 Trichloroethene ND 1.0 0.46 ug/L 11/07/15 12:05

MB MB Tentatively Identified Compound Est. Result Qualifier Unit D RT CAS No. Prepared Analyzed Dil Fac Tentatively Identified Compound None ug/L 11/07/15 12:05

1.0

5.0

1.0

2.0

0.88 ug/L

1.3 ug/L

0.90 ug/L

0.66 ug/L

	וו כוווו	VID					
Surrogate	%Recovery (Qualifier l	Limits	Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	98		66 - 137		11/07/15 12:05	1	
Toluene-d8 (Surr)	95	;	71 - 126		11/07/15 12:05	1	
4-Bromofluorobenzene (Surr)	95	:	73 - 120		11/07/15 12:05	1	
Dibromofluoromethane (Surr)	93	(60 - 140		11/07/15 12:05	1	

Lab Sample ID: LCS 480-273742/5 **Matrix: Water**

Analysis Batch: 273742

Trichlorofluoromethane

Tetrahydrofuran

Vinyl chloride

Xylenes, Total

Allalysis Batch. 273742	Spike	LCS	LCS				%Rec.
Analyte	Added	_	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	25.0	24.8		ug/L		99	73 - 126
1,1,2,2-Tetrachloroethane	25.0	25.9		ug/L		103	70 - 126
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	26.3		ug/L		105	52 ₋ 148
ne							
1,1,2-Trichloroethane	25.0	25.3		ug/L		101	76 - 122
1,1-Dichloroethane	25.0	25.2		ug/L		101	71 - 129
1,1-Dichloroethene	25.0	25.8		ug/L		103	58 - 121
1,2,3-Trichlorobenzene	25.0	23.9		ug/L		96	63 - 138
1,2,4-Trichlorobenzene	25.0	25.1		ug/L		100	70 - 122
1,2-Dibromo-3-Chloropropane	25.0	25.1		ug/L		101	56 ₋ 134
1,2-Dichlorobenzene	25.0	24.7		ug/L		99	80 - 124
1,2-Dichloroethane	25.0	25.6		ug/L		102	75 - 127
1,2-Dichloropropane	25.0	24.5		ug/L		98	76 ₋ 120
1,3-Dichlorobenzene	25.0	23.7		ug/L		95	77 - 120

Page 98 of 147

11/16/2015

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

4

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-273742/5

Matrix: Water

Methylcyclohexane

Methylene Chloride

Tetrachloroethene

Trichloroethene

Tetrahydrofuran

Vinyl chloride

Xylenes, Total

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

Styrene

Toluene

Analysis Batch: 273742

Client Sample ID: Lab Control Sample Prep Type: Total/NA

100

104

97

97

96

98

100

95

104

101

83

95

61 - 138

57 - 132

70 - 130

74 - 122

80 - 122

73 - 127

72 - 123

74 - 123

62 - 152

62 - 132

65 - 133

76 - 122

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dichlorobenzene	25.0	24.5		ug/L		98	75 - 120	
2-Hexanone	125	141		ug/L		113	65 - 127	
Acetone	125	136		ug/L		109	56 - 142	
Benzene	25.0	25.2		ug/L		101	71 - 124	
Bromochloromethane	25.0	24.3		ug/L		97	72 - 130	
Bromoform	25.0	22.7		ug/L		91	52 - 132	
Bromomethane	25.0	28.0		ug/L		112	55 ₋ 144	
Carbon disulfide	25.0	24.5		ug/L		98	59 ₋ 134	
Carbon tetrachloride	25.0	25.1		ug/L		100	72 - 134	
Chlorobenzene	25.0	24.6		ug/L		98	72 - 120	
Chloroethane	25.0	28.8		ug/L		115	69 - 136	
Chloroform	25.0	25.0		ug/L		100	73 - 127	
Bromodichloromethane	25.0	24.0		ug/L		96	80 - 122	
Chloromethane	25.0	18.9		ug/L		75	68 - 124	
cis-1,2-Dichloroethene	25.0	23.5		ug/L		94	74 - 124	
cis-1,3-Dichloropropene	25.0	24.5		ug/L		98	74 - 124	
1,2-Dibromoethane (EDB)	25.0	24.5		ug/L		98	77 - 120	
Cyclohexane	25.0	23.8		ug/L		95	59 - 135	
Dibromochloromethane	25.0	23.5		ug/L		94	75 - 125	
Dichlorodifluoromethane	25.0	16.4		ug/L		66	59 ₋ 135	
2-Butanone (MEK)	125	138		ug/L		111	57 - 140	
Ethylbenzene	25.0	24.9		ug/L		100	77 - 123	
4-Methyl-2-pentanone (MIBK)	125	128		ug/L		102	71 - 125	
Isopropylbenzene	25.0	25.1		ug/L		100	77 - 122	
Methyl acetate	125	138		ug/L		110	74 - 133	
Methyl tert-butyl ether	25.0	24.6		ug/L		98	64 - 127	

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

50.0

25.0

50.0

25.1

26.0

24.1

24.3

24.0

24.6

25.1

23.7

25.9

50.5

20.8

47.5

ug/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		66 - 137
Toluene-d8 (Surr)	95		71 - 126
4-Bromofluorobenzene (Surr)	99		73 - 120
Dibromofluoromethane (Surr)	97		60 - 140

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-272533/1-A
Matrix: Water
Analysis Batch: 274392

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 272533

Matrix: Water								Prep Type: 10	
Analysis Batch: 274392	МВ	МВ						Prep Batch:	2/2533
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		5.0	0.48	ug/L		11/02/15 09:42	11/11/15 15:43	1
2,4,6-Trichlorophenol	ND		5.0	0.61	ug/L		11/02/15 09:42	11/11/15 15:43	1
2,4-Dichlorophenol	ND		5.0	0.51	ug/L		11/02/15 09:42	11/11/15 15:43	1
2,4-Dimethylphenol	ND		5.0	0.50	ug/L		11/02/15 09:42	11/11/15 15:43	1
2,4-Dinitrophenol	ND		10	2.2	ug/L		11/02/15 09:42	11/11/15 15:43	1
2,4-Dinitrotoluene	ND		5.0	0.45	ug/L		11/02/15 09:42	11/11/15 15:43	1
2,6-Dinitrotoluene	ND		5.0	0.40	ug/L		11/02/15 09:42	11/11/15 15:43	1
2-Chloronaphthalene	ND		5.0	0.46	ug/L		11/02/15 09:42	11/11/15 15:43	1
2-Chlorophenol	ND		5.0	0.53	ug/L		11/02/15 09:42	11/11/15 15:43	1
2-Methylnaphthalene	ND		5.0	0.60	ug/L		11/02/15 09:42	11/11/15 15:43	1
2-Methylphenol	ND		5.0		ug/L		11/02/15 09:42	11/11/15 15:43	1
2-Nitroaniline	ND		10		ug/L		11/02/15 09:42	11/11/15 15:43	1
2-Nitrophenol	ND		5.0		ug/L		11/02/15 09:42	11/11/15 15:43	1
3,3'-Dichlorobenzidine	ND		5.0		ug/L			11/11/15 15:43	1
3-Nitroaniline	ND		10	0.48	ug/L			11/11/15 15:43	1
4,6-Dinitro-2-methylphenol	ND		10		ug/L			11/11/15 15:43	1
4-Bromophenyl phenyl ether	ND		5.0		ug/L			11/11/15 15:43	1
4-Chloro-3-methylphenol	ND		5.0		ug/L			11/11/15 15:43	1
4-Chloroaniline	ND		5.0		ug/L			11/11/15 15:43	· · · · · · · · · · · · · · · · · · ·
4-Chlorophenyl phenyl ether	ND		5.0		ug/L			11/11/15 15:43	1
4-Methylphenol	ND		10		ug/L			11/11/15 15:43	1
4-Nitroaniline	ND		10		ug/L			11/11/15 15:43	· · · · · · · · · · · · · · · · · · ·
4-Nitrophenol	ND		10		ug/L			11/11/15 15:43	1
Acenaphthene	ND		5.0		ug/L			11/11/15 15:43	1
Acenaphthylene	ND		5.0		ug/L			11/11/15 15:43	· · · · · · · · · · · · · · · · · · ·
Acetophenone	ND		5.0		ug/L			11/11/15 15:43	1
Anthracene	ND		5.0		ug/L			11/11/15 15:43	1
Atrazine	ND		5.0		ug/L			11/11/15 15:43	
Benzaldehyde	ND ND		5.0		ug/L ug/L			11/11/15 15:43	1
•	ND ND		5.0		ug/L ug/L			11/11/15 15:43	
Benzo(a)nyrone	ND		5.0		ug/L ug/L			11/11/15 15:43	1 1
Benzo(a)pyrene	ND ND				_				
Benzo(b)fluoranthene			5.0		ug/L			11/11/15 15:43	1
Benzo(g,h,i)perylene	ND		5.0		ug/L			11/11/15 15:43	1
Benzo(k)fluoranthene	ND		5.0		ug/L			11/11/15 15:43	1
Biphenyl	ND		5.0	0.65	Ū			11/11/15 15:43	1
bis (2-chloroisopropyl) ether	ND		5.0		ug/L			11/11/15 15:43	1
Bis(2-chloroethoxy)methane	ND		5.0		ug/L			11/11/15 15:43	1
Bis(2-chloroethyl)ether	ND		5.0		ug/L			11/11/15 15:43	1
Bis(2-ethylhexyl) phthalate	ND		5.0		ug/L			11/11/15 15:43	
Butyl benzyl phthalate	ND		5.0		ug/L			11/11/15 15:43	1
Caprolactam	ND		5.0		ug/L			11/11/15 15:43	1
Carbazole	ND		5.0		ug/L			11/11/15 15:43	1
Chrysene	ND		5.0		ug/L			11/11/15 15:43	1
Dibenz(a,h)anthracene	ND		5.0		ug/L			11/11/15 15:43	1
Dibenzofuran	ND		10		ug/L			11/11/15 15:43	1
Diethyl phthalate	ND		5.0		ug/L			11/11/15 15:43	1
Dimethyl phthalate	ND		5.0		ug/L			11/11/15 15:43	1
Di-n-butyl phthalate	ND		5.0	0.31	ug/L		11/02/15 09:42	11/11/15 15:43	1

TestAmerica Buffalo

Page 100 of 147

5

5

7

8

10

12

14

Le

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-2725 Matrix: Water Analysis Batch: 274392	33/1-A						•	ole ID: Method Prep Type: To Prep Batch:	otal/NA
-	MB	MB						-	
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate	ND		5.0	0.47	-		11/02/15 09:42	11/11/15 15:43	1
Fluoranthene	ND		5.0	0.40	ug/L		11/02/15 09:42	11/11/15 15:43	1
Fluorene	ND		5.0	0.36	•		11/02/15 09:42	11/11/15 15:43	1
Hexachlorobenzene	ND		5.0	0.51	ug/L		11/02/15 09:42	11/11/15 15:43	1
Hexachlorobutadiene	ND		5.0	0.68	ug/L		11/02/15 09:42	11/11/15 15:43	1
Hexachlorocyclopentadiene	ND		5.0	0.59	ug/L		11/02/15 09:42	11/11/15 15:43	1
Hexachloroethane	ND		5.0	0.59	ug/L		11/02/15 09:42	11/11/15 15:43	1
Indeno(1,2,3-cd)pyrene	ND		5.0	0.47	ug/L		11/02/15 09:42	11/11/15 15:43	1
Isophorone	ND		5.0	0.43	ug/L		11/02/15 09:42	11/11/15 15:43	1
Naphthalene	ND		5.0	0.76	ug/L		11/02/15 09:42	11/11/15 15:43	1
Nitrobenzene	ND		5.0	0.29	ug/L		11/02/15 09:42	11/11/15 15:43	1
N-Nitrosodi-n-propylamine	ND		5.0	0.54	ug/L		11/02/15 09:42	11/11/15 15:43	1
N-Nitrosodiphenylamine	ND		5.0	0.51	ug/L		11/02/15 09:42	11/11/15 15:43	1
Pentachlorophenol	ND		10	2.2	ug/L		11/02/15 09:42	11/11/15 15:43	1
Phenanthrene	ND		5.0	0.44	ug/L		11/02/15 09:42	11/11/15 15:43	1
Phenol	ND		5.0	0.39	ug/L		11/02/15 09:42	11/11/15 15:43	1
Pyrene	ND		5.0	0.34	-		11/02/15 09:42	11/11/15 15:43	1
Dimethylformamide	ND		20		ug/L		11/02/15 09:42	11/11/15 15:43	1
•	MB	МВ			J				
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D I	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	2.37	TJ	ug/L	3.	20		11/02/15 09:42	11/11/15 15:43	1
Cyclohexane	36.4	TJN	ug/L	3.	46	110-82-7	11/02/15 09:42	11/11/15 15:43	1
Unknown	113	ΤJ	ug/L	3.	63		11/02/15 09:42	11/11/15 15:43	1
Unknown	4.31	ΤJ	ug/L	5.	40		11/02/15 09:42	11/11/15 15:43	1
Cyclopentasiloxane, decamethyl-	10.0	TJN	ug/L	7.	39	541-02-6	11/02/15 09:42	11/11/15 15:43	1
Cyclohexasiloxane, dodecamethyl-	4.98	TJN	ug/L	8.	27	540-97-6	11/02/15 09:42	11/11/15 15:43	1
Unknown	2.74	TJ	ug/L	9.	06		11/02/15 09:42	11/11/15 15:43	1
Unknown	9.59	TJ	ug/L	10.	72		11/02/15 09:42	11/11/15 15:43	1
Unknown	2.70	TJ	ug/L	11.	29		11/02/15 09:42	11/11/15 15:43	1
Unknown	11.1	TJ	ug/L	11.	70		11/02/15 09:42	11/11/15 15:43	1
Unknown	7.37	ΤJ	ug/L	12.			11/02/15 09:42	11/11/15 15:43	1
Unknown	1.97	ΤJ	ug/L	12.	36		11/02/15 09:42	11/11/15 15:43	1
Unknown	10.1	T J	ug/L	12.			11/02/15 09:42	11/11/15 15:43	1
Unknown	1.64		ug/L	12.				11/11/15 15:43	1
Unknown	12.9		ug/L	13.				11/11/15 15:43	1
Unknown	14.1		ug/L	14.				11/11/15 15:43	
Unknown	2.60		ug/L	14.				11/11/15 15:43	1
Unknown	4.07		ug/L ug/L	14.				11/11/15 15:43	1
Unknown	1.75		ug/L	14.				11/11/15 15:43	
Olikilowii	1.70	7 0	ug/L	14.	12		11/02/10 03.42	11/11/10 10:40	,
		MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	70		52 - 132				11/02/15 09:42	11/11/15 15:43	1
2-Fluorobiphenyl	78		48 - 120				11/02/15 09:42	11/11/15 15:43	1
2-Fluorophenol	45		20 - 120				11/02/15 09:42	11/11/15 15:43	1
Nitrobenzene-d5	75		46 - 120				11/02/15 09:42	11/11/15 15:43	1
p-Terphenyl-d14	92		67 - 150				11/02/15 09:42	11/11/15 15:43	1
Phenol-d5	34		16 - 120				11/02/15 09:42	11/11/15 15:43	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-272533/2-A Matrix: Water				Clie	ent Sample II	D: Lab Control Sample Prep Type: Total/NA
Analysis Batch: 273528						Prep Batch: 272533
•	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits
2,4,5-Trichlorophenol	16.0	14.8		ug/L	93	65 - 126
2,4,6-Trichlorophenol	16.0	15.1		ug/L	94	64 - 120
2,4-Dichlorophenol	16.0	14.2		ug/L	89	64 - 120
2,4-Dimethylphenol	16.0	14.1		ug/L	88	57 - 120
2,4-Dinitrophenol	32.0	21.4		ug/L	67	42 - 153
2,4-Dinitrotoluene	16.0	14.9		ug/L	93	65 - 154
2,6-Dinitrotoluene	16.0	14.3		ug/L	89	74 - 134
2-Chloronaphthalene	16.0	12.9		ug/L	81	41 - 124
2-Chlorophenol	16.0	12.9		ug/L	81	48 - 120
2-Methylnaphthalene	16.0	13.3		ug/L	83	34 - 122
2-Methylphenol	16.0	12.9		ug/L	80	39 - 120
2-Nitroaniline	16.0	13.3		ug/L	83	67 - 136
2-Nitrophenol	16.0	12.9		ug/L	81	59 - 120
3,3'-Dichlorobenzidine	32.0	28.2		ug/L	88	33 - 140
3-Nitroaniline	16.0	12.3		ug/L	77	28 - 130
4,6-Dinitro-2-methylphenol	32.0	26.3		ug/L	82	64 - 159
4-Bromophenyl phenyl ether	16.0	14.5		ug/L	90	71 - 126
4-Chloro-3-methylphenol	16.0	15.6		ug/L	97	64 - 120
4-Chloroaniline	16.0	9.17		ug/L	57	10 - 130
4-Chlorophenyl phenyl ether	16.0	14.6		ug/L	91	71 - 122
4-Methylphenol	16.0	12.8		ug/L ug/L	80	39 - 120
4-Nitroaniline	16.0	13.3		ug/L	83	47 - 130
4-Nitrophenol	32.0	24.6		ug/L ug/L	77	16 - 120
Acenaphthene	16.0	13.4		ug/L ug/L	84	60 - 120
Acenaphthylene	16.0	13.6		ug/L	85	63 - 120
Acetophenone	16.0	15.0		ug/L ug/L	93	45 - 120
Anthracene	16.0	13.7		ug/L ug/L	86	58 ₋ 148
Atrazine	32.0	34.7		ug/L	108	56 - 179
Benzaldehyde	32.0	34.7 12.2		-	38	30 ₋ 179
•		14.2		ug/L		55 - 151
Benzo(a)anthracene	16.0			ug/L	89	
Benzo(a)pyrene	16.0	13.7		ug/L	85	60 - 145
Benzo(b)fluoranthene	16.0	14.0		ug/L	88	54 - 140
Benzo(g,h,i)perylene	16.0	16.7		ug/L	104	66 - 152
Benzo(k)fluoranthene	16.0	13.6		ug/L	85	51 - 153
Biphenyl	16.0	12.9		ug/L	81	30 - 140
bis (2-chloroisopropyl) ether	16.0	10.4		ug/L	65	28 - 136
Bis(2-chloroethoxy)methane	16.0	11.7		ug/L	73	50 - 128
Bis(2-chloroethyl)ether	16.0	11.1		ug/L	69	51 - 120
Bis(2-ethylhexyl) phthalate	16.0	15.1		ug/L	94	53 - 158
Butyl benzyl phthalate	16.0	14.2		ug/L	89	58 - 163
Caprolactam	32.0	11.0		ug/L	34	14 - 130
Carbazole	16.0	14.1		ug/L	88	59 - 148
Chrysene	16.0	14.5		ug/L	91	69 - 140
Dibenz(a,h)anthracene	16.0	15.4		ug/L	96	57 - 148
Dibenzofuran	16.0	14.3		ug/L	89	49 - 137
Diethyl phthalate	16.0	11.0		ug/L	69	59 - 146
Dimethyl phthalate	16.0	14.6		ug/L	92	59 - 141
Di-n-butyl phthalate	16.0	15.0		ug/L	94	58 ₋ 149

TestAmerica Buffalo

Page 102 of 147

9

3

5

_

8

10

12

4 4

4 E

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-272533/2-A

Matrix: Water

Analysis Batch: 273528

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 272533 %Rec.

Analysis Batch. 270020	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Di-n-octyl phthalate	16.0	14.3		ug/L		89	55 - 167
Fluoranthene	16.0	14.7		ug/L		92	55 - 147
Fluorene	16.0	14.2		ug/L		89	55 - 143
Hexachlorobenzene	16.0	14.7		ug/L		92	14 - 130
Hexachlorobutadiene	16.0	12.0		ug/L		75	14 - 130
Hexachlorocyclopentadiene	16.0	9.45		ug/L		59	13 - 130
Hexachloroethane	16.0	11.3		ug/L		70	14 - 130
Indeno(1,2,3-cd)pyrene	16.0	15.8		ug/L		99	69 - 146
Isophorone	16.0	12.4		ug/L		77	48 - 133
Naphthalene	16.0	12.5		ug/L		78	35 - 130
Nitrobenzene	16.0	12.2		ug/L		76	45 - 123
N-Nitrosodi-n-propylamine	16.0	13.5		ug/L		84	56 - 120
N-Nitrosodiphenylamine	32.0	27.9		ug/L		87	25 - 125
Pentachlorophenol	32.0	17.1		ug/L		53	39 - 136
Phenanthrene	16.0	14.0		ug/L		88	57 - 147
Phenol	16.0	7.65		ug/L		48	17 - 120
Pyrene	16.0	14.3		ug/L		89	58 ₋ 136

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	113		52 - 132
2-Fluorobiphenyl	85		48 - 120
2-Fluorophenol	56		20 - 120
Nitrobenzene-d5	76		46 - 120
p-Terphenyl-d14	98		67 - 150
Phenol-d5	48		16 - 120

Lab Sample ID: MB 480-272950/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 273884 **Prep Batch: 272950** MB MB

	1410								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		170	46	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
2,4,6-Trichlorophenol	ND		170	34	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
2,4-Dichlorophenol	ND		170	18	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
2,4-Dimethylphenol	ND		170	41	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
2,4-Dinitrophenol	ND		1600	780	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
2,4-Dinitrotoluene	ND		170	35	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
2,6-Dinitrotoluene	ND		170	20	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
2-Chloronaphthalene	ND		170	28	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
2-Chlorophenol	ND		170	31	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
2-Methylnaphthalene	ND		170	34	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
2-Methylphenol	ND		170	20	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
2-Nitroaniline	ND		330	25	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
2-Nitrophenol	ND		170	47	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
3,3'-Dichlorobenzidine	ND		330	200	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
3-Nitroaniline	ND		330	47	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
4,6-Dinitro-2-methylphenol	ND		330	170	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
4-Bromophenyl phenyl ether	ND		170	24	ug/Kg		11/04/15 07:44	11/09/15 12:09	1

TestAmerica Buffalo

Page 103 of 147

11/16/2015

QC Sample Results

Client: Woodard & Curran, Inc.
Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-272950/1-A

Matrix: Solid

Client Sample ID: Method Blank Prep Type: Total/NA

7

8

10

12

14

Analysis Batch: 273884								Prep Batch:	
Analysis Batch. 270004	MB	MB						riep Bateii.	212300
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Chloro-3-methylphenol	ND		170	42	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
4-Chloroaniline	ND		170	42	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
4-Chlorophenyl phenyl ether	ND		170	21	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
4-Methylphenol	ND		330	20	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
4-Nitroaniline	ND		330	88	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
4-Nitrophenol	ND		330	120	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Acenaphthene	ND		170	25	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Acenaphthylene	ND		170	22	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Acetophenone	ND		170	23	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Anthracene	ND		170		ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Atrazine	ND		170		ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Benzaldehyde	ND		170		ug/Kg			11/09/15 12:09	1
Benzo(a)anthracene	ND		170		ug/Kg			11/09/15 12:09	1
Benzo(a)pyrene	ND		170		ug/Kg			11/09/15 12:09	1
Benzo(b)fluoranthene	ND		170		ug/Kg			11/09/15 12:09	1
Benzo(g,h,i)perylene	ND		170		ug/Kg			11/09/15 12:09	1
Benzo(k)fluoranthene	ND		170		ug/Kg			11/09/15 12:09	1
Biphenyl	ND		170		ug/Kg			11/09/15 12:09	1
bis (2-chloroisopropyl) ether	ND		170		ug/Kg			11/09/15 12:09	1
Bis(2-chloroethoxy)methane	ND		170		ug/Kg			11/09/15 12:09	
Bis(2-chloroethyl)ether	ND		170		ug/Kg			11/09/15 12:09	1
Bis(2-ethylhexyl) phthalate	ND ND		170		ug/Kg			11/09/15 12:09	1
Butyl benzyl phthalate	ND		170		ug/Kg ug/Kg			11/09/15 12:09	
	ND ND		170					11/09/15 12:09	
Carbazela	ND ND		170		ug/Kg			11/09/15 12:09	1
Carbazole					ug/Kg				
Chrysene	ND		170 170		ug/Kg			11/09/15 12:09	1
Dibenz(a,h)anthracene	ND		170		ug/Kg			11/09/15 12:09	1
Dibenzofuran	ND		170		ug/Kg			11/09/15 12:09	1
Diethyl phthalate	122	J	170		ug/Kg			11/09/15 12:09	1
Dimethyl phthalate	ND		170		ug/Kg			11/09/15 12:09	1
Di-n-butyl phthalate	ND		170	29	ug/Kg			11/09/15 12:09	1
Di-n-octyl phthalate	ND		170		ug/Kg			11/09/15 12:09	1
Fluoranthene	ND		170		ug/Kg			11/09/15 12:09	1
Fluorene	ND		170	20	ug/Kg			11/09/15 12:09	
Hexachlorobenzene	ND		170		ug/Kg			11/09/15 12:09	1
Hexachlorobutadiene	ND		170		ug/Kg			11/09/15 12:09	1
Hexachlorocyclopentadiene	ND		170		ug/Kg			11/09/15 12:09	1
Hexachloroethane	ND		170		ug/Kg			11/09/15 12:09	1
Indeno(1,2,3-cd)pyrene	ND		170		ug/Kg			11/09/15 12:09	1
Isophorone	ND		170		ug/Kg			11/09/15 12:09	1
Naphthalene	ND		170		ug/Kg			11/09/15 12:09	1
Nitrobenzene	ND		170		ug/Kg			11/09/15 12:09	1
N-Nitrosodi-n-propylamine	ND		170		ug/Kg		11/04/15 07:44	11/09/15 12:09	1
N-Nitrosodiphenylamine	ND		170	140	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Pentachlorophenol	ND		330	170	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Phenanthrene	ND		170	25	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Phenol	ND		170	26	ug/Kg		11/04/15 07:44	11/09/15 12:09	1
Pyrene	ND		170	20	ug/Kg		11/04/15 07:44	11/09/15 12:09	1

Prepared

95-13-6 11/04/15 07:44 11/09/15 12:09

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Analyte

Indene

Analyzed

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

5.03

Lab Sample ID: MB 480-272950/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Total/NA** Analysis Batch: 273884 **Prep Batch: 272950** MB MB

RL

MDL Unit

7.05

Dimethylformamide	ND		6	50	74 ug/K	g –	11/04/15 07:44	11/09/15 12:09	1
	МВ	MB							
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	2780	TJ	ug/Kg		1.88		11/04/15 07:44	11/09/15 12:09	1
Unknown	404	TJ	ug/Kg		2.06		11/04/15 07:44	11/09/15 12:09	1
Unknown	1030	ΤJ	ug/Kg		2.18		11/04/15 07:44	11/09/15 12:09	1
Unknown	848	ΤJ	ug/Kg		4.66		11/04/15 07:44	11/09/15 12:09	1
p-Xylene	133	TJN	ug/Kg		5.14	106-42-3	11/04/15 07:44	11/09/15 12:09	1
Ethane, 1,1,2,2-tetrachloro-	154	TJN	ug/Kg		5.69	79-34-5	11/04/15 07:44	11/09/15 12:09	1

ug/Kg

ME	MB				
Surrogate %Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol 89		39 - 146	11/04/15 07:44	11/09/15 12:09	1
2-Fluorobiphenyl 83	3	37 - 120	11/04/15 07:44	11/09/15 12:09	1
2-Fluorophenol 72	?	18 - 120	11/04/15 07:44	11/09/15 12:09	1
Nitrobenzene-d5 73	}	34 - 132	11/04/15 07:44	11/09/15 12:09	1
p-Terphenyl-d14 93	3	65 ₋ 153	11/04/15 07:44	11/09/15 12:09	1
Phenol-d5 74	!	11 - 120	11/04/15 07:44	11/09/15 12:09	1

Lab Sample ID: LCS 480-272950/2-A

Matrix: Solid

Analysis Batch: 273884							Prep Batch: 272950
	Spike	LCS			_	a. –	%Rec.
Analyte	Added		Qualifier	Unit	_ D	%Rec	Limits
2,4,5-Trichlorophenol	1640	1340		ug/Kg		81	59 - 126
2,4,6-Trichlorophenol	1640	1370		ug/Kg		83	59 - 123
2,4-Dichlorophenol	1640	1330		ug/Kg		81	52 - 120
2,4-Dimethylphenol	1640	1300		ug/Kg		79	36 - 120
2,4-Dinitrophenol	3290	2590		ug/Kg		79	35 - 146
2,4-Dinitrotoluene	1640	1340		ug/Kg		81	55 - 125
2,6-Dinitrotoluene	1640	1630		ug/Kg		99	66 - 128
2-Chloronaphthalene	1640	1360		ug/Kg		83	57 - 120
2-Chlorophenol	1640	1210		ug/Kg		74	38 - 120
2-Methylnaphthalene	1640	1330		ug/Kg		81	47 - 120
2-Methylphenol	1640	1220		ug/Kg		75	48 - 120
2-Nitroaniline	1640	1260		ug/Kg		77	61 - 130
2-Nitrophenol	1640	1270		ug/Kg		77	50 - 120
3,3'-Dichlorobenzidine	3290	2650		ug/Kg		81	48 - 126
3-Nitroaniline	1640	1230		ug/Kg		75	61 - 127
4,6-Dinitro-2-methylphenol	3290	2780		ug/Kg		85	49 - 155
4-Bromophenyl phenyl ether	1640	1520		ug/Kg		93	58 - 131
4-Chloro-3-methylphenol	1640	1330		ug/Kg		81	49 - 125
4-Chloroaniline	1640	1130		ug/Kg		69	49 - 120
4-Chlorophenyl phenyl ether	1640	1410		ug/Kg		86	63 - 124
4-Methylphenol	1640	1230		ug/Kg		75	50 - 119
4-Nitroaniline	1640	1300		ug/Kg		79	63 - 128
4-Nitrophenol	3290	2640		ug/Kg		80	43 - 137

TestAmerica Buffalo

Dil Fac

Spike

LCS LCS

TestAmerica Job ID: 480-90114-1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Analysis Batch: 273884

Matrix: Solid

Phenanthrene

Phenol

Pyrene

Lab Sample ID: LCS 480-272950/2-A

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 272950 %Rec.

Analyte	Added	Result	Qualifier Unit		D %Rec	Limits	
Acenaphthene	1640	1370	ug/K	g	83	53 - 120	
Acenaphthylene	1640	1350	ug/K	g	82	58 - 121	
Acetophenone	1640	1200	ug/K	g	73	66 - 120	
Anthracene	1640	1510	ug/K	g	92	62 - 129	
Atrazine	3290	2830	ug/K	g	86	60 - 164	
Benzaldehyde	3290	3190	ug/K	g	97	21 - 120	
Benzo(a)anthracene	1640	1470	ug/K	g	89	65 - 133	
Benzo(a)pyrene	1640	1460	ug/k	g	89	64 - 127	
Benzo(b)fluoranthene	1640	1510	ug/K	g	92	64 - 135	
Benzo(g,h,i)perylene	1640	1410	ug/K	g	86	50 - 152	
Benzo(k)fluoranthene	1640	1490	ug/K	g	91	58 - 138	
Biphenyl	1640	1370	ug/K	g	83	71 - 120	
bis (2-chloroisopropyl) ether	1640	1030	ug/K	g	63	44 - 120	
Bis(2-chloroethoxy)methane	1640	1260	ug/K	g	77	61 - 133	
Bis(2-chloroethyl)ether	1640	1180	ug/K	g	72	45 - 120	
Bis(2-ethylhexyl) phthalate	1640	1560	ug/K	g	95	61 - 133	
Butyl benzyl phthalate	1640	1510	ug/K	g	92	61 - 129	
Caprolactam	3290	2460	ug/K	g	75	54 - 133	
Carbazole	1640	1430	ug/K	g	87	59 - 129	
Chrysene	1640	1470	ug/K	g	89	64 - 131	
Dibenz(a,h)anthracene	1640	1430	ug/K	g	87	54 - 148	
Dibenzofuran	1640	1380	ug/K	g	84	56 - 120	
Diethyl phthalate	1640	1500	ug/K	g	91	66 - 126	
Dimethyl phthalate	1640	1390	ug/K	g	85	65 - 124	
Di-n-butyl phthalate	1640	1520	ug/K	g	93	58 - 130	
Di-n-octyl phthalate	1640	1530	ug/K	g	93	62 - 133	
Fluoranthene	1640	1440	ug/K		88	62 - 131	
Fluorene	1640	1400	ug/K	g	85	63 - 126	
Hexachlorobenzene	1640	1520	ug/K		93	60 - 132	
Hexachlorobutadiene	1640	1340	ug/K	g	82	45 - 120	
Hexachlorocyclopentadiene	1640	1300	ug/K	g	79	31 - 120	
Hexachloroethane	1640	1150	ug/K	-	70	41 - 120	
Indeno(1,2,3-cd)pyrene	1640	1420	ug/K	g	86	56 - 149	
Isophorone	1640	1290	ug/K	g	79	56 - 120	
Naphthalene	1640	1310	ug/K	g	80	46 - 120	
Nitrobenzene	1640	1220	ug/K	g	74	49 - 120	
N-Nitrosodi-n-propylamine	1640	1200	ug/K	g	73	46 - 120	
N-Nitrosodiphenylamine	3290	2930	ug/K	g	89	20 - 119	
Pentachlorophenol	3290	3030	ug/K	g	92	33 - 136	
l =	2 = 1 =						

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	96		39 - 146
2-Fluorobiphenyl	86		37 - 120
2-Fluorophenol	72		18 - 120
Nitrobenzene-d5	77		34 - 132

TestAmerica Buffalo

92

72

60 - 130

36 - 120

51 - 133

1640

1640

1640

1520

1190

1550

ug/Kg

ug/Kg

ug/Kg

QC Sample Results

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-272950/2-A

Matrix: Solid

Analysis Batch: 273884

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 272950

LCS LCS Surrogate %Recovery Qualifier Limits p-Terphenyl-d14 65 - 153 95 Phenol-d5 73 11 - 120

Client Sample ID: SMWU26-SS-BLDG23-01

Lab Sample ID: 480-90114-9 MS

Matrix: Solid									Prep Typ	e: Total/NA
Analysis Batch: 273884									Prep Bat	tch: 272950
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Biphenyl	ND		1760	1500		ug/Kg		85	71 - 120	

Analysis Batch. 213004	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Biphenyl	ND		1760	1500		ug/Kg	<u></u>	85	71 - 120
bis (2-chloroisopropyl) ether	ND		1760	1110		ug/Kg	₩	63	44 - 120
2,4,5-Trichlorophenol	ND		1760	1550		ug/Kg	₩	88	59 ₋ 126
2,4,6-Trichlorophenol	ND		1760	1510		ug/Kg	₩.	86	59 - 123
2,4-Dichlorophenol	ND		1760	1450		ug/Kg	₩	82	52 - 120
2,4-Dimethylphenol	ND		1760	1430		ug/Kg	₩	81	36 - 120
2,4-Dinitrophenol	ND		3520	2760		ug/Kg	₩.	78	35 - 146
2,4-Dinitrotoluene	ND		1760	1530		ug/Kg	☼	87	55 - 125
2,6-Dinitrotoluene	ND		1760	1870		ug/Kg	☼	106	66 - 128
2-Chloronaphthalene	ND		1760	1470		ug/Kg	₩.	84	57 - 120
2-Chlorophenol	ND		1760	1280		ug/Kg	₩	73	38 - 120
2-Methylnaphthalene	ND		1760	1430		ug/Kg	₩	81	47 - 120
2-Methylphenol	ND		1760	1350		ug/Kg	₩.	77	48 - 120
2-Nitroaniline	ND		1760	1430		ug/Kg	₩	81	61 - 130
2-Nitrophenol	ND		1760	1370		ug/Kg	₩	78	50 - 120
3,3'-Dichlorobenzidine	ND		3520	2960		ug/Kg	₩.	84	48 - 126
3-Nitroaniline	ND		1760	1380		ug/Kg	₩	78	61 - 127
4,6-Dinitro-2-methylphenol	ND		3520	3130		ug/Kg	₩	89	49 - 155
4-Bromophenyl phenyl ether	ND		1760	1690		ug/Kg	₩.	96	58 - 131
4-Chloro-3-methylphenol	ND		1760	1490		ug/Kg	₩	85	49 - 125
4-Chlorophenyl phenyl ether	ND		1760	1580		ug/Kg	₩	90	63 - 124
4-Methylphenol	ND		1760	1380		ug/Kg	₩.	79	50 - 119
4-Nitroaniline	ND		1760	1390		ug/Kg	₩	79	63 - 128
4-Nitrophenol	ND		3520	2970		ug/Kg	☼	84	43 - 137
Acenaphthene	ND		1760	1530		ug/Kg	₩.	87	53 - 120
Acenaphthylene	ND		1760	1490		ug/Kg	₩	85	58 ₋ 121
Acetophenone	ND		1760	1340		ug/Kg	☼	76	66 - 120
Anthracene	ND		1760	1660		ug/Kg	₩.	94	62 - 129
Atrazine	ND		3520	3180		ug/Kg	₩	90	60 - 164
Benzaldehyde	ND		3520	3560		ug/Kg	₩	101	21 - 120
Benzo(a)anthracene	ND		1760	1620		ug/Kg	₩.	92	65 - 133
Benzo(a)pyrene	ND		1760	1560		ug/Kg	₩	89	64 - 127
Benzo(b)fluoranthene	ND		1760	1740		ug/Kg	₩	99	64 ₋ 135
Benzo(g,h,i)perylene	ND		1760	1550		ug/Kg	₩.	88	50 - 152
Benzo(k)fluoranthene	ND		1760	1530		ug/Kg	₩	87	58 - 138
Bis(2-chloroethoxy)methane	ND		1760	1340		ug/Kg	₩	76	61 - 133
Bis(2-chloroethyl)ether	ND		1760	1270		ug/Kg	₩.	72	45 - 120
Bis(2-ethylhexyl) phthalate	ND		1760	1710		ug/Kg	₩	97	61 - 133
Dutyl hannyl phtholoto						-			
Butyl benzyl phthalate	ND		1760	1730		ug/Kg	☼	98	61 - 129

TestAmerica Buffalo

Page 107 of 147

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-90114-9 MS

Matrix: Solid

Analysis Batch: 273884

Client Sample ID: SMWU26-SS-BLDG23-01

Prep Type: Total/NA

Prep Batch: 272950

Analysis Daton. 270004	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Carbazole	ND		1760	1540		ug/Kg	₩	88	59 - 129
Chrysene	ND		1760	1620		ug/Kg	₽	92	64 - 131
Di-n-butyl phthalate	ND		1760	1660		ug/Kg	₩.	94	58 - 130
Di-n-octyl phthalate	ND		1760	1620		ug/Kg	☼	92	62 - 133
Dibenz(a,h)anthracene	ND		1760	1550		ug/Kg	☼	88	54 - 148
Dibenzofuran	ND		1760	1540		ug/Kg	₽	88	56 - 120
Diethyl phthalate	35	JB	1760	1670		ug/Kg	☼	93	66 - 126
Dimethyl phthalate	ND		1760	1570		ug/Kg	☼	89	65 - 124
Fluoranthene	ND		1760	1540		ug/Kg	₽	88	62 - 131
Fluorene	ND		1760	1570		ug/Kg	₽	89	63 - 126
Hexachlorobenzene	ND		1760	1680		ug/Kg	☼	96	60 - 132
Hexachlorobutadiene	ND		1760	1390		ug/Kg	₽	79	45 - 120
Hexachlorocyclopentadiene	ND		1760	1420		ug/Kg	₽	81	31 - 120
Hexachloroethane	ND		1760	1230		ug/Kg	☼	70	41 - 120
Indeno(1,2,3-cd)pyrene	ND		1760	1530		ug/Kg	₩.	87	56 - 149
Isophorone	ND		1760	1400		ug/Kg	☼	80	56 - 120
N-Nitrosodi-n-propylamine	ND		1760	1310		ug/Kg	₽	74	46 - 120
N-Nitrosodiphenylamine	ND		3520	3230		ug/Kg	₽	92	20 - 119
Naphthalene	ND		1760	1390		ug/Kg	₽	79	46 - 120
Nitrobenzene	ND		1760	1300		ug/Kg	☼	74	49 - 120
Pentachlorophenol	ND		3520	3430		ug/Kg	₽	97	33 - 136
Phenanthrene	ND		1760	1650		ug/Kg	₩	94	60 - 130
Phenol	ND		1760	1280		ug/Kg	₩	73	36 - 120
Pyrene	ND		1760	1820		ug/Kg	₽	103	51 - 133

MS MS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	100		39 - 146
2-Fluorobiphenyl	86		37 - 120
2-Fluorophenol	73		18 - 120
Nitrobenzene-d5	75		34 - 132
p-Terphenyl-d14	103		65 - 153
Phenol-d5	76		11 - 120

Lab Sample ID: 480-90114-9 MSD

Matrix: Solid

Client Sample ID: SMWU26-SS-BLDG23-01

Prep Type: Total/NA Prep Batch: 272950

Analysis Batch: 273884 Sample Sample MSD MSD %Rec. **RPD** Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit ND ₩ 85 71 - 120 **Biphenyl** 1780 1520 ug/Kg 20 ☼ bis (2-chloroisopropyl) ether ND 1780 1110 ug/Kg 63 44 - 120 0 24 2,4,5-Trichlorophenol ND 1780 1610 ug/Kg ₩ 90 59 - 126 18 2,4,6-Trichlorophenol ND 1780 1560 87 59 - 123 19 ug/Kg 2,4-Dichlorophenol ND 1780 1540 Ö 87 52 - 120 19 ug/Kg ND 1470 83 42 2,4-Dimethylphenol 1780 ug/Kg 36 - 120 77 2,4-Dinitrophenol ND 3560 2870 ug/Kg 81 35 - 146 22 ☼ 2.4-Dinitrotoluene ND 1780 1620 91 20 ug/Kg 55 - 125 5 ₩ 2,6-Dinitrotoluene ND 1780 1910 ug/Kg 107 66 - 128 15 ₩ 2-Chloronaphthalene ND 1780 1520 ug/Kg 86 57 - 120 21

TestAmerica Buffalo

Page 108 of 147

11/16/2015

QC Sample Results

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-90114-9 MSD

Matrix: Solid

Analysis Batch: 273884

Client Sample ID: SMWU26-SS-BLDG23-01

Prep Type: Total/NA Prep Batch: 272950

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	i
2-Chlorophenol	ND		1780	1300		ug/Kg	<u></u>	73	38 - 120	1	25	
2-Methylnaphthalene	ND		1780	1520		ug/Kg	₩	85	47 - 120	6	21	
2-Methylphenol	ND		1780	1340		ug/Kg		75	48 - 120	1	27	
2-Nitroaniline	ND		1780	1460		ug/Kg	₩	82	61 - 130	2	15	ı
2-Nitrophenol	ND		1780	1430		ug/Kg	₩	81	50 - 120	5	18	ı
3,3'-Dichlorobenzidine	ND		3560	2990		ug/Kg	₩.	84	48 - 126	1	25	ŀ
3-Nitroaniline	ND		1780	1430		ug/Kg	₩	80	61 - 127	4	19	
4,6-Dinitro-2-methylphenol	ND		3560	3300		ug/Kg	₩	93	49 - 155	5	15	l
4-Bromophenyl phenyl ether	ND		1780	1770		ug/Kg	₩.	100	58 - 131	5	15	
4-Chloro-3-methylphenol	ND		1780	1570		ug/Kg	₩	89	49 - 125	6	27	
4-Chlorophenyl phenyl ether	ND		1780	1610		ug/Kg	₩	91	63 - 124	2	16	
4-Methylphenol	ND		1780	1350		ug/Kg	₩.	76	50 - 119	2	24	
4-Nitroaniline	ND		1780	1420		ug/Kg	₩	80	63 - 128	2	24	

2-Chlorophenol	ND	1780	1300	ug/Kg	₽	73	38 - 120	1	25
2-Methylnaphthalene	ND	1780	1520	ug/Kg	₩	85	47 - 120	6	21
2-Methylphenol	ND	1780	1340	ug/Kg	₽	75	48 - 120	1	27
2-Nitroaniline	ND	1780	1460	ug/Kg	☼	82	61 - 130	2	15
2-Nitrophenol	ND	1780	1430	ug/Kg	☼	81	50 - 120	5	18
3,3'-Dichlorobenzidine	ND	3560	2990	ug/Kg	₩	84	48 - 126	1	25
3-Nitroaniline	ND	1780	1430	ug/Kg	₩	80	61 - 127	4	19
4,6-Dinitro-2-methylphenol	ND	3560	3300	ug/Kg	₩	93	49 - 155	5	15
4-Bromophenyl phenyl ether	ND	1780	1770	ug/Kg	₩	100	58 - 131	5	15
4-Chloro-3-methylphenol	ND	1780	1570	ug/Kg	☼	89	49 - 125	6	27
4-Chlorophenyl phenyl ether	ND	1780	1610	ug/Kg	₩	91	63 - 124	2	16
4-Methylphenol	ND	1780	1350	ug/Kg		76	50 ₋ 119	2	24
4-Nitroaniline	ND	1780	1420	ug/Kg	₩	80	63 - 128	2	24
4-Nitrophenol	ND	3560	3050	ug/Kg	☼	86	43 - 137	3	25
Acenaphthene	ND	1780	1570	ug/Kg		88	53 - 120	3	35
Acenaphthylene	ND	1780	1530	ug/Kg	₩	86	58 - 121	2	18
Acetophenone	ND	1780	1340	ug/Kg	₩	75	66 - 120	0	20
Anthracene	ND	1780	1700	ug/Kg		96	62 - 129	2	15
Atrazine	ND	3560	3200	ug/Kg	₽	90	60 - 164	1	20
Benzaldehyde	ND	3560	3560	ug/Kg	☼	100	21 - 120	0	20
Benzo(a)anthracene	ND	1780	1650	ug/Kg		93	65 - 133	2	15
Benzo(a)pyrene	ND	1780	1630	ug/Kg	₽	92	64 - 127	4	15
Benzo(b)fluoranthene	ND	1780	1610	ug/Kg	₽	91	64 - 135	7	15
Benzo(g,h,i)perylene	ND	1780	1670	ug/Kg		94	50 ₋ 152		15
Benzo(k)fluoranthene	ND	1780	1730	ug/Kg ug/Kg	₽	98	58 ₋ 138	, 12	22
Bis(2-chloroethoxy)methane	ND	1780	1420	ug/Kg ug/Kg	₽	80	61 - 133	6	17
Bis(2-chloroethyl)ether	ND	1780	1270	ug/Kg ug/Kg		71	45 - 120	0	21
Bis(2-ethylhexyl) phthalate	ND ND	1780	1750	ug/Kg ug/Kg	₽	98	61 - 133	2	15
	ND ND	1780			₩			3	
Butyl benzyl phthalate			1770	ug/Kg	*	100	61 - 129		16
Carbanala	ND ND	3560	2970	ug/Kg	₩	84	54 ₋ 133	4	20
Carbazole	ND	1780	1560	ug/Kg	₩	88	59 - 129	1	20
Chrysene	ND.	1780	1630	ug/Kg		92	64 - 131	1	15
Di-n-butyl phthalate	ND	1780	1690	ug/Kg	≎	95	58 - 130	2	15
Di-n-octyl phthalate	ND	1780	1680	ug/Kg	☆	94	62 - 133	4	16
Dibenz(a,h)anthracene	ND	1780	1660	ug/Kg	₩	94	54 - 148	7	15
Dibenzofuran	ND	1780	1560	ug/Kg	₩	88	56 - 120	1	15
Diethyl phthalate	35 JB	1780	1680	ug/Kg	₩.	93	66 - 126	1	15
Dimethyl phthalate	ND	1780	1620	ug/Kg		91	65 - 124	3	15
Fluoranthene	ND	1780	1560	ug/Kg	:D:	88	62 - 131	1	15
Fluorene	ND	1780	1590	ug/Kg	₽	89	63 - 126	1	15
Hexachlorobenzene	ND	1780	1730	ug/Kg	₩	97	60 - 132	2	15
Hexachlorobutadiene	ND	1780	1460	ug/Kg	₽	82	45 - 120	4	44
Hexachlorocyclopentadiene	ND	1780	1420	ug/Kg	₩	80	31 - 120	0	49
Hexachloroethane	ND	1780	1180	ug/Kg	☆	66	41 - 120	4	46
Indeno(1,2,3-cd)pyrene	ND	1780	1640	ug/Kg	₽	92	56 - 149	7	15
Isophorone	ND	1780	1450	ug/Kg	₩	82	56 - 120	4	17
N-Nitrosodi-n-propylamine	ND	1780	1330	ug/Kg	₩	75	46 - 120	1	31
N-Nitrosodiphenylamine	ND	3560	3290	ug/Kg	₽	92	20 - 119	2	15

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-90114-9 MSD

Matrix: Solid

Analysis Batch: 273884

Client Sample ID: SMWU26-SS-BLDG23-01

Prep Type: Total/NA

Prep Batch: 272950

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	ND		1780	1430	-	ug/Kg	\	81	46 - 120	3	29
Nitrobenzene	ND		1780	1360		ug/Kg	☼	76	49 - 120	4	24
Pentachlorophenol	ND		3560	3490		ug/Kg	₩.	98	33 - 136	2	35
Phenanthrene	ND		1780	1720		ug/Kg	☼	96	60 - 130	4	15
Phenol	ND		1780	1290		ug/Kg	☼	72	36 - 120	0	35
Pyrene	ND		1780	1820		ug/Kg	₩.	102	51 - 133	0	35

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	103		39 - 146
2-Fluorobiphenyl	88		37 - 120
2-Fluorophenol	72		18 - 120
Nitrobenzene-d5	78		34 - 132
p-Terphenyl-d14	104		65 - 153
Phenol-d5	75		11 - 120

26-SS-BLDG23-04

Prep Type: Total/NA

Prep Batch: 272950

Lab Sample ID: 480-90114-14 MS	Client Sample ID: SMWU2
Matrix: Solid	Pre

Analysis Batch: 273884

Anthracene

Analysis Balch: 273004	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Biphenyl	ND		1740	1480		ug/Kg	<u> </u>	85	71 - 120
bis (2-chloroisopropyl) ether	ND		1740	1090		ug/Kg	₩	62	44 - 120
2,4,5-Trichlorophenol	ND		1740	1500		ug/Kg	₩	86	59 - 126
2,4,6-Trichlorophenol	ND		1740	1490		ug/Kg	₩.	86	59 - 123
2,4-Dichlorophenol	ND		1740	1400		ug/Kg	₩	80	52 - 120
2,4-Dimethylphenol	ND		1740	1380		ug/Kg	₩	79	36 - 120
2,4-Dinitrophenol	ND		3490	2540		ug/Kg	₩.	73	35 - 146
2,4-Dinitrotoluene	ND		1740	1490		ug/Kg	₩	86	55 - 125
2,6-Dinitrotoluene	ND		1740	1810		ug/Kg	₩	104	66 - 128
2-Chloronaphthalene	ND		1740	1460		ug/Kg	₩	83	57 - 120
2-Chlorophenol	ND		1740	1260		ug/Kg	₩	72	38 - 120
2-Methylnaphthalene	ND		1740	1400		ug/Kg	₩	80	47 - 120
2-Methylphenol	ND		1740	1290		ug/Kg	₩	74	48 - 120
2-Nitroaniline	ND		1740	1380		ug/Kg	₩	79	61 - 130
2-Nitrophenol	ND		1740	1370		ug/Kg	☆	79	50 - 120
3,3'-Dichlorobenzidine	ND		3490	3000		ug/Kg	₽	86	48 - 126
3-Nitroaniline	ND		1740	1350		ug/Kg	₩	77	61 - 127
4,6-Dinitro-2-methylphenol	ND		3490	3030		ug/Kg	☆	87	49 - 155
4-Bromophenyl phenyl ether	ND		1740	1660		ug/Kg	₩	95	58 ₋ 131
4-Chloro-3-methylphenol	ND		1740	1400		ug/Kg	☆	80	49 - 125
4-Chlorophenyl phenyl ether	ND		1740	1540		ug/Kg	☆	88	63 - 124
4-Methylphenol	ND		1740	1310		ug/Kg	₽	75	50 - 119
4-Nitroaniline	ND		1740	1390		ug/Kg	☆	80	63 - 128
4-Nitrophenol	ND		3490	2870		ug/Kg	☆	82	43 - 137
Acenaphthene	ND		1740	1490		ug/Kg	₩	86	53 - 120
Acenaphthylene	ND		1740	1480		ug/Kg	☆	85	58 - 121
Acetophenone	ND		1740	1290		ug/Kg	☆	74	66 - 120
							575 -		

TestAmerica Buffalo

1640

ug/Kg

94

62 - 129

1740

ND

QC Sample Results

Client: Woodard & Curran, Inc. TestAmerica Job ID: 480-90114-1 Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sam	ple ID:	480-901	14-14 MS
---------	---------	---------	----------

Matrix: Solid

Analysis Batch: 273884

Client Sample ID: SMWU26-SS-BLDG23-04 **Prep Type: Total/NA**

Prep Batch: 272950

Analysis Batch: 273884	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	-	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Atrazine	ND		3490	3040	-	ug/Kg	<u></u>	87	60 - 164
Benzaldehyde	ND		3490	3500		ug/Kg	₩	100	21 - 120
Benzo(a)anthracene	ND		1740	1580		ug/Kg		91	65 - 133
Benzo(a)pyrene	ND		1740	1560		ug/Kg	≎	89	64 - 127
Benzo(b)fluoranthene	ND		1740	1580		ug/Kg	≎	91	64 - 135
Benzo(g,h,i)perylene	ND		1740	1650		ug/Kg	₽	95	50 - 152
Benzo(k)fluoranthene	ND		1740	1610		ug/Kg	≎	92	58 ₋ 138
Bis(2-chloroethoxy)methane	ND		1740	1320		ug/Kg	≎	76	61 - 133
Bis(2-chloroethyl)ether	ND		1740	1260		ug/Kg		72	45 - 120
Bis(2-ethylhexyl) phthalate	ND		1740	1680		ug/Kg	≎	96	61 - 133
Butyl benzyl phthalate	ND		1740	1670		ug/Kg	≎	96	61 - 129
Caprolactam	ND		3490	2690		ug/Kg		77	54 ₋ 133
Carbazole	ND		1740	1530		ug/Kg	≎	88	59 - 129
Chrysene	ND		1740	1590		ug/Kg	≎	91	64 - 131
Di-n-butyl phthalate	ND		1740	1630		ug/Kg		94	58 ₋ 130
Di-n-octyl phthalate	ND		1740	1670		ug/Kg	≎	96	62 - 133
Dibenz(a,h)anthracene	ND		1740	1620		ug/Kg	≎	93	54 ₋ 148
Dibenzofuran	ND		1740	1500		ug/Kg		86	56 - 120
Diethyl phthalate	25	JB	1740	1590		ug/Kg	≎	89	66 - 126
Dimethyl phthalate	ND		1740	1520		ug/Kg	≎	87	65 - 124
Fluoranthene	ND		1740	1530		ug/Kg		88	62 - 131
Fluorene	ND		1740	1520		ug/Kg	≎	87	63 - 126
Hexachlorobenzene	ND		1740	1640		ug/Kg	≎	94	60 - 132
Hexachlorobutadiene	ND		1740	1400		ug/Kg		80	45 ₋ 120
Hexachlorocyclopentadiene	ND		1740	1400		ug/Kg	≎	80	31 - 120
Hexachloroethane	ND		1740	1200		ug/Kg	≎	69	41 - 120
Indeno(1,2,3-cd)pyrene	ND		1740	1640		ug/Kg		94	56 ₋ 149
Isophorone	ND		1740	1370		ug/Kg	☼	78	56 ₋ 120
N-Nitrosodi-n-propylamine	ND		1740	1280		ug/Kg	≎	73	46 - 120
N-Nitrosodiphenylamine	ND		3490	3220		ug/Kg		92	20 - 119
Naphthalene	ND		1740	1360		ug/Kg	₩	78	46 - 120
Nitrobenzene	ND		1740	1280		ug/Kg	≎	74	49 - 120
Pentachlorophenol	ND		3490	3330		ug/Kg		96	33 - 136
Phenanthrene	ND		1740	1650		ug/Kg	₩	95	60 - 130
Phenol	ND		1740	1270		ug/Kg	₩	73	36 - 120
Pyrene	ND		1740	1710		ug/Kg		98	51 - 133
•						5 5			

1S	MS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	98		39 - 146
2-Fluorobiphenyl	87		37 - 120
2-Fluorophenol	72		18 - 120
Nitrobenzene-d5	77		34 - 132
p-Terphenyl-d14	99		65 ₋ 153
Phenol-d5	74		11 - 120

TestAmerica Buffalo

Page 111 of 147

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid									Prep Ty		
Analysis Batch: 273884									Prep Ba	atch: 2	
Acceleda	Sample	•	Spike		MSD	1114	_	0/ 🗖	%Rec.	222	RPD
Analyte		Qualifier	Added		Qualifier	Unit	— D <u>∓</u>	%Rec	Limits	RPD	Limit
Biphenyl	ND		1740	1510		ug/Kg		87	71 - 120	2	20
bis (2-chloroisopropyl) ether	ND		1740	1120		ug/Kg	☼	64	44 - 120	3	24
2,4,5-Trichlorophenol	ND		1740	1490		ug/Kg		85	59 - 126	1	18
2,4,6-Trichlorophenol	ND		1740	1520		ug/Kg	ψ.	88	59 - 123	2	19
2,4-Dichlorophenol	ND		1740	1450		ug/Kg	₩	83	52 - 120	4	19
2,4-Dimethylphenol	ND		1740	1430		ug/Kg		82	36 - 120	4	42
2,4-Dinitrophenol	ND		3480	2540		ug/Kg	₩	73	35 - 146	0	22
2,4-Dinitrotoluene	ND		1740	1540		ug/Kg	#	88	55 - 125	3	20
2,6-Dinitrotoluene	ND		1740	1850		ug/Kg		106	66 - 128	2	15
2-Chloronaphthalene	ND		1740	1500		ug/Kg	☆	86	57 - 120	3	21
2-Chlorophenol	ND		1740	1280		ug/Kg	☼	73	38 - 120	1	25
2-Methylnaphthalene	ND		1740	1450		ug/Kg		83	47 - 120	4	21
2-Methylphenol	ND		1740	1300		ug/Kg	Þ	75	48 - 120	1	27
2-Nitroaniline	ND		1740	1410		ug/Kg	₩	81	61 - 130	3	15
2-Nitrophenol	ND		1740	1400		ug/Kg	₩	80	50 - 120	2	18
3,3'-Dichlorobenzidine	ND		3480	2980		ug/Kg	₽	86	48 - 126	1	25
3-Nitroaniline	ND		1740	1420		ug/Kg	₩	81	61 - 127	5	19
4,6-Dinitro-2-methylphenol	ND		3480	3120		ug/Kg	₩	90	49 - 155	3	15
4-Bromophenyl phenyl ether	ND		1740	1670		ug/Kg	₩	96	58 - 131	1	15
4-Chloro-3-methylphenol	ND		1740	1460		ug/Kg	☼	84	49 - 125	4	27
4-Chlorophenyl phenyl ether	ND		1740	1550		ug/Kg	☼	89	63 - 124	1	16
4-Methylphenol	ND		1740	1340		ug/Kg	₩	77	50 - 119	2	24
4-Nitroaniline	ND		1740	1470		ug/Kg	₩	84	63 - 128	5	24
4-Nitrophenol	ND		3480	2970		ug/Kg	₩	85	43 - 137	4	25
Acenaphthene	ND		1740	1490		ug/Kg	₩	86	53 - 120	0	35
Acenaphthylene	ND		1740	1500		ug/Kg	₩	86	58 - 121	1	18
Acetophenone	ND		1740	1330		ug/Kg	☼	77	66 - 120	3	20
Anthracene	ND		1740	1700		ug/Kg		98	62 - 129	4	15
Atrazine	ND		3480	3200		ug/Kg	☼	92	60 - 164	5	20
Benzaldehyde	ND		3480	3570		ug/Kg	₩	103	21 - 120	2	20
Benzo(a)anthracene	ND		1740	1630		ug/Kg		94	65 - 133	3	15
Benzo(a)pyrene	ND		1740	1600		ug/Kg	₩	92	64 - 127	3	15
Benzo(b)fluoranthene	ND		1740	1630		ug/Kg	☼	94	64 - 135	3	15
Benzo(g,h,i)perylene	ND		1740	1610		ug/Kg	· · · · · · · · · · · · · · · · · · ·	93	50 - 152	2	15
Benzo(k)fluoranthene	ND		1740	1650		ug/Kg	₩	95	58 ₋ 138	3	22
Bis(2-chloroethoxy)methane	ND		1740	1340		ug/Kg	₩	77	61 - 133	2	17
Bis(2-chloroethyl)ether	ND		1740	1280		ug/Kg		73	45 - 120	2	21
Bis(2-ethylhexyl) phthalate	ND		1740	1770		ug/Kg	₩	101	61 - 133	5	15
Butyl benzyl phthalate	ND		1740	1760		ug/Kg	₩	101	61 - 129	5	16
Caprolactam	ND		3480	2760		ug/Kg		79	54 - 133	3	20
Carbazole	ND		1740	1570		ug/Kg ug/Kg	₩	90	59 ₋ 129	3	20
Chrysene	ND		1740	1620		ug/Kg ug/Kg	≎	93	64 - 131	2	15
Di-n-butyl phthalate	ND		1740	1710		ug/Kg ug/Kg	· · · · · · · · · · · · · · · · · · ·	98	58 - 130	5	15
Di-n-octyl phthalate	ND ND		1740	1670		ug/Kg ug/Kg	≎	96	62 ₋ 133	0	16
Dibenz(a,h)anthracene							₩				
	ND		1740	1620 1550		ug/Kg	· · · · · · · · · · · · · · · · · · ·	93	54 - 148 56 120	0	15
Dibenzofuran	ND	LD	1740	1550		ug/Kg		89	56 ₋ 120	3	15
Diethyl phthalate	25 ND	JB	1740	1630		ug/Kg	₩	92	66 - 126	3	15

TestAmerica Buffalo

Page 112 of 147

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-90114-14 MSD

Matrix: Solid

Analysis Batch: 273884

Client Sample ID: SMWU26-SS-BLDG23-04

Prep Type: Total/NA

Prep Batch: 272950

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Fluoranthene	ND		1740	1600		ug/Kg	<u></u>	92	62 - 131	4	15
Fluorene	ND		1740	1560		ug/Kg	₩.	90	63 - 126	3	15
Hexachlorobenzene	ND		1740	1690		ug/Kg	₩	97	60 - 132	3	15
Hexachlorobutadiene	ND		1740	1450		ug/Kg	₩.	83	45 - 120	3	44
Hexachlorocyclopentadiene	ND		1740	1380		ug/Kg	₩	79	31 - 120	1	49
Hexachloroethane	ND		1740	1210		ug/Kg	☼	69	41 - 120	1	46
Indeno(1,2,3-cd)pyrene	ND		1740	1610		ug/Kg	₩.	93	56 - 149	1	15
Isophorone	ND		1740	1390		ug/Kg	₩	80	56 - 120	2	17
N-Nitrosodi-n-propylamine	ND		1740	1270		ug/Kg	☼	73	46 - 120	1	31
N-Nitrosodiphenylamine	ND		3480	3260		ug/Kg	₩.	94	20 - 119	1	15
Naphthalene	ND		1740	1420		ug/Kg	☼	81	46 - 120	4	29
Nitrobenzene	ND		1740	1340		ug/Kg	☼	77	49 - 120	4	24
Pentachlorophenol	ND		3480	3390		ug/Kg	₩.	97	33 - 136	2	35
Phenanthrene	ND		1740	1690		ug/Kg	☼	97	60 - 130	3	15
Phenol	ND		1740	1270		ug/Kg	☼	73	36 - 120	0	35
Pyrene	ND		1740	1840		ug/Kg	₩	106	51 - 133	7	35

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	102		39 - 146
2-Fluorobiphenyl	89		37 - 120
2-Fluorophenol	72		18 - 120
Nitrobenzene-d5	78		34 - 132
p-Terphenyl-d14	105		65 - 153
Phenol-d5	75		11 - 120

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC)

Lab Sample ID: MB 480-272574/4

Matrix: Water

Analysis Batch: 272574

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB I	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND ND		1.0	0.14	mg/L			11/02/15 12:23	1
Isobutyl alcohol	ND		1.0	0.37	mg/L			11/02/15 12:23	1
Methanol	ND		1.0	0.41	mg/L			11/02/15 12:23	1
n-Butanol	ND		1.0	0.40	mg/L			11/02/15 12:23	1
Propanol	ND		1.0	0.16	mg/L			11/02/15 12:23	1
2-Butanol	ND		1.0	0.17	mg/L			11/02/15 12:23	1
Isopropyl alcohol	ND		1.0	0.12	mg/L			11/02/15 12:23	1
t-Butyl alcohol	ND		1.0	0.10	mg/L			11/02/15 12:23	1
	MB	МВ							

Limits Analyzed Dil Fac Surrogate %Recovery Qualifier Prepared 2-Hexanone 112 62 - 129 11/02/15 12:23

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) (Continued)

Lab Sample ID: LCS 480-272574/5 **Matrix: Water**

Analysis Batch: 272574

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 20.0 22.3 mg/L Ethanol 112 72 - 133 20.0 23.1 Isobutyl alcohol mg/L 115 69 - 139 20.0 Methanol 22 4 112 71 - 132mg/L n-Butanol 20.0 109 21.7 mg/L 73 - 130Propanol 20.0 22.6 mg/L 113 71 - 131 2-Butanol 20.0 22.1 mg/L 110 68 - 136 20.0 22.6 67 - 132 Isopropyl alcohol mg/L 113 t-Butyl alcohol 20.0 23.0 115 71 - 130 mg/L

LCS LCS

Surrogate %Recovery Qualifier Limits 2-Hexanone 62 - 129 112

Lab Sample ID: MB 480-272198/1-A

Matrix: Solid

Client Sample ID: Method Blank

Prep Type: Soluble

Analysis Batch: 272358 MB MB Result Qualifier RL **MDL** Unit D Dil Fac Analyte Prepared Analyzed ND 0.95 0.14 mg/Kg 10/31/15 10:10 Ethanol Isobutyl alcohol ND 0.95 0.24 mg/Kg 10/31/15 10:10

Methanol ND 0.95 0.28 mg/Kg 10/31/15 10:10 n-Butanol ND 0.95 0.22 mg/Kg 10/31/15 10:10 0.14 mg/Kg Propanol ND 0.95 10/31/15 10:10 2-Butanol ND 0.95 0.15 mg/Kg 10/31/15 10:10 ND 0.95 0.23 mg/Kg Isopropyl alcohol 10/31/15 10:10 t-Butyl alcohol ND 0.95 0.25 mg/Kg 10/31/15 10:10

MB MB

Qualifier Limits Surrogate %Recovery Prepared Analyzed Dil Fac 30 - 137 108 10/31/15 10:10 2-Hexanone

Lab Sample ID: LCS 480-272198/2-A

Matrix: Solid

Analysis Batch: 272358

Client Sample ID: Lab Control Sample Prep Type: Soluble

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits 18.8 Ethanol 20.9 mg/Kg 111 55 - 136 Isobutyl alcohol 18.8 20.9 mg/Kg 111 51 - 130 Methanol 18.8 21.0 mg/Kg 53 - 140 112 n-Butanol 18.8 19.7 mg/Kg 105 54 - 141 Propanol 18.8 20.6 mg/Kg 109 59 - 1392-Butanol 18.8 20.2 mg/Kg 107 49 - 136 Isopropyl alcohol 21.2 113 18.8 mg/Kg 50 - 131 t-Butyl alcohol 18.8 21.2 mg/Kg 113 48 - 130

LCS LCS

Surrogate %Recovery Qualifier Limits 2-Hexanone 107 30 - 137

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) (Continued)

Lab Sample ID: 480-90114-9 MS

Matrix: Solid

Analysis Batch: 272358

Client Sample ID: SMWU26-SS-BLDG23-01

Prep Type: Soluble

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits ₩ Ethanol ND 21.0 21.5 mg/Kg 102 70 - 130 ND 21.0 22.1 ₩ 105 Isobutyl alcohol mg/Kg 70 - 130 ☼ ND Methanol 21.0 21.8 mg/Kg 104 70 - 130 n-Butanol ND 20.6 ₩ 98 21.0 mg/Kg 70 - 130₩ Propanol ND 21.0 21.6 mg/Kg 103 70 - 130 2-Butanol ND 21.0 21.0 mg/Kg Ö 100 70 - 130 ND 21.0 21.6 103 70 - 130 Isopropyl alcohol mg/Kg ₩ t-Butyl alcohol ND 21.0 22.0 mg/Kg 105 50 - 130

MS MS

Limits Surrogate %Recovery Qualifier 2-Hexanone 30 - 137 95

Lab Sample ID: 480-90114-9 MSD

Matrix: Solid

Analysis Batch: 272358

Client Sample ID: SMWU26-SS-BLDG23-01

Prep Type: Soluble

RPD Sample Sample Spike MSD MSD %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit ₩ ND 21.3 22.1 104 70 - 130 3 30 Ethanol mg/Kg ₩ Isobutyl alcohol ND 21.3 22.8 mg/Kg 107 70 - 130 3 30 ☼ ND mg/Kg Methanol 21.3 22.2 104 70 - 130 2 30 n-Butanol ND 21.3 21.1 mg/Kg ₩ 99 70 - 130 30 ₩ Propanol ND 21.3 22.2 mg/Kg 104 70 - 130 3 30 2-Butanol ND 21.3 21.5 mg/Kg ₩ 101 70 - 130 30 22.2 Ö ND 21.3 104 70 - 130 3 30 Isopropyl alcohol mg/Kg ₩ t-Butyl alcohol ND 21.3 22.6 mg/Kg 106 50 - 130 30

MSD MSD

Qualifier Limits Surrogate %Recovery 30 - 137 2-Hexanone 95

Lab Sample ID: 480-90114-14 MS

Matrix: Solid

Analysis Batch: 272358

Client Sample ID: SMWU26-SS-BLDG23-04
Prep Type: Soluble

7 man , 0.0 20.0 m 2. 2000	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Ethanol	ND		20.4	21.5		mg/Kg	\	105	70 - 130
Isobutyl alcohol	ND		20.4	21.2		mg/Kg	₩	104	70 - 130
Methanol	5.6	F1	20.4	33.0	F1	mg/Kg	₩	134	70 - 130
n-Butanol	ND		20.4	20.1		mg/Kg	₩.	98	70 - 130
Propanol	ND		20.4	21.0		mg/Kg	₩	103	70 - 130
2-Butanol	ND		20.4	20.4		mg/Kg	₩	100	70 - 130
Isopropyl alcohol	ND		20.4	21.6		mg/Kg	₩.	106	70 - 130
t-Butyl alcohol	ND		20.4	21.7		mg/Kg	₽	106	50 - 130

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
2-Hexanone	97		30 - 137

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) (Continued)

Lab Sample ID: 480-90114-14 MSD

Matrix: Solid

Analysis Batch: 272358

Client Sample ID: SMWU26-SS-BLDG23-04

Prep Type: Soluble

_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethanol	ND		19.8	21.3		mg/Kg	<u></u>	107	70 - 130	1	30
Isobutyl alcohol	ND		19.8	21.9		mg/Kg	≎	111	70 - 130	4	30
Methanol	5.6	F1	19.8	31.2		mg/Kg	≎	129	70 - 130	6	30
n-Butanol	ND		19.8	20.6		mg/Kg	₽	104	70 - 130	3	30
Propanol	ND		19.8	21.4		mg/Kg	≎	108	70 - 130	2	30
2-Butanol	ND		19.8	20.9		mg/Kg	₩	105	70 - 130	2	30
Isopropyl alcohol	ND		19.8	21.4		mg/Kg	₽	108	70 - 130	1	30
t-Butyl alcohol	ND		19.8	21.8		mg/Kg	₩	110	50 - 130	0	30
	MSD	MSD									

%Recovery Qualifier Limits

Surrogate 2-Hexanone 30 - 137 96

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

MR MR

Lab Sample ID: MB 480-272091/1-A

Matrix: Solid

Analysis Batch: 272235

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 272091

		•							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		210	41	ug/Kg		10/30/15 08:37	10/30/15 15:43	1
PCB-1221	ND		210	41	ug/Kg		10/30/15 08:37	10/30/15 15:43	1
PCB-1232	ND		210	41	ug/Kg		10/30/15 08:37	10/30/15 15:43	1
PCB-1242	ND		210	41	ug/Kg		10/30/15 08:37	10/30/15 15:43	1
PCB-1248	ND		210	41	ug/Kg		10/30/15 08:37	10/30/15 15:43	1
PCB-1254	ND		210	99	ug/Kg		10/30/15 08:37	10/30/15 15:43	1
PCB-1260	ND		210	99	ug/Kg		10/30/15 08:37	10/30/15 15:43	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 60 - 154 <u>10/30/15 08:37</u> <u>10/30/15 15:43</u> Tetrachloro-m-xylene 96 65 - 174 10/30/15 08:37 10/30/15 15:43 DCB Decachlorobiphenyl 100

Lab Sample ID: LCS 480-272091/2-A

Matrix: Solid

Analysis Batch: 272235

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 272091 %Rec.

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	 	2240	2610		ug/Kg		117	51 - 185	
PCB-1260		2240	2670		ug/Kg		119	61 - 184	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
Tetrachloro-m-xylene	108	60 - 154
DCB Decachlorobinhenyl	115	65 - 174

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: 480-90114 Matrix: Solid Analysis Batch: 272235	4-9 MS				(Client Sa	mple	ID: SM	WU26-SS-BLDG23-01 Prep Type: Total/NA Prep Batch: 272091
_	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
PCB-1016	ND		2300	2720		ug/Kg	<u> </u>	118	50 - 177
PCB-1260	ND		2300	2800		ug/Kg	₩	122	33 - 200
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
Tetrachloro-m-xylene	111		60 - 154						
DCB Decachlorobiphenyl	117		65 - 174						

Lab Sample ID: 480-90114 Matrix: Solid Analysis Batch: 272235	1-9 MSD				C	Client Sa	mple	ID: SM	WU26-SS Prep Ty Prep Ba	pe: Tot	al/NA
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016	ND		2010	1790		ug/Kg	<u> </u>	89	50 - 177	41	50
PCB-1260	ND		2010	1770		ug/Kg	₩	88	33 - 200	45	50
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
Tetrachloro-m-xylene	98		60 - 154								
DCB Decachlorobiphenyl	105		65 - 174								

Lab Sample ID: 480-90114 Matrix: Solid Analysis Batch: 272235	1-14 IVIS					Prep Batch: 272 %Rec.	Prep Type: Total/NA		
, e.e	Sample	Sample	Spike	MS	MS				-
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
PCB-1016	ND		2380	2720		ug/Kg	<u></u>	114	50 - 177
PCB-1260	ND		2380	2820		ug/Kg	₩	119	33 - 200
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
Tetrachloro-m-xylene	108		60 - 154						
DCB Decachlorobiphenyl	114		65 - 174						

Lab Sample ID: 480-90114 Matrix: Solid	-14 MSD				C	Client Sa	mple	ID: SM	WU26-SS Prep Tyl		
Analysis Batch: 272235									Prep Ba	itch: 27	72091
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016	ND		1840	2100		ug/Kg	₩	114	50 - 177	26	50
PCB-1260	ND		1840	2170		ug/Kg	₩	118	33 - 200	26	50
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
Tetrachloro-m-xylene	103	· 	60 - 154								
DCB Decachlorobiphenyl	114		65 ₋ 174								

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: MB 480-272344/1-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA Analysis Batch: 272538 Prep Batch: 272344

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.50	0.18	ug/L		10/31/15 09:09	11/02/15 10:22	1
PCB-1221	ND		0.50	0.18	ug/L		10/31/15 09:09	11/02/15 10:22	1
PCB-1232	ND		0.50	0.18	ug/L		10/31/15 09:09	11/02/15 10:22	1
PCB-1242	ND		0.50	0.18	ug/L		10/31/15 09:09	11/02/15 10:22	1
PCB-1248	ND		0.50	0.18	ug/L		10/31/15 09:09	11/02/15 10:22	1
PCB-1254	ND		0.50	0.25	ug/L		10/31/15 09:09	11/02/15 10:22	1
PCB-1260	ND		0.50	0.25	ug/L		10/31/15 09:09	11/02/15 10:22	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	114		24 - 137	10/31/15 09:09	11/02/15 10:22	1
DCB Decachlorobiphenyl	65		19 - 125	10/31/15 09:09	11/02/15 10:22	1

Lab Sample ID: LCS 480-272344/2-A

Matrix: Water

Analysis Batch: 272538	Spike	LCS	LCS				Prep Batch: 272344 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
PCB-1016	4.00	3.50		ug/L		88	62 - 130
PCB-1260	4.00	3.16		ug/L		79	56 - 123

	LCS LCS	
Surrogate	%Recovery Qualifi	er Limits
Tetrachloro-m-xylene	85	24 - 137
DCB Decachlorobiphenyl	61	19 - 125

Lab Sample ID: LCSD 480-272344/3-A

Matrix: Water

Analysis Batch: 272538							Prep Ba	ıtch: 27	72344
-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016	4.00	3.47		ug/L		87	62 - 130	1	50
PCB-1260	4.00	2.92		ug/L		73	56 - 123	8	50

	LCSD LC	SD
Surrogate	%Recovery Qu	alifier Limits
Tetrachloro-m-xylene	81	24 - 137
DCB Decachlorobiphenyl	55	19 - 125

MD MD

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-272115/1-A Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA Analysis Batch: 272531 **Prep Batch: 272115**

	INIB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		10/30/15 11:45	10/31/15 20:17	1
Cadmium	ND		0.0020	0.00050	mg/L		10/30/15 11:45	10/31/15 20:17	1
Chromium	ND		0.0040	0.0010	mg/L		10/30/15 11:45	10/31/15 20:17	1
Lead	ND		0.010	0.0030	mg/L		10/30/15 11:45	10/31/15 20:17	1
	Arsenic Cadmium Chromium	Analyte Result Arsenic ND Cadmium ND Chromium ND	Arsenic ND Cadmium ND Chromium ND	Analyte Result Arsenic Qualifier RL Cadmium ND 0.015 Chromium ND 0.0020 Ohromium ND 0.0040	Analyte Result Arsenic Qualifier RL O.015 MDL O.0056 Cadmium ND 0.0020 0.00050 Chromium ND 0.0040 0.0010	Analyte Result Arsenic Qualifier RL ND MDL Unit Unit Unit MDL O.015 Unit MDL MDL O.0056 MDL	Analyte Result Arsenic Qualifier RL ND MDL 0.0056 Unit mg/L mg/L mg/L D Cadmium ND 0.0020 0.00050 mg/L Chromium ND 0.0040 0.0010 mg/L	Analyte Result Arsenic Qualifier RL OLD OLD OLD OLD OLD OLD OLD OLD OLD OL	Analyte Result Arsenic Qualifier RL OLD OLD OLD OLD OLD OLD OLD OLD OLD OL

TestAmerica Buffalo

Page 118 of 147

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-272115/1-A

Lab Sample ID: LCS 480-272115/2-A

Matrix: Water

Analysis Batch: 272531

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 272115

MR MR

MDL Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac 10/30/15 11:45 10/31/15 20:17 Selenium $\overline{\mathsf{ND}}$ 0.025 0.0087 mg/L 0.0060 Silver ND 0.0017 mg/L 10/30/15 11:45 10/31/15 20:17

Lab Sample ID: MB 480-272115/1-A **Client Sample ID: Method Blank**

Matrix: Water

Matrix: Water

Analysis Batch: 272698

Analysis Batch: 272531

Prep Type: Total/NA

Prep Batch: 272115

MB MB **Analyte** Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Barium 0.0020 0.00070 mg/L 10/30/15 11:45 11/02/15 14:26 ND

> Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 272115

%Rec.

Spike LCS LCS Analyte Added Result Qualifier Unit D %Rec Limits Arsenic 0.200 0.200 mg/L 100 80 - 120 0.200 Cadmium 0.211 mg/L 106 80 - 120 Chromium 0.200 0.210 mg/L 105 80 - 120 106 Lead 0.200 0.212 mg/L 80 - 120 Selenium 0.200 0.204 mg/L 102 80 - 120 Silver 0.0500 0.0520 mg/L 104 80 - 120

Lab Sample ID: LCS 480-272115/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 272698

Prep Type: Total/NA **Prep Batch: 272115**

%Rec.

Spike LCS LCS Analyte Added Result Qualifier Unit D %Rec Limits Barium 0.200 0.202 mg/L 101 80 - 120

Lab Sample ID: MB 480-272189/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 272494

Prep Type: Total/NA **Prep Batch: 272189**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		2.0	0.40	mg/Kg		10/30/15 11:43	10/31/15 16:23	1
Barium	ND		0.50	0.11	mg/Kg		10/30/15 11:43	10/31/15 16:23	1
Cadmium	ND		0.20	0.030	mg/Kg		10/30/15 11:43	10/31/15 16:23	1
Chromium	ND		0.50	0.20	mg/Kg		10/30/15 11:43	10/31/15 16:23	1
Lead	ND		1.0	0.24	mg/Kg		10/30/15 11:43	10/31/15 16:23	1
Selenium	ND		4.0	0.40	mg/Kg		10/30/15 11:43	10/31/15 16:23	1
Silver	ND		0.60	0.20	mg/Kg		10/30/15 11:43	10/31/15 16:23	1

Lab Sample ID: LCSSRM 480-272189/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analyte

Arsenic

Analysis Batch: 272494

Prep Type: Total/NA **Prep Batch: 272189** LCSSRM LCSSRM %Rec. Spike Limits Added Result Qualifier Unit D %Rec 113 97.11 mg/Kg 85.9 69.7 - 142.

5

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCSSRM 480-272189/2-A

Matrix: Solid

Analysis Batch: 272494

Client Sample ID:	: Lab Control Sample
	Prep Type: Total/NA

Prep Batch: 272189

	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Barium	155	139.5		mg/Kg		90.0	72.9 - 127.	
Cadmium	67.5	58.72		mg/Kg		87.0	1 73.2 - 126. 8	
Chromium	164	141.2		mg/Kg		86.1	70.7 - 129. 9	
Lead	90.1	85.61		mg/Kg		95.0	70.1 - 129. 9	
Selenium	156	136.0		mg/Kg		87.2	67.3 - 132. 1	
Silver	52.6	44.02		mg/Kg		83.7	66.7 - 133. 5	

Client Sample ID: SMWU26-SS-BLDG23-01 **Prep Type: Total/NA**

Prep Batch: 272189

Analysis Batch: 272494 MS MS Sample Sample Spike %Rec. Result Qualifier Analyte Added Result Qualifier Unit D %Rec Limits ₩ Arsenic 3.2 43.0 41.98 mg/Kg 90 75 - 125 ₩ Barium 38.6 F1 43.0 71.72 mg/Kg 77 75 - 125 ď÷ Cadmium 0.075 43.0 39.44 mg/Kg 92 75 - 125 Chromium 7.0 43.0 48.66 mg/Kg 97 75 - 125 Lead 5.8 43.0 49.49 mg/Kg ₩ 102 75 - 125 Selenium ND 43.0 39.24 mg/Kg ☼ 91 75 - 125 Silver ND 10.8 9.51 mg/Kg 75 - 125

Lab Sample ID: 480-90114-9 MSD

Lab Sample ID: 480-90114-9 MS

Matrix: Solid

Matrix: Solid

Analysis Ratch: 272494

Client Sample ID: SMWU26-SS-BLDG23-01

Prep Type: Total/NA Drop Botoby 272490

Analysis Batch: 2/2494									Prep Ba	itcn: 2/	72189
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	3.2		42.9	44.92	-	mg/Kg	₩	97	75 - 125	7	20
Barium	38.6	F1	42.9	69.05	F1	mg/Kg	₩	71	75 - 125	4	20
Cadmium	0.075	J	42.9	40.44		mg/Kg	≎	94	75 - 125	2	20
Chromium	7.0		42.9	47.53		mg/Kg	₩	95	75 - 125	2	20
Lead	5.8		42.9	52.72		mg/Kg	≎	109	75 - 125	6	20
Selenium	ND		42.9	39.85		mg/Kg	₩	93	75 - 125	2	20
Silver	ND		10.7	9.96		mg/Kg	₩	93	75 - 125	5	20

Lab Sample ID: 480-90114-14 MS

Matrix: Solid

Analysis Batch: 272494

Client Sample ID:	SMWU26-SS-BLDG23-04
	Dren Tuner Tetal/NA

Prep Type: Total/NA **Prep Batch: 272189**

/ maryone Datem 2:2:0:	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	2.0	J	42.0	41.09	-	mg/Kg		93	75 - 125
Barium	15.2	F2 F1	42.0	61.79		mg/Kg	₩	111	75 - 125
Cadmium	0.047	J	42.0	39.51		mg/Kg	₩	94	75 - 125
Chromium	4.6		42.0	45.82		mg/Kg	₩	98	75 - 125
Lead	3.4		42.0	46.43		mg/Kg	₩	103	75 - 125
Selenium	ND		42.0	39.17		mg/Kg	₩	93	75 - 125

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-90114-14 MS Client Sample ID: SMWU26-SS-BLDG23-04 **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 272494 Prep Batch: 272189** MS MS Sample Sample Spike %Rec.

Result Qualifier Added Result Qualifier Analyte Unit %Rec Limits Silver ND 10.5 9.68 92 75 - 125 mg/Kg

Lab Sample ID: 480-90114-14 MSD Client Sample ID: SMWU26-SS-BLDG23-04

Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 272494									Prep Ba	itch: 27	72189
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	2.0	J	41.9	42.04		mg/Kg	₩	96	75 - 125	2	20
Barium	15.2	F2 F1	41.9	79.89	F1 F2	mg/Kg	₩	155	75 - 125	26	20
Cadmium	0.047	J	41.9	39.97		mg/Kg	≎	95	75 - 125	1	20
Chromium	4.6		41.9	47.66		mg/Kg	₽	103	75 - 125	4	20
Lead	3.4		41.9	46.67		mg/Kg	₩	103	75 - 125	0	20
Selenium	ND		41.9	39.81		mg/Kg	≎	95	75 - 125	2	20
Silver	ND		10.5	9.86		mg/Kg	₽	94	75 - 125	2	20

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-272480/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 272705 MB MB

RL **MDL** Unit **Analyte** Result Qualifier Prepared Analyzed Dil Fac 0.00020 11/02/15 09:05 11/03/15 07:29 Mercury ND 0.00012 mg/L

Lab Sample ID: LCS 480-272480/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 272705** Prep Batch: 272480

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit D %Rec

Mercury 0.00667 0.00653 mg/L 98 80 - 120

Lab Sample ID: LCSD 480-272480/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Water Prep Type: Total/NA **Analysis Batch: 272705** Prep Batch: 272480 Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Unit D %Rec Limits **RPD** Limit

Analyte 0.00667 0.00682 Mercury mg/L 102 80 - 120

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 480-272519/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 272601 Prep Batch: 272519

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Mercury ND 0.020 0.0080 mg/Kg 11/02/15 11:10 11/02/15 12:59

TestAmerica Buffalo

Prep Type: Total/NA

Prep Batch: 272480

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: Lab Control Sample Dup

Method: 7471B - Mercury (CVAA) (Continued)

Lab Sample ID: LCDSRM 480-272519/20-A

Matrix: Solid									Prep Ty	e: Tot	al/NA
Analysis Batch: 272601									Prep Ba	itch: 2	72519
			Spike	LCDSRM	LCDSRM				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury			8.37	10.12		mg/Kg		121.0	51.3 - 148.	0	20
									1		
Lab Sample ID: LCSSRM	480-272519 /	2-A				Clier	nt Sar	nple II	D: Lab Cor	itrol Sa	ample
Matrix: Solid								•	Prep Ty		_
Analysis Batch: 272601									Prep Ba		
			Spike	LCSSRM	LCSSRM				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Mercury			8.37	10.17		mg/Kg		121.5	51.3 - 148.		
<u>L</u>									1		
_ Lab Sample ID: 480-90114	I-9 MS				C	lient Sa	mple	ID: SN	IWU26-SS	-BLDG	23-01
Matrix: Solid							•		Prep Ty		
Analysis Batch: 272601									Prep Ba		
, , , , , , , , , , , , , , , , , , , ,	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Mercury	0.013	J	0.333	0.396		mg/Kg	\	115	80 - 120		

Lab Sample ID: 480-90114-	9 MSD				C	Client Sa	mple	ID: SM	WU26-SS	-BLDG	23-01
Matrix: Solid									Prep Ty	e: Tot	al/NA
Analysis Batch: 272601									Prep Ba	itch: 27	72519
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	0.013	J	0.364	0.423		mg/Kg	<u> </u>	113	80 - 120	7	20

Lab Sample ID: 480-90114- Matrix: Solid	-14 MS				C	Client Sam	ole	ID: SM	WU26-SS-BLDG Prep Type: Tot	al/NA
Analysis Batch: 272601									Prep Batch: 27	72519
-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	ND		0.341	0.346		ma/Ka	₩	102	80 - 120	

Lab Sample ID: 480-90114 Matrix: Solid Analysis Batch: 272601	-14 MSD				C	Client San	iple	ID: SM	WU26-SS Prep Typ Prep Ba	oe: Tot	al/NA
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	ND		0.341	0.345		mg/Kg	₩	101	80 - 120	0	20

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

GC/MS VOA

Prep Batch: 272044

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-1	SMWU7-SS-BLDG23-12	Total/NA	Solid	5035A	_
480-90114-2	SMWU7-SS-BLDG23-13	Total/NA	Solid	5035A	
480-90114-3	SMWU7-SS-BLDG23-15	Total/NA	Solid	5035A	
480-90114-4	SMWU7-SS-BLDG23-14	Total/NA	Solid	5035A	
480-90114-6	SMWU7-SS-BLDG23-17	Total/NA	Solid	5035A	
480-90114-7	SMWU7-SS-BLDG23-18	Total/NA	Solid	5035A	
480-90114-8	SMWU7-SS-BLDG23-19	Total/NA	Solid	5035A	
480-90114-9	SMWU26-SS-BLDG23-01	Total/NA	Solid	5035A	
480-90114-9 MS	SMWU26-SS-BLDG23-01	Total/NA	Solid	5035A	
480-90114-9 MSD	SMWU26-SS-BLDG23-01	Total/NA	Solid	5035A	
480-90114-10	SMWU7-SS-BLDG23-20	Total/NA	Solid	5035A	
480-90114-11	SMWU26-SS-BLDG23-02	Total/NA	Solid	5035A	
480-90114-12	SMWU26-SS-BLDG23-03	Total/NA	Solid	5035A	
480-90114-13	SMWU7-SS-BLDG23-21	Total/NA	Solid	5035A	
480-90114-15	SMWU7-SS-BLDG23-22	Total/NA	Solid	5035A	
480-90114-17	SMWU7-SS-BLDG34-02	Total/NA	Solid	5035A	
480-90114-18	SMWU7-SS-BLDG34-03	Total/NA	Solid	5035A	
480-90114-19	SMWU1-SS-TP01-100	Total/NA	Solid	5035A	
LCS 480-272044/1-A	Lab Control Sample	Total/NA	Solid	5035A	
MB 480-272044/2-A	Method Blank	Total/NA	Solid	5035A	

Prep Batch: 272045

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-5	SMWU7-SS-BLDG23-16	Total/NA	Solid	5035A	
480-90114-16	SMWU7-SS-BLDG34-01	Total/NA	Solid	5035A	
LCS 480-272045/1-A	Lab Control Sample	Total/NA	Solid	5035A	
MB 480-272045/2-A	Method Blank	Total/NA	Solid	5035A	

Prep Batch: 272053

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-14	SMWU26-SS-BLDG23-04	Total/NA	Solid	5035A	
480-90114-14 MS	SMWU26-SS-BLDG23-04	Total/NA	Solid	5035A	
480-90114-14 MSD	SMWU26-SS-BLDG23-04	Total/NA	Solid	5035A	
480-90114-20	SMWU1-SS-TP02-101	Total/NA	Solid	5035A	
480-90114-21	SMWU1-SS-TP03-102	Total/NA	Solid	5035A	
480-90114-22	SMWU1-SS-TP04-103	Total/NA	Solid	5035A	
480-90114-23	SMWU1-SS-TP04-200	Total/NA	Solid	5035A	
LCS 480-272053/1-A	Lab Control Sample	Total/NA	Solid	5035A	
MB 480-272053/2-A	Method Blank	Total/NA	Solid	5035A	

Analysis Batch: 273159

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-1	SMWU7-SS-BLDG23-12	Total/NA	Solid	8260C	272044
480-90114-2	SMWU7-SS-BLDG23-13	Total/NA	Solid	8260C	272044
480-90114-3	SMWU7-SS-BLDG23-15	Total/NA	Solid	8260C	272044
480-90114-4	SMWU7-SS-BLDG23-14	Total/NA	Solid	8260C	272044
480-90114-6	SMWU7-SS-BLDG23-17	Total/NA	Solid	8260C	272044
480-90114-7	SMWU7-SS-BLDG23-18	Total/NA	Solid	8260C	272044
480-90114-8	SMWU7-SS-BLDG23-19	Total/NA	Solid	8260C	272044
480-90114-9	SMWU26-SS-BLDG23-01	Total/NA	Solid	8260C	272044
480-90114-9 MS	SMWU26-SS-BLDG23-01	Total/NA	Solid	8260C	272044

TestAmerica Buffalo

4

6

ŏ

10

12

IS

4

Le

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

GC/MS VOA (Continued)

Analysis Batch: 273159 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-9 MSD	SMWU26-SS-BLDG23-01	Total/NA	Solid	8260C	272044
LCS 480-272044/1-A	Lab Control Sample	Total/NA	Solid	8260C	272044
MB 480-272044/2-A	Method Blank	Total/NA	Solid	8260C	272044

Analysis Batch: 273296

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-5	SMWU7-SS-BLDG23-16	Total/NA	Solid	8260C	272045
480-90114-10	SMWU7-SS-BLDG23-20	Total/NA	Solid	8260C	272044
480-90114-11	SMWU26-SS-BLDG23-02	Total/NA	Solid	8260C	272044
480-90114-12	SMWU26-SS-BLDG23-03	Total/NA	Solid	8260C	272044
480-90114-13	SMWU7-SS-BLDG23-21	Total/NA	Solid	8260C	272044
480-90114-14	SMWU26-SS-BLDG23-04	Total/NA	Solid	8260C	272053
480-90114-14 MS	SMWU26-SS-BLDG23-04	Total/NA	Solid	8260C	272053
480-90114-14 MSD	SMWU26-SS-BLDG23-04	Total/NA	Solid	8260C	272053
480-90114-15	SMWU7-SS-BLDG23-22	Total/NA	Solid	8260C	272044
480-90114-17	SMWU7-SS-BLDG34-02	Total/NA	Solid	8260C	272044
480-90114-18	SMWU7-SS-BLDG34-03	Total/NA	Solid	8260C	272044
480-90114-19	SMWU1-SS-TP01-100	Total/NA	Solid	8260C	272044
480-90114-20	SMWU1-SS-TP02-101	Total/NA	Solid	8260C	272053
480-90114-21	SMWU1-SS-TP03-102	Total/NA	Solid	8260C	272053
480-90114-22	SMWU1-SS-TP04-103	Total/NA	Solid	8260C	272053
480-90114-23	SMWU1-SS-TP04-200	Total/NA	Solid	8260C	272053
LCS 480-272045/1-A	Lab Control Sample	Total/NA	Solid	8260C	272045
LCS 480-272053/1-A	Lab Control Sample	Total/NA	Solid	8260C	272053
MB 480-272045/2-A	Method Blank	Total/NA	Solid	8260C	272045
MB 480-272053/2-A	Method Blank	Total/NA	Solid	8260C	272053

Analysis Batch: 273666

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-16	SMWU7-SS-BLDG34-01	Total/NA	Solid	8260C	272045

Analysis Batch: 273742

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-24	EB-03	Total/NA	Water	8260C	
480-90114-25	TB03	Total/NA	Water	8260C	
LCS 480-273742/5	Lab Control Sample	Total/NA	Water	8260C	
MB 480-273742/7	Method Blank	Total/NA	Water	8260C	

GC/MS Semi VOA

Prep Batch: 272533

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-24	EB-03	Total/NA	Water	3510C	
LCS 480-272533/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 480-272533/1-A	Method Blank	Total/NA	Water	3510C	

Prep Batch: 272950

Trop Baton: 272000	•				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-9	SMWU26-SS-BLDG23-01	Total/NA	Solid	3550C	
480-90114-9 MS	SMWU26-SS-BLDG23-01	Total/NA	Solid	3550C	

TestAmerica Buffalo

Page 124 of 147

2

4

6

8

10

12

1 1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

GC/MS Semi VOA (Continued)

Prep Batch: 272950 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-9 MSD	SMWU26-SS-BLDG23-01	Total/NA	Solid	3550C	_
480-90114-11	SMWU26-SS-BLDG23-02	Total/NA	Solid	3550C	
480-90114-12	SMWU26-SS-BLDG23-03	Total/NA	Solid	3550C	
480-90114-14	SMWU26-SS-BLDG23-04	Total/NA	Solid	3550C	
480-90114-14 MS	SMWU26-SS-BLDG23-04	Total/NA	Solid	3550C	
480-90114-14 MSD	SMWU26-SS-BLDG23-04	Total/NA	Solid	3550C	
480-90114-19	SMWU1-SS-TP01-100	Total/NA	Solid	3550C	
480-90114-20	SMWU1-SS-TP02-101	Total/NA	Solid	3550C	
480-90114-21	SMWU1-SS-TP03-102	Total/NA	Solid	3550C	
480-90114-22	SMWU1-SS-TP04-103	Total/NA	Solid	3550C	
LCS 480-272950/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-272950/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 273528

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-272533/2-A	Lab Control Sample	Total/NA	Water	8270D	272533

Analysis Batch: 273884

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-9	SMWU26-SS-BLDG23-01	Total/NA	Solid	8270D	272950
480-90114-9 MS	SMWU26-SS-BLDG23-01	Total/NA	Solid	8270D	272950
480-90114-9 MSD	SMWU26-SS-BLDG23-01	Total/NA	Solid	8270D	272950
480-90114-11	SMWU26-SS-BLDG23-02	Total/NA	Solid	8270D	272950
480-90114-12	SMWU26-SS-BLDG23-03	Total/NA	Solid	8270D	272950
480-90114-14	SMWU26-SS-BLDG23-04	Total/NA	Solid	8270D	272950
480-90114-14 MS	SMWU26-SS-BLDG23-04	Total/NA	Solid	8270D	272950
480-90114-14 MSD	SMWU26-SS-BLDG23-04	Total/NA	Solid	8270D	272950
480-90114-19	SMWU1-SS-TP01-100	Total/NA	Solid	8270D	272950
480-90114-20	SMWU1-SS-TP02-101	Total/NA	Solid	8270D	272950
480-90114-21	SMWU1-SS-TP03-102	Total/NA	Solid	8270D	272950
480-90114-22	SMWU1-SS-TP04-103	Total/NA	Solid	8270D	272950
LCS 480-272950/2-A	Lab Control Sample	Total/NA	Solid	8270D	272950
MB 480-272950/1-A	Method Blank	Total/NA	Solid	8270D	272950

Analysis Batch: 274392

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-24	EB-03	Total/NA	Water	8270D	272533
MB 480-272533/1-A	Method Blank	Total/NA	Water	8270D	272533

GC VOA

Leach Batch: 272198

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-9	SMWU26-SS-BLDG23-01	Soluble	Solid	DI Leach	
480-90114-9 MS	SMWU26-SS-BLDG23-01	Soluble	Solid	DI Leach	
480-90114-9 MSD	SMWU26-SS-BLDG23-01	Soluble	Solid	DI Leach	
480-90114-11	SMWU26-SS-BLDG23-02	Soluble	Solid	DI Leach	
480-90114-12	SMWU26-SS-BLDG23-03	Soluble	Solid	DI Leach	
480-90114-14	SMWU26-SS-BLDG23-04	Soluble	Solid	DI Leach	
480-90114-14 MS	SMWU26-SS-BLDG23-04	Soluble	Solid	DI Leach	

Page 125 of 147

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

GC VOA (Continued)

Leach Batch: 272198 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-14 MSD	SMWU26-SS-BLDG23-04	Soluble	Solid	DI Leach	
480-90114-19	SMWU1-SS-TP01-100	Soluble	Solid	DI Leach	
480-90114-20	SMWU1-SS-TP02-101	Soluble	Solid	DI Leach	
480-90114-21	SMWU1-SS-TP03-102	Soluble	Solid	DI Leach	
480-90114-22	SMWU1-SS-TP04-103	Soluble	Solid	DI Leach	
LCS 480-272198/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
MB 480-272198/1-A	Method Blank	Soluble	Solid	DI Leach	

Analysis Batch: 272358

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-9	SMWU26-SS-BLDG23-01	Soluble	Solid	8015D	272198
480-90114-9 MS	SMWU26-SS-BLDG23-01	Soluble	Solid	8015D	272198
480-90114-9 MSD	SMWU26-SS-BLDG23-01	Soluble	Solid	8015D	272198
480-90114-11	SMWU26-SS-BLDG23-02	Soluble	Solid	8015D	272198
480-90114-12	SMWU26-SS-BLDG23-03	Soluble	Solid	8015D	272198
480-90114-14	SMWU26-SS-BLDG23-04	Soluble	Solid	8015D	272198
480-90114-14 MS	SMWU26-SS-BLDG23-04	Soluble	Solid	8015D	272198
480-90114-14 MSD	SMWU26-SS-BLDG23-04	Soluble	Solid	8015D	272198
480-90114-19	SMWU1-SS-TP01-100	Soluble	Solid	8015D	272198
480-90114-20	SMWU1-SS-TP02-101	Soluble	Solid	8015D	272198
480-90114-21	SMWU1-SS-TP03-102	Soluble	Solid	8015D	272198
480-90114-22	SMWU1-SS-TP04-103	Soluble	Solid	8015D	272198
LCS 480-272198/2-A	Lab Control Sample	Soluble	Solid	8015D	272198
MB 480-272198/1-A	Method Blank	Soluble	Solid	8015D	272198

Analysis Batch: 272574

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-24	EB-03	Total/NA	Water	8015D	
LCS 480-272574/5	Lab Control Sample	Total/NA	Water	8015D	
MB 480-272574/4	Method Blank	Total/NA	Water	8015D	

GC Semi VOA

Prep Batch: 272091

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-9	SMWU26-SS-BLDG23-01	Total/NA	Solid	3550C	_
480-90114-9 MS	SMWU26-SS-BLDG23-01	Total/NA	Solid	3550C	
480-90114-9 MSD	SMWU26-SS-BLDG23-01	Total/NA	Solid	3550C	
480-90114-11	SMWU26-SS-BLDG23-02	Total/NA	Solid	3550C	
480-90114-12	SMWU26-SS-BLDG23-03	Total/NA	Solid	3550C	
480-90114-14	SMWU26-SS-BLDG23-04	Total/NA	Solid	3550C	
480-90114-14 MS	SMWU26-SS-BLDG23-04	Total/NA	Solid	3550C	
480-90114-14 MSD	SMWU26-SS-BLDG23-04	Total/NA	Solid	3550C	
480-90114-19	SMWU1-SS-TP01-100	Total/NA	Solid	3550C	
480-90114-20	SMWU1-SS-TP02-101	Total/NA	Solid	3550C	
480-90114-21	SMWU1-SS-TP03-102	Total/NA	Solid	3550C	
480-90114-22	SMWU1-SS-TP04-103	Total/NA	Solid	3550C	
LCS 480-272091/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-272091/1-A	Method Blank	Total/NA	Solid	3550C	

Page 126 of 147

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

GC Semi VOA (Continued)

Analysis Batch: 272235

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-9	SMWU26-SS-BLDG23-01	Total/NA	Solid	8082A	272091
480-90114-9 MS	SMWU26-SS-BLDG23-01	Total/NA	Solid	8082A	272091
480-90114-9 MSD	SMWU26-SS-BLDG23-01	Total/NA	Solid	8082A	272091
480-90114-11	SMWU26-SS-BLDG23-02	Total/NA	Solid	8082A	272091
480-90114-12	SMWU26-SS-BLDG23-03	Total/NA	Solid	8082A	272091
480-90114-14	SMWU26-SS-BLDG23-04	Total/NA	Solid	8082A	272091
480-90114-14 MS	SMWU26-SS-BLDG23-04	Total/NA	Solid	8082A	272091
480-90114-14 MSD	SMWU26-SS-BLDG23-04	Total/NA	Solid	8082A	272091
480-90114-19	SMWU1-SS-TP01-100	Total/NA	Solid	8082A	272091
480-90114-20	SMWU1-SS-TP02-101	Total/NA	Solid	8082A	272091
480-90114-21	SMWU1-SS-TP03-102	Total/NA	Solid	8082A	272091
480-90114-22	SMWU1-SS-TP04-103	Total/NA	Solid	8082A	272091
LCS 480-272091/2-A	Lab Control Sample	Total/NA	Solid	8082A	272091
MB 480-272091/1-A	Method Blank	Total/NA	Solid	8082A	272091

Prep Batch: 272344

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-24	EB-03	Total/NA	Water	3510C	
LCS 480-272344/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-272344/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
MB 480-272344/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 272538

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-24	EB-03	Total/NA	Water	8082A	272344
LCS 480-272344/2-A	Lab Control Sample	Total/NA	Water	8082A	272344
LCSD 480-272344/3-A	Lab Control Sample Dup	Total/NA	Water	8082A	272344
MB 480-272344/1-A	Method Blank	Total/NA	Water	8082A	272344

Metals

Prep Batch: 272115

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-24	EB-03	Total/NA	Water	3005A	
LCS 480-272115/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-272115/1-A	Method Blank	Total/NA	Water	3005A	

Prep Batch: 272189

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-9	SMWU26-SS-BLDG23-01	Total/NA	Solid	3050B	_
480-90114-9 MS	SMWU26-SS-BLDG23-01	Total/NA	Solid	3050B	
480-90114-9 MSD	SMWU26-SS-BLDG23-01	Total/NA	Solid	3050B	
480-90114-11	SMWU26-SS-BLDG23-02	Total/NA	Solid	3050B	
480-90114-12	SMWU26-SS-BLDG23-03	Total/NA	Solid	3050B	
480-90114-14	SMWU26-SS-BLDG23-04	Total/NA	Solid	3050B	
480-90114-14 MS	SMWU26-SS-BLDG23-04	Total/NA	Solid	3050B	
480-90114-14 MSD	SMWU26-SS-BLDG23-04	Total/NA	Solid	3050B	
480-90114-19	SMWU1-SS-TP01-100	Total/NA	Solid	3050B	
480-90114-20	SMWU1-SS-TP02-101	Total/NA	Solid	3050B	
480-90114-21	SMWU1-SS-TP03-102	Total/NA	Solid	3050B	

TestAmerica Buffalo

11/16/2015

Page 127 of 147

QC Association Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Metals (Continued)

Prep Batch: 272189 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-22	SMWU1-SS-TP04-103	Total/NA	Solid	3050B	
LCSSRM 480-272189/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-272189/1-A	Method Blank	Total/NA	Solid	3050B	

Prep Batch: 272480

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-24	EB-03	Total/NA	Water	7470A	<u> </u>
LCS 480-272480/2-A	Lab Control Sample	Total/NA	Water	7470A	
LCSD 480-272480/3-A	Lab Control Sample Dup	Total/NA	Water	7470A	
MB 480-272480/1-A	Method Blank	Total/NA	Water	7470A	

Analysis Batch: 272494

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
480-90114-9	SMWU26-SS-BLDG23-01	Total/NA	Solid	6010C	272189	
480-90114-9 MS	SMWU26-SS-BLDG23-01	Total/NA	Solid	6010C	272189	
480-90114-9 MSD	SMWU26-SS-BLDG23-01	Total/NA	Solid	6010C	272189	
480-90114-11	SMWU26-SS-BLDG23-02	Total/NA	Solid	6010C	272189	
480-90114-12	SMWU26-SS-BLDG23-03	Total/NA	Solid	6010C	272189	
480-90114-14	SMWU26-SS-BLDG23-04	Total/NA	Solid	6010C	272189	
480-90114-14 MS	SMWU26-SS-BLDG23-04	Total/NA	Solid	6010C	272189	
480-90114-14 MSD	SMWU26-SS-BLDG23-04	Total/NA	Solid	6010C	272189	
480-90114-19	SMWU1-SS-TP01-100	Total/NA	Solid	6010C	272189	
480-90114-20	SMWU1-SS-TP02-101	Total/NA	Solid	6010C	272189	
480-90114-21	SMWU1-SS-TP03-102	Total/NA	Solid	6010C	272189	
480-90114-22	SMWU1-SS-TP04-103	Total/NA	Solid	6010C	272189	
LCSSRM 480-272189/2-A	Lab Control Sample	Total/NA	Solid	6010C	272189	
MB 480-272189/1-A	Method Blank	Total/NA	Solid	6010C	272189	

Prep Batch: 272519

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-9	SMWU26-SS-BLDG23-01	Total/NA	Solid	7471B	
480-90114-9 MS	SMWU26-SS-BLDG23-01	Total/NA	Solid	7471B	
480-90114-9 MSD	SMWU26-SS-BLDG23-01	Total/NA	Solid	7471B	
480-90114-11	SMWU26-SS-BLDG23-02	Total/NA	Solid	7471B	
480-90114-12	SMWU26-SS-BLDG23-03	Total/NA	Solid	7471B	
480-90114-14	SMWU26-SS-BLDG23-04	Total/NA	Solid	7471B	
480-90114-14 MS	SMWU26-SS-BLDG23-04	Total/NA	Solid	7471B	
480-90114-14 MSD	SMWU26-SS-BLDG23-04	Total/NA	Solid	7471B	
480-90114-19	SMWU1-SS-TP01-100	Total/NA	Solid	7471B	
480-90114-20	SMWU1-SS-TP02-101	Total/NA	Solid	7471B	
480-90114-21	SMWU1-SS-TP03-102	Total/NA	Solid	7471B	
480-90114-22	SMWU1-SS-TP04-103	Total/NA	Solid	7471B	
LCDSRM 480-272519/20-A	Lab Control Sample Dup	Total/NA	Solid	7471B	
LCSSRM 480-272519/2-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 480-272519/1-A	Method Blank	Total/NA	Solid	7471B	

Analysis Batch: 272531

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-24	EB-03	Total/NA	Water	6010C	272115
LCS 480-272115/2-A	Lab Control Sample	Total/NA	Water	6010C	272115
MB 480-272115/1-A	Method Blank	Total/NA	Water	6010C	272115

TestAmerica Buffalo

3

4

6

7

9

A C

40

13

QC Association Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Analysis Batch: 272601

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-9	SMWU26-SS-BLDG23-01	Total/NA	Solid	7471B	272519
480-90114-9 MS	SMWU26-SS-BLDG23-01	Total/NA	Solid	7471B	272519
480-90114-9 MSD	SMWU26-SS-BLDG23-01	Total/NA	Solid	7471B	272519
480-90114-11	SMWU26-SS-BLDG23-02	Total/NA	Solid	7471B	272519
480-90114-12	SMWU26-SS-BLDG23-03	Total/NA	Solid	7471B	272519
480-90114-14	SMWU26-SS-BLDG23-04	Total/NA	Solid	7471B	272519
480-90114-14 MS	SMWU26-SS-BLDG23-04	Total/NA	Solid	7471B	272519
480-90114-14 MSD	SMWU26-SS-BLDG23-04	Total/NA	Solid	7471B	272519
480-90114-19	SMWU1-SS-TP01-100	Total/NA	Solid	7471B	272519
480-90114-20	SMWU1-SS-TP02-101	Total/NA	Solid	7471B	272519
480-90114-21	SMWU1-SS-TP03-102	Total/NA	Solid	7471B	272519
480-90114-22	SMWU1-SS-TP04-103	Total/NA	Solid	7471B	272519
LCDSRM 480-272519/20-A	Lab Control Sample Dup	Total/NA	Solid	7471B	272519
LCSSRM 480-272519/2-A	Lab Control Sample	Total/NA	Solid	7471B	272519
MB 480-272519/1-A	Method Blank	Total/NA	Solid	7471B	272519

Analysis Batch: 272698

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
LCS 480-272115/2-A	Lab Control Sample	Total/NA	Water	6010C	272115	
MB 480-272115/1-A	Method Blank	Total/NA	Water	6010C	272115	

Analysis Batch: 272705

Lab Sample ID 480-90114-24	Client Sample ID EB-03	Prep Type Total/NA	Matrix Water	Method 7470A	Prep Batch 272480
LCS 480-272480/2-A	Lab Control Sample	Total/NA	Water	7470A	272480
LCSD 480-272480/3-A	Lab Control Sample Dup	Total/NA	Water	7470A	272480
MB 480-272480/1-A	Method Blank	Total/NA	Water	7470A	272480

General Chemistry

Analysis Batch: 272033

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-1	SMWU7-SS-BLDG23-12	Total/NA	Solid	Moisture	_
480-90114-2	SMWU7-SS-BLDG23-13	Total/NA	Solid	Moisture	
480-90114-3	SMWU7-SS-BLDG23-15	Total/NA	Solid	Moisture	
480-90114-4	SMWU7-SS-BLDG23-14	Total/NA	Solid	Moisture	
180-90114-5	SMWU7-SS-BLDG23-16	Total/NA	Solid	Moisture	
480-90114-6	SMWU7-SS-BLDG23-17	Total/NA	Solid	Moisture	
180-90114-7	SMWU7-SS-BLDG23-18	Total/NA	Solid	Moisture	
180-90114-8	SMWU7-SS-BLDG23-19	Total/NA	Solid	Moisture	
180-90114-9	SMWU26-SS-BLDG23-01	Total/NA	Solid	Moisture	
180-90114-9 MS	SMWU26-SS-BLDG23-01	Total/NA	Solid	Moisture	
180-90114-9 MSD	SMWU26-SS-BLDG23-01	Total/NA	Solid	Moisture	
80-90114-10	SMWU7-SS-BLDG23-20	Total/NA	Solid	Moisture	
80-90114-11	SMWU26-SS-BLDG23-02	Total/NA	Solid	Moisture	
80-90114-12	SMWU26-SS-BLDG23-03	Total/NA	Solid	Moisture	
80-90114-13	SMWU7-SS-BLDG23-21	Total/NA	Solid	Moisture	
80-90114-14	SMWU26-SS-BLDG23-04	Total/NA	Solid	Moisture	
80-90114-14 MS	SMWU26-SS-BLDG23-04	Total/NA	Solid	Moisture	
80-90114-14 MSD	SMWU26-SS-BLDG23-04	Total/NA	Solid	Moisture	
80-90114-15	SMWU7-SS-BLDG23-22	Total/NA	Solid	Moisture	
80-90114-16	SMWU7-SS-BLDG34-01	Total/NA	Solid	Moisture	
180-90114-17	SMWU7-SS-BLDG34-02	Total/NA	Solid	Moisture	

TestAmerica Buffalo

Page 129 of 147

3

4

6

8

10

11

13

14

QC Association Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

General Chemistry (Continued)

Analysis Batch: 272033 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90114-18	SMWU7-SS-BLDG34-03	Total/NA	Solid	Moisture	
480-90114-19	SMWU1-SS-TP01-100	Total/NA	Solid	Moisture	
480-90114-20	SMWU1-SS-TP02-101	Total/NA	Solid	Moisture	
480-90114-21	SMWU1-SS-TP03-102	Total/NA	Solid	Moisture	
480-90114-22	SMWU1-SS-TP04-103	Total/NA	Solid	Moisture	
480-90114-23	SMWU1-SS-TP04-200	Total/NA	Solid	Moisture	

. .

3

4

5

7

9

11

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Lab Sample ID: 480-90114-1

Matrix: Solid

Date Collected: 10/28/15 07:55 Date Received: 10/29/15 09:00

Client Sample ID: SMWU7-SS-BLDG23-12

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	272033	10/29/15 22:21	CMK	TAL BUF

Client Sample ID: SMWU7-SS-BLDG23-12 Lab Sample ID: 480-90114-1

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	5035A			272044	10/30/15 00:15	NMD1	TAL BUF	
Total/NA	Analysis	8260C		1	273159	11/05/15 03:38	LCH	TAL BUF	

Client Sample ID: SMWU7-SS-BLDG23-13 Lab Sample ID: 480-90114-2

Date Collected: 10/28/15 08:15 Matrix: Solid

Date Received: 10/29/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	272033	10/29/15 22:21	CMK	TAL BUF

Client Sample ID: SMWU7-SS-BLDG23-13 Lab Sample ID: 480-90114-2

Date Collected: 10/28/15 08:15

Date Received: 10/29/15 09:00

Matrix: Solid
Percent Solids: 86.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			272044	10/30/15 00:15	NMD1	TAL BUF
Total/NA	Analysis	8260C		1	273159	11/05/15 04:04	LCH	TAL BUF

Client Sample ID: SMWU7-SS-BLDG23-15 Lab Sample ID: 480-90114-3

Date Collected: 10/28/15 08:30 Matrix: Solid

Date Received: 10/29/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	272033	10/29/15 22:21	CMK	TAL BUF

Client Sample ID: SMWU7-SS-BLDG23-15 Lab Sample ID: 480-90114-3

Date Collected: 10/28/15 08:30 Matrix: Solid
Date Received: 10/29/15 09:00 Percent Solids: 96.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			272044	10/30/15 00:15	NMD1	TAL BUF
Total/NA	Analysis	8260C		1	273159	11/05/15 04:30	LCH	TAL BUF

10

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SMWU7-SS-BLDG23-14

Lab Sample ID: 480-90114-4 Date Collected: 10/28/15 08:45

Matrix: Solid

Date Received: 10/29/15 09:00

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis Moisture 272033 10/29/15 22:21 CMK TAL BUF

Client Sample ID: SMWU7-SS-BLDG23-14 Lab Sample ID: 480-90114-4

Date Collected: 10/28/15 08:45 Matrix: Solid Date Received: 10/29/15 09:00 Percent Solids: 92.1

Batch Batch Dilution **Batch Prepared** Method Prep Type Type Run Factor Number or Analyzed Analyst Lab 5035A 10/30/15 00:15 NMD1 TAL BUF Total/NA Prep 272044 Total/NA 8260C 273159 11/05/15 04:55 LCH TAL BUF

Client Sample ID: SMWU7-SS-BLDG23-16 Lab Sample ID: 480-90114-5

1

Date Collected: 10/28/15 09:00 Matrix: Solid

Date Received: 10/29/15 09:00

Analysis

Batch Batch Dilution Batch Prepared Method Run Factor Number or Analyzed Analyst **Prep Type** Type Lab 10/29/15 22:21 CMK TAL BUF Total/NA Analysis Moisture 272033

Client Sample ID: SMWU7-SS-BLDG23-16 Lab Sample ID: 480-90114-5

Date Collected: 10/28/15 09:00 **Matrix: Solid** Date Received: 10/29/15 09:00 Percent Solids: 95.6

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Prep 5035A 272045 10/30/15 00:18 NMD1 TAL BUF Total/NA 8260C 273296 11/05/15 16:41 CDC TAL BUF Analysis 1

Client Sample ID: SMWU7-SS-BLDG23-17 Lab Sample ID: 480-90114-6

Date Collected: 10/28/15 09:30 Matrix: Solid

Date Received: 10/29/15 09:00

Batch Batch Batch Dilution Prepared Prep Type Method Factor Number or Analyzed Type Run **Analyst** TAL BUF Total/NA Analysis Moisture 272033 10/29/15 22:21 CMK

Client Sample ID: SMWU7-SS-BLDG23-17 Lab Sample ID: 480-90114-6

Date Collected: 10/28/15 09:30 Matrix: Solid Date Received: 10/29/15 09:00 Percent Solids: 91.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			272044	10/30/15 00:15	NMD1	TAL BUF
Total/NA	Analysis	8260C		1	273159	11/05/15 05:48	LCH	TAL BUF

10

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SMWU7-SS-BLDG23-18

Lab Sample ID: 480-90114-7 Date Collected: 10/28/15 09:40 **Matrix: Solid**

Date Received: 10/29/15 09:00

Batch Dilution Batch Batch **Prepared** Prep Type Type Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis Moisture 272033 10/29/15 22:21 CMK TAL BUF

Client Sample ID: SMWU7-SS-BLDG23-18

Date Collected: 10/28/15 09:40

Date Received: 10/29/15 09:00

Lab Sample ID: 480-90114-7

Lab Sample ID: 480-90114-8

Lab Sample ID: 480-90114-9

Matrix: Solid Percent Solids: 90.4

Matrix: Solid

Matrix: Solid

Batch Batch Dilution **Batch** Prepared Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab 5035A 10/30/15 00:15 NMD1 TAL BUF Total/NA Prep 272044 Total/NA Analysis 8260C 1 273159 11/05/15 06:14 LCH **TAL BUF**

Client Sample ID: SMWU7-SS-BLDG23-19

Date Collected: 10/28/15 09:50

Date Received: 10/29/15 09:00

Batch Batch Dilution Batch **Prepared Prep Type** Method Run Factor Number or Analyzed Analyst Type Lab 272033 10/29/15 22:21 CMK TAL BUF Total/NA Analysis Moisture

Client Sample ID: SMWU7-SS-BLDG23-19

Lab Sample ID: 480-90114-8 Date Collected: 10/28/15 09:50 **Matrix: Solid** Date Received: 10/29/15 09:00 Percent Solids: 81.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			272044	10/30/15 00:15	NMD1	TAL BUF
Total/NA	Analysis	8260C		1	273159	11/05/15 06:39	LCH	TAL BUF

Client Sample ID: SMWU26-SS-BLDG23-01

Date Collected: 10/28/15 10:45

Date Received: 10/29/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1 -	272033	10/29/15 22:21	CMK	TAL BUF

Client Sample ID: SMWU26-SS-BLDG23-01	Lab Sample ID: 480-90114-9
Date Collected: 10/28/15 10:45	Matrix: Solid
Date Received: 10/29/15 09:00	Percent Solids: 93.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			272044	10/30/15 00:15	NMD1	TAL BUF
Total/NA	Analysis	8260C		1	273159	11/05/15 07:05	LCH	TAL BUF
Total/NA	Prep	3550C			272950	11/04/15 07:44	TRG	TAL BUF
Total/NA	Analysis	8270D		1	273884	11/09/15 14:46	LMW	TAL BUF
Soluble	Leach	DI Leach			272198	10/30/15 13:37	AJM	TAL BUF

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Received: 10/29/15 09:00

Total/NA

Analysis

Moisture

Lab Sample ID: 480-90114-9

Matrix: Solid Percent Solids: 93.0

Client Sample ID: SMWU26-SS-BLDG23-01 Date Collected: 10/28/15 10:45

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Soluble Analysis 8015D 272358 10/31/15 10:56 AJM TAL BUF Total/NA Prep 3550C 272091 10/30/15 08:37 JLS TAL BUF Total/NA Analysis 8082A 1 272235 10/30/15 17:24 KS **TAL BUF** Total/NA Prep 3050B 272189 10/30/15 11:43 CNS **TAL BUF** Total/NA 6010C 272494 10/31/15 16:33 AMH **TAL BUF** Analysis 272519 11/02/15 11:10 TAS TAL BUF Total/NA Prep 7471B Total/NA 7471B 272601 11/02/15 13:05 TAS TAL BUF Analysis

Client Sample ID: SMWU7-SS-BLDG23-20 Lab Sample ID: 480-90114-10 Date Collected: 10/28/15 11:15

Date Received: 10/29/15 09:00

Batch Batch Dilution **Batch** Prepared Number **Prep Type** Type Method Run Factor or Analyzed Analyst Lab 272033 10/29/15 22:21 TAL BUF Total/NA Analysis Moisture CMK

Client Sample ID: SMWU7-SS-BLDG23-20 Lab Sample ID: 480-90114-10

Date Collected: 10/28/15 11:15 Matrix: Solid Date Received: 10/29/15 09:00 Percent Solids: 95.1

Batch Dilution Batch **Prepared** Batch **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Total/NA 5035A 10/30/15 00:15 NMD1 Prep 272044 TAL BUF Total/NA Analysis 8260C 1 273296 11/05/15 17:07 CDC TAL BUF

Client Sample ID: SMWU26-SS-BLDG23-02 Lab Sample ID: 480-90114-11

Date Collected: 10/28/15 11:25 **Matrix: Solid** Date Received: 10/29/15 09:00

Batch Batch Batch Dilution Prepared **Prep Type** Method Number or Analyzed Analyst Type Run Factor Lab

Client Sample ID: SMWU26-SS-BLDG23-02 Lab Sample ID: 480-90114-11

272033

10/29/15 22:21

CMK

TAL BUF

Date Collected: 10/28/15 11:25 Matrix: Solid Date Received: 10/29/15 09:00 Percent Solids: 94.1

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			272044	10/30/15 00:15	NMD1	TAL BUF
Total/NA	Analysis	8260C		1	273296	11/05/15 17:33	CDC	TAL BUF
Total/NA	Prep	3550C			272950	11/04/15 07:44	TRG	TAL BUF
Total/NA	Analysis	8270D		1	273884	11/09/15 15:39	LMW	TAL BUF
Soluble	Leach	DI Leach			272198	10/30/15 13:37	AJM	TAL BUF
Soluble	Analysis	8015D		1	272358	10/31/15 11:04	AJM	TAL BUF
Total/NA	Prep	3550C			272091	10/30/15 08:37	JLS	TAL BUF
Total/NA	Analysis	8082A		1	272235	10/30/15 21:02	KS	TAL BUF

TestAmerica Buffalo

Page 134 of 147

10

Matrix: Solid

Client: Woodard & Curran, Inc.

Project/Site: Rouses Point

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			272189	10/30/15 11:43	CNS	TAL BUF
Total/NA	Analysis	6010C		1	272494	10/31/15 16:59	AMH	TAL BUF
Total/NA	Prep	7471B			272519	11/02/15 11:10	TAS	TAL BUF
Total/NA	Analysis	7471B		1	272601	11/02/15 13:11	TAS	TAL BUF

Client Sample ID: SMWU26-SS-BLDG23-03 Lab Sample ID: 480-90114-12

Date Collected: 10/28/15 11:45 **Matrix: Solid**

Date Received: 10/29/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			272033	10/29/15 22:21	CMK	TAL BUF

Client Sample ID: SMWU26-SS-BLDG23-03 Lab Sample ID: 480-90114-12

Date Collected: 10/28/15 11:45 **Matrix: Solid** Date Received: 10/29/15 09:00 Percent Solids: 93.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			272044	10/30/15 00:15	NMD1	TAL BUF
Total/NA	Analysis	8260C		1	273296	11/05/15 17:59	CDC	TAL BUF
Total/NA	Prep	3550C			272950	11/04/15 07:44	TRG	TAL BUF
Total/NA	Analysis	8270D		5	273884	11/09/15 16:05	LMW	TAL BUF
Soluble	Leach	DI Leach			272198	10/30/15 13:37	AJM	TAL BUF
Soluble	Analysis	8015D		1	272358	10/31/15 11:12	AJM	TAL BUF
Total/NA	Prep	3550C			272091	10/30/15 08:37	JLS	TAL BUF
Total/NA	Analysis	8082A		1	272235	10/30/15 21:19	KS	TAL BUF
Total/NA	Prep	3050B			272189	10/30/15 11:43	CNS	TAL BUF
Total/NA	Analysis	6010C		1	272494	10/31/15 17:02	AMH	TAL BUF
Total/NA	Prep	7471B			272519	11/02/15 11:10	TAS	TAL BUF
Total/NA	Analysis	7471B		1	272601	11/02/15 13:14	TAS	TAL BUF

Lab Sample ID: 480-90114-13 Client Sample ID: SMWU7-SS-BLDG23-21

Date Collected: 10/28/15 12:05 Date Received: 10/29/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	272033	10/29/15 22:21	CMK	TAL BUF

Client Sample ID: SMWU7-SS-BLDG23-21 Lab Sample ID: 480-90114-13

Date Collected: 10/28/15 12:05 **Matrix: Solid** Date Received: 10/29/15 09:00 Percent Solids: 95.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			272044	10/30/15 00:15	NMD1	TAL BUF
Total/NA	Analysis	8260C		1	273296	11/05/15 18:25	CDC	TAL BUF

TestAmerica Buffalo

Matrix: Solid

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Lab Sample ID: 480-90114-14

Matrix: Solid

Client Sample ID: SMWU26-SS-BLDG23-04

Date Collected: 10/28/15 12:20 Date Received: 10/29/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	272033	10/29/15 22:21	CMK	TAL BUF

Lab Sample ID: 480-90114-14 Client Sample ID: SMWU26-SS-BLDG23-04

Date Collected: 10/28/15 12:20 Matrix: Solid Date Received: 10/29/15 09:00 Percent Solids: 94.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			272053	10/30/15 01:30	NMD1	TAL BUF
Total/NA	Analysis	8260C		1	273296	11/05/15 22:43	CDC	TAL BUF
Total/NA	Prep	3550C			272950	11/04/15 07:44	TRG	TAL BUF
Total/NA	Analysis	8270D		1	273884	11/09/15 15:13	LMW	TAL BUF
Soluble	Leach	DI Leach			272198	10/30/15 13:37	AJM	TAL BUF
Soluble	Analysis	8015D		1	272358	10/31/15 11:20	AJM	TAL BUF
Total/NA	Prep	3550C			272091	10/30/15 08:37	JLS	TAL BUF
Total/NA	Analysis	8082A		1	272235	10/30/15 17:41	KS	TAL BUF
Total/NA	Prep	3050B			272189	10/30/15 11:43	CNS	TAL BUF
Total/NA	Analysis	6010C		1	272494	10/31/15 17:05	AMH	TAL BUF
Total/NA	Prep	7471B			272519	11/02/15 11:10	TAS	TAL BUF
Total/NA	Analysis	7471B		1	272601	11/02/15 13:15	TAS	TAL BUF

Client Sample ID: SMWU7-SS-BLDG23-22 Lab Sample ID: 480-90114-15

Date Collected: 10/28/15 12:35 Date Received: 10/29/15 09:00

Batch Batch Dilution Batch Prepared Method Factor Number or Analyzed **Prep Type** Type Run Analyst Lab 272033 10/29/15 22:21 TAL BUF Total/NA Analysis Moisture CMK

Client Sample ID: SMWU7-SS-BLDG23-22 Lab Sample ID: 480-90114-15

Date Collected: 10/28/15 12:35 **Matrix: Solid** Date Received: 10/29/15 09:00 Percent Solids: 90.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			272044	10/30/15 00:15	NMD1	TAL BUF
Total/NA	Analysis	8260C		1	273296	11/05/15 18:51	CDC	TAL BUF

Client Sample ID: SMWU7-SS-BLDG34-01 Lab Sample ID: 480-90114-16

Date Collected: 10/28/15 13:15 Date Received: 10/29/15 09:00

Dilution Batch Batch Batch Prepared

Prep Type Type Method Factor Number or Analyzed Run Analyst Lab Total/NA 272033 10/29/15 22:21 CMK TAL BUF Analysis Moisture

TestAmerica Buffalo

Matrix: Solid

Matrix: Solid

10

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SMWU7-SS-BLDG34-01

Date Collected: 10/28/15 13:15

Lab Sample ID: 480-90114-16 **Matrix: Solid**

Percent Solids: 92.1

Matrix: Solid

Date Received: 10/29/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			272045	10/30/15 00:18	NMD1	TAL BUF
Total/NA	Analysis	8260C		1	273666	11/07/15 00:50	CDC	TAL BUF

Client Sample ID: SMWU7-SS-BLDG34-02 Lab Sample ID: 480-90114-17

Date Collected: 10/28/15 13:35 Matrix: Solid

Date Received: 10/29/15 09:00

Dilution Batch Batch **Batch** Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis Moisture 272033 10/29/15 22:21 CMK TAL BUF

Client Sample ID: SMWU7-SS-BLDG34-02 Lab Sample ID: 480-90114-17

Date Collected: 10/28/15 13:35 **Matrix: Solid** Date Received: 10/29/15 09:00 Percent Solids: 90.6

Batch Batch Dilution **Batch** Prepared Type Method Run Factor Number or Analyzed Analyst **Prep Type** Lab NMD1 Total/NA Prep 5035A 272044 10/30/15 00:15 TAL BUF Total/NA Analysis 8260C 273296 11/05/15 19:42 CDC TAL BUF 1

Client Sample ID: SMWU7-SS-BLDG34-03 Lab Sample ID: 480-90114-18

Date Collected: 10/28/15 13:45 Date Received: 10/29/15 09:00

Batch Batch Dilution Batch **Prepared** Factor **Prep Type** Type Method Run Number or Analyzed Analyst Lab Total/NA Analysis Moisture 272033 10/29/15 22:21 CMK TAL BUF

Client Sample ID: SMWU7-SS-BLDG34-03 Lab Sample ID: 480-90114-18

Date Collected: 10/28/15 13:45

Matrix: Solid Date Received: 10/29/15 09:00 Percent Solids: 98.0

Batch **Batch** Batch Dilution Prepared Prep Type Method Factor Number or Analyzed **Analyst** Type Run Lab Total/NA Prep 5035A 272044 10/30/15 00:15 NMD1 TAL BUF Analysis 8260C 273296 11/05/15 20:08 CDC Total/NA 1 TAL BUF

Client Sample ID: SMWU1-SS-TP01-100 Lab Sample ID: 480-90114-19

Date Collected: 10/28/15 14:00

Date Received: 10/29/15 09:00

Batch Batch Dilution Batch Prepared **Prep Type** Method Run Factor Number or Analyzed Type Analyst Lab Total/NA 272033 10/29/15 22:21 CMK TAL BUF Analysis Moisture

TestAmerica Buffalo

Matrix: Solid

2

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SMWU1-SS-TP01-100

Date Collected: 10/28/15 14:00

Lab Sample ID: 480-90114-19

Matrix: Solid

Date Received: 10/29/15 09:00 Wattrix. Solid

Percent Solids: 88.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			272044	10/30/15 00:15	NMD1	TAL BUF
Total/NA	Analysis	8260C		1	273296	11/05/15 20:34	CDC	TAL BUF
Total/NA	Prep	3550C			272950	11/04/15 07:44	TRG	TAL BUF
Total/NA	Analysis	8270D		5	273884	11/09/15 16:32	LMW	TAL BUF
Soluble	Leach	DI Leach			272198	10/30/15 13:37	AJM	TAL BUF
Soluble	Analysis	8015D		1	272358	10/31/15 11:36	AJM	TAL BUF
Total/NA	Prep	3550C			272091	10/30/15 08:37	JLS	TAL BUF
Total/NA	Analysis	8082A		1	272235	10/30/15 21:36	KS	TAL BUF
Total/NA	Prep	3050B			272189	10/30/15 11:43	CNS	TAL BUF
Total/NA	Analysis	6010C		1	272494	10/31/15 17:15	AMH	TAL BUF
Total/NA	Prep	7471B			272519	11/02/15 11:10	TAS	TAL BUF
Total/NA	Analysis	7471B		1	272601	11/02/15 13:26	TAS	TAL BUF

Client Sample ID: SMWU1-SS-TP02-101 Lab Sample ID: 480-90114-20

Date Collected: 10/28/15 14:25
Date Received: 10/29/15 09:00

Batch Batch Dilution Batch Prepared

Prep Type Type Method Run Factor Number or Analyzed Analyst Lab

Total/NA Analysis Moisture 1 272033 10/29/15 22:21 CMK TAL BUF

Client Sample ID: SMWU1-SS-TP02-101

Date Collected: 10/28/15 14:25

Date Received: 10/29/15 09:00

Lab Sample ID: 480-90114-20

Matrix: Solid

Percent Solids: 95.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			272053	10/30/15 01:30	NMD1	TAL BUF
Total/NA	Analysis	8260C		1	273296	11/05/15 21:00	CDC	TAL BUF
Total/NA	Prep	3550C			272950	11/04/15 07:44	TRG	TAL BUF
Total/NA	Analysis	8270D		1	273884	11/09/15 16:58	LMW	TAL BUF
Soluble	Leach	DI Leach			272198	10/30/15 13:37	AJM	TAL BUF
Soluble	Analysis	8015D		1	272358	10/31/15 11:43	AJM	TAL BUF
Total/NA	Prep	3550C			272091	10/30/15 08:37	JLS	TAL BUF
Total/NA	Analysis	8082A		1	272235	10/30/15 22:26	KS	TAL BUF
Total/NA	Prep	3050B			272189	10/30/15 11:43	CNS	TAL BUF
Total/NA	Analysis	6010C		1	272494	10/31/15 17:28	AMH	TAL BUF
Total/NA	Prep	7471B			272519	11/02/15 11:10	TAS	TAL BUF
Total/NA	Analysis	7471B		1	272601	11/02/15 13:27	TAS	TAL BUF

Matrix: Solid

TestAmerica Job ID: 480-90114-1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SMWU1-SS-TP03-102 Lab Sample ID: 480-90114-21

Date Collected: 10/28/15 14:50 **Matrix: Solid**

Date Received: 10/29/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	272033	10/29/15 22:21	CMK	TAL BUF

Client Sample ID: SMWU1-SS-TP03-102 Lab Sample ID: 480-90114-21

Date Collected: 10/28/15 14:50 Matrix: Solid Date Received: 10/29/15 09:00 Percent Solids: 89.3

Batch Batch Dilution **Batch** Prepared Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab Prep 272053 10/30/15 01:30 NMD1 Total/NA 5035A TAL BUF Total/NA Analysis 8260C 1 273296 11/05/15 21:26 CDC TAL BUF Total/NA Prep 3550C 272950 11/04/15 07:44 TRG TAL BUF Total/NA Analysis 8270D 5 273884 11/09/15 17:24 LMW TAL BUF Soluble Leach DI Leach 272198 10/30/15 13:37 AJM TAL BUF Soluble Analysis 8015D 1 272358 10/31/15 11:51 AJM **TAL BUF** Total/NA Prep 3550C 272091 10/30/15 08:37 JLS TAL BUF Total/NA Analysis 8082A 1 272235 10/30/15 22:43 KS **TAL BUF** Total/NA Prep 3050B 272189 10/30/15 11:43 CNS **TAL BUF** Total/NA Analysis 6010C 1 272494 10/31/15 17:31 AMH TAL BUF Total/NA 272519 11/02/15 11:10 TAS **TAL BUF** Prep 7471B Total/NA TAL BUF Analysis 7471B 272601 11/02/15 13:29 TAS

Client Sample ID: SMWU1-SS-TP04-103 Lab Sample ID: 480-90114-22

Date Collected: 10/28/15 15:00 Matrix: Solid

Date Received: 10/29/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			272033	10/29/15 22:21	CMK	TAL BUF

Client Sample ID: SMWU1-SS-TP04-103 Lab Sample ID: 480-90114-22

Date Collected: 10/28/15 15:00 **Matrix: Solid** Date Received: 10/29/15 09:00 Percent Solids: 93.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			272053	10/30/15 01:30	NMD1	TAL BUF
Total/NA	Analysis	8260C		1	273296	11/05/15 21:52	CDC	TAL BUF
Total/NA	Prep	3550C			272950	11/04/15 07:44	TRG	TAL BUF
Total/NA	Analysis	8270D		5	273884	11/09/15 17:50	LMW	TAL BUF
Soluble	Leach	DI Leach			272198	10/30/15 13:37	AJM	TAL BUF
Soluble	Analysis	8015D		1	272358	10/31/15 11:59	AJM	TAL BUF
Total/NA	Prep	3550C			272091	10/30/15 08:37	JLS	TAL BUF
Total/NA	Analysis	8082A		1	272235	10/30/15 23:00	KS	TAL BUF
Total/NA	Prep	3050B			272189	10/30/15 11:43	CNS	TAL BUF
Total/NA	Analysis	6010C		1	272494	10/31/15 17:34	AMH	TAL BUF
Total/NA	Prep	7471B			272519	11/02/15 11:10	TAS	TAL BUF

TestAmerica Buffalo

Page 139 of 147

2

10

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SMWU1-SS-TP04-103

Date Collected: 10/28/15 15:00 Date Received: 10/29/15 09:00 Lab Sample ID: 480-90114-22

Matrix: Solid Percent Solids: 93.1

Matrix: Water

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 7471B 272601 11/02/15 13:31 TAS TAL BUF

Client Sample ID: SMWU1-SS-TP04-200 Lab Sample ID: 480-90114-23

Date Collected: 10/28/15 15:00 Date Received: 10/29/15 09:00 Matrix: Solid

Dilution Batch Batch **Batch Prepared** Method **Prep Type** Type Run Factor Number or Analyzed Analyst Lab 10/29/15 22:27 TAL BUF Total/NA Moisture 272033 CMK Analysis

Client Sample ID: SMWU1-SS-TP04-200 Lab Sample ID: 480-90114-23

 Date Collected: 10/28/15 15:00
 Matrix: Solid

 Date Received: 10/29/15 09:00
 Percent Solids: 92.3

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed **Analyst** NMD1 Total/NA Prep 5035A 272053 10/30/15 01:30 TAL BUF Total/NA Analysis 8260C 1 273296 11/05/15 22:18 CDC TAL BUF

Client Sample ID: EB-03 Lab Sample ID: 480-90114-24

Date Collected: 10/28/15 16:00
Date Received: 10/29/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	273742	11/07/15 13:29	JWG	TAL BUF
Total/NA	Prep	3510C			272533	11/02/15 09:42	TRG	TAL BUF
Total/NA	Analysis	8270D		1	274392	11/11/15 16:12	DMR	TAL BUF
Total/NA	Analysis	8015D		1	272574	11/02/15 14:33	AJM	TAL BUF
Total/NA	Prep	3510C			272344	10/31/15 09:09	RJS	TAL BUF
Total/NA	Analysis	8082A		1	272538	11/02/15 11:36	KS	TAL BUF
Total/NA	Prep	3005A			272115	10/30/15 11:45	CNS	TAL BUF
Total/NA	Analysis	6010C		1	272531	10/31/15 21:30	SLB	TAL BUF
Total/NA	Prep	7470A			272480	11/02/15 09:05	TAS	TAL BUF
Total/NA	Analysis	7470A		1	272705	11/02/15 15:36	TAS	TAL BUF

Client Sample ID: TB03 Lab Sample ID: 480-90114-25

273742 11/07/15 13:53 JWG

Date Collected: 10/28/15 00:00 Date Received: 10/29/15 09:00

Batch Batch Dilution Batch Prepared
Prep Type Type Method Run Factor Number or Analyzed Analyst Lab

Laboratory References:

Total/NA

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

8260C

Analysis

TestAmerica Buffalo

TAL BUF

Matrix: Water

Certification Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

uthority	Program		EPA Region	Certification ID	Expiration Date
lew York	NELAP		2	10026	03-31-16
The following analytes	s are included in this repo	rt, but certification is	s not offered by the g	overning authority:	
Analysis Method	Prep Method	Matrix	Analyt	te	
8015D		Solid	2-Buta	anol	
8015D		Solid	Isopro	pyl alcohol	
8015D		Solid	Metha	inol	
8015D		Solid	n-Buta	anol	
8015D		Solid	Propa	nol	
8015D		Water	2-Buta	anol	
8015D		Water	Isopro	pyl alcohol	
8015D		Water	Metha	inol	
8015D		Water	n-Buta	anol	
8015D		Water	Propa	nol	
8260C		Water	Tetrah	nydrofuran	
8260C	5035A	Solid	Tetrah	nydrofuran	
8270D	3510C	Water	Dimet	hylformamide	
8270D	3550C	Solid	Dimet	hylformamide	
Moisture		Solid	Perce	nt Moisture	
Moisture		Solid	Perce	nt Solids	

3

4

5

7

10

11

40

14

Method Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
8015D	Nonhalogenated Organic Compounds - Direct Injection (GC)	SW846	TAL BUF
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
7471B	Mercury (CVAA)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

7

8

9

10

13

14

Sample Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90114-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-90114-1	SMWU7-SS-BLDG23-12	Solid	10/28/15 07:55	10/29/15 09:00
480-90114-2	SMWU7-SS-BLDG23-13	Solid	10/28/15 08:15	10/29/15 09:00
480-90114-3	SMWU7-SS-BLDG23-15	Solid	10/28/15 08:30	10/29/15 09:00
480-90114-4	SMWU7-SS-BLDG23-14	Solid	10/28/15 08:45	10/29/15 09:00
480-90114-5	SMWU7-SS-BLDG23-16	Solid	10/28/15 09:00	10/29/15 09:00
480-90114-6	SMWU7-SS-BLDG23-17	Solid	10/28/15 09:30	10/29/15 09:00
480-90114-7	SMWU7-SS-BLDG23-18	Solid	10/28/15 09:40	10/29/15 09:00
480-90114-8	SMWU7-SS-BLDG23-19	Solid	10/28/15 09:50	10/29/15 09:00
480-90114-9	SMWU26-SS-BLDG23-01	Solid	10/28/15 10:45	10/29/15 09:00
480-90114-10	SMWU7-SS-BLDG23-20	Solid	10/28/15 11:15	10/29/15 09:00
480-90114-11	SMWU26-SS-BLDG23-02	Solid	10/28/15 11:25	10/29/15 09:00
480-90114-12	SMWU26-SS-BLDG23-03	Solid	10/28/15 11:45	10/29/15 09:00
480-90114-13	SMWU7-SS-BLDG23-21	Solid	10/28/15 12:05	10/29/15 09:00
480-90114-14	SMWU26-SS-BLDG23-04	Solid	10/28/15 12:20	10/29/15 09:00
480-90114-15	SMWU7-SS-BLDG23-22	Solid	10/28/15 12:35	10/29/15 09:00
480-90114-16	SMWU7-SS-BLDG34-01	Solid	10/28/15 13:15	10/29/15 09:00
480-90114-17	SMWU7-SS-BLDG34-02	Solid	10/28/15 13:35	10/29/15 09:00
480-90114-18	SMWU7-SS-BLDG34-03	Solid	10/28/15 13:45	10/29/15 09:00
480-90114-19	SMWU1-SS-TP01-100	Solid	10/28/15 14:00	10/29/15 09:00
480-90114-20	SMWU1-SS-TP02-101	Solid	10/28/15 14:25	10/29/15 09:00
480-90114-21	SMWU1-SS-TP03-102	Solid	10/28/15 14:50	10/29/15 09:00
480-90114-22	SMWU1-SS-TP04-103	Solid	10/28/15 15:00	10/29/15 09:00
480-90114-23	SMWU1-SS-TP04-200	Solid	10/28/15 15:00	10/29/15 09:00
480-90114-24	EB-03	Water	10/28/15 16:00	10/29/15 09:00
480-90114-25	TB03	Water	10/28/15 00:00	10/29/15 09:00

	Record
of	à
Chain	Custo

Temperature on Receipt _

lestA⊓	THE LEADER IN ENVIRO
emperature on Receipt	iter? Yes 🗆 No 🗗
Temperature	Drinking Water? Yes□

	480-90114 Chain of (
TestAm	THE LEADER IN ENVIRON

TAL-4124 (1007)					1 1 . 1 .		
Client 0 0 0	Project Manager	l	4.	7	Date j j	Chain of Custody Number	oper Oper
Goodard D. Corres	D.S.		ひらない		10138115		מ
Address 1530 Highland Ave	Telephone Numb	Telephone Number (Area Code)/Fax Number ${\mathcal{JOS}}$ ${\mathcal{FI}}$ ${\mathcal{C}}$	e)/Fax Number 377 0379		Lab Number	Page	of D
City State Zip Code	Site Contact		Lab Contact Drel " Mosco	Analy more s	Analysis (Attach list if more space is needed)		
Rouses	Carrier/Waybill Number	7	1050.1 1237	* * * * * * * * * * * * * * * * * * * *	15 ⁵		stn ctions/
Contract/Purchase Order/Quote No. 30 69 60		Matrix	Containers & Preservatives	5)52	70	Conditions of Receipt	of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Time Nik	.be2 lio2	HOSSH HOBN HOBN HOBN	205	80 5W		
SMWU7.55-BIDG33.12 10/28/13	10/28/15 0755	X		×	X	* 8360c-TCL	-Tec +
SMWJ 7:55:BLD623:13	0815	૪		४	15	to trahydra furam	notrow
85 MWU 7, 55, BLD6 23, 15	0830	ሄ		۶.	≺	* 50005 *	* 5000 - 8270) TECL
Smw07,55, B.17633.14	25.480	8		7	*	1Dimethlformanide	umanide
5 MWU 7 · 55 · BLOG 33 · 16	0800	Y		Κ	*	* Metals	* Metals - RCRA 8
3 MUV 7.55. BLDG 23.17	0550	8		8	જ	CO10B	6010B 1741A
5MWU7.55.000633.18	0970	V		8	≺≼	*Aicohols - 20150	- 20150
5mwy 7.55, BLD633, 19	0550	6		8	8	* PCB> -	0803
SMUU 26.55 1610633,01	1045	×		४ ४ ४ ४	૪		
5MWV 7,55,000033,00	5111	K		8	8	*Total tenp Via	cap Via
SMUN 26.55. BLOG 33.02	5611	8		8 8 8 8		teno black	, e
5 MWU 26,55, BLOG 33,03	1145	4		× × × ×		(00/e)	
Possible Hazard Identification Non-Hazard	Sa. Sa. Cinknown	Sample Disposal Return To Client	A Disposal By Lab	Archive For	(A fee may be asses: Months longer than 1 month)	(A fee may be assessed if samples are retained longer than 1 month)	ained
4 Days	1 21 Days A Other Fondered	Lare	OC Requirements (Specify)	17 analysis w	posity analysis will be conducted		C 3005
Jesse Dilesse	Pate 16/58/15	Time 1650	1. Beceived By			10/29/15 Time	ime (PPOO
	Date	Time	2. Received By		_	Date	<i>Ттте</i>
2) 3. Relinquished By	Date	Time	3. Received By			Date 7	Time
Comments				H	4.1, 4.3		

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Custody Record Chain of

Temperature on Receipt

[estAmerica

THE LEADER IN ENVIRONMENTAL TESTING

\$ \$

Drinking Water? Yes□

\$5000 5- 83700/7CL * Alcohols - 8015D 4 Oimeth Germanide *Metals - RCRA P OC Requirements (Specify)
All Leboratory Gradysis Will be condeted Via NYPEC 3005
Analytical Diotoral (ASP) with CFB Data Octive & Take Temp via 1747A * 1260 c-Tel + tetraly dio turas 2060 Special Instructions/ Conditions of Receipt # Pc65 - 80 FO (A fee may be assessed if samples are retained — Months : longer than 1 month) trup blank Time Chain of Gustock Number 287325 8000 N カーカーオ Page Date DRX meister 10/38/15 $\overline{\chi}$ X 8 1 Analysis (Attach list if more space is needed) প Lab Number B 4 8 8 8 X 장 장 장 장 ₹ Spisposal By Lab Archive For __ 7005 70008 * ૪ **'**\ 8 A walter Site Contact

Scott Sciece 11. Becky Mason
Camer/Waypill Number 0379 \oAnS HO₽N Containers & Preservatives 3. Received By Telephone Number (Area Code) Fax Number

203 371 0 ЮH Fied Fix EONH Huknown | Return To Client |X| |E| |Sample Disposal 17 Days 14 Days 121 Days 17 Other Stander Y ४ Y < 'Х ४ 8 እ ४ 1105 Time Date | 18/15 pəs Project Manager 1/6 1335 1220 1335 1450 13451 10.38:15 1365 1315 1425 1500 Time 1400 1500 ☐ Poison B 0220 Date Rows Paint Wooderd & Comm 1530 Highland Acc Sample I.D. No. and Description (Containers for each sample may be combined on one line) 6 SMWU 7 .55. BLD 6 .34.01 9 SMWU 7 .55. BLDC .34.03 9 SMWU 7 .55. BLDC .34.03 SMWV1155 . TPO2 . +02/ 101 Skin Irritant 6 CA. SC. BLOG. 23. 23. 6 CALMS as a second SAU U 26 155 BLD G 23.04 5MWU 7:55. BLOG23.21 SMUU11,55. TPO3,103 SMUD1:55: TPOY: 200 SMWU1155, TPO4, 103 SMWU1 155. TOPOI , 100 306910 ☐ Non-Hazard ☐ Flammable C んらかいて Project Name and Location (State) Contract/Purchase Order/Quote No. 48 Hours $E\mathcal{B}\cdot\mathcal{O}$ 3 Possible Hazard Identification Pfizer Tum Around Time Required 3. Relinquished By 24 Hours TAL-4124 (1007) Client Address 11/16/2015

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Custody Record Chain of

Temperature on Receipt —

Drinking Water? Yes□ No

\mathbf{O}	
Ŭ	
	1
0	
Y	
7	I
i S	
U	

THE LEADER IN ENVIRONMENTAL TESTING

TAL 4124 (1007)		Project Manager		(Date		Chain of Custo	WMimber	
Gooder & Cores			000	Oor Weeks		70/	51/38/01	287324	324	
7 (2,		Telephone Numi	Der (Area Code)/	Fax Number		Lab Numbe	итрег		5	
State Z	Zip Code	Site Contact	7	Contact Lab Contact		Analysis (v more space	Analysis (Attach list if more space is needed)	-		
-00		Carrier/Waybill Number		KX Tesson	5 7				Special Instructions/	
Contract Purchase Order/Quote No.				Containers & Preservatives	2000 2000	, jose		Cond	Conditions of Receipt	
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date Ti	Time Nik suoeupA	IIOS IPƏS	Sendru LOSSH LOBN LOBN LOBN LOBN LOBN	5 *	22/ 22/ 25/				
7303	195 Pro-1368	S S			સ્			DC34	*8260c-Ter+	
								tetral	tetral your form	
								* Sua	* SUOCS - 83700/TE	ũ
								t Dine	t Dineth Hormanide	ره
46 c								1 × 19.6	*Metals - aceA &	1
								2100	GOLOB / 7471A	منهم
								Aicol	Alcohols - SoisD	
								2c65	PC65-8080	
								*Tale	tend via	
								tenn	tend blakin	
								<u>e_</u>	Cocher	
Possible Hazard Identification Non-Hazard	□ Poison B	Samp Linknown \square Ru	Sample Disposal Retum To Client	A Bisposal By Lab	Archive For	Months		(A fee may be assessed if samples are retained longer than 1 month)	are retained	
e Required 7 Days 14 D.	21 Days	اي' ⊦	Judard	OC Requirements (Spec	My and ()	15. W. 2.	se condect	of via US	Specify and (45) will be conducted via NYDEC 2005 Son From (ALP) with (4 13 data Solicare (1)	
1. Relinquished By William	Ochasce 4	Date 10/3 & [15	Time 1,550	1. Received By	100			Date 10/29/	10/24/15 Time 900	
2. Relinquished By		Date	Time				-	Date	Fime	
3. Relinquished By	7	Date	Time	3. Received By				Date	Time	
Comments							A	12 CD 12		
DISTRIBITION: WILITE Determed to Client with Denote	CANADY Stars with the Samola	-1.	DINIK - Field Con				•			

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Login Sample Receipt Checklist

Client: Woodard & Curran, Inc.

