

Groundwater Monitoring Report March 2010 Final

Korkay, Inc.
Site #5-18-014
Work Assignment No.
D004445-20

Prepared for:

SUPERFUND STANDBY PROGRAM

New York State

Department of Environmental Conservation

625 Broadway

Albany, New York 12233

Prepared by:

AECOM

40 British American Boulevard

Latham, New York 12110

June 2011

TABLE OF CONTENTS

1.0	INTROI 1.1 1.2	DUCTION
2.0		NDWATER SAMPLING METHODOLOGY
3.0 4.0	RESUL 3.1 3.2	
		LIST OF FIGURES
Figure 1 Figure 2 Figure 2 Figure 4 Figure 4	2 3 4 4A	Site Location Plan Site Layout Map Water Table Contour Map Total VOC Isoconcentration Map – Shallow Aquifer November 25, 2008 Total VOC Isoconcentration Map – Shallow Aquifer August 14, 2007 Total VOC Isoconcentration Map – Shallow Aquifer March 25, 2010
		LIST OF TABLES
Table 1 Table 2		Water Level Measurements Groundwater Analytical Data
		LIST OF CHARTS
Chart 1		Total VOC Concentrations in Groundwater – 8/2007, 11/2008 and 3/2010
		LIST OF APPENDICES
Append Append Append	ix B	Monitoring Well Field Inspection Logs Field Observation Logs - Groundwater Sampling Records Laboratory Report

1.0 INTRODUCTION

1.1 GENERAL

This summary report documents the groundwater sampling event conducted March 25th, 2010 at the Korkay Inc. Site (Site No. 5-18-014), located at 70 West Main Street in the Village of Broadalbin, Fulton County, New York (Figure 1). This sampling event was conducted in accordance with the Operation, Maintenance and Monitoring Plan (OM&M Plan, AECOM (as Earth Tech) 2007), for Work Assignment (WA) No. D004445-20 of the State Superfund Standby Contract between the New York State Department of Environmental Conservation (NYSDEC) and AECOM Technical Services Northeast, Inc. (AECOM).

The report presents and interprets analytical results for the groundwater sampling conducted in March 2010, in accordance with Task 6 and 7 of the OM&M Plan.

1.2 SITE DESCRIPTION AND BACKGROUND

Korkay, Incorporated (Korkay) located in Broadalbin, NY, was a supplier of detergents, solvents, and degreasers to the automotive industry from 1969 to 1980 (Figure 1). Korkay purchased bulk quantities of chemicals that were stored onsite for repackaging and/or blending into commercial products including automobile wax and hand cleaners. In addition to the production of commercial products, Korkay also operated as a drum reclamation facility.

In 1980, Korkay installed a 4,000 gallon above ground storage tank to appropriately contain the residual chemicals and rinsate generated from drum reclamation. Reports and site documentation indicate that the drums contained acetone, isopropyl alcohol, degreasers, and perfumes as well as other chemicals. In 1998 a phase II investigation was conducted. Multimedia sampling identified several inorganic and volatile organic compounds (VOCs) in groundwater at concentrations exceeding applicable standards. Subsequently, a remedial investigation (RI) was completed, followed by a feasibility study (FS), (Final Phase I and II FS, Camp Dresser and McKee 1995) to determine appropriate remedial activities to be conducted in order to address the contamination present at the site.

A Record of Decision (ROD) was entered by the NYSDEC in March 1996 which documented the site cleanup objectives and requirements for the remedial activities to be conducted. In August 1997, a remedial action was conducted at the site which included demolition of a building, and excavation and disposal of contaminated soils. In November 1998, a soil vapor extraction/air sparging (SVE/AS) system was constructed and put into operation in order to address the residual soil contamination (Figure 2). The SVE system was operated intermittently until 2003, when confirmatory soil sampling indicated that the soil cleanup objectives had been achieved.

In 2007, AECOM entered into Work Assignment No. D004445-20 of the State Superfund Standby Contract with the New York State Department of Environmental Conservation (NYSDEC). This work assignment included the generation of a Remedial System Operation (RSO) report, continued environmental sampling (groundwater monitoring and soils), site maintenance and reporting. In addition, a Periodic Review Report was generated for the site at the NYSDEC request.

2.0 GROUNDWATER SAMPLING

Per requirements of the OM&M Plan for the Korkay Inc. site, AECOM will manage the sampling of the entire monitoring well network on a five-quarter basis, for a maximum of three sampling events during this WA. Groundwater sampling for the third event was completed by AECOM in accordance with AECOM's April 2007 OM&M Plan for the Korkay site.

The locations of the sampled wells are presented in Figure 2.

2.1 GROUNDWATER SAMPLING METHODOLOGY

A total of 12 monitoring wells were sampled on March 25, 2010: ASW, Flushmount, K-2, K-3, MW-8S, MW-8D, MW-15D, VEW-1, VEW-2, VEW-3 and VEW-4.

A monitoring well network inspection was completed at the site. The monitoring well inspection logs are presented in Appendix A.

Prior to purging each well to prepare it for sampling, a depth-to-water measurement was taken using an electronic water level indicator, which was washed in a non-phosphate detergent solution, (LiquiNox® and potable water), and rinsed with distilled water before each use. Purging was conducted using the low-flow sampling technique with a submersible pump and polyethylene tubing. Groundwater from the well was purged until field parameters stabilized, or three well volumes were removed. Field parameters were considered to be stable when three consecutive readings were within the stabilization criteria for that parameter. The stabilization criteria are as follows: 10% or below 10 NTUs for turbidity, 3% for conductivity and temperature, 0.1 unit for pH, and 10 mV for ORP. New tubing was used for each location. Except for the two offsite wells (MW-8S & MW-8D), purge water was disposed of on the ground in the immediate vicinity of each well. The purge water from MW-8S and MW-8D carried to the site and disposed of on the ground.

Groundwater sampling logs (including the raw data sheets) are presented in Appendix B. All groundwater samples were placed in preserved bottles provided by the laboratory. Samples were packed with ice, and submitted with a completed Chain-of-Custody (CoC) form to Mitkem Laboratories, Warwick, Rhode Island (Mitkem). Each sample was analyzed for volatile organic compounds (VOC) by USEPA Method 8260. The laboratory report for the March 2010 sampling event is included as Appendix C.

3.0 RESULTS

3.1 GROUNDWATER FLOW

Water level measurements were obtained prior to sampling the wells. These depth-to-water measurements were converted to water level elevations using top-of-casing elevations for several wells, as presented in the 1995 RI report. Elevation data is not available for the AS well and the four SVE system wells.

The groundwater elevation data shown in Table 1 was used to produce a water table contour map of the shallow aquifer, as presented as Figure 3. Previous observations by AECOM, and data presented in CDM's RI report suggest the generalized groundwater flow direction is from north to south. During the March 2010 sampling event deep groundwater flow was consistent with previous observations. However, the shallow groundwater contours are indicative of a depression/trough in the vicinity of the inactive SVE system wells. This may be due to a seasonal variation in groundwater flow as this sampling event was conducted following the melt of a major snow storm.

The lack of shallow monitoring wells on the eastern edge of the Site property limits the accuracy of the delineation of groundwater flow. Additional monitoring wells along the east edge of the property would be recommended if better delineation is required.

3.2 ANALYTICAL RESULTS

The analytical results for the March 2010 groundwater sampling event are presented in Table 2. Concentrations above the New York State Ambient Water Quality Standards (AWQS) and guidance values for groundwater are in a shaded cell with bold typeface for ease of identification. Bolded text alone indicates a detection of the compound above the method detection limit, but below the individual AWQS.

Volatile Organic Compounds

In the 12 monitoring wells sampled, the total VOC (TVOC) concentrations ranged from below detection limits (ND) to 2,849 μ g/L. VOCs were not detected in the samples collected from Flushmount, MW-15D, MW-8S, and VEW-2. The Flushmount well and MW-15D represent two of the three deep wells on site (depth greater than 40 feet). The maximum concentration of TVOCs was observed in the sample collected from well ASW, located in the former source area. Figure 4B is an isoconcentration map of TVOC concentrations reported for the shallow wells (less than 15 feet deep) from the March 2010 sampling event. Provided for comparison are Figure 4 and Figure 4A which display TVOC isoconcentrations from the November 2008 and August 2007 sampling events, respectively.

Wells K-3, K-2, MW-15S, MW-8D, VEW-3, and VEW-4 were reported to contain concentrations of individual VOCs that did not exceed AWQS. Well K-3 is reported to contain Chloromethane at a concentration of 4.8 μ g/L, and no other compounds were detected above method detection limits. Well MW-8D is reported to contain Chloromethane at a concentration of 3.1 μ g/L, and no other compounds were detected above method detection limits. The results of the August 2007 and November 2008 sampling event for wells K-3, and MW-8D were reported to be below the method detection limits for VOCs. TVOC concentrations in wells K-2, MW-15S, VEW-3 and VEW-4 have all decreased by an order of magnitude since the November 2008 sampling event. VEW-3 and VEW-4, located east of ASW, were reported to contain concentrations of TVOCs at levels of 11 μ g/L, and 16 μ g/L, respectively compared to 679 μ g/L and 688 μ g/L during the previous event.

The highest concentrations of VOCs, significantly above AWQS, were found in the former source area wells VEW-1 and ASW. ASW, the former air sparging well, showed the highest concentration of TVOCs at 2,849 μ g/L. VEW-1, located northwest of ASW, contained 966 μ g/L TVOCs.

During the previous sampling event, November 2008, well MW-8S was reported to contain a TVOC concentration of 242 μ g/L, indicating that contamination above AWQS remains in the shallow aquifer

offsite. AECOM observed that MW-8S, a flushmount well, was submerged below ponded water at the time that the sampling event was conducted. Upon opening the flushmount cover to access well MW-8S during the November 2008 sampling event it was apparent that surface water had and was flowing into the well, which was lacking a cap (this condition has since been corrected). Although the well was properly purged before sampling, the VOC concentrations reported by the laboratory in November 2008 may not have been representative of actual groundwater conditions. During the March 2010 sampling event the area surrounding the well was dry and there was no evidence of surface water infiltrating the well, the data indicated that TVOC concentrations did not exceed the detection limit.

Chart 1 shows that four wells (ASW, VEW-1, VEW-3 and VEW-4) reported substantially lower TVOC concentrations, a decrease of at least 500 μ g/L, in the March 2010 sampling event compared to the November 2008 results. Wells MW-8S, K-2, and MW-15S also showed a significant reduction in TVOC decreasing by at least 100 μ g/L.

4.0 CONCLUSIONS

Review of the March 2010 shallow groundwater data demonstrates that groundwater contamination at the Korkay Inc. site persists in some of the same areas as discussed in the RI report, primarily beneath the southwestern quadrant of the site. The concentrations of TVOCs have decreased substantially since the rebound in concentrations reported in 2008. Although the trend of TVOC concentration is decreasing the concentrations remain well over the AWQS.

The concentrations of VOCs in the deep wells and in the western portion of the site have remained similar to past reported values; however, some significant decreases in concentrations are noted in the source area SVE/AS wells (i.e., ASW, VEW-1, VEW-3, and VEW-4).

The deep wells at the site continue to show little to no evidence of groundwater contamination, most likely a result of the confining clay layer found at approximately 12 to 14 feet below grade. A review of boring logs from the RI report and the soil borings completed by AECOM for the RSO in August 2007 suggests that this clay layer may be continuous beneath the site, and may extend offsite as well.

This was the third groundwater sampling event at the Korkay Site scheduled to occur under this Work Assignment. AECOM recommends continued sampling on a 5-quarter basis to monitor any offsite migration of the plume.

GENERAL MAPPING REFERENCE, MAPPING SHOWN COMPILED FROM THE FOLLOWING:

1. PLAN TITLED "EXISTING SITE PLAN" FIGURE 1-2.

2. PLAN TITLED" TREATMENT SYSTEM LAYOUT AND PRE-STARTUP SOIL BORING LOCATIONS" SITE LAYOUT, FIGURE 4-1, BY CAMP DRESSER & McKEE.

3. SUB-METER GPS SURVEY PERFORMED BY EARTH TECH, NOVEMBER 2007.

Scale in Feet 25' 50'

FIGURE 2

SITE LAYOUT MAP NYSDEC SITE ID: 5-18-014

KORKAY INC.

70 WEST MAIN STREET BROADALBIN, NEW YORK

DATE: MAY 2010

PROJECT NO.: 60135841

FIGURE 1-2 "SITE LAYOUT".

ISOCONCENTRATION MAP - SHALLOW AQUIFER

AUGUST 14, 2007

NYSDEC SITE ID: 5-18-014

KORKAY INC.

70 WEST MAIN STREET BROADALBIN, NEW YORK

DATE: MAY 2010

PROJECT NO.: 60135841

ISOCONCENTRATION MAP - SHALLOW AQUIFER

MARCH 25, 2010

NYSDEC SITE ID: 5-18-014

KORKAY INC.

70 WEST MAIN STREET BROADALBIN, NEW YORK

DATE: MAY 2010

PROJECT NO.: 60135841

Table 1 Water Level Measurements Korkay Inc. Broadalbin, New York Site #5-18-014

WELL ID	TOP OF CASING ELEVATION *	WELL DEPTH	Depth to Water (ft)	Elevation (ft)**
	(ft)	(ft)	3/2	5/10
ASW	NA	13.55	5.87	NA
Flushmount	819.04	54.48	30.92	788.12
K-2	818.72	13.82	10.70	808.02
K-3	817.73	12.60	8.65	809.08
MW-15D	817.87	43.94	28.10	789.77
MW-15S	817.74	12.58	7.64	810.10
MW-8D	815.16	54.25	27.81	787.35
MW-8S	815.19	10.82	4.84	810.35
VEW-1	NA	9.70	6.71	NA
VEW-2	NA	10.89	6.71	NA
VEW-3	NA	10.72	10.24	NA
VEW-4	NA	10.87	7.76	NA

^{*} From the August 1995 Final Phase II RI Report by Camp, Dresser & McKee.

NA - not available

^{**} Water table is contoured in Figure 3.

Table 2

Groundwater Analytical Data Korkay, Inc. Broadalbin, New York Site #5-18-014

Sampling Dates: August 2007 to May 2010

																-5		7 to M	-, -																
				AS	SW				F	LUSHN	IOUN	т					М	W-K2						MW-K3				N	IW-15D			M\	V-15S		
Volatile Organic Compounds	AWQS OR GV**									44100		0.00												44.00.00					4 105 100	0.00.40	0144107	44.00.000			
(µg/L) 1.1.1-Trichloroethane	5	8/14/ 5	U	11/25 25	5/08 U		5/10 U	8/14/ 5		11/25	U	3/25/ 5	U	5	8/1 U	4/07 5*	1.0		25/08 U	3/25	U	8/14/ 5	U	11/25/08		/25/10	8/14/0 5		1/25/08 5 U	3/25/10 5	8/14/07 5 U	11/25/08 5	5	3/2	25/10 5*
1,1,1-Tricritoroetriane 1,2,4-Trimethylbenzene	5	130	D	1100				5	II	5	III	5	U	60	U	60°		81	- 0	2.5	J.	5	U		J 5		5		5 U	5 L		29	1.1		
1,2-Dichlorobenzene	3	24	U	34	U	26		5	II	5	Ü	5	U	5	U		-		-		U		U		J 5		5		5 U			5 U			
1,3.5-Trimethylbenzene	5	31	D		-	280		5	II	5	III	5	II	3	J	3*	I I			5	II	5	IJ	5			5		5 U	5 L		25	5		
1.4-Dichlorobenzene	3	31	1		U			5	II	5	Ü	5	U	5	U		U		U		II	5	U		J 5		5		5 U			5 U			
2-Butanone	NS	14	-	13	J	25		5	III	5	ii	5	II	5	U		Ü		u		111	5	U	5			5		5 U	5 L		5 U			5*
4-Isopropyltoluene	5	39		61	Ť	25		5	II	5	ŭ	5	II	2	J	2*	J		ŭ		II	5	Ü		J 5		5		5 U	5 L		32	4.6		
Acetone	50 (GV	5	U	25	U	25		5	II	5	Ü	5	Ü	5	U		U		ŭ		U	5	Ü		J 5		5		5 II	5 L		5 U	5	Ü	5*
Carbon Disulfide	60 (GV	5	Ü	25	Ü			5	Ü	5	Ü	5	Ü	5	Ü		Ü		Ü		Ü	5	Ü	5	J 5		5	Ü	5 U	5 L		5 U	5	Ü	5*
Chloroethane	5	5	U	25	U	25	Ü	5	Ü	5	U	5	U	5	U	5	U	J 5	U	5	U	5	U	5	J 5	5 U	5	Ü	5 U	5 L	5 U	5 U	1	J	5
Chloromethane	NS	5	U		U	25	Ü	5	U	5	U	5	U	5	U	5	U	J		2.5	J	5	U	5	J 4.	.8 J	5	Ü	5 U	5 L	5 U	5 U	5	Ü	4.4
cis-1,2-Dichloroethene	5	53		72		24	J	5	U	5	U	5	U	4	J	4*	J	6.2		5	U	5	U	5	J S	5 U	5	U	5 U	5 L	5 U	5 U	5	U	5*
Ethylbenzene	5	65	D	430		150		5	U	5	U	5	U	12		13*		9.3		5	U	5	U		J 5		5		5 U	5 L		5 U	5	Ú	5*
Isopropylbenzene	5	49		86		50		5	U	5	U	5	U	4	J	4*	J	5.7		5	U	5	U		J 5		5		5 U	5 L		5 U	5	U	5*
m,p-Xylene	5	320	D	2100	D			5	U	5	U	5	U	16		16°		14		5	U	5	U		J		5	U	5 U			5 U		U	5*
n-Butylbenzene	5	60		91		73		5	U	5	U	5	U	8		8*		23		1.3	J	5	U		J		5		5 U	5 L		24	3.5		1.1*
n-Propylbenzene	5	74		120		87		5	U	5	U	5	С	4	J	4*	J	13		5	U		U) "		5		5 U	5 L		2.6 J	5	U	5*
Naphthalene	10 (GV)	130	Į.	160	Į.	100		5	U	5	U	5	C	10	В		В		_1Ξ	5	U	5	U		J		5		5 U			5 U		U	5*
o-Xylene	5	210	D	1000	D			5	U	5	U	5	U	30		30°		17		5	U	5	U		J S		5		5 U	5 L		5 U	5	U	5*
sec-Butylbenzene	5	28		46		37		5	U	5	U	5	U	6		6*		18		5	U	5	U		J		5		5 U	5 L		18	2.8		
tert- Butylbenzene	5	5	U	25	U	25		5	U	5	U	5	U	5	U	5*	U		U		U	5	U		J 5		5		5 U			1.4 J	5	U	
Tetrachloroethene	5	5	U	25	U	25 22		5	U	5	U	5	U	2 5	JB		JE				U	5	U		J 5		5		5 U	5 L		5 U		U	5* 5*
Toluene	5	19	ш	26	JB			5	II	5	U	5	U	1	J		1		U		II		U		J :		5		5 U			1.3 J	5		
Trichloroethene Xylene (Total)	NS NS	530	D	8.2 3100				5	II	5	U	5	U	46	J	46*	L	31	U	5	U	5	U		J :		5		5 U	5 L		5 U			
	INO	1249						ND	U	ND.	U	ND	U	162	JB		JE		٠.	6	J		U		J		ND		ND U	ND C	124 J				
Total Volatile Organic Compounds Semivolatile Organic Compounds (1249	DJ	3/0/	DUE	2048	9 3	ND		ND	_	ND		102	JD	15/	J	5 203	J		J	ND		1.2	J :	, ,	ND	_ ! - !	ND	ND	124 J	133.3	13	J	7.0
pg/L)																																			
1.2-Dichlorobenzene	3	19	J	NA	1	NA	_	10	LII	NA	1	NA	1	10	ΙU	NA	_	NA.	_	NA	1	10	U	NA	N	٨	10	11.	NA	NA	10 U	NA	NA	_	NA
1.4-Dichlorobenzene	3	2	J		+	NA		10	II	NA	1	NA		10	II		+	NA.	+	NA.	+	10	Ü	NA	N		10		NA A	NA NA	10 U	NA NA	NA NA		NA.
2,4-Dimethylphenol	1	20	ii.	NA	+-	NA		10	III	NA	1	NA		10	U		-	NA.	-	NA.	_	10	U	NA	N		10		NA.	NA NA	10 U	NA NA	NA		NA NA
2-Methylnaphthalene	NS	50	Ť	NA	+-	NA		10	II	NA	1	NA		10	II	NA	-	NA.	-	NA.	_	10	Ü	NA	N		10		NA.	NA NA	10 U	NA.	NA.		NA.
2-Methylphenol	NS	20	ш	NA	_	NA		10	II	NA		NA		10	U	NA	_	NA	_	NA		10	Ü	NA	N		10		NA.	NA	10 U	NA	NA		NA
4-Methylphenol	NS	170		NA		NA		10	U	NA		NA		10	U			NA		NA		10	U	NA	N		10		NA A	NA	10 U	NA	NA		NA
bis (2-Ethylhexyl) phthalate	5	2	J	NA		NA		10	U	NA		NA		10	U	NA		NA		NA		10	U	NA	N	A	2	JI	NA.	NA	2 J	NA	NA		NA
Di-n-butylphthalate	50	4	J			NA		10	U	NA		NA		10	U			NA		NA		10	U	NA	N		10		NA A	NA	10 U	NA	NA		NA
Naphthalene	10 (GV)	110		NA		NA		10	U	NA		NA		10	U	NA		NA		NA		10	U	NA	N		10	U	NA A	NA	1 J	NA	NA		NA
Phenol	1	20	U	NA		NA	ı	10	U	NA		NA		10	U	NA	I	NA	I	NA		10	U	NA	N	A	10	U	NA	NA	10 U	NA	NA	ı	NA
Metals μg/L																																			
Copper	200	6.3	Э	NA		NA		19.1		NA		NA		54.8		NA		NA		NA		8.6	В	NA	N		19.8		NA A	NA	10.4 B		NA		NA
Iron	300	75100	1	NA	╨	NA		33000	4	NA	┖	NA	\Box	28500		NA	_[NA		NA	ĻΞ	9600	ш	NA	N		396		NA	NA	8870	NA	NA		NA
Manganese	300	2260		NA		NA		620		NA	1	NA		709		NA		NA		NA	1	1090	Ш	NA	N	A	26.9	В	NA.	NA	155	NA	NA		NA
Dissolved Metals µg/L																																			
Copper	200	6.3	U	NA		NA		6.3	U	NA	_	NA		6.3	U	NA	_	NA		NA	4_	6.3	U	NA	N		6.3		NA	NA	6.3 U	NA	NA		NA
Iron	300	46800		NA		NA		159	В	NA	_	NA		5680		NA	_	NA		NA	4_	380	L	NA	N		174		NA.	NA	5910	NA	NA		NA
Manganese	300	2080		NA		NA		2.3	В	NA	_	NA	\Box	550		NA		NA		NA	1_	20.3	В	NA	N	A	10.6	В	NA	NA	144	NA	NA		NA
Wet Chemistry mg/L																																			
Chloride	250	2.6	+-	NA	_	NA		2.1	+	NA	ــــ	NA	\perp	2	U	NA	_	NA		NA	+-	2	U	NA	N		2		NA.	NA	13	NA	NA		NA
Total Organic Carbon	NS	49	+-	NA	_	NA		10.0	U	NA	ــــ	NA	\perp	21.0	4	NA	_	NA	_	NA	+-	10	U	NA	N		10		NA	NA	13	NA	NA		NA
Alkalinity (Total)	NS	250	+-	NA	+	NA		300	+-	NA	+-	NA	\vdash	180	+-	NA	+	NA	+	NA	+-	160	H	NA	N		80		NA	NA	80	NA	NA		NA
TKN-N	NS	3.1		NA		NA		2.3	_	NA		NA		2.4		NA		NA		NA	_	1.1		NA	N	A	0.69		NA	NA	3.5	NA	NA		NA

- Note: Total VOC values for the August 2007 rampling event were incorrectly calculated in that report's Table 2 (tylenes were double-counted). They have been corrected there. Consequently, Figure 4 in the 2007 report, which contoured those values, was incorrect as well.

 Figure 4A in this report corrects the 2007 errors.

 Figure 4A in this report corrects the 2007 errors.

 Figure 4A in this report corrects the 2007 errors.

 Figure 4A in this report corrects the 2007 errors.

 Figure 4A in this report corrects the 2007 errors.

 Figure 4A in this report corrects the 2007 errors.

 Figure 4A in this report corrects the 2007 errors.

 Figure 4A in this report corrects the 2007 errors.

 Figure 4A in this report corrects the 2007 errors.

 Figure 4A in this report corrects the 2007 errors.

 Figure 4A in this report corrects the 2007 errors.

 Figure 4A in this report corrects the 2007 errors.

 Figure 4A in this report corrects the 2007 errors.

 Figure 4A in this report corrects the 2007 errors.

 Figure 4A in this report corrects the 2007 errors.

 Figure 4A in this 2007 report, which contoured those values, was incorrect as well.

 Figure 4A in this 2007 report, which contoured those values are concentration for compound detected below the reporting limit.

 Figure 4 in the 2007 report, which contoured those values, incorrect as well.

 Figure 4 in the 2007 report, which contoured those values are concentration for compound the extended the concentration for compound the extended the 2007 report, which contoured those values are concentration for compound the extended the 2007 report, which contoured those values are concentration for compound the extended the 2007 report, which contoured those values are concentration for compound the extended the 2007 report, which contoured those values are concentration for compound the extended the 2007 report, which contoured these values are concentration for compound the extended the 2007 report, which contoured the 2007 report the 2007 report, which contoured the 2007 report the 2007

Table 2

Groundwater Analytical Data Korkay, Inc. Broadalbin, New York Site #5-18-014

Sampling Dates: August 2007 to May 2010

				MW-	-8D					MW-	8S				VEW-				_			VEW-2	2					VEW-3			VEW-4			
Volatile Organic Compounds	AWQS							\neg		_						÷						-												
(µg/L)	OR GV**	8/14/	07	11/25	5/08	3/25/	10	8/14/	07	11/25	/08	3/25/	10	8/14	07	11/25/	08	3/25/	10	8/14/0	07	11/25/0	18	3/25/	10	8/14/0	07	11/25/0	В	3/25/10	8/14	/07	11/25/08	3/25/10
1,1,1-Trichloroethane	5	5	U	5	U	5	U	5	U	5	U	5	U	2	J	5	U	13	U	5	U	5	U	5	U	5	U	5	U	5 U	5	U	5 U	5 U
1,2,4-Trimethylbenzene	5	5	С	1.6	J	5	С	430	D	89		5	С	230	D	410	D	220		22		9.8		5	С	130		130		2 J	12		170	3.1 J
1,2-Dichlorobenzene	3	5	U	5	U	5	U	26		5.6		5	U	23		34		19		1	J		J	5	U	30		25		5 U	2	J	16	5 U
1,3,5-Trimethylbenzene	5	5	U	5	U	5	U	97		36	H	5	U	230	D	410	D	200		1	J	5	U	5	U	110		110		1.8 J	6		100	2.1 J
1,4-Dichlorobenzene	3	5	U	5	U	5	U	3	J	5	U	5	U	1	J	2.3	J	13	U	5	U		U	5	U	1.0	J		U	5 U	5	U	1 J	
2-Butanone	NS	5	U	5	U	5	U	5	U	5	U	5	U	13		17		13	U	5	U		U	5	U	9		11		5 U	5	U	8.1	5 U
4-Isopropyltoluene	5	5	U	5	U	5	U	20		5	U	5	U	36		5	U	59		5	U		U	5	U	12		12		5 U	5	U	5 U	
Acetone	50 (GV)	5	U	5	U	5	U	5	U	5	U	5	U	10		34		13	U	5	U		U	5	U	5	U		U	5 U	70		8.8	5 U
Carbon Disulfide	60 (GV)	5	U	5	U	5	U	5	U	5	U	5	U	- 1	J	5	U	13	U	5	U		U	5	U	5	U		U	5 U	5	U	5 U	
Chloroethane	5	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	4.7	J	5	U		U	5	U	5	U		U	5 U	5	U	5 U	5 U
Chloromethane	NS	5	U	5	U	3.1	J	5	U	5	U	5	U	5	U	5	U	6.7	J	5	U		U	5	U	5	U		U	5 U	5	U	5 U	
cis-1,2-Dichloroethene	5	5	U	5	U	5	U	9		1.3	J	5	U	130		84		39		39			J	5	U	4	J		J	5 U	2	J	3.5 J	
Ethylbenzene	5	5	U	5	U	5	U	57		11		5	U	29		54		28		5			J	5	U	32		38		5 U	5	U	17	5 U
Isopropylbenzene	5	5	U	5	U	5	U	27		9.6		5	U	- 11	_	23		12	J	5	U		U	5	U	6		6.9		5 U	5	U	4.5 J	5 U
m,p-Xylene	5	5	U	5	U	5	U	160		28		5	U	49		100		51		5			J	5	U	120		150		2.9 J	4	J	84	1.5 J
n-Butylbenzene	5	5	U	5	U	5	U	45		12		5	U	54	_	5	U	47		5	U		U	5	U	17		15		5 U	5	U	14	5 U
n-Propylbenzene	5	5	U	5	U	5	U	34		14		5	U	14		30		19		1	J		J	5	U	7		8.9		5 U	5	U	3.3 J	5 U
Naphthalene	10 (GV)	5	U	1.2	J	5	U	58		10		5	U	110	В	5	U	78		6	В		J	5	U	70		45		1.8 J	18		60	5 U
o-Xylene	5	5	U	5	U	5	U	120		19		5	U	250	D	330	D	160		17			J	5	U	110		110		2.1 J	20		180	2.5 J
sec-Butylbenzene	5	5	U	5	U	5	U	22		6.8		5	U	17		5	U	19		5	U		U	5	U	4	J	5.1		5 U	5	U	4.1 J	5 U
tert- Butylbenzene	5	5	U	5	U	5	U	5	U	5	U	5	U	4	J	5	U	13	U	5	U		U	5	U	2	J		U	5 U	5	U	5 U	
Tetrachloroethene	5	5	U	5	U	5	U	5	U	5	U	5	U	2	JB	1.7	J	13	U	5	U		U	5	U	1	J	1.2	J	5 U	5	U	3 J	5 U
Toluene	5	5	U	5	U	5	U	- 1	J	5	U	5	U	4	J	4.4	J	3.4	J	3	J		U	5	U	5	U	7.9		5 U	2	J	7.8	5 U
Trichloroethene	5	5	U	5	U	5	U	5	U	5	U	5	U	2	J	3.1	J	13	U	5	U		U	5	U	5	U		U	5 U	5	U	3 J	1 J
Xylene (Total)	NS	5	U	5	U	5	U	280		47		5	U	299	D	420		220		22		6.3		5	U	230		260		5	24		270	4 J
Total Volatile Organic Compounds		ND		2.8	J	3	J	1109	DJ	242	J	ND		1222	DJB	1543	DJ	966	J	100	BJ	29	J	ND		665	J	679	J	11 J	136	J	688.1 J	16 J
Semivolatile Organic Compounds (
μg/L)																																		
1,2-Dichlorobenzene	3	10	U	NA		NA		21		NA		NA		25		NA		NA		1	J	NA		NA		21		NA		NA	5	J	NA	NA
1,4-Dichlorobenzene	3	10	U	NA		NA		2	J	NA		NA		2	J	NA		NA		10	U	NA		NA		10	U	NA		NA	10	U	NA	NA
2,4-Dimethylphenol	1	10	U	NA		NA		10	U	NA		NA		10	U	NA		NA		4	J	NA		NA		10	U	NA		NA	9	J	NA	NA
2-Methylnaphthalene	NS	10	U	NA		NA		7	J	NA		NA		24		NA		NA		10	U	NA		NA		2	J	NA		NA	- 1	J	NA	NA
2-Methylphenol	NS	10	U	NA		NA		10	U	NA		NA		10	U	NA		NA		6	J	NA		NA		10	U	NA		NA	20		NA	NA
4-Methylphenol	NS	10	U	NA		NA		14		NA		NA		56		NA		NA		3	J	NA	_	NA		10	U	NA		NA	110		NA	NA
bis (2-Ethylhexyl) phthalate	5	2	J	NA		NA		2	J	NA		NA		- 1	J	NA		NA		1	J	NA		NA		1	J	NA		NA	2	J	NA	NA
Di-n-butylphthalate	50	10	U	NA		NA		- 1	J	NA		NA		15		NA		NA		10	U	NA		NA		1	J	NA		NA	- 1	J	NA	NA
Naphthalene	10 (GV)	10	U	NA		NA		48		NA		NA		110		NA		NA		2	J	NA		NA		31		NA		NA	23		NA	NA
Phenol	1	10	U	NA		NA		10	U	NA		NA		10	U	NA		NA		10	U	NA		NA		10	U	NA		NA	20		NA	NA
Metals μg/L																																		
Copper	200	18.6	В	NA		NA		24.5	В	NA		NA		9.6	В	NA		NA		6.3	U	NA		NA		7.5	В	NA		NA	54.5		NA	NA
Iron	300	10300		NA		NA		20800		NA		NA		18300		NA		NA		9020		NA		NA		5990		NA		NA	2090)	NA	NA
Manganese	300	259		NA		NA		879		NA		NA		559		NA		NA		582		NA		NA		413		NA		NA	1020		NA	NA
Dissolved Metals µg/L																																		
Copper	200	6.3	U	NA		NA		6.3	U	NA		NA		6.3	U	NA		NA		6.3	U	NA		NA		6.3	U	NA		NA	6.3	U	NA	NA
Iron	300	167	В	NA	1	NA		9030	ΙП	NA	ΙТ	NA		5590	1	NA	1 -	NA		866	ιТ	NA	- T	NA		642	ΙП	NA	Т	NA	1010	П	NA	NA
Manganese	300	4.4	В	NA		NA		765		NA		NA		499		NA		NA		550		NA		NA		351		NA		NA	843		NA	NA
Wet Chemistry mg/L																																		
Chloride	250	41		NA		NA		38		NA		NA		2	U	NA		NA		2	U	NA		NA		3.1		NA	Т	NA	5.6		NA	NA
																																		NA
Total Organic Carbon	NS	10.0	U	NA		NA		17		NA		NA		35		NA		NA		28		NA	J	NA		34		NA		NA	87		NA	
	NS NS	10.0 62	U	NA NA	-	NA NA		17 230		NA NA		NA NA		35 160		NA NA	H	NA NA	Н	28 240	Н	NA NA	-	NA NA	Н	34 370		NA NA	+	NA NA	87 410	+	NA NA	NA NA

Note - Total VOC values for the August 2007 sampling event were incorrectly calculated in that report's Table 2 (xylenes were double-counted). They have been corrected here. Consequently, Figure 4 in the 2007 report, which contoured those values, was incorrect as well. Figure 4A in this report orrects the 2007 errors.

