### national**grid**

May 27, 2014

Ms. Jamie Verrigni
Environmental Engineer
Remedial Bureau C, 11th Floor
Division of Environmental Remediation
New York State Department of Environmental Conservation
625 Broadway
Albany, NY 12233-7014

**Re**: Johnstown (N. Market St.)

Former Manufactured Gas Plant Site (MGP)

Site No. 5-18-020

Semi-Annual Groundwater Monitoring Report (April 2014)

Dear Ms. Verrigni:

Enclosed is the Semi-Annual Groundwater Monitoring Report for the Johnstown (N. Market St.) MGP Site located in Johnstown, New York. The report includes the April 9-10, 2014 groundwater monitoring results.

Please contact me at (315) 428-5652 or <u>steven.stucker@us.ngrid.com</u> if you have any questions regarding the report.

Sincerely,

Steven P. Stucker, C.P.G.

Senior Environmental Engineer

Matthew D. Millias for SPS

Ms. Jamie Verrigni May 27, 2014 Page 2 of 2

Cc: John Parkinson-National Grid Nathan Freeman- NYSDOH Matt Millias- CDM Smith

### SEMI-ANNUAL GROUNDWATER MONITORING REPORT

### **April 2014 Sampling Event**

Prepared For:



300 Erie Boulevard West Syracuse, NY 13202

Prepared By:

**CDM Smith** 

6800 Old Collamer Road, Suite 3 East Syracuse, New York 13057

#### TABLE OF CONTENTS

|            |                                                        | Page |
|------------|--------------------------------------------------------|------|
| 1.0 INT    | RODUCTION                                              | 1-1  |
| 1.1 I      | PURPOSE AND OBJECTIVE                                  | 1-1  |
| 1.2 F      | REPORT ORGANIZATION                                    | 1-2  |
| 2.0 BAC    | CKGROUND                                               | 2-1  |
| 2.1        | SITE DESCRIPTION                                       | 2-1  |
|            | SITE HISTORY<br>ENVIRONMENTAL SETTING                  |      |
|            | NITORING ACTIVITIES                                    |      |
|            | WATER GAUGING AND SAMPLING PROCEDURES                  |      |
|            | GROUNDWATER ANALYTICAL RESULTS                         |      |
| 4.0 CON    | NCLUSIONS AND RECOMMENDATIONS                          | 4-1  |
|            | CONCLUSIONS                                            |      |
|            | RECOMMENDATIONS                                        |      |
| 5.0 REF    | FERENCES                                               | 5-1  |
| TABLES     |                                                        |      |
| Table 1    | Groundwater Level Measurements                         |      |
| Table 2    | Analytical Data Results                                |      |
| FIGURES    |                                                        |      |
| Figure 1   | Site Location Map                                      |      |
| Figure 2   | Site Plan                                              |      |
| Figure 3   | Potentiometric Surface Map                             |      |
| Figure 4   | Monitored Natural Attenuation/Water Quality Parameters |      |
| Figure 5   | BTEX Isoconcentration Contour                          |      |
| Figure 6   | Naphthalene Isoconcentration Contour                   |      |
| APPENDI    |                                                        |      |
| 1 1        | A Field Data                                           |      |
| Appendix I | B Data Usability Summary Report                        |      |

#### 1.0 INTRODUCTION

This Semi-Annual Groundwater Monitoring Report summarizes the results of April 2014 groundwater sampling event at the Johnstown, New York (N. Market Street) Former Manufactured Gas Plant (MGP) Site (the Site). This Report was developed as part of the long-term groundwater monitoring program on behalf of National Grid.

National Grid has been addressing the Site environmental conditions under an Order on Consent (Index Number D0-0001-9210), dated April 1999, that was entered into by Niagara Mohawk and the New York State Department of Environmental Conservation (NYSDEC). That Order on Consent was for the investigation and remediation of 21 former MGP sites, including the Johnstown (N. Market Street) Site. It was superseded by a new Order on Consent (Index Number A4-0473-0000), dated November 7, 2003. A NYSDEC-approved Supplemental Remedial Investigation (RI) Work Plan was finalized during November 2007, and a Final Supplemental RI Report was submitted to NYSDEC, dated December 2008. The RI results report and subsequent Feasibility Study were approved in February 2010.

A Record of Decision (ROD) was issued by NYSDEC, dated March 2010, in accordance with the requirements of New York State Environmental Conservation Law and Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York, 6 NYCRR Part 375. Based upon the results of the remedial investigation/feasibility study (RI/FS) for the Site, the IRMs previously completed, and the ROD, the draft Final Engineering Report and Site Management Plan (SMP) were developed and submitted to the NYSDEC in June 2010. The Final Engineering Report approval by NYSDEC is predicated on the pending filing of an environmental easement by National Grid. The SMP was approved by NYSDEC on 12/2/11 and included a Groundwater Monitoring Program.

SMP modifications were approved by NYSDEC in their 7/5/12 letter to National Grid which included:

- 1) The groundwater monitoring frequency has been reduced from quarterly to semi-annually (May & October);
- 2) MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, MW-16 will continue to be sampled. MW 8 and MW-9 were decommissioned (October 2013) in accordance with the Dept.'s CP-43 policy; and
- 3) RMW-1 will be monitored semi-annually and documented in the semi-annual report.

#### 1.1 PURPOSE AND OBJECTIVE

The purpose of this Report is to summarize the activities and results of the latest event, and to compare the results to previous events. As described in the December 2008 Supplemental RI Report and the subsequent ROD, one of the primary goals is to evaluate whether or not the groundwater constituents of concern (COCs) concentrations decrease, and continue to assess the effectiveness of monitored natural attenuation (MNA).

#### 1.2 REPORT ORGANIZATION

This Report is organized in to the following six sections. Section 1.0 presents the purpose and objectives of this program. Section 2.0 provides the history, environmental setting and location of the Site. Section 3.0 provides a description of the approach used to collect and analyze groundwater samples at the Site. Section 4.0 presents the physical and chemical analytical data collected, and Section 5.0 presents the conclusions and recommended approach for further monitoring at the Site. References for the Report are located in Section 6.0.

#### 2.0 BACKGROUND

#### 2.1 SITE DESCRIPTION

The Site is located in the City of Johnstown, County of Fulton, New York (Figure 1 presents the site location map) and is identified as Block 14 and Lot 7 on the Johnstown City Tax Map. The Site is an approximately 0.7 acre area bounded by the Cayadutta Creek to the north, the Colonial Cemetery to the south, Market Street to the east, and a wooded parcel of property to the west (Figure 2 presents the site plan). The Site is located in a mixed commercial, industrial, and residential area.

Currently, National Grid operates a natural gas regulator station at the Site, with equipment contained in fenced enclosures along the Site's southern boundary. The rest of the Site is grass-covered, including the stream bank adjacent to Cayadutta Creek along the northern boundary of the Site. An embankment exists along the north end of the Site that goes down to the Cayadutta Creek. A chain link fence exists along the north and west sides of the Site, and a retaining wall runs along the south side of the Site. Access to the Site is from North Market Street to the east.

The Johnstown Hospital is located south of the Site within one mile, and numerous residences exist to the west and east of the Site. The Johnstown Senior High School and Warren Street Elementary School are located within one mile of the Site to the west.

#### 2.2 SITE HISTORY

The Johnstown MGP Site was incorporated in March 1857 as the Johnstown Gas Light Company. The company operated a small coal gas plant with a 20,000 cubic foot (cu. ft.) holder (Holder #1). In 1861, the plant was improved with the addition of a coal shed and covering for the tank holder. In 1886, the Johnstown and Gloversville Gas Light Corporation was formed, and the company purchased the rights to the Lowe water gas process. The United Gas Improvement Company planned the construction of a water gas plant for the Johnstown and Gloversville franchises.

In 1887, the Site consisted of a tool shop, an office, a coal gasometer, a lime house, a purifier room, a retort house, and a coal shed. Between 1887 and 1918, Holder #2 was located in the central part of the Site (exact size unknown). In 1892, a steam generator was constructed adjacent to the coal shed for the Lowe water gas process, and Holder #1 was decommissioned in 1896. In 1898, a 72,000 cu. ft. gas holder (Holder #3) was constructed on the Site. Between

1912 and 1918, the western small gas holder (Holder #2) in the middle of the Site was removed. In 1929, a gas pipeline from a MGP in Troy, New York reached Johnstown, and local gas production was only performed on a seasonal (winter) basis, until local production of gas ceased in 1931. Niagara Hudson Power Company was the owner of the Site in 1930. By 1948, Holder #3 was decommissioned. In 1950, Niagara Hudson Power was consolidated under the name Niagara Mohawk Power Company. By 1980, all Site buildings were removed. Currently, National Grid operates a natural gas regulator station at the Site.

#### Site Assessment and Investigations

An investigation of the Site began in 1997 with a Preliminary Site Assessment (PSA), which found that the Site was impacted with MGP wastes. A Supplemental PSA was then conducted at the Site in 1998, which was followed by a RI (January 2000) and subsequent remedial measures. Remedial measures are discussed separately below in this section.

A 2009 Supplemental RI was initiated to collect data to address potential residual MGP-related contaminants remaining in groundwater at the Site and to assess hydrogeologic conditions and groundwater quality on the Site. The results of the Supplemental RI were used to formulate potential remedial alternatives for groundwater and residual soil contamination. The Supplemental RI results were evaluated and presented in the 2010 FS Report.

#### Remedial Measures Completed

Several interim remedial measures (IRMs) were performed to address the MGP impacts. In 2002 and 2003, the former holders and associated impacts soil were removed. During this IRM, former Holder #2 and the northern half of former Holder #3 were demolished and removed from the Site. Approximately 13,870 cubic yards of soil were excavated and disposed off-site at a NYSDEC-approved facility. Permanent steel sheeting was left in place along the northeastern perimeter of the Site to avoid disturbance of the roadway and to provide containment of residual material left at depth.

Between 2005 and 2006, National Grid provided support to the City of Johnstown for subsurface work associated with the replacement of the North Market Street Bridge across Cayadutta Creek. Approximately 1,413 cubic yards of impacted soil were excavated from within the cofferdam area and disposed off-site at a NYSDEC-approved facility.

In August 2009, the rip-rap area along the bank of Cayadutta Creek that had been restored during the previous IRMs was enhanced to allow for establishment of stream-side vegetation. Post-IRM inspections of the restored Cayadutta Creek Bank were conducted in September 2009 and May 2010.

#### 2.3 ENVIRONMENTAL SETTING

The Johnstown (N. Market Street) Site slopes northward toward Cayadutta Creek with elevations ranging from 652 to 672 feet (ft.) above sea level. Currently, the Site ground surface gradually slopes from south to north, becoming increasingly steep adjacent to the Creek, and is generally

covered with either vegetation or stone. Surface drainage is primarily to the north into the Creek. Access to the Site is from North Market Street to the east, and the Site is currently used to support the natural gas regulator station operations.

#### Site Geology

The main units of unconsolidated deposits identified at the Site can be characterized in descending order as fill and native glacial deposits to bedrock. The glacial deposits are of lacustrine origin with glacial tills to the top of Shale bedrock (Utica Shale). Bedrock was reached underneath the till in two soil borings explored during the 1998 Supplemental PSA. These stratigraphic units are more specifically described below, based on information obtained from the previous investigations, and from the soil borings and monitoring well borings conducted during the 2007/2008 SRI.

Site geology includes a layer of disturbed soils (primarily fill) overlying glacial deposits. Based upon on-site soils and monitoring well borings, disturbed soils (including fills) range in thickness up to 13 ft. on the Site and are typically composed of sand, gravel, silt, clay, wood, coal, and anthropogenic materials including ash, cinders, clinkers, brick fragments, wire, and wood chips. Wood chips were identified in three borings (SB-09, SB-12, and MW-8), and are often associated with purifier waste.

A thin layer of peat underlies the disturbed soils in the northern portion of the Site, ranging in thickness from 0.5 ft. to 3 ft., and appears to thicken and dip to the north. Except where it is locally covered by sedimentary deposits such as silts, sands, and clays, the peat, where present, appears to have been the historical ground cover prior to development of the Site.

Underlying the peat, where present, the soils consist of lacustrine deposits composed of silts, sands, and clays. The surface of the lacustrine deposits appears to dip and thin out toward the north. A sand and gravel unit (an outwash deposit of stratified drift) underlies the lacustrine deposits across the Site area. This unit contains varying amounts of silt and clay. These deposits overlie a dense, low-permeability glacial till to bedrock (Shale).

#### Site Hydrogeology

Groundwater depths on-site are typically in the 10- to 20-foot below ground surface (bgs) ranges, generally in the glacial deposits below the bottom of the fill material. Groundwater flow is consistently northward through the Site area toward Cayadutta Creek, with the steepest gradient from the center of the Site proximal to former gas holders #2 and #3 to the southern Creek bank (about 0.08 ft./ft.) In comparison the average hydraulic gradient decreases to a value of approximately 0.04 ft./ft. on the east and west sides of the site away from the gas holders. The groundwater flow is consistent with regional groundwater flow direction. This groundwater flow direction and hydraulic gradients calculated during this monitoring period are also generally consistent with data obtained prior to the issuance of the ROD.

#### 3.0 MONITORING ACTIVITIES

The long-term semi-annual groundwater monitoring program currently consists of the following elements:

- Semi-Annual Site Inspection including the creek bank protection, vegetative cover, monitoring wells, and security fence.
- Semi-Annual Groundwater Well Gauging of the following: RW-1, MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15 and MW-16 (Figure 2 presents the well locations). The creek surface water level is gauged at one location: SG-1.
- Semi-Annual Groundwater Sampling and Analysis of the following: MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15 and MW-16. Note that Recovery Well RW-1 is not sampled as part of the program but is inspected for the presence of NAPL.

#### 3.1 WATER GAUGING AND GROUNDWATER SAMPLING PROCEDURES

#### Gauging

Long-term groundwater monitoring includes water gauging at 9 groundwater monitoring wells and 1 groundwater recovery well using an electronic oil/water interface probe. Depth to bottom of well (DTB), depth to product (DTP), and depth to water (DTW) are to be recorded at each well. Refer to Table 1 for a summary of the water level measurements from April 2014 as well as previous events. Appendix A also presents the field documentation from the April 2014 water gauging event.

No product was present in RW-1 or the other nine groundwater monitoring wells.

A surface water level measurement was collected from the Cayadutta Creek using a water level probe (at the bridge; Gauging Point #1).

#### Sampling

Groundwater sampling was performed following low-flow sampling techniques (equivalent to United States Environmental Protection Agency [USEPA] low-flow procedures) using a pressure-driven peristaltic pump. During purging, measurements were collected for the following field parameters: pH, specific conductivity, turbidity, dissolved oxygen (DO), temperature, and oxidation-reduction potential (ORP). A Horiba U-22 was used to collect the field parameter data in a flow-through cell. The monitored field parameters are observed and recorded during low-flow sampling to determine when they have stabilized, and thus when the well has been adequately purged. Field parameter measurements were recorded at approximately 5-minute intervals. The monitoring wells were purged until stabilization of the field parameters (±0.1 Standard Unit (SU) for pH, ±3% for specific conductivity, ±10 millivolts (mV) for ORP, and ±10% for DO) and turbidity was less than 50 Nephalometric Turbidity Units (NTU). Refer to Attachment A for the field data.

After stabilization of the field parameters, 9 groundwater samples were collected directly from the dedicated tubing into laboratory-supplied sample containers (pre-preserved as required per the analytical method). Quality Assurance/Quality Control (QA/QC) samples included the collection of one field duplicate sample, one matrix spike (MS) sample, one matrix spike duplicate (MSD) sample, and one trip blank sample (VOCs only). Samples were transported to the laboratory, accompanied by the appropriate chain-of-custody documentation. Analytical results were validated.

#### **Natural Attenuation Parameters**

The ORP of groundwater is an indicator of the relative tendency of the groundwater to accept or transfer electrons. ORP is dependent on and influences rates of biodegradation. Lower ORP readings indicate a greater tendency toward reducing conditions and anaerobic processes.

The pH of the groundwater affects the presence and activity of microorganisms in the groundwater. The microorganisms may produce either organic acids or carbon dioxide which, when dissolved in water, forms weak carbonic acid. Microorganisms capable of degrading petroleum hydrocarbons typically prefer pH values ranging from 6 to 8 SU.

Groundwater temperature affects the solubility of dissolved gases such as oxygen and carbon dioxide as well as the metabolic activity of microorganisms. Oxygen is less soluble in warm water, and groundwater temperatures below approximately 5 degrees Celsius tend to inhibit biodegradation.

Dissolved oxygen is the most thermodynamically favored electron acceptor used by microorganisms during the degradation of both natural and anthropogenic organic carbon. An inverse relationship of high hydrocarbon concentrations and low DO concentrations can be used as a key indicator of biodegradation.

Nitrate, if available, may be used as an electron acceptor for anaerobic biodegradation after the depletion of dissolved oxygen (typically considered less than 0.5 milligrams per liter [mg/L]) and is used to biodegrade petroleum hydrocarbons. Lower nitrate concentrations in groundwater within a plume, with respect to higher concentrations in areas upgradient and outside a plume, may be expected.

Ferrous iron is a metabolic byproduct of hydrocarbon degradation. Reducing conditions in nitrogen- and oxygen-depleted groundwater creates an anaerobic environment that causes the reduction of ferric iron (Fe<sup>3+</sup>) to ferrous iron (Fe<sup>2+</sup>). Relatively low ferrous iron concentrations may be present in areas where natural attenuation is occurring if free ferrous iron is reprecipitating as sulfides or carbonates.

Sulfate may be used as an electron acceptor after the depletion or use limitation of dissolved oxygen, nitrate, and ferric iron. Lower sulfate concentrations in groundwater within a plume, with respect to higher concentrations in areas upgradient and outside a plume, may be expected.

The production of methane, termed methanogenesis, occurs only in strongly reducing conditions and generally after oxygen, nitrate, and sulfate have been depleted. The presence of methane in groundwater suggests BTEX degradation via methanogenesis. Methane is not present in fuels, and therefore its presence at high concentrations relative to areas upgradient and outside a plume is indicative of the biodegradation of petroleum hydrocarbons.

The buffering capacity of groundwater is a function of alkalinity. Typically, alkalinity is primarily due to carbonate alkalinity. The organic acids or the carbon dioxide (which produces a weak carbonic acid when dissolved in water) produced by biodegradation solubilize carbonate from the soil. Alkalinity concentrations that are elevated with respect to areas upgradient and outside a plume may be an indication of microbial activity and thus natural attenuation.

Typically, the relationships between BTEX and electron acceptors/metabolic byproduct concentrations (geochemical indicators) indicate potential for biodegradation. The concentrations are dependent on the location (and groundwater conditions) within the plume or outside of the plume limits.

#### 3.2 GROUNDWATER ANALYTICAL RESULTS

The groundwater samples were analyzed for BTEX, PAHs, lead, total cyanide, and MNA/WQ parameters including alkalinity, chloride, ethane, ethene, ferrous iron, manganese, methane, nitrate, nitrogen, sulfate and sulfide. BTEX and PAHs are constituents commonly associated with former MGP sites. Cyanide is also a constituent commonly associated with former MGP sites. BTEX, PAHs, lead, and cyanide were the primary contaminants detected during previous investigation activities conducted at the Site. The MNA/WQ parameters, as well as field-measured ORP, pH, temperature, and DO, are relevant to establishing whether conditions favorable to natural attenuation occur at the Site.

- Refer to Table 2 for the analytical results summary.
- ➤ Refer to Appendix A for field data
- ➤ Refer to Appendix B for the DUSR

Groundwater analytical results were compared with levels specified in NYSDEC Division of Water Final Amendment to Water Quality Standards Regulations, effective February 16, 2008 [hereafter referred to as NYSDEC WQ Values]. For groundwater, Class GA values were applied. Class GA waters are defined as fresh groundwater, found in the saturated zone of unconsolidated deposits and consolidated rock or bedrock, which are used as a source of potable water supply.

#### Site Related Parameters

BTEX - Groundwater samples collected from monitoring wells MW-10, MW-11, MW-13, MW-14, MW-15, and MW-16 contained concentrations of some or all individual BTEX constituents above their respective NYSDEC WQ Values (1 micrograms per liter [ $\mu$ g/L] for benzene and 5  $\mu$ g/L for other BTEX constituents) since the June 2010 event. The highest concentrations were

observed in the groundwater samples collected from MW-13, MW-15 and MW-16. MW-13 typically had the highest total BTEX concentrations. MW-15 is located generally downgradient of the former gas holders and of MW-13, while MW-16 is located southwest of the former gas holders and generally upgradient of both MW-13 and MW-15.

*PAHs* – No PAHs were detected in MW-4 or MW-7. PAH compounds were detected in groundwater samples collected from the other sampled monitoring wells. Naphthalene has consistently exhibited the highest concentration of any PAH.

*Lead* - Lead exhibited excedances above its respective NYSDEC WQ Value (25  $\mu$ g/l) in three wells (MW-7, MW-10, and MW-13) since June 2010.

*Cyanide* - Concentrations of cyanide were detected above its NYSDEC WQ Value (0.2 mg/L) in groundwater samples collected from MW-7, MW-13, MW-14, MW-15, and MW16 since June 2010.

#### Monitored Natural Attenuation Parameters

Site-specific levels of the MNA/WQ parameters (geochemical indicators) were compared to known screening values to identify whether the site-specific values are within the ranges known to be suitable for biodegradation. The MNA/WQ analytical results for all individual monitoring wells are summarized in Table 2. Figure 4 presents the groundwater data for the key MNA data parameters at their respective locations to assist with the MNA evaluation. Indications of biodegradation of petroleum-related MGP constituents within the plume include low levels of DO, nitrate and sulfate, with generally higher levels of manganese, ferrous iron and methane.

Indicator concentrations detected at monitoring wells identified within source and downgradient areas of the Site were compared to levels detected at upgradient and side gradient monitoring wells exhibiting little or no MGP-related contamination. Generally indicator concentration levels at a distance from the center of the plume will be significantly lower than levels within the plume. A summary of the MNA/WQ results and associated field indicator parameters are provided below:

- DO and ORP values demonstrate depleted levels of dissolved oxygen and a transformation to more anaerobic or reducing conditions at the former source and downgradient areas relative to side gradient and upgradient areas of the Site. These values suggest that biodegradation activities at the source and at downgradient areas are occurring, consuming the available oxygen and resulting in MGP petroleum-related compound degradation and the lowering of dissolved oxygen levels.
- The range of ORP levels observed at the source and downgradient area monitoring wells generally indicates aquifer conditions could be suitable for denitrification, ferric iron reduction, sulfate reduction, and methanogenesis.
- Nitrate concentrations are generally depleted at the former source and downgradient areas of the Site relative to upgradient (MW-4) and side gradient areas, indicating

denitrification may be a noteworthy biodegradation process occurring at this time at the source and downgradient areas.

- Ferrous iron concentrations at the former source and downgradient area monitoring wells do not exhibit higher levels relative to side gradient and upgradient monitoring wells. In addition, sulfate concentrations at the former source and upgradient areas are not depleted relative to upgradient and side gradient areas. These observations indicate ferric iron reduction and sulfate reduction are not likely to be significant biodegradation processes at this time at the source and downgradient areas.
- Based on the presence of methane, low DO amounts, and the ORP levels, methanogenesis is likely an important factor for biodegradation capacity in some areas of the Site. However, plume elongation is limited with a similar footprint throughout the monitoring period indicating that biodegradation is continuing and methanogenic conditions have not taken over completely.

#### Natural Attenuation Trending

Previous groundwater sampling data collected since June 2010 was utilized to develop and evaluate the contaminant plume and concentration trends of specific constituents at the Site. Plume size and concentration data are indicative of biodegradation capacity (natural attenuation) at the Site and whether the capacity has reached a limit of effectiveness. In order to determine and evaluate natural attenuation effectiveness, the use of statistical testing has been utilized for groundwater data collected from monitoring wells at the Site. The Mann-Kendall test was utilized for trend analysis. Trend analysis data started June 2010. The resultant statistical trend analysis for individual monitoring wells suggests (with 80% and 90% confidence) that total BTEX compounds and naphthalene plume lifecycle have been stable (no trend) to decreasing throughout the monitoring period. The table below depicts general concentration trend analysis results (decreasing, no trend or increasing) at 80% confidence levels for each well and associated constituents during the monitoring period. No trend is indicative of plume stability at well locations with contaminant detections throughout the monitoring period.

| Well ID            | Benzene                 | Toluene    | Ethylbenzene | Total xylenes | Naphthalene |
|--------------------|-------------------------|------------|--------------|---------------|-------------|
| MW-4               | No trend                | No trend   | No trend     | No trend      | No trend    |
| MW-7               | No trend                | No trend   | No trend     | No trend      | No trend    |
| $MW-10^1$          | Increasing <sup>2</sup> | No trend   | No trend     | No trend      | No trend    |
| MW-11 <sup>1</sup> | Decreasing              | Decreasing | Decreasing   | Decreasing    | No trend    |
| MW-12              | No trend                | No trend   | No trend     | No trend      | No trend    |
| MW-13 <sup>1</sup> | Decreasing              | Decreasing | Decreasing   | Decreasing    | Decreasing  |
| MW-14 <sup>1</sup> | No trend                | Decreasing | No trend     | Decreasing    | Decreasing  |
| MW-15 <sup>1</sup> | No trend                | Increasing | No trend     | Decreasing    | No trend    |
| MW-16 <sup>1</sup> | Decreasing              | Decreasing | Decreasing   | Decreasing    | No trend    |

No trend is indicative of plume stability at well locations with contaminant detections throughout the monitoring period.

<sup>2</sup> The increasing trend (benzene) at MW-10 is attributed to concentration of 7.1 μg/L and 1.3 μg/L during two previous rounds with all other rounds exhibiting concentrations below WO values.

Isoconcentration maps were developed for total BTEX (Figure 5) and naphthalene (Figure 6) contamination. The figures present locations of the groundwater monitoring wells and plume contours for total BTEX (as compared to the benzene WQ value of 1  $\mu$ g/L) and naphthalene exceeding the NYSDEC WQ values. The sampling rounds depicted include June 2010, January 2011 and March 2012; which represent seasonality and a snapshot of time trends through that monitoring period. Evaluation of the isoconcentration figures suggests that the contaminant plumes are relatively stable to decreasing (smaller footprint with time) within the Site boundary. BTEX constituent plume trends (concentrations above the benzene WQ at 1  $\mu$ g/L) have consistently included MW-13, MW-15 and MW-16, while the naphthalene plume (concentrations above the WQ) has decreased to include only MW-13 and MW-15.

#### 4.0 CONCLUSIONS AND RECOMMENDATIONS

#### 4.1 CONCLUSIONS

#### Groundwater Levels

The groundwater elevation data indicates groundwater within the Site, south of the Creek, flows in a downgradient direction from the south to the north, toward Cayadutta Creek. The groundwater flow direction and hydraulic gradients have been consistent during previous gauging events and with data obtained prior to the ROD.

Flow on the north side of the Creek is to the south, towards the Creek. As such, Cayadutta Creek serves as the discharge location for the unconfined hydrostratigraphic unit, north and south of the Creek, and acts as a hydraulic boundary.

#### **Site-Related Constituents**

Concentrations of BTEX, PAHs, lead, and cyanide in groundwater samples have been detected at consistent well locations on the Site. The overall concentrations continue to show a slight decreasing trend as compared to historic levels. Based on historic sampling results (as depicted on Table 1 – Groundwater from the ROD), benzene and naphthalene were exhibited in groundwater at concentrations up to 2,600  $\mu$ g/L and 7,300  $\mu$ g/L pre-ROD, respectively; with the highest occurrences in the central portion of the Site. These levels are higher than concentrations exhibited during this monitoring period.

The concentrations of BTEX constituents and PAH compounds (and specifically naphthalene) appear to be relatively stable or decreasing as indicated by groundwater concentration trend analysis from on-site monitoring wells. Site institutional controls continue to be effective and will continue to be monitored semi-annually.

Concentrations of benzene are significantly higher than the concentrations of toluene, ethylbenzene, and xylenes at source area monitoring wells MW-13, MW-15 and MW-16. Higher concentrations of benzene relative to the other BTEX compounds may indicate the amount of DO in the subsurface may not be sufficient to completely biodegrade BTEX (Borden, et. al., 1995).

#### Natural Attenuation

Plume stability at the Site is in indication that biodegradation capacity likely has not reached its limit of effectiveness. The use of statistical testing has identified the plume trends based on the constituent concentrations. Trend analysis data started with the June 2010 sampling event. Generally, the tests suggested that the plume and the related constituents were either stable or decreasing. Based on (1) trend analysis for BTEX and naphthalene and (2) MNA parameter assessment, it is evident that attenuation at the Site is likely geochemically dependent, the source is being removed, and the plume is not migrating or increasing.

#### 4.2 RECOMMENDATIONS

Based on the results of the April 2014 event and previous events, the following recommendations are made:

1. Continue the long-term semi-annual groundwater monitoring program. The next event will be October 2014.

#### 5.0 REFERENCES

Borden, Robert C., et. al., "Geochemical Indicators of Intrinsic Bioremediation". Groundwater, Volume 33, Number 2, March/April 1995.

National Grid. "Site Management Plan for the Johnstown (N. Market Street) Former MGP Site, Johnstown, New York". National Grid, November 2011.

Niagara Mohawk Power Corporation. "Preliminary Historical Profile of the Johnstown (Market Street) MGP Site. Johnstown, New York". Niagara Mohawk Power Corporation, June 1993.

Niagara Mohawk Power Corporation. "Interim Remedial Measure (IRM) Summary Report for the Johnstown (N. Market Street) Site. Johnstown, Fulton County, New York. Site No. 5-18-020:. Tetra Tech FW, June 2007.

Niagara Mohawk Power Corporation. "IRM Summary Report for the Johnstown (N. Market Street) Site. Bridge Replacement Environmental Support Activities". Tetra Tech FW, October 2007.

Niagara Mohawk Power Corporation. "Record of Decision for the Johnstown (N. Market Street) Former MGP Site, Johnstown, New York". Niagara Mohawk Power Corporation, March 2010.

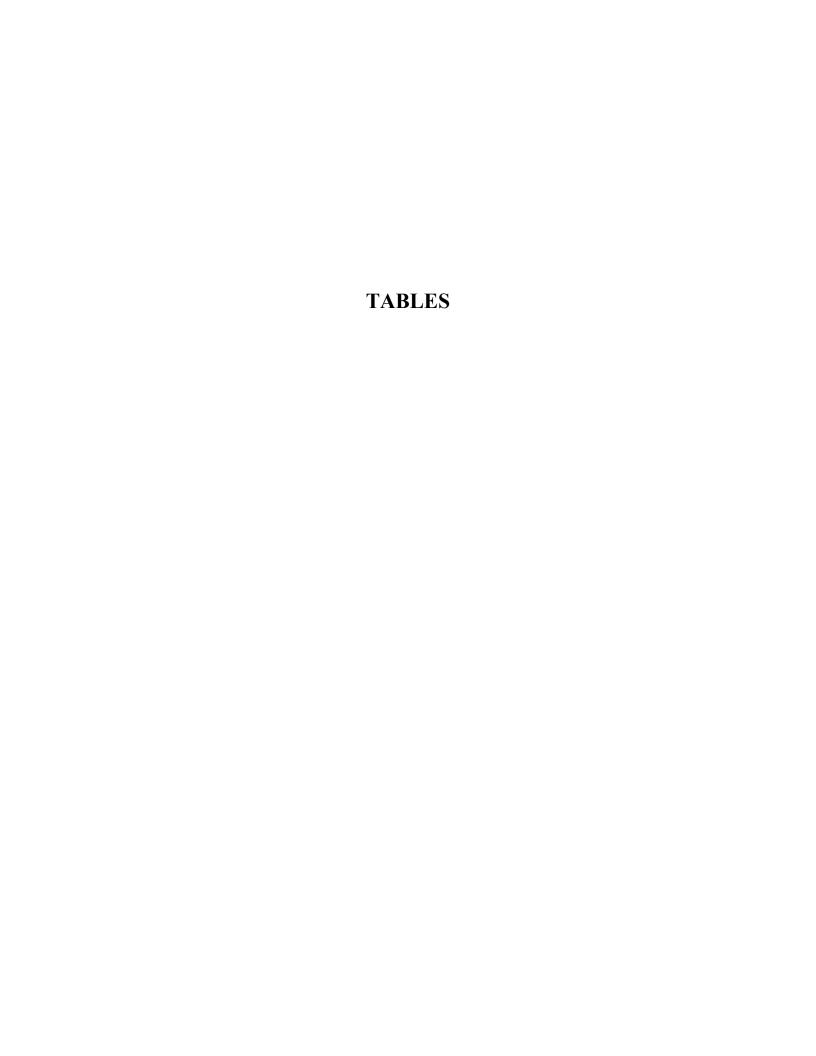



Table 1
Groundwater Level Measurements
Johnstown MGP Site
Johnstown, NY

|         |                                 | 10/1                          | 3/2011                               | 12/1                          | 5/2011                               | 3/15                          | /2012                                | 10/9                          | )/2012                               | 4/18                          | 3/2013                               | 10/7                          | /2013                                | 4/9,                          | /2014                                |
|---------|---------------------------------|-------------------------------|--------------------------------------|-------------------------------|--------------------------------------|-------------------------------|--------------------------------------|-------------------------------|--------------------------------------|-------------------------------|--------------------------------------|-------------------------------|--------------------------------------|-------------------------------|--------------------------------------|
| Well ID | ELEVATION<br>REFERENCE<br>POINT | Depth to<br>Water<br>(ft toc) | Groundwater<br>Elevation<br>(ft msl) |
|         |                                 |                               |                                      |                               |                                      |                               |                                      |                               |                                      |                               |                                      |                               |                                      |                               | _                                    |
| MW-4    | 676.54                          | 21.41                         | 655.13                               | 22.78                         | 653.76                               | 22.81                         | 653.73                               | NM                            | NM                                   | 23.97                         | 652.57                               | 23.12                         | 653.42                               | 23.28                         | 653.26                               |
| MW-7    | 659.08                          | 13.15                         | 645.93                               | 15.45                         | 643.63                               | 13.55                         | 645.53                               | 14.17                         | 644.91                               | 13.53                         | 645.55                               | 14.36                         | 644.72                               | 13.71                         | 645.37                               |
| MW-10   | 657.59                          | 14.11                         | 643.48                               | 14.22                         | 643.37                               | 14.18                         | 643.41                               | 15.05                         | 642.54                               | 14.27                         | 643.32                               | 14.44                         | 643.15                               | 14.13                         | 643.46                               |
| MW-11   | 657.29                          | 12.95                         | 644.34                               | 12.76                         | 644.53                               | 12.73                         | 644.56                               | 13.95                         | 643.34                               | 13.01                         | 644.28                               | 13.16                         | 644.13                               | 12.68                         | 644.61                               |
| MW-12   | 660.08                          | 13.61                         | 646.47                               | 14.54                         | 645.54                               | 14.26                         | 645.82                               | 16.36                         | 643.72                               | 14.06                         | 646.02                               | 14.99                         | 645.09                               | 14.41                         | 645.67                               |
| MW-13   | 664.89                          | 11.91                         | 652.98                               | 14.31                         | 650.58                               | 14.98                         | 649.91                               | 16.12                         | 648.77                               | 14.18                         | 650.71                               | 15.08                         | 649.81                               | 14.84                         | 650.05                               |
| MW-14   | 663.91                          | 13.26                         | 650.65                               | 13.65                         | 650.26                               | 15.49                         | 648.42                               | 16.98                         | 646.93                               | 13.14                         | 650.77                               | 14.74                         | 649.17                               | 15.70                         | 648.21                               |
| MW-15   | 661.85                          | 15.95                         | 645.90                               | 16.38                         | 645.47                               | 16.41                         | 645.44                               | 17.85                         | 644.00                               | 16.26                         | 645.59                               | 17.21                         | 644.64                               | 16.67                         | 645.18                               |
| MW-16   | 665.57                          | 9.79                          | 655.78                               | 9.91                          | 655.66                               | 11.56                         | 654.01                               | 10.51                         | 655.06                               | 9.98                          | 655.59                               | 9.85                          | 655.72                               | 9.45                          | 656.12                               |
| RW-1    |                                 |                               |                                      |                               |                                      |                               |                                      | 17.98                         |                                      | 16.21                         |                                      | 15.95                         |                                      | 12.32                         |                                      |
| GAUGE1  | 659.97                          | 16.05                         | 643.92                               | 15.62                         | 644.35                               | 15.69                         | 644.28                               | NM                            | NM                                   | 19.10                         | 640.87                               | 18.85                         | 641.12                               | 18.85                         | 641.12                               |