Job Number: 480-90114-1

Login Number: 90114 List Source: TestAmerica Buffalo

List Number: 1

Creator: Kolb, Chris M

Creator. Roll, Ciliis W		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	WOODARD & CURRAN
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

_

3

4

6

Ŏ

10

12

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-90206-1 Client Project/Site: Rouses Point

For:

Woodard & Curran, Inc. 64 Maple Street Rouses Point, New York 12979

Attn: Don Weeks

Authorized for release by: 11/19/2015 4:24:53 PM

Joe Giacomazza, Project Management Assistant II joe.giacomazza@testamericainc.com

Designee for

Becky Mason, Project Manager II (413)572-4000 becky.mason@testamericainc.com

Review your project

·····LINKS ······

results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	5
Detection Summary	7
Client Sample Results	8
Surrogate Summary	31
QC Sample Results	33
QC Association Summary	58
Lab Chronicle	61
Certification Summary	64
Method Summary	65
Sample Summary	66
Chain of Custody	67
Receipt Checklists	68

3

4

8

9

11

13

14

Definitions/Glossary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90206-1

Qualifiers

GC/MS VOA

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Е Result exceeded calibration range.

GC/MS VOA TICs

Qualifier	Qualifier Description
Qualifiei	Qualifier Describition

Indicates an Estimated Value for TICs

Т Result is a tentatively identified compound (TIC) and an estimated value.

GC/MS Semi VOA

 \overline{X} Surrogate is outside control limits

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Н Sample was prepped or analyzed beyond the specified holding time

Compound was found in the blank and sample.

GC/MS Semi VOA TICs

Qualifier	Qualifier	Descri	ption
-----------	-----------	--------	-------

Indicates an Estimated Value for TICs Ν

Presumptive evidence of material. Т

Result is a tentatively identified compound (TIC) and an estimated value. Н

Sample was prepped or analyzed beyond the specified holding time

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

Percent Recovery %R CFL Contains Free Liquid **CNF** Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration MDA Minimum detectable activity **EDL Estimated Detection Limit** MDC Minimum detectable concentration

MDI Method Detection Limit MI Minimum Level (Dioxin)

NC. Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control RER** Relative error ratio

Reporting Limit or Requested Limit (Radiochemistry) RL

Relative Percent Difference, a measure of the relative difference between two points **RPD**

TestAmerica Buffalo

Page 3 of 68 11/19/2015

Definitions/Glossary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90206-1

Glossary (Continued)

Abbreviation These commonly used abbreviations may or may not be present in this report.

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

-

Л

Ţ

6

ŏ

10

12

4

Case Narrative

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90206-1

Job ID: 480-90206-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-90206-1

Receipt

The samples were received on 10/30/2015 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.8° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-273440 recovered outside acceptance criteria, low biased, for Chloromethane. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported. The following samples are impacted: SWMU7-SS-04 (480-90206-1), SWMU7-SS-06 (480-90206-2), SWMU7-SS-05 (480-90206-3), SWMU7-SS-BLDG23-23 (480-90206-4), SWMU7-SS-BLDG23-24 (480-90206-5), SWMU7-SS-BLDG23-25 (480-90206-6) and SWMU1-SSURFACE-SS-01 (480-90206-7).

Method(s) 8260C: The following samples was analyzed medium level and diluted to bring the concentration of target analytes within the calibration range: SWMU7-SS-BLDG23-24 (480-90206-5). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D, 8270D LL: The continuing calibration verification (CCV) analyzed in batch 480-274604 was outside the method criteria for the following analytes: 4-Chloroaniline, Pentachlorophenol and Benzaldehyde. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method(s) 8270D, 8270D LL: The initial calibration curve analyzed in analytical batch 271208 was outside method criteria for the following analyte: Benzaldehyde. As indicated in the reference method, sample analysis may proceed; however, any detection or non-detection for the affected analyte(s) is considered an estimated concentration.

Method(s) 8270D: The continuing calibration verification (CCV) associated with batch 480-274604 recovered above the upper control limit for 4-Nitrophenol and Hexachlorobutadiene. The samples associated with this CCV were non-detect for the affected analyte; therefore, the data have been reported. The following sample is impacted: EB04 (480-90206-8).

Method(s) 8270D: Re-extraction and reanalysis of the following samples were performed outside of the preparation holding time due to low recoveries of surrogates in the original extraction: EB04 (480-90206-8). Both sets of data have been reported.

Method(s) 8270D: The continuing calibration verification (CCV) analyzed in batch 480-275230 was outside the method criteria for the following analytes: Pentachlorophenol, 2,4-Dinitrophenol, Diethyl phthalate and Hexachlorocyclopentadiene. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method(s) 8270D: The continuing calibration verification (CCV) associated with batch 480-275230 recovered above the upper control limit for Bis(2-ethylhexyl) phthalate, 2,2'-oxybis[1-chloropropane], 2-nitroaniline and Di-n-octyl phthalate. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: EB04 (480-90206-8).

Method(s) 8270D: The initial calibration curve analyzed in analytical batch 274891 was outside method criteria for the analyte Benzaldehyde. As indicated in the reference method, sample analysis may proceed; however, any detection or non-detection for the affected analyte(s) is considered an estimated concentration.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

Method(s) 8015D: The following samples were collected in proper vials for analysis of volatile organic compounds (VOCs). However, the pH was outside the required criteria when verified by the laboratory, and corrective action was not possible: EB04 (480-90206-8) and

TestAmerica Buffalo 11/19/2015 2

3

4

e

7

8

10

12

Case Narrative

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90206-1

Job ID: 480-90206-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

(480-89971-I-23).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8082A: All primary data for the water analysis is reported from the ZB-35 column,

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method(s) 3510C: The following sample was prepared outside of preparation holding time due to the sample needing to be re-prepped: EB04 (480-90206-8).

Method(s) 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with analytical batch 480-274902.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

5

6

7

10

13

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU7-SS-04

TestAmerica Job ID: 480-90206-1

Lab Sample ID: 480-90206-1

No Detections.

Client Sample ID: SWMU7-SS-06 Lab Sample ID: 480-90206-2

No Detections.

Client Sample ID: SWMU7-SS-05 Lab Sample ID: 480-90206-3

No Detections.

Client Sample ID: SWMU7-SS-BLDG23-23 Lab Sample ID: 480-90206-4

No Detections.

Client Sample ID: SWMU7-SS-BLDG23-24 Lab Sample ID: 480-90206-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethene	2.6	J	5.6	0.68	ug/Kg		₩	8260C	Total/NA
Acetone	16	J	28	4.7	ug/Kg	1	₩	8260C	Total/NA
Chlorobenzene	1.3	J	5.6	0.73	ug/Kg	1	₩	8260C	Total/NA
Styrene	0.40	J	5.6	0.28	ug/Kg	1	₩	8260C	Total/NA
Toluene	0.83	J	5.6	0.42	ug/Kg	1	₩	8260C	Total/NA
Trichlorofluoromethane	600	E	5.6	0.53	ug/Kg	1	₩	8260C	Total/NA
Xylenes, Total	4.9	J	11	0.93	ug/Kg	1	₩	8260C	Total/NA
1,1-Dichloroethene - DL	2000		520	180	ug/Kg	4	₩	8260C	Total/NA
Isopropylbenzene - DL	780		520	77	ug/Kg	4	₩	8260C	Total/NA
Methyl acetate - DL	3000		520	250	ug/Kg	4	₩	8260C	Total/NA
Trichlorofluoromethane - DL	15000		520	240	ug/Kg	4	₩	8260C	Total/NA
Xylenes, Total - DL	1400		1000	290	ug/Kg	4	₩	8260C	Total/NA

Client Sample ID: SWMU7-SS-BLDG23-25 Lab Sample ID: 480-90206-6

No Detections.

Client Sample ID: SWMU1-SSURFACE-SS-01 Lab Sample ID: 480-90206-7

No Detections.

Client Sample ID: EB04 Lab Sample ID: 480-90206-8

Analyte	Result Q	ualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Butyl benzyl phthalate	0.56 J		4.8	0.40	ug/L	1	_	8270D	Total/NA
Isobutyl alcohol	0.95 J		1.0	0.37	mg/L	1		8015D	Total/NA
Methanol	0.92 J		1.0	0.41	mg/L	1		8015D	Total/NA
n-Butanol	2.4		1.0	0.40	mg/L	1		8015D	Total/NA
2-Butanol	0.19 J		1.0	0.17	mg/L	1		8015D	Total/NA
Isopropyl alcohol	0.12 J		1.0	0.12	mg/L	1		8015D	Total/NA
Chromium	0.0014 J		0.0040	0.0010	mg/L	1		6010C	Total/NA

Client Sample ID: TB04 Lab Sample ID: 480-90206-9

No Detections.

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU7-SS-04

TestAmerica Job ID: 480-90206-1

Lab Sample ID: 480-90206-1

Matrix: Solid Percent Solids: 88.0

Date Collected: 10/29/15 09:40 Date Received: 10/30/15 09:00

Analyte	ic Compounds by GC Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.1	0.37	ug/Kg		10/30/15 17:59	11/06/15 04:56	1
1,1,2,2-Tetrachloroethane	ND	5.1	0.82	ug/Kg	₩	10/30/15 17:59	11/06/15 04:56	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.1	1.2	ug/Kg	☼	10/30/15 17:59	11/06/15 04:56	1
1,1,2-Trichloroethane	ND	5.1	0.66	ug/Kg		10/30/15 17:59	11/06/15 04:56	1
1,1-Dichloroethane	ND	5.1	0.62	ug/Kg	₩	10/30/15 17:59	11/06/15 04:56	1
1,1-Dichloroethene	ND	5.1	0.62	ug/Kg	☼	10/30/15 17:59	11/06/15 04:56	1
1,2,3-Trichlorobenzene	ND	5.1	0.54	ug/Kg		10/30/15 17:59	11/06/15 04:56	1
1,2,4-Trichlorobenzene	ND	5.1	0.31	ug/Kg	☼	10/30/15 17:59	11/06/15 04:56	1
1,2-Dibromo-3-Chloropropane	ND	5.1	2.5	ug/Kg	☼	10/30/15 17:59	11/06/15 04:56	1
1,2-Dichlorobenzene	ND	5.1	0.40	ug/Kg		10/30/15 17:59	11/06/15 04:56	1
1,2-Dichloroethane	ND	5.1	0.25	ug/Kg	₩	10/30/15 17:59	11/06/15 04:56	1
1,2-Dichloropropane	ND	5.1	2.5	ug/Kg	₩	10/30/15 17:59	11/06/15 04:56	1
1,3-Dichlorobenzene	ND	5.1		ug/Kg	ф.	10/30/15 17:59	11/06/15 04:56	1
1,4-Dichlorobenzene	ND	5.1	0.71	ug/Kg	₩	10/30/15 17:59	11/06/15 04:56	1
1,4-Dioxane	ND	100		ug/Kg	₩	10/30/15 17:59	11/06/15 04:56	1
2-Hexanone	ND	25		ug/Kg		10/30/15 17:59	11/06/15 04:56	1
Acetone	ND	25		ug/Kg	₩	10/30/15 17:59	11/06/15 04:56	1
Benzene	ND	5.1		ug/Kg	₩	10/30/15 17:59	11/06/15 04:56	1
Bromoform	ND	5.1		ug/Kg		10/30/15 17:59	11/06/15 04:56	1
Bromomethane	ND	5.1		ug/Kg	₩		11/06/15 04:56	1
Carbon disulfide	ND	5.1		ug/Kg	₩		11/06/15 04:56	1
Carbon tetrachloride	ND	5.1		ug/Kg			11/06/15 04:56	1
Chlorobenzene	ND	5.1		ug/Kg	₩		11/06/15 04:56	1
Bromochloromethane	ND	5.1		ug/Kg	₩		11/06/15 04:56	1
Dibromochloromethane	ND	5.1		ug/Kg			11/06/15 04:56	
Chloroethane	ND	5.1	1.1		₩		11/06/15 04:56	1
Chloroform	ND	5.1		ug/Kg	₩		11/06/15 04:56	1
Chloromethane	ND	5.1		ug/Kg			11/06/15 04:56	· · · · · · · · · · · · · · · · · · ·
cis-1,2-Dichloroethene	ND	5.1		ug/Kg	₩		11/06/15 04:56	1
cis-1,3-Dichloropropene	ND	5.1		ug/Kg	₩		11/06/15 04:56	1
Cyclohexane	ND	5.1	0.71	ug/Kg	 ☆		11/06/15 04:56	· · · · · · · · · · · · · · · · · · ·
Bromodichloromethane	ND	5.1		ug/Kg	₩		11/06/15 04:56	1
Dichlorodifluoromethane	ND	5.1		ug/Kg	₩		11/06/15 04:56	1
Ethylbenzene	ND	5.1		ug/Kg	 ☆		11/06/15 04:56	
1,2-Dibromoethane (EDB)	ND	5.1		ug/Kg	☼		11/06/15 04:56	1
Isopropylbenzene	ND	5.1		ug/Kg	≎		11/06/15 04:56	1
Methyl acetate	ND	5.1		ug/Kg			11/06/15 04:56	
·	ND	25			☼		11/06/15 04:56	
2-Butanone (MEK)	ND ND	25 25		ug/Kg	≎		11/06/15 04:56	1
4-Methyl-2-pentanone (MIBK) Methyl tert-butyl ether	ND	5.1		ug/Kg ug/Kg			11/06/15 04:56	1 1
· ·	ND				≎		11/06/15 04:56	_
Methylogo Chlorido	ND ND	5.1 5.1		ug/Kg	≎		11/06/15 04:56	1
Methylene Chloride				ug/Kg				1
Styrene	ND ND	5.1		ug/Kg	₩		11/06/15 04:56	1
Tetrachloroethene	ND	5.1		ug/Kg	₩ **		11/06/15 04:56	1
Toluene	ND	5.1		ug/Kg			11/06/15 04:56	
trans-1,2-Dichloroethene	ND	5.1		ug/Kg	₩		11/06/15 04:56	1
trans-1,3-Dichloropropene	ND	5.1		ug/Kg	₽		11/06/15 04:56	1
Trichloroethene	ND	5.1	1.1	ug/Kg	-Ç:	10/30/15 17:59	11/06/15 04:56	1

TestAmerica Buffalo

Page 8 of 68

9

3

4

6

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/29/15 09:40

Date Received: 10/30/15 09:00

Percent Moisture

Percent Solids

Client Sample ID: SWMU7-SS-04

TestAmerica Job ID: 480-90206-1

Lab Sample ID: 480-90206-1

. Matrix: Solid

> 10/31/15 02:12 10/31/15 02:12

Percent Solids: 88.0

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.1		0.62	ug/Kg	\	10/30/15 17:59	11/06/15 04:56	1
Xylenes, Total	ND		10		0.85	ug/Kg	₽	10/30/15 17:59	11/06/15 04:56	1
Tetrahydrofuran	ND		10		2.9	ug/Kg	\$	10/30/15 17:59	11/06/15 04:56	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	₩ -				10/30/15 17:59	11/06/15 04:56	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	106		60 - 140					10/30/15 17:59	11/06/15 04:56	1
1,2-Dichloroethane-d4 (Surr)	101		64 - 126					10/30/15 17:59	11/06/15 04:56	1
Toluene-d8 (Surr)	105		71 - 125					10/30/15 17:59	11/06/15 04:56	1
4-Bromofluorobenzene (Surr)	100		72 - 126					10/30/15 17:59	11/06/15 04:56	1
General Chemistry										
Analyte		Qualifier	RL			Unit	D	Prepared	Analyzed	Dil Fac

0.10

0.10

0.10 %

0.10 %

12

88

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/29/15 10:15

Date Received: 10/30/15 09:00

Client Sample ID: SWMU7-SS-06

TestAmerica Job ID: 480-90206-1

Lab Sample ID: 480-90206-2

Matrix: Solid Percent Solids: 88.6

1	
1	
1	8
1	
1	Q
1	
1	
1	
1	

Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND	4.7	0.34	ug/Kg	<u>₩</u>	10/30/15 18:02	11/06/15 05:22	1
ND	4.7	0.77	ug/Kg	₩	10/30/15 18:02	11/06/15 05:22	1
ND	4.7	1.1	ug/Kg	☼	10/30/15 18:02	11/06/15 05:22	1
ND	4.7	0.61	ug/Kg		10/30/15 18:02	11/06/15 05:22	1
ND	4.7	0.58	ug/Kg	☼	10/30/15 18:02	11/06/15 05:22	1
ND	4.7	0.58	ug/Kg	₩	10/30/15 18:02	11/06/15 05:22	1
ND	4.7				10/30/15 18:02	11/06/15 05:22	1
ND	4.7	0.29	ug/Kg	₩	10/30/15 18:02	11/06/15 05:22	1
ND	4.7	2.4	ug/Kg	₩	10/30/15 18:02	11/06/15 05:22	1
ND	4.7			 ∳-	10/30/15 18:02	11/06/15 05:22	1
ND	4.7			₩	10/30/15 18:02	11/06/15 05:22	1
ND	4.7			₩	10/30/15 18:02	11/06/15 05:22	1
ND	4.7				10/30/15 18:02	11/06/15 05:22	1
				₩			1
ND				₩			1
ND				 \$			1
				₩			1
			0 0	₩			1
							1
							1
							1
							· · · · · · · · · · · · · · · · · · ·
							1
							1
							· · · · · · · · · · · · · · · · · · ·
							1
							1
							· · · · · · · · · · · · · · · · · · ·
							1
				÷			1
							· · · · · · · · · · · · · · · · · · ·
							1
							1
							1
							1
							1
				Ť ří:			
							1
							1
							1
							1
							1
							1
							1
							1
							1
							1
ND ND	4.7 4.7			ф. ф			1
	ND N	ND 4.7 ND 4.7 <td< td=""><td>ND</td><td>ND</td><td> ND</td><td> ND</td><td> ND</td></td<>	ND	ND	ND	ND	ND

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Received: 10/30/15 09:00

Percent Solids

TestAmerica Job ID: 480-90206-1

Client Sample ID: SWMU7-SS-06

Date Collected: 10/29/15 10:15

Lab Sample ID: 480-90206-2 **Matrix: Solid**

10/31/15 02:12

Percent Solids: 88.6

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.7		0.58	ug/Kg	₩	10/30/15 18:02	11/06/15 05:22	1
Xylenes, Total	ND		9.5		0.79	ug/Kg	≎	10/30/15 18:02	11/06/15 05:22	1
Tetrahydrofuran	ND		9.5		2.7	ug/Kg	₽	10/30/15 18:02	11/06/15 05:22	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	5.0	TJ	ug/Kg	₩ -	2.	.02		10/30/15 18:02	11/06/15 05:22	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	102		60 - 140					10/30/15 18:02	11/06/15 05:22	1
1,2-Dichloroethane-d4 (Surr)	98		64 - 126					10/30/15 18:02	11/06/15 05:22	1
Toluene-d8 (Surr)	101		71 - 125					10/30/15 18:02	11/06/15 05:22	1
4-Bromofluorobenzene (Surr)	94		72 - 126					10/30/15 18:02	11/06/15 05:22	1
General Chemistry										
Analyte	Result	Qualifier	RL		RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	11		0.10		0.10	0/2			10/31/15 02:12	

0.10

0.10 %

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/29/15 10:45

Client Sample ID: SWMU7-SS-05

TestAmerica Job ID: 480-90206-1

Lab Sample ID: 480-90206-3

Matrix: Solid
Percent Solids: 81.2

Date Received: 10/30/15 09:00

Method: 8260C - Volatile Organic Compounds by GC/MS

Method: 8260C - Volatile Orga Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND —	5.6	0.41	ug/Kg	<u> </u>	10/30/15 18:05	11/06/15 05:48	1
1,1,2,2-Tetrachloroethane	ND	5.6	0.91	ug/Kg	☼	10/30/15 18:05	11/06/15 05:48	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.6	1.3	ug/Kg	☼	10/30/15 18:05	11/06/15 05:48	1
1,1,2-Trichloroethane	ND	5.6	0.73	ug/Kg		10/30/15 18:05	11/06/15 05:48	1
1,1-Dichloroethane	ND	5.6	0.69	ug/Kg	☼	10/30/15 18:05	11/06/15 05:48	1
1,1-Dichloroethene	ND	5.6	0.69	ug/Kg	☼	10/30/15 18:05	11/06/15 05:48	1
1,2,3-Trichlorobenzene	ND	5.6	0.60	ug/Kg		10/30/15 18:05	11/06/15 05:48	1
1,2,4-Trichlorobenzene	ND	5.6	0.34	ug/Kg	₽	10/30/15 18:05	11/06/15 05:48	1
1,2-Dibromo-3-Chloropropane	ND	5.6	2.8	ug/Kg	₽	10/30/15 18:05	11/06/15 05:48	1
1,2-Dichlorobenzene	ND	5.6	0.44	ug/Kg	ф.	10/30/15 18:05	11/06/15 05:48	1
1,2-Dichloroethane	ND	5.6			₩	10/30/15 18:05	11/06/15 05:48	1
1,2-Dichloropropane	ND	5.6			₩	10/30/15 18:05	11/06/15 05:48	1
1,3-Dichlorobenzene	ND	5.6				10/30/15 18:05	11/06/15 05:48	1
1,4-Dichlorobenzene	ND	5.6	0.79		₩	10/30/15 18:05	11/06/15 05:48	1
1,4-Dioxane	ND	110		0 0	≎		11/06/15 05:48	1
2-Hexanone	ND	28		ug/Kg		10/30/15 18:05	11/06/15 05:48	1
Acetone	ND	28		ug/Kg	₽		11/06/15 05:48	1
Benzene	ND	5.6		ug/Kg	₩		11/06/15 05:48	1
Bromoform	ND	5.6		ug/Kg			11/06/15 05:48	1
Bromomethane	ND	5.6		ug/Kg	₩		11/06/15 05:48	1
Carbon disulfide	ND	5.6		ug/Kg	₩		11/06/15 05:48	1
Carbon tetrachloride	ND	5.6		ug/Kg			11/06/15 05:48	
Chlorobenzene	ND	5.6		ug/Kg	₩		11/06/15 05:48	1
Bromochloromethane	ND	5.6		ug/Kg	₩		11/06/15 05:48	1
Dibromochloromethane	ND	5.6		ug/Kg			11/06/15 05:48	
Chloroethane	ND	5.6		ug/Kg	₩		11/06/15 05:48	1
Chloroform	ND	5.6		ug/Kg	₩		11/06/15 05:48	1
Chloromethane	ND	5.6		ug/Kg			11/06/15 05:48	
cis-1,2-Dichloroethene	ND	5.6		ug/Kg	₩		11/06/15 05:48	1
cis-1,3-Dichloropropene	ND	5.6	0.72	0 0	-ti-		11/06/15 05:48	1
Cyclohexane	ND	5.6		ug/Kg			11/06/15 05:48	
Bromodichloromethane	ND	5.6		ug/Kg	₩		11/06/15 05:48	1
Dichlorodifluoromethane	ND	5.6		ug/Kg	☼		11/06/15 05:48	1
	ND	5.6					11/06/15 05:48	
Ethylbenzene 1.3 Dibromoethone (EDB)	ND ND	5.6		ug/Kg	~ ☆		11/06/15 05:48	1
1,2-Dibromoethane (EDB)				ug/Kg	☆			1
Isopropylbenzene	ND ND	5.6		ug/Kg			11/06/15 05:48	
Methyl acetate	ND	5.6		ug/Kg	γ. γ.		11/06/15 05:48	1
2-Butanone (MEK)	ND	28		ug/Kg	₽ *		11/06/15 05:48	1
4-Methyl-2-pentanone (MIBK)	ND	28		ug/Kg	% .		11/06/15 05:48	1
Methyl tert-butyl ether	ND	5.6		ug/Kg	₩		11/06/15 05:48	1
Methylcyclohexane	ND	5.6		ug/Kg	₽ *		11/06/15 05:48	1
Methylene Chloride	ND	5.6		ug/Kg			11/06/15 05:48	
Styrene	ND	5.6		ug/Kg	☆		11/06/15 05:48	1
Tetrachloroethene	ND	5.6		ug/Kg	☆		11/06/15 05:48	1
Toluene	ND	5.6		ug/Kg	#. #		11/06/15 05:48	1
trans-1,2-Dichloroethene	ND	5.6		ug/Kg	₩ ₩		11/06/15 05:48	1
trans-1,3-Dichloropropene	ND	5.6		ug/Kg	φ.		11/06/15 05:48	1
Trichloroethene	ND	5.6		ug/Kg			11/06/15 05:48	
Trichlorofluoromethane	ND	5.6	0.53	ug/Kg	₽	10/30/15 18:05	11/06/15 05:48	1

TestAmerica Buffalo

Page 12 of 68

2

3

6

9

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90206-1

Client Sample ID: SWMU7-SS-05

Lab Sample ID: 480-90206-3 Date Collected: 10/29/15 10:45

Matrix: Solid

Date Received: 10/30/15 09:00 Percent Solids: 81.2

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Cor	ntinue	ed)					
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.6		0.69	ug/Kg	<u> </u>	10/30/15 18:05	11/06/15 05:48	1
Xylenes, Total	ND		11		0.94	ug/Kg	≎	10/30/15 18:05	11/06/15 05:48	1
Tetrahydrofuran	ND		11		3.3	ug/Kg	₽	10/30/15 18:05	11/06/15 05:48	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\				10/30/15 18:05	11/06/15 05:48	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	102		60 - 140					10/30/15 18:05	11/06/15 05:48	1
1,2-Dichloroethane-d4 (Surr)	96		64 - 126					10/30/15 18:05	11/06/15 05:48	1
Toluene-d8 (Surr)	104		71 - 125					10/30/15 18:05	11/06/15 05:48	1
4-Bromofluorobenzene (Surr)	91		72 - 126					10/30/15 18:05	11/06/15 05:48	1
General Chemistry										
Analyte	Result	Qualifier	RL		RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	19		0.10		0.10	%			10/31/15 02:12	1
Percent Solids	81		0.10		0.10	%			10/31/15 02:12	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90206-1

Client Sample ID: SWMU7-SS-BLDG23-23 Lab Sample ID: 480-90206-4

 Date Collected: 10/29/15 13:30
 Matrix: Solid

 Date Received: 10/30/15 09:00
 Percent Solids: 92.7

Method: 8260C - Volatile Organ		Qualifier	RL	MDL	Unit	ь.	Droporod	Analyzad	Dil Fa
Analyte	ND	Qualifier	5.2			D <u>∓</u>	Prepared	Analyzed 11/06/15 06:13	
1,1,1-Trichloroethane	ND ND				ug/Kg	₩			
1,1,2,2-Tetrachloroethane			5.2		ug/Kg			11/06/15 06:13	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.2		ug/Kg			11/06/15 06:13	
1,1,2-Trichloroethane	ND		5.2		ug/Kg	☆		11/06/15 06:13	
1,1-Dichloroethane	ND		5.2		ug/Kg	φ.		11/06/15 06:13	
1,1-Dichloroethene	ND		5.2		ug/Kg			11/06/15 06:13	
1,2,3-Trichlorobenzene	ND		5.2		ug/Kg	\$		11/06/15 06:13	
1,2,4-Trichlorobenzene	ND		5.2		ug/Kg	.		11/06/15 06:13	
1,2-Dibromo-3-Chloropropane	ND		5.2		ug/Kg			11/06/15 06:13	
1,2-Dichlorobenzene	ND		5.2		ug/Kg	☼	10/30/15 18:07	11/06/15 06:13	
1,2-Dichloroethane	ND		5.2	0.26	ug/Kg	☼	10/30/15 18:07	11/06/15 06:13	
1,2-Dichloropropane	ND		5.2	2.6	ug/Kg	₽	10/30/15 18:07	11/06/15 06:13	
1,3-Dichlorobenzene	ND		5.2	0.27	ug/Kg	☼	10/30/15 18:07	11/06/15 06:13	
1,4-Dichlorobenzene	ND		5.2	0.72	ug/Kg	☼	10/30/15 18:07	11/06/15 06:13	
1,4-Dioxane	ND		100	22	ug/Kg	₩	10/30/15 18:07	11/06/15 06:13	
2-Hexanone	ND		26	2.6	ug/Kg	₽	10/30/15 18:07	11/06/15 06:13	
Acetone	ND		26	4.3	ug/Kg	₩	10/30/15 18:07	11/06/15 06:13	
Benzene	ND		5.2	0.25	ug/Kg	₩	10/30/15 18:07	11/06/15 06:13	
Bromoform	ND		5.2	2.6	ug/Kg		10/30/15 18:07	11/06/15 06:13	
Bromomethane	ND		5.2	0.46	ug/Kg	☼	10/30/15 18:07	11/06/15 06:13	
Carbon disulfide	ND		5.2	2.6	ug/Kg	₽	10/30/15 18:07	11/06/15 06:13	
Carbon tetrachloride	ND		5.2		ug/Kg	ф.	10/30/15 18:07	11/06/15 06:13	
Chlorobenzene	ND		5.2	0.68	ug/Kg	₩	10/30/15 18:07	11/06/15 06:13	
Bromochloromethane	ND		5.2		ug/Kg	₩	10/30/15 18:07	11/06/15 06:13	
Dibromochloromethane	ND		5.2		ug/Kg		10/30/15 18:07	11/06/15 06:13	
Chloroethane	ND		5.2		ug/Kg	₽	10/30/15 18:07	11/06/15 06:13	
Chloroform	ND		5.2		ug/Kg	₽		11/06/15 06:13	
Chloromethane	ND		5.2		ug/Kg			11/06/15 06:13	
cis-1,2-Dichloroethene	ND		5.2		ug/Kg	₩		11/06/15 06:13	
cis-1,3-Dichloropropene	ND		5.2		ug/Kg	₩		11/06/15 06:13	
Cyclohexane	ND		5.2		ug/Kg			11/06/15 06:13	
Bromodichloromethane	ND		5.2		ug/Kg	₩		11/06/15 06:13	
Dichlorodifluoromethane	ND ND		5.2		ug/Kg	₽		11/06/15 06:13	
	ND		5.2					11/06/15 06:13	
Ethylbenzene 1,2-Dibromoethane (EDB)	ND ND		5.2		ug/Kg	₩		11/06/15 06:13	
, ,					ug/Kg				
Isopropylbenzene	ND		5.2		ug/Kg	Q .		11/06/15 06:13	
Methyl acetate	ND		5.2		ug/Kg	*		11/06/15 06:13	
2-Butanone (MEK)	ND		26		ug/Kg	₩		11/06/15 06:13	
4-Methyl-2-pentanone (MIBK)	ND		26		ug/Kg			11/06/15 06:13	
Methyl tert-butyl ether	ND		5.2		ug/Kg	ά. Έ		11/06/15 06:13	
Methylcyclohexane	ND		5.2		ug/Kg	.		11/06/15 06:13	
Methylene Chloride	ND		5.2		ug/Kg			11/06/15 06:13	
Styrene	ND		5.2		ug/Kg	*		11/06/15 06:13	
Tetrachloroethene	ND		5.2		ug/Kg	**		11/06/15 06:13	
Toluene	ND		5.2	0.39	ug/Kg			11/06/15 06:13	
trans-1,2-Dichloroethene	ND		5.2		ug/Kg	₩		11/06/15 06:13	
trans-1,3-Dichloropropene	ND		5.2	2.3	ug/Kg	₩	10/30/15 18:07	11/06/15 06:13	
Trichloroethene	ND		5.2	1.1	ug/Kg	₩	10/30/15 18:07	11/06/15 06:13	
Trichlorofluoromethane	ND		5.2	0.49	ug/Kg	φ.	10/30/15 18:07	11/06/15 06:13	

TestAmerica Buffalo

2

3

4

6

8

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Analyte

Percent Moisture

Percent Solids

TestAmerica Job ID: 480-90206-1

Client Sample ID: SWMU7-SS-BLDG23-23 Lab Sample ID: 480-90206-4

Date Collected: 10/29/15 13:30 Matrix: Solid
Date Received: 10/30/15 09:00 Percent Solids: 92.7

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.2		0.63	ug/Kg	₩	10/30/15 18:07	11/06/15 06:13	1
Xylenes, Total	ND		10)	0.87	ug/Kg	₽	10/30/15 18:07	11/06/15 06:13	1
Tetrahydrofuran	ND		10)	3.0	ug/Kg		10/30/15 18:07	11/06/15 06:13	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	₩ -				10/30/15 18:07	11/06/15 06:13	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	108		60 - 140					10/30/15 18:07	11/06/15 06:13	1
1,2-Dichloroethane-d4 (Surr)	100		64 - 126					10/30/15 18:07	11/06/15 06:13	1
Toluene-d8 (Surr)	105		71 - 125					10/30/15 18:07	11/06/15 06:13	1
4-Bromofluorobenzene (Surr)	99		72 - 126					10/30/15 18:07	11/06/15 06:13	1

RL

0.10

0.10

RL Unit

0.10 %

0.10 %

Prepared

Analyzed

10/31/15 02:12

10/31/15 02:12

Result Qualifier

7.3

93

Dil Fac

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/29/15 14:15

Date Received: 10/30/15 09:00

Client Sample ID: SWMU7-SS-BLDG23-24

TestAmerica Job ID: 480-90206-1

Lab Sample ID: 480-90206-5

Matrix: Solid
Percent Solids: 78.2

Method: 8260C - Volatile Orga Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.6	0.40	ug/Kg	\	10/30/15 18:10	11/06/15 06:39	1
1,1,2,2-Tetrachloroethane	ND	5.6	0.90	ug/Kg	₩	10/30/15 18:10	11/06/15 06:39	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.6	1.3	ug/Kg	≎	10/30/15 18:10	11/06/15 06:39	1
1,1,2-Trichloroethane	ND	5.6	0.72	ug/Kg		10/30/15 18:10	11/06/15 06:39	1
1,1-Dichloroethane	ND	5.6	0.68	ug/Kg	₽	10/30/15 18:10	11/06/15 06:39	1
1,1-Dichloroethene	2.6 J	5.6	0.68	ug/Kg	₽	10/30/15 18:10	11/06/15 06:39	1
1,2,3-Trichlorobenzene	ND	5.6	0.59	ug/Kg	.	10/30/15 18:10	11/06/15 06:39	1
1,2,4-Trichlorobenzene	ND	5.6	0.34	ug/Kg	₩	10/30/15 18:10	11/06/15 06:39	1
1,2-Dibromo-3-Chloropropane	ND	5.6	2.8	ug/Kg	₩	10/30/15 18:10	11/06/15 06:39	1
1,2-Dichlorobenzene	ND	5.6	0.44	ug/Kg		10/30/15 18:10	11/06/15 06:39	1
1,2-Dichloroethane	ND	5.6	0.28	ug/Kg	₽	10/30/15 18:10	11/06/15 06:39	1
1,2-Dichloropropane	ND	5.6	2.8	ug/Kg	₽	10/30/15 18:10	11/06/15 06:39	1
1,3-Dichlorobenzene	ND	5.6	0.29	ug/Kg	\$	10/30/15 18:10	11/06/15 06:39	1
1,4-Dichlorobenzene	ND	5.6	0.78	ug/Kg	₽	10/30/15 18:10	11/06/15 06:39	1
1,4-Dioxane	ND	110	24	ug/Kg	₽	10/30/15 18:10	11/06/15 06:39	1
2-Hexanone	ND	28	2.8	ug/Kg	₽	10/30/15 18:10	11/06/15 06:39	1
Acetone	16 J	28	4.7	ug/Kg	₩	10/30/15 18:10	11/06/15 06:39	1
Benzene	ND	5.6	0.27	ug/Kg	₩	10/30/15 18:10	11/06/15 06:39	1
Bromoform	ND	5.6	2.8	ug/Kg		10/30/15 18:10	11/06/15 06:39	1
Bromomethane	ND	5.6	0.50	ug/Kg	☼	10/30/15 18:10	11/06/15 06:39	1
Carbon disulfide	ND	5.6	2.8	ug/Kg	₽	10/30/15 18:10	11/06/15 06:39	1
Carbon tetrachloride	ND	5.6		ug/Kg	φ.	10/30/15 18:10	11/06/15 06:39	1
Chlorobenzene	1.3 J	5.6	0.73	ug/Kg	₽	10/30/15 18:10	11/06/15 06:39	1
Bromochloromethane	ND	5.6		ug/Kg	₽	10/30/15 18:10	11/06/15 06:39	1
Dibromochloromethane	ND	5.6	0.71		φ.	10/30/15 18:10	11/06/15 06:39	1
Chloroethane	ND	5.6	1.3	ug/Kg	₽	10/30/15 18:10	11/06/15 06:39	1
Chloroform	ND	5.6		ug/Kg	₽	10/30/15 18:10	11/06/15 06:39	1
Chloromethane	ND	5.6	0.34	ug/Kg	₽	10/30/15 18:10	11/06/15 06:39	1
cis-1,2-Dichloroethene	ND	5.6	0.71		₽	10/30/15 18:10	11/06/15 06:39	1
cis-1,3-Dichloropropene	ND	5.6	0.80	ug/Kg	₽	10/30/15 18:10	11/06/15 06:39	1
Cyclohexane	ND	5.6		ug/Kg		10/30/15 18:10	11/06/15 06:39	1
Bromodichloromethane	ND	5.6	0.75	ug/Kg	≎	10/30/15 18:10	11/06/15 06:39	1
Dichlorodifluoromethane	ND	5.6		ug/Kg	₽	10/30/15 18:10	11/06/15 06:39	1
Ethylbenzene	ND	5.6	0.38	ug/Kg		10/30/15 18:10	11/06/15 06:39	1
1,2-Dibromoethane (EDB)	ND	5.6		ug/Kg	☼	10/30/15 18:10	11/06/15 06:39	1
Isopropylbenzene	ND	5.6	0.84	ug/Kg	₩	10/30/15 18:10	11/06/15 06:39	1
Methyl acetate	ND	5.6		ug/Kg			11/06/15 06:39	1
2-Butanone (MEK)	ND	28		ug/Kg	₩	10/30/15 18:10	11/06/15 06:39	1
4-Methyl-2-pentanone (MIBK)	ND	28		ug/Kg	₽	10/30/15 18:10	11/06/15 06:39	1
Methyl tert-butyl ether	ND	5.6		ug/Kg		10/30/15 18:10	11/06/15 06:39	1
Methylcyclohexane	ND	5.6		ug/Kg	☆		11/06/15 06:39	1
Methylene Chloride	ND	5.6		ug/Kg	₩		11/06/15 06:39	1
Styrene	0.40 J	5.6		ug/Kg	φ.	10/30/15 18:10	11/06/15 06:39	1
Tetrachloroethene	ND	5.6		ug/Kg	☼		11/06/15 06:39	1
Toluene	0.83 J	5.6		ug/Kg	☼		11/06/15 06:39	1
trans-1,2-Dichloroethene	ND	5.6		ug/Kg			11/06/15 06:39	1
trans-1,3-Dichloropropene	ND	5.6		ug/Kg	☆		11/06/15 06:39	1
Trichloroethene	ND	5.6		ug/Kg	₽		11/06/15 06:39	1

TestAmerica Buffalo

_

4

6

8

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/29/15 14:15

Date Received: 10/30/15 09:00

4-Bromofluorobenzene (Surr)

Client Sample ID: SWMU7-SS-BLDG23-24

TestAmerica Job ID: 480-90206-1

Lab Sample ID: 480-90206-5

10/30/15 18:10 11/06/15 06:39

Matrix: Solid

Percent Solids: 78.2

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Co	ntinı	(baı					
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.6		0.68	ug/Kg	\	10/30/15 18:10	11/06/15 06:39	1
Xylenes, Total	4.9	J	11		0.93	ug/Kg	₩	10/30/15 18:10	11/06/15 06:39	1
Tetrahydrofuran	ND		11		3.2	ug/Kg	\$	10/30/15 18:10	11/06/15 06:39	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	140	TJ	ug/Kg	<u> </u>	2.	.93		10/30/15 18:10	11/06/15 06:39	1
Unknown	15	TJ	ug/Kg	₩	4.	.34		10/30/15 18:10	11/06/15 06:39	1
Unknown Benzene Derivative	9.0	TJ	ug/Kg	≎	9.	.79		10/30/15 18:10	11/06/15 06:39	1
Unknown Benzene Derivative	5.6	TJ	ug/Kg	₩	10.	.01		10/30/15 18:10	11/06/15 06:39	1
Unknown Benzene Derivative	230	TJ	ug/Kg	₩	10.	.72		10/30/15 18:10	11/06/15 06:39	1
Unknown Benzene Derivative	92	TJ	ug/Kg	₩	10.	.79		10/30/15 18:10	11/06/15 06:39	1
Unknown Benzene Derivative	26	ΤJ	ug/Kg	₩	10.	.91		10/30/15 18:10	11/06/15 06:39	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	99	-	60 - 140	•				10/30/15 18:10	11/06/15 06:39	1
1,2-Dichloroethane-d4 (Surr)	96		64 - 126					10/30/15 18:10	11/06/15 06:39	1
Toluene-d8 (Surr)	103		71 - 125					10/30/15 18:10	11/06/15 06:39	1

72 - 126

Analyte	nic Compo Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		520	140	ug/Kg	₩	10/30/15 18:19	11/10/15 00:48	4
1,1,2,2-Tetrachloroethane	ND		520	84	ug/Kg	☼	10/30/15 18:19	11/10/15 00:48	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		520	260	ug/Kg	₩	10/30/15 18:19	11/10/15 00:48	4
1,1,2-Trichloroethane	ND		520	110	ug/Kg	₽	10/30/15 18:19	11/10/15 00:48	4
1,1-Dichloroethane	ND		520	160	ug/Kg	₩	10/30/15 18:19	11/10/15 00:48	4
1,1-Dichloroethene	2000		520	180	ug/Kg	₩	10/30/15 18:19	11/10/15 00:48	4
1,2,3-Trichlorobenzene	ND		520	240	ug/Kg	₽	10/30/15 18:19	11/10/15 00:48	4
1,2,4-Trichlorobenzene	ND		520	200	ug/Kg	₩	10/30/15 18:19	11/10/15 00:48	4
1,2-Dibromo-3-Chloropropane	ND		520	260	ug/Kg	☼	10/30/15 18:19	11/10/15 00:48	4
1,2-Dichlorobenzene	ND		520	130	ug/Kg	₩.	10/30/15 18:19	11/10/15 00:48	4
1,2-Dichloroethane	ND		520	210	ug/Kg	₩	10/30/15 18:19	11/10/15 00:48	4
1,2-Dichloropropane	ND		520	83	ug/Kg	☼	10/30/15 18:19	11/10/15 00:48	4
1,3-Dichlorobenzene	ND		520	140	ug/Kg	₩.	10/30/15 18:19	11/10/15 00:48	4
1,4-Dichlorobenzene	ND		520	72	ug/Kg	☼	10/30/15 18:19	11/10/15 00:48	4
1,4-Dioxane	ND		9800	2600	ug/Kg	☼	10/30/15 18:19	11/10/15 00:48	4
2-Hexanone	ND		2600	1100	ug/Kg	₩	10/30/15 18:19	11/10/15 00:48	4
Acetone	ND		2600	2100	ug/Kg	☼	10/30/15 18:19	11/10/15 00:48	4
Benzene	ND		520	98	ug/Kg	☼	10/30/15 18:19	11/10/15 00:48	4
Bromoform	ND		520	260	ug/Kg	₩	10/30/15 18:19	11/10/15 00:48	4
Bromomethane	ND		520	110	ug/Kg	☼	10/30/15 18:19	11/10/15 00:48	4
Carbon disulfide	ND		520	230	ug/Kg	₩	10/30/15 18:19	11/10/15 00:48	4
Carbon tetrachloride	ND		520	130	ug/Kg	₩.	10/30/15 18:19	11/10/15 00:48	4
Chlorobenzene	ND		520	68	ug/Kg	☼	10/30/15 18:19	11/10/15 00:48	4
Bromochloromethane	ND		520	190	ug/Kg	☼	10/30/15 18:19	11/10/15 00:48	4
Dibromochloromethane	ND		520	250	ug/Kg		10/30/15 18:19	11/10/15 00:48	4
Chloroethane	ND		520	110	ug/Kg	☼	10/30/15 18:19	11/10/15 00:48	4
Chloroform	ND		520	350	ug/Kg	☼	10/30/15 18:19	11/10/15 00:48	4
Chloromethane	ND		520	120	ug/Kg		10/30/15 18:19	11/10/15 00:48	4
cis-1,2-Dichloroethene	ND		520	140	ug/Kg	₩	10/30/15 18:19	11/10/15 00:48	4

TestAmerica Buffalo

Page 17 of 68

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/29/15 14:15

Date Received: 10/30/15 09:00

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Toluene-d8 (Surr)

Client Sample ID: SWMU7-SS-BLDG23-24

TestAmerica Job ID: 480-90206-1

Lab Sample ID: 480-90206-5

Matrix: Solid

Percent Solids: 78.2

Analyte	Result	Qualifier	R	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,3-Dichloropropene	ND		52	20	120	ug/Kg	\	10/30/15 18:19	11/10/15 00:48	4
Cyclohexane	ND		52	20	110	ug/Kg		10/30/15 18:19	11/10/15 00:48	4
Bromodichloromethane	ND		52	20	100	ug/Kg	≎	10/30/15 18:19	11/10/15 00:48	4
Dichlorodifluoromethane	ND		52	20	220	ug/Kg	≎	10/30/15 18:19	11/10/15 00:48	4
Ethylbenzene	ND		52	20	150	ug/Kg	≎	10/30/15 18:19	11/10/15 00:48	4
1,2-Dibromoethane (EDB)	ND		52	20	90	ug/Kg	≎	10/30/15 18:19	11/10/15 00:48	4
Isopropylbenzene	780		52	20	77	ug/Kg	₩	10/30/15 18:19	11/10/15 00:48	4
Methyl acetate	3000		52	20	250	ug/Kg	₩	10/30/15 18:19	11/10/15 00:48	4
2-Butanone (MEK)	ND		260	00	1500	ug/Kg	₩	10/30/15 18:19	11/10/15 00:48	4
4-Methyl-2-pentanone (MIBK)	ND		260	00	160	ug/Kg	☼	10/30/15 18:19	11/10/15 00:48	4
Methyl tert-butyl ether	ND		52	20	190	ug/Kg	₩.	10/30/15 18:19	11/10/15 00:48	4
Methylcyclohexane	ND		52	20	240	ug/Kg	₩	10/30/15 18:19	11/10/15 00:48	4
Methylene Chloride	ND		52	20	100	ug/Kg	☼	10/30/15 18:19	11/10/15 00:48	4
Styrene	ND		52	20	120	ug/Kg	ф.	10/30/15 18:19	11/10/15 00:48	4
Tetrachloroethene	ND		52	20	69	ug/Kg	₩	10/30/15 18:19	11/10/15 00:48	4
Toluene	ND		52	20	140	ug/Kg	☼	10/30/15 18:19	11/10/15 00:48	4
trans-1,2-Dichloroethene	ND		52	20	120	ug/Kg	φ.	10/30/15 18:19	11/10/15 00:48	4
trans-1,3-Dichloropropene	ND		52	20	51	ug/Kg	☼	10/30/15 18:19	11/10/15 00:48	4
Trichloroethene	ND		52	20	140	ug/Kg	☼	10/30/15 18:19	11/10/15 00:48	4
Trichlorofluoromethane	15000		52	20	240	ug/Kg	₩.	10/30/15 18:19	11/10/15 00:48	4
Vinyl chloride	ND		52	20	170	ug/Kg	☼	10/30/15 18:19	11/10/15 00:48	4
Xylenes, Total	1400		100	00	290	ug/Kg	☼	10/30/15 18:19	11/10/15 00:48	4
Tetrahydrofuran	ND		100	00	260	ug/Kg	₩.	10/30/15 18:19	11/10/15 00:48	4
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	3000	TJ	ug/Kg	<u> </u>	2.	03		10/30/15 18:19	11/10/15 00:48	4
Unknown	2600	ΤJ	ug/Kg	₩	2.	47		10/30/15 18:19	11/10/15 00:48	4
Unknown Benzene Derivative	2200	ΤJ	ug/Kg	₩	10.	04		10/30/15 18:19	11/10/15 00:48	4
Unknown Benzene Derivative	5900	ΤJ	ug/Kg	₩	10.	12		10/30/15 18:19	11/10/15 00:48	4
Unknown Benzene Derivative	2800	ΤJ	ug/Kg	₩	10.	33		10/30/15 18:19	11/10/15 00:48	4
Unknown Benzene Derivative	6800	ΤJ	ug/Kg	₩	10.	50		10/30/15 18:19	11/10/15 00:48	4
Unknown Benzene Derivative	6200	ΤJ	ug/Kg	₩	11.	07		10/30/15 18:19	11/10/15 00:48	4
Unknown Benzene Derivative	4000	TJ	ug/Kg	₩	11.	15		10/30/15 18:19	11/10/15 00:48	4
Unknown Benzene Derivative	1400	TJ	ug/Kg	₩	11.	43		10/30/15 18:19	11/10/15 00:48	4
Unknown Benzene Derivative	2500	ΤJ	ug/Kg	₩	11.	51		10/30/15 18:19	11/10/15 00:48	4
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	92		60 - 140)				10/30/15 18:19	11/10/15 00:48	4
4.0 Dialalamanthaman al 4.00	0.0		FO 440					40/20/45 40:40	44/40/45 00:40	

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	22		0.10	0.10	%			10/31/15 02:12	1
Percent Solids	78		0.10	0.10	%			10/31/15 02:12	1

53 - 146

50 - 149

49 - 148

96

94

93

TestAmerica Buffalo

10/30/15 18:19 11/10/15 00:48

10/30/15 18:19 11/10/15 00:48

10/30/15 18:19 11/10/15 00:48

2

4

0

8

10

11

13

14

It

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90206-1

Lab Sample ID: 480-90206-6

Matrix: Solid Percent Solids: 85.1

Date Collected: 10/29/15 15:00	
Date Collected. 10/29/15 15.00	
Date Received: 10/30/15 09:00	

Client Sample ID: SWMU7-SS-BLDG23-25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		4.9	0.35	ug/Kg		10/30/15 18:13	11/06/15 07:05	1
1,1,2,2-Tetrachloroethane	ND		4.9	0.79	ug/Kg	₩	10/30/15 18:13	11/06/15 07:05	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.9	1.1	ug/Kg	₽	10/30/15 18:13	11/06/15 07:05	1
1,1,2-Trichloroethane	ND		4.9	0.63	ug/Kg	₽	10/30/15 18:13	11/06/15 07:05	1
1,1-Dichloroethane	ND		4.9	0.59	ug/Kg	₽	10/30/15 18:13	11/06/15 07:05	1
1,1-Dichloroethene	ND		4.9	0.60	ug/Kg	☼	10/30/15 18:13	11/06/15 07:05	1
1,2,3-Trichlorobenzene	ND		4.9	0.52	ug/Kg		10/30/15 18:13	11/06/15 07:05	1
1,2,4-Trichlorobenzene	ND		4.9	0.30	ug/Kg	₩	10/30/15 18:13	11/06/15 07:05	1
1,2-Dibromo-3-Chloropropane	ND		4.9	2.4	ug/Kg	₽	10/30/15 18:13	11/06/15 07:05	1
1,2-Dichlorobenzene	ND		4.9	0.38	ug/Kg		10/30/15 18:13	11/06/15 07:05	1
1,2-Dichloroethane	ND		4.9		ug/Kg	₩	10/30/15 18:13	11/06/15 07:05	1
1,2-Dichloropropane	ND		4.9	2.4	ug/Kg	₩	10/30/15 18:13	11/06/15 07:05	1
1,3-Dichlorobenzene	ND		4.9		ug/Kg		10/30/15 18:13	11/06/15 07:05	1
1,4-Dichlorobenzene	ND		4.9		ug/Kg	₩	10/30/15 18:13	11/06/15 07:05	1
1,4-Dioxane	ND		97		ug/Kg	₩		11/06/15 07:05	1
2-Hexanone	ND		24		ug/Kg	 \$		11/06/15 07:05	1
Acetone	ND		24		ug/Kg	₽		11/06/15 07:05	1
Benzene	ND		4.9		ug/Kg	₽		11/06/15 07:05	1
Bromoform	ND		4.9		ug/Kg			11/06/15 07:05	
Bromomethane	ND		4.9		ug/Kg	₩		11/06/15 07:05	1
Carbon disulfide	ND		4.9		ug/Kg	₩		11/06/15 07:05	1
Carbon tetrachloride	ND		4.9		ug/Kg			11/06/15 07:05	············ 1
Chlorobenzene	ND		4.9		ug/Kg	₩		11/06/15 07:05	1
Bromochloromethane	ND		4.9		ug/Kg	₩		11/06/15 07:05	1
Dibromochloromethane	ND		4.9		ug/Kg			11/06/15 07:05	
Chloroethane	ND		4.9		ug/Kg			11/06/15 07:05	1
Chloroform	ND ND		4.9		ug/Kg ug/Kg	☆		11/06/15 07:05	1
Chloromethane	ND		4.9		ug/Kg			11/06/15 07:05	
	ND ND		4.9			☆		11/06/15 07:05	1
cis-1,2-Dichloroethene	ND ND		4.9		ug/Kg	☆		11/06/15 07:05	1
cis-1,3-Dichloropropene					ug/Kg				
Cyclohexane	ND ND		4.9		ug/Kg	☆		11/06/15 07:05	1
Bromodichloromethane			4.9		ug/Kg			11/06/15 07:05	1
Dichlorodifluoromethane	ND		4.9		ug/Kg	*. 		11/06/15 07:05	1
Ethylbenzene	ND		4.9		ug/Kg	₽		11/06/15 07:05	1
1,2-Dibromoethane (EDB)	ND		4.9		ug/Kg	☆		11/06/15 07:05	1
Isopropylbenzene	ND		4.9		ug/Kg			11/06/15 07:05	1
Methyl acetate	ND		4.9		ug/Kg	φ.		11/06/15 07:05	1
2-Butanone (MEK)	ND		24		ug/Kg	₩.		11/06/15 07:05	1
4-Methyl-2-pentanone (MIBK)	ND		24		ug/Kg			11/06/15 07:05	1
Methyl tert-butyl ether	ND		4.9		ug/Kg	₽.		11/06/15 07:05	1
Methylcyclohexane	ND		4.9		ug/Kg	₽.		11/06/15 07:05	1
Methylene Chloride	ND		4.9		ug/Kg	‡		11/06/15 07:05	1
Styrene	ND		4.9		ug/Kg	₩		11/06/15 07:05	1
Tetrachloroethene	ND		4.9		ug/Kg	**		11/06/15 07:05	1
Toluene	ND		4.9		ug/Kg	₽		11/06/15 07:05	1
trans-1,2-Dichloroethene	ND		4.9	0.50	ug/Kg	₽	10/30/15 18:13	11/06/15 07:05	1
trans-1,3-Dichloropropene	ND		4.9	2.1	ug/Kg	₽	10/30/15 18:13	11/06/15 07:05	1
Trichloroethene	ND		4.9	1.1	ug/Kg	₩	10/30/15 18:13	11/06/15 07:05	1
Trichlorofluoromethane	ND		4.9	0.46	ug/Kg	₽	10/30/15 18:13	11/06/15 07:05	1

TestAmerica Buffalo

Page 19 of 68

11/19/2015

2

5

7

9

11

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Percent Solids

TestAmerica Job ID: 480-90206-1

10/31/15 02:12

Client Sample ID: SWMU7-SS-BLDG23-25 Lab Sample ID: 480-90206-6

Date Collected: 10/29/15 15:00 Matrix: Solid
Date Received: 10/30/15 09:00 Percent Solids: 85.1

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.9		0.59	ug/Kg		10/30/15 18:13	11/06/15 07:05	1
Xylenes, Total	ND		9.7		0.82	ug/Kg	₽	10/30/15 18:13	11/06/15 07:05	1
Tetrahydrofuran	ND		9.7		2.8	ug/Kg	\$	10/30/15 18:13	11/06/15 07:05	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	ı	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	₩				10/30/15 18:13	11/06/15 07:05	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	107		60 - 140					10/30/15 18:13	11/06/15 07:05	1
1,2-Dichloroethane-d4 (Surr)	105		64 - 126					10/30/15 18:13	11/06/15 07:05	1
Toluene-d8 (Surr)	103		71 - 125					10/30/15 18:13	11/06/15 07:05	1
4-Bromofluorobenzene (Surr)	100		72 - 126					10/30/15 18:13	11/06/15 07:05	1
_										
General Chemistry										
General Chemistry Analyte	Result	Qualifier	RL		RL	Unit	D	Prepared	Analyzed	Dil Fac

0.10

0.10 %

85

11/19/2015

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/29/15 15:45

Date Received: 10/30/15 09:00

trans-1,3-Dichloropropene

Trichlorofluoromethane

Trichloroethene

Client Sample ID: SWMU1-SSURFACE-SS-01

TestAmerica Job ID: 480-90206-1

Lab Sample ID: 480-90206-7

Matrix: Solid
Percent Solids: 94.8

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4.7	0.34	ug/Kg	₩	10/30/15 18:16	11/06/15 07:31	1
1,1,2,2-Tetrachloroethane	ND	4.7	0.77	ug/Kg	☼	10/30/15 18:16	11/06/15 07:31	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.7	1.1	ug/Kg	₩	10/30/15 18:16	11/06/15 07:31	1
1,1,2-Trichloroethane	ND	4.7	0.62	ug/Kg	\$	10/30/15 18:16	11/06/15 07:31	1
1,1-Dichloroethane	ND	4.7	0.58	ug/Kg	₩	10/30/15 18:16	11/06/15 07:31	1
1,1-Dichloroethene	ND	4.7	0.58	ug/Kg	₩	10/30/15 18:16	11/06/15 07:31	1
1,2,3-Trichlorobenzene	ND	4.7	0.50	ug/Kg		10/30/15 18:16	11/06/15 07:31	1
1,2,4-Trichlorobenzene	ND	4.7	0.29	ug/Kg	₩	10/30/15 18:16	11/06/15 07:31	1
1,2-Dibromo-3-Chloropropane	ND	4.7	2.4	ug/Kg	₩	10/30/15 18:16	11/06/15 07:31	1
1,2-Dichlorobenzene	ND	4.7	0.37	ug/Kg	\$	10/30/15 18:16	11/06/15 07:31	1
1,2-Dichloroethane	ND	4.7	0.24	ug/Kg	₩	10/30/15 18:16	11/06/15 07:31	1
1,2-Dichloropropane	ND	4.7	2.4	ug/Kg	☼	10/30/15 18:16	11/06/15 07:31	1
1,3-Dichlorobenzene	ND	4.7	0.24	ug/Kg		10/30/15 18:16	11/06/15 07:31	1
1,4-Dichlorobenzene	ND	4.7	0.66	ug/Kg	☼	10/30/15 18:16	11/06/15 07:31	1
1,4-Dioxane	ND	95	21	ug/Kg	☼	10/30/15 18:16	11/06/15 07:31	1
2-Hexanone	ND	24	2.4	ug/Kg		10/30/15 18:16	11/06/15 07:31	1
Acetone	ND	24	4.0	ug/Kg	₩	10/30/15 18:16	11/06/15 07:31	1
Benzene	ND	4.7		ug/Kg	₩	10/30/15 18:16	11/06/15 07:31	1
Bromoform	ND	4.7		ug/Kg		10/30/15 18:16	11/06/15 07:31	1
Bromomethane	ND	4.7		ug/Kg	₩	10/30/15 18:16	11/06/15 07:31	1
Carbon disulfide	ND	4.7		ug/Kg	₩	10/30/15 18:16	11/06/15 07:31	1
Carbon tetrachloride	ND	4.7		ug/Kg		10/30/15 18:16	11/06/15 07:31	1
Chlorobenzene	ND	4.7		ug/Kg	₩	10/30/15 18:16	11/06/15 07:31	1
Bromochloromethane	ND	4.7		ug/Kg	₩	10/30/15 18:16	11/06/15 07:31	1
Dibromochloromethane	ND	4.7		ug/Kg		10/30/15 18:16	11/06/15 07:31	1
Chloroethane	ND	4.7	1.1	ug/Kg	₩	10/30/15 18:16	11/06/15 07:31	1
Chloroform	ND	4.7	0.29	ug/Kg	₩	10/30/15 18:16	11/06/15 07:31	1
Chloromethane	ND	4.7		ug/Kg		10/30/15 18:16	11/06/15 07:31	1
cis-1,2-Dichloroethene	ND	4.7		ug/Kg	₩	10/30/15 18:16	11/06/15 07:31	1
cis-1,3-Dichloropropene	ND	4.7		ug/Kg	₩	10/30/15 18:16	11/06/15 07:31	1
Cyclohexane	ND	4.7		ug/Kg		10/30/15 18:16	11/06/15 07:31	1
Bromodichloromethane	ND	4.7		ug/Kg	₩	10/30/15 18:16	11/06/15 07:31	1
Dichlorodifluoromethane	ND	4.7		ug/Kg	₩	10/30/15 18:16	11/06/15 07:31	1
Ethylbenzene	ND	4.7		ug/Kg		10/30/15 18:16	11/06/15 07:31	1
1,2-Dibromoethane (EDB)	ND	4.7		ug/Kg	₩	10/30/15 18:16	11/06/15 07:31	1
Isopropylbenzene	ND	4.7		ug/Kg	☼	10/30/15 18:16		1
Methyl acetate	ND	4.7		ug/Kg	 		11/06/15 07:31	1
2-Butanone (MEK)	ND	24			₩		11/06/15 07:31	1
4-Methyl-2-pentanone (MIBK)	ND	24		ug/Kg	₩	10/30/15 18:16		1
Methyl tert-butyl ether	ND	4.7		ug/Kg		10/30/15 18:16		1
Methylcyclohexane	ND	4.7		ug/Kg	₩		11/06/15 07:31	1
Methylene Chloride	ND	4.7		ug/Kg	☼		11/06/15 07:31	1
Styrene	ND	4.7		ug/Kg	 \$		11/06/15 07:31	
Tetrachloroethene	ND	4.7		ug/Kg	₩		11/06/15 07:31	1
Toluene	ND	4.7		ug/Kg	₩		11/06/15 07:31	1
trans-1,2-Dichloroethene	ND	4.7		ug/Kg		10/30/15 18:16		· · · · · · · · · · · · · · · · · · ·

TestAmerica Buffalo

☼ 10/30/15 18:16 11/06/15 07:31

* 10/30/15 18:16 11/06/15 07:31

* 10/30/15 18:16 11/06/15 07:31

Page 21 of 68

4.7

4.7

4.7

2.1 ug/Kg

1.0 ug/Kg

0.45 ug/Kg

ND

ND

ND

2

5

8

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 10/29/15 15:45

Date Received: 10/30/15 09:00

Percent Solids

Client Sample ID: SWMU1-SSURFACE-SS-01

TestAmerica Job ID: 480-90206-1

Lab Sample ID: 480-90206-7

Matrix: Solid

Percent Solids: 94.8

10/31/15 02:12

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Cor	ntinu	ed)					
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.7		0.58	ug/Kg	₩	10/30/15 18:16	11/06/15 07:31	1
Xylenes, Total	ND		9.5		0.80	ug/Kg	₽	10/30/15 18:16	11/06/15 07:31	1
Tetrahydrofuran	ND		9.5		2.7	ug/Kg	\$	10/30/15 18:16	11/06/15 07:31	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	₩ -				10/30/15 18:16	11/06/15 07:31	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	103		60 - 140					10/30/15 18:16	11/06/15 07:31	1
1,2-Dichloroethane-d4 (Surr)	100		64 - 126					10/30/15 18:16	11/06/15 07:31	1
Toluene-d8 (Surr)	101		71 - 125					10/30/15 18:16	11/06/15 07:31	1
4-Bromofluorobenzene (Surr)	96		72 - 126					10/30/15 18:16	11/06/15 07:31	1
General Chemistry										
Analyte	Result	Qualifier	RL		RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	5.2		0.10		0.10	%			10/31/15 02:12	1

0.10

95

0.10 %

2

b

8

10

11

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90206-1

Lab Sample ID: 480-90206-8

Matrix: Water

Client Sample ID: EB04 Date Collected: 10/29/15 16:30

Date Received: 10/30/15 09:00

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			11/10/15 20:24	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			11/10/15 20:24	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			11/10/15 20:24	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			11/10/15 20:24	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			11/10/15 20:24	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			11/10/15 20:24	1
1,2,3-Trichlorobenzene	ND	1.0	0.41	ug/L			11/10/15 20:24	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			11/10/15 20:24	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			11/10/15 20:24	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	-			11/10/15 20:24	1
1,2-Dichlorobenzene	ND	1.0	0.79	-			11/10/15 20:24	1
1,2-Dichloroethane	ND	1.0	0.21	-			11/10/15 20:24	1
1,2-Dichloropropane	ND	1.0		ug/L			11/10/15 20:24	1
1,3-Dichlorobenzene	ND	1.0	0.78	_			11/10/15 20:24	1
1,4-Dichlorobenzene	ND	1.0		ug/L			11/10/15 20:24	1
1,4-Dioxane	ND	40		ug/L			11/10/15 20:24	1
2-Butanone (MEK)	ND	10		ug/L			11/10/15 20:24	1
2-Hexanone	ND	5.0		ug/L			11/10/15 20:24	1
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			11/10/15 20:24	1
Acetone	ND	10		ug/L			11/10/15 20:24	1
Benzene	ND	1.0		ug/L			11/10/15 20:24	1
Bromochloromethane	ND	1.0		ug/L			11/10/15 20:24	
Bromodichloromethane	ND	1.0		ug/L			11/10/15 20:24	1
Bromoform	ND	1.0	0.26	-			11/10/15 20:24	1
Bromomethane	ND	1.0	0.69	-			11/10/15 20:24	
Carbon disulfide	ND	1.0	0.19	-			11/10/15 20:24	1
Carbon tetrachloride	ND	1.0	0.13	-			11/10/15 20:24	1
Chlorobenzene	ND	1.0	0.75	-			11/10/15 20:24	
Chloroethane	ND	1.0	0.73	-			11/10/15 20:24	1
Chloroform	ND	1.0	0.34	-			11/10/15 20:24	1
Chloromethane	ND	1.0		ug/L			11/10/15 20:24	
cis-1,2-Dichloroethene	ND	1.0	0.81	-			11/10/15 20:24	1
	ND ND	1.0		ug/L ug/L			11/10/15 20:24	1
cis-1,3-Dichloropropene Cyclohexane	ND ND	1.0	0.30	-			11/10/15 20:24	
Dibromochloromethane	ND ND	1.0	0.16	-			11/10/15 20:24	1
				-				1
Dichlorodifluoromethane	ND	1.0	0.68				11/10/15 20:24	1
Ethylbenzene	ND	1.0		ug/L			11/10/15 20:24	1
Isopropylbenzene	ND	1.0		ug/L			11/10/15 20:24	1
Methyl acetate	ND	2.5		ug/L			11/10/15 20:24	1
Methyl tert-butyl ether	ND	1.0		ug/L			11/10/15 20:24	1
Methylcyclohexane	ND	1.0		ug/L			11/10/15 20:24	1
Methylene Chloride	ND	1.0		ug/L			11/10/15 20:24	1
Styrene	ND	1.0		ug/L			11/10/15 20:24	1
Tetrachloroethene	ND	1.0		ug/L			11/10/15 20:24	1
Toluene	ND	1.0		ug/L			11/10/15 20:24	1
trans-1,2-Dichloroethene	ND	1.0		ug/L			11/10/15 20:24	1
trans-1,3-Dichloropropene	ND	1.0		ug/L			11/10/15 20:24	1
Trichloroethene	ND	1.0		ug/L			11/10/15 20:24	1
Trichlorofluoromethane	ND	1.0	0.88	ug/L			11/10/15 20:24	1

TestAmerica Buffalo

Page 23 of 68

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90206-1

Client Sample ID: EB04 Lab Sample ID: 480-90206-8

Date Collected: 10/29/15 16:30 Matrix: Water Date Received: 10/30/15 09:00

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Cor	ntinued)							
Analyte	Result	Qualifier	RL	M	DL	Unit		D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		1.0	0.	90	ug/L				11/10/15 20:24	1
Xylenes, Total	ND		2.0	0.	66	ug/L				11/10/15 20:24	1
Tetrahydrofuran	ND		5.0		1.3	ug/L				11/10/15 20:24	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	F	₹ <i>T</i>	CAS No	о.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L							11/10/15 20:24	1
Surrogate	%Recovery	Qualifier	Limits						Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		66 - 137							11/10/15 20:24	1
4-Bromofluorobenzene (Surr)	97		73 - 120							11/10/15 20:24	1
Toluene-d8 (Surr)	99		71 - 126							11/10/15 20:24	1
Dibromofluoromethane (Surr)	95		60 - 140							11/10/15 20:24	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND ND	4.8	0.46	ug/L		11/02/15 09:42	11/12/15 13:54	1
2,4,6-Trichlorophenol	ND	4.8	0.58	ug/L		11/02/15 09:42	11/12/15 13:54	1
2,4-Dichlorophenol	ND	4.8	0.49	ug/L		11/02/15 09:42	11/12/15 13:54	1
2,4-Dimethylphenol	ND	4.8	0.48	ug/L		11/02/15 09:42	11/12/15 13:54	1
2,4-Dinitrophenol	ND	9.5	2.1	ug/L		11/02/15 09:42	11/12/15 13:54	1
2,4-Dinitrotoluene	ND	4.8	0.43	ug/L		11/02/15 09:42	11/12/15 13:54	1
2,6-Dinitrotoluene	ND	4.8	0.38	ug/L		11/02/15 09:42	11/12/15 13:54	1
2-Chloronaphthalene	ND	4.8	0.44	ug/L		11/02/15 09:42	11/12/15 13:54	1
2-Chlorophenol	ND	4.8	0.51	ug/L		11/02/15 09:42	11/12/15 13:54	1
2-Methylnaphthalene	ND	4.8	0.57	ug/L		11/02/15 09:42	11/12/15 13:54	1
2-Methylphenol	ND	4.8	0.38	ug/L		11/02/15 09:42	11/12/15 13:54	1
2-Nitroaniline	ND	9.5	0.40	ug/L		11/02/15 09:42	11/12/15 13:54	1
2-Nitrophenol	ND	4.8	0.46	ug/L		11/02/15 09:42	11/12/15 13:54	1
3,3'-Dichlorobenzidine	ND	4.8	0.38	ug/L		11/02/15 09:42	11/12/15 13:54	1
3-Nitroaniline	ND	9.5	0.46	ug/L		11/02/15 09:42	11/12/15 13:54	1
4,6-Dinitro-2-methylphenol	ND	9.5	2.1	ug/L		11/02/15 09:42	11/12/15 13:54	1
4-Bromophenyl phenyl ether	ND	4.8	0.43	ug/L		11/02/15 09:42	11/12/15 13:54	1
4-Chloro-3-methylphenol	ND	4.8	0.43	ug/L		11/02/15 09:42	11/12/15 13:54	1
4-Chloroaniline	ND	4.8	0.56	ug/L		11/02/15 09:42	11/12/15 13:54	1
4-Chlorophenyl phenyl ether	ND	4.8	0.33	ug/L		11/02/15 09:42	11/12/15 13:54	1
4-Methylphenol	ND	9.5	0.34	ug/L		11/02/15 09:42	11/12/15 13:54	1
4-Nitroaniline	ND	9.5	0.24	ug/L		11/02/15 09:42	11/12/15 13:54	1
4-Nitrophenol	ND	9.5	1.4	ug/L		11/02/15 09:42	11/12/15 13:54	1
Acenaphthene	ND	4.8	0.39	ug/L		11/02/15 09:42	11/12/15 13:54	1
Acenaphthylene	ND	4.8	0.36	ug/L		11/02/15 09:42	11/12/15 13:54	1
Acetophenone	ND	4.8	0.52	ug/L		11/02/15 09:42	11/12/15 13:54	1
Anthracene	ND	4.8	0.27	ug/L		11/02/15 09:42	11/12/15 13:54	1
Atrazine	ND	4.8	0.44	ug/L		11/02/15 09:42	11/12/15 13:54	1
Benzaldehyde	ND	4.8	0.25	ug/L		11/02/15 09:42	11/12/15 13:54	1
Benzo(a)anthracene	ND	4.8	0.34	ug/L		11/02/15 09:42	11/12/15 13:54	1
Benzo(a)pyrene	ND	4.8	0.45	ug/L		11/02/15 09:42	11/12/15 13:54	1
Benzo(b)fluoranthene	ND	4.8	0.32	ug/L		11/02/15 09:42	11/12/15 13:54	1
Benzo(g,h,i)perylene	ND	4.8	0.33	ug/L		11/02/15 09:42	11/12/15 13:54	1
Benzo(k)fluoranthene	ND	4.8	0.70	ug/L		11/02/15 09:42	11/12/15 13:54	1
Biphenyl	ND	4.8	0.62	ug/L		11/02/15 09:42	11/12/15 13:54	1

TestAmerica Buffalo

Page 24 of 68

2

3

5

6

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90206-1

Lab Sample ID: 480-90206-8

Matrix: Water

Client Sample ID: EB04

Date Collected: 10/29/15 16:30 Date Received: 10/30/15 09:00

Analyte	Result	Qualifier	RL	M	DL	Unit	D	Prepared	Analyzed	Dil Fac
bis (2-chloroisopropyl) ether	ND		4.8	0.	50	ug/L		11/02/15 09:42	11/12/15 13:54	1
Bis(2-chloroethoxy)methane	ND		4.8	0.	33	ug/L		11/02/15 09:42	11/12/15 13:54	1
Bis(2-chloroethyl)ether	ND		4.8	0.	38	ug/L		11/02/15 09:42	11/12/15 13:54	1
Bis(2-ethylhexyl) phthalate	ND		4.8		1.7	ug/L		11/02/15 09:42	11/12/15 13:54	1
Butyl benzyl phthalate	0.56	J	4.8	0.	40	ug/L		11/02/15 09:42	11/12/15 13:54	1
Caprolactam	ND		4.8	2	2.1	ug/L		11/02/15 09:42	11/12/15 13:54	1
Carbazole	ND		4.8	0.	29	ug/L		11/02/15 09:42	11/12/15 13:54	1
Chrysene	ND		4.8	0.	31	ug/L		11/02/15 09:42	11/12/15 13:54	1
Dibenz(a,h)anthracene	ND		4.8	0.	40	ug/L		11/02/15 09:42	11/12/15 13:54	1
Dibenzofuran	ND		9.5	0.	49	ug/L		11/02/15 09:42	11/12/15 13:54	1
Diethyl phthalate	ND		4.8	0.	21	ug/L		11/02/15 09:42	11/12/15 13:54	1
Dimethyl phthalate	ND		4.8	0.	34	ug/L		11/02/15 09:42	11/12/15 13:54	1
Di-n-butyl phthalate	ND		4.8	0.	30	ug/L		11/02/15 09:42	11/12/15 13:54	1
Di-n-octyl phthalate	ND		4.8	0.	45	ug/L		11/02/15 09:42	11/12/15 13:54	1
Fluoranthene	ND		4.8	0.	38	ug/L		11/02/15 09:42	11/12/15 13:54	1
Fluorene	ND		4.8	0.	34	ug/L		11/02/15 09:42	11/12/15 13:54	1
Hexachlorobenzene	ND		4.8	0.	49	ug/L		11/02/15 09:42	11/12/15 13:54	1
Hexachlorobutadiene	ND		4.8	0.	65	ug/L		11/02/15 09:42	11/12/15 13:54	1
Hexachlorocyclopentadiene	ND		4.8	0.	56	ug/L		11/02/15 09:42	11/12/15 13:54	1
Hexachloroethane	ND		4.8	0.	56	ug/L		11/02/15 09:42	11/12/15 13:54	1
Indeno(1,2,3-cd)pyrene	ND		4.8	0.	45	ug/L		11/02/15 09:42	11/12/15 13:54	1
Isophorone	ND		4.8	0.	41	ug/L		11/02/15 09:42	11/12/15 13:54	1
Naphthalene	ND		4.8	0.	72	ug/L		11/02/15 09:42	11/12/15 13:54	1
Nitrobenzene	ND		4.8	0.	28	ug/L		11/02/15 09:42	11/12/15 13:54	1
N-Nitrosodi-n-propylamine	ND		4.8	0.	52	ug/L		11/02/15 09:42	11/12/15 13:54	1
N-Nitrosodiphenylamine	ND		4.8	0.	49	ug/L		11/02/15 09:42	11/12/15 13:54	1
Pentachlorophenol	ND		9.5	2	2.1	ug/L		11/02/15 09:42	11/12/15 13:54	1
Phenanthrene	ND		4.8	0.	42	ug/L		11/02/15 09:42	11/12/15 13:54	1
Phenol	ND		4.8	0.	37	ug/L		11/02/15 09:42	11/12/15 13:54	1
Pyrene	ND		4.8	0.	32	ug/L		11/02/15 09:42	11/12/15 13:54	1
Dimethylformamide	ND		19		1.6	ug/L		11/02/15 09:42	11/12/15 13:54	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	9.7	TJ	ug/L		3.39		11/02/15 09:42	11/12/15 13:54	1
Cyclohexane	21	TJN	ug/L		3.42	110-82-7	11/02/15 09:42	11/12/15 13:54	1
Unknown	79	TJ	ug/L		3.58		11/02/15 09:42	11/12/15 13:54	1
Unknown	6.9	TJ	ug/L		5.38		11/02/15 09:42	11/12/15 13:54	1
Benzene, 1,2-dimethyl-	5.2	TJN	ug/L		5.71	95-47-6	11/02/15 09:42	11/12/15 13:54	1
Cyclopentasiloxane, decamethyl-	9.9	TJN	ug/L		7.39	541-02-6	11/02/15 09:42	11/12/15 13:54	1
Cyclohexasiloxane, dodecamethyl-	4.0	TJN	ug/L		8.27	540-97-6	11/02/15 09:42	11/12/15 13:54	1
Unknown	14	TJ	ug/L		10.71		11/02/15 09:42	11/12/15 13:54	1
Unknown	3.6	TJ	ug/L		11.29		11/02/15 09:42	11/12/15 13:54	1
Unknown	36	ΤJ	ug/L		11.69		11/02/15 09:42	11/12/15 13:54	1
Unknown	7.3	TJ	ug/L		12.31		11/02/15 09:42	11/12/15 13:54	1
Unknown	22	TJ	ug/L		12.75		11/02/15 09:42	11/12/15 13:54	1
Unknown	19	ΤJ	ug/L		13.54		11/02/15 09:42	11/12/15 13:54	1
Unknown	24	TJ	ug/L		14.03		11/02/15 09:42	11/12/15 13:54	1
Unknown	5.9	TJ	ug/L		14.58		11/02/15 09:42	11/12/15 13:54	1
Unknown	3.8	ΤJ	ug/L		14.72		11/02/15 09:42	11/12/15 13:54	1
Unknown	26	TJ	ug/L		14.95		11/02/15 09:42	11/12/15 13:54	1

TestAmerica Buffalo

Page 25 of 68

3

5

<u>'</u>

10

. .

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: EB04

Date Collected: 10/29/15 16:30

Date Received: 10/30/15 09:00

TestAmerica Job ID: 480-90206-1

Lab Sample ID: 480-90206-8

Matrix: Water

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

	_								
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	4.6	TJ	ug/L		15.44		11/02/15 09:42	11/12/15 13:54	1
Unknown	7.1	ΤJ	ug/L		16.10		11/02/15 09:42	11/12/15 13:54	1
Unknown	8.5	TJ	ug/L		16.47		11/02/15 09:42	11/12/15 13:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	35	X	52 - 132	-			11/02/15 09:42	11/12/15 13:54	1
2-Fluorobiphenyl	80		48 - 120				11/02/15 09:42	11/12/15 13:54	1
2-Fluorophenol	0	X	20 - 120				11/02/15 09:42	11/12/15 13:54	1
Nitrobenzene-d5	73		46 - 120				11/02/15 09:42	11/12/15 13:54	1
Phenol-d5	0.3	X	16 - 120				11/02/15 09:42	11/12/15 13:54	1
p-Terphenyl-d14	91		67 - 150				11/02/15 09:42	11/12/15 13:54	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND	H	5.0	0.48	ug/L		11/13/15 14:06	11/16/15 17:00	1
2,4,6-Trichlorophenol	ND	Н	5.0	0.61	ug/L		11/13/15 14:06	11/16/15 17:00	1
2,4-Dichlorophenol	ND	Н	5.0	0.51	ug/L		11/13/15 14:06	11/16/15 17:00	1
2,4-Dimethylphenol	ND	Н	5.0	0.50	ug/L		11/13/15 14:06	11/16/15 17:00	1
2,4-Dinitrophenol	ND	Н	10	2.2	ug/L		11/13/15 14:06	11/16/15 17:00	1
2,4-Dinitrotoluene	ND	Н	5.0	0.45	ug/L		11/13/15 14:06	11/16/15 17:00	1
2,6-Dinitrotoluene	ND	Н	5.0	0.40	ug/L		11/13/15 14:06	11/16/15 17:00	1
2-Chloronaphthalene	ND	Н	5.0	0.46	ug/L		11/13/15 14:06	11/16/15 17:00	1
2-Chlorophenol	ND	Н	5.0	0.53	ug/L		11/13/15 14:06	11/16/15 17:00	1
2-Methylnaphthalene	ND	Н	5.0	0.60	ug/L		11/13/15 14:06	11/16/15 17:00	1
2-Methylphenol	ND	Н	5.0	0.40	ug/L		11/13/15 14:06	11/16/15 17:00	1
2-Nitroaniline	ND	Н	10	0.42	ug/L		11/13/15 14:06	11/16/15 17:00	1
2-Nitrophenol	ND	Н	5.0	0.48	ug/L		11/13/15 14:06	11/16/15 17:00	1
3,3'-Dichlorobenzidine	ND	Н	5.0	0.40	ug/L		11/13/15 14:06	11/16/15 17:00	1
3-Nitroaniline	ND	Н	10	0.48	ug/L		11/13/15 14:06	11/16/15 17:00	1
4,6-Dinitro-2-methylphenol	ND	Н	10	2.2	ug/L		11/13/15 14:06	11/16/15 17:00	1
4-Bromophenyl phenyl ether	ND	Н	5.0	0.45	ug/L		11/13/15 14:06	11/16/15 17:00	1
4-Chloro-3-methylphenol	ND	Н	5.0	0.45	ug/L		11/13/15 14:06	11/16/15 17:00	1
4-Chloroaniline	ND	Н	5.0	0.59	ug/L		11/13/15 14:06	11/16/15 17:00	1
4-Chlorophenyl phenyl ether	ND	Н	5.0	0.35	ug/L		11/13/15 14:06	11/16/15 17:00	1
4-Methylphenol	ND	Н	10	0.36	ug/L		11/13/15 14:06	11/16/15 17:00	1
4-Nitroaniline	ND	Н	10	0.25	ug/L		11/13/15 14:06	11/16/15 17:00	1
4-Nitrophenol	ND	Н	10	1.5	ug/L		11/13/15 14:06	11/16/15 17:00	1
Acenaphthene	ND	Н	5.0	0.41	ug/L		11/13/15 14:06	11/16/15 17:00	1
Acenaphthylene	ND	Н	5.0	0.38	ug/L		11/13/15 14:06	11/16/15 17:00	1
Acetophenone	ND	Н	5.0	0.54	ug/L		11/13/15 14:06	11/16/15 17:00	1
Anthracene	ND	Н	5.0	0.28	ug/L		11/13/15 14:06	11/16/15 17:00	1
Atrazine	ND	Н	5.0	0.46	ug/L		11/13/15 14:06	11/16/15 17:00	1
Benzaldehyde	ND	Н	5.0	0.27	ug/L		11/13/15 14:06	11/16/15 17:00	1
Benzo(a)anthracene	ND	Н	5.0	0.36	ug/L		11/13/15 14:06	11/16/15 17:00	1
Benzo(a)pyrene	ND	Н	5.0	0.47	ug/L		11/13/15 14:06	11/16/15 17:00	1
Benzo(b)fluoranthene	ND	Н	5.0	0.34	ug/L		11/13/15 14:06	11/16/15 17:00	1
Benzo(g,h,i)perylene	ND	Н	5.0	0.35	ug/L		11/13/15 14:06	11/16/15 17:00	1
Benzo(k)fluoranthene	ND	Н	5.0	0.73	ug/L		11/13/15 14:06	11/16/15 17:00	1
Biphenyl	ND	Н	5.0	0.65	ug/L		11/13/15 14:06	11/16/15 17:00	1

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: EB04

Date Collected: 10/29/15 16:30

TestAmerica Job ID: 480-90206-1

Lab Sample ID: 480-90206-8

Matrix: Water

Date Received: 10/30/15 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
bis (2-chloroisopropyl) ether	ND	H	5.0	0.52	ug/L		11/13/15 14:06	11/16/15 17:00	1
Bis(2-chloroethoxy)methane	ND	Н	5.0	0.35	ug/L		11/13/15 14:06	11/16/15 17:00	1
Bis(2-chloroethyl)ether	ND	Н	5.0	0.40	ug/L		11/13/15 14:06	11/16/15 17:00	1
Bis(2-ethylhexyl) phthalate	ND	Н	5.0	1.8	ug/L		11/13/15 14:06	11/16/15 17:00	1
Butyl benzyl phthalate	ND	Н	5.0	0.42	ug/L		11/13/15 14:06	11/16/15 17:00	1
Caprolactam	ND	Н	5.0	2.2	ug/L		11/13/15 14:06	11/16/15 17:00	1
Carbazole	ND	Н	5.0	0.30	ug/L		11/13/15 14:06	11/16/15 17:00	1
Chrysene	ND	Н	5.0	0.33	ug/L		11/13/15 14:06	11/16/15 17:00	1
Dibenz(a,h)anthracene	ND	Н	5.0	0.42	ug/L		11/13/15 14:06	11/16/15 17:00	1
Dibenzofuran	ND	Н	10	0.51	ug/L		11/13/15 14:06	11/16/15 17:00	1
Diethyl phthalate	ND	Н	5.0	0.22	ug/L		11/13/15 14:06	11/16/15 17:00	1
Dimethyl phthalate	ND	Н	5.0	0.36	ug/L		11/13/15 14:06	11/16/15 17:00	1
Di-n-butyl phthalate	ND	Н	5.0	0.31	ug/L		11/13/15 14:06	11/16/15 17:00	1
Di-n-octyl phthalate	ND	Н	5.0	0.47	ug/L		11/13/15 14:06	11/16/15 17:00	1
Fluoranthene	ND	Н	5.0	0.40	ug/L		11/13/15 14:06	11/16/15 17:00	1
Fluorene	ND	Н	5.0	0.36	ug/L		11/13/15 14:06	11/16/15 17:00	1
Hexachlorobenzene	ND	Н	5.0	0.51	ug/L		11/13/15 14:06	11/16/15 17:00	1
Hexachlorobutadiene	ND	Н	5.0	0.68	ug/L		11/13/15 14:06	11/16/15 17:00	1
Hexachlorocyclopentadiene	ND	Н	5.0	0.59	ug/L		11/13/15 14:06	11/16/15 17:00	1
Hexachloroethane	ND	Н	5.0	0.59	ug/L		11/13/15 14:06	11/16/15 17:00	1
Indeno(1,2,3-cd)pyrene	ND	Н	5.0	0.47	ug/L		11/13/15 14:06	11/16/15 17:00	1
Isophorone	ND	Н	5.0	0.43	ug/L		11/13/15 14:06	11/16/15 17:00	1
Naphthalene	ND	Н	5.0	0.76	ug/L		11/13/15 14:06	11/16/15 17:00	1
Nitrobenzene	ND	Н	5.0	0.29	ug/L		11/13/15 14:06	11/16/15 17:00	1
N-Nitrosodi-n-propylamine	ND	Н	5.0	0.54	ug/L		11/13/15 14:06	11/16/15 17:00	1
N-Nitrosodiphenylamine	ND	Н	5.0	0.51	ug/L		11/13/15 14:06	11/16/15 17:00	1
Pentachlorophenol	ND	Н	10	2.2	ug/L		11/13/15 14:06	11/16/15 17:00	1
Phenanthrene	ND	Н	5.0	0.44	ug/L		11/13/15 14:06	11/16/15 17:00	1
Phenol	ND	Н	5.0	0.39	ug/L		11/13/15 14:06	11/16/15 17:00	1
Pyrene	ND	Н	5.0	0.34	ug/L		11/13/15 14:06	11/16/15 17:00	1
Dimethylformamide	ND	Н	20	1.7	ug/L		11/13/15 14:06	11/16/15 17:00	1
Tontatively Identified Compound	Est Posult		Init D		DT C	. A S No	Propared	Analyzod	Dil Eac

	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
15	THJ	ug/L		3.42		11/13/15 14:06	11/16/15 17:00	1
24	THJN	ug/L		3.47	110-82-7	11/13/15 14:06	11/16/15 17:00	1
90	THJ	ug/L		3.62		11/13/15 14:06	11/16/15 17:00	1
4.6	THJ	ug/L		5.40		11/13/15 14:06	11/16/15 17:00	1
2.7	THJN	ug/L		6.44	556-67-2	11/13/15 14:06	11/16/15 17:00	1
4.4	THJN	ug/L		6.64	124-18-5	11/13/15 14:06	11/16/15 17:00	1
2.0	THJN	ug/L		7.38	541-02-6	11/13/15 14:06	11/16/15 17:00	1
2.0	THJN	ug/L		8.27	540-97-6	11/13/15 14:06	11/16/15 17:00	1
4.0	THJ	ug/L		13.53		11/13/15 14:06	11/16/15 17:00	1
1.6	THJ	ug/L		14.18		11/13/15 14:06	11/16/15 17:00	1
1.8	THJ	ug/L		14.87		11/13/15 14:06	11/16/15 17:00	1
1.7	THJ	ug/L		14.94		11/13/15 14:06	11/16/15 17:00	1
	24 90 4.6 2.7 4.4 2.0 2.0 4.0 1.6 1.8	24 THJN 90 THJ 4.6 THJ 2.7 THJN 4.4 THJN 2.0 THJN	24 THJN ug/L 90 THJ ug/L 4.6 THJ ug/L 2.7 THJN ug/L 4.4 THJN ug/L 2.0 THJN ug/L 2.0 THJN ug/L 4.0 THJ ug/L 1.6 THJ ug/L 1.8 THJ ug/L	24 THJN ug/L 90 THJ ug/L 4.6 THJ ug/L 2.7 THJN ug/L 4.4 THJN ug/L 2.0 THJN ug/L 2.0 THJN ug/L 4.0 THJ ug/L 1.6 THJ ug/L 1.8 THJ ug/L	24 THJN ug/L 3.47 90 THJ ug/L 3.62 4.6 THJ ug/L 5.40 2.7 THJN ug/L 6.44 4.4 THJN ug/L 7.38 2.0 THJN ug/L 8.27 4.0 THJ ug/L 13.53 1.6 THJ ug/L 14.18 1.8 THJ ug/L 14.87	24 THJN ug/L 3.47 110-82-7 90 THJ ug/L 3.62 4.6 THJ ug/L 5.40 2.7 THJN ug/L 6.44 556-67-2 4.4 THJN ug/L 6.64 124-18-5 2.0 THJN ug/L 7.38 541-02-6 2.0 THJN ug/L 8.27 540-97-6 4.0 THJ ug/L 13.53 1.6 THJ ug/L 14.18 1.8 THJ ug/L 14.87	24 THJN ug/L 3.47 110-82-7 11/13/15 14:06 90 THJ ug/L 3.62 11/13/15 14:06 4.6 THJ ug/L 5.40 11/13/15 14:06 2.7 THJN ug/L 6.44 556-67-2 11/13/15 14:06 4.4 THJN ug/L 6.64 124-18-5 11/13/15 14:06 2.0 THJN ug/L 7.38 541-02-6 11/13/15 14:06 2.0 THJN ug/L 8.27 540-97-6 11/13/15 14:06 4.0 THJ ug/L 13.53 11/13/15 14:06 1.6 THJ ug/L 14.18 11/13/15 14:06 1.8 THJ ug/L 14.87 11/13/15 14:06	24 THJN ug/L 3.47 110-82-7 11/13/15 14:06 11/16/15 17:00 90 THJ ug/L 3.62 11/13/15 14:06 11/16/15 17:00 4.6 THJ ug/L 5.40 11/13/15 14:06 11/16/15 17:00 2.7 THJN ug/L 6.44 556-67-2 11/13/15 14:06 11/16/15 17:00 4.4 THJN ug/L 6.64 124-18-5 11/13/15 14:06 11/16/15 17:00 2.0 THJN ug/L 7.38 541-02-6 11/13/15 14:06 11/16/15 17:00 2.0 THJN ug/L 8.27 540-97-6 11/13/15 14:06 11/16/15 17:00 4.0 THJ ug/L 13.53 11/13/15 14:06 11/16/15 17:00 1.6 THJ ug/L 14.18 11/13/15 14:06 11/16/15 17:00 1.8 THJ ug/L 14.87 11/13/15 14:06 11/16/15 17:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	80	52 - 132	11/13/15 14:06	11/16/15 17:00	1
2-Fluorobiphenyl	98	48 - 120	11/13/15 14:06	11/16/15 17:00	1
2-Fluorophenol	67	20 - 120	11/13/15 14:06	11/16/15 17:00	1

TestAmerica Buffalo

Page 27 of 68

a Banaio

3

5

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90206-1

Client Sample ID: EB04 Date Collected: 10/29/15 16:30

Lab Sample ID: 480-90206-8

11/03/15 07:52 11/03/15 18:40

Matrix: Water

Date	Received:	10/30/15	09:00

DCB Decachlorobiphenyl

Wethod. 0270D - Seniivolatile	Organic Coi	iipoulius (Go/Mis)	· NE (Continued)		
Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	91	46 - 120	11/13/15 14:06	11/16/15 17:00	1
Phenol-d5	48	16 - 120	11/13/15 14:06	11/16/15 17:00	1
p-Terphenyl-d14	111	67 - 150	11/13/15 14:06	11/16/15 17:00	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		1.0	0.14	mg/L			11/02/15 13:46	1
Isobutyl alcohol	0.95	J	1.0	0.37	mg/L			11/02/15 13:46	1
Methanol	0.92	J	1.0	0.41	mg/L			11/02/15 13:46	1
n-Butanol	2.4		1.0	0.40	mg/L			11/02/15 13:46	1
Propanol	ND		1.0	0.16	mg/L			11/02/15 13:46	1
2-Butanol	0.19	J	1.0	0.17	mg/L			11/02/15 13:46	1
Isopropyl alcohol	0.12	J	1.0	0.12	mg/L			11/02/15 13:46	1
t-Butyl alcohol	ND		1.0	0.10	mg/L			11/02/15 13:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	106		62 - 129					11/02/15 13:46	1

Method: 8082A - Polychl	orinated Biphenyls (PCBs)	by Gas Chro	matogr	aphy				
Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	0.48	0.17	ug/L		11/03/15 07:52	11/03/15 18:40	1
PCB-1221	ND	0.48	0.17	ug/L		11/03/15 07:52	11/03/15 18:40	1
PCB-1232	ND	0.48	0.17	ug/L		11/03/15 07:52	11/03/15 18:40	1
PCB-1242	ND	0.48	0.17	ug/L		11/03/15 07:52	11/03/15 18:40	1
PCB-1248	ND	0.48	0.17	ug/L		11/03/15 07:52	11/03/15 18:40	1
PCB-1254	ND	0.48	0.24	ug/L		11/03/15 07:52	11/03/15 18:40	1
PCB-1260	ND	0.48	0.24	ug/L		11/03/15 07:52	11/03/15 18:40	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	93	24 - 137				11/03/15 07:52	11/03/15 18:40	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		11/03/15 07:55	11/03/15 19:13	1
Barium	ND		0.0020	0.00070	mg/L		11/03/15 07:55	11/03/15 19:13	1
Cadmium	ND		0.0020	0.00050	mg/L		11/03/15 07:55	11/03/15 19:13	1
Chromium	0.0014	J	0.0040	0.0010	mg/L		11/03/15 07:55	11/03/15 19:13	1
Lead	ND		0.010	0.0030	mg/L		11/03/15 07:55	11/03/15 19:13	1
Selenium	ND		0.025	0.0087	mg/L		11/03/15 07:55	11/03/15 19:13	1
Silver	ND		0.0060	0.0017	mg/L		11/03/15 07:55	11/03/15 19:13	1

19 - 125

Method: 7470A - Mercury (CVAA))									
Analyte	Result Qu	ualifier	RL	MDL	Unit	D		Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		1	1/04/15 10:35	11/04/15 17:33	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90206-1

Lab Sample ID: 480-90206-9

Matrix: Water

Client Sample ID: TB04

Date Collected: 10/29/15 00:00

Date Received: 10/30/15 09:00

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			11/11/15 15:30	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			11/11/15 15:30	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			11/11/15 15:30	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			11/11/15 15:30	•
1,1-Dichloroethane	ND	1.0	0.38	ug/L			11/11/15 15:30	•
1,1-Dichloroethene	ND	1.0	0.29	ug/L			11/11/15 15:30	
1,2,3-Trichlorobenzene	ND	1.0	0.41	ug/L			11/11/15 15:30	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			11/11/15 15:30	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			11/11/15 15:30	
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			11/11/15 15:30	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			11/11/15 15:30	
1,2-Dichloroethane	ND	1.0		ug/L			11/11/15 15:30	
1,2-Dichloropropane	ND	1.0		ug/L			11/11/15 15:30	
1,3-Dichlorobenzene	ND	1.0		ug/L			11/11/15 15:30	
1,4-Dichlorobenzene	ND	1.0		ug/L			11/11/15 15:30	
1,4-Dioxane	ND	40		ug/L			11/11/15 15:30	
2-Butanone (MEK)	ND	10		ug/L			11/11/15 15:30	
2-Hexanone	ND	5.0		ug/L			11/11/15 15:30	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			11/11/15 15:30	
Acetone	ND	10		ug/L			11/11/15 15:30	
Benzene	ND	1.0		ug/L			11/11/15 15:30	
Bromochloromethane	ND	1.0		ug/L			11/11/15 15:30	
Bromodichloromethane	ND	1.0		ug/L			11/11/15 15:30	
Bromoform	ND	1.0		ug/L			11/11/15 15:30	
Bromomethane	ND	1.0		ug/L			11/11/15 15:30	
Carbon disulfide	ND	1.0		ug/L			11/11/15 15:30	
Carbon tetrachloride	ND	1.0		ug/L			11/11/15 15:30	
Chlorobenzene	ND	1.0		ug/L			11/11/15 15:30	
Chloroethane	ND	1.0		ug/L			11/11/15 15:30	
Chloroform	ND	1.0		ug/L			11/11/15 15:30	
Chloromethane	ND	1.0		ug/L			11/11/15 15:30	
cis-1,2-Dichloroethene	ND	1.0		ug/L			11/11/15 15:30	
cis-1,3-Dichloropropene	ND	1.0		ug/L			11/11/15 15:30	
Cyclohexane	ND	1.0		ug/L			11/11/15 15:30	
Dibromochloromethane	ND	1.0		ug/L			11/11/15 15:30	
Dichlorodifluoromethane	ND	1.0		ug/L			11/11/15 15:30	
Ethylbenzene	ND	1.0		ug/L			11/11/15 15:30	
sopropylbenzene	ND	1.0		ug/L ug/L			11/11/15 15:30	
Methyl acetate	ND ND	2.5		ug/L ug/L			11/11/15 15:30	
				ug/L ug/L				
Methyl tert-butyl ether	ND	1.0					11/11/15 15:30	
Methylcyclohexane	ND ND	1.0 1.0		ug/L			11/11/15 15:30 11/11/15 15:30	
Methylene Chloride				ug/L				
Styrene	ND ND	1.0		ug/L			11/11/15 15:30	
Tetrachloroethene	ND	1.0		ug/L			11/11/15 15:30	
Foluene	ND	1.0		ug/L			11/11/15 15:30	
rans-1,2-Dichloroethene	ND	1.0		ug/L			11/11/15 15:30	
trans-1,3-Dichloropropene	ND	1.0		ug/L			11/11/15 15:30	•
Trichloroethene	ND	1.0		ug/L			11/11/15 15:30	
Trichlorofluoromethane	ND	1.0	0.88	ug/L			11/11/15 15:30	

TestAmerica Buffalo

Page 29 of 68

_

3

5

9

11 12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: TB04

Date Collected: 10/29/15 00:00

Date Received: 10/30/15 09:00

TestAmerica Job ID: 480-90206-1

Lab Sample ID: 480-90206-9

Matrix: Water

Analyte	Result	Qualifier	RL		MDL	Unit		Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		1.0		0.90	ug/L			11/11/15 15:30	1
Xylenes, Total	ND		2.0		0.66	ug/L			11/11/15 15:30	1
Tetrahydrofuran	ND		5.0		1.3	ug/L			11/11/15 15:30	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No	. Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L						11/11/15 15:30	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		66 - 137						11/11/15 15:30	1
4-Bromofluorobenzene (Surr)	97		73 - 120						11/11/15 15:30	1
Toluene-d8 (Surr)	97		71 - 126						11/11/15 15:30	1
			60 - 140						11/11/15 15:30	

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

			Pe	rcent Surre	ogate Reco
		DBFM	12DCE	TOL	BFB
Lab Sample ID	Client Sample ID	(60-140)	(64-126)	(71-125)	(72-126)
480-90206-1	SWMU7-SS-04	106	101	105	100
480-90206-2	SWMU7-SS-06	102	98	101	94
480-90206-3	SWMU7-SS-05	102	96	104	91
480-90206-4	SWMU7-SS-BLDG23-23	108	100	105	99
480-90206-5	SWMU7-SS-BLDG23-24	99	96	103	92
480-90206-6	SWMU7-SS-BLDG23-25	107	105	103	100
480-90206-7	SWMU1-SSURFACE-SS-01	103	100	101	96
LCS 480-272275/1-A	Lab Control Sample	98	91	100	97
LCSD 480-272275/2-A	Lab Control Sample Dup	100	93	99	97
MB 480-272275/3-A	Method Blank	101	97	101	96

Surrogate Legend

DBFM = Dibromofluoromethane (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

_ 			Percent Surrogate Recovery (Acceptance							
		DBFM	12DCE	TOL	BFB					
Lab Sample ID	Client Sample ID	(60-140)	(53-146)	(50-149)	(49-148)					
480-90206-5 - DL	SWMU7-SS-BLDG23-24	92	96	94	93					
LCS 480-272280/1-A	Lab Control Sample	93	92	92	93					
LCSD 480-272280/2-A	Lab Control Sample Dup	98	94	93	96					
MB 480-272280/3-A	Method Blank	95	96	98	94					

Surrogate Legend

DBFM = Dibromofluoromethane (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)							
		12DCE	BFB	TOL	DBFM				
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)	(60-140)				
480-90206-8	EB04	103	97	99	95				
480-90206-9	TB04	101	97	97	94				
LCS 480-274226/4	Lab Control Sample	96	101	101	99				
LCS 480-274360/4	Lab Control Sample	96	103	100	97				
MB 480-274226/6	Method Blank	99	95	100	95				
MB 480-274360/6	Method Blank	104	96	96	96				

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Page 31 of 68

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	rcent Surro	ogate Reco	very (Acce	otance Limi
		TBP	FBP	2FP	NBZ	PHL	TPH
ab Sample ID	Client Sample ID	(52-132)	(48-120)	(20-120)	(46-120)	(16-120)	(67-150)
-90206-8	EB04	35 X	80	0 X	73	0.3 X	91
90206-8 - RE	EB04	80	98	67	91	48	111
180-272533/2-A	Lab Control Sample	113	85	56	76	48	98
80-274902/2-A	Lab Control Sample	83	86	69	90	57	103
180-274902/3-A	Lab Control Sample Dup	87	87	73	92	55	108
80-272533/1-A	Method Blank	70	78	45	75	34	92
80-274902/1-A	Method Blank	72	85	64	91	48	104

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPH = p-Terphenyl-d14

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		2HN1	
Lab Sample ID	Client Sample ID	(62-129)	
480-90206-8	EB04	106	
LCS 480-272574/5	Lab Control Sample	112	
MB 480-272574/4	Method Blank	112	
Surrogate Legend			
2HN = 2-Hexanone			

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		TCX2	DCB2					
Lab Sample ID	Client Sample ID	(24-137)	(19-125)					
480-90206-8	EB04	93	48					
LCS 480-272701/2-A	Lab Control Sample	82	38					
MB 480-272701/1-A	Method Blank	81	65					
Surrogate Legend								

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

TestAmerica Buffalo

2

Λ

5

7

8

9

11

10

14

QC Sample Results

Client: Woodard & Curran, Inc. TestAmerica Job ID: 480-90206-1 Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-272275/3-A Matrix: Solid

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 272275

Analysis Batch: 273440		MD						Prep Type: To Prep Batch:	
Analyte		MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.36	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.81	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0	1.1	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
1,1,2-Trichloroethane	ND		5.0	0.65	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
1,1-Dichloroethane	ND		5.0	0.61	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
1,1-Dichloroethene	ND		5.0	0.61	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
1,2,3-Trichlorobenzene	ND		5.0	0.53	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
1,2,4-Trichlorobenzene	ND		5.0	0.30	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
1,2-Dibromo-3-Chloropropane	ND		5.0	2.5	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
1,2-Dichlorobenzene	ND		5.0	0.39	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
1,2-Dichloroethane	ND		5.0	0.25	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
1,2-Dichloropropane	ND		5.0	2.5	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
1,3-Dichlorobenzene	ND		5.0	0.26	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
1,4-Dichlorobenzene	ND		5.0	0.70	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
1,4-Dioxane	ND		100	22	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
2-Hexanone	ND		25	2.5	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
Acetone	ND		25	4.2	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
Benzene	ND		5.0	0.24	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
Bromochloromethane	ND		5.0	0.36	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
Bromoform	ND		5.0	2.5	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
Bromomethane	ND		5.0	0.45	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
Carbon disulfide	ND		5.0	2.5	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
Carbon tetrachloride	ND		5.0	0.48	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
Chlorobenzene	ND		5.0	0.66	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
Chloroethane	ND		5.0	1.1	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
Chloroform	ND		5.0	0.31	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
Bromodichloromethane	ND		5.0	0.67	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
Chloromethane	ND		5.0	0.30	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
cis-1,2-Dichloroethene	ND		5.0	0.64	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
cis-1,3-Dichloropropene	ND		5.0	0.72	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
1,2-Dibromoethane (EDB)	ND		5.0	0.64	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
Cyclohexane	ND		5.0	0.70	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
Dibromochloromethane	ND		5.0	0.64	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
Dichlorodifluoromethane	ND		5.0	0.41	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
2-Butanone (MEK)	ND		25	1.8	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
Ethylbenzene	ND		5.0		ug/Kg		10/30/15 17:58	11/06/15 02:30	1
4-Methyl-2-pentanone (MIBK)	ND		25	1.6	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
Isopropylbenzene	ND		5.0		ug/Kg		10/30/15 17:58	11/06/15 02:30	1
Methyl acetate	ND		5.0	3.0	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
Methyl tert-butyl ether	ND		5.0	0.49	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
Methylcyclohexane	ND		5.0		ug/Kg		10/30/15 17:58	11/06/15 02:30	1
Methylene Chloride	ND		5.0		ug/Kg			11/06/15 02:30	1
Styrene	ND		5.0		ug/Kg		10/30/15 17:58	11/06/15 02:30	1
Tetrachloroethene	ND		5.0		ug/Kg		10/30/15 17:58	11/06/15 02:30	1
Toluene	ND		5.0		ug/Kg			11/06/15 02:30	1
trans-1,2-Dichloroethene	ND		5.0		ug/Kg			11/06/15 02:30	1
trans-1,3-Dichloropropene	ND		5.0		ug/Kg			11/06/15 02:30	1
Trichloroethene	ND		5.0		ug/Kg			11/06/15 02:30	1

TestAmerica Buffalo

Page 33 of 68

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Analysis Batch: 273440

Tentatively Identified Compound

Tentatively Identified Compound

Matrix: Solid

Lab Sample ID: MB 480-272275/3-A

2

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: Method Blank
Prep Type: Total/NA

Prep Batch: 272275

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		5.0	0.47	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
Vinyl chloride	ND		5.0	0.61	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
Xylenes, Total	ND		10	0.84	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
Tetrahydrofuran	ND		10	2.9	ug/Kg		10/30/15 17:58	11/06/15 02:30	1
	MD	MD							

D

RT

Unit

ug/Kg

 CAS No.
 Prepared
 Analyzed
 Dil Fac

 10/30/15 17:58
 11/06/15 02:30
 1

MB MB Qualifier Surrogate %Recovery Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 97 10/30/15 17:58 64 - 126 11/06/15 02:30 Toluene-d8 (Surr) 101 71 - 125 10/30/15 17:58 11/06/15 02:30 101 60 - 140 Dibromofluoromethane (Surr) 10/30/15 17:58 11/06/15 02:30 10/30/15 17:58 11/06/15 02:30 96 72 - 126 4-Bromofluorobenzene (Surr)

> Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 272275

Lab Sample ID: LCS 480-272275/1-A Cli Matrix: Solid Analysis Batch: 273440

Est. Result Qualifier

None

Spike LCS LCS %Rec. Limits Analyte Added Result Qualifier Unit %Rec 49.4 49.7 77 - 121 1,1,1-Trichloroethane ug/Kg 101 1,1,2,2-Tetrachloroethane 49.4 49.9 ug/Kg 101 80 - 120 49.4 46.6 ug/Kg 94 60 - 140 1,1,2-Trichloro-1,2,2-trifluoroetha 1,1,2-Trichloroethane 494 50.7 103 78 - 122 ug/Kg 1,1-Dichloroethane 49.4 47.4 ug/Kg 96 73 - 126 97 1 1-Dichloroethene 49 4 47 9 ug/Kg 59 - 1251,2,3-Trichlorobenzene 49.4 49.1 ug/Kg 99 60 - 120 1.2.4-Trichlorobenzene 49.4 50.3 ug/Kg 102 64 - 1201,2-Dibromo-3-Chloropropane 49.4 48.2 ug/Kg 97 63 - 1241,2-Dichlorobenzene 49.4 50.8 103 75 - 120 ug/Kg 77 - 122 1,2-Dichloroethane 49.4 45.7 ug/Kg 93 99 1,2-Dichloropropane 49.4 48.7 ug/Kg 75 - 124102 1,3-Dichlorobenzene 49.4 50.5 74 - 120 ug/Kg 102 1,4-Dichlorobenzene 49.4 50.4 ug/Kg 73 - 120 2-Hexanone 247 235 ug/Kg 95 59 - 130 247 214 87 61 - 137 Acetone ug/Kg Benzene 49 4 49 1 99 79 _ 127 ug/Kg Bromochloromethane 49.4 51.0 ug/Kg 103 75 - 134 Bromoform 49.4 68 - 126 55.3 ug/Kg 112 Bromomethane 49.4 53.2 ug/Kg 108 37 - 149Carbon disulfide 49.4 48.2 98 64 - 131 ug/Kg Carbon tetrachloride 49.4 51.7 ug/Kg 105 75 - 135Chlorobenzene 49.4 51.7 105 76 - 124ug/Kg 45.8 93 Chloroethane 49.4 ug/Kg 69 - 13598 Chloroform 49.4 48.5 ug/Kg 80 - 118 Bromodichloromethane 49.4 51.5 104 80 - 122ug/Kg 49.4 74 63 - 127 Chloromethane 36.5 ug/Kg 81 - 117 cis-1,2-Dichloroethene 49.4 50.0 ug/Kg 101

TestAmerica Buffalo

Page 34 of 68

- -

4

6

8

9

11

13

14

15

arronoa Barran

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-272275/1-A

Matrix: Solid

Analysis Batch: 273440

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 272275

Analysis Batch: 273440	Spike	LCS	LCS				Prep Batch: 27227 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
cis-1,3-Dichloropropene	49.4	50.7		ug/Kg		103	82 - 120
1,2-Dibromoethane (EDB)	49.4	51.5		ug/Kg		104	78 - 120
Cyclohexane	49.4	46.8		ug/Kg		95	65 - 106
Dibromochloromethane	49.4	55.4		ug/Kg		112	76 - 125
Dichlorodifluoromethane	49.4	31.0		ug/Kg		63	57 ₋ 142
2-Butanone (MEK)	247	240		ug/Kg		97	70 - 134
Ethylbenzene	49.4	51.3		ug/Kg		104	80 - 120
4-Methyl-2-pentanone (MIBK)	247	229		ug/Kg		93	65 - 133
Isopropylbenzene	49.4	51.0		ug/Kg		103	72 - 120
Methyl acetate	247	213		ug/Kg		86	55 ₋ 136
Methyl tert-butyl ether	49.4	47.9		ug/Kg		97	63 - 125
Methylcyclohexane	49.4	49.8		ug/Kg		101	60 - 140
Methylene Chloride	49.4	42.4		ug/Kg		86	61 - 127
Styrene	49.4	52.6		ug/Kg		106	80 - 120
Tetrachloroethene	49.4	51.9		ug/Kg		105	74 - 122
Toluene	49.4	50.7		ug/Kg		103	74 - 128
trans-1,2-Dichloroethene	49.4	49.3		ug/Kg		100	78 ₋ 126
trans-1,3-Dichloropropene	49.4	51.2		ug/Kg		104	73 - 123
Trichloroethene	49.4	50.1		ug/Kg		101	77 - 129
Trichlorofluoromethane	49.4	44.6		ug/Kg		90	65 - 146
Vinyl chloride	49.4	39.1		ug/Kg		79	61 - 133
Xylenes, Total	98.8	104		ug/Kg		105	70 - 130
Tetrahydrofuran	98.8	90.6		ug/Kg		92	64 - 113

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	91		64 - 126
Toluene-d8 (Surr)	100		71 - 125
Dibromofluoromethane (Surr)	98		60 - 140
4-Bromofluorobenzene (Surr)	97		72 - 126

Lab Sample ID: LCSD 480-272275/2-A

Matrix: Solid

Analysis Batch: 273440

Client Sample	ID: Lab	Control Sample Dup
		Prep Type: Total/NA
		Prep Batch: 272275

Alialysis Dalcil. 213440							Fieb Do	11011. <i>21</i>	12213
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	47.3	48.7		ug/Kg		103	77 - 121	2	20
1,1,2,2-Tetrachloroethane	47.3	49.3		ug/Kg		104	80 - 120	1	20
1,1,2-Trichloro-1,2,2-trifluoroetha	47.3	46.9		ug/Kg		99	60 - 140	1	20
ne									
1,1,2-Trichloroethane	47.3	48.5		ug/Kg		103	78 - 122	5	20
1,1-Dichloroethane	47.3	46.6		ug/Kg		99	73 - 126	2	20
1,1-Dichloroethene	47.3	48.1		ug/Kg		102	59 - 125	0	20
1,2,3-Trichlorobenzene	47.3	47.9		ug/Kg		101	60 - 120	2	20
1,2,4-Trichlorobenzene	47.3	49.3		ug/Kg		104	64 - 120	2	20
1,2-Dibromo-3-Chloropropane	47.3	48.7		ug/Kg		103	63 - 124	1	20
1,2-Dichlorobenzene	47.3	48.7		ug/Kg		103	75 - 120	4	20
1,2-Dichloroethane	47.3	45.0		ug/Kg		95	77 - 122	2	20
1,2-Dichloropropane	47.3	46.5		ug/Kg		98	75 - 124	5	20

TestAmerica Buffalo

Page 35 of 68

3

5

7

_

10

12

13

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 480-272275/2-A

Matrix: Solid

Analysis Batch: 273440

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 272275

Amelinta	Spike Added		LCSD Qualifier	l lm:4	_	0/ Dag	%Rec. Limits	RPD	RPD
Analyte 1,3-Dichlorobenzene	47.3 Added	49.2		Unit ug/Kg	D	%Rec 104	74 ₋ 120	3	Limit 20
	47.3	48.1				104	73 - 120	5	20
1,4-Dichlorobenzene	236	240		ug/Kg				2	20
2-Hexanone				ug/Kg		102	59 ₋ 130		
Acetone	236	227		ug/Kg		96	61 - 137	6	20
Benzene	47.3	48.0		ug/Kg		102	79 ₋ 127	2	20
Bromochloromethane	47.3	49.7		ug/Kg		105	75 - 134	2	20
Bromoform	47.3	53.9		ug/Kg		114	68 - 126	3	20
Bromomethane	47.3	51.2		ug/Kg		108	37 - 149	4	20
Carbon disulfide	47.3	48.3		ug/Kg		102	64 - 131	0	20
Carbon tetrachloride	47.3	50.4		ug/Kg		107	75 - 135	2	20
Chlorobenzene	47.3	49.8		ug/Kg		105	76 - 124	4	20
Chloroethane	47.3	44.7		ug/Kg		95	69 - 135	2	20
Chloroform	47.3	47.3		ug/Kg		100	80 - 118	3	20
Bromodichloromethane	47.3	50.1		ug/Kg		106	80 - 122	3	20
Chloromethane	47.3	34.0		ug/Kg		72	63 - 127	7	20
cis-1,2-Dichloroethene	47.3	49.6		ug/Kg		105	81 - 117	1	20
cis-1,3-Dichloropropene	47.3	48.6		ug/Kg		103	82 - 120	4	20
1,2-Dibromoethane (EDB)	47.3	50.1		ug/Kg		106	78 - 120	3	20
Cyclohexane	47.3	45.5		ug/Kg		96	65 - 106	3	20
Dibromochloromethane	47.3	52.8		ug/Kg		112	76 - 125	5	20
Dichlorodifluoromethane	47.3	28.5		ug/Kg		60	57 - 142	8	20
2-Butanone (MEK)	236	248		ug/Kg		105	70 - 134	3	20
Ethylbenzene	47.3	49.7		ug/Kg		105	80 - 120	3	20
4-Methyl-2-pentanone (MIBK)	236	229		ug/Kg		97	65 - 133	0	20
Isopropylbenzene	47.3	49.2		ug/Kg		104	72 - 120	4	20
Methyl acetate	236	221		ug/Kg		93	55 - 136	3	20
Methyl tert-butyl ether	47.3	47.1		ug/Kg		100	63 - 125	2	20
Methylcyclohexane	47.3	48.5		ug/Kg		103	60 - 140	3	20
Methylene Chloride	47.3	42.1		ug/Kg		89	61 - 127	1	20
Styrene	47.3	50.2		ug/Kg		106	80 - 120	5	20
Tetrachloroethene	47.3	50.3		ug/Kg		106	74 - 122	3	20
Toluene	47.3	48.4		ug/Kg		102	74 ₋ 128	5	20
trans-1,2-Dichloroethene	47.3	49.1		ug/Kg		104	78 ₋ 126	0	20
trans-1,3-Dichloropropene	47.3	49.2		ug/Kg		104	73 - 123	4	20
Trichloroethene	47.3	49.1		ug/Kg		104	77 ₋ 129	2	20
Trichlorofluoromethane	47.3	45.4		ug/Kg		96	65 - 146	2	20
Vinyl chloride	47.3	35.9		ug/Kg		76	61 - 133	9	20
Xylenes, Total	94.5	99.3		ug/Kg		105	70 - 130	4	20
Tetrahydrofuran	94.5	93.9		ug/Kg		99	64 - 113	3	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		64 - 126
Toluene-d8 (Surr)	99		71 - 125
Dibromofluoromethane (Surr)	100		60 - 140
4-Bromofluorobenzene (Surr)	97		72 - 126

TestAmerica Buffalo

QC Sample Results

Client: Woodard & Curran, Inc. TestAmerica Job ID: 480-90206-1 Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-272280/3-A

Matrix: Solid

Tetrachloroethene

Trichloroethene

trans-1.2-Dichloroethene

trans-1,3-Dichloropropene

Toluene

Analysis Batch: 274025

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 272280

MB MB Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac **Analyte** 98 10/30/15 18:19 11/10/15 00:07 1,1,1-Trichloroethane ND 27 ug/Kg ND 1,1,2,2-Tetrachloroethane 98 ug/Kg 10/30/15 18:19 11/10/15 00:07 1 10/30/15 18:19 11/10/15 00:07 1,1,2-Trichloro-1,2,2-trifluoroethane ND 98 49 ug/Kg 98 1,1,2-Trichloroethane ND 21 ug/Kg 10/30/15 18:19 11/10/15 00:07 1,1-Dichloroethane ND 98 ug/Kg 10/30/15 18:19 11/10/15 00:07 1,1-Dichloroethene ND 98 34 ug/Kg 10/30/15 18:19 11/10/15 00:07 ND 98 1,2,3-Trichlorobenzene 45 10/30/15 18:19 11/10/15 00:07 ug/Kg 98 10/30/15 18:19 11/10/15 00:07 1,2,4-Trichlorobenzene ND 37 ug/Kg ND 98 49 10/30/15 18:19 11/10/15 00:07 1,2-Dibromo-3-Chloropropane ug/Kg 1.2-Dichlorobenzene ND 98 10/30/15 18:19 11/10/15 00:07 ug/Kg ND 10/30/15 18:19 11/10/15 00:07 1.2-Dichloroethane 98 40 ug/Kg 1,2-Dichloropropane ND 98 16 ug/Kg 10/30/15 18:19 11/10/15 00:07 1,3-Dichlorobenzene ND 98 26 ug/Kg 10/30/15 18:19 11/10/15 00:07 1,4-Dichlorobenzene ND 98 14 ug/Kg 10/30/15 18:19 11/10/15 00:07 1,4-Dioxane ND 1900 500 ug/Kg 10/30/15 18:19 11/10/15 00:07 1 ND 490 10/30/15 18:19 11/10/15 00:07 2-Hexanone 200 ug/Kg Acetone ND 490 400 ug/Kg 10/30/15 18:19 11/10/15 00:07 Benzene ND 98 19 ug/Kg 10/30/15 18:19 11/10/15 00:07 Bromochloromethane ND 98 ug/Kg 10/30/15 18:19 11/10/15 00:07 Bromoform ND 98 10/30/15 18:19 11/10/15 00:07 ug/Kg Bromomethane 98 10/30/15 18:19 11/10/15 00:07 ND 22 ug/Kg Carbon disulfide ND 98 45 ug/Kg 10/30/15 18:19 11/10/15 00:07 Carbon tetrachloride ND 98 10/30/15 18:19 11/10/15 00:07 ug/Kg Chlorobenzene ND 98 13 ug/Kg 10/30/15 18:19 11/10/15 00:07 Chloroethane ND 98 20 ug/Kg 10/30/15 18:19 11/10/15 00:07 Chloroform ND 98 67 ug/Kg 10/30/15 18:19 11/10/15 00:07 Bromodichloromethane ND 98 20 ug/Kg 10/30/15 18:19 11/10/15 00:07 Chloromethane ND 98 23 ug/Kg 10/30/15 18:19 11/10/15 00:07 cis-1,2-Dichloroethene ND 98 10/30/15 18:19 11/10/15 00:07 ug/Kg cis-1,3-Dichloropropene ND 98 23 ug/Kg 10/30/15 18:19 11/10/15 00:07 ND 98 1,2-Dibromoethane (EDB) 17 10/30/15 18:19 11/10/15 00:07 ug/Kg Cyclohexane ND 98 22 ug/Kg 10/30/15 18:19 11/10/15 00:07 Dibromochloromethane ND 98 47 ug/Kg 10/30/15 18:19 11/10/15 00:07 Dichlorodifluoromethane ND 98 43 ug/Kg 10/30/15 18:19 11/10/15 00:07 2-Butanone (MEK) ND 490 290 10/30/15 18:19 11/10/15 00:07 ug/Kg Ethylbenzene ND 98 28 ug/Kg 10/30/15 18:19 11/10/15 00:07 ND 490 10/30/15 18:19 11/10/15 00:07 4-Methyl-2-pentanone (MIBK) 31 ug/Kg Isopropylbenzene ND 98 10/30/15 18:19 11/10/15 00:07 ug/Kg Methyl acetate ND 98 47 10/30/15 18:19 11/10/15 00:07 ug/Kg Methyl tert-butyl ether ND 98 37 ug/Kg 10/30/15 18:19 11/10/15 00:07 Methylcyclohexane ND 98 46 ug/Kg 10/30/15 18:19 11/10/15 00:07 Methylene Chloride ND 98 19 ug/Kg 10/30/15 18:19 11/10/15 00:07 Styrene ND 98 24 ug/Kg 10/30/15 18:19 11/10/15 00:07

TestAmerica Buffalo

10/30/15 18:19 11/10/15 00:07

10/30/15 18:19 11/10/15 00:07

10/30/15 18:19 11/10/15 00:07

10/30/15 18:19 11/10/15 00:07

10/30/15 18:19 11/10/15 00:07

Page 37 of 68

98

98

98

98

98

13 ug/Kg

23 ug/Kg

9.6

27

ug/Kg

ug/Kg

ug/Kg

ND

ND

ND

ND

ND

10/30/15 18:19 11/10/15 00:07

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

4-Bromofluorobenzene (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-272280/3-A	Client Sample ID: Method Blank
Matrix: Solid	Prep Type: Total/NA
Analysis Batch: 274025	Prep Batch: 272280
MD MD	•

Analysis Batch: 274025									Prep Batch:	272280
•	MB	MB							•	
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		98		46	ug/Kg		10/30/15 18:19	11/10/15 00:07	1
Vinyl chloride	ND		98		33	ug/Kg		10/30/15 18:19	11/10/15 00:07	1
Xylenes, Total	ND		200		54	ug/Kg		10/30/15 18:19	11/10/15 00:07	1
Tetrahydrofuran	ND		200		49	ug/Kg		10/30/15 18:19	11/10/15 00:07	1
	МВ	МВ								
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg					10/30/15 18:19	11/10/15 00:07	1
	МВ	МВ								
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		53 - 146					10/30/15 18:19	11/10/15 00:07	1
Toluene-d8 (Surr)	98		50 - 149					10/30/15 18:19	11/10/15 00:07	1
Dibromofluoromethane (Surr)	95		60 - 140					10/30/15 18:19	11/10/15 00:07	1

_							
Lab Sample ID: LCS 480-272280/1-A				Clie	nt Sa	mple ID	: Lab Control Sample
Matrix: Solid							Prep Type: Total/NA
Analysis Batch: 274025							Prep Batch: 272280
	Spike	LCS	LCS				%Rec.
Δnalyte	hahhΔ	Result	Qualifier	Unit	D	%Rec	Limits

49 - 148

Analysis Batch: 274025	Spike	LCS	LCS				Prep Batch: 272280 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	2500	2230		ug/Kg		89	68 - 130
1,1,2,2-Tetrachloroethane	2500	2250		ug/Kg		90	73 - 119
1,1,2-Trichloro-1,2,2-trifluoroetha	2500	2650		ug/Kg		106	10 - 179
ne							
1,1,2-Trichloroethane	2500	2060		ug/Kg		82	81 - 115
1,1-Dichloroethane	2500	2160		ug/Kg		86	78 ₋ 121
1,1-Dichloroethene	2500	2270		ug/Kg		91	48 - 133
1,2,3-Trichlorobenzene	2500	2230		ug/Kg		89	57 ₋ 155
1,2,4-Trichlorobenzene	2500	2310		ug/Kg		92	70 - 140
1,2-Dibromo-3-Chloropropane	2500	1960		ug/Kg		78	56 - 122
1,2-Dichlorobenzene	2500	2210		ug/Kg		88	78 ₋ 125
1,2-Dichloroethane	2500	2060		ug/Kg		83	74 - 127
1,2-Dichloropropane	2500	2110		ug/Kg		85	81 - 115
1,3-Dichlorobenzene	2500	2240		ug/Kg		89	82 - 114
1,4-Dichlorobenzene	2500	2210		ug/Kg		88	81 - 113
2-Hexanone	12500	11500		ug/Kg		92	70 - 127
Acetone	12500	12400		ug/Kg		99	47 - 141
Benzene	2500	2190		ug/Kg		88	77 - 125
Bromochloromethane	2500	2200		ug/Kg		88	79 - 118
Bromoform	2500	2260		ug/Kg		91	48 - 125
Bromomethane	2500	1770		ug/Kg		71	39 - 149
Carbon disulfide	2500	2160		ug/Kg		86	40 - 136
Carbon tetrachloride	2500	2230		ug/Kg		89	54 ₋ 135
Chlorobenzene	2500	2170		ug/Kg		87	76 ₋ 126
Chloroethane	2500	922		ug/Kg		37	23 - 164
Chloroform	2500	2140		ug/Kg		86	78 - 118
Bromodichloromethane	2500	2180		ug/Kg		87	71 - 121
Chloromethane	2500	2300		ug/Kg		92	61 - 124
cis-1,2-Dichloroethene	2500	2170		ug/Kg		87	79 - 124
I and the second of the second				0 0			

TestAmerica Buffalo

Page 38 of 68

11/19/2015

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

C30-(11)C11C4 000 1D. +00-30200-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-272280/1-A

Matrix: Solid

Analysis Batch: 274025

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 272280

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,3-Dichloropropene	2500	2270		ug/Kg		91	75 - 121	
1,2-Dibromoethane (EDB)	2500	2230		ug/Kg		89	81 ₋ 119	
Cyclohexane	2500	2290		ug/Kg		91	49 - 129	
Dibromochloromethane	2500	2240		ug/Kg		90	64 - 118	
Dichlorodifluoromethane	2500	2290		ug/Kg		92	10 - 150	
2-Butanone (MEK)	12500	12800		ug/Kg		103	54 - 149	
Ethylbenzene	2500	2230		ug/Kg		89	78 ₋ 124	
4-Methyl-2-pentanone (MIBK)	12500	11000		ug/Kg		88	74 - 120	
Isopropylbenzene	2500	2220		ug/Kg		89	76 - 119	
Methyl acetate	12500	10900		ug/Kg		87	71 - 123	
Methyl tert-butyl ether	2500	2100		ug/Kg		84	67 - 137	
Methylcyclohexane	2500	2280		ug/Kg		91	50 ₋ 130	
Methylene Chloride	2500	2400		ug/Kg		96	75 ₋ 118	
Styrene	2500	2210		ug/Kg		89	84 - 119	
Tetrachloroethene	2500	2260		ug/Kg		90	73 - 133	
Toluene	2500	2120		ug/Kg		85	75 - 124	
trans-1,2-Dichloroethene	2500	2360		ug/Kg		94	74 - 129	
trans-1,3-Dichloropropene	2500	2150		ug/Kg		86	73 - 118	
Trichloroethene	2500	2140		ug/Kg		86	75 - 131	
Trichlorofluoromethane	2500	1140		ug/Kg		45	29 - 158	
Vinyl chloride	2500	2480		ug/Kg		99	59 - 124	
Xylenes, Total	5000	4370		ug/Kg		87	78 ₋ 125	
Tetrahydrofuran	5000	4420		ug/Kg		88	59 ₋ 128	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	92		53 - 146
Toluene-d8 (Surr)	92		50 - 149
Dibromofluoromethane (Surr)	93		60 - 140
4-Bromofluorobenzene (Surr)	93		49 - 148

Lab Sample ID: LCSD 480-272280/2-A

Matrix: Solid

Analysis Batch: 274025

Client Sample	ID: Lab	Control Sample Dup
		Prep Type: Total/NA
		Prep Batch: 272280

Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier D %Rec Limits RPD Limit Analyte Unit 2370 20 1,1,1-Trichloroethane 2100 ug/Kg 88 68 - 130 6 2370 1,1,2,2-Tetrachloroethane 2100 ug/Kg 89 73 - 119 7 20 1,1,2-Trichloro-1,2,2-trifluoroetha 2370 2240 ug/Kg 95 10 - 179 17 20 ne 83 5 1,1,2-Trichloroethane 2370 1960 ug/Kg 81 - 115 20 1,1-Dichloroethane 2370 2080 88 78 - 121 20 ug/Kg 2370 90 48 - 133 20 1,1-Dichloroethene 2140 6 ug/Kg 1,2,3-Trichlorobenzene 2370 2070 ug/Kg 87 57 - 155 20 20 1,2,4-Trichlorobenzene 2370 2160 ug/Kg 91 70 - 140 1,2-Dibromo-3-Chloropropane 2370 1790 ug/Kg 75 56 - 122 20 1,2-Dichlorobenzene 2370 2140 90 78 - 125 3 20 ug/Kg 1,2-Dichloroethane 2370 2020 ug/Kg 85 74 - 127 2 20 2370 1,2-Dichloropropane 2110 ug/Kg 89 81 - 115 20

TestAmerica Buffalo

Page 39 of 68

2

3

5

7

9

11

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 480-272280/2-A

Matrix: Solid

Analysis Batch: 274025

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 272280

,	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
1,3-Dichlorobenzene	2370	2110		ug/Kg		89	82 - 114	6	20	
1,4-Dichlorobenzene	2370	2110		ug/Kg		89	81 - 113	4	20	
2-Hexanone	11900	10500		ug/Kg		89	70 - 127	9	20	
Acetone	11900	11400		ug/Kg		96	47 - 141	8	20	
Benzene	2370	2160		ug/Kg		91	77 - 125	1	20	
Bromochloromethane	2370	2170		ug/Kg		91	79 - 118	2	20	
Bromoform	2370	2160		ug/Kg		91	48 - 125	5	20	
Bromomethane	2370	1560		ug/Kg		66	39 - 149	12	20	
Carbon disulfide	2370	2070		ug/Kg		87	40 - 136	4	20	
Carbon tetrachloride	2370	2140		ug/Kg		90	54 - 135	4	20	
Chlorobenzene	2370	2110		ug/Kg		89	76 - 126	3	20	
Chloroethane	2370	826		ug/Kg		35	23 - 164	11	20	
Chloroform	2370	2090		ug/Kg		88	78 - 118	3	20	
Bromodichloromethane	2370	2140		ug/Kg		90	71 - 121	2	20	
Chloromethane	2370	2110		ug/Kg		89	61 - 124	9	20	
cis-1,2-Dichloroethene	2370	2110		ug/Kg		89	79 - 124	3	20	
cis-1,3-Dichloropropene	2370	2210		ug/Kg		93	75 - 121	3	20	
1,2-Dibromoethane (EDB)	2370	2130		ug/Kg		90	81 - 119	5	20	
Cyclohexane	2370	2200		ug/Kg		93	49 - 129	4	20	
Dibromochloromethane	2370	2180		ug/Kg		92	64 - 118	3	20	
Dichlorodifluoromethane	2370	1930		ug/Kg		81	10 - 150	17	20	
2-Butanone (MEK)	11900	12000		ug/Kg		101	54 - 149	7	20	
Ethylbenzene	2370	2130		ug/Kg		90	78 - 124	5	20	
4-Methyl-2-pentanone (MIBK)	11900	10100		ug/Kg		85	74 - 120	9	20	
Isopropylbenzene	2370	2100		ug/Kg		89	76 - 119	6	20	
Methyl acetate	11900	10400		ug/Kg		88	71 - 123	5	20	
Methyl tert-butyl ether	2370	2060		ug/Kg		87	67 - 137	2	20	
Methylcyclohexane	2370	2140		ug/Kg		90	50 - 130	6	20	
Methylene Chloride	2370	2310		ug/Kg		98	75 - 118	4	20	
Styrene	2370	2150		ug/Kg		90	84 - 119	3	20	
Tetrachloroethene	2370	2170		ug/Kg		92	73 - 133	4	20	
Toluene	2370	2050		ug/Kg		86	75 - 124	3	20	
trans-1,2-Dichloroethene	2370	2280		ug/Kg		96	74 - 129	3	20	
trans-1,3-Dichloropropene	2370	2100		ug/Kg		88	73 - 118	3	20	
Trichloroethene	2370	2100		ug/Kg		88	75 - 131	2	20	
Trichlorofluoromethane	2370	1110		ug/Kg		47	29 - 158	2	20	
Vinyl chloride	2370	2330		ug/Kg		98	59 - 124	6	20	
Xylenes, Total	4740	4250		ug/Kg		90	78 - 125	3	20	
Tetrahydrofuran	4740	4140		ug/Kg		87	59 - 128	7	20	

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		53 - 146
Toluene-d8 (Surr)	93		50 - 149
Dibromofluoromethane (Surr)	98		60 - 140
4-Bromofluorobenzene (Surr)	96		49 - 148

TestAmerica Buffalo

QC Sample Results

Client: Woodard & Curran, Inc.
Project/Site: Rouses Point

TestAmerica Job ID: 480-90206-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-274226/6

Matrix: Water

Client Sample ID: Method Blank
Prep Type: Total/NA

	MB								
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			11/10/15 19:49	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			11/10/15 19:49	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			11/10/15 19:49	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			11/10/15 19:49	
1,1-Dichloroethane	ND		1.0	0.38	ug/L			11/10/15 19:49	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			11/10/15 19:49	
1,2,3-Trichlorobenzene	ND		1.0	0.41	ug/L			11/10/15 19:49	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			11/10/15 19:49	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			11/10/15 19:49	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			11/10/15 19:49	
1,2-Dichloroethane	ND		1.0	0.21	ug/L			11/10/15 19:49	
1,2-Dichloropropane	ND		1.0	0.72	ug/L			11/10/15 19:49	
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			11/10/15 19:49	
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			11/10/15 19:49	
1,4-Dioxane	ND		40	9.3	ug/L			11/10/15 19:49	
2-Hexanone	ND		5.0		ug/L			11/10/15 19:49	
Acetone	ND		10		ug/L			11/10/15 19:49	
Benzene	ND		1.0	0.41	-			11/10/15 19:49	
Bromochloromethane	ND		1.0	0.87	-			11/10/15 19:49	
Bromoform	ND		1.0	0.26	-			11/10/15 19:49	
Bromomethane	ND		1.0	0.69	-			11/10/15 19:49	
Carbon disulfide	ND		1.0		ug/L			11/10/15 19:49	
Carbon tetrachloride	ND		1.0	0.27	-			11/10/15 19:49	
Chlorobenzene	ND		1.0	0.75	-			11/10/15 19:49	
Chloroethane	ND		1.0		ug/L			11/10/15 19:49	
Chloroform	ND		1.0	0.34	-			11/10/15 19:49	
Bromodichloromethane	ND		1.0	0.39	-			11/10/15 19:49	
Chloromethane	ND		1.0	0.35	-			11/10/15 19:49	
cis-1,2-Dichloroethene	ND		1.0	0.81	-			11/10/15 19:49	
cis-1,3-Dichloropropene	ND		1.0	0.36	_			11/10/15 19:49	
1,2-Dibromoethane (EDB)	ND		1.0	0.73	-			11/10/15 19:49	
Cyclohexane	ND		1.0	0.18	_			11/10/15 19:49	
Dibromochloromethane	ND		1.0	0.32	-			11/10/15 19:49	
Dichlorodifluoromethane	ND		1.0	0.68	-			11/10/15 19:49	
2-Butanone (MEK)	ND		10		ug/L			11/10/15 19:49	
Ethylbenzene	ND		1.0	0.74	-			11/10/15 19:49	
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			11/10/15 19:49	
Isopropylbenzene	ND		1.0		ug/L			11/10/15 19:49	
Methyl acetate	ND		2.5		ug/L			11/10/15 19:49	
Methyl tert-butyl ether	ND		1.0		ug/L			11/10/15 19:49	
Methylcyclohexane	ND		1.0		ug/L			11/10/15 19:49	
Methylene Chloride	ND		1.0		ug/L			11/10/15 19:49	
Styrene	ND		1.0		ug/L			11/10/15 19:49	
Tetrachloroethene	ND		1.0		ug/L ug/L			11/10/15 19:49	
Toluene	ND ND		1.0		ug/L ug/L			11/10/15 19:49	
trans-1,2-Dichloroethene	ND		1.0		ug/L ug/L			11/10/15 19:49	
trans-1,3-Dichloropropene	ND ND		1.0		ug/L ug/L			11/10/15 19:49	
Trichloroethene	ND ND		1.0		ug/L ug/L			11/10/15 19:49	

TestAmerica Buffalo

11/19/2015

Page 41 of 68

6

3

O

Ω

9

11

11/10/15 19:49

11/10/15 19:49

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

95

Lab Sample ID: MB 480-2742 Matrix: Water							Client Sam	ple ID: Method Prep Type: To		
Analysis Batch: 274226										
Ameliata	MB		D.		MADI	1114	_	B	A	D!! E
Analyte		Qualifier	RL			Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		1.0)	0.88	ug/L			11/10/15 19:49	1
Vinyl chloride	ND		1.0)	0.90	ug/L			11/10/15 19:49	1
Xylenes, Total	ND		2.0)	0.66	ug/L			11/10/15 19:49	1
Tetrahydrofuran	ND		5.0)	1.3	ug/L			11/10/15 19:49	1
	MB	MB								
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L						11/10/15 19:49	
	MB	MB								
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		66 - 137	-					11/10/15 19:49	1
Toluene-d8 (Surr)	100		71 - 126						11/10/15 19:49	1

60 - 140

73 - 120

Lab Sample ID: LCS 480-274226/4

Matrix: Water

Analysis Batch: 274226

Dibromofluoromethane (Surr)

4-Bromofluorobenzene (Surr)

Spike	LCS	LCS				%Rec.	
•	_		Unit	D	%Rec		
					103		
25.0	24.5		_		98	70 ₋ 126	
25.0	24.7		Ū		99	52 ₋ 148	
			· ·				
25.0	24.4		ug/L		98	76 - 122	
25.0	23.6		ug/L		94	71 - 129	
25.0	22.5		ug/L		90	58 - 121	
25.0	25.8		ug/L		103	63 - 138	
25.0	25.4		ug/L		102	70 - 122	
25.0	27.1		ug/L		108	56 - 134	
25.0	24.0		ug/L		96	80 - 124	
25.0	23.6		ug/L		94	75 - 127	
25.0	24.2		ug/L		97	76 - 120	
25.0	24.8		ug/L		99	77 - 120	
25.0	23.8		ug/L		95	75 ₋ 120	
125	128		ug/L		102	65 - 127	
125	111		ug/L		89	56 - 142	
25.0	23.4		ug/L		94	71 - 124	
25.0	24.6		ug/L		98	72 - 130	
25.0	23.0		ug/L		92	52 - 132	
25.0	22.2		ug/L		89	55 ₋ 144	
25.0	25.2		ug/L		101	59 - 134	
25.0	24.9		ug/L		100	72 - 134	
25.0	24.4		ug/L		97	72 - 120	
25.0	24.0		ug/L		96	69 - 136	
25.0	23.0		ug/L		92	73 - 127	
25.0	25.3		ug/L		101	80 - 122	
25.0	22.6		ug/L		90	68 - 124	
25.0	23.9		ug/L		96	74 - 124	
	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Added Result 25.0 25.6 25.0 24.5 25.0 24.7 25.0 24.4 25.0 23.6 25.0 25.8 25.0 25.4 25.0 24.0 25.0 23.6 25.0 24.0 25.0 24.8 25.0 24.8 25.0 23.8 125 111 25.0 23.4 25.0 23.0 25.0 23.0 25.0 25.2 25.0 24.9 25.0 24.9 25.0 24.0 25.0 24.0 25.0 24.9 25.0 24.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 </td <td>Added Result Qualifier 25.0 25.6 25.0 24.5 25.0 24.7 25.0 24.4 25.0 23.6 25.0 25.8 25.0 25.4 25.0 25.4 25.0 24.0 25.0 23.6 25.0 24.8 25.0 24.8 25.0 23.8 125 128 125 111 25.0 23.4 25.0 23.4 25.0 24.6 25.0 25.2 25.0 24.9 25.0 24.9 25.0 24.0 25.0 24.0 25.0 25.3 25.0 25.3 25.0 25.3 25.0 25.3 25.0 25.3 25.0 25.3 25.0 25.3</td> <td>Added Result Qualifier Unit 25.0 25.6 ug/L 25.0 24.5 ug/L 25.0 24.7 ug/L 25.0 24.4 ug/L 25.0 23.6 ug/L 25.0 25.8 ug/L 25.0 25.4 ug/L 25.0 25.4 ug/L 25.0 27.1 ug/L 25.0 24.0 ug/L 25.0 23.6 ug/L 25.0 24.2 ug/L 25.0 24.8 ug/L 25.0 24.8 ug/L 25.0 23.8 ug/L 25.0 23.8 ug/L 25.0 23.4 ug/L 25.0 23.4 ug/L 25.0 23.4 ug/L 25.0 23.4 ug/L 25.0 23.0 ug/L 25.0 25.2 ug/L 25.0 24.9</td> <td>Added Result Qualifier Unit D 25.0 25.6 ug/L ug/L 25.0 24.5 ug/L 25.0 24.7 ug/L 25.0 24.4 ug/L 25.0 23.6 ug/L 25.0 25.8 ug/L 25.0 25.4 ug/L 25.0 25.4 ug/L 25.0 24.0 ug/L 25.0 24.0 ug/L 25.0 24.0 ug/L 25.0 24.8 ug/L 25.0 24.8 ug/L 25.0 23.8 ug/L 25.0 23.8 ug/L 25.0 23.8 ug/L 25.0 23.4 ug/L 25.0 23.4 ug/L 25.0 23.4 ug/L 25.0 23.0 ug/L 25.0 24.6 ug/L 25.0 24.9 ug/L <</td> <td>Added Result Qualifier Unit D %Rec 25.0 25.6 ug/L 103 25.0 24.5 ug/L 98 25.0 24.7 ug/L 99 25.0 24.4 ug/L 98 25.0 23.6 ug/L 94 25.0 22.5 ug/L 90 25.0 25.8 ug/L 103 25.0 25.4 ug/L 102 25.0 25.4 ug/L 102 25.0 27.1 ug/L 96 25.0 24.0 ug/L 94 25.0 23.6 ug/L 94 25.0 24.2 ug/L 97 25.0 24.8 ug/L 99 25.0 23.8 ug/L 95 125 128 ug/L 95 125 111 ug/L 94 25.0 23.4 ug/L 94 <td>Added Result Qualifier Unit D %Rec Limits 25.0 25.6 ug/L 103 73-126 25.0 24.5 ug/L 98 70-126 25.0 24.4 ug/L 99 52-148 25.0 23.6 ug/L 94 71-129 25.0 22.5 ug/L 90 58-121 25.0 25.8 ug/L 103 63-138 25.0 25.4 ug/L 102 70-122 25.0 25.4 ug/L 102 70-122 25.0 27.1 ug/L 108 56-134 25.0 27.1 ug/L 96 80-124 25.0 23.6 ug/L 96 80-124 25.0 24.8 ug/L 97 76-120 25.0 24.8 ug/L 99 77-120 25.0 23.8 ug/L 95 75-120 125 111</td></td>	Added Result Qualifier 25.0 25.6 25.0 24.5 25.0 24.7 25.0 24.4 25.0 23.6 25.0 25.8 25.0 25.4 25.0 25.4 25.0 24.0 25.0 23.6 25.0 24.8 25.0 24.8 25.0 23.8 125 128 125 111 25.0 23.4 25.0 23.4 25.0 24.6 25.0 25.2 25.0 24.9 25.0 24.9 25.0 24.0 25.0 24.0 25.0 25.3 25.0 25.3 25.0 25.3 25.0 25.3 25.0 25.3 25.0 25.3 25.0 25.3	Added Result Qualifier Unit 25.0 25.6 ug/L 25.0 24.5 ug/L 25.0 24.7 ug/L 25.0 24.4 ug/L 25.0 23.6 ug/L 25.0 25.8 ug/L 25.0 25.4 ug/L 25.0 25.4 ug/L 25.0 27.1 ug/L 25.0 24.0 ug/L 25.0 23.6 ug/L 25.0 24.2 ug/L 25.0 24.8 ug/L 25.0 24.8 ug/L 25.0 23.8 ug/L 25.0 23.8 ug/L 25.0 23.4 ug/L 25.0 23.4 ug/L 25.0 23.4 ug/L 25.0 23.4 ug/L 25.0 23.0 ug/L 25.0 25.2 ug/L 25.0 24.9	Added Result Qualifier Unit D 25.0 25.6 ug/L ug/L 25.0 24.5 ug/L 25.0 24.7 ug/L 25.0 24.4 ug/L 25.0 23.6 ug/L 25.0 25.8 ug/L 25.0 25.4 ug/L 25.0 25.4 ug/L 25.0 24.0 ug/L 25.0 24.0 ug/L 25.0 24.0 ug/L 25.0 24.8 ug/L 25.0 24.8 ug/L 25.0 23.8 ug/L 25.0 23.8 ug/L 25.0 23.8 ug/L 25.0 23.4 ug/L 25.0 23.4 ug/L 25.0 23.4 ug/L 25.0 23.0 ug/L 25.0 24.6 ug/L 25.0 24.9 ug/L <	Added Result Qualifier Unit D %Rec 25.0 25.6 ug/L 103 25.0 24.5 ug/L 98 25.0 24.7 ug/L 99 25.0 24.4 ug/L 98 25.0 23.6 ug/L 94 25.0 22.5 ug/L 90 25.0 25.8 ug/L 103 25.0 25.4 ug/L 102 25.0 25.4 ug/L 102 25.0 27.1 ug/L 96 25.0 24.0 ug/L 94 25.0 23.6 ug/L 94 25.0 24.2 ug/L 97 25.0 24.8 ug/L 99 25.0 23.8 ug/L 95 125 128 ug/L 95 125 111 ug/L 94 25.0 23.4 ug/L 94 <td>Added Result Qualifier Unit D %Rec Limits 25.0 25.6 ug/L 103 73-126 25.0 24.5 ug/L 98 70-126 25.0 24.4 ug/L 99 52-148 25.0 23.6 ug/L 94 71-129 25.0 22.5 ug/L 90 58-121 25.0 25.8 ug/L 103 63-138 25.0 25.4 ug/L 102 70-122 25.0 25.4 ug/L 102 70-122 25.0 27.1 ug/L 108 56-134 25.0 27.1 ug/L 96 80-124 25.0 23.6 ug/L 96 80-124 25.0 24.8 ug/L 97 76-120 25.0 24.8 ug/L 99 77-120 25.0 23.8 ug/L 95 75-120 125 111</td>	Added Result Qualifier Unit D %Rec Limits 25.0 25.6 ug/L 103 73-126 25.0 24.5 ug/L 98 70-126 25.0 24.4 ug/L 99 52-148 25.0 23.6 ug/L 94 71-129 25.0 22.5 ug/L 90 58-121 25.0 25.8 ug/L 103 63-138 25.0 25.4 ug/L 102 70-122 25.0 25.4 ug/L 102 70-122 25.0 27.1 ug/L 108 56-134 25.0 27.1 ug/L 96 80-124 25.0 23.6 ug/L 96 80-124 25.0 24.8 ug/L 97 76-120 25.0 24.8 ug/L 99 77-120 25.0 23.8 ug/L 95 75-120 125 111

