Groundwater Monitoring Report November 2008

Korkay, Inc. Site #5-18-014

Work Assignment No. D004445-20

Prepared for:

SUPERFUND STANDBY PROGRAM New York State Department of Environmental Conservation

625 Broadway Albany, New York 12233

Prepared by:

Earth Tech Northeast, Inc. 40 British American Boulevard Latham, New York 12110

TABLE OF CONTENTS

1.0	INTR(DDUCTION	1
	1.1	GENERAL	
	1.2	SITE DESCRIPTION AND BACKGROUND	
2.0	GROU	NDWATER SAMPLING	
	2.1	GROUNDWATER SAMPLING METHODOLOGY	
3.0	RESUI	LTS	4
	3.1	GROUNDWATER FLOW	
	3.2	ANALYTICAL RESULTS	
4.0	CONC	LUSIONS	6
		LIST OF FIGURES	
Figure	1	Site Location Plan	
Figure	2	Site Layout Map	
Figure	3	Water Table Contour Map	
Figure		Total VOC Isoconcentration Map – Shallow Aquifer <i>November 25</i> , 2008	
Figure	4A	Total VOC Isoconcentration Map – Shallow Aquifer August 14, 2007	
		LIST OF TABLES	
Table	1	Water Level Measurements	
Table	2	Groundwater Analytical Data	
		LIST OF CHARTS	
Chart	1	Total VOC Concentrations in Groundwater – 8/2007 and 11/2008	
		LIST OF APPENDICES	
Appen		Monitoring Well Field Inspection Logs	
Appen		Field Observation Logs - Groundwater Sampling Records	
Appen	uix C	Laboratory Report	

1.0 INTRODUCTION

1.1 GENERAL

This summary report documents the groundwater sampling event conducted in November 2008 at the Korkay Inc. Site (Site No. 5-18-014), located at 70 West Main Street in the Village of Broadalbin, Fulton County, New York (Figure 1). This sampling event was conducted in accordance with the Operation, Maintenance and Monitoring Plan (OM&M Plan, Earth Tech 2007), for Work Assignment (WA) No. D004445-20 of the State Superfund Standby Contract between the New York State Department of Environmental Conservation (NYSDEC) and Earth Tech Northeast, Inc. (Earth Tech).

The report presents and interprets analytical results for the groundwater sampling conducted in November 2008, in accordance with Task 6 and 7 of the OM&M Plan.

1.2 SITE DESCRIPTION AND BACKGROUND

Korkay, Incorporated (Korkay) located in Broadalbin, NY, was a supplier of detergents, solvents, and degreasers to the automotive industry from 1969 to 1980 (Figure 1). Korkay purchased bulk quantities of chemicals that were stored onsite for repackaging and/or blending into commercial products including automobile wax and hand cleaners. In addition to the production of commercial products, Korkay also operated as a drum reclamation facility. Drums were accepted containing an unknown variety and quantity of chemicals. The drums were emptied of any remaining chemicals, and were washed, rinsed and relined. This process was conducted without appropriate containment, such that the chemicals and chemical-laden rinsate were discharged through the facility's septic system, or directly to the ground surface. The NYSDEC and NYSDOH inspected the site in 1979 and documented the occurrence of these activities.

In 1980, Korkay installed a 4,000 gallon above ground storage tank to appropriately contain the residual chemicals and rinsate generated from drum reclamation. Reports and site documentation indicate that the drums contained acetone, isopropyl alcohol, degreasers, and perfumes as well as other chemicals. In 1998 a phase II investigation was conducted. Multimedia sampling identified several inorganic and volatile organic compounds (VOCs) in groundwater at concentrations exceeding applicable standards. Subsequently, a remedial investigation (RI) was completed, followed by a feasibility study (FS), (Final Phase I and II FS, Camp Dresser and McKee 1995) to determine appropriate remedial activities to be conducted in order to address the contamination present at the site.

A Record of Decision (ROD) was entered by the NYSDEC in March 1996 which documented the site cleanup objectives and requirements for the remedial activities to be conducted. In August 1997, a remedial action was conducted at the site which included demolition of a building, and excavation and disposal of contaminated soils. In November 1998, a soil vapor extraction/air sparging (SVE/AS) system was constructed and put into operation in order to address the residual soil contamination (Figure 2). The SVE system was operated intermittently until 2003, when confirmatory soil sampling indicated that the soil cleanup objectives had been achieved.

As outlined in the ROD, the overall remediation goals of the site were:

- 1) To eliminate, to the greatest extent possible, on-site soils as a source of groundwater contamination; and
- 2) To eliminate or reduce human exposure to on-site soils contamination.

Earth Tech Northeast, Inc.

To accomplish these goals based upon the results of the RI/FS and the evaluation of alternatives, the NYSDEC selected: excavation and off-site disposal of the top six inches of contaminated soil; backfill excavated areas with clean soil, and cover soil with vegetation; installation and operation of an SVE system with optional AS system or site dewatering; and site environmental monitoring for five years.

The specific elements of the remedy were:

- Completion of a remedial design to: verify the conceptual design components, provide the details
 necessary for the construction, operation, maintenance, and monitoring (OM&M) of the remedial
 systems and resolve uncertainties identified during the RI/FS;
- Approximately 145 cubic yards of contaminated surface soil was to be excavated and disposed of offsite:
- Excavated areas were to be restored with compacted clean fill, graded to ensure that ponding would not occur, and a vegetative cover would be established and maintained in order to reduce infiltration of precipitation and minimize erosion;
- SVE treatment was to be completed (with optional AS or site dewatering) for a period of up to six months. The SVE system was to be installed in the area with the highest contaminant concentrations:
- Deed restrictions were to be imposed to prohibit the withdrawal of site groundwater;
- The building was to be demolished and disposed of; and
- Annual groundwater monitoring was to be conducted for VOCs, SVOCs, and pesticides, collecting the samples from two wells in the monitoring well network. Groundwater monitoring was to be continued for a period of five years, following which a comprehensive review of the data generated was to be conducted in order to assess the effectiveness of the remedy.

Building demolition and excavation/disposal of contaminated soils occurred between April and August 1997. Operation of the SVE system began in November 1998. In July 2000, the contract with CDM expired and the NYSDEC assumed responsibility for site operations. The NYSDEC discontinued operation of the SVE system in 2003.

Earth Tech Northeast, Inc.

2.0 GROUNDWATER SAMPLING

Per requirements of the OM&M Plan for the Korkay Inc. site, Earth Tech will manage the sampling of the entire monitoring well network on a five-quarter basis, for a maximum of three sampling events during this WA. Groundwater sampling for the second event was completed by Earth Tech's subcontractor, GeoLogic NY, Inc., Homer, New York (GeoLogic), in accordance with Earth Tech's April 2007 OM&M Plan for the Korkay site.

The locations of the sampled wells are presented in Figure 2.

2.1 GROUNDWATER SAMPLING METHODOLOGY

A total of 12 monitoring wells were sampled on November 25, 2008: ASW, Flushmount, K-2, K-3, MW-8S, MW-8D, MW-15S, MW-15D, VEW-1, VEW-2, VEW-3 and VEW-4.

A monitoring well network inspection was completed at the site. The monitoring well inspection logs are presented in Appendix A.

Prior to purging each well to prepare it for sampling, a depth-to-water measurement was taken using an electronic water level indicator, which was washed in a non-phosphate detergent solution, (LiquiNox® and potable water), and rinsed with distilled water before each use. At a minimum, three times the volume of groundwater standing in the well casing was purged with either a submersible pump using polyethylene tubing or with a disposable bailer. In cases where a submersible pump was used for sampling, new tubing was used for each location. Except for the two offsite wells (MW-8S & MW-8D), purge water was disposed of on the ground in the immediate vicinity of each well.

After purging, temperature, conductivity, pH, turbidity, color and odor of the water were recorded on the logs presented in Appendix B. All groundwater samples were collected using well-dedicated bailers, and placed in preserved bottles provided by the laboratory. Samples were packed with ice, and submitted with a completed Chain-of-Custody (CoC) form to Mitkem Laboratories, Warwick, Rhode Island (Mitkem). Each sample was analyzed for volatile organic compounds (VOC) by USEPA Method 8260. The laboratory report for the November 2008 sampling event is included as Appendix C.

3.0 RESULTS

3.1 GROUNDWATER FLOW

Water level measurements were obtained prior to sampling the wells. These depth-to-water measurements were converted to water level elevations using top-of-casing elevations for several wells, as presented in the 1995 RI report. No elevation data are available for the AS well and the four SVE system wells.

The elevation data shown in Table 1 were used to produce a water table contour map of the shallow aquifer, as presented as Figure 3. Generalized groundwater flow direction is from north to south, consistent with previous observations by Earth Tech, and as presented in CDM's RI report.

3.2 ANALYTICAL RESULTS

The analytical results for the November 2008 groundwater sampling event are presented in Table 2. Concentrations above the New York State Ambient Water Quality Standards (AWQS) and guidance values for groundwater are in a shaded cell with bold typeface for ease of identification Bolded text alone indicates a detection of the compound above the method detection limit, but below the applicable standards.

Volatile Organic Compounds

In the 12 monitoring wells sampled, the total VOC (TVOC) concentrations ranged from below detection limits (0.5 μ g/L) to 5,707 μ g/L. TVOC concentrations did not exceed the detection limit in the samples collected from Flushmount and MW-15D, two of the three deep wells on site (depth greater than 40 feet). The maximum concentration of TVOCs was observed in the sample collected from well ASW, located in the former source area. Figure 4 is an isoconcentration map of TVOC concentrations reported for the shallow wells (less than 15 feet deep) from the November 2008 sampling event. Figure 4A is an isoconcentration map of the TVOC concentrations reported for the shallow aquifer wells from the August 2007 sampling event, provided for comparison (and to correct the previously published version - see footnote on Table 2).

Wells K-3 and MW-8D were reported to contain concentrations of VOCs that did not exceed AWQS. Well K-3 is reported to contain tetrachloroethene at a concentration of 1.2 μ g/L, and no other compounds were detected above method detection limits. Well MW-8D is reported to contain naphthalene at a concentration of 1.2 μ g/L, and no other compounds were detected above method detection limits. The results of the August 2007 sampling event for wells K-3, and MW-8D were reported to be below the method detection limits for VOCs.

The highest concentrations of VOCs, significantly above AWQS, were found in the former source area SVE wells (VEW-1, VEW-3, and VEW-4) and in well ASW. ASW, the former air sparging well, showed the highest concentration of TVOCs at 5,707 μ g/L. VEW-1, located northwest of ASW, contained 1,538 μ g/L TVOCs. VEW-3 and VEW-4, located east of ASW, were reported to contain concentrations of TVOCs at levels of 679 μ g/L, and 688.1 μ g/L, respectively.

Well MW-8S was reported to contain a TVOC concentration of 242 $\mu g/L$, indicating that contamination above AWQS remains present offsite. Earth Tech observed that MW-8S, a flushmount well, was submerged below ponded water at the time that the sampling event was conducted. Upon opening the flushmount cover to access the well, it was apparent that surface water had and was flowing into the well, which was lacking a cap (this condition has since been corrected). Although the well was properly purged

Earth Tech Northeast, Inc. 4

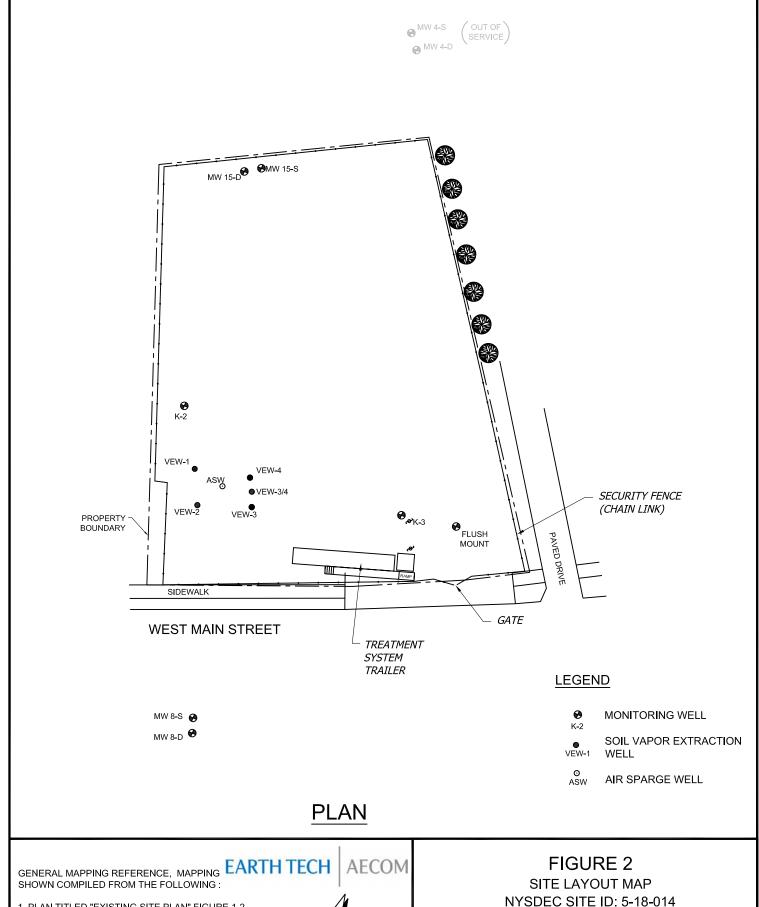
before sampling, the VOC concentrations reported by the laboratory may not be representative of actual groundwater conditions.

Chart 1 shows that three wells (ASW, VEW-1 and VEW-4) reported substantially higher TVOC concentrations in the November 2008 sampling event compared to the August 2007 results. MW-8S showed a significant reduction in TVOC, but the results may have been altered by the inflow of surface water noted above.

Groundwater analytical data collected during the 1995 RI, and earlier in the current decade, were presented and discussed in the Remedial System Optimization (RSO) report, submitted to the NYSDEC in March 2008.

4.0 CONCLUSIONS

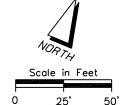
Review of the November 2008 shallow groundwater data demonstrates that groundwater contamination at the Korkay Inc. site persists in the same areas as discussed in the RI report, primarily beneath the southwestern quadrant of the site, and extending beyond the southern site boundary. However, with only two monitoring wells situated offsite in the downgradient (south) direction, the extent of the contamination migrating offsite has not been assessed since the initial delineation. If the feature still exists and if physical access is granted by the owner of Lot 40, Earth Tech recommends collecting a water sample from a reported "groundwater seep," identified in the 1995 Phase II RI report as having been located south of the site on the slope behind the Hotel Broadalbin. Extending the monitoring network to include a "sentinel" monitoring point will provide an indication of changing plume conditions in the shallow water-bearing zone at a location previously beyond the extent of contamination.


The concentrations of VOCs have remained similar to past reported values, however, some significantly increased concentrations are noted in the SVE/AS wells (i.e., ASW, VEW-1, and VEW-4). The infiltration of surface water into well MW-8S, as discussed previously, compromises the data quality of that well. It is expected that the actual concentration of total VOCs in the groundwater at this location would be higher than the reported concentration due to the dilution effect of surface water infiltration. Earth Tech recommends resampling this well prior to the next five-quarter event.

The deep wells at the site continue to show little to no evidence of groundwater contamination, most likely a result of the confining clay layer found at approximately 12 to 14 feet below grade. A review of boring logs from the RI report and the soil borings completed by Earth Tech for the RSO in August 2007 suggests that this clay layer may be continuous beneath the site, and may extend offsite as well.

The next groundwater sampling event at the Korkay Site will be performed during the winter months of 2009-2010, likely by mid-March 2010.

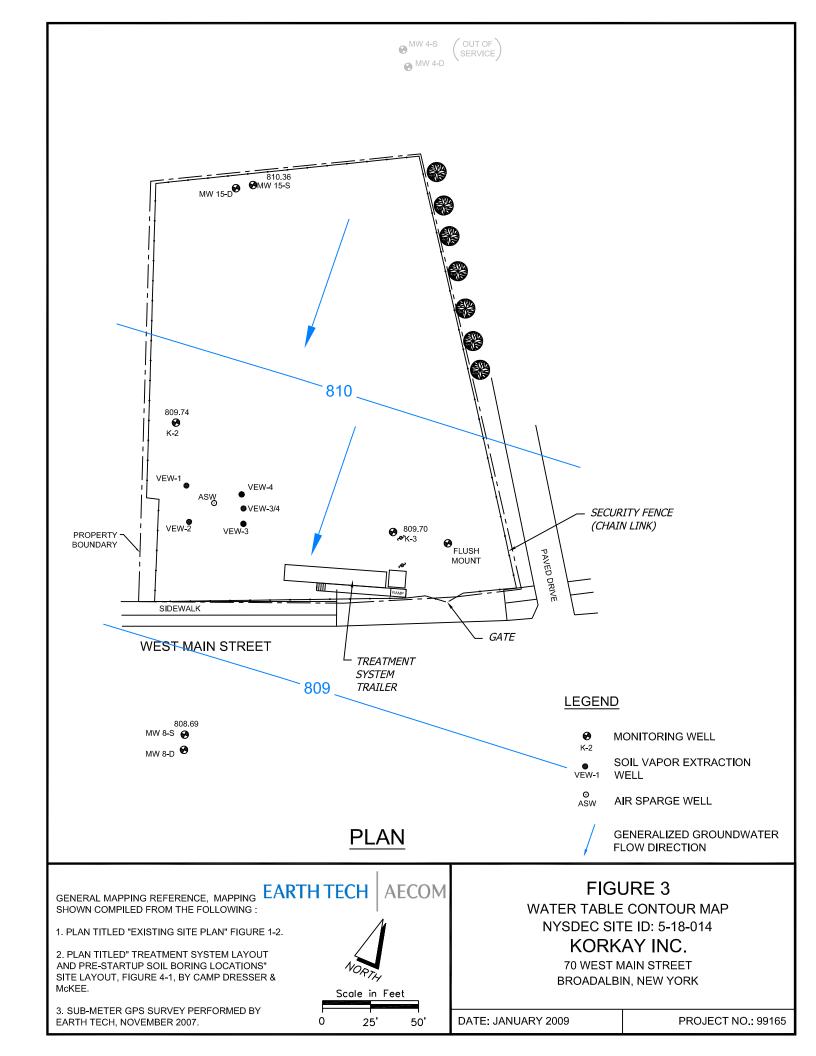
Earth Tech Northeast, Inc.

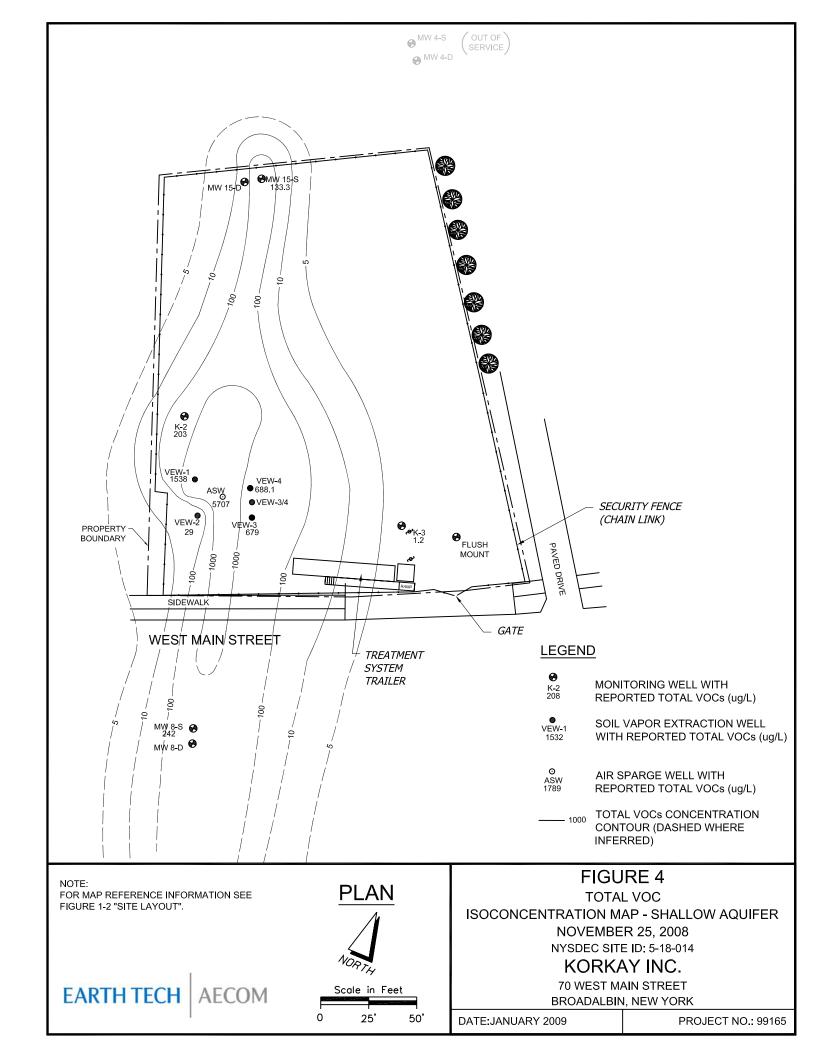


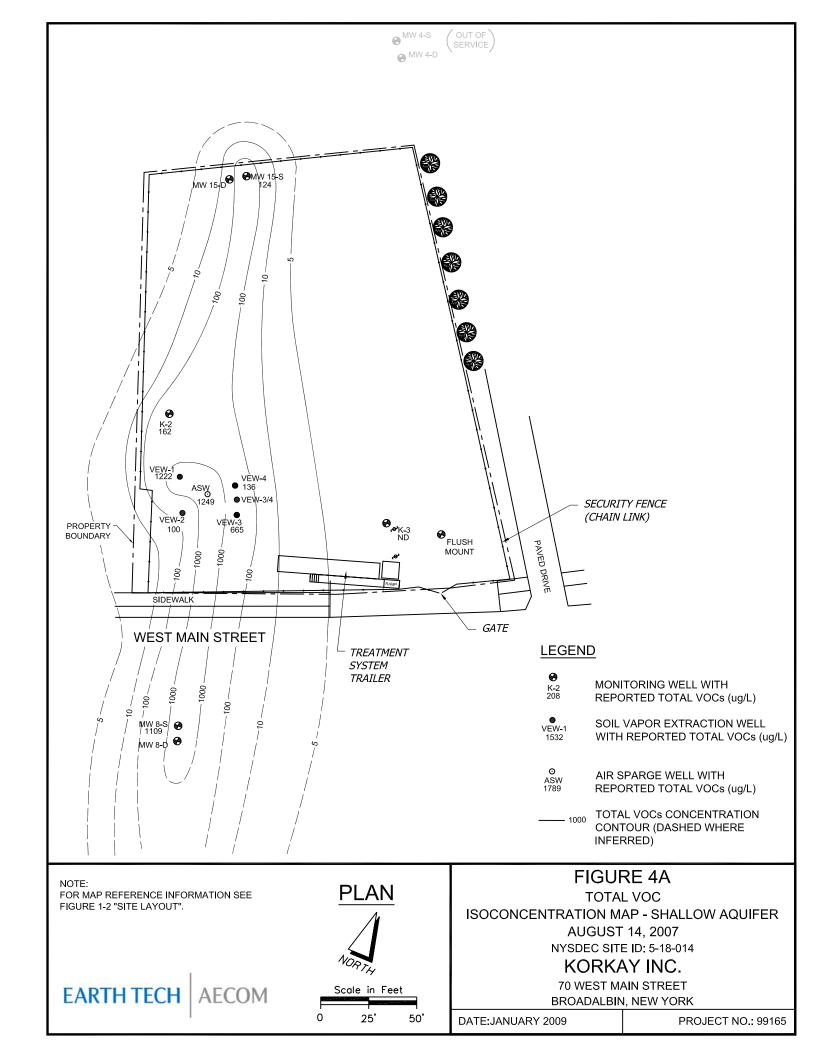
1. PLAN TITLED "EXISTING SITE PLAN" FIGURE 1-2.

2. PLAN TITLED" TREATMENT SYSTEM LAYOUT AND PRE-STARTUP SOIL BORING LOCATIONS" SITE LAYOUT, FIGURE 4-1, BY CAMP DRESSER & McKEE.

3. SUB-METER GPS SURVEY PERFORMED BY EARTH TECH, NOVEMBER 2007.




KORKAY INC.


70 WEST MAIN STREET BROADALBIN, NEW YORK

DATE: JANUARY 2009

PROJECT NO.: 99165

Table 1 Water Level Measurements Korkay Inc. Broadalbin, New York Site #5-18-014

WELL ID	TOP OF CASING ELEVATION *	WELL DEPTH	Depth to Water (ft)	Elevation (ft)**
	(ft)	(ft)	11/2	25/08
ASW	NA	13.55	8.74	NA
Flushmount	819.04	54.48	28.37	790.67
K-2	818.72	13.82	8.98	809.74
K-3	817.73	12.60	8.03	809.70
MW-15D	817.87	43.94	27.22	790.65
MW-15S	817.74	12.58	7.38	810.36
MW-8D	815.16	54.25	27.13	788.03
MW-8S	815.19	10.82	6.50	808.69
VEW-1	NA	9.70	9.10	NA
VEW-2	NA	10.89	8.99	NA
VEW-3	NA	10.72	9.63	NA
VEW-4	NA	10.87	9.66	NA

^{*} From the August 1995 Final Phase II RI Report by Camp, Dresser & McKee.

NA - not available

^{**} Water table is contoured in Figure 3.

