FIELD ACTIVITIES PLAN PRE-DESIGN INVESTIGATION

SARANAC LAKE GAS COMPANY OPERABLE UNIT 01 NYSDEC SITE NO. 516008 REMEDIAL DESIGN

WORK ASSIGNMENT NO. D007619-50

Prepared for:

New York State Department of Environmental Conservation Albany, New York

Prepared by:

MACTEC Engineering and Consulting, P.C. Portland, Maine

MACTEC: 3611191237

August 2019

FIELD ACTIVITIES PLAN PRE-DESIGN INVESTIGATION

SARANAC LAKE GAS COMPANY OPERABLE UNIT 01 NYSDEC Site No. 516008 REMEDIAL DESIGN

WORK ASSIGNMENT NO. D007619-50

Pre	oared	for

New York State Department of Environmental Conservation Albany, New York

Prepared by:

MACTEC Engineering and Consulting, P.C. Portland, Maine

MACTEC: 3611191237

August 2019

Submitted by:	Approved by:		
T. F. I. D.C.			
Jean Firth. P.G.	Jamie Welch		
Site Lead	Project Manager		

TABLE OF CONTENTS

LIST OF FIGURES	III
LIST OF TABLES	IV
1.0 INTRODUCTION	1-1
1.1 FIELD INVESTIGATION OBJECTIVES	1-2
1.2 SITE BACKGROUND	1-2
1.2.1 Site Description	1-2
1.2.2 Previous Investigations and Remediations	1-3
2.0 SITE PHYSICAL SETTING	2-1
2.1 Topography	2-1
2.2 Climate	2-1
2.3 SURFACE WATER HYDROLOGY	2-1
2.4 GROUNDWATER HYDROLOGY	
2.5 GEOLOGY	
3.0 CONCEPTUAL SITE MODEL	2 1
3.1 CONTAMINANTS OF CONCERN AND ENTRY POINTS/SOURCE AREAS	
3.2 HYDROGEOLOGY AND CONTAMINANT DISTRIBUTION	
3.3 SURFACE WATER MIGRATION PATHWAYS	
3.4 EXPOSURE POINTS	3-5
4.0 SCOPE OF WORK	4-1
4.1 GENERAL FIELD OPERATIONS	4-1
4.1.1 Health and Safety	4-2
4.1.2 Access and Clearance	4-2
4.1.3 Community Air Monitoring Plan	
4.1.3.1 Purpose	
4.1.3.3 VOC Air Monitoring	
4.1.4 Mobilization	
4.1.5 Decontamination	
4.1.6 Investigation Derived Wastes	
4.1.7 Laboratory Analysis	
4.2 FIELD ACTIVITIES	
4.2.1 Building Materials Survey	
4.2.2 Railroad Track Removal	
4.2.3 Delineation of MGP Materials	
4.2.3.1 Surface Soil Samples	
4.2.3.2 Test Pits	
4.2.3.3 Soil Borings	
4.2.4 Groundwater Activities	
4.2.4.1 Temporary Well Installation	
4.2.4.2 Environmental Groundwater Sampling	
4.2.4.3 Hydraulic Conductivity Testing	4-13

Field Activities Plan – Saranac Lake Gas Company OU01	
NYSDEC – Site No. 516008	

MACTEC	Fnoineerino	and Consulting	PC	Project No	3611191237
MACILO	Luzuiceiniz	una Consumir.	. 1	I TOTECLINO	. 3011171437

4.2	.4.4 Design Support Sampling	4-14
	Wetlands Porewater Sampling	
	In-situ Solidification Bench Testing	
	Piezometer Decommissioning and Well inventory	
	Tree Clearing	
	DATA DELIVERABLE	
50 DE	FERENCES	. .
50 RF	HERENCES .	5 -

FIGURES

TABLES

APPENDICES

Appendix A: MACTEC Short Form Site-Specific Health and Safety Plan (HASP)

Appendix B: Field Data Records (FDRs)

Appendix C: NYSDEC Field Descriptions of Samples for Former Manufactured Gas Plant

(MGP) Sites

Appendix D: OU02 and OU03 Well and Piezometer Construction Logs

Appendix E: In Situ Stabilization Bench Test Proposal

LIST OF FIGURES

Figure

1.1	Site Location Map
1.2	Site Features
1.3	Visual/Olfactory Extent of MGP-Impacted Soil
2.1	Interpreted Overburden Groundwater Flow
4.1	OU01 Pre-Design Investigation Areas
4.2	Extent of Waste and Proposed OU01 Sample Locations
4.3	Proposed Railroad Delineation OU02 Sample Locations
4.4a	OU03 Piezometers Proposed to be Decommissioned
4.4b	OU02 Well Inventory Locations
4.5	Proposed Tree Clearing Areas

LIST OF TABLES

Table

- 4.1 Summary of Pre-Design Investigation Rationale for Saranac Lake OU01
- 4.2 Proposed Sample Identification and Analyses
- 4.3 Monitoring Well and Piezometer Construction Details

GLOSSARY OF ACRONYMS AND ABBREVIATIONS

ACM Asbestos Containing Material

ACOE Army Corps of Engineers

ASTM American Society for Testing and Materials

bgs below ground surface

BTEX benzene, toluene, ethylbenzene and xylene compounds

CAMP Community Air Monitoring Plan

COC contaminant of concern
CSM Conceptual Site Model

cy cubic yards

DEPH di-2-ethylhexyl phthalate

DNAPL dense non-aqueous phase liquid

Eurofins TestAmerica

°F degrees Fahrenheit
FAP Field Activities Plan
FDR Field Data Records

HASP Health and Safety Plan

ID identification

IDW investigation-derived wastes

ISS in-situ solidification

LBP lead-based paint

LNAPL light non-aqueous phase liquid

GLOSSARY OF ACRONYMS AND ABBREVIATIONS (CONTINUED)

MACTEC MACTEC Engineering and Consulting, P.C.

mg/kg milligram(s) per kilogram

 $\mu g/m^3$ microgram(s) per cubic meter

MGP Manufactured Gas Plant

North Country Community College **NCCC**

New York New York State Museum and Science Service

NOB Non-friable Organically Bound

NYSDEC New York State Department of Environmental Conservation

NYSDOT New York State Department of Transportation

OD outside diameter OU Operable Unit

PAH polycyclic aromatic hydrocarbons

PCB polychlorinated biphenyls

PFAS Per- and Polyfluoroalkyl Substances

PDI Pre-Design Investigation PID photoionization detector

PLM Polarizing Light Microscopy

parts per million ppm

QAPP Quality Assurance Program Plan

RA remedial action

RCM Reactive Core MatTM

RD remedial design

RI remedial investigation

SC Site Characterization

SCG Standards, Criteria and Guidance Values NYSDEC – Site No. 516008

MACTEC Engineering and Consulting, P.C., Project No. 3611191237

SCO Soil Cleanup Objectives

SGV Sediment Guidance Values

Site Saranac Lake Gas Company

SVOC semi-volatile organic compounds

TCLP Toxicity Characteristics Leaching Procedure

TEM Transmission Electron Microscopy

TOC total organic carbon

USEPA United States Environmental Protection Agency

VOC Volatile Organic Compound

WA Work Assignment

1.0 INTRODUCTION

This Field Activities Plan (FAP) has been prepared by MACTEC Engineering and Consulting, P.C. (MACTEC) in response to Work Assignment (WA) No. D007619-50 from the New York State Department of Environmental Conservation (NYSDEC) for the Saranac Lake Gas Company Site Operable Unit 01 (OU01) – NYSDEC Site (Site No 516008) (Site) in the Village of Saranac Lake, in Essex County, New York (Figure 1.1). This FAP has been prepared in response to the NYSDEC WA authorization letter for D007619-50 dated April 19, 2019, and the July 2011 Superfund Standby Contract between MACTEC and the NYSDEC.

The Site is currently listed as a Class 2 site (i.e., significant threat to the public health or environment) by the NYSDEC. This FAP presents a technical scope of work to conduct pre-design field activities in support of the Remedial Design (RD) for OU01 (on-Site). Work will be conducted in accordance with the NYSDEC DER-10 Guidance (NYSDEC, 2010).

This FAP is organized into six sections as follows:

- Section 1.0 Introduction, Field Investigation Objectives, and Site Background.
- Section 2.0 –Site Physical Setting describes the physical, geologic, and hydrogeologic setting of the Site.
- Section 3.0 Conceptual Site Model (CSM) presents a working conceptual model describing how contaminants may have been released into the environment, how the chemicals may migrate, and the receptors that may be affected.
- Section 4.0 Scope of Work describes the sampling and analysis that will be performed to assess contaminant distribution in groundwater, soil and soil vapor.
- *Section 5.0* FAP References.

The FAP is supplemented by the following attached documents:

- Appendix A MACTEC Short Form Site-Specific Health and Safety Plan (HASP)
- Appendix B Field Data Records (FDRs)
- Appendix C Field Descriptions of Samples for Former Manufactured Gas Plant (MGP) Sites

1.1 Field Investigation Objectives

The objective of this FAP is to provide the technical scope of work to conduct pre-design field activities in support of the RD at OU01. The investigation objectives are:

- Conduct a hazardous building material survey at the onsite structure
- Further delineate the extent of MGP materials
 - O Complete an environmental investigation of OU01 to refine the horizontal and vertical extent of MGP waste impact and to support excavation support design
 - O Delineate the extent of MGP material visually and evaluate concentrations of polyaromatic hydrocarbons (PAH) and/or benzene, toluene, ethylbenzene and xylene (BTEX) exceeding commercial clean-up criteria.
 - O Visually identify extent (horizontal and vertical) of purifier box waste (as indicated by wood chips) which will be removed from the site.
- Waste characterization of material to be disposed off-site
- Support bench scale testing for solidification of waste
- Support design of potential excavation water treatment
- Evaluate contaminant migration in groundwater at the nearest receptor
- Evaluate current groundwater concentration and the presence/absence of emerging contaminants
- Evaluate remaining contamination along the railroad corridor
- Decommission monitoring wells which are not needed for long term monitoring
- Clear trees to support implementation of the remedial activities

1.2 Site Background

Information pertaining to the history of the Site is contained in previous reports and is summarized in the following subsections.

1.2.1 SITE DESCRIPTION

The Remedial Investigation (RI) Report (MACTEC, 2015) documented investigation activities completed from August 2013 through October 2014 at the Site for all OUs:

- OU01 Site property (the former MGP property)
- OU02 Brandy Brook (the section of brook from OU01 to Pontiac Bay in Lake Flower)
- OU03 Pontiac Bay of Lake Flower.

The RI report incorporated the results and findings of the Site Characterization (SC) Report which documented investigation activities completed in 2007 for all OUs.

OU01 is approximately 4.5 acres in size and is located east of, and adjacent to the Adirondack Scenic Railroad. Residential properties border OU01 to the north, east, and part of the west side and North Country Community College soccer fields and facilities border OU01 to the south. An access road extends from Payeville Lane west to the former gas plant setting. The Site and surrounding area is serviced by public water; therefore, groundwater is not believed to be used as a source of drinking water. Currently, OU01 is a vacant lot with an open, unoccupied one-story brick building. Figure 1.2 shows the existing and historical MGP-related features within OU01.

OU02 is Brandy Brook which flows along the northern edge of OU01 and continues in a northerly direction for approximately 1,000 feet then turns to the west and flows for 700 feet, where it discharges to OU03. Brandy Brook is a Class A designated water body.

OU03 includes Pontiac Bay and an adjacent area within Lake Flower. Pontiac Bay (approximately 4 acres) is located along the northeast portion of Lake Flower adjacent to the intersection of Lake Flower Avenue, Brandy Brook Road, and River Street. Lake Flower is a Class A designated water body.

1.2.2 PREVIOUS INVESTIGATIONS AND REMEDIATIONS

Investigations conducted between 2007 and 2017 revealed the primary contaminants of concern (COCs) as the by-products resulting from the manufacturing of coal gas, which contain several chemical constituents that are a cause for concern when left untreated in the environment. The following COCs are a result of the coal tar producing MGP process:

- Coal-tar includes two predominant contaminant classifications, volatile organic compounds (VOCs) and semi-VOCs (SVOCs).
 - o MGP-related VOCs are specifically characterized by BTEX compounds. BTEX compounds often represent a small percentage of the mass of MGP-related waste but are the most soluble and therefore are the most likely to migrate in groundwater. BTEX are also the most volatile and are thus the most likely to migrate through subsurface soils as vapors or soil gas.
 - O SVOCs found in coal-tar are PAHs. Naphthalene, a PAH, is present in coal-tar in relatively high concentrations and was used during the RI as an indicator compound for detecting MGP-related waste in sampled media.

During the previous investigations visual impact from MGP waste was documented in soil throughout OU01 (Figure 1.3). Purifier box wastes (typically wood chips and/or cyanide staining [blue]) were observed in in the central portion of OU01. VOCs and SVOCs were detected in soil at concentrations exceeding Part 375 Soil Cleanup Objectives (SCOs) for Industrial, Commercial and Residential use (NYSDEC, 2006). The majority MGP impacts in soil were observed within the limits of the site fence with some impacts observed both north and south of the former MGP processing area. The volume of MGP impacted soil is estimated to be 38,500 cubic yards (cy). Although visual impacts of MGP-related wastes were not observed in soil borings advanced at several locations within OU01, olfactory indications of MGP-related waste were noted in samples below the water table suggesting that contaminants are migrating in groundwater. VOCs and SVOCs were detected in OU01 groundwater at concentrations exceeding the New York State Ambient Water Quality Class GA Standards and Guidance Values (Class GA standards) (NYS, 1999). Groundwater contamination is migrating offsite to the south.

Results from the RI indicated OU02 sediment throughout Brandy Brook showed evidence of impact from MGP-related waste. PAH concentrations in OU02 exceeded both the Class A and B Sediment Guidance Values (SGVs) and met the definition of Class C sediments, which are "considered highly contaminated and likely to pose a risk to aquatic life" as set forth in NYSDEC Guidance Document titled "Screening and Assessment on Contaminated Sediment," issued June 24, 2014. MGP-related contamination was generally observed from the surface to approximately three feet below ground surface (bgs) in Brandy Brook and the associated wetland. Increased concentrations, volume and depth of MGP-related contamination were detected in depositional areas in Brandy Brook (i.e. areas where stream flow velocity is reduced).

OU03 sediment throughout Pontiac Bay also showed evidence of impact from MGP-related waste. PAH concentrations in OU03 exceeded both the Class A and B SGVs and met the definition of Class C sediments. The vertical extent of MGP-impacted sediment within OU03 ranged between one to seven feet bgs.

Due to the nature of MGP-related waste, RI field observations (including visual, olfactory and photoionization detector [PID] field scan responses) were used as a primary characterization tool to assess the extent of contamination in soil and sediment. For confirmation of this technique, a subset of

samples (both with and without observed impacts) were submitted for laboratory analysis. It was observed that where MGP-like product or staining was observed, analytical results exceeded Standards, Criteria, and Guidance Values (SCGs); where no observable impacts of MGP-like wastes were noted, analytical concentrations were generally below applicable SCGs (MACTEC, 2015).

A pre-design investigation (PDI) for OU02 and OU03 was conducted in 2016/2017 to:

- Complete an ecological study, bathymetric study, and wetland delineation at OU02 and OU03
- Complete a topographic and property boundary survey of OU02
- Complete a topographic survey of OU03 shoreline areas and determination of property lines at **OU03**
- Complete a hydrogeological investigation of OU02 and OU03 to evaluate the depth of groundwater, the potential for groundwater discharge into Pontiac Bay, and to assist with RD dewatering specifications
- Complete an environmental and geotechnical investigation of OU02 to refine the horizontal and vertical extent of MGP waste impact to sediments, to support excavation support design, and to assess the slope stability of Brandy Brook
- Complete an environmental and geotechnical investigation of OU03 to refine the horizontal and vertical extent of MGP waste impact to sediments, to support shoring design, and to identify options available to render saturated sediment suitable for off-site disposal during the remedial action (RA).

Results from this investigation were presented in the PDI Field Activities Report Operable Units OU02 and OU03 (MACTEC, 2017). The results of this investigation were used to prepare a RD for OU02 and OU03. Soil and sediment removal remedial activities were conducted at OU02 and OU03 in 2018. Remedial activities consisted of:

- excavation of approximately 5,800 cy of MGP-impacted soil and sediment along Brandy Brook up to a depth of 9.5 feet bgs;
- removal of sediment accumulated in culverted sections of Brandy Brook located under Slater Avenue and Lake Flower Avenue discharging into Pontiac Bay;
- mechanical dredging of approximately 16,900 cy of MGP-impacted lake sediment in OU03 to a depth of 7.5 feet below lake bottom;
- Treatment of approximately 1,200 cy of MGP-impacted upland soil adjacent to Lake Flower in OU03 using in-situ solidification (ISS);
- Installation of engineering controls (Reactive Core MatTM (RCM) in OU02 and Aquablok®, an impermeable barrier at OU03) at locations where visually impacted soil or sediment remained or laboratory results indicated that SCOs were not achieved but additional soil or sediment could not be reached or remediation was logistically impractical.

Field Activities Plan – Saranac Lake Gas Company OU01 NYSDEC – Site No. 516008 MACTEC Engineering and Consulting, P.C., Project No. 3611191237

August 2019

Restoration activities for OU02 and OU03 were conducted in May/June 2019.

The sections below describe the topography, climate, surface water and groundwater hydrology, and

geology in the area surrounding the Site.

2.1 **Topography**

The Site is located in the Village of Saranac Lake, Essex County at approximately 1560 feet above

mean sea level. The topography in the immediate vicinity of the Site is characterized by a relatively

flat grade. Brandy Brook flows adjacent to the northern edge of the Site and eventually discharges to

Pontiac Bay of Lake Flower which is located approximately 0.75 miles northeast of the Site.

2.2 Climate

The climate of the area is characterized by moderately warm summers and cold winters. Mean

monthly temperatures range from around 14 degrees Fahrenheit (°F) in January to 65°F in July.

Average annual precipitation is about 40 inches (National Climactic Data Center, 1999).

2.3 **Surface Water Hydrology**

Brandy Brook (OU02) flows westward along the northern edge of the former gas plant property

(OU01) before turning northwest and then west and discharging into Pontiac Bay (OU03) in Lake

Flower. Along the corridor of Brandy Brook, precipitation that does not infiltrate to recharge

groundwater may migrate as overland flow to the brook. Storm water from the northernmost portion

of the property is presumed to migrate towards Brandy Brook. There are no other surface water

features present within, or immediately adjacent to OU01. The southernmost portion of OU01 slopes

southward and North Country Community College (NCCC) soccer fields bordering the Site to the

south are built on the location of a former gravel pit. Surface runoff from the southern portion of the

OU01 property would be expected to migrate southward. However, the sandy character of the surface

soils promotes infiltration and no overland surface runoff was observed during precipitation events that

occurred during RI activities.

McKenzie Brook is located to the south and flows generally from east to west along a corridor with

wetland and small ponds and discharges to Lake Flower.

2 - 1

2.4 Groundwater Hydrology

Based on the sandy character of the overburden, the flat topography at OU01, and measurements of groundwater elevation, the former gasification plant (OU01) occupies a groundwater recharge area, or an area with downward vertical gradients. Depth to groundwater at OU01 ranges generally from 5 to 10 feet bgs. MGP-related waste, where present, will clog pore space and reduce the ability of the overburden to transmit water, and therefore measured groundwater elevations in shallow wells within OU01 are inconsistent. Therefore, the groundwater flow direction is interpreted based on weight of evidence from the majority of wells, the distribution of contaminants detected in these wells and the local topography. An interpretation of generalized shallow overburden flow direction is shown on Figure 2.1. Groundwater flow direction is controlled partially by the presence of a hill to the west of OU01. Flow beneath the northernmost portion of OU01 is directed northwestward towards Pontiac Bay (OU03) in Lake Flower. However, flow beneath most of OU01 is likely directed southward towards the McKenzie Brook watercourse, associated wetlands and small feeder ponds.

The bed of Brandy Brook along the northern edge of OU01 is approximately four feet above the water elevation in nearby wells indicating that the brook is a perched stream that recharges the groundwater table. The potential discharge point for groundwater beneath the impacted reach of Brandy Brook (OU02) is likely Pontiac Bay in Lake Flower (OU03). Seasonal variation in precipitation may affect surface water features (i.e., Brandy Brook to the north and drainage ditches located south of OU01) and influence shallow groundwater flow migrating from the Site.

Data collected during monitoring well sampling was evaluated to provide a general assessment of overburden hydraulic characteristics in the vicinity of OU01. Sampling flow rates and stabilized drawdown measurements were used to calculate well specific capacities (yield per unit of stabilized drawdown) and to estimate aquifer transmissivity (the maximum rate at which groundwater can flow horizontally through a unit width of unconsolidated aquifer). Transmissivity estimated from specific capacity was also approximated using an assumed storage coefficient for unconfined aquifer conditions. A summary of the data and calculations were presented in the RI Report. Specific capacity (and estimated transmissivity) values range over two orders of magnitude.

2.5 Geology

Based on information gathered during the SC and RI investigations, the surficial geology at the Site is predominately fluvial sands, medium to fine sands with some silt. These unconsolidated deposits are collectively referred to as "overburden". Bedrock underlying the site is noted as gneiss (metamorphic rock) of uncertain origin, and varied in composition (New York, 1970). Bedrock was not encountered during the 2007 SC or 2013/2014 RI and the depth to bedrock at the Site is not known. Soils at the Site (OU01) were logged continuously in most borings to depths up to 56 feet bgs and bedrock was not encountered. A solid point was advanced to refusal with a direct push drill rig in each corner of the Site, to get a better understanding of where a lithological change may be present and/or the elevation of the bedrock surface. Refusal depths encountered within OU01 ranged from 27 feet bgs to 68 feet bgs.

3.0 CONCEPTUAL SITE MODEL

Data obtained during the SC and RI was used to formulate the CSM for the Site. Field staff collecting samples during the RI evaluated conditions encountered and assessed whether field observations were consistent with the current site understanding and, if collected, met the project objectives. The CSM was updated after each phase of work to help guide future sampling tasks, as well as formulate a current understanding of the Site conditions and potential complete exposure pathways.

<u>Background</u> – The former Saranac Lake Gas Company manufactured lighting gas through the coal gasification process for the Village of Saranac Lake. According to Sanborn insurance maps and photos obtained from the town library, the MGP likely operated until the 1930s or 1940s and included two above ground gas holders, a building housing the purifier and retort (heating) operations, as well as additional areas for coal storage and offices.

Based on the operational age of this MGP site, the most likely method of gas manufacturing was via the Carbureted Water Gas process. In general, this method involved:

- Coal heated in closed retorts in which the coal was prevented from combusting by limiting the oxygen.
- During the heating process steam was injected into the retort and a chemical reaction occurred that produced a flammable gas mixture.
- Liquid petroleum hydrocarbons were sprayed into the hot gas mixture creating additional methane.
- The gas was collected, cooled, and purified before being used.
- Condensed tar (coal-tar) was produced as a by-product (waste).

Waste materials and by-products may have been disposed through a variety of methods. Historically, coal-tar was collected for sale or reuse. If a market for the coal tar did not exist, the waste may have been disposed in an onsite/near site landfill or waste was often discharged to nearby water bodies. Wastes may also have entered the environment through leaks from storage and, or processing. Coal tar disposal at this site was most likely disposed through a direct discharge to Brandy Brook; coal tar in onsite soil is likely the result of spills and leaks. Some box waste and ash materials were landfilled at the Site.

Investigations conducted between 2007 and 2017 revealed the presence of MGP-related contamination within OU01 soil and groundwater; OU02 sediment in Brandy Brook east and to a much lesser extent to the west of the Adirondack Scenic Railroad; and OU03 sediment within Pontiac Bay and extending further into Lake Flower.

3.1 CONTAMINANTS OF CONCERN AND ENTRY POINTS/SOURCE AREAS

COCs resulting from the MGP process (as described in Section 1.3 above) found at the Site property, Brandy Brook and Lake Flower include:

- Coal tar Visual and olfactory evidence of coal tar related to the Site have been documented
 in soil, groundwater and sediment. PAHs have been detected at concentrations exceeding
 SCGs in soil and groundwater at OU01 and in sediment at OU02 and OU03. Naphthalene
 and/or BTEX compounds were detected in groundwater at concentrations above their SCGs in
 10 of the 19 monitoring wells sampled as part of the RI.
- Light oil Petroleum-related VOCs were detected at concentrations exceeding SCGs in soil and groundwater at (OU01) and downgradient from the Site (OU02).
- Phenols Low concentrations of phenol were detected in groundwater collected from the Site (OU01) during the 2007 SC; however, they were not detected during the RI.
- Purifier box waste OU01 Purifier box waste-like material was observed in 13 soil borings advanced within OU01 during the RI. In general, the purifier waste material was present adjacent to the footprint of the existing gas holder pad and extending southwards to the fenced perimeter of the Site (Figure 1.3). Cyanide likely associated with the box waste was detected at the Site (OU01) in soils at a concentration of 423 milligrams per kilogram (mg/kg) and sulfide was detected at the Site in soils at a concentration of 27 mg/kg during the 2007 SC.
- Metals Metals have been detected at concentrations above SCOs in soil at the Site (OU01 and OU03).

In general, coal-tar can exist as a dense non-aqueous phase liquid (DNAPL), and the associated light oil as a light non-aqueous phase liquid (LNAPL). The VOCs and phenols tend to dissolve in groundwater or volatilize in the soil (vadose zone). Metals and cyanide may be mobilized from the purifier waste and coal ash, depending on pH (perhaps affected by the presence of sulfur); the metals may be either insoluble or soluble.

Potential Sources of MGP-related waste at the Site (OU01) include:

- Gas holders within and around the footprint of the former gas holders;
- Former purifier and retort building;
- Former coal storage area.

Points of Entry - Waste from the MGP process may have been released to the environment through a variety of processes. Coal-tar, one of the byproducts from the coal gasification process, is a dense, oily liquid able to condense out of the gas at various stages during its production, purification and distribution. Historically, coal-tar may have been collected for sale or reuse; however, disposal often occurred on and near the site if markets were not available. Also, MGP plants often had tar/water separators, which may not have fully separate the two liquids. The resulting tar/water emulsion was often discharged to a nearby surface water body.

Based on the vertical distribution of MGP-impacted soil, it appears that the onsite gas holders, condensers and/or tar separators may be the source of coal-tar and light oil in the soil. Both tar and light oil tend to sink in the vadose zone. However, once the water table is encountered, coal-tar will continue to sink but the light oil will float. The VOCs associated with the light-oil tend to migrate in groundwater in a dissolved phase. Measurable quantities of DNAPL and LNAPL were detected in OU01 monitoring wells during the RI.

Wastes from the purifier box, ash and coal slag from the retort have been found on the Site (OU01). During the RI, purifier box waste material (described in the field as stained wood chips with strong olfactory odor) was encountered on the central and southern portion of OU01 (as shown on Figure 1.3). Purifier waste material was observed ranging in depths from three to seven feet bgs and varying in thickness from one to four feet. The estimated area of purifier box waste material present in OU01 soils is 19,000 square feet. Using an interpretive average thickness over that area of three feet, approximately 2,100 cy of purifier box waste is present within OU01.

Additionally, ash, coal and slag are present on the ground surface on the Site. COCs associated with these wastes (inorganics and cyanide) were not found at concentrations that pose a concern from surface soil at the Site.

The distribution of MGP-related waste in shallow sediment (ranging generally from 0 to 3.5 feet bgs) along Brandy Brook and Pontiac Bay suggests that coal-tar waste was likely directly discharged to Brandy Brook, either via a drainage swale or a discharge pipe (not confirmed). MGP-related waste (coal-tar DNAPL) was also observed in deeper sediment (from 7.5 to 9 feet bgs) beneath Brandy Brook; therefore, the vertical distribution of contamination appears to be discontinuous (i.e. clean sediment was observed between contaminated sediment within Brandy Brook). Coal tar observed to

be present in deeper sediment in OU02 located closer to the Site (OU01) may have been a result of lateral migration from DNAPL directly discharged to Brandy Brook.

3.2 HYDROGEOLOGY AND CONTAMINANT DISTRIBUTION

The soil underlying the site consists of fluvial sands, medium to fine grain size with some silt. Soils at OU01 were logged continuously to depths up to 56 feet bgs (F-9A) and soil cores did not encounter indications of bedrock (e.g. dense basal till or hard refusal on rock). At each corner of the OU01, an attempt was made to get additional information on depth to bedrock or a change in lithology by advancing a solid point to refusal using a direct push rig. These probes encountered refusal at depths ranging from 27 feet bgs (southeast corner) to 68 feet bgs (center of the Site); however, these did not confirm the presence of bedrock.

DNAPL migration within overburden is primarily controlled by gravity and this denser-than-water product will seek to migrate downward but may also flow laterally along the top of soil horizons with lower transmissivity (i.e., clay or silt layers). In contrast, migration of lighter phase contaminants associated with coal-tar tends to follow the hydraulic gradient once the water table is encountered.

VOCs and PAHs associated with MGP-waste have been detected in OU01 and OU02 groundwater at concentrations exceeding Class GA standards. Contaminant plumes generally follow the interpreted groundwater flow directions; south of OU01 toward the wetland network and northwest and west beneath Brandy Brook (OU02).

Natural attenuation processes, (the reduction of contaminant concentrations by natural physical and chemical processes such a biologic degradation), act on dissolved aromatic hydrocarbons, petroleum-related VOCs and fuel-hydrocarbons as they migrate in groundwater. Analytical data collected as part of the RI shows contaminant concentrations decreasing with distance from the OU01 which supports the theory of limited migration of MGP-impacted contamination in groundwater.

Measurable quantities of DNAPL (0.5-feet) and LNAPL (0.45-feet) were observed in groundwater in the central portion of OU01 at MW-109 and DNAPL (0.4-feet) was also observed in nearby MW-101. Following the interpreted groundwater flow direction to the south, naphthalene concentrations decrease an order of magnitude approximately 300-feet downgradient from where DNAPL was measured to 2,200 micrograms per liter (μg/L) at MW-205D from 29,000 μg/L at MW-109.

Naphthalene was detected in shallow groundwater (15 feet bgs) from the same location (MW-205S) but at a concentration below the Class GA Standard (2.9 µg/L) which would be explained based on the downward vertical gradients.

Naphthalene concentrations 200-feet to the northwest of MW-109 were 9,700 µg/L at MW-102 and 890 µg/L at MW-106 (350-feet northwest). Extending another 300-feet to the northwest (into OU02), naphthalene concentrations decrease to 290 µg/L at MW-201. Based on the contaminant distribution detected in the south flowing groundwater plume (naphthalene concentrations decreasing approximately an order of magnitude 300-feet downgradient), naphthalene concentrations detected northwest of the Site suggest that MGP-impacted sediment from the wetland associated with Brandy Brook were contributing to the observed groundwater impacts.

PAHs (including naphthalene) have a high total organic carbon (TOC) Koc (partitioning coefficient) and therefore tend to adhere to readily available natural carbon. TOC was detected at a concentration of up to 40,000 mg/kg from sediment collected in Brandy Brook during the 2007 SC, suggesting that PAHs may less readily migrate from sediment to groundwater from shallow sources along the brook corridor. At MW-203, located approximately 200-feet downgradient and west from the Brandy Brook corridor, naphthalene was detected in shallow groundwater at 0.94 µg/L, below the Class GA Standard $(10 \mu g/L)$.

3.3 SURFACE WATER MIGRATION PATHWAYS

Based on data collected to date, MGP-related waste appeared either to have been discharged via a drainage swale or a discharge pipe to the Brandy Brook located to the northeast of the Site. The contamination appeared to have migrated with surface water in Brandy Brook and discharged to Pontiac Bay of Lake Flower. Based on groundwater and surface water elevations measured in 2014, Brandy Brook appears to be a "losing stream" (a stream that recharges to groundwater). However, seasonal variation in groundwater elevation along the brook has not been studied.

3.4 **EXPOSURE POINTS**

MGP-related contamination above SCGs was documented during the SC and the RI in groundwater and soil at OU01, in sediment and soil from Brandy Brook (OU02), and sediment from Pontiac Bay/Lake Flower (OU03). Exposure to contaminated soils at OU01 is limited by a locked chain link fence surrounding a portion of the property. Contamination is persistent within shallow soils inside the

fenced-in perimeter of OU01 (present at depths less than one foot bgs), however it is unlikely that the Site is accessed by the public or that surface/subsurface is being disturbed. Residents and students attending the local college, NCCC, utilize the areas surrounding the Site (outside the fenced perimeter of OU01) as walking trails.

Public water is available in the vicinity of the Site, therefore, it is unlikely that contaminated groundwater near the Site is being used for drinking purposes.

Brandy Brook (OU02) extends from the northern portion of the Site and discharges into Pontiac Bay of Lake Flower (OU03) approximately 2,000 feet downgradient from the Site. Pontiac Bay/Lake Flower serves as a recreational area, as well as an alternate drinking water supply for the Village of Saranac Lake. Contaminated sediments were removed from OU02 and OU03 as part of the 2018 RA to limit potential exposure pathways to humans and the environment.

4.0 SCOPE OF WORK

The following subsections describe the activities planned for the pre-design field investigation. The field investigations are focused primarily on the following activities to support the design of the chosen remedy identified in the Record of Decision for OU01:

- Hazardous building materials survey of an existing site building;
- Vertical and horizontal delineation of coal tar and purifier waste at OU01;
- Groundwater studies to better understand existing hydrology, dewatering requirements and potential impacts from ISS implementation;
- Collection of soil samples for ISS bench tests;
- Porewater sampling to evaluate potential impacts to surface water south of the site;

Other activities proposed in this FAP, not related to the PDI for OU01 include:

- Removal and temporary on-site storage of approximately 1,200 feet of railroad tracks adjacent to OU01 and OU02.
- Delineation of remaining sediment and/or soil impacts adjacent to Brandy Brook that were not removed during the 2018 remedial activities due to the presence of the Adirondack Scenic Railroad.
- Decommissioning of piezometers at OU03 that are not required for long-term monitoring.
- Conducting an inventory of monitoring wells and piezometers at OU02 for potential future monitoring or decommissioning.
- Clearing of trees at OU01 between November 1 and March 31, in accordance with the Army Corps of Engineers' (ACOE) permit, to facilitate implementation of the remedial activities at OU01, which are anticipated to take place in 2020.

The field investigation will be conducted in accordance with the specifications presented in the Quality Assurance Program Plan (QAPP) (MACTEC, 2011a). Health and Safety procedures for onsite activities are presented in the Program HASP (MACTEC, 2011b) and the Site-specific HASP, included as Appendix A to this FAP.

4.1 General Field Operations

This FAP provides necessary details for the implementation of the PDI. A summary of the field methodologies, rationale, sample identifications (ID), and analytical program are described in more detail in Tables 4.1 and 4.2, as well as in the following subsections. The types and locations of the investigation areas described in Table 4.2 are shown on Figures 4.1 through 4.5.

4.1.1 HEALTH AND SAFETY

The Site-specific HASP is provided as Appendix A. MACTEC anticipates that the fieldwork will be conducted in Level D personal protection. Specific investigation activities, utility clearance procedures, and required level of personal protection are set forth in the Site-specific HASP. Criteria for upgrading or downgrading the specified level of protection are also provided in the Site-specific HASP. Additional health and safety requirements are set forth in the Program HASP (MACTEC, 2011b). Should site conditions pose a threat to those present on site, and/or should Site conditions warrant an upgrade from Level D, as defined by the HASP, work will stop and the situation will be reevaluated by the NYSDEC and MACTEC.

4.1.2 ACCESS AND CLEARANCE

Proposed exploration locations will be placed, to the extent practical, on a limited number of properties to facilitate access. Current proposed explorations are located on:

- the Site property
- the New York State Department of Transportation's (NYSDOT) Right of way (former Adirondack Scenic Railroad property)

The NYSDEC will coordinate access with MACTEC assistance.

For clearing exploration locations of utilities, the drilling and test pitting contractors will be responsible for marking locations in the field and coordinating utility clearance with Dig Safely – New York. In addition, there is a known sewer force main located adjacent to the railroad tracks that will need to be located by private utility locators to ensure that it is not impacted during drilling activities. MACTEC will confirm investigation locations and utility clearance prior to conducting drilling activities.

4.1.3 COMMUNITY AIR MONITORING PLAN

<u>4.1.3.1 PURPOSE</u>

The purpose of the Community Air Monitoring Plan (CAMP) is to provide a measure of protection for the downwind community from potential airborne contaminant releases as a result of remedial work activities performed at the Site. Site-specific procedures described below are consistent with

the New York State Department of Health generic CAMP (NYSDEC, 2010). Several of the proposed borings are in wooded areas, and many are located relatively close to residential dwellings.

4.1.3.2 Particulate Air Monitoring

Particulate monitoring will be conducted continuously during ground intrusive activities (e.g., installation soil borings and test pitting). Dust/particulate monitoring will be conducted up wind of the intrusive activities and at the property boundary. Dust monitoring may be suspended during periods of precipitation.

Particulate air monitoring will be conducted with a DataRAM-4 (or a similar device). This instrument is equipped with an audible alarm (indication of exceedance) and can measure particulate matter less than 10 micrometers in size (PM-10). The DataRAM-4 will continually record emissions (calculating 15-minute running average concentrations) generated during field activities. The dust monitoring device will be checked periodically throughout each day of intrusive activities to assess emissions and the need for corrective action.

Weather conditions, including the prevailing wind direction, will be observed and recorded for each day of site activities. As work and weather conditions change throughout the day, the locations where the dust monitoring devices are set up may be adjusted accordingly.

Particulate monitoring response and action levels include:

- If the PM-10 particulate level is 100 micrograms per cubic meter (µg/m³) greater than background for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques will be employed. Work may continue with dust suppression techniques, provided that the PM-10 particulate levels do not exceed 150 µg/m³ above background level and provided that no visible dust is migrating from the work area.
- If after implementation of dust suppression techniques, the PM-10 particulate levels are greater than 150 μg/m³ above background, work will be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the PM-10 particulate concentration to within 150 μg/m³ of the background level and in preventing visible dust migration.

4.1.3.3 VOC AIR MONITORING

VOC air monitoring will be conducted in conjunction with the dust monitoring program. VOC air monitoring will be conducted using a RAE Systems MiniRAE 2000 VOC instrument (or a similar PID device). This will provide real-time recordable air monitoring data.

VOC monitoring will be conducted for ground intrusive (continuous monitoring) and non-intrusive activities (periodic monitoring).

VOCs will be continuously monitored in the vicinity of the drilling and test pitting operations. Upwind/background concentrations will be measured before field activities commence and periodically throughout the day to confirm background conditions. The drilling area VOC monitoring device will also be checked periodically throughout the day to assess emissions and the need for corrective action.

VOC monitoring response and action levels include:

- If the ambient air concentration of total organic vapors at the work area exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities will be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.
- If total organic vapor levels at the work area persist at levels greater than 5 ppm over background but less than 25 ppm, work activities will be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. Work activities can resume provided the total organic vapor level 200 feet downwind of the work area or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less but in no case less than 20 feet, below 5 ppm over background for the 15-minute average.
- If the organic vapor level exceeds 25 ppm at the perimeter of the work area, activities will be shutdown.

Weather conditions, including the prevailing wind direction, will be observed and recorded for each day of site activities. As work and weather conditions change throughout the day, the locations of the VOC monitoring devices may be adjusted accordingly.

4.1.4 MOBILIZATION

Mobilization will include obtaining utility clearances for proposed locations, procurement of subcontractors, and the acquisition and coordination of supplies. The NYSDEC will be responsible for obtaining access to the Site as well as off-site locations.

4.1.5 DECONTAMINATION

Sampling methods and equipment for this field program have been chosen to minimize decontamination requirements reducing the potential for cross contamination. Disposable sampling equipment will be used as much as practical to minimize decontamination time and water disposal. Non-disposable sampling equipment will be decontaminated before and after the collection of each sample. Decontamination methods and materials are described in detail in Subsection 4.3 of the OAPP.

Non-disposable sampling equipment will be decontaminated by 1) washing the sample collection equipment with potable water and Liquinox, rinsing with potable water, rinsing with deionized water, and then allowing the equipment to air dry, or 2) steam cleaning the equipment and then allowing the equipment to air dry. Drilling equipment (i.e. drill rods and casing) will be decontaminated by steam cleaning with potable water prior to each boring and before leaving the Site on a temporary decontamination pad constructed at the Site. Decontamination water will be collected, containerized, and stored on site in labeled containers awaiting treatment and/or proper disposal based on investigation-derived wastes (IDWs) characterization sampling results.

4.1.6 INVESTIGATION DERIVED WASTES

Soil IDW. Test pits will be excavated such that the clean cover soils will be segregated from contaminated materials. Once the test pit is completed the excavation contaminated soil will be replaced in a test pit first and covered with non-contaminated soil. Soil IDW generated outside of the soil remediation area which shows visual, olfactory or PID indications of potential contamination will be consolidated in test pits located within the soil remediation area. Soils from borings which do not appear to be contaminated will be placed back in the hole.

Decontamination Fluids and Well Purge Water IDW. Decontamination fluids and purge water generated during groundwater sampling will be temporarily containerized and then treated on-site with

a granular activated carbon filtration unit. The purge water will be discharged to the ground surface at the Site in a location and at a rate which allows infiltration.

4.1.7 LABORATORY ANALYSIS

<u>Groundwater and soils:</u> Groundwater and soil samples will be analyzed at Eurofins TestAmerica (Eurofins) of Buffalo, New York (as a NYSDEC call-out contractor) by one or more of the following analysis:

- VOCs by Unites States Environmental Protection Agency (USEPA) method 8260;
- SVOCs by USEPA method 8270;
- 1,4-dioxane and by Method USEPA method 8260 selective ion monitoring to obtain low detection limits (groundwater only)
- Per- and Polyfluoroalkyl Substances (PFAS) by modified USEPA method 537 (groundwater only)

Laboratory results will be reported in a Category B deliverable. A summary of target analytes and reporting limits for these methods is presented in Appendix D. Quality assurance /quality control samples will be collected at a frequency of 5 percent (1 for every 20) for the above parameters for each sample media (soil and groundwater).

Groundwater samples will be compared to the Class GA groundwater standards and guidance values in the Technical and Operational Guidance Series 1.1.1 (NYS, 1999). Soil samples will be compared to 6 New York Codes, Rules and Regulations Part 375 Soil Cleanup Objectives for unrestricted and commercial use (NYSDEC, 2006). PFAS and 1,4-dioxane will be compared to the NYS Department of Health Drinking Water Quality Council proposed maximum contaminant levels (NYSDOH, 2018).

Specific analysis for each site media is described in Section 4.2 and is presented on Table 4.2.

Building Materials: Building materials will be analyzed at Eurofins for the following analyses:

- Lead by USEPA method 6010
- Polychlorinated biphenyls (PCBs) by USEPA method 8082

Asbestos Containing Material (ACM): Suspect ACM will be analyzed by Lozier Environmental Consulting, Inc. of Rochester, New York for one or more of the following analyses:

Polarizing Light Microscopy (PLM);

- Transmission Electron Microscopy (TEM); and
- PLM/TEM for Non-friable Organically Bound (NOB) material.

<u>Waste Characterization, ISS support, and Water Treatment:</u> Soil and water samples collected for waste characterization, ISS support, or on-site treatment will be analyzed by Eurofins for one or more of the following:

- VOCs by USEPA method 8260;
- SVOCs by USEPA method 8270;
- Toxicity Characteristic Leachate Procedure (TCLP) for VOCs, SVOCs, and metals;
- Target analyte list metals plus mercury by USEPA methods 6010 and 7471;
- PCBs by USEPA method 8082;
- pH by USEPA method 150.1 (soil) or USEPA method 9040 (water);
- Total suspended solids by SM2540D;
- Total dissolved solids by USEPA method 160.1;
- Total organic content by Lloyd Kahn method (soils) or USEPA method 415.1 (water);
- Biological oxygen demand by SM5210B;
- Oil and grease by USEPA method 1664A;
- Pesticides by USEPA method 8081;
- Salinity by American Society for Testing and Materials (ASTM) D2937;
- Sulfide by SM4500-S;
- Free chlorine by SM4500-Cl;
- Reactive cyanide by USEPA method 9012;
- Reactive sulfide by USEPA method 9034; and
- Ignitability by USEPA method 1030.

Geotechnical Testing: Geotechnical testing will be conducted by RSA Geolab, LLC. of Union, New Jersey. Testing will consist of a bench scale test for the in-situ solidification as described in Appendix E. The following tests methods are included in the bench scale test:

- Grain-Size with Hydrometer, ASTM D6913/D7928;
- Moisture Content, ASTM D2216;
- Atterberg Limits, ASTM D4318;
- Hydraulic Conductivity, ASTM D5084;
- Unconfined Compression, ASTM D1633, with stress-strain plots;

- Specific Gravity, ASTM D854;
- Marsh Funnel Viscosity, API RP 13B-1; and
- Mud Balance, ASTM D4380 or API RP 13B-1.

4.2 Field Activities

Fieldwork is anticipated to be conducted as described in the following subsections. The fieldwork will be conducted in accordance with the specifications presented in the QAPP (MACTEC, 2011a). A summary of the field methodologies, rationale, sample IDs, and analytical program are described in more detail in Tables 4.1 and 4.2, as well as in the following subsections. Proposed investigation areas are shown on Figure 4.1. Proposed boring and well locations are shown on Figures 4.2 and 4.3. Wells and piezometers in OU02 and OU3 are shown on Figures 4.4a and 4.4b. Proposed tree clearing areas are shown on Figure 4.5.

4.2.1 BUILDING MATERIALS SURVEY

ACM - A NYS Licensed Asbestos Inspector will complete a pre-demolition asbestos survey of the onsite shed structure (Figure 4.1). The survey will consist of the inspection and sampling of building materials for suspect ACM. Roofing samples will be collected if feasible without climbing on the roof. Otherwise, MACTEC will presume suspect ACM observed is ACM.

An estimated 10 bulk asbestos samples will be collected and analyzed for PLM analysis, up to six bulk samples for PLM/NOB analysis and up to three bulk samples for TEM analysis.

Lead Paint. A limited screening of painted surfaces will be conducted to identify the presence of lead in the subject building. The lead-based paint (LBP) survey will include the representative testing of accessible interior and exterior surfaces through paint chip sampling. Surface types to be analyzed include paint, varnishes, stains, and primers. The goals of the LBP survey is not to assess lead content throughout the building, but rather to document lead content in the building to provide to abatement contractors prior to demolition. This documentation will be used to support compliance with Occupational Safety and Health Administration 29 CFR 1926.62 (Lead in Construction Standard). MACTEC assumes up to three paint chip samples from these surfaces will be analyzed. In addition, MACTEC will analyze one composite waste stream by TCLP for lead to determine if the material is a hazardous waste.

PCBs. Up to two bulk samples will be collected of building substrates, such as caulking and glazing for PCB analysis.

Other Materials. Other hazardous materials observed while conducting survey activities will be inventoried. Other hazardous material may include: PCB and di-2-ethylhexyl phthalate (DEPH, a.k.a. bis-2ethylhexyl phthalate) containing light ballast, mercury containing lamps, mercury containing thermostatic controls, chlorofluorocarbons, and chemical containers and storage tanks.

MACTEC will prepare a hazardous materials summary report for the subject site building. The report will describe the findings of the ACM, LBP, PCB containing materials, and other hazardous materials survey. The report will include: procedures for the inventory and building inspection, sampling strategy and methodology, and laboratory analysis; an inspection summary that describes the materials sampled, their condition and locations, and hazardous material content and quantities; and a map showing the sample locations.

4.2.2 RAILROAD TRACK REMOVAL

During the OU02 RA some areas of soil or sediments, where visual MGP impacts or laboratory results indicated that SCOs were not achieved, were left in place along the railroad tracks on the western boundary of the Site due to logistical unpracticality of excavation (Figure 4.3). Therefore, engineering controls (RCM in OU02) were installed. The impacts observed at these locations may extend beneath the railroad tracks.

To prepare the site for evaluation of the remaining residual material in OU02, the railroad tracks are proposed to be removed between Brandy Brook Rd and the southern Site boundary (Figure 4.3) The rails will be staged on-site for future restoration of the railroad line if needed. The removal work will be conducted by a NYSDEC callout subcontractor with MACTEC oversight. MACTEC will identify an area on-site that the materials can be staged to avoid interfering with OU01 investigation and remedial activities. The rails and/or rail ties will be evaluated for general condition with regards to reuse in the event the railroad tracks will be replaced in the future.

4.2.3 DELINEATION OF MGP MATERIALS

The extent of waste materials at the site will be further delineated by collecting surface soil samples, excavating test pits, and advancing soil borings to meet the following objectives:

- to evaluate presence/absence of surficial contamination outside the area proposed for ISS remediation which may need to be covered;
- to refine the horizontal and vertical extent of MGP waste impacted materials visually and to collect samples to evaluate concentrations of PAH and BTEX exceeding commercial clean-up criteria; and
- visually identify extent (horizontal and vertical) of purifier box waste (as indicated by wood chips) which will be removed from the site for disposal.

4.2.3.1 SURFACE SOIL SAMPLES

Surficial soil samples will be collected from outside the area proposed for ISS remediation to evaluate the extent of cover soils needed as part of the remedy. Soils will be logged for physical analysis and will be recorded on the provided field data record (Appendix B) in accordance with Subsection 4.4.3 of the QAPP (MACTEC, 2011a). Samples will be collected and composited from the top 1-ft of soils and submitted for analysis as outlined in Tables 4.1 and 4.2. Surface soil sample locations are shown on Figure 4.2.

4.2.3.2 TEST PITS

Test pits will be excavated on the Site to further delineate the extent of MGP and purifier box waste materials. Purifier wastes will be characterized visually by the presence of wood chips. Samples from select test pits will be collected for laboratory analysis of environmental parameters, waste characterization and for ISS bench scale testing to support the ISS design (Table 4.1).

Soil samples for waste characterization will be collected as composite samples from multiple test pits:

- from 0-6 ft bgs across the north central investigation area;
- from 0-6 ft bgs across the central investigation area; and
- from identified purifier box waste.

Soil samples to support the ISS bench scale testing will be collected as composite samples from multiple test pits to represent 3 soil types:

- Soil type 1 Below the purifier box waste where viscous product (aka DNAPL) exists and PAHs, cyanide and arsenic are present.
- Soil type 2 Within the light oil area where product (aka LNAPL) exists and where BTEX are present (primarily located north of the purifier waste and adjacent to Brandy Brook);
- Soil type 3 The remainder of the Site where MGP waste has been identified.

If present, samples of DNAPL and LNAPL will collected from the test pits for environmental parameters and to support the ISS bench scale testing (Table 4.2).

In addition to the waste evaluation, explorations will be conducted in locations of former Site buildings to evaluate the presence, construction, and size of subsurface foundations. Figure 4.2 shows locations of the test pits. Figure 4.1 shows former building locations and the areas of interest on the Site. Table 4.1 presents the objective and rationale for each test pit. Additional test pits will be advanced in an iterative manner to meet the objectives of delineating MGP and purifier box wastes at the Site.

Test pits will be logged for physical analysis and will be recorded on the provided field data record (Appendix B) in accordance with Subsection 4.4.3 of the QAPP (MACTEC, 2011a) and the NYSDEC Field Descriptions of Samples for Former MGP Sites (Appendix C).

4.2.3.3 SOIL BORINGS

OU01 On-Site Investigation

Approximately 36 soil borings will be advanced onsite to further delineate the vertical and horizontal extent of soil contamination. Borings will be advanced until the vertical extent of contamination is delineated (estimated to be between 20 and 30 ft bgs) using a 7000/8000 series Geoprobe direct push drill rig or equivalent. Borings across the interpreted ISS area will typically be co-located with test pits to complete the vertical delineation of soil contamination in these areas. Borings will primarily be evaluated for visual, olfactory and PID evidence of MGP materials only. Figure 4.2 shows locations of the on-Site borings and Table 4.1 presents objective and rationale for each investigation area. Samples from select borings in each investigation area will be collected for laboratory analysis of environmental parameters and for bench scale testing to support the ISS design (Table 4.2). Additional borings will be added as necessary based on field observation to meet the data quality objectives of delineating the horizontal and vertical extent of MGP material at the Site. In order to meet the soil type objectives for the ISS bench scale study deep soil samples from the direct push borings will be collected and composited with the test pits samples as necessary.

Soil borings will be logged for physical analysis and will be recorded on the provided field data record (Appendix B) in accordance with Subsection 4.4.3 of the QAPP (MACTEC, 2011a) and the NYSDEC Field Descriptions of Samples for Former MGP Sites (Appendix C).

Railroad Investigation

Approximately 25 soil borings will be advanced along the railroad tracks located on the western boundary of OU01 and OU02. Proposed railroad track borings are shown on Figures 4.2 and 4.3. These borings will be advanced through or adjacent to the railroad bed to evaluate the presence/absence of and, if present, extent of MGP materials. These borings include areas that could not be remediated during the previous RA for OU02 (MACTEC, 2019). Borings will be evaluated for the visual, olfactory and PID evidence of MGP materials that may require remediation. No samples for laboratory analysis of environmental parameters are proposed to be collected from the railroad investigation borings.

Soil borings will be logged for physical analysis and will be recorded on the provided field data record (Appendix B) in accordance with Subsection 4.4.3 of the QAPP (MACTEC, 2011a) and the NYSDEC Field Descriptions of Samples for Former MGP Sites (Appendix C).

4.2.4 GROUNDWATER ACTIVITIES

Groundwater activities will be conducted for the following objectives:

- To evaluate the current contaminant concentrations in existing monitoring wells located on and downgradient of OU01
- To evaluate the presence/absence of emerging contaminants at the site (PFAS and 1,4-dioxane)
- To support the RD
 - Slug testing for post RA groundwater modelling
 - o ISS bench testing
 - Groundwater characterization for treatment during excavation dewatering
- To decommission piezometers within OU03 which are not needed for long term monitoring
- To conduct a well inventory of piezometers and monitoring wells within OU02 to assess current conditions for potential future monitoring

4.2.4.1 TEMPORARY WELL INSTALLATION

Two temporary wells will be installed at the Site following procedures described in Section 4.4.4 of the QAPP. One temporary monitoring well (TW-702) will be installed in the southcentral area of the site within the purifier box waste near former monitoring well MW-101 to evaluate the

presence/absence of emerging contaminants (Figure 4.2). The monitoring well will be installed with a 10-foot screen that crosses the water table.

The second temporary well (TW-701) will be installed on the eastern boundary of the site for evaluation of hydraulic conductivity as described in Section 4.2.4.3 below.

The temporary wells will be removed and the boreholes sealed with bentonite upon completion of all testing. Well materials will be removed from Site for disposal by the drilling subcontractor.

4.2.4.2 ENVIRONMENTAL GROUNDWATER SAMPLING

A round of groundwater sampling will be conducted from select existing monitoring wells to evaluate current contaminant concentrations at the Site (Figure 4.2). A synoptic round of groundwater levels will be measured prior to collecting groundwater samples. Measurements will be recorded on an FDR which is included in Appendix B.

Groundwater samples will be collected from three existing wells (MW-108, MW-204, and MW-205D) for VOC and SVOC analysis (Table 4.2). Existing downgradient monitoring wells (MW-204 and MW-205D), the newly installed temporary monitoring well in the south-central portion of the Site, and one upgradient monitoring well (MW-108) will be sampled for emerging contaminants (PFAS and 1,4-dioxane) (Table 4.2).

4.2.4.3 HYDRAULIC CONDUCTIVITY TESTING

Hydraulic conductivity tests will be performed on two wells (one existing [MW-108] and one newly installed [TW-702]) on the eastern side of the site. This information will be used to build a hydrogeologic model to evaluate post remediation groundwater flow conditions that may adversely affect nearby structures (e.g. groundwater mounding flooding basements). The procedures for conducting the tests are presented in Subsection 4.7.2 of the QAPP (MACTEC, 2011a). Hydraulic conductivity test data will be analyzed by the methods of Hvorslev (1951) and Bouwer and Rice (1976).

4.2.4.4 DESIGN SUPPORT SAMPLING

On-site groundwater samples from test pits will be collected for use in the RD for excavation water treatment and ISS bench test which is described in Section 4.2.6 below. Samples will be collected by lowering a pump into the excavation. Grab samples will be collected for environmental characterization to support groundwater treatment during excavation dewatering. Samples collected to support the bench scale testing will be containerized in sealed buckets for transport to the geotechnical laboratory. Water samples will be collected from a fire hydrant near OU01 to support the bench scale testing as mix water for ISS. Laboratory analyses for the bench scale testing and excavation water treatment are presented in Table 4.2.

4.2.5 WETLANDS POREWATER SAMPLING

Porewater samples will be collected from the marshes to the southwest of the Site and north of where McKenzie Brook enters Lake Flower (Figure 4.1). This is a discharge area for groundwater originating from OU01 and represents the closest receptor to Site. Porewater samples will be collected from up to six locations using the procedures outlined in Section 4.5.4.2 of the QAPP (MACTEC, 2011a). Porewater samples will be submitted for analytical testing of naphthalene only, as this compound was identified during the RI as the primary indicator compound for off-Site migration of COCs in groundwater (Table 4.2).

4.2.6 IN-SITU SOLIDIFICATION BENCH TESTING

Samples of site media (soil, groundwater, DNAPL and LNAPL) will be collected from OU01 for the bench scale study to identify possible reagent additions and mixing ratios to support the ISS activities. A summary of the bench scale study tests and methodology is presented in Appendix E. Samples will be collected for environmental parameters in accordance with Table 4.2. MACTEC will correspond with RSA Geolab, LLC throughout the bench test process to provide guidance with each test phase.

4.2.7 PIEZOMETER DECOMMISSIONING AND WELL INVENTORY

Fourteen piezometers were installed for PDI purposes for OU02 and OU03 to evaluate hydrogeologic conditions and excavation dewatering in the remedy areas along Brandy Brook and Pontiac Bay. As the remedy has been implemented the piezometers in OU03 these are no longer needed and will be decommissioned in accordance with NYSDEC Commissioner's Policy 43 (CP-43) (NYSDEC, 2009). Six piezometers are proposed for decommissioning in OU03 (shown on Figure 4.4a). The eight

piezometers installed in OU02 will be located and assessed for use as long-term monitoring locations.

The piezometers and monitoring wells in OU02 are shown on Figure 4.4b. The construction details of the fourteen piezometers and existing monitoring wells are presented in Table 4.3. Boring logs and

well construction field data records are presented in Appendix D.

4.2.8 TREE CLEARING

To provide access and staging areas implement the proposed remedy for OU01, trees will be cleared

from the majority of the Site. Proposed tree clearing areas are shown on Figure 4.5. Tree clearing is

proposed to be conducted between November 1, 2019 and March 31, 2020 to minimize impacts to the

threatened Northern Long-eared Bat (Myotis septentrionalis) in accordance with the ACOE Permit

issued for the Site in 2018 (ACOE, 2018). Felled trees will be processed through a chipper and staged

on-site for future use and/or removal. The tree removal will be conducted by a NYSDEC callout

contractor or their subcontractor with oversight by MACTEC.

4.3 Data Deliverable

A PDI Report will summarize findings of the PDI field activities. Boring logs and environmental

sampling data will be included as appendices to the report. Data obtained under this FAP, including

analytical laboratory data, will be reviewed and incorporated into the RD.

The report will be submitted in draft to the NYSDEC for review and comment. Upon receipt of

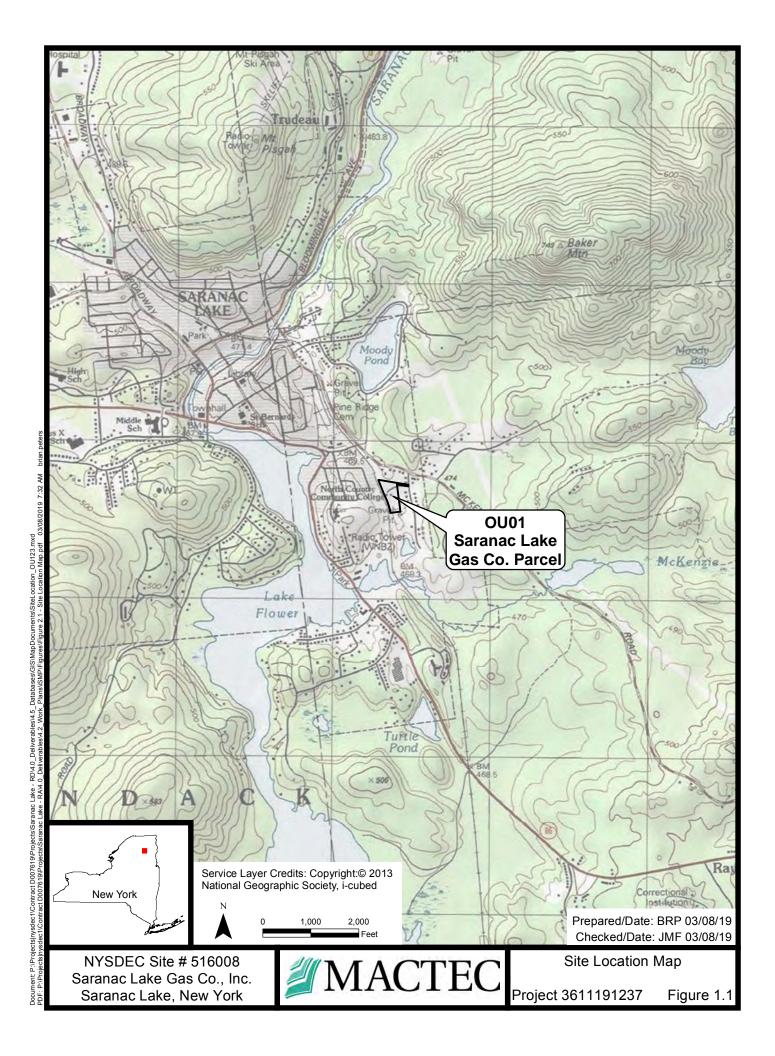
NYSDEC comments, MACTEC will address the comments and submit a final report in portable

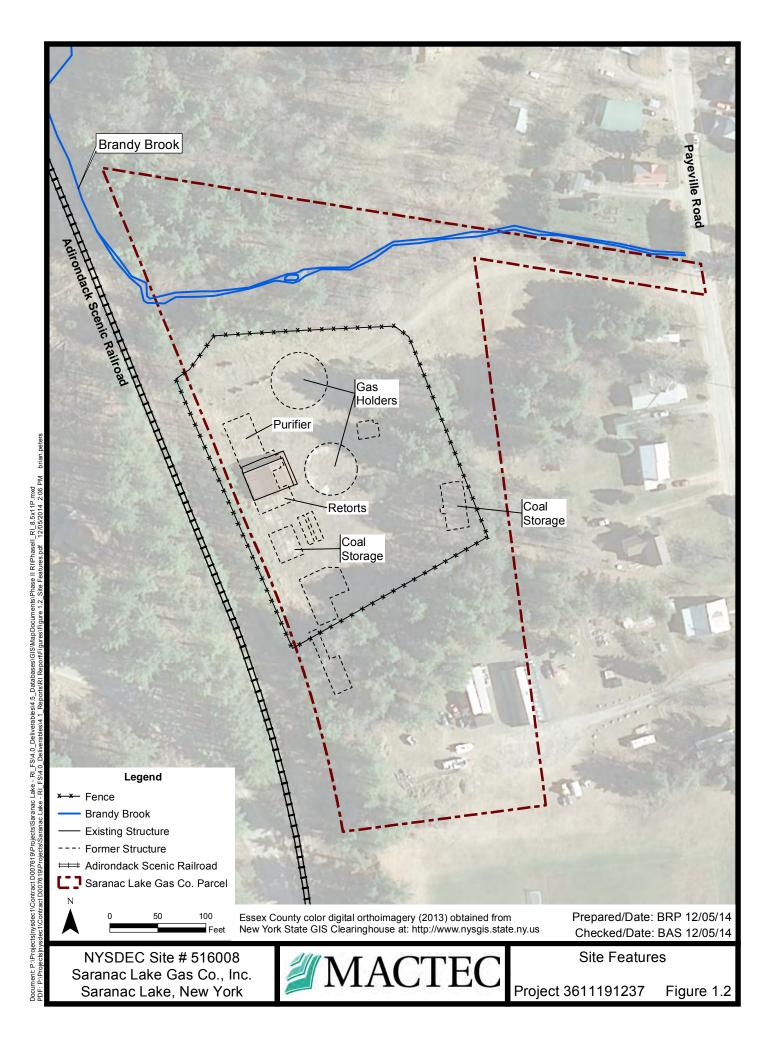
document format (PDF) format. Analytical data will be uploaded to EQuIS and laboratory

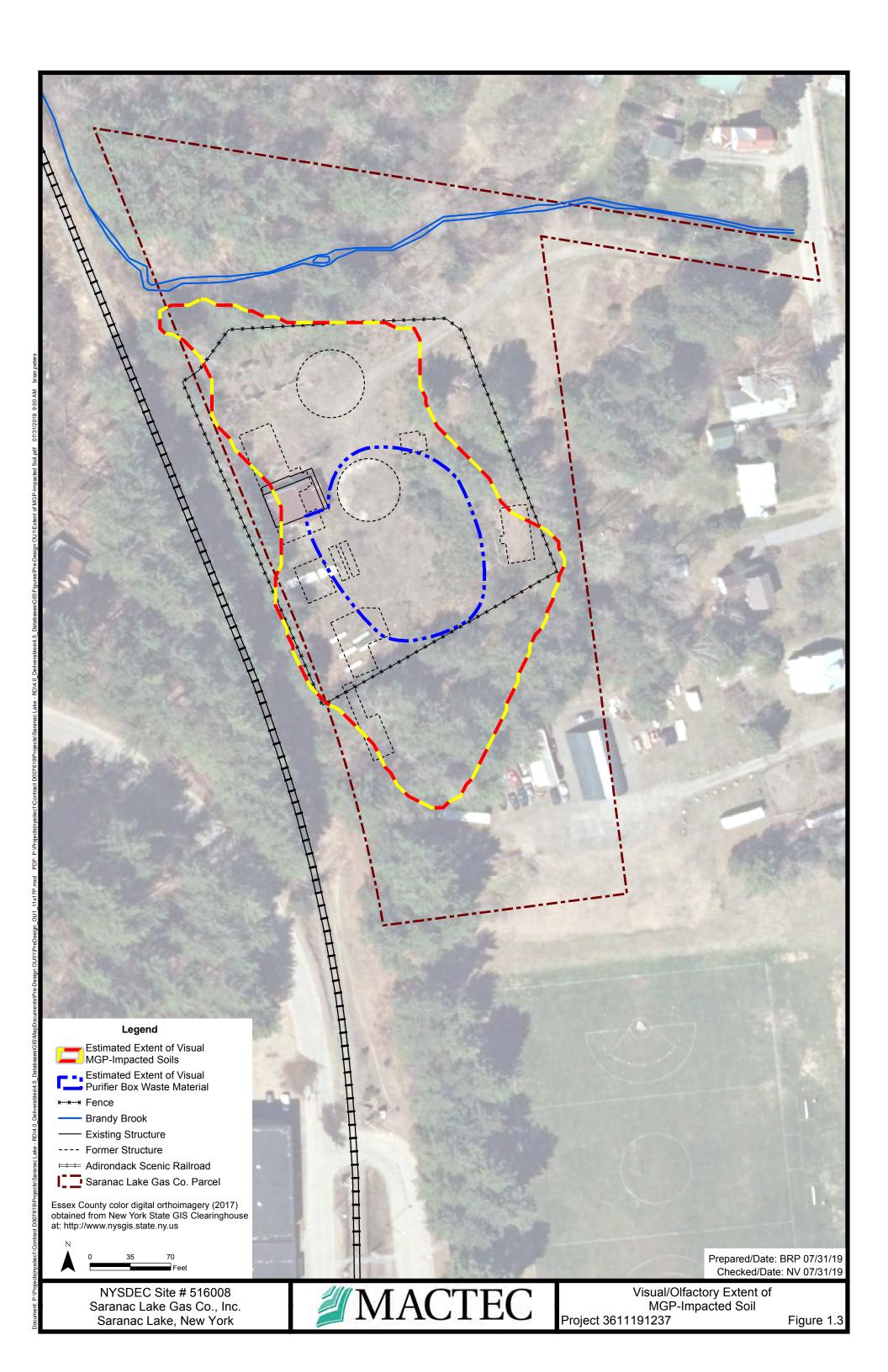
deliverables will also be submitted electronically (PDF and electronic data deliverable) with the report

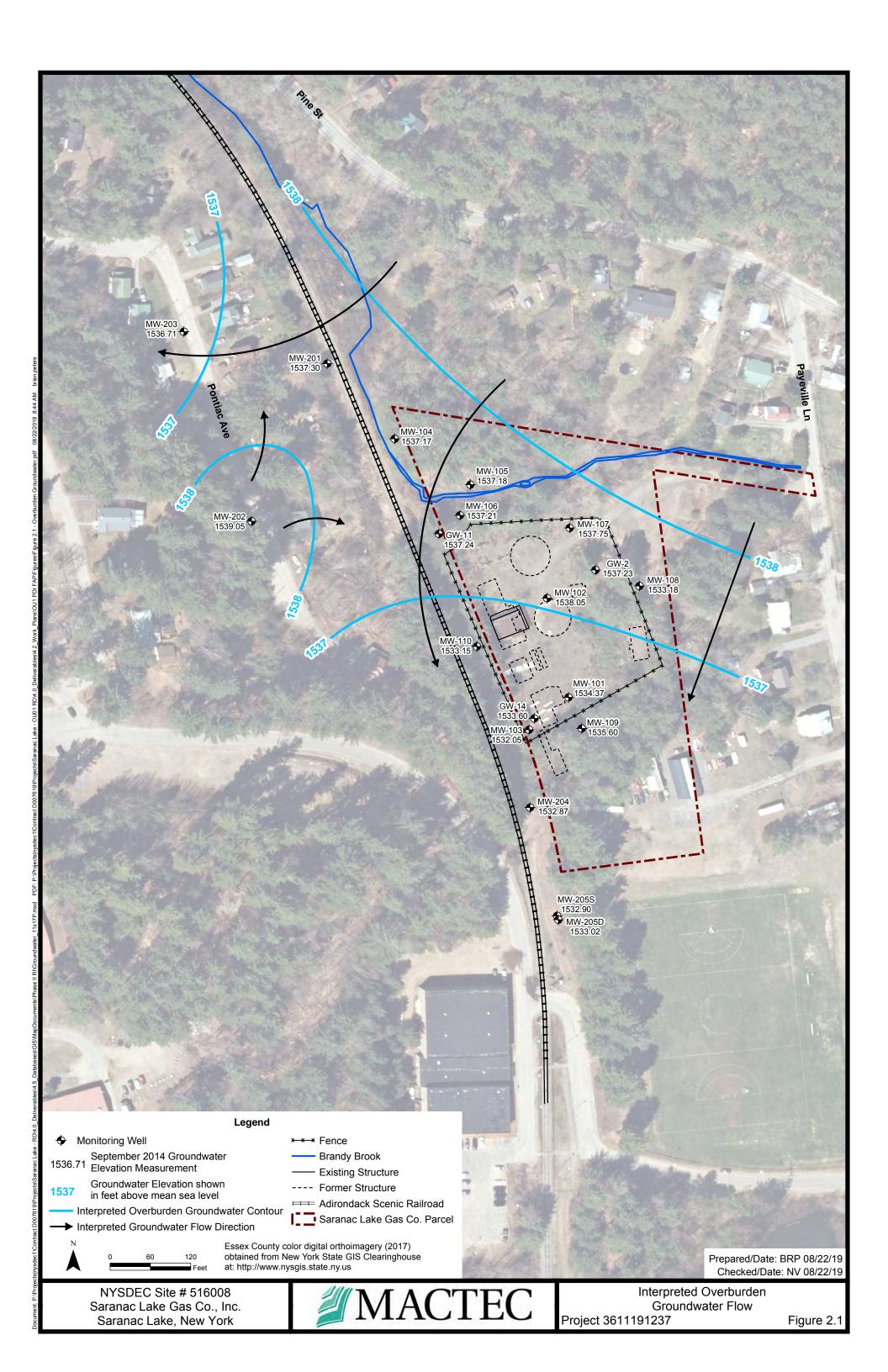
at the completion of the PDI.

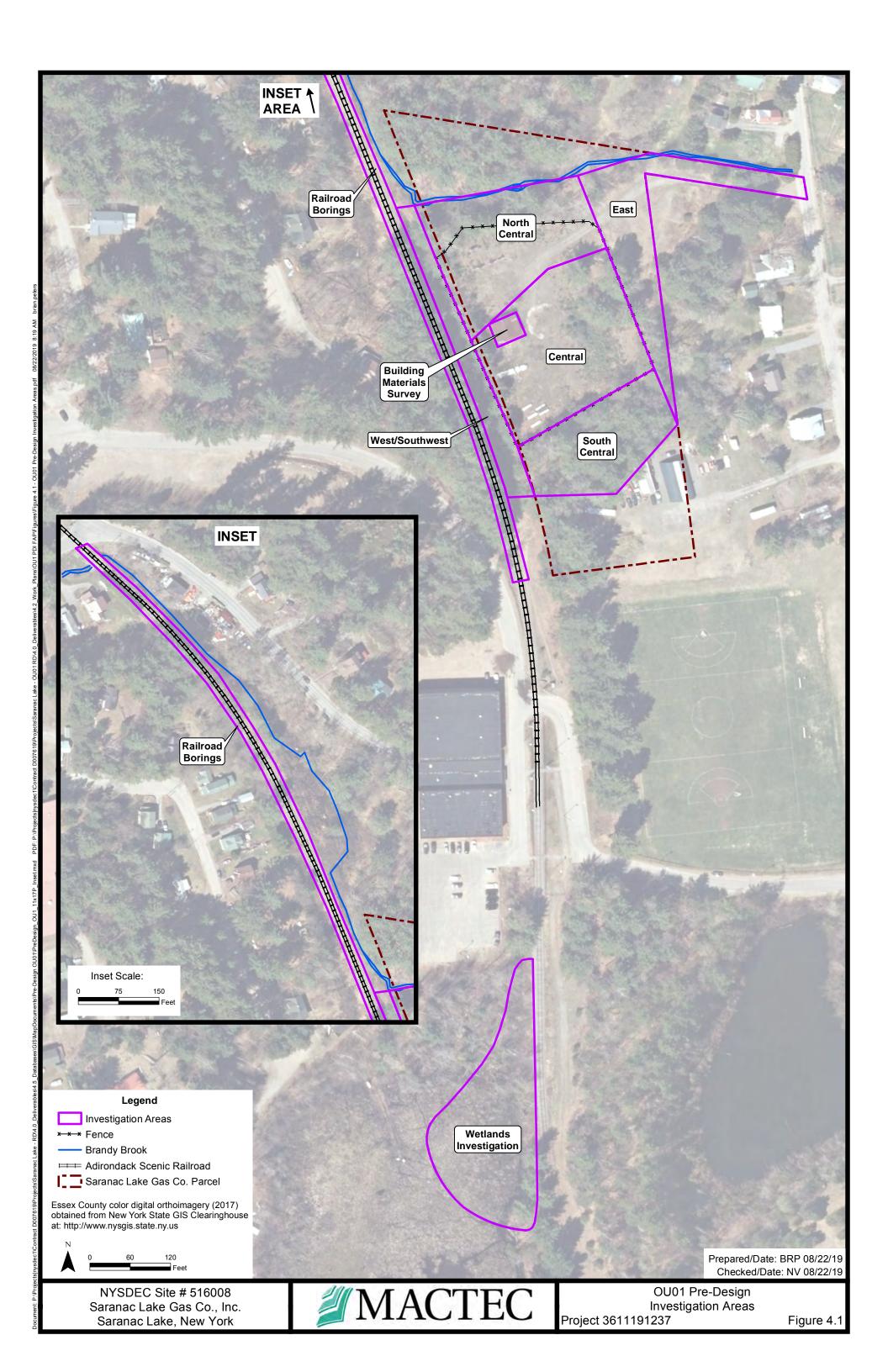
4-15

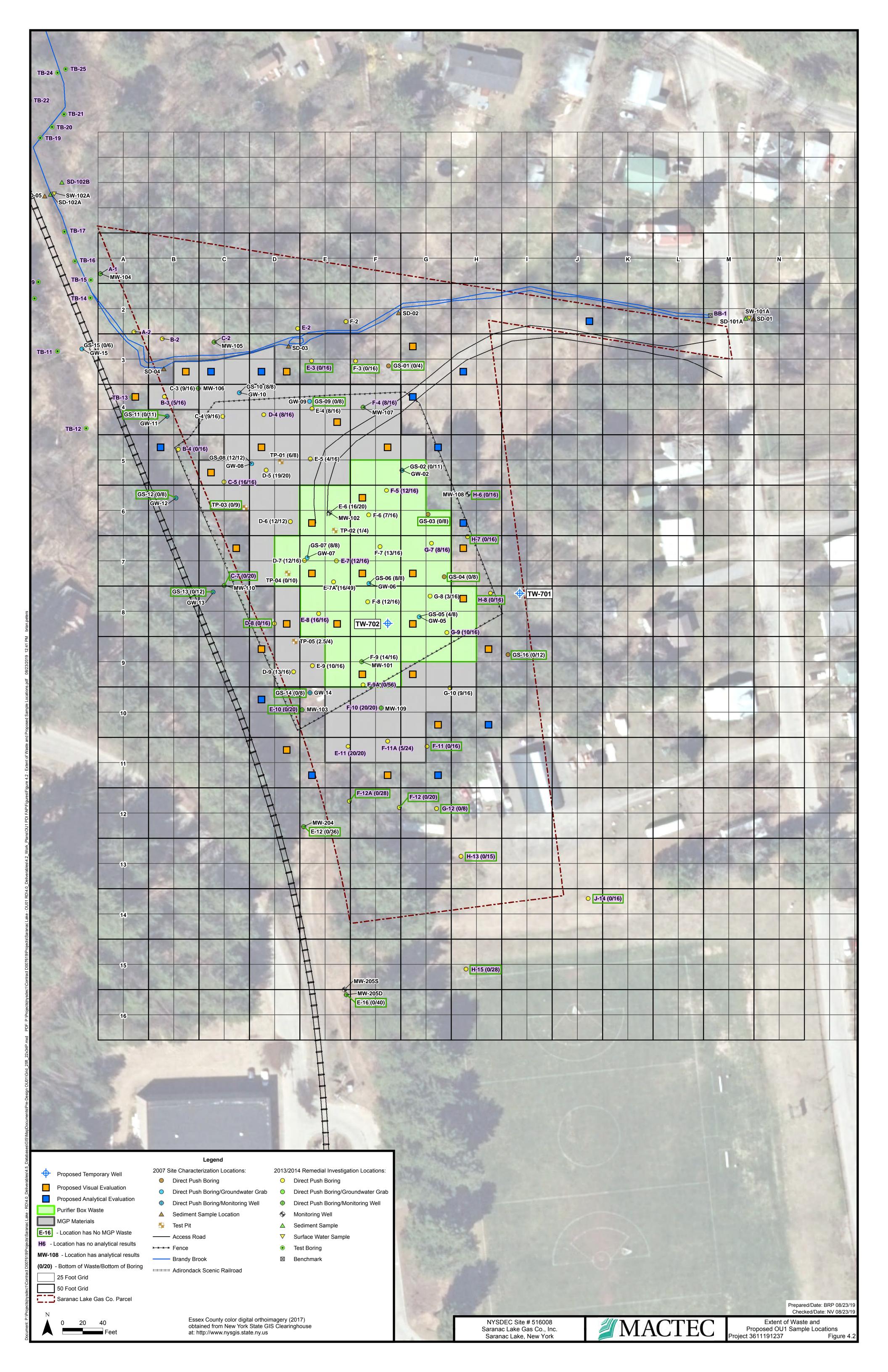

5.0 REFERENCES

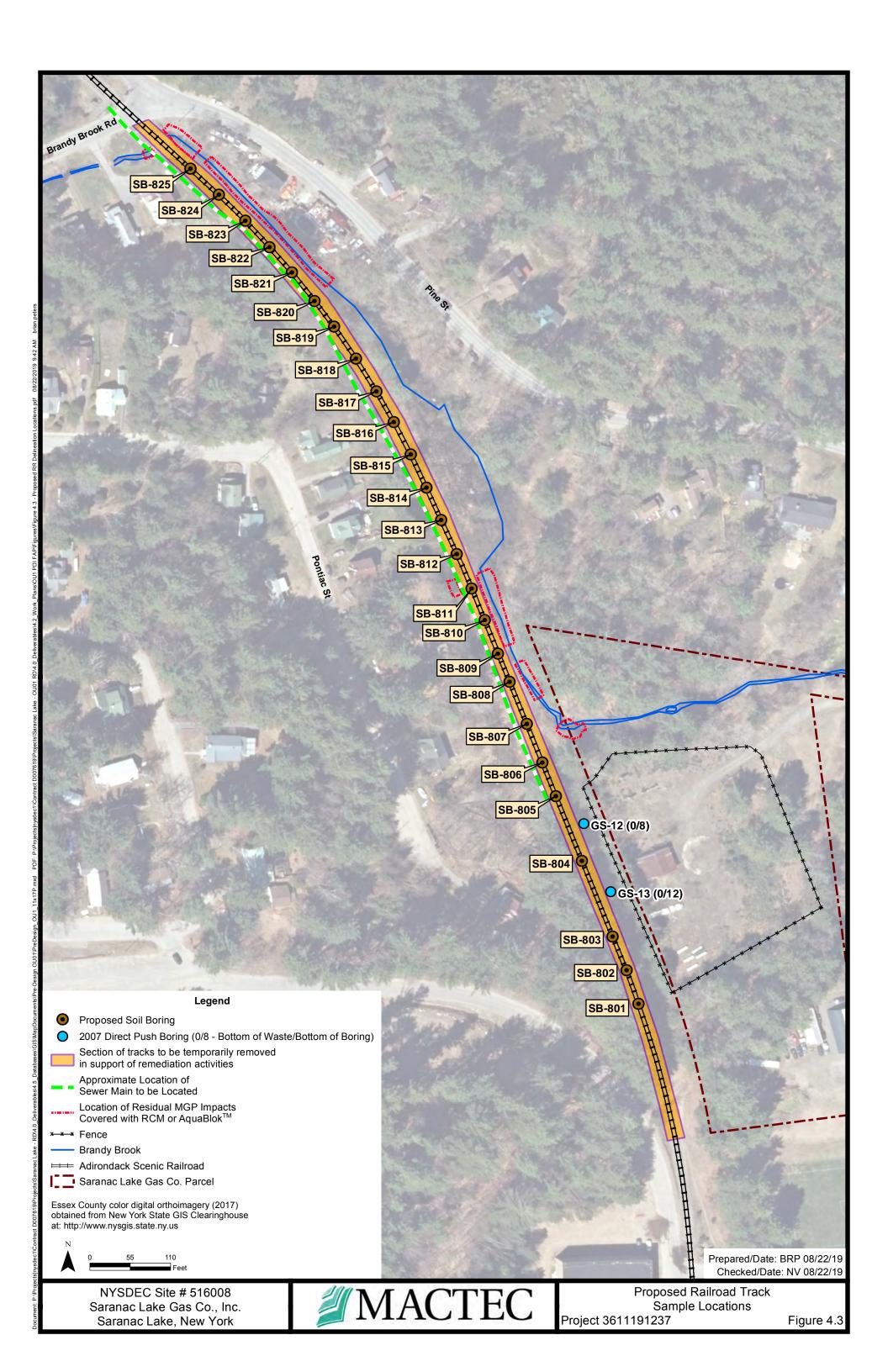

- Army Corps of Engineers (ACOE), 2018. Permit Application No. NAN-2017-00440-UDE, by New York State Department of Environmental Conservation, Village of Saranac Lake, Essex County, NY. January, 2017.
- Bouwer, H. and R.C. Rice, 1976. "A Slug Test Method for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells"; *Water Resource Research*, Vol. 12, No. 3; pp.423-428.
- Hvorslev, M.J., 1951. Time Lag and Soil Permeability in Ground-Water Observations, Bull. No. 36, Waterways Exper. Sta. Corps of Engrs, U.S. Army, Vicksburg, Mississippi, pp. 1-50.
- MACTEC Engineering and Consulting, P.C. (MACTEC), 2019. Draft Interim Site Management Plan, OU02 & OU03 Saranac Lake Gas Company, Inc., Site #516008. Prepared for New York State Department of Environmental Conservation, Albany, New York. June 2019.
- MACTEC, 2017. Pre-Design Investigation Field Activities Report, Operable Units OU02 and OU03, Saranac Lake Gas Company, Inc. Prepared for New York State Department of Environmental Conservation, Albany, New York. August 2017.
- MACTEC, 2015. Remedial Investigation Saranac Lake Gas Company Site. Prepared for New York State Department of Environmental Conservation, Albany, New York. January, 2015.
- MACTEC, 2011a. Program Quality Assurance Program Plan. Prepared for the New York State Department of Environmental Conservation, Albany, New York. June 2011.
- MACTEC, 2011b. Program Health and Safety Plan. Prepared for New York State Department of Environmental Conservation, Albany, New York. June 2011.
- National Climactic Data Center (NCDC), 1999. Comparative Climactic Data for the United States through 1998. June 22, 1999.
- New York State (NYS), 1999. New York Codes, Rules, and Regulations, Title 6, Part 700-705 Water Quality Regulations Surface Water and Groundwater Classifications and Standards. Amended August 1999.

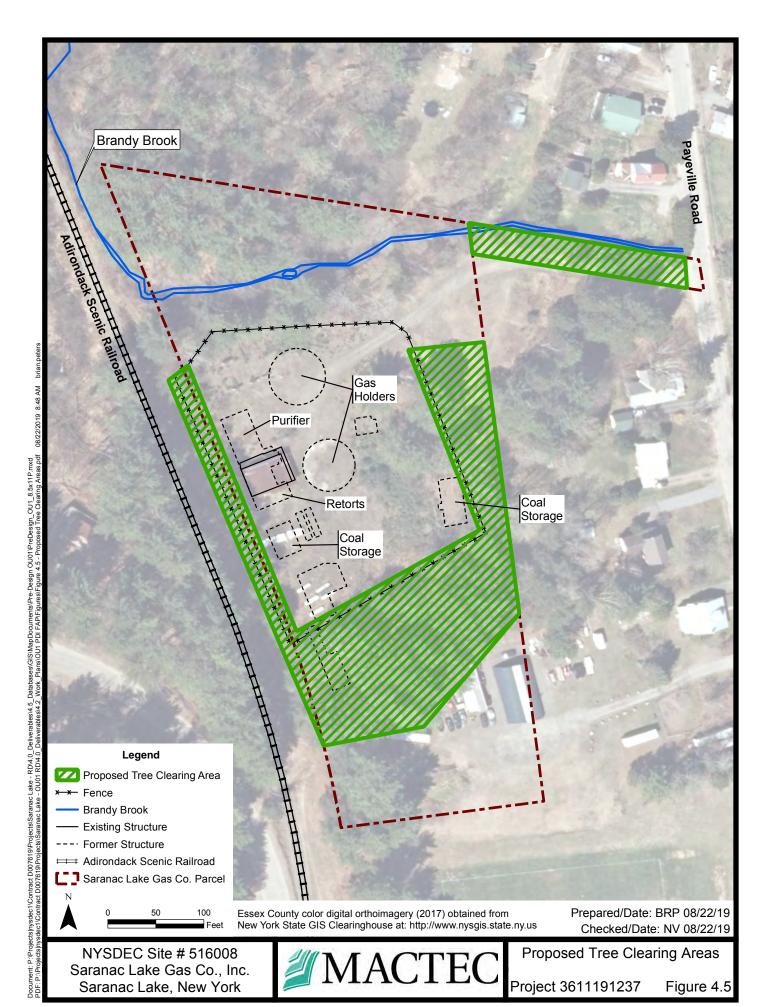

MACTEC Engineering and Consulting, P.C., Project No. 3611191237


- NYSDEC, 2010. DER-10, Technical Guidance for Site Investigation and Remediation. May 3, 2010.
- NYSDEC, 2009. CP-43: Groundwater Monitoring Well Decommissioning Policy. Division of Environmental Remediation. November 2009.
- NYSDEC, 2006. New York Codes, Rules and Regulations, Title 6, Part 375 Environmental Remedial Programs. Amended December 2006.
- New York State Department of Health (NYSDOH), 2018. Press Release: Drinking Water Quality Council Recommends Nation's Most Protective Maximum Contaminant Levels for Three Unregulated Contaminants in Drinking Water. December 2018. https://www.health.ny.gov/press/releases/2018/2018-12-18 drinking water quality council recommendations.htm
- New York State Museum and Science Service (New York), 1970. Geologic Map of New York, Adirondack Sheet. Map and Chart Series No. 15.


