

November 6, 2013

Ms. Jamie Verrigni
Environmental Engineer
Remedial Bureau C, 11th Floor
Division of Environmental Remediation
New York State Department of Environmental Conservation
625 Broadway
Albany, NY 12233-7014

Re: Johnstown (N. Market St.)

Former Manufactured Gas Plant Site (MGP)

Site No. 5-18-020

Semi-Annual Groundwater Monitoring Report (October 2013)

Dear Ms. Verrigni:

Enclosed is the Semi-Annual Groundwater Monitoring Report for the Johnstown (N. Market St.) MGP Site located in Johnstown, New York. The report includes the October 7-8, 2013 groundwater monitoring results.

National Grid has executed a property access agreement with the City of Johnstown. Decommissioning of MW-08 and MW-09 was completed October 9, 2013.

Please contact me at (315) 428-5652 or <u>steven.stucker@us.ngrid.com</u> if you have any questions regarding the report.

Sincerely,

Steven P. Stucker, C.P.G.

Senior Environmental Engineer

Matthew D. Millias for SPS

Ms. Jamie Verrigni November 6, 2013 Page 2 of 2

Cc: John Parkinson-National Grid Nathan Freeman- NYSDOH Matt Millias- CDM Smith

SEMI-ANNUAL GROUNDWATER MONITORING REPORT

October 2013 Sampling Event

Prepared For:

300 Erie Boulevard West Syracuse, NY 13202

Prepared By:

CDM Smith

1 General Motors Drive Syracuse, New York 13206

TABLE OF CONTENTS

		Page
1.0 INTI	RODUCTION	1-1
1.1 P	PURPOSE AND OBJECTIVE	1-1
1.2 R	EPORT ORGANIZATION	1-2
2.0 BAC	KGROUND	2-1
2.1 S	ITE DESCRIPTION	2-1
	ITE HISTORY	
	NVIRONMENTAL SETTING	
3.0 MON	NITORING ACTIVITIES	3-1
	VATER GAUGING AND SAMPLING PROCEDURES	
3.2 G	GROUNDWATER ANALYTICAL RESULTS	3-2
4.0 CON	CLUSIONS AND RECOMMENDATIONS	4-1
4.1 C	CONCLUSIONS	4-1
4.2 R	ECOMMENDATIONS	4-2
5.0 REF	ERENCES	5-1
TABLES		
Table 1	Groundwater Level Measurements	
Table 2	Analytical Data Results	
FIGURES		
Figure 1	Site Location Map	
Figure 2	Site Plan	
Figure 3	Potentiometric Surface Map	
Figure 4	Monitored Natural Attenuation/Water Quality Parameters	
Figure 5	BTEX Isoconcentration Contour	
Figure 6	Naphthalene Isoconcentration Contour	
APPENDI		
	A Field Data	
Appendix E	B Data Usability Summary Report	

1.0 INTRODUCTION

This Semi-Annual Groundwater Monitoring Report summarizes the results of October 2013 groundwater sampling event at the Johnstown, New York (N. Market Street) Former Manufactured Gas Plant (MGP) Site (the Site). This Report was developed as part of the long-term groundwater monitoring program on behalf of National Grid.

National Grid has been addressing the Site environmental conditions under an Order on Consent (Index Number D0-0001-9210), dated April 1999, that was entered into by Niagara Mohawk and the New York State Department of Environmental Conservation (NYSDEC). That Order on Consent was for the investigation and remediation of 21 former MGP sites, including the Johnstown (N. Market Street) Site. It was superseded by a new Order on Consent (Index Number A4-0473-0000), dated November 7, 2003. A NYSDEC-approved Supplemental Remedial Investigation (RI) Work Plan was finalized during November 2007, and a Final Supplemental RI Report was submitted to NYSDEC, dated December 2008. The RI results report and subsequent Feasibility Study were approved in February 2010.

A Record of Decision (ROD) was issued by NYSDEC, dated March 2010, in accordance with the requirements of New York State Environmental Conservation Law and Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York, 6 NYCRR Part 375. Based upon the results of the remedial investigation/feasibility study (RI/FS) for the Site, the IRMs previously completed, and the ROD, the draft Final Engineering Report and Site Management Plan (SMP) were developed and submitted to the NYSDEC in June 2010. The Final Engineering Report approval by NYSDEC is predicated on the pending filing of an environmental easement by National Grid. The SMP was approved by NYSDEC on 12/2/11 and included a Groundwater Monitoring Program.

SMP modifications were approved by NYSDEC in their 7/5/12 letter to National Grid which included:

- 1) The groundwater monitoring frequency has been reduced from quarterly to semi-annually (May & October);
- 2) MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, MW-16 will continue to be sampled. MW 8 and MW-9 will be decommissioned in accordance with the Dept.'s CP-43 policy; and
- 3) RMW-1 will be monitored semi-annually and documented in the semi-annual report.

1.1 PURPOSE AND OBJECTIVE

The purpose of this Report is to summarize the activities and results of the latest event, and to compare the results to previous events. As described in the December 2008 Supplemental RI Report and the subsequent ROD, one of the primary goals is to evaluate whether or not the groundwater constituents of concern (COCs) concentrations decrease, and continue to assess the effectiveness of monitored natural attenuation (MNA).

1.2 REPORT ORGANIZATION

This Report is organized in to the following six sections. Section 1.0 presents the purpose and objectives of this program. Section 2.0 provides the history, environmental setting and location of the Site. Section 3.0 provides a description of the approach used to collect and analyze groundwater samples at the Site. Section 4.0 presents the physical and chemical analytical data collected, and Section 5.0 presents the conclusions and recommended approach for further monitoring at the Site. References for the Report are located in Section 6.0.

2.0 BACKGROUND

2.1 SITE DESCRIPTION

The Site is located in the City of Johnstown, County of Fulton, New York (Figure 1 presents the site location map) and is identified as Block 14 and Lot 7 on the Johnstown City Tax Map. The Site is an approximately 0.7 acre area bounded by the Cayadutta Creek to the north, the Colonial Cemetery to the south, Market Street to the east, and a wooded parcel of property to the west (Figure 2 presents the site plan). The Site is located in a mixed commercial, industrial, and residential area.

Currently, National Grid operates a natural gas regulator station at the Site, with equipment contained in fenced enclosures along the Site's southern boundary. The rest of the Site is grass-covered, including the stream bank adjacent to Cayadutta Creek along the northern boundary of the Site. An embankment exists along the north end of the Site that goes down to the Cayadutta Creek. A chain link fence exists along the north and west sides of the Site, and a retaining wall runs along the south side of the Site. Access to the Site is from North Market Street to the east.

The Johnstown Hospital is located south of the Site within one mile, and numerous residences exist to the west and east of the Site. The Johnstown Senior High School and Warren Street Elementary School are located within one mile of the Site to the west.

2.2 SITE HISTORY

The Johnstown MGP Site was incorporated in March 1857 as the Johnstown Gas Light Company. The company operated a small coal gas plant with a 20,000 cubic foot (cu. ft.) holder (Holder #1). In 1861, the plant was improved with the addition of a coal shed and covering for the tank holder. In 1886, the Johnstown and Gloversville Gas Light Corporation was formed, and the company purchased the rights to the Lowe water gas process. The United Gas Improvement Company planned the construction of a water gas plant for the Johnstown and Gloversville franchises.

In 1887, the Site consisted of a tool shop, an office, a coal gasometer, a lime house, a purifier room, a retort house, and a coal shed. Between 1887 and 1918, Holder #2 was located in the central part of the Site (exact size unknown). In 1892, a steam generator was constructed adjacent to the coal shed for the Lowe water gas process, and Holder #1 was decommissioned in 1896. In 1898, a 72,000 cu. ft. gas holder (Holder #3) was constructed on the Site. Between

1912 and 1918, the western small gas holder (Holder #2) in the middle of the Site was removed. In 1929, a gas pipeline from a MGP in Troy, New York reached Johnstown, and local gas production was only performed on a seasonal (winter) basis, until local production of gas ceased in 1931. Niagara Hudson Power Company was the owner of the Site in 1930. By 1948, Holder #3 was decommissioned. In 1950, Niagara Hudson Power was consolidated under the name Niagara Mohawk Power Company. By 1980, all Site buildings were removed. Currently, National Grid operates a natural gas regulator station at the Site.

Site Assessment and Investigations

An investigation of the Site began in 1997 with a Preliminary Site Assessment (PSA), which found that the Site was impacted with MGP wastes. A Supplemental PSA was then conducted at the Site in 1998, which was followed by a RI (January 2000) and subsequent remedial measures. Remedial measures are discussed separately below in this section.

A 2009 Supplemental RI was initiated to collect data to address potential residual MGP-related contaminants remaining in groundwater at the Site and to assess hydrogeologic conditions and groundwater quality on the Site. The results of the Supplemental RI were used to formulate potential remedial alternatives for groundwater and residual soil contamination. The Supplemental RI results were evaluated and presented in the 2010 FS Report.

Remedial Measures Completed

Several interim remedial measures (IRMs) were performed to address the MGP impacts. In 2002 and 2003, the former holders and associated impacts soil were removed. During this IRM, former Holder #2 and the northern half of former Holder #3 were demolished and removed from the Site. Approximately 13,870 cubic yards of soil were excavated and disposed off-site at a NYSDEC-approved facility. Permanent steel sheeting was left in place along the northeastern perimeter of the Site to avoid disturbance of the roadway and to provide containment of residual material left at depth.

Between 2005 and 2006, National Grid provided support to the City of Johnstown for subsurface work associated with the replacement of the North Market Street Bridge across Cayadutta Creek. Approximately 1,413 cubic yards of impacted soil were excavated from within the cofferdam area and disposed off-site at a NYSDEC-approved facility.

In August 2009, the rip-rap area along the bank of Cayadutta Creek that had been restored during the previous IRMs was enhanced to allow for establishment of stream-side vegetation. Post-IRM inspections of the restored Cayadutta Creek Bank were conducted in September 2009 and May 2010.

2.3 ENVIRONMENTAL SETTING

The Johnstown (N. Market Street) Site slopes northward toward Cayadutta Creek with elevations ranging from 652 to 672 feet (ft.) above sea level. Currently, the Site ground surface gradually slopes from south to north, becoming increasingly steep adjacent to the Creek, and is generally

covered with either vegetation or stone. Surface drainage is primarily to the north into the Creek. Access to the Site is from North Market Street to the east, and the Site is currently used to support the natural gas regulator station operations.

Site Geology

The main units of unconsolidated deposits identified at the Site can be characterized in descending order as fill and native glacial deposits to bedrock. The glacial deposits are of lacustrine origin with glacial tills to the top of Shale bedrock (Utica Shale). Bedrock was reached underneath the till in two soil borings explored during the 1998 Supplemental PSA. These stratigraphic units are more specifically described below, based on information obtained from the previous investigations, and from the soil borings and monitoring well borings conducted during the 2007/2008 SRI.

Site geology includes a layer of disturbed soils (primarily fill) overlying glacial deposits. Based upon on-site soils and monitoring well borings, disturbed soils (including fills) range in thickness up to 13 ft. on the Site and are typically composed of sand, gravel, silt, clay, wood, coal, and anthropogenic materials including ash, cinders, clinkers, brick fragments, wire, and wood chips. Wood chips were identified in three borings (SB-09, SB-12, and MW-8), and are often associated with purifier waste.

A thin layer of peat underlies the disturbed soils in the northern portion of the Site, ranging in thickness from 0.5 ft. to 3 ft., and appears to thicken and dip to the north. Except where it is locally covered by sedimentary deposits such as silts, sands, and clays, the peat, where present, appears to have been the historical ground cover prior to development of the Site.

Underlying the peat, where present, the soils consist of lacustrine deposits composed of silts, sands, and clays. The surface of the lacustrine deposits appears to dip and thin out toward the north. A sand and gravel unit (an outwash deposit of stratified drift) underlies the lacustrine deposits across the Site area. This unit contains varying amounts of silt and clay. These deposits overlie a dense, low-permeability glacial till to bedrock (Shale).

Site Hydrogeology

Groundwater depths on-site are typically in the 10- to 20-foot below ground surface (bgs) ranges, generally in the glacial deposits below the bottom of the fill material. Groundwater flow is consistently northward through the Site area toward Cayadutta Creek, with the steepest gradient from the center of the Site proximal to former gas holders #2 and #3 to the southern Creek bank (about 0.08 ft./ft.) In comparison the average hydraulic gradient decreases to a value of approximately 0.04 ft./ft. on the east and west sides of the site away from the gas holders. The groundwater flow is consistent with regional groundwater flow direction. This groundwater flow direction and hydraulic gradients calculated during this monitoring period are also generally consistent with data obtained prior to the issuance of the ROD.

3.0 MONITORING ACTIVITIES

The long-term semi-annual groundwater monitoring program currently consists of the following elements:

- Semi-Annual Site Inspection including the creek bank protection, vegetative cover, monitoring wells, and security fence.
- Semi-Annual Groundwater Well Gauging of the following: RW-1, MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15 and MW-16 (Figure 2 presents the well locations). The creek surface water level is also gauged at two locations: SG-1 and SG-2.
- Semi-Annual Groundwater Sampling and Analysis of the following: MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15 and MW-16. Note that Recovery Well RW-1 is not sampled as part of the program but is inspected for the presence of NAPL.

3.1 WATER GAUGING AND GROUNDWATER SAMPLING PROCEDURES

Gauging

Long-term groundwater monitoring includes water gauging at 9 groundwater monitoring wells and 1 groundwater recovery well using an electronic oil/water interface probe. Depth to bottom of well (DTB), depth to product (DTP), and depth to water (DTW) are to be recorded at each well. Refer to Table 1 for a summary of the water level measurements from October 2013 as well as previous events. Appendix A also presents the field documentation from the October 2013 water gauging event.

No product was present in RW-1 or the other nine groundwater monitoring wells.

A surface water level measurement was collected from the Cayadutta Creek using a water level probe (at the bridge; Gauging Point #1).

Sampling

Groundwater sampling was performed following low-flow sampling techniques (equivalent to United States Environmental Protection Agency [USEPA] low-flow procedures) using a pressure-driven peristaltic pump. During purging, measurements were collected for the following field parameters: pH, specific conductivity, turbidity, dissolved oxygen (DO), temperature, and oxidation-reduction potential (ORP). A Horiba U-22 was used to collect the field parameter data in a flow-through cell. The monitored field parameters are observed and recorded during low-flow sampling to determine when they have stabilized, and thus when the well has been adequately purged. Field parameter measurements were recorded at approximately 5-minute intervals. The monitoring wells were purged until stabilization of the field parameters (± 0.1 Standard Unit (SU) for pH, $\pm 3\%$ for specific conductivity, ± 10 millivolts (mV) for ORP, and $\pm 10\%$ for DO) and turbidity was less than 50 Nephalometric Turbidity Units (NTU). Refer to Attachment A for the field data.

After stabilization of the field parameters, 9 groundwater samples were collected directly from the dedicated tubing into laboratory-supplied sample containers (pre-preserved as required per the analytical method). Quality Assurance/Quality Control (QA/QC) samples included the collection of one field duplicate sample, one matrix spike (MS) sample, one matrix spike duplicate (MSD) sample, and one trip blank sample (VOCs only). Samples were transported to the laboratory, accompanied by the appropriate chain-of-custody documentation. Analytical results were validated.

Natural Attenuation Parameters

The ORP of groundwater is an indicator of the relative tendency of the groundwater to accept or transfer electrons. ORP is dependent on and influences rates of biodegradation. Lower ORP readings indicate a greater tendency toward reducing conditions and anaerobic processes.

The pH of the groundwater affects the presence and activity of microorganisms in the groundwater. The microorganisms may produce either organic acids or carbon dioxide which, when dissolved in water, forms weak carbonic acid. Microorganisms capable of degrading petroleum hydrocarbons typically prefer pH values ranging from 6 to 8 SU.

Groundwater temperature affects the solubility of dissolved gases such as oxygen and carbon dioxide as well as the metabolic activity of microorganisms. Oxygen is less soluble in warm water, and groundwater temperatures below approximately 5 degrees Celsius tend to inhibit biodegradation.

Dissolved oxygen is the most thermodynamically favored electron acceptor used by microorganisms during the degradation of both natural and anthropogenic organic carbon. An inverse relationship of high hydrocarbon concentrations and low DO concentrations can be used as a key indicator of biodegradation.

Nitrate, if available, may be used as an electron acceptor for anaerobic biodegradation after the depletion of dissolved oxygen (typically considered less than 0.5 milligrams per liter [mg/L]) and is used to biodegrade petroleum hydrocarbons. Lower nitrate concentrations in groundwater within a plume, with respect to higher concentrations in areas upgradient and outside a plume, may be expected.

Ferrous iron is a metabolic byproduct of hydrocarbon degradation. Reducing conditions in nitrogen- and oxygen-depleted groundwater creates an anaerobic environment that causes the reduction of ferric iron (Fe³⁺) to ferrous iron (Fe²⁺). Relatively low ferrous iron concentrations may be present in areas where natural attenuation is occurring if free ferrous iron is reprecipitating as sulfides or carbonates.

Sulfate may be used as an electron acceptor after the depletion or use limitation of dissolved oxygen, nitrate, and ferric iron. Lower sulfate concentrations in groundwater within a plume, with respect to higher concentrations in areas upgradient and outside a plume, may be expected.

The production of methane, termed methanogenesis, occurs only in strongly reducing conditions and generally after oxygen, nitrate, and sulfate have been depleted. The presence of methane in groundwater suggests BTEX degradation via methanogenesis. Methane is not present in fuels, and therefore its presence at high concentrations relative to areas upgradient and outside a plume is indicative of the biodegradation of petroleum hydrocarbons.

The buffering capacity of groundwater is a function of alkalinity. Typically, alkalinity is primarily due to carbonate alkalinity. The organic acids or the carbon dioxide (which produces a weak carbonic acid when dissolved in water) produced by biodegradation solubilize carbonate from the soil. Alkalinity concentrations that are elevated with respect to areas upgradient and outside a plume may be an indication of microbial activity and thus natural attenuation.

Typically, the relationships between BTEX and electron acceptors/metabolic byproduct concentrations (geochemical indicators) indicate potential for biodegradation. The concentrations are dependent on the location (and groundwater conditions) within the plume or outside of the plume limits.

3.2 GROUNDWATER ANALYTICAL RESULTS

The groundwater samples were analyzed for BTEX, PAHs, lead, total cyanide, and MNA/WQ parameters including alkalinity, chloride, ethane, ethene, ferrous iron, manganese, methane, nitrate, nitrogen, sulfate and sulfide. BTEX and PAHs are constituents commonly associated with former MGP sites. Cyanide is also a constituent commonly associated with former MGP sites. BTEX, PAHs, lead, and cyanide were the primary contaminants detected during previous investigation activities conducted at the Site. The MNA/WQ parameters, as well as field-measured ORP, pH, temperature, and DO, are relevant to establishing whether conditions favorable to natural attenuation occur at the Site.

- Refer to Table 2 for the analytical results summary.
- > Refer to Appendix A for field data
- ➤ Refer to Appendix B for the DUSR

Groundwater analytical results were compared with levels specified in NYSDEC Division of Water Final Amendment to Water Quality Standards Regulations, effective February 16, 2008 [hereafter referred to as NYSDEC WQ Values]. For groundwater, Class GA values were applied. Class GA waters are defined as fresh groundwater, found in the saturated zone of unconsolidated deposits and consolidated rock or bedrock, which are used as a source of potable water supply.

Site Related Parameters

BTEX - Groundwater samples collected from monitoring wells MW-10, MW-11, MW-13, MW-14, MW-15, and MW-16 contained concentrations of some or all individual BTEX constituents above their respective NYSDEC WQ Values (1 micrograms per liter $[\mu g/L]$ for benzene and 5 $\mu g/L$ for other BTEX constituents) since the June 2010 event. The highest concentrations were

observed in the groundwater samples collected from MW-13, MW-15 and MW-16. MW-13 typically had the highest total BTEX concentrations. MW-15 is located generally downgradient of the former gas holders and of MW-13, while MW-16 is located southwest of the former gas holders and generally upgradient of both MW-13 and MW-15.

PAHs – No PAHs were detected in MW-4 or MW-7. PAH compounds were detected in groundwater samples collected from the other sampled monitoring wells. Naphthalene has consistently exhibited the highest concentration of any PAH.

Lead - Lead exhibited excedances above its respective NYSDEC WQ Value (25 μ g/l) in three wells (MW-7, MW-10, and MW-13) since June 2010.

Cyanide - Concentrations of cyanide were detected above its NYSDEC WQ Value (0.2 mg/L) in groundwater samples collected from MW-7, MW-13, MW-14, MW-15, and MW16 since June 2010.

Monitored Natural Attenuation Parameters

Site-specific levels of the MNA/WQ parameters (geochemical indicators) were compared to known screening values to identify whether the site-specific values are within the ranges known to be suitable for biodegradation. The MNA/WQ analytical results for all individual monitoring wells are summarized in Table 2. Figure 4 presents the groundwater data for the key MNA data parameters at their respective locations to assist with the MNA evaluation. Indications of biodegradation of petroleum-related MGP constituents within the plume include low levels of DO, nitrate and sulfate, with generally higher levels of manganese, ferrous iron and methane.

Indicator concentrations detected at monitoring wells identified within source and downgradient areas of the Site were compared to levels detected at upgradient and side gradient monitoring wells exhibiting little or no MGP-related contamination. Generally indicator concentration levels at a distance from the center of the plume will be significantly lower than levels within the plume. A summary of the MNA/WQ results and associated field indicator parameters are provided below:

- DO and ORP values demonstrate depleted levels of dissolved oxygen and a transformation to more anaerobic or reducing conditions at the former source and downgradient areas relative to side gradient and upgradient areas of the Site. These values suggest that biodegradation activities at the source and at downgradient areas are occurring, consuming the available oxygen and resulting in MGP petroleum-related compound degradation and the lowering of dissolved oxygen levels.
- The range of ORP levels observed at the source and downgradient area monitoring wells generally indicates aquifer conditions could be suitable for denitrification, ferric iron reduction, sulfate reduction, and methanogenesis.
- Nitrate concentrations are generally depleted at the former source and downgradient areas of the Site relative to upgradient (MW-4) and side gradient areas, indicating

denitrification may be a noteworthy biodegradation process occurring at this time at the source and downgradient areas.

- Ferrous iron concentrations at the former source and downgradient area monitoring wells do not exhibit higher levels relative to side gradient and upgradient monitoring wells. In addition, sulfate concentrations at the former source and upgradient areas are not depleted relative to upgradient and side gradient areas. These observations indicate ferric iron reduction and sulfate reduction are not likely to be significant biodegradation processes at this time at the source and downgradient areas.
- Based on the presence of methane, low DO amounts, and the ORP levels, methanogenesis is likely an important factor for biodegradation capacity in some areas of the Site. However, plume elongation is limited with a similar footprint throughout the monitoring period indicating that biodegradation is continuing and methanogenic conditions have not taken over completely.

Natural Attenuation Trending

Previous groundwater sampling data collected during the since June 2010 was utilized to develop and evaluate the contaminant plume and concentration trends of specific constituents at the Site. Plume size and concentration data are indicative of biodegradation capacity (natural attenuation) at the Site and whether the capacity has reached a limit of effectiveness. In order to determine and evaluate natural attenuation effectiveness, the use of statistical testing has been utilized for groundwater data collected from monitoring wells at the Site. The Mann-Kendall test was utilized for trend analysis. Trend analysis data started June 2010. The resultant statistical trend analysis for individual monitoring wells suggests (with 80% and 90% confidence) that total BTEX compounds and naphthalene plume lifecycle have been stable (no trend) to decreasing throughout the monitoring period. The table below depicts general concentration trend analysis results (decreasing, no trend or increasing) at 80% confidence levels for each well and associated constituents during the monitoring period. No trend is indicative of plume stability at well locations with contaminant detections throughout the monitoring period.

Well ID	Benzene	Toluene	Ethylbenzene	Total xylenes	Naphthalene
MW-4	No trend	No trend	No trend	No trend	No trend
MW-7	No trend	No trend	No trend	No trend	No trend
$MW-10^1$	Increasing ²	No trend	No trend	No trend	No trend
MW-11 ¹	Decreasing	Decreasing	Decreasing	Decreasing	No trend
MW-12	No trend	No trend	No trend	No trend	No trend
MW-13 ¹	Decreasing	Decreasing	Decreasing	Decreasing	Decreasing
MW-14 ¹	No trend	Decreasing	No trend	Decreasing	Decreasing
MW-15 ¹	No trend	Increasing	No trend	Decreasing	No trend
MW-16 ¹	Decreasing	Decreasing	Decreasing	Decreasing	No trend

No trend is indicative of plume stability at well locations with contaminant detections throughout the monitoring period.

² The increasing trend (benzene) at MW-10 is attributed to concentration of 7.1 μg/L and 1.3 μg/L during two previous rounds with all other rounds exhibiting concentrations below WO values.