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-274226/4

Matrix: Water

Analysis Batch: 274226

Client Sample ID: Lab Control Sample Prep Type: Total/NA

7 many 515 Batom 21 1225	Spike	LCS I	LCS		%Rec.	
Analyte	Added	Result (Qualifier Unit	D %Rec	Limits	
cis-1,3-Dichloropropene	25.0	26.3	ug/L	105	74 - 124	
1,2-Dibromoethane (EDB)	25.0	25.6	ug/L	102	77 - 120	
Cyclohexane	25.0	24.7	ug/L	99	59 - 135	
Dibromochloromethane	25.0	23.8	ug/L	95	75 - 125	
Dichlorodifluoromethane	25.0	23.2	ug/L	93	59 - 135	
2-Butanone (MEK)	125	118	ug/L	94	57 - 140	
Ethylbenzene	25.0	24.8	ug/L	99	77 - 123	
4-Methyl-2-pentanone (MIBK)	125	127	ug/L	102	71 - 125	
Isopropylbenzene	25.0	26.0	ug/L	104	77 - 122	
Methyl acetate	125	112	ug/L	89	74 - 133	
Methyl tert-butyl ether	25.0	23.8	ug/L	95	64 - 127	
Methylcyclohexane	25.0	25.0	ug/L	100	61 - 138	
Methylene Chloride	25.0	23.3	ug/L	93	57 - 132	
Styrene	25.0	26.7	ug/L	107	70 - 130	
Tetrachloroethene	25.0	24.0	ug/L	96	74 - 122	
Toluene	25.0	23.8	ug/L	95	80 - 122	
trans-1,2-Dichloroethene	25.0	23.5	ug/L	94	73 - 127	
trans-1,3-Dichloropropene	25.0	25.9	ug/L	104	72 - 123	
Trichloroethene	25.0	24.0	ug/L	96	74 - 123	
Trichlorofluoromethane	25.0	25.4	ug/L	101	62 - 152	
Vinyl chloride	25.0	24.0	ug/L	96	65 - 133	
Xylenes, Total	50.0	50.2	ug/L	100	76 - 122	
Tetrahydrofuran	50.0	45.6	ug/L	91	62 - 132	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		66 - 137
Toluene-d8 (Surr)	101		71 - 126
Dibromofluoromethane (Surr)	99		60 - 140
4-Bromofluorobenzene (Surr)	101		73 - 120

Lab Sample ID: MB 480-274360/6

Matrix: Water

Analysis Batch: 274360

Client Sample ID: Method Blank
Prep Type: Total/NA

	MB MB							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			11/11/15 13:13	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			11/11/15 13:13	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			11/11/15 13:13	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			11/11/15 13:13	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			11/11/15 13:13	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			11/11/15 13:13	1
1,2,3-Trichlorobenzene	ND	1.0	0.41	ug/L			11/11/15 13:13	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			11/11/15 13:13	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			11/11/15 13:13	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			11/11/15 13:13	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			11/11/15 13:13	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			11/11/15 13:13	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			11/11/15 13:13	1

TestAmerica Buffalo

Page 43 of 68

2

3

5

7

9

11

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-2743 Matrix: Water	60/6						Client Sam	ple ID: Method Prep Type: To	
Analysis Batch: 274360								Tiep Type: It	otali i i i
7	MB	MB							
Analyte	Result	Qualifier	RL	MDL	. Unit	D	Prepared	Analyzed	Dil Fa
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			11/11/15 13:13	
1,4-Dioxane	ND		40	9.3	3 ug/L			11/11/15 13:13	
2-Hexanone	ND		5.0	1.2	2 ug/L			11/11/15 13:13	
Acetone	ND		10	3.0	ug/L			11/11/15 13:13	
Benzene	ND		1.0	0.41	ug/L			11/11/15 13:13	
Bromochloromethane	ND		1.0	0.87	ug/L			11/11/15 13:13	
Bromoform	ND		1.0	0.26	ug/L			11/11/15 13:13	
Bromomethane	ND		1.0	0.69	ug/L			11/11/15 13:13	
Carbon disulfide	ND		1.0	0.19	ug/L			11/11/15 13:13	
Carbon tetrachloride	ND		1.0	0.27	ug/L			11/11/15 13:13	
Chlorobenzene	ND		1.0	0.75	ug/L			11/11/15 13:13	
Chloroethane	ND		1.0		2 ug/L			11/11/15 13:13	
Chloroform	ND		1.0		ug/L			11/11/15 13:13	
Bromodichloromethane	ND		1.0		ug/L			11/11/15 13:13	
Chloromethane	ND		1.0		ug/L			11/11/15 13:13	
cis-1,2-Dichloroethene	ND		1.0		ug/L			11/11/15 13:13	
cis-1,3-Dichloropropene	ND		1.0		ug/L			11/11/15 13:13	
1,2-Dibromoethane (EDB)	ND		1.0		3 ug/L			11/11/15 13:13	
Cyclohexane	ND		1.0		B ug/L			11/11/15 13:13	
Dibromochloromethane	ND		1.0		2 ug/L			11/11/15 13:13	
Dichlorodifluoromethane	ND		1.0		B ug/L			11/11/15 13:13	
2-Butanone (MEK)	ND		10		B ug/L			11/11/15 13:13	
Ethylbenzene	ND		1.0		ug/L			11/11/15 13:13	
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			11/11/15 13:13	
Isopropylbenzene	ND		1.0		ug/L			11/11/15 13:13	
Methyl acetate	ND		2.5		ug/L			11/11/15 13:13	
Methyl tert-butyl ether	ND		1.0		ug/L			11/11/15 13:13	
Methylcyclohexane	ND		1.0		ug/L			11/11/15 13:13	
Methylene Chloride	ND		1.0		ug/L			11/11/15 13:13	
Styrene	ND		1.0		ug/L			11/11/15 13:13	
Tetrachloroethene	ND		1.0		ug/L			11/11/15 13:13	
Toluene	ND ND		1.0		ug/L			11/11/15 13:13	
trans-1,2-Dichloroethene					ug/L ug/L			11/11/15 13:13	
trans-1,3-Dichloropropene	ND ND		1.0		ug/L ug/L			11/11/15 13:13	
Trichloroethene	ND ND		1.0		-			11/11/15 13:13	
Trichlorofluoromethane					ug/L ug/L ug/L			11/11/15 13:13	
	ND		1.0						
Vinyl chloride	ND ND		1.0 2.0		ug/L			11/11/15 13:13 11/11/15 13:13	
Xylenes, Total					ug/L				
Tetrahydrofuran	ND		5.0	1.3	3 ug/L			11/11/15 13:13	
	MB	MB							
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L	_				11/11/15 13:13	
	MR	MB							
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	104		66 - 137				-,	11/11/15 13:13	
Toluene-d8 (Surr)	96		71 - 126					11/11/15 13:13	
Dibromofluoromethane (Surr)	96		60 - 140					11/11/15 13:13	

TestAmerica Buffalo

Page 44 of 68

11/19/2015

QC Sample Results

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90206-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-274360/6

Matrix: Water

Analysis Batch: 274360

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 96 73 - 120 11/11/15 13:13

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Lab Sample ID: LCS 480-274360/4

Matrix: Water

Matrix: Water Analysis Batch: 274360					Prep Type: Total/N
Analysis Batch. 214300	Spike	LCS LCS			%Rec.
Analyte	Added	Result Qualif	ier Unit	D %Rec	Limits
1,1,1-Trichloroethane		25.6	ug/L		73 - 126
1,1,2,2-Tetrachloroethane	25.0	25.1	ug/L	100	70 - 126
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	25.3	ug/L	101	52 - 148
ne			-		
1,1,2-Trichloroethane	25.0	26.1	ug/L	104	76 - 122
1,1-Dichloroethane	25.0	24.8	ug/L	99	71 - 129
1,1-Dichloroethene	25.0	23.7	ug/L	95	58 ₋ 121
1,2,3-Trichlorobenzene	25.0	27.4	ug/L	110	63 - 138
1,2,4-Trichlorobenzene	25.0	26.2	ug/L	105	70 - 122
1,2-Dibromo-3-Chloropropane	25.0	26.7	ug/L	107	56 - 134
1,2-Dichlorobenzene	25.0	24.2	ug/L	97	80 - 124
1,2-Dichloroethane	25.0	24.4	ug/L	98	75 ₋ 127
1,2-Dichloropropane	25.0	25.3	ug/L	101	76 - 120
1,3-Dichlorobenzene	25.0	24.9	ug/L	100	77 - 120
1,4-Dichlorobenzene	25.0	24.3	ug/L	97	75 - 120
2-Hexanone	125	139	ug/L	111	65 - 127
Acetone	125	118	ug/L	95	56 - 142
Benzene	25.0	23.7	ug/L	95	71 ₋ 124
Bromochloromethane	25.0	24.8	ug/L	99	72 ₋ 130
Bromoform	25.0	24.5	ug/L	98	52 - 132
Bromomethane	25.0	21.8	ug/L	87	55 - 144
Carbon disulfide	25.0	26.2	ug/L	105	59 - 134
Carbon tetrachloride	25.0	24.7	ug/L	99	72 - 134
Chlorobenzene	25.0	24.7	ug/L	99	72 ₋ 120
Chloroethane	25.0	24.8	ug/L	99	69 - 136
Chloroform	25.0	24.1	ug/L	96	73 - 127
Bromodichloromethane	25.0	25.4	ug/L	102	80 - 122
Chloromethane	25.0	22.8	ug/L	91	68 - 124
cis-1,2-Dichloroethene	25.0	23.9	ug/L	95	74 - 124
cis-1,3-Dichloropropene	25.0	26.7	ug/L	107	74 - 124
1,2-Dibromoethane (EDB)	25.0	26.0	ug/L	104	77 ₋ 120
Cyclohexane	25.0	25.2	ug/L	101	59 ₋ 135
Dibromochloromethane	25.0	23.7	ug/L	95	75 ₋ 125
Dichlorodifluoromethane	25.0	22.5	ug/L	90	59 ₋ 135
2-Butanone (MEK)	125	126	ug/L	100	57 - 140
Ethylbenzene	25.0	25.8	ug/L	103	77 - 123
4-Methyl-2-pentanone (MIBK)	125	136	ug/L	109	71 - 125
Isopropylbenzene	25.0	26.1	ug/L	104	77 - 122
Methyl acetate	125	118	ug/L	94	74 ₋ 133
Methyl tert-butyl ether	25.0	25.0	ug/L	100	64 - 127
Methylcyclohexane	25.0	25.7	ug/L	103	61 - 138

TestAmerica Buffalo

Page 45 of 68

11/19/2015

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

q

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-274360/4

Matrix: Water

Analysis Batch: 274360

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methylene Chloride	25.0	23.1		ug/L		93	57 - 132	
Styrene	25.0	28.1		ug/L		112	70 - 130	
Tetrachloroethene	25.0	25.0		ug/L		100	74 - 122	
Toluene	25.0	24.1		ug/L		96	80 - 122	
trans-1,2-Dichloroethene	25.0	24.1		ug/L		97	73 - 127	
trans-1,3-Dichloropropene	25.0	26.7		ug/L		107	72 - 123	
Trichloroethene	25.0	25.2		ug/L		101	74 - 123	
Trichlorofluoromethane	25.0	24.9		ug/L		100	62 - 152	
Vinyl chloride	25.0	23.5		ug/L		94	65 - 133	
Xylenes, Total	50.0	51.3		ug/L		103	76 - 122	
Tetrahydrofuran	50.0	50.3		ug/L		101	62 - 132	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		66 - 137
Toluene-d8 (Surr)	100		71 - 126
Dibromofluoromethane (Surr)	97		60 - 140
4-Bromofluorobenzene (Surr)	103		73 - 120

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-272533/1-A

Matrix: Water

Analysis Batch: 274392

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 272533

Analysis Daton. 214002								r rep Batch. 2723		
Analyta		MB Qualifier	ы	MDL	l lnit	D	Dronored	Analyzad	Dil Fac	
Analyte		Qualifier	RL				Prepared	Analyzed 11/11/15 15:43	DII Fac	
2,4,5-Trichlorophenol	ND		5.0		J		11/02/15 09:42		1	
2,4,6-Trichlorophenol	ND		5.0		ug/L		11/02/15 09:42		1	
2,4-Dichlorophenol	ND		5.0		ug/L		11/02/15 09:42	11/11/15 15:43	1	
2,4-Dimethylphenol	ND		5.0	0.50	ug/L		11/02/15 09:42	11/11/15 15:43	1	
2,4-Dinitrophenol	ND		10	2.2	ug/L		11/02/15 09:42	11/11/15 15:43	1	
2,4-Dinitrotoluene	ND		5.0	0.45	ug/L		11/02/15 09:42	11/11/15 15:43	1	
2,6-Dinitrotoluene	ND		5.0	0.40	ug/L		11/02/15 09:42	11/11/15 15:43	1	
2-Chloronaphthalene	ND		5.0	0.46	ug/L		11/02/15 09:42	11/11/15 15:43	1	
2-Chlorophenol	ND		5.0	0.53	ug/L		11/02/15 09:42	11/11/15 15:43	1	
2-Methylnaphthalene	ND		5.0	0.60	ug/L		11/02/15 09:42	11/11/15 15:43	1	
2-Methylphenol	ND		5.0	0.40	ug/L		11/02/15 09:42	11/11/15 15:43	1	
2-Nitroaniline	ND		10	0.42	ug/L		11/02/15 09:42	11/11/15 15:43	1	
2-Nitrophenol	ND		5.0	0.48	ug/L		11/02/15 09:42	11/11/15 15:43	1	
3,3'-Dichlorobenzidine	ND		5.0	0.40	ug/L		11/02/15 09:42	11/11/15 15:43	1	
3-Nitroaniline	ND		10	0.48	ug/L		11/02/15 09:42	11/11/15 15:43	1	
4,6-Dinitro-2-methylphenol	ND		10	2.2	ug/L		11/02/15 09:42	11/11/15 15:43	1	
4-Bromophenyl phenyl ether	ND		5.0	0.45	ug/L		11/02/15 09:42	11/11/15 15:43	1	
4-Chloro-3-methylphenol	ND		5.0	0.45	ug/L		11/02/15 09:42	11/11/15 15:43	1	
4-Chloroaniline	ND		5.0	0.59	ug/L		11/02/15 09:42	11/11/15 15:43	1	
4-Chlorophenyl phenyl ether	ND		5.0	0.35	ug/L		11/02/15 09:42	11/11/15 15:43	1	
4-Methylphenol	ND		10	0.36	ug/L		11/02/15 09:42	11/11/15 15:43	1	
4-Nitroaniline	ND		10	0.25	ug/L		11/02/15 09:42	11/11/15 15:43	1	
4-Nitrophenol	ND		10	1.5	ug/L		11/02/15 09:42	11/11/15 15:43	1	

TestAmerica Buffalo

Page 46 of 68

11/19/2015

3

5

0

9

11

13

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-272533/1-A

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 274392

Prep Batch: 272533

Analysis Batch: 274392	МВ	MB						Prep Batch:	272533
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		5.0	0.41	ug/L		•	11/11/15 15:43	1
Acenaphthylene	ND		5.0	0.38	ug/L		11/02/15 09:42	11/11/15 15:43	1
Acetophenone	ND		5.0	0.54	ug/L		11/02/15 09:42	11/11/15 15:43	1
Anthracene	ND		5.0	0.28	ug/L		11/02/15 09:42	11/11/15 15:43	1
Atrazine	ND		5.0	0.46	ug/L		11/02/15 09:42	11/11/15 15:43	1
Benzaldehyde	ND		5.0		ug/L		11/02/15 09:42	11/11/15 15:43	1
Benzo(a)anthracene	ND		5.0		ug/L			11/11/15 15:43	1
Benzo(a)pyrene	ND		5.0		ug/L			11/11/15 15:43	1
Benzo(b)fluoranthene	ND		5.0		ug/L		11/02/15 09:42	11/11/15 15:43	1
Benzo(g,h,i)perylene	ND		5.0		ug/L			11/11/15 15:43	1
Benzo(k)fluoranthene	ND		5.0		ug/L			11/11/15 15:43	1
Biphenyl	ND		5.0		ug/L			11/11/15 15:43	1
bis (2-chloroisopropyl) ether	ND		5.0		ug/L			11/11/15 15:43	1
Bis(2-chloroethoxy)methane	ND		5.0		ug/L			11/11/15 15:43	1
Bis(2-chloroethyl)ether	ND		5.0		ug/L			11/11/15 15:43	1
Bis(2-ethylhexyl) phthalate	ND		5.0		ug/L			11/11/15 15:43	1
Butyl benzyl phthalate	ND		5.0		ug/L			11/11/15 15:43	· · · · · · · · · · · · · · · · · · ·
Caprolactam	ND		5.0		ug/L			11/11/15 15:43	1
Carbazole	ND		5.0		ug/L			11/11/15 15:43	1
Chrysene	ND		5.0		ug/L			11/11/15 15:43	1
Dibenz(a,h)anthracene	ND		5.0		ug/L			11/11/15 15:43	1
Dibenzofuran	ND		10		ug/L			11/11/15 15:43	1
Diethyl phthalate	ND		5.0		ug/L			11/11/15 15:43	1
Dimethyl phthalate	ND		5.0		ug/L			11/11/15 15:43	1
Di-n-butyl phthalate	ND		5.0		ug/L			11/11/15 15:43	1
Di-n-octyl phthalate	ND		5.0		ug/L			11/11/15 15:43	1
Fluoranthene	ND		5.0		ug/L			11/11/15 15:43	
Fluorene	ND		5.0		ug/L			11/11/15 15:43	1
Hexachlorobenzene	ND		5.0		ug/L			11/11/15 15:43	1
Hexachlorobutadiene	ND		5.0		ug/L			11/11/15 15:43	1
Hexachlorocyclopentadiene	ND		5.0		ug/L			11/11/15 15:43	1
Hexachloroethane	ND		5.0		ug/L			11/11/15 15:43	
Indeno(1,2,3-cd)pyrene	ND		5.0		ug/L			11/11/15 15:43	1
Isophorone	ND		5.0		ug/L			11/11/15 15:43	1
Naphthalene	ND		5.0		ug/L			11/11/15 15:43	
Nitrobenzene	ND		5.0		ug/L			11/11/15 15:43	1
N-Nitrosodi-n-propylamine	ND		5.0		ug/L			11/11/15 15:43	1
N-Nitrosodiphenylamine	ND		5.0		ug/L			11/11/15 15:43	' 1
Pentachlorophenol	ND ND		10		ug/L ug/L			11/11/15 15:43	1
Phenanthrene	ND ND		5.0		ug/L ug/L			11/11/15 15:43	1
Phenol	ND ND		5.0		ug/L ug/L			11/11/15 15:43	
	ND ND		5.0 5.0		ug/L ug/L			11/11/15 15:43	1
Pyrene Dimethylformamida					-				1
Dimethylformamide	ND		20	1.7	ug/L		11/02/15 09.42	11/11/15 15:43	1
	MB	MB							

	MB	МВ							
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	2.37	TJ	ug/L		3.20		11/02/15 09:42	11/11/15 15:43	1
Cyclohexane	36.4	TJN	ug/L		3.46	110-82-7	11/02/15 09:42	11/11/15 15:43	1
Unknown	113	TJ	ug/L		3.63		11/02/15 09:42	11/11/15 15:43	1

TestAmerica Buffalo

Page 47 of 68

11/19/2015

3

6

8

9

11

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 480-272533/1-A

Matrix: Water

Analysis Batch: 274392

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 272533

Tentatively Identified Compound Est. Result Qualifier Unit RT CAS No. Prepared Analyzed Dil Fac Pyridine 0.515 J 4.43 110-86-1 11/02/15 09:42 11/11/15 15:43 ug/L Unknown 4.31 TJ 5.40 11/02/15 09:42 11/11/15 15:43 ug/L Cyclopentasiloxane, decamethyl-541-02-6 11/02/15 09:42 11/11/15 15:43 10.0 TJN ug/L 7.39 Cyclohexasiloxane, dodecamethyl-4.98 TJN 8.27 540-97-6 11/02/15 09:42 11/11/15 15:43 ug/L Unknown 2.74 TJ 9.06 11/02/15 09:42 11/11/15 15:43 ug/L Unknown 11/02/15 09:42 11/11/15 15:43 9.59 TJ ug/L 10.72 Unknown 11/02/15 09:42 11/11/15 15:43 2.70 T J ug/L 11.29 Unknown 11.70 11/02/15 09:42 11/11/15 15:43 11.1 TJ ug/L Unknown 12.32 11/02/15 09:42 11/11/15 15:43 7.37 TJ ug/L Unknown 1.97 TJ 12.36 11/02/15 09:42 11/11/15 15:43 ug/L Unknown 11/02/15 09:42 11/11/15 15:43 101 T.J ug/L 12 76 Unknown 1.64 TJ ug/L 12.93 11/02/15 09:42 11/11/15 15:43 Unknown 12.9 TJ 13.54 11/02/15 09:42 11/11/15 15:43 ug/L Unknown 14.1 TJ ug/L 14.04 11/02/15 09:42 11/11/15 15:43

ug/L

ug/L

ug/L

MR MR

2.60 TJ

4.07 TJ

1.75 TJ

	IVID IVID				
Surrogate	%Recovery Qualifier	Limits	Prepared Ai	nalyzed Dil Fa	IC
2,4,6-Tribromophenol	70	52 - 132	11/02/15 09:42 11/1	1/15 15:43	1
2-Fluorobiphenyl	78	48 - 120	11/02/15 09:42 11/1	1/15 15:43	1
2-Fluorophenol	45	20 - 120	11/02/15 09:42 11/1	1/15 15:43	1
Nitrobenzene-d5	75	46 - 120	11/02/15 09:42 11/1	1/15 15:43	1
Phenol-d5	34	16 - 120	11/02/15 09:42 11/1	1/15 15:43	1
p-Terphenyl-d14	92	67 ₋ 150	11/02/15 09:42 11/1	1/15 15:43	1

14.20

14.59

14.72

Lab Sample ID: LCS 480-272533/2-A

Matrix: Water

Unknown

Unknown

Unknown

Analysis Batch: 273528

Client Sample ID: Lab Control Sample Prep Type: Total/NA

11/02/15 09:42 11/11/15 15:43

11/02/15 09:42 11/11/15 15:43

11/02/15 09:42 11/11/15 15:43

Prep Batch: 272533

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4,5-Trichlorophenol	16.0	14.8		ug/L		93	65 - 126	
2,4,6-Trichlorophenol	16.0	15.1		ug/L		94	64 - 120	
2,4-Dichlorophenol	16.0	14.2		ug/L		89	64 - 120	
2,4-Dimethylphenol	16.0	14.1		ug/L		88	57 ₋ 120	
2,4-Dinitrophenol	32.0	21.4		ug/L		67	42 - 153	
2,4-Dinitrotoluene	16.0	14.9		ug/L		93	65 ₋ 154	
2,6-Dinitrotoluene	16.0	14.3		ug/L		89	74 - 134	
2-Chloronaphthalene	16.0	12.9		ug/L		81	41 - 124	
2-Chlorophenol	16.0	12.9		ug/L		81	48 - 120	
2-Methylnaphthalene	16.0	13.3		ug/L		83	34 - 122	
2-Methylphenol	16.0	12.9		ug/L		80	39 - 120	
2-Nitroaniline	16.0	13.3		ug/L		83	67 ₋ 136	
2-Nitrophenol	16.0	12.9		ug/L		81	59 ₋ 120	
3,3'-Dichlorobenzidine	32.0	28.2		ug/L		88	33 - 140	
3-Nitroaniline	16.0	12.3		ug/L		77	28 - 130	
4,6-Dinitro-2-methylphenol	32.0	26.3		ug/L		82	64 - 159	

TestAmerica Buffalo

Page 48 of 68

QC Sample Results

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90206-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-272533/2-A

Matrix: Water

Analysis Batch: 273528

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 272533

Matrix: Water Analysis Batch: 273528	Spike	LCS	LCS			Prep Type: Total/NA Prep Batch: 272533 %Rec.
Analyte	Added		Qualifier	Unit	D %Rec	Limits
4-Bromophenyl phenyl ether	16.0	14.5		ug/L	90	71 - 126
4-Chloro-3-methylphenol	16.0	15.6		ug/L	97	64 - 120
4-Chloroaniline	16.0	9.17		ug/L	57	10 - 130
4-Chlorophenyl phenyl ether	16.0	14.6		ug/L	91	71 - 122
4-Methylphenol	16.0	12.8		ug/L	80	39 - 120
4-Nitroaniline	16.0	13.3		ug/L	83	47 - 130
4-Nitrophenol	32.0	24.6		ug/L	77	16 - 120
Acenaphthene	16.0	13.4		ug/L	84	60 - 120
Acenaphthylene	16.0	13.6		ug/L	85	63 - 120
Acetophenone	16.0	15.0		ug/L	93	45 - 120
Anthracene	16.0	13.7		ug/L	86	58 ₋ 148
Atrazine	32.0	34.7		ug/L	108	56 ₋ 179
Benzaldehyde	32.0	12.2		ug/L	38	30 - 140
Benzo(a)anthracene	16.0	14.2		ug/L	89	55 - 151
Benzo(a)pyrene	16.0	13.7		ug/L	85	60 - 145
Benzo(b)fluoranthene	16.0	14.0		ug/L	88	54 - 140
Benzo(g,h,i)perylene	16.0	16.7		ug/L	104	66 - 152
Benzo(k)fluoranthene	16.0	13.6		ug/L	85	51 - 153
Biphenyl	16.0	12.9		ug/L	81	30 - 140
bis (2-chloroisopropyl) ether	16.0	10.4		ug/L	65	28 - 136
Bis(2-chloroethoxy)methane	16.0	11.7		ug/L	73	50 - 128
Bis(2-chloroethyl)ether	16.0	11.1		ug/L	69	51 ₋ 120
Bis(2-ethylhexyl) phthalate	16.0	15.1		ug/L	94	53 - 158
Butyl benzyl phthalate	16.0	14.2		ug/L	89	58 - 163
Caprolactam	32.0	11.0		ug/L	34	14 - 130
Carbazole	16.0	14.1		ug/L	88	59 - 148
Chrysene	16.0	14.5		ug/L	91	69 - 140
Dibenz(a,h)anthracene	16.0	15.4		ug/L	96	57 ₋ 148
Dibenzofuran	16.0	14.3		ug/L	89	49 - 137
Diethyl phthalate	16.0	11.0		ug/L	69	59 ₋ 146
Dimethyl phthalate	16.0	14.6		ug/L	92	59 - 141
Di-n-butyl phthalate	16.0	15.0		ug/L	94	58 ₋ 149
Di-n-octyl phthalate	16.0	14.3		ug/L	89	55 ₋ 167
Fluoranthene	16.0	14.7		ug/L	92	55 ₋ 147
Fluorene	16.0	14.2		ug/L	89	55 ₋ 143
Hexachlorobenzene	16.0	14.7		ug/L	92	14 - 130
Hexachlorobutadiene	16.0	12.0		ug/L	75	14 - 130
Hexachlorocyclopentadiene	16.0	9.45		ug/L	59	13 - 130
Hexachloroethane	16.0	11.3		ug/L	70	14 - 130
Indeno(1,2,3-cd)pyrene	16.0	15.8		ug/L	99	69 - 146
Isophorone	16.0	12.4		ug/L	77	48 - 133
Naphthalene	16.0	12.5		ug/L	78	35 - 130
Nitrobenzene	16.0	12.2		ug/L	76	45 - 123
N-Nitrosodi-n-propylamine	16.0	13.5		ug/L	84	56 - 120
N-Nitrosodiphenylamine	32.0	27.9		ug/L	87	25 - 125
Pentachlorophenol	32.0	17.1		ug/L ug/L	53	39 - 136
Phenanthrene	16.0	14.0		ug/L ug/L	88	57 ₋ 147
Phenol	16.0	7.65		ug/L ug/L		17 - 120

TestAmerica Buffalo

3

5

8

10

12

QC Sample Results

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90206-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-272533/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA** Prep Batch: 272533 **Analysis Batch: 273528** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits

Pyrene			16.0	14.3	ug/L	 89	58 - 136
	LCS	LCS					
Surrogate	%Recovery	Qualifier	Limits				

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	113		52 - 132
2-Fluorobiphenyl	85		48 - 120
2-Fluorophenol	56		20 - 120
Nitrobenzene-d5	76		46 - 120
Phenol-d5	48		16 - 120
p-Terphenyl-d14	98		67 - 150

Lab Sample ID: MB 480-274902/1-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 275230								Prep Batch:	274902
Analyte		MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		5.0	0.48	ug/L		11/13/15 13:05	11/16/15 15:33	1
2,4,6-Trichlorophenol	ND		5.0	0.61	ug/L		11/13/15 13:05	11/16/15 15:33	1
2,4-Dichlorophenol	ND		5.0	0.51	ug/L		11/13/15 13:05	11/16/15 15:33	1
2,4-Dimethylphenol	ND		5.0	0.50	ug/L		11/13/15 13:05	11/16/15 15:33	1
2,4-Dinitrophenol	ND		10	2.2	ug/L		11/13/15 13:05	11/16/15 15:33	1
2,4-Dinitrotoluene	ND		5.0	0.45	ug/L		11/13/15 13:05	11/16/15 15:33	1
2,6-Dinitrotoluene	ND		5.0	0.40	ug/L		11/13/15 13:05	11/16/15 15:33	1
2-Chloronaphthalene	ND		5.0	0.46	ug/L		11/13/15 13:05	11/16/15 15:33	1
2-Chlorophenol	ND		5.0	0.53	ug/L		11/13/15 13:05	11/16/15 15:33	1
2-Methylnaphthalene	ND		5.0	0.60	ug/L		11/13/15 13:05	11/16/15 15:33	1
2-Methylphenol	ND		5.0	0.40	ug/L		11/13/15 13:05	11/16/15 15:33	1
2-Nitroaniline	ND		10	0.42	ug/L		11/13/15 13:05	11/16/15 15:33	1
2-Nitrophenol	ND		5.0	0.48	ug/L		11/13/15 13:05	11/16/15 15:33	1
3,3'-Dichlorobenzidine	ND		5.0	0.40	ug/L		11/13/15 13:05	11/16/15 15:33	1
3-Nitroaniline	ND		10	0.48	ug/L		11/13/15 13:05	11/16/15 15:33	1
4,6-Dinitro-2-methylphenol	ND		10	2.2	ug/L		11/13/15 13:05	11/16/15 15:33	1
4-Bromophenyl phenyl ether	ND		5.0	0.45	ug/L		11/13/15 13:05	11/16/15 15:33	1
4-Chloro-3-methylphenol	ND		5.0	0.45	ug/L		11/13/15 13:05	11/16/15 15:33	1
4-Chloroaniline	ND		5.0	0.59	ug/L		11/13/15 13:05	11/16/15 15:33	1
4-Chlorophenyl phenyl ether	ND		5.0	0.35	ug/L		11/13/15 13:05	11/16/15 15:33	1
4-Methylphenol	ND		10	0.36	ug/L		11/13/15 13:05	11/16/15 15:33	1
4-Nitroaniline	ND		10	0.25	ug/L		11/13/15 13:05	11/16/15 15:33	1
4-Nitrophenol	ND		10	1.5	ug/L		11/13/15 13:05	11/16/15 15:33	1
Acenaphthene	ND		5.0	0.41	ug/L		11/13/15 13:05	11/16/15 15:33	1
Acenaphthylene	ND		5.0	0.38	ug/L		11/13/15 13:05	11/16/15 15:33	1
Acetophenone	ND		5.0	0.54	ug/L		11/13/15 13:05	11/16/15 15:33	1
Anthracene	ND		5.0	0.28	ug/L		11/13/15 13:05	11/16/15 15:33	1
Atrazine	ND		5.0	0.46	ug/L		11/13/15 13:05	11/16/15 15:33	1
Benzaldehyde	ND		5.0	0.27	ug/L		11/13/15 13:05	11/16/15 15:33	1
Benzo(a)anthracene	ND		5.0	0.36	ug/L		11/13/15 13:05	11/16/15 15:33	1
Benzo(a)pyrene	ND		5.0	0.47	ug/L		11/13/15 13:05	11/16/15 15:33	1
Benzo(b)fluoranthene	ND		5.0	0.34	ug/L		11/13/15 13:05	11/16/15 15:33	1
Benzo(g,h,i)perylene	ND		5.0	0.35	ug/L		11/13/15 13:05	11/16/15 15:33	1

TestAmerica Buffalo

11/19/2015

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-274902/1-A

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 275230

Prep Batch: 274902

7 maryolo Batom 27 0200	MB	MB						Trop Datom	
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzo(k)fluoranthene	ND		5.0	0.73	ug/L		11/13/15 13:05	11/16/15 15:33	1
Biphenyl	ND		5.0	0.65	ug/L		11/13/15 13:05	11/16/15 15:33	1
bis (2-chloroisopropyl) ether	ND		5.0	0.52	ug/L		11/13/15 13:05	11/16/15 15:33	1
Bis(2-chloroethoxy)methane	ND		5.0	0.35	ug/L		11/13/15 13:05	11/16/15 15:33	1
Bis(2-chloroethyl)ether	ND		5.0	0.40	ug/L		11/13/15 13:05	11/16/15 15:33	1
Bis(2-ethylhexyl) phthalate	ND		5.0	1.8	ug/L		11/13/15 13:05	11/16/15 15:33	1
Butyl benzyl phthalate	ND		5.0	0.42	ug/L		11/13/15 13:05	11/16/15 15:33	1
Caprolactam	ND		5.0	2.2	ug/L		11/13/15 13:05	11/16/15 15:33	1
Carbazole	ND		5.0	0.30	ug/L		11/13/15 13:05	11/16/15 15:33	1
Chrysene	ND		5.0	0.33	ug/L		11/13/15 13:05	11/16/15 15:33	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		11/13/15 13:05	11/16/15 15:33	1
Dibenzofuran	ND		10	0.51	ug/L		11/13/15 13:05	11/16/15 15:33	1
Diethyl phthalate	ND		5.0	0.22	ug/L		11/13/15 13:05	11/16/15 15:33	1
Dimethyl phthalate	ND		5.0	0.36	ug/L		11/13/15 13:05	11/16/15 15:33	1
Di-n-butyl phthalate	ND		5.0	0.31	ug/L		11/13/15 13:05	11/16/15 15:33	1
Di-n-octyl phthalate	ND		5.0	0.47	ug/L		11/13/15 13:05	11/16/15 15:33	1
Fluoranthene	ND		5.0	0.40	ug/L		11/13/15 13:05	11/16/15 15:33	1
Fluorene	ND		5.0	0.36	ug/L		11/13/15 13:05	11/16/15 15:33	1
Hexachlorobenzene	ND		5.0	0.51	ug/L		11/13/15 13:05	11/16/15 15:33	1
Hexachlorobutadiene	ND		5.0	0.68	ug/L		11/13/15 13:05	11/16/15 15:33	1
Hexachlorocyclopentadiene	ND		5.0	0.59	ug/L		11/13/15 13:05	11/16/15 15:33	1
Hexachloroethane	ND		5.0	0.59	ug/L		11/13/15 13:05	11/16/15 15:33	1
Indeno(1,2,3-cd)pyrene	ND		5.0	0.47	ug/L		11/13/15 13:05	11/16/15 15:33	1
Isophorone	ND		5.0	0.43	ug/L		11/13/15 13:05	11/16/15 15:33	1
Naphthalene	ND		5.0	0.76	ug/L		11/13/15 13:05	11/16/15 15:33	1
Nitrobenzene	ND		5.0	0.29	ug/L		11/13/15 13:05	11/16/15 15:33	1
N-Nitrosodi-n-propylamine	ND		5.0	0.54	ug/L		11/13/15 13:05	11/16/15 15:33	1
N-Nitrosodiphenylamine	ND		5.0	0.51	ug/L		11/13/15 13:05	11/16/15 15:33	1
Pentachlorophenol	ND		10	2.2	ug/L		11/13/15 13:05	11/16/15 15:33	1
Phenanthrene	ND		5.0	0.44	ug/L		11/13/15 13:05	11/16/15 15:33	1
Phenol	ND		5.0	0.39	ug/L		11/13/15 13:05	11/16/15 15:33	1
Pyrene	ND		5.0	0.34	ug/L		11/13/15 13:05	11/16/15 15:33	1
Dimethylformamide	ND		20	1.7	ug/L		11/13/15 13:05	11/16/15 15:33	1
	MB	MB							

	MB	MB							
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	10.9	TJ	ug/L		3.42		11/13/15 13:05	11/16/15 15:33	1
Unknown	16.3	TJ	ug/L		3.46		11/13/15 13:05	11/16/15 15:33	1
Unknown	83.7	TJ	ug/L		3.62		11/13/15 13:05	11/16/15 15:33	1
Unknown	3.70	ΤJ	ug/L		5.40		11/13/15 13:05	11/16/15 15:33	1
Unknown	2.76	TJ	ug/L		6.64		11/13/15 13:05	11/16/15 15:33	1
Cyclopentasiloxane, decamethyl-	8.68	TJN	ug/L		7.38	541-02-6	11/13/15 13:05	11/16/15 15:33	1
Unknown	3.18	ΤJ	ug/L		8.27		11/13/15 13:05	11/16/15 15:33	1
n-Hexadecanoic acid	6.50	TJN	ug/L		11.02	57-10-3	11/13/15 13:05	11/16/15 15:33	1
Octadecanoic acid	2.53	TJN	ug/L		11.76	57-11-4	11/13/15 13:05	11/16/15 15:33	1
Unknown	2.18	TJ	ug/L		12.32		11/13/15 13:05	11/16/15 15:33	1
Unknown	1.95	TJ	ug/L		12.72		11/13/15 13:05	11/16/15 15:33	1
Unknown	2.47	TJ	ug/L		12.80		11/13/15 13:05	11/16/15 15:33	1
Unknown	3.95	ΤJ	ug/L		13.53		11/13/15 13:05	11/16/15 15:33	1

TestAmerica Buffalo

Page 51 of 68

11/19/2015

<u>ی</u>

5

7

0

10

11

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-274902/1-A

Matrix: Water

Analysis Batch: 275230

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 274902

l		MB	MB							
	Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
	Unknown	4.04	TJ	ug/L		13.66		11/13/15 13:05	11/16/15 15:33	1
	Tricosane	5.50	TJN	ug/L		14.18	638-67-5	11/13/15 13:05	11/16/15 15:33	1
	Unknown	5.09	ΤJ	ug/L		14.95		11/13/15 13:05	11/16/15 15:33	1
	Eicosane	4.50	TJN	ug/L		15.27	112-95-8	11/13/15 13:05	11/16/15 15:33	1
	Heptacosane	5.46	TJN	ug/L		16.45	593-49-7	11/13/15 13:05	11/16/15 15:33	1
	Unknown	5.22	ΤJ	ug/L		17.14		11/13/15 13:05	11/16/15 15:33	1
ı	Unknown	4.15	ΤJ	ug/L		18.86		11/13/15 13:05	11/16/15 15:33	1

MB MB Surrogate %Recovery Qualifier Limits Dil Fac Prepared Analyzed 2,4,6-Tribromophenol 72 52 - 132 <u>11/13/15 13:05</u> <u>11/16/15 15:33</u> 2-Fluorobiphenyl 85 48 - 120 11/13/15 13:05 11/16/15 15:33 2-Fluorophenol 64 20 - 120 11/13/15 13:05 11/16/15 15:33 Nitrobenzene-d5 91 46 - 120 11/13/15 13:05 11/16/15 15:33 Phenol-d5 48 16 - 120 11/13/15 13:05 11/16/15 15:33 p-Terphenyl-d14 67 - 150 11/13/15 13:05 11/16/15 15:33 104

Lab Sample ID: LCS 480-274902/2-A

Matrix: Water

Analysis Ratch: 275230

Client Sample	ID: Lab	Control Sample
---------------	---------	-----------------------

Prep Type: Total/NA

Analysis Batch: 275230	0	1.00					Prep Batch: 274902
Analyte	Spike Added	LCS Result	Qualifier	Unit	D	%Rec	%Rec. Limits
2,4,5-Trichlorophenol	16.0	14.3	- Guainiei	ug/L	<u>-</u>	90	65 - 126
2,4,6-Trichlorophenol	16.0	13.8		ug/L		86	64 ₋ 120
2,4-Dichlorophenol	16.0	13.1		ug/L		82	64 - 120
2,4-Dimethylphenol	16.0	11.1		ug/L		70	57 - 120
2,4-Dinitrophenol	32.0	23.8		ug/L		74	42 - 153
2,4-Dinitrotoluene	16.0	15.9		ug/L		99	65 - 154
2,6-Dinitrotoluene	16.0	15.4		ug/L		96	74 - 134
2-Chloronaphthalene	16.0	14.6		ug/L		91	41 - 124
2-Chlorophenol	16.0	12.6		ug/L		79	48 - 120
2-Methylnaphthalene	16.0	13.3		ug/L		83	34 - 122
2-Methylphenol	16.0	13.6		ug/L		85	39 - 120
2-Nitroaniline	16.0	18.3		ug/L		114	67 - 136
2-Nitrophenol	16.0	13.3		ug/L		83	59 - 120
3,3'-Dichlorobenzidine	32.0	29.3		ug/L		92	33 - 140
3-Nitroaniline	16.0	14.6		ug/L		91	28 - 130
4,6-Dinitro-2-methylphenol	32.0	28.4		ug/L		89	64 - 159
4-Bromophenyl phenyl ether	16.0	14.8		ug/L		92	71 - 126
4-Chloro-3-methylphenol	16.0	15.0		ug/L		94	64 - 120
4-Chloroaniline	16.0	10.5		ug/L		66	10 - 130
4-Chlorophenyl phenyl ether	16.0	14.3		ug/L		89	71 - 122
4-Methylphenol	16.0	13.7		ug/L		86	39 - 120
4-Nitroaniline	16.0	16.6		ug/L		104	47 - 130
4-Nitrophenol	32.0	27.4		ug/L		86	16 - 120
Acenaphthene	16.0	14.6		ug/L		91	60 - 120
Acenaphthylene	16.0	14.8		ug/L		92	63 - 120
Acetophenone	16.0	15.1		ug/L		94	45 - 120

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample	ID: LCS	480-2749	902/2-A
------------	---------	----------	---------

Matrix: Water

Analysis Batch: 275230

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 274902

•	Spike LC		LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Anthracene	16.0	15.7	-	ug/L		98	58 - 148	
Atrazine	32.0	34.2		ug/L		107	56 - 179	
Benzaldehyde	32.0	20.6	В	ug/L		64	30 - 140	
Benzo(a)anthracene	16.0	15.6		ug/L		98	55 - 151	
Benzo(a)pyrene	16.0	15.5		ug/L		97	60 - 145	
Benzo(b)fluoranthene	16.0	16.0		ug/L		100	54 - 140	
Benzo(g,h,i)perylene	16.0	17.4		ug/L		109	66 - 152	
Benzo(k)fluoranthene	16.0	15.0		ug/L		94	51 ₋ 153	
Biphenyl	16.0	14.1		ug/L		88	30 - 140	
bis (2-chloroisopropyl) ether	16.0	17.2		ug/L		107	28 - 136	
Bis(2-chloroethoxy)methane	16.0	14.1		ug/L		88	50 - 128	
Bis(2-chloroethyl)ether	16.0	12.6		ug/L		79	51 ₋ 120	
Bis(2-ethylhexyl) phthalate	16.0	19.1		ug/L		119	53 - 158	
Butyl benzyl phthalate	16.0	18.7		ug/L		117	58 - 163	
Caprolactam	32.0	12.8		ug/L		40	14 - 130	
Carbazole	16.0	16.7		ug/L		104	59 - 148	
Chrysene	16.0	16.0		ug/L		100	69 - 140	
Dibenz(a,h)anthracene	16.0	16.3		ug/L		102	57 ₋ 148	
Dibenzofuran	16.0	15.1		ug/L		95	49 - 137	
Diethyl phthalate	16.0	11.3		ug/L		70	59 - 146	
Dimethyl phthalate	16.0	15.9		ug/L		100	59 - 141	
Di-n-butyl phthalate	16.0	18.2		ug/L		114	58 - 149	
Di-n-octyl phthalate	16.0	19.8		ug/L		124	55 - 167	
Fluoranthene	16.0	15.6		ug/L		97	55 - 147	
Fluorene	16.0	14.8		ug/L		93	55 - 143	
Hexachlorobenzene	16.0	14.6		ug/L		91	14 - 130	
Hexachlorobutadiene	16.0	11.5		ug/L		72	14 - 130	
Hexachlorocyclopentadiene	16.0	9.70		ug/L		61	13 - 130	
Hexachloroethane	16.0	13.9		ug/L		87	14 - 130	
Indeno(1,2,3-cd)pyrene	16.0	16.4		ug/L		103	69 - 146	
Isophorone	16.0	14.1		ug/L		88	48 - 133	
Naphthalene	16.0	13.5		ug/L		84	35 - 130	
Nitrobenzene	16.0	15.2		ug/L		95	45 - 123	
N-Nitrosodi-n-propylamine	16.0	15.7		ug/L		98	56 - 120	
N-Nitrosodiphenylamine	32.0	30.8		ug/L		96	25 - 125	
Pentachlorophenol	32.0	21.5		ug/L		67	39 - 136	
Phenanthrene	16.0	15.4		ug/L		96	57 - 147	
Phenol	16.0	8.81		ug/L		55	17 - 120	
Pyrene	16.0	16.7		ug/L		104	58 ₋ 136	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	83		52 - 132
2-Fluorobiphenyl	86		48 - 120
2-Fluorophenol	69		20 - 120
Nitrobenzene-d5	90		46 - 120
Phenol-d5	57		16 - 120
p-Terphenyl-d14	103		67 - 150

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Water							Prep Ty		
Analysis Batch: 275230	Spike	LCSD	LCSD				Prep Ba	itelli Z	74902 RPI
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
2,4,5-Trichlorophenol	16.0	14.6		ug/L		91	65 - 126	2	18
2,4,6-Trichlorophenol	16.0	14.4		ug/L		90	64 - 120	4	19
2,4-Dichlorophenol	16.0	13.6		ug/L		85	64 - 120	4	19
2,4-Dimethylphenol	16.0	11.6		ug/L		72	57 - 120	4	4:
2.4-Dinitrophenol	32.0	26.5		ug/L		83	42 - 153	11	22
2.4-Dinitrotoluene	16.0	16.0		ug/L		100	65 - 154	1	20
2,6-Dinitrotoluene	16.0	15.9		ug/L		99	74 - 134	4	15
2-Chloronaphthalene	16.0	14.2		ug/L		89	41 - 124	3	2
2-Chlorophenol	16.0	12.6		ug/L		79	48 - 120	0	2
2-Methylnaphthalene	16.0	13.3		ug/L		83	34 - 122		2
2-Methylphenol	16.0	14.0		ug/L		87	39 - 120	3	2
2-Nitroaniline	16.0	18.7		ug/L ug/L		117	67 ₋ 136	2	15
2-Nitrophenol	16.0	13.5		ug/L		84	59 ₋ 120	<u>.</u>	18
3.3'-Dichlorobenzidine	32.0	29.8		ug/L ug/L		93	33 - 140	2	2
3-Nitroaniline	16.0	14.2		ug/L ug/L		88	28 - 130	3	1
4,6-Dinitro-2-methylphenol	32.0	30.3		ug/L		95	64 - 159	6	1:
4-Bromophenyl phenyl ether	16.0	14.1		ug/L ug/L		88	71 - 126	5	15
4-Chloro-3-methylphenol	16.0	16.0		ug/L ug/L		100	64 - 120	7	27
4-Chloroaniline	16.0	10.0		ug/L		64	10 - 130		2
4-Chlorophenyl phenyl ether	16.0	14.8		ug/L		92	71 - 122	3	16
4-Methylphenol	16.0	12.9		ug/L ug/L		81	39 - 120	6	24
4-Nitroaniline	16.0	16.7		ug/L		104	47 - 130		24
4-Nitrophenol	32.0	26.4		ug/L		82	16 - 120	4	48
Acenaphthene	16.0	14.7		ug/L		92	60 - 120	1	24
Acenaphthylene	16.0	14.7		ug/L		92	63 - 120	<u>.</u>	18
Acetophenone	16.0	15.3		ug/L ug/L		95	45 - 120	1	20
Anthracene	16.0	16.0		ug/L		100	58 ₋ 148	1	19
Atrazine	32.0	35.4		ug/L		111	56 - 179	4	20
Benzaldehyde	32.0	22.1	В	ug/L ug/L		69	30 - 173	7	20
Benzo(a)anthracene	16.0	16.2	_	ug/L ug/L		101	55 - 151	4	1:
Benzo(a)pyrene	16.0	16.7		ug/L		104	60 - 145	 . 7	1:
Benzo(b)fluoranthene	16.0	17.3		ug/L ug/L		108	54 - 140	8	1:
Benzo(g,h,i)perylene	16.0	18.2		ug/L		114	66 - 152	4	1
Benzo(k)fluoranthene	16.0	16.3		ug/L		102	51 - 153	 . 8	2:
Biphenyl	16.0	14.1		ug/L		88	30 - 140	1	2
bis (2-chloroisopropyl) ether	16.0	17.2		ug/L		108	28 - 136	0	2
Bis(2-chloroethoxy)methane	16.0	14.4		ug/L		90	50 - 128	2	1
Bis(2-chloroethyl)ether	16.0	13.7		ug/L ug/L		86	51 ₋ 120	9	2
Bis(2-ethylhexyl) phthalate	16.0	19.7		ug/L		123	53 - 158	3	1:
Butyl benzyl phthalate	16.0	19.2		ug/L		120	58 ₋ 163	3	10
Caprolactam	32.0	13.2		ug/L ug/L		41	14 - 130	3	20
Carbazole	16.0	17.2		ug/L ug/L		108	59 - 148	3	20
Chrysene	16.0	16.4		ug/L		102	69 - 140	2	1:
Dibenz(a,h)anthracene	16.0	17.4		ug/L ug/L		102	57 ₋ 148	7	1:
Dibenzofuran	16.0	14.8		ug/L ug/L		92	49 - 137	2	1:
Diethyl phthalate	16.0	11.4		ug/L ug/L		71	59 ₋ 146	<u>2</u>	1:
Directly phthalate Dimethyl phthalate	16.0	15.3		ug/L ug/L		96	59 - 140 59 - 141	4	15
Dimetnyi phthalate Di-n-butyl phthalate	16.0	18.3		ug/L ug/L		96 114	59 - 141 58 - 149	0	1:

TestAmerica Buffalo

Page 54 of 68

11/19/2015

3

6

8

10

11

IJ

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Water

Analysis Batch: 275230

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 274902

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Di-n-octyl phthalate	16.0	20.4		ug/L		127	55 - 167	3	16
Fluoranthene	16.0	15.9		ug/L		99	55 - 147	2	15
Fluorene	16.0	15.1		ug/L		95	55 - 143	2	15
Hexachlorobenzene	16.0	14.8		ug/L		93	14 - 130	1	15
Hexachlorobutadiene	16.0	12.0		ug/L		75	14 - 130	4	44
Hexachlorocyclopentadiene	16.0	10.1		ug/L		63	13 - 130	4	49
Hexachloroethane	16.0	13.9		ug/L		87	14 - 130	0	46
Indeno(1,2,3-cd)pyrene	16.0	17.5		ug/L		109	69 - 146	6	15
Isophorone	16.0	14.7		ug/L		92	48 - 133	4	17
Naphthalene	16.0	13.5		ug/L		85	35 - 130	0	29
Nitrobenzene	16.0	15.7		ug/L		98	45 - 123	3	24
N-Nitrosodi-n-propylamine	16.0	15.0		ug/L		94	56 - 120	4	31
N-Nitrosodiphenylamine	32.0	31.5		ug/L		98	25 - 125	2	15
Pentachlorophenol	32.0	22.0		ug/L		69	39 - 136	2	37
Phenanthrene	16.0	15.9		ug/L		99	57 - 147	3	15
Phenol	16.0	9.03		ug/L		56	17 - 120	2	34
Pyrene	16.0	17.2		ug/L		107	58 - 136	3	19
				-					

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	87		52 - 132
2-Fluorobiphenyl	87		48 - 120
2-Fluorophenol	73		20 - 120
Nitrobenzene-d5	92		46 - 120
Phenol-d5	55		16 - 120
p-Terphenyl-d14	108		67 - 150

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC)

Lab Sample ID: MB 480-272574/4 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 272574

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		1.0	0.14	mg/L			11/02/15 12:23	1
Isobutyl alcohol	ND		1.0	0.37	mg/L			11/02/15 12:23	1
Methanol	ND		1.0	0.41	mg/L			11/02/15 12:23	1
n-Butanol	ND		1.0	0.40	mg/L			11/02/15 12:23	1
Propanol	ND		1.0	0.16	mg/L			11/02/15 12:23	1
2-Butanol	ND		1.0	0.17	mg/L			11/02/15 12:23	1
Isopropyl alcohol	ND		1.0	0.12	mg/L			11/02/15 12:23	1
t-Butyl alcohol	ND		1.0	0.10	mg/L			11/02/15 12:23	1

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Hexanone	112	62 - 129		11/02/15 12:23	

TestAmerica Buffalo

Page 55 of 68

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) (Continued)

Lab Sample ID: LCS 480-272574/5 **Matrix: Water**

Analysis Batch: 272574

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethanol	20.0	22.3		mg/L		112	72 - 133	
Isobutyl alcohol	20.0	23.1		mg/L		115	69 - 139	
Methanol	20.0	22.4		mg/L		112	71 - 132	
n-Butanol	20.0	21.7		mg/L		109	73 - 130	
Propanol	20.0	22.6		mg/L		113	71 - 131	
2-Butanol	20.0	22.1		mg/L		110	68 - 136	
Isopropyl alcohol	20.0	22.6		mg/L		113	67 - 132	
t-Butyl alcohol	20.0	23.0		mg/L		115	71 - 130	

LCS LCS

Surrogate %Recovery Qualifier Limits 2-Hexanone 112 62 - 129

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-272701/1-A

Matrix: Water

Analysis Batch: 272853

MB MB

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 272701**

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac PCB-1016 11/03/15 07:52 11/03/15 15:30 $\overline{\mathsf{ND}}$ 0.50 0.18 ug/L PCB-1221 ND 0.50 0.18 ug/L 11/03/15 07:52 11/03/15 15:30 PCB-1232 ND 0.50 0.18 ug/L 11/03/15 07:52 11/03/15 15:30 PCB-1242 ND 0.50 0.18 ug/L 11/03/15 07:52 11/03/15 15:30 ND PCB-1248 0.50 0.18 ug/L 11/03/15 07:52 11/03/15 15:30 PCB-1254 ND 0.50 11/03/15 07:52 11/03/15 15:30 0.25 ug/L PCB-1260 ND 0.50 0.25 ug/L 11/03/15 07:52 11/03/15 15:30

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	81		24 - 137	11/03/15 07:52	11/03/15 15:30	1
DCB Decachlorobiphenyl	65		19 - 125	11/03/15 07:52	11/03/15 15:30	1

Lab Sample ID: LCS 480-272701/2-A

Matrix: Water

Analysis Batch: 272853

Client Sample ID: Lab Control Sample Prep Type: Total/NA

> **Prep Batch: 272701** %Rec.

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	4.00	3.19		ug/L		80	62 - 130	
PCB-1260	4.00	2.59		ug/L		65	56 - 123	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
Tetrachloro-m-xylene	82	24 - 137
DCB Decachlorohiphenyl	38	19 - 125

TestAmerica Buffalo

11/19/2015

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-272589/1-A

Lab Sample ID: LCS 480-272589/2-A

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 272589

Matrix: Water Analysis Batch: 272943 MR MR

	INID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		11/03/15 07:55	11/03/15 19:00	1
Barium	ND		0.0020	0.00070	mg/L		11/03/15 07:55	11/03/15 19:00	1
Cadmium	ND		0.0020	0.00050	mg/L		11/03/15 07:55	11/03/15 19:00	1
Chromium	ND		0.0040	0.0010	mg/L		11/03/15 07:55	11/03/15 19:00	1
Lead	ND		0.010	0.0030	mg/L		11/03/15 07:55	11/03/15 19:00	1
Selenium	ND		0.025	0.0087	mg/L		11/03/15 07:55	11/03/15 19:00	1
Silver	ND		0.0060	0.0017	mg/L		11/03/15 07:55	11/03/15 19:00	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 272589**

Prep Batch: 272996

%Rec.

Matrix: Water Analysis Batch: 272943

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.200	0.199		mg/L		99	80 - 120	
Barium	0.200	0.195		mg/L		98	80 - 120	
Cadmium	0.200	0.196		mg/L		98	80 - 120	
Chromium	0.200	0.201		mg/L		100	80 - 120	
Lead	0.200	0.196		mg/L		98	80 - 120	
Selenium	0.200	0.196		mg/L		98	80 - 120	
Silver	0.0500	0.0492		mg/L		98	80 - 120	

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-272996/1-A **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA**

Analysis Batch: 273200

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed

ND 0.00020 0.00012 mg/L 11/04/15 10:35 11/04/15 16:47 Mercury

Lab Sample ID: LCS 480-272996/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 273200 Prep Batch: 272996**

LCS LCS

Analyte Added Result Qualifier Unit Limits D %Rec Mercury 0.00667 0.00658 mg/L 99 80 - 120

Spike

11/19/2015

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

GC/MS VOA

Prep Batch: 272275

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90206-1	SWMU7-SS-04	Total/NA	Solid	5035A	
480-90206-2	SWMU7-SS-06	Total/NA	Solid	5035A	
480-90206-3	SWMU7-SS-05	Total/NA	Solid	5035A	
480-90206-4	SWMU7-SS-BLDG23-23	Total/NA	Solid	5035A	
480-90206-5	SWMU7-SS-BLDG23-24	Total/NA	Solid	5035A	
480-90206-6	SWMU7-SS-BLDG23-25	Total/NA	Solid	5035A	
480-90206-7	SWMU1-SSURFACE-SS-01	Total/NA	Solid	5035A	
LCS 480-272275/1-A	Lab Control Sample	Total/NA	Solid	5035A	
LCSD 480-272275/2-A	Lab Control Sample Dup	Total/NA	Solid	5035A	
MB 480-272275/3-A	Method Blank	Total/NA	Solid	5035A	

Prep Batch: 272280

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90206-5 - DL	SWMU7-SS-BLDG23-24	Total/NA	Solid	5035A	
LCS 480-272280/1-A	Lab Control Sample	Total/NA	Solid	5035A	
LCSD 480-272280/2-A	Lab Control Sample Dup	Total/NA	Solid	5035A	
MB 480-272280/3-A	Method Blank	Total/NA	Solid	5035A	

Analysis Batch: 273440

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90206-1	SWMU7-SS-04	Total/NA	Solid	8260C	272275
480-90206-2	SWMU7-SS-06	Total/NA	Solid	8260C	272275
480-90206-3	SWMU7-SS-05	Total/NA	Solid	8260C	272275
480-90206-4	SWMU7-SS-BLDG23-23	Total/NA	Solid	8260C	272275
480-90206-5	SWMU7-SS-BLDG23-24	Total/NA	Solid	8260C	272275
480-90206-6	SWMU7-SS-BLDG23-25	Total/NA	Solid	8260C	272275
480-90206-7	SWMU1-SSURFACE-SS-01	Total/NA	Solid	8260C	272275
LCS 480-272275/1-A	Lab Control Sample	Total/NA	Solid	8260C	272275
LCSD 480-272275/2-A	Lab Control Sample Dup	Total/NA	Solid	8260C	272275
MB 480-272275/3-A	Method Blank	Total/NA	Solid	8260C	272275

Analysis Batch: 274025

Lab Sample ID 480-90206-5 - DL	Client Sample ID SWMU7-SS-BLDG23-24	Prep Type Total/NA	Matrix Solid	Method 8260C	Prep Batch 272280
LCS 480-272280/1-A	Lab Control Sample	Total/NA	Solid	8260C	272280
LCSD 480-272280/2-A	Lab Control Sample Dup	Total/NA	Solid	8260C	272280
MB 480-272280/3-A	Method Blank	Total/NA	Solid	8260C	272280

Analysis Batch: 274226

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90206-8	EB04	Total/NA	Water	8260C	
LCS 480-274226/4	Lab Control Sample	Total/NA	Water	8260C	
MB 480-274226/6	Method Blank	Total/NA	Water	8260C	

Analysis Batch: 274360

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90206-9	TB04	Total/NA	Water	8260C	
LCS 480-274360/4	Lab Control Sample	Total/NA	Water	8260C	
MB 480-274360/6	Method Blank	Total/NA	Water	8260C	

TestAmerica Buffalo

Page 58 of 68

QC Association Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90206-1

GC/MS Semi VOA

_	_			_		
Pre	n R	atc	h·	77	775	777
	\boldsymbol{p}	att		_	_	,,,,

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90206-8	EB04	Total/NA	Water	3510C	
LCS 480-272533/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 480-272533/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 273528

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-272533/2-A	Lab Control Sample	Total/NA	Water	8270D	272533

Analysis Batch: 274392

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-272533/1-A	Method Blank	Total/NA	Water	8270D	272533

Analysis Batch: 274604

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90206-8	EB04	Total/NA	Water	8270D	272533

Prep Batch: 274902

Lab Sample ID 480-90206-8 - RE	Client Sample ID EB04	Prep Type Total/NA	Matrix Water	Method 3510C	Prep Batch
LCS 480-274902/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-274902/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
MB 480-274902/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 275230

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90206-8 - RE	EB04	Total/NA	Water	8270D	274902
LCS 480-274902/2-A	Lab Control Sample	Total/NA	Water	8270D	274902
LCSD 480-274902/3-A	Lab Control Sample Dup	Total/NA	Water	8270D	274902
MB 480-274902/1-A	Method Blank	Total/NA	Water	8270D	274902

GC VOA

Analysis Batch: 272574

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90206-8	EB04	Total/NA	Water	8015D	
LCS 480-272574/5	Lab Control Sample	Total/NA	Water	8015D	
MB 480-272574/4	Method Blank	Total/NA	Water	8015D	

GC Semi VOA

Prep Batch: 272701

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90206-8	EB04	Total/NA	Water	3510C	
LCS 480-272701/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 480-272701/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 272853

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90206-8	EB04	Total/NA	Water	8082A	272701
LCS 480-272701/2-A	Lab Control Sample	Total/NA	Water	8082A	272701

TestAmerica Buffalo

11/19/2015

Page 59 of 68

3

4

6

7

9

10

12

1 1

QC Association Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90206-1

GC Semi VOA (Continued)

Analysis Batch: 272853 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-272701/1-A	Method Blank	Total/NA	Water	8082A	272701

Metals

Prep Batch: 272589

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90206-8	EB04	Total/NA	Water	3005A	
LCS 480-272589/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-272589/1-A	Method Blank	Total/NA	Water	3005A	

Analysis Batch: 272943

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90206-8	EB04	Total/NA	Water	6010C	272589
LCS 480-272589/2-A	Lab Control Sample	Total/NA	Water	6010C	272589
MB 480-272589/1-A	Method Blank	Total/NA	Water	6010C	272589

Prep Batch: 272996

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90206-8	EB04	Total/NA	Water	7470A	
LCS 480-272996/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-272996/1-A	Method Blank	Total/NA	Water	7470A	

Analysis Batch: 273200

Lab Sample ID 480-90206-8	Client Sample ID EB04	Prep Type Total/NA	Matrix Water	Method 7470A	Prep Batch 272996
LCS 480-272996/2-A	Lab Control Sample	Total/NA	Water	7470A 7470A	272996
MB 480-272996/1-A	Method Blank	Total/NA	Water	7470A	272996

General Chemistry

Analysis Batch: 272321

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90206-1	SWMU7-SS-04	Total/NA	Solid	Moisture	
480-90206-2	SWMU7-SS-06	Total/NA	Solid	Moisture	
480-90206-3	SWMU7-SS-05	Total/NA	Solid	Moisture	
480-90206-4	SWMU7-SS-BLDG23-23	Total/NA	Solid	Moisture	
480-90206-5	SWMU7-SS-BLDG23-24	Total/NA	Solid	Moisture	
480-90206-6	SWMU7-SS-BLDG23-25	Total/NA	Solid	Moisture	
480-90206-7	SWMU1-SSURFACE-SS-01	Total/NA	Solid	Moisture	

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Lab Sample ID: 480-90206-1

Matrix: Solid

Matrix: Solid

Client Sample ID: SWMU7-SS-04 Date Collected: 10/29/15 09:40

Date Received: 10/30/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	272321	10/31/15 02:12	CSW	TAL BUF

Client Sample ID: SWMU7-SS-04 Lab Sample ID: 480-90206-1

Date Collected: 10/29/15 09:40 Date Received: 10/30/15 09:00

Matrix: Solid Percent Solids: 88.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			272275	10/30/15 17:59	LCH	TAL BUF
Total/NA	Analysis	8260C		1	273440	11/06/15 04:56	CDC	TAL BUF

Client Sample ID: SWMU7-SS-06 Lab Sample ID: 480-90206-2

Date Collected: 10/29/15 10:15 Date Received: 10/30/15 09:00

Batch Prepared Batch Dilution **Batch** Туре **Prep Type** Method **Factor** Number or Analyzed Analyst Run Lab 272321 10/31/15 02:12 CSW TAL BUF Total/NA Analysis Moisture

Client Sample ID: SWMU7-SS-06 Lab Sample ID: 480-90206-2

Date Collected: 10/29/15 10:15 Date Received: 10/30/15 09:00

Matrix: Solid Percent Solids: 88.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			272275	10/30/15 18:02	LCH	TAL BUF
Total/NA	Analysis	8260C		1	273440	11/06/15 05:22	CDC	TAL BUF

Client Sample ID: SWMU7-SS-05 Lab Sample ID: 480-90206-3

Date Collected: 10/29/15 10:45

Matrix: Solid Date Received: 10/30/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	272321	10/31/15 02:12	CSW	TAL BUF

Lab Sample ID: 480-90206-3 Client Sample ID: SWMU7-SS-05

Date Collected: 10/29/15 10:45 Matrix: Solid Date Received: 10/30/15 09:00 Percent Solids: 81.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			272275	10/30/15 18:05	LCH	TAL BUF
Total/NA	Analysis	8260C		1	273440	11/06/15 05:48	CDC	TAL BUF

TestAmerica Buffalo

10

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Lab Sample ID: 480-90206-4

Matrix: Solid

Client Sample ID: SWMU7-SS-BLDG23-23

Date Collected: 10/29/15 13:30 Date Received: 10/30/15 09:00

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis Moisture 272321 10/31/15 02:12 CSW TAL BUF

Lab Sample ID: 480-90206-4

Client Sample ID: SWMU7-SS-BLDG23-23 Date Collected: 10/29/15 13:30 Matrix: Solid Date Received: 10/30/15 09:00 Percent Solids: 92.7

Batch Batch Dilution **Batch Prepared** Method **Prep Type** Type Run Factor Number or Analyzed Analyst Lab

5035A 272275 10/30/15 18:07 LCH TAL BUF Total/NA Prep Total/NA Analysis 8260C 1 273440 11/06/15 06:13 CDC TAL BUF

Client Sample ID: SWMU7-SS-BLDG23-24 Lab Sample ID: 480-90206-5

Date Collected: 10/29/15 14:15 Matrix: Solid

Date Received: 10/30/15 09:00

Batch Batch Dilution **Batch** Prepared Method Run Factor Number or Analyzed Analyst **Prep Type** Type Lab 10/31/15 02:12 CSW TAL BUF Total/NA Analysis Moisture 272321

Client Sample ID: SWMU7-SS-BLDG23-24 Lab Sample ID: 480-90206-5

Date Collected: 10/29/15 14:15 **Matrix: Solid** Date Received: 10/30/15 09:00 Percent Solids: 78.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			272275	10/30/15 18:10	LCH	TAL BUF
Total/NA	Analysis	8260C		1	273440	11/06/15 06:39	CDC	TAL BUF
Total/NA	Prep	5035A	DL		272280	10/30/15 18:19	LCH	TAL BUF
Total/NA	Analysis	8260C	DL	4	274025	11/10/15 00:48	GTG	TAL BUF

Client Sample ID: SWMU7-SS-BLDG23-25 Lab Sample ID: 480-90206-6

Date Collected: 10/29/15 15:00 **Matrix: Solid**

Date Received: 10/30/15 09:00

Dilution Batch Batch Batch Prepared Method Factor Number or Analyzed **Prep Type** Type Run **Analyst** Lab 10/31/15 02:12 CSW TAL BUF Total/NA Analysis Moisture 272321

Client Sample ID: SWMU7-SS-BLDG23-25 Lab Sample ID: 480-90206-6

Date Collected: 10/29/15 15:00 **Matrix: Solid** Date Received: 10/30/15 09:00 Percent Solids: 85.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			272275	10/30/15 18:13	LCH	TAL BUF
Total/NA	Analysis	8260C		1	273440	11/06/15 07:05	CDC	TAL BUF

TestAmerica Buffalo

TestAmerica Job ID: 480-90206-1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU1-SSURFACE-SS-01

Lab Sample ID: 480-90206-7 Date Collected: 10/29/15 15:45

Matrix: Solid

Date Received: 10/30/15 09:00

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst TAL BUF Total/NA Analysis Moisture 272321 10/31/15 02:12 CSW

Lab Sample ID: 480-90206-7 Client Sample ID: SWMU1-SSURFACE-SS-01

Date Collected: 10/29/15 15:45 Matrix: Solid Date Received: 10/30/15 09:00 Percent Solids: 94.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			272275	10/30/15 18:16	LCH	TAL BUF
Total/NA	Analysis	8260C		1	273440	11/06/15 07:31	CDC	TAL BUF

Client Sample ID: EB04 Lab Sample ID: 480-90206-8

Date Collected: 10/29/15 16:30 **Matrix: Water**

Date Received: 10/30/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			274226	11/10/15 20:24	JWG	TAL BUF
Total/NA	Prep	3510C			272533	11/02/15 09:42	TRG	TAL BUF
Total/NA	Analysis	8270D		1	274604	11/12/15 13:54	DMR	TAL BUF
Total/NA	Prep	3510C	RE		274902	11/13/15 14:06	CPH	TAL BUF
Total/NA	Analysis	8270D	RE	1	275230	11/16/15 17:00	DMR	TAL BUF
Total/NA	Analysis	8015D		1	272574	11/02/15 13:46	AJM	TAL BUF
Total/NA	Prep	3510C			272701	11/03/15 07:52	RMZ	TAL BUF
Total/NA	Analysis	8082A		1	272853	11/03/15 18:40	KS	TAL BUF
Total/NA	Prep	3005A			272589	11/03/15 07:55	CMM	TAL BUF
Total/NA	Analysis	6010C		1	272943	11/03/15 19:13	SLB	TAL BUF
Total/NA	Prep	7470A			272996	11/04/15 10:35	TAS	TAL BUF
Total/NA	Analysis	7470A		1	273200	11/04/15 17:33	TAS	TAL BUF

Client Sample ID: TB04 Lab Sample ID: 480-90206-9

Date Collected: 10/29/15 00:00 Date Received: 10/30/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			274360	11/11/15 15:30	JWG	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Matrix: Water

Certification Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90206-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

uthority	Program		EPA Region	Certification ID	Expiration Date
ew York	NELAP		2	10026	03-31-16
The following analytes	s are included in this repo	rt, but certification is	s not offered by the g	overning authority:	
Analysis Method	Prep Method	Matrix	Analy	te	
8015D		Water	2-But	anol	
8015D		Water	Isopro	opyl alcohol	
8015D		Water	Metha	anol	
8015D		Water	n-But	anol	
8015D		Water	Propa	nol	
8260C		Water	Tetral	hydrofuran	
8260C	5035A	Solid	Tetral	hydrofuran	
8270D	3510C	Water	Dimet	thylformamide	
Moisture		Solid	Perce	ent Moisture	
Moisture		Solid	Perce	ent Solids	

Method Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90206-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
8015D	Nonhalogenated Organic Compounds - Direct Injection (GC)	SW846	TAL BUF
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

6

0

9

10

11

40

14

Sample Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90206-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-90206-1	SWMU7-SS-04	Solid	10/29/15 09:40	10/30/15 09:00
480-90206-2	SWMU7-SS-06	Solid	10/29/15 10:15	10/30/15 09:00
480-90206-3	SWMU7-SS-05	Solid	10/29/15 10:45	10/30/15 09:00
480-90206-4	SWMU7-SS-BLDG23-23	Solid	10/29/15 13:30	10/30/15 09:00
480-90206-5	SWMU7-SS-BLDG23-24	Solid	10/29/15 14:15	10/30/15 09:00
480-90206-6	SWMU7-SS-BLDG23-25	Solid	10/29/15 15:00	10/30/15 09:00
480-90206-7	SWMU1-SSURFACE-SS-01	Solid	10/29/15 15:45	10/30/15 09:00
480-90206-8	EB04	Water	10/29/15 16:30	10/30/15 09:00
480-90206-9	TB04	Water	10/29/15 00:00	10/30/15 09:00

2

6

7

4 4

14

14

	Record
Chain of	Custody

	480-90206 Chi
	480-5
E	1
\angle	
Š	

	480-90206 Chain of Cus
Am	

	,	<u>1</u>	TectAm		
Chain of Custody Record	Temperature on Receipt	2 1			
TAI 4124 (1007)	Drinking Water? Yes□	Note	THE LEADER IN ENVIRON	480-90206 Chain of Custouy	retory.
dient Woodered & Corran	Project Manager	Weelys	Date 10 t	100 29115	Chain of Custody Number 287323
Address 1520 Highland Ave.	Telephone Number (Area Code))/Fax Number ©37 G	Lab Numbe	ıber	Page of /
City State Zip Code	Site Contact	Lab Contact Sech + Mason	Analysis (Attach list if more space is needed)	ach list if s needed)	
7		,	5/ 6 5/ 5/ 50	+ 7 ⁵ ,	Special Instructions/
C ? CO	1	Containers & Preservatives	5 970 507 2005 2005	ا کرراء ا	Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Ilos snoenby Ily	NaOH HOSS HZSOA HOSS HZSOA	, ,	×10	
5WMV 7-55-04	15 0940 K		8	*	* 8360 c - TCL +
SWMV 7-55-06	1015		*	*	tetraly do from
34MV7-55-05	1045		8	7	*500cs- 52700 /TCL
3 4 4 7 - 55 - BLOG 23 - 33	1330 a		४	*	+Dinch (Formanie)
5 Junu 7 - 55 - BLD6.33 -34	1415 B		8	*	*Motals-RCRAS
BUM07-55-BUDG 23-25	1500		8	*	GO10B / 7471A
Summ) - Surface - 55-01	1545		* * * * *		* Alcohols-80150
2	1630 K 3		\ \ \ \ \ \ \ \ \ \		* PCB5- 8080
TB04 Las	Perres &		8		
					ATake Tang Vie
					ten blank in
					Cooler
Possible Hazard Identification Non-Hazard	K Unknown	A Disposal By Lab	Archive For Month:	(A fee may be ass longer than 1 mon	(A fee may be assessed if samples are retained Months longer than 1 month)
e Required 7 Days 14 Days	Days (Other	All laboratory	Analysis Circles	c conducted	be conducted via NYDEC 3005 (Ast) with GATA Data deliverables.
1. Relinquished By Will is Mascely	Date 10,28,15	1. Redeived Bf	\		Costo II Buc
	Date Time	2. Received By			Date
5 Belinquished By	Date Time	3. Received By V			Date Time
Comments 2				7.8 #1	#

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Client: Woodard & Curran, Inc.

Job Number: 480-90206-1

Login Number: 90206 List Source: TestAmerica Buffalo

List Number: 1

Creator: Janish, Carl M

Question Answer Comment
Radioactivity either was not measured or, if measured, is at or below background
The cooler's custody seal, if present, is intact.
The cooler or samples do not appear to have been compromised or tampered with.
Samples were received on ice.
Cooler Temperature is acceptable. True
Cooler Temperature is recorded. True
COC is present. True
COC is filled out in ink and legible.
COC is filled out with all pertinent information.
Is the Field Sampler's name present on COC? True
There are no discrepancies between the sample IDs on the containers and True he COC.
Samples are received within Holding Time. True
Sample containers have legible labels. True
Containers are not broken or leaking.
Sample collection date/times are provided. True
Appropriate sample containers are used. True
Sample bottles are completely filled. True
Sample Preservation Verified True
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs True
VOA sample vials do not have headspace or bubble is <6mm (1/4") in True diameter.
f necessary, staff have been informed of any short hold time or quick TAT True needs
Multiphasic samples are not present. True
Samples do not require splitting or compositing.
Sampling Company provided. True w+c
Samples received within 48 hours of sampling.
Samples requiring field filtration have been filtered in the field. N/A
Chlorine Residual checked. N/A

TestAmerica Buffalo

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-90365-1 Client Project/Site: Rouses Point

For:

Woodard & Curran, Inc. 64 Maple Street Rouses Point, New York 12979

Attn: Don Weeks

Authorized for release by: 11/18/2015 2:16:17 PM

Joe Giacomazza, Project Management Assistant II joe.giacomazza@testamericainc.com

Designee for

Becky Mason, Project Manager II (413)572-4000 becky.mason@testamericainc.com

·····LINKS ······

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	5
Detection Summary	7
Client Sample Results	9
Surrogate Summary	47
QC Sample Results	50
QC Association Summary	70
Lab Chronicle	75
Certification Summary	81
Method Summary	82
Sample Summary	83
Chain of Custody	84
Receipt Checklists	85

3

4

0

9

11

12

14

Definitions/Glossary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS VOA TICs

Qualifier	Qualifier Description
J	Indicates an Estimated Value for TICs
N	Presumptive evidence of material.
Т	Result is a tentatively identified compound (TIC) and an estimated value.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
X	Surrogate is outside control limits	

GC/MS Semi VOA TICs

Qualifier	Qualifier Description
J	Indicates an Estimated Value for TICs
N	Presumptive evidence of material.
T	Result is a tentatively identified compound (TIC) and an estimated value.
001/01	

GC VOA

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Metals	

Qualifier Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

RL

RPD

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

TestAmerica Buffalo

Page 3 of 85 11/18/2015

3

4

6

Я

4.6

11

40

4 /

15

Definitions/Glossary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Glossary (Continued)

Abbreviation These commonly used abbreviations may or may not be present in this report.

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

4

4

6

8

10

11

13

14

Case Narrative

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Job ID: 480-90365-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-90365-1

Receipt

The samples were received on 11/3/2015 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.7° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-273681 recovered above the upper control limit for 1,1,1-Trichloroethane, 1,1,2,2-Tetrachloroethane, Dibromochloromethane, trans-1,3-Dichloropropene and Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: SWMU4-SURFACE-SS-01 (480-90365-1), SWMU1-SB11-SS-104 (480-90365-2), SWMU1-SB12-SS-105 (480-90365-3), SWMU1-SB13-SS-106 (480-90365-4), SWMU1-SB14-SS-107 (480-90365-5), SWMU4-SB03-SS-100 (480-90365-6), SWMU4-SB04-SS-101 (480-90365-7) and SWMU1-SB11-SS-201 (480-90365-8).

Method(s) 8260C: The method blank for preparation batch 480-272870 and analytical batch 480-273681 contained 1,2,3-Trichlorobenzene, 1,2,4-Trichlorobenzene, 2-Hexanone, 4-Methyl-2-pentanone (MIBK) and Acetone above the method detection limit. These target analytes concentration was less than the reporting limit (RL); therefore, re-analysis of samples was not performed. The following samples are impacted: SWMU4-SURFACE-SS-01 (480-90365-1), SWMU1-SB11-SS-104 (480-90365-2), SWMU1-SB12-SS-105 (480-90365-3), SWMU1-SB13-SS-106 (480-90365-4), SWMU1-SB14-SS-107 (480-90365-5), SWMU4-SB03-SS-100 (480-90365-6), SWMU4-SB04-SS-101 (480-90365-7) and SWMU1-SB11-SS-201 (480-90365-8).

Method(s) 8260C: The following sample was collected in a properly preserved vial for analysis of volatile organic compounds (VOCs). However, the pH was outside the required criteria when verified by the laboratory, and corrective action was not possible: EB-05 (480-90365-9).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-274584 recovered above the upper control limit for 1,4-Dioxane and Acetone. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: EB-05 (480-90365-9) and TB-05 (480-90365-10).

Method(s) 8260C: The laboratory control sample (LCS) for batch analytical batch 480-274584 recovered outside control limits for the following analyte: Acetone. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D: The continuing calibration verification (CCV) analyzed in batch 480-273999 was outside the method criteria for the following analytes: 2,4-Dinitrophenol, 4-Chloroaniline, Pentachlorophenol and, Benzaldehyde. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method(s) 8270D: The initial calibration curve analyzed in analytical batch 271208 was outside method criteria for the following analyte(s): Benzaldehyde. As indicated in the reference method, sample analysis may proceed; however, any detection or non-detection for the affected analyte(s) is considered an estimated concentration.

Method(s) 8270D: The continuing calibration verification (CCV) associated with batch 480-273999 recovered above the upper control limit for Hexachlorobenzene, 4-Nitrophenol and, Hexachlorobutadiene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: EB-05 (480-90365-9).

Method(s) 8270D: Surrogate recovery for the following sample was outside the upper control limit for 2,4,6-Tribromophenol: (LCS 480-273098/2-A). The sample associated to this QC sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

1

4

5

0

8

9

11

13

14

Case Narrative

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Job ID: 480-90365-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

GC VOA

Method(s) 8015D: The following samples were collected in proper vials for analysis of volatile organic compounds (VOCs). However, the pH was outside the required criteria when verified by the laboratory, and corrective action was not possible: EB-05 (480-90365-9).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8082A: All primary data is reported from the ZB-35 column.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

5

6

_

9

10

. .

13

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU4-SURFACE-SS-01

TestAmerica Job ID: 480-90365-1

Lab Sample ID: 480-90365-1

Lab Sample ID: 480-90365-2

Lab Sample ID: 480-90365-3

Lab Sample ID: 480-90365-4

Lab Sample ID: 480-90365-5

							-	
Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
23	J	180	19	ug/Kg		₩	8270D	Total/NA
3.0		2.1	0.42	mg/Kg	1	₩	6010C	Total/NA
16.0		0.52	0.12	mg/Kg	1	₩	6010C	Total/NA
0.16	J	0.21	0.031	mg/Kg	1	₩	6010C	Total/NA
4.9		0.52	0.21	mg/Kg	1	₩	6010C	Total/NA
7.1		1.0	0.25	mg/Kg	1	₩	6010C	Total/NA
	23 3.0 16.0 0.16 4.9	3.0 16.0 0.16 J 4.9	23 J 180 3.0 2.1 16.0 0.52 0.16 J 0.21 4.9 0.52	23 J 180 19 3.0 2.1 0.42 16.0 0.52 0.12 0.16 J 0.21 0.031 4.9 0.52 0.21	23 J 180 19 ug/Kg 3.0 2.1 0.42 mg/Kg 16.0 0.52 0.12 mg/Kg 0.16 J 0.21 0.031 mg/Kg 4.9 0.52 0.21 mg/Kg	23 J 180 19 ug/Kg 1 3.0 2.1 0.42 mg/Kg 1 16.0 0.52 0.12 mg/Kg 1 0.16 J 0.21 0.031 mg/Kg 1 4.9 0.52 0.21 mg/Kg 1	23 J 180 19 ug/Kg 1 ☼ 3.0 2.1 0.42 mg/Kg 1 ☼ 16.0 0.52 0.12 mg/Kg 1 ☼ 0.16 J 0.21 0.031 mg/Kg 1 ☼ 4.9 0.52 0.21 mg/Kg 1 ☼	23 J 180 19 ug/Kg 1 ≅ 8270D 3.0 2.1 0.42 mg/Kg 1 ≅ 6010C 16.0 0.52 0.12 mg/Kg 1 ≅ 6010C 0.16 J 0.21 0.031 mg/Kg 1 ≅ 6010C 4.9 0.52 0.21 mg/Kg 1 ≅ 6010C

Client Sample ID: SWMU1-SB11-SS-104

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methanol	0.33	JB	1.1	0.32	mg/Kg		₩	8015D	Soluble
Arsenic	2.7		2.2	0.44	mg/Kg	1	₩	6010C	Total/NA
Barium	37.5		0.55	0.12	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.14	J	0.22	0.033	mg/Kg	1	₩	6010C	Total/NA
Chromium	10.5		0.55	0.22	mg/Kg	1	₩	6010C	Total/NA
Lead	6.7		1.1	0.27	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.012		0.021	0.0086	ma/Ka	1	₩.	7471B	Total/NA

Client Sample ID: SWMU1-SB12-SS-105

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	2.4		2.2	0.43	mg/Kg	1	₩	6010C	Total/NA
Barium	39.1		0.54	0.12	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.15	J	0.22	0.033	mg/Kg	1	₩	6010C	Total/NA
Chromium	10.4		0.54	0.22	mg/Kg	1	₩	6010C	Total/NA
Lead	6.3		1.1	0.26	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: SWMU1-SB13-SS-106

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone		JB	25	4.2	ug/Kg	1	₩	8260C	Total/NA
Benzene	0.70	J	5.0	0.25	ug/Kg	1	₩	8260C	Total/NA
Methanol	0.50	JB	1.1	0.33	mg/Kg	1	₩	8015D	Soluble
Arsenic	3.3		2.3	0.47	mg/Kg	1	₩	6010C	Total/NA
Barium	46.6		0.59	0.13	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.17	J	0.23	0.035	mg/Kg	1	₩	6010C	Total/NA
Chromium	16.3		0.59	0.23	mg/Kg	1	₩	6010C	Total/NA
Lead	8.2		1.2	0.28	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.013	J	0.023	0.0091	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SWMU1-SB14-SS-107

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	44	В	31	5.2	ug/Kg		₩	8260C	Total/NA
Benzene	1.3	J	6.2	0.30	ug/Kg	1	₩	8260C	Total/NA
cis-1,2-Dichloroethene	5.7	J	6.2	0.80	ug/Kg	1	₩	8260C	Total/NA
2-Butanone (MEK)	17	J	31	2.3	ug/Kg	1	₩	8260C	Total/NA
Toluene	0.64	J	6.2	0.47	ug/Kg	1	☆	8260C	Total/NA
Methanol	0.99	JB	1.1	0.33	mg/Kg	1	₩	8015D	Soluble
Arsenic	3.2		2.3	0.46	mg/Kg	1	₩.	6010C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

11/18/2015

3

5

7

10

12

4 4

15

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Lab Sample ID: 480-90365-5

Lab Sample ID: 480-90365-7

Lab Sample ID: 480-90365-8

Client Sample ID: SWMU1-SB14-SS-107 (Continued)

Analyte	Result Qu	ualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	45.5	0.57	0.13	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.25	0.23	0.034	mg/Kg	1	₩	6010C	Total/NA
Chromium	14.1	0.57	0.23	mg/Kg	1	Þ	6010C	Total/NA
Lead	46.6	1.1	0.28	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.015 J	0.022	0.0087	mg/Kg	1	₩	7471B	Total/NA

Lab Sample ID: 480-90365-6 Client Sample ID: SWMU4-SB03-SS-100

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methanol	0.66	JB	1.1	0.33	mg/Kg	1	₩	8015D	Soluble
Arsenic	2.7		2.3	0.45	mg/Kg	1	₩	6010C	Total/NA
Barium	38.3		0.57	0.12	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.17	J	0.23	0.034	mg/Kg	1	₩	6010C	Total/NA
Chromium	11.6		0.57	0.23	mg/Kg	1	₩	6010C	Total/NA
Lead	6.8		1.1	0.27	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.013	J	0.022	0.0091	mg/Kg	1	т. ф	7471B	Total/NA

Client Sample ID: SWMU4-SB04-SS-101

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	6.1	JB	24	4.0	ug/Kg	1	☼	8260C	Total/NA
Arsenic	2.5		2.2	0.43	mg/Kg	1	₩	6010C	Total/NA
Barium	37.4		0.54	0.12	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.15	J	0.22	0.032	mg/Kg	1	₽	6010C	Total/NA
Chromium	10.5		0.54	0.22	mg/Kg	1	₽	6010C	Total/NA
Lead	6.1		1.1	0.26	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: SWMU1-SB11-SS-201

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	2.6		2.1	0.43	mg/Kg	1	₩	6010C	Total/NA
Barium	38.3		0.53	0.12	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.15	J	0.21	0.032	mg/Kg	1	₩	6010C	Total/NA
Chromium	10.5		0.53	0.21	mg/Kg	1	₩	6010C	Total/NA
Lead	6.0		1.1	0.26	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.010	J	0.021	0.0085	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: EB-05	Lab Sample ID: 480-90365-9
-------------------------	----------------------------

No Detections.

Client Sample ID: TB-05	Lab Sample ID: 480-90365-10

No Detections.

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 11/02/15 09:30

Date Received: 11/03/15 09:00

Client Sample ID: SWMU4-SURFACE-SS-01

TestAmerica Job ID: 480-90365-1

Lab Sample ID: 480-90365-1

Matrix: Solid Percent Solids: 93.8

Analyte	Result Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4.9		ug/Kg	<u> </u>		11/07/15 02:27	1
1,1,2,2-Tetrachloroethane	ND	4.9		ug/Kg	₩.		11/07/15 02:27	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.9		ug/Kg			11/07/15 02:27	
1,1,2-Trichloroethane	ND	4.9		ug/Kg	ψ.		11/07/15 02:27	1
1,1-Dichloroethane	ND	4.9		ug/Kg	₩.		11/07/15 02:27	1
1,1-Dichloroethene	ND	4.9		ug/Kg	<u>.</u> .		11/07/15 02:27	
1,2,3-Trichlorobenzene	ND	4.9		ug/Kg	₩.		11/07/15 02:27	1
1,2,4-Trichlorobenzene	ND	4.9		ug/Kg	: \$		11/07/15 02:27	1
1,2-Dibromo-3-Chloropropane	ND	4.9		ug/Kg			11/07/15 02:27	1
1,2-Dichlorobenzene	ND	4.9		ug/Kg	₩	11/03/15 16:16	11/07/15 02:27	1
1,2-Dichloroethane	ND	4.9		ug/Kg	☼	11/03/15 16:16	11/07/15 02:27	1
1,2-Dichloropropane	ND	4.9		ug/Kg		11/03/15 16:16	11/07/15 02:27	1
1,3-Dichlorobenzene	ND	4.9	0.25	ug/Kg	₽	11/03/15 16:16	11/07/15 02:27	1
1,4-Dichlorobenzene	ND	4.9	0.68	ug/Kg	₽	11/03/15 16:16	11/07/15 02:27	1
1,4-Dioxane	ND	98	21	ug/Kg	₽	11/03/15 16:16	11/07/15 02:27	1
2-Hexanone	ND	24	2.4	ug/Kg	₽	11/03/15 16:16	11/07/15 02:27	1
Acetone	ND	24	4.1	ug/Kg	₩	11/03/15 16:16	11/07/15 02:27	1
Benzene	ND	4.9	0.24	ug/Kg	₩	11/03/15 16:16	11/07/15 02:27	1
Bromoform	ND	4.9	2.4	ug/Kg		11/03/15 16:16	11/07/15 02:27	1
Bromomethane	ND	4.9	0.44	ug/Kg	₩	11/03/15 16:16	11/07/15 02:27	1
Carbon disulfide	ND	4.9	2.4	ug/Kg	₩	11/03/15 16:16	11/07/15 02:27	1
Carbon tetrachloride	ND	4.9	0.47	ug/Kg		11/03/15 16:16	11/07/15 02:27	1
Chlorobenzene	ND	4.9	0.64	ug/Kg	₽	11/03/15 16:16	11/07/15 02:27	1
Bromochloromethane	ND	4.9		ug/Kg	₩	11/03/15 16:16	11/07/15 02:27	1
Dibromochloromethane	ND	4.9		ug/Kg		11/03/15 16:16	11/07/15 02:27	1
Chloroethane	ND	4.9		ug/Kg	₩	11/03/15 16:16	11/07/15 02:27	1
Chloroform	ND	4.9		ug/Kg	₩	11/03/15 16:16	11/07/15 02:27	1
Chloromethane	ND	4.9		ug/Kg		11/03/15 16:16	11/07/15 02:27	1
cis-1,2-Dichloroethene	ND	4.9		ug/Kg	₩		11/07/15 02:27	1
cis-1,3-Dichloropropene	ND	4.9		ug/Kg	₩		11/07/15 02:27	1
Cyclohexane	ND	4.9		ug/Kg	 \$		11/07/15 02:27	1
Bromodichloromethane	ND	4.9		ug/Kg	₽		11/07/15 02:27	1
Dichlorodifluoromethane	ND	4.9		ug/Kg	₩		11/07/15 02:27	1
Ethylbenzene	ND	4.9		ug/Kg			11/07/15 02:27	· · · · · · · · 1
1,2-Dibromoethane (EDB)	ND	4.9		ug/Kg	₩		11/07/15 02:27	1
Isopropylbenzene	ND	4.9		ug/Kg	₩	11/03/15 16:16		1
Methyl acetate	ND	4.9		ug/Kg			11/07/15 02:27	· · · · · · · · · · · · · · · · · · ·
2-Butanone (MEK)	ND	24		ug/Kg	₽		11/07/15 02:27	1
4-Methyl-2-pentanone (MIBK)	ND	24		ug/Kg	₽		11/07/15 02:27	1
Methyl tert-butyl ether	ND	4.9		ug/Kg			11/07/15 02:27	
•	ND ND				~ ⇔			
Methylogo Chlorido	ND ND	4.9 4.9		ug/Kg ug/Kg	*		11/07/15 02:27 11/07/15 02:27	1
Methylene Chloride					<u>*</u> .			
Styrene	ND ND	4.9		ug/Kg	**		11/07/15 02:27	1
Tetrachloroethene	ND	4.9		ug/Kg	**		11/07/15 02:27	1
Toluene	ND	4.9		ug/Kg	 		11/07/15 02:27	1
trans-1,2-Dichloroethene	ND	4.9		ug/Kg	₩ ₩		11/07/15 02:27	1
trans-1,3-Dichloropropene	ND	4.9		ug/Kg	₽		11/07/15 02:27	1
Trichloroethene Trichlorofluoromethane	ND ND	4.9	1.1	ug/Kg	₽	11/03/15 16:16	11/07/15 02:27	1

TestAmerica Buffalo

Page 9 of 85 11/18/2015

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Client Sample ID: SWMU4-SURFACE-SS-01

Date Collected: 11/02/15 09:30
Date Received: 11/03/15 09:00

Lab Sample ID: 480-90365-1 Matrix: Solid Percent Solids: 93.8

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) Analyte Result Qualifier **MDL** Unit RL Prepared **Analyzed** Dil Fac Vinyl chloride 11/03/15 16:16 11/07/15 02:27 ND 4.9 0.60 ug/Kg Xylenes, Total ND 9.8 0.82 ug/Kg 11/03/15 16:16 11/07/15 02:27 Tetrahydrofuran ND 11/03/15 16:16 11/07/15 02:27 9.8 2.8 ug/Kg Tentatively Identified Compound D CAS No. Est. Result Qualifier Unit RT Prepared Analyzed Dil Fac Tentatively Identified Compound None ug/Kg 11/03/15 16:16 11/07/15 02:27 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Dibromofluoromethane (Surr) 114 60 - 140 11/03/15 16:16 11/07/15 02:27 1,2-Dichloroethane-d4 (Surr) 113 64 - 126 11/03/15 16:16 11/07/15 02:27 Toluene-d8 (Surr) 110 71 - 125 11/03/15 16:16 11/07/15 02:27 1 108 4-Bromofluorobenzene (Surr) 72 - 126 11/03/15 16:16 11/07/15 02:27

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND	180	26	ug/Kg	<u></u>	11/04/15 07:52	11/10/15 17:34	1
bis (2-chloroisopropyl) ether	ND	180	36	ug/Kg	₩	11/04/15 07:52	11/10/15 17:34	1
2,4,5-Trichlorophenol	ND	180	48	ug/Kg	☼	11/04/15 07:52	11/10/15 17:34	1
2,4,6-Trichlorophenol	ND	180	36	ug/Kg	₽	11/04/15 07:52	11/10/15 17:34	1
2,4-Dichlorophenol	ND	180	19	ug/Kg	≎	11/04/15 07:52	11/10/15 17:34	1
2,4-Dimethylphenol	ND	180	43	ug/Kg	☼	11/04/15 07:52	11/10/15 17:34	1
2,4-Dinitrophenol	ND	1700	820	ug/Kg	\$	11/04/15 07:52	11/10/15 17:34	1
2,4-Dinitrotoluene	ND	180	37	ug/Kg	☼	11/04/15 07:52	11/10/15 17:34	1
2,6-Dinitrotoluene	ND	180	21	ug/Kg	≎	11/04/15 07:52	11/10/15 17:34	1
2-Chloronaphthalene	ND	180	29	ug/Kg	₽	11/04/15 07:52	11/10/15 17:34	1
2-Chlorophenol	ND	180	32	ug/Kg	☼	11/04/15 07:52	11/10/15 17:34	1
2-Methylnaphthalene	ND	180	36	ug/Kg	☼	11/04/15 07:52	11/10/15 17:34	1
2-Methylphenol	ND	180	21	ug/Kg	₽	11/04/15 07:52	11/10/15 17:34	1
2-Nitroaniline	ND	350	26	ug/Kg	☼	11/04/15 07:52	11/10/15 17:34	1
2-Nitrophenol	ND	180	50	ug/Kg	₽	11/04/15 07:52	11/10/15 17:34	1
3,3'-Dichlorobenzidine	ND	350	210	ug/Kg	\$	11/04/15 07:52	11/10/15 17:34	1
3-Nitroaniline	ND	350	49	ug/Kg	☼	11/04/15 07:52	11/10/15 17:34	1
4,6-Dinitro-2-methylphenol	ND	350	180	ug/Kg	☼	11/04/15 07:52	11/10/15 17:34	1
4-Bromophenyl phenyl ether	ND	180	25	ug/Kg	φ.	11/04/15 07:52	11/10/15 17:34	1
4-Chloro-3-methylphenol	ND	180	44	ug/Kg	☼	11/04/15 07:52	11/10/15 17:34	1
4-Chloroaniline	ND	180	44	ug/Kg	☼	11/04/15 07:52	11/10/15 17:34	1
4-Chlorophenyl phenyl ether	ND	180	22	ug/Kg	\$	11/04/15 07:52	11/10/15 17:34	1
4-Methylphenol	ND	350	21	ug/Kg	☼	11/04/15 07:52	11/10/15 17:34	1
4-Nitroaniline	ND	350	93	ug/Kg	☼	11/04/15 07:52	11/10/15 17:34	1
4-Nitrophenol	ND	350	120	ug/Kg	\$	11/04/15 07:52	11/10/15 17:34	1
Acenaphthene	ND	180	26	ug/Kg	☼	11/04/15 07:52	11/10/15 17:34	1
Acenaphthylene	ND	180	23	ug/Kg	☼	11/04/15 07:52	11/10/15 17:34	1
Acetophenone	ND	180	24	ug/Kg	₽	11/04/15 07:52	11/10/15 17:34	1
Anthracene	ND	180	44	ug/Kg	☼	11/04/15 07:52	11/10/15 17:34	1
Atrazine	ND	180	62	ug/Kg	☼	11/04/15 07:52	11/10/15 17:34	1
Benzaldehyde	ND	180	140	ug/Kg	₽	11/04/15 07:52	11/10/15 17:34	1
Benzo(a)anthracene	ND	180	18	ug/Kg	☼	11/04/15 07:52	11/10/15 17:34	1
Benzo(a)pyrene	ND	180	26	ug/Kg	☼	11/04/15 07:52	11/10/15 17:34	1
Benzo(b)fluoranthene	ND	180	28	ug/Kg	φ.	11/04/15 07:52	11/10/15 17:34	1
Benzo(g,h,i)perylene	ND	180	19	ug/Kg	₩	11/04/15 07:52	11/10/15 17:34	1

TestAmerica Buffalo

3

4

6

9

11

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Client Sample ID: SWMU4-SURFACE-SS-01 Lab Sample ID: 480-90365-1

Date Collected: 11/02/15 09:30

Date Received: 11/03/15 09:00

Matrix: Solid
Percent Solids: 93.8

Method: 8270D - Semivolatile Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo(k)fluoranthene	ND		180		23	ug/Kg	₩	11/04/15 07:52	11/10/15 17:34	1
Bis(2-chloroethoxy)methane	ND		180		38	ug/Kg	☼	11/04/15 07:52	11/10/15 17:34	1
Bis(2-chloroethyl)ether	ND		180		23	ug/Kg	☼	11/04/15 07:52	11/10/15 17:34	1
Bis(2-ethylhexyl) phthalate	ND		180		61	ug/Kg	☼	11/04/15 07:52	11/10/15 17:34	1
Butyl benzyl phthalate	ND		180		29	ug/Kg	₽	11/04/15 07:52	11/10/15 17:34	1
Caprolactam	ND		180		53	ug/Kg	₽	11/04/15 07:52	11/10/15 17:34	1
Carbazole	ND		180		21	ug/Kg	☼	11/04/15 07:52	11/10/15 17:34	1
Chrysene	ND		180		40	ug/Kg	☼	11/04/15 07:52	11/10/15 17:34	
Di-n-butyl phthalate	ND		180		30	ug/Kg	☼	11/04/15 07:52	11/10/15 17:34	•
Di-n-octyl phthalate	ND		180		21	ug/Kg	₩	11/04/15 07:52	11/10/15 17:34	
Dibenz(a,h)anthracene	ND		180		31	ug/Kg	₩.	11/04/15 07:52	11/10/15 17:34	1
Dibenzofuran	ND		180		21	ug/Kg	☼	11/04/15 07:52	11/10/15 17:34	
Diethyl phthalate	ND		180		23	ug/Kg	₽	11/04/15 07:52	11/10/15 17:34	
Dimethyl phthalate	ND		180			ug/Kg		11/04/15 07:52	11/10/15 17:34	
Fluoranthene	23	J	180			ug/Kg	₩	11/04/15 07:52	11/10/15 17:34	
Fluorene	ND		180			ug/Kg	☼	11/04/15 07:52	11/10/15 17:34	
Hexachlorobenzene	ND		180			ug/Kg		11/04/15 07:52	11/10/15 17:34	,
Hexachlorobutadiene	ND		180			ug/Kg	₩		11/10/15 17:34	
Hexachlorocyclopentadiene	ND		180			ug/Kg	₽		11/10/15 17:34	
Hexachloroethane	ND		180			ug/Kg			11/10/15 17:34	· · · · · .
Indeno(1,2,3-cd)pyrene	ND		180			ug/Kg	₩		11/10/15 17:34	
Isophorone	ND		180			ug/Kg	₩		11/10/15 17:34	
N-Nitrosodi-n-propylamine	ND		180			ug/Kg			11/10/15 17:34	,
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine	ND		180			ug/Kg	☼		11/10/15 17:34	,
Naphthalene	ND		180			ug/Kg	≎		11/10/15 17:34	
Nitrobenzene	ND		180			ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/10/15 17:34	· · · · · .
	ND ND		350				₩		11/10/15 17:34	
Pentachlorophenol						ug/Kg	₩			
Phenanthrene	ND		180			ug/Kg			11/10/15 17:34	
Phenol	ND		180			ug/Kg	‡		11/10/15 17:34	
Pyrene	ND		180			ug/Kg	*		11/10/15 17:34	1
Dimethylformamide	ND		690		78	ug/Kg	₩	11/04/15 07:52	11/10/15 17:34	•
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	1	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	2500	TJ	ug/Kg	\tilde{\pi}	1.	86		11/04/15 07:52	11/10/15 17:34	
Unknown	600	ΤJ	ug/Kg	₩	2.	05		11/04/15 07:52	11/10/15 17:34	:
Unknown	1200	TJ	ug/Kg	☼	2.	15		11/04/15 07:52	11/10/15 17:34	
Ethane, 1,1,2-trichloro-	200	TJN	ug/Kg		3.	76	79-00-5	11/04/15 07:52	11/10/15 17:34	
Unknown	840	ΤJ	ug/Kg	₩	4.	66		11/04/15 07:52	11/10/15 17:34	
Ethane, 1,1,2,2-tetrachloro-	410	TJN	ug/Kg	₩	5.	70	79-34-5	11/04/15 07:52	11/10/15 17:34	
3,4:9,10-Dibenzopyrene	180	TJN	ug/Kg	₩.	15.	18	189-55-9	11/04/15 07:52	11/10/15 17:34	1
	0/ 🗖	Qualifier	Limits					Prepared	Analyzed	Dil Fa
Surrogate	%Recoverv		•					11/04/15 07:52	•	
Surrogate 2.4.6-Tribromophenol	%Recovery		39 - 146							
2,4,6-Tribromophenol	98		39 - 146 37 - 120							
2,4,6-Tribromophenol 2-Fluorobiphenyl	98		37 - 120					11/04/15 07:52	11/10/15 17:34	
2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol	98 88 75		37 - 120 18 - 120					11/04/15 07:52 11/04/15 07:52	11/10/15 17:34 11/10/15 17:34	:
2,4,6-Tribromophenol 2-Fluorobiphenyl	98		37 - 120					11/04/15 07:52 11/04/15 07:52 11/04/15 07:52	11/10/15 17:34	•

TestAmerica Buffalo

3

4

6

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Client Sample ID: SWMU4-SURFACE-SS-01 Lab Sample ID: 480-90365-1

Date Collected: 11/02/15 09:30 **Matrix: Solid** Date Received: 11/03/15 09:00

Percent Solids: 93.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		0.96	0.14	mg/Kg	<u>₩</u>		11/06/15 12:42	1
Isobutyl alcohol	ND		0.96	0.24	mg/Kg	☆		11/06/15 12:42	1
Methanol	ND		0.96	0.29	mg/Kg	≎		11/06/15 12:42	1
n-Butanol	ND		0.96	0.22	mg/Kg	₩		11/06/15 12:42	1
Propanol	ND		0.96	0.14	mg/Kg	≎		11/06/15 12:42	1
2-Butanol	ND		0.96	0.15	mg/Kg	₩		11/06/15 12:42	1
Isopropyl alcohol	ND		0.96	0.23	mg/Kg	.		11/06/15 12:42	1
t-Butyl alcohol	ND		0.96	0.25	mg/Kg	₩		11/06/15 12:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	93		30 - 137					11/06/15 12:42	
Analyte	Result	/Is (PCBs) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 8082A - Polychlorina Analyte PCB-1016						D 	Prepared 11/04/15 07:49	•	Dil Fac
Analyte PCB-1016	Result		RL	MDL 44	Unit		•	11/04/15 16:46	Dil Fac
Analyte PCB-1016 PCB-1221	Result ND		RL 220	MDL 44 44	Unit ug/Kg	- -	11/04/15 07:49	11/04/15 16:46 11/04/15 16:46	Dil Fac
Analyte PCB-1016 PCB-1221 PCB-1232	Result ND ND		RL 220 220	MDL 44 44 44	Unit ug/Kg ug/Kg	- -	11/04/15 07:49 11/04/15 07:49 11/04/15 07:49	11/04/15 16:46 11/04/15 16:46	Dil Fac 1 1 1
Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242	Result ND ND ND		220 220 220 220	MDL 44 44 44 44	ug/Kg ug/Kg ug/Kg ug/Kg	— * * *	11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49	11/04/15 16:46 11/04/15 16:46 11/04/15 16:46	Dil Fac 1 1 1 1
Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248	Result ND ND ND ND		220 220 220 220 220	MDL 44 44 44 44 44	Unit ug/Kg ug/Kg ug/Kg ug/Kg	# # #	11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49	11/04/15 16:46 11/04/15 16:46 11/04/15 16:46 11/04/15 16:46	Dil Fac 1 1 1 1 1
Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254	Result ND ND ND ND ND ND ND		220 220 220 220 220 220 220	MDL 44 44 44 44 44 100	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$	11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49	11/04/15 16:46 11/04/15 16:46 11/04/15 16:46 11/04/15 16:46 11/04/15 16:46	Dil Fac 1 1 1 1 1 1
Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260	Result ND ND ND ND ND ND ND ND	Qualifier	220 220 220 220 220 220 220 220	MDL 44 44 44 44 44 100	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	* * * * * *	11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49	11/04/15 16:46 11/04/15 16:46 11/04/15 16:46 11/04/15 16:46 11/04/15 16:46 11/04/15 16:46	1 1 1 1 1 1
Analyte	Result ND	Qualifier	220 220 220 220 220 220 220 220 220	MDL 44 44 44 44 44 100	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	* * * * * *	11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49	11/04/15 16:46 11/04/15 16:46 11/04/15 16:46 11/04/15 16:46 11/04/15 16:46 11/04/15 16:46	1 1 1 1 1 1
Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Surrogate	Result ND	Qualifier	220 220 220 220 220 220 220 220 220	MDL 44 44 44 44 44 100	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	* * * * * *	11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 Prepared 11/04/15 07:49	11/04/15 16:46 11/04/15 16:46 11/04/15 16:46 11/04/15 16:46 11/04/15 16:46 11/04/15 16:46 11/04/15 16:46 Analyzed	Dil Fac
Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene	Result ND ND ND ND ND ND ND ND ND 88	Qualifier	220 220 220 220 220 220 220 220 220 250 260 - 154	MDL 44 44 44 44 44 100	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	* * * * * *	11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 Prepared 11/04/15 07:49	11/04/15 16:46 11/04/15 16:46 11/04/15 16:46 11/04/15 16:46 11/04/15 16:46 11/04/15 16:46 11/04/15 16:46 Analyzed	Dil Face 1 1 1 1 1 1 1 1 1 Dil Face

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.0	2.1	0.42	mg/Kg	₩	11/04/15 12:07	11/06/15 01:27	1
Barium	16.0	0.52	0.12	mg/Kg	☼	11/04/15 12:07	11/06/15 01:27	1
Cadmium	0.16 J	0.21	0.031	mg/Kg	₩	11/04/15 12:07	11/06/15 01:27	1
Chromium	4.9	0.52	0.21	mg/Kg	₩.	11/04/15 12:07	11/06/15 01:27	1
Lead	7.1	1.0	0.25	mg/Kg	☼	11/04/15 12:07	11/06/15 01:27	1
Selenium	ND	4.2	0.42	mg/Kg	☼	11/04/15 12:07	11/06/15 01:27	1
Silver	ND	0.63	0.21	mg/Kg	₩	11/04/15 12:07	11/06/15 01:27	1

Method: 7471B - Mercury (CVA	(A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.021	0.0084	mg/Kg	₩	11/05/15 14:05	11/05/15 16:55	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 11/02/15 11:45

Date Received: 11/03/15 09:00

Client Sample ID: SWMU1-SB11-SS-104

TestAmerica Job ID: 480-90365-1

Lab Sample ID: 480-90365-2

Matrix: Solid Percent Solids: 88.8

Method: 8260C - Volatile Organ	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4.7		ug/Kg	**		11/07/15 02:54	1
1,1,2,2-Tetrachloroethane	ND	4.7		ug/Kg	☆		11/07/15 02:54	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.7		ug/Kg	, .		11/07/15 02:54	1
1,1,2-Trichloroethane	ND	4.7		ug/Kg	*		11/07/15 02:54	1
1,1-Dichloroethane	ND	4.7		ug/Kg	*		11/07/15 02:54	1
1,1-Dichloroethene	ND	4.7		ug/Kg			11/07/15 02:54	1
1,2,3-Trichlorobenzene	ND	4.7	0.50	0 0	₽		11/07/15 02:54	1
1,2,4-Trichlorobenzene	ND	4.7	0.28	ug/Kg	≎	11/03/15 16:16	11/07/15 02:54	1
1,2-Dibromo-3-Chloropropane	ND	4.7	2.3	ug/Kg	☼	11/03/15 16:16	11/07/15 02:54	1
1,2-Dichlorobenzene	ND	4.7	0.37	ug/Kg	₽	11/03/15 16:16	11/07/15 02:54	1
1,2-Dichloroethane	ND	4.7		ug/Kg	₽	11/03/15 16:16	11/07/15 02:54	1
1,2-Dichloropropane	ND	4.7	2.3	ug/Kg	₽	11/03/15 16:16	11/07/15 02:54	1
1,3-Dichlorobenzene	ND	4.7	0.24	ug/Kg	₽	11/03/15 16:16	11/07/15 02:54	1
1,4-Dichlorobenzene	ND	4.7	0.66	ug/Kg	₩	11/03/15 16:16	11/07/15 02:54	1
1,4-Dioxane	ND	94	20	ug/Kg	₩	11/03/15 16:16	11/07/15 02:54	1
2-Hexanone	ND	23	2.3	ug/Kg	≎	11/03/15 16:16	11/07/15 02:54	1
Acetone	ND	23	3.9	ug/Kg	≎	11/03/15 16:16	11/07/15 02:54	1
Benzene	ND	4.7	0.23	ug/Kg	₽	11/03/15 16:16	11/07/15 02:54	1
Bromoform	ND	4.7	2.3	ug/Kg	₽	11/03/15 16:16	11/07/15 02:54	1
Bromomethane	ND	4.7	0.42	ug/Kg	₩	11/03/15 16:16	11/07/15 02:54	1
Carbon disulfide	ND	4.7	2.3	ug/Kg	₩	11/03/15 16:16	11/07/15 02:54	1
Carbon tetrachloride	ND	4.7	0.45	ug/Kg		11/03/15 16:16	11/07/15 02:54	1
Chlorobenzene	ND	4.7	0.62	ug/Kg	≎	11/03/15 16:16	11/07/15 02:54	1
Bromochloromethane	ND	4.7	0.34	ug/Kg	≎	11/03/15 16:16	11/07/15 02:54	1
Dibromochloromethane	ND	4.7	0.60	ug/Kg	₽	11/03/15 16:16	11/07/15 02:54	1
Chloroethane	ND	4.7	1.1	ug/Kg	₽	11/03/15 16:16	11/07/15 02:54	1
Chloroform	ND	4.7	0.29	ug/Kg	₽	11/03/15 16:16	11/07/15 02:54	1
Chloromethane	ND	4.7		ug/Kg		11/03/15 16:16	11/07/15 02:54	1
cis-1,2-Dichloroethene	ND	4.7		ug/Kg	₩	11/03/15 16:16	11/07/15 02:54	1
cis-1,3-Dichloropropene	ND	4.7		ug/Kg	₩	11/03/15 16:16	11/07/15 02:54	1
Cyclohexane	ND	4.7		ug/Kg		11/03/15 16:16	11/07/15 02:54	1
Bromodichloromethane	ND	4.7		ug/Kg	₩	11/03/15 16:16	11/07/15 02:54	1
Dichlorodifluoromethane	ND	4.7		ug/Kg	≎	11/03/15 16:16	11/07/15 02:54	1
Ethylbenzene	ND	4.7		ug/Kg	 \$		11/07/15 02:54	1
1,2-Dibromoethane (EDB)	ND	4.7		ug/Kg	₩		11/07/15 02:54	1
Isopropylbenzene	ND	4.7		ug/Kg	₩		11/07/15 02:54	1
Methyl acetate	ND	4.7		ug/Kg			11/07/15 02:54	
2-Butanone (MEK)	ND	23		ug/Kg	☼		11/07/15 02:54	. 1
4-Methyl-2-pentanone (MIBK)	ND	23		ug/Kg	☼		11/07/15 02:54	1
Methyl tert-butyl ether	ND	4.7		ug/Kg			11/07/15 02:54	· · · · · · · 1
Methylcyclohexane	ND	4.7		ug/Kg	₽		11/07/15 02:54	1
Methylene Chloride	ND ND	4.7		ug/Kg ug/Kg	т Ф		11/07/15 02:54	1
							11/07/15 02:54	
Styrene	ND	4.7		ug/Kg				1
Tetrachloroethene	ND	4.7		ug/Kg	₩		11/07/15 02:54	1
Toluene	ND	4.7		ug/Kg	% .		11/07/15 02:54	1
trans-1,2-Dichloroethene	ND	4.7		ug/Kg	₩		11/07/15 02:54	1
trans-1,3-Dichloropropene	ND	4.7		ug/Kg			11/07/15 02:54	1
Trichloroethene	ND	4.7		ug/Kg	T.		11/07/15 02:54	
Trichlorofluoromethane	ND	4.7	0.44	ug/Kg	₽	11/03/15 16:16	11/07/15 02:54	1

TestAmerica Buffalo

3

E

6

9

11

16

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Client Sample ID: SWMU1-SB11-SS-104 Lab Sample ID: 480-90365-2

Date Collected: 11/02/15 11:45 Matrix: Solid

Date Received: 11/03/15 09:00 Percent Solids: 88.8

Method: 8260C - Volatile Org Analyte	•	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.7		0.57	ug/Kg	\	11/03/15 16:16	11/07/15 02:54	1
Xylenes, Total	ND		9.4		0.79	ug/Kg	₩	11/03/15 16:16	11/07/15 02:54	1
Tetrahydrofuran	ND		9.4		2.7	ug/Kg	φ	11/03/15 16:16	11/07/15 02:54	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
D-Limonene	4.8	TJN	ug/Kg	₩ -	16	.77	5989-27-5	11/03/15 16:16	11/07/15 02:54	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	109		60 - 140					11/03/15 16:16	11/07/15 02:54	1
1,2-Dichloroethane-d4 (Surr)	108		64 - 126					11/03/15 16:16	11/07/15 02:54	1
Toluene-d8 (Surr)	104		71 - 125					11/03/15 16:16	11/07/15 02:54	1
4-Bromofluorobenzene (Surr)	101		72 - 126					11/03/15 16:16	11/07/15 02:54	

4-Bromonuorobenzene (Surr)	101		12 - 120				11/03/15 16.16	11/07/15 02.54	,
Method: 8270D - Semivolatile Analyte	e Organic Co Result	mpounds Qualifier	(GC/MS)	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		190	28	ug/Kg	<u>~</u>	11/04/15 07:52		1
bis (2-chloroisopropyl) ether	ND		190	38	ug/Kg	≎	11/04/15 07:52	11/10/15 18:01	1
2,4,5-Trichlorophenol	ND		190	52	ug/Kg	₽	11/04/15 07:52	11/10/15 18:01	1
2,4,6-Trichlorophenol	ND		190	38	ug/Kg		11/04/15 07:52	11/10/15 18:01	1
2,4-Dichlorophenol	ND		190	20	ug/Kg	≎	11/04/15 07:52	11/10/15 18:01	1
2,4-Dimethylphenol	ND		190	46	ug/Kg	☼	11/04/15 07:52	11/10/15 18:01	1
2,4-Dinitrophenol	ND		1900	880	ug/Kg		11/04/15 07:52	11/10/15 18:01	1
2,4-Dinitrotoluene	ND		190	39	ug/Kg	☼	11/04/15 07:52	11/10/15 18:01	1
2,6-Dinitrotoluene	ND		190	22	ug/Kg	₩	11/04/15 07:52	11/10/15 18:01	1
2-Chloronaphthalene	ND		190	31	ug/Kg	\$	11/04/15 07:52	11/10/15 18:01	1
2-Chlorophenol	ND		190	35	ug/Kg	☼	11/04/15 07:52	11/10/15 18:01	1
2-Methylnaphthalene	ND		190	38	ug/Kg	₩	11/04/15 07:52	11/10/15 18:01	1
2-Methylphenol	ND		190	22	ug/Kg		11/04/15 07:52	11/10/15 18:01	1
2-Nitroaniline	ND		370	28	ug/Kg	₩	11/04/15 07:52	11/10/15 18:01	1
2-Nitrophenol	ND		190	54	ug/Kg	☼	11/04/15 07:52	11/10/15 18:01	1
3,3'-Dichlorobenzidine	ND		370	220	ug/Kg	₩.	11/04/15 07:52	11/10/15 18:01	1
3-Nitroaniline	ND		370	53	ug/Kg	₽	11/04/15 07:52	11/10/15 18:01	1
4,6-Dinitro-2-methylphenol	ND		370	190	ug/Kg	₩	11/04/15 07:52	11/10/15 18:01	1
4-Bromophenyl phenyl ether	ND		190	27	ug/Kg	ф.	11/04/15 07:52	11/10/15 18:01	1
4-Chloro-3-methylphenol	ND		190	47	ug/Kg	₩	11/04/15 07:52	11/10/15 18:01	1
4-Chloroaniline	ND		190	47	ug/Kg	₩	11/04/15 07:52	11/10/15 18:01	1
4-Chlorophenyl phenyl ether	ND		190	24	ug/Kg		11/04/15 07:52	11/10/15 18:01	1
4-Methylphenol	ND		370	22	ug/Kg	₩	11/04/15 07:52	11/10/15 18:01	1
4-Nitroaniline	ND		370	100	ug/Kg	₩	11/04/15 07:52	11/10/15 18:01	1
4-Nitrophenol	ND		370	130	ug/Kg		11/04/15 07:52	11/10/15 18:01	1
Acenaphthene	ND		190	28	ug/Kg	₩	11/04/15 07:52	11/10/15 18:01	1
Acenaphthylene	ND		190	25	ug/Kg	₩	11/04/15 07:52	11/10/15 18:01	1
Acetophenone	ND		190	26	ug/Kg	₩.	11/04/15 07:52	11/10/15 18:01	1
Anthracene	ND		190	47	ug/Kg	₩	11/04/15 07:52	11/10/15 18:01	1
Atrazine	ND		190	66	ug/Kg	☼	11/04/15 07:52	11/10/15 18:01	1
Benzaldehyde	ND		190	150	ug/Kg		11/04/15 07:52	11/10/15 18:01	1
Benzo(a)anthracene	ND		190	19	ug/Kg	☼	11/04/15 07:52	11/10/15 18:01	1
Benzo(a)pyrene	ND		190	28	ug/Kg	☼	11/04/15 07:52	11/10/15 18:01	1
Benzo(b)fluoranthene	ND		190	30	ug/Kg		11/04/15 07:52	11/10/15 18:01	1
Benzo(g,h,i)perylene	ND		190		ug/Kg	₩	11/04/15 07:52	11/10/15 18:01	1

TestAmerica Buffalo

Page 14 of 85

2

3

Ē

6

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 11/02/15 11:45

Date Received: 11/03/15 09:00

p-Terphenyl-d14

Phenol-d5

Client Sample ID: SWMU1-SB11-SS-104

TestAmerica Job ID: 480-90365-1

Lab Sample ID: 480-90365-2

Matrix: Solid Percent Solids: 88.8

Analyte	Result	Qualifier	ŔĹ		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo(k)fluoranthene	ND		190		25	ug/Kg	<u> </u>	11/04/15 07:52	11/10/15 18:01	
Bis(2-chloroethoxy)methane	ND		190		40	ug/Kg	φ.	11/04/15 07:52	11/10/15 18:01	1
Bis(2-chloroethyl)ether	ND		190		25	ug/Kg	≎	11/04/15 07:52	11/10/15 18:01	1
Bis(2-ethylhexyl) phthalate	ND		190			ug/Kg	₽	11/04/15 07:52	11/10/15 18:01	1
Butyl benzyl phthalate	ND		190			ug/Kg		11/04/15 07:52	11/10/15 18:01	1
Caprolactam	ND		190			ug/Kg	₩	11/04/15 07:52	11/10/15 18:01	1
Carbazole	ND		190			ug/Kg	₩	11/04/15 07:52	11/10/15 18:01	1
Chrysene	ND		190			ug/Kg		11/04/15 07:52	11/10/15 18:01	1
Di-n-butyl phthalate	ND		190			ug/Kg	☼	11/04/15 07:52	11/10/15 18:01	1
Di-n-octyl phthalate	ND		190			ug/Kg	☼	11/04/15 07:52	11/10/15 18:01	1
Dibenz(a,h)anthracene	ND		190			ug/Kg		11/04/15 07:52	11/10/15 18:01	1
Dibenzofuran	ND		190			ug/Kg	☼	11/04/15 07:52	11/10/15 18:01	1
Diethyl phthalate	ND		190			ug/Kg	≎	11/04/15 07:52	11/10/15 18:01	1
Dimethyl phthalate	ND		190			ug/Kg	· · · · · · · · · · · · · · · · · · ·	11/04/15 07:52		1
Fluoranthene	ND		190			ug/Kg	₩	11/04/15 07:52		1
Fluorene	ND		190			ug/Kg	₩	11/04/15 07:52		1
Hexachlorobenzene	ND		190			ug/Kg	· · · · · · · · · · · · · · · · · · ·	11/04/15 07:52		
Hexachlorobutadiene	ND		190				₩	11/04/15 07:52		1
Hexachlorocyclopentadiene	ND		190			ug/Kg	₩	11/04/15 07:52		1
Hexachloroethane	ND		190			ug/Kg		11/04/15 07:52		1
Indeno(1,2,3-cd)pyrene	ND		190			ug/Kg	₩	11/04/15 07:52		1
Isophorone	ND		190			ug/Kg	₩	11/04/15 07:52		1
N-Nitrosodi-n-propylamine	ND		190			ug/Kg		11/04/15 07:52		1
N-Nitrosodiphenylamine	ND		190			ug/Kg	₩	11/04/15 07:52		1
Naphthalene	ND		190			ug/Kg	₩	11/04/15 07:52		1
Nitrobenzene	ND		190			ug/Kg		11/04/15 07:52		1
Pentachlorophenol	ND		370			ug/Kg	₩	11/04/15 07:52		1
Phenanthrene	ND		190			ug/Kg	₩	11/04/15 07:52		1
Phenol	ND		190			ug/Kg		11/04/15 07:52		
Pyrene	ND		190			ug/Kg	₩	11/04/15 07:52		1
Dimethylformamide	ND		740			ug/Kg	₩	11/04/15 07:52		1
Difficulty formatting	NB		740		04	ug/itg		11/04/10 07:02	11/10/10 10:01	'
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	1300	TJ	ug/Kg	\tilde{\	1.	86		11/04/15 07:52	11/10/15 18:01	1
Unknown	1200	ΤJ	ug/Kg	☼	2.	04		11/04/15 07:52	11/10/15 18:01	1
Unknown	1600	TJ	ug/Kg	₩	2.	15		11/04/15 07:52	11/10/15 18:01	1
Ethane, 1,1,2-trichloro-	300	TJN	ug/Kg	₽	3.	75	79-00-5	11/04/15 07:52	11/10/15 18:01	1
Unknown	710	TJ	ug/Kg	₩	4.	65		11/04/15 07:52	11/10/15 18:01	1
Unknown Benzene Derivative	310	TJ	ug/Kg	₩	5.	13		11/04/15 07:52	11/10/15 18:01	1
Ethane, 1,1,2,2-tetrachloro-	600	TJN	ug/Kg	₩	5.	69	79-34-5	11/04/15 07:52	11/10/15 18:01	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	94		39 - 146					•	11/10/15 18:01	
2-Fluorobiphenyl	91		37 - 120						11/10/15 18:01	1
2-Fluorophenol	77		18 - 120						11/10/15 18:01	1
Nitrobenzene-d5	80		34 - 132						11/10/15 18:01	1

TestAmerica Buffalo

11/04/15 07:52 11/10/15 18:01

11/04/15 07:52 11/10/15 18:01

65 - 153

11 - 120

103

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 11/02/15 11:45

Analyte

Mercury

Client Sample ID: SWMU1-SB11-SS-104

TestAmerica Job ID: 480-90365-1

Lab Sample ID: 480-90365-2

Matrix: Solid

Ethanol ND	Method: 8015D - Nonhalog Analyte		c Compou Qualifier	nds - Direct I RL	Injectior MDL		olubl D	e Prepared	Analyzed	Dil Fac
Sebuty alcohol ND	<u> </u>								•	
Methanol							₩			
ND	•		JB				₩			
Propagate ND	n-Butanol						· · · · · · · · · · · · · · · · · · ·			
2-Butanol ND 1.1 0.17 mg/Kg 0 11/06/15 12:50 lsopropyl alcohol ND 1.1 0.26 mg/Kg 0 11/06/15 12:50 lsopropyl alcohol ND 1.1 0.26 mg/Kg 0 11/06/15 12:50 lsopropyl alcohol ND 1.1 0.29 mg/Kg 0 11/06/15 12:50 lbbutyl alcohol ND 1.1 0.29 mg/Kg 0 11/06/15 12:50 lbbutyl alcohol ND 1.1 0.29 mg/Kg 0 11/06/15 12:50 lbbutyl alcohol ND 1.1 0.29 mg/Kg 0 11/06/15 12:50 lbbutyl alcohol ND 2-leave none 85 0 30 - 137 lbbutyl alcohol ND 1.1 0.29 mg/Kg 0 11/06/15 12:50 lbbutyl alcohol ND 2-leave none 85 0 30 - 137 lbbutyl alcohol ND 1.1 0.29 mg/Kg 0 11/06/15 12:50 lbbutyl alcohol ND 2-leave none 85 0 30 - 137 lbbutyl alcohol ND 2-leave none 85 0 30 - 137 lbbutyl alcohol ND 2-leave none 85 0 30 - 137 lbbutyl alcohol ND 2-leave none 85 0 30 - 137 lbbutyl alcohol ND 2-leave none 85 0 30 - 137 lbbutyl alcohol ND 2-leave none 85 0 30 - 137 lbbutyl alcohol ND 2-leave none 85 0 30 - 137 lbbutyl alcohol ND 2-leave none 85 0 30 - 137 lbbutyl alcohol ND 2-leave none 85 0 30 - 137 lbbutyl alcohol ND 2-leave none 85 0 30 - 137 lbbutyl alcohol ND 2-leave none 85 0 30 - 137 lbbutyl alcohol ND 2-leave none 85 0 30 - 137 lbbutyl alcohol ND 2-leave none 85 0 30 - 137 lbbutyl alcohol ND 2-leave none 85 0 30 lbbutyl alcohol ND 2-leave none 85 0 11/04/15 07-49 lbbutyl 11/04/15 17:03 lbbutyl alcohol ND 2-leave none 85 0 11/04/15 07-49 lbbutyl 11/04/15 17:03 lbbutyl lbbutyl 11/0	Propanol						₩			
Sourrogate Sou	•	ND					₩			
Surrogate %Recovery Qualifier Limits Surrogate Result Qualifier Limits Surrogate Result Qualifier Result Result Qualifier Result	Isopropyl alcohol	ND		1.1			· · · · · · · · · · · · · · · · · · ·			· · · · · · .
Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fe Fe PCB-1016 ND 240 48 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1221 ND 240 48 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1232 ND 240 48 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1242 ND 240 48 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1248 ND 240 48 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1254 ND 240 48 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1254 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 12:07 11/06/15 01:31 PCB-1260 ND 240 11/04/15 12:07 11/06/15 01:31 PCB-1260 ND 240 N	t-Butyl alcohol						₽			
Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography Analyte Result Qualifier RL MDL Unit D Prepared 1/10/4/15 07:49 Analyzed Dil Frepared 1/10/4/15 17:03 Dil Frepared 1/10/4/15 07:49 Dil Frepared 1/10/4/15 17:03 Dil Frepared 1/10/4/15 07:49 Dil Frepared 1/10	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa	2-Hexanone	85		30 - 137					11/06/15 12:50	
PCB-1221 ND 240 48 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1232 ND 240 48 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1242 ND 240 48 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1242 ND 240 48 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1248 ND 240 48 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1248 ND 240 48 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1254 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 ND 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 11/04/15 07:49 11/04/15	Analyte PCB-1016		Qualifier					•	•	Dil Fa
PCB-1016 ND 240 48 ug/Kg 7 11/04/15 07:49 11/04/15 17:03 PCB-1221 ND 240 48 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1232 ND 240 48 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1242 ND 240 48 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1242 ND 240 48 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1248 ND 240 48 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1254 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1254 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 PC							D	Droporod	Anglyzad	Dil Eo
PCB-1232 ND 240 48 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1242 ND 240 48 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1248 ND 240 48 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1254 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1254 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 Surrogate										•
PCB-1242 ND 240 48 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1248 ND 240 48 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1254 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 PCB Decachlorohiphenyl 98 65-174 Prepared 11/04/15 07:49 11/04/15 17:03 PCB-1260 PCB-1										•
PCB-1248										
ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 PCB-1260 ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Formation 11/04/15 07:49 11/04/15 17:03 DCB Decachlorobiphenyl 98 65 - 174 11/04/15 07:49 11/04/15 17:03 Method: 6010C - Metals (ICP) Result Qualifier RL MDL Unit D Prepared Analyzed Dil Formation ND ND ND ND ND ND ND N						0 0				•
ND 240 110 ug/Kg 11/04/15 07:49 11/04/15 17:03							₽			•
Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Faterachloro-m-xylene 92 60 - 154 11/04/15 07:49 11/04/15 17:03 DCB Decachlorobiphenyl 98 65 - 174 11/04/15 07:49 11/04/15 17:03 Method: 6010C - Metals (ICP) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Faterachloro-m-xylene Dil Faterachloro-m-xylene Prepared Analyzed Dil Faterachloro-m-xylene Dil Fatera	PCB-1254	ND		240			☆	11/04/15 07:49	11/04/15 17:03	
Tetrachloro-m-xylene 92 60 - 154 11/04/15 07:49 11/04/15 17:03 DCB Decachlorobiphenyl 98 65 - 174 11/04/15 07:49 11/04/15 17:03 Method: 6010C - Metals (ICP) Analyte Result Qualifier RL MDL Unit MD Prepared Manalyzed	PCB-1260	ND		240	110	ug/Kg	₩	11/04/15 07:49	11/04/15 17:03	•
Method: 6010C - Metals (ICP) Result Qualifier RL MDL unit mg/Kg D Prepared mg/Kg Analyzed mg/Kg Dil Famour Arsenic 2.7 2.2 0.44 mg/Kg 11/04/15 12:07 11/06/15 01:31 11/06/15 01:31 Barium 37.5 0.55 0.12 mg/Kg 11/04/15 12:07 11/06/15 01:31 Cadmium 0.14 J 0.22 0.033 mg/Kg 11/04/15 12:07 11/06/15 01:31 Chromium 10.5 0.55 0.22 mg/Kg 11/04/15 12:07 11/06/15 01:31 Lead 6.7 1.1 0.27 mg/Kg 11/04/15 12:07 11/06/15 01:31 Selenium ND 4.4 0.44 mg/Kg 11/04/15 12:07 11/06/15 01:31	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Method: 6010C - Metals (ICP) Result Qualifier RL MDL Unit mg/Kg D Prepared mg/Kg Analyzed mg/Kg Dil Factoria Arsenic 2.7 2.2 0.44 mg/Kg 11/04/15 12:07 11/06/15 01:31 Barium 37.5 0.55 0.12 mg/Kg 11/04/15 12:07 11/06/15 01:31 Cadmium 0.14 J 0.22 0.033 mg/Kg 11/04/15 12:07 11/06/15 01:31 Chromium 10.5 0.55 0.22 mg/Kg 11/04/15 12:07 11/06/15 01:31 Lead 6.7 1.1 0.27 mg/Kg 11/04/15 12:07 11/06/15 01:31 Selenium ND 4.4 0.44 mg/Kg 11/04/15 12:07 11/06/15 01:31	Tetrachloro-m-xylene	92		60 - 154				11/04/15 07:49	11/04/15 17:03	
Analyte Result Arsenic Qualifier RL Serior MDL Marker Unit Marker Description Prepared Prepare	DCB Decachlorobiphenyl	98		65 - 174				11/04/15 07:49	11/04/15 17:03	1
Arsenic 2.7 2.2 0.44 mg/Kg □ 11/04/15 12:07 □ 11/06/15 01:31 Barium 37.5 0.55 0.12 mg/Kg □ 11/04/15 12:07 □ 11/06/15 01:31 Cadmium 0.14 J 0.22 □ 0.033 mg/Kg □ 11/04/15 12:07 □ 11/06/15 01:31 Chromium 10.5 0.55 □ 0.22 mg/Kg □ 11/04/15 12:07 □ 11/06/15 01:31 Lead 6.7 1.1 □ 0.27 mg/Kg □ 11/04/15 12:07 □ 11/06/15 01:31 Selenium ND 4.4 □ 0.44 mg/Kg □ 11/04/15 12:07 □ 11/06/15 01:31	•	•	Qualifier	DI	MDI	Unit	n	Propared	Analyzod	Dil Ea
Barium 37.5 0.55 0.12 mg/Kg ☼ 11/04/15 12:07 11/06/15 01:31 Cadmium 0.14 J 0.22 0.033 mg/Kg ☼ 11/04/15 12:07 11/06/15 01:31 Chromium 10.5 0.55 0.22 mg/Kg ☼ 11/04/15 12:07 11/06/15 01:31 Lead 6.7 1.1 0.27 mg/Kg ☼ 11/04/15 12:07 11/06/15 01:31 Selenium ND 4.4 0.44 mg/Kg ☼ 11/04/15 12:07 11/06/15 01:31			Qualifier					•		DII Fac
Cadmium 0.14 J 0.22 0.033 mg/Kg \$\times 11/04/15 12:07 11/06/15 01:31 Chromium 10.5 0.55 0.22 mg/Kg \$\times 11/04/15 12:07 11/06/15 01:31 Lead 6.7 1.1 0.27 mg/Kg \$\times 11/04/15 12:07 11/06/15 01:31 Selenium ND 4.4 0.44 mg/Kg \$\times 11/04/15 12:07 11/06/15 01:31						0 0				,
Chromium 10.5 0.55 0.22 mg/Kg ☼ 11/04/15 12:07 11/06/15 01:31 Lead 6.7 1.1 0.27 mg/Kg ☼ 11/04/15 12:07 11/06/15 01:31 Selenium ND 4.4 0.44 mg/Kg ☼ 11/04/15 12:07 11/06/15 01:31			1			0 0				
Lead 6.7 1.1 0.27 mg/Kg \$\preceq\$ 11/04/15 12:07 11/06/15 01:31 Selenium ND 4.4 0.44 mg/Kg \$\preceq\$ 11/04/15 12:07 11/06/15 01:31							· · · · · · · · · · · · · · · · · · ·			· · · · · .
Selenium ND 4.4 0.44 mg/Kg * 11/04/15 12:07 11/06/15 01:31							**			
· · · · · · · · · · · · · · · · · · ·										
Silver ND 0.66 0.22 mg/Kg 🌣 11/04/15 12:07 11/06/15 01:31		UN ND					¥			
	Method: 7471B - Mercury (CVAA)								
Method: 7471B - Mercury (CVAA)										

Analyzed

Dil Fac

RL

0.021

MDL Unit

0.0086 mg/Kg

Prepared

Result Qualifier

0.012 J

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 11/02/15 12:05

TestAmerica Job ID: 480-90365-1

Lab Sample ID: 480-90365-3

Matrix: Solid Percent Solids: 88.9

Date Received: 11/03/15 09:00	

Client Sample ID: SWMU1-SB12-SS-105

Method: 8260C - Volatile Orgar ^{Analyte}	Result C		MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND ND	4.6	0.33	ug/Kg	— -		11/07/15 03:21	
1,1,2,2-Tetrachloroethane	ND	4.6		ug/Kg	₩		11/07/15 03:21	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.6		ug/Kg	₩		11/07/15 03:21	
1,1,2-Trichloroethane	ND	4.6		ug/Kg			11/07/15 03:21	
1,1-Dichloroethane	ND	4.6		ug/Kg	₽		11/07/15 03:21	
1,1-Dichloroethene	ND	4.6		ug/Kg	ď		11/07/15 03:21	
1,2,3-Trichlorobenzene	ND	4.6		ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/07/15 03:21	
1,2,4-Trichlorobenzene	ND	4.6		ug/Kg ug/Kg	 \$		11/07/15 03:21	
1,2-Dibromo-3-Chloropropane	ND	4.6		ug/Kg ug/Kg			11/07/15 03:21	
1,2-Dibromo-3-Chioroproparie 1,2-Dichlorobenzene	ND	4.6		ug/Kg ug/Kg			11/07/15 03:21	
	ND ND				~ ⇔		11/07/15 03:21	
1,2-Dichloroethane		4.6		ug/Kg				
1,2-Dichloropropane	ND	4.6		ug/Kg	.		11/07/15 03:21	
1,3-Dichlorobenzene	ND	4.6		ug/Kg	*		11/07/15 03:21	
1,4-Dichlorobenzene	ND	4.6		ug/Kg	₩		11/07/15 03:21	
1,4-Dioxane	ND	91	20	ug/Kg	" .		11/07/15 03:21	
2-Hexanone	ND	23		ug/Kg		11/03/15 16:16		
Acetone	ND	23		ug/Kg	☆		11/07/15 03:21	
Benzene	ND	4.6		ug/Kg		11/03/15 16:16		
Bromoform	ND	4.6		ug/Kg	₽		11/07/15 03:21	
Bromomethane	ND	4.6	0.41	ug/Kg	☼	11/03/15 16:16	11/07/15 03:21	
Carbon disulfide	ND	4.6	2.3	ug/Kg	₩	11/03/15 16:16	11/07/15 03:21	
Carbon tetrachloride	ND	4.6	0.44	ug/Kg	≎	11/03/15 16:16	11/07/15 03:21	
Chlorobenzene	ND	4.6	0.60	ug/Kg	₩	11/03/15 16:16	11/07/15 03:21	
Bromochloromethane	ND	4.6	0.33	ug/Kg	₩	11/03/15 16:16	11/07/15 03:21	
Dibromochloromethane	ND	4.6	0.58	ug/Kg	₽	11/03/15 16:16	11/07/15 03:21	
Chloroethane	ND	4.6	1.0	ug/Kg	₩	11/03/15 16:16	11/07/15 03:21	
Chloroform	ND	4.6	0.28	ug/Kg	₩	11/03/15 16:16	11/07/15 03:21	
Chloromethane	ND	4.6	0.28	ug/Kg	₽	11/03/15 16:16	11/07/15 03:21	
cis-1,2-Dichloroethene	ND	4.6	0.58	ug/Kg	☼	11/03/15 16:16	11/07/15 03:21	
cis-1,3-Dichloropropene	ND	4.6	0.66	ug/Kg	₽	11/03/15 16:16	11/07/15 03:21	
Cyclohexane	ND	4.6	0.64	ug/Kg	₽	11/03/15 16:16	11/07/15 03:21	
Bromodichloromethane	ND	4.6	0.61	ug/Kg	₩	11/03/15 16:16	11/07/15 03:21	
Dichlorodifluoromethane	ND	4.6	0.38	ug/Kg	☼	11/03/15 16:16	11/07/15 03:21	
Ethylbenzene	ND	4.6		ug/Kg	φ.	11/03/15 16:16	11/07/15 03:21	
1,2-Dibromoethane (EDB)	ND	4.6		ug/Kg	₩	11/03/15 16:16	11/07/15 03:21	
Isopropylbenzene	ND	4.6		ug/Kg	☼	11/03/15 16:16	11/07/15 03:21	
Methyl acetate	ND	4.6		ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/07/15 03:21	
2-Butanone (MEK)	ND	23		ug/Kg	₩		11/07/15 03:21	
4-Methyl-2-pentanone (MIBK)	ND	23		ug/Kg	☼		11/07/15 03:21	
Methyl tert-butyl ether	ND	4.6		ug/Kg	· · · · · · · · · · · · · · · · · · ·	11/03/15 16:16		
Methylcyclohexane	ND	4.6			☆		11/07/15 03:21	
Methylene Chloride	ND	4.6	2.1	ug/Kg	☆		11/07/15 03:21	
Styrene	ND	4.6		ug/Kg	· · · · · · · · · · · · · · · · · · ·	11/03/15 16:16		
Styrene Tetrachloroethene	ND ND	4.6		ug/Kg ug/Kg	≎	11/03/15 16:16		
	ND ND				₩	11/03/15 16:16		
Toluene		4.6		ug/Kg				
trans-1,2-Dichloroethene	ND	4.6		ug/Kg	₽	11/03/15 16:16		
trans-1,3-Dichloropropene	ND	4.6		ug/Kg	☆		11/07/15 03:21	
Trichloroethene	ND ND	4.6 4.6		ug/Kg ug/Kg			11/07/15 03:21 11/07/15 03:21	

TestAmerica Buffalo

2

6

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Client Sample ID: SWMU1-SB12-SS-105

Date Collected: 11/02/15 12:05 Date Received: 11/03/15 09:00

4-Bromofluorobenzene (Surr)

Lab Sample ID: 480-90365-3

11/03/15 16:16 11/07/15 03:21

Matrix: Solid
Percent Solids: 88.9

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Cor	ntinue	ed)					
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.6		0.56	ug/Kg	\	11/03/15 16:16	11/07/15 03:21	1
Xylenes, Total	ND		9.1		0.77	ug/Kg	₩	11/03/15 16:16	11/07/15 03:21	1
Tetrahydrofuran	ND		9.1		2.6	ug/Kg	₽	11/03/15 16:16	11/07/15 03:21	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	ı	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\tilde{\pi}				11/03/15 16:16	11/07/15 03:21	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	113		60 - 140					11/03/15 16:16	11/07/15 03:21	1
1,2-Dichloroethane-d4 (Surr)	115		64 - 126					11/03/15 16:16	11/07/15 03:21	1
Toluene-d8 (Surr)	106		71 - 125					11/03/15 16:16	11/07/15 03:21	1

72 - 126

108

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		190	28	ug/Kg	₩	11/04/15 07:52	11/10/15 18:27	1
bis (2-chloroisopropyl) ether	ND		190	38	ug/Kg	≎	11/04/15 07:52	11/10/15 18:27	1
2,4,5-Trichlorophenol	ND		190	51	ug/Kg	☼	11/04/15 07:52	11/10/15 18:27	1
2,4,6-Trichlorophenol	ND		190	38	ug/Kg	φ.	11/04/15 07:52	11/10/15 18:27	1
2,4-Dichlorophenol	ND		190	20	ug/Kg	☼	11/04/15 07:52	11/10/15 18:27	1
2,4-Dimethylphenol	ND		190	46	ug/Kg	≎	11/04/15 07:52	11/10/15 18:27	1
2,4-Dinitrophenol	ND		1800	870	ug/Kg		11/04/15 07:52	11/10/15 18:27	1
2,4-Dinitrotoluene	ND		190	39	ug/Kg	☼	11/04/15 07:52	11/10/15 18:27	1
2,6-Dinitrotoluene	ND		190	22	ug/Kg	☼	11/04/15 07:52	11/10/15 18:27	1
2-Chloronaphthalene	ND		190	31	ug/Kg	₽	11/04/15 07:52	11/10/15 18:27	1
2-Chlorophenol	ND		190	34	ug/Kg	☼	11/04/15 07:52	11/10/15 18:27	1
2-Methylnaphthalene	ND		190	38	ug/Kg	☼	11/04/15 07:52	11/10/15 18:27	1
2-Methylphenol	ND		190	22	ug/Kg	\$	11/04/15 07:52	11/10/15 18:27	1
2-Nitroaniline	ND		370	28	ug/Kg	☼	11/04/15 07:52	11/10/15 18:27	1
2-Nitrophenol	ND		190	53	ug/Kg	₽	11/04/15 07:52	11/10/15 18:27	1
3,3'-Dichlorobenzidine	ND		370	220	ug/Kg	₽	11/04/15 07:52	11/10/15 18:27	1
3-Nitroaniline	ND		370	52	ug/Kg	☼	11/04/15 07:52	11/10/15 18:27	1
4,6-Dinitro-2-methylphenol	ND		370	190	ug/Kg	☼	11/04/15 07:52	11/10/15 18:27	1
4-Bromophenyl phenyl ether	ND		190	27	ug/Kg	φ.	11/04/15 07:52	11/10/15 18:27	1
4-Chloro-3-methylphenol	ND		190	47	ug/Kg	☼	11/04/15 07:52	11/10/15 18:27	1
4-Chloroaniline	ND		190	47	ug/Kg	☼	11/04/15 07:52	11/10/15 18:27	1
4-Chlorophenyl phenyl ether	ND		190	23	ug/Kg	₽	11/04/15 07:52	11/10/15 18:27	1
4-Methylphenol	ND		370	22	ug/Kg	☼	11/04/15 07:52	11/10/15 18:27	1
4-Nitroaniline	ND		370	99	ug/Kg	☼	11/04/15 07:52	11/10/15 18:27	1
4-Nitrophenol	ND		370	130	ug/Kg	\$	11/04/15 07:52	11/10/15 18:27	1
Acenaphthene	ND		190	28	ug/Kg	☼	11/04/15 07:52	11/10/15 18:27	1
Acenaphthylene	ND		190	24	ug/Kg	☼	11/04/15 07:52	11/10/15 18:27	1
Acetophenone	ND		190	26	ug/Kg	₽	11/04/15 07:52	11/10/15 18:27	1
Anthracene	ND		190	47	ug/Kg	☼	11/04/15 07:52	11/10/15 18:27	1
Atrazine	ND		190	66	ug/Kg	☼	11/04/15 07:52	11/10/15 18:27	1
Benzaldehyde	ND		190	150	ug/Kg	₽	11/04/15 07:52	11/10/15 18:27	1
Benzo(a)anthracene	ND		190	19	ug/Kg	☼	11/04/15 07:52	11/10/15 18:27	1
Benzo(a)pyrene	ND		190	28	ug/Kg	☼	11/04/15 07:52	11/10/15 18:27	1
Benzo(b)fluoranthene	ND		190	30	ug/Kg		11/04/15 07:52	11/10/15 18:27	1
Benzo(g,h,i)perylene	ND		190	20	ug/Kg	₩	11/04/15 07:52	11/10/15 18:27	1

TestAmerica Buffalo

2

4

6

8

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 11/02/15 12:05

Date Received: 11/03/15 09:00

Nitrobenzene-d5

p-Terphenyl-d14 Phenol-d5

Client Sample ID: SWMU1-SB12-SS-105

TestAmerica Job ID: 480-90365-1

Lab Sample ID: 480-90365-3

Matrix: Solid

Percent Solids: 88.9

Analyte		Qualifier	RL		MDL		D	Prepared	Analyzed	Dil Fa
Benzo(k)fluoranthene	ND		190			ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/10/15 18:27	
Bis(2-chloroethoxy)methane	ND		190			ug/Kg	₽		11/10/15 18:27	•
Bis(2-chloroethyl)ether	ND		190			ug/Kg	₩		11/10/15 18:27	•
Bis(2-ethylhexyl) phthalate	ND		190			ug/Kg			11/10/15 18:27	·
Butyl benzyl phthalate	ND		190			ug/Kg	₽.		11/10/15 18:27	•
Caprolactam	ND		190			ug/Kg	₽		11/10/15 18:27	•
Carbazole	ND		190			ug/Kg			11/10/15 18:27	
Chrysene	ND		190			ug/Kg	₩.		11/10/15 18:27	•
Di-n-butyl phthalate	ND		190			ug/Kg	₽.		11/10/15 18:27	•
Di-n-octyl phthalate	ND		190			ug/Kg			11/10/15 18:27	
Dibenz(a,h)anthracene	ND		190			ug/Kg	\$		11/10/15 18:27	•
Dibenzofuran	ND		190)		ug/Kg	☼	11/04/15 07:52	11/10/15 18:27	•
Diethyl phthalate	ND		190)		ug/Kg	☆	11/04/15 07:52	11/10/15 18:27	
Dimethyl phthalate	ND		190			ug/Kg	☼		11/10/15 18:27	
Fluoranthene	ND		190)	20	ug/Kg	₩	11/04/15 07:52	11/10/15 18:27	•
Fluorene	ND		190)	22	ug/Kg	₩	11/04/15 07:52	11/10/15 18:27	•
Hexachlorobenzene	ND		190)	26	ug/Kg	₽	11/04/15 07:52	11/10/15 18:27	
Hexachlorobutadiene	ND		190)	28	ug/Kg	₩	11/04/15 07:52	11/10/15 18:27	
Hexachlorocyclopentadiene	ND		190)	26	ug/Kg	₩	11/04/15 07:52	11/10/15 18:27	
Hexachloroethane	ND		190)	24	ug/Kg	☼	11/04/15 07:52	11/10/15 18:27	
Indeno(1,2,3-cd)pyrene	ND		190)	23	ug/Kg	₩	11/04/15 07:52	11/10/15 18:27	
Isophorone	ND		190)	40	ug/Kg	₩	11/04/15 07:52	11/10/15 18:27	•
N-Nitrosodi-n-propylamine	ND		190)	32	ug/Kg	☼	11/04/15 07:52	11/10/15 18:27	
N-Nitrosodiphenylamine	ND		190)	150	ug/Kg	☆	11/04/15 07:52	11/10/15 18:27	
Naphthalene	ND		190)	24	ug/Kg	₩	11/04/15 07:52	11/10/15 18:27	
Nitrobenzene	ND		190)	21	ug/Kg		11/04/15 07:52	11/10/15 18:27	
Pentachlorophenol	ND		370)	190	ug/Kg	☆	11/04/15 07:52	11/10/15 18:27	
Phenanthrene	ND		190)	28	ug/Kg	₩	11/04/15 07:52	11/10/15 18:27	•
Phenol	ND		190)	29	ug/Kg	\$	11/04/15 07:52	11/10/15 18:27	
Pyrene	ND		190)	22	ug/Kg	☆	11/04/15 07:52	11/10/15 18:27	
Dimethylformamide	ND		730)	83	ug/Kg	≎	11/04/15 07:52	11/10/15 18:27	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	I	R <i>T</i>	CAS No.	Prepared	Analyzed	Dil Fa
Unknown	470	TJ	ug/Kg	\	1.	87		11/04/15 07:52	11/10/15 18:27	
Unknown	750	TJ	ug/Kg	₩	2.	05		11/04/15 07:52	11/10/15 18:27	
Unknown	1300	TJ	ug/Kg	₩	2.	16		11/04/15 07:52	11/10/15 18:27	
Ethane, 1,1,2-trichloro-	280	TJN	ug/Kg	\$	3.	76	79-00-5	11/04/15 07:52	11/10/15 18:27	
Unknown	650	TJ	ug/Kg	☼	4.	65		11/04/15 07:52	11/10/15 18:27	
Unknown Benzene Derivative	350	TJ	ug/Kg	₩	5.	13		11/04/15 07:52	11/10/15 18:27	
Ethane, 1,1,2,2-tetrachloro-	580	TJN	ug/Kg	₩	5.	69	79-34-5	11/04/15 07:52	11/10/15 18:27	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	94		39 - 146	-				11/04/15 07:52	11/10/15 18:27	
2-Fluorobiphenyl	86		37 - 120					11/04/15 07:52	11/10/15 18:27	
2-Fluorophenol	71		18 - 120					11/04/15 07:52	11/10/15 18:27	