3. For organic analyses - compound detected in laboratory method blank. For inorganic analyses-indicates trace concentration below reporting limit and equal to or above the detection limit.

5. Even organic analyses - compound detected in laboratory method blank. For inorganic analyses-indicates trace concentration below reporting limit and equal to or above the detection limit.

5. Even organic analyses - compound detected in laboratory method blank. For inorganic analyses-indicates trace concentration below reporting limit and equal to or above the detection limit.

5. Even organic analyses - compound detected to have the reporting limit.

6. Even organic analyses - compound detected to have the reporting limit.

7. Even organic analyses - compound detected to have the reporting limit.

8. Even organic analyses - compound detected to have the reporting limit.

9. Even organic analyses - compound detected to have the detected below the reporting limit and equal to or above the detection limit.

9. Even organic analyses - compound detected in laboratory method blank. For inorganic analyses - indicates trace concentration in laboratory method blank. For inorganic analyses - indicates trace concentration in laboratory method blank. For inorganic analyses - indicates at the compound in laboratory method blank. For inorganic analyses - indicates at the control of the compound in laboratory method blank. For inorganic analyses - indicates at the control of the compound in laboratory method blank. For inorganic analyses - indicates at the control of the compound in laboratory method blank. For inorganic analyses - indicates at the control indicates at the control of the control of the control of the co

Chart 1 Total VOC Concentrations in Groundwater August 2007, November 2008, and March 2010

Korkay, Inc. Broadalbin, New York Site #5-18-014

Well ID

□August 2007 ■November 2008 ■March 2010

AECOM Technical Services Northeast Inc.

5/18/2010

Appendix A Monitoring Well Field Inspection Logs

SITE NAME: Korkay, Inc. Site	_SITE ID.:	Korkay
MONUTORING WELL FIELD INCRECTION LOC	INSPECTOR:	
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME:	
	WEII ID.:	<u>K-2</u>
	,	YES NO
WELL VISIBLE? (If not, provide directions below)		X
WELL COORDINATES? NYTM X - 1538989.887 NYTM Y - 572203.821		
PDOP Reading from Trimble Pathfinder: Satelites: GPS Method (circle) Trimble And/Or Magellan		
GPS Method (chcle) Trinible And/Of Magenan		YES NO
WELL I.D. VISIBLE?		X
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		X
WELL LD AG WELL DDD AD GOVERN DE GLODING OD WELL WAS ALL.		
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: K-2 (side and top)		YES NO
SURFACE SEAL PRESENT?	<u> </u>	X NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)		X
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		X
HEADCDACE DEADING (nom) AND INCEDIMENT LICED		Not C-11 1
HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		Not Collected uare Stickup - 2.5'
PROTECTIVE CASING MATERIAL TYPE:	_54	Steel Steel
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		4"
A COLUMN TO THE		YES NO
LOCK PRESENT? LOCK FUNCTIONAL?	<u> </u>	X
DID YOU REPLACE THE LOCK?	· —	X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)		X
WELL MEASURING POINT VISIBLE?		X
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		13.82'
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):		10.70'
MEASURE WELL DIAMETER (Inches):		2"
WELL CASING MATERIAL:		PVC
PHYSICAL CONDITION OF VISIBLE WELL CASING:		Good
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		Sharpie ID NA/150'
TROTHINIT TO CLUBEROROCLUB OR OVERHELIEB CLIBERIES		1111110
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, over		
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF N	NECESSARY.	
Well is easily accessible.		
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a gard	en. etc.)	
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	,,	
Well is located in a field, approximately 10' from a fence.		
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT		
(e.g. Gas station, salt pile, etc.):		
The site in general is a source of contamination, but other than that it is located adjacent to a private resi	idence and coul	d be affected by
runoff from the property, especially the driveway. There is also a swimming pool located nearby.		
DEMARKS.		
REMARKS: The lock had to be cut to gain access to the well. The lock needs to be replaced.		
The lock had to be cut to gain access to the well. The lock needs to be replaced. See attached photograph of monitoring well.		
provograpii or momentum nom		

SITE NAME: Korkay, Inc. Site	SITE ID.:	Korkay	
MONITORING WELL FIELD INGRECTION LOC	INSPECT		MJH
MONITORING WELL FIELD INSPECTION LOG	DATE/TI		3/25/10
	WEII ID.:		K-3
		YES	NO
WELL VISIBLE? (If not, provide directions below)	•••	X	
WELL COORDINATES? NYTM X - 1538989.887 NYTM Y - 572203.821			
PDOP Reading from Trimble Pathfinder: Satelites:			
GPS Method (circle) Trimble And/Or Magellan		_	1
		YES	NO
WELL I.D. VISIBLE?		X	
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		X	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: K-3 (side)			
		YES	NO
SURFACE SEAL PRESENT?		X	
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)		X	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		X	
HEADSPACE READING (ppm) AND INSTRUMENT USED		Not C	ollected
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		Square St	ickup - 2.5'
PROTECTIVE CASING MATERIAL TYPE:			teel
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):			4"
		YES	NO
LOCK PRESENT?			X
LOCK FUNCTIONAL?			X
DID YOU REPLACE THE LOCK?			X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?			X
WEEL MEASURING FORM VISIBLE:			Λ
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		13	2.6
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):			65
MEASURE WELL DIAMETER (Inches):			2"
WELL CASING MATERIAL:		P	VC
PHYSICAL CONDITION OF VISIBLE WELL CASING:		G	ood
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		Shar	pie ID
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		NA	/100'
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, over	rhead		
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF N		Υ.	
Well is easily accessible.			
DESCRIPE WELL OF THE ALL ALL STATES AND ALL ALL STATES AND ALL ALL STATES AND ALL ALL STATES AND ALL ALL ALL ALL ALL ALL ALL ALL ALL AL			
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a gard	en, etc.)		
AND ASSESS THE TYPE OF RESTORATION REQUIRED.			
Well is located in a field, approximately 25' from a fence.			
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT			
(e.g. Gas station, salt pile, etc.):			
The site in general is a source of contamination.			
DEMARKS			
REMARKS:			
See attached photograph of monitoring well.			

SITE NAME: Korkay, Inc. Site	SITE ID.: INSPECTO	R:	Korkay MJH
MONITORING WELL FIELD INSPECTION LOG	DATE/TIM	ſΕ:	3/25/10
	WEII ID.:		MW-15S
		YES	NO
WELL VISIBLE? (If not, provide directions below)	L	X	
WELL COORDINATES? NYTM X NYTM Y unable to obtain			
PDOP Reading from Trimble Pathfinder: Satelites: GPS Method (circle) Trimble And/Or Magellan			
Gr's Method (Chele) Trinible And/Of Magenan	Г	YES	NO
WELL ID VICIDIES	<u> </u>	X	NO
WELL I.D. VISIBLE?			
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	L	X	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: MW-15S (side)	<u>-</u>		
CUREAGE GEAL PREGENTS	-	YES	NO
SURFACE SEAL PRESENT?	-	X	
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	-	X	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	L	Λ	
HEADSPACE READING (ppm) AND INSTRUMENT USED	<u>-</u>	Not C	ollected
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	<u>:</u>	Square St	tickup - 2.5
PROTECTIVE CASING MATERIAL TYPE:	_		teel
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	-		4"
	_	YES	NO
LOCK PRESENT?	-	X	
LOCK FUNCTIONAL?			X
DID YOU REPLACE THE LOCK?	-		X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)	-	X	
WELL MEASURING POINT VISIBLE?	L	X	<u> </u>
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	_	12	2.58'
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	<u>_</u>		.64'
MEASURE WELL DIAMETER (Inches):	_		2"
WELL CASING MATERIAL:	·· _	P	VC
PHYSICAL CONDITION OF VISIBLE WELL CASING:	_		ood
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	_		nt ID
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	-	N.A	N/NA
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, over	erhead		
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF		7	
Well is easily accessible.			
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a gar	den, etc.)		
AND ASSESS THE TYPE OF RESTORATION REQUIRED.			
Well is located in a field, approximately 5' from a fence.			

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT

(e.g. Gas station, salt pile, etc.):

The site in general is a source of contamination.

REMARKS:

See attached photograph of monitoring well.

The lock had to be cut to gain access to the well. The lock needs to be replaced.

SITE NAME: Korkay, Inc. Site	_SITE ID.:	0.0	Korkay
MONUMORING WITH A FIFT R INGREGATION AND	INSPECT		MJH
MONITORING WELL FIELD INSPECTION LOG	DATE/TII	ME:	3/25/10
	WEII ID.:		MW-15D
		YES	NO
WELL VISIBLE? (If not, provide directions below)	•••	X	
WELL COORDINATES? NYTM XNYTM YNOT able to obtain			
PDOP Reading from Trimble Pathfinder: Satelites:			
GPS Method (circle) Trimble And/Or Magellan		YATEG	NO
WELL I.D. VISIBLE?		YES X	NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	•	X	
WELL LOCATION WATCH SITE WAT: (II not, sector actual location on back)		Λ	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: MW-15D (side)			
		YES	NO
SURFACE SEAL PRESENT?		X	
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)		X	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		X	
HEADSPACE READING (ppm) AND INSTRUMENT USED		Not C	ollected
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)			tickup - 2.5'
PROTECTIVE CASING MATERIAL TYPE:			teel
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):			4"
		YES	NO
LOCK PRESENT?		X	V
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK?			X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)		X	Λ
WELL MEASURING POINT VISIBLE?		X	
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):			5.94
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):			8.1 2"
MEASURE WELL DIAMETER (Inches):			VC
PHYSICAL CONDITION OF VISIBLE WELL CASING:			ood
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE			nt ID
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		N/	\/NA
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, over		,	
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF N	IECESSAR Y	ί.	
Well is easily accessible.			
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garde	en etc.)		
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	cn, ctc.)		
Well is located in a field, approximately 5' from a fence.			
wen is located in a field, approximately 3 from a fence.			
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT			
(e.g. Gas station, salt pile, etc.):			
The site in general is a source of contamination.			
The one in general to a control of containmation.			
REMARKS:			
See attached photograph of monitoring well.			
The lock had to be cut to gain access to the well. The lock needs to be replaced.			

SITE NAME: Korkay, Inc. Site	SITE ID.:	Korkay	
MONITORING WELL FIELD INGRECTION LOC	INSPECT		MJH
MONITORING WELL FIELD INSPECTION LOG	DATE/TI	ME:	3/25/10
	WEII ID.:		MW-8S
		YES	NO
WELL VISIBLE? (If not, provide directions below)	•••	X	
WEEE COORDINATES: INTIMAINTIMIA			
PDOP Reading from Trimble Pathfinder: Satelites:			
GPS Method (circle) Trimble And/Or Magellan		*****	170
WELL LD MIGHT FO		YES	NO
WELL I.D. VISIBLE?		***	X
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		X	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: not visible			
CLIDEACE CEAL DRECENTO		YES X	NO
SURFACE SEAL PRESENT?		X	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		X	
PROTECTIVE CASING IN GOOD CONDITION: (II dailiaged, describe below)		Λ	
HEADSPACE READING (ppm) AND INSTRUMENT USED		Not Co	ollected
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		Flush	mount
PROTECTIVE CASING MATERIAL TYPE:		St	eel
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		8	3"
		YES	NO
LOCK PRESENT?			X
LOCK FUNCTIONAL?			X
DID YOU REPLACE THE LOCK?			X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)		v	X
WELL MEASURING POINT VISIBLE?		X	
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		10	.82'
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):			84'
MEASURE WELL DIAMETER (Inches):			2"
WELL CASING MATERIAL:		P	VC
PHYSICAL CONDITION OF VISIBLE WELL CASING:		G	ood
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		no	one
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		NA	1/20'
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, over	rhead		
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF N	NECESSAR'	Y.	
Well is easily accessible in private residence's driveway, overhead powerlines approximately 20' away			
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a gard	en etc.)		
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	cn, cic.)		
Well is located in a private residence's driveway.			
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT			
(e.g. Gas station, salt pile, etc.):			
The site in general is a source of contamination, could be affected by runoff from the road			
REMARKS:			
See attached photograph of monitoring well.			

SITE NAME: Korkay, Inc. Site	SITE ID.: INSPECT	OR:	MJH
MONITORING WELL FIELD INSPECTION LOG	DATE/TI	ME:	3/25/10
	WEII ID.:		MW-8D
		YES	NO
WELL VISIBLE? (If not, provide directions below)	•	X	110
WELL COORDINATES? NYTM XNYTM Yunable to obtain			
PDOP Reading from Trimble Pathfinder: Satelites:			
GPS Method (circle) Trimble And/Or Magellan			
		YES	NO
WELL I.D. VISIBLE?			X
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		X	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: not visible			
		YES	NO
SURFACE SEAL PRESENT?		X	
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)		X	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		X	
HEADSPACE READING (ppm) AND INSTRUMENT USED		Not C	ollected
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		0	nmount
PROTECTIVE CASING MATERIAL TYPE:		S	teel
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):			8"
		YES	NO
LOCK PRESENT?			X
LOCK FUNCTIONAL?			X
DID YOU REPLACE THE LOCK?			X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)			X
WELL MEASURING POINT VISIBLE?		X	
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		5/	.25
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):			7.81'
MEASURE WELL DIAMETER (Inches):			2"
WELL CASING MATERIAL:		P	VC
PHYSICAL CONDITION OF VISIBLE WELL CASING:		G	ood
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		n	one
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		N/	A/20'
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overl	1		
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF N		7	
	ECESSAR		
Well is easily accessible in private residence's driveway, overhead powerlines approximately 20' away			
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden	n, etc.)		
AND ASSESS THE TYPE OF RESTORATION REQUIRED.			
Well is located in a private residence's driveway.			
IDENTIFY ANY MEADDY DOTENTIAL COUDCIG OF CONTAMINATION IF DECENT			
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT			
(e.g. Gas station, salt pile, etc.):			
The site in general is a source of contamination, could be affected by runoff from the road			
REMARKS:			
See attached photograph of monitoring well.			

SITE NAME: Korkay, Inc. Site SITE ID INSPEC		Korkay MJH
MONITORING WELL FIELD INSPECTION LOG DATE:		3/25/10
WEILD WEILD THE BUTTON BOO DATE.		ASW
WEITE	,	ASW
	YES	NO
WELL VISIBLE? (If not, provide directions below)	X	
WELL COORDINATES? NYTM X 572238.7930 NYTM Y 1538959.4600		
PDOP Reading from Trimble Pathfinder: Satelites:		
GPS Method (circle) Trimble And/Or Magellan		ı
	YES	NO
WELL I.D. VISIBLE?	X	
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	X	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: ASW (side)		
WEEL I.D. TIS IT THE EARS STATES THE TEST OF WEEL. TIS W (SILE)	YES	NO
SURFACE SEAL PRESENT?	X	
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	X	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	X	
HEADSPACE READING (ppm) AND INSTRUMENT USED		ollected
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	_	kup - 2.0'
PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		VC o"
WIEASURE FROTECTIVE CASING INSIDE DIAWETER (IIICIICS).	YES	NO
LOCK PRESENT?	TES	X
LOCK FUNCTIONAL?		X
DID YOU REPLACE THE LOCK?		X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)		X
WELL MEASURING POINT VISIBLE?	X	
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	-	.55
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	5.	8 / <u>)</u> "
WELL CASING MATERIAL:		VC
PHYSICAL CONDITION OF VISIBLE WELL CASING:	_	ood
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	_	nt ID
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		/100'
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead		
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.		
Well is easily accessible.		
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)		
AND ASSESS THE TYPE OF RESTORATION REQUIRED.		
Well is located in a field, combination groundwater monitoring well and vapor extraction well.		
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT		
(e.g. Gas station, salt pile, etc.):		
The site in general is a source of contamination, but other than that it is located adjacent to a private residence and could	l be affected l	у
runoff from the property, especially the driveway. There is also a swimming pool located nearby.		
REMARKS:		
See attached photograph of monitoring well.		

SITE NAME: Korkay, Inc. Site	SITE ID.: INSPECTO	nD·	Korkay MJH		
MONITORING WELL FIELD INSPECTION LOG					
MONITORING WELL FIELD INSPECTION LOG	DATE/TIM WEII ID.:	iE:	3/25/10 VEW-1		
	WEII ID.:		VEW-1		
		YES	NO		
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM X 572221.9210 NYTM Y 1538961.9640		X			
PDOP Reading from Trimble Pathfinder: Satelites: GPS Method (circle) Trimble And/Or Magellan					
OFS Method (chele) Thinble And/Of Magenan	Г	YES	NO		
WELL I.D. VISIBLE?		X	110		
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		X			
<u> </u>	L				
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: VEW-1 (side)	Г	X TED C	270		
CLIDEACE CEAL DECENTS		YES	NO		
SURFACE SEAL PRESENT?		X			
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		X			
TROTLETTY D CHISING IN GOOD CONDITION. (It diamaged, describe below)	L	21			
HEADSPACE READING (ppm) AND INSTRUMENT USED		Not Co	llected		
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	_	PVC Stic	kup - 2.0'		
PROTECTIVE CASING MATERIAL TYPE:	_	PV			
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	Г	2			
I OCH PREGENTE	-	YES	NO		
LOCK PRESENT? LOCK FUNCTIONAL?			X		
DID YOU REPLACE THE LOCK?			X		
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)			X		
WELL MEASURING POINT VISIBLE?			X		
	_				
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	_	10.			
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	_	6.7			
MEASURE WELL DIAMETER (Inches):	-	PV			
PHYSICAL CONDITION OF VISIBLE WELL CASING:	_		ood		
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	-	Pain			
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	-	NA/			
	_				
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead					
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESS	SARY.				
Well is easily accessible.					
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)				
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	,				
Well is located in a field, combination groundwater monitoring well and vapor extraction well.					
wen is located in a field, combination groundwater mointoring wen and vapor extraction wen.					
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT					
(e.g. Gas station, salt pile, etc.):					
The site in general is a source of contamination, but other than that it is located adjacent to a private residence a	and could be	affected b	У		
runoff from the property, especially the driveway. There is also a swimming pool located nearby.					
REMARKS:					
See attached photograph of monitoring well.					

	E ID.: SPECTOR:	Korkay MJH	
MONTEODING WILL DIE D NIGHT GROWN LOG			
	TE/TIME: ll ID.:	3/25/10	
WE	шъ.:	VEW-2	
	YES	NO	
WELL VISIBLE? (If not, provide directions below)	X		
WELL COORDINATES? NYTM X 572230.7420 NYTM Y 1538945.2240			
PDOP Reading from Trimble Pathfinder: Satelites:			
GPS Method (circle) Trimble And/Or Magellan	VEC	NO	
WELL LD VICIDLES	YES	NO	
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	X		
WELL LOCATION MATCH SITE MAI: (II liot, sketch actual location on back)	Α		
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: VEW-2 (side)			
	YES	NO	
SURFACE SEAL PRESENT?	X		
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	X		
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	X		
HEADSPACE READING (ppm) AND INSTRUMENT USED	Not C	ollected	
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		ckup - 2.0'	
PROTECTIVE CASING MATERIAL TYPE:		PVC	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		2"	
	YES	NO	
LOCK PRESENT?		X	
LOCK FUNCTIONAL?		X	
DID YOU REPLACE THE LOCK?		X	
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE?		X	
WELL MEASURING FOINT VISIBLE?		Λ	
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	10).89'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):		6.71	
MEASURE WELL DIAMETER (Inches):		2"	
WELL CASING MATERIAL:	P	PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:		Good	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		Paint ID	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	NA/100'	
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead			
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSAR	Υ.		
Well is easily accessible.			
The first early accession.			
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)			
AND ASSESS THE TYPE OF RESTORATION REQUIRED.			
Well is located in a field, combination groundwater monitoring well and vapor extraction well.			
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT			
(e.g. Gas station, salt pile, etc.):			
The site in general is a source of contamination, but other than that it is located adjacent to a private residence and of	could be affected	by	
runoff from the property, especially the driveway. There is also a swimming pool located nearby.			
REMARKS:			
See attached photograph of monitoring well.			

SITE NAME: Korkay, Inc. Site		-	Korkay MJH	
MONTODING WELL FIELD INCRECTION LOG	INSPECTOR:	-		
	DATE/TIME:	3/25/1		
	WEll ID.:	VEW-	-3	
	Y.	ES NO		
WELL VISIBLE? (If not, provide directions below)	2	X		
WELL COORDINATES? NYTM X 572257.0740 NYTM Y 1538955.6520				
PDOP Reading from Trimble Pathfinder: Satelites:				
GPS Method (circle) Trimble And/Or Magellan	N/	EG NO		
WELL LD VICIDLES		ES NO		
WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		X X		
WELL LOCATION MATCH SITE MAT: (II not, sector actual location on back)		7		
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: VEW-3 (side)				
		ES NO		
SURFACE SEAL PRESENT?		X		
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)		X		
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		X		
HEADSPACE READING (ppm) AND INSTRUMENT USED	N	Not Collected		
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		C Stickup - 2.0	0'	
PROTECTIVE CASING MATERIAL TYPE:		PVC		
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		2"	_	
	Y	ES NO		
LOCK PRESENT?		X		
LOCK FUNCTIONAL?		X		
DID YOU REPLACE THE LOCK?		X		
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?		X		
WELL MEASURING FORM VISIBELS				
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		10.72'		
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	·	10.24'		
MEASURE WELL DIAMETER (Inches):		2"		
WELL CASING MATERIAL:		PVC		
PHYSICAL CONDITION OF VISIBLE WELL CASING:		Good		
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		Paint ID		
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		NA/100'		
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead				
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESS	ARY.			
Well is easily accessible.				
•				
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)				
AND ASSESS THE TYPE OF RESTORATION REQUIRED.				
Well is located in a field, combination groundwater monitoring well and vapor extraction well.				
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT				
(e.g. Gas station, salt pile, etc.):				
The site in general is a source of contamination, but other than that it is located adjacent to a private residence at	nd could be affe	cted by		
runoff from the property, especially the driveway. There is also a swimming pool located nearby.				
REMARKS:				
See attached photograph of monitoring well.				

	SITE ID.: INSPECTOR:	Korkay MJH
MONUTODING WELL BUILD INCREGATION LOG		-
	DATE/TIME: WEll ID.:	3/25/10
	WEII ID.:	VEW-4
	YE	S NO
WELL VISIBLE? (If not, provide directions below)	X	
WELL COORDINATES? NYTM X 572250.1120 NYTM Y 1538955.6520		
PDOP Reading from Trimble Pathfinder: Satelites:		
GPS Method (circle) Trimble And/Or Magellan	VE	IG NO
WELL LD VICIDLES	YE	
WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	X	
WELL LOCATION WATCH SITE WAI: (II not, sketch actual location on back)	Α	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: VEW-4 (side)		
	YE	
SURFACE SEAL PRESENT?	X	
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	X	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	X	·
HEADSPACE READING (ppm) AND INSTRUMENT USED	N	ot Collected
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		Stickup - 2.0'
PROTECTIVE CASING MATERIAL TYPE:		PVC
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		2"
	YE	S NO
LOCK PRESENT?		X
LOCK FUNCTIONAL?		X
DID YOU REPLACE THE LOCK?		X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?		X
WELL MEASURING FORM VISIBLE:		A
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		10.87'
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):		7.76
MEASURE WELL DIAMETER (Inches):		2"
WELL CASING MATERIAL:		PVC
PHYSICAL CONDITION OF VISIBLE WELL CASING:		Good
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		Paint ID
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	-	NA/100'
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead		
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESS	ARY.	
Well is easily accessible.		
THE IS CAULTY ACCOUNTED.		
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)		
AND ASSESS THE TYPE OF RESTORATION REQUIRED.		
Well is located in a field, combination groundwater monitoring well and vapor extraction well.		
	<u></u>	
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT		
(e.g. Gas station, salt pile, etc.):		
The site in general is a source of contamination, but other than that it is located adjacent to a private residence a	nd could be affec	ted by
runoff from the property, especially the driveway. There is also a swimming pool located nearby.		
REMARKS:		
See attached photograph of monitoring well.		

SITE NAME: Korkay, Inc. Site	SITE ID.: INSPECT	OR:	Korkay MJH
MONITODING WELL FIELD INCDECTION LOC			
MONITORING WELL FIELD INSPECTION LOG	DATE/TI		3/25/10
	WEII ID.:	FLUS	HMOUNT
		YES	NO
WELL VISIBLE? (If not, provide directions below)		X	
WELL COORDINATES? NYTM X - 1538989.887 NYTM Y - 572203.821			
PDOP Reading from Trimble Pathfinder: Satelites:			
GPS Method (circle) Trimble And/Or Magellan			
		YES	NO
WELL I.D. VISIBLE?		X	
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		X	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: FLUSHMOUNT (top)			
		YES	NO
SURFACE SEAL PRESENT?		X	
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)		X	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		X	
HEADSPACE READING (ppm) AND INSTRUMENT USED		Not C	ollected
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		Flush	mount
PROTECTIVE CASING MATERIAL TYPE:		St	eel
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):			3"
		YES	NO
LOCK PRESENT?			X
LOCK FUNCTIONAL?			X
DID YOU REPLACE THE LOCK?			X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)			X
WELL MEASURING POINT VISIBLE?			X
MEACURE WELL DEPTH FROM MEACURING BOINT (F6).		5.1	40
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):			.48
MEASURE WELL DIAMETER (Inches):			.92 2."
WELL CASING MATERIAL:			VC
PHYSICAL CONDITION OF VISIBLE WELL CASING:	•		ood
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE			nt ID
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES			/100'
			,100
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, over	erhead		
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF	NECESSAR	Y.	
Well is easily accessible.			
DESCRIPE WELL SETTING (For example located in a field in a slavour day of	don at-		
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a gard AND ASSESS THE TYPE OF RESTORATION REQUIRED.	uen, etc.)		
Well is located in a field, approximately 25' from a fence.			
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT			
(e.g. Gas station, salt pile, etc.):			
The site in general is a source of contamination.			
DEMARKS			
REMARKS:			
See attached photograph of monitoring well.			

Appendix B Field Observation Logs Groundwater Sampling Records

Project Name and Number: Korkay, Inc. Site 60135841.06

Monitoring Well Number: VEW-3 Date: March 25, 2010

Samplers: Mark Howard and Cristine Vinciguerra

Sample Number: VEW-3 QA/QC Collected? None

Purging / Sampling Method: Peristaltic Pump

V3 = Three Well Volumes

L = Total Well Depth (ft):	10.72	feet
D = Casing Diameter (in):	0.17	inches
W = Static Water Level Below Top of Casing (ft):	10.24	feet
C = Column of Water in Casing (ft):	0.48	Column
V = Volume of Water in Well	0.08	gallons
D2 = Pump Setting Depth (ft):	10.7	feet
C2 = Column of water in Pump/Tubing (ft):	0.5	feet

D (inches)	D (feet)
1-inch	0.08
2-inch	0.17
3-inch	0.25
4-inch	0.33
6-inch	0.5

Conversion factors to determine V given C

0.23

Well ID	1-inch	2-inch	3-inch	4-inch	6-inch
Vol. (gal/ft)	0.041	0.163	0.37	0.65	1.5

gallons

Water Quality Reading Collected Using YSI 556 and Hach 2100P

Parameter	Units							
Time	24 hr	934	939	944	949	954	959	1004
Water Level (0.33)	Feet	10.24	NM	NM	NM	NM	NM	NM
Gallons Purged	Gal	0.00	>0.0	< 0.25	0.25	>0.25	< 0.5	0.50
Flow Rate	mL/min	100	100	100	100	100	100	100
Turbidity (+/- 10%)	NTU	44.5	28.8	20.5	14.1	9.9	6.1	4.3
Dissolved Oxygen (+/-10%)	%	137.6	92.3	91.7	88.4	85.6	82.7	92.1*
Dissolved Oxygen (+/-10%)	mg/L	16.54	11.30	11.32	10.91	10.53	10.21	11.34*
Eh/ORP (+/- 10 MeV)	MeV	-63.9	4.7	9.7	21.9	41.6	35.8	40.5
Specific Conductivity	mS/cm ^c	0.434	0.296	0.262	0.226	0.211	0.196	0.189
Conductivity (+/- 3%)	umhos/cm	0.280	0.191	0.168	0.145	0.136	0.126	0.122
pH (+/- 0.1 unit)	pH unit	7.20	6.81	6.72	6.72	6.69	6.68	6.70
Temp (+/- 0.5 C)	C	6.50	6.43	6.31	6.32	6.40	6.32	6.28
Color	Visual	Br Cloudy	Slight Cloud	Clear	Clear	Clear	Clear	Clear
Odor	Olfactory	Strong/Chlor.	Strong	Chlor.	Chlor.	Chlor.	Chlor.	Chlor.