Isoconcentration maps were developed for total BTEX (Figure 5) and naphthalene (Figure 6) contamination. The figures present locations of the groundwater monitoring wells and plume contours for total BTEX (as compared to the benzene WQ value of 1 μ g/L) and naphthalene exceeding the NYSDEC WQ values. The sampling rounds depicted include June 2010, January 2011 and March 2012; which represent seasonality and a snapshot of time trends through that monitoring period. Evaluation of the isoconcentration figures suggests that the contaminant plumes are relatively stable to decreasing (smaller footprint with time) within the Site boundary. BTEX constituent plume trends (concentrations above the benzene WQ at 1 μ g/L) have consistently included MW-13, MW-15 and MW-16, while the naphthalene plume (concentrations above the WQ) has decreased to include only MW-13 and MW-15.

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

Well Decommissioning

On October 9, 2013, Parratt Wolff Drilling Company, under the supervision of CDM Smith, decommissioned groundwater monitoring wells MW-8 and MW-9 in accordance with NYSDEC guidelines. Prior to the work, National Grid and the City of Johnstown completed an access agreement for the property of which the wells were located.

Groundwater Levels

The groundwater elevation data indicates groundwater within the Site, south of the Creek, flows in a downgradient direction from the south to the north, toward Cayadutta Creek. The groundwater flow direction and hydraulic gradients have been consistent during previous gauging events and with data obtained prior to the ROD.

Flow on the north side of the Creek is to the south, towards the Creek. As such, Cayadutta Creek serves as the discharge location for the unconfined hydrostratigraphic unit, north and south of the Creek, and acts as a hydraulic boundary.

Site-Related Constituents

Concentrations of BTEX, PAHs, lead, and cyanide in groundwater samples have been detected at consistent well locations on the Site. The overall concentrations continue to show a slight decreasing trend as compared to historic levels. Based on historic sampling results (as depicted on Table 1 – Groundwater from the ROD), benzene and naphthalene were exhibited in groundwater at concentrations up to 2,600 μ g/L and 7,300 μ g/L pre-ROD, respectively; with the highest occurrences in the central portion of the Site. These levels are higher than concentrations exhibited during this monitoring period.

The concentrations of BTEX constituents and PAH compounds (and specifically naphthalene) appear to be relatively stable or decreasing as indicated by groundwater concentration trend analysis from on-site monitoring wells. Site institutional controls continue to be effective and will continue to be monitored semi-annually.

Concentrations of benzene are significantly higher than the concentrations of toluene, ethylbenzene, and xylenes at source area monitoring wells MW-13, MW-15 and MW-16. Higher concentrations of benzene relative to the other BTEX compounds may indicate the amount of DO in the subsurface may not be sufficient to completely biodegrade BTEX (Borden, et. al., 1995).

Natural Attenuation

Plume stability at the Site is in indication that biodegradation capacity likely has not reached its limit of effectiveness. The use of statistical testing has identified the plume trends based on the constituent concentrations. Trend analysis data started with the June 2010 sampling event. Generally, the tests suggested that the plume and the related constituents were either stable or decreasing. Based on (1) trend analysis for BTEX and naphthalene and (2) MNA parameter assessment, it is evident that attenuation at the Site is likely geochemically dependent, the source is being removed, and the plume is not migrating or increasing.

4.2 RECOMMENDATIONS

Based on the results of the October 2013 event and previous events, the following recommendations are made:

1. Continue the long-term semi-annual groundwater monitoring program. The next event will be April 2014.

5.0 REFERENCES

Borden, Robert C., et. al., "Geochemical Indicators of Intrinsic Bioremediation". Groundwater, Volume 33, Number 2, March/April 1995.

National Grid. "Site Management Plan for the Johnstown (N. Market Street) Former MGP Site, Johnstown, New York". National Grid, November 2011.

Niagara Mohawk Power Corporation. "Preliminary Historical Profile of the Johnstown (Market Street) MGP Site. Johnstown, New York". Niagara Mohawk Power Corporation, June 1993.

Niagara Mohawk Power Corporation. "Interim Remedial Measure (IRM) Summary Report for the Johnstown (N. Market Street) Site. Johnstown, Fulton County, New York. Site No. 5-18-020:. Tetra Tech FW, June 2007.

Niagara Mohawk Power Corporation. "IRM Summary Report for the Johnstown (N. Market Street) Site. Bridge Replacement Environmental Support Activities". Tetra Tech FW, October 2007.

Niagara Mohawk Power Corporation. "Record of Decision for the Johnstown (N. Market Street) Former MGP Site, Johnstown, New York". Niagara Mohawk Power Corporation, March 2010.

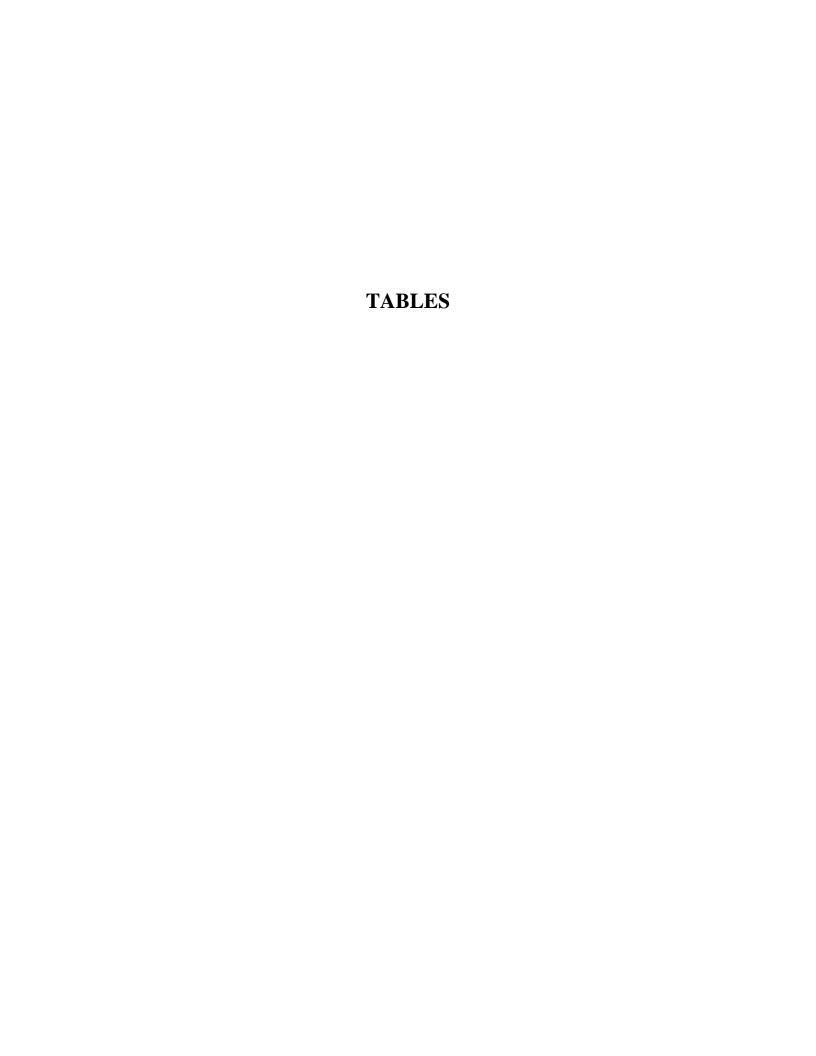


Table 1 Groundwater Level Measurements Johnstown MGP Site Johnstown, NY

		4/8,	/2011	6/16	6/2011	10/1	3/2011	12/1	5/2011	3/15	5/2012	10/9)/2012	4/18	/2013	10/7	//2013
Well ID	ELEVATION REFERENCE POINT	Depth to Water (ft toc)	Groundwater Elevation (ft msl)														
	•		•						-								
MW-4	676.54	22.50	654.04	22.04	654.50	21.41	655.13	22.78	653.76	22.81	653.73	NM	NM	23.97	652.57	23.12	653.42
MW-7	659.08	12.87	646.21	13.80	645.28	13.15	645.93	15.45	643.63	13.55	645.53	14.17	644.91	13.53	645.55	14.36	644.72
MW-10	657.59	14.09	643.50	14.77	642.82	14.11	643.48	14.22	643.37	14.18	643.41	15.05	642.54	14.27	643.32	14.44	643.15
MW-11	657.29	12.51	644.78	13.38	643.91	12.95	644.34	12.76	644.53	12.73	644.56	13.95	643.34	13.01	644.28	13.16	644.13
MW-12	660.08	NM	NM	NM	NM	13.61	646.47	14.54	645.54	14.26	645.82	16.36	643.72	14.06	646.02	14.99	645.09
MW-13	664.89	11.18	653.71	13.99	650.90	11.91	652.98	14.31	650.58	14.98	649.91	16.12	648.77	14.18	650.71	15.08	649.81
MW-14	663.91	12.86	651.05	13.65	650.26	13.26	650.65	13.65	650.26	15.49	648.42	16.98	646.93	13.14	650.77	14.74	649.17
MW-15	661.85	15.07	646.78	16.63	645.22	15.95	645.90	16.38	645.47	16.41	645.44	17.85	644.00	16.26	645.59	17.21	644.64
MW-16	665.57	11.00	654.57	10.50	655.07	9.79	655.78	9.91	655.66	11.56	654.01	10.51	655.06	9.98	655.59	9.85	655.72
RW-1												17.98		16.21		15.95	
GAUGE1	659.97	15.75	644.22	16.75	643.22	16.05	643.92	15.62	644.35	15.69	644.28	NM	NM	19.10	640.87	18.85	641.12
GAUGE2	646.50	3.26	643.24	3.93	642.57	NM	NM										

Table 2 Analytical Data Results (MW-4) Johnstown MGP Site Johnstown, NY

CONSTITUENT	UNITS	NYSDEC WQ Values	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13
BTEX Compounds												
Benzene	ug/l	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m/p-Xylene	ug/l	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
o-Xylene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
PAHs												
Acenaphthene	ug/l	20	0.19 U	0.19 U	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U	0.49 U	0.49 U
Acenaphthylene	ug/l	NC	0.19 U	0.19 U	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U	0.49 U	0.49 U
Anthracene	ug/l	50	0.19 U	0.19 U	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U	0.49 U	0.49 U
Benzo(a)anthracene	ug/l	0.002	0.19 U	0.19 U	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U	0.49 U	0.49 U
Benzo(a)pyrene	ug/l	0.000	0.19 U	0.19 U	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U	0.49 U	0.49 U
Benzo(b)fluoranthene	ug/l	0.002	0.19 U	0.19 U	0.47 U	0.48 U	0.47 U	0.26 J	0.49 U	0.49 U	0.49 U	0.49 U
Benzo(g,h,i)perylene	ug/l	NC	0.19 U	0.19 U	0.47 U	0.48 U	0.47 U	0.19 J	0.49 U	0.49 U	0.49 U	0.49 U
Benzo(k)fluoranthene	ug/l	0.002	0.19 U	0.19 U	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U	0.49 U	0.49 U
Chrysene	ug/l	0.002	0.19 U	0.19 U	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U	0.49 U	0.49 U
Dibenzo(a,h)anthracene	ug/l	NC	0.19 U	0.19 U	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U	0.49 U	0.49 U
Fluoranthene	ug/l	50	0.19 U	0.19 U	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U	0.49 U	0.49 U
Fluorene	ug/l	50	0.19 U	0.19 U	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U	0.49 U	0.49 U
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.19 U	0.19 U	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U	0.49 U	0.49 U
Naphthalene	ug/l	10	0.27	0.19 U	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U	0.49 U	3.2
Phenanthrene	ug/l	50	0.19 U	0.19 U	0.47 U	0.48 U	0.47 U	0.048 J	0.49 U	0.49 U	0.49 U	0.49 U
Pyrene	ug/l	50	0.19 U	0.19 U	0.47 U	0.48 U	0.47 U	0.10 J	0.49 U	0.49 U	0.49 U	0.49 U
Cyanide and Lead			•	•					•	•	•	
Lead	ug/l	25	5 U	5 U	5 U	3 U	3 U	5 U	5 U	5 U	5 U	5 U
Cyanide	mg/l	0.2	0.01 U	0.01 UJ	0.010 U	0.010 U	0.010 U	0.010 U				

Notes:

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

J - Estimated

mg/l - Milligrams per liter

NC - No Criteria

PAHs - Polycyclic Aromatic Hydrocarbons

U - Not Detected

Table 2
Monitored Natural Attenuation/Water Quality Data Results (MW-4)
Johnstown MGP Site
Johnstown, NY

	Sample Date	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13
CONSTITUENT	UNITS										
MNA/WQ Paramete	ers										
Alkalinity (as CaCO3)	mg/l	385	420	R	R	405 J	431 J	R	405	354	442
Chloride	mg/l	354	269	265	385 B	288 J	R	228	222	275	411
Ethane	ug/l	1 U	1 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	7.5 U	7.5 U	7.5 U
Ethene	ug/l	1 U	1 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	7 U	7 U	7 U
Ferrous Iron	mg/l	0.1 U	0.1 U	R	0.1 U	0.013					
Manganese	mg/l	NA	10 U	0.64 J	0.45 J	3 U	3.4	3 U	0.0087	3 U	3 U
Methane	ug/l	2 U	2 U	1 U	1 U	1 U	1 U	1 U	4 U	4 U	4 U
Nitrate	mg/l	NA	2.5	2.7	2.9	2.4	3	3.1	2.2	2.4	3.5
Nitrogen	mg/l	0.22	0.25	0.2 U	0.2 U	R	0.2 U	0.2 U	0.25	0.31	0.31
Sulfate	mg/l	NA	49.2	56.7	74.2 B	R	R	56 B	62.2	64.7	74.7
Sulfide	mg/l	NA	1 U	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U

Notes:

- B Present in Associated Blank Sample
- J Estimated Concentration

mg/l - Milligrams per liter

NA - Not analyzed

R - Rejected

U - Not Detected

Table 2 Analytical Data Results (MW-7) Johnstown MGP Site Johnstown, NY

CONSTITUENT	UNITS	NYSDEC WQ Values	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13
BTEX Compounds	0.11.13		03/23/10	01/04/11	04/00/11	00/14/11	10/11/11	12/13/11	03/14/12	10/03/12	04/10/13	10/00/13
Benzene	ug/l	1	1 U	1 U	1 U	0.72 J	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m/p-Xylene	ug/l	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
o-Xylene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
PAHs												
Acenaphthene	ug/l	20	0.075 J	0.19 U	0.50 U	0.48 U	0.48 U	0.55	0.48 U	0.48 U	0.48 U	0.48 U
Acenaphthylene	ug/l	NC	0.15 J	0.11 J	0.50 U	0.48 U	0.48 U	0.20 J	0.13 J	0.13 J	0.48 U	0.48 U
Anthracene	ug/l	50	0.19 U	0.19 U	0.50 U	0.48 U	0.48 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U
Benzo(a)anthracene	ug/l	0.002	0.19 U	0.19 U	0.50 U	0.48 U	0.48 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U
Benzo(a)pyrene	ug/l	0.000	0.19 U	0.19 U	0.50 U	0.48 U	0.48 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U
Benzo(b)fluoranthene	ug/l	0.002	0.19 U	0.19 U	0.50 U	0.48 U	0.48 U	0.15 J	0.48 U	0.48 U	0.48 U	0.48 U
Benzo(g,h,i)perylene	ug/l	NC	0.19 U	0.19 U	0.50 U	0.48 U	0.48 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U
Benzo(k)fluoranthene	ug/l	0.002	0.19 U	0.19 U	0.50 U	0.48 U	0.48 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U
Chrysene	ug/l	0.002	0.19 U	0.19 U	0.50 U	0.48 U	0.48 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U
Dibenzo(a,h)anthracene	ug/l	NC	0.19 U	0.19 U	0.50 U	0.48 U	0.48 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U
Fluoranthene	ug/l	50	0.19 U	0.19 U	0.50 U	0.48 U	0.48 U	0.47 U	0.078 J	0.48 U	0.48 U	0.48 U
Fluorene	ug/l	50	0.19 U	0.057 J	0.50 U	0.48 U	0.48 U	0.11 J	0.48 U	0.48 U	0.48 U	0.48 U
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.19 U	0.19 U	0.50 U	0.48 U	0.48 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U
Naphthalene	ug/l	10	0.43	0.19 U	0.50 U	0.48 U	0.48 U	0.47 U	1.1	0.48 U	0.48 U	0.48 U
Phenanthrene	ug/l	50	0.19 U	0.19 U	0.50 U	0.48 U	0.48 U	0.097 J	0.12 J	0.48 U	0.49	0.48 U
Pyrene	ug/l	50	0.19 U	0.038 J	0.50 U	0.48 U	0.48 U	0.35 J	0.098 J	0.48 U	0.48 U	0.48 U
Cyanide and Lead												
Lead	ug/l	25	5 U	5 U	5 U	3 U	19	12	3.2 J	19	33	7.1
Cyanide	mg/l	0.2	0.333	0.217	R	0.68 J	0.986	R	0.22	5.9	1.4	0.4

Notes:

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

J - Estimated Concentration

mg/l - Milligrams per liter

NC - No Criteria

PAHs - Polycyclic Aromatic Hydrocarbons

R - Rejected

U - Not Detected

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-7) Johnstown MGP Site Johnstown, NY

	Sample Date	09/30/10	01/04/11	04/07/11	06/15/11	10/12/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13
CONSTITUENT	UNITS										
MNA/WQ Paramete	rs										
Alkalinity (as CaCO3)	mg/l	321	330 J	R	R	327 J	370 J	R	310	324	367
Chloride	mg/l	108	104	122	93.8 B	111 J	R	91.2	101	114	84
Ethane	ug/l	5 U	5 U	1.5 U	150 U	1.5 U	75 U	75 U	7.5 U	7.5 U	7.5 U
Ethene	ug/l	5 U	5 U	1.5 U	150 U	1.5 U	75 U	75 U	7.0U	7.0U	7.0U
Ferrous Iron	mg/l	1.12	0.1 U	R	1.7 J	0.83 J	R	0.1 U	0.37	0.1 U	0.25
Manganese	mg/l	NA	0.54	0.67	0.62	0.66	0.94	0.51	0.96	1.1	1.1
Methane	ug/l	290 J	510	190	210	190	300	210	240	40	23
Nitrate	mg/l	NA	1 U	0.05 U	0.02 U	0.05 U					
Nitrogen	mg/l	1.76	1.59	1.4	1.3	1.6	R	1.6	1.6	4.6	1.5
Sulfate	mg/l	NA	576	745 B	611 B	R	R	674 B	509	654	518
Sulfide	mg/l	NA	1.4 J	1 U	0.8 J	2.8	1 U	1 U	1.2	1.4	1.4

Notes:

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration

mg/l - Milligrams per liter

NA - Not analyzed

R - Rejected

U - Not Detected

Table 2 Analytical Data Results (MW-10) Johnstown MGP Site Johnstown, NY

		Т		ı			1				1	
CONSTITUENT	UNITS	NYSDEC WQ Values	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13
BTEX Compounds	UNITS		09/29/10	01/04/11	04/00/11	00/14/11	10/11/11	12/13/11	03/14/12	10/03/12	04/16/13	10/06/13
· · · · · · · · · · · · · · · · · · ·		1		1							ı	
Benzene	ug/l	1	1 U	1 U	1 U	7.1	1.3	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m/p-Xylene	ug/l	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
o-Xylene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
PAHs												
Acenaphthene	ug/l	20	1.6	1.3	1.8 J	2.4	2.3	0.099 J	1.4	2	2.2	1.1
Acenaphthylene	ug/l	NC	0.43 J	0.32	0.24 J	0.42 J	0.74 J	0.13 J	0.14 J	0.48 U	0.48 U	0.48 U
Anthracene	ug/l	50	0.061 J	0.047 J	0.47 U	0.47 U	0.28 J	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U
Benzo(a)anthracene	ug/l	0.002	0.13 J	0.057 J	0.47 U	0.47 U	1	0.47 U	0.49 B	0.48 U	0.48 U	0.48 U
Benzo(a)pyrene	ug/l	0.002	0.14 J	0.057 J	0.47 U	0.47 U	0.81	0.47 U	0.19 J	0.48 U	0.55	0.48 U
Benzo(b)fluoranthene	ug/l	0.002	0.071 J	0.047 J	0.47 U	0.47 U	0.8	0.47 U	0.24 J	0.48 U	0.86	0.48 U
Benzo(g,h,i)perylene	ug/l	NC	0.051 J	0.19 U	0.47 U	0.47 U	0.37 J	0.47 U	0.08 J	0.48 U	0.48 U	0.48 U
Benzo(k)fluoranthene	ug/l	0.002	0.092 J	0.047 J	0.47 U	0.47 U	0.53	0.47 U	0.18 J	0.48 U	0.48 U	0.48 U
Chrysene	ug/l	0.002	0.12 J	0.047 J	0.47 U	0.47 U	0.91	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U
Dibenzo(a,h)anthracene	ug/l	NC	0.20 U	0.19 U	0.47 U	0.47 U	0.11 J	0.47 U	0.48 U	0.48 U	1.1	0.48 U
Fluoranthene	ug/l	50	0.24	0.11 J	0.085 J	0.47 U	1.5	0.47 U	0.34 J	0.48 U	0.48 U	0.48 U
Fluorene	ug/l	50	0.13 J	0.14 J	0.47 U	0.47 U	0.49 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.051 J	0.19 U	0.47 U	0.47 U	0.34 J	0.47 U	0.076 J	0.48 U	0.48 U	0.48 U
Naphthalene	ug/l	10	0.33	0.19 U	0.47 U	0.47 U	0.49 U	0.47 U	0.48 U	0.7	0.7	0.48 U
Phenanthrene	ug/l	50	0.11 J	0.19 U	0.47 U	0.47 U	0.53	0.10 J	0.18 J	0.48 U	0.48 U	0.48 U
Pyrene	ug/l	50	0.33 J	0.13 J	0.15 J	0.57 U	1.8	0.14 J	0.41 J	0.48 U	0.48 U	0.48 U
Cyanide and Lead												
Lead	ug/l	25	5 U	5 U	5 U	3 U	9.1	3.9 J	6.4	5 U	8.4	5 U
Cyanide	mg/l	0.2	0.139	0.124	R	0.17 J	0.156	R	0.078	0.14	0.1	0.11

Notes:

B - Present in Associated Blank Sample

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

J - Estimated Concentration

mg/l - Milligrams per liter

NC - No Criteria

PAHs - Polycyclic Aromatic Hydrocarbons

R - Rejected

U - Not Detected

Table 2
Monitored Natural Attenuation/Water Quality Data Results (MW-10)
Johnstown MGP Site
Johnstown, NY

CONSTITUENT	Sample Date UNITS	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13
MNA/WQ Paramete	ers										
Alkalinity (as CaCO3)	mg/l	556	536 J	R	R	523 J	541 J	R	589	584	552
Chloride	mg/l	344	277	181 B	160 B	156 J	R	147	316	286	265
Ethane	ug/l	1 U	1 U	1.5 U	7.5 U	1.5 U	1.5 U	1.5 U	7.5 U	7.5 U	7.5 U
Ethene	ug/l	1 U	1 U	1.5 U	7.5 U	1.5 U	1.5 U	1.5 U	7.0 U	7.0 U	7.0 U
Ferrous Iron	mg/l	0.31	0.2 U	R	0.34 J	0.47	0.1 U	R	0.10 U	0.10 U	0.12
Manganese	mg/l	NA	1.14	1.2	0.95	0.88	0.58	0.83	1	1.2	0.75
Methane	ug/l	64 J	75	34	9.8	33	85	40	72	32	28
Nitrate	mg/l	NA	1 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Nitrogen	mg/l	6.02	4.91	8.5	4.9	4.9	R	5.4	5.7	6.1	4.1
Sulfate	mg/l	NA	167	306	296 B	R	R	238 B	175	174	171
Sulfide	mg/l	NA	R	R	1 U J	0.8 J	1 U	1 U	1 U	1 U	1 U

Notes:

B - Present in Associated Blank Sample

mg/l - Milligrams per liter

NA - Not analyzed

R - Rejected

U - Not Detected

Table 2 Analytical Data Results (MW-11) Johnstown MGP Site Johnstown, NY

CONSTITUENT	UNITS	NYSDEC WQ Values	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13
BTEX Compounds	ONTI		03/23/10	01/04/11	04/00/11	00/14/11	10/11/11	12/13/11	03/14/12	10/03/12	04/10/13	10/00/13
Benzene	ug/l	1	27	16	2.8	13	18	15	7.9	12	3.5	8.1
Ethylbenzene	ug/l	5	7.3	7.2	1.9	6.9	6.1	5.5	3.5	1 U	1.2	3.8
m/p-Xylene	ug/l	5	3	3.9	2.2	5.3	2.4	2.1	1.4 J	2 U	2 U	2 U
o-Xylene	ug/l	5	2.6	2.7	1.1	3.1	2.0	2.0	1.2	1 U	1 U	1.6
Toluene	ug/l	5	1.3	1.3	1 U	1.4	0.97 J	0.99 J	0.69 J	1 U	1 U	1 U
PAHs	•	•					•	•			•	
Acenaphthene	ug/l	20	150 D	140 D	150	110	120	130	100	140 E	97	110
Acenaphthylene	ug/l	NC	280 JD	330 D	290	290	240 D	270 D	210	160 E	120	170
Anthracene	ug/l	50	21	18	88	19 B	19	17	11	23	13	28
Benzo(a)anthracene	ug/l	0.002	2.2 J	2.2	35	6.2 B	2.7	3.0 B	5.2 B	3.8	0.002U	8.3
Benzo(a)pyrene	ug/l	0.002	1.7	2.2	34	5.7 B	2.8	2.5 B	2.3 J	2.7	3.3	8.5
Benzo(b)fluoranthene	ug/l	0.002	0.65 J	0.82 J	24	4.8 B	1.9	2.1	1.8 J	1.7	0.002U	0.002U
Benzo(g,h,i)perylene	ug/l	NC	0.90 J	1.2 J	20	4.0 B	1.4	1.7	1.3 J	1	1	3.4
Benzo(k)fluoranthene	ug/l	0.002	0.90 J	1.1 J	12	2.5 B	1	0.78	1.2 J	1.6	0.002U	0.002U
Chrysene	ug/l	0.002	2.8	2.9	43	8.1 B	3.3	3.5 B	5.1 U	3.4	4.4	10
Dibenzo(a,h)anthracene	ug/l	NC	1 U	2.1 U	3.2	2.4 U	0.30 J	0.59	5.1 U	5.1 U	5.1 U	5.1 U
Fluoranthene	ug/l	50	18	14	96	22 B	20	16	12	24	14	28
Fluorene	ug/l	50	110 D	100 D	130	72	79	83	62	92	62	70
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.65 J	2.1 U	13	2.8 B	0.96	1.0 B	0.69 J	1.6	0.002U	0.002U
Naphthalene	ug/l	10	180 D	560 D	300	480	310 D	230 D	140	110	50	87
Phenanthrene	ug/l	50	160 D	150 D	260	52 B	140 D	130	91	170	80	130
Pyrene	ug/l	50	26 J	17	150	28 B	21	21	16	28	18	34
Cyanide and Lead												
Lead	ug/l	25	5 U	5 U	40	7.6	12	5 U	4.6 J	5 U	5 U	5.9
Cyanide	mg/l	0.2	0.024	0.027	R	0.015 J	0.021	0.01 UJ	0.012	0.010 U	0.010 U	0.010 U

Notes:

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration

NC - No Criteria

R - Rejected

U - Not Detected

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

PAHs - Polycyclic Aromatic Hydrocarbons

mg/l - Milligrams per liter

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-11) Johnstown MGP Site Johnstown, NY

CONSTITUENT	Sample Date UNITS	09/29/10	01/04/11	04/07/11	06/15/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13
MNA/WQ Paramete	ers										
Alkalinity (as CaCO3)	mg/l	502	504	R	R	518 J	536 J	R	623	507	573
Chloride	mg/l	612	606	345	414 B	514 J	R	321	350	202	295
Ethane	ug/l	10 U	5 U	1.5 U	1.5 U	1.5 U	15 U	15 U	380 U	380 U	380 U
Ethene	ug/l	10 U	5 U	1.5 U	1.5 U	1.5 U	15 U	15 U	350 U	350 U	350 U
Ferrous Iron	mg/l	0.2 U	0.5 U	R	9.4 J	0.9 J	R	0.1 U	0.5	0.18	0.22
Manganese	mg/l	NA	0.61	0.94	0.45	0.69	0.66	0.47	0.95	0.95	0.55
Methane	ug/l	730 J	420	4.8	68	190	360	160	520	12	25
Nitrate	mg/l	NA	1 U	0.13	0.05 U	0.05 U	0.05 U	0.092	0.050 U	0.79	0.32
Nitrogen	mg/l	1.76	1.36	1.3	0.59	1.3	R	1.3	1.4	0.58	0.64
Sulfate	mg/l	NA	46.3	126 B	65.1 B	R	R	8.5 B	16.9	112	94.1
Sulfide	mg/l	NA	1 U	0.8 J	0.8 J	1.6	1 U	1 U	1 U	1 U	1 U

Notes:

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration

mg/l - Milligrams per liter

NA - Not analyzed

R - Rejected

U - Not Detected

Table 2 Analytical Data Results (MW-12) Johnstown MGP Site Johnstown, NY

T	ī			ı			ı	ı	1
CONSTITUENT	UNITS	NYSDEC WQ Values	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13
BTEX Compounds									
Benzene	ug/l	1	1 U	1 U	1 U	1 U	2.1	1 U	1 U
Ethylbenzene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m/p-Xylene	ug/l	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U
o-Xylene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
PAHs									
Acenaphthene	ug/l	20	0.2 U	0.49 U	0.086 J	0.52 U	14	0.2 U	1.1
Acenaphthylene	ug/l	NC	0.09 J	0.49 U	0.25 J	0.18 J	100	0.2 U	0.2 U
Anthracene	ug/l	50	0.07 J	0.49 U	0.21 J	0.13 J	2.8	0.2 U	1.1
Benzo(a)anthracene	ug/l	0.002	0.12 J	0.49 U	0.64 B	0.57 B	1.5	0.83	3
Benzo(a)pyrene	ug/l	0.002	0.2	0.49 U	0.69 B	0.35 J	1.5	1	3.6
Benzo(b)fluoranthene	ug/l	0.002	0.08 J	0.49 U	0.56	0.27 J	1.3	0.91	3.4
Benzo(g,h,i)perylene	ug/l	NC	0.13 J	0.49 U	0.43 J	0.27 J	0.62	0.49 U	0.49 U
Benzo(k)fluoranthene	ug/l	0.002	0.10 J	0.49 U	0.49 U	0.38 J	0.58	0.49 U	0.83
Chrysene	ug/l	0.002	0.13 J	0.49 U	0.55 B	0.60 B	1.1	1	3
Dibenzo(a,h)anthracene	ug/l	NC	0.2 U	0.49 U	0.49 U	0.52 U	0.52 U	0.52 U	0.52 U
Fluoranthene	ug/l	50	0.2	0.49 U	0.73	0.41 J	3.4	1.4	4.3
Fluorene	ug/l	50	0.2 U	0.49 U	0.49 U	0.52 U	2.2	0.49 U	0.49 U
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.09 J	0.49 U	0.49 U	0.13 J	0.97	0.49 U	1.2
Naphthalene	ug/l	10	0.2 U	0.49 U	0.68	0.52 U	160 E	2.5	0.99
Phenanthrene	ug/l	50	1.9 J	0.49 U	0.66	0.48 J	7.6	1.1	3.6
Pyrene	ug/l	50	0.23	0.49 U	0.95	0.59	4.2	2.4	5.8
Cyanide and Lead									
Lead	ug/l	25	5 U	3 U	5 U	5 U	5 U	5 U	29
Cyanide	mg/l	0.2	0.01	0.004 J	R	0.0062 J	0.010 U	0.010 U	0.010 U

Notes:

B - Present in Associated Blank Sample

J - Estimated Concentration

NC - No Criteria

U - Not Detected

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

PAHs - Polycyclic Aromatic Hydrocarbons

Table 2
Monitored Natural Attenuation/Water Quality Data Results (MW-12)
Johnstown MGP Site
Johnstown, NY

CONSTITUENT	Sample Date UNITS	01/04/11	10/12/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13
MNA/WQ Parameter	rs							
Alkalinity (as CaCO3)	mg/l	502	455 J	478 J	R	434	391	415
Chloride	mg/l	488	165 J	R	129 B	468	123	662
Ethane	ug/l	1 U	1.5 U	1.5 U	1.5 U	7.5 U	7.5 U	7.5 U
Ethene	ug/l	1 U	1.5 U	1.5 U	1.5 U	7 U	7 U	7 U
Ferrous Iron	mg/l	0.1 U	R	0.1 U	0.1 U	0.44	0.1 U	0.1 U
Manganese	mg/l	0.084	0.096	0.16	0.12	0.52	0.19	2.1
Methane	ug/l	2 U	1 U	1.1	0.56 J	47	1 U	1 U
Nitrate	mg/l	4	6.6	6.2	3.2	0.05 U	2.5	4.8
Nitrogen	mg/l	0.48	0.2 U	R	0.19 J	0.29	0.24	2.4
Sulfate	mg/l	97.9	R	R	53.5 B	81.4	73.5	115
Sulfide	mg/l	1.1 J	0.8 J	1 U	1 U	1 U	1 U	1 U

Notes:

- B Present in Associated Blank Sample
- J Estimated Concentration
- mg/I Milligrams per liter
- NA Not analyzed
- U Not Detected
- ug/I Micrograms per liter

Table 2 Analytical Data Results (MW-13) Johnstown MGP Site Johnstown, NY

	1	II.			1	1		1	1	1	i		
		NYSDEC WQ Values											
CONSTITUENT	UNITS	, , , , , , , , , , , , , , , , , , , ,	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	
BTEX Compounds								•	•	•	•		
Benzene	ug/l	1	430	360	71	200	59	300	370	360	490	400	
Ethylbenzene	ug/l	5	850	730	87	200	110	520	670	490	600	320	
m/p-Xylene	ug/l	5	920	810	110	240	140	550	740	590	730	420	
o-Xylene	ug/l	5	390	350	71	130	74	260	340	260	320	190	
Toluene	ug/l	5	800	660	80	260	89	550	740	520 E	710	440	
PAHs													
Acenaphthene	ug/l	20	120	140	17	46	60	76	82 J	170	130	77	
Acenaphthylene	ug/l	NC	260 JD	320 D	51	170	220 J	230 D	210	570	430	350	
Anthracene	ug/l	50	12	15	3.6	12 B	15	15	97 U	47 U	47 U	47 U	
Benzo(a)anthracene	ug/l	0.002	1.9 J	2 J	0.35 J	4.9 B	7.3 J	5.3 B	97 U	47 U	47 U	47 U	
Benzo(a)pyrene	ug/l	0.000	1.9 J	1.4 J	0.13 J	4.1 B	10 U	5.3 B	97 U	47 U	47 U	47 U	
Benzo(b)fluoranthene	ug/l	0.002	0.75 J	0.78 J	0.49 U	3.5 B	10 U	3.8	97 U	47 U	47 U	47 U	
Benzo(g,h,i)perylene	ug/l	NC	0.75 J	3.9 U	0.49 U	2.5 B	10 U	3.8	97 U	47 U	47 U	47 U	
Benzo(k)fluoranthene	ug/l	0.002	3.8 U	0.78 J	0.49 U	2.4 U	10 U	2.6	97 U	47 U	47 U	47 U	
Chrysene	ug/l	0.002	1.7 J	1.4 J	0.26 J	3.6 B	5.5 J	4.9 B	97 U	47 U	47 U	47 U	
Dibenzo(a,h)anthracene	ug/l	NC	3.8 U	3.9 U	0.49 U	2.4 U	10 U	0.79 B	97 U	47 U	47 U	47 U	
Fluoranthene	ug/l	50	7.7	8.4	2.6	12 B	16	14	97 U	47 U	47 U	47 U	
Fluorene	ug/l	50	73	84	18	48	52 J	53	37 J	110	93	68	
Indeno(1,2,3-cd)pyrene	ug/l	0.002	3.8 U	3.9 U	0.49 U	2.4 U	10 U	2.3 B	97 U	47 U	47 U	47 U	
Naphthalene	ug/l	10	6000 D	5600 D	250 D	1600 D	2900 D	5000 D	4100	8200	7100	3700	
Phenanthrene	ug/l	50	58	68	7.2	44 B	60	55	44 J	76	73	61	
Pyrene	ug/l	50	9.8 J	8.8	2.9	14 B	19	17	97 U	47 U	47 U	47 U	
Cyanide and Lead	Cyanide and Lead												
Lead	ug/l	25	6.4	5 U	5 U	15 J	27	9.2	5.8	5 U	7.8	5 U	
Cyanide	mg/l	0.2	0.618	0.652	R	0.42 J	0.235	R	0.33	0.39	0.32	0.26	

Notes:

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration
- NC No Criteria
- R Rejected
- U Not Detected
- BTEX Benzene, Ethylbenzene, Toluene and Xylene
- PAHs Polycyclic Aromatic Hydrocarbons
- mg/l Milligrams per liter
- ug/I Micrograms per liter

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-13) Johnstown MGP Site Johnstown, NY

CONSTITUENT	Sample Date UNITS	09/30/10	01/05/11	04/07/11	06/15/11	10/12/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13
MNA/WQ Parameters	s										
Alkalinity (as CaCO3)	mg/l	80	96.4	R	R	455 J	165 J	R	158	218	187
Chloride	mg/l	12.3	10.5	29.1	18.6 B	5.9 J	R	20.5	21.6	20.4	7.3
Ethane	ug/l	1.4 J	1.8	1.5 U	15 U	1.5 UJ	15 U	15 U	7.5 U	7.5 U	7.5 U
Ethene	ug/l	2.4	2.8	1.5 U	15 U	1.5 UJ	15 U	15 U	7.0 U	7.0 U	7.0 U
Ferrous Iron	mg/l	0.1 U	0.32	R	0.1 UJ	3.1 J	0.08 J	0.1 U	0.12	0.1 U	0.1 U
Manganese	mg/l	NA	0.84	0.12	0.077	0.83	0.16	0.096	0.092	0.11	0.088
Methane	ug/l	77 J	110 D	32	46	28 J	72	66	120	36	15
Nitrate	mg/l	NA	1 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Nitrogen	mg/l	2.27	1.69	1.1	1.3	2 U	R	1.4	1.4	1.8	1.2
Sulfate	mg/l	NA	86.8	5 U	3.3 JB	R	R	52.1 J	139	82.3	15.5
Sulfide	mg/l	NA	3.3 J	1 U	3.2 J	1.2	R	R	1.2	1 U	1 U

Notes:

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration

mg/l - Milligrams per liter

NA - Not analyzed

R - Rejected

U - Not Detected

Table 2 Analytical Data Results (MW-14) Johnstown MGP Site Johnstown, NY

				I				I	I		1	
CONSTITUENT	UNITS	NYSDEC WQ Values	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13
BTEX Compounds				•				•				
Benzene	ug/l	1	25	17	1 U	2.5	11	2.5	2.9	1 U	1 U	1.3
Ethylbenzene	ug/l	5	5.1	3.3	1 U	1 U	1 U	1 U	1.3	1 U	1 U	1 U
m/p-Xylene	ug/l	5	5.1	3.1	2 U	2 U	2 U	2 U	2.4	2 U	2 U	2 U
o-Xylene	ug/l	5	9.1	5.6	1 U	1 U	1 U	1 U	2.2	1 U	1 U	1 U
Toluene	ug/l	5	1.8	0.88 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
PAHs												
Acenaphthene	ug/l	20	9.3	4.9	0.47 U	0.47 U	1.2	0.82	5.1	1.4	0.48 U	2.2
Acenaphthylene	ug/l	NC	17 JD	11	0.47 U	0.47 U	3	1.3	9	1.9	0.48 U	2.5
Anthracene	ug/l	50	1.8	0.98	0.47 U	0.47 U	0.50 U	0.18 J	0.5	0.48 U	0.48 U	0.48 U
Benzo(a)anthracene	ug/l	0.002	0.42 J	0.27 J	0.47 U	0.47 U	0.29 J	0.91 B	0.50 U	0.48 U	0.48 U	0.62
Benzo(a)pyrene	ug/l	0.002	0.46	0.24 J	0.47 U	0.47 U	0.15 J	0.90 B	0.12 J	0.48 U	0.48 U	0.65
Benzo(b)fluoranthene	ug/l	0.002	0.27	0.15 J	0.47 U	0.47 U	0.50 U	0.78	0.50 U	0.48 U	0.48 U	0.79
Benzo(g,h,i)perylene	ug/l	NC	0.28	0.18 J	0.47 U	0.47 U	0.50 U	0.70	0.09 J	0.48 U	0.48 U	0.48 U
Benzo(k)fluoranthene	ug/l	0.002	0.3	0.15 J	0.47 U	0.47 U	0.50 U	0.57	0.17 J	0.48 U	0.48 U	0.48 U
Chrysene	ug/l	0.002	0.43	0.3 J	0.47 U	0.47 U	0.19 J	0.85	0.50 U	0.48 U	0.48 U	0.69
Dibenzo(a,h)anthracene	ug/l	NC	0.20 J	0.59 U	0.47 U	0.47 U	0.50 U	0.50 U	0.50 U	0.48 U	0.48 U	0.48 U
Fluoranthene	ug/l	50	1.7	1.2	0.081 J	0.47 U	0.32 J	1.5	0.61	0.59	0.48 U	1.2
Fluorene	ug/l	50	3.8	1.4	0.47 U	0.47 U	0.50 U	0.17 J	0.35 J	0.48 U	0.48 U	0.48 U
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.21	0.59 U	0.47 U	0.47 U	0.50 U	0.50 U	0.054 J	0.48 U	0.48 U	0.48 U
Naphthalene	ug/l	10	63 D	2.8	0.47 U	0.47 U	1.3	0.50 U	1.2	0.48 U	1.7	0.48
Phenanthrene	ug/l	50	9.1	2	0.47 U	0.47 U	0.25 J	0.66	1.1	0.48 U	0.48 U	0.67
Pyrene	ug/l	50	2.5 J	1.2	0.098 J	0.52 U	0.39 J	2.2	0.7	0.76	0.48 U	1.5
Cyanide and Lead												
Lead	ug/l	25	7.7	5 U	5 U	4.2 J	4.8 J	9.1	5.7	21	5 U	15
Cyanide	mg/l	0.2	0.245	0.197	R	0.11 J	0.114	R	0.28	1.4	0.1	0.2

Notes:

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration

NC - No Criteria

R - Rejected

U - Not Detected

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

PAHs - Polycyclic Aromatic Hydrocarbons

mg/l - Milligrams per liter

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-14) Johnstown MGP Site Johnstown, NY

CONSTITUENT	Sample Date UNITS	06/30/10	01/04/11	04/07/11	06/15/11	10/12/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13			
MNA/WQ Parameters														
lkalinity (as CaCO3) mg/l 528 450 R R 410 453 J R 494 417 456														
Chloride	mg/l	9	10.8	6.1	9.7 B	5.1	R	12.8	40.4	2	7.6			
Ethane	ug/l	1 U	1 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	7.5 U	7.5 U	7.5 U			
Ethene	ug/l	1 U	1 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	7 U	7 U	7 U			
Ferrous Iron	mg/l	0.29	0.1 U	R	0.11 J	0.1 U	R	0.1 U	0.17	0.1 U	0.1 U			
Manganese	mg/l	NA	0.36	0.054	0.17	0.2	0.28	0.51	2	0.008	0.25			
Methane	ug/l	9.1	120 D	1 U	6.2	46	15	70	140	1 U	8.6			
Nitrate	mg/l	NA	1 U	0.71	0.19	0.086	0.023 J	0.05 U	0.05 U	0.8	0.05 U			
Nitrogen	mg/l	0.81	0.77	0.85	0.32	0.36	R	0.86	2.5	0.54	0.68			
Sulfate	mg/l	NA	53.3	5 U	19.6 B	5.6 JB	R	173 B	639	5 U	5 U			
Sulfide	mg/l	NA	1.6	1 U	1 UJ	1 U	R	R	1 U	1 U	1 U			

Notes:

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration

mg/l - Milligrams per liter

NA - Not analyzed

R - Rejected

U - Not Detected

Table 2 Analytical Data Results (MW-15) Johnstown MGP Site Johnstown, NY

	1			1	1			1		1	1	
		NYSDEC WQ Values										
CONSTITUENT	UNITS	WISDLE WQ Values	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13
	UNITS		09/29/10	01/04/11	04/00/11	00/14/11	10/11/11	12/15/11	03/14/12	10/09/12	04/16/15	10/08/13
BTEX Compounds	//		1500.5	1222	242.5	4222.5	670	700 5	4500.0	4400 5	***	200
Benzene	ug/l	1 -	1600 D	1200	940 D	1300 D	670	790 D	1500 D	1100 E	410	390
Ethylbenzene	ug/l	5	200	250	190 D	210 D	120	190 D	220	200	75	53
m/p-Xylene	ug/l	5	12	8.7	17	18	19 J	9	6.6 J	23	19	5 U
o-Xylene	ug/l	5	39	39	44	48	37	38	27	23	19	16
Toluene	ug/l	5	3.8 J	10 U	6.1	4.7	10 U	6.3	6.2 J	5	5 U	5 U
PAHs												
Acenaphthene	ug/l	20	44 J	49	47	32	47	50	47	57	42	23
Acenaphthylene	ug/l	NC	19 J	23	24	17	22	19	12	16	11	6.5
Anthracene	ug/l	50	2.7 J	3.3	2.1	1.3 B	2.4	2	1.5 J	2.8	2.6	1.4
Benzo(a)anthracene	ug/l	0.002	1.8 J	0.85 J	0.38 J	0.48 U	0.21 J	0.54 U	4.7 U	0.58 U	0.96	0.59
Benzo(a)pyrene	ug/l	0.000	2.1 J	0.75 J	0.2 J	0.48 U	0.49 U	0.54 U	4.7 U	0.58 U	0.96	0.59
Benzo(b)fluoranthene	ug/l	0.002	1.1 J	0.57 J	0.27 J	0.48 U	0.49 U	0.16 J	4.7 U	0.58 U	0.85	0.62
Benzo(g,h,i)perylene	ug/l	NC	1.2 J	0.38 J	0.49 U	0.48 U	0.49 U	0.54 U	4.7 U	0.58 U	0.58 U	0.58 U
Benzo(k)fluoranthene	ug/l	0.002	1.3 J	0.38 J	0.49 U	0.48 U	0.49 U	0.54 U	4.7 U	0.58 U	0.72	0.58 U
Chrysene	ug/l	0.002	1.8 J	0.85 J	0.23 J	0.48 U	0.16 J	0.54 U	4.7 U	0.58 U	1.2	0.59
Dibenzo(a,h)anthracene	ug/l	NC	0.9 J	1.9 U	0.49 U	0.48 U	0.49 U	0.54 U	4.7 U	0.58 U	0.58 U	0.58 U
Fluoranthene	ug/l	50	4.1 J	2.7	1.8	1.2 B	1.7	1.7	1.3 J	2.6	3.3	1.7
Fluorene	ug/l	50	12 J	13	13	8.7	14	13	10	17	13	6.1
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.9 J	1.9 U	0.49 U	0.48 U	0.49 U	0.54 U	4.7 U	0.58 U	0.58 U	0.58 U
Naphthalene	ug/l	10	110 JD	89	560 D	450 D	570 D	140 D	51	27	94	13
Phenanthrene	ug/l	50	8.3 J	11	8	6.7 B	13	11	8.8	12	10	5.1
Pyrene	ug/l	50	5.9 J	2.9	2.2	1.2 B	1.6	1.8	1.5 J	2.9	3.7	2
Cyanide and Lead	Cyanide and Lead											
Lead	ug/l	25	8.2	5 U	5 U	7.8	5.1	5 U	5 U	5 U	10	5 U
Cyanide	mg/l	0.2	0.843	0.816	R	0.61 J	0.427	R	0.91	1.2	0.5	0.5
Notes												

Notes:

B - Present in Associated Blank Sample

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

D - From a Diluted Sample

J - Estimated Concentration

mg/l - Milligrams per liter

NC - No Criteria

PAHs - Polycyclic Aromatic Hydrocarbons

R - Rejected

U - Not Detected

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-15) Johnstown MGP Site Johnstown, NY

CONSTITUENT	Sample Date UNITS	09/30/10	01/05/11	04/07/11	06/15/11	10/12/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13			
MNA/WQ Parameters														
Alkalinity (as CaCO3) mg/l 558 550 R R 502 J 547 J R 629 527 585														
Chloride	mg/l	44.3	46.4	22.8	43.3 B	28.5 J	R	68.2	70.6	39.4	42			
Ethane	ug/l	10 U	10 U	2.9	300 U	300 U	300 U	300 U	380 U	380 U	380 U			
Ethene	ug/l	10 U	10 U	1.5 U	300 U	300 U	300 U	300 U	350 U	350 U	350 U			
Ferrous Iron	mg/l	0.15	1.36	R	0.51 J	0.47 J	0.13 J	R	0.1 U	0.15	0.18			
Manganese	mg/l	NA	0.74	0.89	0.67	0.79	0.77	0.61	0.61	1	1.1			
Methane	ug/l	820	3400	680	360	720	1900	1600	1900	780	580			
Nitrate	mg/l	NA	1 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U			
Nitrogen	mg/l	4.07	4.15	1.9	3.1	2.1	R	4.6	5.4	3	3.1			
Sulfate	mg/l	NA	182	137 B	193 B	R	R	202 B	217	113	139			
Sulfide	mg/l	NA	1.4	1 U	1 UJ	2.4	1 U	R	1 U	1 U	1 U			

Notes:

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration

mg/l - Milligrams per liter

NA - Not analyzed

R - Rejected

U - Not Detected

Table 2 Analytical Data Results (MW-16) Johnstown MGP Site Johnstown, NY

		Т		ı	ı		1			1		1
CONSTITUENT	UNITS	NYSDEC WQ Values	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13
BTEX Compounds												
Benzene	ug/l	1	140	170	150 D	100 D	17	140 D	150 D	180	200	150
Ethylbenzene	ug/l	5	70	110	92	51	5	78	66	100	150	92
m/p-Xylene	ug/l	5	31	55	47	27	2.8	29	26	14	41	23
o-Xylene	ug/l	5	34	54	41	27	3.6	36	37	14	56	35
Toluene	ug/l	5	17	36	33	15	2	21	11	10 U	14	9
PAHs												
Acenaphthene	ug/l	20	14 D	18	21	7	2.3	13	15	30	30	16
Acenaphthylene	ug/l	NC	16 J	27 D	36	11	4.7	10	2.2	34	49	0.48 U
Anthracene	ug/l	50	1.7	3	2.3	0.97 B	0.20 J	1.4	1.2	1.6	2.8	0.48 U
Benzo(a)anthracene	ug/l	0.002	0.19 U	0.14	0.47 U	2.1 B	0.50 U	0.47 U	0.49 U	0.48 U	0.48 U	0.48 U
Benzo(a)pyrene	ug/l	0.000	0.19 U	0.57 U	0.47 U	2.3 B	0.50 U	0.47 U	0.49 U	0.48 U	0.48 U	0.48 U
Benzo(b)fluoranthene	ug/l	0.002	0.19 U	0.57 U	0.11 J	2.8 B	0.50 U	0.47 U	0.49 U	0.48 U	0.48 U	0.48 U
Benzo(g,h,i)perylene	ug/l	NC	0.19 U	0.57 U	0.47 U	1.8 B	0.50 U	0.47 U	0.49 U	0.48 U	0.48 U	0.48 U
Benzo(k)fluoranthene	ug/l	0.002	0.19 U	0.57 U	0.47 U	3.1 B	0.50 U	0.47 U	0.096 J	0.48 U	0.48 U	0.48 U
Chrysene	ug/l	0.002	0.19 U	11 J	0.47 U	2.7 B	0.50 U	0.47 U	0.49 U	0.48 U	0.48 U	0.48 U
Dibenzo(a,h)anthracene	ug/l	NC	0.19 U	0.57 U	0.47 U	1.4	0.50 U	0.47 U	0.49 U	0.48 U	0.48 U	0.48 U
Fluoranthene	ug/l	50	1.2	1.4	1.7	1.5 B	0.21 J	1.1	0.94	1.5	2	0.48 U
Fluorene	ug/l	50	10 D	11	16	4.7	1.3	8.8	13	17	21	9.1
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.19 U	0.57 U	0.47 U	1.7 B	0.50 U	0.47 U	0.49 U	0.48 U	0.48 U	0.48 U
Naphthalene	ug/l	10	0.19 U	110 D	220 D	0.47 U	26	0.47 U	0.49 U	2.4	230E	0.48 U
Phenanthrene	ug/l	50	5.6	9.6	13	4.8 B	1.1	6.7	6.3	11	15	0.48 U
Pyrene	ug/l	50	1.4 J	1.3	1.9	2.1 B	0.50 U	1.1	0.87	1.3	2	0.48 U
Cyanide and Lead	Cyanide and Lead											
Lead	ug/l	25	5 U	5 U	5 U	3 U	3 U	5 U	5 U	5 U	5 U	5 U
Cyanide	mg/l	0.2	0.353	0.342	R	0.25 J	0.137	R	0.34	0.41	0.11	0.11

Notes:

B - Present in Associated Blank Sample

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

D - From a Diluted Sample

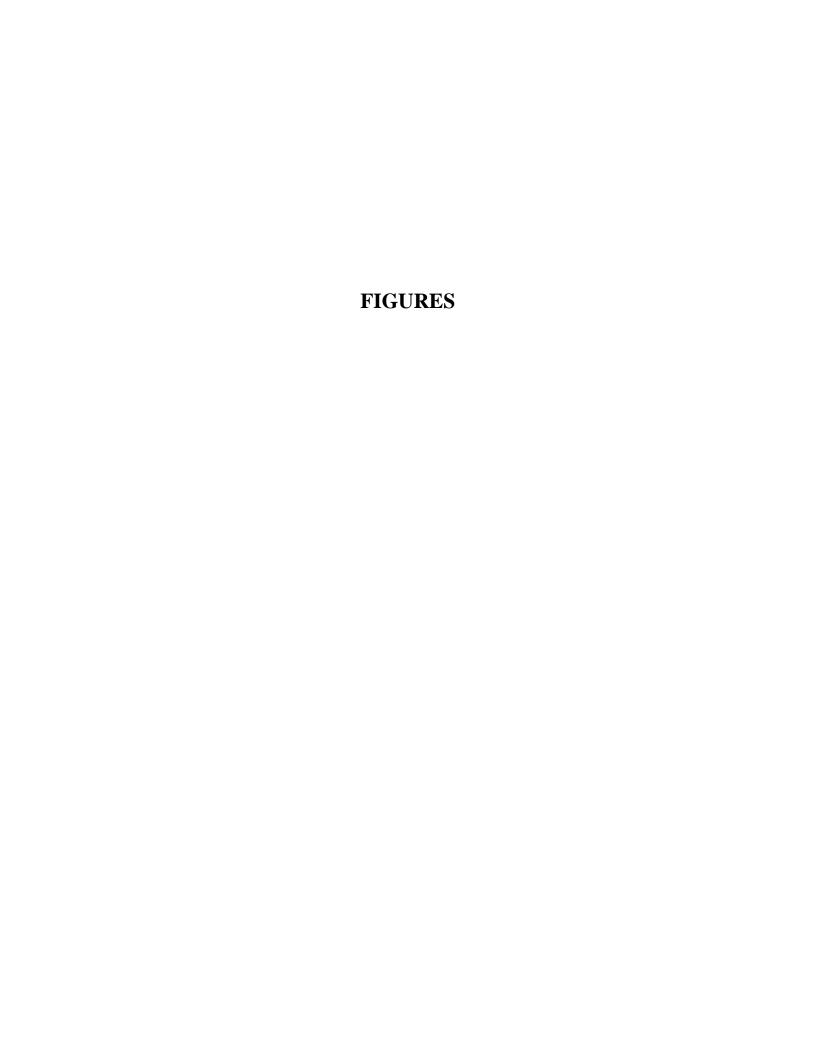
J - Estimated Concentration

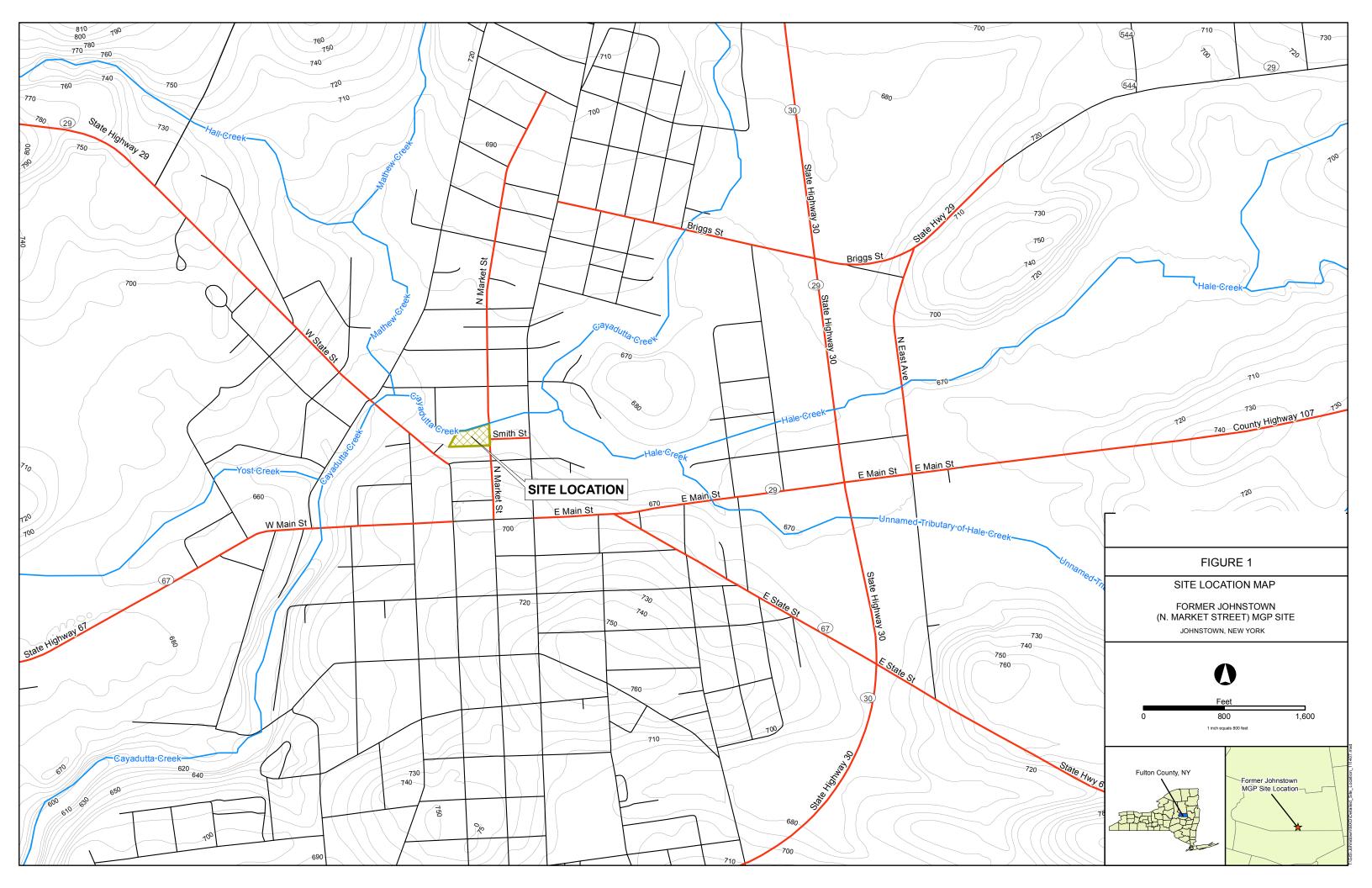
mg/l - Milligrams per liter

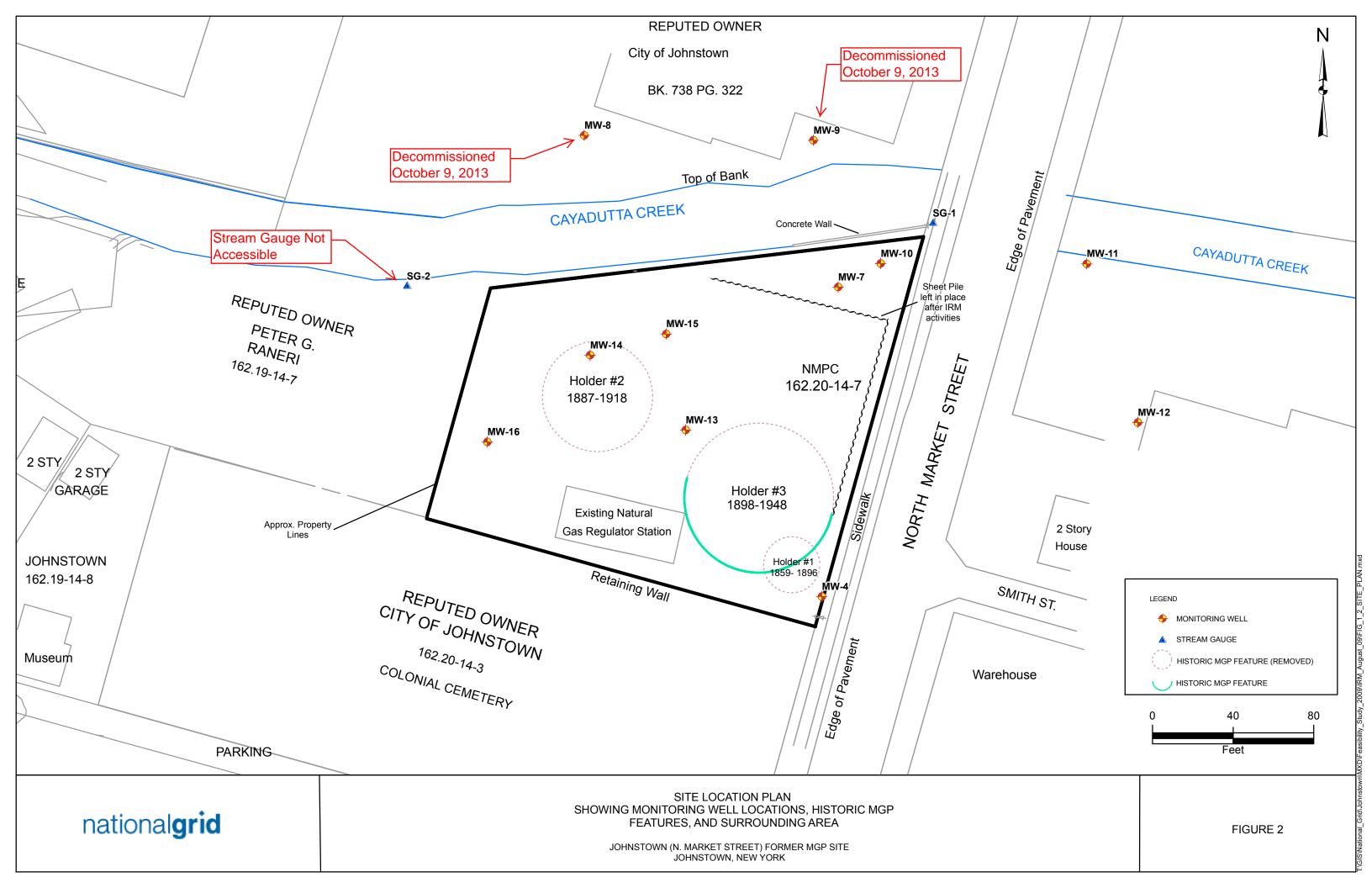
NC - No Criteria

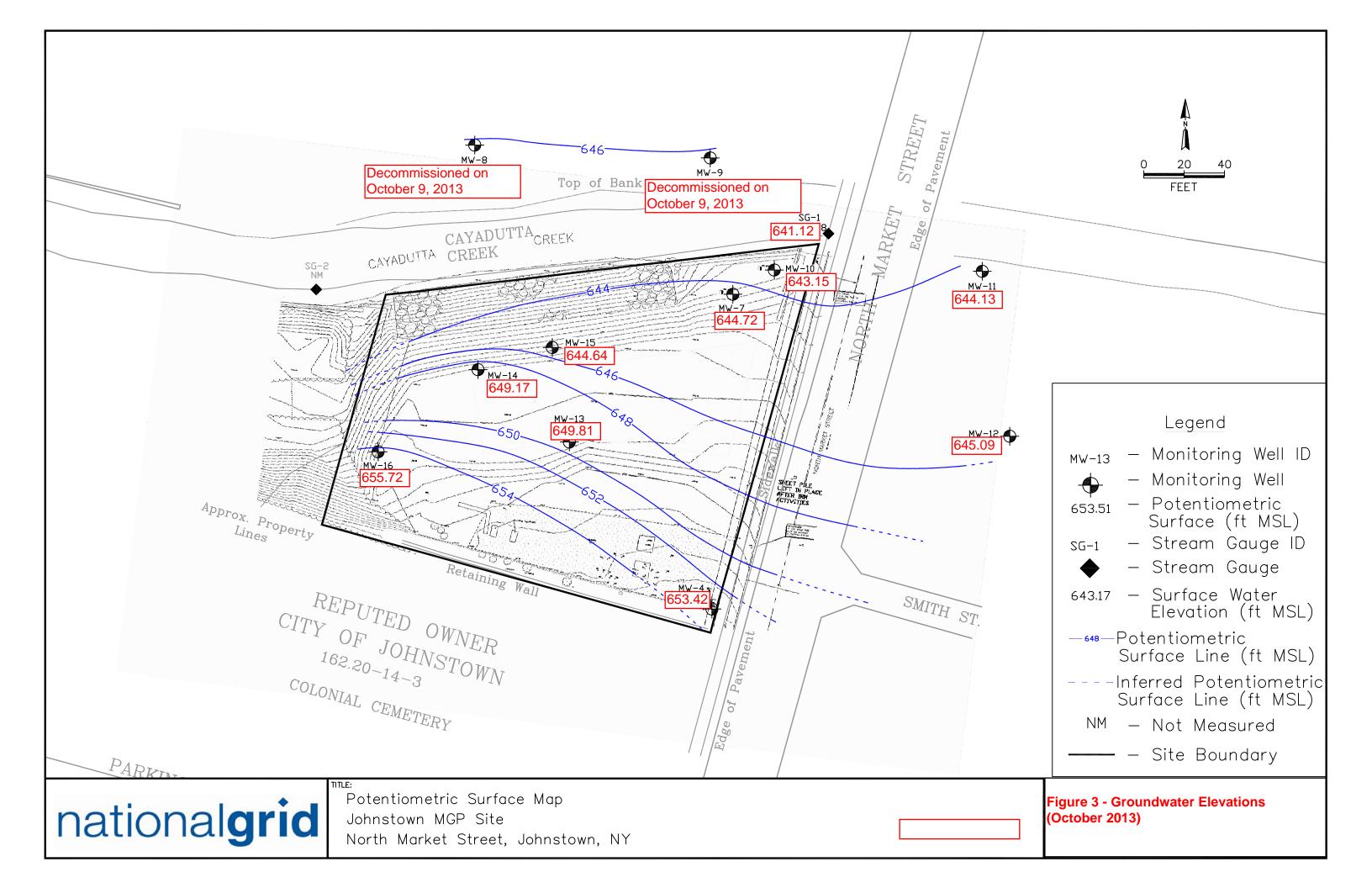
PAHs - Polycyclic Aromatic Hydrocarbons

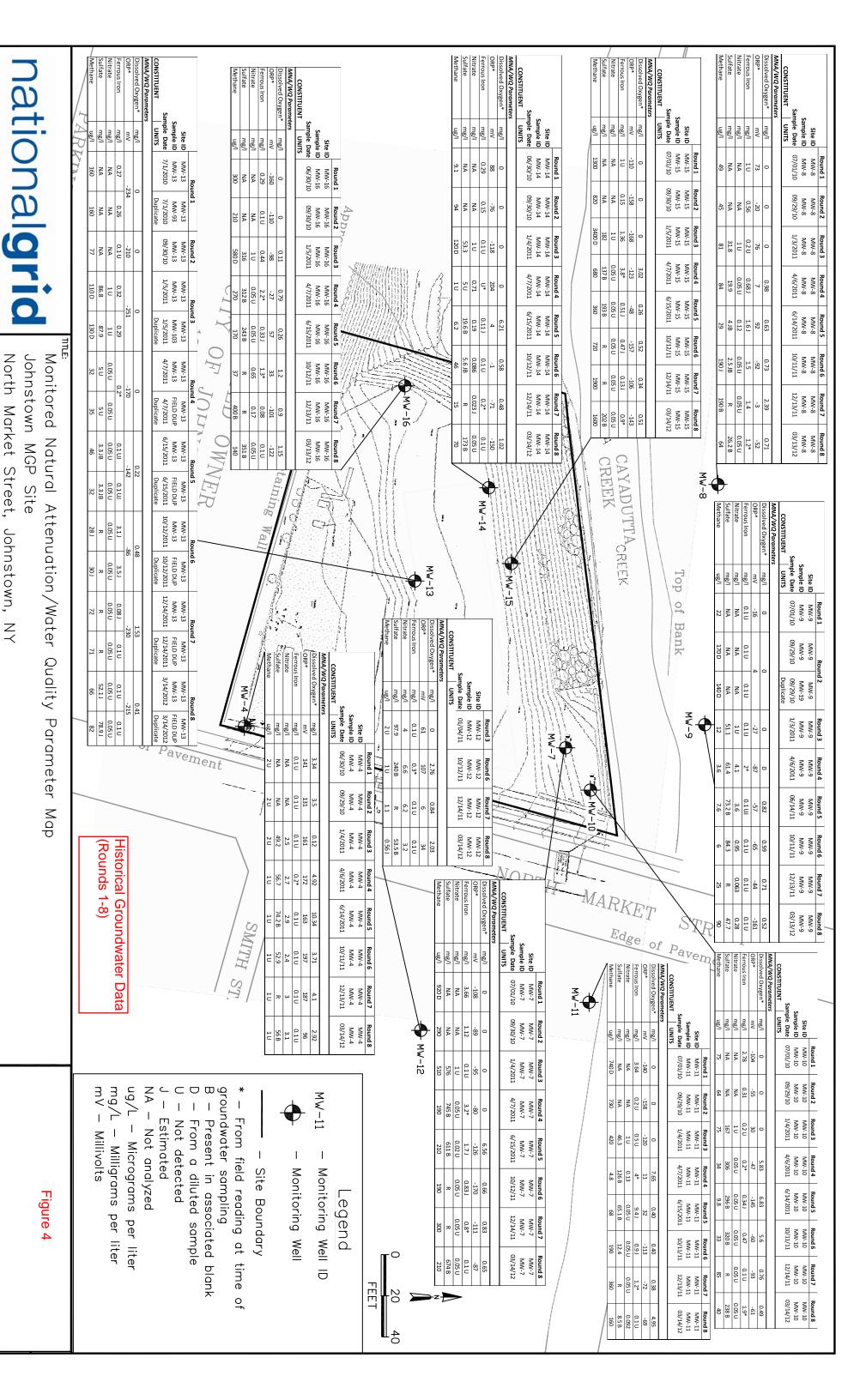
R - Rejected

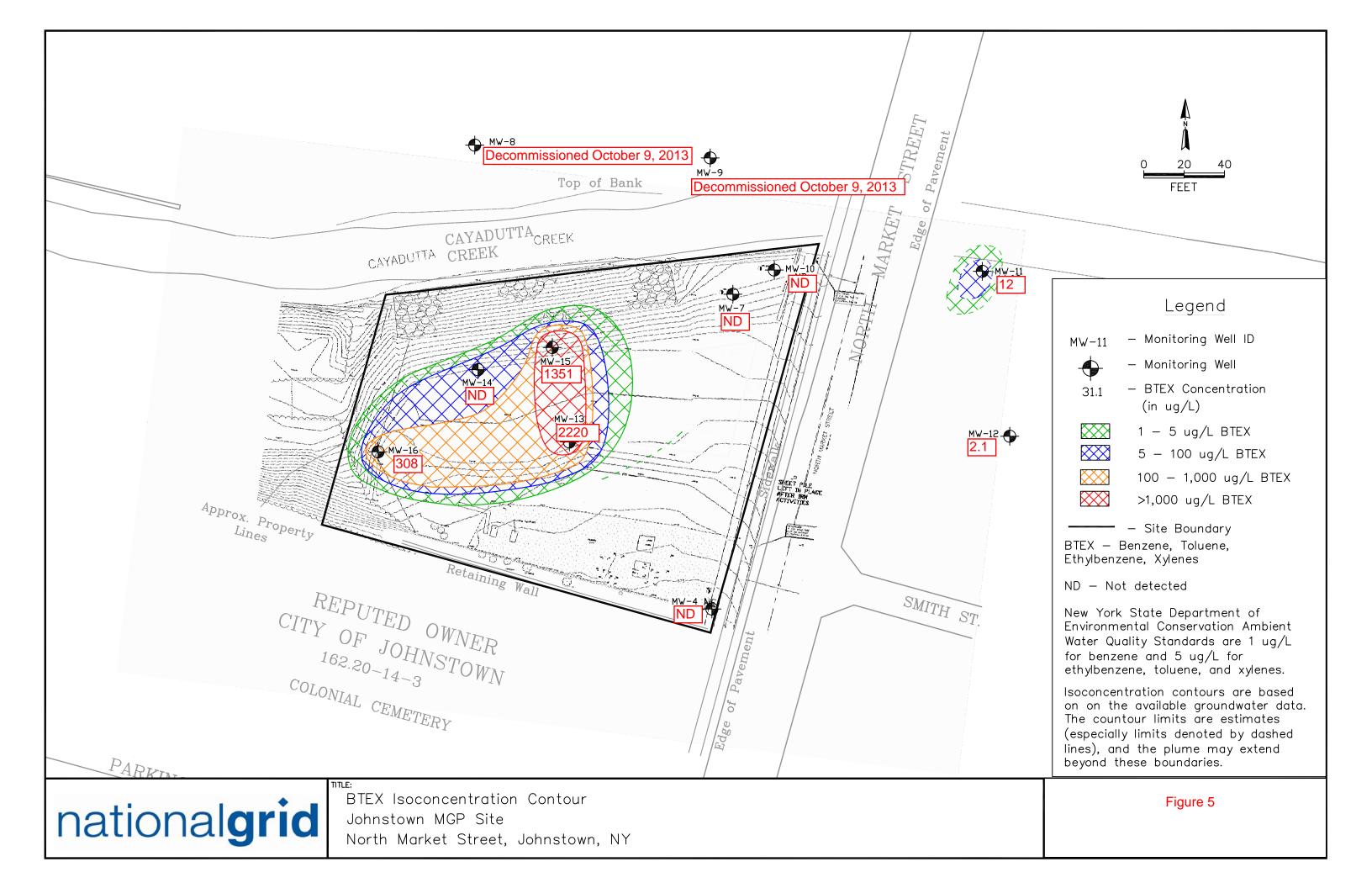

U - Not Detected

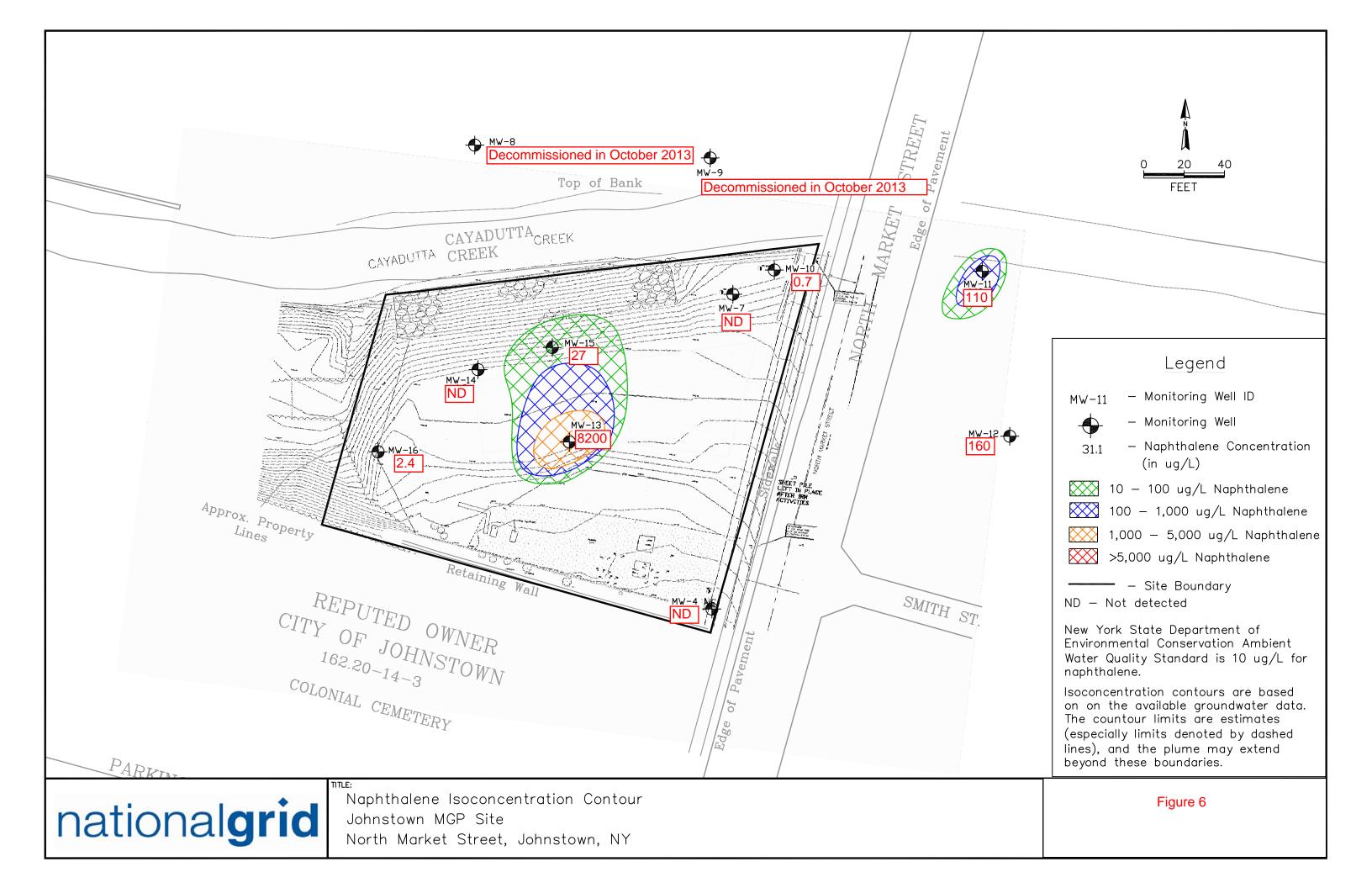

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-16) Johnstown MGP Site Johnstown, NY


CONSTITUENT	Sample Date UNITS	09/30/10	01/05/11	04/07/11	06/15/11	10/12/11	12/13/11	03/13/12	10/09/12	04/18/13	10/08/13
MNA/WQ Parameter	rs										
Alkalinity (as CaCO3)	mg/l	442	410	R	R	586 J	600 J	R	436	530	585
Chloride	mg/l	7.2	6.7	9.4	6.1 B	3.4 J	R	12.7	12.8	5.5	5.4
Ethane	ug/l	2.5 U	2.5 U	30 U	30 U	1.5 U	1.5 U	0.57 J	750 U	750 U	750 U
Ethene	ug/l	2.5 U	2.5 U	30 U	30 U	1.5 U	1.5 U	2.6	700 U	700 U	700 U
Ferrous Iron	mg/l	0.1 U	0.44	R	0.33 J	R	0.08	0.1 U	0.12	0.1 U	0.13
Manganese	mg/l	NA	0.7	0.59	0.9	0.17	0.61	0.88	1.1	0.63	0.7
Methane	ug/l	210 J	580 D	270	170	37	400 B	140	550	170	150
Nitrate	mg/l	NA	1 U	0.05 U	0.05 U	0.65	0.17	0.05 U	0.05 U	0.1	0.05 U
Nitrogen	mg/l	3.2	2.75	2.6	1.8	R	R	3.2	3.8	3.6	2.8
Sulfate	mg/l	NA	316	312 B	243 B	R	R	351 B	487	140	86
Sulfide	mg/l	NA	2.7 J	1 U	1 UJ	0.8 J	1 U	R	1 U	1 U	1 U


Notes:


- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration
- mg/l Milligrams per liter
- NA Not analyzed
- R Rejected
- U Not Detected
- ug/I Micrograms per liter





North

Market

Street,

APPENDIX A FIELD DATA

National Grid 109 North Market Street, Former MGP Site Johnstown, New York

Well ID	Sample?	Well Size?	DTW	DTP	DTB	Comments
RW-1	No	2"	15.95		21.50	
MW-4	Yes	2"	23.12		27.32	
MW-7	Yes	2"	14.36	-	22.10	
MW-10	Yes	2"	14.44		22.05	
MW-11	Yes	2"	13.16		22.90	
MW-12	Yes	2"	14.99		22.24	
MW-13	Yes	2"	15.08		22.75	MS/MSD
MW-14	Yes	2"	14.74	,	23.55	FD-1013
MW-15	Yes	2"	17.21		23.00	
MW-16	Yes	2"	9.85		19.45	
Gauge-1 (bridge)	No		18.85			

DTW -depth to water
DTP -depth to product
DTB -depth to bottom
All from top of casing

Site Management Plan Inspection Form

Date: 10/7/2013 Technician: Rosenzweig		rth Market town, New		Time: Weather:	1100 75 °F
	Veget	tation Ca _l	p		
Condition of Grass	GOOD	FAIR	POOR	COMMENTS:	
Condition of Site Trees	NONE	MINOR	SIGNIFICANT	COMMENTS:	
Surface Erosion	NONE	MINOR	SIGNIFICANT		
Has the site been maintained/mowed?	YES		NO	COMMENTS:	
	Sheet	t Pile Wal	 		
Has any construction occurred that may have impacted the sheet pile wall?	YES		NO	COMMENTS:	
	Site	e Wide			
Does the property continue to be used for commercial and/or industrial uses?	YES		NO	COMMENTS:	
Does the use of groundwater for potable or process water continue to be restricted?	YES		NO	COMMENTS:	
Are agricultural or vegetable gardens present on he property?	YES		NØ	COMMENTS:	
Oo the Engineering Controls continue to perform as designed?	YES		NO	COMMENTS:	
Do the Engineering Controls continue to be protective of human health and environment?	YES		NO	COMMENTS:	
Are the requirements of the Site Management Plan being met?	YES		NO	COMMENTS:	
Are the requirements of the Environmental Easement being met?	YES		NO	COMMENTS:	
Since the last inspection has the groundwater been sampled in accordance with the SMP?	YES		NO	COMMENTS:	
Since the last inspection have there been any changes to the remedial system?	YES		NO	COMMENTS:	
Are there any needed changes?	YES		NO	COMMENTS:	
		ja vite		COMMENTS:	

	Miscellaneous	
Evidence of Trespassing	YES NO COMMENTS:	
Litter	NONE MINOR SIGNIFICANT COMMENTS:	

NO

General Comments:

Are the site records complete and up to date?

TestAmerica Albany 25 Kraft Road Albany, NY 12205

Chain of Custody Record

<u>TestAmerica</u>

	Sampler		אנם יים		3.77	N OCC
Client Information	ī	Ö	Gray-Erdmann, Peggy J	Cellier Hacking Mols)	wing wols)	480-39678-10483.1
Timothy Beaumont	Phone	E-1	E-Mait peggy, gray-erdmann@testamericaine.com	nc.com		Page: Page 1 of 2
Company: CDM Smith. Inc.			- Tony	9,00		# dol
Address	Due Date Requested:		Alicalysis Alicalysis	Pais Reduested		Precentation Codes.
One General Motors Drive						3
Syracuse	TAT Requested (days):			3710		
State, Zip NY, 13206	1 ···		50	- - - - - - - - - - - - - - - - - - -		D-Nitic Acid P - Na2O4S E - NaHSO4 Q - Na2SO3
Phone	PO#: 36380.99758			Me, all		F - MeOH R - Na2S2SO3 G - Amchlor S - H2SO4
Email beaumonttj@cdmsmith.com	MO#		et me8 le			I - Ice J - Di Water
Project Name COM Smith Event Deen Johnstons N. Madas Grand	Project #		n level nevel w			K-EDTA L-EDA
She	SSOW#:		nodh ol H/ IIIV In	abil Isto	otl a	Other
New York			ISD - I - P. eldal	iluë ·	nou	
		Sample Matrix Type Sample, Cacomp, Demonstrated	Helitered Filtered Fig. 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19	K_175 - (MO 4500_82_F - 2A - Cyanid 1.2, 353.2_Ni	iniisala - 802 6 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	
Sample Identification	Sample Date Time	G=grab) BT=Theum, A=Atr Preservation Code:	28 Z 28 Z 28 Z 28 Z	WS G	956 2	Special Instructions/Note:
MW-4-1013	27	. Water		3 \		
MRM 7 4045	1	+	/ / /	< / /	, ·	
MW-7-1013	5,77,5 6,0	Water				
MW-10-1013	7.6	Water				
MW-11-1013	1 1.3/5	Water				
MW-12-1013	52), 7.	Water				
MW-13-1013	151 15cm	Water				
MW-13-1013 MS	15/15 12	Water				
MW-13-1013 SD	55.07.	Water				
MW-14-1013	(1) 1 1 1 5 47)	Water				
MW-15-1013	13'8 3 655	Water			-	
MW-16-1013	(A)	Water	7777	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	
Possible Hazard Identification Non-Hazard Plammable Skin Intent Poison B	Linknown	Radiological	Sample Disposal (A fee	may be assessed if san	if samples are retain	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Months
, III, IV, Other (specify))	Special Instructions/QC Requirements:			
Empty Kit Relinquished by:	Date:		Time:	製べん	Method of Shipment:	
Reinduished by Marker - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Date/Timpe		S. v. 7L Received D		Date/Tinge	15:10 Company A
Manufacture of the Control of the Co	145/13	Company	2 Referred by	1 17	Date/Time.	1200 Company
Г	Dayeringe.	Company	Received by.)	Date/Time:	Сотралу
Custody Seals Intact: Custody Seal No.: A Yes A No			Cooler Temperature(s) ² C and Other Remarks	nd Other Remarks	£ 2.1.2	1#5
	17.0					

25 Kraft Road Albary, NY 12205

Chain of Custody Record

TestAmerica

	Sampler.			Lab PM		Ì		١		Car	er Track	Carrier Tracking Nots)			SN COC		Γ
Client Information				Gray-Erdmann, Peggy J	mann,	Peggy	ſ,				<u>.</u>				480-39678-10483.2	0483.2	
Client Contact. Timothy Beaumont	Рколе			E-Mail. Peggy gray-erdmann@testamencainc.com	ay-erd	ฏ บลบบ (G	testan	tericair	C.COT	,					Page Page 2 of 2		
Company.					,	,				1					1 00 # qor		T
CDM Smith, Inc.							4	naly	Analysis Requested	due	sted						
Address: One General Motors Drive	Due Date Requested:			4500						<u> </u>				_	Preservation Codes:	ĕ	
City Syracuse	TAT Requested (days):		:		116						3 10				A - HCL B - NaOH		-
State, Ztp NY, 13206						58]					00591				D - Nitric Acid E - NaHSO4		- 1
Phone:	PO# 36380.99758			(0		islovir					MS ,ole				F - MeOH G - Amchlor H - Ascorber Act	R - Na252SO3 S - H2SO4 d 7 - TSO Decembedase	9
Email beaumonttj@cdmsmith.com	#OM			N 10 8		19\$ fe			ро		D_eisi			S.		,	¥
Project Name CDM Smith/ Event Desc. Johnstown (N. Market Street)	Project #* 48002647			9A) 9		ow let					IIN '91:				K - EDTA L - EDA	W - ph 4-5 Z - other (specify)	· · · · · ·
Site: New York	SSOW#:			dweg		HA9 -					ite, DS			nos to	Other:		
sample Identification	Sample Date	San Ty Sample (C=c	Sample Matrix Type (wwwster, Sacild, Cacomp, convested)	betailii blai	89K_176_CO2 •	HA9_11_2012	ejy tstot - 2.12: 	- X3T8 - 808S	35K_175 - (MOC	O12A - Cyanide	1117 323°5 "NIII	320B - Alkalinii 500_FE_D - Fei		redmulf lsto			
	Γ	۲.	- 60	X		+	╀∺	1	+~	111			Ĺ	ι×		operation and another	T
FD-1013	112/2/16.	*,7	Water	jā.	含	1		_	×	+-				-			
75-15/5								X		-		-		╁			Γ
			_		-					<u> </u>		-		-			Τ
	_				-		ļ					-					
	/	#								<u> </u>				<u></u>			
			ļ														
	Ž		7														
		S Z			_												
	ر -	4			_												
					-				-					+			
				7	- James] g) jeso	fee n	ay per	asse_	sed ii	samp	es are	retain	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	n 1 month)	T
Mon-Hazard Flammable Skin Intant Poison B Deliverable Requested: 1, II, IV, Other (specify)	ison B Unknown	Radiological	ogical			Return Instru	Special Instructions/QC Requirements:	ac Re	quirem	Dispo ents:	Disposal By Lab	rap	,	Arch	Archive For	Months	
remain Kit Religion tehad hy	1						١	ľ	1	1	N. H.	3,7					
Emply rail remindrened by.	DateGme	ni.		ime:	- 1	,	Ĭ	7	1			Metrod of Shipment	men:				
M HAM	Daniel John Co.		Company		Yes		1/6	1	1	H	\bigvee	/C/	10/8//	W	15:10	Company	
Remidence by Conference by	(c/2/1/3		Company	#		ecewed	7	3	d			eo C	Date (Tithe	<u> </u>	0670	Company	
			Company	.	Xeo O	Keceived by						Cat	Date/Time			Сотралу	
Custody Seals Intact: Custody Seal No.:					ဝိ	er Temp	Cooler Temperature(s) °C and Other Remarks	s) °C an	Other	Зетагк		1.4		2, 1,	145.3		
								İ					ļ				7

Duplicate? Sample Time: MS/MSD?

Yes

Laboratory: **Test America** Amherst, New York

109 North Market Street, Joh	nstown New York		• (
	Rosenzweig		Date: 10/8//3
Job Number: 36380.99758			Weather: Clear to Co=
Well Id. MW-7	.,		Time In: 935 Time Out:
Well Information		<u></u>	
vveii information	700		
Donth to Water	TOC	Other	Well Type: Flushmount Stick-Up
Depth to Water: Depth to Bottom:	(feet) /4/36		Well Locked: Yes No
Depth to Product:	(feet) 22.10	- 	Measuring Point Marked: Yes No
Length of Water Column:	(feet) (feet)	, 	Well Material: PVC SS Other:
Volume of Water in Well:	# #A 15 1	/-	Well Diameter: 1" 2" Other:
Three Well Volumes:	(gal) 1,24 (gal) 3,77		Clear No Odov/Shan
THICE TON VOICINGS.			Clear No Odor/Shees
Purging Information			
	_		Conversion Factors
Purging Method:	Bailer Per	istaltic Well Wizar	d Dedicated Pump gal/ft. 1" ID 2" ID 4" ID 6" ID
Tubing/Bailer Material:	Teflon Stainle	ess St. Polyethy	viene other of
Sampling Method:			d Dedicated Pump water 0.04 0.16 0.66 1.47
Average Pumping Rate:	(ml/min) 500	2	1 gallon=3.785L=3785mL=1337cu. feet
Duration of Pumping:	(min) 323		
Total Volume Removed:	(gal)	Did well go dry?	YesNo_K
Horiba U-52 Water Quality Me	eter Used?	Yes No	
Time DTW	Temp pH	ORP	Conductivity Turbidity DO TDS
(feet)	(°C)	(mV)	1
940 15.38	14,41 7.5		
945 15,68	1342 75		4 6 3
950 15.75		36 -47	
955 15.98		3 - 4/7	
1000 16:11	13.70 7.		7 6 3 1 2 3 2 1 3 1 3 1
not 16.31		32 -56	1.63 736 001 0.09
			7
Sampling Information:			
EPA SW-846 Method 8270	SVOC P		2 - 250 ml amber Yes No
EPA SW-846 Method 8260	VOC's B		3 - 40 ml vials Yes No
EPA Method 610B	LEAD MANGAN		1 - 250 ml plastic Yes No
EPA Method 9012A	TOTAL CY		1 - 250 ml plastic Yes No
RSK_175_C02	DISSOLVED CARE		1 - 250 ml plastic Yes No 3 - 40 ml vials Yes No
EPA Method 2320B	TOTAL ALKA	ALINITY	1 - 125 ml plastic Yes No
EPA Method 351.2	TOTAL KJELDAHI		1 - 250 ml plastic Yes No
SM 4500_S2_F SM_3500_FE_D	SULFII FERROUS		1 - 250 ml plastic Yes No
RSK_175	METHANE/ETHE		1 - 125 ml plastic Yes No
D516	SULFA		2 - 125 ml plastic Yes No
EPA Method 353.2	NITRA	TE	
SM_4500_CI_E	CHLORI	DE	
Sample ID: MW-7-1013	Duplicate?	Yes No No	Shipped: Drop-off Albany Service Center
Sample Time: 10 10	MS/MSD?	Yes No	Laboratory: Test America
	,		Amherst, New York

Sample ID: MW~7~/0/15 Sample Time:

Duplicate? MS/MSD?

Yes No No

Shipped: Drop-off Albany Service Center

Laboratory: Test America Amherst, New York

Sample ID: MW////////

Sample Time:

Duplicate?

MS/MSD?

Yes

Shipped: Drop-off Albany Service Center

Test America Amherst, New York

Laboratory:

	Rosenzweig	·	Date: 10/8//3	
Job Number: 36380.99758		•	Weather: Clear & 60°	
Well ld. MW-12			Time In: 10.25 Time Out:	
Well Information				
vveii miormation	700	-	· · · · ·	_
	TOC	Other	Well Type: Flushmount Stick-Up	р
Depth to Water:	(feet) 14.74	· · · · · · · · · · · · · · · · · · ·	Well Locked: Yes No	<u>ال</u> اه
Depth to Bottom:	(feet) 22.24		Measuring Point Marked: Yes No	٥
Depth to Product:	(feet)		Well Material: PVC SS Other:	-
Length of Water Column:	(feet) 7, 25		Well Diameter: 1" 2" Other:	
Volume of Water in Well:	(gal) / 1 (a)		Comments:	
Three Well Volumes:	(gal) 3 13		clear N. Shey/ Odo	_
1:				
Purging Information				
	_		Conversion Factors	
Purging Method:	Bailer Peristal		d Dedicated Pump gal/ft. 1" ID 2" ID 4" ID	6" ID
Tubing/Bailer Material:	Teflon Stainless		ylene other of	
Sampling Method:	Bailer Peristal	ıltic Well Wizam	d Dedicated Pump water 0.04 0.16 0.66	1.47
Average Pumping Rate:	(ml/min) 500		1 gallon=3.785L=3785mL=1337	
Duration of Pumping:	(min) 3ラ			
Total Volume Removed:		Did well go dry?	Yes No	
Horiba U-52 Water Quality Me		′es No	· · · · · · · · · · · · · · · · · · ·	
HOMDA U-DZ VVALCE Quality IVIC	ter Useu?	es No No		
Time DTW	Temp pH	ORP	Conductivity Turbidity DO Ti	DS
(feet)	(°C)	(mV)	1 1	g/L)
1130 15.04	12.79 7.20			3 W
1035 15,08	13.21 7.13		2,19 >1000 0,01 1.4	-
1240 1501	13,24 - 04	147		6 E
104 5 15,14	13.43 7.03	154		43
101 200	13.66 7.00		82.69 7000 D.OI 1.	
1110 15,24	13.75 702	169	2.69 7/000 0:01 1.7	<u> </u>
1 1 10 1 /5·24	13.10 100	160	3.61 2/300 -01 1.1	ح' ⁄
			 	-
		<u> </u>		
1				
Complementations				
Sampling Information:		· · · · · · · · · · · · · · · · · · ·		
EPA SW-846 Method 8270	SVOC PAH		2 - 250 ml amber Yes ⊠No	
EPA SW-846 Method 8260	VOC's BTE	X	_ 3 - 40 ml vials Yes No	
EPA Method 610B	LEAD		1 - 250 ml plastic Yes ⊠No	
	MANGANES		A	_
EPA Method 9012A RSK_175_CO2	TOTAL CYANI DISSOLVED CARBON		1 - 250 ml plastic Yes No	
EPA Method 2320B	TOTAL ALKALII		3 - 40 ml vials Yes No 1 - 125 ml plastic Yes No	
EPA Method 351.2	TOTAL KJELDAHL N		1 - 125 ml plastic Yes No 1 - 250 ml plastic Yes No	
SM 4500_S2_F	SULFIDE		1 - 250 ml plastic Yes No	
SM_3500_FE_D	FERROUS IR	ON	1 - 125 ml plastic Yes No	
RSK_175	METHANE/ETHENE	/ETHANE	3 - 40 ml vials Yes ⊠No	
D516	SULFATE		2 - 125 ml plastic Yes No	
EPA Method 353.2	NITRATE			
SM_4500_CI_E	CHLORIDE			
Sample ID: MW-12-	175 / Branding		Shipped: Drop-off Albany Service Center	
Sample Time: 170 1	/フ/ ŚDuplicate? MS/MSD?	Yes No	Laboratory: Test America	
Sample Time. 110.3	INO/INOD :	res INO	Test America Amherst, New York	k
	<u> </u>		, <u> </u>	Λ