Table 2 **Groundwater Analytical Data** Korkay, Inc. Broadalbin, New York Site #5-18-014 Sampling Dates:

August 14, 2007 and November 25, 2008

ΔW/C	QS + GV**	Δ	SW		FLUSH	MOUNT			MW-ł	K2			MW	-K3	MV	V-15D		MW-	15S		MW	/-8D	M	W-8S		VEW	-1		VI	EW-2	VF	W-3	,	VEW-4
Volatiles ug/L	20 1 OV	8/14/07	11/25/0	8 0	3/14/07	11/25/0	na	Q/4	4/07		11/25/0	8 91	4/07	11/25/08	8/14/07	11/25/08	8/14		11/25/	18 8/4	4/07	11/25/08	8/14/07	11/25/08	8/14		11/25/0	8 9/	14/07	11/25/08	8/14/07	11/25/08	8/14/07	
1.1.1-Trichloroethane	5	5 U			5 U	5	11	5 11			5	U 5		5 11	5 U	5 L	J 5	_	5	U 5	4/07	5 U	5 U	5 L	J 2		5	U 5		5 U	5 U	5 U	5	U 5 U
1,2,4-Trimethylbenzene	5	130 D			5 U	5	JI -	60	60*		81	5		5 U	5 U	5 L	J 45		29	5	11	1.6 J	430 D		230	D		D 22		9.8	130	130	12	170
1.2-Dichlorobenzene	3	24	34		5 U	-		5 U	5*		5	U 5		5 U			J 5		5	U 5	U	5 U	26	5.6	230	, D	34	1			30	25		J 16
1,3,5-Trimethylbenzene	5	31 D			5 U		_	3 J			8.4	5		5 U			36		25	5	U	5 U	97	36	230	Ь	410				110	110		100
1.4-Dichlorobenzene	3	31 D		11	5 0	5	U	5 11	5 F*	111	5	U 5		5 0	5 U	5 1	J 5			11 5	- 11	5 0	3 J	5 L	J 1	1 7	2.3			5 0	1.0 J	5 U	5	U 1 J
2-Butanone	NS	14	13	<u> </u>	5 U	5	U	5 0	5*	11	5	U 5		5 U	5 U	, ,	J 5	U	5 5	U 5	U	5 U	5 U			J	17	J 5		5 U	9	11		U 8.1
	5	39	61	-	5 U	5	U	2 J		U	5	U 5		5 U	5 U	5 L	11		32	5	U	5 U	20	5 L		+++	5	U 5		5 U	12	12		U 5 U
4-Isopropyltoluene Acetone	50 (GV)	5 U			5 U	5	_	5 U	5*	J II	5	U 5		5 U		5 L	J 5	_	5	U 5	U	5 U	5 U	5 L		-	34	5		5 U	5 U	5 U	70	8.8
Carbon Disulfide	60 (GV)	5 U			5 U	5	U	5 0	5*	11	5	U 5		5 0	5 U	5 1	J 5	- 11	5	0 5	- 11	5 U	5 U	5 L) 10 J 1	+ , +	5	U 5		5 U	5 U	5 U		U 5 U
	(- /			_	• •		U	5 U		0	-			5 U	, ,	, ,		U	5	U 5	U	5 U	9		_	J				, ,				
cis-1,2-Dichloroethene Ethylbenzene	5 5	53 65 D	72 430		5 U	-		4 J	13*		9.3	5 5		5 U	5 U	5 L	J 5 J 5		5 5	U 5	U	5 U	57	1.3 J	130	-	84 54	39		4.6 J		2.6 J 38		J 3.5 J
,	5	49	86		• •	-	-		4*		5.7	_		5 U	5 U		J 5	II	5	U 5	U	5 U	27			-	23	5		110 0	6	6.9		U 4.5 J
Isopropylbenzene					0	Ü	_	4 J				5				5 L	, ,	Ŭ	5	U 5	U	, ,		9.6	11	-				5 U	_		J	
m,p-Xylene	5	320 D			5 U			16 B	16* 8*		5.4	5		0 0	5 U	5 L	J 5		5	U 5	U	5 U	160	28	49	В	100	5		1.8 J 4.4 J	120	150	-	0 01
Naphthalene	10 (GV)	130	160		5 U		U	10 B			_	5		5 U	, ,	, ,	J 1	J	5	U 5	U	1.2 J	58	10	110	R	5	U 6				45	18	60
n-Butylbenzene	5 5	60	91		5 U	-	U	0	8* 4*		23	5 5		5 U	5 U	5 L	J 8	- 	24	5	U	5 U	45	12	54	-		U 5		5 U	17	15 8.9		U 14
n-Propylbenzene	·	74 D	120				_	4 J			13	Ţ		5 U	5 U	5 L	, ,	U	2.6	J 5	U	Ü	34		14		30				/		5	U 3.3 J
o-Xylene	5	210 D			5 U		U :	30	30*		17	5		5 U			J 3	J	5	U 5	U	5 U	120	19	250	D	330			4.5 J		110	20	180
sec-Butylbenzene	5		46		5 U		U	5 11	6*		18	5		5 U		, ,	5	I	18	5	U	5 U	22	6.8	17		5	U 5		5 U	4 J	5.1	·	0 4.1 0
tert- Butylbenzene	5	5 U			5 U	5	_	5 U	5*	U	5	U 5		5 U	5 U	5 L	J 5	U	1.4	J 5	U	5 U	5 U	5 L	J 4	J	5	U 5		5 U	2 J	5 U	J	0 0
Tetrachloroethene	5	5 U		_	5 U	5	_		_	JB	1.5	J 5		1.2 J	5 U	5 L	J 2	J	5	0 5	U	5 U	5 U	5 L	<u> </u>	JB		J 5		5 U	1 J	1.2 J		U 3 J
Toluene	5	19	26		5 U	5	U	5 U	5*	U	5	U 5		5 U	5 U	5 L	13	 	1.3	J 5	U	5 U	1 J	5 L		J		J 3			5 U	7.9		J 7.8
Trichloroethene	5	5 U	8.2	_	5 U	5	U	1 J		U	5	U 5		5 U	5 U	5 L	J 5	U	5	U 5	U	5 U	5 U	5 L	_	J		J 5		5 U	5 U	5 U	Ů	• •
Xylene (Total)		530 D		_	5 U	5		46	46*		31	5		5 U	5 U	5 L	J 3	J	5	U 5	U	5 U	280	47	299	D	420	22		6.3	230	260	24	270
Total Volatile Organic Compounds		1249	5707	N	ND	ND	1	62	157		203	NE)	1.2	ND	ND	124		133.3	ND		2.8	1109	242	1222		1538	10	0	29	665	679	136	688.1
Semivolatiles µg/L																																		
1,2-Dichlorobenzene	3	19 J			10 U	NA		10 U	NA		NA	10		NA	10 U		10		NA	10			21	NA	25		NA	1		NA	21	NA		J NA
1,4-Dichlorobenzene	3	2 J			10 U	NA		10 U	NA		NA	10		NA	10 U		10		NA	10			2 J	NA	2	J	NA	10		NA	10 U			U NA
2,4-Dimethylphenol	1	20 U			10 U	NA		10 U	NA		NA	10		NA	10 U	NA	10		NA	10		NA	10 U	NA	10	U	NA		. J		10 U	NA	•	J NA
2-Methylnaphthalene	NS	50	NA		10 U	NA		10 U	NA		NA	10		NA	10 U	NA	10		NA	10		NA	7 J	NA	24		NA	10		NA	2 J	NA		J NA
2-Methylphenol	NS	20 U	NA		10 U	NA		10 U	NA		NA	10		NA	10 U	NA	10		NA	10		NA	10 U	NA	10	U	NA	6			10 U	NA	20	NA
4-Methylphenol	NS	170	NA		10 U	NA		10 U	NA		NA	10		NA	10 U	NA	10		NA	10		,	14	NA	56		NA	3			10 U		110	NA
bis (2-Ethylhexyl) phthalate	5	2 J	NA		10 U	NA		10 U	NA		NA	10		NA	2 J	NA	2		NA	2	·	NA	2 J	NA	1	J	NA	1		NA	1 J	NA	2	J NA
Di-n-butylphthalate	50	4 J	NA		10 U	NA		10 U	NA		NA	10		NA	10 U	NA	10	U	NA	10		1473	1 J	NA	15		NA	10		NA	1 J	NA		J NA
Naphthalene	10 (GV)	110	NA		10 U	NA		10 U	NA		NA	10		NA	10 U	NA	1	_	NA	10		NA	48	NA	110		NA	2			31	NA	23	NA
Phenol	1	20 U	NA	1	10 U	NA		10 U	NA		NA	10	U	NA	10 U	NA	10	U	NA	10	U	NA	10 U	NA	10	U	NA	10	U	NA	10 U	NA	20	NA
Metals μg/L																																		
Copper	200	6.3 U	NA	19	9.1 B	NA	5	4.8	NA		NA	8.6	Б	NA	19.8 B	NA	10.4	В	NA	18.6	S B	NA	24.5 B	NA	9.6	В	NA		3 U	NA	7.5 B	NA	54.5	NA
Iron		75100	NA	33	000	NA	28	3500	NA		NA	960	0	NA	396	NA	8870)	NA	1030	10	NA	20800	NA	18300		NA	902	20	NA	5990	NA	20900	NA
Manganese	300	2260	NA	6	20	NA	7	709	NA		NA	109	0	NA	26.9 B	NA	155		NA	259	1	NA	879	NA	559		NA	58	2	NA	413	NA	1020	NA
Dissolved Metals µg/L																																		
Copper	200	6.3 U	NA	6	6.3 U	NA	6	6.3 U	NA		NA	6.3	U	NA	6.3 U	NA	6.3	U	NA	6.3	U	NA	6.3 U	NA	6.3	U	NA	6.3	3 U	NA	6.3 U	NA	6.3	U NA
Iron	300	46800	NA		59 B	NA		680	NA		NA	38		NA	174 B		5910		NA	167			9030	NA	5590		NA	86		NA NA	642	NA	1010	NA NA
Manganese	300	2080	NA		2.3 B	NA		550	NA		NA	20.		NA	10.6 B	NA	144		NA	4.4		NA	765	NA	499		NA	55		NA	351	NA	843	NA
Wet Chemistry mg/L	- /-										· ·																							
Chloride	250	2.6	NA	2	2.1	NA		2 U	NA		NA	2	1 11 1	NA	2 U	NA	13	1 1	NA	41		NA	38	NA	2	TILL	NA	2	- 111	NA	3.1	NA	5.6	NA
Total Organic Carbon	NS	49	NA NA		0.0 U	NA		1.0	NA.		NA	10		NA	10 U	NA NA	13		NA	10.0		NA NA	17	NA NA	35	+ -	NA	28		NA NA	34	NA NA	87	NA NA
Alkalinity (Total)	NS	250	NA		0.0	NA		80	NA		NA	16		NA	80	NA NA	80		NA	62		NA NA	230	NA NA	160	+ +	NA	24		NA NA	370	NA	410	NA NA
ranaminty (Total)						NA																			_	+	NA							NA NA
TKN-N	NS	3.1	NA		2.3			2.4	NA		NA	1.1		NA	0.69	NA	3.5		NA	0.62	,	NA	1.7	NA	11			3.0	6 I	NA	2.0	NA	12	

Note - Total VOC values for the August 2007 sampling event were incorrectly calculated in that report's Table 2 (xylenes were double-counted). They have been corrected here. Consequently, Figure 4 in the 2007 report, which contoured those values, was incorrect as well. Figure 4A in this report corrects the 2007 errors.

B - For organic analyses - compound detected in laboratory method blank. For inorganic analyses - indicates trace concentration below reporting limit and equal to or above the detection limit.

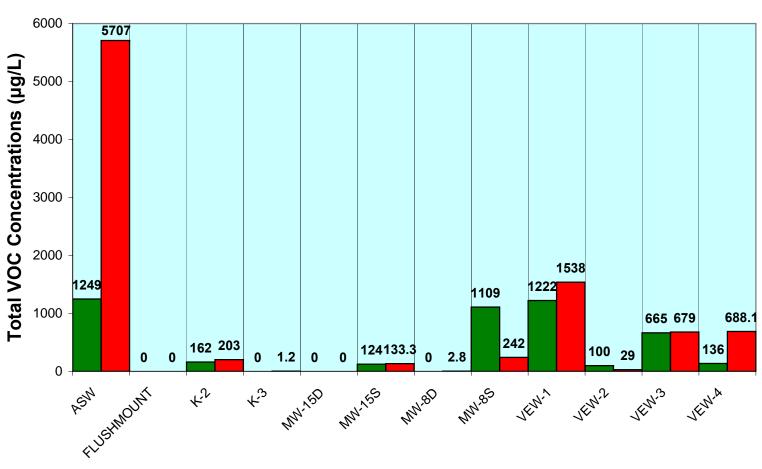
NA - Not Analyzed

2/16/2009 Earth Tech Northeast, Inc. 1 of 1 Korkay GW Sample Summary.xls

U - Compound analyzed for but not detected.

J - Estimated concentration for compound detected below the reporting limit.

D - Reported concentration was obtained from a diluted analysis.


^{* -} Duplicate Sample

^{**} New York State Ambient Water Quality Standards (TOGs 1.1.1) GV - guidance value. NS - no standard or Guidance Value

BOLD font indicates detected concentrations. Shaded cells indicate exceedances of AWQS+GV.

Chart 1 Total VOC Concentrations in Groundwater August 2007 and November 2008

Korkay, Inc. Broadalbin, New York Site #5-18-014

Well ID

■ Aug-07 ■ Nov-08

Appendix A Monitoring Well Field Inspection Logs

SITE NAME: Korkay, Inc., Broadalbin, New York	SITE ID.:	5-18-014
MONITORING WELL FIELD INSPECTION LOG	INSPECTOR: DATE/TIME:	Joseph Menze
	WEII ID.:	ASW
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM X NYTM Y NOT REQUIRED PER EARTH TECH AECOM PDOP Reading from Trimble Pathfinder: Satelites: Magellan GPS Method (circle) Trimble And/Or Magellan	See Seber	NO
WELL I.D. VISIBLE?	YES 1	NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED. TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches): LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELSURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead lower lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSAR Locked access gate, open field.	PVC - 12" PVC 2" YES 13.55' 2" PVC Po	NO N
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Grassy field. DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT e.g. Gas station, salt pile, etc.): fone		
	- 4	

Well Coordinates:

NYTM X 572238,7930 NYTM Y 1538959,4600

SITE NAME: Korkay, Inc., Broadalbin, New York MONITORING WELL FIELD INSPECTION LOG	SITE ID.; INSPECTOR: DATE/TIME:	5-18-014 Joseph Men
MONITORING WEDD FIEDD INSI ECTION EOG	WEII ID.:	Flushmour
WELL VISIDLES (If not provide directions below)	YES	NO
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM X NYTM Y NOT REQUIRED PER EARTH TECH AECOM PDOP Reading from Trimble Pathfinder: Satelites: See below GPS Method (circle) Trimble And/On Magellan		
WELL I.D. VISIBLE?	YES	NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	1/	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		
SURFACE SEAL PRESENT?	YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)		1 1
HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	Steel, 91	<u></u>
PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	Steel, 9F	
	YES	NO
LOCK PRESENT?		L-
DID YOU REPLACE THE LOCK?		2
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?		1
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches):	54.48'	3-7
WELL CASING MATERIAL:PHYSICAL CONDITION OF VISIBLE WELL CASING:	PVC	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	30'	
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSA	RY.	27
In paved driveway, just inside gate.		
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)		
AND ASSESS THE TYPE OF RESTORATION REQUIRED. Set in pavement at gate opening.		
DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT		
(e.g. Gas station, salt pile, etc.):		
None.		
REMARKS:		
Flush mount/se	ia l not	good
Sketch	on ca	r ·
(Coordinates:	· ·	/
NYTM X 572358, 7500	a inglin	
111111 1 3 1000 4 1 11 2	\cup	

lie l

14Tm y 1538988, 9370

othe than that

SITE IVANIE. KORAY, IIC., Dioadainii, New Tork	SHEID.:	3-18-014
MONITORING WELL EVELD INGRECTION LOC	INSPECTOR:	Joseph Menzel
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME:	
	WEll ID.:	K-2
	YES	NO
WELL VISIBLE? (If not, provide directions below)	1150	INO
WELL COORDINATES? NYTM XNYTM YNOT REQUIRED PER EARTH TECH AECOM		
PDOP Reading from Trimble Pathfinder; Satelites: See Below		
PDOP Reading from Trimble Parntinder; Satelities:		
GPS Method (circle) Trimble And/Or Magellan	300	107
	YES	NO
WELL I.D. VISIBLE?		
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	I VEO	1 10
SURFACE SEAL PRESENT?	YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	- V	-
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		
HEADSPACE READING (ppm) AND INSTRUMENT USED	7	
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	Steel, 25	II
PROTECTIVE CASING MATERIAL TYPE:		
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	4"	
	YES	NO
LOCK PRESENT?	1/	
LOCK FUNCTIONAL?	V	
DID YOU REPLACE THE LOCK?		
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)		1 1035
WELL MEASURING POINT VISIBLE?		
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	13.82'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	48	98
MEASURE WELL DIAMETER (Inches):	2"	
WELL CASING MATERIAL:	PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:		
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	× 1	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	150'	
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead		1
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSAR	Y.	
Locked access gate, no obstructions.		
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)		(6)
AND ASSESS THE TYPE OF RESTORATION REQUIRED.		
AND ASSESS THE TITE OF RESTORATION REQUIRED.		
Level grassy field.		
DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT		
,		
(e.g. Gas station, salt pile, etc.):		
None.		
We H		
REMARKS:		

Well Coordinates!

NYTIM X 572203:8210 NYTIMY 1538989,8870

SITE NAME: Korkay, Inc., Broadaldin, New York	SITE ID.:	ND.	5-18-014
MONITORING WELL FIELD INSPECTION LOG	INSPECTO DATE/TIM		Joseph Menze
MOINTONING WELL THEED HAD BOTTON DOG	WEII ID.:	ш.	MW-K3
N V			
WELL VISIBLE? (If not, provide directions below)		YES	NO
WELL COORDINATES? NYTM XNYTM YNOT REQUIRED PER EARTH TECH AECOM			
PDOP Reading from Trimble Pathfinder: Satelites: See Below			
GPS Method (circle) Trimble And/Op Magellan			
		YES	NO
WELL I.D. VISIBLE?			
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)			
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		VEC I	NO
SURFACE SEAL PRESENT?		YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)		V	-3
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		V	
HEADSPACE READING (ppm) AND INSTRUMENT USED			_
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		Steel, 6"	
PROTECTIVE CASING MATERIAL TYPE:			
WEAGONE I ROTEOTIVE ONDING INGIBE DIMINISTER (Monos).		YES	NO
LOCK PRESENT?	10		
LOCK FUNCTIONAL?			
DID YOU REPLACE THE LOCK?			
WELL MEASURING POINT VISIBLE?			
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		12.60'	
MEASURE WELL-DIAMETER (Inches):	- 2	2"	
WELL CASING MATERIAL:	N 1000 1	PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	1, 19	6000	Q
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		30'	
		30	
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSAR	v		×
Just inside gate in front of plastic holding tank and shack.	1. 6		
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)			
AND ASSESS THE TYPE OF RESTORATION REQUIRED.			
On pavement.			
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT			
(e.g. Gas station, salt pile, etc.):			
None.			
TO ACC			
REMARKS:			
Mo lock			

Well Coodinates:

NYTM X - 572330,2620 NYTM Y - 1538982,9060

SITE NAME: Korkay, Inc., Broadalbin, New York	SITE ID.:	_5-18-014
MONITORING WELL FIELD INSPECTION LOG	INSPECTOR: DATE/TIME: WEll ID.:	Joseph Menz
	WEILID	VEW-1
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM X NYTM Y NOT REQUIRED PER EARTH TECH AECOM PDOP Reading from Trimble Pathfinder: Satelites: See Be (oco	YES	NO
	YES	NO
WELL I.D. VISIBLE?	V	4
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		<u> </u>
SURFACE SEAL PRESENT?	d YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED	PVC - 21.5 PVC 2"	¥44
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?	YES	NO NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES.	9.70' 2" PVC	0
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSAI	RY.	1 4 v *
Locked access gate.		
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Level grassy field.		1 g
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT		
(e.g. Gas station, salt pile, etc.):		
None		
REMARKS:		

well Coordinates:

14Tm x 57222.1.9210 14Tm 4 1538961.9640

SITE NAME: Korkay, Inc., Broadalbin, New York	SITE ID.: INSPECTO	R:	5-18-014 Joseph Menzel
MONITORING WELL FIELD INSPECTION LOG	DATE/TIM		
	WEll ID.:		VEW-2
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM XNYTM YNOT REQUIRED PER EARTH TECH AECOM PDOP Reading from Trimble Pathfinder: Satelites: See See O		YES	NO
GPS Method (circle) Trimble And/Or Magellan		YES	NO
WELL I.D. VISIBLE?			1,0
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)			
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		YES	NO.
SURFACE SEAL PRESENT?	des 1	·	NO V
HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE:	crack	PVC - 20" PVC + 2"	
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?		YES	NO V
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES.		10.89' 2" PVC	4
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSAR	Y	2	= =
Locked gate access to open field, grass.			
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Grassy field, along street.			5
DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT			
(e.g. Gas station, salt pile, etc.):			
None		- **	
REMARKS:			

Well Coordinates!

NYTM X! 572230.7420 NYTM Y! 1538945, 2240

SITE NAME: Korkay, Inc., Broadalbin, New York	SITE ID.:	_	5-18-014
MONITORING WELL FIELD INSPECTION LOG	INSPECTOR: DATE/TIME:	_	Joseph Menze
MONTORING WEEL PRESENTATION LOG	WEILID.:	17 (4	VEW-3
		YES	NO
WELL VISIBLE? (If not, provide directions below)			- 1.0
WELL COORDINATES? NYTM X NYTM Y NOT REQUIRED PER EARTH TECH AECOM			
PDOP Reading from Trimble Pathfinder: Satelites: Satelites: See Use low			
(Circle) Thinble And/OI Magerian		YES.	NO
WELL I.D. VISIBLE?		1	NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)			
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:			
SURFACE SEAL PRESENT?		YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	log red		
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)			
HEADSPACE READING (ppm) AND INSTRUMENT USED			
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		C - 20"	
PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	PV	C	
,		YES T	NO
LOCK PRESENT?			1/
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK?			t/
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)	-		
WELL MEASURING POINT VISIBLE?			
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	10.7		
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	-	9.	63
WELL CASING MATERIAL:	2" PV0		
PHYSICAL CONDITION OF VISIBLE WELL CASING:	A-1		
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		1 1	10.00
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	50'		
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSAI	ρV		10.0
Locked gate access to open grassy field area which has been mowed, power lines run parallel to field.	XI.		
Locked gate access to open grassy field area which has been mowed, power lines run parallel to field.			
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)			
AND ASSESS THE TYPE OF RESTORATION REQUIRED.			
Located in fenced in area along Main Street.			
DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT			
(e.g. Gas station, salt pile, etc.):			
None			
REMARKS:			
Heave	λ		
Treave	<u>u</u>		

Well Coordinates: NYTM X 572257.0740 NYTM Y 1538955.6520

SITE NAME: Korkay, Inc., Broadalbin, New York	SITE ID.:	5-18-014
MONITORING WELL FIELD INSPECTION LOG	INSPECTOR: DATE/TIME:	Joseph Menzel
	WEII ID.:	VEW-4
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM X NYTM Y NOT REQUIRED PER EARTH TECH AECOM PDOP Reading from Trimble Pathfinder: Satelites: See See See See See See See See See Se		
WELL I.D. VISIBLE?	YE	S NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	L	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED. TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches): LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE WELL DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES. DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead nower lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSA	PVC - 2" YES 10.87' 2" PVC	25"
Locked access gate.		
		-H-E(
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Level grassy field.		
DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None		
REMARKS:	ed-pl	UIV W

Sce Below! Well Coordinates!

NYTM X 572250.1120 NYTM Y 1538955.6520

SITE NAME: Korkay, Inc., Broadalbin, New York MONITORING WELL FIELD INSPECTION LOG	SITE ID.: INSPECTOR: DATE/TIME:	5-18-014 Joseph Menzel		
	WEII ID.:	MW-8S		
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM XNYTM YNOT REQUIRED PER EARTH TECL PDOP Reading from Trimble Pathfinder:Satelites:	H AECOM	NO		
GPS Method (circle) Trimble And/Or Magellan	YES	NO		
WELL I.D. VISIBLE?				
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)				
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	YES	NO		
SURFACE SEAL PRESENT?	V	110		
HEADSPACE READING (ppm) AND INSTRUMENT USEDTYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE:	Steel Steel			
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	4" YES	NO		
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?				
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES.	PVC			
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, over	erhead			
ower lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF In driveway to home, 73 W. Main Street, overhead electrical line, 20' above well	NECESSARY.			
tentena) te neme, 5 militari succi, eventena electricar mie, 20 above wen		-		
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a gard AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in driveway.	den, etc.)			
DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT				
e.g. Gas station, salt pile, etc.):				
/A				
EMARKS: No"J" pl	og / Surface	ua to		
Sketch		hring		
need	ds new	into.		
	J De	1		
	20	Reco		

SITE NAME: Korkay, Inc., Broadalbin, New York	SITE ID.: INSPECTOR:	5-18-014
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME:	Joseph Menzel
	WEll ID.:	MW-8D
	YE	S NO
WELL VISIBLE? (If not, provide directions below)		
PDOP Reading from Trimble Pathfinder: Satelites: Sateli		
WELL I.D. VISIBLE?	YE	
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	1	
WELL LOCATION MATCH SITE MAY? (II not, sketch actual location on back)		
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	YES	S NO
SURFACE SEAL PRESENT?	1	
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	- Z	
95		
HEADSPACE READING (ppm) AND INSTRUMENT USED	Steel, 9	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	-	
LOCK PRESENT?	YES	NO
LOCK FINCTIONAL?		1-
DID VOLUREPLACE THE LOCK?		1.00
WELL MEASURING POINT VISIBLE?	H:	1
MEASURE DEPTH FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches):	<u>54,25'</u>	27,13
WELL CASING MATERIAL:	PVC	
THISICAL CONDITION OF VISIBLE WELL CASING.		and except
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPEPROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	20'	
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSAR	57	
Located in driveway, overhead electrical line.	Ι.	
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)		E _K
AND ASSESS THE TYPE OF RESTORATION REQUIRED.		
ocated in driveway at 73 W. Main Street.		
DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT		
e.g. Gas station, salt pile, etc.):		
38.0		
EMARKS:		
Broken J' Plug so	500 (100	,T
	15 CM = 17 M	

SITE NAME: Korkay, Inc., Broadalbin, New York	SITE ID.:		5-18-014
MONITORING WELL FIELD INSPECTION LOG	INSPECTO DATE/TIM		Joseph Menze
4)	WEII ID.:		MW-15S
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM X NYTM Y NOT REQUIRED PER EARTH TECH AECOM PDOP Reading from Trimble Pathfinder: Satelites: GPS Method (circle) Trimble And/Or Magellan		YES	NO
WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		YES	NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: SURFACE SEAL PRESENT?	560 ·	YES	NO
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches): LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES. DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead cower lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSAR Locked access gate, far end of area.		Steel, 32" 4" YES 12.58' PVC 250'	NO NO 8
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Level grassy field.			II.
DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT e.g. Gas station, salt pile, etc.): Ione.	2)		
EMARKS:			*

SITE NAME: Korkay, Inc., Broadalbin, New York	SITE ID.:		5-18-014
MONITORING WELL FIELD INSPECTION LOG	INSPECTOR: DATE/TIME: WEII ID.:	5	Joseph Menze MW-15D
		YES	NO
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM XNYTM YNOT REQUIRED PER EARTH TECH AECOM PDOP Reading from Trimble Pathfinder:Satelites:I A GPS Method (circle) Trimble And/Or Magellan		TES	NO
WELL I.D. VISIBLE?		YES	NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)			
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		vre T	NO
SURFACE SEAL PRESENT?		YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED	4"	el, 30"	
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?	L C	YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES.	PVC	7.2	
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSAF Locked access gate and fenced back of field.	xy.	1 7 91	NATSON THE
DESCRIBE WELL SETTING (For éxample, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Level grassy field.			
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None.			3
REMARKS:	-		

Appendix B Field Observation Logs Groundwater Sampling Records

FIELD OBSERVATION LOG - GROUNDWATER SAMPLING RECORD

SITE NAME:

Korkay, Inc.