Table 2
Analytical Data Results (MW-4)
Johnstown MGP Site
Johnstown, NY

| CONSTITUENT            | UNITS | NYSDEC WQ Values | 09/29/10 | 01/04/11 | 04/06/11 | 06/14/11 | 10/11/11 | 12/13/11 | 03/14/12 | 10/09/12 | 04/18/13 | 10/08/13 | 04/09/14 |
|------------------------|-------|------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| BTEX Compounds         |       |                  |          |          |          |          |          |          |          |          |          |          |          |
| Benzene                | ug/l  | 1                | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      |
| Ethylbenzene           | ug/l  | 5                | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      |
| m/p-Xylene             | ug/l  | 5                | 2 U      | 2 U      | 2 U      | 2 U      | 2 U      | 2 U      | 2 U      | 2 U      | 2 U      | 2 U      | 2 U      |
| o-Xylene               | ug/l  | 5                | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      |
| Toluene                | ug/l  | 5                | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      |
| PAHs                   |       |                  |          |          |          |          |          |          |          |          |          |          |          |
| Acenaphthene           | ug/l  | 20               | 0.19 U   | 0.19 U   | 0.47 U   | 0.48 U   | 0.47 U   | 0.48 U   | 0.49 U   |
| Acenaphthylene         | ug/l  | NC               | 0.19 U   | 0.19 U   | 0.47 U   | 0.48 U   | 0.47 U   | 0.48 U   | 0.49 U   |
| Anthracene             | ug/l  | 50               | 0.19 U   | 0.19 U   | 0.47 U   | 0.48 U   | 0.47 U   | 0.48 U   | 0.49 U   |
| Benzo(a)anthracene     | ug/l  | 0.002            | 0.19 U   | 0.19 U   | 0.47 U   | 0.48 U   | 0.47 U   | 0.48 U   | 0.49 U   |
| Benzo(a)pyrene         | ug/l  | 0.000            | 0.19 U   | 0.19 U   | 0.47 U   | 0.48 U   | 0.47 U   | 0.48 U   | 0.49 U   |
| Benzo(b)fluoranthene   | ug/l  | 0.002            | 0.19 U   | 0.19 U   | 0.47 U   | 0.48 U   | 0.47 U   | 0.26 J   | 0.49 U   |
| Benzo(g,h,i)perylene   | ug/l  | NC               | 0.19 U   | 0.19 U   | 0.47 U   | 0.48 U   | 0.47 U   | 0.19 J   | 0.49 U   |
| Benzo(k)fluoranthene   | ug/l  | 0.002            | 0.19 U   | 0.19 U   | 0.47 U   | 0.48 U   | 0.47 U   | 0.48 U   | 0.49 U   |
| Chrysene               | ug/l  | 0.002            | 0.19 U   | 0.19 U   | 0.47 U   | 0.48 U   | 0.47 U   | 0.48 U   | 0.49 U   |
| Dibenzo(a,h)anthracene | ug/l  | NC               | 0.19 U   | 0.19 U   | 0.47 U   | 0.48 U   | 0.47 U   | 0.48 U   | 0.49 U   |
| Fluoranthene           | ug/l  | 50               | 0.19 U   | 0.19 U   | 0.47 U   | 0.48 U   | 0.47 U   | 0.48 U   | 0.49 U   |
| Fluorene               | ug/l  | 50               | 0.19 U   | 0.19 U   | 0.47 U   | 0.48 U   | 0.47 U   | 0.48 U   | 0.49 U   |
| Indeno(1,2,3-cd)pyrene | ug/l  | 0.002            | 0.19 U   | 0.19 U   | 0.47 U   | 0.48 U   | 0.47 U   | 0.48 U   | 0.49 U   |
| Naphthalene            | ug/l  | 10               | 0.27     | 0.19 U   | 0.47 U   | 0.48 U   | 0.47 U   | 0.48 U   | 0.49 U   | 0.49 U   | 0.49 U   | 3.2      | 3.2      |
| Phenanthrene           | ug/l  | 50               | 0.19 U   | 0.19 U   | 0.47 U   | 0.48 U   | 0.47 U   | 0.048 J  | 0.49 U   |
| Pyrene                 | ug/l  | 50               | 0.19 U   | 0.19 U   | 0.47 U   | 0.48 U   | 0.47 U   | 0.10 J   | 0.49 U   |
| Cyanide and Lead       |       |                  |          |          |          |          |          |          |          |          |          |          |          |
| Lead                   | ug/l  | 25               | 5 U      | 5 U      | 5 U      | 3 U      | 3 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      |
| Cyanide                | mg/l  | 0.2              | 0.01 U   | 0.01 UJ  | 0.010 U  |

#### Notes:

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

J - Estimated

mg/l - Milligrams per liter

NC - No Criteria

PAHs - Polycyclic Aromatic Hydrocarbons

U - Not Detected

Table 2
Monitored Natural Attenuation/Water Quality Data Results (MW-4)
Johnstown MGP Site
Johnstown, NY

| Sa                    | ample Date | 09/29/10 | 01/04/11 | 04/06/11 | 06/14/11 | 10/11/11 | 12/13/11 | 03/14/12 | 10/09/12 | 04/18/13 | 10/08/13 | 04/09/14 |
|-----------------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| CONSTITUENT           | UNITS      |          |          |          |          |          |          |          |          |          |          |          |
| MNA/WQ Parameters     |            |          |          |          |          |          |          |          |          |          |          |          |
| Alkalinity (as CaCO3) | mg/l       | 385      | 420      | R        | R        | 405 J    | 431 J    | R        | 405      | 354      | 442      | 398      |
| Chloride              | mg/l       | 354      | 269      | 265      | 385 B    | 288 J    | R        | 228      | 222      | 275      | 411      | 304      |
| Ethane                | ug/l       | 1 U      | 1 U      | 1.5 U    | 1.5 U    | 1.5 U    | 1.5 U    | 1.5 U    | 7.5 U    | 7.5 U    | 7.5 U    | 7.5 U    |
| Ethene                | ug/l       | 1 U      | 1 U      | 1.5 U    | 1.5 U    | 1.5 U    | 1.5 U    | 1.5 U    | 7 U      | 7 U      | 7 U      | 7 U      |
| Ferrous Iron          | mg/l       | 0.1 U    | 0.1 U    | R        | 0.1 U    | 0.013    | 0.1 U    |
| Manganese             | mg/l       | NA       | 10 U     | 0.64 J   | 0.45 J   | 3 U      | 3.4      | 3 U      | 0.0087   | 3 U      | 3 U      | 3 U      |
| Methane               | ug/l       | 2 U      | 2 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 4 U      | 4 U      | 4 U      | 4 U      |
| Nitrate               | mg/l       | NA       | 2.5      | 2.7      | 2.9      | 2.4      | 3        | 3.1      | 2.2      | 2.4      | 3.5      | 3.6      |
| Nitrogen              | mg/l       | 0.22     | 0.25     | 0.2 U    | 0.2 U    | R        | 0.2 U    | 0.2 U    | 0.25     | 0.31     | 0.31     | 0.2 U    |
| Sulfate               | mg/l       | NA       | 49.2     | 56.7     | 74.2 B   | R        | R        | 56 B     | 62.2     | 64.7     | 74.7     | 70.7     |
| Sulfide               | mg/l       | NA       | 1 U      | 1 U      | 1 UJ     | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      |

#### Notes:

B - Present in Associated Blank Sample

J - Estimated Concentration

mg/l - Milligrams per liter

NA - Not analyzed

R - Rejected

U - Not Detected

# Table 2 Analytical Data Results (MW-7) Johnstown MGP Site Johnstown, NY

| CONSTITUENT            | UNITS | NYSDEC WQ Values | 09/29/10 | 01/04/11 | 04/06/11 | 06/14/11 | 10/11/11 | 12/13/11 | 03/14/12 | 10/09/12 | 04/18/13 | 10/08/13 | 04/09/14 |
|------------------------|-------|------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| BTEX Compounds         |       |                  | , -, -   | - , - ,  | - ,,     | , ,      | -, ,     | , -,     | ,        | -, ,     | - , -, - | -,, -    | . , ,    |
| Benzene                | ug/l  | 1                | 1 U      | 1 U      | 1 U      | 0.72 J   | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      |
| Ethylbenzene           | ug/l  | 5                | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      |
| m/p-Xylene             | ug/l  | 5                | 2 U      | 2 U      | 2 U      | 2 U      | 2 U      | 2 U      | 2 U      | 2 U      | 2 U      | 2 U      | 2 U      |
| o-Xylene               | ug/l  | 5                | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      |
| Toluene                | ug/l  | 5                | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      |
| PAHs                   |       |                  |          |          |          |          |          |          |          |          |          |          |          |
| Acenaphthene           | ug/l  | 20               | 0.075 J  | 0.19 U   | 0.50 U   | 0.48 U   | 0.48 U   | 0.55     | 0.48 U   |
| Acenaphthylene         | ug/l  | NC               | 0.15 J   | 0.11 J   | 0.50 U   | 0.48 U   | 0.48 U   | 0.20 J   | 0.13 J   | 0.13 J   | 0.48 U   | 0.48 U   | 0.48 U   |
| Anthracene             | ug/l  | 50               | 0.19 U   | 0.19 U   | 0.50 U   | 0.48 U   | 0.48 U   | 0.47 U   | 0.48 U   |
| Benzo(a)anthracene     | ug/l  | 0.002            | 0.19 U   | 0.19 U   | 0.50 U   | 0.48 U   | 0.48 U   | 0.47 U   | 0.48 U   |
| Benzo(a)pyrene         | ug/l  | 0.000            | 0.19 U   | 0.19 U   | 0.50 U   | 0.48 U   | 0.48 U   | 0.47 U   | 0.48 U   |
| Benzo(b)fluoranthene   | ug/l  | 0.002            | 0.19 U   | 0.19 U   | 0.50 U   | 0.48 U   | 0.48 U   | 0.15 J   | 0.48 U   |
| Benzo(g,h,i)perylene   | ug/l  | NC               | 0.19 U   | 0.19 U   | 0.50 U   | 0.48 U   | 0.48 U   | 0.47 U   | 0.48 U   |
| Benzo(k)fluoranthene   | ug/l  | 0.002            | 0.19 U   | 0.19 U   | 0.50 U   | 0.48 U   | 0.48 U   | 0.47 U   | 0.48 U   |
| Chrysene               | ug/l  | 0.002            | 0.19 U   | 0.19 U   | 0.50 U   | 0.48 U   | 0.48 U   | 0.47 U   | 0.48 U   |
| Dibenzo(a,h)anthracene | ug/l  | NC               | 0.19 U   | 0.19 U   | 0.50 U   | 0.48 U   | 0.48 U   | 0.47 U   | 0.48 U   |
| Fluoranthene           | ug/l  | 50               | 0.19 U   | 0.19 U   | 0.50 U   | 0.48 U   | 0.48 U   | 0.47 U   | 0.078 J  | 0.48 U   | 0.48 U   | 0.48 U   | 0.48 U   |
| Fluorene               | ug/l  | 50               | 0.19 U   | 0.057 J  | 0.50 U   | 0.48 U   | 0.48 U   | 0.11 J   | 0.48 U   |
| Indeno(1,2,3-cd)pyrene | ug/l  | 0.002            | 0.19 U   | 0.19 U   | 0.50 U   | 0.48 U   | 0.48 U   | 0.47 U   | 0.48 U   |
| Naphthalene            | ug/l  | 10               | 0.43     | 0.19 U   | 0.50 U   | 0.48 U   | 0.48 U   | 0.47 U   | 1.1      | 0.48 U   | 0.48 U   | 0.48 U   | 0.48 U   |
| Phenanthrene           | ug/l  | 50               | 0.19 U   | 0.19 U   | 0.50 U   | 0.48 U   | 0.48 U   | 0.097 J  | 0.12 J   | 0.48 U   | 0.49     | 0.48 U   | 0.48 U   |
| Pyrene                 | ug/l  | 50               | 0.19 U   | 0.038 J  | 0.50 U   | 0.48 U   | 0.48 U   | 0.35 J   | 0.098 J  | 0.48 U   | 0.48 U   | 0.48 U   | 0.48 U   |
| Cyanide and Lead       |       |                  |          |          |          |          |          |          |          |          |          |          |          |
| Lead                   | ug/l  | 25               | 5 U      | 5 U      | 5 U      | 3 U      | 19       | 12       | 3.2 J    | 19       | 33       | 7.1      | 7.1      |
| Cyanide                | mg/l  | 0.2              | 0.333    | 0.217    | R        | 0.68 J   | 0.986    | R        | 0.22     | 5.9      | 1.4      | 0.4      | 0.16     |

#### Notes:

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

J - Estimated Concentration

mg/l - Milligrams per liter

NC - No Criteria

PAHs - Polycyclic Aromatic Hydrocarbons

R - Rejected

U - Not Detected

## Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-7) Johnstown MGP Site Johnstown, NY

|                       | Sample Date | 09/30/10 | 01/04/11 | 04/07/11 | 06/15/11 | 10/12/11 | 12/14/11 | 03/14/12 | 10/09/12 | 04/18/13 | 10/08/13 | 04/09/14 |
|-----------------------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| CONSTITUENT           | UNITS       |          |          |          |          |          |          |          |          |          |          |          |
| MNA/WQ Parameter      | rs          |          |          |          |          |          |          |          |          |          |          |          |
| Alkalinity (as CaCO3) | mg/l        | 321      | 330 J    | R        | R        | 327 J    | 370 J    | R        | 310      | 324      | 367      | 375      |
| Chloride              | mg/l        | 108      | 104      | 122      | 93.8 B   | 111 J    | R        | 91.2     | 101      | 114      | 84       | 79       |
| Ethane                | ug/l        | 5 U      | 5 U      | 1.5 U    | 150 U    | 1.5 U    | 75 U     | 75 U     | 7.5 U    | 7.5 U    | 7.5 U    | 7.5 U    |
| Ethene                | ug/l        | 5 U      | 5 U      | 1.5 U    | 150 U    | 1.5 U    | 75 U     | 75 U     | 7.0U     | 7.0U     | 7.0U     | 7.0U     |
| Ferrous Iron          | mg/l        | 1.12     | 0.1 U    | R        | 1.7 J    | 0.83 J   | R        | 0.1 U    | 0.37     | 0.1 U    | 0.25     | 6.24     |
| Manganese             | mg/l        | NA       | 0.54     | 0.67     | 0.62     | 0.66     | 0.94     | 0.51     | 0.96     | 1.1      | 1.1      | 0.564    |
| Methane               | ug/l        | 290 J    | 510      | 190      | 210      | 190      | 300      | 210      | 240      | 40       | 23       | 150      |
| Nitrate               | mg/l        | NA       | 1 U      | 0.05 U   | 0.02 U   | 0.05 U   |
| Nitrogen              | mg/l        | 1.76     | 1.59     | 1.4      | 1.3      | 1.6      | R        | 1.6      | 1.6      | 4.6      | 1.5      | 0.16     |
| Sulfate               | mg/l        | NA       | 576      | 745 B    | 611 B    | R        | R        | 674 B    | 509      | 654      | 518      | 540      |
| Sulfide               | mg/l        | NA       | 1.4 J    | 1 U      | 0.8 J    | 2.8      | 1 U      | 1 U      | 1.2      | 1.4      | 1.4      | 1.4      |

#### Notes:

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration

mg/l - Milligrams per liter

NA - Not analyzed

R - Rejected

U - Not Detected

# Table 2 Analytical Data Results (MW-10) Johnstown MGP Site Johnstown, NY

|                        |       |                  | 1        |          |          |          |          |          | I        |          | Ī        |          | 1        |
|------------------------|-------|------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| CONSTITUENT            | UNITS | NYSDEC WQ Values | 09/29/10 | 01/04/11 | 04/06/11 | 06/14/11 | 10/11/11 | 12/13/11 | 03/14/12 | 10/09/12 | 04/18/13 | 10/08/13 | 04/09/14 |
| BTEX Compounds         |       |                  |          |          |          |          |          |          |          |          |          |          |          |
| Benzene                | ug/l  | 1                | 1 U      | 1 U      | 1 U      | 7.1      | 1.3      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      |
| Ethylbenzene           | ug/l  | 5                | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      |
| m/p-Xylene             | ug/l  | 5                | 2 U      | 2 U      | 2 U      | 2 U      | 2 U      | 2 U      | 2 U      | 2 U      | 2 U      | 2 U      | 2 U      |
| o-Xylene               | ug/l  | 5                | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      |
| Toluene                | ug/l  | 5                | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      |
| PAHs                   |       |                  |          |          |          |          |          |          |          |          |          |          |          |
| Acenaphthene           | ug/l  | 20               | 1.6      | 1.3      | 1.8 J    | 2.4      | 2.3      | 0.099 J  | 1.4      | 2        | 2.2      | 1.1      | 0.8      |
| Acenaphthylene         | ug/l  | NC               | 0.43 J   | 0.32     | 0.24 J   | 0.42 J   | 0.74 J   | 0.13 J   | 0.14 J   | 0.48 U   | 0.48 U   | 0.48 U   | 0.48 U   |
| Anthracene             | ug/l  | 50               | 0.061 J  | 0.047 J  | 0.47 U   | 0.47 U   | 0.28 J   | 0.47 U   | 0.48 U   |
| Benzo(a)anthracene     | ug/l  | 0.002            | 0.13 J   | 0.057 J  | 0.47 U   | 0.47 U   | 1        | 0.47 U   | 0.49 B   | 0.48 U   | 0.48 U   | 0.48 U   | 0.48 U   |
| Benzo(a)pyrene         | ug/l  | 0.002            | 0.14 J   | 0.057 J  | 0.47 U   | 0.47 U   | 0.81     | 0.47 U   | 0.19 J   | 0.48 U   | 0.55     | 0.48 U   | 0.48 U   |
| Benzo(b)fluoranthene   | ug/l  | 0.002            | 0.071 J  | 0.047 J  | 0.47 U   | 0.47 U   | 0.8      | 0.47 U   | 0.24 J   | 0.48 U   | 0.86     | 0.48 U   | 0.48 U   |
| Benzo(g,h,i)perylene   | ug/l  | NC               | 0.051 J  | 0.19 U   | 0.47 U   | 0.47 U   | 0.37 J   | 0.47 U   | 0.08 J   | 0.48 U   | 0.48 U   | 0.48 U   | 0.48 U   |
| Benzo(k)fluoranthene   | ug/l  | 0.002            | 0.092 J  | 0.047 J  | 0.47 U   | 0.47 U   | 0.53     | 0.47 U   | 0.18 J   | 0.48 U   | 0.48 U   | 0.48 U   | 0.48 U   |
| Chrysene               | ug/l  | 0.002            | 0.12 J   | 0.047 J  | 0.47 U   | 0.47 U   | 0.91     | 0.47 U   | 0.48 U   |
| Dibenzo(a,h)anthracene | ug/l  | NC               | 0.20 U   | 0.19 U   | 0.47 U   | 0.47 U   | 0.11 J   | 0.47 U   | 0.48 U   | 0.48 U   | 1.1      | 0.48 U   | 0.48 U   |
| Fluoranthene           | ug/l  | 50               | 0.24     | 0.11 J   | 0.085 J  | 0.47 U   | 1.5      | 0.47 U   | 0.34 J   | 0.48 U   | 0.48 U   | 0.48 U   | 0.48 U   |
| Fluorene               | ug/l  | 50               | 0.13 J   | 0.14 J   | 0.47 U   | 0.47 U   | 0.49 U   | 0.47 U   | 0.48 U   |
| Indeno(1,2,3-cd)pyrene | ug/l  | 0.002            | 0.051 J  | 0.19 U   | 0.47 U   | 0.47 U   | 0.34 J   | 0.47 U   | 0.076 J  | 0.48 U   | 0.48 U   | 0.48 U   | 0.48 U   |
| Naphthalene            | ug/l  | 10               | 0.33     | 0.19 U   | 0.47 U   | 0.47 U   | 0.49 U   | 0.47 U   | 0.48 U   | 0.7      | 0.7      | 0.48 U   | 0.48 U   |
| Phenanthrene           | ug/l  | 50               | 0.11 J   | 0.19 U   | 0.47 U   | 0.47 U   | 0.53     | 0.10 J   | 0.18 J   | 0.48 U   | 0.48 U   | 0.48 U   | 0.48 U   |
| Pyrene                 | ug/l  | 50               | 0.33 J   | 0.13 J   | 0.15 J   | 0.57 U   | 1.8      | 0.14 J   | 0.41 J   | 0.48 U   | 0.48 U   | 0.48 U   | 0.48 U   |
| Cyanide and Lead       |       |                  |          |          |          |          |          |          |          |          |          |          |          |
| Lead                   | ug/l  | 25               | 5 U      | 5 U      | 5 U      | 3 U      | 9.1      | 3.9 J    | 6.4      | 5 U      | 8.4      | 5 U      | 5 U      |
| Cyanide                | mg/l  | 0.2              | 0.139    | 0.124    | R        | 0.17 J   | 0.156    | R        | 0.078    | 0.14     | 0.1      | 0.11     | 0.081    |

#### Notes:

B - Present in Associated Blank Sample

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

J - Estimated Concentration

mg/l - Milligrams per liter

NC - No Criteria

PAHs - Polycyclic Aromatic Hydrocarbons

R - Rejected

U - Not Detected

Table 2
Monitored Natural Attenuation/Water Quality Data Results (MW-10)
Johnstown MGP Site
Johnstown, NY

| CONSTITUENT           | Sample Date UNITS | 09/29/10 | 01/04/11 | 04/06/11 | 06/14/11 | 10/11/11 | 12/14/11 | 03/14/12 | 10/09/12 | 04/18/13 | 10/08/13 | 04/09/14 |
|-----------------------|-------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| MNA/WQ Paramete       | rs                |          |          |          |          |          |          |          |          |          |          |          |
| Alkalinity (as CaCO3) | mg/l              | 556      | 536 J    | R        | R        | 523 J    | 541 J    | R        | 589      | 584      | 552      | 566      |
| Chloride              | mg/l              | 344      | 277      | 181 B    | 160 B    | 156 J    | R        | 147      | 316      | 286      | 265      | 470      |
| Ethane                | ug/l              | 1 U      | 1 U      | 1.5 U    | 7.5 U    | 1.5 U    | 1.5 U    | 1.5 U    | 7.5 U    | 7.5 U    | 7.5 U    | 7.5 U    |
| Ethene                | ug/l              | 1 U      | 1 U      | 1.5 U    | 7.5 U    | 1.5 U    | 1.5 U    | 1.5 U    | 7.0 U    | 7.0 U    | 7.0 U    | 7.0 U    |
| Ferrous Iron          | mg/l              | 0.31     | 0.2 U    | R        | 0.34 J   | 0.47     | 0.1 U    | R        | 0.10 U   | 0.10 U   | 0.12     | 6.06     |
| Manganese             | mg/l              | NA       | 1.14     | 1.2      | 0.95     | 0.88     | 0.58     | 0.83     | 1        | 1.2      | 0.75     | 1.07     |
| Methane               | ug/l              | 64 J     | 75       | 34       | 9.8      | 33       | 85       | 40       | 72       | 32       | 28       | 110      |
| Nitrate               | mg/l              | NA       | 1 U      | 0.05 U   | 0.05 U   | 0.05 U   | 0.05 U   | 0.05 U   | 0.05 U   | 0.05 U   | 0.05 U   | 0.05 U   |
| Nitrogen              | mg/l              | 6.02     | 4.91     | 8.5      | 4.9      | 4.9      | R        | 5.4      | 5.7      | 6.1      | 4.1      | 4.8      |
| Sulfate               | mg/l              | NA       | 167      | 306      | 296 B    | R        | R        | 238 B    | 175      | 174      | 171      | 153      |
| Sulfide               | mg/l              | NA       | R        | R        | 1 U J    | 0.8 J    | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      |

#### Notes:

B - Present in Associated Blank Sample

mg/l - Milligrams per liter

NA - Not analyzed

R - Rejected

U - Not Detected

# Table 2 Analytical Data Results (MW-11) Johnstown MGP Site Johnstown, NY

|                        | 1      |                  |          |            |          | ı        | ı        | ı        |          |          | ı        | ı        |          |
|------------------------|--------|------------------|----------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| CONCENTRALE            | LINUTC | NYSDEC WQ Values | 00/20/40 | 04 /04 /44 | 04/05/44 | 00/44/44 | 40/44/44 | 42/42/44 | 02/44/42 | 40/00/42 | 04/40/42 | 40/00/42 | 04/00/44 |
| CONSTITUENT            | UNITS  |                  | 09/29/10 | 01/04/11   | 04/06/11 | 06/14/11 | 10/11/11 | 12/13/11 | 03/14/12 | 10/09/12 | 04/18/13 | 10/08/13 | 04/09/14 |
| BTEX Compounds         |        |                  |          |            |          |          |          |          |          |          |          |          |          |
| Benzene                | ug/l   | 1                | 27       | 16         | 2.8      | 13       | 18       | 15       | 7.9      | 12       | 3.5      | 8.1      | 10       |
| Ethylbenzene           | ug/l   | 5                | 7.3      | 7.2        | 1.9      | 6.9      | 6.1      | 5.5      | 3.5      | 1 U      | 1.2      | 3.8      | 5.1      |
| m/p-Xylene             | ug/l   | 5                | 3        | 3.9        | 2.2      | 5.3      | 2.4      | 2.1      | 1.4 J    | 2 U      | 2 U      | 2 U      | 2 U      |
| o-Xylene               | ug/l   | 5                | 2.6      | 2.7        | 1.1      | 3.1      | 2.0      | 2.0      | 1.2      | 1 U      | 1 U      | 1.6      | 2.1      |
| Toluene                | ug/l   | 5                | 1.3      | 1.3        | 1 U      | 1.4      | 0.97 J   | 0.99 J   | 0.69 J   | 1 U      | 1 U      | 1 U      | 1.1      |
| PAHs                   |        |                  |          |            |          |          |          |          |          |          |          |          |          |
| Acenaphthene           | ug/l   | 20               | 150 D    | 140 D      | 150      | 110      | 120      | 130      | 100      | 140 E    | 97       | 110      | 120      |
| Acenaphthylene         | ug/l   | NC               | 280 JD   | 330 D      | 290      | 290      | 240 D    | 270 D    | 210      | 160 E    | 120      | 170      | 110      |
| Anthracene             | ug/l   | 50               | 21       | 18         | 88       | 19 B     | 19       | 17       | 11       | 23       | 13       | 28       | 13       |
| Benzo(a)anthracene     | ug/l   | 0.002            | 2.2 J    | 2.2        | 35       | 6.2 B    | 2.7      | 3.0 B    | 5.2 B    | 3.8      | 0.002U   | 8.3      | 3.2      |
| Benzo(a)pyrene         | ug/l   | 0.002            | 1.7      | 2.2        | 34       | 5.7 B    | 2.8      | 2.5 B    | 2.3 J    | 2.7      | 3.3      | 8.5      | 2.8      |
| Benzo(b)fluoranthene   | ug/l   | 0.002            | 0.65 J   | 0.82 J     | 24       | 4.8 B    | 1.9      | 2.1      | 1.8 J    | 1.7      | 0.002U   | 0.002U   | 0.002U   |
| Benzo(g,h,i)perylene   | ug/l   | NC               | 0.90 J   | 1.2 J      | 20       | 4.0 B    | 1.4      | 1.7      | 1.3 J    | 1        | 1        | 3.4      | 0.002U   |
| Benzo(k)fluoranthene   | ug/l   | 0.002            | 0.90 J   | 1.1 J      | 12       | 2.5 B    | 1        | 0.78     | 1.2 J    | 1.6      | 0.002U   | 0.002U   | 0.002U   |
| Chrysene               | ug/l   | 0.002            | 2.8      | 2.9        | 43       | 8.1 B    | 3.3      | 3.5 B    | 5.1 U    | 3.4      | 4.4      | 10       | 5.4      |
| Dibenzo(a,h)anthracene | ug/l   | NC               | 1 U      | 2.1 U      | 3.2      | 2.4 U    | 0.30 J   | 0.59     | 5.1 U    |
| Fluoranthene           | ug/l   | 50               | 18       | 14         | 96       | 22 B     | 20       | 16       | 12       | 24       | 14       | 28       | 12       |
| Fluorene               | ug/l   | 50               | 110 D    | 100 D      | 130      | 72       | 79       | 83       | 62       | 92       | 62       | 70       | 31       |
| Indeno(1,2,3-cd)pyrene | ug/l   | 0.002            | 0.65 J   | 2.1 U      | 13       | 2.8 B    | 0.96     | 1.0 B    | 0.69 J   | 1.6      | 0.002U   | 0.002U   | 0.002U   |
| Naphthalene            | ug/l   | 10               | 180 D    | 560 D      | 300      | 480      | 310 D    | 230 D    | 140      | 110      | 50       | 87       | 10U      |
| Phenanthrene           | ug/l   | 50               | 160 D    | 150 D      | 260      | 52 B     | 140 D    | 130      | 91       | 170      | 80       | 130      | 5.8      |
| Pyrene                 | ug/l   | 50               | 26 J     | 17         | 150      | 28 B     | 21       | 21       | 16       | 28       | 18       | 34       | 17       |
| Cyanide and Lead       |        |                  |          |            |          |          |          |          |          |          |          |          |          |
| Lead                   | ug/l   | 25               | 5 U      | 5 U        | 40       | 7.6      | 12       | 5 U      | 4.6 J    | 5 U      | 5 U      | 5.9      | 5U       |
| Cyanide                | mg/l   | 0.2              | 0.024    | 0.027      | R        | 0.015 J  | 0.021    | 0.01 UJ  | 0.012    | 0.010 U  | 0.010 U  | 0.010 U  | 0.018    |

#### Notes:

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration

NC - No Criteria

R - Rejected

U - Not Detected

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

PAHs - Polycyclic Aromatic Hydrocarbons

mg/l - Milligrams per liter

## Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-11) Johnstown MGP Site Johnstown, NY

|                       | Sample Date | 09/29/10 | 01/04/11 | 04/07/11 | 06/15/11 | 10/11/11 | 12/13/11 | 03/14/12 | 10/09/12 | 04/18/13 | 10/08/13 | 04/09/14 |
|-----------------------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| CONSTITUENT           | UNITS       |          |          |          | . ,      |          |          |          |          |          | , ,      | , ,      |
| MNA/WQ Paramete       | ers         |          |          |          |          |          |          |          |          |          |          |          |
| Alkalinity (as CaCO3) | mg/l        | 502      | 504      | R        | R        | 518 J    | 536 J    | R        | 623      | 507      | 573      | 465      |
| Chloride              | mg/l        | 612      | 606      | 345      | 414 B    | 514 J    | R        | 321      | 350      | 202      | 295      | 454      |
| Ethane                | ug/l        | 10 U     | 5 U      | 1.5 U    | 1.5 U    | 1.5 U    | 15 U     | 15 U     | 380 U    | 380 U    | 380 U    | 380 U    |
| Ethene                | ug/l        | 10 U     | 5 U      | 1.5 U    | 1.5 U    | 1.5 U    | 15 U     | 15 U     | 350 U    | 350 U    | 350 U    | 350 U    |
| Ferrous Iron          | mg/l        | 0.2 U    | 0.5 U    | R        | 9.4 J    | 0.9 J    | R        | 0.1 U    | 0.5      | 0.18     | 0.22     | 0.29     |
| Manganese             | mg/l        | NA       | 0.61     | 0.94     | 0.45     | 0.69     | 0.66     | 0.47     | 0.95     | 0.95     | 0.55     | 0.56     |
| Methane               | ug/l        | 730 J    | 420      | 4.8      | 68       | 190      | 360      | 160      | 520      | 12       | 25       | 120      |
| Nitrate               | mg/l        | NA       | 1 U      | 0.13     | 0.05 U   | 0.05 U   | 0.05 U   | 0.092    | 0.050 U  | 0.79     | 0.32     | 0.32     |
| Nitrogen              | mg/l        | 1.76     | 1.36     | 1.3      | 0.59     | 1.3      | R        | 1.3      | 1.4      | 0.58     | 0.64     | 0.57     |
| Sulfate               | mg/l        | NA       | 46.3     | 126 B    | 65.1 B   | R        | R        | 8.5 B    | 16.9     | 112      | 94.1     | 58       |
| Sulfide               | mg/l        | NA       | 1 U      | 0.8 J    | 0.8 J    | 1.6      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      |

#### Notes:

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration
- mg/l Milligrams per liter
- NA Not analyzed
- R Rejected
- U Not Detected
- ug/l Micrograms per liter

## Table 2 Analytical Data Results (MW-12) Johnstown MGP Site Johnstown, NY

| CONSTITUENT            | UNITS | NYSDEC WQ Values | 06/14/11 | 10/11/11 | 12/13/11 | 03/14/12 | 10/09/12 | 04/18/13 | 10/08/13 | 04/09/14 |
|------------------------|-------|------------------|----------|----------|----------|----------|----------|----------|----------|----------|
| BTEX Compounds         |       |                  |          |          |          |          |          |          |          |          |
| Benzene                | ug/l  | 1                | 1 U      | 1 U      | 1 U      | 1 U      | 2.1      | 1 U      | 1 U      | 1 U      |
| Ethylbenzene           | ug/l  | 5                | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      |
| m/p-Xylene             | ug/l  | 5                | 2 U      | 2 U      | 2 U      | 2 U      | 2 U      | 2 U      | 2 U      | 2 U      |
| o-Xylene               | ug/l  | 5                | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      |
| Toluene                | ug/l  | 5                | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      |
| PAHs                   |       |                  |          |          |          |          |          |          |          |          |
| Acenaphthene           | ug/l  | 20               | 0.2 U    | 0.49 U   | 0.086 J  | 0.52 U   | 14       | 0.2 U    | 1.1      | 1.1      |
| Acenaphthylene         | ug/l  | NC               | 0.09 J   | 0.49 U   | 0.25 J   | 0.18 J   | 100      | 0.2 U    | 0.2 U    | 0.2 U    |
| Anthracene             | ug/l  | 50               | 0.07 J   | 0.49 U   | 0.21 J   | 0.13 J   | 2.8      | 0.2 U    | 1.1      | 1.1      |
| Benzo(a)anthracene     | ug/l  | 0.002            | 0.12 J   | 0.49 U   | 0.64 B   | 0.57 B   | 1.5      | 0.83     | 3        | 0.66     |
| Benzo(a)pyrene         | ug/l  | 0.002            | 0.2      | 0.49 U   | 0.69 B   | 0.35 J   | 1.5      | 1        | 3.6      | 0.92     |
| Benzo(b)fluoranthene   | ug/l  | 0.002            | 0.08 J   | 0.49 U   | 0.56     | 0.27 J   | 1.3      | 0.91     | 3.4      | 0.71     |
| Benzo(g,h,i)perylene   | ug/l  | NC               | 0.13 J   | 0.49 U   | 0.43 J   | 0.27 J   | 0.62     | 0.49 U   | 0.49 U   | 0.51     |
| Benzo(k)fluoranthene   | ug/l  | 0.002            | 0.10 J   | 0.49 U   | 0.49 U   | 0.38 J   | 0.58     | 0.49 U   | 0.83     | 0.49 U   |
| Chrysene               | ug/l  | 0.002            | 0.13 J   | 0.49 U   | 0.55 B   | 0.60 B   | 1.1      | 1        | 3        | 0.49 U   |
| Dibenzo(a,h)anthracene | ug/l  | NC               | 0.2 U    | 0.49 U   | 0.49 U   | 0.52 U   |
| Fluoranthene           | ug/l  | 50               | 0.2      | 0.49 U   | 0.73     | 0.41 J   | 3.4      | 1.4      | 4.3      | 0.87     |
| Fluorene               | ug/l  | 50               | 0.2 U    | 0.49 U   | 0.49 U   | 0.52 U   | 2.2      | 0.49 U   | 0.49 U   | 0.49 U   |
| Indeno(1,2,3-cd)pyrene | ug/l  | 0.002            | 0.09 J   | 0.49 U   | 0.49 U   | 0.13 J   | 0.97     | 0.49 U   | 1.2      | 0.49 U   |
| Naphthalene            | ug/l  | 10               | 0.2 U    | 0.49 U   | 0.68     | 0.52 U   | 160 E    | 2.5      | 0.99     | 0.52 U   |
| Phenanthrene           | ug/l  | 50               | 1.9 J    | 0.49 U   | 0.66     | 0.48 J   | 7.6      | 1.1      | 3.6      | 0.61     |
| Pyrene                 | ug/l  | 50               | 0.23     | 0.49 U   | 0.95     | 0.59     | 4.2      | 2.4      | 5.8      | 1.3      |
| Cyanide and Lead       |       |                  |          |          |          |          |          |          |          |          |
| Lead                   | ug/l  | 25               | 5 U      | 3 U      | 5 U      | 5 U      | 5 U      | 5 U      | 29       | 5 U      |
| Cyanide                | mg/l  | 0.2              | 0.01     | 0.004 J  | R        | 0.0062 J | 0.010 U  | 0.010 U  | 0.010 U  | 0.010 U  |

#### Notes:

- B Present in Associated Blank Sample
- J Estimated Concentration
- NC No Criteria
- U Not Detected