National Gri	id Market Street, Jo	ohnstown Nev	w York		·	e de la companya de l		*
Sampling Po	ersonnel: Eri	c Rosenzwei	7		Date:	#110	/12	
Job Number			9		Weather:	Clear		20
Well Id.	MW-13				Time In:	1050	Time O	4.
<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>					Time in.	JO JO	Time Of	it.
Well In	formation					<u></u>		
Depth to Wa	ater	(feet)	15.06	Other	Well Type Well Loci		shmount	Stick-Up
Depth to Bo		(feet)	22.75				Yes	No
Depth to Pro		(feet)	22.10		Well Mate	Point Marked		No
<u> </u>	ater Column:	(feet)	7 (7		Well Diar		: [ther:
	Vater in Well:		7-67		•			ther:
Three Well		(gal)			Commen	, ,	5/ /	_ 1 _
THICC VVCII	Volumes.	(gal)	3.67		Clea	it svoj	JAGEN / C	2010
			· · · · · · · · · · · · · · · · · · ·					
Purging	Information							
Durging Mot							Conversion	
Purging Meti		Baile		<u> </u>	rd Dedicated Pump	<u> </u>	1" ID 2" ID	4" ID 6" ID
Tubing/Baile		Tefion		r—	ylene 🔀 other	├	1 1	
Sampling Me		Bailer	اسسا	Well Wiza	rd Dedicated Pump	<u> </u>	<u> </u>	
Average Pur		(ml/min)	<u>* 5000</u>			1 gal	lon=3.785L=3785	mL=1337cu, feet
Duration of F		(min)	30					
Total Volume	Removed:	(gal)	<u>2/</u> _ Di	id well go dry	? YesNo	$\mathbb{Z}^{\triangleright}$		
Horiba U-52	Water Quality N	Meter Used?	Yes	No	•			*
Time	DTM.			T				
Time	DTW	Temp	pН	ORP	Conductivity	Turbidity	DO	TDS
16.55	(feet)	(°C)		(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)
1055	15.21	18.18	7.93	32	6.465	75.9	0.007	0377
1100	15.38	17 - 7	8,11	-/2	0.411	97.3	0.01	0.265
1105	15.42	16.330	8.40	-48	0.38%	69.9	6.01	6252
1110	15.48	1666	7.48	-57	0.380	54.4	201	0248
7175	15.51	16.30	861	~72	0.377	£9,3	0.0/	0345
1)207	15.55	16.10	8.65	-76	0.378	18.0	0.01	0240
						•		7.3
				-				
							<u> </u>	
Sampling Inf	ormation:							
EPA SW-846 N	Aethod 8270		SVOC PAH's		6	- 250 ml ambe	- W-	
EPA SW-846 N			VOC's BTEX	 :		9 - 40 ml vials		N _N O
EPA Method 6°	IOB		LEAD		-	- 250 ml plast		No H
			MANGANESE				103	
EPA Method 90			OTAL CYANID		3	- 250 ml plasti	ic Yes	No∏
RSK_175_CO2			ED CARBON E			9 - 40 ml vials	Yes	
EPA Method 23 EPA Method 35			TAL ALKALINI			- 125 mi plasti		
SM 4500_S2_F		TOTAL	JELDAHL NITI SULFIDE	KUUEN		- 250 ml plasti		
SM_3500_FE_		F	ERROUS IRON			250 ml plasti125 ml plasti		
RSK_175	·		NE/ETHENE/ET			- 125 mi piasti 9 - 40 mi vials	c Yes Yes	
D516			SULFATE			- 125 ml plasti		
EPA Method 35			NITRATE		ľ	piwoti	- 108	⊂>1''''└── │
SM_4500_CI_E			CHLORIDE			*		
Sample ID: F	nasole e in	12 5		. [<u></u>	Shi _l	pped: Drop-of	f Albany Service	Center
Sample ID: //	110×13 = 10.			es No			-	
pio 18116	<u> </u>	_ IVIQ/	ייטטויי Y	es No	ı '	_aboratory:	Test Ame Amherst, Ne	
							Antinicipi, Me	W TUIK

On alian Passanalia Fria						_	
	Rosenzweig			Date:		15	
Job Number: 36380.99758	5			Weather:	المراجعية والمراجع		
Well id. MW-14	·			Time In:	1305	Time Ou	t:
Well Information		·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··			 		
vveii information							[]
		TOC	Other	Well Type			Stick-Up
Depth to Water:	(feet)	14:74		Well Lock		Yes	No
Depth to Bottom:	(feet)	23.55`		_	Point Marked:	Yes 🔀	No
Depth to Product:	(feet)			Well Mate	rial: PVC	⊠ssot	her:
Length of Water Column:	(feet)	8.31		Well Diam	neter: 1"	2"∑Ot	her:
Volume of Water in Well:	(gal)	[4/		Comment	, ,	<u> </u>	
Three Well Volumes:	(gal)	4.23		Clea	- No 3	hear lo	-bir
	···						
	·					<u> </u>	
Purging Information					p.		
				•	1	Conversion	Factors
Purging Method:	Bailer	Peristalti	ic Well Wizaı	rd Dedicated Pump	⊠ gal/ft.	1" ID 2" ID	4" ID 6" iD
Tubing/Bailer Material:	Teflon	Stainless S	it. Polyeth	ylene other	of		
Sampling Method:	Bailer	Peristalti	ic Well Wizaı	d Dedicated Pump	water	0.04 0.16	0.66 1.47
Average Pumping Rate:	(ml/min)	600		•	1 gallo	n=3.785L=3785r	nL=1337cu. feet
Duration of Pumping:	(min)	30					
Total Volume Removed:	(gal)	2/ [Did well go dry'	Yes Nø			
Horiba U-52 Water Quality M	eter Used?	/	s No	— /:	- 1		
Tioriba 0-32 Water Quality W	eter Useu?		s⊠ _{IMO} ∐				·
Time DTW	Temp	рН	ORP	Conductivity	Turbidity	DO	TDS
(feet)	(°C)		(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)
1319 14.38	13.24	787	168	11.655	449	051	0.436
1315 1490	12.73	7.69	98	0,677	7800	(2201	Otrzz
1320 15,01	16.67	1.67	49	0682	736	0.01	0.437
1325 15,04	12: 60 Co	167	23	0684	962	0,01	0.437
1557 15.11	12.68	767	115	0.688	976	0.01	0437
1535 1516	1268	7.608	14	0683	771	0.01	0437
			7				
						·	
				<u></u>			<u></u>
Sampling Information:							
EPA SW-846 Method 8270		SVOC PAH's			050	.,	K 7
EPA SW-846 Method 8260		VOC's BTEX			- 250 ml amber 6 - 40 ml vials	r Yes Ves	No No
		LEAD	`	•	- 250 ml plastic		No H
EPA Method 610B		MANGANESE		1	200 mi piastic	, , , , ,	
EPA Method 9012A	. Т	OTAL CYANIL	DE	2	- 250 ml plastic	Yes	No□
RSK_175_C02		/ED CARBON			6 - 40 ml vials	Yes	No□
EPA Method 2320B		TAL ALKALIN			- 125 ml plastic		⊠No □
EPA Method 351.2	TOTAL	KJELDAHL NI	TROGEN		- 250 ml plastic		⊠No □
SM 4500_S2_F SM 3500 FE D		SULFIDE ERROUS IRO	ANI ANI		- 250 ml plastic		×No I
RSK_175		NE/ETHENE/E			- 125 ml plastic 6 - 40 ml vials		No No
D516		SULFATE			- 125 ml plastic		No -
EPA Method 353.2	:	NITRATE		l "T	c pidotio		<u> </u>
SM_4500_CI_E		CHLORIDE					
Samuel IS Mi X PM . Ja 2				Shi _l	oped: Drop-off	Albany Service	Center
Sample ID: Alle 14 - 10)			Yes No	FD-1013	-t	_	
Sample Time: 1340		/MSD?	Yes No X	ا	_aboratory:	Test Am	

National Grid 109 North Market Street, Joh	nstown New York							
Sampling Personnel: Eric	Rosenzweig		Date: `-/	018/13	<u> </u>			
Job Number: 36380.93808			Weather:	clear-	2 SJ 5			
Well Id. MW-15			Time In:	0800	Time Ou	t:		
Well Information	TOC	Other	Well Type	e: Flus	shmount	Stick-Up		
Depth to Water:	(feet) 17.2/		Well Lock	æd:	Yes	No		
Depth to Bottom:	(feet) 23.00		Measuring	Point Marked:	Yes	No		
Depth to Product:	(feet)		Well Mate	erial: PVC	:⊠ss⊟oı	ther:		
Length of Water Column:	(feet) 5.79		Well Dian	neter: 1"	' 2" X 01	her:		
Volume of Water in Well:	(gal) (2) 9.3		Comment	s:				
Three Well Volumes:	(gal) 2.78		clear	No Si	lesen 10	los		
Purging Information					Conversion	Factors		
Purging Method:	Bailer Per	ristaltic Well Wiza	rd Dedicated Pump	gal/ft.	1" ID 2" ID	4" ID 6" ID		
Tubing/Bailer Material:	¬ -		ylene other	1 3 2		- -		
Sampling Method:	Bailer Per		d Dedicated Pump		0.04 0.16	0.66 1.47		
Average Pumping Rate:	(ml/min) , 500			<u> </u>		mL=1337cu, feet		
Duration of Pumping:	(min) 30			_ · gan	511 011 00E 07 051	III 1007 Cu. leet		
Total Volume Removed:	(gal)	Did well go dry'	? Yes No					
		-	100119					
Horiba U-52 Water Quality Meter Used? Yes No								
Time DTW	Temp pH	I ORP	Conductivity	Turbidity	DO	TDS		
(feet)	(°C)	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)		
805 17.33	12.76 7.3	8 -57	0,982	39.7	001	0.625		
810 17.50	12.77 7.2	1 163	0.961	21.2	001	0615		
	<i>y</i>	0 -65	10.45 3	216.5	0.01	0.609		
820 17.58	12.74 7.2	9 -70		Ola C	0.01	0.612		
825 17.65	2.74 7.7	9 -73	0665	14-9	00/	0/12		
X311 17.70 '	12 72 700	30 -72	0.981	145	0.01	0.629		
			i					
				- · · · · ·		<u> </u>		
Sampling Information:								
EPA SW-846 Method 8270	SVOC F		2	2 - 250 mi ambe		⊠No □		
EPA SW-846 Method 8260	VOC's E		.	3 - 40 ml vials		⊠∾□ ∥		
EPA Method 610B	LEA! MANGAN		1	- 250 ml plasti	c Yes	No □		
EPA Method 9012A	TOTAL CY			- 250 ml plasti	c Vo-	No□ I		
RSK_175_CO2	DISSOLVED CAR		'	3 - 40 ml vials	Yes			
EPA Method 2320B	TOTAL ALK		1	- 125 ml plasti				
EPA Method 351.2	TOTAL KJELDAH		1	- 250 ml plasti	c Yes			
SM 4500_S2_F	SULFI			- 250 ml plasti				
SM_3500_FE_D RSK_175	FERROUS		1	- 125 ml plasti				
D516	METHANE/ETHE		1 ^	3 - 40 ml vials	Yes			
EPA Method 353.2	NITRA		l	- 125 ml plasti	c Yes	≥ No L		
SM_4500_CI_E	CHLOR							
Sample ID: MW/5-10		Yes No X	Shi	ipped: Drop-of	ff Albany Service	Center		
Sample Time:	MS/MSD?	Yes No		Laboratory:	Test Am Amherst, N			

109 NOITH Warket Street, John							
	Rosenzweig			Date:		3	
Job Number: 36380.93808				Weather:	Overca		ラデ
Well Id. MW-16				Time In: /	000	Time Out	[:
Well Information					 -		
		TOC	Other	Well Type	: Flus	shmount 🔀 🤱	Stick-Up
Depth to Water:	(feet)	9.85		Well Lock		Yes	No
Depth to Bottom:		19.45		Measuring	Point Marked:	Yes	No
Depth to Product:	(feet)	.,		Well Mate		:⊠ss⊡oti	her:
Length of Water Column:	(feet)	160		Well Diam			
Volume of Water in Well:	(gal)	1.54		Comment	:s: , _/		
Three Well Volumes:	10.	1.121		clear	No SL	con/Oc	100
							
Purging Information					-		
		_				Conversion F	
Purging Method:	Bailer	Peristaltio		d Dedicated Pump	gal/ft.	1" ID 2" ID	4" ID 6" ID
Tubing/Bailer Material:	Teflon	Stainless St	t. Polyethy	ylene other			
Sampling Method:	Bailer	Peristaltio		d Dedicated Pump		0.04 0.16	0.66 1.47
Average Pumping Rate:		-500		-	<u> </u>	on=3.785L=3785n	
Duration of Pumping:	(min)	47		<u> </u>			
Total Volume Removed:	(gal)	76/ D	oid well go dry?	Yes Nø	P7		
		•		· · · · · · · · · · · · · · · · · · ·	الملك	•	
Horiba U-52 Water Quality Me	iter Useu :	1 03	s No	·····	<u> </u>		· · · · · · · · · · · · · · · · · · ·
Time DTW	Temp	рН	ORP	Conductivity	Turbidity	DO	TDS
(feet)	(°C)		(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)
1005 7.93	18.08	7.41	33	0.766	14.3	5.12	0618
1010 9.99	18.50	7.38	360	19916	2.0	2.72	0.625
1015 10:01	18.72	7.38	ダク	0.981	1.8	1.50	0.627
1025 16.02	18.70	7.39	44	0.979	1.5	0.79	0626
K125 10.03	18.84	7.44	45	0.979	0.9	0.01	0.626
1030 10.03	18.36	7.45	96	0.775	0.5	201	0.623
				<u> </u>			
			·			<u></u>	
Sampling Information:							
EPA SW-846 Method 8270	1	SVOC PAH's		5	2 - 250 ml ambe	· Yes	N _N
EPA SW-846 Method 8260		VOC's BTEX		-	2 - 250 mi ambe 3 - 40 ml vials	Yes	No No
		LEAD		1 1	l - 250 ml plasti		No H
EPA Method 610B	<u></u>	MANGANESE			ŕ		
EPA Method 9012A		OTAL CYANIC		1	l - 250 ml plasti		No□
RSK_175_C02		/ED CARBON			3 - 40 ml vials		No□
EPA Method 2320B		TAL ALKALIN			l - 125 ml plasti		
EPA Method 351.2 SM 4500 S2 F	IUIALK	(JELDAHL NIT SULFIDE	ROGEN		l - 250 ml plasti l - 250 ml plasti		
SM 3500_S2_F SM_3500_FE_D		ERROUS IRO	NI .		i - 250 mi plasti I - 125 ml plasti		No No
RSK_175		NE/ETHENE/E			ו - וצט חוו piasu 3 - 40 ml vials	Yes	
D516	+	SULFATE		1 . 2	2 - 125 ml plasti		No
EPA Method 353.2	† <u> </u>	NITRATE		1	· - · · · <u>-</u>	Ī	
SM_4500_CI_E		CHLORIDE]	•		
- In Midally 1913) Due	u +~0		ຼື Sn	ipped: Drop-or	ff Albany Service	: Center
Sample ID: 100-10-1013			Yes No No	*	Laboratory:	Test Am	
Sample Time: 1335	_ IVIO/	MODI	YesINU	1	Laboratory.	I est Am	

APPENDIX B DATA USABILITY SUMMARY REPORT

Data Validation Services

120 Cobble Creek Road P.O. Box 208 North Creek, NY 12853

Phone 518-251-4429 harry@frontiernet.net

November 4, 2013

Matthew Millias CDM Smith One General Motors Dr. Suite 2 Syracuse, NY 13206

RE: Data Usability Summary Report for National Grid- Johnstown Landfill Site Data Package TAL-Buffalo Job No. 480-47485-1

Dear Mr. Millias:

Review has been completed for the data package generated by TestAmerica Laboratories, Inc. that pertains to samples collected 10/07/13 and 10/18/13 at the National Grid Johnstown Landfill site. Nine aqueous samples and a field duplicate were analyzed for BTEX, low level PAHs, three dissolved gases, carbon dioxide, lead, manganese, and eight wet chemistry parameters. Methodologies utilized are those of the USEPA SW846 methods 6010B/8260B/8270C/9012, and ASTM, with additional QC requirements of the NYSDEC ASP.

The data packages submitted contain full deliverables for validation, but this usability report is generated from review of the summary form information, with review of sample raw data, and limited review of associated QC raw data. Full validation has not been performed. However, the reported summary forms have been reviewed for application of validation qualifiers, using guidance from the NMPC generic QAPP, USEPA Region 2 validation SOPs, the USEPA National Functional Guidelines for Data Review, and professional judgment, as affects the usability of the data. The following items were reviewed:

- * Laboratory Narrative Discussion
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Field Duplicate Correlations
- * Laboratory Control Sample(LCS)
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Calibration/Low Level Standard Responses
- * Instrumental Tunes
- * Instrument IDLs
- * Sample Quantitation and Identification

The items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for the DUSR level review.

In summary, most sample results are usable either as reported, or with minor qualification.

Copies of the laboratory case narratives and sample identification summary forms are attached to this text, and should be reviewed in conjunction with this report. Also included with this narrative are sample results forms, with the recommended qualifications applied thereupon.

Chain-of-Custody

The final relinquish entries do not include the time. There is no initial relinquish entry on the second page of the custody forms.

BTEX by EPA8260B/NYSDEC ASP

Sample holding times were met and instrumental tune fragmentations are within acceptance ranges. Surrogate and internal standard recoveries are within required limits. Blanks show no contamination.

Calibrations standards show acceptable responses within analytical protocol and validation action limits.

The matrix spike recoveries (51% to 74%) for benzene, toluene, ethylbenzene, and m,p-xylene in MW13-1013 are outside the laboratory acceptance ranges, and results for those compounds in the parent sample have therefore been qualified as estimated in value.

The blind field duplicate correlations of MW-14-1013 fall within guidance limits.

Some samples were processed only at dilution due to high concentrations of target analytes. This results in elevated reporting limits for undetected analytes.

PAHs by EPA8270C/NYSDEC ASP

Holding times were met and instrumental tune fragmentations are within acceptance ranges. Surrogate and internal standard recoveries are within required limits, unless diluted beyond an applicable evaluation.

The result for benzo(a)anthracene in MW-15-1013 has been edited to reflect non-detection due to very poor mass spectral quality.

The matrix spike recoveries and duplicate correlations of MW-13-1013 show some outlying correlations, but were analyzed at one hundred-fold dilution (due to parent constituency), and the evaluation is therefore not applicable. LCS recoveries are within required ranges.

The blind field duplicate correlations of MW-14-1013 fall within guidance limits, with the exception of that for pyrene (>±CRDL). The results for naphthalene in the parent sample and its duplicate have been qualified as estimated in value.

Some samples were processed only at dilution due to high concentrations of target analytes. This results in elevated reporting limits for undetected analytes.

Methane, Ethane, Ethene, and CO2 by RSK-175

The matrix spikes of MW-13-1013 show elevated recoveries for methane (163% and 187%). The result for that analyte in the parent sample has been qualified as estimated.

The blind field duplicate correlations (>±CRDL) for methane and carbon disulfide in MW-14-1013 fall outside guidance limits, and results for those two analytes have been qualified as estimated in the parent sample and its duplicate.

Instrument performance is compliant, blanks show no contamination, and reported results are substantiated by raw data.

Lead and Manganese by EPA 6010B/NYSDEC ASP

The matrix spikes of MW-13-1013 acceptable accuracy and precision. The blind field duplicate correlation of lead in MW-14-1013 falls outside guidance limits (>±CRDL). The results for that element in the parent sample and its duplicate have been qualified as estimated.

The ICP Serial Dilution evaluation of MW-13-1013 is acceptable.

No low level standards were processed, so accuracy at concentrations near the reporting limit has not been ascertained.

Blanks show no contamination affecting reported results, and reported results are substantiated by the raw data.

Wet Chemistry—Chloride, Sulfide, Sulfate, Nitrate, TKN, Alkalinity, Ferrous Iron, and Total Cyanide

Due to the very short holding time from sample collection (15 minutes), all ferrous ion analyses were conducted beyond the holding time, and those results have been qualified as estimated in value, with a likely low bias.

The result for nitrate in the field duplicate was flagged by the laboratory for holding time exceedence. However, that was based on an artificial time of collection (00:00) entered to keep the identity blind. The actual holding time is compliant, and no qualification is made.

Calibration standard responses are compliant. Blanks show no detections above the reporting limits.

The recoveries for total alkalinity and ferrous ion (34% to 63%) were below the recommended limits in the matrix spikes of MW-13-1013. Sulfate produced highly elevated recoveries (446%) in both matrix spikes, consistent with repeated analyses. The results for those three analytes in the parent sample have therefore been qualified as estimated in value.

The blind field duplicate correlations of MW-14-0413 fall within guidance limits.

Data Package Completeness

Although some of the specific NYSDEC Category B deliverables were not included in the laboratory data package, all information required for validation of the data is present.

Please do not hesitate to contact me if you have comments or questions regarding this report.

Very truly yours,

Judy Harry

VALIDATION DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- UJ The analyte was not detected. The associated reported quantitation limit is an estimate and may be inaccurate or imprecise.
- NJ The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
 - R The data are unusable. The analyte may or may not be present.
- EMPC The results do not meet all criteria for a confirmed identification.

 The quantitative value represents the Estimated Maximum Possible Concentration of the analyte in the sample.

CLIENT and LABORATORY SAMPLE IDs and LABORATORY CASE NARRATIVES

Sample Summary

Client: CDM Smith, Inc. Project/Site: CDM Smith

TestAmerica Job ID: 480-47485-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-47485-1	MW-4-1013	Ground Water	10/07/13 12:45	10/09/13 02:00
480-47485-2	MW-7-1013	Ground Water	10/08/13 10:10	10/09/13 02:00
480-47485-3	MW-10-1013	Ground Water	10/08/13 09:20	10/09/13 02:00
480-47485-4	MW-11-1013	Ground Water	10/08/13 12:15	10/09/13 02:00
480-47485-5	MW-12-1013	Ground Water	10/08/13 11:05	10/09/13 02:00
480-47485-6	MW-13-1013	Ground Water	10/07/13 11:25	10/09/13 02:00
480-47485-7	MW-14-1013	Ground Water	10/07/13 13:40	10/09/13 02:00
	MW-15-1013	Ground Water	10/08/13 08:35	10/09/13 02:00
480-47485-8	MW-16-1013	Ground Water	10/07/13 10:35	10/09/13 02:00
480-47485-9	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Water	10/07/13 00:00	10/09/13 02:00
480-47485-10	FD-1013	Water	10/07/13 00:00	10/09/13 02:00
480-47485-11	TB-1013	AASIGI	.5,0,,,0	

13

Case Narrative

Client: CDM Smith, Inc. Project/Site: CDM Smith

TestAmerica Job ID: 480-47485-1

Job ID: 480-47485-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-47485-1

Comments

No additional comments.

Receipt

The samples were received on 10/9/2013 2:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 1.8° C, 2.1° C and 2.3° C.

GC/MS VOA

Method(s) 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-13-1013 (480-47485-6), MW-13-1013 (480-47485-6 MS), MW-13-1013 (480-47485-6), MW-15-1013 (480-47485-8), MW-16-1013 (480-47485-9). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 145551 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

No other analytical or quality issues were noted.

GC/MS Semi VOA

Method(s) 8270D_LL_PAH: The following samples were diluted due to abundance of target analytes: MW-13-1013 (480-47485-6), MW-13-1013 (480-47485-6 MSD). As such, surrogate and spike recoveries were reduced to a level in which they do not provide useful information. Elevated reporting limits (RLs) are provided.

Method(s) 8270D_LL_PAH: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-11-1013 (480-47485-4), MW-16-1013 (480-47485-9). Elevated reporting limits (RLs) are provided.

Method(s) 8270D_LL_PAH: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 143800 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

Method(s) 8270D_LL_PAH: The matrix spike / matrix spike duplicate (MS/MSD) precision for batch 143800 was outside control limits. The associated laboratory control sample (LCS) met acceptance criteria.

No other analytical or quality issues were noted.

GC VOA

Method(s) RSK-175: The matrix spike duplicate (MSD) recovery for analytical batch 143907 was outside control limits due to sample inconconsistency. The associated laboratory control sample (LCS) recovery met acceptance criteria.

Method(s) RSK-175: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-15-1013 (480-47485-8). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

Metals

No analytical or quality issues were noted.

General Chemistry

Method(s) SM 2320B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 143865 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.MW-13-1013 (480-47485-6 MS), MW-13-1013 (480-47485-6 MSD)

Method(s) SM 3500 FE D: The results reported for the following sample(s) do not concur with results previously reported for this site: MW-10-1013 (480-47485-3). Reanalysis was performed, and the result(s) confirmed.

1

Job ID: 480-47485-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

Method(s) SM 3500 FE D: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following sample(s) has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: FD-1013 (480-47485-10), MW-10-1013 (480-47485-3), MW-11-1013 (480-47485-4), MW-12-1013 (480-47485-5), MW-13-1013 (480-47485-6), MW-13-1013 (480-47485-6), MW-14-1013 (480-47485-7), MW-15-1013 (480-47485-8), MW-16-1013 (480-47485-9), MW-4-1013 (480-47485-1), MW-7-1013 (480-47485-2)

Method(s) SM 3500 FE D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 143869 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.MW-13-1013 (480-47485-6 MS), MW-13-1013 (480-47485-6 MSD)

Method(s) SM 3500 FE D: The following sample(s) was diluted due to the nature of the sample matrix: MW-12-1013 (480-47485-5). Elevated reporting limits (RLs) are provided.

Method(s) 351.2: The results reported for the following sample(s) do not concur with results previously reported for this site: MW-10-1013 (480-47485-3), MW-12-1013 (480-47485-5), MW-16-1013 (480-47485-9), MW-4-1013 (480-47485-1). Reanalysis was performed, and the result(s) confirmed.

Method(s) 353.2: The results reported for the following sample(s) do not concur with results previously reported for this site: MW-10-1013 (480-47485-3), MW-11-1013 (480-47485-4), MW-12-1013 (480-47485-5), MW-4-1013 (480-47485-1). Reanalysis was performed, and the result(s) confirmed.

Method(s) 353.2: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 143688 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. MW-13-1013 (480-47485-6 MSD)

Method(s) 353.2: The following sample(s) was received outside of holding time: FD-1013 (480-47485-10).

Method(s) 353.2: The following sample(s) was received outside of holding time: FD-1013 (480-47485-10).

Method(s) 335.4, 9012B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 144824 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. MW-13-1013 (480-47485-6 MS)

Method(s) 9012B: The results reported for the following sample(s) do not concur with results previously reported for this site: MW-7-1013 (480-47485-2). Reanalysis was performed, and the result(s) confirmed.