DATE:

SAMPLER(S): Joe Menzel

(Geologic NY Inc)

SITE #:

5-18-014

ADDRESS:

Broadalbin, New York

Work

D004445-20

Assignment:

Weather:

305 Rain

Time of Arrival:

7:30

Time of Departure:

213カ

r					
Well ID	K-3	MW45D	MW 155	Ver-1	Comments
Well Depth					
MEASURED		49.94	12.58	9.70	
Well Diameter	2 "	2"	20	2"	
Well Construction					
PVC Stain Steel	PUC	PVC	PIL	PUL	
Well Condition					
Good, Fair, Poor	-:	·			
Depth to Water	8.03	27.22	7.38	9.10	
Volume to Purge	2.5	7.5	2.4	39	
Volume Purged	2.5	7.5	2.5	.4	
Sampling Depth to Water	8.91	38.62		2.5	
Color	Clear	Clear	clear	Clear	·
Odor	NO	NO	yes Hair Perm		
Temperature	10.5	9.3	10.5	11-6	
Conductivity	.42	-18	, 2-1	-69	,
рН	8.3	8.9	7.8	6.9	8
Turbidity	74.8		1	72.17	
Date & Time	11-2508	11-2508	11-25-08	11-25.08	
	8:43 am	9:20 M	9:40 am	10:10 am	
Purging Method: Submersible or Peristaltic Pump	Beiler	Baron	Barlon	Bailer	
				Sheeni	÷ 12

FIELD OBSERVATION LOG - GROUNDWATER SAMPLING RECORD

SITE NAME:

Korkay, Inc.

DATE:

SAMPLER(S): Joe Menzel

(Geologic NY Inc)

SITE #:

5-18-014

ADDRESS:

Broadalbin, New York

Work

D004445-20

Assignment:

Weather:

303 Rain

Time of Arrival:

7:30

Time of Departure:

7:30

Well ID	K-2	VEW-2	UEW-3	VEW-4	Comments
Well Depth					
MEASURED	13.82	10.89	10.72	10-87	
Well Diameter	2"	2"	10.72	10.87	
Well Construction			pvc		
PVC Stain Steel	PUC	PVC	PVC	PUL	
Well Condition					
Good, Fair, Poor					
Depth to Water	8-98	8.99	9.63	9.66	
Volume to Purge	2.40	-48	.43	.48	
Volume Purged	2.50	.50	.50	150	
Sampling Depth to Water	9.48	10.26	10.31	9.89	
Color	clear	clear	Clear		·.
Odor	01/4	423 chemical	NO	Henry !	
Temperature	11.9	11.7	11.4	11.5	
Conductivity	046	042	046	11 '	
рН	7.0	7.0	7.0	7.1	
Turbidity	60.11	127.7	77.16	78.38	
Date & Time	11-25.08	11.25.08	77.16 11-25-06	11-23-68	
	10120 am	10:40	10:55 am	11:15 am	
Purging Method: Submersible or Peristaltic Pump	Bailo	Brile	Baile	11:15 am Bal	

FIELD OBSERVATION LOG - GROUNDWATER SAMPLING RECORD

SITE NAME:

Korkay, Inc.

DATE:

SAMPLER(S): Joe Menzel

(Geologic NY Inc)

SITE #:

5-18-014

ADDRESS:

Broadalbin, New York

Work

D004445-20

Assignment:

Weather:

305 Rain + Show Time of Arrival:

7:30

Time of Departure:

· · · · · · · · · · · · · · · · · · ·	ASIN				
Well ID	AWS	Flush Mount	mw-35	MW-8D	Comments
Well Depth	*				
MEASURED	13.55	54.48	10.82	54.25	
Well Diameter	2"	54.48	10.82	Zy	
Well Construction				b.*	·
PVC Stain Steel	PVC	PUC	PVC	PVC	
Well Condition					
Good, Fair, Poor					ie.
Depth to Water	8-74	28.37	6.50	27.13	
Volume to Purge	2.4	9.5	19al	12.9	
Volume Purged	2.5	9.5	19 al	/3	
Sampling Depth to Water			,		
Color	clear	Char	clear	Clear	\$-
Odor	Septie	NO	NO	NO	·
Temperature	12.3	8.4	11.2	10.3	
Conductivity	.68	1.04	.31	.64	
рН	7.0	11.2	8.2	10.5	
Turbidity	34.36 19-25.08	50.01 11-25.08	71.41	24.66	
Date & Time	19-25.08		11-45-08		
	11:30 pm	11:50am	12:15 pm		
Purging Method: Submersible or Peristaltic Pump	11:30 am Berler	Submerible pump sampled	12:15pm Bala &	Bailer	
		Bail-			·

Appendix C Laboratory Report

A DIVISION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

December 10, 2008

Earth Tech – AECOM 40 British American Boulevard Latham, NY 12110 Attn: Mr. Scott Underhill

RE:

Client Project: Korkay, Inc.

Lab Project #: G2223

Dear Mr. Underhill:

Enclosed please find the data report of the required analyses for the samples associated with the above referenced project.

If you have any questions regarding this report, please call me.

We appreciate your business.

Sincerely,

Project Manager

Mitkem Laboratories

New York State Department of Environmental Conservation Sample Identification and Analytical Requirements Summary

Project Name: Korkay Inc

SDG: <u>G2223</u>

		Analytical Requirements					
	Laboratory Sample ID	MSVOA Method #	MSSEMI Method #	GC* Method #	ME	Other	
ASW	G2223-01	SW8260_W					
FLUSH MOUNT	G2223-02	SW8260_W					
MW-8S	G2223-03	SW8260_W					
MW-8D	G2223-04	SW8260_W					
MW-K2	G2223-05	SW8260_W		1			
VEW-3	G2223-06	SW8260_W					
VEW-4	G2223-07	SW8260_W					
VEW-2	G2223-08	SW8260_W					
MW-K3	G2223-09	SW8260_W					
MW-15D	G2223-10	SW8260_W					
VIW-15S	G2223-11	SW8260_W					
/EW-1	G2223-12	SW8260_W					
Trip Blank	G2223-13	SW8260_W					

Mitkem Laboratories

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name: Korkay Inc

SDG: G2223

Laboratory		Date	Date Received	Date	Date
Sample ID	Matrix	Collected	By Lab	Extracted	Analyzed
SW8260_W			···		•
G2223-01A	AQ	11/25/2008	11/26/2008	NA	12/4/2008
G2223-01ADL	AQ	11/25/2008	11/26/2008	NA	12/4/2008
G2223-02A	AQ	11/25/2008	11/26/2008	NA	12/4/2008
G2223-03A	AQ	11/25/2008	11/26/2008	NA	11/29/2008
G2223-04A	AQ	11/25/2008	11/26/2008	NA	11/29/2008
G2223-05A	AQ	11/25/2008	11/26/2008	NA	11/29/2008
G2223-06A	AQ	11/25/2008	11/26/2008	NA	11/29/2008
G2223-07A	AQ	11/25/2008	11/26/2008	NA	12/4/2008
G2223-08A	AQ	11/25/2008	11/26/2008	NA	12/4/2008
G2223-09A	AQ	11/25/2008	11/26/2008	NA	12/4/2008
G2223-10A	AQ	11/25/2008	11/26/2008	NA	12/4/2008
G2223-11A	AQ	11/25/2008	11/26/2008	NA	12/4/2008
G2223-12A	AQ	11/25/2008	11/26/2008	NA	12/4/2008
G2223-12ADL	AQ	11/25/2008	11/26/2008	NA	12/4/2008
G2223-13A	AQ	11/25/2008	11/26/2008	NA	12/4/2008

Mitkem Laboratories

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name: Korkay Inc

SDG: <u>G2223</u>

Laboratory		Analytical	Extraction	Low/Medium	Dil/Conc
Sample ID	Matrix	Protocol	Method	Level	Factor
SW8260_W					
G2223-01A	AQ	SW8260_W	NA	LOW	5
G2223-01ADL	AQ	SW8260_W	NA	LOW	20
G2223-02A	AQ	SW8260_W	NA	LOW	1
G2223-03A	AQ	SW8260_W	NA	LOW	1
G2223-04A	AQ	SW8260_W	NA	LOW	1
G2223-05A	AQ	SW8260_W	NA	LOW	1
G2223-06A	AQ	SW8260_W	NA	LOW	1
G2223-07A	AQ	SW8260_W	NA	LOW	1
G2223-08A	AQ	SW8260_W	NA	LOW	1
G2223-09A	AQ	SW8260_W	NA	LOW	1
G2223-10A	AQ	SW8260_W	NA	LOW	1
G2223-11A	AQ	SW8260_W	NA	LOW	1
G2223-12A	AQ	SW8260_W	NA	LOW	1
G2223-12ADL	AQ	SW8260_W	NA	LOW	5
G2223-13A	AQ	SW8260_W	NA	LOW	1

Analytical Data Package for Earth Tech - AECOM

Client Project: Korkay, Inc.

SDG# MG2223

Mitkem Work Order ID: G2223

December 10, 2008

Prepared For:

Earth Tech - AECOM

40 British American Boulevard

Latham, NY 12110 Attn: Ms. Lori Hoose

Prepared By:

Mitkem Laboratories

175 Metro Center Boulevard

Warwick, RI 02886 (401) 732-3400

SDG Narrative

Mitkem Corporation submits the enclosed data package in response to Earth Tech – AECOM's Korkay, Inc. project. Under this deliverable, analysis results are presented for thirteen aqueous samples that were received on November 26, 2008. Analyses were performed per specifications in the project's contract, discussion with client and the chain of custody form. Following the narrative is the Mitkem Work Order for cross-referencing client sample ID and laboratory sample ID.

The analyses were performed according to NYSDEC ASP protocols and reported per NYSDEC ASP requirement for Category A deliverable.

The following observation and/or deviations are observed for the following analyses:

1. Overall Observation:

Where needed, manual integrations were performed to improve data quality. The corrections were reviewed and associated hardcopies generated and reported as required. Manual integrations are coded to provide the data reviewer justification for such action. The codes are labeled on the ion chromatogram signal (GC/MS signal) and chromatogram for GC based analysis as follows:

- M1 peak tailing or fronting.
- M2 peak co-elution.
- M3 rising or falling baseline.
- M4 retention time shift.
- M5 miscellaneous under this category, the justification is explained.
- M6 software did not integrate peak
- M7 partial peak integration

The enclosed report includes the originals of all data with the exception of logbook pages and certain initial calibrations. Photocopies of logbook pages are included, with the originals maintained on file at the laboratory. The originals of initial calibrations that are shared among several cases are maintained on file at the laboratory, with photocopies included in the data package.

1. Volatile Analysis:

Surrogate recovery: recoveries were within the QC limits.

Lab control sample/ lab control sample duplicate: spike recoveries and replicate RPDs were within QC limits.

Sample analysis: due to high concentration of target analytes, sample ASW was initially analyzed at 5x dilution and re-analyzed at 20x dilution as ASW DL. Sample VEW-1 was re-analyzed at 5x dilution as VEW-1DL. No other unusual observation was made for the analysis.

All pages in this report have been numbered consecutively, starting with the title page and ending with a page saying only "Last Page of Data Report".

I certify that this data package is in compliance, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Shirley Ng Project Manager 12/10/08

Sample Transmittal Documentation

Mitkem Laboratories	10/Dec/08 9:48		WorkOrder: G2223
Client ID: EARTH_NY	Case:	HC Due: 12/12/08	Report Level: ASP-A
Project: Korkay Inc	SDG:	Fax Due:	EDD:
Location:	PO: 99165		
Comments: N/A			

Sample ID	HS Client Sample ID	Collection Date	Date Recv'd	Matrix	Test Code Lab Test Comments		Hold MS SEL Storage
G2223-01A	ASW	11/25/2008 11:30	11/26/2008	Aqueous	SW8260_W		
G2223-02A	FLUSH MOUNT	11/25/2008 11:50 11/26/2008	11/26/2008	Aqueous	SW8260_W		
G2223-03A	MW-8S	11/25/2008 12:15 11/26/2008	11/26/2008	Aqueous	SW8260_W		NOA III
G2223-04A	MW-8D	11/25/2008 13:00 11/26/2008	11/26/2008	Aqueous	SW8260_W		0 O O
G2223-05A	MW-K2	11/25/2008 10:20 11/26/2008	11/26/2008	Aqueous	SW8260_W		l 🗆 voA
G2223-06A	VEW-3	11/25/2008 10:55	11/26/2008	Aqueous	SW8260_W		1
G2223-07A	VEW-4	11/25/2008 11:15 11/26/2008	11/26/2008	Aqueous	SW8260_W		O O O
G2223-08A	VEW-2	11/25/2008 10:40	11/26/2008	Aqueous	SW8260_W		O O O
G2223-09A	MW-K3	11/25/2008 8:43	11/26/2008	Aqueous	SW8260_W		O O O
G2223-10A	MW-15D	11/25/2008 9:20	11/26/2008	Aqueous	SW8260_W]
Slient Rep:	Shirley S Ng					Page 1	1 of 2

Mitkem Laboratories Client ID: EARTH_NY	10/Dec/08 9:48 Case:	HC Due: 12/12/08	WorkOrder: G2223 Report Level: ASP-A
D * 4. 17	200		.001

I Hold MS SEL Storage □ voa □ voa □ voa EDD: Lab Test Comments Fax Due: Aqueous SW8260_W Aqueous SW8260_W Test Code **PO:** 99165 SDG: Matrix Date Recv'd 11/25/2008 9:40 11/26/2008 11/25/2008 10:10 11/26/2008 Collection Date HS Client Sample ID Project: Korkay Inc MW-15S VEW-1 Comments: N/A Location: G2223-12A G2223-11A Sample ID

Aqueous SW8260_W

11/25/2008 0:00 11/26/2008

Trip Blank

G2223-13A

Sclient Rep: Shirley S Ng

 MITKEM	S	CHAIN OF
 LABORATORIES		REC
 A DIVISION OF SPECTRITM ANALYTICAL INC.	AI INC Featuring HANIBAI TECHNOI OGY	Page /

F CUSTODY

Special Handling: Standard TAT - 10 to 15 business da Rush TAT - Date Needed: All TATs subject to Jaboratory appro-
--

X. Standard TAT - 10 to 15 business days	All TATs subject to laboratory approval Min. 24-hour notification needed for rushes.	• Samples disposed of after 60 days unless otherwise instructed.	Project No.: 5-18-014	Site Name: Tarkay, Luc	Location: Groudether State: M.	Sampler(s) (See Losic	Analyses: QA Reporting Notes:	Provide MA DEP MCP CAM Report Provide CT DEP RCP Report OA/OC Benowiting Local	A Standard No QC		×	×	×	×	*	×	×	**	
AIN OF COSTOD I	RECORD	Pageof	Steve Choireri	Track Romerston (St.	m /4/10	465 RQN:	Containers:	sials SealO	vative OA V mber	Maurix Preser # of V # of A Of C # of P Of C	GW 2 3	5	5	~	~	~	8	~	
CnA			Invoice To:	#EC.0	12/2	P.O. No.:	OH 6=Ascorbic Acid	WW=Wastewater _=Sludge A=Air X3=		Tim e. Type	11:30 66	11:50	12:15	13:0	10:20	55.01	11:15	06.40	_
		NIBAL TECHNOLOGY	1,19	Lean DWA.		8	5=NaC	IZ	C=Composite	Date:	11-25-08	,			•			``	
K E M	LABORATORIES	A DVISION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY	ACCOM,	itish pomercan		Las Hoose	2=HC1 3=H ₂ SO ₄ 4=HNO ₃ 8=NaHSO ₄ 9=	DW=Drinking Water GW=Groundwater O=Oil SW=Surface Water SO=Soil SX1= X2=	G=Grab C=0	Sample Id:	ASW	Flush Mount	mw -85	Mw - 80	Nw- F 2	Vew-3	ている。ス	Vs. 2	
MITKEM	LABOR	A DIVISION OF SPECTRUA	1	40 But	Antwar	Project Mgr.: 🗘	1=Na ₂ S2O ₃ 2= 7=CH ₃ OH 8=	DW=Drinking V O=Oil SW=St X1=		Lab Id:	Ō		1	ð	65	go.	Ô	30	

Time:

Date:

Received by:

×

Relinquished by:

8:43 02:6 11.00

EDD Format

A E-mail to LOCI, Hose a Ge com. Com

☐ Fax results when available to (

Condition upon receipt: Toled Ambient LC

		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	O	/H;	111)F	302	TC	CHAIN OF CUSTODY		Standa	Special Handling: Standard TAT - 10 to 15 business days	ing: business days
LABOR	LABORATORIES					RE		RECORD				Rush T • All TAT Min. 24-	Rush TAT - Date Needed: All TATs subject to laboratory approval Min. 24-hour notification needed for rushes.	1:
A DIVISION OF SPECTR.	A DWISION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY	NIBAL TECHNOLOGY				Page_	3		,			• Samples otherwis	Samples disposed of after 60 days unless otherwise instructed.	50 days unless
Report To:	art Tod	L /1985.01	Invoice T	e To:	5/2	20.2	Che	Thoiner	,	Project No.:	No.:	2-18-0	110	
40 131	If m	richan Blud	ME.	3	3		1		4	Site Name:	ame:	orkay	., Inc.	4
La tram	7.2	0117	07	2 2 2 2 2 2 3	Less in	13	36	mercan) Divid	Location:	' 1	Broad al	bin State:	2
Project Mgr.:	Losi Hoose		P.O. No.:	0.	19/1	3	RQN:			Sampler(s)_		Sechoric		
1=Na ₂ S2O ₃ 2 7=CH ₃ OH 8:	2=HC1 3=H ₂ SO ₄ 4=HNO ₃ 8=NaHSO ₄ 9=	5=Na(OH 6=Ascorbic Acid	ic Acid			Cont	Containers:			Analyses:	3	QA Repo (check	QA Reporting Notes: (check if needed)
DW=Drinking Water O=Oil SW=Surface	inking Water GW=Groundwater SW=Surface Water SO=Soil SI	is S	WW=Wastewater L=Sludge A=Air			S		SS		277			☐ Provide MA DE☐ Provide CT DE☐	☐ Provide MA DEP MCP CAM Report ☐ Provide CT DEP RCP Report
X1=	X2=	X3=								8 F			QA/QC Re	QA/QC Reporting Level
,	G=Grab C=	C=Composite								י פניי			Standard	□ № QC
Lab Id: 6222み	Sample Id:	Date:	Time:	Type	kirtsM	Preser V 10 #	A ło #	# of C		2.27.4			State specific re	State specific reporting standards:
	Mw-155	11-25-08	9:40	7	<i>₹</i>	7			*					
\$	USW.I	11-25-08	01:01		ω ?	2			`	~				
		:												
								-						
	III III III III III III III III III II													
	211													
	4,9 844													
☐ Fax results	☐ Fax results when available to (_					elinqui	Relinquished by:				Received by:		Date:	Time:
K E-mail to	Lori, Hoose O	gaecom .com	,0 m		74	4G May	7		$\frac{\circ}{}$	1 heli	ill		il Butos	Wied
EDD Format				0		~								
Condition upon	Condition upon receipt: Aced Ambient C	Ambient FC	20											

175 Metro Center Boulevard • Warwick, RI 02886-1755 • 401-732-3400 • Fax 401-732-3499 • www.mitkem.com

aaas

MITKEM LABORATORIES Sample Condition Form

Page ___ of ___

Received By: $\mathcal{C}\mathcal{A}_{\mathcal{N}}$	Reviewed By:		SM					EM Wor	korder	#: C 23	
Client Project: Kock	Cay				Client:	<u>EA</u>					Soil Headspace
	•	lah	Samp	חו בו	HNO ₃	Prese H₂SO₄	ervation HCI	n (pH) NaOH	H₃PO₄	VOA Matrix	or Air Bubbles > 1/4"
4) 0 - 1 - 0 - 1 - 1 - 6	37M-				1	112004	1,101	11aon	1.3. 04	H	- "
1) Cooler Sealed Ye	§ / No	COX	<u>223</u>								
				02							
2) Custody Seal(s)	Present / Absent			03							
	Coolers / Bottles			04							ļ
	Proken			05	<u> </u>						
	11			06							
3) Custody Seal Number	r(s)			07							
				OS							
				09				_			
				10							
				11							
4) Chain-of-Custody	Present/ Absent			13						\	
		62	123	13						XH	·
5) Cooler Temperature	60	Ca	XX3	74			30	π	26/18	1+	
Coolant Condition	ICE							· · · · · · · · · · · · · · · · · · ·			
6) Airbill(s)	Present Absent										
Airbill Number(s)	UPS										
,	43689774615										
											
7) Sample Bottles	Intact/Broken/Leaking		-								
1) Gample Bottles						- D		5			
9) Data Bassiyad	11/20100						13				
8) Date Received						/ `	<u> </u>		<u> </u>		1
0) Time Bessived	11/36/08 _11:00				/		VOA	Matrix	Kov:		
9) Time Received	11,00	<u> </u>		 			1			oil	A - Air
Dana amarkiya Nayaya II. (A	u.	<u> </u>			-		ı	Unprese			A = Air
Preservative Name/Lot N	NO.			_			1	Unprese	erved A	.qu.	H = HCI
		ļ	-				M= M				E = Encore F = Freeze
 		$\vdash \!\!\!\!/$	-				14 - 14	aHSO₄			1 - 116626
	_			<u> </u>		-/ ca/	ا ا				
See Sample Co	ondition Notification/Correc	ctive A	ction F	orm	⊘ è\$/ ⊘	SW	11/26/	of			
•					· /		Rad C	K yes	/ no		

Sample Condition Notification

Client:	Eart	#: <u>G</u> 222 k		Date o Receiv	f Receipt:_ red By:	11/26 CAN	<u> 108 </u>
Unusua	al Occur	ance Descri	ption:				
	Trip	Blank	Was	receied	but	not	laTe4
	<u> </u>)C	Was Logged	71	as G	222	3-13
		·		:			
					-		
Client (Contacte					***************************************	XX ***********************************
Client	Conta Date:_	cted via: Ph	one/Fax/E-m ſime:				
Client F		of person co	ontacted:			Table 100 miles	
Onone	-	nded via: P	hone/Fax/E-ı –	mail			
		of person re ending to:	sponding:				
	·	' Sec	e-m	iai			

·							
Mitkem	Action	Taken:					
	.					·	
	,					·	

Shirley Ng [Mitkem]

From: Hoose, Lori [Lori.Hoose@aecom.com]

Sent: Monday, December 01, 2008 9:11 AM

To: Shirley Ng [Mitkem]
Cc: Sarah McCulloch

Subject: RE: G2223--Korkay TB was not listed on COC

Shirley,

Yes, analyze it for VOA's.

Sarah,

Could you check your chain of custody's?

Lori

From: Shirley Ng [Mitkem] [mailto:sng@mitkem.com]

Sent: Monday, December 01, 2008 8:54 AM

To: Hoose, Lori

Subject: G2223--Korkay TB was not listed on COC

Hi Lori.

A set of Trip Blank was received but not listed on the COC. Should we analysis this for SW8260?

Shirley Ng

Project Manager

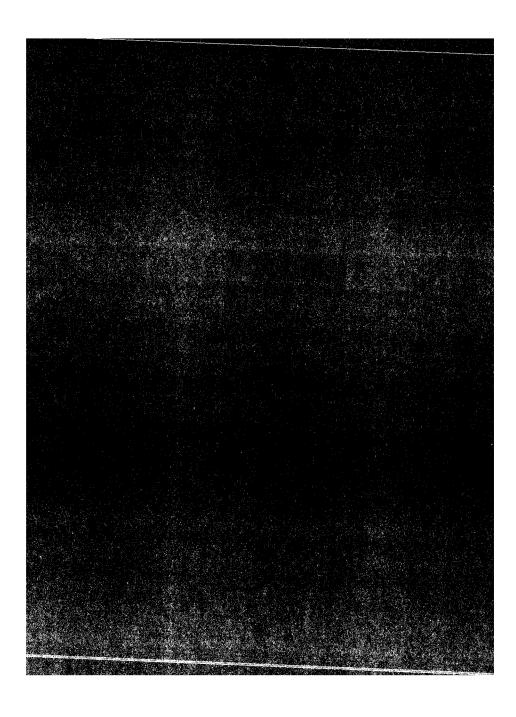
Mitkem Laboratories

A Division of Spectrum Analytical, Inc.