Comments: Started purge at 933

Sampled at 1004

Stabilized parameters and purged 3 well volumes

BR - Brown Chlor - Chlorinates

SL - Slight * YSI turned off before final reading and had to be restarted

Project Name and Number: Korkay, Inc. Site 60135841.06

Monitoring Well Number: MW-8S Date: March 25, 2010

Samplers: Mark Howard and Cristine Vinciguerra

Sample Number: MW-8S QA/QC Collected? None

Purging / Sampling Method: Peristaltic Pump

L = Total Well Depth (ft): 10.82 feet 0.17 D = Casing Diameter (in): inches W = Static Water Level Below Top of Casing (ft): 7.16 feet C = Column of Water in Casing (ft): 3.66 Column V = Volume of Water in Well 0.60 gallons D2 = Pump Setting Depth (ft): 9.0 feet

D2 = Pump Setting Depth (ft): 9.0 feet C2 = Column of water in Pump/Tubing (ft): 1.8 feet V3 = Three Well Volumes 1.79 gallons

D (inches)	D (feet)
1-inch	0.08
2-inch	0.17
3-inch	0.25
4-inch	0.33
6-inch	0.5

Conversion factors to determine V given C

Well ID	1-inch	2-inch	3-inch	4-inch	6-inch	
Vol. (gal/ft)	0.041	0.163	0.37	0.65	1.5	

Water Quality Reading Collected Using YSI 556 and Hach 2100P

Parameter	Units							
Time	24 hr	1500	1505	1510	1515	1520	1525	
Water Level (0.33)	Feet	7.16	7.26	7.26	7.24	7.25	7.25	
Gallons Purged	Gal	0.00	0.25	0.50	0.75	1.00	1.25	
Flow Rate	mL/min	300	300	200	200	200	200	
Turbidity (+/- 10%)	NTU	51.4	17.2	7.2	3.5	3.5	3.5	
Dissolved Oxygen (+/-10%)	%	109.9	98.2	91.4	89.8	91.2	90.9	
Dissolved Oxygen (+/-10%)	mg/L	13.50	12.33	11.55	11.37	11.49	11.41	
Eh/ORP (+/- 10 MeV)	MeV	73.2	70	112.9	123.8	127.7	129.9	
Specific Conductivity	mS/cm ^c	0.645	0.602	0.598	0.598	0.597	0.598	
Conductivity (+/- 3%)	umhos/cm	0.411	0.379	0.373	0.373	0.374	0.376	
pH (+/- 0.1 unit)	pH unit	8.71	8.63	8.07	7.79	7.60	7.56	
Temp (+/- 0.5 C)	C	5.93	5.62	5.30	5.27	5.48	5.54	
Color	Visual	Clear	Clear	Clear	Clear	Clear	Clear	
Odor	Olfactory	Slight	Slight	None	None	None	None	

Comments: Started purge at 1500 Sampled at 1525

Stabilized parameters

Project Name and Number: Korkay, Inc. Site 60135841.06

Monitoring Well Number: MW-15S March 25, 2010 Date:

Mark Howard and Cristine Vinciguerra Samplers:

MW-15S QA/QC Collected? DUP-1 Sample Number:

Purging / Sampling Method: Peristaltic Pump

L = Total Well Depth (ft): 12.58 feet 0.17 D = Casing Diameter (in): inches W = Static Water Level Below Top of Casing (ft): 7.64 feet C = Column of Water in Casing (ft): 4.94 Column V = Volume of Water in Well 0.81 gallons D2 = Pump Setting Depth (ft): 11.5 feet

C2 = Column of water in Pump/Tubing (ft):3.9 feet V3 = Three Well Volumes 2.42 gallons

D (inches)	D (feet)
1-inch	0.08
2-inch	0.17
3-inch	0.25
4-inch	0.33
6-inch	0.5

Conversion factors to determine V given C

Well ID	1-inch	2-inch	3-inch	4-inch	6-inch	
Vol. (gal/ft)	0.041	0.163	0.37	0.65	1.5	

Water Quality Reading Collected Using

YSI 556 and Hach 2100P

Parameter	Units							
Time	24 hr	1306	1311	1316	1321	1326	1331	1336
Water Level (0.33)	Feet	7.64	7.69	7.65	7.69	7.68	7.67	7.66
Gallons Purged	Gal	0.00	< 0.25	0.25	>0.25	>0.25	0.50	0.75
Flow Rate	mL/min	100	100	100	100	100	100	150
Turbidity (+/- 10%)	NTU	32.1	17.4	13.5	8.0	8.9	9.7	11.2
Dissolved Oxygen (+/-10%)	%	102.7	16.4	7.8	6.2	5.7	4.6	4.0
Dissolved Oxygen (+/-10%)	mg/L	12.03	1.97	0.93	0.75	0.69	0.56	0.48
Eh/ORP (+/- 10 MeV)	MeV	-20.5	-8.3	-2.2	-5	-4.5	-6.5	-1.4
Specific Conductivity	mS/cm ^c	0.275	0.269	0.266	0.258	0.255	0.252	0.247
Conductivity (+/- 3%)	umhos/cm	0.179	0.176	0.176	0.169	0.166	0.164	0.162
pH (+/- 0.1 unit)	pH unit	6.68	6.30	6.29	6.29	6.22	6.24	6.14
Temp (+/- 0.5 C)	С	6.87	6.85	7.28	6.90	6.75	6.63	6.92
Color	Visual	Rd Cloud	Clear	Clear	Clear	Clear	Clear	Clear
Odor	Olfactory	Chlor.	Chlor.	Chlor.	Chlor.	Chlor.	Chlor.	Chlor.

Comments: Started purge at 1305

Sampled at 1341

Stabilized parameters

Chlor - Chlorinates Rd - Red

Project Name and Number: Korkay, Inc. Site 60135841.00		Mon	nitoring We	II Purgin	g / Sampl	ing Form		
Sample Number: Mark Howard and Cristine Vinciguerra	Project Name and Number:		Korkay, Inc. S	Site			6	0135841.06
Sample Number: MW-15S QA/QC Collected? DUP-1	Monitoring Well Number:		MW-15S		Date:	March	25, 2010	
Purging / Sampling Method: L = Total Well Depth (ft): D = Casing Diameter (in): W = Static Water Level Below Top of Casing (ft): C = Column of Water in Casing (ft): C = Column of Water in Casing (ft): V = Volume of Water in Well D = Pump Setting Depth (ft): C = Column of water in Pump/Tubing (ft): V = Volume of Water in Pump/Tubing (ft): V = Volume of Water in Pump/Tubing (ft): V = C = Column of water in Pump/Tubing (ft): V = Volume of Water in Well D = Pump Setting Depth (ft): C = Column of water in Pump/Tubing (ft): V = Volume of Valer In	Samplers:		Mark Howard	and Cristine	e Vinciguerra	l		
L = Total Well Depth (ft): D = Casing Diameter (in): D = Casing Diamet	Sample Number:		MW-15S			QA/Q	C Collected?	DUP-1
D = Casing Diameter (in):	Purging / Sampling Method:		Peristaltic Pur	np				
Vol. (gal/ft) 0.041 0.163 0.37 0.65 1.5	D = Casing Diameter (in): W = Static Water Level Below C = Column of Water in Casing V = Volume of Water in Well D2 = Pump Setting Depth (ft): C2 = Column of water in Pump	g (ft):		Conversion	0.17 7.64 4.94 0.81 11.5 3.9 2.42	inches feet Column gallons feet feet gallons	1-inch 2-inch 3-inch 4-inch 6-inch	0.08 0.17 0.25 0.33
Parameter Time								
Time		ed Using	YSI 556 and I	Hach 2100P				
Water Level (0.33) Feet 7.66 Gallons Purged Gal 1.00 Flow Rate mL/min 150 Turbidity (+/- 10%) NTU 10.6 Dissolved Oxygen (+/-10%) % 3.2 Dissolved Oxygen (+/-10%) mg/L 0.28 Eh/ORP (+/- 10 MeV) MeV -4.9 Specific Conductivity mS/cm ^c 0.247 Conductivity (+/- 3%) umhos/cm 0.162 pH (+/- 0.1 unit) pH unit 6.23 Temp (+/- 0.5 C) C 6.83 Color Visual Clear Odor Olfactory Chlor. Comments: Started purge at 1305 Sampled at 1341			1044		1	T		
Gallons Purged Gal 1.00								
Flow Rate mL/min 150 Turbidity (+/- 10%) NTU 10.6 Dissolved Oxygen (+/-10%) % 3.2 Dissolved Oxygen (+/-10%) mg/L 0.28 Eh/ORP (+/- 10 MeV) MeV -4.9 Specific Conductivity mS/cm ^c 0.247 Conductivity (+/- 3%) umhos/cm 0.162 pH (+/- 0.1 unit) pH unit 6.23 Temp (+/- 0.5 C) C 6.83 Color Olfactory Chlor. Comments: Started purge at 1305 Sampled at 1341								
Turbidity (+/- 10%) NTU 10.6 Dissolved Oxygen (+/-10%) % 3.2 Dissolved Oxygen (+/-10%) mg/L 0.28 Eh/ORP (+/- 10 MeV) MeV -4.9 Specific Conductivity mS/cmc 0.247 Conductivity (+/- 3%) umhos/cm 0.162 pH (+/- 0.1 unit) pH unit 6.23 Temp (+/- 0.5 C) C 6.83 Color Visual Clear Odor Olfactory Chlor. Comments: Started purge at 1305 Sampled at 1341								
Dissolved Oxygen (+/-10%)								
Dissolved Oxygen (+/-10%) mg/L 0.28 Eh/ORP (+/- 10 MeV) MeV -4.9 Specific Conductivity mS/cmc 0.247 Conductivity (+/- 3%) umhos/cm 0.162 pH (+/- 0.1 unit) pH unit 6.23 Temp (+/- 0.5 C) C 6.83 Color Visual Clear Odor Olfactory Chlor. Comments: Started purge at 1305 Sampled at 1341								
Eh/ORP (+/- 10 MeV) MeV -4.9 Specific Conductivity mS/cm ^c 0.247 Conductivity (+/- 3%) umhos/cm 0.162 pH (+/- 0.1 unit) pH unit 6.23 Temp (+/- 0.5 C) C 6.83 Color Visual Clear Odor Olfactory Chlor. Comments: Started purge at 1305 Sampled at 1341								
Specific Conductivity mS/cm ^c 0.247								
Conductivity (+/- 3%)		mS/cm ^c	0.247					
pH (+/- 0.1 unit)	· · · · · · · · · · · · · · · · · · ·	1						
Temp (+/- 0.5 C) C 6.83								
Color Visual Clear Odor Olfactory Chlor. Comments: Started purge at 1305 Sampled at 1341								
Odor Olfactory Chlor. Comments: Started purge at 1305 Sampled at 1341								
Comments: Started purge at 1305 Sampled at 1341								
	Comments:	Sampled at	1341					
Rd - Red Chlor - Chlorinates Three consecutive readings within range indicates stabilization of that parameter								

Monitoring Well Purging / Sampling Form Project Name and Number: Korkay, Inc. Site 60135841.06 Monitoring Well Number: K-2 Date: March 25, 2010 Samplers: Mark Howard and Cristine Vinciguerra Sample Number: K-2 QA/QC Collected? None Purging / Sampling Method: Peristaltic Pump L = Total Well Depth (ft): D (inches) D (feet) 13.82 feet D = Casing Diameter (in): 0.17 inches 1-inch 0.08 W = Static Water Level Below Top of Casing (ft): 10.7 feet 2-inch 0.17 C = Column of Water in Casing (ft): Column 3.12 3-inch 0.25 gallons V = Volume of Water in Well 0.51 4-inch 0.33 13.0 D2 = Pump Setting Depth (ft): feet 6-inch 0.5 C2 = Column of water in Pump/Tubing (ft):2.3 feet V3 = Three Well Volumes 1.53 gallons Conversion factors to determine V given C Well ID 1-inch 2-inch 3-inch 4-inch 6-inch Vol. (gal/ft) 0.041 0.163 0.37 0.65 1.5 Water Quality Reading Collected Using YSI 556 and Hach 2100P Parameter Time 24 hr 1220 1225 1230 1235 1240 Water Level (0.33) 10.70 10.70 10.70 10.70 Feet 10.70 Gallons Purged Gal 0.00 0.20 0.50 1.00 1.50 150 150 150 250 250 Flow Rate mL/min 117.0 Turbidity (+/- 10%) NTU 75.0 55.0 57.3 35.8 141.3 78.7 72.7 67.7 Dissolved Oxygen (+/-10%) % 66.2 Dissolved Oxygen (+/-10%) mg/L 16.78 9.44 8.77 8.20 7.99 59.6 83.8 89 87.3 89.1 Eh/ORP (+/- 10 MeV) MeV 0.157 0.138 0.137 0.136 0.133 Specific Conductivity mS/cm^c 0.104 0.091 0.090 0.089 0.086 Conductivity (+/- 3%) umhos/cm 6.87 6.54 6.54 6.47 6.46 pH (+/- 0.1 unit) pH unit C 7.40 7.34 7.14 7.03 7.00 Temp (+/- 0.5 C) Visual Cloudy/Clear Clear Clear Clear Clear Color Odor Olfactory Strong Strong Stong None None Comments: Started purge at 1220 Sampled at 1240 3 Well Volumes purged

Monitoring Well Purging / Sampling Form Korkay, Inc. Site Project Name and Number: 60135841.06 Date: Monitoring Well Number: VEW-4 March 25, 2010 Samplers: Mark Howard and Cristine Vinciguerra Sample Number: VEW-4 QA/QC Collected? None Purging / Sampling Method: Peristaltic Pump L = Total Well Depth (ft): 10.87 feet D (inches) D (feet) 0.17 D = Casing Diameter (in): inches 1-inch 0.08 W = Static Water Level Below Top of Casing (ft): 10.35 feet 2-inch 0.17 C = Column of Water in Casing (ft): Column 0.25 3-inch gallons V = Volume of Water in Well0.08 4-inch 0.33 D2 = Pump Setting Depth (ft): 10.7 feet 6-inch 0.5 C2 = Column of water in Pump/Tubing (ft):0.4 feet 0.25 V3 = Three Well Volumes gallons Conversion factors to determine V given C Well ID 1-inch 2-inch 3-inch 4-inch 6-inch 0.041 Vol. (gal/ft) 0.163 0.37 0.65 1.5 Water Quality Reading Collected Using YSI 556 and Hach 2100P Parameter Units Time 24 hr 1200 1205 1210 1215 Water Level (0.33) Feet 10.35 10.35 10.35 10.35 0.00 0.10 0.20 0.30 Gallons Purged Gal 100 100 100 100 Flow Rate mL/min Turbidity (+/- 10%) NTU 6.0 8.0 6.8 6.3 66.2 67.5 69.2 Dissolved Oxygen (+/-10%) % 67.9 7.96 8.16 8.20 8.81 Dissolved Oxygen (+/-10%) mg/L Eh/ORP (+/- 10 MeV) MeV -39.4 12.3 17.4 20.2 0.562 0.542 0.534 0.533 Specific Conductivity mS/cm^c 0.372 0.349 Conductivity (+/- 3%) umhos/cm 0.357 0.349 pH (+/- 0.1 unit) pH unit 6.58 6.51 6.52 6.51 7.33 7.06 7.02 C 7.12 Temp (+/- 0.5 C) Color Visual Clear Clear Clear Clear Odor Olfactory Strong Strong Strong Strong Started purge at 1159 Comments: Sampled at 1215 Purged 3 well volumes Three consecutive readings within range indicates stabilization of that parameter

Monitoring Well Purging / Sampling Form Project Name and Number: Korkay, Inc. Site 60135841.06 Date: Monitoring Well Number: ASW March 25, 2010 Mark Howard and Cristine Vinciguerra Samplers: **ASW** QA/QC Collected? Sample Number: None Purging / Sampling Method: Peristaltic Pump L = Total Well Depth (ft): 13.55 D (inches) D (feet) feet 0.17 D = Casing Diameter (in): inches 1-inch 0.08 W = Static Water Level Below Top of Casing (ft): 8.35 feet 2-inch 0.17 C = Column of Water in Casing (ft): Column 0.25 3-inch gallons V = Volume of Water in Well0.85 4-inch 0.33 D2 = Pump Setting Depth (ft): 12.0 feet 6-inch 0.5 C2 = Column of water in Pump/Tubing (ft):3.7 feet V3 = Three Well Volumes 2.54 gallons Conversion factors to determine V given C Well ID 1-inch 2-inch 3-inch 4-inch 6-inch 0.163 Vol. (gal/ft) 0.041 0.37 0.65 1.5 Water Quality Reading Collected Using YSI 556 and Hach 2100P Parameter Units Time 24 hr 1125 1130 1135 1140 1145 1150 Water Level (0.33) Feet 8.35 8.35 8.35 8.35 8.35 8.35 0.00 0.25 0.75 2.00 Gallons Purged 1.50 2.50 Gal 250 250 350 350 350 Flow Rate mL/min 350 Turbidity (+/- 10%) NTU 5.8 5.8 3.6 3.2 2.7 2.3 27.7 18.7 Dissolved Oxygen (+/-10%) % 10.0 7.9 7.0 6.8 3.32 2.26 1.19 0.94 0.84 0.80 Dissolved Oxygen (+/-10%) mg/L Eh/ORP (+/- 10 MeV) MeV -56.4 -54.7 -49.7 -51.2 -54.8 -55.1 0.563 0.565 0.564 0.562 0.561 Specific Conductivity mS/cm^c 0.566 0.337 0.377 0.377 0.376 Conductivity (+/- 3%) umhos/cm 0.376 0.377 pH (+/- 0.1 unit) pH unit 6.38 6.30 6.28 6.30 6.33 6.33 7.58 7.47 7.51 7.65 7.67 7.68 C Temp (+/- 0.5 C) Clear Color Visual Clear Clear Clear Clear Clear Odor Olfactory Strong Strong Strong Strong Strong Strong Started purge at 1125 Comments: Sampled at 1150 Parameters stabilized and purged 3 well volumes

	Mon	itoring We	ell Purgin	g / Samp	ling Form]	
Project Name and Number:	·	Korkay, Inc. S	Site			6	0135841.06
Monitoring Well Number:		VEW-1		Date	: March	25, 2010	
Samplers:		Mark Howard	l and Cristine	Vinciguerr	a		
Sample Number:		VEW-1			QA/Q	C Collected?	None
Purging / Sampling Method:		Peristaltic Pu	mp				
L = Total Well Depth (ft): D = Casing Diameter (in): W = Static Water Level Below Total C = Column of Water in Casing V = Volume of Water in Well D2 = Pump Setting Depth (ft): C2 = Column of water in Pump/ V3 = Three Well Volumes	(ft):		Conversion 1	10.65 0.17 9.71 0.94 0.15 10.6 0.8 0.46	feet inches feet Column gallons feet feet gallons termine V giv	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.5
	İ	Well ID	1-inch	2-inch	3-inch	4-inch	6-inch
		Vol. (gal/ft)	0.041	0.163	0.37	0.65	1.5
Water Quality Reading Collecte Parameter	d Using Units	YSI 556 and 1	Hach 2100P		_		
Time	24 hr	1102	1107	1112	1117		
Water Level (0.33)	Feet	9.71	9.71	9.71	9.71		
Gallons Purged	Gal	0.00	0.15	0.30	0.45		
Flow Rate	mL/min	150	250	250	250		
Turbidity (+/- 10%)	NTU	25.1	15.3	19.6	18.9		
Dissolved Oxygen (+/-10%)	%	60.0	25.2	22.1	22.0		
Dissolved Oxygen (+/-10%)	mg/L	7.25	3.06	2.71	2.70		
Eh/ORP (+/- 10 MeV)	MeV	-44.7	-48.5	-49.6	-47.5		
Specific Conductivity	mS/cm ^c	0.514	0.513	0.514	0.514		
Conductivity (+/- 3%)	umhos/cm	0.333	0.333	0.332	0.331		
pH (+/- 0.1 unit)	pH unit	6.49	6.23	6.16	6.13		
Temp (+/- 0.5 C)	C	6.64	6.59	6.44	6.35		
Color	Visual	Clear	Clear	Clear	Clear		
Odor	Olfactory	Strong	Strong	Strong	Strong		
Comments:	Started purge Sampled at 1 Purged 3 we	115					

Monitoring Well Purging / Sampling Form

Project Name and Number: Korkay, Inc. Site

60135841.06

Monitoring Well Number:

VEW-2

Date: March 25, 2010

Samplers:

Mark Howard and Cristine Vinciguerra

Sample Number:

VEW-2

QA/QC Collected?

None

Purging / Sampling Method:

Peristaltic Pump

L = Total Well Depth (ft): D = Casing Diameter (in):

W = Static Water Level Below Top of Casing (ft): C = Column of Water in Casing (ft):

V = Volume of Water in Well D2 = Pump Setting Depth (ft):

C2 = Column of water in Pump/Tubing (ft):

V3 = Three Well Volumes

D (inches)	D (feet)
1-inch	0.08
2-inch	0.17
3-inch	0.25
4-inch	0.33
6-inch	0.5

Conversion factors to determine V given C

10.89

0.17

9.71

1.18

0.19

10.5

0.8

0.58

feet

feet

feet

feet

gallons

inches

Column

gallons

Well ID	1-inch	2-inch	3-inch	4-inch	6-inch
Vol. (gal/ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Reading Collected Using

YSI 556 and Hach 2100P

Parameter	Units							
Time	24 hr	1026	1031	1036	1041	1046	1051	
Water Level (0.33)	Feet	9.71	9.65	9.66	9.67	9.67	9.67	
Gallons Purged	Gal	0.00	< 0.25	0.25	>0.25	< 0.5	0.50	
Flow Rate	mL/min	200	100	100	100	100	100	
Turbidity (+/- 10%)	NTU	29.3	22.8	34.5	23.1	20.8	15.5	
Dissolved Oxygen (+/-10%)	%	138.8	99.4	93.6	90.3	88.8	89.0	
Dissolved Oxygen (+/-10%)	mg/L	17.23	12.46	11.69	11.21	10.98	10.98	
Eh/ORP (+/- 10 MeV)	MeV	63	82.4	91.7	96	99.5	99.8	
Specific Conductivity	mS/cm ^c	0.284	0.293	0.295	0.301	0.303	0.305	
Conductivity (+/- 3%)	umhos/cm	0.180	0.185	0.187	0.192	0.195	0.196	
pH (+/- 0.1 unit)	pH unit	6.95	6.78	6.77	6.74	6.76	6.77	
Temp (+/- 0.5 C)	C	5.71	5.67	5.81	6.04	6.23	6.31	
Color	Visual	Clear	Clear	Clear	Clear	Clear	Clear	
Odor	Olfactory	None	None	None	None	None	None	

Comments:

Started purge at 1026 Sampled at 1057

Parameters stabilized and purged 3 well volumes

Monitoring Well Purging / Sampling Form 60135841.06 Project Name and Number: Korkay, Inc. Site Date: Monitoring Well Number: K-3 March 25, 2010 Mark Howard and Cristine Vinciguerra Samplers: K-3 QA/QC Collected? Sample Number: None Purging / Sampling Method: Peristaltic Pump L = Total Well Depth (ft): 12.6 feet D (inches) D (feet) 0.17 D = Casing Diameter (in): inches 1-inch 0.08 W = Static Water Level Below Top of Casing (ft): 8.65 feet 2-inch 0.17 C = Column of Water in Casing (ft): 3.95 Column 0.25 3-inch gallons V = Volume of Water in Well 0.64 4-inch 0.33 D2 = Pump Setting Depth (ft): 10.0 feet 6-inch 0.5 C2 = Column of water in Pump/Tubing (ft):1.4 feet 1.93 V3 = Three Well Volumes gallons Conversion factors to determine V given C Well ID 1-inch 2-inch 3-inch 4-inch 6-inch 0.041 Vol. (gal/ft) 0.163 0.37 0.65 1.5 Water Quality Reading Collected Using YSI 556 and Hach 2100P Parameter Units Time 24 hr 843 848 853 858 903 908 913 Water Level (0.33) Feet 8.65 8.67 8.67 8.67 8.67 8.67 8.67 0.00 0.25 0.75 1.00 1.25 Gallons Purged < 0.25 < 0.5 Gal 200 200 200 Flow Rate mL/min 200 200 200 200 Turbidity (+/- 10%) NTU 6.6 3.7 2.9 2.1 1.5 1.0 1.0 130.1 98.7 Dissolved Oxygen (+/-10%) % 91.2 87.1 85.4 83.7 81.3 16.31 12.54 11.58 11.04 10.80 10.58 10.28 Dissolved Oxygen (+/-10%) mg/L Eh/ORP (+/- 10 MeV) MeV 81 134 138.4 139.2 136.2 133.8 130.2 0.276 0.276 0.27 Specific Conductivity mS/cm^c 0.278 0.277 0.274 0.271 Conductivity (+/- 3%) umhos/cm 0.174 0.172 0.172 0.172 0.171 0.169 0.168 7.59 pH (+/- 0.1 unit) pH unit 9.33 8.44 8.14 7.88 7.72 7.48 5.16 5.38 5.12 5.13 5.26 5.29 5.38 C Temp (+/- 0.5 C) Color Visual Clear Clear Clear Clear Clear Clear Clear Odor Olfactory None None None None None None None Started purge at 841 Comments: Sampled at 918 Parameters stabilized

	Korkay, Inc.	Site			6	0135841.06	
	K-3		Date	: March	25, 2010		
	Mark Howard	d and Cristine	Vinciguerr	a			
	K-3			QA/Q	C Collected?	None	
	Peristaltic Pu	mp					
g (ft):	(ft):	Conversion	12.6 0.17 8.65 3.95 0.64 10.0 1.4 1.93 factors to de	feet inches feet Column gallons feet gallons termine V giv	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.5	
	Well ID	1-inch	2-inch	3-inch	4-inch	6-inch	
	Vol. (gal/ft)	0.041	0.163	0.37	0.65	1.5	
_	YSI 556 and	Hach 2100P					
	918						
Gal	1.50						
mL/min							
MeV	129.1						
mS/cm ^c							
umhos/cm							
pH unit	7.42						
С	5.49						
Visual	Clear						
Olfactory	None						
Sampled at 9	018						
	Top of Casing g (ft): Deformation of Tubing	K-3 Peristaltic Pu	Note	Mark Howard and Cristine Vinciguerr K-3 Peristaltic Pump 12.6 0.17 8.65 g (ft): 3.95 0.64 10.0 1.4 1.93	Mark Howard and Cristine Vinciguerra K-3 QA/Q Peristaltic Pump 12.6 feet 0.17 inches 6.5 feet 0.17 inches 6.5 feet 6.64 gallons 10.0 feet 1.93 gallons 10.0 feet 1.93 gallons 6.64 gallons 6.65 gallons 6.65 6.6	Nark Howard and Cristine Vinciguerra	Mark Howard and Cristine Vinciguerra K-3

Monitoring Well Purging / Sampling Form Project Name and Number: Korkay, Inc. Site 60135841.06 Date: Monitoring Well Number: FLUSHMOUNT March 25, 2010 Samplers: Mark Howard and Cristine Vinciguerra Sample Number: FLUSHMOUNT QA/QC Collected? None Purging / Sampling Method: Whale Pump 54.48 L = Total Well Depth (ft): feet D (inches) D (feet) 0.17 D = Casing Diameter (in): inches 1-inch 0.08 W = Static Water Level Below Top of Casing (ft): 30.92 feet 2-inch 0.17 C = Column of Water in Casing (ft): 23.56 Column 0.25 3-inch gallons V = Volume of Water in Well3.84 4-inch 0.33 D2 = Pump Setting Depth (ft): 50.0 feet 6-inch 0.5 C2 = Column of water in Pump/Tubing (ft):19.1 feet V3 = Three Well Volumes 11.52 gallons Conversion factors to determine V given C Well ID 1-inch 2-inch 3-inch 4-inch 6-inch 0.163 Vol. (gal/ft) 0.041 0.37 0.65 1.5 Water Quality Reading Collected Using YSI 556 and Hach 2100P Parameter Units Time 24 hr 818 1550 1557 1604 Water Level (0.33) Feet 30.92 NM NM NM 0.00 4.00 12.00 Gallons Purged 8.00 Gal Flow Rate mL/min Turbidity (+/- 10%) NTU 15.8 13.5 10.3 6.4 65.9 Dissolved Oxygen (+/-10%) % 68.2 29.0 24.4 7.96 7.04 3.23 2.70 Dissolved Oxygen (+/-10%) mg/L Eh/ORP (+/- 10 MeV) MeV 180.9 -43.5 -61 -61.5 0.935 0.865 0.96 Specific Conductivity mS/cm^c 0.968 0.701 Conductivity (+/- 3%) umhos/cm 0.636 0.706 pH (+/- 0.1 unit) pH unit 8.77 11.45 11.76 11.78 9.28 11.14 10.81 10.89 C Temp (+/- 0.5 C) Color Visual Clear Clear Clear Clear Odor Olfactory None None None None Started purge at 818, Lost pump after 4 gallons purged Comments: Started again at 1543 Sampled at 1604 Purged 3 well volumes

Monitoring Well Purging / Sampling Form Korkay, Inc. Site Project Name and Number: 60135841.06 Date: Monitoring Well Number: MW-15D March 25, 2010 Samplers: Mark Howard and Cristine Vinciguerra Sample Number: MW-15D QA/QC Collected? None Purging / Sampling Method: Whale Pump 43.94 D (feet) L = Total Well Depth (ft): feet D (inches) 0.17 D = Casing Diameter (in): inches 1-inch 0.08 W = Static Water Level Below Top of Casing (ft): 28.1 feet 2-inch 0.17 C = Column of Water in Casing (ft): 15.84 Column 3-inch 0.25 gallons V = Volume of Water in Well2.58 4-inch 0.33 D2 = Pump Setting Depth (ft): 40.0 feet 6-inch 0.5 C2 = Column of water in Pump/Tubing (ft):11.9 feet V3 = Three Well Volumes 7.75 gallons Conversion factors to determine V given C Well ID 1-inch 2-inch 3-inch 4-inch 6-inch 0.041 Vol. (gal/ft) 0.163 0.37 0.65 1.5 Water Quality Reading Collected Using YSI 556 and Hach 2100P Parameter Units Time 24 hr 1344 1405 1410 Water Level (0.33) Feet 33.80 2.50 5.00 7.50 Gallons Purged Gal 300 Flow Rate mL/min Turbidity (+/- 10%) NTU 14.4 27.7 14.9 24.9 Dissolved Oxygen (+/-10%) % 60.1 58.4 2.65 6.44 5.99 Dissolved Oxygen (+/-10%) mg/L Eh/ORP (+/- 10 MeV) MeV -224.9 9.8 15.1 0.155 Specific Conductivity mS/cm^c 0.170 0.182 0.112 0.124 Conductivity (+/- 3%) umhos/cm 0.127 pH (+/- 0.1 unit) pH unit 8.10 8.96 8.87 10.47 11.08 9.90 Temp (+/- 0.5 C) C Color Visual Clear Clear Clear Odor Olfactory None None None Started purge @ 1340 Comments: Sampled @ 1410 Purged 3 well volumes Three consecutive readings within range indicates stabilization of that parameter