FIGURES







TABLES

TABLE 4.1 Summary of Pre-Design Investigation Rationale for Saranac Lake OU01

Investigation Area	Data Quality Objective	Collection Method	Number of Locations	Depth (ft. bgs)	Туре	Parameters	# of Sample Locations	Sample objective	Rationale
	Horizontal delineation	Test pit	10	0-10	Visual	None	10 - Visual ID of MGP material, clean edge, clean bottom		BTEX and PAHs not delineated towards the Brook near sample location C-4 and GS-10.
	Tionzoniai deimeaton	rest pit	10	0 10	Soil Grab	Total PAH Total BTEX	2 - Two ft below water table or areas of observed MGP impacts from 0-6 ft bgs (whichever is deeper)	Delineate the extent of MGP material visually and evaluate concentrations of PAHs and BTEX exceeding commercial clean-up criteria	This is an area of the site with no samples. Confirm clean edge of contamination previously identified visually.
Needle Control					Visual	None	10 - Visual ID of MGP and clean bottom		Waste extent not vertically bounded,
North Central Between Brandy Brook and purifier box waste area	Vertical delineation	Direct push	10	0-20	Soil grab	Total PAH Total BTEX	2 - Two ft below water table or areas of observed MGP impacts from 0-6 ft bgs (whichever is deeper)		minimal analytical results. Waste not adequately bounded vertically near GS-09.
	Tag 1	T . D'. / D' D . 1		0.20	Soil composite	Bench Test	1 composite of test pits	Support bench scale testing for solidification of	Information needed for preparing the
	ISS design support	Test Pit / Direct Push	1	0-20	Free Product (if present)	Total PAH Total BTEX	2 (1 floating and 1 sinking product)	waste.	remedial design.
	Waste characterization	Test Pit	1	0-6	Soil composite	Waste characterization*	1 composite of test pits	Waste characterization if material needs to be disposed off-site	The top 6 feet will be excavated for ISS. If this material contains visual MGP material it will need to be disposed off-site.
	Groundwater treatment support	Test pit	1	NA	Water grab	Water chemistry	1 grab of water in test pit	Support design of potential excavation water treatment.	Information needed for preparing the remedial design.
					Visual	None	Visual ID of MGP material, clean edge, clean bottom	Delineate the extent of MGP material visually	
East Along property boundary adjacent to residences	Vertical and horizontal delineation	Direct push / Hand Auger	4	0-20	Soil grab	Total PAH Total BTEX	4 - Surface soil samples (0-1 ft bgs)2 - Two ft below water table or zones of observed MGP impacts (whichever is deeper)	Evaluate concentrations of PAH and BTEX exceeding commercial clean-up criteria outside of the proposed remedy area	There is limited visual data (especially on the northern extent) and no analytical data. Information needed for preparing the remedial design.

TABLE 4.1 Summary of Pre-Design Investigation Rationale for Saranac Lake OU01

				Summary (of the-Design in	ivesugation Kation	iale for Saranac Lake OU0	/1	1
Investigation Area	Data Quality Objective	Collection Method	Number of Locations	Depth (ft. bgs)	Туре	Parameters	# of Sample Locations	Sample objective	Rationale
	Horizontal delineation	Test pit	13	0-10	Visual	None	Visual ID of wood chips	Visually identify extent (horizontal and vertical) of purifier box waste (as indicated by wood chips) which will be removed from the site.	Define the limit of excavation which will be used in the remedial design.
	Vertical delineation	Direct push	13	0-30	Visual	None	Visual ID of MGP material	Delineate the extent of MGP material visually.	Previous borings did not identify the vertical extent.
Central Within and immediately adjacent to the purifier box	ISS design support	Test Pit / Direct Push	1	0-30	Soil composite	Bench Test	composite from below purifier waste material composite from above purifier waste material	Support bench scale testing for solidification of waste.	Information needed for preparing the remedial design.
waste area					Free Product (if present)	Viscosity	2 - (1 floating and 1 sinking product)		
	Waste characterization	Test Pit	1	0-10	Soil composite	Waste characterization*	2-7 samples from locations that represent the purifier box waste to be removed from the site	Waste characterization of materials which will be disposed off-site.	Information needed for preparing the remedial design.
	Groundwater treatment support	Test Pit	1	NA	Water grab	Water chemistry	1 grab of water in test pit	Support design of potential excavation water treatment.	Information needed for preparing the remedial design.
West/Southwest	Vertical and horizontal	Direct push	5	0-20	Visual	None	Visual ID of MGP material, clean bottom and edge	Delineate the extent of MGP material visually and evaluate concentrations of PAH and BTEX	This is an area of the site with limited samples. Confirm clean edge of
Between Site and railroad tracks	delineation	Direct push	3	0-20	Soil Grab	Total PAH Total BTEX	2 - Surface soil samples (0-1 ft bgs)	exceeding commercial clean-up criteria.	contamination previously identified visually.
					Visual	None	Visual ID of MGP material, clean bottom, and edge		
South Central Outside the site fence	Vertical and horizontal delineation	Direct push	5	0-30	Soil grab	Total PAH Total BTEX	3 - surface soil samples (0-1 ft bgs) 3 - Two ft below water table or zones of observed MGP impacts (whichever is deeper)	Delineate the extent of MGP material visually and evaluate concentrations of PAH and BTEX exceeding commercial clean-up criteria.	This is an area of the site with no analytical samples. Confirm clean edge of contamination that was previously identified visually.
	Debris evaluation	Hand Probe	NA	0-2	Visual	None	Visual ID of surficial and buried debris thickness and areal extent	Estimate type and volume of debris material observed in the wooded area south of Site to be disposed of off-site.	Information needed for preparing the remedial design.

TABLE 4.1 Summary of Pre-Design Investigation Rationale for Saranac Lake OU01

Investigation Area	Data Quality Objective	Collection Method	Number of Locations	Depth (ft. bgs)	Туре	Parameters	# of Sample Locations	Sample objective	Rationale
Railroad Tracks OU01 and OU02	Vertical and horizontal delineation	Direct push	25	0-30	Visual	None	Visual ID of MGP material	Evaluate if contamination is present under the railroad tracks to the west of OU01 and delineate residual impacts under the tracks in OU02.	Information needed for evaluating future remediation activities.
Former On-site Structures	Concrete debris evaluation	Test Pit	NA	0-5	Visual	None	Visual ID of surficial and buried concrete thickness and areal extent	Debris material estimates which will be disposed off-site.	Information needed for preparing the remedial design.
Wetlands Investigation South of Site	Groundwater discharge area	Push point	6	0.5-1.5	Water grab	Naphthalene	6 porewater from nearest groundwater discharge areas south of OU01.	Evaluate contaminant migration in groundwater at the nearest receptor.	The extent of groundwater contamination has not been delineated.
Groundwater Samples	Evaluate for Emerging Contaminants	Existing monitoring	4	5-15	Low flow	PFAS 1,4-Dioxane	3 wells in impacted areas 1 upgradient well	Evaluate presence of emerging contaminants	Information needed for evaluating future remediation activities.
	Evaluate Current Conditions	wells	3	5-15	purging	VOCs SVOCs	2 downgradient wells 1 upgradient wells	Evaluate current contaminant concentrations in groundwater at the Site	Establish a baseline for evaluating the ISS remediation at the Site

ft bgs feet below ground surface

ppm parts per million

*TCLP Metals; TCLP VOC; Total SVOC; PCB/Pesticides; Reactivity; Ignitability; pH

BTEX benzene, toluene, ethylbenzene, xylene

ID identification

MGP manufactured gas plant

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyls

PFAS per- and polyfluoroalkyl substances
SVOC semi-volatile organic compounds
TCLP toxicity characteristic leaching protocol

VOC volatile organic compounds

Table 4.2: Proposed Sample Identification and Analyses

						Visual/Olfactory	Enviror	mental Cha	racterization		Design Suppo	rt
						Analysis	Environmental Characterization				Design Suppo	11
						Document						
						Sample Using				Waste	Evenyetien	ISS Bench
						NYSDEC Field	T(2.4)	T-4-1	E		Excavation	
						Descriptions of	T(34)	Total	Emerging	Disposal	Water	Test
						Samples for	PAHs	BTEX	Contaminants	Parameters-	Treatment	Sample
						Former MGP				Soil	Samples	Media
						Sites						
Investigation Area	Grid ID	Location ID	Method	Depth bgs (ft)	Sample ID	2105					•	•
	B3C	TP-B3C	Test Pit	10	no analytical	X						
	B3C	DP-B3C	Direct Push	20	no analytical	X						
	C3D	TP-C3D	Test Pit	10	TP-C3D	X	1	1				
	C3D	TP-C3D	Test Pit	10	TP-C3DMS	X	1	1				
	C3D	TP-C3D	Test Pit	10	TP-C3DMD	X	1	1				
	C3D	DP-C3D	Direct Push	20	no analytical	X						
	C5D	TP-C5D	Test Pit	10	no analytical	X						
	C5D	DP-C5D	Direct Push	20	no analytical	X						
	C7B	TP-C7B	Test Pit	10	no analytical	X						
	C7B	DP-C7B	Direct Push	20	no analytical	X						
N4- C41	D3C	TP-D3C	Test Pit	10	no analytical	X						
North Central	D3C	DP-D3C	Direct Push	20	no analytical	X						
	D3D	TP-D3D	Test Pit	10	TP-D3D	X	1	1				
	D3D	TP-D3D	Test Pit	10	TP-D3D D	X	1	1				
	D3D	DP-D3D	Direct Push	20	no analytical	X						
	D5A	TP-D5A	Test Pit	10	no analytical	X						
	D5A	DP-D5A	Direct Push	20	no analytical	X						
	E4C	TP-E4C	Test Pit	10	no analytical	X						
	E4C	DP-E4C	Direct Push	20	no analytical	X						
	F5B	TP-F5B	Test Pit	10	no analytical	X						
	F5B	DP-F5B	Direct Push	20	no analytical	X						
	Multiple	NA	Composite	6	516008-OU01 North					1		1
	G3A	DP-G3A	Direct Push	20	no analytical	X						
	G4A	DP-G4A	Direct Push	20	DP-G4A	X	1	1				
	G5B	DP-G5B	Direct Push	20	DP-G5B010	X	1	1				
East	H3D	НА-НЗВ	Hand Auger	1	HA-H3B010	X	1	1				
	H6D	DP-H6D	Direct Push	20	DP-H6D	X	1	1				
	I8A	DP-I8A	Direct Push	20	DP-I8A010	X	1	1				
	J2C	HA-J2C	Hand Auger	1	HA-J2C0101	X	1	1				
	D8C	TP-D8C	Test Pit	10	no analytical	X						
	D8C	DP-D8C	Direct Push	30	no analytical	X						
	E6D	TP-E6D	Test Pit	10	no analytical	X						
	E6D	DP-E6D	Direct Push	30	no analytical	X						
	E7D	TP-E7D	Test Pit	10	no analytical	X						
Central	E7D	DP-E7D	Direct Push	30	no analytical	X						
	E8C	TP-E8C	Test Pit	10	no analytical	X						
	E8C	DP-E8C	Direct Push	30	no analytical	X						
	F6A	TP-F6A	Test Pit	10	no analytical	X						
	F6A	DP-F6A	Direct Push	30	no analytical	X						
	F7D	TP-F7D	Test Pit	10	no analytical	X						

Table 4.2: Proposed Sample Identification and Analyses

						Visual/Olfactory Analysis	Environ	nmental Cha	racterization		Design Suppor	t
	CILID	L ID	M.d. I	D 41 (9)	C. L.ID.	Document Sample Using NYSDEC Field Descriptions of Samples for Former MGP Sites	T(34) PAHs	Total BTEX	Emerging Contaminants	Waste Disposal Parameters- Soil	Excavation Water Treatment Samples	ISS Bench Test Sample Media
Investigation Area	Grid ID	Location ID	Method	Depth bgs (ft)	Sample ID						1	
	F7D	DP-F7D	Direct Push	30	no analytical	X						
	F9D	TP-F9D	Test Pit	10	no analytical	X						
	F9D	DP-F9D	Direct Push	30	no analytical	X						
	G7D	TP-G7D	Test Pit	10	no analytical	X						
	G7D	DP-G7D	Direct Push	30	no analytical	X						
	G8D	TP-G8D	Test Pit	10	no analytical	X						
	G8D	DP-G8D	Direct Push	30	no analytical	X						
	G9D	TP-G9D	Test Pit	10	no analytical	X						
	G9D	DP-G9D	Direct Push	30	no analytical	X						
Central	H7A	TP-H7A	Test Pit	10	no analytical	X						
	H7A	DP-H7A	Direct Push	30	no analytical	X						
	H8A	TP-H8A	Test Pit	10	no analytical	X						
	H8A	DP-H8A	Direct Push	30	no analytical	X						
	H9B	TP-H9B	Test Pit	10	no analytical	X						
	Н9В	DP-H9B	Direct Push	30	no analytical	X						
	Multiple	NA	Composite	4-10	519008-Purifier WC					1		
	Multiple	NA	Composite	6	516008-OU01 Central					1		
	Multiple	NA	Composite	Above Purifier Waste	519008-LNAPL							1
	Multiple	NA	Composite	Below Purifier Waste	516008-DNAPL							1
	A4B	DP-A4B	Direct Push	20	no analytical*	X						
	B5A	DP-B5A	Direct Push	20	no analytical*	X						
West / Southwest	B5A	DP-B5A	Direct Push	20	DP-B5A010	X	1	1				
West/Southwest	D9A	DP-D9A	Direct Push	20	no analytical*	X						
	D10A	DP-D10A	Direct Push	20	DP-D10A010	X	1	1				
	D11B	DP-D11B	Direct Push	20	no analytical*	X						
	E11D	DP-E11D	Direct Push	30	DP-E11D010	X	1	1				
	E11D	DP-E11D	Direct Push	30	DP-E11D	X	1	1				
	F11C	DP-F11C	Direct Push	30	no analytical	X						
South Central	G10C	DP-G10C	Direct Push	30	no analytical	X						
Soun Central	G11C	DP-G11C	Direct Push	30	DP-G11C010	X	1	1				
	G11C	DP-G11C	Direct Push	30	DP-G11C	X	1	1				
	H10C	DP-H10C	Direct Push	30	DP-H10C010	X	1	1				
	H10C	DP-H10C	Direct Push	30	DP-H10C	X	1	1				

MACTEC Engineering and Consulting, P.C., Project No. 3611191237

Table 4.2: Proposed Sample Identification and Analyses

						Visual/Olfactory Analysis	Enviror	mental Cha	racterization		Design Suppor	rt
						Document Sample Using NYSDEC Field Descriptions of Samples for Former MGP Sites	T(34) PAHs	Total BTEX	Emerging Contaminants	Waste Disposal Parameters- Soil	Excavation Water Treatment Samples	ISS Bench Test Sample Media
Investigation Area	Grid ID	Location ID	Method	Depth bgs (ft)	Sample ID							
	NA	MW-108	Low flow	14	510068-MW108019		1	1	1			
	NA	MW-204	Low flow	17	516008-MW204023		1	1	1			
	NA	MW-204	Low flow	17	516008-MW204023MS		1	1				
	NA	MW-204	Low flow	17	516008-MW204023MD		1	1				
	NA	MW-205D	Low flow	25	510068-MW205D025		1	1	1			
	NA	MW-205D	Low flow	25	510068-MW205D025D		1	1	1			
	F8C	TW-702	Low flow	15	510068-TW702015				1			
W-4 C1:	NA	Test Pit Water	Grab	NA	516008-OU01 Water						1	
Water Sampling	NA	Site Hydrant	Grab	NA	516008-Hydrant							1
	NA	PP-701	Push point	0.5-1.5	PP-701		1#					
	NA	PP-702	Push point	0.5-1.5	PP-702		1#					
	NA	PP-703	Push point	0.5-1.5	PP-703		1#					
	NA	PP-704	Push point	0.5-1.5	PP-704		1#					
	NA	PP-705	Push point	0.5-1.5	PP-705		1#					
	NA	PP-706	Push point	0.5-1.5	PP-706		1#					
Total Soil							19	19	0	3	0	3
Total Water							12	6	5	0	1	3
TOTAL SAMPLES							31	25	5	3	1	6

NOTES:

Sample ID Based on Site Number (516008) - Location ID - Sample depth (last three digits represent sample depth in feet below ground surface with the third digit in tenths of feet [010 = 1 ft bgs])

QA/QC Field duplicate (Sample IDs end in D), Matrix Spike (MS) and Matrix Spike Duplicate (MD) collected for every 20 samples. 1 each for soil and groundwater

no analytical* Analytical samples will be collected from select borings if visual observations of MGP waste are identified

T(34) PAHs Alkylated PAHs EPA34 Compounds - USEPA Method 8270 SIM

Total BTEX Benzene, toluene, ethylbenzene, total toluene - USEPA Method 8260B

Emerging Contaminants Per- and polyfluoroalkyl substances (PFAS) by Modified USEPA Method 537 and 1,4-Dioxane by USEPA Method 8270 SIM

TCLP VOCs by USEPA Methods 1311/8260C; TCLP SVOCs - USEPA 1311/8270D; Total PCBs - USEPA 8082A; TCLP Pesticides - USEPA 1311/8081B; TCLP Metals - USEPA 1311/6010C/7470A; Cyanide, Reactive -Soil Waste Disposal Parameters 9012; Sulfide, Reactive - 9034; Ignitability 1030; 9045D - pH - Corrosivity

TCL VOCs - USEPA 8260; SVOCs - USEPA 8270; TAL Metals - USEPA 6010; Mercury - USEPA 7471; Total PCBs - USEPA 8082; Pesticides/Herbicides - USEPA 8081; Total suspended solids - SM2540D; Total dissolved Excavation Water Treatment solids - USEPA 160.1; Bacterial oxygen demand - SM5210B; free chlorine - SM4500-Cl; salinity - ASTM D2937; oil and grease - USEPA 1664A; Total organic content - USEPA 415.1; pH - USEPA 9040

Soil - Total BTEX; T(34) PAHs; pH by Method 9040; sulfide by SM4500-S; total organic carbon by Lloyd Kahn method

Bench test sample media Hydrant water - Total suspended solids - SM2540D; salinity - ASTM D2937; Total organic content - USEPA 415.1; pH - USEPA 9040; Free chlorine - SM4500-Cl LNAPL/DNAPL - Total BTEX; T(34) PAHs; pH by Method 150.1; total organic carbon - USEPA 415.1; salinity - ASTM D2937; Total suspended solids - SM2540D

> 1[#] Porewater samples to be analyzed for naphthalene only **DP** Direct push boring **PP** Push point sample bgs below ground surface MW Monitoring well HA Hand auger

> **ISS** In situ stabilization **TP** Test pit TW Temporary well

Table 4.3: Monitoring Well and Piezometer Construction Details

Location ID	Northing	Easting	Casing Elevation (ft amsl)	Riser Elevation (ft amsl)	Ground Surface Elevation (ft amsl)	TOC (ft ags)	TOC - TOR (ft)	Bottom of Well (ft BTOR)	Screening Interval (ft bgs)
MW-101	1999449.36	592312.95	1543.18	1542.93	1543.2	0	0.25	13.0	3 - 13
MW-102	1999596.97	592281.02	1543.51	1543.22	1543.5	0	0.29	14.9	4.9 - 14.9
MW-103	1999401.39	592254.05	1542.45	1542.07	1542.4	0	0.38	19.7	9.7 - 19.7
MW-104	1999833.87	592054.19	1545.27	1544.85	1542.3	3.0	0.42	19.4	6.4 - 16.4
MW-105	1999766.01	592166.86	1545.98	1545.83	1543.0	3.0	0.15	18.3	5.3 - 15.3
MW-106	1999720.04	592151.21	1543.23	1543.17	1540.4	2.8	0.06	16.9	4.1 - 14.1
MW-107	1999701.42	592314.39	1542.21	1541.91	1542.2	0	0.30	14.6	4.6 - 14.6
MW-108	1999615.19	592418.34	1546.75	1546.69	1543.6	3.1	0.06	22.1	9.0 - 19.0
MW-109	1999403.28	592332.38	1546.10	1545.85	1543.0	3.1	0.25	18.8	5.7 - 15.7
MW-110	1999524.97	592176.70	1543.33	1543.08	1543.3	0	0.25	19.6	9.6 - 19.6
MW-201	1999945.73	591954.15	1543.81	1543.58	1540.6	3.2	0.23	18.6	5.4 - 15.4
MW-202	1999711.88	591841.61	1554.19	1553.97	1554.2	0	0.22	22.4	12.4 - 22.4
MW-203	1999993.61	591740.99	1548.05	1547.83	1548.1	0	0.22	17.3	7.3 - 17.3
MW-204	1999285.76	592255.49	1546.53	1546.29	1543.5	3.0	0.24	28.3	10.3 - 25.3
MW-205S	1999119.02	592297.69	1545.44	1545.24	1542.5	2.9	0.20	19.6	9.6 - 19.6
MW-205D	1999124.30	592295.88	1545.52	1545.37	1542.4	3.1	0.15	33.5	20.4 - 30.4
PZ-301	1999930.00	591915.00	NA	NA	1540.0	NA	NA	12.0	2.0 - 12.0
PZ-302	1999848.00	592090.00	NA	1553.90	1550.0	3.9	NA	19.9	3.0 - 16.0
PZ-303	2000117.00	592005.00	NA	1540.90	1539.0	1.9	NA	9.9	3.0 - 8.0
PZ-304	2000133.00	592036.00	NA	1546.90	1544.0	2.9	NA	14.9	1.0 - 11.0

Table 4.3: Monitoring Well and Piezometer Construction Details

Location ID	Northing	Easting	Casing Elevation (ft amsl)	Riser Elevation (ft amsl)	Ground Surface Elevation (ft amsl)	TOC (ft ags)	TOC - TOR (ft)	Bottom of Well (ft BTOR)	Screening Interval (ft bgs)
PZ-311	2000325.00	591770.00	NA	NA	1542.0	NA	NA	12.0	2.0 - 12.0
PZ-317	2000475.00	591409.00	NA	NA	1536.0	NA	NA	8.0	3.0 - 8.0
PZ-318	2000500.00	591399.00	NA	NA	1535.0	NA	NA	8.0	3.0 - 8.0
PZ-337	2000303.00	591733.00	NA	NA	1549.0	NA	NA	17.0	7.0 - 17.0
PZ-328	2000416.00	590853.00	NA	NA	1531.0	NA	NA	8.0	3.0 - 8.0
PZ-331	2000308.00	590667.00	NA	NA	1533.0	NA	NA	25.0	15.0 - 25.0
PZ-332	2000173.00	590565.00	NA	NA	1529.0	NA	NA	9.0	4.0 - 9.0
PZ-333	2000391.00	590880.00	NA	NA	1532.0	NA	NA	NA	NA
PZ-335	2000463.00	590668.00	NA	NA	1532.0	NA	NA	26.0	16.0 - 26.0
PZ-336	2000495.00	590419.00	NA	NA	1533.0	NA	NA	20.0	10.0 - 20.0

Notes:

MW = monitoring well PZ = Piezometer

TOC = top of casing TOR = top of riser BTOR = below top of riser NA = not available

ft = feet ags = above ground surface bgs = below ground surface amsl = above mean sea level

Wells Surveyed by Prudent Engineering

Northing/Easting = North American Datum 83/96 - NYSPCS EAST (US survey ft); Elevations = North American Vertical Datum 88 (US survey ft)

Water levels collected by MACTEC Engineering and Consulting

APPENDIX A MACTEC SHORT FORM SITE-SPECIFIC HEALTH AND SAFETY PLAN (HASP)

MACTEC Short Form HASP

Site: Saranac Lake Gas Company Site	Job Number: 3612132271
Street Address: 24 Payeville Road, Village of Saranac Lake, New York	
Proposed Date(s) of Investigation: August 2013	
Prepared by: Rebecca Gabryszewski	Date: 7/03/2013
*Approved by: Kendra Bavor, CSP	Date: 67-1-13
Closed propane distribution company. Previously the s former manufactured gas plant used for manufacture o (See attached Site Location Map)	ite of the Saranac Lake Gas Company

^{*}Approval also serves as certification of a Hazard Assessment as required by 29 CFR 1910.132

MACTEC	Other	
MACTEC	contractor	Task Description
		Mobilization/demobilizing
		Overall inspection of the site
		General Field Work/Oversight
		Direct Push Boring Installation (on and off site)
	\boxtimes	Micro-Well Installation
		Sediment sampling
		Groundwater Sampling
		Surface Water Sampling
		Hand Borings
	\square	Sediment Coring in Lake Flowers
	\boxtimes	Survey

Dates of Required Training and Medical Surveillance:

			Names of I	Field Team*	
		Brandon Shaw	Charles Lyman	Charles Lyman	
	Req?	Dates	Dates	Dates	Dates
Medical Surveillance	YES	12/06/2012	5/16/2013		
Site Specific Medical Testing:					
40-Hour Initial	YES	5/13/2005	8/1993		
8-Hour Supervisor 1,3			6/12/2001		
8-Hour Refresher	YES	8/17/2012	4/30/2013		
First Aid/CPR 1,2			3/20/2012		
Respirator Fit Test 1					
Respirator Brand ¹					
Hazard Communication 1	YES	6/9/2013	6/9/2013		
Fall Protection 1					
Confined Space Entry 1					
Lead Awareness					

1 If Applicable

² At least one worker must be trained in First Aid/CPR and should received Bloodborne Pathogen Training ³ Required for Field Lead and Site Health and Safety Officer *Field Team to be determined at time field work is assigned.

Known or Suspected Contaminants (include PELs/TLVs):

Contaminants of Concern	Historical Highest Sample Data (pre-cleanup)	PEL/TLV	Fact Sheet Included
Benzene	67 ppm (soil)	0.5 ppm	X
Toluene	160 ppm (soil)	20 ppm	X
Ethyl Benzene	100 ppm (soil)	100 ppm	X
Xylene	140 ppm (soil)	100 ppm	X
PAHs (Naphthalene)	3300 ppm (soil)		X
Cyanide	423 ppm (soil)	5 mg/m3	X

Air Monitoring Action Levels:

PID/FID Reading ¹	Detector Tube ¹	Dust Meter ¹	LEL ² /O ₂ 1	Action	Level of PPE
Above Background				Stop work, back away from work area, evaluate potential source of contamination	

¹ Sustained readings measured in the breathing zone

AHAs: Check and attach all that apply (add applicable AHAs not already listed): Activity and Hazard Specific AHAs:

	, aaa. opeo	
\boxtimes	Mobilization/Demobilization and Site Preparation	Soil Sampling
\boxtimes	Field Work – General	
\boxtimes	Decontamination	
\boxtimes	Groundwater Sampling	
\boxtimes	Sampling with a hand auger	
\boxtimes	Field Oversight	
\boxtimes	Geoprobe (MACTEC oversight)	
\boxtimes	Stream/Wetlands Work	
\boxtimes	Insect Stings and Bites	
\boxtimes	Working with Preservatives (Acids)	
\boxtimes	Boating - Surface Water and Sediment Collection	

Chemicals Brought to the Site:

List all chemicals brought to the site (e.g., preservatives, decontamination solutions, gasoline, etc.). Attach MSDS

Chemicals	MSDS Attached?
HYDROGEN CHLORIDE (HCL) (RESERVATIVE)	\boxtimes
NITRIC ACID (PRESERVATIVE)	
LIQUINOX/ ALCONOX	\boxtimes
ISOBUTYLENE	\boxtimes
CALIBRATION SOLUTIONS (YSI)-PH4, PH7, DO,	\boxtimes
ORP, 1413 SPECIFIC COND.	
METHANOL	\boxtimes
SULFURIC ACID	\boxtimes

Chemicals will be kept in their original containers. If transferred to another container, aside from days use by one individual, the new container will be labeled with the name of the chemical and the hazard warnings.

² Readings at measured at the source (borehole, well, etc.)

HAZARD IDENTIFICATION SUMMARY

Complete the checklist for summarizing the hazards identified in the AHAs

Standard Hazards														
☐ Falling Objects ☐ Slips and trips			⊠ Pinch points			□ Rotating equipment								
⊠ Falls		⊠ Po	ower eq	uipment/to	ent/tools 🔲 Ele			work su	ırfad	ces	es			
Eye Hazards														
☐ Particulates ☐ Liquid splashes ☐ Welding Arc ☐														
Hearing Hazards														
None		⊠ Ir	mpact n	oise		□Hi	igh frequ	uency n	ois	е	☐ High	ambient	noise)
	Respiratory Hazards													
□ None	⊠ Dust/aerosols	:/particu	ulates	☐ Organ Vapors			☐ Acid Gases ☐ O₂ deficient			☐ Met	als	☐ Asbestos		
				C	Chem	nical	Hazar	ds						
☐ None		⊠ O	rganic s	solvents		□R€	eactive	metals			☐ PCBs			
Acids / b	ases	☐ O:	xidizers	1		⊠ V	olatiles/	/Semi-v	olat	tiles				
				Env	riron	ment	al Haz	ards						
☐ None		re extremes: \square Cold \square Heat				Wet lo	cation			azards s, etc.	ds (snakes, insects, spiders, poisonous c.)			ers, poisonous
Explosiv	e vapors	☐ Co	onfined	space		☐ Er	ngulfme	nt Haza	ard					
				E	lect	rical	Hazar	ds					ı	
☐ None	□ Energized ed □	uipme	nt or cir	cuits	⊠ Ove	erhead	utilities		X I	Under	ground uti	lities		Wet location
					Fir	e Ha	zards							
⊠ None	☐ Cutting, we generated s				☐ F	Flamma	able ma	terials p	pres	sent	□Охуд	en enrich	ed lo	ocation
				Eı	rgon	omic	Haza	rds						
□ Lifting	⊠ Bendin	g	☐ Tw	visting	⊠F	Pulling/	ulling/tugging			Carrying				
Computer L	Jse in the:] Office	F	ield									_	
				Ra	diol	ogica	l Haza	ards						
None Non	☐ Alpha	□Ве	eta	☐ Gamı	ma/X-	rays		Radon	don Non-Ionizing					
					Oth	er Ha	azards	3						
PPE and Monitoring Instruments														
Initial Level of PPE *														
□ Level D	☐ Modified L	evel D	□L	evel C	* Can	not us	se Shoi	rt Form	ı H	ASP f	or Level I	B or A w	ork	
	•		L	Į.	Sta	andar	d PPE							
⊠ Hard Hat	⊠ Safety bo	ots [⊠ Safet	ty glasses		Chem	. Resist	ant Boo	ots		High visib	ility vest		Other:
	·	•		Еує	and	Face	Protec	ction		•			•	
☐ Face shie	eld	☐ Ve	ented go	ggles		☐ Un	vented	goggle	s] Indirect	ven	ted goggles

Hearing Protection									
	ıgs	☐ Ear Muffs			☐ Ear plugs and muffs			Other	
	Respiratory Protection								
⊠ None	☐ Dust mask	☐ Full Fa		ce APR Half Face		alf Face Cartridge Type: _		Change Cartridges:	
				Prote	ective Clot	hing			
⊠ Work u	ıniform	☐ White	uncoated T	yvek®	☐ Poly-co	ated Tyvek®		☐ Saranex®	
☐ Boot co	vers	⊠ Reflec	tive vest		☐ Chaps of	or Snake Legs		○ Other Optional Coveralls	
	Hand Protection								
☐ None	□ None □ Cotton gloves □ Leather gloves □ G				Slove liners	☐ Cut-resis	stant gloves	☐ Other –Nitrile Gloves	
☐ Outer G	Bloves: List Type				☐ Inner G	loves: List Typ	pe		
Monitoring Instruments Required*									
Periodic monitoring shall be conducted when the possibility of an IDLH condition or flammable atmosphere has developed or when there is indication that exposures may have risen over permissible exposure limits or published exposure levels since prior monitoring. Situations where it shall be considered whether the possibility that exposures have risen are as follows: When work begins on a different portion of the site. When contaminants other than those previously identified are being handled. When a different type of operation is initiated (e.g., drum opening as opposed to exploratory well drilling.) When employees are handling leaking drums or containers or working in areas with obvious liquid contamination (e.g., a spill or lagoon.)									
☐ LEL/O2	2 Meter	☐ PID:): 10.0-10.6 eV Lam		np		Hydroge	en Sulfide/Carbon Monoxide	
☐ Dräger Pump (or equivalent) ☐ Dust Meter: List Tubes ☐ List Tubes ☐ Dust Meter:			Respira	able dust ust	☐ Other				

^{*}Monitoring instruments will be calibrated daily in accordance with manufacturer's instructions.

PPE Selection Guidelines

When selecting the appropriate PPE for the job, consider the following:

- Safety glasses general eye protection source of hazard, typically coming from straight on, required at most sites
- **Tinted Safety Glasses** same as above, but when working in direct sunlight. May need two both tinted and untinted if working in both sunlight and shade/overcast skys.
- Safety goggles needed for splash hazard, more severe eye exposures coming from all directions.
 Non-vented or indirect venting for chemical splash, non-vented for hazardous gases or very fine dust, vented for larger particulates coming from all directions.
- Face shield needed to protect face from cuts, burns, chemicals (corrosives or chemicals with skin notation), etc.
- Safety boots needed if danger of items being dropped on foot that could injure foot
- Hard hat danger from items falling on head any overhead work, tools, equipment, etc that is above
 the head and could fall on head of item fails, or falls off work platform. Typically required at most sites as
 a general PPE
- Thin, chemical protective inner gloves (e.g., thin Nitrile, PVC do not use latex many people are allergic to latex) –needed to protect hands from incidental contact with low risk contamination at very low concentrations (ppb or low ppm concentrations in groundwater or soil) or used in combination with outer gloves as a last defense against contamination. Need to specify type
- Outer gloves thicker gloves (e.g., Nitrile, Butyl, Viton, etc.) used when potential for high
 concentrations of contaminants (e.g., floating product, percent ranges of contaminant, opening drums,
 handling pure undiluted chemicals, etc.). Need to specify type.
- Leather gloves, leather palm, cotton good in protecting hands against cuts no protection from chemicals. May be used in combination with chemical protective gloves.
- Boot Covers when there is contamination in surface soils or waking surface in general. When safety boots need protection from contact with contaminants.
- White (uncoated) Tyveks protect clothing from getting dirty, good for protection against solid, non-volatile chemicals (e.g., asbestos, metals) no chemical protection.
- Polycoated Tyveks least protective of chemical protective clothing. Used when some risk of contamination getting on skin or clothing. Usually, lower ppm ranges of contaminants.
- Saranex Greater protection against contamination than Polycoated Tyveks. Used to protect against PCBs or higher concentrations of contaminants in the soil or groundwater.
- Other Chemical protective clothing if significant risk of dermal exposure, contact H&S to determine best kind
- Long sleeved shirts, long pants if working in areas with poison ivy/oak/sumac, poisonous insects, etc. and no chemicals exposure. May want to use uncoated Tyveks for work in areas where poisonous plants are known to occur to protect clothing.
- Cartridge Respirator (Level C PPE) Need to calculate change schedule (contact Division EH&S Manager for this) to determine length of use. To be able to use cartridge respirators, need to know contaminants, estimate levels to be encountered in the breathing zone, need to ensure that cartridge will be effective against COCs, and need to be able to monitor for COCs using PID, FID, Dräger tubes, etc.. If can't do any of these, then Level B PPE is probably going to be needed.
- High Visibility Vest needed for any road work (with in 15 feet of a road) or when working on a site with vehicular traffic or working around heavy equipment. Needed if work tasks would take employee concentration away from movement of vehicles and workers would have to rely on the other driver's ability to see the employee in order not to hit them. This includes heavy equipment as well as cars and trucks, on public roads or the jobsite. Not needed if wearing Polycoated Tyveks as they are already high visibility.
- Reflective Vest see above, but for use at night.
- Hearing Protection needed if working at noise levels above 85 dBA on a time weighted average. If noise measurements are not available, use around noisy equipment, or in general, if you have to raise your voice to be heard when talking to someone standing two feet away.
- Protective Chaps required when using a machete or chain saw or any other cut hazard to legs.

Work Zones:

The work zones will be defined relative to the location of the work activity. The Exclusion Zone is considered the area within a 10-foot diameter of the sampling location. The Contamination Reduction Zone is considered to be the area with in a 20-foot diameter of the sampling location. The decontamination zone being located upwind of the work area. Work zones will be maintained through the use of:

Warning Tape Visual Observations Cones and Barriers

Decontamination Procedures and Equipment:

Note: See Decontamination JHA for further information

Level D Decontamination Procedures

Decontamination Solution: Detergent and Water

Station 1: Equipment Drop Deposit equipment used on-site (tools, sampling devices and

containers, monitoring instruments, radios, etc. on plastic drop cloths. Segregation at the drop reduces the probability of cross contamination. During hot weather operations, a cool-

down station may be set up within this area.

Station 2: Outer Boots, and Gloves Wash Scrub outer boots, and outer gloves decon solution or and Rinse (if worn)

detergent water. Rinse off using copious amounts of water.

Station 3: Outer Boot and Glove Removal (if Remove outer boots and gloves. Deposit in plastic bag.

worn)

Station 4: Inner glove removal Remove inner gloves and place in plastic bag.

Station 5: Field Wash Hands and face are thoroughly washed. Shower as soon as

possible.

Modified Level D and Level C PPE Decontamination Procedures

Decontamination Solution: Detergent and Water

Station 1: Equipment Drop Deposit equipment used on-site (tools, sampling devices and

> containers, monitoring instruments, radios, etc. on plastic drop cloths. Segregation at the drop reduces the probability of cross contamination. During hot weather operations, a cool-

down station may be set up within this area.

Station 2: Outer Garment, Boots, and Gloves Scrub outer boots, outer gloves, and splash suit with decon Wash and Rinse

solution or detergent water. Rinse off using copious amounts

of water.

Station 3: Outer Boot and Glove Removal. Remove outer boots and gloves. Deposit in container with

plastic liner.

Station 4: Canister or Mask (Level C only) If worker leaves exclusion zone to change canister (or mask),

this is the last step in the decontamination procedure.

Worker's canister is exchanged, new outer gloves and boot covers are donned, joints are taped, and worker returns to

duty.

Station 5: Boot, Gloves and Outer Garment

Removal

Change

Boots, chemical resistant splash suit, and inner gloves are removed and deposited in separate containers lined with

plastic.

Station 6: Face Piece Removal (Level C

only)

Facepiece is removed. Avoid touching face with fingers.

Facepiece is deposited on plastic sheet.

Station 7: Field Wash Hands and face are thoroughly washed. Shower as soon as

possible.

Site Communication: Verbal Two-way radio Cellular telephone Hand signals Hand gripping throat Grip partner's wrist or both hands Hands on top of head Thumbs up Thumbs down Horn Siren Other:		Leave area imm Need as OK, I am all right, I und	nediately sistance			
	EMERGENCY CONTA	CTS	r			
NAME	TELEP NUMI	PHONE BERS	DATE OF PRE- EMERGENCY NOTIFICATION (if applicable)			
Fire Department:						
Hospital:						
Police Department:	91	911				
Site Health And Safety Officer: Charles Lyman	Office: (207) 828-3280	Cell: (207) 461-0001				
MACTEC Project Manager: Jayme Connolly	Office: (207) 775-5401	Cell: (207) 205-3155				
Division EH&S Manager: Cindy Sundquist						
NYSDEC Project Manager: Mike McLean	Office: (518) 897-1254					
OTHER: Ambulance	911					
Emergency Equipment: The following emergency response equipment Field First Aid Kit Fire Extinguisher (ABC type) Eyewash (Note: 15 minutes of free Other:		ct and shall be readily availab	ole:			

EMERGENCY PROCEDURES

- The HSO (or alternate) should be immediately notified via the on-site communication system. The HSO
 assumes control of the emergency response.
- The HSO notifies the Project Manager and client contact of the emergency. The HSO shall then contact the Division ES&H Manager who will then contact the Corporate EH&S Manager.
- If applicable, the HSO shall notify off-site emergency responders (e.g. fire department, hospital, police department, etc.) and shall inform the response team as to the nature and location of the emergency on-site.
- If applicable, the HSO evacuates the site. Site workers should move to the predetermined evacuation point (See Site Map).
- For small fires, flames should be extinguished using the fire extinguisher. Large fires should be handled by the local fire department.
- In an unknown situation or if responding to toxic gas emergencies, appropriate PPE, including SCBAs (if available), should be donned. If appropriate PPE is unavailable, site workers should evacuate and call in emergency personnel.
- For chemical spills, follow the job specific JHA for spill containment
- If chemicals are accidentally spilled or splashed into eyes or on skin, use eyewash and wash affected area. Site worker should shower as soon as possible after incident.
- If a worker is injured, first aid shall be administered by certified first aid provider.
- If the emergency involves toxic gases, workers will back off and reassess. Prior to re-entering the work zone, the area must be determined to be safe. Entry will be using Level B PPE and utilize appropriate monitoring equipment to verify that the site is safe.
- An injured worker shall be decontaminated appropriately.
- After the response, the SHSO shall follow-up with the required company reporting procedures, including the completing the MACTEC Incident Analysis Report.

AMEC Early Injury Case Management Program

NON-EMERGENCY INCIDENT	EMERGENCY INCIDENT
Steps 1 & 2 must be completed before seeking medical attention other than local first aid. 1. Provide first-aid as necessary. Report the situation to your immediate supervisor AND HSE coordinator (all incidents with the apparent starting event should be reported within 1 hour of occurrence). 2. Injured employee:	 Provide emergency first aid. Supervisor on duty must immediately call 911 or local emergency number; no employee may respond to outside queries without prior authorization. Any outside media calls concerning this incident must be referred immediately to Lauren Gallagher at 602- 757-3211.
	Once medical attention is sought and provided, the supervisor must:

Call WorkCare 24/7 Hotline* (888) II-XPRTS or (888) 449-7787

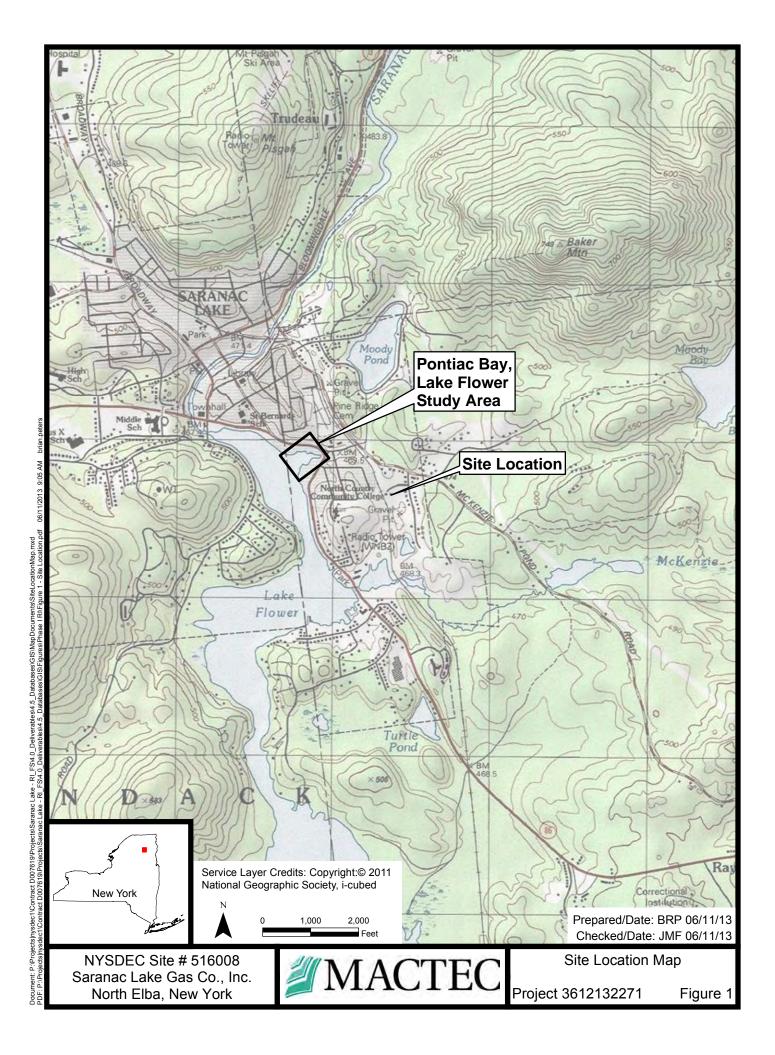
WorkCare will assess the situation and determine whether the incident requires further medical attention. During this process, WorkCare will perform the following:

- Explain the process to the caller.
- Determine the nature of the concern.
- Provide appropriate medical advice to the caller.
- Determine appropriate path forward with the caller.
- Maintain appropriate medical confidentiality.
- Help caller to execute path forward, including referral to the appropriate local medical facility.
- Send an email notification to the Corporate HSE Department.

WorkCare will be responsible for performing the following:

- Contact the treating physician.
- Request copies of all medical records from clinic.
- Send an email update to the Corporate HSE Department.

- 3. IMMEDIATELY after contacting WorkCare send a brief email notification AND inform verbally (direct contact is required) ONE of HSE corporate representatives See Figure 11.3.
- 4. Make all other local notifications and client notifications.
- 5. Local Supervisor, HSE Coordinator, SSHO and any applicable safety committees to complete preliminary investigation, along with the initial Incident Report within 24 hours.
- 6. Corporate Loss Prevention Manager to complete Worker's Compensation Insurance notifications as needed.
- 7. Corporate HSE to conduct further incident notifications, investigation, include in statistics, classify, and develop lessons learned materials.
- * NOTE: Step 2 is only applicable to the North-American operations and to incidents involving AMEC personnel. High potential near misses, subcontractors' incidents, regulatory inspections, spills and property damages above \$1,000 should be reported immediately, following directions from Step 3.


Site Specific Procedures are as follows:

FOLLOW THE "CAMP" in the FAP for dust and perimeter volatile monitoring.

Health and safety training and medical sucurrent and will not expire during on-site	rveillance requirements applicable to my field activities at this site are activities.
Name:	Date:
Name:	Date:
Name:	Date:

Name: Date:

FIELD TEAM REVIEW: I acknowledge that I understand the requirements of this HASP, and agree to abide by the procedures and limitations specified herein. I also acknowledge that I have been given an opportunity to have my questions regarding the HASP and its requirements answered prior to performing field activities.

Routes to Emergency Medical Facilities

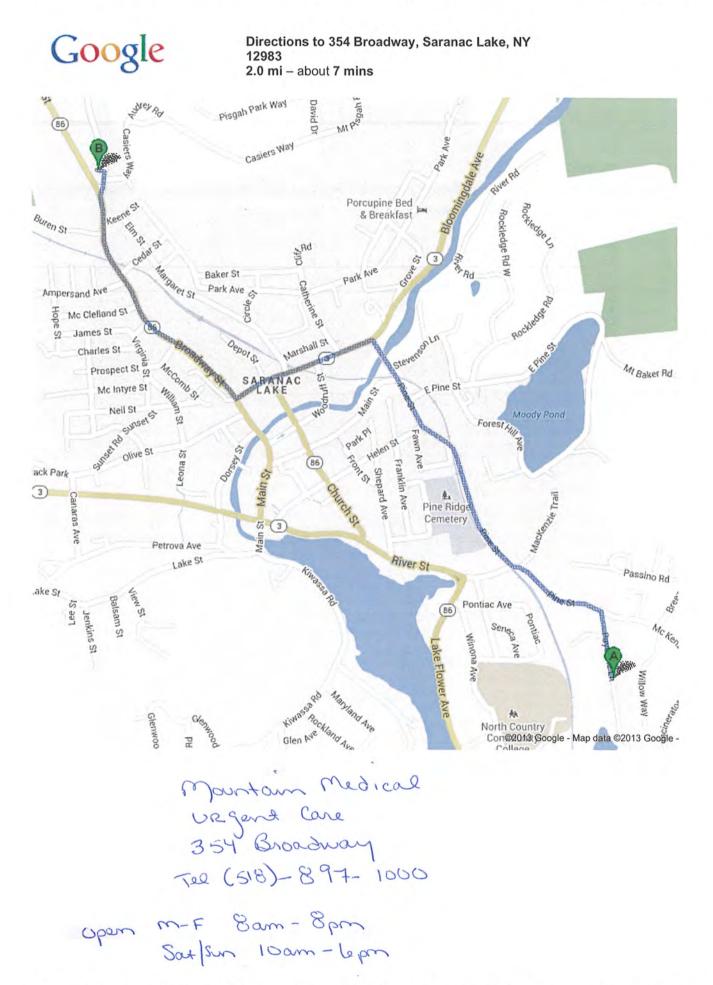
PRIMARY HOSPITAL:

Facility Name: Mountain Medical Urgent Care

Address: 345 Broadway, Saranac Lake New York 12983

Telephone Number: (518) 897-1000

DIRECTIONS TO PRIMARY HOSPITAL (attach map): SEE ATTACHED


ALTERNATE HOSPITAL:

Facility Name: Adirondack Medical Center

Address: 2233 New York 86, Saranac Lake, New York 12983

Telephone Number: (518) 891-4141

DIRECTIONS TO ALTERNATE HOSPITAL (attach map): SEE ATTACHED

https://maps.google.com/maps?f=d&source=s_d&saddr=24+Payeville+Lane+Saranac,+NY... 7/3/2013

24 Payeville Ln, Saranac Lake, NY 12983

1. Head north on Payville Ln toward Adirondack Park Preserve

go 0.2 mi total 0.2 mi

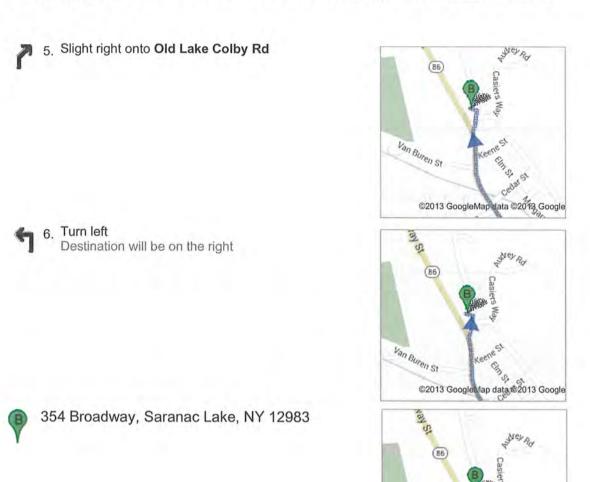
2. Turn left onto Pine St About 2 mins

go 0.9 mi total 1.0 mi

3. Turn left onto Bloomingdale Ave About 2 mins

go 0.3 mi total 1.4 mi

4. Turn right onto Broadway St About 1 min



go 0.6 mi total 1.9 mi

go 305 ft total 2.0 mi

go 92 ft

total 2.0 mi

These directions are for planning purposes only. You may find that construction projects, traffic, weather, or other events may cause conditions to differ from the map results, and you should plan your route accordingly. You must obey all signs or notices regarding your route.

Van Buren St

©2013 GoogleMap data ©2013 Google

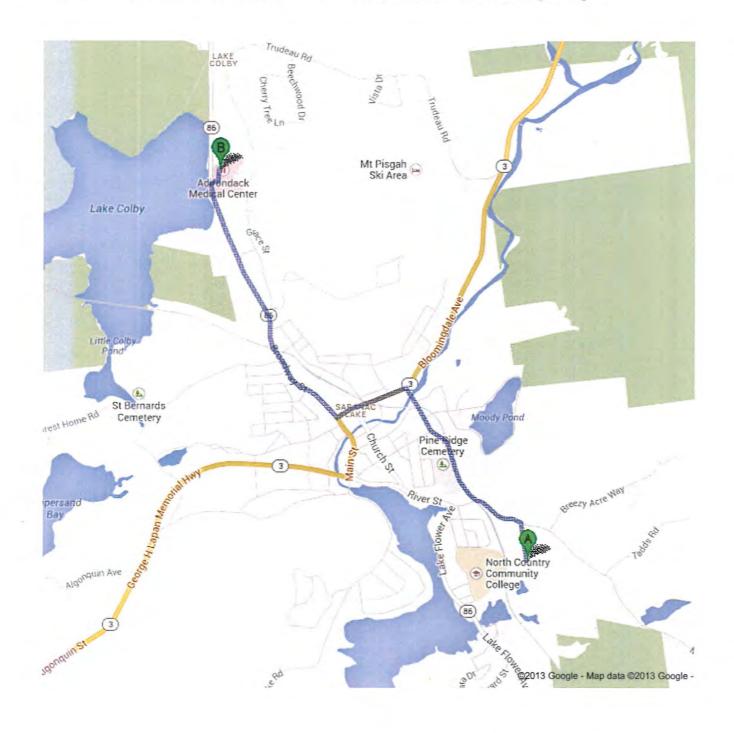
Map data ©2013 Google

Directions weren't right? Please find your route on maps.google.com and click "Report a problem" at the bottom left.

Directions to Adirondack Medical Center 2233 New York 86, Saranac Lake, NY 12983 2.7 mi – about 8 mins

Payeville Ln, Saranac Lake, NY 12983

1. Head north on Payeville Ln toward Adirondack Park Preserve	go 0.2 mi total 0.2 mi
2. Turn left onto Pine St About 2 mins	go 0.9 mi total 1.0 mi
3. Turn left onto Bloomingdale Ave About 2 mins	go 0.3 mi total 1.4 mi
4. Turn right onto Broadway St About 2 mins	go 1.0 mi total 2.4 mi
5. Continue onto NY-86 W/Lake Colby Dr Continue to follow NY-86 W	go 0.2 mi total 2.6 mi
6. Turn right onto Adirondack Park Destination will be on the right	go 0.1 mi fotal 2.7 mi
Adirondack Medical Center 2233 New York 86, Saranac Lake, NY 12983	


These directions are for planning purposes only. You may find that construction projects, traffic, weather, or other events may cause conditions to differ from the map results, and you should plan your route accordingly. You must obey all signs or notices regarding your route.

Map data ©2013 Google

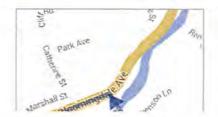
Directions weren't right? Please find your route on maps.google.com and click "Report a problem" at the bottom left.

Directions to Adirondack Medical Center 2233 New York 86, Saranac Lake, NY 12983 2.7 mi – about 8 mins

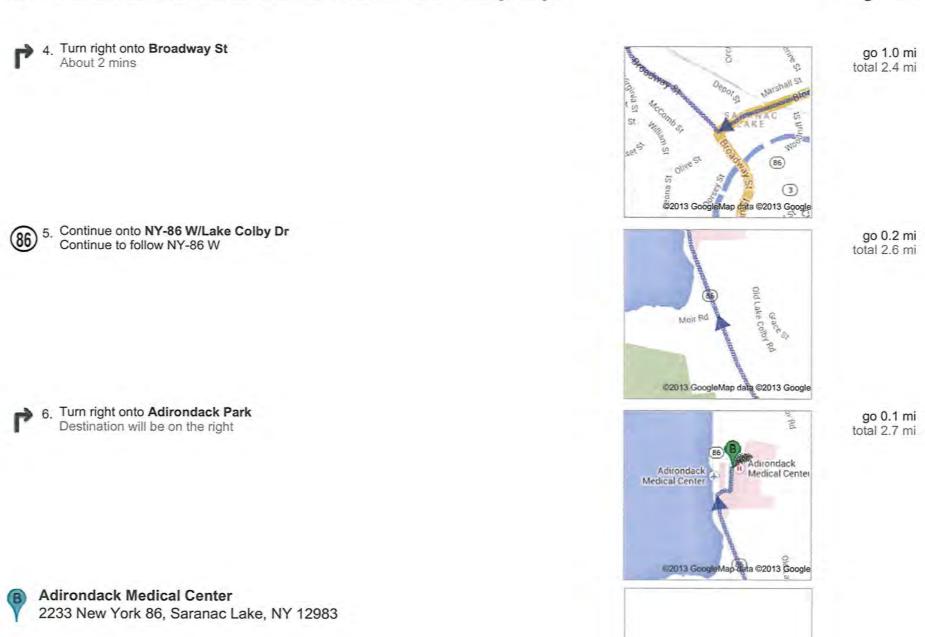
 $https://maps.google.com/maps?f=d\&source=s_d\&saddr=Payeville+Rd, +Saranac+Lake, +NY\&daddr=Adirondack+Medical+Cen... \end{7/} 11/2013 \end{201}.$

Payeville Ln, Saranac Lake, NY 12983

1. Head north on Payeville Ln toward Adirondack Park Preserve


go 0.2 mi total 0.2 mi

2. Turn left onto Pine St About 2 mins


go 0.9 mi total 1.0 mi

3. Turn left onto Bloomingdale Ave About 2 mins

©2013 GoogleMap data ©2013 Google

go 0.3 mi total 1.4 mi

These directions are for planning purposes only. You may find that construction projects, traffic, weather, or other events may should plan your route accordingly. You must obey all signs or notices regarding your route.

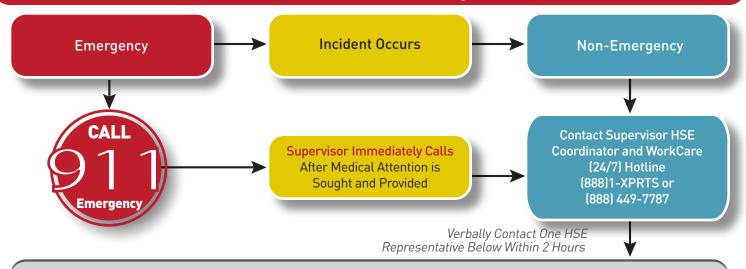
p results, and you ©2013 GoogleMap data ©2013 Google

Map data @2013 Google

Directions weren't right? Please find your route on maps.google.com and click "Report a problem" at the bottom left.

DAILY TAILGATE SAFETY MEETING CHECKLIST

Proje	Project: Site:						
Date:							
To be	e reviewed on the first day of site activ	vities and when new workers arrive on site:					
	enda: ing the project, one or more of the agenda ite	ems could be selected for the required daily site training.		<u>Cl</u>	neck-o Date		_
1. 2. 3. 4. 5. 6.	Planned work for this day (discuss) Physical hazards and controls (discuss) Chemical hazards and controls (discus) Biological hazards and controls (discus) Level of personal protective equipment Personal protective equipment required SPECIFY TYPE Protective coveralls	s/review) ss/review) tt:					
	Safety glasses/goggles Hard hat Foot protection Work gloves Chemical gloves Hearing protection Other	ANSI approved ANSI approved Safety toe boots Nitrile outer/vinyl inner	- - - - -				
7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21.	Review inspection and maintenance produced procedure (discuss/reflex Exclusion zone maintained Site emergency response plan (discuss Signs and symptoms of overexposure of General health and safety rules	/review) to chemicals anticipated on site s relating to site activities including: (discuss/review) ations)					
with a proce		g discussing the topics indicated and fully understand my ve had the opportunity to have my questions on site healt Employee Signature		safety			ving



Incident Flow Chart

Call Immediatley

E&I Corporate HSE Department Contact List

Name/Email	Office Location	Contact Information
Bruce Voss bruce.voss@amec.com	Catherdral City, CA	760.202.3737 (office) 951.897.6381 (cell)
Chad Barnes chad.barnes@amec.com	Phoenix, AZ	602.733.6000 (office) 480.495.9846 (cell)
Cindy Sundquist cynthia.sundquist@amec.com	Portland, ME	207.828.3309 (office) 207.650.7593 (cell) 207.892.4402 (home)
Don Kubik don.kubik@amec.com	Oakland, CA	510.663.4100 (office) 510.368.6433 (cell)
Gabe Sandholm gabe.sandholm@amec.com	Minneapolis, MN	612.252.3785 (office) 206.683.9190 (cell)
John Mazur john.mazur@amec.com	Wilmington, NC	910.452.1185 (office) 910.431.2330 (cell) 910.681.0538 (home)
Lori Dowling lori.dowling@amec.com	Prince George, BC	250.564.3243 (office)
Philip Neville philip.neville@amec.com	Thorold, ON	905.687.6616 (office) 905.380.4465 (cell)
Tim Kihn tim.kihn@amec.com	Edmonton, AB	780.944.6363 (office) 780.717.5058 (cell)
Vlad Ivensky (can call 24/7) vlad.ivesky@amec.com	Plymouth Meeting, PA	610.877.6144 (office) 484.919.5175 (cell) 215.947.0393 (home)

^{*}High potential near misses, subcontractor incidents, regulatory inspections, spills, and property damage greater than \$1000, should be reported within 60 minutes to one of the above HSE Representatives.

INCIDENT ANALYSIS REPORT

Check one Initial Report: □

Ind	cide	ent	Po	ten	tial

Letter: Select One

	Update: ☐
	Group: Select One HSE Manager: Incident Review Panel Team (if applicable):
	Incident Date: Report Date:
	Section 1 – General Information Employee Name: Sex:
	Section 2 – Incident Type - Process (mark at least ONE BOLD TYPE and all that apply)
	☐ Fatality ☐ Environmental ☐ Injury/Illness Incident If Injury/illness: Select One
	☐ Security ☐ Near Miss / Hazard ID ☐ Property Damage If Damage: Select One ☐ 3 rd Party?
	☐ Hospitalization ☐ Regulatory Inspection ☐ Notice of Violation or Citation ☐ Agency Reportable?
	☐ Motor Vehicle Incident Involving Injury ☐ Other (describe):
	Outcome/Result: Select One Source of Hazard: Select One If "other", specify: Immediate Cause: Select One
A.	If <u>injury/illness</u> : Indicate the part of the body: Select One If "other", specify:
	Indicate body part location: Select One If "other", specify:
	Injury Type: Select One If "other", specify: Illness Type: Select One If "other", specify:
B.	If <u>property damage</u> : describe what happened and estimate (\$) of damage to all objects involved?
C.	If <u>environmental</u> : Type of Environmental incident?: Select One Name, CAS#, physical state and quantity?
	Receiving Environment?: Select One Mechanism of Incident?: Select One If "other", specify:
	Nature of Breach?: Select One Duration of Breach?: Select One
D. –	If <u>security</u> : Security Incident Type: Select One If Physical: Select One If Criminal: Select One If Intellectual: Select One
E.	If an inspection by a regulatory agency , what agency, who were the inspectors, inspector contact information?
	Section 3 - Incident Description
	Attach and number additional pages, as needed, to ensure all details related to the incident are captured.
A.	List the names of all persons involved in the incident, and employer information:
B.	List the names of any witnesses, their employer, and a local/company telephone number or address:
C.	Name of Employee's supervisor: Contact phone number for supervisor:
D.	What specific job/task or action was the employee(s) doing just prior to the incident:
E.	Was a tool or equipment involved? ☐ Yes ☐ No What was it: Last Inspection Date:Defects:
F.	Explain in <u>detail</u> what happened:

. Expl	Explain in <u>detail</u> what object or substance directly harmed the employee:					
. Wha	What were the weather conditions at time of incident?:					
Wha	What was the lighting like at time of incident? Bright ☐ Shadows ☐ Dark ☐ Other:					
	List any damaged equipment or property (other than motor vehicles). Provide model and serial number <u>and</u> estimated costs to repair/replace damaged equipment or property, if applicable:					
Se	ction 4 - Incident Analysis					
	s a Health and Safety Plan (HASP) or Activityes", Who prepared the document?:	ty Hazard Analy	rsis (AHA) completed for the	work being pe	erformed? 🗆	Yes □ No
. Who	o and when was the last manager (Project, l	Jnit, etc.) at the	site of the incident?:			
Whe	en and what safety training directly related	to the incident h	nas the person(s) involved h	nad?:		
List	attached documentation (HASP acknowledo	gement forms, k	cickoff/daily/weekly meeting	s, inspections,	photographs):	:
Se	ction 5 - Incident Investigation	on Results	and Corrective Ac	tions		
	s section to be completed by the Gr curred.	roup HSE Ma	nager/IRP with suppor	t from locat	ion where ir	ncident
Ca	ausal Factors (Acts or Omissions / Condi	tions)				
	ttach and number any additional pages as neede	-	ddress this section)			
	IMMEDIATE CAUSE	IMMEDIATE CAU	SE SUB-TYPE	DESCRIPTION		
1	Select One					
2	Select One					
3	Select One					
4	Select One					
	oot Cause(s) Analysis - The below items represe ailed determination of the root cause will be facilitated, if	-	=	rmined to be Less	Than Adequate (L	TA). A more
	ROOT CAUSE TYPE	ROOT CAUSE SU	JB-TYPE	DESCRIPTION	<u>N</u>	
1	Select One					
2	Select One					
3	Select One					
4	4 Select One					
Co	prrective Actions			·		
Ro Ca	Corrective Actions Taken (Attach additional pages as needed to complesection)	etely address this	Responsible Person	Proposed Completion Date	Closed on Date	Verified by and Date Verified
	_					
	_ _					
	_ _					
	_ _		_			
	<u> </u>					

Section 6 - Notifications, Certification & Approvals Check the appropriate boxes indicating the applicable reports have been made to the following applicable organizations:					
Auto Insurance Carrier was called 🗌 💮 Group HSE Manager Notified 🗌					
WorkCare was called	Post-inciden	t Drug/Alcohol Testing Performed	t		
Incident Report prepared by:					
Employee (s):	Date:	Employee's Supervisor:	Date:		
HSE Coordinator/Project/Unit Manager:	Date:	Group HSE Manager:	Date:		

ATTACHMENT 2

VEHICLE INCIDENT REPORT

Confidential - Privileged

Section 1 - General Information Date of Incident: Time incident occurred:				
Section 2 - Company Driver and Vehicle				
Driver's name: <u>D</u> /L #: State:				
Driver's home office address: Driver's Phone #:				
Company Vehicle #: Year: Model: License #: State:				
Company car?: ☐ Yes ☐ No Personal Vehicle?: ☐ Yes ☐ No Rental Vehicle?: ☐ Yes ☐ No				
If rental, rented from:				
Passenger/Witness Name(s): Address: Telephone:				
Passenger/Witness Name(s): Address: Telephone:				
Damage to vehicle:				
Was an employee injured?: ☐ Yes ☐ No If yes, please describe:				
Injuries to others?: Yes No If yes, please describe:				
Vehicle was being used for: Company business ☐ Yes ☐ No Personal business ☐ Yes ☐ No				
Towed?: Yes No If yes, by whom?: To Where?:				
Section 3 - Other Driver and Vehicle Information				
Driver's Name: D/L # : State:				
Current address: City: State:				
Telephone: Work: Cell:				
Registered Owner's Name: Address: City: State:				
(verify registration document)				
The Other Vehicle: Make: Model: Year: License #: State:				
Insurance company name: Address: Phone #:				
Policy No.: Contact Person: Phone #:				
Passenger/Witness Name(s): Address: Telephone:				
Passenger/Witness Name(s): Address: Telephone:				
Damage: (Make note of pre-existing damage and take pictures if possible – you may attach additional pages if necessary):				
Injuries to other driver/passengers:				
Section 4 - Approvals (signatures required)				
Form completed by (please print): Date: Office/Project Manager (please print): Date:				
Signature: Signature:				

© AMEC 2012 1

Things to Do First In The Event Of a Motor Vehicle Incident

GENERAL INFORMATION

- 1. Do not decide on your own whether a particular incident is "covered" by insurance. Should there be any doubt, it is always preferable to report an occurrence, as this allows underwriters, the Risk Management Department and insurance adjusters to determine if a covered loss has taken place.
- 2. Policy Conditions do require that all losses and occurrences, which may result in a claim be promptly reported.
- 3. Do not admit liability or offer your opinion of liability to anyone.
- 4. Complete this IAR/VIR form promptly and forward with all applicable supporting documentation. It is essential both division and location information be provided.
- 5. For automobile collisions within the **United States**, please indicate on the IAR form that you have contacted Zurich at:

Zurich Insurance Company 1-800-987-3373 or 1-877-928-4531 24 hours a day, 7 days a week

6. For automobile collisions within Canada, please indicate on the IAR form that you have contacted Zurich at:

Crawford Adjusters Canada Claims Alert 1-888-218-2346 24 hours a day, 7 days a week

The more details you have the better but, don't delay reporting if you don't have all of the information - that may be obtained later. A Zurich trained operator will answer your call and ask for all relevant information regarding the incident. The initial information required includes:

- Your division,
- Office location and division contact name advise that you are an AMEC Company
- Name, drivers license and phone number of the driver involved in the loss
- Description of the vehicle which he/she was driving (i.e., year, make, model, license plate number, serial number)
- Date, time and location of incident
- Passenger information (if applicable)
- Third party information (i.e., name, phone number, address, vehicle information, insurance information)
- If any injuries occurred (if applicable)
- Police information
- Witness information (if applicable)

Call 911 if there are serious injuries!

If you are injured or think you were injured, <u>contact your supervisor and call WorkCare at 888-449-7787</u>. Your supervisor will notify your HSE Coordinator and your Group HSE Manager. For additional instructions on what to do, go to AMEC's HSE website at:

http://ee.amecnet.com/she/sheweb/incident_reporting.htm

- 1. <u>Call for an officer if the incident occurred on public property</u> (streets, highways or roads). Disputes often arise between the parties involved as to who was at fault; therefore, a police report is important. If an officer is unable to attend the scene of the collision, a counter police report may be filed at most stations. Insurance companies rely on police reports to determine liability.
- 2. <u>Complete the Incident Investigation Report and the Vehicle Incident Report forms</u>. It is important that both these forms are completed in detail. Include a diagram of the incident on the provided sheet. Incomplete information may lead to delays in processing associated claims and in helping to prevent this type of incident from occurring again.
- 3. Give only information that is required by the authorities or as directed by AMEC contractual requirements.
- **4.** <u>Sign only those statements required by the authorities or as directed by AMEC</u> contractual requirements. Do not sign away your or the company's rights.

© AMEC 2012 2

Vehicle Incident Diagram
This or a similar diagram <u>must be completed</u> with all VIRs

1. Number each vehicle and show directions

Instructions:

Vehicle Crash Diagram

→ 1 ···· → 1			
(before) (after)			
3. Show pedestrian/non-motorist by: ———————————————————————————————————			
Show railroad by: +++++++++++++++++++++++++++++++++++			
Indicate north by arrow as: 🇷			
show street or highway names or numbers			
Show signs, signals, warning and traffic controls.			
ndicate North			
by Arrow			

© AMEC 2012 3

GROUND DISTURBANCE INCIDENT REPORT

AMEC Environment & Infrastructure

Section 1 - General Information						
Employee Name:		am pm Time Reported:	am pm	Report Date:		
Project Name:	Project Number:	Client:				
List of All Parties Pres	List of All Parties Present					
Name	Company	Telephone No.	Role			
		<u> </u>				
<u> </u>						
Describe the chronology	ogical description	of Incident and response:				
Section 2 - Date ar	nd Location of E	vent				
A. *Date of Event:		(MM/DD/YYYY)			
B. *Country	*State	*County	City			
•		•	•			
C. Street address		Nearest Int	ersection			
		Nearest Int	ersection			
D. *Right of Way where		_	_	av □ Public-Other		
D. *Right of Way where E. Public: City S	treet 🔲 Sta	Nearest Int ate Highway ☐ County Road vate Land Owner ☐	_	ay □ Public-Other		
D. *Right of Way where E. Public: City S F. Private: Private G. Pipelir	treet	ate Highway	☐ Interstate Highwa] Private Easement] Dedicated Public Ut	tility Easement		
D. *Right of Way where E. Public: City S F. Private: Private G. Pipelir	treet	ate Highway	☐ Interstate Highwa] Private Easement] Dedicated Public Ut	tility Easement		
D. *Right of Way where E. Public:	treet State Business Prine Poal Land Ra (Public Utility Locates,	ate Highway	☐ Interstate Highwa] Private Easement] Dedicated Public Uted ☐ Unknown/C	tility Easement other		
D. *Right of Way where E. Public:	treet State Business Prine Poal Land Ra (Public Utility Locates,	ate Highway	☐ Interstate Highwa] Private Easement] Dedicated Public Uted ☐ Unknown/C	tility Easement other		
D. *Right of Way where E. Public:	treet State Business Prine Poal Land Ra (Public Utility Locates,	ate Highway	☐ Interstate Highwa] Private Easement] Dedicated Public Uted ☐ Unknown/C	tility Easement other		
D. *Right of Way where E. Public:	treet State Business Prine Poal Land Ra (Public Utility Locates,	ate Highway	☐ Interstate Highwa] Private Easement] Dedicated Public Uted ☐ Unknown/C	tility Easement other		
D. *Right of Way where E. Public:	treet	ate Highway	☐ Interstate Highwa] Private Easement] Dedicated Public Uted ☐ Unknown/C	tility Easement other		
D. *Right of Way where E. Public:	treet	ate Highway	☐ Interstate Highwa] Private Easement] Dedicated Public Uted ☐ Unknown/Contifications submitted to	tility Easement other Owner or other utility ary Sewer)		
D. *Right of Way where E. Public:	treet	ate Highway	☐ Interstate Highwa] Private Easement] Dedicated Public Ut ed ☐ Unknown/C tifications submitted to	tility Easement other Owner or other utility ary Sewer)		
D. *Right of Way where E. Public:	treet	ate Highway	☐ Interstate Highwall ☐ Private Easement ☐ Dedicated Public Utled ☐ Unknown/Contifications submitted to ☐ Sewer (Sanita ☐ Unknown/Other	tility Easement other Owner or other utility ary Sewer)		
D. *Right of Way where E. Public:	treet	ate Highway	☐ Interstate Highwall ☐ Private Easement ☐ Dedicated Public Utled ☐ Unknown/Contifications submitted to ☐ Sewer (Sanita ☐ Unknown/Other	tility Easement Other Owner or other utility ary Sewer)		
D. *Right of Way where E. Public:	treet	ate Highway	☐ Interstate Highwall ☐ Private Easement ☐ Dedicated Public Utled ☐ Unknown/Contifications submitted to ☐ Sewer (Sanita ☐ Unknown/Other	tility Easement Other Owner or other utility ary Sewer)		
D. *Right of Way where E. Public:	treet	ate Highway	☐ Interstate Highwall ☐ Private Easement ☐ Dedicated Public Utled ☐ Unknown/Contifications submitted to ☐ Sewer (Sanita ☐ Unknown/Other	tility Easement Other Owner or other utility ary Sewer)		

*Type of Excavator Contractor County Developer Farmer Data not collected Unknown/Other Type of Excavation Equipment Auger Backhoe/Trackhoe Starte Grader/Scraper Hand Tools Milling Equipment Grader/Scraper Data Not Collected Unknown/Other	ıg
*Type of Work Performed Agriculture	
Section 5 - Pre-Excavation Notification *Was the One-Call Center notified? Yes No If Yes, which One-Call Center? Was Private Contract Locator used? Yes No	
Section 6 - Locating and Marking	
*Type of Locator Utility Owner	

Section 8 - Description of Damage

*Was there damage to a facility?				
Yes No (i.e. near miss)				
*Did the damage cause an interruption in service?				
Yes No Data Not Collected Unknown	own/Other			
If yes, duration of interruption				
Unknown Less than 1 hour 1 to 2 hrs 2 to 4	hrs			
hrs	Not Callasted Event Value			
☐ 1 to 2 days ☐ 2 to 3 days ☐ 3 or more days ☐ Data Approximately how many customers were affected?	Not Collected Exact Value			
Unknown 0 1 2 to 10 11 to	50 D51 or more Exact Value			
Estimated cost of damage / repair/restoration	50			
☐Unknown ☐ \$0 ☐ \$1 to 500 ☐ \$501 to 1,000	☐ \$1,001 to 2,500 ☐ \$2,501 to 5,000			
\$5,001 to 25,000 \$25,001 to 50,000 \$50,001 and c				
Number of people injured	Exact value			
	☐ 10 to 19 ☐ 20 to 49 ☐ 50 to 99			
100 or more Exact Value				
Number of fatalities				
☐ Unknown ☐ 0 ☐ 1 ☐ 2 to 9 ☐ 10 to	19 ☐ 20 to 49 ☐ 50 to 99			
☐ 100 or more Exact Value				
Was there a Product Release?				
Product Release: No Yes N/A Type:	If Yes, Incident Type is Environmental			
Report.				
Volume: Spill Controls:				
Repair Process:				
<u> </u>				
Section 9 - Description of the Root Cause				
Dection 7 - Description of the Root Cause				
Please choose one				
One-Call Notification Practices Not Sufficient	Locating Practices Not Sufficient			
No notification made to the One-Call Center	Facility could not be found or located			
Notification to one-call center made, but not sufficient	Facility marking or location not sufficient			
☐ Wrong information provided to One Call Center	Facility was not located or marked			
	Incorrect facility records/maps			
Excavation Practices Not Sufficient	Miscellaneous Root Causes			
Failure to maintain marks	One-Call Center error			
Failure to support exposed facilities	☐ Abandoned facility			
Failure to use hand tools where required	☐ Deteriorated facility			
Failure to test-hole (pot-hole)	Previous damage			
☐ Improper backfilling practices	☐ Data Not Collected ☐ Other			
☐ Failure to maintain clearance ☐ Other insufficient excavation practices				

Section 10 - Notifications, Certification & Approvals Check the appropriate boxes indicating the applicable reports have been made to the following applicable organizations:								
One Call was call	led 🗌	Spills R	eporting A	gency Notif	fied 🗌			
Emergency Responders (Fire) was called Post-incident Drug/Alcohol					esting Perforr	med		
List of All Agencies Contacted								
Name/Agency	Phone :	#		Date	Time			
Incident Report prepared by:								
Employee (s):	Dat	te:	Employee's	Supervisor:		Date:		
HSE Coordinator/Project/Unit Manager:	_ Dat	te:	Group HSE	Manager:		Date:		

APPENDIX A

CONTAMINANT FACT SHEET

						HI	EALTH HAZARD	DATA				
		Color: Colorle	ess		Carcin	nogen: OSHA	X		G.	TWA	STEL	C
	•	Physical State:	Solid			IARC	X		Source	(units)	(units)	(units)
			Liquid	X		NTP						
			Gas			ACGIH	X					
		Odor: A	romatic			NIOSH	X					
CONTAMINANT	Γ	Odor Threshol	d <u>4.68</u>	ppm	Skin a	absorbable: YES						
FACT SHEET		Vapor Density	: <u>2.7 g/L</u>									
Chemical Name:		Ionization Pote	ential (IP): 9.24	eV	Signs	Symptoms of Acu	ute Exposure:					
Benzene		IDLH: 500 ppi	m		Eve, sk	in and nose irritati	ion; headache, nause	ea, staggered	OSHA	1	5	
CAS Number: 71-43-2 Synonyms:					gait, c	drowsiness, dizz	ziness, headaches,	vomiting,	PELs	ppm	ppm	
Phenyl hydride Benzol									ACGIH	0.5	2.5	
									TLVs	ppm	ppm	
									NIOSH	0.1	1	
									RELs	ppm	ppm	
	AIR MONIT	ORING			P	ERSONAL PRO	TECTIVE EQUIP	PMENT		FIRE/REACT	 VITY DAT	`A
Type	Brand/Model	Calibrations	Relative	Meter	_				Flash Point:			
	No.	Method/Med ia	Response or Conversion	Specific Action	Recom	mended Protective	e Clothing Materials	:		1.2/ 7.8%		
			Factor	Level	Suits	Viton, Teflon	n, Barricade, CPF3, l	Responder	Fire Extingu	ishing Media:		
PID	Micro tip 10.6 eV	Isobutylene 100 ppm	1.80	0.4		Tychem				al <u>X</u>	Foam X	
	10.00	100 pp			C1	Witer Teffer D	olyvinyl Alcohol (P	7.4.) 1-	Water Spray	X	CO ₂ <u>X</u> _	
					Gioves		ter	•	Incompatibi	lities:		
					Boots	Teflon			1 -	ently with oxidizers	, halogens, s	ulfuric acid, nitric
									acid			
						-			Attacks plas	tic and rubber.		
						Limit Concentrat						
							TWA x $10 = 4 \text{ ppm}$ TWA x $50 = 20 \text{ ppm}$	n				
				-	''''		1111 X 30 = <u>20 ppn</u>	<u></u>				
Checked by: Joanne Bacchus			06/04/0	Date: 08								

ATTACHMENT A

CONTAMINANT FACT SHEET

					HEALTH HAZARD DATA				
		Color: Physical State:	Liquid X	-	Carcinogen: OSHA X IARC NTP ACGIH	Source	TWA (units)	STEL (units)	C (units)
CONTAMINA FACT SHEE	7676764646464646464646464646464646	Odor:	Swee	t Pungent	NIOSH X	OSHA PELs	200 ppm		300 ppm
Chemical Name: Toluene CAS Number: 108-88-3		Odor Threshold: Vapor Density: Vapor Pressure	3.7 g/ 21 mr	mHg	Signs/Symptoms of Acute Exposure: Irritant to eyes and nose, dizziness, fatigue, confusion, weakness, headache dilated pupils, dermatitis, lacrimation	ACGIH TLVs	20 ppm		
Synonyms: Methylbenzene, Methyl Benzol, Phenyl Methane Toluol		Ionization Poten	tial (IP): 8.82 € 500 p		nervousness	NIOSH RELs	100 ppm	150 ppm	
	AIR MO	ONITORING			PERSONAL PROTECTIVE EQUIPMENT	F	IRE/REACTIV	ITY DATA	
Туре	AIR:Mo Brand/Model No.	ONITORING Calibrations Method/Media	Relative Response or Conversion Factor	Meter Specific Action Level	PERSONAL PROTECTIVE EQUIPMENT Recommended Protective Clothing Materials: Suits Teflon, Viton, CPF3, PE/EVAL, Barricade, Responder, Tychem Trellchem Gloves Viton, Teflon Polyvinyl alcohol (do not use in water)	Flash Point: LEL/UEL: _1.1 Fire Extinguish Dry Chemical Water Spray	40° F % / 7.1%	Foam CO2	<u>X</u>
Type	Brand/Model	Calibrations	Response or Conversion	Specific Action	Recommended Protective Clothing Materials: Suits Teflon, Viton, CPF3, PE/EVAL, Barricade, Responder, Tychem Trellchem Gloves Viton, Teflon Polyvinyl alcohol	Flash Point: LEL/UEL: 1.1 Fire Extinguish Dry Chemical	40° F % / 7.1% sing Media: X X X:ss:	Foam	x x
, , , , , , , , , , , , , , , , , , ,	Brand/Model No.	Calibrations Method/Media	Response or Conversion Factor	Specific Action Level	Recommended Protective Clothing Materials: Suits Teflon, Viton, CPF3, PE/EVAL, Barricade, Responder, Tychem Trellchem Gloves Viton, Teflon Polyvinyl alcohol (do not use in water)	Flash Point: LEL/UEL: _1.1 Fire Extinguish Dry Chemical Water Spray Incompatibilitie	40° F % / 7.1% sing Media: X X X:ss:	Foam	X

2003 by MACTEC Engineering & Consulting, Inc.

ATTACHMENT A

CONTAMINANT FACT SHEET

					HEALTH HAZARD DATA					
	1	Color: Physical State:	Liquid X	-	Carcinogen: OSHA IARC NTP ACGIH	-	Source	TWA (units)	STEL (units)	C (units)
CONTAI FACT S		Odor: Odor Threshold:		omatic	NIOSH Skin absorbable: yes no _X Skin corrosive: yes no	-	OSHA PELs	100 ppm		
Chemical Name: Ethylbenzene CAS Number: 100-4	1-4	Vapor Density:		92 - 0.6 PPM 3.66 g/L	Signs/Symptoms of Acute Exposure: Irritant to eyes, skin, and mucous membranes; dermatitis, and headache	- -	ACGIH TLVs	100 ppm	125 ppm	
Synonyms: Ethylbenzol, Phenylethane		Ionization Poten		6 eV) ppm		-	NIOSH RELs	100 ppm	125 ppm	
		ONITORING			PERSONAL PROTECTIVE EQUIPMEN	NT	FI	RE/REACTIVI	TY DATA	
Туре	Brand/Model No.	ONITORING Calibrations Method/Media	Relative Response or Conversion Factor	Meter Specific Action Level	Recommended Protective Clothing Materials Suits Viton, Barricade, Tychem Responder, Teflon Gloves Viton, teflon		Flash Point: LEL/UEL: 0.8 Fire Extinguish Dry Chemical	55° F 3% / 6.7% ing Media: X	Alcohol F Foam	
Type	Brand/Model No. Microtip 10.6 eV	Calibrations Method/Media	Response or Conversion	Specific Action	Recommended Protective Clothing Materials Suits Viton, Barricade, Tychem Responder, Teflon		Flash Point: LEL/UEL: _0.8 Fire Extinguish Dry Chemical Water Spray Incompatibilitie	55° F 3% / 6.7% ing Media: X	Alcohol F	Resistant XXX
PID	Brand/Model No. Microtip 10.6 eV HNu	Calibrations Method/Media Isobutylene 100 ppm Isobutylene	Response or Conversion Factor	Specific Action Level	Recommended Protective Clothing Materials Suits Viton, Barricade, Tychem Responder, Teflon Gloves Viton, teflon		Flash Point: LEL/UEL: 0.8 Fire Extinguish Dry Chemical Water Spray	55° F 3% / 6.7% ing Media: X	Alcohol F Foam	
	Brand/Model No. Microtip 10.6 eV	Calibrations Method/Media	Response or Conversion Factor	Specific Action Level	Recommended Protective Clothing Materials Suits Viton, Barricade, Tychem Responder, Teflon Gloves Viton, teflon		Flash Point: LEL/UEL: _0.8 Fire Extinguish Dry Chemical Water Spray Incompatibilitie	55° F 3% / 6.7% ing Media: X	Alcohol F Foam	

2003 by MACTEC Engineering & Consulting, Inc.