Featuring Hanibal Technology

175 Metro Center Blvd

Warwick, RI 02886


401-732-3400 x314

401-732-3499 (Fax)

sng@mitkem.com

www.spectrum-analytical.com

This e-mail is intended for the named addressee(s) and may contain information that is confidential and proprietary. If this information is received by anyone other than the named addressee(s), the recipient(s) should immediately notify the sender by e-mail and promptly delete the transmitted material. In no event shall this material be read, used, stored, or retained by anyone other than the named addressee(s) without the express written consent of the sender or the named addressee(s).

EFA	SHILLE	NO.	
ASW			1
•			ı
			1

Lab Name: MITKEM LABOR	ATORIES	r .	Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2223
Matrix: (SOIL/SED/WATER	R) WATER		Lab Sample ID:	G2223-01A
Sample wt/vol: 5.	00 (g/mL) ML		Lab File ID:	V1K2234.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/26/2008
% Moisture: not dec.			Date Analyzed:	12/04/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	5.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNIT:	S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane		25	· U
74-87-3	Chloromethane		25	U
75-01-4	Vinyl chloride		25	Ū.
74-83-9	Bromomethane		25	Ū
75-00-3	Chloroethane		25	U
75-69-4	Trichlorofluoromethane		25	U
75-35-4	1,1-Dichloroethene		25	U
67-64-1	Acetone		25	U
74-88-4	Iodomethane		25	U
75-15-0	Carbon disulfide		25	Ū
75-09-2	Methylene chloride		25	U
	trans-1,2-Dichloroethene		25	Ū
1634-04-4	Methyl tert-butyl ether		25	U
	1,1-Dichloroethane		25	U
108-05-4	Vinyl acetate		25	U
78-93-3	2-Butanone		13	J
156-59-2	cis-1,2-Dichloroethene		72	
594-20-7	2,2-Dichloropropane		25	U
74-97-5	Bromochloromethane		25	U
67-66-3	Chloroform		25 ⁻	U
71-55-6	1,1,1-Trichloroethane		. 25	U
	1,1-Dichloropropene		25	U
	Carbon tetrachloride	-	25	U
107-06-2	1,2-Dichloroethane		25	Ü
71-43-2	Benzene		25	U
79-01-6	Trichloroethene		8.2	BJ
78-87-5	1,2-Dichloropropane		25	U
	Dibromomethane		25	U
75-27-4	Bromodichloromethane		25	Ū
10061-01-5	cis-1,3-Dichloropropene		25	U
	4-Methyl-2-pentanone	÷	. 25	U
108-88-3			26	
10061-02-6	trans-1,3-Dichloropropene		25	U
	1,1,2-Trichloroethane		25	U
	1,3-Dichloropropane		25	U

	EPA	SAMPLE	NO.	
A	SW			

Lab Name: MITKEM LABORATOR	IES	Contract:	
Lab Code: MITKEM Case	e No.:	Mod. Ref No.:	SDG No.: MG2223
Matrix: (SOIL/SED/WATER) W	ATER	Lab Sample ID:	G2223-01A
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID:	V1K2234.D
Level: (TRACE/LOW/MED) LOW		Date Received:	11/26/2008
% Moisture: not dec.		Date Analyzed:	12/04/2008
GC Column: DB-624	ID: 0.25 (mm)	Dilution Factor:	5.0
Soil Extract Volume:	(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 5.0	(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	25	U
591-78-6	2-Hexanone	25	U
124-48-1	Dibromochloromethane	25	U
106-93-4	1,2-Dibromoethane	25	U
108-90-7	Chlorobenzene	25	U
630-20-6	1,1,1,2-Tetrachloroethane	25	Ū
	Ethylbenzene	430	
	m,p-Xylene	2000	E
	o-Xylene	1100	E
	Xylene (Total)	3100	E
100-42-5		25	Ū
	Bromoform	25	Ū
	Isopropylbenzene	86	
	1,1,2,2-Tetrachloroethane	. 25	U
	Bromobenzene	25	U
	1,2,3-Trichloropropane	25	U
	n-Propylbenzene	120	
	2-Chlorotoluene	25	Ū
	1,3,5-Trimethylbenzene	360	
	4-Chlorotoluene	25	U
	tert-Butylbenzene	25	U
	1,2,4-Trimethylbenzene	1100	E
	sec-Butylbenzene	4.6	
	4-Isopropyltoluene	61	·
	1,3-Dichlorobenzene	25	U
	1,4-Dichlorobenzene	25	U
	n-Butylbenzene	91	
	1,2-Dichlorobenzene	34	
	1,2-Dibromo-3-chloropropane	25	U
	1,2,4-Trichlorobenzene	25	U
	Hexachlorobutadiene	25	Ū
	1,2,3-Trichlorobenzene	25	Ū
91-20-3	Naphthalene	160	•

EPA	SAMPLE	NO.
ASWDL		

Lab Name: MITKEM LABORA	ATORIES	Contract:	
Lab Code: MITKEM	Case No.:	Mod. Ref No.:	SDG No.: MG2223
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID:	G2223-01ADL
Sample wt/vol: 5.0	00 (g/mL) ML	Lab File ID:	V1K2258.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	11/26/2008
% Moisture: not dec.		Date Analyzed:	12/04/2008
GC Column: DB-624	ID: 0.25 (mm)	Dilution Factor:	20.0
Soil Extract Volume:	(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0	(mL)		

		CONCENTRATION UNIT		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	4 Q
75-71-8 D	Dichlorodifluoromethane		100	Ū
74-87-3	Chloromethane		100	U
75-01-4 V	inyl chloride		100	U
	Promomethane		100	U .
75-00-3 C	Chloroethane		100	U
75-69-4 I	richlorofluoromethane		100	U
75-35-4 1	,1-Dichloroethene		100	Ū
67-64-1 A	cetone		100	U
74-88-4 I	odomethane		100	Ū .
75-15-0 C	Carbon disulfide		100	U
75-09-2 M	Methylene chloride	***************************************	100	U .
156-60-5 t	rans-1,2-Dichloroethene		100	U
1634-04-4 M	Methyl tert-butyl ether		100	U
75-34-3 1	,1-Dichloroethane		100	U ,
108-05-4 V	inyl acetate		100	U
78-93-3 2	-Butanone		100	U
156-59-2 c	is-1,2-Dichloroethene		63	DJ
594-20-7 2	,2-Dichloropropane		100	U
74-97-5 E	Bromochloromethane		100	U
67-66-3	Chloroform		100	U
	,1,1-Trichloroethane		100	U
	,1-Dichloropropene		100	U
	Carbon tetrachloride		100	Ū
107-06-2 1	.,2-Dichloroethane		100	U
71-43-2 E	enzene		100	U
79-01-6 T	richloroethene		100	U
78-87 - 5 1	,2-Dichloropropane		100	U
	ibromomethane		100	Ū ·
	Bromodichloromethane		100	Ū
	is-1,3-Dichloropropene		100	U
	-Methyl-2-pentanone		100	U
108-88-3 T			22	DJ
	rans-1,3-Dichloropropene		100	U
	.,1,2-Trichloroethane		100	Ū ·
142-28-9 1	.,3-Dichloropropane		100	U

EPA	SAMPLE	NO

(uL)

ASWDL

Lab Name:	MITKEM LABOR	ATORIES			Contract:		
Lab Code:	MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2223	
Matrix: (S	OIL/SED/WATER) WATER			Lab Sample ID:	G2223-01ADL	
Sample wt/	vol:5.	00 (g/mL)	ML		Lab File ID:	V1K2258.D	
Level: (TR	ACE/LOW/MED)	LOW			Date Received:	11/26/2008	
% Moisture	: not dec.				Date Analyzed:	12/04/2008	
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	20.0	

(mL)

(uL) Soil Aliquot Volume:

Soil Extract Volume:

Purge Volume: 5.0

CONCENTRATION UNITS: CAS NO. COMPOUND UG/L (ug/L or ug/Kg) Q 127-18-4 Tetrachloroethene 100 591-78-6 2-Hexanone 100 124-48-1 Dibromochloromethane 100 106-93-4 1,2-Dibromoethane 100 108-90-7 Chlorobenzene 100 100 630-20-6 1,1,1,2-Tetrachloroethane IJ 100-41-4 Ethylbenzene 390 D 1330-20-7 m,p-Xylene 2100 95-47-6 o-Xylene 1000 1330-20-7 Xylene (Total) 3100 ח 100-42-5 Styrene 100 75-25-2 Bromoform 100 TT 98-82-8 Isopropylbenzene 78 DJ 79-34-5 1,1,2,2-Tetrachloroethane 100 108-86-1 Bromobenzene 100 96-18-4 1,2,3-Trichloropropane 100 100 103-65-1 n-Propylbenzene 95-49-8 2-Chlorotoluene 100 108-67-8 1,3,5-Trimethylbenzene 330 D 106-43-4 4-Chlorotoluene 100 IJ 100 98-06-6 tert-Butylbenzene 1100 95-63-6 1,2,4-Trimethylbenzene D 42 135-98-8 sec-Butylbenzene DJ 100 99-87-6 4-Isopropyltoluene TT 100 541-73-1 1,3-Dichlorobenzene 106-46-7 1,4-Dichlorobenzene 100 П 79 104-51-8 n-Butylbenzene DJ 29 95-50-1 1,2-Dichlorobenzene DJ 100 96-12-8 1,2-Dibromo-3-chloropropane 120-82-1 1,2,4-Trichlorobenzene 100 TT 100 87-68-3 Hexachlorobutadiene 87-61-6 1,2,3-Trichlorobenzene 100 IJ 91-20-3 Naphthalene

EPA SAMPLE NO. FLUSH MOUNT

Lab Name:	MITKEM LABORA	TORIES		Contract:	
Lab Code:	MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2223
Matrix: (Se	OIL/SED/WATER)	WATER		Lab Sample ID:	G2223-02A
Sample wt/	vol: 5.0	0 (g/mL) ML		Lab File ID:	V1K2248.D
Level: (TR	ACE/LOW/MED)	LOW		Date Received:	11/26/2008
% Moisture	: not dec.			Date Analyzed:	12/04/2008
GC Column:	DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extra	ct Volume:		(uL)	Soil Aliquot Vol	ume: (uL
Purge Volu	me: 5.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	, · · · Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	Ū
75-01-4	Vinyl chloride	5.0	U
	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	Ū.
67-64-1	Acetone	5.0	Ū ·
74-88-4	Iodomethane	5.0	U.
75 - 15-0	Carbon disulfide	5.0	U .
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	Ū -
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U .
156-59-2	cis-1,2-Dichloroethene	5.0	U
	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	Ū
71-55-6	1,1,1-Trichloroethane	5.0	Ū
563-58-6	1,1-Dichloropropene	5.0	U
	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	Ū .
78-87-5	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061 - 01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

EPA SAMPLE NO.

FLUSH MOUNT

Lab Name:	MITKEM LABORA	TORIES		·····	Contract:	
Lab Code:	MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2223
Matrix: (S	OIL/SED/WATER)	WATER			Lab Sample ID:	G2223-02A
Sample wt/	vol: 5.0	0 (g/mL)	ML		Lab File ID:	V1K2248.D
Level: (TR	ACE/LOW/MED)	LOW			Date Received:	11/26/2008
% Moisture	: not dec.				Date Analyzed:	12/04/2008
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volu	me: 5.0			(mT.)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	_ U
	2-Hexanone	5.0	Ü
	Dibromochloromethane	5.0	Ū
	1,2-Dibromoethane	5.0	U
	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
	Ethylbenzene	5.0	U
	m,p-Xylene	5.0	U
	o-Xylene	5.0	Ü
	Xylene (Total)	5.0	U
100-42-5		5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	Ū
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	Ū
	tert-Butylbenzene	5.0	U
	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	Ū
	4-Isopropyltoluene	5.0	U
	1,3-Dichlorobenzene	5.0	U
	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	Ū
	1,2-Dichlorobenzene	5.0	U
	1,2-Dibromo-3-chloropropane	5.0	Ū
	1,2,4-Trichlorobenzene	5.0	Ŭ
	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

•	EPA	SAMPLE	NO.	
M	W-8S			

Lab Name: MITKEM LABORA	ATORIES			Contract:		
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2223	* .
Matrix: (SOIL/SED/WATER	WATER			Lab Sample ID:	G2223-03A	
Sample wt/vol: 5.0	00 (g/mL)	ML		Lab File ID:	V1K2081.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/26/2008	
% Moisture: not dec.				Date Analyzed:	11/29/2008	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:	·		(uL)	Soil Aliquot Vol	ume:	(uL
Purge Volume: 5.0			(mL)			

GT G NO	COMPOSINE	CONCENTRATION UNIT		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane		5.0	U
74-87-3	Chloromethane		5.0	Ū
75-01-4	Vinyl chloride		5.0	U
	Bromomethane		5.0	U
75-00-3	Chloroethane		5.0	U
75-69-4	Trichlorofluoromethane		5.0	U
75-35-4	1,1-Dichloroethene		5.0	U
67-64-1	Acetone		5.0	U
74-88-4	Iodomethane		5.0	Ū ·
75-15-0	Carbon disulfide		5.0	Ū
75-09-2	Methylene chloride		5.0	U
156-60-5	trans-1,2-Dichloroethene		5.0	U
1634-04-4	Methyl tert-butyl ether		5.0	U
75-34-3	1,1-Dichloroethane		5.0	Ū
108-05-4	Vinyl acetate		5.0	U
78-93-3	2-Butanone		5.0	U
156-59-2	cis-1,2-Dichloroethene		1.3	J
594-20-7	2,2-Dichloropropane		5.0	U
74-97-5	Bromochloromethane	·	5.0	U
67-66-3	Chloroform		5.0	Ū
71-55-6	1,1,1-Trichloroethane		5.0	Ū
563-58-6	1,1-Dichloropropene		5.0	U
	Carbon tetrachloride		5.0	U
	1,2-Dichloroethane		5.0	U
	Benzene		5.0	Ū
79-01-6	Trichloroethene		5.0	U
78-87-5	1,2-Dichloropropane		5.0	Ū [.]
74-95-3	Dibromomethane		5.0	U
75-27-4	Bromodichloromethane		5.0	U
10061-01-5	cis-1,3-Dichloropropene		5.0	U
108-10-1	4-Methyl-2-pentanone		5.0	Ū
	Toluene		5.0	U
10061-02-6	trans-1,3-Dichloropropene		5.0	U
79-00-5	1,1,2-Trichloroethane		5.0	U
142-28-9	1,3-Dichloropropane		5.0	Ū

LPA	SAMPLE	NO.	
MW-8	S		

Lab Name:	MITKEM LABORA	TORIES			Contract:		
Lab Code:	MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2223	}
Matrix: (S	OIL/SED/WATER)	WATER			Lab Sample ID:	G2223-03A	-
Sample wt/	vol: 5.0	0 (g/mL)	ML		Lab File ID:	V1K2081.D	
Level: (TR	ACE/LOW/MED)	LOW			Date Received:	11/26/2008	
% Moisture	: not dec.	-			Date Analyzed:	11/29/2008	
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volu	me: 5.0			(mL)			

	GOMDOUND	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) . UG/L	_ Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	Ū
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
	Ethylbenzene	11	
	m,p-Xylene	28	
95-47-6	o-Xylene	19	
	Xylene (Total)	47	
	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
	Isopropylbenzene	, 9.6	
79-34-5	1,1,2,2-Tetrachloroethane	5.0	· Ü
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
	n-Propylbenzene	14	
95-49-8	2-Chlorotoluene	5.0	Ū
	1,3,5-Trimethylbenzene	36	
	4-Chlorotoluene	5.0	Ü.
	tert-Butylbenzene	5.0	U
	1,2,4-Trimethylbenzene	89	
	sec-Butylbenzene	6.8	
	4-Isopropyltoluene	5,0	U
	1,3-Dichlorobenzene	5.0	U
	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	12	
	1,2-Dichlorobenzene	5.6	
	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	10	

EPA	SAMPLE	NO.
MW-8D)	

Lab Name: MITKEM LABORATORIES	Contract:	
Lab Code: MITKEM Case No.:	Mod. Ref No.:	SDG No.: MG2223
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID:	G2223-04A
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID:	V1K2082.D
Level: (TRACE/LOW/MED) LOW	Date Received:	11/26/2008
% Moisture: not dec.	Date Analyzed:	11/29/2008
GC Column: DB-624 ID: 0.25 (mm	Dilution Factor:	1.0
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0 (mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U '
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	Ū
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	Ū
74-97-5	Bromochloromethane	5.0	Ū
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U-
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	Ū
	Bromodichloromethane	5.0	U
	cis-1,3-Dichloropropene	5.0	. U
	4-Methyl-2-pentanone	5.0	. U
	Toluene	5.0	U
	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	. U
142-28-9	1,3-Dichloropropane	5.0	U

LPA	SAMPLE	NO.
MW-8D)	

Lab Name: MITKEM LABORA	TORIES			Contract:	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2223
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	G2223-04A
Sample wt/vol: 5.0	00 (g/mL)	ML		Lab File ID:	V1K2082.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/26/2008
% Moisture: not dec.				Date Analyzed:	11/29/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mL)		•

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	. Q
127-18-4	Tetrachloroethene	5.0	- U
	2-Hexanone	5.0	Ū
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	Ū
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	Ū
79-34-5	1,1,2,2-Tetrachloroethane	5.0	Ū
108-86-1	Bromobenzene	5.0	Ū
96-18 - 4	1,2,3-Trichloropropane	5.0	Ū
	n-Propylbenzene	5.0	U
	2-Chlorotoluene	5.0	U
	1,3,5-Trimethylbenzene	5.0	Ū
	4-Chlorotoluene	5.0	Ū
	tert-Butylbenzene	5.0	Ū
	1,2,4-Trimethylbenzene	1.6	J
	sec-Butylbenzene	5.0	Ü
	4-Isopropyltoluene	5.0	Ŭ
	1,3-Dichlorobenzene	5.0	U
	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	U
	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	1.2	J

LPA	SAMPLE	NO.	
MW-K2			

Lab Name: MITKEM LABORAT	ORIES ·	Contract:		
Lab Code: MITKEM C	ase No.:	Mod. Ref No.:	SDG No.: MG2223	
Matrix: (SOIL/SED/WATER)	WATER	Lab Sample ID:	G2223-05A	
Sample wt/vol: 5.00	(g/mL) ML	Lab File ID:	V1K2083.D	
Level: (TRACE/LOW/MED) I	OW	Date Received:	11/26/2008	
% Moisture: not dec.	·	Date Analyzed:	11/29/2008	
GC Column: DB-624	ID: 0.25 (1	mm) Dilution Factor:	1.0	
Soil Extract Volume:		uL) Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5.0	(1	mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	Ū
74-83-9	Bromomethane	5.0	Ü
75-00-3	Chloroethane	5.0	U .
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U ,
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
	Methylene chloride	5.0	U
	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5,0	U ·
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	6.2	-
594-20-7	2,2-Dichloropropane	5.0	U
74-97 - 5	Bromochloromethane	5.0	U ·
	Chloroform	5.0	U
	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23 <i>-</i> 5	Carbon tetrachloride	5.0	U
	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U .
	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	U
	Bromodichloromethane	5.0	U
	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	U
	Toluene	5.0	Ū
	trans-1,3-Dichloropropene	5.0	Ū
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	Ū

EPA	A SA	MPLI	E NC) •
MW-K	(2			

Lab Name: MITKEM LABORA	TORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2223
Matrix: (SOIL/SED/WATER)	WATER		Lab Sample ID:	G2223-05A
Sample wt/vol: 5.0	O (g/mL) ML		Lab File ID:	V1K2083.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/26/2008
% Moisture: not dec.			Date Analyzed:	11/29/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	· Q
127-18-4	Tetrachloroethene	1.5	J
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	9.3	
1330-20-7	m,p-Xylene	14	
95-47-6	o-Xylene	17	
	Xylene (Total)	31	
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.7	
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	13	
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	8.4	
106-43-4	4-Chlorotoluene	5.0	Ū
98-06-6	tert-Butylbenzene	5.0	Ū
95-63-6	1,2,4-Trimethylbenzene	81	
135-98-8	sec-Butylbenzene	18	
	4-Isopropyltoluene	5.0	U
	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	23	
	1,2-Dichlorobenzene	5.0	Ū
	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	Ū
	Hexachlorobutadiene	5.0	Ū
	1,2,3-Trichlorobenzene	5.0	Ü
91-20-3	Naphthalene	5.4	

EPA	SAMPLE	NO.
VEW-3		

Lab Name: MITKEM LAB	ORATORIES		Contract:		
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG	2223
Matrix: (SOIL/SED/WAT	ER) WATER		Lab Sample ID:	G2223-06A	÷
Sample wt/vol:	5.00 (g/mL) ML		Lab File ID:	V1K2084.D	
Level: (TRACE/LOW/MED) LOW		Date Received:	11/26/2008	
% Moisture: not dec.	· · · · · · · · · · · · · · · · · · ·	-	Date Analyzed:	11/29/2008	
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:	(uL
Purge Volume: 5.0		(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	. Q
75-71-8	B Dichlorodifluoromethane	5.0	_ U
74-87-3	Chloromethane	5.0	Ū
75-01-4	Vinyl chloride	5.0	Ū
	Bromomethane	5.0	Ū
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	Ū
75-35 - 4	1,1-Dichloroethene	5.0	Ū
67-64-1	Acetone	5.0	Ū
74-88-4	Iodomethane	5.0	Ū
75-15-0	Carbon disulfide	5.0	Ū
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	Ū
75-34-3	1,1-Dichloroethane	5.0	Ū
108-05-4	Vinyl acetate	5.0	Ū
78-93-3	3 2-Butanone	11	
156-59-2	cis-1,2-Dichloroethene	2.6	J
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform Chloroform	5.0	U
	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	Ü
107-06-2	1,2-Dichloroethane	5.0	Ū
71-43-2	Benzene	5.0	U .
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
	Bromodichloromethane	5.0	U
	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	U
	3 Toluene	7.9	
	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

EPA	SAMPLE	NO
VEW-3		

Lab Name: MITKEM LABORA	ATORIES			Contract:	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2223
Matrix: (SOIL/SED/WATER) WATER			Lab Sample ID:	G2223-06A
Sample wt/vol: 5.0	00 (g/mL)	ML		Lab File ID:	V1K2084.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/26/2008
% Moisture: not dec.	·			Date Analyzed:	11/29/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)

(mL)

Purge Volume: 5.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/	L Q
		(ug/L of ug/kg) 06/	
	Tetrachloroethene	1.	1 -
591-78-6	2-Hexanone	5.	0 U
124-48-1	Dibromochloromethane	5.	
	1,2-Dibromoethane	5.	
	Chlorobenzene	5.	
	1,1,1,2-Tetrachloroethane	5.	0 U
	Ethylbenzene	38	
	m,p-Xylene	150	
	o-Xylene	110	
	Xylene (Total)	260	
100-42-5		5.	0 U
75-25-2	Bromoform	5.	0 U
	Isopropylbenzene	6.	9
79-34-5	1,1,2,2-Tetrachloroethane	5.	0 0
108-86-1	Bromobenzene	5.	1
96-18-4	1,2,3-Trichloropropane	5.	0 0
103-65-1	n-Propylbenzene	8.	
	2-Chlorotoluene	5.	0 U
108-67-8	1,3,5-Trimethylbenzene	110	
106-43-4	4-Chlorotoluene	5.	0 · U ·
98-06-6	tert-Butylbenzene	5.	0 U
95-63-6	1,2,4-Trimethylbenzene	130	
135-98-8	sec-Butylbenzene	5.	1
99-87-6	4-Isopropyltoluene	12	
541-73-1	1,3-Dichlorobenzene	5.	0 U
106-46-7	1,4-Dichlorobenzene	5.	0 U
104-51-8	n-Butylbenzene	15	
95-50-1	1,2-Dichlorobenzene	25	
96-12-8	1,2-Dibromo-3-chloropropane	5.	0 U
120-82-1	1,2,4-Trichlorobenzene	5.	0 U
87-68-3	Hexachlorobutadiene	5.	0 U
87-61-6	1,2,3-Trichlorobenzene	5.	0 U
	Naphthalene	45	

	EPA	SAMPLE	NO.	
V	EW-4			

Lab Name:	MITKEM LABORA	TORIES		Contract:		
Lab Code:	MITKEM	Case No.:		Mod. Ref No.:	SDG No.: M	IG2223
Matrix: (S	OIL/SED/WATER)	WATER		Lab Sample ID:	G2223-07A	
Sample wt/	vol: 5.0	0 (g/mL) ML		Lab File ID:	V1K2249.D	
Level: (TR	ACE/LOW/MED)	LOW		Date Received:	11/26/2008	
% Moisture	: not dec.			Date Analyzed:	12/04/2008	·
GC Column:	DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0	· ·
Soil Extra	ct Volume:	•	(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volu	me: 5.0		(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q ,
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	Ū
	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	Ū
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	8.8	
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U-
156-60-5	trans-1,2-Dichloroethene	5.0	Ū
1634-04-4	Methyl tert-butyl ether	5.0	Ŭ ·
	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	8.1	1
156-59-2	cis-1,2-Dichloroethene	3.5	J
594-20-7	2,2-Dichloropropane	5.0	Ū
74-97-5	Bromochloromethane	5.0	Ū
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	Ū
56 - 23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	3.0	J
78-87-5	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	IJ:
10061-01-5	cis-1,3-Dichloropropene	5.0	Ū
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3		7.8	
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