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

PAHs - Polycyclic Aromatic Hydrocarbons

Table 2
Monitored Natural Attenuation/Water Quality Data Results (MW-12)
Johnstown MGP Site
Johnstown, NY

| CONSTITUENT           | Sample Date UNITS | 01/04/11 | 10/12/11 | 12/14/11 | 03/14/12 | 10/09/12 | 04/18/13 | 10/08/13 | 04/09/14 |  |  |  |
|-----------------------|-------------------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|--|
| MNA/WQ Parameters     |                   |          |          |          |          |          |          |          |          |  |  |  |
| Alkalinity (as CaCO3) | mg/l              | 502      | 455 J    | 478 J    | R        | 434      | 391      | 415      | 329      |  |  |  |
| Chloride              | mg/l              | 488      | 165 J    | R        | 129 B    | 468      | 123      | 662      | 150      |  |  |  |
| Ethane                | ug/l              | 1 U      | 1.5 U    | 1.5 U    | 1.5 U    | 7.5 U    | 7.5 U    | 7.5 U    | 7.5 U    |  |  |  |
| Ethene                | ug/l              | 1 U      | 1.5 U    | 1.5 U    | 1.5 U    | 7 U      | 7 U      | 7 U      | 7 U      |  |  |  |
| Ferrous Iron          | mg/l              | 0.1 U    | R        | 0.1 U    | 0.1 U    | 0.44     | 0.1 U    | 0.1 U    | 0.1 U    |  |  |  |
| Manganese             | mg/l              | 0.084    | 0.096    | 0.16     | 0.12     | 0.52     | 0.19     | 2.1      | 0.36     |  |  |  |
| Methane               | ug/l              | 2 U      | 1 U      | 1.1      | 0.56 J   | 47       | 1 U      | 1 U      | 1 U      |  |  |  |
| Nitrate               | mg/l              | 4        | 6.6      | 6.2      | 3.2      | 0.05 U   | 2.5      | 4.8      | 1.4      |  |  |  |
| Nitrogen              | mg/l              | 0.48     | 0.2 U    | R        | 0.19 J   | 0.29     | 0.24     | 2.4      | 0.44     |  |  |  |
| Sulfate               | mg/l              | 97.9     | R        | R        | 53.5 B   | 81.4     | 73.5     | 115      | 51.6     |  |  |  |
| Sulfide               | mg/l              | 1.1 J    | 0.8 J    | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      |  |  |  |

#### Notes:

- B Present in Associated Blank Sample
- J Estimated Concentration

mg/l - Milligrams per liter

NA - Not analyzed

U - Not Detected

Table 2
Analytical Data Results (MW-13)
Johnstown MGP Site

|                        |       |                  |          |          |          | Johnstown. NY |          |          |          |          |          |          |          |
|------------------------|-------|------------------|----------|----------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|
| CONSTITUENT            | UNITS | NYSDEC WQ Values | 09/29/10 | 01/04/11 | 04/06/11 | 06/14/11      | 10/11/11 | 12/13/11 | 03/14/12 | 10/09/12 | 04/18/13 | 10/08/13 | 04/09/14 |
| BTEX Compounds         |       |                  |          |          |          |               |          |          |          |          |          |          |          |
| Benzene                | ug/l  | 1                | 430      | 360      | 71       | 200           | 59       | 300      | 370      | 360      | 490      | 400      | 200      |
| Ethylbenzene           | ug/l  | 5                | 850      | 730      | 87       | 200           | 110      | 520      | 670      | 490      | 600      | 320      | 200      |
| m/p-Xylene             | ug/l  | 5                | 920      | 810      | 110      | 240           | 140      | 550      | 740      | 590      | 730      | 420      | 250      |
| o-Xylene               | ug/l  | 5                | 390      | 350      | 71       | 130           | 74       | 260      | 340      | 260      | 320      | 190      | 120      |
| Toluene                | ug/l  | 5                | 800      | 660      | 80       | 260           | 89       | 550      | 740      | 520 E    | 710      | 440      | 270      |
| PAHs                   |       |                  |          |          |          |               |          |          |          |          |          |          |          |
| Acenaphthene           | ug/l  | 20               | 120      | 140      | 17       | 46            | 60       | 76       | 82 J     | 170      | 130      | 77       | 71       |
| Acenaphthylene         | ug/l  | NC               | 260 JD   | 320 D    | 51       | 170           | 220 J    | 230 D    | 210      | 570      | 430      | 350      | 22       |
| Anthracene             | ug/l  | 50               | 12       | 15       | 3.6      | 12 B          | 15       | 15       | 97 U     | 47 U     | 47 U     | 47 U     | 6.9      |
| Benzo(a)anthracene     | ug/l  | 0.002            | 1.9 J    | 2 J      | 0.35 J   | 4.9 B         | 7.3 J    | 5.3 B    | 97 U     | 47 U     | 47 U     | 47 U     | 47 U     |
| Benzo(a)pyrene         | ug/l  | 0.000            | 1.9 J    | 1.4 J    | 0.13 J   | 4.1 B         | 10 U     | 5.3 B    | 97 U     | 47 U     | 47 U     | 47 U     | 47 U     |
| Benzo(b)fluoranthene   | ug/l  | 0.002            | 0.75 J   | 0.78 J   | 0.49 U   | 3.5 B         | 10 U     | 3.8      | 97 U     | 47 U     | 47 U     | 47 U     | 47 U     |
| Benzo(g,h,i)perylene   | ug/l  | NC               | 0.75 J   | 3.9 U    | 0.49 U   | 2.5 B         | 10 U     | 3.8      | 97 U     | 47 U     | 47 U     | 47 U     | 47 U     |
| Benzo(k)fluoranthene   | ug/l  | 0.002            | 3.8 U    | 0.78 J   | 0.49 U   | 2.4 U         | 10 U     | 2.6      | 97 U     | 47 U     | 47 U     | 47 U     | 47 U     |
| Chrysene               | ug/l  | 0.002            | 1.7 J    | 1.4 J    | 0.26 J   | 3.6 B         | 5.5 J    | 4.9 B    | 97 U     | 47 U     | 47 U     | 47 U     | 47 U     |
| Dibenzo(a,h)anthracene | ug/l  | NC               | 3.8 U    | 3.9 U    | 0.49 U   | 2.4 U         | 10 U     | 0.79 B   | 97 U     | 47 U     | 47 U     | 47 U     | 47 U     |
| Fluoranthene           | ug/l  | 50               | 7.7      | 8.4      | 2.6      | 12 B          | 16       | 14       | 97 U     | 47 U     | 47 U     | 47 U     | 6.1      |
| Fluorene               | ug/l  | 50               | 73       | 84       | 18       | 48            | 52 J     | 53       | 37 J     | 110      | 93       | 68       | 30       |
| Indeno(1,2,3-cd)pyrene | ug/l  | 0.002            | 3.8 U    | 3.9 U    | 0.49 U   | 2.4 U         | 10 U     | 2.3 B    | 97 U     | 47 U     | 47 U     | 47 U     | 47 U     |
| Naphthalene            | ug/l  | 10               | 6000 D   | 5600 D   | 250 D    | 1600 D        | 2900 D   | 5000 D   | 4100     | 8200     | 7100     | 3700     | 10U      |
| Phenanthrene           | ug/l  | 50               | 58       | 68       | 7.2      | 44 B          | 60       | 55       | 44 J     | 76       | 73       | 61       | 50U      |
| Pyrene                 | ug/l  | 50               | 9.8 J    | 8.8      | 2.9      | 14 B          | 19       | 17       | 97 U     | 47 U     | 47 U     | 47 U     | 7.2      |
| Cyanide and Lead       |       |                  |          |          |          |               |          |          |          |          |          |          |          |
| Lead                   | ug/l  | 25               | 6.4      | 5 U      | 5 U      | 15 J          | 27       | 9.2      | 5.8      | 5 U      | 7.8      | 5 U      | 5 U      |
| Cyanide                | mg/l  | 0.2              | 0.618    | 0.652    | R        | 0.42 J        | 0.235    | R        | 0.33     | 0.39     | 0.32     | 0.26     | 0.17     |

### Notes:

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration
- NC No Criteria
- R Rejected
- U Not Detected

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

PAHs - Polycyclic Aromatic Hydrocarbons

mg/I - Milligrams per liter

## Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-13) Johnstown MGP Site Johnstown, NY

|                       | Sample Date | 09/30/10 | 01/05/11 | 04/07/11 | 06/15/11 | 10/12/11 | 12/14/11 | 03/14/12 | 10/09/12 | 04/18/13 | 10/08/13 | 04/09/14 |
|-----------------------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| CONSTITUENT           | UNITS       |          |          |          |          |          |          |          |          |          |          |          |
| MNA/WQ Parameters     |             |          |          |          |          |          |          |          |          |          |          |          |
| Alkalinity (as CaCO3) | mg/l        | 80       | 96.4     | R        | R        | 455 J    | 165 J    | R        | 158      | 218      | 187      | 176      |
| Chloride              | mg/l        | 12.3     | 10.5     | 29.1     | 18.6 B   | 5.9 J    | R        | 20.5     | 21.6     | 20.4     | 7.3      | 9.2      |
| Ethane                | ug/l        | 1.4 J    | 1.8      | 1.5 U    | 15 U     | 1.5 UJ   | 15 U     | 15 U     | 7.5 U    | 7.5 U    | 7.5 U    | 7.5 U    |
| Ethene                | ug/l        | 2.4      | 2.8      | 1.5 U    | 15 U     | 1.5 UJ   | 15 U     | 15 U     | 7.0 U    | 7.0 U    | 7.0 U    | 7.0 U    |
| Ferrous Iron          | mg/l        | 0.1 U    | 0.32     | R        | 0.1 UJ   | 3.1 J    | 0.08 J   | 0.1 U    | 0.12     | 0.1 U    | 0.1 U    | 0.1 U    |
| Manganese             | mg/l        | NA       | 0.84     | 0.12     | 0.077    | 0.83     | 0.16     | 0.096    | 0.092    | 0.11     | 0.088    | 0.14     |
| Methane               | ug/l        | 77 J     | 110 D    | 32       | 46       | 28 J     | 72       | 66       | 120      | 36       | 15       | 74       |
| Nitrate               | mg/l        | NA       | 1 U      | 0.05 U   | 0.05 U   | 0.05 U   | 0.05 U   | 0.05 U   | 0.05 U   | 0.05 U   | 0.05 U   | 0.05 U   |
| Nitrogen              | mg/l        | 2.27     | 1.69     | 1.1      | 1.3      | 2 U      | R        | 1.4      | 1.4      | 1.8      | 1.2      | 2.1      |
| Sulfate               | mg/l        | NA       | 86.8     | 5 U      | 3.3 JB   | R        | R        | 52.1 J   | 139      | 82.3     | 15.5     | 15.5     |
| Sulfide               | mg/l        | NA       | 3.3 J    | 1 U      | 3.2 J    | 1.2      | R        | R        | 1.2      | 1 U      | 1 U      | 1 U      |

#### Notes:

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration

mg/l - Milligrams per liter

NA - Not analyzed

R - Rejected

U - Not Detected

# Table 2 Analytical Data Results (MW-14) Johnstown MGP Site Johnstown, NY

| CONSTITUENT            | UNITS | NYSDEC WQ Values | 09/29/10 | 01/04/11 | 04/06/11 | 06/14/11 | 10/11/11 | 12/13/11 | 03/14/12 | 10/09/12 | 04/18/13 | 10/08/13 | 04/09/14 |
|------------------------|-------|------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| BTEX Compounds         | · L   |                  |          |          |          |          |          |          |          |          | ·        |          |          |
| Benzene                | ug/l  | 1                | 25       | 17       | 1 U      | 2.5      | 11       | 2.5      | 2.9      | 1 U      | 1 U      | 1.3      | 1 U      |
| Ethylbenzene           | ug/l  | 5                | 5.1      | 3.3      | 1 U      | 1 U      | 1 U      | 1 U      | 1.3      | 1 U      | 1 U      | 1 U      | 1 U      |
| m/p-Xylene             | ug/l  | 5                | 5.1      | 3.1      | 2 U      | 2 U      | 2 U      | 2 U      | 2.4      | 2 U      | 2 U      | 2 U      | 2 U      |
| o-Xylene               | ug/l  | 5                | 9.1      | 5.6      | 1 U      | 1 U      | 1 U      | 1 U      | 2.2      | 1 U      | 1 U      | 1 U      | 1 U      |
| Toluene                | ug/l  | 5                | 1.8      | 0.88 J   | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      | 1 U      |
| PAHs                   |       |                  |          |          |          |          |          |          |          |          |          |          |          |
| Acenaphthene           | ug/l  | 20               | 9.3      | 4.9      | 0.47 U   | 0.47 U   | 1.2      | 0.82     | 5.1      | 1.4      | 0.48 U   | 2.2      | 0.5      |
| Acenaphthylene         | ug/l  | NC               | 17 JD    | 11       | 0.47 U   | 0.47 U   | 3        | 1.3      | 9        | 1.9      | 0.48 U   | 2.5      | 0.48 U   |
| Anthracene             | ug/l  | 50               | 1.8      | 0.98     | 0.47 U   | 0.47 U   | 0.50 U   | 0.18 J   | 0.5      | 0.48 U   | 0.48 U   | 0.48 U   | 0.48 U   |
| Benzo(a)anthracene     | ug/l  | 0.002            | 0.42 J   | 0.27 J   | 0.47 U   | 0.47 U   | 0.29 J   | 0.91 B   | 0.50 U   | 0.48 U   | 0.48 U   | 0.62     | 1        |
| Benzo(a)pyrene         | ug/l  | 0.002            | 0.46     | 0.24 J   | 0.47 U   | 0.47 U   | 0.15 J   | 0.90 B   | 0.12 J   | 0.48 U   | 0.48 U   | 0.65     | 1.3      |
| Benzo(b)fluoranthene   | ug/l  | 0.002            | 0.27     | 0.15 J   | 0.47 U   | 0.47 U   | 0.50 U   | 0.78     | 0.50 U   | 0.48 U   | 0.48 U   | 0.79     | 1.2      |
| Benzo(g,h,i)perylene   | ug/l  | NC               | 0.28     | 0.18 J   | 0.47 U   | 0.47 U   | 0.50 U   | 0.70     | 0.09 J   | 0.48 U   | 0.48 U   | 0.48 U   | 0.95     |
| Benzo(k)fluoranthene   | ug/l  | 0.002            | 0.3      | 0.15 J   | 0.47 U   | 0.47 U   | 0.50 U   | 0.57     | 0.17 J   | 0.48 U   | 0.48 U   | 0.48 U   | 0.83     |
| Chrysene               | ug/l  | 0.002            | 0.43     | 0.3 J    | 0.47 U   | 0.47 U   | 0.19 J   | 0.85     | 0.50 U   | 0.48 U   | 0.48 U   | 0.69     | 1.2      |
| Dibenzo(a,h)anthracene | ug/l  | NC               | 0.20 J   | 0.59 U   | 0.47 U   | 0.47 U   | 0.50 U   | 0.50 U   | 0.50 U   | 0.48 U   | 0.48 U   | 0.48 U   | 0.48 U   |
| Fluoranthene           | ug/l  | 50               | 1.7      | 1.2      | 0.081 J  | 0.47 U   | 0.32 J   | 1.5      | 0.61     | 0.59     | 0.48 U   | 1.2      | 1.5      |
| Fluorene               | ug/l  | 50               | 3.8      | 1.4      | 0.47 U   | 0.47 U   | 0.50 U   | 0.17 J   | 0.35 J   | 0.48 U   | 0.48 U   | 0.48 U   | 0.48 U   |
| Indeno(1,2,3-cd)pyrene | ug/l  | 0.002            | 0.21     | 0.59 U   | 0.47 U   | 0.47 U   | 0.50 U   | 0.50 U   | 0.054 J  | 0.48 U   | 0.48 U   | 0.48 U   | 0.63     |
| Naphthalene            | ug/l  | 10               | 63 D     | 2.8      | 0.47 U   | 0.47 U   | 1.3      | 0.50 U   | 1.2      | 0.48 U   | 1.7      | 0.48     | 0.48 U   |
| Phenanthrene           | ug/l  | 50               | 9.1      | 2        | 0.47 U   | 0.47 U   | 0.25 J   | 0.66     | 1.1      | 0.48 U   | 0.48 U   | 0.67     | 0.63     |
| Pyrene                 | ug/l  | 50               | 2.5 J    | 1.2      | 0.098 J  | 0.52 U   | 0.39 J   | 2.2      | 0.7      | 0.76     | 0.48 U   | 1.5      | 2.4      |
| Cyanide and Lead       |       |                  |          |          |          |          |          |          |          |          |          |          |          |
| Lead                   | ug/l  | 25               | 7.7      | 5 U      | 5 U      | 4.2 J    | 4.8 J    | 9.1      | 5.7      | 21       | 5 U      | 15       | 5 U      |
| Cyanide                | mg/l  | 0.2              | 0.245    | 0.197    | R        | 0.11 J   | 0.114    | R        | 0.28     | 1.4      | 0.1      | 0.2      | 0.9      |

#### Notes:

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration
- NC No Criteria
- R Rejected
- U Not Detected
- BTEX Benzene, Ethylbenzene, Toluene and Xylene
- PAHs Polycyclic Aromatic Hydrocarbons
- mg/l Milligrams per liter
- ug/I Micrograms per liter

## Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-14) Johnstown MGP Site Johnstown, NY

| CONSTITUENT           | Sample Date UNITS | 06/30/10 | 01/04/11 | 04/07/11 | 06/15/11 | 10/12/11 | 12/14/11 | 03/14/12 | 10/09/12 | 04/18/13 | 10/08/13 | 04/09/14 |
|-----------------------|-------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| MNA/WQ Parameters     |                   |          |          |          |          |          |          |          |          |          |          |          |
| Alkalinity (as CaCO3) | mg/l              | 528      | 450      | R        | R        | 410      | 453 J    | R        | 494      | 417      | 456      | 483      |
| Chloride              | mg/l              | 9        | 10.8     | 6.1      | 9.7 B    | 5.1      | R        | 12.8     | 40.4     | 2        | 7.6      | 28.5     |
| Ethane                | ug/l              | 1 U      | 1 U      | 1.5 U    | 1.5 U    | 1.5 U    | 1.5 U    | 1.5 U    | 7.5 U    | 7.5 U    | 7.5 U    | 7.5 U    |
| Ethene                | ug/l              | 1 U      | 1 U      | 1.5 U    | 1.5 U    | 1.5 U    | 1.5 U    | 1.5 U    | 7 U      | 7 U      | 7 U      | 7 U      |
| Ferrous Iron          | mg/l              | 0.29     | 0.1 U    | R        | 0.11 J   | 0.1 U    | R        | 0.1 U    | 0.17     | 0.1 U    | 0.1 U    | 0.1 U    |
| Manganese             | mg/l              | NA       | 0.36     | 0.054    | 0.17     | 0.2      | 0.28     | 0.51     | 2        | 0.008    | 0.25     | 1        |
| Methane               | ug/l              | 9.1      | 120 D    | 1 U      | 6.2      | 46       | 15       | 70       | 140      | 1 U      | 8.6      | 140      |
| Nitrate               | mg/l              | NA       | 1 U      | 0.71     | 0.19     | 0.086    | 0.023 J  | 0.05 U   | 0.05 U   | 0.8      | 0.05 U   | 0.05 U   |
| Nitrogen              | mg/l              | 0.81     | 0.77     | 0.85     | 0.32     | 0.36     | R        | 0.86     | 2.5      | 0.54     | 0.68     | 1.5      |
| Sulfate               | mg/l              | NA       | 53.3     | 5 U      | 19.6 B   | 5.6 JB   | R        | 173 B    | 639      | 5 U      | 5 U      | 363      |
| Sulfide               | mg/l              | NA       | 1.6      | 1 U      | 1 UJ     | 1 U      | R        | R        | 1 U      | 1 U      | 1 U      | 1 U      |

#### Notes:

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration
- mg/l Milligrams per liter
- NA Not analyzed
- R Rejected
- U Not Detected
- ug/l Micrograms per liter

# Table 2 Analytical Data Results (MW-15) Johnstown MGP Site Johnstown, NY

|                        |       | NYSDEC WQ Values |            |          |              |             |          |          |             |          |               |          |             |
|------------------------|-------|------------------|------------|----------|--------------|-------------|----------|----------|-------------|----------|---------------|----------|-------------|
| CONSTITUENT            | UNITS |                  | 09/29/10   | 01/04/11 | 04/06/11     | 06/14/11    | 10/11/11 | 12/13/11 | 03/14/12    | 10/09/12 | 04/18/13      | 10/08/13 | 04/09/14    |
| BTEX Compounds         |       |                  | 00, 20, 20 | 0-70-7   | 0 1, 0 0, == | 00, = 1, == | ,,       | ,,       | 00, = 1, == | _0,00,== | 0 1/ = 0/ = 0 | 20,00,20 | 3 1, 33, 21 |
| Benzene                | ug/l  | 1                | 1600 D     | 1200     | 940 D        | 1300 D      | 670      | 790 D    | 1500 D      | 1100 E   | 410           | 390      | 210         |
| Ethylbenzene           | ug/l  | 5                | 200        | 250      | 190 D        | 210 D       | 120      | 190 D    | 220         | 200      | 75            | 53       | 38          |
| m/p-Xylene             | ug/l  | 5                | 12         | 8.7      | 17           | 18          | 19 J     | 9        | 6.6 J       | 23       | 19            | 5 U      | 5 U         |
| o-Xylene               | ug/l  | 5                | 39         | 39       | 44           | 48          | 37       | 38       | 27          | 23       | 19            | 16       | 8.5         |
| Toluene                | ug/l  | 5                | 3.8 J      | 10 U     | 6.1          | 4.7         | 10 U     | 6.3      | 6.2 J       | 5        | 5 U           | 5 U      | 5 U         |
| PAHs                   |       |                  |            |          |              |             |          |          |             |          |               |          |             |
| Acenaphthene           | ug/l  | 20               | 44 J       | 49       | 47           | 32          | 47       | 50       | 47          | 57       | 42            | 23       | 18          |
| Acenaphthylene         | ug/l  | NC               | 19 J       | 23       | 24           | 17          | 22       | 19       | 12          | 16       | 11            | 6.5      | 3           |
| Anthracene             | ug/l  | 50               | 2.7 J      | 3.3      | 2.1          | 1.3 B       | 2.4      | 2        | 1.5 J       | 2.8      | 2.6           | 1.4      | 0.95        |
| Benzo(a)anthracene     | ug/l  | 0.002            | 1.8 J      | 0.85 J   | 0.38 J       | 0.48 U      | 0.21 J   | 0.54 U   | 4.7 U       | 0.58 U   | 0.96          | 0.59     | 0.58 U      |
| Benzo(a)pyrene         | ug/l  | 0.000            | 2.1 J      | 0.75 J   | 0.2 J        | 0.48 U      | 0.49 U   | 0.54 U   | 4.7 U       | 0.58 U   | 0.96          | 0.59     | 0.58 U      |
| Benzo(b)fluoranthene   | ug/l  | 0.002            | 1.1 J      | 0.57 J   | 0.27 J       | 0.48 U      | 0.49 U   | 0.16 J   | 4.7 U       | 0.58 U   | 0.85          | 0.62     | 0.58 U      |
| Benzo(g,h,i)perylene   | ug/l  | NC               | 1.2 J      | 0.38 J   | 0.49 U       | 0.48 U      | 0.49 U   | 0.54 U   | 4.7 U       | 0.58 U   | 0.58 U        | 0.58 U   | 0.58 U      |
| Benzo(k)fluoranthene   | ug/l  | 0.002            | 1.3 J      | 0.38 J   | 0.49 U       | 0.48 U      | 0.49 U   | 0.54 U   | 4.7 U       | 0.58 U   | 0.72          | 0.58 U   | 0.58 U      |
| Chrysene               | ug/l  | 0.002            | 1.8 J      | 0.85 J   | 0.23 J       | 0.48 U      | 0.16 J   | 0.54 U   | 4.7 U       | 0.58 U   | 1.2           | 0.59     | 0.58 U      |
| Dibenzo(a,h)anthracene | ug/l  | NC               | 0.9 J      | 1.9 U    | 0.49 U       | 0.48 U      | 0.49 U   | 0.54 U   | 4.7 U       | 0.58 U   | 0.58 U        | 0.58 U   | 0.58 U      |
| Fluoranthene           | ug/l  | 50               | 4.1 J      | 2.7      | 1.8          | 1.2 B       | 1.7      | 1.7      | 1.3 J       | 2.6      | 3.3           | 1.7      | 1.1         |
| Fluorene               | ug/l  | 50               | 12 J       | 13       | 13           | 8.7         | 14       | 13       | 10          | 17       | 13            | 6.1      | 4.3         |
| Indeno(1,2,3-cd)pyrene | ug/l  | 0.002            | 0.9 J      | 1.9 U    | 0.49 U       | 0.48 U      | 0.49 U   | 0.54 U   | 4.7 U       | 0.58 U   | 0.58 U        | 0.58 U   | 0.58 U      |
| Naphthalene            | ug/l  | 10               | 110 JD     | 89       | 560 D        | 450 D       | 570 D    | 140 D    | 51          | 27       | 94            | 13       | 29          |
| Phenanthrene           | ug/l  | 50               | 8.3 J      | 11       | 8            | 6.7 B       | 13       | 11       | 8.8         | 12       | 10            | 5.1      | 3.4         |
| Pyrene                 | ug/l  | 50               | 5.9 J      | 2.9      | 2.2          | 1.2 B       | 1.6      | 1.8      | 1.5 J       | 2.9      | 3.7           | 2        | 1.5         |
| Cyanide and Lead       |       |                  |            |          |              |             |          |          |             |          |               |          |             |
| Lead                   | ug/l  | 25               | 8.2        | 5 U      | 5 U          | 7.8         | 5.1      | 5 U      | 5 U         | 5 U      | 10            | 5 U      | 5 U         |
| Cyanide                | mg/l  | 0.2              | 0.843      | 0.816    | R            | 0.61 J      | 0.427    | R        | 0.91        | 1.2      | 0.5           | 0.5      | 0.48        |

#### Notes:

B - Present in Associated Blank Sample

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

D - From a Diluted Sample

J - Estimated Concentration

mg/l - Milligrams per liter

NC - No Criteria

PAHs - Polycyclic Aromatic Hydrocarbons

R - Rejected

U - Not Detected

## Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-15) Johnstown MGP Site Johnstown, NY

| CONSTITUENT           | Sample Date UNITS | 09/30/10 | 01/05/11 | 04/07/11 | 06/15/11 | 10/12/11 | 12/14/11 | 03/14/12 | 10/09/12 | 04/18/13 | 10/08/13 | 04/09/14 |
|-----------------------|-------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| MNA/WQ Parameter      | s                 |          | •        |          | •        |          | •        |          |          |          | •        |          |
| Alkalinity (as CaCO3) | mg/l              | 558      | 550      | R        | R        | 502 J    | 547 J    | R        | 629      | 527      | 585      | 482      |
| Chloride              | mg/l              | 44.3     | 46.4     | 22.8     | 43.3 B   | 28.5 J   | R        | 68.2     | 70.6     | 39.4     | 42       | 44.5     |
| Ethane                | ug/l              | 10 U     | 10 U     | 2.9      | 300 U    | 300 U    | 300 U    | 300 U    | 380 U    | 380 U    | 380 U    | 380 U    |
| Ethene                | ug/l              | 10 U     | 10 U     | 1.5 U    | 300 U    | 300 U    | 300 U    | 300 U    | 350 U    | 350 U    | 350 U    | 350 U    |
| Ferrous Iron          | mg/l              | 0.15     | 1.36     | R        | 0.51 J   | 0.47 J   | 0.13 J   | R        | 0.1 U    | 0.15     | 0.18     | 0.1U     |
| Manganese             | mg/l              | NA       | 0.74     | 0.89     | 0.67     | 0.79     | 0.77     | 0.61     | 0.61     | 1        | 1.1      | 0.68     |
| Methane               | ug/l              | 820      | 3400     | 680      | 360      | 720      | 1900     | 1600     | 1900     | 780      | 580      | 1100     |
| Nitrate               | mg/l              | NA       | 1 U      | 0.05 U   | 0.05 U   | 0.05 U   | 0.05 U   | 0.05 U   | 0.05 U   | 0.05 U   | 0.05 U   | 0.05 U   |
| Nitrogen              | mg/l              | 4.07     | 4.15     | 1.9      | 3.1      | 2.1      | R        | 4.6      | 5.4      | 3        | 3.1      | 3.2      |
| Sulfate               | mg/l              | NA       | 182      | 137 B    | 193 B    | R        | R        | 202 B    | 217      | 113      | 139      | 122      |
| Sulfide               | mg/l              | NA       | 1.4      | 1 U      | 1 UJ     | 2.4      | 1 U      | R        | 1 U      | 1 U      | 1 U      | 1 U      |

#### Notes:

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration
- mg/l Milligrams per liter
- NA Not analyzed
- R Rejected
- U Not Detected
- ug/l Micrograms per liter

# Table 2 Analytical Data Results (MW-16) Johnstown MGP Site Johnstown, NY

|                        | 1     | Г                |          |          |          | 1        | I        | Ī        | 1        | Ī        | 1        |          |          |
|------------------------|-------|------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| CONSTITUENT            | UNITS | NYSDEC WQ Values | 09/29/10 | 01/04/11 | 04/06/11 | 06/14/11 | 10/11/11 | 12/13/11 | 03/14/12 | 10/09/12 | 04/18/13 | 10/08/13 | 04/09/14 |
| BTEX Compounds         |       |                  |          |          |          |          |          |          |          |          |          |          |          |
| Benzene                | ug/l  | 1                | 140      | 170      | 150 D    | 100 D    | 17       | 140 D    | 150 D    | 180      | 200      | 150      | 8.7      |
| Ethylbenzene           | ug/l  | 5                | 70       | 110      | 92       | 51       | 5        | 78       | 66       | 100      | 150      | 92       | 6.2      |
| m/p-Xylene             | ug/l  | 5                | 31       | 55       | 47       | 27       | 2.8      | 29       | 26       | 14       | 41       | 23       | 1U       |
| o-Xylene               | ug/l  | 5                | 34       | 54       | 41       | 27       | 3.6      | 36       | 37       | 14       | 56       | 35       | 1U       |
| Toluene                | ug/l  | 5                | 17       | 36       | 33       | 15       | 2        | 21       | 11       | 10 U     | 14       | 9        | 1U       |
| PAHs                   |       |                  |          |          |          |          |          |          |          |          |          |          |          |
| Acenaphthene           | ug/l  | 20               | 14 D     | 18       | 21       | 7        | 2.3      | 13       | 15       | 30       | 30       | 16       | 1U       |
| Acenaphthylene         | ug/l  | NC               | 16 J     | 27 D     | 36       | 11       | 4.7      | 10       | 2.2      | 34       | 49       | 0.48 U   | 0.48 U   |
| Anthracene             | ug/l  | 50               | 1.7      | 3        | 2.3      | 0.97 B   | 0.20 J   | 1.4      | 1.2      | 1.6      | 2.8      | 0.48 U   | 0.48 U   |
| Benzo(a)anthracene     | ug/l  | 0.002            | 0.19 U   | 0.14     | 0.47 U   | 2.1 B    | 0.50 U   | 0.47 U   | 0.49 U   | 0.48 U   | 0.48 U   | 0.48 U   | 0.48 U   |
| Benzo(a)pyrene         | ug/l  | 0.000            | 0.19 U   | 0.57 U   | 0.47 U   | 2.3 B    | 0.50 U   | 0.47 U   | 0.49 U   | 0.48 U   | 0.48 U   | 0.48 U   | 0.48 U   |
| Benzo(b)fluoranthene   | ug/l  | 0.002            | 0.19 U   | 0.57 U   | 0.11 J   | 2.8 B    | 0.50 U   | 0.47 U   | 0.49 U   | 0.48 U   | 0.48 U   | 0.48 U   | 0.48 U   |
| Benzo(g,h,i)perylene   | ug/l  | NC               | 0.19 U   | 0.57 U   | 0.47 U   | 1.8 B    | 0.50 U   | 0.47 U   | 0.49 U   | 0.48 U   | 0.48 U   | 0.48 U   | 0.48 U   |
| Benzo(k)fluoranthene   | ug/l  | 0.002            | 0.19 U   | 0.57 U   | 0.47 U   | 3.1 B    | 0.50 U   | 0.47 U   | 0.096 J  | 0.48 U   | 0.48 U   | 0.48 U   | 0.48 U   |
| Chrysene               | ug/l  | 0.002            | 0.19 U   | 11 J     | 0.47 U   | 2.7 B    | 0.50 U   | 0.47 U   | 0.49 U   | 0.48 U   | 0.48 U   | 0.48 U   | 0.48 U   |
| Dibenzo(a,h)anthracene | ug/l  | NC               | 0.19 U   | 0.57 U   | 0.47 U   | 1.4      | 0.50 U   | 0.47 U   | 0.49 U   | 0.48 U   | 0.48 U   | 0.48 U   | 0.48 U   |
| Fluoranthene           | ug/l  | 50               | 1.2      | 1.4      | 1.7      | 1.5 B    | 0.21 J   | 1.1      | 0.94     | 1.5      | 2        | 0.48 U   | 0.48 U   |
| Fluorene               | ug/l  | 50               | 10 D     | 11       | 16       | 4.7      | 1.3      | 8.8      | 13       | 17       | 21       | 9.1      | 0.48 U   |
| Indeno(1,2,3-cd)pyrene | ug/l  | 0.002            | 0.19 U   | 0.57 U   | 0.47 U   | 1.7 B    | 0.50 U   | 0.47 U   | 0.49 U   | 0.48 U   | 0.48 U   | 0.48 U   | 0.48 U   |
| Naphthalene            | ug/l  | 10               | 0.19 U   | 110 D    | 220 D    | 0.47 U   | 26       | 0.47 U   | 0.49 U   | 2.4      | 230E     | 0.48 U   | 0.48 U   |
| Phenanthrene           | ug/l  | 50               | 5.6      | 9.6      | 13       | 4.8 B    | 1.1      | 6.7      | 6.3      | 11       | 15       | 0.48 U   | 0.48 U   |
| Pyrene                 | ug/l  | 50               | 1.4 J    | 1.3      | 1.9      | 2.1 B    | 0.50 U   | 1.1      | 0.87     | 1.3      | 2        | 0.48 U   | 0.48 U   |
| Cyanide and Lead       |       |                  |          |          |          |          |          |          |          |          |          |          |          |
| Lead                   | ug/l  | 25               | 5 U      | 5 U      | 5 U      | 3 U      | 3 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      |
| Cyanide                | mg/l  | 0.2              | 0.353    | 0.342    | R        | 0.25 J   | 0.137    | R        | 0.34     | 0.41     | 0.11     | 0.11     | 0.023    |