APPENDIX A

CONTAMINANT FACT SHEET

					HEALTH HAZARI	D DATA				
	7	,	Liquid X	(below 56°F)	Carcinogen: OSHA IARC NTP ACGIH		Source	TWA (units)	STEL (units)	C (units)
CONTAMINAI FACT SHEE	: 7: 7: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2:	Odor:	Gas Aromat		NIOSH Skin absorbable: Skin corrosive: yes r		OSHA PELs	100 ppm		
Chemical Name: Xylene: 108-38-3, CAS Number:: 95-47-6, 106-	42-3	Odor Threshold: Vapor Density:	4.3 g/L		Signs/Symptoms of Acute Exposure: Irritant to eyes, skin, nose, throat, dizziness, drowsiness, excitement		ACGIH TLVs	100 ppm	150 ppm	
Synonyms: Dimethylbenzene, Xylol		Ionization Potent	900 pp				NIOSH RELs	100 ppm	150 ppm	
	AIR MO	NITORING			PERSONAL PROTECTIVE EQ	UIPMENT	FII	RE/REACTIVI	TY DATA	
Туре	AIR MO Brand/Model No.	NITORING Calibrations Method/Media	Relative Response or Conversion	Meter Specific Action	PERSONAL PROTECTIVE EQ Recommended Protective Clothing M Suits Teflon, Viton, PE/EVA	laterials:	FII Flash Point: LEL/UEL: <u>0.9</u>	81° F	TY DATA	
Туре	Brand/Model No.	Calibrations Method/Media	Response or	Specific	Recommended Protective Clothing M Suits Teflon, Viton, PE/EVA Gloves Teflon, Viton Polyvinyl Alcohol (Douse in water)	laterials <u>:</u> L	Flash Point:	81° F % / 6.7%	Foam CO ₂	_X _X
Type PID	Brand/Model	Calibrations	Response or Conversion	Specific Action	Recommended Protective Clothing M Suits Teflon, Viton, PE/EVA Gloves Teflon, Viton Polyvinyl Alcohol (Do	laterials <u>:</u> L	Flash Point: LEL/UEL: 0.9 Fire Extinguish Dry Chemical Water Spray Incompatibilitie Strong oxidizer	81° F % / 6.7% ing Media:	Foam	<u>X</u> <u>X</u>
	Brand/Model No. Microtip	Calibrations Method/Media	Response or Conversion Factor	Specific Action Level	Recommended Protective Clothing M Suits Teflon, Viton, PE/EVA Gloves Teflon, Viton Polyvinyl Alcohol (Douse in water)	laterials <u>:</u> L	Flash Point: LEL/UEL: 0.9 Fire Extinguish Dry Chemical Water Spray Incompatibilitie	81° F % / 6.7% ing Media:	Foam	X X

2003 by MACTEC Engineering & Consulting, Inc.