	EPA	SAMPLE	NO.	
V.	EW-4			

Lab Name: MITKEM LABORA	ATORIES			Contract:	
Lab Code: MITKEM	Case No.:		·	Mod. Ref No.:	SDG No.: MG2223
Matrix: (SOIL/SED/WATER) WATER			Lab Sample ID:	G2223-07A
Sample wt/vol: 5.0	00 (g/mL)	ML	· 	Lab File ID:	V1K2249.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/26/2008
% Moisture: not dec.				Date Analyzed:	12/04/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	0
		(dg/E of dg/kg)	_
	Tetrachloroethene	5.0	U
	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	Ū
	1,2-Dibromoethane	5.0	U
	Chlorobenzene	5.0	Ū
	1,1,1,2-Tetrachloroethane	5.0	U
	Ethylbenzene	17	
	m,p-Xylene	84	
	o-Xylene	180	
	Xylene (Total)	270	
100-42-5		5.0	U
75-25-2	Bromoform	5.0	Ū
98-82-8	Isopropylbenzene	4.5	J
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	Ū.
96-18 - 4	1,2,3-Trichloropropane	5.0	U
	n-Propylbenzene	3.3	J
	2-Chlorotoluene	5.0	U
	1,3,5-Trimethylbenzene	100	
106-43-4	4-Chlorotoluene	5.0	U
	tert-Butylbenzene	5.0	U
	1,2,4-Trimethylbenzene	170	
135-98 - 8	sec-Butylbenzene	4.1	J
	4-Isopropyltoluene	5.0	Ü
541-73-1	1,3-Dichlorobenzene	5.0	U .
	1,4-Dichlorobenzene	1.0	J
	n-Butylbenzene	14	
	1,2-Dichlorobenzene	16	
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	Ū
	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	60	

EPA SAMPLE	NO.
VEW-2	

Lab Name: MITKEM LABORA	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2223
Matrix: (SOIL/SED/WATER)	WATER		Lab Sample ID:	G2223-08A
Sample wt/vol: 5.0	00 (g/mL) ML		Lab File ID:	V1K2250.D
Level: (TRACE/LOW/MED)	LOW	·	Date Received:	11/26/2008
% Moisture: not dec.			Date Analyzed:	12/04/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:	·	(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	Ū
	Bromomethane	5.0	Ū
75-00-3	Chloroethane	5.0	Ū
75-69-4	Trichlorofluoromethane	5.0	Ū
75-35-4	1,1-Dichloroethene	5.0	Ū
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	Ū
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	Ū
75-34-3	1,1-Dichloroethane	5.0	Ū
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	4.6	J
594-20-7	2,2-Dichloropropane	5.0	U
	Bromochloromethane	5.0	U .
67-66-3	Chloroform	5.0	Ū.
	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	Ū
	Carbon tetrachloride	5.0	Ū
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	Ū
79-01-6	Trichloroethene	5.0	Ū
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	Ū
75-27-4	Bromodichloromethane	5.0	Ü
	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	Ü
108-88-3	Toluene	5.0	. U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	Ū
142-28-9	1,3-Dichloropropane	5.0	U

LPA	SAMPLE	NO.	
VEW-2			

Lab Name: MI	TKEM LABORATO	RIES			Contract:		
Lab Code: MI	TKEM Ca	se No.:			Mod. Ref No.:	SDG No.:	MG2223
Matrix: (SOII	L/SED/WATER)	WATER			Lab Sample ID:	G2223-08A	
Sample wt/vol	L: 5.00	(g/mL)	ML		Lab File ID:	V1K2250.D	
Level: (TRACE	E/LOW/MED) LC	W			Date Received:	11/26/2008	
% Moisture: n	not dec.				Date Analyzed:	12/04/2008	•
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1:0	
Soil Extract	Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume:	5.0			(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	Ū
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	1.6	J
	m,p-Xylene	1.8	J
95-47-6	o-Xylene	4.5	J.
1330-20-7	Xylene (Total)	6.3	
100-42-5	Styrene	5.0	Ū
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	Ū
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	1.1	J
	2-Chlorotoluene	5.0	U
	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	Ū
95-63-6	1,2,4-Trimethylbenzene	9.8	
	sec-Butylbenzene	5.0	U
	4-Isopropyltoluene	5.0	U
	1,3-Dichlorobenzene	5.0	Ū-
	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	1.2	J
	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	Ū
	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	4.4	J

EPA	SAMPLE	NO.	
MW-K3			
			1

Lab Name: MITKEM LABORATO	RIES			Contract:	
Lab Code: MITKEM Ca	se No.:			Mod. Ref No.:	SDG No.: MG2223
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	G2223-09A
Sample wt/vol: 5.00	(g/mL)	ML		Lab File ID:	V1K2251.D
Level: (TRACE/LOW/MED) LC	W			Date Received:	11/26/2008
% Moisture: not dec.				Date Analyzed:	12/04/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume. 5 0			(mT.)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	Ū
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	Ū
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	Ū
67-64-1	Acetone	5.0	Ū
74-88-4	Iodomethane	5.0	Ū
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U ·
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	Ū
78-93-3	2-Butanone	5.0	Ū
156-59-2	cis-1,2-Dichloroethene	5.0	Ū
594-20-7	2,2-Dichloropropane	5.0	U
	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	Ū
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	Ū
56-23-5	Carbon tetrachloride	5.0	Ū
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	Ū
79-01-6	Trichloroethene	5.0	Ū
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	Ū
10061-01-5	cis-1,3-Dichloropropene	5.0	U.
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3		5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

	LPA	SAMPLE	NO.	_
M	IW-K3	}		1
				۱
				1

Lab Name: MITKEM LABOR	ATORIES			Contract:	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2223
Matrix: (SOIL/SED/WATER	WATER			Lab Sample ID:	G2223-09A
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V1K2251.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/26/2008
% Moisture: not dec.	·			Date Analyzed:	12/04/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purae Volume: 5.0			(mT.)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	1.2	J
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	Ū
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
	Ethylbenzene	5.0	U
	m,p-Xylene	5.0	Ū
	o-Xylene	5.0	Ū
	Xylene (Total)	5.0	Ü
	Styrene	5.0	U
	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	Ū
	1,1,2,2-Tetrachloroethane	5.0	U
	Bromobenzene	5.0	Ū
	1,2,3-Trichloropropane	5.0	Ū
	n-Propylbenzene	5.0	U
	2-Chlorotoluene	5.0	U
	1,3,5-Trimethylbenzene	5.0	U
	4-Chlorotoluene	5.0	U
	tert-Butylbenzene	5.0	Ū
	1,2,4-Trimethylbenzene	5.0	U
	sec-Butylbenzene	5.0	Ū
	4-Isopropyltoluene	5.0	U
	1,3-Dichlorobenzene	5.0	Ū
	1,4-Dichlorobenzene	5.0	U .
	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	U ·
	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

EPA	SAMPLE	NO.	
1W−15	D		

Lab Name: MITKEM LABORATO	DRIES	Contract:	
Lab Code: MITKEM C	ase No.:	Mod. Ref No.:	SDG No.: MG2223
Matrix: (SOIL/SED/WATER)	WATER	Lab Sample ID:	G2223-10A
Sample wt/vol: 5.00	(g/mL) ML	Lab File ID:	V1K2252.D
Level: (TRACE/LOW/MED) L	OW	Date Received:	11/26/2008
% Moisture: not dec.		Date Analyzed:	12/04/2008
GC Column: DB-624	ID: 0.25 (mm) Dilution Factor:	1.0
Soil Extract Volume:	(uL) Soil Aliquot Vol	ume: (uL)
Purae Volume: 5 0	· (mT.	}	

		CONCENTRATION UNITS:	·
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	- U
74-87-3	Chloromethane	5.0	Ū
75-01-4	Vinyl chloride	5.0	U
	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	ט
75-15-0	Carbon disulfide	5.0	Ū
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	Ū
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78 - 93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U .
71-55-6	1,1,1-Trichloroethane	5.0	Ū
563-58-6	1,1-Dichloropropene	5.0	Ū
	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	. U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	Ū
142-28-9	1,3-Dichloropropane	5.0	Ū

EPA	SAMPLE	NO.	
MW-15	D.		

Lab Name: N	MITKEM LABOR	ATORIES			Contract:		
Lab Code: N	MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2223	
Matrix: (SO) WATER			Lab Sample ID:	G2223-10A		
Sample wt/vo	ol: 5.	00 (g/mL)	ML		Lab File ID:	V1K2252.D	
Level: (TRA	CE/LOW/MED)	LOW			Date Received:	11/26/2008	
% Moisture:	not dec.				Date Analyzed:	12/04/2008	
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)	
Purge Volume	e: 5.0			(mL)			

		CONCENTRATION UNITS:	Q
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	Ū
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
	m,p-Xylene	5.0	Ū
	o-Xylene	5.0	U
	Xylene (Total)	5.0	Ū
100-42-5	Styrene	5.0	Ū
75-25-2	Bromoform	5.0	Ū
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103 - 65-1	n-Propylbenzene	5.0	Ū
95-49-8	2-Chlorotoluene	5.0	Ū
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	Ū
	sec-Butylbenzene	5.0	Ū
	4-Isopropyltoluene	5.0	U
	1,3-Dichlorobenzene	5.0	U
	1,4-Dichlorobenzene	5.0	Ū ·
	n-Butylbenzene	5.0	Ū
	1,2-Dichlorobenzene	5.0	Ū
	1,2-Dibromo-3-chloropropane	5.0	Ū
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	Ū
91-20-3	Naphthalene	5.0	U

E	PΑ	SAMP.	LE.	NO.	
MW-	-15	S			

Lab Name: MITKEM LABO	RATORIES		Contract:		
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2223	
Matrix: (SOIL/SED/WATE	R) WATER		Lab Sample ID:	G2223-11A	
Sample wt/vol: 5	.00 (g/mL) ML		Lab File ID:	V1K2253.D	
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/26/2008	
% Moisture: not dec.			Date Analyzed:	12/04/2008	
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5.0		(mL)			

		· .		
CAS NO.	COMPOUND	CONCENTRATION UNIT (ug/L or ug/Kg)	S: UG/L	Q
75-71-8	Dichlorodifluoromethane		5.0	Ū
74-87-3	Chloromethane		5.0	Ū
75-01-4	Vinyl chloride		5.0	U
74-83-9	Bromomethane		5.0	U
75-00-3	Chloroethane		5.0	U
75-69-4	Trichlorofluoromethane		5.0	U
75-35-4	1,1-Dichloroethene		5.0	U
67-64-1	Acetone		5.0	U
74-88-4	Iodomethane		5.0	U
75-15-0	Carbon disulfide		5.0	U
75-09-2	Methylene chloride		5.0	U .
156-60-5	trans-1,2-Dichloroethene		5.0	U
1634-04-4	Methyl tert-butyl ether		5.0	U
75-34-3	1,1-Dichloroethane		5.0	Ū
108-05-4	Vinyl acetate		5.0	Ū
78-93-3	2-Butanone		5.0	U
156-59-2	cis-1,2-Dichloroethene		5.0	U
594-20-7	2,2-Dichloropropane		5.0	U
74-97-5	Bromochloromethane		5.0	U
67-66-3	Chloroform		5.0	U
71-55-6	1,1,1-Trichloroethane		5.0	U
563-58-6	1,1-Dichloropropene		5.0	U
56-23-5	Carbon tetrachloride		5.0	Ū
107-06-2	1,2-Dichloroethane		5.0	U
71-43-2	Benzene		5.0	U
79-01-6	Trichloroethene		5.0	U
78-87-5	1,2-Dichloropropane		5.0	U
74-95-3	Dibromomethane		5.0	U
75-27-4	Bromodichloromethane		5.0	U
10061-01-5	cis-1,3-Dichloropropene		5.0	U
	4-Methyl-2-pentanone		5.0	Ü
	Toluene		1.3	J
10061-02-6	trans-1,3-Dichloropropene		5.0	U
79-00-5	1,1,2-Trichloroethane	·	5.0	U
142-28-9	1,3-Dichloropropane		5.0	U

EPA	SAMPLE	ИО

MW-15S

Lab Name: MITKEM LABORA	TORIES			Contract:	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2223
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	G2223-11A
Sample wt/vol: 5.0	0 (g/mL)	ML		Lab File ID:	V1K2253.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/26/2008
% Moisture: not dec.				Date Analyzed:	12/04/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 5.0			(mTi)		

		CONCENTRATION UNIT		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	· · · Q
127-18-4	Tetrachloroethene		5.0	U
591-78-6	2-Hexanone		5.0	U
124-48-1	Dibromochloromethane		5.0	U
106-93-4	1,2-Dibromoethane		5.0	U
108-90-7	Chlorobenzene		5.0	U
630-20-6	1,1,1,2-Tetrachloroethane		5.0	Ū
100-41-4	Ethylbenzene		5.0	Ū
1330-20-7	m,p-Xylene		5.0	Ū
	o-Xylene		5.0	U
	Xylene (Total)		5.0	U
100-42-5	Styrene		5.0	U
75-25-2	Bromoform		5.0	U
98-82-8	Isopropylbenzene		5.0	U
79-34-5	1,1,2,2-Tetrachloroethane		5.0	U
108-86-1	Bromobenzene		5.0	Ū
	1,2,3-Trichloropropane		5.0	Ū
	n-Propylbenzene		2.6	J
	2-Chlorotoluene		5.0	Ū
	1,3,5-Trimethylbenzene		25	
	4-Chlorotoluene		5.0	U -
	tert-Butylbenzene		1.4	J
	1,2,4-Trimethylbenzene	· · · · · · · · · · · · · · · · · · ·	29	
	sec-Butylbenzene		18	
	4-Isopropyltoluene		32	
	1,3-Dichlorobenzene		5.0	U
	1,4-Dichlorobenzene		5.0	U
	n-Butylbenzene		24	
	1,2-Dichlorobenzene		5.0	Ü
	1,2-Dibromo-3-chloropropane		5.0	U
	1,2,4-Trichlorobenzene		5.0	U
	Hexachlorobutadiene		5.0	U
	1,2,3-Trichlorobenzene		5.0	U
91-20-3	Naphthalene		5.0	U

E	PA.	SAMPLE	NO.	
VEV	V – 1			
				- 1

Lab Name: MITKEM LABORA	ATORIES		Contract:		
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2223	
Matrix: (SOIL/SED/WATER) WATER		Lab Sample ID:	G2223-12A	
Sample wt/vol: 5.0	00 (g/mL) ML		Lab File ID:	V1K2254.D	
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/26/2008	
% Moisture: not dec.			Date Analyzed:	12/04/2008	
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5.0		(mL)			

		CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane		5.0	Ū
74-87-3	Chloromethane		5.0	U
75-01-4	Vinyl chloride		5.0	U
74-83-9	Bromomethane		5.0	U
75-00-3	Chloroethane		5.0	U
75-69-4	Trichlorofluoromethane		5.0	U
75-35-4	1,1-Dichloroethene		5.0	U
67-64-1	Acetone		34	
74-88-4	Iodomethane		5.0	U
75-15-0	Carbon disulfide		5.0	U
75-09-2	Methylene chloride		5.0	U
156-60-5	trans-1,2-Dichloroethene		5.0	U
1634-04-4	Methyl tert-butyl ether		5.0	U
75-34-3	1,1-Dichloroethane		5.0	U
108-05-4	Vinyl acetate		5.0	U
78-93-3	2-Butanone		17	
156-59-2	cis-1,2-Dichloroethene		8.4	
594-20-7	2,2-Dichloropropane		5.0	U
74-97-5	Bromochloromethane		5.0	U
67 - 66-3	Chloroform		5.0	U
71-55-6	1,1,1-Trichloroethane		5.0	U
563-58-6	1,1-Dichloropropene		5.0	U
56-23-5	Carbon tetrachloride		5.0	U
107-06-2	1,2-Dichloroethane		5.0	U
71-43-2	Benzene		5.0	U
79-01-6	Trichloroethene		3.1	J
78-87 - 5	1,2-Dichloropropane		5.0	U
	Dibromomethane		5.0	U .
75-27-4	Bromodichloromethane		5.0	Ū
10061-01-5	cis-1,3-Dichloropropene		5.0	U
108-10-1	4-Methyl-2-pentanone		5.0	U
108-88-3	Toluene		4.4	J .
	trans-1,3-Dichloropropene		5.0	Ū
79-00-5	1,1,2-Trichloroethane		5.0	U
142-28-9	1,3-Dichloropropane		5.0	Ū

EPA	SAMPLE	NO.	
VEW-1			

Lab Name: MITKEM LABO	RATORIES	٠		Contract:	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2223
Matrix: (SOIL/SED/WATE	R) WATER			Lab Sample ID:	G2223-12A
Sample wt/vol: 5	.00 (g/mL)	ML		Lab File ID:	V1K2254.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/26/2008
% Moisture: not dec.				Date Analyzed:	12/04/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		-	(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	¹ Q
127-18-4	Tetrachloroethene	1.7	J
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	Ū
106-93-4	1,2-Dibromoethane	5.0	Ū
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
	Ethylbenzene	54	
	m,p-Xylene	100	
95-47-6	o-Xylene	320	E
	Xylene (Total)	420	
100-42-5	Styrene	5.0	Ū ·
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	23	
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
	n-Propylbenzene	30	
	2-Chlorotoluene	5.0	U
	1,3,5-Trimethylbenzene	360	E
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	360	E
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	Ū
	1,4-Dichlorobenzene	2.3	J
	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	34	
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

EPA	SAMPLE	NO.	
VEW-1	DL		

Lab Name: MITKEM LABORA	TORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2223
Matrix: (SOIL/SED/WATER)	WATER		Lab Sample ID:	G2223-12ADL
Sample wt/vol: 5.0	00 (g/mL) <u>M</u> L		Lab File ID:	V1K2275.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/26/2008
% Moisture: not dec.			Date Analyzed:	12/04/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	5.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	25	U
74-87-3	Chloromethane	25	U
75-01-4	Vinyl chloride	25	U
74-83-9	Bromomethane	25	Ü
75-00-3	Chloroethane	25	Ū
75-69-4	Trichlorofluoromethane	25	Ū
75-35-4	1,1-Dichloroethene	25	U
67-64-1	Acetone	25	Ū
74-88-4	Iodomethane	25	U
75-15-0	Carbon disulfide	25	U
75-09-2	Methylene chloride	25	U
156-60-5	trans-1,2-Dichloroethene	25	U
1634-04-4	Methyl tert-butyl ether	25	Ū
75-34-3	1,1-Dichloroethane	25	U
108-05-4	Vinyl acetate	25	U
78-93-3	2-Butanone	25	Ū.
156-59-2	cis-1,2-Dichloroethene	76	D
594-20 - 7	2,2-Dichloropropane	25	U
74-97-5	Bromochloromethane	25	U
67-66-3	Chloroform	25	U
71-55-6	1,1,1-Trichloroethane	25	U
563-58-6	1,1-Dichloropropene	25	U
56-23-5	Carbon tetrachloride	25	U
107-06-2	1,2-Dichloroethane	25	U
71-43-2	Benzene	25	U
79-01-6	Trichloroethene	25	Ū
78-87-5	1,2-Dichloropropane	25	U
74-95-3	Dibromomethane	25	U
75-27-4	Bromodichloromethane	25	Ū-
	cis-1,3-Dichloropropene	25	U
108-10-1	4-Methyl-2-pentanone	25	U
	Toluene	25	U
	trans-1,3-Dichloropropene	25	Ū
	1,1,2-Trichloroethane	25	Ū
142-28-9	1,3-Dichloropropane	25	U

EPA	SAMPLE	NO.
VEW-1	DL	

Lab Name: MITKEM LABORA	ATORIES	-		Contract:	-
Lab Code: MITKEM	Case No.:	<u></u>		Mod. Ref No.:	SDG No.: MG2223
Matrix: (SOIL/SED/WATER)) WATER			Lab Sample ID:	G2223-12ADL
Sample wt/vol: 5.0	00 (g/mL)	ML		Lab File ID:	V1K2275.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/26/2008
% Moisture: not dec.				Date Analyzed:	12/04/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	5.0
Soil Extract Volume:		·	(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mT.)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/	/L Q
127-18-4	Tetrachloroethene	25	U
591-78-6	2-Hexanone	25	U
124-48-1	Dibromochloromethane	25	Ū
106-93-4	1,2-Dibromoethane	25	Ū
108-90-7	Chlorobenzene	25	Ū ·
630-20-6	1,1,1,2-Tetrachloroethane	25	U
100-41-4	Ethylbenzene	50	D
1330-20-7	m,p-Xylene	98	D
95-47-6	o-Xylene	- 330	D
	Xylene (Total)	430	D
	Styrene	25	U
	Bromoform	25	U
98-82-8	Isopropylbenzene	21	DJ
79-34-5	1,1,2,2-Tetrachloroethane	25	U
108-86-1	Bromobenzene	25	U
96-18-4	1,2,3-Trichloropropane	25	U
103-65-1	n-Propylbenzene	29	D
95-49-8	2-Chlorotoluene	25	U
108-67-8	1,3,5-Trimethylbenzene	410	D
106-43-4	4-Chlorotoluene	25	U
98-06-6	tert-Butylbenzene	25	U
	1,2,4-Trimethylbenzene	410	D
135-98-8	sec-Butylbenzene	31	D
99-87-6	4-Isopropyltoluene	25	U
541-73-1	1,3-Dichlorobenzene	25	U
	1,4-Dichlorobenzene	25	U
104-51-8	n-Butylbenzene	82	D
95-50-1	1,2-Dichlorobenzene	34	D
96-12-8	1,2-Dibromo-3-chloropropane	25	U
	1,2,4-Trichlorobenzene	25	U
	Hexachlorobutadiene	25	U .
	1,2,3-Trichlorobenzene	25	U
91-20-3	Naphthalene	150	D

EPA SAMPLE NO.

Trip Blank

Lab Name: MITKEM LABORATO	DRIES			Contract:	
Lab Code: MITKEM C	ase No.:			Mod. Ref No.:	SDG No.: MG2223
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	G2223-13A
Sample wt/vol: 5.00	(g/mL)	ML		Lab File ID:	V1K2247.D
Level: (TRACE/LOW/MED) L	WC			Date Received:	11/26/2008
% Moisture: not dec.				Date Analyzed:	12/04/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	Ū
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	Ū
75-34-3	1,1-Dichloroethane	_5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	Ū
	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	Ū
563-58-6	1,1-Dichloropropene	5.0	U
	Carbon tetrachloride	5.0	Ü
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	Ū
	cis-1,3-Dichloropropene	5.0	Ū
	4-Methyl-2-pentanone	5.0	Ū ·
	Toluene	5.0	Ū
10061-02-6	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	Ū
142-28-9	1,3-Dichloropropane	5.0	Ū

EPA SAMPLE NO.
Trip Blank

Lab Name:	MITKEM LABORA	TORIES			Contract:	
Lab Code:	MITKEM	Case No.:	<u> </u>		Mod. Ref No.:	SDG No.: MG2223
Matrix: (S	COIL/SED/WATER)	WATER			Lab Sample ID:	G2223-13A
Sample wt/	vol: 5.0	0 (g/mL)	ML		Lab File ID:	V1K2247.D
Level: (TR	ACE/LOW/MED)	LOW			Date Received:	11/26/2008
% Moisture	: not dec.				Date Analyzed:	12/04/2008
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volu	me: 5.0			- (mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78 - 6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	Ū
100-41-4	Ethylbenzene	5.0	U
	m,p-Xylene	5.0	Ū
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	Ū
75-25-2	Bromoform	5.0	Ū
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	Ū
95-49-8	2-Chlorotoluene	5.0	Ū
	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	Ū
98-06-6	tert-Butylbenzene	5.0	U
	1,2,4-Trimethylbenzene	5.0	Ū
	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	Ū
541-73-1	1,3-Dichlorobenzene	5.0	Ū
	1,4-Dichlorobenzene	5.0	Ū
	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	Ū
	1,2-Dibromo-3-chloropropane	5.0	Ū
	1,2,4-Trichlorobenzene	5.0	Ū
	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

EPA	SAMPLE	NO.	
V1ILC	Ş	*****	

Lab Name: MITKEM LABORA	TORIES			Contract:		
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2223	
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	LCS-40389	
Sample wt/vol: 5.0	00 (g/mL)	ML	· .	Lab File ID:	V1K2065.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:		
% Moisture: not dec.				Date Analyzed:	11/29/2008	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5.0			(mT.)			