Project Name and Number: Korkay, Inc. Site 60135841.06

Monitoring Well Number: MW-8D Date: March 25, 2010

Samplers: Mark Howard and Cristine Vinciguerra

Sample Number: MW-8D QA/QC Collected? None

Purging / Sampling Method: Whale Pump

L = Total Well Depth (ft): 54.25 feet D = Casing Diameter (in):0.17 inches W = Static Water Level Below Top of Casing (ft): 32.78 feet C = Column of Water in Casing (ft): 21.47 Column V = Volume of Water in Well 3.50 gallons D2 = Pump Setting Depth (ft): 42.0 feet

D2 = Pump Setting Depth (it): 42.0 feet C2 = Column of water in Pump/Tubing (ft): 9.2 feet V3 = Three Well Volumes 10.50 gallons

D (inches)	D (feet)
1-inch	0.08
2-inch	0.17
3-inch	0.25
4-inch	0.33
6-inch	0.5

Conversion factors to determine V given C

Well ID	1-inch	2-inch	3-inch	4-inch	6-inch
Vol. (gal/ft)	0.041	0.163	0.37	0.65	1.5

Water Quality Reading Collected Using YSI 556 and Hach 2100P

Parameter	Units							
Time	24 hr	1435	1440	1445	1450	1455	1500	
Water Level (0.33)	Feet	1	-	-	-	1	-	
Gallons Purged	Gal	0.00	2.50	5.00	7.50	10.00	12.50	
Flow Rate	mL/min	ı	-	-	-	ı	-	
Turbidity (+/- 10%)	NTU	53.7	44.4	30.4	23.7	11.9	10.3	
Dissolved Oxygen (+/-10%)	%	68.9	56.3	60.1	47.7	52.7	49.7	
Dissolved Oxygen (+/-10%)	mg/L	7.22	6.10	6.61	5.15	5.77	5.29	
Eh/ORP (+/- 10 MeV)	MeV	1.4	-3.7	-9.7	-3.9	2.4	2.9	
Specific Conductivity	mS/cm ^c	0.248	0.251	0.254	0.252	0.268	0.292	
Conductivity (+/- 3%)	umhos/cm	0.186	0.188	0.190	0.189	0.199	0.211	
pH (+/- 0.1 unit)	pH unit	9.55	9.76	9.89	9.89	9.86	9.81	
Temp (+/- 0.5 C)	C	11.97	11.90	11.81	11.97	11.81	11.34	
Color	Visual	Clear	Clear	Clear	Clear	Clear	Clear	
Odor	Olfactory	None	None	None	None	None	None	

Comments: Started purge @ 1435

Sampled @ 1500

Purged 3 well volumes

	Mo	onitoring V	Vell Purgi	ing/Sampli	ing Form			
Project Name and Number:		Korkay, Inc	. Site			6013	5841 🎉 00	ĺo .
Monitoring Well Number:		VFU	1-3	_ Date:	March 25, 2	010		
Samplers:		4						
Sample Number:		VEU	11-3	QA/Q	QC Collected?	Mon	ع	
Purging / Sampling Method:		Peristaltic P	ump			- 20		
 L = Total Well Depth: D = Riser Diameter (I.D.): W = Static Depth to Water (T.D.): C = Column of Water in Caston (T.D.): V = Volume of Water in Well (T.D.): D2 = Pump Setting Depth (T.D.): C2 = Column of water in Purtage (T.D.): Tubing Volume = C2(0.0057) 	ing: l = C(3.1415)):	7	8) Tiveil Yolumes	10.72 0.17 10.24 0.48 0.08 0:23	feet feet feet gal \(\cdot \) feet feet gal \(\cdot \)	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50	
Water Quality Readings Collect	ted Using	D (inches) V (gal / ft) YSI 556 and	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5	
	-			11		2/		
Parameter	Units	Call	420	0.11.1	Readings	1	4.0	1
Time	24 hr	934	Pin	944	949	954	959	1004
Water Level (0.33)	feet	10.24	POINT	NM	NM	nm	NM	NM
Volume Purged	gal	(4)	70,0	10.25	0.25	20,25	20,50	0.50
Flow Rate	mL/min	100	100	100	100	100	100	100
Turbidity (+/- 10%)	NTU	44.5	28.8	20.5	14.1	9.91	6.05	4.31
Dissolved Oxygen (+/- 10%)	%	157.4	945	91.7	88.4	85.6	82.7	92.1 1
Dissolved Oxygen (+/- 10%)	mg/L	16.54	11.30	11.32	1091	10,53	10.21	11.34
Eh / ORP (+/- 10)	MeV	-63,9	4,7	9.7	21.9	41.6	35.8	40,5
Specific Conductivity	mS/cm ^c	0.434	0.296	0.262	0.226	0211	0.196	0.189
Conductivity (+/- 3%)	μmho / cm		0.191	0.168	0.145	0.136	0.1260	6-22
pH (+/- 0.1)	pH unit	7.20	6,81	6.72	6.72	6.69	6.68	6.10
Temp (+/- 0.5)	С	6,50	6.43	6.31	6.32	6,40	6.32	6.28
Color	Visual	201	SICI	Clear	(100-	(1801	Clear	dear
Odor	Olfactory	Strong Chlor	Stang	Chlorinates	Chlor.	Chloc	Chlor.	Chlor
Ferrous Iron	mg/L	-		Collec	t only at samp	ole time		
Comments:	4	Harten	1 pur	Jo. @ (933 10 10		Cstabilio	el vduma
*Three consecutive readings wi	Measu	vable			100 /00	04	* YS.1	elludumes Tynedestoums

	Mo	onitoring V	Vell Purgi	ng/Sampli	ng Form			
Project Name and Number:		Korkay, Inc	. Site			60135	841-92 66	
Monitoring Well Number:		Mw-8	5	Date:	March 25, 20	010		
Samplers:		,	6					
Sample Number:		MW-	-85	QA/Q	C Collected?	Non	e	
Purging / Sampling Method:		Peristaltic P	ump			=		
1. L = Total Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Static Depth to Water (T. 4. C = Column of Water in Casis (T. 4. C = Pump Setting Depth (ft)) 4. C = Pump Setting Depth (ft) 5. V = Volume of Water in Pump Setting Depth (ft) 6. D2 = Pump Setting Depth (ft) 7. C2 = Column of water in Pump Setting Volume = C2(0.0057)	ing: l = C(3.14159): mp/Tubing (ft	, , , ,	8) Zeil Udames	10.87 0.17 7.16 3.64 0.60 1.79	feet feet feet gal X3 feet feet gal	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50	
		D (inches) V (gal / ft)	Conversion 1-inch 0.041	factors to de	3-inch	4-inch 0.65	6-inch 1.5	
Water Quality Readings Collect		YSI 556 and	l Hanna HI 9	8703		-0		
Parameter	Units				Readings			
Time	24 hr	1500	1505	1510	1515	1520	1525	
Water Level (0.33)	feet	7.16	7.76	7.26	7.24	7.25	7.25	
Volume Purged	gal	0	1.25	0,50	0.75	1,00	1.25	
Flow Rate	mL/min	300	300	200	200	200	200	
Turbidity (+/- 10%)	NTU	51.4	17.2	7.24		3.4	3.47	
Dissolved Oxygen (+/- 10%)	%	109.9	17.2	91.4	3.49	91,2	90.9	
Dissolved Oxygen (+/- 10%)	mg/L	1250	12.33	11.55	11,37	11 40	11.41	
Eh / ORP (+/- 10)	MeV	73.2	70.0	112.9	123.8	1277	1299	
Specific Conductivity	mS/cm ^c	0.645	0.602	0.598	6.598	0.597	0.598	
Conductivity (+/- 3%)	μmho / cm		N 279	10170			A 2.76	
pH (+/- 0.1)	pH unit	0.411	8.63	8.07	0.373	0.374	0.376	
Temp (+/- 0.5)	Pri unit	8:11	5.62	5.30	7.17	7.60	2.56	
Color		5.45			5.27		5.54	
Odor	Visual	THE GIRD	(190-	Clear	Clear	Clear	Clear	
Ferrous Iron	Olfactory ')//escillo	Slight	None	None	None	None	
rerrous fron	mg/L			Collect	only at samp	le time		
Comments:		Starter	1 purgs	6 14 5 10 0	\$ 1500			
			SAMP	tel @	1525			
* Three consecutive readings wi	thin range inc	dicates stabili	zation of tha	t parameter.				

Project Name and Number:		Korkay, Inc	. Site			6013:	584145,0	6
Monitoring Well Number:		MW-	155	Date:	March 25, 2	010		
Samplers:		Ma	H How	and and	Constitution 25, 2	o Vinc	questa	د
Sample Number:		_mu	155	QA/Q	C Collected?	Alone	Du	ρ-1
Purging / Sampling Method:		Peristaltic P	ump			=		·
1. L = Total Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Static Depth to Water (4. C = Column of Water in Cas 5. V = Volume of Water in We 6. D2 = Pump Setting Depth (f 7. C2 = Column of water in Pu 8. Tubing Volume = C2(0.005)	sing: ll = C(3.14159 t): - //, 5 mp/Tubing (ft	i i	8) Psuetli Urlame	12.58 0.17 7.64 4.94 0.81 2.42	feet feet feet feet gal (3) feet feet gal	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50	
						II.		
			Conversion	factors to de	etermine V giv	ven C		
		D (inches)	Conversion	factors to de	etermine V giv	ven C	6-inch	1
		D (inches) V (gal / ft)					6-inch]
Water Quality Readings Collec	ted Using		1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65]
Water Quality Readings Collec Parameter		V (gal / ft)	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65]
	ted Using Units 24 hr	V (gal / ft) YSI 556 and	1-inch 0.041	2-inch 0.163	3-inch 0.37 Readings	4-inch 0.65		/336
Parameter Fime	Units	V (gal / ft) YSI 556 and	1-inch 0.041	2-inch 0.163	3-inch 0.37 Readings	4-inch 0.65	1.5	1336
Parameter Time Water Level (0.33)	Units 24 hr	V (gal / ft) YSI 556 and	1-inch 0.041 (1 Hanna H	2-inch 0.163 0.8703 /60 1.316 7.65	3-inch 0.37 Readings 1321 7.69	4-inch 0.65	1.5 1331 7.67	13% 7.66 0.76
Parameter Time Water Level (0.33) Volume Purged Flow Rate	Units 24 hr feet	V (gal / ft) YSI 556 and	1-inch 0.041	2-inch 0.163 0.163 1316 7.65 0.25	3-inch 0.37 Readings 1321 7.69 50,25	4-inch 0.65	1.5 1.67 0.50	
Parameter Time Water Level (0.33) Volume Purged Flow Rate	Units 24 hr feet gal	V (gal / ft) YSI 556 and /30 @ 7.6 4	1-inch 0.041 (1 Hanna H	2-inch 0.163 0.8703 /h 13/6 7.65 0.25	3-inch 0.37 Readings 1321 7.69 50,25	4-inch 0.65	1.5 1.331 7.67 0.50	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Furbidity (+/- 10%)	Units 24 hr feet gal mL / min	V (gal / ft) YSI 556 and	1-inch 0.041 (1 Hanna H45 1 7.69 100 17.4	2-inch 0.163 13/6 7.65 0.25 /20 13.5	3-inch 0.37 Readings 1321 7.69 50,25 100 F.CO	4-inch 0.65 0.65 13.26 7.68 20.25 100 8.86	1.5 1331 7.67 0.50 100 9.69	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min NTU %	V (gal / ft) YSI 556 and 1.30 4 7.44 100 32.1 107.7	1-inch 0.041 (1 Hanna H	2-inch 0.163 13/6 7.65 0.25 /00 13.5 7.8	3-inch 0.37 Readings 1321 7.69 50,25	4-inch 0.65 0.65 7.68 7.68 7.68 7.68 7.68 7.68 7.68	1.5 1331 7.67 0.50 100 9.69 4.6	7.66 0.76 150 11.2 4.0
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL / min NTU % mg/L	V (gal / ft) YSI 556 and 130 @ 7.6 # 100 32.1	1-inch 0.041 (1 Hanna Hass 1 3 1 1 7 . 69 (0.25 100 17.4 1.97	2-inch 0.163 1316 7.65 0.25 100 13.5 7.6 0.93	3-inch 0.37 Readings 1321 7.69 >0.25 100 5.00 6.2 0.75	4-inch 0.65 0.65 7.68 7.68 7.68 7.68 7.68 7.68 7.68 7.68	1331 7.67 0.50 100 9.69 4.6 0.56	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	Units 24 hr feet gal mL / min NTU % mg/L MeV	V (gal / ft) YSI 556 and 130 4 7.64 100 32.1 107.7 12.03 70.5	1-inch 0.041 (1 Hanna Hass 1 3 1 1 7 . 69 1 0 . 25 1 00 1 7 . 4 1 . 9 7 1 - 8 . 3	2-inch 0.163 1316 7.65 0.25 100 13.5 7.6 0.93 -2.2	3-inch 0.37 Readings 1321 7.69 50,25 100 5.00 6.2 0.75 -5.0	4-inch 0.65 0.65 13.26 7.68 20.25 100 8.86 5.7 0.69 -4.5	1331 7.67 0.50 100 9.69 4.6 0.56 -6.5	7.66 0.76 150 11.7 4.00 0.48
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity	Units 24 hr feet gal mL/min NTU % mg/L MeV mS/cmc	V (gal / ft) YSI 556 and 130 @ 7.6 # 100 32.1 107.7 12.03 -70.5 0.275	1-inch 0.041 (1 Hanna Hest 1 3 1 1 7.69 100 17.4 1.97 -8.3 0.269	2-inch 0.163 1316 7.65 0.25 120 13.5 7.8 0.93 2.2 0.266	3-inch 0.37 Readings 1321 7.69 50,25 100 5.00 6.2 0.75 -5.0 0.258	4-inch 0.65 0.65 7.68 20.25 100 8.86 5.7 0.69 -4.5 0.25	1.5 1331 7.67 0.50 100 9.69 4.6 0.56 -6.5 0.252	7.66 0.76 150 11.2 4.0 0.48 -1.4 0.247
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%)	Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cmc µmho / cm	V (gal / ft) YSI 556 and 130 @ 7.6 # 100 32.1 107.7 12.03 -70.5 0.275 0.179	1-inch 0.041 (1 Hanna Hes 1 7.69 17.4 1.69 17.4 1.97 -8.3 0.269 0.176	2-inch 0.163 13/6 7.65 0.25 100 13.5 7.8 0.93 -2.2 0.266 0.176	3-inch 0.37 Readings 1321 7.69 50,25 100 5.00 6.25 6.2 0.75 -5.0 0.258 0.169	4-inch 0.65 0.65 7.68 20.25 100 8.86 5.7 0.69 -4.5 0.25 0.25 0.25	1.5 1.67 0.50 100 1.69 1.6 0.56 -6.5 0.252 0.164	7.66 0.76 150 11.7 4.0 0.48 -1.4 0.247 0.162
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%) OH (+/- 0.1)	Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cmc µmho / cm pH unit	V (gal / ft) YSI 556 and 130 6 7.6 4 100 32.1 107.7 12.03 -70.5 0.275 0.179 6.68	1-inch 0.041 (1 Hanna Hes 1 7.69 17.4 1.67 1.67 1.67 1.67 1.69 1.74 1.97 -8.3 0.269 0.176 6.30	2-inch) 0.163 1316 7.65 0.25 100 13.5 7.8 0.932.2 0.266 0.176 6.29	3-inch 0.37 Readings 1321 7.69 50,25 100 6.22 0.75 -5:0 0.258 0.169 6.29	4-inch 0.65 0.65 0.65 7.68 0.75 100 8.66 5.7 0.69 -4.5 0.75	1.5 1.67 1.67 0.50 100 100 14.6 0.56 -6.5 0.252 0.164 6.24	7.66 0.76 150 11.7 4.0 0.48 -1.4 0.247 0.162 6.14
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%) DH (+/- 0.1) Temp (+/- 0.5)	Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cmc µmho / cm pH unit C	V (gal / ft) YSI 556 and 130 6 7.64 100 32.1 102.7 12.03 -70.5 0.275 0.179 6.68 6.67	1-inch 0.041 (1 Hanna Hest 1311 7.69 0.25 100 17.4 1.97 -8.3 0.269 0.176 6.30 6.30 6.35	2-inch 0.163 1316 7.65 0.25 100 13.5 7.8 0.93 -2.2 0.266 0.176 6.29 7.20	3-inch 0.37 Readings 1321 7.69 50,75 100 5.00 6.25 0.75 -5.0 0.75 -5.0 0.169 6.29 6.29	4-inch 0.65 0.65 0.65 7.68 0.75 100 8.86 5.7 0.69 -4.5 0.75	1331 7.67 0.50 100 9.69 4.6 0.56 -6.5 0.252 0.164 6.24 6.63	7.66 0.76 150 11.7 4.0 0.48 -1.4 0.247 0.162 6.14 6.92
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%) DH (+/- 0.1) Temp (+/- 0.5) Color	Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cmc µmho / cm pH unit C Visual	V (gal / ft) YSI 556 and 130 4 7.64 100 32.1 102.7 12.03 70.5 0.275 0.179 6.68 6.67 Rd Cl	1-inch 0.041 (1 Hanna Hest 1311 7.69 0.25 100 17.4 1.97 -8.3 0.269 0.176 6.30 6.30 6.35 Close	2-inch) 0.163 1316 7.65 0.25 100 13.5 7.8 0.93 -2.2 0.266 0.176 6.29 7.28 (1001	3-inch 0.37 Readings 1.3.21 7.6.4 >0.75 100 \$	4-inch 0.65 0.65 13.26 7.68 ×0.25 100 8.86 5.7 0.69 -4.5 0.75 0.166 6.22 6.75 Clear	1.5 1331 7.67 0.50 100 9.69 4,6 0.56 -6.5 0.252 0.164 6.24 6.63 Clear	7.66 0.76 150 11.7 4.0 0.48 -1.4 0.247 0.162 6.14 6.92
Parameter	Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cmc µmho / cm pH unit C	V (gal / ft) YSI 556 and 130 6 7.64 100 32.1 102.7 12.03 -70.5 0.275 0.179 6.68 6.67	1-inch 0.041 (1 Hanna Hest 1311 7.69 0.25 100 17.4 1.97 -8.3 0.269 0.176 6.30 6.30 6.35	2-inch) 0.163 1316 1.65 0.25 100 13.5 7.8 0.93 -2.2 0.266 0.176 6.29 7.28 (loa/	3-inch 0.37 Readings 1321 7.69 50,75 100 5.00 6.25 0.75 -5.0 0.75 -5.0 0.169 6.29 6.29	4-inch 0.65 0.65 13.26 7.68 20.25 100 8.86 5.7 0.69 -4.5 0.75 0.166 6.22 6.75 Char Chlor.	1331 7.67 0.50 100 9.69 4.6 0.56 -6.5 0.252 0.164 6.24 6.63	7.66 0.76 150 11.7 4.0 0.48 -1.4 0.247 0.162 6.14

Started purgo @ 1305

*Three consecutive readings within range indicates stabilization of that parameter.

15

	Mc	nitoring V	Vall Durgi	ng/Sampli	ng Form			
	IVIU	mitoring v	ven rurgn	ng/sampn	ng rorm			
Project Name and Number:		Korkay, Inc.	. Site		60135841.03			
Monitoring Well Number:		K-2		Date:	March 25, 2	010		
Samplers:		C. Vi	nelyvers	a and	M. 1	Howard		
Sample Number:			20		C Collected?			
Purging / Sampling Method:		Peristaltic P	ump					
1. L = Total Well Depth:		× 		13.82	feet	D (inches)	D (feet)	1
				13.00				ł
2. D = Riser Diameter (I.D.):				0.17	feet	1-inch	0.08	
3. W = Static Depth to Water (T	,			10:70	feet	2-inch	0.17	
4. C = Column of Water in Casin	_			3.12	feet	3-inch	0.25	
5. V = Volume of Water in Well		$9)(0.5D)^2(7.4)$	8)	0.5	gal	4-inch	0.33	
6. D2 = Pump Setting Depth (ft)	±13'		×3	1.5	feet	6-inch	0.50	
7. C2 = Column of water in Pum		t):			feet			ł.
8. Tubing Volume = C2(0.00573		,			gal			
-								
			Conversion	factors to de	etermine V gi	ven C		
					Ü			
		D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch	1
		V (gal / ft)	0.041	0.163	0.37	0.65	1.5	
		.0 /					->-	
Water Quality Readings Collecte	ed Using	YSI 556 and	l Hanna HI 9)8703		-:		
Parameter	Units				Readings			
Time	24 hr	1220	1225	1230	1235	1240	0	
Water Level (0.33)	feet	10.70	10.76	10.70	10.70	10.70		
Volume Purged	gal		0.2		1.0	1.5		
Flow Rate	mL/min	150		0.5				
Turbidity (+/- 10%)	NTU		150	150	250	250		
Dissolved Oxygen (+/- 10%)	%	117	73.7			35.8		
Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)		141.3		77.7		66.2		
Eh / ORP (+/- 10)	mg/L MeV	16.78	9,44	8.77	8.20	7.99		
		59.6	83.8	89.0	87.3	89.1		
Specific Conductivity	mS/cm ^c	0.157	0.138	0.137	0.136	0.133		
Conductivity (+/- 3%)	μmho / cm	0.104	0.091	0.090	0.089	0 086		
pH (+/- 0.1)	pH unit	6.87	6.54	6.54	6.47	6.46		
Temp (+/- 0.5)	С	7.40	7-34	7.14	7.03	7.00		
Color	Visual	Classon /	clear	clear	clear	clear		
Odor	Olfactory	Strong	Strong	strong	none	none		
Ferrous Iron	mg/L		J		t only at samp			
Comments:	sarted ample	6-3° (3 1220 240	، ۶ سو	Il volum	ies		

Monitoring Well Purging/Sampling Form Project Name and Number: Korkay, Inc. Site 60135841.03 VEW-4 Monitoring Well Number: Date: March 25, 2010 Samplers: VEW-4 Sample Number: QA/QC Collected? Purging / Sampling Method: Peristaltic Pump 1. L = Total Well Depth: D (feet) D (inches) 10.87 feet 2. D = Riser Diameter (I.D.): Co. 17 feet 1-inch 0.08 3. W = Static Depth to Water (TOC): 0 35 feet 2-inch 0.17 4. C = Column of Water in Casing: 0.52 feet 3-inch 0.25 5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$ 4-inch 0.33 0.08 gal 6. D2 = Pump Setting Depth (ft): 6-inch 0.50 0.25 feet 7. C2 = Column of water in Pump/Tubing (ft): feet 8. Tubing Volume = C2(0.005737088)gal Conversion factors to determine V given C D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch V (gal / ft) 0.041 0.163 0.37 0.65 1.5 Water Quality Readings Collected Using YSI 556 and Hanna HI 98703 Parameter Units Readings Time 24 hr 1200 1205 1210 1215 Water Level (0.33) 10.35 feet 10.35 10.35 10.35 Volume Purged 0.2 gal 0-3 ٥ 0.1 Flow Rate 300 mL/min 100 200 100 Turbidity (+/- 10%) 69.2 NTU 6.01 8.03 6.76 Dissolved Oxygen (+/- 10%) % 67.5 6.2 7.9 Dissolved Oxygen (+/- 10%) 7.96 mg/L 8.16 8.20 8.81 Eh / ORP (+/- 10) MeV 39.4 12.3 17.4 20:2 Specific Conductivity 0.562 mS/cm^c 0.542 6.533 0.534 Conductivity (+/- 3%) µmho / cm 0.372 0.357 0 349 0.349 pH (+/- 0.1) pH unit 6.58 6.51 6.51 6.52 Temp (+/- 0.5) C 7.02 7.33 7.12 7.06 Color Visual clear Clear clear clear

Comments:

Ferrous Iron

Odor

Strong

Startedporge @ 1159 Sampled @ 1215 3 well volumes

Strong

Strong

Collect only at sample time

* Three consecutive readings within range indicates stabilization of that parameter.

Olfactory

mg/L

Monitoring Well Purging/Sampling Form										
	Mo	onitoring V	Vell Purgi	ng/Sampli	ing Form					
Project Name and Number:		Korkay, Inc	. Site			60135	5841.03			
Monitoring Well Number:		Asw		Date: March 25, 2010						
Samplers:		C.V:	neiguero	n and	M. Ho	mard				
Sample Number:		Asw	nelgueri	QA/Q	QC Collected?	None				
Purging / Sampling Method:		Peristaltic P	ump		-					
1. L = Total Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Static Depth to Water (TOC): 4. C = Column of Water in Casing: 5. V = Volume of Water in Well = C(3.14159)(0.5D) ² (7.48) 6. D2 = Pump Setting Depth (ft): ± (2') 7. C2 = Column of water in Pump/Tubing (ft): 8. Tubing Volume = C2(0.005737088) D (inches) D (feet) 1-inch 0.08 2-inch 0.17 3-inch 0.25 4-inch 0.33 6-inch 0.50 6-inch 0.50 Conversion factors to determine V given C										
			Conversion	factors to de	etermine V giv	en C				
					T					
94.		D (inches) V (gal / ft)	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5			
		v (gai/it)	0.041	0.103	0.57	0.03	1.3	1		
Water Quality Readings Collect	ed Using	YSI 556 and	l Hanna H1 9	8703		-				
Parameter	Units				Readings					
Time	24 hr	1125	1130	1135	1140	1145	1150			
Water Level (0.33)	feet	8.35	835	8.35	8.35	7.35	835			
Volume Purged	gal	0	0.25	0.75	1.50	2.0	2.5			
Flow Rate	mL/min	250	250	350	350	350	350			
Turbidity (+/- 10%)	NTU	5.83	5.83	3.62	3.23	2.72	2,34			
Dissolved Oxygen (+/- 10%)	%	27.7	18.7	10.0	79	7.0	6.8			
Dissolved Oxygen (+/- 10%)	mg/L	3.32	2.26	1.19	0 94	0.84	0,80			
Eh / ORP (+/- 10)	MeV	-56.4	- 54.7	-49.7	-51.2	-54.8	-55.1			
	mS/cm ^c	100								
Specific Conductivity		0.563	0.565		0.564	0.562	0.561			
Conductivity (+/- 3%)	μmho / cm	0 377	6.376	0.377	0.377	0.377	0.376			
pH (+/- 0.1)	pH unit	L38	6.30	6.28	6.30	6.33	6.33			
Temp (+/- 0.5)	С	7.58	7.47	7.51	7.65	7.67	7.68			
Color	Visual	clear	clear	clear	clear	clear	clear			
Odor	Olfactory	Strong	strong	strong	Strong	strong	Strong			
Ferrous Iron	mg/L		9	Cottec	t only at samp	le time	-)			
Comments:		ed pug			Volume		()) = 5	,		
		,	1170	ع س دار	volume	s also	Stabil	ication		

	Me	onitoring \	Well Purgi	ng/Sampli	ing Form			
Project Name and Number:		Korkay, In	c. Site			60135	841.03	
Monitoring Well Number:		VEW -	1	_ Date:	March 25, 20	010		
Samplers:		(U:	naiguerra	+ M	· House	3		
Sample Number:		VEW-			QC Collected?	None	4	
Purging / Sampling Method:		Peristaltic F	Pump					
1. L = Total Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Static Depth to Water (T 4. C = Column of Water in Casi 5. V = Volume of Water in Well 6. D2 = Pump Setting Depth (ft) 7. C2 = Column of water in Pum 8. Tubing Volume = C2(0.0057)	ng: = C(3.1415 : : np/Tubing (fi	, , ,	48) 3 საჭ.	10.65 10.17 10.47 10.44 10.15 10.45	feet feet feet feet gal feet feet gal feet gal	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50	
			Conversion	factors to de	etermine V giv	en C		
		D (inches) V (gal / ft)	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5	
Water Quality Readings Collecte	ed Using	YSI 556 and	d Hanna HI 9	8703				2
Parameter	Units				Readings			v 13-
Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity	24 hr feet gal mL / min NTU % mg/L MeV mS/cmc	1102 9.71 0 150 25.1 60.0 7.25 -44.7 0.514	1107 9.71 0.15 250 15.3 25.2 3.06 -48.5	1112 9.71 0.3 250 19.6 22.1 2.71 -49.6 0.514	1115 9.71 0.45 250 18 9 22.0 2.70 -47.5 0.514			
Conductivity (+/- 3%) pH (+/- 0.1)	μmho / cm pH unit		0.333	0.332	6.13			
Temp (+/- 0.5) Color	C Visual	6.64 clear	6.59 clear	6.44 clear	6.35 elear			
Odor Ferrous Iron	Olfactory mg/L	strong	5+10-3	Strong	t only at samp	le time		
Comments: Start Sa Po * Three consecutive readings with	500 0 2	garrons	1102 -> 3 we	ال ۱۵۱۷۸				

	Mo	onitoring V	Vell Purgi	ng/Sampli	ing Form					
Project Name and Number:		Korkay, Inc	. Site			60135	5841.03	_		
Monitoring Well Number:		VE	W-2	Date:	March 25, 2	010				
Samplers:										
Sample Number:		VEL	V-2	QA/0	QC Collected?		one			
Purging / Sampling Method:		Peristaltic P	ump					- 10		
1. L = Total Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Static Depth to Water (TOC): 4. C = Column of Water in Casing: 5. V = Volume of Water in Well = C(3.14159)(0.5D) ² (7.48) 6. D2 = Pump Setting Depth (ft): 7. C2 = Column of water in Pump/Tubing (ft): 8. Tubing Volume = C2(0.005737088) D (inches) D (feet) 1-inch										
			Conversion	factors to de	etermine V giv	ven C				
		D (inches) V (gal / ft)	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5]		
Water Quality Readings Collect	ed Using	YSI 556 and	l Hanna HI 9	8703 /	Ach 21001	2				
Parameter	Units				Readings					
Time	24 hr	1028	1031	1036	1041	1046	1057	1056		
Water Level (0.33)	feet	6.71		9.66		9.69		1030		
Volume Purged		0	9.65		30,25	20.50	967			
	gal	300	10.25	0,25			60,50			
Flow Rate	mL/min	400	13/00	100	100	100	100			
Turbidity (+/- 10%)	NTU	29.3	22.0	34.5	23.1	2010	15,5			
Dissolved Oxygen (+/- 10%)	%	138.8	99.4	43.6	40.3	88.8	89.0			
Dissolved Oxygen (+/- 10%)	mg/L	17.23	12,46	11,69	11.21	1098	1008			
Eh / ORP (+/- 10)	MeV	@ 3.0	82,4	91.7	96.0	9915	9918			
Specific Conductivity	mS/cm ^c	0.284	0,293	0.295	0.301	0.203	0.305			
Conductivity (+/- 3%)			0,000			1 7				
	μmho / cm	0.180	0-185	0.187	0.192	0.195	9.196			
pH (+/- 0.1)	pH unit	6.95	6.70	6.77	6.74	le; 76	8.77			
Temp (+/- 0.5)	С	5:71	5.67	5.81	6.04	6.23	6.31			
Color	Visual	Clear	Clear	Clar	Clar	Clear	Clear			
Odor	Olfactory	None	None	Mone	Nono	None	Nona			
Ferrous Iron	mg/L			Collec	t only at samp		ANAL			
Comments:		Startal	pugol	D 1020	cool@		3 well	udumes tabile		
				CAM	dal @	1051				
*Three consecutive readings wit	hin range inc	dicates stabili	zation of tha	t parameter.						