#### Notes:

B - Present in Associated Blank Sample

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

D - From a Diluted Sample

J - Estimated Concentration

mg/l - Milligrams per liter

NC - No Criteria

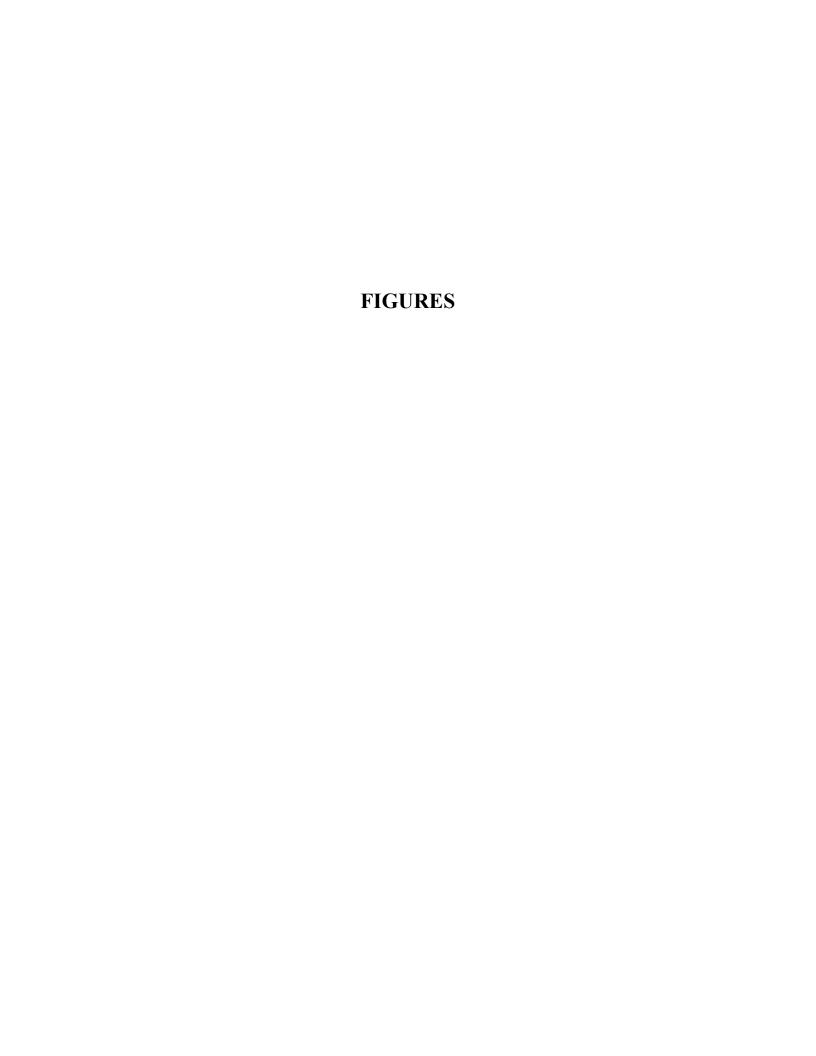
PAHs - Polycyclic Aromatic Hydrocarbons

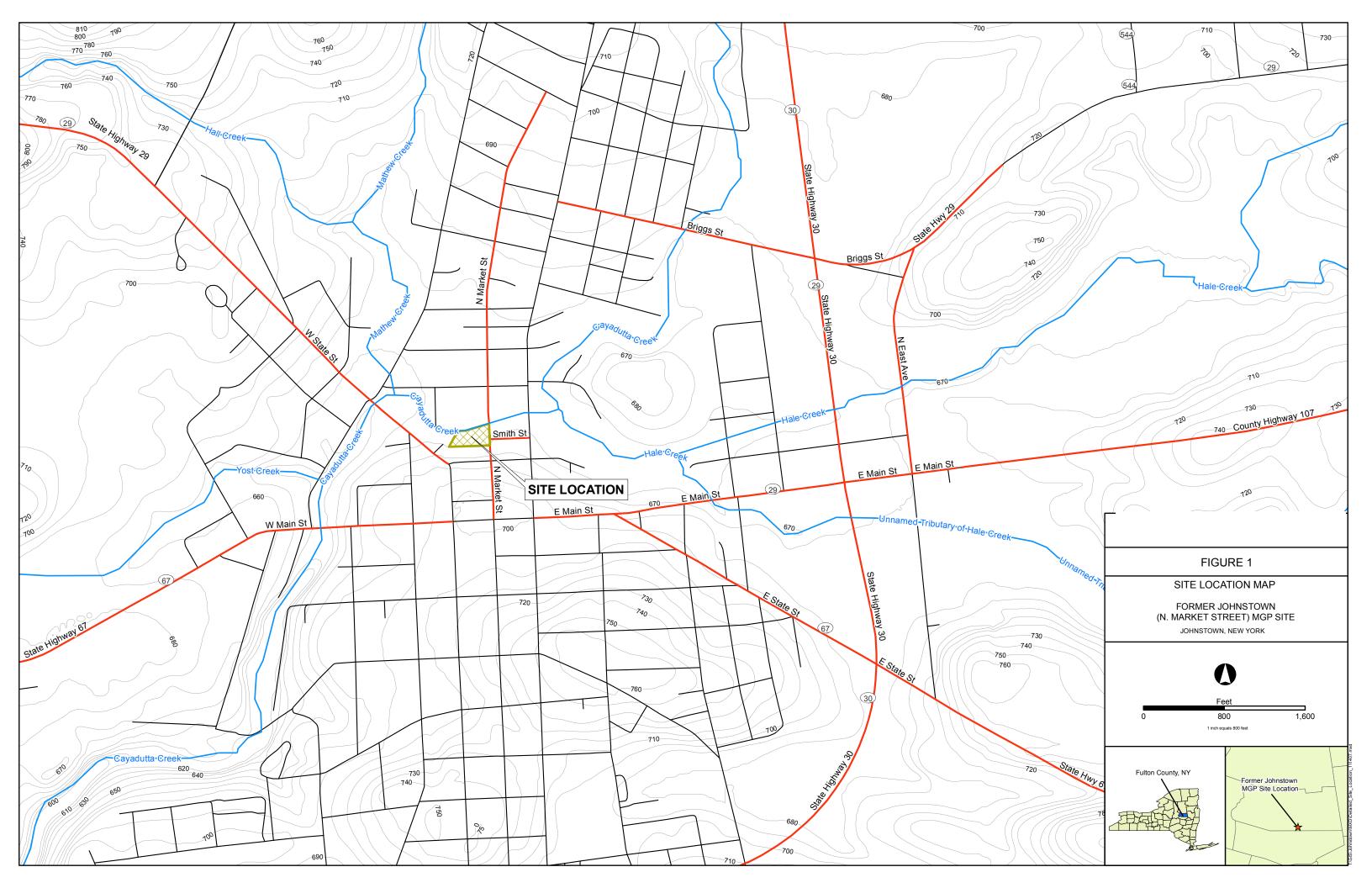
R - Rejected

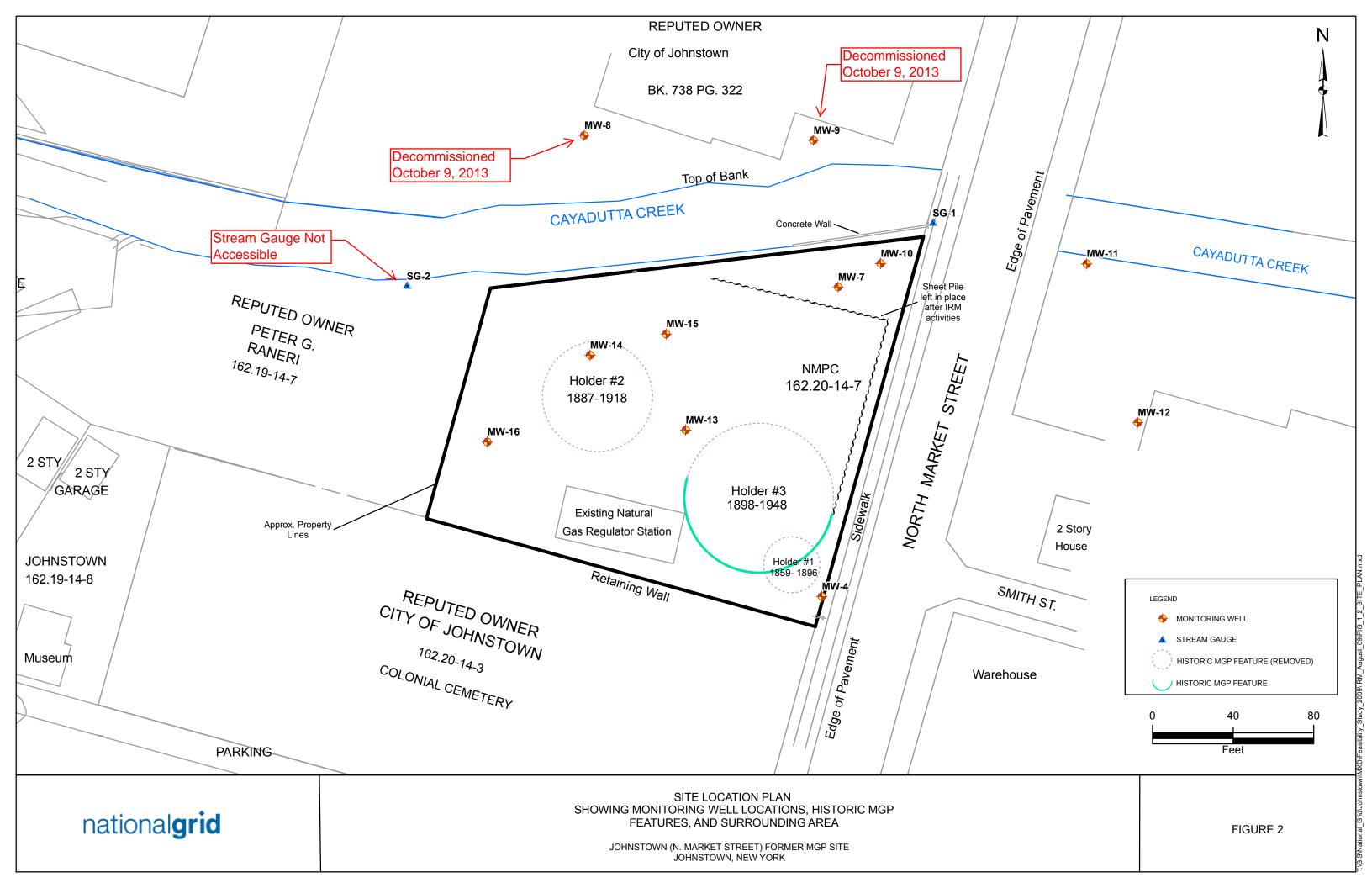
U - Not Detected

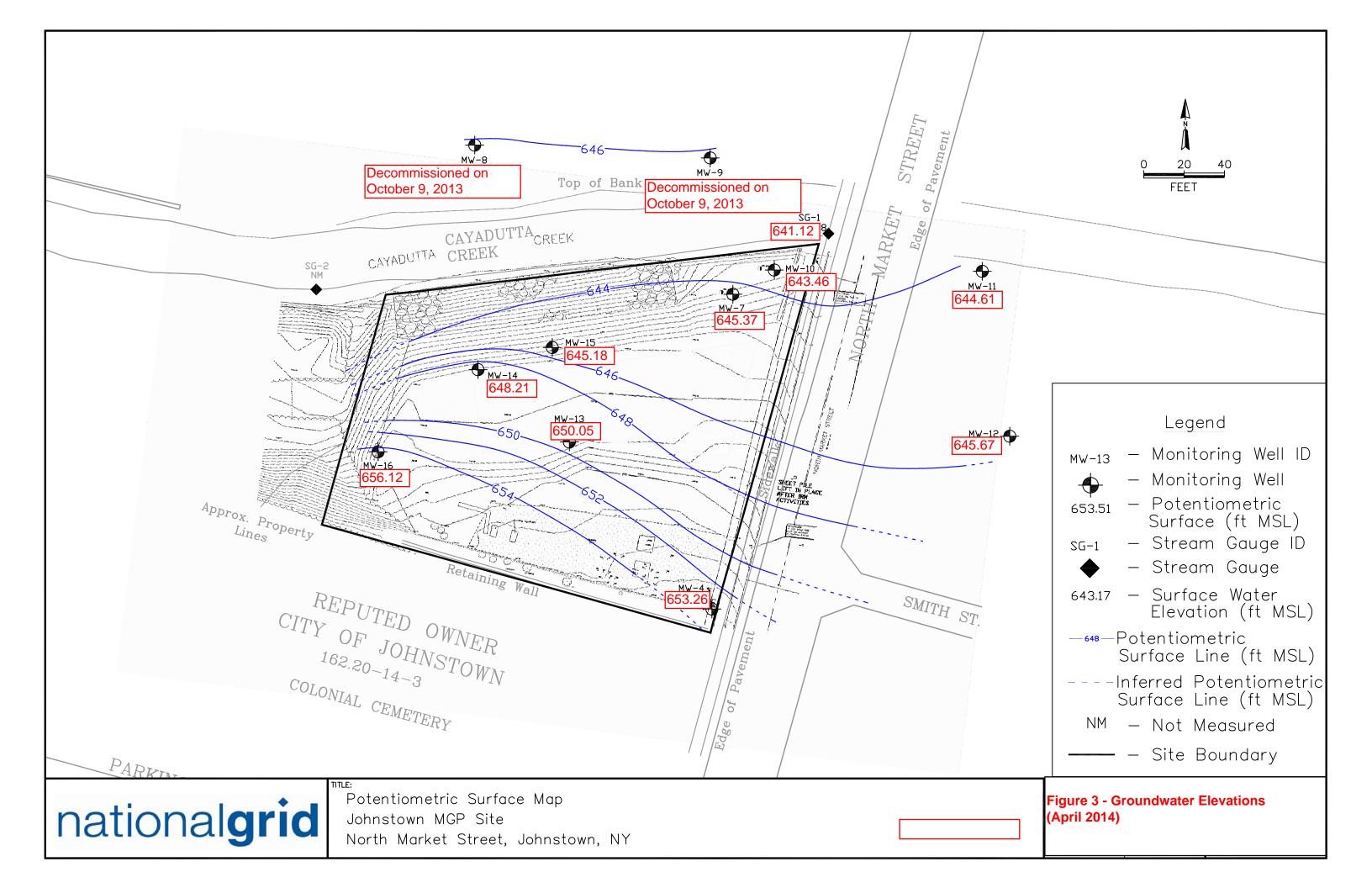
# Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-16) Johnstown MGP Site Johnstown, NY

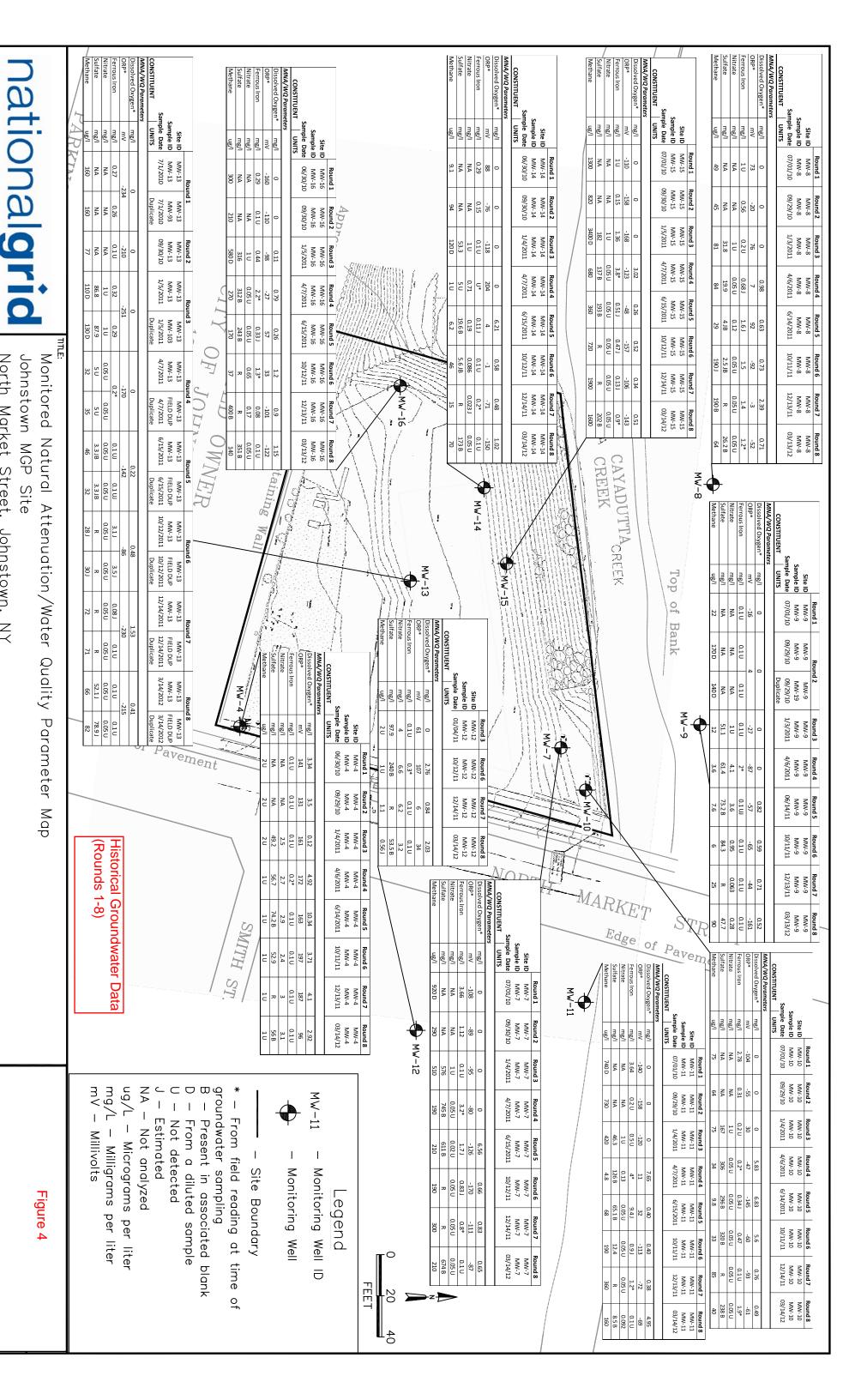
| CONSTITUENT           | Sample Date UNITS | 09/30/10 | 01/05/11 | 04/07/11 | 06/15/11 | 10/12/11 | 12/13/11 | 03/13/12 | 10/09/12 | 04/18/13 | 10/08/13 | 04/09/14 |
|-----------------------|-------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| MNA/WQ Parameter      | MNA/WQ Parameters |          |          |          |          |          |          |          |          |          |          |          |
| Alkalinity (as CaCO3) | mg/l              | 442      | 410      | R        | R        | 586 J    | 600 J    | R        | 436      | 530      | 585      | 454      |
| Chloride              | mg/l              | 7.2      | 6.7      | 9.4      | 6.1 B    | 3.4 J    | R        | 12.7     | 12.8     | 5.5      | 5.4      | 5        |
| Ethane                | ug/l              | 2.5 U    | 2.5 U    | 30 U     | 30 U     | 1.5 U    | 1.5 U    | 0.57 J   | 750 U    | 750 U    | 750 U    | 750 U    |
| Ethene                | ug/l              | 2.5 U    | 2.5 U    | 30 U     | 30 U     | 1.5 U    | 1.5 U    | 2.6      | 700 U    | 700 U    | 700 U    | 700 U    |
| Ferrous Iron          | mg/l              | 0.1 U    | 0.44     | R        | 0.33 J   | R        | 0.08     | 0.1 U    | 0.12     | 0.1 U    | 0.13     | 0.1 U    |
| Manganese             | mg/l              | NA       | 0.7      | 0.59     | 0.9      | 0.17     | 0.61     | 0.88     | 1.1      | 0.63     | 0.7      | 0.22     |
| Methane               | ug/l              | 210 J    | 580 D    | 270      | 170      | 37       | 400 B    | 140      | 550      | 170      | 150      | 75       |
| Nitrate               | mg/l              | NA       | 1 U      | 0.05 U   | 0.05 U   | 0.65     | 0.17     | 0.05 U   | 0.05 U   | 0.1      | 0.05 U   | 0.53     |
| Nitrogen              | mg/l              | 3.2      | 2.75     | 2.6      | 1.8      | R        | R        | 3.2      | 3.8      | 3.6      | 2.8      | 2.4      |
| Sulfate               | mg/l              | NA       | 316      | 312 B    | 243 B    | R        | R        | 351 B    | 487      | 140      | 86       | 1U       |
| Sulfide               | mg/l              | NA       | 2.7 J    | 1 U      | 1 UJ     | 0.8 J    | 1 U      | R        | 1 U      | 1 U      | 1 U      | 1 U      |


#### Notes:


- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration


mg/l - Milligrams per liter


- NA Not analyzed
- R Rejected
- U Not Detected

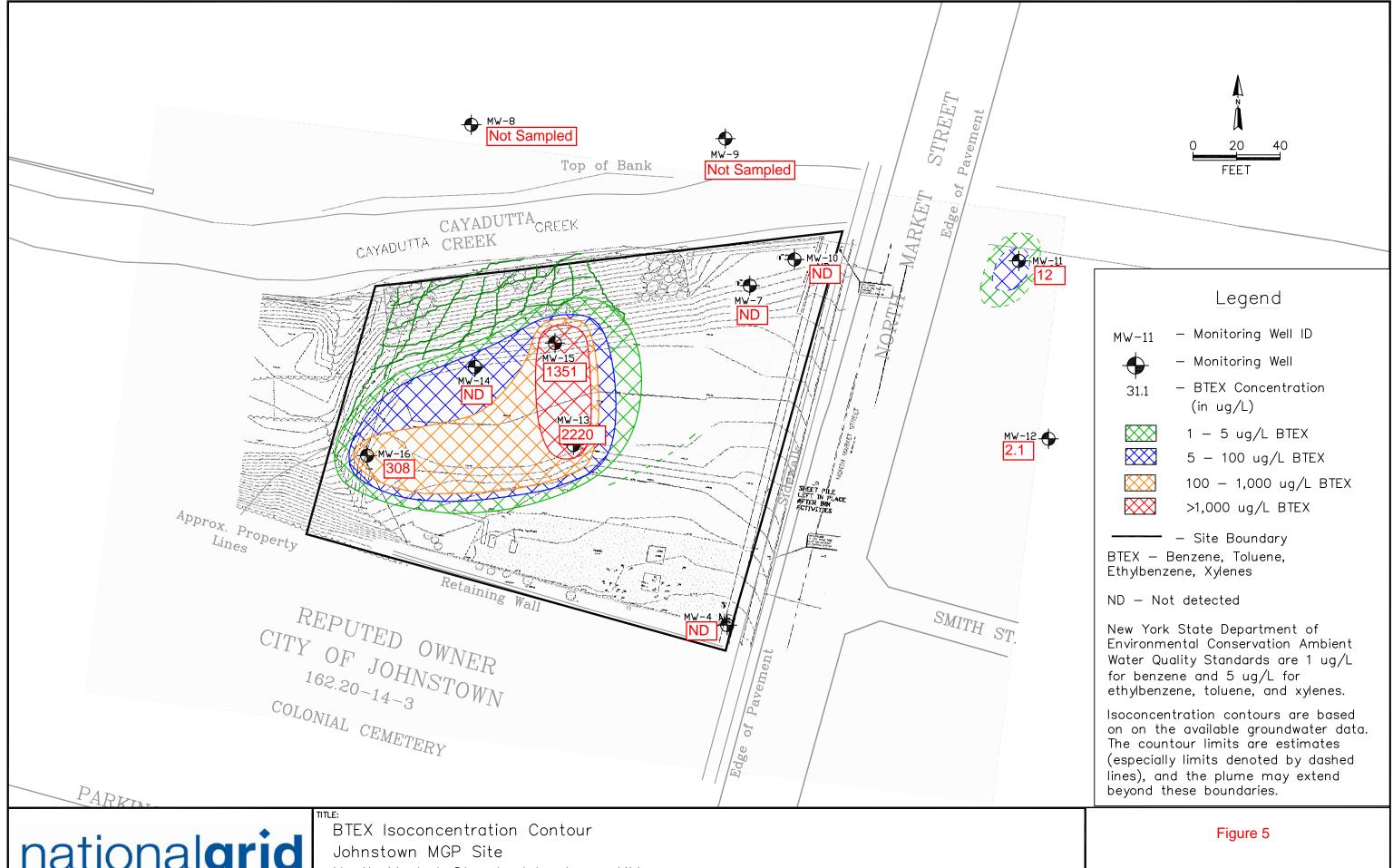

ug/I - Micrograms per liter












North

Market


Street,

Johnstown, NY



nationalgrid

North Market Street, Johnstown, NY



# APPENDIX A FIELD DATA

| Well ID          | Sample? | Well Size? | DTW   | DTP | DTB   | Comments |
|------------------|---------|------------|-------|-----|-------|----------|
| RW-1             | No      | 2"         | 12.32 |     | 21.50 |          |
| MW-4             | Yes     | 2"         | 23.28 |     | 27.32 |          |
| MW-7             | Yes     | 2"         | 13.71 |     | 22.10 |          |
| MW-10            | Yes     | 2"         | 14.13 |     | 22.05 |          |
| MW-11            | Yes     | 2"         | 12.68 |     | 22.90 |          |
| MW-12            | Yes     | 2"         | 14.41 |     | 22.24 |          |
| MW-13            | Yes     | 2"         | 14.84 |     | 22.75 | MS/MSD   |
| MW-14            | Yes     | 2"         | 15.70 |     | 23.55 | FD-0414  |
| MW-15            | Yes     | 2"         | 16.67 |     | 23.00 |          |
| MW-16            | Yes     | 2"         | 9.45  | · " | 19.45 |          |
| Gauge-1 (bridge) | No      |            | 18.85 |     |       |          |

DTW -depth to water
DTP -depth to product
DTB -depth to bottom
All from top of casing

TestAmerica Albany

**TestAmerica** the Leader in Environmental Testing

Chain of Custody Record

Albany, NY 12205 25 Kraft Road

P. Na204S Q. Na2SC3 R. Na2S2SO3 S. H2SO4 U. TSP Dodecaby U. Acetone V. MCAA W. ph 4-5 Months Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month)
Return To Client TDisposal By Lab Archive For Mont Preservation Codes: 480-46664-10483.1 1730 Page 1 of 2 Job#: G - Amehlor THE HA Tataniejnos jo redmun išio i Palertime: Date/Time: ethod of Shipment novi suome4 - 0\_34\_0088 1250B - Alkalinity, Total Analysis Requested 53.2, 353.2 Mitrie, D516, Nitrate\_Calc, SM4500\_CLE Special instructions/QC Requirements, D12A - Cyanide, :W4600\_82\_F - Sulfide FOR 1446 - (MOD) Local Mathod E-Mait becky, mason@testamericainc.com - BLEX - 8560 9010B - (MOD) TAL Meials ICP Lab PM: Mason, Becky C Company Swith Company (QN to se)) qamidh qqarag Water Water Water Water Water water Water Water Roservenand 263-727-65XV Radiological (C=comp Sample Type G=grab) 5 9 J 9 30 0h01 Sample Time Standard Date: Unknown Due Date Requested: AT Requested (days Sample Date PO#: 36380.99758 WO#: Project #: 48002647 SSOW#: Poison B CDM Smith Event Desc. Johnstown (N. Market Street) Skin Imitant Deliverable Requested: I, II, III, IV, Other (specify) Ogsible Hazard Identification Trib xeaumonttj@cdmsmith.com One General Motors Drive empty Kit Relinquished by: Client Information Timothy Beaumont Company: CDM Smith, Inc. W-13-04-145 W-13-0414 SD 年ののま FE-41044 WW-10-0414 MW-11-0414 W-13-0414 <u>184.46.04:14</u> 1445-041A State, Zip: NY, 13206 WW-7-0414 elinquished by: W-4-0414 City: Syracuse Vew York

Custody Seals Intact: | Custody Seal No.

Received by:

Company

Date/Time:

Relinquished by:

Chain of Custody Record

**TestAmerica Albany** 

Albany, NY 12205

25 Kraft Road

TestAmerica

N - None
O - Ashlacoz
P - NazOcis
Q - NaZSSO3
R - NaZSSSO3
S - FZSO4
T - TSP Dodershyd
U - Acetone
V - MCAA
W - Ph 4.5
Z - other (specify) Sample Disposal ( A fee may be assessed if samples are retained longer then 1 month)
Return To Client Disposal By Lab. Archive For Mont COC No: 480-46664-10483.1 Page: Page 1 of 2 Job #: atenightog to learnish letot anemqins 🕏 pos noil suomet - 0\_33\_008( Analysis Requested Special Instructions/QC Requirements Lib PM: Mason, Becky C E-Mait: becky.mason@lestamericainc.com colitalovimes lav Time: Company Water Water Water Water Water Water Water Matrix Radiological (C≔comp, G≖grab) Sample Type TO S 1805 2 38 Sample 500 0455 1105 Unknown FAT Requested (days): Due Date Requested: Sample Date PO#: 36380,99758 WO#: Project #: 48002647 SSOW#: Poison B 3DM Smith/ Event Desc. Johnstown (N. Market Street) Skin Intlant Deliverable Requested: I, II, III, IV, Other (specify) Possible Hazard Identification beaumontti@cdmsmith.com One General Motors Drive Empty Kit Refinquished by: Client Information mothy Beaumont MW-13-0414 MS ompany: ... DM Smith, Inc. MW-13-0414 SD MX4.10.0414 4W-11-0414 MW-13-0414 MW-12-0414 MW-14-0414 WW-15-0414 WW-16-0414 **₹** Syracuse Stete, Zip: NY, 13206 1 lew York

Date/Time:

Сопрапу

Cate/Time:

inquished by:

TestAmerica Albany

Due Date Requested: TAT Requested (days)

One General Motors Drive

Syracuse State, Zip: NY, 13206

FO#; 36380.99758 WO#:

Project #: 48002647 SSCW#:

Project Name: CDM Smith/ Event Desc: Johnstown (N. Market Street)

**New York** 

eaumonttj@cdmsmith.com

Albany, NY 12206 25 Kraft Road

Client Information

imothy Beaumont

COM Smith, Inc.

**TestAmerica** THE LEADER IN ENVIRONMENTAL TESTING 0 - Ashiard P - Na2045 G - Na22503 S - Na22503 S - HZSO4 I - TSP Dodecativ U - Actione W - Int 4-5 Z - other (specify) 480-46664-10483.2 Page 2 of 2 A Total Winning Lot contributes 8500\_FE\_D - Ferrous Analysis Requested 183.2, 363.2 Mitrite, D616, Mitrate\_Calc, Sbl4600\_CLE **Chain of Custody Record** RSK\_176 - (MOD) Local Method Lab PM: Mason, Becky C F-44sit becky,mason@testamericainc.com SO10B - (MOD) TAL Metals ICP Water Matrix (CECOMP. G=grab) D Standar Sample

Time

Sample Date

Sample Identification

16/6/16

رخ

FD-0414

Months are retained fonger than f month)
Archive For Mont Date/Time: Sample Disposal ( A fee may be assessed if samples: Return To Client Disposal By Lab jathod of Shipmer Special Instructions/QC Requirements eceived by: Company Sm. H. Time: Custody Seeig-Intake | Custody Seei No. Сопралу Radiological Date: Unknown Selectime: Poison B Skin Imitant Deliverable Requested: I, II, III, IV, Other (specify) Fiammable Possible Hazard Identification Empty Kit Relinquished by: Von-Hazand Relinquished by:

## Site Management Plan Inspection Form 109 North Market Street

| Date: 4/10/2014 Technician: Rosenzweig                                                 | Jonns | stow <i>n,</i> New                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , tork      | Time:<br>Weather: | 1600<br>Clear 60 °F                                                                                            |
|----------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|----------------------------------------------------------------------------------------------------------------|
|                                                                                        | Vege  | tation Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p           |                   |                                                                                                                |
| Condition of Grass                                                                     | GOOD  | FAIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | POOR        | COMMENTS: Snow    | covered                                                                                                        |
| Condition of Site Trees                                                                | NONE  | MINOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | COMMENTS:         |                                                                                                                |
| Surface Erosion                                                                        | NONE  | MINOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | COMMENTS:         |                                                                                                                |
| Has the site been maintained/mowed?                                                    | YES   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NO          | COMMENTS:         |                                                                                                                |
|                                                                                        | Shee  | t Pile Wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11          |                   |                                                                                                                |
| Has any construction occurred that may have impacted the sheet pile wall?              | YES   | (AV 8, 112<br>20 February 12<br>21 February 12<br>22 February 12<br>23 February 12<br>24 February 12<br>25 February 12<br>26 February 12<br>27 Februar | NO          | COMMENTS:         |                                                                                                                |
|                                                                                        | Si    | te Wide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                   |                                                                                                                |
| Does the property continue to be used for commercial and/or industrial uses?           | YES   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NO          | COMMENTS:         |                                                                                                                |
| Does the use of groundwater for potable or process water continue to be restricted?    | YES   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NO          | COMMENTS:         |                                                                                                                |
| Are agricultural or vegetable gardens present on the property?                         | YES   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NO          | COMMENTS:         |                                                                                                                |
| Do the Engineering Controls continue to perform as designed?                           | YES   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NO          | COMMENTS:         |                                                                                                                |
| Do the Engineering Controls continue to be protective of human health and environment? | YES   | er V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NO          | COMMENTS:         |                                                                                                                |
| Are the requirements of the Site Management Plan being met?                            | YES   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NO          | COMMENTS:         |                                                                                                                |
| Are the requirements of the Environmental<br>Easement being met?                       | YES   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NO          | COMMENTS:         | t duting the second |
| Since the last inspection has the groundwater been sampled in accordance with the SMP? | YES   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NO          | COMMENTS:         |                                                                                                                |
| Since the last inspection have there been any changes to the remedial system?          | YES   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NO          | COMMENTS:         |                                                                                                                |
| Are there any needed changes?                                                          | YES   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NO          | COMMENTS:         |                                                                                                                |
| Are the site records complete and up to date?                                          | YES   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NO          | COMMENTS:         |                                                                                                                |
|                                                                                        | Mis   | cellaneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3           |                   |                                                                                                                |
| Evidence of Trespassing                                                                | YES   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NO          | COMMENTS:         |                                                                                                                |
| Litter                                                                                 | NONE  | MINOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SIGNIFICANT | COMMENTS:         |                                                                                                                |

General Comments:

| Job Number:                                                                                                                                                                                                                                                              |                                                                | c Rosenzweig<br>58                                               | <u> </u>                                                                                                                                                                        |                                                       | Date: Stan 4/6/14 Weather: Clear & MB                                    |                                                                                                                                                                                                                                                                                         |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Well Id.                                                                                                                                                                                                                                                                 | MW-4                                                           |                                                                  |                                                                                                                                                                                 |                                                       | Time In:                                                                 | 105                                                                                                                                                                                                                                                                                     | Time Out                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                          |                                                                |                                                                  |                                                                                                                                                                                 |                                                       |                                                                          |                                                                                                                                                                                                                                                                                         |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Well Info                                                                                                                                                                                                                                                                | ormation                                                       | 4                                                                |                                                                                                                                                                                 |                                                       |                                                                          |                                                                                                                                                                                                                                                                                         |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 14 1- VAI-4                                                                                                                                                                                                                                                              |                                                                |                                                                  |                                                                                                                                                                                 | Other                                                 | Well Type                                                                |                                                                                                                                                                                                                                                                                         |                                                                     | Stick-Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Depth to Wate                                                                                                                                                                                                                                                            |                                                                | ·····                                                            | 23.28                                                                                                                                                                           |                                                       | Well Lock                                                                |                                                                                                                                                                                                                                                                                         | Yes                                                                 | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Depth to Botto                                                                                                                                                                                                                                                           |                                                                | (feet)                                                           | 27.32                                                                                                                                                                           |                                                       | _                                                                        | Point Marked:                                                                                                                                                                                                                                                                           | Yes                                                                 | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Depth to Prod                                                                                                                                                                                                                                                            |                                                                | (feet)                                                           | * - 1                                                                                                                                                                           |                                                       | Well Mate                                                                |                                                                                                                                                                                                                                                                                         | MM                                                                  | her:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Length of Wa                                                                                                                                                                                                                                                             |                                                                | 1                                                                | 4.64                                                                                                                                                                            |                                                       | Well Diam                                                                |                                                                                                                                                                                                                                                                                         | 2"_XOtI                                                             | her:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Volume of Wa                                                                                                                                                                                                                                                             |                                                                | (gal)                                                            | 0.65                                                                                                                                                                            |                                                       | Comments                                                                 |                                                                                                                                                                                                                                                                                         | Cl. va                                                              | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Three Well Vo                                                                                                                                                                                                                                                            | olumes:                                                        | (gal)                                                            | 1,94                                                                                                                                                                            |                                                       | Clev                                                                     | 100                                                                                                                                                                                                                                                                                     | ON WORK OF M                                                        | VUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                          |                                                                |                                                                  |                                                                                                                                                                                 |                                                       |                                                                          |                                                                                                                                                                                                                                                                                         |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Purging In                                                                                                                                                                                                                                                               | formation                                                      | 4                                                                |                                                                                                                                                                                 |                                                       |                                                                          |                                                                                                                                                                                                                                                                                         |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Purging Metho                                                                                                                                                                                                                                                            | -d.                                                            | Bailer                                                           | Peristaltic                                                                                                                                                                     | TAIGH MARIZAN                                         | d Dedicated Pump                                                         | →  →  →  →  →  →  →  →  →  →  →  →  →                                                                                                                                                                                                                                                   | Conversion I                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Purging Metho<br>Tubing/Bailer                                                                                                                                                                                                                                           |                                                                | <del></del>                                                      | <del>  </del>                                                                                                                                                                   |                                                       | <del></del> 1                                                            | — Janic                                                                                                                                                                                                                                                                                 | 1 10 2 10                                                           | 4" ID   6"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Tubing/Bailer<br>Sampling Met                                                                                                                                                                                                                                            |                                                                | Teflon<br>Railer                                                 | Stainless St.                                                                                                                                                                   |                                                       | riene other                                                              | of                                                                                                                                                                                                                                                                                      | 1 24 216                                                            | 1 20 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                          |                                                                | Bailer                                                           |                                                                                                                                                                                 | Well Wizard                                           | d Dedicated Pump                                                         |                                                                                                                                                                                                                                                                                         | 0.04 0.16                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Average Pum                                                                                                                                                                                                                                                              | · · · · · · · · · · · · · · · · · · ·                          | (ml/min)                                                         | 500                                                                                                                                                                             |                                                       | ٠.                                                                       | 1 gallo                                                                                                                                                                                                                                                                                 | n=3.785L=3785n                                                      | กL=1337cu. <u>1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Duration of Pu                                                                                                                                                                                                                                                           |                                                                | (min)                                                            | <u>30</u>                                                                                                                                                                       |                                                       | ΓΠ,Ω[                                                                    |                                                                                                                                                                                                                                                                                         |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Total Volume                                                                                                                                                                                                                                                             | Removea:                                                       | (gal)                                                            |                                                                                                                                                                                 | l well go dry?                                        | Yes No                                                                   |                                                                                                                                                                                                                                                                                         |                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Horiba U-52 V                                                                                                                                                                                                                                                            | Water Quality                                                  | Meter Used?                                                      | Yes                                                                                                                                                                             | No□                                                   |                                                                          |                                                                                                                                                                                                                                                                                         |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                          |                                                                |                                                                  |                                                                                                                                                                                 |                                                       |                                                                          |                                                                                                                                                                                                                                                                                         | <del></del>                                                         | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Time                                                                                                                                                                                                                                                                     | DTW                                                            | Temp                                                             | рН                                                                                                                                                                              | ORP                                                   | Conductivity                                                             | Turbidity                                                                                                                                                                                                                                                                               | DO                                                                  | TDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <u> </u>                                                                                                                                                                                                                                                                 | (feet)                                                         | (°C)                                                             |                                                                                                                                                                                 | (mV)                                                  | (mS/cm)                                                                  | (NTU)                                                                                                                                                                                                                                                                                   | (mg/L)                                                              | (g/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1010                                                                                                                                                                                                                                                                     | <u> </u>                                                       | 8.49                                                             | 7,30                                                                                                                                                                            | <u>√(11/V)</u>                                        | 168                                                                      | 103                                                                                                                                                                                                                                                                                     | 18.40                                                               | 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| IVIV                                                                                                                                                                                                                                                                     | ton 1                                                          | 8,90                                                             | 728                                                                                                                                                                             | 59                                                    | 1,71                                                                     | 457                                                                                                                                                                                                                                                                                     | 5.22                                                                | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1015                                                                                                                                                                                                                                                                     | ns                                                             | 7 7/0                                                            | · ~~ · ~                                                                                                                                                                        |                                                       |                                                                          | ~ / _ /                                                                                                                                                                                                                                                                                 | <u> </u>                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1020                                                                                                                                                                                                                                                                     | 1                                                              | 1.22                                                             | 7,19                                                                                                                                                                            | 77                                                    |                                                                          | %(1), 1                                                                                                                                                                                                                                                                                 |                                                                     | 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1020                                                                                                                                                                                                                                                                     | 85                                                             |                                                                  | 7.19                                                                                                                                                                            | 77                                                    | 1.70                                                                     | 80.1                                                                                                                                                                                                                                                                                    | 4,48                                                                | 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1075                                                                                                                                                                                                                                                                     | SC<br>P                                                        | 9.22<br>9.35                                                     | 7.19                                                                                                                                                                            | 27<br>82                                              | 1.70                                                                     | 710-8                                                                                                                                                                                                                                                                                   | 4.48                                                                | 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1075<br>1070<br>1075<br>1070                                                                                                                                                                                                                                             | S.C.                                                           | 9.22<br>9.35<br>9.61                                             | 7.19                                                                                                                                                                            | 77<br>82<br>90                                        | 1.70                                                                     | 710-8                                                                                                                                                                                                                                                                                   | 4,48<br>4.40<br>4.35                                                | 1.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1015<br>1020<br>1025<br>1030<br>1035                                                                                                                                                                                                                                     | Sc<br>Pung                                                     | 9.22<br>9.35                                                     | 7.19                                                                                                                                                                            | 27<br>82                                              | 1.70                                                                     | 710-8                                                                                                                                                                                                                                                                                   | 4.48                                                                | 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                          | Sc.                                                            | 9.22<br>9.35<br>9.61                                             | 7.19                                                                                                                                                                            | 77<br>82<br>90                                        | 1.70                                                                     | 710-8                                                                                                                                                                                                                                                                                   | 4,48<br>4.40<br>4.35                                                | 1.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                          | Sc.                                                            | 9.22<br>9.35<br>9.61                                             | 7.19                                                                                                                                                                            | 77<br>82<br>90                                        | 1.70                                                                     | 710-8                                                                                                                                                                                                                                                                                   | 4,48<br>4.40<br>4.35                                                | 1.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                          | Sc. Pung                                                       | 9.22<br>9.35<br>9.61                                             | 7.19                                                                                                                                                                            | 77<br>82<br>90                                        | 1.70                                                                     | 710-8                                                                                                                                                                                                                                                                                   | 4,48<br>4.40<br>4.35                                                | 1.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                          | Sc<br>Pung                                                     | 9.22<br>9.35<br>9.61                                             | 7.19                                                                                                                                                                            | 77<br>82<br>90<br>95                                  | 1.70                                                                     | 710-8                                                                                                                                                                                                                                                                                   | 4,48<br>4.40<br>4.35                                                | 1.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1035                                                                                                                                                                                                                                                                     |                                                                | 9.22<br>9.35<br>9.61                                             | 7.19                                                                                                                                                                            | 77<br>82<br>90<br>95                                  | 1.70                                                                     | 710-8                                                                                                                                                                                                                                                                                   | 4,48<br>4.40<br>4.35                                                | 1.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sampling Info                                                                                                                                                                                                                                                            | ormation:                                                      | 9.22<br>9.35<br>9.41<br>9.74                                     | 7.19<br>7.17<br>7.15<br>7.14                                                                                                                                                    | 77<br>82<br>90<br>95                                  | 1.70                                                                     | 710-8<br>71.6<br>09.7                                                                                                                                                                                                                                                                   | 4.48<br>4.40<br>4.35<br>4.22                                        | 1.09<br>1.08<br>1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1035                                                                                                                                                                                                                                                                     | ormation:                                                      | 9.22<br>9.35<br>9.41<br>9.74                                     | 7, 19<br>7,17<br>7,15<br>7,14<br>SVOC PAH's                                                                                                                                     | 77<br>82<br>90<br>95                                  | 1.70<br>1.60<br>1.65                                                     | 7/o-8<br>.7), 6<br>.69. 7                                                                                                                                                                                                                                                               | 4,48<br>4,40<br>4.35<br>4.27                                        | 1.08<br>1.08<br>1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sampling Info                                                                                                                                                                                                                                                            | ormation: Method 8270 Method 8260                              | 9.22<br>9.35<br>9.41<br>9.74                                     | 7.19<br>7.17<br>7.15<br>7.14                                                                                                                                                    | 77<br>82<br>90<br>95                                  | 1.70<br>1.69<br>1.66<br>1.65                                             | 7/o-8<br>7), 6<br>69.7<br>- 250 ml ambe<br>3 - 40 ml vials                                                                                                                                                                                                                              | 4,48<br>4,40<br>4.35<br>4.27<br>er Yes                              | 7.09<br>1.08<br>1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sampling Info<br>EPA SW-846 M<br>EPA SW-846 M<br>EPA-Method 61                                                                                                                                                                                                           | ormation: Method 8270 Method 8260                              | 9.22<br>9.35<br>9.41<br>9.74                                     | 7, 19<br>7,17<br>7,15<br>7,14<br>SVOC PAH'S<br>VOC'S BTEX                                                                                                                       | 77<br>82<br>90<br>95                                  | 1.70<br>1.69<br>1.66<br>1.65                                             | 7/o-8<br>.7), 6<br>.69. 7                                                                                                                                                                                                                                                               | 4,48<br>4,40<br>4.35<br>4.27<br>er Yes                              | 1.08<br>1.08<br>1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sampling Info<br>EPA SW-846 M<br>EPA SW-846 M<br>EPA-Method 61<br>EPA Method 90                                                                                                                                                                                          | ormation: Method 8270 Method 8260 10B 012A                     | 9.22<br>9.35<br>9.61<br>9.74                                     | SVOC PAH'S VOC'S BTEX LEAD MANGANESE OTAL CYANIDE                                                                                                                               | 77<br>82<br>90<br>95                                  | 1.70<br>1.69<br>1.66<br>1.65                                             | - 250 ml ambe<br>3 - 40 ml vials<br>- 250 ml plasti                                                                                                                                                                                                                                     | 4.48<br>4.40<br>4.35<br>4.ZZ<br>er Yes<br>c Yes                     | 7. 8 9<br>1.08<br>1.08<br>1.09<br>1.09<br>No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sampling Info<br>EPA SW-846 M<br>EPA SW-846 M<br>EPA Method 61<br>EPA Method 90<br>RSK_175_CO2                                                                                                                                                                           | ormation: Method 8270 Method 8260 10B 012A                     | 9.22<br>9.35<br>9.61<br>9.74                                     | SVOC PAH'S VOC'S BTEX LEAD MANGANESE OTAL CYANIDE /ED CARBON I                                                                                                                  | 27<br>82<br>90<br>95                                  | 1.70<br>1.69<br>1.66<br>1.65                                             | - 250 ml ambe<br>3 - 40 ml vials<br>- 250 ml plasti<br>- 250 ml plasti<br>3 - 40 ml vials                                                                                                                                                                                               | 4, 48 4, 40 4, 35 4, ZZ  er Yes yes c Yes Yes                       | 7. 8 9<br>1.08<br>1.08<br>1.08<br>1.08<br>No<br>No<br>No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sampling Info<br>EPA SW-846 M<br>EPA SW-846 M<br>EPA Method 90<br>EPA Method 90<br>RSK 175 CO2<br>EPA Method 23                                                                                                                                                          | ormation: Method 8270 Method 8260 10B 012A 2 320B              | 7.22<br>9.35<br>9.61<br>9.74<br>TO<br>DISSOLV                    | SVOC PAH'S 7,14 7,14 7,14 7,14 NOC'S BTEX LEAD MANGANESE OTAL CYANIDE /ED CARBON D                                                                                              | 27<br>82<br>90<br>95                                  | 1.70<br>1.69<br>1.66<br>1.65                                             | - 250 ml ambe<br>3 - 40 ml vials<br>- 250 ml plasti<br>- 250 ml plasti<br>3 - 40 ml vials<br>- 125 ml plasti                                                                                                                                                                            | Yes Yes C Yes Yes C Yes Yes C Yes                                   | 7. 8 9<br>1.08<br>1.08<br>1.08<br>1.08<br>No<br>No<br>No<br>No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sampling Info<br>EPA SW-846 M<br>EPA Method 61<br>EPA Method 90<br>RSK 175 CO2<br>EPA Method 23<br>EPA Method 35                                                                                                                                                         | ormation: Method 8270 Method 8260 10B 012A 2 320B 51.2         | 7.22<br>9.35<br>9.61<br>9.74<br>TO<br>DISSOLV                    | SVOC PAH'S 7,14 7,14 7,14 SVOC'S BTEX LEAD MANGANESE OTAL CYANIDE VED CARBON D TAL ALKALINIT KJELDAHL NITE                                                                      | 27<br>82<br>90<br>95                                  | 1.70<br>1.69<br>1.66<br>1.65                                             | - 250 ml ambe<br>3 - 40 ml vials<br>- 250 ml plasti<br>3 - 40 ml vials<br>- 125 ml plasti<br>- 250 ml plasti<br>- 250 ml plasti                                                                                                                                                         | Yes Yes C Yes C Yes C Yes C Yes C Yes C Yes                         | No N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sampling Info<br>EPA SW-846 M<br>EPA Method 61<br>EPA Method 90<br>RSK_175_CO2<br>EPA Method 23<br>EPA Method 35<br>EPA Method 35<br>EPA Method 35                                                                                                                       | ormation: Method 8270 Method 8260 10B 012A 2 320B 51.2         | 7.22<br>9.35<br>9.41<br>9.74<br>DISSOLV<br>TOTAL K               | SVOC PAH'S 7,14 7,14 7,14 7,14 7,14 SVOC'S BTEX LEAD MANGANESE OTAL CYANIDE /ED CARBON D ITAL ALKALINIT KJELDAHL NITE SULFIDE                                                   | 90<br>95<br>95<br>EDIOXIDE<br>TY<br>ROGEN             | 1.70<br>1.69<br>1.66<br>1.65                                             | - 250 ml ambe<br>3 - 40 ml vials<br>- 250 ml plasti<br>3 - 40 ml vials<br>- 250 ml plasti<br>3 - 40 ml vials<br>- 125 ml plasti<br>- 250 ml plasti<br>- 250 ml plasti                                                                                                                   | Yes Yes C Yes | 7. 0 9<br>  1.08<br>  7. 0 9<br>  7.  |
| Sampling Info<br>EPA SW-846 M<br>EPA Method 61<br>EPA Method 90<br>RSK 175 CO2<br>EPA Method 23<br>EPA Method 35                                                                                                                                                         | ormation: Method 8270 Method 8260 10B 012A 2 320B 51.2         | 7.22<br>9.35<br>9.41<br>9.74<br>9.74<br>TO DISSOLV<br>TO TOTAL K | SVOC PAH'S 7,14 7,14 7,14 SVOC'S BTEX LEAD MANGANESE OTAL CYANIDE VED CARBON D TAL ALKALINIT KJELDAHL NITE                                                                      | 27<br>87<br>90<br>95<br>95<br>EDIOXIDE<br>TY<br>ROGEN | 1.70<br>1.69<br>1.66<br>1.65                                             | - 250 ml ambe<br>3 - 40 ml vials<br>- 250 ml plasti<br>3 - 40 ml vials<br>- 125 ml plasti<br>- 250 ml plasti                                                                             | Yes                             | 7. 0 9<br>  1. 0 8<br>  1. 0 9<br>  1 |
| Sampling Info<br>PA SW-846 M<br>PA SW-846 M<br>PA Method 90<br>RSK_175_CO2<br>PA Method 23<br>PA Method 35<br>PA Method 35<br>SM 4500_S2_F<br>SM_3500_FE                                                                                                                 | ormation: Method 8270 Method 8260 10B 012A 2 320B 51.2         | 7.22<br>9.35<br>9.41<br>9.74<br>9.74<br>TO DISSOLV<br>TO TOTAL K | SVOC PAH'S 7,14 7,15 7,14 SVOC'S BTEX LEAD MANGANESE OTAL CYANIDE /ED CARBON D ITAL ALKALINIT KJELDAHL NITE SULFIDE ERROUS IRON                                                 | 27<br>87<br>90<br>95<br>95<br>EDIOXIDE<br>TY<br>ROGEN | 1.70<br>1.69<br>1.60<br>1.65                                             | - 250 ml ambe<br>3 - 40 ml vials<br>- 250 ml plasti<br>- 250 ml plasti<br>3 - 40 ml vials<br>- 125 ml plasti<br>- 250 ml plasti                                                          | Yes                             | 7. 0 9   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0   1. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sampling Info<br>EPA SW-846 M<br>EPA SW-846 M<br>EPA Method 61<br>EPA Method 23<br>EPA Method 35<br>EPA Method 35<br>EPA Method 35<br>EPA Method 35<br>EPA Method 35<br>EPA Method 35<br>EPA Method 35                                                                   | Method 8270<br>Method 8260<br>10B<br>012A<br>2<br>320B<br>51.2 | 7.22<br>9.35<br>9.41<br>9.74<br>9.74<br>TO DISSOLV<br>TO TOTAL K | SVOC PAH'S 7,14 7,15 7,14 SVOC'S BTEX LEAD MANGANESE OTAL CYANIDE JED CARBON D JTAL ALKALINIT SULFIDE ERROUS IRON NE/ETHENE/ET SULFATE NITRATE                                  | 27<br>87<br>90<br>95<br>95<br>EDIOXIDE<br>TY<br>ROGEN | 1.70<br>1.69<br>1.60<br>1.65                                             | - 250 ml ambe<br>3 - 40 ml vials<br>- 250 ml plasti<br>3 - 40 ml vials<br>- 125 ml plasti<br>- 250 ml plasti                                                                             | Yes                             | 7. 0 9<br>  1. 0 8<br>  1. 0 9<br>  1 |
| Sampling Info<br>EPA SW-846 M<br>EPA SW-846 M<br>EPA Method 61<br>EPA Method 23<br>EPA Method 23<br>EPA Method 35<br>SM 4500_S2_F<br>SM 3500_FE_I<br>RSK_175                                                                                                             | Method 8270<br>Method 8260<br>10B<br>012A<br>2<br>320B<br>51.2 | 7.22<br>9.35<br>9.41<br>9.74<br>9.74<br>TO DISSOLV<br>TO TOTAL K | SVOC PAH'S 7,14 7,14 7,14 7,14 7,14 7,14 SVOC'S BTEX LEAD MANGANESE OTAL CYANIDE VED CARBON INTELLIBET SULFIDE ERROUS IRON NE/ETHENE/ET SULFATE                                 | 27<br>87<br>90<br>95<br>95<br>EDIOXIDE<br>TY<br>ROGEN | 1.70<br>1.69<br>1.60<br>1.65                                             | - 250 ml ambe<br>3 - 40 ml vials<br>- 250 ml plasti<br>- 250 ml plasti | Yes                             | 1.0   9   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sampling Info<br>EPA SW-846 M<br>EPA SW-846 M<br>EPA Method 90<br>RSK 175 CO2<br>EPA Method 23<br>EPA Method 35<br>EPA Method 35 | ormation: Method 8270 Method 8260 10B 012A 2 320B 51.2 D       | 7.22<br>9.35<br>9.41<br>9.74<br>DISSOLV<br>TO<br>TOTAL K         | SVOC PAH'S 7,14 7,15 7,14 7,15 7,14 SVOC'S BTEX LEAD MANGANESE OTAL CYANIDE VED CARBON D OTAL ALKALINIT KJELDAHL NITE SULFIDE ERROUS IRON NE/ETHENE/ET SULFATE NITRATE CHLORIDE | 27<br>87<br>90<br>95                                  | 1.70<br>1.69<br>1.60<br>1.65                                             | - 250 ml ambe<br>3 - 40 ml vials<br>- 250 ml plasti<br>- 250 ml plasti | Yes                             | No   No   No   No   No   No   No   No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sampling Info<br>EPA SW-846 M<br>EPA SW-846 M<br>EPA Method 61<br>EPA Method 23<br>EPA Method 35<br>EPA Method 35<br>EPA Method 35<br>EPA Method 35<br>EPA Method 35<br>EPA Method 35<br>EPA Method 35                                                                   | Method 8270<br>Method 8260<br>10B<br>012A<br>2<br>320B<br>51.2 | 7.22<br>9.35<br>9.41<br>9.74<br>DISSOLV<br>TO TOTAL K            | SVOC PAH'S T, 14 T, 15 T, 15 T, 14 SVOC'S BTEX LEAD MANGANESE OTAL CYANIDE VED CARBON D TAL ALKALINIT KJELDAHL NITE SULFIDE TERROUS IRON NE/ETHENE/ET SULFATE NITRATE CHLORIDE  | 27<br>87<br>90<br>95<br>95<br>EDIOXIDE<br>TY<br>ROGEN | 2<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>11<br>11<br>11<br>12<br>Shi | - 250 ml ambe<br>3 - 40 ml vials<br>- 250 ml plasti<br>- 250 ml plasti | Yes                             | No N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Sampling Personnel: Eric<br>Job Number: 36380.99758<br>Well Id. MW-7 | Rosenzwei    | _                     |                                       |                      |                                                          |                           |                 |  |
|----------------------------------------------------------------------|--------------|-----------------------|---------------------------------------|----------------------|----------------------------------------------------------|---------------------------|-----------------|--|
| <del> '</del>                                                        |              |                       |                                       |                      | Date: 4/10/14                                            |                           |                 |  |
| Well Id. MW-7                                                        |              |                       |                                       | Weather: Clear & 400 |                                                          |                           |                 |  |
|                                                                      |              |                       |                                       |                      | 910                                                      | Time Out                  |                 |  |
|                                                                      |              |                       |                                       |                      |                                                          |                           |                 |  |
| Well Information                                                     |              |                       |                                       |                      |                                                          |                           | <del></del>     |  |
|                                                                      |              | TOC                   | Other                                 | Well Type            | : Flus                                                   | hmount S                  | Stick-Up        |  |
| Depth to Water:                                                      | (feet)       | 13.71                 |                                       | Well Lock            |                                                          | Yes                       | No              |  |
| Depth to Bottom:                                                     | (feet)       | 22.10                 |                                       |                      | Point Marked:                                            | Yes                       | No              |  |
| Depth to Product:                                                    | (feet)       |                       | · · · · · · · · · · · · · · · · · · · | Well Mate            |                                                          |                           | her:            |  |
| Length of Water Column:                                              | (feet)       | 839                   | ·                                     | Well Dian            |                                                          | 2" \ Oti                  |                 |  |
| Volume of Water in Well:                                             | (gal)        | 134                   |                                       | Comment              | e.                                                       | /                         |                 |  |
| Three Well Volumes:                                                  | (gal)        | 103                   |                                       | Clear                | - 1/08                                                   | theen/o                   | day             |  |
|                                                                      |              |                       |                                       |                      |                                                          |                           | <u> </u>        |  |
|                                                                      |              |                       |                                       |                      |                                                          |                           |                 |  |
| Purging Information                                                  |              |                       |                                       |                      |                                                          |                           |                 |  |
| ļ                                                                    |              |                       |                                       |                      |                                                          | Conversion I              | actors          |  |
| Purging Method:                                                      | Baile        | Peristalti            | c Well Wizar                          | d Dedicated Pump     | ⊠ gal/ft.                                                | 1" ID 2" ID               | 4" ID 6" ID     |  |
| Tubing/Bailer Material:                                              | Teflor       | Stainless S           | t. Polyethy                           | yiene X other        | of gawit.                                                |                           |                 |  |
| Sampling Method:                                                     | Baile        | <del></del>           | <b>—</b>                              | d Dedicated Pump     | <b>—</b> 1 •                                             | 0.04 0.16                 | 0.66 1.47       |  |
| Average Pumping Rate:                                                | (ml/min)     | 1500                  |                                       |                      |                                                          | ·                         | nL=1337cu. feet |  |
| Duration of Pumping:                                                 | (min)        | 30                    |                                       |                      | 90                                                       | 0.,002 0,00               | ne-roored. leet |  |
| Total Volume Removed:                                                | (gal)        | 3 /                   | id well go dry?                       | ? Yes No             | <u>a</u>                                                 |                           |                 |  |
|                                                                      |              |                       |                                       | الإيارات             |                                                          |                           |                 |  |
| Horiba U-52 Water Quality N                                          | leter Used's | Ye:                   | s No 🗌                                |                      |                                                          |                           |                 |  |
|                                                                      |              |                       |                                       | 6.                   |                                                          |                           |                 |  |
| Time DTW                                                             | Temp         | pН                    | ORP                                   | Conductivity         | Turbidity                                                | DO                        | TDS             |  |
| (feet)                                                               | (°C)         |                       | (mV)                                  | (mS/cm)              | (NTU)                                                    | (mg/L)                    | (g/L)           |  |
| 915 14.01                                                            | 5.FT         | 7,99                  | le                                    | 11.55                | 277                                                      | 7.31                      | 0.920           |  |
| 927 1443                                                             | 6.41         | 7/28                  | -24                                   | 1.54                 | 112                                                      | 10150                     | 8,982           |  |
| 925 14.68                                                            | 6,74         | 7.27                  | - 3/                                  | 1:53                 | 127                                                      | 0,50                      | 0.976           |  |
| 937 18,21                                                            | 7.11         | 7,26                  | -33                                   | 6.57                 | 100                                                      | 0.15                      | 0,960           |  |
| 945 15,81                                                            | 7,39         | 7,25                  | -33                                   | 1,50                 | 107                                                      | 0.14                      |                 |  |
| 941 1645                                                             | 8.40         | 7.24                  | -41                                   | 1.55                 | 98,6                                                     | 0.10                      | 0.989           |  |
|                                                                      | V            |                       | 7.7                                   | 1                    |                                                          |                           |                 |  |
|                                                                      |              |                       |                                       |                      |                                                          |                           |                 |  |
|                                                                      |              | ,                     |                                       |                      |                                                          |                           |                 |  |
|                                                                      |              |                       |                                       |                      | <del></del>                                              |                           |                 |  |
|                                                                      |              |                       | : 10                                  |                      |                                                          |                           |                 |  |
| Sampling Information:                                                |              | <del></del>           |                                       |                      |                                                          | ·                         |                 |  |
| EPA SW-846 Method 8270                                               | ·            | SVOC BAH              |                                       |                      | 050                                                      |                           | K7 [            |  |
| EPA SW-846 Method 8260                                               |              | SVOC PAH'S            |                                       |                      | <ul> <li>250 ml ambe</li> <li>3 - 40 ml vials</li> </ul> | er Yes<br>Yes             |                 |  |
|                                                                      |              | LEAD                  | <u> </u>                              |                      | - 250 ml plasti                                          |                           |                 |  |
| EPA Method 610B                                                      |              | MANGANES              | = /                                   | i '                  | 200 III plasti                                           | 0 163                     |                 |  |
| EPA Method 9012A                                                     | 1            | OTAL CYANII           | DE                                    | 1                    | - 250 ml plasti                                          | c Yes                     | No              |  |
| RSK_175_CO2                                                          |              | VED CARBON            |                                       |                      | 3 - 40 ml vials                                          |                           | No              |  |
| EPA Method 2320B                                                     |              | TAL ALKALIN           |                                       |                      | - 125 ml plasti                                          | c Yes                     | X No L          |  |
| EPA Method 351.2<br>SM 4500_S2_F                                     | TOTAL        | KJELDAHL NI           | TROGEN                                |                      | - 250 ml plasti                                          |                           |                 |  |
| ON 4000_02_F                                                         |              | SULFIDE<br>ERROUS IRC | N.                                    |                      | - 250 ml plasti<br>- 125 ml plasti                       | c Yes                     | No<br>No        |  |
| SM 3500 FE D                                                         |              | NE/ETHENE/            |                                       |                      | - 125 mi piasti<br>3 - 40 ml vials                       | res<br>Yes                |                 |  |
| SM_3500_FE_D<br>RSK_175                                              |              |                       |                                       |                      |                                                          |                           |                 |  |
| RSK_175<br>D516                                                      |              | SULFATE               | , i                                   |                      | - 120 IIII DIASII                                        | c Yes                     |                 |  |
| RSK_175<br>D516<br>EPA Method 353.2                                  |              | NITRATE               |                                       | 2                    | - 125 ml plasti                                          | c Yes                     | No _            |  |
| RSK_175<br>D516                                                      |              |                       |                                       |                      | ·                                                        |                           |                 |  |
| RSK_175  D516  EPA Method 353.2  SM_4500_CI_E                        | 2016         | NITRATE<br>CHLORIDE   | V                                     |                      | ·                                                        | c Yes<br>f Albany Service |                 |  |
| RSK_175<br>D516<br>EPA Method 353.2                                  | 414 Du       | NITRATE               | Yes No X                              | Sh:                  | ·                                                        |                           | e Center        |  |

| Sampling Personnel: Eric Rosenzweig    |                                       |              |                               |                | Date: 4/17/19                          |                                                          |                  |                 |
|----------------------------------------|---------------------------------------|--------------|-------------------------------|----------------|----------------------------------------|----------------------------------------------------------|------------------|-----------------|
|                                        | 36380.9975                            | 8            |                               |                | Weather:                               | elear k                                                  | 40               |                 |
| Well Id.                               | MW-10                                 |              |                               |                | Time In:                               | <u>800 - </u>                                            | Time Out         |                 |
| <b>===</b>                             |                                       | <del> </del> |                               |                |                                        | ······································                   |                  |                 |
| Well In                                | formation                             |              |                               |                |                                        |                                                          | · —              |                 |
|                                        |                                       |              | TOC                           | Other          | Well Type                              | : Flusi                                                  | nmount S         | Stick-Up        |
| Depth to Wa                            | iter:                                 | (feet)       | 14.13                         |                | Well Lock                              | ed:                                                      | Yes              | No              |
| Depth to Bot                           |                                       | (feet)       | 22.05                         |                | Measuring                              | Point Marked:                                            | Yes 🔀            | No              |
| Depth to Pro                           | oduct:                                | 2            | Well Mate                     | rial: PVC      | ⊠ss ot                                 | her:                                                     |                  |                 |
| Length of W                            | ater Column:                          | (feet)       | 7.92                          |                | Well Diam                              | neter: 1"                                                | 2" \Oti          |                 |
| Volume of W                            | vater in Well:                        | (gal)        | 1,27                          |                | Comment                                | s: ,/                                                    |                  |                 |
| Three Well \                           | /olumes:                              | (gal)        | 3,80                          |                | Elea                                   | No Sh                                                    | en 100           | SV_             |
|                                        |                                       |              |                               |                |                                        |                                                          |                  |                 |
| December 1                             | · · · · · · · · · · · · · · · · · · · |              | <del></del>                   |                |                                        | ······································                   |                  |                 |
| Purging i                              | nformation                            |              |                               |                |                                        | Г                                                        | <u> </u>         |                 |
| Duraina Mat                            |                                       |              |                               |                |                                        |                                                          | Conversion I     | T               |
| Purging Met                            |                                       | Bailer       | Н                             | <b>—</b>       | d Dedicated Pump                       | y Jewic                                                  | 1" ID 2" ID      | 4" ID 6" ID     |
| Tubing/Baile                           | <del></del>                           | Teflon       | <del></del>                   | _              | rlene O other                          | of                                                       | 3.40             |                 |
| Sampling Me                            |                                       | Bailer       |                               | : Well Wizard  | d Dedicated Pump                       |                                                          |                  | <del></del>     |
| Average Pur                            |                                       | (ml/min) ./  | <u> </u>                      |                |                                        | 1 gallo                                                  | n=3.785L=3785r   | nL=1337cu. feet |
| Duration of F                          |                                       | (min)        | <u> 30</u>                    |                | [                                      |                                                          |                  |                 |
| Total Volume                           | e Removed:                            | (gal)        | _ <del>'/</del> Did           | d well go dry? | Yes No                                 | LT                                                       |                  |                 |
| Horiba U-52                            | Water Quality                         | Meter Used?  | Yes                           | No             |                                        |                                                          |                  |                 |
|                                        | · · · · · · · · · · · · · · · · · · · | 111010. 000. |                               |                | ······································ | · · · · · · · · · · · · · · · · · · ·                    |                  | <u> </u>        |
| Time                                   | T DTIM                                | <b>T</b>     | T                             | 7 000          | 1- 1 11 11                             |                                                          | Ph. JA.          | T               |
| Time                                   | DTW                                   | Temp         | рH                            | ORP            | Conductivity                           | Turbidity                                                | DO               | TDS             |
| 200                                    | (feet)                                | (°C)         |                               | (mV)           | (mS/cm)                                | (NTU)                                                    | (mg/L)           | (g/L)           |
| 805                                    | 14,41                                 | 8.07         | 7.85                          | lgte           | 2.40                                   | 3//                                                      | 9,16             | 1.53            |
| 310                                    | 14,72                                 | 8:14         | 7 34                          | 8              | 2.64                                   | 771                                                      | 5,35             | 1.71            |
| <u> </u>                               | 14.96                                 | 8,19         | 724                           | :21            | 2.77                                   | 255                                                      | 1,42             | 1.75            |
| 770                                    | 15.20                                 | 826          | 7,22                          | -23            | 2.69                                   | 273                                                      | 1.88             | 1.72            |
| 625                                    | 15,45                                 | 8,30         | 7.20                          | -20            | 2,70                                   | 722                                                      | 2,08             | 673             |
| 830                                    | 15,69                                 | 8,27         | 7.19                          | -20            | 2.70                                   | 198                                                      | 2.61             | 1,73            |
| ······································ |                                       | <u> </u>     |                               | <u> </u>       |                                        |                                                          |                  |                 |
|                                        |                                       |              |                               |                |                                        |                                                          |                  |                 |
|                                        |                                       |              |                               |                |                                        |                                                          |                  |                 |
|                                        |                                       |              |                               |                |                                        |                                                          |                  |                 |
|                                        |                                       |              |                               |                |                                        |                                                          |                  |                 |
| Sampling In                            | formation:                            |              |                               | • • • •        |                                        |                                                          | •                |                 |
| EPA SW-846                             | Method 8270                           |              | SVOC PAH's                    |                | 2                                      | 250 ml ambe                                              | r Yes            | No              |
| EPA SW-846                             |                                       |              | VOC's BTEX                    |                | _                                      | 3 - 40 ml vials                                          |                  | No H            |
| EPA Method 6                           | 310B                                  |              | LEAD                          |                | ] 1                                    | - 250 ml plasti                                          | c Yes            | No              |
|                                        |                                       |              | MANGANESE                     |                | 1                                      |                                                          |                  |                 |
| EPA Method 9                           |                                       |              | OTAL CYANID                   |                | 1                                      | - 250 ml plasti                                          |                  | No □            |
| EPA Method 2                           | 175_CO2 DISSOLVED CARBON DIOXIDE      |              |                               | 4              | 3 - 40 ml vials                        |                                                          | N <sub>0</sub> □ |                 |
| EPA Method 3                           |                                       |              | )TAL ALKALINI<br>KJELDAHL NIT |                |                                        | <ul> <li>125 ml plasti</li> <li>250 ml plasti</li> </ul> |                  | No<br>No        |
| SM 4500_S2_                            |                                       | IOIAL        | SULFIDE                       | ROGEN          |                                        | - 250 ml plasti                                          |                  |                 |
| SM_3500_FE                             |                                       | F            | ERROUS IRO                    | N              |                                        | - 125 ml plasti                                          |                  |                 |
| RSK_175                                |                                       | METHA        | NE/ETHENE/E                   | THANE          | _                                      | 3 - 40 ml vials                                          | Yes              |                 |
| D516                                   |                                       |              | SULFATE                       |                | 2                                      | : - 125 ml plasti                                        | c Yes            | No              |
| EPA Method 3                           |                                       |              | NITRATE                       |                |                                        |                                                          |                  |                 |
| SM_4500_CI_                            | <u>,</u> E                            |              | CHLORIDE                      |                | <b>J</b>                               | ح لاحسدا                                                 | ·· • • •         |                 |
| Sample ID:                             | MW-10-83                              | //// n       | plicate? '                    | Voo No No      | Sh<br>1                                | ipped: Drop-of                                           | f Albany Service | e Center        |
| Sample Time:                           | 100 10°09                             |              | •                             | Yes No X       | *                                      | Laboratory:                                              | Test An          | acrico          |
| Campie Tillio.                         | _ <u>A_Y</u>                          | IVIC         | VIQD:                         |                | . L                                    | Laboratory.                                              | Amherst N        |                 |

Sample ID: MW-11-0414 Sample Time: 11-40 Duplicate? MS/MSD? Yes No No

Shipped: Drop-off Albany Service Center

Laboratory: Test America Amherst, New York

| EPA Method 610B                         | MANGANESE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 - 250 mi piasuo  |                                                  |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------|
| EPA Method 9012A                        | TOTAL CYANIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 - 250 ml plastic | Yes No                                           |
| RSK_175_C02                             | DISSOLVED CARBON DIOXIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 - 40 ml vials    | Yes No                                           |
| EPA Method 2320B                        | TOTAL ALKALINITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 - 125 ml plastic | Yes No                                           |
| EPA Method 351.2                        | TOTAL KJELDAHL NITROGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 - 250 ml plastic | Yes No                                           |
| SM 4500_S2_F                            | SULFIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 - 250 ml plastic | Yes No                                           |
| SM_3500_FE_D                            | FERROUS IRON ®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 - 125 ml plastic | Yes No                                           |
| RSK_175                                 | METHANE/ETHENE/ETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 - 40 ml vials    | Yes No                                           |
| D516                                    | SULFATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 - 125 ml plastic | Yes No No                                        |
| EPA Method 353.2                        | NITRATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | -3                                               |
| SM_4500_CI_E                            | CHLORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                  | •/                                               |
| Sample ID: 71 World's Sample Time: 1321 | Duplicate? Yes No No No No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | ny Service Center  Test America therst, New York |
|                                         | Service Control of the Control of th |                    |                                                  |

| Sampling Information:  |                          | 4                                             |  |
|------------------------|--------------------------|-----------------------------------------------|--|
| EPA SW-846 Method 8270 | SVOC PAH's               | 6 - 250 ml amber Yes ⊠No                      |  |
| EPA SW-846 Method 8260 | VOC's BTEX               | 9 - 40 ml vials Yes No                        |  |
| EPA Method 610B        | LEAD<br>MANGANESE        | 3 - 250 ml plastic Yes No                     |  |
| EPA Method 9012A       | TOTAL CYANIDE            | 3 - 250 ml plastic Yes No                     |  |
| RSK_175_CO2            | DISSOLVED CARBON DIOXIDE | 9 - 40 ml vials Yes No                        |  |
| EPA Method 2320B       | TOTAL ALKALINITY         | 3 - 125 ml plastic Yes No                     |  |
| EPA Method 351.2       | TOTAL KJELDAHL NITROGEN  | 3 - 250 ml plastic Yes No                     |  |
| SM 4500_S2_F           | SULFIDE                  | 3 - 250 ml plastic Yes No                     |  |
| SM_3500_FE_D           | FERROUS IRON             | 3 - 125 ml plastic Yes No                     |  |
| RSK_175                | METHANE/ETHENE/ETHANE    | 9 - 40 ml vials Yes No                        |  |
| D516                   | SULFATE                  | 6 - 125 ml plastic Yes No                     |  |
| EPA Method 353.2       | NITRATE                  |                                               |  |
| SM_4500_CI_E           | CHLORIDE                 |                                               |  |
| Sample ID: Mw -13-4    | DUP Duplicate? Yes No    | Shipped: Drop-off Albany Service Center       |  |
| Sample Time: 1875      | `MS/MSD? Yes⊠No          | Laboratory: Test America<br>Amherst, New York |  |

| Sampling Personnel: Eric R                                                                                                                                | osenzweig          |                     | Date: 4/9/14                                      |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|---------------------------------------------------|--|--|--|--|
| Job Number: 36380,99758                                                                                                                                   | <u> </u>           | ····                | Weather: Clear 2400                               |  |  |  |  |
| Well Id. MW-14                                                                                                                                            | ,                  | <del></del>         | Time In: 920 Time Out:                            |  |  |  |  |
|                                                                                                                                                           |                    |                     |                                                   |  |  |  |  |
| Well Information                                                                                                                                          | TOC                | Other               | Well Type: Flushmount Stick-Up                    |  |  |  |  |
| Depth to Water:                                                                                                                                           | (feet) 15,70       |                     | Well Locked: Yes No No                            |  |  |  |  |
| Depth to Bottom:                                                                                                                                          | (feet) 23.55       |                     | Measuring Point Marked: Yes No                    |  |  |  |  |
| Depth to Product:                                                                                                                                         | (feet)             |                     | Well Material: PVC SS Other:                      |  |  |  |  |
| Length of Water Column:                                                                                                                                   | (feet) 7.85        |                     | Well Diameter: 1" 2" Other:                       |  |  |  |  |
| Volume of Water in Well:                                                                                                                                  | (gal) 1.20         |                     | Comments:                                         |  |  |  |  |
| Three Well Volumes:                                                                                                                                       | (gal) 3.77         |                     | clear No Shear Odge                               |  |  |  |  |
| <u> </u>                                                                                                                                                  |                    |                     | . ,                                               |  |  |  |  |
| Purging Information  Purging Method:  Purging Method:  Bailer  Peristaltic  Peristaltic  Peristaltic  Polyethylene  Of  Of  Of  Of  Of  Of  Of  Of  Of  O |                    |                     |                                                   |  |  |  |  |
| Sampling Method:                                                                                                                                          | Bailer Perista     |                     |                                                   |  |  |  |  |
|                                                                                                                                                           | (ml/min) 500       | BILIC VVEII VVIZAII |                                                   |  |  |  |  |
| Duration of Pumping:                                                                                                                                      | (min) 36           |                     | 1 gallon=3.785L=3785mL=1337cu. feet               |  |  |  |  |
| Total Volume Removed:                                                                                                                                     | (111117)           | Did well go dry?    | Yes No                                            |  |  |  |  |
|                                                                                                                                                           |                    |                     | Tesing/i                                          |  |  |  |  |
| Horiba U-52 Water Quality Me                                                                                                                              | eter Used?         | ′es No              |                                                   |  |  |  |  |
|                                                                                                                                                           |                    |                     |                                                   |  |  |  |  |
| Time DTW                                                                                                                                                  | Temp pH            | ORP                 | Conductivity Turbidity DO TDS                     |  |  |  |  |
| (feet)                                                                                                                                                    | (°C)               | (mV)                | (mS/cm) (NTU) (mg/L) (g/L)                        |  |  |  |  |
| 925 16.95                                                                                                                                                 | 6146 7.16          | 72                  | 0.781 223 5,49 0503                               |  |  |  |  |
| 930 76.02                                                                                                                                                 | 1/33 7/7           | 7 -37               | \$0.09 >1000 1.66 0.70Z                           |  |  |  |  |
| 935 16.11                                                                                                                                                 |                    | 0-43                | 1.23 373 0,18 0.784                               |  |  |  |  |
| 940 16.18                                                                                                                                                 | 8,47 7.14          |                     | 1.26 187 6.01 0:80>                               |  |  |  |  |
| 945 16.24                                                                                                                                                 | 9,49 7.17          | -49                 | 1.28 RB8 0.01 0.818                               |  |  |  |  |
| 950 112.28 3                                                                                                                                              | 8.54 7,13          | <u>~-5)</u>         | 1.28 36.1 0.01 0.320                              |  |  |  |  |
|                                                                                                                                                           | 2,24,2             |                     |                                                   |  |  |  |  |
|                                                                                                                                                           |                    |                     |                                                   |  |  |  |  |
|                                                                                                                                                           |                    |                     |                                                   |  |  |  |  |
|                                                                                                                                                           |                    |                     |                                                   |  |  |  |  |
|                                                                                                                                                           |                    |                     | ,                                                 |  |  |  |  |
| Sampling Information:  EPA SW-846 Method 8270                                                                                                             | SVOC PAI           |                     | 4 - 250 ml amber Yes No<br>6 - 40 ml vials Yes No |  |  |  |  |
| EPA SW-846 Method 8260                                                                                                                                    | VOC's BTI          | EX                  | 6 - 40 ml vials Yes No                            |  |  |  |  |
| EPA Method 610B<br>EPA Method 9012A                                                                                                                       | LEAD<br>MANGANE    |                     | 2 - 250 ml plastic Yes No                         |  |  |  |  |
| RSK_175_CO2                                                                                                                                               | TOTAL CYAN         |                     | 2 - 250 ml plastic Yes No                         |  |  |  |  |
| EPA Method 2320B                                                                                                                                          | TOTAL ALKAL        | <del></del>         | 2 - 125 ml plastic Yes No                         |  |  |  |  |
| EPA Method 351.2                                                                                                                                          | TOTAL KJELDAHL     |                     | 2 - 250 ml plastic Yes No                         |  |  |  |  |
| SM 4500_S2_F                                                                                                                                              | SULFIDE            |                     | 2 - 250 ml plastic Yes No                         |  |  |  |  |
| SM_3500_FE_D                                                                                                                                              | FERROUS II         |                     | 2 - 125 ml plastic Yes No                         |  |  |  |  |
| RSK_175                                                                                                                                                   | METHANE/ETHEN      |                     | 6 - 40 ml vials Yes No                            |  |  |  |  |
| D516<br>EPA Method 353.2                                                                                                                                  | SULFATE<br>NITRATE |                     | 4 - 125 ml plastic Yes No                         |  |  |  |  |
| SM_4500_C[]E                                                                                                                                              | CHLORID            |                     |                                                   |  |  |  |  |
| Sample ID: 110-14-04/4                                                                                                                                    | Duplicate?         | Yes No              | Shipped: Drop-off Albany Service Center FD-0414   |  |  |  |  |
| Sample Time: 955                                                                                                                                          | MS/MSD?            | Yes No X            | Laboratory: Test America Amherst, New York        |  |  |  |  |

Sample ID: MW/5-0414

Sample Time: 29 65

**Duplicate?** 

MS/MSD?