		CONCENTRATION UNIT	'S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane		39	
74-87-3	Chloromethane		45	
75-01-4	Vinyl chloride		43	
	Bromomethane		51	
75-00-3	Chloroethane		47	
75-69-4	Trichlorofluoromethane		47	
75-35-4	1,1-Dichloroethene		45	*****
67-64-1	Acetone		48	
74-88-4	Iodomethane		51	
75-15-0	Carbon disulfide		38	
75-09-2	Methylene chloride		47	
156-60-5	trans-1,2-Dichloroethene		47	
1634-04-4	Methyl tert-butyl ether		51	
75-34-3	1,1-Dichloroethane		48	
108-05-4	Vinyl acetate		51	
78-93-3	2-Butanone		53	
156-59-2	cis-1,2-Dichloroethene		49	
594-20-7	2,2-Dichloropropane		48	
74-97-5	Bromochloromethane		55	
67-66-3	Chloroform		49	
71-55-6	1,1,1-Trichloroethane		47	
563-58-6	1,1-Dichloropropene		45	
	Carbon tetrachloride		46	
107-06-2	1,2-Dichloroethane		51	
71-43-2	Benzene		49	٠.
79-01-6	Trichloroethene		48	
78-87-5	1,2-Dichloropropane		51	
	Dibromomethane		52	
75-27-4	Bromodichloromethane		50	
	cis-1,3-Dichloropropene		52	
108-10-1	4-Methyl-2-pentanone		53	
108-88-3	Toluene		49	
10061-02-6	trans-1,3-Dichloropropene		52	
79-00-5	1,1,2-Trichloroethane		52	
142-28-9	1,3-Dichloropropane		52	

EPA	SAMPLE	NO.	
V1ILC	S		

Lab Name: MITKEM LABORAT	ORIES	Contract:	
Lab Code: MITKEM C	ase No.:	Mod. Ref No.:	SDG No.: MG2223
Matrix: (SOIL/SED/WATER)	WATER	Lab Sample ID:	LCS-40389
Sample wt/vol: 5.00	(g/mL) ML	Lab File ID:	V1K2065.D
Level: (TRACE/LOW/MED) L	OW	Date Received:	
% Moisture: not dec.		Date Analyzed:	11/29/2008
GC Column: DB-624	ID: 0.25 (mm	n) Dilution Factor:	1.0
Soil Extract Volume:	(uL) Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0	(mL	.)	*

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	50	
591-78-6	2-Hexanone	52	
124-48-1	Dibromochloromethane	52	
106-93-4	1,2-Dibromoethane	54	
108-90-7	Chlorobenzene	51	
630-20-6	1,1,1,2-Tetrachloroethane	53	
100-41-4	Ethylbenzene	49	
	m,p-Xylene	99	
	o-Xylene	50	
	Xylene (Total)	150	
100-42-5		49	
	Bromoform	56	
	Isopropylbenzene	49	
79-34-5	1,1,2,2-Tetrachloroethane	52	
108-86-1	Bromobenzene	49	
	1,2,3-Trichloropropane	53	
	n-Propylbenzene	47	
	2-Chlorotoluene	4.8	
	1,3,5-Trimethylbenzene	48	
	4-Chlorotoluene	49	
	tert-Butylbenzene	47	
	1,2,4-Trimethylbenzene	48	
	sec-Butylbenzene	4.7	
	4-Isopropyltoluene	47	
	1,3-Dichlorobenzene	49	
	1,4-Dichlorobenzene	49	
	n-Butylbenzene	47	
	1,2-Dichlorobenzene	49	
	1,2-Dibromo-3-chloropropane	52	
	1,2,4-Trichlorobenzene	48	
	Hexachlorobutadiene	47	
	1,2,3-Trichlorobenzene	46	
91-20-3	Naphthalene	4.4	

EPA	SAMPLE	NO.	
V1ILC	CSD		

Lab Name: MITKEM LABORATORIES			Contract:	-10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.:	MG2223
<pre>Matrix: (SOIL/SED/WATER)</pre>	WATER			Lab Sample ID:	LCSD-40389	
Sample wt/vol: 5.00) (g/mL)	ML		Lab File ID:	V1K2066.D	
Level: (TRACE/LOW/MED)	LOM			Date Received:		
% Moisture: not dec.				Date Analyzed:	11/29/2008	·
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:		MICHAEL ET MICHAEL ET	(uL)	Soil Aliquot Vol	ume:	(uL
Purge Volume: 5.0			(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) U	G/L Q
75-71-8	Dichlorodifluoromethane	3	5
74-87-3	Chloromethane	4	1
75-01-4	Vinyl chloride	3	8
	Bromomethane	. 4	6
75-00-3	Chloroethane	4	3
75-69-4	Trichlorofluoromethane	4	4
75-35-4	1,1-Dichloroethene	4	0
67-64-1	Acetone	4	6
74-88-4	Iodomethane	4	9
75-15-0	Carbon disulfide	3	5
75-09-2	Methylene chloride	4	5
156-60-5	trans-1,2-Dichloroethene	4	3
1634-04-4	Methyl tert-butyl ether	5	0
	1,1-Dichloroethane	4	5
108-05-4	Vinyl acetate	4	9
78-93-3	2-Butanone	. 5	3
156-59-2	cis-1,2-Dichloroethene	4	6
594-20-7	2,2-Dichloropropane	4	3
74-97-5	Bromochloromethane	5	2
67-66-3	Chloroform	. 4	6
71-55-6	1,1,1-Trichloroethane	4	4
563-58-6	1,1-Dichloropropene	4	1
56-23-5	Carbon tetrachloride	4	2
107-06-2	1,2-Dichloroethane	4	9
71-43-2	Benzene	4	5
79-01-6	Trichloroethene	4	5
78-87-5	1,2-Dichloropropane	4	8
74-95-3	Dibromomethane	5	0 '
75-27-4	Bromodichloromethane	4	9
10061-01-5	cis-1,3-Dichloropropene	4	9
108-10-1	4-Methyl-2-pentanone	5	3
108-88-3	Toluene	4	6
10061-02-6	trans-1,3-Dichloropropene	5	1.
	1,1,2-Trichloroethane	. 5	0
142-28-9	1,3-Dichloropropane	5	1

	EPA	SAMPLE	NO.	
V	1ILC	SD		

Lab Name: MITKEM LABORA	TORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2223
Matrix: (SOIL/SED/WATER)	WATER		Lab Sample ID:	LCSD-40389
Sample wt/vol: 5.0	0 (g/mL) ML		Lab File ID:	V1K2066.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	
% Moisture: not dec.			Date Analyzed:	11/29/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNIT		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
127-18-4	Tetrachloroethene		47	
591-78-6	2-Hexanone		53	
124-48-1	Dibromochloromethane		52	
106-93-4	1,2-Dibromoethane		52	
108-90-7	Chlorobenzene		48	
630-20-6	1,1,1,2-Tetrachloroethane		50	
100-41-4	Ethylbenzene		46	
1330-20-7	m,p-Xylene		93	
	o-Xylene		48	
	Xylene (Total)		140	
100-42-5	Styrene		46	
75-25-2	Bromoform		54	
98-82-8	Isopropylbenzene	·	45	
79-34-5	1,1,2,2-Tetrachloroethane		52	
	Bromobenzene		4.7	
	1,2,3-Trichloropropane		51	
	n-Propylbenzene		43	
	2-Chlorotoluene		4.5	
	1,3,5-Trimethylbenzene		44	
	4-Chlorotoluene		46	
	tert-Butylbenzene		4 4	
	1,2,4-Trimethylbenzene		45	
	sec-Butylbenzene		43	
	4-Isopropyltoluene		43	
	1,3-Dichlorobenzene		46	
	1,4-Dichlorobenzene		46	
	n-Butylbenzene		43	
	1,2-Dichlorobenzene		47	
	1,2-Dibromo-3-chloropropane		54	
	1,2,4-Trichlorobenzene		48	
	Hexachlorobutadiene		4 4	
	1,2,3-Trichlorobenzene		48	
91-20-3	Naphthalene		47	

EPA	SAMPLE	NO.
V1OLC	:S	

Lab Name: MITKEM LABOR	ATORIES			Contract:		
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2223	3
Matrix: (SOIL/SED/WATER	WATER			Lab Sample ID:	LCS-40499	
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V1K2214.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:		
% Moisture: not dec.			<u> </u>	Date Analyzed:	12/03/2008	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume: _			(uL)	Soil Aliquot Vol	ume:	(uL)
Purae Volume: 5.0			(mT.)			

		CONCENTRATION UNITS:	
AS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	40	
74-87-3	Chloromethane	43	
75 - 01-4	Vinyl chloride	42	
74-83-9	Bromomethane	48	
75-00-3	Chloroethane	46	
75-69-4	Trichlorofluoromethane	50	
75-35-4	1,1-Dichloroethene	45	
67-64-1	Acetone	4.4	
74-88-4	Iodomethane	45	
75-15-0	Carbon disulfide	55	
75-09-2	Methylene chloride	47	
	trans-1,2-Dichloroethene	49	
1634-04-4	Methyl tert-butyl ether	51	
	1,1-Dichloroethane	47	
108-05-4	Vinyl acetate	49	
	2-Butanone	52	
156-59-2	cis-1,2-Dichloroethene	50	
594-20-7	2,2-Dichloropropane	46	
74-97-5	Bromochloromethane	5.4	
67-66-3	Chloroform	50	
71-55-6	1,1,1-Trichloroethane	48	
	1,1-Dichloropropene	48	
	Carbon tetrachloride	47	,
107-06-2	1,2-Dichloroethane	52	
	Benzene	49	
79-01-6	Trichloroethene	52	В
78-87-5	1,2-Dichloropropane	49	
74-95-3	Dibromomethane	54	
75-27-4	Bromodichloromethane	51	:
0061-01-5	cis-1,3-Dichloropropene	50	
	4-Methyl-2-pentanone	53	
108-88-3		50	
0061-02-6	trans-1,3-Dichloropropene	52	
	1,1,2-Trichloroethane	54	
142-28-9	1,3-Dichloropropane	51	1

EPA	SAMPLE	NO.
V10LC	:S	

Lab Name: MITKEM LABORATORIES		Contract:		
Lab Code: MITKEM Case No.:		Mod. Ref No.:	SDG No.: MG2223	
Matrix: (SOIL/SED/WATER) WATER		Lab Sample ID:	LCS-40499	
Sample wt/vol: 5.00 (g/mL) ML		Lab File ID:	V1K2214.D	
Level: (TRACE/LOW/MED) LOW	~~~	Date Received:		
% Moisture: not dec.		Date Analyzed:	12/03/2008	
GC Column: DB-624 ID: 0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:	(uL)	Soil Aliquot Vol	ame:	(uL)
Purge Volume: 5.0	(mL)			

		CONCENTRATION UNITS	·		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q	
127-18-4	Tetrachloroethene		53		
591-78-6	2-Hexanone		51		
124-48-1	Dibromochloromethane		52		
106-93-4	1,2-Dibromoethane		53		
108-90-7	Chlorobenzene		51		
630-20-6	1,1,1,2-Tetrachloroethane		50		
100-41-4	Ethylbenzene		50		
	m,p-Xylene		100		
95 - 47-6	o-Xylene		51		
	Xylene (Total)		150		
100-42-5			51		
	Bromoform		55		
	Isopropylbenzene		48		
	1,1,2,2-Tetrachloroethane		52		
	Bromobenzene		51	*****	
96-18-4	1,2,3-Trichloropropane		50		
	n-Propylbenzene		48		
	2-Chlorotoluene		49		
	1,3,5-Trimethylbenzene		47		
	4-Chlorotoluene		49		
	tert-Butylbenzene		47		
	1,2,4-Trimethylbenzene		48		
	sec-Butylbenzene		47		
	4-Isopropyltoluene		47		
	1,3-Dichlorobenzene		49		
	1,4-Dichlorobenzene		49		
	n-Butylbenzene		46		
	1,2-Dichlorobenzene		50		
	1,2-Dibromo-3-chloropropane		53		
	1,2,4-Trichlorobenzene		48		
	Hexachlorobutadiene		46		
	1,2,3-Trichlorobenzene		46		
91-20-3	Naphthalene		46		

EPA	SAMPLE	NO.	
V1PLC	CS		

Lab Name: MITKEM LABORA	ATORIES			Contract:	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2223
Matrix: (SOIL/SED/WATER) WATER			Lab Sample ID:	LCS-40500
Sample wt/vol: 5.0	00 (g/mL)	ML		Lab File ID:	V1K2244.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	
% Moisture: not dec.		-		Date Analyzed:	12/04/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG	/L Q
75-71-8	Dichlorodifluoromethane	34	
74-87-3	Chloromethane	44	
75-01-4	Vinyl chloride	45	
	Bromomethane	49	
75-00-3	Chloroethane	48	
75-69-4	Trichlorofluoromethane	53	
75-35-4	1,1-Dichloroethene	49	
67-64-1	Acetone	43	
74-88-4	Iodomethane	49	
75-15-0	Carbon disulfide	58	
75-09-2	Methylene chloride	47	
156-60-5	trans-1,2-Dichloroethene	49	
1634-04-4	Methyl tert-butyl ether	48	
75-34-3	1,1-Dichloroethane	48	
108-05-4	Vinyl acetate	46	
78 - 93 - 3	2-Butanone	46	
156-59-2	cis-1,2-Dichloroethene	50	
594-20-7	2,2-Dichloropropane	41	
	Bromochloromethane	52	
67-66-3	Chloroform	50	
71-55-6	1,1,1-Trichloroethane	49	
563-58-6	1,1-Dichloropropene	50	
56-23-5	Carbon tetrachloride	48	
107-06-2	1,2-Dichloroethane	49	
71-43-2	Benzene	50	
79-01-6	Trichloroethene	51	
78-87-5	1,2-Dichloropropane	49	
74-95-3	Dibromomethane	49	
75-27-4	Bromodichloromethane	50	
10061-01-5	cis-1,3-Dichloropropene	49	
108-10-1	4-Methyl-2-pentanone	46	1
108-88-3	Toluene	51	
10061-02-6	trans-1,3-Dichloropropene	49	
79-00-5	1,1,2-Trichloroethane	5.0	
142-28-9	1,3-Dichloropropane	49	

	EPA	SAMPLE	NO.	
V	1PLC	:S		

Lab Name: MITKEM LABORA	TORIES			Contract:	
Lab Code: MITKEM	Case No.:		· · · · · · · · · · · · · · · · · · ·	Mod. Ref No.:	SDG No.: MG2223
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	LCS-40500
Sample wt/vol: 5.0	00 (g/mL)	ML		Lab File ID:	V1K2244.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	
% Moisture: not dec.				Date Analyzed:	12/04/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 5 0			/mT.\		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L Q
127-18-4	Tetrachloroethene		56
591 - 78-6	2-Hexanone		45
124-48-1	Dibromochloromethane		48
106-93-4	1,2-Dibromoethane		50
108-90-7	Chlorobenzene		50
630-20-6	1,1,1,2-Tetrachloroethane		50
	Ethylbenzene		50
	m,p-Xylene	11	00
	o-Xylene		51
	Xylene (Total)	1.	50
100-42-5			51
	Bromoform		49
	Isopropylbenzene		50
	1,1,2,2-Tetrachloroethane		49
	Bromobenzene		51
	1,2,3-Trichloropropane		44
	n-Propylbenzene		50
	2-Chlorotoluene		49
	1,3,5-Trimethylbenzene	·	50
	4-Chlorotoluene		50
	tert-Butylbenzene		49
	1,2,4-Trimethylbenzene		49
	sec-Butylbenzene		49
	4-Isopropyltoluene		49
	1,3-Dichlorobenzene		49
	1,4-Dichlorobenzene		50
	n-Butylbenzene		47 .
	1,2-Dichlorobenzene		49
	1,2-Dibromo-3-chloropropane		4 4
	1,2,4-Trichlorobenzene		47
	Hexachlorobutadiene		47
	1,2,3-Trichlorobenzene		4.5
91-20-3	Naphthalene		41

EPA	SAMPLE	NO.
V1PLC	SD	

Lab Name:	MITKEM LABORATO	DRIES			Contract:	
Lab Code:	MITKEM C	ase No.:			Mod. Ref No.:	SDG No.: MG2223
Matrix: (SC	OIL/SED/WATER)	WATER		·	Lab Sample ID:	LCSD-40500
Sample wt/v	701: 5.00	(g/mL)	ML		Lab File ID:	V1K2245.D
Level: (TRA	ACE/LOW/MED) Lo	DW			Date Received:	
% Moisture:	not dec.				Date Analyzed:	12/04/2008
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extrac	ct Volume:			(uL)	Soil Aliquot Vol	ume: (uL
Purge Volum	ne: 5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	35	
74-87-3	Chloromethane	47	
75-01-4	Vinyl chloride	49	
	Bromomethane	. 53	-
75-00-3	Chloroethane	52	
75-69-4	Trichlorofluoromethane	57	
75-35-4	1,1-Dichloroethene	53	
67-64-1	Acetone	43	
74-88-4	Iodomethane	55	
75-15-0	Carbon disulfide	41	
75-09-2	Methylene chloride	50	
156-60-5	trans-1,2-Dichloroethene	51	
1634-04-4	Methyl tert-butyl ether	49	
75-34-3	1,1-Dichloroethane	51	
108-05-4	Vinyl acetate	49	
78-93 - 3	2-Butanone	47	
156-59-2	cis-1,2-Dichloroethene	53	
	2,2-Dichloropropane	45	
	Bromochloromethane	55	
67-66-3	Chloroform	52	
71-55-6	1,1,1-Trichloroethane	52	
	1,1-Dichloropropene	51	
56-23-5	Carbon tetrachloride	51	
107-06-2	1,2-Dichloroethane	52	
	Benzene	53	
	Trichloroethene	5.4	
	1,2-Dichloropropane	52	
	Dibromomethane	52	
	Bromodichloromethane	53	
	cis-1,3-Dichloropropene	. 51	
	4-Methyl-2-pentanone	47	
	Toluene	53	
	trans-1,3-Dichloropropene	51	
	1,1,2-Trichloroethane	51	
142-28-9	1,3-Dichloropropane	50	

EPA	SAMPLE	NO.	
V1PLC	SD		
			1

Lab Name: MITKEM LABORA	TORIES		Contract:	6
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2223
Matrix: (SOIL/SED/WATER)	WATER		Lab Sample ID:	LCSD-40500
Sample wt/vol: 5.0	0 (g/mL) ML		Lab File ID:	V1K2245.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	
% Moisture: not dec.	·		Date Analyzed:	12/04/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	59	
591-78-6	2-Hexanone	45	
124-48-1	Dibromochloromethane	50	***
106-93-4	1,2-Dibromoethane	52	
108-90-7	Chlorobenzene	52	
630-20-6	1,1,1,2-Tetrachloroethane	53	
100-41-4	Ethylbenzene	53	
	m,p-Xylene	110	· · i
95-47-6	o-Xylene	53	
	Xylene (Total)	160	
100-42-5	Styrene	54	
75-25-2	Bromoform	51	
98-82-8	Isopropylbenzene	52	
79-34-5	1,1,2,2-Tetrachloroethane	50	
108-86-1	Bromobenzene	52	
96-18-4	1,2,3-Trichloropropane	45	
	n-Propylbenzene	50	
95-49-8	2-Chlorotoluene	50	
	1,3,5-Trimethylbenzene	50	
106-43-4	4-Chlorotoluene	51	
98-06-6	tert-Butylbenzene	49	
95-63-6	1,2,4-Trimethylbenzene	50	
135-98-8	sec-Butylbenzene	49	
	4-Isopropyltoluene	49	
	1,3-Dichlorobenzene	50	
	1,4-Dichlorobenzene	50	
	n-Butylbenzene	48	
	1,2-Dichlorobenzene	50	
	1,2-Dibromo-3-chloropropane	48	
	1,2,4-Trichlorobenzene	48	
	Hexachlorobutadiene	47	
	1,2,3-Trichlorobenzene	47	
91-20-3	Naphthalene	44	

	EPA	SAMPLE	NO.	
Ÿ	1QLC	:S		
				1

Lab Name: MITKEM LABORA	TORIES		Contract:		
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2223	
Matrix: (SOIL/SED/WATER)	WATER		Lab Sample ID:	LCS-40526	
Sample wt/vol: 5.0	0 (g/mL) ML		Lab File ID:	V1K2264.D	
Level: (TRACE/LOW/MED)	LOW		Date Received:		
% Moisture: not dec.		· 	Date Analyzed:	12/04/2008	
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:	(uL
Purge Volume: 5.0		(mL)			

		CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane		33	
74-87-3	Chloromethane		39	
75-01-4	Vinyl chloride		39	
	Bromomethane		45	
75-00-3	Chloroethane		42	
75-69-4	Trichlorofluoromethane		45	
75-35-4	1,1-Dichloroethene		41	
67-64-1	Acetone		48	
74-88-4	Iodomethane		43	
75-15-0	Carbon disulfide	·	32	
75-09-2	Methylene chloride		34	
156-60-5	trans-1,2-Dichloroethene		44	
1634-04-4	Methyl tert-butyl ether		49	
75-34-3	1,1-Dichloroethane		4 4	
108-05-4	Vinyl acetate		46	
78-93-3	2-Butanone		51	
156-59-2	cis-1,2-Dichloroethene		45	
	2,2-Dichloropropane		41	
	Bromochloromethane		51	
67-66-3	Chloroform		46	
71-55-6	1,1,1-Trichloroethane		45	
563-58-6	1,1-Dichloropropene		42	
	Carbon tetrachloride		43	
107-06-2	1,2-Dichloroethane		48	-
71-43-2	Benzene		45	
79-01-6	Trichloroethene		46	
	1,2-Dichloropropane		45	
	Dibromomethane		50	
	Bromodichloromethane		46	
10061-01-5	cis-1,3-Dichloropropene		48	
	4-Methyl-2-pentanone		51	
108-88-3			46	
	trans-1,3-Dichloropropene		49	
	1,1,2-Trichloroethane		50	
142-28-9	1,3-Dichloropropane		49	

	EPA	SAMPLE	NO.	
V	1QLC	S		
				ı

Lab Name: MITKEM LABORATO	DRIES		Contract:		
Lab Code: MITKEM Ca	ase No.:		Mod. Ref No.:	SDG No.: MG2223	
Matrix: (SOIL/SED/WATER)	WATER		Lab Sample ID:	LCS-40526	
Sample wt/vol: 5.00	(g/mL) ML		Lab File ID:	V1K2264.D	
Level: (TRACE/LOW/MED) LO	DW .		Date Received:		
% Moisture: not dec.			Date Analyzed:	12/04/2008	
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (1	uL)
Purge Volume: 5.0		(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/I	. Q
127-18-4	Tetrachloroethene	51	
591-78-6	2-Hexanone	51	
124-48-1	Dibromochloromethane	49	
106-93-4	1,2-Dibromoethane	51	
108-90-7	Chlorobenzene	47	
630-20-6	1,1,1,2-Tetrachloroethane	49	
100-41-4	Ethylbenzene	46	
1330-20-7	m,p-Xylene	. 93	
95-47-6	o-Xylene	47	
1330-20-7	Xylene (Total)	140	
100-42-5	Styrene	47	
75-25-2	Bromoform	55	
98-82-8	Isopropylbenzene	45	
	1,1,2,2-Tetrachloroethane	52	
108-86-1	Bromobenzene	45	
96-18-4	1,2,3-Trichloropropane	50	
103-65-1	n-Propylbenzene	44	
95-49-8	2-Chlorotoluene	44	
108-67-8	1,3,5-Trimethylbenzene	44	
	4-Chlorotoluene	46	
98-06-6	tert-Butylbenzene	43	
95-63-6	1,2,4-Trimethylbenzene	44	·
135-98-8	sec-Butylbenzene	42	
99-87-6	4-Isopropyltoluene	43	
541-73-1	1,3-Dichlorobenzene	45	
106-46-7	1,4-Dichlorobenzene	45	
104-51-8	n-Butylbenzene	41	
95-50-1	1,2-Dichlorobenzene	47	
96-12-8	1,2-Dibromo-3-chloropropane	54	
120-82-1	1,2,4-Trichlorobenzene	46	
87-68-3	Hexachlorobutadiene	41	
	1,2,3-Trichlorobenzene	47	
91-20-3	Naphthalene	48	

2B - FORM II VOA-2: WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: Mod. Ref No.: SDG No.: MG2223

Level: (TRACE or LOW) LOW

	EPA	VDMC1			T7DNA~~		7700401				1	. m o m
	CAMPIE NO	(5555) "	VDMC2		VDMC3	,,	VDMC4					TOT
	SAMPLE NO.	(DBFM) #	(DCE)	#	(TOL)	#	(BFB)	#				
	VBLK1I	97	96		100		100					0
	V1ILCS	98	99		100		103				,	0
L	V1ILCSD	96	98		99		103					0
04	MW-8S	98	100		100		103					0
05	MW-8D	98	95		101		98					0
06 1	MW-K2	96	96		· 101		102					0
07 7	VEW-3	99	99		100		102					0
7 80	VBLK10	98	100		99		97					0
09 7	V10LCS	98	98		97		102					0
10 7	ASW	98	96		98		102				:	0
11 1	VBLK1P	97	95		98		99					0
12 \	V1PLCS	95	98		99		104					0
13 7	V1PLCSD	99	101		99		103					0
14 7	Trip Blank	97	96		99		97					0
15 E	FLUSH MOUNT	98	95		100		98					0
16 7	JEW-4	96	96		99		100			-		0
17 \	VEW-2	96	97		101		101					0
18	MW-K3	97	94		100		98			-	_	0
19 N	MW-15D	97	98		101		100					0
20 N	MW-15S	97	97		99		101					0
21 \	VEW-1	97	101		99		102					0
22 I	ASWDL	98	97		101		103					0
23 1	VBLK1Q	100	101		101		99					0
24 \	V1QLCS	97	97		99		102					0
25 \	VEW-1DL	98	102		99		99			<u> </u>		0

		QC LIMITS
VDMC1	(DBFM) Dibromofluoromethane	(85-115)
VDMC2	(DCE) = 1,2-Dichloroethane-d4	(70-120)
VDMC3	(TOL) = Toluene-d8	(85-120)
VDMC4	(BFB) = Bromofluorobenzene	(75-120)

[#] Column to be used to flag recovery values

Page 1 of 1

SW846

^{*} Values outside of contract required QC limits

EPA SAMPLE NO.

V1ILCS

Lab Name:	MITKEM LABORATORIES	Contract:	
		= .	-

Lab Code: MITKEM Case No.: Mod. Ref No.: SDG No.: MG2223

Lab Sample ID: LCS-40389 LCS Lot No.:

Date Extracted: 11/29/2008 Date Analyzed (1): 11/29/2008

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
						REC.
Dichlorodifluoromethane	50.0000	0.0000	39.2223	78		30 - 15
Chloromethane	50.0000	0.0000	45.1537	90		40 - 12
/inyl chloride	50.0000	0.0000	42.8961	86		50 - 14
Bromomethane	50.0000	0.0000	50.8592	102		30 - 14
Chloroethane	50.0000	0.0000	47.1369	94		60 - 13
richlorofluoromethane	50.0000	0.0000	47.4124	95		60 - 14
,1-Dichloroethene	50.0000	0.0000	44.9421	90		70 - 13
cetone	50.0000	0.0000	47.7495	95		40 - 14
odomethane	50.0000	0.0000	50.6613	101		72 - 12
arbon disulfide	50.0000	0.0000	37.9229	76		35 - 16
Methylene chloride	50.0000	0.0000	46.9961	94		55 - 14
rans-1,2-Dichloroethene	50.0000	0.0000	47.3633	- 95		60 - 1
ethyl tert-butyl ether	50.0000	0.0000	50.8254	102		65 - 12
,1-Dichloroethane	50.0000	0.0000	47.5513	95		70 - 13
inyl acetate	50.0000	0.0000	50.5993	101		38 - 1
-Butanone	50.0000	0.0000	52.5314	105		30 - 1
is-1,2-Dichloroethene	50.0000	0.0000	49.0590	98		70 - 1
,2-Dichloropropane	50.0000	0.0000	48.3064	97		70 - 1
romochloromethane	50.0000	0.0000	54.9069	110		65 - 1
hloroform	50.0000	0.0000	49.1715	98		65 - 1
,1,1-Trichloroethane	50.0000	0.0000	46.8712	94		65 - 1
,1-Dichloropropene	50.0000	. 0.0000	45.4022	91		75 - 1
arbon tetrachloride	50.0000	0.0000	· ·	92		65 - 1
,2-Dichloroethane	50.0000	0.0000	51.1743	102		70 - 1
Benzene	50.0000	0.0000	48.7429	97		80 - 1
richloroethene	50.0000					70 - 1
,2-Dichloropropane	50.0000	0.0000				75 - 1
ibromomethane	50.0000					75 – 1
romodichloromethane	50.0000				1	75 - 1
:is-1,3-Dichloropropene	50.0000					70 - 1
-Methyl-2-pentanone	50.0000					60 - 1
oluene	50.0000					75 - 1
rans-1,3-Dichloropropene	50.0000		l			55 - 1
,1,2-Trichloroethane	50.0000					75. – 1
,3-Dichloropropane	50.0000		i		<u>:</u>	75 - 1
etrachloroethene	50.0000					45 - 1
-Hexanone	50.0000				<u> </u>	55 - 1
ibromochloromethane	50.0000					60 - 1
,2-Dibromoethane	50.0000			1		80 - 1
Chlorobenzene	50.0000			<u> </u>		80 - 1
,1,1,2-Tetrachloroethane	50.0000					80 - 1
Sthylbenzene	50.0000					75 – 1
m,p-Xylene	100.0000					75 - 1
o-Xylene	50.0000	0.0000	49.7186	99		80 - 1

EPA SAMPLE NO.