	Me	onitoring '	Well Purgi	ng/Sampli	ing Form			
Project Name and Number:		Korkay, In	c. Site		71-	6013	5841.	6
Monitoring Well Number:		K-	- 3	Date:	March 25, 2	010		
Samplers:		11/61	A Hour	10	+ Crist	ine V	incique.	red
Sample Number:		K	-3	QA/0	QC Collected?		one	
Purging / Sampling Method:		Peristaltic I	Pump dec	licated	teplon li	ned poly	tubing t	Silicon tubi
1. L = Total Well Depth:				1760	feet	D (inches)	D (feet)	_ ~
2. D = Riser Diameter (I.D.):				12.0	- 10 m		-	-
3. W = Static Depth to Water (7)	$\Gamma \cap C \cap C$			4/1	feet	1-inch	0.08	
4. C = Column of Water in Cas.				- 6.65	feet	2-inch	0.17	
	_			3.95	feet	3-inch	0.25	
5. V = Volume of Water in Wel	II = C(3.1415)		10	0.64	$_{\rm gal} \times 3$	4-inch	0.33	
6. D2 = Pump Setting Depth (ft): ~10°		Idume	193	feet	6-inch	0.50	
7. C2 = Column of water in Pur		t):	to purp		feet			
8. Tubing Volume = $C2(0.0057)$	737088)		Figurel 1		gal			
			C Nording 2		-			
			Conversion	factors to de	termine V giv	ven C		
		D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch	7
		V (gal / ft)	0.041	0.163	0.37	0.65	1.5	
Water Quality Readings Collect	ted Using	YSI 556 an	d H anna III 9	8703 Ha	ch 2100	P		
Parameter	Units			/	Readings			
Time	24 hr	8113	8:48	503		11/12	das	1210
Water Level (0.33)	feet	8.65	8.67	867	850	903	908	1913
Volume Purged	gal	0.00	10,25	0.25	8.67	8.61	8.67	0.6
Flow Rate	mL/min	200			10.50	0,75	1,00	1,0
Furbidity (+/- 10%)	NTU		200	200	300	200	700	200
Dissolved Oxygen (+/- 10%)	%	660	2.61	203	2.00	1.54	0.97	0.45
Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)		121	40.1	910	8XI	85.4	83.7	812
Eh / ORP (+/- 10)	mg/L	16,31	12.04	11.58	11.04	1080	10.50	10.28
	MeV	01.0	134.0	138.4	13112	136,2	133.8	130,2
Specific Conductivity	mS/cm ^c	0.276	0.278	0.277	0.2X0	0.274	0,271	0,270
Conductivity (+/- 3%)	μmho / cm	0.174	0.172	0.172	0.172	0.171	0.169	0.168
oH (+/- 0.1)	pH unit	9.33	8.44	8.14	7.88	7.72	7.59	7.48
Temp (+/- 0.5)	С	5,12	5.13	5.16	5.26	5.29	5.38	7.48
Color	Visual	Clear	Clear	(lear	Clear	Clear	Clear	Clear
Odor	Olfactory	Alone	None	None	None	None	None	None
errous Iron	mg/L 🔏	NA	p/		t only at samp	le time		
Comments:	. 1	ed pu	ngo @			Gtabiliza	ecl	
	0	SAMAL	1000	1/8				

	Mo	onitoring V	Well Purgi	ng/Sampli	ing Form				
Project Name and Number:		Korkay, Inc	c. Site			60135	84144,06		
Monitoring Well Number:		Flush.	ment	Date:	March 25, 20	010			
Samplers:		C. Vin	ciquerra	bon	M. Ho	ward			
Sample Number:		Flusha	nount	QA/Q	QC Collected?		<u> </u>		
Purging / Sampling Method:	9	Peristaltic P	ump W	hale F	2~2				
1. L = Total Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Static Depth to Water (TOC): 4. C = Column of Water in Casing: 5. V = Volume of Water in Well = C(3.14159)(0.5D) ² (7.48) 6. D2 = Pump Setting Depth (ft): 7. C2 = Column of water in Pump/Tubing (ft): 8. Tubing Volume = C2(0.005737088) Conversion factors to determine V given C D (inches) D (feet) 1-inch 0.08 2-inch 0.17 3-inch 0.25 4-inch 0.33 6-inch 0.50 Conversion factors to determine V given C									
		D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch	1	
		V (gal / ft)	0.041	0.163	0.37	0.65	1,5		
Water Quality Readings Collecte	,	YSI 556 and	d Hanna HI 9	8703		•			
Parameter	Units	1 212	1550		Readings				
Time	24 hr	818	MINA	1557	1604				
Water Level (0.33)	feet	30.72			70.6				
Volume Purged	gal	0	4	2	12.				
Flow Rate	mL/min				_				
Turbidity (+/- 10%)	NTU	15 8	13.5	10.3	6.42				
Dissolved Oxygen (+/- 10%)	%	68.2	65.4	29.0	24.4				
Dissolved Oxygen (+/- 10%)	mg/L	7.96	7.04	3.23	2,70				
Eh / ORP (+/- 10)	MeV	1801	-43.5	-61.0	-61.5				
Specific Conductivity	mS/cm ^c	0 735	0.865	0.968	0.960				
Conductivity (±/- 3%)	μ mho / c m		0-636		0.701				
pH (+/- 0.1)	pH unit	9:77	11.45	11.76	11.78				
Temp (+/- 0.5)	С	928	11.14	1081	10.89				
Color	Visual	clear	clear	clear	clear				
Odor	Olfactory	none	none	none	none				
Ferrous Iron	mg/L -		1.21		t only at samp	le time			
	purge	for th	e secon	e well of	g 822	water (4 g., Non	
* Three consecutive readings wit	hin range inc	licates stabili	ization of tha	t parameter.	173				

	M	onitoring `	Well Purg	ing/Sampli	ng Form			
Project Name and Number:		Korkay, In	c. Site			60135	841.03	
Monitoring Well Number:		Mw-	150	Date: March 25, 2010				
Samplers:					toward			
Sample Number:					C Collected?			
Purging / Sampling Method:				ale pum				
		1 Cristina	amp WV	race pum	P			
1. L = Total Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Static Depth to Water (7.4. C = Column of Water in Cas. 5. V = Volume of Water in Wel. 6. D2 = Pump Setting Depth (ft. 7. C2 = Column of water in Pur. 8. Tubing Volume = C2(0.0057)	ing: l = C(3.1415): np/Tubing (f		48)	43.94 0.17 28.10 15.84 2.58 7.74		D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50	
_			Conversion	factors to de	termine V giv	en C		
		D (inches) V (gal / ft)	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5	
Water Quality Readings Collect	ed Using	YSI 556 and	d Hanna HI 9	98703				
Parameter	Units				Readings			
Time	24 hr	1344	1405	1410				
Water Level (0.33)	feet	33.80	0 =					
Volume Purged	gal	2.5	5.0	7.5				
Flow Rate	mL/min	300						
Turbidity (+/- 10%)	NTU	14.4	27.7	14.9				
Dissolved Oxygen (+/- 10%)	%	24.9	60.1	58.4				
Dissolved Oxygen (+/- 10%)	mg/L	2.65	6.44	5.99				
Eh / ORP (+/- 10)	MeV	-224.9	9.8	15.1				
Specific Conductivity	mS/cm ^c	0.155	0.170	0.182				
Conductivity (+/- 3%)	μmho / cm	0.112	0.124	0,127				
pH (+/- 0.1)	pH unit		601	3 37				
Temp (+/- 0.5)	C	8.10	0,76	8.87				
Color	Visual		11100	9.96				
Odor	Olfactory	None	CION CO	clear				
Ferrous Iron	mg/L	June	None	Callest	only at sampl			
Comments: Started purjust Sampled (9) Three consecutive readings with	1410	ع سدا) velum	ક				

Monitoring Well Purging/Sampling Form										
Project Name and Number:		Korkay, Inc		0 1	8	60135	5841.03			
Monitoring Well Number:		MW-8	'D	Date:	Date: March 25, 2010					
Samplers:				-				-		
Jumplers.						0				
Sample Number:		Mw-8	50	QA/Q	QC Collected?	None				
Purging / Sampling Method:		Peristaltic P	ump w	hale c	u~p	_				
L = Total Well Depth: D = Riser Diameter (I.D.): W = Static Depth to Water (TOC): C = Column of Water in Casing: V = Volume of Water in Well = C(3.14159)(0.5D) ² (7.48) D (inches) D (feet) 1-inch 0.08 2-inch 0.17 3-inch 0.25 4-inch 0.33 6-inch 0.50 C2 = Column of water in Pump/Tubing (ft): C2 = Column of water in Pump/Tubing (ft): Tubing Volume = C2(0.005737088) Conversion factors to determine V given C										
		D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch	1		
Water Quality Readings Collecte Parameter	ed Using Units	V (gal / ft) YSI 556 and	0.041 Hanna HI 9	0.163	0.37	0.65	1.5	1		
Time	24 hr	235	3240	245	250	255	300			
Water Level (0.33)	feet	_	· - ·	_		-	_			
Volume Purged	gal	0	2.5	5	7.50	10	12.5			
Flow Rate	mL / min		_		_	-	_			
Turbidity (+/- 10%)	NTU	53.7	44.4	30-4	23.7	11.9	10.3			
Dissolved Oxygen (+/- 10%)	%	68-9	56.3	60.1	47.7	52.7	49.7			
Dissolved Oxygen (+/- 10%)	mg/L	7.22	6.10	6.61	5.15	5.77	5.20			
Eh / ORP (+/- 10)	MeV	1.4	-3.7	-9.7	-3.9	2:4	2.9			
Specific Conductivity	mS/cm ^c	0.248	0.251	0.254	0.252	0.268				
Conductivity (+/- 3%)	μmho / cm	0.186	0.188	0.190	0.189		0.211			
pH (+/- 0.1)	pH unit	9.55	9.76	9.89	9.89	0.199	9.81			
Temp (+/- 0.5)	С	11.97			11.97	9.86	11.34			
Color	Visual		11.90	11.81		11.81				
Odor		clear	clear	elcar	clear	Clear	clear			
Ferrous Iron	Olfactory	none	none	none	none	none	hone	1		
Collect only at sample time Started parge @ 235 Sampled @ 300 1500 3 well volumes										

Appendix C Laboratory Report

Report Date: 19-Apr-10 11:52

✓ Final Report Re-Issued Report Revised Report

A DIVISION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

Laboratory Report

AECOM Technical Services, Inc.

Latham, NY 12110

40 British American Boulevard

Work Order: J0580 Project: Korkay Inc

Project #:

Attn: John Santacroce

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
J0580-01	VEW-3	Aqueous	25-Mar-10 10:04	27-Mar-10 09:10
J0580-02	VEW-1	Aqueous	25-Mar-10 11:15	27-Mar-10 09:10
J0580-03	VEW-2	Aqueous	25-Mar-10 10:51	27-Mar-10 09:10
J0580-04	ASW	Aqueous	25-Mar-10 11:50	27-Mar-10 09:10
J0580-05	DUP-1	Aqueous	25-Mar-10 00:00	27-Mar-10 09:10
J0580-06	FLUSH MOUNT	Aqueous	25-Mar-10 16:04	27-Mar-10 09:10
J0580-07	MW-15S	Aqueous	25-Mar-10 13:41	27-Mar-10 09:10
J0580-08	K-3	Aqueous	25-Mar-10 09:18	27-Mar-10 09:10
J0580-09	MW-15D	Aqueous	25-Mar-10 14:10	27-Mar-10 09:10
J0580-10	K-2	Aqueous	25-Mar-10 12:40	27-Mar-10 09:10
J0580-11	MW-8S	Aqueous	25-Mar-10 15:25	27-Mar-10 09:10
J0580-12	VEW-4	Aqueous	25-Mar-10 12:15	27-Mar-10 09:10
J0580-13	MW-8D	Aqueous	25-Mar-10 15:00	27-Mar-10 09:10
J0580-14	TRIP BLANK	Aqueous	26-Mar-10 08:55	27-Mar-10 09:10

I attest that the information contained within the report has been reviewed for accuracy and checked against the quaility control requirements for each method. The results relate only to the samples(s) as recevied.

All applicable NELAC or USEPA CLP requirments have been meet.

Mitkem Laboratories is accredited under the National Environmental Laboratory Approval Program (NELAP) and is certified by several States, as well as USEPA and US Department of Defense. The current list of our laboratory approvals and certifications is available on the Certifications page our web site at www.mitkem.com.

Please contact the Laboratory or Technical Director at 401-732-3400 with any questions regarding the data contained in the laboratory report.

Department of Defense	N/A
Connecticut	PH-0153
Delaware	N/A
Maine	2007037
Massachusetts	M-RI907
New Hampshire	2631
New Jersey	RI001
New York	11522
North Carolina	581
Pennsylvania	68-00520
Rhode Island	LAI00301
Texas	T104704422-08-TX
USDA	P330-08-00023
USEPA - ISM	EP-W-09-039
USEPA - SOM	EP-W-05-030

Authorized by:

Yihai Ding Laboratory Director

Technical Reviewer's Initials:

Mitkem Laboratories

New York State Department of Environmental Conservation Sample Identification and Analytical Requirements Summary

Project Name: Korkay Inc

SDG: <u>J0580</u>

			Anal	ytical Requirements		
Customer Sample ID	Laboratory Sample ID	MSVOA Method #	MSSEMI Method #	GC* Method #	ME	Other
VEW-3	J0580-01	SW8260_W				
VEW-1	J0580-02	SW8260_W				
VEW-2	J0580-03	SW8260_W				
ASW	J0580-04	SW8260_W				
DUP-1	J0580-05	SW8260_W				
FLUSH MOUNT	J0580-06	SW8260_W				
MW-15S	J0580-07	SW8260_W				
K-3	J0580-08	SW8260_W				
MW-15D	J0580-09	SW8260_W				
K-2	J0580-10	SW8260_W				
MW-8S	J0580-11	SW8260_W				
VEW-4	J0580-12	SW8260_W				
MW-8D	J0580-13	SW8260_W				
TRIP BLANK	J0580-14	SW8260_W				

Mitkem Laboratories

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name: Korkay Inc

SDG: <u>J0580</u>

Laboratory		Date	Date Received	Date	Date
Sample ID	Matrix	Collected	By Lab	Extracted	Analyzed
SW8260_W					
J0580-01A	AQ	3/25/2010	3/27/2010	NA	4/5/2010
J0580-02A	AQ	3/25/2010	3/27/2010	NA	4/5/2010
J0580-03A	AQ	3/25/2010	3/27/2010	NA	4/5/2010
J0580-04A	AQ	3/25/2010	3/27/2010	NA	4/5/2010
J0580-05A	AQ	3/25/2010	3/27/2010	NA	4/6/2010
J0580-06A	AQ	3/25/2010	3/27/2010	NA	4/6/2010
J0580-07A	AQ	3/25/2010	3/27/2010	NA	4/7/2010
J0580-08A	AQ	3/25/2010	3/27/2010	NA	4/6/2010
J0580-09A	AQ	3/25/2010	3/27/2010	NA NA	4/6/2010
J0580-10A	AQ	3/25/2010	3/27/2010	NA	4/6/2010
J0580-11A	AQ	3/25/2010	3/27/2010	NA	4/6/2010
J0580-12A	AQ	3/25/2010	3/27/2010	NA	4/6/2010
J0580-13A	AQ	3/25/2010	3/27/2010	NA	4/6/2010
J0580-14A	AQ	3/26/2010	3/27/2010	NA	4/6/2010

Mitkem Laboratories

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name: Korkay Inc

SDG: <u>J0580</u>

Laboratory		Analytical	Extraction	Low/Medium	Dil/Conc
Sample ID	Matrix	Protocol	Method	Level	Factor
SW8260_W					
J0580-01A	AQ	SW8260_W	NA	LOW	1
J0580-02A	AQ	SW8260_W	NA	LOW	2.5
J0580-03A	AQ	SW8260_W	NA	LOW	1
J0580-04A	AQ	SW8260_W	NA	LOW	5
J0580-05A	AQ	SW8260_W	NA	LOW	1
J0580-06A	AQ	SW8260_W	NA	LOW	1
J0580-07A	AQ	SW8260_W	NA	LOW	1
J0580-08A	AQ	SW8260_W	NA	LOW	1
J0580-09A	AQ	SW8260_W	NA	LOW	1
J0580-10A	AQ	SW8260_W	NA	LOW	1
J0580-11A	AQ	SW8260_W	NA	LOW	1
J0580-12A	AQ	SW8260_W	NA	LOW	1
J0580-13A	AQ	SW8260_W	NA	LOW	1
J0580-14A	AQ	SW8260_W	NA	LOW	1

Analytical Data Package for AECOM

Client Project: Korkay, Inc.

SDG# SJ0580

Mitkem Work Order ID: J0580

April 15, 2010

Prepared For:

AECOM Technical Services, Inc.

40 British American Boulevard

Latham, NY 12110

Attn: Mr. John Santacroce

Prepared By:

Mitkem Laboratories

175 Metro Center Boulevard

Warwick, RI 02886 (401) 732-3400

SDG Narrative

Mitkem Corporation submits the enclosed data package in response to AECOM's Korkay, Inc. project. Under this deliverable, analysis results are presented for fourteen aqueous samples that were received on March 27, 2010. Analyses were performed per specifications in the project's contract, discussion with client and the chain of custody form. Following the narrative is the Mitkem Work Order for cross-referencing client sample ID and laboratory sample ID.

The analyses were performed according to NYSDEC ASP protocols and reported per NYSDEC ASP requirement for Category A deliverable.

The following observation and/or deviations are observed for the following analyses:

1. Overall Observation:

Where needed, manual integrations were performed to improve data quality. The corrections were reviewed and associated hardcopies generated and reported as required. Manual integrations are coded to provide the data reviewer justification for such action. The codes are labeled on the ion chromatogram signal (GC/MS signal) and chromatogram for GC based analysis as follows:

• M1	peak tailing or fronting.
• M2	peak co-elution.
• M3	rising or falling baseline.
• M4	retention time shift.
• M5	miscellaneous – under this category, the justification is explained.
• M6	software did not integrate peak
• M7	partial peak integration

The enclosed report includes the originals of all data with the exception of logbook pages and certain initial calibrations. Photocopies of logbook pages are included, with the originals maintained on file at the laboratory. The originals of initial calibrations that are shared among several cases are maintained on file at the laboratory, with photocopies included in the data package.

1. Volatile Analysis:

Surrogate recovery: recoveries were within the QC limits.

Lab control sample/ lab control sample duplicate: spike recoveries and replicate RPDs were within QC limits.

Sample analysis: due to high concentration of target analytes, the following samples were analyzed at dilution: VEW-1 (2.5x) and ASW (5x). No other unusual observation was made for the analysis.

All pages in this report have been numbered consecutively, starting with the title page and ending with a page saying only "Last Page of Data Report".

I certify that this data package is in compliance, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Agnes Huntley

CLP Project Manager

04/19/10

Page 01 of 01

HT = Test logged in but has been placed on hold

WorkOrder: J0580

04/15/2010 12:29

Case: SDG:

Mitkem Laboratories

Report Level: ASP-A

HC Due: 04/14/10

Fax Due:

Special Program:

Client ID: EARTH_NY Project: Korkay Inc

WO Name: Korkay Inc

Comments: need hard copy and CD Location: KORKAY,

EDD: Fax Report: **PO:** 99165

Lab Samp ID	Lab Samp ID Client Sample ID	Collection Date	Date Recv'd	Matrix	Test Code	Samp / Lab Test Comments	HF HT MS SEL Storage
J0580-01A	VEW-3	03/25/2010 10:04 03/27/2010	03/27/2010	Aqueous	SW8260_W		VOA
J0580-02A	VEW-1	03/25/2010 11:15	03/27/2010	Aqueous	SW8260_W		VOA
J0580-03A	VEW-2	03/25/2010 10:51	03/27/2010	Aqueous	SW8260_W		VOA
J0580-04A	ASW	03/25/2010 11:50	03/27/2010	Aqueous	SW8260_W		VOA
J0580-05A	DUP-1	03/25/2010 00:00	03/27/2010	Aqueous	SW8260_W		VOA
J0580-06A	FLUSH MOUNT	03/25/2010 16:04	03/27/2010	Aqueous	SW8260_W		VOA
J0580-07A	MW-15S	03/25/2010 13:41	03/27/2010	Aqueous	SW8260_W	1	VOA
J0580-08A	K-3	03/25/2010 09:18	03/27/2010	Aqueous	SW8260_W		VOA
J0580-09A	MW-15D	03/25/2010 14:10	03/27/2010	Aqueous	SW8260_W		VOA
J0580-10A	K-2	03/25/2010 12:40	03/27/2010	Aqueous	SW8260_W		VOA
J0580-11A	MW-8S	03/25/2010 15:25	03/27/2010	Aqueous	SW8260_W		VOA
J0580-12A	VEW-4	03/25/2010 12:15	03/27/2010	Aqueous	SW8260_W		VOA
J0580-13A	MW-8D	03/25/2010 15:00	03/27/2010	Aqueous	SW8260_W		VOA
J0580-14A	TRIP BLANK	03/26/2010 08:55	03/27/2010	Aqueous	SW8260_W	1	VOA

HF = Fraction logged in but all tests have been placed on hold

Lab Client Rep: Shirley S Ng

Sample Transmittal Documentation

SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY	CHAIN OF CUSTODY RECORD Page 1 of 2	Special Handling: Standard TAT - 7 to 10 business days Result TAT - Date Needed: All TATs subject to laboratory approval Min. 24-hour notification needed for rushes. Samples disposed of after 60 days unless otherwise instructed.
Report To: Jahn Santacioce 140 Bitish Hmerican Blud Lithum 11 / 12110 Telephone #: (5/8) 957 2200 Project Mgr. Steire Chiniere	Invoice To: John Suntacrace 40 British American Blied Leithum 187 12110 P.O. No.: RON:	Project No.: 60/35841, 06 Site Name: Korkay Inc. Site Location: Bandalbin State: NY Sampler(s): Mark Howard + Cristine Vincigue
$1=Na_2S2O_3$ $2=HCI$ $3=H_2SO_4$ $4=HNO_3$ $5=NaOH$	=HNO ₃ 5=NaOH 6=Ascorbic Acid 7=CH ₃ OH	List preservative code below: QA/QC Reporting Notes:

		(check as needed)	☐ Provide MA DEP MCP CAM Report	☐ Provide CT DPH RCP Report	QA/QC Reporting Level	Dother Category B	State specific reporting standards:	MYS (afterny 6)	>										of Malloan an	Gartaciacala nocem, com	11	Treezer temp
List preservative code helow.	total and a time taken in		Analyses:																THDD Format FXP	To mail to john Gantacia da		☐ Ambient ☐ Ged ☐ Refrigerated ☐ Fridge temp
ľ		1/		05	ES :	70N	72]		X	X	X	X	\times	X	X	<u> </u>	Q	X	Temp ^o C		<i>!\]</i>	
7=CH.OH	113011		Containers:		sse	ear Gl astic	ot Cl												Time:	1530	08:10	
l			Cor			OA Vi			to	Ŋ	2	2	7)	(J	7	Ŋ	7	7	Date:	0)/6	10	
6= Ascorbio Agid	ייי אייייני	11=	1				ype Yatrix		G. GW	G GW	G (FW)	G 60	J 62	F RW	からと	my 5	F GW	MS &		192/6	3/2/	1
4 HOcN-2				e A=Air				Time:	1004	1115	1501	1150		1604	1341	9/8	1410	1240	Received by:	7	J. J	
4-HNO		10=		SL=Sludge	X3=	oosite		Date:,	01/52	0//52/10	0/52/	0//52/	01/22/6	125/10	125/10	0//52/16	3/1/2/10	0//52/8	, Recei	Fall	Har	>
05 H-0	3-112304		GW=Groundwater	SO=Soil	-	C=Composite			18 3	ic	n	142	. 1 . 3	10	74	· '					1	ا — ز
)-HCI	03 2-1101	=6	Water GW=C	Surface Water	X2=	G=Grab		Sample Id:	VEW-3	1/EW-1	VEW-2	HSW	Dup -1	Tush Mount	MW-15	, K-3	MW-15D	2-4	Relinquished by:	Motion	ed	2
1-Nº C20	1-1va ₂ 52	8= NaHSO ₄	DW=Drinking Water	O=Oil SW= Surface Water	X1=		3658	Lab Id:	19	7.0	60	λo	65	1 30	63	<u></u>	J,a	0)	, Religio	Mach	tel	-

11 Almgren Drive • Agawam, MA 01001 • 413-789-9018 • FAX 413-789-4076 • www.spectrum-analytical.com

Special Handling: Astandard TAT - 7 to 10 business days Rush TAT - Date Needed: All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes. Samples disposed of after 60 days unless otherwise instructed.	CO135841.06 Korkay Inc. Site Valloin State: NY Howal & Costine Uniquena		D Provide OA	State specific reporting standards:		AE-mail to Jan. Garlacocol accomicon
RECORD	Project No.: COLT Site Name: Hork Location: Availably Sampler(s): Mark	List preservative code below:	Analyses: 0928.70			Temp°C MEDD Format
OF CUSTODY RECORD Page 2 of 2	An Suntacase	rbic Acid 7=CH ₃ OH	Salo Todm. Sear Glass Sear Glass	A To #		Date: Time: 753/10 1630
CHAIN OF	Invoice To: July British Le Unim P.O. No.:	O ₃ 5=NaOH 6=Asco	W=Wastewater ludge A=Air X3=	Time: 7255 775 776 777 776	655	Received by:
SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY		2=HCl 3=H ₂ SO ₄	GW=Groundwater Water SO=Soil SI X2= 3=Grab C=Composite	Sample Id: Date: MW - 65 3/25/ EW - 4 3/25/ MW - 50 3/25/		edov:
SPECTRUM A HAVIBAL	Report To: 16 19 1. 1. 18 1. 1	$\begin{array}{c c} & & & & \\ \hline & & & \\ \hline & & \\ 1 = \text{Na}_2 \text{S2O}_3 \\ \hline & & \\ 8 = \text{NaHSO}_4 & 9 = \end{array}$	DW=Drinking Water GW= 0=0il SW=Surface Water $X1 = T c \rho \beta d n r X2 = G c R R R R R R R R R R R R R R R R R R$	25.5 80 Lab Id: S 11 12 17 17 18		Mark Mana

MITKEM LABORATORIES

Sample Condition Form

								Page		of	<u></u>
Received By: AED	Reviewed By	: CT			Date:	3/24/0	Mitke	m Wo	rk Ord	er#: 🤅	J0180
Client Project: Kor	RKAY				Client			HN			Soil Headspace or
					<u> </u>			n (pH)	•	VOA	Air Bubble ≥
		Lab S			HNO ₃	H₂SO₄	HCI	NaOH	H ₃ PO ₄	Matrix	1/4"
1) Cooler Sealed	Yes / No	2028	0	01	<u> </u>					H	
				02							
2) Custody Seal(s)	Present / Absent			03							
	Coolers / Bottles		l	2Y							
 	Intact / Broken			05			·		*****		
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			06							
3) Custody Seal Number	(a) N/A			07	 						
(3) Custody Sear Number	(5) 10/74	 		<u> </u>							
					-						
				29						+	
	V			10	<u> </u>					-	
		\\		1/							
4) Chain-of-Custody	Present Absent	\perp		12							
		\bigvee		13						$\overline{\mathbf{A}}$	
5) Cooler Temperature	2°C	J0580	5	14						H	
IR Temp Gun ID	MT-1				<u> </u>						
Coolant Condition	ICED										
6) Airbill(s)	Present Absent							,			
Airbill Number(s)					<u> </u>						
Alibiii Nullibei(5)	PED EX										
	8690 7923 7300				 			-/			
	<u> </u>										
		<u> </u>	_		<u> </u>		/	1/0			
						₩XX	10°	/,			-
7) Samples Bottles	Intact Broken / Leaking				<u> </u>	\mathcal{L}	38				
8) Date Received	3/27/10									-	
					1						
9) Time Received	9:10		1	/							
			7								
Preservative Name/Lot N	ıo.										
TOSONALIVO NAMIO/EST	10	L		/OA	Matrix	Key:					
			-			Unpre	serve	d Soil		A = A	ir
					UA =	Unpre	serve	d Aque	eous	H = H	CI
					M = N					E = E	
	0 10 10 10	,. <u>.</u> .	<u> </u>			laHSO	4			F = F	reeze
See Sample Form ID: QAF.0006	e Condition Notification/Corre	ective Act	tion Fo	orm	yes //r	10)		Rad (OK ye	e / no	
ון טוווווט. עאר.טטטס					_			nau (JIN YE	<i>3 </i> 110	

* Volatiles *

CLIENT	SAMPLE	NO.
VEW-3		,

Lab Name:	MITKEM LABOR	ATORIES			Contract:	
Lab Code:	MITKEM	Case No.:	J0580		Mod. Ref No.:	SDG No.: SJ0580
Matrix: (S	OIL/SED/WATER) WATER			Lab Sample ID:	J0580-01A
Sample wt/	vol:5.	00 (g/mL)	ML		Lab File ID:	V2L5421.D
Level: (TR	ACE/LOW/MED)	LOW			Date Received:	03/27/2010
% Moisture	: not dec.				Date Analyzed:	04/05/2010
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extra	ct Volume:		:	(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volu	me: 5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μ G/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	Ū
75-01-4	Vinyl chloride	5.0	U
	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	Ū
75-35-4	1,1-Dichloroethene	5.0	Ū
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	Ū
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	Ū
1634-04-4	Methyl tert-butyl ether	5.0	Ū
75-34-3	1,1-Dichloroethane	5.0	Ū
108-05-4	Vinyl acetate	5.0	Ū
78 - 93-3	2-Butanone	5.0	Ū
156-59-2	cis-1,2-Dichloroethene	5.0	U .
594-20-7	2,2-Dichloropropane	5.0	Ū
74-97-5	Bromochloromethane	5.0	Ū
67-66-3	Chloroform	5.0	U
	1,1,1-Trichloroethane	5.0	Ū
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	U
		5.0	U
	cis-1,3-Dichloropropene	5.0	U -
		5.0	Ū
108-88-3		5.0	U
	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

CLIENT	SAMPLE	NO.
VEW-3		

Lab Name: MITKEM LABORAT	ORIES			Contract:		
Lab Code: MITKEM	Case No.:	J0580		Mod. Ref No.:	SDG No.: SJ058	0
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	J0580-01A	
Sample wt/vol: 5.00) (g/mL)	ML		Lab File ID:	V2L5421.D	
Level: (TRACE/LOW/MED) I	LOW			Date Received:	03/27/2010	
% Moisture: not dec.				Date Analyzed:	04/05/2010	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	Ū
124-48-1	Dibromochloromethane	5.0	Ū
106-93-4	1,2-Dibromoethane	5.0	Ū
108-90-7	Chlorobenzene	5.0	Ū
630-20-6	1,1,1,2-Tetrachloroethane	5.0	Ū
100-41-4	Ethylbenzene	5.0	Ū
1330-20-7	m,p-Xylene	2.9	J
95-47-6	o-Xylene	2.1	J
1330-20-7	Xylene (Total)	5.0	
100-42-5	Styrene	5.0	U
75 - 25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene .	5.0	Ū
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
	1,3,5-Trimethylbenzene	1.8	J
106-43-4	4-Chlorotoluene	5.0	U
98-06 - 6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	2.0	J
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	. U
541-73-1	1,3-Dichlorobenzene	5.0	U
	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	Ū
96-12 - 8	1,2-Dibromo-3-chloropropane	5.0	Ū .
	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	Ū.
91-20-3	Naphthalene	1.8	J