Yes

Laboratory: Test America Amherst, New York

Shipped: Drop-off Albany Service Center

| National Grid<br>109 North Market                        | t Street, Joh                                 | nstown Nev     | v York                                           |                                                  |                                         | f )                                   |                |                 |
|----------------------------------------------------------|-----------------------------------------------|----------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------------|---------------------------------------|----------------|-----------------|
| Sampling Person                                          | nel: Eric l                                   | Rosenzweig     | · · · · · · · · · · · · · · · · · · ·            | · · · · · · · · · · · · · · · · · · ·            | Date: 4                                 | 19114                                 |                |                 |
|                                                          | 380.93808                                     |                |                                                  |                                                  | Weather:                                | Clear                                 | ~~~~~°         |                 |
|                                                          | W-16                                          | <del></del>    |                                                  |                                                  | Time In:                                | 815                                   | Time Out:      |                 |
|                                                          | E 5                                           |                |                                                  |                                                  |                                         |                                       |                |                 |
| Well Informa                                             | ation                                         |                |                                                  |                                                  |                                         |                                       |                |                 |
|                                                          | <del></del>                                   |                | TOC                                              | Other                                            | Well Type:                              | Flush                                 | mount 🔀 Si     | tick-Up         |
| Depth to Water:                                          |                                               | (feet)         | 9.45                                             |                                                  | Well Locke                              | ed:                                   | Yes            | No              |
| Depth to Bottom:                                         | :                                             | (feet)         | 19.45                                            |                                                  | Measuring I                             | Point Marked:                         | Yes 🔀          | No              |
| Depth to Product                                         |                                               | (feet)         | ~                                                |                                                  | Well Mate                               | rial: PVC                             | ⊠ssoth         | er:             |
| Length of Water                                          |                                               | (feet)         | 0.00                                             |                                                  | Well Diam                               | eter: 1"                              | 2" XOth        | er:             |
| Volume of Water                                          |                                               | (gal)          | 1.60                                             |                                                  | Comments                                | S:                                    | . / /          | ,               |
| Three Well Volur                                         |                                               | (gal)          | 4.80                                             |                                                  | Clear                                   | ^ SUO.                                | Sheon/a        | 282-            |
|                                                          |                                               |                |                                                  |                                                  |                                         |                                       |                |                 |
|                                                          |                                               |                |                                                  | <del>; ==</del> ======                           | <del>,</del>                            | · · · · · · · · · · · · · · · · · · · | <del> </del>   | -               |
| Purging Infor                                            | mation                                        |                |                                                  |                                                  |                                         | <u> </u>                              |                | _               |
|                                                          |                                               |                |                                                  |                                                  | Ţ                                       |                                       | Conversion F   |                 |
| <b>Purging Method:</b>                                   | <u>, , , , , , , , , , , , , , , , , , , </u> | Bailer         | Peristaltic                                      |                                                  | d Dedicated Pump                        | <u> </u>                              | 1" ID 2" ID    | 4" ID 6" ID     |
| Tubing/Bailer Ma                                         | aterial:                                      | Teflon         | Stainless St.                                    |                                                  | ylene 🔀 other                           | of                                    |                |                 |
| Sampling Method                                          | d:                                            | Bailer         | Peristaltic                                      | Well Wizar                                       | d Dedicated Pump                        |                                       | 0.04 0.16      | <del>'</del>    |
| Average Pumpin                                           | g Rate:                                       | (ml/min)       | ,500                                             |                                                  |                                         | 1 gallo                               | n=3.785L=3785n | nL=1337cu. feet |
| Duration of Pum                                          | ping:                                         | (min)          | <u>30</u>                                        |                                                  |                                         | -                                     |                |                 |
| Total Volume Re                                          | moved:                                        | (gal)          | لاً Di                                           | d well go dry                                    | ? Yes No                                |                                       |                |                 |
| Horiba U-52 Wa                                           | ter Quality N                                 | /leter 1 lsed? | Yes                                              | No                                               |                                         |                                       |                |                 |
| TIOTIDA O-OZ VVA                                         | ici Quality ii                                | notor odda:    |                                                  |                                                  |                                         |                                       |                |                 |
|                                                          | DWAY T                                        | <b>T</b>       |                                                  | ORP                                              | Conductivity                            | Turbidity                             | DO             | TDS             |
| Time                                                     | DTW                                           | Temp           | pH                                               | (mV)                                             | (mS/cm)                                 | (NTU)                                 | (mg/L)         | (g/L)           |
| 100                                                      | (feet)                                        | (°C)           | 30 11                                            | <del>                                     </del> | 1:04                                    | 2.0                                   | 950            | (g) 127 /       |
| 13/20 1                                                  | 7.79                                          | 4,93           | 7.50                                             | (0)<br>:-24                                      |                                         | 94.3                                  | 4.35           | Dellie          |
| 865 1                                                    | 2.01                                          | 6.43           | <del>                                     </del> |                                                  | 0.703                                   | 61.3                                  | 4.21           | 077             |
| 123                                                      | 0 24                                          | 6,60           | 733                                              | U2                                               | 0.377                                   | 35.2                                  | 3.57           | 757             |
| 1 カシノール                                                  | 01 31                                         |                | 7.10                                             |                                                  | 0 290                                   | 32.7                                  | 2.65           | 0 195           |
|                                                          | 0.79                                          | 612            | 7.03                                             | 57                                               | 6,890                                   | 37.5                                  | 2.15           | 0.184           |
| 347 /                                                    | 0,98                                          | 6.04           | 6,99                                             | 54                                               | 0,010                                   | 2/.3                                  | 2.13           | 0.157           |
|                                                          |                                               |                |                                                  |                                                  | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                       | 1              | 1               |
| <u> </u>                                                 |                                               |                |                                                  |                                                  |                                         | <del> </del>                          |                |                 |
|                                                          |                                               |                |                                                  |                                                  |                                         | <u> </u>                              |                |                 |
|                                                          |                                               | <del> </del>   | <u> </u>                                         | <u> </u>                                         | <u> </u>                                |                                       |                | <u> </u>        |
|                                                          |                                               |                |                                                  |                                                  |                                         | ·                                     |                |                 |
| Sampling Inform                                          | nation:                                       |                |                                                  |                                                  |                                         |                                       |                |                 |
| EPA SW-846 Met                                           | nod 8270                                      |                | SVOC PAH's                                       |                                                  |                                         | 2 - 250 mi amb                        | er Yes         | No No           |
| EPA SW-846 Method 8260 VOC's BTEX                        |                                               | (              |                                                  | 3 - 40 ml vials                                  |                                         |                                       |                |                 |
| EPA Method 610                                           | 3                                             |                | LEAD                                             |                                                  |                                         | 1 - 250 ml plas                       | tic Yes        |                 |
|                                                          | IVIANGANESE                                   |                |                                                  | 1 - 250 ml plas                                  | tic Yes                                 | s No                                  |                |                 |
| EPA Method 9012A TOTAL CYAN RSK_175_CO2 DISSOLVED CARBOI |                                               |                |                                                  | 3 - 40 ml vial                                   |                                         | S No                                  |                |                 |
| EPA Method 2320                                          | )B                                            |                | OTAL ALKALIN                                     |                                                  | ·                                       | 1 - 125 ml plas                       | tic Ye         | s No            |
| EPA Method 351.                                          |                                               |                | KJELDAHL N                                       |                                                  |                                         | 1 - 250 ml plas                       | tic Ye         | s No            |
| SM 4500_S2_F                                             |                                               |                | SULFIDE                                          |                                                  |                                         | 1 - 250 ml plas                       |                | s No            |
| SM_3500_FE_D                                             |                                               |                | FERROUS IRC                                      |                                                  |                                         | 1 - 125 ml plas                       |                | s No            |
| RSK_175                                                  |                                               | METH           | ANE/ETHENE/                                      | ETHANE                                           | _                                       | 3 - 40 ml vial                        |                | s No            |
| D516<br>EPA Method 353.                                  | 2                                             |                | SULFATE<br>NITRATE                               |                                                  |                                         | 2 - 125 ml plas                       | 10             | s No            |
| SM_4500_CI_E                                             |                                               |                | CHLORIDE                                         |                                                  | ŀ                                       |                                       |                | ·               |
|                                                          |                                               | <u> </u>       |                                                  |                                                  |                                         |                                       |                |                 |

Sample ID: MW-1
Sample Time: 035

Duplicate? MS/MSD?

Yes

Shipped: Drop-off Albany Service Center

Laboratory:

Test America Amherst, New York

# APPENDIX B DATA USABILITY SUMMARY REPORT

### **Data Validation Services**

120 Cobble Creek Road P.O. Box 208 North Creek, NY 12853

Phone 518-251-4429 harry@frontiernet.net

May 22, 2014

Matthew Millias CDM Smith One General Motors Dr. Suite 2 Syracuse, NY 13206

RE: Data Usability Summary Report for National Grid- Johnstown Landfill Site Data Package

TAL-Buffalo Job Nos. 480-57609-1 and 480-57727-1

Dear Mr. Millias:

Review has been completed for the data package generated by TestAmerica Laboratories, Inc. that pertains to samples collected 04/09/14 and 04/10/14 at the National Grid Johnstown Landfill site. Nine aqueous samples and a field duplicate were analyzed for BTEX, low level PAHs, three dissolved gases, carbon dioxide, lead, manganese, and eight wet chemistry parameters. Four of the samples were also processed for total iron. Methodologies utilized are those of the USEPA SW846 methods 6010B/8260B/8270D/9012, and ASTM, with additional QC requirements of the NYSDEC ASP.

The data packages submitted contain full deliverables for validation, but this usability report is generated from review of the summary form information, with review of sample raw data, and limited review of associated QC raw data. Full validation has not been performed. However, the reported summary forms have been reviewed for application of validation qualifiers, using guidance from the NMPC generic QAPP, USEPA Region 2 validation SOPs, the USEPA National Functional Guidelines for Data Review, and professional judgment, as affects the usability of the data. The following items were reviewed:

- \* Laboratory Narrative Discussion
- \* Custody Documentation
- \* Holding Times
- \* Surrogate and Internal Standard Recoveries
- \* Matrix Spike Recoveries/Duplicate Correlations
- \* Field Duplicate Correlations
- \* Laboratory Control Sample(LCS)
- \* Preparation/Calibration Blanks
- \* Control Spike/Laboratory Control Samples
- \* Calibration/Low Level Standard Responses
- \* Instrumental Tunes

- \* Instrument IDLs
- \* Sample Quantitation and Identification

The items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for the DUSR level review.

In summary, most sample results are usable either as reported, or with minor qualification. The reporting limits for the low level PAHs have been elevated twofold to conform with the processing.

Copies of the laboratory case narratives and sample identification summary forms are attached to this text, and should be reviewed in conjunction with this report. Also included with this narrative are sample results forms, with the recommended qualifications applied thereupon.

#### BTEX by EPA8260B/NYSDEC ASP

Sample holding times were met and instrumental tune fragmentations are within acceptance ranges. Surrogate and internal standard recoveries are within required limits. Blanks show no contamination.

Calibrations standards show acceptable responses within analytical protocol and validation action limits.

The recoveries of two analytes in the matrix spike are below the recommended ranges. Matrix spikes duplicate recoveries are acceptable, and no qualification is made.

MW13-0414 are outside the laboratory acceptance ranges, and results for those compounds in the parent sample have therefore been qualified as estimated in value.

The blind field duplicate correlations of MW-14-0414 fall within guidance limits.

Some samples were processed only at dilution due to foaming during undiluted analysis and/or high concentrations of target analytes. This results in elevated reporting limits for undetected analytes.

The trip blanks associated with the samples collected 04/10/14 were broken at receipt, and therefore that evaluation for contamination has not been performed.

#### Low Level PAHs by EPA8270D/NYSDEC ASP

Holding times were met and instrumental tune fragmentations are within acceptance ranges. Surrogate and internal standard recoveries are within required limits.

The matrix spike recoveries and duplicate correlations of MW-13-0414 show some outlying correlations, but were analyzed at tenfold dilution (due to parent constituency), and the evaluation is therefore not applicable. LCS recoveries are within required ranges.

The following analytes show outlying correlations (all >±CRDL) in the blind field duplicate of MW-14-0414: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, and pyrene. The results for those compounds in the parent sample and its duplicate have been qualified as estimated in value.

Some samples were processed only at dilution. This results in elevated reporting limits for undetected analytes. It is not evident why MW-7-0414 was diluted fivefold.

#### Methane, Ethane, Ethene, and CO2 by RSK-175

The matrix spikes of MW-13-0414 show elevated recoveries for methane (163% and 187%). The result for that analyte in the parent sample has been qualified as estimated.

The blind field duplicate correlations of MW-14-0414 fall within guidance limits.

Instrument performance is compliant, blanks show no contamination, and reported results are substantiated by raw data.

#### Iron, Lead, and Manganese by EPA 6010B/NYSDEC ASP

The matrix spikes of MW-13-0414 acceptable accuracy and precision. The blind field duplicate correlation of lead in MW-14-0414 falls outside guidance limits (>±CRDL). The results for that element in the parent sample and its duplicate have been qualified as estimated.

The ICP Serial Dilution evaluation of MW-13-0414 is acceptable.

Blanks show no contamination affecting reported results, and reported results are substantiated by the raw data.

## Wet Chemistry—Chloride, Sulfide, Sulfate, Nitrate, TKN, Alkalinity, Ferrous Iron, and Total Cvanide

Due to the very short holding time from sample collection (15 minutes), all ferrous ion analyses were conducted beyond the holding time, and those results have been qualified as estimated in value, with a likely low bias.

Calibration standard responses are compliant. Blanks show no detections above the reporting limits.

The recoveries (both 78%) for total cyanide were below the recommended limits in the matrix spikes of MW-13-0414. Sulfate produced elevated recoveries (152% and 134%) in both matrix spikes, consistent with repeated analyses. The results for those two analytes in the parent sample have therefore been qualified as estimated in value. The results for nitrate in those matrix spikes were not entered onto the QC summary forms, but show acceptable accuracy and precision.

A single matrix spike was performed on MW-07-0414, and it shows a low recovery (71%). The result for that analyte is qualified as estimated in that parent sample. The total cyanide duplicate of MW-10-0414 shows an acceptable correlation.

The matrix spikes of ferrous iron in MW-4-0414 show acceptable accuracy and precision.

Matrix spike/duplicate evaluations of total cyanide were performed on MW-10-0414

The blind field duplicate correlations of MW-14-0414 fall within guidance limits.

#### **Data Package Completeness**

Although some of the specific NYSDEC Category B deliverables were not included in the laboratory data package, all information required for validation of the data is present.

Please do not hesitate to contact me if you have comments or questions regarding this report.

Very truly yours,

4

#### **VALIDATION DATA QUALIFIER DEFINITIONS**

- U The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- UJ The analyte was not detected. The associated reported quantitation limit is an estimate and may be inaccurate or imprecise.
- NJ The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- **R** The data are unusable. The analyte may or may not be present.
- EMPC The results do not meet all criteria for a confirmed identification.

  The quantitative value represents the Estimated Maximum Possible

  Concentration of the analyte in the sample.

## **CLIENT and LABORATORY SAMPLE IDs and LABORATORY CASE NARRATIVES**

#### **SAMPLE SUMMARY**

Client: CDM Smith, Inc.

Job Number: 480-57609-1

| Lab Sample ID  | Client Sample ID | Client Matrix | Date/Time<br>Sampled | Date/Time<br>Received |
|----------------|------------------|---------------|----------------------|-----------------------|
| 480-57609-1    | MW-12-0414       | Ground Water  | 04/09/2014 1320      | 04/10/2014 0200       |
| 480-57609-2    | MW-13-0414       | Ground Water  | 04/09/2014 1205      | 04/10/2014 0200       |
| 480-57609-2MS  | MW-13-0414       | Ground Water  | 04/09/2014 1205      | 04/10/2014 0200       |
| 480-57609-2MSD | MW-13-0414       | Ground Water  | 04/09/2014 1205      | 04/10/2014 0200       |
| 480-57609-3    | MW-14-0414       | Ground Water  | 04/09/2014 0955      | 04/10/2014 0200       |
| 480-57609-4    | MW-15-0414       | Ground Water  | 04/09/2014 1105      | 04/10/2014 0200       |
| 480-57609-5    | MW-16-0414       | Ground Water  | 04/09/2014 0850      | 04/10/2014 0200       |
| 480-57609-6FD  | FD-0414          | Water         | 04/09/2014 0000      | 04/10/2014 0200       |
| 480-57609-7TB  | Trip Blank       | Water         | 04/09/2014 0000      | 04/10/2014 0200       |

#### **SAMPLE SUMMARY**

Client: CDM Smith, Inc.

Job Number: 480-57727-1

| Lab Sample ID            | Client Sample ID | Client Matrix | Date/Time<br>Sampled | Date/Time       |
|--------------------------|------------------|---------------|----------------------|-----------------|
| Lab Sample 1D            | Cheft Sample ib  | Client Matrix | Sampleu              | Received        |
| 480-57727-1              | MVV-4-0414       | Water         | 04/10/2014 1040      | 04/11/2014 0145 |
| 480-57727-2              | MVV-7-0414       | Water         | 04/10/2014 0945      | 04/11/2014 0145 |
| 480-57727-3              | MVV-10-0414      | Ground Water  | 04/10/2014 0835      | 04/11/2014 0145 |
| 480-57727 <del>-</del> 4 | MW-11-0414       | Ground Water  | 04/10/2014 1130      | 04/11/2014 0145 |

#### Job Narrative 480-57609-1

#### Receipt

The samples were received on 4/10/2014 2:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 2.1° C, 2.7° C and 2.8° C.

#### GC/MS VOA

Method(s) 8260C: The following volatiles sample(s) was diluted due to foaming at the time of purging during the original sample analysis: MW-13-0414 (480-57609-2), MW-13-0414 (480-57609-2 MS), MW-13-0414 (480-57609-2 MSD), MW-16-0414 (480-57609-5). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The following sample(s) was diluted to bring the concentration of target analytes within the calibration range: MW-15-0414 (480-57609-4). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

#### GC/MS Semi VOA

Method(s) 8270D\_LL\_PAH: The following samples were diluted due to the nature of the sample matrix: MW-13-0414 (480-57609-2), MW-13-0414 (480-57609-2 MSD), MW-13-0414 (480-57609-2 MSD). Elevated reporting limits (RLs) are provided.

Method(s) 8270D\_LL\_PAH: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 480-175942 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method(s) 8270D\_LL\_PAH: The matrix spike / matrix spike duplicate (MS/MSD) precision for preparation batch 480-175942 was outside control limits. The data has been qualified and reported.

Method(s) 8270D\_LL\_PAH: The continuing calibration verification (CCVIS 480-177411/3) recovered above the upper control limit for the analyte Indeno(1,2,3-cd)pyrene. This CCVIS was only associated with the method blank (MB 480-175942/1-A) and the laboratory control sample (LCS 480-175942/2-A). The LCS exhibited compliant recoveries for all spiking compounds; therefore, the data has been reported.

No other analytical or quality issues were noted.

#### GC VOA

Method(s) RSK-175: The following sample was diluted due to the nature of the sample matrix: MW-15-0414 (480-57609-4). Elevated reporting limits (RLs) are provided.

Method(s) RSK-175: The matrix spike / matrix spike duplicate (MS/MSD) recoveries were outside control limits for analytical batch 174868. Sample inconsistency is suspected. The associated laboratory control sample (LCS) recovery was within acceptance limits.

No other analytical or quality issues were noted.

#### Metals

Method(s) 6010C: The Low Level Continuing Calibration Verification (CCVL 480-175575/34) contained total manganese above the reporting limit (RL). All reported samples (480-57609-2 PDS), MW-12-0414 (480-57609-1), MW-13-0414 (480-57609-2), MW-13-0414 (480-57609-2 MS), MW-13-0414 (480-57609-2 MSD), MW-140414 (480-57609-3), MW-15-0414 (480-57609-4) associated with this CCVL were either below the laboratory's standard reporting limit for this analyte or contained this analyte at a concentration greater than 10X the value found in the CCVL; therefore, re-analysis of samples was not performed.

No other analytical or quality issues were noted.

#### **General Chemistry**

Method(s) SM 2320B: The results reported for the following sample(s) do not concur with results previously reported for this site: MW-12-0414 (480-57609-1). Reanalysis was performed, and the result(s) confirmed.

Method(s) SM 3500 FE D: The following sample(s) was received outside of holding time: FD-0414 (480-57609-6), MW-12-0414 (480-57609-1), MW-13-0414 (480-57609-2), MW-13-0414 (480-57609-2 MS), MW-13-0414 (480-57609-2 MSD), MW-140414 (480-57609-3), MW-15-0414 (480-57609-4), MW-16-0414 (480-57609-5).

Method(s) 351.2: The results reported for the following sample(s) do not concur with results previously reported for this site: FD-0414 (480-57609-6). Reanalysis was performed, and the result(s) confirmed.

Method(s) 353.2: The results reported for the following sample(s) do not concur with results previously reported for this site: MW-16-0414 (480-57609-5). Reanalysis was performed, and the result(s) confirmed.

Method(s) 353.2: The results reported for the following sample(s) do not concur with results previously reported for this site: FD-0414 (480-57609-6). Reanalysis was performed, and the result(s) confirmed.

Method(s) 9012B: The results reported for the following sample(s) do not concur with results previously reported for this site: MW-16-0414 (480-57609-5). Reanalysis was performed, and the result(s) confirmed.

Method(s) 9012B: The results reported for the following sample(s) do not concur with results previously reported for this site: FD-0414 (480-57609-6), MW-13-0414 (480-57609-2). Reanalysis was performed, and the result(s) confirmed.

Method(s) 9038, D516-90, 02: The results reported for the following sample(s) do not concur with results previously reported for this site: FD-0414 (480-57609-6), MW-140414 (480-57609-3), MW-16-0414 (480-57609-5). Reanalysis was performed, and the result(s) confirmed.

Method(s) D516-90, 02: The results reported for the following sample(s) do not concur with results previously reported for this site: MW-13-0414 (480-57609-2). Reanalysis was performed, and the result(s) confirmed.

Method(s) D516-90, 02: The results reported for the following sample(s) do not concur with results previously reported for this site: MW-12-0414 (480-57609-1). Reanalysis was performed, and the result(s) confirmed.

Method(s) SM 4500 CI- E: The results reported for the following sample(s) do not concur with results previously reported for this site: FD-0414 (480-57609-6). Reanalysis was performed, and the result(s) confirmed.

No other analytical or quality issues were noted.

#### Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

#### **Job Narrative** 480-57727-1

#### Receipt

The samples were received on 4/11/2014 1:45 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.7° C.

#### Except:

Both containers for the following sample were received broken or leaking: Trip Blank (480-57727-5).

#### GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

#### GC/MS Semi VOA

Method(s) 8270D\_LL\_PAH: The following samples were diluted due to the nature of the sample matrix: MW-11-0414 (480-57727-4), MW-7-0414 (480-57727-2). Elevated reporting limits (RLs) are provided.

Method(s) 8270D\_LL\_PAH: The continuing calibration verification (CCVIS 480-177411/3) recovered above the upper control limit for the analyte Indeno(1,2,3-cd)pyrene. The samples associated with this CCV were non-detect for the affected analyte; therefore, the data has been reported.

No other analytical or quality issues were noted.

#### **GC VOA**

Method(s) RSK-175: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-10-0414 (480-57727-3), MW-11-0414 (480-57727-4). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

#### **General Chemistry**

Method(s) SM 3500 FE D: The following sample(s) was received outside of holding time: MW-10-0414 (480-57727-3), MW-11-0414 (480-57727-4), MW-4-0414 (480-57727-1), MW-7-0414 (480-57727-2).

Method(s) 9012B: The results reported for the following sample(s) do not concur with results previously reported for this site: MW-11-0414 (480-57727-4), MW-7-0414 (480-57727-2). Reanalysis was performed, and the result(s) confirmed.

Method(s) SM 4500 CI- E: The results reported for the following sample(s) do not concur with results previously reported for this site: MW-11-0414 (480-57727-4). Reanalysis was performed, and the result(s) confirmed.

Method(s) 9251, SM 4500 CI- E: The results reported for the following sample(s) do not concur with results previously reported for this site: MW-10-0414 (480-57727-3). Reanalysis was performed, and the result(s) confirmed.

No other analytical or quality issues were noted.

#### **Organic Prep**

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

### **QUALIFIED RESULTS FORMS**

Client: CDM Smith, Inc.

Project/Site: Johnstown (N. Market Street)

TestAmerica Job ID: 480-57609-1

Lab Sample ID: 480-57609-1

**Matrix: Ground Water** 

Date Collected: 04/09/14 13:20 Date Received: 04/10/14 02:00

Client Sample ID: MW-12-0414

| Analyte                       | Result            | Qualifier |        | RL                | MDL     | Unit         | D            | Prepared       | Analyzed                | Dil Fa  |
|-------------------------------|-------------------|-----------|--------|-------------------|---------|--------------|--------------|----------------|-------------------------|---------|
| Benzene                       | ND                |           |        | 1.0               |         | ug/L         |              |                | 04/17/14 11:48          |         |
| Toluene                       | ND                |           |        | 1.0               |         | ug/L         |              |                | 04/17/14 11:48          |         |
| Ethylbenzene                  | ND                |           |        | 1.0               |         | ug/L         |              |                | 04/17/14 11:48          |         |
| m-Xylene & p-Xylene           | ND                |           |        | 2.0               |         | ug/L         |              |                | 04/17/14 11:48          |         |
| o-Xylene                      | ND                |           |        | 1.0               |         | ug/L         |              |                | 04/17/14 11:48          |         |
| Kylenes, Total                | ND                |           |        | 2.0               |         | ug/L         |              |                | 04/17/14 11:48          |         |
| Surrogate                     | %Recovery         | Qualifier | Lin    | nits              |         |              |              | Prepared       | Analyzed                | Dil Fa  |
| ,2-Dichloroethane-d4 (Surr)   |                   |           | 66     | - 137             |         |              |              |                | 04/17/14 11:48          |         |
| Foluene-d8 (Surr)             | 103               |           | 71.    | - 126             |         |              |              |                | 04/17/14 11:48          |         |
| 1-Bromofluorobenzene (Surr)   | 112               |           | 73     | _ 120             |         |              |              |                | 04/17/14 11:48          |         |
| Dibromofluoromethane (Surr)   | 117               |           | 60     | - 140             |         |              |              |                | 04/17/14 11:48          |         |
| Method: 8270D_LL_PAH - Sem    | ivolatile Organic | : Compoun | ds (GC | /MS) Low          | level P | AΗ           |              |                |                         |         |
| Analyte                       |                   | Qualifier |        | RL                |         | Unit         | D            | Prepared       | Analyzed                | Dil Fa  |
| Acenaphthene                  | ND                |           | 1.0    | 0.49              |         | ug/L         |              | 04/15/14 14:43 | 04/23/14 12:36          |         |
| cenaphthylene                 | ND                |           | 1.0    | 0.49              |         | ug/L         |              | 04/15/14 14:43 | 04/23/14 12:36          |         |
| nthracene                     | ND                |           | 1.0    | 0.49              |         | ug/L         |              | 04/15/14 14:43 | 04/23/14 12:36          |         |
| Benzo(a)anthracene            | 0.66              |           | 1.0    | 0.49              |         | ug/L         |              | 04/15/14 14:43 | 04/23/14 12:36          |         |
| Benzo(a)pyrene                | 0.92              |           | 1.0    | 0.49_             |         | ug/L         |              | 04/15/14 14:43 | 04/23/14 12:36          |         |
| enzo(b)fluoranthene           | 0.71              |           | 1.0    | 0.49              |         | ug/L         |              | 04/15/14 14:43 | 04/23/14 12:36          |         |
| Benzo(g,h,i)perylene          | 0.51              |           | 1.0    | <del>0.49</del> - |         | ug/L         |              | 04/15/14 14:43 | 04/23/14 12:36          |         |
| Benzo(k)fluoranthene          | ND                |           | 1.0    | 0:49              |         | ug/L         |              | 04/15/14 14:43 | 04/23/14 12:36          |         |
| Chrysene                      | ND                |           | 1.0    | 0.49              |         | ug/L         |              | 04/15/14 14:43 | 04/23/14 12:36          |         |
| Dibenz(a,h)anthracene         | ND                |           | 1.0    | 0.49              |         | ug/L         |              | 04/15/14 14:43 | 04/23/14 12:36          |         |
| luoranthene                   | 0.87              |           | 1.0    | <del>0.49-</del>  |         | ug/L         |              | 04/15/14 14:43 | 04/23/14 12:36          |         |
| luorene                       | ND                |           | 1.0    | 0.49              |         | ug/L         |              | 04/15/14 14:43 | 04/23/14 12:36          |         |
| ndeno(1,2,3-cd)pyrene         | ND                |           | 1.0    | 0.49              |         | ug/L         |              | 04/15/14 14:43 | 04/23/14 12:36          |         |
| laphthalene                   | ND                |           | 1.0    | 0:49              |         | ug/L         |              | 04/15/14 14:43 | 04/23/14 12:36          |         |
| Phenanthrene                  | 0.61              |           | 1.0    | 0:49              |         | ug/L         |              | 04/15/14 14:43 | 04/23/14 12:36          |         |
| yrene                         | 1.3               |           | 1.0    | 0.49              |         | ug/L         |              | 04/15/14 14:43 | 04/23/14 12:36          |         |
| urrogate                      | %Recovery         | Qualifier | Lin    | nits              |         |              |              | Prepared       | Analyzed                | Dil F   |
| -Fluorobiphenyl               | 101               |           | 48     | _ 120             |         |              |              | 04/15/14 14:43 | 04/23/14 12:36          |         |
| litrobenzene-d5               | 101               |           | 46     | _ 120             |         |              |              | 04/15/14 14:43 | 04/23/14 12:36          |         |
| -Terphenyl-d14                | 95                |           | 24     | - 136             |         |              |              | 04/15/14 14:43 | 04/23/14 12:36          |         |
| Method: RSK-175 - Dissolved G | Gases (GC)        |           |        |                   |         |              |              |                |                         |         |
| nalyte                        |                   | Qualifier |        | RL                | MDL     | Unit         | D            | Prepared       | Analyzed                | Dil F   |
| thane                         | ND                |           |        | 7.5               |         | ug/L         |              |                | 04/10/14 10:42          |         |
| thene                         | ND                |           |        | 7.0               |         | ug/L         |              |                | 04/10/14 10:42          |         |
| lethane                       | ND                |           |        | 4.0               |         | ug/L         |              |                | 04/10/14 10:42          |         |
| analyte                       |                   | Qualifier |        | RL<br>1000        | RL_     | Unit<br>ug/L | D            | Prepared       | Analyzed 04/14/14 13:28 | Dil F   |
| carbon dioxide                | 22000             |           |        | 1000              |         | ug/L         |              |                | UT/ IT/ IT/ IJ.20       |         |
| lethod: 6010C - Metals (ICP)  | Pacult            | Qualifier |        | RL                | MDI     | Unit         | D            | Prepared       | Analyzed                | Dil F   |
| Analyte                       | ND                | Quantitet |        | 0.010             | MIDL    |              | <del>_</del> | 04/10/14 14:05 | 04/12/14 15:10          | - טוו ר |
| .ead                          | שוי               |           |        | 0.010             |         | mg/L         |              | 0+/10/14 14.00 | U4/12/14 13.10          |         |

TestAmerica Buffalo

Page 9 of 52

4/25/2014

Client: CDM Smith, Inc.