V1ILCS

Lab Nam	ne: MITKE	M LABORATORIE	ES -	Contract	:		
Lab Cod	de: MITKE	Case	No.:	Mod. Ref	No.:	SDG No	.: MG2223
Lab Sam	mple ID:	LCS-40389		LCS Lot	No.:		
Date Ex	xtracted:	11/29/2008		Date Ana	lyzed (1): 1	1/29/2008	The second secon
	CO	MPOUND	SPIKE ADDED	SAMPLE CONCENTRATION	LCS CONCENTRATION	LCS %REC	QC. # LIMITS REC.
X	ylene (Tot	al)	150.0000	0.0000	149.1061	99	81 - 121
St	tyrene		50.0000	0.0000	48.7636	98	65 - 135

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
·						REC.
Xylene (Total)	150.0000	0.0000	149.1061	99		81 - 121
Styrene	50.0000	0.0000	48.7636	98		65 - 135
Bromoform	50.0000	0.0000	55.9876	112		70 - 130
Isopropylbenzene	50.0000	0.0000	49.3738	99		75 - 125
1,1,2,2-Tetrachloroethane	50.0000	0.0000	51.8410	104		65 - 130
Bromobenzene	50.0000	0.0000	49.2870	99		75 - 125
1,2,3-Trichloropropane	50.0000	0.0000	52.8242	106		75 - 125
n-Propylbenzene	50.0000	0.0000	47.3912	95		70 - 130
2-Chlorotoluene	50.0000	0.0000	48.1095	96		75 - 125
1,3,5-Trimethylbenzene	50.0000	0.0000	47.6269	95		75 - 130
4-Chlorotoluene	50.0000	0.0000	48.5451	97		75 - 130
tert-Butylbenzene	50.0000	0.0000	47.2188	94		70 - 130
1,2,4-Trimethylbenzene	50.0000	0.0000	48.1227	96		75 - 130
sec-Butylbenzene	50.0000	0.0000	47.2255	94		70 - 125
4-Isopropyltoluene	50.0000	0.0000	47.3015	95		75 - 130
1,3-Dichlorobenzene	50.0000	0.0000	48.5987	97		75 - 125
1,4-Dichlorobenzene	50.0000	0.0000	49.2779	99		75 - 125
n-Butylbenzene	50.0000	0.0000	47.1208	94		70 - 135
1,2-Dichlorobenzene	50.0000	0.0000	49.2975	99		70 - 120
1,2-Dibromo-3-chloropropan	50.0000	0.0000	51.8935	104		50 - 130
1,2,4-Trichlorobenzene	50.0000	0.0000	47.5448	95		65 - 135
Hexachlorobutadiene	50.0000	0.0000	47.1528	94		50 - 140
1,2,3-Trichlorobenzene	50.0000	0.0000	46.4413	93		55 - 140
Naphthalene	50.0000	0.0000	43.7754	88		55 - 140

Column to be used to flag recovery and RPD values with an asterisk

* Values out	side of QC	limits			
Spike Recove	ry: 0	out of	68	_outside limits	
COMMENTS:					
_					

3 - FORM III

WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

V1ILCSD

Lab Name: MITKEM LABORATORIES

Contract:

Lab Code: MITKEM Case No.:

Mod. Ref No.:

SDG No.: MG2223

Lab Sample ID: LCSD-40389

LCS Lot No.:

	SPIKE	LCSD					QC	LIMITS
	ADDED	CONCENTRATION	LCSD %REC	#	%RPI) #		
COMPOUND							RPD	REC.
Dichlorodifluoromethane	50.0000	35.1468	70		11		40	30 - 155
Chloromethane	50.0000	40.5744	81		11		40	40 - 125
Vinyl chloride	50.0000	38.3521	77		11		40	50 - 145
Bromomethane	50.0000	46.4695	93		9		40	30 - 145
Chloroethane	50.0000	42.7554	86		9		40	60 - 135
Trichlorofluoromethane	50.0000	43.6572	87		9		40	60 - 145
1,1-Dichloroethene	50.0000	40.3545	81		11		40	70 - 130
Acetone	50.0000	45.6248	91		4		40	40 - 140
Iodomethane	50.0000	49.0510	98		. 3		40	72 - 121
Carbon disulfide	50.0000	35.1317	70		8		40	35 - 160
Methylene chloride	50.0000	44.7504	90		4		40	55 - 140
trans-1,2-Dichloroethene	50.0000	43.4341	87		9		40	60 - 140
Methyl tert-butyl ether	50.0000	50.2504	101		1		40	65 - 125
1,1-Dichloroethane	50.0000	44.9932	90		5		40	70 - 135
Vinyl acetate	50.0000	49.1925	98		3		40	38 - 163
2-Butanone	50.0000		107		2		40	30 - 150
cis-1,2-Dichloroethene	50.0000	46.0647	92		6		40	70 - 125
2,2-Dichloropropane	50.0000	43.4385	87		11		40	70 - 135
Bromochloromethane	50.0000	51.7452	103		7		40	65 - 130
Chloroform	50.0000	46.3236	93		5		40	65 - 135
1,1,1-Trichloroethane	50.0000	43.5653	87		8		40	65 - 130
1,1-Dichloropropene	50.0000	40.7773	82		10		40	75 - 130
Carbon tetrachloride	50.0000	41.5317	83		10	ļ.	40	65 - 140
1,2-Dichloroethane	50.0000	49.3041	99		3		40	70 - 130
Benzene	50.0000	45.3179	91		6		40	80 - 120
Trichloroethene	50.0000	45.0890	90		5		40	70 - 125
1,2-Dichloropropane	50.0000	47.5294	95		6		40	75 - 125
Dibromomethane	50.0000	50.1401	100		4		40	75 - 125
Bromodichloromethane	50.0000	48.9160	98	·	3		40	75 - 120
cis-1,3-Dichloropropene	50.0000	48.6200	97		7		40	70 - 130
4-Methyl-2-pentanone	50.0000	52.9267	106		1		40	60 - 135
Toluene	50.0000		i		6		40	75 - 120
trans-1,3-Dichloropropene	50.0000		102		3		40	55 - 140
1,1,2-Trichloroethane	50.0000	50.2694	101		2.		40	75 - 125
1,3-Dichloropropane	50.0000	50.5774	101		3		40	75 - 125
Tetrachloroethene	50.0000				6		40	45 - 150
2-Hexanone	50.0000				1		40	55 - 130
Dibromochloromethane	50.0000	52.0622	104		1		40	60 - 135
1,2-Dibromoethane	50.0000				3		40	80 - 120
Chlorobenzene	50.0000				6		40	80 - 120
1,1,1,2-Tetrachloroethane	50.0000	,	100		6		40	80 - 130
Ethylbenzene	50.0000				. 7		40	75 - 125
m,p-Xylene	100.0000				6		40	75 - 130
o-Xylene	50.0000				4		40	80 - 120
Xylene (Total)	150.0000				5		40	81 - 121
Styrene	50.0000	46.0476	92		6		40	65 - 135

EPA SAMPLE NO.

V1ILCSD

Lab Name:		MITKEM :	LABORATORIES	Contract:			
Lab	Code:	MITKEM	Case No.:	Mod. Ref No.:	SDG No.:	MG2223	
Lab	Sample	ID: LO	CSD-40389	LCS Lot No.:			

	SPIKE	LCSD					QC	LIMITS
	ADDED	CONCENTRATION	LCSD %REC	#	%RPD	#		
COMPOUND							RPD	REC.
Bromoform	50.0000	54.2533	109		3		40	70 - 130
Isopropylbenzene	50.0000	44.8223	90		10		40	75 - 125
1,1,2,2-Tetrachloroethane	50.0000	51.6312	103		1		40	65 - 130
Bromobenzene	50.0000	47.0729	94		5		40	75 - 125
1,2,3-Trichloropropane	50.0000	51.1598	102		4		40	75 - 125
n-Propylbenzene	50.0000	43.1832	86		10	l	40	70 - 130
2-Chlorotoluene	50.0000	44.8555	90		6		40	75 - 125
1,3,5-Trimethylbenzene	50.0000	44.3261	89		7		40	75 - 130
4-Chlorotoluene	50.0000	45.7204	91		6		40	75 - 130
tert-Butylbenzene	50.0000	43.9413	88		7		40	70 - 130
1,2,4-Trimethylbenzene	50.0000	44.8765	90		6		40	75 - 130
sec-Butylbenzene	50.0000	42.7690	86		9		40	70 - 125
4-Isopropyltoluene	50.0000	43.3723	87		9		40	75 - 130
1,3-Dichlorobenzene	50.0000	45.7136	91		6		40	75 - 125
1,4-Dichlorobenzene	50.0000	46.0135	92		7		40	75 - 125
n-Butylbenzene	50.0000	43.3488	87		8	İ	40	70 - 135
1,2-Dichlorobenzene	50.0000	46.8240	94		5		40	70 - 120
1,2-Dibromo-3-chloropropan	50.0000	54.3098	109		5		40	50 - 130
1,2,4-Trichlorobenzene	50.0000	47.9014	96		1		40	65 - 135
Hexachlorobutadiene	50.0000	43.6016	87		8		40	50 - 140
1,2,3-Trichlorobenzene	50.0000	47.6461	95		2		40	55 - 140
Naphthalene	50.0000	47.3298	95		8		40	55 - 140

[#] Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD:	0	out	of	6	58 c	utsid	e lim	its			4	
Spike	Recove	ry:		0	out	of _	68	_outside	limits			
COMME	NTS:	•						·				

EPA SAMPLE NO.

V10LCS

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: Mod. Ref No.: SDG No.: MG2223

Lab Sample ID: LCS-40499 LCS Lot No.:

Date Extracted: 12/03/2008 Date Analyzed (1): 12/03/2008

	SPIKE	SAMPLE	LCS		1	QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
						REC.
Dichlorodifluoromethane	50.0000	0.0000	40.2250	80		30 - 155
Chloromethane	50.0000	0.0000	43.1941	86		40 - 125
Vinyl chloride	50.0000	0.0000	42.0628	84		50 - 145
Bromomethane	50.0000	0.0000	48.0370	96		30 - 145
Chloroethane	50.0000	0.0000	45.7350	91		60 - 135
Trichlorofluoromethane	50.0000	0.0000	49.9219	100		60 - 145
1,1-Dichloroethene	50.0000	0.0000	45.4729	91		70 - 130
Acetone	50.0000	0.0000	43.5271	87		40 - 140
Iodomethane	50.0000	0.0000	45.2000	90		72 - 121
Carbon disulfide	50.0000	0.0000	55.1471	110		35 - 160
Methylene chloride	50.0000	0.0000	47.0246	94		55 - 140
trans-1,2-Dichloroethene	50.0000	0.0000	48.5434			60 - 140
Methyl tert-butyl ether	50.0000		51.3117			65 - 125
1,1-Dichloroethane	50.0000	0.0000		95		70 - 135
Vinyl acetate	50.0000	0.0000		98		38 - 163
2-Butanone	50.0000	0.0000	52.0425	104		30 - 150
cis-1,2-Dichloroethene	50.0000	0.0000	49.9790	100		70 - 125
2,2-Dichloropropane	50.0000	0.0000		92		70 - 135
Bromochloromethane	50.0000	0.0000		109		65 - 130
Chloroform	50.0000	0.0000	49.8524	100		65 - 135
1,1,1-Trichloroethane	50.0000	0.0000	47.6311	95		65 - 130
1,1-Dichloropropene	50.0000		48.0695		i	75 - 130
Carbon tetrachloride	50.0000		47.0173			65 - 140
1,2-Dichloroethane	50.0000	0.0000	51.5663			70 - 130
Benzene	50.0000	0.0000				80 - 120
Trichloroethene	50.0000	0.0000				70 - 125
1,2-Dichloropropane	50.0000	0.0000	49.1836			75 - 125
Dibromomethane	50.0000					75 - 125
Bromodichloromethane	50.0000	0.0000				75 - 120
cis-1,3-Dichloropropene	50.0000					70 - 130
4-Methyl-2-pentanone	50.0000				-	60 - 135
Toluene	50.0000		49.9223			75 - 120
trans-1,3-Dichloropropene	50.0000	0.0000				55 - 140
1,1,2-Trichloroethane	50.0000	0.0000		108		75 - 125
1,3-Dichloropropane	50.0000			101		75 - 125
Tetrachloroethene	50.0000					45 - 150
2-Hexanone	50.0000					55 - 130
Dibromochloromethane	50.0000				-	60 - 13
1,2-Dibromoethane	50.0000					80 - 120
Chlorobenzene	50.0000					80 - 120
1,1,1,2-Tetrachloroethane	50.0000					80 - 130
Ethylbenzene	50.0000					
m,p-Xylene	100.0000			l		75 - 125 75 - 130
o-Xylene	50.0000	0.0000	51.1936	102		80 - 120

EPA SAMPLE NO.

V10LCS

Lab Name:	MITKE	M LABORATORIES	Contract:	
Lab Code:	MITKE	M Case No.:	Mod. Ref No.:	SDG No.: MG2223
Lab Sample	ID:	LCS-40499	LCS Lot No.:	
Date Extrac	cted:	12/03/2008	Date Analyzed (1): 12/0	3/2008

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
						REC.
Xylene (Total)	150.0000	0.0000	151.0909	101		81 - 121
Styrene	50.0000	0.0000	51.0370	102		65 - 135
Bromoform	50.0000	0.0000	54.5610	109		70 - 130
Isopropylbenzene	50.0000	0.0000	48.3692	97		75 - 125
1,1,2,2-Tetrachloroethane	50.0000	0.0000	52.4026	105		65 - 130
Bromobenzene	50.0000	0.0000	50.6151	101		75 - 125
1,2,3-Trichloropropane	50.0000	0.0000	50.3688	101		75 - 125
n-Propylbenzene	50.0000	0.0000	48.2167	96		70 - 130
2-Chlorotoluene	50.0000	0.0000	49.3660	99		75 - 125
1,3,5-Trimethylbenzene	50.0000	0.0000	47.3256	95		75 - 130
4-Chlorotoluene	50.0000	0.0000	49.2969	99		75 - 130
tert-Butylbenzene	50.0000	0.0000	46.5917	93		70 - 130
1,2,4-Trimethylbenzene	50.0000	0.0000	48.1158	96		75 - 130
sec-Butylbenzene	50.0000	0.0000	46.5584	93		70 - 125
4-Isopropyltoluene	50.0000	0.0000	46.5736	93		75 - 130
1,3-Dichlorobenzene	50.0000	0.0000	48.8484	98		75 - 125
1,4-Dichlorobenzene	50.0000	0.0000	49.2988	. 99		75 - 125
n-Butylbenzene	50.0000	0.0000	46.1267	92		70 - 135
1,2-Dichlorobenzene	50.0000	0.0000	49.6980	99		70 - 120
1,2-Dibromo-3-chloropropan	50.0000	0.0000	52.8603	106		50 - 130
1,2,4-Trichlorobenzene	50.0000	0.0000	48.1843	96		65 - 135
Hexachlorobutadiene	50.0000	0.0000	45.9148	92		50 - 140
1,2,3-Trichlorobenzene	50.0000	0.0000	46.2814	93		55 - 140
Naphthalene	50.0000	0.0000	45.6926	91		55 - 140

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of	QC	limits				
Spike Recovery:	0	_out of _	68	outside limits		
COMMENTS:				· · · · · · · · · · · · · · · · · · ·		

EPA SAMPLE NO.

V1PLCS

Lab	Name:	MITKEM LABORATORIES	Contract:	
Lab	Code:	MITKEM Case No.:	Mod. Ref No.: SDG No.: MG2223	
Lab	Sample	ID: LCS-40500	LCS Lot No.:	

Date Extracted: 12/03/2008 Date Analyzed (1): 12/04/2008

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	. #	LIMITS
	!					REC.
Dichlorodifluoromethane	50.0000	0.0000	33.8535	68		30 - 155
Chloromethane	50.0000	0.0000	43.8401	88		40 - 125
Vinyl chloride	50.0000	0.0000	45.0871	90		50 - 145
Bromomethane	50.0000	0.0000	48.6155	97		30 - 145
Chloroethane	50.0000	0.0000	47.7962	96		60 - 135
Trichlorofluoromethane	50.0000	0.0000	52.7888	106		60 - 145
1,1-Dichloroethene	50.0000	0.0000	49.3195	99		70 - 130
Acetone	50.0000	0.0000	43.0642	86		40 - 140
Iodomethane	50.0000	0.0000	49.3109	99		72 - 123
Carbon disulfide	50.0000	0.0000	57.8980	116		35 - 160
Methylene chloride	50.0000	0.0000	46.5599	93		55 - 140
trans-1,2-Dichloroethene	50.0000	0.0000	49.3383	99		60 - 140
Methyl tert-butyl ether	50.0000	0.0000	47.6743	95		65 - 125
1,1-Dichloroethane	50.0000	0.0000	48.1035	96		70 - 13
Vinyl acetate	50.0000	0.0000	46.2027	92		38 - 163
2-Butanone	50.0000	0.0000	45.8420	92		30 - 15
cis-1,2-Dichloroethene	50.0000	0.0000	49.6851	99		70 - 12
2,2-Dichloropropane	50.0000	0.0000	41.3823	83		70 - 13
Bromochloromethane	50.0000	0.0000	51.8393	104		65 - 13
Chloroform	50.0000	0.0000	49.6037	99		65 - 13
1,1,1-Trichloroethane	50.0000	0.0000	48.5937	97		65 - 13
1,1-Dichloropropene	50.0000	0.0000	49.5887	99		75 - 13
Carbon tetrachloride	50.0000	0.0000	48.3676	, 97		65 - 14
1,2-Dichloroethane	50.0000	0.0000	49.3489	99		70 - 13
Benzene	50.0000	0.0000	50.1410	100		80 - 12
Trichloroethene	50.0000	0.0000	50.6683	101		70 - 12
1,2-Dichloropropane	50.0000	0.0000	49.2337	98		75 - 12
Dibromomethane	50.0000	0.0000	49.3087	99		75 - 12
Bromodichloromethane	50.0000	0.0000	49.5822	99		75 - 12
cis-1,3-Dichloropropene	50.0000	0.0000	48.5286	97		70 - 13
4-Methyl-2-pentanone	50.0000	0.0000	46.0315	92		60 - 13
Toluene	50.0000	0.0000	51.0017	102		75 - 12
trans-1,3-Dichloropropene	50.0000	0.0000	49.0696	98		55 - 14
1,1,2-Trichloroethane	50.0000	0.0000	49.8841	100		75 - 12
1,3-Dichloropropane	50.0000					75 - 12
Tetrachloroethene	50.0000	` .				45 - 15
2-Hexanone	50.0000					55 - 13
Dibromochloromethane	50.0000				2	60 - 13
1,2-Dibromoethane	50.0000					80 - 12
Chlorobenzene	50.0000					80 - 12
1,1,1,2-Tetrachloroethane	50.0000					80 - 13
Ethylbenzene	50.0000					75 - 12
m,p-Xylene	100.0000					75 - 13
o-Xylene	50.0000					80 - 12

3 - FORM III

WATER LABORATORY CONTROL SAMPLE RECOVERY

ΞPΑ	SAMPLE	ИО
-1 - 2 - 1		140

V1PLCS

Lab Name:	MITKE	M LABOR	ATORIES	."	Contract	:		·	
Lab Code: MITKEM Case No.		:	Mod. Ref	No.:	SDG	No.:	MG2223		
Lab Sample	ID:	LCS-40	500		LCS Lot	No.:			
Date Extra	cted:	12/03/	2008		Date Ana	lyzed (1): 1	2/04/2008	3	
				SPIKE	SAMPLE	LCS		į	QC.
	CO:	MPOUND		ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS REC.
1	/ m .			450 0000	0 0000	450 5500	1.00	1	0.1 1.0.1

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
•						REC.
Xylene (Total)	150.0000	0.0000	152.7790	102		81 - 121
Styrene	50.0000	0.0000	50.8153	102		65 - 135
Bromoform	50.0000	0.0000	48.7271	97		70 - 130
Isopropylbenzene	50.0000	0.0000	49.5621	99		75 - 125
1,1,2,2-Tetrachloroethane	50.0000	0.0000	49.3357	99		65 - 130
Bromobenzene	50.0000	0.0000	50.8070	102		75 - 125
1,2,3-Trichloropropane	50.0000	0.0000	44.2440	88		75 - 125
n-Propylbenzene	50.0000	0.0000	49.6332	99		70 - 130
2-Chlorotoluene	50.0000	0.0000	49.3113	99		75 - 125
1,3,5-Trimethylbenzene	50.0000	0.0000	49.9575	100		75 - 130
4-Chlorotoluene	50.0000	0.0000	50.1274	100		75 - 130
tert-Butylbenzene	50.0000	0.0000	49.1981	98		70 - 130
1,2,4-Trimethylbenzene	50.0000	0.0000	49.3171	99		75 - 130
sec-Butylbenzene	50.0000	0.0000	48.8014	98		70 - 125
4-Isopropyltoluene	50.0000	0.0000	48.5935	97		75 - 130
1,3-Dichlorobenzene	50.0000	0.0000	49.2711	99		75 - 125
1,4-Dichlorobenzene	50.0000	0.0000	50.2533	101		75 - 125
n-Butylbenzene	50.0000	0.0000	47.1297	94		70 - 135
1,2-Dichlorobenzene	50.0000	0.0000	49.0131	98		70 - 120
1,2-Dibromo-3-chloropropan	50.0000	0.0000	44.2490	88		50 - 130
1,2,4-Trichlorobenzene	50.0000	0.0000	46.7012	93		65 - 135
Hexachlorobutadiene	50.0000	0.0000	47.0422	94		50 - 140
1,2,3-Trichlorobenzene	50.0000	0.0000	45.2166	90		55 - 140
Naphthalene	50.0000	0.0000	40.6015	81		55 - 140

# COLUMN CO	be abea i	co rrag rec	Overy a.	iid iiib va	Tues with	an ascer	. 101	
* Values out	side of (QC limits						
Spike Recove	ry:	0 out of	68	outside	limits			
COMMENTS:				. '				
-								

EPA SAMPLE NO.

V1PLCSD

Lab Name: MITKEM LABORATORIES

Contract:

Lab Code: MITKEM Case No.:

Mod. Ref No.:

SDG No.: MG2223

Lab Sample ID: LCSD-40500

LCS Lot No.:

·	SPIKE	LCSD				QC	LIMITS
	ADDED	CONCENTRATION	LCSD %REC	#	%RPD :	#	
COMPOUND						RPD	REC.
Dichlorodifluoromethane	50.0000	35.4624	71		4	40	30 - 155
Chloromethane	50.0000	46.7741	94		7	40	40 - 125
Vinyl chloride	50.0000	48.6696	97		7	40	50 - 145
Bromomethane	50.0000	53.1963	106		9	40	30 - 145
Chloroethane	50.0000	51.7582	104		8	40	60 - 135
Trichlorofluoromethane	50.0000	56.7714	114		7	40	60 - 145
1,1-Dichloroethene	50.0000	53.4714	107.		8	40	70 - 130
Acetone	50.0000	42.8040	86		0	40	40 - 140
Iodomethane	50.0000	54.9075	110		11	40	72 - 123
Carbon disulfide	50.0000	40.9341	82		34	40	35 - 160
Methylene chloride	50.0000	50.1031	100		7	40	55 - 140
trans-1,2-Dichloroethene	50.0000	51.4515	103		4	40	60 - 140
Methyl tert-butyl ether	50.0000	49.2407	98		3	40	65 - 125
1,1-Dichloroethane	50.0000	50.9759	102		6	40	70 - 135
Vinyl acetate	50.0000	48.7645	98		6	40	38 - 163
2-Butanone	50.0000	47.2013	94		2	40	30 - 150
cis-1,2-Dichloroethene	50.0000		106		7	40	70 - 125
2,2-Dichloropropane	50.0000		89		7	40	70 - 135
Bromochloromethane	50.0000	55.1976			6	40	65 - 130
Chloroform	50.0000	52.1229	104		5	40	65 - 13
1,1,1-Trichloroethane	50.0000	52.3257	105		8	40	65 - 130
1,1-Dichloropropene	50.0000	51.1948	102		3	40	75 - 130
Carbon tetrachloride	50.0000	51.3463	103		6	40	65 - 140
1,2-Dichloroethane	50.0000	51.7594	104		5	40	70 - 130
Benzene	50.0000	53.4232	107		7	40	80 - 120
Trichloroethene	50.0000	53.7650	108		7	40	70 - 125
1,2-Dichloropropane	50.0000	52.2781			7	40	75 - 125
Dibromomethane	50.0000	52.1485			5	40	75 - 12
Bromodichloromethane	50.0000	52.5336			6	40	75 - 120
cis-1,3-Dichloropropene	50.0000	50.7720			5	40	70 - 130
4-Methyl-2-pentanone	50.0000	47.1628			2	40	60 - 13
Toluene	50.0000			-	4	40	75 - 120
trans-1,3-Dichloropropene	50.0000	51.3251			5	40	55 - 140
1,1,2-Trichloroethane	50.0000				2	40	75 - 12
1,3-Dichloropropane	50.0000	50.2498			2	40	75 - 12
Tetrachloroethene	50.0000				5	40	45 - 150
2-Hexanone	50.0000				1	40	55 - 130
Dibromochloromethane	50.0000				3	40	60 - 13
1,2-Dibromoethane	50.0000				4	40	80 - 120
Chlorobenzene	50.0000			<u> </u>	5	40	80 - 120
1,1,1,2-Tetrachloroethane	50.0000				5	40	80 - 130
Ethylbenzene	50.0000				4	40	75 - 12
m,p-Xylene	100.0000		107		5	40	75 - 13
o-Xylene	50.0000				4 ;	40	80 - 120
Xylene (Total)	150.0000				5	40	81 - 12
Styrene (Total)	50.0000				6	40	65 - 135

EPA SAMPLE NO.