APPENDIX A

CONTAMINANT FACT SHEET

					HEALTH HAZARD DATA				
		Color: Colorle	SS		Carcinogen: OSHA		TWA	STEL	C
		Physical State:	Solid Resid	lue	IARC X	Source	(units)	(units)	(units)
			Liquid		NTP X				
			Gas		ACGIH X				
~~~~		Odor: N	A	_	NIOSH X				
CONTAMINANT FACT SHEET		Odor Threshold	d <u>NA</u>		Skin absorbable: YES				
FACT SHEET		Vapor Density	>1.0 g/L		Skin corrosive: YES				
Chemical Name:		Ionization Pote	ential (IP): NA		Signs/Symptoms of Acute Exposure:				
Polycyclic Aromatic Hydrocarbo	ons ons	IDLH: 80 mg/1	m3		Dermatitis, bronchitis.	OSHA PELs	0.2 mg/m3		
CAS Number: 12-90-00 Synonyms:		-				-	0.2 / 2		
Coal Tar Pitch Volatiles		-				ACGIH TLVs	0.2 mg/m3		
(CAS 65996-93-2)						NIOSH	0.1 mg/m3		
						RELs			
A	IR MONITO	ORING			PERSONAL PROTECTIVE EQUIPMENT		FIRE/REACT	IVITY DAT	A
<b>71</b>	d/Model No.	Calibrations Method/Med	Relative Resonse or	Meter Specific		Flash Point:	NA		
	NO.	ia	Conversion	Action	Recommended Protective Clothing Materials:		NA		
Dust meter A	Any		Factor N/A	Level **	Suits <u>Tyvek</u>	_	ishing Media:	E V	
**Action limit will be based	1117		17/11		Gloves Nitrile or neoprene	1	al <u>X</u>		
on soil concentrations.  Contact C. Sundquist for									
action limits					Boots Neoprene	Incompatibi			
						Strong Oxio	lizers		
					Service Limit Concentration (ppm): NA				
					MUC 1/2 Mask APR = TWA x 10 = **2 mg/m3				
					MUC Full-Face APR = TWA x *50 = $\frac{**10 \text{ mg/m}3}{}$				
					*If quantitative fit testing is conducted, otherwise, use protection factor of 10				
Checked by:		L			**Action limit will be based on soil concentrations.	11			

#### **ATTACHMENT A**

#### **CONTAMINANT FACT SHEET**

					HEALTH	HAZARD DAT	Α				
		Color: Physical State	white, granular, consolid Solid X Liquid		Carcinogen: OSHA IARC NTP ACGIH			Source	TWA (units)	STEL (units)	C (units)
CONTAMINA FACT SHE	22 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Odor:		ond-like odo	NIOSH Skin absorbable Skin corrosive	yes X no yes no _		OSHA PEL	5 mg/m³		
Chemical Name Cyanide* CAS Number: 151-50-8		Odor Threshold: Vapor Density			Signs/Symptoms of Acute Headache; confusion; na irritation; weakness; slow respiration; thyroid and b	usea; skin & e gaspinį	<u>y</u>	ACGIH TLVs			4.7 ppm 5 mg/m³
Synonyms: Potassium cyanide, sodium cyanide	/anide	Ionization Poten	tial (IP) <u>NA</u> 25 mg.	_				NIOSH RELs			4.7 ppm 5 mg/m³
	AIR MON	ITORING			PERSONAL PROTE	CTIVE EQUI	PMENT	FI	RE/REACTIV	ITY DATA	
Туре	Brand/Mode	Calibrations	Relative	Meter	Recommended Protective	e Clothing Mat	terial:	Flash Point:	NA	_	
	No.	Method/Media	Response or Conversion Factor	Specific Action Level	Suits			LEL/UEL:	NA / NA		
					Gloves			Fire Extinguish Dry Chemical Water Spray	ning Media X X	Foam CO ₂	X
					Boots			Incompatibilitie		002	
								Strong oxidize chlorates, and		ids, acid salt	S
					Service Limit Concentra	ation (ppm)	<u>NA</u>				
					MUC 1/2 Mask APR=T\ MUC Full-Face APR=T\		25 mg/m ³ 25 mg/m ⁻				
Checked by: Emmet F. Cu	urtis		Date: 2/28/00								

2000 by LAW Engineering & Environmental Services, Inc.

^{*} Listed here as a non-specific cyanide salt. Synonyms list possible cyanide compounds.



Job Title: Mobilization/Demobilization and Site Preparation

Date of Analysis: 8/15/06

Minimum Recommended PPE*: High visibility vest, hard hat, steel-toed boots, safety glasses, hearing protection

*See HASP for all required PPE

Key Work Steps	Hazards/Potential Hazards	Safe Practices
Prepare for Site	1A) N/A	1A) Prior to leaving for site
Visit		<ul> <li>Obtain and review HASP prior to site visit, if possible</li> </ul>
		<ul> <li>Determine PPE needs – bring required PPE to the site, if not otherwise being provided at the site (e.g., steel toed boots)</li> </ul>
		<ul> <li>Determine training and medical monitoring needs and ensure all required Health and Safety training and medical monitoring has been received and is current</li> </ul>
		<ul> <li>Ensure all workers are fit for duty (alert, well rested, and mentally and physically fit to perform work assignment)</li> </ul>
		<ul> <li>If respiratory protection is required/potentially required, ensure that training and fit-testing has occurred within the past year.</li> </ul>
		Familiarize yourself with route to the site
	1B) Vehicle defects	1B) Inspect company owned/leased vehicle for defects such as:
		Flat tires
		<ul> <li>Windshield wipers worn or torn</li> </ul>
		Oil puddles under vehicle
		<ul> <li>Headlights, brake lights, turn signals not working</li> </ul>
	1C) Insufficient emergency	1C) Insufficient emergency equipment, unsecured loads
	equipment, unsecured loads	<ul> <li>Ensure vehicle has first aid kit and that all medications are current (if first aid kits are not provided at the site)</li> </ul>
		<ul> <li>Ensure vehicle is equpped with warning flashers and/or flares and that the warning flashers work</li> </ul>
		<ul> <li>Cell phones are recommended to call for help in the event of an emergency</li> </ul>
		<ul> <li>Vehicles carrying tools must have a safety cage in place. All tools must be properly secured</li> </ul>
		<ul> <li>Vehicles must be equipped with chocks if the vehicle is to be left running, unattended.</li> </ul>
		Ensure sufficient gasoline is in the tank
2. Operating	2A) Collisions, unsafe driving	2A) Drive Defensively!
vehicles – general	conditions	<ul> <li>Seat belts must be used at all times when operating any vehicle on company business.</li> </ul>
		<ul> <li>Drive at safe speed for road conditions</li> </ul>
		Maintain adequate following distance
		<ul> <li>Pull over and stop if you have to look at a map</li> </ul>
		<ul> <li>Try to park so that you don't have to back up to leave.</li> </ul>
		<ul> <li>If backing in required, walk around vehicle to identify any hazards (especially low level hazards that may be difficult to see when in the vehicle) that might be present. Use a spotter if necessary</li> </ul>
Driving to the	3A) Dusty, winding, narrow roads	3A) Dusty, winding, narrow roads
jobsite	57.7 Dusty, willding, flatfow foads	Drive confidently and defensively at all times.
•		Go slow around corners, occasionally clearing the windshield.
		20 510W Ground Controls, Cookstoniany Cleaning the Windshield.
	3B) Rocky or one-lane roads	3B) Rocky or one-lane roads
		<ul> <li>Stay clear of gullies and trenches, drive slowly over rocks.</li> </ul>
		<ul> <li>Yield right-of-way to oncoming vehiclesfind a safe place to pull over.</li> </ul>
	3C) Stormy weather, near confused	3C) Stormy weather, near confused tourists
	tourists	<ul> <li>Inquire about conditions before leaving the office.</li> </ul>
		<ul> <li>Be aware of oncoming storms.</li> </ul>
		<ul> <li>Drive to avoid accident situations created by the mistakes of others.</li> </ul>



Job Title: Mobilization/Demobilization and Site Preparation

Date of Analysis: 8/15/06

Key Work Steps	Hazards/Potential Hazards	Safe Practices
	3D) When angry or irritated	3D) When angry or irritated  Attitude adjustment; change the subject or work out the problem before driving the vehicle. Let someone else drive.
	3E) Turning around on narrow roads	3E) Turning around on narrow roads  Safely turn out with as much room as possible.  Know what is ahead and behind the vehicle.  Use a backer if available.
	3F) Sick or medicated	3F) Sick or medicated  Let others on the crew know you do not feel well.  Let someone else drive.
	3G) On wet or slimy roads	3G) On wet or slimy roads  • Drive slow and safe, wear seatbelts.
	3H) Animals on road	3H) Animals on road  Drive slowly, watch for other animals nearby.  Be alert for animals darting out of wooded areas
Gain permission to enter site	4A) Hostile landowner, livestock, pets	4A) Hostile landowner, livestock, pets  Talk to land owner, be courteous and diplomatic  Ensure all animals have been secured away from work area
5. Mobilization/ Demobilization of Equipment and Supplies	5A) Struck by Heavy Equipment/Vehicles	<ul> <li>5A) Struck by heavy equipment</li> <li>Be aware of heavy equipment operations.</li> <li>Keep out of the swing radius of heavy equipment.</li> <li>Ground personnel in the vicinity of heavy equipment operations will be within the view of the operator at all times</li> <li>Employees shall wear a high visibility vest or T-shirt (reflective vest required if working at night).</li> <li>Ground personnel will be aware of the counterweight swing and maintain an adequate buffer zone.</li> <li>Ground personnel will not stand directly behind heavy equipment when it is in operation.</li> </ul>
	5B) Struck by Equipment/Supplies	<ul> <li>5B) Struck by Equipment/Supplies</li> <li>Workers will maintain proper space around their work area, if someone enters it, stop work.</li> <li>When entering another worker's work space, give a verbal warning so they know you are there.</li> </ul>
	5C) Overexertion Unloading/Loading Supplies	Overexertion Unloading/Loading Supplies     Train workers on proper body mechanics, do not bend or twist at the waist while exerting force or lifting.     Tightly secure all loads to the truck bed to avoid load shifting while in transit.
	5D) Caught in/on/between	5D) Caught in/on/between  Do not place yourself between two vehicles or between a vehicle and a fixed object.
	5E) Slip/Trip/Fall	5E) 1E). Slip/Trip/Fall  Mark all holes and low spots in area with banner tape. Instruct personnel to avoid these areas.  Drivers will maintain 3 point contact when mounting/dismounting vehicles/equipment.  Drivers will check surface before stepping, not jumping down.



Job Title: Mobilization/Demobilization and Site Preparation

Date of Analysis: 8/15/06

<b>Key Work Steps</b>	Hazards/Potential Hazards	Safe Practices
	5F) Vehicle accident	Vehicle accident     Employees should follow MACTEC vehicle operation policy and be aware of all stationary and mobile vehicles.
6. Site Preparation	6A) Slip/Trip/Fall	Slip/Trip/Fall     Mark all holes and low spots in area with banner tape. Instruct personnel to avoid these areas
7. Installation of soil erosion and sediment controls	7A) Overexertion	<ul> <li>7A) Overexertion</li> <li>Workers will be trained in the proper method of placing erosion controls.</li> <li>Do not bend and twist at the waist while lifting or exerting force.</li> </ul>
	7B) Struck by Equipment/Supplies	<ul> <li>7C) Struck by Equipment/Supplies</li> <li>Workers will maintain proper space around their work area, if someone enters it, stop work.</li> <li>When entering another worker's work space, give a verbal warning so they know you are there.</li> </ul>
Driving back from the jobsite	8A) See hazards listed under item #3	8A) See safe work practices under item #3



Job Title: Field Work - General Date of Analysis: 8/15/06

Minimum Recommended PPE*: hard hat, steel-toed boots, safety glasses

*See HASP for all required PPE

Key	Work Steps	Hazards/Potential Hazards	Safe Practices
De and	obilization/ emobilization d Site eparation	1A) See Mobilization/Demobilization and Site Preparation JHA	1A) See Mobilization/Demobilization and Site Preparation JHA
2. Co	mmunication	2A) Safety, crew unity	2A) Talk to each other.
			<ul> <li>Log all workers and visitor on and off the site.</li> </ul>
			<ul> <li>Let other crewmembers know when you see a hazard.</li> </ul>
			<ul> <li>Avoid working near known hazards.</li> </ul>
			<ul> <li>Always know the wherabouts of fellow crewmembers.</li> </ul>
			<ul> <li>Carry a radio and spare batteries or cell phone</li> </ul>
			<ul> <li>Review Emergency Evacuation Procedures (see below).</li> </ul>
	alking and	3A) Falling down, twisted ankles and	3A) Always watch your footing.
wo	orking in the	knees, poor footing	<ul> <li>Horseplay is strictly prohibited</li> </ul>
liel	iu		<ul> <li>Slow down and use extra caution around logs, rocks, and animal holes.</li> </ul>
			<ul> <li>Extremely steep slopes (&gt;50%) can be hazardous under wet or dry conditions; consider an alternate route.</li> </ul>
			<ul> <li>Wear laced boots with a minimum 8" high upper and non-skid Vibram- type soles for ankle support and traction.</li> </ul>
		3B) Falling objects	3B) Protect head agains falling objects.
			<ul> <li>Wear your hardhat for protection from falling limbs and pinecones, and from tools and equipment carried by other crewmembers.</li> </ul>
			<ul> <li>Stay out of the woods during extremely high winds.</li> </ul>
		3C) Chemical/Toxicological Hazards	3C) Chemical/Toxicological Hazards
			<ul> <li>See HASP for appropriate level of PPE</li> </ul>
			<ul> <li>Use monitoring equipment, as outlined in HASP, to monitor breathing zone</li> </ul>
			<ul> <li>Read MSDSs for all chemicals brought to the site</li> </ul>
			<ul> <li>Be familiar with hazards associated with site contaminants.</li> </ul>
			Ensure that all containers are properly labelled
			<ul> <li>Decon thoroughly prior to consumption of food, beverage or tobacco.</li> </ul>
		3D) Damage to eyes	3D) Protect eyes:
			<ul> <li>Watch where you walk, ecpecially around trees and brush with limbs sticking out.</li> </ul>
			<ul> <li>Exercise caution when clearing limbs from tree trunks. Advise wearing eye protection.</li> </ul>
			<ul> <li>Ultraviolet light from the sun can be damaging to the eyes; look for sunglasses that specify significant protection from UV-A and UV-B radiation. If safety glasses require, use one's with tinted lenses</li> </ul>
		3E) Bee and wasp stings	3E) See JHA for Insect Stings and Bites
		3F) Ticks and infected mosquitos	3F) See JHA for Insect Stings and Bites
		3G) Wild Animals	3G) Wild Animals
			Avoid phyisical contact with wild animals
1			Do not threaten and/or conrner animals
			<ul> <li>Make noise to get the animal to retreat.</li> </ul>
			Stay in or return to vehicle/equipment if in danger



Job Title: Field Work - General Date of Analysis: 8/15/06

Key Work Steps	Hazards/Potential Hazards	Safe Practices
	3H) Contact with poisonous plants or the oil from those plants:	<ul> <li>3H) Contact with poisonous plants or the oil from those plants:</li> <li>Look for signs of poisonous plants and avoid.</li> <li>Ensure all field workers can identify the plants. Mark identified poisonous plants with spray paint if working at a fixed location.</li> <li>Do not allow plant to touch any part of your body/clothing.</li> <li>Wear PPE as described in the HASP and wear Tyveks, gloves and boot covers if contact with plant is likely</li> <li>Always wash gloves before removing them.</li> <li>Discard PPE in accordance with the HASP.</li> <li>Use commercially available products such as Ivy Block or Ivy Wash as appropriate.</li> </ul>
		POISON IVY (Rhus toxicondendron L.)  POISON OAK (Rhus diversiloba)  POISON SUMAC (Rhus toxicondendron vernix)
	3I) Back Injuries	31) Back Injuries  Site personnel will be instructed on proper lifting techniques.  Mechanical devices should be used to reduce manual handling of materials.  Split heavy loads in to smaller loads  Team lifting should be utilized if mechanical devices are not available.  Make sure that path is clear prior to lift.
	3J) Shoveling	<ul> <li>3J) Shoveling</li> <li>Select the proper shovel for the task. A long handled, flat bladed shovel is recommend for loose material</li> <li>Inspect the handle for splinters and/or cracks</li> <li>Ensure that the blade is securely attached to the handle</li> <li>Never be more than 15 inches from the material you are shoveling</li> <li>Stand with your feet about hip width for balance and keep the shovel close to your body.</li> <li>Bend from the knees (not the back) and tighten your stomach muscles as you lift.</li> <li>Avoid twisting movements. If you need to move the snow to one side reposition your feet to face the direction the snow will be going.</li> <li>Avoid lifting large shoveling too much at once. When lifting heavy material, pick up less to reduce the weight lifted.</li> <li>Pace yourself to avoid getting out of breath and becoming fatigued too soon.</li> <li>Be alert for signs of stress such as pain, numbness, burning and tingling. Stop immediately if you feel any of these symptoms.</li> </ul>
	3K) Slips/Trips/Falls	3K) Slips/Trips/Falls  Maintain work areas safe and orderly; unloading areas should be on even terrain; mark or repair possible tripping hazards.  Site SHSO inspect the entire work area to identify and mark hazards.  Maintain three points of contact when climbing ladders or onto/off of equipment



Job Title: Field Work - General Date of Analysis: 8/15/06

Key Work Steps	Hazards/Potential Hazards	Safe Practices
	3L) Overhead Hazards	3L) Overhead Hazards
		<ul> <li>Personnel will be required to wear hard hats that meet ANSI Standard Z89.1.</li> </ul>
		<ul> <li>All ground personnel will stay clear of suspended loads.</li> </ul>
		<ul> <li>All equipment will be provided with guards, canopies or grills to protect the operator from falling or flying objects.</li> </ul>
		<ul> <li>All overhead hazards will be identified prior to commencing work operations.</li> </ul>
	3M) Dropped Objects	3M) Dropped Objects
		<ul> <li>Steel toe boots meeting ANSI Standard Z41 will be worn.</li> </ul>
	3N) Noise	3N) Noise
		<ul> <li>Hearing protection will be worn with a noise reduction rating capable of maintaining personal exposure below 85 dBA (ear muffs or plugs); all equipment will be equipped with manufacturer's required mufflers.</li> <li>Hearing protection shall be worn by all personnel working in or near heavy equipment.</li> </ul>
	3O) Eye Injuries	3O) Eye Injuries
		<ul> <li>Safety glasses meeting ANSI Standard Z87 will be worn.</li> </ul>
	3P) Heavy Equipment (overhead hazards, spills, struck by or against)	3P) Heavy Equipment
		<ul> <li>All operators will be trained and qualified to operate equipment</li> </ul>
		Equipment will have seat belts.
		<ul> <li>Operators will wear seat belts when operating equipment.</li> </ul>
		<ul> <li>Do not operate equipment on grades that exceed manufacturer's recommendations.</li> </ul>
		<ul> <li>Equipment will have guards, canopies or grills to protect from flying objects.</li> </ul>
		<ul> <li>Ground personnel will stay clear of all suspended loads.</li> </ul>
		<ul> <li>Personel are prohibited from riding on the buckets, or elsewhere on the equipment except for designated seats with proper seat belts or lifts specifically designed to carry workers.</li> </ul>
		<ul> <li>Ground personnel will wear high visibility vests</li> </ul>
		<ul> <li>Spill and absorbent materials will be readily available.</li> </ul>
		<ul> <li>Drip pans, polyethylene sheeting or other means will be used for secondary containment.</li> </ul>
		<ul> <li>Ground personnel will stay out of the swing radius of excavators.</li> </ul>
		<ul> <li>Eye contact with operators will be made before approaching equipment.</li> </ul>
		<ul> <li>Operator will acknowledge eye contact by removing his hands from the controls.</li> </ul>
		<ul> <li>Equipment will not be approached on blind sides.</li> </ul>
		<ul> <li>All equipment will be equipped with backup alarms and use spotters when significant physical movement of equipment occurs on-site, (i.e., other than in place excavation or truck loading).</li> </ul>
		<ul> <li>Inspect rigging prior to each use.</li> </ul>



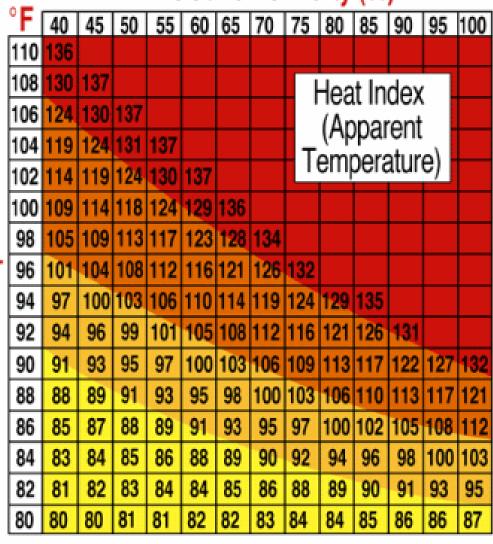
Job Title: Field Work - General Date of Analysis: 8/15/06

Key Work Steps	Hazards/Potential Hazards	Safe Practices
	3Q) Struck by vehicle/equipment	3Q) Struck by vehicle/equipment
		<ul> <li>Be aware of heavy equipment operations.</li> </ul>
		<ul> <li>Keep out of the swing radius of heavy equipment.</li> </ul>
		<ul> <li>Ground personnel in the vicinity of vehicles or heavy equipment operations will be within the view of the operator at all times.</li> </ul>
		<ul> <li>Ground personnel will be aware of the counterweight swing and maintain an adequate buffer zone.</li> </ul>
		<ul> <li>Ground personnel will not stand directly behind heavy equipment when it is in operation.</li> </ul>
		<ul> <li>Drivers will keep workers on foot in their vision at all times, if you lose sight of someone, Stop!</li> </ul>
		<ul> <li>Spotters will be used when backing up trucks and heavy equipment and when moving equipment.</li> </ul>
		<ul> <li>High visibility vests will be worn when workers are exposed to vehicular traffic at the site or on public roads.</li> </ul>
	3R) Struck/cut by tools	3R) Struck/cut by tools
		<ul> <li>Cut resistant work gloves will be worn when dealing with sharp objects.</li> </ul>
		<ul> <li>All hand and power tools will be maintained in safe condition.</li> </ul>
		<ul> <li>Do not drop or throw tools. Tools shall be placed on the ground or worksurface or handed to another employee in a safe manner.</li> </ul>
		<ul> <li>Guards will be kept in place while using hand and power tools.</li> </ul>
	3S) Caught in/on/between	3S) Caught in/on/between
		<ul> <li>Workers will not position themselves between equipment and a stationary object.</li> </ul>
		<ul> <li>Workers will not wear long hair down (place in pony-tail and tuck into shirt) or jewelry if working with tools/machinery.</li> </ul>
	3T) Contact with Electricity/Lightning	3T) Contact with Electricity/Lighting
		<ul> <li>All electrical tools and equipment will be equipped with GFCI.</li> </ul>
		<ul> <li>Electrical extension cords will be of the "Hard" or "Extra Hard" service type.</li> </ul>
		<ul> <li>All extension cords shall have a three-blade grounding plug.</li> </ul>
		<ul> <li>Personnel shall not use extension cords with damaged outer covers, exposed inner wires, or splices.</li> </ul>
		<ul> <li>Electrical cords shall not be laid across roads where vehicular traffic may damage the cord without appropriate guarding.</li> </ul>
		<ul> <li>All electrical work will be conducted by a licensed electrician.</li> </ul>
		<ul> <li>All equipment will be locked out and tagged out and rendered in a zero energy state prior to commencing any operation that may exposed workers to electrical, mechanical, hydraulic, etc. hazards.</li> </ul>
		All utilities will be marked prior to excavation activities.
		<ul> <li>All equipment will stay a minimum of 10 feet from overhead energized electrical lines (50 kV). This distance will increase by 4 inches for each 10 kV above 50 kV. Rule of Thumb: Stay 10 feet away from all overhead powerlines known to be 50 kV or less and 35 feet from all others.)</li> </ul>
		<ul> <li>The SHSO shall halt outdoor site operations whenever lightning is visible, outdoor work will not resume until 30 minutes after the last sighting of lightning.</li> </ul>
	3U) Equipment failure	3U) Equipment failure
		<ul> <li>All equipment will be inspected before use. If any safety problems are noted, the equipment should be tagged and removed from service until repaired or replaced.</li> </ul>



Job Title: Field Work - General Date of Analysis: 8/15/06

Key Work Steps	Hazards/Potential Hazards	Safe Practices
	3V) Hand & power tool usage.	3V) Hand & power tool usage  Daily inspections will be performed.
		<ul> <li>Ensure guards are in place and are in good condition.</li> </ul>
		<ul> <li>Remove broken or damaged tools from service.</li> </ul>
		<ul> <li>Use the tool for its intended purpose.</li> </ul>
		<ul> <li>Use in accordance with manufacturers instructions.</li> </ul>
		<ul> <li>No tampering with electrical equipment is allowed (e.g., splicing cords, cutting the grounding prong off plug, etc.)</li> </ul>
		See JHA for Power Tool Use - Electrical and Power Tool Use - Gasoline
	3W) Fire Protection	3W) Fire Protection
		<ul> <li>Ensure that adequate number and type of fire extinguishers are present at the site</li> </ul>
		<ul> <li>Inspect fire extinguishers on a monthly basis – document</li> </ul>
		<ul> <li>All employees who are expected to use fire exinguishers will have received training on an annual basis.</li> </ul>
		Obey no-smoking policy
		Open fires are prohibited
		<ul> <li>Maintain good housekeeping. Keep rubbish and combustibles to a minimum.</li> </ul>
		<ul> <li>Keep flammable liquids in small containers with lids closed or a safety can.</li> </ul>
		<ul> <li>When dispensing flammable liquids, do in well vented area and bond and ground containers.</li> </ul>
	3X) Confined Space Entry	3X) Confined Space Entry
		See JHA for Confined Space Entry
4. Environmental	4A) Heat Stress	4A) Take precautions to prevent heat stress
health considerations		<ul> <li>Remain constantly aware of the four basic factors that determine the degree of heat stress (air temperature, humidity, air movement, and heat radiation) relative to the surrounding work environmental heat load.</li> </ul>
		<ul> <li>Know the signs and symptoms of heat exhaustion, heat cramps, and heat stroke. Heat stroke is a true medical emergency requiring immediate emergency response action.</li> </ul>
		NOTE: The severity of the effects of a given environmental heat stress is decreased by reducing the work load, increasing the frequency and/or duration of rest periods, and by introducing measures which will protect employees from hot environments.
		<ul> <li>Maintain adequate water intake by drinking water periodically in small amounts throughout the day (flavoring water with citrus flavors or extracts enhances palatability).</li> </ul>
		<ul> <li>Allow approximately 2 weeks with progressive degrees of heat exposure and physical exertion for substantial acclimatization.</li> </ul>
		<ul> <li>Acclimatization is necessary regardless of an employee's physical condition (the better one's physical condition, the quicker the acclimatization). Tailor the work schedule to fit the climate, the physical condition of employees, and mission requirements.</li> </ul>
		A reduction of work load markedly decreases total heat stress.
		<ul> <li>Lessen work load and/or duration of physical exertion the first days of heat exposure to allow gradual acclimatization.</li> </ul>
		<ul> <li>Alternate work and rest periods. More severe conditions may require longer rest periods and electrolyte fluid replacement.</li> </ul>




Job Title: Field Work - General Date of Analysis: 8/15/06

Key Work Steps	Hazards/Potential Hazards	Safe Practices				
	4B) Wet Bulb Globe Temperature (WBGT) Index	4B) WBGT  Curtail or suspend physical work when conditions are extremely severe (see attached Heat Stress Index).				
		<ul> <li>Compute a Wet Bulb Globe Temperature Index to determine the level of physical activity (take WBGT index measurements in a location that is similar or closely approximates the environment to which employees will be exposed).</li> </ul>				
		WBGT THRESHOLD VALUES FOR INSTITUTING PREVENTIVE MEASURES				
		80-90 degrees F Fatigue possible with prolonged exposure and physical activity.				
		90-105 degrees F Heat exhaustion and heat stroke possible with prolonged exposure and physical activity.				
		105-130 degrees F Heat exhaustion and heat stroke are likely with prolonged heat exposure and physical activity.				
	4C) Cold Extremes	4C) Take precautions to prevent cold stress injuries				
		<ul> <li>Cover all exposed skin and be aware of frostbite. While cold air will not freeze the tissues of the lungs, slow down and use a mask or scarf to minimize the effect of cold air on air passages.</li> </ul>				
		<ul> <li>Dress in layers with wicking garments (those that carry moisture away from the body – e.g., cotton) and a weatherproof slicker. A wool outer garment is recommended.</li> </ul>				
		<ul> <li>Take layers off as you heat up; put them on as you cool down.</li> </ul>				
		<ul> <li>Wear head protection that provides adequate insulation and protects the ears.</li> </ul>				
		<ul> <li>Maintain your energy level. Avoid exhaustion and over-exertion which causes sweating, dampens clothing, and accelerates loss of body heat and increases the potential for hypothermia.</li> </ul>				
		<ul> <li>Acclimate to the cold climate to minimize discomfort.</li> </ul>				
		Maintain adequate water/fluid intake to avoid dehydration.				
	4D) Wind	4D) Effects of the wind				
		<ul> <li>Wind chill greatly affects heat loss (see attached Wind Chill Index).</li> </ul>				
		<ul> <li>Avoid marking in old, defective timber, especially hardwoods, during periods of high winds due to snag hazards.</li> </ul>				
	4E) Thunderstorms	4E) Thunderstorms				
		<ul> <li>Monitor weather channels to determine if electrical storms are forcased.</li> </ul>				
		<ul> <li>Plan ahead and identify safe locations to be in the event of a storm. (e.g., sturdy building, vehicle, etc.)</li> </ul>				
		<ul> <li>Suspend all field work at the first sound of thurnder. You should be in a safe place when the time between the lightning and thunder is less than 30 seconds.</li> </ul>				
		<ul> <li>Only return to work 30 minutes after the after the last strike or sound of thunder</li> </ul>				

# Air Temperature

Relative Humidity (%) furnished by National Weather Service Gray, ME



#### With Prolonged Exposure and/or Physical Activity

#### **Extreme Danger**

Heat stroke or sunstroke highly likely

#### **Danger**

Sunstroke, muscle cramps, and/or heat exhaustion likely

#### **Extreme Caution**

Sunstroke, muscle cramps, and/or heat exhaustion possible

#### Caution

Fatigue possible



									Tem	pera	ture	(°F)							
	Calm	40	35	30	25	20	15	10	5	0	-5	-10	-15	-20	-25	-30	-35	-40	-45
	5	36	31	25	19	13	7	1	-5	-11	-16	-22	-28	-34	-40	-46	-52	-57	-63
	10	34	27	21	15	9	3	-4	-10	-16	-22	-28	-35	-41	-47	-53	-59	-66	-72
	15	32	25	19	13	6	0	-7	-13	-19	-26	-32	-39	-45	-51	-58	-64	-71	-77
	20	30	24	17	11	4	-2	-9	-15	-22	-29	-35	-42	-48	-55	-61	-68	-74	-81
Ĕ	25	29	23	16	9	3	-4	-11	-17	-24	-31	-37	-44	-51	-58	-64	-71	-78	-84
Wind (mph)	30	28	22	15	8	1	-5	-12	-19	-26	-33	-39	-46	-53	-60	-67	-73	-80	-87
屋	35	28	21	14	7	0	-7	-14	-21	-27	-34	-41	-48	-55	-62	-69	-76	-82	-89
	40	27	20	13	6	-1	-8	-15	-22	-29	-36	-43	-50	-57	-64	-71	-78	-84	-91
	45	26	19	12	5	-2	-9	-16	-23	-30	-37	-44	-51	-58	-65	-72	-79	-86	-93
	50	26	19	12	4	-3	-10	-17	-24	-31	-38	-45	-52	-60	-67	-74	-81	-88	-95
	55	25	18	11	4	-3	-11	-18	-25	-32	-39	-46	-54	-61	-68	-75	-82	-89	-97
	60	25	17	10	3	-4	-11	-19	-26	-33	-40	-48	-55	-62	-69	-76	-84	-91	-98
	Frostbite Times 30 minutes 10 minutes 5 minutes																		
			W	ind (	Shill	(°F) =	= 35.	74+	0.62	15T ·	- 35.	75(V	0.16).	+ 0.4	275	(V ^{0.1}	¹⁶ )		
												Wind S						ctive 1	1/01/01



Job Title:	Decontamination	Date of Analysis:	5/30/06

Minimum Recommended PPE*: High visibility vest, hard hat, steel-toed boots, safety glasses, hearing protection

ŀ	Key Work Steps	Hazards/Potential Hazards	Safe Practices
1.	Establish	1A) Materials Handling	1A) Materials Handling
	Decontamination Station		<ul> <li>Use proper lifting techniques</li> </ul>
	Otation		<ul> <li>Use mechanical aids, if available, to move heavy items.</li> </ul>
2.	Decontamination /	2A) Struck by steam/hot	2A) Struck by steam/hot water
	Steam cleaning.	water/pressure washing	<ul> <li>Workers not directly engaged in steam cleaning operations must stay clear.</li> </ul>
			<ul> <li>Workers using steam cleaning equipment must be trained on operation and safety devices/procedures using the owners/operators manual.</li> </ul>
			<ul> <li>Use face shield and safety glasses or goggles, if steam cleaning.</li> </ul>
			<ul> <li>Stay out of the splash/steam radius.</li> </ul>
			<ul> <li>Pressure washer must have dead man switch.</li> </ul>
			<ul> <li>Do not direct steam at anyone.</li> </ul>
			<ul> <li>Do not hold objects with your feet or hands.</li> </ul>
			<ul> <li>Ensure that direction of spray minimizes spread of contaminants of concern.</li> </ul>
			<ul> <li>Use shielding as necessary.</li> </ul>
		2B) Exposure to contaminants	2B) Exposure to contaminants
		, ,	<ul><li>Conduct air monitoring (see HASP).</li></ul>
			<ul> <li>Wear proper PPE (see HASP).</li> </ul>
			<ul> <li>See MSDSs for hazards associated with the decon solutions used (if other than water alone us used).</li> </ul>
		2C) Slips/Trips/Falls	2C) Slips/Trips/Falls
			Be cautious as ground/plastic can become slippery
			<ul> <li>Use boots or boot covers with good traction</li> </ul>
3.	Vehicle	3A) Vehicle traffic in and out of the	3A) Large Vehicle Traffic
	Decontamination	CRZ	<ul> <li>Always wear a hard hat, steel toe boots, and a high visibility vest (unless Tyveks are used and are high visibility).</li> </ul>
			<ul> <li>Vehicle drivers are not to exit the vehicle in the CRZ.</li> </ul>
			<ul> <li>Identify an individual to communicate with vehicle drivers and maintain order</li> </ul>
			<ul> <li>Trucks will be lined with plastic and kept out of direct contact with any contaminated materials during loading. Wear PPE when removing plastic lining from truck beds.</li> </ul>
			<ul> <li>If not in the vehicle, obtain eye contact with the driver, so he is aware of your presence and location in the CRZ.</li> </ul>
			<ul> <li>If you are driving the vehicle, be aware of personnel in the CRZ and maintain communication with the identified personnel.</li> </ul>
		3B) Exposure to contaminants	3B) Exposure to contaminants
			<ul> <li>Use safety glasses or goggles, Polycoated Tyvek (if level of contamination poses dermal hazard or to keep work clothes dry), high visibility vest (if high visibility Tyveks are not used) hard hats, steel toe boots, and gloves while cleaning contaminated materials.</li> </ul>
			<ul> <li>Do not doff PPE until decontamination of the vehicle is complete and a decontamination certificate has been issued by the HSO.</li> </ul>
			<ul> <li>Conduct air monitoring (see HASP).</li> </ul>
			<ul> <li>See MSDSs for hazards associated with the decon solutions (if other than water alone is used).</li> </ul>



Job Title: Decontamination Date of Analysis: 5/30/06

Key Work Steps	Hazards/Potential Hazards	Safe Practices
	3C) Slips/Trips/Falls	3C) Slips/Trips/Falls
		Be cautious as ground/plastic can become slippery
		<ul> <li>Use boots or boot covers with good traction</li> </ul>
4. Equipment and	4A) Chemical exposure when handling	4A) Chemical exposure
Sample	contaminated sample jars and	<ul> <li>Wear PPE as outlined in the HASP.</li> </ul>
Decontamination	equipment	<ul> <li>Refer to MSDS for specific hazards associated with decon solutions</li> </ul>
		Monitor breathing zone for contaminants
		<ul> <li>Monitor breathing zone for decon solutions (e.g., methanol, hexane, etc.) if appropriate (see HASP)</li> </ul>
	4B) Materials Handling related injuries	4B) Materials Handling related injuries
		<ul> <li>Use proper lifting techniques when lifting heavy equipment</li> </ul>
		<ul> <li>Use two person lift for heavy coolers</li> </ul>
5. Personal	4C) Exposure to contaminants	4C) Exposure to contaminants
Decontamination		<ul> <li>Avoid bringing contaminated materials via shoes and clothing into the CRZ by examining such prior to exiting the EZ.</li> </ul>
		<ul> <li>Removal of PPE will be performed by the following tasks in the listed order:</li> </ul>
		<ul> <li>Gross boot wash and rinse and removal</li> </ul>
		Outer glove removal
		Suit removal
		<ul> <li>Respirator removal (if worn).</li> </ul>
		<ul> <li>Inner glove removal</li> </ul>
		<ul> <li>Contaminated PPE is to be placed in the appropriate, provided receptacles.</li> </ul>
		<ul> <li>Respirators will be removed and decontaminated at a specified location within the CRZ by a designated technician, then placed in storage bag.</li> </ul>
		<ul> <li>Employees will wash hands, face, and any other exposed areas with soap and water.</li> </ul>
		<ul> <li>Portable eyewash stations and showers will be available should employees come into direct contact with contaminated materials.</li> </ul>
		<ul> <li>See MSDSs for hazards associated with the decontamination solutions used.</li> </ul>
		<ul> <li>Decon solutions will be disposed of according to the work plan.</li> </ul>



Job Title:	Groundwater Sampling	Date of Analysis:	9/21/06

Minimum Recommended PPE*: steel-toed boots, safety glasses, chemical resistant gloves

<b>Key Work Steps</b>	Hazards/Potential Hazards	Safe Practices
1. Mobilization	1A) See JHA Mobilization/Demobilization/Site Preparation	1A) See JHA Mobilization/Demobilization/Site Preparation
General Site     Hazards	2A) See JHA Field Work - General	2A) See JHA Field Work - General
	2B) Chemical exposure	2B) Chemical Exposure
0 0-111	OA) Francisco to callbration was	Read HASP and determine air monitoring and PPE needs.
3. Calibrate monitoring	3A) Exposure to calibration gases	3A) Exposure to calibration gases
equipment		Review equipment manuals     Collibrate in a clean well ventileted area.
4. On anima the well	4A) Contact with main and plants on	Calibrate in a clean, well ventilated area  AND Contact with princepage plants at the ciliforn those plants.
4. Opening the well cap, taking water	4A) Contact with poisonous plants or the oil from poisonous plants	4A) Contact with poisonous plants or the oil from those plants:
level readings	and on nom potentials plants	Look for signs of poisonous plants and avoid.
level redaings		<ul> <li>Ensure all field workers can identify the plants. Mark identified poisonous plants with spray paint if working at a fixed location.</li> </ul>
		<ul> <li>Wear PPE as described in the HASP.</li> </ul>
		<ul> <li>Do not touch any part of your body/clothing.</li> </ul>
		<ul> <li>Always wash gloves before removing them.</li> </ul>
		<ul> <li>Discard PPE in accordance with the HASP.</li> </ul>
		<ul> <li>Use commercially available products such as Ivy Block or Ivy Wash as appropriate.</li> </ul>
	4B) Contact with biting insects (i.e.,	4B) Contact with stinging/biting insects
	spiders, bees, etc.) which may have constructed a nest in the well	<ul> <li>Discuss the types of insects expected at the Site and be able to identify them.</li> </ul>
	cap/well.	<ul> <li>Look for signs of insects in and around the well.</li> </ul>
		<ul> <li>Wear Level of PPE as described in the HASP. At a minimum, follow guidelines in the JHA "Insects Stings and Bites."</li> </ul>
		<ul> <li>If necessary, wear protective netting over your head/face.</li> </ul>
		<ul> <li>Avoid contact with the insects if possible.</li> </ul>
		<ul> <li>Inform your supervisor and the Site Health and Safety Supervisor if you have any allergies to insects and insect bites. Make sure you have identification of your allergies with you at all times and appropriate response kits if applicable.</li> </ul>
		<ul> <li>Get medical help immediately if you are bitten by a black widow or brown recluse, or if you have a severe reaction to any spider bite or bee sting.</li> </ul>
	4C) Exposure to hazardous Inhalation	4C) Exposure to hazardous substances
	and contact with hazardous	<ul> <li>Wear PPE as identified in HASP.</li> </ul>
	substances (VOC contaminated groundwater/ soil); liquid splash; flammable atmospheres.	<ul> <li>Review hazardous properties of site contaminants with workers before sampling operations begin</li> </ul>
	nammable aumosphores.	<ul> <li>Immediately monitor breathing zone after opening well to determine exposure and verify that level of PPE is adequate – see Action Levels in HASP</li> </ul>
		<ul> <li>Monitor headspace in well. After the initial headspace reading (if required by the Work Plan), allow the well to vent for several minutes before obtaining water level and before sampling.</li> </ul>
		<ul> <li>When decontaminating equipment wear additional eye/face protection over the safety glasses such as a face shield.</li> </ul>
	4D) Back strain due to lifting bailers or	4D) Back strain
	pumps and from moving equipment to well locations	<ul> <li>Use mechanical aids when possible, if mechanical aids are not available, use two person lifts for heavy items.</li> </ul>
		<ul> <li>Use proper lifting techniques</li> </ul>



Job Title: Groundwater Sampling Date of Analysis: 9/21/06

Key Work Steps	Hazards/Potential Hazards	Safe Practices
	4E) Foot injuries from dropped	4E) Foot Injuries
	equipment	<ul> <li>Be aware when moving objects, ensure you have a good grip when lifting and carrying objects.</li> </ul>
		<ul> <li>Do not carry more than you can handle safely</li> </ul>
		<ul> <li>Wear Steel toed boots</li> </ul>
<ol><li>Collecting water</li></ol>	5A) Fire/Explosion/Contamination	5A) Fire/Explosion/Contamination hazard from refueling generators
samples	hazard from refueling generators	<ul> <li>Turn the generator off and let it cool down before refueling</li> </ul>
		<ul> <li>Segregate fuel and other hydrocarbons from samples to minimize contamination potential</li> </ul>
		<ul> <li>Transport fuels in approved safety containers. The use of containers other than those specifically designed to carry fuel is prohibited</li> </ul>
		See JHA for Gasoline use
	5B) Electrocution	5B) Electrocution
		<ul> <li>A ground fault circuit interrupter (GFCI) device must protect all AC electrical circuits.</li> </ul>
		<ul> <li>Use only correctly grounded equipment. Never use three-pronged cords which have had the third prong broken off.</li> </ul>
		<ul> <li>Make sure that the electrical cords from generators and power tools are not allowed to be in contact with water</li> </ul>
		<ul> <li>Do not stand in wet areas while operating power equipment</li> </ul>
		<ul> <li>Always make sure all electrically-powered sampling equipment is in good repair. Report any problems so the equipment can be repaired or replaced.</li> </ul>
		<ul> <li>When unplugging a cord, pull on the plug rather than the cord.</li> </ul>
		<ul> <li>Never do repairs on electrical equipment unless you are both authorized and qualified to do so.</li> </ul>
	5C) Exposure to contaminants	5C) Exposure to Contaminants
		Stand up wind when sampling
		<ul> <li>Monitor breathing zone with appropriate monitoring equipment (see HASP)</li> </ul>
		<ul> <li>Wear chemical resistant PPE as identified in HASP</li> </ul>
		See section 4C) under Safe Practices above
	5D) Infectious water born diseases	5D) Infectious water born diseases
		<ul> <li>Wear chemical resistant gloves and other PPE – as identified in HASP</li> </ul>
		Prevent water from contacting skin
		Wash exposed skin with soap and water ASAP after sampling event
		<ul> <li>Ensure that all equipment is adequately decontaminated using a 10% bleach solution</li> </ul>
	5E) Exposure to water preservatives	5E) Exposure to water preservatives
		Work in a well ventilated area, upwind of samples
		Wear chemical resistant PPE as identified in HASP
		<ul> <li>When preserving samples always add acid to water, avoid the opposite.</li> </ul>
	55) 01: #: # #	See JHA Working with Preservatives
	5F) Slips/trips/falls	5F) Slips/trips/falls
		Ground can become wet/muddy, created by spilled water      Diagonal pursued water in drume for removal.
		Place all purged water in drums for removal     Wear good clip resistant footwear.
	5G) Repetitive Motion and other	Wear good slip resistant footwear  5G) Ergonomic lesues
	5G) Repetitive Motion and other Ergonomic Issues	Use mechanical means where possible to raise and lower equipment into well.      Alternate raising and lowering equipment between field sampling team members, and alternate bailing the well.      Use a fallificate balaing.
	1	<ul> <li>Use safe lifting techniques.</li> </ul>



Job Title: Groundwater Sampling Date of Analysis: 9/21/06

Key Work Steps	Hazards/Potential Hazards	Safe Practices
6. Sample Processing	6A) Contaminated water	Contaminated water     Wear appropriate PPE as identified in HASP     Decontaminate outside of bottles     Prevent water from contacting skin     Work in well ventilated area – upwind of samples     Waste will be returned to the operation office for storage and disposal
7. Shipping Samples	7A) Freeze burns, back strain, hazardous chemical exposure, sample leakage	<ul> <li>Freeze burns, back strain, hazardous chemical exposure, sample leakage</li> <li>Wear appropriate chemical resistant gloves as identified in HASP.</li> <li>Wear leather or insulated gloves when handling dry ice.</li> <li>Follow safe lifting techniques – get help lifting heavy coolers.</li> <li>Samples that contain hazardous materials under the DOT definition, must be packaged, manifested and shipped by personnel that have the appropriate DOT HAZMAT training.</li> </ul>

#### AHA – Soil Sampling w/ Hand Auger/Hand Tools



Activity/Work Task:	Soil Sampling w/ Hand Auger/Hand Tools			Overall Risk A	Overall Risk Assessment Code (RAC) (Use highe					
Project Location:	Portland, Maine			Risk Assessment Code (RAC) Matrix						
Contract Number:				Severity		P	robability			
Date Prepared:	12/07/2012	Date Accepted:		Severity	Frequent	Likely	Occasional	Seldom	Unlikely	
Prepared by (Name/Title):	Ryan Mankows	ki/Env.Prof. Tec	h 1	Catastrophic Critical	E E	E H	H H	H M	M L	
Reviewed by (Name/Title):					H M	M	M	L	L	
Notes: (Field Notes, Rev	view Comments, etc.	)		Negligible M L L L L  Step 1: Review each "Hazard" with identified safety "Controls" and determine RAC (See above)						
This AHA involves the Establishing s	following: ite specific measu	res		"Probability" is the likelihood to cause an incident, near miss, or accident and identified as: Frequent, Likely, Occasional, Seldom or Unlikely.  RAC Chart						
•				"Severity" is the outcome/degree if an incident, near miss, or accident did					High Risk	
This AHA is not an exhaustive summary of all hazards associated with the			occur and identified as: Cata	gible	H = High Risk					
follow general site safe	Site. Refer to the site HASP for additional requirements. Contractor to follow general site safety controls for Slips Trips and Falls, Biological			Step 2: Identify the RAC (P	robability/Severity)	as E, H, M, or L f	or each	M = Moderate Risk		
hazards, cuts laceratio	ns and pinch point	s, and emergency	proceaures.	"Hazard" on AHA. Annotate	the overall highes	t RAC at the top o	of AHA.	L = Low Risk		

Job Steps	Hazards	Controls	RAC
Going to site, work     preparation	1A) Mobilization / Demobilization and Site Preparation	1A) See JHA for Mobilization Demobilization and Site Preparation	Н
2. Working at the site	2A) General Field Work – Walking and working in the field, Environmental conditions, communication	2A) See JHA for General Field Work	L





	2B) Working Near Utilities	<ul> <li>See JHA for Utility Clearance Activities</li> <li>See JHA for Field Work - Oversight</li> <li>On private property/active facility, walk all planned locations with a appropriate representative prior to start of exploration to identify the location of marked/unmarked utilities (underground/overhead) and note any uncertainties. Field Lead should call PM and relay any issues. Document this inspection in the field book and note subcontractor's responses to any MACTEC concerns.</li> <li>Coordinate with facility representatives to gain access to restricted areas.</li> <li>For areas where utility locations cannot be verified, workers must hand dig for the first 3 feet</li> <li>Wear appropriate PPE</li> <li>If working in close proximity to live utilities (i.e. transformers), do not tamper with the units in any way and maintain safe working distance based on voltage.</li> <li>If working alone, always notify other crewmembers/project team members/facility personnel of your whereabouts.</li> </ul>	M
		<ul> <li>If working alone, always notify other crewmembers/project team members/facility personnel of your whereabouts.</li> <li>Carry a radio and spare batteries or cell phone.</li> <li>Let other crewmembers know when you see a hazard.</li> </ul>	
3. Preparing sample location	3A) Contact with poisonous plants or the oil from poisonous plants	<ul> <li>3A) Contact with Poisonous plants or oil from poisonous plants</li> <li>Look for signs of poisonous plants and avoid.</li> <li>Wear PPE as described in the HASP.</li> <li>Do not touch anything part of your body/clothing.</li> </ul>	М
		<ul> <li>Always wash gloves before removing them</li> <li>Discard PPE in accordance with the HASP</li> </ul>	





	3B) Contact with biting insects (i.e., spiders, bees, etc.)	<ul> <li>3B) Contact with biting insects</li> <li>Discuss the types of insects expected at the Site and be able to identify them.</li> <li>Look for signs of insects in and around the well.</li> <li>Wear Level of PPE as described in the HASP. At a minimum, follow guidelines in the JHA "Insects Stings and Bites."</li> <li>If necessary, wear protective netting over your head/face.</li> <li>Avoid contact with the insects if possible.</li> <li>Inform your supervisor and the Site Health and Safety Supervisor if you have any allergies to insects and insect bites. Make sure you have identification of your allergies with you at all times and appropriate response kits if applicable.</li> <li>Get medical help immediately if you are bitten by a black widow or brown recluse, or if you have a severe reaction to any spider bite or bee sting.</li> </ul>	M
	3C) Encounter wild/ dangerous animal	3C) Encounter wild/ dangerous animal  • See JHA "Dog and Wildlife Safety"	L
	3D) Back strain due to lifting or moving equipment to sampling locations	<ul> <li>3D) Back strain due to lifting or moving equipment to sampling locations</li> <li>Use mechanical aids when possible, if mechanical aids are not available, use two person lifts for heavy items.</li> <li>Use proper lifting techniques</li> <li>Split up heavy loads into smaller loads</li> </ul>	M
	3E) Foot injuries	<ul> <li>3E) Foot injuries</li> <li>Be aware when moving objects, ensure you have a good grip when lifting and carrying objects.</li> <li>Do not carry more than you can handle safely</li> <li>Wear steel toed boots with high tops</li> <li>Be observant of surroundings. Be mindful of holes and uneven terrain. Surfaces may be wet and muddy. Avoid puddles.</li> </ul>	L
4. Hand Auguring/ Shoveling Test Holes	4A) Back injury from lifting and twisting equipment	<ul> <li>4A) Back injury from lifting and twisting equipment</li> <li>Use proper lifting and bending techniques.</li> <li>Us 2 persons for lifting of heavy, bulky items over 50 lbs.</li> <li>Use Mechanical means if available (e.g. auger jacks etc.)</li> <li>Wobble auger or shovel to break suction of wet soils.</li> </ul>	M





4B) Injuries from transporting equipment to site i.e. stumbling or falling	<ul> <li>4B) Injuries from transporting equipment to site i.e. stumbling or falling</li> <li>Ensure surround are is clear of personnel and obstacles as you approach the test site.</li> <li>Transport equipment in sections, beginning with equipment nearest tailgate of truck.</li> <li>Use 2 person lift for heavy items</li> <li>Assure pathway is clear</li> </ul>	М
4C) Injuries while adding extensions	<ul> <li>4C) Injuries while adding extensions</li> <li>Ensure that PPE is used.</li> <li>Lift and connect extension with care.</li> <li>Use proper lifting procedures.</li> </ul>	L
4D) Hit utilities or geotextile membrane and contamination	<ul> <li>4D) Hit utilities or geo-textile membrane and contamination</li> <li>Locate utilities and mark. Sample in cleared area.</li> <li>Use of hand tools. Be observant. Do not use excessive force.</li> <li>Follow sampling work plan for location and depth.</li> </ul>	L
4E) Injury to others as equipment is removed	4E) Injury to others as equipment is removed  • Assure that other are standing at a safety distance before removing equipment	L
4F) Fingers injuries	<ul> <li>4F) Fingers injuries</li> <li>Assure fingers are clear as equipment is extracted - Wear PPE (gloves, eye protection, etc).</li> <li>Be aware of the type of material being removed from test hole and handle appropriately</li> </ul>	M
4G) Electrocution	<ul> <li>4G) Electrocution</li> <li>A ground fault circuit interrupter (GFCI) device must protect all AC electrical circuits.</li> <li>Use only correctly grounded equipment. Never use three-pronged cords which have had the third prong broken off.</li> <li>Make sure that the electrical cords from generators and power tools are not allowed to be in contact with water</li> <li>Do not stand in wet areas while operating power equipment</li> <li>Always make sure all electrically-powered sampling equipment is in good repair. Report any problems so the equipment can be repaired or replaced.</li> <li>When unplugging a cord, pull on the plug rather than the cord.</li> <li>Never do repairs on electrical equipment unless you are both authorized and qualified to do so.</li> </ul>	M





5. Sample Collection	5A) Exposure to contaminants	<ul> <li>5A) Exposure to Contaminants</li> <li>Stand up wind when sampling and do not breathe dust (if conditions are dusty)</li> <li>Monitor breathing zone with appropriate monitoring equipment (see HASP)</li> <li>Continually monitor soil samples for low level radiation.</li> <li>Wear chemical resistant PPE as identified in HASP / JHA</li> <li>Minimize sample contact</li> <li>Label sample in accordance with procedures</li> </ul>	н
	5B) Exposure to preservatives	<ul> <li>5B) Exposure to preservatives</li> <li>Work in a well ventilated area, upwind of samples</li> <li>Wear chemical resistant PPE as identified in HASP / JHA.</li> <li>Review MSDSs</li> </ul>	н
	5C) Slips/trips/falls	<ul> <li>5C) Slips/trips/falls</li> <li>Ground can become wet/muddy</li> <li>Wear good slip resistant footwear</li> </ul>	н
	5D) Vapors and Airborne Particulates	<ul> <li>5D) Vapors and Airborne Particulates</li> <li>Monitor air concentrations using direct-reading, real-time instruments (See HASP for required monitoring instruments and action limits)</li> <li>If hazardous conditions are identified, stop work until precautions are taken</li> <li>Wear appropriate PPE including safety glasses with side shields, dust masks and respirators (See HASP)</li> </ul>	М
	5E) Lifting Injury	<ul> <li>5E) Lifting injury</li> <li>Use proper lifting techniques when carrying quantities of samples</li> <li>Use proper ergonomics when hand digging for samples</li> </ul>	М
	5F) Eye injury	<ul> <li>5F) Eye Injury</li> <li>Wear eye protection during operation of Geoprobe or if misc. debris may harm your eyes.</li> </ul>	L
	5G) Fire	5G) Have an A-B-C rated fire extinguisher on hand in case of small equipment fires. Only individuals trained in fire extinguisher use should use a fire extinguisher.	L





		5H) Sharp Sampling Tools	5H) Sharp Sampling Tools	
		ony sharp sampling roots	Use correct tools for opening sleeves	1
			When opening sleeve, cut away from body	_
			Place soil core on sturdy surface prior to cutting	
		51) Sample Cross	5I) Sample Cross Contamination	
		Contamination	<ul> <li>Decontaminate or dispose of sampling equipment between sampling locations</li> </ul>	M
			<ul> <li>Double-check sample labels to ensure accuracy and adhesion to containers</li> </ul>	
6. Disposa	al of leftover soil	6A) Contamination from	6A) Properly dispose of any leftover soil sample	
		impacted soil	<ul> <li>Consult the Project Manager for proper disposal of soil.</li> </ul>	
			<ul> <li>Don proper PPE when handling sample cores and disposing of soils.</li> </ul>	L
			If soils are placed in a container (i.e. drum) properly label the drum.	
7 Davil-61	Il Borehole.	7A) Contoningtion from	7A\ Minimin and the state of th	
7. Backfill	ii Borenoie.	7A) Contamination from impacted soil and/or	7A) Minimize contact with potentially impacted soil and/or groundwater	
		groundwater	Don proper PPE when backfilling the borehole.  If the board of the second of the	L
			<ul> <li>If the borehole is located in a paved area (i.e. asphalt/concrete), carefully patch the borehole using proper patching materials.</li> </ul>	
	Liquid Waste	8A) Contaminated Materials and Container Pinch Points	8A) Contaminated Materials and Container Pinch Points	
Manage	ement/ Disposal		<ul> <li>Wear appropriate PPE including Nitrile and leather gloves (See HASP)</li> </ul>	L
			<ul> <li>Position hands/fingers to avoid pinching/smashing/crushing when closing drum rings</li> </ul>	
		8B) Heavy Materials and	8B) Contaminated Materials and Container Pinch Points	
		Containers Lifting/ Moving	<ul> <li>Do not lift or move heavy containers without assistance</li> </ul>	
			<ul> <li>Use proper bending/lifting techniques by lifting with arms and legs and not with back</li> </ul>	
			<ul> <li>If possible, use powered lift truck, drum cart, or other mechanical means Take breaks if feeling faint or overexerted</li> </ul>	M
			Spot drums in storage area prior to filling	
			<ul> <li>Wear appropriate PPE including leather gloves and steel-toed boots</li> </ul>	
9. Demobi	oilize	9A) See Mobilization/	9A) See Mobilization/ Demobilization and Site Preparation JHA	
2. 20moo	<del>-</del>	Demobilization and Site		Н
		Preparation JHA		



#### AHA – Soil Sampling w/ Hand Auger/Hand Tools

Equipment to be Used	Training Requirements/Competent or Qualified Personnel name(s)	Inspection Requirements
PPE (Hard Hat, safety glasses, gloves, steel toe work boots, high visibility safety vest, hearing protection)	Competent / Qualified Personnel: Name – Position/Employer Training requirements:	Daily inspection of equipment per manufacturer's instructions. Tag tools that are defective and remove from service.
	List specific certification (as applicable) Site Specific HASP Orientation Toolbox safety meeting Task kick-off meeting	Inspect power cord sets prior to use.  Inspect all PPE prior to use

#### Job Hazard Analysis Form

Job Title: Field Work - Oversight Date of Analysis: 4/13/10

Minimum Recommended PPE*: High visibility vest, hard hat, steel-toed boots, safety glasses, hearing

protection

I	Key Work Steps	Hazards/Potenti al Hazards	Safe Practices	
1.	Prepare for site visit	1A) N/A	<ul> <li>Obtain and review HASP prior to site visit, if possible</li> <li>Determine PPE needs – bring required PPE to the site, if not otherwise being provided at the site (e.g., steel toed boots)</li> <li>Determine training and medical monitoring needs and ensure all required Health and Safety training and medical monitoring has been received and is current</li> <li>Complete site specific/ client required training</li> <li>Ensure all workers are fit for duty (alert, well rested, and mentally and physically fit to perform work assignment)</li> <li>First aid kits shall be available at the work site and on each transport vehicle.</li> <li>Familiarize yourself with route to the site</li> <li>Check weather forecast. Pack appropriate clothing and other items (e.g., sunscreen) for anticipated weather conditions</li> <li>Verify that subsurface utilities have been identified.</li> </ul>	
2.	Traveling to the site by vehicle	2A) See JHA for Mobilizatio n, Demobilizat ion and Site Preparation	See JHA for Mobilization, Demobilization and Site Preparation	
3.	Initial Arrival - Assess Site Conditions	3A) Communicati on with subcontractor and other site personnel	<ul> <li>Develop communication methods (agree on hand signals, warning alarms)</li> <li>Log all workers and visitor on and off the site.</li> <li>Let other crewmembers know when you see a hazard.</li> <li>Avoid working near known hazards.</li> <li>Always know the whereabouts of fellow crewmembers.</li> <li>Carry a radio and spare batteries or cell phone</li> <li>Hold and document Safety tailgate meetings</li> <li>Establish work zones, evacuation routes and rally locations.</li> </ul>	
		3B) Insect Bites and Stings	<ul> <li>Discuss the types of insects expected at the Site and be able to identify them.</li> <li>Look for signs of insects.</li> <li>Inform crew members if allergic to insects and what to do if you need assistance.</li> <li>Avoid wearing heavy fragrances.</li> <li>Carry first-aid and sting relief kits.</li> <li>Carry identification of known allergies and necessary emergency medication.</li> <li>Spray clothing with insect repellant as a barrier.</li> <li>Wear light colored clothing that fits tightly at the wrists, ankles, and waist.</li> <li>Cover trouser legs with high socks or boots.</li> <li>Tuck in shirt tails.</li> </ul>	

3C) Poisonous plants	<ul> <li>Wear long sleeves, long pants and boots</li> <li>Ensure all field workers can identify the plants. Mark identified poisonous plants with high visibility spray paint if working at a fixed location.</li> <li>Look for signs of poisonous plants and demark area to aid in avoiding plant.</li> <li>Do not touch any plant part to any part of your body/clothing.</li> <li>Use commercially available products such as Ivy Block or Ivy Wash as appropriate.</li> </ul>
3D) Vermin, leaches, animal borne disease	<ul> <li>Survey the area for dens, nests, etc.</li> <li>Identify areas where biological hazards may be present.</li> <li>Wear long sleeve shirt and full length pants</li> <li>Be aware of your surroundings.</li> <li>Wear appropriate footwear (snake boots, etc.)</li> <li>Avoid high grass areas if possible</li> <li>Do not put hand/arm into/under an area that you cannot see into/under clearly</li> <li>Perform routine inspections for ticks, leaches, etc. of yourself and coworkers.</li> </ul>
3E) Chemical Hazards	<ul> <li>Wear chemical resistant PPE as identified in the HASP</li> <li>Use monitoring equipment, as outlined in HASP, to monitor breathing zone</li> <li>Read MSDSs for all chemicals brought to the site</li> <li>Be familiar with hazards associated with site contaminants.</li> <li>Ensure that all containers are properly labeled</li> </ul>
3F) Overhead Power Lines	<ul> <li>Identify the location of all overhead power lines at the site.</li> <li>Maintain clearances depending on voltage - All equipment will stay a minimum of 10 feet from overhead energized electrical lines (50 kV or less). This distance will increase by 4 inches for each 10 kV above 50 kV. Rule of Thumb: Stay 10 feet away from all overhead power lines known to be 50 kV or less and 35 feet from all others.)</li> <li>Re-locate work so it is not close to power lines</li> <li>Avoid storing materials under overhead power lines</li> </ul>
3G) Underground Utilities	<ul> <li>All utilities will be marked prior to excavation activities</li> <li>For areas where utility locations cannot be verified, workers must hand dig for the first 3 feet</li> <li>Use lineman's gloves when locating underground power lines</li> <li>Work at adequate offsets from utility locations</li> <li>Immediately cease work if unknown utility markings are discovered.</li> </ul>

3H) Cold Stress	<ul> <li>Dress in layers with wicking garments (those that carry moisture away from the body – e.g., cotton) and a weatherproof slicker. A wool outer garment is recommended.</li> <li>Take layers off as you heat up; put them on as you cool down.</li> <li>Wear head protection that provides adequate insulation and protects the ears.</li> <li>Maintain your energy level. Avoid exhaustion and over-exertion which causes sweating, dampens clothing, and accelerates loss of body heat and increases the potential for hypothermia.</li> <li>Acclimate to the cold climate to minimize discomfort.</li> <li>Maintain adequate water/fluid intake to avoid dehydration.</li> <li>Be aware of signs of hypothermia, its prevention, detection and treatment.</li> <li>Have extra protection available, in case of an emergency such as blankets and heating devices.</li> <li>Don't work under extremely adverse weather conditions</li> <li>Stay in tune to current weather and extended forecasts.</li> </ul>
3l) Heat Stress	<ul> <li>Remain constantly aware of the four basic factors that determine the degree of heat stress (air temperature, humidity, air movement, and heat radiation) relative to the surrounding work environmental heat load.</li> <li>Know the signs and symptoms of heat exhaustion, heat cramps, and heat stroke. Heat stroke is a true medical emergency requiring immediate emergency response action.</li> <li>Maintain adequate water intake by drinking water periodically in small amounts throughout the day (flavoring water with citrus flavors or extracts enhances palatability).</li> <li>Lessen work load and/or duration of physical exertion the first days of heat exposure to allow gradual acclimatization.</li> <li>Alternate work and rest periods. More severe conditions may require longer rest periods and electrolyte fluid replacement.</li> </ul>
3J) Lightning and Thunder	<ul> <li>Monitor weather channels to determine if electrical storms are forecasted.</li> <li>Plan ahead and identify safe locations to be in the event of a storm. (e.g., sturdy building, vehicle, etc.)</li> <li>Suspend all field work at the first sound of thunder. You should be in a safe place when the time between the lightning and thunder is less than 30 seconds.</li> </ul>
3K) Severe Weather	<ul> <li>Watch for clouds and incoming weather.</li> <li>Monitor weather forecasts.</li> <li>Train workers about weather and appropriate precautions.</li> <li>Identify a shelter and a safe place in event of tornado etc</li> </ul>
3L) Sun	<ul> <li>Keep body protected</li> <li>Wear sunscreen, wide brimmed hat or hardhat.</li> <li>Schedule work for cool part of day.</li> <li>Take breaks in the shade.</li> </ul>
3M)High Crime Areas	<ul> <li>Do not enter areas where threats are present.</li> <li>Contract security where applicable. Use the buddy system.</li> <li>Maintain contact with support such as radio or cell phone</li> <li>Do not work after dark.</li> </ul>

	3N) Operations conducted at an active facility	<ul> <li>Stay well clear of operations being conducted at the facility</li> <li>Keep alert for moving materials, equipment or vehicles</li> <li>Determine client specific PPE needs prior to arriving at the site</li> <li>Determine client specific emergency response procedures and follow as appropriate</li> <li>Participate in client required safety training</li> <li>Get copies of Clients MSDSs for any client chemicals that workers may be exposed to.</li> <li>Provide MSDSs to client for all chemicals brought to the site.</li> </ul>
	30) Remote Locations	<ul> <li>Carry a two-way radio and know how to use it.</li> <li>Work in teams. Account for all at the end of the work day.</li> <li>Make sure someone on crew is certified in first aid.</li> <li>Carry a first aid kit.</li> </ul>
	3P) Set up Decon Station	<ul> <li>Refer to MSDS for specific hazards associated with decon solutions</li> <li>Monitor breathing zone for decon solutions (e.g., methanol, hexane, etc.), if appropriate (see HASP)</li> <li>Removal of PPE will be performed by the following tasks in the listed order:         <ul> <li>Gross boot wash and rinse and removal</li> <li>Outer glove removal</li> <li>Suit removal</li> <li>Respirator removal (if worn).</li> <li>Inner glove removal</li> </ul> </li> <li>Contaminated PPE is to be placed in the appropriate, provided receptacles.</li> <li>Employees will wash hands, face, and any other exposed areas with soap and water.</li> <li>Portable eyewash stations and showers will be available should employees come into direct contact with contaminated materials.</li> <li>Decon solutions will be disposed of according to the work plan.</li> </ul>
4. Walk around the Site	4A) Poisonous plants	See section 3C above
	4B) Vermin, leaches, animal borne disease	See Section 3 D above
	4C) Chemical Hazards	See Section 3 E above
	4D) Slips/Trips/Fa lls	<ul> <li>Wear slip resistant footwear preferably laced boots with a minimum 8" high upper and non-skid soles for ankle support and traction.</li> <li>Pay attention to where you place your feet</li> <li>Slow down and use extra caution around logs, rocks, and animal holes.</li> <li>Extremely steep slopes (&gt;50%) can be hazardous under wet or dry conditions; consider an alternate route.</li> <li>Site SHSO will inspect the entire work area to identify and mark hazards.</li> <li>Clear area of trip hazards; mark or barricade those that cannot be moved;</li> <li>Use caution when walking around excavated areas</li> <li>Stay back at least 5 feet from excavated areas</li> <li>Use caution when walking on or around loose soil.</li> <li>Be aware of surroundings. Avoid muddy areas if possible.</li> </ul>

5. Oversight during	5A) Heavy	Spotters will be used when backing up trucks and heavy equipment and
drilling, or construction operations	Equipment/ Vehicles	<ul> <li>Spotters will be used when backing up trucks and heavy equipment and when moving equipment.</li> <li>Ground personnel in the vicinity of vehicles or heavy equipment operations will be within the view of the operator at all times.</li> <li>Ground personnel will be aware of the swing radius and maintain an adequate buffer zone.</li> <li>Ground personnel will not stand directly behind heavy equipment when it is in operation.</li> <li>Personnel are prohibited from riding on the buckets, or elsewhere on the equipment except for designated seats with proper seat belts or lifts specifically designed to carry workers. Ground personnel will stay clear of all suspended loads.</li> <li>Ground personnel will wear high visibility vests</li> <li>Eye contact with operators will be made before approaching equipment.</li> </ul>
	5B) Eye Injury	<ul> <li>Wear appropriate safety glasses (tinted for sun).</li> <li>Watch where you walk, especially around trees and brush with protruding limbs.</li> </ul>
	5C) Foot Injury	<ul> <li>Wear steel toed boots</li> <li>Wear insulated steel toed boots during winter</li> <li>Ensure shoes/boots have good traction</li> <li>Pay attention to where you place your feet, especially when walking on uneven terrain</li> </ul>
	5D) Head Injury	<ul> <li>Wear hardhat</li> <li>Do not walk or work under scaffolding or other elevated work unless there are guardrails and toeboards in place</li> <li>Flag or mark protruding objects at head level</li> </ul>
	5E) Chemical Hazards	<ul> <li>See Section 3E above</li> <li>Wash hands and face prior to consumption of food, beverage or tobacco.</li> </ul>
	5F) Dust - particulates (respiratory)	<ul> <li>Use dust suppression methods</li> <li>Stand upwind of point of dust generation</li> </ul>
	5G)Overhead Power Lines	See Section 3F above.
	5H) Underground Utilities	See Section 3G above
	5l) Standing/Stati c Posture	<ul> <li>Change posture on a frequent basis</li> <li>Stretch prior to any physical activity</li> </ul>
	5J) Slips/Trips/F alls	See Section 4D above
	5K) Noise	<ul> <li>Hearing protection will be worn with a noise reduction rating capable of maintaining personal exposure below 85 dBA (ear muffs or plugs).</li> <li>All equipment will be equipped with manufacturer's required mufflers.</li> <li>Hearing protection shall be worn by all personnel working in or near heavy equipment.</li> <li>Hearing protection will be worn when workers need to shout when standing two feet away from each other.</li> <li>Segregate noisy equipment from the operators</li> <li>Use sound dampening around noisy equipment</li> </ul>

	5L) Moving Equipment	<ul> <li>Clear area of obstructions and communicate with all workers involved that drilling is beginning</li> <li>Do not exceed manufacturer's recommended speed, force, torque, or other specifications. and penetrate the ground slowly with hands on the controls for at least the first foot of soil to minimize chance of auger kickout</li> <li>Stay clear of rotating auger</li> <li>Use long-handled shovel to clear away cuttings when auger has stopped</li> <li>Do not wear loose clothing</li> <li>Wear appropriate PPE including leather gloves and steel-toed boots (See HASP)</li> </ul>
6. Sampling Oversight	6A) Chemical Hazards	<ul> <li>See Section 3E above</li> <li>Wash hands and face prior to consumption of food, beverage or tobacco.</li> <li>Calibrate meters in a clean, well ventilated area</li> <li>Store calibration gases in well vented area. Ensure chemical labels and warnings are legible.</li> </ul>
	6B) Personnel Decontaminat ion	<ul> <li>Refer to MSDS for specific hazards associated with decon solutions</li> <li>Monitor breathing zone for decon solutions (e.g., methanol, hexane, etc.), if appropriate (see HASP)</li> <li>Removal of PPE will be performed by the following tasks in the listed order:         <ul> <li>Gross boot wash and rinse and removal</li> <li>Outer glove removal</li> <li>Respirator removal (if worn).</li> <li>Inner glove removal</li> </ul> </li> <li>Contaminated PPE is to be placed in the appropriate, provided receptacles.</li> <li>Employees will wash hands, face, and any other exposed areas with soap and water.</li> <li>Portable eyewash stations and showers will be available should employees come into direct contact with contaminated materials.</li> <li>Decon solutions will be disposed of according to the work plan.</li> </ul>
	6C) Lifting	<ul> <li>Good lifting techniques (lift with legs not back)</li> <li>Mechanical devices (e.g., hand truck, cart, forklift, etc.) should be used to reduce manual handling of materials and drums.</li> <li>Team lifting should be utilized if mechanical devices are not available. (mandatory for items over 50 lbs)</li> <li>Split heavy loads in to smaller loads</li> <li>Make sure that path is clear prior to lift.</li> <li>Redesign work area to avoid low lifts</li> <li>Stretch prior to lifting</li> <li>Maintain a healthy life style and level of physical fitness.</li> </ul>
	6D) Hand Tools	<ul> <li>Cut resistant work gloves will be worn when dealing with sharp objects.</li> <li>All hand and power tools will be maintained in safe condition.</li> <li>Do not drop or throw tools. Tools shall be placed on the ground or work surface or handed to another employee in a safe manner.</li> <li>Guards will be kept in place while using hand and power tools.</li> <li>Daily inspections will be performed.</li> <li>Remove broken or damaged tools from service and tag out as defective</li> <li>No tampering with electrical equipment is allowed (e.g., splicing cords, cutting the grounding prong off plug, etc.)</li> <li>Do not use excessive force or impact</li> <li>Do not use tool improperly. Ensure all workers are trained</li> </ul>

		6E) Slips/Trips/Fa lls	See Section 4D above.
		6F) Struck by Vehicle	<ul> <li>Ground personnel in the vicinity of vehicles operations will be within the view of the operator at all times.</li> <li>Ground personnel will not stand directly behind vehicles when it is in operation</li> <li>Drivers will keep workers on foot in their vision at all times, if you lose sight of someone, Stop!</li> <li>High visibility vests will be worn when workers are exposed to vehicular traffic at the site or on public roads.</li> <li>Try to park so that you don't have to back up to leave.</li> <li>If backing in required, walk around vehicle to identify any hazards (especially low level hazards that may be difficult to see when in the vehicle) that might be present. Use a spotter if necessary</li> <li>Place cones in the font and rear of the vehicle</li> <li>Prior to driving off, walk around vehicle to collect cones and identify any hazards - especially low level hazards that may be difficult to see when in the vehicle.</li> <li>Set up "Workers in the Road" or similar warning signs and cones to alert traffic.</li> <li>Use emergency flashers and roof top flashing light (recommended) to alert oncoming vehicular traffic.</li> <li>Remain alert at all times as to the traffic outside the vehicle. Step to the side of the road when distracted by by-standers. Keep unofficial personnel out of the work area.</li> <li>Exit vehicle with caution.</li> <li>Wear High Visibility Vest when outside the vehicle.</li> <li>Utilize vehicle as a shield from oncoming traffic, as practical</li> </ul>
7.	IDW pickup oversight	7A) Foot Injury	See Section 5C above.
		7B) Chemical Hazards	See Section 3E above.
		7C) Lifting	See Section 6C above.
		7D) Slips/Trips/Fa lls	See Section 4D above
8.	Return to office/home	8A) See Mobilization/ Demobilizatio n and Site Preparation JHA	See Mobilization/ Demobilization and Site Preparation JHA



Activity/Work Task:	Geoprobe Investigation – Oversight and Sample Collection ONLY			Overall Risk	Assessment (	Code (RAC	) (Use highe	st code)	M
Project Location:	Project Location:			Ris	Risk Assessment Code (RAC) Matrix				
Contract Number:				Severity		Probability			
Date Prepared:	8/29/2011	Date Accepted:	5/3/2013	Severity	Frequent	Likely	Occasional	Seldom	Unlikely
Prepared by			•	Catastrophic	Е	E	Н	Н	M
(Name/Title):				Critical	E	Н	Н	M	L
Reviewed by	Kondra Davar Co	CD.		Marginal	Н	M	M	L	L
(Name/Title):	Kendra Bavor, CS	51		Negligible	M	L	L	L	L
Notes: (Field Notes, Re	view Comments, etc	c.)		Step 1: Review each "Hazard" with identified safety "Controls" and determine RAC (See above)					
This AHA involves the  • Establishing s	following: site specific meas	ures		"Probability" is the likelihood to cause an incident, near miss, or accident and identified as: Frequent, Likely, Occasional, Seldom or Unlikely.				RAC (	Chart
•	·			"Severity" is the outcome/degree if an incident, near miss, or accident did				High Risk	
	This AHA is not an exhaustive summary of all hazards associated with the			occur and identified as: Catastrophic Critical Marginal or Negligible			H = High Risk		
Site. Refer to the site HASP for additional requirements. Contractor to follow general site safety controls for Slips Trips and Falls, Biological			Step 2: Identify the RAC (Probability/Severity) as E, H, M, or L for each			M = Moderate Risk			
hazards, cuts laceration	ons and pinch poir	nts, and emergency	procedures.	"Hazard" on AHA. Annotat				L = Low Risk	
lob Ston	Ioh Stone Hazarde			·	Contro	lo			DAC

Job Steps	Hazards	Controls	RAC
Subcontractor Drive Geoprobe onto site	1A) Malfunction of vehicle/equipment	<ul> <li>1A) Drivers shall perform a pre-operational check of equipment, read and be familiar with any operator's manual.</li> <li>Report all needed repairs promptly.</li> <li>Operators shall not use defective/unsafe equipment.</li> </ul>	L

	1B) Wreck of Geoprobe while being driven	<ul> <li>IB) Wreck of Geoprobe while being driven</li> <li>All drivers shall be properly licensed.</li> <li>Supervisors shall verify that drivers are capable and qualified on each type of equipment before allowing the equipment to be used unsupervised.</li> <li>Keep wind shields, windshield wipers, side mirrors and side windows clean</li> <li>Drivers shall conduct a pre-operation vehicle safety check</li> <li>Drivers shall plan ahead to minimize or eliminate the need for backing. Always check to the rear before backing and use an observer when available. If an observer is not available, the driver shall walk around the vehicle to make sure rear is clear prior to backing.</li> <li>Seat belts shall be worn when driving by driver and passengers.</li> <li>Choose the safest location possible to park equipment. Avoid parking in blind spots of other equipment.</li> <li>Adjust vehicle speed for load and weather. Tire chains should be utilized as dictated by weather conditions.</li> <li>When operating a vehicle off the roadway, be aware of possible hidden objects in the grass and unstable terrain.</li> <li>Never allow anyone between truck and trailer when backing to hook trailer</li> <li>Perform periodic checks of equipment on long trips to assure the load is secure.</li> </ul>	L
		<ul> <li>Perform periodic checks of equipment on long trips to assure the load is secure.</li> <li>Do not leave equipment unattended with the engine running. Shut off engine and set the parking brake when equipment is not in use.</li> </ul>	
2. Loading/unloading of equipment	2A) Crush and pinch points created when loading/unloading equipment  2B) Heavy lifting, twisting, bending  2C) Slip, trips and falls	2A) Crush and pinch points created when loading/unloading equipment  Be aware of crushing and pinching hazards when loading, unloading and fastening down equipment.  Make sure cargo is properly loaded and secured.  Wear protective equipment consistent with the hazard (hard hats, safety glasses, leather gloves, safety shoes, etc.)  2B) Size up the load, utilize help for heavy items, split loads as necessary. Use proper body mechanics and ergonomic techniques.  2C) Keep walking area clear. Proper housekeeping.	M



3.	Geoprobe operation by
	Subcontractor

- 3A) Vehicle movement/ unstable
- 3B) Crushing injuries, pinch points, entanglement and flying particles.
- 3C) Noise
- 3D) slip trips and falls,
- 3E) material under stress, equipment limitations, rope or cable blocks, hydraulic leaks
- 3F) utility lines.
- 3G) overhead loads,
- 3H) lifting
- 31) Chemical exposure

Geoprobe operation by the Subcontractor. Read Owner's Manual

- 3A) Always apply the parking brake and shut off engine before exiting the vehicle.
  - Ensure back up alarm is operational.
  - Complete a visual inspection of the equipment prior to operation. Replace or repair equipment if necessary. Complete a checklist to document inspections and corrective actions required.
  - Keep body parts clear of probe foot.
  - Be familiar with Emergency kill switch and controls. Test prior to probing.
  - When on sloped surface position the unit parallel to the slope with the control on the up hill side.
  - Use caution on soft or loose surface. Be aware of the weight of loaded vehicle.
  - Be aware of weather and windy conditions. Do not operate during lighting storm or high winds.
- 3B) Heed all Caution, Warning or Danger decals on machine.
  - Ensure everyone is clear of moving parts.
  - Designate only one experienced operator to avoid unexpected engagement.
  - Operate only from the control side. Do not reach across operating probe.
  - Avoid placing your hands on top of the tool string when raising/lowering the hammer or swinging/ folding probe assembly.
  - DO not wear loose clothing. Tie back hair when operating equipment.
  - PPE safety shoes, hard hat, safety glasses, hearing protection, gloves. Optional Tyvek or coveralls.
- PPE hearing protection.
- 3D) Maintain an orderly and clean site.
  - Housekeeping.
  - Barricade or establish work zones to minimize unauthorized entry.
  - Adequate lighting
- 3E) Know the capacities, equipment limitations and acceptable operating loads. Follow the equipment operator's manual and proper maintenance requirements.
  - Stand clear of potential release of energy. Keep body part clear of moving parts.
  - Use the correct tool for the job.
  - Limit the rate of the hammer lowering while advancing the tool string to avoid raising the probe foot more than 6 inches off the ground surface.
  - In the event problem or binding, the operator should release all control levers to neutral.
  - Inspect hydraulic lines. Repair or replace damaged hoses.
- 3F) Be aware of surroundings. Establish safe "dig" zones. Contact Dig Safe or "one call" system to mark underground utilities or tanks.
  - Before moving onto a site, evaluate height restrictions due to overhead utilities and vegetation.
  - Borings to be located a minimum of 10 feet from overhead lines.
  - Do not drive the machine with the mast extended

M



		<ul> <li>3G) Remain alert. Establish work zone to minimize workers under overhead loads. Avoid sudden jerks or overloading. Check load for balance and appropriate support prior to hoisting.</li> <li>3H) Use mechanical means to lift heavy loads and removing rod. Don appropriate PPE for chemicals of concern. Work from upwind. Be aware or combustion fumes if equipment has auxiliary power. Practice good hygiene by washing hands, and no eating/smoking within the exclusion zone.</li> </ul>	L
4. Operational area	4A) adverse weather conditions (temperature extremes),  4B) uneven terrain,  4C) poisonous plants/snakes/insects hazards	<ul> <li>4A) Keep a weather eye. Monitor the weather forecast and actual conditions.</li> <li>Wear appropriate clothing that does not restrict, cause over heat or is too loose.</li> <li>Be aware of muddy conditions or puddles.</li> <li>4B) Be aware of drop-offs, uneven ground and potential hidden objects which may cause loss of control when maneuvering rigs or create unstable drill set-ups. In heavily wooded area, scout to locate hidden objects. Use care when walking.</li> <li>4C) Be aware of poisonous plants, insects, snakes, animals and animal waste products and carcasses. Wear long sleeve shirts, gloves, and high top boots when hazards cannot be avoided. Proper first aid supplies, insect repellents shall accompany field crews.</li> </ul>	M
	4D) Contaminated soils, buried power or gas lines, landfills and containment of spills	<ul> <li>4D) Contaminated soils, buried power or gas lines, landfills and containment of spills</li> <li>During drilling operations, always be aware of the possibility of encountering potentially hazardous materials, such as petroleum hydrocarbons, herbicides, pesticides, chemical manufacturing byproducts or solid waste materials.</li> <li>In the event that any unknown or questionable materials are encountered, then the drilling operations are to be suspended immediately until further instructions are received from supervision.</li> <li>Do not handle any suspected contaminated materials unless trained to do so and proper protective methods are followed.</li> <li>During drilling operations, always be aware of the possibility of striking an un-located or improperly located gas or power line.</li> <li>In the event a buried utility line is struck, drilling operations are to be suspended immediately.</li> <li>If the utility line is electric, keep personnel at least 10 feet from all metal surfaces connected with the drill rig.</li> <li>If the utility is gas, then the area is to be evacuated and secured. Immediate notification to the utility company is MANDATORY.</li> <li>In the event of a gas or oil spill, the proper authorities are to be contacted immediately so that containment operations can be implemented.</li> </ul>	M