Method(s) 9038, D516-90, 02: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 144884 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. MW-13-1013 (480-47485-6 MSD) (480-47485-6 MSD)

Method(s) 9038, D516-90, 02: The results reported for the following sample(s) do not concur with results previously reported for this site: MW-12-1013 (480-47485-5), MW-13-1013 (480-47485-6). Reanalysis was performed, and the result(s) confirmed.

Method(s) Nitrate by calc: The following sample(s) was received outside of holding time: FD-1013 (480-47485-10).

Method(s) 9251, SM 4500 CI- E: The results reported for the following sample(s) do not concur with results previously reported for this site: MW-12-1013 (480-47485-5), MW-13-1013 (480-47485-6), MW-4-1013 (480-47485-1). Reanalysis was performed, and the result(s) confirmed.

Method(s) SM 4500 S2 F: The results reported for the following sample(s) do not concur with results previously reported for this site: MW-7-1013 (480-47485-2). Reanalysis was performed, and the result(s) confirmed.

No other analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

 \boldsymbol{A}

QUALIFIED RESULTS FORMS

Client Sample Results

Client: CDM Smith, Inc. Project/Site: CDM Smith

TestAmerica Job ID: 480-47485-1

Client Sample ID: MW-4-1013

Date Collected: 10/07/13 12:45 Date Received: 10/09/13 02:00 Lab Sample ID: 480-47485-1

Matrix: Ground Water

Method: 8260C - Volatile Organic C	ompounds b	y GC/MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0		ug/L			10/17/13 11:51	1
Toluene	ND		1.0		ug/L			10/17/13 11:51	1
Ethylbenzene	ND		1.0		ug/L			10/17/13 11:51	1
m-Xylene & p-Xylene	ND		2.0		ug/L			10/17/13 11:51	1
o-Xylene	ND		1.0		ug/L			10/17/13 11:51	1
Xylenes, Total	ND		2.0		ug/L			10/17/13 11:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		66 - 137			-		10/17/13 11:51	1
Toluene-d8 (Surr)	101		71 - 126					10/17/13 11:51	1
4-Bromofluorobenzene (Surr)	99		73 - 120					10/17/13 11:51	1
Method: 8270D_LL_PAH - Semivola	atile Organic	Compound	s (GC/MS) Low	level PA	М				
Analyte	_	Qualifier	RL			D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.49		ug/L		10/09/13 14:31	10/10/13 15:20	1
Acenaphthylene	ND		0.49		ug/L		10/09/13 14:31	10/10/13 15:20	1
Anthracene	ND		0.49		ug/L		10/09/13 14:31	10/10/13 15:20	1
Benzo(a)anthracene	ND		0.49		ug/L		10/09/13 14:31	10/10/13 15:20	1
Benzo(a)pyrene	ND		0.49		ug/L		10/09/13 14:31	10/10/13 15:20	1
Benzo(b)fluoranthene	ND		0.49		ug/L		10/09/13 14:31	10/10/13 15:20	1
Benzo(g,h,i)perylene	ND		0.49		ug/L		10/09/13 14:31	10/10/13 15:20	1
Benzo(k)fluoranthene	ND		0.49		ug/L		10/09/13 14:31	10/10/13 15:20	1
Chrysene	ND		0.49		ug/L		10/09/13 14:31	10/10/13 15:20	1
Dibenz(a,h)anthracene	ND		0.49		ug/L		10/09/13 14:31	10/10/13 15:20	1
Fluoranthene	ND		0.49		ug/L		10/09/13 14:31	10/10/13 15:20	1
Fluorene	ND		0.49		ug/L		10/09/13 14:31	10/10/13 15:20	1
Indeno(1,2,3-cd)pyrene	ND		0.49		ug/L		10/09/13 14:31	10/10/13 15:20	1
Naphthalene	3.2		0.49		ug/L		10/09/13 14:31	10/10/13 15:20	1
Phenanthrene	ND		0.49		ug/L		10/09/13 14:31	10/10/13 15:20	1
Pyrene	ND		0.49		ug/L		10/09/13 14:31	10/10/13 15:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	82		48 - 120				10/09/13 14:31	10/10/13 15:20	1
Nitrobenzene-d5	78		46 - 120				10/09/13 14:31	10/10/13 15:20	1
p-Terphenyl-d14	89		24 - 136				10/09/13 14:31	10/10/13 15:20	1
Method: RSK-175 - Dissolved Gas	es (GC)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	ND		7.5		ug/L			10/10/13 09:09	1
Ethene	ND		7.0		ug/L			10/10/13 09:09	1
Methane	ND		4.0		ug/L			10/10/13 09:09	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	12000		1000		ug/L			10/11/13 11:17	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.0050		mg/L		10/09/13 08:50	10/10/13 19:43	1
Manganese	0.013		0.0030		mg/L		10/09/13 08:50	10/10/13 19:43	1

TestAmerica Buffalo

10/24/2013

Page 11 of 61

Client Sample ID: MW-4-1013

Date Collected: 10/07/13 12:45 Date Received: 10/09/13 02:00

Lab Sample ID: 480-47485-1

Matrix: Ground Water

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Kieldahl Nitrogen	ND		0.20		mg/L		10/11/13 17:22	10/12/13 13:27	1
Nitrate as N	3.5		0.050		mg/L			10/09/13 09:29	1
Cyanide, Total	ND		0.010		mg/L		10/15/13 02:03	10/15/13 16:45	1
Sulfate	74.7		10.0		mg/L			10/11/13 18:20	2
Alkalinity, Total	442		5.0		mg/L			10/09/13 17:57	1
Ferrous Iron	ND	HF 1	0.10		mg/L			10/09/13 21:00	1
Chloride	411	•	10.0		mg/L			10/14/13 17:22	10
Sulfide	ND		1.0		mg/L			10/09/13 14:15	1

Client Sample ID: MW-7-1013

Method: 8260C - Volatile Organic Compounds by GC/MS

Date Collected: 10/08/13 10:10 Date Received: 10/09/13 02:00 Lab Sample ID: 480-47485-2

Matrix: Ground Water

Method: 8260C - Volatile Orgal Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0		ug/L			10/17/13 12:15	1
Toluene	ND		1.0		ug/L			10/17/13 12:15	1
Ethylbenzene	ND		1.0		ug/L			10/17/13 12:15	1
n-Xylene & p-Xylene	ND		2.0		ug/L			10/17/13 12:15	1
o-Xylene	ND		1.0		ug/L			10/17/13 12:15	1
Xylenes, Total	ND		2.0		ug/L			10/17/13 12:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		66 - 137					10/17/13 12:15	1
Toluene-d8 (Surr)	99		71 - 126					10/17/13 12:15	1
4-Bromofluorobenzene (Surr)	96		73 - 120					10/17/13 12:15	1
Method: 8270D_LL_PAH - Sen	nivolatile Organic	Compound	ls (GC/MS) Lov	level P	AH				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.48		ug/L		10/09/13 14:31	10/10/13 20:26	1
Acenaphthylene	ND		0.48		ug/L		10/09/13 14:31	10/10/13 20:26	1
Anthracene	ND		0.48		ug/L		10/09/13 14:31	10/10/13 20:26	1
Benzo(a)anthracene	ND		0.48		ug/L		10/09/13 14:31	10/10/13 20:26	1
Benzo(a)pyrene	ND		0.48		ug/L		10/09/13 14:31	10/10/13 20:26	1
Benzo(b)fluoranthene	ND		0.48		ug/L		10/09/13 14:31	10/10/13 20:26	1
Benzo(g,h,i)perylene	ND		0.48		ug/L		10/09/13 14:31	10/10/13 20:26	1
Benzo(k)fluoranthene	ND		0.48		ug/L		10/09/13 14:31	10/10/13 20:26	1
Chrysene	ND		0.48		ug/L		10/09/13 14:31	10/10/13 20:26	1
Dibenz(a,h)anthracene	ND		0.48		ug/L		10/09/13 14:31	10/10/13 20:26	1
Fluoranthene	ND		0.48		ug/L		10/09/13 14:31	10/10/13 20:26	1
Fluorene	ND		0.48		ug/L		10/09/13 14:31	10/10/13 20:26	1
Indeno(1,2,3-cd)pyrene	ND		0.48		ug/L		10/09/13 14:31	10/10/13 20:26	1
Naphthalene	ND		0.48		ug/L		10/09/13 14:31	10/10/13 20:26	1
Phenanthrene	ND		0.48		ug/L		10/09/13 14:31	10/10/13 20:26	1
Pyrene	ND		0.48		ug/L		10/09/13 14:31	10/10/13 20:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	88		48 - 120				10/09/13 14:31	10/10/13 20:26	1
Nitrobenzene-d5	88	}	46 - 120				10/09/13 14:31	10/10/13 20:26	1
									1

Project/Site: CDM Smith

Client Sample ID: MW-7-1013

Date Collected: 10/08/13 10:10 Date Received: 10/09/13 02:00

Lab Sample ID: 480-47485-2

Matrix: Ground Water

Method: RSK-175 - Dissolved Gases	(GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	ND		7.5		ug/L			10/10/13 09:45	1
Ethene	ND		7.0		ug/L			10/10/13 09:45	1
Methane	23		4.0	-	ug/L			10/10/13 09:45	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	7300		1000		ug/L			10/11/13 11:28	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	0.0071		0.0050		mg/L		10/09/13 08:50	10/10/13 19:46	1
Manganese	0.55		0.0030		mg/L		10/09/13 08:50	10/10/13 19:46	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Kjeldahl Nitrogen	1.5		0.20		mg/L		10/09/13 23:54	10/10/13 15:27	1
Nitrate as N	ND		0.050		mg/L			10/09/13 08:40	1
Cyanide, Total	0.40		0.010		mg/L		10/16/13 00:28	10/17/13 10:35	1
Sulfate	518		100		mg/L			10/11/13 18:20	20
Alkalinity, Total	367		5.0		mg/L			10/09/13 18:04	1
		HF J	0.10		mg/L			10/09/13 21:00	1
Ferrous Iron	84.0	•	5.0		mg/L			10/11/13 18:24	5
Chloride	ND		1.0		mg/L			10/11/13 17:49	1
Sulfide	ND		1.0		g, =				

Client Sample ID: MW-10-1013

Date Collected: 10/08/13 09:20 Date Received: 10/09/13 02:00

Benzo(k)fluoranthene

Lab Sample ID: 480-47485-3 Matrix: Ground Water

Method: 8260C - Volatile Orga	inic Compounds by GC/MS					
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Benzene	ND ND	1.0	ug/L		10/17/13 12:39	1
Toluene	ND	1.0	ug/L		10/17/13 12:39	1
Ethylbenzene	ND	1.0	ug/L		10/17/13 12:39	1
m-Xylene & p-Xylene	ND	2.0	ug/L		10/17/13 12:39	1
o-Xylene	ND	1.0	ug/L		10/17/13 12:39	1
Xylenes, Total	ND	2.0	ug/L		10/17/13 12:39	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	66 - 137	10/17/13 12:3	, 1
Toluene-d8 (Surr)	100	71 ₋ 126	10/17/13 12:3) 1
4-Bromofluorobenzene (Surr)	97	73 - 120	10/17/13 12:3) 1

ï	2012							
1 1111	Method: 8270D_LL_PAH - Semivo	latile Organic Compound: Result Qualifier	s (GC/MS) LOW RL	/ IEVEL PAH MDL Unit	D	Prepared	Analyzed	Dil Fac
-	Acenaphthene	1.1	0.47	ug/L		10/09/13 14:31	10/10/13 16:15	1
1	Acenaphthylene	ND	0.47	ug/L		10/09/13 14:31	10/10/13 16:15	1
	Anthracene	ND	0.47	ug/L		10/09/13 14:31	10/10/13 16:15	1
	Benzo(a)anthracene	ND	0.47	ug/L		10/09/13 14:31	10/10/13 16:15	1
-	Benzo(a)pyrene	ND	0.47	ug/L		10/09/13 14:31	10/10/13 16:15	1
	Benzo(b)fluoranthene	ND	0.47	ug/L		10/09/13 14:31	10/10/13 16:15	1
	Benzo(g,h,i)perylene	ND	0.47	ug/L		10/09/13 14:31	10/10/13 16:15	1
	Benzo(k)fluoranthene	ND	0.47	ug/L		10/09/13 14:31	10/10/13 16:15	1
	Denzorandono			•				

TestAmerica Buffalo

Client Sample ID: MW-10-1013

Date Collected: 10/08/13 09:20 Date Received: 10/09/13 02:00 Lab Sample ID: 480-47485-3

Matrix: Ground Water

Method: 8270D_LL_PAH - Semivo Analyte		Compound Qualifier	S (GC/M3) LOW RL	MDL		D D	Prepared	Analyzed	Dil Fac
Chrysene	ND		0.47		ug/L		10/09/13 14:31	10/10/13 16:15	1
Dibenz(a,h)anthracene	ND		0.47		ug/L		10/09/13 14:31	10/10/13 16:15	1
Fluoranthene	ND		0.47		ug/L		10/09/13 14:31	10/10/13 16:15	1
Fluorene	ND		0.47		ug/L		10/09/13 14:31	10/10/13 16:15	1
ndeno(1,2,3-cd)pyrene	ND		0.47		ug/L		10/09/13 14:31	10/10/13 16:15	1
Naphthalene	ND		0.47		ug/L		10/09/13 14:31	10/10/13 16:15	1
Phenanthrene	ND		0.47		ug/L		10/09/13 14:31	10/10/13 16:15	1
Pyrene	ND		0.47		ug/L		10/09/13 14:31	10/10/13 16:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	85		48 - 120				10/09/13 14:31	10/10/13 16:15	1
Nitrobenzene-d5	83		46 - 120				10/09/13 14:31	10/10/13 16:15	1
p-Terphenyl-d14	88		24 - 136				10/09/13 14:31	10/10/13 16:15	1
Method: RSK-175 - Dissolved Ga	ses (GC)								54 F.
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Ethane	ND		7.5		ug/L			10/10/13 10:11	1
Ethene	ND		7.0		ug/L			10/10/13 10:11	1
Methane	28		4.0		ug/L			10/10/13 10:11	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	25000		1000		ug/L			10/11/13 11:36	1
Method: 6010C - Metals (ICP)									B4 F
Analyte		Qualifier	RL	MDL		D		Analyzed	Dil Fac
Lead	ND		0.0050		mg/L		10/09/13 08:50	10/10/13 19:48	1
Manganese	0.75		0.0030		mg/L		10/09/13 08:50	10/10/13 19:48	1
General Chemistry		0 -115	DI	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte		Qualifier	RL 0.20	MUL			10/11/13 17:22	10/12/13 13:33	
Total Kjeldahl Nitrogen	4.1		0.20		mg/L		10/11/10 17.22	10/09/13 09:30	
Nitrate as N	0.24		0.050		mg/L		10/11/13 20:20	10/14/13 14:03	
Cyanide, Total	0.11		0.010		mg/L		10/11/13 20.20	10/11/13 18:20	10
Sulfate	171		50.0		mg/L			10/09/13 18:12	
Alkalinity, Total	552		5.0		mg/L			10/09/13 10:12	
Ferrous Iron		HF J	0.10		mg/L			10/09/13 21:00	10
Chloride	265		10.0		mg/L			10/09/13 14:19	
Sulfide	NE)	1.0		mg/L			10/09/13 14.19	

Client Sample ID: MW-11-1013

Date Collected: 10/08/13 12:15 Date Received: 10/09/13 02:00 Lab Sample ID: 480-47485-4 Matrix: Ground Water

Method: 8260C - Volatile Organic Compounds by GC/MS D Prepared Analyzed Dil Fac MDL Unit Result Qualifier RL Analyte 10/17/13 13:03 1.0 ug/L 8.1 Benzene 10/17/13 13:03 ug/L ND 1.0 Toluene 10/17/13 13:03 ug/L 3.8 1.0 Ethylbenzene 10/17/13 13:03 2.0 ug/L ND m-Xylene & p-Xylene 10/17/13 13:03 1 ug/L 1.0 1.6 o-Xylene 10/17/13 13:03 ug/L ND 2.0 Xylenes, Total

TestAmerica Buffalo

10/24/2013

Limits

%Recovery Qualifier

Client: CDM Smith, Inc. Project/Site: CDM Smith

Surrogate

Client Sample ID: MW-11-1013

Date Collected: 10/08/13 12:15 Date Received: 10/09/13 02:00 Lab Sample ID: 480-47485-4

Prepared

Matrix: Ground Water

Analyzed

1,2-Dichloroethane-d4 (Surr)	99		66 - 137			=		10/17/13 13:03	1
Toluene-d8 (Surr)	99		71 - 126					10/17/13 13:03	1
4-Bromofluorobenzene (Surr)	101		73 - 120					10/17/13 13:03	1
Method: 8270D_LL_PAH - Semivo	latile Organic	Compound	s (GC/MS) Low	level PA	Н				
Analyte	_	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Acenaphthene	110		2.4		ug/L		10/09/13 14:31	10/10/13 16:43	5
Acenaphthylene	170		2.4	I	ug/L		10/09/13 14:31	10/10/13 16:43	5
Anthracene	28		2.4		ug/L		10/09/13 14:31	10/10/13 16:43	5
Benzo(a)anthracene	8.3		2.4		ug/L		10/09/13 14:31	10/10/13 16:43	5
Benzo(a)pyrene	8.5		2.4		ug/L		10/09/13 14:31	10/10/13 16:43	5
Benzo(b)fluoranthene	7.2		2.4		ug/L		10/09/13 14:31	10/10/13 16:43	5
Benzo(g,h,i)perylene	3.4		2.4		ug/L		10/09/13 14:31	10/10/13 16:43	5
Benzo(k)fluoranthene	ND		2.4		u g/L		10/09/13 14:31	10/10/13 16:43	5
Chrysene	10		2.4		ug/L		10/09/13 14:31	10/10/13 16:43	5
Dibenz(a,h)anthracene	ND		2.4		ug/L		10/09/13 14:31	10/10/13 16:43	5
Fluoranthene	28		2.4		ug/L		10/09/13 14:31	10/10/13 16:43	5
Fluorene	70		2.4		ug/L		10/09/13 14:31	10/10/13 16:43	5
Indeno(1,2,3-cd)pyrene	2.8		2.4		ug/L		10/09/13 14:31	10/10/13 16:43	5
Naphthalene	87		2.4		ug/L		10/09/13 14:31	10/10/13 16:43	5
Phenanthrene	130		2.4		ug/L		10/09/13 14:31	10/10/13 16:43	5
Pyrene	34		2.4		ug/L		10/09/13 14:31	10/10/13 16:43	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	80		48 - 120				10/09/13 14:31	10/10/13 16:43	5
Nitrobenzene-d5	69		46 - 120				10/09/13 14:31	10/10/13 16:43	5
p-Terphenyl-d14	75		24 - 136				10/09/13 14:31	10/10/13 16:43	5
Method: RSK-175 - Dissolved Ga	ses (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	ND		7.5		ug/L			10/10/13 10:53	1
Ethene	ND		7.0		ug/L			10/10/13 10:53	1
Methane	25		4.0		ug/L			10/10/13 10:53	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	41000		1000		ug/L			10/11/13 13:03	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	0.0059		0.0050		mg/L		10/09/13 08:50	10/10/13 19:51	1
Manganese	0.55		0.0030		mg/L		10/09/13 08:50	10/10/13 19:51	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Kjeldahl Nitrogen	0.64		0.20		mg/L		10/09/13 23:54	10/10/13 15:42	1
Nitrate as N	0.32		0.050		mg/L			10/09/13 09:31	1
Cyanide, Total	ND		0.010		mg/L		10/11/13 20:20	10/14/13 14:04	1
Sulfate	94.1		25.0		mg/L			10/11/13 18:06	5
Alkalinity, Total	573	_	5.0		mg/L			10/09/13 18:20	1
Ferrous Iron	0.22	HF J	0.10		mg/L			10/09/13 21:00	1
Chloride	295		10.0		mg/L			10/11/13 18:24	10
Sulfide	ND		1.0		mg/L			10/09/13 14:22	. 1

Page 15 of 61

TestAmerica Buffalo

10/24/2013

Dil Fac

Project/Site: CDM Smith

Client Sample ID: MW-12-1013

Date Collected: 10/08/13 11:05 Date Received: 10/09/13 02:00

Lab Sample ID: 480-47485-5

Matrix: Ground Water

Method: 8260C - Volatile Organ	-	y GC/MS Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Benzene	ND	Qualifier	1.0		ug/L			10/18/13 03:15	1
Toluene	ND		1.0		ug/L			10/18/13 03:15	1
	ND		1.0		ug/L			10/18/13 03:15	1
Ethylbenzene	ND		2.0		ug/L			10/18/13 03:15	1
m-Xylene & p-Xylene	ND		1.0		ug/L			10/18/13 03:15	1
o-Xylene	ND ND		2.0		ug/L			10/18/13 03:15	1
Xylenes, Total	ND		2.0		ug/L				·
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113		66 - 137			-		10/18/13 03:15	1
Toluene-d8 (Surr)	102		71 - 126					10/18/13 03:15	1
4-Bromofluorobenzene (Suπ)	101		73 _ 120					10/18/13 03:15	1
Method: 8270D_LL_PAH - Sem	ivolatile Organic	Compound	ds (GC/MS) Lov	v level PA	Н				
Analyte		Qualifier	RL.	MDL		D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.46		ug/L		10/09/13 14:31	10/10/13 17:11	1
Acenaphthylene	1.1		0.46		ug/L		10/09/13 14:31	10/10/13 17:11	1
Anthracene	1.1		0.46		ug/L		10/09/13 14:31	10/10/13 17:11	1
Benzo(a)anthracene	3.0		0.46		ug/L		10/09/13 14:31	10/10/13 17:11	1
Benzo(a)pyrene	3.6		0.46		ug/L		10/09/13 14:31	10/10/13 17:11	1
Benzo(b)fluoranthene	3.4		0.46		ug/L		10/09/13 14:31	10/10/13 17:11	1
Benzo(g,h,i)perylene	1.4		0.46		ug/L		10/09/13 14:31	10/10/13 17:11	1
Benzo(k)fluoranthene	0.83		0.46		ug/L		10/09/13 14:31	10/10/13 17:11	1
Chrysene	3.0		0.46		ug/L		10/09/13 14:31	10/10/13 17:11	1
Dibenz(a,h)anthracene	ND		0.46		ug/L		10/09/13 14:31	10/10/13 17:11	1
Fluoranthene	4.3		0.46		ug/L		10/09/13 14:31	10/10/13 17:11	1
Fluorene	ND		0.46		ug/L		10/09/13 14:31	10/10/13 17:11	1
Indeno(1,2,3-cd)pyrene	1.2		0.46		ug/L		10/09/13 14:31	10/10/13 17:11	1
Naphthalene	0.99		0.46		ug/L		10/09/13 14:31	10/10/13 17:11	1
Phenanthrene	3.6		0.46		ug/L		10/09/13 14:31	10/10/13 17:11	1
Pyrene	5.8		0.46		ug/L		10/09/13 14:31	10/10/13 17:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	86		48 - 120				10/09/13 14:31	10/10/13 17:11	1
Nitrobenzene-d5	86		46 - 120				10/09/13 14:31	10/10/13 17:11	1
p-Terphenyl-d14	78		24 _ 136				10/09/13 14:31	10/10/13 17:11	1
p-respilotys-414									
Method: RSK-175 - Dissolved		0	DI.	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Analyte		Qualifier	RL 7.5	MDL	Unit ug/L		riepaico	10/10/13 10:28	1
Ethane	NE		7.5 7.0		ug/L ug/L			10/10/13 10:28	1
Ethene	NE		4.0		ug/L			10/10/13 10:28	1
Methane	NE				_	_			
Analyte	Resul	t Qualifier	RL	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Carbon dioxide	24000)	1000		ug/L			10/11/13 13:12	1
Method: 6010C - Metals (ICP)									
Analyte	Resul	t Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	0.02	9	0.0050		mg/L		10/09/13 08:50	10/10/13 19:53	1
Manganese	2.	1	0.0030		mg/L		10/09/13 08:50	10/10/13 19:53	1

Client Sample ID: MW-12-1013

Date Collected: 10/08/13 11:05 Date Received: 10/09/13 02:00

Lab Sample ID: 480-47485-5

Matrix: Ground Water

General Chemistry Analyte Re	esult Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Total Kieldahl Nitrogen	2.4	0.20	mg/L	10/11/13 17:22	10/12/13 13:33	1
Nitrate as N	4.8	0.050	mg/L		10/09/13 09:33	1
Cyanide, Total	ND	0.010	mg/L	10/11/13 20:20	10/14/13 14:05	1
Sulfate	115	25.0	mg/L		10/14/13 16:56	5
Alkalinity, Total	415	5.0	mg/L		10/09/13 18:50	1
Ferrous Iron	ND HF J	0.20	mg/L		10/09/13 21:00	2
Chloride	662	15.0	mg/L		10/14/13 17:48	15
Sulfide	ND	1.0	mg/L		10/09/13 14:24	1