V1PLCSD

Lab	Name:	MITKEM I	LABORATORIES	Contract:				
Lab	Code:	MITKEM	Case No.:	Mod. Ref No.:	SDG	No.:	MG2223	_
Lab	Sample	ID: LC	SD-40500	LCS Lot No.:				

	SPIKE	LCSD			QC	LIMITS
	ADDED	CONCENTRATION	LCSD %REC #	%RPD #		
COMPOUND				:	RPD	REC.
Bromoform	50.0000	50.8403	102	5	40	70 - 130
Isopropylbenzene	50.0000	52.0418	104	5	40	75 - 125
1,1,2,2-Tetrachloroethane	50.0000	50.3780	101	2	40	65 - 130
Bromobenzene	50.0000	52.2030	104	2	40	75 - 125
1,2,3-Trichloropropane	50.0000	44.5125	89	1	40	75 - 125
n-Propylbenzene	50.0000	49.8410	100	1	40	70 - 130
2-Chlorotoluene	50.0000	50.2724	101	2	40	75 - 125
1,3,5-Trimethylbenzene	50.0000	50.1933	100	0	40	75 - 130
4-Chlorotoluene	50.0000	51.3847	103	3	40	75 - 130
tert-Butylbenzene	50.0000	49.0766	98	0	40	70 - 130
1,2,4-Trimethylbenzene	50.0000	50.4589	101	2	40	75 - 130
sec-Butylbenzene	50.0000	49.2948	99	1	40	70 - 125
4-Isopropyltoluene	50.0000	49.2392	98	1	40	75 - 130
1,3-Dichlorobenzene	50.0000	49.9140	100	1	40	75 - 125
1,4-Dichlorobenzene	50.0000	50.2108	100	1	40	75 - 125
n-Butylbenzene	50.0000	48.1005	96	2	40	70 - 135
1,2-Dichlorobenzene	50.0000	50.3723	101	3	40	70 - 120
1,2-Dibromo-3-chloropropan	50.0000	47.7086	95	8	40	50 - 130
1,2,4-Trichlorobenzene	50.0000	48.1949	96	3	40	65 - 135
Hexachlorobutadiene	50.0000	47.1300	94	0	40	50 - 140
1,2,3-Trichlorobenzene	50.0000	47.2109	94	4	40	55 - 140
Naphthalene	50.0000	43.7872	88	8	40	55 - 140

[#] Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD:	0 out of	68 outside limits	
Spike	Recovery:	0 out of 68 outside limits	
COMME	NTS:		

EPA SAMPLE NO.

V1QLCS

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: Mod. Ref No.: SDG No.: MG2223

Lab Sample ID: LCS-40526 LCS Lot No.:

Date Extracted: 12/04/2008 Date Analyzed (1): 12/04/2008

	SPIKE	SAMPLE	LCS	İ		QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
						REC.
Dichlorodifluoromethane	50.0000					30 - 155
Chloromethane	50.0000					40 - 125
Vinyl chloride	50.0000					50 - 145
Bromomethane	50.0000					30 - 145
Chloroethane	50.0000					60 - 135
Trichlorofluoromethane	50.0000					60 - 145
1,1-Dichloroethene	50.0000			82		70 - 130
Acetone	50.0000			95		40 - 140
Iodomethane	50.0000		i	85		72 - 121
Carbon disulfide	50.0000	0.0000	31.8295	64		35 - 160
Methylene chloride	50.0000	0.0000	34.4036	69		55 - 140
trans-1,2-Dichloroethene	50.0000	0.0000		89		60 - 140
Methyl tert-butyl ether	50.0000	0.0000				65 - 125
1,1-Dichloroethane	50.0000	0.0000	43.7674	88		70 - 135
Vinyl acetate	50.0000	0.0000	46,2895	93		38 - 163
2-Butanone	50.0000	0.0000	50.8017	102		30 - 150
cis-1,2-Dichloroethene	50.0000	0.0000	45.4313	91		70 - 125
2,2-Dichloropropane	50.0000	0.0000	41.4489	83		70 - 135
Bromochloromethane	50.0000	0.0000	51.4852	103		65 - 130
Chloroform	50.0000	0.0000	45.6020	91		65 - 135
1,1,1-Trichloroethane	50.0000	0.0000	44.5991	. 89		65 - 130
1,1-Dichloropropene	50.0000	0.0000	42.2117	84		75 - 130
Carbon tetrachloride	50.0000	0.0000	42.8874	86		65 - 140
1,2-Dichloroethane	50.0000	0.0000	48.4268	97		70 - 130
Benzene	50.0000	0.0000	45.0591	90		80 - 120
Trichloroethene	50.0000	0.0000	45.8589	92		70 - 125
1,2-Dichloropropane	50.0000	0.0000	45.0618	90		75 - 125
Dibromomethane	50.0000			100		75 - 125
Bromodichloromethane	50.0000		i			75 - 120
cis-1,3-Dichloropropene	50.0000	0.0000				70 - 130
4-Methyl-2-pentanone	50.0000		i			60 - 135
Toluene	50.0000			92		75 - 120
trans-1,3-Dichloropropene	50.0000					55 - 140
1,1,2-Trichloroethane	50.0000					75 - 125
1,3-Dichloropropane	50.0000			·		75 - 125
Tetrachloroethene	50.0000	and the second s				45 - 150
2-Hexanone	50.0000					55 - 130
Dibromochloromethane	50.0000					60 - 135
1,2-Dibromoethane	50.0000					80 - 120
Chlorobenzene	50.0000					80 - 120
1,1,1,2-Tetrachloroethane	50.0000					80 - 130
Ethylbenzene	50.0000					75 - 125
m,p-Xylene	100.0000					75 - 130
o-Xylene	50.0000					80 - 120

Contract:

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

43.2221

44.0264

41.9608

42.5048

45.3453

45.3866

40.9114

46.6244

54.4596

46.3329

40.9178

47.0722

48.2548

86

88

84

85

91

91 82

93

109

93

82

94

97

ΞPΑ	SAMPLE	NO.

V1QLCS

70 - 130

75 - 130

70 - 125

75 - 130

75 - 125

75 - 125

70 - 135 70 - 120

50 - 130

65 - 135

50 - 140

55 - 140

55 - 140

Lab Code: MITA	Case N	No.:	Mod. Ref	No.:	SDG No	.: MG2223	
Lab Sample ID:	LCS-40526		LCS Lot	No.:			
Date Extracted:	12/04/2008	Date Analyzed (1): 12/04/2008					
		SPIKE	SAMPLE	LCS		QC.	
C	OMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	# LIMITS	
						REC.	
Xylene (To	tal)	150.0000	0.0000	139.9513	93	81 - 121	
Styrene		50.0000	0.0000	46.6890	93	65 - 135	
Bromoform		50.0000	0.0000	54.5271	109	70 - 130	
Isopropylb	enzene	50.0000	0.0000	44.9258	90	75 - 125	
1,1,2,2-Te	trachloroethane	50.0000	0.0000	52.2270	104	65 - 130	
Bromobenze	ne	50.0000	0.0000	45.3757	91	75 - 125	
1,2,3-Tric	hloropropane	50.0000	0,0000	50.0116	100	75 - 125	
n-Propylbe	nzene	50.0000	0.0000	43.7883	88	70 - 130	
2-Chloroto	luene	50.0000	0.0000	44.1597	. 88	75 - 125	
1,3,5-Trim	ethylbenzene	50.0000	0.0000	43.8605	88	75 - 130	
4-Chloroto	luene	50.0000	0.0000	45.5075	91	75 - 130	

Column to be used to flag recovery and RPD values with an asterisk

Lab Name: MITKEM LABORATORIES

tert-Butylbenzene

sec-Butylbenzene

n-Butylbenzene

Naphthalene

4-Isopropyltoluene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

Hexachlorobutadiene

1,2,4-Trichlorobenzene

1,2,3-Trichlorobenzene

1,2-Dibromo-3-chloropropan

1,2,4-Trimethylbenzene

* Values outs	side of	QC	limits					
Spike Recove:	ry:	0	out of	68	outside	limits		
COMMENTS:						•		

50.0000

50.0000

50.0000

50.0000

50.0000

50.0000

50.0000

50.0000

50.0000

50.0000

50.0000

50.0000

50.0000

4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLK1I

Lab Name: MIT	KEM LABORATORIES	Contract:	
Lab Code: MIT	KEM Case No.:	Mod. Ref No.:	SDG No.: MG2223
Lab File ID:	V1K2063.D	Lab Sample ID:	MB-40389
Instrument ID:	V1		
Matrix: (SOIL/	SED/WATER) WATER	Date Analyzed:	11/29/2008
Level: (TRACE	or LOW/MED) LOW	Time Analyzed:	11:38
GC Column: DB	3-624 ID: 0.25	(mm) Heated Purge: (Y/N) N

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	V1ILCS	LCS-40389	V1K2065.D	12:37
02	V1ILCSD	LCSD-40389	V1K2066.D	13:06
03	MW-8S	G2223-03A	V1K2081.D	20:20
04	MW-8D	G2223-04A	V1K2082.D	20:49
05	MW-K2	G2223-05A	V1K2083.D	21:18
06	VEW-3	G2223-06A	V1K2084.D	21:47

COMMENTS:			
	4		

EPA	SAMPLE	NO.	
VBLK1	I		
			ı

Lab Name: MITKEM LABOR	ATORIES			Contract:		
Lab Code: MITKEM	Case No.:	-		Mod. Ref No.:	SDG No.: MG2223	
Matrix: (SOIL/SED/WATER	.) WATER	· · · · · · · · · · · · · · · · · · ·		Lab Sample ID:	MB-40389	
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V1K2063.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:		
% Moisture: not dec.				Date Analyzed:	11/29/2008	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL
Purge Volume: 5 0			(mT,)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/I	Z Q
75-71-8	Dichlorodifluoromethane	5.0	0 U
74-87-3	Chloromethane	5.0	0 U
75-01-4	Vinyl chloride	5.0	0 U
	Bromomethane	5.0	0 U
75-00-3	Chloroethane	5.0	0 U
75-69-4	Trichlorofluoromethane	5.0	0 U
75-35-4	1,1-Dichloroethene	5.0	0 U
67-64-1	Acetone	5.0	0 U
74-88-4	Iodomethane	5.0	0 U
75-15-0	Carbon disulfide	5.1	0 U
75-09-2	Methylene chloride	5.0	0 U
156-60-5	trans-1,2-Dichloroethene	5.0	0 Ü
	Methyl tert-butyl ether	5.0	0 U
	1,1-Dichloroethane	5.0	
108-05-4	Vinyl acetate	5.0	O U
78-93-3	2-Butanone	5.	0 U
156-59-2	cis-1,2-Dichloroethene	5.	0 U
	2,2-Dichloropropane	5.	1 -
	Bromochloromethane	5.	1
	Chloroform	5.	0 U
	1,1,1-Trichloroethane	5.	0 U
	1,1-Dichloropropene	5.	0 U
	Carbon tetrachloride	5.	0 U
107-06-2	1,2-Dichloroethane	5.	
	Benzene	5.	
	Trichloroethene	5.	1
	1,2-Dichloropropane	5.	
	Dibromomethane	5.	
	Bromodichloromethane	5.	0 U
	cis-1,3-Dichloropropene	5.	1 -
	4-Methyl-2-pentanone	5.	1
	Toluene	5.	
	trans-1,3-Dichloropropene	5.	
	1,1,2-Trichloroethane	5.	1
142-28-9	1,3-Dichloropropane	5.	0 U

EPA	SAMPLE	NO.
VBLK:	11	

Lab Name: MITKEM LABORATO	RIES		Contract:		
Lab Code: MITKEM Ca	ase No.:		Mod. Ref No.:	SDG No.: MG2223	}
Matrix: (SOIL/SED/WATER)	WATER		Lab Sample ID:	MB-40389	
Sample wt/vol: 5.00	(g/mL) ML		Lab File ID:	V1K2063.D	
Level: (TRACE/LOW/MED) LO)W		Date Received:		
% Moisture: not dec.			Date Analyzed:	11/29/2008	
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5.0		(mL)			

		CONCENTRATION UNITS:		1
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
127-18-4	Tetrachloroethene		5.0	Ū
591-78-6	2-Hexanone		5.0	U
124-48-1	Dibromochloromethane		5.0	U
106-93-4	1,2-Dibromoethane		5.0	U
108-90-7	Chlorobenzene		5.0	U
630-20-6	1,1,1,2-Tetrachloroethane		5.0	U
	Ethylbenzene		5.0	U
	m,p-Xylene		5.0	U
	o-Xylene		5.0	U
	Xylene (Total)		5.0	U
100-42-5	Styrene		5.0	U
75-25-2	Bromoform		5.0	U
98-82-8	Isopropylbenzene		5.0	U
79-34-5	1,1,2,2-Tetrachloroethane		5.0	U.
108-86-1	Bromobenzene		5.0	U
96-18-4	1,2,3-Trichloropropane		5.0	U
	n-Propylbenzene		5.0	U
	2-Chlorotoluene		5.0	U
	1,3,5-Trimethylbenzene	·	5.0	Ū
106-43-4	4-Chlorotoluene		5.0	Ū
98-06-6	tert-Butylbenzene		5.0	U
95-63-6	1,2,4-Trimethylbenzene		5.0	U
135-98-8	sec-Butylbenzene		5.0	U
	4-Isopropyltoluene		5.0	U
	1,3-Dichlorobenzene		5.0	U
	1,4-Dichlorobenzene		5.0	U
	n-Butylbenzene		5.0	U
	1,2-Dichlorobenzene		5.0	U
	1,2-Dibromo-3-chloropropane		5.0	Ū
	1,2,4-Trichlorobenzene		5.0	Ū
	Hexachlorobutadiene		5.0	Ū
	1,2,3-Trichlorobenzene		5.0	Ū
91-20-3	Naphthalene		5.0	Ū

4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

SPA .	SAMPLE	NO.	
VBL	K10		

Lab Name: MITK	EM LABORATORIES	Contract:	
Lab Code: MITK	EM Case No.:	Mod. Ref No.:	SDG No.: MG2223
Lab File ID:	V1K2213.D	Lab Sample ID:	MB-40499
Instrument ID:	V1 .		
Matrix: (SOIL/S	ED/WATER) WATER	Date Analyzed:	12/03/2008
Level: (TRACE o	r LOW/MED) LOW	Time Analyzed:	14:28
GC Column: DB-	624 ID: 0.25 (mm	Heated Purge: (Y/N) N

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	V10LCS	LCS-40499	V1K2214.D	14:57
02	ASW	G2223-01A	V1K2234.D	00:36

COMMENTS:				
	•	 		

EPA	SAMPLE	NO.	
VBLK1	LO		

Lab Name: MITKEM LABORA	TORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2223
Matrix: (SOIL/SED/WATER)	WATER	:	Lab Sample ID:	MB-40499
Sample wt/vol: 5.0	O (g/mL) ML		Lab File ID:	V1K2213.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	· .
% Moisture: not dec.			Date Analyzed:	12/03/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	_
75-71-8	Dichlorodifluoromethane	5.0	Ū
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	Ū
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	Ū
75-15-0	Carbon disulfide -	5.0	U
75-09-2	Methylene chloride	5.0	Ū
156-60-5	trans-1,2-Dichloroethene	5.0	U .
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
	cis-1,2-Dichloroethene	5.0	U
	2,2-Dichloropropane	5.0	U
	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
	1,1,1-Trichloroethane	5.0	Ū
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	4.8	J
	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
	Bromodichloromethane	5.0	U
	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	U ·
	Toluene	5.0	U .
	trans-1,3-Dichloropropene	5.0	U .
	1,1,2-Trichloroethane	5.0	Ū
142-28-9	1,3-Dichloropropane	5.0	.U

	EPA	SAMPLE	NO.	
V	BLK1	.0		

Lab Name: MITKEM LAB	ORATORIES			Contract:	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2223
Matrix: (SOIL/SED/WAT	ER) WATER			Lab Sample ID:	MB-40499
Sample wt/vol:	5.00 (g/mL)	ML		Lab File ID:	V1K2213.D
Level: (TRACE/LOW/MED) LOW			Date Received:	
% Moisture: not dec.				Date Analyzed:	12/03/2008
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		· (uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

	CONCENTRATION UNITS:		
CAS NO. COMPOUND	(ug/L or ug/Kg) UG	G/L	· Q
127-18-4 Tetrachloroethene		5.0	U
591-78-6 2-Hexanone		5.0	U
124-48-1 Dibromochloromethane		5.0	U
106-93-4 1,2-Dibromoethane		5.0	U
108-90-7 Chlorobenzene		5.0	Ŭ
630-20-6 1,1,1,2-Tetrachloroethan	ne	5.0	U
100-41-4 Ethylbenzene		5.0	U
1330-20-7 m,p-Xylene			Ü
95-47-6 o-Xylene		5.0	U
1330-20-7 Xylene (Total)			U
100-42-5 Styrene		5.0	U
75-25-2 Bromoform		5.0	U
98-82-8 Isopropylbenzene		5.0	U
79-34-5 1,1,2,2-Tetrachloroethan			U
108-86-1 Bromobenzene			U
96-18-4 1,2,3-Trichloropropane		5.0	U
103-65-1 n-Propylbenzene		5.0	U
95-49-8 2-Chlorotoluene			U
108-67-8 1,3,5-Trimethylbenzene			U .
106-43-4 4-Chlorotoluene		5.0	U
98-06-6 tert-Butylbenzene		5.0	U
95-63-6 1,2,4-Trimethylbenzene		5.0	U
135-98-8 sec-Butylbenzene		5.0	Ū
99-87-6 4-Isopropyltoluene		5.0	U
541-73-1 1,3-Dichlorobenzene			Ū
106-46-7 1,4-Dichlorobenzene		5.0	U
104-51-8 n-Butylbenzene		5.0	U
95-50-1 1,2-Dichlorobenzene	· · · · · · · · · · · · · · · · · · ·		U
96-12-8 1,2-Dibromo-3-chloroprop		5.0	U
120-82-1 1,2,4-Trichlorobenzene		5.0	Ŭ
87-68-3 Hexachlorobutadiene			U
87-61-6 1,2,3-Trichlorobenzene		5.0	U
91-20-3 Naphthalene		5.0	U

4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLK1P

Lab Name: MIT	KEM LABORATO	RIES	Contract:	
Lab Code: MIT	'KEM Ca	se No.:	Mod. Ref No.:	SDG No.: MG2223
Lab File ID:	V1K2243.D		Lab Sample ID:	MB-40500
Instrument ID:	V1			
Matrix: (SOIL/	'SED/WATER)	WATER	Date Analyzed:	12/04/2008
Level: (TRACE	or LOW/MED)	LOW	Time Analyzed:	03:01
GC Column: DE	8-624	ID: 0.25 (mm)	Heated Purge: (Y/N) N

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	V1PLCS	LCS-40500	V1K2244.D	03:29
02	V1PLCSD	LCSD-40500	V1K2245.D	03:58
03	Trip Blank	G2223-13A	V1K2247.D	04:56
04	FLUSH MOUNT	G2223-02A	V1K2248.D	05:24
05	VEW-4	G2223-07A	V1K2249.D	05:54
06	VEW-2	G2223-08A	V1K2250.D	06:23
07	MW-K3	G2223-09A	V1K2251.D	06:52
08	MW-15D	G2223-10A	V1K2252.D	07:25
09	MW-15S	G2223-11A	V1K2253.D	07:53
10	VEW-1	G2223-12A	V1K2254.D	08:25
11	ASWDL	G2223-01ADL	V1K2258.D	13:15

COMMENTS:				
	•		water to Australia (1. 1. 1. 1. 1. 1. 1.	

EP	A SAM	PLE	NO.	
VBL	K1P			

Lab Name:	MITKEM LABOR	ATORIES			Contract:	
Lab Code:	MITKEM	Case No.	:	· ·	Mod. Ref No.:	SDG No.: MG2223
Matrix: (SC	DIL/SED/WATER	WATER	-		Lab Sample ID:	MB-40500
Sample wt/v	701: 5.	00 (g/mL) <u>ML</u>		Lab File ID:	V1K2243.D
Level: (TRA	ACE/LOW/MED)	LOW			Date Received:	
% Moisture:	not dec.				Date Analyzed:	12/04/2008
GC Column:	DB-624	II	0.25	(mm)	Dilution Factor:	1.0
Soil Extrac	ct Volume:	· .	÷	(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volum	ne: 5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	Ū
	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	Ū
67-66-3	Chloroform	5.0	Ū
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	Ū
74-95-3	Dibromomethane	5.0	Ū.
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	Ū
	4-Methyl-2-pentanone	5.0	Ū
	Toluene	5.0	Ū
	trans-1,3-Dichloropropene	5.0	Ū
79-00 - 5	1,1,2-Trichloroethane	5.0	Ū
142-28-9	1,3-Dichloropropane	5.0	Ū

EPA	SAMPLE	NO.	
VBLK:	LP.		

Lab Name: MITKEM LABORATO	RIES			Contract:		
Lab Code: MITKEM Ca	se No.:			Mod. Ref No.:	SDG No.: MG2223	
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	MB-40500	
Sample wt/vol: 5.00	(g/mL)	ML		Lab File ID:	V1K2243.D	-
Level: (TRACE/LOW/MED) LC	W			Date Received:		
% Moisture: not dec.				Date Analyzed:	12/04/2008	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 5.0			(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	_ U
591-78-6	2-Hexanone	5.0	Ū
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	Ū ,
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	Ū
98 - 82-8	Isopropylbenzene	5.0	Ū
	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	Ū
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	Ū
106-43-4	4-Chlorotoluene	5.0	Ū
98 - 06-6	tert-Butylbenzene	5.0	Ū.
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	· U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	Ū
87-68-3	Hexachlorobutadiene	5.0	Ū
	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	Ū

4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLK1Q

Lab Name: MITK	EM LABORATO	RIES	****	Contract:			
Lab Code: MITK	EM Ca	se No.:		Mod. Ref No.:		SDG No.:	MG2223
Lab File ID:	V1K2263.D			Lab Sample ID:	MB-40526		
Instrument ID:	V1						
Matrix: (SOIL/S	SED/WATER)	WATER		Date Analyzed:	12/04/200)8	
Level: (TRACE o	or LOW/MED)	LOW		Time Analyzed:	15:41		
GC Column: DB-	624	ID:	0.25 (mm)	Heated Purge: (Y	/N) <u>N</u>		

EPA		LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	V1QLCS	LCS-40526	V1K2264.D	16:10
02	VEW-1DL	G2223-12ADL	V1K2275.D	21:37

COMMENTS:			

E	PΑ	SAMPLE	NO.	
VBI	JK1	.Q		

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.:	Mod. Ref No.: SDG No.: MG2223
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: MB-40526
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: V1K2263.D
Level: (TRACE/LOW/MED) LOW	Date Received:
% Moisture: not dec.	Date Analyzed: 12/04/2008
GC Column: DB-624 ID: 0.25	(mm) Dilution Factor: 1.0
Soil Extract Volume:	(uL) Soil Aliquot Volume:(uL
Purge Volume: 5.0	(\mathtt{mL})

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	Ū
74-83-9	Bromomethane	5.0	Ū
75-00-3	Chloroethane	5.0	Ū
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	Ū
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	Ū
1634-04-4	Methyl tert-butyl ether	5.0	Ū
	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	Ū
	2-Butanone	5.0	Ū
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	Ü
67-66-3	Chloroform	5.0	Ū
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	Ü
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	Ū
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	Ū
10061-02-6	trans-1,3-Dichloropropene	5.0	Ū
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	Ū

	EPA	SAMPLE	NO.	
V	BLK1	Q		
			-	

Lab Name: MITKEM LABORATORIES		Contract:		
Lab Code: MITKEM Case No.:		Mod. Ref No.:	SDG No.: MG2223	
Matrix: (SOIL/SED/WATER) WATER		Lab Sample ID:	MB-40526	
Sample wt/vol: 5.00 (g/mL) ML		Lab File ID:	V1K2263.D	
Level: (TRACE/LOW/MED) LOW		Date Received:		
% Moisture: not dec.		Date Analyzed:	12/04/2008	
GC Column: DB-624 ID: 0.25	(mm)	Dilution Factor:	1.0	-,
Soil Extract Volume:	(uL)	Soil Aliquot Vol	ıme:	(uL)
Purge Volume: 5.0	(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U *
106-93-4	1,2-Dibromoethane	5.0	Ū
108-90-7	Chlorobenzene	5.0	Ū
630-20-6	1,1,1,2-Tetrachloroethane	5.0	Ū
	Ethylbenzene	5.0	U
	m,p-Xylene	5.0	Ū
95-47-6	o-Xylene	5.0	U
	Xylene (Total)	5.0	Ų
100-42-5	Styrene	5.0	U
	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	Ū
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U-
108-86-1	Bromobenzene	5.0	Ü
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95 - 63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U.
106-46-7	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	Ū ·
	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	Ū ·
87-61-6	1,2,3-Trichlorobenzene	5.0	U ·
91-20-3	Naphthalene	5.0	U

Last Page of Data Report