Subcontractor Mixing grout on site and filling/placing in hole between the well pipe and bore hole wall	5A) Lifting 5B) Chemical exposure	<ul> <li>5A) Size the load of materials to be moved and utilize appropriate help for lifting and moving. Use proper ergonomic and body mechanics to move materials (bags of grout, etc.). Use mechanical mixer for large quantities of grout.</li> <li>5B) PPE – Safety glasses, safety shoes, gloves, optional tyvek/coveralls.</li> </ul>	M
Subcontractor cutting soil acetate sleeve open to sample soil	6A) cutting of hand with a razor blade	<ul> <li>6A) MACTEC personnel must let the subcontractor cut the sample liners as they have the appropriate tools to do so.</li> <li>6B) Subcontractor must be aware of where hands are placed prior and during cutting with hand saw</li> </ul>	M
Subcontractor driving drilling rig offsite.	7A) Reference item # 1	7A) Reference item #1.	

Equipment to be Used	Training Requirements/Competent or Qualified Personnel name(s)	Inspection Requirements
PPE (Hard Hat, safety glasses, gloves, steel toe work boots, high visibility safety vest, hearing protection)	Competent / Qualified Personnel: Name – Position/Employer Training requirements:	Daily inspection of equipment per manufacturer's instructions. Tag tools that are defective and remove from service.
	List specific certification (as applicable) Site Specific HASP Orientation Toolbox safety meeting Task kick-off meeting	Inspect power cord sets prior to use.  Inspect all PPE prior to use



Job Title:	Wetland and Fish Survey	/S	_ Date of Analysis:	5/30/06

#### **Minimum Recommended PPE*:**

<b>Key Work Steps</b>	Hazards/Potential Hazards	Safe Practices
Walking to and from stream or wetland	1A) Insect bites/stings	<ul> <li>2A) Insect bites/stings</li> <li>Avoid wearing heavy fragrances.</li> <li>Carry first-aid and sting relief kits.</li> <li>Make sure all crew members are informed about others who are allergic and what to do if they need assistance.</li> <li>Carry necessary emergency medication.</li> <li>See JHA Insect Bites and Stings</li> </ul>
	Slips and falls      C) Eye injuries	2B) Slips and falls  Use traction devices on shoes.  Move slowly, take your time.  Use a walking staff to provide a three point support.  2C) Eye injuries
	TO) Lye Injuries	Travel with care through heavy brush.      Use eye protection in brushy areas.
	1D) Scrapes and punctures	2D) Scrapes and punctures  • Wear proper clothing, long sleeved shirts and pants. No shorts.
	1E) Cuts/Lacerations due to machette use	<ul> <li>2E) Cuts/Lacerations due to machette use</li> <li>Wear chaps or snake legs</li> <li>Cut away from the body</li> <li>Ensure blade of machette is sharp</li> </ul>
	1F) Blow-down / heavy debris	2F) Blow-down / heavy debris  Be aware of your surroundings, including hanging or leaning debris that may be dislodged and fall.
	1G) Animal encounters	<ul> <li>Animal encounters</li> <li>Moose: <ul> <li>a. Make noise to avoid encounter.</li> <li>b. If you do encounter a moose, put a lot of room between you and the animal by walking around him/her if necessary.</li> <li>c. Do not look it in the eye.</li> <li>d. If charged, run away or climb a tree.</li> <li>e. Throwing something or shouting may deter an attack.</li> </ul> </li> </ul>
	1H) Severe injury in remote locations	2H) Severe injury in remote locations  Carry a two-way radio and know how to use it.  Work in teams.  Make sure someone on crew is certified in first aid.  Carry a first aid kit.
2. Entering Stream	3A) Slips and falls	<ul> <li>Slips and falls</li> <li>Use traction devices on shoes and waders.</li> <li>Move slowly, take your time.</li> <li>Use a walking staff to provide a three point support.</li> </ul>
	3B) Sand or Mud – knee or ankle injury	3B) Sand or Mud  Use shorter steps  Use walking sticks to check firmness of soils  Use buddy system  Snowshoes that dissipate weight may be effective  If leg gets caught, use slight back and forth motion to soften mud and remove slowly. Don't try to pull leg out with twisting or jerking motion.  If possible, aeriate or bubble the mud to help releave suction.



Job Title: Wetland and Fish Surveys

Date of Analysis: 5/30/06

Key Work Steps	Hazards/Potential Hazards	Safe Practices
	3C) Equipment	3C) Equipment
		<ul> <li>Secure packs and hip waders with quick release straps and be ready to discard, if an emergency arises.</li> </ul>
		<ul> <li>Do not work in waders in water greater than 3 feet deep or in swift water.</li> </ul>
		<ul> <li>Wear bike or rafting helmets to protect from blows to the head.</li> </ul>
	3D) Hypothermia	3D) Hypothermia
		<ul> <li>Work in teams of two.</li> </ul>
		<ul> <li>Have warming devices available.</li> </ul>
		<ul> <li>Wear proper equipment that is in good condition.</li> </ul>
		<ul> <li>Be aware of signs of hypothermia, it's prevention, detection and treatment.</li> </ul>
		<ul> <li>Stay in tune to current weather and extended forecasts.</li> </ul>
		<ul> <li>See JHA General Field Work</li> </ul>
	3E) High flow velocity	3E) High flow velocity
		<ul> <li>Evaluate a stream before entering.</li> </ul>
		<ul><li>Follow the "rule of 10"</li></ul>
		<ul> <li>a. If stream is 1 foot deep and flowing @10 ft./sec, it is too hazardous to wade</li> </ul>
		<ul> <li>b. If stream is 2 feet deep and flowing at 5 ft./second, it is too hazardous to wade.</li> </ul>
		<ul> <li>If you do enter a stream and discover it is too dangerous to wade, back out using your wading pole for balance.</li> </ul>
	3F) Severe weather	3F) Severe weather
		<ul> <li>Suspend measurements during lightning storms or when a storm is approaching.</li> </ul>
3. Entering	3A) Slips and falls	3A) Slips and falls
Wetland		<ul> <li>Use traction devices on shoes and boots.</li> </ul>
		Move slowly, take your time.
		Use a walking staff to provide a three point support.
	3B) Sand or Mud – knee or ankle	3B) Sand or Mud
	injury	<ul> <li>Use shorter steps</li> </ul>
		<ul> <li>Use walking sticks to check firmness of soils</li> </ul>
		<ul> <li>Use buddy system</li> </ul>
		<ul> <li>Snowshoes that dissipate weight may be effective</li> </ul>
		<ul> <li>If leg gets caught, use slight back and forth motion to soften mud and remove slowly. Don't try to pull leg out with twisting or jerking motion.</li> </ul>
		<ul> <li>If possible, aeriate or bubble the mud to help releave suction.</li> </ul>
	3C) Equipment	3C) Equipment
	20) Equipment	Secure packs and boots with quick release straps and be ready to discard, if an emergency arises.
		<ul> <li>Wear hard hat to protect from blows to the head if using an auger.</li> </ul>
		Wear steel toe boots to protect feet from dropping equipment
		(auger)



Job Title: Wetland and Fish Surveys

Date of Analysis: 5/30/06

Key Work Steps	Hazards/Potential Hazards	Safe Practices
	3D) Temperature extremes	3D) Hypothermia
	(hot or cold)	<ul> <li>Work in teams of two.</li> </ul>
		<ul> <li>Have warming devices available.</li> </ul>
		<ul> <li>Wear proper equipment that is in good condition.</li> </ul>
		<ul> <li>Be aware of signs of hypothermia and/or heat stroke, it's prevention, detection and treatment.</li> </ul>
		<ul> <li>Stay in tune to current weather and extended forecasts.</li> </ul>
		<ul> <li>See JHA General Field Work</li> </ul>
	3E) Severe weather	3E) Severe weather
		<ul> <li>Suspend measurements during lightning storms or when a storm is approaching.</li> </ul>



Job Title: Insect Stings and Bites Date of Analysis: 4/20/06

Minimum Recommended PPE*: Long sleeved shirt and pants, light colored clothing

Key Work Steps	Hazards/Potential Hazards	Safe Practices
Traveling/working in	Lyme Disease, Rocky Mountain	<ul> <li>Spray clothing with insect repellant as a barrier.</li> </ul>
areas with potential Tick Bites –Example outdoor wooded	Spotted Fever, etc.	<ul> <li>Wear light colored clothing that fits tightly at the wrists, ankles, and waist.</li> </ul>
areas or fields.		Each outer garment should overlap the one above it.
		<ul> <li>Cover trouser legs with high socks or boots.</li> </ul>
		■ Tuck in shirt tails.
		<ul> <li>Search the body on a regular basis, especially hair and clothing; ticks generally do not attach for the first couple of hours.</li> </ul>
		If a tick becomes attached, pull it by grasping it as close as possible to the point of attachment and pull straight out with gentle pressure. Wash skin with soap and water then cleanse with rubbing alcohol. Place the tick in an empty container for later identification, if the victim should have a reaction. Record dates of exposure and removal.
		Do not try to remove the tick by burning with a match or covering it with chemical agents.
		If you can not remove the tick, or the head detaches, seek propmt medical help.
		Watch for warning signs of illness: a large red spot on the bite area; fever, chills, headache, joint and muscle ache, significant fatigue, and facial paralysis are reactions that may appear within two weeks of the attack. Symptoms specific to Lyme disease include: confusion, short-term memory loss, and disorientation.
Working/traveling in areas with potential	2. Allergic reactions, painful stings	Be alert to hives in brush or in hollow logs. Watch for insects travelling in and out of one location.
bee and wasp stings-Example wooded areas and fields		<ul> <li>If you or anyone you are working with is known to have allergic reactions to bee stings, tell the rest of the crew and your supervisor. Make sure you carry emergency medication with you at all times.</li> </ul>
		<ul> <li>Wear long sleeve shirts and trousers; tuck in shirt Bright colors and metal objects may attract bees.</li> </ul>
		<ul> <li>If you are stung, cold compresses may bring relief.</li> </ul>
		<ul> <li>If a stinger is left behind, scrape it off the skin. Do not use a tweezers as this squeezes the venom sack, worsening the injury.</li> </ul>
		<ul> <li>If the victim develops hives, asthmatic breathing, tissue swelling, or a drop in blood pressure, seek medical help immediately. Give victim antihistime, (Benadryl, chlo-amine tabs).</li> </ul>
3. Traveling/working in	3. Skin irritation, encephalitis	<ul> <li>Wear long sleeves and trousers.</li> </ul>
areas of potential Mosquito Bites-		<ul> <li>Avoid heavy scents.</li> </ul>
Example- Woods, fields, near bodies of		<ul> <li>Use insect repellants. If using DEET, do not apply directly to skin, apply to clothing only.</li> </ul>
water and etc.		<ul> <li>Carry after-bite medication to reduce skin irritation.</li> </ul>



Job Title: Working with Preservatives (Acids)

Date of Analysis: 5/30/06

Minimum Recommended PPE*: Safety glasses/goggles, nitrile gloves,

Key Work Steps   Hazards/Pote		azards/Potential Hazards		Safe Practices			
1.	Opening the	, .		1A)	Cuts or punctures with a knife		
	box of ampoules				<ul> <li>Use appropriate techniques when handling a knife.</li> <li>Always cut away from you.</li> </ul>		
		1B)	Broken ampoules in the box.	1B)	Broken ampoules in the box. Cuts from the broken glass.		
			Cuts from the broken glass.		<ul> <li>Wear safety goggles and protective gloves.</li> </ul>		
					<ul> <li>Dispose of the preservative and broken glass by approved methods.</li> </ul>		
		1C)	Broken ampoules in the box.	1C)	Broken ampoules in the box. Breathing fumes.		
			Breathing fumes.		<ul> <li>Wear safety goggles and protective gloves.</li> </ul>		
					<ul> <li>Always work in a well-ventilated area.</li> </ul>		
2.	Breaking top of glass ampoule	2A)	Cuts from the broken glass.	2A)	Cuts from the broken glass		
					<ul> <li>Wear safety goggles and protective gloves.</li> </ul>		
					<ul> <li>Use a paper towel to wrap ampoule in to snap the top or use an ampoule breaker.</li> </ul>		
					<ul> <li>Always point the ampoule away from you when you snap off the top.</li> </ul>		
		2B)	Skin contact chemical burns.	2B)	Skin contact chemical burns.		
					<ul> <li>Wear safety goggles and protective gloves.</li> </ul>		
					<ul> <li>Fumes may come into contact with the perspiration on your skin and rehydrate to form an acid.</li> </ul>		
					If your skin itches, flush affected area for 15 minutes with water.		
		2C)	Eye contact	2C)	Eye contact		
			•		<ul> <li>Wear safety goggles.</li> </ul>		
					<ul> <li>If acid splashes in the eyes, flush eyes for 15 minutes with water.</li> <li>Seek medical advice.</li> </ul>		
		2D)	Breathing fumes	2D)	Breathing fumes		
					<ul> <li>HNO₃ and HCL have high vapor pressure. Always work in a well-ventilated area.</li> </ul>		
3.	Adding acid to	3A)	Chemical reaction	3A)	Chemical reaction		
	sample				<ul> <li>Wear safety goggles and protective gloves. Acid may react with high alkaline sample and fizz (releases CO₂).</li> </ul>		
		3B)	Eye contact	3B)	Eye contact		
					<ul> <li>Wear safety goggles.</li> </ul>		
					If acid splashes in the eyes, flush eyes for 15 minutes with water. Seek medical advice.		
		3C)	Skin contact chemical burns.	3C)	Skin contact chemical burns.		
					<ul> <li>Wear safety goggles and protective gloves.</li> </ul>		
4.	Ampoule	4A)	Cuts from the broken glass.	4A)	Cuts from the broken glass.		
	disposal				<ul> <li>Wear safety goggles and protective gloves.</li> </ul>		
					<ul> <li>Place used ampoules in an empty, non-reactive container in the field and bring it back to the office. Dispose of the preservative and broken glass by approved methods.</li> </ul>		



### AHA - Surface Water and Sediment Sampling from a Boat Activity Description

Activity/Work Task:	Boating- Surface water and sediment collection			Overall Risk Assessment Code (RAC) (Use highest code) M						
Project Location:				Risk Assessment Code (RAC) Matrix						
Contract Number:	Project #			Soverity	Probability					
Date Prepared:	9/20/12	Date Accepted:	3-7-13	Severity	Frequent	Likely	Occasional	Seldom	Unlikely	
Prepared by (Name/Title):	· · · · · I Hoe Cunningnam/Project Scientist			Catastrophic Critical	E E	E H	H	H M	M L	
Reviewed by (Name/Title):	Reviewed by Kendra Bayor - CSP			Marginal Negligible	H M	M L	M L	L L	L L	
Notes: (Field Notes, Rev	riew Comments, etc.	)		Step 1: Review each "Hazard" with identified safety "Controls" and determine RAC (See above)						
This AHA involves the following:  • Establishing site specific measures				"Probability" is the likelihood to cause an incident, near miss, or accident and identified as: Frequent, Likely, Occasional, Seldom or Unlikely.				RAC Chart		
Collecting sail	mples from a boat ting Checklist an		ist he filled out	"Severity" is the outcome/degree if an incident, near miss, or accident did				E = Extremely High Risk		
prior to use of	a boat							H = High Risk		
	F of the HASP for vice Selection Guid		ly and Personal					M = Moderate Risk		
This AHA is not an exhaustive summary of all hazards associated with the Site. Refer to the site HASP for additional requirements. Contractor to follow general site safety controls for Slips Trips and Falls, Biological hazards, cuts lacerations and pinch points, and emergency procedures.				Step 2: Identify the RAC (Probability/Severity) as E, H, M, or L for each "Hazard" on AHA. Annotate the overall highest RAC at the top of AHA.  L = Low Risk						

Job Steps	Hazards	Controls	
1. Prepare for site visit	1A) Slips, trips, falls	1A) Slips, trips, falls	
		<ul> <li>Familiarize self with site prior to visit.</li> </ul>	
		<ul> <li>Complete appropriate training before going on site.</li> </ul>	
		<ul> <li>Provide appropriate person in district office your itinerary.</li> </ul>	L
		<ul> <li>Prepare listing of emergency phone numbers, both on and offsite.</li> </ul>	
		<ul> <li>Identify site/activity PPE needs</li> </ul>	
		<ul> <li>Ensure that First Aid training is current, and that tetanus booster are current</li> </ul>	
2. Check and calibrate sampling	2A) Muscle Strain - lifting,	2A) Muscle Strain - lifting, twisting, tugging	
equipment.	twisting, tugging	<ul> <li>Inspect all PPE and equipment and ensure that it is working properly.</li> </ul>	
		<ul> <li>Get assistance from a coworker or use mechanical means to move equipment</li> </ul>	
		(dolly, cart, etc.)	



### AHA - Surface Water and Sediment Sampling from a Boat Activity Description

	2B) Slips, trips and falls	2B) Slips, trips, and falls		
		<ul> <li>Wear proper footwear</li> </ul>		
		Pay attention to where walking		
3. Load/carry equipment to the	3A) Slips, trips, falls	3A) Slips, trips, falls		
site.		<ul> <li>See AHA for Mobilization / Demobilization and Site Preparation</li> </ul>	M	
	3B) Muscle Strain - lifting,	3B) Muscle Strain - lifting, twisting, tugging		
	twisting, tugging	<ul> <li>Proper lifting, posture, ergonomic practices and body mechanics.</li> </ul>		
		<ul> <li>Share the load, move items in smaller shifts, or use cart.</li> </ul>		
		<ul> <li>Loading the boat: ensure no twisting.</li> </ul>		
		<ul> <li>Use a trailer if possible to launch boat.</li> </ul>		
		<ul> <li>Empty boat of gear prior to loading or moving boat to/from vehicle.</li> </ul>		
		<ul> <li>Ensure boat is properly secured in the vehicle prior to moving.</li> </ul>		
		<ul> <li>Tie a red cloth to the furthest point of the boat if overhanging from the vehicle.</li> </ul>		
		<ul> <li>Ensure enough able bodies to move and launch the boat to share the load.</li> </ul>		
	3C) Irate property owners, pets	3C) Irate property owners, pets		
		<ul> <li>Call property owners in advance.</li> </ul>		
		<ul> <li>Check in to introduce yourself upon arrival.</li> </ul>		
		<ul> <li>Be courteous and diplomatic</li> </ul>		
	3D) Crime	3D) Crime		
		<ul> <li>Do not enter areas where threats are present.</li> </ul>		
		<ul> <li>Contract security where applicable. Use the buddy system.</li> </ul>		
		<ul> <li>Maintain contact with support such as radio or cell phone.</li> </ul>		
	3E) Struck by traffic – launch boat.	3E) Struck by traffic – launch boat.		
		<ul> <li>Wear hi visibility safety vest, use buddy system.</li> </ul>		
		<ul> <li>Use traffic cones and a lookout. Launch from public boat launch facilities.</li> </ul>		
	3F) Battery handling – acid	3F) Battery handling – acid exposure		
	exposure	<ul> <li>Use care when handling batteries.</li> </ul>		
		<ul> <li>Wear gloves and protective clothing when caring batteries.</li> </ul>		
		<ul> <li>Check for leaks and damage prior to use of batteries.</li> </ul>		



	3G) Launch and load boat: Capsize	2C) Laurah and load hoot: Canciza	
	3G) Launch and load boat. Capsize	3G) Launch and load boat: Capsize	
		Be aware of the boat maximum weight, person capacity, and engine size limit.      Palance the goar and people in the boat.	
		Balance the gear and people in the boat.      Descented must wear emprayed properly sized and hypothed PED when on the	
		<ul> <li>Personnel must wear approved, properly sized and buckled PFD when on the water.</li> </ul>	
		<ul> <li>Ensure lines and body parts are out of the water before operating engine.</li> </ul>	
		<ul> <li>Avoid operation within swimming areas.</li> </ul>	
		<ul> <li>Provide signal flags and communication to protect the public of your activities.</li> </ul>	
		<ul> <li>Test motor prior to shoving away from the pier.</li> </ul>	
		<ul> <li>Ensure all appropriate equipment is provided and accessible according to AMEC</li> </ul>	
		EH&S Manual – Boating Safety.	
		<ul> <li>Include bailer, anchor, second means of propulsion, line and throwable floatation.</li> </ul>	
	3H) Pinch points –	3H) Pinch points – attaching/mounting the motor	
	attaching/mounting the motor	<ul> <li>Mind where hands and body parts are when moving and loading equipment.</li> </ul>	
	3I) Fueling – chemical exposure,	3I) Fueling – chemical exposure, fumes, environmental spills.	М
	fumes, environmental spills.	<ul> <li>See AHA Gasoline</li> </ul>	IVI
	3J) Noise – engine (optional)	3J) Noise – engine (optional)	
		<ul> <li>Wear hearing protection.</li> </ul>	
		<ul> <li>Provide shielding from noise such as bulkhead, or sound dampening.</li> </ul>	
		<ul> <li>Operate with engine box in place to dampen noise</li> </ul>	
4. Field parameters	4A) Falling into water and capsize	4A) Falling into water and capsize	
		<ul> <li>Use equipment that facilitates reaching the location from a safe distance</li> </ul>	
		(extensions, etc.).	
		<ul> <li>Work using the buddy system.</li> </ul>	
		<ul> <li>Wear PFD when working on the water.</li> </ul>	
		<ul> <li>Balance equipment and people.</li> </ul>	
		<ul> <li>Avoid leaning over the side of the boat.</li> </ul>	
		<ul> <li>Anchor or secure the vessel to hold station.</li> </ul>	
		<ul> <li>Steer boat to meet waves on the bow.</li> </ul>	
		• Stay seated while in boat.	
	17. 24	If moving about, keep weight low.	
	4B) Slips trips and falls	4B) Slips trips and falls	
		• Wear appropriate footwear.	
		• Survey and clear walking area.	
		<ul> <li>Do not walk on slippery surfaces.</li> </ul>	
		Maintain good housekeeping.	
		Provide walkways, platforms or secure walking surface.  Head of the latest and the surface of the surface	
		<ul> <li>Use the buddy system and maintain communications with support staff.</li> </ul>	



4C) Vermin, leaches, Insect/ani	mal 4C) Vermin, leaches, Insect/animal born disease
born disease	• Survey the area for dens, nests, etc.
	<ul> <li>Identify areas where biological hazards may be present.</li> </ul>
	Be aware of your surroundings.
	Wear insect netting clothing or apply insect repellant on all exposed skin surfaces
	as appropriate – consider sample contamination
	Wear long sleeve shirt and full length pants
	• Wear appropriate footwear (snake boots, etc.)
	• Avoid high grass areas if possible
	Tuck pants leg into boot
	<ul> <li>Do not put hand/arm into/under an area that you can not see into/under clearly</li> </ul>
	<ul> <li>Do not touch any suspected contaminant without appropriate hand PPE</li> </ul>
	• Wash hands as soon as possible upon completion of task.
	<ul> <li>Perform routine inspections for ticks, leaches, etc. of yourself and co-workers.</li> </ul>
	<ul> <li>Contract vermin relocation, if applicable.</li> </ul>
	<ul> <li>Remain vigilant and respectful of wildlife. (See JHA for Insects, Stings and Bites)</li> </ul>
	Wear wind impervious outerwear
	<ul> <li>During warm months – wear a long sleeve cotton/breathable fabric shirt and pants.</li> </ul>
4D) Weather – temperature	4D) Weather – temperature extremes, hypothermia, sun stroke, heat exhaustion,
extremes, hypothermia, sur	
stroke, heat exhaustion,	<ul> <li>Train workers about weather and appropriate precautions.</li> </ul>
dehydration, sun burn.	<ul> <li>Heat: Familiarize self with signs of heat related illnesses: cramps, heat rash,</li> </ul>
	dehydration, heat exhaustion, and heat stroke.
	• Sun:
	o Keep body protected
	o Wear sunscreen, wide brimmed hat or hardhat.
	o Drink plenty of fluids to remain hydrated. (Follow AMEC guidelines,
	procedures and training for fluid intake, sunscreen use, proper clothing, work
	schedule, etc.)
	o Schedule work for cool part of day.
	o Take breaks in the shade.
	• Wind:
	o Wear layered clothing, gloves, hard hat with winter liner, etc.
	• Cold:
	o During cold weather - layer clothing



	4E) Weather – inclement and strong winds	4E) Weather – inclement and strong winds  • Watch for clouds and incoming weather.  • Monitor weather forecasts.  • Have a float plan and communications when on and off the water.  • Return to shore if weather threatens.  • Stay close to shore if possible and abandon work until winds subside.  • Schedule work when weather is calm (early morning or evening.)	
	4F) Run aground – shifting or unbalanced vessel - equipment/personnel/slip/fall/overboard	<ul> <li>Provide proper lighting if working after dark.</li> <li>4F) Run aground – shifting or unbalanced vessel - equipment/personnel/slip/fall/overboard</li> <li>Operate at safe speed.</li> <li>Post a look out for shallow or submerge obstacles.</li> <li>Remain seated when under way.</li> <li>Be wary of tides, flooding, flash floods and dam releases.</li> <li>Use anchor to kedge or pull back toward the way you came and deeper water.</li> <li>Use a pole or paddle, lighten the vessel to float off.</li> </ul>	L
5. Sample collection	5A) Same as Item #4 above.	5A) Same as Item #4 above.	
	5B) Bending, pulling, twisting	<ul> <li>5B) Bending, pulling, twisting</li> <li>Use a vibrating or wiggling motion on the sample device to break the soil suction.</li> <li>Proper lifting technique.</li> </ul>	
	5C) Splash	<ul> <li>5C) Splash</li> <li>Wear appropriate safety glasses (tinted for sun).</li> <li>Be aware if sampling water through a filter, if it becomes plugged with sediment it may unexpectedly "blow off" the hose and splash.</li> <li>Change filter prior to sedimentation back pressure.</li> <li>Minimize pouring distance to limit the splash between containers.</li> </ul>	
	5D) Chemical exposure	<ul> <li>5D) Chemical exposure</li> <li>Wear PPE including protective gloves, coveralls, safety glasses as appropriate.</li> <li>Work upwind of the sample location. Minimize exposure using a shovel/spoon or tool to collect the sample.</li> <li>Review and understand MSDS for all chemicals being handled.</li> <li>Be careful when handling acids and caustic substances.</li> <li>Wear adequate PPE and wash hands after completion of task.</li> </ul>	
	5E) Vegetation, sticks, reeds, - cuts and punctures.	<ul> <li>5E) Vegetation, sticks, reeds, - cuts and punctures.</li> <li>Clear access to site.</li> <li>Be familiar with toxic plants such as poison ivy.</li> <li>Avoid such plants.</li> <li>Wash thoroughly after accidental contact with toxic materials and plants.</li> </ul>	



6. Vessel Operations	6A) Lack of boating skills, boating	6A) Lack of boating skills, boating incident	
o. Vesser operations	incident	Complete USCG/Power Squadron or other recognized boating course.	
	110100110	All employees must wear PFDs while underway.	
		Maintain vessel and proper safety equipment.	M
		• Carry cell phone or radio.	
		• File a float plan and work in pairs.	
7. Sample preparation.	7A) Lifting heavy objects (covers,	7A) Lifting heavy objects (covers, pumps, sampling equipment, coolers, etc.) Muscle	
	pumps, sampling equipment,	strain	R.A
	coolers, etc.) Muscle strain	<ul> <li>Use proper ergonomics when lifting heavy objects</li> </ul>	M
	, ,	<ul> <li>Use appropriate mechanical assistance and tools when possible.</li> </ul>	
	7B) Chemical Exposure	7B) Chemical Exposure	
		<ul> <li>Wear PPE including protective gloves, coveralls, safety glasses as appropriate.</li> </ul>	
		<ul> <li>Wash/wipe or decontaminate exterior of sample containers and equipment.</li> </ul>	
		<ul> <li>Use care handling preservatives (acids/bases.)</li> </ul>	
	7C) Sharps and knives	7C) Sharps and knives	
		<ul> <li>Use care handling tape dispensers, knives and sharp objects.</li> </ul>	
		<ul> <li>Use guarded dispensers</li> </ul>	
	7D) Extreme cold (ice preservation)	7D) Extreme cold (ice preservation)	
		<ul> <li>Minimize exposure to ice.</li> </ul>	
		<ul> <li>Use a shovel/spoon or tool to fill bags for preserving samples in coolers.</li> </ul>	
8. Site exit and drive home or	8A) Vehicle contamination	8A) Vehicle contamination	
next site.		<ul> <li>Wash hands promptly.</li> </ul>	
		<ul> <li>Contaminated PPE (Booties, tyvek, latex gloves) should be disposed on-site.</li> </ul>	М
		<ul> <li>Remove boots and soiled clothing for secure storage in trunk; decontaminate as</li> </ul>	•••
		soon as possible.	
	OD) TI CC 1 1	• Update exposure log.	
	8B) Traffic hazards.	8B) Traffic hazards.	
		Follow AHA for Mobilization / Demobilization and Site Preparation	
		A throwable floatation device (ring) shall also be onboard during boat operation.	
	8C). Equipment Malfunction	5C). Equipment Malfunction	
		Take a basic tool kit aboard the boat including boat plugs, fire extinguisher, and first aid kit.	
		Carry extra engine parts and fluids in the event of engine problems.	
		Be alert and rid the area of any spilled gas and gas fumes before doing any work on electrical parts that may cause a spark.	
	8D). Communications	5D) Communications	
		A two-way or marine radio shall be maintained on board the boat at all times. If in a coverage area, a cell phone can be used for a communication device.	



9. Collecting Samples	9A). Capsizing Boat/Falling Overboard	6). Capsizing Boat/Falling Overboard	
		Make sure a proper anchor is in the boat to stabilize the boat at the sampling location.	
		<ul> <li>Ensure proper distribution of the load in the boat to avoid tipping and capsizing. Standing in the boat should be minimized.</li> </ul>	
		<ul> <li>An appropriate Coast Guard approved personal floatation device shall be worn by each individual on board to protect against drowning.</li> </ul>	



Equipment to be Used	Training Requirements/Competent or Qualified Personnel name(s)	Inspection Requirements
PPE (work gloves, PFDs, safety glasses, gloves, steel toe work boots, high visibility safety vest) Boating first Aid kit Boating Safety Kit (flares, air horn, marine radio, cell phone, tool kit)	Competent / Qualified Personnel: See HASP (Name – Position/Employer) Training requirements: List specific certification (as applicable) Site Specific HASP Orientation Toolbox safety meeting Task kick-off meeting	Daily inspection of equipment per manufacturer's instructions. Tag tools that are defective and remove from service.  Full boat inspection prior to use.  Inspect all PPE prior to use



# Job Hazard Analysis - HASP Format

Job Title:	Soil Samplir	ıg	<b>Date of Analysis:</b> 5/1/07

Minimum Recommended PPE*: High visibility vest, hard hat, steel-toed boots, safety glasses, hearing protection

*See HASP for all required PPE

Key Work Steps	Hazards/Potential Hazards	Safe Practices
Prepare for	1A) Chemical exposure	1A) Chemical Exposure
sampling event	, ·	<ul> <li>Read HASP and determine air monitoring and PPE needs.</li> </ul>
2. Mobilization	4A) See JHA Mobilization/Demobilization/Site Preparation	2A) See JHA Mobilization/Demobilization/Site Preparation
General Site     Hazards	3A) See JHA Field Work - General	3A) See JHA Field Work - General
Carrying equipment to site location	4B) Back or muscle strain	<ul> <li>4A) Back or muscle strain</li> <li>Use proper lifting techniques when lifting pumps or generators</li> <li>Use mechanical aids if available</li> <li>Use 2 person lift for heavy items</li> </ul>
Calibrate monitoring equipment	5A) Exposure to calibration gases	<ul> <li>5A) Exposure to calibration gases</li> <li>Review equipment manuals</li> <li>Calibrate in a clean, well ventilated area</li> </ul>
Preparing sampling location	6A) Contact with poisonous plants or the oil from poisonous plants	<ul> <li>6A) Contact with poisonous plants or the oil from those plants:</li> <li>Look for signs of poisonous plants and avoid.</li> <li>Wear PPE as described in the HASP.</li> <li>Do not touch anything part of your body/clothing.</li> <li>Always wash gloves before removing them.</li> <li>Discard PPE in accordance with the HASP.</li> </ul>
	6B) Contact with biting insects (i.e., spiders, bees, etc.)	<ul> <li>6B) Contact with stinging/biting insects</li> <li>Discuss the types of insects expected at the Site and be able to identify them.</li> <li>Look for signs of insects in and around the well.</li> <li>Wear Level of PPE as described in the HASP. At a minimum, follow guidelines in the JHA "Insects Stings and Bites."</li> <li>If necessary, wear protective netting over your head/face.</li> <li>Avoid contact with the insects if possible.</li> <li>Inform your supervisor and the Site Health and Safety Supervisor if you have any allergies to insects and insect bites. Make sure you have identification of your allergies with you at all times and appropriate response kits if applicable.</li> <li>Get medical help immediately if you are bitten by a black widow or brown recluse, or if you have a severe reaction to any spider bite or bee sting.</li> </ul>
	Exposure to hazardous Inhalation and contact with hazardous substances (VOC contaminated soil); flammable atmospheres.	<ul> <li>Exposure to hazardous substances</li> <li>Wear PPE as identified in HASP.</li> <li>Review hazardous properties of site contaminants with workers before sampling operations begin</li> <li>Monitor breathing zone air in accordance with HASP to determine levels of contaminants present.</li> <li>When decontaminating equipment wear additional eye/face protection over the safety glasses such as a face shield.</li> </ul>
	6D) Back strain due to lifting or moving equipment to sampling locations	Back strain     Use mechanical aids when possible, if mechanical aids are not available, use two person lifts for heavy items.      Use proper lifting techniques



# Job Hazard Analysis - HASP Format

Job Title: Soil Sampling Date of Analysis: 5/1/07

Key Work Steps	Hazards/Potential Hazards	Safe Practices
	6E) Foot injuries from dropped equipment	Foot Injuries     Be aware when moving objects, ensure you have a good grip when lifting and carrying objects.     Do not carry more than you can handle safely
7. Collecting soil	7A) Working around drill rigs	Wear steel toed boots  7A) See JHA - Drilling
samples	7A) Working around drillings	TA) See STA - Dilling
	7B) Encountering underground or overhead utilities	7B) Have all utilities located.
	7C) Fire/Explosion/Contamination hazard from refueling generators	7C) Fire/Explosion/Contamination hazard from refueling generators  Turn the generator off and let it cool down before refueling  Segregate fuel and other hydrocarbons from samples to minimize contamination potential  Transport fuels in approved safety containers. The use of containers other than those specifically designed to carry fuel is prohibited  See JHA for Gasoline use
	7D) Electrocution	7D) Electrocution  • A ground fault circuit interrupter (GFCI) device must protect all AC electrical circuits.
		<ul> <li>Use only correctly grounded equipment. Never use three-pronged cords which have had the third prong broken off.</li> </ul>
		Make sure that the electrical cords from generators and power tools are not allowed to be in contact with water
		<ul> <li>Do not stand in wet areas while operating power equipment</li> <li>Always make sure all electrically-powered sampling equipment is in good repair. Report any problems so the equipment can be repaired or replaced.</li> </ul>
		<ul> <li>When unplugging a cord, pull on the plug rather than the cord.</li> <li>Never do repairs on electrical equipment unless you are both authorized and qualified to do so.</li> </ul>
	7E) Exposure to contaminants	7E) Exposure to Contaminants  Stand up wind when sampling  Monitor breathing zone with appropriate monitoring equipment (see HASP)  Wear chemical resistant PPE as identified in HASP  See section 4C) under Safe Practices above
	7F) Exposure to preservatives	7F) Exposure to preservatives  Work in a well ventilated area, upwind of samples  Wear chemical resistant PPE as identified in HASP  Review MSDSs
	7G) Slips/trips/falls	7G) Slips/trips/falls
	7H) Lifting Injury	7H) Lifting injury  Use proper lifting techniques when carrying quantities of samples  Use proper ergonomics when hand digging for samples
	7I) Eye injury	7I) Eye Injury  • Wear eye protection when using picks or similar devices to loosen soil
	7J) Fire	7J) Fire  When using gas powered auger, maintain fire watch whenever fueling or otherwise handling gasoline  See JHA - Gasoline
		- SEE JITA - GASUIITE



# Job Hazard Analysis - HASP Format

Job Title: Soil Sampling Date of Analysis: 5/1/07

Key Work Steps	Hazards/Potential Hazards	Safe Practices
8. Soil sampling using	8A) Back injury	8A) Back Injury
floor corer		Use proper lifting techniques when moving floor corer and generator
		<ul> <li>Use mechanincal aids if available</li> </ul>
		<ul> <li>Use two person lift for heavy items.</li> </ul>
	8B) Electric Shock	8B) Electric Shock
		<ul> <li>Use electric cords free from defects</li> </ul>
		<ul> <li>Keep cords out of water</li> </ul>
		Ensure all electrical equipment is properly grounded
		■ Use GFCI
	8C) Hearing	8C) Hearing
		Wear hearing protection
	8D) Fire	8D) Fire
		<ul> <li>When using generator, maintain fire watch whenever refueling or otherwise handling gasoline</li> </ul>
		■ See JHA - Gasoline
	8E) Contamination	8E) Contamination
		<ul> <li>Use appropriate PPE for the contaminants of concern (see HASP).</li> </ul>
		Minimize sample contact
		Label sample in accordance with procedures
		Monitor breathing zone levels.

Issued: 9/10/08 Effective: 9/10/08

Owner: R. Brown Approver: K. Book PAGE 1 OF 6

# Job Hazard Analysis Form

JHA No.: JHA - Novi	
Job Title: Working Near Water	Date of Analysis:
Job Location:	Project Manager:
	<u> </u>

**Instructions:** The Team Leader will gather the appropriate team, including subject matter experts, operators, and support personnel, to analyze the job for hazards. Using the below table or similar format, address the three phases of this process:

- **Identify Key Job Steps:** Break the job down into individual key steps where work activities are presented in sequential order.
- **Identify Job Hazards:** Create a list of known or potential hazards within each step of the job. Consider hazards associated with the various tools, equipment or other hardware involved in the job. Consider environmental hazards such as thermal stress, biohazards, etc.
- Identify Safe Practices and Equipment: List one or more prevention or control measures to address each hazard identified, emphasizing engineering and administrative controls over PPE. Once this has been completed, the JHA Team will determine whether the job can be performed in a manner that eliminates the identified hazards.

<b>Key Work Steps</b>	Hazards/Potential Hazards	Safe Practices
1. Field Work Near Water	1A) Slips, trips, falls	<ul> <li>1A) Familiarize self with site prior to visit.</li> <li>Complete appropriate training before going on site.</li> <li>Provide appropriate person in district office your itinerary.</li> <li>Prepare listing of emergency phone numbers, both on and offsite.</li> <li>Identify site/activity PPE needs.</li> <li>Ensure that First Aid training is current, and that tetanus booster is current.</li> </ul>
	1B) Falling into water	<ul> <li>Be aware of your surroundings</li> <li>1B) Falling into water</li> <li>Use equipment that facilitates reaching the location from a safe distance (extensions, etc.).</li> <li>Work using the buddy system.</li> <li>Wear PFD when working on or near the water.</li> <li>Avoid leaning over edge of land to water.</li> <li>Anchor or secure yourself to a permanent and secure structure when working near water.</li> </ul>

Issued: 9/10/08 Effective: 9/10/08

Owner: R. Brown Approver: K. Book PAGE 2 OF 6

1C) Vermin, leaches, Insect/animal born	1C) Vermin, leaches, Insect/animal born
disease	disease
	<ul> <li>Survey the area for dens, nests, etc.</li> </ul>
	<ul> <li>Identify areas where biological</li> </ul>
	hazards may be present.
	<ul> <li>Be aware of your surroundings.</li> </ul>
	<ul> <li>Wear insect netting clothing or apply</li> </ul>
	insect repellant on all exposed skin
	surfaces as appropriate – consider
	sample contamination.
	<ul> <li>Wear appropriate footwear (snake</li> </ul>
	boots, etc.)
	<ul> <li>Avoid high grass areas along</li> </ul>
	shoreline if possible.
	<ul> <li>Tuck pants leg into boot.</li> </ul>
	<ul> <li>Do not put hand/arm into/under an</li> </ul>
	area that you can not see into/under
	clearly.
	<ul> <li>Do not touch any suspected</li> </ul>
	contaminant without appropriate
	hand PPE.
	<ul> <li>Wash hands as soon as possible upon</li> </ul>
	completion of task.
	<ul> <li>Perform routine inspections for ticks,</li> </ul>
	leaches, etc. of yourself and co-
	workers.
	<ul> <li>Contract vermin relocation, if</li> </ul>
	applicable.
	<ul> <li>Remain vigilant and respectful of</li> </ul>
	wildlife. (See JHA for Insects, Stings
	and Bites, and JHA for Dog –
	Wildlife Safety.
	<ul> <li>Wear wind impervious outerwear</li> </ul>
	<ul> <li>During warm months – wear a long</li> </ul>
	sleeve cotton/breathable fabric shirt
	and pants.
1D) Bending, pulling, twisting	1D) Bending, pulling, twisting
	<ul> <li>Balance weight in the boat with other</li> </ul>
	personnel and equipment.
	<ul> <li>Use a vibrating or wiggling motion</li> </ul>
	on the sample device to break the
	sediment suction.
	<ul> <li>Attach recovery line to sample</li> </ul>
	equipment prior to deploying
	equipment.
	<ul> <li>Proper lifting technique.</li> </ul>
	<ul> <li>Do not lean outside the boat.</li> </ul>

Issued: 9/10/08 Effective: 9/10/08

Owner: R. Brown Approver: K. Book PAGE 3 OF 6

# Job Hazard Analysis Form Identify Hazards and PPE

Complete the checklists for hazard identification and PPE requirements. Information from the RA and applicable permits are included in this section.

Standard Hazards						
☐ Falling Objects	X Slips and trips	☐ Pinch points	☐ Rotating equipment			
X Falls	☐ Power equipment/tools	☐ Elevated work surfaces				
☐ Particulates						
	Hearing Hazards					
X None (optional motor) ☐ Impact noise ☐ High frequency noise ☐ High ambient in						
Respiratory Hazards						
X None	☐ Dust/particulates	tes				
☐ Oxygen deficient	☐ Welding fumes	☐ Aerosols/Particulates	□ Be, Hg, Cr, Pb			
	Chemica	l Hazards				
X None	☐ Organic solvents ☐ Reactive metals ☐ PCBs		□ PCBs			
☐ Acids / bases	/ bases   Oxidizers   Volatiles / Semivolatiles					
Completed by:	Completed by: Date:					

Issued: 9/10/08 Effective: 9/10/08

Owner: R. Brown Approver: K. Book PAGE 4 OF 6

# JOB HAZARD ANALYSIS FORM

Environmental Hazards						
□ None	X Temperature extremes	X Wet location	X Bio hazards (snakes, insects, spiders, bird / mouse droppings, fungus, etc.)			
☐ Explosive vapors	☐ Confined space	☐ Engulfment Hazard				
Electrical Hazards						
X None	None □ Energized equipment or circuits □ Overhead utilities □ Underground utilities □ Hidden utilities		☐ Wet location			
	Fire H	azards				
X None	☐ Cutting, welding, or grinding generated sparks or heat sources	☐ Flammable materials  present (Optional gasoline/diesel fuel)	☐ Oxygen enriched location			
Ergonomic Hazards						
X Lifting	X Bending	X Twisting	X Pulling/tugging			
Computer Use in the:  ☐ Office ☐ Field	X Repetitive motion					
	Radiologic	al Hazards				
X None	☐ Loose contamination ☐ Fixed Contamination ☐ Rad		□ Radiation			
☐ Airborne contamination	□ Radon		□ Criticality			
□ Alpha	□ Beta	□ Gamma/X-rays	□ Neutron			
☐ Tritium	□ TRU	☐ Depleted Uranium	☐ Enriched Uranium			
	Other I	Hazards				

Completed by: <u>Douglas Saigh</u> Date: <u>10/07/11</u>

Issued: **9/10/08** Effective: **9/10/08** 

Owner: R. Brown Approver: K. Book PAGE 5 OF 6

# Job Hazard Analysis Form

# **PPE and Monitoring Requirements**

Standard PPE						
X Hard Hat	X Safety shoes	X Safety glasses	X Boot Covers			
□ Aprons	X Rubber Boots (Optional)	X Other: PFD	X Other: Waders (shoreline)			
	Eye Pr	otection				
☐ Welding glasses ☐ Welding helmet	☐ Face shield	☐ Chemical goggles	☐ Welding screens			
	Hearing 1	Protection				
□ Ear plugs	□ Other					
	Respirator	y Protection				
X None						
□ SCBA	☐ Airline respirator					
	Protective	e Clothing				
X Tyvek® coveralls (optional)	☐ Poly-coated Tyvek® Coveralls	☐ Saranex® Coveralls	☐ Fully encapsulating suit			
☐ Cotton coveralls	☐ Modesty Clothing	☐ Fire resistant clothing	X Other Rain gear			
	Hand P	rotection				
□ None	□ Cotton gloves	☐ Leather gloves	☐ Glove liners			
X Nitrile gloves  □ Viton® gloves  □ Butyl gloves  □ Neoprene gloves	Surgical gloves  Latex Non-Latex	☐ Cut-resistant gloves	□ Other			
	Monitoring l	Requirements				
□ Oxygen	☐ Flammable gases/vapors	☐ Toxic Gas/vapors	☐ Hydrogen Sulfide/Carbon Monoxide			
□ Asbestos	☐ Full time IH coverage	☐ Part time IH coverage	□ Be, Hg, Cr, Pb			
☐ Metals Specify:						
☐ Organic vapors Specify:						
☐ Radioactive air particulates	☐ TLD required	□САМ	□ Radon			
☐ Full time RCT coverage	☐ Part time RCT coverage	☐ Radioactive air particulates	□ Other			
□ Other		□ Other				
PPE and monitoring requirements completed by:  Date:						

Issued: 9/10/08 Effective: 9/10/08

Owner: R. Brown Approver: K. Book PAGE 6 OF 6





# Material Safety Data Sheet Hydrochloric acid MSDS

# **Section 1: Chemical Product and Company Identification**

Product Name: Hydrochloric acid

Catalog Codes: SLH1462, SLH3154

CAS#: Mixture.

RTECS: MW4025000

TSCA: TSCA 8(b) inventory: Hydrochloric acid

CI#: Not applicable.

**Synonym:** Hydrochloric Acid; Muriatic Acid

Chemical Name: Not applicable.

Chemical Formula: Not applicable.

**Contact Information:** 

Sciencelab.com, Inc. 14025 Smith Rd. Houston, Texas 77396

US Sales: 1-800-901-7247

International Sales: 1-281-441-4400
Order Online: ScienceLab.com

CHEMTREC (24HR Emergency Telephone), call:

1-800-424-9300

International CHEMTREC, call: 1-703-527-3887

For non-emergency assistance, call: 1-281-441-4400

# **Section 2: Composition and Information on Ingredients**

# Composition:

Name	CAS#	% by Weight
Hydrogen chloride	7647-01-0	20-38
Water	7732-18-5	62-80

Toxicological Data on Ingredients: Hydrogen chloride: GAS (LC50): Acute: 4701 ppm 0.5 hours [Rat].

## **Section 3: Hazards Identification**

#### **Potential Acute Health Effects:**

Very hazardous in case of skin contact (corrosive, irritant, permeator), of eye contact (irritant, corrosive), of ingestion, . Slightly hazardous in case of inhalation (lung sensitizer). Non-corrosive for lungs. Liquid or spray mist may produce tissue damage particularly on mucous membranes of eyes, mouth and respiratory tract. Skin contact may produce burns. Inhalation of the spray mist may produce severe irritation of respiratory tract, characterized by coughing, choking, or shortness of breath. Severe over-exposure can result in death. Inflammation of the eye is characterized by redness, watering, and itching. Skin inflammation is characterized by itching, scaling, reddening, or, occasionally, blistering.

#### **Potential Chronic Health Effects:**

Slightly hazardous in case of skin contact (sensitizer). CARCINOGENIC EFFECTS: Classified 3 (Not classifiable for human.) by IARC [Hydrochloric acid]. MUTAGENIC EFFECTS: Not available. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Not available. The substance may be toxic to kidneys, liver, mucous membranes, upper respiratory tract, skin, eyes, Circulatory System, teeth. Repeated or prolonged exposure to the substance can produce target

organs damage. Repeated or prolonged contact with spray mist may produce chronic eye irritation and severe skin irritation. Repeated or prolonged exposure to spray mist may produce respiratory tract irritation leading to frequent attacks of bronchial infection. Repeated exposure to a highly toxic material may produce general deterioration of health by an accumulation in one or many human organs.

# **Section 4: First Aid Measures**

#### **Eye Contact:**

Check for and remove any contact lenses. In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Cold water may be used. Get medical attention immediately.

#### Skin Contact:

In case of contact, immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Cover the irritated skin with an emollient. Cold water may be used. Wash clothing before reuse. Thoroughly clean shoes before reuse. Get medical attention immediately.

#### **Serious Skin Contact:**

Wash with a disinfectant soap and cover the contaminated skin with an anti-bacterial cream. Seek immediate medical attention.

#### Inhalation:

If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention immediately.

#### Serious Inhalation:

Evacuate the victim to a safe area as soon as possible. Loosen tight clothing such as a collar, tie, belt or waistband. If breathing is difficult, administer oxygen. If the victim is not breathing, perform mouth-to-mouth resuscitation. WARNING: It may be hazardous to the person providing aid to give mouth-to-mouth resuscitation when the inhaled material is toxic, infectious or corrosive. Seek immediate medical attention.

#### Ingestion:

If swallowed, do not induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious person. Loosen tight clothing such as a collar, tie, belt or waistband. Get medical attention immediately.

**Serious Ingestion:** Not available.

## **Section 5: Fire and Explosion Data**

Flammability of the Product: Non-flammable.

Auto-Ignition Temperature: Not applicable.

Flash Points: Not applicable.

Flammable Limits: Not applicable.

Products of Combustion: Not available.

Fire Hazards in Presence of Various Substances: of metals

Explosion Hazards in Presence of Various Substances: Non-explosive in presence of open flames and sparks, of shocks.

Fire Fighting Media and Instructions: Not applicable.

#### **Special Remarks on Fire Hazards:**

Non combustible. Calcium carbide reacts with hydrogen chloride gas with incandescence. Uranium phosphide reacts with hydrochloric acid to release spontaneously flammable phosphine. Rubidium acetylene carbides burns with slightly warm hydrochloric acid. Lithium silicide in contact with hydrogen chloride becomes incandescent. When dilute hydrochloric acid is used, gas spontaneously flammable in air is evolved. Magnesium boride treated with concentrated hydrochloric acid produces spontaneously flammable gas. Cesium acetylene carbide burns hydrogen chloride gas. Cesium carbide ignites in contact with hydrochloric acid unless acid is dilute. Reacts with most metals to produce flammable Hydrodgen gas.

## **Special Remarks on Explosion Hazards:**

Hydrogen chloride in contact with the following can cause an explosion, ignition on contact, or other violent/vigorous reaction: Acetic anhydride AgClO + CCl4 Alcohols + hydrogen cyanide, Aluminum Aluminum-titanium alloys (with HCl vapor), 2-Amino ethanol, Ammonium hydroxide, Calcium carbide Ca3P2 Chlorine + dinitroanilines (evolves gas), Chlorosulfonic acid Cesium carbide Cesium acetylene carbide, 1,1-Difluoroethylene Ethylene diamine Ethylene imine, Fluorine, HClO4 Hexalithium disilicide H2SO4 Metal acetylides or carbides, Magnesium boride, Mercuric sulfate, Oleum, Potassium permanganate, beta-Propiolactone Propylene oxide Rubidium carbide, Rubidium, acetylene carbide Sodium (with aqueous HCl), Sodium hydroxide Sodium tetraselenium, Sulfonic acid, Tetraselenium tetranitride, U3P4, Vinyl acetate. Silver perchlorate with carbon tetrachloride in the presence of hydrochloric acid produces trichloromethyl perchlorate which detonates at 40 deg. C.

## Section 6: Accidental Release Measures

## **Small Spill:**

Dilute with water and mop up, or absorb with an inert dry material and place in an appropriate waste disposal container. If necessary: Neutralize the residue with a dilute solution of sodium carbonate.

# Large Spill:

Corrosive liquid. Poisonous liquid. Stop leak if without risk. Absorb with DRY earth, sand or other non-combustible material. Do not get water inside container. Do not touch spilled material. Use water spray curtain to divert vapor drift. Use water spray to reduce vapors. Prevent entry into sewers, basements or confined areas; dike if needed. Call for assistance on disposal. Neutralize the residue with a dilute solution of sodium carbonate. Be careful that the product is not present at a concentration level above TLV. Check TLV on the MSDS and with local authorities.

# **Section 7: Handling and Storage**

#### **Precautions:**

Keep locked up.. Keep container dry. Do not ingest. Do not breathe gas/fumes/ vapor/spray. Never add water to this product. In case of insufficient ventilation, wear suitable respiratory equipment. If ingested, seek medical advice immediately and show the container or the label. Avoid contact with skin and eyes. Keep away from incompatibles such as oxidizing agents, organic materials, metals, alkalis, moisture. May corrode metallic surfaces. Store in a metallic or coated fiberboard drum using a strong polyethylene inner package.

Storage: Keep container tightly closed. Keep container in a cool, well-ventilated area.

# **Section 8: Exposure Controls/Personal Protection**

#### **Engineering Controls:**

Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapors below their respective threshold limit value. Ensure that eyewash stations and safety showers are proximal to the work-station location.

#### **Personal Protection:**

Face shield. Full suit. Vapor respirator. Be sure to use an approved/certified respirator or equivalent. Gloves. Boots.

#### Personal Protection in Case of a Large Spill:

Splash goggles. Full suit. Vapor respirator. Boots. Gloves. A self contained breathing apparatus should be used to avoid inhalation of the product. Suggested protective clothing might not be sufficient; consult a specialist BEFORE handling this product.

## **Exposure Limits:**

CEIL: 5 (ppm) from OSHA (PEL) [United States] CEIL: 7 (mg/m3) from OSHA (PEL) [United States] CEIL: 5 from NIOSH CEIL: 7 (mg/m3) from NIOSH TWA: 1 STEL: 5 (ppm) [United Kingdom (UK)] TWA: 2 STEL: 8 (mg/m3) [United Kingdom (UK)]Consult local authorities for acceptable exposure limits.

# **Section 9: Physical and Chemical Properties**

Physical state and appearance: Liquid.

**Odor:** Pungent. Irritating (Strong.)

Taste: Not available.

Molecular Weight: Not applicable.

Color: Colorless to light yellow.

pH (1% soln/water): Acidic.

**Boiling Point:** 

108.58 C @ 760 mm Hg (for 20.22% HCl in water) 83 C @ 760 mm Hg (for 31% HCl in water) 50.5 C (for 37% HCl in water)

**Melting Point:** 

-62.25°C (-80°F) (20.69% HCl in water) -46.2 C (31.24% HCl in water) -25.4 C (39.17% HCl in water)

**Critical Temperature:** Not available.

**Specific Gravity:** 

1.1- 1.19 (Water = 1) 1.10 (20% and 22% HCl solutions) 1.12 (24% HCl solution) 1.15 (29.57% HCl solution) 1.16 (32% HCl

solution) 1.19 (37% and 38%HCl solutions)

Vapor Pressure: 16 kPa (@ 20°C) average

**Vapor Density:** 1.267 (Air = 1)

Volatility: Not available.

Odor Threshold: 0.25 to 10 ppm

Water/Oil Dist. Coeff.: Not available. Ionicity (in Water): Not available.

**Dispersion Properties:** See solubility in water, diethyl ether.

**Solubility:** Soluble in cold water, hot water, diethyl ether.

# Section 10: Stability and Reactivity Data

**Stability:** The product is stable.

**Instability Temperature:** Not available.

Conditions of Instability: Incompatible materials, water

Incompatibility with various substances:

Highly reactive with metals. Reactive with oxidizing agents, organic materials, alkalis, water.

Corrosivity:

Extremely corrosive in presence of aluminum, of copper, of stainless steel(304), of stainless steel(316). Non-corrosive in presence of glass.

# **Special Remarks on Reactivity:**

Reacts with water especially when water is added to the product. Absorption of gaseous hydrogen chloride on mercuric sulfate becomes violent @ 125 deg. C. Sodium reacts very violently with gaseous hydrogen chloride. Calcium phosphide and hydrochloric acid undergo very energetic reaction. It reacts with oxidizers releasing chlorine gas. Incompatible with, alkali metals, carbides, borides, metal oxides, vinyl acetate, acetylides, sulphides, phosphides, cyanides, carbonates. Reacts with most metals to produce flammable Hydrogen gas. Reacts violently (moderate reaction with heat of evolution) with water especially when water is added to the product. Isolate hydrogen chloride from heat, direct sunlight, alkalies (reacts vigorously), organic materials, and oxidizers (especially nitric acid and chlorates), amines, metals, copper and alloys (e.g. brass), hydroxides, zinc (galvanized materials), lithium silicide (incandescence), sulfuric acid(increase in temperature and pressure) Hydrogen chloride gas is emitted when this product is in contact with sulfuric acid. Adsorption of Hydrochloric Acid onto silicon dioxide results in exothmeric reaction. Hydrogen chloride causes aldehydes and epoxides to violently polymerize. Hydrogen chloride or Hydrochloric Acid in contact with the folloiwing can cause explosion or ignition on contact or

**Special Remarks on Corrosivity:** 

Highly corrosive. Incompatible with copper and copper alloys. It attacks nearly all metals (mercury, gold, platinium, tantalum, silver, and certain alloys are exceptions). It is one of the most corrosive of the nonoxidizing acids in contact with copper alloys. No corrosivity data on zinc, steel. Severe Corrosive effect on brass and bronze

Polymerization: Will not occur.

# **Section 11: Toxicological Information**

Routes of Entry: Absorbed through skin. Dermal contact. Eye contact. Inhalation.

## **Toxicity to Animals:**

Acute oral toxicity (LD50): 900 mg/kg [Rabbit]. Acute toxicity of the vapor (LC50): 1108 ppm, 1 hours [Mouse]. Acute toxicity of the vapor (LC50): 3124 ppm, 1 hours [Rat].

#### **Chronic Effects on Humans:**

CARCINOGENIC EFFECTS: Classified 3 (Not classifiable for human.) by IARC [Hydrochloric acid]. May cause damage to the following organs: kidneys, liver, mucous membranes, upper respiratory tract, skin, eyes, Circulatory System, teeth.

#### Other Toxic Effects on Humans:

Very hazardous in case of skin contact (corrosive, irritant, permeator), of ingestion, . Hazardous in case of eye contact (corrosive), of inhalation (lung corrosive).

## **Special Remarks on Toxicity to Animals:**

Lowest Published Lethal Doses (LDL/LCL) LDL [Man] -Route: Oral; 2857 ug/kg LCL [Human] - Route: Inhalation; Dose: 1300 ppm/30M LCL [Rabbit] - Route: Inhalation; Dose: 4413 ppm/30M

# **Special Remarks on Chronic Effects on Humans:**

May cause adverse reproductive effects (fetoxicity). May affect genetic material.

# **Special Remarks on other Toxic Effects on Humans:**

Acute Potential Health Effects: Skin: Corrosive. Causes severe skin irritation and burns. Eyes: Corrosive. Causes severe eye irritation/conjuntivitis, burns, corneal necrosis. Inhalation: May be fatal if inhaled. Material is extremely destructive to tissue of the mucous membranes and upper respiratory tract. Inhalation of hydrochloric acid fumes produces nose, throat, and larryngeal burning, and irritation, pain and inflammation, coughing, sneezing, choking sensation, hoarseness, laryngeal spasms, upper respiratory tract edema, chest pains, as well has headache, and palpitations. Inhalation of high concentrations can result in corrosive burns, necrosis of bronchial epithelium, constriction of the larynx and bronchi, nasospetal perforation, glottal closure, occur, particularly if exposure is prolonged. May affect the liver. Ingestion: May be fatal if swallowed. Causes irritation and burning, ulceration, or perforation of the gastrointestinal tract and resultant peritonitis, gastric hemorrhage and infection. Can also cause nausea, vomitting (with "coffee ground" emesis), diarrhea, thirst, difficulty swallowing, salivation, chills, fever, uneasiness, shock, strictures and stenosis (esophogeal, gastric, pyloric). May affect behavior (excitement), the cardiovascular system (weak rapid pulse, tachycardia), respiration (shallow respiration), and urinary system (kidneys- renal failure, nephritis). Acute exposure via inhalation or ingestion can also cause erosion of tooth enamel. Chronic Potential Health Effects: dyspnea, bronchitis. Chemical pneumonitis and pulmonary edema can also

# **Section 12: Ecological Information**

Ecotoxicity: Not available.

BOD5 and COD: Not available.

#### **Products of Biodegradation:**

Possibly hazardous short term degradation products are not likely. However, long term degradation products may arise.

Toxicity of the Products of Biodegradation: The products of degradation are less toxic than the product itself.

Special Remarks on the Products of Biodegradation: Not available.

# **Section 13: Disposal Considerations**

# Waste Disposal:

Waste must be disposed of in accordance with federal, state and local environmental control regulations.

# **Section 14: Transport Information**

**DOT Classification:** Class 8: Corrosive material

Identification: : Hydrochloric acid, solution UNNA: 1789 PG: II

Special Provisions for Transport: Not available.

# **Section 15: Other Regulatory Information**

#### Federal and State Regulations:

Connecticut hazardous material survey.: Hydrochloric acid Illinois toxic substances disclosure to employee act: Hydrochloric acid Illinois chemical safety act: Hydrochloric acid New York release reporting list: Hydrochloric acid Rhode Island RTK hazardous substances: Hydrochloric acid Pennsylvania RTK: Hydrochloric acid Minnesota: Hydrochloric acid Massachusetts RTK: Hydrochloric acid Massachusetts spill list: Hydrochloric acid New Jersey: Hydrochloric acid New Jersey spill list: Hydrochloric acid Louisiana spill reporting: Hydrochloric acid California Director's List of Hazardous Substances: Hydrochloric acid TSCA 8(b) inventory: Hydrochloric acid TSCA 4(a) proposed test rules: Hydrochloric acid SARA 302/304/311/312 extremely hazardous substances: Hydrochloric acid SARA 313 toxic chemical notification and release reporting: Hydrochloric acid CERCLA: Hazardous substances:: Hydrochloric acid: 5000 lbs. (2268 kg)

## Other Regulations:

OSHA: Hazardous by definition of Hazard Communication Standard (29 CFR 1910.1200). EINECS: This product is on the European Inventory of Existing Commercial Chemical Substances.

### Other Classifications:

## WHMIS (Canada):

CLASS D-2A: Material causing other toxic effects (VERY TOXIC). CLASS E: Corrosive liquid.

#### DSCL (EEC)

R34- Causes burns. R37- Irritating to respiratory system. S26- In case of contact with eyes, rinse immediately with plenty of water and seek medical advice. S45- In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible).

#### HMIS (U.S.A.):

**Health Hazard: 3** 

Fire Hazard: 0

Reactivity: 1

**Personal Protection:** 

#### National Fire Protection Association (U.S.A.):

Health: 3

Flammability: 0

Reactivity: 1

Specific hazard:

## **Protective Equipment:**

Gloves. Full suit. Vapor respirator. Be sure to use an approved/certified respirator or equivalent. Wear appropriate respirator when ventilation is inadequate. Face shield.

#### **Section 16: Other Information**

#### References:

-Hawley, G.G.. The Condensed Chemical Dictionary, 11e ed., New York N.Y., Van Nostrand Reinold, 1987. -SAX, N.I. Dangerous Properties of Indutrial Materials. Toronto, Van Nostrand Reinold, 6e ed. 1984. -The Sigma-Aldrich Library of Chemical Safety Data, Edition II. -Guide de la loi et du règlement sur le transport des marchandises dangeureuses au canada. Centre de conformité internatinal Ltée. 1986.

Other Special Considerations: Not available.

Created: 10/09/2005 05:45 PM

Last Updated: 11/01/2010 12:00 PM

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall ScienceLab.com be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if ScienceLab.com has been advised of the possibility of such damages.

MSDS Number: N3660 * * * * * Effective Date: 11/18/09 * * * * * Supercedes: 11/07/08

MSDS Material Safety Data Sheet

24 Hour Emergency Telephone; \$69-859-2151 CHEMITREC: 1-800-424-9390

National Response in Canada CANUTEC: 613-996-6666

Outside U.S. and Canada Chemirec; 703-527-3887

From: Mallinckrodt Baker, Inc. | 222 Rod School Lane Phillipsburg, NJ 08865

Mallinekrodt CHEMICALS

NOTE: CHEMTREC, CANUTEC and National Perporase Cemar emergency numbers to be used only in the event of chemical emergencies envolving a spill, look, like, expecture or accisent involving obstribution.

All non-emergency questions should be directed to Customer Service (1-900-552-2537) for assistance.

# **NITRIC ACID, 50-70%**

## 1. Product Identification

Synonyms: Aqua Fortis; Azotic Acid; Nitric Acid 50%; Nitric Acid 65%; nitric acid 69-70%

CAS No.: 7697-37-2 Molecular Weight: 63.01 Chemical Formula: HNO3

Product Codes:

J.T. Baker: 5371, 5796, 5801, 5826, 5856, 5876, 5896, 9597, 9598, 9600, 9601, 9602, 9603, 9604, 9606, 9607, 9608, 9610, 9616, 9617, 9670, 9761

Mallinckrodt: 1409, 2704, 2705, 2706, 2707, 2716, 6623, H862, H988, H993, H998, V077, V650

## 2. Composition/Information on Ingredients

Ingredient	CAS No	Percent	Hazardous
Nitric Acid	7697-37-2	50 - 70%	Yes.
Water	7732-18-5	30 - 50%	No

#### 3. Hazards Identification

## **Emergency Overview**

POISON! DANGER! STRONG OXIDIZER. CONTACT WITH OTHER MATERIAL MAY CAUSE FIRE. CORROSIVE. LIQUID AND MIST CAUSE SEVERE BURNS TO ALL BODY TISSUE. MAY BE FATAL IF SWALLOWED OR INHALED. INHALATION MAY CAUSE LUNG AND TOOTH DAMAGE.

SAF-T-DATA^(tm) Ratings (Provided here for your convenience)

Health Rating: 4 - Extreme (Poison)
Flammability Rating: 0 - None
Reactivity Rating: 3 - Severe (Oxidizer)
Contact Rating: 4 - Extreme (Corrosive)

Lab Protective Equip: GOGGLES & SHIELD; LAB COAT & APRON; VENT HOOD; PROPER GLOVES

Storage Color Code: White (Corrosive)

#### Potential Health Effects

Nitric acid is extremely hazardous; it is corrosive, reactive, an oxidizer, and a poison.

#### Inhalation:

Corrosive! Inhalation of vapors can cause breathing difficulties and lead to pneumonia and pulmonary edema, which may be fatal. Other symptoms may include coughing, choking, and irritation of the nose, throat, and respiratory tract.

Ingestion:

Corrosive! Swallowing nitric acid can cause immediate pain and burns of the mouth, throat, esophagus and gastrointestinal tract.

Skin Contact:

Corrosive! Can cause redness, pain, and severe skin burns. Concentrated solutions cause deep ulcers and stain skin a yellow or yellow-brown color.

Eve Contact:

Corrosive! Vapors are irritating and may cause damage to the eyes. Contact may cause severe burns and permanent eye damage.

Chronic Exposure:

Long-term exposure to concentrated vapors may cause erosion of teeth and lung damage. Long-term exposures seldom occur due to the corrosive properties of the acid.

Aggravation of Pre-existing Conditions:

Persons with pre-existing skin disorders, eye disease, or cardiopulmonary diseases may be more susceptible to the effects of this substance.

#### 4. First Aid Measures

Immediate first aid treatment reduces the health effects of this substance.

Inhalation:

Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Call a physician.

Ingestion:

DO NOT INDUCE VOMITING! Give large quantities of water or milk if available. Never give anything by mouth to an unconscious person. Get medical attention immediately.

Skin Contact:

In case of contact, immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse.

Thoroughly clean shoes before reuse. Get medical attention immediately.

Eve Contact:

Immediately flush eyes with plenty of water for at least 15 minutes, lifting lower and upper eyelids occasionally. Get medical attention immediately.

## 5. Fire Fighting Measures

Fire

Not combustible, but substance is a strong oxidizer and its heat of reaction with reducing agents or combustibles may cause ignition. Can react with metals to release flammable hydrogen gas.

Explosion:

Reacts explosively with combustible organic or readily oxidizable materials such as: alcohols, turpentine, charcoal, organic refuse, metal powder, hydrogen sulfide, etc.

Reacts with most metals to release hydrogen gas which can form explosive mixtures with air.

Fire Extinguishing Media:

Water spray may be used to keep fire exposed containers cool. Do not get water inside container.

Special Information:

Increases the flammability of combustible, organic and readily oxidizable materials. In the event of a fire, wear full protective clothing and NIOSH-approved self-contained breathing apparatus with full facepiece operated in the pressure demand or other positive pressure mode.

#### 6. Accidental Release Measures

Ventilate area of leak or spill. Wear appropriate personal protective equipment as specified in Section 8. Isolate hazard area. Keep unnecessary and unprotected personnel from entering. Contain and recover liquid when possible. Neutralize with alkaline material (soda ash, lime), then absorb with an inert material (e. g., vermiculite, dry sand, earth), and place in a chemical waste container. Do not use combustible materials, such as saw dust. Do not flush to sewer! US Regulations (CERCLA) require reporting spills and releases to soil, water and air in excess of reportable quantities. The toll free number for the US Coast Guard National Response Center is (800) 424-8802.

J. T. Baker NEUTRASORB® acid neutralizers are recommended for spills of this product.

## 7. Handling and Storage

Store in a cool, dry, ventilated storage area with acid resistant floors and good drainage. Protect from physical damage. Keep out of direct sunlight and away from heat, water, and incompatible materials. Do not wash out container and use it for other purposes. When diluting, the acid should always be added slowly to water and in small amounts. Never use hot water and never add water to the acid. Water added to acid can cause uncontrolled boiling and splashing. Containers of this material may be hazardous when empty since they retain product residues (vapors, liquid); observe all warnings and precautions listed for the product.

# 8. Exposure Controls/Personal Protection

Airborne Exposure Limits:

-OSHA Permissible Exposure Limit (PEL): 2 ppm (TWA), 4 ppm (STEL)

-ACGIH Threshold Limit Value (TLV):

2 ppm (TWA); 4 ppm (STEL)

Ventilation System:

A system of local and/or general exhaust is recommended to keep employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, *Industrial* 

Ventilation, A Manual of Recommended Practices, most recent edition, for details.

Personal Respirators (NIOSH Approved):

If the exposure limit is exceeded, wear a supplied air, full-facepiece respirator, airlined hood, or full-facepiece self-contained breathing apparatus. Nitric acid is an oxidizer and should not come in contact with cartridges and canisters that contain oxidizable materials, such as activated charcoal. Canister-type respirators using sorbents are

Skin Protection:

Wear impervious protective clothing, including boots, gloves, lab coat, apron or coveralls, as appropriate, to prevent skin contact.

Eve Protection:

Use chemical safety goggles and/or a full face shield where splashing is possible. Maintain eye wash fountain and quick-drench facilities in work area.

# 9. Physical and Chemical Properties

Appearance:

Colorless to yellowish liquid.

Odor:

Suffocating, acrid.

Solubility:

Infinitely soluble.

Specific Gravity:

1.41

pH:

1.0 (0.1M solution)

% Volatiles by volume @ 21C (70F):

100 (as water and acid)

**Boiling Point:** 

122C (252F)

Melting Point:

-42C (-44F)

Vapor Density (Air=1):

Vapor Pressure (mm Hg): 48 @ 20C (68F)

Evaporation Rate (BuAc=1):

No information found.

# 10. Stability and Reactivity

Stability:

Stable under ordinary conditions of use and storage. Containers may burst when heated.

Hazardous Decomposition Products:

When heated to decomposition, emits toxic nitrogen oxides fumes and hydrogen nitrate. Will react with water or steam to produce heat and toxic and corrosive fumes.

Hazardous Polymerization:

Will not occur.

Incompatibilities:

A dangerously powerful oxidizing agent, concentrated nitric acid is incompatible with most substances, especially strong bases, metallic powders, carbides, hydrogen sulfide, turpentine, and combustible organics.

Conditions to Avoid:

Light and heat.

## 11. Toxicological Information

Nitric acid: Inhalation rat LC50: 244 ppm (NO2)/30M; Investigated as a mutagen, reproductive effector. Oral (human) LDLo: 430 mg/kg.

Ingredient		Carcinogen Anticipated	IARC Category
Nitric Acid (7697-37-2)	NO	No	None
Water (7732-18-5)	NO	No	None

# 12. Ecological Information

**Environmental Fate:** 

No information found.

**Environmental Toxicity:** 

No information found.

# 13. Disposal Considerations

Whatever cannot be saved for recovery or recycling should be managed in an appropriate and approved waste facility. Although not a listed RCRA hazardous waste, this material may exhibit one or more characteristics of a hazardous waste and require appropriate analysis to determine specific disposal requirements. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

# 14. Transport Information

Domestic (Land, D.O.T.)

Proper Shipping Name: NITRIC ACID Hazard Class: 8, 5.1

UN/NA: UN2031 Packing Group: II

Information reported for product/size: 6.5GL

International (Water, I.M.O.)

Proper Shipping Name: NITRIC ACID

Hazard Class: 8, 5.1 UN/NA: UN2031 Packing Group: II

Information reported for product/size: 6.5GL

International (Air, I.C.A.O.)

Proper Shipping Name: NITRIC ACID

Hazard Class: 8, 5.1 UN/NA: UN2031 Packing Group: II

Information reported for product/size:

# 15. Regulatory Information

\Chemical Inventory Status - Part Ingredient		TSCA	EC	Japan	Australia
Nitric Acid (7697-37-2) Water (7732-18-5)		Yes	Yes	Yes	
\Chemical Inventory Status - Part	2\				
Ingredient		Korea	DSL	nada NDSL	Phil.
Nitric Acid (7697-37-2) Water (7732-18-5)		Yes	Yes	No	Yes Yes
\Federal, State & International Re	-SARA RQ	302-		SAR	A 313 mical Catg.
Nitric Acid (7697-37-2) Water (7732-18-5)	1000 No	1000	Yes	 3	
\Federal, State & International ReIngredient	CEDCI	ΔA	-RCRA- 261.33	T	SCA- (d)
Nitric Acid (7697-37-2) Water (7732-18-5)	1000 No	· <del>-</del>		N	10 10
Chemical Weapons Convention: No TSCA 12	(b):	No	CDTA	: No	

Chronic: Yes Fire: Yes Pressure: No

Australian Hazchem Code: 2PE

Poison Schedule: S6

SARA 311/312: Acute: Yes

WHMIS:

Reactivity: No

This MSDS has been prepared according to the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all of the information required by the

(Mixture / Liquid)

CPR.

#### 16. Other Information

NFPA Ratings: Health: 3 Flammability: 0 Reactivity: 0 Other: Oxidizer

Label Hazard Warning:

POISON! DANGER! STRONG OXIDIZER. CONTACT WITH OTHER MATERIAL MAY CAUSE FIRE. CORROSIVE. LIQUID AND MIST CAUSE SEVERE BURNS TO ALL BODY TISSUE. MAY BE FATAL IF SWALLOWED OR INHALED. INHALATION MAY CAUSE LUNG AND TOOTH DAMAGE.

Label Precautions:

Do not get in eyes, on skin, or on clothing.

Do not breathe vapor or mist.

Use only with adequate ventilation.

Wash thoroughly after handling.

Keep from contact with clothing and other combustible materials.

Do not store near combustible materials.

Store in a tightly closed container.

Remove and wash contaminated clothing promptly.

Label First Aid:

In case of contact, immediately flush eyes or skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse. If swallowed, DO NOT INDUCE VOMITING. Give large quantities of water. Never give anything by mouth to an unconscious person. If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. In all cases get medical attention immediately.

Product Use:

Laboratory Reagent.

Revision Information:

MSDS Section(s) changed since last revision of document include: 14.

Disclaimer:

Mallinckrodt Baker, Inc. provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose. MALLINCKRODT BAKER, INC. MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE INFORMATION SET FORTH HEREIN OR THE PRODUCT TO WHICH THE INFORMATION REFERS. ACCORDINGLY, MALLINCKRODT BAKER, INC. WILL NOT BE RESPONSIBLE FOR DAMAGES RESULTING FROM USE OF OR RELIANCE UPON THIS INFORMATION.

Prepared by: Environmental Health & Safety Phone Number: (314) 654-1600 (U.S.A.)

# LIQUINOX MSDS

#### Section 1: MANUFACTURER INFORMATION

**Supplier:** Same as manufacturer.

Manufacturer: Alconox, Inc.

30 Glenn St. Suite 309

White Plains, NY 10603.

Manufacturer emergency 800-255-3924.

phone number: 813-248-0585 (outside of the United States).

Manufacturer: Alconox, Inc.

30 Glenn St. Suite 309

White Plains, NY 10603.

Supplier MSDS date: 2005/02/24 D.O.T. Classification: Not regulated.

#### Section 2: HAZARDOUS INGREDIENTS

C.A.S.	CONCENTRATION %	Ingredient Name	T.L.V.	LD/50	LC/50
25155- 30-0	10-30	SODIUM DODECYLBENZENESULFONATE	NOT AVAILABLE	438 MG/KG RAT ORAL 1330 MG/KG MOUSE ORAL	NOT AVAILABLE

#### Section 3: PHYSICAL / CHEMICAL CHARACTERISTICS

Physical state: Liquid.

Appearance & odor: Odourless.

Pale yellow.

Odor threshold (ppm): Not available.

Vapour pressure @ 20°C (68°F).

(mmHg): 17

Vapour density (air=1): >1

Volatiles (%)

By volume: Not available.

Evaporation rate (butyl acetate = 1): < 1.

**Boiling point (°C):** 100 (212F)

Freezing point (°C): Not available.

**pH:** 8.5

Specific gravity @ 20 °C: (water = 1).

Solubility in water (%): Complete.

Coefficient of water\oil

Not available. dist.:

VOC: None

#### Section 4: FIRE AND EXPLOSION HAZARD DATA

Flammability: Not flammable.

Conditions of Surrounding fire.

Extinguishing media: Carbon dioxide, dry chemical, foam.

Water

Water fog.

**Special procedures:** Self-contained breathing apparatus required.

Firefighters should wear the usual protective gear. Use water spray to cool fire exposed containers.

temperature: Not available.

Flash point (°C), None

method:

Lower flammability limit (% vol): Not applicable.

Upper flammability limit (% vol): Not applicable.

Not available.

Sensitivity to mechanical impact: Not available.

Hazardous combustion Oxides of carbon (COx).

**products:** Hydrocarbons.

Rate of burning: Not available.

Explosive power: Containers may rupture if exposed to heat or fire.

#### Section 5: REACTIVITY DATA

Chemical stability: Product is stable under normal handling and storage conditions.

Conditions of instability: Extreme temperatures.

Hazardous polymerization:

Will not occur.

Incompatible Strong acids.

substances: Strong oxidizing agents.

 $\begin{tabular}{lll} \textbf{Hazardous} \\ \textbf{decomposition products:} \end{tabular} See \ hazardous \ combustion \ products. \end{tabular}$ 

#### Section 6: HEALTH HAZARD DATA

Route of entry: Skin contact, eye contact, inhalation and ingestion.

**Effects of Acute Exposure** 

Eye contact: May cause irritation.

**Skin contact:** Prolonged and repeated contact may cause irritation.

Inhalation: May cause headache and nausea. Ingestion: May cause vomiting and diarrhea.

May cause gastric distress.

**Effects of chronic** exposure: See effects of acute exposure.

LD50 of product, species & route: > 5000 mg/kg rat oral.

LC50 of product, species 
& route: Not available.

**Exposure limit of** material: Not available.

Sensitization to product: Not available.

Carcinogenic effects: Not listed as a carcinogen.

Reproductive effects: Not available. Teratogenicity: Not available. Mutagenicity: Not available.

Synergistic materials: Not available.

Medical conditions aggravated by exposure: Not available.

First Aid

Skin contact: Remove contaminated clothing.

Wash thoroughly with soap and water. Seek medical attention if irritation persists.

**Eye contact:** Check for and remove contact lenses.

Flush eyes with clear, running water for 15 minutes while holding

eyelids open: if irritation persists, consult a physician.

Inhalation: Remove victim to fresh air.

If irritation persists, seek medical attention.

**Ingestion**: Do not induce vomiting, seek medical attention.

Dilute with two glasses of water.

Never give anything by mouth to an unconscious person.

#### Section 7: PRECAUTIONS FOR SAFE HANDLING AND USE

Leak/Spill: Contain the spill.

Prevent entry into drains, sewers, and other waterways.

Wear appropriate protective equipment.

Small amounts may be flushed to sewer with water.

Soak up with an absorbent material. Place in appropriate container for disposal. Notify the appropriate authorities as required.

Waste disposal: In accordance with local and federal regulations.

Handling procedures and Protect against physical damage.

equipment: Avoid breathing vapors/mists.

Wear personal protective equipment appropriate to task.

Wash thoroughly after handling. Keep out of reach of children.

Avoid contact with skin, eyes and clothing.

Avoid extreme temperatures.

Launder contaminated clothing prior to reuse.

**Storage requirements:** Store away from incompatible materials.

Keep containers closed when not in use.

#### **Section 8: CONTROL MEASURES**

#### **Precautionary Measures**

Gloves/Type:



Wear appropriate gloves.

Respiratory/Type: None required under normal use.

Eye/Type:



Safety glasses recommended.

**Footwear/Type:** Safety shoes per local regulations. Clothing/Type: As required to prevent skin contact.

Other/Type: Eye wash facility should be in close proximity.

Emergency shower should be in close proximity.

**Ventilation** requirements: Local exhaust at points of emission.

This is **G o o g l e'**s <u>cache</u> of <u>http://www.hnu.com/msds/new_iso_msds.htm</u> as retrieved on Nov 18, 2006 09:15:51 GMT.

Google's cache is the snapshot that we took of the page as we crawled the web.

The page may have changed since that time. Click here for the <u>current page</u> without highlighting.

This cached page may reference images which are no longer available. Click here for the cached text only.

To link to or bookmark this page, use the following url: http://www.google.com/search?

q=cache:csn0BmDcnfcJ:www.hnu.com/msds/new_iso_msds.htm+Isobutylene+100+ppm+MSDS&hl=en&gl=us&ct=clnk&cd=1

Google is neither affiliated with the authors of this page nor responsible for its content.

These search terms have been highlighted: isobutylene 100 ppm msds





Instrumentation for Environmental, Process & Industrial Hygiene Monitoring

# Isobutylene in Air MSDS

Home

MATERIAL SAFETY DATA SHEET - CALIBRATION CHECK GAS/ISOBUTYLENE IN AIR

PRODUCT NAME: 100 PPM ISOBUTYLENE/AIR (100 PPM ISOBUTYLENE/AIR) MSDS

Version: 4 Date: January, 2004

____

1. Chemical Product and Company Identification PID ANALYZERS, LLC 25 Walpole Park Drive South Walpole, MA 02081 TELEPHONE NUMBER: (508) 660-5001 24-HOUR EMERGENCY NUMBER: 1-617-699-4307 FAX NUMBER: (508) 660-5040 E-MAIL: sales@hnu.com

**PRODUCT NAME: ISOBUTYLENE (100 PPM** – 0.9%) IN AIR

CHEMICAL NAME: Isobutylene in air

**COMMON NAMES/ SYNONYMS:** Calibration Gas

CLASSIFICATION: 2.2 WHIMIS CLASSIFICTATION: A, D2A, D2B

_____

# 2. COMPOSITION/INFORMATION ON INGREDIENTS

INGREDIENT %: Isobutylene 0.0001-0.9/Air 99-99.9999

VOLUME: 17L PEL-OSHA: N/A TLV-ACGIH: N/A

LD50or LC50Route/Species: N/A

FORMULA: C4H8/Air 99.0

______

**3. HAZARDS IDENTIFICATIONEMERGENCY OVERVIEW** Release of this product may produce oxygen-deficient atmospheres (especially in confined spaces or other poorly ventilated environments); individuals in such atmospheres may be asphyxiated. **Isobutylene** may cause drowsiness and other central nervous system effects in high concentrations; however, due to the low concentration of this gas mixture, this is unlikely to occur.

#### **ROUTE OF ENTRY:**

Skin: No

Contact Skin: No Absorption: No Eye Contact: No Inhalation: Yes Ingestion: No

# **HEALTH EFFECTS:**

Exposure Limits: Yes

Irritant: No Sensitization: No

Reproductive Hazard: No

Mutagen: No

Carcinogenicity: No

NTP: No IARC: No OSHA: No

EYE EFFECTS: N/A. SKIN EFFECTS: N/A.

# MATERIAL SAFETY DATA SHEET - CALIBRATION CHECK GAS

PRODUCT NAME: ISOBUTYLENE (1 PPM - 0.9%) IN AIR

INGESTION EFFECTS: Ingestion unlikely. Gas at room temperature.

INHALATION EFFECTS: Due to the small size of this cylinder, no unusual health effects from

over-exposure are anticipated under normal routine use.

#### NFPA HAZARD CODES HMIS HAZARD CODES RATING SYSTEM

Health: 1

Flammability: **0** Flammability: **0** Reactivity: **0** 

*0= No Hazard, 1= Slight Hazard, 2= Moderate Hazard, 3= Serious Hazard, 4=

**Severe Hazard** 

______

#### 4. FIRST AID MEASURES EYES: N/A

SKIN: N/A

**INGESTION**: Not required

**INHALATION:** PROMPT MEDICAL ATTENTION IS MANDATORY IN ALL CASED OF OVEREXPOSURE. RESCUE PERSONNEL SHOULD BE EQUIPPED THE SELF-CONTAINED BREATHING APPARATUS. Victims should be assisted to an uncontaminated area and inhale fresh air. Quick removal from the contaminated area is most important. If breathing has stopped administer artificial resuscitation and supplemental oxygen. Further treatment should be symptomatic and supportive.

**5. FIRE-FIGHTING MEASURES** These containers hold gas under pressure, with no liquid phase. If involved in a major fire, they should be sprayed with water to avoid pressure increases, otherwise pressures will rise and ultimately they may distort or burst to release the contents. The gases will not add significantly to the fire, but containers or fragments may be

projected considerable distances - thereby hampering fire fighting efforts.

**6. ACCIDENTAL RELEASE MEASURES** In terms of weight, these containers hold very little contents, such that any accidental release by puncturing etc. will be of no practical concern.

**7. HANDLING AND STORAGE** Suck back of water into the container must be prevented. Do not allow backfeed into the container. Use only properly specified equipment which is suitable for this product, its supply pressure and temperature. Use only in well-ventilated areas. Do not heat cylinder by any means to increase rate of product from the cylinder. Do not allow the temperature where cylinders are stored to exceed 130oF (54oC).

_____

**8. EXPOSURE CONTROLS/PERSONAL PROTECTION** Use adequate ventilation for extended use of gas.

MATERIAL SAFETY DATA SHEET - CALIBRATION CHECK GAS PRODUCT NAME: ISOBUTYLENE (1 PPM - 0.9%) IN AIR

_____

- **9. PHYSICAL AND CHEMICAL PROPERTIES PARAMETER: VALUE:** Physical state : Gas Evaporation point : N/A pH : N/A Odor and appearance : Colorless, odorless gas
- **10. STABILITY AND REACTIVITY** Stable under normal conditions. Expected shelf life 24 months.

_____

- 11. TOXICOLOGICAL INFORMATION No toxicological damage caused by this product.
- 12. ECOLOGICAL INFORMATION No ecological damage caused by this product.
- **13. DISPOSAL INFORMATION** Do not discharge into any place where its accumulation could be dangerous. Used containers are acceptable for disposal in the normal waste stream as long as the cylinder is empty and valve removed or cylinder wall is punctured.