TestAmerica Buffalo

11/04/15 07:52 11/10/15 18:27

11/04/15 07:52 11/10/15 18:27

11/04/15 07:52 11/10/15 18:27

34 - 132

65 - 153

11 - 120

75

104

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Isopropyl alcohol

t-Butyl alcohol

TestAmerica Job ID: 480-90365-1

Percent Solids: 88.9

11/06/15 12:58

11/06/15 12:58

Lab Sample ID: 480-90365-3 Matrix: Solid

Dil Fac

А

5

1

10

13

15

Client Sample ID: SWMU1-SB12-SS-105
Date Collected: 11/02/15 12:05
Date Received: 11/03/15 09:00

Method: 8015D - Nonha	logenated Organic Compound	ds - Direct I	njection	(GC) - S	oluble		
Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed
Ethanol	ND -	1.0	0.15	mg/Kg	<u></u>		11/06/15 12:58
Isobutyl alcohol	ND	1.0	0.25	mg/Kg	₩		11/06/15 12:58
Methanol	ND	1.0	0.30	mg/Kg	☼		11/06/15 12:58
n-Butanol	ND	1.0	0.23	mg/Kg			11/06/15 12:58
Propanol	ND	1.0	0.15	mg/Kg	₩		11/06/15 12:58
2-Butanol	ND	1.0	0.16	mg/Kg	₩		11/06/15 12:58

ND

ND

Surrogate	%Recovery	Qualifier	Limits	Pre	pared	Analyzed	Dil Fac
2-Hexanone	86		30 - 137		-	11/06/15 12:58	1

1.0

1.0

0.24 mg/Kg

0.27 mg/Kg

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	270	52	ug/Kg	<u> </u>	11/04/15 07:49	11/04/15 17:19	1
PCB-1221	ND	270	52	ug/Kg	☼	11/04/15 07:49	11/04/15 17:19	1
PCB-1232	ND	270	52	ug/Kg	₩	11/04/15 07:49	11/04/15 17:19	1
PCB-1242	ND	270	52	ug/Kg	₽	11/04/15 07:49	11/04/15 17:19	1
PCB-1248	ND	270	52	ug/Kg	☼	11/04/15 07:49	11/04/15 17:19	1
PCB-1254	ND	270	120	ug/Kg	₩	11/04/15 07:49	11/04/15 17:19	1
PCB-1260	ND	270	120	ug/Kg	*	11/04/15 07:49	11/04/15 17:19	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
Tetrachloro-m-xylene	94		60 - 154	11/04/15 07:49 11/04/15 17:1	9 1
DCB Decachlorobiphenyl	96		65 - 174	11/04/15 07:49 11/04/15 17:1	9 1

Method: 6010C - Metals (IC	CP)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.4	2.2	0.43	mg/Kg	₩	11/04/15 12:07	11/06/15 01:34	1
Barium	39.1	0.54	0.12	mg/Kg	☼	11/04/15 12:07	11/06/15 01:34	1
Cadmium	0.15 J	0.22	0.033	mg/Kg	☼	11/04/15 12:07	11/06/15 01:34	1
Chromium	10.4	0.54	0.22	mg/Kg	₽	11/04/15 12:07	11/06/15 01:34	1
Lead	6.3	1.1	0.26	mg/Kg	☼	11/04/15 12:07	11/06/15 01:34	1
Selenium	ND	4.3	0.43	mg/Kg	☼	11/04/15 12:07	11/06/15 01:34	1
Silver	ND	0.65	0.22	mg/Kg	₩	11/04/15 12:07	11/06/15 01:34	1

Method: 7471B - Mercury (CVA	A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.023	0.0093	mg/Kg	<u> </u>	11/05/15 14:05	11/05/15 16:58	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 11/02/15 13:35

Date Received: 11/03/15 09:00

Client Sample ID: SWMU1-SB13-SS-106

TestAmerica Job ID: 480-90365-1

Lab Sample ID: 480-90365-4

Matrix: Solid Percent Solids: 85.1

Method: 8260C - Volatile Organ	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0		ug/Kg	<u> </u>		11/07/15 03:48	1
1,1,2,2-Tetrachloroethane	ND	5.0		ug/Kg			11/07/15 03:48	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0		ug/Kg			11/07/15 03:48	
1,1,2-Trichloroethane	ND	5.0		ug/Kg			11/07/15 03:48	1
1,1-Dichloroethane	ND	5.0		ug/Kg	₩		11/07/15 03:48	1
1,1-Dichloroethene	ND	5.0		ug/Kg			11/07/15 03:48	1
1,2,3-Trichlorobenzene	ND	5.0		ug/Kg	₽		11/07/15 03:48	1
1,2,4-Trichlorobenzene	ND	5.0		ug/Kg	:		11/07/15 03:48	1
1,2-Dibromo-3-Chloropropane	ND	5.0		ug/Kg			11/07/15 03:48	1
1,2-Dichlorobenzene	ND	5.0		ug/Kg	**	11/03/15 16:16	11/07/15 03:48	1
1,2-Dichloroethane	ND	5.0		ug/Kg	☼	11/03/15 16:16	11/07/15 03:48	1
1,2-Dichloropropane	ND	5.0		ug/Kg	*	11/03/15 16:16	11/07/15 03:48	1
1,3-Dichlorobenzene	ND	5.0	0.26	ug/Kg	₩	11/03/15 16:16	11/07/15 03:48	1
1,4-Dichlorobenzene	ND	5.0	0.70	ug/Kg	₩	11/03/15 16:16	11/07/15 03:48	1
1,4-Dioxane	ND	100	22	ug/Kg	₽	11/03/15 16:16	11/07/15 03:48	1
2-Hexanone	ND	25	2.5	ug/Kg	₩	11/03/15 16:16	11/07/15 03:48	1
Acetone	11 JB	25	4.2	ug/Kg	₩	11/03/15 16:16	11/07/15 03:48	1
Benzene	0.70 J	5.0	0.25	ug/Kg	₩	11/03/15 16:16	11/07/15 03:48	1
Bromoform	ND	5.0	2.5	ug/Kg	₽	11/03/15 16:16	11/07/15 03:48	1
Bromomethane	ND	5.0	0.45	ug/Kg	₽	11/03/15 16:16	11/07/15 03:48	1
Carbon disulfide	ND	5.0	2.5	ug/Kg	₩	11/03/15 16:16	11/07/15 03:48	1
Carbon tetrachloride	ND	5.0	0.48	ug/Kg		11/03/15 16:16	11/07/15 03:48	1
Chlorobenzene	ND	5.0	0.66	ug/Kg	₩	11/03/15 16:16	11/07/15 03:48	1
Bromochloromethane	ND	5.0	0.36	ug/Kg	₩	11/03/15 16:16	11/07/15 03:48	1
Dibromochloromethane	ND	5.0	0.64	ug/Kg		11/03/15 16:16	11/07/15 03:48	1
Chloroethane	ND	5.0	1.1	ug/Kg	₩	11/03/15 16:16	11/07/15 03:48	1
Chloroform	ND	5.0		ug/Kg	₩	11/03/15 16:16	11/07/15 03:48	1
Chloromethane	ND	5.0		ug/Kg		11/03/15 16:16	11/07/15 03:48	1
cis-1,2-Dichloroethene	ND	5.0		ug/Kg	₩	11/03/15 16:16	11/07/15 03:48	1
cis-1,3-Dichloropropene	ND	5.0		ug/Kg	₩	11/03/15 16:16	11/07/15 03:48	1
Cyclohexane	ND	5.0		ug/Kg		11/03/15 16:16	11/07/15 03:48	1
Bromodichloromethane	ND	5.0		ug/Kg	₩		11/07/15 03:48	1
Dichlorodifluoromethane	ND	5.0		ug/Kg	₩		11/07/15 03:48	1
Ethylbenzene	ND	5.0		ug/Kg			11/07/15 03:48	· · · · · · · 1
1,2-Dibromoethane (EDB)	ND	5.0		ug/Kg	₩		11/07/15 03:48	1
Isopropylbenzene	ND	5.0		ug/Kg	₩	11/03/15 16:16		1
Methyl acetate	ND	5.0		ug/Kg			11/07/15 03:48	· · · · · · · · · · · · · · · · · · ·
2-Butanone (MEK)	ND	25		ug/Kg	₽		11/07/15 03:48	1
4-Methyl-2-pentanone (MIBK)	ND	25 25		ug/Kg ug/Kg	₽		11/07/15 03:48	1
Methyl tert-butyl ether	ND	5.0		ug/Kg ug/Kg			11/07/15 03:48	
•	ND ND				₽			
Methylone Chloride		5.0		ug/Kg	**		11/07/15 03:48	1
Methylene Chloride	ND	5.0		ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/07/15 03:48	
Styrene	ND	5.0		ug/Kg	<i>₩</i>		11/07/15 03:48	1
Tetrachloroethene	ND	5.0		ug/Kg	₩		11/07/15 03:48	1
Toluene	ND	5.0		ug/Kg			11/07/15 03:48	
trans-1,2-Dichloroethene	ND	5.0		ug/Kg	Φ.		11/07/15 03:48	1
trans-1,3-Dichloropropene	ND	5.0		ug/Kg	*		11/07/15 03:48	1
Trichloroethene	ND	5.0		ug/Kg			11/07/15 03:48	1
Trichlorofluoromethane	ND	5.0	0.47	ug/Kg	\$	11/03/15 16:16	11/07/15 03:48	1

TestAmerica Buffalo

4

6

8

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Client Sample ID: SWMU1-SB13-SS-106

Date Collected: 11/02/15 13:35 Date Received: 11/03/15 09:00

Lab Sample ID: 480-90365-4 **Matrix: Solid** Percent Solids: 85.1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0	0.61	ug/Kg	<u> </u>	11/03/15 16:16	11/07/15 03:48	1
Xylenes, Total	ND		10	0.84	ug/Kg	₩	11/03/15 16:16	11/07/15 03:48	1
Tetrahydrofuran	ND		10	2.9	ug/Kg	₩	11/03/15 16:16	11/07/15 03:48	1

rentatively identified Compound	Est. Result	Qualifier	Unit	D	RI	CAS NO.	Preparea	Anaiyzea	DII Fac
Tentatively Identified Compound	None		ug/Kg	₩ -			11/03/15 16:16	11/07/15 03:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	119		60 - 140				11/03/15 16:16	11/07/15 03:48	1
1,2-Dichloroethane-d4 (Surr)	117		64 - 126				11/03/15 16:16	11/07/15 03:48	1
Toluene-d8 (Surr)	116		71 - 125				11/03/15 16:16	11/07/15 03:48	1
4-Bromofluorobenzene (Surr)	106		72 - 126				11/03/15 16:16	11/07/15 03:48	1

Method: 8270D - Semivolatil Analyte	Result Qualifier	ŘL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND	200	29	ug/Kg	₩	11/04/15 07:52	11/10/15 18:53	1
bis (2-chloroisopropyl) ether	ND	200	40	ug/Kg	☼	11/04/15 07:52	11/10/15 18:53	1
2,4,5-Trichlorophenol	ND	200	54	ug/Kg	☼	11/04/15 07:52	11/10/15 18:53	1
2,4,6-Trichlorophenol	ND	200	40	ug/Kg	φ.	11/04/15 07:52	11/10/15 18:53	1
2,4-Dichlorophenol	ND	200	21	ug/Kg	☼	11/04/15 07:52	11/10/15 18:53	1
2,4-Dimethylphenol	ND	200	48	ug/Kg	☼	11/04/15 07:52	11/10/15 18:53	1
2,4-Dinitrophenol	ND	1900	910	ug/Kg	φ.	11/04/15 07:52	11/10/15 18:53	1
2,4-Dinitrotoluene	ND	200	41	ug/Kg	₽	11/04/15 07:52	11/10/15 18:53	1
2,6-Dinitrotoluene	ND	200	23	ug/Kg	☼	11/04/15 07:52	11/10/15 18:53	1
2-Chloronaphthalene	ND	200	33	ug/Kg	₽	11/04/15 07:52	11/10/15 18:53	1
2-Chlorophenol	ND	200	36	ug/Kg	☼	11/04/15 07:52	11/10/15 18:53	1
2-Methylnaphthalene	ND	200	40	ug/Kg	☼	11/04/15 07:52	11/10/15 18:53	1
2-Methylphenol	ND	200	23	ug/Kg	₽	11/04/15 07:52	11/10/15 18:53	1
2-Nitroaniline	ND	380	29	ug/Kg	☼	11/04/15 07:52	11/10/15 18:53	1
2-Nitrophenol	ND	200	56	ug/Kg	☼	11/04/15 07:52	11/10/15 18:53	1
3,3'-Dichlorobenzidine	ND	380	230	ug/Kg	₽	11/04/15 07:52	11/10/15 18:53	1
3-Nitroaniline	ND	380	55	ug/Kg	☼	11/04/15 07:52	11/10/15 18:53	1
4,6-Dinitro-2-methylphenol	ND	380	200	ug/Kg	☼	11/04/15 07:52	11/10/15 18:53	1
4-Bromophenyl phenyl ether	ND	200	28	ug/Kg	₽	11/04/15 07:52	11/10/15 18:53	1
4-Chloro-3-methylphenol	ND	200	49	ug/Kg	☼	11/04/15 07:52	11/10/15 18:53	1
4-Chloroaniline	ND	200	49	ug/Kg	☼	11/04/15 07:52	11/10/15 18:53	1
4-Chlorophenyl phenyl ether	ND	200	24	ug/Kg	₽	11/04/15 07:52	11/10/15 18:53	1
4-Methylphenol	ND	380	23	ug/Kg	☼	11/04/15 07:52	11/10/15 18:53	1
4-Nitroaniline	ND	380	100	ug/Kg	₽	11/04/15 07:52	11/10/15 18:53	1
4-Nitrophenol	ND	380	140	ug/Kg	₽	11/04/15 07:52	11/10/15 18:53	1
Acenaphthene	ND	200	29	ug/Kg	₽	11/04/15 07:52	11/10/15 18:53	1
Acenaphthylene	ND	200	26	ug/Kg	☼	11/04/15 07:52	11/10/15 18:53	1
Acetophenone	ND	200	27	ug/Kg	₽	11/04/15 07:52	11/10/15 18:53	1
Anthracene	ND	200	49	ug/Kg	☼	11/04/15 07:52	11/10/15 18:53	1
Atrazine	ND	200	69	ug/Kg	☼	11/04/15 07:52	11/10/15 18:53	1
Benzaldehyde	ND	200	160	ug/Kg	₽	11/04/15 07:52	11/10/15 18:53	1
Benzo(a)anthracene	ND	200	20	ug/Kg	≎	11/04/15 07:52	11/10/15 18:53	1
Benzo(a)pyrene	ND	200	29	ug/Kg	≎	11/04/15 07:52	11/10/15 18:53	1
Benzo(b)fluoranthene	ND	200	31	ug/Kg		11/04/15 07:52	11/10/15 18:53	1
Benzo(g,h,i)perylene	ND	200	21	ug/Kg	₩	11/04/15 07:52	11/10/15 18:53	1

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Client Sample ID: SWMU1-SB13-SS-106

Lab Sample ID: 480-90365-4 Date Collected: 11/02/15 13:35 Matrix: Solid Date Received: 11/03/15 09:00 Percent Solids: 85.1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued) MDL Unit Analyte Result Qualifier RL D Prepared Analyzed Dil Fac Benzo(k)fluoranthene $\overline{\mathsf{ND}}$ 200 26 ug/Kg 11/04/15 07:52 11/10/15 18:53 Bis(2-chloroethoxy)methane ND 200 11/04/15 07:52 11/10/15 18:53 42 ug/Kg Bis(2-chloroethyl)ether ND 200 ug/Kg 11/04/15 07:52 11/10/15 18:53 Bis(2-ethylhexyl) phthalate ND 200 67 ug/Kg 11/04/15 07:52 11/10/15 18:53 Butyl benzyl phthalate ND 200 11/04/15 07:52 11/10/15 18:53 33 ug/Kg Caprolactam ND 200 59 ug/Kg 11/04/15 07:52 11/10/15 18:53 Carbazole ND 200 23 ug/Kg 11/04/15 07:52 11/10/15 18:53 Chrysene ND 200 44 ug/Kg 11/04/15 07:52 11/10/15 18:53 200 Di-n-butyl phthalate ND 34 11/04/15 07:52 11/10/15 18:53 ug/Kg Di-n-octyl phthalate 200 11/04/15 07:52 ND 23 ug/Kg 11/10/15 18:53 Dibenz(a,h)anthracene ND 200 35 ug/Kg 11/04/15 07:52 11/10/15 18:53 Dibenzofuran ND 200 ug/Kg 11/04/15 07:52 11/10/15 18:53 Diethyl phthalate ND 200 26 ug/Kg 11/04/15 07:52 11/10/15 18:53 1 Dimethyl phthalate ND 200 23 ug/Kg 11/04/15 07:52 11/10/15 18:53 Fluoranthene ND 200 ug/Kg 11/04/15 07:52 11/10/15 18:53 21 200 Fluorene ND 23 ug/Kg 11/04/15 07:52 11/10/15 18:53 Hexachlorobenzene ND 200 27 ug/Kg 11/04/15 07:52 11/10/15 18:53 Hexachlorobutadiene ND 200 29 ug/Kg 11/04/15 07:52 11/10/15 18:53 Hexachlorocyclopentadiene ND 200 27 ug/Kg 11/04/15 07:52 11/10/15 18:53 200 ψ Hexachloroethane ND 26 11/04/15 07:52 11/10/15 18:53 ug/Kg Indeno(1,2,3-cd)pyrene ug/Kg ND 200 24 11/04/15 07:52 11/10/15 18:53 ND 200 Isophorone 42 ug/Kg 11/04/15 07:52 11/10/15 18:53 200 11/04/15 07:52 11/10/15 18:53 N-Nitrosodi-n-propylamine ND 34 ug/Kg N-Nitrosodiphenylamine ND 200 11/04/15 07:52 11/10/15 18:53 160 ug/Kg Naphthalene ND 200 26 ug/Kg 11/04/15 07:52 11/10/15 18:53 11/04/15 07:52 11/10/15 18:53 Nitrobenzene ND 200 22 ug/Kg Pentachlorophenol ND 380 200 ug/Kg 11/04/15 07:52 11/10/15 18:53 Phenanthrene 200 11/04/15 07:52 11/10/15 18:53 ND 29 ug/Kg 200 À Phenol ND 30 ug/Kg 11/04/15 07:52 11/10/15 18:53 Pyrene ND 200 23 ug/Kg 11/04/15 07:52 11/10/15 18:53 ₩ 770 11/04/15 07:52 11/10/15 18:53 Dimethylformamide ND 87 ug/Kg Tentatively Identified Compound Est. Result Qualifier Unit D RT CAS No. Dil Fac Prepared Analyzed ₩ Unknown 2100 ΤJ ug/Kg 1.87 11/04/15 07:52 11/10/15 18:53 ug/Kg ₩ Unknown 800 TJ 2.06 11/04/15 07:52 11/10/15 18:53 ä Unknown 1100 TJ ug/Kg 2.16 11/04/15 07:52 11/10/15 18:53 ug/Kg Unknown 1200 TJ 4.67 11/04/15 07:52 11/10/15 18:53 Ø Unknown Benzene Derivative 360 ΤJ ug/Kg 5.16 11/04/15 07:52 11/10/15 18:53 Ethane, 1.1.2.2-tetrachloro-240 TJNug/Kg 5.71 79-34-5 11/04/15 07:52 11/10/15 18:53 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 95 11/04/15 07:52 11/10/15 18:53 2,4,6-Tribromophenol 39 - 146 2-Fluorobiphenyl 82 37 - 120 11/04/15 07:52 11/10/15 18:53 2-Fluorophenol 75 18 - 120 11/04/15 07:52 11/10/15 18:53 Nitrobenzene-d5 74 34 - 132 11/04/15 07:52 11/10/15 18:53 p-Terphenyl-d14 101 65 - 153 11/04/15 07:52 11/10/15 18:53 Phenol-d5 77 11 - 120 11/04/15 07:52 11/10/15 18:53

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 11/02/15 13:35

Mercury

Client Sample ID: SWMU1-SB13-SS-106

TestAmerica Job ID: 480-90365-1

Lab Sample ID: 480-90365-4

· · · · · · · · · · · · · · · · · · ·	Matrix: Solid
Percent	Solids: 85.1

Method: 8015D - Nonhalo	anatod Organi	c Compou	nde - Diroct	Injection	(GC) - 9	Salubl	•		
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Ethanol	ND		1.1	0.17	mg/Kg	<u> </u>		11/06/15 13:05	1
Isobutyl alcohol	ND		1.1	0.28	mg/Kg	☼		11/06/15 13:05	1
Methanol	0.50	JB	1.1	0.33	mg/Kg	☼		11/06/15 13:05	1
n-Butanol	ND		1.1	0.26	mg/Kg			11/06/15 13:05	1
Propanol	ND		1.1	0.17	mg/Kg	☼		11/06/15 13:05	1
2-Butanol	ND		1.1	0.18	mg/Kg	☼		11/06/15 13:05	1
Isopropyl alcohol	ND		1.1	0.27	mg/Kg			11/06/15 13:05	1
t-Butyl alcohol	ND		1.1	0.30	mg/Kg	₩		11/06/15 13:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	63		30 - 137					11/06/15 13:05	1
: Method: 8082A - Polychio	orinated Rinhen	vie (PCRe)	hy Gas Chro	omatogr	anhv				
Analyte		Qualifier	RL	_	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		220		ug/Kg	— -			1
PCB-1221	ND		220		ug/Kg	☼		11/04/15 17:36	1
PCB-1232	ND		220		ug/Kg	₩		11/04/15 17:36	1
PCB-1242	ND		220		ug/Kg		11/04/15 07:49	11/04/15 17:36	1
PCB-1248	ND		220		ug/Kg	☼		11/04/15 17:36	1
PCB-1254	ND		220	100	ug/Kg	☼	11/04/15 07:49	11/04/15 17:36	1
PCB-1260	ND		220		ug/Kg	φ.		11/04/15 17:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	92		60 - 154				11/04/15 07:49	11/04/15 17:36	1
DCB Decachlorobiphenyl	97		65 - 174				11/04/15 07:49	11/04/15 17:36	1
Method: 6010C - Metals (I	ICP)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.3		2.3	0.47	mg/Kg	<u> </u>	11/04/15 12:07	11/06/15 01:37	1
Barium	46.6		0.59	0.13	mg/Kg	☼	11/04/15 12:07	11/06/15 01:37	1
Cadmium	0.17	J	0.23	0.035	mg/Kg	☼	11/04/15 12:07	11/06/15 01:37	1
Chromium	16.3		0.59	0.23	mg/Kg		11/04/15 12:07	11/06/15 01:37	1
Lead	8.2		1.2	0.28	mg/Kg	☼	11/04/15 12:07	11/06/15 01:37	1
Selenium	ND		4.7	0.47	mg/Kg	☼	11/04/15 12:07	11/06/15 01:37	1
Silver	ND		0.70	0.23	mg/Kg	₽	11/04/15 12:07	11/06/15 01:37	1
Method: 7471B - Mercury	(CVAA)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.023

0.0091 mg/Kg

0.013 J

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 11/02/15 14:10

Date Received: 11/03/15 09:00

Styrene

Toluene

Tetrachloroethene

Trichloroethene

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

Client Sample ID: SWMU1-SB14-SS-107

Method: 8260C - Volatile Organic Compounds by GC/MS

TestAmerica Job ID: 480-90365-1

Lab Sample ID: 480-90365-5

Matrix: Solid
Percent Solids: 86.8

RL Dil Fac Result Qualifier **MDL** Unit D Prepared Analyzed Analyte ₩ $\overline{\mathsf{ND}}$ 6.2 11/03/15 16:16 11/07/15 04:15 1,1,1-Trichloroethane 0.45 ug/Kg ND 1.1.2.2-Tetrachloroethane 62 ug/Kg 11/03/15 16:16 11/07/15 04:15 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 6.2 1.4 ug/Kg 11/03/15 16:16 11/07/15 04:15 ND 6.2 0.81 ug/Kg 11/03/15 16:16 11/07/15 04:15 1.1.2-Trichloroethane 1,1-Dichloroethane ND 6.2 0.76 ug/Kg 11/03/15 16:16 11/07/15 04:15 1 1-Dichloroethene ND 62 0.76 ug/Kg 11/03/15 16:16 11/07/15 04:15 1,2,3-Trichlorobenzene ND 6.2 0.66 ug/Kg 11/03/15 16:16 11/07/15 04:15 1,2,4-Trichlorobenzene ND 6.2 0.38 ug/Kg 11/03/15 16:16 11/07/15 04:15 ₩ ND 11/03/15 16:16 11/07/15 04:15 1,2-Dibromo-3-Chloropropane 6.2 3.1 ug/Kg 1,2-Dichlorobenzene ND 6.2 0.49 ug/Kg 11/03/15 16:16 11/07/15 04:15 1,2-Dichloroethane ND 6.2 0.31 ug/Kg 11/03/15 16:16 11/07/15 04:15 1,2-Dichloropropane NΩ 62 3.1 ug/Kg 11/03/15 16:16 11/07/15 04:15 ND 6.2 0.32 11/03/15 16:16 11/07/15 04:15 1.3-Dichlorobenzene ug/Kg 11/03/15 16:16 11/07/15 04:15 1.4-Dichlorobenzene ND 6.2 0.87 ug/Kg ND 1 4-Dioxane 120 27 11/03/15 16:16 11/07/15 04:15 ug/Kg 2-Hexanone ND 31 3.1 11/03/15 16:16 11/07/15 04:15 ug/Kg 31 **Acetone** 44 5.2 ug/Kg 11/03/15 16:16 11/07/15 04:15 **Benzene** 6.2 0.30 ug/Kg 11/03/15 16:16 11/07/15 04:15 1.3 Bromoform ND 6.2 11/03/15 16:16 11/07/15 04:15 3.1 ug/Kg Bromomethane ND 6.2 0.56 ug/Kg 11/03/15 16:16 11/07/15 04:15 Carbon disulfide ND 6.2 3.1 11/03/15 16:16 11/07/15 04:15 ug/Kg ND 6.2 0.60 Carbon tetrachloride ug/Kg 11/03/15 16:16 11/07/15 04:15 Chlorobenzene ND 6.2 0.82 11/03/15 16:16 11/07/15 04:15 ug/Kg Bromochloromethane ND 6.2 0.45 ug/Kg 11/03/15 16:16 11/07/15 04:15 Dibromochloromethane ND 6.2 0.80 ug/Kg 11/03/15 16:16 11/07/15 04:15 Chloroethane ND 6.2 1.4 ug/Kg 11/03/15 16:16 11/07/15 04:15 Chloroform ND 6.2 0.38 ug/Kg 11/03/15 16:16 11/07/15 04:15 ND 6.2 11/03/15 16:16 11/07/15 04:15 Chloromethane 0.38 ug/Kg 6.2 0.80 ug/Kg 11/03/15 16:16 11/07/15 04:15 cis-1.2-Dichloroethene 5.7 ND 6.2 cis-1,3-Dichloropropene 0.90 ug/Kg 11/03/15 16:16 11/07/15 04:15 Cyclohexane ND 6.2 0.87 ug/Kg 11/03/15 16:16 11/07/15 04:15 Bromodichloromethane ND 6.2 0.83 ug/Kg 11/03/15 16:16 11/07/15 04:15 Dichlorodifluoromethane ND 6.2 0.51 ug/Kg 11/03/15 16:16 11/07/15 04:15 Ethylbenzene ND 6.2 0.43 ug/Kg 11/03/15 16:16 11/07/15 04:15 1,2-Dibromoethane (EDB) ND 6.2 0.80 ġ 11/03/15 16:16 11/07/15 04:15 ug/Kg Isopropylbenzene ND 6.2 0.94 ug/Kg 11/03/15 16:16 11/07/15 04:15 3.8 Methyl acetate ND 6.2 11/03/15 16:16 11/07/15 04:15 ug/Kg 2-Butanone (MEK) 17 31 2.3 ug/Kg 11/03/15 16:16 11/07/15 04:15 4-Methyl-2-pentanone (MIBK) ND 31 2.0 ug/Kg 11/03/15 16:16 11/07/15 04:15 Methyl tert-butyl ether ND 6.2 0.61 11/03/15 16:16 11/07/15 04:15 ug/Kg Methylcyclohexane ND 6.2 0.95 11/03/15 16:16 11/07/15 04:15 ug/Kg Methylene Chloride ND 6.2 2.9 11/03/15 16:16 11/07/15 04:15 ug/Kg

TestAmerica Buffalo

11/03/15 16:16 11/07/15 04:15

11/03/15 16:16 11/07/15 04:15

11/03/15 16:16 11/07/15 04:15

11/03/15 16:16 11/07/15 04:15

11/03/15 16:16 11/07/15 04:15

11/03/15 16:16 11/07/15 04:15

11/07/15 04:15

11/03/15 16:16

Page 25 of 85

62

6.2

6.2

6.2

6.2

6.2

6.2

0.31

0.84

0.47

0.64

2.7

1.4

0.59

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

₩

ND

ND

ND

ND

ND

ND

0.64 J

11/18/2015

3

6

8

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Client Sample ID: SWMU1-SB14-SS-107

Date Collected: 11/02/15 14:10 Date Received: 11/03/15 09:00 Lab Sample ID: 480-90365-5

Matrix: Solid

Percent Solids: 86.8

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		6.2		0.76	ug/Kg	₩	11/03/15 16:16	11/07/15 04:15	1
Xylenes, Total	ND		12		1.0	ug/Kg	₽	11/03/15 16:16	11/07/15 04:15	1
Tetrahydrofuran	ND		12		3.6	ug/Kg	₩	11/03/15 16:16	11/07/15 04:15	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Limonene	6.8	TJN	ug/Kg	\	16.	.77	138-86-3	11/03/15 16:16	11/07/15 04:15	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	114		60 - 140					11/03/15 16:16	11/07/15 04:15	1
1,2-Dichloroethane-d4 (Surr)	112		64 - 126					11/03/15 16:16	11/07/15 04:15	1
Toluene-d8 (Surr)	111		71 - 125					11/03/15 16:16	11/07/15 04:15	1
4-Bromofluorobenzene (Surr)	98		72 - 126					11/03/15 16:16	11/07/15 04:15	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND	200	29	ug/Kg	₩	11/04/15 07:52	11/10/15 19:20	1
bis (2-chloroisopropyl) ether	ND	200	39	ug/Kg	₩	11/04/15 07:52	11/10/15 19:20	1
2,4,5-Trichlorophenol	ND	200	53	ug/Kg	≎	11/04/15 07:52	11/10/15 19:20	1
2,4,6-Trichlorophenol	ND	200	39	ug/Kg	₽	11/04/15 07:52	11/10/15 19:20	1
2,4-Dichlorophenol	ND	200	21	ug/Kg	☼	11/04/15 07:52	11/10/15 19:20	1
2,4-Dimethylphenol	ND	200	47	ug/Kg	≎	11/04/15 07:52	11/10/15 19:20	1
2,4-Dinitrophenol	ND	1900	900	ug/Kg	\$	11/04/15 07:52	11/10/15 19:20	1
2,4-Dinitrotoluene	ND	200	40	ug/Kg	☼	11/04/15 07:52	11/10/15 19:20	1
2,6-Dinitrotoluene	ND	200	23	ug/Kg	☼	11/04/15 07:52	11/10/15 19:20	1
2-Chloronaphthalene	ND	200	32	ug/Kg	₽	11/04/15 07:52	11/10/15 19:20	1
2-Chlorophenol	ND	200	36	ug/Kg	☼	11/04/15 07:52	11/10/15 19:20	1
2-Methylnaphthalene	ND	200	39	ug/Kg	☼	11/04/15 07:52	11/10/15 19:20	1
2-Methylphenol	ND	200	23	ug/Kg	₽	11/04/15 07:52	11/10/15 19:20	1
2-Nitroaniline	ND	380	29	ug/Kg	☼	11/04/15 07:52	11/10/15 19:20	1
2-Nitrophenol	ND	200	55	ug/Kg	☼	11/04/15 07:52	11/10/15 19:20	1
3,3'-Dichlorobenzidine	ND	380	230	ug/Kg	₽	11/04/15 07:52	11/10/15 19:20	1
3-Nitroaniline	ND	380	54	ug/Kg	☼	11/04/15 07:52	11/10/15 19:20	1
4,6-Dinitro-2-methylphenol	ND	380	200	ug/Kg	₽	11/04/15 07:52	11/10/15 19:20	1
4-Bromophenyl phenyl ether	ND	200	28	ug/Kg	₽	11/04/15 07:52	11/10/15 19:20	1
4-Chloro-3-methylphenol	ND	200	48	ug/Kg	₽	11/04/15 07:52	11/10/15 19:20	1
4-Chloroaniline	ND	200	48	ug/Kg	₽	11/04/15 07:52	11/10/15 19:20	1
4-Chlorophenyl phenyl ether	ND	200	24	ug/Kg	₽	11/04/15 07:52	11/10/15 19:20	1
4-Methylphenol	ND	380	23	ug/Kg	₽	11/04/15 07:52	11/10/15 19:20	1
4-Nitroaniline	ND	380	100	ug/Kg	₽	11/04/15 07:52	11/10/15 19:20	1
4-Nitrophenol	ND	380	140	ug/Kg	₽	11/04/15 07:52	11/10/15 19:20	1
Acenaphthene	ND	200	29	ug/Kg	☼	11/04/15 07:52	11/10/15 19:20	1
Acenaphthylene	ND	200	25	ug/Kg	₽	11/04/15 07:52	11/10/15 19:20	1
Acetophenone	ND	200	26	ug/Kg	₽	11/04/15 07:52	11/10/15 19:20	1
Anthracene	ND	200	48	ug/Kg	☼	11/04/15 07:52	11/10/15 19:20	1
Atrazine	ND	200	68	ug/Kg	☼	11/04/15 07:52	11/10/15 19:20	1
Benzaldehyde	ND	200	160	ug/Kg	₽	11/04/15 07:52	11/10/15 19:20	1
Benzo(a)anthracene	ND	200	20	ug/Kg	≎	11/04/15 07:52	11/10/15 19:20	1
Benzo(a)pyrene	ND	200	29	ug/Kg	☼	11/04/15 07:52	11/10/15 19:20	1
Benzo(b)fluoranthene	ND	200	31	ug/Kg		11/04/15 07:52	11/10/15 19:20	1
Benzo(g,h,i)perylene	ND	200	21	ug/Kg	₽	11/04/15 07:52	11/10/15 19:20	1

TestAmerica Buffalo

Page 26 of 85

11/18/2015

3

6

8

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Client Sample ID: SWMU1-SB14-SS-107 Lab Sample ID: 480-90365-5

Date Collected: 11/02/15 14:10 **Matrix: Solid** Date Received: 11/03/15 09:00 Percent Solids: 86.8

Method: 8270D - Semivolatile Analyte	_	Qualifier	RL	•	MDL		D	Prepared	Analyzed	Dil Fa
Benzo(k)fluoranthene	ND		200		25	ug/Kg	<u> </u>	11/04/15 07:52	11/10/15 19:20	
Bis(2-chloroethoxy)methane	ND		200)	41	ug/Kg)	11/04/15 07:52	11/10/15 19:20	
Bis(2-chloroethyl)ether	ND		200)	25	ug/Kg	₽	11/04/15 07:52	11/10/15 19:20	
Bis(2-ethylhexyl) phthalate	ND		200)	67	ug/Kg	₽	11/04/15 07:52	11/10/15 19:20	
Butyl benzyl phthalate	ND		200)		ug/Kg		11/04/15 07:52	11/10/15 19:20	
Caprolactam	ND		200)	59	ug/Kg	₿	11/04/15 07:52	11/10/15 19:20	
Carbazole	ND		200)		ug/Kg		11/04/15 07:52	11/10/15 19:20	
Chrysene	ND		200			ug/Kg		11/04/15 07:52	11/10/15 19:20	
Di-n-butyl phthalate	ND		200)		ug/Kg		11/04/15 07:52	11/10/15 19:20	
Di-n-octyl phthalate	ND		200)		ug/Kg		11/04/15 07:52	11/10/15 19:20	
Dibenz(a,h)anthracene	ND		200			ug/Kg		11/04/15 07:52	11/10/15 19:20	
Dibenzofuran	ND		200			ug/Kg			11/10/15 19:20	
Diethyl phthalate	ND		200						11/10/15 19:20	
Dimethyl phthalate	ND		200			ug/Kg			11/10/15 19:20	
Fluoranthene	ND		200		21	ug/Kg			11/10/15 19:20	
Fluorene	ND		200			ug/Kg		11/04/15 07:52		
Hexachlorobenzene	ND		200			ug/Kg		11/04/15 07:52		
Hexachlorobutadiene	ND		200			ug/Kg	,		11/10/15 19:20	
Hexachlorocyclopentadiene	ND		200			ug/Kg		11/04/15 07:52		
Hexachloroethane	ND		200			ug/Kg		11/04/15 07:52		
ndeno(1,2,3-cd)pyrene	ND		200			ug/Ko			11/10/15 19:20	
sophorone	ND ND		200			ug/Kg	•	11/04/15 07:52		
			200						11/10/15 19:20	
N-Nitrosodi-n-propylamine	ND ND		200			ug/Kg			11/10/15 19:20	
N-Nitrosodiphenylamine	ND ND		200			ug/Kg			11/10/15 19:20	
Naphthalene						ug/Kg				
Nitrobenzene	ND		200			ug/Kg	,		11/10/15 19:20	
Pentachlorophenol	ND		380			ug/Kg			11/10/15 19:20	
Phenanthrene	ND		200			ug/Kg			11/10/15 19:20	
Phenol	ND		200			ug/Kg			11/10/15 19:20	
Pyrene	ND		200			ug/Kg			11/10/15 19:20	
Dimethylformamide	ND		760)	86	ug/Kg	ı Ş	11/04/15 07:52	11/10/15 19:20	
Tentatively Identified Compound	Est. Result	-	Unit	D		RT _	CAS No.	Prepared	Analyzed	Dil Fa
Inknown	1800		ug/Kg	\tilde{\		87			11/10/15 19:20	
Inknown	1200		ug/Kg	₩		06			11/10/15 19:20	
Inknown	1400	TJ	ug/Kg	₩	2.	16			11/10/15 19:20	
Inknown	1000	ΤJ	ug/Kg	₩		66		11/04/15 07:52	11/10/15 19:20	
Benzene, 1,2-dimethyl-	680	TJN	ug/Kg	₩	5.	14	95-47-6	11/04/15 07:52	11/10/15 19:20	
-Heneicosyl formate	430	TJN	ug/Kg	₩	14.	62	77899-03-7	11/04/15 07:52	11/10/15 19:20	
Eicosane	400	TJN	ug/Kg	₩	16.	05	112-95-8	11/04/15 07:52	11/10/15 19:20	
gammaSitosterol	1500	TJN	ug/Kg	₩	17.	82	83-47-6	11/04/15 07:52	11/10/15 19:20	
Ergostanol	540	TJN	ug/Kg	₩	17.	94	6538-02-9	11/04/15 07:52	11/10/15 19:20	
Jnknown	290	ΤJ	ug/Kg	*	18.	23		11/04/15 07:52	11/10/15 19:20	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil F
2,4,6-Tribromophenol	97	-	39 - 146	-					11/10/15 19:20	
2-Fluorobiphenyl	95		37 - 120					11/04/15 07:52	11/10/15 19:20	
2-Fluorophenol	79		18 - 120					11/04/15 07:52	11/10/15 19:20	
Nitrobenzene-d5	81		34 - 132						11/10/15 19:20	
o-Terphenyl-d14	101		65 - 153						11/10/15 19:20	

TestAmerica Buffalo

11/18/2015

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 11/02/15 14:10

Date Received: 11/03/15 09:00

Client Sample ID: SWMU1-SB14-SS-107

TestAmerica Job ID: 480-90365-1

Lab Sample ID: 480-90365-5

Matrix: Solid

Percent Solids: 86.8

Method: 8270D	 Semivolatile Organic 	c Compounds (GC/	MS) (Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Phenol-d5	83	11 - 120	11/04/15 07:52	11/10/15 19:20	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		1.1	0.17	mg/Kg	\		11/06/15 13:13	1
Isobutyl alcohol	ND		1.1	0.28	mg/Kg	≎		11/06/15 13:13	1
Methanol	0.99	J B	1.1	0.33	mg/Kg	₩		11/06/15 13:13	1
n-Butanol	ND		1.1	0.26	mg/Kg			11/06/15 13:13	1
Propanol	ND		1.1	0.17	mg/Kg	≎		11/06/15 13:13	1
2-Butanol	ND		1.1	0.18	mg/Kg	≎		11/06/15 13:13	1
Isopropyl alcohol	ND		1.1	0.27	mg/Kg			11/06/15 13:13	1
t-Butyl alcohol	ND		1.1	0.30	mg/Kg	☼		11/06/15 13:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	79		30 - 137					11/06/15 13:13	1

Analyte	chlorinated Biphenyl Result (RL	_	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	 250	49	ug/Kg	<u> </u>	11/04/15 07:49	11/04/15 17:53	1
PCB-1221	ND	250	49	ug/Kg	₩	11/04/15 07:49	11/04/15 17:53	1
PCB-1232	ND	250	49	ug/Kg	₩	11/04/15 07:49	11/04/15 17:53	1
PCB-1242	ND	250	49	ug/Kg		11/04/15 07:49	11/04/15 17:53	1
PCB-1248	ND	250	49	ug/Kg	₩	11/04/15 07:49	11/04/15 17:53	1
PCB-1254	ND	250	120	ug/Kg	☼	11/04/15 07:49	11/04/15 17:53	1
PCB-1260	ND	250	120	ug/Kg		11/04/15 07:49	11/04/15 17:53	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	96		60 - 154	11/04/15 07:49	11/04/15 17:53	1
DCB Decachlorobiphenyl	96		65 - 174	11/04/15 07:49	11/04/15 17:53	1

Method: 6010C - Metals (ICP) Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.2	2.3		mg/Kg	\		11/06/15 01:40	1
Barium	45.5	0.57	0.13	mg/Kg	₽	11/04/15 12:07	11/06/15 01:40	1
Cadmium	0.25	0.23	0.034	mg/Kg	₽	11/04/15 12:07	11/06/15 01:40	1

ı	Cadmium	0.25	0.23	0.034 mg/Kg	340	11/04/15 12:07	11/06/15 01:40
	Chromium	14.1	0.57	0.23 mg/Kg	₩	11/04/15 12:07	11/06/15 01:40
	Lead	46.6	1.1	0.28 mg/Kg	₩	11/04/15 12:07	11/06/15 01:40
	Selenium	ND	4.6	0.46 mg/Kg	₩	11/04/15 12:07	11/06/15 01:40
	Silver	ND	0.69	0.23 mg/Kg	₽	11/04/15 12:07	11/06/15 01:40
·							

Method: 7471B - Mercury (CVAA	•	O	DI	MDI	11:4		Duamanad	Aalad	D:: 5
Analyte	Result	Qualifier	RL	MDL	Unit	ט	Prepared	Analyzed	Dil Fac
Mercury	0.015	J	0.022	0.0087	mg/Kg	<u> </u>	11/05/15 14:05	11/05/15 17:01	1

11/18/2015

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 11/02/15 14:40

Date Received: 11/03/15 09:00

Methylcyclohexane

Methylene Chloride

Tetrachloroethene

Trichloroethene

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

Styrene

Toluene

Client Sample ID: SWMU4-SB03-SS-100

Method: 8260C - Volatile Organic Compounds by GC/MS

TestAmerica Job ID: 480-90365-1

Lab Sample ID: 480-90365-6

Matrix: Solid Percent Solids: 86.5

RL Dil Fac Result Qualifier **MDL** Unit D Prepared Analyzed Analyte 77 $\overline{\mathsf{ND}}$ 4.8 0.35 11/03/15 16:16 11/07/15 04:43 1,1,1-Trichloroethane ug/Kg ND 1.1.2.2-Tetrachloroethane 4.8 ug/Kg 11/03/15 16:16 11/07/15 04:43 0.78 1,1,2-Trichloro-1,2,2-trifluoroethane ND 4.8 1.1 ug/Kg 11/03/15 16:16 11/07/15 04:43 ND 4 8 0.62 ug/Kg 11/03/15 16:16 11/07/15 04:43 1.1.2-Trichloroethane 1,1-Dichloroethane ND 4.8 0.58 ug/Kg 11/03/15 16:16 11/07/15 04:43 1 1-Dichloroethene ND 48 0.59 ug/Kg 11/03/15 16:16 11/07/15 04:43 1,2,3-Trichlorobenzene ND 4.8 0.51 ug/Kg 11/03/15 16:16 11/07/15 04:43 1,2,4-Trichlorobenzene ND 4.8 0.29 ug/Kg 11/03/15 16:16 11/07/15 04:43 ₩ ND 1,2-Dibromo-3-Chloropropane 4.8 2.4 ug/Kg 11/03/15 16:16 11/07/15 04:43 1,2-Dichlorobenzene ND 4.8 0.37 ug/Kg 11/03/15 16:16 11/07/15 04:43 1,2-Dichloroethane ND 4.8 0.24 ug/Kg 11/03/15 16:16 11/07/15 04:43 1,2-Dichloropropane NΩ 48 2.4 ug/Kg 11/03/15 16:16 11/07/15 04:43 ND 4.8 0.25 11/03/15 16:16 11/07/15 04:43 1.3-Dichlorobenzene ug/Kg 11/03/15 16:16 11/07/15 04:43 1.4-Dichlorobenzene ND 4.8 0.67 ug/Kg 1 4-Dioxane ND 96 21 11/03/15 16:16 11/07/15 04:43 ug/Kg 2-Hexanone ND 24 2.4 11/03/15 16:16 11/07/15 04:43 ug/Kg Acetone ND 24 4.0 ug/Kg 11/03/15 16:16 11/07/15 04:43 Benzene ND 4.8 0.23 ug/Kg 11/03/15 16:16 11/07/15 04:43 Bromoform ND 4.8 11/03/15 16:16 11/07/15 04:43 24 ug/Kg Bromomethane ND 4.8 0.43 ug/Kg 11/03/15 16:16 11/07/15 04:43 Carbon disulfide ND 4.8 2.4 11/03/15 16:16 11/07/15 04:43 ug/Kg ND Carbon tetrachloride 4.8 0.46 ug/Kg 11/03/15 16:16 11/07/15 04:43 Chlorobenzene ND 4.8 0.63 ug/Kg 11/03/15 16:16 11/07/15 04:43 Bromochloromethane ND 4.8 0.35 ug/Kg 11/03/15 16:16 11/07/15 04:43 Dibromochloromethane ND 4 8 0.61 ug/Kg 11/03/15 16:16 11/07/15 04:43 ND Chloroethane 48 1.1 ug/Kg 11/03/15 16:16 11/07/15 04:43 Chloroform ND 4.8 0.30 ug/Kg 11/03/15 16:16 11/07/15 04:43 Chloromethane 4.8 11/03/15 16:16 11/07/15 04:43 ND 0.29 ug/Kg cis-1,2-Dichloroethene ND 4.8 0.61 11/03/15 16:16 11/07/15 04:43 ug/Kg ND 4.8 cis-1,3-Dichloropropene 0.69 ug/Kg 11/03/15 16:16 11/07/15 04:43 Cyclohexane ND 4.8 0.67 ug/Kg 11/03/15 16:16 11/07/15 04:43 Bromodichloromethane ND 4.8 0.64 ug/Kg 11/03/15 16:16 11/07/15 04:43 Dichlorodifluoromethane ND 4.8 0.40 ug/Kg 11/03/15 16:16 11/07/15 04:43 Ethylbenzene ND 4.8 0.33 ug/Kg 11/03/15 16:16 11/07/15 04:43 1,2-Dibromoethane (EDB) ND 0.62 ġ 11/03/15 16:16 11/07/15 04:43 4.8 ug/Kg Isopropylbenzene ND 4.8 0.72 ug/Kg 11/03/15 16:16 11/07/15 04:43 2.9 Methyl acetate ND 4.8 11/03/15 16:16 11/07/15 04:43 ug/Kg 2-Butanone (MEK) ND 24 1.8 ug/Kg 11/03/15 16:16 11/07/15 04:43 4-Methyl-2-pentanone (MIBK) ND 24 1.6 11/03/15 16:16 11/07/15 04:43 ug/Kg Methyl tert-butyl ether ND 4.8 11/03/15 16:16 11/07/15 04:43 0.47 ug/Kg NΠ 11/03/15 16:16 11/07/15 04:43

TestAmerica Buffalo

11/07/15 04:43

Page 29 of 85

4.8

4.8

4 8

4.8

4.8

4.8

4.8

4.8

4.8

ND

ND

ND

ND

ND

ND

ND

ND

0.73

2.2

0.24

0.64

0.36

0.49

2.1

1.1

0.45

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

6

11/03/15 16:16

₩

11/03/15 16:16 11/07/15 04:43

11/03/15 16:16 11/07/15 04:43

11/03/15 16:16 11/07/15 04:43

11/03/15 16:16 11/07/15 04:43

11/03/15 16:16 11/07/15 04:43

11/03/15 16:16 11/07/15 04:43

11/03/15 16:16 11/07/15 04:43

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Client Sample ID: SWMU4-SB03-SS-100

Date Collected: 11/02/15 14:40 Date Received: 11/03/15 09:00 Lab Sample ID: 480-90365-6

Matrix: Solid Percent Solids: 86.5

Method: 8260C - Volatile Orga	anic Compo	unds by G	C/MS (Cont	inued)
Analyte	Result	Qualifier	RL	MDL
Vinul ablarida	ND		4.0	0.50

	Analyte	Result	Qualifier	KL	MDL	Unit	U	Prepared	Anaiyzea	DII Fac
	Vinyl chloride	ND		4.8	0.58	ug/Kg	\	11/03/15 16:16	11/07/15 04:43	1
	Xylenes, Total	ND		9.6	0.81	ug/Kg	☼	11/03/15 16:16	11/07/15 04:43	1
	Tetrahydrofuran	ND		9.6	2.8	ug/Kg	₩	11/03/15 16:16	11/07/15 04:43	1
ı										

i entatively laentifiea Compouna	Est. Result G	Juaiitier	Unit	D	RI	CAS No.	Prepared	Anaiyzea	DII Fac
Tentatively Identified Compound	None		ug/Kg	₩.			11/03/15 16:16	11/07/15 04:43	1
Surrogate	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	113		60 - 140				11/03/15 16:16	11/07/15 04:43	1

Surrogate	Minecovery Qualifier	Liiiits	гтератец	Allalyzeu	Diriac
Dibromofluoromethane (Surr)	113	60 - 140	11/03/15 16:16	11/07/15 04:43	1
1,2-Dichloroethane-d4 (Surr)	114	64 - 126	11/03/15 16:16	11/07/15 04:43	1
Toluene-d8 (Surr)	105	71 - 125	11/03/15 16:16	11/07/15 04:43	1
4-Bromofluorobenzene (Surr)	107	72 - 126	11/03/15 16:16	11/07/15 04:43	1

Analyte	Result Qualifier	ŘL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND	190	29	ug/Kg	<u></u>	11/04/15 07:52	11/10/15 19:46	1
bis (2-chloroisopropyl) ether	ND	190	39	ug/Kg	₩	11/04/15 07:52	11/10/15 19:46	1
2,4,5-Trichlorophenol	ND	190	52	ug/Kg	₩	11/04/15 07:52	11/10/15 19:46	1
2,4,6-Trichlorophenol	ND	190	39	ug/Kg	₽	11/04/15 07:52	11/10/15 19:46	1
2,4-Dichlorophenol	ND	190	21	- 3 3	☼	11/04/15 07:52	11/10/15 19:46	1
2,4-Dimethylphenol	ND	190	47	ug/Kg	₩	11/04/15 07:52	11/10/15 19:46	1
2,4-Dinitrophenol	ND	1900	890	0 0	₽	11/04/15 07:52	11/10/15 19:46	1
2,4-Dinitrotoluene	ND	190	40	ug/Kg	₩	11/04/15 07:52	11/10/15 19:46	1
2,6-Dinitrotoluene	ND	190	23	ug/Kg	₩	11/04/15 07:52	11/10/15 19:46	1
2-Chloronaphthalene	ND	190	32	ug/Kg	₽	11/04/15 07:52	11/10/15 19:46	1
2-Chlorophenol	ND	190	35	ug/Kg	≎	11/04/15 07:52	11/10/15 19:46	1
2-Methylnaphthalene	ND	190	39	ug/Kg	☼	11/04/15 07:52	11/10/15 19:46	1
2-Methylphenol	ND	190	23	ug/Kg	₽	11/04/15 07:52	11/10/15 19:46	1
2-Nitroaniline	ND	380	29	ug/Kg	≎	11/04/15 07:52	11/10/15 19:46	1
2-Nitrophenol	ND	190	55	ug/Kg	☼	11/04/15 07:52	11/10/15 19:46	1
3,3'-Dichlorobenzidine	ND	380	230	ug/Kg	₽	11/04/15 07:52	11/10/15 19:46	1
3-Nitroaniline	ND	380	54	ug/Kg	≎	11/04/15 07:52	11/10/15 19:46	1
4,6-Dinitro-2-methylphenol	ND	380	190	ug/Kg	☼	11/04/15 07:52	11/10/15 19:46	1
4-Bromophenyl phenyl ether	ND	190	27	ug/Kg	φ.	11/04/15 07:52	11/10/15 19:46	1
4-Chloro-3-methylphenol	ND	190	48	ug/Kg	₽	11/04/15 07:52	11/10/15 19:46	1
4-Chloroaniline	ND	190	48	ug/Kg	☼	11/04/15 07:52	11/10/15 19:46	1
4-Chlorophenyl phenyl ether	ND	190	24	ug/Kg	\$	11/04/15 07:52	11/10/15 19:46	1
4-Methylphenol	ND	380	23	ug/Kg	☼	11/04/15 07:52	11/10/15 19:46	1
4-Nitroaniline	ND	380	100	ug/Kg	☼	11/04/15 07:52	11/10/15 19:46	1
4-Nitrophenol	ND	380	140	ug/Kg	₽	11/04/15 07:52	11/10/15 19:46	1
Acenaphthene	ND	190	29	ug/Kg	₽	11/04/15 07:52	11/10/15 19:46	1
Acenaphthylene	ND	190	25	ug/Kg	☼	11/04/15 07:52	11/10/15 19:46	1
Acetophenone	ND	190	26	ug/Kg	₽	11/04/15 07:52	11/10/15 19:46	1
Anthracene	ND	190	48	ug/Kg	☼	11/04/15 07:52	11/10/15 19:46	1
Atrazine	ND	190	67	ug/Kg	≎	11/04/15 07:52	11/10/15 19:46	1
Benzaldehyde	ND	190	150	ug/Kg	.	11/04/15 07:52	11/10/15 19:46	1
Benzo(a)anthracene	ND	190	19	ug/Kg	≎	11/04/15 07:52	11/10/15 19:46	1
Benzo(a)pyrene	ND	190	29	ug/Kg	≎	11/04/15 07:52	11/10/15 19:46	1
Benzo(b)fluoranthene	ND	190	31			11/04/15 07:52	11/10/15 19:46	1
Benzo(g,h,i)perylene	ND	190	21	ug/Kg	₽	11/04/15 07:52	11/10/15 19:46	1

TestAmerica Buffalo

3

4

6

8

10

11

13

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 11/02/15 14:40

Client Sample ID: SWMU4-SB03-SS-100

TestAmerica Job ID: 480-90365-1

Lab Sample ID: 480-90365-6

Matrix: Solid Percent Solids: 86.5

Date Received: 11/03/15 09:00

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo(k)fluoranthene	ND		190	25	ug/Kg	<u> </u>	11/04/15 07:52	11/10/15 19:46	1
Bis(2-chloroethoxy)methane	ND		190	41	ug/Kg		11/04/15 07:52	11/10/15 19:46	1
Bis(2-chloroethyl)ether	ND		190	25	ug/Kg	≎	11/04/15 07:52	11/10/15 19:46	1
Bis(2-ethylhexyl) phthalate	ND		190	66	ug/Kg	≎	11/04/15 07:52	11/10/15 19:46	1
Butyl benzyl phthalate	ND		190	32	ug/Kg	₽	11/04/15 07:52	11/10/15 19:46	1
Caprolactam	ND		190	58	ug/Kg	≎	11/04/15 07:52	11/10/15 19:46	1
Carbazole	ND		190	23	ug/Kg	≎	11/04/15 07:52	11/10/15 19:46	1
Chrysene	ND		190	43	ug/Kg	₽	11/04/15 07:52	11/10/15 19:46	1
Di-n-butyl phthalate	ND		190	33	ug/Kg	≎	11/04/15 07:52	11/10/15 19:46	1
Di-n-octyl phthalate	ND		190	23	ug/Kg	₩	11/04/15 07:52	11/10/15 19:46	1
Dibenz(a,h)anthracene	ND		190	34	ug/Kg	₩.	11/04/15 07:52	11/10/15 19:46	1
Dibenzofuran	ND		190	23	ug/Kg	₩	11/04/15 07:52	11/10/15 19:46	1
Diethyl phthalate	ND		190	25	ug/Kg	₩	11/04/15 07:52	11/10/15 19:46	1
Dimethyl phthalate	ND		190	23	ug/Kg		11/04/15 07:52	11/10/15 19:46	1
Fluoranthene	ND		190	21	ug/Kg	₩	11/04/15 07:52	11/10/15 19:46	1
Fluorene	ND		190	23	ug/Kg	₩	11/04/15 07:52	11/10/15 19:46	1
Hexachlorobenzene	ND		190	26	ug/Kg	ф.	11/04/15 07:52	11/10/15 19:46	1
Hexachlorobutadiene	ND		190	29	ug/Kg	₩	11/04/15 07:52	11/10/15 19:46	1
Hexachlorocyclopentadiene	ND		190	26	ug/Kg	₩	11/04/15 07:52	11/10/15 19:46	1
Hexachloroethane	ND		190	25	ug/Kg		11/04/15 07:52	11/10/15 19:46	1
Indeno(1,2,3-cd)pyrene	ND		190	24	ug/Kg	₩	11/04/15 07:52	11/10/15 19:46	1
Isophorone	ND		190	41	ug/Kg	₩	11/04/15 07:52	11/10/15 19:46	1
N-Nitrosodi-n-propylamine	ND		190	33	ug/Kg		11/04/15 07:52	11/10/15 19:46	1
N-Nitrosodiphenylamine	ND		190	160	ug/Kg	₩	11/04/15 07:52	11/10/15 19:46	1
Naphthalene	ND		190	25	ug/Kg	≎	11/04/15 07:52	11/10/15 19:46	1
Nitrobenzene	ND		190	22	ug/Kg		11/04/15 07:52	11/10/15 19:46	1
Pentachlorophenol	ND		380	190	ug/Kg	☼	11/04/15 07:52	11/10/15 19:46	1
Phenanthrene	ND		190	29	ug/Kg	☼	11/04/15 07:52	11/10/15 19:46	1
Phenol	ND		190	30	ug/Kg		11/04/15 07:52	11/10/15 19:46	1
Pyrene	ND		190	23	ug/Kg	₩	11/04/15 07:52	11/10/15 19:46	1
Dimethylformamide	ND		750	86	ug/Kg	χ÷	11/04/15 07:52	11/10/15 19:46	1

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	950	TJ	ug/Kg	- -	1.87		11/04/15 07:52	11/10/15 19:46	1
Unknown	510	ΤJ	ug/Kg	₩	2.05		11/04/15 07:52	11/10/15 19:46	1
Unknown	1300	ΤJ	ug/Kg	₩	2.16		11/04/15 07:52	11/10/15 19:46	1
Ethane, 1,1,2-trichloro-	260	TJN	ug/Kg	₩	3.76	79-00-5	11/04/15 07:52	11/10/15 19:46	1
Unknown	1000	TJ	ug/Kg	₩	4.65		11/04/15 07:52	11/10/15 19:46	1
Unknown Benzene Derivative	680	ΤJ	ug/Kg	₩	5.13		11/04/15 07:52	11/10/15 19:46	1
Ethane, 1,1,2,2-tetrachloro-	520	TJN	ug/Kg	₩	5.69	79-34-5	11/04/15 07:52	11/10/15 19:46	1

Surrogate	%Recovery Q	ualifier Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	91	39 - 146	11/04/15 07:52	11/10/15 19:46	1
2-Fluorobiphenyl	84	37 - 120	11/04/15 07:52	11/10/15 19:46	1
2-Fluorophenol	71	18 - 120	11/04/15 07:52	11/10/15 19:46	1
Nitrobenzene-d5	74	34 - 132	11/04/15 07:52	11/10/15 19:46	1
p-Terphenyl-d14	101	65 - 153	11/04/15 07:52	11/10/15 19:46	1
Phenol-d5	75	11 - 120	11/04/15 07:52	11/10/15 19:46	1

TestAmerica Buffalo

2

4

6

8

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Received: 11/03/15 09:00

TestAmerica Job ID: 480-90365-1

Client Sample ID: SWMU4-SB03-SS-100

Date Collected: 11/02/15 14:40

Lab Sample ID: 480-90365-6 Matrix: Salid

Matrix: 30	ona
Percent Solids: 8	36.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		1.1	0.17	mg/Kg	<u>₩</u>		11/06/15 13:21	1
Isobutyl alcohol	ND		1.1	0.28	mg/Kg	₩		11/06/15 13:21	1
Methanol	0.66	JB	1.1	0.33	mg/Kg	₩		11/06/15 13:21	1
n-Butanol	ND		1.1	0.26	mg/Kg	₩		11/06/15 13:21	1
Propanol	ND		1.1	0.17	mg/Kg	☆		11/06/15 13:21	1
2-Butanol	ND		1.1	0.18	mg/Kg	₩		11/06/15 13:21	1
Isopropyl alcohol	ND		1.1	0.27	mg/Kg	₽		11/06/15 13:21	1
t-Butyl alcohol	ND		1.1	0.29	mg/Kg	₽		11/06/15 13:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone Method: 8082A - Polychl						_		11/06/15 13:21	,
Method: 8082A - Polychl	lorinated Bipheny	/Is (PCBs) Qualifier		omatogr MDL		D	Prepared	11/06/15 13:21 Analyzed	,
Method: 8082A - Polychl Analyte	lorinated Bipheny		by Gas Chro	MDL		D	Prepared 11/04/15 07:49	Analyzed	,
Method: 8082A - Polychl Analyte PCB-1016	orinated Bipheny Result		by Gas Chro	MDL 43	Unit			Analyzed 11/04/15 18:10	,
Method: 8082A - Polychi Analyte PCB-1016 PCB-1221	lorinated Bipheny Result ND		by Gas Chro	43 43	Unit ug/Kg		11/04/15 07:49 11/04/15 07:49	Analyzed 11/04/15 18:10	,
	lorinated Bipheny Result ND ND		by Gas Chro RL 220 220	MDL 43 43 43	Unit ug/Kg ug/Kg	— ☆	11/04/15 07:49 11/04/15 07:49 11/04/15 07:49	Analyzed 11/04/15 18:10 11/04/15 18:10	,
Method: 8082A - Polychi Analyte PCB-1016 PCB-1221 PCB-1232	lorinated Bipheny Result ND ND ND		by Gas Chro RL 220 220 220 220	43 43 43 43	ug/Kg ug/Kg ug/Kg ug/Kg	— * * * *	11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49	Analyzed 11/04/15 18:10 11/04/15 18:10 11/04/15 18:10	,
Method: 8082A - Polychl Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242	lorinated Bipheny Result ND ND ND ND		by Gas Chro RL 220 220 220 220 220	MDL 43 43 43 43 43	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	**************************************	11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49	Analyzed 11/04/15 18:10 11/04/15 18:10 11/04/15 18:10 11/04/15 18:10	,
Method: 8082A - Polychl Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254	lorinated Bipheny Result ND ND ND ND ND ND ND ND		by Gas Chro RL 220 220 220 220 220 220 220	43 43 43 43 43 43	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$	11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49	Analyzed 11/04/15 18:10 11/04/15 18:10 11/04/15 18:10 11/04/15 18:10	,
Method: 8082A - Polychl Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260	Result ND	Qualifier	by Gas Chro RL 220 220 220 220 220 220 220 220	43 43 43 43 43 43	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	* * * * * *	11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49	Analyzed 11/04/15 18:10 11/04/15 18:10 11/04/15 18:10 11/04/15 18:10 11/04/15 18:10	Dil Face 1 1 1 1 1 1 1 1 1 1 1 Dil Face 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Method: 8082A - Polychl Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248	Result ND	Qualifier	by Gas Chro RL 220 220 220 220 220 220 220 220	43 43 43 43 43 43	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	* * * * * *	11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49 11/04/15 07:49	Analyzed 11/04/15 18:10 11/04/15 18:10 11/04/15 18:10 11/04/15 18:10 11/04/15 18:10 11/04/15 18:10	Dil Fac

Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.7		2.3	0.45	mg/Kg	\	11/04/15 12:07	11/06/15 01:53	1
Barium	38.3		0.57	0.12	mg/Kg	₩	11/04/15 12:07	11/06/15 01:53	1
Cadmium	0.17 J		0.23	0.034	mg/Kg	₩	11/04/15 12:07	11/06/15 01:53	1
Chromium	11.6		0.57	0.23	mg/Kg		11/04/15 12:07	11/06/15 01:53	1
Lead	6.8		1.1	0.27	mg/Kg	₩	11/04/15 12:07	11/06/15 01:53	1
Selenium	ND		4.5	0.45	mg/Kg	₩	11/04/15 12:07	11/06/15 01:53	1
Silver	ND		0.68	0.23	mg/Kg		11/04/15 12:07	11/06/15 01:53	1

Method: 7471B - Mercury (CVAA	A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.013	J	0.022	0.0091	mg/Kg		11/05/15 14:05	11/05/15 17:02	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Lab Sample ID: 480-90365-7

Matrix: Solid
Percent Solids: 91.9

Client Sample ID: SWMU4-SB04-SS-101 Date Collected: 11/02/15 15:00

Date Received: 11/03/15 09:00

Method: 8260C - Volatile Organ Analyte		unds by GC/I Qualifier	IVIS RL	MDL	Unit	D	Prepared	Analyzod	Dil Fac
	ND	Qualifier	4.8 —			— =		Analyzed 11/07/15 05:10	
1,1,1-Trichloroethane	ND ND				ug/Kg	☆			1
1,1,2,2-Tetrachloroethane			4.8		ug/Kg			11/07/15 05:10	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.8		ug/Kg			11/07/15 05:10	1
1,1,2-Trichloroethane	ND		4.8		ug/Kg	**		11/07/15 05:10	1
1,1-Dichloroethane	ND		4.8		ug/Kg	φ.		11/07/15 05:10	1
1,1-Dichloroethene	ND		4.8		ug/Kg	<u>-</u>		11/07/15 05:10	1
1,2,3-Trichlorobenzene	ND		4.8		ug/Kg	- Ω -		11/07/15 05:10	1
1,2,4-Trichlorobenzene	ND		4.8		ug/Kg	\		11/07/15 05:10	1
1,2-Dibromo-3-Chloropropane	ND		4.8		ug/Kg			11/07/15 05:10	1
1,2-Dichlorobenzene	ND		4.8		ug/Kg	₽	11/03/15 16:16		1
1,2-Dichloroethane	ND		4.8		ug/Kg	₩	11/03/15 16:16	11/07/15 05:10	1
1,2-Dichloropropane	ND		4.8	2.4	ug/Kg	₩	11/03/15 16:16	11/07/15 05:10	1
1,3-Dichlorobenzene	ND		4.8	0.25	ug/Kg	₽	11/03/15 16:16	11/07/15 05:10	1
1,4-Dichlorobenzene	ND		4.8	0.67	ug/Kg	₩	11/03/15 16:16	11/07/15 05:10	•
1,4-Dioxane	ND		96	21	ug/Kg	₩	11/03/15 16:16	11/07/15 05:10	1
2-Hexanone	ND		24	2.4	ug/Kg	₩	11/03/15 16:16	11/07/15 05:10	1
Acetone	6.1	JB	24	4.0	ug/Kg	₩	11/03/15 16:16	11/07/15 05:10	•
Benzene	ND		4.8	0.23	ug/Kg	≎	11/03/15 16:16	11/07/15 05:10	1
Bromoform	ND		4.8	2.4	ug/Kg	☆	11/03/15 16:16	11/07/15 05:10	1
Bromomethane	ND		4.8	0.43	ug/Kg	☆	11/03/15 16:16	11/07/15 05:10	•
Carbon disulfide	ND		4.8	2.4	ug/Kg	₩	11/03/15 16:16	11/07/15 05:10	•
Carbon tetrachloride	ND		4.8	0.46	ug/Kg		11/03/15 16:16	11/07/15 05:10	
Chlorobenzene	ND		4.8	0.63	ug/Kg	≎	11/03/15 16:16	11/07/15 05:10	
Bromochloromethane	ND		4.8	0.35	ug/Kg	≎	11/03/15 16:16	11/07/15 05:10	1
Dibromochloromethane	ND		4.8	0.61	ug/Kg	☆	11/03/15 16:16	11/07/15 05:10	1
Chloroethane	ND		4.8	1.1	ug/Kg	≎	11/03/15 16:16	11/07/15 05:10	1
Chloroform	ND		4.8		ug/Kg	☆	11/03/15 16:16	11/07/15 05:10	1
Chloromethane	ND		4.8		ug/Kg		11/03/15 16:16	11/07/15 05:10	1
cis-1,2-Dichloroethene	ND		4.8		ug/Kg	₩	11/03/15 16:16	11/07/15 05:10	1
cis-1,3-Dichloropropene	ND		4.8		ug/Kg	≎	11/03/15 16:16	11/07/15 05:10	1
Cyclohexane	ND		4.8		ug/Kg	 \$		11/07/15 05:10	1
Bromodichloromethane	ND		4.8		ug/Kg	⇔		11/07/15 05:10	1
Dichlorodifluoromethane	ND		4.8		ug/Kg	₩		11/07/15 05:10	1
Ethylbenzene	ND		4.8		ug/Kg			11/07/15 05:10	
1,2-Dibromoethane (EDB)	ND		4.8		ug/Kg	₽		11/07/15 05:10	
Isopropylbenzene	ND		4.8		ug/Kg		11/03/15 16:16		
Methyl acetate	ND		4.8		ug/Kg		11/03/15 16:16		
2-Butanone (MEK)	ND				ug/Kg ug/Kg	₽	11/03/15 16:16		
			24						•
4-Methyl-2-pentanone (MIBK)	ND		24		ug/Kg	 Φ.	11/03/15 16:16		1
Methyl tert-butyl ether	ND		4.8		ug/Kg			11/07/15 05:10	1
Methylcyclohexane	ND		4.8		ug/Kg	ф ж		11/07/15 05:10	,
Methylene Chloride	ND		4.8		ug/Kg			11/07/15 05:10	
Styrene	ND		4.8		ug/Kg	₽		11/07/15 05:10	
Tetrachloroethene	ND		4.8		ug/Kg	φ.		11/07/15 05:10	•
Toluene	ND		4.8		ug/Kg	<u>.</u> .		11/07/15 05:10	
trans-1,2-Dichloroethene	ND		4.8		ug/Kg	‡		11/07/15 05:10	•
trans-1,3-Dichloropropene	ND		4.8		ug/Kg	₽		11/07/15 05:10	1
Trichloroethene	ND		4.8		ug/Kg			11/07/15 05:10	1
Trichlorofluoromethane	ND		4.8	0.45	ug/Kg	₩	11/03/15 16:16	11/07/15 05:10	1

TestAmerica Buffalo

2

6

8

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Client Sample ID: SWMU4-SB04-SS-101

Date Collected: 11/02/15 15:00 Date Received: 11/03/15 09:00 Lab Sample ID: 480-90365-7

Matrix: Solid Percent Solids: 91.9

Method: 8260C - Volatile Org Analyte	•	Qualifier	` RL		MDL	Unit		Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.8		0.58	ug/Kg	<u></u>	11/03/15 16:16	11/07/15 05:10	1
Xylenes, Total	ND		9.6		0.80	ug/Kg	¢	11/03/15 16:16	11/07/15 05:10	1
Tetrahydrofuran	ND		9.6		2.8	ug/Kg	¢	11/03/15 16:16	11/07/15 05:10	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	₩ -				11/03/15 16:16	11/07/15 05:10	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	115		60 - 140					11/03/15 16:16	11/07/15 05:10	1
1,2-Dichloroethane-d4 (Surr)	116		64 - 126					11/03/15 16:16	11/07/15 05:10	1
Toluene-d8 (Surr)	108		71 - 125					11/03/15 16:16	11/07/15 05:10	1
4-Bromofluorobenzene (Surr)	103		72 - 126					11/03/15 16:16	11/07/15 05:10	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		180	27	ug/Kg	₽	11/04/15 07:52	11/10/15 20:12	1
bis (2-chloroisopropyl) ether	ND		180	37	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
2,4,5-Trichlorophenol	ND		180	50	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
2,4,6-Trichlorophenol	ND		180	37	ug/Kg	₽	11/04/15 07:52	11/10/15 20:12	1
2,4-Dichlorophenol	ND		180	20	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
2,4-Dimethylphenol	ND		180	44	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
2,4-Dinitrophenol	ND		1800	850	ug/Kg	₽	11/04/15 07:52	11/10/15 20:12	1
2,4-Dinitrotoluene	ND		180	38	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
2,6-Dinitrotoluene	ND		180	22	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
2-Chloronaphthalene	ND		180	30	ug/Kg	₽	11/04/15 07:52	11/10/15 20:12	1
2-Chlorophenol	ND		180	34	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
2-Methylnaphthalene	ND		180	37	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
2-Methylphenol	ND		180	22	ug/Kg	₽	11/04/15 07:52	11/10/15 20:12	1
2-Nitroaniline	ND		360	27	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
2-Nitrophenol	ND		180	52	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
3,3'-Dichlorobenzidine	ND		360	220	ug/Kg		11/04/15 07:52	11/10/15 20:12	1
3-Nitroaniline	ND		360	51	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
4,6-Dinitro-2-methylphenol	ND		360	180	ug/Kg	₩	11/04/15 07:52	11/10/15 20:12	1
4-Bromophenyl phenyl ether	ND		180	26	ug/Kg	φ.	11/04/15 07:52	11/10/15 20:12	1
4-Chloro-3-methylphenol	ND		180	46	ug/Kg	₩	11/04/15 07:52	11/10/15 20:12	1
4-Chloroaniline	ND		180	46	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
4-Chlorophenyl phenyl ether	ND		180	23	ug/Kg	₽	11/04/15 07:52	11/10/15 20:12	1
4-Methylphenol	ND		360	22	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
4-Nitroaniline	ND		360	97	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
4-Nitrophenol	ND		360	130	ug/Kg	₽	11/04/15 07:52	11/10/15 20:12	1
Acenaphthene	ND		180	27	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
Acenaphthylene	ND		180	24	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
Acetophenone	ND		180	25	ug/Kg	₽	11/04/15 07:52	11/10/15 20:12	1
Anthracene	ND		180	46	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
Atrazine	ND		180	64	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
Benzaldehyde	ND		180	150	ug/Kg	φ.	11/04/15 07:52	11/10/15 20:12	1
Benzo(a)anthracene	ND		180	18	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
Benzo(a)pyrene	ND		180	27	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
Benzo(b)fluoranthene	ND		180	29	ug/Kg		11/04/15 07:52	11/10/15 20:12	1
Benzo(g,h,i)perylene	ND		180	20	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1

TestAmerica Buffalo

3

4

6

8

9

11

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 11/02/15 15:00

Date Received: 11/03/15 09:00

Client Sample ID: SWMU4-SB04-SS-101

TestAmerica Job ID: 480-90365-1

Lab Sample ID: 480-90365-7

Matrix: Solid
Percent Solids: 91.9

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	ŔĹ	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo(k)fluoranthene	ND		180	24	ug/Kg	<u> </u>	11/04/15 07:52	11/10/15 20:12	1
Bis(2-chloroethoxy)methane	ND		180	39	ug/Kg	.	11/04/15 07:52	11/10/15 20:12	1
Bis(2-chloroethyl)ether	ND		180	24	ug/Kg	≎	11/04/15 07:52	11/10/15 20:12	1
Bis(2-ethylhexyl) phthalate	ND		180	63	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
Butyl benzyl phthalate	ND		180	30	ug/Kg	₩	11/04/15 07:52	11/10/15 20:12	1
Caprolactam	ND		180	55	ug/Kg	☆	11/04/15 07:52	11/10/15 20:12	1
Carbazole	ND		180	22	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
Chrysene	ND		180	41	ug/Kg	☆	11/04/15 07:52	11/10/15 20:12	1
Di-n-butyl phthalate	ND		180	31	ug/Kg	☆	11/04/15 07:52	11/10/15 20:12	1
Di-n-octyl phthalate	ND		180	22	ug/Kg	₩	11/04/15 07:52	11/10/15 20:12	1
Dibenz(a,h)anthracene	ND		180	33	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
Dibenzofuran	ND		180	22	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
Diethyl phthalate	ND		180	24	ug/Kg	₩	11/04/15 07:52	11/10/15 20:12	1
Dimethyl phthalate	ND		180	22	ug/Kg		11/04/15 07:52	11/10/15 20:12	1
Fluoranthene	ND		180	20	ug/Kg	₩	11/04/15 07:52	11/10/15 20:12	1
Fluorene	ND		180	22	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
Hexachlorobenzene	ND		180	25	ug/Kg	☆	11/04/15 07:52	11/10/15 20:12	1
Hexachlorobutadiene	ND		180	27	ug/Kg	₩	11/04/15 07:52	11/10/15 20:12	1
Hexachlorocyclopentadiene	ND		180	25	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
Hexachloroethane	ND		180	24	ug/Kg	\$	11/04/15 07:52	11/10/15 20:12	1
Indeno(1,2,3-cd)pyrene	ND		180	23	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
Isophorone	ND		180	39	ug/Kg	☼	11/04/15 07:52	11/10/15 20:12	1
N-Nitrosodi-n-propylamine	ND		180	31	ug/Kg	\$	11/04/15 07:52	11/10/15 20:12	1
N-Nitrosodiphenylamine	ND		180	150	ug/Kg	₩	11/04/15 07:52	11/10/15 20:12	1
Naphthalene	ND		180	24	ug/Kg	≎	11/04/15 07:52	11/10/15 20:12	1
Nitrobenzene	ND		180	21	ug/Kg		11/04/15 07:52	11/10/15 20:12	1
Pentachlorophenol	ND		360	180	ug/Kg	₩	11/04/15 07:52	11/10/15 20:12	1
Phenanthrene	ND		180	27	ug/Kg	≎	11/04/15 07:52	11/10/15 20:12	1
Phenol	ND		180	28	ug/Kg		11/04/15 07:52	11/10/15 20:12	1
Pyrene	ND		180	22	ug/Kg	₩	11/04/15 07:52	11/10/15 20:12	1
Dimethylformamide	ND		720	81	ug/Kg	☆	11/04/15 07:52	11/10/15 20:12	1

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	2200	TJ	ug/Kg	_ ☆ _	1.86		11/04/15 07:52	11/10/15 20:12	1
Unknown	770	ΤJ	ug/Kg	₩	2.05		11/04/15 07:52	11/10/15 20:12	1
Unknown	1100	ΤJ	ug/Kg	₩	2.15		11/04/15 07:52	11/10/15 20:12	1
Ethane, 1,1,2-trichloro-	290	TJN	ug/Kg	₩	3.75	79-00-5	11/04/15 07:52	11/10/15 20:12	1
Unknown	1200	ΤJ	ug/Kg	₩	4.65		11/04/15 07:52	11/10/15 20:12	1
Unknown Benzene Derivative	490	ΤJ	ug/Kg	₩	5.13		11/04/15 07:52	11/10/15 20:12	1
Ethane, 1,1,2,2-tetrachloro-	570	TJN	ug/Kg	\$	5.69	79-34-5	11/04/15 07:52	11/10/15 20:12	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	92	39 - 146	11/04/15 07:52	11/10/15 20:12	1
2-Fluorobiphenyl	85	37 - 120	11/04/15 07:52	11/10/15 20:12	1
2-Fluorophenol	72	18 - 120	11/04/15 07:52	11/10/15 20:12	1
Nitrobenzene-d5	70	34 - 132	11/04/15 07:52	11/10/15 20:12	1
p-Terphenyl-d14	101	65 - 153	11/04/15 07:52	11/10/15 20:12	1
Phenol-d5	75	11 - 120	11/04/15 07:52	11/10/15 20:12	1

TestAmerica Buffalo

_

4

6

8

10

12

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) - Soluble

Result Qualifier

ND

ND

ND

ND

ND

ND

ND

ND

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Lab Sample ID: 480-90365-7

Client Sample ID: SWMU4-SB04-SS-101

Date Collected: 11/02/15 15:00 Date Received: 11/03/15 09:00

Analyte

Ethanol

Methanol

n-Butanol

Propanol

2-Butanol

Isobutyl alcohol

Isopropyl alcohol

t-Butyl alcohol

Matrix: Solid
Percent Solids: 91.9

	1 Groome Gome	0.01.0	
Prepared	Analyzed	Dil Fac	5
	11/06/15 13:29	1	
	11/06/15 13:29	1	6
	11/06/15 13:29	1	
	11/06/15 13:29	1	
	11/06/15 13:29	1	
	11/06/15 13:29	1	C

11/06/15 13:29

11/06/15 13:29

 Surrogate
 %Recovery 2-Hexanone
 Qualifier 91
 Limits 30 - 137
 Prepared 11/06/15 13:29
 Analyzed 51 17/06/15 13:29
 Dil Factoria

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

MDL Unit

0.15 mg/Kg

0.25 mg/Kg

0.30 mg/Kg

0.23 mg/Kg

0.15 mg/Kg

0.16 mg/Kg

0.24 mg/Kg

0.27 mg/Kg

D

₩

₩

₩

₩

₩

₩

Method: 8082A - Po	lychlorinated Biphenyls (PCBs)	by Gas Chro	matogr	aphy				
Analyte	Result Qualifier	RL	_	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	250	49	ug/Kg	\	11/04/15 07:49	11/04/15 19:00	
PCB-1221	ND	250	49	ug/Kg	₩	11/04/15 07:49	11/04/15 19:00	•
PCB-1232	ND	250	49	ug/Kg	₩	11/04/15 07:49	11/04/15 19:00	•
PCB-1242	ND	250	49	ug/Kg	₩	11/04/15 07:49	11/04/15 19:00	
PCB-1248	ND	250	49	ug/Kg	₩	11/04/15 07:49	11/04/15 19:00	•
PCB-1254	ND	250	120	ug/Kg	₩	11/04/15 07:49	11/04/15 19:00	
PCB-1260	ND	250	120	ug/Kg		11/04/15 07:49	11/04/15 19:00	
Surrogate	%Recovery Qualifier	l imite				Prenared	Analyzed	Dil Fa

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	90		60 - 154	11/04/15 07:49	11/04/15 19:00	1
DCB Decachlorobiphenyl	100		65 - 174	11/04/15 07:49	11/04/15 19:00	1

Method: 6010C - Metals (ICP) Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.5	2.2	0.43	mg/Kg	<u> </u>	11/04/15 12:07	11/06/15 01:56	1
Barium	37.4	0.54	0.12	mg/Kg	☼	11/04/15 12:07	11/06/15 01:56	1
Cadmium	0.15 J	0.22	0.032	mg/Kg	☼	11/04/15 12:07	11/06/15 01:56	1
Chromium	10.5	0.54	0.22	mg/Kg	₩.	11/04/15 12:07	11/06/15 01:56	1
Lead	6.1	1.1	0.26	mg/Kg	☼	11/04/15 12:07	11/06/15 01:56	1
Selenium	ND	4.3	0.43	mg/Kg	☼	11/04/15 12:07	11/06/15 01:56	1
Silver	ND	0.65	0.22	mg/Kg	₩.	11/04/15 12:07	11/06/15 01:56	1

Method: 7471B - Mercury (CVA	A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.022	0.0089	mg/Kg		11/05/15 14:05	11/05/15 17:04	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 11/02/15 11:45

Date Received: 11/03/15 09:00

Client Sample ID: SWMU1-SB11-SS-201

TestAmerica Job ID: 480-90365-1

Lab Sample ID: 480-90365-8

Matrix: Solid Percent Solids: 89.8

Method: 8260C - Volatile Orga	nic Compou	unds by GC/	MS		
Analyte	Result	Qualifier	RL	MDL	Uni
1,1,1-Trichloroethane	ND		4.5	0.32	ug/
1 1 2 2-Tetrachloroethane	ND		4.5	0.72	ua/

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4.5	0.32	ug/Kg	<u> </u>	11/03/15 16:16	11/07/15 05:38	1
1,1,2,2-Tetrachloroethane	ND	4.5	0.72	ug/Kg	₩	11/03/15 16:16	11/07/15 05:38	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.5	1.0	ug/Kg	₩	11/03/15 16:16	11/07/15 05:38	1
1,1,2-Trichloroethane	ND	4.5	0.58	ug/Kg	≎	11/03/15 16:16	11/07/15 05:38	1
1,1-Dichloroethane	ND	4.5	0.54	ug/Kg	≎	11/03/15 16:16	11/07/15 05:38	1
1,1-Dichloroethene	ND	4.5	0.55	ug/Kg	₽	11/03/15 16:16	11/07/15 05:38	1
1,2,3-Trichlorobenzene	ND	4.5	0.47	ug/Kg	φ.	11/03/15 16:16	11/07/15 05:38	1
1,2,4-Trichlorobenzene	ND	4.5	0.27	ug/Kg	₽	11/03/15 16:16	11/07/15 05:38	1
1,2-Dibromo-3-Chloropropane	ND	4.5	2.2	ug/Kg	₽	11/03/15 16:16	11/07/15 05:38	1
1,2-Dichlorobenzene	ND	4.5	0.35	ug/Kg	₽	11/03/15 16:16	11/07/15 05:38	1
1,2-Dichloroethane	ND	4.5	0.22	ug/Kg	₩	11/03/15 16:16	11/07/15 05:38	1
1,2-Dichloropropane	ND	4.5	2.2	ug/Kg	₩	11/03/15 16:16	11/07/15 05:38	1
1,3-Dichlorobenzene	ND	4.5	0.23	ug/Kg		11/03/15 16:16	11/07/15 05:38	1
1,4-Dichlorobenzene	ND	4.5	0.62	ug/Kg	₩	11/03/15 16:16	11/07/15 05:38	1
1,4-Dioxane	ND	89	19	ug/Kg	☼	11/03/15 16:16	11/07/15 05:38	1
2-Hexanone	ND	22	2.2	ug/Kg		11/03/15 16:16	11/07/15 05:38	1
Acetone	ND	22	3.8	ug/Kg	₩	11/03/15 16:16	11/07/15 05:38	1
Benzene	ND	4.5	0.22	ug/Kg	≎	11/03/15 16:16	11/07/15 05:38	1
Bromoform	ND	4.5	2.2	ug/Kg		11/03/15 16:16	11/07/15 05:38	1
Bromomethane	ND	4.5	0.40	ug/Kg	₩	11/03/15 16:16	11/07/15 05:38	1
Carbon disulfide	ND	4.5	2.2	ug/Kg	≎	11/03/15 16:16	11/07/15 05:38	1
Carbon tetrachloride	ND	4.5	0.43	ug/Kg		11/03/15 16:16	11/07/15 05:38	1
Chlorobenzene	ND	4.5	0.59	ug/Kg	≎	11/03/15 16:16	11/07/15 05:38	1
Bromochloromethane	ND	4.5	0.32	ug/Kg	≎	11/03/15 16:16	11/07/15 05:38	1
Dibromochloromethane	ND	4.5		ug/Kg	φ.	11/03/15 16:16	11/07/15 05:38	1
Chloroethane	ND	4.5	1.0	ug/Kg	≎	11/03/15 16:16	11/07/15 05:38	1
Chloroform	ND	4.5	0.28	ug/Kg	≎	11/03/15 16:16	11/07/15 05:38	1
Chloromethane	ND	4.5	0.27	ug/Kg	₽	11/03/15 16:16	11/07/15 05:38	1
cis-1,2-Dichloroethene	ND	4.5		ug/Kg	₽	11/03/15 16:16	11/07/15 05:38	1
cis-1,3-Dichloropropene	ND	4.5	0.64	ug/Kg	≎	11/03/15 16:16	11/07/15 05:38	1
Cyclohexane	ND	4.5	0.62	ug/Kg		11/03/15 16:16	11/07/15 05:38	1
Bromodichloromethane	ND	4.5		ug/Kg	₽	11/03/15 16:16	11/07/15 05:38	1
Dichlorodifluoromethane	ND	4.5		ug/Kg	₩	11/03/15 16:16	11/07/15 05:38	1
Ethylbenzene	ND	4.5	0.31	ug/Kg		11/03/15 16:16	11/07/15 05:38	1
1,2-Dibromoethane (EDB)	ND	4.5		ug/Kg	₩	11/03/15 16:16	11/07/15 05:38	1
Isopropylbenzene	ND	4.5		ug/Kg	₩	11/03/15 16:16		1
Methyl acetate	ND	4.5		ug/Kg		11/03/15 16:16	11/07/15 05:38	1
2-Butanone (MEK)	ND	22		ug/Kg	₩	11/03/15 16:16		1
4-Methyl-2-pentanone (MIBK)	ND	22		ug/Kg	₩	11/03/15 16:16		1
Methyl tert-butyl ether	ND	4.5		ug/Kg		11/03/15 16:16		1
Methylcyclohexane	ND	4.5		ug/Kg	₽		11/07/15 05:38	1
Methylene Chloride	ND	4.5		ug/Kg	≎	11/03/15 16:16		1
Styrene	ND	4.5		ug/Kg			11/07/15 05:38	1
Tetrachloroethene	ND	4.5		ug/Kg	☆		11/07/15 05:38	1
Toluene	ND	4.5		ug/Kg	☼	11/03/15 16:16		1
trans-1,2-Dichloroethene	ND	4.5		ug/Kg			11/07/15 05:38	· · · · · · · · · · · · · · · · · · ·
trans-1,3-Dichloropropene	ND	4.5		ug/Kg	☆	11/03/15 16:16		1
Trichloroethene	ND	4.5		ug/Kg	☼	11/03/15 16:16		1
Trichlorofluoromethane	ND	4.5		ug/Kg			11/07/15 05:38	· · · · · · · · · · · · · · · · · · ·

TestAmerica Buffalo

Page 37 of 85

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Client Sample ID: SWMU1-SB11-SS-201

Date Collected: 11/02/15 11:45 Date Received: 11/03/15 09:00 Lab Sample ID: 480-90365-8

Matrix: Solid Percent Solids: 89.8

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Coi	ntinue	d)					
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		4.5		0.54	ug/Kg	\	11/03/15 16:16	11/07/15 05:38	1
Xylenes, Total	ND		8.9		0.75	ug/Kg	₽	11/03/15 16:16	11/07/15 05:38	1
Tetrahydrofuran	ND		8.9		2.6	ug/Kg	φ	11/03/15 16:16	11/07/15 05:38	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\tilde{\pi}				11/03/15 16:16	11/07/15 05:38	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	117		60 - 140					11/03/15 16:16	11/07/15 05:38	1
1,2-Dichloroethane-d4 (Surr)	119		64 - 126					11/03/15 16:16	11/07/15 05:38	1
Toluene-d8 (Surr)	109		71 - 125					11/03/15 16:16	11/07/15 05:38	1
4-Bromofluorobenzene (Surr)	109		72 - 126					11/03/15 16:16	11/07/15 05:38	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		190	28	ug/Kg	₩	11/04/15 07:52	11/16/15 16:53	1
bis (2-chloroisopropyl) ether	ND		190	38	ug/Kg	₩	11/04/15 07:52	11/16/15 16:53	1
2,4,5-Trichlorophenol	ND		190	51	ug/Kg	₩	11/04/15 07:52	11/16/15 16:53	1
2,4,6-Trichlorophenol	ND		190	38	ug/Kg	₩	11/04/15 07:52	11/16/15 16:53	1
2,4-Dichlorophenol	ND		190	20	ug/Kg	₩	11/04/15 07:52	11/16/15 16:53	1
2,4-Dimethylphenol	ND		190	46	ug/Kg	₩	11/04/15 07:52	11/16/15 16:53	1
2,4-Dinitrophenol	ND		1800	870	ug/Kg	φ.	11/04/15 07:52	11/16/15 16:53	1
2,4-Dinitrotoluene	ND		190	39	ug/Kg	₩	11/04/15 07:52	11/16/15 16:53	1
2,6-Dinitrotoluene	ND		190	22	ug/Kg	₩	11/04/15 07:52	11/16/15 16:53	1
2-Chloronaphthalene	ND		190	31	ug/Kg	₽	11/04/15 07:52	11/16/15 16:53	1
2-Chlorophenol	ND		190	34	ug/Kg	☼	11/04/15 07:52	11/16/15 16:53	1
2-Methylnaphthalene	ND		190	38	ug/Kg	₩	11/04/15 07:52	11/16/15 16:53	1
2-Methylphenol	ND		190	22	ug/Kg	₽	11/04/15 07:52	11/16/15 16:53	1
2-Nitroaniline	ND		370	28	ug/Kg	☼	11/04/15 07:52	11/16/15 16:53	1
2-Nitrophenol	ND		190	53	ug/Kg	₩	11/04/15 07:52	11/16/15 16:53	1
3,3'-Dichlorobenzidine	ND		370	220	ug/Kg	₽	11/04/15 07:52	11/16/15 16:53	1
3-Nitroaniline	ND		370	52	ug/Kg	☼	11/04/15 07:52	11/16/15 16:53	1
4,6-Dinitro-2-methylphenol	ND		370	190	ug/Kg	☼	11/04/15 07:52	11/16/15 16:53	1
4-Bromophenyl phenyl ether	ND		190	27	ug/Kg		11/04/15 07:52	11/16/15 16:53	1
4-Chloro-3-methylphenol	ND		190	47	ug/Kg	☼	11/04/15 07:52	11/16/15 16:53	1
4-Chloroaniline	ND		190	47	ug/Kg	₩	11/04/15 07:52	11/16/15 16:53	1
4-Chlorophenyl phenyl ether	ND		190	23	ug/Kg	φ.	11/04/15 07:52	11/16/15 16:53	1
4-Methylphenol	ND		370	22	ug/Kg	₩	11/04/15 07:52	11/16/15 16:53	1
4-Nitroaniline	ND		370	99	ug/Kg	☼	11/04/15 07:52	11/16/15 16:53	1
4-Nitrophenol	ND		370	130	ug/Kg		11/04/15 07:52	11/16/15 16:53	1
Acenaphthene	ND		190	28	ug/Kg	₩	11/04/15 07:52	11/16/15 16:53	1
Acenaphthylene	ND		190	24	ug/Kg	☼	11/04/15 07:52	11/16/15 16:53	1
Acetophenone	ND		190	26	ug/Kg	Ф	11/04/15 07:52	11/16/15 16:53	1
Anthracene	ND		190	47	ug/Kg	₩	11/04/15 07:52	11/16/15 16:53	1
Atrazine	ND		190	66	ug/Kg	☼	11/04/15 07:52	11/16/15 16:53	1
Benzaldehyde	ND		190	150	ug/Kg		11/04/15 07:52	11/16/15 16:53	1
Benzo(a)anthracene	ND		190	19	ug/Kg	☼	11/04/15 07:52	11/16/15 16:53	1
Benzo(a)pyrene	ND		190	28	ug/Kg	₩	11/04/15 07:52	11/16/15 16:53	1
Benzo(b)fluoranthene	ND		190		ug/Kg		11/04/15 07:52	11/16/15 16:53	1
Benzo(g,h,i)perylene	ND		190		ug/Kg	₩	11/04/15 07:52	11/16/15 16:53	1

TestAmerica Buffalo

Page 38 of 85

2

4

6

8

4.0

11

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 11/02/15 11:45

Date Received: 11/03/15 09:00

2-Fluorophenol

Nitrobenzene-d5

p-Terphenyl-d14

Phenol-d5

Client Sample ID: SWMU1-SB11-SS-201

TestAmerica Job ID: 480-90365-1

Lab Sample ID: 480-90365-8

Matrix: Solid

Percent Solids: 89.8

Method: 8270D - Semivolatile Analyte		Qualifier	•	RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzo(k)fluoranthene	ND			190	24	ug/Kg		11/04/15 07:52	11/16/15 16:53	1
Bis(2-chloroethoxy)methane	ND			190		ug/Kg		11/04/15 07:52	11/16/15 16:53	1
Bis(2-chloroethyl)ether	ND			190	24	ug/Kg	₩	11/04/15 07:52	11/16/15 16:53	1
Bis(2-ethylhexyl) phthalate	ND			190	65	ug/Kg	₩	11/04/15 07:52	11/16/15 16:53	1
Butyl benzyl phthalate	ND			190		ug/Kg		11/04/15 07:52	11/16/15 16:53	1
Caprolactam	ND			190	57	ug/Kg	₩	11/04/15 07:52	11/16/15 16:53	1
Carbazole	ND			190	22	ug/Kg	₩	11/04/15 07:52	11/16/15 16:53	1
Chrysene	ND			190		ug/Kg	ф.	11/04/15 07:52	11/16/15 16:53	1
Di-n-butyl phthalate	ND			190		ug/Kg	₩	11/04/15 07:52	11/16/15 16:53	1
Di-n-octyl phthalate	ND			190		ug/Kg	₩	11/04/15 07:52	11/16/15 16:53	1
Dibenz(a,h)anthracene	ND			190		ug/Kg		11/04/15 07:52	11/16/15 16:53	1
Dibenzofuran	ND			190		ug/Kg	₩	11/04/15 07:52	11/16/15 16:53	1
Diethyl phthalate	ND			190		ug/Kg	₩	11/04/15 07:52	11/16/15 16:53	1
Dimethyl phthalate	ND			190		ug/Kg		11/04/15 07:52	11/16/15 16:53	1
Fluoranthene	ND			190	20	ug/Kg	₽	11/04/15 07:52	11/16/15 16:53	1
Fluorene	ND			190	22	ug/Kg	₽	11/04/15 07:52	11/16/15 16:53	1
Hexachlorobenzene	ND			190		ug/Kg			11/16/15 16:53	1
Hexachlorobutadiene	ND			190		ug/Kg	₽		11/16/15 16:53	1
Hexachlorocyclopentadiene	ND			190		ug/Kg	₽		11/16/15 16:53	1
Hexachloroethane	ND			190		ug/Kg	ф.	11/04/15 07:52	11/16/15 16:53	1
Indeno(1,2,3-cd)pyrene	ND			190		ug/Kg	₩		11/16/15 16:53	1
Isophorone	ND			190		ug/Kg	₽		11/16/15 16:53	1
N-Nitrosodi-n-propylamine	ND			190		ug/Kg	 ф		11/16/15 16:53	1
N-Nitrosodiphenylamine	ND			190		ug/Kg	₽		11/16/15 16:53	1
Naphthalene	ND			190		ug/Kg	₩		11/16/15 16:53	1
Nitrobenzene	ND			190		ug/Kg	ф.		11/16/15 16:53	1
Pentachlorophenol	ND			370		ug/Kg	₽		11/16/15 16:53	1
Phenanthrene	ND			190		ug/Kg	₩		11/16/15 16:53	1
Phenol	ND			190		ug/Kg	·		11/16/15 16:53	1
Pyrene	ND			190		ug/Kg	₩		11/16/15 16:53	1
Dimethylformamide	ND			730		ug/Kg	₽		11/16/15 16:53	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit		D I	R <i>T</i>	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	2400	TJ	ug/Kg		<u>☆</u> 1.	84		11/04/15 07:52	11/16/15 16:53	1
Unknown	2000	TJ	ug/Kg		Ф 2 .	04		11/04/15 07:52	11/16/15 16:53	1
Unknown	2300	TJ	ug/Kg		⇔ 2.	13		11/04/15 07:52	11/16/15 16:53	1
Unknown	1100	ΤJ	ug/Kg		♥ 4.	64		11/04/15 07:52	11/16/15 16:53	1
Benzene, 1,2-dimethyl-	260	TJN	ug/Kg		⇔ 5.	11	95-47-6	11/04/15 07:52	11/16/15 16:53	1
Unknown	230	TJ	ug/Kg		♥ 7.	59		11/04/15 07:52	11/16/15 16:53	1
Surrogate	%Recovery	Qualifier	Limi	ts				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	89		39 - 1	146				11/04/15 07:52	11/16/15 16:53	1
2-Fluorobiphenyl	89		37 - 1	120				11/04/15 07:52	11/16/15 16:53	1

TestAmerica Buffalo

11/04/15 07:52 11/16/15 16:53

11/04/15 07:52 11/16/15 16:53

11/04/15 07:52 11/16/15 16:53

11/04/15 07:52 11/16/15 16:53

18 - 120

34 - 132

65 - 153

11 - 120

86

86

102

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Received: 11/03/15 09:00

PCB-1248

PCB-1254

TestAmerica Job ID: 480-90365-1

2

Client Sample ID: SWMU1-SB11-SS-201 Date Collected: 11/02/15 11:45 Lab Sample ID: 480-90365-8

☼ 11/04/15 07:49 11/04/15 19:17

☼ 11/04/15 07:49 11/04/15 19:17

Matrix: Solid

Percent Solids: 89.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		0.99	0.15	mg/Kg	<u> </u>		11/06/15 13:37	1
Isobutyl alcohol	ND		0.99	0.25	mg/Kg	₩		11/06/15 13:37	1
Methanol	ND		0.99	0.30	mg/Kg	₩		11/06/15 13:37	1
n-Butanol	ND		0.99	0.23	mg/Kg	₩		11/06/15 13:37	1
Propanol	ND		0.99	0.15	mg/Kg	₩		11/06/15 13:37	1
2-Butanol	ND		0.99	0.16	mg/Kg	₩		11/06/15 13:37	1
Isopropyl alcohol	ND		0.99	0.24	mg/Kg	₩		11/06/15 13:37	1
t-Butyl alcohol	ND		0.99	0.26	mg/Kg	₽		11/06/15 13:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	88		30 - 137					11/06/15 13:37	1
Method: 8082A - Poly	chlorinated Bipheny	/Is (PCBs)	by Gas Chro	matogr	aphy				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		240	48	ug/Kg	<u>₩</u>	11/04/15 07:49	11/04/15 19:17	1
PCB-1221	ND		240	48	ug/Kg	₩	11/04/15 07:49	11/04/15 19:17	1
				40		*	11/01/15 07:10	44/04/45 40:47	
PCB-1232	ND		240	48	ug/Kg	14.	11/04/15 07:49	11/04/15 19:17	1

PCB-1260	ND	240	110 ug/Kg	☆ 11/04/15 07:49	11/04/15 19:17	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	93	60 - 154		11/04/15 07:49	11/04/15 19:17	1
DCB Decachlorobinhenyl	97	65 - 174		11/04/15 07:49	11/04/15 19:17	1

240

240

ND

ND

48 ug/Kg

110 ug/Kg

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.6		2.1	0.43	mg/Kg	<u> </u>	11/04/15 12:07	11/06/15 02:00	1
Barium	38.3		0.53	0.12	mg/Kg	₩	11/04/15 12:07	11/06/15 02:00	1
Cadmium	0.15	J	0.21	0.032	mg/Kg	₩	11/04/15 12:07	11/06/15 02:00	1
Chromium	10.5		0.53	0.21	mg/Kg	₩.	11/04/15 12:07	11/06/15 02:00	1
Lead	6.0		1.1	0.26	mg/Kg	₩	11/04/15 12:07	11/06/15 02:00	1
Selenium	ND		4.3	0.43	mg/Kg	₩	11/04/15 12:07	11/06/15 02:00	1
Silver	ND		0.64	0.21	mg/Kg	ф.	11/04/15 12:07	11/06/15 02:00	1

Method: 7471B - Mercury (CVA	A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.010	J	0.021	0.0085	mg/Kg	₩	11/05/15 14:05	11/05/15 17:07	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Lab Sample ID: 480-90365-9

Matrix: Water

Client Sample ID: EB-05 Date Collected: 11/02/15 16:00

Method: 8260C - Volatile Orga
Analyte
1,1,1-Trichloroethane
1,1,2,2-Tetrachloroethane
1,1,2-Trichloro-1,2,2-trifluoroethane
1,1,2-Trichloroethane
1,1-Dichloroethane
1,1-Dichloroethene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
1,2-Dibromo-3-Chloropropane
1,2-Dibromoethane (EDB)
1,2-Dichlorobenzene
1,2-Dichloroethane
1,2-Dichloropropane
1,3-Dichlorobenzene
1,4-Dichlorobenzene
1,4-Dioxane
2-Butanone (MEK)
2-Hexanone
4-Methyl-2-pentanone (MIBK)
Acetone
Benzene
Bromochloromethane
Bromodichloromethane
Bromoform
Bromomethane

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			11/12/15 19:42	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			11/12/15 19:42	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			11/12/15 19:42	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			11/12/15 19:42	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			11/12/15 19:42	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			11/12/15 19:42	
1,2,3-Trichlorobenzene	ND	1.0	0.41	ug/L			11/12/15 19:42	
1,2,4-Trichlorobenzene	ND	1.0		ug/L			11/12/15 19:42	
1,2-Dibromo-3-Chloropropane	ND	1.0		ug/L			11/12/15 19:42	
1,2-Dibromoethane (EDB)	ND	1.0		ug/L			11/12/15 19:42	
1,2-Dichlorobenzene	ND	1.0		ug/L			11/12/15 19:42	
1,2-Dichloroethane	ND	1.0		ug/L			11/12/15 19:42	
1,2-Dichloropropane	ND	1.0		ug/L			11/12/15 19:42	
1,3-Dichlorobenzene	ND	1.0		ug/L			11/12/15 19:42	
1,4-Dichlorobenzene	ND	1.0		ug/L			11/12/15 19:42	
1,4-Dioxane	ND	40		ug/L			11/12/15 19:42	
2-Butanone (MEK)	ND	10		ug/L			11/12/15 19:42	
2-Hexanone	ND	5.0		ug/L			11/12/15 19:42	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			11/12/15 19:42	
Acetone	ND *	10		ug/L			11/12/15 19:42	
Benzene	ND	1.0		ug/L			11/12/15 19:42	
3romochloromethane	ND	1.0		ug/L			11/12/15 19:42	
Bromodichloromethane	ND	1.0		ug/L			11/12/15 19:42	
Bromoform	ND	1.0		ug/L			11/12/15 19:42	
Bromomethane	ND	1.0		ug/L			11/12/15 19:42	
Carbon disulfide	ND	1.0		ug/L			11/12/15 19:42	
Carbon tetrachloride	ND	1.0		ug/L			11/12/15 19:42	
Chlorobenzene	ND	1.0		ug/L			11/12/15 19:42	
Chloroethane	ND	1.0		ug/L			11/12/15 19:42	
Chloroform	ND	1.0		ug/L			11/12/15 19:42	
Chloromethane	ND	1.0		ug/L			11/12/15 19:42	
cis-1,2-Dichloroethene	ND ND	1.0		ug/L ug/L			11/12/15 19:42	
-	ND ND			-				
cis-1,3-Dichloropropene		1.0		ug/L			11/12/15 19:42 11/12/15 19:42	
Cyclohexane	ND ND	1.0		ug/L				
Dibromochloromethane	ND	1.0		ug/L			11/12/15 19:42	
Dichlorodifluoromethane	ND	1.0		ug/L			11/12/15 19:42	
Ethylbenzene 	ND	1.0		ug/L			11/12/15 19:42	
Isopropylbenzene	ND	1.0		ug/L			11/12/15 19:42	
Methyl acetate	ND	2.5		ug/L			11/12/15 19:42	
Methyl tert-butyl ether	ND	1.0		ug/L			11/12/15 19:42	
Methylcyclohexane	ND	1.0		ug/L			11/12/15 19:42	
Methylene Chloride	ND	1.0		ug/L			11/12/15 19:42	
Styrene	ND	1.0		ug/L			11/12/15 19:42	
Tetrachloroethene	ND	1.0		ug/L			11/12/15 19:42	
Tetrahydrofuran	ND	5.0		ug/L			11/12/15 19:42	
Toluene	ND	1.0		ug/L			11/12/15 19:42	
trans-1,2-Dichloroethene	ND	1.0		ug/L			11/12/15 19:42	
trans-1,3-Dichloropropene	ND	1.0		ug/L			11/12/15 19:42	
Trichloroethene	ND	1.0	0.46	ug/L			11/12/15 19:42	

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: EB-05

Date Collected: 11/02/15 16:00

Date Received: 11/03/15 09:00

TestAmerica Job ID: 480-90365-1

Lab Sample ID: 480-90365-9

Matrix: Water

Method: 8260C - Volatile Org Analyte	•	Qualifier	` RL		MDL	Unit		Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		1.0		0.88	ug/L			11/12/15 19:42	1
Vinyl chloride	ND		1.0		0.90	ug/L			11/12/15 19:42	1
Xylenes, Total	ND		2.0		0.66	ug/L			11/12/15 19:42	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L						11/12/15 19:42	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		66 - 137						11/12/15 19:42	1
4-Bromofluorobenzene (Surr)	103		73 - 120						11/12/15 19:42	1
Toluene-d8 (Surr)	99		71 - 126						11/12/15 19:42	1
, ,										

Analyte	Result Quali	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND	5.0	0.48	ug/L		11/04/15 14:50	11/10/15 14:29	1
2,4,6-Trichlorophenol	ND	5.0	0.61	ug/L		11/04/15 14:50	11/10/15 14:29	1
2,4-Dichlorophenol	ND	5.0	0.51	ug/L		11/04/15 14:50	11/10/15 14:29	1
2,4-Dimethylphenol	ND	5.0	0.50	ug/L		11/04/15 14:50	11/10/15 14:29	1
2,4-Dinitrophenol	ND	10	2.2	ug/L		11/04/15 14:50	11/10/15 14:29	1
2,4-Dinitrotoluene	ND	5.0	0.45	ug/L		11/04/15 14:50	11/10/15 14:29	1
2,6-Dinitrotoluene	ND	5.0	0.40	ug/L		11/04/15 14:50	11/10/15 14:29	1
2-Chloronaphthalene	ND	5.0	0.46	ug/L		11/04/15 14:50	11/10/15 14:29	1
2-Chlorophenol	ND	5.0	0.53	ug/L		11/04/15 14:50	11/10/15 14:29	1
2-Methylnaphthalene	ND	5.0	0.60	ug/L		11/04/15 14:50	11/10/15 14:29	1
2-Methylphenol	ND	5.0	0.40	ug/L		11/04/15 14:50	11/10/15 14:29	1
2-Nitroaniline	ND	10	0.42	ug/L		11/04/15 14:50	11/10/15 14:29	1
2-Nitrophenol	ND	5.0	0.48	ug/L		11/04/15 14:50	11/10/15 14:29	1
3,3'-Dichlorobenzidine	ND	5.0	0.40	ug/L		11/04/15 14:50	11/10/15 14:29	1
3-Nitroaniline	ND	10	0.48	ug/L		11/04/15 14:50	11/10/15 14:29	1
4,6-Dinitro-2-methylphenol	ND	10	2.2	ug/L		11/04/15 14:50	11/10/15 14:29	1
4-Bromophenyl phenyl ether	ND	5.0	0.45	ug/L		11/04/15 14:50	11/10/15 14:29	1
4-Chloro-3-methylphenol	ND	5.0	0.45	ug/L		11/04/15 14:50	11/10/15 14:29	1
4-Chloroaniline	ND	5.0	0.59	ug/L		11/04/15 14:50	11/10/15 14:29	1
4-Chlorophenyl phenyl ether	ND	5.0	0.35	ug/L		11/04/15 14:50	11/10/15 14:29	1
4-Methylphenol	ND	10	0.36	ug/L		11/04/15 14:50	11/10/15 14:29	1
4-Nitroaniline	ND	10	0.25	ug/L		11/04/15 14:50	11/10/15 14:29	1
4-Nitrophenol	ND	10	1.5	ug/L		11/04/15 14:50	11/10/15 14:29	1
Acenaphthene	ND	5.0	0.41	ug/L		11/04/15 14:50	11/10/15 14:29	1
Acenaphthylene	ND	5.0	0.38	ug/L		11/04/15 14:50	11/10/15 14:29	1
Acetophenone	ND	5.0	0.54	ug/L		11/04/15 14:50	11/10/15 14:29	1
Anthracene	ND	5.0	0.28	ug/L		11/04/15 14:50	11/10/15 14:29	1
Atrazine	ND	5.0		ug/L		11/04/15 14:50	11/10/15 14:29	1
Benzaldehyde	ND	5.0	0.27	ug/L		11/04/15 14:50	11/10/15 14:29	1
Benzo(a)anthracene	ND	5.0		ug/L		11/04/15 14:50	11/10/15 14:29	1
Benzo(a)pyrene	ND	5.0	0.47	ug/L		11/04/15 14:50	11/10/15 14:29	1
Benzo(b)fluoranthene	ND	5.0		ug/L		11/04/15 14:50	11/10/15 14:29	1
Benzo(g,h,i)perylene	ND	5.0		ug/L		11/04/15 14:50	11/10/15 14:29	1
Benzo(k)fluoranthene	ND	5.0		ug/L			11/10/15 14:29	1
Biphenyl	ND	5.0		ug/L		11/04/15 14:50	11/10/15 14:29	1

TestAmerica Buffalo

Page 42 of 85

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Lab Sample ID: 480-90365-9

Matrix: Water

Client Sample ID: EB-05 Date Collected: 11/02/15 16:00

Date Received: 11/03/15 09:00

Surrogate

Phenol-d5

2,4,6-Tribromophenol

2-Fluorobiphenyl

2-Fluorophenol

Nitrobenzene-d5

Analyte	Result	Qualifier		RL	MDL		D	Prepared	Analyzed	Dil Fa
bis (2-chloroisopropyl) ether	ND			5.0	0.52	ug/L		11/04/15 14:50	11/10/15 14:29	
Bis(2-chloroethoxy)methane	ND			5.0	0.35	ug/L		11/04/15 14:50	11/10/15 14:29	
Bis(2-chloroethyl)ether	ND			5.0	0.40	ug/L		11/04/15 14:50	11/10/15 14:29	
Bis(2-ethylhexyl) phthalate	ND			5.0	1.8	ug/L		11/04/15 14:50	11/10/15 14:29	
Butyl benzyl phthalate	ND			5.0	0.42	ug/L		11/04/15 14:50	11/10/15 14:29	
Caprolactam	ND			5.0	2.2	ug/L		11/04/15 14:50	11/10/15 14:29	
Carbazole	ND			5.0	0.30	ug/L		11/04/15 14:50	11/10/15 14:29	
Chrysene	ND			5.0	0.33	ug/L		11/04/15 14:50	11/10/15 14:29	
Dibenz(a,h)anthracene	ND			5.0	0.42	ug/L		11/04/15 14:50	11/10/15 14:29	
Dibenzofuran	ND			10	0.51	ug/L		11/04/15 14:50	11/10/15 14:29	
Diethyl phthalate	ND			5.0	0.22	ug/L		11/04/15 14:50	11/10/15 14:29	
Dimethyl phthalate	ND			5.0	0.36	ug/L		11/04/15 14:50	11/10/15 14:29	
Di-n-butyl phthalate	ND			5.0	0.31	ug/L		11/04/15 14:50	11/10/15 14:29	
Di-n-octyl phthalate	ND			5.0	0.47	ug/L		11/04/15 14:50	11/10/15 14:29	
Fluoranthene	ND			5.0	0.40	ug/L		11/04/15 14:50	11/10/15 14:29	
Fluorene	ND			5.0	0.36	ug/L		11/04/15 14:50	11/10/15 14:29	
Hexachlorobenzene	ND			5.0	0.51	ug/L		11/04/15 14:50	11/10/15 14:29	
Hexachlorobutadiene	ND			5.0	0.68	ug/L		11/04/15 14:50	11/10/15 14:29	
Hexachlorocyclopentadiene	ND			5.0	0.59	ug/L		11/04/15 14:50	11/10/15 14:29	
Hexachloroethane	ND			5.0	0.59	ug/L		11/04/15 14:50	11/10/15 14:29	
Indeno(1,2,3-cd)pyrene	ND			5.0	0.47	ug/L		11/04/15 14:50	11/10/15 14:29	
Isophorone	ND			5.0	0.43	ug/L		11/04/15 14:50	11/10/15 14:29	
Naphthalene	ND			5.0	0.76	ug/L		11/04/15 14:50	11/10/15 14:29	
Nitrobenzene	ND			5.0	0.29	ug/L		11/04/15 14:50	11/10/15 14:29	
N-Nitrosodi-n-propylamine	ND			5.0	0.54	ug/L		11/04/15 14:50	11/10/15 14:29	
N-Nitrosodiphenylamine	ND			5.0	0.51	ug/L		11/04/15 14:50	11/10/15 14:29	
Pentachlorophenol	ND			10	2.2	ug/L		11/04/15 14:50	11/10/15 14:29	
Phenanthrene	ND			5.0	0.44	ug/L		11/04/15 14:50	11/10/15 14:29	
Phenol	ND			5.0	0.39	ug/L		11/04/15 14:50	11/10/15 14:29	
Pyrene	ND			5.0	0.34	ug/L		11/04/15 14:50	11/10/15 14:29	
Dimethylformamide	ND			20	1.7	ug/L		11/04/15 14:50	11/10/15 14:29	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	ı	RT	CAS No.	Prepared	Analyzed	Dil Fa
Cyclohexane		TJN	ug/L		3.	48	110-82-7	11/04/15 14:50	11/10/15 14:29	
Unknown	120	ΤJ	ug/L		3.	65		11/04/15 14:50	11/10/15 14:29	
Decane	4.1	TJN	ug/L		6.	66	124-18-5	11/04/15 14:50	11/10/15 14:29	
Unknown	14	ΤJ	ug/L		11.	70		11/04/15 14:50	11/10/15 14:29	
Unknown	4.7	TJ	ug/L		12.	32		11/04/15 14:50	11/10/15 14:29	
Unknown	7.8	TJ	ug/L		13.	55		11/04/15 14:50	11/10/15 14:29	
Unknown	3.3	ΤJ	ug/L		14.	01		11/04/15 14:50	11/10/15 14:29	
Unknown	3.3	TJ	ug/L		14.	92		11/04/15 14:50	11/10/15 14:29	
Unknown	5.9	ΤJ	ug/L		14.	96		11/04/15 14:50	11/10/15 14:29	
Unknown	3.1	TJ	ug/L		16.			11/04/15 14:50	11/10/15 14:29	

TestAmerica Buffalo

11/18/2015

Analyzed

Prepared

<u>11/04/15 14:50</u> <u>11/10/15 14:29</u>

11/04/15 14:50 11/10/15 14:29

11/04/15 14:50 11/10/15 14:29

11/04/15 14:50 11/10/15 14:29

11/04/15 14:50 11/10/15 14:29

Limits

52 - 132

48 - 120

20 - 120

46 - 120

16 - 120

%Recovery Qualifier

127

104

48

102

29

Dil Fac

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: EB-05

Date Collected: 11/02/15 16:00

Date Received: 11/03/15 09:00

Mercury

TestAmerica Job ID: 480-90365-1

Lab Sample ID: 480-90365-9 Matrix: Water

3

Δ

6

9

12

14 15

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl-d14	94		67 - 150				11/04/15 14:50	11/10/15 14:29	1
- Method: 8015D - Nonhalogenate	d Organi	c Compou	ınds - Direct	Injection	ı (GC)				
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Ethanol	ND		1.0	0.14	mg/L			11/10/15 12:21	1
Isobutyl alcohol	ND		1.0	0.37	mg/L			11/10/15 12:21	1
Methanol	ND		1.0	0.41	mg/L			11/10/15 12:21	1
n-Butanol	ND		1.0	0.40	mg/L			11/10/15 12:21	1
Propanol	ND		1.0	0.16	mg/L			11/10/15 12:21	1
2-Butanol	ND		1.0	0.17	mg/L			11/10/15 12:21	1
Isopropyl alcohol	ND		1.0	0.12	mg/L			11/10/15 12:21	1
t-Butyl alcohol	ND		1.0	0.10	mg/L			11/10/15 12:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	103		62 - 129					11/10/15 12:21	1
_ Method: 8082A - Polychlorinated	l Rinhen	ıls (PCRs)	hy Gas Chr	omatogr	anhv				
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.50	0.18	ug/L		11/04/15 15:36	11/05/15 10:36	1
PCB-1221	ND		0.50	0.18	ug/L		11/04/15 15:36	11/05/15 10:36	1
PCB-1232	ND		0.50	0.18	ug/L		11/04/15 15:36	11/05/15 10:36	1
PCB-1242	ND		0.50	0.18	ug/L		11/04/15 15:36	11/05/15 10:36	1
PCB-1248	ND		0.50	0.18	ug/L		11/04/15 15:36	11/05/15 10:36	1
PCB-1254	ND		0.50	0.25	ug/L		11/04/15 15:36	11/05/15 10:36	1
PCB-1260	ND		0.50	0.25	ug/L		11/04/15 15:36	11/05/15 10:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	80		24 - 137				11/04/15 15:36	11/05/15 10:36	1
DCB Decachlorobiphenyl	59		19 - 125				11/04/15 15:36	11/05/15 10:36	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		11/04/15 08:15	11/04/15 18:46	1
Barium	ND		0.0020	0.00070	mg/L		11/04/15 08:15	11/04/15 18:46	1
Cadmium	ND		0.0020	0.00050	mg/L		11/04/15 08:15	11/04/15 18:46	1
Chromium	ND		0.0040	0.0010	mg/L		11/04/15 08:15	11/04/15 18:46	1
Lead	ND		0.010	0.0030	-		11/04/15 08:15	11/04/15 18:46	1
Selenium	ND		0.025	0.0087	mg/L		11/04/15 08:15	11/04/15 18:46	1
Silver	ND		0.0060	0.0017	mg/L		11/04/15 08:15	11/04/15 18:46	1
_ Method: 7470A - Mercury (CVAA	A								
INICUIOU. 141 UM - INICICUI Y (CVAA	.,								

<u>11/06/15 09:45</u> <u>11/06/15 13:08</u>

0.00020

0.00012 mg/L

ND

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Lab Sample ID: 480-90365-10

Matrix: Water

Client Sample ID: TB-05
Date Collected: 11/02/15 00:00

Date Received: 11/03/15 09:00

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0		ug/L			11/12/15 20:08	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			11/12/15 20:08	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			11/12/15 20:08	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			11/12/15 20:08	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			11/12/15 20:08	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			11/12/15 20:08	1
1,2,3-Trichlorobenzene	ND	1.0	0.41	ug/L			11/12/15 20:08	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			11/12/15 20:08	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			11/12/15 20:08	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			11/12/15 20:08	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			11/12/15 20:08	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			11/12/15 20:08	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			11/12/15 20:08	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			11/12/15 20:08	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			11/12/15 20:08	1
1,4-Dioxane	ND	40	9.3	ug/L			11/12/15 20:08	1
2-Butanone (MEK)	ND	10		ug/L			11/12/15 20:08	1
2-Hexanone	ND	5.0		ug/L			11/12/15 20:08	1
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			11/12/15 20:08	1
Acetone	ND *	10		ug/L			11/12/15 20:08	1
Benzene	ND	1.0		ug/L			11/12/15 20:08	1
Bromochloromethane	ND	1.0		ug/L			11/12/15 20:08	1
Bromodichloromethane	ND	1.0		ug/L			11/12/15 20:08	1
Bromoform	ND	1.0		ug/L			11/12/15 20:08	1
Bromomethane	ND	1.0		ug/L			11/12/15 20:08	1
Carbon disulfide	ND	1.0		ug/L			11/12/15 20:08	1
Carbon tetrachloride	ND	1.0		ug/L			11/12/15 20:08	1
Chlorobenzene	ND	1.0		ug/L			11/12/15 20:08	
Chloroethane	ND	1.0		ug/L			11/12/15 20:08	1
Chloroform	ND	1.0		ug/L			11/12/15 20:08	1
Chloromethane	ND	1.0		ug/L			11/12/15 20:08	
cis-1,2-Dichloroethene	ND	1.0		ug/L			11/12/15 20:08	1
cis-1,3-Dichloropropene	ND	1.0		ug/L			11/12/15 20:08	1
Cyclohexane	ND	1.0		ug/L			11/12/15 20:08	
Dibromochloromethane	ND	1.0		ug/L			11/12/15 20:08	1
Dichlorodifluoromethane	ND	1.0		ug/L			11/12/15 20:08	1
Ethylbenzene	ND	1.0		ug/L			11/12/15 20:08	
Isopropylbenzene	ND	1.0		ug/L ug/L			11/12/15 20:08	1
	ND ND			-			11/12/15 20:08	1
Methyl text but other		2.5		ug/L				
Methyl tert-butyl ether	ND	1.0		ug/L			11/12/15 20:08	1
Methylogo Chlorida	ND	1.0		ug/L			11/12/15 20:08	1
Methylene Chloride	ND	1.0		ug/L			11/12/15 20:08	1
Styrene	ND	1.0		ug/L			11/12/15 20:08	1
Tetrachloroethene	ND	1.0		ug/L			11/12/15 20:08	1
Tetrahydrofuran	ND	5.0		ug/L			11/12/15 20:08	
Toluene	ND	1.0		ug/L			11/12/15 20:08	1
trans-1,2-Dichloroethene	ND	1.0		ug/L			11/12/15 20:08	1
trans-1,3-Dichloropropene	ND	1.0		ug/L			11/12/15 20:08	1
Trichloroethene	ND	1.0	0.46	ug/L			11/12/15 20:08	1

TestAmerica Buffalo

Page 45 of 85

G

3

6

9

11

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: TB-05

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Date Collected: 11/02/15 00:00

TestAmerica Job ID: 480-90365-1

Lab Sample ID: 480-90365-10

11/12/15 20:08

11/12/15 20:08

11/12/15 20:08

11/12/15 20:08

Matrix: Water

Date Received: 11/03/15 09:00 Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

98

104

98 98

Analyte	Result	Qualifier	RI	_	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		1.0	<u> </u>	0.88	ug/L			11/12/15 20:08	1
Vinyl chloride	ND		1.0)	0.90	ug/L			11/12/15 20:08	1
Xylenes, Total	ND		2.0)	0.66	ug/L			11/12/15 20:08	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	,	R <i>T</i>	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L						11/12/15 20:08	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac

66 - 137

73 - 120

71 - 126

60 - 140

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surro	ogate Recovery	/ (Acceptance Lin
		DBFM	12DCE	TOL	BFB	
ab Sample ID	Client Sample ID	(60-140)	(64-126)	(71-125)	(72-126)	
80-90365-1	SWMU4-SURFACE-SS-01	114	113	110	108	
0-90365-2	SWMU1-SB11-SS-104	109	108	104	101	
0-90365-3	SWMU1-SB12-SS-105	113	115	106	108	
80-90365-4	SWMU1-SB13-SS-106	119	117	116	106	
30-90365-5	SWMU1-SB14-SS-107	114	112	111	98	
0-90365-6	SWMU4-SB03-SS-100	113	114	105	107	
0-90365-7	SWMU4-SB04-SS-101	115	116	108	103	
0-90365-8	SWMU1-SB11-SS-201	117	119	109	109	
S 480-272870/1-A	Lab Control Sample	113	112	113	112	
SD 480-272870/2-A	Lab Control Sample Dup	112	112	109	108	
IB 480-272870/3-A	Method Blank	107	110	105	105	

Surrogate Legend

DBFM = Dibromofluoromethane (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

_		Percent Surro					
		12DCE	BFB	TOL	DBFM		
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)	(60-140)		
480-90365-9	EB-05	99	103	99	101		
480-90365-10	TB-05	98	104	98	98		
LCS 480-274584/4	Lab Control Sample	89	107	99	94		
MB 480-274584/6	Method Blank	97	103	98	98		

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

_			Percent Surrogate Recovery (Acceptance Limits)							
		TBP	FBP	2FP	NBZ	TPH	PHL			
Lab Sample ID	Client Sample ID	(39-146)	(37-120)	(18-120)	(34-132)	(65-153)	(11-120)			
480-90365-1	SWMU4-SURFACE-SS-01	98	88	75	78	102	77			
480-90365-2	SWMU1-SB11-SS-104	94	91	77	80	103	79			
480-90365-3	SWMU1-SB12-SS-105	94	86	71	75	104	72			
480-90365-4	SWMU1-SB13-SS-106	95	82	75	74	101	77			
480-90365-5	SWMU1-SB14-SS-107	97	95	79	81	101	83			
480-90365-6	SWMU4-SB03-SS-100	91	84	71	74	101	75			
480-90365-7	SWMU4-SB04-SS-101	92	85	72	70	101	75			
480-90365-8	SWMU1-SB11-SS-201	89	89	86	86	102	89			
LCS 480-272953/2-A	Lab Control Sample	106	100	81	84	106	83			

TestAmerica Buffalo

Page 47 of 85

Client: Woodard & Curran, Inc.

Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco	very (Acce	otance Limits
		TBP	FBP	2FP	NBZ	TPH	PHL
Lab Sample ID	Client Sample ID	(39-146)	(37-120)	(18-120)	(34-132)	(65-153)	(11-120)
MB 480-272953/1-A	Method Blank	85	85	74	76	100	75

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

TPH = p-Terphenyl-d14

PHL = Phenol-d5

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)							
		ТВР	FBP	2FP	NBZ	PHL	TPH			
Lab Sample ID	Client Sample ID	(52-132)	(48-120)	(20-120)	(46-120)	(16-120)	(67-150)			
480-90365-9	EB-05	127	104	48	102	29	94			
LCS 480-273098/2-A	Lab Control Sample	136 X	101	69	99	51	104			
MB 480-273098/1-A	Method Blank	125	88	56	87	36	103			

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPH = p-Terphenyl-d14

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC)

Matrix: Solid Prep Type: Soluble

		2HN1	
Lab Sample ID	Client Sample ID	(30-137)	
480-90365-1	SWMU4-SURFACE-SS-01	93	
480-90365-2	SWMU1-SB11-SS-104	85	
480-90365-3	SWMU1-SB12-SS-105	86	
480-90365-4	SWMU1-SB13-SS-106	63	
480-90365-5	SWMU1-SB14-SS-107	79	
480-90365-6	SWMU4-SB03-SS-100	91	
480-90365-7	SWMU4-SB04-SS-101	91	
480-90365-8	SWMU1-SB11-SS-201	88	
LCS 480-273254/2-A	Lab Control Sample	105	
MB 480-273254/1-A	Method Blank	107	

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		2HN1	
Lab Sample ID	Client Sample ID	(62-129)	
480-90365-9	EB-05	103	
480-90365-9 MS	EB-05	105	
480-90365-9 MSD	EB-05	102	
LCS 480-274145/5	Lab Control Sample	106	
MB 480-274145/4	Method Blank	103	
Surrogate Legend			
2HN = 2-Hexanone			

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

			Percer	t Surrogate Recovery (Acceptance Limits)
		TCX2	DCB2	
Lab Sample ID	Client Sample ID	(60-154)	(65-174)	
480-90365-1	SWMU4-SURFACE-SS-01	93	98	
480-90365-1 MS	SWMU4-SURFACE-SS-01	104	113	
480-90365-1 MSD	SWMU4-SURFACE-SS-01	103	112	
480-90365-2	SWMU1-SB11-SS-104	92	98	
480-90365-3	SWMU1-SB12-SS-105	94	96	
480-90365-4	SWMU1-SB13-SS-106	92	97	
480-90365-5	SWMU1-SB14-SS-107	96	96	
480-90365-6	SWMU4-SB03-SS-100	91	95	
480-90365-7	SWMU4-SB04-SS-101	90	100	
480-90365-8	SWMU1-SB11-SS-201	93	97	
LCS 480-272951/2-A	Lab Control Sample	107	111	
MB 480-272951/1-A	Method Blank	93	97	

DCB = DCB Decachlorobiphenyl

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Water Prep Type: Total/NA

			Percent	Surrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	TCX2 (24-137)	DCB2 (19-125)	
480-90365-9	EB-05	80	59	
LCS 480-273116/2-A	Lab Control Sample	69	57	
MB 480-273116/1-A	Method Blank	80	63	

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

RL

MDL Unit

TestAmerica Job ID: 480-90365-1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS

MB MB

Result Qualifier

Lab Sample ID: MB 480-272870/3-A

Matrix: Solid

Analyte

Analysis Batch: 273681

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 272870**

Analyzed

Prepared

4.9 0.36 ug/Kg <u>11/03/15 16:16</u> <u>11/07/15 00:10</u> 1,1,1-Trichloroethane ND 1,1,2,2-Tetrachloroethane ND 11/03/15 16:16 11/07/15 00:10 4.9 0.80 ug/Kg 1,1,2-Trichloro-1,2,2-trifluoroethane ND 4.9 1.1 ug/Kg 11/03/15 16:16 11/07/15 00:10 1,1,2-Trichloroethane ND 4.9 11/03/15 16:16 11/07/15 00:10 0.64 ug/Kg 1,1-Dichloroethane ND 4.9 0.60 ug/Kg 11/03/15 16:16 11/07/15 00:10 1,1-Dichloroethene ND 4.9 0.60 ug/Kg 11/03/15 16:16 11/07/15 00:10 11/03/15 16:16 11/07/15 00:10 1,2,3-Trichlorobenzene 0.733 J 4.9 0.52 ug/Kg 1,2,4-Trichlorobenzene 0.483 J 4.9 0.30 ug/Kg 11/03/15 16:16 11/07/15 00:10 ND 4.9 1,2-Dibromo-3-Chloropropane 2.5 ug/Kg 11/03/15 16:16 11/07/15 00:10 1,2-Dichlorobenzene ND 4.9 0.38 ug/Kg 11/03/15 16:16 11/07/15 00:10 0.25 ug/Kg 1,2-Dichloroethane ND 4.9 11/03/15 16:16 11/07/15 00:10 1,2-Dichloropropane ND 4.9 2.5 ug/Kg 11/03/15 16:16 11/07/15 00:10

·,= = · · · · · · · · · · · · · · · · ·	· ·=	***				
1,3-Dichlorobenzene	ND	4.9	0.25 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
1,4-Dichlorobenzene	ND	4.9	0.69 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
1,4-Dioxane	ND	98	21 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
2-Hexanone	5.11 J	25	2.5 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
Acetone	8.01 J	25	4.1 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
Benzene	ND	4.9	0.24 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
Bromochloromethane	ND	4.9	0.36 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
Bromoform	ND	4.9	2.5 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
Bromomethane	ND	4.9	0.44 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
Carbon disulfide	ND	4.9	2.5 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
Carbon tetrachloride	ND	4.9	0.48 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
Chlorobenzene	ND	4.9	0.65 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
Chloroethane	ND	4.9	1.1 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
Chloroform	ND	4.9	0.30 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
Bromodichloromethane	ND	4.9	0.66 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
Chloromethane	ND	4.9	0.30 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
cis-1,2-Dichloroethene	ND	4.9	0.63 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
cis-1,3-Dichloropropene	ND	4.9	0.71 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
1,2-Dibromoethane (EDB)	ND	4.9	0.63 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
Cyclohexane	ND	4.9	0.69 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
Dibromochloromethane	ND	4.9	0.63 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
Dichlorodifluoromethane	ND	4.9	0.41 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
2-Butanone (MEK)	ND	25	1.8 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
Ethylbenzene	ND	4.9	0.34 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
4-Methyl-2-pentanone (MIBK)	2.06 J	25	1.6 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
Isopropylbenzene	ND	4.9	0.74 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
Methyl acetate	ND	4.9	3.0 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
Methyl tert-butyl ether	ND	4.9	0.48 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
Methylcyclohexane	ND	4.9	0.75 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
Methylene Chloride	ND	4.9	2.3 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
Styrene	ND	4.9	0.25 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
Tetrachloroethene	ND	4.9	0.66 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
Toluene	ND	4.9	0.37 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
trans-1,2-Dichloroethene	ND	4.9	0.51 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
trans-1,3-Dichloropropene	ND	4.9	2.2 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
Trichloroethene	ND	4.9	1.1 ug/Kg	11/03/15 16:16	11/07/15 00:10	1
					TestAmerica B	uffalo
					,	

Dil Fac

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-272870/3-A	Client Sample ID: Method Blank
Matrix: Solid	Prep Type: Total/NA
Analysis Batch: 273681	Prep Batch: 272870

	INID	IAID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		4.9	0.47	ug/Kg		11/03/15 16:16	11/07/15 00:10	1
Tetrahydrofuran	ND		9.8	2.9	ug/Kg		11/03/15 16:16	11/07/15 00:10	1
Vinyl chloride	ND		4.9	0.60	ug/Kg		11/03/15 16:16	11/07/15 00:10	1
Xylenes, Total	ND		9.8	0.83	ug/Kg		11/03/15 16:16	11/07/15 00:10	1

	MB	MB							
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Chlorodifluoromethane	1.60	J	ug/Kg		4.17	75-45-6	11/03/15 16:16	11/07/15 00:10	1
n-Butanol	7.28	J	ug/Kg		10.26	71-36-3	11/03/15 16:16	11/07/15 00:10	1
Naphthalene	2.09	J	ug/Kg		20.01	91-20-3	11/03/15 16:16	11/07/15 00:10	1
2-Methylnaphthalene	2.86	J	ug/Kg		21.87	91-57-6	11/03/15 16:16	11/07/15 00:10	1
Tentatively Identified Compound	None		ug/Kg				11/03/15 16:16	11/07/15 00:10	1

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110	64 - 126	11/03/15 16:16	11/07/15 00:10	1
Toluene-d8 (Surr)	105	71 - 125	11/03/15 16:16	11/07/15 00:10	1
4-Bromofluorobenzene (Surr)	105	72 - 126	11/03/15 16:16	11/07/15 00:10	1
Dibromofluoromethane (Surr)	107	60 - 140	11/03/15 16:16	11/07/15 00:10	1

Lab Sample ID: LCS 480-272870/1-A			Client Sample ID: Lab Control Sample
Matrix: Solid			Prep Type: Total/NA
Analysis Batch: 273681			Prep Batch: 272870
•	Spike	LCS LCS	%Rec.

Analysis Batch: 273681	Spike	LCS	LCS				Prep Batch: 272870 %Rec.
Analyte	Added	_	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	48.4	56.7		ug/Kg		117	77 - 121
1,1,2,2-Tetrachloroethane	48.4	54.8		ug/Kg		113	80 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	48.4	48.6		ug/Kg		101	60 - 140
ne							
1,1,2-Trichloroethane	48.4	51.8		ug/Kg		107	78 - 122
1,1-Dichloroethane	48.4	51.7		ug/Kg		107	73 - 126
1,1-Dichloroethene	48.4	48.5		ug/Kg		100	59 - 125
1,2,3-Trichlorobenzene	48.4	52.5		ug/Kg		109	60 - 120
1,2,4-Trichlorobenzene	48.4	55.0		ug/Kg		114	64 - 120
1,2-Dibromo-3-Chloropropane	48.4	59.0		ug/Kg		122	63 - 124
1,2-Dichlorobenzene	48.4	52.4		ug/Kg		108	75 ₋ 120
1,2-Dichloroethane	48.4	49.5		ug/Kg		102	77 - 122
1,2-Dichloropropane	48.4	51.4		ug/Kg		106	75 - 124
1,3-Dichlorobenzene	48.4	53.1		ug/Kg		110	74 - 120
1,4-Dichlorobenzene	48.4	52.1		ug/Kg		108	73 - 120
2-Hexanone	242	262		ug/Kg		108	59 ₋ 130
Acetone	242	255		ug/Kg		105	61 - 137
Benzene	48.4	51.3		ug/Kg		106	79 - 127
Bromochloromethane	48.4	52.0		ug/Kg		108	75 - 134
Bromoform	48.4	50.5		ug/Kg		104	68 - 126
Bromomethane	48.4	58.5		ug/Kg		121	37 - 149
Carbon disulfide	48.4	54.2		ug/Kg		112	64 - 131
Carbon tetrachloride	48.4	55.5		ug/Kg		115	75 - 135
Chlorobenzene	48.4	51.0		ug/Kg		106	76 ₋ 124
Chloroethane	48.4	53.3		ug/Kg		110	69 - 135

TestAmerica Buffalo

11/18/2015

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Matrix: Solid

Chloromethane

Cyclohexane

Ethylbenzene

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dibromochloromethane

Dichlorodifluoromethane

4-Methyl-2-pentanone (MIBK)

2-Butanone (MEK)

Isopropylbenzene

Methyl tert-butyl ether

Methylcyclohexane

Methylene Chloride

Tetrachloroethene

Trichloroethene

Tetrahydrofuran

Vinyl chloride

Xylenes, Total

Matrix: Solid

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

Dibromofluoromethane (Surr)

Lab Sample ID: LCSD 480-272870/2-A

Methyl acetate

Styrene

Toluene

1,2-Dibromoethane (EDB)

Lab Sample ID: LCS 480-272870/1-A

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: Lab Control Sample Prep Type: Total/NA

63 - 127

81 - 117

82 - 120

78 - 120

65 - 106

76 - 125

57 - 142

70 - 134

80 - 120

65 - 133

72 - 120

55 - 136

63 - 125

60 - 140

61 - 127

80 - 120

74 - 122

74 - 128

78 - 126

73 - 123

77 - 129

65 - 146

64 - 113

61 - 133

70 - 130

102

106

116

111

101

121

98

100

109

108

114

103

107

101

113

110

106

106

106

119

103

108

101

104

108

Batch: 272870)

Analysis Batch: 273681							Prep Ba	atch: 272870
-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloroform	48.4	50.6		ug/Kg		105	80 - 118	
Bromodichloromethane	48.4	54.7		ug/Kg		113	80 - 122	

49.2

51.3

55.9

53.8

48.8

58.5

47.6

243

52.7

262

55.0

248

51.6

48.8

54.7

53.1

51.0

51.2

51.4

57.4

49.7

52.0

97.7

50.5

105

ug/Kg

48.4

48.4

48 4

48.4

48.4

48.4

48.4

242

48.4

242

48.4

242

48.4

48.4

48.4

48.4

48.4

48.4

48.4

48.4

48.4

48.4

96.7

48.4

96.7

60 - 140

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	112		64 - 126
Toluene-d8 (Surr)	113		71 - 125
4-Bromofluorobenzene (Surr)	112		72 - 126

113

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 273681							Prep Ba	itch: 27	72870
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	47.5	49.7		ug/Kg		105	77 - 121	13	20
1,1,2,2-Tetrachloroethane	47.5	52.1		ug/Kg		110	80 - 120	5	20
1,1,2-Trichloro-1,2,2-trifluoroetha	47.5	41.9		ug/Kg		88	60 - 140	15	20
ne									
1,1,2-Trichloroethane	47.5	49.7		ug/Kg		105	78 - 122	4	20
1,1-Dichloroethane	47.5	46.8		ug/Kg		98	73 - 126	10	20
1,1-Dichloroethene	47.5	42.7		ug/Kg		90	59 - 125	13	20
1,2,3-Trichlorobenzene	47.5	49.7		ug/Kg		104	60 - 120	6	20
1,2,4-Trichlorobenzene	47.5	50.2		ug/Kg		106	64 - 120	9	20

Client: Woodard & Curran, Inc.

Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 480-272870/2-A **Matrix: Solid Prep Type: Total/NA** Analysis Batch: 273681 **Prep Batch: 272870**

Analysis Batch: 273681	Sniko	LCSD				Prep Batch: 272870 %Rec. RPI			
Analysta	Spike Added		Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	RPD
Analyte 1,2-Dibromo-3-Chloropropane	47.5	56.2	Qualifier	ug/Kg	D	118	63 ₋ 124	<u> </u>	Limit 20
1,2-Dichlorobenzene	47.5	49.3		ug/Kg		104	75 - 120	6	20
1,2-Dichloroethane	47.5 47.5	49.3		ug/Kg ug/Kg		99	75 - 120 77 - 122	5	20
								7	
1,2-Dichloropropane	47.5	47.8		ug/Kg		101	75 - 124	8	20
1,3-Dichlorobenzene	47.5	48.9		ug/Kg		103	74 ₋ 120	7	20
1,4-Dichlorobenzene	47.5	48.8		ug/Kg		103	73 - 120		20
2-Hexanone	238	272		ug/Kg		114	59 ₋ 130	4	20
Acetone	238	245		ug/Kg		103	61 - 137	4	20
Benzene	47.5	46.9		ug/Kg		99	79 ₋ 127	9	20
Bromochloromethane	47.5	48.3		ug/Kg		102	75 - 134	7	20
Bromoform	47.5	48.9		ug/Kg		103	68 - 126	3	20
Bromomethane	47.5	55.2		ug/Kg		116	37 - 149	6	20
Carbon disulfide	47.5	46.5		ug/Kg		98	64 - 131	15	20
Carbon tetrachloride	47.5	48.9		ug/Kg		103	75 - 135	13	20
Chlorobenzene	47.5	47.0		ug/Kg		99	76 - 124	8	20
Chloroethane	47.5	46.8		ug/Kg		99	69 - 135	13	20
Chloroform	47.5	46.6		ug/Kg		98	80 - 118	8	20
Bromodichloromethane	47.5	51.4		ug/Kg		108	80 - 122	6	20
Chloromethane	47.5	43.2		ug/Kg		91	63 - 127	13	20
cis-1,2-Dichloroethene	47.5	46.9		ug/Kg		99	81 - 117	9	20
cis-1,3-Dichloropropene	47.5	52.6		ug/Kg		111	82 - 120	6	20
1,2-Dibromoethane (EDB)	47.5	51.6		ug/Kg		109	78 - 120	4	20
Cyclohexane	47.5	42.6		ug/Kg		90	65 - 106	14	20
Dibromochloromethane	47.5	55.7		ug/Kg		117	76 - 125	5	20
Dichlorodifluoromethane	47.5	40.2		ug/Kg		85	57 - 142	17	20
2-Butanone (MEK)	238	243		ug/Kg		102	70 - 134	0	20
Ethylbenzene	47.5	47.7		ug/Kg		100	80 - 120	10	20
4-Methyl-2-pentanone (MIBK)	238	260		ug/Kg		109	65 - 133	1	20
Isopropylbenzene	47.5	49.3		ug/Kg		104	72 - 120	11	20
Methyl acetate	238	243		ug/Kg		102	55 - 136	2	20
Methyl tert-butyl ether	47.5	50.2		ug/Kg		106	63 - 125	3	20
Methylcyclohexane	47.5	43.1		ug/Kg		91	60 - 140	13	20
Methylene Chloride	47.5	49.4		ug/Kg		104	61 - 127	10	20
Styrene	47.5	48.9		ug/Kg		103	80 - 120	8	20
Tetrachloroethene	47.5	45.6		ug/Kg		96	74 - 122	11	20
Toluene	47.5	46.4		ug/Kg		98	74 - 128	10	20
trans-1,2-Dichloroethene	47.5	45.9		ug/Kg		97	78 - 126	11	20
trans-1,3-Dichloropropene	47.5	53.8		ug/Kg		113	73 - 123	6	20
Trichloroethene	47.5	45.4		ug/Kg		95	77 ₋ 129	9	20
Trichlorofluoromethane	47.5	44.0		ug/Kg		93	65 - 146	17	20
Tetrahydrofuran	95.1	97.7		ug/Kg		103	64 - 113	0	20
Vinyl chloride	47.5	42.9		ug/Kg		90	61 - 133	16	20
Xylenes, Total	95.1	95.4		ug/Kg		100	70 - 130	9	20
,	00.1	00.⊤		~56			. 5 - 100	3	_0

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	112		64 - 126
Toluene-d8 (Surr)	109		71 - 125
4-Bromofluorobenzene (Surr)	108		72 - 126

QC Sample Results

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 480-272870/2-A

Lab Sample ID: MB 480-274584/6

Matrix: Solid

Analysis Batch: 273681

LCSD LCSD

Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 112 60 - 140 **Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA**

Prep Batch: 272870

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			11/12/15 11:36	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			11/12/15 11:36	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			11/12/15 11:36	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			11/12/15 11:36	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			11/12/15 11:36	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			11/12/15 11:36	1
1,2,3-Trichlorobenzene	ND		1.0	0.41	ug/L			11/12/15 11:36	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			11/12/15 11:36	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			11/12/15 11:36	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			11/12/15 11:36	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			11/12/15 11:36	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			11/12/15 11:36	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			11/12/15 11:36	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			11/12/15 11:36	1
1,4-Dioxane	ND		40	9.3	ug/L			11/12/15 11:36	1
2-Hexanone	ND		5.0	1.2	ug/L			11/12/15 11:36	1
Acetone	ND		10		ug/L			11/12/15 11:36	1
Benzene	ND		1.0	0.41	ug/L			11/12/15 11:36	1
Bromochloromethane	ND		1.0		ug/L			11/12/15 11:36	1
Bromoform	ND		1.0		ug/L			11/12/15 11:36	1
Bromomethane	ND		1.0		ug/L			11/12/15 11:36	1
Carbon disulfide	ND		1.0		ug/L			11/12/15 11:36	
Carbon tetrachloride	ND		1.0		ug/L			11/12/15 11:36	1
Chlorobenzene	ND		1.0		ug/L			11/12/15 11:36	1
Chloroethane	ND		1.0		ug/L			11/12/15 11:36	1
Chloroform	ND		1.0		ug/L			11/12/15 11:36	1
Bromodichloromethane	ND		1.0		ug/L			11/12/15 11:36	1
Chloromethane	ND		1.0		ug/L			11/12/15 11:36	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			11/12/15 11:36	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			11/12/15 11:36	1
1,2-Dibromoethane (EDB)	ND		1.0		ug/L			11/12/15 11:36	1
Cyclohexane	ND		1.0		ug/L			11/12/15 11:36	1
Dibromochloromethane	ND		1.0		ug/L			11/12/15 11:36	1
Dichlorodifluoromethane	ND		1.0		ug/L			11/12/15 11:36	
2-Butanone (MEK)	ND		1.0		ug/L			11/12/15 11:36	1
Ethylbenzene	ND ND		1.0		ug/L ug/L			11/12/15 11:36	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L ug/L			11/12/15 11:36	
					_				1
Isopropylbenzene	ND		1.0		ug/L			11/12/15 11:36	1
Methyl acetate	ND		2.5		ug/L			11/12/15 11:36	1
Methyl tert-butyl ether	ND		1.0		ug/L ug/L			11/12/15 11:36 11/12/15 11:36	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Lab Sample ID: MB 480-274584/6

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water Analysis Batch: 274584

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methylene Chloride	ND		1.0	0.44	ug/L			11/12/15 11:36	1
Styrene	ND		1.0	0.73	ug/L			11/12/15 11:36	1
Tetrachloroethene	ND		1.0	0.36	ug/L			11/12/15 11:36	1
Toluene	ND		1.0	0.51	ug/L			11/12/15 11:36	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			11/12/15 11:36	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			11/12/15 11:36	1
Trichloroethene	ND		1.0	0.46	ug/L			11/12/15 11:36	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			11/12/15 11:36	1
Tetrahydrofuran	ND		5.0	1.3	ug/L			11/12/15 11:36	1
Vinyl chloride	ND		1.0	0.90	ug/L			11/12/15 11:36	1
Xylenes, Total	ND		2.0	0.66	ug/L			11/12/15 11:36	1

MB MB **Tentatively Identified Compound** Est. Result Qualifier Unit RT CAS No. Prepared Analyzed Dil Fac Tentatively Identified Compound 11/12/15 11:36 None ug/L

	MB ME	В			
Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	66 - 137		11/12/15 11:36	1
Toluene-d8 (Surr)	98	71 - 126		11/12/15 11:36	1
4-Bromofluorobenzene (Surr)	103	73 - 120		11/12/15 11:36	1
Dibromofluoromethane (Surr)	98	60 - 140		11/12/15 11:36	1
 					

Lab Sample ID: LCS 480-274584/4

Matrix: Water

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

Analysis Batch: 274584								
	Spike		LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	25.0	20.8		ug/L		83	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	22.6		ug/L		90	70 - 126	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	23.3		ug/L		93	52 - 148	
ne								
1,1,2-Trichloroethane	25.0	23.6		ug/L		94	76 - 122	
1,1-Dichloroethane	25.0	21.7		ug/L		87	71 - 129	
1,1-Dichloroethene	25.0	23.0		ug/L		92	58 - 121	
1,2,3-Trichlorobenzene	25.0	20.6		ug/L		83	63 - 138	
1,2,4-Trichlorobenzene	25.0	21.5		ug/L		86	70 - 122	
1,2-Dibromo-3-Chloropropane	25.0	21.4		ug/L		86	56 - 134	
1,2-Dichlorobenzene	25.0	23.2		ug/L		93	80 - 124	
1,2-Dichloroethane	25.0	19.8		ug/L		79	75 ₋ 127	
1,2-Dichloropropane	25.0	22.8		ug/L		91	76 ₋ 120	
1,3-Dichlorobenzene	25.0	23.4		ug/L		94	77 - 120	
1,4-Dichlorobenzene	25.0	23.9		ug/L		96	75 - 120	
2-Hexanone	125	119		ug/L		95	65 ₋ 127	
Acetone	125	180	*	ug/L		144	56 - 142	
Benzene	25.0	22.2		ug/L		89	71 - 124	
Bromochloromethane	25.0	23.5		ug/L		94	72 - 130	
Bromoform	25.0	24.7		ug/L		99	52 - 132	
Bromomethane	25.0	20.4		ug/L		82	55 - 144	
Carbon disulfide	25.0	20.3		ug/L		81	59 - 134	

TestAmerica Buffalo

11/18/2015

Page 55 of 85

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-274584/4

Matrix: Water

Analysis Batch: 274584

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Carbon tetrachloride	25.0	22.3		ug/L		89	72 - 134
Chlorobenzene	25.0	24.3		ug/L		97	72 - 120
Chloroethane	25.0	21.2		ug/L		85	69 - 136
Chloroform	25.0	21.6		ug/L		86	73 - 127
Bromodichloromethane	25.0	22.3		ug/L		89	80 - 122
Chloromethane	25.0	23.9		ug/L		95	68 - 124
cis-1,2-Dichloroethene	25.0	22.6		ug/L		90	74 - 124
cis-1,3-Dichloropropene	25.0	25.1		ug/L		100	74 - 124
1,2-Dibromoethane (EDB)	25.0	24.5		ug/L		98	77 - 120
Cyclohexane	25.0	22.3		ug/L		89	59 - 135
Dibromochloromethane	25.0	23.9		ug/L		95	75 - 125
Dichlorodifluoromethane	25.0	17.4		ug/L		70	59 ₋ 135
2-Butanone (MEK)	125	123		ug/L		98	57 - 140
Ethylbenzene	25.0	22.8		ug/L		91	77 - 123
4-Methyl-2-pentanone (MIBK)	125	111		ug/L		89	71 - 125
Isopropylbenzene	25.0	22.5		ug/L		90	77 - 122
Methyl acetate	125	124		ug/L		99	74 - 133
Methyl tert-butyl ether	25.0	20.6		ug/L		82	64 - 127
Methylcyclohexane	25.0	23.2		ug/L		93	61 - 138
Methylene Chloride	25.0	24.3		ug/L		97	57 - 132
Styrene	25.0	23.4		ug/L		94	70 - 130
Tetrachloroethene	25.0	24.7		ug/L		99	74 - 122
Toluene	25.0	22.5		ug/L		90	80 - 122
trans-1,2-Dichloroethene	25.0	22.2		ug/L		89	73 - 127
trans-1,3-Dichloropropene	25.0	23.7		ug/L		95	72 - 123
Trichloroethene	25.0	23.0		ug/L		92	74 - 123
Trichlorofluoromethane	25.0	20.9		ug/L		83	62 - 152
Tetrahydrofuran	50.0	44.5		ug/L		89	62 - 132
Vinyl chloride	25.0	23.4		ug/L		94	65 - 133
Xylenes, Total	50.0	46.6		ug/L		93	76 - 122

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	89		66 - 137
Toluene-d8 (Surr)	99		71 - 126
4-Bromofluorobenzene (Surr)	107		73 - 120
Dibromofluoromethane (Surr)	94		60 - 140

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-272953/1-A

Matrix: Solid

Analysis Batch: 274065

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 272953

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		170	45	ug/Kg		11/04/15 07:52	11/10/15 14:03	1
2,4,6-Trichlorophenol	ND		170	33	ug/Kg		11/04/15 07:52	11/10/15 14:03	1
2,4-Dichlorophenol	ND		170	18	ug/Kg		11/04/15 07:52	11/10/15 14:03	1
2,4-Dimethylphenol	ND		170	40	ug/Kg		11/04/15 07:52	11/10/15 14:03	1

TestAmerica Buffalo

Page 56 of 85

3

7

9

11

40

14

QC Sample Results

Client: Woodard & Curran, Inc. TestAmerica Job ID: 480-90365-1 Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-272953/1-A

Matrix: Solid

Client Sample ID: Method Blank
Prep Type: Total/NA
Pron Ratch: 272953

Analysis Batch: 274065	MR	MB						Prep Batch:	<u> </u>
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-Dinitrophenol	ND		1600	770	ug/Kg		•	11/10/15 14:03	1
2.4-Dinitrotoluene	ND		170		ug/Kg			11/10/15 14:03	1
2.6-Dinitrotoluene	ND		170		ug/Kg			11/10/15 14:03	1
2-Chloronaphthalene	ND		170		ug/Kg			11/10/15 14:03	1
2-Chlorophenol	ND		170	31				11/10/15 14:03	1
2-Methylnaphthalene	ND		170		ug/Kg			11/10/15 14:03	1
2-Methylphenol	ND		170	20	ug/Kg			11/10/15 14:03	1
2-Nitroaniline	ND		320		ug/Kg			11/10/15 14:03	1
2-Nitrophenol	ND		170		ug/Kg			11/10/15 14:03	
3,3'-Dichlorobenzidine	ND		320					11/10/15 14:03	1
3-Nitroaniline	ND		320		ug/Kg			11/10/15 14:03	1
4,6-Dinitro-2-methylphenol	ND		320		ug/Kg			11/10/15 14:03	
4-Bromophenyl phenyl ether	ND		170		ug/Kg			11/10/15 14:03	1
4-Chloro-3-methylphenol	ND		170	41	ug/Kg			11/10/15 14:03	1
4-Chloroaniline	ND		170		ug/Kg			11/10/15 14:03	' 1
4-Chlorophenyl phenyl ether	ND		170	21	ug/Kg			11/10/15 14:03	1
	ND ND		320	20				11/10/15 14:03	1
4-Methylphenol	ND ND		320		ug/Kg			11/10/15 14:03	ا 1
4-Nitrophonal					ug/Kg				
4-Nitrophenol	ND		320 170	120	ug/Kg			11/10/15 14:03	1
Acenaphthene	ND			25	ug/Kg			11/10/15 14:03	1
Acetaphanana	ND		170		ug/Kg			11/10/15 14:03	1
Acetophenone	ND		170		ug/Kg			11/10/15 14:03	1
Anthracene	ND		170	41	ug/Kg			11/10/15 14:03	1
Atrazine	ND		170		ug/Kg			11/10/15 14:03	1
Benzaldehyde	ND		170		ug/Kg			11/10/15 14:03	1
Benzo(a)anthracene	ND		170		ug/Kg			11/10/15 14:03	1
Benzo(a)pyrene	ND		170		ug/Kg			11/10/15 14:03	1
Benzo(b)fluoranthene	ND		170		ug/Kg			11/10/15 14:03	1
Benzo(g,h,i)perylene	ND		170		ug/Kg			11/10/15 14:03	1
Benzo(k)fluoranthene	ND		170		ug/Kg			11/10/15 14:03	1
Biphenyl	ND		170		ug/Kg			11/10/15 14:03	1
bis (2-chloroisopropyl) ether	ND		170		ug/Kg			11/10/15 14:03	1
Bis(2-chloroethoxy)methane	ND		170		ug/Kg			11/10/15 14:03	1
Bis(2-chloroethyl)ether	ND		170		ug/Kg			11/10/15 14:03	1
Bis(2-ethylhexyl) phthalate	ND		170		ug/Kg			11/10/15 14:03	1
Butyl benzyl phthalate	ND		170		ug/Kg			11/10/15 14:03	1
Caprolactam	ND		170		ug/Kg			11/10/15 14:03	1
Carbazole	ND		170		ug/Kg			11/10/15 14:03	1
Chrysene	ND		170		ug/Kg			11/10/15 14:03	1
Dibenz(a,h)anthracene	ND		170		ug/Kg			11/10/15 14:03	1
Dibenzofuran	ND		170		ug/Kg			11/10/15 14:03	1
Diethyl phthalate	ND		170		ug/Kg			11/10/15 14:03	1
Dimethyl phthalate	ND		170		ug/Kg			11/10/15 14:03	1
Di-n-butyl phthalate	ND		170		ug/Kg			11/10/15 14:03	1
Di-n-octyl phthalate	ND		170		ug/Kg			11/10/15 14:03	1
Fluoranthene	ND		170		ug/Kg			11/10/15 14:03	1
Fluorene	ND		170	20	ug/Kg		11/04/15 07:52	11/10/15 14:03	1
Hexachlorobenzene	ND		170	23	ug/Kg		11/04/15 07:52	11/10/15 14:03	1

TestAmerica Buffalo

Page 57 of 85

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-272953/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Total/NA Analysis Batch: 274065 Prep Batch: 272953** MB MB

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hexachlorobutadiene	ND		170	25	ug/Kg		11/04/15 07:52	11/10/15 14:03	1
Hexachlorocyclopentadiene	ND		170	23	ug/Kg		11/04/15 07:52	11/10/15 14:03	1
Hexachloroethane	ND		170	22	ug/Kg		11/04/15 07:52	11/10/15 14:03	1
Indeno(1,2,3-cd)pyrene	ND		170	21	ug/Kg		11/04/15 07:52	11/10/15 14:03	1
Isophorone	ND		170	35	ug/Kg		11/04/15 07:52	11/10/15 14:03	1
Naphthalene	ND		170	22	ug/Kg		11/04/15 07:52	11/10/15 14:03	1
Nitrobenzene	ND		170	19	ug/Kg		11/04/15 07:52	11/10/15 14:03	1
N-Nitrosodi-n-propylamine	ND		170	29	ug/Kg		11/04/15 07:52	11/10/15 14:03	1
N-Nitrosodiphenylamine	ND		170	140	ug/Kg		11/04/15 07:52	11/10/15 14:03	1
Pentachlorophenol	ND		320	170	ug/Kg		11/04/15 07:52	11/10/15 14:03	1
Phenanthrene	ND		170	25	ug/Kg		11/04/15 07:52	11/10/15 14:03	1
Phenol	ND		170	26	ug/Kg		11/04/15 07:52	11/10/15 14:03	1
Pyrene	ND		170	20	ug/Kg		11/04/15 07:52	11/10/15 14:03	1
Dimethylformamide	ND		650	74	ug/Kg		11/04/15 07:52	11/10/15 14:03	1

	MB	MB							
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	563	TJ	ug/Kg		2.06		11/04/15 07:52	11/10/15 14:03	1
Unknown	1150	ΤJ	ug/Kg		2.17		11/04/15 07:52	11/10/15 14:03	1
Unknown	789	ΤJ	ug/Kg		4.66		11/04/15 07:52	11/10/15 14:03	1
Unknown Benzene Derivative	208	ΤJ	ug/Kg		5.15		11/04/15 07:52	11/10/15 14:03	1

	MB M	IB				
Surrogate	%Recovery Q	ualifier Lim	its	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	85	39 -	146	11/04/15 07:52	11/10/15 14:03	1
2-Fluorobiphenyl	85	37 -	120	11/04/15 07:52	11/10/15 14:03	1
2-Fluorophenol	74	18 -	120	11/04/15 07:52	11/10/15 14:03	1
Nitrobenzene-d5	76	34 -	132	11/04/15 07:52	11/10/15 14:03	1
p-Terphenyl-d14	100	65 -	153	11/04/15 07:52	11/10/15 14:03	1
Phenol-d5	75	11 -	120	11/04/15 07:52	11/10/15 14:03	1

Lab Sample ID: LCS 480-272953/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analyte Added Result Qualifier Unit Ug/Kg D %Rec Ug/Kg Limits 2,4,5-Trichlorophenol 1640 1560 ug/Kg 95 59 - 126 2,4,6-Trichlorophenol 1640 1580 ug/Kg 96 59 - 123 2,4-Dichlorophenol 1640 1490 ug/Kg 91 52 - 120 2,4-Dimethylphenol 1640 1450 ug/Kg 88 36 - 120 2,4-Dinitrophenol 3290 2870 ug/Kg 87 35 - 146	atch: 272953
2,4,6-Trichlorophenol 1640 1580 ug/Kg 96 59 - 123 2,4-Dichlorophenol 1640 1490 ug/Kg 91 52 - 120 2,4-Dimethylphenol 1640 1450 ug/Kg 88 36 - 120	
2,4-Dichlorophenol 1640 1490 ug/Kg 91 52 - 120 2,4-Dimethylphenol 1640 1450 ug/Kg 88 36 - 120	
2,4-Dimethylphenol 1640 1450 ug/Kg 88 36 - 120	
2.4 Digitraphonal 2200 2970 ug/Kg 97 25 146	
2,4-Dinitrophenol 3290 2870 ug/Kg 87 35 - 146	
2,4-Dinitrotoluene 1640 1550 ug/Kg 95 55 - 125	
2,6-Dinitrotoluene 1640 1900 ug/Kg 116 66 - 128	
2-Chloronaphthalene 1640 1550 ug/Kg 94 57 - 120	
2-Chlorophenol 1640 1340 ug/Kg 82 38 - 120	
2-Methylnaphthalene 1640 1470 ug/Kg 90 47 - 120	
2-Methylphenol 1640 1390 ug/Kg 84 48 - 120	
2-Nitroaniline 1640 1480 ug/Kg 90 61 - 130	
2-Nitrophenol 1640 1430 ug/Kg 87 50 - 120	

TestAmerica Buffalo

Page 58 of 85

11/18/2015

QC Sample Results

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-272953/2-A

Matrix: Solid

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 272953

Analysis Batch: 274065	Spike	LCS	LCS				Prep Batch: 27295 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
3,3'-Dichlorobenzidine	3290	3060		ug/Kg		93	48 - 126
3-Nitroaniline	1640	1400		ug/Kg		85	61 - 127
4,6-Dinitro-2-methylphenol	3290	3150		ug/Kg		96	49 - 155
4-Bromophenyl phenyl ether	1640	1750		ug/Kg		107	58 - 131
4-Chloro-3-methylphenol	1640	1500		ug/Kg		91	49 - 125
4-Chloroaniline	1640	1270		ug/Kg		78	49 - 120
4-Chlorophenyl phenyl ether	1640	1610		ug/Kg		98	63 - 124
4-Methylphenol	1640	1400		ug/Kg		85	50 ₋ 119
4-Nitroaniline	1640	1440		ug/Kg		88	63 - 128
4-Nitrophenol	3290	3000		ug/Kg		91	43 - 137
Acenaphthene	1640	1600		ug/Kg		97	53 - 120
Acenaphthylene	1640	1570		ug/Kg		96	58 - 121
Acetophenone	1640	1380		ug/Kg		84	66 - 120
Anthracene	1640	1740		ug/Kg		106	62 - 129
Atrazine	3290	3120		ug/Kg		95	60 - 164
Benzaldehyde	3290	3600		ug/Kg		110	21 - 120
Benzo(a)anthracene	1640	1670		ug/Kg		102	65 - 133
Benzo(a)pyrene	1640	1690		ug/Kg		103	64 - 127
Benzo(b)fluoranthene	1640	1790		ug/Kg		109	64 - 135
Benzo(g,h,i)perylene	1640	1700		ug/Kg		103	50 ₋ 152
Benzo(k)fluoranthene	1640	1690		ug/Kg		103	58 - 138
Biphenyl	1640	1580		ug/Kg		96	71 - 120
bis (2-chloroisopropyl) ether	1640	1190		ug/Kg		73	44 - 120
Bis(2-chloroethoxy)methane	1640	1400		ug/Kg		85	61 - 133
Bis(2-chloroethyl)ether	1640	1330		ug/Kg		81	45 - 120
Bis(2-ethylhexyl) phthalate	1640	1730		ug/Kg		105	61 - 133
Butyl benzyl phthalate	1640	1690		ug/Kg		103	61 - 129
Caprolactam	3290	2770		ug/Kg		84	54 ₋ 133
Carbazole	1640	1620		ug/Kg		99	59 - 129
Chrysene	1640	1690		ug/Kg		103	64 - 131
Dibenz(a,h)anthracene	1640	1700		ug/Kg		104	54 - 148
Dibenzofuran	1640	1610		ug/Kg		98	56 - 120
Diethyl phthalate	1640	1590		ug/Kg		97	66 - 126
Dimethyl phthalate	1640	1610		ug/Kg		98	65 - 124
Di-n-butyl phthalate	1640	1680		ug/Kg		102	58 - 130
Di-n-octyl phthalate	1640	1750		ug/Kg		106	62 - 133
Fluoranthene	1640	1630		ug/Kg		99	62 - 131
Fluorene	1640	1630		ug/Kg		99	63 - 126
Hexachlorobenzene	1640	1700		ug/Kg		104	60 - 132
Hexachlorobutadiene	1640	1440		ug/Kg		87	45 - 120
Hexachlorocyclopentadiene	1640	1480		ug/Kg		90	31 - 120
Hexachloroethane	1640	1280		ug/Kg		78	41 - 120
Indeno(1,2,3-cd)pyrene	1640	1680		ug/Kg		102	56 ₋ 149
Isophorone	1640	1420		ug/Kg		87	56 - 120
Naphthalene	1640	1450		ug/Kg		88	46 - 120
Nitrobenzene	1640	1370		ug/Kg		83	49 - 120
N-Nitrosodi-n-propylamine	1640	1320		ug/Kg		81	46 - 120
N-Nitrosodiphenylamine	3290	3410		ug/Kg		104	20 - 119

TestAmerica Buffalo

R

9

10

12

IR

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-272953/2-A **Matrix: Solid**

Analysis Batch: 274065

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 272953

		Бріке	LCS	LCS				%Rec.	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Pentachlorophenol	3290	3390		ug/Kg		103	33 - 136	
	Phenanthrene	1640	1730		ug/Kg		106	60 - 130	
ı	Phenol	1640	1330		ug/Kg		81	36 - 120	
	Pyrene	1640	1790		ug/Kg		109	51 - 133	
ı									

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	106		39 - 146
2-Fluorobiphenyl	100		37 - 120
2-Fluorophenol	81		18 - 120
Nitrobenzene-d5	84		34 - 132
p-Terphenyl-d14	106		65 - 153
Phenol-d5	83		11 - 120

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 273098

Lab Sample ID: MB 480-273098/1-A **Matrix: Water**

Analysis Batch: 273999

Analysis Batch: 273999								Prep Batch:	273098
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		5.0		ug/L		11/04/15 14:50	11/10/15 13:32	1
2,4,6-Trichlorophenol	ND		5.0	0.61	ug/L		11/04/15 14:50	11/10/15 13:32	1
2,4-Dichlorophenol	ND		5.0	0.51	ug/L		11/04/15 14:50	11/10/15 13:32	1
2,4-Dimethylphenol	ND		5.0	0.50	ug/L		11/04/15 14:50	11/10/15 13:32	1
2,4-Dinitrophenol	ND		10	2.2	ug/L		11/04/15 14:50	11/10/15 13:32	1
2,4-Dinitrotoluene	ND		5.0	0.45	ug/L		11/04/15 14:50	11/10/15 13:32	1
2,6-Dinitrotoluene	ND		5.0	0.40	ug/L		11/04/15 14:50	11/10/15 13:32	1
2-Chloronaphthalene	ND		5.0	0.46	ug/L		11/04/15 14:50	11/10/15 13:32	1
2-Chlorophenol	ND		5.0	0.53	ug/L		11/04/15 14:50	11/10/15 13:32	1
2-Methylnaphthalene	ND		5.0	0.60	ug/L		11/04/15 14:50	11/10/15 13:32	1
2-Methylphenol	ND		5.0	0.40	ug/L		11/04/15 14:50	11/10/15 13:32	1
2-Nitroaniline	ND		10	0.42	ug/L		11/04/15 14:50	11/10/15 13:32	1
2-Nitrophenol	ND		5.0	0.48	ug/L		11/04/15 14:50	11/10/15 13:32	1
3,3'-Dichlorobenzidine	ND		5.0	0.40	ug/L		11/04/15 14:50	11/10/15 13:32	1
3-Nitroaniline	ND		10	0.48	ug/L		11/04/15 14:50	11/10/15 13:32	1
4,6-Dinitro-2-methylphenol	ND		10	2.2	ug/L		11/04/15 14:50	11/10/15 13:32	1
4-Bromophenyl phenyl ether	ND		5.0	0.45	ug/L		11/04/15 14:50	11/10/15 13:32	1
4-Chloro-3-methylphenol	ND		5.0	0.45	ug/L		11/04/15 14:50	11/10/15 13:32	1
4-Chloroaniline	ND		5.0	0.59	ug/L		11/04/15 14:50	11/10/15 13:32	1
4-Chlorophenyl phenyl ether	ND		5.0	0.35	ug/L		11/04/15 14:50	11/10/15 13:32	1
4-Methylphenol	ND		10	0.36	ug/L		11/04/15 14:50	11/10/15 13:32	1
4-Nitroaniline	ND		10	0.25	ug/L		11/04/15 14:50	11/10/15 13:32	1
4-Nitrophenol	ND		10	1.5	ug/L		11/04/15 14:50	11/10/15 13:32	1
Acenaphthene	ND		5.0	0.41	ug/L		11/04/15 14:50	11/10/15 13:32	1
Acenaphthylene	ND		5.0	0.38	ug/L		11/04/15 14:50	11/10/15 13:32	1
Acetophenone	ND		5.0	0.54	ug/L		11/04/15 14:50	11/10/15 13:32	1
Anthracene	ND		5.0	0.28	ug/L		11/04/15 14:50	11/10/15 13:32	1
Atrazine	ND		5.0	0.46	ug/L		11/04/15 14:50	11/10/15 13:32	1
Benzaldehyde	ND		5.0	0.27	ug/L		11/04/15 14:50	11/10/15 13:32	1
Benzo(a)anthracene	ND		5.0	0.36	ug/L		11/04/15 14:50	11/10/15 13:32	1
1 Control of the Cont									

TestAmerica Buffalo

Page 60 of 85

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

9

3

_

6

9

12

14

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-2730 Matrix: Water	98/1 -A								le ID: Method Prep Type: To	
Analysis Batch: 273999									Prep Type: To Prep Batch: :	
Analysis Batch. 273999	МВ	МВ							Prep Batch.	273090
Analyte		Qualifier	RL	_	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo(a)pyrene	ND		5.0			ug/L		•	11/10/15 13:32	1
Benzo(b)fluoranthene	ND		5.0			ug/L		11/04/15 14:50	11/10/15 13:32	1
Benzo(g,h,i)perylene	ND		5.0			ug/L			11/10/15 13:32	1
Benzo(k)fluoranthene	ND		5.0			ug/L			11/10/15 13:32	1
Biphenyl	ND		5.0			ug/L			11/10/15 13:32	1
bis (2-chloroisopropyl) ether	ND		5.0			ug/L			11/10/15 13:32	1
Bis(2-chloroethoxy)methane	ND		5.0			ug/L			11/10/15 13:32	1
Bis(2-chloroethyl)ether	ND		5.0			ug/L			11/10/15 13:32	1
Bis(2-ethylhexyl) phthalate	ND		5.0			ug/L			11/10/15 13:32	1
Butyl benzyl phthalate	0.731		5.0			ug/L			11/10/15 13:32	1
Caprolactam	ND		5.0			ug/L			11/10/15 13:32	1
Carbazole	ND		5.0			ug/L			11/10/15 13:32	1
Chrysene	ND		5.0			ug/L			11/10/15 13:32	1
Dibenz(a,h)anthracene	ND		5.0			ug/L			11/10/15 13:32	1
Dibenzofuran	ND		10			ug/L			11/10/15 13:32	1
Diethyl phthalate	ND		5.0			ug/L			11/10/15 13:32	
Dimethyl phthalate	ND		5.0			ug/L			11/10/15 13:32	1
Di-n-butyl phthalate	ND		5.0			ug/L			11/10/15 13:32	1
Di-n-octyl phthalate	ND		5.0			ug/L			11/10/15 13:32	
Fluoranthene	ND		5.0			ug/L			11/10/15 13:32	1
Fluorene	ND		5.0			ug/L			11/10/15 13:32	1
Hexachlorobenzene	ND		5.0			ug/L			11/10/15 13:32	
Hexachlorobutadiene	ND		5.0			ug/L			11/10/15 13:32	1
Hexachlorocyclopentadiene	ND		5.0			ug/L			11/10/15 13:32	1
Hexachloroethane	ND		5.0			ug/L			11/10/15 13:32	
Indeno(1,2,3-cd)pyrene	ND		5.0			ug/L			11/10/15 13:32	1
Isophorone	ND		5.0			ug/L			11/10/15 13:32	1
Naphthalene	ND		5.0			ug/L			11/10/15 13:32	
Nitrobenzene	ND		5.0			ug/L			11/10/15 13:32	1
N-Nitrosodi-n-propylamine	ND		5.0			ug/L			11/10/15 13:32	1
N-Nitrosodiphenylamine	ND		5.0			ug/L ug/L			11/10/15 13:32	
Pentachlorophenol	ND ND		10			ug/L ug/L			11/10/15 13:32	1
Phenanthrene	ND		5.0			-				1
					0.44				11/10/15 13:32	
Phenol	ND ND		5.0 5.0			ug/L			11/10/15 13:32	1
Pyrene	ND					ug/L			11/10/15 13:32	1
Dimethylformamide	ND		20	J	1.7	ug/L		11/04/15 14:50	11/10/15 13:32	1
	MB	MB								
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Cyclohexane	14.5	TJN	ug/L		3.	51	110-82-7	11/04/15 14:50	11/10/15 13:32	1
Unknown	97.0	T I	ua/l		ာ	67		11/04/15 14:50	11/10/15 13:32	1

	MB	MB							
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Cyclohexane	14.5	TJN	ug/L		3.51	110-82-7	11/04/15 14:50	11/10/15 13:32	1
Unknown	97.0	ΤJ	ug/L		3.67		11/04/15 14:50	11/10/15 13:32	1
Cyclotetrasiloxane, octamethyl-	22.2	TJN	ug/L		6.46	556-67-2	11/04/15 14:50	11/10/15 13:32	1
Cyclopentasiloxane, decamethyl-	14.2	TJN	ug/L		7.40	541-02-6	11/04/15 14:50	11/10/15 13:32	1
Unknown	15.8	ΤJ	ug/L		11.70		11/04/15 14:50	11/10/15 13:32	1
Unknown	5.35	TJ	ug/L		12.32		11/04/15 14:50	11/10/15 13:32	1
Unknown	6.72	ΤJ	ug/L		12.74		11/04/15 14:50	11/10/15 13:32	1
Unknown	8.93	TJ	ug/L		13.55		11/04/15 14:50	11/10/15 13:32	1
Unknown	7.89	TJ	ug/L		14.73		11/04/15 14:50	11/10/15 13:32	1
Unknown	9.08	ΤJ	ug/L		14.96		11/04/15 14:50	11/10/15 13:32	1

QC Sample Results

Client: Woodard & Curran, Inc. TestAmerica Job ID: 480-90365-1 Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

MR MR

Lab Sample ID: MB 480-273098/1-A

Matrix: Water

Analysis Batch: 273999

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 273098

	IVID	WI D				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	125		52 - 132	11/04/15 14:50	11/10/15 13:32	1
2-Fluorobiphenyl	88		48 - 120	11/04/15 14:50	11/10/15 13:32	1
2-Fluorophenol	56		20 - 120	11/04/15 14:50	11/10/15 13:32	1
Nitrobenzene-d5	87		46 - 120	11/04/15 14:50	11/10/15 13:32	1
p-Terphenyl-d14	103		67 - 150	11/04/15 14:50	11/10/15 13:32	1
Phenol-d5	36		16 - 120	11/04/15 14:50	11/10/15 13:32	1

Lab Sample ID: LCS 480-273098/2-A

Matrix: Water

Analysis Batch: 273999

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

Prep Batch: 273098

Acceptan	Spike		LCS	1124	_	0/ 🗖	%Rec.	
Analyte	Added	18.0	Qualifier	Unit	D	%Rec	Limits	
2,4,5-Trichlorophenol	16.0			ug/L		113	65 - 126	
2,4,6-Trichlorophenol	16.0	18.0		ug/L		113	64 - 120	
2,4-Dichlorophenol	16.0	15.9		ug/L		99	64 - 120	
2,4-Dimethylphenol	16.0	17.7		ug/L		110	57 ₋ 120	
2,4-Dinitrophenol	32.0	17.3		ug/L		54	42 - 153	
2,4-Dinitrotoluene	16.0	16.6		ug/L		103	65 - 154	
2,6-Dinitrotoluene	16.0	18.2		ug/L		114	74 - 134	
2-Chloronaphthalene	16.0	15.2		ug/L		95	41 - 124	
2-Chlorophenol	16.0	14.0		ug/L		87	48 - 120	
2-Methylnaphthalene	16.0	15.7		ug/L		98	34 - 122	
2-Methylphenol	16.0	12.6		ug/L		79	39 - 120	
2-Nitroaniline	16.0	16.4		ug/L		103	67 - 136	
2-Nitrophenol	16.0	15.3		ug/L		96	59 - 120	
3,3'-Dichlorobenzidine	32.0	32.1		ug/L		100	33 - 140	
3-Nitroaniline	16.0	13.4		ug/L		84	28 - 130	
4,6-Dinitro-2-methylphenol	32.0	29.8		ug/L		93	64 - 159	
4-Bromophenyl phenyl ether	16.0	17.2		ug/L		108	71 - 126	
4-Chloro-3-methylphenol	16.0	19.0		ug/L		119	64 - 120	
4-Chloroaniline	16.0	8.59		ug/L		54	10 - 130	
4-Chlorophenyl phenyl ether	16.0	15.6		ug/L		97	71 - 122	
4-Methylphenol	16.0	12.2		ug/L		76	39 - 120	
4-Nitroaniline	16.0	13.8		ug/L		86	47 - 130	
4-Nitrophenol	32.0	30.3		ug/L		95	16 - 120	
Acenaphthene	16.0	15.6		ug/L		97	60 - 120	
Acenaphthylene	16.0	16.5		ug/L		103	63 - 120	
Acetophenone	16.0	14.9		ug/L		93	45 - 120	
Anthracene	16.0	15.9		ug/L		99	58 ₋ 148	
Atrazine	32.0	39.2		ug/L		122	56 - 179	
Benzaldehyde	32.0	15.3		ug/L		48	30 - 140	
Benzo(a)anthracene	16.0	16.0		ug/L		100	55 ₋ 151	
Benzo(a)pyrene	16.0	15.6		ug/L		97	60 - 145	
Benzo(b)fluoranthene	16.0	16.5		ug/L		103	54 ₋ 140	
Benzo(g,h,i)perylene	16.0	17.5		ug/L		109	66 - 152	
Benzo(k)fluoranthene	16.0	16.0		ug/L		100	51 - 153	
Biphenyl	16.0	15.2		ug/L		95	30 - 140	
bis (2-chloroisopropyl) ether	16.0	11.6		ug/L		73	28 - 136	

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-273098/2-A

Matrix: Water

Analysis Batch: 273999

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 273098 %Rec.

Allalysis Datcii. 273333	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Bis(2-chloroethoxy)methane	16.0	13.8		ug/L		86	50 - 128
Bis(2-chloroethyl)ether	16.0	13.4		ug/L		84	51 - 120
Bis(2-ethylhexyl) phthalate	16.0	16.8		ug/L		105	53 - 158
Butyl benzyl phthalate	16.0	16.8		ug/L		105	58 - 163
Caprolactam	32.0	11.4		ug/L		36	14 - 130
Carbazole	16.0	15.6		ug/L		97	59 - 148
Chrysene	16.0	16.0		ug/L		100	69 - 140
Dibenz(a,h)anthracene	16.0	18.1		ug/L		113	57 - 148
Dibenzofuran	16.0	15.9		ug/L		100	49 - 137
Diethyl phthalate	16.0	13.3		ug/L		83	59 - 146
Dimethyl phthalate	16.0	18.4		ug/L		115	59 - 141
Di-n-butyl phthalate	16.0	18.2		ug/L		114	58 ₋ 149
Di-n-octyl phthalate	16.0	16.0		ug/L		100	55 - 167
Fluoranthene	16.0	17.0		ug/L		106	55 - 147
Fluorene	16.0	15.1		ug/L		94	55 - 143
Hexachlorobenzene	16.0	18.0		ug/L		113	14 - 130
Hexachlorobutadiene	16.0	16.6		ug/L		103	14 - 130
Hexachlorocyclopentadiene	16.0	11.0		ug/L		69	13 - 130
Hexachloroethane	16.0	15.0		ug/L		94	14 - 130
Indeno(1,2,3-cd)pyrene	16.0	18.4		ug/L		115	69 - 146
Isophorone	16.0	15.4		ug/L		97	48 - 133
Naphthalene	16.0	13.5		ug/L		84	35 - 130
Nitrobenzene	16.0	15.7		ug/L		98	45 - 123
N-Nitrosodi-n-propylamine	16.0	14.1		ug/L		88	56 - 120
N-Nitrosodiphenylamine	32.0	31.6		ug/L		99	25 - 125
Pentachlorophenol	32.0	18.6		ug/L		58	39 - 136
Phenanthrene	16.0	16.0		ug/L		100	57 - 147
Phenol	16.0	7.97		ug/L		50	17 - 120
Pyrene	16.0	15.8		ug/L		99	58 - 136
Pyrene	16.0	15.8		ug/L		99	58 - 136

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	136	X	52 - 132
2-Fluorobiphenyl	101		48 - 120
2-Fluorophenol	69		20 - 120
Nitrobenzene-d5	99		46 - 120
p-Terphenyl-d14	104		67 - 150
Phenol-d5	51		16 - 120

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC)

MB MB

ND

Lab Sample ID: MB 480-274145/4

Matrix: Water

Analyte

Ethanol

Methanol

Isobutyl alcohol

Analysis Batch: 274145

Client Sample ID: Method Blank

Prep Type: Total/NA

Result Qualifier RL **MDL** Unit D Analyzed Dil Fac Prepared ND 1.0 11/10/15 11:47 0.14 mg/L ND 1.0 0.37 mg/L 11/10/15 11:47

0.41 mg/L

TestAmerica Buffalo

11/10/15 11:47

Page 63 of 85

1.0

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) (Continued)

Lab Sample ID: MB 480-274145/4

Matrix: Water

Analysis Batch: 274145

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier **MDL** Unit Analyte RL Prepared Analyzed Dil Fac n-Butanol $\overline{\mathsf{ND}}$ 1.0 0.40 mg/L 11/10/15 11:47 Propanol ND 1.0 0.16 mg/L 11/10/15 11:47 2-Butanol ND 1.0 0.17 mg/L 11/10/15 11:47 Isopropyl alcohol ND 1.0 0.12 mg/L 11/10/15 11:47 t-Butyl alcohol ND 1.0 0.10 mg/L 11/10/15 11:47

MB MB

%Recovery Qualifier Surrogate Limits Dil Fac Prepared Analyzed 2-Hexanone 103 62 - 129 11/10/15 11:47

Lab Sample ID: LCS 480-274145/5

Matrix: Water

Analysis Batch: 274145

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCS LCS %Rec. Added **Analyte** Result Qualifier Unit %Rec Limits 20.0 Ethanol 21.7 mg/L 109 72 - 133 20.0 Isobutyl alcohol 21.6 108 69 - 139 mg/L Methanol 20.0 22.0 71 - 132 mg/L 110 20.6 n-Butanol 20.0 mg/L 103 73 - 130 Propanol 20.0 21.3 mg/L 107 71 - 1312-Butanol 20.0 20.9 mg/L 105 68 - 136 Isopropyl alcohol 20.0 22.0 mg/L 110 67 - 132 t-Butyl alcohol 20.0 22.0 mg/L 110 71 - 130

LCS LCS

Surrogate %Recovery Qualifier Limits 62 - 129 2-Hexanone 106

Lab Sample ID: 480-90365-9 MS

Matrix: Water

Analysis Batch: 274145

Client Sample ID: EB-05 Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethanol	ND		20.0	21.2		mg/L		106	76 - 120	
Isobutyl alcohol	ND		20.0	21.7		mg/L		109	77 - 120	
Methanol	ND		20.0	21.5		mg/L		107	75 ₋ 120	
n-Butanol	ND		20.0	20.2		mg/L		101	75 - 120	
Propanol	ND		20.0	21.2		mg/L		106	79 - 120	
2-Butanol	ND		20.0	20.9		mg/L		104	77 - 120	
Isopropyl alcohol	ND		20.0	21.5		mg/L		108	72 - 120	
t-Butyl alcohol	ND		20.0	21.8		mg/L		109	60 - 130	

MS MS

Surrogate	%Recovery Qualifier	Limits
2-Hexanone	105	62 - 129

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) (Continued)

Lab Sample ID: 480-90365-9 MSD

Matrix: Water

Analysis Batch: 274145

Client Sample ID: EB-05 Prep Type: Total/NA

Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit ND 20.0 mg/L 76 - 120 2 Ethanol 21.7 109 30 ND 20.0 21.9 77 - 120 30 Isobutyl alcohol mg/L 109 1 ND Methanol 20.0 22.1 111 75 - 120 3 30 mg/L n-Butanol ND 20.0 20.8 104 75 - 120 30 mg/L 3 Propanol ND 20.0 21.5 mg/L 108 79 - 120 2 30 2-Butanol ND 20.0 21.1 mg/L 106 77 - 120 30 ND 20.0 22.0 72 - 120 2 30 Isopropyl alcohol mg/L 110 t-Butyl alcohol ND 20.0 22.1 mg/L 110 60 - 130 30

MSD MSD

Surrogate %Recovery Qualifier Limits 2-Hexanone 102 62 - 129

Lab Sample ID: MB 480-273254/1-A

Matrix: Solid

Analysis Batch: 273566

Client Sample ID: Method Blank

Prep Type: Soluble

	MR MR							
Analyte	Result Quali	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND	0.98	0.15	mg/Kg			11/06/15 11:00	1
Isobutyl alcohol	ND	0.98	0.25	mg/Kg			11/06/15 11:00	1
Methanol	0.332 J	0.98	0.29	mg/Kg			11/06/15 11:00	1
n-Butanol	ND	0.98	0.23	mg/Kg			11/06/15 11:00	1
Propanol	ND	0.98	0.15	mg/Kg			11/06/15 11:00	1
2-Butanol	ND	0.98	0.16	mg/Kg			11/06/15 11:00	1
Isopropyl alcohol	ND	0.98	0.24	mg/Kg			11/06/15 11:00	1
t-Butyl alcohol	ND	0.98	0.26	mg/Kg			11/06/15 11:00	1
I .								

MB MB

Qualifier Limits Surrogate %Recovery Prepared Analyzed Dil Fac 30 - 137 107 11/06/15 11:00 2-Hexanone

Lab Sample ID: LCS 480-273254/2-A

Matrix: Solid

Analysis Batch: 273566

Client Sample ID: Lab Control Sample Prep Type: Soluble

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits 19.5 Ethanol 21.4 mg/Kg 109 55 - 136 Isobutyl alcohol 19.5 21.7 mg/Kg 111 51 - 130 Methanol 19.5 21.4 mg/Kg 53 - 140 110 20.3 n-Butanol 19.5 mg/Kg 104 54 - 141 Propanol 19.5 21.3 mg/Kg 109 59 - 1392-Butanol 19.5 20.8 mg/Kg 107 49 - 136 Isopropyl alcohol 21.6 19.5 mg/Kg 111 50 - 131 t-Butyl alcohol 19.5 21.9 mg/Kg 112 48 - 130

LCS LCS

Surrogate %Recovery Qualifier Limits 2-Hexanone 105 30 - 137

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-272951/1-A

Matrix: Solid

Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248

PCB-1254

PCB-1260

Analysis Batch: 273113

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 272951

MB	MB							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		180	36	ug/Kg		11/04/15 07:49	11/04/15 15:42	1
ND		180	36	ug/Kg		11/04/15 07:49	11/04/15 15:42	1
ND		180	36	ug/Kg		11/04/15 07:49	11/04/15 15:42	1
ND		180	36	ug/Kg		11/04/15 07:49	11/04/15 15:42	1
ND		180	36	ug/Kg		11/04/15 07:49	11/04/15 15:42	1

85 ug/Kg

85 ug/Kg

MB MB

ND

ND

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	93		60 - 154	11/04/15 07:49	11/04/15 15:42	1
DCB Decachlorobiphenyl	97		65 - 174	11/04/15 07:49	11/04/15 15:42	1

180

180

Lab Sample ID: LCS 480-272951/2-A

Matrix: Solid

Analysis Batch: 273113

Client Sample ID: Lab Control Sample Prep Type: Total/NA

11/04/15 07:49 11/04/15 15:42

11/04/15 07:49 11/04/15 15:42

Prep Batch: 272951

LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit D %Rec Limits PCB-1016 2440 2830 ug/Kg 116 51 - 185 PCB-1260 2440 2860 ug/Kg 117 61 - 184

LCS LCS

Surrogate	%Recovery Qualifier	Limits
Tetrachloro-m-xylene	107	60 - 154
DCB Decachlorobiphenyl	111	65 - 174

Lab Sample ID: 480-90365-1 MS

Matrix: Solid

Analysis Batch: 273113

Client Sample ID: SWMU4-SURFACE-SS-01

Prep Type: Total/NA Prep Batch: 272951

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	ND		2180	2490		ug/Kg	₩	114	50 - 177	
PCB-1260	ND		2180	2580		ug/Kg	☼	119	33 - 200	

	MS MS	
Surrogate	%Recovery Qualifier	Limits
Tetrachloro-m-xylene	104	60 - 154
DCB Decachlorobiphenyl	113	65 - 174

Lab Sample ID: 480-90365-1 MSD

Matrix: Solid

Analysis Batch: 273113

Client Sample ID: SWMU4-SURFACE-SS-01

Prep Type: Total/NA Prep Batch: 272951

MSD MSD Sample Sample Spike %Rec. **RPD** Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit PCB-1016 ND 2480 2790 ₩ 50 - 177 ug/Kg 113 PCB-1260 ND 2480 2890 ug/Kg 117 33 - 200 50 11

	พรบ	พรษ	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	103		60 - 154
DCB Decachlorobiphenyl	112		65 - 174

MCD MCD

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: MB 480-273116/1-A

Matrix: Water

Analysis Batch: 273204

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 273116

	MB N	ИΒ							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.50	0.18	ug/L		11/04/15 15:36	11/05/15 08:15	1
PCB-1221	ND		0.50	0.18	ug/L		11/04/15 15:36	11/05/15 08:15	1
PCB-1232	ND		0.50	0.18	ug/L		11/04/15 15:36	11/05/15 08:15	1
PCB-1242	ND		0.50	0.18	ug/L		11/04/15 15:36	11/05/15 08:15	1
PCB-1248	ND		0.50	0.18	ug/L		11/04/15 15:36	11/05/15 08:15	1
PCB-1254	ND		0.50	0.25	ug/L		11/04/15 15:36	11/05/15 08:15	1
PCB-1260	ND		0.50	0.25	ug/L		11/04/15 15:36	11/05/15 08:15	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	80	24 - 137	11/04/15 15:36	11/05/15 08:15	1
DCB Decachlorobiphenyl	63	19 - 125	11/04/15 15:36	11/05/15 08:15	1

LCS LCS

Lab Sample ID: LCS 480-273116/2-A

Matrix: Water

Analysis Batch: 273204

Client Sample ID: Lab Control Sample **Prep Type: Total/NA**

Prep Batch: 273116 %Rec.

	Opino						/01 CC.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
PCB-1016	4.00	3.40		ug/L		85	62 - 130
PCB-1260	4.00	3.26		ug/L		82	56 - 123

Snika

LCS LCS

Surrogate	%Recovery Qualifier	Limits
Tetrachloro-m-xylene	69	24 - 137
DCB Decachlorobiphenyl	57	19 - 125

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-272885/1-A

Matrix: Water

Analysis Batch: 273231

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 272885**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		11/04/15 08:15	11/04/15 17:36	1
Barium	ND		0.0020	0.00070	mg/L		11/04/15 08:15	11/04/15 17:36	1
Cadmium	ND		0.0020	0.00050	mg/L		11/04/15 08:15	11/04/15 17:36	1
Chromium	ND		0.0040	0.0010	mg/L		11/04/15 08:15	11/04/15 17:36	1
Lead	ND		0.010	0.0030	mg/L		11/04/15 08:15	11/04/15 17:36	1
Selenium	ND		0.025	0.0087	mg/L		11/04/15 08:15	11/04/15 17:36	1
Silver	ND		0.0060	0.0017	mg/L		11/04/15 08:15	11/04/15 17:36	1

Lab Sample ID: LCS 480-272885/2-A

Matrix: Water

Analysis Batch: 273231

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 272885

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	·	0.200	0.196		mg/L		98	80 - 120	
Barium		0.200	0.200		mg/L		100	80 - 120	
Cadmium		0.200	0.202		mg/L		101	80 - 120	

TestAmerica Buffalo

Page 67 of 85

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-272885/2-A

Matrix: Water

Analysis Batch: 273231

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

Prep Batch: 272885

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium	0.200	0.205		mg/L		103	80 - 120	
Lead	0.200	0.202		mg/L		101	80 - 120	
Selenium	0.200	0.197		mg/L		99	80 - 120	
Silver	0.0500	0.0498		mg/L		100	80 - 120	

Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 273495

Lab Sample ID: MB 480-273042/1-A

Prep Type: Total/NA

Prep Batch: 273042

	IVIB IVI	/IB						
Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND	2.0	0.40	mg/Kg		11/04/15 12:07	11/06/15 00:56	1
Barium	ND	0.50	0.11	mg/Kg		11/04/15 12:07	11/06/15 00:56	1
Cadmium	ND	0.20	0.030	mg/Kg		11/04/15 12:07	11/06/15 00:56	1
Chromium	ND	0.50	0.20	mg/Kg		11/04/15 12:07	11/06/15 00:56	1
Lead	ND	1.0	0.24	mg/Kg		11/04/15 12:07	11/06/15 00:56	1
Selenium	ND	4.0	0.40	mg/Kg		11/04/15 12:07	11/06/15 00:56	1
Silver	ND	0.60	0.20	mg/Kg		11/04/15 12:07	11/06/15 00:56	1
<u></u>								

Lab Sample ID: LCSSRM 480-273042/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 273495

Prep Type: Total/NA

Prep Batch: 273042

nalyolo Batom 270-100	Spike	LCSSRM	LCSSRM				%Rec.
nalyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
rsenic	113	91.88		mg/Kg		81.3	69.7 - 142.
							5
arium	155	129.8		mg/Kg		83.7	72.9 - 127.
							1
admium	67.5	59.64		mg/Kg		88.4	73.2 - 126.
							8
nromium	164	139.2		mg/Kg		84.9	70.7 - 129.
							9
ead	90.1	81.49		mg/Kg		90.4	70.1 - 129.
							9
elenium	156	127.3		mg/Kg		81.6	67.3 - 132.
							1
lver	52.6	43.21		mg/Kg		82.2	66.7 - 133.
							5
	nalyte senic arium admium	Spike Added senic Added Added senic arium 155 admium 67.5 arromium 164 ead 90.1 elenium 156	Spike nalyte LCSSRM Added Result Result Policy senic 113 91.88 arium 155 129.8 admium 67.5 59.64 arromium 164 139.2 add 90.1 81.49 elenium 156 127.3	Spike nalyte LCSSRM Added senic LCSSRM Paulit Paul	spike senic LCSSRM Added Result senic LCSSRM Qualifier mg/Kg Unit mg/Kg arium 155 129.8 mg/Kg admium 67.5 59.64 mg/Kg aromium 164 139.2 mg/Kg add 90.1 81.49 mg/Kg elenium 156 127.3 mg/Kg	spike senic LCSSRM Added Result genic LCSSRM Qualifier mg/Kg Unit mg/Kg D arium 155 129.8 mg/Kg mg/Kg admium 67.5 59.64 mg/Kg mg/Kg arium 164 139.2 mg/Kg arium 90.1 81.49 mg/Kg arium 156 127.3 mg/Kg	spike nalyte LCSSRM Result Added LCSSRM Result Result Punit Unit Market D Market %Recession Result Punit Unit Market D Market %Recession Result Punit Unit Market D Market %Recession Result Punit Punit Punit D Market %Recession Result Punit Result Punit Unit Market D Market %Recession Result Result Punit Unit Market D Market %Recession Result Result Punit Punit Punit Punit Punit D Market %Recession Result Result Punit Punit Punit Punit Punit Punit Punit Punit Punit Punit Punit Punit Punit Punit Punit Punit Puni

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-273484/1-A

Matrix: Water

Analysis Batch: 273626

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 11/06/15 09:45 11/06/15 13:02 Mercury $\overline{\mathsf{ND}}$ 0.00020 0.00012 mg/L

TestAmerica Buffalo

Prep Type: Total/NA Prep Batch: 273484

Client Sample ID: Method Blank

QC Sample Results

LCS LCS

LCSD LCSD

Result Qualifier

MDL Unit

0.0081 mg/Kg

LCSSRM LCSSRM

10.47

Result Qualifier

0.00647

0.00618

RL

0.020

Spike

Added

8.37

Result Qualifier

Unit

mg/L

Unit

mg/L

Unit

mg/Kg

Spike

Added

Spike

Added

0.00667

MB MB

 $\overline{\mathsf{ND}}$

Result Qualifier

0.00667

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: LCS 480-273484/2-A **Matrix: Water**

Analysis Batch: 273626

Mercury

Analyte

Lab Sample ID: LCSD 480-273484/3-A

Matrix: Water Analysis Batch: 273626

Analyte

Mercury

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 480-273324/1-A

Matrix: Solid

Analysis Batch: 273457

Analyte Mercury

Lab Sample ID: LCSSRM 480-273324/2-A

Matrix: Solid

Analysis Batch: 273457

Analyte

Mercury

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 273484

%Rec. Limits

80 - 120 97

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

D %Rec

D %Rec

93

Prep Batch: 273484

%Rec. **RPD** Limits **RPD** Limit

80 - 120 20

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 273324

Prepared Analyzed Dil Fac 11/05/15 14:05 11/05/15 16:37

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 273324

%Rec. Limits

%Rec 125.0 51.3 - 148.

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

GC/MS VOA

Prep Batch: 272870

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90365-1	SWMU4-SURFACE-SS-01	Total/NA	Solid	5035A	
480-90365-2	SWMU1-SB11-SS-104	Total/NA	Solid	5035A	
480-90365-3	SWMU1-SB12-SS-105	Total/NA	Solid	5035A	
480-90365-4	SWMU1-SB13-SS-106	Total/NA	Solid	5035A	
480-90365-5	SWMU1-SB14-SS-107	Total/NA	Solid	5035A	
480-90365-6	SWMU4-SB03-SS-100	Total/NA	Solid	5035A	
480-90365-7	SWMU4-SB04-SS-101	Total/NA	Solid	5035A	
480-90365-8	SWMU1-SB11-SS-201	Total/NA	Solid	5035A	
LCS 480-272870/1-A	Lab Control Sample	Total/NA	Solid	5035A	
LCSD 480-272870/2-A	Lab Control Sample Dup	Total/NA	Solid	5035A	
MB 480-272870/3-A	Method Blank	Total/NA	Solid	5035A	

Analysis Batch: 273681

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90365-1	SWMU4-SURFACE-SS-01	Total/NA	Solid	8260C	272870
480-90365-2	SWMU1-SB11-SS-104	Total/NA	Solid	8260C	272870
480-90365-3	SWMU1-SB12-SS-105	Total/NA	Solid	8260C	272870
480-90365-4	SWMU1-SB13-SS-106	Total/NA	Solid	8260C	272870
480-90365-5	SWMU1-SB14-SS-107	Total/NA	Solid	8260C	272870
480-90365-6	SWMU4-SB03-SS-100	Total/NA	Solid	8260C	272870
480-90365-7	SWMU4-SB04-SS-101	Total/NA	Solid	8260C	272870
480-90365-8	SWMU1-SB11-SS-201	Total/NA	Solid	8260C	272870
LCS 480-272870/1-A	Lab Control Sample	Total/NA	Solid	8260C	272870
LCSD 480-272870/2-A	Lab Control Sample Dup	Total/NA	Solid	8260C	272870
MB 480-272870/3-A	Method Blank	Total/NA	Solid	8260C	272870

Analysis Batch: 274584

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90365-9	EB-05	Total/NA	Water	8260C	<u> </u>
480-90365-10	TB-05	Total/NA	Water	8260C	
LCS 480-274584/4	Lab Control Sample	Total/NA	Water	8260C	
MB 480-274584/6	Method Blank	Total/NA	Water	8260C	

GC/MS Semi VOA

Prep Batch: 272953

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90365-1	SWMU4-SURFACE-SS-01	Total/NA	Solid	3550C	_
480-90365-2	SWMU1-SB11-SS-104	Total/NA	Solid	3550C	
480-90365-3	SWMU1-SB12-SS-105	Total/NA	Solid	3550C	
480-90365-4	SWMU1-SB13-SS-106	Total/NA	Solid	3550C	
480-90365-5	SWMU1-SB14-SS-107	Total/NA	Solid	3550C	
480-90365-6	SWMU4-SB03-SS-100	Total/NA	Solid	3550C	
480-90365-7	SWMU4-SB04-SS-101	Total/NA	Solid	3550C	
480-90365-8	SWMU1-SB11-SS-201	Total/NA	Solid	3550C	
LCS 480-272953/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-272953/1-A	Method Blank	Total/NA	Solid	3550C	

Page 70 of 85

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

GC/MS Semi VOA (Continued)

Prep Batch: 273098

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90365-9	EB-05	Total/NA	Water	3510C	
LCS 480-273098/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 480-273098/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 273999

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90365-9	EB-05	Total/NA	Water	8270D	273098
LCS 480-273098/2-A	Lab Control Sample	Total/NA	Water	8270D	273098
MB 480-273098/1-A	Method Blank	Total/NA	Water	8270D	273098

Analysis Batch: 274065

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90365-1	SWMU4-SURFACE-SS-01	Total/NA	Solid	8270D	272953
480-90365-2	SWMU1-SB11-SS-104	Total/NA	Solid	8270D	272953
480-90365-3	SWMU1-SB12-SS-105	Total/NA	Solid	8270D	272953
480-90365-4	SWMU1-SB13-SS-106	Total/NA	Solid	8270D	272953
480-90365-5	SWMU1-SB14-SS-107	Total/NA	Solid	8270D	272953
480-90365-6	SWMU4-SB03-SS-100	Total/NA	Solid	8270D	272953
480-90365-7	SWMU4-SB04-SS-101	Total/NA	Solid	8270D	272953
LCS 480-272953/2-A	Lab Control Sample	Total/NA	Solid	8270D	272953
MB 480-272953/1-A	Method Blank	Total/NA	Solid	8270D	272953

Analysis Batch: 275170

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90365-8	SWMU1-SB11-SS-201	Total/NA	Solid	8270D	272953

GC VOA

Leach Batch: 273254

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90365-1	SWMU4-SURFACE-SS-01	Soluble	Solid	DI Leach	
480-90365-2	SWMU1-SB11-SS-104	Soluble	Solid	DI Leach	
480-90365-3	SWMU1-SB12-SS-105	Soluble	Solid	DI Leach	
480-90365-4	SWMU1-SB13-SS-106	Soluble	Solid	DI Leach	
480-90365-5	SWMU1-SB14-SS-107	Soluble	Solid	DI Leach	
480-90365-6	SWMU4-SB03-SS-100	Soluble	Solid	DI Leach	
480-90365-7	SWMU4-SB04-SS-101	Soluble	Solid	DI Leach	
480-90365-8	SWMU1-SB11-SS-201	Soluble	Solid	DI Leach	
LCS 480-273254/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
MB 480-273254/1-A	Method Blank	Soluble	Solid	DI Leach	

Analysis Batch: 273566

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90365-1	SWMU4-SURFACE-SS-01	Soluble	Solid	8015D	273254
480-90365-2	SWMU1-SB11-SS-104	Soluble	Solid	8015D	273254
480-90365-3	SWMU1-SB12-SS-105	Soluble	Solid	8015D	273254
480-90365-4	SWMU1-SB13-SS-106	Soluble	Solid	8015D	273254
480-90365-5	SWMU1-SB14-SS-107	Soluble	Solid	8015D	273254
480-90365-6	SWMU4-SB03-SS-100	Soluble	Solid	8015D	273254
480-90365-7	SWMU4-SB04-SS-101	Soluble	Solid	8015D	273254

TestAmerica Buffalo

11/18/2015

Page 71 of 85

6

3

4

6

9

11

13

14

QC Association Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

GC VOA (Continued)

Analysis Batch: 273566 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90365-8	SWMU1-SB11-SS-201	Soluble	Solid	8015D	273254
LCS 480-273254/2-A	Lab Control Sample	Soluble	Solid	8015D	273254
MB 480-273254/1-A	Method Blank	Soluble	Solid	8015D	273254

Analysis Batch: 274145

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90365-9	EB-05	Total/NA	Water	8015D	
480-90365-9 MS	EB-05	Total/NA	Water	8015D	
480-90365-9 MSD	EB-05	Total/NA	Water	8015D	
LCS 480-274145/5	Lab Control Sample	Total/NA	Water	8015D	
MB 480-274145/4	Method Blank	Total/NA	Water	8015D	

GC Semi VOA

Prep Batch: 272951

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90365-1	SWMU4-SURFACE-SS-01	Total/NA	Solid	3550C	
480-90365-1 MS	SWMU4-SURFACE-SS-01	Total/NA	Solid	3550C	
480-90365-1 MSD	SWMU4-SURFACE-SS-01	Total/NA	Solid	3550C	
480-90365-2	SWMU1-SB11-SS-104	Total/NA	Solid	3550C	
480-90365-3	SWMU1-SB12-SS-105	Total/NA	Solid	3550C	
480-90365-4	SWMU1-SB13-SS-106	Total/NA	Solid	3550C	
480-90365-5	SWMU1-SB14-SS-107	Total/NA	Solid	3550C	
480-90365-6	SWMU4-SB03-SS-100	Total/NA	Solid	3550C	
480-90365-7	SWMU4-SB04-SS-101	Total/NA	Solid	3550C	
480-90365-8	SWMU1-SB11-SS-201	Total/NA	Solid	3550C	
LCS 480-272951/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-272951/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 273113

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90365-1	SWMU4-SURFACE-SS-01	Total/NA	Solid	8082A	272951
480-90365-1 MS	SWMU4-SURFACE-SS-01	Total/NA	Solid	8082A	272951
480-90365-1 MSD	SWMU4-SURFACE-SS-01	Total/NA	Solid	8082A	272951
480-90365-2	SWMU1-SB11-SS-104	Total/NA	Solid	8082A	272951
480-90365-3	SWMU1-SB12-SS-105	Total/NA	Solid	8082A	272951
480-90365-4	SWMU1-SB13-SS-106	Total/NA	Solid	8082A	272951
480-90365-5	SWMU1-SB14-SS-107	Total/NA	Solid	8082A	272951
480-90365-6	SWMU4-SB03-SS-100	Total/NA	Solid	8082A	272951
480-90365-7	SWMU4-SB04-SS-101	Total/NA	Solid	8082A	272951
480-90365-8	SWMU1-SB11-SS-201	Total/NA	Solid	8082A	272951
LCS 480-272951/2-A	Lab Control Sample	Total/NA	Solid	8082A	272951
MB 480-272951/1-A	Method Blank	Total/NA	Solid	8082A	272951

Prep Batch: 273116

Lab Sample ID 480-90365-9	Client Sample ID EB-05	Prep Type Total/NA	Matrix Water	Method 3510C	Prep Batch
LCS 480-273116/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 480-273116/1-A	Method Blank	Total/NA	Water	3510C	

TestAmerica Buffalo

Page 72 of 85

9

3

4

6

7

9

4

12

14

QC Association Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

GC Semi VOA (Continued)

Analysis Batch: 273204

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90365-9	EB-05	Total/NA	Water	8082A	273116
LCS 480-273116/2-A	Lab Control Sample	Total/NA	Water	8082A	273116
MB 480-273116/1-A	Method Blank	Total/NA	Water	8082A	273116

Metals

Prep Batch: 272885

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90365-9	EB-05	Total/NA	Water	3005A	
LCS 480-272885/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-272885/1-A	Method Blank	Total/NA	Water	3005A	

Prep Batch: 273042

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90365-1	SWMU4-SURFACE-SS-01	Total/NA	Solid	3050B	
480-90365-2	SWMU1-SB11-SS-104	Total/NA	Solid	3050B	
480-90365-3	SWMU1-SB12-SS-105	Total/NA	Solid	3050B	
480-90365-4	SWMU1-SB13-SS-106	Total/NA	Solid	3050B	
480-90365-5	SWMU1-SB14-SS-107	Total/NA	Solid	3050B	
480-90365-6	SWMU4-SB03-SS-100	Total/NA	Solid	3050B	
480-90365-7	SWMU4-SB04-SS-101	Total/NA	Solid	3050B	
480-90365-8	SWMU1-SB11-SS-201	Total/NA	Solid	3050B	
LCSSRM 480-273042/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-273042/1-A	Method Blank	Total/NA	Solid	3050B	

Analysis Batch: 273231

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90365-9	EB-05	Total/NA	Water	6010C	272885
LCS 480-272885/2-A	Lab Control Sample	Total/NA	Water	6010C	272885
MB 480-272885/1-A	Method Blank	Total/NA	Water	6010C	272885

Prep Batch: 273324

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90365-1	SWMU4-SURFACE-SS-01	Total/NA	Solid	7471B	
480-90365-2	SWMU1-SB11-SS-104	Total/NA	Solid	7471B	
480-90365-3	SWMU1-SB12-SS-105	Total/NA	Solid	7471B	
480-90365-4	SWMU1-SB13-SS-106	Total/NA	Solid	7471B	
480-90365-5	SWMU1-SB14-SS-107	Total/NA	Solid	7471B	
480-90365-6	SWMU4-SB03-SS-100	Total/NA	Solid	7471B	
480-90365-7	SWMU4-SB04-SS-101	Total/NA	Solid	7471B	
480-90365-8	SWMU1-SB11-SS-201	Total/NA	Solid	7471B	
LCSSRM 480-273324/2-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 480-273324/1-A	Method Blank	Total/NA	Solid	7471B	

Analysis Batch: 273457

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90365-1	SWMU4-SURFACE-SS-01	Total/NA	Solid	7471B	273324
480-90365-2	SWMU1-SB11-SS-104	Total/NA	Solid	7471B	273324
480-90365-3	SWMU1-SB12-SS-105	Total/NA	Solid	7471B	273324
480-90365-4	SWMU1-SB13-SS-106	Total/NA	Solid	7471B	273324

Page 73 of 85

TestAmerica Buffalo

11/18/2015

6

7

_

10

11

13

14

QC Association Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Metals (Continued)

Analysis Batch: 273457 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90365-5	SWMU1-SB14-SS-107	Total/NA	Solid	7471B	273324
480-90365-6	SWMU4-SB03-SS-100	Total/NA	Solid	7471B	273324
480-90365-7	SWMU4-SB04-SS-101	Total/NA	Solid	7471B	273324
480-90365-8	SWMU1-SB11-SS-201	Total/NA	Solid	7471B	273324
LCSSRM 480-273324/2-A	Lab Control Sample	Total/NA	Solid	7471B	273324
MB 480-273324/1-A	Method Blank	Total/NA	Solid	7471B	273324

Prep Batch: 273484

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90365-9	EB-05	Total/NA	Water	7470A	
LCS 480-273484/2-A	Lab Control Sample	Total/NA	Water	7470A	
LCSD 480-273484/3-A	Lab Control Sample Dup	Total/NA	Water	7470A	
MB 480-273484/1-A	Method Blank	Total/NA	Water	7470A	

Analysis Batch: 273495

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90365-1	SWMU4-SURFACE-SS-01	Total/NA	Solid	6010C	273042
480-90365-2	SWMU1-SB11-SS-104	Total/NA	Solid	6010C	273042
480-90365-3	SWMU1-SB12-SS-105	Total/NA	Solid	6010C	273042
480-90365-4	SWMU1-SB13-SS-106	Total/NA	Solid	6010C	273042
480-90365-5	SWMU1-SB14-SS-107	Total/NA	Solid	6010C	273042
480-90365-6	SWMU4-SB03-SS-100	Total/NA	Solid	6010C	273042
480-90365-7	SWMU4-SB04-SS-101	Total/NA	Solid	6010C	273042
480-90365-8	SWMU1-SB11-SS-201	Total/NA	Solid	6010C	273042
LCSSRM 480-273042/2-A	Lab Control Sample	Total/NA	Solid	6010C	273042
MB 480-273042/1-A	Method Blank	Total/NA	Solid	6010C	273042

Analysis Batch: 273626

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90365-9	EB-05	Total/NA	Water	7470A	273484
LCS 480-273484/2-A	Lab Control Sample	Total/NA	Water	7470A	273484
LCSD 480-273484/3-A	Lab Control Sample Dup	Total/NA	Water	7470A	273484
MB 480-273484/1-A	Method Blank	Total/NA	Water	7470A	273484

General Chemistry

Analysis Batch: 272914

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90365-2	SWMU1-SB11-SS-104	Total/NA	Solid	Moisture	_
480-90365-3	SWMU1-SB12-SS-105	Total/NA	Solid	Moisture	
480-90365-4	SWMU1-SB13-SS-106	Total/NA	Solid	Moisture	
480-90365-5	SWMU1-SB14-SS-107	Total/NA	Solid	Moisture	
480-90365-6	SWMU4-SB03-SS-100	Total/NA	Solid	Moisture	
480-90365-7	SWMU4-SB04-SS-101	Total/NA	Solid	Moisture	

Analysis Batch: 273185

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90365-1	SWMU4-SURFACE-SS-01	Total/NA	Solid	Moisture	
480-90365-8	SWMU1-SB11-SS-201	Total/NA	Solid	Moisture	

TestAmerica Buffalo

Page 74 of 85

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU4-SURFACE-SS-01 Date Collected: 11/02/15 09:30

Lab Sample ID: 480-90365-1

Matrix: Solid

Date Received: 11/03/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	273185	11/04/15 23:17	CMK	TAL BUF

Client Sample ID: SWMU4-SURFACE-SS-01 Lab Sample ID: 480-90365-1

Date Collected: 11/02/15 09:30 **Matrix: Solid** Date Received: 11/03/15 09:00 Percent Solids: 93.8

-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			272870	11/03/15 16:16	LCH	TAL BUF
Total/NA	Analysis	8260C		1	273681	11/07/15 02:27	CDC	TAL BUF
Total/NA	Prep	3550C			272953	11/04/15 07:52	TRG	TAL BUF
Total/NA	Analysis	8270D		1	274065	11/10/15 17:34	LMW	TAL BUF
Soluble	Leach	DI Leach			273254	11/05/15 09:48	AJM	TAL BUF
Soluble	Analysis	8015D		1	273566	11/06/15 12:42	AJM	TAL BUF
Total/NA	Prep	3550C			272951	11/04/15 07:49	CAM	TAL BUF
Total/NA	Analysis	8082A		1	273113	11/04/15 16:46	JMO	TAL BUF
Total/NA	Prep	3050B			273042	11/04/15 12:07	CNS	TAL BUF
Total/NA	Analysis	6010C		1	273495	11/06/15 01:27	SLB	TAL BUF
Total/NA	Prep	7471B			273324	11/05/15 14:05	TAS	TAL BUF
Total/NA	Analysis	7471B		1	273457	11/05/15 16:55	TAS	TAL BUF

Client Sample ID: SWMU1-SB11-SS-104 Lab Sample ID: 480-90365-2

Date Collected: 11/02/15 11:45 **Matrix: Solid**

Date Received: 11/03/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	272914	11/03/15 22:30	CMK	TAL BUF

Client Sample ID: SWMU1-SB11-SS-104 Lab Sample ID: 480-90365-2

Date Collected: 11/02/15 11:45 Matrix: Solid Date Received: 11/03/15 09:00 Percent Solids: 88.8

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			272870	11/03/15 16:16	LCH	TAL BUF
Total/NA	Analysis	8260C		1	273681	11/07/15 02:54	CDC	TAL BUF
Total/NA	Prep	3550C			272953	11/04/15 07:52	TRG	TAL BUF
Total/NA	Analysis	8270D		1	274065	11/10/15 18:01	LMW	TAL BUF
Soluble	Leach	DI Leach			273254	11/05/15 09:48	AJM	TAL BUF
Soluble	Analysis	8015D		1	273566	11/06/15 12:50	AJM	TAL BUF
Total/NA	Prep	3550C			272951	11/04/15 07:49	CAM	TAL BUF
Total/NA	Analysis	8082A		1	273113	11/04/15 17:03	JMO	TAL BUF
Total/NA	Prep	3050B			273042	11/04/15 12:07	CNS	TAL BUF
Total/NA	Analysis	6010C		1	273495	11/06/15 01:31	SLB	TAL BUF
Total/NA	Prep	7471B			273324	11/05/15 14:05	TAS	TAL BUF

TestAmerica Buffalo

Page 75 of 85

11/18/2015

10

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU1-SB11-SS-104

Date Collected: 11/02/15 11:45 Date Received: 11/03/15 09:00

Lab Sample ID: 480-90365-2

Matrix: Solid Percent Solids: 88.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7471B			273457	11/05/15 16:56	TAS	TAL BUF

Client Sample ID: SWMU1-SB12-SS-105

Date Collected: 11/02/15 12:05

Date Received: 11/03/15 09:00

Lab Sample ID: 480-90365-3

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	272914	11/03/15 22:30	CMK	TAL BUF

Client Sample ID: SWMU1-SB12-SS-105 Lab Sample ID: 480-90365-3

Date Collected: 11/02/15 12:05 **Matrix: Solid** Date Received: 11/03/15 09:00 Percent Solids: 88.9

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA 272870 11/03/15 16:16 Prep 5035A LCH TAL BUF Total/NA 8260C 273681 11/07/15 03:21 CDC TAL BUF Analysis 1 Total/NA Prep 3550C 272953 11/04/15 07:52 TRG TAL BUF Total/NA Analysis 8270D 1 274065 11/10/15 18:27 LMW **TAL BUF** Soluble 273254 11/05/15 09:48 AJM **TAL BUF** Leach DI Leach 8015D Soluble Analysis 1 273566 11/06/15 12:58 AJM TAL BUF Total/NA Prep 3550C 272951 11/04/15 07:49 CAM **TAL BUF** Total/NA Analysis 8082A 273113 11/04/15 17:19 JMO TAL BUF Total/NA Prep 3050B 273042 11/04/15 12:07 CNS TAL BUF Total/NA Analysis 6010C 1 273495 11/06/15 01:34 SLB TAL BUF Total/NA Prep 7471B 273324 11/05/15 14:05 TAS TAL BUF Total/NA Analysis 7471B 1 273457 11/05/15 16:58 TAS TAL BUF

Client Sample ID: SWMU1-SB13-SS-106 Lab Sample ID: 480-90365-4

Date Collected: 11/02/15 13:35 **Matrix: Solid**

Date Received: 11/03/15 09:00

Dilution Batch Batch Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis Moisture 272914 11/03/15 22:30 CMK TAL BUF

Client Sample ID: SWMU1-SB13-SS-106 Lab Sample ID: 480-90365-4

Date Collected: 11/02/15 13:35 Matrix: Solid Date Received: 11/03/15 09:00 Percent Solids: 85.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			272870	11/03/15 16:16	LCH	TAL BUF
Total/NA	Analysis	8260C		1	273681	11/07/15 03:48	CDC	TAL BUF
Total/NA	Prep	3550C			272953	11/04/15 07:52	TRG	TAL BUF
Total/NA	Analysis	8270D		1	274065	11/10/15 18:53	LMW	TAL BUF

TestAmerica Buffalo

Page 76 of 85

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU1-SB13-SS-106

Date Collected: 11/02/15 13:35 Date Received: 11/03/15 09:00

Analysis

Batch

Type

Analysis

7471B

Batch

Method

Moisture

Lab Sample ID: 480-90365-4

Matrix: Solid Percent Solids: 85.1

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Soluble Leach DI Leach 273254 11/05/15 09:48 AJM TAL BUF Soluble 8015D 273566 11/06/15 13:05 AJM Analysis TAL BUF 1 Total/NA Prep 3550C 272951 11/04/15 07:49 CAM **TAL BUF** Total/NA 8082A 273113 11/04/15 17:36 JMO TAL BUF Analysis 1 Total/NA 3050B 273042 11/04/15 12:07 CNS **TAL BUF** Prep Total/NA Analysis 6010C 1 273495 11/06/15 01:37 SLB TAL BUF Total/NA 7471B 273324 11/05/15 14:05 TAS TAL BUF Prep

Client Sample ID: SWMU1-SB14-SS-107 Lab Sample ID: 480-90365-5

Batch

Number

1

Dilution

Factor

Run

273457 11/05/15 16:59 TAS

Prepared

Date Collected: 11/02/15 14:10 Date Received: 11/03/15 09:00

Total/NA

Prep Type

Total/NA

Matrix: Solid

or Analyzed Analyst 272914 11/03/15 22:30 CMK TAL BUF

TAL BUF

Client Sample ID: SWMU1-SB14-SS-107

Date Collected: 11/02/15 14:10 Date Received: 11/03/15 09:00

Lab Sample ID: 480-90365-5

Matrix: Solid Percent Solids: 86.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			272870	11/03/15 16:16	LCH	TAL BUF
Total/NA	Analysis	8260C		1	273681	11/07/15 04:15	CDC	TAL BUF
Total/NA	Prep	3550C			272953	11/04/15 07:52	TRG	TAL BUF
Total/NA	Analysis	8270D		1	274065	11/10/15 19:20	LMW	TAL BUF
Soluble	Leach	DI Leach			273254	11/05/15 09:48	AJM	TAL BUF
Soluble	Analysis	8015D		1	273566	11/06/15 13:13	AJM	TAL BUF
Total/NA	Prep	3550C			272951	11/04/15 07:49	CAM	TAL BUF
Total/NA	Analysis	8082A		1	273113	11/04/15 17:53	JMO	TAL BUF
Total/NA	Prep	3050B			273042	11/04/15 12:07	CNS	TAL BUF
Total/NA	Analysis	6010C		1	273495	11/06/15 01:40	SLB	TAL BUF
Total/NA	Prep	7471B			273324	11/05/15 14:05	TAS	TAL BUF
Total/NA	Analysis	7471B		1	273457	11/05/15 17:01	TAS	TAL BUF

Client Sample ID: SWMU4-SB03-SS-100

Date Collected: 11/02/15 14:40

Date Received: 11/03/15 09:00

Lab Sample ID: 480-90365-6

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	272914	11/03/15 22:30	CMK	TAL BUF

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU4-SB03-SS-100

Date Collected: 11/02/15 14:40 Date Received: 11/03/15 09:00

Lab Sample ID: 480-90365-6

Matrix: Solid Percent Solids: 86.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A	 -		272870	11/03/15 16:16	LCH	TAL BUF
Total/NA	Analysis	8260C		1	273681	11/07/15 04:43	CDC	TAL BUF
Total/NA	Prep	3550C			272953	11/04/15 07:52	TRG	TAL BUF
Total/NA	Analysis	8270D		1	274065	11/10/15 19:46	LMW	TAL BUF
Soluble	Leach	DI Leach			273254	11/05/15 09:48	AJM	TAL BUF
Soluble	Analysis	8015D		1	273566	11/06/15 13:21	AJM	TAL BUF
Total/NA	Prep	3550C			272951	11/04/15 07:49	CAM	TAL BUF
Total/NA	Analysis	8082A		1	273113	11/04/15 18:10	JMO	TAL BUF
Total/NA	Prep	3050B			273042	11/04/15 12:07	CNS	TAL BUF
Total/NA	Analysis	6010C		1	273495	11/06/15 01:53	SLB	TAL BUF
Total/NA	Prep	7471B			273324	11/05/15 14:05	TAS	TAL BUF
Total/NA	Analysis	7471B		1	273457	11/05/15 17:02	TAS	TAL BUF

Client Sample ID: SWMU4-SB04-SS-101 Lab Sample ID: 480-90365-7

Date Collected: 11/02/15 15:00

Date Received: 11/03/15 09:00

Matrix: Solid

Batch Batch Dilution Batch Prepared Method **Factor** Number or Analyzed **Prep Type** Type Run Analyst Total/NA Analysis Moisture 272914 11/03/15 22:30 CMK TAL BUF

Client Sample ID: SWMU4-SB04-SS-101

Date Collected: 11/02/15 15:00

Date Received: 11/03/15 09:00

Lab Sample ID: 480-90365-7 **Matrix: Solid**

Percent Solids: 91.9

Prep Type	Batch	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	- Type Prep	5035A	Kuii	- 	272870	11/03/15 16:16		TAL BUF
Total/NA	Analysis	8260C		1	273681	11/07/15 05:10		TAL BUF
Total/NA	Prep	3550C			272953	11/04/15 07:52	TRG	TAL BUF
Total/NA	Analysis	8270D		1	274065	11/10/15 20:12	LMW	TAL BUF
Soluble	Leach	DI Leach			273254	11/05/15 09:48	AJM	TAL BUF
Soluble	Analysis	8015D		1	273566	11/06/15 13:29	AJM	TAL BUF
Total/NA	Prep	3550C			272951	11/04/15 07:49	CAM	TAL BUF
Total/NA	Analysis	8082A		1	273113	11/04/15 19:00	JMO	TAL BUF
Total/NA	Prep	3050B			273042	11/04/15 12:07	CNS	TAL BUF
Total/NA	Analysis	6010C		1	273495	11/06/15 01:56	SLB	TAL BUF
Total/NA	Prep	7471B			273324	11/05/15 14:05	TAS	TAL BUF
Total/NA	Analysis	7471B		1	273457	11/05/15 17:04	TAS	TAL BUF

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU1-SB11-SS-201

Lab Sample ID: 480-90365-8 Date Collected: 11/02/15 11:45

Matrix: Solid

Date Received: 11/03/15 09:00

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Total/NA TAL BUF Analysis Moisture 273185 11/04/15 23:17 CMK

Client Sample ID: SWMU1-SB11-SS-201 Lab Sample ID: 480-90365-8

Date Collected: 11/02/15 11:45 Matrix: Solid Date Received: 11/03/15 09:00 Percent Solids: 89.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			272870	11/03/15 16:16	LCH	TAL BUF
Total/NA	Analysis	8260C		1	273681	11/07/15 05:38	CDC	TAL BUF
Total/NA	Prep	3550C			272953	11/04/15 07:52	TRG	TAL BUF
Total/NA	Analysis	8270D		1	275170	11/16/15 16:53	LMW	TAL BUF
Soluble	Leach	DI Leach			273254	11/05/15 09:48	AJM	TAL BUF
Soluble	Analysis	8015D		1	273566	11/06/15 13:37	AJM	TAL BUF
Total/NA	Prep	3550C			272951	11/04/15 07:49	CAM	TAL BUF
Total/NA	Analysis	8082A		1	273113	11/04/15 19:17	JMO	TAL BUF
Total/NA	Prep	3050B			273042	11/04/15 12:07	CNS	TAL BUF
Total/NA	Analysis	6010C		1	273495	11/06/15 02:00	SLB	TAL BUF
Total/NA	Prep	7471B			273324	11/05/15 14:05	TAS	TAL BUF
Total/NA	Analysis	7471B		1	273457	11/05/15 17:07	TAS	TAL BUF

Client Sample ID: EB-05 Lab Sample ID: 480-90365-9 Date Collected: 11/02/15 16:00 **Matrix: Water**

Date Received: 11/03/15 09:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	274584	11/12/15 19:42	JWG	TAL BUF
Total/NA	Prep	3510C			273098	11/04/15 14:50	AVW	TAL BUF
Total/NA	Analysis	8270D		1	273999	11/10/15 14:29	DMR	TAL BUF
Total/NA	Analysis	8015D		1	274145	11/10/15 12:21	AJM	TAL BUF
Total/NA	Prep	3510C			273116	11/04/15 15:36	CPH	TAL BUF
Total/NA	Analysis	8082A		1	273204	11/05/15 10:36	KS	TAL BUF
Total/NA	Prep	3005A			272885	11/04/15 08:15	CNS	TAL BUF
Total/NA	Analysis	6010C		1	273231	11/04/15 18:46	SLB	TAL BUF
Total/NA	Prep	7470A			273484	11/06/15 09:45	TAS	TAL BUF
Total/NA	Analysis	7470A		1	273626	11/06/15 13:08	TAS	TAL BUF

Client Sample ID: TB-05 Lab Sample ID: 480-90365-10

Date Collected: 11/02/15 00:00 **Matrix: Water** Date Received: 11/03/15 09:00

<u> </u>	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			274584	11/12/15 20:08	JWG	TAL BUF

Lab Chronicle

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

10

11

12

11

Certification Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
New York	NELAP		2	10026	03-31-16
The following analyte	s are included in this repo	rt, but certification is	s not offered by the	governing authority:	
Analysis Method	Prep Method	Matrix	Anal	yte	
8015D		Solid	2-Bu	tanol	
8015D		Solid	Isop	ropyl alcohol	
8015D		Solid	Meth	nanol	
8015D		Solid	n-Bu	tanol	
8015D		Solid	Prop	anol	
8015D		Water	2-Bu	tanol	
8015D		Water	Isop	ropyl alcohol	
8015D		Water	Meth	nanol	
8015D		Water	n-Bu	tanol	
8015D		Water	Prop	anol	
8260C		Water	Tetra	ahydrofuran	
8260C	5035A	Solid	Tetra	ahydrofuran	
8270D	3510C	Water	Dime	ethylformamide	
8270D	3550C	Solid	Dime	ethylformamide	
Moisture		Solid	Pero	ent Moisture	
Moisture		Solid	Pero	ent Solids	

4

5

0

0

10

11

1/

Method Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
8015D	Nonhalogenated Organic Compounds - Direct Injection (GC)	SW846	TAL BUF
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
7471B	Mercury (CVAA)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

0

8

9

12

13

Sample Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90365-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-90365-1	SWMU4-SURFACE-SS-01	Solid	11/02/15 09:30	11/03/15 09:00
480-90365-2	SWMU1-SB11-SS-104	Solid	11/02/15 11:45	11/03/15 09:00
480-90365-3	SWMU1-SB12-SS-105	Solid	11/02/15 12:05	11/03/15 09:00
480-90365-4	SWMU1-SB13-SS-106	Solid	11/02/15 13:35	11/03/15 09:00
480-90365-5	SWMU1-SB14-SS-107	Solid	11/02/15 14:10	11/03/15 09:00
480-90365-6	SWMU4-SB03-SS-100	Solid	11/02/15 14:40	11/03/15 09:00
480-90365-7	SWMU4-SB04-SS-101	Solid	11/02/15 15:00	11/03/15 09:00
480-90365-8	SWMU1-SB11-SS-201	Solid	11/02/15 11:45	11/03/15 09:00
480-90365-9	EB-05	Water	11/02/15 16:00	11/03/15 09:00
480-90365-10	TB-05	Water	11/02/15 00:00	11/03/15 09:00

3

4

7

0

11

40

14

Client: Woodard & Curran, Inc.

Job Number: 480-90365-1

Login Number: 90365 List Source: TestAmerica Buffalo

List Number: 1

Creator: Janish, Carl M

Creator. Jamish, Carr W		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	w+c
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-90447-1 Client Project/Site: Rouses Point

For:

Woodard & Curran, Inc. 64 Maple Street Rouses Point, New York 12979

Attn: Don Weeks

Authorized for release by: 11/18/2015 6:15:01 PM

Ane Putzu

Anne Pridgeon, Project Management Assistant I anne.pridgeon@testamericainc.com

Designee for

Becky Mason, Project Manager II (413)572-4000

becky.mason@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	5
Detection Summary	7
Client Sample Results	10
Surrogate Summary	48
QC Sample Results	51
QC Association Summary	75
Lab Chronicle	81
Certification Summary	86
Method Summary	87
Sample Summary	88
Chain of Custody	89
Receipt Checklists	90

4

6

8

9

11

12

14

Definitions/Glossary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
*	RPD of the LCS and LCSD exceeds the control limits
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS VOA TICs

Qualifier	Qualifier Description	
J	Indicates an Estimated Value for TICs	
Т	Result is a tentatively identified compound (TIC) and an estimated value.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	

GC/MS Semi VOA

Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
E	Result exceeded calibration range.	

GC/MS Semi VOA TICs

Qualifier	Qualifier Description
J	Indicates an Estimated Value for TICs
N	Presumptive evidence of material.
Т	Result is a tentatively identified compound (TIC) and an estimated value.
CCVOA	

GC VOA

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Metals	

Wietais

RL

RPD

Quaimer	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

TestAmerica Buffalo

Page 3 of 90

9

3

6

4

a

10

12

4 A

1 0

11/18/2015

Definitions/Glossary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Glossary (Continued)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
--------------	---

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

9

4

e

9

11

10

14

Case Narrative

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Job ID: 480-90447-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-90447-1

Comments

No additional comments.

Receipt

The samples were received on 11/4/2015 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.7° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-273681 recovered above the upper control limit for 1,1,1-Trichloroethane, 1,1,2,2-Tetrachloroethane, Dibromochloromethane, trans-1,3-Dichloropropene and Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: SWMU4-SB05-SS-102 (480-90447-1), SWMU4-SB06-SS-103 (480-90447-2), SWMU4-SB07-SS-104 (480-90447-3), SWMU4-SB08-SS-105 (480-90447-4), SWMU12-SB03-SS-100 (480-90447-5), SWMU12-SB04-SS-101 (480-90447-6), SWMU12-SB05-SS-102 (480-90447-7) and SWMU12-SB06-SS-103 (480-90447-8).

Method(s) 8260C: The laboratory control sample duplicate (LCSD) for preparation batch 273171 recovered outside control limits for the following analytes: 1,2-Dibromo-3-Chloropropane, 2-Hexanone and Tetrahydrofuran. These analytes were biased high in the LCSD and were not detected in the associated samples; therefore, the data have been reported. The following samples are impacted: SWMU4-SB05-SS-102 (480-90447-1), SWMU4-SB06-SS-103 (480-90447-2), SWMU4-SB07-SS-104 (480-90447-3), SWMU4-SB08-SS-105 (480-90447-4), SWMU12-SB03-SS-100 (480-90447-5), SWMU12-SB04-SS-101 (480-90447-6), SWMU12-SB05-SS-102 (480-90447-7) and SWMU12-SB06-SS-103 (480-90447-8).

Method(s) 8260C: The %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch 480-273171 recovered outside control limits for the following analytes: 1,4-Dioxane and 2-Hexanone. The following samples are impacted: SWMU4-SB05-SS-102 (480-90447-1), SWMU4-SB06-SS-103 (480-90447-2), SWMU4-SB07-SS-104 (480-90447-3), SWMU4-SB08-SS-105 (480-90447-4), SWMU12-SB03-SS-100 (480-90447-5), SWMU12-SB04-SS-101 (480-90447-6), SWMU12-SB05-SS-102 (480-90447-7) and SWMU12-SB06-SS-103 (480-90447-8).

Method(s) 8260C: The method blank for preparation batch 480-273171 and analytical batch 480-273681 contained 1,2,3-Trichlorobenzene, 1,2,4-Trichlorobenzene, 2-Hexanone, 4-Methyl-2-pentanone (MIBK), Acetone and Methylene Chloride above the method detection limit. These target analytes concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed. The following samples are impacted: SWMU4-SB05-SS-102 (480-90447-1), SWMU4-SB06-SS-103 (480-90447-2), SWMU4-SB07-SS-104 (480-90447-3), SWMU4-SB08-SS-105 (480-90447-4), SWMU12-SB03-SS-100 (480-90447-5). SWMU12-SB04-SS-101 (480-90447-6) and SWMU12-SB05-SS-102 (480-90447-7).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-273828 recovered above the upper control limit for 2-Hexanone and Dibromochloromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: SWMU12-SB06-SS-103 (480-90447-8).

Method(s) 8260C: The method blank for 480-273681 contained 1,2,3-Trichlorobenzene, 1,2,4-Trichlorobenzene, 2-Hexanone, 4-Methyl-2-pentanone (MIBK), Acetone and Methylene Chloride above the method detection limit. These target analyte concentrations were less than the reporting limit (RL); therefore, re-analysis of samples was not performed. SWMU12-SB06-SS-103 (480-90447-8)

Method(s) 8260C: The following samples were collected in properly preserved vials for analysis of volatile organic compounds (VOCs). However, the pH was outside the required criteria when verified by the laboratory, and corrective action was not possible: EB-06 (480-90447-9).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-274853 recovered above the upper control limit for several analytes. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: EB-06 (480-90447-9) and TB-06 (480-90447-10).

Method(s) 8260C: The laboratory control sample and the laboratory control sample duplicate (LCS/LCSD) for analytical batch 480-274853

9

А

4

6

7

a

10

12

16

TestAmerica Buffalo 11/18/2015

TestAmerica Job ID: 480-90447-1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Job ID: 480-90447-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

recovered outside control limits for the following analyte: Dichlorodifluoromethane. Dichlorodifluoromethane has been identified as a poor performing analyte when analyzed using this method; therefore, re-extraction/re-analysis was not performed. The following samples are impacted: EB-06 (480-90447-9) and TB-06 (480-90447-10)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D: The continuing calibration verification (CCV) analyzed in batch 480-273999 was outside the method criteria for the following analytes: 2,4-Dinitrophenol, 4-Chloroaniline, Pentachlorophenol and Benzaldehyde. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method(s) 8270D: The initial calibration curve analyzed in analytical batch 271208 was outside method criteria for the following analyte(s): Benzaldehyde. As indicated in the reference method, sample analysis may proceed; however, any detection or non-detection for the affected analyte(s) is considered an estimated concentration.

Method(s) 8270D: The continuing calibration verification (CCV) associated with batch 480-273999 recovered above the upper control limit for Hexachlorobenzene, 4-Nitrophenol and, Hexachlorobutadiene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: EB-06 (480-90447-9).

Method(s) 8270D: The following samples were diluted due to color and viscosity. SWMU12-SB03-SS-100 (480-90447-5). Elevated reporting limits (RL) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

Method(s) 8015D: The following samples were collected in proper vials for analysis of volatile organic compounds (VOCs). However, the pH was outside the required criteria when verified by the laboratory, and corrective action was not possible: EB-06 (480-90447-9) and (480-90365-I-9).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8082A: All primary data for the soils analysis is reported from the ZB-5 column, while all primary data is reported from the ZB-35 column.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010C: The Serial Dilution (480-90447-B-1-B SD ^) in batch 480-273327, exhibited results outside the quality control limits for Total Barium. However, the Post Digestion Spike was compliant so no corrective action was necessary.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method(s) 3550C: The following samples:SWMU12-SB03-SS-100 (480-90447-5) and SWMU12-SB06-SS-103 (480-90447-8) were decanted prior to preparation.

 $Method(s)\ 3550C:\ The\ following\ samples: SWMU12-SB03-SS-100\ (480-90447-5)\ and\ SWMU12-SB06-SS-103\ (480-90447-8)\ were\ decanted\ prior\ to\ preparation\ .$

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

7

10

4.0

13

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Lab Sample ID: 480-90447-2

Lab Sample ID: 480-90447-3

Lab Sample ID: 480-90447-4

Lab Sample ID: 480-90447-5

Lab Sample ID: 480-90447-1

Client Sampl	e ID: SWMU4	-SB05-SS-102
--------------	-------------	--------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Bis(2-ethylhexyl) phthalate	110	J	190	64	ug/Kg		₩	8270D	Total/NA
Methanol	0.46	JB	1.0	0.31	mg/Kg	1	₩	8015D	Soluble
Arsenic	3.0		2.2	0.44	mg/Kg	1	₩	6010C	Total/NA
Barium	40.6		0.55	0.12	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.10	J	0.22	0.033	mg/Kg	1	₩	6010C	Total/NA
Chromium	13.5		0.55	0.22	mg/Kg	1	₩	6010C	Total/NA
Lead	5.1		1.1	0.26	mg/Kg	1	Ċ.	6010C	Total/NA
Mercury	0.0092	J	0.022	0.0088	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SWMU4-SB06-SS-103

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methanol	0.45	JB	1.1	0.33	mg/Kg	1	₩	8015D	Soluble
Arsenic	3.6		2.5	0.50	mg/Kg	1	₩	6010C	Total/NA
Barium	49.8		0.62	0.14	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.11	J	0.25	0.037	mg/Kg	1	₽	6010C	Total/NA
Chromium	16.0		0.62	0.25	mg/Kg	1	₩	6010C	Total/NA
Lead	7.3		1.2	0.30	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.013	J	0.023	0.0093	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SWMU4-SB07-SS-104

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methanol	0.36	JB	1.1	0.31	mg/Kg	1	₩	8015D	Soluble
Arsenic	3.6		2.2	0.44	mg/Kg	1	₩	6010C	Total/NA
Barium	33.4		0.56	0.12	mg/Kg	1	₽	6010C	Total/NA
Cadmium	0.086	J	0.22	0.033	mg/Kg	1	₽	6010C	Total/NA
Chromium	11.0		0.56	0.22	mg/Kg	1	₩	6010C	Total/NA
Lead	5.7		1.1	0.27	mg/Kg	1	₽	6010C	Total/NA
Mercury	0.012	J	0.023	0.0094	mg/Kg	1	\	7471B	Total/NA

Client Sample ID: SWMU4-SB08-SS-105

Analyte	Rosult	Qualifier	RL	MDL	Unit	Dil Fac	n	Method	Prep Type
Methanol	0.56		1.1		mg/Kg	_ <u> </u>	₩	8015D	Soluble
Arsenic	4.1	3.6	2.5		mg/Kg	1			Total/NA
					0 0	1			
Barium	48.2	-,	0.62		mg/Kg	1 	1,1,1		Total/NA
Cadmium	0.14	J	0.25		mg/Kg	1	.	6010C	Total/NA
Chromium	15.0		0.62	0.25	mg/Kg	1	₽	6010C	Total/NA
Lead	6.4		1.2	0.30	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: SWMU12-SB03-SS-100

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	9.6	JB	30	5.1	ug/Kg	1	₩	8260C	Total/NA
Arsenic	2.0	J	2.5	0.50	mg/Kg	1	₩	6010C	Total/NA
Barium	31.4		0.62	0.14	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.065	J	0.25	0.037	mg/Kg	1	₽	6010C	Total/NA
Chromium	8.8		0.62	0.25	mg/Kg	1	₩	6010C	Total/NA
Lead	2.6		1.2	0.30	mg/Kg	1	₽	6010C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

TestAmerica Job ID: 480-90447-1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU12-SB04-SS-101

Lab Sample ID: 480-90447-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	23	JB	28	4.7	ug/Kg		₩	8260C	Total/NA
Benzo(a)anthracene	80	J	200	20	ug/Kg	1	₩	8270D	Total/NA
Benzo(a)pyrene	96	J	200	30	ug/Kg	1	₩	8270D	Total/NA
Benzo(b)fluoranthene	150	J	200	32	ug/Kg	1	₽	8270D	Total/NA
Benzo(g,h,i)perylene	89	J	200	21	ug/Kg	1	₩	8270D	Total/NA
Benzo(k)fluoranthene	77	J	200	26	ug/Kg	1	₩	8270D	Total/NA
Bis(2-ethylhexyl) phthalate	190	J	200	69	ug/Kg	1	₩	8270D	Total/NA
Chrysene	130	J	200	45	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	230		200	21	ug/Kg	1	₩	8270D	Total/NA
Indeno(1,2,3-cd)pyrene	75	J	200	25	ug/Kg	1	₩.	8270D	Total/NA
Phenanthrene	65	J	200	30	ug/Kg	1	₩	8270D	Total/NA
Pyrene	160	J	200	24	ug/Kg	1	₩	8270D	Total/NA
Methanol	0.53	JB	1.2	0.35	mg/Kg	1	ф.	8015D	Soluble
Arsenic	3.2		2.6	0.53	mg/Kg	1	₩	6010C	Total/NA
Barium	52.6		0.66	0.14	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.092	J	0.26	0.040	mg/Kg	1	₩.	6010C	Total/NA
Chromium	14.2		0.66	0.26	mg/Kg	1	₩	6010C	Total/NA
Lead	6.2		1.3	0.32	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.012	J	0.022	0.0089	mg/Kg	1	₩.	7471B	Total/NA

Client Sample ID: SWMU12-SB05-SS-102

Lab Sample ID: 480-90447-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Toluene	0.62		5.5	0.42	ug/Kg		₩	8260C	Total/NA
Bis(2-ethylhexyl) phthalate	120	J	200	70	ug/Kg	1	₩	8270D	Total/NA
Arsenic	3.5		2.5	0.49	mg/Kg	1	₩	6010C	Total/NA
Barium	50.2		0.62	0.14	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.11	J	0.25	0.037	mg/Kg	1	₩	6010C	Total/NA
Chromium	16.2		0.62	0.25	mg/Kg	1	₩	6010C	Total/NA
Lead	7.3		1.2	0.30	mg/Kg	1	₩	6010C	Total/NA
Selenium	0.75	J	4.9	0.49	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.020	J	0.024	0.0098	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SWMU12-SB06-SS-103

Lab Sample ID: 480-90447-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo(a)anthracene	35	J	200	20	ug/Kg	1	₩	8270D	Total/NA
Benzo(a)pyrene	40	J	200	30	ug/Kg	1	₩	8270D	Total/NA
Benzo(b)fluoranthene	67	J	200	32	ug/Kg	1	₩	8270D	Total/NA
Benzo(g,h,i)perylene	42	J	200	21	ug/Kg	1	₩	8270D	Total/NA
Benzo(k)fluoranthene	29	J	200	26	ug/Kg	1	₩	8270D	Total/NA
Bis(2-ethylhexyl) phthalate	120	J	200	69	ug/Kg	1	₩	8270D	Total/NA
Chrysene	50	J	200	45	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	86	J	200	21	ug/Kg	1	₩	8270D	Total/NA
Indeno(1,2,3-cd)pyrene	34	J	200	25	ug/Kg	1	₩	8270D	Total/NA
Pyrene	61	J	200	24	ug/Kg	1	₩	8270D	Total/NA
Arsenic	1.6	J	2.3	0.46	mg/Kg	1	₩	6010C	Total/NA
Barium	9.7		0.58	0.13	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.039	J	0.23	0.035	mg/Kg	1	₩	6010C	Total/NA
Chromium	3.9		0.58	0.23	mg/Kg	1	₩	6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Page 8 of 90

Detection Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Client Sample ID: SWMU12-SB06-SS-103 (Continued)

Lab Sample ID: 480-90447-8

AnalyteResult
LeadQualifierRLMDL
1.2UnitDil Fac
mg/KgDMethod
6010CPrep TypeTotal/NA

Client Sample ID: EB-06 Lab Sample ID: 480-90447-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D M	ethod	Prep Type
Acetone	4.0	J	10	3.0	ug/L	1	82	260C	Total/NA
Chloroform	0.43	J	1.0	0.34	ug/L	1	82	260C	Total/NA

Client Sample ID: TB-06 Lab Sample ID: 480-90447-10

No Detections.

__

Δ

5

6

0

10

4.0

13

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Client Sample ID: SWMU4-SB05-SS-102

Lab Sample ID: 480-90447-1

Date Collected: 11/03/15 08:10

Date Received: 11/04/15 09:00

Matrix: Solid
Percent Solids: 88.7

Method: 8260C - Volatile Orgar ^{Analyte}		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	— —	5.0	0.36	ug/Kg	— =	11/04/15 20:18		Dilla
1,1,2,2-Tetrachloroethane	ND		5.0	0.81	ug/Kg	₩		11/07/15 06:05	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0	1.1	ug/Kg	₩		11/07/15 06:05	
1,1,2-Trichloroethane	ND		5.0		ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/07/15 06:05	
1,1,2-11ichloroethane	ND ND		5.0	0.61	ug/Kg ug/Kg			11/07/15 06:05	
1,1-Dichloroethane	ND ND		5.0		ug/Kg ug/Kg	T A		11/07/15 06:05	
1,1-Dichloroetherie 1,2,3-Trichlorobenzene	ND		5.0			· · · · · · · · · · · · · · · · · · ·		11/07/15 06:05	
1,2,4-Trichlorobenzene	ND ND		5.0		ug/Kg	~ \$		11/07/15 06:05	
• •		*			ug/Kg	~ \$			
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/Kg			11/07/15 06:05	
1,2-Dichlorobenzene	ND		5.0		ug/Kg	☆		11/07/15 06:05	
1,2-Dichloroethane	ND		5.0		ug/Kg	φ.		11/07/15 06:05	
1,2-Dichloropropane	ND		5.0		ug/Kg			11/07/15 06:05	
1,3-Dichlorobenzene	ND		5.0		ug/Kg	:D:		11/07/15 06:05	
1,4-Dichlorobenzene	ND		5.0	0.70	ug/Kg	*		11/07/15 06:05	
1,4-Dioxane		*	99		ug/Kg		11/04/15 20:18	11/07/15 06:05	
2-Hexanone	ND	*	25		ug/Kg	☼		11/07/15 06:05	
Acetone	ND		25	4.2	ug/Kg	₩	11/04/15 20:18	11/07/15 06:05	
Benzene	ND		5.0	0.24	ug/Kg	₽	11/04/15 20:18	11/07/15 06:05	
Bromoform	ND		5.0	2.5	ug/Kg	₩	11/04/15 20:18	11/07/15 06:05	
Bromomethane	ND		5.0	0.45	ug/Kg	₩	11/04/15 20:18	11/07/15 06:05	
Carbon disulfide	ND		5.0	2.5	ug/Kg	≎	11/04/15 20:18	11/07/15 06:05	
Carbon tetrachloride	ND		5.0	0.48	ug/Kg	₽	11/04/15 20:18	11/07/15 06:05	
Chlorobenzene	ND		5.0	0.66	ug/Kg	☼	11/04/15 20:18	11/07/15 06:05	
Bromochloromethane	ND		5.0	0.36	ug/Kg	≎	11/04/15 20:18	11/07/15 06:05	
Dibromochloromethane	ND		5.0	0.64	ug/Kg	φ.	11/04/15 20:18	11/07/15 06:05	
Chloroethane	ND		5.0	1.1	ug/Kg	₽	11/04/15 20:18	11/07/15 06:05	
Chloroform	ND		5.0		ug/Kg	☼	11/04/15 20:18	11/07/15 06:05	
Chloromethane	ND		5.0		ug/Kg	· · · · · · · · · · · · · · · · · · ·	11/04/15 20:18	11/07/15 06:05	
cis-1,2-Dichloroethene	ND		5.0		ug/Kg	₩		11/07/15 06:05	
cis-1,3-Dichloropropene	ND		5.0		ug/Kg	₽		11/07/15 06:05	
Cyclohexane	ND		5.0		ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/07/15 06:05	
Bromodichloromethane	ND		5.0		ug/Kg	₽		11/07/15 06:05	
Dichlorodifluoromethane	ND		5.0		ug/Kg	ά		11/07/15 06:05	
Ethylbenzene	ND		5.0		ug/Kg			11/07/15 06:05	
1,2-Dibromoethane (EDB)	ND		5.0		ug/Kg	 \$		11/07/15 06:05	
. ,	ND		5.0			т Ф		11/07/15 06:05	
sopropylbenzene	ND		5.0		ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/07/15 06:05	
Methyl acetate					ug/Kg	*			
2-Butanone (MEK)	ND		25		ug/Kg	₩		11/07/15 06:05	
4-Methyl-2-pentanone (MIBK)	ND		25		ug/Kg		11/04/15 20:18		
Methyl tert-butyl ether	ND		5.0		ug/Kg	φ.	11/04/15 20:18		
Methylcyclohexane	ND		5.0		ug/Kg	φ.	11/04/15 20:18		
Methylene Chloride	ND		5.0		ug/Kg	<u>.</u>	11/04/15 20:18		
Styrene	ND		5.0		ug/Kg	₩.	11/04/15 20:18		
Tetrachloroethene	ND		5.0		ug/Kg	*	11/04/15 20:18		
Гoluene	ND		5.0		ug/Kg		11/04/15 20:18		
trans-1,2-Dichloroethene	ND		5.0		ug/Kg	₽	11/04/15 20:18		
rans-1,3-Dichloropropene	ND		5.0	2.2	ug/Kg	☼	11/04/15 20:18	11/07/15 06:05	
Trichloroethene	ND		5.0	1.1	ug/Kg	₩	11/04/15 20:18	11/07/15 06:05	
Trichlorofluoromethane	ND		5.0	0.47	ug/Kg		11/04/15 20:18	11/07/15 06:05	

TestAmerica Buffalo

3

6

9

11

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Client Sample ID: SWMU4-SB05-SS-102

Date Collected: 11/03/15 08:10 Date Received: 11/04/15 09:00 Lab Sample ID: 480-90447-1

Matrix: Solid Percent Solids: 88.7

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		0.61	ug/Kg	<u> </u>	11/04/15 20:18	11/07/15 06:05	1
Xylenes, Total	ND		9.9		0.84	ug/Kg	☼	11/04/15 20:18	11/07/15 06:05	1
Tetrahydrofuran	ND	*	9.9		2.9	ug/Kg	\$	11/04/15 20:18	11/07/15 06:05	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	₩ -				11/04/15 20:18	11/07/15 06:05	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	116		60 - 140					11/04/15 20:18	11/07/15 06:05	1
1,2-Dichloroethane-d4 (Surr)	116		64 - 126					11/04/15 20:18	11/07/15 06:05	1
Toluene-d8 (Surr)	106		71 - 125					11/04/15 20:18	11/07/15 06:05	1
4-Bromofluorobenzene (Surr)	104		72 - 126					11/04/15 20:18	11/07/15 06:05	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		190	28	ug/Kg	<u> </u>	11/05/15 08:03	11/11/15 14:06	1
bis (2-chloroisopropyl) ether	ND		190	38	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
2,4,5-Trichlorophenol	ND		190	51	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
2,4,6-Trichlorophenol	ND		190	38	ug/Kg	₽	11/05/15 08:03	11/11/15 14:06	1
2,4-Dichlorophenol	ND		190	20	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
2,4-Dimethylphenol	ND		190	45	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
2,4-Dinitrophenol	ND		1800	870	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
2,4-Dinitrotoluene	ND		190	39	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
2,6-Dinitrotoluene	ND		190	22	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
2-Chloronaphthalene	ND		190	31	ug/Kg	₽	11/05/15 08:03	11/11/15 14:06	1
2-Chlorophenol	ND		190	34	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
2-Methylnaphthalene	ND		190	38	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
2-Methylphenol	ND		190	22	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
2-Nitroaniline	ND		370	28	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
2-Nitrophenol	ND		190	53	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
3,3'-Dichlorobenzidine	ND		370	220	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
3-Nitroaniline	ND		370	52	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
4,6-Dinitro-2-methylphenol	ND		370	190	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
4-Bromophenyl phenyl ether	ND		190	27	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
4-Chloro-3-methylphenol	ND		190	47	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
4-Chloroaniline	ND		190	47	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
4-Chlorophenyl phenyl ether	ND		190	23	ug/Kg	₽	11/05/15 08:03	11/11/15 14:06	1
4-Methylphenol	ND		370	22	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
4-Nitroaniline	ND		370	99	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
4-Nitrophenol	ND		370	130	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
Acenaphthene	ND		190	28	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
Acenaphthylene	ND		190	24	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
Acetophenone	ND		190	25	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
Anthracene	ND		190	47	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
Atrazine	ND		190	65	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
Benzaldehyde	ND		190	150	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
Benzo(a)anthracene	ND		190	19	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
Benzo(a)pyrene	ND		190	28	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	1
Benzo(b)fluoranthene	ND		190	30	ug/Kg		11/05/15 08:03	11/11/15 14:06	1
Benzo(g,h,i)perylene	ND		190	20	ug/Kg	☆	11/05/15 08:03	11/11/15 14:06	1

TestAmerica Buffalo

Page 11 of 90

3

5

7

9

11

13

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Phenol-d5

TestAmerica Job ID: 480-90447-1

Client Sample ID: SWMU4-SB05-SS-102 Lab Sample ID: 480-90447-1

Date Collected: 11/03/15 08:10

Date Received: 11/04/15 09:00

Matrix: Solid
Percent Solids: 88.7

Method: 8270D - Semivolatile Analyte		Qualifier		RL	MDL		D	Prepared	Analyzed	Dil Fa
Benzo(k)fluoranthene	ND			90		ug/Kg	\		11/11/15 14:06	
Bis(2-chloroethoxy)methane	ND			90		ug/Kg			11/11/15 14:06	
Bis(2-chloroethyl)ether	ND			90		ug/Kg	₩		11/11/15 14:06	
Bis(2-ethylhexyl) phthalate	110	J.		90		ug/Kg	₩		11/11/15 14:06	
Butyl benzyl phthalate	ND			90		ug/Kg			11/11/15 14:06	
Caprolactam	ND			90		ug/Kg	₩		11/11/15 14:06	
Carbazole	ND			90		ug/Kg	₩		11/11/15 14:06	
Chrysene	ND			90		ug/Kg			11/11/15 14:06	
Di-n-butyl phthalate	ND			90		ug/Kg	₩		11/11/15 14:06	
Di-n-octyl phthalate	ND			90		ug/Kg	₩		11/11/15 14:06	
Dibenz(a,h)anthracene	ND			90		ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/11/15 14:06	
Dibenzofuran	ND ND			90		ug/Kg			11/11/15 14:06	
	ND ND			90 90			~ ⇔			
Diethyl phthalate						ug/Kg			11/11/15 14:06	
Dimethyl phthalate	ND			90		ug/Kg	*		11/11/15 14:06	
Fluoranthene	ND			90		ug/Kg	☆		11/11/15 14:06	
Fluorene	ND			90		ug/Kg			11/11/15 14:06	
Hexachlorobenzene	ND			90		ug/Kg	#		11/11/15 14:06	
Hexachlorobutadiene	ND			90		ug/Kg	₩.		11/11/15 14:06	
Hexachlorocyclopentadiene	ND			90		ug/Kg			11/11/15 14:06	
Hexachloroethane	ND		1	90	24	ug/Kg	☼	11/05/15 08:03	11/11/15 14:06	
Indeno(1,2,3-cd)pyrene	ND		1	90	23	ug/Kg	☆	11/05/15 08:03	11/11/15 14:06	
Isophorone	ND		1	90	40	ug/Kg	☆	11/05/15 08:03	11/11/15 14:06	
N-Nitrosodi-n-propylamine	ND		1	90	32	ug/Kg	₽	11/05/15 08:03	11/11/15 14:06	
N-Nitrosodiphenylamine	ND		1	90	150	ug/Kg	☼	11/05/15 08:03	11/11/15 14:06	
Naphthalene	ND		1	90	24	ug/Kg	☼	11/05/15 08:03	11/11/15 14:06	
Nitrobenzene	ND		1	90	21	ug/Kg	₽	11/05/15 08:03	11/11/15 14:06	
Pentachlorophenol	ND		3	70	190	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	
Phenanthrene	ND		1	90	28	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	
Phenol	ND		1	90	29	ug/Kg		11/05/15 08:03	11/11/15 14:06	
Pyrene	ND		1	90	22	ug/Kg	☆	11/05/15 08:03	11/11/15 14:06	
Dimethylformamide	ND		7	30	83	ug/Kg	₩	11/05/15 08:03	11/11/15 14:06	
Tentatively Identified Compound	Est. Result	Ovalifian	11:4	D		RT	CAS No.	Dramarad	Analyzad	D:// E-
Unknown	350		Unit ug/Kg	— ö –		$\frac{1}{27}$ —	CAS NO.	Prepared	Analyzed 11/11/15 14:06	Dil Fa
Unknown	220	T J	ug/Kg ug/Kg	₩		46			11/11/15 14:06	
				Φ.					11/11/15 14:06	
Unknown		T J	ug/Kg			50				
Unknown	1600		ug/Kg	₩		60	70.00.5		11/11/15 14:06	
Ethane, 1,1,2-trichloro-		TJN	ug/Kg	☆ **		14	79-00-5	11/05/15 08:03		
Unknown	1400		ug/Kg			98			11/11/15 14:06	
Ethane, 1,1,2,2-tetrachloro-	550	TJN	ug/Kg	₽	5.	96	79-34-5	11/05/15 08:03	11/11/15 14:06	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	86		39 - 14	6				11/05/15 08:03	11/11/15 14:06	
2-Fluorobiphenyl	87		37 - 12	0				11/05/15 08:03	11/11/15 14:06	
2-Fluorophenol	82		18 - 12	0				11/05/15 08:03	11/11/15 14:06	
Nitrobenzene-d5	79		34 - 13	2				11/05/15 08:03	11/11/15 14:06	
p-Terphenyl-d14	92		65 - 15					11/05/15 08:03	11/11/15 14:06	
· · · · · · · · · · · · · · · · · · ·										

TestAmerica Buffalo

11/05/15 08:03 11/11/15 14:06

11 - 120

2

Л

6

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 11/03/15 08:10

Date Received: 11/04/15 09:00

DCB Decachlorobiphenyl

Client Sample ID: SWMU4-SB05-SS-102

TestAmerica Job ID: 480-90447-1

11/05/15 07:54 11/05/15 16:29

Lab Sample ID: 480-90447-1 **Matrix: Solid**

Percent Solids: 88.7

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND ND	1.0	0.16 mg/Kg	<u> </u>		11/06/15 11:31	1
Isobutyl alcohol	ND	1.0	0.26 mg/Kg	≎		11/06/15 11:31	1
Methanol	0.46 JB	1.0	0.31 mg/Kg	₽		11/06/15 11:31	1
n-Butanol	ND	1.0	0.24 mg/Kg	☆		11/06/15 11:31	1
Propanol	ND	1.0	0.16 mg/Kg	₩		11/06/15 11:31	1
2-Butanol	ND	1.0	0.17 mg/Kg	₩		11/06/15 11:31	1
Isopropyl alcohol	ND	1.0	0.25 mg/Kg	ф.		11/06/15 11:31	1
t-Butyl alcohol	ND	1.0	0.27 mg/Kg	₩		11/06/15 11:31	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
2-Hexanone	87	30 - 137				11/06/15 11:31	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		190	37	ug/Kg	<u></u>	11/05/15 07:54	11/05/15 16:29	1
PCB-1221	ND		190	37	ug/Kg	₩	11/05/15 07:54	11/05/15 16:29	1
PCB-1232	ND		190	37	ug/Kg	☆	11/05/15 07:54	11/05/15 16:29	1
PCB-1242	ND		190	37	ug/Kg	₩	11/05/15 07:54	11/05/15 16:29	1
PCB-1248	ND		190	37	ug/Kg	₩	11/05/15 07:54	11/05/15 16:29	1
PCB-1254	ND		190	89	ug/Kg	☆	11/05/15 07:54	11/05/15 16:29	1
PCB-1260	ND		190	89	ug/Kg		11/05/15 07:54	11/05/15 16:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	83		60 - 154				11/05/15 07:54	11/05/15 16:29	1

65 - 174

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.0		2.2	0.44	mg/Kg	<u> </u>	11/05/15 13:05	11/06/15 14:28	1
Barium	40.6		0.55	0.12	mg/Kg	₩	11/05/15 13:05	11/06/15 14:28	1
Cadmium	0.10	J	0.22	0.033	mg/Kg	₩	11/05/15 13:05	11/06/15 14:28	1
Chromium	13.5		0.55	0.22	mg/Kg	₩	11/05/15 13:05	11/06/15 14:28	1
Lead	5.1		1.1	0.26	mg/Kg	₩	11/05/15 13:05	11/06/15 14:28	1
Selenium	ND		4.4	0.44	mg/Kg	₩	11/05/15 13:05	11/06/15 14:28	1
Silver	ND		0.66	0.22	mg/Kg	₩.	11/05/15 13:05	11/06/15 14:28	1

Method: 7471B - Mercury (CVA	A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0092	J	0.022	0.0088	mg/Kg		11/05/15 14:05	11/05/15 16:17	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Lab Sample ID: 480-90447-2

Matrix: Solid
Percent Solids: 85.6

Date Collected: 11/03/15 08:35 Date Received: 11/04/15 09:00

Client Sample ID: SWMU4-SB06-SS-103

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.8		ug/Kg	₩	11/04/15 20:18	11/07/15 06:32	1
1,1,2,2-Tetrachloroethane	ND		5.8		ug/Kg	₩	11/04/15 20:18	11/07/15 06:32	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.8		ug/Kg	₩	11/04/15 20:18	11/07/15 06:32	1
1,1,2-Trichloroethane	ND		5.8	0.76	ug/Kg	₩	11/04/15 20:18	11/07/15 06:32	1
1,1-Dichloroethane	ND		5.8	0.71	ug/Kg	₩	11/04/15 20:18	11/07/15 06:32	1
1,1-Dichloroethene	ND		5.8	0.71	ug/Kg	₩	11/04/15 20:18	11/07/15 06:32	1
1,2,3-Trichlorobenzene	ND		5.8	0.62	ug/Kg	₽	11/04/15 20:18	11/07/15 06:32	1
1,2,4-Trichlorobenzene	ND		5.8	0.35	ug/Kg	₩	11/04/15 20:18	11/07/15 06:32	1
1,2-Dibromo-3-Chloropropane	ND	*	5.8	2.9	ug/Kg	₩	11/04/15 20:18	11/07/15 06:32	1
1,2-Dichlorobenzene	ND		5.8	0.45	ug/Kg	₽	11/04/15 20:18	11/07/15 06:32	1
1,2-Dichloroethane	ND		5.8	0.29	ug/Kg	₩	11/04/15 20:18	11/07/15 06:32	1
1,2-Dichloropropane	ND		5.8	2.9	ug/Kg	₩	11/04/15 20:18	11/07/15 06:32	1
1,3-Dichlorobenzene	ND		5.8	0.30	ug/Kg	₩	11/04/15 20:18	11/07/15 06:32	1
1,4-Dichlorobenzene	ND		5.8	0.81	ug/Kg	₩	11/04/15 20:18	11/07/15 06:32	1
1,4-Dioxane	ND	*	120	25	ug/Kg	₩	11/04/15 20:18	11/07/15 06:32	1
2-Hexanone	ND	*	29	2.9	ug/Kg		11/04/15 20:18	11/07/15 06:32	1
Acetone	ND		29	4.9	ug/Kg	₩	11/04/15 20:18	11/07/15 06:32	1
Benzene	ND		5.8	0.28	ug/Kg	₩	11/04/15 20:18	11/07/15 06:32	1
Bromoform	ND		5.8	2.9	ug/Kg		11/04/15 20:18	11/07/15 06:32	1
Bromomethane	ND		5.8	0.52	ug/Kg	₩	11/04/15 20:18	11/07/15 06:32	1
Carbon disulfide	ND		5.8	2.9	ug/Kg	₩	11/04/15 20:18	11/07/15 06:32	1
Carbon tetrachloride	ND		5.8		ug/Kg		11/04/15 20:18	11/07/15 06:32	1
Chlorobenzene	ND		5.8	0.77		₩	11/04/15 20:18	11/07/15 06:32	1
Bromochloromethane	ND		5.8	0.42	ug/Kg	₩	11/04/15 20:18	11/07/15 06:32	1
Dibromochloromethane	ND		5.8		ug/Kg		11/04/15 20:18	11/07/15 06:32	1
Chloroethane	ND		5.8		ug/Kg	₩	11/04/15 20:18	11/07/15 06:32	1
Chloroform	ND		5.8		ug/Kg	₩	11/04/15 20:18	11/07/15 06:32	1
Chloromethane	ND		5.8		ug/Kg	ф.	11/04/15 20:18	11/07/15 06:32	1
cis-1,2-Dichloroethene	ND		5.8	0.74		₩	11/04/15 20:18	11/07/15 06:32	1
cis-1,3-Dichloropropene	ND		5.8	0.84		₩	11/04/15 20:18	11/07/15 06:32	1
Cyclohexane	ND		5.8	0.81			11/04/15 20:18	11/07/15 06:32	1
Bromodichloromethane	ND		5.8	0.78		₩		11/07/15 06:32	1
Dichlorodifluoromethane	ND		5.8		ug/Kg	₽		11/07/15 06:32	1
Ethylbenzene	ND		5.8	0.40				11/07/15 06:32	· · · · · · · 1
1,2-Dibromoethane (EDB)	ND		5.8		ug/Kg	₩		11/07/15 06:32	1
Isopropylbenzene	ND		5.8		ug/Kg	₩		11/07/15 06:32	1
Methyl acetate	ND		5.8		ug/Kg		11/04/15 20:18		· · · · · · · · 1
2-Butanone (MEK)	ND		29		ug/Kg	₩		11/07/15 06:32	1
4-Methyl-2-pentanone (MIBK)	ND		29		ug/Kg	₩		11/07/15 06:32	1
Methyl tert-butyl ether	ND		5.8		ug/Kg			11/07/15 06:32	
Methylcyclohexane	ND		5.8		ug/Kg	₩		11/07/15 06:32	
Methylene Chloride	ND ND		5.8		ug/Kg ug/Kg	Ť Ď		11/07/15 06:32	1 1
.	ND							11/07/15 06:32	
Styrene Tetrachloroethene			5.8 5.8		ug/Kg ug/Kg	₽		11/07/15 06:32	1
	ND		5.8	0.76	ug/Ng	~~ ~~	11/04/10 20.10	11/07/10 00.32	1

TestAmerica Buffalo

☼ 11/04/15 20:18 11/07/15 06:32

11/04/15 20:18 11/07/15 06:32

☼ 11/04/15 20:18 11/07/15 06:32

* 11/04/15 20:18 11/07/15 06:32

11/04/15 20:18 11/07/15 06:32

Page 14 of 90

5.8

5.8

5.8

5.8

5.8

0.44 ug/Kg

0.60 ug/Kg

2.6 ug/Kg

1.3 ug/Kg

0.55 ug/Kg

ND

ND

ND

ND

ND

Toluene

Trichloroethene

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

2

3

5

7

9

11 12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Client Sample ID: SWMU4-SB06-SS-103

Date Collected: 11/03/15 08:35 Date Received: 11/04/15 09:00 Lab Sample ID: 480-90447-2

Matrix: Solid Percent Solids: 85.6

Method: 8260C - Volatile Orga	nic Compoi	unds by GC	:/MS (Continu	ed)	
Analyte	Result	Qualifier	RL	MDL	Unit
Vinyl chloride	ND		5.8	0.71	ug/Kg
V. J	ND		40		

Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Vinyl chloride	ND		5.8	0.71	ug/Kg	\	11/04/15 20:18	11/07/15 06:32	1
Xylenes, Total	ND		12	0.98	ug/Kg	☼	11/04/15 20:18	11/07/15 06:32	1
Tetrahydrofuran	ND *		12	3.4	ug/Kg	\$	11/04/15 20:18	11/07/15 06:32	1

rentatively identified Compound	ESt. Result Qu	uanner Unit	ט	KI	CAS NO.	Prepared	Analyzea	DII Fac
Tentatively Identified Compound	None	ug/Kg	\			11/04/15 20:18	11/07/15 06:32	1
Surrogate	%Recovery Qu	ualifier Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	120	60 - 140				11/04/15 20:18	11/07/15 06:32	1
1,2-Dichloroethane-d4 (Surr)	119	64 - 126				11/04/15 20:18	11/07/15 06:32	1
Toluene-d8 (Surr)	108	71 - 125				11/04/15 20:18	11/07/15 06:32	1
4-Bromofluorobenzene (Surr)	109	72 - 126				11/04/15 20:18	11/07/15 06:32	1

Method: 8270D - Semivolatile	Organic	Compounds	(GC/MS)
------------------------------	----------------	-----------	---------

Analyte	Result Qualifier	ŘL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND	190	28	ug/Kg	<u> </u>	11/05/15 08:03	11/11/15 14:32	1
bis (2-chloroisopropyl) ether	ND	190	39	ug/Kg	☼	11/05/15 08:03	11/11/15 14:32	1
2,4,5-Trichlorophenol	ND	190	52	ug/Kg	☼	11/05/15 08:03	11/11/15 14:32	1
2,4,6-Trichlorophenol	ND	190	39	ug/Kg	₽	11/05/15 08:03	11/11/15 14:32	1
2,4-Dichlorophenol	ND	190	20	ug/Kg	≎	11/05/15 08:03	11/11/15 14:32	1
2,4-Dimethylphenol	ND	190	47	ug/Kg	☼	11/05/15 08:03	11/11/15 14:32	1
2,4-Dinitrophenol	ND	1900	890	ug/Kg	\$	11/05/15 08:03	11/11/15 14:32	1
2,4-Dinitrotoluene	ND	190	40	ug/Kg	☼	11/05/15 08:03	11/11/15 14:32	1
2,6-Dinitrotoluene	ND	190	23	ug/Kg	≎	11/05/15 08:03	11/11/15 14:32	1
2-Chloronaphthalene	ND	190	32	ug/Kg	\$	11/05/15 08:03	11/11/15 14:32	1
2-Chlorophenol	ND	190	35	ug/Kg	☼	11/05/15 08:03	11/11/15 14:32	1
2-Methylnaphthalene	ND	190	39	ug/Kg	☼	11/05/15 08:03	11/11/15 14:32	1
2-Methylphenol	ND	190	23	ug/Kg	₽	11/05/15 08:03	11/11/15 14:32	1
2-Nitroaniline	ND	370	28	ug/Kg	☼	11/05/15 08:03	11/11/15 14:32	1
2-Nitrophenol	ND	190	54	ug/Kg	₽	11/05/15 08:03	11/11/15 14:32	1
3,3'-Dichlorobenzidine	ND	370	230	ug/Kg	\$	11/05/15 08:03	11/11/15 14:32	1
3-Nitroaniline	ND	370	53	ug/Kg	☼	11/05/15 08:03	11/11/15 14:32	1
4,6-Dinitro-2-methylphenol	ND	370	190	ug/Kg	₽	11/05/15 08:03	11/11/15 14:32	1
4-Bromophenyl phenyl ether	ND	190	27	ug/Kg	φ.	11/05/15 08:03	11/11/15 14:32	1
4-Chloro-3-methylphenol	ND	190	48	ug/Kg	₽	11/05/15 08:03	11/11/15 14:32	1
4-Chloroaniline	ND	190	48	ug/Kg	☼	11/05/15 08:03	11/11/15 14:32	1
4-Chlorophenyl phenyl ether	ND	190	24	ug/Kg	₽	11/05/15 08:03	11/11/15 14:32	1
4-Methylphenol	ND	370	23	ug/Kg	☼	11/05/15 08:03	11/11/15 14:32	1
4-Nitroaniline	ND	370	100	ug/Kg	☼	11/05/15 08:03	11/11/15 14:32	1
4-Nitrophenol	ND	370	140	ug/Kg	₽	11/05/15 08:03	11/11/15 14:32	1
Acenaphthene	ND	190	28	ug/Kg	☼	11/05/15 08:03	11/11/15 14:32	1
Acenaphthylene	ND	190	25	ug/Kg	☼	11/05/15 08:03	11/11/15 14:32	1
Acetophenone	ND	190	26	ug/Kg	₽	11/05/15 08:03	11/11/15 14:32	1
Anthracene	ND	190	48	ug/Kg	☼	11/05/15 08:03	11/11/15 14:32	1
Atrazine	ND	190	67	ug/Kg	☼	11/05/15 08:03	11/11/15 14:32	1
Benzaldehyde	ND	190	150	ug/Kg	φ.	11/05/15 08:03	11/11/15 14:32	1
Benzo(a)anthracene	ND	190	19	ug/Kg	☼	11/05/15 08:03	11/11/15 14:32	1
Benzo(a)pyrene	ND	190	28	ug/Kg	☼	11/05/15 08:03	11/11/15 14:32	1
Benzo(b)fluoranthene	ND	190	31	ug/Kg		11/05/15 08:03	11/11/15 14:32	1
Benzo(g,h,i)perylene	ND	190	20	ug/Kg	☼	11/05/15 08:03	11/11/15 14:32	1

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Client Sample ID: SWMU4-SB06-SS-103 Lab Sample ID: 480-90447-2

Date Collected: 11/03/15 08:35

Date Received: 11/04/15 09:00

Matrix: Solid
Percent Solids: 85.6

Analyte	Result	Qualifier	R	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo(k)fluoranthene	ND		19	90	25	ug/Kg	\	11/05/15 08:03	11/11/15 14:32	
Bis(2-chloroethoxy)methane	ND		19	90	41	ug/Kg	₩	11/05/15 08:03	11/11/15 14:32	
Bis(2-chloroethyl)ether	ND		19	90	25	ug/Kg	₩	11/05/15 08:03	11/11/15 14:32	
Bis(2-ethylhexyl) phthalate	ND		19	90	66	ug/Kg	₩	11/05/15 08:03	11/11/15 14:32	
Butyl benzyl phthalate	ND		19	90	32	ug/Kg	≎	11/05/15 08:03	11/11/15 14:32	
Caprolactam	ND		19	90	58	ug/Kg	₩	11/05/15 08:03	11/11/15 14:32	
Carbazole	ND		19	90	23	ug/Kg	₩	11/05/15 08:03	11/11/15 14:32	
Chrysene	ND		19	90	43	ug/Kg	₽	11/05/15 08:03	11/11/15 14:32	
Di-n-butyl phthalate	ND		19	90	33	ug/Kg	₩	11/05/15 08:03	11/11/15 14:32	
Di-n-octyl phthalate	ND		19	90	23	ug/Kg	₩	11/05/15 08:03	11/11/15 14:32	
Dibenz(a,h)anthracene	ND		19	90	34	ug/Kg	\$	11/05/15 08:03	11/11/15 14:32	
Dibenzofuran	ND		19	90	23	ug/Kg	₩	11/05/15 08:03	11/11/15 14:32	•
Diethyl phthalate	ND		19	90	25	ug/Kg	₩	11/05/15 08:03	11/11/15 14:32	
Dimethyl phthalate	ND		19	90	23	ug/Kg	φ.	11/05/15 08:03	11/11/15 14:32	· · · · · · · · ·
Fluoranthene	ND		19	90	20	ug/Kg	☼	11/05/15 08:03	11/11/15 14:32	
Fluorene	ND		19	90	23	ug/Kg	₩	11/05/15 08:03	11/11/15 14:32	
Hexachlorobenzene	ND		19	90	26	ug/Kg		11/05/15 08:03	11/11/15 14:32	· · · · · · · · ·
Hexachlorobutadiene	ND		19	90	28	ug/Kg	₩	11/05/15 08:03	11/11/15 14:32	
Hexachlorocyclopentadiene	ND		19	90		ug/Kg	₩	11/05/15 08:03	11/11/15 14:32	
Hexachloroethane	ND		19	90	25	ug/Kg		11/05/15 08:03	11/11/15 14:32	· · · · · · · · · ·
Indeno(1,2,3-cd)pyrene	ND		19	90	24	ug/Kg	₩	11/05/15 08:03	11/11/15 14:32	
Isophorone	ND		19	90		ug/Kg	₩	11/05/15 08:03	11/11/15 14:32	
N-Nitrosodi-n-propylamine	ND		19	90	33	ug/Kg		11/05/15 08:03	11/11/15 14:32	• • • • • • • •
N-Nitrosodiphenylamine	ND		19	90		ug/Kg	₩	11/05/15 08:03	11/11/15 14:32	
Naphthalene	ND		19	90	25	ug/Kg	₩	11/05/15 08:03	11/11/15 14:32	
Nitrobenzene	ND		19	90	22	ug/Kg	ф.	11/05/15 08:03	11/11/15 14:32	
Pentachlorophenol	ND		37	70	190	ug/Kg	₩	11/05/15 08:03	11/11/15 14:32	
Phenanthrene	ND		19	90	28	ug/Kg	₩	11/05/15 08:03	11/11/15 14:32	
Phenol	ND		19	90	30	ug/Kg		11/05/15 08:03	11/11/15 14:32	· · · · · · · · ·
Pyrene	ND		19	90	23	ug/Kg	₩	11/05/15 08:03	11/11/15 14:32	
Dimethylformamide	ND		75	50		ug/Kg	₩	11/05/15 08:03	11/11/15 14:32	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fa
Unknown	480	TJ	ug/Kg	<u></u>	2.	26		11/05/15 08:03	11/11/15 14:32	-
Unknown	850	TJ	ug/Kg	₩	2.	49		11/05/15 08:03	11/11/15 14:32	
Unknown	2400	TJ	ug/Kg	☼	2.	59		11/05/15 08:03	11/11/15 14:32	
Ethane, 1,1,2-trichloro-	310	TJN	ug/Kg	₩	4.	13	79-00-5	11/05/15 08:03	11/11/15 14:32	
Unknown	650	TJ	ug/Kg	₩	4.	98		11/05/15 08:03	11/11/15 14:32	
Ethane, 1,1,2,2-tetrachloro-	680	TJN	ug/Kg	₩	5.	96	79-34-5	11/05/15 08:03	11/11/15 14:32	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	83		39 - 146	5				11/05/15 08:03	11/11/15 14:32	
2-Fluorobiphenyl	80		37 - 120)				11/05/15 08:03	11/11/15 14:32	
2-Fluorophenol	82		18 - 120)				11/05/15 08:03	11/11/15 14:32	
Nitrobenzene-d5	77		34 - 132	2				11/05/15 08:03	11/11/15 14:32	
p-Terphenyl-d14	80		65 - 153	3				11/05/15 08:03	11/11/15 14:32	
Phenol-d5	84		11 - 120						11/11/15 14:32	

TestAmerica Buffalo

2

8

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 11/03/15 08:35

Method: 7471B - Mercury (CVAA)

Analyte

Mercury

Client Sample ID: SWMU4-SB06-SS-103

TestAmerica Job ID: 480-90447-1

Lab Sample ID: 480-90447-2

Matrix: Solid

Method: 8015D - Nonhalogena Analyte		C Compou Qualifier	nas - Direct i RL	njection MDL		olubi D	e Prepared	Analyzed	Dil Fac
Ethanol	ND	<u> </u>	1.1	0.16	mg/Kg	— Ţ	<u> </u>	11/06/15 11:39	1
Isobutyl alcohol	ND		1.1		mg/Kg	₩		11/06/15 11:39	1
Methanol	0.45	JB	1.1		mg/Kg	₩		11/06/15 11:39	1
n-Butanol	ND		1.1	0.25	mg/Kg			11/06/15 11:39	1
Propanol	ND		1.1		mg/Kg	₩		11/06/15 11:39	1
2-Butanol	ND		1.1		mg/Kg	₩		11/06/15 11:39	1
Isopropyl alcohol	ND		1.1		mg/Kg			11/06/15 11:39	1
t-Butyl alcohol	ND		1.1		mg/Kg	₽		11/06/15 11:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	88		30 - 137					11/06/15 11:39	1
Method: 8082A - Polychlorina Analyte		yls (PCBs) Qualifier	by Gas Chro	matogr MDL		D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		230	46	ug/Kg	<u> </u>	11/05/15 07:54	11/05/15 16:44	1
PCB-1221	ND		230	46	ug/Kg	₩	11/05/15 07:54	11/05/15 16:44	1
PCB-1232	ND		230	46	ug/Kg	₩	11/05/15 07:54	11/05/15 16:44	1
PCB-1242	ND		230	46	ug/Kg	₩	11/05/15 07:54	11/05/15 16:44	1
PCB-1248	ND		230		ug/Kg	₩	11/05/15 07:54	11/05/15 16:44	1
PCB-1254	ND		230	110	ug/Kg	₩	11/05/15 07:54	11/05/15 16:44	1
PCB-1260	ND		230		ug/Kg		11/05/15 07:54	11/05/15 16:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	95		60 - 154				11/05/15 07:54	11/05/15 16:44	1
DCB Decachlorobiphenyl	89		65 - 174				11/05/15 07:54	11/05/15 16:44	1
Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.6		2.5	0.50	mg/Kg	<u></u>	11/05/15 13:05	11/06/15 14:55	1
Barium	49.8		0.62	0.14	mg/Kg	☼	11/05/15 13:05	11/06/15 14:55	1
Cadmium	0.11	J	0.25		mg/Kg	☼	11/05/15 13:05	11/06/15 14:55	1
Chromium	16.0		0.62		mg/Kg		11/05/15 13:05	11/06/15 14:55	1
Lead	7.3		1.2		mg/Kg	₽		11/06/15 14:55	1
						☆		11/06/15 14:55	1
Selenium	ND		5.0	0.50	mg/Kg	74	11/03/13 13.03	11/00/10 14.00	

Analyzed

Dil Fac

RL

0.023

MDL Unit

0.0093 mg/Kg

Prepared

Result Qualifier

0.013 J

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 11/03/15 08:55

Chloroethane

Chloromethane

Cyclohexane

Ethylbenzene

Methyl acetate

Isopropylbenzene

2-Butanone (MEK)

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Bromodichloromethane

Dichlorodifluoromethane

1,2-Dibromoethane (EDB)

Chloroform

Client Sample ID: SWMU4-SB07-SS-104

TestAmerica Job ID: 480-90447-1

Lab Sample ID: 480-90447-3

11/04/15 20:18 11/07/15 07:00

11/04/15 20:18 11/07/15 07:00

11/04/15 20:18 11/07/15 07:00

11/04/15 20:18 11/07/15 07:00

11/04/15 20:18 11/07/15 07:00

11/04/15 20:18 11/07/15 07:00

11/04/15 20:18 11/07/15 07:00

11/04/15 20:18 11/07/15 07:00

11/04/15 20:18 11/07/15 07:00

11/04/15 20:18 11/07/15 07:00

11/04/15 20:18 11/07/15 07:00

11/07/15 07:00

11/07/15 07:00

11/07/15 07:00

11/04/15 20:18

11/04/15 20:18

11/04/15 20:18

ġ

Matrix: Solid Percent Solids: 86.7

Date Received: 11/04/15 09:00 Method: 8260C - Volatile Organic Compounds by GC/MS RL Dil Fac Result Qualifier **MDL** Unit D Prepared Analyte Analyzed 77 $\overline{\mathsf{ND}}$ 5.2 11/04/15 20:18 11/07/15 07:00 1,1,1-Trichloroethane 0.38 ug/Kg ND 1.1.2.2-Tetrachloroethane 52 ug/Kg 11/04/15 20:18 11/07/15 07:00 0.85 1,1,2-Trichloro-1,2,2-trifluoroethane ND 5.2 1.2 ug/Kg 11/04/15 20:18 11/07/15 07:00 ND 5.2 0.68 ug/Kg 11/04/15 20:18 11/07/15 07:00 1.1.2-Trichloroethane 1,1-Dichloroethane ND 5.2 0.64 ug/Kg 11/04/15 20:18 11/07/15 07:00 1 1-Dichloroethene ND 52 0.64 ug/Kg 11/04/15 20:18 11/07/15 07:00 1,2,3-Trichlorobenzene ND 5.2 0.55 ug/Kg 11/04/15 20:18 11/07/15 07:00 1,2,4-Trichlorobenzene ND 5.2 0.32 ug/Kg 11/04/15 20:18 11/07/15 07:00 ₩ ND 11/04/15 20:18 11/07/15 07:00 1,2-Dibromo-3-Chloropropane 5.2 2.6 ug/Kg 1,2-Dichlorobenzene ND 5.2 0.41 ug/Kg 11/04/15 20:18 11/07/15 07:00 1,2-Dichloroethane ND 5.2 0.26 ug/Kg 11/04/15 20:18 11/07/15 07:00 1,2-Dichloropropane NΩ 52 2.6 ug/Kg 11/04/15 20:18 11/07/15 07:00 ND 5.2 0.27 11/04/15 20:18 11/07/15 07:00 1.3-Dichlorobenzene ug/Kg 11/04/15 20:18 1.4-Dichlorobenzene ND 5.2 0.73 ug/Kg 11/07/15 07:00 100 1 4-Dioxane ND 11/04/15 20:18 11/07/15 07:00 23 ug/Kg 2-Hexanone ND 26 2.6 11/04/15 20:18 11/07/15 07:00 ug/Kg 26 11/04/15 20:18 11/07/15 07:00 Acetone ND 44 ug/Kg Benzene ND 5.2 0.26 ug/Kg 11/04/15 20:18 11/07/15 07:00 Bromoform ND 5.2 11/04/15 20:18 11/07/15 07:00 2.6 ug/Kg Bromomethane ND 5.2 0.47 ug/Kg 11/04/15 20:18 11/07/15 07:00 Carbon disulfide ND 5.2 2.6 11/04/15 20:18 11/07/15 07:00 ug/Kg ND 5.2 11/04/15 20:18 11/07/15 07:00 Carbon tetrachloride 0.51 ug/Kg Chlorobenzene ND 5.2 0.69 11/04/15 20:18 11/07/15 07:00 ug/Kg Bromochloromethane ND 5.2 0.38 ug/Kg 11/04/15 20:18 11/07/15 07:00 11/04/15 20:18 Dibromochloromethane ND 5.2 0.67 ug/Kg 11/07/15 07:00

5.2

5.2

5.2

5.2

5.2

5.2

5.2

5.2

5.2

5.2

5.2

5.2

26

26

1.2

0.32

0.32

0.67

0.75

0.73

0.70

0.43

0.36

0.67

0.79

3.2

1.9

ug/Kg

ND

4-Methyl-2-pentanone (MIBK) 1.7 ug/Kg Methyl tert-butyl ether ND 5.2 0.51 11/04/15 20:18 11/07/15 07:00 ug/Kg Methylcyclohexane ND 5.2 0.79 11/04/15 20:18 11/07/15 07:00 ug/Kg Methylene Chloride ND 5.2 2.4 11/04/15 20:18 11/07/15 07:00 ug/Kg ND 5.2 Styrene 11/04/15 20:18 11/07/15 07:00 0.26 ug/Kg ₩ Tetrachloroethene ND 5.2 0.70 ug/Kg 11/04/15 20:18 11/07/15 07:00 Toluene ND 5.2 0.39 ug/Kg 11/04/15 20:18 11/07/15 07:00 trans-1,2-Dichloroethene ND 5.2 0.54 ug/Kg 11/04/15 20:18 11/07/15 07:00 trans-1,3-Dichloropropene ND 5.2 2.3 ug/Kg 11/04/15 20:18 11/07/15 07:00 Trichloroethene ND 5.2 1.1 ug/Kg 11/04/15 20:18 11/07/15 07:00 Trichlorofluoromethane ND 5.2 0.49 ug/Kg 11/04/15 20:18 11/07/15 07:00

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Client Sample ID: SWMU4-SB07-SS-104

Date Collected: 11/03/15 08:55 Date Received: 11/04/15 09:00 Lab Sample ID: 480-90447-3

Matrix: Solid Percent Solids: 86.7

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.2		0.64	ug/Kg	<u> </u>	11/04/15 20:18	11/07/15 07:00	1
Xylenes, Total	ND		10		0.88	ug/Kg	₽	11/04/15 20:18	11/07/15 07:00	1
Tetrahydrofuran	ND	*	10		3.0	ug/Kg	₩	11/04/15 20:18	11/07/15 07:00	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\				11/04/15 20:18	11/07/15 07:00	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	113		60 - 140					11/04/15 20:18	11/07/15 07:00	1
1,2-Dichloroethane-d4 (Surr)	115		64 - 126					11/04/15 20:18	11/07/15 07:00	1
Toluene-d8 (Surr)	106		71 - 125					11/04/15 20:18	11/07/15 07:00	1
4-Bromofluorobenzene (Surr)	103		72 - 126					11/04/15 20:18	11/07/15 07:00	1

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		190	28	ug/Kg	<u> </u>	11/05/15 08:03	11/11/15 14:58	1
bis (2-chloroisopropyl) ether	ND		190	38	ug/Kg	₩	11/05/15 08:03	11/11/15 14:58	1
2,4,5-Trichlorophenol	ND		190	52	ug/Kg	₩	11/05/15 08:03	11/11/15 14:58	1
2,4,6-Trichlorophenol	ND		190	38	ug/Kg	₽	11/05/15 08:03	11/11/15 14:58	1
2,4-Dichlorophenol	ND		190	20	ug/Kg	₩	11/05/15 08:03	11/11/15 14:58	1
2,4-Dimethylphenol	ND		190	46	ug/Kg	₩	11/05/15 08:03	11/11/15 14:58	1
2,4-Dinitrophenol	ND		1900	890	ug/Kg	₩	11/05/15 08:03	11/11/15 14:58	1
2,4-Dinitrotoluene	ND		190	40	ug/Kg	₩	11/05/15 08:03	11/11/15 14:58	1
2,6-Dinitrotoluene	ND		190	23	ug/Kg	₩	11/05/15 08:03	11/11/15 14:58	1
2-Chloronaphthalene	ND		190	32	ug/Kg	₽	11/05/15 08:03	11/11/15 14:58	1
2-Chlorophenol	ND		190	35	ug/Kg	₩	11/05/15 08:03	11/11/15 14:58	1
2-Methylnaphthalene	ND		190	38	ug/Kg	₩	11/05/15 08:03	11/11/15 14:58	1
2-Methylphenol	ND		190	23	ug/Kg	₽	11/05/15 08:03	11/11/15 14:58	1
2-Nitroaniline	ND		370	28	ug/Kg	☼	11/05/15 08:03	11/11/15 14:58	1
2-Nitrophenol	ND		190	54	ug/Kg	₩	11/05/15 08:03	11/11/15 14:58	1
3,3'-Dichlorobenzidine	ND		370	230	ug/Kg		11/05/15 08:03	11/11/15 14:58	1
3-Nitroaniline	ND		370	53	ug/Kg	☼	11/05/15 08:03	11/11/15 14:58	1
4,6-Dinitro-2-methylphenol	ND		370	190	ug/Kg	☼	11/05/15 08:03	11/11/15 14:58	1
4-Bromophenyl phenyl ether	ND		190	27	ug/Kg	φ.	11/05/15 08:03	11/11/15 14:58	1
4-Chloro-3-methylphenol	ND		190	47	ug/Kg	₩	11/05/15 08:03	11/11/15 14:58	1
4-Chloroaniline	ND		190	47	ug/Kg	☼	11/05/15 08:03	11/11/15 14:58	1
4-Chlorophenyl phenyl ether	ND		190	24	ug/Kg	₩	11/05/15 08:03	11/11/15 14:58	1
4-Methylphenol	ND		370	23	ug/Kg	₩	11/05/15 08:03	11/11/15 14:58	1
4-Nitroaniline	ND		370	100	ug/Kg	₩	11/05/15 08:03	11/11/15 14:58	1
4-Nitrophenol	ND		370	130	ug/Kg	₩	11/05/15 08:03	11/11/15 14:58	1
Acenaphthene	ND		190	28	ug/Kg	₩	11/05/15 08:03	11/11/15 14:58	1
Acenaphthylene	ND		190	25	ug/Kg	☼	11/05/15 08:03	11/11/15 14:58	1
Acetophenone	ND		190	26	ug/Kg	*	11/05/15 08:03	11/11/15 14:58	1
Anthracene	ND		190	47	ug/Kg	☼	11/05/15 08:03	11/11/15 14:58	1
Atrazine	ND		190	67	ug/Kg	☼	11/05/15 08:03	11/11/15 14:58	1
Benzaldehyde	ND		190	150	ug/Kg		11/05/15 08:03	11/11/15 14:58	1
Benzo(a)anthracene	ND		190	19	ug/Kg	☼	11/05/15 08:03	11/11/15 14:58	1
Benzo(a)pyrene	ND		190	28	ug/Kg	☼	11/05/15 08:03	11/11/15 14:58	1
Benzo(b)fluoranthene	ND		190	31	ug/Kg	φ.	11/05/15 08:03	11/11/15 14:58	1
Benzo(g,h,i)perylene	ND		190		ug/Kg	☼	11/05/15 08:03	11/11/15 14:58	1

TestAmerica Buffalo

3

_

6

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Client Sample ID: SWMU4-SB07-SS-104

Lab Sample ID: 480-90447-3 Date Collected: 11/03/15 08:55 **Matrix: Solid** Date Received: 11/04/15 09:00 Percent Solids: 86.7

Analyte		Qualifier		RL		Unit	D	Prepared	Analyzed	Dil Fa
Benzo(k)fluoranthene	ND			190	25	ug/Kg	\	11/05/15 08:03	11/11/15 14:58	
Bis(2-chloroethoxy)methane	ND			190	41	ug/Kg	☼	11/05/15 08:03	11/11/15 14:58	
Bis(2-chloroethyl)ether	ND		•	190	25	ug/Kg	₩	11/05/15 08:03	11/11/15 14:58	
Bis(2-ethylhexyl) phthalate	ND		•	190	66	ug/Kg	₩	11/05/15 08:03	11/11/15 14:58	
Butyl benzyl phthalate	ND			190	32	ug/Kg	₩	11/05/15 08:03	11/11/15 14:58	
Caprolactam	ND		1	190	58	ug/Kg	☼	11/05/15 08:03	11/11/15 14:58	
Carbazole	ND		1	190	23	ug/Kg	₩	11/05/15 08:03	11/11/15 14:58	
Chrysene	ND			190	43	ug/Kg		11/05/15 08:03	11/11/15 14:58	
Di-n-butyl phthalate	ND		1	190	33	ug/Kg	☼	11/05/15 08:03	11/11/15 14:58	
Di-n-octyl phthalate	ND		1	190	23	ug/Kg	₩	11/05/15 08:03	11/11/15 14:58	
Dibenz(a,h)anthracene	ND		• • • • • • • • • • •	190	34	ug/Kg	ф.	11/05/15 08:03	11/11/15 14:58	
Dibenzofuran	ND		•	190		ug/Kg	₩	11/05/15 08:03	11/11/15 14:58	
Diethyl phthalate	ND		1	190		ug/Kg	₩	11/05/15 08:03	11/11/15 14:58	
Dimethyl phthalate	ND			190		ug/Kg	ф.	11/05/15 08:03	11/11/15 14:58	
Fluoranthene	ND		1	190	20		₩	11/05/15 08:03	11/11/15 14:58	
Fluorene	ND		4	190		ug/Kg	₩		11/11/15 14:58	
Hexachlorobenzene	ND			190		ug/Kg		11/05/15 08:03	11/11/15 14:58	
Hexachlorobutadiene	ND		,	190	28		₽	11/05/15 08:03	11/11/15 14:58	
Hexachlorocyclopentadiene	ND			190	26		₽		11/11/15 14:58	
Hexachloroethane	ND			190		ug/Kg	ф.	11/05/15 08:03	11/11/15 14:58	
Indeno(1,2,3-cd)pyrene	ND			190		ug/Kg	₩		11/11/15 14:58	
Isophorone	ND			190	41		₩		11/11/15 14:58	
N-Nitrosodi-n-propylamine	ND			190		ug/Kg	·		11/11/15 14:58	
N-Nitrosodiphenylamine	ND			190		ug/Kg	₩		11/11/15 14:58	
Naphthalene	ND			190		ug/Kg	₩		11/11/15 14:58	
Nitrobenzene	ND			190	21		· · · · · · · · · · · · · · · · · · ·		11/11/15 14:58	
Pentachlorophenol	ND			370		ug/Kg	₩		11/11/15 14:58	
Phenanthrene	ND			190		ug/Kg	₩		11/11/15 14:58	
Phenol	ND			190		ug/Kg			11/11/15 14:58	
Pyrene	ND			190		ug/Kg	☼		11/11/15 14:58	
Dimethylformamide	ND			750		ug/Kg	₩		11/11/15 14:58	
Difficultyfformatifice	ND		,	30	00	ug/itg		11/05/15 00:05	11/11/15 14.50	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fa
Unknown	590	TJ	ug/Kg		2.	.28		11/05/15 08:03	11/11/15 14:58	
Unknown	260	TJ	ug/Kg	₩	2.	.46		11/05/15 08:03	11/11/15 14:58	
Unknown	520	TJ	ug/Kg	₩	2.	.50		11/05/15 08:03	11/11/15 14:58	
Unknown	1900	TJ	ug/Kg	₩	2.	.61		11/05/15 08:03	11/11/15 14:58	
Unknown	1100	ΤJ	ug/Kg	₩	4.	.98		11/05/15 08:03	11/11/15 14:58	
Ethane, 1,1,2,2-tetrachloro-	260	TJN	ug/Kg	₩	5.	.97	79-34-5	11/05/15 08:03	11/11/15 14:58	
Surrogate	%Recovery	Qualifier	Limits	6				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	83	-	39 - 14					-	11/11/15 14:58	
2-Fluorobiphenyl	85		37 - 12						11/11/15 14:58	
2-Fluorophenol	76		18 - 12						11/11/15 14:58	
Nitrobenzene-d5	76		34 - 13						11/11/15 14:58	
p-Terphenyl-d14	92		65 - 15						11/11/15 14:58	
p respiretlystatt	92		00 - 70	,,,				. 1/03/13 00.03	. 1/ 1 1/ 13 17.30	

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 7471B - Mercury (CVAA)