CLIENT	SAMPLE	NO.
VEW-1		

Lab Name:	MITKEM LABORA	TORIES	<u> </u>		Contract:	
Lab Code:	MITKEM	Case No.:	J0580		Mod. Ref No.:	SDG No.: SJ0580
Matrix: (S	OIL/SED/WATER)	WATER			Lab Sample ID:	J0580-02A
Sample wt/	vol: 5.0	0 (g/mL)	ML		Lab File ID:	V2L5420.D
Level: (TR	ACE/LOW/MED)	LOW			Date Received:	03/27/2010
% Moisture	: not dec.				Date Analyzed:	04/05/2010
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	2.5
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume: (uL

(mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	13	U
	Chloromethane	6.7	J
75-01-4	Vinyl chloride	13	Ū
	Bromomethane	13	U
75-00-3	Chloroethane	4.7	J
75-69-4	Trichlorofluoromethane	13	U
75-35-4	1,1-Dichloroethene	13	U
67-64-1	Acetone	13	U
74-88-4	Iodomethane	13	U
75-15-0	Carbon disulfide	13	U
75-09-2	Methylene chloride	13	Ü
	trans-1,2-Dichloroethene	13	Ū
1634-04-4	Methyl tert-butyl ether	13	Ū
	1,1-Dichloroethane	13	U
108-05-4	Vinyl acetate	13	Ū
78-93-3	2-Butanone	13	Ū
156-59-2	cis-1,2-Dichloroethene	39	1.
594-20-7	2,2-Dichloropropane	13	Ū
74-97-5	Bromochloromethane	13	Ū
67-66-3	Chloroform	13	U
71-55-6	1,1,1-Trichloroethane	13	U
563-58-6	1,1-Dichloropropene	13	U
56-23-5	Carbon tetrachloride	13	U
107-06-2	1,2-Dichloroethane	13.	U
71-43-2	Benzene	13	U
	Trichloroethene	13	U
78-87-5	1,2-Dichloropropane	13	U
74-95-3	Dibromomethane	13	Ū
	Bromodichloromethane	13	U
L0061-01-5	cis-1,3-Dichloropropene	13	Ū.
	4-Methyl-2-pentanone	13	Ū
108-88-3	1	3.4	J
	trans-1,3-Dichloropropene	13	U
	1,1,2-Trichloroethane	13	U
142-28-9	1,3-Dichloropropane	13	U

Purge Volume: 5.0

CLIENT	SAMPLE	NO.
VEW-1		

Lab Name: MITKEM LABOR	ATORIES	Contract:	
Lab Code: MITKEM	Case No.: J0580	Mod. Ref No.:	SDG No.: SJ0580
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID:	J0580-02A
Sample wt/vol: 5.	00 (g/mL) ML	Lab File ID:	V2L5420.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	03/27/2010
% Moisture: not dec.		Date Analyzed:	04/05/2010
GC Column: DB-624	ID: 0.25 (1	mm) Dilution Factor	: 2.5
Soil Extract Volume:		uL) Soil Aliquot Vol	lume: (uL)
Purge Volume: 5.0	(1	mL)	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	13	U
591-78-6	2-Hexanone	13	Ū
124-48-1	Dibromochloromethane	13	U
106-93-4	1,2-Dibromoethane	13	U ·
108-90-7	Chlorobenzene	13	Ū
630-20-6	1,1,1,2-Tetrachloroethane	13	U
	Ethylbenzene	28	
	m,p-Xylene	51	
	o-Xylene	160	
	Xylene (Total)	220	
100-42-5		13	U
	Bromoform	13	Ū
	Isopropylbenzene	12	J
	1,1,2,2-Tetrachloroethane	13	U
	Bromobenzene	13	Ū
	1,2,3-Trichloropropane	13	U
	n-Propylbenzene	19	
	2-Chlorotoluene	13	U
	1,3,5-Trimethylbenzene	200	
	4-Chlorotoluene	13	U
	tert-Butylbenzene	13	Ü
	1,2,4-Trimethylbenzene	220	
	sec-Butylbenzene	19	
	4-Isopropyltoluene	59	
	1,3-Dichlorobenzene	13	U
	1,4-Dichlorobenzene	13	U
	n-Butylbenzene	47	
	1,2-Dichlorobenzene	19	1
	1,2-Dibromo-3-chloropropane	13	U
	1,2,4-Trichlorobenzene	13	U
	Hexachlorobutadiene	13	U
	1,2,3-Trichlorobenzene	13	U
91-20-3	Naphthalene	78	

CLIENT	SAMPLE	NO.
VEW-2		

Lab Name:	MITKEM LABORATO	DRIES		Contract:	
Lab Code:	MITKEM Ca	ase No.: <u>J0580</u>		Mod. Ref No.:	SDG No.: SJ0580
Matrix: (So	OIL/SED/WATER)	WATER '		Lab Sample ID:	J0580-03A
Sample wt/	vol: 5.00	(g/mL) ML		Lab File ID:	V2L5422.D
Level: (TR	ACE/LOW/MED) Lo	WC		Date Received:	03/27/2010
% Moisture	: not dec.			Date Analyzed:	04/05/2010
GC Column:	DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extra	ct Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volum	me: 5.0		(mL)	•	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	Ū
75-01-4	Vinyl chloride	5.0	Ū
74-83-9	Bromomethane	5.0	Ū
75-00-3	Chloroethane	5.0	Ū.
75-69-4	Trichlorofluoromethane	5.0	Ū
75-35-4	1,1-Dichloroethene	5.0	Ū
67-64-1	Acetone	5.0	Ū
74-88-4	Iodomethane	5.0	Ū
75-15-0	Carbon disulfide	5.0	Ū
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	Ū.
75-34-3	1,1-Dichloroethane	5.0	Ü
108-05-4	Vinyl acetate	5.0	Ū
78-93-3	2-Butanone	5.0	Ū
156-59-2	cis-1,2-Dichloroethene	5.0	Ū
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	Ū
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	Ū
	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	Ū
71-43-2	Benzene	5.0	Ū
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1		5.0	Ū
108-88-3		5.0	Ü
10061-02-6	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
	1,3-Dichloropropane	5.0	Ū

CLIENT	SAMPLE	NO.	
VEW-2			

Lab Name: MITKEM LABORAT	ORIES			Contract:			
Lab Code: MITKEM C	Case No.:	J0580		Mod. Ref No.:		SDG No.:	SJ0580
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	J0580-03A		
Sample wt/vol: 5.00	(g/mL)	ML		Lab File ID:	V2L5422.D		
Level: (TRACE/LOW/MED) I	JOW			Date Received:	03/27/201	0	
% Moisture: not dec.				Date Analyzed:	04/05/201	0	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0		
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:		(uL)
Purge Volume: 5.0			(mL)				

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	U U
	2-Hexanone	5.0	Ū
	Dibromochloromethane	5.0	Ū
	1,2-Dibromoethane	5.0	Ū
	Chlorobenzene	5.0	Ū
630-20-6	1,1,1,2-Tetrachloroethane	5.0	Ū
100-41-4	Ethylbenzene	5.0	Ū
1330-20-7	m,p-Xylene	5.0	Ū
	o-Xylene	5.0	Ū
1330-20-7	Xylene (Total)	5.0	Ū
100-42-5	Styrene	5.0	Ū
75 - 25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	Ū
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U ⁻
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	Ū
106-43-4	4-Chlorotoluene	5.0	U
	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U.
	1,3-Dichlorobenzene	5.0	Ü
	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	Ū
	1,2-Dichlorobenzene	5.0	Ŭ
	1,2-Dibromo-3-chloropropane	5.0	Ū
	1,2,4-Trichlorobenzene	5.0	Ū
Ł	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

CTTEMI	SAMPLE	NO.
ASW		

Lab Code: MITKEM Case No.: J0580 Mod. Ref No.: SDG No.: SJ05	80
Matrix: (SOIL/SED/WATER) WATER Lab Sample ID:	
Sample wt/vol: 5.00 (g/mL) ML Lab File ID: V2L5419.D	
Level: (TRACE/LOW/MED) LOW Date Received: 03/27/2010	
% Moisture: not dec. Date Analyzed: 04/05/2010	
GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 5.0	
Soil Extract Volume: (uL) Soil Aliquot Volume:	(uL)

(mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	25	Ū
74-87-3	Chloromethane	25	Ū
75-01-4	Vinyl chloride	25	Ū
74-83-9	Bromomethane	25	U
75-00-3	Chloroethane	25	Ū
75-69-4	Trichlorofluoromethane	25	Ū
75-35-4	1,1-Dichloroethene	25	U
67-64-1	Acetone	25	Ū
74-88-4	Iodomethane	25	Ū
75-15-0	Carbon disulfide	25	Ū
75-09-2	Methylene chloride	25	U
156-60-5	trans-1,2-Dichloroethene	25	U
1634-04-4	Methyl tert-butyl ether	25	Ū
75-34-3	1,1-Dichloroethane	25	Ū
108-05-4	Vinyl acetate	25	U
	2-Butanone	25	U
156-59-2	cis-1,2-Dichloroethene	24	J
594-20-7	2,2-Dichloropropane	25	Ü
74-97-5	Bromochloromethane	25	Ū
67-66-3	Chloroform	25	U
71-55-6	1,1,1-Trichloroethane	25	U
563-58-6	1,1-Dichloropropene	25	U
56-23-5	Carbon tetrachloride	25	U
107-06-2	1,2-Dichloroethane	25	Ū
71-43-2	Benzene	25	U
79-01-6	Trichloroethene	25	U
78-87-5	1,2-Dichloropropane	25	Ū
	Dibromomethane	25	U
75-27-4	Bromodichloromethane	25	U
10061-01-5	cis-1,3-Dichloropropene	25	Ū ·
	4-Methyl-2-pentanone	25	U
108-88-3	Toluene	22	J
10061-02-6	trans-1,3-Dichloropropene	25	U
	1,1,2-Trichloroethane	25	Ü
142-28-9	1,3-Dichloropropane	25	Ū

Purge Volume: 5.0

CLIENT	SAMPLE	NO.
ASW		-

Lab Name: MITKEM LABORATO	ORIES		Contract:	
Lab Code: MITKEM C	ase No.: J0580		Mod. Ref No.:	SDG No.: SJ0580
Matrix: (SOIL/SED/WATER)	WATER		Lab Sample ID:	J0580-04A
Sample wt/vol: 5.00	(g/mL) ML		Lab File ID:	V2L5419.D
Level: (TRACE/LOW/MED) L	OW	· 	Date Received:	03/27/2010
% Moisture: not dec.			Date Analyzed:	04/05/2010
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	5.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uI
Purge Volume: 5.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	25	Ū.
591-78 - 6	2-Hexanone	25	Ū
124-48-1	Dibromochloromethane	25	Ū
106-93-4	1,2-Dibromoethane	25	U
108-90-7	Chlorobenzene	25	U
630-20-6	1,1,1,2-Tetrachloroethane	25	U
	Ethylbenzene	150	
1330-20-7	m,p-Xylene	710	
95-47-6	o-Xylene	430	
	Xylene (Total)	1100	
100-42-5	Styrene	25	Ū
75-25-2	Bromoform	25	Ū
98-82-8	Isopropylbenzene	50	
79-34-5	1,1,2,2-Tetrachloroethane	25.	U
108-86-1	Bromobenzene	25	U
96-18-4	1,2,3-Trichloropropane	25	U
103-65-1	n-Propylbenzene	87	
	2-Chlorotoluene	25	U
	1,3,5-Trimethylbenzene	280	
106-43-4	4-Chlorotoluene	25	U
98-06-6	tert-Butylbenzene	25	U
95-63-6	1,2,4-Trimethylbenzene	860	
135-98-8	sec-Butylbenzene	37	
99-87-6	4-Isopropyltoluene	25	U
541-73-1	1,3-Dichlorobenzene	25	U
106-46-7	1,4-Dichlorobenzene	25	U
	n-Butylbenzene	73	
95-50-1	1,2-Dichlorobenzene	26	
96-12-8	1,2-Dibromo-3-chloropropane	25	Ū
120-82-1	1,2,4-Trichlorobenzene	25	U
	Hexachlorobutadiene	25	U
87-61-6	1,2,3-Trichlorobenzene	2.5	U
91-20-3	Naphthalene	100	

CLIENT	SAMPLE	NO.
DUP-1		

Lab Name: MITKEM LABORATOR	IES		Contract:		
Lab Code: MITKEM Cas	se No.: J0580		Mod. Ref No.:	SDG No.: SJC)580
Matrix: (SOIL/SED/WATER)	WATER		Lab Sample ID:	J0580-05A	
Sample wt/vol: 5.00	(g/mL) ML		Lab File ID:	V2L5444.D	
Level: (TRACE/LOW/MED) LOW	₹		Date Received:	03/27/2010	
% Moisture: not dec.			Date Analyzed:	04/06/2010	
GC Column: DB-624	ID: 0.25 ((mm)	Dilution Factor:	1.0	
Soil Extract Volume:	((uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5.0	((mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	- U
74-87-3	Chloromethane	4.4	J
75-01 - 4	Vinyl chloride	5.0	U
	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	Ū
75-35-4	1,1-Dichloroethene	5.0	Ū
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	Ū
75-15-0	Carbon disulfide	5.0	Ū
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	Ū
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	Ū ·
594-20 - 7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	Ū
67 - 66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	Ū
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	Ū
74-95-3	Dibromomethane	5.0	Ū
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	Ū
108-10-1	4-Methyl-2-pentanone	5.0	Ü
108-88-3		5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	Ū
79-00-5	1,1,2-Trichloroethane	5.0	Ū.
142-28-9	1,3-Dichloropropane	5.0	U

CLIENT	SAMPLE	NO.
DUP-1		

Lab Name: MITKEM LABORA	ATORIES	Contract:	
Lab Code: MITKEM	Case No.: J0580	Mod. Ref No.:	SDG No.: SJ0580
Matrix: (SOIL/SED/WATER)) WATER	Lab Sample ID:	J0580-05A
Sample wt/vol: 5.0	00 (g/mL) ML	Lab File ID:	V2L5444.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	03/27/2010
% Moisture: not dec.		Date Analyzed:	04/06/2010
GC Column: DB-624	ID: 0.25 (1	mm) Dilution Factor:	1.0
Soil Extract Volume:	(uL) Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0	(1	mL)	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µg/L	Q
127-18-4	Tetrachloroethene	5.0	Ū
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	Ū
106-93-4	1,2-Dibromoethane	5.0	Ū
108-90-7	Chlorobenzene	5.0	Ū
630-20-6	1,1,1,2-Tetrachloroethane	5.0	Ū
100-41-4	Ethylbenzene	5.0	Ū
	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	Ū
	Xylene (Total)	5.0	Ū
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
	2-Chlorotoluene	5.0	Ū ·
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	Ū
95-63-6	1,2,4-Trimethylbenzene	2.3	J
135-98-8	sec-Butylbenzene	5.0	Ū
99-87-6	4-Isopropyltoluene	5.0	U
	1,3-Dichlorobenzene	5.0	Ū
106-46-7	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	1.1	J
	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	Ū
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	Ū

CLIENT	SAMPLE	NO.

(uL)

FLUSH MOUNT

Lab Name: MITKEM LABORATORIES Contract: Lab Code: MITKEM Case No.: J0580 Mod. Ref No.: SDG No.: SJ0580 Matrix: (SOIL/SED/WATER) WATER Lab Sample ID: J0580-06A Sample wt/vol: 5.00 (g/mL) ML Lab File ID: V2L5445.D Level: (TRACE/LOW/MED) LOW Date Received: 03/27/2010 % Moisture: not dec. Date Analyzed: 04/06/2010 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

(uL) Soil Aliquot Volume:

Purge Volume: 5.0 (mL)

Soil Extract Volume:

		CONCENTRATION UNITS:	Т
CAS NO.	COMPOUND	(ug/L or ug/Kg) μ G/L	Q
75-71-8	Dichlorodifluoromethane	5.0	<u></u>
74-87-3	Chloromethane	5.0	Ū
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	Ū
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	Ū
75-15-0	Carbon disulfide	5.0	Ū
75-09-2	Methylene chloride	5.0	Ü
156-60-5	trans-1,2-Dichloroethene	5.0	Ū
1634-04-4	Methyl tert-butyl ether	5.0	Ū
75-34-3	1,1-Dichloroethane	5.0	Ū
108-05-4	Vinyl acetate	5.0	U
78-93-3	3 2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-€	1,1,1-Trichloroethane	5.0	Ū
563-58-6	1,1-Dichloropropene	5.0	Ū
56-23 - 5	Carbon tetrachloride	5.0	Ū
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	Ū
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5		5.0	Ū.
108-10-1	_ 1	5.0	Ū
108-88-3	1	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	Ū

CLIENT	SAMPLE	NO.
FLUSH	MOUNT	

Lab Name: MITKEM LA	ABORATO	DRIES			Contract:	
Lab Code: MITKEM	Ca	ase No.:	J0580		Mod. Ref No.:	SDG No.: SJ0580
Matrix: (SOIL/SED/WA	ATER)	WATER			Lab Sample ID:	J0580-06A
Sample wt/vol:	5.00	(g/mL)	ML		Lab File ID:	V2L5445.D
Level: (TRACE/LOW/M	ED) Lo	WC			Date Received:	03/27/2010
% Moisture: not dec					Date Analyzed:	04/06/2010
GC Column: DB-624		ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume				(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0				(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L	0,1
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	_
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	Ū ·
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
	o-Xylene	5.0	U
	Xylene (Total)	5.0	Ū
100-42-5		5.0	U
	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U ,
	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	Ū
	1,2-Dichlorobenzene	5.0	U
	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

CLIENT	SAMPLE	NO.
MW-15S		

Lab Name: MITKEM LABORA	ATORIES		Contract:		
Lab Code: MITKEM	Case No.: J058	0	Mod. Ref No.:	SDG No.: SJ0580	
Matrix: (SOIL/SED/WATER) WATER		Lab Sample ID:	J0580-07A	
Sample wt/vol: 5.0	00 (g/mL) ML		Lab File ID:	V2L5466.D	
Level: (TRACE/LOW/MED)	LOW		Date Received:	03/27/2010	
% Moisture: not dec.			Date Analyzed:	04/07/2010	
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5.0		(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q .
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	, 1.0	J
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34 - 3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	Ū
594-20-7	2,2-Dichloropropane	5.0	Ū
74-97-5	Bromochloromethane	5.0	Ū
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	Ū
56-23-5	Carbon tetrachloride	5.0	U.
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	Ū
	1,2-Dichloropropane	5.0	Ū
	Dibromomethane	5.0	U
L		5.0	U ,
	cis-1,3-Dichloropropene	5.0	. U
	4-Methyl-2-pentanone	5.0	Ū
\$	•	5.0	Ū
10061-02-6	trans-1,3-Dichloropropene	5.0	Ū
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	Ü.

	SAMPLE	NO.
MW-15S		

Lab Name:	MITKEM LABORAT	ORIES			Contract:			
Lab Code:	MITKEM	Case No.:	J0580		Mod. Ref No.:		SDG No.:	SJ0580
Matrix: (S	OIL/SED/WATER)	WATER			Lab Sample ID:	J0580-07	A	
Sample wt/	vol: 5.00) (g/mL)	ML		Lab File ID:	V2L5466.I)	
Level: (TR	ACE/LOW/MED)	LOW			Date Received:	03/27/201	1:0	
% Moisture	: not dec.				Date Analyzed:	04/07/201	10	
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0		
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume:		(uL)
Purge Volum	me: 5.0			(mL)				

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μ G/L	Q
127-18-4	Tetrachloroethene	5.0	Ū
591-78-6	2-Hexanone	5.0	Ū
124-48-1	Dibromochloromethane	5.0	Ū
106-93-4	1,2-Dibromoethane	5.0	Ū
108-90-7	Chlorobenzene	5.0	Ū
630-20-6	1,1,1,2-Tetrachloroethane	5.0	Ū
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	Ū
1330-20-7	Xylene (Total)	5.0	U
100-42-5		5.0	U
75-25-2	Bromoform .	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	Ū ·
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	Ū
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	1.1	J
135-98-8	sec-Butylbenzene	2.8	J
99-87-6	4-Isopropyltoluene	4.6	J
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	3.5	J
	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	Ū
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	. 5.0	Ū

SAMPLE	NO.
	SAMPLE

Lab Name:	MITKEM LABOR	ATORIES			Contract:		
Lab Code:	MITKEM	Case No.:	J0580	<u>.</u>	Mod. Ref No.:	SDG No.: SJ0580	
Matrix: (S	OIL/SED/WATER	WATER			Lab Sample ID:	J0580-08A	
Sample wt/	vol: 5.	00 (g/mL)	ML		Lab File ID:	V2L5437.D	
Level: (TR	ACE/LOW/MED)	LOW			Date Received:	03/27/2010	
% Moisture	: not dec.				Date Analyzed:	04/06/2010	
GC Column:	DB-624	ID:	0.25 (1	(mm)	Dilution Factor:	1.0	
Soil Extra	ct Volume:	•	(1	(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volu	me: 5.0		(1	mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	4.8	J
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00 - 3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64 - 1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	Ū
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	Ū
78-93-3	2-Butanone	5.0	Ū
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	Ū
74-97-5	Bromochloromethane	5.0	Ū
67-66-3	Chloroform	5.0	Ū
71-55-6	1,1,1-Trichloroethane	5.0	Ū
563-58 - 6	1,1-Dichloropropene	5.0	U
56 - 23-5	Carbon tetrachloride	5.0	Ū
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	Ü .
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88 - 3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5		5.0	U
142-28-9	1,3-Dichloropropane	5.0	Ū

CLIENT	SAMPLE	NO.
K-3		
l		
ł		

Lab Name: MITKEM LABORA	TORIES		Contract:		
Lab Code: MITKEM	Case No.:	J0580	Mod. Ref No.:	SDG No.: SJ0580	
Matrix: (SOIL/SED/WATER)	WATER		Lab Sample ID:	J0580-08A	
Sample wt/vol: 5.0	0 (g/mL)	ML	Lab File ID:	V2L5437.D	
Level: (TRACE/LOW/MED)	LOW		Date Received:	03/27/2010	
% Moisture: not dec.			Date Analyzed:	04/06/2010	
GC Column: DB-624	.ID:	0.25 (mr	n) Dilution Factor:	1.0	
Soil Extract Volume:		(ul	L) Soil Aliquot Vol	ume: (uI	(ر
Purge Volume: 5.0		(m)	L)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	Ū
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	· U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	Ū
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	Ū
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	Ü
135-98-8	sec-Butylbenzene	5.0	Ū
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

CLIENT	SAMPLE	NO.
MW-15D		

Lab Name:	MITKEM LABORA	TORIES			Contract:		
Lab Code:	MITKEM	Case No.:	J0580		Mod. Ref No.:	SDG No.: SJ0580	
Matrix: (SC	DIL/SED/WATER)	WATER			Lab Sample ID:	J0580-09A	
Sample wt/v	701: 5.0	00 (g/mL)	ML		Lab File ID:	V2L5438.D	
Level: (TRA	ACE/LOW/MED)	LOW			Date Received:	03/27/2010	
% Moisture:	not dec.				Date Analyzed:	04/06/2010	
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extrac	ct Volume:		· 	(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volum	ne: 5.0			(mL)	·		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	Ū ·
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U ·
75-69-4	Trichlorofluoromethane	5.0	Ū
75 - 35-4	1,1-Dichloroethene	5.0	Ü
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	Ū
	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	Ū
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	Ū
67-66-3	Chloroform	5.0	Ū
71-55-6	1,1,1-Trichloroethane	5.0	Ū
563-58-6	1,1-Dichloropropene	5.0	Ū
56-23-5	Carbon tetrachloride	5.0	Ū
107-06-2	1,2-Dichloroethane	5.0	Ū
71-43-2	Benzene	5.0	Ū
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	Ū
	Dibromomethane	5.0	Ū
75-27-4	Bromodichloromethane	5.0	Ū
10061-01-5	cis-1,3-Dichloropropene	5.0	Ū
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3		5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5		5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

CLIENT	SAMPLE	NO.
MW-15D		

Lab Name: MI	TKEM LABORATO	RIES			Contract:		
Lab Code: MI	TKEM Ca	se No.:	J0580		Mod. Ref No.:	SDG No.: SJ	3580
Matrix: (SOII	/SED/WATER)	WATER		·	Lab Sample ID:	J0580-09A	
Sample wt/vol	5.00	(g/mL)	ML		Lab File ID:	V2L5438.D	
Level: (TRACE	C/LOW/MED) LO	W			Date Received:	03/27/2010	
% Moisture: n	ot dec.	,			Date Analyzed:	04/06/2010	
GC Column: D	B-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract	Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume:	5.0			(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	Ū
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	Ū
	m,p-Xylene	5.0	U
	o-Xylene	5.0	U
	Xylene (Total)	5.0	Ū
100-42-5		5.0	U
	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	·U
	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
	n-Propylbenzene	5.0	U
	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	Ū
	4-Chlorotoluene	5.0	U
	tert-Butylbenzene	5.0	U
	1,2,4-Trimethylbenzene	5.0	U
	sec-Butylbenzene	5.0	U
	4-Isopropyltoluene	5.0	U
	1,3-Dichlorobenzene	5.0	Ū
	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	Ū
	1,2-Dichlorobenzene	5.0	Ū
	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U ·
	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

CLIENT	SAMPLE	NO.
K-2		

Lab Name: MITKEM LABORA	ATORIES		Contract:		
Lab Code: MITKEM	Case No.: J058	0	Mod. Ref No.:	SDG No.:	SJ0580
Matrix: (SOIL/SED/WATER) WATER		Lab Sample ID:	J0580-10A	
Sample wt/vol: 5.0	00 (g/mL) ML		Lab File ID:	V2L5439.D	
Level: (TRACE/LOW/MED)	LOW		Date Received:	03/27/2010	
% Moisture: not dec.			Date Analyzed:	04/06/2010	
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:	(uL)

(mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	2.5	J
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	Ū
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U -
67-66-3	Chloroform	5.0	Ū
71-55-6	1,1,1-Trichloroethane	5.0	U.
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	Ū ·
71-43-2	Benzene	5.0	Ū
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	Ū
1	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5		5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	Ū
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	Ū
142-28-9	1,3-Dichloropropane	5.0	U

Purge Volume: 5.0

SAMPLE	140.

Lab Name: MITKEM LABO	RATORIES		Contract:	
Lab Code: MITKEM	Case No.: J0580		Mod. Ref No.:	SDG No.: SJ0580
Matrix: (SOIL/SED/WATE	R) WATER		Lab Sample ID:	J0580-10A
Sample wt/vol: 5	.00 (g/mL) ML		Lab File ID:	V2L5439.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	03/27/2010
% Moisture: not dec.			Date Analyzed:	04/06/2010
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	Ū
100-41-4	Ethylbenzene	5.0	Ū
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	Ū
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	Ŭ
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	2.5	J
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	1.3	J
95-50-1	1,2-Dichlorobenzene	5.0	Ū
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	Ū
87-68-3	Hexachlorobutadiene	5.0	Ū
87-61-6	1,2,3-Trichlorobenzene	5.0	Ū
	Naphthalene	5.0	Ū

CLIENT	SAMPLE	NO.
MW-8S		

Lab Name: MITKEM LABORATO	DRIES	Contract:	
Lab Code: MITKEM Ca	ase No.: J0580	Mod. Ref No.:	SDG No.: SJ0580
Matrix: (SOIL/SED/WATER)	WATER	Lab Sample ID:	J0580-11A
Sample wt/vol: 5.00	(g/mL) ML	Lab File ID:	V2L5440.D
Level: (TRACE/LOW/MED) LC	WC	Date Received:	03/27/2010
% Moisture: not dec.		Date Analyzed:	04/06/2010
GC Column: DB-624	ID: 0.25 (mm	n) Dilution Factor:	1.0
Soil Extract Volume:	(uI) Soil Aliquot Vol	ume:(uL)

(mL)

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μ G/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	Ū
75-00-3	Chloroethane	5.0	Ū
75-69-4	Trichlorofluoromethane	5.0	Ū
75-35 - 4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	Ū
75-15-0	Carbon disulfide	5.0	Ū
75-09-2	Methylene chloride	5.0	Ū
156-60-5	trans-1,2-Dichloroethene	5.0	Ū
1634-04-4	Methyl tert-butyl ether	5.0	Ū
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	Ū
594-20-7	2,2-Dichloropropane	5.0	Ū
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	Ū
563-58-6	1,1-Dichloropropene	5.0	Ū
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	Ū
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	Ū
78-87-5	1,2-Dichloropropane	5.0	Ū
74-95-3	Dibromomethane	5.0	Ū
	Bromodichloromethane	5.0	Ū
10061-01-5	cis-1,3-Dichloropropene	5.0	Ū
	4-Methyl-2-pentanone	5.0	Ū
108-88-3	Toluene	5.0	Ū
10061-02-6	trans-1,3-Dichloropropene	5.0	Ū
79-00-5	1,1,2-Trichloroethane	5.0	Ū
142-28-9	1,3-Dichloropropane	5.0	Ū

Purge Volume: 5.0

CLIENT	SAMPLE	NO.
MW-8S		

Lab Name: MITKEM LABORATORI	ES .	Contract:	
Lab Code: MITKEM Case	No.: <u>J</u> 0580	Mod. Ref No.:	SDG No.: SJ0580
Matrix: (SOIL/SED/WATER) W	ATER	Lab Sample ID:	J0580-11A
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID:	V2L5440.D
Level: (TRACE/LOW/MED) LOW		Date Received:	03/27/2010
% Moisture: not dec.		Date Analyzed:	04/06/2010
GC Column: DB-624	ID: 0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:	(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0	(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μ G/L	Q
127-18-4	Tetrachloroethene	5.0	Ū
591-78-6	2-Hexanone	5.0	Ū
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
	Ethylbenzene	5.0	U
	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
	Xylene (Total)	5.0	U
100-42-5		5.0	U ·
75-25-2	Bromoform	5.0	U
	Isopropylbenzene	5.0	U
	1,1,2,2-Tetrachloroethane	5.0	U
	Bromobenzene	5.0	U
	1,2,3-Trichloropropane	5.0	Ū
	n-Propylbenzene	5.0	Ū
	2-Chlorotoluene	5.0	U
	1,3,5-Trimethylbenzene	5.0	U
100.000	4-Chlorotoluene	5.0	U
	tert-Butylbenzene	5.0	U
	1,2,4-Trimethylbenzene	5.0	U
	sec-Butylbenzene	5.0	Ŭ
	4-Isopropyltoluene	5.0	U
	1,3-Dichlorobenzene	5.0	U
	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	U
	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	Ū.