Client Sample ID: MW-13-1013

Date Collected: 10/07/13 11:25 Date Received: 10/09/13 02:00

p-Terphenyl-d14

Lab Sample ID: 480-47485-6

Matrix: Ground Water

Method: 8260C - Volatile Orgai Analyte		Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
	400	7	10	ug/L			10/17/13 13:51	10
Benzene Tatan	440	<u> </u>	10	ug/L			10/17/13 13:51	10
Toluene	320		10	ug/L			10/17/13 13:51	10
Ethylbenzene	420	1	20	ug/L			10/17/13 13:51	10
m-Xylene & p-Xylene		¥	10	ug/L			10/17/13 13:51	10
o-Xylene	190	سد	20	ug/L			10/17/13 13:51	10
Xylenes, Total	610	J	20	ugr				
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1.2-Dichloroethane-d4 (Surr)	99		66 - 137				10/17/13 13:51	10
Toluene-d8 (Surr)	101		71 - 126				10/17/13 13:51	10
4-Bromofluorobenzene (Surr)	100		73 - 120				10/17/13 13:51	10

4-Bromofluorobenzene (Surr) 100		/3 - 120			10,777,0 70,0	
Method: 8270D_LL_PAH - Semivolatile Organic	Compound Qualifier	s (GC/MS) Low RL	level PAH MDL Unit	D Prepared	Analyzed	Dil Fac
Allalyte	Qualifier	46	ug/L	10/09/13 14:31	10/10/13 17:39	100
Acenaphthene 77		46	ug/L	10/09/13 14:31	10/10/13 17:39	100
Acenaphthylene 350		46	ug/L	10/09/13 14:31	10/10/13 17:39	100
Anthracene ND		46	ug/L	10/09/13 14:31	10/10/13 17:39	100
Benzo(a)anthracene ND			=	10/09/13 14:31	10/10/13 17:39	100
Benzo(a)pyrene ND		46	ug/L	10/09/13 14:31	10/10/13 17:39	100
Benzo(b)fluoranthene ND		46	ug/L	10/09/13 14:31	10/10/13 17:39	100
Benzo(g,h,i)perylene ND		46	ug/L			100
Benzo(k)fluoranthene ND		46	ug/L	10/09/13 14:31	10/10/13 17:39	
Chrysene ND		46	ug/L	10/09/13 14:31	10/10/13 17:39	100
Dibenz(a,h)anthracene ND		46	ug/L	10/09/13 14:31	10/10/13 17:39	100
Fluoranthene ND		46	ug/L	10/09/13 14:31	10/10/13 17:39	100
Fluorene 68		46	ug/L	10/09/13 14:31	10/10/13 17:39	100
Indeno(1,2,3-cd)pyrene ND		46	ug/L	10/09/13 14:31	10/10/13 17:39	100
Naphthalene 3700		46	ug/L	10/09/13 14:31	10/10/13 17:39	100
Maphithalene		46	ug/L	10/09/13 14:31	10/10/13 17:39	100
Pyrene 61 Pyrene ND		46	ug/L	10/09/13 14:31	10/10/13 17:39	100
Surrogate %Recovery	v Qualifier	Limits		Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl 87	,	48 - 120		10/09/13 14:31	10/10/13 17:39	100
Nitrobenzene-d5 73	}	46 - 120		10/09/13 14:31	10/10/13 17:39	100
p-Terphenyl-d14 8		24 - 136		10/09/13 14:31	10/10/13 17:39	100

Lab Sample ID: 480-47485-6

Matrix: Ground Water

Client Sample ID: MW-13-1013

Date Collected: 10/07/13 11:25 Date Received: 10/09/13 02:00

Method: RSK-175 - Dissolved Gases	(GC)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	ND		7.5		ug/L			10/10/13 11:19	1
Ethene	ND		7.0		ug/L			10/10/13 11:19	1
Methane	15	J	4.0		ug/L			10/10/13 11:19	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	1200		1000		ug/L			10/11/13 13:20	1
Method: 6010C - Metals (ICP)				WD.	l laik	D	Prepared	Analyzed	Dil Fac
Analyte		Qualifier	RL	MDL		U		10/10/13 19:55	
Lead	ND		0.0050		mg/L		10/09/13 08:50		
Manganese	0.088		0.0030		mg/L		10/09/13 08:50	10/10/13 19:55	1
General Chemistry			-						_
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Kjeldahl Nitrogen	1.2		0.20		mg/L		10/09/13 23:54	10/10/13 15:42	1
Nitrate as N	ND		0.050		mg/L			10/09/13 09:34	1
Cyanide, Total	0.26		0.010		mg/L		10/11/13 21:30	10/14/13 14:24	1
Sulfate	15.5	J	5.0		mg/L			10/14/13 16:30	1
	187		5.0		mg/L			10/09/13 18:57	1
Alkalinity, Total	0.13	v _	0.10		mg/L			10/09/13 21:00	1
Ferrous Iron		-	1.0		mg/L			10/14/13 16:51	1
Chloride	7.3				•			10/09/13 14:26	1
Sulfide	NE)	1.0		mg/L			.5,00,10 17.20	,

Client Sample ID: MW-14-1013

Date Collected: 10/07/13 13:40 Date Received: 10/09/13 02:00

Lab Sample ID: 480-47485-7

Matrix: Ground Water

Method: 8260C - Volatile Organ		D)	MDL Unit	D Prepared	Analyzed	Dil Fac
Analyte	Result Qualifier	RL	MUL UIIIL			
Benzene	1.3	1.0	ug/L		10/17/13 14:15	7
Toluene	ND	1.0	ug/L		10/17/13 14:15	1
i	ND	1.0	ug/L		10/17/13 14:15	1
Ethylbenzene	· · -		-		10/17/13 14:15	1
m-Xylene & p-Xylene	ND	2.0	ug/L		• • • • • • • • • • • • • • • • • • • •	•
o-Xvlene	ND	1.0	ug/L		10/17/13 14:15	1
Xylenes, Total	ND	2.0	ug/L		10/17/13 14:15	1
f				Oranama	Anahorad	Dil Fac

Surrogate %Re	covery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	66 - 137	10/17/13 14:15	1
Toluene-d8 (Surr)	101	71 - 126	10/17/13 14:15	1
4-Bromofluorobenzene (Surr)	97	73 - 120	10/17/13 14:15	1

Method: 8270D_LL_PAH - Sem	Result Qualifier	RL.	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	2.2	0.46		ug/L		10/09/13 14:31	10/10/13 18:07	1
Acenaphthylene	2.5	0.46		ug/L		10/09/13 14:31	10/10/13 18:07	1
Acenaphurylene	ND	0.46		ug/L		10/09/13 14:31	10/10/13 18:07	1
	0.62	0.46		ug/L		10/09/13 14:31	10/10/13 18:07	1
Benzo(a)anthracene	0.65	0.46		ug/L		10/09/13 14:31	10/10/13 18:07	1
Benzo(a)pyrene	0.79	0.46		ug/L		10/09/13 14:31	10/10/13 18:07	1
Benzo(b)fluoranthene	ND	0.46		ug/L		10/09/13 14:31	10/10/13 18:07	1
Benzo(g,h,i)perylene Benzo(k)fluoranthene	ND	0.46		ug/L		10/09/13 14:31	10/10/13 18:07	1

Client Sample ID: MW-14-1013

Date Collected: 10/07/13 13:40 Date Received: 10/09/13 02:00 Lab Sample ID: 480-47485-7

Matrix: Ground Water

Method: 8270D_LL_PAH - Semivo Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chrysene	0.69		0.46		ug/L		10/09/13 14:31	10/10/13 18:07	•
Dibenz(a,h)anthracene	ND		0.46		ug/L		10/09/13 14:31	10/10/13 18:07	•
Fluoranthene	1.2		0.46		ug/L		10/09/13 14:31	10/10/13 18:07	•
Fluorene	ND		0.46		ug/L		10/09/13 14:31	10/10/13 18:07	•
ndeno(1,2,3-cd)pyrene	ND		0.46		ug/L		10/09/13 14:31	10/10/13 18:07	•
Naphthalene	0.48		0.46		ug/L		10/09/13 14:31	10/10/13 18:07	
Phenanthrene	0.67		0.46		ug/L		10/09/13 14:31	10/10/13 18:07	
Pyrene	1.5	T	0.46		ug/L		10/09/13 14:31	10/10/13 18:07	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	84		48 - 120				10/09/13 14:31	10/10/13 18:07	
Nitrobenzene-d5	80		46 - 120				10/09/13 14:31	10/10/13 18:07	
p-Terphenyl-d14	76		24 - 136				10/09/13 14:31	10/10/13 18:07	
Method: RSK-175 - Dissolved Gas	ses (GC)								5115
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Ethane	ND		7.5		ug/L			10/10/13 13:26	
Ethene	ND		7.0		ug/L			10/10/13 13:26	
Methane	8.6	J	4.0		ug/L			10/10/13 13:26	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Carbon dioxide	3500	1	1000		ug/L			10/11/13 14:23	
Method: 6010C - Metals (ICP)						_	Dunnand	Analyzed	Dil Fa
Analyte		Qualifier	RL	MDL		D	Prepared 10/09/13 08:50	10/10/13 20:14	
Lead	0.015	_	0.0050		mg/L		10/09/13 08:50	10/10/13 20:14	
Manganese	0.25	i	0.0030		mg/L		10/09/13 06.30	10/10/13 20:14	
General Chemistry	B	0	RL	MDI	Unit	D	Prepared	Analyzed	Dil F
Analyte		Qualifier	0.20		mg/L	·	10/09/13 23:54	10/10/13 15:37	
Total Kjeldahl Nitrogen	0.68 ND		0.050		mg/L			10/09/13 08:51	
Nitrate as N			0.010		mg/L		10/11/13 20:20	10/14/13 14:06	
Cyanide, Total	0.2 0 NE		5.0		mg/L			10/11/13 17:47	
Sulfate			5.0		mg/L			10/09/13 19:16	
Alkalinity, Total	456		0.10		mg/L			10/09/13 21:00	
Ferrous Iron	0.20	•	1.0		mg/L			10/11/13 17:54	
Chloride	7.6				mg/L			10/09/13 14:38	
Sulfide	NE	,	1.0		my/∟				

Client Sample ID: MW-15-1013

Date Collected: 10/08/13 08:35 Date Received: 10/09/13 02:00 Lab Sample ID: 480-47485-8 Matrix: Ground Water

	Method: 8260C - Volatile Organic (Compounds by	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
		390	 5.0		ug/L			10/17/13 14:38	5
į	Benzene Toluene	ND	5.0		ug/L			10/17/13 14:38	5
		53	5.0		ug/L			10/17/13 14:38	5
1	Ethylbenzene m-Xylene & p-Xylene	ND	10		ug/L			10/17/13 14:38	5
-	•	16	5.0		ug/L			10/17/13 14:38	5
	o-Xylene	16	10		ug/L			10/17/13 14:38	5
1	Xylenes, Total	10			•				

Client Sample ID: MW-15-1013

Date Collected: 10/08/13 08:35 Date Received: 10/09/13 02:00 Lab Sample ID: 480-47485-8

Matrix: Ground Water

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		66 _ 137			-		10/17/13 14:38	5
Toluene-d8 (Surr)	101		71 - 126					10/17/13 14:38	5
4-Bromofluorobenzene (Surr)	101		73 - 120					10/17/13 14:38	5
4-Biomondochizene (dan)									
Method: 8270D_LL_PAH - Sem	ivolatile Organic	Compound	s (GC/MS) Low	level PA	.H				
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	23		0.46		ug/L.		10/09/13 14:31	10/10/13 18:35	1
Acenaphthylene	6.5		0.46		ug/L		10/09/13 14:31	10/10/13 18:35	1
Anthracene	1.4		0.46		ug/L		10/09/13 14:31	10/10/13 18:35	1
Benzo(a)anthracene	ND 0.59	u	- 0.40 - (),	59	ug/L		10/09/13 14:31	10/10/13 18:35	1
Benzo(a)pyrene	0.59		0.46		ug/L		10/09/13 14:31	10/10/13 18:35	1
Benzo(b)fluoranthene	0.62		0.46		ug/L		10/09/13 14:31	10/10/13 18:35	1
Benzo(g,h,i)perylene	ND		0.46		ug/L		10/09/13 14:31	10/10/13 18:35	1
Benzo(k)fluoranthene	ND		0.46		ug/L		10/09/13 14:31	10/10/13 18:35	1
	0.59		0.46		ug/L		10/09/13 14:31	10/10/13 18:35	1
Chrysene Dihony/a blanthracene	ND		0.46		ug/L		10/09/13 14:31	10/10/13 18:35	1
Dibenz(a,h)anthracene	1.7		0.46		ug/L		10/09/13 14:31	10/10/13 18:35	1
Fluoranthene	6.1		0.46		ug/L		10/09/13 14:31	10/10/13 18:35	1
Fluorene	ND		0.46		ug/L		10/09/13 14:31	10/10/13 18:35	1
Indeno(1,2,3-cd)pyrene	13		0.46		ug/L		10/09/13 14:31	10/10/13 18:35	1
Naphthalene	5.1		0.46		ug/L		10/09/13 14:31	10/10/13 18:35	1
Phenanthrene	2.0		0.46		ug/L		10/09/13 14:31	10/10/13 18:35	1
Pyrene	2.0		0.10		-9-				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	86	-	48 - 120				10/09/13 14:31	10/10/13 18:35	1
Nitrobenzene-d5	81		46 - 120				10/09/13 14:31	10/10/13 18:35	1
p-Terphenyl-d14	77		24 - 136				10/09/13 14:31	10/10/13 18:35	1
Method: RSK-175 - Dissolved	Gases (GC)					_			D:: F
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	ND		380		ug/L			10/10/13 13:57	50 50
Ethene	ND		350		ug/L			10/10/13 13:57	50
Methane	580		200		ug/L			10/10/13 13:57	50
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	23000		1000		ug/L			10/11/13 14:31	1
Carbon dioxide									
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	NE)	0.0050		mg/L		10/09/13 08:50	10/10/13 20:16	1
Manganese	1.1	l	0.0030		mg/L		10/09/13 08:50	10/10/13 20:16	1
General Chemistry								A	Nil Fac
Analyte	Resul	t Qualifier	RL	MDI	_ Unit	D	-	Analyzed	Dil Fac
Total Kjeldahl Nitrogen	3.	i	0.20		mg/L		10/09/13 23:54	10/10/13 15:37	1
Nitrate as N	NE)	0.050		mg/L			10/09/13 08:52	1
Cyanide, Total	0.50)	0.020		mg/L		10/11/13 20:20	10/14/13 15:32	2
Sulfate	139	9	25.0		mg/L			10/11/13 18:06	5
Alkalinity, Total	588	5 /	5.0		mg/L			10/09/13 19:23	1
Ferrous Iron	0.13	B HF T	0.10		mg/L			10/09/13 21:00	1
Chloride	42.	0	1.0		mg/L			10/11/13 17:54	1
Sulfide	N	0	1.0		mg/L			10/09/13 14:40	1

Client Sample ID: MW-16-1013

Date Collected: 10/07/13 10:35 Date Received: 10/09/13 02:00 Lab Sample ID: 480-47485-9

Matrix: Ground Water

nalyte	Result	Qualifier	RL	MDL	Unit	Đ	Prepared	Analyzed	Dil Fac
Benzene	150		5.0		ug/L			10/17/13 15:02	5
oluene	9.0		5.0	1	ug/L			10/17/13 15:02	5
thylbenzene	92		5.0		u g /L			10/17/13 15:02	5
n-Xylene & p-Xylene	23		10		ug/L			10/17/13 15:02	
-Xylene	35		5.0		ug/L			10/17/13 15:02	
ylenes, Total	58		10 _		ug/L			10/17/13 15:02	
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Dichloroethane-d4 (Surr)	99		66 - 137			-		10/17/13 15:02	
oluene-d8 (Surr)	99		71 - 126					10/17/13 15:02	
-Bromofluorobenzene (Surr)	100		73 _ 120					10/17/13 15:02	
lethod: 8270D_LL_PAH -	Semivolatile Organic	Compound	ls (GC/MS) Low	level PA	.H				
nalyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
cenaphthene	16		4.8		ug/L		10/09/13 14:31	10/10/13 19:03	1
cenaphthylene	ND		4.8		ug/L		10/09/13 14:31	10/10/13 19:03	1
nthracene	ND		4.8		ug/L		10/09/13 14:31	10/10/13 19:03	•
enzo(a)anthracene	ND		4.8		ug/L		10/09/13 14:31	10/10/13 19:03	•
enzo(a)pyrene	ND		4.8		ug/L		10/09/13 14:31	10/10/13 19:03	•
enzo(b)fluoranthene	ND		4.8		ug/L		10/09/13 14:31	10/10/13 19:03	•
enzo(g,h,i)perylene	ND		4.8		ug/L		10/09/13 14:31	10/10/13 19:03	
enzo(k)fluoranthene	ND		4.8		ug/L		10/09/13 14:31	10/10/13 19:03	
hrysene	ND		4.8		ug/L		10/09/13 14:31	10/10/13 19:03	
ibenz(a,h)anthracene	ND		4.8		ug/L		10/09/13 14:31	10/10/13 19:03	
luoranthene	ND		4.8		ug/L		10/09/13 14:31	10/10/13 19:03	
luorene	9.1		4.8		ug/L		10/09/13 14:31	10/10/13 19:03	
ndeno(1,2,3-cd)pyrene	ND		4.8		ug/L		10/09/13 14:31	10/10/13 19:03	
Naphthalene	ND		4.8		ug/L		10/09/13 14:31	10/10/13 19:03	
Phenanthrene	ND		4.8		ug/L		10/09/13 14:31	10/10/13 19:03	
Pyrene	ND		4.8		ug/L		10/09/13 14:31	10/10/13 19:03	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
?-Fluorobiphenyl	89		48 - 120				10/09/13 14:31	10/10/13 19:03	
Nitrobenzene-d5	74		46 - 120				10/09/13 14:31	10/10/13 19:03	
o-Terphenyl-d14	71		24 - 136				10/09/13 14:31	10/10/13 19:03	
Method: RSK-175 - Disso	lved Gases (GC)								
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dill
Ethane	ND		7.5		ug/L			10/10/13 15:10	
Ethene	ND		7.0		ug/L			10/10/13 15:10	
Wethane	150		4,0		ug/L			10/10/13 15:10	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dill
Carbon dloxide	14000		1000		ug/L			10/11/13 14:40	
Method: 6010C - Metals ((ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil I
Lead	NC		0.0050		mg/L		10/09/13 08:50	10/10/13 20:18	
Manganese	0.70	ı	0.0030		mg/L		10/09/13 08:50	10/10/13 20:18	

Client Sample ID: MW-16-1013

Date Collected: 10/07/13 10:35 Date Received: 10/09/13 02:00

Lab Sample ID: 480-47485-9

Matrix: Ground Water

General Chemistry	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Kieldahl Nitrogen	2.8		0.20		mg/L		10/11/13 17:22	10/12/13 13:34	1
Nitrate as N	ND		0.050		mg/L			10/09/13 08:53	1
Cyanide, Total	0.27		0.010		mg/L		10/11/13 20:20	10/14/13 14:08	1
Sulfate	86.0		50.0		mg/L			10/11/13 18:20	10
Alkalinity, Total	585	_	5.0		mg/L			10/09/13 19:31	1
Ferrous Iron	0.13	HF J	0.10		mg/L			10/09/13 21:00	1
	5.4	🗸	1.0		mg/L			10/11/13 17:54	1
Chloride Sulfide	ND		1.0		mg/L			10/09/13 14:42	1

Client Sample ID: FD-1013

Date Collected: 10/07/13 00:00

Date Received: 10/09/13 02:00

Lab Sample ID: 480-47485-10

Matrix: Water

Method: 8260C - Volatile Organ	nic Compounds by GC/MS Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Analyte	1.5	1.0	ug/L			10/17/13 15:25	1
Benzene	ND	1.0	ug/L			10/17/13 15:25	1
Toluene	ND ND	1.0	ug/L			10/17/13 15:25	1
Ethylbenzene m-Xylene & p-Xylene	ND	2.0	ug/L			10/17/13 15:25	1
o-Xylene	ND	1.0	ug/L			10/17/13 15:25	1
Xylenes, Total	ND	2.0	ug/L			10/17/13 15:25	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	66 - 137				10/17/13 15:25	1
	102	71 - 126				10/17/13 15:25	1
Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr)	101	73 - 120				10/17/13 15:25	1

Method: 8270D_LL_PAH - Se	Result Qual	lifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	2.6	0.48	ug/L		10/09/13 14:31	10/10/13 19:31	1
Acenaphthylene	3.2	0.48	ug/L		10/09/13 14:31	10/10/13 19:31	1
Anthracene	ND	0.48	ug/L		10/09/13 14:31	10/10/13 19:31	1
Benzo(a)anthracene	ND	0.48	ug/L		10/09/13 14:31	10/10/13 19:31	1
Benzo(a)pyrene	ND	0.48	ug/L		10/09/13 14:31	10/10/13 19:31	1
Benzo(b)fluoranthene	ND	0.48	ug/L		10/09/13 14:31	10/10/13 19:31	1
Benzo(g,h,i)perylene	ND	0.48	ug/L		10/09/13 14:31	10/10/13 19:31	1
Benzo(k)fluoranthene	ND	0.48	ug/L		10/09/13 14:31	10/10/13 19:31	1
Chrysene	ND	0.48	ug/L		10/09/13 14:31	10/10/13 19:31	1
Dibenz(a,h)anthracene	ND	0.48	ug/L		10/09/13 14:31	10/10/13 19:31	1
* * *	0.77	0.48	ug/L		10/09/13 14:31	10/10/13 19:31	1
Fluoranthene	ND	0.48	ug/L		10/09/13 14:31	10/10/13 19:31	1
Fluorene Indeno(1,2,3-cd)pyrene	ND	0.48	ug/L		10/09/13 14:31	10/10/13 19:31	1
	0.57	0.48	ug/L		10/09/13 14:31	10/10/13 19:31	1
Naphthalene	0.58	0.48	ug/L		10/09/13 14:31	10/10/13 19:31	1
Phenanthrene Pyrene	0.85	0.48	ug/L		10/09/13 14:31	10/10/13 19:31	1
Surrogate	%Recovery Qua	alifier Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	85	48 - 120			10/09/13 14:31	10/10/13 19:31	1
Nitrobenzene-d5	79	46 - 120			10/09/13 14:31	10/10/13 19:31	1
p-Terphenyl-d14	79	24 _ 136			10/09/13 14:31	10/10/13 19:31	1

Client Sample ID: FD-1013

Date Collected: 10/07/13 00:00 Date Received: 10/09/13 02:00

Lab Sample ID: 480-47485-10

Matrix: Water

Method: RSK-175 - Dissolved Gase	s (GC)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	ND		7.5		ug/L			10/10/13 14:39	1
Ethene	ND		7.0		ug/L			10/10/13 14:39	1
Methane	13		4.0		ug/L			10/10/13 14:39	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	7300		1000		ug/L			10/11/13 14:48	1
Method: 6010C - Metals (ICP)									B
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	0.0061		0.0050		mg/L		10/09/13 08:50	10/10/13 20:21	1
Manganese	0.23		0.0030		mg/L		10/09/13 08:50	10/10/13 20:21	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Kjeldahl Nitrogen	0.61		0.20		mg/L		10/09/13 23:54	10/10/13 15:14	1
Nitrate as N	ND	н '	0.050		mg/L			10/09/13 08:54	1
Cyanide, Total	0.20		0.010		mg/L		10/11/13 20:20	10/14/13 14:08	1
Sulfate	ND		5.0		mg/L			10/11/13 17:47	1
Alkalinity, Total	451		5.0		mg/L			10/09/13 19:38	1
Ferrous Iron	ND		0.10		mg/L			10/09/13 21:00	1
	7.8	_	1.0		mg/L			10/11/13 17:54	1
Chloride	NE		1.0		mg/L			10/09/13 14:45	1
Sulfide	NE								

Client Sample ID: TB-1013

Date Collected: 10/07/13 00:00 Date Received: 10/09/13 02:00

Lab Sample ID: 480-47485-11

Matrix: Water

Method: 8260C - Volatile Organ	nic Compounds by GC/MS Result Qualifier	RL	MDL (Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	1.0		ug/L			10/17/13 15:49	1
Toluene	ND	1.0	4	ug/L			10/17/13 15:49	1
Ethylbenzene	ND	1.0		ug/L			10/17/13 15:49	1
m-Xylene & p-Xylene	ND	2.0		ug/L			10/17/13 15:49	1
o-Xylene	ND	1.0		ug/L			10/17/13 15:49	1
Xylenes, Total	ND	2.0		ug/L			10/17/13 15:49	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
1.2-Dichloroethane-d4 (Surr)	100	66 - 137					10/17/13 15:49	1
Toluene-d8 (Surr)	101	71 _ 126					10/17/13 15:49	1
4-Bromofluorobenzene (Surr)	98	73 - 120					10/17/13 15:49	1