Analyte

Mercury

Client Sample ID: SWMU4-SB07-SS-104

TestAmerica Job ID: 480-90447-1

Lab Sample ID: 480-90447-3

·	
Fac 1	
Fac 1 1	
1 1	
1 1	
1	
Fac 1 1	
Fac 1	

Date Collected: 11/03/15 08:55 Date Received: 11/04/15 09:00								Matrix Percent Solid	c: Solic ls: 86.7
Method: 8015D - Nonhalogena Analyte		c Compou Qualifier	nds - Direct	Injectior MDL		Solubl D	e Prepared	Analyzed	Dil Fa
Ethanol	ND		1.1	0.16	mg/Kg		<u> </u>	11/06/15 11:47	
Isobutyl alcohol	ND		1.1		mg/Kg	₽		11/06/15 11:47	
Methanol	0.36	JB	1.1	0.31	mg/Kg	☼		11/06/15 11:47	
n-Butanol	ND		1.1	0.25	mg/Kg	ф.		11/06/15 11:47	
Propanol	ND		1.1	0.16	mg/Kg	₩		11/06/15 11:47	
2-Butanol	ND		1.1	0.17	mg/Kg	☼		11/06/15 11:47	
Isopropyl alcohol	ND		1.1	0.25	mg/Kg	ф.		11/06/15 11:47	
t-Butyl alcohol	ND		1.1	0.28	mg/Kg	☼		11/06/15 11:47	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Hexanone	87		30 - 137					11/06/15 11:47	
Method: 8082A - Polychlorina Analyte		/Is (PCBs) Qualifier	by Gas Chro		aphy Unit	D	Prepared	Analyzed	Dil Fa
PCB-1016	ND		250	49	ug/Kg		11/05/15 07:54	11/05/15 16:59	
PCB-1221	ND		250	49	ug/Kg	☼	11/05/15 07:54	11/05/15 16:59	
PCB-1232	ND		250	49	ug/Kg	₩	11/05/15 07:54	11/05/15 16:59	
PCB-1242	ND		250	49	ug/Kg		11/05/15 07:54	11/05/15 16:59	
PCB-1248	ND		250		ug/Kg	☼	11/05/15 07:54	11/05/15 16:59	
PCB-1254	ND		250	120	ug/Kg	₩	11/05/15 07:54	11/05/15 16:59	
PCB-1260	ND		250	120	ug/Kg		11/05/15 07:54	11/05/15 16:59	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene	97		60 - 154				11/05/15 07:54	11/05/15 16:59	
DCB Decachlorobiphenyl	89		65 - 174				11/05/15 07:54	11/05/15 16:59	
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	3.6		2.2	0.44	mg/Kg	\	11/05/15 13:05	11/06/15 14:58	-
Barium	33.4		0.56	0.12	mg/Kg	₩	11/05/15 13:05	11/06/15 14:58	
Cadmium	0.086	J	0.22	0.033	mg/Kg	₩	11/05/15 13:05	11/06/15 14:58	
Chromium	11.0		0.56	0.22	mg/Kg		11/05/15 13:05	11/06/15 14:58	
Lead	5.7		1.1	0.27	mg/Kg	₽	11/05/15 13:05	11/06/15 14:58	
Selenium	ND		4.4	0.44	mg/Kg	₽	11/05/15 13:05	11/06/15 14:58	
Silver	ND		0.67		mg/Kg			11/06/15 14:58	

Analyzed

Dil Fac

RL

0.023

MDL Unit

0.0094 mg/Kg

Prepared

Result Qualifier

0.012 J

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Client Sample ID: SWMU4-SB08-SS-105

Lab Sample ID: 480-90447-4 Date Collected: 11/03/15 09:20 **Matrix: Solid** Date Received: 11/04/15 09:00 Percent Solids: 85.6

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed 1,1,1-Trichloroethane ND 5.0 0.81 ug/kg 11/04/15 20:18 11/07/15 07:2 1,1,2-Trichloroethane ND 5.0 0.81 ug/kg 11/04/15 20:18 11/07/15 07:3 1,1,2-Trichloroethane ND 5.0 0.65 ug/kg 11/04/15 20:18 11/07/15 07:3 1,1,Dichloroethane ND 5.0 0.61 ug/kg 11/04/15 20:18 11/07/15 07:3 1,1-Dichloroethane ND 5.0 0.61 ug/kg 11/04/15 20:18 11/07/15 07:3 1,2,3-Trichlorobenzene ND 5.0 0.53 ug/kg 11/04/15 20:18 11/07/15 07:3 1,2-Dichrobenzene ND 5.0 0.53 ug/kg 11/04/15 20:18 11/07/15 07:3 1,2-Dichloroebraene ND 5.0 0.53 ug/kg 11/04/15 20:18 11/07/15 07:3 1,2-Dichloroebraene ND 5.0 0.25 ug/kg 11/04/15 20:18	7 7 7 7 7 7 7 7
1,1,2,2-Tetrachloroethane ND 5.0 0.81 ug/Kg 11/04/15 20:18 11/07/15 07:3 1,1,2-Trichloroethane ND 5.0 1.1 ug/Kg 11/04/15 20:18 11/07/15 07:3 1,1,2-Trichloroethane ND 5.0 0.65 ug/Kg 11/04/15 20:18 11/07/15 07:3 1,1-Dichloroethane ND 5.0 0.61 ug/Kg 11/04/15 20:18 11/07/15 07:3 1,1-Dichloroethane ND 5.0 0.61 ug/Kg 11/04/15 20:18 11/07/15 07:3 1,2,3-Trichloroethane ND 5.0 0.53 ug/Kg 11/04/15 20:18 11/07/15 07:3 1,2,3-Trichlorobenzene ND 5.0 0.53 ug/Kg 11/04/15 20:18 11/07/15 07:3 1,2-Dichlorobenzene ND 5.0 0.50 ug/Kg 11/04/15 20:18 11/07/15 07:3 1,2-Dichlorobenzene ND 5.0 0.25 ug/Kg 11/04/15 20:18 11/07/15 07:3 1,2-Dichlorobenzene ND 5.0 0.25 ug/Kg 11/04/15 20:18 11/07/15 07	7 7 7 7 7 7 7 7
1,1,2-Trichloro-1,2,2-trifluoroethane ND 5.0 1.1 ug/Kg 11/04/15 20:18 11/07/15 07: 1,1,2-Trichloroethane ND 5.0 0.65 ug/Kg 11/04/15 20:18 11/07/15 07: 1,1,1-Dichloroethane ND 5.0 0.61 ug/Kg 11/04/15 20:18 11/07/15 07: 1,1-Dichloroethane ND 5.0 0.61 ug/Kg 11/04/15 20:18 11/07/15 07: 1,1-Dichloroethane ND 5.0 0.61 ug/Kg 11/04/15 20:18 11/07/15 07: 1,2,3-Trichlorobenzene ND 5.0 0.63 ug/Kg 11/04/15 20:18 11/07/15 07: 1,2,3-Trichlorobenzene ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07: 1,2,2-Dichlorobenzene ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07: 1,2-Dichlorobenzene ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07: 1,2-Dichloroethane ND 5.0 0.39 ug/Kg 11/04/15 20:18 11/07/15 07: 1,2-Dichloroethane ND 5.0 0.25 ug/Kg 11/04/15 20:18 11/07/15 07: 1,2-Dichloroethane ND 5.0 0.25 ug/Kg 11/04/15 20:18 11/07/15 07: 1,2-Dichloroethane ND 5.0 0.25 ug/Kg 11/04/15 20:18 11/07/15 07: 1,2-Dichloroethane ND 5.0 0.26 ug/Kg 11/04/15 20:18 11/07/15 07: 1,2-Dichloroethane ND 5.0 0.26 ug/Kg 11/04/15 20:18 11/07/15 07: 1,2-Dichloroethane ND 5.0 0.26 ug/Kg 11/04/15 20:18 11/07/15 07: 1,3-Dichloroethane ND 5.0 0.26 ug/Kg 11/04/15 20:18 11/07/15 07: 1,3-Dichloroethane ND 5.0 0.26 ug/Kg 11/04/15 20:18 11/07/15 07: 1,4-Dickloroethane ND 5.0 0.26 ug/Kg 11/04/15 20:18 11/07/15 07: 1,4-Dickloroethane ND 5.0 0.26 ug/Kg 11/04/15 20:18 11/07/15 07: 1,4-Dickloroethane ND 5.0 0.26 ug/Kg 11/04/15 20:18 11/07/15 07: 1,4-Dickloroethane ND 5.0 0.26 ug/Kg 11/04/15 20:18 11/07/15 07: 1,4-Dickloroethane ND 5.0 0.26 ug/Kg 11/04/15 20:18 11/07/15 07: 1,4-Dickloroethane ND 5.0 0.26 ug/Kg 11/04/15 20:18 11/07/15 07: 1,4-Dickloroethane ND 5.0 0.26 ug/Kg 11/04/15 20:18 11/07/15 07: 1,4-Dickloroethane ND 5.0 0.26 ug/Kg 11/04/15 20:18 11/07/15 07: 1,4-Dickloroethane ND 5.0 0.26 ug/Kg 11/04/15 20:18 11/07/15 07: 1,4-Dickloroethane ND 5.0 0.26 ug/Kg 11/04/15 20:18 11/07/15 07: 1,4-Dickloroethane ND 5.0 0.26 ug/Kg 11/04/15 20:18 11/07/15 07: 1,4-Dickloroethane ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07: 1,4-Dickloroethane ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15	7 7 7 7 7 7 7
1,1,2-Trichloroethane ND 5.0 0.65 ug/Kg 11/04/15 20:18 11/07/15 07:1 11/07/15 07:1 11/07/15 07:1 11/07/15 07:1 11/04/15 20:18 11/07/15 07:1 11/07/15 07:1 11/04/15 20:18 11/07/15 07:1	7 7 7 7 7 7
1,1-Dichloroethane ND 5.0 0.61 ug/Kg 11/04/15 20:18 11/07/15 07:1 1,1-Dichloroethane ND 5.0 0.61 ug/Kg 11/04/15 20:18 11/07/15 07:1 1,2,3-Trichlorobenzene ND 5.0 0.53 ug/Kg 11/04/15 20:18 11/07/15 07:1 1,2,4-Trichlorobenzene ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 1,2-Dichlorobenzene ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 1,2-Dichlorobenzene ND 5.0 0.39 ug/Kg 11/04/15 20:18 11/07/15 07:1 1,2-Dichlorobenzene ND 5.0 0.25 ug/Kg 11/04/15 20:18 11/07/15 07:1 1,2-Dichlorobenzene ND 5.0 0.25 ug/Kg 11/04/15 20:18 11/07/15 07:1 1,3-Dichlorobenzene ND 5.0 0.26 ug/Kg 11/04/15 20:18 11/07/15 07:1 1,4-Dichlorobenzene ND 5.0 0.70 ug/Kg 11/04/15 20:18 11/07/15 07:1 1,4-Dichlorobenzene ND 5.0 0.70 ug/Kg <td>7 7 7 7 7 7</td>	7 7 7 7 7 7
1,1-Dichloroethene ND 5.0 0.61 ug/Kg * 11/04/15 20:18 11/07/15 07:10 1,2,3-Trichlorobenzene ND 5.0 0.53 ug/Kg * 11/04/15 20:18 11/07/15 07:2 1,2,4-Trichlorobenzene ND 5.0 0.30 ug/Kg * 11/04/15 20:18 11/07/15 07:2 1,2-Dichlorobenzene ND 5.0 0.39 ug/Kg * 11/04/15 20:18 11/07/15 07:2 1,2-Dichlorobenzene ND 5.0 0.39 ug/Kg * 11/04/15 20:18 11/07/15 07:3 1,2-Dichlorobenzene ND 5.0 0.39 ug/Kg * 11/04/15 20:18 11/07/15 07:3 1,2-Dichlorobenzene ND 5.0 0.25 ug/Kg * 11/04/15 20:18 11/07/15 07:3 1,2-Dichlorobenzene ND 5.0 0.26 ug/Kg * 11/04/15 20:18 11/07/15 07:3 1,2-Dichlorobenzene ND 5.0 0.26 ug/Kg * 11/04/15 20:18 11/07/15 07:3 1,2-Dichlorobenzene ND 5.0 0.26 ug/Kg * 11/04/15 20:18 11/07/15 07:3 1,4-Dichlorobenzene ND 5.0 0.26 <td>7 7 7 7 7</td>	7 7 7 7 7
1,2,3-Trichlorobenzene ND 5.0 0.53 ug/Kg * 11/04/15 20:18 11/07/15 07:3 1,2,4-Trichlorobenzene ND 5.0 0.30 ug/Kg * 11/04/15 20:18 11/07/15 07:3 1,2-Dichlorobenzene ND 5.0 2.5 ug/Kg * 11/04/15 20:18 11/07/15 07:3 1,2-Dichlorobenzene ND 5.0 0.25 ug/Kg * 11/04/15 20:18 11/07/15 07:3 1,2-Dichlorobenzene ND 5.0 0.25 ug/Kg * 11/04/15 20:18 11/07/15 07:3 1,2-Dichlorobenzene ND 5.0 0.25 ug/Kg * 11/04/15 20:18 11/07/15 07:3 1,3-Dichlorobenzene ND 5.0 0.26 ug/Kg * 11/04/15 20:18 11/07/15 07:3 1,4-Dichlorobenzene ND 5.0 0.70 ug/Kg * 11/04/15 20:18 11/07/15 07:3 1,4-Dioxane ND * 5.0 0.70 ug/Kg * 11/04/15 20:18 11/07/15 07:3 2-Hexanone ND * 25 2.5 ug/Kg * 11/04/15 20:18 11/07/15 07:3 Bromoform ND 5.0 0.24 ug/Kg	7 7 7 7
1,2-Dichlorobenzene ND * 5.0 0.30 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,2-Dichlorobenzene ND * 5.0 0.30 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,2-Dichlorobenzene ND 5.0 0.39 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,2-Dichlorobenzene ND 5.0 0.25 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,2-Dichlorobenzene ND 5.0 0.25 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,3-Dichlorobenzene ND 5.0 0.26 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,3-Dichlorobenzene ND 5.0 0.26 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,4-Dichlorobenzene ND 5.0 0.70 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,4-Dichlorobenzene ND * 5.0 0.70 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,4-Dichlorobenzene ND * 100 22 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,4-Dichlorobenzene ND * 25 0.70 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,4-Dichlorobenzene ND * 5.0 0.70 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,4-Dichlorobenzene ND * 5.0 0.70 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,4-Dichlorobenzene ND * 5.0 0.70 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,4-Dichlorobenzene ND * 5.0 0.24 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,4-Dichlorobenzene ND * 5.0 0.24 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,4-Dichlorobenzene ND * 5.0 0.45 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,4-Dichlorobenzene ND * 5.0 0.45 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,4-Dichlorobenzene ND * 5.0 0.48 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,4-Dichlorobenzene ND * 5.0 0.66 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,4-Dichlorobenzene ND * 5.0 0.66 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,4-Dichlorobenzene ND * 5.0 0.64 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,5-Dichlorobenzene ND * 5.0 0.30 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,5-Dichlorobenzene ND * 5.0 0.30 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,5-Dichlorobenzene ND * 5.0 0.30 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,6-Dichlorobenzene ND * 5.0 0.64 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,6-Dichlorobenzene ND * 5.0 0.64 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,7-Dichlorobenzene ND * 5.0 0.64 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,7-Dichlorobenzene ND * 5.0 0.64 ug/Kg * 11/04/15 20:18 11/07/15 07: 1,7-Dichlorobenzene ND * 5.0 0.	7 7 7 7
1,2-Dibromo-3-Chloropropane ND * 5.0 2.5 ug/Kg * 11/04/15 20:18 11/07/15 07:10 1,2-Dichlorobenzene ND 5.0 0.39 ug/Kg * 11/04/15 20:18 11/07/15 07:10 1,2-Dichloroethane ND 5.0 0.25 ug/Kg * 11/04/15 20:18 11/07/15 07:10 1,2-Dichloropropane ND 5.0 0.26 ug/Kg * 11/04/15 20:18 11/07/15 07:10 1,3-Dichlorobenzene ND 5.0 0.26 ug/Kg * 11/04/15 20:18 11/07/15 07:10 1,4-Dichlorobenzene ND 5.0 0.26 ug/Kg * 11/04/15 20:18 11/07/15 07:10 1,4-Dioxane ND * 100 22 ug/Kg * 11/04/15 20:18 11/07/15 07:10 2-Hexanone ND * 25 2.5 ug/Kg * 11/04/15 20:18 11/07/15 07:10 2-Hexanone ND * 25 2.5 ug/Kg * 11/04/15 20:18 <th< td=""><td>7 7 7</td></th<>	7 7 7
1,2-Dichlorobenzene ND 5.0 0.39 ug/Kg * 11/04/15 20:18 11/07/15 07:1 1,2-Dichloroethane ND 5.0 0.25 ug/Kg * 11/04/15 20:18 11/07/15 07:1 1,2-Dichloropropane ND 5.0 0.25 ug/Kg * 11/04/15 20:18 11/07/15 07:1 1,3-Dichlorobenzene ND 5.0 0.26 ug/Kg * 11/04/15 20:18 11/07/15 07:1 1,4-Dichlorobenzene ND 5.0 0.70 ug/Kg * 11/04/15 20:18 11/07/15 07:2 2-Hexanone ND 100 22 ug/Kg * 11/04/15 20:18 11/07/15 07:2 2-Hexanone ND 25 2.5 ug/Kg * 11/04/15 20:18 11/07/15 07:2 2-Hexanone ND 25 4.2 ug/Kg * 11/04/15 20:18 11/07/15 07:2 2-Hexanone ND 25 4.2 ug/Kg * 11/04/15 20:18 11/07/15 07:2 2-Hexanone ND 25 4.2 ug/Kg * 11/04/15 20:18 11/07/15 07:2 3-Romocho	7 7
1,2-Dichloroethane ND 5.0 0.25 ug/Kg 11/04/15 20:18 11/07/15 07: 1,2-Dichloropropane ND 5.0 0.26 ug/Kg 11/04/15 20:18 11/07/15 07: 1,4-Dichlorobenzene ND 5.0 0.70 ug/Kg 11/04/15 20:18 11/07/15 07: 1,4-Dichlorobenzene ND 5.0 0.70 ug/Kg 11/04/15 20:18 11/07/15 07: 1,4-Dichlorobenzene ND 5.0 0.70 ug/Kg 11/04/15 20:18 11/07/15 07: 1,4-Dichlorobenzene ND 5.0 0.70 ug/Kg 11/04/15 20:18 11/07/15 07: 1,4-Dichlorobenzene ND 5.0 0.70 ug/Kg 11/04/15 20:18 11/07/15 07: 1,4-Dichlorobenzene ND 5.0 0.70 ug/Kg 11/04/15 20:18 11/07/15 07:	7
1,2-Dichloropropane ND 5.0 2.5 ug/Kg 11/04/15 20:18 11/07/15 07:1 1,3-Dichlorobenzene ND 5.0 0.26 ug/Kg 11/04/15 20:18 11/07/15 07:1 1,4-Dichlorobenzene ND 5.0 0.70 ug/Kg 11/04/15 20:18 11/07/15 07:1 1,4-Dioxane ND 100 22 ug/Kg 11/04/15 20:18 11/07/15 07:1 1,4-Dioxane ND 25 2.5 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 25 2.5 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 25 4.2 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.24 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Benzene ND 5.0 0.24 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Bromoform ND 5.0 0.25 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Bromomethane ND 5.0 0.45 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Bromomethane ND 5.0 0.45 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Bromomethane ND 5.0 0.45 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Bromomethane ND 5.0 0.48 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Bromomethane ND 5.0 0.66 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Bromomethane ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Bromomethane ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Bromomethane ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Bromomethane ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Bromomethane ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Bromomethane ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Bromomethane ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Bromomethane ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Bromomethane ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Bromomethane ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Bromomethane ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Bromomethane ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Bromomethane ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Bromomethane ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Bromomethane ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Bromomethane ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1	
1,3-Dichlorobenzene ND 5.0 0.26 ug/Kg 11/04/15 20:18 11/07/15 07:1 1,4-Dichlorobenzene ND 5.0 0.70 ug/Kg 11/04/15 20:18 11/07/15 07:1 1,4-Dichlorobenzene ND * 100 22 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND * 25 2.5 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND * 25 4.2 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.24 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.24 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.24 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.25 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.45 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.45 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.48 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.66 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.66 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.64 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.64 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.31 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1 2-Hexanone ND 5.0 0.30 ug/Kg 11/04/15 20:18 11/07/15 07:1	
1,4-Dichlorobenzene ND 5.0 0.70 ug/Kg 2 11/04/15 20:18 11/07/15 07:3 1,4-Dioxane ND * 100 22 ug/Kg 2 11/04/15 20:18 11/07/15 07:3 2-Hexanone ND * 25 2.5 ug/Kg 2 11/04/15 20:18 11/07/15 07:3 Acetone ND 25 4.2 ug/Kg 2 11/04/15 20:18 11/07/15 07:3 Benzene ND 5.0 0.24 ug/Kg 2 11/04/15 20:18 11/07/15 07:3 Bromoform ND 5.0 0.25 ug/Kg 11/04/15 20:18 11/07/15 07:3 Bromomethane ND 5.0 0.45 ug/Kg 11/04/15 20:18 11/07/15 07:3 Carbon disulfide ND 5.0 0.45 ug/Kg 11/04/15 20:18 11/07/15 07:3 Carbon tetrachloride ND 5.0 0.48 ug/Kg 11/04/15 20:18 11/07/15 07:3 Chlorobenzene ND 5.0 0.66 ug/Kg 11/04/15 20:18 11/07/15 07:3 Bromochloromethane ND 5.0 <td>7</td>	7
1,4-Dioxane ND * 100 22 ug/Kg * 11/04/15 20:18 11/07/15 07:20:18	7
2-Hexanone ND * 25 2.5 ug/Kg	7
Acetone ND 25 4.2 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Benzene ND 5.0 0.24 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Bromoform ND 5.0 2.5 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Bromomethane ND 5.0 0.45 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Carbon disulfide ND 5.0 2.5 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Carbon tetrachloride ND 5.0 0.48 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Chlorobenzene ND 5.0 0.66 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Bromochloromethane ND 5.0 0.36 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Chloroethane ND 5.0 0.64 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Chloroform ND 5.0 0.31 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Chloromethane ND 5.0 0.31 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Chloromethane ND 5.0 0.30 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Chloromethane <t< td=""><td>7</td></t<>	7
Benzene ND 5.0 0.24 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Bromoform ND 5.0 2.5 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Bromomethane ND 5.0 0.45 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Carbon disulfide ND 5.0 2.5 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Carbon tetrachloride ND 5.0 0.48 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Chlorobenzene ND 5.0 0.66 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Bromochloromethane ND 5.0 0.36 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Chloroethane ND 5.0 0.64 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Chloroform ND 5.0 0.31 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Chloromethane ND 5.0 0.31 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Chloromethane ND 5.0 0.30 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Chloromethane ND 5.0 0.30 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Chloromethane	7
Bromoform ND 5.0 2.5 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Bromomethane ND 5.0 0.45 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Carbon disulfide ND 5.0 2.5 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Carbon tetrachloride ND 5.0 0.48 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Chlorobenzene ND 5.0 0.66 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Bromochloromethane ND 5.0 0.36 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Dibromochloromethane ND 5.0 0.64 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Chloroethane ND 5.0 0.31 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Chloromethane ND 5.0 0.31 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Chloromethane ND 5.0 0.30 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Cis-1,2-Dichloroethene ND 5.0 0.64 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2	7
Stomomethane ND 5.0 0.45 ug/Kg 11/04/15 20:18 11/07/15 07:20	7
Carbon disulfide ND 5.0 2.5 ug/Kg * 11/04/15 20:18 11/07/15 07:2 Carbon tetrachloride ND 5.0 0.48 ug/Kg * 11/04/15 20:18 11/07/15 07:2 Chlorobenzene ND 5.0 0.66 ug/Kg * 11/04/15 20:18 11/07/15 07:2 Bromochloromethane ND 5.0 0.36 ug/Kg * 11/04/15 20:18 11/07/15 07:2 Dibromochloromethane ND 5.0 0.64 ug/Kg * 11/04/15 20:18 11/07/15 07:2 Chloroethane ND 5.0 0.31 ug/Kg * 11/04/15 20:18 11/07/15 07:2 Chloroform ND 5.0 0.31 ug/Kg * 11/04/15 20:18 11/07/15 07:2 Chloromethane ND 5.0 0.30 ug/Kg * 11/04/15 20:18 11/07/15 07:2 cis-1,2-Dichloroethene ND 5.0 0.64 ug/Kg * 11/04/15 20:18 11/07/15 07:2	7
Carbon tetrachloride ND 5.0 0.48 ug/Kg \$\frac{1}{104/15} \frac{20:18}{20:18} \frac{11/07/15}{20:18} \frac{11/07/15}	7
Carbon tetrachloride ND 5.0 0.48 ug/Kg \$\frac{1}{104/15} \frac{20:18}{20:18} \frac{11/07/15}{20:18} \frac{11/07/15}	7
Chlorobenzene ND 5.0 0.66 ug/Kg ** 11/04/15 20:18 11/07/15 07:5 Bromochloromethane ND 5.0 0.36 ug/Kg ** 11/04/15 20:18 11/07/15 07:5 Dibromochloromethane ND 5.0 0.64 ug/Kg ** 11/04/15 20:18 11/07/15 07:5 Chloroethane ND 5.0 1.1 ug/Kg ** 11/04/15 20:18 11/07/15 07:5 Chloroform ND 5.0 0.31 ug/Kg ** 11/04/15 20:18 11/07/15 07:5 Chloromethane ND 5.0 0.30 ug/Kg ** 11/04/15 20:18 11/07/15 07:5 Cis-1,2-Dichloroethene ND 5.0 0.64 ug/Kg ** 11/04/15 20:18 11/07/15 07:5	7
Dibromochloromethane ND 5.0 0.64 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Chloroethane ND 5.0 1.1 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Chloroform ND 5.0 0.31 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Chloromethane ND 5.0 0.30 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 cis-1,2-Dichloroethene ND 5.0 0.64 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2	7
Dibromochloromethane ND 5.0 0.64 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Chloroethane ND 5.0 1.1 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Chloroform ND 5.0 0.31 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 Chloromethane ND 5.0 0.30 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2 cis-1,2-Dichloroethene ND 5.0 0.64 ug/Kg \$ 11/04/15 20:18 11/07/15 07:2	7
Chloroethane ND 5.0 1.1 ug/Kg * 11/04/15 20:18 11/07/15 07:2 Chloroform ND 5.0 0.31 ug/Kg * 11/04/15 20:18 11/07/15 07:2 Chloromethane ND 5.0 0.30 ug/Kg * 11/04/15 20:18 11/07/15 07:2 cis-1,2-Dichloroethene ND 5.0 0.64 ug/Kg * 11/04/15 20:18 11/07/15 07:2	7
Chloroform ND 5.0 0.31 ug/Kg \$ 11/04/15 20:18 11/07/15 07:20 11/07/15 07:20 Chloromethane ND 5.0 0.30 ug/Kg \$ 11/04/15 20:18 11/07/15 07:20 11/04/15 20:18 11/07/15 07:20 cis-1,2-Dichloroethene ND 5.0 0.64 ug/Kg \$ 11/04/15 20:18 11/07/15 07:20	
Chloromethane ND 5.0 0.30 ug/Kg * 11/04/15 20:18 11/07/15 07:: cis-1,2-Dichloroethene ND 5.0 0.64 ug/Kg * 11/04/15 20:18 11/07/15 07::	
cis-1,2-Dichloroethene ND 5.0 0.64 ug/Kg * 11/04/15 20:18 11/07/15 07:2	
cis-1,3-Dichloropropene ND 5.0 0.72 ug/Kg 🌣 11/04/15 20:18 11/07/15 07::	
Cyclohexane ND 5.0 0.70 ug/Kg * 11/04/15 20:18 11/07/15 07:2	
Bromodichloromethane ND 5.0 0.67 ug/Kg * 11/04/15 20:18 11/07/15 07:2	
Dichlorodifluoromethane ND 5.0 0.41 ug/Kg 11/04/15 20:18 11/07/15 07:2	
Ethylbenzene ND 5.0 0.34 ug/Kg 11/04/15 20:18 11/07/15 07:: 1,2-Dibromoethane (EDB) ND 5.0 0.64 ug/Kg 11/04/15 20:18 11/07/15 07::	
sopropylbenzene ND 5.0 0.75 ug/Kg ** 11/04/15 20:18 11/07/15 07:	
Methyl acetate ND 5.0 3.0 ug/Kg 11/04/15 20:18 11/07/15 07:	
2-Butanone (MEK) ND 25 1.8 ug/Kg ** 11/04/15 20:18 11/07/15 07:	
4-Methyl-2-pentanone (MIBK) ND 25 1.6 ug/Kg ** 11/04/15 20:18 11/07/15 07:	
Methyl tert-butyl ether ND 5.0 0.49 ug/Kg \$\frac{11}{11}04/15 20:18 11/07/15 07:1	
Methylcyclohexane ND 5.0 0.76 ug/Kg ** 11/04/15 20:18 11/07/15 07:	
Methylene Chloride ND 5.0 2.3 ug/Kg * 11/04/15 20:18 11/07/15 07:1	
Styrene ND 5.0 0.25 ug/Kg * 11/04/15 20:18 11/07/15 07:	
Tetrachloroethene ND 5.0 0.67 ug/Kg * 11/04/15 20:18 11/07/15 07:1	
Foluene ND 5.0 0.38 ug/Kg □ 11/04/15 20:18 11/07/15 07:1	
rans-1,2-Dichloroethene ND 5.0 0.51 ug/Kg 3 11/04/15 20:18 11/07/15 07:2	7
rans-1,3-Dichloropropene ND 5.0 2.2 ug/Kg * 11/04/15 20:18 11/07/15 07:2	
Trichloroethene ND 5.0 1.1 ug/Kg * 11/04/15 20:18 11/07/15 07:2	
Trichlorofluoromethane ND 5.0 0.47 ug/Kg * 11/04/15 20:18 11/07/15 07:2	7

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Client Sample ID: SWMU4-SB08-SS-105

Date Collected: 11/03/15 09:20 Date Received: 11/04/15 09:00 Lab Sample ID: 480-90447-4

Matrix: Solid Percent Solids: 85.6

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Coi	ntinu	ed)					
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		0.61	ug/Kg	\	11/04/15 20:18	11/07/15 07:27	1
Xylenes, Total	ND		10		0.84	ug/Kg	₽	11/04/15 20:18	11/07/15 07:27	1
Tetrahydrofuran	ND	*	10		2.9	ug/Kg		11/04/15 20:18	11/07/15 07:27	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\				11/04/15 20:18	11/07/15 07:27	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	110		60 - 140					11/04/15 20:18	11/07/15 07:27	1
1,2-Dichloroethane-d4 (Surr)	112		64 - 126					11/04/15 20:18	11/07/15 07:27	1
Toluene-d8 (Surr)	100		71 - 125					11/04/15 20:18	11/07/15 07:27	1
4-Bromofluorobenzene (Surr)	100		72 - 126					11/04/15 20:18	11/07/15 07:27	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		190	29	ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	1
bis (2-chloroisopropyl) ether	ND		190	39	ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	1
2,4,5-Trichlorophenol	ND		190	53	ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	1
2,4,6-Trichlorophenol	ND		190	39	ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	1
2,4-Dichlorophenol	ND		190	21	ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	1
2,4-Dimethylphenol	ND		190	47	ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	1
2,4-Dinitrophenol	ND		1900	900	ug/Kg	φ.	11/05/15 08:03	11/11/15 15:24	1
2,4-Dinitrotoluene	ND		190	40	ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	1
2,6-Dinitrotoluene	ND		190	23	ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	1
2-Chloronaphthalene	ND		190	32	ug/Kg	₽	11/05/15 08:03	11/11/15 15:24	1
2-Chlorophenol	ND		190	35	ug/Kg	☼	11/05/15 08:03	11/11/15 15:24	1
2-Methylnaphthalene	ND		190	39	ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	1
2-Methylphenol	ND		190	23	ug/Kg		11/05/15 08:03	11/11/15 15:24	1
2-Nitroaniline	ND		380	29	ug/Kg	☼	11/05/15 08:03	11/11/15 15:24	1
2-Nitrophenol	ND		190	55	ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	1
3,3'-Dichlorobenzidine	ND		380	230	ug/Kg		11/05/15 08:03	11/11/15 15:24	1
3-Nitroaniline	ND		380	54	ug/Kg	☼	11/05/15 08:03	11/11/15 15:24	1
4,6-Dinitro-2-methylphenol	ND		380	190	ug/Kg	☼	11/05/15 08:03	11/11/15 15:24	1
4-Bromophenyl phenyl ether	ND		190	27	ug/Kg		11/05/15 08:03	11/11/15 15:24	1
4-Chloro-3-methylphenol	ND		190	48	ug/Kg	☼	11/05/15 08:03	11/11/15 15:24	1
4-Chloroaniline	ND		190	48	ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	1
4-Chlorophenyl phenyl ether	ND		190	24	ug/Kg	φ.	11/05/15 08:03	11/11/15 15:24	1
4-Methylphenol	ND		380	23	ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	1
4-Nitroaniline	ND		380	100	ug/Kg	☼	11/05/15 08:03	11/11/15 15:24	1
4-Nitrophenol	ND		380	140	ug/Kg		11/05/15 08:03	11/11/15 15:24	1
Acenaphthene	ND		190	29	ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	1
Acenaphthylene	ND		190	25	ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	1
Acetophenone	ND		190	26	ug/Kg	Ф	11/05/15 08:03	11/11/15 15:24	1
Anthracene	ND		190	48	ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	1
Atrazine	ND		190	67	ug/Kg	☼	11/05/15 08:03	11/11/15 15:24	1
Benzaldehyde	ND		190	150	ug/Kg		11/05/15 08:03	11/11/15 15:24	1
Benzo(a)anthracene	ND		190	19	ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	1
Benzo(a)pyrene	ND		190	29	ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	1
Benzo(b)fluoranthene	ND		190		ug/Kg	\	11/05/15 08:03	11/11/15 15:24	1
Benzo(g,h,i)perylene	ND		190		ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	1

TestAmerica Buffalo

Page 23 of 90

4

6

1

9

11

13

14

TI-6

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Client Sample ID: SWMU4-SB08-SS-105 Lab Sample ID: 480-90447-4

Analyte	Result	Qualifier	l	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo(k)fluoranthene	ND		1	90	25	ug/Kg	\	11/05/15 08:03	11/11/15 15:24	
Bis(2-chloroethoxy)methane	ND		1	90	41	ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	
Bis(2-chloroethyl)ether	ND		1	90	25	ug/Kg	☼	11/05/15 08:03	11/11/15 15:24	
Bis(2-ethylhexyl) phthalate	ND		1	90	66	ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	
Butyl benzyl phthalate	ND		1	90	32	ug/Kg	₽	11/05/15 08:03	11/11/15 15:24	
Caprolactam	ND		1	90	58	ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	
Carbazole	ND		1	90	23	ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	
Chrysene	ND		1	90	43	ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	
Di-n-butyl phthalate	ND		1	90	33	ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	
Di-n-octyl phthalate	ND		1	90	23	ug/Kg	☼	11/05/15 08:03	11/11/15 15:24	
Dibenz(a,h)anthracene	ND		1	90	34	ug/Kg		11/05/15 08:03	11/11/15 15:24	
Dibenzofuran	ND		1	90	23	ug/Kg	☼	11/05/15 08:03	11/11/15 15:24	
Diethyl phthalate	ND		1	90	25	ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	
Dimethyl phthalate	ND		1	90		ug/Kg	ф.	11/05/15 08:03	11/11/15 15:24	
Fluoranthene	ND		1	90		ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	
Fluorene	ND		1	90		ug/Kg	₩	11/05/15 08:03	11/11/15 15:24	
Hexachlorobenzene	ND		<u>.</u> 1	90		ug/Kg	· · · · · · · · · · · · · · · · · · ·	11/05/15 08:03	11/11/15 15:24	
Hexachlorobutadiene	ND		1	90		ug/Kg	₽	11/05/15 08:03	11/11/15 15:24	
Hexachlorocyclopentadiene	ND			90		ug/Kg	₩		11/11/15 15:24	
Hexachloroethane	ND			90		ug/Kg			11/11/15 15:24	
Indeno(1,2,3-cd)pyrene	ND			90		ug/Kg	☼		11/11/15 15:24	
Isophorone	ND			90		ug/Kg	₩		11/11/15 15:24	
N-Nitrosodi-n-propylamine	ND			90		ug/Kg			11/11/15 15:24	
N-Nitrosodiphenylamine	ND			90		ug/Kg	₩		11/11/15 15:24	
Naphthalene	ND			90		ug/Kg	☼		11/11/15 15:24	
Nitrobenzene	ND			90		ug/Kg			11/11/15 15:24	
Pentachlorophenol	ND			80		ug/Kg	₩		11/11/15 15:24	
Phenanthrene	ND			90		ug/Kg	₩		11/11/15 15:24	
Phenol	ND			90		ug/Kg			11/11/15 15:24	
Pyrene	ND			90		ug/Kg	₩		11/11/15 15:24	
Dimethylformamide	ND			50		ug/Kg	₩		11/11/15 15:24	
Difficultyfformathide	ND		,	30	00	ug/itg		11/05/15 00:05	11/11/10 10:24	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fa
Unknown	720	TJ	ug/Kg	- -	2.	.27		11/05/15 08:03	11/11/15 15:24	
Unknown	250	ΤJ	ug/Kg	☼	2.	46		11/05/15 08:03	11/11/15 15:24	
Unknown	460	ΤJ	ug/Kg	₽	2.	50		11/05/15 08:03	11/11/15 15:24	
Unknown	2000	ΤJ	ug/Kg	\$	2.	61		11/05/15 08:03	11/11/15 15:24	
Unknown	1100	TJ	ug/Kg	☼	4.	.98		11/05/15 08:03	11/11/15 15:24	
Ethane, 1,1,2,2-tetrachloro-	230	TJN	ug/Kg	₩	5.	.96	79-34-5	11/05/15 08:03	11/11/15 15:24	
Surrogate	%Recovery	Qualifier	Limits	;				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	79		39 - 14						11/11/15 15:24	
2-Fluorobiphenyl	80		37 - 12						11/11/15 15:24	
2-Fluorophenol	74		18 - 12						11/11/15 15:24	
Nitrobenzene-d5	73		34 - 13						11/11/15 15:24	
p-Terphenyl-d14	88		65 - 15						11/11/15 15:24	
Phenol-d5	77		11 - 12						11/11/15 15:24	

TestAmerica Buffalo

2

4

6

9

11

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 11/03/15 09:20

Date Received: 11/04/15 09:00

Mercury

Client Sample ID: SWMU4-SB08-SS-105

TestAmerica Job ID: 480-90447-1

Lab Sample ID: 480-90447-4

Matrix: Solid

Percent Solids: 85.6

Method: 8015D - Nonhalo Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		1.1	0.16	mg/Kg	<u></u>		11/06/15 11:55	1
Isobutyl alcohol	ND		1.1	0.27	mg/Kg	₩		11/06/15 11:55	1
Methanol	0.56	JB	1.1	0.32	mg/Kg	₩		11/06/15 11:55	1
n-Butanol	ND		1.1	0.25	mg/Kg			11/06/15 11:55	1
Propanol	ND		1.1	0.16	mg/Kg	₩		11/06/15 11:55	1
2-Butanol	ND		1.1	0.17	mg/Kg	₩		11/06/15 11:55	1
Isopropyl alcohol	ND		1.1	0.26	mg/Kg			11/06/15 11:55	1
t-Butyl alcohol	ND		1.1	0.28	mg/Kg	₽		11/06/15 11:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	88		30 - 137					11/06/15 11:55	1
- - 	and a proper	I- (DOD-)	L 0 01						
Method: 8082A - Polychlo Analyte		yls (PCBS) Qualifier	by Gas Chro	matogr MDL	•	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	Qualifier	280		ug/Kg	— =	11/05/15 07:54		1
PCB-1221	ND		280	54	ug/Kg ug/Kg			11/05/15 17:14	1
PCB-1232	ND.		280		ug/Kg ug/Kg	₩			1
PCB-1242	ND		280		ug/Kg			11/05/15 17:14	
PCB-1248	ND		280		ug/Kg	₩		11/05/15 17:14	1
PCB-1254	ND		280	130		₩		11/05/15 17:14	1
PCB-1260	ND		280		ug/Kg			11/05/15 17:14	· · · · · · · · · · · · · · · · · · ·
					-9-1-9				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	89		60 - 154				11/05/15 07:54	11/05/15 17:14	1
DCB Decachlorobiphenyl	86		65 - 174				11/05/15 07:54	11/05/15 17:14	1
Method: 6010C - Metals (I	CP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.1		2.5	0.49	mg/Kg	<u> </u>	11/05/15 13:05	11/06/15 15:02	1
Barium	48.2		0.62	0.14	mg/Kg	₩	11/05/15 13:05	11/06/15 15:02	1
Cadmium	0.14	J	0.25	0.037	mg/Kg	₩	11/05/15 13:05	11/06/15 15:02	1
Chromium	15.0		0.62	0.25	mg/Kg	₩	11/05/15 13:05	11/06/15 15:02	1
Lead	6.4		1.2	0.30	mg/Kg	₩	11/05/15 13:05	11/06/15 15:02	1
Selenium	ND		4.9	0.49	mg/Kg	₩	11/05/15 13:05	11/06/15 15:02	1
Silver	ND		0.74	0.25	mg/Kg	₽	11/05/15 13:05	11/06/15 15:02	1
Method: 7471B - Mercury	(CVAA)								
	•	Qualifier	RL						Dil Fac

0.023

0.0093 mg/Kg

ND

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 11/03/15 10:15

Date Received: 11/04/15 09:00

Trichloroethene

Trichlorofluoromethane

Client Sample ID: SWMU12-SB03-SS-100

TestAmerica Job ID: 480-90447-1

Lab Sample ID: 480-90447-5

Matrix: Solid
Percent Solids: 84.2

Analyte	Result Qua		MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	6.0		ug/Kg	<u> </u>		11/07/15 07:54	1
1,1,2,2-Tetrachloroethane	ND	6.0		ug/Kg	÷		11/07/15 07:54	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	6.0		ug/Kg			11/07/15 07:54	1
1,1,2-Trichloroethane	ND	6.0		ug/Kg	₽.		11/07/15 07:54	1
1,1-Dichloroethane	ND	6.0		ug/Kg	₽.		11/07/15 07:54	1
1,1-Dichloroethene	ND	6.0		ug/Kg	₩	11/04/15 20:18	11/07/15 07:54	1
1,2,3-Trichlorobenzene	ND	6.0		ug/Kg	₩	11/04/15 20:18	11/07/15 07:54	1
1,2,4-Trichlorobenzene	ND	6.0	0.37	ug/Kg	₽	11/04/15 20:18	11/07/15 07:54	1
1,2-Dibromo-3-Chloropropane	ND *	6.0		ug/Kg	₩	11/04/15 20:18	11/07/15 07:54	1
1,2-Dichlorobenzene	ND	6.0	0.47	ug/Kg	₽	11/04/15 20:18	11/07/15 07:54	1
1,2-Dichloroethane	ND	6.0	0.30	ug/Kg	₩	11/04/15 20:18	11/07/15 07:54	1
1,2-Dichloropropane	ND	6.0	3.0	ug/Kg	₩	11/04/15 20:18	11/07/15 07:54	1
1,3-Dichlorobenzene	ND	6.0	0.31	ug/Kg	≎	11/04/15 20:18	11/07/15 07:54	1
1,4-Dichlorobenzene	ND	6.0	0.84	ug/Kg	₽	11/04/15 20:18	11/07/15 07:54	1
1,4-Dioxane	ND *	120	26	ug/Kg	₽	11/04/15 20:18	11/07/15 07:54	1
2-Hexanone	ND *	30	3.0	ug/Kg	₩.	11/04/15 20:18	11/07/15 07:54	1
Acetone	9.6 JB	30	5.1	ug/Kg	☼	11/04/15 20:18	11/07/15 07:54	1
Benzene	ND	6.0	0.30	ug/Kg	₩	11/04/15 20:18	11/07/15 07:54	1
Bromoform	ND	6.0	3.0	ug/Kg	ф.	11/04/15 20:18	11/07/15 07:54	1
Bromomethane	ND	6.0		ug/Kg	₽	11/04/15 20:18	11/07/15 07:54	1
Carbon disulfide	ND	6.0		ug/Kg	₩	11/04/15 20:18	11/07/15 07:54	1
Carbon tetrachloride	ND	6.0		ug/Kg		11/04/15 20:18	11/07/15 07:54	1
Chlorobenzene	ND	6.0		ug/Kg	≎	11/04/15 20:18	11/07/15 07:54	1
Bromochloromethane	ND	6.0		ug/Kg	₩		11/07/15 07:54	1
Dibromochloromethane	ND	6.0		ug/Kg			11/07/15 07:54	1
Chloroethane	ND	6.0		ug/Kg	₽		11/07/15 07:54	1
Chloroform	ND	6.0		ug/Kg	₽		11/07/15 07:54	1
Chloromethane	ND	6.0		ug/Kg			11/07/15 07:54	· · · · · · · · · · · · · · · · · · ·
cis-1,2-Dichloroethene	ND	6.0		ug/Kg	₩		11/07/15 07:54	1
cis-1,3-Dichloropropene	ND	6.0		ug/Kg	₩		11/07/15 07:54	1
Cyclohexane	ND	6.0		ug/Kg			11/07/15 07:54	
Bromodichloromethane	ND	6.0		ug/Kg ug/Kg	☆		11/07/15 07:54	1
Dichlorodifluoromethane	ND	6.0		ug/Kg ug/Kg			11/07/15 07:54	1
Ethylbenzene	ND	6.0		ug/Kg ug/Kg	······		11/07/15 07:54	
•	ND ND	6.0		ug/Kg ug/Kg	*		11/07/15 07:54	
1,2-Dibromoethane (EDB)				• •	₩			1
Isopropylbenzene	ND	6.0		ug/Kg			11/07/15 07:54	1
Methyl acetate	ND	6.0		ug/Kg			11/07/15 07:54	1
2-Butanone (MEK)	ND	30		ug/Kg			11/07/15 07:54	1
4-Methyl-2-pentanone (MIBK)	ND	30		ug/Kg			11/07/15 07:54	
Methyl tert-butyl ether	ND	6.0		ug/Kg			11/07/15 07:54	1
Methylcyclohexane	ND	6.0		ug/Kg	:D:		11/07/15 07:54	1
Methylene Chloride	ND	6.0		ug/Kg	: Q :		11/07/15 07:54	1
Styrene	ND	6.0		ug/Kg	₩.	11/04/15 20:18	11/07/15 07:54	1
Tetrachloroethene	ND	6.0		ug/Kg	₩		11/07/15 07:54	1
Toluene	ND	6.0	0.46	ug/Kg	#		11/07/15 07:54	1
trans-1,2-Dichloroethene	ND	6.0	0.62	ug/Kg			11/07/15 07:54	1
trans-1,3-Dichloropropene	ND	6.0	2.6	ug/Kg	₽	11/04/15 20:18	11/07/15 07:54	1
Tui alal aura atla aura	ND	0.0	4.0		> *c	44/04/45 00:40	44/07/45 07:54	4

TestAmerica Buffalo

☼ 11/04/15 20:18 11/07/15 07:54

* 11/04/15 20:18 11/07/15 07:54

6.0

6.0

1.3 ug/Kg

0.57 ug/Kg

ND

ND

3

6

ŏ

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 11/03/15 10:15

Date Received: 11/04/15 09:00

Client Sample ID: SWMU12-SB03-SS-100

TestAmerica Job ID: 480-90447-1

Lab Sample ID: 480-90447-5

Matrix: Solid

Percent Solids: 84.2

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Co	ntinue	ed)					
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		6.0		0.73	ug/Kg		11/04/15 20:18	11/07/15 07:54	1
Xylenes, Total	ND		12		1.0	ug/Kg	₩	11/04/15 20:18	11/07/15 07:54	1
Tetrahydrofuran	ND	*	12		3.5	ug/Kg	\$	11/04/15 20:18	11/07/15 07:54	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\				11/04/15 20:18	11/07/15 07:54	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	107		60 - 140					11/04/15 20:18	11/07/15 07:54	1
1,2-Dichloroethane-d4 (Surr)	105		64 - 126					11/04/15 20:18	11/07/15 07:54	1
Toluene-d8 (Surr)	100		71 - 125					11/04/15 20:18	11/07/15 07:54	1
4-Bromofluorobenzene (Surr)	98		72 - 126					11/04/15 20:18	11/07/15 07:54	1

Analyte	Result C	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND	980	140	ug/Kg	<u> </u>	11/05/15 08:03	11/11/15 15:50	5
bis (2-chloroisopropyl) ether	ND	980	200	ug/Kg	₩	11/05/15 08:03	11/11/15 15:50	5
2,4,5-Trichlorophenol	ND	980	270	ug/Kg	☼	11/05/15 08:03	11/11/15 15:50	5
2,4,6-Trichlorophenol	ND	980	200	ug/Kg	₽	11/05/15 08:03	11/11/15 15:50	5
2,4-Dichlorophenol	ND	980	100	ug/Kg	₽	11/05/15 08:03	11/11/15 15:50	5
2,4-Dimethylphenol	ND	980	240	ug/Kg	☼	11/05/15 08:03	11/11/15 15:50	5
2,4-Dinitrophenol	ND	9600	4500	ug/Kg	ф.	11/05/15 08:03	11/11/15 15:50	5
2,4-Dinitrotoluene	ND	980	200	ug/Kg	₩	11/05/15 08:03	11/11/15 15:50	5
2,6-Dinitrotoluene	ND	980	120	ug/Kg	₩	11/05/15 08:03	11/11/15 15:50	5
2-Chloronaphthalene	ND	980	160	ug/Kg		11/05/15 08:03	11/11/15 15:50	5
2-Chlorophenol	ND	980	180	ug/Kg	≎	11/05/15 08:03	11/11/15 15:50	5
2-Methylnaphthalene	ND	980	200	ug/Kg	≎	11/05/15 08:03	11/11/15 15:50	5
2-Methylphenol	ND	980	120	ug/Kg		11/05/15 08:03	11/11/15 15:50	5
2-Nitroaniline	ND	1900	140	ug/Kg	₩	11/05/15 08:03	11/11/15 15:50	5
2-Nitrophenol	ND	980	280	ug/Kg	₽	11/05/15 08:03	11/11/15 15:50	5
3,3'-Dichlorobenzidine	ND	1900	1200	ug/Kg		11/05/15 08:03	11/11/15 15:50	5
3-Nitroaniline	ND	1900	270	ug/Kg	₩	11/05/15 08:03	11/11/15 15:50	5
4,6-Dinitro-2-methylphenol	ND	1900	980	ug/Kg	₽	11/05/15 08:03	11/11/15 15:50	5
4-Bromophenyl phenyl ether	ND	980	140	ug/Kg		11/05/15 08:03	11/11/15 15:50	5
4-Chloro-3-methylphenol	ND	980	240		₽	11/05/15 08:03	11/11/15 15:50	5
4-Chloroaniline	ND	980	240	ug/Kg	₩	11/05/15 08:03	11/11/15 15:50	5
4-Chlorophenyl phenyl ether	ND	980	120	ug/Kg	φ.	11/05/15 08:03	11/11/15 15:50	5
4-Methylphenol	ND	1900	120	ug/Kg	₩	11/05/15 08:03	11/11/15 15:50	5
4-Nitroaniline	ND	1900	510	ug/Kg	₩	11/05/15 08:03	11/11/15 15:50	5
4-Nitrophenol	ND	1900	690	ug/Kg	ф	11/05/15 08:03	11/11/15 15:50	5
Acenaphthene	ND	980	140	ug/Kg	₽	11/05/15 08:03	11/11/15 15:50	5
Acenaphthylene	ND	980	130	ug/Kg	₩	11/05/15 08:03	11/11/15 15:50	5
Acetophenone	ND	980	130		Φ.	11/05/15 08:03	11/11/15 15:50	5
Anthracene	ND	980	240	ug/Kg	₽	11/05/15 08:03	11/11/15 15:50	5
Atrazine	ND	980	340	ug/Kg	₩	11/05/15 08:03	11/11/15 15:50	5
Benzaldehyde	ND	980	780			11/05/15 08:03	11/11/15 15:50	5
Benzo(a)anthracene	ND	980	98	ug/Kg	≎	11/05/15 08:03	11/11/15 15:50	5
Benzo(a)pyrene	ND	980	140		≎	11/05/15 08:03	11/11/15 15:50	5
Benzo(b)fluoranthene	ND	980	160			11/05/15 08:03	11/11/15 15:50	5
Benzo(g,h,i)perylene	ND	980		ug/Kg	₽		11/11/15 15:50	5

TestAmerica Buffalo

3

4

6

8

9

11

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 11/03/15 10:15

Date Received: 11/04/15 09:00

Client Sample ID: SWMU12-SB03-SS-100

TestAmerica Job ID: 480-90447-1

Lab Sample ID: 480-90447-5

Matrix: Solid

Percent Solids: 84.2

Method: 8270D - Semivolatile Analyte	Result	Qualifier	RL			Unit	D	Prepared	Analyzed	Dil Fa
Benzo(k)fluoranthene	ND		980			ug/Kg	 	11/05/15 08:03		
Bis(2-chloroethoxy)methane	ND		980			ug/Kg	₩.		11/11/15 15:50	
Bis(2-chloroethyl)ether	ND		980			ug/Kg	₽.		11/11/15 15:50	
Bis(2-ethylhexyl) phthalate	ND		980			ug/Kg			11/11/15 15:50	
Butyl benzyl phthalate	ND		980			ug/Kg	₩.		11/11/15 15:50	į
Caprolactam	ND		980			ug/Kg	₩.		11/11/15 15:50	į
Carbazole	ND		980			ug/Kg		11/05/15 08:03	11/11/15 15:50	
Chrysene	ND		980			ug/Kg	₩		11/11/15 15:50	į
Di-n-butyl phthalate	ND		980		170	ug/Kg	₩	11/05/15 08:03	11/11/15 15:50	į
Di-n-octyl phthalate	ND		980		120	ug/Kg	₩	11/05/15 08:03	11/11/15 15:50	
Dibenz(a,h)anthracene	ND		980		170	ug/Kg	₽	11/05/15 08:03	11/11/15 15:50	
Dibenzofuran	ND		980		120	ug/Kg	₩	11/05/15 08:03	11/11/15 15:50	
Diethyl phthalate	ND		980		130	ug/Kg	₩	11/05/15 08:03	11/11/15 15:50	į
Dimethyl phthalate	ND		980			ug/Kg	¢	11/05/15 08:03	11/11/15 15:50	
Fluoranthene	ND		980		100	ug/Kg	₩	11/05/15 08:03	11/11/15 15:50	į
Fluorene	ND		980		120	ug/Kg	₩	11/05/15 08:03	11/11/15 15:50	į
Hexachlorobenzene	ND		980		130	ug/Kg	\$	11/05/15 08:03	11/11/15 15:50	
Hexachlorobutadiene	ND		980		140	ug/Kg	₩	11/05/15 08:03	11/11/15 15:50	
Hexachlorocyclopentadiene	ND		980		130	ug/Kg	☆	11/05/15 08:03	11/11/15 15:50	
Hexachloroethane	ND		980		130	ug/Kg	₽	11/05/15 08:03	11/11/15 15:50	
Indeno(1,2,3-cd)pyrene	ND		980		120	ug/Kg	☆	11/05/15 08:03	11/11/15 15:50	
Isophorone	ND		980		210	ug/Kg	☆	11/05/15 08:03	11/11/15 15:50	
N-Nitrosodi-n-propylamine	ND		980		170	ug/Kg	₩	11/05/15 08:03	11/11/15 15:50	
N-Nitrosodiphenylamine	ND		980		800	ug/Kg	₩	11/05/15 08:03	11/11/15 15:50	
Naphthalene	ND		980		130	ug/Kg	☼	11/05/15 08:03	11/11/15 15:50	
Nitrobenzene	ND		980		110	ug/Kg		11/05/15 08:03	11/11/15 15:50	
Pentachlorophenol	ND		1900		980	ug/Kg	₩	11/05/15 08:03	11/11/15 15:50	
Phenanthrene	ND		980		140	ug/Kg	☼	11/05/15 08:03	11/11/15 15:50	
Phenol	ND		980		150	ug/Kg		11/05/15 08:03	11/11/15 15:50	
Pyrene	ND		980		120	ug/Kg	₩	11/05/15 08:03	11/11/15 15:50	
Dimethylformamide	ND		3800		430	ug/Kg	≎	11/05/15 08:03	11/11/15 15:50	
Tentatively Identified Compound	Est. Result		Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fa
Unknown	3900	TJ	ug/Kg	\tilde{\	2.	.26		11/05/15 08:03	11/11/15 15:50	
Cyclohexane	870	TJN	ug/Kg	₩	2.	.46	110-82-7	11/05/15 08:03	11/11/15 15:50	
Unknown	2200	TJ	ug/Kg	₩	2.	.60		11/05/15 08:03	11/11/15 15:50	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	74		39 - 146						11/11/15 15:50	
2-Fluorobiphenyl	85		37 - 120						11/11/15 15:50	
2-Fluorophenol	73		18 - 120					11/05/15 08:03	11/11/15 15:50	
Nitrobenzene-d5	67		34 - 132					11/05/15 08:03	11/11/15 15:50	
p-Terphenyl-d14	82		65 - 153					11/05/15 08:03	11/11/15 15:50	
Phenol-d5	74		11 - 120					11/05/15 08:03	11/11/15 15:50	

Method: 8015D - Nonhalogenate	d Organic Compounds	s - Direct	Injection (GC) - S	oluble	
	B 14 G 1161		***** ** **	_	_

			,					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared A	Analyzed	Dil Fac	
Ethanol	ND ND	1.2	0.18 mg/Kg	\	11/	06/15 12:03	1	
Isobutyl alcohol	ND	1.2	0.30 mg/Kg	₽	11/	06/15 12:03	1	
Methanol	ND	1.2	0.35 mg/Kg	₩	11/	06/15 12:03	1	

TestAmerica Buffalo

Page 28 of 90

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU12-SB03-SS-100

TestAmerica Job ID: 480-90447-1

Lab Sample ID: 480-90447-5

Date Collected: 11/03/15 10:15

Date Received: 11/04/15 09:00

Matrix: Solid
Percent Solids: 84.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
n-Butanol	ND		1.2	0.27	mg/Kg	<u>₩</u>		11/06/15 12:03	1
Propanol	ND		1.2	0.18	mg/Kg	₩.		11/06/15 12:03	1
2-Butanol	ND		1.2	0.19	mg/Kg	₩		11/06/15 12:03	1
Isopropyl alcohol	ND		1.2	0.28	mg/Kg			11/06/15 12:03	1
t-Butyl alcohol	ND		1.2	0.31	mg/Kg	₽		11/06/15 12:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	79		30 - 137					11/06/15 12:03	1
PCB-1016 PCB-1221	ND ND		300 300	58 58	ug/Kg ug/Kg	☆	11/05/15 07:54 11/05/15 07:54	11/05/15 17:29 11/05/15 17:29	1
Method: 8082A - Polychlor	inated Biphen	ıls (PCBs)	by Gas Chro	matogr	anhv				
									1
PCB-1232	ND.		300	58	ug/Kg	₩		11/05/15 17:29	1
PCB-1242	ND		300	58	ug/Kg		11/05/15 07:54	11/05/15 17:29	1
PCB-1248	ND		300	58	ug/Kg	₽	11/05/15 07:54	11/05/15 17:29	1
PCB-1254	ND		300	140	ug/Kg	₽	11/05/15 07:54	11/05/15 17:29	1
PCB-1260	ND		300	140	ug/Kg	*	11/05/15 07:54	11/05/15 17:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	94		60 - 154				11/05/15 07:54	11/05/15 17:29	1
DCB Decachlorobiphenyl	89		65 - 174				11/05/15 07:54	11/05/15 17:29	1
Method: 6010C - Metals (IC	:P)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.0	J	2.5	0.50	mg/Kg	<u> </u>	11/05/15 13:05	11/06/15 15:05	1
Barium	31.4		0.62	0.14	mg/Kg	≎	11/05/15 13:05	11/06/15 15:05	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.0	J -	2.5	0.50	mg/Kg		11/05/15 13:05	11/06/15 15:05	1
Barium	31.4		0.62	0.14	mg/Kg	₩	11/05/15 13:05	11/06/15 15:05	1
Cadmium	0.065	J	0.25	0.037	mg/Kg	☼	11/05/15 13:05	11/06/15 15:05	1
Chromium	8.8		0.62	0.25	mg/Kg		11/05/15 13:05	11/06/15 15:05	1
Lead	2.6		1.2	0.30	mg/Kg	☼	11/05/15 13:05	11/06/15 15:05	1
Selenium	ND		5.0	0.50	mg/Kg	₩	11/05/15 13:05	11/06/15 15:05	1
Silver	ND		0.75	0.25	mg/Kg	₩	11/05/15 13:05	11/06/15 15:05	1

Method: 7471B - Mercury (CVA/	4)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	ND		0.024	0.0099	mg/Kg	\	11/05/15 14:05	11/05/15 16:27	1	

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Client Sample ID: SWMU12-SB04-SS-101 Lab Sample ID: 480-90447-6

 Date Collected: 11/03/15 10:40
 Matrix: Solid

 Date Received: 11/04/15 09:00
 Percent Solids: 83.8

Method: 8260C - Volatile Orgar Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		5.5	0.40	ug/Kg	— =	11/04/15 20:18		Dilla
1,1,2,2-Tetrachloroethane	ND		5.5			₩		11/07/15 08:21	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.5		ug/Kg	₩		11/07/15 08:21	
1,1,2-Trichloroethane	ND		5.5		ug/Kg	· · · · · · · · · · · · · · · · · · ·	11/04/15 20:18		
1,1-Dichloroethane	ND ND		5.5		ug/Kg ug/Kg			11/07/15 08:21	
1,1-Dichloroethane	ND ND		5.5		ug/Kg ug/Kg	T Y		11/07/15 08:21	
1,2,3-Trichlorobenzene	ND		5.5 5.5			· · · · · · · · · · · · · · · · · · ·		11/07/15 08:21	
1,2,4-Trichlorobenzene	ND ND		5.5 5.5		ug/Kg	~ \$		11/07/15 08:21	
, ,		*			ug/Kg	~ \$			
1,2-Dibromo-3-Chloropropane	ND		5.5		ug/Kg			11/07/15 08:21	
1,2-Dichlorobenzene	ND		5.5		ug/Kg	☆		11/07/15 08:21	
1,2-Dichloroethane	ND		5.5		ug/Kg	φ. 		11/07/15 08:21	
1,2-Dichloropropane	ND		5.5		ug/Kg	T. 		11/07/15 08:21	
1,3-Dichlorobenzene	ND		5.5		ug/Kg	:D:		11/07/15 08:21	
1,4-Dichlorobenzene	ND		5.5	0.77	0 0	₩.		11/07/15 08:21	
1,4-Dioxane	ND	*	110		ug/Kg	, .	11/04/15 20:18		
2-Hexanone	ND	*	28		ug/Kg	☼	11/04/15 20:18		
Acetone		JB	28	4.7	ug/Kg	₩	11/04/15 20:18	11/07/15 08:21	
Benzene	ND		5.5	0.27	ug/Kg	₩	11/04/15 20:18	11/07/15 08:21	
Bromoform	ND		5.5	2.8	ug/Kg	₩	11/04/15 20:18	11/07/15 08:21	
Bromomethane	ND		5.5	0.50	ug/Kg	₩	11/04/15 20:18	11/07/15 08:21	
Carbon disulfide	ND		5.5	2.8	ug/Kg	≎	11/04/15 20:18	11/07/15 08:21	
Carbon tetrachloride	ND		5.5	0.53	ug/Kg	₽	11/04/15 20:18	11/07/15 08:21	
Chlorobenzene	ND		5.5	0.73	ug/Kg	☼	11/04/15 20:18	11/07/15 08:21	
Bromochloromethane	ND		5.5	0.40	ug/Kg	☼	11/04/15 20:18	11/07/15 08:21	
Dibromochloromethane	ND		5.5	0.71	ug/Kg	φ.	11/04/15 20:18	11/07/15 08:21	
Chloroethane	ND		5.5	1.2	ug/Kg	₽	11/04/15 20:18	11/07/15 08:21	
Chloroform	ND		5.5		ug/Kg	☼	11/04/15 20:18	11/07/15 08:21	
Chloromethane	ND		5.5		ug/Kg		11/04/15 20:18	11/07/15 08:21	
cis-1,2-Dichloroethene	ND		5.5	0.71	ug/Kg	₩		11/07/15 08:21	
cis-1,3-Dichloropropene	ND		5.5		ug/Kg	₽		11/07/15 08:21	
Cyclohexane	ND		5.5		ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/07/15 08:21	
Bromodichloromethane	ND		5.5		ug/Kg	☆		11/07/15 08:21	
Dichlorodifluoromethane	ND		5.5		ug/Kg	ά		11/07/15 08:21	
Ethylbenzene	ND		5.5		ug/Kg			11/07/15 08:21	
1,2-Dibromoethane (EDB)	ND		5.5		ug/Kg ug/Kg	 \$		11/07/15 08:21	
• ,	ND		5.5			т Ф			
sopropylbenzene					ug/Kg	· · · · · · · · · · · · · · · · · · ·	11/04/15 20:18	11/07/15 08:21	
Methyl acetate	ND		5.5		ug/Kg	*			
2-Butanone (MEK)	ND		28		ug/Kg	₩		11/07/15 08:21	
4-Methyl-2-pentanone (MIBK)	ND		28		ug/Kg	. .		11/07/15 08:21	
Methyl tert-butyl ether	ND		5.5		ug/Kg	₩	11/04/15 20:18		
Methylcyclohexane	ND		5.5		ug/Kg	₩		11/07/15 08:21	
Methylene Chloride	ND		5.5		ug/Kg	J.	11/04/15 20:18		
Styrene	ND		5.5		ug/Kg	₩.	11/04/15 20:18		
Tetrachloroethene	ND		5.5		ug/Kg	*	11/04/15 20:18		
Toluene	ND		5.5		ug/Kg		11/04/15 20:18		
trans-1,2-Dichloroethene	ND		5.5		ug/Kg	₽	11/04/15 20:18		
rans-1,3-Dichloropropene	ND		5.5	2.4	ug/Kg	☼	11/04/15 20:18	11/07/15 08:21	
Trichloroethene	ND		5.5	1.2	ug/Kg	₩	11/04/15 20:18	11/07/15 08:21	
Trichlorofluoromethane	ND		5.5	0.52	ug/Kg		11/04/15 20:18	11/07/15 08:21	

TestAmerica Buffalo

6

0

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Received: 11/04/15 09:00

TestAmerica Job ID: 480-90447-1

2

Client Sample ID: SWMU12-SB04-SS-101
Date Collected: 11/03/15 10:40

Lab Sample ID: 480-90447-6 Matrix: Solid

Percent Solids: 83.8

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Coi	ntinu	ied)					
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.5		0.67	ug/Kg		11/04/15 20:18	11/07/15 08:21	1
Xylenes, Total	ND		11		0.93	ug/Kg	₽	11/04/15 20:18	11/07/15 08:21	1
Tetrahydrofuran	ND	*	11		3.2	ug/Kg	φ.	11/04/15 20:18	11/07/15 08:21	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	\				11/04/15 20:18	11/07/15 08:21	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	118		60 - 140					11/04/15 20:18	11/07/15 08:21	1
1,2-Dichloroethane-d4 (Surr)	116		64 - 126					11/04/15 20:18	11/07/15 08:21	1
Toluene-d8 (Surr)	108		71 - 125					11/04/15 20:18	11/07/15 08:21	1
4-Bromofluorobenzene (Surr)	105		72 - 126					11/04/15 20:18	11/07/15 08:21	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		200	30	ug/Kg	<u>₩</u>	11/05/15 08:03	11/11/15 16:16	1
bis (2-chloroisopropyl) ether	ND		200	41	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
2,4,5-Trichlorophenol	ND		200	55	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
2,4,6-Trichlorophenol	ND		200	41	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
2,4-Dichlorophenol	ND		200	21	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
2,4-Dimethylphenol	ND		200	49	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
2,4-Dinitrophenol	ND		2000	930	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
2,4-Dinitrotoluene	ND		200	42	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
2,6-Dinitrotoluene	ND		200	24	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
2-Chloronaphthalene	ND		200	33	ug/Kg	₽	11/05/15 08:03	11/11/15 16:16	1
2-Chlorophenol	ND		200	37	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
2-Methylnaphthalene	ND		200	41	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
2-Methylphenol	ND		200	24	ug/Kg	₽	11/05/15 08:03	11/11/15 16:16	1
2-Nitroaniline	ND		390	30	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
2-Nitrophenol	ND		200	57	ug/Kg	☼	11/05/15 08:03	11/11/15 16:16	1
3,3'-Dichlorobenzidine	ND		390	240	ug/Kg	φ.	11/05/15 08:03	11/11/15 16:16	1
3-Nitroaniline	ND		390	56	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
4,6-Dinitro-2-methylphenol	ND		390	200	ug/Kg	☼	11/05/15 08:03	11/11/15 16:16	1
4-Bromophenyl phenyl ether	ND		200	29	ug/Kg	φ.	11/05/15 08:03	11/11/15 16:16	1
4-Chloro-3-methylphenol	ND		200	50	ug/Kg	☼	11/05/15 08:03	11/11/15 16:16	1
4-Chloroaniline	ND		200	50	ug/Kg	☼	11/05/15 08:03	11/11/15 16:16	1
4-Chlorophenyl phenyl ether	ND		200	25	ug/Kg	₩.	11/05/15 08:03	11/11/15 16:16	1
4-Methylphenol	ND		390	24	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
4-Nitroaniline	ND		390	110	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
4-Nitrophenol	ND		390	140	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
Acenaphthene	ND		200	30	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
Acenaphthylene	ND		200	26	ug/Kg	☼	11/05/15 08:03	11/11/15 16:16	1
Acetophenone	ND		200	27	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
Anthracene	ND		200	50	ug/Kg	☼	11/05/15 08:03	11/11/15 16:16	1
Atrazine	ND		200	70	ug/Kg	☼	11/05/15 08:03	11/11/15 16:16	1
Benzaldehyde	ND		200	160	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
Benzo(a)anthracene	80	J	200	20	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
Benzo(a)pyrene	96	J	200	30	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
Benzo(b)fluoranthene	150	J	200	32	ug/Kg	φ.	11/05/15 08:03	11/11/15 16:16	1
Benzo(g,h,i)perylene	89		200	21	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1

TestAmerica Buffalo

3

5

7

9

11

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 11/03/15 10:40 Date Received: 11/04/15 09:00

2-Fluorobiphenyl

2-Fluorophenol

Nitrobenzene-d5

p-Terphenyl-d14 Phenol-d5

Client Sample ID: SWMU12-SB04-SS-101

TestAmerica Job ID: 480-90447-1

Lab Sample ID: 480-90447-6

Matrix: Solid	
matrix oona	
Percent Solids: 83.8	

Method: 8270D - Semivolatile Analyte		Qualifier	RL		MDL		D	Prepared	Analyzed	Dil Fac
Benzo(k)fluoranthene	77	J	200		26	ug/Kg	\	11/05/15 08:03	11/11/15 16:16	1
Bis(2-chloroethoxy)methane	ND		200		43	ug/Kg	φ.	11/05/15 08:03	11/11/15 16:16	1
Bis(2-chloroethyl)ether	ND		200		26	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
Bis(2-ethylhexyl) phthalate	190	J	200		69	ug/Kg	☼	11/05/15 08:03	11/11/15 16:16	1
Butyl benzyl phthalate	ND		200		33	ug/Kg		11/05/15 08:03	11/11/15 16:16	1
Caprolactam	ND		200		61	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
Carbazole	ND		200		24	ug/Kg	☼	11/05/15 08:03	11/11/15 16:16	1
Chrysene	130	J	200		45	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
Di-n-butyl phthalate	ND		200		35	ug/Kg	☼	11/05/15 08:03	11/11/15 16:16	1
Di-n-octyl phthalate	ND		200		24	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
Dibenz(a,h)anthracene	ND		200		36	ug/Kg		11/05/15 08:03	11/11/15 16:16	1
Dibenzofuran	ND		200		24	ug/Kg	☼	11/05/15 08:03	11/11/15 16:16	1
Diethyl phthalate	ND		200		26	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
Dimethyl phthalate	ND		200		24	ug/Kg		11/05/15 08:03	11/11/15 16:16	1
Fluoranthene	230		200		21	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
Fluorene	ND		200		24	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
Hexachlorobenzene	ND		200		27	ug/Kg		11/05/15 08:03	11/11/15 16:16	1
Hexachlorobutadiene	ND		200		30	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
Hexachlorocyclopentadiene	ND		200		27	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
Hexachloroethane	ND		200		26	ug/Kg	☼	11/05/15 08:03	11/11/15 16:16	1
Indeno(1,2,3-cd)pyrene	75	J	200		25	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
Isophorone	ND		200		43	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
N-Nitrosodi-n-propylamine	ND		200		35	ug/Kg		11/05/15 08:03	11/11/15 16:16	1
N-Nitrosodiphenylamine	ND		200		160	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
Naphthalene	ND		200		26	ug/Kg	☼	11/05/15 08:03	11/11/15 16:16	1
Nitrobenzene	ND		200		23	ug/Kg		11/05/15 08:03	11/11/15 16:16	1
Pentachlorophenol	ND		390		200	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
Phenanthrene	65	J	200		30	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
Phenol	ND		200		31	ug/Kg		11/05/15 08:03	11/11/15 16:16	1
Pyrene	160	J	200		24	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
Dimethylformamide	ND		790		89	ug/Kg	₩	11/05/15 08:03	11/11/15 16:16	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	1	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	820	TJ	ug/Kg	₩	2.	27		11/05/15 08:03	11/11/15 16:16	1
Unknown	320	TJ	ug/Kg	☼	2.	46		11/05/15 08:03	11/11/15 16:16	1
Unknown	580	TJ	ug/Kg	☼	2.	50		11/05/15 08:03	11/11/15 16:16	1
Unknown	2100	ΤJ	ug/Kg	₩	2.	61		11/05/15 08:03	11/11/15 16:16	1
Ethane, 1,1,2-trichloro-	380	TJN	ug/Kg	☼	4.	14	79-00-5	11/05/15 08:03	11/11/15 16:16	1
Unknown	1000	TJ	ug/Kg	☼	4.	98		11/05/15 08:03	11/11/15 16:16	1
Ethane, 1,1,2,2-tetrachloro-	790	TJN	ug/Kg	₽	5.	96	79-34-5	11/05/15 08:03	11/11/15 16:16	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	84	-	39 - 146					11/05/15 08:03	11/11/15 16:16	1

TestAmerica Buffalo

11/05/15 08:03 11/11/15 16:16

11/05/15 08:03 11/11/15 16:16

11/05/15 08:03 11/11/15 16:16

11/05/15 08:03 11/11/15 16:16

11/05/15 08:03 11/11/15 16:16

37 - 120

18 - 120

34 - 132

65 - 153

11 - 120

84

77

77

89

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Received: 11/04/15 09:00

PCB-1248

PCB-1254

PCB-1260

TestAmerica Job ID: 480-90447-1

☼ 11/05/15 07:54 11/05/15 17:44

☼ 11/05/15 07:54 11/05/15 17:44

* 11/05/15 07:54 11/05/15 17:44

2

Client Sample ID: SWMU12-SB04-SS-101 Lab Sample ID: 480-90447-6

ND

ND

ND

Date Collected: 11/03/15 10:40 Matrix: Solid

Percent Solids: 83.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		1.2	0.18	mg/Kg	<u> </u>		11/06/15 12:11	1
Isobutyl alcohol	ND		1.2	0.30	mg/Kg	☼		11/06/15 12:11	1
Methanol	0.53	JB	1.2	0.35	mg/Kg	☼		11/06/15 12:11	1
n-Butanol	ND		1.2	0.27	mg/Kg	φ.		11/06/15 12:11	1
Propanol	ND		1.2	0.18	mg/Kg	☼		11/06/15 12:11	1
2-Butanol	ND		1.2	0.19	mg/Kg	☼		11/06/15 12:11	1
Isopropyl alcohol	ND		1.2	0.28	mg/Kg	₩		11/06/15 12:11	1
t-Butyl alcohol	ND		1.2	0.31	mg/Kg	₩		11/06/15 12:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	78		30 - 137					11/06/15 12:11	1
Method: 8082A - Poly	chlorinated Biphen	/Is (PCBs)	by Gas Chro	matogr	aphy				
				MDI	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier	RL	MIDL	Oilit	_	•	•	
	Result ND	Qualifier	RL		ug/Kg	_	11/05/15 07:54	11/05/15 17:44	1
Analyte		Qualifier		54			11/05/15 07:54 11/05/15 07:54	11/05/15 17:44	1
Analyte PCB-1016	ND	Qualifier	270	54 54	ug/Kg			11/05/15 17:44 11/05/15 17:44	1 1

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	90	60 - 154	11/05/15 07:54	11/05/15 17:44	1
DCB Decachlorobiphenyl	83	65 - 174	11/05/15 07:54	11/05/15 17:44	1

270

270

270

54 ug/Kg

130 ug/Kg

130 ug/Kg

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.2		2.6	0.53	mg/Kg	<u> </u>	11/05/15 13:05	11/06/15 15:08	1
Barium	52.6		0.66	0.14	mg/Kg	₩	11/05/15 13:05	11/06/15 15:08	1
Cadmium	0.092	J	0.26	0.040	mg/Kg	₩	11/05/15 13:05	11/06/15 15:08	1
Chromium	14.2		0.66	0.26	mg/Kg	₩	11/05/15 13:05	11/06/15 15:08	1
Lead	6.2		1.3	0.32	mg/Kg	₩	11/05/15 13:05	11/06/15 15:08	1
Selenium	ND		5.3	0.53	mg/Kg	₩	11/05/15 13:05	11/06/15 15:08	1
Silver	ND		0.79	0.26	mg/Kg		11/05/15 13:05	11/06/15 15:08	1

Method: 7471B - Mercury (CVA	A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.012	J	0.022	0.0089	mg/Kg	₩	11/05/15 14:05	11/05/15 16:29	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Client Sample ID: SWMU12-SB05-SS-102 Lab Sample ID: 480-90447-7

 Date Collected: 11/03/15 11:00
 Matrix: Solid

 Date Received: 11/04/15 09:00
 Percent Solids: 82.3

				11!4	_	Duam - · · · · ·	A	D:: -
	Qualifier							Dil Fa
				0 0				
					÷.			
	*							
ND		5.5	0.43	ug/Kg	₩	11/04/15 20:18	11/07/15 08:49	
ND		5.5	0.28	ug/Kg	₩	11/04/15 20:18	11/07/15 08:49	
ND		5.5	2.8	ug/Kg	₩	11/04/15 20:18	11/07/15 08:49	
ND		5.5	0.29	ug/Kg	₽	11/04/15 20:18	11/07/15 08:49	
ND		5.5	0.78	ug/Kg	₩	11/04/15 20:18	11/07/15 08:49	
ND	*	110	24	ug/Kg	₩	11/04/15 20:18	11/07/15 08:49	
ND	*	28	2.8	ug/Kg	₽	11/04/15 20:18	11/07/15 08:49	
ND		28	4.7	ug/Kg	₩	11/04/15 20:18	11/07/15 08:49	
ND		5.5	0.27	ug/Kg	☼	11/04/15 20:18	11/07/15 08:49	
ND		5.5	2.8	ug/Kg		11/04/15 20:18	11/07/15 08:49	
ND		5.5	0.50	ug/Kg	☼	11/04/15 20:18	11/07/15 08:49	
ND		5.5	2.8	ug/Kg	₩	11/04/15 20:18	11/07/15 08:49	
ND		5.5				11/04/15 20:18	11/07/15 08:49	
ND		5.5	0.73	ug/Kg	₩	11/04/15 20:18	11/07/15 08:49	
ND		5.5	0.40	ug/Kg	₩	11/04/15 20:18	11/07/15 08:49	
ND		5.5	0.71	ug/Kg		11/04/15 20:18	11/07/15 08:49	
ND		5.5	1.3		₩	11/04/15 20:18	11/07/15 08:49	
					₩			
					₩			
					₩			
					₩			
	J							
ND		5.5			₿			
ND		5.5			☼			
ND		5.5	4.0	ug/Kg	₩	44/04/45 00:40	11/07/15 08:49	
	Result	Result Qualifier ND	Result Qualifier RL ND 5.5 ND	ND 5.5 0.40 ND 5.5 0.90 ND 5.5 0.72 ND 5.5 0.68 ND 5.5 0.68 ND 5.5 0.68 ND 5.5 0.59 ND 5.5 0.34 ND 5.5 0.34 ND 5.5 0.34 ND 5.5 0.28 ND 5.5 0.28 ND 5.5 0.29 ND 5.5 0.78 ND 5.5 0.78 ND 5.5 0.78 ND 5.5 0.78 ND 5.5 0.79 ND 5.5 0.71 ND 5.5 0.71 ND 5.5 0.34 ND 5.5 0.71 ND 5.5 0.34 ND 5.5 0.71 ND 5.5 0.34 ND 5.5 0.71 ND 5.5 0.74 ND 5.5 0.78 ND 5.5 0.78 ND 5.5 0.79 ND 5.5 0.74 ND 5.5 0.80 ND 5.5 0.74 ND 5.5 0.84 ND 5.5 0.54 ND 5.5 0.84 ND 5.5 0.74 O.662 J 5.5 0.74	Result Qualifier RL MDL Unit ND 5.5 0.40 ug/Kg ND 5.5 0.90 ug/Kg ND 5.5 0.72 ug/Kg ND 5.5 0.68 ug/Kg ND 5.5 0.68 ug/Kg ND 5.5 0.59 ug/Kg ND 5.5 0.59 ug/Kg ND 5.5 0.59 ug/Kg ND 5.5 0.43 ug/Kg ND 5.5 0.28 ug/Kg ND 5.5 0.28 ug/Kg ND 5.5 0.29 ug/Kg ND 5.5 0.22 ug/Kg ND 5.5 0.28 ug/Kg	Result Qualifier RL MDL Unit D ND 5.5 0.40 ug/Kg 5 ND 5.5 0.90 ug/Kg 6 ND 5.5 0.72 ug/Kg 6 ND 5.5 0.68 ug/Kg 6 ND 5.5 0.69 ug/Kg 6 ND 5.5 0.68 ug/Kg 6 ND 5.5 0.59 ug/Kg 6 ND 5.5 0.43 ug/Kg 6 ND 5.5 0.28 ug/Kg 6 ND 5.5 0.28 ug/Kg 6 ND 5.5 0.29 ug/Kg 6 ND 5.5 0.29 ug/Kg 6 ND	ND	Result Qualifier

TestAmerica Buffalo

4

6

8

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Client Sample ID: SWMU12-SB05-SS-102

Date Collected: 11/03/15 11:00
Date Received: 11/04/15 09:00

Lab Sample ID: 480-90447-7

Matrix: Solid

Percent Solids: 82.3

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) Analyte Result Qualifier **MDL** Unit RL Prepared **Analyzed** Dil Fac Vinyl chloride 11/04/15 20:18 11/07/15 08:49 ND 5.5 0.68 ug/Kg Xylenes, Total ND 11 0.93 ug/Kg 11/04/15 20:18 11/07/15 08:49 Tetrahydrofuran ND 11 11/04/15 20:18 11/07/15 08:49 3.2 ug/Kg Tentatively Identified Compound D CAS No. Est. Result Qualifier Unit RT Prepared Analyzed Dil Fac Tentatively Identified Compound None ug/Kg 11/04/15 20:18 11/07/15 08:49 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Dibromofluoromethane (Surr) 123 60 - 140 11/04/15 20:18 11/07/15 08:49 1,2-Dichloroethane-d4 (Surr) 123 64 - 126 11/04/15 20:18 11/07/15 08:49 Toluene-d8 (Surr) 118 71 - 125 11/04/15 20:18 11/07/15 08:49 1 108 4-Bromofluorobenzene (Surr) 72 - 126 11/04/15 20:18 11/07/15 08:49

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND	200	30	ug/Kg	₩	11/05/15 08:03	11/11/15 16:42	1
bis (2-chloroisopropyl) ether	ND	200	41	ug/Kg	₩	11/05/15 08:03	11/11/15 16:42	1
2,4,5-Trichlorophenol	ND	200	55	ug/Kg	☼	11/05/15 08:03	11/11/15 16:42	1
2,4,6-Trichlorophenol	ND	200	41	ug/Kg	₽	11/05/15 08:03	11/11/15 16:42	1
2,4-Dichlorophenol	ND	200	22	ug/Kg	≎	11/05/15 08:03	11/11/15 16:42	1
2,4-Dimethylphenol	ND	200	49	ug/Kg	☼	11/05/15 08:03	11/11/15 16:42	1
2,4-Dinitrophenol	ND	2000	940	ug/Kg	₽	11/05/15 08:03	11/11/15 16:42	1
2,4-Dinitrotoluene	ND	200	42	ug/Kg	≎	11/05/15 08:03	11/11/15 16:42	1
2,6-Dinitrotoluene	ND	200	24	ug/Kg	☼	11/05/15 08:03	11/11/15 16:42	1
2-Chloronaphthalene	ND	200	34	ug/Kg	₽	11/05/15 08:03	11/11/15 16:42	1
2-Chlorophenol	ND	200	37	ug/Kg	☼	11/05/15 08:03	11/11/15 16:42	1
2-Methylnaphthalene	ND	200	41	ug/Kg	☼	11/05/15 08:03	11/11/15 16:42	1
2-Methylphenol	ND	200	24	ug/Kg	₽	11/05/15 08:03	11/11/15 16:42	1
2-Nitroaniline	ND	400	30	ug/Kg	≎	11/05/15 08:03	11/11/15 16:42	1
2-Nitrophenol	ND	200	58	ug/Kg	≎	11/05/15 08:03	11/11/15 16:42	1
3,3'-Dichlorobenzidine	ND	400	240	ug/Kg	₽	11/05/15 08:03	11/11/15 16:42	1
3-Nitroaniline	ND	400	56	ug/Kg	☼	11/05/15 08:03	11/11/15 16:42	1
4,6-Dinitro-2-methylphenol	ND	400	200	ug/Kg	≎	11/05/15 08:03	11/11/15 16:42	1
4-Bromophenyl phenyl ether	ND	200	29	ug/Kg	₽	11/05/15 08:03	11/11/15 16:42	1
4-Chloro-3-methylphenol	ND	200	50	ug/Kg	☼	11/05/15 08:03	11/11/15 16:42	1
4-Chloroaniline	ND	200	50	ug/Kg	≎	11/05/15 08:03	11/11/15 16:42	1
4-Chlorophenyl phenyl ether	ND	200	25	ug/Kg	₽	11/05/15 08:03	11/11/15 16:42	1
4-Methylphenol	ND	400	24	ug/Kg	☼	11/05/15 08:03	11/11/15 16:42	1
4-Nitroaniline	ND	400	110	ug/Kg	≎	11/05/15 08:03	11/11/15 16:42	1
4-Nitrophenol	ND	400	140	ug/Kg	₽	11/05/15 08:03	11/11/15 16:42	1
Acenaphthene	ND	200	30	ug/Kg	☼	11/05/15 08:03	11/11/15 16:42	1
Acenaphthylene	ND	200	26	ug/Kg	≎	11/05/15 08:03	11/11/15 16:42	1
Acetophenone	ND	200	28	ug/Kg	₽	11/05/15 08:03	11/11/15 16:42	1
Anthracene	ND	200	50	ug/Kg	☼	11/05/15 08:03	11/11/15 16:42	1
Atrazine	ND	200	71	ug/Kg	₽	11/05/15 08:03	11/11/15 16:42	1
Benzaldehyde	ND	200	160	ug/Kg	φ.	11/05/15 08:03	11/11/15 16:42	1
Benzo(a)anthracene	ND	200	20	ug/Kg	☼	11/05/15 08:03	11/11/15 16:42	1
Benzo(a)pyrene	ND	200	30	ug/Kg	☼	11/05/15 08:03	11/11/15 16:42	1
Benzo(b)fluoranthene	ND	200	32	ug/Kg		11/05/15 08:03	11/11/15 16:42	1
Benzo(g,h,i)perylene	ND	200	22	ug/Kg	₽	11/05/15 08:03	11/11/15 16:42	1

TestAmerica Buffalo

3

+

6

0

1 U

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Nitrobenzene-d5

p-Terphenyl-d14

Phenol-d5

TestAmerica Job ID: 480-90447-1

Client Sample ID: SWMU12-SB05-SS-102

Date Collected: 11/03/15 11:00
Date Received: 11/04/15 09:00

Lab Sample ID: 480-90447-7

Matrix: Solid

Percent Solids: 82.3

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued) MDL Unit Analyte Result Qualifier RL D Prepared Analyzed Dil Fac Benzo(k)fluoranthene $\overline{\mathsf{ND}}$ 200 26 ug/Kg 11/05/15 08:03 11/11/15 16:42 Bis(2-chloroethoxy)methane ND 200 11/05/15 08:03 11/11/15 16:42 43 ug/Kg Bis(2-chloroethyl)ether ND 200 ug/Kg 11/05/15 08:03 11/11/15 16:42 70 Bis(2-ethylhexyl) phthalate 120 200 ug/Kg 11/05/15 08:03 11/11/15 16:42 Butyl benzyl phthalate ND 200 11/05/15 08:03 11/11/15 16:42 34 ug/Kg Caprolactam ND 200 61 ug/Kg 11/05/15 08:03 11/11/15 16:42 Carbazole ND 200 24 ug/Kg 11/05/15 08:03 11/11/15 16:42 Chrysene ND 200 46 ug/Kg 11/05/15 08:03 11/11/15 16:42 200 Di-n-butyl phthalate ND 35 11/05/15 08:03 11/11/15 16:42 ug/Kg Di-n-octyl phthalate 200 11/05/15 08:03 ND 24 ug/Kg 11/11/15 16:42 Dibenz(a,h)anthracene ND 200 36 ug/Kg 11/05/15 08:03 11/11/15 16:42 Dibenzofuran ND 200 24 ug/Kg 11/05/15 08:03 11/11/15 16:42 Diethyl phthalate ND 200 26 ug/Kg 11/05/15 08:03 11/11/15 16:42 1 Dimethyl phthalate ND 200 24 ug/Kg 11/05/15 08:03 11/11/15 16:42 Fluoranthene ND 200 ug/Kg 11/05/15 08:03 11/11/15 16:42 22 200 Fluorene ND 24 ug/Kg 11/05/15 08:03 11/11/15 16:42 Hexachlorobenzene ND 200 28 ug/Kg 11/05/15 08:03 11/11/15 16:42 Hexachlorobutadiene ND 200 30 ug/Kg 11/05/15 08:03 11/11/15 16:42 Hexachlorocyclopentadiene ND 200 28 ug/Kg 11/05/15 08:03 11/11/15 16:42 200 ₩ Hexachloroethane ND 26 11/05/15 08:03 11/11/15 16:42 ug/Kg Indeno(1,2,3-cd)pyrene ug/Kg ND 200 25 11/05/15 08:03 11/11/15 16:42 ND 200 Isophorone 43 ug/Kg 11/05/15 08:03 11/11/15 16:42 200 11/05/15 08:03 11/11/15 16:42 N-Nitrosodi-n-propylamine ND 35 ug/Kg N-Nitrosodiphenylamine ND 200 11/05/15 08:03 11/11/15 16:42 170 ug/Kg Naphthalene ND 200 26 ug/Kg 11/05/15 08:03 11/11/15 16:42 Nitrobenzene ND 200 23 11/05/15 08:03 11/11/15 16:42 ug/Kg Pentachlorophenol ND 400 200 ug/Kg 11/05/15 08:03 11/11/15 16:42 Phenanthrene 200 11/05/15 08:03 11/11/15 16:42 ND 30 ug/Kg À Phenol ND 200 31 ug/Kg 11/05/15 08:03 11/11/15 16:42 Pyrene ND 200 24 ug/Kg 11/05/15 08:03 11/11/15 16:42 ₩ 790 11/05/15 08:03 11/11/15 16:42 Dimethylformamide ND 90 ug/Kg Tentatively Identified Compound Est. Result Qualifier D RT CAS No. Dil Fac Unit Prepared Analyzed ₩ Unknown 1700 TJug/Kg 2.27 11/05/15 08:03 11/11/15 16:42 ₩ Unknown 470 TJ 2.50 11/05/15 08:03 11/11/15 16:42 ug/Kg ä Unknown 2500 TJ ug/Kg 2.61 11/05/15 08:03 11/11/15 16:42 ug/Kg 280 TJN 4.14 79-00-5 11/05/15 08:03 11/11/15 16:42 Ethane, 1,1,2-trichloro-₩ Unknown 1000 ΤJ ug/Kg 4.98 11/05/15 08:03 11/11/15 16:42 Ethane, 1.1.2.2-tetrachloro-590 TJNug/Kg 5.96 79-34-5 11/05/15 08:03 11/11/15 16:42 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 11/05/15 08:03 11/11/15 16:42 84 2,4,6-Tribromophenol 39 - 146 2-Fluorobiphenyl 98 37 - 120 11/05/15 08:03 11/11/15 16:42 2-Fluorophenol 86 18 - 120 11/05/15 08:03 11/11/15 16:42

TestAmerica Buffalo

11/05/15 08:03 11/11/15 16:42

11/05/15 08:03 11/11/15 16:42

11/05/15 08:03 11/11/15 16:42

34 - 132

65 - 153

11 - 120

84

98

88

3

4

6

9

11

13

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 11/03/15 11:00

Date Received: 11/04/15 09:00

Client Sample ID: SWMU12-SB05-SS-102

TestAmerica Job ID: 480-90447-1

Lab Sample ID: 480-90447-7 **Matrix: Solid**

Percent Solids: 82.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		1.2	0.18	mg/Kg	<u> </u>		11/06/15 12:26	1
Isobutyl alcohol	ND		1.2	0.30	mg/Kg	₩		11/06/15 12:26	1
Methanol	ND		1.2	0.35	mg/Kg	₩		11/06/15 12:26	1
n-Butanol	ND		1.2	0.28	mg/Kg	ф		11/06/15 12:26	1
Propanol	ND		1.2	0.18	mg/Kg	₩		11/06/15 12:26	1
2-Butanol	ND		1.2	0.19	mg/Kg	₩		11/06/15 12:26	1
Isopropyl alcohol	ND		1.2	0.29	mg/Kg	₩		11/06/15 12:26	1
t-Butyl alcohol	ND		1.2	0.32	mg/Kg	₩		11/06/15 12:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	82		30 - 137					11/06/15 12:26	1
Method: 8082A - Polyc	chlorinated Bipheny	/Is (PCBs)	by Gas Chro	matogr	aphy				
Analyte	-	Qualifier	RL	_	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		280	55	ug/Kg	<u> </u>	11/05/15 07:54	11/05/15 18:28	1
PCB-1221	ND		280	55	ug/Kg	₩	11/05/15 07:54	11/05/15 18:28	1
DCR_1232	ND		280		ua/Ka	**	11/05/15 07:54	44/05/45 40:00	

Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	280	55	ug/Kg	<u> </u>	11/05/15 07:54	11/05/15 18:28	1
PCB-1221	ND	280	55	ug/Kg	≎	11/05/15 07:54	11/05/15 18:28	1
PCB-1232	ND	280	55	ug/Kg	≎	11/05/15 07:54	11/05/15 18:28	1
PCB-1242	ND	280	55	ug/Kg	₩	11/05/15 07:54	11/05/15 18:28	1
PCB-1248	ND	280	55	ug/Kg	≎	11/05/15 07:54	11/05/15 18:28	1
PCB-1254	ND	280	130	ug/Kg	≎	11/05/15 07:54	11/05/15 18:28	1
PCB-1260	ND	280	130	ug/Kg		11/05/15 07:54	11/05/15 18:28	1
_								

Surrogate	%Recovery G	Qualifier Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	93	60 - 154	11/05/15 07:54	11/05/15 18:28	1
DCB Decachlorobiphenyl	90	65 - 174	11/05/15 07:54	11/05/15 18:28	1

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.5		2.5	0.49	mg/Kg	<u> </u>	11/05/15 13:05	11/06/15 15:12	1
Barium	50.2		0.62	0.14	mg/Kg	☆	11/05/15 13:05	11/06/15 15:12	1
Cadmium	0.11	J	0.25	0.037	mg/Kg	₩	11/05/15 13:05	11/06/15 15:12	1
Chromium	16.2		0.62	0.25	mg/Kg	₩	11/05/15 13:05	11/06/15 15:12	1
Lead	7.3		1.2	0.30	mg/Kg	☆	11/05/15 13:05	11/06/15 15:12	1
Selenium	0.75	J	4.9	0.49	mg/Kg	₩	11/05/15 13:05	11/06/15 15:12	1
Silver	ND		0.74	0.25	mg/Kg		11/05/15 13:05	11/06/15 15:12	1

Method: 7471B - Mercury (CVAA	()								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.020	J	0.024	0.0098	mg/Kg		11/05/15 14:05	11/05/15 16:30	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Client Sample ID: SWMU12-SB06-SS-103

Date Collected: 11/03/15 11:25
Date Received: 11/04/15 09:00

Lab Sample ID: 480-90447-8

Matrix: Solid Percent Solids: 83.6

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.1		ug/Kg	₩.	11/04/15 20:18	11/09/15 01:22	1
1,1,2,2-Tetrachloroethane	ND	5.1		ug/Kg	☼	11/04/15 20:18	11/09/15 01:22	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.1	1.2	ug/Kg	₩	11/04/15 20:18	11/09/15 01:22	1
1,1,2-Trichloroethane	ND	5.1	0.66	ug/Kg	₽	11/04/15 20:18	11/09/15 01:22	1
1,1-Dichloroethane	ND	5.1	0.62	ug/Kg	₩	11/04/15 20:18	11/09/15 01:22	1
1,1-Dichloroethene	ND	5.1	0.62	ug/Kg	₩	11/04/15 20:18	11/09/15 01:22	1
1,2,3-Trichlorobenzene	ND	5.1	0.54	ug/Kg	☼	11/04/15 20:18	11/09/15 01:22	1
1,2,4-Trichlorobenzene	ND	5.1	0.31	ug/Kg	₩	11/04/15 20:18	11/09/15 01:22	1
1,2-Dibromo-3-Chloropropane	ND *	5.1	2.5	ug/Kg	₩	11/04/15 20:18	11/09/15 01:22	1
1,2-Dichlorobenzene	ND	5.1	0.40	ug/Kg	₩	11/04/15 20:18	11/09/15 01:22	1
1,2-Dichloroethane	ND	5.1	0.25	ug/Kg	₩	11/04/15 20:18	11/09/15 01:22	1
1,2-Dichloropropane	ND	5.1	2.5	ug/Kg	₩	11/04/15 20:18	11/09/15 01:22	1
1,3-Dichlorobenzene	ND	5.1	0.26	ug/Kg	₩.	11/04/15 20:18	11/09/15 01:22	1
1,4-Dichlorobenzene	ND	5.1	0.71	ug/Kg	₩	11/04/15 20:18	11/09/15 01:22	1
1,4-Dioxane	ND *	100	22	ug/Kg	₩	11/04/15 20:18	11/09/15 01:22	1
2-Hexanone	ND *	25	2.5	ug/Kg		11/04/15 20:18	11/09/15 01:22	1
Acetone	ND	25	4.3	ug/Kg	₩	11/04/15 20:18	11/09/15 01:22	1
Benzene	ND	5.1	0.25	ug/Kg	₩	11/04/15 20:18	11/09/15 01:22	1
Bromoform	ND	5.1	2.5	ug/Kg		11/04/15 20:18	11/09/15 01:22	1
Bromomethane	ND	5.1		ug/Kg	₩	11/04/15 20:18	11/09/15 01:22	1
Carbon disulfide	ND	5.1	2.5	ug/Kg	₩	11/04/15 20:18	11/09/15 01:22	1
Carbon tetrachloride	ND	5.1		ug/Kg	· · · · · · · · · · · · · · · · · · ·	11/04/15 20:18	11/09/15 01:22	1
Chlorobenzene	ND	5.1		ug/Kg	₩	11/04/15 20:18	11/09/15 01:22	1
Bromochloromethane	ND	5.1		ug/Kg	₩	11/04/15 20:18	11/09/15 01:22	1
Dibromochloromethane	ND	5.1		ug/Kg		11/04/15 20:18	11/09/15 01:22	1
Chloroethane	ND	5.1		ug/Kg	₩	11/04/15 20:18	11/09/15 01:22	1
Chloroform	ND	5.1		ug/Kg	₩	11/04/15 20:18	11/09/15 01:22	1
Chloromethane	ND	5.1		ug/Kg		11/04/15 20:18	11/09/15 01:22	1
cis-1,2-Dichloroethene	ND	5.1		ug/Kg	₩	11/04/15 20:18	11/09/15 01:22	1
cis-1,3-Dichloropropene	ND	5.1		ug/Kg	₩	11/04/15 20:18	11/09/15 01:22	1
Cyclohexane	ND	5.1	0.71	ug/Kg		11/04/15 20:18	11/09/15 01:22	1
Bromodichloromethane	ND	5.1		ug/Kg	₩	11/04/15 20:18	11/09/15 01:22	1
Dichlorodifluoromethane	ND	5.1		ug/Kg	⇔	11/04/15 20:18	11/09/15 01:22	1
Ethylbenzene	ND	5.1		ug/Kg	· · · · · · · · · · · · · · · · · · ·	11/04/15 20:18	11/09/15 01:22	1
1,2-Dibromoethane (EDB)	ND	5.1		ug/Kg	₩		11/09/15 01:22	1
Isopropylbenzene	ND	5.1		ug/Kg	₩	11/04/15 20:18	11/09/15 01:22	1
Methyl acetate	ND	5.1		ug/Kg			11/09/15 01:22	1
2-Butanone (MEK)	ND	25		ug/Kg			11/09/15 01:22	1
4-Methyl-2-pentanone (MIBK)	ND	25		ug/Kg	☼		11/09/15 01:22	1
Methyl tert-butyl ether	ND	5.1		ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/09/15 01:22	
Methylcyclohexane	ND	5.1		ug/Kg	₩		11/09/15 01:22	1
Methylene Chloride	ND	5.1		ug/Kg	₩		11/09/15 01:22	1
Styrene	ND	5.1		ug/Kg			11/09/15 01:22	
Tetrachloroethene	ND	5.1		ug/Kg ug/Kg	₩		11/09/15 01:22	1
Toluene	ND	5.1		ug/Kg ug/Kg			11/09/15 01:22	1
trans-1,2-Dichloroethene	ND	5.1		ug/Kg ug/Kg			11/09/15 01:22	
trans-1,3-Dichloropropene	ND	5.1 5.1			≎			1
• •				ug/Kg			11/09/15 01:22	1
Trichloroethene Trichlorofluoromethane	ND ND	5.1 5.1		ug/Kg ug/Kg			11/09/15 01:22 11/09/15 01:22	1 1

TestAmerica Buffalo

Page 38 of 90

11/18/2015

3

4

6

8

10

12

Client: Woodard & Curran, Inc.
Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Client Sample ID: SWMU12-SB06-SS-103 Lab Sample ID: 480-90447-8

Date Collected: 11/03/15 11:25

Date Received: 11/04/15 09:00

Matrix: Solid
Percent Solids: 83.6

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.1		0.62	ug/Kg	<u> </u>	11/04/15 20:18	11/09/15 01:22	1
Xylenes, Total	ND		10		0.85	ug/Kg	₽	11/04/15 20:18	11/09/15 01:22	1
Tetrahydrofuran	ND	*	10		2.9	ug/Kg	\$	11/04/15 20:18	11/09/15 01:22	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	₩ -				11/04/15 20:18	11/09/15 01:22	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	122		60 - 140					11/04/15 20:18	11/09/15 01:22	1
1,2-Dichloroethane-d4 (Surr)	124		64 - 126					11/04/15 20:18	11/09/15 01:22	1
Toluene-d8 (Surr)	112		71 - 125					11/04/15 20:18	11/09/15 01:22	1
4-Bromofluorobenzene (Surr)	115		72 - 126					11/04/15 20:18	11/09/15 01:22	

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND	200	30	ug/Kg	₩	11/05/15 08:03	11/11/15 17:08	1
bis (2-chloroisopropyl) ether	ND	200	40	ug/Kg	☼	11/05/15 08:03	11/11/15 17:08	1
2,4,5-Trichlorophenol	ND	200	55	ug/Kg	☼	11/05/15 08:03	11/11/15 17:08	1
2,4,6-Trichlorophenol	ND	200	40	ug/Kg	₽	11/05/15 08:03	11/11/15 17:08	1
2,4-Dichlorophenol	ND	200	21	ug/Kg	≎	11/05/15 08:03	11/11/15 17:08	1
2,4-Dimethylphenol	ND	200	49	ug/Kg	≎	11/05/15 08:03	11/11/15 17:08	1
2,4-Dinitrophenol	ND	2000	930	ug/Kg	₽	11/05/15 08:03	11/11/15 17:08	1
2,4-Dinitrotoluene	ND	200	42	ug/Kg	☼	11/05/15 08:03	11/11/15 17:08	1
2,6-Dinitrotoluene	ND	200	24	ug/Kg	☼	11/05/15 08:03	11/11/15 17:08	1
2-Chloronaphthalene	ND	200	33	ug/Kg	\$	11/05/15 08:03	11/11/15 17:08	1
2-Chlorophenol	ND	200	37	ug/Kg	☼	11/05/15 08:03	11/11/15 17:08	1
2-Methylnaphthalene	ND	200	40	ug/Kg	≎	11/05/15 08:03	11/11/15 17:08	1
2-Methylphenol	ND	200	24	ug/Kg	\$	11/05/15 08:03	11/11/15 17:08	1
2-Nitroaniline	ND	390	30	ug/Kg	☼	11/05/15 08:03	11/11/15 17:08	1
2-Nitrophenol	ND	200	57	ug/Kg	☼	11/05/15 08:03	11/11/15 17:08	1
3,3'-Dichlorobenzidine	ND	390	240	ug/Kg	\$	11/05/15 08:03	11/11/15 17:08	1
3-Nitroaniline	ND	390	56	ug/Kg	≎	11/05/15 08:03	11/11/15 17:08	1
4,6-Dinitro-2-methylphenol	ND	390	200	ug/Kg	☼	11/05/15 08:03	11/11/15 17:08	1
4-Bromophenyl phenyl ether	ND	200	28	ug/Kg	φ.	11/05/15 08:03	11/11/15 17:08	1
4-Chloro-3-methylphenol	ND	200	50	ug/Kg	☼	11/05/15 08:03	11/11/15 17:08	1
4-Chloroaniline	ND	200	50	ug/Kg	☼	11/05/15 08:03	11/11/15 17:08	1
4-Chlorophenyl phenyl ether	ND	200	25	ug/Kg	₽	11/05/15 08:03	11/11/15 17:08	1
4-Methylphenol	ND	390	24	ug/Kg	☼	11/05/15 08:03	11/11/15 17:08	1
4-Nitroaniline	ND	390	110	ug/Kg	☼	11/05/15 08:03	11/11/15 17:08	1
4-Nitrophenol	ND	390	140	ug/Kg	₽	11/05/15 08:03	11/11/15 17:08	1
Acenaphthene	ND	200	30	ug/Kg	☼	11/05/15 08:03	11/11/15 17:08	1
Acenaphthylene	ND	200	26	ug/Kg	☼	11/05/15 08:03	11/11/15 17:08	1
Acetophenone	ND	200	27	ug/Kg	\$	11/05/15 08:03	11/11/15 17:08	1
Anthracene	ND	200	50	ug/Kg	₽	11/05/15 08:03	11/11/15 17:08	1
Atrazine	ND	200	70	ug/Kg	☼	11/05/15 08:03	11/11/15 17:08	1
Benzaldehyde	ND	200	160	ug/Kg	φ.	11/05/15 08:03	11/11/15 17:08	1
Benzo(a)anthracene	35 J	200	20	ug/Kg	☼	11/05/15 08:03	11/11/15 17:08	1
Benzo(a)pyrene	40 J	200	30	ug/Kg	☼	11/05/15 08:03	11/11/15 17:08	1
Benzo(b)fluoranthene	67 J	200	32	ug/Kg		11/05/15 08:03	11/11/15 17:08	1
Benzo(g,h,i)perylene	42 J	200	21	ug/Kg	₩	11/05/15 08:03	11/11/15 17:08	1

TestAmerica Buffalo

3

4

6

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Phenol-d5

TestAmerica Job ID: 480-90447-1

Client Sample ID: SWMU12-SB06-SS-103 Lab Sample ID: 480-90447-8

Date Collected: 11/03/15 11:25

Date Received: 11/04/15 09:00

Matrix: Solid
Percent Solids: 83.6

Method: 8270D - Semivolatile Analyte		Qualifier		RL	MDL		D	Prepared	Analyzed	Dil Fa
Benzo(k)fluoranthene	29	J	20	00	26	ug/Kg	\	11/05/15 08:03	11/11/15 17:08	
Bis(2-chloroethoxy)methane	ND		20	00	43	ug/Kg		11/05/15 08:03	11/11/15 17:08	
Bis(2-chloroethyl)ether	ND		20	00	26	ug/Kg	₩	11/05/15 08:03	11/11/15 17:08	
Bis(2-ethylhexyl) phthalate	120	J	20	00		ug/Kg	₩	11/05/15 08:03	11/11/15 17:08	
Butyl benzyl phthalate	ND		20	00		ug/Kg		11/05/15 08:03	11/11/15 17:08	
Caprolactam	ND		20	00		ug/Kg	₩	11/05/15 08:03	11/11/15 17:08	
Carbazole	ND		20	00		ug/Kg	₩	11/05/15 08:03	11/11/15 17:08	
Chrysene	50		20	00		ug/Kg		11/05/15 08:03	11/11/15 17:08	
Di-n-butyl phthalate	ND		20	00		ug/Kg	₩	11/05/15 08:03	11/11/15 17:08	
Di-n-octyl phthalate	ND		20	00		ug/Kg	₽	11/05/15 08:03	11/11/15 17:08	
Dibenz(a,h)anthracene	ND		20			ug/Kg			11/11/15 17:08	
Dibenzofuran	ND		20			ug/Kg	₽		11/11/15 17:08	
Diethyl phthalate	ND		20			ug/Kg	☆		11/11/15 17:08	
Dimethyl phthalate	ND		20			ug/Kg			11/11/15 17:08	
Fluoranthene	86	.1	20			ug/Kg	₩		11/11/15 17:08	
Fluorene	ND	•	20			ug/Kg	₩		11/11/15 17:08	
Hexachlorobenzene	ND		20			ug/Kg			11/11/15 17:08	
Hexachlorobutadiene	ND		20			ug/Kg	₩		11/11/15 17:08	
Hexachlorocyclopentadiene	ND ND		20			ug/Kg	₩		11/11/15 17:08	
Hexachloroethane	ND		20						11/11/15 17:08	
						ug/Kg	*			
Indeno(1,2,3-cd)pyrene	34 ND	J	20			ug/Kg			11/11/15 17:08	
Isophorone	ND		20			ug/Kg			11/11/15 17:08	
N-Nitrosodi-n-propylamine	ND		20			ug/Kg	₽		11/11/15 17:08	
N-Nitrosodiphenylamine	ND		20			ug/Kg			11/11/15 17:08	
Naphthalene	ND		20			ug/Kg			11/11/15 17:08	
Nitrobenzene	ND		20			ug/Kg	₩.		11/11/15 17:08	
Pentachlorophenol	ND		39			ug/Kg	₽		11/11/15 17:08	
Phenanthrene	ND		20			ug/Kg			11/11/15 17:08	
Phenol	ND		20			ug/Kg	‡		11/11/15 17:08	
Pyrene	61	J	20	00		ug/Kg	☼	11/05/15 08:03	11/11/15 17:08	
Dimethylformamide	ND		78	30	89	ug/Kg	☆	11/05/15 08:03	11/11/15 17:08	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fa
Unknown	4100	TJ	ug/Kg	_ ☆ _	2.	27		11/05/15 08:03	11/11/15 17:08	
Cyclohexane	400	TJN	ug/Kg	₩	2.	46	110-82-7	11/05/15 08:03	11/11/15 17:08	
Unknown	540	TJ	ug/Kg	₩	2.	.50		11/05/15 08:03	11/11/15 17:08	
Unknown	2700	ΤJ	ug/Kg	₩	2.	61		11/05/15 08:03	11/11/15 17:08	
Ethane, 1,1,2-trichloro-	250	TJN	ug/Kg	₩	4.	.14	79-00-5	11/05/15 08:03	11/11/15 17:08	
Unknown	960	TJ	ug/Kg	₩	4.	.98		11/05/15 08:03	11/11/15 17:08	
Ethane, 1,1,2,2-tetrachloro-	550	TJN	ug/Kg	₩	5.	96	79-34-5	11/05/15 08:03	11/11/15 17:08	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	86		39 - 146	3				11/05/15 08:03	11/11/15 17:08	
2-Fluorobiphenyl	87		37 - 120)				11/05/15 08:03	11/11/15 17:08	
2-Fluorophenol	81		18 - 120)				11/05/15 08:03	11/11/15 17:08	
Nitrobenzene-d5	78		34 - 132					11/05/15 08:03	11/11/15 17:08	
p-Terphenyl-d14	90		65 - 153						11/11/15 17:08	
L Linearity en i	30			_						

TestAmerica Buffalo

11/05/15 08:03 11/11/15 17:08

11 - 120

86

_

A

6

8

11

13

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Received: 11/04/15 09:00

DCB Decachlorobiphenyl

TestAmerica Job ID: 480-90447-1

11/05/15 07:54 11/05/15 18:43

Client Sample ID: SWMU12-SB06-SS-103 Lab Sample ID: 480-90447-8 Date Collected: 11/03/15 11:25

Matrix: Solid

Percent Solids: 83.6

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND ND		1.0	0.16	mg/Kg	<u> </u>		11/06/15 12:34	1
Isobutyl alcohol	ND		1.0	0.26	mg/Kg	₩		11/06/15 12:34	1
Methanol	ND		1.0	0.31	mg/Kg	₩		11/06/15 12:34	1
n-Butanol	ND		1.0	0.24	mg/Kg	ф.		11/06/15 12:34	1
Propanol	ND		1.0	0.16	mg/Kg	☼		11/06/15 12:34	1
2-Butanol	ND		1.0	0.17	mg/Kg	₩		11/06/15 12:34	1
Isopropyl alcohol	ND		1.0	0.25	mg/Kg	ф.		11/06/15 12:34	1
t-Butyl alcohol	ND		1.0	0.28	mg/Kg	≎		11/06/15 12:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	88		30 - 137					11/06/15 12:34	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		220	44	ug/Kg	\	11/05/15 07:54	11/05/15 18:43	1
PCB-1221	ND		220	44	ug/Kg	☼	11/05/15 07:54	11/05/15 18:43	1
PCB-1232	ND		220	44	ug/Kg	☼	11/05/15 07:54	11/05/15 18:43	1
PCB-1242	ND		220	44	ug/Kg	₽	11/05/15 07:54	11/05/15 18:43	1
PCB-1248	ND		220	44	ug/Kg	☼	11/05/15 07:54	11/05/15 18:43	1
PCB-1254	ND		220	100	ug/Kg	☼	11/05/15 07:54	11/05/15 18:43	1
PCB-1260	ND		220	100	ug/Kg		11/05/15 07:54	11/05/15 18:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	92		60 - 154				11/05/15 07:54	11/05/15 18:43	1

65 - 174

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.6	J	2.3	0.46	mg/Kg	<u></u>	11/05/15 13:05	11/06/15 15:28	1
Barium	9.7		0.58	0.13	mg/Kg	☼	11/05/15 13:05	11/06/15 15:28	1
Cadmium	0.039	J	0.23	0.035	mg/Kg	☼	11/05/15 13:05	11/06/15 15:28	1
Chromium	3.9		0.58	0.23	mg/Kg	₩.	11/05/15 13:05	11/06/15 15:28	1
Lead	2.0		1.2	0.28	mg/Kg	☼	11/05/15 13:05	11/06/15 15:28	1
Selenium	ND		4.6	0.46	mg/Kg	☼	11/05/15 13:05	11/06/15 15:28	1
Silver	ND		0.69	0.23	mg/Kg	₩.	11/05/15 13:05	11/06/15 15:28	1

Method: 7471B - Mercury (CVA	A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.023	0.0094	mg/Kg	<u> </u>	11/05/15 14:05	11/05/15 16:35	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Lab Sample ID: 480-90447-9

Matrix: Water

Client Sample ID: EB-06 Date Collected: 11/03/15 12:15

Date Received: 11/04/15 09:00

Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
ND -	1.0	0.82	ug/L			11/13/15 19:04	
ND	1.0	0.21	ug/L			11/13/15 19:04	
ND	1.0	0.31	ug/L			11/13/15 19:04	
ND	1.0	0.23	ug/L			11/13/15 19:04	
ND	1.0	0.38	ug/L			11/13/15 19:04	
ND	1.0	0.29	ug/L			11/13/15 19:04	
ND	1.0	0.41	ug/L			11/13/15 19:04	
ND	1.0		-			11/13/15 19:04	
ND	1.0		_			11/13/15 19:04	
ND	1.0		-			11/13/15 19:04	
ND	1.0		_			11/13/15 19:04	
			-				
			-				
			-				
			-				
			-				
			-				
			-				
			-				
			-				
			-				
			-				
			-				
			-				
			-				
			-				
			-				
			-				
			-				
			-				
			_				
			-				
			-				
			-				
			-				
						11/13/15 19:04	
	1.0	0.16	ug/L			11/13/15 19:04	
ND	1.0	0.44	ug/L			11/13/15 19:04	
ND	1.0	0.73	ug/L			11/13/15 19:04	
ND	1.0		-			11/13/15 19:04	
ND	5.0	1.3	ug/L			11/13/15 19:04	
ND	1.0	0.51	ug/L			11/13/15 19:04	
ND	1.0					11/13/15 19:04	
ND	1.0	0.37	ug/L			11/13/15 19:04	
	ND N	ND 1.0 ND 1.0 <td< td=""><td>ND 1.0 0.82 ND 1.0 0.21 ND 1.0 0.23 ND 1.0 0.33 ND 1.0 0.38 ND 1.0 0.29 ND 1.0 0.41 ND 1.0 0.41 ND 1.0 0.39 ND 1.0 0.73 ND 1.0 0.79 ND 1.0 0.72 ND 1.0 0.72 ND 1.0 0.72 ND 1.0 0.78 ND 1.0 0.84 ND 1.0 0.84 ND 1.0 1.0 0.84 ND 1.0 1.0 0.84 ND 1.0 0.84 ND 1.0 0.39 ND 1.0 1.0 0.30 ND 1.0 0.30 ND 1.0 0.41 ND 1.0 0.41 ND 1.0 0.41 ND 1.0 0.41 ND 1.0 0.39 ND 1.0 0.39 ND 1.0 0.39 ND 1.0 0.39 ND 1.0 0.27 ND 1.0 0.39 ND 1.0 0.27 ND 1.0 0.32 0.43 J 1.0 0.34 ND 1.0 0.35 ND 1.0 0.35 ND 1.0 0.36 ND 1.0 0.36 ND 1.0 0.36 ND 1.0 0.37 ND 1.0 0.38 ND 1.0 0.38 ND 1.0 0.36 ND 1.0 0.37 ND 1.0 0.38 ND 1.0 0.36 ND 1.0 0.74 ND 1.0 0.75 ND 1.0 0.75 ND 1.0 0.74 ND 1.0 0.75 ND 1.0 0.74 ND 1.0 0.75 ND 1.0 0.74 ND 1.0 0.75 ND 1.0 0.75 ND 1.0 0.73 ND 1.0 0.44 ND 1.0 0.73 ND 1.0 0.73 ND 1.0 0.44 ND 1.0 0.73 ND 1.0 0.75 ND 1.0 0.75 ND 1.0 0.76 ND</td><td> ND</td><td> ND</td><td> ND</td><td> ND</td></td<>	ND 1.0 0.82 ND 1.0 0.21 ND 1.0 0.23 ND 1.0 0.33 ND 1.0 0.38 ND 1.0 0.29 ND 1.0 0.41 ND 1.0 0.41 ND 1.0 0.39 ND 1.0 0.73 ND 1.0 0.79 ND 1.0 0.72 ND 1.0 0.72 ND 1.0 0.72 ND 1.0 0.78 ND 1.0 0.84 ND 1.0 0.84 ND 1.0 1.0 0.84 ND 1.0 1.0 0.84 ND 1.0 0.84 ND 1.0 0.39 ND 1.0 1.0 0.30 ND 1.0 0.30 ND 1.0 0.41 ND 1.0 0.41 ND 1.0 0.41 ND 1.0 0.41 ND 1.0 0.39 ND 1.0 0.39 ND 1.0 0.39 ND 1.0 0.39 ND 1.0 0.27 ND 1.0 0.39 ND 1.0 0.27 ND 1.0 0.32 0.43 J 1.0 0.34 ND 1.0 0.35 ND 1.0 0.35 ND 1.0 0.36 ND 1.0 0.36 ND 1.0 0.36 ND 1.0 0.37 ND 1.0 0.38 ND 1.0 0.38 ND 1.0 0.36 ND 1.0 0.37 ND 1.0 0.38 ND 1.0 0.36 ND 1.0 0.74 ND 1.0 0.75 ND 1.0 0.75 ND 1.0 0.74 ND 1.0 0.75 ND 1.0 0.74 ND 1.0 0.75 ND 1.0 0.74 ND 1.0 0.75 ND 1.0 0.75 ND 1.0 0.73 ND 1.0 0.44 ND 1.0 0.73 ND 1.0 0.73 ND 1.0 0.44 ND 1.0 0.73 ND 1.0 0.75 ND 1.0 0.75 ND 1.0 0.76 ND	ND	ND	ND	ND

TestAmerica Buffalo

6

8

10

12

14

13

Л

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: EB-06

TestAmerica Job ID: 480-90447-1

Lab Sample ID: 480-90447-9

Matrix: Water

Date Collected: 11/03/15 12:15 Date Received: 11/04/15 09:00

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Co	ntinu	ıed)						
Analyte	Result	Qualifier	RL		MDL	Unit) [Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		1.0		0.88	ug/L				11/13/15 19:04	1
Vinyl chloride	ND		1.0		0.90	ug/L				11/13/15 19:04	1
Xylenes, Total	ND		2.0		0.66	ug/L				11/13/15 19:04	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	ı	R <i>T</i>	CAS No	. 1	Prepared	Analyzed	Dil Fac
Unknown	15	TJ	ug/L		4.	74				11/13/15 19:04	1
Unknown	2.6	TJ	ug/L		5.	50				11/13/15 19:04	1
Surrogate	%Recovery	Qualifier	Limits					ı	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		66 - 137	•						11/13/15 19:04	1
4-Bromofluorobenzene (Surr)	83		73 - 120							11/13/15 19:04	1
Toluene-d8 (Surr)	88		71 - 126							11/13/15 19:04	1
Dibromofluoromethane (Surr)	107		60 - 140							11/13/15 19:04	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND ND	4.7	0.45	ug/L		11/05/15 09:08	11/10/15 16:54	1
2,4,6-Trichlorophenol	ND	4.7	0.57	ug/L		11/05/15 09:08	11/10/15 16:54	1
2,4-Dichlorophenol	ND	4.7	0.48	ug/L		11/05/15 09:08	11/10/15 16:54	1
2,4-Dimethylphenol	ND	4.7	0.47	ug/L		11/05/15 09:08	11/10/15 16:54	1
2,4-Dinitrophenol	ND	9.3	2.1	ug/L		11/05/15 09:08	11/10/15 16:54	1
2,4-Dinitrotoluene	ND	4.7	0.42	ug/L		11/05/15 09:08	11/10/15 16:54	1
2,6-Dinitrotoluene	ND	4.7	0.37	ug/L		11/05/15 09:08	11/10/15 16:54	1
2-Chloronaphthalene	ND	4.7	0.43	ug/L		11/05/15 09:08	11/10/15 16:54	1
2-Chlorophenol	ND	4.7	0.50	ug/L		11/05/15 09:08	11/10/15 16:54	1
2-Methylnaphthalene	ND	4.7	0.56	ug/L		11/05/15 09:08	11/10/15 16:54	1
2-Methylphenol	ND	4.7	0.37	ug/L		11/05/15 09:08	11/10/15 16:54	1
2-Nitroaniline	ND	9.3	0.39	ug/L		11/05/15 09:08	11/10/15 16:54	1
2-Nitrophenol	ND	4.7	0.45	ug/L		11/05/15 09:08	11/10/15 16:54	1
3,3'-Dichlorobenzidine	ND	4.7	0.37	ug/L		11/05/15 09:08	11/10/15 16:54	1
3-Nitroaniline	ND	9.3	0.45	ug/L		11/05/15 09:08	11/10/15 16:54	1
4,6-Dinitro-2-methylphenol	ND	9.3	2.1	ug/L		11/05/15 09:08	11/10/15 16:54	1
4-Bromophenyl phenyl ether	ND	4.7	0.42	ug/L		11/05/15 09:08	11/10/15 16:54	1
4-Chloro-3-methylphenol	ND	4.7	0.42	ug/L		11/05/15 09:08	11/10/15 16:54	1
4-Chloroaniline	ND	4.7	0.55	ug/L		11/05/15 09:08	11/10/15 16:54	1
4-Chlorophenyl phenyl ether	ND	4.7	0.33	ug/L		11/05/15 09:08	11/10/15 16:54	1
4-Methylphenol	ND	9.3	0.34	ug/L		11/05/15 09:08	11/10/15 16:54	1
4-Nitroaniline	ND	9.3	0.23	ug/L		11/05/15 09:08	11/10/15 16:54	1
4-Nitrophenol	ND	9.3	1.4	ug/L		11/05/15 09:08	11/10/15 16:54	1
Acenaphthene	ND	4.7	0.38	ug/L		11/05/15 09:08	11/10/15 16:54	1
Acenaphthylene	ND	4.7	0.36	ug/L		11/05/15 09:08	11/10/15 16:54	1
Acetophenone	ND	4.7	0.50	ug/L		11/05/15 09:08	11/10/15 16:54	1
Anthracene	ND	4.7	0.26	ug/L		11/05/15 09:08	11/10/15 16:54	1
Atrazine	ND	4.7	0.43	ug/L		11/05/15 09:08	11/10/15 16:54	1
Benzaldehyde	ND	4.7	0.25	ug/L		11/05/15 09:08	11/10/15 16:54	1
Benzo(a)anthracene	ND	4.7	0.34	ug/L		11/05/15 09:08	11/10/15 16:54	1
Benzo(a)pyrene	ND	4.7		ug/L		11/05/15 09:08	11/10/15 16:54	1
Benzo(b)fluoranthene	ND	4.7		ug/L		11/05/15 09:08	11/10/15 16:54	1
Benzo(g,h,i)perylene	ND	4.7		ug/L		11/05/15 09:08	11/10/15 16:54	1
Benzo(k)fluoranthene	ND	4.7		ug/L		11/05/15 09:08	11/10/15 16:54	1

TestAmerica Buffalo

Page 43 of 90

2

3

5

7

9

11

13

11-5

II e

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Lab Sample ID: 480-90447-9

Matrix: Water

Client Sample ID: EB-06
Date Collected: 11/03/15 12:15
Date Received: 11/04/15 09:00

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued) Dil Fac **Analyte** Result Qualifier RL **MDL** Unit D Prepared Analyzed Biphenyl $\overline{\mathsf{ND}}$ 4.7 0.61 ug/L 11/05/15 09:08 11/10/15 16:54 bis (2-chloroisopropyl) ether ND 4.7 11/05/15 09:08 11/10/15 16:54 0.49 ug/L Bis(2-chloroethoxy)methane ND 4.7 0.33 ug/L 11/05/15 09:08 11/10/15 16:54 Bis(2-chloroethyl)ether ND 4.7 0.37 ug/L 11/05/15 09:08 11/10/15 16:54 Bis(2-ethylhexyl) phthalate ND 4.7 1.7 ug/L 11/05/15 09:08 11/10/15 16:54 1 Butyl benzyl phthalate ND 4.7 0.39 ug/L 11/05/15 09:08 11/10/15 16:54 Caprolactam ND 4.7 2.1 ug/L 11/05/15 09:08 11/10/15 16:54 Carbazole ND 4.7 0.28 ug/L 11/05/15 09:08 11/10/15 16:54 ND Chrysene 4.7 0.31 11/05/15 09:08 11/10/15 16:54 ug/L Dibenz(a,h)anthracene 4.7 11/05/15 09:08 11/10/15 16:54 ND 0.39 ug/L Dibenzofuran ND 9.3 0.48 ug/L 11/05/15 09:08 11/10/15 16:54 Diethyl phthalate ND 4.7 0.21 ug/L 11/05/15 09:08 11/10/15 16:54 Dimethyl phthalate ND 4.7 11/05/15 09:08 11/10/15 16:54 0.34 ug/L Di-n-butyl phthalate ND 4.7 0.29 ug/L 11/05/15 09:08 11/10/15 16:54 Di-n-octyl phthalate ND 4.7 ug/L 11/05/15 09:08 11/10/15 16:54 0.44 Fluoranthene ND 4.7 0.37 ug/L 11/05/15 09:08 11/10/15 16:54 Fluorene ND 4.7 11/05/15 09:08 11/10/15 16:54 0.34 ug/L Hexachlorobenzene ND 4.7 0.48 ug/L 11/05/15 09:08 11/10/15 16:54 Hexachlorobutadiene ND 4.7 0.64 ug/L 11/05/15 09:08 11/10/15 16:54 Hexachlorocyclopentadiene ND 4.7 0.55 ug/L 11/05/15 09:08 11/10/15 16:54 Hexachloroethane ND 4.7 0.55 ug/L 11/05/15 09:08 11/10/15 16:54 ND Indeno(1,2,3-cd)pyrene 4.7 0.44 ug/L 11/05/15 09:08 11/10/15 16:54 11/05/15 09:08 11/10/15 16:54 Isophorone ND 4.7 0.40 ug/L Naphthalene ND 4.7 11/05/15 09:08 11/10/15 16:54 0.71 ug/L Nitrobenzene ND 4.7 0.27 ug/L 11/05/15 09:08 11/10/15 16:54 N-Nitrosodi-n-propylamine ND 4.7 0.50 ug/L 11/05/15 09:08 11/10/15 16:54 N-Nitrosodiphenylamine ND 4.7 0.48 ug/L 11/05/15 09:08 11/10/15 16:54 Pentachlorophenol ND 9.3 2.1 ug/L 11/05/15 09:08 11/10/15 16:54 Phenanthrene ND 4.7 0.41 ug/L 11/05/15 09:08 11/10/15 16:54 Phenol ND 4.7 0.36 ug/L 11/05/15 09:08 11/10/15 16:54 Pyrene ND 4.7 0.32 ug/L 11/05/15 09:08 11/10/15 16:54 Dimethylformamide ND 19 1.6 ug/L 11/05/15 09:08 11/10/15 16:54

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	102		52 - 132	11/05/15 09:08	11/10/15 16:54	1
2-Fluorobiphenyl	97		48 - 120	11/05/15 09:08	11/10/15 16:54	1
2-Fluorophenol	58		20 - 120	11/05/15 09:08	11/10/15 16:54	1
Nitrobenzene-d5	78		46 - 120	11/05/15 09:08	11/10/15 16:54	1
Phenol-d5	36		16 - 120	11/05/15 09:08	11/10/15 16:54	1
p-Terphenyl-d14	92		67 - 150	11/05/15 09:08	11/10/15 16:54	1

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC)

Method. od 15D - Nollilaid	ogenaled Organic Compound	s - Direct i	nječilon (GC	·)		
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Ethanol	ND —	1.0	0.14 mg/L		11/10/15 12:29	1
Isobutyl alcohol	ND	1.0	0.37 mg/L		11/10/15 12:29	1
Methanol	ND	1.0	0.41 mg/L		11/10/15 12:29	1
n-Butanol	ND	1.0	0.40 mg/L		11/10/15 12:29	1
Propanol	ND	1.0	0.16 mg/L		11/10/15 12:29	1
2-Butanol	ND	1.0	0.17 mg/L		11/10/15 12:29	1
Isopropyl alcohol	ND	1.0	0.12 mg/L		11/10/15 12:29	1

TestAmerica Buffalo

Page 44 of 90

2

3

6

8

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Client Sample ID: EB-06

Lab Sample ID: 480-90447-9

Matrix: Water

Date Collected: 11/03/15 12:15 Date Received: 11/04/15 09:00

Method: 8015D - Nonhaloger	nated Organi	c Compou	nds - Direct I	njection	(GC) (C	ontinu	ed)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
t-Butyl alcohol	ND		1.0	0.10	mg/L			11/10/15 12:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	103		62 - 129			-		11/10/15 12:29	1
_									

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.49	0.17	ug/L		11/04/15 15:36	11/05/15 10:21	1
PCB-1221	ND		0.49	0.17	ug/L		11/04/15 15:36	11/05/15 10:21	1
PCB-1232	ND		0.49	0.17	ug/L		11/04/15 15:36	11/05/15 10:21	1
PCB-1242	ND		0.49	0.17	ug/L		11/04/15 15:36	11/05/15 10:21	1
PCB-1248	ND		0.49	0.17	ug/L		11/04/15 15:36	11/05/15 10:21	1
PCB-1254	ND		0.49	0.24	ug/L		11/04/15 15:36	11/05/15 10:21	1
PCB-1260	ND		0.49	0.24	ug/L		11/04/15 15:36	11/05/15 10:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	76		24 - 137				11/04/15 15:36	11/05/15 10:21	1
DCB Decachlorobiphenyl	45		19 - 125				11/04/15 15:36	11/05/15 10:21	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		11/05/15 11:45	11/05/15 23:55	1
Barium	ND		0.0020	0.00070	mg/L		11/05/15 11:45	11/05/15 23:55	1
Cadmium	ND		0.0020	0.00050	mg/L		11/05/15 11:45	11/05/15 23:55	1
Chromium	ND		0.0040	0.0010	mg/L		11/05/15 11:45	11/05/15 23:55	1
Lead	ND		0.010	0.0030	mg/L		11/05/15 11:45	11/05/15 23:55	1
Selenium	ND		0.025	0.0087	mg/L		11/05/15 11:45	11/05/15 23:55	1
Silver	ND		0.0060	0.0017	mg/L		11/05/15 11:45	11/05/15 23:55	1

ı	Method: 7470A - Mercury (CVAA)									
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
l	Mercury	ND		0.00020	0.00012	mg/L		11/10/15 08:45	11/10/15 14:15	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Lab Sample ID: 480-90447-10

Matrix: Water

Client Sample ID: TB-06 Date Collected: 11/03/15 00:00

Date Received: 11/04/15 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			11/13/15 19:31	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			11/13/15 19:31	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	-			11/13/15 19:31	
1,1,2-Trichloroethane	ND		1.0	0.23	-			11/13/15 19:31	
1,1-Dichloroethane	ND		1.0	0.38	-			11/13/15 19:31	
1,1-Dichloroethene	ND		1.0	0.29	-			11/13/15 19:31	
1,2,3-Trichlorobenzene	ND		1.0	0.41	-			11/13/15 19:31	
1,2,4-Trichlorobenzene	ND		1.0	0.41	_			11/13/15 19:31	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			11/13/15 19:31	
1,2-Dibromoethane (EDB)	ND		1.0	0.73				11/13/15 19:31	
1,2-Dichlorobenzene	ND		1.0	0.79	•			11/13/15 19:31	
1,2-Dichloroethane	ND		1.0	0.21	-			11/13/15 19:31	
1,2-Dichloropropane	ND		1.0	0.72	-			11/13/15 19:31	
1,3-Dichlorobenzene	ND		1.0	0.78	-			11/13/15 19:31	
1,4-Dichlorobenzene	ND		1.0	0.84	-			11/13/15 19:31	
1,4-Dioxane	ND		40		ug/L			11/13/15 19:31	
2-Butanone (MEK)	ND		10		ug/L			11/13/15 19:31	
2-Hexanone	ND		5.0		ug/L			11/13/15 19:31	
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			11/13/15 19:31	
Acetone	ND		10		ug/L			11/13/15 19:31	
Benzene	ND		1.0	0.41	_			11/13/15 19:31	
Bromochloromethane	ND		1.0	0.87	-			11/13/15 19:31	
Bromodichloromethane	ND		1.0	0.39	_			11/13/15 19:31	
Bromoform	ND		1.0	0.26	-			11/13/15 19:31	
Bromomethane	ND		1.0	0.69	-			11/13/15 19:31	
Carbon disulfide	ND		1.0	0.19	-			11/13/15 19:31	
Carbon tetrachloride	ND		1.0	0.13	-			11/13/15 19:31	
Chlorobenzene	ND		1.0	0.75	-			11/13/15 19:31	
Chloroethane	ND		1.0	0.73	-			11/13/15 19:31	
Chloroform	ND		1.0	0.34	-			11/13/15 19:31	
Chloromethane	ND		1.0	0.35	-			11/13/15 19:31	
cis-1,2-Dichloroethene	ND		1.0	0.81	-			11/13/15 19:31	
cis-1,3-Dichloropropene	ND		1.0	0.36	_			11/13/15 19:31	
Cyclohexane	ND		1.0	0.30	-			11/13/15 19:31	
Dibromochloromethane	ND		1.0	0.10	-			11/13/15 19:31	
Dichlorodifluoromethane	ND	*	1.0						
	ND			0.68	ug/L			11/13/15 19:31 11/13/15 19:31	
Ethylbenzene			1.0						
Isopropylbenzene	ND		1.0		ug/L			11/13/15 19:31	
Methyl acetate	ND		2.5		ug/L			11/13/15 19:31	
Methyl tert-butyl ether	ND		1.0		ug/L			11/13/15 19:31	
Methylcyclohexane	ND		1.0	0.16	-			11/13/15 19:31	
Methylene Chloride	ND		1.0		ug/L			11/13/15 19:31	
Styrene	ND		1.0		ug/L			11/13/15 19:31	
Tetrachloroethene	ND		1.0		ug/L			11/13/15 19:31	
Tetrahydrofuran	ND		5.0		ug/L			11/13/15 19:31	
Toluene	ND		1.0		ug/L			11/13/15 19:31	
trans-1,2-Dichloroethene	ND		1.0		ug/L			11/13/15 19:31	
trans-1,3-Dichloropropene	ND ND		1.0 1.0		ug/L ug/L			11/13/15 19:31 11/13/15 19:31	· · · · · · · .

TestAmerica Buffalo

2

Λ

6

0

10

12

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: TB-06

TestAmerica Job ID: 480-90447-1

Lab Sample ID: 480-90447-10

Matrix: Water

Date Collected: 11/03/15 00:00	
Date Received: 11/04/15 09:00	

Method: 8260C - Volatile Org	anic Compo	unds by (GC/MS (Co	ntinu	ıed)					
Analyte	Result	Qualifier	RL		MDL	Unit		Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		1.0		0.88	ug/L			11/13/15 19:31	1
Vinyl chloride	ND		1.0		0.90	ug/L			11/13/15 19:31	1
Xylenes, Total	ND		2.0		0.66	ug/L			11/13/15 19:31	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					-	11/13/15 19:31	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		66 - 137						11/13/15 19:31	1
4-Bromofluorobenzene (Surr)	84		73 - 120						11/13/15 19:31	1
Toluene-d8 (Surr)	93		71 - 126						11/13/15 19:31	1
Dibromofluoromethane (Surr)	103		60 - 140						11/13/15 19:31	1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surro	gate Recovery	(Acceptance Lim
		DBFM	12DCE	TOL	BFB	
ıb Sample ID	Client Sample ID	(60-140)	(64-126)	(71-125)	(72-126)	
0-90447-1	SWMU4-SB05-SS-102	116	116	106	104	
)-90447-2	SWMU4-SB06-SS-103	120	119	108	109	
-90447-3	SWMU4-SB07-SS-104	113	115	106	103	
0-90447-4	SWMU4-SB08-SS-105	110	112	100	100	
-90447-5	SWMU12-SB03-SS-100	107	105	100	98	
90447-6	SWMU12-SB04-SS-101	118	116	108	105	
90447-7	SWMU12-SB05-SS-102	123	123	118	108	
-90447-8	SWMU12-SB06-SS-103	122	124	112	115	
3 480-273171/1-A	Lab Control Sample	109	109	107	106	
SD 480-273171/2-A	Lab Control Sample Dup	107	108	105	104	
3 480-273171/3-A	Method Blank	110	110	107	107	

Surrogate Legend

DBFM = Dibromofluoromethane (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

_ 			Pe	ercent Surre	ogate Reco
		12DCE	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)	(60-140)
480-90447-9	EB-06	103	83	88	107
480-90447-10	TB-06	103	84	93	103
LCS 480-274853/4	Lab Control Sample	96	97	91	100
MB 480-274853/6	Method Blank	104	86	87	104

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

_			Pe	ercent Surre	ogate Reco	very (Acce	otance Lim
		TBP	FBP	2FP	NBZ	TPH	PHL
Lab Sample ID	Client Sample ID	(39-146)	(37-120)	(18-120)	(34-132)	(65-153)	(11-120)
480-90447-1	SWMU4-SB05-SS-102	86	87	82	79	92	87
480-90447-2	SWMU4-SB06-SS-103	83	80	82	77	80	84
480-90447-2 MS	SWMU4-SB06-SS-103	96	90	85	87	89	88
480-90447-2 MSD	SWMU4-SB06-SS-103	98	93	84	87	88	89
80-90447-3	SWMU4-SB07-SS-104	83	85	76	76	92	79
80-90447-4	SWMU4-SB08-SS-105	79	80	74	73	88	77
180-90447-5	SWMU12-SB03-SS-100	74	85	73	67	82	74
480-90447-6	SWMU12-SB04-SS-101	84	84	77	77	89	83
480-90447-7	SWMU12-SB05-SS-102	84	98	86	84	98	88

TestAmerica Buffalo

Page 48 of 90

3

4

ŏ

10

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		TBP	FBP	2FP	NBZ	TPH	PHL	
ab Sample ID	Client Sample ID	(39-146)	(37-120)	(18-120)	(34-132)	(65-153)	(11-120)	
30-90447-8	SWMU12-SB06-SS-103	86	87	81	78	90	86	
S 480-273215/2-A	Lab Control Sample	94	92	83	83	93	88	
B 480-273215/1-A	Method Blank	93	97	93	89	97	94	

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

TPH = p-Terphenyl-d14

PHL = Phenol-d5

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)							
		TBP	FBP	2FP	NBZ	PHL	TPH		
Lab Sample ID	Client Sample ID	(52-132)	(48-120)	(20-120)	(46-120)	(16-120)	(67-150)		
480-90447-9	EB-06	102	97	58	78	36	92		
LCS 480-273246/2-A	Lab Control Sample	115	79	63	86	50	100		
MB 480-273246/1-A	Method Blank	105	77	49	72	35	98		

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPH = p-Terphenyl-d14

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC)

Matrix: Solid Prep Type: Soluble

			Percent Surrogate Recovery (Acceptance Limits)
		2HN1	
Lab Sample ID	Client Sample ID	(30-137)	
480-90447-1	SWMU4-SB05-SS-102	87	
480-90447-1 MS	SWMU4-SB05-SS-102	73	
480-90447-1 MSD	SWMU4-SB05-SS-102	80	
480-90447-2	SWMU4-SB06-SS-103	88	
480-90447-3	SWMU4-SB07-SS-104	87	
480-90447-4	SWMU4-SB08-SS-105	88	
480-90447-5	SWMU12-SB03-SS-100	79	
480-90447-6	SWMU12-SB04-SS-101	78	
480-90447-7	SWMU12-SB05-SS-102	82	
480-90447-8	SWMU12-SB06-SS-103	88	
LCS 480-273254/2-A	Lab Control Sample	105	
	Method Blank	107	

Page 49 of 90

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

2HN = 2-Hexanone

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)					
		2HN1					
Lab Sample ID	Client Sample ID	(62-129)					
480-90447-9	EB-06	103					
LCS 480-274145/5	Lab Control Sample	106					
MB 480-274145/4	Method Blank	103					
Surrogate Legend							
2HN = 2-Hexanone							

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

			Percent Surre	ogate Recovery (Acceptance Limits)
		TCX1	DCB1	
Lab Sample ID	Client Sample ID	(60-154)	(65-174)	
480-90447-1	SWMU4-SB05-SS-102	83	78	
480-90447-1 MS	SWMU4-SB05-SS-102	122	101	
480-90447-1 MSD	SWMU4-SB05-SS-102	119	101	
480-90447-2	SWMU4-SB06-SS-103	95	89	
480-90447-3	SWMU4-SB07-SS-104	97	89	
480-90447-4	SWMU4-SB08-SS-105	89	86	
480-90447-5	SWMU12-SB03-SS-100	94	89	
480-90447-6	SWMU12-SB04-SS-101	90	83	
480-90447-7	SWMU12-SB05-SS-102	93	90	
480-90447-8	SWMU12-SB06-SS-103	92	86	
LCS 480-273213/2-A	Lab Control Sample	123	101	
MB 480-273213/1-A	Method Blank	98	93	

DCB = DCB Decachlorobiphenyl

DCB = DCB Decachlorobiphenyl

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		TCX2	DCB2					
Lab Sample ID	Client Sample ID	(24-137)	(19-125)					
480-90447-9	EB-06	76	45					
LCS 480-273116/2-A	Lab Control Sample	69	57					
MB 480-273116/1-A	Method Blank	80	63					
Surrogate Legend								
TCX = Tetrachloro-m-	xylene				-			

Page 50 of 90

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-273171/3-A

Matrix: Solid

Client Sample ID: Method Blank

	otal/NA 273171	
epared	Analyzed	Dil Fac

Analysis Batch: 273681	МВ	MB				-			Batch: 273171	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,1,1-Trichloroethane	ND		5.0	0.36	ug/Kg		11/04/15 20:18	11/07/15 02:00	1	
1,1,2,2-Tetrachloroethane	ND		5.0	0.81	ug/Kg		11/04/15 20:18	11/07/15 02:00	1	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0	1.1	ug/Kg		11/04/15 20:18	11/07/15 02:00	1	
1,1,2-Trichloroethane	ND		5.0	0.65	ug/Kg		11/04/15 20:18	11/07/15 02:00	1	
1,1-Dichloroethane	ND		5.0	0.61	ug/Kg		11/04/15 20:18	11/07/15 02:00	1	
1,1-Dichloroethene	ND		5.0	0.61	ug/Kg		11/04/15 20:18	11/07/15 02:00	1	
1,2,3-Trichlorobenzene	0.710	J	5.0	0.53	ug/Kg		11/04/15 20:18	11/07/15 02:00	1	
1,2,4-Trichlorobenzene	0.510	J	5.0		ug/Kg		11/04/15 20:18	11/07/15 02:00	1	
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/Kg		11/04/15 20:18	11/07/15 02:00	1	
1,2-Dichlorobenzene	ND		5.0		ug/Kg		11/04/15 20:18	11/07/15 02:00	1	
1,2-Dichloroethane	ND		5.0		ug/Kg		11/04/15 20:18	11/07/15 02:00	1	
1,2-Dichloropropane	ND		5.0		ug/Kg		11/04/15 20:18	11/07/15 02:00	1	
1,3-Dichlorobenzene	ND		5.0		ug/Kg			11/07/15 02:00	1	
1,4-Dichlorobenzene	ND		5.0		ug/Kg			11/07/15 02:00	1	
1,4-Dioxane	ND		100		ug/Kg			11/07/15 02:00	1	
2-Hexanone	5.06		25		ug/Kg			11/07/15 02:00	1	
Acetone	11.9		25		ug/Kg			11/07/15 02:00	1	
Benzene	ND		5.0		ug/Kg			11/07/15 02:00	1	
Bromochloromethane	ND		5.0		ug/Kg			11/07/15 02:00		
Bromoform	ND		5.0		ug/Kg			11/07/15 02:00	1	
Bromomethane	ND		5.0		ug/Kg			11/07/15 02:00	1	
Carbon disulfide	ND		5.0		ug/Kg			11/07/15 02:00		
Carbon tetrachloride	ND		5.0		ug/Kg			11/07/15 02:00	1	
Chlorobenzene	ND		5.0		ug/Kg			11/07/15 02:00	1	
Chloroethane	ND		5.0		ug/Kg			11/07/15 02:00	· · · · · · · · · · · · · · · · · · ·	
Chloroform	ND		5.0		ug/Kg			11/07/15 02:00	1	
Bromodichloromethane	ND		5.0		ug/Kg			11/07/15 02:00	1	
Chloromethane	ND		5.0		ug/Kg			11/07/15 02:00		
cis-1,2-Dichloroethene	ND		5.0		ug/Kg ug/Kg			11/07/15 02:00	1	
cis-1,3-Dichloropropene	ND ND		5.0		ug/Kg ug/Kg			11/07/15 02:00	1	
1,2-Dibromoethane (EDB)	ND		5.0		ug/Kg ug/Kg			11/07/15 02:00		
` '	ND ND		5.0					11/07/15 02:00		
Cyclohexane Dibromochloromethane	ND ND		5.0		ug/Kg			11/07/15 02:00	1	
Dichlorodifluoromethane	ND		5.0		ug/Kg ug/Kg			11/07/15 02:00	1	
2-Butanone (MEK)	ND		25 5.0		ug/Kg			11/07/15 02:00	1	
Ethylbenzene	ND		5.0		ug/Kg			11/07/15 02:00		
4-Methyl-2-pentanone (MIBK)	2.19	J	25		ug/Kg			11/07/15 02:00	1	
Isopropylbenzene	ND		5.0		ug/Kg			11/07/15 02:00	1	
Methyl acetate	ND		5.0		ug/Kg			11/07/15 02:00	1	
Methyl tert-butyl ether	ND		5.0		ug/Kg			11/07/15 02:00	1	
Methylcyclohexane	ND		5.0		ug/Kg			11/07/15 02:00	1	
Methylene Chloride	3.05	J	5.0		ug/Kg			11/07/15 02:00		
Styrene	ND		5.0		ug/Kg			11/07/15 02:00	1	
Tetrachloroethene	ND		5.0		ug/Kg			11/07/15 02:00	1	
Toluene	ND		5.0		ug/Kg			11/07/15 02:00	1	
trans-1,2-Dichloroethene	ND		5.0		ug/Kg			11/07/15 02:00	1	
trans-1,3-Dichloropropene	ND		5.0		ug/Kg			11/07/15 02:00	1	
Trichloroethene	ND		5.0	1.1	ug/Kg		11/04/15 20:18	11/07/15 02:00	1	

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-273171/3-A	Client Sample ID: Method Blank
Matrix: Solid	Prep Type: Total/NA
Analysis Batch: 273681	Prep Batch: 273171
MB MB	

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		5.0	0.47	ug/Kg		11/04/15 20:18	11/07/15 02:00	1
Tetrahydrofuran	ND		10	2.9	ug/Kg		11/04/15 20:18	11/07/15 02:00	1
Vinyl chloride	ND		5.0	0.61	ug/Kg		11/04/15 20:18	11/07/15 02:00	1
Xylenes, Total	ND		10	0.84	ug/Kg		11/04/15 20:18	11/07/15 02:00	1

	MB	МВ							
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Naphthalene	2.41	J	ug/Kg		20.01	91-20-3	11/04/15 20:18	11/07/15 02:00	1
2-Methylnaphthalene	2.61	J	ug/Kg		21.89	91-57-6	11/04/15 20:18	11/07/15 02:00	1
Tentatively Identified Compound	None		ug/Kg				11/04/15 20:18	11/07/15 02:00	1

	мв мв				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110	64 - 126	11/04/15 20:18	11/07/15 02:00	1
Toluene-d8 (Surr)	107	71 - 125	11/04/15 20:18	11/07/15 02:00	1
4-Bromofluorobenzene (Surr)	107	72 - 126	11/04/15 20:18	11/07/15 02:00	1
Dibromofluoromethane (Surr)	110	60 - 140	11/04/15 20:18	11/07/15 02:00	1

_		
Lab Sample ID: LCS 480-273171/1-A		Client Sample ID: Lab Control Sample
Matrix: Solid		Prep Type: Total/NA
Analysis Batch: 273681		Prep Batch: 273171

Analysis Batch: 273681	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	45.1	47.9		ug/Kg		106	77 - 121
1,1,2,2-Tetrachloroethane	45.1	50.8		ug/Kg		113	80 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	45.1	40.9		ug/Kg		91	60 - 140
ne							
1,1,2-Trichloroethane	45.1	48.1		ug/Kg		107	78 - 122
1,1-Dichloroethane	45.1	45.4		ug/Kg		101	73 - 126
1,1-Dichloroethene	45.1	42.1		ug/Kg		93	59 - 125
1,2,3-Trichlorobenzene	45.1	46.3		ug/Kg		103	60 - 120
1,2,4-Trichlorobenzene	45.1	46.8		ug/Kg		104	64 - 120
1,2-Dibromo-3-Chloropropane	45.1	55.6		ug/Kg		123	63 - 124
1,2-Dichlorobenzene	45.1	46.7		ug/Kg		104	75 - 120
1,2-Dichloroethane	45.1	45.6		ug/Kg		101	77 - 122
1,2-Dichloropropane	45.1	46.8		ug/Kg		104	75 - 124
1,3-Dichlorobenzene	45.1	46.3		ug/Kg		103	74 - 120
1,4-Dichlorobenzene	45.1	46.3		ug/Kg		103	73 - 120
2-Hexanone	226	256		ug/Kg		114	59 - 130
Acetone	226	236		ug/Kg		104	61 - 137
Benzene	45.1	45.5		ug/Kg		101	79 - 127
Bromochloromethane	45.1	46.3		ug/Kg		103	75 - 134
Bromoform	45.1	47.1		ug/Kg		104	68 - 126
Bromomethane	45.1	48.2		ug/Kg		107	37 - 149
Carbon disulfide	45.1	45.3		ug/Kg		100	64 - 131
Carbon tetrachloride	45.1	47.8		ug/Kg		106	75 - 135
Chlorobenzene	45.1	45.6		ug/Kg		101	76 - 124
Chloroethane	45.1	45.3		ug/Kg		100	69 - 135
Chloroform	45.1	45.5		ug/Kg		101	80 - 118
Bromodichloromethane	45.1	49.9		ug/Kg		111	80 - 122

TestAmerica Buffalo

Page 52 of 90

2

3

4

6

8

9

11

12

1 A

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-273171/1-A

Matrix: Solid

Analysis Batch: 273681

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 273171

7 maryolo Batom 27 000 i	Spike	LCS I	LCS		%Rec.
Analyte	Added	Result (Qualifier Unit	D %Rec	Limits
Chloromethane	45.1	40.9	ug/Kg	91	63 - 127
cis-1,2-Dichloroethene	45.1	45.9	ug/Kg	102	81 - 117
cis-1,3-Dichloropropene	45.1	50.6	ug/Kg	112	82 - 120
1,2-Dibromoethane (EDB)	45.1	50.2	ug/Kg	111	78 - 120
Cyclohexane	45.1	41.3	ug/Kg	92	65 - 106
Dibromochloromethane	45.1	54.2	ug/Kg	120	76 - 125
Dichlorodifluoromethane	45.1	38.9	ug/Kg	86	57 - 142
2-Butanone (MEK)	226	234	ug/Kg	104	70 - 134
Ethylbenzene	45.1	46.0	ug/Kg	102	80 - 120
4-Methyl-2-pentanone (MIBK)	226	250	ug/Kg	111	65 - 133
Isopropylbenzene	45.1	47.2	ug/Kg	105	72 - 120
Methyl acetate	226	235	ug/Kg	104	55 - 136
Methyl tert-butyl ether	45.1	48.2	ug/Kg	107	63 - 125
Methylcyclohexane	45.1	41.9	ug/Kg	93	60 - 140
Methylene Chloride	45.1	50.6	ug/Kg	112	61 - 127
Styrene	45.1	47.0	ug/Kg	104	80 - 120
Tetrachloroethene	45.1	44.0	ug/Kg	98	74 - 122
Toluene	45.1	45.0	ug/Kg	100	74 - 128
trans-1,2-Dichloroethene	45.1	44.1	ug/Kg	98	78 - 126
trans-1,3-Dichloropropene	45.1	51.9	ug/Kg	115	73 - 123
Trichloroethene	45.1	44.0	ug/Kg	98	77 - 129
Trichlorofluoromethane	45.1	41.6	ug/Kg	92	65 - 146
Tetrahydrofuran	90.3	94.4	ug/Kg	105	64 - 113
Vinyl chloride	45.1	41.3	ug/Kg	92	61 - 133
Xylenes, Total	90.3	92.4	ug/Kg	102	70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	109		64 - 126
Toluene-d8 (Surr)	107		71 - 125
4-Bromofluorobenzene (Surr)	106		72 - 126
Dibromofluoromethane (Surr)	109		60 - 140

Lab Sample ID: LCSD 480-273171/2-A

Matrix: Solid

Analysis Batch: 273681

Client Sample	ID:	Lab	Cont	rol	Samp	ole Dup	
			Prep	Ty	pe: T	otal/NA	

Prep Batch: 273171

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	49.4	49.7		ug/Kg		101	77 - 121	4	20
1,1,2,2-Tetrachloroethane	49.4	58.7		ug/Kg		119	80 - 120	15	20
1,1,2-Trichloro-1,2,2-trifluoroetha	49.4	43.4		ug/Kg		88	60 - 140	6	20
ne									
1,1,2-Trichloroethane	49.4	54.2		ug/Kg		110	78 - 122	12	20
1,1-Dichloroethane	49.4	49.5		ug/Kg		100	73 - 126	9	20
1,1-Dichloroethene	49.4	46.1		ug/Kg		93	59 - 125	9	20
1,2,3-Trichlorobenzene	49.4	53.5		ug/Kg		108	60 - 120	14	20
1,2,4-Trichlorobenzene	49.4	51.5		ug/Kg		104	64 - 120	10	20
1,2-Dibromo-3-Chloropropane	49.4	66.9	*	ug/Kg		135	63 - 124	18	20
1,2-Dichlorobenzene	49.4	51.3		ug/Kg		104	75 - 120	9	20

TestAmerica Buffalo

Page 53 of 90

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Lab Sample ID: LCSD 480-273171/2-A

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 273681

Prep Type: Total/NA Prep Batch: 273171

Analyte									
, 	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichloroethane	49.4	50.3		ug/Kg		102	77 - 122	10	20
1,2-Dichloropropane	49.4	50.9		ug/Kg		103	75 - 124	8	20
1,3-Dichlorobenzene	49.4	49.9		ug/Kg		101	74 - 120	8	20
1,4-Dichlorobenzene	49.4	49.5		ug/Kg		100	73 - 120	7	20
2-Hexanone	247	323	*	ug/Kg		131	59 ₋ 130	23	20
Acetone	247	288		ug/Kg		117	61 - 137	20	20
Benzene	49.4	49.1		ug/Kg		99	79 - 127	8	20
Bromochloromethane	49.4	52.1		ug/Kg		106	75 - 134	12	20
Bromoform	49.4	54.4		ug/Kg		110	68 - 126	14	20
Bromomethane	49.4	55.3		ug/Kg		112	37 - 149	14	20
Carbon disulfide	49.4	48.8		ug/Kg		99	64 - 131	7	20
Carbon tetrachloride	49.4	50.9		ug/Kg		103	75 ₋ 135	6	20
Chlorobenzene	49.4	49.4		ug/Kg		100	76 - 124	8	20
Chloroethane	49.4	46.8		ug/Kg		95	69 - 135	3	20
Chloroform	49.4	49.1		ug/Kg		99	80 - 118	8	20
Bromodichloromethane	49.4	54.3		ug/Kg		110	80 - 122	8	20
Chloromethane	49.4	44.6		ug/Kg		90	63 - 127	9	20
cis-1,2-Dichloroethene	49.4	49.4		ug/Kg		100	81 - 117	7	20
cis-1,3-Dichloropropene	49.4	56.1		ug/Kg		114	82 - 120	10	20
1,2-Dibromoethane (EDB)	49.4	57.0		ug/Kg		115	78 - 120	13	20
Cyclohexane	49.4	44.2		ug/Kg		90	65 - 106	7	20
Dibromochloromethane	49.4	60.9		ug/Kg		123	76 - 125	12	20
Dichlorodifluoromethane	49.4	41.0		ug/Kg		83	57 - 142	5	20
2-Butanone (MEK)	247	285		ug/Kg		115	70 - 134	20	20
Ethylbenzene	49.4	49.6		ug/Kg		100	80 - 120	8	20
4-Methyl-2-pentanone (MIBK)	247	304		ug/Kg		123	65 - 133	20	20
Isopropylbenzene	49.4	50.4		ug/Kg		102	72 - 120	7	20
Methyl acetate	247	282		ug/Kg		114	55 ₋ 136	18	20
Methyl tert-butyl ether	49.4	54.6		ug/Kg		111	63 - 125	13	20
Methylcyclohexane	49.4	44.3		ug/Kg		90	60 - 140	6	20
Methylene Chloride	49.4	55.1		ug/Kg		111	61 - 127	8	20
Styrene	49.4	51.5		ug/Kg		104	80 - 120	9	20
Tetrachloroethene	49.4	46.5		ug/Kg		94	74 - 122	6	20
Toluene	49.4	48.8		ug/Kg		99	74 - 128	8	20
trans-1,2-Dichloroethene	49.4	47.6		ug/Kg		96	78 - 126	8	20
trans-1,3-Dichloropropene	49.4	58.0		ug/Kg		117	73 - 123	11	20
Trichloroethene	49.4	47.2		ug/Kg		96	77 - 129	7	20
Trichlorofluoromethane	49.4	43.7		ug/Kg		88	65 - 146	5	20
Tetrahydrofuran	98.8	115	*	ug/Kg		116	64 - 113	19	20
Vinyl chloride	49.4	45.2		ug/Kg		91	61 - 133	9	20
Xylenes, Total	98.8	99.5		ug/Kg		101	70 - 130	7	20

LCSD LCSD Surrogate %Recovery Qualifier Limits 64 - 126 1,2-Dichloroethane-d4 (Surr) 108 Toluene-d8 (Surr) 105 71 - 125 4-Bromofluorobenzene (Surr) 104 72 - 126 Dibromofluoromethane (Surr) 107 60 - 140

TestAmerica Buffalo

QC Sample Results

Client: Woodard & Curran, Inc.

Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-274853/6

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 274853	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			11/13/15 12:19	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			11/13/15 12:19	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			11/13/15 12:19	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			11/13/15 12:19	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			11/13/15 12:19	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			11/13/15 12:19	1
1,2,3-Trichlorobenzene	ND		1.0	0.41	ug/L			11/13/15 12:19	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			11/13/15 12:19	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			11/13/15 12:19	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			11/13/15 12:19	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			11/13/15 12:19	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			11/13/15 12:19	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			11/13/15 12:19	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			11/13/15 12:19	1
1,4-Dioxane	ND		40	9.3	ug/L			11/13/15 12:19	1
2-Hexanone	ND		5.0	1.2	ug/L			11/13/15 12:19	1
Acetone	ND		10	3.0	ug/L			11/13/15 12:19	1
Benzene	ND		1.0	0.41	ug/L			11/13/15 12:19	1
Bromochloromethane	ND		1.0	0.87	ug/L			11/13/15 12:19	1
Bromoform	ND		1.0	0.26	ug/L			11/13/15 12:19	1
Bromomethane	ND		1.0		ug/L			11/13/15 12:19	1
Carbon disulfide	ND		1.0		ug/L			11/13/15 12:19	1
Carbon tetrachloride	ND		1.0		ug/L			11/13/15 12:19	1
Chlorobenzene	ND		1.0		ug/L			11/13/15 12:19	1
Chloroethane	ND		1.0	0.32	ug/L			11/13/15 12:19	1
Chloroform	ND		1.0		ug/L			11/13/15 12:19	1
Bromodichloromethane	ND		1.0		ug/L			11/13/15 12:19	1
Chloromethane	ND		1.0		ug/L			11/13/15 12:19	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			11/13/15 12:19	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			11/13/15 12:19	1
1,2-Dibromoethane (EDB)	ND		1.0		ug/L			11/13/15 12:19	1
Cyclohexane	ND		1.0		ug/L			11/13/15 12:19	1
Dibromochloromethane	ND		1.0		ug/L			11/13/15 12:19	1
Dichlorodifluoromethane	ND		1.0		ug/L			11/13/15 12:19	1
2-Butanone (MEK)	ND		10		ug/L			11/13/15 12:19	1
Ethylbenzene	ND		1.0		ug/L			11/13/15 12:19	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			11/13/15 12:19	1
Isopropylbenzene	ND		1.0		ug/L			11/13/15 12:19	1
Methyl acetate	ND		2.5		ug/L			11/13/15 12:19	1
Methyl tert-butyl ether	ND		1.0		ug/L			11/13/15 12:19	1
Methylcyclohexane	ND		1.0		ug/L			11/13/15 12:19	1
Methylene Chloride	ND		1.0		ug/L			11/13/15 12:19	1
Styrene	ND		1.0		ug/L			11/13/15 12:19	
Tetrachloroethene	ND		1.0		ug/L			11/13/15 12:19	1
Toluene	ND		1.0		ug/L			11/13/15 12:19	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			11/13/15 12:19	
trans-1,3-Dichloropropene	ND		1.0		ug/L			11/13/15 12:19	1
Trichloroethene	ND		1.0		ug/L			11/13/15 12:19	1

TestAmerica Buffalo

11/18/2015

Page 55 of 90

2

5

8

9

11

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-274853/6	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 274853	

Allalysis Datoli. 21 4000										
	MB	MB								
Analyte	Result	Qualifier		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND	-		1.0	0.88	ug/L		-	11/13/15 12:19	1
Tetrahydrofuran	ND			5.0	1.3	ug/L			11/13/15 12:19	1
Vinyl chloride	ND			1.0	0.90	ug/L			11/13/15 12:19	1
Xylenes, Total	ND			2.0	0.66	ug/L			11/13/15 12:19	1
	МВ	MB								
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L						11/13/15 12:19	1
	MR	MR								

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		66 - 137		11/13/15 12:19	1
Toluene-d8 (Surr)	87		71 - 126		11/13/15 12:19	1
4-Bromofluorobenzene (Surr)	86		73 - 120		11/13/15 12:19	1
Dibromofluoromethane (Surr)	104		60 - 140		11/13/15 12:19	1

Lab Sample ID: LCS 480-274853/4

Matrix: Water

Analysis Batch: 274853

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch. 214000	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	25.0	27.1		ug/L		109	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	24.3		ug/L		97	70 - 126	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	32.3		ug/L		129	52 - 148	
ne								
1,1,2-Trichloroethane	25.0	24.7		ug/L		99	76 - 122	
1,1-Dichloroethane	25.0	25.9		ug/L		104	71 - 129	
1,1-Dichloroethene	25.0	27.3		ug/L		109	58 - 121	
1,2,3-Trichlorobenzene	25.0	22.5		ug/L		90	63 - 138	
1,2,4-Trichlorobenzene	25.0	22.9		ug/L		91	70 - 122	
1,2-Dibromo-3-Chloropropane	25.0	21.1		ug/L		84	56 - 134	
1,2-Dichlorobenzene	25.0	23.7		ug/L		95	80 - 124	
1,2-Dichloroethane	25.0	25.5		ug/L		102	75 - 127	
1,2-Dichloropropane	25.0	25.7		ug/L		103	76 - 120	
1,3-Dichlorobenzene	25.0	25.9		ug/L		104	77 - 120	
1,4-Dichlorobenzene	25.0	23.5		ug/L		94	75 - 120	
2-Hexanone	125	122		ug/L		97	65 - 127	
Acetone	125	118		ug/L		95	56 - 142	
Benzene	25.0	25.7		ug/L		103	71 - 124	
Bromochloromethane	25.0	25.5		ug/L		102	72 - 130	
Bromoform	25.0	25.6		ug/L		102	52 - 132	
Bromomethane	25.0	26.6		ug/L		107	55 ₋ 144	
Carbon disulfide	25.0	25.4		ug/L		102	59 - 134	
Carbon tetrachloride	25.0	29.6		ug/L		118	72 - 134	
Chlorobenzene	25.0	24.6		ug/L		99	72 ₋ 120	
Chloroethane	25.0	28.0		ug/L		112	69 - 136	
Chloroform	25.0	25.5		ug/L		102	73 - 127	
Bromodichloromethane	25.0	26.1		ug/L		105	80 - 122	
Chloromethane	25.0	27.3		ug/L		109	68 - 124	
cis-1,2-Dichloroethene	25.0	25.0		ug/L		100	74 - 124	

TestAmerica Buffalo

7

0

10

11

13

14

15

11/18/2015

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-274853/4

Matrix: Water

Analysis Batch: 274853

Client Sample ID: Lab Control Sample Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,3-Dichloropropene	25.0	25.4		ug/L		102	74 - 124	
1,2-Dibromoethane (EDB)	25.0	23.8		ug/L		95	77 - 120	
Cyclohexane	25.0	30.3		ug/L		121	59 - 135	
Dibromochloromethane	25.0	25.0		ug/L		100	75 - 125	
Dichlorodifluoromethane	25.0	34.4	*	ug/L		137	59 - 135	
2-Butanone (MEK)	125	122		ug/L		98	57 - 140	
Ethylbenzene	25.0	24.4		ug/L		97	77 - 123	
4-Methyl-2-pentanone (MIBK)	125	122		ug/L		98	71 - 125	
Isopropylbenzene	25.0	24.1		ug/L		96	77 - 122	
Methyl acetate	125	132		ug/L		106	74 - 133	
Methyl tert-butyl ether	25.0	23.9		ug/L		96	64 - 127	
Methylcyclohexane	25.0	30.2		ug/L		121	61 - 138	
Methylene Chloride	25.0	25.7		ug/L		103	57 - 132	
Styrene	25.0	24.2		ug/L		97	70 - 130	
Tetrachloroethene	25.0	24.8		ug/L		99	74 - 122	
Toluene	25.0	22.9		ug/L		92	80 - 122	
trans-1,2-Dichloroethene	25.0	26.0		ug/L		104	73 - 127	
trans-1,3-Dichloropropene	25.0	24.1		ug/L		97	72 - 123	
Trichloroethene	25.0	25.8		ug/L		103	74 - 123	
Trichlorofluoromethane	25.0	32.7		ug/L		131	62 - 152	
Tetrahydrofuran	50.0	48.0		ug/L		96	62 - 132	
Vinyl chloride	25.0	29.9		ug/L		120	65 - 133	
Xylenes, Total	50.0	49.7		ug/L		99	76 - 122	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		66 - 137
Toluene-d8 (Surr)	91		71 - 126
4-Bromofluorobenzene (Surr)	97		73 - 120
Dibromofluoromethane (Surr)	100		60 - 140

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-273215/1-A

Matrix: Solid

Analysis Batch: 274286

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 273215

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		170	46	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
2,4,6-Trichlorophenol	ND		170	34	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
2,4-Dichlorophenol	ND		170	18	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
2,4-Dimethylphenol	ND		170	41	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
2,4-Dinitrophenol	ND		1600	780	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
2,4-Dinitrotoluene	ND		170	35	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
2,6-Dinitrotoluene	ND		170	20	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
2-Chloronaphthalene	ND		170	28	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
2-Chlorophenol	ND		170	31	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
2-Methylnaphthalene	ND		170	34	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
2-Methylphenol	ND		170	20	ug/Kg		11/05/15 08:03	11/11/15 12:21	1

TestAmerica Buffalo

Page 57 of 90

3

5

7

9

11

13

14

QC Sample Results

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-273215/1-A

Matrix: Solid

Analysis Batch: 274286

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 273215

	MB					_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
2-Nitroaniline	ND		330		ug/Kg			11/11/15 12:21	1
2-Nitrophenol	ND		170		ug/Kg			11/11/15 12:21	1
3,3'-Dichlorobenzidine	ND		330		ug/Kg			11/11/15 12:21	1
3-Nitroaniline	ND		330		ug/Kg			11/11/15 12:21	
4,6-Dinitro-2-methylphenol	ND		330		ug/Kg			11/11/15 12:21	1
4-Bromophenyl phenyl ether	ND		170		ug/Kg			11/11/15 12:21	1
4-Chloro-3-methylphenol	ND		170		ug/Kg		11/05/15 08:03	11/11/15 12:21	1
4-Chloroaniline	ND		170		ug/Kg		11/05/15 08:03	11/11/15 12:21	1
4-Chlorophenyl phenyl ether	ND		170		ug/Kg			11/11/15 12:21	1
4-Methylphenol	ND		330		ug/Kg		11/05/15 08:03	11/11/15 12:21	1
4-Nitroaniline	ND		330	88	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
4-Nitrophenol	ND		330	120	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
Acenaphthene	ND		170	25	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
Acenaphthylene	ND		170	22	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
Acetophenone	ND		170	23	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
Anthracene	ND		170	42	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
Atrazine	ND		170	58	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
Benzaldehyde	ND		170	130	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
Benzo(a)anthracene	ND		170	17	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
Benzo(a)pyrene	ND		170	25	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
Benzo(b)fluoranthene	ND		170	27	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
Benzo(g,h,i)perylene	ND		170	18	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
Benzo(k)fluoranthene	ND		170		ug/Kg		11/05/15 08:03	11/11/15 12:21	1
Biphenyl	ND		170		ug/Kg		11/05/15 08:03	11/11/15 12:21	1
bis (2-chloroisopropyl) ether	ND		170		ug/Kg		11/05/15 08:03	11/11/15 12:21	1
Bis(2-chloroethoxy)methane	ND		170	36	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
Bis(2-chloroethyl)ether	ND		170		ug/Kg		11/05/15 08:03	11/11/15 12:21	1
Bis(2-ethylhexyl) phthalate	ND		170		ug/Kg		11/05/15 08:03	11/11/15 12:21	1
Butyl benzyl phthalate	ND		170		ug/Kg			11/11/15 12:21	1
Caprolactam	ND		170		ug/Kg			11/11/15 12:21	1
Carbazole	ND		170		ug/Kg			11/11/15 12:21	1
Chrysene	ND		170		ug/Kg			11/11/15 12:21	1
Dibenz(a,h)anthracene	ND		170		ug/Kg			11/11/15 12:21	1
Dibenzofuran	ND		170	20	ug/Kg			11/11/15 12:21	1
Diethyl phthalate	ND		170		ug/Kg			11/11/15 12:21	1
Dimethyl phthalate	ND		170		ug/Kg			11/11/15 12:21	1
Di-n-butyl phthalate	ND		170		ug/Kg			11/11/15 12:21	1
Di-n-octyl phthalate	ND		170		ug/Kg			11/11/15 12:21	· · · · · · · 1
Fluoranthene	ND		170		ug/Kg			11/11/15 12:21	1
Fluorene	ND		170		ug/Kg			11/11/15 12:21	1
Hexachlorobenzene	ND		170		ug/Kg			11/11/15 12:21	· · · · · · · 1
Hexachlorobutadiene	ND ND		170		ug/Kg ug/Kg			11/11/15 12:21	1
Hexachlorocyclopentadiene	ND ND		170		ug/Kg ug/Kg			11/11/15 12:21	1
Hexachloroethane	ND		170		ug/Kg ug/Kg			11/11/15 12:21	ı 1
	ND ND		170					11/11/15 12:21	1
Indeno(1,2,3-cd)pyrene					ug/Kg				
Isophorone	ND		170		ug/Kg			11/11/15 12:21 11/11/15 12:21	1
Naphthalene	ND		170 170		ug/Kg				1
Nitrobenzene	ND		170	19	ug/Kg		11/05/15 08:03	11/11/15 12:21	1

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample	ID: MB 480-273215/	1-A
------------	--------------------	-----

Matrix: Solid

Analysis Batch: 274286

Client Sample ID: Method Blank
Prep Type: Total/NA
Davis Datales 070045

Prep Batch: 273215

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-Nitrosodi-n-propylamine	ND -	170	29	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
N-Nitrosodiphenylamine	ND	170	140	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
Pentachlorophenol	ND	330	170	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
Phenanthrene	ND	170	25	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
Phenol	ND	170	26	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
Pyrene	ND	170	20	ug/Kg		11/05/15 08:03	11/11/15 12:21	1
Dimethylformamide	ND	650	74	ug/Kg		11/05/15 08:03	11/11/15 12:21	1

MB MB

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	3510	TJ	ug/Kg		2.27		11/05/15 08:03	11/11/15 12:21	1
Unknown	919	ΤJ	ug/Kg		2.50		11/05/15 08:03	11/11/15 12:21	1
Unknown	2270	TJ	ug/Kg		2.60		11/05/15 08:03	11/11/15 12:21	1
Unknown	724	TJ	ug/Kg		4.98		11/05/15 08:03	11/11/15 12:21	1
Ethane, 1,1,2,2-tetrachloro-	269	TJN	ug/Kg		5.97	79-34-5	11/05/15 08:03	11/11/15 12:21	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	93	39 - 146	11/05/15 08:03	11/11/15 12:21	1
2-Fluorobiphenyl	97	37 - 120	11/05/15 08:03	11/11/15 12:21	1
2-Fluorophenol	93	18 - 120	11/05/15 08:03	11/11/15 12:21	1
Nitrobenzene-d5	89	34 - 132	11/05/15 08:03	11/11/15 12:21	1
p-Terphenyl-d14	97	65 - 153	11/05/15 08:03	11/11/15 12:21	1
Phenol-d5	94	11 - 120	11/05/15 08:03	11/11/15 12:21	1

Lab Sample ID: LCS 480-273215/2-A

Matrix: Solid

Client S	Sample	ID:	Lab	Control	Sampl	е
			Pen	Type:	Total/N	Δ

Analysis Batch: 274286	Spike	LCS	LCS				Prep Batch: 273215 %Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
2,4,5-Trichlorophenol	1660	1520		ug/Kg		92	59 - 126
2,4,6-Trichlorophenol	1660	1480		ug/Kg		89	59 - 123
2,4-Dichlorophenol	1660	1490		ug/Kg		90	52 - 120
2,4-Dimethylphenol	1660	1510		ug/Kg		91	36 - 120
2,4-Dinitrophenol	3310	2380		ug/Kg		72	35 - 146
2,4-Dinitrotoluene	1660	1470		ug/Kg		89	55 - 125
2,6-Dinitrotoluene	1660	1550		ug/Kg		94	66 - 128
2-Chloronaphthalene	1660	1490		ug/Kg		90	57 - 120
2-Chlorophenol	1660	1410		ug/Kg		85	38 - 120
2-Methylnaphthalene	1660	1450		ug/Kg		88	47 - 120
2-Methylphenol	1660	1420		ug/Kg		86	48 - 120
2-Nitroaniline	1660	1540		ug/Kg		93	61 - 130
2-Nitrophenol	1660	1430		ug/Kg		86	50 - 120
3,3'-Dichlorobenzidine	3310	3040		ug/Kg		92	48 - 126
3-Nitroaniline	1660	1370		ug/Kg		83	61 - 127
4,6-Dinitro-2-methylphenol	3310	2730		ug/Kg		82	49 - 155
4-Bromophenyl phenyl ether	1660	1570		ug/Kg		94	58 - 131
4-Chloro-3-methylphenol	1660	1580		ug/Kg		95	49 - 125
4-Chloroaniline	1660	1290		ua/Ka		78	49 - 120

TestAmerica Buffalo

Page 59 of 90

QC Sample Results

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-273215/2-A

Matrix: Solid

Analysis Batch: 274286

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 273215

Analysis Batch: 274286	Spike	LCS	LCS				Prep Batch: 27321 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
4-Chlorophenyl phenyl ether	1660	1550		ug/Kg		93	63 - 124
4-Methylphenol	1660	1460		ug/Kg		88	50 - 119
4-Nitroaniline	1660	1540		ug/Kg		93	63 - 128
4-Nitrophenol	3310	3270		ug/Kg		99	43 - 137
Acenaphthene	1660	1530		ug/Kg		92	53 - 120
Acenaphthylene	1660	1530		ug/Kg		93	58 - 121
Acetophenone	1660	1450		ug/Kg		88	66 - 120
Anthracene	1660	1570		ug/Kg		94	62 - 129
Atrazine	3310	3270		ug/Kg		99	60 - 164
Benzaldehyde	3310	3150		ug/Kg		95	21 - 120
Benzo(a)anthracene	1660	1590		ug/Kg		96	65 - 133
Benzo(a)pyrene	1660	1580		ug/Kg		95	64 - 127
Benzo(b)fluoranthene	1660	1530		ug/Kg		92	64 - 135
Benzo(g,h,i)perylene	1660	1660		ug/Kg		100	50 - 152
Benzo(k)fluoranthene	1660	1560		ug/Kg		94	58 - 138
Biphenyl	1660	1510		ug/Kg		91	71 - 120
bis (2-chloroisopropyl) ether	1660	1180		ug/Kg		71	44 - 120
Bis(2-chloroethoxy)methane	1660	1400		ug/Kg		84	61 - 133
Bis(2-chloroethyl)ether	1660	1350		ug/Kg		81	45 - 120
Bis(2-ethylhexyl) phthalate	1660	1510		ug/Kg		91	61 - 133
Butyl benzyl phthalate	1660	1620		ug/Kg		98	61 - 129
Caprolactam	3310	2910		ug/Kg		88	54 - 133
Carbazole	1660	1560		ug/Kg		94	59 - 129
Chrysene	1660	1560		ug/Kg		94	64 - 131
Dibenz(a,h)anthracene	1660	1640		ug/Kg		99	54 - 148
Dibenzofuran	1660	1530		ug/Kg		93	56 - 120
Diethyl phthalate	1660	1630		ug/Kg		98	66 - 126
Dimethyl phthalate	1660	1590		ug/Kg		96	65 - 124
Di-n-butyl phthalate	1660	1570		ug/Kg		94	58 - 130
Di-n-octyl phthalate	1660	1520		ug/Kg		91	62 - 133
Fluoranthene	1660	1540		ug/Kg ug/Kg		93	62 - 131
Fluorene	1660	1540		ug/Kg ug/Kg		93	63 - 126
Hexachlorobenzene	1660	1590				96	60 - 132
Hexachlorobutadiene	1660	1470		ug/Kg		89	45 ₋ 120
Hexachlorocyclopentadiene				ug/Kg			45 - 120 31 - 120
	1660	1450		ug/Kg		88	
Hexachloroethane	1660	1320		ug/Kg		80	41 - 120
Indeno(1,2,3-cd)pyrene	1660	1630		ug/Kg		98	56 ₋ 149
Isophorone	1660	1470		ug/Kg		89	56 - 120
Naphthalene	1660	1410		ug/Kg		85	46 - 120
Nitrobenzene	1660	1430		ug/Kg		86	49 - 120
N-Nitrosodi-n-propylamine	1660	1450		ug/Kg		87	46 - 120
N-Nitrosodiphenylamine	3310	3140		ug/Kg		95	20 - 119
Pentachlorophenol	3310	2170		ug/Kg		65	33 - 136
Phenanthrene	1660	1550		ug/Kg		94	60 - 130
Phenol	1660	1410		ug/Kg		85	36 - 120
Pyrene	1660	1590		ug/Kg		96	51 - 133

TestAmerica Buffalo

3

4

7

Ö

10

12

1 1

QC Sample Results

Client: Woodard & Curran, Inc. TestAmerica Job ID: 480-90447-1 Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-273215/2-A

Lab Sample ID: 480-90447-2 MS

Analysis Batch: 274286

Matrix: Solid

Matrix: Solid

3-Nitroaniline

4,6-Dinitro-2-methylphenol

4-Bromophenyl phenyl ether

Analysis Batch: 274286

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 273215

LCS LCS

Sample Sample

ND

ND

ND

Surrogate	%Recovery	Qualifier	Limits		
2,4,6-Tribromophenol	94		39 - 146		
2-Fluorobiphenyl	92		37 - 120		
2-Fluorophenol	83		18 - 120		
Nitrobenzene-d5	83		34 - 132		
p-Terphenyl-d14	93		65 - 153		
Phenol-d5	88		11 - 120		

Client Sample ID: SWMU4-SB06-SS-103

Prep Type: Total/NA

Prep Batch: 273215 %Rec.

₩

₩

86

86

99

61 - 127

49 - 155

58 - 131

ug/Kg

ug/Kg

ug/Kg

	Sample	Sample	Spike	IVIO	IVIO				/orvec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4,5-Trichlorophenol	ND		1920	1840		ug/Kg	<u> </u>	96	59 - 126	
2,4,6-Trichlorophenol	ND		1920	1740		ug/Kg	☼	90	59 - 123	
2,4-Dichlorophenol	ND		1920	1770		ug/Kg	₩	92	52 - 120	
2,4-Dimethylphenol	ND		1920	1760		ug/Kg	₩.	92	36 - 120	
2,4-Dinitrophenol	ND		3850	2710		ug/Kg	☼	70	35 - 146	
2,4-Dinitrotoluene	ND		1920	1800		ug/Kg	₩	93	55 - 125	
2,6-Dinitrotoluene	ND		1920	1850		ug/Kg	₩.	96	66 - 128	
2-Chloronaphthalene	ND		1920	1710		ug/Kg	₩	89	57 ₋ 120	
2-Chlorophenol	ND		1920	1640		ug/Kg	☼	85	38 - 120	
2-Methylnaphthalene	ND		1920	1700		ug/Kg	₩.	88	47 - 120	
2-Methylphenol	ND		1920	1710		ug/Kg	₩	89	48 - 120	
2-Nitroaniline	ND		1920	1830		ug/Kg	☼	95	61 - 130	
2-Nitrophenol	ND		1920	1730		ug/Kg	₽	90	50 - 120	
3,3'-Dichlorobenzidine	ND		3850	3740		ug/Kg	₩	97	48 - 126	

Spike

MS MS

1660

3300

1910

4-Chloro-3-methylphenol	ND	1920	1900	ug/Kg	₩	99	49 - 125
4-Chloroaniline	ND	1920	1560	ug/Kg	₩	81	49 - 120
4-Chlorophenyl phenyl ether	ND	1920	1810	ug/Kg	₩	94	63 - 124
4-Methylphenol	ND	1920	1770	ug/Kg	₩	92	50 - 119
4-Nitroaniline	ND	1920	1870	ug/Kg	₩	97	63 - 128
4-Nitrophenol	ND	3850	3990	ug/Kg	₩	104	43 - 137
Acenaphthene	ND	1920	1740	ug/Kg	₩	90	53 - 120
Acenaphthylene	ND	1920	1760	ug/Kg	₩	91	58 - 121
Acetophenone	ND	1920	1700	ug/Kg	₩	88	66 - 120
Anthracene	ND	1920	1840	ug/Kg	₩	96	62 - 129
Atrazine	ND	3850	3980 E	ug/Kg	₩	103	60 - 164
Benzaldehyde	ND	3850	3740	ug/Kg	₩	97	21 - 120
Benzo(a)anthracene	ND	1920	1840	ug/Kg	₩	96	65 - 133
Benzo(a)pyrene	ND	1920	1870	ug/Kg		97	64 - 127
Benzo(b)fluoranthene	ND	1920	1840	ug/Kg	₩	96	64 - 135
Benzo(g,h,i)perylene	ND	1920	1960	ug/Kg	₩	102	50 - 152
Benzo(k)fluoranthene	ND	1920	1800	ug/Kg		94	58 - 138
Biphenyl	ND	1920	1730	ug/Kg	☼	90	71 - 120
bis (2-chloroisopropyl) ether	ND	1920	1360	ug/Kg	₩	71	44 - 120

1920

3850

1920

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-90447-2 MS

Matrix: Solid

Analysis Batch: 274286

Client Sample ID: SWMU4-SB06-SS-103 **Prep Type: Total/NA Prep Batch: 273215**

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bis(2-chloroethoxy)methane	ND		1920	1630	-	ug/Kg	<u> </u>	85	61 - 133	
Bis(2-chloroethyl)ether	ND		1920	1610		ug/Kg	₩.	84	45 - 120	
Bis(2-ethylhexyl) phthalate	ND		1920	1830		ug/Kg	☼	95	61 - 133	
Butyl benzyl phthalate	ND		1920	1860		ug/Kg	₩.	97	61 - 129	
Caprolactam	ND		3850	3480		ug/Kg	☼	90	54 - 133	
Carbazole	ND		1920	1870		ug/Kg	☼	97	59 - 129	
Chrysene	ND		1920	1780		ug/Kg	₩.	92	64 - 131	
Dibenz(a,h)anthracene	ND		1920	1930		ug/Kg	☼	100	54 - 148	
Dibenzofuran	ND		1920	1800		ug/Kg	☼	93	56 - 120	
Diethyl phthalate	ND		1920	1910		ug/Kg		99	66 - 126	
Dimethyl phthalate	ND		1920	1880		ug/Kg	☼	97	65 - 124	
Di-n-butyl phthalate	ND		1920	1900		ug/Kg	☼	99	58 - 130	
Di-n-octyl phthalate	ND		1920	1870		ug/Kg	₽	97	62 - 133	
Fluoranthene	ND		1920	1910		ug/Kg	☼	99	62 - 131	
Fluorene	ND		1920	1800		ug/Kg	☼	94	63 - 126	
Hexachlorobenzene	ND		1920	1890		ug/Kg	₩.	98	60 - 132	
Hexachlorobutadiene	ND		1920	1660		ug/Kg	☼	86	45 - 120	
Hexachlorocyclopentadiene	ND		1920	1650		ug/Kg	₩	86	31 - 120	
Hexachloroethane	ND		1920	1470		ug/Kg	₩.	77	41 - 120	
Indeno(1,2,3-cd)pyrene	ND		1920	1930		ug/Kg	₩	101	56 - 149	
Isophorone	ND		1920	1740		ug/Kg	₩	90	56 - 120	
Naphthalene	ND		1920	1640		ug/Kg	₩.	85	46 - 120	
Nitrobenzene	ND		1920	1660		ug/Kg	₩	86	49 - 120	
N-Nitrosodi-n-propylamine	ND		1920	1710		ug/Kg	₩	89	46 - 120	
N-Nitrosodiphenylamine	ND		3850	3730		ug/Kg	₩.	97	20 - 119	
Pentachlorophenol	ND		3850	2640		ug/Kg	₩	69	33 - 136	
Phenanthrene	ND		1920	1800		ug/Kg	₩	94	60 - 130	
Phenol	ND		1920	1690		ug/Kg	₽	88	36 - 120	
Pyrene	ND		1920	1760		ug/Kg	₩	91	51 ₋ 133	

MS MS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	96		39 - 146
2-Fluorobiphenyl	90		37 - 120
2-Fluorophenol	85		18 - 120
Nitrobenzene-d5	87		34 - 132
p-Terphenyl-d14	89		65 - 153
Phenol-d5	88		11 - 120

Lab Sample ID: 480-90447-2 MSD

Matrix: Solid

								Prep Ba	itch: 2	73215
Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
ND		1930	1880		ug/Kg		97	59 - 126	2	18
ND		1930	1750		ug/Kg	₩	91	59 - 123	1	19
ND		1930	1770		ug/Kg	₩	91	52 - 120	0	19
ND		1930	1780		ug/Kg	₩	92	36 - 120	1	42
ND		3860	2860		ug/Kg	☼	74	35 - 146	5	22
	Result ND ND ND ND	ND ND ND	Result Qualifier Added ND 1930 ND 1930 ND 1930 ND 1930 ND 1930	Result Qualifier Added Result ND 1930 1880 ND 1930 1750 ND 1930 1770 ND 1930 1780	Result Qualifier Added Result Qualifier ND 1930 1880 ND 1930 1750 ND 1930 1770 ND 1930 1780	Result Qualifier Added Result Qualifier Unit ND 1930 1880 ug/Kg ND 1930 1750 ug/Kg ND 1930 1770 ug/Kg ND 1930 1780 ug/Kg	Result Qualifier Added Result Qualifier Unit D ND 1930 1880 ug/Kg ** ND 1930 1750 ug/Kg ** ND 1930 1770 ug/Kg ** ND 1930 1780 ug/Kg **	Result Qualifier Added Result Qualifier Unit D %Rec ND 1930 1880 ug/Kg \$\frac{1}{2}\$ 97 ND 1930 1750 ug/Kg \$\frac{1}{2}\$ 91 ND 1930 1770 ug/Kg \$\frac{1}{2}\$ 91 ND 1930 1780 ug/Kg \$\frac{1}{2}\$ 92	Sample Result Result Qualifier Spike Added Added Result Qualifier MSD MSD %Rec. Limits ND 1930 1880 ug/Kg 70 59 - 126 ND 1930 1750 ug/Kg 70 59 - 123 ND 1930 1770 ug/Kg 70 91 52 - 120 ND 1930 1780 ug/Kg 70 92 36 - 120	Result ND Qualifier Added Added Result Qualifier Unit Unit Unit Unit Unit Unit Unit Unit

TestAmerica Buffalo

Prep Type: Total/NA

Client Sample ID: SWMU4-SB06-SS-103

Page 62 of 90

QC Sample Results

Client: Woodard & Curran, Inc.

TestAmerica Job ID: 480-90447-1

Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-90447-2 MSD

Matrix: Solid

Client Sample ID: SWMU4-SB06-SS-103
Prep Type: Total/NA
Drop Potoby 272245

Analysis Batch: 274286 Prep Batch: MSD MSD RPD Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit ₩ 2.4-Dinitrotoluene ND 1930 1800 93 55 - 125 20 ug/Kg 0 ď 2.6-Dinitrotoluene ND 1930 1890 ug/Kg 98 66 - 128 2 15 1930 ₩ 2-Chloronaphthalene ND 1740 90 57 - 120 2 21 ug/Kg ť 2-Chlorophenol ND 1930 1620 ug/Kg 84 38 - 120 25 Ö 2-Methylnaphthalene ND 1930 1700 ug/Kg 88 47 - 120 0 21 Ö 2-Methylphenol ND 1930 1690 ug/Kg 87 48 - 120 2 27 ₩ 2-Nitroaniline ND 1930 1830 ug/Kg 95 61 - 130 15 0 . . ND 1930 86 2-Nitrophenol 1660 ug/Kg 50 - 120 18 ₩ 3.3'-Dichlorobenzidine ND 3860 3680 ug/Kg 95 48 - 126 25 ₩ 1930 1660 86 61 - 127 19 3-Nitroaniline ND ug/Kg n ₩ 4,6-Dinitro-2-methylphenol ND 3860 3280 ug/Kg 85 49 - 155 15 Ö ND 1930 1880 97 58 - 131 2 15 4-Bromophenyl phenyl ether ug/Kg ND 1930 1870 ∜ 97 49 - 125 27 4-Chloro-3-methylphenol ug/Kg ND . . 1930 81 O 22 4-Chloroaniline 1560 49 - 120 ug/Kg Ö 4-Chlorophenyl phenyl ether ND 1930 94 63 - 124 16 1810 ug/Kg 0 ₩ 90 50 - 119 4-Methylphenol ND 1930 1740 ug/Kg 24 ΞŒ 4-Nitroaniline ND 1930 1930 100 63 - 128 3 24 ug/Kg ₩ 4-Nitrophenol ND 3860 4140 107 43 - 137 25 ug/Kg Ö Acenaphthene ND 1930 1810 ug/Kg 94 53 - 120 35 Acenaphthylene ND 1930 1790 ₩ 92 58 - 121 18 ug/Kg ₩ Acetophenone ND 1930 1690 ug/Kg 88 66 - 120 20 Ö Anthracene ND 1930 1830 ug/Kg 95 62 - 129 15 ₩ ND 103 Atrazine 3860 3980 E ug/Kg 60 - 164 O 20 Benzaldehyde ND 3860 3750 ₩ 97 21 - 120 n 20 ug/Kg Ö ND 1930 93 2 15 Benzo(a)anthracene 1790 ug/Kg 65 - 13374 Benzo(a)pyrene ND 1930 1790 ug/Kg 92 64 - 127 15 ND 1930 ₿ 92 64 - 135 Benzo(b)fluoranthene 1780 15 ug/Kg ť ND 1930 1920 ug/Kg 99 50 - 152 15 Benzo(g,h,i)perylene ₩ ND 91 22 Benzo(k)fluoranthene 1930 1750 58 - 138 3 ug/Kg ₩ Biphenyl ND 1930 1780 ug/Kg 92 71 - 1203 20 1930 ₩ ND 1340 69 44 - 120 2 24 bis (2-chloroisopropyl) ether ug/Kg ₩ 85 Bis(2-chloroethoxy)methane ND 1930 1640 ug/Kg 61 - 133 17 ☼ Bis(2-chloroethyl)ether ND 1930 1570 ug/Kg 81 45 - 120 2 21 ₩ 90 Bis(2-ethylhexyl) phthalate ND 1930 1740 ug/Kg 61 - 133 5 15 ΞĊ Butyl benzyl phthalate ND 1930 1830 ug/Kg 94 61 - 129 16 ₩ 3860 ND 90 20 Caprolactam 3470 ug/Kg 54 - 133₩ Carbazole ND 1930 1890 ug/Kg 98 59 - 129 20 ₩ Chrysene ND 1930 1730 90 64 - 131 15 ug/Kg Ö ND 99 15 Dibenz(a,h)anthracene 1930 1900 ug/Kg 54 - 148 ₩ ND Dibenzofuran 1930 1810 ug/Kg 94 56 - 120 15 707 Diethyl phthalate ND 101 66 - 126 2 15 1930 1950 ug/Kg ND ☼ 98 15 Dimethyl phthalate 1930 1890 65 - 124ug/Kg Ö Di-n-butyl phthalate ND 1930 1890 ug/Kg 98 58 - 130 0 15 ₩ Di-n-octyl phthalate ND 1930 1790 93 16 ug/Kg 62 133 ₩ Fluoranthene ND 1930 1900 ug/Kg 98 62 - 131O 15 ₩ Fluorene ND 1930 1840 ug/Kg 95 2 15 63 - 126ď Hexachlorobenzene ND 1930 1900 ug/Kg 98 60 - 132 0 15 Hexachlorobutadiene ND 1930 1680 ug/Kg ₩ 87 45 - 120 44

TestAmerica Buffalo

Page 63 of 90

2

3

5

7

8

10

11

13

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-90447-2 MSD

Matrix: Solid

Analysis Batch: 274286

Client Sample ID: SWMU4-SB06-SS-103 **Prep Type: Total/NA**

Prep Batch: 273215

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Hexachlorocyclopentadiene	ND		1930	1650		ug/Kg	<u> </u>	85	31 - 120	0	49
Hexachloroethane	ND		1930	1440		ug/Kg	₽	74	41 - 120	2	46
Indeno(1,2,3-cd)pyrene	ND		1930	1900		ug/Kg	≎	98	56 - 149	2	15
Isophorone	ND		1930	1730		ug/Kg	₩	90	56 - 120	0	17
Naphthalene	ND		1930	1650		ug/Kg	₽	85	46 - 120	0	29
Nitrobenzene	ND		1930	1680		ug/Kg	≎	87	49 - 120	1	24
N-Nitrosodi-n-propylamine	ND		1930	1680		ug/Kg	≎	87	46 - 120	2	31
N-Nitrosodiphenylamine	ND		3860	3640		ug/Kg	₽	94	20 - 119	2	15
Pentachlorophenol	ND		3860	2610		ug/Kg	≎	68	33 - 136	1	35
Phenanthrene	ND		1930	1810		ug/Kg	≎	94	60 - 130	1	15
Phenol	ND		1930	1650		ug/Kg	₩	86	36 - 120	2	35
Pyrene	ND		1930	1710		ug/Kg	☆	89	51 - 133	3	35

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	98		39 - 146
2-Fluorobiphenyl	93		37 - 120
2-Fluorophenol	84		18 - 120
Nitrobenzene-d5	87		34 - 132
p-Terphenyl-d14	88		65 - 153
Phenol-d5	89		11 - 120

Lab Sample ID: MB 480-273246/1-A

Matrix: Water

Analysis Batch: 273999

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 273246

_	MB	MB						-	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		5.0	0.48	ug/L		11/05/15 09:08	11/10/15 15:56	1
2,4,6-Trichlorophenol	ND		5.0	0.61	ug/L		11/05/15 09:08	11/10/15 15:56	1
2,4-Dichlorophenol	ND		5.0	0.51	ug/L		11/05/15 09:08	11/10/15 15:56	1
2,4-Dimethylphenol	ND		5.0	0.50	ug/L		11/05/15 09:08	11/10/15 15:56	1
2,4-Dinitrophenol	ND		10	2.2	ug/L		11/05/15 09:08	11/10/15 15:56	1
2,4-Dinitrotoluene	ND		5.0	0.45	ug/L		11/05/15 09:08	11/10/15 15:56	1
2,6-Dinitrotoluene	ND		5.0	0.40	ug/L		11/05/15 09:08	11/10/15 15:56	1
2-Chloronaphthalene	ND		5.0	0.46	ug/L		11/05/15 09:08	11/10/15 15:56	1
2-Chlorophenol	ND		5.0	0.53	ug/L		11/05/15 09:08	11/10/15 15:56	1
2-Methylnaphthalene	ND		5.0	0.60	ug/L		11/05/15 09:08	11/10/15 15:56	1
2-Methylphenol	ND		5.0	0.40	ug/L		11/05/15 09:08	11/10/15 15:56	1
2-Nitroaniline	ND		10	0.42	ug/L		11/05/15 09:08	11/10/15 15:56	1
2-Nitrophenol	ND		5.0	0.48	ug/L		11/05/15 09:08	11/10/15 15:56	1
3,3'-Dichlorobenzidine	ND		5.0	0.40	ug/L		11/05/15 09:08	11/10/15 15:56	1
3-Nitroaniline	ND		10	0.48	ug/L		11/05/15 09:08	11/10/15 15:56	1
4,6-Dinitro-2-methylphenol	ND		10	2.2	ug/L		11/05/15 09:08	11/10/15 15:56	1
4-Bromophenyl phenyl ether	ND		5.0	0.45	ug/L		11/05/15 09:08	11/10/15 15:56	1
4-Chloro-3-methylphenol	ND		5.0	0.45	ug/L		11/05/15 09:08	11/10/15 15:56	1
4-Chloroaniline	ND		5.0	0.59	ug/L		11/05/15 09:08	11/10/15 15:56	1
4-Chlorophenyl phenyl ether	ND		5.0	0.35	ug/L		11/05/15 09:08	11/10/15 15:56	1
4-Methylphenol	ND		10	0.36	ug/L		11/05/15 09:08	11/10/15 15:56	1
4-Nitroaniline	ND		10	0.25	ug/L		11/05/15 09:08	11/10/15 15:56	1
I and the second se									

TestAmerica Buffalo

Page 64 of 90

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Surrogate

2,4,6-Tribromophenol

2-Fluorobiphenyl

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-273246/1-A
Matrix: Water
Analysis Batch: 273999
MB MB

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 273246

Analyta	MB		DI.	MIDI	Unit	ь.	Dronavad	Analyzad	DUES
Analyte		Qualifier	RL 10	MDL		D	Prepared	Analyzed	Dil Fac
4-Nitrophenol	ND				ug/L			11/10/15 15:56	1
Acenaphthene	ND		5.0	0.41	-			11/10/15 15:56	1
Acenaphthylene	ND		5.0		ug/L			11/10/15 15:56	1
Acetophenone	ND		5.0	0.54	Ū			11/10/15 15:56	1
Anthracene	ND		5.0	0.28	-			11/10/15 15:56	
Atrazine	ND		5.0		ug/L			11/10/15 15:56	1
Benzaldehyde	ND		5.0		ug/L			11/10/15 15:56	1
Benzo(a)anthracene	ND		5.0		ug/L			11/10/15 15:56	1
Benzo(a)pyrene	ND		5.0		ug/L			11/10/15 15:56	1
Benzo(b)fluoranthene	ND		5.0		ug/L			11/10/15 15:56	1
Benzo(g,h,i)perylene	ND		5.0		ug/L		11/05/15 09:08	11/10/15 15:56	1
Benzo(k)fluoranthene	ND		5.0		ug/L		11/05/15 09:08	11/10/15 15:56	1
Biphenyl	ND		5.0	0.65	ug/L		11/05/15 09:08	11/10/15 15:56	1
bis (2-chloroisopropyl) ether	ND		5.0	0.52	ug/L		11/05/15 09:08	11/10/15 15:56	1
Bis(2-chloroethoxy)methane	ND		5.0	0.35	ug/L		11/05/15 09:08	11/10/15 15:56	1
Bis(2-chloroethyl)ether	ND		5.0	0.40	ug/L		11/05/15 09:08	11/10/15 15:56	1
Bis(2-ethylhexyl) phthalate	ND		5.0	1.8	ug/L		11/05/15 09:08	11/10/15 15:56	1
Butyl benzyl phthalate	ND		5.0	0.42	ug/L		11/05/15 09:08	11/10/15 15:56	1
Caprolactam	ND		5.0	2.2	ug/L		11/05/15 09:08	11/10/15 15:56	1
Carbazole	ND		5.0	0.30	ug/L		11/05/15 09:08	11/10/15 15:56	1
Chrysene	ND		5.0	0.33	ug/L		11/05/15 09:08	11/10/15 15:56	1
Dibenz(a,h)anthracene	ND		5.0		ug/L		11/05/15 09:08	11/10/15 15:56	1
Dibenzofuran	ND		10		ug/L		11/05/15 09:08	11/10/15 15:56	1
Diethyl phthalate	ND		5.0		ug/L		11/05/15 09:08	11/10/15 15:56	1
Dimethyl phthalate	ND		5.0		ug/L		11/05/15 09:08	11/10/15 15:56	1
Di-n-butyl phthalate	ND		5.0		ug/L		11/05/15 09:08	11/10/15 15:56	1
Di-n-octyl phthalate	ND		5.0		ug/L			11/10/15 15:56	1
Fluoranthene	ND		5.0	0.40	-			11/10/15 15:56	1
Fluorene	ND		5.0		ug/L			11/10/15 15:56	1
Hexachlorobenzene	ND		5.0		ug/L			11/10/15 15:56	· · · · · · · · · · · 1
Hexachlorobutadiene	ND		5.0	0.68	-			11/10/15 15:56	1
Hexachlorocyclopentadiene	ND		5.0	0.59	J			11/10/15 15:56	1
Hexachloroethane	ND		5.0	0.59				11/10/15 15:56	· · · · · · · · · · · · · · · · · · ·
Indeno(1,2,3-cd)pyrene	ND		5.0	0.47				11/10/15 15:56	. 1
Isophorone	ND		5.0	0.47	•			11/10/15 15:56	1
Naphthalene	ND		5.0					11/10/15 15:56	
' .	ND ND		5.0	0.76	ug/L ug/L			11/10/15 15:56	1
Nitrobenzene N-Nitrosodi-n-propylamine	ND ND		5.0		ug/L ug/L			11/10/15 15:56	1
N-Nitrosodiphenylamine	ND		5.0		ug/L			11/10/15 15:56	1
Pentachlorophenol	ND		10 5.0		ug/L			11/10/15 15:56	1
Phenal	ND		5.0		ug/L			11/10/15 15:56	1
Phenol	ND		5.0		ug/L			11/10/15 15:56	1
Pyrene	ND		5.0		ug/L			11/10/15 15:56	1
Dimethylformamide	ND		20	1.7	ug/L		11/05/15 09:08	11/10/15 15:56	1

11/05/15 09:08 11/10/15 15:56 1

Analyzed

<u>11/05/15 09:08</u> <u>11/10/15 15:56</u>

Prepared

Page 65 of 90

Limits

52 - 132

48 - 120

%Recovery Qualifier

105 77

11/18/2015

TestAmerica Buffalo

Dil Fac

3

5

7

0

10

111

13

14

TI-6

QC Sample Results

TestAmerica Job ID: 480-90447-1 Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-273246/1-A

Matrix: Water

Analysis Batch: 273999

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 273246

	MB MB				
Surrogate	%Recovery Quali	fier Limits	Prepared	Analyzed	Dil Fac
2-Fluorophenol	49	20 - 120	11/05/15 09:08	11/10/15 15:56	1
Nitrobenzene-d5	72	46 - 120	11/05/15 09:08	11/10/15 15:56	1
p-Terphenyl-d14	98	67 - 150	11/05/15 09:08	11/10/15 15:56	1
Phenol-d5	35	16 - 120	11/05/15 09:08	11/10/15 15:56	1

ntrol Sample

pe: Total/NA

atch: 273246

	Lab Sample ID: LCS 480-273246/2-A				CI	ient Sar	mple ID	: Lab Cont
	Matrix: Water							Prep Type
	Analysis Batch: 273999							Prep Bat
		Spike	LCS	LCS				%Rec.
ı	Δnalvte	hahhΔ	Result	Qualifier	Unit	D	%Rec	Limits

Analysis Batch. 273999	Spike	LCS	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
2,4,5-Trichlorophenol	16.0	14.0		ug/L		88	65 - 126
2,4,6-Trichlorophenol	16.0	14.7		ug/L		92	64 - 120
2,4-Dichlorophenol	16.0	13.6		ug/L		85	64 - 120
2,4-Dimethylphenol	16.0	12.9		ug/L		81	57 ₋ 120
2,4-Dinitrophenol	32.0	19.8		ug/L		62	42 - 153
2,4-Dinitrotoluene	16.0	15.0		ug/L		93	65 ₋ 154
2,6-Dinitrotoluene	16.0	14.9		ug/L		93	74 - 134
2-Chloronaphthalene	16.0	12.4		ug/L		77	41 - 124
2-Chlorophenol	16.0	13.0		ug/L		81	48 - 120
2-Methylnaphthalene	16.0	13.7		ug/L		86	34 - 122
2-Methylphenol	16.0	14.3		ug/L		89	39 - 120
2-Nitroaniline	16.0	13.6		ug/L		85	67 - 136
2-Nitrophenol	16.0	13.2		ug/L		83	59 - 120
3,3'-Dichlorobenzidine	32.0	29.2		ug/L		91	33 - 140
3-Nitroaniline	16.0	10.8		ug/L		68	28 - 130
4,6-Dinitro-2-methylphenol	32.0	27.7		ug/L		87	64 - 159
4-Bromophenyl phenyl ether	16.0	15.3		ug/L		95	71 - 126
4-Chloro-3-methylphenol	16.0	17.1		ug/L		107	64 - 120
4-Chloroaniline	16.0	8.80		ug/L		55	10 - 130
4-Chlorophenyl phenyl ether	16.0	14.7		ug/L		92	71 - 122
4-Methylphenol	16.0	13.7		ug/L		86	39 - 120
4-Nitroaniline	16.0	12.3		ug/L		77	47 - 130
4-Nitrophenol	32.0	27.1		ug/L		85	16 - 120
Acenaphthene	16.0	13.9		ug/L		87	60 - 120
Acenaphthylene	16.0	14.1		ug/L		88	63 - 120
Acetophenone	16.0	15.9		ug/L		99	45 - 120
Anthracene	16.0	14.2		ug/L		89	58 - 148
Atrazine	32.0	35.3		ug/L		110	56 - 179
Benzaldehyde	32.0	12.7		ug/L		40	30 - 140
Benzo(a)anthracene	16.0	15.0		ug/L		94	55 - 151
Benzo(a)pyrene	16.0	14.2		ug/L		89	60 - 145
Benzo(b)fluoranthene	16.0	15.0		ug/L		94	54 - 140
Benzo(g,h,i)perylene	16.0	17.8		ug/L		111	66 - 152
Benzo(k)fluoranthene	16.0	14.4		ug/L		90	51 - 153
Biphenyl	16.0	12.5		ug/L		78	30 - 140
bis (2-chloroisopropyl) ether	16.0	11.7		ug/L		73	28 - 136
Bis(2-chloroethoxy)methane	16.0	12.2		ug/L		76	50 - 128
Bis(2-chloroethyl)ether	16.0	11.8		ug/L		74	51 - 120
• • • • • • • • • • • • • • • • • • • •				•			

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-273246/2-A **Matrix: Water**

Analysis Batch: 273999

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 273246

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bis(2-ethylhexyl) phthalate	16.0	16.2		ug/L		101	53 - 158	
Butyl benzyl phthalate	16.0	16.4		ug/L		103	58 - 163	
Caprolactam	32.0	11.4		ug/L		36	14 - 130	
Carbazole	16.0	14.2		ug/L		89	59 - 148	
Chrysene	16.0	15.1		ug/L		94	69 - 140	
Dibenz(a,h)anthracene	16.0	16.9		ug/L		106	57 - 148	
Dibenzofuran	16.0	14.6		ug/L		91	49 - 137	
Diethyl phthalate	16.0	12.0		ug/L		75	59 - 146	
Dimethyl phthalate	16.0	15.3		ug/L		96	59 - 141	
Di-n-butyl phthalate	16.0	16.4		ug/L		102	58 - 149	
Di-n-octyl phthalate	16.0	15.6		ug/L		97	55 - 167	
Fluoranthene	16.0	15.2		ug/L		95	55 - 147	
Fluorene	16.0	14.2		ug/L		88	55 - 143	
Hexachlorobenzene	16.0	16.6		ug/L		104	14 - 130	
Hexachlorobutadiene	16.0	16.0		ug/L		100	14 - 130	
Hexachlorocyclopentadiene	16.0	9.94		ug/L		62	13 - 130	
Hexachloroethane	16.0	14.2		ug/L		89	14 - 130	
Indeno(1,2,3-cd)pyrene	16.0	17.0		ug/L		106	69 - 146	
Isophorone	16.0	13.8		ug/L		86	48 - 133	
Naphthalene	16.0	13.3		ug/L		83	35 - 130	
Nitrobenzene	16.0	13.9		ug/L		87	45 - 123	
N-Nitrosodi-n-propylamine	16.0	16.0		ug/L		100	56 - 120	
N-Nitrosodiphenylamine	32.0	27.0		ug/L		84	25 - 125	
Pentachlorophenol	32.0	15.9		ug/L		50	39 - 136	
Phenanthrene	16.0	14.4		ug/L		90	57 - 147	
Phenol	16.0	8.48		ug/L		53	17 - 120	
Pyrene	16.0	15.1		ug/L		95	58 ₋ 136	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	115		52 - 132
2-Fluorobiphenyl	79		48 - 120
2-Fluorophenol	63		20 - 120
Nitrobenzene-d5	86		46 - 120
p-Terphenyl-d14	100		67 - 150
Phenol-d5	50		16 - 120

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC)

Lab Sample ID: MB 480-274145/4

Matrix: Water

Analysis Batch: 274145

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		1.0	0.14	mg/L			11/10/15 11:47	1
Isobutyl alcohol	ND		1.0	0.37	mg/L			11/10/15 11:47	1
Methanol	ND		1.0	0.41	mg/L			11/10/15 11:47	1
n-Butanol	ND		1.0	0.40	mg/L			11/10/15 11:47	1
Propanol	ND		1.0	0.16	mg/L			11/10/15 11:47	1

TestAmerica Buffalo

Page 67 of 90

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) (Continued)

Lab Sample ID: MB 480-274145/4

Matrix: Water

Analysis Batch: 274145

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Butanol	ND		1.0	0.17	mg/L			11/10/15 11:47	1
Isopropyl alcohol	ND		1.0	0.12	mg/L			11/10/15 11:47	1
t-Butyl alcohol	ND		1.0	0.10	mg/L			11/10/15 11:47	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Hexanone	103		62 - 129			-		11/10/15 11:47	1

Lab Sample ID: LCS 480-274145/5

Matrix: Water

Analysis Batch: 274145

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethanol	20.0	21.7		mg/L		109	72 - 133	
Isobutyl alcohol	20.0	21.6		mg/L		108	69 - 139	
Methanol	20.0	22.0		mg/L		110	71 - 132	
n-Butanol	20.0	20.6		mg/L		103	73 - 130	
Propanol	20.0	21.3		mg/L		107	71 - 131	
2-Butanol	20.0	20.9		mg/L		105	68 - 136	
Isopropyl alcohol	20.0	22.0		mg/L		110	67 - 132	
t-Butyl alcohol	20.0	22.0		mg/L		110	71 - 130	

LCS LCS

%Recovery Qualifier Surrogate Limits 62 - 129 2-Hexanone 106

Lab Sample ID: MB 480-273254/1-A

Matrix: Solid

Analysis Batch: 273566

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Soluble

Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		0.98	0.15	mg/Kg			11/06/15 11:00	1
ND		0.98	0.25	mg/Kg			11/06/15 11:00	1
0.332	J	0.98	0.29	mg/Kg			11/06/15 11:00	1
ND		0.98	0.23	mg/Kg			11/06/15 11:00	1
ND		0.98	0.15	mg/Kg			11/06/15 11:00	1
ND		0.98	0.16	mg/Kg			11/06/15 11:00	1
ND		0.98	0.24	mg/Kg			11/06/15 11:00	1
ND		0.98	0.26	mg/Kg			11/06/15 11:00	1
	ND ND 0.332 ND ND ND	ND 0.332 J ND ND ND ND	ND 0.98 ND 0.98 0.332 J 0.98 ND 0.98 ND 0.98 ND 0.98 ND 0.98 ND 0.98 ND 0.98	ND 0.98 0.15 ND 0.98 0.25 0.332 J 0.98 0.29 ND 0.98 0.23 ND 0.98 0.15 ND 0.98 0.16 ND 0.98 0.24	ND 0.98 0.15 mg/Kg ND 0.98 0.25 mg/Kg 0.332 J 0.98 0.29 mg/Kg ND 0.98 0.23 mg/Kg ND 0.98 0.15 mg/Kg ND 0.98 0.16 mg/Kg ND 0.98 0.24 mg/Kg	ND 0.98 0.15 mg/Kg ND 0.98 0.25 mg/Kg 0.332 J 0.98 0.29 mg/Kg ND 0.98 0.23 mg/Kg ND 0.98 0.15 mg/Kg ND 0.98 0.16 mg/Kg ND 0.98 0.24 mg/Kg	ND 0.98 0.15 mg/Kg ND 0.98 0.25 mg/Kg 0.332 J 0.98 0.29 mg/Kg ND 0.98 0.23 mg/Kg ND 0.98 0.15 mg/Kg ND 0.98 0.16 mg/Kg ND 0.98 0.24 mg/Kg	ND 0.98 0.15 mg/Kg 11/06/15 11:00 ND 0.98 0.25 mg/Kg 11/06/15 11:00 0.332 J 0.98 0.29 mg/Kg 11/06/15 11:00 ND 0.98 0.23 mg/Kg 11/06/15 11:00 ND 0.98 0.15 mg/Kg 11/06/15 11:00 ND 0.98 0.16 mg/Kg 11/06/15 11:00 ND 0.98 0.24 mg/Kg 11/06/15 11:00

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 2-Hexanone 107 30 - 137 11/06/15 11:00

Lab Sample ID: LCS 480-273254/2-A

Matrix: Solid

Analysis Batch: 273566

Alialysis Batch. 273300								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethanol	19.5	21.4		mg/Kg	_	109	55 - 136	

TestAmerica Buffalo

Prep Type: Soluble

Page 68 of 90

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) (Continued)

Lab Sample ID: LCS 480-273254/2-A

Matrix: Solid

Analysis Batch: 273566

Client Sample ID: Lab Control Sample Prep Type: Soluble

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Isobutyl alcohol	19.5	21.7		mg/Kg		111	51 - 130	
Methanol	19.5	21.4		mg/Kg		110	53 - 140	
n-Butanol	19.5	20.3		mg/Kg		104	54 - 141	
Propanol	19.5	21.3		mg/Kg		109	59 - 139	
2-Butanol	19.5	20.8		mg/Kg		107	49 - 136	
Isopropyl alcohol	19.5	21.6		mg/Kg		111	50 - 131	
t-Butyl alcohol	19.5	21.9		mg/Kg		112	48 - 130	

LCS LCS

Surrogate %Recovery Qualifier Limits 2-Hexanone 105 30 - 137

Client Sample ID: SWMU4-SB05-SS-102

Prep Type: Soluble

Lab Sample ID: 480-90447-1 MS Matrix: Solid

Analysis Batch: 273566

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethanol	ND		21.2	20.9		mg/Kg	-	99	70 - 130	
Isobutyl alcohol	ND		21.2	20.7		mg/Kg	₩	98	70 - 130	
Methanol	0.46	JB	21.2	20.9		mg/Kg	₩	96	70 - 130	
n-Butanol	ND		21.2	19.8		mg/Kg	₩	94	70 - 130	
Propanol	ND		21.2	20.5		mg/Kg	₩	97	70 - 130	
2-Butanol	ND		21.2	20.0		mg/Kg	₩	94	70 - 130	
Isopropyl alcohol	ND		21.2	21.1		mg/Kg	₩	100	70 - 130	
t-Butyl alcohol	ND		21.2	21.1		mg/Kg	☼	99	50 - 130	

MS MS

Surrogate %Recovery Qualifier Limits 30 - 137 2-Hexanone 73

Lab Sample ID: 480-90447-1 MSD

Matrix: Solid

Analysis Batch: 273566

Client Sample ID: SWMU4-SB05-SS-102	
Prep Type: Soluble	

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethanol	ND		21.8	22.0		mg/Kg	<u></u>	101	70 - 130	5	30
Isobutyl alcohol	ND		21.8	21.9		mg/Kg	₩	101	70 - 130	6	30
Methanol	0.46	JB	21.8	22.1		mg/Kg	₩	99	70 - 130	6	30
n-Butanol	ND		21.8	20.9		mg/Kg	₩	96	70 - 130	5	30
Propanol	ND		21.8	21.7		mg/Kg	₩	99	70 - 130	6	30
2-Butanol	ND		21.8	21.2		mg/Kg	☼	97	70 - 130	6	30
Isopropyl alcohol	ND		21.8	22.2		mg/Kg	₩	102	70 - 130	5	30
t-Butyl alcohol	ND		21.8	22.2		mg/Kg	₽	102	50 - 130	5	30

MSD MSD

Surrogate %Recovery Qualifier Limits 2-Hexanone 80 30 - 137

TestAmerica Buffalo

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-273116/1-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA Analysis Batch: 273204 **Prep Batch: 273116**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.50	0.18	ug/L		11/04/15 15:36	11/05/15 08:15	1
PCB-1221	ND		0.50	0.18	ug/L		11/04/15 15:36	11/05/15 08:15	1
PCB-1232	ND		0.50	0.18	ug/L		11/04/15 15:36	11/05/15 08:15	1
PCB-1242	ND		0.50	0.18	ug/L		11/04/15 15:36	11/05/15 08:15	1
PCB-1248	ND		0.50	0.18	ug/L		11/04/15 15:36	11/05/15 08:15	1
PCB-1254	ND		0.50	0.25	ug/L		11/04/15 15:36	11/05/15 08:15	1
PCB-1260	ND		0.50	0.25	ug/L		11/04/15 15:36	11/05/15 08:15	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	80		24 - 137	11/04/15 15:36	11/05/15 08:15	1
DCB Decachlorobiphenyl	63		19 - 125	11/04/15 15:36	11/05/15 08:15	1

Lab Sample ID: LCS 480-273116/2-A

Matrix: Water

Analysis Batch: 273204							Prep Batch: 27	'3116
-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	4.00	3.40		ug/L		85	62 - 130	
PCB-1260	4 00	3.26		ua/l		82	56 - 123	

	LCS LCS	
Surrogate	%Recovery Qualifie	r Limits
Tetrachloro-m-xylene	69	24 - 137
DCB Decachlorobiphenyl	57	19 - 125

Lab Sample ID: MB 480-273213/1-A

Matrix: Solid

Analysis Batch: 273364								Prep Batch:	273213
•	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		250	48	ug/Kg		11/05/15 07:54	11/05/15 15:30	1
PCB-1221	ND		250	48	ug/Kg		11/05/15 07:54	11/05/15 15:30	1
PCB-1232	ND		250	48	ug/Kg		11/05/15 07:54	11/05/15 15:30	1
PCB-1242	ND		250	48	ug/Kg		11/05/15 07:54	11/05/15 15:30	1
PCB-1248	ND		250	48	ug/Kg		11/05/15 07:54	11/05/15 15:30	1
PCB-1254	ND		250	120	ug/Kg		11/05/15 07:54	11/05/15 15:30	1
PCB-1260	ND		250	120	ug/Kg		11/05/15 07:54	11/05/15 15:30	1

	MB ME	В			
Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	98	60 - 154	11/05/15 07:54	11/05/15 15:30	1
DCB Decachlorobiphenyl	93	65 ₋ 174	11/05/15 07:54	11/05/15 15:30	1

Lab Sample ID: LCS 480-273213/2-A				Clier	nt Sai	mple ID	: Lab Control Sample
Matrix: Solid							Prep Type: Total/NA
Analysis Batch: 273364							Prep Batch: 273213
•	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
PCB-1016	2220	2450		ug/Kg		110	51 - 185

TestAmerica Buffalo

Page 70 of 90

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCS 480-273213/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 273364 Prep Batch: 273213** LCS LCS Spike %Rec.

Added Result Qualifier Analyte Unit %Rec Limits PCB-1260 2220 2600 ug/Kg 117 61 - 184

LCS LCS %Recovery Qualifier Limits Surrogate Tetrachloro-m-xylene 123 60 - 154 DCB Decachlorobiphenyl 101 65 - 174

Lab Sample ID: 480-90447-1 MS

Matrix: Solid

Analysis Batch: 273364

Client Sample ID: SWMU4-SB05-SS-102

Prep Type: Total/NA Prep Batch: 273213

Sample Sample Spike MS MS %Rec. **Result Qualifier** Added Result Qualifier Unit D %Rec Limits **Analyte** ☼ 2130 PCB-1016 ND 2380 ug/Kg 112 50 - 177 PCB-1260 ND 2130 2500 ug/Kg 117 33 - 200

MS MS %Recovery Limits Surrogate Qualifier 60 - 154 Tetrachloro-m-xylene 122 DCB Decachlorobiphenyl 101 65 - 174

Lab Sample ID: 480-90447-1 MSD

Matrix: Solid

Analysis Batch: 273364

Client Sample ID: SWMU4-SB05-SS-102

Prep Type: Total/NA Prep Batch: 273213

MSD MSD Sample Sample Spike %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit PCB-1016 ND 2230 2430 ₩ 109 50 - 177 2 50 ug/Kg ∜ PCB-1260 ND 2230 2580 ug/Kg 116 33 - 200 3 50

MSD MSD Qualifier Surrogate %Recovery Limits 119 60 - 154 Tetrachloro-m-xylene DCB Decachlorobiphenyl 101 65 - 174

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-273264/1-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 273463

	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		11/05/15 11:45	11/05/15 22:29	1
Barium	ND		0.0020	0.00070	mg/L		11/05/15 11:45	11/05/15 22:29	1
Cadmium	ND		0.0020	0.00050	mg/L		11/05/15 11:45	11/05/15 22:29	1
Chromium	ND		0.0040	0.0010	mg/L		11/05/15 11:45	11/05/15 22:29	1
Lead	ND		0.010	0.0030	mg/L		11/05/15 11:45	11/05/15 22:29	1
Selenium	ND		0.025	0.0087	mg/L		11/05/15 11:45	11/05/15 22:29	1
Silver	ND		0.0060	0.0017	mg/L		11/05/15 11:45	11/05/15 22:29	1

TestAmerica Buffalo

Prep Batch: 273264

Page 71 of 90

11/05/15 13:05 11/06/15 14:22

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-273264/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 273463** Prep Batch: 273264

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.200	0.200		mg/L		100	80 - 120	
Barium	0.200	0.195		mg/L		98	80 - 120	
Cadmium	0.200	0.198		mg/L		99	80 - 120	
Chromium	0.200	0.200		mg/L		100	80 - 120	
Lead	0.200	0.200		mg/L		100	80 - 120	
Selenium	0.200	0.193		mg/L		97	80 - 120	
Silver	0.0500	0.0475		mg/L		95	80 - 120	

Lab Sample ID: MB 480-273327/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 273632** Prep Batch: 273327

MB MB Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Arsenic $\overline{\mathsf{ND}}$ 2.1 0.41 mg/Kg 11/05/15 13:05 11/06/15 14:22 Barium ND 0.51 11/05/15 13:05 11/06/15 14:22 0.11 mg/Kg Cadmium ND 0.21 0.031 mg/Kg 11/05/15 13:05 11/06/15 14:22 Chromium ND 0.51 0.21 mg/Kg 11/05/15 13:05 11/06/15 14:22 Lead ND 1.0 0.25 mg/Kg 11/05/15 13:05 11/06/15 14:22 Selenium 4.1 0.41 mg/Kg 11/05/15 13:05 11/06/15 14:22 ND

Lab Sample ID: LCSSRM 480-273327/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

0.62

0.21 mg/Kg

ND

Analysis Batch: 273632 Prep Batch: 273327 Spike LCSSRM LCSSRM %Rec. Analyte Added Result Qualifier Unit %Rec Limits Arsenic 113 92.02 81.4 69.7 - 142. mg/Kg 83.0 72.9 - 127. Barium 155 128.7 mg/Kg 83.8 73.2 - 126. Cadmium 67.5 56.54 mg/Kg 8 Chromium 164 133.5 mg/Kg 81.4 70.7 - 129. 9 Lead 90.1 76.73 mg/Kg 85.2 70.1 - 129. 9 Selenium 156 127.8 mg/Kg 81.9 67.3 - 132. Silver 38.99 52.6 mg/Kg 74.1 66.7 - 133.

Lab Sample ID: 480-90447-1 MS Client Sample ID: SWMU4-SB05-SS-102 Prep Type: Total/NA

Matrix: Solid Analysis Batch: 273632

Silver

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Limits Unit D %Rec ₩ Arsenic 3.0 44.8 42.34 88 75 - 125 mq/Kq Barium 40.6 44.8 89.35 mg/Kg 109 75 - 125 Ö Cadmium 0.10 J 44.8 40.52 mg/Kg 90 75 - 125 mg/Kg Chromium 13.5 44.8 54.84 92 75 - 125

TestAmerica Buffalo

Prep Batch: 273327

5

Page 72 of 90

11/18/2015

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-90447-1 MS **Matrix: Solid Analysis Batch: 273632**

Client Sample ID: SWMU4-SB05-SS-102 Prep Type: Total/NA

Prep Batch: 273327

MS MS Sample Sample Spike %Rec. Result Qualifier Added Result Qualifier Analyte Unit D %Rec Limits Lead 5.1 44.8 47.32 94 75 - 125 mg/Kg Selenium ND 44.8 38.65 mg/Kg Ŭ 86 75 - 125 mg/Kg Silver ND 11.2 9.21 82 75 - 125

Client Sample ID: SWMU4-SB05-SS-102

Matrix: Solid

Lab Sample ID: 480-90447-1 MSD

Prep Type: Total/NA

Analysis Batch: 273632									Prep Ba	itch: 27	73327
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	3.0		42.9	41.86		mg/Kg	<u> </u>	91	75 - 125	1	20
Barium	40.6		42.9	91.34		mg/Kg	₩	118	75 - 125	2	20
Cadmium	0.10	J	42.9	39.84		mg/Kg	₩	93	75 - 125	2	20
Chromium	13.5		42.9	53.31		mg/Kg	₽	93	75 - 125	3	20
Lead	5.1		42.9	47.07		mg/Kg	₩	98	75 - 125	1	20
Selenium	ND		42.9	37.66		mg/Kg	☼	88	75 - 125	3	20
Silver	ND		10.7	8.80		mg/Kg	₩	82	75 - 125	4	20

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-274048/1-A **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 274299

Prep Type: Total/NA Prep Batch: 274048

MB MB Result Qualifier RL **MDL** Unit Analyte **Prepared** Analyzed Dil Fac 0.00020 0.00012 mg/L 11/10/15 08:45 11/10/15 13:44 Mercury ND

Lab Sample ID: LCS 480-274048/2-A

Matrix: Water

Analysis Batch: 274299

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 274048

Spike LCS LCS %Rec. Added Result Qualifier Limits **Analyte** Unit D %Rec Mercury 0.00667 0.00685 mg/L 103 80 - 120

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 480-273322/1-A **Client Sample ID: Method Blank**

Matrix: Solid

Analysis Batch: 273457

Prep Type: Total/NA Prep Batch: 273322

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 11/05/15 14:05 11/05/15 15:58 0.019 Mercury 0.0075 mg/Kg

Lab Sample ID: LCDSRM 480-273322/3-A

Matrix: Solid

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 273457

Prep Batch: 273322 %Rec. **RPD**

Spike LCDSRM LCDSRM Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Mercury 8.37 10.48 mg/Kg 125.2 51.3 - 148.

TestAmerica Buffalo

QC Sample Results

Client: Woodard & Curran, Inc. TestAmerica Job ID: 480-90447-1 Project/Site: Rouses Point

Method: 7471B - Mercury (CVAA) (Continued)

Lab Sample ID: LCSSRM 480-273322/2-A				Client	Saı	nple II): Lab Cor	ntrol Sample
Matrix: Solid							Prep Ty	pe: Total/NA
Analysis Batch: 273457							Prep Ba	atch: 273322
	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	8.37	8.85		mg/Kg	_	105.8	51.3 - 148.	
							1	

Lab Sample ID: 480-90447- Matrix: Solid Analysis Batch: 273457		Sample	Spike	MS	MS	Client	Sam	ple ID:	Prep Ty	SB07-SS-104 pe: Total/NA atch: 273322
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	0.012	J	0.387	0.402		mg/Kg	<u> </u>	101	80 - 120	

Lab Sample ID: 480-90447	-3 MSD					Client	Sam	ple ID:	SWMU4-9		
Matrix: Solid									Prep Ty	pe: Tot	al/NA
Analysis Batch: 273457									Prep Ba	atch: 27	73322
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	0.012	J	0.387	0.398		mg/Kg	<u> </u>	100	80 - 120	1	20

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

GC/MS VOA

Prep Batch: 273171

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90447-1	SWMU4-SB05-SS-102	Total/NA	Solid	5035A	
480-90447-2	SWMU4-SB06-SS-103	Total/NA	Solid	5035A	
480-90447-3	SWMU4-SB07-SS-104	Total/NA	Solid	5035A	
480-90447-4	SWMU4-SB08-SS-105	Total/NA	Solid	5035A	
480-90447-5	SWMU12-SB03-SS-100	Total/NA	Solid	5035A	
480-90447-6	SWMU12-SB04-SS-101	Total/NA	Solid	5035A	
480-90447-7	SWMU12-SB05-SS-102	Total/NA	Solid	5035A	
480-90447-8	SWMU12-SB06-SS-103	Total/NA	Solid	5035A	
LCS 480-273171/1-A	Lab Control Sample	Total/NA	Solid	5035A	
LCSD 480-273171/2-A	Lab Control Sample Dup	Total/NA	Solid	5035A	
MB 480-273171/3-A	Method Blank	Total/NA	Solid	5035A	

Analysis Batch: 273681

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90447-1	SWMU4-SB05-SS-102	Total/NA	Solid	8260C	273171
480-90447-2	SWMU4-SB06-SS-103	Total/NA	Solid	8260C	273171
480-90447-3	SWMU4-SB07-SS-104	Total/NA	Solid	8260C	273171
480-90447-4	SWMU4-SB08-SS-105	Total/NA	Solid	8260C	273171
480-90447-5	SWMU12-SB03-SS-100	Total/NA	Solid	8260C	273171
480-90447-6	SWMU12-SB04-SS-101	Total/NA	Solid	8260C	273171
480-90447-7	SWMU12-SB05-SS-102	Total/NA	Solid	8260C	273171
LCS 480-273171/1-A	Lab Control Sample	Total/NA	Solid	8260C	273171
LCSD 480-273171/2-A	Lab Control Sample Dup	Total/NA	Solid	8260C	273171
MB 480-273171/3-A	Method Blank	Total/NA	Solid	8260C	273171

Analysis Batch: 273828

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90447-8	SWMU12-SB06-SS-103	Total/NA	Solid	8260C	273171

Analysis Batch: 274853

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90447-9	EB-06	Total/NA	Water	8260C	
480-90447-10	TB-06	Total/NA	Water	8260C	
LCS 480-274853/4	Lab Control Sample	Total/NA	Water	8260C	
MB 480-274853/6	Method Blank	Total/NA	Water	8260C	

GC/MS Semi VOA

Prep Batch: 273215

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90447-1	SWMU4-SB05-SS-102	Total/NA	Solid	3550C	
480-90447-2	SWMU4-SB06-SS-103	Total/NA	Solid	3550C	
480-90447-2 MS	SWMU4-SB06-SS-103	Total/NA	Solid	3550C	
480-90447-2 MSD	SWMU4-SB06-SS-103	Total/NA	Solid	3550C	
480-90447-3	SWMU4-SB07-SS-104	Total/NA	Solid	3550C	
480-90447-4	SWMU4-SB08-SS-105	Total/NA	Solid	3550C	
480-90447-5	SWMU12-SB03-SS-100	Total/NA	Solid	3550C	
480-90447-6	SWMU12-SB04-SS-101	Total/NA	Solid	3550C	
480-90447-7	SWMU12-SB05-SS-102	Total/NA	Solid	3550C	
480-90447-8	SWMU12-SB06-SS-103	Total/NA	Solid	3550C	

TestAmerica Buffalo

Page 75 of 90

5

2

4

6

Ŏ

40

12

. .

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

GC/MS Semi VOA (Continued)

Prep Batch: 273215 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-273215/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-273215/1-A	Method Blank	Total/NA	Solid	3550C	

Prep Batch: 273246

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90447-9	EB-06	Total/NA	Water	3510C	
LCS 480-273246/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 480-273246/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 273999

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90447-9	EB-06	Total/NA	Water	8270D	273246
LCS 480-273246/2-A	Lab Control Sample	Total/NA	Water	8270D	273246
MB 480-273246/1-A	Method Blank	Total/NA	Water	8270D	273246

Analysis Batch: 274286

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90447-1	SWMU4-SB05-SS-102	Total/NA	Solid	8270D	273215
480-90447-2	SWMU4-SB06-SS-103	Total/NA	Solid	8270D	273215
480-90447-2 MS	SWMU4-SB06-SS-103	Total/NA	Solid	8270D	273215
480-90447-2 MSD	SWMU4-SB06-SS-103	Total/NA	Solid	8270D	273215
480-90447-3	SWMU4-SB07-SS-104	Total/NA	Solid	8270D	273215
480-90447-4	SWMU4-SB08-SS-105	Total/NA	Solid	8270D	273215
480-90447-5	SWMU12-SB03-SS-100	Total/NA	Solid	8270D	273215
480-90447-6	SWMU12-SB04-SS-101	Total/NA	Solid	8270D	273215
480-90447-7	SWMU12-SB05-SS-102	Total/NA	Solid	8270D	273215
480-90447-8	SWMU12-SB06-SS-103	Total/NA	Solid	8270D	273215
LCS 480-273215/2-A	Lab Control Sample	Total/NA	Solid	8270D	273215
MB 480-273215/1-A	Method Blank	Total/NA	Solid	8270D	273215

GC VOA

Leach Batch: 273254

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90447-1	SWMU4-SB05-SS-102	Soluble	Solid	DI Leach	
480-90447-1 MS	SWMU4-SB05-SS-102	Soluble	Solid	DI Leach	
480-90447-1 MSD	SWMU4-SB05-SS-102	Soluble	Solid	DI Leach	
480-90447-2	SWMU4-SB06-SS-103	Soluble	Solid	DI Leach	
480-90447-3	SWMU4-SB07-SS-104	Soluble	Solid	DI Leach	
480-90447-4	SWMU4-SB08-SS-105	Soluble	Solid	DI Leach	
480-90447-5	SWMU12-SB03-SS-100	Soluble	Solid	DI Leach	
480-90447-6	SWMU12-SB04-SS-101	Soluble	Solid	DI Leach	
480-90447-7	SWMU12-SB05-SS-102	Soluble	Solid	DI Leach	
480-90447-8	SWMU12-SB06-SS-103	Soluble	Solid	DI Leach	
LCS 480-273254/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
MB 480-273254/1-A	Method Blank	Soluble	Solid	DI Leach	

Analysis Batch: 273566

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90447-1	SWMU4-SB05-SS-102	Soluble	Solid	8015D	273254

TestAmerica Buffalo

Page 76 of 90

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

GC VOA (Continued)

Analysis Batch: 273566 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90447-1 MS	SWMU4-SB05-SS-102	Soluble	Solid	8015D	273254
480-90447-1 MSD	SWMU4-SB05-SS-102	Soluble	Solid	8015D	273254
480-90447-2	SWMU4-SB06-SS-103	Soluble	Solid	8015D	273254
480-90447-3	SWMU4-SB07-SS-104	Soluble	Solid	8015D	273254
480-90447-4	SWMU4-SB08-SS-105	Soluble	Solid	8015D	273254
480-90447-5	SWMU12-SB03-SS-100	Soluble	Solid	8015D	273254
480-90447-6	SWMU12-SB04-SS-101	Soluble	Solid	8015D	273254
480-90447-7	SWMU12-SB05-SS-102	Soluble	Solid	8015D	273254
480-90447-8	SWMU12-SB06-SS-103	Soluble	Solid	8015D	273254
LCS 480-273254/2-A	Lab Control Sample	Soluble	Solid	8015D	273254
MB 480-273254/1-A	Method Blank	Soluble	Solid	8015D	273254

Analysis Batch: 274145

Lab Sample ID 480-90447-9	Client Sample ID EB-06	Prep Type Total/NA	Matrix Water	Method 8015D	Prep Batch
LCS 480-274145/5	Lab Control Sample	Total/NA	Water	8015D	
MB 480-274145/4	Method Blank	Total/NA	Water	8015D	

GC Semi VOA

Prep Batch: 273116

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90447-9	EB-06	Total/NA	Water	3510C	<u> </u>
LCS 480-273116/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 480-273116/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 273204

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90447-9	EB-06	Total/NA	Water	8082A	273116
LCS 480-273116/2-A	Lab Control Sample	Total/NA	Water	8082A	273116
MB 480-273116/1-A	Method Blank	Total/NA	Water	8082A	273116

Prep Batch: 273213

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90447-1	SWMU4-SB05-SS-102	Total/NA	Solid	3550C	
480-90447-1 MS	SWMU4-SB05-SS-102	Total/NA	Solid	3550C	
480-90447-1 MSD	SWMU4-SB05-SS-102	Total/NA	Solid	3550C	
480-90447-2	SWMU4-SB06-SS-103	Total/NA	Solid	3550C	
480-90447-3	SWMU4-SB07-SS-104	Total/NA	Solid	3550C	
480-90447-4	SWMU4-SB08-SS-105	Total/NA	Solid	3550C	
480-90447-5	SWMU12-SB03-SS-100	Total/NA	Solid	3550C	
480-90447-6	SWMU12-SB04-SS-101	Total/NA	Solid	3550C	
480-90447-7	SWMU12-SB05-SS-102	Total/NA	Solid	3550C	
480-90447-8	SWMU12-SB06-SS-103	Total/NA	Solid	3550C	
LCS 480-273213/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-273213/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 273364

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90447-1	SWMU4-SB05-SS-102	Total/NA	Solid	8082A	273213

TestAmerica Buffalo

11/18/2015

Page 77 of 90

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

GC Semi VOA (Continued)

Analysis Batch: 273364 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90447-1 MS	SWMU4-SB05-SS-102	Total/NA	Solid	8082A	273213
480-90447-1 MSD	SWMU4-SB05-SS-102	Total/NA	Solid	8082A	273213
480-90447-2	SWMU4-SB06-SS-103	Total/NA	Solid	8082A	273213
480-90447-3	SWMU4-SB07-SS-104	Total/NA	Solid	8082A	273213
480-90447-4	SWMU4-SB08-SS-105	Total/NA	Solid	8082A	273213
480-90447-5	SWMU12-SB03-SS-100	Total/NA	Solid	8082A	273213
480-90447-6	SWMU12-SB04-SS-101	Total/NA	Solid	8082A	273213
480-90447-7	SWMU12-SB05-SS-102	Total/NA	Solid	8082A	273213
480-90447-8	SWMU12-SB06-SS-103	Total/NA	Solid	8082A	273213
LCS 480-273213/2-A	Lab Control Sample	Total/NA	Solid	8082A	273213
MB 480-273213/1-A	Method Blank	Total/NA	Solid	8082A	273213

Metals

Prep Batch: 273264

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90447-9	EB-06	Total/NA	Water	3005A	
LCS 480-273264/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-273264/1-A	Method Blank	Total/NA	Water	3005A	

Prep Batch: 273322

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90447-1	SWMU4-SB05-SS-102	Total/NA	Solid	7471B	-
480-90447-2	SWMU4-SB06-SS-103	Total/NA	Solid	7471B	
480-90447-3	SWMU4-SB07-SS-104	Total/NA	Solid	7471B	
480-90447-3 MS	SWMU4-SB07-SS-104	Total/NA	Solid	7471B	
480-90447-3 MSD	SWMU4-SB07-SS-104	Total/NA	Solid	7471B	
480-90447-4	SWMU4-SB08-SS-105	Total/NA	Solid	7471B	
480-90447-5	SWMU12-SB03-SS-100	Total/NA	Solid	7471B	
480-90447-6	SWMU12-SB04-SS-101	Total/NA	Solid	7471B	
480-90447-7	SWMU12-SB05-SS-102	Total/NA	Solid	7471B	
480-90447-8	SWMU12-SB06-SS-103	Total/NA	Solid	7471B	
LCDSRM 480-273322/3-A	Lab Control Sample Dup	Total/NA	Solid	7471B	
LCSSRM 480-273322/2-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 480-273322/1-A	Method Blank	Total/NA	Solid	7471B	

Prep Batch: 273327

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90447-1	SWMU4-SB05-SS-102	Total/NA	Solid	3050B	
480-90447-1 MS	SWMU4-SB05-SS-102	Total/NA	Solid	3050B	
180-90447-1 MSD	SWMU4-SB05-SS-102	Total/NA	Solid	3050B	
180-90447-2	SWMU4-SB06-SS-103	Total/NA	Solid	3050B	
180-90447-3	SWMU4-SB07-SS-104	Total/NA	Solid	3050B	
180-90447-4	SWMU4-SB08-SS-105	Total/NA	Solid	3050B	
80-90447-5	SWMU12-SB03-SS-100	Total/NA	Solid	3050B	
180-90447-6	SWMU12-SB04-SS-101	Total/NA	Solid	3050B	
180-90447-7	SWMU12-SB05-SS-102	Total/NA	Solid	3050B	
180-90447-8	SWMU12-SB06-SS-103	Total/NA	Solid	3050B	
CSSRM 480-273327/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-273327/1-A	Method Blank	Total/NA	Solid	3050B	

TestAmerica Buffalo

Page 78 of 90

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Metals (Continued)

Analysis Batch: 273457

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90447-1	SWMU4-SB05-SS-102	Total/NA	Solid	7471B	273322
480-90447-2	SWMU4-SB06-SS-103	Total/NA	Solid	7471B	273322
480-90447-3	SWMU4-SB07-SS-104	Total/NA	Solid	7471B	273322
480-90447-3 MS	SWMU4-SB07-SS-104	Total/NA	Solid	7471B	273322
480-90447-3 MSD	SWMU4-SB07-SS-104	Total/NA	Solid	7471B	273322
480-90447-4	SWMU4-SB08-SS-105	Total/NA	Solid	7471B	273322
480-90447-5	SWMU12-SB03-SS-100	Total/NA	Solid	7471B	273322
480-90447-6	SWMU12-SB04-SS-101	Total/NA	Solid	7471B	273322
480-90447-7	SWMU12-SB05-SS-102	Total/NA	Solid	7471B	273322
480-90447-8	SWMU12-SB06-SS-103	Total/NA	Solid	7471B	273322
LCDSRM 480-273322/3-A	Lab Control Sample Dup	Total/NA	Solid	7471B	273322
LCSSRM 480-273322/2-A	Lab Control Sample	Total/NA	Solid	7471B	273322
MB 480-273322/1-A	Method Blank	Total/NA	Solid	7471B	273322

Analysis Batch: 273463

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90447-9	EB-06	Total/NA	Water	6010C	273264
LCS 480-273264/2-A	Lab Control Sample	Total/NA	Water	6010C	273264
MB 480-273264/1-A	Method Blank	Total/NA	Water	6010C	273264

Analysis Batch: 273632

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90447-1	SWMU4-SB05-SS-102	Total/NA	Solid	6010C	273327
480-90447-1 MS	SWMU4-SB05-SS-102	Total/NA	Solid	6010C	273327
480-90447-1 MSD	SWMU4-SB05-SS-102	Total/NA	Solid	6010C	273327
480-90447-2	SWMU4-SB06-SS-103	Total/NA	Solid	6010C	273327
480-90447-3	SWMU4-SB07-SS-104	Total/NA	Solid	6010C	273327
480-90447-4	SWMU4-SB08-SS-105	Total/NA	Solid	6010C	273327
480-90447-5	SWMU12-SB03-SS-100	Total/NA	Solid	6010C	273327
480-90447-6	SWMU12-SB04-SS-101	Total/NA	Solid	6010C	273327
480-90447-7	SWMU12-SB05-SS-102	Total/NA	Solid	6010C	273327
480-90447-8	SWMU12-SB06-SS-103	Total/NA	Solid	6010C	273327
LCSSRM 480-273327/2-A	Lab Control Sample	Total/NA	Solid	6010C	273327
MB 480-273327/1-A	Method Blank	Total/NA	Solid	6010C	273327

Prep Batch: 274048

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90447-9	EB-06	Total/NA	Water	7470A	
LCS 480-274048/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-274048/1-A	Method Blank	Total/NA	Water	7470A	

Analysis Batch: 274299

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90447-9	EB-06	Total/NA	Water	7470A	274048
LCS 480-274048/2-A	Lab Control Sample	Total/NA	Water	7470A	274048
MB 480-274048/1-A	Method Blank	Total/NA	Water	7470A	274048

Page 79 of 90

QC Association Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

General Chemistry

Analysis Batch: 273185

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90447-1	SWMU4-SB05-SS-102	Total/NA	Solid	Moisture	
480-90447-2	SWMU4-SB06-SS-103	Total/NA	Solid	Moisture	
480-90447-3	SWMU4-SB07-SS-104	Total/NA	Solid	Moisture	
480-90447-4	SWMU4-SB08-SS-105	Total/NA	Solid	Moisture	
480-90447-5	SWMU12-SB03-SS-100	Total/NA	Solid	Moisture	
480-90447-6	SWMU12-SB04-SS-101	Total/NA	Solid	Moisture	
480-90447-7	SWMU12-SB05-SS-102	Total/NA	Solid	Moisture	
480-90447-8	SWMU12-SB06-SS-103	Total/NA	Solid	Moisture	

3

4

5

0

8

9

4 4

12

1 1

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU4-SB05-SS-102 Lab Sample ID: 480-90447-1

Date Collected: 11/03/15 08:10 Date Received: 11/04/15 09:00

Matrix: Solid

Batch Batch Dilution Batch Prepared **Prep Type** Method **Factor** Number or Analyzed Analyst Type Run Lab 273185 11/04/15 23:17 CMK TAL BUF Total/NA Analysis Moisture

Client Sample ID: SWMU4-SB05-SS-102 Lab Sample ID: 480-90447-1

Date Collected: 11/03/15 08:10 **Matrix: Solid**

Date Received: 11/04/15 09:00 Percent Solids: 88.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			273171	11/04/15 20:18	NMD1	TAL BUF
Total/NA	Analysis	8260C		1	273681	11/07/15 06:05	CDC	TAL BUF
Total/NA	Prep	3550C			273215	11/05/15 08:03	CAM	TAL BUF
Total/NA	Analysis	8270D		1	274286	11/11/15 14:06	CAS	TAL BUR
Soluble	Leach	DI Leach			273254	11/05/15 09:48	AJM	TAL BUF
Soluble	Analysis	8015D		1	273566	11/06/15 11:31	AJM	TAL BUI
Total/NA	Prep	3550C			273213	11/05/15 07:54	CAM	TAL BUF
Total/NA	Analysis	8082A		1	273364	11/05/15 16:29	JMO	TAL BUF
Total/NA	Prep	3050B			273327	11/05/15 13:05	CMM	TAL BUF
Total/NA	Analysis	6010C		1	273632	11/06/15 14:28	AMH	TAL BUF
Total/NA	Prep	7471B			273322	11/05/15 14:05	TAS	TAL BUF
Total/NA	Analysis	7471B		1	273457	11/05/15 16:17	TAS	TAL BUF

Client Sample ID: SWMU4-SB06-SS-103 Lab Sample ID: 480-90447-2

Date Collected: 11/03/15 08:35 **Matrix: Solid** Date Received: 11/04/15 09:00

Dilution

	Daten	Datcii		Dilution	Dalcii	Frepareu			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture		1	273185	11/04/15 23:17	CMK	TAL BUF	

Client Sample ID: SWMU4-SB06-SS-103 Lab Sample ID: 480-90447-2

Date Collected: 11/03/15 08:35 Date Received: 11/04/15 09:00 Percent Solids: 85.6

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			273171	11/04/15 20:18	NMD1	TAL BUF
Total/NA	Analysis	8260C		1	273681	11/07/15 06:32	CDC	TAL BUF
Total/NA	Prep	3550C			273215	11/05/15 08:03	CAM	TAL BUF
Total/NA	Analysis	8270D		1	274286	11/11/15 14:32	CAS	TAL BUF
Soluble	Leach	DI Leach			273254	11/05/15 09:48	AJM	TAL BUF
Soluble	Analysis	8015D		1	273566	11/06/15 11:39	AJM	TAL BUF
Total/NA	Prep	3550C			273213	11/05/15 07:54	CAM	TAL BUF
Total/NA	Analysis	8082A		1	273364	11/05/15 16:44	JMO	TAL BUF
Total/NA	Prep	3050B			273327	11/05/15 13:05	CMM	TAL BUF
Total/NA	Analysis	6010C		1	273632	11/06/15 14:55	AMH	TAL BUF
Total/NA	Prep	7471B			273322	11/05/15 14:05	TAS	TAL BUF

TestAmerica Buffalo

Page 81 of 90

Matrix: Solid

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU4-SB06-SS-103

Lab Sample ID: 480-90447-2 Date Collected: 11/03/15 08:35 Date Received: 11/04/15 09:00

Matrix: Solid Percent Solids: 85.6

Batch Batch Dilution Batch Prepared Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab 273457 11/05/15 16:18 Total/NA Analysis 7471B TAS TAL BUF

Lab Sample ID: 480-90447-3 Client Sample ID: SWMU4-SB07-SS-104

Date Collected: 11/03/15 08:55 Matrix: Solid

Date Received: 11/04/15 09:00

Dilution Batch Batch **Batch** Prepared Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab 273185 11/04/15 23:17 CMK TAL BUF Total/NA Analysis Moisture

Client Sample ID: SWMU4-SB07-SS-104 Lab Sample ID: 480-90447-3

Date Collected: 11/03/15 08:55 **Matrix: Solid** Date Received: 11/04/15 09:00 Percent Solids: 86.7

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			273171	11/04/15 20:18	NMD1	TAL BUF
Total/NA	Analysis	8260C		1	273681	11/07/15 07:00	CDC	TAL BUF
Total/NA	Prep	3550C			273215	11/05/15 08:03	CAM	TAL BUF
Total/NA	Analysis	8270D		1	274286	11/11/15 14:58	CAS	TAL BUF
Soluble	Leach	DI Leach			273254	11/05/15 09:48	AJM	TAL BUF
Soluble	Analysis	8015D		1	273566	11/06/15 11:47	AJM	TAL BUF
Total/NA	Prep	3550C			273213	11/05/15 07:54	CAM	TAL BUF
Total/NA	Analysis	8082A		1	273364	11/05/15 16:59	JMO	TAL BUF
Total/NA	Prep	3050B			273327	11/05/15 13:05	CMM	TAL BUF
Total/NA	Analysis	6010C		1	273632	11/06/15 14:58	AMH	TAL BUF
Total/NA	Prep	7471B			273322	11/05/15 14:05	TAS	TAL BUF
Total/NA	Analysis	7471B		1	273457	11/05/15 16:20	TAS	TAL BUF

Client Sample ID: SWMU4-SB08-SS-105 Lab Sample ID: 480-90447-4 Date Collected: 11/03/15 09:20

Date Received: 11/04/15 09:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			273185	11/04/15 23:17	CMK	TAL BUF

Client Sample ID: SWMU4-SB08-SS-105 Lab Sample ID: 480-90447-4

Date Collected: 11/03/15 09:20 **Matrix: Solid** Date Received: 11/04/15 09:00 Percent Solids: 85.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			273171	11/04/15 20:18	NMD1	TAL BUF
Total/NA	Analysis	8260C		1	273681	11/07/15 07:27	CDC	TAL BUF
Total/NA	Prep	3550C			273215	11/05/15 08:03	CAM	TAL BUF
Total/NA	Analysis	8270D		1	274286	11/11/15 15:24	CAS	TAL BUF

TestAmerica Buffalo

Page 82 of 90

11/18/2015

Matrix: Solid

Client: Woodard & Curran, Inc.

Project/Site: Rouses Point

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Soluble	Leach	DI Leach			273254	11/05/15 09:48	AJM	TAL BUF	_
Soluble	Analysis	8015D		1	273566	11/06/15 11:55	AJM	TAL BUF	
Total/NA	Prep	3550C			273213	11/05/15 07:54	CAM	TAL BUF	
Total/NA	Analysis	8082A		1	273364	11/05/15 17:14	JMO	TAL BUF	
Total/NA	Prep	3050B			273327	11/05/15 13:05	CMM	TAL BUF	
Total/NA	Analysis	6010C		1	273632	11/06/15 15:02	AMH	TAL BUF	
Total/NA	Prep	7471B			273322	11/05/15 14:05	TAS	TAL BUF	
Total/NA	Analysis	7471B		1	273457	11/05/15 16:25	TAS	TAL BUF	

Lab Sample ID: 480-90447-5 Client Sample ID: SWMU12-SB03-SS-100

Date Collected: 11/03/15 10:15

Date Received: 11/04/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	273185	11/04/15 23:17	CMK	TAL BUF

Client Sample ID: SWMU12-SB03-SS-100 Lab Sample ID: 480-90447-5

Date Collected: 11/03/15 10:15

Date Received: 11/04/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			273171	11/04/15 20:18	NMD1	TAL BUF
Total/NA	Analysis	8260C		1	273681	11/07/15 07:54	CDC	TAL BUF
Total/NA	Prep	3550C			273215	11/05/15 08:03	CAM	TAL BUF
Total/NA	Analysis	8270D		5	274286	11/11/15 15:50	CAS	TAL BUF
Soluble	Leach	DI Leach			273254	11/05/15 09:48	AJM	TAL BUF
Soluble	Analysis	8015D		1	273566	11/06/15 12:03	AJM	TAL BUF
Total/NA	Prep	3550C			273213	11/05/15 07:54	CAM	TAL BUF
Total/NA	Analysis	8082A		1	273364	11/05/15 17:29	JMO	TAL BUF
Total/NA	Prep	3050B			273327	11/05/15 13:05	CMM	TAL BUF
Total/NA	Analysis	6010C		1	273632	11/06/15 15:05	AMH	TAL BUF
Total/NA	Prep	7471B			273322	11/05/15 14:05	TAS	TAL BUF

Client Sample ID: SWMU12-SB04-SS-101

Analysis 7471B

Date Collected: 11/03/15 10:40

Date Received: 11/04/15 09:00

Total/NA

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1		11/04/15 23:17	. ,	TAL BUF

273457 11/05/15 16:27 TAS

TAL BUF

Lab Sample ID: 480-90447-6

Client Sample ID: SWMU12-SB04-SS-101 Lab Sample ID: 480-90447-6

Date Collected: 11/03/15 10:40

Date Received: 11/04/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A		·	273171	11/04/15 20:18	NMD1	TAL BUF

TestAmerica Buffalo

Percent Solids: 83.8

Page 83 of 90

10

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Percent Solids: 84.2

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Client Sample ID: SWMU12-SB04-SS-101

Date Collected: 11/03/15 10:40 Date Received: 11/04/15 09:00

Lab Sample ID: 480-90447-6

Matrix: Solid Percent Solids: 83.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			273681	11/07/15 08:21	CDC	TAL BUF
Total/NA	Prep	3550C			273215	11/05/15 08:03	CAM	TAL BUF
Total/NA	Analysis	8270D		1	274286	11/11/15 16:16	CAS	TAL BUF
Soluble	Leach	DI Leach			273254	11/05/15 09:48	AJM	TAL BUF
Soluble	Analysis	8015D		1	273566	11/06/15 12:11	AJM	TAL BUF
Total/NA	Prep	3550C			273213	11/05/15 07:54	CAM	TAL BUF
Total/NA	Analysis	8082A		1	273364	11/05/15 17:44	JMO	TAL BUF
Total/NA	Prep	3050B			273327	11/05/15 13:05	CMM	TAL BUF
Total/NA	Analysis	6010C		1	273632	11/06/15 15:08	AMH	TAL BUF
Total/NA	Prep	7471B			273322	11/05/15 14:05	TAS	TAL BUF
Total/NA	Analysis	7471B		1	273457	11/05/15 16:29	TAS	TAL BUF

Client Sample ID: SWMU12-SB05-SS-102 Lab Sample ID: 480-90447-7

Date Collected: 11/03/15 11:00

Date Received: 11/04/15 09:00

Batch Batch Dilution **Batch** Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA 273185 11/04/15 23:17 CMK TAL BUF Analysis Moisture

Client Sample ID: SWMU12-SB05-SS-102 Lab Sample ID: 480-90447-7

Date Received: 11/04/15 09:00

Date Collected: 11/03/15 11:00 **Matrix: Solid** Percent Solids: 82.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			273171	11/04/15 20:18	NMD1	TAL BUF
Total/NA	Analysis	8260C		1	273681	11/07/15 08:49	CDC	TAL BUF
Total/NA	Prep	3550C			273215	11/05/15 08:03	CAM	TAL BUF
Total/NA	Analysis	8270D		1	274286	11/11/15 16:42	CAS	TAL BUF
Soluble	Leach	DI Leach			273254	11/05/15 09:48	AJM	TAL BUF
Soluble	Analysis	8015D		1	273566	11/06/15 12:26	AJM	TAL BUF
Total/NA	Prep	3550C			273213	11/05/15 07:54	CAM	TAL BUF
Total/NA	Analysis	8082A		1	273364	11/05/15 18:28	JMO	TAL BUF
Total/NA	Prep	3050B			273327	11/05/15 13:05	CMM	TAL BUF
Total/NA	Analysis	6010C		1	273632	11/06/15 15:12	AMH	TAL BUF
Total/NA	Prep	7471B			273322	11/05/15 14:05	TAS	TAL BUF
Total/NA	Analysis	7471B		1	273457	11/05/15 16:30	TAS	TAL BUF

Client Sample ID: SWMU12-SB06-SS-103 Lab Sample ID: 480-90447-8

Date Collected: 11/03/15 11:25 Date Received: 11/04/15 09:00

Batch Batch Dilution **Batch** Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis Moisture 273185 11/04/15 23:17 CMK TAL BUF

TestAmerica Buffalo

Page 84 of 90

Matrix: Solid

Matrix: Solid

9

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Lab Sample ID: 480-90447-8

Matrix: Solid

Date Collected: 11/03/15 11:25 Date Received: 11/04/15 09:00

Client Sample ID: SWMU12-SB06-SS-103

Matrix: Solid
Percent Solids: 83.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			273171	11/04/15 20:18	NMD1	TAL BUF
Total/NA	Analysis	8260C		1	273828	11/09/15 01:22	NMD1	TAL BUF
Total/NA	Prep	3550C			273215	11/05/15 08:03	CAM	TAL BUF
Total/NA	Analysis	8270D		1	274286	11/11/15 17:08	CAS	TAL BUF
Soluble	Leach	DI Leach			273254	11/05/15 09:48	AJM	TAL BUF
Soluble	Analysis	8015D		1	273566	11/06/15 12:34	AJM	TAL BUF
Total/NA	Prep	3550C			273213	11/05/15 07:54	CAM	TAL BUF
Total/NA	Analysis	8082A		1	273364	11/05/15 18:43	JMO	TAL BUF
Total/NA	Prep	3050B			273327	11/05/15 13:05	CMM	TAL BUF
Total/NA	Analysis	6010C		1	273632	11/06/15 15:28	AMH	TAL BUF
Total/NA	Prep	7471B			273322	11/05/15 14:05	TAS	TAL BUF
Total/NA	Analysis	7471B		1	273457	11/05/15 16:35	TAS	TAL BUF

Client Sample ID: EB-06

Lab Sample ID: 480-90447-9

Matrix: Water

Date Collected: 11/03/15 12:15 Date Received: 11/04/15 09:00

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		- 1 uotoi -	274853	11/13/15 19:04		TAL BUF
Total/NA	Prep	3510C			273246	11/05/15 09:08	AVW	TAL BUF
Total/NA	Analysis	8270D		1	273999	11/10/15 16:54	DMR	TAL BUF
Total/NA	Analysis	8015D		1	274145	11/10/15 12:29	AJM	TAL BUF
Total/NA Total/NA	Prep Analysis	3510C 8082A		1	273116 273204	11/04/15 15:36 11/05/15 10:21		TAL BUF TAL BUF
Total/NA Total/NA	Prep Analysis	3005A 6010C		1	273264 273463	11/05/15 11:45 11/05/15 23:55		TAL BUF TAL BUF
Total/NA Total/NA	Prep Analysis	7470A 7470A		1	274048 274299	11/10/15 08:45 11/10/15 14:15		TAL BUF TAL BUF

Client Sample ID: TB-06

Lab Sample ID: 480-90447-10

Matrix: Water

Date Collected: 11/03/15 00:00 Date Received: 11/04/15 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C	-	1	274853	11/13/15 19:31	GVF	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

Certification Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority Progran			EPA Region	Certification ID	Expiration Date
New York	NELAP		2	10026	03-31-16
The following analyte	s are included in this repo	rt, but certification is	s not offered by the go	overning authority:	
Analysis Method	Prep Method Matrix		Analyt		
8015D		Solid	2-Buta	nol	
8015D		Solid	Isopropyl alcohol		
8015D		Solid	Methanol		
8015D		Solid	n-Buta	n-Butanol	
8015D	So		Propanol		
8015D		Water	2-Buta		
8015D		Water	Isopropyl alcohol		
8015D		Water	Methanol		
8015D			n-Butanol		
8015D	8015D		Propanol		
8260C		Water	Tetrah	ydrofuran	
8260C	5035A	Solid	Tetrah	ydrofuran	
8270D	3510C	Water	Dimeth	hylformamide	
8270D	3550C	Solid	Dimeth	hylformamide	
Moisture		Solid	Percer	nt Moisture	
Moisture		Solid	Percer	nt Solids	

3

4

5

7

a

10

12

13

14

Method Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
8015D	Nonhalogenated Organic Compounds - Direct Injection (GC)	SW846	TAL BUF
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
7471B	Mercury (CVAA)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

7

8

9

10

12

13

14

Sample Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-90447-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-90447-1	SWMU4-SB05-SS-102	Solid	11/03/15 08:10	11/04/15 09:00
480-90447-2	SWMU4-SB06-SS-103	Solid	11/03/15 08:35	11/04/15 09:00
480-90447-3	SWMU4-SB07-SS-104	Solid	11/03/15 08:55	11/04/15 09:00
480-90447-4	SWMU4-SB08-SS-105	Solid	11/03/15 09:20	11/04/15 09:00
480-90447-5	SWMU12-SB03-SS-100	Solid	11/03/15 10:15	11/04/15 09:00
480-90447-6	SWMU12-SB04-SS-101	Solid	11/03/15 10:40	11/04/15 09:00
480-90447-7	SWMU12-SB05-SS-102	Solid	11/03/15 11:00	11/04/15 09:00
480-90447-8	SWMU12-SB06-SS-103	Solid	11/03/15 11:25	11/04/15 09:00
480-90447-9	EB-06	Water	11/03/15 12:15	11/04/15 09:00
480-90447-10	TB-06	Water	11/03/15 00:00	11/04/15 09:00

8

Q

10

11

13

14

Chain of Custody Record

TAL-4124 (1007)

Temperature on Receipt _

Drinking Water? Yes□ NoX

480-90447 Chain of Custody THE LEADER IN ENVIRC

Client Confied of	Project	Project Manager		Date	Chain of Custody Number
Working one Contain		Der Wecks	eeks	11/5/1/5	2/539/
Address Highland Avc	Telepho	Telephone Number (Area Code)/Fax Number 203 271 0379)/Fax Number 0379	Lab Number	Page of
City Cheshipe To CT O	Zip Code Site Contact	mact Souricelli	Reck Mecon	Analysis (Attach list if more space is needed)	
ouses p		CarrierWaybill Number FCd EX	to the second second		Soecial Instructions/
Contract/Purchase Order/Quote No. 206916		Matrix	Containers & Preservatives		Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date Time	IIV	Sendriu SONH SONH HOSN HOSN HOSN	BSOC SVOC	
SWMU4-5805-55-102	11/3/12 810	<u>又</u>		メイイスス	\$700C: tetanydraforan
Swmu4-5806-55-103	1 835	· 文		KXXXX	\$2700/TELand
- Sw.My 4-5807-55 - 104	855	X		ベメズメン	8 MEMS: 60108/74714
SWMU4-5808-55.	920	\overline{X}		C X X X X X X X X X	# Atomis; SOISD
8 SWMU12-5803-55-100	1015	X			& PC\$5: 8080
5 SW MU12 - 5804-55 -101	0,001	又			-
Sw.Mu(2 - 5605-35-102	0011	X 		KXXXX	
SWMU12 - 5606 - 55-103	1125	<u>X</u>		イングメン	
三8-06	W 12.15	×		XXXXX	
78-06	Lab Provided	×			
Identification			7		/A fee may be assessed if samples are retained
mmable 🗌 Skin Irritant	☐ Poison B ☑ Unknown	Retum To Client	Oisposal By Lab	Mon	onth)
Tum Around Time Required 24 Hours	🗌 21 Days	Homer Standard	OC Requirements (Specify) All law Analy Fical Sampling Profess	analyses ils (ASP) (will be conducted via NYDIEC 2005 Jita Cat. B. Data Deliverables
Therethy Thomas	Date Date	Ir Time	1. Received By	4	Charles
2. Relinquished By	Losson		2. Received By/		Date Time
3. Relinquished By	Date	Time	3. Received By		Date Time
Comments				# 62	
5				(11)	

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Login Sample Receipt Checklist

Client: Woodard & Curran, Inc.

Job Number: 480-90447-1

Login Number: 90447 List Source: TestAmerica Buffalo

List Number: 1

Creator: Janish, Carl M

Creator. James, Carr W		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	W+C
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

5

6

8

10

10

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-92934-1 Client Project/Site: Rouses Point

For:

Woodard & Curran, Inc. 64 Maple Street Rouses Point, New York 12979

Attn: Don Weeks

h Mase

Authorized for release by: 12/29/2015 12:49:04 PM

Becky Mason, Project Manager II (413)572-4000

becky.mason@testamericainc.com

·····LINKS ······

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	19
Lab Chronicle	21
Certification Summary	22
Method Summary	23
Sample Summary	24
Chain of Custody	25
Receipt Checklists	26

11

12

14

Definitions/Glossary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-92934-1

Qualifiers

GC/MS Semi VOA TICs

Qualifier	Qualifier Description
J	Indicates an Estimated Value for TICs
T	Result is a tentatively identified compound (TIC) and an estimated value.
N	Presumptive evidence of material.
Metals	

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

RER

RPD TEF

TEQ

RL

Relative error ratio

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Appreviation	i nese commonly used appreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control

TestAmerica Buffalo

Page 3 of 26

12/29/2015

Case Narrative

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-92934-1

Job ID: 480-92934-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-92934-1

Receipt

The sample was received on 12/18/2015 9:45 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.7° C.

GC/MS Semi VOA

Method 8270D: The following samples were diluted due to color and viscosity: SWMU1-SURFACE-SS-01R (480-92934-1). Elevated reporting limits (RL) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

Method 8082A: All primary data is reported from the ZB-5 column.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

7

8

46

11

12

4

Detection Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-92934-1

2

Client Sample ID: SWMU1-SURFACE-SS-01R

	Lab	Sample	ID:	480-92934-	•
--	-----	--------	-----	------------	---

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Arsenic	2.0 J	2.2	0.45 mg/Kg	1	6010C	Total/NA
Barium	10.5	0.56	0.12 mg/Kg	1	[≨] 6010C	Total/NA
Chromium	4.8	0.56	0.22 mg/Kg	1	[≨] 6010C	Total/NA
Lead	3.2	1.1	0.27 mg/Kg	1	○ 6010C	Total/NA

А

5

5

9

10

12

1 A

Client Sample Results

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 12/17/15 10:30

Date Received: 12/18/15 09:45

Client Sample ID: SWMU1-SURFACE-SS-01R

TestAmerica Job ID: 480-92934-1

Lab Sample ID: 480-92934-1

Matrix: Solid Percent Solids: 94.1

Biphenyl ND 1800 260 ug/Kg 2.4.5-Trichlorosphenol ND 1800 350 ug/Kg 2.4.5-Trichlorophenol ND 1800 350 ug/Kg 2.4-Dirichlorophenol ND 1800 350 ug/Kg 2.4-Dirichlorophenol ND 1800 430 ug/Kg 2.4-Dirichlorophenol ND 1800 360 ug/Kg 2.4-Dirichlorophenol ND 1800 360 ug/Kg 2.4-Diritrotoluene ND 1800 360 ug/Kg 2.6-Diritrotoluene ND 1800 220 ug/Kg 2-Chloronaphthalene ND 1800 220 ug/Kg 2-Chlorophenol ND 1800 320 ug/Kg 2-Methylapthalene ND 1800 320 ug/Kg 2-Methylapthalene ND 1800 250 ug/Kg 2-Methylapthalene ND 3400 260 ug/Kg 2-Nitrophenol ND <td< th=""><th>_ D</th><th>•</th><th>Analyzed</th><th>Dil Fa</th></td<>	_ D	•	Analyzed	Dil Fa
2,4,6-Trichlorophenol ND 1800 480 ug/Kg 2,4,6-Trichlorophenol ND 1800 350 ug/Kg 2,4-Dinethylphenol ND 1800 190 ug/Kg 2,4-Dinitrophenol ND 1800 430 ug/Kg 2,4-Dinitrophenol ND 1800 360 ug/Kg 2,4-Dinitrophenol ND 1800 360 ug/Kg 2,6-Dinitrobluene ND 1800 290 ug/Kg 2,6-Dinitrobluene ND 1800 290 ug/Kg 2-Chloronaphthalene ND 1800 290 ug/Kg 2-Methylpathalene ND 1800 320 ug/Kg 2-Methylphenol ND 1800 350 ug/Kg 2-Nitrophenol ND 1800 260 ug/Kg 2-Nitrophenol ND 3400 260 ug/Kg 3-Nitroaniline ND 3400 210 ug/Kg 4-Bromophenyl phenyl ether ND 18	<u>∓</u>		12/22/15 14:29	1
2,4,6-Trichlorophenol ND 1800 350 ug/kg 2,4-Dichlorophenol ND 1800 190 ug/kg 2,4-Dimitrylphenol ND 1800 430 ug/kg 2,4-Dimitrylphenol ND 1800 360 ug/kg 2,4-Dimitrotoluene ND 1800 360 ug/kg 2,6-Dinitrotoluene ND 1800 360 ug/kg 2,6-Dinitrotoluene ND 1800 290 ug/kg 2-Chlorophenol ND 1800 320 ug/kg 2-Methylphapthalene ND 1800 350 ug/kg 2-Methylphaptol ND 1800 350 ug/kg 2-Methylphaptol ND 1800 350 ug/kg 2-Nitrophenol ND 1800 360 ug/kg 2-Nitrophenol ND 3400 210 ug/kg 3-Nitroaniline ND 3400 210 ug/kg 4-Bromophenyl phenyl ether ND 1800<	₩		12/22/15 14:29	1
2,4-Dichlorophenol ND 1800 190 ug/Kg 2,4-Dinitrophenol ND 1800 430 ug/Kg 2,4-Dinitrophenol ND 17000 8100 ug/Kg 2,4-Dinitrotoluene ND 1800 360 ug/Kg 2,6-Dinitrotoluene ND 1800 210 ug/Kg 2-Chiorophenol ND 1800 290 ug/Kg 2-Methylnapthalene ND 1800 320 ug/Kg 2-Methylphenol ND 1800 210 ug/Kg 2-Mitrophenol ND 1800 210 ug/Kg 2-Mitrophenol ND 1800 210 ug/Kg 2-Mitrophenol ND 3400 260 ug/Kg 2-Nitrophenol ND 3400 210 ug/Kg 2-Nitrophenol ND 3400 210 ug/Kg 3,3'-Dichlorobenzidine ND 3400 210 ug/Kg 4-Chiorophenyl phenyl ether ND 3400	₩		12/22/15 14:29	
2,4-Dimitrylphenol ND 1800 430 ug/Kg 2,4-Dimitrophenol ND 17000 8100 ug/Kg 2,4-Dimitrophenol ND 17000 8100 ug/Kg 2,4-Dimitrophenol ND 1800 360 ug/Kg 2,4-Dimitrotoluene ND 1800 360 ug/Kg 2,4-Dimitrotoluene ND 1800 320 ug/Kg 2,6-Dimitrotoluene ND 1800 210 ug/Kg 2-Chlorophenol ND 1800 320 ug/Kg 2-Chlorophenol ND 1800 320 ug/Kg 2-Methylphapthalene ND 1800 320 ug/Kg 2-Methylphenol ND 1800 210 ug/Kg 2-Methylphenol ND 1800 210 ug/Kg 2-Nitroaniline ND 3400 260 ug/Kg 2-Nitroaniline ND 3400 260 ug/Kg 3-Nitroaniline ND 3400 210 ug/Kg 4-Bromophenyl phenyl ether ND 1800 250 ug/Kg 4-Chloros-3-methylphenol ND 1800 250 ug/Kg 4-Chloros-3-methylphenol ND 1800 440 ug/Kg 4-Chloros-3-methylphenol ND 1800 440 ug/Kg 4-Chlorophenyl phenyl ether ND 1800 420 ug/Kg 4-Methylphenol ND 1800 440 ug/Kg 4-Methylphenol ND 3400 210 ug/Kg 4-Methylphenol ND 3400 220 ug/Kg 4-Methylphenol ND 3400 220 ug/Kg 4-Methylphenol ND 3400 220 ug/Kg 4-Nitroaniline ND 3400 220 ug/Kg 4-Nitroaniline ND 3400 220 ug/Kg A-Enaphthylene ND 1800 260 ug/Kg B-Enzo(a)nthracene ND 1800 260 ug/Kg B-Enzo(a)nthracene ND 1800 260 ug/Kg B-Enzo(b)fluoranthene ND 1800 260 ug/Kg B-Enzo(b)hiporylene ND 1800 260 ug/Kg B	☆		12/22/15 14:29	1
2,4-Dinitrophenol ND 17000 8100 ug/Kg 2,4-Dinitrotoluene ND 1800 360 ug/Kg 2,6-Dinitrotoluene ND 1800 210 ug/Kg 2-Chloirophenol ND 1800 290 ug/Kg 2-Chlorophenol ND 1800 320 ug/Kg 2-Methylphenol ND 1800 350 ug/Kg 2-Mitrophenol ND 1800 210 ug/Kg 2-Nitrophenol ND 3400 260 ug/Kg 2-Nitrophenol ND 3400 260 ug/Kg 2-Nitrophenol ND 3400 210 ug/Kg 2-Nitrophenol ND 3400 210 ug/Kg 3-Nitroaniline ND 3400 290 ug/Kg 4-Chiora-s-methylphenol ND 3400 490 ug/Kg 4-Chiora-s-methylphenol ND 1800 440 ug/Kg 4-Chiora-s-methylphenol ND 3400	**		12/22/15 14:29	1
2,4-Dinitrotoluene ND 1800 360 ug/Kg 2,6-Dinitrotoluene ND 1800 210 ug/Kg 2-Chloronaphthalene ND 1800 290 ug/Kg 2-Chlorophenol ND 1800 320 ug/Kg 2-Methylphenol ND 1800 350 ug/Kg 2-Methylphenol ND 1800 210 ug/Kg 2-Nitrophenol ND 3400 260 ug/Kg 2-Nitrophenol ND 3400 260 ug/Kg 3,3'-Dichlorobenzidine ND 3400 210 ug/Kg 3-Nitroaniline ND 3400 490 ug/Kg 4-B-Dinitro-2-methylphenol ND 3400 1800 ug/Kg 4-Chloro-3-methylphenol ND 1800 250 ug/Kg 4-Chlorophenyl phenyl ether ND 1800 240 ug/Kg 4-Chlorophenyl phenyl ether ND 1800 220 ug/Kg 4-Chlorophenyl phenyl ether	*	12/21/15 08:18	12/22/15 14:29	
2,6-Dinitrotoluene ND 1800 210 ug/Kg 2-Chlorophenol ND 1800 290 ug/Kg 2-Chlorophenol ND 1800 320 ug/Kg 2-Methylapthalene ND 1800 350 ug/Kg 2-Methylphenol ND 1800 210 ug/Kg 2-Nitrophenol ND 3400 260 ug/Kg 3-Nitroaniline ND 3400 260 ug/Kg 3-Nitroaniline ND 3400 2100 ug/Kg 3-Nitroaniline ND 3400 2100 ug/Kg 4-B-Dinitro-2-methylphenol ND 3400 1800 ug/Kg 4-B-Bromophenyl phenyl ether ND 1800 440 ug/Kg 4-Chloro-3-methylphenol ND 1800 440 ug/Kg 4-Chlorophenyl phenyl ether ND 1800 440 ug/Kg 4-Methylphenol ND 1800 220 ug/Kg 4-Mitrophenol ND <	₩	12/21/15 08:18	12/22/15 14:29	1
2-Chloronaphthalene ND 1800 290 ug/Kg 2-Chlorophenol ND 1800 320 ug/Kg 2-Methylphapthalene ND 1800 320 ug/Kg 2-Methylphapthalene ND 1800 350 ug/Kg 2-Methylphapthalene ND 1800 350 ug/Kg 2-Nitrophinol ND 3400 2-Nitrophenol ND 3400 2-Nitrophenol ND 3400 2-Nitrophanol ND 1800 2	₩	12/21/15 08:18	12/22/15 14:29	1
2-Chlorophenol ND 1800 320 ug/Kg 2-Methylnapthalene ND 1800 350 ug/Kg 2-Methylphenol ND 1800 350 ug/Kg 2-Methylphenol ND 1800 210 ug/Kg 2-Nitrophenol ND 3400 260 ug/Kg 2-Nitrophenol ND 1800 500 ug/Kg 3,3'-Dichlorobenzidine ND 3400 2100 ug/Kg 3,3'-Dichlorobenzidine ND 3400 490 ug/Kg 3,3'-Dichlorobenzidine ND 3400 490 ug/Kg 3-Nitroaniline ND 3400 490 ug/Kg 4-B-Dinitro-2-methylphenol ND 3400 1800 ug/Kg 4-Bromophenyl phenyl ether ND 1800 250 ug/Kg 4-Chloro-3-methylphenol ND 1800 440 ug/Kg 4-Chloro-3-methylphenol ND 1800 440 ug/Kg 4-Chlorophenyl phenyl ether ND 1800 220 ug/Kg 4-Chlorophenyl phenyl ether ND 1800 220 ug/Kg 4-Methylphenol ND 3400 210 ug/Kg 4-Methylphenol ND 3400 220 ug/Kg 4-Nitrophenyl phenyl ether ND 3400 220 ug/Kg 4-Nitrophenol ND 3400 1200 ug/Kg Acenaphthene ND 1800 260 ug/Kg Acenaphthylene ND 1800 230 ug/Kg Acenaphthylene ND 1800 200 ug/Kg Acetophenone ND 1800 240 ug/Kg Acetophenone ND 1800 240 ug/Kg Acetophenone ND 1800 240 ug/Kg Artrazine ND 1800 440 ug/Kg Benza(a)anthracene ND 1800 400 ug/Kg Benza(a)anthracene ND 1800 180 ug/Kg Benza(a)pyrene ND 1800 180 ug/Kg Benza(b)fluoranthene ND 1800 230 ug/Kg Benzo(a)pyrene ND 1800 230 ug/Kg Benzo(b)fluoranthene ND 1800 330 ug/Kg Benzo(b)fluoranthene ND 1800 330 ug/Kg Bis(2-chloroethy)pithalate ND 1800 330 ug/Kg Di-n-butyl phthalate ND 1800 300 ug/Kg Di-n-butyl phthalate ND 1800 300 ug/Kg	*	12/21/15 08:18	12/22/15 14:29	1
2-Methylnapthalene ND 1800 350 ug/Kg 2-Methylphenol ND 1800 210 ug/Kg 2-Nitropanlline ND 3400 260 ug/Kg 2-Nitrophenol ND 1800 500 ug/Kg 3,3'-Dichlorobenzidine ND 3400 2100 ug/Kg 3-Nitroaniline ND 3400 490 ug/Kg 4-6-Diritro-2-methylphenol ND 3400 1800 ug/Kg 4-Chloro-3-methylphenol ND 1800 250 ug/Kg 4-Chloro-3-methylphenol ND 1800 440 ug/Kg 4-Chlorophenyl phenyl ether ND 1800 220 ug/Kg 4-Chlorophenyl phenyl ether ND 1800 220 ug/Kg 4-Methylphenol ND 3400 210 ug/Kg 4-Methylphenol ND 3400 220 ug/Kg 4-Nitrophenoi ND 3400 1200 ug/Kg 4-Nethylphenoi ND<	☆	12/21/15 08:18	12/22/15 14:29	1
2-Methylphenol ND 1800 210 ug/Kg 2-Nitrophenol ND 3400 260 ug/Kg 2-Nitrophenol ND 1800 500 ug/Kg 3-Nitrophenol ND 3400 2100 ug/Kg 3-Nitrophenol ND 3400 2100 ug/Kg 3-Nitrophenol ND 3400 490 ug/Kg 4-Chioro-2-methylphenol ND 3400 1800 ug/Kg 4-Bromophenyl phenyl ether ND 1800 250 ug/Kg 4-Chioro-3-methylphenol ND 1800 440 ug/Kg 4-Chioro-3-methylphenol ND 1800 440 ug/Kg 4-Chioro-3-methylphenol ND 1800 440 ug/Kg 4-Chiorophenyl phenyl ether ND 1800 420 ug/Kg 4-Chiorophenyl phenyl ether ND 1800 220 ug/Kg 4-Nitrophenol ND 3400 210 ug/Kg 4-Nitrophenol ND 3400 210 ug/Kg 4-Nitrophenol ND 3400 220 ug/Kg 4-Nitrophenol ND 3400 1200 ug/Kg Acenaphthene ND 1800 260 ug/Kg Acenaphthylene ND 1800 260 ug/Kg Acetophenone ND 1800 240 ug/Kg Acetophenone ND 1800 440 ug/Kg Anthracene ND 1800 610 ug/Kg Benzaldehyde ND 1800 610 ug/Kg Benzaldehyde ND 1800 610 ug/Kg Benza(a)pyrene ND 1800 260 ug/Kg Benzo(a)pyrene ND 1800 260 ug/Kg Benzo(b)fluoranthene ND 1800 260 ug/Kg Benzo(b)fluoranthene ND 1800 230 ug/Kg Benzo(c)fluoranthene ND 1800 330 ug/Kg Benzo(c)fluoranthene ND 1800 330 ug/Kg Benzo(c)fluoranthene ND 1800 330 ug/Kg	☆	12/21/15 08:18	12/22/15 14:29	1
2-Nitroaniline	₩	12/21/15 08:18	12/22/15 14:29	1
2-Nitrophenol ND 1800 500 ug/Kg 3,3'-Dichlorobenzidine ND 3400 2100 ug/Kg 4,6-Dinitro-2-methylphenol ND 3400 490 ug/Kg 4,6-Dinitro-2-methylphenol ND 3400 1800 ug/Kg 4-Bromophenyl phenyl ether ND 1800 250 ug/Kg 4-Chloro-3-methylphenol ND 1800 440 ug/Kg 4-Chloro-3-methylphenol ND 1800 440 ug/Kg 4-Chlorophenyl phenyl ether ND 1800 440 ug/Kg 4-Chlorophenyl phenyl ether ND 1800 220 ug/Kg 4-Methylphenol ND 1800 220 ug/Kg 4-Methylphenol ND 3400 210 ug/Kg 4-Nitrophenol ND 3400 210 ug/Kg 4-Nitrophenol ND 3400 220 ug/Kg 4-Nitrophenol ND 3400 220 ug/Kg Acenaphthene ND 1800 260 ug/Kg Acenaphthylene ND 1800 260 ug/Kg Acetophenone ND 1800 240 ug/Kg Actrazine ND 1800 440 ug/Kg Benzo(a)-pyrene ND 1800 1400 ug/Kg Benzo(a)-pyrene ND 1800 1400 ug/Kg Benzo(a)-pyrene ND 1800 260 ug/Kg Benzo(a)-pyrene ND 1800 1800 ug/Kg Benzo(a)-pyrene ND 1800 1800 ug/Kg Benzo(b)-fluoranthene ND 1800 280 ug/Kg Benzo(b)-fluoranthene ND 1800 370 ug/Kg Benzo(b)-fluoranthene ND 1800 370 ug/Kg Benzo(b)-fluoranthene ND 1800 230 ug/Kg Benzo(c)-fluoranthene ND 1800 290 ug/Kg Bis(2-chloroethy/)-ether ND 1800 390 ug/Kg Bis(2-chloroethy/)-ether ND 1800 390 ug/Kg Bis(2-chlylhexyl) phthalate ND 1800 390 ug/Kg Di-n-butyl phthalate ND 1800 390 ug/Kg Di-n-butyl phthalate ND 1800 390 ug/Kg Di-n-butyl phthalate ND 1800 390 ug/Kg	☆	12/21/15 08:18	12/22/15 14:29	1
3,3'-Dichlorobenzidine ND 3400 2100 ug/Kg 3-Nitroaniline ND 3400 490 ug/Kg 4,6-Dinitro-2-methylphenol ND 3400 1800 ug/Kg 4-Bromophenyl phenyl ether ND 1800 250 ug/Kg 4-Chloro-3-methylphenol ND 1800 440 ug/Kg 4-Chlorophenyl phenyl ether ND 1800 440 ug/Kg 4-Chlorophenyl phenyl ether ND 1800 420 ug/Kg 4-Methylphenol ND 3400 210 ug/Kg 4-Metnylphenol ND 3400 220 ug/Kg 4-Nitroaniline ND 3400 1200 ug/Kg 4-Nitrophenol ND 3400 1200 ug/Kg Acenaphthylene ND 1800 260 ug/Kg Acenaphthylene ND 1800 260 ug/Kg Acetophenone ND 1800 240 ug/Kg Anthracene ND 1800 240 ug/Kg Benzaldehyde ND	☆	12/21/15 08:18	12/22/15 14:29	1
3-Nitroaniline ND 3400 490 ug/Kg 4,6-Dinitro-2-methylphenol ND 3400 1800 ug/Kg 4-Bromophenyl phenyl ether ND 1800 4-Chloro-3-methylphenol ND 1800 4-Chloro-3-methylphenol ND 1800 4-Chloro-3-methylphenol ND 1800 4-Chloroaniline ND 1800 4-Chlorophenyl phenyl ether ND 1800 4-Chlorophenyl phenyl ether ND 1800 220 ug/Kg 4-Chlorophenyl phenyl ether ND 3400 210 ug/Kg 4-Nitroaniline ND 3400 920 ug/Kg 4-Nitroaniline ND 3400 1200 ug/Kg 4-Nitrophenol ND 3400 1200 ug/Kg 4-Nitrophenol ND 3400 1200 ug/Kg Acenaphthene ND 1800 260 ug/Kg Acenaphthylene ND 1800 260 ug/Kg Acenaphthylene ND 1800 240 ug/Kg Acetophenone ND 1800 240 ug/Kg Acetophenone ND 1800 240 ug/Kg Benzo(a)anthracene ND 1800 1800 1800 ug/Kg Benzo(a)pyrene ND 1800 1800 1800 ug/Kg Benzo(a)pyrene ND 1800 1800 280 ug/Kg Benzo(a)fluoranthene ND 1800 1800 280 ug/Kg Benzo(b)fluoranthene ND 1800 1800 280 ug/Kg Benzo(b)fluoranthene ND 1800 1800 280 ug/Kg Benzo(c)f,i)perylene ND 1800 1800 280 ug/Kg Benzo(c)f,i)perylene ND 1800 1800 290 ug/Kg Bis(2-chloroethoxy)methane ND 1800 1800 290 ug/Kg Bis(2-chloroethoxy)methane ND 1800 290 ug/Kg Bis(2-chloroethyl)ether ND 1800 290 ug/Kg Carbazole ND 1800 390 ug/Kg Carbazole ND 1800 390 ug/Kg Chrysene ND 1800 390 ug/Kg Di-n-butyl phthalate ND 1800 390 ug/Kg	☆	12/21/15 08:18	12/22/15 14:29	1
4,6-Dinitro-2-methylphenol ND 3400 1800 ug/kg 4-Bromophenyl phenyl ether ND 1800 250 ug/kg 4-Chloro-3-methylphenol ND 1800 440 ug/kg 4-Chloroaniline ND 1800 440 ug/kg 4-Chlorophenyl phenyl ether ND 1800 220 ug/kg 4-Methylphenol ND 3400 221 ug/kg 4-Nitroaniline ND 3400 920 ug/kg 4-Nitroaniline ND 3400 1200 ug/kg 4-Nitroaniline ND 3400 1200 ug/kg Acenaphthylene ND 1800 220 ug/kg Acenapitanic ND 1800	₩	12/21/15 08:18	12/22/15 14:29	1
4-Bromophenyl phenyl ether ND 1800 250 ug/kg 4-Chloro-3-methylphenol ND 1800 440 ug/kg 4-Chloroaniline ND 1800 440 ug/kg 4-Chlorophenyl phenyl ether ND 1800 220 ug/kg 4-Methylphenol ND 3400 210 ug/kg 4-Nitroaniline ND 3400 120 ug/kg 4-Nitrophenol ND 3400 120 ug/kg Acenaphthene ND 1800 260 ug/kg Acenaphthene ND 1800 260 ug/kg Aceaphthylene ND 1800 260 ug/kg Aceaphthylene ND 1800 240 ug/kg Acetophenone ND 1800 240 ug/kg Atrazine ND 1800 440 ug/kg Benzaldehyde ND 1800 610 ug/kg Benzo(a)anthracene ND 1800 180 ug/kg Benzo(b)fluoranthene ND 1800 260	₩	12/21/15 08:18	12/22/15 14:29	1
4-Chloro-3-methylphenol ND 1800 440 ug/Kg 4-Chloroaniline ND 1800 440 ug/Kg 4-Chlorophenyl phenyl ether ND 1800 220 ug/Kg 4-Methylphenol ND 3400 210 ug/Kg 4-Nitroaniline ND 3400 920 ug/Kg 4-Nitrophenol ND 3400 1200 ug/Kg Acenaphthylene ND 1800 260 ug/Kg Acenaphthylene ND 1800 230 ug/Kg Acenaphthylene ND 1800 240 ug/Kg Acenaphthylene ND 1800 240 ug/Kg Actophenone ND 1800 240 ug/Kg Atrazine ND 1800 440 ug/Kg Benzaldehyde ND 1800 1400 ug/Kg	☆	12/21/15 08:18	12/22/15 14:29	1
4-Chloroaniline ND 1800 440 ug/Kg 4-Chlorophenyl phenyl ether ND 1800 220 ug/Kg 4-Methylphenol ND 3400 210 ug/Kg 4-Nitroaniline ND 3400 3400 210 ug/Kg 4-Nitrophenol ND 3400 3400 1200 ug/Kg 4-Nitrophenol ND 3400 1200 ug/Kg Acenaphthene ND 1800 260 ug/Kg Acenaphthylene ND 1800 230 ug/Kg Acetophenone ND 1800 240 ug/Kg Actophenone ND 1800 240 ug/Kg Atrazine ND 1800 440 ug/Kg Atrazine ND 1800 440 ug/Kg Benzaldehyde ND 1800 1800 1400 19/Kg Benzaldehyde ND 1800 1800 180 19/Kg Benzo(a)anthracene ND 1800 1800 260 ug/Kg Benzo(a)pyrene Benzo(b)fluoranthene ND 1800 280 ug/Kg Benzo(b)fluoranthene ND 1800 290 ug/Kg Benzo(k)fluoranthene ND 1800 230 ug/Kg Bis(2-chloroethyl)ether ND 1800 370 ug/Kg Bis(2-chloroethyl)ether ND 1800 370 ug/Kg Bis(2-ctholroethyl)ether ND 1800 370 ug/Kg Bis(2-cthylhexyl) phthalate ND 1800 370 ug/Kg Bis(2-cthylhexyl) phthalate ND 1800 390 ug/Kg Carbazole ND 1800 390 ug/Kg Carbazole ND 1800 390 ug/Kg Chrysene ND 1800 300 ug/Kg Di-n-butyl phthalate ND 1800 300 ug/Kg Di-n-butyl phthalate ND 1800 300 ug/Kg	₩	12/21/15 08:18	12/22/15 14:29	1
4-Chlorophenyl phenyl ether ND 1800 220 ug/Kg 4-Methylphenol ND 3400 210 ug/Kg 4-Nitroaniline ND 3400 210 ug/Kg 4-Nitrophenol ND 3400 210 ug/Kg 4-Nitrophenol ND 3400 220 ug/Kg 4-Nitrophenol ND 3400 1200 1	☼	12/21/15 08:18	12/22/15 14:29	1
4-Chlorophenyl phenyl ether ND 1800 220 ug/Kg 4-Methylphenol ND 3400 210 ug/Kg 4-Nitroaniline ND 3400 3400 210 ug/Kg 4-Nitrophenol ND 3400 3400 220 ug/Kg 4-Nitrophenol ND 3400 1200 ug/Kg Acenaphthene ND 1800 260 ug/Kg Acenaphthylene ND 1800 230 ug/Kg Acetophenone ND 1800 240 ug/Kg Anthracene ND 1800 240 ug/Kg Anthracene ND 1800 440 ug/Kg Atrazine ND 1800 440 ug/Kg Benzaldehyde ND 1800 1800 1400 ug/Kg Benzaldehyde ND 1800 1	☆	12/21/15 08:18	12/22/15 14:29	1
4-Methylphenol ND 3400 210 ug/Kg 4-Nitroaniline ND 3400 920 ug/Kg 4-Nitrophenol ND 3400 1200 ug/Kg Acenaphthene ND 1800 260 ug/Kg Acenaphthylene ND 1800 230 ug/Kg Acetophenone ND 1800 240 ug/Kg Anthracene ND 1800 440 ug/Kg Atrazine ND 1800 440 ug/Kg Benzaldehyde ND 1800 1400 ug/Kg Benzo(a)anthracene ND 1800 1400 ug/Kg Benzo(a)pyrene ND 1800 180 ug/Kg Benzo(b)filuoranthene ND 1800 260 ug/Kg Benzo(g,h,i)perylene ND 1800 280 ug/Kg Benzo(k)filuoranthene ND 1800 230 ug/Kg Benzo(k)filuoranthene ND 1800 370 ug/Kg Bis(2-chloroethoxy)methane ND 1800 370	φ.	12/21/15 08:18	12/22/15 14:29	1
4-Nitrophenol ND 3400 920 ug/kg 4-Nitrophenol ND 3400 1200 ug/kg Acenaphthene ND 1800 260 ug/kg Acenaphthylene ND 1800 230 ug/kg Acetophenone ND 1800 240 ug/kg Anthracene ND 1800 440 ug/kg Atrazine ND 1800 610 ug/kg Benzaldehyde ND 1800 1400 ug/kg Benzo(a)anthracene ND 1800 1400 ug/kg Benzo(a)pyrene ND 1800 180 ug/kg Benzo(b)fluoranthene ND 1800 260 ug/kg Benzo(b)fluoranthene ND 1800 280 ug/kg Benzo(k)fluoranthene ND 1800 290 ug/kg Benzo(k)fluoranthene ND 1800 230 ug/kg Bis(2-chloroethoxy)methane ND 1800 370 ug/kg Bis(2-chloroethyl)ether ND 1800 230	☼	12/21/15 08:18	12/22/15 14:29	1
4-Nitrophenol ND 3400 1200 ug/kg Acenaphthene ND 1800 260 ug/kg Acenaphthylene ND 1800 230 ug/kg Acetophenone ND 1800 240 ug/kg Anthracene ND 1800 440 ug/kg Antrazine ND 1800 610 ug/kg Benzaldehyde ND 1800 610 ug/kg Benzaldehyde ND 1800 1400 ug/kg Benzo(a)anthracene ND 1800 1400 ug/kg Benzo(b)fluoranthene ND 1800 260 ug/kg Benzo(b)fluoranthene ND 1800 280 ug/kg Benzo(k)fluoranthene ND 1800 230 ug/kg Benzo(k)fluoranthene ND 1800 370 ug/kg Benzo(k)fluoranthene ND 1800 370 ug/kg Bis(2-chloroethoxy)methane ND 1800 370 ug/kg Bis(2-chloroethoxy)hthalate ND 1800 <t< td=""><td>☼</td><td>12/21/15 08:18</td><td>12/22/15 14:29</td><td>1</td></t<>	☼	12/21/15 08:18	12/22/15 14:29	1
Acenaphthene ND 1800 260 ug/Kg Acenaphthylene ND 1800 230 ug/Kg Acetophenone ND 1800 240 ug/Kg Anthracene ND 1800 240 ug/Kg Antrazine ND 1800 440 ug/Kg Benzaldehyde ND 1800 610 ug/Kg Benzo(a)anthracene ND 1800 1400 ug/Kg Benzo(a)anthracene ND 1800 1400 ug/Kg Benzo(b)fluoranthene ND 1800 260 ug/Kg Benzo(b)fluoranthene ND 1800 280 ug/Kg Benzo(k)fluoranthene ND 1800 230 ug/Kg Benzo(k)fluoranthene ND 1800 230 ug/Kg Benzo(k)fluoranthene ND 1800 230 ug/Kg Bis(2-chloroethoxy)methane ND 1800 230 ug/Kg Bis(2-chloroethoxy)methane ND 1800		12/21/15 08:18	12/22/15 14:29	1
Acenaphthylene ND 1800 230 ug/Kg Acetophenone ND 1800 240 ug/Kg Anthracene ND 1800 240 ug/Kg Anthracene ND 1800 440 ug/Kg Atrazine ND 1800 610 ug/Kg Benzaldehyde ND 1800 1400 ug/Kg Benzo(a)anthracene ND 1800 180 ug/Kg Benzo(a)pyrene ND 1800 260 ug/Kg Benzo(b)fluoranthene ND 1800 260 ug/Kg Benzo(b)fluoranthene ND 1800 280 ug/Kg Benzo(g,h,i)perylene ND 1800 190 ug/Kg Benzo(k)fluoranthene ND 1800 230 ug/Kg Benzo(k)fluoranthene ND 1800 370 ug/Kg Bis(2-chloroethoxy)methane ND 1800 230 ug/Kg Bis(2-chloroethyl)ether ND 1800	₩	12/21/15 08:18	12/22/15 14:29	1
Acetophenone ND 1800 240 ug/Kg Anthracene ND 1800 440 ug/Kg Atrazine ND 1800 610 ug/Kg Benzaldehyde ND 1800 1400 ug/Kg Benzo(a)anthracene ND 1800 180 ug/Kg Benzo(a)pyrene ND 1800 260 ug/Kg Benzo(b)fluoranthene ND 1800 280 ug/Kg Benzo(g,h,i)perylene ND 1800 280 ug/Kg Benzo(k)fluoranthene ND 1800 190 ug/Kg Benzo(k)fluoranthene ND 1800 230 ug/Kg Bis(2-chloroethoxy)methane ND 1800 370 ug/Kg Bis(2-chloroethyl)ether ND 1800 230 ug/Kg Bis(2-chloroethyl)ether ND 1800 230 ug/Kg Bis(2-ethylhexyl) phthalate ND 1800 290 ug/Kg Caprolactam ND <t< td=""><td>₩</td><td></td><td>12/22/15 14:29</td><td>1</td></t<>	₩		12/22/15 14:29	1
Anthracene ND 1800 440 ug/Kg Atrazine ND 1800 610 ug/Kg Benzaldehyde ND 1800 1400 ug/Kg Benzo(a)anthracene ND 1800 180 ug/Kg Benzo(a)pyrene ND 1800 260 ug/Kg Benzo(b)fluoranthene ND 1800 280 ug/Kg Benzo(g,h,i)perylene ND 1800 280 ug/Kg Benzo(k)fluoranthene ND 1800 190 ug/Kg Benzo(k)fluoranthene ND 1800 230 ug/Kg Bis(2-chloroethoxy)methane ND 1800 370 ug/Kg Bis(2-chloroethoxy)methane ND 1800 230 ug/Kg Bis(2-chloroethyl)ether ND 1800 230 ug/Kg Bis(2-ethylhexyl) phthalate ND 1800 600 ug/Kg Butyl benzyl phthalate ND 1800 530 ug/Kg Caprolactam ND <td></td> <td></td> <td>12/22/15 14:29</td> <td> 1</td>			12/22/15 14:29	1
Atrazine ND 1800 610 ug/Kg Benzaldehyde ND 1800 1400 ug/Kg Benzo(a)anthracene ND 1800 180 ug/Kg Benzo(a)pyrene ND 1800 260 ug/Kg Benzo(b)fluoranthene ND 1800 280 ug/Kg Benzo(g,h,i)perylene ND 1800 190 ug/Kg Benzo(k)fluoranthene ND 1800 230 ug/Kg Bis(2-chloroethoxy)methane ND 1800 370 ug/Kg Bis(2-chloroethyl)ether ND 1800 230 ug/Kg Bis(2-ethylhexyl) phthalate ND 1800 600 ug/Kg Butyl benzyl phthalate ND 1800 290 ug/Kg Caprolactam ND 1800 530 ug/Kg Carbazole ND 1800 210 ug/Kg Chrysene ND 1800 390 ug/Kg Di-n-butyl phthalate ND 1800 300 ug/Kg Di-n-cotyl phthalate ND 1800 210 ug/Kg	≎		12/22/15 14:29	1
Benzaldehyde ND 1800 1400 ug/kg Benzo(a)anthracene ND 1800 180 ug/kg Benzo(a)pyrene ND 1800 260 ug/kg Benzo(b)fluoranthene ND 1800 280 ug/kg Benzo(g,h,i)perylene ND 1800 190 ug/kg Benzo(k)fluoranthene ND 1800 230 ug/kg Bis(2-chloroethoxy)methane ND 1800 370 ug/kg Bis(2-chloroethoxy)methane ND 1800 230 ug/kg Bis(2-chloroethyl)ether ND 1800 230 ug/kg Bis(2-chloroethyl)ether ND 1800 230 ug/kg Butyl benzyl phthalate ND 1800 290 ug/kg Caprolactam ND 1800 290 ug/kg Carbazole ND 1800 210 ug/kg Chrysene ND 1800 390 ug/kg Di-n-butyl phthalate ND	≎		12/22/15 14:29	1
Benzo(a)anthracene ND 1800 180 ug/Kg Benzo(a)pyrene ND 1800 260 ug/Kg Benzo(b)fluoranthene ND 1800 280 ug/Kg Benzo(g,h,i)perylene ND 1800 190 ug/Kg Benzo(k)fluoranthene ND 1800 230 ug/Kg Bis(2-chloroethoxy)methane ND 1800 370 ug/Kg Bis(2-chloroethyl)ether ND 1800 230 ug/Kg Bis(2-ethylhexyl) phthalate ND 1800 600 ug/Kg Butyl benzyl phthalate ND 1800 290 ug/Kg Caprolactam ND 1800 530 ug/Kg Carbazole ND 1800 210 ug/Kg Chrysene ND 1800 390 ug/Kg Di-n-butyl phthalate ND 1800 300 ug/Kg Di-n-cotyl phthalate ND 1800 210 ug/Kg	 \$		12/22/15 14:29	· · · · · · · · · · · · · · · · · · ·
Benzo(a)pyrene ND 1800 260 ug/kg Benzo(b)fluoranthene ND 1800 280 ug/kg Benzo(g,h,i)perylene ND 1800 190 ug/kg Benzo(k)fluoranthene ND 1800 230 ug/kg Bis(2-chloroethoxy)methane ND 1800 370 ug/kg Bis(2-chloroethyl)ether ND 1800 230 ug/kg Bis(2-ethylhexyl) phthalate ND 1800 600 ug/kg Butyl benzyl phthalate ND 1800 290 ug/kg Caprolactam ND 1800 530 ug/kg Carbazole ND 1800 210 ug/kg Chrysene ND 1800 390 ug/kg Di-n-butyl phthalate ND 1800 300 ug/kg Di-n-octyl phthalate ND 1800 210 ug/kg	☼		12/22/15 14:29	1
Benzo(b)fluoranthene ND 1800 280 ug/Kg Benzo(g,h,i)perylene ND 1800 190 ug/Kg Benzo(k)fluoranthene ND 1800 230 ug/Kg Bis(2-chloroethoxy)methane ND 1800 370 ug/Kg Bis(2-chloroethyl)ether ND 1800 230 ug/Kg Bis(2-ethylhexyl) phthalate ND 1800 600 ug/Kg Butyl benzyl phthalate ND 1800 290 ug/Kg Caprolactam ND 1800 530 ug/Kg Carbazole ND 1800 210 ug/Kg Chrysene ND 1800 390 ug/Kg Di-n-butyl phthalate ND 1800 300 ug/Kg Di-n-octyl phthalate ND 1800 210 ug/Kg	₩		12/22/15 14:29	1
Benzo(g,h,i)perylene ND 1800 190 ug/Kg Benzo(k)fluoranthene ND 1800 230 ug/Kg Bis(2-chloroethoxy)methane ND 1800 370 ug/Kg Bis(2-chloroethyl)ether ND 1800 230 ug/Kg Bis(2-ethylhexyl) phthalate ND 1800 600 ug/Kg Butyl benzyl phthalate ND 1800 290 ug/Kg Caprolactam ND 1800 530 ug/Kg Carbazole ND 1800 210 ug/Kg Chrysene ND 1800 390 ug/Kg Di-n-butyl phthalate ND 1800 300 ug/Kg Di-n-cotyl phthalate ND 1800 210 ug/Kg			12/22/15 14:29	· · · · · · · · · · · · · · · · · · ·
Benzo(k)fluoranthene ND 1800 230 ug/kg Bis(2-chloroethoxy)methane ND 1800 370 ug/kg Bis(2-chloroethyl)ether ND 1800 230 ug/kg Bis(2-ethylhexyl) phthalate ND 1800 600 ug/kg Butyl benzyl phthalate ND 1800 290 ug/kg Caprolactam ND 1800 530 ug/kg Carbazole ND 1800 210 ug/kg Chrysene ND 1800 390 ug/kg Di-n-butyl phthalate ND 1800 300 ug/kg Di-n-octyl phthalate ND 1800 210 ug/kg	☆		12/22/15 14:29	1
Bis(2-chloroethoxy)methane ND 1800 370 ug/Kg Bis(2-chloroethyl)ether ND 1800 230 ug/Kg Bis(2-ethylhexyl) phthalate ND 1800 600 ug/Kg Butyl benzyl phthalate ND 1800 290 ug/Kg Caprolactam ND 1800 530 ug/Kg Carbazole ND 1800 210 ug/Kg Chrysene ND 1800 390 ug/Kg Di-n-butyl phthalate ND 1800 300 ug/Kg Di-n-octyl phthalate ND 1800 210 ug/Kg	₽		12/22/15 14:29	1
Bis(2-chloroethyl)ether ND 1800 230 ug/Kg Bis(2-ethylhexyl) phthalate ND 1800 600 ug/Kg Butyl benzyl phthalate ND 1800 290 ug/Kg Caprolactam ND 1800 530 ug/Kg Carbazole ND 1800 210 ug/Kg Chrysene ND 1800 390 ug/Kg Di-n-butyl phthalate ND 1800 300 ug/Kg Di-n-octyl phthalate ND 1800 210 ug/Kg			12/22/15 14:29	· · · · · · · · · · · · · · · · · · ·
Bis(2-ethylhexyl) phthalate ND 1800 600 ug/Kg Butyl benzyl phthalate ND 1800 290 ug/Kg Caprolactam ND 1800 530 ug/Kg Carbazole ND 1800 210 ug/Kg Chrysene ND 1800 390 ug/Kg Di-n-butyl phthalate ND 1800 300 ug/Kg Di-n-octyl phthalate ND 1800 210 ug/Kg			12/22/15 14:29	1
Butyl benzyl phthalate ND 1800 290 ug/Kg Caprolactam ND 1800 530 ug/Kg Carbazole ND 1800 210 ug/Kg Chrysene ND 1800 390 ug/Kg Di-n-butyl phthalate ND 1800 300 ug/Kg Di-n-octyl phthalate ND 1800 210 ug/Kg	т Ф		12/22/15 14:29	1
Caprolactam ND 1800 530 ug/Kg Carbazole ND 1800 210 ug/Kg Chrysene ND 1800 390 ug/Kg Di-n-butyl phthalate ND 1800 300 ug/Kg Di-n-octyl phthalate ND 1800 210 ug/Kg			12/22/15 14:29	· · · · · · · · · · · · · · · · · · ·
Carbazole ND 1800 210 ug/Kg Chrysene ND 1800 390 ug/Kg Di-n-butyl phthalate ND 1800 300 ug/Kg Di-n-octyl phthalate ND 1800 210 ug/Kg	~ Ф		12/22/15 14:29	
Chrysene ND 1800 390 ug/Kg Di-n-butyl phthalate ND 1800 300 ug/Kg Di-n-octyl phthalate ND 1800 210 ug/Kg				1
Di-n-butyl phthalate ND 1800 300 ug/Kg Di-n-octyl phthalate ND 1800 210 ug/Kg			12/22/15 14:29 12/22/15 14:29	1
Di-n-octyl phthalate ND 1800 210 ug/Kg	₩ ₩			1
	Ţ.		12/22/15 14:29	1
B" (1) ()	بن. - ناب		12/22/15 14:29	
Dibenz(a,h)anthracene ND 1800 310 ug/Kg	₽		12/22/15 14:29	1
Dibenzofuran ND 1800 210 ug/Kg	∵		12/22/15 14:29	1
Diethyl phthalate ND 1800 230 ug/Kg Dimethyl phthalate ND 1800 210 ug/Kg	ф. ф		12/22/15 14:29 12/22/15 14:29	1