CLIENT	SAMPLE	NO.
VEW-4		

Lab Name: MITKEM LABORATORIES		Contract:	
Lab Code: MITKEM Case N	o.: J0580	Mod. Ref No.:	SDG No.: SJ0580
Matrix: (SOIL/SED/WATER) WATE	IR ·	Lab Sample ID:	J0580-12A
Sample wt/vol: 5.00 (g/m	nL) ML	Lab File ID:	V2L5441.D
Level: (TRACE/LOW/MED) LOW		Date Received:	03/27/2010
% Moisture: not dec.		Date Analyzed:	04/06/2010
GC Column: DB-624	ID: 0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:	(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0	(mL)		

-		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	6.1	
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	Ū
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	Ū
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	Ū
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	Ū
78-93-3	2-Butanone	5.0	Ū
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	Ū
67-66-3	Chloroform	5.0	Ū ·
71-55-6	1,1,1-Trichloroethane	5.0	Ū
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	Ū
79-01-6	Trichloroethene	1.0	J
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U.
	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	Ū
	4-Methyl-2-pentanone	5.0	Ū
	Toluene	5.0	Ū
10061-02-6	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	Ū
142-28-9	1,3-Dichloropropane	5.0	Ū

CLIENT	SAMPLE	NO.
VEW-4		

Lab Name:	MITKEM LABOR	ATORIES			Contract:		
Lab Code:	MITKEM	Case No.:	J0580		Mod. Ref No.:	SDG No.: SJ0580	
Matrix: (S	SOIL/SED/WATER	WATER			Lab Sample ID:	J0580-12A	
Sample wt/	/vol: 5.	00 (g/mL)	ML		Lab File ID:	V2L5441.D	
Level: (TF	RACE/LOW/MED)	LOW	·		Date Received:	03/27/2010	
% Moisture	e: not dec.				Date Analyzed:	04/06/2010	
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extra	act Volume:			(uL)	Soil Aliquot Vol	ume: (uI	(د
Purge Volu	ume: 5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	Ü
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U .
108-90-7	Chlorobenzene	5.0	Ū
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	1.5	J
	o-Xylene	2.5	J
	Xylene (Total)	4.0	J
	Styrene	5.0	U
75-25-2	Bromoform	5.0	Ū
98-82-8	Isopropylbenzene	5.0	Ū
79-34-5	1,1,2,2-Tetrachloroethane	5.0	Ū
108-86-1	Bromobenzene	5.0	Ü
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	2.1	J
106-43-4	4-Chlorotoluene	5.0	U :
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	3.1	J
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	Ŭ
	1,2-Dichlorobenzene	5.0	U .
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
	Naphthalene	5.0	U

CLIENT	SAMPLE	NO.
MW-8D		

Lab Name: MITKEM LABOR	ATORIES	Contract:	
Lab Code: MITKEM	Case No.: J0580	Mod. Ref No.:	SDG No.: SJ0580
Matrix: (SOIL/SED/WATER	WATER	Lab Sample ID:	J0580-13A
Sample wt/vol: 5.	00 (g/mL) ML	Lab File ID:	V2L5442.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	03/27/2010
% Moisture: not dec.		Date Analyzed:	04/06/2010
GC Column: DB-624	ID: 0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:	(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0	(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: $(ug/L \text{ or } ug/Kg)$ $\mu G/L$	Q
75-71-8	Dichlorodifluoromethane	5.0	U
	Chloromethane	3.1	J
75-01-4	Vinyl chloride	5.0	U
	Bromomethane	5.0	Ū
	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	Ū
75-35-4	1,1-Dichloroethene	5.0	Ū
		5.0	U
74-88-4	Iodomethane	5.0	Ū
	Carbon disulfide	5.0	Ū
75-09-2	Methylene chloride	5.0	Ū
	trans-1,2-Dichloroethene	5.0	Ū
	Methyl tert-butyl ether	5.0	U
	1,1-Dichloroethane	5.0	Ū
	Vinyl acetate	5.0	Ū
	2-Butanone	5.0	Ü
156-59-2	cis-1,2-Dichloroethene	5.0	Ü
594-20-7	2,2-Dichloropropane	5.0	Ū
		5.0	U .
67-66-3	Chloroform	5.0	Ū
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
	Carbon tetrachloride	5.0	Ū
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	Ū
78-87-5	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	Ū
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	Ū
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	Ū
79-00-5	1,1,2-Trichloroethane	5.0	Ū
142-28-9	1,3-Dichloropropane	5.0	Ū

CLIENT	SAMPLE	NO.
MW-8D		

Lab Name:	MITKEM LABORATO	ORIES			Contract:	
Lab Code:	MITKEM C	ase No.:	J0580		Mod. Ref No.:	SDG No.: SJ0580
Matrix: (SC	DIL/SED/WATER)	WATER			Lab Sample ID:	J0580-13A
Sample wt/v	701: 5.00	(g/mL)	ML		Lab File ID:	V2L5442.D
Level: (TRA	ACE/LOW/MED) L	ОМ			Date Received:	03/27/2010
% Moisture:	not dec.				Date Analyzed:	04/06/2010
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extrac	ct Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volum	ne: 5.0			(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	Ū
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U .
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	Ū
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
	4-Isopropyltoluene	5.0	U
	1,3-Dichlorobenzene	5.0	U
	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	U .
	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	Ü
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

	CLIEN	ΙT	SAMPLE	NO.
1	TRIP	В	LANK	

Lab Name: MITKEM LABORATORIES Contract: SDG No.: SJ0580 Lab Code: MITKEM Case No.: J0580 Mod. Ref No.: Matrix: (SOIL/SED/WATER) WATER Lab Sample ID: J0580-14A Sample wt/vol: 5.00 (g/mL) ML Lab File ID: V2L5436.D Level: (TRACE/LOW/MED) LOW Date Received: 03/27/2010 % Moisture: not dec. Date Analyzed: 04/06/2010 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 (uL) Sail Aliquot Volume: Soil Extract Volume: (uL)

(mL)

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μ G/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	7.7	
75-01-4	Vinyl chloride	5.0	U
	Bromomethane	5.0	Ū
75-00-3	Chloroethane	5.0	Ū
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	Ū
67-64-1	Acetone	5.0	Ū
74-88-4	Iodomethane	5.0	Ū
75-15-0	Carbon disulfide	1:0	J
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	Ū
1634-04-4	Methyl tert-butyl ether	5.0	Ū
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	Ū
	2-Butanone	5.0	Ū
156-59-2	cis-1,2-Dichloroethene	5.0	Ū
594-20-7	2,2-Dichloropropane	5.0	Ū
74-97-5	Bromochloromethane	5.0	Ū
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	Ū
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	Ū.
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	Ū
	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	Ū
142-28-9	1,3-Dichloropropane	5.0	Ū

Purge Volume: 5.0

CLIEN	ľΤ	SAMP	LE	NO	•
TRIP	B	LANK			

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:	J0580	Mod. Ref No.:	SDG No.: SJ0580
Matrix: (SOIL/SED/WATER	R) WATER		Lab Sample ID:	J0580-14A
Sample wt/vol: 5.	00 (g/mL)	ML	Lab File ID:	V2L5436.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	03/27/2010
% Moisture: not dec.			Date Analyzed:	04/06/2010
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μ G/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	Ū
124-48-1	Dibromochloromethane	5.0	Ū
106-93-4	1,2-Dibromoethane	5.0	Ū
108-90-7	Chlorobenzene	5.0	Ū
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U ·
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	Ū
95-47-6	o-Xylene	5.0	Ū
1330-20-7	Xylene (Total)	5.0	Ū
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	Ū
98-82-8	Isopropylbenzene	5.0	U
	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	Ū
	n-Propylbenzene	5.0	U
	2-Chlorotoluene	5.0	U
	1,3,5-Trimethylbenzene	5.0	U
	4-Chlorotoluene	5.0	Ū
	tert-Butylbenzene	5.0	U
	1,2,4-Trimethylbenzene	5.0	U
	sec-Butylbenzene	5.0	Ū
	4-Isopropyltoluene	5.0	U
	1,3-Dichlorobenzene	5.0	Ū
L	1,4-Dichlorobenzene	5.0	Ū
	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	Ū
	1,2-Dibromo-3-chloropropane	5.0	Ū
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	Ū
	1,2,3-Trichlorobenzene	5.0	Ū
91-20-3	Naphthalene	5.0	U

CLIENT	SAMPLE	NO.
LCS-50	370	

Lab Name: MITKEM LABORA	TORIES		Contract:	
Lab Code: MITKEM	Case No.:	J0580	Mod. Ref No.:	SDG No.: SJ0580
Matrix: (SOIL/SED/WATER)	WATER		Lab Sample ID:	LCS-50370
Sample wt/vol: 5.0	00 (g/mL)	ML	Lab File ID:	V2L5404.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	
% Moisture: not dec.			Date Analyzed:	04/05/2010
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)

(mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L	Q
			×
	Dichlorodifluoromethane	36	<u> </u>
	Chloromethane	44	
	Vinyl chloride	4.4	
	Bromomethane	4.4	
	Chloroethane	41	
	Trichlorofluoromethane	47	
75-35-4	1,1-Dichloroethene	51	
67-64-1	Acetone	4 4	
74-88-4	Iodomethane	52	
75-15-0	Carbon disulfide	50	
75-09-2	Methylene chloride	51	
156-60-5	trans-1,2-Dichloroethene	51	
1634-04-4	Methyl tert-butyl ether	46	
	1,1-Dichloroethane	48	1
108-05-4	Vinyl acetate	47	1
	2-Butanone	57	1
156-59-2	cis-1,2-Dichloroethene	51	
594-20-7	2,2-Dichloropropane	48	
	Bromochloromethane	53	
67-66-3	Chloroform	, 48	
71-55 - 6	1,1,1-Trichloroethane	49	
	1,1-Dichloropropene	54	
	Carbon tetrachloride	48	
	1,2-Dichloroethane	47	1
	Benzene	52	
	Trichloroethene	54	†
	1,2-Dichloropropane	50	
	Dibromomethane	52	1
	Bromodichloromethane	50	1
10061-01-5	cis-1;3-Dichloropropene	50	
	4-Methyl-2-pentanone	. 53	†
108-88-3		54	
	trans-1,3-Dichloropropene	50	1
	1,1,2-Trichloroethane	54	1
	1,3-Dichloropropane	49	†

Purge Volume: 5.0

CLIENT	SAMPLE	NO.
LCS-50	370	
		·

Lab Name:	MITKEM LABORA	ATORIES		Contract:		_
Lab Code:	MITKEM	Case No.:	J0580	Mod. Ref No.:	SDG No.: SJ0580	
Matrix: (S	OIL/SED/WATER) WATER		Lab Sample ID:	LCS-50370	_
Sample wt/	vol: 5.0	00 (g/mL)	ML	Lab File ID:	V2L5404.D	
Level: (TR	ACE/LOW/MED)	LOW		Date Received:		
% Moisture	: not dec.			Date Analyzed:	04/05/2010	
GC Column:	DB-624	ID:	0.25 (mm) Dilution Factor:	1.0	
Soil Extra	ct Volume:		(uL) Soil Aliquot Vol	ume: (uI	(٦
Purge Volu	me: 5.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L	0
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	
127-18-4	Tetrachloroethene	53	
	2-Hexanone	50	
124-48-1	Dibromochloromethane	51	
	1,2-Dibromoethane	51	
	Chlorobenzene	53	,
630-20-6	1,1,1,2-Tetrachloroethane	51	
100-41-4	Ethylbenzene	52	
1330-20-7	m,p-Xylene	100	
	o-Xylene	52	
	Xylene (Total)	160	-
100-42-5		53	
75-25-2	Bromoform	54	
98-82-8	Isopropylbenzene	53	
79-34-5	1,1,2,2-Tetrachloroethane	51	
108-86-1	Bromobenzene	51	
96-18-4	1,2,3-Trichloropropane	51	
103-65-1	n-Propylbenzene	51	
95-49-8	2-Chlorotoluene	51	
108-67-8	1,3,5-Trimethylbenzene	50	
106-43-4	4-Chlorotoluene	51	
98-06-6	tert-Butylbenzene	51	
95-63-6	1,2,4-Trimethylbenzene	50	
135-98-8	sec-Butylbenzene	52	
99-87-6	4-Isopropyltoluene	52	
541-73-1	1,3-Dichlorobenzene	52	
106-46-7	1,4-Dichlorobenzene	51	
	n-Butylbenzene	51	1
	1,2-Dichlorobenzene	52	
	1,2-Dibromo-3-chloropropane	50	
120-82-1	1,2,4-Trichlorobenzene	51	
87-68-3	Hexachlorobutadiene	47	
87-61-6	1,2,3-Trichlorobenzene	50	
91-20-3	Naphthalene	54	

CLIENT	SAMPLE	NO.
LCS-50	406	

Lab Name: MITKEM LA	ABORATORIES		Contract:	
Lab Code: MITKEM	Case No.:	J0580	Mod. Ref No.:	SDG No.: SJ0580
Matrix: (SOIL/SED/W	ATER) WATER		Lab Sample ID:	LCS-50406
Sample wt/vol:	5.00 (g/mL)	ML	Lab File ID:	V2L5432.D
Level: (TRACE/LOW/M	ED) LOW		Date Received:	
% Moisture: not dec	•		Date Analyzed:	04/06/2010
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume	:	(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	39	
74-87-3	Chloromethane	51	
75-01-4	Vinyl chloride	54	
74-83-9	Bromomethane	52	
75-00-3	Chloroethane	53	
75-69-4	Trichlorofluoromethane	52	
75-35-4	1,1-Dichloroethene	49	
67-64-1	Acetone	39	
74-88-4	Iodomethane	49	
75-15-0	Carbon disulfide	50	
75-09-2	Methylene chloride	53	
156-60-5	trans-1,2-Dichloroethene	51	
1634-04-4	Methyl tert-butyl ether	56	
	1,1-Dichloroethane	55	
	Vinyl acetate	57	
	2-Butanone	61	
156-59-2	cis-1,2-Dichloroethene	50	
594-20-7	2,2-Dichloropropane	56	
	Bromochloromethane	52	
67-66-3	Chloroform	54	· ·
71-55-6	1,1,1-Trichloroethane	55	
563-58-6	1,1-Dichloropropene	52	
	Carbon tetrachloride	54	
107-06-2	1,2-Dichloroethane	56	
71-43-2	Benzene	54	
79-01-6	Trichloroethene	. 50	†
78-87-5	1,2-Dichloropropane	54	†
74-95-3	Dibromomethane	52	1
75-27-4	Bromodichloromethane	55	1
10061-01-5	cis-1,3-Dichloropropene	53	
	4-Methyl-2-pentanone	61	
108-88-3		51	
10061-02-6	trans-1,3-Dichloropropene	55	
	1,1,2-Trichloroethane	51	
	1,3-Dichloropropane	52	

CLIENT	SAMPLE	M	J.
LCS-50	406		

Lab Name: MITKEM LAE	ORATORIES		Contract:	
Lab Code: MITKEM	Case No.:	J0580	Mod. Ref No.:	SDG No.: SJ0580
Matrix: (SOIL/SED/WAT	CER) WATER		Lab Sample ID:	LCS-50406
Sample wt/vol:	5.00 (g/mL)	ML	Lab File ID:	V2L5432.D
Level: (TRACE/LOW/MEI) LOW	<u> </u>	Date Received:	
% Moisture: not dec.			Date Analyzed:	04/06/2010
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
	Tetrachloroethene	47	
591-78-6	2-Hexanone	59	
124-48-1	Dibromochloromethane	52	
106-93-4	1,2-Dibromoethane	51	
108-90-7	Chlorobenzene	49	
630-20-6	1,1,1,2-Tetrachloroethane	51	
	Ethylbenzene	49	
	m,p-Xylene	100	
	o-Xylene	49	
	Xylene (Total)	150	
100-42-5		49	
75-25-2	Bromoform	51	
	Isopropylbenzene	50	
79-34-5	1,1,2,2-Tetrachloroethane	55	
108-86-1	Bromobenzene	50	
96-18-4	1,2,3-Trichloropropane	57	
103-65-1	n-Propylbenzene	50	
95-49-8	2-Chlorotoluene	50	
108-67-8	1,3,5-Trimethylbenzene	52	
106-43-4	4-Chlorotoluene	49	
98-06-6	tert-Butylbenzene	52	
95-63-6	1,2,4-Trimethylbenzene	52	
135-98-8	sec-Butylbenzene	52	
99-87-6	4-Isopropyltoluene	52	
541-73-1	1,3-Dichlorobenzene	49	
106-46-7	1,4-Dichlorobenzene	49	
104-51-8	n-Butylbenzene	52	
	1,2-Dichlorobenzene	49	
96-12-8	1,2-Dibromo-3-chloropropane	58	
120-82-1	1,2,4-Trichlorobenzene	48	
87-68-3	Hexachlorobutadiene	47	
87-61-6	1,2,3-Trichlorobenzene	47	
91-20-3	Naphthalene	52	

	CLIENT	SAMPLE	NO.
ı	LCS-50	434	
ı			

Lab Code: MITKEM Case No.: J0580 Mod. Ref No.: SDG No.: SJ0580 Matrix: (SOIL/SED/WATER) WATER Lab Sample ID: LCS-50434 Sample wt/vol: 5.00 (g/mL) ML Lab File ID: V2L5462.D Level: (TRACE/LOW/MED) LOW Date Received: % Moisture: not dec. Date Analyzed: 04/07/2010 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0	
Sample wt/vol: 5.00 (g/mL) ML Lab File ID: V2L5462.D Level: (TRACE/LOW/MED) LOW Date Received: % Moisture: not dec. Date Analyzed: 04/07/2010)
Level: (TRACE/LOW/MED) LOW Date Received: % Moisture: not dec. Date Analyzed: 04/07/2010	
% Moisture: not dec. Date Analyzed: 04/07/2010	
GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0	
Soil Extract Volume: (uL) Soil Aliquot Volume:	(uĻ)

(mL)

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	37	
	Chloromethane	50	
75-01-4	Vinyl chloride	50	
	Bromomethane	53	
75-00-3	Chloroethane	54	
75-69-4	Trichlorofluoromethane	.52	
75-35-4	1,1-Dichloroethene	51	• •
67-64-1	Acetone	47	
74-88-4	Iodomethane	51	
75-15-0	Carbon disulfide	53	
75-09-2	Methylene chloride	54	
	trans-1,2-Dichloroethene	54	
1634-04-4	Methyl tert-butyl ether	52	
75-34-3	1,1-Dichloroethane	55	
108-05-4	Vinyl acetate	55	
78-93-3	2-Butanone	53	
	cis-1,2-Dichloroethene	53	
594-20-7	2,2-Dichloropropane	56	
	Bromochloromethane	51	
	Chloroform	55	
	1,1,1-Trichloroethane	56	
563-58-6	1,1-Dichloropropene	55	
56-23-5	Carbon tetrachloride	55	
107-06-2	1,2-Dichloroethane	54	
1	Benzene	57	
•	Trichloroethene	55	
78-87-5	1,2-Dichloropropane	55	
	Dibromomethane	51	
	Bromodichloromethane	55	
	cis-1,3-Dichloropropene	55	
	4-Methyl-2-pentanone	54	
108-88-3		55	
	trans-1,3-Dichloropropene	55	
	1,1,2-Trichloroethane	52	
142-28-9	1,3-Dichloropropane	53	

Purge Volume: 5.0

CLIENT	SAMPLE	NO.
LCS-50	434	

Lab Name: MITKEM LABORA	TORIES		Contract:	
Lab Code: MITKEM	Case No.: J0580		Mod. Ref No.:	SDG No.: SJ0580
Matrix: (SOIL/SED/WATER)	WATER		Lab Sample ID:	LCS-50434
Sample wt/vol: 5.0	00 (g/mL) ML		Lab File ID:	V2L5462.D
Level: (TRACE/LOW/MED)	LOW	-	Date Received:	·
% Moisture: not dec.			Date Analyzed:	04/07/2010
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	51	
591-78-6	2-Hexanone	53	†
124-48-1	Dibromochloromethane	52	1
106-93-4	1,2-Dibromoethane	50	<u>† </u>
108-90-7	Chlorobenzene	53	
630-20-6	1,1,1,2-Tetrachloroethane	52	
100-41-4	Ethylbenzene	. 53	1
1330-20-7	m,p-Xylene	110	
	o-Xylene	52	1
1330-20-7	Xylene (Total)	160	
100-42 - 5	Styrene	53	
75-25-2	Bromoform	51	1
98-82-8	Isopropylbenzene	53	
79-34-5	1,1,2,2-Tetrachloroethane	53	
108-86-1	Bromobenzene	53	
96-18-4	1,2,3-Trichloropropane	57	1
103-65-1	n-Propylbenzene	54	1
95-49-8	2-Chlorotoluene	55	
108-67-8	1,3,5-Trimethylbenzene	55	
106-43-4	4-Chlorotoluene	54	
98-06-6	tert-Butylbenzene	55	1
95-63-6	1,2,4-Trimethylbenzene	55	
135-98-8	sec-Butylbenzene	55	1
99-87-6	4-Isopropyltoluene	55	
	1,3-Dichlorobenzene	53	1
106-46-7	1,4-Dichlorobenzene	53	
	n-Butylbenzene	55	
95-50-1	1,2-Dichlorobenzene	53	1
96-12-8	1,2-Dibromo-3-chloropropane	54	†
	1,2,4-Trichlorobenzene	50	1
87-68-3	Hexachlorobutadiene	47	1
87-61-6	1,2,3-Trichlorobenzene	49	†
91-20-3	Naphthalene	52	T

CLIENT	SAMPLE	NO.
LCSD-5	0434	

Lab Name: MITKEM LABORA	ATORIES		Contract:	
Lab Code: MITKEM	Case No.: <u>J0580</u>	<u> </u>	Mod. Ref No.:	SDG No.: SJ0580
Matrix: (SOIL/SED/WATER)	WATER		Lab Sample ID:	LCSD-50434
Sample wt/vol: 5.0	00 (g/mL) ML		Lab File ID:	V2L5463.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	
% Moisture: not dec.			Date Analyzed:	04/07/2010
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		_ (uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 5.0		(mL)		

67.6.336		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	36	
74-87-3	Chloromethane	51	
75-01-4	Vinyl chloride	51	<u> </u>
	Bromomethane	50	
75-00-3	Chloroethane	54	
75-69-4	Trichlorofluoromethane	48	
75-35-4	1,1-Dichloroethene	47	
67-64-1	Acetone	69	
74-88-4	Iodomethane	48	
75-15-0	Carbon disulfide	50	
	Methylene chloride	51	
156-60-5	trans-1,2-Dichloroethene	49	
1634-04-4	Methyl tert-butyl ether	53	
75-34-3	1,1-Dichloroethane	53	
108-05-4	Vinyl acetate	54	
78-93-3	2-Butanone	71	
	cis-1,2-Dichloroethene	50	
	2,2-Dichloropropane	54	
	Bromochloromethane	51	
	Chloroform	51	
71-55-6	1,1,1-Trichloroethane	54	
563-58-6	1,1-Dichloropropene	52	
56-23-5	Carbon tetrachloride	53	
107-06-2	1,2-Dichloroethane	53	
	Benzene	53	
79-01-6	Trichloroethene	51	
78-87-5	1,2-Dichloropropane	53	
	Dibromomethane	50	
	Bromodichloromethane	53	
	cis-1,3-Dichloropropene	52	
	4-Methyl-2-pentanone	63	
108-88-3		52	
	trans-1,3-Dichloropropene	53	
	1,1,2-Trichloroethane	50	
142-28-9	1,3-Dichloropropane	52	

CLIENT	SAMPLE	NO.
LCSD-5	0434	

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:	J0580	Mod. Ref No.:	SDG No.: SJ0580
Matrix: (SOIL/SED/WATER	WATER		Lab Sample ID:	LCSD-50434
Sample wt/vol: 5.	00 (g/mL)	ML	Lab File ID:	V2L5463.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	
% Moisture: not dec.			Date Analyzed:	04/07/2010
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purae Volumer 5 0		(mT)		

CT C NO	COMPOSIND	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	49	
591-78-6	2-Hexanone	61	
124-48-1	Dibromochloromethane	51	
106-93-4	1,2-Dibromoethane	50	
108-90-7	Chlorobenzene	50	
630-20-6	1,1,1,2-Tetrachloroethane	. 51	
100-41-4	Ethylbenzene	50	
1330-20-7	m,p-Xylene	100	
95-47-6	o-Xylene	50	
	Xylene (Total)	150	
100-42-5		50	
75-25-2	Bromoform	50	
98-82-8	Isopropylbenzene	52	
79-34-5	1,1,2,2-Tetrachloroethane	56	
108-86-1	Bromobenzene	51	
96-18-4	1,2,3-Trichloropropane	53	
103-65-1	n-Propylbenzene	52	
95-49-8	2-Chlorotoluene	52	
108-67-8	1,3,5-Trimethylbenzene	55	
106-43-4	4-Chlorotoluene	52	
98-06-6	tert-Butylbenzene	53	
95-63-6	1,2,4-Trimethylbenzene	54	
	sec-Butylbenzene	54	
99-87-6	4-Isopropyltoluene	53	
541-73-1	1,3-Dichlorobenzene	50	
	1,4-Dichlorobenzene	51	
	n-Butylbenzene	54	
	1,2-Dichlorobenzene	51	
	1,2-Dibromo-3-chloropropane	64	
	1,2,4-Trichlorobenzene	50	
	Hexachlorobutadiene	47	
	1,2,3-Trichlorobenzene	50	
91-20-3	Naphthalene	55	

CLIENT	SAMPLE	NO.
MB-503	70	

Lab Name: MITKEM LABORA	ATORIES			Contract:		
Lab Code: MITKEM	Case No.:	J0580		Mod. Ref No.:	SDG No.: SJ0580	
Matrix: (SOIL/SED/WATER) WATER			Lab Sample ID:	MB-50370	
Sample wt/vol: 5.0	00 (g/mL)	ML		Lab File ID:	V2L5407.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:		
% Moisture: not dec.				Date Analyzed:	04/05/2010	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uI	(۱
Purge Volume: 5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	_ Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	Ū
75-01-4	Vinyl chloride	5.0	Ū
74-83-9	Bromomethane	5.0	Ū
75-00-3	Chloroethane	5.0	Ū
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	Ū
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	Ū
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	Ū
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	Ū
108-05-4	Vinyl acetate	5.0	U
78 - 93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	Ū
594-20-7	2,2-Dichloropropane	5.0	Ū
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	Ū
107-06-2	1,2-Dichloroethane	5.0	Ū
71-43-2	Benzene	5.0	U
7.9-01-6	Trichloroethene	5.0	Ū
78-87-5	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	Ū
75-27-4	Bromodichloromethane	5.0	Ū
10061-01-5	cis-1,3-Dichloropropene	5.0	Ū
108-10-1	4-Methyl-2-pentanone	5.0	Ū
108-88-3		5.0	Ū
10061-02-6	trans-1,3-Dichloropropene	5.0	Ū
79-00-5	1,1,2-Trichloroethane	5.0	Ū
142-28-9	1,3-Dichloropropane	5.0	U

CLIENT	SAMPLE	NO.
MB-503	70	

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:	J0580	Mod. Ref No.:	SDG No.: SJ0580
Matrix: (SOIL/SED/WATER	WATER		Lab Sample ID:	MB-50370
Sample wt/vol: 5.	00 (g/mL) I	ML	Lab File ID:	V2L5407.D
Level: (TRACE/LOW/MED)	LOW	· .	Date Received:	·
% Moisture: not dec.			Date Analyzed:	04/05/2010
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	Ū
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	Ū
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
	m,p-Xylene	5.0	U
95-47 - 6	o-Xylene	5.0	U
	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	Ū ·
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	Ü
	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	U
	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	U.
91-20-3	Naphthalene	5.0	Ū

CLIENT	SAMPLE	NO.

MB-50406

Lab Name: MITKEM LABOR	ATORIES			Contract:		
Lab Code: MITKEM	Case No.:	J0580		Mod. Ref No.:	SDG No.: SJ0580	
Matrix: (SOIL/SED/WATER	WATER			Lab Sample ID:	MB-50406	
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V2L5434.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:		
% Moisture: not dec.				Date Analyzed:	04/06/2010	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (t	ıL)
Purge Volume: 5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	Ū
75-01-4	Vinyl chloride	5.0	Ū
	Bromomethane	5.0	Ū
75-00-3	Chloroethane	5.0	U .
75-69-4	Trichlorofluoromethane	5.0	Ū
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	Ū
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	Ū
75-09-2	Methylene chloride	5.0	Ū
156-60-5	trans-1,2-Dichloroethene	5.0	Ū
1634-04-4	Methyl tert-butyl ether	5.0	Ü
	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	Ū
78-93-3	2-Butanone	5.0	Ū
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	Ū
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56 - 23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3		5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	_ 1	.5.0	Ū
108-10-1	·	5.0	U
108-88-3		5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	Ū
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

CLIENT	SAMPLE	NO.
MB-504	06	

Lab Name: MITKEM LABORA	ATORIES			Contract:	
Lab Code: MITKEM	Case No.:	J0580		Mod. Ref No.:	SDG No.: SJ0580
Matrix: (SOIL/SED/WATER) WATER			Lab Sample ID:	MB-50406
Sample wt/vol: 5.0	00 (g/mL)	ML		Lab File ID:	V2L5434.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	
% Moisture: not dec.				Date Analyzed:	04/06/2010
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	0
	Matura shi a sa shi a sa		
	Tetrachloroethene 2-Hexanone	5.0	Ü
		5.0	U
	Dibromochloromethane	5.0	U
	1,2-Dibromoethane Chlorobenzene	5.0	U
	.)	5.0	U
	1,1,1,2-Tetrachloroethane	5.0	U
	Ethylbenzene	5.0	U
	m,p-Xylene	5.0	Ū
	o-Xylene	5.0	Ū
	Xylene (Total)	5.0	Ū
100-42-5		5.0	Ū
	Bromoform	5.0	U
	Isopropylbenzene	5.0	U
	1,1,2,2-Tetrachloroethane	5.0	U
L	Bromobenzene	5.0	Ū
	1,2,3-Trichloropropane	5.0	U
	n-Propylbenzene	5.0	U
	2-Chlorotoluene	-5.0	Ū
	1,3,5-Trimethylbenzene	5.0	Ω .
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	Ü
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	Ū
106-46-7	1,4-Dichlorobenzene	5.0	Ū
	n-Butylbenzene	5.0	U ·
	1,2-Dichlorobenzene	5.0	Ū
	1,2-Dibromo-3-chloropropane	5.0	Ü
	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
	Naphthalene	5.0	Ū ·

	CLIENT	SAMPLE	NO.
	MB-504	34	
- 1			

Lab Name: MITKEM LABORATO	DRIES			Contract:		
Lab Code: MITKEM C	ase No.:	J0580		Mod. Ref No.:	SDG No.: SJ0580	
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	MB-50434	
Sample wt/vol: 5.00	(g/mL)	ML		Lab File ID:	V2L5465.D	
Level: (TRACE/LOW/MED) L	WC			Date Received:		
% Moisture: not dec.				Date Analyzed:	04/07/2010	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:	-	·	(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5.0			(mL)			

		CONCENTRATION UNITS:	1
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	Ū
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	Ū
75-00-3	Chloroethane	5.0	Ū
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	Ū
67-64-1	Acetone	5.0	Ū
74-88-4	Iodomethane	5.0	Ū
75-15-0	Carbon disulfide	5.0	Ū
75-09-2	Methylene chloride	5.0	Ū
156-60-5	trans-1,2-Dichloroethene	5.0	Ū
1634-04-4	Methyl tert-butyl ether	5.0	Ū
75-34-3	1,1-Dichloroethane	5.0	Ū
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	Ū
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	Ū
74-97-5	Bromochloromethane	5.0	Ū
67-66-3	Chloroform	5.0	Ū
	1,1,1-Trichloroethane	5.0	Ū
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	Ū
75-27-4	Bromodichloromethane	5.0	Ū
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

Lab Name: MITKEM LABOR	RATORIES	Contract:	
Lab Code: MITKEM	Case No.: J0580	Mod. Ref No.:	SDG No.: SJ0580
Matrix: (SOIL/SED/WATE)	R) WATER	Lab Sample ID:	MB-50434
Sample wt/vol: 5	.00 (g/mL) ML	Lab File ID:	V2L5465.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	
% Moisture: not dec.		Date Analyzed:	04/07/2010
GC Column: DB-624	ID: 0.25	(mm) Dilution Factor:	1.0
Soil Extract Volume:		(uL) Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	ט
591-78-6	2-Hexanone	5.0	Ū
124-48-1	Dibromochloromethane	`5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	Ū
95-47-6	o-Xylene	5.0	U
	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	Ū
		5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
E .	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U,
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	Ū
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	Ū
	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	U
	1,2-Dibromo-3-chloropropane	5.0	Ū
120-82-1	1,2,4-Trichlorobenzene	5.0	U
I.	Hexachlorobutadiene	5.0	Ü
	1,2,3-Trichlorobenzene	5.0	Ū
91-20-3	Naphthalene	5.0	Ū

2B - FORM II VOA-2

WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0580 Mod. Ref No.: SDG No.: SJ0580

Level: (TRACE or LOW) LOW

	CLIENT	VDMC1	VDMC2	VDMC3	VDMC4		TOT
	SAMPLE NO.	(DBFM) #	(DCE) #	(TOL) #	(BFB)	#	OUT
01	LCS-50370	95	104	98	98		0
02	MB-50370	98	102	95	93		0
03	ASW	107	97	98	106		0
04	VEW-1	103	93	94	105		0
05	VEW-3	106	93	99	104		0
06	VEW-2	108	97	98	101		0
07	LCS-50406	101	104	99	100		0
08	MB-50406	106	106	98	101		0
09	TRIP BLANK	99	97	95	96		0
10	K-3	103	106	94	97		. 0
11	MW-15D	100	102	98	95		0
12	K-2	99	100	96	94		0
13	MW-8S	102	101	98	97		0
14	VEW-4	97	98	97	92		0
15	MW-8D	101	99	93	90		0
16	DUP-1	102	100	96	93		0
17	FLUSH MOUNT	102	103	96	94		0
18	LCS-50434	99	93	98	96		0
19	LCSD-50434	100	102	99	101		0
20	MB-50434	102	100	97	99		0
21	MW-15S	102	99	95	94		0

		QC LIMITS
VDMC1	(DBFM) Dibromofluoromethane	(85-115)
VDMC2	(DCE) = 1,2-Dichloroethane-d4	(70-120)
VDMC3	(TOL) = Toluene-d8	(85-120)
VDMC4	(BFB) = Bromofluorobenzene	(75 - 120)

[#] Column to be used to flag recovery values

SOM_002

Page 1 of 1

SW846

^{*} Values outside of contract required QC limits

WATER LABORATORY CONTROL SAMPLE RECOVERY

CLIENT SAMPLE NO.