Project/Site: Johnstown (N. Market Street)

Lab Sample ID: 480-57609-1

04/17/14 12:09

04/17/14 12:09

04/17/14 12:09

TestAmerica Job ID: 480-57609-1

Client Sample ID: MW-12-0414 Date Collected: 04/09/14 13:20 **Matrix: Ground Water** 

Date Received: 04/10/14 02:00

| General Chemistry Analyte | Result | Qualifier | RL    | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-------|-----|------|---|----------------|----------------|---------|
| Total Kjeldahl Nitrogen   | 0.44   |           | 0.20  |     | mg/L |   | 04/10/14 13:21 | 04/10/14 17:47 | 1       |
| Nitrate as N              | 1.4    |           | 0.050 |     | mg/L |   |                | 04/11/14 00:16 | 1       |
| Cyanide, Total            | ND     |           | 0.010 |     | mg/L |   | 04/15/14 19:55 | 04/16/14 13:45 | 1       |
| Sulfate                   | 51.6   |           | 10.0  |     | mg/L |   |                | 04/16/14 05:27 | 2       |
| Alkalinity, Total         | 329    |           | 5.0   |     | mg/L |   |                | 04/12/14 12:47 | 1       |
| Ferrous Iron              | ND     | HF UJ     | 0.10  |     | mg/L |   |                | 04/11/14 05:40 | 1       |
| Chloride                  | 150    |           | 5.0   |     | mg/L |   |                | 04/15/14 15:56 | 5       |
| Sulfide                   | ND     |           | 1.0   |     | mg/L |   |                | 04/11/14 16:45 | 1       |

Client Sample ID: MW-13-0414 Lab Sample ID: 480-57609-2

Date Collected: 04/09/14 12:05 **Matrix: Ground Water** 

Date Received: 04/10/14 02:00

Toluene-d8 (Surr)

Nitrobenzene-d5

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

| Analyte                      | Result Qualifier    | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|-----|------|---|----------|----------------|---------|
| Benzene                      | 200                 | 10       |     | ug/L |   |          | 04/17/14 12:09 | 10      |
| Toluene                      | 270                 | 10       |     | ug/L |   |          | 04/17/14 12:09 | 10      |
| Ethylbenzene                 | 200                 | 10       |     | ug/L |   |          | 04/17/14 12:09 | 10      |
| m-Xylene & p-Xylene          | 250                 | 20       |     | ug/L |   |          | 04/17/14 12:09 | 10      |
| o-Xylene                     | 120                 | 10       |     | ug/L |   |          | 04/17/14 12:09 | 10      |
| Xylenes, Total               | 370                 | 20       |     | ug/L |   |          | 04/17/14 12:09 | 10      |
| Surrogate                    | %Recovery Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 110                 | 66 - 137 |     |      | - |          | 04/17/14 12:09 | 10      |

71 - 126

73 - 120

60 - 140

104

118

116

100

| Analyte                | Result    | Qualifier |      | RL               | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|------|------------------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 71        | J         | 5.2  | 2.6              |     | ug/L |   | 04/15/14 14:43 | 04/23/14 12:52 | 5       |
| Acenaphthylene         | 22        |           | 5.2  | 2.6              |     | ug/L |   | 04/15/14 14:43 | 04/23/14 12:52 | 5       |
| Anthracene             | 6.9       |           | 5.2  | <del>-2.</del> 6 |     | ug/L |   | 04/15/14 14:43 | 04/23/14 12:52 | 5       |
| Benzo(a)anthracene     | ND        |           | 5.2  | -2-6             |     | ug/L |   | 04/15/14 14:43 | 04/23/14 12:52 | 5       |
| Benzo(a)pyrene         | ND        |           | 5.2  | <del>-2.</del> 6 |     | ug/L |   | 04/15/14 14:43 | 04/23/14 12:52 | 5       |
| Benzo(b)fluoranthene   | ND        |           | 5.2  | 2.6              |     | ug/L |   | 04/15/14 14:43 | 04/23/14 12:52 | 5       |
| Benzo(g,h,i)perylene   | ND        |           | 5.2  | -2.6             |     | ug/L |   | 04/15/14 14:43 | 04/23/14 12:52 | 5       |
| Benzo(k)fluoranthene   | ND        |           | 5.2  | <del>-2.6</del>  |     | ug/L |   | 04/15/14 14:43 | 04/23/14 12:52 | 5       |
| Chrysene               | ND        |           | 5.2  | <del>-2.</del> 6 |     | ug/L |   | 04/15/14 14:43 | 04/23/14 12:52 | 5       |
| Dibenz(a,h)anthracene  | ND        |           | 5.2  | 2.6              |     | ug/L |   | 04/15/14 14:43 | 04/23/14 12:52 | 5       |
| Fluoranthene           | 6.1       |           | 5.2  | 2.6              |     | ug/L |   | 04/15/14 14:43 | 04/23/14 12:52 | 5       |
| Fluorene               | 30        |           | 5.2  | <del>-2.6</del>  |     | ug/L |   | 04/15/14 14:43 | 04/23/14 12:52 | 5       |
| Indeno(1,2,3-cd)pyrene | ND        |           | 5.2  | 2.6              |     | ug/L |   | 04/15/14 14:43 | 04/23/14 12:52 | 5       |
| Naphthalene            | ND        | UJ        | 5.2  | 2.6              |     | ug/L |   | 04/15/14 14:43 | 04/23/14 12:52 | 5       |
| Phenanthrene           | ND        |           | 5.2  | <del>2.6</del>   |     | ug/L |   | 04/15/14 14:43 | 04/23/14 12:52 | 5       |
| Pyrene                 | 7.2       |           | 5.2  | 2.6              |     | ug/L |   | 04/15/14 14:43 | 04/23/14 12:52 | 5       |
| Surrogate              | %Recovery | Qualifier | Limi | its              |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 95        |           | 48 - | 120              |     |      |   | 04/15/14 14:43 | 04/23/14 12:52 | 5       |

TestAmerica Buffalo

04/23/14 12:52

04/15/14 14:43

46 - 120

10

10

10

4/25/2014

Client: CDM Smith, Inc.

Project/Site: Johnstown (N. Market Street)

Lab Sample ID: 480-57609-2

TestAmerica Job ID: 480-57609-1

Client Sample ID: MW-13-0414 Date Collected: 04/09/14 12:05

**Matrix: Ground Water** 

Date Received: 04/10/14 02:00

Method: 8270D\_LL\_PAH - Semivolatile Organic Compounds (GC/MS) Low level PAH (Continued)

| Surrogate       | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|-----------------|-----------|-----------|----------|----------------|----------------|---------|
| p-Terphenyl-d14 | 97        |           | 24 - 136 | 04/15/14 14:43 | 04/23/14 12:52 | 5       |

| Method: RSK-175 - Dissolved Gases (GC) |
|----------------------------------------|
|----------------------------------------|

| Analyte        | Result | Qualifier | RL   | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------|--------|-----------|------|-----|------|---|----------|----------------|---------|
| Ethane         | ND     |           | 7.5  |     | ug/L |   |          | 04/10/14 10:59 | 1       |
| Ethene         | ND     |           | 7.0  |     | ug/L |   |          | 04/10/14 10:59 | 1       |
| Methane        | 74     |           | 4.0  |     | ug/L |   |          | 04/10/14 10:59 | 1       |
| Analyte        | Result | Qualifier | RL   | RL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Carbon dioxide | 1400   |           | 1000 |     | ug/L |   |          | 04/14/14 13:35 | 1       |

| wethou. 60 foc - wetals (ICP) |        |           |        |     |      |   |                |                |         |
|-------------------------------|--------|-----------|--------|-----|------|---|----------------|----------------|---------|
| Analyte                       | Result | Qualifier | RL     | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Lead                          | ND     |           | 0.010  |     | mg/L |   | 04/10/14 14:05 | 04/12/14 15:13 | 1       |
| Manganese                     | 0.14   | ^ B7      | 0.0030 |     | mg/L |   | 04/10/14 14:05 | 04/12/14 15:13 | 1       |

General Chemistry

| General Chemistry       |        |                    |       |     |      |   |                |                |         |
|-------------------------|--------|--------------------|-------|-----|------|---|----------------|----------------|---------|
| Analyte                 | Result | Qualifier          | RL    | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Total Kjeldahl Nitrogen | 2.1    |                    | 0.20  |     | mg/L |   | 04/10/14 13:21 | 04/10/14 17:47 | 1       |
| Nitrate as N            | ND     |                    | 0.050 |     | mg/L |   |                | 04/11/14 00:17 | 1       |
| Cyanide, Total          | 0.17   | J                  | 0.010 |     | mg/L |   | 04/18/14 03:02 | 04/18/14 12:18 | 1       |
| Sulfate                 | ND     | UJ                 | 5.0   |     | mg/L |   |                | 04/15/14 09:00 | 1       |
| Alkalinity, Total       | 176    |                    | 5.0   |     | mg/L |   |                | 04/10/14 16:53 | 1       |
| Ferrous Iron            | ND     | HF <mark>UJ</mark> | 0.10  |     | mg/L |   |                | 04/11/14 05:40 | 1       |
| Chloride                | 9.2    |                    | 1.0   |     | mg/L |   |                | 04/10/14 09:58 | 1       |
| Sulfide                 | ND     |                    | 1.0   |     | mg/L |   |                | 04/11/14 16:45 | 1       |
|                         |        |                    |       |     |      |   |                |                |         |

Client Sample ID: MW-14-0414

Lab Sample ID: 480-57609-3 Date Collected: 04/09/14 09:55 **Matrix: Ground Water** 

Date Received: 04/10/14 02:00

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

| Method: 8260C - Volatile Organic Compounds by G       | 0/840 |
|-------------------------------------------------------|-------|
| Mothod: X76III: - Voiatile Cirdanic Compolinds by (=) | -/W   |
|                                                       |       |

|                              |           | <b>,</b>  |          |     |      |   |          |                |         |
|------------------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Analyte                      | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene                      | ND        |           | 1.0      |     | ug/L |   |          | 04/17/14 13:12 | 1       |
| Toluene                      | ND        |           | 1.0      |     | ug/L |   |          | 04/17/14 13:12 | 1       |
| Ethylbenzene                 | ND        |           | 1.0      |     | ug/L |   |          | 04/17/14 13:12 | 1       |
| m-Xylene & p-Xylene          | ND        |           | 2.0      |     | ug/L |   |          | 04/17/14 13:12 | 1       |
| o-Xylene                     | ND        |           | 1.0      |     | ug/L |   |          | 04/17/14 13:12 | 1       |
| Xylenes, Total               | ND        |           | 2.0      |     | ug/L |   |          | 04/17/14 13:12 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 104       |           | 66 - 137 |     |      | _ |          | 04/17/14 13:12 | 1       |
| Toluene-d8 (Surr)            | 101       |           | 71 - 126 |     |      |   |          | 04/17/14 13:12 | 1       |
|                              |           |           |          |     |      |   |          |                |         |

| Mothod: 9270D II  | DAH Comivalatile Organie    | Compounds (GC/MS) Low level PAH |
|-------------------|-----------------------------|---------------------------------|
| MELLIOU. 02/UD LL | PAR - Sellivolatile Organic | COMBOUNDS (GC/Ma) LOW level FAR |

113

107

| Method: 8270D_LL_PAH - Semivol | iatile Organic | Compounds (G | C/MS) L  | ow level P | AΗ   |   |                |                |         |
|--------------------------------|----------------|--------------|----------|------------|------|---|----------------|----------------|---------|
| Analyte                        | Result         | Qualifier    | RL       | MDL        | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene                   | ND             |              | .0 0.50  |            | ug/L |   | 04/15/14 14:43 | 04/23/14 13:08 | 1       |
| Acenaphthylene                 | 0.50           |              | 1.0 0.50 |            | ug/L |   | 04/15/14 14:43 | 04/23/14 13:08 | 1       |
| Anthracene                     | ND             |              | 0.50     |            | ua/l |   | 04/15/14 14:43 | 04/23/14 13:08 | 1       |

73 - 120

60 - 140

TestAmerica Buffalo

04/17/14 13:12 04/17/14 13:12

Page 11 of 52

2

Client: CDM Smith, Inc.

Project/Site: Johnstown (N. Market Street)

Lab Sample ID: 480-57609-3

TestAmerica Job ID: 480-57609-1

Client Sample ID: MW-14-0414 Date Collected: 04/09/14 09:55

Matrix: Ground Water

Date Received: 04/10/14 02:00

| Analyte                | Result    | Qualifier |      | RL              | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|------|-----------------|-----|------|---|----------------|----------------|---------|
| Benzo(a)anthracene     | 1.0       |           | 1.0  | 0.50            |     | ug/L |   | 04/15/14 14:43 | 04/23/14 13:08 | 1       |
| Benzo(a)pyrene         | 1.3       |           | 1.0  | 0.50            |     | ug/L |   | 04/15/14 14:43 | 04/23/14 13:08 | 1       |
| Benzo(b)fluoranthene   | 1.2       |           | 1.0  | 0:50            |     | ug/L |   | 04/15/14 14:43 | 04/23/14 13:08 | 1       |
| Benzo(g,h,i)perylene   | 0.95      |           | 1.0  | 0.50            |     | ug/L |   | 04/15/14 14:43 | 04/23/14 13:08 | 1       |
| Benzo(k)fluoranthene   | 0.83      |           | 1.0  | 0.50            |     | ug/L |   | 04/15/14 14:43 | 04/23/14 13:08 | 1       |
| Chrysene               | 1.2       |           | 1.0  | 0:50            |     | ug/L |   | 04/15/14 14:43 | 04/23/14 13:08 | 1       |
| Dibenz(a,h)anthracene  | ND        |           | 1.0  | 0.50            |     | ug/L |   | 04/15/14 14:43 | 04/23/14 13:08 | 1       |
| Fluoranthene           | 1.5       |           | 1.0  | 0.50            |     | ug/L |   | 04/15/14 14:43 | 04/23/14 13:08 | 1       |
| Fluorene               | ND        |           | 1.0  | 0:50            |     | ug/L |   | 04/15/14 14:43 | 04/23/14 13:08 | 1       |
| Indeno(1,2,3-cd)pyrene | 0.63      |           | 1.0  | 0.50            |     | ug/L |   | 04/15/14 14:43 | 04/23/14 13:08 | 1       |
| Naphthalene            | ND        |           | 1.0  | 0:50            |     | ug/L |   | 04/15/14 14:43 | 04/23/14 13:08 | 1       |
| Phenanthrene           | 0.63      |           | 1.0  | <del>0:50</del> |     | ug/L |   | 04/15/14 14:43 | 04/23/14 13:08 | 1       |
| Pyrene                 | 2.4       |           | 1.0  | 0.50            |     | ug/L |   | 04/15/14 14:43 | 04/23/14 13:08 | 1       |
| Surrogate              | %Recovery | Qualifier | Lim  | its             |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 105       |           | 48 - | 120             |     |      |   | 04/15/14 14:43 | 04/23/14 13:08 | 1       |
| Nitrobenzene-d5        | 107       |           | 46 - | 120             |     |      |   | 04/15/14 14:43 | 04/23/14 13:08 | 1       |
| p-Terphenyl-d14        | 94        |           | 24 - | 136             |     |      |   | 04/15/14 14:43 | 04/23/14 13:08 | 1       |

| Method: RSK-175 - Dissolv | ed Gases (GC) |           |      |     |      |   |          |                |         |
|---------------------------|---------------|-----------|------|-----|------|---|----------|----------------|---------|
| Analyte                   | Result        | Qualifier | RL   | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ethane                    | ND            |           | 7.5  |     | ug/L |   |          | 04/10/14 12:29 | 1       |
| Ethene                    | ND            |           | 7.0  |     | ug/L |   |          | 04/10/14 12:29 | 1       |
| Methane                   | 140           |           | 4.0  |     | ug/L |   |          | 04/10/14 12:29 | 1       |
| Analyte                   | Result        | Qualifier | RL   | RL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Carbon dioxide            | 16000         |           | 1000 |     | ug/L |   |          | 04/14/14 14:01 | 1       |

| Method: 6010C - Metals (ICP) |        |           |        |          |   |                |                |         |
|------------------------------|--------|-----------|--------|----------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL     | MDL Unit | D | Prepared       | Analyzed       | Dil Fac |
| Lead                         | ND     | UJ        | 0.010  | mg/L     |   | 04/10/14 14:05 | 04/12/14 15:26 | 1       |
| Manganese                    | 1.0    | ^ B7      | 0.0030 | mg/L     |   | 04/10/14 14:05 | 04/12/14 15:26 | 1       |

| <b>General Chemistry</b> |          |                    |       |     |      |   |                |                |         |
|--------------------------|----------|--------------------|-------|-----|------|---|----------------|----------------|---------|
| Analyte                  | Result ( | Qualifier          | RL    | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Total Kjeldahl Nitrogen  | 1.5      |                    | 0.20  |     | mg/L |   | 04/10/14 13:21 | 04/10/14 17:53 | 1       |
| Nitrate as N             | ND       |                    | 0.050 |     | mg/L |   |                | 04/10/14 21:32 | 1       |
| Cyanide, Total           | 0.90     |                    | 0.050 |     | mg/L |   | 04/16/14 11:30 | 04/16/14 17:22 | 5       |
| Sulfate                  | 363      |                    | 75.0  |     | mg/L |   |                | 04/15/14 01:58 | 15      |
| Alkalinity, Total        | 483      |                    | 5.0   |     | mg/L |   |                | 04/10/14 16:39 | 1       |
| Ferrous Iron             | ND I     | HF <mark>UJ</mark> | 0.10  |     | mg/L |   |                | 04/11/14 05:40 | 1       |
| Chloride                 | 28.5     |                    | 1.0   |     | mg/L |   |                | 04/10/14 12:21 | 1       |
| Sulfide                  | ND       |                    | 1.0   |     | mg/L |   |                | 04/11/14 16:45 | 1       |

Client Sample ID: MW-15-0414

Date Collected: 04/09/14 11:05

Lab Sample ID: 480-57609-4

Matrix: Ground Water

Date Received: 04/10/14 02:00

| Method: 8260C - Volatile Organic | Compounds I | by GC/MS  |     |     |      |   |          |                |         |
|----------------------------------|-------------|-----------|-----|-----|------|---|----------|----------------|---------|
| Analyte                          | Result      | Qualifier | RL  | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene                          | 210         |           | 5.0 |     | ug/L |   |          | 04/17/14 13:33 | 5       |

TestAmerica Buffalo

3

Ė

6

8

10

12

13

14

Client: CDM Smith, Inc.

Project/Site: Johnstown (N. Market Street)

Lab Sample ID: 480-57609-4

TestAmerica Job ID: 480-57609-1

**Matrix: Ground Water** 

Client Sample ID: MW-15-0414 Date Collected: 04/09/14 11:05

Date Received: 04/10/14 02:00

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) Analyte Result Qualifier MDL Unit D Prepared Analyzed Dil Fac Toluene ND 5.0 ug/L 04/17/14 13:33 5.0 ug/L 04/17/14 13:33 5 Ethylbenzene 38 5 m-Xylene & p-Xylene ND 10 ug/L 04/17/14 13:33 5.0 ug/L 04/17/14 13:33 5 o-Xylene 8.5 Xylenes, Total ND 04/17/14 13:33 5 10 ug/L Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 105 66 - 137 04/17/14 13:33 5 Toluene-d8 (Surr) 100 71 - 126 04/17/14 13:33 4-Bromofluorobenzene (Surr) 111 73 - 120 04/17/14 13:33 5 Dibromofluoromethane (Surr) 106 60 - 140 04/17/14 13:33 5

| Analyte                | Result    | Qualifier | RL                   | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|-----------|----------------------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | 18        |           | 1.0 0.49             |     | ug/L |   | 04/15/14 14:43 | 04/23/14 13:24 | 1       |
| Acenaphthylene         | 3.0       |           | 1.0 0.49             |     | ug/L |   | 04/15/14 14:43 | 04/23/14 13:24 | 1       |
| Anthracene             | 0.95      |           | 1.0 0.49             |     | ug/L |   | 04/15/14 14:43 | 04/23/14 13:24 | 1       |
| Benzo(a)anthracene     | ND        |           | 1.0 0.49             |     | ug/L |   | 04/15/14 14:43 | 04/23/14 13:24 | 1       |
| Benzo(a)pyrene         | ND        |           | 1.0 <sub>0.49</sub>  |     | ug/L |   | 04/15/14 14:43 | 04/23/14 13:24 | 1       |
| Benzo(b)fluoranthene   | ND        |           | 1.0 0.49             |     | ug/L |   | 04/15/14 14:43 | 04/23/14 13:24 | 1       |
| Benzo(g,h,i)perylene   | ND        |           | 1.0 0.49             |     | ug/L |   | 04/15/14 14:43 | 04/23/14 13:24 | 1       |
| Benzo(k)fluoranthene   | ND        |           | 1.0 0.49             |     | ug/L |   | 04/15/14 14:43 | 04/23/14 13:24 | 1       |
| Chrysene               | ND        |           | 1.0 0.49             |     | ug/L |   | 04/15/14 14:43 | 04/23/14 13:24 | 1       |
| Dibenz(a,h)anthracene  | ND        |           | 1.0 0.49             |     | ug/L |   | 04/15/14 14:43 | 04/23/14 13:24 | 1       |
| Fluoranthene           | 1.1       |           | 1.0 0.49             |     | ug/L |   | 04/15/14 14:43 | 04/23/14 13:24 | 1       |
| Fluorene               | 4.3       |           | 1.0 0.49             |     | ug/L |   | 04/15/14 14:43 | 04/23/14 13:24 | 1       |
| Indeno(1,2,3-cd)pyrene | ND        |           | 1.0 0.49             |     | ug/L |   | 04/15/14 14:43 | 04/23/14 13:24 | 1       |
| Naphthalene            | 29        |           | 1.0 0.49             | -   | ug/L |   | 04/15/14 14:43 | 04/23/14 13:24 | 1       |
| Phenanthrene           | 3.4       |           | 1.0 0.49             | -   | ug/L |   | 04/15/14 14:43 | 04/23/14 13:24 | 1       |
| Pyrene                 | 1.5       |           | 1.0 0 <del>.49</del> | -   | ug/L |   | 04/15/14 14:43 | 04/23/14 13:24 | 1       |
| Surrogate              | %Recovery | Qualifier | Limits               |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 109       |           | 48 - 120             |     |      |   | 04/15/14 14:43 | 04/23/14 13:24 | 1       |
| Nitrobenzene-d5        | 110       |           | 46 - 120             |     |      |   | 04/15/14 14:43 | 04/23/14 13:24 | 1       |
| p-Terphenyl-d14        | 96        |           | 24 - 136             |     |      |   | 04/15/14 14:43 | 04/23/14 13:24 | 1       |

| Method: RSK-175 - Dissolve | ed Gases (GC) |           |      |     |      |   |          |                |         |
|----------------------------|---------------|-----------|------|-----|------|---|----------|----------------|---------|
| Analyte                    | Result        | Qualifier | RL   | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ethane                     | ND            |           | 380  |     | ug/L |   |          | 04/10/14 13:31 | 50      |
| Ethene                     | ND            |           | 350  |     | ug/L |   |          | 04/10/14 13:31 | 50      |
| Methane                    | 1100          |           | 200  |     | ug/L |   |          | 04/10/14 13:31 | 50      |
| Analyte                    | Result        | Qualifier | RL   | RL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Carbon dioxide             | 24000         |           | 1000 |     | ug/L |   |          | 04/14/14 14:08 | 1       |

| Method: 6010C - Metals (ICP) |        |           |        |     |      |   |                |                |         |
|------------------------------|--------|-----------|--------|-----|------|---|----------------|----------------|---------|
| Analyte                      | Result | Qualifier | RL     | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Lead                         | ND     |           | 0.010  |     | mg/L |   | 04/10/14 14:05 | 04/12/14 15:29 | 1       |
| Manganese                    | 0.68   | ^ B7      | 0.0030 |     | mg/L |   | 04/10/14 14:05 | 04/12/14 15:29 | 1       |

TestAmerica Buffalo

Client: CDM Smith, Inc.

Project/Site: Johnstown (N. Market Street)

Lab Sample ID: 480-57609-4

04/17/14 13:53

TestAmerica Job ID: 480-57609-1

Client Sample ID: MW-15-0414 Date Collected: 04/09/14 11:05 Date Received: 04/10/14 02:00

**Matrix: Ground Water** 

| <b>General Chemistry</b> |          |                    |       |     |      |   |                |                |         |
|--------------------------|----------|--------------------|-------|-----|------|---|----------------|----------------|---------|
| Analyte                  | Result C | Qualifier          | RL    | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Total Kjeldahl Nitrogen  | 3.2      |                    | 0.20  |     | mg/L |   | 04/10/14 13:21 | 04/10/14 17:53 | 1       |
| Nitrate as N             | ND       |                    | 0.050 |     | mg/L |   |                | 04/10/14 21:38 | 1       |
| Cyanide, Total           | 0.48     |                    | 0.010 |     | mg/L |   | 04/15/14 19:55 | 04/16/14 13:50 | 1       |
| Sulfate                  | 122      |                    | 25.0  |     | mg/L |   |                | 04/15/14 16:01 | 5       |
| Alkalinity, Total        | 482      |                    | 5.0   |     | mg/L |   |                | 04/12/14 12:54 | 1       |
| Ferrous Iron             | ND H     | HF <mark>UJ</mark> | 0.10  |     | mg/L |   |                | 04/11/14 05:40 | 1       |
| Chloride                 | 44.5     |                    | 1.0   |     | mg/L |   |                | 04/15/14 15:39 | 1       |
| Sulfide                  | ND       |                    | 1.0   |     | mg/L |   |                | 04/11/14 16:45 | 1       |

Client Sample ID: MW-16-0414 Lab Sample ID: 480-57609-5

Date Collected: 04/09/14 08:50 **Matrix: Ground Water** 

Date Received: 04/10/14 02:00

4-Bromofluorobenzene (Surr)

| Analyte                      | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene                      | 8.7       |           | 5.0      |     | ug/L |   |          | 04/17/14 13:53 | 5       |
| Toluene                      | ND        |           | 5.0      |     | ug/L |   |          | 04/17/14 13:53 | 5       |
| Ethylbenzene                 | 6.2       |           | 5.0      |     | ug/L |   |          | 04/17/14 13:53 | 5       |
| m-Xylene & p-Xylene          | ND        |           | 10       |     | ug/L |   |          | 04/17/14 13:53 | 5       |
| o-Xylene                     | ND        |           | 5.0      |     | ug/L |   |          | 04/17/14 13:53 | 5       |
| Xylenes, Total               | ND        |           | 10       |     | ug/L |   |          | 04/17/14 13:53 | 5       |
| Surrogate                    | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 104       |           | 66 - 137 |     |      | - |          | 04/17/14 13:53 | 5       |
| Toluene-d8 (Surr)            | 99        |           | 71 - 126 |     |      |   |          | 04/17/14 13:53 | 5       |

73 - 120

109

| Dibromofluoromethane (Surr) | 111                      | 60 - 140               |           |   |                | 04/17/14 13:53 | 5       |
|-----------------------------|--------------------------|------------------------|-----------|---|----------------|----------------|---------|
| Method: 8270D_LL_PAH - Ser  | nivolatile Organic Compo | unds (GC/MS) Low       | level PAH |   |                |                |         |
| Analyte                     | Result Qualifier         |                        | MDL Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Acenaphthene                | ND ND                    | 1.0 0.49               | ug/L      |   | 04/15/14 14:43 | 04/23/14 13:39 | 1       |
| Acenaphthylene              | ND                       | 1.0 0.49-              | ug/L      |   | 04/15/14 14:43 | 04/23/14 13:39 | 1       |
| Anthracene                  | ND                       | 1.0 0 <del>.49</del> - | ug/L      |   | 04/15/14 14:43 | 04/23/14 13:39 | 1       |
| Benzo(a)anthracene          | ND                       | 1.0 0.49_              | ug/L      |   | 04/15/14 14:43 | 04/23/14 13:39 | 1       |
| Benzo(a)pyrene              | ND                       | 1.0 0.49-              | ug/L      |   | 04/15/14 14:43 | 04/23/14 13:39 | 1       |
| Benzo(b)fluoranthene        | ND                       | 1.0 0.49               | ug/L      |   | 04/15/14 14:43 | 04/23/14 13:39 | 1       |
| Benzo(g,h,i)perylene        | ND                       | 1.0 0.49               | ug/L      |   | 04/15/14 14:43 | 04/23/14 13:39 | 1       |
| Benzo(k)fluoranthene        | ND                       | 1.0 0 <del>.49</del>   | ug/L      |   | 04/15/14 14:43 | 04/23/14 13:39 | 1       |
| Chrysene                    | ND                       | 1.0 0.49               | ug/L      |   | 04/15/14 14:43 | 04/23/14 13:39 | 1       |
| Dibenz(a,h)anthracene       | ND                       | 1.0 0.49               | ug/L      |   | 04/15/14 14:43 | 04/23/14 13:39 | 1       |
| Fluoranthene                | ND                       | 1.0 0.49               | ug/L      |   | 04/15/14 14:43 | 04/23/14 13:39 | 1       |
| Fluorene                    | ND                       | 1.0 0 <del>.49</del> - | ug/L      |   | 04/15/14 14:43 | 04/23/14 13:39 | 1       |
| Indeno(1,2,3-cd)pyrene      | ND                       | 1.0 0.49-              | ug/L      |   | 04/15/14 14:43 | 04/23/14 13:39 | 1       |
| Naphthalene                 | ND                       | 1.0 0.49-              | ug/L      |   | 04/15/14 14:43 | 04/23/14 13:39 | 1       |
| Phenanthrene                | ND                       | 1.0 0.49-              | ug/L      |   | 04/15/14 14:43 | 04/23/14 13:39 | 1       |
| Pyrene                      | ND                       | 1.0 0 <del>.49</del> - | ug/L      |   | 04/15/14 14:43 | 04/23/14 13:39 | 1       |
| Surrogate                   | %Recovery Qualifier      | Limits                 |           |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl            | 97                       | 48 - 120               |           |   | 04/15/14 14:43 | 04/23/14 13:39 | 1       |
| Nitrobenzene-d5             | 99                       | 46 - 120               |           |   | 04/15/14 14:43 | 04/23/14 13:39 | 1       |

TestAmerica Buffalo

5

Client: CDM Smith, Inc.

Date Received: 04/10/14 02:00

Project/Site: Johnstown (N. Market Street)

TestAmerica Job ID: 480-57609-1

Client Sample ID: MW-16-0414 Lab Sample ID: 480-57609-5

Date Collected: 04/09/14 08:50 **Matrix: Ground Water** 

Method: 8270D\_LL\_PAH - Semivolatile Organic Compounds (GC/MS) Low level PAH (Continued)

| Surrogate       | %Recovery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|-----------------|---------------------|----------|----------------|----------------|---------|
| p-Terphenyl-d14 | 92                  | 24 - 136 | 04/15/14 14:43 | 04/23/14 13:39 | 1       |

| Analyte        | Result Qualifier | RL   | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------|------------------|------|----------|---|----------|----------------|---------|
| Ethane         | ND ND            | 7.5  | ug/L     |   |          | 04/10/14 14:07 | 1       |
| Ethene         | ND               | 7.0  | ug/L     |   |          | 04/10/14 14:07 | 1       |
| Methane        | 75               | 4.0  | ug/L     |   |          | 04/10/14 14:07 | 1       |
| Analyte        | Result Qualifier | RL   | RL Unit  | D | Prepared | Analyzed       | Dil Fac |
| Carbon dioxide | 10000            | 1000 | ug/L     |   |          | 04/14/14 14:16 | 1       |

| Analyte   | Result | Qualifier   | RL     | MDL | Unit | n | Prepared       | Analyzed       | Dil Fac |
|-----------|--------|-------------|--------|-----|------|---|----------------|----------------|---------|
| Lead      | ND     | - Qualifier | 0.010  |     | mg/L |   | 04/10/14 14:05 | 04/12/14 15:40 | 1       |
| Manganese | 0.22   | B7          | 0.0030 |     | mg/L |   | 04/10/14 14:05 | 04/12/14 15:40 | 1       |

## General Chemistry

| General Chemistry       |                 |       |          |     |                |                |         |
|-------------------------|-----------------|-------|----------|-----|----------------|----------------|---------|
| Analyte                 | Result Qualifie | er RL | MDL Unit | . D | Prepared       | Analyzed       | Dil Fac |
| Total Kjeldahl Nitrogen | 2.4             | 0.20  | mg/      | L   | 04/10/14 13:21 | 04/10/14 17:53 | 1       |
| Nitrate as N            | 0.53            | 0.050 | mg/      | L   |                | 04/11/14 00:20 | 1       |
| Cyanide, Total          | 0.023           | 0.010 | mg/      | L   | 04/16/14 11:30 | 04/16/14 16:24 | 1       |
| Sulfate                 | ND              | 5.0   | mg/      | L   |                | 04/15/14 05:09 | 1       |
| Alkalinity, Total       | 454             | 5.0   | mg/      | L   |                | 04/10/14 16:26 | 1       |
| Ferrous Iron            | ND HF UJ        | 0.10  | mg/      | L   |                | 04/11/14 05:40 | 1       |
| Chloride                | 5.0             | 1.0   | mg/      | L   |                | 04/15/14 15:39 | 1       |
| Sulfide                 | ND              | 1.0   | mg/      | L   |                | 04/11/14 16:45 | 1       |
| <u></u>                 |                 |       |          |     |                |                |         |

Client Sample ID: FD-0414

Lab Sample ID: 480-57609-6 Date Collected: 04/09/14 00:00 Matrix: Water

Date Received: 04/10/14 02:00

Dibromofluoromethane (Surr)

| Barrier and a | 0000      | <b>17-1-411-</b> | O       | Compounds |      | - 00/110    |
|---------------|-----------|------------------|---------|-----------|------|-------------|
| MIDTHOU:      | XZKIII: - | VOISTIIA         | Urdanic | COMPOUND  | a nv | / (40:/IVIS |
|               |           |                  |         |           |      |             |

| Method: 8260C - Volatile Orga | nic Compounds by ( | GC/IVIS         |          |   |          |                |         |
|-------------------------------|--------------------|-----------------|----------|---|----------|----------------|---------|
| Analyte                       | Result Qu          | ualifier RL     | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene                       | ND ND              | 1.0             | ug/L     |   |          | 04/17/14 14:14 | 1       |
| Toluene                       | ND                 | 1.0             | ug/L     |   |          | 04/17/14 14:14 | 1       |
| Ethylbenzene                  | ND                 | 1.0             | ug/L     |   |          | 04/17/14 14:14 | 1       |
| m-Xylene & p-Xylene           | ND                 | 2.0             | ug/L     |   |          | 04/17/14 14:14 | 1       |
| o-Xylene                      | ND                 | 1.0             | ug/L     |   |          | 04/17/14 14:14 | 1       |
| Xylenes, Total                | ND                 | 2.0             | ug/L     |   |          | 04/17/14 14:14 | 1       |
| Surrogate                     | %Recovery Qu       | ualifier Limits |          |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr)  | 109                | 66 - 137        |          | - |          | 04/17/14 14:14 | 1       |
| Toluene-d8 (Surr)             | 102                | 71 - 126        |          |   |          | 04/17/14 14:14 | 1       |
| 4-Bromofluorobenzene (Surr)   | 114                | 73 - 120        |          |   |          | 04/17/14 14:14 | 1       |

| Mothod: 9270D II  | DAH Comivalatile Organie    | Compounds (GC/MS) Low level PAH |
|-------------------|-----------------------------|---------------------------------|
| MELLIOU. 02/UD LL | PAR - Sellivolatile Organic | COMBOUNDS (GC/Ma) LOW level FAR |

108

| Method: 8270D_LL_PAH - Semivolatile Organic Compounds (GC/MS) Low level PAH |                |                  |           |          |   |                |                |         |  |  |
|-----------------------------------------------------------------------------|----------------|------------------|-----------|----------|---|----------------|----------------|---------|--|--|
|                                                                             | Analyte        | Result Qualifier | RL        | MDL Unit | D | Prepared       | Analyzed       | Dil Fac |  |  |
|                                                                             | Acenaphthene   | ND               | 1.0 0.48- | ug/L     |   | 04/15/14 14:43 | 04/23/14 13:55 | 1       |  |  |
|                                                                             | Acenaphthylene | ND               | 1.0 0.48- | ug/L     |   | 04/15/14 14:43 | 04/23/14 13:55 | 1       |  |  |
|                                                                             | Anthracene     | ND               | 1.0 0.48  | ua/l     |   | 04/15/14 14:43 | 04/23/14 13:55 | 1       |  |  |

60 - 140

TestAmerica Buffalo

04/17/14 14:14

Page 15 of 52

TestAmerica Job ID: 480-57609-1

Lab Sample ID: 480-57609-6

Matrix: Water

| <b>Client Sample ID: FD-0414</b> |
|----------------------------------|
| Data Callastad: 04/00/44 00:00   |