TestAmerica Buffalo

Page 6 of 26 12/29/2015

Client: Woodard & Curran, Inc. TestAmerica Job ID: 480-92934-1 Project/Site: Rouses Point

Client Sample ID: SWMU1-SURFACE-SS-01R

Date Received: 12/18/15 09:45

Dimethylformamide

Lab Sample ID: 480-92934-1 Date Collected: 12/17/15 10:30 **Matrix: Solid**

Percent Solids: 94.1

‡ 12/21/15 08:18 12/22/15 14:29

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	ND		1800	190	ug/Kg	<u> </u>	12/21/15 08:18	12/22/15 14:29	10
Fluorene	ND		1800	210	ug/Kg	≎	12/21/15 08:18	12/22/15 14:29	10
Hexachlorobenzene	ND		1800	240	ug/Kg	☆	12/21/15 08:18	12/22/15 14:29	10
Hexachlorobutadiene	ND		1800	260	ug/Kg	≎	12/21/15 08:18	12/22/15 14:29	10
Hexachlorocyclopentadiene	ND		1800	240	ug/Kg	₩	12/21/15 08:18	12/22/15 14:29	10
Hexachloroethane	ND		1800	230	ug/Kg	☆	12/21/15 08:18	12/22/15 14:29	10
Indeno(1,2,3-cd)pyrene	ND		1800	220	ug/Kg	₩	12/21/15 08:18	12/22/15 14:29	10
Isophorone	ND		1800	370	ug/Kg	≎	12/21/15 08:18	12/22/15 14:29	10
N-Nitrosodi-n-propylamine	ND		1800	300	ug/Kg	☆	12/21/15 08:18	12/22/15 14:29	10
N-Nitrosodiphenylamine	ND		1800	1400	ug/Kg	☼	12/21/15 08:18	12/22/15 14:29	10
Naphthalene	ND		1800	230	ug/Kg	≎	12/21/15 08:18	12/22/15 14:29	10
Nitrobenzene	ND		1800	200	ug/Kg		12/21/15 08:18	12/22/15 14:29	10
Pentachlorophenol	ND		3400	1800	ug/Kg	≎	12/21/15 08:18	12/22/15 14:29	10
Phenanthrene	ND		1800	260	ug/Kg	≎	12/21/15 08:18	12/22/15 14:29	10
Phenol	ND		1800	270	ug/Kg	₽	12/21/15 08:18	12/22/15 14:29	10
Pyrene	ND		1800	210	ug/Kg	₩	12/21/15 08:18	12/22/15 14:29	10

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	4800	TJ	ug/Kg	\	1.82		12/21/15 08:18	12/22/15 14:29	10

6800

780 ug/Kg

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	64		39 - 146	12/21/15 08:18	12/22/15 14:29	10
2-Fluorobiphenyl	97		37 - 120	12/21/15 08:18	12/22/15 14:29	10
2-Fluorophenol	90		18 - 120	12/21/15 08:18	12/22/15 14:29	10
Nitrobenzene-d5	83		34 - 132	12/21/15 08:18	12/22/15 14:29	10
p-Terphenyl-d14	90		65 - 153	12/21/15 08:18	12/22/15 14:29	10
Phenol-d5	86		11 - 120	12/21/15 08:18	12/22/15 14:29	10

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) - Soluble

ND

Analyte	Result Qualif	ier RL	MDL	Ùnit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND	0.97	0.15	mg/Kg			12/21/15 17:14	1
Isobutyl alcohol	ND	0.97	0.24	mg/Kg	☼		12/21/15 17:14	1
Methanol	ND	0.97	0.29	mg/Kg	₽		12/21/15 17:14	1
n-Butanol	ND	0.97	0.23	mg/Kg			12/21/15 17:14	1
Propanol	ND	0.97	0.15	mg/Kg	₩		12/21/15 17:14	1
2-Butanol	ND	0.97	0.16	mg/Kg	₽		12/21/15 17:14	1
Isopropyl alcohol	ND	0.97	0.23	mg/Kg	\$		12/21/15 17:14	1
t-Butyl alcohol	ND	0.97	0.26	mg/Kg	₩		12/21/15 17:14	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Hexanone	100		30 - 137		12/21/15 17:14	1

Wethod: 8082A - Polychlorinate	ea Bipneny	ris (PCBS) by	Gas Chro	matogra	apny				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		190	38	ug/Kg	₩	12/21/15 08:12	12/21/15 15:56	1
PCB-1221	ND		190	38	ug/Kg	≎	12/21/15 08:12	12/21/15 15:56	1
PCB-1232	ND		190	38	ug/Kg	₩	12/21/15 08:12	12/21/15 15:56	1
PCB-1242	ND		190	38	ug/Kg	≎	12/21/15 08:12	12/21/15 15:56	1
PCB-1248	ND		190	38	ug/Kg	₽	12/21/15 08:12	12/21/15 15:56	1
PCB-1254	ND		190	90	ug/Kg	₩	12/21/15 08:12	12/21/15 15:56	1

TestAmerica Buffalo

Page 7 of 26

Client Sample Results

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Date Collected: 12/17/15 10:30

Date Received: 12/18/15 09:45

Method: 7471B - Mercury (CVAA)

Analyte

Mercury

Client Sample ID: SWMU1-SURFACE-SS-01R

TestAmerica Job ID: 480-92934-1

Lab Sample ID: 480-92934-1

Matrix: Solid

Dil Fac

Analyzed

Prepared

Percent Solids: 94.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1260	ND		190	90	ug/Kg	₩	12/21/15 08:12	12/21/15 15:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	94		60 - 154				12/21/15 08:12	12/21/15 15:56	1
DCB Decachlorobiphenyl	92		65 - 174				12/21/15 08:12	12/21/15 15:56	1
Method: 6010C - Metals (ICP) Analyte	•	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
						— 7	10/10/15 00:50	10/04/45 44 00	
Arsenic	2.0	J	2.2	0.45	mg/Kg	₩	12/18/15 22:50	12/21/15 11:26	1
	2.0 10.5	J	2.2 0.56		mg/Kg mg/Kg	☆	12/18/15 22:50 12/18/15 22:50		1 1
Barium		J		0.12				12/21/15 11:26	1 1 1
Arsenic Barium Cadmium Chromium	10.5	J	0.56	0.12 0.033	mg/Kg	₩	12/18/15 22:50	12/21/15 11:26 12/21/15 15:53	1 1 1
Barium Cadmium Chromium	10.5 ND	J	0.56 0.22	0.12 0.033 0.22	mg/Kg mg/Kg		12/18/15 22:50 12/18/15 22:50	12/21/15 11:26 12/21/15 15:53 12/21/15 11:26	1 1 1 1
Barium Cadmium	10.5 ND 4.8	J	0.56 0.22 0.56	0.12 0.033 0.22 0.27	mg/Kg mg/Kg mg/Kg	\$ \$	12/18/15 22:50 12/18/15 22:50 12/18/15 22:50 12/18/15 22:50	12/21/15 11:26 12/21/15 15:53 12/21/15 11:26	1 1 1 1 1

RL

0.021

Result Qualifier

ND

MDL Unit

0.0086 mg/Kg

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits) TBP FBP 2FP NBZ TPH PHL							
		TBP	FBP	2FP	NBZ	TPH	PHL			
Lab Sample ID	Client Sample ID	(39-146)	(37-120)	(18-120)	(34-132)	(65-153)	(11-120)			
480-92934-1	SWMU1-SURFACE-SS-01R	64	97	90	83	90	86			
LCS 480-280753/2-A	Lab Control Sample	85	83	71	74	89	75			
MB 480-280753/1-A	Method Blank	80	81	72	73	93	78			

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

TPH = p-Terphenyl-d14

PHL = Phenol-d5

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC)

Matrix: Solid **Prep Type: Soluble**

			Percent Surrogate Recovery (Acceptance Limits)
		2HN1	
Lab Sample ID	Client Sample ID	(30-137)	
480-92934-1	SWMU1-SURFACE-SS-01R	100	
480-92934-1 MS	SWMU1-SURFACE-SS-01R	95	
480-92934-1 MSD	SWMU1-SURFACE-SS-01R	90	
LCS 480-280861/2-A	Lab Control Sample	120	
MB 480-280861/1-A	Method Blank	112	
Surrogate Legend			

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		TCX1	DCB1					
Lab Sample ID	Client Sample ID	(60-154)	(65-174)					
480-92934-1	SWMU1-SURFACE-SS-01R	94	92					
480-92934-1 MS	SWMU1-SURFACE-SS-01R	115	108					
480-92934-1 MSD	SWMU1-SURFACE-SS-01R	106	102					
LCS 480-280752/2-A	Lab Control Sample	115	109					
MB 480-280752/1-A	Method Blank	96	98					

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

Page 9 of 26

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-280753/1-A

Matrix: Solid

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 280753

Analysis Batch: 281107	MR	MB						Prep Batch:	280753
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		170	25	ug/Kg			12/22/15 13:37	1
bis (2-chloroisopropyl) ether	ND		170		ug/Kg		12/21/15 08:18	12/22/15 13:37	1
2,4,5-Trichlorophenol	ND		170		ug/Kg		12/21/15 08:18	12/22/15 13:37	1
2,4,6-Trichlorophenol	ND		170		ug/Kg		12/21/15 08:18	12/22/15 13:37	1
2,4-Dichlorophenol	ND		170		ug/Kg			12/22/15 13:37	1
2,4-Dimethylphenol	ND		170		ug/Kg			12/22/15 13:37	1
2,4-Dinitrophenol	ND		1700		ug/Kg			12/22/15 13:37	1
2,4-Dinitrotoluene	ND		170		ug/Kg			12/22/15 13:37	1
2.6-Dinitrotoluene	ND		170		ug/Kg			12/22/15 13:37	1
2-Chloronaphthalene	ND		170		ug/Kg			12/22/15 13:37	· · · · · · · · · · · · · · · · · · ·
2-Chlorophenol	ND		170		ug/Kg			12/22/15 13:37	1
2-Methylnapthalene	ND		170		ug/Kg			12/22/15 13:37	1
2-Methylphenol	ND		170	20	ug/Kg			12/22/15 13:37	' 1
2-Nitroaniline	ND ND		330		ug/Kg			12/22/15 13:37	1
	ND ND		170		ug/Kg			12/22/15 13:37	
2-Nitrophenol 3,3'-Dichlorobenzidine	ND		330					12/22/15 13:37	
3-Nitroaniline	ND ND				ug/Kg				1
			330		ug/Kg			12/22/15 13:37	1
4,6-Dinitro-2-methylphenol	ND		330					12/22/15 13:37	1
4-Bromophenyl phenyl ether	ND		170		ug/Kg			12/22/15 13:37	1
4-Chloro-3-methylphenol	ND		170		ug/Kg			12/22/15 13:37	1
4-Chloroaniline	ND		170		ug/Kg			12/22/15 13:37	1
4-Chlorophenyl phenyl ether	ND		170		ug/Kg			12/22/15 13:37	1
4-Methylphenol	ND		330		ug/Kg			12/22/15 13:37	1
4-Nitroaniline	ND		330	89	ug/Kg			12/22/15 13:37	1
4-Nitrophenol	ND		330	120	ug/Kg			12/22/15 13:37	1
Acenaphthene	ND		170		ug/Kg			12/22/15 13:37	1
Acenaphthylene	ND		170		ug/Kg			12/22/15 13:37	1
Acetophenone	ND		170		ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Anthracene	ND		170	42	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Atrazine	ND		170	59	ug/Kg			12/22/15 13:37	1
Benzaldehyde	ND		170	130	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Benzo(a)anthracene	ND		170	17	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Benzo(a)pyrene	ND		170	25	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Benzo(b)fluoranthene	ND		170	27	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Benzo(g,h,i)perylene	ND		170	18	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Benzo(k)fluoranthene	ND		170	22	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Bis(2-chloroethoxy)methane	ND		170	36	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Bis(2-chloroethyl)ether	ND		170	22	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Bis(2-ethylhexyl) phthalate	ND		170	58	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Butyl benzyl phthalate	ND		170	28	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Caprolactam	ND		170	51	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Carbazole	ND		170	20	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Chrysene	ND		170		ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Di-n-butyl phthalate	ND		170		ug/Kg			12/22/15 13:37	1
Di-n-octyl phthalate	ND		170		ug/Kg			12/22/15 13:37	1
Dibenz(a,h)anthracene	ND		170		ug/Kg			12/22/15 13:37	1
Dibenzofuran	ND		170		ug/Kg			12/22/15 13:37	1
Diethyl phthalate	ND		170		ug/Kg			12/22/15 13:37	1

TestAmerica Buffalo

Page 10 of 26

2

3

Ė

7

9

11

13

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-280753/1-A **Client Sample ID: Method Blank** Matrix: Solid **Prep Type: Total/NA Analysis Batch: 281107 Prep Batch: 280753**

	MB N	ИB							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dimethyl phthalate	ND		170	20	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Fluoranthene	ND		170	18	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Fluorene	ND		170	20	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Hexachlorobenzene	ND		170	23	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Hexachlorobutadiene	ND		170	25	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Hexachlorocyclopentadiene	ND		170	23	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Hexachloroethane	ND		170	22	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Indeno(1,2,3-cd)pyrene	ND		170	21	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Isophorone	ND		170	36	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
N-Nitrosodi-n-propylamine	ND		170	29	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
N-Nitrosodiphenylamine	ND		170	140	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Naphthalene	ND		170	22	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Nitrobenzene	ND		170	19	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Pentachlorophenol	ND		330	170	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Phenanthrene	ND		170	25	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Phenol	ND		170	26	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Pyrene	ND		170	20	ug/Kg		12/21/15 08:18	12/22/15 13:37	1
Dimethylformamide	ND		660	75	ug/Kg		12/21/15 08:18	12/22/15 13:37	1

	MB	MB							
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	155	TJ	ug/Kg		1.67		12/21/15 08:18	12/22/15 13:37	1
Cyclohexane	333	TJN	ug/Kg		1.81	110-82-7	12/21/15 08:18	12/22/15 13:37	1
Unknown	1980	TJ	ug/Kg		1.94		12/21/15 08:18	12/22/15 13:37	1
Unknown	439	ΤJ	ug/Kg		4.44		12/21/15 08:18	12/22/15 13:37	1
Ethane, 1,1,2,2-tetrachloro-	274	TJN	ug/Kg		5.49	79-34-5	12/21/15 08:18	12/22/15 13:37	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	80		39 - 146	12/21/15 08:18	12/22/15 13:37	1
2-Fluorobiphenyl	81		37 - 120	12/21/15 08:18	12/22/15 13:37	1
2-Fluorophenol	72		18 - 120	12/21/15 08:18	12/22/15 13:37	1
Nitrobenzene-d5	73		34 - 132	12/21/15 08:18	12/22/15 13:37	1
p-Terphenyl-d14	93		65 - 153	12/21/15 08:18	12/22/15 13:37	1
Phenol-d5	78		11 - 120	12/21/15 08:18	12/22/15 13:37	1

Lab Sample ID: LCS 480-280753/2-A **Matrix: Solid**

Analysis Batch: 281107

Client Sam	iple ID:	Lab	Control	Sample	
		Prep	Type:	Total/NA	
		Pre	p Batch	: 280753	

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Biphenyl	1630	1420		ug/Kg		87	71 - 120	
bis (2-chloroisopropyl) ether	1630	1190		ug/Kg		73	44 - 120	
2,4,5-Trichlorophenol	1630	1420		ug/Kg		87	59 - 126	
2,4,6-Trichlorophenol	1630	1410		ug/Kg		86	59 - 123	
2,4-Dichlorophenol	1630	1280		ug/Kg		78	52 - 120	
2,4-Dimethylphenol	1630	1290		ug/Kg		79	36 - 120	
2,4-Dinitrophenol	3260	2530		ug/Kg		78	35 - 146	
2,4-Dinitrotoluene	1630	1420		ug/Kg		87	55 - 125	

TestAmerica Buffalo

QC Sample Results

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-92934-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-280753/2-A

Matrix: Solid

Client Sample ID: La	b Control Sample
Pr	ep Type: Total/NA
P	rep Batch: 280753

Analysis Batch: 281107	Spike	LCS	LCS				Prep Batch: 28075 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2,6-Dinitrotoluene	1630	1440		ug/Kg		88	66 - 128
2-Chloronaphthalene	1630	1400		ug/Kg		86	57 - 120
2-Chlorophenol	1630	1210		ug/Kg		74	38 - 120
2-Methylnapthalene	1630	1290		ug/Kg		79	47 - 120
2-Methylphenol	1630	1230		ug/Kg		75	48 - 120
2-Nitroaniline	1630	1400		ug/Kg		86	61 - 130
2-Nitrophenol	1630	1250		ug/Kg		76	50 - 120
3,3'-Dichlorobenzidine	3260	2370		ug/Kg		73	48 - 126
3-Nitroaniline	1630	1170		ug/Kg		72	61 - 127
4,6-Dinitro-2-methylphenol	3260	2800		ug/Kg		86	49 - 155
4-Bromophenyl phenyl ether	1630	1450		ug/Kg		89	58 - 131
4-Chloro-3-methylphenol	1630	1310		ug/Kg		80	49 - 125
4-Chlorophenyl phenyl ether	1630	1380		ug/Kg		85	63 - 124
4-Methylphenol	1630	1280		ug/Kg		78	50 - 119
4-Nitroaniline	1630	1340		ug/Kg		82	63 - 128
4-Nitrophenol	3260	2900		ug/Kg		89	43 - 137
Acenaphthene	1630	1420		ug/Kg		87	53 - 120
Acenaphthylene	1630	1420		ug/Kg		87	58 ₋ 121
Acetophenone	1630	1250		ug/Kg		76	66 - 120
Anthracene	1630	1530		ug/Kg		94	62 - 129
Atrazine	3260	2760		ug/Kg		85	60 - 164
Benzaldehyde	3260	1590		ug/Kg		49	21 - 120
Benzo(a)anthracene	1630	1550		ug/Kg		95	65 - 133
Benzo(a)pyrene	1630	1500		ug/Kg		92	64 - 127
Benzo(b)fluoranthene	1630	1450		ug/Kg		89	64 - 135
Benzo(g,h,i)perylene	1630	1470		ug/Kg		90	50 - 152
Benzo(k)fluoranthene	1630	1590		ug/Kg		98	58 ₋ 138
Bis(2-chloroethoxy)methane	1630	1280		ug/Kg		78	61 - 133
Bis(2-chloroethyl)ether	1630	1200		ug/Kg		74	45 - 120
Bis(2-ethylhexyl) phthalate	1630	1490		ug/Kg		91	61 - 133
Butyl benzyl phthalate	1630	1470		ug/Kg		90	61 - 129
Caprolactam	3260	2740		ug/Kg		84	54 - 133
Carbazole	1630	1550		ug/Kg ug/Kg		95	59 ₋ 129
Chrysene	1630	1570		ug/Kg ug/Kg		96	64 - 131
		1560				96	58 - 130
Di-n-butyl phthalate	1630 1630	1520		ug/Kg		93	62 - 133
Di-n-octyl phthalate				ug/Kg			
Dibenzofuran Dibenzofuran	1630	1480		ug/Kg		91	54 - 148
	1630	1430		ug/Kg		88	56 - 120
Diethyl phthalate	1630	1430		ug/Kg		88	66 - 126
Dimethyl phthalate	1630	1460		ug/Kg		89	65 - 124
Fluoranthene	1630	1540		ug/Kg		94	62 - 131
Fluorene	1630	1430		ug/Kg		88	63 - 126
Hexachlorobenzene	1630	1450		ug/Kg		89	60 - 132
Hexachlorobutadiene	1630	1200		ug/Kg		74	45 - 120
Hexachlorocyclopentadiene	1630	1270		ug/Kg		78	31 - 120
Hexachloroethane	1630	1100		ug/Kg		67	41 - 120
Indeno(1,2,3-cd)pyrene	1630	1470		ug/Kg		90	56 - 149
Isophorone	1630	1300		ug/Kg		79	56 - 120

TestAmerica Buffalo

Page 12 of 26

3

5

7

10

12

14

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-280753/2-A

Matrix: Solid

Analysis Batch: 281107

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 280753

7 maryono Datom 20 i 101	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
N-Nitrosodi-n-propylamine	1630	1240	-	ug/Kg		76	46 - 120
N-Nitrosodiphenylamine	3260	3100		ug/Kg		95	20 - 119
Naphthalene	1630	1300		ug/Kg		80	46 - 120
Nitrobenzene	1630	1290		ug/Kg		79	49 - 120
Pentachlorophenol	3260	2780		ug/Kg		85	33 - 136
Phenanthrene	1630	1530		ug/Kg		94	60 - 130
Phenol	1630	1260		ug/Kg		77	36 - 120
Pyrene	1630	1600		ug/Kg		98	51 - 133

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	85		39 - 146
2-Fluorobiphenyl	83		37 - 120
2-Fluorophenol	71		18 - 120
Nitrobenzene-d5	74		34 - 132
p-Terphenyl-d14	89		65 - 153
Phenol-d5	75		11 - 120

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC)

Lab Sample ID: MB 480-280861/1-A **Client Sample ID: Method Blank**

Matrix: Solid

Analysis Batch: 280898

Prep Type: Soluble

	MB ME	3						
Analyte	Result Qu	ıalifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND	0.97	0.14	mg/Kg			12/21/15 16:43	1
Isobutyl alcohol	ND	0.97	0.24	mg/Kg			12/21/15 16:43	1
Methanol	ND	0.97	0.29	mg/Kg			12/21/15 16:43	1
n-Butanol	ND	0.97	0.22	mg/Kg			12/21/15 16:43	1
Propanol	ND	0.97	0.14	mg/Kg			12/21/15 16:43	1
2-Butanol	ND	0.97	0.15	mg/Kg			12/21/15 16:43	1
Isopropyl alcohol	ND	0.97	0.23	mg/Kg			12/21/15 16:43	1
t-Butyl alcohol	ND	0.97	0.26	mg/Kg			12/21/15 16:43	1

MB MB %Recovery Qualifier Surrogate Limits Dil Fac Prepared Analyzed 2-Hexanone 30 - 137 12/21/15 16:43 112

Lab Sample ID: LCS 480-280861/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

Analysis Batch: 280898

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits	
Ethanol	17.0	19.4		mg/Kg	114	55 - 136	
Isobutyl alcohol	17.0	19.4		mg/Kg	114	51 - 130	
Methanol	17.0	19.4		mg/Kg	114	53 - 140	
n-Butanol	17.0	18.6		mg/Kg	109	54 - 141	
Propanol	17.0	19.2		mg/Kg	113	59 - 139	
2-Butanol	17.0	18.8		mg/Kg	111	49 - 136	

TestAmerica Buffalo

Page 13 of 26

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8015D - Nonhalogenated Organic Compounds - Direct Injection (GC) (Continued)

Lab Sample ID: LCS 480-280861/2-A **Matrix: Solid**

Client Sample ID: Lab Control Sample Prep Type: Soluble

Analysis Batch: 280898

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit D %Rec Isopropyl alcohol 17.0 19.6 mg/Kg 115 50 - 131 t-Butyl alcohol 17.0 19.7 mg/Kg 116 48 - 130

LCS LCS

Surrogate %Recovery Qualifier Limits 2-Hexanone 30 - 137 120

Lab Sample ID: 480-92934-1 MS Client Sample ID: SWMU1-SURFACE-SS-01R **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 280898

Sample Sample Spike MS MS %Rec. Analyte **Result Qualifier** Added Result Qualifier Unit D %Rec Limits ☼ Ethanol ND 18.2 18.7 mg/Kg 103 70 - 130 Isobutyl alcohol ND 18.2 19.4 mg/Kg ₩ 107 70 - 130 Methanol ND 18.9 ₩ 104 18.2 mg/Kg 70 - 130 ND ₩ n-Butanol 18.2 18.1 mg/Kg 99 70 - 130 ☼ ND 70 - 130 Propanol 18.2 19.0 mg/Kg 104 2-Butanol ND 18.4 mg/Kg ₩ 101 70 - 130 18.2 ₽ ND 104 Isopropyl alcohol 18.2 18.9 mg/Kg 70 - 130 ď÷ t-Butyl alcohol ND 18.2 19.2 mg/Kg 106 50 - 130

MS MS Surrogate %Recovery Limits Qualifier

30 - 137 2-Hexanone 95

Lab Sample ID: 480-92934-1 MSD

Matrix: Solid

Analysis Batch: 280898

Client Sample ID: SWMU1-SURFACE-SS-01R **Prep Type: Soluble**

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethanol	ND		18.4	18.8		mg/Kg	<u></u>	102	70 - 130	0	30
Isobutyl alcohol	ND		18.4	19.4		mg/Kg	₩	105	70 - 130	0	30
Methanol	ND		18.4	18.8		mg/Kg	₩	102	70 - 130	1	30
n-Butanol	ND		18.4	18.1		mg/Kg	₩	98	70 - 130	0	30
Propanol	ND		18.4	19.1		mg/Kg	₩	104	70 - 130	0	30
2-Butanol	ND		18.4	18.5		mg/Kg	₩	100	70 - 130	0	30
Isopropyl alcohol	ND		18.4	18.9		mg/Kg	₩.	102	70 - 130	0	30
t-Butyl alcohol	ND		18.4	19.2		mg/Kg	₽	104	50 - 130	0	30

MSD MSD Surrogate %Recovery Qualifier Limits 2-Hexanone 90 30 - 137

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-280752/1-A

Matrix: Solid

Analysis Batch: 280863

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 280752

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		240	47	ug/Kg		12/21/15 08:12	12/21/15 14:53	1
PCB-1221	ND		240	47	ug/Kg		12/21/15 08:12	12/21/15 14:53	1
PCB-1232	ND		240	47	ug/Kg		12/21/15 08:12	12/21/15 14:53	1
PCB-1242	ND		240	47	ug/Kg		12/21/15 08:12	12/21/15 14:53	1
PCB-1248	ND		240	47	ug/Kg		12/21/15 08:12	12/21/15 14:53	1
PCB-1254	ND		240	110	ug/Kg		12/21/15 08:12	12/21/15 14:53	1
PCB-1260	ND		240	110	ug/Kg		12/21/15 08:12	12/21/15 14:53	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	96	60 - 154	12/21/15 08:12	12/21/15 14:53	1
DCB Decachlorobiphenyl	98	65 - 174	12/21/15 08:12	12/21/15 14:53	1

Spike

Added

1760

1760

Spike

Added

2060

2060

Spike

Added

1990

1990

LCS LCS

MS MS

MSD MSD

2000

2110

Result Qualifier

2280

2390

Result Qualifier

1990

2110

Result Qualifier

Unit

ug/Kg

ug/Kg

Unit

ug/Kg

ug/Kg

Unit

ug/Kg

ug/Kg

D

☼

Ö

Ö

Lab Sample ID: LCS 480-280752/2-A

Matrix: Solid

Analyte

PCB-1016

PCB-1260

Analysis Batch: 280863

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 280752

%Rec. %Rec Limits 113 51 - 185

120

61 - 184

LCS LCS

Sample Sample

Sample Sample

ND

ND

Result Qualifier

ND

ND

Result Qualifier

Surrogate	%Recovery Qu	alifier Limits
Tetrachloro-m-xylene	115	60 - 154
DCB Decachlorobiphenyl	109	65 - 174

Lab Sample ID: 480-92934-1 MS

Matrix: Solid

Analyte

PCB-1016

PCB-1260

Analysis Batch: 280863

Client Sample ID: SWMU1-SURFACE-SS-01R

Prep Type: Total/NA

Prep Batch: 280752 %Rec.

%Rec Limits 111 50 - 177 116 33 - 200

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	115		60 - 154
DCB Decachlorobiphenyl	108		65 - 174

Lab Sample ID: 480-92934-1 MSD

Matrix: Solid

Analyte

PCB-1016

PCB-1260

Analysis Batch: 280863

Client Sample ID: SWMU1-SURFACE-SS-01R

Prep Type: Total/NA Prep Batch: 280752

%Rec. **RPD** %Rec Limits **RPD** Limit 100 50 - 177 13 106 33 - 200 50 13

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	106		60 - 154
DCB Decachlorobiphenyl	102		65 - 174

TestAmerica Buffalo

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-280525/1-A

Matrix: Solid

Analysis Batch: 280878

Client Sample ID: Method Blank
Prep Type: Total/NA

Prep Batch: 280525

, ,	MD	MD							
Analyte	MB Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		2.0	0.39	mg/Kg		12/18/15 22:50	12/21/15 11:04	1
Barium	ND		0.49	0.11	mg/Kg		12/18/15 22:50	12/21/15 11:04	1
Chromium	ND		0.49	0.20	mg/Kg		12/18/15 22:50	12/21/15 11:04	1
Lead	ND		0.99	0.24	mg/Kg		12/18/15 22:50	12/21/15 11:04	1
Selenium	ND		3.9	0.39	mg/Kg		12/18/15 22:50	12/21/15 11:04	1
Silver	ND		0.59	0.20	mg/Kg		12/18/15 22:50	12/21/15 11:04	1

Lab Sample ID: MB 480-280525/1-A

Matrix: Solid

Analysis Batch: 280986

MR MR

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 280525

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		2.0	0.39	mg/Kg		12/18/15 22:50	12/21/15 15:40	1
Barium	ND		0.49	0.11	mg/Kg		12/18/15 22:50	12/21/15 15:40	1
Cadmium	ND		0.20	0.030	mg/Kg		12/18/15 22:50	12/21/15 15:40	1
Chromium	ND		0.49	0.20	mg/Kg		12/18/15 22:50	12/21/15 15:40	1
Lead	ND		0.99	0.24	mg/Kg		12/18/15 22:50	12/21/15 15:40	1
Selenium	ND		3.9	0.39	mg/Kg		12/18/15 22:50	12/21/15 15:40	1
Silver	ND		0.59	0.20	mg/Kg		12/18/15 22:50	12/21/15 15:40	1
<u> </u>									

Lab Sample ID: LCSSRM 480-280525/2-A

Matrix: Solid

Analysis Batch: 280878

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 280525

-	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	98.5	93.43		mg/Kg	_	94.9	69.3 - 145. 2	
Barium	308	267.8		mg/Kg		87.0	74.0 - 126. 0	
Chromium	182	158.4		mg/Kg		87.0	70.9 - 129. 7	
Lead	130	122.2		mg/Kg		94.0	72.5 - 126. 9	
Selenium	154	145.1		mg/Kg		94.2	67.5 - 132. 5	
Silver	40.9	33.38		mg/Kg		81.6	66.0 - 133. 7	

Lab Sample ID: LCSSRM 480-280525/2-A

Matrix: Solid

Analysis Batch: 280986

Client	Sample	ID:	Lab	Contro	I Sample
--------	--------	-----	-----	--------	----------

Prep Type: Total/NA

Prep Batch: 280525

-	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	98.5	86.61		mg/Kg		87.9	69.3 - 145. 2	
Barium	308	260.2		mg/Kg		84.5	74.0 - 126. 0	
Cadmium	146	127.8		mg/Kg		87.5	73.3 ₋ 126. 7	
Chromium	182	157.7		mg/Kg		86.7	70.9 - 129.	

TestAmerica Buffalo

Page 16 of 26

2

4

6

8

10

12

1 3

unonoa Danak

Client Sample ID: SWMU1-SURFACE-SS-01R

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Lab Sample ID: 480-92934-1 MS

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCSSRM 480-280525/2-A Matrix: Solid Analysis Batch: 280986				Clien	t Saı	mple II	D: Lab Control Sample Prep Type: Total/NA Prep Batch: 280525
•	Spike	LCSSRM	LCSSRM				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Lead	130	123.8		mg/Kg		95.2	72.5 - 126. 9
Selenium	154	135.7		mg/Kg		88.1	67.5 - 132. 5
Silver	40.9	33.65		mg/Kg		82.3	66.0 - 133. 7

Prep Type: Total/NA Prep Batch: 280525
%Rec.
Limits
75 - 125
75 ₋ 125
75 ₋ 125
75 - 125
75 ₋ 125
75 - 125
L 7: 7: 7: 7:

Lab Sample ID: 480-92934-1 MS					Client Sample ID: SWMU1-SURFACE-SS-01R							
Matrix: Solid									Prep Typ	e: Total/NA		
Analysis Batch: 280986									Prep Ba	tch: 280525		
-	Sample	Sample	Spike	MS	MS				%Rec.			
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits			
Cadmium	ND		41.4	41.45		mg/Kg	<u> </u>	100	75 - 125			

Matrix: Solid Analysis Batch: 280878									ا 1-SURF Prep Typ Prep Ba	e: Tot	al/NA
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	2.0	J	42.6	48.28		mg/Kg	<u></u>	108	75 - 125	2	20
Barium	10.5		42.6	55.54		mg/Kg	☼	106	75 - 125	2	20
Chromium	4.8		42.6	50.59		mg/Kg	₩	107	75 - 125	3	20
Lead	3.2		42.6	48.69		mg/Kg	₩	107	75 - 125	0	20
Selenium	ND		42.6	44.12		mg/Kg	₩	104	75 - 125	1	20
Silver	ND		10.7	10.50		mg/Kg	☼	99	75 - 125	2	20

Lab Sample ID: 480-92934-	1 MSD				Cli	ent Samp	le ID	: SWM	U1-SURF	ACE-SS	S-01R
Matrix: Solid									Prep Ty	e: Tot	al/NA
Analysis Batch: 280986									Prep Ba	tch: 28	30525
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cadmium	ND		42.6	42.17		mg/Kg	\	99	75 - 125	2	20

TestAmerica Buffalo

QC Sample Results

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-92934-1

3

3

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 480-280761/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 280862 Prep Batch: 280761 MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.020 <u>12/21/15 10:15</u> <u>12/21/15 12:02</u> $\overline{\mathsf{ND}}$ 0.0082 mg/Kg Mercury

Lab Sample ID: LCDSRM 480-280761/3-A ^5 Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 280862** Prep Batch: 280761 Spike LCDSRM LCDSRM **RPD** %Rec. Added Result Qualifier Limits Analyte Unit **RPD** Limit %Rec Mercury 7.10 7.54 mg/Kg 106.2 51.3 - 149. 20

Lab Sample ID: LCSSRM 480-280761/2-A ^5 **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA Analysis Batch: 280862** Prep Batch: 280761 Spike LCSSRM LCSSRM %Rec. Added Result Qualifier Limits Analyte Unit D %Rec 7.10 8.38 118.0 51.3 - 149. Mercury mg/Kg

Lab Sample ID: 480-92934-1 MS Client Sample ID: SWMU1-SURFACE-SS-01R **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 280862** Prep Batch: 280761 MS MS Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Limits Unit D %Rec Mercury ND 0.328 0.340 mg/Kg ₩ 104 80 - 120

Client Sample ID: SWMU1-SURFACE-SS-01R Lab Sample ID: 480-92934-1 MSD **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 280862** Prep Batch: 280761 Sample Sample Spike MSD MSD %Rec. **RPD**

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Mercury ND 0.360 0.371 mg/Kg $\overline{\Box}$ 103 80 - 120

QC Association Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-92934-1

GC/MS Semi VOA

Prep Batch: 280753

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-92934-1	SWMU1-SURFACE-SS-01R	Total/NA	Solid	3550C	
LCS 480-280753/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-280753/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 281107

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-92934-1	SWMU1-SURFACE-SS-01R	Total/NA	Solid	8270D	280753
LCS 480-280753/2-A	Lab Control Sample	Total/NA	Solid	8270D	280753
MB 480-280753/1-A	Method Blank	Total/NA	Solid	8270D	280753

GC VOA

Leach Batch: 280861

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-92934-1	SWMU1-SURFACE-SS-01R	Soluble	Solid	DI Leach	
480-92934-1 MS	SWMU1-SURFACE-SS-01R	Soluble	Solid	DI Leach	
480-92934-1 MSD	SWMU1-SURFACE-SS-01R	Soluble	Solid	DI Leach	
LCS 480-280861/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
MB 480-280861/1-A	Method Blank	Soluble	Solid	DI Leach	

Analysis Batch: 280898

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
SWMU1-SURFACE-SS-01R	Soluble	Solid	8015D	280861
SWMU1-SURFACE-SS-01R	Soluble	Solid	8015D	280861
SWMU1-SURFACE-SS-01R	Soluble	Solid	8015D	280861
Lab Control Sample	Soluble	Solid	8015D	280861
Method Blank	Soluble	Solid	8015D	280861
	SWMU1-SURFACE-SS-01R SWMU1-SURFACE-SS-01R SWMU1-SURFACE-SS-01R Lab Control Sample	SWMU1-SURFACE-SS-01R Soluble SWMU1-SURFACE-SS-01R Soluble SWMU1-SURFACE-SS-01R Soluble Lab Control Sample Soluble	SWMU1-SURFACE-SS-01R Soluble Solid SWMU1-SURFACE-SS-01R Soluble Solid SWMU1-SURFACE-SS-01R Soluble Solid Lab Control Sample Soluble Solid	SWMU1-SURFACE-SS-01R Soluble Solid 8015D SWMU1-SURFACE-SS-01R Soluble Solid 8015D SWMU1-SURFACE-SS-01R Soluble Solid 8015D Lab Control Sample Soluble Solid 8015D

GC Semi VOA

Prep Batch: 280752

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-92934-1	SWMU1-SURFACE-SS-01R	Total/NA	Solid	3550C	_
480-92934-1 MS	SWMU1-SURFACE-SS-01R	Total/NA	Solid	3550C	
480-92934-1 MSD	SWMU1-SURFACE-SS-01R	Total/NA	Solid	3550C	
LCS 480-280752/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-280752/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 280863

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-92934-1	SWMU1-SURFACE-SS-01R	Total/NA	Solid	8082A	280752
480-92934-1 MS	SWMU1-SURFACE-SS-01R	Total/NA	Solid	8082A	280752
480-92934-1 MSD	SWMU1-SURFACE-SS-01R	Total/NA	Solid	8082A	280752
LCS 480-280752/2-A	Lab Control Sample	Total/NA	Solid	8082A	280752
MB 480-280752/1-A	Method Blank	Total/NA	Solid	8082A	280752

TestAmerica Buffalo

Page 19 of 26

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

Metals

Prep Batch: 280525

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-92934-1	SWMU1-SURFACE-SS-01R	Total/NA	Solid	3050B	_
480-92934-1 MS	SWMU1-SURFACE-SS-01R	Total/NA	Solid	3050B	
480-92934-1 MSD	SWMU1-SURFACE-SS-01R	Total/NA	Solid	3050B	
LCSSRM 480-280525/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-280525/1-A	Method Blank	Total/NA	Solid	3050B	
_					

Prep Batch: 280761

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-92934-1	SWMU1-SURFACE-SS-01R	Total/NA	Solid	7471B	
480-92934-1 MS	SWMU1-SURFACE-SS-01R	Total/NA	Solid	7471B	
480-92934-1 MSD	SWMU1-SURFACE-SS-01R	Total/NA	Solid	7471B	
LCDSRM 480-280761/3-A ^5	Lab Control Sample Dup	Total/NA	Solid	7471B	
LCSSRM 480-280761/2-A ^5	Lab Control Sample	Total/NA	Solid	7471B	
MB 480-280761/1-A	Method Blank	Total/NA	Solid	7471B	

Analysis Batch: 280862

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-92934-1	SWMU1-SURFACE-SS-01R	Total/NA	Solid	7471B	280761
480-92934-1 MS	SWMU1-SURFACE-SS-01R	Total/NA	Solid	7471B	280761
480-92934-1 MSD	SWMU1-SURFACE-SS-01R	Total/NA	Solid	7471B	280761
LCDSRM 480-280761/3-A ^5	Lab Control Sample Dup	Total/NA	Solid	7471B	280761
LCSSRM 480-280761/2-A ^5	Lab Control Sample	Total/NA	Solid	7471B	280761
MB 480-280761/1-A	Method Blank	Total/NA	Solid	7471B	280761

Analysis Batch: 280878

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-92934-1	SWMU1-SURFACE-SS-01R	Total/NA	Solid	6010C	280525
480-92934-1 MS	SWMU1-SURFACE-SS-01R	Total/NA	Solid	6010C	280525
480-92934-1 MSD	SWMU1-SURFACE-SS-01R	Total/NA	Solid	6010C	280525
LCSSRM 480-280525/2-A	Lab Control Sample	Total/NA	Solid	6010C	280525
MB 480-280525/1-A	Method Blank	Total/NA	Solid	6010C	280525

Analysis Batch: 280986

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-92934-1	SWMU1-SURFACE-SS-01R	Total/NA	Solid	6010C	280525
480-92934-1 MS	SWMU1-SURFACE-SS-01R	Total/NA	Solid	6010C	280525
480-92934-1 MSD	SWMU1-SURFACE-SS-01R	Total/NA	Solid	6010C	280525
LCSSRM 480-280525/2-A	Lab Control Sample	Total/NA	Solid	6010C	280525
MB 480-280525/1-A	Method Blank	Total/NA	Solid	6010C	280525

General Chemistry

Analysis Batch: 280626

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-92934-1	SWMU1-SURFACE-SS-01R	Total/NA	Solid	Moisture	

Lab Chronicle

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-92934-1

Lab Sample ID: 480-92934-1

Matrix: Solid

Date Collected: 12/17/15 10:30 Date Received: 12/18/15 09:45

Client Sample ID: SWMU1-SURFACE-SS-01R

Batch Batch Dilution Batch Prepared **Prep Type** Method **Factor** Number or Analyzed Type Run Analyst Lab TAL BUF Total/NA Analysis Moisture 280626 12/19/15 05:39 CSW

Client Sample ID: SWMU1-SURFACE-SS-01R Lab Sample ID: 480-92934-1

Date Collected: 12/17/15 10:30 Matrix: Solid
Date Received: 12/18/15 09:45 Percent Solids: 94.1

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			280753	12/21/15 08:18	TRG	TAL BUF
Total/NA	Analysis	8270D		10	281107	12/22/15 14:29	CAS	TAL BUF
Soluble	Leach	DI Leach			280861	12/21/15 14:08	AJM	TAL BUF
Soluble	Analysis	8015D		1	280898	12/21/15 17:14	AJM	TAL BUF
Total/NA	Prep	3550C			280752	12/21/15 08:12	CAM	TAL BUF
Total/NA	Analysis	8082A		1	280863	12/21/15 15:56	KS	TAL BUF
Total/NA	Prep	3050B			280525	12/18/15 22:50	KJ1	TAL BUF
Total/NA	Analysis	6010C		1	280878	12/21/15 11:26	AMH	TAL BUF
Total/NA	Prep	3050B			280525	12/18/15 22:50	KJ1	TAL BUF
Total/NA	Analysis	6010C		1	280986	12/21/15 15:53	AMH	TAL BUF
Total/NA	Prep	7471B			280761	12/21/15 10:15	TAS	TAL BUF
Total/NA	Analysis	7471B		1	280862	12/21/15 12:12	TAS	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

6

7

9

11

14

Certification Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-92934-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
New York	NELAP		2	10026	03-31-16
The following analytes	s are included in this repo	rt, but certification is	s not offered by the g	overning authority:	
Analysis Method	Prep Method	Matrix	Analyt	te	
8015D		Solid	2-Buta	anol	
8015D		Solid	Isopro	pyl alcohol	
8015D		Solid	Metha	inol	
8015D		Solid	n-Buta	anol	
8015D		Solid	Propa	nol	
8270D	3550C	Solid	Dimet	hylformamide	
Moisture		Solid	Perce	nt Moisture	
Moisture		Solid	Perce	nt Solids	

Method Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-92934-1

Method	Method Description	Protocol	Laboratory
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
8015D	Nonhalogenated Organic Compounds - Direct Injection (GC)	SW846	TAL BUF
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7471B	Mercury (CVAA)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

8

9

10

11

12

14

Sample Summary

Client: Woodard & Curran, Inc. Project/Site: Rouses Point

TestAmerica Job ID: 480-92934-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
480-92934-1	SWMU1-SURFACE-SS-01R	Solid	12/17/15 10:30 12/18/15 09:45

9

4

5

10

11

13

14

Temperature on Receipt _

THE LEADER IN ENVIRONMENTAL TESTING

Drinking Water? Yes□ NoA

Chain of Custody Record

TestAmerica

TAL-4124 (1007))	<			
Client 1 1	Project Manager X		Ø	Date i	Chain of Qustody Nymber
Woodard and Curran	Don	Don Weekes		7/1/2	1 TS / 87.
Address Hotelo Good Ave	Telephone Number (Area Code)/Fax Number	ode)/Fax Number	7	Lab Number	Page
City Child State Zip Code	Site Contact		Analys	Analysis (Attach list if	
2 6	Carrier/Waybill Number	Beery hasom	ופעיק	0,	
Acce - Rouses Point NY	red Ex		7] 7]	80	Special Instructions/
Contract/Purchase Ordeit/Quote No. 20690	Matrix	Containers & Preservatives	12.18 - 517 4144		Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Time Nichards Successful Successf	sendul possh sonh hosn hosn	A5W	इव्य	
3WMV1-SURFACE-SS-01R (2/17/15)	1030 X	×	× × ×	×	
202					
25.0					
of 26					
				480-92934 C	480-92934 Chain of Custouy
	·				A Take Temp. UN
					temp Clark is
					Cooley
Possible Hazard Identification Non-Hazard	Sample Disposal Sample Disposal	🔾 Disposal By Lab	Archive For	(A fee may be as Months longer than 1 mc	(A fee may be assessed if samples are retained longer than 1 month)
Tum Around Time Required 24 Hours	Other (Expendited)	OC Requirements (Sp	All lab analyse	Conduc 400)	Hd Vie NYSDEC 2005
dBy / /	Date	1. Received By	1 1		Date Jun Ogus
2. Reinquished By	Date Time	2. Received By			- 1
3. Relinquished By	Date	3. Received By			, Date Time
29/2					
Comments				3	3,7 1
DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample;	ith the Sample; PINK - Field Copy	Ad			

Client: Woodard & Curran, Inc.

Job Number: 480-92934-1

Login Number: 92934 List Source: TestAmerica Buffalo

List Number: 1

Creator: Janish, Carl M

Question Answer Comme
Radioactivity either was not measured or, if measured, is at or below background
The cooler's custody seal, if present, is intact.
The cooler or samples do not appear to have been compromised or True tampered with.
Samples were received on ice.
Cooler Temperature is acceptable. True
Cooler Temperature is recorded. True
COC is present. True
COC is filled out in ink and legible.
COC is filled out with all pertinent information.
Is the Field Sampler's name present on COC? True
There are no discrepancies between the sample IDs on the containers and True the COC.
Samples are received within Holding Time.
Sample containers have legible labels. True
Containers are not broken or leaking.
Sample collection date/times are provided.
Appropriate sample containers are used. True
Sample bottles are completely filled. True
Sample Preservation Verified True
There is sufficient vol. for all requested analyses, incl. any requested True MS/MSDs
VOA sample vials do not have headspace or bubble is <6mm (1/4") in True diameter.
If necessary, staff have been informed of any short hold time or quick TAT True needs
Multiphasic samples are not present. True
Samples do not require splitting or compositing.
Sampling Company provided. True w+c
Samples received within 48 hours of sampling.
Samples requiring field filtration have been filtered in the field. N/A
Chlorine Residual checked. N/A

APPENDIX D: DATA VALIDATION SUMMARIES

PFIZER - ROUSES POINT, NEW YORK - SOIL DATA OCTOBER 2014 PROJECT SUMMARY

TestAmerica Inc. Report Number: J70307-1

The criteria detailed below were used to qualify the data. Raw data were not used to verify the results reported by the laboratory.

Samples were received at Celsius at 3.2 degrees Celsius. No qualifications were applied.

VOCs EPA Method 8260C:

All volatile organic compound (VOC) samples were analyzed within technical holding time with one exception. VOC sample TRIP BLANK (480-70307-8) was received with a pH >2 and was not analyzed within the 7 day holding time limit for unpreserved samples. Therefore, all non-detected results in sample TRIP BLANK (480-70307-8) were rejected (R).

All VOC surrogates met acceptance criteria. No qualifications were applied.

All VOC internal standards met acceptance criteria. No qualifications were applied.

All BFB tuning of the mass spectrometers met acceptance criteria. No qualifications were applied.

All initial calibration (IC) average relative response factors (RRFs) were greater than the 0.05 control limit and all percent relative standard deviations (RSDs) were less than the control limit of 20.0% with the following exceptions:

IC DATE	COMPOUND	RRF	AFFECTED SAMPLES	QUALIFIER FLAG
10/10/2014	1,4-Dioxane	0.0083	All except TRIP BLANK	None, poorly behaved compound
10/16/2014	1,4-Dioxane	0.0108	TRIP BLANK	None, poorly behaved compound

All continuing calibration (CC) individual response factors (RFs) were greater than 0.05 and the percent differences (%Ds) were less than 20.0% with the following exceptions:

CC DATE	COMPOUND	RF or %D	AFFECTED SAMPLES	QUALIFIER FLAG
11/4/2014	1,1,2-Trichloro-1,2,2- trifluoroethane 1,4-Dioxane	27.8% 0.0081	480-70307-2, -3, -5 through -7, -10 through -13	UJ None, poorly behaved compound
11/5/2014	Methyl tert-butyl ether 2,2-Dichloropropane 1,1,1-Trichloroethane Cyclohexane Carbon tetrachloride Bromoform 1,4-Dioxane	28.8% 28.1% 26.4% 31.5% 24.3% 21.1% 0.0074	480-70307-4	UJ UJ UJ UJ UJ UJ UJ None, poorly behaved
11/6/2014	Chloroethane Acetone Carbon disulfide 2,2-Dichloropropane 1,1,1-Trichloroethane Carbon tetrachloride 1,2-Dichloroethane Bromodichloromethane 1,4-Dioxane	22.2% 32.9% 32.9% 22.2% 22.2% 31.9% 20.9% 29.7% 0.0116	480-70307-8	UJ UJ UJ UJ UJ UJ UJ UJ VJ None, poorly behaved

Page 1 of 4 Project Number: 206910

PFIZER - ROUSES POINT, NEW YORK - SOIL DATA OCTOBER 2014 PROJECT SUMMARY

TestAmerica Inc. Report Number: J70307-1

All VOC method blanks were non-detect (ND) for all target compounds. No qualifications were applied.

VOC field blank sample, TRIP BLANK (480-70307-9), was ND for all target compounds. No qualifications were applied.

No VOC matrix spike/matrix spike duplicate (MS/MSD) was performed on a sample from this analytical package. No qualifications were applied.

The VOC laboratory control sample (LCS) met laboratory acceptance criteria. No qualifications were applied.

VOC field duplicate samples BLDG17C-SS-PAD-01 (480-70307-3)/BLDG17C-SS-PAD-01A (480-70307-4) met acceptance criteria. No qualifications were applied.

SVOCs EPA Method 8270D:

All semivolatile organic compound (SVOC) samples were extracted and analyzed within technical holding times. No qualifications were applied.

All SVOC surrogates met acceptance criteria. No qualifications were applied.

All SVOC internal standards met acceptance criteria. No qualifications were applied.

All DFTPP tuning of the mass spectrometers met acceptance criteria. No qualifications were applied.

All IC average RRFs were greater than the 0.05 control limit and all percent RSDs were less than the control limit of 20.0%. No qualifications were applied.

All CC individual RFs were greater than 0.05 and the %Ds were less than 20.0% with the following exceptions:

CC DATE	COMPOUND	RF or %D	AFFECTED SAMPLES	QUALIFIER FLAG
10/31/2014	Bis(2-chloroisopropyl)ether	20.4%	QC samples only	None
11/3/2014	Benzaldehyde	49.8%	480-70307-2 through -7	UJ

All SVOC method blanks were ND for all target compounds with the following exception:

BLANK ID	COMPOUND	CONCENTRATION	AFFECTED SAMPLES	QUALIFIER FLAG
MB 480-210924	Bis(2- ethylhexyl)phthalate	4.0 J μg/L	EB-01	U@ reported concentration

SVOC field blank sample, EB-01 (480-70307-9), was ND for all target compounds after method blank action was applied. No qualifications were applied.

The SVOC MS/MSD performed on sample BLDG17C-SS-PAD-01 (480-70307-3) met percent recovery and relative percent difference (RPD) acceptance criteria with the following exceptions:

LAB ID	SAMPLE ID	COMPOUND	%R/%R/RPD	QC LIMIT	QUALIFIER
BLDG17	480-70307-3	2,4,5-Trichlorophenol	OK/55/OK	59-126%, 18	UJ
C-SS-		2,4,6-Trichlorophenol	44/40/OK	59-123%, 19	UJ
PAD-01		Caprolactam	OK/147/OK	54-133%, 20	None, sample ND
41		Pentachlorophenol	OK/31/OK	33-136%, 35	UJ

Page 2 of 4 Project Number: 206910

PFIZER - ROUSES POINT, NEW YORK - SOIL DATA OCTOBER 2014 PROJECT SUMMARY

TestAmerica Inc. Report Number: J70307-1

The SVOC LCS met laboratory acceptance criteria with the following exception:

LCS ID	COMPOUND	%R	QC LIMIT	AFFECTED SAMPLES	QUALIFIER FLAG
480-210939	Caprolactam	160	53-133%	All Soils	None, samples ND

SVOC field duplicate samples BLDG17C-SS-PAD-01 (480-70307-3)/BLDG17C-SS-PAD-01A (480-70307-4) met acceptance criteria. No qualifications were applied.

Alcohols EPA Method 8015D:

All alcohol samples were analyzed within technical holding times. No qualifications were applied.

All IC percent RSDs were less than the control limit of 20.0%. No qualifications were applied.

All CC %Ds were less than 20.0%. No qualifications were applied.

All alcohol method blanks were ND for all target compounds. No qualifications were applied.

Alcohol field blank sample, EB-01 (480-70307-9), was ND for all target compounds. No qualifications were applied.

All alcohol surrogates met acceptance criteria. No qualifications were applied.

The alcohol MS/MSD performed on sample BLDG17C-SS-TRUCK-01 (480-70307-2) met acceptance criteria. No qualifications were applied.

The alcohol laboratory control sample and/or laboratory control sample duplicate (LCS/LCSD) met laboratory acceptance criteria. No qualifications were applied.

Alcohol field duplicate samples BLDG17C-SS-PAD-01 (480-70307-3)/BLDG17C-SS-PAD-01A (480-70307-4) met acceptance criteria. No qualifications were applied.

One alcohol sample was analyzed at a dilution due to the sample matrix. Reporting limits in this sample are elevated as a result of the dilution performed.

PCBs EPA Method 8082A:

All polychlorinated biphenyl (PCB) compound samples were extracted and analyzed within technical holding times. No qualifications were applied.

All PCB surrogates met acceptance criteria. No qualifications were applied.

All IC percent RSDs were less than the control limit of 25.0%. No qualifications were applied.

All CC average %Ds were less than 15.0%. No qualifications were applied.

All PCB method blanks were ND for all target compounds. No qualifications were applied.

PCB field blank sample, EB-01 (480-70307-9), was ND for all target compounds. No qualifications were applied.

The PCB MS/MSD performed on sample BLDG17C-SS-TRUCK-01 (480-70307-2) met acceptance criteria. No qualifications were applied.

The PCB LCS met laboratory acceptance criteria. No qualifications were applied.

Page 3 of 4 Project Number: 206910

PFIZER - ROUSES POINT, NEW YORK – SOIL DATA OCTOBER 2014 PROJECT SUMMARY

TestAmerica Inc. Report Number: J70307-1

PCB field duplicate samples BLDG17C-SS-PAD-01 (480-70307-3)/BLDG17C-SS-PAD-01A (480-70307-4) met acceptance criteria. No qualifications were applied.

Metals (RCRA8) EPA Methods 6010C and 7470A or 7471B:

All metals samples were digested and analyzed within technical holding times. No qualifications were applied.

All metals initial and continuing calibrations met acceptance criteria. No qualifications were applied.

The metals preparation blanks, initial calibration blanks (ICB), and continuing calibration blanks (CCB) were ND with the following exceptions:

BLANK ID	ANALYTE	CONCENTRATION	AFFECTED SAMPLES	QUALIFIER FLAG
480-211057	Cadmium	0.0492 J mg/kg	All Soils	U@RL, all soils
480-210955	Lead	0.00316 J mg/L	EB-01	U@RL

RL=reporting limit

Metals field blank sample, EB-01 (480-70307-9), was ND for all target analytes after method blank action was applied with the following exception:

BLANK ID	ANALYTE	CONCENTRATION	AFFECTED SAMPLES	QUALIFIER FLAG
EB-01	Barium	0.088 mg/L	All Soils	J

The mercury MS/MSD performed on a sample BLDG17C-SS-PAD-01(480-70307-3) met acceptance criteria. No qualifications were applied.

No metals laboratory duplicate was performed on a sample from this analytical package. No qualifications were applied.

The mercury serial dilution performed on sample BLDG17C-SS-PAD-01(480-70307-3) met acceptance criteria. No qualifications were applied.

The metals LCS and/or LCSD met laboratory acceptance criteria. No qualifications were applied.

Metals field duplicate samples BLDG17C-SS-PAD-01 (480-70307-3)/BLDG17C-SS-PAD-01A (480-70307-4) met acceptance criteria. No qualifications were applied.

Data Check, Inc. P.O. Box 29 81 Meaderboro Road New Durham, NH 03855

Gloria J. Switalski: President 4

Date: 3/9/2016

Page 4 of 4 Project Number: 206910

PFIZER - ROUSES POINT, NEW YORK - SOIL DATA NOVEMBER 2014 PROJECT SUMMARY

TestAmerica Inc. Report Number: J70733-1

The criteria detailed below were used to qualify the data. Raw data were not used to verify the results reported by the laboratory.

Samples were received at Celsius at 2.6 degrees Celsius. No qualifications were applied.

VOCs EPA Method 8260C:

All volatile organic compound (VOC) samples were analyzed within technical holding time. No qualifications were applied.

All VOC surrogates met acceptance criteria. No qualifications were applied.

All VOC internal standards met acceptance criteria. No qualifications were applied.

All BFB tuning of the mass spectrometers met acceptance criteria. No qualifications were applied.

All initial calibration (IC) average relative response factors (RRFs) were greater than the 0.05 control limit and all percent relative standard deviations (RSDs) were less than the control limit of 20.0% with the following exceptions:

IC DATE	COMPOUND	RRF	AFFECTED SAMPLES	QUALIFIER FLAG
11/6/2014	1,4-Dioxane	0.0083	All Soils	None, poorly behaved compound
11/1/2014	1,4-Dioxane	0.0093	Trip Blank	None, poorly behaved compound

All continuing calibration (CC) individual response factors (RFs) were greater than 0.05 and the percent differences (%Ds) were less than 20.0% with the following exceptions:

CC DATE	COMPOUND	RF or %D	AFFECTED SAMPLES	QUALIFIER FLAG
11/12/2014	Carbon tetrachloride 1,4-Dioxane	20.2% 0.0094	All Soils	UJ None, poorly behaved compound
11/13/2014	Carbon tetrachloride 1,4-Dioxane	23.5% 0.0102	Trip Blank	UJ None, poorly behaved compound

All VOC method blanks were non-detect (ND) for all target compounds with the following exception:

BLANK ID	COMPOUND	CONCENTRATION	AFFECTED SAMPLES	QUALIFIER FLAG
MB 480-213546	Methylene chloride	3.11 J µg/kg	All Soils	None, samples ND

VOC field blank sample, Trip Blank (480-70733-4), was ND for all target compounds. No qualifications were applied.

No VOC matrix spike/matrix spike duplicate (MS/MSD) was performed on a sample from this analytical package. No qualifications were applied.

The VOC laboratory control sample (LCS) and/or laboratory control sample duplicate (LCSD) met laboratory acceptance criteria with the following exceptions:

LCS ID	COMPOUND	%R/%R	QC LIMIT	AFFECTED SAMPLES	QUALIFIER FLAG
480-213546	2-Butanone (MEK)	163/163	70-134%	All Soils	J, 480-70733-2

Page 1 of 4 Project Number: 206910

PFIZER - ROUSES POINT, NEW YORK - SOIL DATA NOVEMBER 2014 PROJECT SUMMARY

TestAmerica Inc. Report Number: J70733-1

No VOC field duplicate samples were submitted with this analytical package. No qualifications were applied.

SVOCs EPA Method 8270D:

All semivolatile organic compound (SVOC) samples were extracted and analyzed within technical holding times. No qualifications were applied.

All SVOC surrogates met acceptance criteria with the following exceptions:

SURROGATE	%R	QC LIMIT	AFFECTED SAMPLES	QUALIFIER FLAG
2-Fluorobiphenyl	47	48-120%	EB-01	UJ, all base/neutral compounds
		2-Fluorobiphenyl 47	2-Fluorobiphenyl 47 48-120%	2-Fluorobiphenyl 47 48-120% EB-01

All SVOC internal standards met acceptance criteria. No qualifications were applied.

All DFTPP tuning of the mass spectrometers met acceptance criteria. No qualifications were applied.

All IC average RRFs were greater than the 0.05 control limit and all percent RSDs were less than the control limit of 20.0% with the following exception:

IC DATE	COMPOUND	RSD	AFFECTED SAMPLES	QUALIFIER FLAG	
12/1/2014	Benzaldehyde	62.0%	EB-01	UJ	

All CC individual RFs were greater than 0.05 and the %Ds were less than 20.0% with the following exceptions:

CC DATE	COMPOUND	RF or %D	AFFECTED SAMPLES	QUALIFIER FLAG
12/3/2014	3-Nitroanaline	52.8%	EB-01	UJ
11/7/2014	Benzaldehyde	36.2%	All Soils	UJ

All SVOC method blanks were ND for all target compounds with the following exception:

BLANK ID	COMPOUND	CONCENTRATION	AFFECTED SAMPLES	QUALIFIER FLAG
MB 480-212534	Benzaldehyde	1.06 J µg/L	EB-01	U@RL

RL=reporting limit

SVOC field blank sample, EB-01 (480-70733-5), was ND for all target compounds after method blank action was applied. No qualifications were applied.

No SVOC MS/MSD was performed on a sample from this analytical package. No qualifications were applied.

The SVOC LCS met laboratory acceptance criteria with the following exceptions:

Page 2 of 4 Project Number: 206910

TestAmerica Inc. Report Number: J70733-1

LCS ID	COMPOUND	%R	QC LIMIT	AFFECTED SAMPLES	QUALIFIER FLAG
480-212534	2,4,6-Trichlorophenol	62	64-120%	EB-01	UJ
	2,4-Dichlorophenol	62	64-120%		UJ
	2,4-Dimethylphenol	46	57-120%		UJ
	2,6-Dinitrotoluene	71	74-134%		UJ
	3-Nitroaniline	139	28-86%		None, sample ND
	4-Bromophenyl phenyl ether	64	71-126%		UJ
	4-Chlorophenyl phenyl ether	61	71-122%		UJ
	Acenaphthene	58	60-120%		UJ
	Acenaphthylene	59	63-120%		UJ
	Benzo(g,h,i)perylene	63	66-152%		UJ
	Indeno(1,2,3-cd)pyrene	59	69-146%		UJ

No SVOC field duplicate samples were submitted with this analytical package. No qualifications were applied.

Alcohols EPA Method 8015D:

All alcohol samples were analyzed within technical holding times. No qualifications were applied.

All IC percent RSDs were less than the control limit of 20.0%. No qualifications were applied.

All CC %Ds were less than 20.0%. No qualifications were applied.

All alcohol method blanks were ND for all target compounds. No qualifications were applied.

Alcohol field blank sample, EB-01 (480-70733-5), was ND for all target compounds. No qualifications were applied.

All alcohol surrogates met acceptance criteria. No qualifications were applied,

No alcohol MS/MSD was performed on a sample from this analytical package. No qualifications were applied.

The alcohol laboratory control sample and/or laboratory control sample duplicate (LCS/LCSD) met laboratory acceptance criteria. No qualifications were applied.

No alcohol field duplicate samples were submitted with this analytical package. No qualifications were applied.

Two alcohol samples were analyzed at a dilution due to the sample matrix. Reporting limits in these samples are elevated as a result of the dilutions performed.

PCBs EPA Method 8082A:

All polychlorinated biphenyl (PCB) compound samples were extracted and analyzed within technical holding times. No qualifications were applied.

All PCB surrogates met acceptance criteria. No qualifications were applied.

All IC percent RSDs were less than the control limit of 25.0%. No qualifications were applied.

All CC %Ds were less than 15.0%. No qualifications were applied.

All PCB method blanks were ND for all target compounds. No qualifications were applied.

PCB field blank sample, EB-01 (480-70733-5), was ND for all target compounds. No qualifications were applied.

Page 3 of 4 Project Number: 206910

TestAmerica Inc. Report Number: J70733-1

The PCB MS/MSD performed on sample TFARM-SS-SUMP-01 (480-70733-1) met acceptance criteria. No qualifications were applied.

The PCB LCS met laboratory acceptance criteria. No qualifications were applied.

No PCB field duplicate samples were submitted with this analytical package. No qualifications were applied.

Metals (RCRA8) EPA Methods 6010C and 7470A or 7471B:

All metals samples were digested and analyzed within technical holding times. No qualifications were applied.

All metals initial and continuing calibrations met acceptance criteria. No qualifications were applied.

Metals field blank sample, EB-01 (480-70733-5), was ND for all target analytes with the following exception:

BLANK ID	ANALYTE	CONCENTRATION	AFFECTED SAMPLES	QUALIFIER FLAG
EB-01	Barium	0.13 mg/L	All Soils	R

The mercury MS/MSD performed on sample TFARM-SS-PAD-03 (480-70733-3) met acceptance criteria. No qualifications were applied.

No metals laboratory duplicate was performed on a sample from this analytical package. No qualifications were applied.

The mercury serial dilution performed on sample TFARM-SS-PAD-03 (480-70733-3) met acceptance criteria. No qualifications were applied.

The metals LCS met laboratory acceptance criteria. No qualifications were applied.

No metals field duplicate samples were submitted with this analytical package. No qualifications were applied.

Data Check, Inc. P.O. Box 29 81 Meaderboro Road New Durham, NH 03855

Gloria J. Switalski:

President

Date: 3/9/2016

Page 4 of 4 Project Number: 206910

TestAmerica Inc. Report Number: J70850-1

The criteria detailed below were used to qualify the data. Raw data were not used to verify the results reported by the laboratory.

Samples were received at Celsius at 4.1 degrees Celsius. No qualifications were applied.

VOCs EPA Method 8260C:

All volatile organic compound (VOC) samples were analyzed within technical holding time. No qualifications were applied.

All VOC surrogates met acceptance criteria. No qualifications were applied.

All VOC internal standards met acceptance criteria. No qualifications were applied.

All BFB tuning of the mass spectrometers met acceptance criteria. No qualifications were applied.

All initial calibration (IC) average relative response factors (RRFs) were greater than the 0.05 control limit and all percent relative standard deviations (RSDs) were less than the control limit of 20.0% with the following exceptions:

IC DATE	COMPOUND	RRF	AFFECTED SAMPLES	QUALIFIER FLAG
10/30/2014	1,4-Dioxane	0.0109	TB-01	None, poorly behaved compound
11/6/2014	1,4-Dioxane	0.0083	BLDG24-SS-SUMP-02	None, poorly behaved compound

All continuing calibration (CC) individual response factors (RFs) were greater than 0.05 and the percent differences (%Ds) were less than 20.0% with the following exceptions:

CC DATE	COMPOUND	RF or %D	AFFECTED SAMPLES	QUALIFIER FLAG
11/12/2014	Carbon tetrachloride 1,4-Dioxane	20.2% 0.0094	BLDG24-SS-SUMP-02	UJ None, poorly behaved compound
11/13/2014	Trichlorofluoromethane 2,2-Dichloropropane Carbon tetrachloride Methylcyclohexane 1,1,2-Trichloro-1,2,2- trifluoroethane	26.3% 21.0% 20.3% 24.6% 31.3%	TB-01	UJ UJ UJ UJ Vone, poorly behaved compound

All VOC method blanks were non-detect (ND) for all target compounds with the following exception:

BLANK ID	COMPOUND	CONCENTRATION	AFFECTED SAMPLES	QUALIFIER FLAG
MB 480-213548	Methylene chloride	3.11 J μg/kg	BLDG24-SS-SUMP-02	None, sample ND

VOC field blank sample, TB-01 (480-70850-2), was ND for all target compounds. No qualifications were applied.

No VOC matrix spike/matrix spike duplicate (MS/MSD) was performed on a sample from this analytical package. No qualifications were applied.

Page 1 of 2 Project Number: 206910

TestAmerica Inc. Report Number: J70850-1

The VOC laboratory control sample (LCS) and/or laboratory control sample duplicate (LCSD) met laboratory acceptance criteria with the following exceptions:

LCS/LCSD ID	COMPOUND	%R/%R	QC LIMIT	AFFECTED SAMPLES	QUALIFIER FLAG
480-213546	2-Butanone (MEK)	163/163	70-134%	BLDG24-SS-SUMP-02	None, sample ND

No VOC field duplicate samples were submitted with this analytical package. No qualifications were applied.

Data Check, Inc. P.O. Box 29 81 Meaderboro Road New Durham, NH 03855

Gloria J. Switalski: President

Date: 3/9/2016

Page 2 of 2 Project Number: 206910

TestAmerica Inc. Report Number: J80693-1

The criteria detailed below were used to qualify the data. Raw data were not used to verify the results reported by the laboratory.

Samples were received at Celsius at 2.7 degrees Celsius. No qualifications were applied.

VOCs EPA Method 8260C:

All volatile organic compound (VOC) samples were analyzed within technical holding time. No qualifications were applied.

All VOC surrogates met acceptance criteria. No qualifications were applied.

All VOC internal standards met acceptance criteria. No qualifications were applied.

All BFB tuning of the mass spectrometers met acceptance criteria. No qualifications were applied.

All initial calibration (IC) average relative response factors (RRFs) were greater than the 0.05 control limit and all percent relative standard deviations (RSDs) were less than the control limit of 20.0% with the following exceptions:

IC DATE	COMPOUND	RRF	AFFECTED SAMPLES	QUALIFIER FLAG
5/27/2015	1,4-Dioxane	0.0073	All Soils	None, poorly behaved compound
5/8/2015	1,4-Dioxane	0.0053	TRIP BLANK	None, poorly behaved compound

All continuing calibration (CC) individual response factors (RFs) were greater than 0.05 and the percent differences (%Ds) were less than 20.0% with the following exceptions:

CC DATE	COMPOUND	RF or %D	AFFECTED SAMPLES	QUALIFIER FLAG
5/27/2015	1,4-Dioxane	0.0083	All Soils	None, poorly behaved compound
5/28/2015	Carbon disulfide 1,4-Dioxane	29.9% 0.0070	TRIP BLANK	UJ None, poorly behaved compound

The VOC aqueous method blank was non-detect (ND) for all target compounds. No qualifications were applied. The VOC soil method blank data file was lost due to an instrument error. No qualifications were applied.

VOC field blank sample, TRIP BLANK (480-80693-11), was ND for all target compounds. No qualifications were applied.

The VOC matrix spike/matrix spike duplicate (MS/MSD) performed on sample SWMU7-SS-BLDG 23-07 (480-80693-8) met acceptance criteria with the following exceptions:

Page 1 of 2 Project Number: 206910

TestAmerica Inc. Report Number: J80693-1

SAMPLE ID	LABORATORY ID	COMPOUND	%R/%R/RPD	QC LIMIT	QUALIFIER FLAG
SWMU7-SS-	480-60693-8	1,1,1-Trichloroethane	OK/75/OK	77-121%/30	UJ
BLDG 23-07		1,1,2,2-Tetrachloroethane	70/72/OK	80-120%/30	UJ
		1,1,2-Trichloroethane	OK/75/OK	78-122%/30	UJ
	1,2,3-Trichlorobenzene	51/53/OK	60-120%/30	UJ	
	1,2,4-Trichlorobenzene	58/59/OK	64-120%/30	UJ	
	1,2-Dibromo-3-chloropropane	62/60/OK	63-124%/30	UJ	
	1,2-Dichlorobenzene	73/74/OK	75-120%/30	UJ	
	1,2-Dichloroethane	76/74/OK	77-122%/30	UJ	
		1,3-Dichlorobenzene	73/OK/OK	74-120%/30	UJ
	1,4-Dichlorobenzene	72/OK/OK	73-120%/30	UJ	
	2-Hexanone	OK/58/OK	59-130%/30	UJ	
		Acetone	56/52/OK	61-137%/30	UJ
		Benzene	OK/78/OK	79-127%/30	UJ
		Carbon tetrachloride	74/71/OK	75-135%/30	UJ
		Chloroform	OK/79/OK	80-118%/30	UJ
		cis-1,2-Dichloroethene	80/80/OK	81-117%/30	UJ
		cis-1,3-Dichloropropene	81/80/OK	82-120%/30	UJ
		Cyclohexane	OK/64/OK	65-106%/30	UJ
		Ethylbenzene	74/75/OK	80-120%/30	UJ
		1,2-Dibromomethane (EDB)	77/75/OK	78-120%/30	UJ
		2-Butanone (MEK)	59/55/OK	70-134%/30	UJ
		4-Methyl-2-pentanone (MIBK)	63/62/OK	65-133%/30	UJ
		Styrene	72/77/OK	80-120%/30	UJ
		Tetrachloroethene	73/71/OK	74-122%/30	UJ
		trans-1,2-Dichloroethene	OK/76/OK	78-126%/30	UJ
		Trichloroethene	OK/76/OK	77-129%/30	UJ
		Trichlorofluoromethane	OK/OK/41	65-146%/30	J

The VOC laboratory control sample (LCS) met laboratory acceptance criteria. No qualifications were applied.

VOC field duplicate samples SWMU7-SS-BLDG 23-02 (480-80693-2)/SWMU7-SS-BLDG 23-100 (480-80693-3) met acceptance criteria. No qualifications were applied.

Data Check, Inc. P.O. Box 29 81 Meaderboro Road New Durham, NH 03855

Gloria J. Switalski: President

Date: 3/9/2016

Page 2 of 2 Project Number: 206910

TestAmerica Inc. Report Number: J80785-1

The criteria detailed below were used to qualify the data. Raw data were not used to verify the results reported by the laboratory.

Samples were received at 3.3 degrees Celsius. No qualifications were applied.

VOCs EPA Method 8260C:

All volatile organic compound (VOC) samples were analyzed within technical holding time. No qualifications were applied.

All VOC surrogates met acceptance criteria. No qualifications were applied.

All VOC internal standards met acceptance criteria. No qualifications were applied.

All BFB tuning of the mass spectrometers met acceptance criteria. No qualifications were applied.

All initial calibration (IC) average relative response factors (RRFs) were greater than the 0.05 control limit and all percent relative standard deviations (RSDs) were less than the control limit of 20.0% with the following exceptions:

IC DATE	COMPOUND	RRF	AFFECTED SAMPLES	QUALIFIER FLAG
5/26/2015	1,4-Dioxane	0.0046	All Soils	None, poorly behaved compound
5/8/2015	1,4-Dioxane	0.0053	TRIP BLANK	None, poorly behaved compound

All continuing calibration (CC) individual response factors (RFs) were greater than 0.05 and the percent differences (%Ds) were less than 20.0% with the following exceptions:

CC DATE	COMPOUND	RF or %D	AFFECTED SAMPLES	QUALIFIER FLAG
5/29/2015	Benzene 2-Hexanone 1,4-Dioxane	21.8% 21.7% 24.0% 0.0057	All Soils	ni ni
5/28/2015	Carbon disulfide 1,4-Dioxane	29.9% 0.0070	TRIP BLANK	UJ None, poorly behaved compound

All VOC method blanks were non-detect (ND) for all target compounds with the following exceptions:

BLANK ID	COMPOUND	CONCENTRATION	AFFECTED SAMPLES	QUALIFIER FLAG
MB 480-243930	Acetone Methylene chloride	5.22 J μg/kg 2.65 J μg/kg	All Soils	U@RL, 480-80785-3, 4, 5, 7 U@RL, All Soils

RL=reporting limit

VOC field blank sample, TRIP BLANK (480-80785-11), was ND for all target compounds. No qualifications were applied.

No VOC matrix spike/matrix spike duplicate (MS/MSD) was performed on a sample from this analytical package. No qualifications were applied.

The VOC laboratory control sample (LCS) and/or laboratory control sample duplicate (LCSD) met laboratory acceptance criteria with the following exception:

Page 1 of 2 Project Number: 206910

TestAmerica Inc. Report Number: J80785-1

LCS ID	COMPOUND	%R/%R	QC LIMIT	AFFECTED SAMPLES	QUALIFIER FLAG
480-243930	Benzene	OK/78	79-127%	All Soils	UJ

No VOC field duplicate samples were submitted with this analytical package. No qualifications were applied.

Data Check, Inc. P.O. Box 29 81 Meaderboro Road New Durham, NH 03855

Gloria J. Switalski: President *

Date: 3/9/20/16

Page 2 of 2 Project Number: 206910

TestAmerica Inc. Report Number: J89883-1

The criteria detailed below were used to qualify the data. Raw data were not used to verify the results reported by the laboratory.

Samples were received at Celsius at 2.8 degrees Celsius. No qualifications were applied.

VOCs EPA Method 8260C:

All volatile organic compound (VOC) samples were analyzed within technical holding time. No qualifications were applied.

All VOC surrogates met acceptance criteria. No qualifications were applied.

All VOC internal standards met acceptance criteria. No qualifications were applied.

All BFB tuning of the mass spectrometers met acceptance criteria. No qualifications were applied.

All initial calibration (IC) average relative response factors (RRFs) were greater than the 0.05 control limit and all percent relative standard deviations (RSDs) were less than the control limit of 20.0% with the following exceptions:

IC DATE	COMPOUND	RRF	AFFECTED SAMPLES	QUALIFIER FLAG
10/20/2015	1,4-Dioxane	0.0085	EB01, TB01	None, poorly behaved compound
8/26/2015	1,4-Dioxane	0.0089	All Soils	None, poorly behaved compound

All continuing calibration (CC) individual response factors (RFs) were greater than 0.05 and the percent differences (%Ds) were less than 20.0% with the following exceptions:

CC DATE	COMPOUND	RF or %D	AFFECTED SAMPLES	QUALIFIER FLAG
11/5/2015	Acetone 2,2-Dichloropropane Carbon tetrachloride 1,1,2-Trichloro- 1,2,2-trifluoroethane 1,4-Dioxane	31.1% 25.6% 20.4% 25.2% 23.3% 0.0104	EB01, TB01	ດາ ດາ ດາ ດາ
11/2/2015	1,4-Dioxane	0.0069	All Soils	None, poorly behaved compound

All VOC method blanks were non-detect (ND) for all target compounds with the following exception:

BLANK ID	COMPOUND	CONCENTRATION	AFFECTED SAMPLES	QUALIFIER FLAG
MB 480-271446	Methylene chloride	5.53 J μg/kg	All Soils	U@RL, 480-89883-1 through -12, -14 U@RC, 480-89883-13

RL=reporting limit; RC=reported concentration

VOC field blank samples, EB01 (480-89883-15) and TB01 (480-89883-16), were ND for all target compounds. No qualifications were applied.

No VOC matrix spike/matrix spike duplicate (MS/MSD) was performed on a sample from this analytical package. No qualifications were applied.

Page 1 of 6 Project Number: 206910

TestAmerica Inc. Report Number: J89883-1

The VOC laboratory control sample (LCS) and/or laboratory control sample duplicate (LCSD) met laboratory acceptance criteria with the following exceptions:

LCS &/or LCSD ID	COMPOUND	%R/%R	QC LIMIT	AFFECTED SAMPLES	QUALIFIER FLAG
480-271446	1,1,1-Trichloroethane	OK/73	77-121%	All Soils	UJ
	1,1,2,2-Tetrachloroethane	OK/79	80-120%	11.27.500	UJ
	1,2-Dichloroethane	OK/75	77-120%	V o Til	UJ
	Carbon tetrachloride	OK/73	75-135%		UJ
	Chloroform	OK/79	80-118%		UJ
480-273201	2-Hexanone	136/NA	65-127%	EB01, TB01	None, samples ND

VOC field duplicate samples SWMU 17-SURFACE-SS-01 (480-89883-10)/SWMU 17-SURFACE-SS-99 (480-89883-11) met acceptance criteria. No qualifications were applied.

SVOCs EPA Method 8270D:

All semivolatile organic compound (SVOC) samples were extracted and analyzed within technical holding times with the following exceptions. Sample SWMU 5-SURFACE-SS-01 (480-89883-8) was re-extracted beyond the 14 day holding time limit. Therefore, all non-detected results in SVOC sample SWMU 5-SURFACE-SS-01 (480-89883-8) were estimated (UJ). The results for the original extract should be used for decision making. Sample EB01 (480-89883-15) was re-extracted at greater than two times the 7 day holding time limit. Therefore, all non-detected results in SVOC sample EB01 (480-89883-15) were rejected (R). The results for the original extract should be used for decision making.

All SVOC surrogates met acceptance criteria or were diluted out. No qualifications were applied.

All SVOC internal standards met acceptance criteria. No qualifications were applied.

All DFTPP tuning of the mass spectrometers met acceptance criteria. No qualifications were applied.

All IC average RRFs were greater than the 0.05 control limit and all percent RSDs were less than the control limit of 20.0% or the coefficient of determination (COD) was greater than 0.99 with the following exceptions:

IC DATE	COMPOUND	COD	AFFECTED SAMPLES	QUALIFIER FLAG	
10/26/2015	Benzaldehyde	0.963	EB01	UJ	
11/3/2015	Benzaldehyde	0.962	EB01RE	UJ	

All CC individual RFs were greater than 0.05 and the %Ds were less than 20.0% with the following exceptions:

CC DATE	COMPOUND	RF or %D	AFFECTED SAMPLES	QUALIFIER FLAG
11/10/2015	Pentachlorophenol	24.1%	All Soils	UJ
11/10/2015	Benzaldehyde 4-Chloroaniline Hexachlorobutadiene 2,4-Dinitrophenol 4-Nitrophenol Hexachlorobenzene	51.3% 23.7% 21.7% 25.9% 25.2% 21.8%	EB01	UJ UJ UJ UJ
	Pentachlorophenol	35.3%		UJ

Page 2 of 6 Project Number: 206910

TestAmerica Inc. Report Number: J89883-1

CC DATE	COMPOUND	RF or %D	AFFECTED SAMPLES	QUALIFIER FLAG
11/16/2015	N-nitrosodiphenylamine	35.6%	EB01RE*	UJ
	Benzaldehyde	39.1%		UJ
	Bis(2-chloroisopropyl)ether	22.1%		UJ
	Hexachlorocyclopentadiene	20.8%		UJ
	2-Nitroaniline	20.2%		UJ
	2,4-Dinitrophenol	24.9%		UJ
	Diethyl phthalate	28.7%		UJ
	Pentachlorophenol	26.1%		UJ
	Bis(2-ethylhexyl)phthalate	20.2%		UJ
	Di-n-octyl phthalate	25.3%		UJ
11/8/2015	Benzaldehyde	65.6%	QC Samples	None
	Bis(2-chloroisopropyl)ether	31.5%	100000	None
	4-Chloroaniline	24.8%		None
	2,4-Dinitrophenol	23.4%		None
	Benzo(g,h,i)perylene	20.2%		None

^{*}Ultimately rejected since the holding time was grossly exceeded.

All SVOC method blanks were ND for all target compounds. No qualifications were applied.

SVOC field blank sample, EB01 (480-89883-15), was ND for all target compounds. No qualifications were applied.

The SVOC MS/MSD performed on sample SWMU 26-SURFACE-SS-01 (480-89883-1) met percent recovery and relative percent difference (RPD) acceptance criteria with the following exceptions:

LAB ID	SAMPLE ID	COMPOUND	%R/%R/RPD	QC LIMIT	QUALIFIER
SWMU 26- SURFACE-	480-89883-1	2,4,5-Trichlorophenol 2,4-Dinitrophenol	58/57/OK 0/0/NA	59-126%, 18 35-146%, 22	UJ
SS-01		Benzaldehyde	130/135/OK	21-120%, 20	None, sample ND

The SVOC LCS met laboratory acceptance criteria with the following exceptions:

LCS &/or LCSD ID	COMPOUND	%R/%R/RPD	QC LIMIT	AFFECTED SAMPLES	QUALIFIER FLAG
480-271548	2,4-Dimethylphenol	50/49/OK	57-120%, 42	EB01	UJ
480-272209	Benzaldehyde	139/NA/NA	21-120%	All Soils	None, samples ND

Page 3 of 6 Project Number: 206910

TestAmerica Inc. Report Number: J89883-1

LCS &/or LCSD ID	COMPOUND	%R/%R/RPD	QC LIMIT	AFFECTED SAMPLES	QUALIFIER FLAG
480-275176	2,4-Dichlorophenol	OK/OK/21	64-120%, 19	EB01RE*	None, sample ND
	2,4-Dinitrophenol	OK/39/OK	42-153%, 22	The same of the same	UJ
	2-Nitroaniline	OK/OK/20	67-136%, 15	1	None, sample ND
	2-Nitrophenol	OK/OK/20	59-120%, 18		None, sample ND
	4,6-Dinitro-2-methylphenol	59/49/20	64-159%, 15		UJ
	4-Bromophenyl phenyl ether	OK/OK/20	71-126%, 15		None, sample ND
	4-Chlorophenyl phenyl ether	OK/OK/18	71-122%, 16		None, sample ND
	Anthracene	OK/OK/22	58-148%, 15		None, sample ND
	Benzo(a)anthracene	Benzo(a)anthracene OK/OK/19 55-151%, 15			None, sample ND
	Benzo(a)pyrene	OK/OK/17	60-145%, 15		None, sample ND
	Benzo(g,h,i)perylene				None, sample ND
	Butylbenzyl phthalate	OK/OK/17	58-163%, 15		None, sample ND
	Chrysene	OK/OK/18	69-140%, 15		None, sample ND
	Dibenzo(a,h)anthracene	OK/OK/18	57-148%, 15		None, sample ND
	Diethyl phthalate	OK/49/17	59-146%, 15		UI
	Di-n-butyl phthalate	OK/OK/19	58-149%, 15		None, sample ND
	Fluoranthene	OK/OK/21	55-147%, 15		None, sample ND
	Indeno(1,2,3-cd)pyrene	OK/OK/17	69-146%, 15		None, sample ND
	Isophorone	OK/OK/22	48-133%, 17		None, sample ND
	N-nitrosodiphenylamine	OK/OK/20	25-125%, 15		None, sample ND
	Phenanthrene	OK/OK/21	57-147%, 15	10 1 1 1 1	None, sample ND

^{*}Ultimately rejected since the holding time was grossly exceeded.

SVOC field duplicate samples SWMU 17-SURFACE-SS-01 (480-89883-10)/SWMU 17-SURFACE-SS-99 (480-89883-11) met acceptance criteria. No qualifications were applied.

Some samples were analyzed at a dilution due to the high concentration of target compounds and/or due to the sample matrix. Reporting limits in these samples are elevated as a result of the dilutions performed.

Alcohols EPA Method 8015D:

All alcohol samples were analyzed within technical holding times. No qualifications were applied.

All IC percent RSDs were less than the control limit of 20.0%. No qualifications were applied.

All CC %Ds were less than 20.0%. No qualifications were applied.

All alcohol method blanks were ND for all target compounds. No qualifications were applied.

Alcohol field blank sample, EB01 (480-89883-15), was ND for all target compounds with the following exception:

BLANK ID	COMPOUND	CONCENTRATION	AFFECTED SAMPLES	QUALIFIER FLAG
EB01	Ethanol	24 mg/L	All Soils	None, samples ND

All alcohol surrogates met acceptance criteria with the following exception:

SAMPLE ID	SURROGATE	%R	QC LIMIT	AFFECTED SAMPLES	QUALIFIER FLAG
EB01	2-Hexanone	22	62-129%	EB01	J/UJ

The alcohol MS/MSD performed on sample SWMU 26-SURFACE-SS-01 (480-89883-1) met acceptance criteria. No qualifications were applied.

Page 4 of 6 Project Number: 206910

TestAmerica Inc. Report Number: J89883-1

The alcohol LCS met laboratory acceptance criteria. No qualifications were applied.

Alcohol field duplicate samples SWMU 17-SURFACE-SS-01 (480-89883-10)/SWMU 17-SURFACE-SS-99 (480-89883-11) met acceptance criteria. No qualifications were applied.

One alcohol sample was analyzed at a dilution due to the high methanol concentration. Reporting limits in this sample are elevated as a result of the dilution performed.

PCBs EPA Method 8082A:

All polychlorinated biphenyl (PCB) compound samples were extracted and analyzed within technical holding times. No qualifications were applied.

All PCB surrogates met acceptance criteria. No qualifications were applied.

All IC percent RSDs were less than the control limit of 25.0%. No qualifications were applied.

All CC %Ds were less than 15.0%. No qualifications were applied.

All PCB method blanks were ND for all target compounds. No qualifications were applied,

PCB field blank sample, EB01 (480-89883-15), was ND for all target compounds. No qualifications were applied.

No PCB MS/MSD was performed on a sample from this analytical package. No qualifications were applied.

The PCB LCS met laboratory acceptance criteria. No qualifications were applied.

PCB field duplicate samples SWMU 17-SURFACE-SS-01 (480-89883-10)/SWMU 17-SURFACE-SS-99 (480-89883-11) met acceptance criteria. No qualifications were applied.

One PCB sample was analyzed at a dilution due to the sample matrix. Reporting limits in this sample are elevated as a result of the dilution performed.

Metals (RCRA8) EPA Methods 6010C and 7470A or 7471B:

All metals samples were digested and analyzed within technical holding times. No qualifications were applied.

All metals initial and continuing calibrations met acceptance criteria. No qualifications were applied.

Metals field blank sample, EB01 (480-89883-15), was ND for all target analytes. No qualifications were applied

The mercury MS/MSD performed on sample SWMU 26-SURFACE-SS-01 (480-89883-1) met acceptance criteria. No qualifications were applied.

No metals laboratory duplicate was performed on a sample from this analytical package. No qualifications were applied.

The mercury serial dilution performed on sample SWMU 26-SURFACE-SS-01 (480-89883-1) met acceptance criteria. No qualifications were applied.

The metals LCS met laboratory acceptance criteria. No qualifications were applied.

Metals field duplicate samples SWMU 17-SURFACE-SS-01 (480-89883-10)/SWMU 17-SURFACE-SS-99 (480-89883-11) met acceptance criteria. No qualifications were applied.

Page 5 of 6 Project Number: 206910

TestAmerica Inc. Report Number: J89883-1

Data Check, Inc. P.O. Box 29 81 Meaderboro Road New Durham, NH 03855

Gloria J. Switalski:

President

Date: 3/9/2016

Page 6 of 6 Project Number: 206910

TestAmerica Inc. Report Number: J89971-1

The criteria detailed below were used to qualify the data. Raw data were not used to verify the results reported by the laboratory.

Samples were received at Celsius at 3.0 degrees Celsius. No qualifications were applied.

VOCs EPA Method 8260C:

All volatile organic compound (VOC) samples were analyzed within technical holding time. No qualifications were applied.

All VOC surrogates met acceptance criteria with the following exception:

SAMPLE ID	SURROGATE	%R	QC LIMIT	AFFECTED SAMPLES	QUALIFIER FLAG
SWMU7-SS- BLDG23-08	Dibromofluoromethane	58	60-140%	SWMU7-SS-BLDG23- 08	J/UJ

All VOC internal standards met acceptance criteria. No qualifications were applied.

All BFB tuning of the mass spectrometers met acceptance criteria. No qualifications were applied.

All initial calibration (IC) average relative response factors (RRFs) were greater than the 0.05 control limit and all percent relative standard deviations (RSDs) were less than the control limit of 20.0% with the following exceptions:

IC DATE	COMPOUND	RRF	AFFECTED SAMPLES	QUALIFIER FLAG
10/20/2015	1,4-Dioxane	0.0031	EB-02, TB-02	None, poorly behaved compound
8/26/2015	1,4-Dioxane	0.0089	All Soils	None, poorly behaved compound

All continuing calibration (CC) individual response factors (RFs) were greater than 0.05 and the percent differences (%Ds) were less than 20.0% with the following exceptions:

CC DATE	COMPOUND	RF or %D	AFFECTED SAMPLES	QUALIFIER FLAG
10/29/2015	1,4-Dioxane	0.0073	480-89971-I through -7	None, poorly behaved compound
10/30/2015	2-Butanone (MEK) Tetrahydrofuran 2-Hexanone Bromoform 1,2-Dibromo-3-chloropropane 1,4-Dioxane	25.4% 24.2% 26.8% 20.4% 23.6% 0.0091	480-89971-8 through -22	J/UJ UJ UJ UJ None, poorly behaved compound
11/7/2015	Dichlorodifluoromethane Chloroethane 1,4-Dioxane	34.5% 20.4% 37.6% 0.0043	EB-02, TB-02	O) O)

All VOC method blanks were non-detect (ND) for all target compounds with the following exception:

BLANK ID	COMPOUND	CONCENTRATION	AFFECTED SAMPLES	QUALIFIER FLAG
MB 480-271703	Tetrachloroethene	0.679 J μg/kg	All Soils	U@RL, 480-89971-1, -4, -6

RL=reporting limit

Page 1 of 5 Project Number: 206910

TestAmerica Inc. Report Number: J89971-1

VOC field blank samples, EB-02 (480-89971-23) and TB-02 (480-89971-24), were ND for all target compounds. No qualifications were applied.

The VOC matrix spike/matrix spike duplicate (MS/MSD) performed on sample SWMU7-SS-BLDG23-08 (480-89971-17) met percent recovery and relative percent difference (RPD) acceptance criteria with the following exceptions:

LAB ID	SAMPLE ID	COMPOUND	%R/%R/RPD	QC LIMIT	QUALIFIER
SWMU7-SS-	480-89971-17	1,1,2,2-Tetrachloroethane	0/0/NA	80-120%, 30	R
BLDG223-08		1,1,2-Trichloroethane	72/74/OK	78-122%, 30	UJ
		1,2,3-Trichlorobenzene	OK/59/OK	60-120%, 30	UJ
		1,2-Dibromo-3-chloropropane	53/56/OK	63-124%, 30	UJ
		Acetone	27/4/32	61-137%, 30	J
		Methyl acetate	0/0/NA	55-136%, 30	R
	2-Butanone (MEK)	60/60/OK	70-134%, 30	J	
		Trichloroethene	177/165/OK	77-129%, 30	None, sample ND
		Tetrahydrofuran	50/OK/OK	64-113%, 30	UJ

The VOC laboratory control sample (LCS) and/or laboratory control sample duplicate (LCSD) met laboratory acceptance criteria with the following exception:

LCS &/or LCSD ID	COMPOUND	%R	QC LIMIT	AFFECTED SAMPLES	QUALIFIER FLAG
480-271703	Tetrahydrofuran	119	64-113%	480-89971-1 through -7	None, samples ND

VOC field duplicate samples SWMU7-SS-BLDG23-09 (480-89971-18)/SWMU7-SS-BLDG23-98 (480-89971-19) met acceptance criteria. No qualifications were applied.

SVOCs EPA Method 8270D:

All semivolatile organic compound (SVOC) samples were extracted and analyzed within technical holding times. No qualifications were applied.

All SVOC surrogates met acceptance criteria. No qualifications were applied.

All SVOC internal standards met acceptance criteria. No qualifications were applied.

All DFTPP tuning of the mass spectrometers met acceptance criteria. No qualifications were applied.

All IC average RRFs were greater than the 0.05 control limit and all percent RSDs were less than the control limit of 20.0% or the coefficient of determination (COD) was greater than 0.99 with the following exception:

IC DATE	COMPOUND	COD	AFFECTED SAMPLES	QUALIFIER FLAG
10/26/2015	Benzaldehyde	0.963	EB-02	UJ

All CC individual RFs were greater than 0.05 and the %Ds were less than 20.0% with the following exceptions:

CC DATE	COMPOUND	RF or %D	AFFECTED SAMPLES	QUALIFIER FLAG
11/11/2015	Benzaldehyde	21.8%	480-89971-4	UJ
11/4/2015	Benzaldehyde 4-Chloroaniline Diethyl phthalate	50.6% 22.4% 21.2%	QC Samples	None None None

Page 2 of 5 Project Number: 206910

TestAmerica Inc. Report Number: J89971-1

CC DATE	COMPOUND	RF or %D	AFFECTED SAMPLES	QUALIFIER FLAG
11/10/2015	Benzaldehyde	51.3%	EB-02	UJ
	4-Chloroaniline	23.7%	A	UJ
	Hexachlorobutadiene	21.7%		UJ
2,4-Dinitrophenol 4-Nitrophenol Hexachlorobenzene Pentachlorophenol	2,4-Dinitrophenol	25.9%		UJ
	4-Nitrophenol	25.2%		UJ
	Hexachlorobenzene	21.8%		UJ
	Pentachlorophenol	35.3%		UJ
11/3/2015	Bis(2-chloroisopropyl)ether	22.6%	QC Samples	None
11/9/2015	Diethyl phthalate	22.9%	480-89971-1 through -3	UJ

All SVOC method blanks were ND for all target compounds with the following exceptions:

BLANK ID	COMPOUND	CONCENTRATION	AFFECTED SAMPLES	QUALIFIER FLAG
MB 480-272950	Diethyl phthalate	122 J μg/kg	All Soils	None, samples ND
MB 480-271824	Butyl benzyl phthalate	0.671 J μg/L	EB-02	None, sample ND

SVOC field blank sample, EB-02 (480-89971-23), was ND for all target compounds. No qualifications were applied.

The SVOC MS/MSD performed on sample SWM26-SS-BLDG16-04 (480-89971-4) met percent recovery and RPD acceptance criteria with the following exception:

LAB ID	SAMPLE ID	COMPOUND	%R/%R/RPD	QC LIMIT	QUALIFIER
SWMU26-SS- BLDG16-04	480-89971-4	2,4-Dinitrophenol	OK/OK/31	35-146%, 22	None, sample ND

The SVOC LCS and/or LCSD met laboratory acceptance criteria with the following exceptions:

LCS &/or LCSD ID	COMPOUND	%R/%R/RPD	QC LIMIT	AFFECTED SAMPLES	QUALIFIER FLAG
480-271824	2-Methylphenol 4-Methylphenol Acetophenone	OK/OK/41 OK/OK/45 OK/OK/39	39-120%, 27 39-120%, 24 45-120%, 20	EB-02	None, sample ND None, sample ND None, sample ND
	N-nitroso-di-n-propylamine Phenol	OK/OK/39 OK/OK/47	56-120%, 31 17-120%, 34		None, sample ND None, sample ND

No SVOC field duplicate samples were submitted with this analytical package. No qualifications were applied.

Some samples were analyzed at a dilution due to the high concentration of target compounds and/or due to the sample matrix. Reporting limits in these samples are elevated as a result of the dilutions performed.

Alcohols EPA Method 8015D:

All alcohol samples were analyzed within technical holding times. No qualifications were applied. Sample EB-02 (480-89971-23) was not properly preserved to pH <2. Therefore, detected and non-detected results are estimated (J/UJ) in sample EB-02 (480-89971-23).

All IC percent RSDs were less than the control limit of 20.0%. No qualifications were applied.

All CC %Ds were less than 20.0%. No qualifications were applied.

Page 3 of 5 Project Number: 206910

TestAmerica Inc. Report Number: J89971-1

All alcohol method blanks were ND for all target compounds. No qualifications were applied.

Alcohol field blank sample, EB-02 (480-89971-23), was ND for all target compounds with the following exception:

BLANK ID	COMPOUND	CONCENTRATION	AFFECTED SAMPLES	QUALIFIER FLAG
EB-02	Methanol	0.93 J mg/L	All Soils	U@RL, 480-89971-2, -4

All alcohol surrogates met acceptance criteria. No qualifications were applied.

The alcohol MS/MSD performed on sample EB-02 (480-89971-23) met acceptance criteria. No qualifications were applied.

The alcohol LCS met laboratory acceptance criteria. No qualifications were applied.

No alcohol field duplicate samples were submitted with this analytical package. No qualifications were applied.

PCBs EPA Method 8082A:

All polychlorinated biphenyl (PCB) compound samples were extracted and analyzed within technical holding times. No qualifications were applied.

All PCB surrogates met acceptance criteria. No qualifications were applied.

All IC percent RSDs were less than the control limit of 25.0%. No qualifications were applied.

All CC %Ds were less than 15.0%. No qualifications were applied.

All PCB method blanks were ND for all target compounds. No qualifications were applied.

PCB field blank sample, EB-02 (480-89971-23), was ND for all target compounds. No qualifications were applied.

No PCB MS/MSD was performed on a sample from this analytical package. No qualifications were applied.

The PCB LCS met laboratory acceptance criteria. No qualifications were applied.

N PCB field duplicate samples were submitted with this analytical package. No qualifications were applied.

Metals (RCRA8) EPA Methods 6010C and 7470A or 7471B:

All metals samples were digested and analyzed within technical holding times. No qualifications were applied.

All metals initial and continuing calibrations met acceptance criteria. No qualifications were applied.

Metals field blank sample, EB-02 (480-89971-23), was ND for all target analytes. No qualifications were applied

No metals MS/MSD was performed on a sample from this analytical package. No qualifications were applied.

No metals laboratory duplicate was performed on a sample from this analytical package. No qualifications were applied.

No serial dilution was performed on a sample from this analytical package. No qualifications were applied.

The metals LCS met laboratory acceptance criteria. No qualifications were applied.

No metals field duplicate samples were submitted with this analytical package. No qualifications were applied.

Page 4 of 5 Project Number: 206910

TestAmerica Inc. Report Number: J89971-1

Data Check, Inc. P.O. Box 29 81 Meaderboro Road New Durham, NH 03855

Gloria J. Switalski: President

Date: 3/9/2016

Page 5 of 5

Project Number: 206910

TestAmerica Inc. Report Number: J90114-1

The criteria detailed below were used to qualify the data. Raw data were not used to verify the results reported by the laboratory.

Samples were received at Celsius at 4.1 and 4.3 degrees Celsius. No qualifications were applied.

VOCs EPA Method 8260C:

All volatile organic compound (VOC) samples were analyzed within technical holding time. No qualifications were applied.

All VOC surrogates met acceptance criteria. No qualifications were applied.

All VOC internal standards met acceptance criteria. No qualifications were applied.

All BFB tuning of the mass spectrometers met acceptance criteria. No qualifications were applied.

All initial calibration (IC) average relative response factors (RRFs) were greater than the 0.05 control limit and all percent relative standard deviations (RSDs) were less than the control limit of 20.0% with the following exceptions:

IC DATE	COMPOUND	RRF	AFFECTED SAMPLES	QUALIFIER FLAG
10/20/2015	1,4-Dioxane	0.0031	EB-03, TB03	None, poorly behaved compound
8/26/2015	1,4-Dioxane	0.0089	All Soils	None, poorly behaved compound

All continuing calibration (CC) individual response factors (RFs) were greater than 0.05 and the percent differences (%Ds) were less than 20.0% with the following exceptions:

CC DATE	COMPOUND	RF or %D	AFFECTED SAMPLES	QUALIFIER FLAG
11/4/2015	1,4-Dioxane	0.0089	480-90114-1 through -4 480-90114-6 through -9	None, poorly behaved compound
11/5/2015	Dichlorodifluoromethane Chloromethane 1,4-Dioxane	31.4% 21.7% 0.0067	480-90114-5 480-90114-10 through -23	UJ UJ None, poorly behaved compound
11/7/2015	Dichlorodifluoromethane Chloroethane 1,4-Dioxane	34.5% 20.4% 37.6% 0.0043	EB-03, TB03	ni ni ni

All VOC method blanks were non-detect (ND) for all target compounds with the following exception:

BLANK ID	COMPOUND	CONCENTRATION	AFFECTED SAMPLES	QUALIFIER FLAG
MB 480-272053	Toluene	0.626 J μg/kg	480-90114-14 480-90114-20 through -23	U@RL, 480-90114-14 480-90114-20 through -23

RL=reporting limit

VOC field blank samples, EB-03 (480-90114-24) and TB03 (480-90114-25), were ND for all target compounds. No qualifications were applied.

The VOC matrix spike/matrix spike duplicate (MS/MSD) performed on samples SWM26-SS-BLDG23-01 (480-90114-9) and SWM26-SS-BLDG23-04 (480-90114-14) met percent recovery and relative percent difference (RPD) acceptance criteria with the following exceptions:

Page 1 of 5 Project Number: 206910

TestAmerica Inc. Report Number: J90114-1

LAB ID	SAMPLE ID	COMPOUND	%R/%R/RPD	QC LIMIT	QUALIFIER
SWM26-SS-	480-90114-9	1,1,2,2-Tetrachloroethane	74/73/OK	80-120%, 30	UJ
BLDG23-01	A	1,2,4-Trichlorobenzene	OK/62/OK	64-120%, 30	UJ
		1,2-Dibromo-3-chloropropane	62/56/OK	63-124%, 30	UJ
	Acetone	55/51/OK	61-137%, 30	UJ	
	1,2-Dibromoethane (EDB)	OK/77/OK	78-120%, 30	UJ	
	2-Butanone (MEK)	63/59/OK	70-130%, 30	UJ	
	4-Methyl-2-pentanone (MIBK)	64/61/OK	65-133%, 30	UJ	
WA		Tetrahydrofuran	61/58/OK	64-113%, 30	UJ
SWM26-SS-	480-90114-14	1,1,2,2-Tetrachloroethane	76/73/OK	80-120%, 30	UJ
BLDG23-04		1,2-Dibromo-3-chloropropane	OK/60/OK	63-124%, 30	UJ
		Acetone	59/56/OK	61-137%, 30	UJ
		Chloromethane	62/61/OK	63-127%, 30	UJ
		Cyclohexane	63/62/OK	65-106%, 30	UJ
		Dichlorodifluoromethane	52/48/OK	57-142%, 30	UJ
		2-Butanone (MEK)	64/61/OK	70-134%, 30	UJ
		4-Methyl-2-pentanone (MIBK)	OK/63/OK	65-133%, 30	UJ
		Vinyl chloride	OK/57/OK	61-133%, 30	UJ
		Tetrahydrofuran	60/58/OK	64-113%, 30	UJ

The VOC laboratory control sample (LCS) and/or laboratory control sample duplicate (LCSD) met laboratory acceptance criteria. No qualifications were applied.

VOC field duplicate samples SWMU1-SS-TP04-103 (480-90114-22)/SWMU1-SS-TP04-200 (480-90114-23) met acceptance criteria. No qualifications were applied.

SVOCs EPA Method 8270D:

All semivolatile organic compound (SVOC) samples were extracted and analyzed within technical holding times. No qualifications were applied.

All SVOC surrogates met acceptance criteria. No qualifications were applied.

All SVOC internal standards met acceptance criteria. No qualifications were applied.

All DFTPP tuning of the mass spectrometers met acceptance criteria. No qualifications were applied.

All IC average RRFs were greater than the 0.05 control limit and all percent RSDs were less than the control limit of 20.0% or the coefficient of determination (COD) was greater than 0.99 with the following exception:

IC DATE	COMPOUND	COD	AFFECTED SAMPLES	QUALIFIER FLAG	
10/26/2015	Benzaldehyde	0.963	EB-03	UJ	

All CC individual RFs were greater than 0.05 and the %Ds were less than 20.0% with the following exceptions:

CC DATE	COMPOUND	RF or %D	AFFECTED SAMPLES	QUALIFIER FLAG
4 F	Benzaldehyde	50.2%	EB-03	UJ
	4-Chloroaniline	21.4%		UJ
	Hexachlorobutadiene	20.6%		UJ
	4-Nitrophenol	41.2%		UJ

Page 2 of 5 Project Number: 206910

TestAmerica Inc. Report Number: J90114-1

CC DATE	COMPOUND	RF or %D	AFFECTED SAMPLES	QUALIFIER FLAG
11/9/2015	Diethyl phthalate	22.9%	All Soils	UJ

All SVOC method blanks were ND for all target compounds with the following exception:

BLANK ID	COMPOUND	CONCENTRATION	AFFECTED SAMPLES	QUALIFIER FLAG
MB 480-272950	Diethyl phthalate	122 J µg/kg	All Soils	U@RL, 480-90114-9, -14

SVOC field blank sample, EB-03 (480-90114-24), was ND for all target compounds with the following exception:

BLANK ID	COMPOUND	CONCENTRATION	AFFECTED SAMPLES	QUALIFIER FLAG
EB-03	Butyl benzyl phthalate	0.72 J μg/L	All Soils	None, samples ND

The SVOC MS/MSD performed on samples SWM26-SS-BLDG23-01 (480-90114-9) and SWM26-SS-BLDG23-04 (480-90114-14) met percent recovery and RPD acceptance criteria. No qualifications were applied.

The SVOC LCS met laboratory acceptance criteria. No qualifications were applied.

No SVOC field duplicate samples were submitted with this analytical package. No qualifications were applied.

Some samples were analyzed at a dilution due to the high concentration of target compounds and/or due to the sample matrix. Reporting limits in these samples are elevated as a result of the dilutions performed.

Alcohols EPA Method 8015D:

All alcohol samples were analyzed within technical holding times. No qualifications were applied. Sample EB-03 (480-90114-24) was not properly preserved to pH <2. Therefore, detected and non-detected results are estimated (J/UJ) in sample EB-03 (480-90114-24).

All IC percent RSDs were less than the control limit of 20.0%. No qualifications were applied.

All CC %Ds were less than 20.0%. No qualifications were applied.

All alcohol method blanks were ND for all target compounds. No qualifications were applied.

Alcohol field blank sample, EB-03 (480-90114-24), was ND for all target compounds with the following exception:

BLANK ID	COMPOUND	CONCENTRATION	AFFECTED SAMPLES	QUALIFIER FLAG	
EB-03	Methanol	1.3 mg/L	All Soils	U@RL, 480-90114-20	

All alcohol surrogates met acceptance criteria. No qualifications were applied.

The alcohol MS/MSD performed on samples SWM26-SS-BLDG23-01 (480-90114-9) and SWM26-SS-BLDG23-04 (480-90114-14) met acceptance criteria with the following exception:

Page 3 of 5 Project Number: 206910

TestAmerica Inc. Report Number: J90114-1

LAB ID	SAMPLE ID	COMPOUND	%R/%R/RPD	QC LIMIT	QUALIFIER
SWMU26-SS- BLDG23-04	480-90114-14	Methanol	134/OK/OK	70-130%, 30	J

The alcohol LCS met laboratory acceptance criteria. No qualifications were applied.

No alcohol field duplicate samples were submitted with this analytical package. No qualifications were applied.

PCBs EPA Method 8082A:

All polychlorinated biphenyl (PCB) compound samples were extracted and analyzed within technical holding times. No qualifications were applied.

All PCB surrogates met acceptance criteria. No qualifications were applied.

All IC percent RSDs were less than the control limit of 25.0%. No qualifications were applied.

All CC %Ds were less than 15.0%. No qualifications were applied.

All PCB method blanks were ND for all target compounds. No qualifications were applied.

PCB field blank sample, EB-03 (480-90114-24), was ND for all target compounds. No qualifications were applied.

The PCB MS/MSD performed on samples SWM26-SS-BLDG23-01 (480-90114-9) and SWM26-SS-BLDG23-04 (480-90114-14) met acceptance criteria. No qualifications were applied.

The PCB LCS and/or LCSD met laboratory acceptance criteria. No qualifications were applied.

No PCB field duplicate samples were submitted with this analytical package. No qualifications were applied.

Metals (RCRA8) EPA Methods 6010C and 7470A or 7471B:

All metals samples were digested and analyzed within technical holding times. No qualifications were applied.

All metals initial and continuing calibrations met acceptance criteria. No qualifications were applied.

Metals field blank sample, EB-03 (480-90114-24), was ND for all target analytes with the following exception:

BLANK ID	ANALYTE	CONCENTRATION	AFFECTED SAMPLES	QUALIFIER FLAG
EB-03	Mercury	0.00017 J mg/L	All Soils	U@RL, 480-90114-9, -21

The metals MS/MSD performed on samples SWM26-SS-BLDG23-01 (480-90114-9) and SWM26-SS-BLDG23-04 (480-90114-14) met acceptance criteria with the following exceptions:

LAB ID	SAMPLE ID	ANALYTE	%R/%R/RPD	QC LIMIT	QUALIFIER
SWM26-SS- BLDG23-01	480-90114-9	Barium	OK/71/OK	75-125%, 20	J, All Soils
SWM26-SS- BLDG23-04	480-90114-14	Barium	OK/155/OK	75-125%, 20	J, All Soils

No metals laboratory duplicate was performed on a sample from this analytical package. No qualifications were applied,

Page 4 of 5 Project Number: 206910

TestAmerica Inc. Report Number: J90114-1

The serial dilution performed on sample SWM26-SS-BLDG23-01 (480-90114-9) met percent difference (%D) acceptance criteria with the following exceptions:

LAB ID	SAMPLE ID	ANALYTE	%D	QC LIMIT	QUALIFIER
SWM26-SS-	480-90114-9	Barium	12	10	J, All Soils
BLDG23-01		Chromium	13	10	J, All Soils

The metals LCS and/or LCSD met laboratory acceptance criteria. No qualifications were applied.

No metals field duplicate samples were submitted with this analytical package. No qualifications were applied.

Data Check, Inc. P.O. Box 29 81 Meaderboro Road New Durham, NH 03855

Gloria J. Switalski: President

Date: 3/9/2016

Page 5 of 5 Project Number: 206910

TestAmerica Inc. Report Number: J90206-1

The criteria detailed below were used to qualify the data. Raw data were not used to verify the results reported by the laboratory.

Samples were received at Celsius at 2.8 degrees Celsius. No qualifications were applied.

VOCs EPA Method 8260C:

All volatile organic compound (VOC) samples were analyzed within technical holding time. No qualifications were applied.

All VOC surrogates met acceptance criteria. No qualifications were applied.

All VOC internal standards met acceptance criteria. No qualifications were applied.

All BFB tuning of the mass spectrometers met acceptance criteria. No qualifications were applied.

All initial calibration (IC) average relative response factors (RRFs) were greater than the 0.05 control limit and all percent relative standard deviations (RSDs) were less than the control limit of 20.0% with the following exceptions:

IC DATE	COMPOUND	RRF	AFFECTED SAMPLES	QUALIFIER FLAG
8/26/2015	1,4-Dioxane	0.0089	All Low Level Soils	None, poorly behaved compound
11/6/2015	1,4-Dioxane	0.0083	Medium Level Soil	None, poorly behaved compound
11/9/2015	1,4-Dioxane	0.0061	EB04, TB04	None, poorly behaved compound

All continuing calibration (CC) individual response factors (RFs) were greater than 0.05 and the percent differences (%Ds) were less than 20.0% with the following exceptions:

CC DATE	COMPOUND	RF or %D	AFFECTED SAMPLES	QUALIFIER FLAG
11/6/2015	Dichlorodifluoromethane Chloromethane 1,4-Dioxane	32.9% 24.9% 0.0071	All Low Level Soils	UJ UJ None, poorly behaved compound
11/9/2015	Dichlorodifluoromethane Acetone 1,4-Dioxane	20.5% 38.4% 33.3% 0.0111	480-90206-5 Medium Level	ni ni ni
11/10/2015	1,4-Dioxane	0.0066	EB04	None, poorly behaved compound
11/11/2015	1,4-Dioxane	25.9% 0.0077	TB04	UJ

All VOC method blanks were non-detect (ND) for all target compounds. No qualifications were applied.

VOC field blank samples, EB04 (480-90206-8) and TB04 (480-90206-9), were ND for all target compounds. No qualifications were applied.

No VOC matrix spike/matrix spike duplicate (MS/MSD) was performed on a sample from this analytical package. No qualifications were applied.

The VOC laboratory control sample (LCS) and/or laboratory control sample duplicate (LCSD) met laboratory acceptance criteria. No qualifications were applied.

No VOC field duplicate samples were submitted with this analytical package. No qualifications were applied,

Page 1 of 4 Project Number: 206910

TestAmerica Inc. Report Number: J90206-1

The trichlorofluoromethane result in sample SWMU7-SS-BLDG23-24 (480-90206-5) exceeded the upper calibration limit and was flagged "E" by the laboratory. Sample SWMU7-SS-BLDG23-24 (480-90206-5) was re-analyzed medium level and the trichlorofluoromethane result was within the calibration range. The trichlorofluoromethane result in the low level analysis of sample SWMU7-SS-BLDG23-24 (480-90206-5) was estimated (J). The result from the medium level analysis should be used for decision making.

One sample was re-analyzed medium level due to the high concentration of target compounds and/or due to sample matrix. Reporting limits in this sample are elevated as a result of the dilution performed.

SVOCs EPA Method 8270D:

All semivolatile organic compound (SVOC) samples were extracted and analyzed within technical holding times with the following exception. Sample EB04 (480-90206-8) was re-extracted beyond the 7 day holding time limit. Therefore, all non-detected results in SVOC sample EB04 (480-90206-8) were estimated (UJ). The results for the re-extract should be used for decision making.

All SVOC surrogates met acceptance criteria with the following exceptions:

SAMPLE ID	SURROGATE	%R	QC LIMIT	AFFECTED SAMPLES	QUALIFIER FLAG
EB04	2,4,6-Tribromophenol	35	52-132%	EB04	R, all acid compounds
	2-Fluorophenol	0	20-120%		Carrie and and
	Phenol-d5	0.3	16-120%		

All SVOC internal standards met acceptance criteria. No qualifications were applied.

All DFTPP tuning of the mass spectrometers met acceptance criteria. No qualifications were applied.

All IC average RRFs were greater than the 0.05 control limit and all percent RSDs were less than the control limit of 20.0% or the coefficient of determination (COD) was greater than 0.99 with the following exception:

IC DATE	COMPOUND	COD	AFFECTED SAMPLES	QUALIFIER FLAG	
10/26/2015	Benzaldehyde	0.963	EB04	UJ	
11/13/2015	Benzaldehyde	0.962	EB04RE	UJ	

All CC individual RFs were greater than 0.05 and the %Ds were less than 20.0% with the following exceptions:

CC DATE	COMPOUND	RF or %D	AFFECTED SAMPLES	QUALIFIER FLAC
11/12/2015	Benzaldehyde	57.6%	EB04	UJ
	4-Chloroaniline	21.6%	122	UJ
	Hexachlorobutadiene	25.8%		UJ
	4-Nitrophenol	41.0%		UJ
	Pentachlorophenol	22.1%		UJ
11/16/2015	Benzaldehyde	39,1%	EB04RE	UJ
	Bis(2-chloroisopropyl)ether	22.1%		UJ
	Hexachlorocyclopentadiene	20.8%	I	UJ
	2-Nitroaniline	20.2%		UJ
	2,4-Dinitrophenol	24.9%		UJ
	Diethyl phthalate	28.7%		UJ
	Pentachlorophenol	26.1%		UJ
	Bis(2-ethylhexyl)phthalate	20.2%		UJ
	Di-n-octyl phthalate	25.3%		UJ

Page 2 of 4 Project Number: 206910

TestAmerica Inc. Report Number: J90206-1

All SVOC method blanks were ND for all target compounds. No qualifications were applied.

SVOC field blank sample, EB04 (480-90206-8), was ND for all target compounds. No qualifications were applied.

No SVOC MS/MSD was performed on a sample from this analytical package. No qualifications were applied.

The SVOC LCS and/or LCSD met laboratory acceptance criteria. No qualifications were applied.

No SVOC field duplicate samples were submitted with this analytical package. No qualifications were applied.

Alcohols EPA Method 8015D:

All alcohol samples were analyzed within technical holding times. No qualifications were applied. Sample EB04 (480-90206-8) was not properly preserved to pH <2. Therefore, detected and non-detected results are estimated (J/UJ) in sample EB04 (480-90206-8).

All IC percent RSDs were less than the control limit of 20.0%. No qualifications were applied.

All CC %Ds were less than 20.0%. No qualifications were applied.

All alcohol method blanks were ND for all target compounds. No qualifications were applied.

Alcohol field blank sample, EB04 (480-90206-8), was ND for all target compounds with the following exceptions:

BLANK ID	COMPOUND	CONCENTRATION	AFFECTED SAMPLES	QUALIFIER FLAG
EB04	Isobutyl alcohol Methanol n-Butanol 2-Butanol	0.95 J mg/L 0.92 J mg/L 2.4 mg/L 0.19 J mg/L	None in this SDG	None None None None
	Isopropyl alcohol	0.12 J mg/L		None

All alcohol surrogates met acceptance criteria. No qualifications were applied.

No alcohol MS/MSD was performed on a sample from this analytical package. No qualifications were applied.

The alcohol LCS met laboratory acceptance criteria. No qualifications were applied.

No alcohol field duplicate samples were submitted with this analytical package. No qualifications were applied.

PCBs EPA Method 8082A:

All polychlorinated biphenyl (PCB) compound samples were extracted and analyzed within technical holding times. No qualifications were applied.

All PCB surrogates met acceptance criteria. No qualifications were applied.

All IC percent RSDs were less than the control limit of 25.0%. No qualifications were applied.

All CC %Ds were less than 15.0%. No qualifications were applied.

All PCB method blanks were ND for all target compounds. No qualifications were applied.

PCB field blank sample, EB04 (480-90206-8), was ND for all target compounds. No qualifications were applied.

Page 3 of 4 Project Number: 206910

TestAmerica Inc. Report Number: J90206-1

No PCB MS/MSD was performed on a sample from this analytical package. No qualifications were applied.

The PCB LCS met laboratory acceptance criteria. No qualifications were applied.

No PCB field duplicate samples were submitted with this analytical package. No qualifications were applied.

Metals (RCRA8) EPA Methods 6010C and 7470A or 7471B:

All metals samples were digested and analyzed within technical holding times. No qualifications were applied.

All metals initial and continuing calibrations met acceptance criteria. No qualifications were applied.

Metals field blank sample, EB04 (480-90206-8), was ND for all target analytes with the following exception:

BLANK ID	ANALYTE	CONCENTRATION	AFFECTED SAMPLES	QUALIFIER FLAG
EB04	Chromium	0.0014 J mg/L	None in this SDG	None

No metals MS/MSD was performed on a sample from this analytical package. No qualifications were applied.

No metals laboratory duplicate was performed on a sample from this analytical package. No qualifications were applied.

No serial dilution was performed on a sample from this analytical package. No qualifications were applied.

The metals LCS met laboratory acceptance criteria. No qualifications were applied.

No metals field duplicate samples were submitted with this analytical package. No qualifications were applied.

Data Check, Inc. P.O. Box 29 81 Meaderboro Road New Durham, NH 03855

Gloria J. Switalski: President Date: 3/9/016

Page 4 of 4 Project Number: 206910

TestAmerica Inc. Report Number: J90365-1

The criteria detailed below were used to qualify the data. Raw data were not used to verify the results reported by the laboratory.

Samples were received at Celsius at 2.7 degrees Celsius. No qualifications were applied.

VOCs EPA Method 8260C:

All volatile organic compound (VOC) samples were analyzed within technical holding time with the following exception. Sample EB-05 (480-90365-9) was analyzed beyond the 7 day holding time limit for unpreserved samples. Therefore, all non-detected results in VOC sample EB-05 (480-90365-9) were estimated (UJ).

All VOC surrogates met acceptance criteria. No qualifications were applied.

All VOC internal standards met acceptance criteria. No qualifications were applied,

All BFB tuning of the mass spectrometers met acceptance criteria. No qualifications were applied,

All initial calibration (IC) average relative response factors (RRFs) were greater than the 0.05 control limit and all percent relative standard deviations (RSDs) were less than the control limit of 20.0% with the following exceptions:

IC DATE	COMPOUND	RRF	AFFECTED SAMPLES	QUALIFIER FLAG
11/5/2015	I,4-Dioxane	0.0060	All Soils	None, poorly behaved compound
10/26/2015	1,4-Dioxane	0.0094	EB-05, TB-05	None, poorly behaved compound

All continuing calibration (CC) individual response factors (RFs) were greater than 0.05 and the percent differences (%Ds) were less than 20.0% with the following exceptions:

CC DATE	COMPOUND	RF or %D	AFFECTED SAMPLES	QUALIFIER FLAG
11/6/2015	Bromomethane	32.1%	All Soils	UJ
Trichlorofluoromethane 2,2-Dichloropropane 1,1,1-Trichloroethane trans-1,3-Dichloropropene Dibromochloromethane 1,2-Dibromo-3-chloropropane	22.2%	100	UJ	
	23.2%		UJ	
	26.4%		UJ	
	23.5%	T.	UJ	
		26.6%	1	UJ
	1,2-Dibromo-3-chloropropane	31.5%	1	UJ
	1,1,2,2-Tetrachloroethane	21.7%		UJ
1,4-Dioxane	1,4-Dioxane	0.0058		None, poorly behaved compound
11/12/2015	Bromomethane	48.9%	EB-05, TB-05	UJ
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Acetone	60.7%	37 97 67 67	UJ
	1,4-Dioxane	61.0%		UJ
	The State of the S	0.0152		

All VOC method blanks were non-detect (ND) for all target compounds with the following exceptions:

Page 1 of 4 Project Number: 206910

TestAmerica Inc. Report Number: J90365-1

BLANK ID	COMPOUND	CONCENTRATION	AFFECTED SAMPLES	QUALIFIER FLAG
MB 480-272870	1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 2-Hexanone 4-Methyl-2-pentanone Acetone	0.733 J μg/kg 0.483 J μg/kg 5.11 J μg/kg 2.06 J μg/kg 8.01 J μg/kg	All Soils	None, samples ND None, samples ND None, samples ND None, samples ND U@RL, 480-90365-4, -7 U@RC, 480-90365-5

RL=reporting limit; RC=reported concentration

VOC field blank samples, EB-05 (480-90365-9) and TB-05 (480-90365-10), were ND for all target compounds. No qualifications were applied.

No VOC matrix spike/matrix spike duplicate (MS/MSD) was performed on a sample from this analytical package. No qualifications were applied.

The VOC laboratory control sample (LCS) and/or laboratory control sample duplicate (LCSD) met laboratory acceptance criteria with the following exception:

LCS ID	COMPOUND	%R	QC LIMIT	AFFECTED SAMPLES	QUALIFIER FLAG
480-274584	Acetone	144	56-142%	EB-05, TB-05	None, samples ND

VOC field duplicate samples SWMU1-SB11-SS-104 (480-90365-2)/SWMU1-SB11-SS-201 (480-90365-8) met acceptance criteria. No qualifications were applied.

SVOCs EPA Method 8270D:

All semivolatile organic compound (SVOC) samples were extracted and analyzed within technical holding times. No qualifications were applied.

All SVOC surrogates met acceptance criteria with the following exception:

SAMPLE ID	SURROGATE	%R	QC LIMIT	AFFECTED SAMPLES	QUALIFIER FLAG
LCS 480-273098	2,4,6-Tribromophenol	136	52-132%	LCS 480-273098	None, QC sample

All SVOC internal standards met acceptance criteria. No qualifications were applied.

All DFTPP tuning of the mass spectrometers met acceptance criteria. No qualifications were applied.

All IC average RRFs were greater than the 0.05 control limit and all percent RSDs were less than the control limit of 20.0% or the coefficient of determination (COD) was greater than 0.99 with the following exception:

IC DATE	COMPOUND	COD	AFFECTED SAMPLES	QUALIFIER FLAG	
10/26/2015	Benzaldehyde	0.963	EB-05	UJ	

All CC individual RFs were greater than 0.05 and the %Ds were less than 20.0% with the following exceptions:

Page 2 of 4 Project Number: 206910

TestAmerica Inc. Report Number: J90365-1

CC DATE	COMPOUND	RF or %D	AFFECTED SAMPLES	QUALIFIER FLAG
11/10/2015	Benzaldehyde	51.3%	EB-05	UJ
	4-Chloroaniline	23.7%	1373	UJ
2,4 4-N	Hexachlorobutadiene	21.7%		UJ
	2,4-Dinitrophenol	25.9%		UJ
	4-Nitrophenol	25.2%		UJ
	Hexachlorobenzene	21.8%		UJ
	Pentachlorophenol	35.3%		UJ

All SVOC method blanks were ND for all target compounds for all target compounds with the following exception:

BLANK ID	COMPOUND	CONCENTRATION	AFFECTED SAMPLES	QUALIFIER FLAG
MB 480-273098	Butyl benzyl phthalate	0.731 J μg/L	EB-05	None, samples ND

SVOC field blank sample, EB-05 (480-90365-9), was ND for all target compounds. No qualifications were applied.

No SVOC MS/MSD was performed on a sample from this analytical package. No qualifications were applied.

The SVOC LCS met laboratory acceptance criteria. No qualifications were applied.

SVOC field duplicate samples SWMU1-SB11-SS-104 (480-90365-2)/SWMU1-SB11-SS-201 (480-90365-8) met acceptance criteria. No qualifications were applied.

Alcohols EPA Method 8015D:

All alcohol samples were analyzed within technical holding times. No qualifications were applied. Sample EB-05 (480-90365-9) was not properly preserved to pH <2. Therefore, detected and non-detected results are estimated (J/UJ) in sample EB-05 (480-90365-9).

All IC percent RSDs were less than the control limit of 20.0%. No qualifications were applied.

All CC %Ds were less than 20.0%. No qualifications were applied.

All alcohol method blanks were ND for all target compounds with the following exception:

BLANK ID	COMPOUND	CONCENTRATION	AFFECTED SAMPLES	QUALIFIER FLAG
MB 480-273254	Methanol	0.332 J mg/kg	All Soils	U@RL, 480-90365-2, -4, -5, -6

Alcohol field blank sample, EB-05 (480-90365-9), was ND for all target compounds. No qualifications were applied.

All alcohol surrogates met acceptance criteria. No qualifications were applied.

The alcohol MS/MSD performed on sample EB-05 (480-90365-9) met acceptance criteria. No qualifications were applied.

The alcohol LCS met laboratory acceptance criteria. No qualifications were applied.

Alcohol field duplicate samples SWMU1-SB11-SS-104 (480-90365-2)/SWMU1-SB11-SS-201 (480-90365-8) met acceptance criteria. No qualifications were applied.

Page 3 of 4 Project Number: 206910

TestAmerica Inc. Report Number: J90365-1

PCBs EPA Method 8082A:

All polychlorinated biphenyl (PCB) compound samples were extracted and analyzed within technical holding times. No qualifications were applied.

All PCB surrogates met acceptance criteria. No qualifications were applied.

All IC percent RSDs were less than the control limit of 25.0%. No qualifications were applied.

All CC %Ds were less than 15.0%. No qualifications were applied.

All PCB method blanks were ND for all target compounds. No qualifications were applied.

PCB field blank sample, EB-05 (480-90365-9), was ND for all target compounds. No qualifications were applied.

The PCB MS/MSD performed on sample SWMU4-SURFACE-SS-01 (480-90365-1) met acceptance criteria. No qualifications were applied.

The PCB LCS met laboratory acceptance criteria. No qualifications were applied.

PCB field duplicate samples SWMU1-SB11-SS-104 (480-90365-2)/SWMU1-SB11-SS-201 (480-90365-8) met acceptance criteria. No qualifications were applied.

Metals (RCRA8) EPA Methods 6010C and 7470A or 7471B:

All metals samples were digested and analyzed within technical holding times. No qualifications were applied.

All metals initial and continuing calibrations met acceptance criteria. No qualifications were applied.

Metals field blank sample, EB-05 (480-90365-9), was ND for all target analytes. No qualifications were applied.

No metals MS/MSD was performed on a sample from this analytical package. No qualifications were applied.

No metals laboratory duplicate was performed on a sample from this analytical package. No qualifications were applied.

No serial dilution was performed on a sample from this analytical package. No qualifications were applied.

The metals LCS met laboratory acceptance criteria. No qualifications were applied.

Metals field duplicate samples SWMU1-SB11-SS-104 (480-90365-2)/SWMU1-SB11-SS-201 (480-90365-8) met acceptance criteria. No qualifications were applied.

Data Check, Inc. P.O. Box 29 81 Meaderboro Road New Durham, NH 03855

Gloria J. Switalski: President Date: 3/9/2016

Page 4 of 4 Project Number: 206910

TestAmerica Inc. Report Number: J90447-1

The criteria detailed below were used to qualify the data. Raw data were not used to verify the results reported by the laboratory.

Samples were received at Celsius at 2.7 degrees Celsius. No qualifications were applied.

VOCs EPA Method 8260C:

All volatile organic compound (VOC) samples were analyzed within technical holding time. Sample EB-06 (480-90447-9) was analyzed within the 7 day holding time limit for unpreserved samples. No qualifications were applied.

All VOC surrogates met acceptance criteria. No qualifications were applied.

All VOC internal standards met acceptance criteria. No qualifications were applied.

All BFB tuning of the mass spectrometers met acceptance criteria. No qualifications were applied.

All initial calibration (IC) average relative response factors (RRFs) were greater than the 0.05 control limit and all percent relative standard deviations (RSDs) were less than the control limit of 20.0% with the following exceptions:

IC DATE	COMPOUND	RRF	AFFECTED SAMPLES	QUALIFIER FLAG
10/20/2015	1,4-Dioxane	0.0085	All Soils	None, poorly behaved compound
11/5/2015	1,4-Dioxane	0.0060	EB-06, TB-06	None, poorly behaved compound

All continuing calibration (CC) individual response factors (RFs) were greater than 0.05 and the percent differences (%Ds) were less than 20.0% with the following exceptions:

CC DATE	COMPOUND	RF or %D	AFFECTED SAMPLES	QUALIFIER FLAG
11/6/2015	Bromomethane	32.1%	All Soils except	UJ
Trichlorofluoromethane 2,2-Dichloropropane 1,1,1-Trichloroethane trans-1,3-Dichloropropene	22.2% 23.2%	SWMU12-SB06-SS-103	UJ	
	26.4%		UJ	
	23.5%		UJ	
	Dibromochloromethane	26.6%		UJ
1,2-Dibromo-3-chloropropan 1,1,2,2-Tetrachloroethane 1,4-Dioxane	1,2-Dibromo-3-chloropropane	31.5%		UJ
	1,1,2,2-Tetrachloroethane	21.7%	1	UJ
	0.0058		None, poorly behaved compound	
11/8/2015	Dichlorodifluoromethane	20.4%	SWMU12-SB06-SS-103	UJ
	2-Hexanone	24.8%		UJ
	Dibromochloromethane	23.7%		UJ
	1,2-Dibromo-3-chloropropane	37.3%	X .	UJ
	1,4-Dioxane	37.4% 0.0082		UJ

Page 1 of 5 Project Number: 206910

TestAmerica Inc. Report Number: J90447-1

CC DATE	COMPOUND	RF or %D	AFFECTED SAMPLES	QUALIFIER FLAG
11/13/2015	Dichlorodifluoromethane	49.5%	EB-06, TB-06	UJ
	Vinyl chloride	33.1%	2.4	UJ
	Trichlorofluoromethane	39.4%		UJ
	2,2-Dichloropropane	27.7%		ÚJ
	1,1,1-Trichloroethane	35.4%		UJ
	Cyclohexane	47.0%		UJ
	Carbon tetrachloride	48.2%	1	UJ
	Methylcyclohexane	36.4%	A .	UJ
	1,4-Dioxane	25.2%		UJ
		0.0106		133
	1,1,2-Trichloro-1,2,2- trifluoroethane	36.0%		UJ

All VOC method blanks were non-detect (ND) for all target compounds with the following exceptions:

BLANK ID	COMPOUND	CONCENTRATION	AFFECTED SAMPLES	QUALIFIER FLAG
MB 480-273171	1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 2-Hexanone 4-Methyl-2-pentanone Methylene chloride Acetone	0.710 J µg/kg 0.510 J µg/kg 5.06 J µg/kg 2.19 J µg/kg 3.05 J µg/kg 11.9 J µg/kg	All Soils	None, samples ND None, samples ND None, samples ND None, samples ND None, samples ND U@RL, 480-90447-5, -6

RL=reporting limit

VOC field blank samples, EB-06 (480-90447-9) and TB-06 (480-90447-10), were ND for all target compounds with the following exceptions:

BLANK ID	COMPOUND	CONCENTRATION	AFFECTED SAMPLES	QUALIFIER FLAG
EB-06	Acetone	4.0 J μg/L 0.43 J μg/L	All Soils	None, samples ND after method blank action None, samples ND

No VOC matrix spike/matrix spike duplicate (MS/MSD) was performed on a sample from this analytical package. No qualifications were applied.

The VOC laboratory control sample (LCS) and/or laboratory control sample duplicate (LCSD) met laboratory acceptance criteria with the following exceptions:

LCS and/or LCSD ID	COMPOUND	%R/%R/RPD	QC LIMIT	AFFECTED SAMPLES	QUALIFIER FLAG
480-273171	1,2-Dibromo-3-chloropropane 2-Hexanone Tetrahydrofuran	OK/135/OK OK/131/23 OK/116/OK	63-125%, 20 59-130%, 20 64-113%, 20	All Soils	None, samples ND None, samples ND None, samples ND
480-274853	Dichlorodifluoromethane	137/NA/NA	59-135%	EB-06, TB-06	None, samples ND

No VOC field duplicate samples were submitted with this analytical package. No qualifications were applied.

Page 2 of 5 Project Number: 206910

TestAmerica Inc. Report Number: J90447-1

SVOCs EPA Method 8270D:

All semivolatile organic compound (SVOC) samples were extracted and analyzed within technical holding times. No qualifications were applied.

All SVOC surrogates met acceptance criteria. No qualifications were applied.

All SVOC internal standards met acceptance criteria. No qualifications were applied.

All DFTPP tuning of the mass spectrometers met acceptance criteria. No qualifications were applied.

All IC average RRFs were greater than the 0.05 control limit and all percent RSDs were less than the control limit of 20.0% or the coefficient of determination (COD) was greater than 0.99 with the following exception:

IC DATE	COMPOUND	COD	AFFECTED SAMPLES	QUALIFIER FLAG	
10/26/2015	Benzaldehyde	0.963	EB-06	UJ	-

All CC individual RFs were greater than 0.05 and the %Ds were less than 20.0% with the following exceptions:

CC DATE	COMPOUND	RF or %D	AFFECTED SAMPLES	QUALIFIER FLAG
11/10/2015	Benzaldehyde	51.3%	EB-06	UJ
	4-Chloroaniline	23.7%		UJ
	Hexachlorobutadiene	21.7%		UJ
	2,4-Dinitrophenol	25.9%		UJ
	4-Nitrophenol	25.2%		UJ
	Hexachlorobenzene	21.8%		UJ
	Pentachlorophenol	35.3%	Language and the same of the s	UJ
11/11/2015	Benzaldehyde	21.8%	All Soils	UJ

All SVOC method blanks were ND for all target compounds for all target compounds. No qualifications were applied,

SVOC field blank sample, EB-06 (480-90447-9), was ND for all target compounds. No qualifications were applied.

The SVOC MS/MSD performed on sample SWMU4-SB06-SS-103 (480-90447-2) met acceptance criteria. No qualifications were applied.

The SVOC LCS met laboratory acceptance criteria. No qualifications were applied.

No SVOC field duplicate samples were submitted with this analytical package. No qualifications were applied.

One sample was analyzed at a dilution due to the sample matrix. Reporting limits in this sample are elevated as a result of the dilution performed.

Alcohols EPA Method 8015D:

All alcohol samples were analyzed within technical holding times. No qualifications were applied. Sample EB-06 (480-90447-9) was not properly preserved to pH <2. Therefore, non-detected results are estimated (UJ) in sample EB-06 (480-90447-9).

All IC percent RSDs were less than the control limit of 20.0%. No qualifications were applied.

All CC %Ds were less than 20.0%. No qualifications were applied.

Page 3 of 5 Project Number: 206910

TestAmerica Inc. Report Number: J90447-1

All alcohol method blanks were ND for all target compounds with the following exception:

BLANK ID	COMPOUND	CONCENTRATION	AFFECTED SAMPLES	QUALIFIER FLAG
MB 480-273254	Methanol	0.332 J mg/kg	All Soils	U@RL, 480-90447-1 through -4, -6

Alcohol field blank sample, EB-06 (480-90447-9), was ND for all target compounds. No qualifications were applied.

All alcohol surrogates met acceptance criteria. No qualifications were applied.

The alcohol MS/MSD performed on sample SWMU4-SB05-SS-102 (480-90447-1) met acceptance criteria. No qualifications were applied.

The alcohol LCS met laboratory acceptance criteria. No qualifications were applied.

No alcohol field duplicate samples were submitted with this analytical package. No qualifications were applied.

PCBs EPA Method 8082A:

All polychlorinated biphenyl (PCB) compound samples were extracted and analyzed within technical holding times. No qualifications were applied.

All PCB surrogates met acceptance criteria. No qualifications were applied.

All IC percent RSDs were less than the control limit of 25.0%. No qualifications were applied.

All CC %Ds were less than 15.0%. No qualifications were applied.

All PCB method blanks were ND for all target compounds. No qualifications were applied.

PCB field blank sample, EB-06 (480-90447-9), was ND for all target compounds. No qualifications were applied.

The PCB MS/MSD performed on sample SWMU4-SB05-SS-102 (480-90447-1) met acceptance criteria. No qualifications were applied.

The PCB LCS met laboratory acceptance criteria. No qualifications were applied.

No PCB field duplicate samples were submitted with this analytical package. No qualifications were applied.

Metals (RCRA8) EPA Methods 6010C and 7470A or 7471B:

All metals samples were digested and analyzed within technical holding times. No qualifications were applied.

All metals initial and continuing calibrations met acceptance criteria. No qualifications were applied,

Metals field blank sample, EB-06 (480-90447-9), was ND for all target analytes. No qualifications were applied.

The ICP metals MS/MSD performed on sample SWMU4-SB05-SS-102 (480-90447-1) and the mercury MS/MSD performed on sample SWMU4-SB07-SS-104 (480-90447-3) met acceptance criteria. No qualifications were applied.

No metals laboratory duplicate was performed on a sample from this analytical package. No qualifications were applied.

Page 4 of 5 Project Number: 206910

TestAmerica Inc. Report Number: J90447-1

The ICP metals serial dilution performed on sample SWMU4-SB05-SS-102 (480-90447-1) and the mercury serial dilution performed on sample SWMU4-SB07-SS-104 (480-90447-3) met acceptance criteria with the following exception:

LAB ID	SAMPLE ID	ANALYTE	%D	QC LIMIT	QUALIFIER
SWMU4-SB05-SS-102	480-90447-1	Barium	11	10	J, All Soils

The metals LCS met laboratory acceptance criteria. No qualifications were applied.

No metals field duplicate samples were submitted with this analytical package, No qualifications were applied.

Data Check, Inc. P.O. Box 29 81 Meaderboro Road New Durham, NH 03855

Gloria J. Switalski: President

Date: 3/9/2016

Page 5 of 5

Project Number: 206910

TestAmerica Inc. Report Number: J92934-1

The criteria detailed below were used to qualify the data. Raw data were not used to verify the results reported by the laboratory.

Samples were received at Celsius at 3.7 degrees Celsius. No qualifications were applied.

SVOCs EPA Method 8270D:

All semivolatile organic compound (SVOC) samples were extracted and analyzed within technical holding times. No qualifications were applied.

All SVOC surrogates met acceptance criteria. No qualifications were applied.

All SVOC internal standards met acceptance criteria. No qualifications were applied.

All DFTPP tuning of the mass spectrometers met acceptance criteria. No qualifications were applied.

All initial calibration (IC) average relative response factors (RRFs) were greater than the 0.05 control limit and all percent relative standard deviations (RSDs) were less than the control limit of 20.0%. No qualifications were applied.

All continuing calibration (CC) individual response factors (RFs) were greater than 0.05 and the percent differences (%Ds) were less than 20.0%. No qualifications were applied.

All SVOC method blanks were non-detect (ND) for all target compounds. No qualifications were applied.

No SVOC field blank sample was submitted with this analytical package. No qualifications were applied.

No SVOC matrix spike/matrix spike duplicate (MS/MSD) was performed on a sample from this analytical package. No qualifications were applied.

The SVOC laboratory control sample (LCS) met laboratory acceptance criteria. No qualifications were applied.

No SVOC field duplicate samples were submitted with this analytical package. No qualifications were applied.

The only sample was at a 10-fold dilution due to sample matrix. Reporting limits in this sample are elevated as a result of the dilution performed.

Alcohols EPA Method 8015D:

All alcohol samples were analyzed within technical holding times. No qualifications were applied.

All IC percent RSDs were less than the control limit of 20.0%. No qualifications were applied.

All CC %Ds were less than 20.0%. No qualifications were applied.

All alcohol method blanks were ND for all target compounds. No qualifications were applied.

No alcohol field blank sample was submitted with this analytical package. No qualifications were applied.

All alcohol surrogates met acceptance criteria. No qualifications were applied.

The alcohol MS/MSD performed on sample SWMU1-SURFACE-SS-01R (480-92934-1) met acceptance criteria. No qualifications were applied.

The alcohol LCS met laboratory acceptance criteria. No qualifications were applied.

Page 1 of 2 Project Number: 206910

TestAmerica Inc. Report Number: J92934-1

No alcohol field duplicate samples were submitted with this analytical package. No qualifications were applied.

PCBs EPA Method 8082A:

All polychlorinated biphenyl (PCB) compound samples were extracted and analyzed within technical holding times. No qualifications were applied.

All PCB surrogates met acceptance criteria. No qualifications were applied.

All IC percent RSDs were less than the control limit of 25.0%. No qualifications were applied.

All CC %Ds were less than 15.0%. No qualifications were applied.

All PCB method blanks were ND for all target compounds. No qualifications were applied.

No PCB field blank sample was submitted with this analytical package. No qualifications were applied.

The PCB MS/MSD performed on sample SWMU1-SURFACE-SS-01R (480-92934-1) met acceptance criteria. No qualifications were applied.

The PCB LCS met laboratory acceptance criteria. No qualifications were applied.

No PCB field duplicate samples were submitted with this analytical package. No qualifications were applied.

Metals (RCRA8) EPA Methods 6010C and 7471B:

All metals samples were digested and analyzed within technical holding times. No qualifications were applied.

All metals initial and continuing calibrations met acceptance criteria. No qualifications were applied.

No metals field blank sample was submitted with this analytical package. No qualifications were applied.

The ICP metals and mercury MS/MSD performed on sample SWMU1-SURFACE-SS-01R (480-92934-1) met acceptance criteria. No qualifications were applied.

No metals laboratory duplicate was performed on a sample from this analytical package. No qualifications were applied.

The ICP metals and mercury serial dilution performed on sample SWMU1-SURFACE-SS-01R (480-92934-1) met acceptance criteria. No qualifications were applied.

The metals LCS and/or laboratory control sample/laboratory control sample duplicate (LCS/LCSD) met laboratory acceptance criteria. No qualifications were applied.

No metals field duplicate samples were submitted with this analytical package. No qualifications were applied,

Data Check, Inc. P.O. Box 29 81 Meaderboro Road New Durham, NH 03855

Gloria J. Switalski: President Date: 3/9/2016

Page 2 of 2 Project Number: 206910