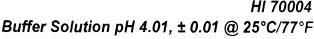
______

# 14. TRANSPORT INFORMATION

United States DOT/Canada TDG PROPER SHIPPING NAME:

Compressed Gas N.O.S. Compressed Gas N.O.S. (Isobutylene in Air)

HAZARD CLASS: 2.2


IDENTIFICATION NUMBER: UN1956 SHIPPING LABEL: NONFLAMMABLE GAS

_____

- **15. REGULATORY INFORMATION Isobutylene** is listed under the accident prevention provisions of section 112(r) of the Clean Air Act (CAA) with a threshold quantity (TQ) of 10,000 pounds.
- 16. OTHER INFORMATION This MSDS has been prepared in accordance with the Chemicals

(Hazard Information and Packaging for Supply (Amendment) Regulation 1996. The information is based on the best knowledge of PID Analyzers, LLC , and its advisors and is given in good faith, but we cannot guarantee its accuracy, reliability or completeness and therefore disclaim any liability for loss or damage arising out of use of this data. Since conditions of use are outside the control of the Company and its advisors we disclaim any liability for loss or damage when the product is used for other purposes than it is intended. MSDS/S010/248/January, 2004

Top



### Safety Data Sheet According to Regulation (EC) No. 1907/2006

Revision Date:

2008-12-01

Reason for Revision:

REACH Compliance and General Update

SECTION 1: IDENTIFICATION OF THE PRODUCT AND COMPANY

Product Name: HI 70004 Buffer Solution pH 4.01

pH Buffer Solution, ± 0.01 @ 25°C/77°F

Additional Product Codes: HI 70004C

HI 70004P HI 7004P/5

Application:

Company Information (USA):

Hanna Instruments, Inc. 584 Park East Dr, Woonsocket, Rhode Island, USA 02895

1-800-426-6287 (8:30AM - 5:00PM ET)

+1-401-766-4260 (8:30AM - 5:00PM ET)

1-800-424-9300 (Chemtrec 24Hr. Emergency)

+1-703-527-3887 (Chemtrec 24Hr. Emergency)

tech@hannainst.com

USA Emergency Contact Information:

Technical Service Contact Information:

International Emergency Contact Information:

E-mail Address:

#### HAZARD IDENTIFICATION SECTION 2:

Non-hazardous product as specified in Directives 67/548/EEC and 1999/45/EC.

COMPOSITION AND COMPONENT INFORMATION **SECTION 3:** 

Component:

Aqueous Buffer Solution

EC-No.:

CAS-No.:

Hazard:

Phrases: Content:

#### FIRST AID MEASURES **SECTION 4:**

After Inhalation:

Remove to fresh air. Call a physician if breathing becomes difficult.

After Skin Contact:

Wash effected area with water and soap

After Eye Contact:

Rinse out with plenty of water for at least 15 minutes. If pain persists, summon medical advice.

After Swallowing:

Wash out mouth with plenty of water, provided person is conscious. Obtain medical attention if feeling unwell.

General Information:

Not available

#### FIRE-FIGHTING MEASURES **SECTION 5:**

### Suitable Extinguishing Media:

Water Spray, Foam, Dry Powder, Carbon Dioxide

Non-combustible. Development of hazardous combustion gases or vapors possible in the event of fire.

#### Special Protective Equipment:

Do not stay in dangerous zone without suitable chemical protection clothing and self-contained breathing apparatus

#### Additional Information:

Contain escaping vapors with water.



# HI 70004 Buffer Solution pH 4.01, ± 0.01 @ 25°C/77°F

**Safety Data Sheet** According to Regulation (EC) No. 1907/2006

SECTION 6: ACCIDENTAL RELEASE MEASURES

Personal Precautions:

None

Environmental Precautions:

None

Additional Notes:

None

**SECTION 7:** HANDLING AND STORAGE

Handling:

No restrictions

Storage:

Keep container closed and protected from direct sunlight. Store at room temperature (+15°C to +25°C).

**EXPOSURE CONTROL/PERSONAL PROTECTION SECTION 8:** 

Ingredients:

Engineering:

Maintain general industrial hygiene practice.

Personal Protective Equipment:

As appropriate to quantity handled.

Respiratory Protection:

Protective Gloves:

Eye Protection:

Required when vapors/aerosols are

generated.

Rubber or plastic

Goggles or face mask

Industrial Hygiene:

Change contaminated clothing. Wash hands after working with substance.

**SECTION 9:** PHYSICAL/CHEMICAL PROPERTIES

Appearance:

Colorless liquid

Odor:

Odorless

Density at 20° C: 1.0 g/cm3 at 25°C

Melting Point:

NΑ

**Boiling Point:** 

> 100 °C

Solubility:

Soluble

pH at 20° C:

4.01 at 25°C

Explosion Limit: NA Flash Point:

NA

Thermal Decomp.: NA

**SECTION 10:** STABILITY AND REACTIVITY

Conditions to be Avoided:

Heating

Hazardous Polymerization:

Will not occur.

Further Information:

Not available

Hazardous Decomposition Products:

In the event of fire: See section 5.

Substances to be Avoided:

The generally known reaction partners of water



# HI 70004 Buffer Solution pH 4.01, ± 0.01 @ 25°C/77°F

# Safety Data Sheet According to Regulation (EC) No. 1907/2006

0505101144 5011	1001 001041 11150		
SECTION 11: TOXI			
In Case of Inhalation:	toxicity of this product is	not available.	
	- 4		
In Case of Skin Conta			
In Case of Eye Contact	<i>t:</i>		
In Case of Ingestion:			
Further Data:	Hazardous propertie dissolved substance care when dealing v	es cannot be excluded, but are relatively unlikely be es, when the product is handled appropriately. The point chemicals.	cause of the low concentration of the product should be handled with the usual
	ecological effect of this p		with due care and attention.
SECTION 13: DISP Waste Disposal: Can	be safely disposed of as	an ordinary refuse.	
Land:	NOF ORTATION INT	Sea:	A inc
Not subject to transpo	ort requisitions		Air:
Not subject to transpo	or regulations	Not subject to transport regulations	Not subject to transport regulations
SECTION 15: REG	EC Directives:	ATION	

R-phrases: S-phrases:

Contains:



# HI 70004 Buffer Solution pH 4.01, ± 0.01 @ 25°C/77°F Safety Data Sheet According to Regulation (EC) No. 1907/2006

**SECTION 16:** OTHER INFORMATION

Text of R-phrases under Section 3

Revision Information

2008-12-01

Legend

Revision Date:

NA: Not Applicable

Supersedes edition of:

2006-05-05

ND: Not Determined

Reason for revision:

REACH Compliance and General Update

THE INFORMATION CONTAINED HEREIN IS BASED ON THE PRESENT STATE OF OUR KNOWLEDGE. IT CHARACTERIZES THE PRODUCT WITH REGARD TO THE APPROPRIATE SAFETY PRECAUTIONS. IT DOES NOT REPRESENT A GUARANTEE OF THE PROPERTIES OF THE PRODUCT.



# HI 70007 Buffer Solution pH 7.01, ± 0.01 @ 25°C/77°F

# **Safety Data Sheet**

According to Regulation (EC) No. 1907/2006

Revision Date:

2008-12-01

Reason for Revision:

REACH Compliance and General Update

SECTION 1: IDENTIFICATION OF THE PRODUCT AND COMPANY

Product Name: HI 70007 Buffer Solution pH 7.01

Additional Product Codes: HI 70007C

HI 70007P

Application:

pH Buffer Solution

HI 7007P/5

Company Information (USA):

Hanna Instruments, Inc

584 Park East Dr, Woonsocket, Rhode Island, USA 02895

1-800-426-6287 (8:30AM - 5:00PM ET)

Technical Service Contact Information: USA Emergency Contact Information:

+1-401-766-4260 (8:30AM - 5:00PM ET) 1-800-424-9300 (Chemtrec 24Hr. Emergency)

International Emergency Contact Information:

+1-703-527-3887 (Chemtrec 24Hr. Emergency)

tech@hannainst.com

E-mail Address:

### HAZARD IDENTIFICATION

Non-hazardous product as specified in Directives 67/548/EEC and 1999/45/EC.

#### SECTION 3: COMPOSITION AND COMPONENT INFORMATION

Component:

Aqueous Buffer Solution

EC-No.:

CAS-No.:

Hazard:

Phrases:

Content:

#### SECTION 4: FIRST AID MEASURES

After Inhalation:

Remove to fresh air. Call a physician if breathing becomes difficult.

After Skin Contact:

Wash effected area with water and soap.

After Eye Contact:

Rinse out with plenty of water for at least 15 minutes. If pain persists, summon medical advice

After Swallowing:

Wash out mouth with plenty of water, provided person is conscious. Obtain medical attention if feeling unwell.

General Information:

Not available

### **SECTION 5:** FIRE-FIGHTING MEASURES

### Suitable Extinguishing Media:

Water Spray, Foam, Dry Powder, Carbon Dioxide

Non-combustible. Development of hazardous combustion gases or vapors possible in the event of fire.

### Special Protective Equipment:

Do not stay in dangerous zone without suitable chemical protection clothing and self-contained breathing apparatus.

### Additional Information:

Contain escaping vapors with water.



### HI 70007 Buffer Solution pH 7.01, $\pm$ 0.01 @ 25°C/77°F

# **Safety Data Sheet**

According to Regulation (EC) No. 1907/2006

**SECTION 6:** ACCIDENTAL RELEASE MEASURES

Personal Precautions:

None

Environmental Precautions:

None

Additional Notes:

None

**SECTION 7:** HANDLING AND STORAGE

Handling:

No restrictions

Storage:

Keep container closed and protected from direct sunlight. Store at room temperature (+15°C to +25°C).

EXPOSURE CONTROL/PERSONAL PROTECTION <u>SECTION 8:</u>

Ingredients:

Engineering:

Maintain general industrial hygiene practice.

Personal Protective Equipment:

As appropriate to quantity handled.

Respiratory Protection:

Protective Gloves:

Eye Protection:

Required when vapors/aerosols are

generated.

Rubber or plastic

Goggles or face mask

Industrial Hygiene:

Change contaminated clothing. Wash hands after working with substance.

SECTION 9: PHYSICAL/CHEMICAL PROPERTIES

Appearance:

Colorless liquid

Odor: Odorless

Density at 20° C: 1.0 g/cm3 at 25°C

Melting Point:

NA

**Boiling Point:** 

> 100 °C

Solubility: Soluble

pH at 20° C:

7.01 at 25°C

Explosion Limit: NΑ Flash Point:

NA

Thermal Decomp.: NA

SECTION 10: STABILITY AND REACTIVITY Conditions to be Avoided:

Heating

Hazardous Polymerization:

Will not occur.

Further Information:

Not available

Hazardous Decomposition Products:

In the event of fire: See section 5.

Substances to be Avoided:

The generally known reaction partners of water



## HI 70007 Buffer Solution pH 7.01, ± 0.01 @ 25°C/77°F Safety Data Sheet

According to Regulation (EC) No. 1907/2006

### SECTION 11: TOXICOLOGICAL INFORMATION

Quantitative data on the toxi	city of this pi	roduct is not	available
-------------------------------	-----------------	---------------	-----------

In Case of Inhalation:

In Case of Skin Contact:

In Case of Eye Contact:

In Case of Ingestion:

Further Data:

Hazardous properties cannot be excluded, but are relatively unlikely because of the low concentration of the dissolved substances, when the product is handled appropriately. The product should be handled with the usual care when dealing with chemicals.

### **SECTION 12: ECOLOGICAL INFORMATION**

Quantitative data on the ecological effect of this product is not available.

Further Data: No ecological problems are to be expected when the product is handled and used with due care and attention.

### SECTION 13: DISPOSAL CONSIDERATIONS

Waste Disposal: Can be safely disposed of as an ordinary refuse.

### SECTION 14: TRANSPORTATION INFORMATION

Land:

Sea:

Air:

Not subject to transport regulations

Not subject to transport regulations

Not subject to transport regulations

### **SECTION 15: REGULATORY INFORMATION**

Labeling according to EC Directives:

Symbol:

Non-hazardous according to Directives 67/548/EEC and 1999/45/EC.

R-phrases:

S-phrases:

Contains:



### HI 70007 Buffer Solution pH 7.01, ± 0.01 @ 25°C/77°F

# **Safety Data Sheet**

According to Regulation (EC) No. 1907/2006

**SECTION 16:** OTHER INFORMATION

Text of R-phrases under Section 3

Revision Information

2008-12-01

Legend

Supersedes edition of:

Revision Date:

2006-05-05

NA: Not Applicable ND: Not Determined

Reason for revision:

REACH Compliance and General Update

THE INFORMATION CONTAINED HEREIN IS BASED ON THE PRESENT STATE OF OUR KNOWLEDGE. IT CHARACTERIZES THE PRODUCT WITH REGARD TO THE APPROPRIATE SAFETY PRECAUTIONS. IT DOES NOT REPRESENT A GUARANTEE OF THE PROPERTIES OF THE PRODUCT.



## MATERIAL SAFETY DATA SHEET

Section 1. Chemical Product and Company Identification			
Catalog Number(s)			
00653-00			
Product Identity			
ZERO OXYGEN SOLUTION			
Manufacturer's Name	Emergency Telephone Number (24 hr)		
RICCA CHEMICAL COMPANY	CHEMTREC®: 800-424-9300		
Address (Number, Street, City, State, and ZIP Code)	Telephone Number For Information		
P.O. Box 13090	817-461-5601		
	Date Prepared		
Arlington, Texas 76094	4-18-2000		

Section 2. Composition / Information on Ingredients

		Percent	Exposu	re Limits
Component	CAS Registry #	Concentration	ACGIH TLV	OSHA PEL
Sodium Sulfite	7757-83-7	4.5 – 5.5	N/A	N/A
Cobalt Chloride Hexahydrate	7791-13-1	< 0.01	0.02 mg/m ³ (as Co)	0.1 mg/m ³ (Dust as Co)
Water, Deionized	7732-18-5	Balance	N/A	N/A

### Section 3. Hazards Identification

***********************

#### **EMERGENCY OVERVIEW**

May cause irritation to the eyes, skin and respiratory tract. Contains Cobalt Chloride, a possible carcinogen according to International Agency for Research on Cancer (IARC). Wash areas of contact with water for at least 15 minutes. If ingested, dilute with water and call a physician. Although moderately toxic in large amounts, sulfites can pose risk to some asthmatics producing central nervous system depression, broncho constriction and anaphylaxis.

************************

### **POTENTIAL HEALTH EFFECTS:**

TARGET ORGANS: eyes, skin, respiratory tract.

**EYE CONTACT:** May cause irritation, redness, pain, and tearing.

INHALATION: May cause irritation. This solution is not expected to be harmful via inhalation.

**SKIN CONTACT:** May cause mild irritation.

**INGESTION:** May cause gastric irritation by the liberation of sulfurous acid. Large doses may result in circulatory disturbances, diarrhea, and central nervous system depression.

**CHRONIC EFFECTS / CARCINOGENICITY:** Chronic exposure may affect thyroid, heart, lungs and kidneys due to the Cobalt. IARC – Not classifiable as to carcinogenicity to humans (Sodium Sulfite), Possible carcinogen, limited evidence in humans (Cobalt) NTP – No

OSHA - No

### TERATOLOGY (BIRTH DEFECT) INFORMATION:

Mutation data cited in "Registry of Toxic Effects of Chemical Substances" for Cobalt Chloride and Sodium Sulfite. **REPRODUCTION INFORMATION:** 

Reproductive effects cited in "Registry of Toxic Effects of Chemical Substances" for Cobalt Chloride.

PRODUCT IDENTITY: ZERO OXYGEN SOLUTION EFFECTIVE DATE: 3-20-2006

CATALOG NUMBER (S): 00653-00 Page 1 of 3



### MATERIAL SAFETY DATA SHEET

### Section 4. First Aid Measures – In all cases, seek qualified evaluation.

**EYE CONTACT:** Irrigate immediately with large quantity of water for at least 15 minutes. Call a physician if irritation develops.

**INHALATION:** Remove to fresh air. Give artificial respiration if necessary.

SKIN CONTACT: Wash areas of contact with soap and water for at least 15 minutes. Call a physician if irritation develops.

**INGESTION:** Dilute with water or milk. Do not induce vomiting. Call a physician if necessary.

### Section 5. Fire Fighting Measures

### FLAMMABLE PROPERTIES:

FLASH POINT: N/A METHOD USED: N/A

**FLAMMABLE LIMITS** 

LFL: N/A UFL: N/A

**EXTINGUISHING MEDIA:** Use any means suitable for extinguishing surrounding fire (water, dry chemical, chemical foam).

FIRE & EXPLOSION HAZARDS: Not considered to be an explosion hazard. May emit irritating and corrosive gases in fire.

FIRE FIGHTING INSTRUCTIONS: Use normal procedures/instructions. Poisonous gases may be produced in fire.

**FIRE FIGHTING EQUIPMENT:** Use protective clothing and NIOSH-approved self-contained breathing apparatus appropriate for the surrounding fire.

### Section 6. Accidental Release Measures

Absorb with suitable material (vermiculite, etc.) and dispose of in accordance with local regulations.

### Section 7. Handling and Storage

As with all chemicals, wash hands thoroughly after handling. Avoid contact with eyes and skin. Protect from freezing and physical damage. SAFETY STORAGE CODE: GENERAL

### Section 8. Exposure Controls / Personal Protection

**ENGINEERING CONTROLS:** No specific controls are needed. Normal room ventilation is adequate.

**RESPIRATORY PROTECTION:** Normal room ventilation is adequate.

**SKIN PROTECTION:** Chemical resistant gloves, Nitrile Rubber or Neoprene.

**EYE PROTECTION:** Safety glasses or goggles.

### Section 9. Physical and chemical Properties

APPEARANCE: Clear, colorless liquid pH: N/A

ODOR: odorless

SOLUBILITY IN WATER: infinite

BOILING POINT (°C): Approximately 100

MELTING POINT (°C): Approximately 0

SPECIFIC GRAVITY: Approximately 1 VAPOR PRESSURE: N/A

### Section 10. Stability and Reactivity

CHEMICAL STABILITY: Stable under normal conditions of use and storage. This product absorbs Oxygen from the air.

**INCOMPATIBILITY:** Strong oxidizing agents, Acids (liberates Sulfur Dioxide), high temperatures.

PRODUCT IDENTITY: ZERO OXYGEN SOLUTION EFFECTIVE DATE: 3-20-2006

CATALOG NUMBER (S): 00653-00 Page 2 of 3



### **MATERIAL SAFETY DATA SHEET**

HAZARDOUS DECOMPOSITION PRODUCTS: Emits toxic and irritating fumes, including Sulfur Oxides, when heated to decomposition.

HAZARDOUS POLYMERIZATION: Will not occur.

### **Section 11. Toxicological Information**

LD50, Oral, Mouse: (Sodium Sulfite) 820 mg/kg, details of toxic effects not reported other than lethal dose value.

### Section 12. Ecological Information

**ECOTOXICOLOGICAL INFORMATION:** No information found.

**CHEMICAL FATE INFORMATION:** No information found.

### **Section 13. Disposal Considerations**

Whatever cannot be saved for recycling or recovery should be managed in an appropriate and approved waste disposal facility. Always dispose of in accordance with local, state and federal regulations.

### Section 14. Transport Information (Not meant to be all inclusive)

D.O.T. SHIPPING NAME: Not regulated

D.O.T. HAZARD CLASS: None
U.N. / N.A. NUMBER: None
PACKING GROUP: None
D.O.T. LABEL: None

### Section 15. Regulatory Information (Not meant to be all inclusive - selected regulation represented)

**OSHA STATUS:** This item meets the OSHA Hazard Communication Standard (29 CFR 1910.1200) definition of a hazardous material.

TSCA STATUS: All components of this solution are listed on the TSCA Inventory or are mixtures (hydrates) of items listed on the TSCA Inventory.

**CERCLA REPORTABLE QUANTITY: Cobalt Chloride RQ 1 pound** 

**SARA TITLE III:** 

SECTION 302 EXTREMELY HAZARDOUS SUBSTANCES: No

SECTION 311/312 HAZARDOUS CATEGORIES: Acute, Chronic: Yes Fire, Pressure, Reactivity: No

**SECTION 313 TOXIC CHEMICALS:** No

**RCRA STATUS:** No

**CALIFORNIA PROPOSITION 65:** Not listed

Section 16. Other Information

NFPA Ratings: Health: 1 Flammability: 0 Reactivity: 0 Special Notice Key: None HMIS® Ratings: Health: 1 Flammability: 0 Reactivity: 0 Protective Equipment: B

(Protective eyewear, gloves)

Rev 1, 03-25-2003: Reviewed and approved. Rev 2, 03-20-2006: Reviewed and approved.

When handled properly by qualified personnel, the product described herein does not present a significant health or safety hazard. Alteration of its characteristics by concentration, evaporation, addition of other substances, or other means may present hazards not specifically addressed herein and which must be evaluated by the user. The information furnished herein is believed to be accurate and represents the best data currently available to us. No warranty, expressed or implied, is made and RICCA CHEMICAL COMPANY assumes no legal responsibility or liability whatsoever resulting from its use.

PRODUCT IDENTITY: ZERO OXYGEN SOLUTION

EFFECTIVE DATE: 3-20-2006

MSDS NUMBER 00532 Rev 2

CATALOG NUMBER (S): 00653-00

Page 3 of 3



# **Safety Data Sheet**

According to Regulation (EC) No. 1907/2006

**Revision Date:** 2008-12-01

Reason for Revision: REACH Compliance and General Update

<u>SECTION 1:</u> IDENTIFICATION OF THE PRODUCT AND COMPANY

Product Name: HI 7021 ORP Solution Additional Product Codes: HI 7021L

Application:ORP Solution for Platinum and Gold Electrodes.HI 7021M<br/>HI 7021/G

240 mV @ 25°C/77°F

Company Information (USA):

Hanna Instruments, Inc.

584 Park East Dr, Woonsocket, Rhode Island, USA 02895

Technical Service Contact Information: 1-800-426-6287 (8:30AM - 5:00PM ET)

+1-401-766-4260 (8:30AM - 5:00PM ET)

USA Emergency Contact Information: 1-800-424-9300 (Chemtrec 24Hr. Emergency)

International Emergency Contact Information: +1-703-527-3887 (Chemtrec 24Hr. Emergency)

E-mail Address: tech@hannainst.com

**SECTION 2: HAZARD IDENTIFICATION** 

Non-hazardous product as specified in Directives 67/548/EEC and 1999/45/EC.

**SECTION 3:** COMPOSITION AND COMPONENT INFORMATION

Component: Aqueous Solution

EC-No.:

CAS-No.:

Hazard:

Phrases:

Content:

**SECTION 4:** FIRST AID MEASURES

After Inhalation: Remove to fresh air.

After Skin Contact: Wash effected area with plenty of water.

After Eye Contact: Rinse out with water.

After Swallowing: Wash out mouth thoroughly with water and give plenty of water to drink. In severe cases obtain medical attention.

General Information: Remove contaminated, soaked clothing immediately and dispose of safely.

**SECTION 5:** FIRE-FIGHTING MEASURES

Suitable Extinguishing Media:

Water spray, Carbon Dioxide, Dry Chemical Powder, Appropriate Foam.

Special Risks:

Non-combustible.

Special Protective Equipment:

Do not stay in dangerous zone without suitable chemical protection clothing and self-contained breathing apparatus.

Additional Information:

NA



# Safety Data Sheet

According to Regulation (EC) No. 1907/2006

#### ACCIDENTAL RELEASE MEASURES **SECTION 6:**

Personal Precautions:

Avoid formation of dusts. Do not inhale dusts. Avoid substance contact.

**Environmental Precautions:** 

Do not discharge into the drains/surface waters/groundwater.

Additional Notes:

Take up dry. Clean up affected area and dispose according to local regulation. Avoid generation of dusts.

#### HANDLING AND STORAGE **SECTION 7:**

Handling: Storage:

Cannot be stored indefinitely.

Tightly closed. Store at room temperature (+15 to +25 °C recommended). Protect from light.

#### **SECTION 8:** EXPOSURE CONTROL/PERSONAL PROTECTION

Ingredients:

Engineering:

Maintain general industrial hygiene practice.

Personal Protective Equipment:

Protective clothing should be selected specifically for the working place, depending on concentration and quantity of the hazardous substances handled.

Respiratory Protection:

Protective Gloves: Eye Protection:

Required when vapors/aerosols are

generated. Work under hood.

Rubber or plastic

Goggles or face mask

Industrial Hygiene:

Change contaminated clothing. Wash hands after working with substance.

PHYSICAL/CHEMICAL PROPERTIES **SECTION 9:** 

Odor: Odorless Density at 20° C: ~ 1 g/cm3 Appearance: Yellow liquid Melting Point: **Boiling Point:** ND Solubility: Soluble NA pH at 20° C: ~ 7 Explosion Limit: NA Flash Point: NA

Thermal Decomp.: NA

### SECTION 10: STABILITY AND REACTIVITY

Conditions to be Avoided: Hazardous Decomposition Products:

Strong Heating None

Hazardous Polymerization: Substances to be Avoided:

Will not occur. The generally known reaction partners of water

Further Information:

Not available



# Safety Data Sheet According to Regulation (EC) No. 1907/2006

SECTION 11: TOXICOLOGICAL INFORMAT			
No toxic effects are to be expected when the product is handled appropriately.			
In Case of Inhalation:			
In Case of Skin Contact:			
In Case of Eye Contact:			
In Case of Ingestion:			
Further Data:			
SECTION 12: ECOLOGICAL INFORMATION	V		
No environmental hazard.			
Further Data: Can be safely disposed off as an ordin	ary refuse.		
SECTION 13: DISPOSAL CONSIDERATION	IS		
Waste Disposal:			
CECTION 44. TRANSPORTATION INCOME	ATION		
SECTION 14: TRANSPORTATION INFORM		A in.	
	Sea:	Air:	
Not subject to transport regulations	Not subject to transport regulations	Not subject to transport regulations	
SECTION 15: REGULATORY INFORMATIO	N		
Labeling according to EC Directives:			
Symbol: Non-hazardous according to Directives 67/	/548/EEC and 1999/45/EC.		
R-phrases:			
S-phrases:			
Contains:			





# **Safety Data Sheet**

According to Regulation (EC) No. 1907/2006

**SECTION 16: OTHER INFORMATION** 

Text of R-phrases under Section 3 Revision Information Legend

Revision Date: 2008-12-01 NA: Not Applicable
ND: Not Determined

Supersedes edition of: 2008-01-17

Reason for revision: REACH Compliance and General Update

THE INFORMATION CONTAINED HEREIN IS BASED ON THE PRESENT STATE OF OUR KNOWLEDGE. IT CHARACTERIZES THE PRODUCT WITH REGARD TO THE APPROPRIATE SAFETY PRECAUTIONS. IT DOES NOT REPRESENT A GUARANTEE OF THE PROPERTIES OF THE PRODUCT.





# Conductivity Calibration Solution, 1413 µS/cm @ 25°C/77°F

### Safety Data Sheet According to Regulation (EC) No. 1907/2006

Revision Date:

2008-12-01

Reason for Revision:

REACH Compliance and General Update

SECTION 1: IDENTIFICATION OF THE PRODUCT AND COMPANY

Product Name: HI 7031 Conductivity Calibration Solution

For calibrating electrodes. 1413 µS/cm @

Additional Product Codes: HI 7031/1G HI 7031L HI 7031L/C HI 7031M HI 7031/120ML

Application: 25°C/77°F

Company Information (USA):

Hanna Instruments, Inc.

584 Park East Dr, Woonsocket, Rhode Island, USA 02895

1-800-426-6287 (8:30AM - 5:00PM ET)

+1-401-766-4260 (8:30AM - 5:00PM ET)

1-800-424-9300 (Chemtrec 24Hr. Emergency)

+1-703-527-3887 (Chemtrec 24Hr. Emergency)

E-mail Address:

International Emergency Contact Information:

Technical Service Contact Information:

USA Emergency Contact Information:

tech@hannainst.com

SECTION 2: HAZARD IDENTIFICATION

Non-hazardous product as specified in Directives 67/548/EEC and 1999/45/EC.

**COMPOSITION AND COMPONENT INFORMATION** SECTION 3:

Component:

Aqueous Solution

EC-No.:

CAS-No.:

Hazard:

Phrases:

Content:

**SECTION 4:** FIRST AID MEASURES

After Inhalation:

Remove to fresh air. Call a physician if breathing becomes difficult.

After Skin Contact:

Wash effected area with water and soap.

After Eye Contact:

Rinse out with plenty of water for at least 15 minutes. If pain persists, summon medical advice.

After Swallowing:

Wash out mouth with plenty of water, provided person is conscious. Obtain medical attention if feeling unwell.

General Information:

Not available

**SECTION 5:** FIRE-FIGHTING MEASURES

Suitable Extinguishing Media:

Water Spray, Foam, Dry Powder, Carbon Dioxide

Special Risks:

Non-combustible.

Special Protective Equipment:

Do not stay in dangerous zone without suitable chemical protection clothing and self-contained breathing apparatus.

Additional Information:

Contain escaping vapors with water.



### Conductivity Calibration Solution, 1413 µS/cm @ 25°C/77°F

# **Safety Data Sheet**

According to Regulation (EC) No. 1907/2006

SECTION 6: ACCIDENTAL RELEASE MEASURES

Personal Precautions:

None

Environmental Precautions:

None

Additional Notes:

None

**SECTION 7:** HANDLING AND STORAGE

Handling:

Storage:

No restrictions

Keep container closed and protected from direct sunlight. Store at room temperature (+15°C to +25°C).

SECTION 8: EXPOSURE CONTROL/PERSONAL PROTECTION

Ingredients:

Engineering:

Maintain general industrial hygiene practice.

Personal Protective Equipment:

As appropriate to quantity handled.

Respiratory Protection:

Protective Gloves:

Eye Protection:

Required when vapors/aerosols are

generated.

Rubber or plastic

Goggles or face mask

Industrial Hygiene:

Change contaminated clothing. Wash hands after working with substance.

SECTION 9: PHYSICAL/CHEMICAL PROPERTIES

Appearance:

Colorless liquid

Odor: Odo

Odorless

Density at 20° C: ~ 1 g/cm3

Melting Point:

NA

Boiling Point:

> 100 °C

Solubility:

Soluble

pH at 20° C:

~ 7

Explosion Limit:

NA

Flash Point:

NA

Thermal Decomp.: NA

**SECTION 10:** STABILITY AND REACTIVITY

Conditions to be Avoided:

Strong Heating (above boiling point). Stable in the recommended storage conditions.

Hazardous Polymerization:

Will not occur.

Further Information:

Not available

Hazardous Decomposition Products:

In the event of fire: See section 5.

Substances to be Avoided:

The generally known reaction partners of water



# Conductivity Calibration Solution, 1413 $\mu$ S/cm @ 25°C/77°F

## **Safety Data Sheet**

According to Regulation (EC) No. 1907/2006

CECTION 44・	サムマルへい へんじん	\ <i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>
SECTION II.	IUNICULUUICA	<b>NL INFORMATION</b>

In Case of Inhalation:

In Case of Skin Contact:

In Case of Eye Contact:

In Case of Ingestion:

Further Data:

Hazardous properties cannot be excluded, but are relatively unlikely because of the low concentration of the dissolved substances, when the product is handled appropriately. The product should be handled with the usual care when dealing with chemicals.

### **SECTION 12:** ECOLOGICAL INFORMATION

Quantitative data on the ecological effect of this product is not available.

Further Data: No ecological problems are to be expected when the product is handled and used with due care and attention.

### **SECTION 13: DISPOSAL CONSIDERATIONS**

Waste Disposal: Can be safely disposed of as an ordinary refuse.

### **SECTION 14:** TRANSPORTATION INFORMATION

Land: Sea: Air:

Not subject to transport regulations 
Not subject to transport regulations 
Not subject to transport regulations

### **SECTION 15: REGULATORY INFORMATION**

Labeling according to EC Directives:

Symbol: Non-hazardous according to Directives 67/548/EEC and 1999/45/EC

R-phrases:

S-phrases:

Contains:





# Conductivity Calibration Solution, 1413 µS/cm @ 25°C/77°F

# **Safety Data Sheet**

According to Regulation (EC) No. 1907/2006

### **SECTION 16: OTHER INFORMATION**

Text of R-phrases under Section 3

Revision Information

Revision Date:

2008-12-01

Legend

Supersedes edition of: Reason for revision:

NA: Not Applicable ND: Not Determined

2008-01-17

REACH Compliance and General Update

THE INFORMATION CONTAINED HEREIN IS BASED ON THE PRESENT STATE OF OUR KNOWLEDGE. IT CHARACTERIZES THE PRODUCT WITH REGARD TO THE APPROPRIATE SAFETY PRECAUTIONS. IT DOES NOT REPRESENT A GUARANTEE OF THE PROPERTIES OF THE PRODUCT.

# Material Safety Data Sheet Methanol

ACC# 14280

### Section 1 - Chemical Product and Company Identification

MSDS Name: Methanol

Catalog Numbers: AC167830000, AC167830025, AC167835000, AC176840000, AC176840010, AC176840025, AC176840250, AC176845000, AC177150000, AC177150010, AC177150025, AC177150050, AC177150051, AC177150250, AC177150251, AC268280000, AC268280010, AC268280025, AC325740000, AC325740010, AC325740025, AC326630000, AC326630010, AC326630025, AC326950000, AC326950010, AC326951000, AC326952500, AC327900000, AC327900010, AC364390000, AC364390010, AC364391000, AC413770000, AC413770040, AC413775000, AC423950000, AC423950010, AC423950040, AC423950200, AC423955000, AC610090040, AC610200040, AC610400010, AC61040019, AC61040019, AC61040050, AC61040050, AC610401000, AC61040115, AC61040115, AC61040200, AC610981000, AC611070040, AC615130025, S75162, S75163, S75959, S75965, S75965A, S75965HPLC, S93301, S93301A, S93302, S93302A, 19123467, A408-1, A408-4, A408-4LC, A408SK-4, A411-20, A411-4, A412-1, A412-20, A412-200, A412-200LC, A412-4, A412-4LC, A412-500, A412200001, A412CU-1300, A412FB-200, A412FB115, A412FB19, A412FB50, A412J500, A412P-4, A412P-4LC, A412POP19, A412POPB-200, A412RB-200, A412RB-50, A412RB115, A412RS-200, A412RS115, A412RS19, A412RS28, A412RS50, A412SK-4, A412SS-115, A412SS-200, A412SS-50, A413-20, A413-200, A413-4, A413-500, A433F-1GAL, A433P-1GAL, A433P-4, A433P1GAL, A433S-20, A433S-200, A433S-4, A434-20, A450-4, A452-1, A452-212, A452-4, A452-4LC, A452J1, A452N1-19, A452N2-19, A452POP-200, A452POP50, A452RS-115, A452RS-19, A452RS-200, A452RS-28, A452RS-50, A452SK-1, A452SK-4, A452SS-115, A452SS-19, A452SS-200, A452SS-28, A452SS-50, A453-1, A453-1LC, A453-4, A453-500, A453J1, A454-1, A454-4, A454-4LC, A454J1, A454RS-115, A454RS-200, A454RS-28, A454SS-19, A454SS-200, A454SS-28, A454SS-50, A455-1, A455RS19, A456-1, A456-4, A457-4, A4574LC, A935-4, A935RB-200, A935RB200, A947-4, A947-4LC, A947POP-200, A947POP200, A947RS-115, A947RS-200, A947RS-28, A947SS-115, A947SS-200, A947SS-28, A947SS-50, BP1105-1, BP1105-4, BP1105SS19, BP1105SS28, BP2618100, HC400 1GAL, NC9105104, NC9134255, NC9173853, NC9283877, NC9360649, NC9386568, NC9419923, NC9433033, NC9433739, NC9541632, NC9942270, NC9964975, SC95-1, SW2-1, TIA947-4, TIA947P-200, TIA947P-200L

**Synonyms:** Carbinol; Methyl alcohol; Methyl hydroxide; Monohydroxymethane; Wood alcohol; Wood naptha; Wood spirits; Columbian spirits; Methanol.

### **Company Identification:**

Fisher Scientific 1 Reagent Lane Fair Lawn, NJ 07410

For information, call: 201-796-7100 Emergency Number: 201-796-7100

For CHEMTREC assistance, call: 800-424-9300

For International CHEMTREC assistance, call: 703-527-3887

### Section 2 - Composition, Information on Ingredients

CAS#	Chemical Name	Percent	EINECS/ELINCS
67-56-1	Methanol	> 99	200-659-6

# Section 3 - Hazards Identification

### **EMERGENCY OVERVIEW**

Appearance: APHA: 10 max clear liquid. Flash Point: 12 deg C.

**Danger!** Poison! May be fatal or cause blindness if swallowed. Vapor harmful. **Flammable liquid and vapor.** Harmful if swallowed, inhaled, or absorbed through the skin. Causes eye, skin, and respiratory tract irritation. May cause central nervous system depression. Cannot be made non-poisonous.

Target Organs: Eyes, nervous system, optic nerve.

### **Potential Health Effects**

**Eye:** May cause painful sensitization to light. Methanol is a mild to moderate eye irritant. Inhalation, ingestion or skin absorption of methanol can cause significant disturbances in vision, including blindness. **Skin:** Causes moderate skin irritation. May be absorbed through the skin in harmful amounts. Prolonged and/or repeated contact may cause defatting of the skin and dermatitis. Methanol can be absorbed through the skin, producing systemic effects that include visual disturbances.

Ingestion: May be fatal or cause blindness if swallowed. Aspiration hazard. Cannot be made non-poisonous. May cause gastrointestinal irritation with nausea, vomiting and diarrhea. May cause systemic toxicity with acidosis. May cause central nervous system depression, characterized by excitement, followed by headache, dizziness, drowsiness, and nausea. Advanced stages may cause collapse, unconsciousness, coma and possible death due to respiratory failure. May cause cardiopulmonary system effects.

**Inhalation:** Methanol is toxic and can very readily form extremely high vapor concentrations at room temperature. Inhalation is the most common route of occupational exposure. At first, methanol causes CNS depression with nausea, headache, vomiting, dizziness and incoordination. A time period with no obvious symptoms follows (typically 8-24 hrs). This latent period is followed by metabolic acidosis and severe visual effects which may include reduced reactivity and/or increased sensitivity to light, blurred, doubl and/or snowy vision, and blindness. Depending on the severity of exposure and the promptness of treatment, survivors may recover completely or may have permanent blindness, vision disturbances and/or nervous system effects.

**Chronic:** Prolonged or repeated skin contact may cause dermatitis. Chronic exposure may cause effects similar to those of acute exposure. Methanol is only very slowly eliminated from the body. Because of this slow elimination, methanol should be regarded as a cumulative poison. Though a single exposure may cause no effect, daily exposures may result in the accumulation of a harmful amount. Methanol has produced fetotoxicity in rats and teratogenicity in mice exposed by inhalation to high concentrations that did not produce significant maternal toxicity.

### Section 4 - First Aid Measures

**Eyes:** In case of contact, immediately flush eyes with plenty of water for a t least 15 minutes. Get medical aid

**Skin:** In case of contact, immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Get medical aid immediately. Wash clothing before reuse. **Ingestion:** Potential for aspiration if swallowed. Get medical aid immediately. Do not induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious person. If vomiting occurs naturally, have victim lean forward.

**Inhalation:** If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical aid.

Notes to Physician: Effects may be delayed.

Antidote: Ethanol may inhibit methanol metabolism.

### Section 5 - Fire Fighting Measures

**General Information:** Ethanol may inhibit methanol metabolism. As in any fire, wear a self-contained breathing apparatus in pressure-demand, MSHA/NIOSH (approved or equivalent), and full protective gear. During a fire, irritating and highly toxic gases may be generated by thermal decomposition or combustion. Use water spray to keep fire-exposed containers cool. Water may be ineffective. Material is lighter than

water and a fire may be spread by the use of water. Vapors are heavier than air and may travel to a source of ignition and flash back. Vapors can spread along the ground and collect in low or confined areas.

**Extinguishing Media:** For small fires, use dry chemical, carbon dioxide, water spray or alcohol-resistant foam. Water may be ineffective. For large fires, use water spray, fog or alcohol-resistant foam. Do NOT use straight streams of water.

Flash Point: 12 deg C (53.60 deg F)

**Autoignition Temperature:** 455 deg C (851.00 deg F)

Explosion Limits, Lower: 6.0 vol %

**Upper:** 31.00 vol %

NFPA Rating: (estimated) Health: 1; Flammability: 3; Instability: 0

### Section 6 - Accidental Release Measures

**General Information:** Use proper personal protective equipment as indicated in Section 8. **Spills/Leaks:** Use water spray to disperse the gas/vapor. Remove all sources of ignition. Absorb spill using an absorbent, non-combustible material such as earth, sand, or vermiculite. Do not use combustible materials such as sawdust. Use a spark-proof tool. Provide ventilation. A vapor suppressing foam may be used to reduce vapors. Water spray may reduce vapor but may not prevent ignition in closed spaces.

### Section 7 - Handling and Storage

**Handling:** Wash thoroughly after handling. Remove contaminated clothing and wash before reuse. Ground and bond containers when transferring material. Use spark-proof tools and explosion proof equipment. Avoid contact with eyes, skin, and clothing. Empty containers retain product residue, (liquid and/or vapor), and can be dangerous. Keep container tightly closed. Do not ingest or inhale. Do not pressurize, cut, weld, braze, solder, drill, grind, or expose empty containers to heat, sparks or open flames. Use only with adequate ventilation. Keep away from heat, sparks and flame. Avoid use in confined spaces.

**Storage:** Keep away from heat, sparks, and flame. Keep away from sources of ignition. Store in a cool, dry, well-ventilated area away from incompatible substances. Flammables-area. Keep containers tightly closed.

## Section 8 - Exposure Controls, Personal Protection

**Engineering Controls:** Use explosion-proof ventilation equipment. Facilities storing or utilizing this material should be equipped with an eyewash facility and a safety shower. Use adequate general or local exhaust ventilation to keep airborne concentrations below the permissible exposure limits.

**Exposure Limits** 

Chemical Name	ACGIH	NIOSH	OSHA - Final PELs
Methanol	200 ppm TWA; 250 ppm STEL; Skin - potential significant contribution to overall exposure by the cutaneous r oute	200 ppm TWA; 260 mg/m3 TWA 6000 ppm IDLH	200 ppm TWA; 260 mg/m3 TWA

OSHA Vacated PELs: Methanol: 200 ppm TWA; 260 mg/m3 TWA

Personal Protective Equipment Eyes: Wear chemical splash goggles.

**Skin:** Wear appropriate protective gloves to prevent skin exposure. **Clothing:** Wear appropriate protective clothing to prevent skin exposure.

Respirators: A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements or European Standard EN 149 must be followed whenever workplace conditions warrant respirator use.

### Section 9 - Physical and Chemical Properties

Physical State: Clear liquid

Appearance: clear, colorless - APHA: 10 max

Odor: alcohol-like - weak odor

pH: Not available.

Vapor Pressure: 128 mm Hg @ 20 deg C

Vapor Density: 1.11 (Air=1) **Evaporation Rate:**5.2 (Ether=1) Viscosity: 0.55 cP 20 deg C

Boiling Point: 64.7 deg C @ 760 mmHg Freezing/Melting Point:-98 deg C

**Decomposition Temperature:** Not available.

Solubility: miscible

Specific Gravity/Density: .7910 g/cm3 @ 20°C

Molecular Formula:CH4O Molecular Weight: 32.04

### Section 10 - Stability and Reactivity

**Chemical Stability:** Stable under normal temperatures and pressures.

Conditions to Avoid: High temperatures, ignition sources, confined spaces.

Incompatibilities with Other Materials: Oxidizing agents, reducing agents, acids, alkali metals, potassium, sodium, metals as powders (e.g. hafnium, raney nickel), acid anhydrides, acid chlorides, powdered aluminum, powdered magnesium.

Hazardous Decomposition Products: Carbon monoxide, irritating and toxic fumes and gases, carbon dioxide, formaldehyde.

Hazardous Polymerization: Will not occur.

### Section 11 - Toxicological Information

RTECS#:

CAS# 67-56-1: PC1400000

LD50/LC50: CAS# 67-56-1:

> Draize test, rabbit, eye: 40 mg Moderate; Draize test, rabbit, eye: 100 mg/24H Moderate;

Draize test, rabbit, skin: 20 mg/24H Moderate; Inhalation, rabbit: LC50 = 81000 mg/m3/14H;

Inhalation, rat: LC50 = 64000 ppm/4H;

Oral, mouse: LD50 = 7300 mg/kg; Oral, rabbit: LD50 = 14200 mg/kg;

Oral, rat: LD50 = 5600 mg/kg; Skin, rabbit: LD50 = 15800 mg/kg;

Human LDLo Oral: 143 mg/kg; Human LDLo Oral: 428 mg/kg; Human TCLo Inhalation; 300 ppm caused visual field changes & headache; Monkey LDLo Skin: 393 mg/kg. Methanol is significantly less toxic to

most experimental animals than humans, because most animal species metabolize methanol differently. Non-primate species do not ordinarily show symptoms of metabolic acidosis or the visual effects which have been observed in primates and humans.

Carcinogenicity:

CAS# 67-56-1: Not listed by ACGIH, IARC, NTP, or CA Prop 65.

Epidemiology: No information found

**Teratogenicity:** There is no human information available. Methanol is considered to be a potential developmental hazard based on animal data. In animal experiments, methanol has caused fetotoxic or teratogenic effects without maternal toxicity.

Reproductive Effects: See actual entry in RTECS for complete information.

**Mutagenicity:** See actual entry in RTECS for complete information.

Neurotoxicity: ACGIH cites neuropathy, vision and CNS under TLV basis.

Other Studies:

### Section 12 - Ecological Information

**Ecotoxicity:** Fish: Fathead Minnow: 29.4 g/L; 96 Hr; LC50 (unspecified)Fish: Goldfish: 250 ppm; 11 Hr; resulted in deathFish: Rainbow trout: 8000 mg/L; 48 Hr; LC50 (unspecified)Fish: Rainbow trout: LC50 = 13-68 mg/L; 96 Hr.; 12 degrees CFish: Fathead Minnow: LC50 = 29400 mg/L; 96 Hr.; 25 degrees C, pH 7.63Fish: Rainbow trout: LC50 = 8000 mg/L; 48 Hr.; UnspecifiedBacteria: Phytobacterium phosphoreum: EC50 = 51,000-320,000 mg/L; 30 minutes; Microtox test No data available.

**Environmental:** Dangerous to aquatic life in high concentrations. Aquatic toxicity rating: TLm 96>1000 ppm. May be dangerous if it enters water intakes. Methyl alcohol is expected to biodegrade in soil and water very rapidly. This product will show high soil mobility and will be degraded from the ambient atmosphere by the reaction with photochemically produced hyroxyl radicals with an estimated half-life of 17.8 days. Bioconcentration factor for fish (golden ide) < 10. Based on a log Kow of -0.77, the BCF value for methanol can be estimated to be 0.2.

**Physical:** No information available. **Other:** No information available.

### Section 13 - Disposal Considerations

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. US EPA guidelines for the classification determination are listed in 40 CFR Parts 261.3. Additionally, waste generators must consult state and local hazardous waste regulations to ensure complete and accurate classification.

RCRA P-Series: None listed.

**RCRA U-Series**:

CAS# 67-56-1: waste number U154 (Ignitable waste).

### Section 14 - Transport Information

	US DOT	Canada TDG
Shipping Name:	METHANOL	METHANOL
Hazard Class:	3	3
UN Number:	UN1230	UN1230
Packing Group:	II	II
Additional Info:		FLASHPOINT 11 C

### Section 15 - Regulatory Information

### **US FEDERAL**

#### **TSCA**

CAS# 67-56-1 is listed on the TSCA inventory.

### **Health & Safety Reporting List**

None of the chemicals are on the Health & Safety Reporting List.

### **Chemical Test Rules**

None of the chemicals in this product are under a Chemical Test Rule.

### Section 12b

None of the chemicals are listed under TSCA Section 12b.

### **TSCA Significant New Use Rule**

None of the chemicals in this material have a SNUR under TSCA.

### **CERCLA Hazardous Substances and corresponding RQs**

CAS# 67-56-1: 5000 lb final RQ; 2270 kg final RQ

### SARA Section 302 Extremely Hazardous Substances

None of the chemicals in this product have a TPQ.

#### SARA Codes

CAS # 67-56-1: immediate, fire.

#### Section 313

This material contains Methanol (CAS# 67-56-1, > 99%), which is subject to the reporting requirements of Section 313 of SARA Title III and 40 CFR Part 373.

#### Clean Air Act:

CAS# 67-56-1 is listed as a hazardous air pollutant (HAP).

This material does not contain any Class 1 Ozone depletors.

This material does not contain any Class 2 Ozone depletors.

#### Clean Water Act:

None of the chemicals in this product are listed as Hazardous Substances under the CWA.

None of the chemicals in this product are listed as Priority Pollutants under the CWA.

None of the chemicals in this product are listed as Toxic Pollutants under the CWA.

#### OSHA.

None of the chemicals in this product are considered highly hazardous by OSHA.

### **STATE**

CAS# 67-56-1 can be found on the following state right to know lists: California, New Jersey, Pennsylvania, Minnesota, Massachusetts.

### California Prop 65

California No Significant Risk Level: None of the chemicals in this product are listed.

### **European/International Regulations**

### **European Labeling in Accordance with EC Directives**

### Hazard Symbols:

ΤF

### Risk Phrases:

R 11 Highly flammable.

R 23/24/25 Toxic by inhalation, in contact with skin and if swallowed

R 39/23/24/25 Toxic : danger of very serious irreversible effects through inhalation, in contact with skin and if swallowed.

#### Safety Phrases:

S 16 Keep away from sources of ignition - No smoking.

S 36/37 Wear suitable protective clothing and gloves.

S 45 In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible).

S 7 Keep container tightly closed.

### WGK (Water Danger/Protection)

CAS# 67-56-1: 1 Canada - DSL/NDSL

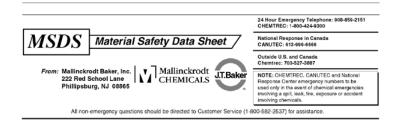
CAS# 67-56-1 is listed on Canada's DSL List.

Canada - WHMIS

This product has a WHMIS classification of B2, D1B, D2B.

This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations and the MSDS contains all of the information required by those regulations.

### **Canadian Ingredient Disclosure List**


CAS# 67-56-1 is listed on the Canadian Ingredient Disclosure List.

### Section 16 - Additional Information

MSDS Creation Date: 7/21/1999 Revision #14 Date: 9/05/2006

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall Fisher be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if Fisher has been advised of the possibility of such damages.

MSDS Number: S8234 * * * * * Effective Date: 02/04/05 * * * * * Supercedes: 11/04/04



### **SULFURIC ACID, 52 - 100 %**

### 1. Product Identification

Synonyms: Oil of vitriol; Babcock acid; sulphuric acid

CAS No.: 7664-93-9 Molecular Weight: 98.08

Chemical Formula: H2SO4 in H2O

**Product Codes:** 

J.T. Baker: 5030, 5137, 5374, 5802, 5815, 5858, 5859, 5868, 5889, 5897, 5961, 5971, 5997, 6902, 9671, 9673, 9674, 9675, 9676, 9679, 9680, 9681, 9682, 9684, 9687, 9691,

Mallinckrodt: 21201, 2468, 2876, 2878, 2900, 2904, 3780, 4222, 5524, 5557, H644, H850, H976, H996, V651, XL003

### 2. Composition/Information on Ingredients

Ingredient CAS	No Percer	nt Hazardous
		- 100% Yes - 48% No

### 3. Hazards Identification

### **Emergency Overview**

POISON! DANGER! CORROSIVE. LIQUID AND MIST CAUSE SEVERE BURNS TO ALL BODY TISSUE. MAY BE FATAL IF SWALLOWED OR CONTACTED WITH SKIN. HARMFUL IF INHALED. AFFECTS TEETH. WATER REACTIVE. CANCER HAZARD. STRONG INORGANIC ACID MISTS CONTAINING SULFURIC ACID CAN CAUSE CANCER. Risk of cancer depends on duration and level of exposure.

 $SAF\text{-}T\text{-}DATA^{(tm)} \text{ Ratings (Provided here for your convenience)}$ 

Health Rating: 4 - Extreme (Poison) Flammability Rating: 0 - None Reactivity Rating: 2 - Moderate Contact Rating: 4 - Extreme (Corrosive)

Lab Protective Equip: GOGGLES & SHIELD; LAB COAT & APRON; VENT HOOD; PROPER GLOVES

Storage Color Code: White (Corrosive)

### **Potential Health Effects**

### Inhalation:

Inhalation produces damaging effects on the mucous membranes and upper respiratory tract. Symptoms may include irritation of the nose and throat, and labored breathing. May cause lung edema, a medical emergency.

### Ingestion:

Corrosive. Swallowing can cause severe burns of the mouth, throat, and stomach, leading to death. Can cause sore throat, vomiting, diarrhea. Circulatory collapse with clammy skin, weak and rapid pulse, shallow respirations, and scanty urine may follow ingestion or skin contact. Circulatory shock is often the immediate cause of death.

Corrosive. Symptoms of redness, pain, and severe burn can occur. Circulatory collapse with clammy skin, weak and rapid pulse, shallow respirations, and scanty urine may follow skin contact or ingestion. Circulatory shock is often the immediate cause of death.

#### **Eye Contact:**

Corrosive. Contact can cause blurred vision, redness, pain and severe tissue burns. Can cause blindness.

### Chronic Exposure:

Long-term exposure to mist or vapors may cause damage to teeth. Chronic exposure to mists containing sulfuric acid is a cancer hazard.

### **Aggravation of Pre-existing Conditions:**

Persons with pre-existing skin disorders or eye problems or impaired respiratory function may be more susceptible to the effects of the substance.

### 4. First Aid Measures

#### Inhalation:

Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Call a physician immediately.

#### Ingestion:

DO NOT INDUCE VOMITING. Give large quantities of water. Never give anything by mouth to an unconscious person. Call a physician immediately.

#### **Skin Contact:**

In case of contact, immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse. Excess acid on skin can be neutralized with a 2% solution of bicarbonate of soda. Call a physician immediately

#### **Eve Contact:**

Immediately flush eyes with gentle but large stream of water for at least 15 minutes, lifting lower and upper eyelids occasionally. Call a physician immediately.

### 5. Fire Fighting Measures

Concentrated material is a strong dehydrating agent. Reacts with organic materials and may cause ignition of finely divided materials on contact.

#### **Explosion:**

Contact with most metals causes formation of flammable and explosive hydrogen gas.

#### Fire Extinguishing Media:

Dry chemical, foam or carbon dioxide. Do not use water on material. However, water spray may be used to keep fire exposed containers cool.

#### Special Information:

In the event of a fire, wear full protective clothing and NIOSH-approved self-contained breathing apparatus with full facepiece operated in the pressure demand or other positive pressure mode. Structural firefighter's protective clothing is ineffective for fires involving this material. Stay away from sealed containers.

#### 6. Accidental Release Measures

Ventilate area of leak or spill. Wear appropriate personal protective equipment as specified in Section 8. Isolate hazard area. Keep unnecessary and unprotected personnel from entering. Contain and recover liquid when possible. Neutralize with alkaline material (soda ash, lime), then absorb with an inert material (e. g., vermiculite, dry sand, earth), and place in a chemical waste container. Do not use combustible materials, such as saw dust. Do not flush to sewer! US Regulations (CERCLA) require reporting spills and releases to soil, water and air in excess of reportable quantities. The toll free number for the US Coast Guard National Response Center is (800) 424-8802.

J. T. Baker NEUTRASORB® or TEAM® 'Low Na+' acid neutralizers are recommended for spills of this product.

### 7. Handling and Storage

Store in a cool, dry, ventilated storage area with acid resistant floors and good drainage. Protect from physical damage. Keep out of direct sunlight and away from heat, water, and incompatible materials. Do not wash out container and use it for other purposes. When diluting, always add the acid to water; never add water to the acid. When opening metal containers, use non-sparking tools because of the possibility of hydrogen gas being present. Containers of this material may be hazardous when empty since they retain product residues (vapors, liquid); observe all warnings and precautions listed for the product.

### 8. Exposure Controls/Personal Protection

### Airborne Exposure Limits:

For Sulfuric Acid:

- OSHA Permissible Exposure Limit (PEL) -
- 1 mg/m3 (TWA)
- ACGIH Threshold Limit Value (TLV) -

0.2 mg/m3(T) (TWA) for sulfuric acid - A2 Suspected Human Carcinogen for sulfuric acid contained in strong inorganic mists.

A system of local and/or general exhaust is recommended to keep employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, Industrial Ventilation, A Manual of Recommended Practices, most recent edition, for details.

### Personal Respirators (NIOSH Approved):

If the exposure limit is exceeded and engineering controls are not feasible, a full facepiece respirator with an acid gas cartridge and particulate filter (NIOSH type N100 filter) may be worn up to 50 times the exposure limit, or the maximum use concentration specified by the appropriate regulatory agency or respirator supplier, whichever is lowest. If oil particles (e.g. lubricants, cutting fluids, glycerine, etc.) are present, use a NIOSH type R or P particulate filter. For emergencies or instances where the exposure levels are not known, use a full-facepiece positive-pressure, air-supplied respirator. WARNING: Air purifying respirators do not protect workers in oxygen-deficient atmospheres. Where respirators are required, you must have a written program covering the basic requirements in the OSHA respirator standard. These include training, fit testing, medical approval, cleaning, maintenance, cartridge change schedules, etc. See 29CFR1910.134 for details.

#### **Skin Protection:**

Wear impervious protective clothing, including boots, gloves, lab coat, apron or coveralls, as appropriate, to prevent skin contact.

### **Eye Protection:**

Use chemical safety goggles and/or a full face shield where splashing is possible. Maintain eye wash fountain and quick-drench facilities in work area.

### 9. Physical and Chemical Properties

#### Appearance:

Clear oily liquid.

Odor:

Odorless. Solubility:

Miscible with water, liberates much heat.

Specific Gravity:

1.84 (98%), 1.40 (50%), 1.07 (10%)

### pH:

1 N solution (ca. 5% w/w) = 0.3: 0.1 N solution (ca. 0.5% w/w) = 1.2: 0.01 N solution (ca. 0.05% w/w) = 2.1

% Volatiles by volume @ 21C (70F):

No information found

**Boiling Point:** 

ca. 290C (ca. 554F) (decomposes at 340C)

**Melting Point:** 

3C (100%), -32C (93%), -38C (78%), -64C (65%). Vapor Density (Air=1):

Vapor Pressure (mm Hg):

1 @ 145.8C (295F)

**Evaporation Rate (BuAc=1):** 

No information found.

### 10. Stability and Reactivity

#### Stability:

Stable under ordinary conditions of use and storage. Concentrated solutions react violently with water, spattering and liberating heat.

#### **Hazardous Decomposition Products:**

Toxic fumes of oxides of sulfur when heated to decomposition. Will react with water or steam to produce toxic and corrosive fumes. Reacts with carbonates to generate carbon dioxide gas, and with cyanides and sulfides to form poisonous hydrogen cyanide and hydrogen sulfide respectively.

#### **Hazardous Polymerization:**

Will not occur.

### Incompatibilities:

Water, potassium chlorate, potassium perchlorate, potassium permanganate, sodium, lithium, bases, organic material, halogens, metal acetylides, oxides and hydrides, metals (yields hydrogen gas), strong oxidizing and reducing agents and many other reactive substances.

#### Conditions to Avoid:

Heat, moisture, incompatibles.

### 11. Toxicological Information

#### **Toxicological Data:**

Oral rat LD50: 2140 mg/kg; inhalation rat LC50: 510 mg/m3/2H; standard Draize, eye rabbit, 250 ug (severe); investigated as a tumorigen, mutagen, reproductive effector.

Carcinogenicity:

Cancer Status: The International Agency for Research on Cancer (IARC) has classified "strong inorganic acid mists containing sulfuric acid" as a known human carcinogen, (IARC category 1). This classification applies only to mists containing sulfuric acid and not to sulfuric acid or sulfuric acid solutions.

\Cancer Lists\			
	NTP	Carcinogen	
Ingredient	Known	Anticipated	IARC Category
Sulfuric Acid (7664-93-9)	No	No	None
Water (7732-18-5)	No	No	None

### 12. Ecological Information

### **Environmental Fate:**

When released into the soil, this material may leach into groundwater. When released into the air, this material may be removed from the atmosphere to a moderate extent by wet deposition. When released into the air, this material may be removed from the atmosphere to a moderate extent by dry deposition.

### **Environmental Toxicity:**

LC50 Flounder 100 to 330 mg/l/48 hr aerated water/Conditions of bioassay not specified; LC50 Shrimp 80 to 90 mg/l/48 hr aerated water/Conditions of bioassay not specified; LC50 Prawn 42.5 ppm/48 hr salt water /Conditions of bioassay not specified.

This material may be toxic to aquatic life.

### 13. Disposal Considerations

Whatever cannot be saved for recovery or recycling should be handled as hazardous waste and sent to a RCRA approved incinerator or disposed in a RCRA approved waste facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

### 14. Transport Information

Domestic (Land, D.O.T.)

Proper Shipping Name: SULFURIC ACID (WITH MORE THAN 51% ACID)

Hazard Class: 8 UN/NA: UN1830 Packing Group: II

Information reported for product/size: 440LB

International (Water, I.M.O.)

Proper Shipping Name: SULFURIC ACID (WITH MORE THAN 51% ACID)

Hazard Class: 8 UN/NA: UN1830 Packing Group: II

Information reported for product/size: 440LB

### 15. Regulatory Information

\Chemical Inventory Status - Part Ingredient	-	TSCA	EC	Japan	Australia
Sulfuric Acid (7664-93-9) Water (7732-18-5)		Yes	Yes	Yes	Yes Yes
\Chemical Inventory Status - Part	2\			 anada	
Ingredient			DSL	NDSI	Phil.
Sulfuric Acid (7664-93-9) Water (7732-18-5)		Yes	Yes	No	Yes Yes
\Federal, State & International Re Ingredient	-SARA	302- TPQ	 Li	SAF st Che	RA 313 emical Catg.
Sulfuric Acid (7664-93-9) Water (7732-18-5)	1000	1000	Ye	s	No
\Federal, State & International Re	gulati	ons -			
Ingredient			261.3	1 3 8	B(d)
Sulfuric Acid (7664-93-9) Water (7732-18-5)			No	 N	10
nemical Weapons Convention: No TSCA 12 ARA 311/312: Acute: Yes Chronic: Yes eactivity: Yes (Pure / Liquid)					

Australian Hazchem Code: 2P Poison Schedule: None allocated. WHMIS:

This MSDS has been prepared according to the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all of the information required by the

### 16. Other Information

NFPA Ratings: Health: 3 Flammability: 0 Reactivity: 2 Other: Water reactive

Label Hazard Warning:

POISON! DANGER! CORROSIVE. LIQUID AND MIST CAUSE SEVERE BURNS TO ALL BODY TISSUE. MAY BE FATAL IF SWALLOWED OR CONTACTED WITH SKIN, HARMFUL IF INHALED. AFFECTS TEETH, WATER REACTIVE, CANCER HAZARD, STRONG INORGANIC ACID MISTS CONTAINING SULFURIC ACID CAN CAUSE CANCER. Risk of cancer depends on duration and level of exposure.

### **Label Precautions:**

Do not get in eyes, on skin, or on clothing.

Do not breathe mist.

Keep container closed.

Use only with adequate ventilation.

Wash thoroughly after handling.

Do not contact with water.

#### Label First Aid:

In all cases call a physician immediately. In case of contact, immediately flush eyes or skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before re-use. Excess acid on skin can be neutralized with a 2% bicarbonate of soda solution. If swallowed, DO NOT INDUCE VOMITING. Give large quantities of water. Never give anything by mouth to an unconscious person. If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. **Product Use:** 

Laboratory Reagent.

**Revision Information:** 

MSDS Section(s) changed since last revision of document include: 8.

Disclaimer:

Mallinckrodt Baker, Inc. provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose. MALLINCKRODT BAKER, INC. MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE INFORMATION SET FORTH HEREIN OR THE PRODUCT TO WHICH THE INFORMATION REFERS. ACCORDINGLY, MALLINCKRODT BAKER, INC. WILL NOT BE RESPONSIBLE FOR DAMAGES RESULTING FROM USE OF OR RELIANCE UPON THIS INFORMATION.

Prepared by: Environmental Health & Safety Phone Number: (314) 654-1600 (U.S.A.)

# APPENDIX B FIELD DATA RECORDS (FDRs)

Page	of	

Samplers:	Date/Time:

		Sample	e Informa	tion							Field Observations							
Locatio	on ID	Sample ID	Top Depth (feet bgs)	Bottom Depth (feet bgs)	Sample Date/Time	Fill /Waste /Native	Soil Type	Grain Size	Color	Moisture	MGP Impacts	MGP Waste Type	Shake Test Results	Viscosity	Odors Present	Odor Strength	Comment	
F8	A	516008-F8A04	3	4	1/0/1900 00:00	Other see comments	Sand	medium	light brown	moist	Stained	NA	NA	NA	Fuel oil-like	Strong	Black stained	

PROJECT NAME:		Lake OU01		TATION	N CALIBRA	TION RECO TASK NO:	.03	DATE:
PROJECT NUMBER:	36111912		PDI			MACTEC CREW		DATE:
PROJECT LOCATION:		ac Lake, NY				SAMPLER NAM		
WEATHER CONDITION		ac Eure, 111				SAMPLER SIGN		
WEATHER CONDITION	· · · · —					CHECKED BY:		DATE:
MULTI-PARAMETER V		TY METER	2					
METER TYPE								
MODEL NO.		C44 T		CALIBRATI				CION CHECK Cnd Time
UNIT ID NO.		Start 1	ıme	/End T	ime	Start Time	/E	and Time
	Units	Standard Value			*Acceptance Criteria (AM)	Standard Value	Meter Value	*Acceptance Criteria (PM)
pH (		4.0			0.1 pH Units			
pH (		7.0			0.1 pH Units	7.0		+/- 0.3 pH Units
pH (1		10.0			0.1 pH Units	240		/ 40 - 77
Red		240			10 mV	240		+/- 10 mV
Conductiv	•	1.413			0.5 % of standard	1.413		+/- 5% of standard
DO (saturate		100			2% of standard			
	ed) mg/L ^{1 (see Chart}				0.2 mg/L			+/- 0.5 mg/L of
DO (<0.	, -	< 0.1		< (	0.5 mg/L			standard
Temperatu								
Baro. Pre	ess. mmHg							
TURBIDITY METER			Units	Standard	Meter	Standard	Meter	*Acceptance
METER TYPE MODEL NO.				Value	Value	Value	Value	Criteria (PM)
UNIT ID NO.	<0.1	Standard	NTU	< 0.1		<0.1		+/- 0.3 NTU of stan.
		Standard	NTU	20		20		+/- 5% of standard
		Standard	NTU	100		100		+/- 5% of standard
		Standard	NTU	800		800		+/- 5% of standard
PHOTOIONIZATION D								
METER TYPE MODEL NO.		ckground	ppmv	<0.1		<0.1		within 5 ppmv of BG
UNIT ID NO.		Span Gas	ppmv	100		100		+/- 10% of standard
O ₂ -LEL 4 GAS METER								
METER TYPE		Methane	%	50		50		+/- 10% of standard
MODEL NO.		$O_2$	%	20.9	<u> </u>	20.9		+/- 10% of standard
UNIT ID NO.		$H_2S$	ppmv	25		25		+/- 10% of standard
		CO	ppmv	50		50		+/- 10% of standard
OTHER METER								
METER TYPE								C N - 4 D - 1
MODEL NO.								See Notes Below for Additional
UNIT ID NO.					_			Information
				-				
Equipment calibrate	ed within the Accepta	nce Criteria sp	ecified for ea	ch of the parame	eters listed above.			
Equipment (not) cal	ibrated within the Ac	cceptance Crite	ria specified	for each of the p	arameters listed above	re**.		
MATERIALS RECORD						Cal. Standard Lot N	Number	Exp. Date
					pH (4)			
Deionized Water Source: _		Portland F	OS		pH (7)			
Lot#/Date Produced:					pH (10)			
Trip Blank Source:					ORP			
Sample Preservatives Sour					Conductivity			
Disposable Filter Type:		0.45µm cellulo	ose		<0.1 Turb. Stan.			
Calibration Fluids / Standa		T.	41cm J FOS		20 Turb. Stan.			
- DO Calibration Fluid (<	(U.1 IIIg/L)	Poi	rtland FOS		100 Turb. Stan. 800 Turb. Stan.			
- Other - Other					PID Span Gas			
- Other					O ₂ -LEL Span Gas			
					O ₂ -LEL Span Gas_ Other			
NOTES.					Other			

#### NOTES:

1 = DO Saturated standard value is calculated based on Oxygen Solubility at Indicated Pressure Chart from the USEPA Region 1 SOP for Field Instrument Calibration (EQASOP-FieldCalibrat), dated 1/19/2010.



FIGURE 6.1 FIELD INSTRUMENT CALIBRATION RECORD NYSDEC QUALITY ASSURANCE PROJECT PLAN

^{* =} Unless otherwise noted, calibration procedures and acceptance criteria are in general accordance with USEPA Region 1 SOPs for Field Instrument Calibration (EQASOP-FieldCalibrat) and Low Stress Purging and Sampling (EQASOP-GW001), each dated 1/19/2010. Additonal acceptance criteria obtained from instrument specific manufacturer recommendations.

** = If meter reading is not within acceptance criteria, clean/replace probe and re-calibrate, or use calibrated back-up meter if available. If project requirements necessitate use of the instrument, clearly document any

deviations from acceptance criteria on all data sheets and log book entries.

#### **GRAB SAMPLING RECORD - WATER** LOCATION ID DATE MACTEC Saranac Lake OU01 PDI PROJECT NUMBER START TIME END TIME 3611191237 511 Congress Street SAMPLE ID SAMPLE TIME SITE NAME/INSTALLATION PAGE Suite 200 OF Portland, Maine 04101 SAMPLE TYPE: GROUNDWATER SURFACE WATER STORM WATER DRINKING WATER PORE WATER OTHER: FIELD PARAMETERS WITH PROGRAM STABILIZATION CRITERIA (AS LISTED IN THE QPP) TURBIDITY DISS. O₂ (mg/L) REDOX PUMP PURGE RATE CONDUCTANCE TEMP. (°C) pH (units) (ntu) TIME DTW (FT) INTAKE COMMENTS ±10% or 3 values <0.5 mg/L (mv) (mL/min) ±3% (mS/cm) ±10% and <10 ntu DEPTH (ft) ±10 mv ±3% or 3 values <5 ntu TEMP:: nearest degree (ex. 10.1 = 10) COND: 3 significant figure (SF) max (ex. 1.686 = 1.69) pH: nearest tenh (ex. 5.33 = 5.5) DO: nearest tenh (ex. 5.31 = 3.5) TURB: 3 SF max, nearest tenh (6.19 = 6.2, 101 = 101) ORP: 2 SF (44.1 = 44, 191 = 190) FINAL STABILIZED FIELD PARAMETERS (rounded to appropriate significant figures) EQUIPMENT DOCUMENTATION TYPE OF PUMP DECON FLUIDS USED TUBING/PUMP/BLADDER MATERIALS EQUIPMENT USED PERISTALTIC SILICON TUBING S. STEEL PUMP MATERIAL WL METER ALCONOX SUBMERSIBLE DEIONIZED WATER HDPE TUBING PVC PUMP MATERIAL PID WQ METER BLADDER POTABLE WATER LDPE TUBING GEOPROBE SCREEN WATTERA NITRIC ACID OTHER OTHER TURB. METER HYDRASLEEVE HEXANE OTHER PUMP OTHER METHANOL OTHER OTHER OTHER FILTERS TYPE ANALYTICAL PARAMETERS FIELD PRESERVATION PARAMETER METHOD NUMBER ANALYTE LIST VOLUME REQUIRED QC COLLECTED FILTERED METHOD NOTES: PURGE WATER NUMBER OF GALLONS CONTAINERIZED GENERATED NO-PURGE METHOD YES NO UTILIZED DEVIATIONS FROM THE WORK PLAN: Print Name: Sampler Signature:

Checked By:

Date:

					LUV	V FLO	w GRO	UNDY	VA.	ILK SA	WILL	ANG KI		ΔD				
	PROJEC			24 DD					LOC	CATION ID			DATE			]		
		nac Lak		JIPD	<u> </u>				STA	RT TIME			END '	TIME				
		191237																
	SAMPLE	ID			SA	MPLE TIN	ΙE			e name/nu 6008	JMBER		PAGE	OF				
WELL DIA	METER (II	NCHES)													CAR	WELL I	NTEGRITY S NO N/A	
TUBING ID	(INCHES)		1/8		1/4 3/8		1/2	5/8		OTHER					CAP CASING			
MEASUREM	MENT POI	NT (MP)		TOP OF	RISER (TOR)	TOI	OF CASING	(TOC)		OTHER _					LOCKED COLLAR	=	= =	
INITIAL (BMP)	DTW			FT	FINAL DTW (BMP)			FT		OT, CASING CKUP (AGS				T	TOC/TOR DIFFERENCE	Ξ		FT
WELL D (BMP)	ЕРТН			FT	SCREEN LENGTH			FT	PID AMI	BIENT AIR			P	PM	REFILL TIM SETTING	ER		SEC
WATER COLUM	N	0.00		FT	DRAWDOWN VOLUME	0.0		GAL	MO	WELL UTH			P	PM	DISCHARGE TIMER SETT			SEC
CALCUL GAL/VO		0.00		GAL	(initial DTW- final I TOTAL VOL. PURGED	OTW X wel		d X 0.041) GAL	DRA	AWDOWN/ FAL PURGI	E <b>D</b>				PRESSURE TO PUMP			PSI
(column X	well diam		ed X 0.04	1)	(mL per minute X to		X 0.00026 ga	1/mL)									L	
TIME 3-5 Minutes	DTW 0.0-0	(FT)	PURGI	AM STA E RATE /min)	TEMP. (°C)	SP. CON	LISTED IN T DUCTANCE nS/cm)	pH (un (+/- 0.1 u	its)	DISS. O ₂ (+/- 10		TURBIDITY (+/- 10% <10		REDOX (mv)	PUMP INTAKE		COMMENTS	
3-3 Millutes	Draw			/111111)	(+/- 3 degrees)	(+	/- 3%)	(+/- 0.1 (	iiiis)	(+/- 10	70)	(+/- 10/6 <1)	o iitu)	(+/- 10 mv)	DEPTH (ft)			
	BEG	IN PUR	GING															
													_					
													-					
													_					
															TEMP.: nearest de	egree (ex. 10	1 = 10)	
		FIN	NAL ST	ABILIZ	ZED FIELD PAR	AMETE	RS (to appr	opriate	signi	ficant figu	res[SI	7)			COND.: 3 SF max pH: nearest tenth (	(ex. 3333 = ex. 5.53 = 5.	3330, 0.696 = 0.696) .5)	
															DO: nearest tenth TURB: 3 SF max, ORP: 2 SF (44.1 =	nearest tentl	n (6.19 = 6.2, 101 = 101)	
EQUIPMENT			N		ECON EL LIDE LICED			TUDE	JC/DI	DAD/DL A DDI	D MATI	CDIALC			[OM: 251 (11.1	EQUIDME	NE LICED	
PERI	TYPE OF PI	UMP			ECON FLUIDS USED LIQUINOX		SILICON T	UBING	NG/PC	JMP/BLADDE	S. STE	EL PUMP MAT			WL MI		NT USED	
BLAI	MERSIBLE ODER				DEIONIZED WATER POTABLE WATER		TEFLON T	INED TUB	ING	Ħ	GEOPE	JMP MATERIA ROBE SCREEN			PID WQ MI			
	TERA				NITRIC ACID HEXANE		LDPE TUB				OTHE				PUMP	METER		
OTH	ER				METHANOL OTHE <u>R</u>	<u>. H</u>	OTHER OTHER			<u>: Н</u>	OTHE				OTHER FILTER		TYPE	
ANALYTI		AMETER: PARAME			METHOI		FIELD			VATION		DLUME		MPLE	QC		SAMPLE BOTTLE	E ID
	VOC				NUMBEI 8260C	}	FILTERED No		мет <b>;</b> , <b>Н</b> (	HOD CI	REG	QUIRED	COLL	ECTED	COLLECTED		NUMBERS	
	SVOC	;			8270D		No	40	_									
$\vdash$								- —										
	PFAs				537		No	40	;						-			
	1,4-Di	oxane			8270-SIM		No	40								_		
PURGE O									S	KETCH/NO	OTES							
PURGE WA		YES	NO	]	NUMBER OF GAL GENERATED	LONS												
NO-PURGI UTILIZED	Е МЕТНОГ	YES	NO V		If yes, purged approxisto sampling or		ding volume pri his sample loca											
				-			-											
Sampler Sig					Print Name:													
Checked By			-		Date:				<u> </u>									



nitial DTW (ft bmp):	op of Riser  ogger File ID	Test Method	Start Time	Well Diameter ( Boring Diamete Slug Volume (g Estimated Wate Displacement (f	er (in): al.): er Column	End Depth (ft)	Comments
Measuring Point: To Initial DTW (ft bmp): Well Depth (ft bmp): Technician(s):		Test Method	Start Time	Slug Volume (g Estimated Wate Displacement (f	al.): er Column ft):		Comments
nitial DTW (ft bmp): Well Depth (ft bmp): Fechnician(s):		Test Method	Start Time	Estimated Water Displacement (f	er Column ft):		Comments
Technician(s):		Test Method	Start Time	Start Depth			Comments
	ogger File ID	Test Method	Start Time		Start Time		Comments
Data L	ogger File ID	Test Method	Start Time		Start Time		Comments
				+			
				1			
				-			
nstruments (Manufa	acturer, Model, and Ser	rial No.):					
Calculations:							
V = Slug Volume (gal) D = well diameter (in) H = Water column displa	nn displacement: H = V / [( acement (ft)	[D^2)*0.041] = 0.00	0				
3.50	( - )						
Additional Notes:							Signature:

Rev. 1, Date: 11/5/2018 Page 1 of 1

QA/QC'd by:

QA/QC Date:

Name (print):

#### Saranac Lake OU1 PDI PROJECT NUMBER START TIME 3611191237 CLIENT WEATHER Suite 200 NYSDEC Portland, Maine 04101 Field Clothing and PPE (as applicable): **Sample Containers:** Field crew in compliance with Tables 1 and 2, SOP AFW-01 All sample containers made of HDPE or polypropylene. Samples are not stored in containers made of LDPE Field crew has not used fabric softener on clothing Field crew has not used cosmetics, moisturizers, hand cream, or other related Caps are lined or unlined and made of HDPE or polypropylene products on exposed body parts this morning Field crew has not applied unacceptable sunscreen or insect repellant Wet Weather (as applicable): For personnel in direct contact with samples and/or sampling equipment, wet weather gear made of Vinyl, polyurethane, PVC, latex or rubber-coated Field Clothing and PPE (as applicable): materials only No Teflon® containing materials on-site All sample materials made from stainless steel, HDPE, acetate, silicon, or **Equipment Decontamination:** polypropylene 'PFAS-free" water on-site for decontamination of sample equipment Alconox and Liquinox to be used as decontamination materials No waterproof field books on-site other than Rite-in-the-Rain® Products No plastic clipboards, binders, or spiral hard cover notebooks on-site **Equipment Decontamination:** No adhesives (Post-it® Notes) on-site No food or drink on-site with exception of bottled water and/or hydration drinks (i.e., Gatorade and Powerade) that is available for consumption only in the Coolers filled with regular ice only. No chemical (blue) ice packs in staging area possession If any applicable boxes cannot be checked, the Field Manager shall describe the noncompliance issues Describe the noncompliance issues (include personnel not in compliance) and action/outcome of elow and work with field personnel to address noncompliance issues prior to commencement of that day noncompliance: work. Corrective action shall include removal of noncompliance items from the investigation area or removal of worker offsite until in compliance. Repeated failure to comply with PFC sample protocols will result in the permanent removal of worker(s) from the investigation area. Sampler Signature: Print Name: Checked By: Date:

# Rinsate Blank Tracking

Rinsate Blank Sample I.D.: Date/Time: DI Water Source: Equipment Used:	
Sample I.D.s associated with above Rinsate Blank	Comment

# $\label{eq:appendix} \textbf{APPENDIX} \ \textbf{C}$ NYSDEC FIELD DESCRIPTIONS OF SAMPLES FOR FORMER MANUFACTURED GAS PLANT (MGP) SITES

# <u>Field Descriptions of Samples for</u> Former Manufactured Gas Plant (MGP) Sites

# **SOIL SAMPLE DESCRIPTIONS**

It is important that descriptive qualifiers are consistently used to characterize degree and nature of contaminant impacts and visual-manual soil classification. The following presents some examples of descriptive qualifiers.

### **SOIL LOGGING**

- All soils are to be logged using the **Unified Soil Classification** (ASTM D 2488 field descriptions)
- **PID or FID** used to screen all soil samples (Jar Headspace method) maximum readings should be recorded and included on the logs. The PID/FID should be calibrated daily at a minimum
- Moisture terms are: Dry, Moist, and Wet
- Color terms use geotechnical color charts colors may be combined: e.g. red-brown. Color terms should be used to describe the "natural color" of the sample as opposed to staining caused by contamination (see below)
- Log of each sample interval should be prepared as follows:

[Coarse Grained Example] NARROWLY GRADED SAND (SP); mostly fine sand; <5% fines; red-brown, moist, environmental/depositional/geologic descriptions.

[Fine Grained Example] SANDY SILT (ML); heterogeneous till structure, nonplastic, ~30% fine to coarse, subangular sand; ~10% subangular fine gravel, max. size ~ 10 mm; brown; environmental/depositional/geologic descriptions.

- **Representativeness** Soil logs should include particular notes if the field representative believes that there is a possibility that the soil sample being described is not representative of the interval sampled.
- Intervals for Description if using a 2' (split spoon) or 4' (Macro-core) long sampler the field description should not necessarily be for the entire sample interval. It is important to look for, identify, and describe small-scale units and changes within each sample interval.

# **DESCRIPTION OF CONTAMINANTS**

# **Visible Contamination Descriptors**

- Sheen iridescent petroleum-like sheen. Not to be used to describe a "bacterial sheen", which can be distinguished by its tendency to break up on the water surface at angles, whereas a petroleum sheen will be continuous and will not break up. A field test for sheen is to put a soil sample in a jar of water and shake the sample (jar shake test), then observe the presence/absence of sheen on the surface of the water in the jar.
- **Stained** used w/ color (i.e. black or brown stained) to indicate that the soil matrix is stained a color other than the natural (unimpacted) color of the soil.
- **Coated** soil grains are coated with tar/free product there is not sufficient free-phase material present to saturate the pore spaces. The degree of coating should be described as light, moderate, or heavy.
- **Blebs** observed discrete sphericals of tar/free product but for the most part the soil matrix was not visibly contaminated or saturated. Typically this is residual product. The estimated size and number of blebs should be reported.
- **Saturated** the entirety of the pore space for a sample is saturated with the tar/free product. Care should be taken to ensure that you're not observing water saturating the pore spaces if you use this term. Depending on viscosity, tar/free-phase saturated materials may freely drain from a soil sample.
- Oil Used to characterize free and/or residual product that exhibits a distinct fuel oil or diesel fuel like odor; distinctly different from MGP-related odors/impacts.
- Tar Used to describe free and/or residual product that exhibits a distinct "coal tar" type odor (e.g. naphthalene-like odor). Colors of product can be brown, black, reddish-brown, or gold.
- **Solid Tar** Used to describe product that is solid or semi-solid phase. The magnitude of the observed solid tar should be described (e.g. discrete granules or a solid layer).
- **Purifier Material** Purifier material is commonly brown/rust or blue/green wood chips or granular material. It is typically associated with a distinctive sulfur-like odor. Other colors may be present.

# **Olfactory Descriptors**

- Use terms such as "tar-like odor" or "naphthalene-like odor" or "fuel oil-like odor" that provide a qualitative description (opinion) as to the possible source of the odor.
- Use modifiers such as strong, moderate, faint to indicate intensity of the observed odor.

### DNAPL/LNAPL

• A jar shake test should be performed to identify and determine whether observed tar/free phase product is either denser or lighter than water. In addition, MGP residues can include both light and dense phases - this test can help determine if both light and dense phase materials are present at a particular location.

**Viscosity of Free-Phase Product** – If free-phase product/tar is present a qualitative description of viscosity should be made. Use descriptors such as:

- Highly viscous (e.g. taffy-like)
- Viscous (e.g. No. 6 fuel oil or bunker crude like)
- Low viscosity (e.g. No. 2 fuel oil like)

# GROUNDWATER SAMPLING OBSERVATIONS

• Any observations of sheen, blebs, free-phase product/tar, staining or coating of the sampling equipment, odor, etc. that made during sampling of groundwater are to be included in the groundwater sample collection log.

# Standard Colors for Reporting MGP Impacts

	RGB Color	Auto Cad Index
TAR SATURATED	255,0,0	10
COATED MATERIAL, LENSES	255,0,255	210
HARDENED TAR	129,64,0	34
BLEBS, GLOBS, SHEEN	255,191,0	40
STAINING, ODOR	255,255,0	50
PETROLEUM IMPACTS SATURATION & SHEENS	0,191,255	140
PETROLEUM IMPACTS STAINING & ODORS	170,234,255	141
PURIFIER WASTE AND ODOR	0,0,255	170
NO OBSERVED IMPACTS	0,165,0	92

# APPENDIX D OU02 AND OU03 WELL AND PIEZOMETER CONSTRUCTION LOGS

		SOIL	BORING	LOG			
MINTAC	CTEC	Project Name:	Saranac Lake	e Gas Company		Boring II	D: SB/PZ-301
INTUI		Project Location:	Saranac Lake,	NY		Page No.	1
511 Congress Street, Portl	and Maine 04101	Project No.: 361116	51193	Client: NYSD	EC	of	: 1
oring Location:			NA	Total Depth:	12' bgs	Bore Hol	e ID/OD: 2.25"
eather: Overcast (35° F)			12 '	Method: Direct	Push	Casing S	ize: 2.25"
	Environmental			Protection Level:	D	Sampler:	
riller: Mike Dudley		Date Started:	11/17/2016	Date Completed:	11/17/2016	Sampler	
g Type/Model: Geoprob	e/Bobcat	+	D. Farrell	Checked By:	B. Havens	1	
eference Elevation:		+	~ 4.0 ft bgs	Time: 830		İ	
Sample Information	Monitoring						
Sample Number Penetration/ Recovery (feet)	PID Waste Encountered	San	nple Description	on and Classification	n	USCS Group Symbol	Remarks
		0 - 1.8	No recovery				
2 1 4.0/2.8	0.0 NOI	1.8 - 2.2	Organics, dark b	rown fine sand, leaves	/twigs	Pt	
3		2.2 - 4.0	Light brown, me	dium sand, dry poorly	graded	SP	
4							$\nabla$ 4.0 ft bgs
5	0.0 NOI	4.0 - 5.6	Same as above, 1	now wet		SP	
6 2 4.0/3.3		,	wet	y fine sand with trace		SP	
8		6.9 - 8.0	Dark brown, fine	e to medium sand, wet	, poorly graded	SP	
9	0.0 NOI	8.0 - 10	Gray/brown, med	dium sand, poorly grad	led, wet	SP	
3 4.0/2.8		10 - 12	Light brown/gray	y, fine to medium sand	, poorly graded	SP	
12							
		Botte	om of Boring - 1	2' bgs			

SOIL BORING LOG

**NOTES:** No observable impacts

WELL/PIEZOMI	ETER CONSTR	UCTION DIAGRAM	I STICKUP	LOCATION		-301	
Project Name: Project Location: Project Number:	Saranac Lake Gas Co Saranac Lake, NY 3611161193	Task Number	.03	Date Started: Logged By: Checked By:	11/17/2016 D. Farrell B. Havens	Date Completed: Checked Date:	11/17/2016
Subcontractor:  Development Method:	Precision Environmen Low Flow / Purge	<del></del>	Direct Push	_		oint Information	1/3/2017
Bucking Posts/Ballards: Notes:	NA			Measuring Po		Top Of I	Riser
Item	Depth BMP (ft)	Elevation (ft)			Desc	ription	
Stickup		=		Lock Identifica	ntion	NA	
Riser Pipe (Top)				Stickup Casing	g Type:	NA	
Ground Surface Elevation	o <u>n</u>			Stickup Casing	Diameter:	NA	
				Surface Seal T	ype:	Hydrated 3/8 Ben	onite
				Backfill/Grout	Type:	Hydrated 3/8 Ben	tonite
				Riser Pipe Typ	e:	1 3/8 Sch. 40 PVC	2
				Riser Pipe ID:		1 "	
Top of Well Seal	0.0			Borehole Diam	neter:	2.25"	
Top of Sand Pack	1.0 ft bgs		<b>—</b>	Type of Seal:		Hydrated 3/8 Ben	tonite
Top of Screen	2.0 ft bgs						
Top of Sereen	2.010 053			Screen Type:		Slotted 1 3/8 Sch.	40 PVC
				Screen ID:		1"	
				Screen Slot Siz	ze:	0.010"	
				Screen Length:	:	10'	
Base of Screen	12.0 ft bgs		•	Filter/Sand Pac Type:	ck	#1 Sand (Filpro Q	uartz)
				Cump			
End Cap  Drillad Donth	12.0 ft bgs			Sump: Fallback/Backf	511.	NΑ	
Drilled Depth  Bottom of Exploration	12.0 ft bgs 12.0 ft bgs			Panuack/ Dacki	.111.	NA	
Bedrock Surface	NA					NO	Γ TO SCALE
Dedition Bullact	11/1					NO	LIUBCALE



FIGURE 4.7 WELL/PIEZOMETER CONSTRUCTION DIAGRAM - STICKUP NYSDEC QUALITY ASSURANCE PROJECT PLAN

							SO	IL BORING	G LOG			
1		NA	Λ	-	<u> П</u>	EC	Project Name:	Saranac Lak	e Gas Company		Boring II	): SB/PZ-302
		IVI		11	LL.	L	Project Location:	Saranac Lake,			Page No.	1
	511 C	Congress S	Street,	Portla	and Maine (	04101	Project No.: 3611	161193	Client: NYSDI	EC	of	1
Bori	ng Lo	cation:	~50	ft eas	t of MW-	104	Refusal Depth:	NA	Total Depth:	16' bgs	Bore Hole	e ID/OD: 2.25"
Wear	ther:	Overcas	st (35°	° F)			Soil Drilled:	16'	Method: Direct l	Push	Casing Si	ze: 2.25"
Subc	ontra	ctor:	Prec	ision	Environm	ental			Protection Level:	D	Sampler:	Macrocore
Drill	er:	Mike D	udley				Date Started:	11/9/2016	Date Completed:	11/9/2016	Sampler l	D/OD: 2.0"
		Model:		probe	e/Bobcat		Logged By:	D. Farrell	Checked By:	B. Havens		
_		Elevation					Water Level:	~ 9.6 ft bgs	Time: 920			
	Samp	le Inform	natio	n	Mo	onitoring	ļ					
O Depth (feet bgs)	Sample Number	Penetration/ Recovery (feet)			PID	Waste Encountered	S	ample Descripti	on and Classification	1	USCS Group Symbol	Remarks
1							0 - 1.1	No recovery				
					0.9	NOI	1.1 - 1.2	Black.dark brow	vn, organics, fine sand,	poorly graded	Pt	
2					(see note)							
	1	4.0/2.9					1.2 - 4.0	Light orange/light	ht brown, fine sand, poo	orly graded, moist	SP	
3	1	4.0/2.9			0.9							
3												
4						$\downarrow$						
					1		4.0 - 8.0	Light orange/lig	ht brown, fine sand, poo	orly graded, moist	SP	
5					0.9	NOI						
6												
	2	4.0/4.0			0.9							
7												
8												
H			<b></b>	<b></b>								
9					0.0	NO	8.0 - 8.3	Cave-in from ab	JUVE		SP	
-					0.9	NOI	8.3 - 8.5	Brown, fine san	ds with trace silts, poorl	ly graded, moist	SP	
10												$\nabla$ 9.6 ft bgs
	3	4.0/4.0					8.5 - 12	Light brown, fin	ne sands with some silts.	, poorly graded, wet	SM	
11					0.9					•		
12												
Ĺ			<u> </u>	<u> </u>	<b>_</b>	<u> </u>					]	
13							12.0 - 12.4	Cave-in from ab	oove			
13					0.9	NOI	12.4 - 16.0	Light brown, fin	e to medium sands, poo	orly graded	SP	
1.4												
14												
	4	4.0/4.0			0.9							
15												
16								Bottom of I	Boring - 16' bgs			
NOT	TEG.	No obser	woblo	impoo	nto.		<u> </u>	20.com of 1				

**NOTES:** No observable impacts

Well installed 6 - 16'bgs

PID recalibrated after boring, reading 0.9 ppm as background ambient

SOIL BORING LOG

#### LOCATION ID: WELL/PIEZOMETER CONSTRUCTION DIAGRAM STICKUP PZ-302 11/9/2016 11/9/2016 Project Name: Date Started: Date Completed: Saranac Lake Gas Company Project Location: Saranac Lake, NY Logged By: D. Farrell Project Number: 3611161193 Task Number .03 Checked By: B. Havens Checked Date: 1/5/2017 Subcontractor: Precision Environmental Drilling Method: Direct Push **Measuring Point Information** Development Date: 11/18/2016 Development Method: Low Flow / Purge Bucking Posts/Ballards: NA Top Of Riser Notes: Measuring Point (MP) Type MP Elevation (ft): Item Depth BMP (ft) Elevation (ft) Description Lock Identification NA Stickup Riser Pipe (Top) Stickup Casing Type: Stickup Casing Diameter: Ground Surface Elevation NA Surface Seal Type: Hydrated 3/8 Bentonite Backfill/Grout Type: Hydrated 3/8 Bentonite Riser Pipe Type: 1 3/8 Sch. 40 PVC Riser Pipe ID: Borehole Diameter: 2.25" Top of Well Seal 0.0 Type of Seal: Hydrated 3/8 Bentonite Top of Sand Pack 3.0 ft bgs Top of Screen 6.0 ft bgs Screen Type: Slotted 1 3/8 Sch. 40 PVC Screen ID: 0.010" Screen Slot Size: Screen Length: 10' Filter/Sand Pack #1 Sand (Filpro Quartz) Type: Base of Screen 16.0 ft bgs End Cap 16.0 ft bgs Sump: Drilled Depth Fallback/Backfill: 16.0 ft bgs NA 16.0 ft bgs Bottom of Exploration



NA