LCS-50370

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0580 Mod. Ref No.: SDG No.: SJ0580

Lab Sample ID: LCS-50370 LCS Lot No.:

Date Extracted: 04/05/2010 Date Analyzed (1): 04/05/2010

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
D'all and a l'El annual barre	F0 0000	0.0000	25 6760	7.1	Ι	REC.
Dichlorodifluoromethane	50.0000	0.0000	35.6762	71		30 - 15
Chloromethane	50.0000		44.2827	89		40 - 12
Vinyl chloride	50.0000	0.0000		89		50 - 14
Bromomethane	50.0000	0.0000	44.3287	89		30 - 14
Chloroethane	50.0000	0.0000		82		60 - 13
Trichlorofluoromethane	50.0000	0.0000	47.4743	95		60 - 14 70 - 13
1,1-Dichloroethene	50.0000	0.0000	50.5747	101		
Acetone	50.0000	0.0000	44.1508	88		40 - 14
Iodomethane	50.0000	0.0000	52.0323	104		72 - 12
Carbon disulfide	50.0000	0.0000	49.7544	100		35 - 16
Methylene chloride	50.0000	0.0000	50.6693	101		55 - 14
trans-1,2-Dichloroethene	50.0000	0.0000	51.3316	<u> </u>		60 - 14
Methyl tert-butyl ether	50.0000	0.0000	46.3833	93		65 - 12
1,1-Dichloroethane	50.0000	0.0000	47.6615			70 - 13
Vinyl acetate	50.0000	0.0000	47.0016			38 - 16
2-Butanone cis-1,2-Dichloroethene	50.0000	0.0000	56.5386			30 - 15
	50.0000	0.0000	51.4699	103		70 - 12
2,2-Dichloropropane Bromochloromethane	50.0000	0.0000	48.0088	96		70 - 13 65 - 13
Chloroform	50.0000	0.0000	53.4004	107		
	50.0000	0.0000	48.2252	98		65 - 13 65 - 13
1,1,1-Trichloroethane 1,1-Dichloropropene	50.0000	0.0000	48.9361 53.5705	107		75 - 13
Carbon tetrachloride	50.0000	0.0000	48.0314	96		65 - 14
1,2-Dichloroethane	50.0000	0.0000	46.5424	93		70 - 13
Benzene	50.0000	0.0000	52.1656	104		80 - 12
Trichloroethene	50.0000	0.0000	54.2366	104		70 - 12
1,2-Dichloropropane	50.0000	0.0000	50.0104	100		75 - 12
Dibromomethane	50.0000	0.0000	51.5543	103		75 - 12
Bromodichloromethane	50.0000	0.0000	50.0270	100		75 - 12
cis-1,3-Dichloropropene	50.0000	0.0000	50.4181	101		70 - 13
4-Methyl-2-pentanone	50.0000	0.0000	52.8149	106		60 - 13
Toluene	50.0000	0.0000	53.7164	107		75 - 12
trans-1,3-Dichloropropene	50.0000	0.0000	50.4345	101		55 - 14
1,1,2-Trichloroethane	50.0000	0.0000				75 - 12
1,3-Dichloropropane	50.0000	0.0000		99		75 - 12
Tetrachloroethene	50.0000					45 - 15
2-Hexanone	50.0000					55 - 13
Dibromochloromethane	50.0000				-	60 - 13
1,2-Dibromoethane	50.0000					80 - 12
Chlorobenzene	50.0000					80 - 12
1,1,1,2-Tetrachloroethane	50.0000	0.0000				80 - 13
Ethylbenzene	50.0000	0.0000		103		75 - 12
m,p-Xylene	100.0000	0.0000		105		75 - 13
, ₋ <u>1</u>		0.0000				80 - 12

WATER LABORATORY CONTROL SAMPLE RECOVERY

CLIENT SAMPLE NO.

LCS-50370

Lab Name:	MITKE	M LABORATORIES	Contract: J0580 Mod. Ref No.: SDG No.: SJ0580 LCS Lot No.: Date Analyzed (1): 04/05/2010			
Lab Code:	MITKE	Case No.:	J0580	Mod. Ref No.:	SDG No.:	SJ0580
Lab Sampl	e ID:	LCS-50370		LCS Lot No.:		
Date Extr	acted:	04/05/2010		Date Analyzed (1): 04/0	05/2010	

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
						REC.
Xylene (Total)	150.0000	0.0000	157.0846	105		81 - 121
Styrene	50.0000	0.0000	52.9546	106		65 - 135
Bromoform	50.0000	0.0000	53.8384	108		70 - 130
Isopropylbenzene	50.0000	0.0000	52.8596	106		75 - 125
1,1,2,2-Tetrachloroethane	50.0000	0.0000	50.8629	102		65 - 130
Bromobenzene	50.0000	0.0000	50.9177	102		75 - 125
1,2,3-Trichloropropane	50.0000	0.0000	51.2953	103		75 - 125
n-Propylbenzene	50.0000	0.0000	51.3248	103		70 - 130
2-Chlorotoluene	50.0000	0.0000	51.4300	103		75 - 125
1,3,5-Trimethylbenzene	50.0000	0.0000	50.1330	100		75 - 130
4-Chlorotoluene	50.0000	0.0000	50.5840	101		75 - 130
tert-Butylbenzene	50.0000	0.0000	50.9175	102		70 - 130
1,2,4-Trimethylbenzene	50.0000	0.0000	49.9346	100		75 - 130
sec-Butylbenzene	50.0000	0.0000	51.6187	103		70 - 125
4-Isopropyltoluene	50.0000	0.0000	51.5613	103		75 - 130
1,3-Dichlorobenzene	50.0000	0.0000	51.9102	104		75 - 125
1,4-Dichlorobenzene	50.0000	0.0000	51.2301	102		75 - 125
n-Butylbenzene	50.0000	0.0000	50.7181	101		70 - 135
1,2-Dichlorobenzene	50.0000	0.0000	52.3046	105		70 - 120
1,2-Dibromo-3-chloropropan	50.0000	0.0000	50.2686	101		50 - 130
1,2,4-Trichlorobenzene	50.0000	0.0000	51.2897	103		65 - 135
Hexachlorobutadiene	50.0000	0.0000	47.1937	94		50 - 140
1,2,3-Trichlorobenzene	50.0000	0.0000	50.3703	101		55 - 140
Naphthalene	50.0000	0.0000	53.9447	108		55 - 140

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

Spike Recove	ery:	0	out o	of	68	outside	limits		
COMMENTS:									
					34				

WATER LABORATORY CONTROL SAMPLE RECOVERY

CLIENT SAMPLE NO.

LCS-50406

Lab Name: MITKEM LABORATORIES

Contract:

Lab Code: MITKEM Case No.: J0580

Mod. Ref No.:

SDG No.: SJ0580

Lab Sample ID: LCS-50406

LCS Lot No.:

Date Extracted: 04/06/2010

Date Analyzed (1): 04/06/2010

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
						REC.
Dichlorodifluoromethane	50.0000	0.0000	39.1986	78		30 - 155
Chloromethane	50.0000	0.0000	51.2083	102		40 - 125
Vinyl chloride	50.0000	0.0000	53.5641	107		50 - 145
Bromomethane	50.0000	0.0000	51.8326	104		30 - 145
Chloroethane	50.0000	0.0000	52.9610	106	12.	60 - 135
Trichlorofluoromethane	50.0000	0.0000	51.5838	103		60 - 145
1,1-Dichloroethene	50.0000	0.0000	49.2767	99		70 - 130
Acetone	50.0000	0.0000	39.0805	78		40 - 140
Iodomethane	50.0000	0.0000	48.7491	97		72 - 121
Carbon disulfide	50.0000	0.0000	50.0793	100		35 - 160
Methylene chloride	50.0000	0.0000	52.7933	106		55 - 140
trans-1,2-Dichloroethene	50.0000	0.0000	50.5725	101		60 - 140
Methyl tert-butyl ether	50.0000	0.0000	56.3388	113		65 - 125
1,1-Dichloroethane	50.0000	0.0000	54.6013	109		70 - 135
Vinyl acetate	50.0000	0.0000	57.3459	115		38 - 163
2-Butanone	50.0000	0.0000	60.5705	121		30 - 150
cis-1,2-Dichloroethene	50.0000	0.0000	50.4507	101		70 - 125
2,2-Dichloropropane	50.0000	0.0000	55.7498	111		70 - 135
Bromochloromethane	50.0000	0.0000	51.6766	103		65 - 130
Chloroform	50.0000	0.0000	54.1282	108		65 - 135
1,1,1-Trichloroethane	50.0000	0.0000	54.5996	109		65 - 130
1,1-Dichloropropene	50.0000	0.0000	51.8196	104		75 - 130
Carbon tetrachloride	50.0000	0.0000	54.4133	109		65 - 140
1,2-Dichloroethane	50.0000	0.0000	56.3946	113		70 - 130
Benzene	50.0000	0.0000	53.5442	107		80 - 120
Trichloroethene	50.0000	0.0000	50.3036	101		70 - 125
1,2-Dichloropropane	50.0000	0.0000	53.5072	107		75 - 125
Dibromomethane	50.0000	0.0000	52.3165	105		75 - 125
Bromodichloromethane	50.0000					75 - 120
cis-1,3-Dichloropropene	50.0000			106		70 - 130
4-Methyl-2-pentanone	50.0000	0.0000	60.8873	122		60 - 135
Toluene	50.0000	0.0000	50.8295			75 - 120
trans-1,3-Dichloropropene	50.0000	0.0000	54.7925			55 - 140
1,1,2-Trichloroethane	50.0000	0.0000	51.0265	102		75 - 125
1,3-Dichloropropane	50.0000					75 - 125
Tetrachloroethene	50.0000					45 - 150
2-Hexanone	50.0000			118		55 - 130
Dibromochloromethane	50.0000					60 - 135
1,2-Dibromoethane	50.0000					80 - 120
Chlorobenzene	50.0000					80 - 120
1,1,1,2-Tetrachloroethane	50.0000					80 - 130
Ethylbenzene	50.0000			98		75 - 125
m,p-Xylene	100.0000			100		75 - 130
o-Xylene	50.0000	0.0000	48.7866	98		80 - 120

3 - FORM III WATER LABORATORY CONTROL SAMPLE RECOVERY

CLIENT SAMPLE NO.

LCS-50406

Lab Name:	MITKE	M LABORATORIES	Contract:	
Lab Code:	MITKE	M Case No.: J0580	Mod. Ref No.:	SDG No.: SJ0580
Lab Sample	e ID:	LCS-50406	LCS Lot No.:	
Date Extra	cted:	04/06/2010	Date Analyzed (1)	: 04/06/2010

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
			*			REC.
Xylene (Total)	150.0000	0.0000	148.4107	99		81 - 121
Styrene	50.0000	0.0000	49.3631	99		65 - 135
Bromoform	50.0000	0.0000	51.4200	103		70 - 130
Isopropylbenzene	50.0000	0.0000	50.1895	100		75 - 125
1,1,2,2-Tetrachloroethane	50.0000	0.0000	55.1406	110		65 - 130
Bromobenzene	50.0000	0.0000	49.8307	100		75 - 125
1,2,3-Trichloropropane	50.0000	0.0000	57.3833	115		75 - 125
n-Propylbenzene	50.0000	0.0000	49.7402	99		70 - 130
2-Chlorotoluene	50.0000	0.0000	50.4747	101		75 - 125
1,3,5-Trimethylbenzene	50.0000	0.0000	52.3608	105		75 - 130
4-Chlorotoluene	50.0000	0.0000	48.9552	98		75 - 130
tert-Butylbenzene	50.0000	0.0000	51.5136	103		70 - 130
1,2,4-Trimethylbenzene	50.0000	0.0000	51.6270	103		75 - 130
sec-Butylbenzene	50.0000	0.0000	51.6375	103		70 - 125
4-Isopropyltoluene	50.0000	0.0000	51.7779	104		75 - 130
1,3-Dichlorobenzene	50.0000	0.0000	48.8280	98		75 - 125
1,4-Dichlorobenzene	50.0000	0.0000	48.8162	98		75 - 125
n-Butylbenzene	50.0000	0.0000	51.9908	104		70 - 135
1,2-Dichlorobenzene	50.0000	0.0000	49.4648	99		70 - 120
1,2-Dibromo-3-chloropropan	50.0000	0.0000	57.8311	116		50 - 130
1,2,4-Trichlorobenzene	50.0000	0.0000	47.8746	96		65 - 135
Hexachlorobutadiene	50.0000	0.0000	46.8214	94		50 - 140
1,2,3-Trichlorobenzene	50.0000	0.0000	46.5407	93		55 - 140
Naphthalene	50.0000	0.0000	51.6141	103		55 - 140

 $\mbox{\#}$ Column to be used to flag recovery and RPD values with an asterisk

* Values outsid	de of QC limits		
Spike Recovery	e 0 out of	68 outside limits	
COMMENTS:		and the second s	

WATER LABORATORY CONTROL SAMPLE RECOVERY

CLIENT SAMPLE NO.

LCS-50434

Lab Name: MITKEM LABORATORIES

Contract:

Lab Code: MITKEM Case No.: J0580

Mod. Ref No.:

SDG No.: SJ0580

Lab Sample ID: LCS-50434

LCS Lot No.:

Date Extracted: 04/07/2010

Date Analyzed (1): 04/07/2010

						
	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
						REC.
Dichlorodifluoromethane	50.0000	· ·		74		30 - 155
Chloromethane	50.0000	0.0000	49.9702	100		40 - 125
Vinyl chloride	50.0000			100		50 - 145
Bromomethane	50.0000	0.0000	52.9867	106		30 - 145
Chloroethane	50.0000					60 - 135
Trichlorofluoromethane	50.0000	0.0000	51.7642	104		60 - 145
1,1-Dichloroethene	50.0000			102		70 - 130
Acetone	50.0000			94		40 - 140
Iodomethane	50.0000	0.0000	51.3057	103		72 - 121
Carbon disulfide	50.0000	0.0000	53.1463	106		35 - 160
Methylene chloride	50.0000	0.0000	53.7142	107		55 - 140
trans-1,2-Dichloroethene	50.0000	0.0000	53.8621	108		60 - 140
Methyl tert-butyl ether	50.0000	0.0000	52.3769	105		65 - 125
1,1-Dichloroethane	50.0000	0.0000	55.1225	110		70 - 135
Vinyl acetate	50.0000	0.0000	55.1747	110		38 - 163
2-Butanone	50.0000	0.0000	52.8377	106		30 - 150
cis-1,2-Dichloroethene	50.0000	0.0000	53.0869	106		70 - 125
2,2-Dichloropropane	50.0000	0.0000	56.0070	112		70 - 135
Bromochloromethane	50.0000	0.0000	51.2108	102		65 - 130
Chloroform	50.0000	0.0000	54.6925	109		65 - 135
1,1,1-Trichloroethane	50.0000	0.0000	55.7549	112		65 - 130
1,1-Dichloropropene	50.0000	0.0000	54.9280	110		75 - 130
Carbon tetrachloride	50.0000	0.0000	54.8007	110		65 - 140
1,2-Dichloroethane	50.0000	0.0000	53.5969	107		70 - 130
Benzene	50.0000	0.0000	56.5413	113		80 - 120
Trichloroethene	50.0000	0.0000	54.7171	109		70 - 125
1,2-Dichloropropane	50.0000	0.0000	55.3013	111		75 - 125
Dibromomethane	50.0000	0.0000	51.3869	103		75 - 125
Bromodichloromethane	50.0000	0.0000	55.3120	111		75 - 120
cis-1,3-Dichloropropene	50.0000	0.0000	54.9180	110		70 - 130
4-Methyl-2-pentanone	50.0000	0.0000	54.1109	108		60 - 135
Toluene	50.0000	0.0000	54.5358	109		75 - 120
trans-1,3-Dichloropropene	50.0000	0.0000	55.2929	111		55 - 140
1,1,2-Trichloroethane	50.0000	0.0000	52.0076	104		75 - 125
1,3-Dichloropropane	50.0000	0.0000	52.8295	106		75 - 125
Tetrachloroethene	50.0000	0.0000	51.2681	103		45 - 150
2-Hexanone	50.0000	0.0000	53.0193	106		55 - 130
Dibromochloromethane	50.0000	0.0000	52.4089	105		60 - 135
1,2-Dibromoethane	50,0000	0.0000	50.4099	101		80 - 120
Chlorobenzene	50.0000	0.0000	52.7122			80 - 120
1,1,1,2-Tetrachloroethane	50.0000	0.0000	52.1027	104		80 - 130
Ethylbenzene	50.0000					75 - 125
m,p-Xylene	100.0000	0.0000				75 - 130
o-Xylene	50.0000	0.0000	51.5482			80 - 120
I .		,		I .	1	

3 - FORM III WATER LABORATORY CONTROL SAMPLE RECOVERY

CLIENT SAMPLE NO.

LCS-50434

Lab Name: M	ITKEM LABOR	ATORIES		Contract: Mod. Ref No.: LCS Lot No.: Date Analyzed (1): 04/07/2010		
Lab Code: M	ITKEM	Case No.:	J0580	Mod. Ref No.:	SDG No.:	SJ0580
Lab Sample I	D: LCS-50	434		LCS Lot No.:		
Date Extract	ed: 04/07/	2010		Date Analyzed (1):	04/07/2010	

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
						REC.
Xylene (Total)	150.0000	0.0000	157.8417	105		81 - 121
Styrene	50.0000	0.0000	52.7267	105		65 - 135
Bromoform	50.0000	0.0000	51.2522	103		70 - 130
Isopropylbenzene	50.0000	0.0000	53.3731	107		75 - 125
1,1,2,2-Tetrachloroethane	50.0000	0.0000	53.3329	107	1.	65 - 130
Bromobenzene	50.0000	0.0000	53.3639	107		75 - 125
1,2,3-Trichloropropane	50.0000	0.0000	56.5865	113		75 - 125
n-Propylbenzene	50.0000	0.0000	53.8373	108		70 - 130
2-Chlorotoluene	50.0000	0.0000	54.5216	109		75 - 125
1,3,5-Trimethylbenzene	50.0000	0.0000	54.8330	110		75 - 130
4-Chlorotoluene	50.0000	0.0000	53.5547	107		75 - 130
tert-Butylbenzene	50.0000	0.0000	54.7964	110		70 - 130
1,2,4-Trimethylbenzene	50.0000	0.0000	54.8982	110		75 - 130
sec-Butylbenzene	50.0000	0.0000	54.8489	110		70 - 125
4-Isopropyltoluene	50.0000	0.0000	54.8836	110		75 - 130
1,3-Dichlorobenzene	50.0000	0.0000	52.7551	106		75 - 125
1,4-Dichlorobenzene	50.0000	0.0000	52,6128	105		75 - 125
n-Butylbenzene	50.0000	0.0000	54.5729	109		70 - 135
1,2-Dichlorobenzene	50.0000	0.0000	52.6692	105		70 - 120
1,2-Dibromo-3-chloropropan	50.0000	0.0000	54.2982	109		50 - 130
1,2,4-Trichlorobenzene	50.0000	0.0000	49.9846	100		65 - 135
Hexachlorobutadiene	50.0000	0.0000	47.3901	95		50 - 140
1,2,3-Trichlorobenzene	50.0000	0.0000	49.3268	. 99		55 - 140
Naphthalene	50.0000	0.0000	51.8173	104		55 - 140

Column to be used to flag recovery and RPD values with an asterisk

* Values out	side of QC	limits				
Spike Recove	ry: <u>0</u>	out of	68	outside limits		
COMMENTS:						
-					 	

WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-50434

Lab Name: MITKEM LABORATORIES

Contract:

Lab Code: MITKEM Case No.: J0580

Mod. Ref No.:

SDG No.: SJ0580

Lab Sample ID: LCSD-50434

LCS Lot No.:

	SPIKE	LCSD			QC	LIMITS
COMPOUND	ADDED	CONCENTRATION	LCSD %REC	# %RPD #	DDD	DEG
COMPOUND		0.5 1000			RPD	REC.
Dichlorodifluoromethane	50.0000			1	40	30 - 155
Chloromethane	50.0000		1	3	40	40 - 125
Vinyl chloride	50.0000			2	40	50 - 145
Bromomethane	50.0000			6	40	30 - 145
Chloroethane	50.0000			1	40	60 - 135
Trichlorofluoromethane	50.0000			7	40	60 - 145
1,1-Dichloroethene	50.0000		i	7	40	70 - 130
Acetone	50.0000		I	37	40	40 - 140
Iodomethane	50.0000			8	40	72 - 121
Carbon disulfide	50.0000			7	40	35 - 160
Methylene chloride	50.0000			5	40	55 - 140
trans-1,2-Dichloroethene	50.0000			9	40	60 - 140
Methyl tert-butyl ether	50.0000			0	40	65 - 125
1,1-Dichloroethane	50.0000	52.8597		4	40	70 - 135
Vinyl acetate	50.0000	53.9516		2	40	38 - 163
2-Butanone	50.0000	70.8272		29	40	30 - 150
cis-1,2-Dichloroethene	50.0000	49.8829		6	40	70 - 125
2,2-Dichloropropane	50.0000	53.6611		5	40	70 - 135
Bromochloromethane	50.0000	50.6218		1	40	65 - 130
Chloroform	50.0000	51.3515	103	6	40	65 - 135
1,1,1-Trichloroethane	50.0000	53.5957	107	5	40	65 - 130
1,1-Dichloropropene	50.0000			6	40	75 - 130
Carbon tetrachloride	50.0000	52.9106	106	4	40	65 - 140
1,2-Dichloroethane	50.0000	52.7046	105	2	40	70 - 130
Benzene	50.0000	53.0150	106	6	40	80 - 120
Trichloroethene	50.0000	50.8877	102	7	40	70 - 125
1,2-Dichloropropane	50.0000	52.6124	105	6	40	75 - 125
Dibromomethane	50.0000	50.2185	100	3	40	75 - 125
Bromodichloromethane	50.0000	52.9595	106	5	40	75 - 120
cis-1,3-Dichloropropene	50.0000	52.0436	104	6	40	70 - 130
4-Methyl-2-pentanone	50.0000	62.5747	125	15	40	60 - 135
Toluene	50.0000	52.1985	104	5	40	75 - 120
trans-1,3-Dichloropropene	50.0000	52.7816	106	5	40	55 - 140
1,1,2-Trichloroethane	50.0000	49.7748	100	4	40	75 - 125
1,3-Dichloropropane	50.0000	51.5857	103	3 .	40	75 - 125
Tetrachloroethene	50.0000	48.5765	97	6	40	45 - 150
2-Hexanone	50.0000	61.2460	122	14	40	55 - 130
Dibromochloromethane	50.0000	50.6863	101	4	40	60 - 135
1,2-Dibromoethane	50.0000			2	40	80 - 120
Chlorobenzene	50.0000			5	40	80 - 120
1,1,1,2-Tetrachloroethane	50.0000			2	40	80 - 130
Ethylbenzene	50.0000			6	40	75 - 125
m,p-Xylene	100.0000			4	40	75 - 130
o-Xylene	50.0000			3	40	80 - 120
Xylene (Total)	150.0000			4	40	81 - 121
Styrene	50.0000			5	40	65 - 135

WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-50434

Lab	Name:	MITKEM LABORATORIES	3	Contract:			
Lab	Code:	MITKEM Case 1	No.: J0580	Mod. Ref No.:	SDG No.:	SJ0580	
Lab	Sample	ID: LCSD-50434		LCS Lot No.:			

	SPIKE	LCSD				QC LIMITS	
	ADDED	CONCENTRATION	LCSD %REC	#	%RPD #		
COMPOUND						RPD	REC.
Bromoform	50.0000	50.3378	101		2	40	70 - 130
Isopropylbenzene	50.0000	51.9189	104		3	40	75 - 125
1,1,2,2-Tetrachloroethane	50.0000	56.1631	112	•	5	40	65 - 130
Bromobenzene	50.0000	51.4018	103		4	40	75 - 125
1,2,3-Trichloropropane	50.0000	53.1388	106		6	40	75 - 125
n-Propylbenzene	50.0000	51.5067	103		5	40	70 - 130
2-Chlorotoluene	50.0000	51.9619	104	······	5	40	75 - 125
1,3,5-Trimethylbenzene	50.0000	54.7410	109		1	40	75 - 130
4-Chlorotoluene	50.0000	52,2381	104		3	40	75 - 130
tert-Butylbenzene	50.0000	53.4560	107		3	40	70 - 130
1,2,4-Trimethylbenzene	50.0000	53.6135	107		3	40	75 - 130
sec-Butylbenzene	50.0000	54.0527	108		2	40	70 - 125
4-Isopropyltoluene	50.0000	53.4945	107		3	40	75 - 130
1,3-Dichlorobenzene	50.0000	50.3035	101		5	40	75 - 125
1,4-Dichlorobenzene	50.0000	50.8049	102		3	40	75 - 125
n-Butylbenzene	50.0000	54.3515	109		0	40	70 - 135
1,2-Dichlorobenzene	50.0000	50.6501	101		4	40	70 - 120
1,2-Dibromo-3-chloropropan	50.0000	64.0658	128		16	40	50 - 130
1,2,4-Trichlorobenzene	50.0000	49.6591	99		1	40	65 - 135
Hexachlorobutadiene	50.0000	46.5547	93		2	40	50 - 140
1,2,3-Trichlorobenzene	50.0000	49.6781	99		0	40	55 - 140
Naphthalene	50.0000	54.5919	109		5 `	40	55 - 140

[#] Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD:	0 out o	f 68 outside limits	
Spike	Recovery:	0 out of 68 outside limits	
COMME	NTS:		<u> </u>

4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

CLIENT SAMPLE NO.

MB-50370

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0580 Mod. Ref No.: SDG No.: SJ0580

Lab File ID: V2L5407.D Lab Sample ID: MB-50370

Instrument ID: V2

Matrix: (SOIL/SED/WATER) WATER Date Analyzed: 04/05/2010

Level: (TRACE or LOW/MED) LOW Time Analyzed: 10:46

GC Column: DB-624 ID: 0.25 (mm) Heated Purge: (Y/N) N

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	LCS-50370	LCS-50370	V2L5404.D	9:06
02	ASW	J0580-04A	V2L5419.D	18:07
03	VEW-1	J0580-02A	V2L5420.D	18:40
04	VEW-3	J0580-01A	V2L5421.D	19:13
05	VEW-2	J0580-03A	V2L5422.D	19:46

COMMENTS:					
	-		 		

4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

CLIENT SAMPLE NO.

MB-50406

	EPA	LAB	LAB	TIME	
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	
01	LCS-50406	LCS-50406	V2L5432.D	8:39	
02	TRIP BLANK	J0580-14A	V2L5436.D	10:52	
03	K-3	J0580-08A	V2L5437.D	11:25	
04	MW-15D	J0580-09A	V2L5438.D	11:58	
05	K-2	J0580-10A	V2L5439.D	12:32	
06	MW-8S	J0580-11A	V2L5440.D	13:05	
07	VEW-4	J0580-12A	V2L5441.D	13:38	
08	MW-8D	J0580-13A	V2L5442.D	14:11	
09	DUP-1	J0580-05A	V2L5444.D	15:17	
10	FLUSH MOUNT	J0580-06A	V2L5445.D	15:51	

COMMENTS:				

4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

CLIENT SAMPLE NO.

MB-50434

Lab Name: MITKEM LABORATO		ATORIES	Contract:	
Lab Code: MI	rkem	Case No.: J0580	Mod. Ref No.:	SDG No.: SJ0580
Lab File ID:	V2L546	5.D	Lab Sample ID:	MB-50434
Instrument ID	: V2			
Matrix: (SOIL	/SED/WATEF	R) WATER	Date Analyzed:	04/07/2010
Level: (TRACE	or LOW/ME	ED) LOW	Time Analyzed:	10:29
GC Column: D	B-624	ID: 0.25 (mr	n) Heated Purge: (Y/N) N

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	LCS-50434	LCS-50434	V2L5462.D	8:49
02	LCSD-50434	LCSD-50434	V2L5463.D	9:23
03	MW-15S	J0580-07A	V2L5466.D	11:02

COMMENTS:					
	 · · · · · · · · · · · · · · · · · · ·	·			

Last Page of Data Report