Bedrock Surface

FIGURE 4.7
WELL/PIEZOMETER CONSTRUCTION DIAGRAM - STICKUP
NYSDEC QUALITY ASSURANCE PROJECT PLAN

NOT TO SCALE

	SC	OIL BORING	G LOG			
					Boring II	D: SB/PZ-303
<b>MACTEC</b>	Project Location:		te Gas Company		Dogo No	1
511 Congress Street, Portland Maine 04101	Project No.: 36		Client: NYSDE	EC.	Page No.	
Boring Location: ~50 ft east of SB-304	Refusal Depth:	7.5 ' bgs	Total Depth:	7.5' bgs	Bore Hol	
Weather: Overcast (35° F)	Soil Drilled:	7.5'	Method: Direct F		Casing Si	
Subcontractor: Precision Environmental	Bon Dinica.	7.3	Protection Level:	D	Sampler:	
Driller: Mike Dudley	Date Started:	11/9/2016	Date Completed:	11/9/2016	Sampler	
Rig Type/Model: Geoprobe/Bobcat	Logged By:	D. Farrell	Checked By:	B. Havens	1	
Reference Elevation:	Water Level:	~ 2.5 ft bgs	Time: 1115			
Sample Information Monitoring						
Sample Number Penetration/ Recovery (feet) PID Waste Encountered		Sample Descript	ion and Classification	ı	USCS Group Symbol	Remarks
	0 - 2.0	No recovery				
2 0.0 NOI	2.0 - 2.6		ge to light brown/dark gr ly graded wet at 2.5	ray, fine sands with	Pt/SM	
3 1 4.0/2.0 0/0	2.6 - 4.0	Gray fine to me	edium sand, poorly grade	d wet	SP	<u>∨ 2.5</u> ft bgs
4						
5 0.0 NOI		sampler due to	nable to collect core from buildup of fine sands ush from sampler shows			
2 3.5/0.0		impacts	brown/gray, fine to med		SP	
7.5		graded, wet		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	Potto	um of Poring Pofice	pol at 7.5' has			
	Вошо	om of Boring - Refus	all at 7.5 bgs			
NOTES: No observable impacts Well installed 3 - 8' bgs						SOIL BORING LOG

WELL/PIEZOM	ETER CONSTR	UCTION DIAGRA	AM STICKUP	LOCATIO		Z-303	
	_				11/0/2016	Data Camplatadi	11/0/2016
Project Name:  Project Location:	Saranac Lake Gas C	ompany		Date Started:	11/9/2016 D. Farrell	Date Completed:	11/9/2016
Project Number:	3611161193	Task Number	.03	Logged By: Checked By:	B. Havens	Checked Date:	1/5/2017
Subcontractor:	Precision Environmen	<del></del>		Checked by.	D. Havens		1/3/2017
Development Method:	Low Flow / Purge		Date: 11/18/2016		Measuring	Point Information	
Bucking Posts/Ballards:		Bevelopment B	11/10/2010			1 01110 111101 111111011	
Notes:	1111			Measuring Po	oint (MP) Tvi	ne Top Of R	liser
				MP Elevation		*	
-					,		
Item	Depth BMP (ft)	Elevation (ft)			Des	scription	
Cri al-an		_		Lock Identific	ation	NA	
Stickup		<u>_</u>					
Riser Pipe (Top)	1.92			Stickup Casin	g Type:	NA	
Ground Surface Elevation	on			Stickup Casing	g Diameter:	NA	
				Surface Seal T	'ype:	Hydrated 3/8 Bent	onite
				P. LEWG	T.	W. J 1000 D	
				Backfill/Grout	Type:	Hydrated 3/8 Bent	onite
				Riser Pipe Typ	be:	1 3/8 Sch. 40 PVC	
				Riser Pipe ID:		1 "	
T. CW/110 1	0.0			Borehole Dian	neter:	2.25"	
Top of Well Seal	0.0						
Top of Sand Pack	1.5 ft bgs			Type of Seal:		Hydrated 3/8 Bent	onite
Top of Sand Lack	1.5 it bgs						
T	2064						
Top of Screen	3.0 ft bgs			Screen Type:		Slotted 1 3/8 Sch.	40 PVC
				Screen ID:		1"	
				Screen Slot Si	ze:	0.010"	
				Screen Length	:	5'	
				Fil. (G. 15)			
				Filter/Sand Pa Type:	ck	#1 Sand (Filpro Q	uartz)
Base of Screen	8.0 ft bgs						
End Cap	8.0 ft bgs			Sump:			
Drilled Depth	8.0 ft bgs			Fallback/Back	fill:	NA	
Bottom of Exploration	8.0 ft bgs						



Bedrock Surface

NA

FIGURE 4.7 WELL/PIEZOMETER CONSTRUCTION DIAGRAM - STICKUP NYSDEC QUALITY ASSURANCE PROJECT PLAN

NOT TO SCALE

1	111	NA	Λ	1		EC	Project Name:	Saranac Lal	te Gas Company		Boring ID:	SB/PZ-304
		IVI		1	L	EC	Project Location:				Page No.	1
	511 C	Congress S	treet,	Portla	nd Maine	04101	Project No.: 361		Client: NYSDI	EC	of:	1
oriı	ıg Lo	cation:					Refusal Depth:	NA	Total Depth:	12' bgs	Bore Hole	ID/OD: 2.25"
/eat	her:	Overcas	t (35°	F)			Soil Drilled:	12 '	Method: Direct	Push	Casing Size	e: 2.25"
ubc	ontra	ctor:	Preci	sion	Environn	nental			Protection Level:	D	Sampler:	Macrocore
rill	er:	Mike D	udley				Date Started:	11/9/2016	Date Completed:	11/9/2016	Sampler ID	/OD: 2.0"
ig T	ype/	Model:	Geo	probe	e/Bobcat		Logged By:	D. Farrell	Checked By:	B. Havens		
efe	ence	Elevatio	n:				Water Level:	~ 6.5 ft bgs	Time: 1040			
	Samp	le Inforn	nation	1	Mo	onitoring						
Depth (feet bgs)	Sample Number	Penetration/ Recovery (feet)			PID	Waste Encountered		Sample Descript	ion and Classification	1	USCS Group Symbol	Remarks
1							0 - 1.9	No recovery				
2	1	4.0/2.1			0.0	NOI	1.9 - 2.9	Organics, dark leaves/twigs	brown fine sand, trace s	ilt, poorly graded	SP	
3	1	1.0/2.1					2.9 - 4.0	Light brown, fi	ne sand, poorly graded,	moist	SP	
4						<u> </u>	4.0 - 4.2	No recovery			SP	
5					0.0	NOI	4.2 - 6.0	Light brown/or	ange, fine sand, poorly g	graded, moist		
6	2	4.0/3.8					6.0 - 7.8	Light brown, fi	ne sands trace silts, iron	in water, wet	SP	
7	۷	4.0/3.8										$\nabla$ 6.5 ft bgs
8							7.8 - 8.0	Gray fina cond	s with some silt, wet		SM	
9	•••••				0.0	NOI	7.0 - 0.0	No recovery, u	nable to collect core from buildup of fine sands	n macrocore	SP	
10	3	4.0/2.8						- What soil we p impacts	ush from sampler shows	no signs of waste		
11								- Soils are a ligh graded, wet	brown/brown, fine to m	nedium sand, poorly	SP	
12												
								Bottom of Boring -	12' bgs		-	

NOTES: No observable impacts

Well installed from 1 - 11  $^{\prime}$  bgs

					LOCATIO	N ID:		
WELL/PIEZOM	ETER CONSTR	UCTION DIAGI	RAM S	STICKU	P		Z-304	
Project Name:	Saranac Lake Gas C	ompany			Date Started:	11/9/2016	Date Completed:	11/9/2016
Project Location:	Saranac Lake, NY				Logged By:	D. Farrell		
Project Number:	3611161193	Task Number	·	.03	Checked By:	B. Havens	Checked Date:	1/5/2017
Subcontractor:	Precision Environmen	ntal Drilling Meth	od: D	pirect Push				
Development Method:	Low Flow / Purge	Development	Date: 1	1/18/2016	-	Measuring	Point Information	
Bucking Posts/Ballards:	NA							
Notes:					Measuring Po		oe Top Of F	liser
					- WIP Elevation	i (it):		
Item	Depth BMP (ft)	Elevation (ft)			<b>-</b>	Des	scription	
Stickup					Lock Identific	ation	NA	
_	-	-	T 2	4				
Riser Pipe (Top)	2.85	-	+1		Stickup Casin	g Type:	NA	
Ground Surface Elevation	on			T.	Stickup Casin	g Diameter:	NA	
					Surface Seal T	Type:	Hydrated 3/8 Bent	onite
			1					
					Backfill/Grou	Type:	Hydrated 3/8 Bent	onite
					Riser Pipe Ty	pe:	1 3/8 Sch. 40 PVC	3
					Riser Pipe ID:		1 "	
					Borehole Diar	neter:	2.25"	
Top of Well Seal	0.0							
Top of Sand Pack	1.0 ft bgs				Type of Seal:		Hydrated 3/8 Bent	onite
Top of Screen	1.0 ft bgs							
					Screen Type:		Slotted 1 3/8 Sch.	40 PVC
					Screen ID:		1"	
					Screen Slot Si	ze:	0.010"	
					Screen Length	:	10'	
					Filter/Sand Pa	ck	#1 Sand (Filpro Q	nortz)
Base of Screen	11.0 ft bgs				Type:		#1 Salid (Pilpto Q	uartz)
End Cap	11.0 ft bgs				Sump:			
Drilled Depth	12.0 ft bgs				Fallback/Back	fill:	1.0'	
Bottom of Exploration	12.0 ft bgs							



Bedrock Surface

NA

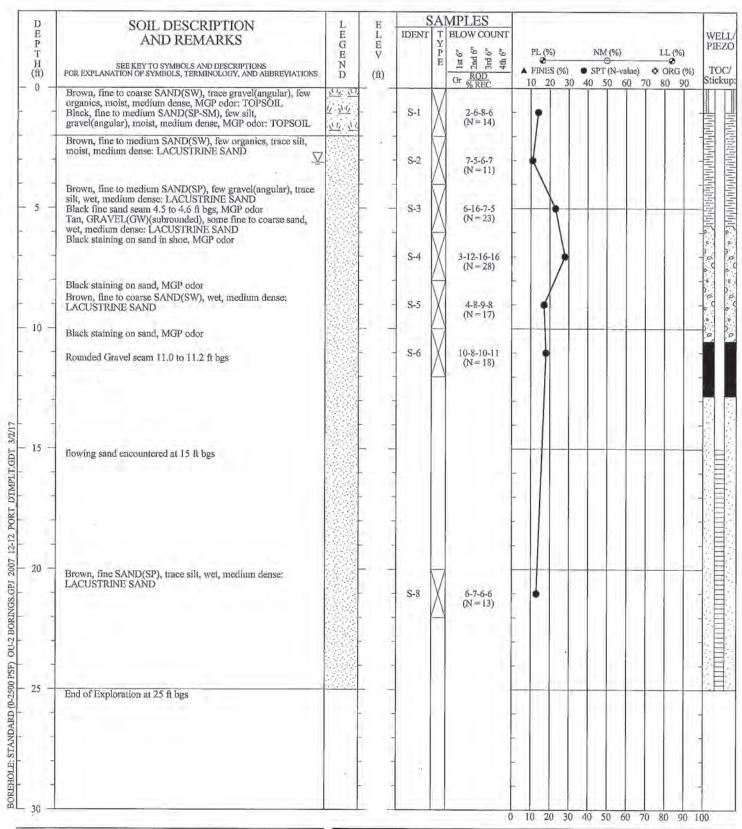
NOT TO SCALE

				LOCATION ID:	
WELL/PIEZOM	ETER CONSTR	UCTION DIAGRA	M STICKUP	PZ	7-311
Project Name:	Saranac Lake Gas C	ompany		Date Started: 11/17/2016	Date Completed: 11/17/2016
Project Location:	Saranac Lake, NY	<u> </u>		Logged By: D. Farrell	
Project Number:	3611161193	Task Number	.03	Checked By: B. Havens	Checked Date: 1/5/2017
Subcontractor:	Precision Environmen	ntal Drilling Method:	Direct Push		
Development Method:	Low Flow / Purge	Development Date	e: <u>01/20/2017</u>	Measuring l	Point Information
Bucking Posts/Ballards:	NA				
Notes:				Measuring Point (MP) Typ	e Top Of Riser
				MP Elevation (ft):	
Item	Depth BMP (ft)	Elevation (ft)		Des	cription
				Lock Identification	NA
Stickup		<del>-</del>			
Riser Pipe (Top)				Stickup Casing Type:	NA
Ground Surface Elevation	on			Stickup Casing Diameter:	NA
				Surface Seal Type:	Hydrated 3/8 Bentonite
			'		
				Backfill/Grout Type:	Hydrated 3/8 Bentonite
				Riser Pipe Type:	1 3/8 Sch. 40 PVC
				Riser Pipe ID:	1 "
				Borehole Diameter:	2.25"
Top of Well Seal	0.0				
Top of Sand Pack	1.0 ft bgs			Type of Seal:	Hydrated 3/8 Bentonite
•					
Top of Screen	2.0 ft bgs		<b>-</b>	Screen Type:	Slotted 1 3/8 Sch. 40 PVC
				Screen ID:	1"
				Screen Slot Size:	0.010"
				Screen Length:	10'
				Filter/Sand Pack	
Base of Screen	12.0 ft bgs			Туре:	#1 Sand (Filpro Quartz)
End Cap	12.0 ft bgs		<b>-</b>	Sump:	
Drilled Depth	12.0 ft bgs			Fallback/Backfill:	NA
Bottom of Exploration	12.0 ft bgs				
Bedrock Surface	NA				NOT TO SCALE



FIGURE 4.7 WELL/PIEZOMETER CONSTRUCTION DIAGRAM - STICKUP NYSDEC QUALITY ASSURANCE PROJECT PLAN

WELL/PIE	ZOMETER CON FLUSHM	STRUCTION DIAG	RAM	LOCATION I		-317	
Project Name:	Saranac Lake Gas Co	mpany		Date Started: 1	1/9/2016	Date Completed:	11/9/2016
Project Location:	Saranac Lake, NY			Logged By:	). Farrell		
Project Number:	3611161193	Task Number	.03	Checked By: E	B. Havens	Checked Date:	1/5/2017
Subcontractor:	Precision Environment	al Drilling Method:	Direct Push				
Development Method:	Low Flow / Purge	Development Date:	11/18/2016	]	Measuring P	oint Information	
Bucking Posts/Ballards:	NA						
Notes:				Measuring Point		Top Of	Riser
				MP Elevation (ft	):		
Item	Depth BMP (ft)	Elevation (ft)			Desc	ription	
Surface Casing Elevation			Slop	oe Away			
Ground Surface Elevation	1			_			
Riser Pipe (Top)				Surface Seal Type	:	Concrete	
				Lock Identification	n	NA	
				Stickup Casing Di	ameter:		
				Backfill/Grout Typ	pe:	Hydrated 3/8 Ber	ntonite
				Riser Pipe Type:		1 3/8 Sch. 40 PV	С
				Riser Pipe ID:		1 "	
Top of Well Seal	0.0			Borehole Diamete	r:	2.25"	
				Type of Seal:		Hydrated 3/8 Ber	itonite
Top of Sand Pack	2.0 ft bgs						
Top of Screen	3.0 ft bgs			Screen Type:		Slotted 1 3/8 Sch	. 40 PVC
				Screen ID:		1"	
				Screen Slot Size:		0.010"	
				Screen Length:		5'	-
				Screen Length.			
			-	Filter/Sand Pack		#1 G 1 (EV) - 6	
Base of Screen	8.0 ft bgs			Type:		#1 Sand (Filpro (	Juartz)
End Cap	8.0 ft bgs			Sump:			
Drilled Depth	9.5 ft bgs			Fallback/Backfill:		1.5 '	
Bottom of Exploration	9.5 ft bgs						
Bedrock Surface	NA					NO	OT TO SCALE




211	1	M	٨	-	T	EC	Project Name:	Saranac Lak	ke Gas Company		Boring ID	: SB/PZ-318
		IVI		1	L	EC	Project Location				Page No.	1
5	11 C	ongress S	treet, l	Portla	nd Maine	04101	Project No.: 36		Client: NYSD	EC	of:	1
oring	, Lo	cation:	Front	yard	of forecl	osed home	Refusal Depth:	NA	Total Depth:	12' bgs	Bore Hole	ID/OD: 2.25"
eath	er:	Overcas	t (40°	F)			Soil Drilled:	12'	Method: Direct	Push	Casing Siz	ze: 2.25"
ubcoi					Environn	nental	1		Protection Level:	D	Sampler:	Macrocore
riller	:	Mike D	udley				Date Started:	11/9/2016	Date Completed:	11/9/2016	Sampler I	D/OD: 2.0"
g Ty	pe/I	Model:	Geor	orobe	/Bobcat		Logged By:	D. Farrell	Checked By:	B. Havens		
	_	Elevatio	n:				Water Level:	~ 3.0 ft bgs	Time: 1430			
Sa	mp	le Inforn	nation		Mo	onitoring						
Depth (feet bgs)	Sample Number	Penetration/ Recovery (feet)			PID	Waste Encountered		Sample Descript	ion and Classification	n	USCS Group Symbol	Remarks
							0 - 1.9	No recovery				
2	1	4.0/2.1			0.0	NOI	1.9 - 2.0	Organics, dark leaves/twigs	brown fine sand, trace s	ilt, poorly graded	SP	
3	1	4.0/2.1					2.0 - 3.7	2.0 - 3.7 Light brown/light gray, fine sand with some gravel with trace silts, well graded				$\sqrt{3.0}$ ft bgs
4							3.7 - 4.0	Gray, fine to m	SP			
5					0.0	NOI		_ Much of the ma looseness of so	acrocore sample fell onto ils. NOI in soil	o table due to	SP	
	2	4.0/0.6						Soils are a gray, fine to medium sand, poorly graded, wet				
						<u>*</u>	8.0 - 8.8	Grav fina to	edium sand, poorly grad	lad wat	SP	
9					0.0	NOI	8.8 - 11.0	-	rk gray, fine sands with		J.F	
10	3	4.0/4.0						,				
1							11.0 - 12.0	Gray, fine sand	s with trace grave, poor	ly graded, wet	SP	
12												

**NOTES:** No observable impacts Well installed 3 - 8' bgs

WELL/PIE	ZOMETER CON FLUSHM	STRUCTION DIAG OUNT	RAM	LOCATION ID: PZ	-318
Project Name:	Saranac Lake Gas Con	npany		Date Started: 11/9/2016	Date Completed: 11/9/2016
Project Location:	Saranac Lake, NY			Logged By: D. Farrell	
Project Number:	3611161193	Task Number	.03	Checked By: B. Havens	Checked Date: 1/5/2017
Subcontractor:	Precision Environmenta		Direct Push		
Development Method:	Low Flow / Purge	Development Date:	11/18/2016	Measuring P	oint Information
Bucking Posts/Ballards:	NA			Manager Daine (MD) Tourne	Ton Of Diggs
Notes:				Measuring Point (MP) Type: MP Elevation (ft):	Top Of Riser
				Pir Elevation (it).	
Item	Depth BMP (ft)	Elevation (ft)		Desc	ription
Surface Casing Elevation			Slop	e Away	
Ground Surface Elevation				Surface Seal Type:	Concrete
Riser Pipe (Top)				Lock Identification	NA
		I		Stickup Casing Diameter:	
				Backfill/Grout Type:	Hydrated 3/8 Bentonite
				Riser Pipe Type:	1 3/8 Sch. 40 PVC
				Riser Pipe ID:	1 "
Top of Well Seal	0.0			Borehole Diameter:	2.25"
			<b>—</b>	Type of Seal:	Hydrated 3/8 Bentonite
Top of Sand Pack	1.5 ft bgs				
Top of Screen	3.0 ft bgs			Screen Type:	Slotted 1 3/8 Sch. 40 PVC
				Screen ID:	1"
				Screen Slot Size:	0.010"
				Screen Length:	5'
			-	Filter/Sand Pack Type:	#1 Sand (Filpro Quartz)
Base of Screen	8.0 ft bgs				
End Cap	8.0 ft bgs			Sump:	
Drilled Depth	12.0 ft bgs			Fallback/Backfill:	4.0 '
Bottom of Exploration	12.0 ft bgs				
Bedrock Surface	NA				NOT TO SCALE





RIG TYPE: Geo Probe 3230DT METHOD: Hollow-Stem Augers

HOLE DIAM.: 4.25" ID

SPTs: 140 lb auto hammer

REMARKS: Boring was backfilled with cement grout. Soil cuttings

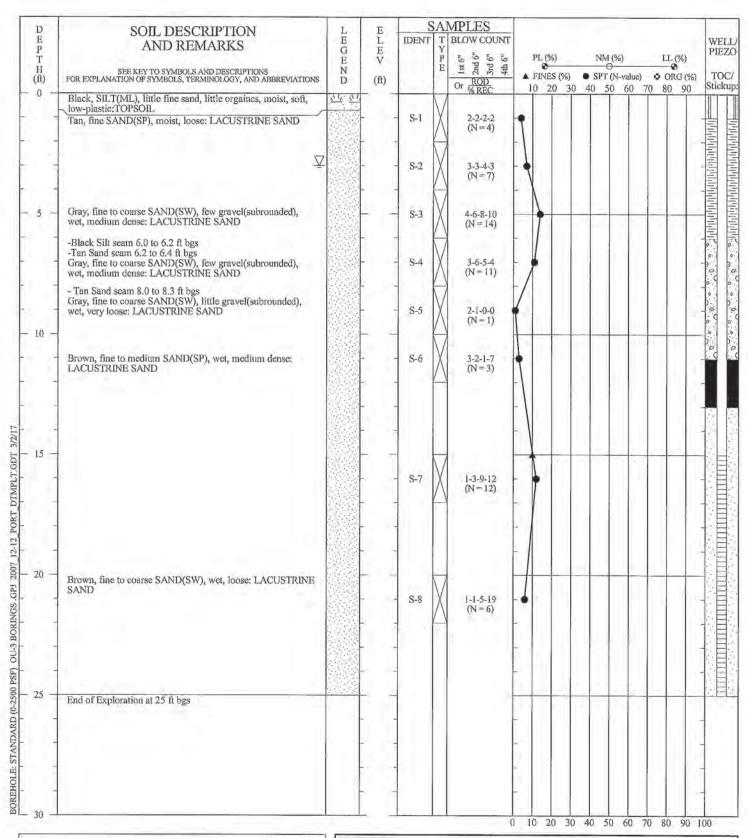
and water were placed in drums.

LOGGED BY: JC CHECKED BY/DATE: JB /

THIS BORING RECORD PRESENTS A REASONABLE INTERPRETATION OF THE SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION, SUBSURFACE CONDITIONS AT OTHER LOCATIONS MAY DIFFER. STRATA INTERFACES (AS SHOWN) ARE APPROXIMATE. ACTUAL TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

# GEOTECHNICAL BORING RECORD

BORING NO.: SB/PZ-328 DRILLED: 11/29/2016


PROJECT: Saranac Lake Gas Company

LOCATION: Saranac Lake, NY PROJECT NO.: 3611161193.03



WELL/PIE	ZOMETER CONS FLUSHMO	TRUCTION DIAGI	RAM	LOCATION ID: PZ	-328
Project Name:	Saranac Lake Gas Com	pany		Date Started: 11/10/2016	Date Completed: 11/10/2016
Project Location:	Saranac Lake, NY			Logged By: D. Farrell	
Project Number:	3611161193	Task Number	.03	Checked By: B. Havens	Checked Date: 1/5/2017
Subcontractor:	Precision Environmental		Direct Push		
Development Method:	Low Flow / Purge	Development Date:	11/18/2016	Measuring P	oint Information
Bucking Posts/Ballards:	NA			74 . D . 4 (34D) //	To Of Disco
Notes:				Measuring Point (MP) Type: MP Elevation (ft):	Top Of Riser
				MF Elevation (it):	
Item	Depth BMP (ft)	Elevation (ft)		Desc	ription
Surface Casing Elevation		_	Slop	e Away	
Ground Surface Elevation	·			Surface Seal Type:	Concrete
Riser Pipe (Top)		/		Lock Identification	NA
				Stickup Casing Diameter:	
			-	Backfill/Grout Type:	Hydrated 3/8 Bentonite
				Riser Pipe Type:	1 3/8 Sch. 40 PVC
				Riser Pipe ID:	1 "
Top of Well Seal	0.0			Borehole Diameter:	2.25"
Top of Sand Pack	2.0 ft bgs		←	Type of Seal:	Hydrated 3/8 Bentonite
Top of Said Lack	2.0 ft bgs				
Top of Screen	3.0 ft bgs			Screen Type:	Slotted 1 3/8 Sch. 40 PVC
				Screen ID:	1"
				Screen Slot Size:	0.010"
				Screen Length:	5'
			-	Filter/Sand Pack Type:	#1 Sand (Filpro Quartz)
Base of Screen					
End Cap				Sump:	
Drilled Depth	15.0 ft bgs			Fallback/Backfill:	
Bottom of Exploration	15.0 ft bgs				
Bedrock Surface	NA		<del></del>		NOT TO SCALE





RIG TYPE: Geo Probe 3230DT METHOD: Hollow-Stem Augers

HOLE DIAM.: 4.25" ID

SPTs: 140 lb auto hammer

REMARKS: Boring was backfilled with cement grout. Soil cuttings

and water were placed in drums.

LOGGED BY: JC

CHECKED BY/DATE: JB/

# 3/2/017 THIS BORING RECORD PRESENTS A REASONABLE INTERPRETATION OF THE SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS MAY DIFFER. STRATA INTERFACES (AS SHOWN) ARE APPROXIMATE. ACTUAL TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

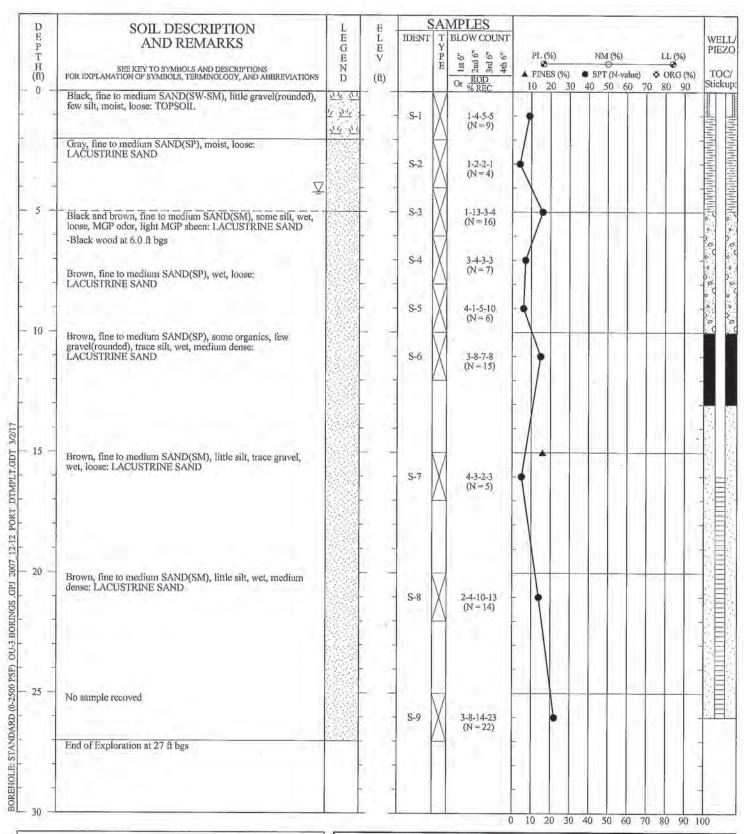
# GEOTECHNICAL BORING RECORD

BORING NO.: SB/PZ-331 DRILLED: 11/28/2016

11/20/2010

PROJECT: Saranac Lake Gas Company

LOCATION: Saranac Lake, NY


PROJECT NO.: 3611161193.03



SOIL BORING LOG						
Project Name:  Saranac Lake Gas Company  Project Location: Saranac Lake, NY  Page No. 1						
MINCIE	Project Location: Saranac Lake, NY	Page No. 1				
511 Congress Street, Portland Maine 04101	of: 1					
Boring Location: Yard of Adrirondack Inn	Refusal Depth: 9.0' bgs Total Depth: 9.0' bgs	Bore Hole ID/OD: 2.25"				
Weather: Overcast (40° F)	Soil Drilled: 9.0 ' Method: Direct Push	Casing Size: 2.25"				
Subcontractor: Precision Environmental	Protection Level: D	Sampler: Macrocore				
Driller: Mike Dudley	Date Started: 11/10/2016 Date Completed: 11/10/2016	Sampler ID/OD: 2.0"				
Rig Type/Model: Geoprobe/Bobcat	Logged By: D. Farrell Checked By: B. Havens					
Reference Elevation:						
Sample Information Monitoring						
Sample Number Penetration/ Recovery (feet) PID Waste Encountered	Sample Description and Classification	OSCS Group Remarks				
1 0.0 NC	0 - 1.7 No recovery	<u> </u>				
—         0.0   NC						
2	1.7 - 2.0 Organics, brown fine sand, grass					
3 4.0/2.3	2.0 - 4.0 Brown, fine sand with trace silts, moist to wet, poorly graded	SP				
4						
5	4.0 - 4.2 No recovery					
0.0 NC	4.2 - 6.2 Gray, medium sands with trace gravel, wet, poorly grad	ed				
6     2     4.0/3.8       7	6.2 - 8.0 Light brown/gray, fine sand with trace silts, poorly grad wet	ed,				
8						
9 3 1.0/1.0 0.0 NC	8.0 - 9.0 Dark gray, medium sands, some gravel, poorly graded,	wet				
0.0						
NOTES: No observable innacts						
NOTES: No observable impacts		SOIL BORING LOG				

WELL/PIE	ZOMETER CONS FLUSHMO	STRUCTION DIAGE DUNT	RAM	LOCATION ID: PZ	-332
Project Name:	Saranac Lake Gas Com	pany		Date Started: 11/10/2016	Date Completed: 11/10/2016
Project Location:	Saranac Lake, NY			Logged By: D. Farrell	
Project Number:	3611161193	Task Number	.03	Checked By: B. Havens	Checked Date: 1/5/2017
Subcontractor:	Precision Environmental	Drilling Method:	Direct Push		
Development Method:	Low Flow / Purge	Development Date:	11/18/2016	Measuring P	oint Information
Bucking Posts/Ballards:	NA				The OCD!
Notes:				Measuring Point (MP) Type:	Top Of Riser
				MP Elevation (ft):	
Item	Depth BMP (ft)	Elevation (ft)		Desc	ription
Surface Casing Elevation			Slope	e Away	
Ground Surface Elevation				Surface Seal Type:	Concrete
Riser Pipe (Top)				Lock Identification	NA
				Stickup Casing Diameter:	
			-	Backfill/Grout Type:	Hydrated 3/8 Bentonite
				Riser Pipe Type:	1 3/8 Sch. 40 PVC
				Riser Pipe ID:	1 "
Top of Well Seal	0.0			Borehole Diameter:	2.25"
Top of Sand Pack	2.0 ft bgs		-	Type of Seal:	Hydrated 3/8 Bentonite
Top of Sand Lack	2.0 It 0gs				
Top of Screen	4.0 ft bgs		_	Screen Type:	Slotted 1 3/8 Sch. 40 PVC
				Screen ID:	1"
				Screen Slot Size:	0.010"
				Screen Length:	5'
			4	Filter/Sand Pack Type:	#1 Sand (Filpro Quartz)
Base of Screen	9.0 ft bgs				
End Cap	9.0 ft bgs		-	Sump:	
Drilled Depth	9.0 ft bgs			Fallback/Backfill:	NA
Bottom of Exploration	9.0 ft bgs				
Bedrock Surface	NA				NOT TO SCALE





RIG TYPE: Geo Probe 3230DT

METHOD: Hollow-Stem Augers

HOLE DIAM.: 4,25" ID

SPTs: 140 lb auto hammer

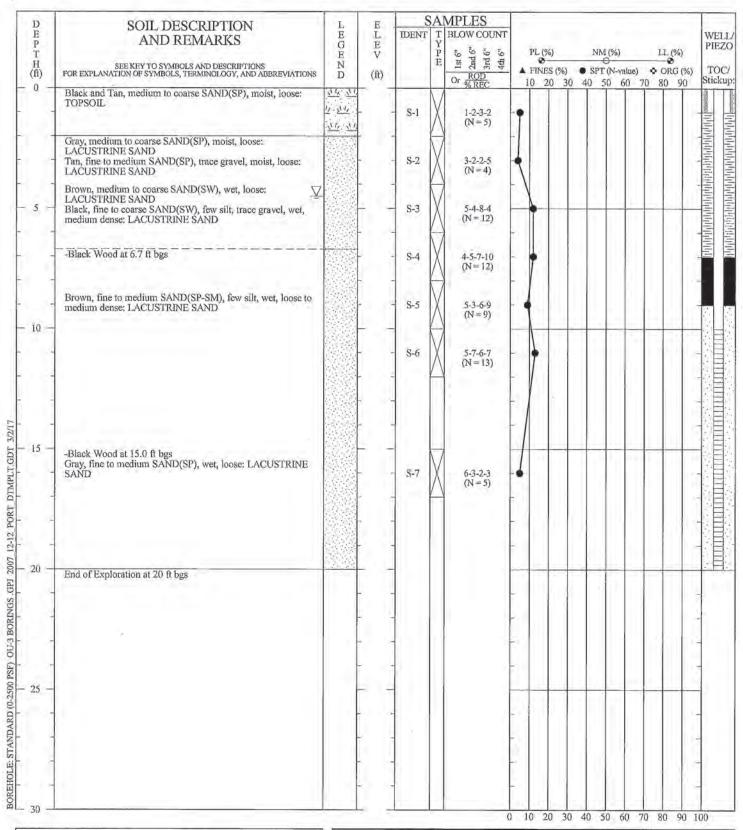
REMARKS: Boring was backfilled with cement grout. Soil cuttings

and water were placed in drums.

LOGGED BY: JC CHECKED BY/DATE: JB/

THIS BORING RECORD PRESENTS A REASONABLE INTERPRETATION OF THE SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION, SUBSURFACE CONDITIONS AT OTHER LOCATIONS MAY DIFFER. STRATA INTERFACES (AS SHOWN) ARE APPROXIMATE. ACTUAL TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

# GEOTECHNICAL BORING RECORD


BORING NO.: SB/PZ-335 DRILLED: 11/23/2016

PROJECT: Saranac Lake Gas Company

LOCATION: Saranac Lake, NY

PROJECT NO.: 3611161193.03





RIG TYPE: Geo Probe 3230DT

METHOD: Hollow-Stem Augers

HOLE DIAM .: 4,25" ID

SPTs: 140 lb auto hammer

REMARKS: Boring was backfilled with cement grout. Soil cuttings

and water were placed in drums.

LOGGED BY: JC CHECKED BY/DATE: JB/

THIS BORING RECORD PRESENTS A REASONABLE INTERPRETATION OF THE SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS MAY DIFFER. STRATA INTERPACES (AS SHOWN) ARE APPROXIMATE. ACTUAL TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

# GEOTECHNICAL BORING RECORD

BORING NO.: SB/PZ-336 DRILLED: 11/22/2016

DOTECT: C T 1

PROJECT: Saranac Lake Gas Company

LOCATION: Saranac Lake, NY

PROJECT NO.: 3611161193.03



				LOCATION ID:	
WELL/PIEZOM	ETER CONSTR	UCTION DIAGRA	M STICKUP	PZ	Z-337
Project Name:	Saranac Lake Gas C	omnany		Date Started: 11/17/2016	Date Completed: 11/17/2016
Project Location:	Saranac Lake, NY	onipuity		Logged By: D. Farrell	
Project Number:	3611161193	Task Number	.03	Checked By: B. Havens	Checked Date: 1/5/2017
Subcontractor:	Precision Environmen	ntal Drilling Method:	Direct Push		
Development Method:	Low Flow / Purge	Development Date	e: 01/20/2017	Measuring	Point Information
Bucking Posts/Ballards:	NA				
Notes:				Measuring Point (MP) Typ	e Top Of Riser
				MP Elevation (ft):	
Item	Depth BMP (ft)	Elevation (ft)		Des	cription
				Lock Identification	NA
Stickup		· — — — — — — — — — — — — — — — — — — —			
Riser Pipe (Top)				Stickup Casing Type:	NA
					N. 1
Ground Surface Elevation	on	. ——/-		Stickup Casing Diameter:	NA
				Surface Seal Type:	Hydrated 3/8 Bentonite
		1			
				Backfill/Grout Type:	Hydrated 3/8 Bentonite
				Riser Pipe Type:	1 3/8 Sch. 40 PVC
				Disam Dina ID.	1 "
				Riser Pipe ID:	1 "
	0.0			Borehole Diameter:	2.25"
Top of Well Seal	0.0				
			<b> </b>	Type of Seal:	Hydrated 3/8 Bentonite
Top of Sand Pack	3.5 ft bgs				
Top of Screen	7.0 ft bgs			Screen Type:	Slotted 1 3/8 Sch. 40 PVC
				Screen ID:	1"
				Screen Slot Size:	0.010"
				Screen Length:	10'
				Filter/Sand Pack Type:	#1 Sand (Filpro Quartz)
Base of Screen	17.0 ft bgs			Type.	"1 Sand (1 hpro Quartz)
End Cap	17.0 ft bgs			Sump:	
гли Сар	17.0 ft bgs			Samp.	
Drilled Depth	20.0 ft bgs			Fallback/Backfill:	3'
Bottom of Exploration	20.0 ft bgs				
Bedrock Surface	NA				NOT TO SCALE



FIGURE 4.7 WELL/PIEZOMETER CONSTRUCTION DIAGRAM - STICKUP NYSDEC QUALITY ASSURANCE PROJECT PLAN

# APPENDIX E IN SITU STABILIZATION BENCH TEST PROPOSAL



# Request for Proposal Saranac Lake OU01 (Site No. 516008) Remedial Design In-Situ Stabilization Bench Scale Study

#### 1.0 INTRODUCTION

On behalf of the New York State Department of Environmental Conservation (NYSDEC), MACTEC Engineering and Consulting, P.C. (MACTEC) has prepared this Request for Proposal (RFP) to conduct a bench-scale study to identify possible reagent additions to inform In-Situ Solidification (ISS) activities that may achieve Project Requirements. The bench-scale study will be conducted in support of MACTEC's pre-remedial design for environmental cleanup at Saranac Lake Gas Company Operable Unit 1 (Site # 516008) (Site) in the Village of Saranac Lake, Town of North Elba, New York. The planned bench-scale study generally consists of homogenizing three representative Soil Samples (supplied by MACTEC); and mixing those with Mix Water (supplied by MACTEC), and two reagents (supplied by Subcontractor) to produce mixtures that meet Project Requirements (hydraulic conductivity and unconfined compressive strength), and at a minimum reporting the information as described herein. The Site constituents of concern are related to its use as a former Manufactured Gas Plant (MGP).

Please submit your proposal and associated costs via email to <a href="Nathan.Vogan@woodplc.com">Nathan.Vogan@woodplc.com</a> by Tuesday, May 7, 2019.

# 1.1 BACKGROUND

MACTEC is conducting pre-design studies in support of a remedial design for ISS at the Site. The pre-design studies will include the collection of representative site soils, Mix Water, Site Water, and Products for use in these bench-scale study. The required material volumes identified in the Subcontractor Bid will be provided by MACTEC.



### 2.0 SERVICES TO BE PERFORMED

The services to be performed by the Subcontractor to complete the bench-scale study are described in this section.

<u>Limited Site Data</u>: Existing site data, including soil and groundwater analytical data as provided in the Remedial Investigation Report (MACTEC Engineering and Consulting, P.C., January 2015) for the Site is included in Appendix A.

Project Requirements: The Project Requirements identified for ISS at the Site are as follows:

- Maximum Hydraulic Conductivity of 1 x 10⁻⁶ cm/sec after a minimum of 28-day curing time, using Site water (supplied by MACTEC) as a permeant. This value is subject to change based on on-going studies and the Subcontractor will be informed of the final value when it is available.
- Minimum unconfined compressive strength (maximum within the linear elastic range, not peak) of 25 psi after 28-day curing time.
- Testing and reporting shall be completed within 12 weeks of notice to proceed, with monthly updates (at a minimum) to MACTEC.

Bench-Scale Testing Work Plan: Provide a Bench-Scale Testing Work Plan describing details of Subcontractor plans to produce mixtures, form samples, cure samples and complete the testing. MACTEC proposes the use of two reagents (Cement and Bentonite) and water (Mix Water and Site Water) in differing proportions as indicated. Should the Subcontractor have suggested changes, those should be in the Work Plan. The Bench-Scale Testing Work Plan shall at a minimum:

- A. Define the mixing methods, sample prep and curing and testing methods for grout and soil-grout.
- B. Identify the quantity of materials (soil, water and product) to be provided by MACTEC required to complete the testing. Identify reagents to be provided by the Subcontractor.
- C. Subcontractor schedule to meet Project Requirements.



- D. Describe the Subcontractor's experience successfully completing similar studies including evidence of data management and decision-making processes used to efficiently execute the work.
- E. State the Subcontractor methodologies to be implemented, standard test methods to be used, and QA/QC program to be implemented.
- F. Include examples of calculations to be used for accurate proportioning of materials for mixing.
- G. Identify any additional information Subcontractor requires to complete the work.
- H. Include a cost table showing items, quantities and unit rates, and total costs. Include fees for MGP materials handling and cost to return samples and excess materials to the Site after testing is complete.

<u>Bench-Scale Study Outline</u>: The Subcontractor shall utilize the following phased approach when developing their Work Plan. There are three (3) phases to be completed generally in the order presented and described here:

- Phase 1 shall be completed first.
- Phase 2a shall be simultaneously completed with Phase 3a, using the prepared grouts to form soil-grout mixtures.
- Data assessment and Phases 2a and 3a, and Phase 2b/3b mix proportion determination by MACTEC.
- Phase 2b shall be simultaneously completed with Phase 3b, using the prepared grouts to form soil-grout mixtures.
- Final reporting.

# 2.1 PHASE 1: MATERIAL CHARACTERIZATION TESTING

The Subcontractor shall characterize the materials used in testing, as indicated in Tables 1a and 1b or as described in the Work Plan. The Subcontractor shall supply the following reagents in sufficient quantity to complete the required testing from supplies as close to the Site as practical:

- Type II Portland Cement is preferred; however, Type I/II is acceptable if this is what is available locally (Cement); and
- American Petroleum Institute (API) Specification for Drilling-Fluid Materials 13A
   Section 9 (API Section 9) (Bentonite).



The following materials shall provided by MACTEC; MACTEC will provide analytical test results for the parameters identified in Table 1b.

MACTEC shall supply soils in sufficient quantities based on the Subcontractors Work Plan, identified as follows:

- Soil Type 1: Below the Purifier box waste where viscous Product (aka DNAPL) exists, where PAHs, cyanide and arsenic are more prevalent.
- Soil Type 2: Within the Light Oil area where Product (aka LNAPL) exists, where BTEX are most prevalent.
- Soil Type 3: Typical of the remainder of the Site, where a mixture of less concentrated NAPL and coal tar residuals exist.
- All soils are generally fine-medium sands with trace amounts of silts and clays, which contain free-phase Product.

MACTEC shall supply waters in sufficient quantities, based on the Subcontractor's Work Plan, identified as follows:

- Mix Water, expected to come from an available non-potable water source near the Site
- Site Water, from representative groundwater monitoring well(s) at the Site.
- Waters will be supplied in plastic containers by MACTEC, sent to the Subcontractor by MACTEC and maintained by the Subcontractor at temperatures between 35 and 40 degrees fahrenheit when not in-use.

MACTEC shall supply Product in sufficient quantities, based on the Subcontractors Work Plan, identified as follows:

- Dense-Phase Non-Aqueous Phase Liquids (DNAPL)
- Light-Phase Non-Aqueous Phase Liquids (LNAPL)
- Product samples will be supplied in sealed plastic containers by MACTEC, sent to the subcontractor by MACTEC and maintained by the subcontractor at temperatures between 35 and 40 degrees fahrenheit when not in use.



Table 1a: Phase 1 Soil and Reagent Characteristics Testing

Test	Test Method	Phase 1(a) (Soil Mixtures)	Phase 1(b) (Reagents)
Homogenize Bulk Soil Sample	Provide in Work Plan	3	NA
Grain-Size with Hydrometer	ASTM D6913/D7928	3	NA
Moisture Content	ASTM D2216	3	NA
Atterberg Limits	ASTM D4318	3	NA
Hydraulic Conductivity ^{2,4}	ASTM D5084	3	NA
Unconfined Compression ^{3,4}	ASTM D1633, with stress-strain plots	3	NA
Specific Gravity	ASTM D854	3	2

### Notes

- 1. Homogenization of soil samples, which have become segregated during shipping or using discrete samples to form a homogeneous mixture for subsequent testing. Maintain moisture content to +/-5% throughout study.
- 2. Hydraulic conductivity tests shall be performed at a net confining stress of 5 psi, compact with modest effort, comparable to 90 percent of standard Proctor compaction. Use Site Water as the permeant.
- 3. Mix Site Source Water with Reagent, at a ratio of 0.5:1, weight basis. Make and cure grout mixture test cylinders, 2' x 4", for unconfined compression testing. Include sufficient extra cylinders in-case of damage.
- 4. Test after nominal 7 and 28-day cure times.

**Table 1b: Phase 1 Material Analytical to be Provided by MACTEC** 

Parameter	Each Soil Type	Mix Water	Site Water	DNAPL	LNAPL
рН	X ¹	X	X	Х	Х
TSS		X	X	Х	Х
Organic Content	Х	Х	Х	X	Х
Salinity		X	X	Х	Х
Sulfides	X				
Free- chlorine		Х			
SVOCs	Х		X	Х	Х
VOCs	Х		Х	Х	Х

#### Note:

1. X indicates results will be provided by MACTEC to Subcontractor.



### 2.2 PHASE 2: GROUT MIXING AND TESTING

A grout mixture consists of a mixture of water and reagents (cement-bentonite blends). The reagents may be changed by MACTEC, but the number of reagent blends are expected to be three (3) during Phase 2a and two (2) during Phase 2b. Report all actual mix proportions on a weight basis.

**Phase 2a:** Prepare grout mixtures 1 through 3 (G-MIX 1 through 4b), using the materials and proportions listed in Table 2-1. These six (6) grout mixtures shall be tested first, and those results reported to MACTEC, before subsequent testing is performed under Phase 2b. MACTEC shall determine the two (2) reagent blends to be produced and tested in Phase 2b testing to reasonably bracket project requirements based on Phase 2a test results. In the event MACTEC determines that Phase 2a and 3a produced results sufficient to meet testing objectives, Phase 2b will not occur. Mix sufficient quantities as a single batch to produce specimens for testing, as indicated in Table 2-2.

**Phase 2b:** Similar to Phase 2a, based on results of Phase 2a. Perform testing as indicated in Table 2-2.

**Table 2-1: Phase 2 Grout Mixtures** 

Phase	Grout Mix	Proportions, weight ¹			
		Mix Water ²	Reagents ³		
			Cement	Bentonite	
2a	G1a	1	1	0	
	G1b	1.5	1	0	
	G2a	1	1	0.025	
	G2b	1.5	1	0.025	
	G3a	1	1	0.05	
	G3b	1.5	1	0.05	
2b	G4a	TBD ⁴	TBD ⁴	TBD ⁴	
	G4b	TBD ⁴	TBD ⁴	TBD ⁴	

#### **Notes**

- 1. Mix water and reagents on a weight basis, using the proportions indicated.
- 2. Mix water is to be provided by MACTEC, as identified in Table 1b.
- 3. Reagents are to be provided by Subcontractor. Report actual materials used and provide photographs of packaging and any other available information. Reagents shall be as identified in Phase 1.
- 4. TBD: To be determined by MACTEC, based on Phase 2a test results.



Table 2-2: Phase 2 Grout Mixing and Testing

Test	Test Method	Phase 2a	<b>Phase</b> 2b
Create Grout Mixes ¹	Provide in Work Plan	6	2
Marsh Funnel Viscosity ²	API RP 13B-1	6	2
Mud Balance ²	ASTM D4380 or API RP 13B-1	6	2
Make and Cure cube samples ³	Provide in Work Plan	Provide in Work Plan	Provide in Work Plan
Pocket Penetrometer, 3- and 7-day ⁴	Provide in Work Plan	6 x 2 = 12	4

#### **Notes**

- 1. Grout mixtures shall be proportioned as indicated in Table 2-1 and sufficient quantity made for Phase 2 and 3.
- 2. Perform the testing indicated on freshly mixed grouts. Use left-over and un-altered grout (i.e., from Marsh Funnel testing) for testing in this table and Phase 3 soil-grout mixing and testing.
- 3. Make and cure grout mixture test cubes, 2" x 2" for Pocket Penetrometer testing, unless another size is recommended in Subcontractor Work Plan. Include at least 1 extra sample in the event of damage.
- 4. Pocket penetrometer testing is to be done on specimens at 3, and 7-days after mixing. Use of a foot on the penetrometer may be appropriate when testing low-strength materials to report values less than 1 TSF. Once a grout achieves the maximum strength measurable by the device, subsequent testing shall not be performed.

### 2.3 PHASE 3: SOIL-GROUT MIXING AND TESTING

Soil-grout mixtures consisting of the Phase 2 Grout mixed with the Site soils shall be prepared and tested by the Subcontractor. Prepare soil-grout mixtures, using the materials and mixes listed in Table 3-1. Test the soil-grout mixtures as indicated in Table 3-2. Report all actual mix proportions on a weight basis.

**Phase 3a:** Prepare soil-grout mixtures, using soils 1, 2 and 3 in separate mixes, with Phase 2a grouts. A range of soil to grout mixtures will be created and tested. Report findings to MACTEC, for determination of Phase 3b proportioning and testing, if determined by MACTEC to be required. Additional Site Liquids will be added to simulate uptake and to replace materials potentially lost during soil sample collection, as shown in Table 3-1.

**Phase 3b:** If required by MACTEC, prepare soil-grout mixtures, using soils 1, 2, and 3 in separate mixes with Phase 2b grouts. These soil-grout mixes are intended to meet all Project Requirements, should one from Phase 3a not, for each soil. During scoping it's not possible to know how close the program will come to that goal; consequently, this Phase is included for budgeting and may not be required, or supplemental testing (Phase 3c) may be required. It may also be necessary to perform a Phase 3c, using the same number of mixes; however, this is not



included in this scope but should be included in Subcontractor estimates of material volume requirements so sufficient materials can be collected and provided to the Subcontractor.

**Table 3-1: Phase 3 Soil-Grout Mixtures** 

Phase		SOIL	-GROUT		Addition	al Liquids	Total
	Mater	ial Types	Soil-Gr	out, weight ⁴	Site	Site	Soil- Grout
	Soil Type ¹	Grout Mix ²	Wet Soil ³	Grout	· Water⁵, weight⁴	Product ⁶ Type, weight ⁴	Mixes
Phase 3a	1	G1a, G2a	20	2.0	0.3	DNAPL, 0.03	2
	1	G2b	20	2.5	0.3	DNAPL, 0.03	1
	2	G1a, G2a and G3a	20	2.0	0.3	LNAPL, 0.03	3
	2	G1b, G2b and G3b	20	2.5	0.3	LNAPL, 0.03	3
	3	G1a and G2a	20	2.0	0.3	NA	2
	3	G2b	20	2.5	0.3	NA	1
	1	G1a and G2a	10	2.0	0.15	DNAPL, 0.015	2
	1	G2b	10	2.5	0.15	DNAPL, 0.015	1
Phase 3b	1, 2 and 3	TBD ⁷	TBD ⁷	TBD ⁷	TBD ⁷	TBD ⁷	3
	1, 2 and 3	TBD ⁷	TBD ⁷	TBD ⁷	TBD ⁷	TBD ⁷	3

### Notes

- 1. Soil Type is as identified in Phase 1.
- 2. Grout Mix is as identified in Table 2-1.
- 3. Soils should be within  $\pm$  5% of the moisture content determined in Phase 1.
- 4. Weights as shown are weights for a mixture. Example: combine 20 gm Soil Type 1, 2 gm grout mix G1a, 0.3 gm Site Water and no Product and mix to produce the first mix shown in this table.
- 5. Site Water will be as identified in Table 1b.
- 6. Produce will be as identified in Table 1b.
- 7. TBD = To Be Determined by MACTEC, based on results of Phase 3a testing.



Table 3-2: Phase 3 Soil-Grout Mixing and Testing

Test	Test Method	Phase 3a	Phase 3b
Create Soil-Grout Mixes ¹ make samples ² and Cure ³	Provide in Work Plan	15	6
Pocket Penetrometer, at 3-, 7- and 14-days ⁴	Provide in Work Plan	15 x 3 = 45	6 x 3 = 18
Unconfined Compressive Strength (UCS), 28-day cure ⁵	ASTM D1633	15	6
Hydraulic Conductivity ^{6,}	ASTM D5084	15	6
Photographs ⁷	Provide in Work Plan	(30) x 2 = 60	(12) x 2 = 24

### Notes

- 1. Soil-Grout mixtures shall be proportioned as indicated in Table 3-1 and sufficient quantity made for all Phase 3 testing.
- 2. Samples shall be cured in accordance with industry standard wet curing methods, as identified in the Subcontractors Work Plan.
- 3. Make samples of an appropriate size such that tests can be performed consistent with testing methods used. Should maximum stone size require sample sizes greater than 3-inches, inform MACTEC and seek resolution/modification of procedures.
- 4. Pocket penetrometer testing is to be done on specimens at 3, 7 and 14-days after mixing. Use of a foot on the penetrometer may be appropriate when testing low-strength materials to report values less than 1 TSF. Once a soil-grout achieves the maximum strength measurable by the device, subsequent testing shall not be performed.
- 5. Unconfined compressive strength, with stress-strain plots. Test on samples cured for 28-days.
- 6. Hydraulic conductivity tests shall be performed at a net confining stress of 10 psi, and after at-least 90-percent consolidation has occurred. Soft, uncompacted samples may require stepped confining pressures to limit sample deformation. Use laboratory tap water as permeant.
- 7. Take photographs of test samples, before and after UCS and hydraulic testing.

### 2.4 PHASE 4: REPORTING

Reporting and intermediate communications between MACTEC and the Subcontractor is required for smooth project execution. Produce a report which documents all mixes made on a weight basis. Utilize a naming convention consistent with this scope of work. Submit a draft report to MACTEC within seven (7) days of the completion of testing; make edits and supplement as requested by MACTEC.



The Subcontractor shall furnish the following copies of the Bench-Scale Testing Work Plan and Final Report:

- 1. One (1) electronic copy in .pdf format
- 2. One (1) bound hard copy

Submit copies of final report to:

Wood Environment & Infrastructure Solutions

Attention: Mr. Brian Johnson

511 Congress Street, Suite 200

Portland, Maine 04101

brian.johnson3@woodplc.com



# APPENDIX A SITE DATA

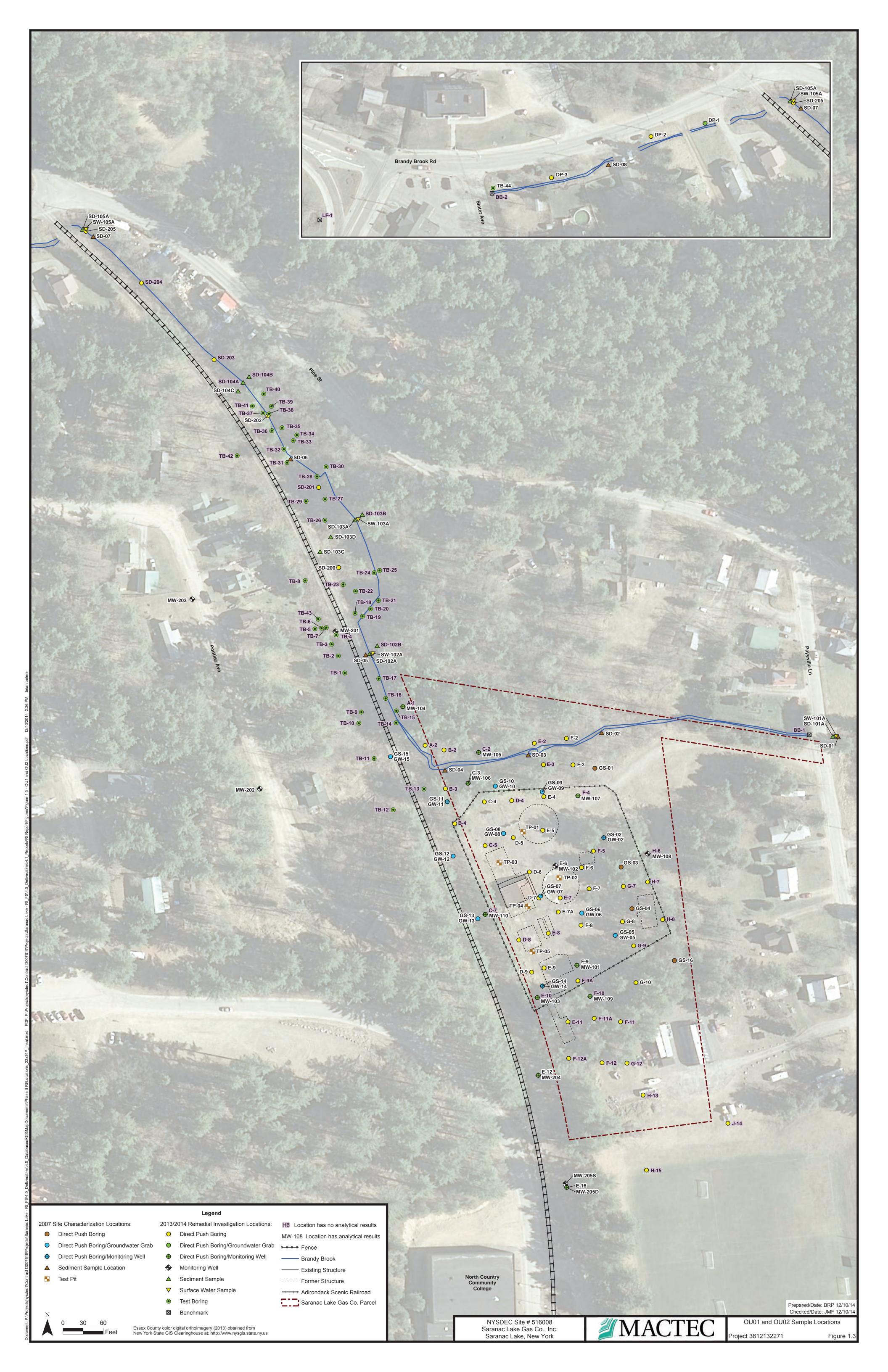



Table 2.1: OU01 Remedial Investigation Summary of Findings

		Bottom	Visual	Estimated	Field Scan			<b>Analytical Results</b>	
Sample Location ID	Top Depth (ft bgs)	Depth (ft bgs)	MGP Description Type	Groundwater Level (ft bgs)	PID (ppm)	Shake Test Observations	Total PAH (ug/kg)	Naphthalene (ug/kg)	Total BTEX (ug/kg)
A-1	0	9	NOI	4.5	< 0.1	NA			
	9	12	strong odor		< 0.1	NA			
A-2	0	16	NOI	0.7	< 0.1	NA			
B-2	0	16	NOI	2.7	< 0.1	NA			
	0	4.8	NOI		16.5	NA			
B-3	4.8	6.5	DNAPL/staining/ odor	2.5	45.2	NA			
	6.5	16	NOI	2.5	3.4	NA			
B-4	0	16	NOI	3.7	<0.1	NA			
	0	8.4	NOI		< 0.1	NA			
C-2	8.4	11.8	residual/staining/ very faint odor	4.7	<0.1	NA			
	11.8	16	NOI		<0.1	NA			
	0	2	NOI		18.5	NA			
	2	6.5	residual/odor		63.2	NA			
C-3	6.5	8	DNAPL - iridescent/staining/ strong odor	1.2	122	NA	21,457	1,500 J	28,700
	8	11.5	faint odor		75.2	NA			
	11.5	16	NOI		0.9	NA			
	0	3.5	NOI		17	NA			
C-4	3.5	8	DNAPL/residual staining	3.5	132	NA	137,100	2,000 J	2,200
C-4	8	12	odor - moderate to faint	3.3	35.4	NA			
	12	16	NOI		< 0.1	NA			
	0	13.5	NOI		< 0.1	NA			
C-5	13.5	16	residual/staining/ moderate-faint odor	8.7	<0.1	NA			
	0	8	NOI		< 0.1	NA			
C-7	8	10.5	faint odor	10.5	5.5	NA			
	10.5	20	NOI		0.5	NA			
	0	5.5	NOI		1.7	NA			
D-4	5.5	8	residual odor and staining/DNAPL	2.5	7.5	NA			
	8	16	NOI		< 0.1	NA			
	0	8	NOI		< 0.1	NA			
D-5	8	9	residual/staining/ odor	8	18.7	NA			
D-3	9	19	DNAPL/residual staining	o	420	NA	1,163,700	340,000	11,720
	19	20	moderate odor		17.5	NA			
	0	3.5	NOI		< 0.1	NA			
D-6	3.5	4	strong odor	7	32.5	NA	##4 000	110,000	20.000
<u> </u>	4	12	DNAPL		232	NA	551,800	110,000	38,000
	0	0.8	NOI		<0.1	NA			
D-7	0.8	5	faint to moderate odor	4.2	38.5	NA			
	5	8.5	DNAPL		312	NA NA			
	8.5 11	11 16	very strong odor NOI		56.2 <0.1	NA NA	2,093	1,800 J	202
	0	0.5	NOI		5.1	NA NA	2,093	1,000 J	202
	0.5	1.5	ash/slag		2.7	NA NA	+		<del> </del>
D-8	1.5	8.5	NOI	8	0.5	NA	1		1
	8.5	9.5	very strong odor	-	359	NA			
	9.5	16	NOI		11	NA			

Table 2.1: OU01 Remedial Investigation Summary of Findings

			Bottom	Visual	Estimated	Field Scan			<b>Analytical Results</b>	
Page	Sample Location ID	Top Depth (ft bgs)	Depth	MGP Description	Groundwater	PID	Shake Test Observations			
1.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5   5.5						0.7				
Decomposition   Property   Prop										
Part									4 (00 000 Y	466,000
11	D-9				8					
11		9	11			522	NA	1,032,300	150,000 J	136,000
Fig.				moderate odor						
E-3	Е 2				0.2					
E-4										
E-4	E-3				2.2					
E4		Ů	1.5			1.2	11/1			
E-5   0	E-4			strong to moderate odor	2.7			845,800	< 3,400	431
E-5			16			0.2				
E-5		0	4			< 0.1	NA			
February	E-5	4	6	staining/moderate	Unknown	5.7	NA			
E-6		6	16	NOI		< 0.1	NA	113	< 99	ND
E-6		0	0.7			< 0.1	NA			
15.5   18   moderate odor   15.2   18   moderate odor   15.3   11   15   14.5   16   16   16   16   16   16   16   1	F_6	0			3.5			1 1	1 1	, i
18	L-0				3.3			5,112,000	2,400,000	668,000
Column   C										
E-7										
E-7										
E-7										
R.5	F-7				3.2					
11	L-7				3.2					
14.5										
E-7A						15.3				
16    49    moderate to faint odor   30    no visual impact   NA   220    6.1				moderate odor						
E-8    3   5   residual staining/strong odor   4   111   NA	E-7A	2	16	DNAPL	Unknown	850	blebs			
E-8    3   5   residual staining/strong odor   4   111   NA		16	49			30		NA	220	6.1
E-5		0	3			1.8	NA			
E-9	E-8	3		strong odor	4		NA			
E-9  E-9  A 7.5 DNAPL residual staining/ strong odor  7.5 10 residual staining/ strong odor strong odor 10 14.5 strong odor 14.5 16 NOI  E-10  13.5 20 moderate to faint odor 20 40 NOI  E-11  T.5 20 DNAPL/residual staining/strong odor  T.5 20 DNAPL/residual staining/strong odor  E-12  17 28 moderate to faint odor  10 12 7.5 NOI  22.1 NA  13.5 NA  2.484,000  310,000 J 40,400  400  NA  174 NA  174 NA  175 NA  175 NA  185 NA  185 NA  196 NA  197 NA  197 NOI  20 10 NA  430 NA  E-12  10 NA  11 NA  10 NA  11		0	16				NA			
E-9    A		0	2	NOI		0.8	NA			
To   To   To   To   Strong odor   Strong o				strong odor				2,484,000	310,000 J	40,400
10	E-9	4			8	420	NA			
14.5				strong odor						
Description										
E-10  13.5  20  moderate to faint odor 20  40  NOI										
E-12				NOI					-	
Column   C	E-10				12					
E-11 7.5 20 DNAPL/residual staining/strong odor 0 17 NOI 2.2 no visual impact E-12 17 28 moderate to faint odor 10.6 8.2 no visual impact 62 < 7.3 ND										
0   17   NOI   2.2   no visual impact     E-12   17   28   moderate to faint odor   10.6   8.2   no visual impact   62   < 7.3   ND	E-11			DNAPL/residual	6.7					
E-12 17 28 moderate to faint odor 10.6 8.2 no visual impact <b>62</b> < 7.3 ND		0	17			2.2	no visual impact			
28 36 moderate odor 3.8 faint sheep 76 65.1 82.1	E-12				10.6			62	< 7.3	ND
20 30 moderate oder   3.0 min short   70 min short		28	36	moderate odor		3.8	faint sheen	76	6.5 J	8.2 J

Table 2.1: OU01 Remedial Investigation Summary of Findings

		Bottom	Visual	Estimated	Field Scan			<b>Analytical Results</b>	
Sample Location ID	Top Depth (ft bgs)	Depth (ft bgs)	MGP Description Type	Groundwater Level (ft bgs)	PID (ppm)	Shake Test Observations	Total PAH (ug/kg)	Naphthalene (ug/kg)	Total BTEX (ug/kg)
	0	17	NOI		2.0	no visual impact			
	17	18	faint odor		1.1	NA			
E-16	18	22	NOI	9.5	0.2	NA			
	22	40	faint to moderate odor		22.8	NA	52	13	77
F-2	0	16	NOI	1.7	< 0.1	NA	6.8 J	< 85	ND
F-3	0	16	NOI	1.7	11.5	NA	ND	< 84	ND
	0	4	NOI		2.1	NA			
F-4	4	8	DNAPL/residual staining	Unknown	101	NA			
	8	16	NOI		0.3	NA			
	0	5	NOI		< 0.1	NA			
F-5	5	7	residual staining/ strong odor	5.7	412	NA			
	7	10.5	DNAPL		1105	NA			
	10.5	16	strong odor		211	NA			
	0	1.5	NOI		< 0.1	NA			
	1.5	3.5	staining/coal/ash/ slag		<0.1	NA	33,890	650 J	5,100
F-6	3.5	8	faint to moderate odor	2.5	258	NA	242,350	59,000 J	12,200
	8	14	DNAPL/residual staining		1590	NA	1,757,740	710,000 J	260,000
	14	16	strong odor		101	NA			
	0	4.2	NOI		< 0.1	NA			
F-7	4.2	7.5	residual staining/ possible wood (purifier) waste	3.8	121	NA			
	7.5	12	DNAPL		382	NA			
	12	16	moderate to faint odor		58.5	NA	1,307	840 J	8,450
	0	3.5	staining/coal/ash/ slag		112	NA			
F-8	3.5	12.5	DNAPL	4	522	NA	3,748,000	1,100,000 J	630,000
	12.5	16	strong to moderate odor		73.5	NA			
	0	0.6	NOI (staining)		3.1	NA			
	0.6	12	DNAPL/staining		552	NA	1,611,000	500,000 J	46,600
F-9	12	14	residual/staining/	3.5	75.5	NA	2,022,000	200,000	10,000
	14	16	strong odor strong odor		50.5	NA		1	<del> </del>
	16	32	strong odor		51.2	moderate sheen 29'			
	32	48	strong to moderate		55.3	strong sheen 48'			
F-9A	48	52	odor no recovery	Unknown		NA			
	52	56	moderate to strong		10.7	NA NA			
			odor						
	3.5	3.5 4.5	NOI residual staining/		4.5 79.5	NA NA			
F-10			strong odor DNAPL/residual	5.7		NA NA			
	3.5	20	staining		785	NA			
	0	14.5	NOI		2.5	NA			
F-11	14.5	15.5	faint odor	5.5	35.2	NA			
	15.5	20	NOI		0.5	NA			
	3.5	3.5 5.5	NOI faint to moderate odor		0.8 22.5	NA NA			
F-11A	5.5	10	DNAPL/residual	Unknown	29.5	sheen 4', blebs 5'			
			staining strong to moderate						
	10	24	odor		29.5	sheen 15.5'			

Table 2.1: OU01 Remedial Investigation Summary of Findings

		Bottom	Visual	Estimated	Field Scan			<b>Analytical Results</b>	
Sample Location ID	Top Depth (ft bgs)	Depth (ft bgs)	MGP Description Type	Groundwater Level (ft bgs)	PID (ppm)	Shake Test Observations	Total PAH (ug/kg)	Naphthalene (ug/kg)	Total BTEX (ug/kg)
F-12	0	18	NOI	15.8	< 0.1	NA			
r-12	18	20	strong odor	13.8	68.5	NA			
	0	19.5	NOI		1.5	NA			
F-12A	19.5	28	faint to moderate odor	7.5	0.8	faint sheen 28'			
	0	3.5	NOI		< 0.1	NA			
G-7	3.5	5.5	residual staining/ odor	8	104	NA			
G-/	5.5	7.5	DNAPL/residual staining	8	452	NA			
	7.5	16	faint odor		14.5	NA - slight odor			
	0	3	NOI		0.3	NA			
G-8	3	11	DNAPL/residual staining	4	432	NA	4,286,000	1,300,000 J	396,000
G-8	11	14	strong to moderate odor	4	48.5	Sheen on standing water			
	14	16	NOI		3.3	NA	7,021	540 J	2,040
	0	2.5	NOI		0.7	NA			
G-9	2.5	7	residual staining/ strong odor	8	85.2	NA			
	7	16	DNAPL/residual staining		522	NA			
	0	2	NOI		122	NA - odor			
G-10	2	5.5	residual staining/ strong odor	6.6	38.5	NA			
	5.5	8.5	DNAPL		102	NA	729,350	180,000 J	5,960
	8.5	16	strong to faint odor		36.8	NA	119	< 85	1,120
G-12	0	8	NOI	Unknown	2.3	NA - slight odor			
H-6	0	16	NOI	10.7	0.3	NA			
H-7	0	20	NOI	12.5	< 0.1	NA - slight odor 14'			
	0	15	NOI		< 0.1	NA			
H-8	15	15.2	faint odor	12.5	5.5	NA			
	15.2	16	NOI		< 0.1	NA - slight odor			
H-13	0	14	NOI	12.5	< 0.1	NA			
11-13	14	15	faint odor	12.3	< 0.1	NA - slight odor			
	0	22	NOI		0.2	NA			
H-15	22	23	faint odor	7	1.2	NA - slight odor			
	23	28	NOI		0.2	NA		<u> </u>	
J-14	0	16	NOI	Unknown	< 0.1	NA			

ft bgs - feet below ground surface

DNAPL - Dense Non-Aqueous Phase Liquid

residual/stain - visual evidence of coal tar impact but no product observed

NOI - no observable impact
=Sample located in source area.

Blank cell indicates that sample was not evaluated for that parameter.

PAH = polyaromatic hydrocarbons

BTEX compounds = benzene, toluene, ethylbenzene and xylene

Results shown in micrograms per kilogram

			Location ID	C-3	C-4	C-4	D-5	D-6	D-7	D-9	D-9	E-4	E-5	E-6	E-6	E-7A	E-9	E-12	E-12
		Sample D	epth (ft bgs)	6.5-7.2	6.8-8	6.8-8	15-16	11-12	12.5-13	7.8-8	10.7-11	1.4-1.7	15-16	1.5-2	10.4-12	48	2.6-3	28	32
			MGP	DNAPL -								residual/staining/							
			Descriptio	iridescent/staining/	DNAPL/residual	DNAPL/residual	DNAPL/residual	DNAPL	NOI	very strong odor	DNAPL	strong to	NOI	residual/staining/	DNAPL	moderate to faint	residual staining/	moderate to faint	residual/odor
			n Type	strong odor	staining	staining	staining	DIVIL	1101	very strong odor	DIVIL	moderate odor	1101	very strong odor	DIVILL	odor	strong odor	odor	residual/odoi
			птуре	buong out								moderate odor							
	Approximat	te Depth to	GW (ft bgs)	1.2	3.5	3.5	8	7	4.2	8	8	2.7	unk	3.5	3.5	unk	8	10.2	10.2
			ample Date	8/10/2013	8/8/2013	8/8/2013	8/8/2013	8/8/2013	8/7/2013	8/6/2013	8/6/2013	8/12/2013	8/8/2013	8/8/2013	8/8/2013	9/19/2014	8/6/2013	9/17/2014	9/17/2014
			Sample ID	516008-C307	516008-C408	516008-C408D	516008-D516	516008-D612	516008-D712	516008-D908	516008-D911	516008-E402	516008-E516	516008-E602	516008-E612	516008-E7A48	516008-E903	516008-E1228	516008-E1232
			OC Code	FS	FS	FD	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS
Parameter Name	RES	COMM	IND																
Volatile Organic Compounds	- 8260B					1													
1,2,4-Trimethylbenzene	47000	190000	380000													10 J		39 U	38 U
1,3,5-Trimethylbenzene	47000	190000	380000													28 U		39 U	38 U
																28 U		39 U	38 U
4-iso-Propyltoluene	NS	NS	NS	200 11	1100 11	1100 11	C40 II	(20 II	2011	2100 11	2100 11	1.40	27.1	1000 11	520 II		2500 11		
Acetic acid, methyl ester	NS	NS	NS	280 U	1100 U	1100 U	640 U	630 U	3.9 U	2100 U	2100 U	140	27 J	1900 U	520 U	21 J	2500 U	32 J	32 J
Acetone	100000	500000	1000000	1400 UJ	5300 U	5300 U	3200 U	3200 U	14 J	11000 U	10000 U	170 U	230 U	9700 U	2600 U	140 U	13000 U	200 U	190 U
Carbon disulfide	NS	NS	NS	280 U	1100 U	1100 U	640 U	630 U	3.9 U	2100 U	2100 U	27 J	47 U	1900 U	520 U	28 U	2500 U	39 U	38 U
Chloroform	10000	350000	700000	280 U	1100 U	1100 U	640 U	630 U	3.9 U	2100 U	2100 U	35 U	47 U	1900 U	520 U	28 U	2500 U	39 U	38 U
Cyclohexane	NS	NS	NS	280 UJ	1100 U	1100 U	640 U	630 U	3.9 U	2100 U	2100 U	35 U	47 U	1900 U	520 U	28 U	2500 U	39 U	38 U
Isopropylbenzene	NS	NS	NS	610	410 J	<b>320</b> J	700	3400	3.9	1200 J	810 J	35 U	47 U	4100	1700	28 U	1500 J	39 U	38 U
Methyl cyclohexane	NS	NS	NS	280 U	1100 U	1100 U	640 U	630 U	3.9 U	2100 U	2100 U	35 UJ	47 U	1900 U	520 U	28 U	2500 U	39 U	38 U
Methylene chloride	51000	500000	1000000	280 U	430 J	410 J	250 J	630 U	3.9 U	2100 U	2100 U	35 U	47 U	<b>620</b> J	180 J	28 U	2500 U	39 U	38 U
n-Butylbenzene	100000	500000	1000000													28 U		39 U	38 U
Naphthalene	100000	500000	1000000													220			
Propylbenzene	100000	500000	1000000													28 U		39 U	38 U
sec-Butylbenzene	100000	500000	1000000													28 U		39 U	38 U
Styrene	NS	NS	NS	1700	880 J	920 J	3600	620 J	3.9 U	98000	82000	130	47 U	1900 U	400000 J	28 U	2500 U	11 J	38 U
BTEX - 8260B	110	110	110	1700	000 3	720 5	2000	020 3	3.7 0	70000	02000	100	1, 0	1700 0	100000	20 0	2500 0	11 3	30 0
Benzene	2900	44000	89000	280 U	1100 U	1100 U	640 U	630 U	2.5 UJ	2100 U	2100 U	130	47 U	1900 U	75000	28 U	2500 U	39 U	38 U
Ethyl benzene	30000	390000	780000	7700	1100 U	1100 U	1900	11000	78	20000	16000	31 J	47 U	5700	63000	28 U	6400	39 U	38 U
	100000		1000000	2000				1000	35	6800	10000	160	47 U		380000 J		3000	39 U	38 U
Toluene		500000		2000	1100 U	1100 U	<b>520</b> J	1000	35	0800	10000	100	47 0	1100 J	380000 3	28 U	3000	39 0	38 U
Xylene, o	100000	500000	1000000																
Xylenes (m&p)	100000	500000	1000000	10000			0.000	• • • • • • • • • • • • • • • • • • • •			110000	110	0.0 77	50000	4 # 0 0 0 0		****	-0.77	
Xylenes, Total	100000	500000	1000000	19000	2200	2300	9300	26000	89	140000	110000	110	93 U	60000	150000	6.1 J	31000	79 U	8.2 J
TOTAL BTEX	NA	NA	NA	28700	2200	2300	11720	38000	202	166800	136000	431	ND	66800	668000	6.1	40400	ND	8.2
Polycyclic Aromatic Hydroca						1		r				T				1		r =	r =
Acenaphthene	100000	500000	1000000	440 J	1600 J	4600 J	14000 J	30000 J	<b>73</b> J	26000 J	9600 J	3400 UJ	99 UJ	870000 J	30000 J		<b>320000</b> J	7.3 U	7.5 U
Acenaphthylene	100000	500000	1000000	<b>2300</b> J	9500 J	47000 J	140000 J	55000 J	<b>80</b> J	210000 J	94000 J	23000 J	<b>26</b> J	690000 J	550000 J		44000 J	4.1 J	7.5 U
Anthracene	100000	500000	1000000	1500 J	10000 J	23000 J	<b>72000</b> J	36000 J	25 J	100000 J	42000 I	11000 J	<b>32</b> J	740000 J	160000 J				(7 I
Benzo(a)anthracene	1000	5600	11000	770 J	<b>7100</b> J	11000 J					<b>42000</b> J						120000 J	<b>6.3</b> J	<b>6.7</b> J
Benzo(a)pyrene	1000	1000	1100	COO T		(00000000000000000000000000000000000000	<b>31000</b> J	16000 J	19 J	57000 J	23000 J	58000	99 UJ	470000 J	100000 J		120000 J 97000 J	<b>6.3</b> J 7.3 U	7.5 U
Benzo(b)fluoranthene	4000		1100	600 J	6600 J	<b>9700</b> J	31000 J 23000 J	16000 J 14000 J	19 J 13 J	57000 J 48000 J				470000 J 420000 J					
` /	1000	5600	11000	460 J	6600 J 6600 J						<b>23000</b> J	58000	99 UJ		100000 J		97000 J	7.3 U	7.5 U
Benzo(ghi)perylene	1000	<b>5600</b> 500000				9700 J	<b>23000</b> J	14000 J	<b>13</b> J	<b>48000</b> J	23000 J 21000 J	58000 90000	99 UJ 99 UJ	<b>420000</b> J	100000 J 100000 J		97000 J 84000 J	7.3 U 7.3 U	7.5 U 7.5 U
			11000	<b>460</b> J	6600 J	9700 J 8700 J	23000 J 21000 J	14000 J 12000 J	13 J 11 J	48000 J 38000 J	23000 J 21000 J 19000 J	58000 90000 100000	99 UJ 99 UJ 99 UJ	420000 J 340000 J	100000 J 100000 J 65000 J		97000 J 84000 J 66000 J	7.3 U 7.3 U 7.3 U	7.5 U 7.5 U 7.5 U
Benzo(ghi)perylene	100000	500000	11000 1000000	460 J 350 J	6600 J 2600 J	9700 J 8700 J 4000 J	23000 J 21000 J 100000 UJ	14000 J 12000 J 7600 J	13 J 11 J 100 UJ	48000 J 38000 J 30000 J	23000 J 21000 J 19000 J 7000 J	58000 90000 100000 46000	99 UJ 99 UJ 99 UJ	420000 J 340000 J 300000 J	100000 J 100000 J 65000 J 63000 J		97000 J 84000 J 66000 J 58000 J	7.3 U 7.3 U 7.3 U 7.3 U 7.3 U	7.5 U 7.5 U 7.5 U 7.5 U
Benzo(ghi)perylene Benzo(k)fluoranthene	100000 <b>1000</b>	500000 <b>56000</b>	11000 1000000 110000	460 J 350 J 140 J	6600 J 2600 J 2000 J	9700 J 8700 J 4000 J 3800 J	23000 J 21000 J 100000 UJ 7700 J	14000 J 12000 J 7600 J 4500 J	13 J 11 J 100 UJ 5.4 J	48000 J 38000 J 30000 J 16000 J	23000 J 21000 J 19000 J 7000 J 6900 J	58000 90000 100000 46000 32000 J	99 UJ 99 UJ 99 UJ 99 UJ	420000 J 340000 J 300000 J 120000 J	100000 J 100000 J 65000 J 63000 J 46000 J		97000 J 84000 J 66000 J 58000 J 29000 J	7.3 U 7.3 U 7.3 U 7.3 U 7.3 U 7.3 U	7.5 U 7.5 U 7.5 U 7.5 U 7.5 U 7.5 U
Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene	100000 1000 1000	500000 56000 56000	11000 1000000 110000 110000	460 J 350 J 140 J 680 J	6600 J 2600 J 2000 J 6700 J	9700 J 8700 J 4000 J 3800 J 9500 J	23000 J 21000 J 100000 UJ 7700 J 25000 J	14000 J 12000 J 7600 J 4500 J 14000 J	13 J 11 J 100 UJ 5.4 J 17 J	48000 J 38000 J 30000 J 16000 J 54000 J	23000 J 21000 J 19000 J 7000 J 6900 J 20000 J	58000 90000 100000 46000 32000 J 67000	99 UJ 99 UJ 99 UJ 99 UJ	420000 J 340000 J 300000 J 120000 J 430000 J	100000 J 100000 J 65000 J 63000 J 46000 J 94000 J		97000 J 84000 J 66000 J 58000 J 29000 J 92000 J	7.3 U 7.3 U 7.3 U 7.3 U 7.3 U 7.3 U 7.3 U	7.5 U 7.5 U 7.5 U 7.5 U 7.5 U 7.5 U 7.5 U 7.5 U
Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene	100000 1000 1000 330 100000	500000 56000 56000 560 500000	11000 1000000 110000 110000 1100	460 J 350 J 140 J 680 J 77 J 1500 J	6600 J 2600 J 2000 J 6700 J 110 UJ 18000 J	9700 J 8700 J 4000 J 3800 J 9500 J 5100 UJ 29000 J	23000 J 21000 J 100000 UJ 7700 J 25000 J 100000 UJ 57000 J	14000 J 12000 J 7600 J 4500 J 14000 J	13 J 11 J 100 UJ 5.4 J 17 J 100 UJ 44 J	48000 J 38000 J 30000 J 16000 J 54000 J 20000 UJ 140000 J	23000 J 21000 J 19000 J 7000 J 6900 J 20000 J 1600 J	58000 90000 100000 46000 32000 J 67000 8600 100000	99 UJ 99 UJ 99 UJ 99 UJ 99 UJ 99 UJ 89 UJ	420000   J   340000   J   300000   J   120000   J   430000   J   400000   UJ   1100000   J	100000 J 100000 J 65000 J 63000 J 46000 J 94000 J 99000 UJ 280000 J		97000 J 84000 J 66000 J 58000 J 29000 J 92000 J 43000 UJ 250000 J	7.3 U 7.3 U 7.3 U 7.3 U 7.3 U 7.3 U 7.3 U 7.3 U 7.3 U	7.5 U 7.5 U 7.5 U 7.5 U 7.5 U 7.5 U 7.5 U 7.5 U 7.5 U 7.5 U
Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene	100000 1000 1000 330 100000 100000	500000 56000 56000 560 500000 500000	11000 1000000 110000 110000 1100 1000000	460 J 350 J 140 J 680 J 77 J 1500 J 1600 J	6600 J 2600 J 2000 J 6700 J 110 UJ 18000 J 7500 J	9700 J 8700 J 4000 J 3800 J 9500 J 5100 UJ 29000 J 23000 J	23000 J 21000 J 100000 UJ 7700 J 25000 J 100000 UJ 57000 J 60000 J	14000 J 12000 J 7600 J 4500 J 14000 J 1400 J 37000 J 39000 J	13 J 11 J 100 UJ 5.4 J 17 J 100 UJ 44 J 48 J	48000 J 38000 J 30000 J 16000 J 54000 J 20000 UJ 140000 J 110000 J	23000 J 21000 J 19000 J 7000 J 6900 J 20000 J 1600 J 56000 J	58000 90000 100000 46000 32000 J 67000 8600 100000 2100 J	99 UJ 99 UJ 99 UJ 99 UJ 99 UJ 99 UJ 8.9 J 12 J	420000   J   340000   J   300000   J   120000   J   430000   J   1100000   J   820000   J	100000 J 100000 J 65000 J 63000 J 46000 J 94000 J 99000 UJ 280000 J 190000 J		97000 J 84000 J 66000 J 58000 J 29000 J 92000 J 43000 UJ 250000 J	7.3 U 7.3 U 7.3 U 7.3 U 7.3 U 7.3 U 7.3 U 7.3 U 7.3 U 7.3 U	7.5 U 7.5 U 7.5 U 7.5 U 7.5 U 7.5 U 7.5 U 7.5 U 7.5 U 7.5 U 5.9 J 5.4 J
Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	100000 1000 1000 330 100000 100000 500	500000 56000 56000 560 500000 500000 5600	11000 1000000 110000 110000 11000 1000000	460 J 350 J 140 J 680 J 77 J 1500 J 1600 J 240 J	6600 J 2600 J 2000 J 6700 J 110 UJ 18000 J 7500 J 1900 J	9700 J 8700 J 4000 J 3800 J 9500 J 5100 UJ 29000 J 23000 J 2600 J	23000 J 21000 J 100000 UJ 7700 J 25000 J 100000 UJ 57000 J 60000 J	14000 J 12000 J 7600 J 4500 J 14000 J 14000 J 37000 J 39000 J 4300 J	13 J 11 J 100 UJ 5.4 J 17 J 100 UJ 44 J 48 J 100 UJ	48000 J 38000 J 30000 J 16000 J 54000 J 20000 UJ 140000 J 110000 J	23000 J 21000 J 19000 J 7000 J 6900 J 20000 J 1600 J 56000 J 50000 J	58000 90000 100000 46000 32000 J 67000 8600 100000 2100 J 33000	99 UJ 8.9 J 12 J 99 UJ	420000 J 340000 J 300000 J 120000 J 430000 J 400000 UJ 1100000 J 820000 J 190000 J	100000 J 100000 J 65000 J 63000 J 46000 J 94000 J 99000 UJ 280000 J 190000 J		97000 J 84000 J 66000 J 58000 J 29000 J 92000 J 43000 UJ 250000 J 160000 J 34000 J	7.3 U	7.5 U 5.9 J 5.4 J 7.5 U
Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene	100000 1000 1000 330 100000 100000 500 100000	500000 56000 56000 560 500000 500000 5600 500000	11000 1000000 110000 110000 11000 1000000	460 J 350 J 140 J 680 J 77 J 1500 J 1600 J 240 J 1500 J	6600 J 2600 J 2000 J 6700 J 110 UJ 18000 J 7500 J 1900 J 2000 J	9700 J 8700 J 4000 J 3800 J 9500 J 5100 UJ 29000 J 23000 J 2600 J 37000 J	23000 J 21000 J 100000 UJ 7700 J 25000 J 100000 UJ 57000 J 60000 J 100000 UJ 340000 J	14000 J 12000 J 7600 J 4500 J 14000 J 14000 J 37000 J 39000 J 4300 J 110000 J	13 J 11 J 100 UJ 5.4 J 17 J 100 UJ 44 J 48 J 100 UJ 1800 J	48000 J 38000 J 30000 J 16000 J 54000 J 20000 UJ 140000 J 110000 J 20000 J 1600000 J	23000 J 21000 J 19000 J 7000 J 6900 J 20000 J 1600 J 56000 J 50000 J 5200 J	58000 90000 100000 46000 32000 J 67000 8600 100000 2100 J 33000 3400 UJ	99 UJ 8.9 J 12 J 99 UJ	420000 J 340000 J 300000 J 120000 J 430000 J 400000 UJ 1100000 J 820000 J 190000 J 6000000 J	100000 J 100000 J 65000 J 63000 J 46000 J 94000 J 99000 UJ 280000 J 190000 J 44000 J 2400000 J		97000 J 84000 J 66000 J 58000 J 29000 J 92000 J 43000 UJ 250000 J 160000 J 34000 J 310000 J	7.3 U	7.5 U 5.9 J 5.4 J 7.5 U 6.5 J
Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene	100000 1000 1000 330 100000 100000 500 100000	500000 56000 56000 560 500000 500000 500000 500000	11000 1000000 110000 110000 1100 1000000	460 J 350 J 140 J 680 J 77 J 1500 J 1600 J 240 J 1500 J 6900 J	6600 J 2600 J 2000 J 6700 J 110 UJ 18000 J 7500 J 1900 J 2000 J 27000 J	9700 J 8700 J 4000 J 3800 J 9500 J 5100 UJ 29000 J 23000 J 2600 J 37000 J	23000 J 21000 J 100000 UJ 7700 J 25000 J 100000 UJ 57000 J 60000 J 100000 UJ 340000 J 190000 J	14000 J 12000 J 7600 J 4500 J 14000 J 14000 J 37000 J 39000 J 4300 J 110000 J	13 J 11 J 100 UJ 5.4 J 17 J 100 UJ 44 J 48 J 100 UJ 1800 J 120 J	48000 J 38000 J 30000 J 16000 J 54000 J 20000 UJ 140000 J 20000 J 110000 J 1600000 J 350000 J	23000 J 21000 J 19000 J 7000 J 6900 J 20000 J 1600 J 56000 J 50000 J 5200 J 450000 J	58000 90000 100000 46000 32000 J 67000 8600 100000 2100 J 33000 3400 UJ 5100 J	99 UJ 8.9 J 12 J 99 UJ 99 UJ 23 J	420000   J   340000   J   300000   J   120000   J   430000   J   1100000   J   820000   J   6000000   J   3000000   J	100000 J 100000 J 65000 J 63000 J 46000 J 94000 J 99000 UJ 280000 J 190000 J 44000 J 2400000 J		97000 J 84000 J 66000 J 58000 J 29000 J 92000 J 43000 UJ 250000 J 160000 J 34000 J 310000 J	7.3 U	7.5 U 5.9 J 5.4 J 7.5 U 6.5 J
Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	100000 1000 1000 330 100000 100000 500 100000 100000	500000 56000 56000 560 500000 500000 500000 500000 500000	11000 1000000 110000 110000 1100 1000000	460 J 350 J 140 J 680 J 77 J 1500 J 1600 J 240 J 1500 J 6900 J 2400 J	6600 J 2600 J 2000 J 6700 J 110 UJ 18000 J 7500 J 1900 J 2000 J 27000 J 28000 J	9700 J 8700 J 4000 J 3800 J 9500 J 5100 UJ 29000 J 23000 J 2600 J 37000 J 78000 J 41000 J	23000 J 21000 J 100000 UJ 7700 J 25000 J 100000 UJ 57000 J 60000 J 100000 UJ 340000 J 190000 J 83000 J	14000 J 12000 J 7600 J 4500 J 14000 J 14000 J 37000 J 39000 J 4300 J 110000 J 120000 J 51000 J	13 J 11 J 100 UJ 5.4 J 17 J 100 UJ 44 J 48 J 100 UJ 1800 J 120 J 59 J	48000 J 38000 J 30000 J 16000 J 54000 J 20000 UJ 140000 J 20000 J 1600000 J 350000 J 190000 J	23000 J 21000 J 19000 J 7000 J 6900 J 20000 J 1600 J 56000 J 50000 J 5200 J 45000 J 150000 J 77000 J	58000 90000 100000 46000 32000 J 67000 8600 100000 2100 J 33000 3400 UJ 5100 J 270000 J	99 UJ 8.9 J 12 J 99 UJ 99 UJ 23 J	420000 J 340000 J 300000 J 120000 J 430000 J 400000 UJ 1100000 J 820000 J 190000 J 6000000 J 3000000 J 1500000 J	100000 J 100000 J 65000 J 65000 J 63000 J 46000 J 94000 J 99000 UJ 280000 J 190000 J 240000 J 240000 J 350000 J		97000 J 84000 J 66000 J 58000 J 29000 J 92000 J 43000 UJ 250000 J 160000 J 34000 J 340000 J	7.3 U	7.5 U 5.9 J 7.5 U 6.5 J 46 5.3 J
Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TOTAL PAH	100000 1000 1000 330 100000 100000 500 100000 100000 NA	500000 56000 56000 560 500000 500000 500000 500000 NA	11000 1000000 110000 110000 1100 1000000	460 J 350 J 140 J 680 J 77 J 1500 J 1600 J 240 J 1500 J 6900 J	6600 J 2600 J 2000 J 6700 J 110 UJ 18000 J 7500 J 1900 J 2000 J 27000 J	9700 J 8700 J 4000 J 3800 J 9500 J 5100 UJ 29000 J 23000 J 2600 J 37000 J	23000 J 21000 J 100000 UJ 7700 J 25000 J 100000 UJ 57000 J 60000 J 100000 UJ 340000 J 190000 J	14000 J 12000 J 7600 J 4500 J 14000 J 14000 J 37000 J 39000 J 4300 J 110000 J	13 J 11 J 100 UJ 5.4 J 17 J 100 UJ 44 J 48 J 100 UJ 1800 J 120 J	48000 J 38000 J 30000 J 16000 J 54000 J 20000 UJ 140000 J 20000 J 110000 J 1600000 J 350000 J	23000 J 21000 J 19000 J 7000 J 6900 J 20000 J 1600 J 56000 J 50000 J 5200 J 450000 J	58000 90000 100000 46000 32000 J 67000 8600 100000 2100 J 33000 3400 UJ 5100 J	99 UJ 8.9 J 12 J 99 UJ 99 UJ 23 J	420000   J   340000   J   300000   J   120000   J   430000   J   1100000   J   820000   J   6000000   J   3000000   J	100000 J 100000 J 65000 J 63000 J 46000 J 94000 J 99000 UJ 280000 J 190000 J 44000 J 2400000 J		97000 J 84000 J 66000 J 58000 J 29000 J 92000 J 43000 UJ 250000 J 160000 J 34000 J 310000 J	7.3 U	7.5 U 5.9 J 5.4 J 7.5 U 6.5 J
Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TOTAL PAH Semi-volatile Organic Compo	100000 1000 1000 330 100000 100000 500 100000 100000 NA unds - 82700	500000 56000 56000 560 500000 500000 500000 500000 NA	11000 1000000 110000 110000 1100 1000000	460 J 350 J 140 J 680 J 77 J 1500 J 1600 J 240 J 1500 J 6900 J 2400 J 21457	6600 J 2600 J 2000 J 6700 J 110 UJ 18000 J 7500 J 1900 J 2000 J 27000 J 28000 J 137100	9700 J 8700 J 4000 J 3800 J 9500 J 5100 UJ 29000 J 23000 J 2600 J 37000 J 78000 J 41000 J 331900	23000 J 21000 J 100000 UJ 7700 J 25000 J 100000 UJ 57000 J 60000 UJ 340000 UJ 340000 J 190000 J 83000 J 1163700	14000 J 12000 J 7600 J 4500 J 14000 J 14000 J 37000 J 39000 J 4300 J 110000 J 120000 J 51000 J 551800	13 J 11 J 100 UJ 5.4 J 17 J 100 UJ 44 J 48 J 100 UJ 1800 J 120 J 59 J 2093	48000 J 38000 J 30000 J 16000 J 54000 J 20000 UJ 140000 J 20000 J 1600000 J 350000 J 190000 J 2989000	23000 J 21000 J 19000 J 7000 J 6900 J 20000 J 1600 J 56000 J 50000 J 5200 J 450000 J 150000 J 77000 J	58000 90000 100000 46000 32000 J 67000 8600 100000 2100 J 33000 3400 UJ 5100 J 270000 J 845800	99 UJ 8.9 J 12 J 99 UJ 99 UJ 23 J 11 J 113	420000 J 340000 J 300000 J 120000 J 430000 J 400000 UJ 1100000 J 820000 J 190000 J 6000000 J 3000000 J 1500000 J	100000 J 100000 J 65000 J 65000 J 63000 J 46000 J 94000 J 99000 UJ 280000 J 190000 J 44000 J 2400000 J 640000 J 350000 J 5112000		97000 J 84000 J 66000 J 58000 J 29000 J 92000 J 43000 UJ 250000 J 160000 J 34000 J 340000 J 340000 J 2484000 J	7.3 U	7.5 U 6.5 J 46 5.3 J 76
Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TOTAL PAH Semi-volatile Organic Compo	100000 1000 1000 330 100000 100000 500 100000 100000 NA ounds - 82700 NS	500000 56000 56000 56000 500000 500000 500000 500000 NA	11000 1000000 110000 110000 11000 1000000	460 J 350 J 140 J 680 J 77 J 1500 J 1600 J 240 J 1500 J 2400 J 24157	6600 J 2600 J 2600 J 2000 J 6700 J 110 UJ 18000 J 7500 J 1900 J 2000 J 27000 J 28000 J 137100	9700 J 8700 J 4000 J 3800 J 9500 J 5100 UJ 29000 J 23000 J 2600 J 37000 J 78000 J 41000 J 331900	23000 J 21000 J 100000 UJ 7700 J 25000 J 100000 UJ 57000 J 60000 J 100000 UJ 340000 J 190000 J 1163700	14000 J 12000 J 7600 J 4500 J 14000 J 14000 J 37000 J 39000 J 4300 J 110000 J 120000 J 51000 J 551800	13 J 11 J 100 UJ 5.4 J 17 J 100 UJ 44 J 48 J 100 UJ 1800 J 120 J 59 J 2093	48000 J 38000 J 30000 J 16000 J 54000 J 20000 UJ 110000 J 20000 J 1600000 J 350000 J 2989000 J	23000 J 21000 J 19000 J 7000 J 6900 J 20000 J 56000 J 50000 J 5200 J 450000 J 150000 J 150000 J	58000 90000 100000 46000 32000 J 67000 8600 100000 2100 J 33000 3400 UJ 5100 J 270000 J 845800	99 UJ 23 J 11 J 113	420000 J 340000 J 300000 J 120000 J 430000 UJ 1100000 J 820000 J 190000 J 3000000 J 1500000 J 2600000 J 2600000 J	100000 J 100000 J 100000 J 65000 J 63000 J 46000 J 94000 J 99000 UJ 280000 J 190000 J 44000 J 2400000 J 5112000 J		97000 J 84000 J 66000 J 58000 J 29000 J 92000 J 43000 UJ 250000 J 160000 J 34000 J 34000 J 2484000 J 2484000 J	7.3 U	7.5 U 6.5 J 46 5.3 J
Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TOTAL PAH Semi-volatile Organic Compo 2-Methylnaphthalene 4-Methylphenol	100000 1000 1000 330 100000 100000 500 100000 100000 NA unds - 8270C NS 34000	500000 56000 56000 5600 500000 500000 500000 500000 NA NS 500000	11000 1000000 110000 110000 11000 1000000	460 J 350 J 140 J 680 J 77 J 1500 J 1600 J 240 J 1500 J 2400 J 2400 J 2400 J 21457	6600 J 2600 J 2600 J 2000 J 6700 J 110 UJ 18000 J 7500 J 1900 J 2000 J 27000 J 28000 J 137100	9700 J 8700 J 4000 J 3800 J 9500 J 5100 UJ 29000 J 23000 J 2600 J 37000 J 78000 J 41000 J 331900	23000 J 21000 J 100000 UJ 7700 J 25000 J 100000 UJ 57000 J 60000 J 100000 UJ 340000 J 190000 J 83000 J 1163700  240000 J	14000 J 12000 J 7600 J 7600 J 4500 J 14000 J 37000 J 39000 J 110000 J 120000 J 551800  140000 J 3800 U	13 J 11 J 100 UJ 5.4 J 17 J 100 UJ 44 J 48 J 100 UJ 1800 J 120 J 59 J 2093	48000 J 38000 J 30000 J 16000 J 54000 J 20000 UJ 140000 J 110000 J 20000 J 350000 J 350000 J 2989000 J 40000 U	23000 J 21000 J 21000 J 19000 J 7000 J 6900 J 20000 J 56000 J 50000 J 5200 J 450000 J 150000 J 150000 J 177000 J 1032300	58000 90000 100000 46000 32000 J 67000 8600 100000 2100 J 33000 3400 UJ 5100 J 270000 J 845800	99 UJ 23 J 11 J 113	420000 J 340000 J 300000 J 120000 J 430000 J 400000 UJ 1100000 J 820000 J 190000 J 3000000 J 1500000 J 2600000 J 770000 U	100000 J 100000 J 100000 J 65000 J 63000 J 46000 J 94000 J 99000 UJ 280000 J 190000 J 44000 J 350000 J 5112000 J		97000 J 84000 J 66000 J 58000 J 29000 J 92000 J 43000 UJ 250000 J 160000 J 34000 J 340000 J 2484000 J 260000 J 83000 U	7.3 U	7.5 U 6.5 J 46 5.3 J 76
Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TOTAL PAH Semi-volatile Organic Compo 2-Methylnaphthalene 4-Methylphenol Benzaldehyde	100000 1000 1000 330 100000 100000 500 100000 100000 NA unds - 82700 NS 34000 NS	500000 56000 56000 56000 500000 500000 500000 500000 NA NS 500000 NS	11000 1000000 110000 110000 11000 1000000	460 J 350 J 140 J 680 J 77 J 1500 J 1600 J 240 J 1500 J 2400 J 2400 J 24457	6600 J 2600 J 2600 J 2000 J 6700 J 110 UJ 18000 J 7500 J 1900 J 2000 J 27000 J 28000 J 137100	9700 J 8700 J 4000 J 3800 J 9500 J 5100 UJ 29000 J 23000 J 2600 J 37000 J 78000 J 41000 J 331900	23000 J 21000 J 100000 UJ 7700 J 25000 J 100000 UJ 57000 J 60000 J 100000 UJ 340000 J 190000 J 240000 J 200000 U 100000 UJ	14000 J 12000 J 7600 J 7600 J 4500 J 14000 J 37000 J 39000 J 4300 J 110000 J 120000 J 551800  140000 J 3800 U 2000 UJ	13 J 11 J 100 UJ 5.4 J 17 J 100 UJ 44 J 48 J 100 UJ 1800 J 120 J 59 J 2093	48000 J 38000 J 30000 J 16000 J 54000 J 20000 UJ 140000 J 110000 J 20000 J 350000 J 2989000 J 40000 U 20000 U 20000 U	23000 J 21000 J 21000 J 19000 J 7000 J 6900 J 20000 J 56000 J 50000 J 5200 J 450000 J 150000 J 150000 J 177000 J 1032300  19000 J	58000 90000 100000 46000 32000 J 67000 8600 100000 2100 J 33000 3400 UJ 5100 J 270000 J 845800 630 J 6600 U 3400 UJ	99 UJ 23 J 11 J 113	420000   J   340000   J   300000   J   430000   J   400000   UJ   1100000   J   500000   J   500000   J   1500000   J   16990000   J   770000   U   400000   UJ   1600000   UJ   16000000   UJ   1600000   UJ   16000000   UJ   1600000   UJ   16000000   UJ   16000000   UJ   16000000   UJ   16000000   UJ   160000000   UJ   160000000   UJ   1600000000   UJ   1600000000000000000000000000000000000	100000 J 100000 J 100000 J 65000 J 63000 J 46000 J 94000 J 99000 UJ 280000 J 190000 J 44000 J 350000 J 5112000 J 190000 U 99000 UJ		97000 J 84000 J 66000 J 58000 J 29000 J 92000 J 43000 UJ 250000 J 160000 J 34000 J 34000 J 34000 J 2484000 J 83000 U 43000 UJ	7.3 U 7.1 U 7.1 U 7.1 U	7.5 U 6.5 J 46 5.3 J 76
Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TOTAL PAH Semi-volatile Organic Compo 2-Methylnaphthalene 4-Methylphenol Benzaldehyde Acetophenone	100000 1000 1000 330 100000 100000 500 100000 100000 NA unds - 82700 NS 34000 NS NS	500000 56000 56000 56000 500000 500000 500000 500000 NA NS 500000 NS NS	11000 1000000 110000 110000 11000 1000000	460 J 350 J 140 J 680 J 77 J 1500 J 1600 J 240 J 1500 J 2400 J 2440 J 21457  4000 J 160 U 83 U 4.9 J	6600 J 2600 J 2600 J 2000 J 6700 J 110 UJ 18000 J 7500 J 2000 J 27000 J 28000 J 137100  6200 J 210 U 110 UJ	9700 J 8700 J 8700 J 4000 J 3800 J 9500 J 5100 UJ 29000 J 23000 J 2600 J 37000 J 78000 J 41000 J 331900  47000 J 9900 U 5100 UJ	23000 J 21000 J 100000 UJ 7700 J 25000 J 100000 UJ 57000 J 60000 J 100000 UJ 340000 J 190000 J 1163700  240000 J 200000 U 100000 UJ	14000 J 12000 J 7600 J 7600 J 4500 J 14000 J 37000 J 39000 J 4300 J 110000 J 120000 J 51000 J 551800  140000 J 3800 U 2000 UJ 1100 J	13 J 11 J 100 UJ 5.4 J 17 J 100 UJ 44 J 48 J 100 UJ 1800 J 120 J 59 J 2093	48000 J 38000 J 30000 J 16000 J 54000 J 20000 UJ 140000 J 110000 J 1600000 J 350000 J 190000 J 2989000 J 40000 U 20000 UJ	23000 J 21000 J 21000 J 19000 J 7000 J 6900 J 20000 J 1600 J 56000 J 50000 J 5200 J 450000 J 150000 J 150000 J 177000 J 1032300  19000 J 1900 U 990 UJ	58000 90000 100000 46000 32000 J 67000 8600 100000 2100 J 33000 3400 UJ 270000 J 845800 630 J 6600 U 3400 UJ 3400 UJ	99 UJ 12 J 99 UJ 99 UJ 11 J 113	420000   J   340000   J   300000   J   430000   J   400000   UJ   1100000   J   500000   J   500000   J   500000   J   500000   J   770000   UJ   400000   UJ   400000	100000 J 100000 J 100000 J 65000 J 63000 J 46000 J 94000 J 99000 UJ 280000 J 190000 J 440000 J 350000 J 5112000 J 190000 U 99000 UJ		97000 J 84000 J 86000 J 58000 J 29000 J 92000 J 43000 UJ 250000 J 340000 J 340000 J 340000 J 2484000 J 83000 U 43000 UJ 43000 UJ	7.3 U 7.1 U 7.1 U 110 U	7.5 U 6.5 J 6.5 J 46 5.3 J 76  7.5 U 7.5 U
Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TOTAL PAH Semi-volatile Organic Compo 2-Methylnaphthalene 4-Methylphenol Benzaldehyde Acetophenone Biphenyl	100000 1000 1000 330 100000 100000 500 100000 100000 NA unds - 82700 NS 34000 NS NS NS	500000 56000 56000 56000 500000 500000 500000 500000 NS NS NS NS	11000 1000000 110000 110000 11000 1000000 1000000 1000000 1000000 NA NS 1000000 NS NS NS	460 J 350 J 140 J 680 J 77 J 1500 J 1600 J 240 J 1500 J 2400 J 2405 J 2405 J 2407 J	6600 J 2600 J 2000 J 6700 J 110 UJ 18000 J 7500 J 2000 J 2000 J 27000 J 28000 J 137100 6200 J 210 U 110 UJ	9700 J 8700 J 8700 J 4000 J 3800 J 9500 J 5100 UJ 29000 J 23000 J 2600 J 37000 J 78000 J 41000 J 331900  47000 J 9900 U 5100 UJ 5100 UJ 9800 J	23000 J 21000 J 100000 UJ 7700 J 25000 J 100000 UJ 57000 J 60000 UJ 340000 UJ 340000 J 190000 UJ 220000 U 200000 U 100000 UJ 33000 J 1163700	14000 J 12000 J 7600 J 7600 J 4500 J 14000 J 37000 J 39000 J 4300 J 110000 J 51000 J 551800  140000 J 3800 U 2000 UJ 1100 J	13 J 11 J 100 UJ 5.4 J 17 J 100 UJ 44 J 48 J 100 UJ 1800 J 120 J 59 J 2093 590 U 100 UJ	48000 J 38000 J 30000 J 16000 J 54000 J 20000 UJ 140000 J 110000 J 1600000 J 2989000 J 40000 U 20000 U 20000 U 20000 U 20000 U 20000 U 20000 UJ 20000 UJ 74000 J	23000 J 21000 J 21000 J 19000 J 7000 J 6900 J 20000 J 1600 J 56000 J 50000 J 5200 J 450000 J 150000 J 150000 J 77000 J 1032300 19000 U 990 UJ 990 UJ 26000 J	58000 90000 100000 46000 32000 J 67000 8600 100000 2100 J 33000 3400 UJ 270000 J 845800 630 J 6600 U 3400 UJ 3400 UJ 3400 UJ 3400 UJ 3400 UJ	99 UJ 12 J 99 UJ 23 J 11 J 113  99 UJ 190 U 99 UJ 99 UJ	420000   J   340000   J   300000   J   430000   J   400000   UJ   1100000   J   500000   J   500000   J   500000   J   500000   J   500000   J   770000   UJ   400000   UJ   400000   UJ   390000   J   390000   J   500000   J   500000   UJ   400000   UJ   400000   UJ   390000   J   500000   J   5000000   UJ   50000000   UJ   50000000   UJ   500000000   UJ   5000000000   UJ   500000000000   UJ   500000000000000000000000000000000000	100000 J 100000 J 100000 J 65000 J 63000 J 46000 J 94000 J 99000 UJ 280000 J 190000 J 44000 J 2400000 J 350000 J 5112000 510000 J 190000 U 99000 UJ 99000 UJ 100000 J		97000 J 84000 J 86000 J 58000 J 29000 J 92000 J 43000 UJ 250000 J 340000 J 340000 J 340000 J 2484000 J 83000 U 43000 UJ 43000 UJ 30000 UJ	7.3 U 7.5 U 7.5 U 7.5 U	7.5 U
Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TOTAL PAH Semi-volatile Organic Compo 2-Methylnaphthalene 4-Methylphenol Benzaldehyde Acetophenone Biphenyl Bis(2-Ethylhexyl)phthalate	100000 1000 1000 330 100000 100000 500 100000 100000 NA ounds - 82700 NS NS NS NS	500000 56000 56000 56000 500000 500000 500000 500000 NA  NS NS NS NS	11000 1000000 110000 110000 11000 1000000 1000000 1000000 1000000 NA NS 1000000 NS NS NS NS	460 J 350 J 140 J 680 J 77 J 1500 J 1600 J 240 J 1500 J 2400 J 2400 J 2405 J 2400 J 21457	6600 J 2600 J 2000 J 6700 J 110 UJ 18000 J 7500 J 2000 J 2000 J 27000 J 28000 J 137100  6200 J 210 U 110 UJ 50 J 1100 J	9700 J 8700 J 8700 J 4000 J 3800 J 9500 J 5100 UJ 29000 J 23000 J 37000 J 78000 J 41000 J 331900  47000 J 9900 U 5100 UJ 5100 UJ 9800 J 5100 UJ	23000 J 21000 J 100000 UJ 7700 J 25000 J 100000 UJ 57000 J 60000 J 100000 UJ 340000 J 190000 J 1163700  240000 J 200000 U 100000 UJ 100000 UJ 100000 UJ 100000 UJ	14000 J 12000 J 7600 J 7600 J 4500 J 14000 J 37000 J 39000 J 4300 J 110000 J 120000 J 551800  140000 J 3800 U 2000 UJ 1100 J 16000 J	13 J 11 J 100 UJ 5.4 J 17 J 100 UJ 44 J 48 J 100 UJ 1800 J 120 J 59 J 2093  590 J 200 U 100 UJ 10 J 51 J 100 UJ	48000 J 38000 J 38000 J 30000 J 16000 J 54000 J 20000 UJ 140000 J 1600000 J 350000 J 190000 J 2989000 J 40000 U 20000 UJ	23000 J 21000 J 21000 J 19000 J 7000 J 6900 J 20000 J 50000 J 50000 J 50000 J 150000 J 150000 J 77000 J 1032300  19000 J 1900 U 990 UJ 990 UJ 990 UJ	58000 90000 100000 46000 32000 J 67000 8600 100000 2100 J 33000 3400 UJ 270000 J 845800 630 J 6600 U 3400 UJ 3400 UJ 3400 UJ 3400 UJ 3400 UJ 3400 UJ	99 UJ 8.9 J 12 J 99 UJ 23 J 11 J 113  99 UJ 190 U 99 UJ 99 UJ 99 UJ	420000   J   340000   J   300000   J   430000   J   400000   UJ   1100000   J   400000   J   500000   J   5000000   J   5000000   J   5000000   J   5000000   J   500000000   J   50000000   J   50000000000	100000 J 100000 J 100000 J 65000 J 65000 J 63000 J 46000 J 99000 UJ 280000 J 190000 J 44000 J 2400000 J 350000 J 5112000 510000 J 190000 UJ 99000 UJ 99000 UJ 99000 UJ		97000 J 84000 J 86000 J 58000 J 29000 J 92000 J 43000 UJ 250000 J 340000 J 340000 J 340000 J 2484000 J 33000 U 43000 UJ 43000 UJ 43000 UJ 43000 UJ 43000 UJ 43000 UJ	7.3 U 7.5 U 7.7 U 110 U 155 U 77 U	7.5 U 6.5 J 7.5 U 6.5 J 46 5.3 J 76  7.5 U 110 U 110 U 56 U 79 U
Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TOTAL PAH Semi-volatile Organic Compo 2-Methylnaphthalene 4-Methylphenol Benzaldehyde Acetophenone Biphenyl	100000 1000 1000 330 100000 100000 500 100000 100000 NA unds - 82700 NS 34000 NS NS NS	500000 56000 56000 56000 500000 500000 500000 500000 NS NS NS NS	11000 1000000 110000 110000 11000 1000000 1000000 1000000 1000000 NA NS 1000000 NS NS NS	460 J 350 J 140 J 680 J 77 J 1500 J 1600 J 240 J 1500 J 2400 J 2405 J 2405 J 2407 J	6600 J 2600 J 2000 J 6700 J 110 UJ 18000 J 7500 J 2000 J 2000 J 27000 J 28000 J 137100 6200 J 210 U 110 UJ	9700 J 8700 J 8700 J 4000 J 3800 J 9500 J 5100 UJ 29000 J 23000 J 2600 J 37000 J 78000 J 41000 J 331900  47000 J 9900 U 5100 UJ 5100 UJ 9800 J	23000 J 21000 J 100000 UJ 7700 J 25000 J 100000 UJ 57000 J 60000 UJ 340000 UJ 340000 J 190000 UJ 220000 U 200000 U 100000 UJ 33000 J 1163700	14000 J 12000 J 7600 J 7600 J 4500 J 14000 J 37000 J 39000 J 4300 J 110000 J 51000 J 551800  140000 J 3800 U 2000 UJ 1100 J	13 J 11 J 100 UJ 5.4 J 17 J 100 UJ 44 J 48 J 100 UJ 1800 J 120 J 59 J 2093 590 U 100 UJ	48000 J 38000 J 30000 J 16000 J 54000 J 20000 UJ 140000 J 110000 J 1600000 J 2989000 J 40000 U 20000 U 20000 U 20000 U 20000 U 20000 U 20000 UJ 20000 UJ 74000 J	23000 J 21000 J 21000 J 19000 J 7000 J 6900 J 20000 J 1600 J 56000 J 50000 J 5200 J 450000 J 150000 J 150000 J 77000 J 1032300 19000 U 990 UJ 990 UJ 26000 J	58000 90000 100000 46000 32000 J 67000 8600 100000 2100 J 33000 3400 UJ 270000 J 845800 630 J 6600 U 3400 UJ 3400 UJ 3400 UJ 3400 UJ 3400 UJ	99 UJ 12 J 99 UJ 23 J 11 J 113  99 UJ 190 U 99 UJ 99 UJ	420000   J   340000   J   300000   J   430000   J   400000   UJ   1100000   J   500000   J   500000   J   500000   J   500000   J   500000   J   770000   UJ   400000   UJ   400000   UJ   390000   J   390000   J   500000   J   500000   UJ   400000   UJ   400000   UJ   390000   J   500000   J   5000000   UJ   50000000   UJ   50000000   UJ   500000000   UJ   5000000000   UJ   500000000000   UJ   500000000000000000000000000000000000	100000 J 100000 J 100000 J 65000 J 63000 J 46000 J 94000 J 99000 UJ 280000 J 190000 J 44000 J 2400000 J 350000 J 5112000 510000 J 190000 U 99000 UJ 99000 UJ 100000 J		97000 J 84000 J 86000 J 58000 J 29000 J 92000 J 43000 UJ 250000 J 340000 J 340000 J 340000 J 2484000 J 83000 U 43000 UJ 43000 UJ 30000 UJ	7.3 U 7.5 U 7.5 U 7.5 U	7.5 U 5.9 J 5.4 J 7.5 U 6.5 J 46 5.3 J 76  7.5 U

			Location ID	C-3	C-4	C-4	D-5	D-6	D-7	D-9	D-9	E-4	E-5	E-6	E-6	E-7A	E-9	E-12	E-12
		Sample	Depth (ft bgs)	6.5-7.2	6.8-8	6.8-8	15-16	11-12	12.5-13	7.8-8	10.7-11	1.4-1.7	15-16	1.5-2	10.4-12	48	2.6-3	28	32
			MGP Descriptio n Type	DNAPL - iridescent/staining/ strong odor	DNAPL/residual staining	DNAPL/residual staining	DNAPL/residual staining	DNAPL	NOI	very strong odor	DNAPL	residual/staining/ strong to moderate odor	NOI	residual/staining/ very strong odor	DNAPL	moderate to faint odor	residual staining/ strong odor	moderate to faint odor	residual/odor
	Approxima	te Depth	to GW (ft bgs) Sample Date Sample ID OC Code	1.2 8/10/2013 516008-C307 FS	3.5 8/8/2013 516008-C408 FS	3.5 8/8/2013 516008-C408D FD	8 8/8/2013 516008-D516 FS	7 8/8/2013 516008-D612 FS	4.2 8/7/2013 516008-D712 FS	8 8/6/2013 516008-D908 FS	8 8/6/2013 516008-D911 FS	2.7 8/12/2013 516008-E402 FS	unk 8/8/2013 516008-E516 FS	3.5 8/8/2013 516008-E602 FS	3.5 8/8/2013 516008-E612 FS	unk 9/19/2014 516008-E7A48 FS	8 8/6/2013 516008-E903 FS	10.2 9/17/2014 516008-E1228 FS	10.2 9/17/2014 516008-E1232 FS
Parameter Name	RES	COMN		1.5	1.5	12	1.5	1.5	1.5	1.5	1.0	15	15	1.5	15		1.5	1.5	
Pesticides - 8081				<u> </u>				<u> </u>	Į.								<u> </u>		<u></u>
4,4'-DDD	2600	92000	180000		110 U	200 U							1.9 U	1900 U					
4,4'-DDE	1800	62000	120000		110 U	200 U							1.9 U	R					
4,4'-DDT	1700	47000	94000		110 U	200 U							1.9 U	1900 U					
Alpha-BHC	97	3400	6800		110 U	200 U							1.9 U	360 J					
Alpha-Chlordane	910	24000	47000		110 U	200 U							1.9 U	1900 U					
Beta-BHC	72	3000	14000		110 U	200 U							1.9 U	1900 U					
Dieldrin	39	1400	2800		110 U	200 U							1.9 UJ	1900 U					
Endosulfan II	4800	200000	920000		110 U	200 U							1.9 U	1900 U					
Endosulfan sulfate	4800	200000	920000		110 U	200 U							1.9 U	R					
Endrin	2200	89000	410000		110 U	200 U							1.9 U	<b>280</b> J					
Endrin aldehyde	NS	NS	NS		110 U	200 U							1.9 U	1900 U					
Endrin ketone	NS	NS	NS		110 U	200 U							1.9 U	1900 U					
Gamma-BHC/Lindane	280	9200	23000		110 U	<b>27</b> J							1.9 UJ	1900 U					
Gamma-Chlordane	NS	NS	NS		110 U	200 U							1.9 U	1900 U					
Heptachlor epoxide	NS	NS	NS		110 U	200 U							1.9 U	1900 U					
Methoxychlor	NS	NS	NS		R	R							1.9 U	R					
PCB Target Compound	NA	NA	NA		ND	ND							ND	ND					
Notes:														•					

January 2015

		-	T TD	E 46	F 46	F. 2	F.4	D (	Б.	F (	T =	Т. О	E 0	G 0
			Location ID	E-16 27-28	E-16 34	F-2 5.9-6.4	F-3 6.5-7	<b>F-6</b> 1.5-2	<b>F-6</b> 4.6-5.4	<b>F-6</b> 9.6-9.9	F-7 15.5-16	F-8 3.5-4	F-9 3-3.8	<b>G-8</b> 5.2-6
		Sample De	epth (ft bgs)	27-28	34	3.9-6.4	0.5-/	1.5-2	4.6-3.4	9.6-9.9	15.5-16	3.5-4	3-3.8	5.2-6
			MGP		faint to moderate			staining/coal/ash/	faint to moderate	DNAPL/residual/	moderate to faint			DNAPL/residual
			Descriptio		odor	NOI	NOI	slag	odor	staining	odor	DNAPL	DNAPL/staining	staining
			n Type											
	Approximat	te Depth to	GW (ft bgs)	9.5	9.5	1.7	1.7	2.5	2.5	2.5	3.8	4	3.5	4
		S	Sample Date	9/18/2014	9/18/2014	8/9/2013	8/12/2013	8/10/2013	8/10/2013	8/10/2013	8/7/2013	8/6/2013	8/6/2013	8/7/2013
			Sample ID	516008-E1628	516008-E1634	516880-F206	516880-F307	516880-F602	516880-F605	516880-F610	516880-F716	516880-F804	516880-F903	516008-G806
			QC Code	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS
Parameter Name	RES	COMM	IND											
Volatile Organic Compound		1		1			1	1		1			1	1
1,2,4-Trimethylbenzene	47000	190000	380000	10 J	8.8 J									
1,3,5-Trimethylbenzene	47000	190000	380000	27 U	26 U									
4-iso-Propyltoluene	NS	NS	NS	27 U	26 U	110	41 77	7.0	260 1	7.00 II	20. 1	2200 11	140	1100 11
Acetic acid, methyl ester	NS	NS	NS	17 J	26 U	110	41 U	76	360 J	560 U	29 J	2200 U	140	1100 U
Acetone Carbon disulfide	100000 NS	500000 NS	1000000 NS	130 U 27 U	130 U 26 U	160 UJ 32 U	200 UJ 41 U	180 UJ 37 U	2200 UJ 450 U	2800 UJ 560 U	220 U 43 U	11000 U 2200 U	240 U 49 U	5500 U 1100 U
Chloroform	10000	350000	700000	27 U	26 U	32 U	41 U	37 U	450 U	560 U	43 U	2200 U	49 U	1100 U
Cyclohexane	NS	350000 NS	/00000 NS	27 U	26 U	32 U 32 UJ	41 U 41 UJ	34 J	450 UJ	560 UJ	43 U 43 U	2200 U	49 U	1100 U
Isopropylbenzene	NS NS	NS NS	NS NS	27 U	26 U	32 U	41 UJ 41 U	20 J	320 J	980	43 U	22000	1600	1800
Methyl cyclohexane	NS NS	NS NS	NS NS	27 U	26 U	32 U	41 U	76	450 U	560 U	43 U	2200 U	49 U	1100 U
Methylene chloride	51000	500000	1000000	27 U	26 U	32 U	41 U	37 U	450 U	560 U	43 U	2200 U	49 U	280 J
n-Butylbenzene	100000	500000	1000000	27 U	26 U	32 0	710	37.0	730 0	300 0	-13 0	2200 0	77.0	200 J
Naphthalene	100000	500000	1000000	2, 0	200									
Propylbenzene	100000	500000	1000000	27 U	26 U									
sec-Butylbenzene	100000	500000	1000000	27 U	26 U									
Styrene	NS	NS	NS	27 U	26 U	32 U	41 U	35 J	450 U	84000	80	3800	510	120000
BTEX - 8260B	L.					!			·				ų.	
Benzene	2900	44000	89000	<b>20</b> J	35	32 U	41 U	1700	1400	43000	3800	50000	3300	100000
Ethyl benzene	30000	390000	780000	11 J	27	32 U	41 U	300	6500	51000	1200	210000	14000	46000
Toluene	100000	500000	1000000	27 U	26 U	32 U	41 U	1800	450 U	88000	2600	140000	8300	140000
Xylene, o	100000	500000	1000000											
Xylenes (m&p)	100000	500000	1000000											
Xylenes, Total	100000	500000	1000000	13 J	15 J	64 U	81 U	1300	4300	78000	850	230000	21000	110000
TOTAL BTEX	NA	NA	NA	44	77	ND	ND	5100	12200	260000	8450	630000	46600	396000
Polycyclic Aromatic Hydroc	carbons - 82700	C												
Acenaphthene						1	1				1			
	100000	500000	1000000	7.8 U	<b>4.2</b> J	85 U	84 UJ	270 J	23000 Ј	13000 J	69 J	330000 J	150000 J	58000 J
Acenaphthylene	100000 100000	500000 500000	1000000	7.8 U	6.1 J	<b>6.8</b> J	84 UJ	1800 J	2100 J	190000 J	<b>51</b> J	160000 J	41000 J	470000 J
Acenaphthylene Anthracene	100000 100000 100000	500000 500000 500000	1000000 1000000	7.8 U 7.8 U	<b>6.1</b> J 7.8 U	<b>6.8</b> J 85 U	84 UJ 84 UJ	1800 J 640 J	2100 J 18000 J	190000 J 63000 J	51 J 27 J	160000 J 240000 J	41000 J 100000 J	470000 J 330000 J
Acenaphthylene Anthracene Benzo(a)anthracene	100000 100000 100000 10000	500000 500000 500000 5600	1000000 1000000 11000	7.8 U 7.8 U 7.8 U	<b>6.1</b> J 7.8 U <b>5.1</b> J	6.8 J 85 U 85 U	84 UJ 84 UJ 84 UJ	1800 J 640 J 1700 J	2100 J 18000 J 7500 J	190000 J 63000 J 41000 J	51 J 27 J 97 UJ	160000 J 240000 J 84000 J	41000 J 100000 J 38000 J	470000 J 330000 J 94000 J
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	100000 100000 100000 1000 1000	500000 500000 500000 5600 1000	1000000 1000000 11000 1100	7.8 U 7.8 U 7.8 U 7.8 U	6.1 J 7.8 U 5.1 J 7.8 U	6.8 J 85 U 85 U 85 U	84 UJ 84 UJ 84 UJ 84 UJ	1800 J 640 J 1700 J 2200 J	2100 J 18000 J 7500 J 8600 J	190000 J 63000 J 41000 J 40000 J	51 J 27 J 97 UJ 10 J	160000 J 240000 J 84000 J 76000 J	41000 J 100000 J 38000 J 38000 J	470000 J 330000 J 94000 J 87000 J
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	100000 100000 100000 1000 1000	500000 500000 500000 5600 1000 5600	1000000 1000000 11000 1100 11000	7.8 U 7.8 U 7.8 U 7.8 U 7.8 U	6.1 J 7.8 U 5.1 J 7.8 U 7.8 U	6.8 J 85 U 85 U 85 U 85 U	84 UJ 84 UJ 84 UJ 84 UJ 84 UJ	1800 J 640 J 1700 J 2200 J 6500 J	2100 J 18000 J 7500 J 8600 J 7300 J	190000 J 63000 J 41000 J 40000 J 29000 J	51 J 27 J 97 UJ 10 J 9.1 J	160000 J 240000 J 84000 J 76000 J 57000 J	41000 J 100000 J 38000 J 38000 J 36000 J	470000 J 330000 J 94000 J 87000 J 62000 J
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene	100000 100000 100000 10000 1000 1000 1	500000 500000 500000 5600 1000 5600 500000	1000000 1000000 11000 1100 11000 1000000	7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U	6.1 J 7.8 U 5.1 J 7.8 U 7.8 U 7.8 U	6.8 J 85 U 85 U 85 U 85 U 85 U	84 UJ 84 UJ 84 UJ 84 UJ 84 UJ 84 UJ	1800 J 640 J 1700 J 2200 J 6500 J 4400 J	2100 J 18000 J 7500 J 8600 J 7300 J 4500 J	190000 J 63000 J 41000 J 40000 J 29000 J 14000 J	51 J 27 J 97 UJ 10 J 9.1 J 97 UJ	160000 J 240000 J 84000 J 76000 J 57000 J 54000 J	41000 J 100000 J 38000 J 38000 J 36000 J 25000 J	470000 J 330000 J 94000 J 87000 J 62000 J 57000 J
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene	100000 100000 100000 10000 1000 1000 1	500000 500000 500000 5600 1000 5600 500000 56000	1000000 1000000 11000 1100 11000 1000000	7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U	6.1 J 7.8 U 5.1 J 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U	6.8 J 85 U 85 U 85 U 85 U 85 U 85 U	84 UJ 84 UJ 84 UJ 84 UJ 84 UJ 84 UJ 84 UJ	1800 J 640 J 1700 J 2200 J 6500 J 4400 J 2700 J	2100 J 18000 J 7500 J 8600 J 7300 J 4500 J 3000 J	190000 J 63000 J 41000 J 40000 J 29000 J 14000 J 13000 J	51 J 27 J 97 UJ 10 J 9.1 J 97 UJ 4.6 J	160000 J 240000 J 84000 J 76000 J 57000 J 54000 J 36000 J	41000 J 100000 J 38000 J 38000 J 36000 J 25000 J 13000 J	470000 J 330000 J 94000 J 87000 J 62000 J 57000 J 39000 J
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene	100000 100000 100000 10000 1000 1000 1	500000 500000 500000 500000 5600 500000 56000 56000	1000000 1000000 11000 11000 11000 1000000	7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U	6.1 J 7.8 U 5.1 J 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U	85 U 85 U 85 U 85 U 85 U 85 U 85 U 85 U	84 UJ 84 UJ 84 UJ 84 UJ 84 UJ 84 UJ 84 UJ 84 UJ 84 UJ	1800 J 640 J 1700 J 2200 J 6500 J 4400 J 2700 J 2700 J	2100 J 18000 J 7500 J 8600 J 7300 J 4500 J 3000 J 8200 J	190000 J 63000 J 41000 J 40000 J 29000 J 14000 J 13000 J 37000 J	51 J 27 J 97 UJ 10 J 9.1 J 97 UJ 4.6 J 10 J	160000 J 240000 J 84000 J 76000 J 57000 J 54000 J 36000 J 81000 J	41000 J 100000 J 38000 J 38000 J 36000 J 25000 J 13000 J 38000 J	470000 J 330000 J 94000 J 87000 J 62000 J 57000 J 39000 J 89000 J
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene	100000 100000 100000 10000 1000 1000 1	500000 500000 500000 5600 1000 5600 500000 56000 56000 5600	1000000 1000000 11000 1100 11000 1000000	7.8 U	6.1 J 7.8 U 5.1 J 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U	6.8 J 85 U 85 U 85 U 85 U 85 U 85 U 85 U 85 U	84 UJ 84 UJ 84 UJ 84 UJ 84 UJ 84 UJ 84 UJ 84 UJ 84 UJ 84 UJ	1800 J 640 J 1700 J 2200 J 6500 J 4400 J 2700 J 2700 J 650 J	2100 J 18000 J 7500 J 8600 J 7300 J 4500 J 3000 J 8200 J 550 J	190000 J 63000 J 41000 J 40000 J 29000 J 14000 J 13000 J 37000 J 840 J	51 J 27 J 97 UJ 10 J 9.1 J 97 UJ 4.6 J 10 J 97 UJ	160000 J 240000 J 84000 J 76000 J 57000 J 54000 J 36000 J 81000 J 120000 UJ	41000 J 100000 J 38000 J 38000 J 36000 J 25000 J 13000 J 38000 J 58000 UJ	470000 J 330000 J 94000 J 87000 J 62000 J 57000 J 39000 J 89000 J 110000 UJ
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene	100000 100000 100000 10000 1000 1000 1	500000 500000 500000 500000 5600 500000 56000 5600 560 500000	1000000 1000000 11000 11000 11000 1000000	7.8 U	6.1 J 7.8 U 5.1 J 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 4.8 J	85 U 85 U 85 U 85 U 85 U 85 U 85 U 85 U	84 UJ 84 UJ	1800 J 640 J 1700 J 2200 J 6500 J 4400 J 2700 J 2700 J 650 J 2000 J	2100 J 18000 J 7500 J 8600 J 7300 J 4500 J 3000 J 8200 J 550 J 22000 J	190000 J 63000 J 41000 J 40000 J 29000 J 14000 J 13000 J 37000 J 840 J 110000 J	51 J 27 J 97 UJ 10 J 9.1 J 97 UJ 4.6 J 10 J 97 UJ 42 J	160000 J 240000 J 84000 J 76000 J 57000 J 54000 J 36000 J 81000 J 120000 UJ 280000 J	41000 J 100000 J 38000 J 38000 J 36000 J 25000 J 13000 J 38000 J 58000 UJ	470000 J 330000 J 94000 J 87000 J 62000 J 57000 J 39000 J 89000 J 110000 UJ 280000 J
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene	100000 100000 100000 10000 1000 1000 1	500000 500000 500000 500000 5600 500000 56000 5600 560 500000 500000	1000000 1000000 11000 1100 1100 1000000 110000 11000 1000000	7.8 U	6.1 J 7.8 U 5.1 J 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 4.8 J 5.7 J	85 U 85 U 85 U 85 U 85 U 85 U 85 U 85 U	84 UJ 84 UJ	1800 J 640 J 1700 J 2200 J 6500 J 4400 J 2700 J 2700 J 650 J 2000 J 280 J	2100 J 18000 J 7500 J 8600 J 7300 J 4500 J 3000 J 8200 J 550 J 22000 J	190000 J 63000 J 41000 J 40000 J 29000 J 14000 J 13000 J 37000 J 840 J 110000 J 77000 J	51 J 27 J 97 UJ 10 J 9.1 J 97 UJ 4.6 J 10 J 97 UJ 42 J 43 J	160000 J 240000 J 84000 J 76000 J 57000 J 54000 J 36000 J 81000 J 120000 UJ 280000 J	41000 J 100000 J 38000 J 38000 J 36000 J 25000 J 13000 J 58000 UJ 100000 J 82000 J	470000 J 330000 J 94000 J 87000 J 62000 J 57000 J 39000 J 110000 UJ 280000 J 230000 J
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	100000 100000 100000 10000 1000 10000 10000 10000 10000 330 100000 10000 500	500000 500000 500000 500000 5600 500000 56000 56000 500000 500000 500000	1000000 1000000 11000 11000 11000 1000000	7.8 U	6.1 J 7.8 U 5.1 J 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 4.8 J 5.7 J 7.8 U	85 U 85 U 85 U 85 U 85 U 85 U 85 U 85 U	84 UJ 84 UJ	1800 J 640 J 1700 J 2200 J 6500 J 4400 J 2700 J 2700 J 650 J 2000 J 280 J 3000 J	2100 J 18000 J 7500 J 8600 J 7300 J 4500 J 3000 J 8200 J 550 J 22000 J 8900 J 2700 J	190000 J 63000 J 41000 J 40000 J 29000 J 14000 J 13000 J 37000 J 840 J 110000 J 77000 J	51 J 27 J 97 UJ 10 J 9.1 J 97 UJ 4.6 J 10 J 97 UJ 42 J 43 J 97 UJ	160000 J 240000 J 84000 J 76000 J 57000 J 54000 J 36000 J 81000 J 120000 UJ 280000 J 190000 J 120000 UJ	41000 J 100000 J 38000 J 38000 J 36000 J 25000 J 13000 J 38000 J 58000 UJ	470000 J 330000 J 94000 J 87000 J 62000 J 57000 J 39000 J 110000 UJ 280000 J 110000 UJ
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene	100000 100000 100000 10000 1000 1000 1	500000 500000 500000 500000 5600 500000 56000 5600 560 500000 500000	1000000 1000000 11000 1100 1100 1000000 110000 11000 1000000	7.8 U	6.1 J 7.8 U 5.1 J 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 4.8 J 5.7 J	85 U 85 U 85 U 85 U 85 U 85 U 85 U 85 U	84 UJ 84 UJ	1800 J 640 J 1700 J 2200 J 6500 J 4400 J 2700 J 2700 J 650 J 2000 J 280 J	2100 J 18000 J 7500 J 8600 J 7300 J 4500 J 3000 J 8200 J 550 J 22000 J	190000 J 63000 J 41000 J 40000 J 29000 J 14000 J 13000 J 37000 J 840 J 110000 J 77000 J	51 J 27 J 97 UJ 10 J 9.1 J 97 UJ 4.6 J 10 J 97 UJ 42 J 43 J	160000 J 240000 J 84000 J 76000 J 57000 J 54000 J 36000 J 81000 J 120000 UJ 280000 J	41000 J 100000 J 38000 J 38000 J 36000 J 25000 J 13000 J 58000 UJ 100000 J 82000 J 58000 UJ	470000 J 330000 J 94000 J 87000 J 62000 J 57000 J 39000 J 110000 UJ 280000 J 230000 J
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene	100000 100000 100000 10000 1000 10000 10000 10000 10000 10000 100000 500	500000 500000 500000 500000 5600 500000 56000 56000 500000 500000 500000	1000000 1000000 11000 11000 11000 1000000	7.8 U	6.1 J 7.8 U 5.1 J 7.8 U 1.8 J 5.7 J 7.8 U	85 U 85 U	84 UJ 84 UJ	1800 J 640 J 1700 J 2200 J 6500 J 4400 J 2700 J 650 J 2000 J 280 J 3000 J 650 J	2100 J 18000 J 7500 J 8600 J 7300 J 4500 J 3000 J 8200 J 550 J 22000 J 8900 J 2700 J 59000 J	190000 J 63000 J 41000 J 40000 J 29000 J 14000 J 37000 J 840 J 110000 J 77000 J	51 J 27 J 97 UJ 10 J 9.1 J 97 UJ 4.6 J 10 J 97 UJ 42 J 43 J 97 UJ 840 J	160000 J 240000 J 84000 J 84000 J 76000 J 57000 J 54000 J 81000 J 120000 UJ 120000 UJ 1100000 J	41000 J 100000 J 38000 J 38000 J 36000 J 25000 J 13000 J 58000 UJ 100000 J 82000 J 58000 UJ	470000 J 330000 J 94000 J 87000 J 62000 J 57000 J 39000 J 110000 UJ 230000 J 110000 UJ 1300000 J
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene	100000 100000 100000 10000 1000 10000 10000 10000 10000 100000 100000 500 100000 100000	500000 500000 500000 500000 5600 500000 56000 56000 500000 500000 500000 500000	1000000 1000000 11000 11000 11000 1000000	7.8 U	6.1 J 7.8 U 5.1 J 7.8 U 1.8 J 5.7 J 7.8 U 13 8.8	85 U 85 U	84 UJ 84 UJ	1800 J 640 J 1700 J 2200 J 6500 J 4400 J 2700 J 2700 J 650 J 2000 J 280 J 3000 J 650 J	2100 J 18000 J 7500 J 8600 J 7300 J 4500 J 3000 J 550 J 22000 J 8900 J 2700 J 59000 J	190000 J 63000 J 41000 J 40000 J 29000 J 14000 J 37000 J 840 J 110000 J 77000 J 9900 J 710000 J 270000 J	51 J 27 J 97 UJ 10 J 9.1 J 97 UJ 4.6 J 10 J 97 UJ 42 J 43 J 97 UJ 840 J 150 J	160000 J 240000 J 84000 J 84000 J 76000 J 57000 J 54000 J 36000 J 120000 UJ 120000 UJ 1100000 J 710000 J	41000 J 100000 J 38000 J 38000 J 25000 J 13000 J 58000 UJ 100000 J 82000 UJ 58000 UJ 58000 UJ	470000 J 330000 J 94000 J 87000 J 62000 J 57000 J 39000 J 110000 UJ 280000 J 230000 J 110000 UJ 1300000 J 800000 J
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	100000 100000 100000 10000 10000 10000 10000 10000 10000 100000 500 100000 100000 100000 NA	500000 500000 500000 500000 5600 500000 56000 5600 5600 500000 500000 500000 NA	1000000 1000000 11000 11000 11000 1000000	7.8 U	6.1 J 7.8 U 5.1 J 7.8 U 1.8 J 5.7 J 7.8 U 1.3 8.8	85 U 85 U	84 UJ 84 UJ	1800 J 640 J 1700 J 2200 J 6500 J 4400 J 2700 J 2700 J 2000 J 280 J 280 J 3000 J 650 J 1400 J	2100 J 18000 J 7500 J 8600 J 7300 J 4500 J 8200 J 22000 J 8900 J 2700 J 59000 J 41000 J	190000 J 63000 J 41000 J 40000 J 29000 J 14000 J 37000 J 840 J 110000 J 77000 J 9900 J 710000 J 270000 J	51 J 27 J 97 UJ 10 J 9.1 J 97 UJ 4.6 J 10 J 97 UJ 42 J 43 J 97 UJ 840 J 150 J 51 J	160000 J 240000 J 84000 J 84000 J 76000 J 57000 J 54000 J 36000 J 120000 UJ 120000 UJ 1100000 UJ 1100000 J 710000 J 350000 J	41000 J 100000 J 38000 J 38000 J 36000 J 25000 J 13000 J 58000 UJ 100000 J 82000 J 58000 UJ 500000 J 290000 J	470000 J 330000 J 94000 J 87000 J 62000 J 57000 J 39000 J 110000 UJ 280000 J 230000 J 110000 UJ 1300000 J 800000 J 390000 J
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TOTAL PAH	100000 100000 100000 10000 10000 10000 10000 10000 10000 100000 500 100000 100000 100000 NA	500000 500000 500000 500000 5600 500000 56000 5600 5600 500000 500000 500000 NA	1000000 1000000 11000 11000 11000 1000000	7.8 U	6.1 J 7.8 U 5.1 J 7.8 U 1.8 J 5.7 J 7.8 U 1.3 8.8	85 U 85 U	84 UJ 84 UJ	1800 J 640 J 1700 J 2200 J 6500 J 4400 J 2700 J 2700 J 2000 J 280 J 280 J 3000 J 650 J 1400 J	2100 J 18000 J 7500 J 8600 J 7300 J 4500 J 8200 J 22000 J 8900 J 2700 J 59000 J 41000 J	190000 J 63000 J 41000 J 40000 J 29000 J 14000 J 37000 J 840 J 110000 J 77000 J 9900 J 710000 J 270000 J	51 J 27 J 97 UJ 10 J 9.1 J 97 UJ 4.6 J 10 J 97 UJ 42 J 43 J 97 UJ 840 J 150 J 51 J	160000 J 240000 J 84000 J 84000 J 76000 J 57000 J 54000 J 36000 J 120000 UJ 120000 UJ 1100000 UJ 1100000 J 710000 J 350000 J	41000 J 100000 J 38000 J 38000 J 36000 J 25000 J 13000 J 58000 UJ 100000 J 82000 J 58000 UJ 500000 J 290000 J	470000 J 330000 J 94000 J 87000 J 62000 J 57000 J 39000 J 110000 UJ 280000 J 230000 J 110000 UJ 1300000 J 800000 J 390000 J
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TOTAL PAH Semi-volatile Organic Comp	100000 100000 100000 10000 10000 10000 10000 10000 100000 100000 500 100000 100000 100000 NA pounds - 82700	500000 500000 500000 500000 5600 500000 56000 56000 56000 500000 500000 500000 NA	1000000 1000000 11000 11000 11000 110000 1100000 110000 11000 11000 1000000	7.8 U 4 J 7.8 U 7.8 U 7.8 U	6.1 J 7.8 U 5.1 J 7.8 U 1.8 J 5.7 J 7.8 U 1.3 8.8 4.4 J 5.2	6.8 J 85 U	84 UJ 84 UJ	1800 J 640 J 1700 J 2200 J 6500 J 4400 J 2700 J 2700 J 280 J 280 J 3000 J 650 J 1400 J 3000 J 3000 J	2100 J 18000 J 7500 J 8600 J 7300 J 4500 J 8200 J 550 J 22000 J 8900 J 2700 J 59000 J 41000 J 26000 J 242350	190000 J 63000 J 41000 J 40000 J 29000 J 14000 J 37000 J 840 J 110000 J 77000 J 9900 J 710000 J 270000 J 140000 J 1757740	51 J 27 J 97 UJ 10 J 9.1 J 97 UJ 4.6 J 10 J 97 UJ 42 J 43 J 97 UJ 840 J 150 J 51 J 1307	160000 J 240000 J 84000 J 84000 J 76000 J 57000 J 54000 J 36000 J 120000 UJ 120000 UJ 120000 UJ 1100000 J 710000 J 350000 J 3748000	41000 J 100000 J 38000 J 38000 J 36000 J 25000 J 13000 J 58000 UJ 100000 J 82000 J 58000 UJ 500000 J 290000 J 1611000	470000 J 330000 J 94000 J 87000 J 62000 J 57000 J 39000 J 110000 UJ 280000 J 230000 J 110000 UJ 1300000 J 800000 J 390000 J 4286000
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TOTAL PAH Semi-volatile Organic Comp 2-Methylnaphthalene	100000 100000 100000 10000 10000 10000 100000 100000 100000 100000 100000 100000 NA pounds - 82700 NS 34000 NS	500000 500000 500000 500000 5600 500000 56000 56000 56000 5600 500000 500000 500000 NA	1000000 1000000 11000 11000 11000 1000000	7.8 U	6.1 J 7.8 U 5.1 J 7.8 U 1.8 J 5.7 J 7.8 U 1.3 8.8 4.4 J 5.2	6.8 J 85 U	84 UJ 84 UJ	1800 J 640 J 1700 J 2200 J 6500 J 4400 J 2700 J 2700 J 280 J 3000 J 650 J 3000 J 650 J 3000 J 3000 J 3200 J 3200 J 3200 J 3200 J 3200 J	2100 J 18000 J 7500 J 8600 J 7300 J 4500 J 3000 J 8200 J 22000 J 8900 J 2700 J 59000 J 41000 J 242350  13000 J 1700 U 860 U	190000 J 63000 J 41000 J 40000 J 29000 J 14000 J 37000 J 840 J 110000 J 77000 J 710000 J 27000 J 14000 J 7157740	51 J 27 J 97 UJ 10 J 9.1 J 97 UJ 4.6 J 10 J 97 UJ 42 J 43 J 97 UJ 840 J 150 J 51 J 1307	160000 J 240000 J 84000 J 84000 J 76000 J 57000 J 54000 J 36000 J 120000 UJ 120000 UJ 120000 UJ 1100000 J 710000 J 350000 J 3748000 J	41000 J 100000 J 38000 J 38000 J 36000 J 25000 J 13000 J 58000 UJ 100000 J 82000 J 58000 UJ 500000 J 290000 J 1611000 J	470000 J 330000 J 94000 J 87000 J 62000 J 57000 J 39000 J 110000 UJ 280000 J 230000 J 110000 UJ 1300000 J 800000 J 4286000 J
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TOTAL PAH Semi-volatile Organic Comp 2-Methylnaphthalene 4-Methylphenol Benzaldehyde Acetophenone	100000 100000 100000 10000 10000 10000 100000 100000 100000 100000 100000 100000 NA pounds - 82700 NS 34000 NS NS	500000 500000 500000 500000 5600 500000 56000 56000 56000 500000 500000 NA NS 500000	1000000 1000000 11000 11000 11000 1100000 1100000 110000 11000 11000 1000000	7.8 U	6.1 J 7.8 U 5.1 J 7.8 U 4.8 J 5.7 J 7.8 U 13 8.8 4.4 J 52	6.8 J 85 U	84 UJ 84 UJ	1800 J 640 J 1700 J 2200 J 6500 J 4400 J 2700 J 2700 J 280 J 3000 J 650 J 3000 J 3000 J 3000 J 33890	2100 J 18000 J 7500 J 8600 J 7300 J 4500 J 3000 J 8200 J 550 J 22000 J 2700 J 59000 J 41000 J 26000 J 242350	190000 J 63000 J 41000 J 40000 J 29000 J 14000 J 13000 J 37000 J 840 J 110000 J 77000 J 9900 J 270000 J 270000 J 140000 J 1757740	51 J 27 J 97 UJ 10 J 9.1 J 97 UJ 4.6 J 10 J 97 UJ 42 J 43 J 97 UJ 840 J 150 J 51 J 1307	160000 J 240000 J 84000 J 84000 J 76000 J 57000 J 54000 J 36000 J 120000 UJ 120000 UJ 120000 UJ 1100000 J 710000 J 350000 J 3748000 J 230000 U 230000 U	41000 J 100000 J 38000 J 38000 J 36000 J 25000 J 13000 J 58000 UJ 100000 J 58000 UJ 58000 UJ 58000 UJ 1611000 J 1611000 U	470000 J 330000 J 94000 J 87000 J 62000 J 57000 J 39000 J 110000 UJ 280000 J 110000 UJ 1300000 J 1300000 J 4286000 J 220000 J 220000 U
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TOTAL PAH Semi-volatile Organic Comp 2-Methylnaphthalene 4-Methylphenol Benzaldehyde Acetophenone Biphenyl	100000 100000 100000 10000 10000 10000 10000 10000 100000 100000 100000 100000 NA pounds - 8270C NS 34000 NS NS NS	500000 500000 500000 500000 5600 5600 5	1000000 1000000 11000 11000 11000 110000 1100000 1100000 11000000	7.8 U 120 U 120 U 59 U	6.1 J 7.8 U 4.8 J 5.7 J 7.8 U 13 8.8 4.4 J 52 6.5 J	6.8 J 85 U	84 UJ 84 UJ 86 UJ 86 UJ 86 UJ 86 UJ 86 UJ 86 UJ 86 UJ 86 UJ 86 UJ 87 UJ 88	1800 J 640 J 1700 J 2200 J 6500 J 4400 J 2700 J 2700 J 2700 J 280 J 280 J 3000 J 650 J 3000 J 3000 J 33890  220 J 1700 U 850 U 73 J 120 J	2100 J 18000 J 7500 J 8600 J 7300 J 4500 J 3000 J 8200 J 22000 J 8900 J 2700 J 59000 J 41000 J 242350  13000 J 1700 U 860 U	190000 J 63000 J 41000 J 40000 J 29000 J 14000 J 13000 J 37000 J 840 J 110000 J 77000 J 9900 J 270000 J 270000 J 140000 J 1757740  200000 J 1600 J	51 J 27 J 97 UJ 10 J 9.1 J 97 UJ 4.6 J 10 J 97 UJ 4.5 J 43 J 97 UJ 840 J 150 J 51 J 1307	160000 J 240000 J 84000 J 84000 J 76000 J 57000 J 54000 J 36000 J 120000 UJ 120000 UJ 1100000 J 1100000 J 350000 J 3748000 360000 J 230000 U 120000 UJ	41000 J 100000 J 38000 J 38000 J 36000 J 25000 J 13000 J 58000 UJ 100000 J 82000 J 58000 UJ 58000 UJ 160000 J 1611000 J 1110000 U 58000 UJ	470000 J 330000 J 94000 J 87000 J 87000 J 62000 J 57000 J 39000 J 110000 UJ 280000 J 110000 UJ 1300000 J 390000 J 4286000  500000 J 220000 U 110000 UJ 110000 UJ
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TOTAL PAH Semi-volatile Organic Comp 2-Methylnaphthalene 4-Methylphenol Benzaldehyde Acetophenone Biphenyl Bis(2-Ethylhexyl)phthalate	100000 100000 100000 10000 10000 10000 100000 100000 100000 100000 100000 100000 NA pounds - 8270C NS 34000 NS NS NS NS	500000 500000 500000 500000 5600 5600 5	1000000 1000000 11000 11000 11000 11000 1100000 1100000 1100000 11000000	7.8 U 120 U 120 U 59 U 82 U	6.1 J 7.8 U 4.8 J 5.7 J 7.8 U 13 8.8 4.4 J 52 6.5 J	6.8 J 85 U	84 UJ 84 UJ 86	1800 J 640 J 1700 J 2200 J 6500 J 4400 J 2700 J 2700 J 2700 J 280 J 280 J 3000 J 650 J 1400 J 3000 J 3000 J 33890  220 J 1700 U 850 U 73 J 120 J 850 U	2100 J 18000 J 7500 J 8600 J 7300 J 4500 J 3000 J 8200 J 550 J 22000 J 8900 J 2700 J 59000 J 41000 J 242350  13000 J 1700 U 860 U 87 J 3900 J	190000 J 63000 J 63000 J 41000 J 40000 J 29000 J 14000 J 13000 J 37000 J 840 J 110000 J 77000 J 9900 J 710000 J 270000 J 140000 J 1757740  200000 J 1600 J 1800 J 840 J 38000 J 840 J	51 J 27 J 97 UJ 10 J 97 UJ 4.6 J 97 UJ 4.6 J 10 J 97 UJ 42 J 43 J 97 UJ 840 J 150 J 51 J 1307	160000 J 240000 J 84000 J 84000 J 76000 J 57000 J 57000 J 54000 J 36000 J 120000 UJ 120000 UJ 1100000 J 710000 J 350000 J 3748000 360000 U 120000 UJ 120000 UJ 120000 UJ	41000 J 100000 J 38000 J 38000 J 36000 J 25000 J 13000 J 58000 UJ 100000 J 58000 UJ 58000 UJ 160000 J 1611000  330000 J 110000 U 58000 UJ 58000 UJ 58000 UJ	470000 J 330000 J 94000 J 87000 J 87000 J 62000 J 57000 J 39000 J 110000 UJ 280000 J 110000 UJ 1300000 J 390000 J 4286000  500000 J 220000 U 110000 UJ 110000 UJ 110000 UJ
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TOTAL PAH Semi-volatile Organic Comp 2-Methylnaphthalene 4-Methylphenol Benzaldehyde Acetophenone Biphenyl	100000 100000 100000 10000 10000 10000 10000 10000 100000 100000 100000 100000 NA pounds - 8270C NS 34000 NS NS NS	500000 500000 500000 500000 5600 5600 5	1000000 1000000 11000 11000 11000 11000 1100000 1100000 1100000 11000000	7.8 U 120 U 120 U 59 U	6.1 J 7.8 U 4.8 J 5.7 J 7.8 U 13 8.8 4.4 J 52 6.5 J	6.8 J 85 U	84 UJ 84 UJ 86	1800 J 640 J 1700 J 2200 J 6500 J 4400 J 2700 J 2700 J 2700 J 280 J 280 J 3000 J 650 J 3000 J 3000 J 33890  220 J 1700 U 850 U 73 J 120 J	2100 J 18000 J 7500 J 8600 J 7300 J 4500 J 3000 J 8200 J 22000 J 8900 J 2700 J 59000 J 41000 J 242350  13000 J 1700 U 860 U 87 J 3900 J	190000 J 63000 J 63000 J 41000 J 40000 J 29000 J 14000 J 13000 J 37000 J 77000 J 77000 J 270000 J 270000 J 140000 J 1757740  200000 J 1600 J 1800 J 840 J 38000 J	51 J 27 J 97 UJ 10 J 9.1 J 97 UJ 4.6 J 10 J 97 UJ 4.5 J 43 J 97 UJ 840 J 150 J 51 J 1307	160000 J 240000 J 84000 J 84000 J 76000 J 57000 J 54000 J 36000 J 120000 UJ 120000 UJ 1100000 J 710000 J 350000 J 350000 J 350000 J 320000 U 120000 UJ 120000 UJ 120000 UJ	41000 J 100000 J 38000 J 38000 J 36000 J 25000 J 13000 J 58000 UJ 100000 J 82000 J 58000 UJ 500000 J 1611000  330000 J 110000 U 58000 UJ 58000 UJ	470000 J 330000 J 94000 J 87000 J 87000 J 62000 J 57000 J 39000 J 110000 UJ 280000 J 110000 UJ 1300000 J 390000 J 4286000  500000 J 220000 U 110000 UJ 110000 UJ

		]	Location ID	E-16	E-16	F-2	F-3	F-6	F-6	F-6	F-7	F-8	F-9	G-8
		Sample De	epth (ft bgs)	27-28	34	5.9-6.4	6.5-7	1.5-2	4.6-5.4	9.6-9.9	15.5-16	3.5-4	3-3.8	5.2-6
			MGP Descriptio n Type	moderate odor	faint to moderate odor	NOI	NOI	staining/coal/ash/ slag	faint to moderate odor	DNAPL/residual/ staining	moderate to faint odor	DNAPL	DNAPL/staining	DNAPL/residual staining
	Approxima	S	GW (ft bgs) ample Date Sample ID OC Code	9.5 9/18/2014 516008-E1628 FS	9.5 9/18/2014 516008-E1634 FS	1.7 8/9/2013 516880-F206 FS	1.7 8/12/2013 516880-F307 FS	2.5 8/10/2013 516880-F602 FS	2.5 8/10/2013 516880-F605 FS	2.5 8/10/2013 516880-F610 FS	3.8 8/7/2013 516880-F716 FS	4 8/6/2013 516880-F804 FS	3.5 8/6/2013 516880-F903 FS	4 8/7/2013 516008-G806 FS
Parameter Name	meter Name RES COMM													
Pesticides - 8081								•						•
4,4'-DDD	2600	92000	180000										2300 U	
4,4'-DDE	1800	62000	120000										2300 U	
4,4'-DDT	1700	47000	94000										2300 U	
Alpha-BHC	97	3400	6800										2300 U	
Alpha-Chlordane	910	24000	47000										2300 U	
Beta-BHC	72	3000	14000										2300 U	
Dieldrin	39	1400	2800										2300 U	
Endosulfan II	4800	200000	920000										2300 U	
Endosulfan sulfate	4800	200000	920000										2300 U	
Endrin	2200	89000	410000										2300 U	
Endrin aldehyde	NS	NS	NS										2300 U	
Endrin ketone	NS	NS	NS										2300 U	
Gamma-BHC/Lindane	280	9200	23000										2300 U	
Gamma-Chlordane	NS	NS	NS										2300 U	
Heptachlor epoxide	NS	NS	NS										2300 U	
Methoxychlor	NS	NS	NS										2300 U	
PCB Target Compound	NA	NA	NA	-									ND	

		Location ID	G-8	G-10	G-10	GS-01	GS-02	GS-03	GS-03	GS-04	GS-05	GS-06	GS-07	GS-08	GS-09	GS-10	GS-11	GS-12
		Sample Depth (ft bgs)	13.6-14.2	6.5-7	14.7-15.2	1	4	3	3	3	3	7	7	10	2	6	6	3
		MGP																
		Descriptio	NOI	DNAPL	strong to faint	NOI	staining	residual/odor	residual/odor	NOI	residual/odor	tar-like/staining	tar-like/staining	residual/odor	NOI	DNAPL/odor	NOI	NOI
			NOI	DNALL	odor	NOI	Stanning	residual/odoi	residual/odol	NOI	residual/odoi	tai-like/stailling	tai-like/stailling	residual/odol	NOI	DIVALL/0001	NOI	NOI
		n Type																
	Approximat	te Depth to GW (ft bgs)	4	6.6	6.6	1	6.1	2.6	2.6	3.5	1	1.5	1	6	1	1	3	3.5
		Sample Date	8/7/2013	8/12/2013	8/12/2013	5/1/2007	5/1/2007	5/1/2007	5/1/2007	5/1/2007	5/1/2007	5/1/2007	5/1/2007	5/1/2007	5/1/2007	5/2/2007	5/2/2007	5/2/2007
		Sample ID	516008-G814	516008-G1007	516008-G1015	SLGS00101SCXX	SLGS00204SCXX	SLGS00303SCXD	SLGS00303SCXX	SLGS00403SCXX	SLGS00503SCXX	SLGS00607SCXX	SLGS00707SCXX	SLGS00810SCXX	SLGS00902SCXX	SLGS01006SCXX	SLGS01106SCXX	SLGS01203SCXX
		QC Code	FS	FS	FS	FS	FS	FD	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS
Parameter Name	RES	COMM IND																
Volatile Organic Compounds	s - 8260B		•							•	•		•					
1,2,4-Trimethylbenzene	47000	190000 380000				4 U	3 U	<b>2</b> J	4 UJ	4 U	18000 J	60000 J	<b>2</b> J	160 J	7 U	21000 J	1 J	4 U
1,3,5-Trimethylbenzene	47000	190000 380000				4 U	3 U	1 J	4 UJ	4 U	7000 J	130000 U	4 U	80 J	7 U	9800 J	4 U	4 U
4-iso-Propyltoluene	NS	NS NS				4 U	3 U	4 UJ	4 UJ	4 U	22000 U	130000 U	4 U	260 U	7 U	21000 U	4 U	4 U
Acetic acid, methyl ester	NS	NS NS	28 J	330 U	<b>21</b> J													
Acetone	100000	500000 1000000	230 U	1600 UJ	150 UJ	R	68 J	<b>30</b> J	R	R	R	R	28 J	R	R	21000 U	20 U	4 U
Carbon disulfide	NS	NS NS	47 U	330 U	30 U	4 U	3 U	4 UJ	4 UJ	4 U	22000 U	130000 U	4 U	260 U	7 U	21000 U	4 U	4 U
Chloroform	10000	350000 700000	47 U	330 U	30 U	4 U	3 U	4 UJ	<b>3</b> J	4 U	22000 U	130000 U	4 U	260 U	7 U	21000 U	4 U	4 U
Cyclohexane	NS	NS NS	47 U	330 UJ	30 UJ													
Isopropylbenzene	NS	NS NS	47 U	330 U	30 U	4 U	3 U	4 UJ	2 UJ	4 U	22000 U	130000 U	4 U	260 U	7 U	21000 U	4 U	4 U
Methyl cyclohexane	NS	NS NS	47 U	330 U	30 U													
Methylene chloride	51000	500000 1000000	47 U	330 U	30 U	4 U	3 U	4 UJ	<b>30</b> J	4 U	22000 UJ	130000 UJ	1 J	260 U	<b>2</b> J	4400 J	<b>2</b> J	4 U
n-Butylbenzene	100000	500000 1000000	1	1		4 UJ	3 UJ	4 UJ	4 UJ	4 U	22000 U	130000 U	4 U	260 U	7 U	21000 U	4 U	4 U
Naphthalene	100000	500000 1000000	1			<b>2</b> J	4	41 J	8 UJ	28	500000	3300000	42	7800 J	38	510000	23	4 U
Propylbenzene	100000	500000 1000000	İ			4 U	3 U	4 UJ	4 UJ	4 U	22000 U	130000 U	4 U	260 U	7 U	21000 U	4 U	4 U
sec-Butylbenzene	100000	500000 1000000				4 U	3 U	4 UJ	4 UJ	4 U	22000 U	130000 U	4 U	260 U	7 U	21000 U	4 U	4 U
Styrene	NS	NS NS	100	1400	30 U	4 U	3 U	4 UJ	4 UJ	4 U	22000 U	73000 J	4 U	260 U	7 U	21000 U	4 U	4 U
BTEX - 8260B	1														·			
Benzene	2900	44000 89000	920	330 U	440	4 U	9	4 J	4 UJ	4 U	22000 U	67000 J	4 U	260 UJ	7 U	21000 U	4 U	4 U
Ethyl benzene	30000	390000 780000	220	620	190	4 U	3 U	1 J	4 UJ	4 U	7400 J	100000 J	4 U	260 U	7 U	30000	4 U	4 U
Toluene	100000	500000 1000000	650	140 J	340	4 U	3 U	1 J	4 UJ	4 U	22000 U	160000	4 U	260 U	7 U	8200 J	4 U	4 U
Xylene, o	100000	500000 1000000				4 U	3 U	4 UJ	4 UJ	4 U	5800 J	42000 J	4 U	260 U	7 U	7500 J	4 U	4 U
Xylenes (m&p)	100000	500000 1000000				4 U	3 U	2 J	4 UJ	4 U	11000 J	100000 J	4 U	90 J	7 U	19000 J	4 U	4 U
Xylenes, Total	100000	500000 1000000	250	5200	150	4 U	3 U	2 J	4 UJ	4 U	17000 J	140000	4 U	90 J	7 U	26000	4 U	4 U
TOTAL BTEX	NA	NA NA	2040	5960	1120	ND	9	8	ND	ND	24200	427000	ND	90	ND	64700	ND	ND
Polycyclic Aromatic Hydroca	arbons - 82700	C					·!											
Acenaphthene	100000	500000 1000000	97 J	11000 J	85 UJ	390 U	30000	5300 J	5400 J	380 U	82000	200000	450 U	24000	2900	14000	400 U	430 U
Acenaphthylene	100000	500000 1000000	590 J	100000 J	14 J	<b>56</b> J	25000	12000 J	13000 J	380 U	110000	600000	<b>69</b> J	22000	4400	110000	400 U	<b>78</b> J
Anthracene	100000	500000 1000000	950 J	33000 J	9.2 J	390 U	24000	8500 J	14000 J	380 U	69000	180000 J	120 J	20000	7200	58000	400 U	430 U
Benzo(a)anthracene	1000	5600 11000	220 J	15000	85 UJ	160 J	69000	12000 J	17000 J	380 U	120000	140000 J	190 J	8700	13000	30000	400 U	430 U
Benzo(a)pyrene	1000	1000 1100	210 J	13000	85 UJ	<b>120</b> J	88000	<b>26000</b> J	34000 J	380 U	160000	110000 J	160 J	6600	16000	25000	400 U	430 U
Benzo(b)fluoranthene	1000	5600 11000	140 J	13000	85 UJ	180 J	72000	<b>22000</b> J	27000 J	380 U	120000	86000 J	120 J	5000	13000	17000	400 U	430 U
Benzo(ghi)perylene	100000	500000 1000000	150 J	4400	85 UJ	140 J	54000	20000 J	24000 J	380 U	90000	62000 J	140 J	3200 J	9300	10000	400 U	430 U
Benzo(k)fluoranthene	1000	56000 110000	86 J	3800 J	85 UJ	70 J	32000	8600 J	12000 J	380 U	55000	31000	66 J	1600 J	4800	6200 J	400 U	430 U
Chrysene	1000	56000 110000	220 J	15000	85 UJ	180 J	72000	16000 J	23000 J	380 U	110000	110000 J	140 J	6100	12000	21000	400 U	430 U
Dibenz(a,h)anthracene	330	560 1100	100 UJ	850	85 UJ	390 U	10000	<b>2900</b> J	3200 J	380 U	14000 J	10000	450 U	580 J	1500 J	1900 J	400 U	430 U
Fluoranthene	100000	500000 1000000	670 J	50000	15 J	190 J	190000	27000 J	44000 J	380 U	220000	430000	360 J	20000	20000	58000	400 U	430 U
Fluorene	100000	500000 1000000	420 J	55000 J	10 J	390 U	20000	4700 J	6300 J	380 U	69000	280000	450 U	18000	2200	56000	400 U	430 U
Indeno(1,2,3-cd)pyrene	500	5600 11000	98 J	3300	85 UJ	100 J	36000	14000 J	16000 J	380 U	61000	39000 J	90 J	2100 J	6400	6900 J	400 U	430 U
Naphthalene	100000	500000 1000000	540 J	180000 J	85 UJ	390 U	10000	1100 J	1700 J	380 U	240000	2400000	450 U	72000	560 J	140000	78 J	430 U
Phenanthrene	100000	500000 1000000	1700 J	150000 J	47 J	53 J	85000	25000 J	41000 J	380 U	210000	1100000	400 J	54000	10000	180000	400 U	90 J
Pyrene	100000	500000 1000000	930 J	82000 J	24 J	310 J	270000	30000 J	57000 J	380 U	260000	610000	620	32000	28000	92000	400 U	71 J
TOTAL PAH	NA	NA NA	7021	729350	119	1559	1087000	235100	338600	ND	1990000	6388000	2475	295880	151260	826000	78	239
Semi-volatile Organic Comp		<u> </u>															-	
2-Methylnaphthalene	NS NS	NS NS	<b>410</b> J	240000 J	<b>17</b> J	390 U	3400	1300 J	1900 J	380 U	160000	780000	450 U	61000	1500 J	210000	400 U	<b>49</b> J
4-Methylphenol	34000	500000 1000000	200 U	1600 U	160 U	390 U	2000 U	1900 UJ	3900 UJ	380 U	18000 U	750 J	450 U	4200 U	1900 U	7900 U	400 U	430 U
Benzaldehyde	NS	NS NS	100 UJ	830 UJ	85 UJ	3,00	2000 0	1,000 03	3,00 03	3000	10000	7503	150 0	1200 0	1,000	7,000	100 0	150 5
Acetophenone	NS	NS NS	100 UJ	650 J	85 UJ													
Biphenyl	NS	NS NS	130 J	26000 J	85 UJ													
Bis(2-Ethylhexyl)phthalate	NS	NS NS	100 UJ	830 U	29 J	390 U	2000 U	1900 UJ	3900 UJ	380 U	18000 U	2400 U	450 U	4200 U	1900 U	7900 U	400 U	430 U
Carbazole	NS	NS NS	5.5 J	830 UJ	85 UJ	390 U	2000 U	1900 UJ	3900 UJ	380 U	18000 U	5500	450 U	4200 U	1900 U	7900 U	400 U	430 U
Dibenzofuran	14000	350000 1000000	32 J	11000 J	85 UJ	390 U	2000 U	380 J	460 J	380 U	7100 J	35000	450 U	1400 J	1900 U	7900 U	400 U	430 U
LUIDUILLUIUI AII	14000	220000 1000000	<i>3</i>	11000 J	02 UJ	390 U	2000 U	200 J	100 J	J 500 U	/ 100 J	23000	450 U	1400 J	1300 0	/ 700 0	1 400 0	<del>4</del> 30 U

## **Table 4.1: OU01 Soil Organics Results**

			Location ID		G-10	G-10	GS-01	GS-02	GS-03	GS-03	GS-04	GS-05	GS-06	GS-07	GS-08	GS-09	GS-10	GS-11	GS-12
		Sample D	epth (ft bgs)	13.6-14.2	6.5-7	14.7-15.2	1	4	3	3	3	3	7	7	10	2	6	6	3
			MGP Descriptio n Type		DNAPL	strong to faint odor	NOI	staining	residual/odor	residual/odor	NOI	residual/odor	tar-like/staining	tar-like/staining	residual/odor	NOI	DNAPL/odor	NOI	NOI
	Approxima	ate Depth to	GW (ft bgs)	4	6.6	6.6	1	6.1	2.6	2.6	3.5	1	1.5	1	6	1	1	3	3.5
	**		Sample Date		8/12/2013	8/12/2013	5/1/2007	5/1/2007	5/1/2007	5/1/2007	5/1/2007	5/1/2007	5/1/2007	5/1/2007	5/1/2007	5/1/2007	5/2/2007	5/2/2007	5/2/2007
			Sample ID	516008-G814	516008-G1007	516008-G1015	SLGS00101SCXX	SLGS00204SCX	X SLGS00303SCXD	SLGS00303SCXX		XSLGS00503SCXX	SLGS00607SCXX	SLGS00707SCXX	SLGS00810SCXX	SLGS00902SCXX	SLGS01006SCXX	SLGS01106SCXX	
			QC Code	FS	FS	FS	FS	FS	FD	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS
Parameter Name	RES	COMM	IND																
Pesticides - 8081																			
4,4'-DDD	2600	92000	180000									180 J	24 U				19		
4,4'-DDE	1800	62000	120000									44 U	<b>36</b> J				<b>20</b> J		
4,4'-DDT	1700	47000	94000									200 J	140				12 U		
Alpha-BHC	97	3400	6800									23 U	12 U				6.1 U		
Alpha-Chlordane	910	24000	47000									23 U	12 U				9.8 J		
Beta-BHC	72	3000	14000									23 U	18 J				57 J		
Dieldrin	39	1400	2800									44 U	<b>52</b> J				12 U		
Endosulfan II	4800	200000	920000									<b>78</b> J	54 J				12 U		
Endosulfan sulfate	4800	200000	920000									44 U	24 U				18 J		
Endrin	2200	89000	410000									44 U	24 U				19 J		
Endrin aldehyde	NS	NS	NS									190 J	<b>200</b> J				38		
Endrin ketone	NS	NS	NS									44 U	<b>58</b> J				12 U		
Gamma-BHC/Lindane	280	9200	23000									23 U	12 U				6.1 U		
Gamma-Chlordane	NS	NS	NS									23 U	<b>41</b> J				<b>29</b> J		
Heptachlor epoxide	NS	NS	NS									23 U	19 J				<b>33</b> J		
Methoxychlor	NS	NS	NS									420	120 U				61 U		
PCB Target Compound	NA	NA	NA		1					1		ND	ND				ND		

Notes:

		]	Location ID	GS-13	GS-14	GS-15	GS-16	TP-01	TP-02	TP-03	TP-04	TP-04	TP-05
			epth (ft bgs)		3	2	11	6-6.5	3	9	6	6	2
										-			
			MGP		NOT	NOT	NOT						ash/residual/
			Descriptio		NOI	NOI	NOI	residual/odor	residual/odor	residual	odor	odor	odor
			n Type										
	Approximat	e Depth to	GW (ft bgs)	7	1	1	11.5	6	3	9.5	4	4	2.5
	FF	-	Sample Date	5/2/2007	5/2/2007	5/2/2007	5/1/2007	4/30/2007	4/30/2007	4/30/2007	4/30/2007	4/30/2007	4/30/2007
						SLGS01502SCXX					SLTP00406SCXD		
			QC Code		FS	FS	FS	FS	FS	FS	FD	FS	FS
Parameter Name	RES	COMM	IND										
Volatile Organic Compoun	ds - 8260B			9						L			
1,2,4-Trimethylbenzene	47000	190000	380000	4 U	3 U	4 U	4 U	2200	7900 J	10	4 UJ	4 UJ	<b>2</b> J
1,3,5-Trimethylbenzene	47000	190000	380000	4 U	3 U	4 U	4 U	1800	21000 U	14	4 UJ	4 UJ	2 J
4-iso-Propyltoluene	NS	NS	NS	4 U	3 U	4 U	4 U	1200	21000 U	4 U	4 UJ	4 UJ	4 U
Acetic acid, methyl ester	NS	NS	NS					1200	21000 0				1
Acetone	100000	500000	1000000	4 U	3 U	16 U	R	R	R	R	4 UJ	R	R
Carbon disulfide	NS	NS	NS	4 U	3 U	4 U	4 U	450 U	21000 U	4 U	4 UJ	4 UJ	4 U
Chloroform	10000	350000	700000	4 U	2 J	4 U	4 U	450 U	21000 U	4 U	4 UJ	11 J	4 U
Cyclohexane	NS	NS	NS	7.0	<u> </u>	7.0	7.0	130 0	21000 0	7.0	7 03	11.5	7.0
Isopropylbenzene	NS	NS	NS	4 U	3 UJ	4 U	4 U	260 J	21000 U	4 U	4 UJ	4 UJ	4 UJ
Methyl cyclohexane	NS	NS	NS	7.0	3 03	7.0	7.0	200 3	21000 0	7.0	7 03	7 03	4 03
Methylene chloride	51000	500000	1000000	1 J	1 J	4 U	4 U	450 UJ	21000 UJ	4 U	4 UJ	4 J	4 U
n-Butylbenzene	100000	500000	1000000	4 U	3 U	4 U	4 UJ	1900	21000 U	3 J	4 UJ	4 UJ	2 J
Naphthalene	100000	500000	1000000	4 U	3 U	4 U	6	9500	440000	39	4 UJ	4 UJ	12 J
Propylbenzene	100000	500000	1000000	4 U	3 U	4 U	4 U	280 J	21000 U	4 U	4 UJ	4 UJ	4 UJ
sec-Butylbenzene	100000	500000	1000000	4 U	3 U	4 U	4 U	170 J	21000 U	4 U	4 UJ	4 UJ	4 UJ
Styrene	NS	NS	NS	4 U	3 U	4 U	4 U	450 U	21000 U	3 J	4 UJ	4 UJ	4 U
BTEX - 8260B	115	140	145	7.0	3.0	70	70	430 0	21000 0	3 3	7 03	7 03	70
Benzene	2900	44000	89000	4 U	3 U	4 U	4 U	450 U	21000 U	4 U	4 UJ	4 UJ	10 J
Ethyl benzene	30000	390000	780000	4 U	3 U	4 U	4 U	140 J	21000 U	0.8 J	4 UJ	4 UJ	4 U
Toluene	100000	500000	1000000	4 U	3 U	4 U	4 U	450 U	21000 U	2 J	2 J	4 UJ	6 J
Xylene, o	100000	500000	1000000	4 U	3 U	4 U	4 U	160 J	21000 U	24	4 UJ	4 UJ	4 U
	100000	500000	1000000	4 U	3 UJ	4 U	4 U	360 J	6300 J	8	2 J	4 UJ	<b>2</b> J
Xylenes (m&p)  Xylenes, Total	100000	500000	1000000	4 U	3 UJ	4 U	4 U	510	6300 J	33	2 J	4 UJ	2 J
TOTAL BTEX	NA	NA	NA	ND	ND	ND	ND	660	6300	34.8	8	ND	18
Polycyclic Aromatic Hydro			INA	ND	ND	ND	ND	000	0300	34.0	0	ND	10
	cardons - 82/UU												
			1000000	270 11	410 II	440.11	240 11	22000	27000 I			200 111	2400
Acenaphthene	100000	500000	1000000	370 U	410 U	440 U	340 U	32000	27000 J	6400 J	390 UJ	380 UJ	2400
Acenaphthene Acenaphthylene	100000 100000	500000 500000	1000000	40 J	1300	440 U	340 U	4700 J	86000	42000	390 UJ	380 UJ	79000
Acenaphthene Acenaphthylene Anthracene	100000 100000 100000	500000 500000 500000	1000000 1000000	<b>40</b> J 370 U	1300 230 J	440 U 440 U	340 U 340 U	4700 J 5900 J	86000 36000 J	42000 29000	390 UJ 390 UJ	380 UJ 380 UJ	79000 29000
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	100000 100000 100000 10000	500000 500000 500000 5600	1000000 1000000 11000	<b>40</b> J 370 U 370 U	1300 230 J 110 J	440 U 440 U <b>50</b> J	340 U 340 U 340 U	4700 J 5900 J 4000	86000 36000 J 18000	42000 29000 32000	390 UJ 390 UJ 390 UJ	380 UJ 380 UJ 380 UJ	79000 29000 57000
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	100000 100000 100000 1000 1000	500000 500000 500000 5600 1000	1000000 1000000 11000 1100	40 J 370 U 370 U 370 U	1300 230 J 110 J 430	440 U 440 U <b>50</b> J 440 U	340 U 340 U 340 U 340 U	4700 J 5900 J 4000 4700 J	86000 36000 J 18000 29000	42000 29000 32000 33000	390 UJ 390 UJ 390 UJ 390 UJ	380 UJ 380 UJ 380 UJ 380 UJ	79000 29000 57000 120000
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	100000 100000 100000 1000 1000	500000 500000 500000 5600 1000 5600	1000000 1000000 11000 1100 11000	40 J 370 U 370 U 370 U 370 U	1300 230 J 110 J 430 250 J	440 U 440 U 50 J 440 U 55 J	340 U 340 U 340 U 340 U 340 U	4700 J 5900 J 4000 4700 J 3400 J	86000 36000 J 18000 29000 19000	42000 29000 32000 33000 22000	390 UJ 390 UJ 390 UJ 390 UJ	380 UJ 380 UJ 380 UJ 380 UJ 380 UJ	79000 29000 57000 120000 130000
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(ghi)perylene	100000 100000 100000 1000 1000 1000 10	500000 500000 500000 5600 1000 5600 500000	1000000 1000000 11000 1100 11000 1000000	40 J 370 U 370 U 370 U 370 U 370 U 370 U	1300 230 J 110 J 430 250 J 890	440 U 440 U 50 J 440 U 55 J 440 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U	4700 J 5900 J 4000 4700 J 3400 J 3100 J	86000 36000 J 18000 29000 19000 30000	42000 29000 32000 33000 22000 14000	390 UJ 390 UJ 390 UJ 390 UJ	380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 64 J	79000 29000 57000 120000 130000 110000
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene	100000 100000 100000 10000 1000 1000 1	500000 500000 500000 5600 1000 5600 500000 56000	1000000 1000000 11000 1100 11000 1000000	40 J 370 U 370 U 370 U 370 U 370 U 370 U 370 U	1300 230 J 110 J 430 250 J 890 74 J	440 U 440 U 50 J 440 U 55 J 440 U 440 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	4700 J 5900 J 4000 4700 J 3400 J 3100 J 2000 J	86000 36000 J 18000 29000 19000 30000 13000	42000 29000 32000 33000 22000 14000	390 UJ 390 UJ 390 UJ 390 UJ 390 UJ	380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 64 J 380 UJ	79000 29000 57000 120000 130000 110000 64000
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene	100000 100000 100000 10000 1000 1000 1	500000 500000 500000 500000 5600 500000 56000 56000	1000000 1000000 11000 1100 11000 1000000	40 J 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U	1300 230 J 110 J 430 250 J 890 74 J 200 J	440 U 440 U 50 J 440 U 55 J 440 U 440 U 440 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	4700 J 5900 J 4000 4700 J 3400 J 3100 J 2000 J 4100	86000 36000 J 18000 29000 19000 30000 13000 20000	42000 29000 32000 33000 22000 14000 12000 28000	390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ	380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 64 J 380 UJ 380 UJ	79000 29000 57000 120000 130000 110000 64000 62000
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene	100000 100000 100000 10000 1000 1000 1	500000 500000 500000 500000 5600 56000 56000 56000 56000	1000000 1000000 11000 1100 1100 1000000 110000 110000 1100	40 J 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U	1300 230 J 110 J 430 250 J 890 74 J 200 J 120 J	440 U 440 U 50 J 440 U 55 J 440 U 440 U 440 U 440 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	4700 J 5900 J 4000 4700 J 3400 J 3100 J 2000 J 4100 490 J	86000 36000 J 18000 29000 19000 30000 13000 20000 4200	42000 29000 32000 33000 22000 14000 12000 28000 2700 J	390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ	380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 64 J 380 UJ 380 UJ 380 UJ	79000 29000 57000 120000 130000 110000 64000 62000 26000
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene	100000 100000 100000 10000 1000 1000 1	500000 500000 500000 500000 5600 500000 56000 56000 56000 56000	1000000 1000000 11000 11000 11000 1000000	40 J 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 43 J	1300 230 J 110 J 430 250 J 890 74 J 200 J 120 J 130 J	440 U 440 U 50 J 440 U 55 J 440 U 440 U 440 U 440 U 440 U	340 U 340 U	4700 J 5900 J 4000 4700 J 3400 J 3100 J 2000 J 4100 490 J 5600 J	86000 36000 J 18000 29000 19000 30000 13000 20000 4200 60000 J	42000 29000 32000 33000 22000 14000 12000 28000 2700 J	390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ	380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 64 J 380 UJ 380 UJ 380 UJ 380 UJ	79000 29000 57000 120000 130000 110000 64000 62000 26000 84000
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene	100000 100000 100000 10000 1000 1000 1	500000 500000 500000 500000 5600 500000 56000 56000 56000 500000 500000	1000000 1000000 11000 1100 11000 1000000	40 J 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 43 J 370 U	1300 230 J 110 J 430 250 J 890 74 J 200 J 120 J 130 J 120 J	440 U 440 U 50 J 440 U 55 J 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U	340 U 340 U	4700 J 5900 J 4000 4700 J 3400 J 3100 J 2000 J 4100 490 J 5600 J 14000	86000 36000 J 18000 29000 19000 30000 13000 20000 4200 60000 J 34000 J	42000 29000 32000 33000 22000 14000 12000 28000 2700 J 65000	390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ	380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 64 J 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ	79000 29000 57000 120000 130000 110000 64000 62000 26000 84000 13000
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	100000 100000 100000 10000 1000 10000 10000 10000 10000 330 100000 10000 500	500000 500000 500000 500000 5600 500000 56000 56000 500000 500000 5600	1000000 1000000 11000 1100 11000 1000000	40 J 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 43 J 370 U 370 U	1300 230 J 110 J 430 250 J 890 74 J 200 J 120 J 130 J 120 J 570	440 U 440 U 50 J 440 U 55 J 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	4700 J 5900 J 4000 4700 J 3400 J 3100 J 2000 J 4100 490 J 5600 J 14000	86000 36000 J 18000 29000 19000 30000 13000 20000 4200 60000 J 34000 J	42000 29000 32000 33000 22000 14000 12000 28000 2700 J 65000 20000	390 UJ 390 UJ	380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 64 J 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ	79000 29000 57000 120000 130000 110000 64000 62000 26000 84000 13000 71000
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene	100000 100000 100000 10000 1000 10000 10000 10000 10000 330 100000 100000 500	500000 500000 500000 500000 5600 500000 56000 56000 500000 500000 500000 500000	1000000 1000000 11000 1100 11000 1000000	40 J 370 U 370 U	1300 230 J 110 J 430 250 J 890 74 J 200 J 120 J 130 J 120 J 570 410 U	440 U 440 U 50 J 440 U 55 J 440 U 440 U 440 U 440 U 440 U 51 J 440 U 440 U 440 U 440 U 440 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	4700 J 5900 J 4000 4700 J 3400 J 3100 J 2000 J 4100 490 J 5600 J 1800 J 5600 J	86000 36000 J 18000 29000 19000 30000 13000 20000 4200 60000 J 34000 J 18000 640000	42000 29000 32000 33000 22000 14000 12000 28000 2700 J 65000 20000 9900 900 J	390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ	380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ	79000 29000 57000 120000 130000 110000 64000 62000 26000 84000 13000 71000 16000
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene	100000 100000 100000 10000 1000 10000 100000 10000 10000 100000 500 100000 100000	500000 500000 500000 500000 5600 500000 56000 56000 500000 500000 500000 500000	1000000 1000000 11000 1100 11000 1000000	40 J 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 43 J 370 U 370 U 43 J 370 U	1300 230 J 110 J 430 250 J 890 74 J 200 J 120 J 130 J 120 J 570 410 U 140 J	440 U 440 U 50 J 440 U 55 J 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	4700 J 5900 J 4000 4700 J 3400 J 3100 J 2000 J 4100 490 J 5600 J 14000 1800 J 5600 J	86000 36000 J 18000 29000 19000 30000 13000 20000 4200 60000 J 34000 J 18000 640000 130000	42000 29000 32000 33000 22000 14000 12000 28000 2700 J 65000 20000 9900 900 J 24000	390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ	380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ	79000 29000 57000 120000 130000 110000 64000 62000 26000 84000 13000 71000 16000 47000
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	100000 100000 100000 10000 10000 10000 10000 10000 10000 10000 100000 100000 100000 100000 100000 100000	500000 500000 500000 500000 5600 500000 56000 56000 500000 500000 500000 500000 500000	1000000 1000000 11000 11000 11000 1100000 1100000 110000 11000000	40 J 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 43 J 370 U 370 U 370 U 43 J 370 U 370 U	1300 230 J 110 J 430 250 J 890 74 J 200 J 120 J 130 J 120 J 570 410 U 140 J 250 J	440 U 440 U 50 J 440 U 55 J 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	4700 J 5900 J 4000 4700 J 3400 J 3100 J 2000 J 4100 490 J 5600 J 14000 1800 J 5600 J 56000 28000	86000 36000 J 18000 29000 19000 30000 13000 20000 4200 60000 J 34000 J 18000 640000 130000 90000	42000 29000 32000 33000 22000 14000 12000 28000 2700 J 65000 20000 9900 900 J 24000 86000	390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ	380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ	79000 29000 57000 120000 130000 110000 64000 62000 26000 84000 13000 71000 16000 47000
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene FOTAL PAH	100000 100000 100000 10000 10000 10000 10000 10000 10000 100000 500 100000 100000 NA	500000 500000 500000 500000 5600 500000 56000 56000 56000 500000 500000 500000 NA	1000000 1000000 11000 1100 11000 1000000	40 J 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 43 J 370 U 370 U 43 J 370 U	1300 230 J 110 J 430 250 J 890 74 J 200 J 120 J 130 J 120 J 570 410 U 140 J	440 U 440 U 50 J 440 U 55 J 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	4700 J 5900 J 4000 4700 J 3400 J 3100 J 2000 J 4100 490 J 5600 J 14000 1800 J 5600 J	86000 36000 J 18000 29000 19000 30000 13000 20000 4200 60000 J 34000 J 18000 640000 130000	42000 29000 32000 33000 22000 14000 12000 28000 2700 J 65000 20000 9900 900 J 24000	390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ	380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ	79000 29000 57000 120000 130000 110000 64000 62000 26000 84000 13000 71000 16000 47000
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TOTAL PAH Semi-volatile Organic Com	100000 100000 100000 10000 10000 10000 10000 10000 10000 100000 500 100000 100000 NA pounds - 8270C	500000 500000 500000 500000 5600 1000 56000 56000 56000 56000 500000 500000 500000 NA	1000000 1000000 11000 11000 11000 1100000 1100000 110000 11000000	40 J 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 43 J 370 U 370 U 370 U 243 J 370 U 370 U 370 U	1300 230 J 110 J 430 250 J 890 74 J 200 J 120 J 130 J 120 J 570 410 U 140 J 250 J 4814	440 U 440 U 50 J 440 U 55 J 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 430 U 440 U 440 U 440 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	4700 J 5900 J 4000 4700 J 3400 J 3100 J 2000 J 4100 490 J 5600 J 14000 1800 J 5600 D 56000 28000 175390	86000 36000 J 18000 29000 19000 30000 13000 20000 4200 60000 J 34000 J 18000 640000 130000 90000 1254200	42000 29000 32000 33000 22000 14000 12000 28000 2700 J 65000 20000 9900 9900 900 J 24000 86000 426900	390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ	380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ	79000 29000 57000 120000 130000 110000 64000 62000 26000 34000 13000 71000 16000 47000 160000 1070400
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene FOTAL PAH Semi-volatile Organic Com 2-Methylnaphthalene	100000 100000 100000 10000 10000 10000 10000 10000 100000 100000 100000 100000 NA pounds - 8270C NS	500000 500000 500000 500000 5600 500000 56000 56000 56000 500000 500000 500000 NA	1000000 1000000 11000 11000 11000 1100000 1100000 110000 11000000	40 J 370 U 370 U	1300 230 J 110 J 430 250 J 890 74 J 200 J 120 J 130 J 120 J 570 410 U 140 J 250 J 4814	440 U 440 U 50 J 440 U 55 J 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	4700 J 5900 J 4000 4700 J 3400 J 3100 J 2000 J 4100 490 J 5600 J 14000 1800 J 56000 28000 175390	86000 36000 J 18000 29000 19000 30000 13000 20000 4200 60000 J 34000 J 18000 640000 130000 90000 1254200	42000 29000 32000 33000 22000 14000 12000 28000 2700 J 65000 20000 9900 900 J 24000 86000 426900	390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ	380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ	79000 29000 29000 57000 120000 130000 110000 64000 26000 84000 13000 71000 160000 47000 160000 1070400
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TOTAL PAH Semi-volatile Organic Com 2-Methylnaphthalene 4-Methylphenol	100000 100000 100000 10000 10000 10000 10000 10000 100000 100000 100000 100000 NA pounds - 8270C NS 34000	500000 500000 500000 500000 5600 1000 56000 56000 56000 56000 500000 500000 NA	1000000 1000000 11000 11000 11000 1100000 1100000 1100000 11000000	40 J 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 43 J 370 U 370 U 370 U 243 J 370 U 370 U 370 U	1300 230 J 110 J 430 250 J 890 74 J 200 J 120 J 130 J 120 J 570 410 U 140 J 250 J 4814	440 U 440 U 50 J 440 U 55 J 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 430 U 440 U 440 U 440 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	4700 J 5900 J 4000 4700 J 3400 J 3100 J 2000 J 4100 490 J 5600 J 14000 1800 J 5600 D 56000 28000 175390	86000 36000 J 18000 29000 19000 30000 13000 20000 4200 60000 J 34000 J 18000 640000 130000 90000 1254200	42000 29000 32000 33000 22000 14000 12000 28000 2700 J 65000 20000 9900 9900 900 J 24000 86000 426900	390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ	380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ	79000 29000 57000 120000 130000 110000 64000 62000 26000 34000 13000 71000 16000 47000 160000 1070400
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TOTAL PAH Semi-volatile Organic Com 2-Methylphenol Benzaldehyde	100000 100000 100000 10000 10000 10000 100000 100000 100000 100000 100000 100000 NA pounds - 8270C NS 34000 NS	500000 500000 500000 500000 5600 1000 56000 56000 56000 56000 56000 500000 500000 NA	1000000 1000000 11000 11000 11000 1100000 1100000 1100000 11000000	40 J 370 U 370 U	1300 230 J 110 J 430 250 J 890 74 J 200 J 120 J 130 J 120 J 570 410 U 140 J 250 J 4814	440 U 440 U 50 J 440 U 55 J 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	4700 J 5900 J 4000 4700 J 3400 J 3100 J 2000 J 4100 490 J 5600 J 14000 1800 J 56000 28000 175390	86000 36000 J 18000 29000 19000 30000 13000 20000 4200 60000 J 34000 J 18000 640000 130000 90000 1254200	42000 29000 32000 33000 22000 14000 12000 28000 2700 J 65000 20000 9900 900 J 24000 86000 426900	390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ	380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ	79000 29000 29000 57000 120000 130000 110000 64000 26000 84000 13000 71000 160000 47000 160000 1070400
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TOTAL PAH Semi-volatile Organic Com 2-Methylphenol Benzaldehyde Acetophenone	100000 100000 100000 10000 10000 10000 100000 100000 100000 5000 1000000 1000000 NA pounds - 827000 NS 34000 NS NS	500000 500000 500000 500000 5600 1000 56000 56000 56000 56000 56000 500000 500000 NA	1000000 1000000 11000 11000 11000 1100000 1100000 1100000 11000000	40 J 370 U 370 U	1300 230 J 110 J 430 250 J 890 74 J 200 J 120 J 130 J 120 J 570 410 U 140 J 250 J 4814	440 U 440 U 50 J 440 U 55 J 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	4700 J 5900 J 4000 4700 J 3400 J 3100 J 2000 J 4100 490 J 5600 J 14000 1800 J 56000 28000 175390	86000 36000 J 18000 29000 19000 30000 13000 20000 4200 60000 J 34000 J 18000 640000 130000 90000 1254200	42000 29000 32000 33000 22000 14000 12000 28000 2700 J 65000 20000 9900 900 J 24000 86000 426900	390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ	380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ	79000 29000 29000 57000 120000 130000 110000 64000 26000 84000 13000 71000 160000 47000 160000 1070400
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TOTAL PAH Semi-volatile Organic Com 2-Methylnaphthalene 4-Methylphenol Benzaldehyde Acetophenone Biphenyl	100000 100000 100000 10000 10000 10000 100000 100000 100000 100000 5000 1000000 1000000 NA pounds - 8270C NS 34000 NS NS NS	500000 500000 500000 500000 5600 5600 5	1000000 1000000 11000 11000 11000 1100000 1100000 1100000 11000000	40 J 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 43 J 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U	1300 230 J 110 J 430 250 J 890 74 J 200 J 120 J 130 J 120 J 140 U 140 J 250 J 4814	440 U 440 U 440 U 50 J 440 U 55 J 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	4700 J 5900 J 4000 4700 J 3400 J 3400 J 3100 J 2000 J 4100 490 J 5600 J 14000 1800 J 56000 28000 175390 54000 400 U	86000 36000 J 18000 29000 19000 30000 13000 20000 4200 60000 J 34000 J 18000 640000 130000 90000 1254200	42000 29000 32000 33000 22000 14000 12000 28000 2700 J 65000 20000 9900 900 J 24000 86000 426900  6000 J 8000 U	390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ	380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ	79000 29000 29000 57000 120000 130000 110000 64000 62000 26000 84000 13000 71000 160000 47000 160000 1070400
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene TOTAL PAH Semi-volatile Organic Com 2-Methylphenol Benzaldehyde Acetophenone	100000 100000 100000 10000 10000 10000 100000 100000 100000 5000 1000000 1000000 NA pounds - 827000 NS 34000 NS NS	500000 500000 500000 500000 5600 1000 56000 56000 56000 56000 56000 500000 500000 NA	1000000 1000000 11000 11000 11000 1100000 1100000 1100000 11000000	40 J 370 U 370 U	1300 230 J 110 J 430 250 J 890 74 J 200 J 120 J 130 J 120 J 570 410 U 140 J 250 J 4814	440 U 440 U 50 J 440 U 55 J 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U 440 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	4700 J 5900 J 4000 4700 J 3400 J 3100 J 2000 J 4100 490 J 5600 J 14000 1800 J 56000 28000 175390	86000 36000 J 18000 29000 19000 30000 13000 20000 4200 60000 J 34000 J 18000 640000 130000 90000 1254200	42000 29000 32000 33000 22000 14000 12000 28000 2700 J 65000 20000 9900 900 J 24000 86000 426900	390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ 390 UJ	380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ 380 UJ	79000 29000 19000 110000 110000 64000 62000 26000 84000 13000 71000 160000 47000 160000 1070400

## Table 4.1: OU01 Soil Organics Results

			I e ID	CC 12	66.14	GC 15	66.16	TED 01	TED 02	TED 02	TD 04	TD 04	TD 05
			Location ID	GS-13	GS-14	GS-15	GS-16	TP-01	TP-02	TP-03	TP-04	TP-04	TP-05
		Sample Do	epth (ft bgs)	10	3	2	11	6-6.5	3	9	6	6	2
			MGP										1/ :1 1/
			Descriptio	NOI	NOI	NOI	NOI	residual/odor	residual/odor	residual	odor	odor	ash/residual/
			n Type										odor
	Annuavima	to Donth to		7	1	1	11.5	6	2	9.5	4	4	2.5
	Approxima		GW (ft bgs)	5/2/2007	5/2/2007	5/2/2007	5/1/2007	6 4/30/2007	4/30/2007	4/30/2007	4/30/2007	4/30/2007	4/30/2007
		2	Sample Date										
											SLTP00406SCXD		
D N	DEC	COMM	QC Code	FS	FS	FS	FS	FS	FS	FS	FD	FS	FS
Parameter Name	RES	COMM	IND										
Pesticides - 8081	ī	1											
4,4'-DDD	2600	92000	180000								4 UJ	3.9 UJ	170 J
4,4'-DDE	1800	62000	120000								4 UJ	3.9 UJ	40 UJ
4,4'-DDT	1700	47000	94000								4 UJ	3.9 UJ	71 J
Alpha-BHC	97	3400	6800								2 UJ	2 UJ	20 UJ
Alpha-Chlordane	910	24000	47000								2 UJ	2 UJ	20 UJ
Beta-BHC	72	3000	14000								2 UJ	2 UJ	20 UJ
Dieldrin	39	1400	2800								4 UJ	3.9 UJ	40 UJ
Endosulfan II	4800	200000	920000								4 UJ	3.9 UJ	40 UJ
Endosulfan sulfate	4800	200000	920000								4 UJ	3.9 UJ	71 J
Endrin	2200	89000	410000								4 UJ	3.9 UJ	40 UJ
Endrin aldehyde	NS	NS	NS								4 UJ	3.9 UJ	40 UJ
Endrin ketone	NS	NS	NS								4 UJ	3.9 UJ	110 J
Gamma-BHC/Lindane	280	9200	23000								2 UJ	2 UJ	20 UJ
Gamma-Chlordane	NS	NS	NS								2 UJ	2 UJ	20 UJ
Heptachlor epoxide	NS	NS	NS								2 UJ	2 UJ	20 UJ
Methoxychlor	NS	NS	NS								20 UJ	20 UJ	200 UJ
PCB Target Compound	NA	NA	NA						ĺ	ĺ	ND	ND	ND

Notes:

**Table 4.2: OU01 Soil Inorganics Results** 

		]	Location ID	C-3	C-4	C-4	D-5	D-6	D-7	D-9	D-9
		Sample Do	epth (ft bgs)	6.5-7.2	6.8-8	6.8-8	15-16	11-12	12.5-13	7.8-8	10.7-11
		MGP	Waste Type	DNAPL	DNAPL	DNAPL	DNAPL	DNAPL	NOI	residual/odor/ staining	DNAPL
	Approxi	imate GW D	epth (ft bgs)	1.2	3.5	3.5	8	7	4.2	8	8
		S	ample Date	8/10/2013	8/8/2013	8/8/2013	8/8/2013	8/8/2013	8/7/2013	8/6/2013	8/6/2013
			Sample ID	516008-C307	516008-C408	516008-C408D	516008-D516	516008-D612	516008-D712	516008-D908	516008-D911
			QC Code	FS	FS	FD	FS	FS	FS	FS	FS
Parameter Name	RES	COMM	IND								
Aluminum	NS	NS	NS	<b>2870</b> J	<b>3620</b> J	<b>4230</b> J	<b>1400</b> J	1790 J	1290 J	<b>6210</b> J	2790 J
Antimony	NS	NS	NS	16.1 UJ	20.2 UJ	18.5 UJ	18.7 UJ	15.5 UJ	18.7 UJ	19.3 UJ	16.1 UJ
Arsenic	16	16	16	<b>0.77</b> J	<b>0.78</b> J	2.5 U	2.5 U	<b>1.2</b> J	<b>0.7</b> J	1.6 J	<b>0.98</b> J
Barium	350	400	10,000	<b>8.9</b> J	<b>11.1</b> J	13.9 J	<b>4.4</b> J	10.8 J	<b>8.2</b> J	<b>34.7</b> J	15.1 J
Beryllium	14	590	2,700	<b>0.2</b> J	0.18 J	<b>0.21</b> J	0.063 J	0.16 J	0.078 J	0.34	0.32
Cadmium	2.5	9.3	60	0.21 U	0.27 U	0.25 U	0.25 U	0.21 U	0.25 U	0.26 U	0.21 U
Calcium	NS	NS	NS	1000 J	1250 J	910 J	<b>607</b> J	561 J	717 J	1370 J	1310 J
Chromium	22	400	800	2.2	3.4	3.5	1.6	1.8	2	4.3	2.4
Cobalt	NS	NS	NS	2.5	1.2	1.5	0.87	1.9	0.88	3.5	1.7
Copper	270	270	10,000	<b>0.81</b> J	1.5	1.6	<b>0.37</b> J	1.2	0.71 J	3	2
Iron	NS	NS	NS	<b>6360</b> J	<b>4290</b> J	4820 J	<b>2380</b> J	5090 J	4860 J	13100 J	7030 J
Lead	400	1,000	3,900	<b>0.53</b> J	2.2	1.6	<b>0.77</b> J	1.2	<b>0.71</b> J	2.3	1.2
Magnesium	NS	NS	NS	1180 J	<b>823</b> J	982 J	539 J	776 J	<b>539</b> J	1370 J	<b>791</b> J
Manganese	2,000	10,000	10,000	28.8 J	<b>28</b> J	<b>30.6</b> J	<b>13.7</b> J	21.5 J	19.5 J	98.3 J	<b>38.9</b> J
Mercury	0.81	2.8	5.7	0.02 U	0.026 U	0.025 U	0.023 U	0.022 U	0.023 U	0.022 U	0.023 U
Nickel	140	310	10,000	<b>1.9</b> J	<b>2.5</b> J	<b>2.9</b> J	<b>1.6</b> J	1.5 J	<b>1.2</b> J	<b>4.1</b> J	2.3 J
Potassium	NS	NS	NS	177	265	312	124	171	160	543	267
Selenium	36	1,500	6,800	4.3 U	5.4 UJ	4.9 UJ	5 UJ	4.1 UJ	5 UJ	5.1 UJ	4.3 UJ
Silver	36	1,500	6,800	0.54 U	0.67 U	0.62 U	0.62 U	0.52 U	0.62 U	0.64 U	0.54 U
Sodium	NS	NS	NS	<b>39.7</b> J	<b>58.7</b> J	<b>58.8</b> J	<b>39</b> J	<b>33.1</b> J	<b>36.7</b> J	<b>71.8</b> J	56.3 J
Thallium	NS	NS	NS	6.4 U	8.1 U	7.4 U	7.5 U	6.2 U	7.5 U	7.7 U	6.4 U
Vanadium	NS	NS	NS	5.6	7.6	7.8	3.2	4	4.3	11.4	6.3
Zinc	2,200	10,000	10,000	25.1	19.4	21.3	11.1	14.2	9	27.5	14.5
Cyanide, Total	27	27	10,000	1 UJ	1.2 UJ	1.2 UJ	<b>0.99</b> J	1.2 UJ	1.2 UJ	1.2 UJ	1.2 UJ

Notes:

**Table 4.2: OU01 Soil Inorganics Results** 

		T	Location ID	E-4	E-5	E-6	E-6	E-9	F-2	F-3	F-6	F-6
		Sample De		1.4-1.7	15-16	1.5-2	10.4-12	2.6-3	5.9-6.4	6.5-7	1.5-2	4.6-5.4
		Sample De	ptii (it bgs)		13-10		10.4-12	2.0-3	3.7-0.4	0.5-7	1.5-2	residual/odor -
		MGP V	Waste Type	residual/odor/ staining	NOI	residual/odor/ staining	DNAPL	residual/odor	NOI	NOI	coal/ash/slag	faint to moderate
	Approxi	mate GW De	epth (ft bgs)	2.7	unk	3.5	3.5	8	1.7	1.7	2.5	2.5
		S	ample Date	8/12/2013	8/8/2013	8/8/2013	8/8/2013	8/6/2013	8/9/2013	8/12/2013	8/10/2013	8/10/2013
			Sample ID	516008-E402	516008-E516	516008-E602	516008-E612	516008-E903	516880-F206	516880-F307	516880-F602	516880-F605
			QC Code	FS	FS	FS	FS	FS	FS	FS	FS	FS
Parameter Name	RES	COMM	IND									
Aluminum	NS	NS	NS	3540 Ј	<b>2280</b> J	929 J	<b>2120</b> J	1630 J	5100 J	1980 J	1050 J	<b>2440</b> J
Antimony	NS	NS	NS	16 UJ	17 UJ	<b>5</b> J	16.7 UJ	19.4 UJ	13.6 UJ	13.9 UJ	13.2 UJ	15.8 UJ
Arsenic	16	16	16	6.5	<b>0.97</b> J	34.8	<b>0.56</b> J	8	<b>0.97</b> J	1.9 U	4.7	<b>0.83</b> J
Barium	350	400	10,000	<b>13.7</b> J	<b>13.6</b> J	19.9 J	<b>6.3</b> J	<b>74.8</b> J	<b>7.8</b> J	11.9 J	<b>36.6</b> J	12.5 J
Beryllium	14	590	2,700	0.39	0.23	<b>0.23</b> J	<b>0.094</b> J	0.46	0.29	<b>0.11</b> J	<b>0.16</b> J	0.25
Cadmium	2.5	9.3	60	0.28	0.23 U	1.8	0.22 U	0.26 U	0.049 J	<b>0.032</b> J	<b>0.064</b> J	<b>0.17</b> J
Calcium	NS	NS	NS	1510 J	<b>752</b> J	603 J	861 J	<b>634</b> J	3570 J	<b>607</b> J	<b>428</b> J	2050 J
Chromium	22	400	800	5.5	2.5	21.9	1.9	6	2.6	2.1	3.1	1.3
Cobalt	NS	NS	NS	1.7	2	2.7	1.1	8.1	5.3	1.2	1.2	1.4
Copper	270	270	10,000	3.9	<b>0.91</b> J	57.6	0.56 J	33.1	2.6	<b>0.79</b> J	20.3	2.4
Iron	NS	NS	NS	13900 J	9190 J	21400 J	<b>3270</b> J	21800 J	13400 J	2500 J	10900 Ј	7400 J
Lead	400	1,000	3,900	64	1.6	639	1.3	10.1	1.5	<b>0.45</b> J	44.8	1.2
Magnesium	NS	NS	NS	<b>857</b> J	1170 J	<b>259</b> J	<b>743</b> J	<b>73.5</b> J	<b>3470</b> J	616 J	<b>439</b> J	1400 J
Manganese	2,000	10,000	10,000	<b>44.4</b> J	<b>38</b> J	<b>65</b> J	<b>24.3</b> J	16.8 J	<b>41</b> J	<b>16.8</b> J	<b>20.3</b> J	59.2 J
Mercury	0.81	2.8	5.7	0.036	0.022 U	0.53	0.022 U	0.023 U	0.021 U	0.02 U	<b>0.017</b> J	<b>0.013</b> J
Nickel	140	310	10,000	6.1	<b>2.7</b> J	6.4	<b>1.9</b> J	18.8	<b>2.2</b> J	<b>2.1</b> J	<b>2.8</b> J	<b>1.2</b> J
Potassium	NS	NS	NS	146	297	145	177	153	126	184	116	54
Selenium	36	1,500	6,800	<b>0.57</b> J	4.5 UJ	<b>4.4</b> J	4.4 UJ	0.69 J	3.6 U	3.7 U	<b>0.73</b> J	4.2 U
Silver	36	1,500	6,800	0.53 U	0.57 U	0.73	0.56 U	0.65 U	0.45 U	0.46 U	0.44 U	0.53 U
Sodium	NS	NS	NS	<b>32.5</b> J	<b>41</b> J	<b>36.7</b> J	<b>32</b> J	<b>34</b> J	<b>53.9</b> J	<b>25</b> J	<b>31.5</b> J	<b>36.7</b> J
Thallium	NS	NS	NS	6.4 U	6.8 U	<b>2.6</b> J	6.7 U	7.7 U	5.4 U	5.6 U	5.3 U	6.3 U
Vanadium	NS	NS	NS	6.8	5.9	3.1	3.7	14.9	14.9	2.8	8.9	3.1
Zinc	2,200	10,000	10,000	111	16.3	290	13	14.2	60.6	11	26.4	53.5
Cyanide, Total	27	27	10,000	<b>62.8</b> J	1.2 UJ	<b>7.5</b> J	1.2 UJ	1.3 UJ	0.99 UJ	1 UJ	<b>2.6</b> J	1 UJ

Notes:

**Table 4.2: OU01 Soil Inorganics Results** 

			Location ID	F-6	F-7	F-8	F-9	G-8	G-8	G-10	G-10
		Sample D	epth (ft bgs)	9.6-9.9	15.5-16	3.5-4	3-3.8	5.2-6	13.6-14.2	6.5-7	14.7-15.2
		MGP	Waste Type	DNAPL/residual	residual/odor	coal/ash/slag	DNAPL/staining	DNAPL/residual	NOI	DNAPL	residual odor
	Annroxi	mate GW D	enth (ft bgs)	2.5	3.8	4	3.5	4	4	6.6	6.6
	- Pp- on-		ample Date	8/10/2013	8/7/2013	8/6/2013	8/6/2013	8/7/2013	8/7/2013	8/12/2013	8/12/2013
		~	Sample ID	516880-F610	516880-F716	516880-F804	516880-F903	516008-G806	516008-G814	516008-G1007	516008-G1015
			QC Code	FS	FS	FS	FS	FS	FS	FS	FS
Parameter Name	RES	COMM	IND								
Aluminum	NS	NS	NS	2580 Ј	2630 Ј	1490 J	1150 Ј	961 J	4050 J	<b>3440</b> J	2730 Ј
Antimony	NS	NS	NS	13.7 UJ	17.8 UJ	23.3 UJ	19.6 UJ	18.1 UJ	19.7 UJ	14.1 UJ	14.4 UJ
Arsenic	16	16	16	<b>0.55</b> J	2.4 U	5.2	7.6	<b>1.1</b> J	2.6 U	<b>0.42</b> J	<b>0.76</b> J
Barium	350	400	10,000	<b>7.1</b> J	<b>6.4</b> J	20.5 J	<b>29.2</b> J	<b>7.1</b> J	17 J	<b>10.7</b> J	<b>11.6</b> J
Beryllium	14	590	2,700	<b>0.16</b> J	<b>0.13</b> J	<b>0.13</b> J	<b>0.19</b> J	0.24 U	0.27	0.24	0.26
Cadmium	2.5	9.3	60	0.054 J	0.24 U	0.096 J	0.082 Ј	0.036 J	0.26 U	0.039 J	0.19 U
Calcium	NS	NS	NS	<b>823</b> J	952 J	1820 J	1790 J	<b>828</b> J	1300 J	<b>781</b> J	<b>784</b> J
Chromium	22	400	800	2.2	2.1	2.5	2.3	1.5	3.4	2.9	4.4
Cobalt	NS	NS	NS	0.93	1.1	1.2	2.1	0.6 U	2	1.5	1.7
Copper	270	270	10,000	1.5	1.8	8.1	6.1	<b>1.1</b> J	2.6	1.4	1.8
Iron	NS	NS	NS	2920 Ј	<b>3290</b> J	<b>4940</b> J	<b>4230</b> J	1190 J	<b>5350</b> J	6080 J	16900 J
Lead	400	1,000	3,900	<b>0.72</b> J	<b>0.98</b> J	33.1	11	2.7	1.8	<b>0.77</b> J	<b>0.93</b> J
Magnesium	NS	NS	NS	<b>754</b> J	963 J	406 J	<b>63.7</b> J	<b>70.4</b> J	1130 J	957 J	1400 J
Manganese	2,000	10,000	10,000	19 J	<b>23.7</b> J	<b>39.4</b> J	17.1 J	11.1 J	<b>37.4</b> J	28.1 J	<b>47.6</b> J
Mercury	0.81	2.8	5.7	0.019 U	0.022 U	0.047	0.017 J	0.025 U	0.023 U	0.019 U	0.02 U
Nickel	140	310	10,000	1.5 J	<b>2.2</b> J	<b>2.7</b> J	10.6	<b>0.51</b> J	<b>3.1</b> J	<b>3.8</b> J	<b>3.2</b> J
Potassium	NS	NS	NS	166	225	81	61.7	88.9	388	235	296
Selenium	36	1,500	6,800	3.6 U	4.7 UJ	0.68 J	0.92 Ј	4.8 UJ	5.2 UJ	3.8 U	3.8 U
Silver	36	1,500	6,800	0.46 U	0.59 U	0.78 U	0.65 U	0.6 U	0.66 U	0.47 U	0.48 U
Sodium	NS	NS	NS	<b>45.1</b> J	<b>44.3</b> J	<b>30.7</b> J	23.2 Ј	<b>32.3</b> J	<b>73.3</b> J	<b>31.9</b> J	<b>38.9</b> J
Thallium	NS	NS	NS	5.5 U	7.1 U	9.3 U	7.8 U	7.2 U	7.9 U	5.7 U	5.8 U
Vanadium	NS	NS	NS	4	4.4	3.9	4.7	1.4	8.4	6.4	5.9
Zinc	2,200	10,000	10,000	28.3	17.9	39.2	91.6	6.4	18	18.7	22.1
Cyanide, Total	27	27	10,000	0.99 UJ	1.2 UJ	1.4 UJ	1.4 UJ	<b>1.3</b> J	1.2 UJ	1 UJ	1 UJ

Notes:

**Table 4.2: OU01 Soil Inorganics Results** 

			Location ID	GS-05	GS-06	GS-10	TP-04	TP-04	TP-05
		Sample D	epth (ft bgs)	3	7	7	6	6	2
		MGP	Waste Type	Oily residue/ odor	tar-like/staining	tar-like/staining	slight odor	slight odor	strong odor/ sheen
	Approxi	mate GW D	epth (ft bgs)	1	1.5	1	4	4	2.5
			Sample Date	5/1/2007	5/1/2007	5/2/2007	4/30/2007	4/30/2007	4/30/2007
			Sample ID	SLGS00503SCXX	SLGS00607SCXX	SLGS01006SCXX	SLTP00406SCXD	SLTP00406SCXX	SLTP00502SCXX
			QC Code	FS	FS	FS	FD	FS	FS
Parameter Name	RES	COMM	IND						
Aluminum	NS	NS	NS	3870	2970	2030	3710	3430	2580
Antimony	NS	NS	NS	<b>1.8</b> JN	1 UJ	0.039 U	0.68 UJ	0.9 UJ	1 UJ
Arsenic	16	16	16	0.082 U	0.095 U	0.34 U	0.23 U	0.5 U	45.6
Barium	350	400	10,000	13.5	13.9	10.1	14.4	15.1	37.2
Beryllium	14	590	2,700	0.0065 U	0.0076 U	0.0042 U	0.0045 U	0.005 U	0.26
Cadmium	2.5	9.3	60	0.63	0.11	0.15	0.14	0.14	0.62
Calcium	NS	NS	NS	3330	3080	604	1350	1290	1940
Chromium	22	400	800	12.6	2.6	2.6	2.6	2.5	6.3
Cobalt	NS	NS	NS	2.4	0.72	1.6	1.3	1.3	0.55
Copper	270	270	10,000	28	2.8	1.5 U	1.8	1.8	28.9
Iron	NS	NS	NS	7460	2070	2280	4730	4650	18100
Lead	400	1,000	3,900	12.3	1.3	1.9	2.3	2.6	166
Magnesium	NS	NS	NS	825	497	619	718	736	1120
Manganese	2,000	10,000	10,000	32	42.8	16.8	34.6	37.2	58.2
Mercury	0.81	2.8	5.7	0.0086 U	0.019	0.0069 U	0.0074 U	0.0076 U	0.25
Nickel	140	310	10,000	13.2	1.2	1.5	2.3	2.2	5
Potassium	NS	NS	NS	125	76.5	144	172	176	194
Selenium	36	1,500	6,800	3.4	0.53	0.046 U	1.7	1.8	10.5
Silver	36	1,500	6,800	3.4	0.54 U	0.018 U	3	2.9	8.3
Sodium	NS	NS	NS	43.8	20.4	21.7	23.2	23.6	37.1
Thallium	NS	NS	NS	0.41 U	0.12 U	0.055 U	0.21 U	0.15 U	0.93 U
Vanadium	NS	NS	NS	7	4.1	3.1	8.4	8.2	6.7
Zinc	2,200	10,000	10,000	395	9	28.6	37.9	36.8	97.2
Cyanide, Total	27	27	10,000	1.7	1.2 U		423	0.99 U	12.9

Notes:

Table 4.3: OU01 Groundwater Organics Results

Т	ocation ID	GW-02	GW-02	GW-05	GW-06	GW-07	GW-08	GW-09	GW-10	GW-11	GW-11	GW-12
	ample Date	5/1/2007	8/22/2013	5/1/2007	5/1/2007	5/1/2007	5/1/2007	5/1/2007	5/2/2007	5/2/2007	8/22/2013	5/2/2007
Sample De		9.5	6/22/2013 5	8	8	3/1/2007 8	12	3/1/2007	7	6.5	6	10
-	Sample ID		516008-GW0209	SLGW00508SCXX	SLGW00608SCXX	SLGW00708SCXX	SLGW00812SCXX	SLGW00908SCXX	SLGW01007SCXX	SLGW01111SCXX	516008-GW1110	SLGW01210SCXD
	Qc Code	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS	FD
Parameter Name	GA GW	13	13	1.5	15	1.9	1.5	13	1.3	1.0	13	FD
Volatile Organic Compounds - 82601												
1,2,4-Trimethylbenzene	5	9 J		47 J	<b>39</b> J	5 U	<b>200</b> J	5 U	5 UJ	87		5 UJ
1,2-Dibromo-3-chloropropane	0.04	5 UJ	1 U	5 UJ	5 UJ	5 U	200 J 10 UJ	5 U	5 UJ	5 U	1 UJ	5 U
1,3,5-Trimethylbenzene	5	3 J	1 U	18 J	13 J	5 U	64 J	5 U	5 UJ	29	1 03	5 UJ
2-Butanone	50	R	10 U	R	R	R	R	R	R	2.7 D	10 U	R 8
4-iso-Propyltoluene	5	5 UJ	10 0	7 J	4 J	5 U	10 UJ	5 U	5 UJ	5	10 0	5 U
Acetone	50	R	9.5 J	R	R	R	R	R	R	R	10 U	R
Carbon disulfide	60	5 UJ	1 U	5 UJ	5 UJ	5 U	10 UJ	5 U	5 UJ	5 U	1 UJ	5 U
Chloromethane	5	5 UJ	1 U	5 UJ	5 UJ	5 U	10 UJ	5 UJ	5 UJ	5 UJ	1 U	5 UJ
Cyclohexane	NS	5 03	1 UJ	3 03	3 03	<i>y</i> 0	10 03	3 03	3 03	3 03	1 UJ	3 03
Isopropylbenzene	5	5 UJ	1.3	3 Ј	<b>3</b> J	5 U	<b>17</b> J	5 U	5 UJ	19	18	5 U
Methyl cyclohexane	NS	5 00	1 U		J ,	, , ,			3 03		1 UJ	, , ,
n-Butylbenzene	5	5 UJ		5 UJ	5 UJ	5 U	<b>7</b> IJ	5 U	5 UJ	6	1 50	5 U
Naphthalene	10	330		1100	1500	7	6400	130 J	44 J	1400		<b>2</b> J
Propylbenzene	5	5 UJ		<b>3</b> J	<b>2</b> J	5 U	<b>20</b> J	5 U	5 UJ	9		5 U
Styrene	5	<b>8</b> J	20	5 UJ	<b>10</b> J	5 U	510	5 U	5 UJ	5 U	1 U	5 UJ
BTEX - 8260B							,	<u>.</u>		•		
Benzene	1	<b>84</b> J	23	<b>6</b> J	110 J	5 U	150 J	<b>2</b> J	5 UJ	12	15	5 U
Ethyl benzene	5	150 J	150	<b>44</b> J	<b>84</b> J	5 U	<b>240</b> J	5 U	<b>3</b> J	130	140	5 U
Toluene	5	<b>9</b> J	24	13 J	<b>90</b> J	5 U	850	5 U	1 J	33	28	5 U
Xylene, o	5	13 J		<b>34</b> J	<b>40</b> J	5 U	<b>260</b> J	5 U	5 UJ	99		5 U
Xylenes (m&p)	5	<b>29</b> J		60 J	63	5 U	<b>500</b> J	5 U	1 J	180		5 U
Xylenes, Total	5	<b>42</b> J	140	<b>95</b> J	100 J	5 U	<b>760</b> J	5 U	1 J	280	220	5 U
Total BTEX	NS	285	337	157	387	ND	2000	2	5	454	403	ND
Polycyclic Aromatic Hydrocarbons -	8270C											
Acenaphthene	20	38	<b>0.69</b> J		180	10 U	<b>75</b> J	17	<b>6</b> J	<b>63</b> J	<b>59</b> J	10 U
Acenaphthylene	NS	<b>8</b> J	<b>1.9</b> J		90 J	1 J	<b>260</b> J	10 U	12	13 J	<b>4</b> J	10 U
Anthracene	50	<b>3</b> J	<b>0.77</b> J		<b>37</b> J	10 U	400 U	10 U	<b>9</b> J	100 U	1.5 J	10 U
Benzo(a)anthracene	NS	<b>3</b> J	5.1 U		<b>29</b> J	10 U	400 U	10 U	12	100 U	4.7 U	10 U
Benzo(a)pyrene	NS	<b>2</b> J	3.5 J		28 J	10 U	400 U	10 U	12	100 U	4.7 U	10 U
Benzo(b)fluoranthene	NS	2 J	2.7 J		20 J	10 U	400 U	10 U	17	100 U	4.7 U	10 U
Benzo(ghi)perylene	NS	20 U	2.1 J		18 J	10 U	400 UJ	10 U	14	100 UJ	4.7 U	10 U
Benzo(k)fluoranthene	NS	20 U	5.1 U		100 U	10 U	400 U	10 U	5 J	100 U	4.7 U	10 U
Chrysene	NS	2 J	2.7 J		20 J	10 U	400 U	10 U	8 J	100 U	4.7 U	10 U
Dibenz(a,h)anthracene	NS 50	20 U	5.1 U		100 U	10 U	400 UJ	10 U	2 J	100 UJ	4.7 U	10 U
Fluoranthene	50	10 J	2.4 J		71 J	10 U	400 U	10 U	23	100 U	4.7 U	10 U
Fluorene	50	11 J	0.56 J		70 J	10 U	<b>53</b> J	3 J	9 J	15 J	13	10 U
Indeno(1,2,3-cd)pyrene	NS 10	20 U	1.7 J		12 J	10 U	400 UJ	10 U	10	100 UJ	4.7 U	10 U
Naphthalene Phonouthusus	10	250	8.8 U		810 160	10 U	3600 94 J	61	42	1200	990 J 7	10 U
Phenanthrene	50 50	11 J 19 J	1.4 J 3.6 J		110	10 U 10 U	94 J 400 U	5 J 1 J	26 59	<b>20</b> J 100 U	4.7 U	10 U
Pyrene TOTAL PAH					1655	10 U						10 U
TOTAL PAH	NA	359	24		1055	l l	4082	87	266	1311	1075	ND

	<b>Location ID</b>	GW-02	GW-02	GW-05	GW-06	GW-07	GW-08	GW-09	GW-10	GW-11	GW-11	GW-12
	Sample Date	5/1/2007	8/22/2013	5/1/2007	5/1/2007	5/1/2007	5/1/2007	5/1/2007	5/2/2007	5/2/2007	8/22/2013	5/2/2007
Sample	Depth (ft bgs)	9.5	5	8	8	8	12	8	7	6.5	6	10
	Sample ID	SLGW00211SCXX	516008-GW0209	SLGW00508SCXX	SLGW00608SCXX	SLGW00708SCXX	SLGW00812SCXX	SLGW00908SCXX	SLGW01007SCXX	SLGW01111SCXX	516008-GW1110	SLGW01210SCXD
	Qc Code	FS	FD									
Parameter Name	GA GW											
Semi-volatile Organic Compound	s - 8270C					•	•	•		•	•	
4-Methylphenol	NS	20 U	10 U		100 U	10 U	400 U	10 U	10 U	100 U	9.3 U	10 U
2,4-Dimethylphenol	1	20 U	5.1 U		100 U	10 U	400 U	10 U	10 U	100 U	1.2 J	10 UJ
2-Methylnaphthalene	NS	9 J	1.5 J		230	10 U	600	11	21	200	95 J	10 U
2-Methylphenol	NS	20 U	5.1 U		100 U	10 U	400 U	10 U	10 U	100 U	4.7 U	10 U
Benzaldehyde	NS		5.1 UJ								<b>14</b> J	
Biphenyl	5		<b>0.72</b> J								19	
Bis(2-Ethylhexyl)phthalate	5	20 U	5.1 U		100 U	10 U	400 U	10 U	10 U	100 U	4.7 U	1 J
Carbazole	NS	20 U	5.1 U		100 U	10 U	400 U	10 U	10 U	100 U	<b>1.3</b> J	10 U
Di-n-butylphthalate	50	20 U	5.1 U		100 U	10 U	400 U	10 U	10 U	100 U	<b>0.81</b> J	10 U
Dibenzofuran	NS	20 U	10 U		11 J	10 U	400 U	10 U	10 U	100 U	<b>0.93</b> J	10 U
Diethylphthalate	50	<b>2</b> J	5.1 U		100 U	10 U	400 U	10 U	10 U	100 U	4.7 U	10 U
Phenol	1	<b>3</b> J	<b>0.4</b> J		100 U	10 U	400 U	10 U	10 U	100 U	4.7 U	10 U
Pesticides - 8081												
4,4'-DDD	0.3				<b>0.53</b> J	0.1 U						0.1 U
4,4'-DDE	0.2				0.1 U	0.1 U						0.1 U
4,4'-DDT	0.2				<b>0.2</b> J	0.1 U						0.1 U
Aldrin	NS				0.05 U	0.05 U						0.05 U
Alpha-BHC	0.01				0.05 U	0.05 U						0.05 U
Endosulfan sulfate	NS				0.1 UJ	0.1 U						0.1 U
Endrin aldehyde	5				<b>0.26</b> J	0.1 U						0.1 U
Endrin ketone	5				0.1 U	0.1 U						0.1 U
Gamma-BHC/Lindane	0.05				0.05 UJ	0.05 UJ						0.05 UJ
PCB Target Compounds - 8082	NS				ND	ND						ND

Notes: See Table 4A

Results shown in microgram per liter (ug/L)

Table 4.3: OU01 Groundwater Organics Results

1	Location ID	GW-12	GW-13	GW-14	GW-14	GW-15	MW-101	MW-102	MW-103	MW-104
	ample Date	5/2/2007	5/2/2007	5/2/2007	8/22/2013	5/2/2007	8/22/2013	8/22/2013	8/22/2013	8/22/2013
	epth (ft bgs)	10	8	11	6	7	8	10	15	11
Sample De	Sample ID		SLGW01308SCXX	SLGW01411SCXX	516008-GW1410	SLGW01507SCXX	516008-MW10110	516008-MW10213	516008-MW10317	516008-MW10410
	Qc Code	FS	FS	FS	FS	FS	FS	FS	FS	FS
Parameter Name	GA GW	15	15	15	15	15	15	15	15	15
Volatile Organic Compounds - 8260						l .			<u> </u>	
1,2,4-Trimethylbenzene	5	5 UJ	5 U	<b>4</b> J		5 U			Ī	
1,2-Dibromo-3-chloropropane	0.04	5 U	5 U	5 U	1 UJ	5 UJ	9.4	1 UJ	1 U	1 U
1,3,5-Trimethylbenzene	5	5 UJ	5 U	<b>2</b> J	1 00	5 U		7 00		
2-Butanone	50	R	R	R	10 U	R	10 U	10 U	10 U	10 U
4-iso-Propyltoluene	5	5 U	5 U	5 U	10 0	5 U	10 0	10 0	10 0	10 0
Acetone	50	R	R	R	10 U	R	3.5 J	3.9 J	10 U	10 U
Carbon disulfide	60	5 U	5 U	5 U	1 UJ	5 U	1 U	1 UJ	1 U	1 U
Chloromethane	5	5 U	5 UJ	1 J	1 U	5 U	1 U	1 UJ	1 U	1 U
Cyclohexane	NS	<u> </u>	•		1 UJ		1 UJ	0.62 J	1 UJ	1 UJ
Isopropylbenzene	5	5 U	5 U	5 U	1 U	5 UJ	26	56	1 U	1 U
Methyl cyclohexane	NS				1 UJ		1 U	<b>0.44</b> J	1 U	1 U
n-Butylbenzene	5	5 U	5 U	5 U		5 U				
Naphthalene	10	5 U	5 UJ	34		5 U				
Propylbenzene	5	5 U	5 U	5 U		5 U				
Styrene	5	5 UJ	5 U	5 U	1 U	5 U	250	680	1 U	1 U
BTEX - 8260B	•					•			•	
Benzene	1	5 U	5 U	80	<b>0.62</b> J	5 U	1100	97	1 U	1 U
Ethyl benzene	5	5 U	5 U	5	1 U	5 U	940	2900	1 U	1 U
Toluene	5	5 U	5 U	9	1 U	5 U	2100	880	1 U	1 U
Xylene, o	5	5 U	5 U	51		5 U				
Xylenes (m&p)	5	5 U	5 U	16		5 U				
Xylenes, Total	5	5 U	5 U	67	2 U	5 U	1100	1700	2 U	2 U
Total BTEX	NS	ND	ND	161	0.62	ND	5240	5577	ND	ND
Polycyclic Aromatic Hydrocarbons -						-			_	
Acenaphthene	20	10 U	10 U	10 U	5 U	10 U	<b>46</b> J	86	<b>0.42</b> J	9.9
Acenaphthylene	NS	10 U	10 U	<b>4</b> J	1 J	10 U	540	490	<b>0.95</b> J	<b>0.52</b> J
Anthracene	50	10 U	10 U	10 U	<b>0.41</b> J	10 U	17 J	<b>17</b> J	4.6 U	<b>3.1</b> J
Benzo(a)anthracene	NS	10 U	10 U	10 U	5 U	10 U	94 U	48 U	4.6 U	5.9 U
Benzo(a)pyrene	NS	10 U	10 U	10 U	5 U	10 U	94 U	48 U	4.6 U	5.9 U
Benzo(b)fluoranthene	NS	10 U	10 U	10 U	5 U	10 U	94 U	48 U	4.6 U	5.9 U
Benzo(ghi)perylene	NS	10 U	10 U	10 U	<b>0.77</b> J	10 U	94 U	48 U	4.6 U	5.9 U
Benzo(k)fluoranthene	NS	10 U	10 U	10 U	5 U	10 U	94 U	48 U	4.6 U	5.9 U
Chrysene	NS	10 U	10 U	10 U	5 U	10 U	94 U	48 U	4.6 U	5.9 U
Dibenz(a,h)anthracene	NS	10 U	10 U	10 U	5 U	10 U	94 U	48 U	4.6 U	5.9 U
Fluoranthene	50	10 U	1 J	10 U	5 U	10 U	10 J	10 J	4.6 U	<b>2.9</b> J
Fluorene	50	10 U	10 U	10 U	5 U	10 U	92 J	58	0.4 J	6
Indeno(1,2,3-cd)pyrene	NS	10 U	10 U	10 U	5 U	10 U	94 U	48 U	4.6 U	5.9 U
Naphthalene	10	10 U	10 U	9 J	5 U	10 U	5800	9700 J 86	4.9 U	5.9 U
Phenanthrene	50	10 U	10 U	10 U	5 U	10 U	120		<b>0.7</b> J	17
Pyrene TOTAL PAH	50 NA	10 U ND	2 J	10 U	5 U 2	10 U	9.1 J	9.5 J 10457	4.6 U	3.7 J
IUIAL PAH	INA	ND	3	13		ND	6634	1045/	2	43

**Table 4.3: OU01 Groundwater Organics Results** 

	<b>Location ID</b>	GW-12	GW-13	GW-14	GW-14	GW-15	MW-101	MW-102	MW-103	MW-104
	Sample Date	5/2/2007	5/2/2007	5/2/2007	8/22/2013	5/2/2007	8/22/2013	8/22/2013	8/22/2013	8/22/2013
Sampl	e Depth (ft bgs)	10	8	11	6	7	8	10	15	11
•	Sample ID	SLGW01210SCXX	SLGW01308SCXX	SLGW01411SCXX	516008-GW1410	SLGW01507SCXX	516008-MW10110	516008-MW10213	516008-MW10317	516008-MW10410
	Qc Code	FS	FS	FS	FS	FS	FS	FS	FS	FS
Parameter Name	GA GW									
Semi-volatile Organic Compour	ds - 8270C									
4-Methylphenol	NS	10 U	<b>17</b> J	96 U	9.2 U	12 U				
2,4-Dimethylphenol	1	10 UJ	10 U	10 U	5 U	10 U	94 U	48 U	4.6 U	5.9 U
2-Methylnaphthalene	NS	10 U	10 U	10 U	5 U	10 U	720	490	<b>0.66</b> J	<b>3.4</b> J
2-Methylphenol	NS	10 U	10 U	10 U	5 U	10 U	<b>20</b> J	48 U	4.6 U	5.9 U
Benzaldehyde	NS				5 UJ		94 UJ	48 UJ	4.6 UJ	5.9 UJ
Biphenyl	5				5 U		<b>76</b> J	65	<b>0.69</b> J	<b>2.6</b> J
Bis(2-Ethylhexyl)phthalate	5	10 U	10 U	10 U	5 U	10 U	94 U	48 U	4.6 U	5.9 U
Carbazole	NS	10 U	10 U	10 U	5 U	10 U	<b>17</b> J	<b>13</b> J	4.6 U	5.9 U
Di-n-butylphthalate	50	10 U	10 U	10 U	<b>0.45</b> J	10 U	94 U	48 U	<b>0.64</b> J	5.9 U
Dibenzofuran	NS	10 U	<b>13</b> J	<b>7.5</b> J	9.2 U	<b>0.98</b> J				
Diethylphthalate	50	10 U	10 U	10 U	5 U	10 U	94 U	48 U	4.6 U	5.9 U
Phenol	1	10 U	10 U	<b>3</b> J	5 U	10 U	94 U	48 U	4.6 U	5.9 U
Pesticides - 8081										
4,4'-DDD	0.3	0.1 U					0.23 U	0.47 UJ		
4,4'-DDE	0.2	0.1 U					<b>0.15</b> J	0.47 U		
4,4'-DDT	0.2	0.1 U					0.23 U	0.47 U		
Aldrin	NS	0.05 U					<b>0.033</b> J	0.47 U		
Alpha-BHC	0.01	0.05 U					2.9	3.2		
Endosulfan sulfate	NS	0.1 U					<b>0.12</b> JN	0.47 U		
Endrin aldehyde	5	0.1 U					0.23 U	0.47 UJ		
Endrin ketone	5	0.1 U					<b>0.11</b> J	0.47 U		
Gamma-BHC/Lindane	0.05	0.05 UJ					<b>0.052</b> JN	<b>0.074</b> J		
PCB Target Compounds - 8082	NS	ND					ND	ND		

Notes: See Table 4A

Results shown in microgram per liter (ug/L)

Table 4.3: OU01 Groundwater Organics Results

	<b>Location ID</b>	MW-105	MW-106	MW-107	MW-108	MW-109	MW-109	MW-110	MW-204	MW-205D	MW-205S
	Sample Date	8/22/2013	8/22/2013	8/22/2013	8/22/2013	8/22/2013	8/22/2013	8/22/2013	9/30/2014	9/30/2014	9/30/2014
Sa	mple Depth (ft bgs)	15	10	10	14	10	10	15	17	25	15
	Sample ID	516008-MW10518	516008-MW10610	516008-MW10713	516008-MW10819	516008-MW10915	516008-MW10915D	516008-MW11018	516008-MW204023	516008-MW205D025	516008-MW205S014
	Qc Code	FS	FS	FS	FS	FS	FD	FS	FS	FS	FS
Parameter Name	GA GW										
Volatile Organic Compound	ls - 8260B									•	
1,2,4-Trimethylbenzene	5								51	70	1 UJ
1,2-Dibromo-3-chloropropar	ne 0.04	1 U	1 U	1 U	1 U	1 U	1 U	1 U	33 U	40 U	2 U
1,3,5-Trimethylbenzene	5								17	23	1 U
2-Butanone	50	10 U	10 U	10 U	10 U	<b>3</b> J	<b>3.2</b> J	10 U	170 U	200 U	10 U
4-iso-Propyltoluene	5								17 U	20 U	1 U
Acetone	50	10 U	<b>3.6</b> J	10 U	10 U	17 J	17 J	10 U	170 U	200 U	10 UJ
Carbon disulfide	60	1 U	1 U	1 U	1 U	1 U	<b>0.64</b> J	1 U	17 U	20 U	1 U
Chloromethane	5	1 U	1 U	1 U	1 U	<b>0.85</b> J	1 U	1 U	17 U	20 U	1 U
Cyclohexane	NS	1 UJ	1 UJ	1 UJ	1 UJ	<b>0.5</b> J	<b>0.48</b> J	1 UJ	17 U	20 U	1 U
Isopropylbenzene	5	1 U	3.7	3.1	1 U	<b>8.1</b> J	<b>7.9</b> J	1 U	17 U	<b>9.8</b> J	1 UJ
Methyl cyclohexane	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	17 U	20 U	1 U
n-Butylbenzene	5								17 U	20 U	1 U
Naphthalene	10								17 U		
Propylbenzene	5								17 U	20 U	1 U
Styrene	5	1 U	31	780	1 U	810	860	1 U	340	<b>15</b> J	1 U
BTEX - 8260B											
Benzene	1	1 U	5.1	120	1 U	2400	2500	1 U	20	570	0.52 J
Ethyl benzene	5	1 U	100	150	1 U	1200	1300	1 U	67	320	1 U
Toluene	5	<b>0.58</b> J	78	780	1 U	4900	5200	<b>0.61</b> J	270	31	1 U
Xylene, o	5										
Xylenes (m&p)	5										
Xylenes, Total	5	2 U	230	700	2 U	<b>1200</b> J	<b>1200</b> J	2 U	340	280	2 U
Total BTEX	NS	0.58	413	1750	ND	9700	10200	0.61	697	1201	0.52
Polycyclic Aromatic Hydroc											
Acenaphthene	20	4.7 U	28	<b>1.2</b> J	4.8 U	580 J	<b>440</b> J	4.6 U	5.8	110 J	4.7 U
Acenaphthylene	NS	<b>0.91</b> J	75	<b>3.2</b> J	<b>0.47</b> J	8800 J	<b>5100</b> J	<b>0.55</b> J	36	<b>140</b> J	4.7 U
Anthracene	50	4.7 U	<b>3.5</b> J	<b>0.91</b> J	4.8 U	1900	1400	4.6 U	<b>2.3</b> J	460 U	4.7 U
Benzo(a)anthracene	NS	4.7 U	<b>0.83</b> J	4.7 U	4.8 U	1300	900	4.6 U	4.6 U	460 U	4.7 U
Benzo(a)pyrene	NS	4.7 U	<b>0.46</b> J	4.7 U	4.8 U	1200	870	4.6 U	4.6 U	460 UJ	4.7 U
Benzo(b)fluoranthene	NS	4.7 U	<b>0.7</b> J	4.7 U	4.8 U	1000	730	4.6 U	4.6 U	460 UJ	4.7 U
Benzo(ghi)perylene	NS	4.7 U	4.9 U	4.7 U	4.8 U	180 J	170 J	4.6 U	4.6 U	460 UJ	4.7 U
Benzo(k)fluoranthene	NS	4.7 U	4.9 U	4.7 U	4.8 U	<b>430</b> J	<b>380</b> J	4.6 U	4.6 U	460 UJ	4.7 U
Chrysene	NS	4.7 U	0.93 J	4.7 U	4.8 U	1000	790	4.6 U	4.6 U	460 U	4.7 U
Dibenz(a,h)anthracene	NS	4.7 U	4.9 U	4.7 U	4.8 U	930 U	480 U	4.6 U	4.6 U	460 UJ	4.7 U
Fluoranthene	50	4.7 U	<b>3.9</b> J	<b>0.6</b> J	4.8 U	4300	3100	<b>0.44</b> J	4.6 U	460 U	4.7 U
Fluorene	50	4.7 U	17	4.8	4.8 U	3000	2300	4.6 U	11	460 U	4.7 U
Indeno(1,2,3-cd)pyrene	NS	4.7 U	4.9 U	4.7 U	4.8 U	190 J	<b>140</b> J	4.6 U	4.6 U	460 UJ	4.7 U
Naphthalene	10	19 U	<b>890</b> J	4.7 U	6.3 U	29000	23000	7 U	570	2200	<b>2.9</b> J
Phenanthrene	50	<b>0.65</b> J	20	<b>1</b> J	0.53 J	9500	7100	<b>0.68</b> J	12	460 U	4.7 U
Pyrene	50	4.7 U	4.3 J	0.55 J	4.8 U	4700	3500	0.38 J	4.6 U	460 U	4.7 U
TOTAL PAH	NA	2	1045	12	1	71380	49920	2	637	2450	3

## Table 4.3: OU01 Groundwater Organics Results

I	Location ID	MW-105	MW-106	MW-107	MW-108	MW-109	MW-109	MW-110	MW-204	MW-205D	MW-205S
S	ample Date	8/22/2013	8/22/2013	8/22/2013	8/22/2013	8/22/2013	8/22/2013	8/22/2013	9/30/2014	9/30/2014	9/30/2014
Sample De	epth (ft bgs)	15	10	10	14	10	10	15	17	25	15
	Sample ID	516008-MW10518	516008-MW10610	516008-MW10713	516008-MW10819	516008-MW10915	516008-MW10915D	516008-MW11018	516008-MW204023	516008-MW205D025	516008-MW205S014
	Qc Code	FS	FS	FS	FS	FS	FD	FS	FS	FS	FS
Parameter Name	GA GW										
Semi-volatile Organic Compounds -	8270C										
4-Methylphenol	NS	9.3 U	<b>3.6</b> J	9.4 U	9.6 U	1900 U	970 U	9.2 U	9.2 U	920 UJ	9.4 U
2,4-Dimethylphenol	1	4.7 U	<b>1.3</b> J	<b>3.7</b> J	4.8 U	930 U	480 U	4.6 U	4.6 U	460 U	4.7 U
2-Methylnaphthalene	NS	<b>2</b> J	220	4.7 U	<b>1.1</b> J	<b>7900</b> J	6100	1.1 J	37	190 J	4.7 U
2-Methylphenol	NS	4.7 U	<b>3.4</b> J	4.7 U	4.8 U	930 U	480 U	4.6 U	4.6 U	460 UJ	4.7 U
Benzaldehyde	NS	4.7 UJ	4.9 UJ	4.7 UJ	4.8 UJ	930 UJ	480 UJ	4.6 UJ	4.6 U	460 UJ	4.7 U
Biphenyl	5	<b>0.71</b> J	22	<b>0.89</b> J	4.8 U	1400	980	4.6 U	8.5	460 U	4.7 U
Bis(2-Ethylhexyl)phthalate	5	4.7 U	4.9 U	4.7 U	<b>1.8</b> J	930 U	480 U	4.6 U	4.6 U	460 U	4.7 U
Carbazole	NS	4.7 U	2.5 J	4.7 U	4.8 U	930 U	480 U	4.6 U	4.6 U	460 U	4.7 U
Di-n-butylphthalate	50	<b>0.32</b> J	0.55 J	<b>0.37</b> J	1 J	930 U	480 U	<b>0.41</b> J	4.6 U	460 U	4.7 U
Dibenzofuran	NS	9.3 U	<b>1.9</b> J	0.62 J	9.6 U	<b>330</b> J	<b>250</b> J	9.2 U	<b>1.6</b> J	920 U	9.4 U
Diethylphthalate	50	4.7 U	4.9 U	4.7 U	4.8 U	930 U	480 U	4.6 U	<b>0.57</b> J	460 U	4.7 U
Phenol	1	4.7 U	4.9 U	4.7 U	4.8 U	930 U	480 U	4.6 U	4.6 U	460 UJ	4.7 U
Pesticides - 8081											
4,4'-DDD	0.3					9.4 U	9.5 U				
4,4'-DDE	0.2					9.4 U	9.5 U				
4,4'-DDT	0.2					9.4 U	9.5 U				
Aldrin	NS					9.4 U	9.5 U				
Alpha-BHC	0.01					1.3 J	9.5 U				
Endosulfan sulfate	NS					9.4 U	9.5 U				
Endrin aldehyde	5					9.4 U	9.5 U				
Endrin ketone	5					9.4 U	9.5 U				
Gamma-BHC/Lindane	0.05					9.4 U	9.5 U				
PCB Target Compounds - 8082	NS					ND	ND				

Notes: See Table 4A

Results shown in microgram per liter (ug/L)

**Table 4.4: OU01 Groundwater Inorganics Results** 

	I () ID	CIVIAC	CIVIAN	CTV 14	CIV 10	CVV 02	CW 11	CW 14	NAME 101	NATT 100
	Location ID		GW-07	GW-12	GW-12	GW-02	GW-11	GW-14	MW-101	MW-102
	Sample Date		5/1/2007	5/2/2007	5/2/2007	8/22/2013	8/22/2013	8/22/2013	8/22/2013	8/22/2013
	Sample Depth (ft bgs)	8	8	12	12	5	6	6	8	10
	Sample ID		SLGW00708SCXX	SLGW01210SCXD	SLGW01210SCXX	516008-GW0209	516008-GW1110	516008-GW1410	516008-MW10110	516008-MW10213
D. A. M.	QC Code	FS	FS	FD	FS	FS	FS	FS	FS	FS
Parameter Name	GA GW					1				
Metals Total - 6010B										
Aluminum	NS	13300	3740	271	292	<b>80100</b> J	150 J	<b>3700</b> J	230 Ј	<b>410</b> J
Arsenic	25	17.5	1.6 U	1.6 U	1.6 U	47	10 U	10 U	10 U	10 U
Barium	1000	232	78.1	19.3	18.9	170	27	180	170	29
Beryllium	3	0.38	0.16	0.15 U	0.15 U	8.8	2 U	<b>0.32</b> J	2 U	2 U
Cadmium	5	0.97	0.15	0.1 U	0.1 U	3.3	1 U	1 U	1 U	1 U
Calcium	NS	81600	23400	3170	3130	21900	17600	30000	35300	41000
Chromium	50	20.5	3.2	0.95	0.42	30	<b>2</b> J	9.5	<b>1.2</b> J	<b>1.8</b> J
Cobalt	NS	11.3	0.15 U	3	3.3	9.1	<b>1.8</b> J	<b>2.7</b> J	4 U	4 U
Copper	NS	148	8.4	6.3 U	6.3 U	2000	10 U	<b>4.6</b> J	10 U	10 U
Iron	300	25900	22000	1450	1470	257000	25500	33000	26900	19600
Lead	25	142	11	<b>0.64</b> J	0.46 UJ	580	5 U	5 U	5 U	5 U
Magnesium	35000	4760	1190	725	729	1900	1800	1600	1700	2000
Manganese	300	395	122	918	900	140	250	110	230	850
Mercury	0.7	0.21 U	0.05 U	0.05 U	0.07 U	0.31	0.2 U	0.2 U	0.2 U	0.2 U
Nickel	100	31.2	0.59 U	0.59 UJ	<b>0.83</b> J	36	10 U	<b>7.5</b> J	<b>1.4</b> J	10 U
Potassium	NS	2410	5650	419	394	1600	710	1300	1100	3000
Selenium	10	9.3	10.4	0.98 UJ	<b>2.7</b> J	15 U	15 U	15 UJ	15 U	15 U
Silver	50	0.91 U	1.1 U	0.91 U	0.91 U	15 U	3 U	3 U	3 U	3 U
Sodium	20000	1600	3640	1290	1270	1500 J	4600	1300	1200	4100
Thallium	0.5	3.6	1.2 U	1.2 U	1.2 U	20 U	20 U	20 U	20 U	20 U
Vanadium	NS	30.7	7.6	0.47 U	0.47 U	130	5.6	5.6	<b>1.7</b> J	<b>2.2</b> J
Zinc	2000	317	19	10.5 U	8.1 U	<b>290</b> J	<b>7.7</b> J	<b>29</b> J	<b>2.3</b> J	10 UJ
Cyanide, Total (7196)	200					540	41	38	74	24
Metals Dissolved - 6010B							0	0		
Aluminum	NS					550 J	0	200 U		
Arsenic	25					10 U	0	10 U		
Barium	1000					46	0	140		
Beryllium	3					2 U	0	2 U		
Cadmium	5					1 U	0	1 U		
Calcium	NS					14700	0	27700		
Chromium	50					4 U	0	4 U		
Cobalt	NS					4.2	0	<b>2.2</b> J		
Copper	200					<b>13</b> J	0	10 U		
Iron	300					20900	0	24700		
Lead	25					<b>4</b> J	0	5 U		
Magnesium	35000					1400	0	1100		
Manganese	300					150	0	86		
Mercury	0.7					0.2 U	0	0.2 U		
Nickel	100					<b>8.1</b> J	0	<b>5.4</b> J		
Potassium	NS					1600	0	1100		
Selenium	10					15 U	0	<b>8.8</b> J		
Silver	50					3 U	0	3 U		
Sodium	20000					<b>2100</b> J	0	1200		
Thallium	0.5					20 U	0	20 U		
Vanadium	NS					<b>4.1</b> J	0	5 U		
Zinc	2000					53	0	14		

**Table 4.4: OU01 Groundwater Inorganics Results** 

		7.5557.404		7.5777.40.5	1				1 25771 400	3.5557. 44.0
	<b>Location ID</b>		MW-104	MW-105	MW-106	MW-107	MW-108	MW-109	MW-109	MW-110
	Sample Date	8/22/2013	8/22/2013	8/22/2013	8/22/2013	8/22/2013	8/22/2013	8/22/2013	8/22/2013	8/22/2013
	Sample Depth (ft bgs)	15	11	15	10	10	14	10	10	15
	Sample ID	516008-MW10317	516008-MW10410	516008-MW10518	516008-MW10610	516008-MW10713	516008-MW10819	516008-MW10915	516008-MW10915D	516008-MW11018
	QC Code	FS	FD	FS						
Parameter Name	GA GW									
Metals Total - 6010B										
Aluminum	NS	<b>240</b> J	580 J	<b>420</b> J	<b>1200</b> J	<b>88</b> J	<b>260</b> J	<b>3700</b> J	2800 J	160 J
Arsenic	25	10 U	10 U							
Barium	1000	13	8.8	22	36	19	2.5	37	32	6.8
Beryllium	3	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Cadmium	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Calcium	NS	11700	9500	6300	5800	15400	2700	10500	9900	9000
Chromium	50	<b>2.5</b> J	1 J	1 J	7.9	4 U	4 U	11	9.8	4 U
Cobalt	NS	4 U	4 U	<b>3.3</b> J	<b>2</b> J	<b>2.1</b> J	4 U	<b>1.8</b> J	<b>1.4</b> J	<b>0.93</b> J
Copper	NS	10 U	10 U	10 U	<b>2.1</b> J	<b>1.9</b> J	10 U	<b>3.8</b> J	<b>3.5</b> J	10 U
Iron	300	20600	3900	6900	26000	4200	830	25900	25200	400
Lead	25	5 U	5 U	5 U	10 U	5 U	5 U	5 U	5 U	5 U
Magnesium	35000	960	1600	1100	1600	750	840	1800	1700	930
Manganese	300	120	230	200	260	220	21	370	370	72
Mercury	0.7	0.2 U	0.2 U							
Nickel	100	10 U	10 U	<b>3.1</b> J	<b>1.4</b> J	10 U	10 U	<b>2.6</b> J	<b>2.2</b> J	<b>1.4</b> J
Potassium	NS	<b>310</b> J	570	<b>340</b> J	950	980	<b>450</b> J	1600	1400	<b>460</b> J
Selenium	10	15 U	15 U							
Silver	50	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Sodium	20000	4900	7200	5700	4500	1500	5500	6900	6800	1700
Thallium	0.5	20 U	20 U							
Vanadium	NS	6.5	<b>2.7</b> J	5 U	8	5 U	5 U	11	9.9	5 U
Zinc	2000	<b>1.9</b> J	0.01 UJ	<b>4.6</b> J	<b>5.3</b> J	<b>3.6</b> J	<b>3.1</b> J	<b>28</b> J	<b>21</b> J	<b>6.6</b> J
Cyanide, Total (7196)	200	10 U	10 U	10 U	11	23 U	10 U	70	65	63
Metals Dissolved - 6010B										
Aluminum	NS							640 J	650 J	
Arsenic	25							10 U	10 U	
Barium	1000							23	22	
Beryllium	3							2 U	2 U	
Cadmium	5							1 U	1 U	
Calcium	NS							9600	9600	
Chromium	50							<b>2.7</b> J	<b>2.8</b> J	
Cobalt	NS							<b>1.1</b> J	<b>1.1</b> J	
Copper	200							10 U	10 U	
Iron	300							23400	24200	
Lead	25							5 U	5 U	
Magnesium	35000							1500	1500	
Manganese	300							380	380	
Mercury	0.7							0.2 U	0.2 U	
Nickel	100							10 U	1.4 J	
Potassium	NS							1400	1500	
Selenium	10							15 U	15 U	
Silver	50							3 U	<b>2.2</b> J	
Sodium	20000							6700	6600	
Thallium	0.5							20 U	20 U	
Vanadium	NS							6.9	7.4	
Zinc	2000							<b>6.9</b> J	<b>5.8</b> J	