Date Received: 04/10/14 02:00

| Analyte                                                                                            | Result                      | Qualifier     | RL                     | MDL   | Unit                 | D | Prepared       | Analyzed                                           | Dil Fac           |
|----------------------------------------------------------------------------------------------------|-----------------------------|---------------|------------------------|-------|----------------------|---|----------------|----------------------------------------------------|-------------------|
| Benzo(a)anthracene                                                                                 | ND                          |               | 1.0 0 <del>.48</del> - |       | ug/L                 |   | 04/15/14 14:43 | 04/23/14 13:55                                     |                   |
| Benzo(a)pyrene                                                                                     | ND                          |               | 1.0 0 <del>.48</del> - |       | ug/L                 |   | 04/15/14 14:43 | 04/23/14 13:55                                     | 1                 |
| Benzo(b)fluoranthene                                                                               | 0.48                        |               | 1.0 0.48-              |       | ug/L                 |   | 04/15/14 14:43 | 04/23/14 13:55                                     | 1                 |
| Benzo(g,h,i)perylene                                                                               | ND                          |               | 1.0 0.48-              |       | ug/L                 |   | 04/15/14 14:43 | 04/23/14 13:55                                     | 1                 |
| Benzo(k)fluoranthene                                                                               | ND                          |               | 1.0 0:48-              |       | ug/L                 |   | 04/15/14 14:43 | 04/23/14 13:55                                     | 1                 |
| Chrysene                                                                                           | ND                          |               | 1.0 0 <del>.48</del> - |       | ug/L                 |   | 04/15/14 14:43 | 04/23/14 13:55                                     | 1                 |
| Dibenz(a,h)anthracene                                                                              | ND                          |               | 1.0 0.48_              |       | ug/L                 |   | 04/15/14 14:43 | 04/23/14 13:55                                     | 1                 |
| Fluoranthene                                                                                       | 0.50                        |               | 1.0 0 <del>.4</del> 8- |       | ug/L                 |   | 04/15/14 14:43 | 04/23/14 13:55                                     | 1                 |
| Fluorene                                                                                           | ND                          |               | 1.0 0 <del>.48</del> - |       | ug/L                 |   | 04/15/14 14:43 | 04/23/14 13:55                                     | 1                 |
| Indeno(1,2,3-cd)pyrene                                                                             | ND                          |               | 1.0 0.48-              |       | ug/L                 |   | 04/15/14 14:43 | 04/23/14 13:55                                     | 1                 |
| Naphthalene                                                                                        | ND                          |               | 1.0 0.48-              |       | ug/L                 |   | 04/15/14 14:43 | 04/23/14 13:55                                     | 1                 |
| Phenanthrene                                                                                       | ND                          |               | 1.0 0.48-              |       | ug/L                 |   | 04/15/14 14:43 | 04/23/14 13:55                                     | 1                 |
| Pyrene                                                                                             | 0.70                        |               | 1.0 0 <del>.48</del> - |       | ug/L                 |   | 04/15/14 14:43 | 04/23/14 13:55                                     | 1                 |
| Surrogate                                                                                          | %Recovery                   | Qualifier     | Limits                 |       |                      |   | Prepared       | Analyzed                                           | Dil Fac           |
| 2-Fluorobiphenyl                                                                                   | 105                         |               | 48 - 120               |       |                      |   | 04/15/14 14:43 | 04/23/14 13:55                                     | 1                 |
| Nitrobenzene-d5                                                                                    | 101                         |               | 46 - 120               |       |                      |   | 04/15/14 14:43 | 04/23/14 13:55                                     | 1                 |
| p-Terphenyl-d14                                                                                    | 87                          |               | 24 - 136               |       |                      |   | 04/15/14 14:43 | 04/23/14 13:55                                     | 1                 |
| Ethane                                                                                             | ND                          | <u>quamor</u> | 7.5                    |       | ug/L                 |   |                | 04/10/14 14:24                                     |                   |
| Analyte                                                                                            |                             | Qualifier     | RL 7.5                 | IVIDE | Unit                 | D | Prepared       | Analyzed                                           | Dil Fac           |
| Ethene                                                                                             | ND                          |               | 7.0                    |       | ug/L                 |   |                | 04/10/14 14:24                                     | 1                 |
| Methane                                                                                            | 140                         |               | 4.0                    |       | ug/L                 |   |                | 04/10/14 14:24                                     | 1                 |
| Analyte                                                                                            | Result                      | Qualifier     | RL                     | RL    | Unit                 | D | Prepared       | Analyzed                                           | Dil Fac           |
| Carbon dioxide                                                                                     | 14000                       |               | 1000                   |       | ug/L                 |   |                | 04/14/14 14:25                                     | 1                 |
| Method: 6010C - Metals (ICP)                                                                       |                             |               |                        |       |                      |   |                |                                                    |                   |
| Analyte                                                                                            | Result                      | Qualifier     | RL                     | MDL   | Unit                 | D | Prepared       | Analyzed                                           | Dil Fac           |
| Lead                                                                                               | 0.031                       | J             | 0.010                  |       | mg/L                 |   | 04/10/14 14:05 | 04/12/14 15:43                                     | 1                 |
| Manganese                                                                                          | 1.1                         | B7            | 0.0030                 |       | mg/L                 |   | 04/10/14 14:05 | 04/12/14 15:43                                     | 1                 |
| General Chemistry                                                                                  |                             |               |                        |       |                      |   |                |                                                    |                   |
|                                                                                                    | Pocult                      | Qualifier     | RL                     | MDL   | Unit                 | D | Prepared       | Analyzed                                           | Dil Fac           |
| _                                                                                                  | Result                      |               |                        |       | mg/L                 |   | 04/14/14 16:10 | 04/15/14 09:59                                     | 1                 |
| Analyte                                                                                            | 1.2                         |               | 0.20                   |       | 5                    |   |                | 0 11 101 1 1 00.00                                 |                   |
| Analyte<br>Total Kjeldahl Nitrogen                                                                 |                             |               | 0.20<br>0.050          |       | mg/L                 |   |                | 04/11/14 00:21                                     | •                 |
| Analyte<br>Total Kjeldahl Nitrogen<br>Nitrate as N                                                 | 1.2                         |               |                        |       | •                    |   | 04/18/14 03:02 |                                                    |                   |
| Analyte<br>Total Kjeldahl Nitrogen<br>Nitrate as N<br>Cyanide, Total                               | 1.2<br>0.060                |               | 0.050                  |       | mg/L                 |   | 04/18/14 03:02 | 04/11/14 00:21                                     | 2                 |
| Analyte Total Kjeldahl Nitrogen Nitrate as N Cyanide, Total Sulfate                                | 1.2<br>0.060<br>0.76        |               | 0.050<br>0.020         |       | mg/L<br>mg/L         |   | 04/18/14 03:02 | 04/11/14 00:21<br>04/18/14 13:33                   |                   |
| Analyte Total Kjeldahl Nitrogen Nitrate as N Cyanide, Total Sulfate Alkalinity, Total Ferrous Iron | 1.2<br>0.060<br>0.76<br>281 | HF UJ         | 0.050<br>0.020<br>75.0 |       | mg/L<br>mg/L<br>mg/L |   | 04/18/14 03:02 | 04/11/14 00:21<br>04/18/14 13:33<br>04/15/14 05:20 | 1<br>2<br>15<br>1 |

**Client Sample ID: Trip Blank** 

Date Collected: 04/09/14 00:00

Sulfide

Date Received: 04/10/14 02:00

| Lab Sample ID: | 480-5/609-7   |  |
|----------------|---------------|--|
|                | Matrix: Water |  |

04/11/14 16:45

| Method: 8260C - Volatile Organic Compounds by GC/MS |                  |     |          |   |          |                |         |  |  |
|-----------------------------------------------------|------------------|-----|----------|---|----------|----------------|---------|--|--|
| Analyte                                             | Result Qualifier | RL  | MDL Unit | D | Prepared | Analyzed       | Dil Fac |  |  |
| Benzene                                             | ND               | 1.0 | ug/L     |   |          | 04/17/14 14:35 | 1       |  |  |

1.0

mg/L

ND

TestAmerica Buffalo

Client: CDM Smith, Inc.

Project/Site: Johnstown (N. Market Street)

TestAmerica Job ID: 480-57609-1

**Client Sample ID: Trip Blank** 

Lab Sample ID: 480-57609-7

Matrix: Water

Date Collected: 04/09/14 00:00 Date Received: 04/10/14 02:00

| Method: 8260C - Volatile Orga<br>Analyte | •         | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Toluene                                  | ND        |           | 1.0      |     | ug/L |   |          | 04/17/14 14:35 | 1       |
| Ethylbenzene                             | ND        |           | 1.0      |     | ug/L |   |          | 04/17/14 14:35 | 1       |
| m-Xylene & p-Xylene                      | ND        |           | 2.0      |     | ug/L |   |          | 04/17/14 14:35 | 1       |
| o-Xylene                                 | ND        |           | 1.0      |     | ug/L |   |          | 04/17/14 14:35 | 1       |
| Xylenes, Total                           | ND        |           | 2.0      |     | ug/L |   |          | 04/17/14 14:35 | 1       |
| Surrogate                                | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr)             | 111       |           | 66 - 137 |     |      | = |          | 04/17/14 14:35 | 1       |
| Toluene-d8 (Surr)                        | 106       |           | 71 - 126 |     |      |   |          | 04/17/14 14:35 | 1       |
| 4-Bromofluorobenzene (Surr)              | 116       |           | 73 - 120 |     |      |   |          | 04/17/14 14:35 | 1       |
| Dibromofluoromethane (Surr)              | 110       |           | 60 - 140 |     |      |   |          | 04/17/14 14:35 | 1       |

5

7

ŏ

10

11

13

14

Client: CDM Smith, Inc.

Project/Site: Johnstown (N.Market Street)

Client Sample ID: MW-4-0414

Date Collected: 04/10/14 10:40

Date Received: 04/11/14 01:45

TestAmerica Job ID: 480-57727-1

Lab Sample ID: 480-57727-1

. Matrix: Water

Matri

| Analyte                      | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene                      | ND        |           | 1.0      |     | ug/L |   |          | 04/17/14 17:05 | 1       |
| Toluene                      | ND        |           | 1.0      |     | ug/L |   |          | 04/17/14 17:05 | 1       |
| Ethylbenzene                 | ND        |           | 1.0      |     | ug/L |   |          | 04/17/14 17:05 | 1       |
| m-Xylene & p-Xylene          | ND        |           | 2.0      |     | ug/L |   |          | 04/17/14 17:05 | 1       |
| o-Xylene                     | ND        |           | 1.0      |     | ug/L |   |          | 04/17/14 17:05 | 1       |
| Xylenes, Total               | ND        |           | 2.0      |     | ug/L |   |          | 04/17/14 17:05 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 98        |           | 66 - 137 |     |      | - |          | 04/17/14 17:05 | 1       |
| Toluene-d8 (Surr)            | 101       |           | 71 - 126 |     |      |   |          | 04/17/14 17:05 | 1       |
| 4-Bromofluorobenzene (Surr)  | 103       |           | 73 - 120 |     |      |   |          | 04/17/14 17:05 | 1       |
| Dibromofluoromethane (Surr)  | 97        |           | 60 - 140 |     |      |   |          | 04/17/14 17:05 | 1       |

| Analyte                | Result Qu | ualifier | RL                 | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|-----------|----------|--------------------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | ND        | 1.0      | 0:46               |     | ug/L |   | 04/15/14 14:43 | 04/22/14 17:56 | 1       |
| Acenaphthylene         | ND        | 1.0      | 0.46               |     | ug/L |   | 04/15/14 14:43 | 04/22/14 17:56 | 1       |
| Anthracene             | ND        | 1.0      | 0.46               |     | ug/L |   | 04/15/14 14:43 | 04/22/14 17:56 | 1       |
| Benzo(a)anthracene     | ND        | 1.0      | 0.46               |     | ug/L |   | 04/15/14 14:43 | 04/22/14 17:56 | 1       |
| Benzo(a)pyrene         | ND        | 1.0      | 0.46               |     | ug/L |   | 04/15/14 14:43 | 04/22/14 17:56 | 1       |
| Benzo(b)fluoranthene   | ND        | 1.0      | 0:46               |     | ug/L |   | 04/15/14 14:43 | 04/22/14 17:56 | 1       |
| Benzo(g,h,i)perylene   | ND        | 1.0      | 0.46               |     | ug/L |   | 04/15/14 14:43 | 04/22/14 17:56 | 1       |
| Benzo(k)fluoranthene   | ND        | 1.0      | <del>0:46</del>    |     | ug/L |   | 04/15/14 14:43 | 04/22/14 17:56 | 1       |
| Chrysene               | ND        | 1.0      | <del>0:46</del>    |     | ug/L |   | 04/15/14 14:43 | 04/22/14 17:56 | 1       |
| Dibenz(a,h)anthracene  | ND        | 1.0      | 0.46               |     | ug/L |   | 04/15/14 14:43 | 04/22/14 17:56 | 1       |
| Fluoranthene           | ND        | 1.0      | 0.46               |     | ug/L |   | 04/15/14 14:43 | 04/22/14 17:56 | 1       |
| Fluorene               | ND        | 1.0      | 0 <del>:46</del> - |     | ug/L |   | 04/15/14 14:43 | 04/22/14 17:56 | 1       |
| Indeno(1,2,3-cd)pyrene | ND        | 1.0      | 0.46_              |     | ug/L |   | 04/15/14 14:43 | 04/22/14 17:56 | 1       |
| Naphthalene            | ND        | 1.0      | 0.46-              |     | ug/L |   | 04/15/14 14:43 | 04/22/14 17:56 | 1       |
| Phenanthrene           | ND        | 1.0      | 0 <del>.46</del> - |     | ug/L |   | 04/15/14 14:43 | 04/22/14 17:56 | 1       |
| Pyrene                 | ND        | 1.0      | 0 <del>.46</del> - |     | ug/L |   | 04/15/14 14:43 | 04/22/14 17:56 | 1       |

| Surrogate        | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------|-----------|-----------|----------|----------------|----------------|---------|
| 2-Fluorobiphenyl | 114       |           | 48 - 120 | 04/15/14 14:43 | 04/22/14 17:56 | 1       |
| Nitrobenzene-d5  | 111       |           | 46 - 120 | 04/15/14 14:43 | 04/22/14 17:56 | 1       |
| p-Terphenyl-d14  | 135       |           | 24 - 136 | 04/15/14 14:43 | 04/22/14 17:56 | 1       |

| Method: RSK-175 - Dissolved | Gases (GC) |             |     |      |   |          |                |         |
|-----------------------------|------------|-------------|-----|------|---|----------|----------------|---------|
| Analyte                     | Result Qua | ualifier RL | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ethane                      | ND ND      | 7.5         |     | ug/L |   |          | 04/14/14 12:50 | 1       |
| Ethene                      | ND         | 7.0         |     | ug/L |   |          | 04/14/14 12:50 | 1       |
| Methane                     | ND         | 4.0         |     | ug/L |   |          | 04/14/14 12:50 | 1       |
| Analyte                     | Result Qu  | ualifier RL | RL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Carbon dioxide              | 16000      | 1000        |     | ug/L |   |          | 04/14/14 15:06 | 1       |

| Method: 6010C - Metals (ICP) - Total Recoverable |        |           |      |     |      |   |                |                |         |
|--------------------------------------------------|--------|-----------|------|-----|------|---|----------------|----------------|---------|
| Analyte                                          | Result | Qualifier | RL   | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Iron                                             | ND     |           | 100  |     | ug/L |   | 04/17/14 09:58 | 04/18/14 09:48 | 1       |
| Lead                                             | ND     |           | 10.0 |     | ug/L |   | 04/17/14 09:58 | 04/18/14 09:48 | 1       |
| Manganese                                        | ND     |           | 15.0 |     | ug/L |   | 04/17/14 09:58 | 04/18/14 09:48 | 1       |

TestAmerica Buffalo

Page 7 of 43

4/25/2014

3

6

8

1 N

11

13

Client: CDM Smith, Inc.

Project/Site: Johnstown (N.Market Street)

Lab Sample ID: 480-57727-1

TestAmerica Job ID: 480-57727-1

Matrix: Water

Client Sample ID: MW-4-0414 Date Collected: 04/10/14 10:40

Date Received: 04/11/14 01:45

| General Chemistry Analyte | Result | Qualifier          | RL    | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|---------------------------|--------|--------------------|-------|-----|------|---|----------------|----------------|---------|
| Total Kjeldahl Nitrogen   | ND ND  |                    | 0.20  |     | mg/L |   | 04/15/14 15:09 | 04/15/14 20:01 | 1       |
| Nitrate as N              | 3.6    |                    | 0.050 |     | mg/L |   |                | 04/11/14 13:36 | 1       |
| Cyanide, Total            | ND     |                    | 0.010 |     | mg/L |   | 04/21/14 08:48 | 04/21/14 20:07 | 1       |
| Sulfate                   | 70.7   |                    | 10.0  |     | mg/L |   |                | 04/16/14 09:11 | 2       |
| Alkalinity, Total         | 398    |                    | 5.0   |     | mg/L |   |                | 04/11/14 13:53 | 1       |
| Ferrous Iron              | ND     | HF <mark>UJ</mark> | 0.10  |     | mg/L |   |                | 04/12/14 00:58 | 1       |
| Chloride                  | 304    |                    | 10.0  |     | mg/L |   |                | 04/17/14 04:02 | 10      |
| Sulfide                   | ND     |                    | 1.0   |     | mg/L |   |                | 04/11/14 16:45 | 1       |

Client Sample ID: MW-7-0414 Lab Sample ID: 480-57727-2

Date Collected: 04/10/14 09:45 **Matrix: Water** 

Date Received: 04/11/14 01:45

| Analyte                      | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Benzene                      | ND        |           | 1.0      |     | ug/L |   |          | 04/17/14 17:29 | 1       |
| Toluene                      | ND        |           | 1.0      |     | ug/L |   |          | 04/17/14 17:29 | 1       |
| Ethylbenzene                 | ND        |           | 1.0      |     | ug/L |   |          | 04/17/14 17:29 | 1       |
| m-Xylene & p-Xylene          | ND        |           | 2.0      |     | ug/L |   |          | 04/17/14 17:29 | 1       |
| o-Xylene                     | ND        |           | 1.0      |     | ug/L |   |          | 04/17/14 17:29 | 1       |
| Xylenes, Total               | ND        |           | 2.0      |     | ug/L |   |          | 04/17/14 17:29 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 103       |           | 66 - 137 |     |      | - |          | 04/17/14 17:29 | 1       |
| Toluene-d8 (Surr)            | 104       |           | 71 - 126 |     |      |   |          | 04/17/14 17:29 | 1       |
| 4-Bromofluorobenzene (Surr)  | 107       |           | 73 - 120 |     |      |   |          | 04/17/14 17:29 | 1       |
| Dibromofluoromethane (Surr)  | 97        |           | 60 - 140 |     |      |   |          | 04/17/14 17:29 | 1       |

| Analyte                | Result Qual    | lifier F      | RL              | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|------------------------|----------------|---------------|-----------------|-----|------|---|----------------|----------------|---------|
| Acenaphthene           | ND             | 5.0 2         | 2.5             |     | ug/L |   | 04/15/14 14:43 | 04/22/14 18:12 | 5       |
| Acenaphthylene         | ND             | 5.0 2         | 2.5             |     | ug/L |   | 04/15/14 14:43 | 04/22/14 18:12 | 5       |
| Anthracene             | ND             | 5.0 -2        | 2.5             |     | ug/L |   | 04/15/14 14:43 | 04/22/14 18:12 | 5       |
| Benzo(a)anthracene     | ND             | 5.0 2         | 2.5             |     | ug/L |   | 04/15/14 14:43 | 04/22/14 18:12 | 5       |
| Benzo(a)pyrene         | ND             | 5.0 -2        | <del>2.</del> 5 |     | ug/L |   | 04/15/14 14:43 | 04/22/14 18:12 | 5       |
| Benzo(b)fluoranthene   | ND             | 5.0 -2        | 2.5             |     | ug/L |   | 04/15/14 14:43 | 04/22/14 18:12 | 5       |
| Benzo(g,h,i)perylene   | ND             | 5.0 -2        | 2.5             |     | ug/L |   | 04/15/14 14:43 | 04/22/14 18:12 | 5       |
| Benzo(k)fluoranthene   | ND             | 5.0 -2        | 2.5             |     | ug/L |   | 04/15/14 14:43 | 04/22/14 18:12 | 5       |
| Chrysene               | ND             | 5.0 2         | 2.5             |     | ug/L |   | 04/15/14 14:43 | 04/22/14 18:12 | 5       |
| Dibenz(a,h)anthracene  | ND             | 5.0 2         | 2.5             |     | ug/L |   | 04/15/14 14:43 | 04/22/14 18:12 | 5       |
| Fluoranthene           | ND             | 5.0 2         | 2.5             |     | ug/L |   | 04/15/14 14:43 | 04/22/14 18:12 | 5       |
| Fluorene               | ND             | 5.0 2         | 2:5             |     | ug/L |   | 04/15/14 14:43 | 04/22/14 18:12 | 5       |
| Indeno(1,2,3-cd)pyrene | ND             | 5.0 2         | 2.5             |     | ug/L |   | 04/15/14 14:43 | 04/22/14 18:12 | 5       |
| Naphthalene            | ND             | 5.0 2         | 2.5             |     | ug/L |   | 04/15/14 14:43 | 04/22/14 18:12 | 5       |
| Phenanthrene           | ND             | 5.0 2         | 2.5             |     | ug/L |   | 04/15/14 14:43 | 04/22/14 18:12 | 5       |
| Pyrene                 | ND             | 5.0 2         | 2.5             |     | ug/L |   | 04/15/14 14:43 | 04/22/14 18:12 | 5       |
| Surrogate              | %Recovery Qual | lifier Limits |                 |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl       | 97             | 48 - 120      | )               |     |      |   | 04/15/14 14:43 | 04/22/14 18:12 | 5       |
| Nitrobenzene-d5        | 99             | 46 - 120      | )               |     |      |   | 04/15/14 14:43 | 04/22/14 18:12 | 5       |

TestAmerica Buffalo

Page 8 of 43

4/25/2014

Client: CDM Smith, Inc.

Project/Site: Johnstown (N.Market Street)

Client Sample ID: MW-7-0414 Date Collected: 04/10/14 09:45

Date Received: 04/11/14 01:45

Lab Sample ID: 480-57727-2

TestAmerica Job ID: 480-57727-1

Matrix: Water

Method: 8270D\_LL\_PAH - Semivolatile Organic Compounds (GC/MS) Low level PAH (Continued)

| Surrogate       | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|-----------------|-----------|-----------|----------|----------------|----------------|---------|
| p-Terphenyl-d14 | 103       |           | 24 - 136 | 04/15/14 14:43 | 04/22/14 18:12 | 5       |

| Method: RSK-175 - Dissolved Gases (G | iC) |
|--------------------------------------|-----|
| Analyto                              |     |

| Analyte        | Result | Qualifier | RL   | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------|--------|-----------|------|-----|------|---|----------|----------------|---------|
| Ethane         | ND     |           | 7.5  |     | ug/L |   |          | 04/14/14 13:07 | 1       |
| Ethene         | ND     |           | 7.0  |     | ug/L |   |          | 04/14/14 13:07 | 1       |
| Methane        | 150    |           | 4.0  |     | ug/L |   |          | 04/14/14 13:07 | 1       |
| Analyte        | Result | Qualifier | RL   | RL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Carbon dioxide | 14000  | ·         | 1000 |     | ug/L |   |          | 04/14/14 15:13 | 1       |

| Wethod: 6010C - Wetals (ICP) - | - Total Recoverable | <del>)</del> |     |      |   |                |                |         |
|--------------------------------|---------------------|--------------|-----|------|---|----------------|----------------|---------|
| Analyte                        | Result C            | Qualifier RL | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Iron                           | 6240                | 100          |     | ug/L |   | 04/17/14 09:58 | 04/18/14 09:53 | 1       |
| Lead                           | ND                  | 10.0         |     | ug/L |   | 04/17/14 09:58 | 04/18/14 09:53 | 1       |
| Manganese                      | 564                 | 15.0         |     | ug/L |   | 04/17/14 09:58 | 04/18/14 09:53 | 1       |

#### General Chemistry

| General Chemistry       |        |                    |       |     |      |   |                |                |         |
|-------------------------|--------|--------------------|-------|-----|------|---|----------------|----------------|---------|
| Analyte                 | Result | Qualifier          | RL    | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Total Kjeldahl Nitrogen | 1.7    |                    | 0.20  |     | mg/L |   | 04/15/14 15:09 | 04/15/14 20:01 | 1       |
| Nitrate as N            | ND     |                    | 0.050 |     | mg/L |   |                | 04/11/14 11:14 | 1       |
| Cyanide, Total          | 0.16   | J                  | 0.010 |     | mg/L |   | 04/22/14 15:40 | 04/23/14 09:43 | 1       |
| Sulfate                 | 540    |                    | 100   |     | mg/L |   |                | 04/16/14 09:49 | 20      |
| Alkalinity, Total       | 375    |                    | 5.0   |     | mg/L |   |                | 04/11/14 14:00 | 1       |
| Ferrous Iron            | ND     | HF <mark>UJ</mark> | 0.10  |     | mg/L |   |                | 04/12/14 00:58 | 1       |
| Chloride                | 79.0   |                    | 2.0   |     | mg/L |   |                | 04/16/14 09:08 | 2       |
| Sulfide                 | ND     |                    | 1.0   |     | mg/L |   |                | 04/11/14 16:45 | 1       |
|                         |        |                    |       |     |      |   |                |                |         |

Client Sample ID: MW-10-0414

Lab Sample ID: 480-57727-3 Date Collected: 04/10/14 08:35 **Matrix: Ground Water** Date Received: 04/11/14 01:45

Method: 8260C - Volatile Organic Compounds by GC/MS

| Metriod. 6260C - Volatile Orga | •         | •         | DI.      | MDI | 1114 | _ | Duranana | A              | D:: F   |
|--------------------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Analyte                        | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene                        | ND        |           | 1.0      |     | ug/L |   |          | 04/17/14 17:52 | 1       |
| Toluene                        | ND        |           | 1.0      |     | ug/L |   |          | 04/17/14 17:52 | 1       |
| Ethylbenzene                   | ND        |           | 1.0      |     | ug/L |   |          | 04/17/14 17:52 | 1       |
| m-Xylene & p-Xylene            | ND        |           | 2.0      |     | ug/L |   |          | 04/17/14 17:52 | 1       |
| o-Xylene                       | ND        |           | 1.0      |     | ug/L |   |          | 04/17/14 17:52 | 1       |
| Xylenes, Total                 | ND        |           | 2.0      |     | ug/L |   |          | 04/17/14 17:52 | 1       |
| Surrogate                      | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr)   | 103       |           | 66 - 137 |     |      | - |          | 04/17/14 17:52 | 1       |
| Toluene-d8 (Surr)              | 102       |           | 71 - 126 |     |      |   |          | 04/17/14 17:52 | 1       |
| 4-Bromofluorobenzene (Surr)    | 103       |           | 73 - 120 |     |      |   |          | 04/17/14 17:52 | 1       |
| Dibromofluoromethane (Surr)    | 101       |           | 60 - 140 |     |      |   |          | 04/17/14 17:52 | 1       |

| M - 41 0070D  |       | All Constructed at the | O                 | (OO/MO) I soo Issuel DAII |
|---------------|-------|------------------------|-------------------|---------------------------|
| wethod: 82/UD | LL PA | AH - Semivolatile (    | Ordanic Compounds | (GC/MS) Low level PAH     |

| Analyte        | Result Qualifier | RL                    | MDL Unit | D | Prepared      | Analyzed       | Dil Fac |
|----------------|------------------|-----------------------|----------|---|---------------|----------------|---------|
| Acenaphthene   | 0.80             | 1.0 0.47-             | ug/L     | 0 | 4/15/14 14:43 | 04/22/14 18:28 | 1       |
| Acenaphthylene | ND               | 1.0 <sub>0.47</sub> - | ug/L     | 0 | 4/15/14 14:43 | 04/22/14 18:28 | 1       |

TestAmerica Buffalo

Page 9 of 43

Client: CDM Smith, Inc.

Ferrous Iron

Chloride

Sulfide

Project/Site: Johnstown (N.Market Street)

TestAmerica Job ID: 480-57727-1

Lab Sample ID: 480-57727-3

Matrix: Ground Water

Client Sample ID: MW-10-0414 Date Collected: 04/10/14 08:35

Date Received: 04/11/14 01:45

| Analyte                            | Result       | Qualifier |      | RL    | MDL | Unit | D          | Prepared       | Analyzed                   | Dil Fa |
|------------------------------------|--------------|-----------|------|-------|-----|------|------------|----------------|----------------------------|--------|
| Anthracene                         | ND           |           | 1.0  | 0.47- |     | ug/L |            | 04/15/14 14:43 | 04/22/14 18:28             |        |
| Benzo(a)anthracene                 | ND           |           | 1.0  | 0.47  |     | ug/L |            | 04/15/14 14:43 | 04/22/14 18:28             |        |
| Benzo(a)pyrene                     | ND           |           | 1.0  | 0.47- |     | ug/L |            | 04/15/14 14:43 | 04/22/14 18:28             |        |
| Benzo(b)fluoranthene               | ND           |           | 1.0  | 0.47- |     | ug/L |            | 04/15/14 14:43 | 04/22/14 18:28             |        |
| Benzo(g,h,i)perylene               | ND           |           | 1.0  | 0.47_ |     | ug/L |            | 04/15/14 14:43 | 04/22/14 18:28             |        |
| Benzo(k)fluoranthene               | ND           |           | 1.0  | 0.47_ |     | ug/L |            | 04/15/14 14:43 | 04/22/14 18:28             |        |
| Chrysene                           | ND           |           | 1.0  | 0.47  |     | ug/L |            | 04/15/14 14:43 | 04/22/14 18:28             |        |
| Dibenz(a,h)anthracene              | ND           |           | 1.0  | 0.47- |     | ug/L |            | 04/15/14 14:43 | 04/22/14 18:28             |        |
| Fluoranthene                       | ND           |           | 1.0  | 0.47- |     | ug/L |            | 04/15/14 14:43 | 04/22/14 18:28             |        |
| Fluorene                           | ND           |           | 1.0  | 0.47  |     | ug/L |            | 04/15/14 14:43 | 04/22/14 18:28             |        |
| Indeno(1,2,3-cd)pyrene             | ND           |           | 1.0  | 0.47  |     | ug/L |            | 04/15/14 14:43 | 04/22/14 18:28             |        |
| Naphthalene                        | ND           |           | 1.0  | 0.47  |     | ug/L |            | 04/15/14 14:43 | 04/22/14 18:28             |        |
| Phenanthrene                       | ND           |           | 1.0  | 0.47  |     | ug/L |            | 04/15/14 14:43 | 04/22/14 18:28             |        |
| Pyrene                             | ND           |           | 1.0  |       |     | ug/L |            | 04/15/14 14:43 | 04/22/14 18:28             |        |
| •                                  |              |           |      |       |     | J    |            |                |                            |        |
| Surrogate                          | %Recovery    | Qualifier | Limi | ts    |     |      |            | Prepared       | Analyzed                   | Dil Fa |
| 2-Fluorobiphenyl                   | 89           |           | 48 - | 120   |     |      |            | 04/15/14 14:43 | 04/22/14 18:28             |        |
| Nitrobenzene-d5                    | 95           |           | 46 - | 120   |     |      |            | 04/15/14 14:43 | 04/22/14 18:28             |        |
| p-Terphenyl-d14                    | 87           |           | 24 - | 136   |     |      |            | 04/15/14 14:43 | 04/22/14 18:28             |        |
| Analyte  Ethane                    | ND           | Qualifier |      | 7.5 — | MDL | ug/L | D          | Prepared       | Analyzed<br>04/14/14 13:24 | Dil Fa |
| Ethene                             | ND           |           |      | 7.0   |     | ug/L |            |                | 04/14/14 13:24             |        |
| Analyte                            | Result       | Qualifier |      | RL    | RL  | Unit | D          | Prepared       | Analyzed                   | Dil Fa |
| Carbon dioxide                     | 24000        |           |      | 1000  |     | ug/L |            |                | 04/14/14 15:20             |        |
| Method: RSK-175 - Dissolved Gas    | os (GC) - DI |           |      |       |     |      |            |                |                            |        |
| Analyte                            |              | Qualifier |      | RL    | MDL | Unit | D          | Prepared       | Analyzed                   | Dil Fa |
| Methane                            | 110          |           |      | 40    |     | ug/L | — <u> </u> |                | 04/14/14 14:07             | 1      |
|                                    |              |           |      |       |     | - 3  |            |                |                            |        |
| Method: 6010C - Metals (ICP) - Tot | al Recoverat | ole       |      |       |     |      |            |                |                            |        |
| Analyte                            | Result       | Qualifier |      | RL    | MDL | Unit | D          | Prepared       | Analyzed                   | Dil Fa |
| Iron                               | 6060         |           |      | 100   |     | ug/L |            | 04/17/14 09:58 | 04/18/14 09:59             |        |
| Lead                               | ND           |           |      | 10.0  |     | ug/L |            | 04/17/14 09:58 | 04/18/14 09:59             |        |
| Manganese                          | 1070         |           |      | 15.0  |     | ug/L |            | 04/17/14 09:58 | 04/18/14 09:59             |        |
| General Chemistry                  |              |           |      |       |     |      |            |                |                            |        |
| Analyte                            | Result       | Qualifier |      | RL    | MDL | Unit | D          | Prepared       | Analyzed                   | Dil Fa |
| Total Kjeldahl Nitrogen            | 4.8          |           |      | 0.20  |     | mg/L |            | 04/15/14 15:09 | 04/15/14 20:01             |        |
| Nitrate as N                       | ND           |           |      | 0.050 |     | mg/L |            |                | 04/11/14 11:15             |        |
| Cyanide, Total                     | 0.081        |           |      | 0.010 |     | mg/L |            | 04/21/14 08:48 | 04/21/14 20:10             |        |
| Sulfate                            | 153          |           |      | 25.0  |     | mg/L |            |                | 04/17/14 04:51             |        |
| Alkalinity, Total                  | 566          |           |      | 5.0   |     | mg/L |            |                | 04/11/14 14:08             |        |
|                                    |              |           |      |       |     |      |            |                |                            |        |

04/12/14 00:58

04/22/14 03:36

04/11/14 16:45

0.10

10.0

1.0

mg/L

mg/L

mg/L

ND HF UJ

470

ND

10

2

4

6

8

10

11

13

14

Client: CDM Smith, Inc.

Lead

Manganese

Project/Site: Johnstown (N.Market Street)

Method: 8260C - Volatile Organic Compounds by GC/MS

TestAmerica Job ID: 480-57727-1

Client Sample ID: MW-11-0414 Lab Sample ID: 480-57727-4

Date Collected: 04/10/14 11:30 Matrix: Ground Water
Date Received: 04/11/14 01:45

| Analyte                               | Result              | Qualifier   | RL                            | MDL          | Unit         | D | Prepared                         | Analyzed                         | Dil Fac |
|---------------------------------------|---------------------|-------------|-------------------------------|--------------|--------------|---|----------------------------------|----------------------------------|---------|
| Benzene                               | 10                  |             | 1.0                           |              | ug/L         |   |                                  | 04/17/14 18:16                   | 1       |
| Toluene                               | 1.1                 |             | 1.0                           |              | ug/L         |   |                                  | 04/17/14 18:16                   | 1       |
| Ethylbenzene                          | 5.1                 |             | 1.0                           |              | ug/L         |   |                                  | 04/17/14 18:16                   | 1       |
| m-Xylene & p-Xylene                   | ND                  |             | 2.0                           |              | ug/L         |   |                                  | 04/17/14 18:16                   | 1       |
| o-Xylene                              | 2.1                 |             | 1.0                           |              | ug/L         |   |                                  | 04/17/14 18:16                   | 1       |
| Xylenes, Total                        | 2.1                 |             | 2.0                           |              | ug/L         |   |                                  | 04/17/14 18:16                   | 1       |
| Surrogate                             | %Recovery           | Qualifier   | Limits                        |              |              |   | Prepared                         | Analyzed                         | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr)          | 101                 |             | 66 - 137                      |              |              |   |                                  | 04/17/14 18:16                   |         |
| Toluene-d8 (Surr)                     | 102                 |             | 71 - 126                      |              |              |   |                                  | 04/17/14 18:16                   | . 1     |
| 4-Bromofluorobenzene (Surr)           | 101                 |             | 73 - 120                      |              |              |   |                                  | 04/17/14 18:16                   | 1       |
| Dibromofluoromethane (Surr)           | 100                 |             | 60 - 140                      |              |              |   |                                  | 04/17/14 18:16                   |         |
| Mothod: 9270D II DAII Com             | missalatila Osmania | . Common do | (CC/MC) I                     | avy lavyal D |              |   |                                  |                                  |         |
| Method: 8270D_LL_PAH - Ser<br>Analyte |                     | Qualifier   | (GC/MS) L                     |              | Unit         | D | Prepared                         | Analyzed                         | Dil Fac |
| Acenaphthene                          | 120                 |             | 5.0 <del>2.5</del>            |              | ug/L         |   | 04/15/14 14:43                   | 04/22/14 18:44                   | 5       |
| Acenaphthylene                        | 110                 |             | 5.0 <del>2.5</del>            |              | ug/L         |   | 04/15/14 14:43                   | 04/22/14 18:44                   | 5       |
| Anthracene                            | 13                  |             | 5.0 2.5                       |              | ug/L         |   | 04/15/14 14:43                   | 04/22/14 18:44                   | 5       |
| Benzo(a)anthracene                    | 3.2                 |             | 5.0 2.5                       |              | ug/L         |   | 04/15/14 14:43                   | 04/22/14 18:44                   | 5       |
| Benzo(a)pyrene                        | 2.8                 |             | 5.0 <del>2.5</del>            |              | ug/L         |   | 04/15/14 14:43                   | 04/22/14 18:44                   | 5       |
| Benzo(b)fluoranthene                  | ND.                 |             | 5.0 <del>2.5</del>            |              | ug/L         |   | 04/15/14 14:43                   | 04/22/14 18:44                   | 5       |
| Benzo(g,h,i)perylene                  | ND                  |             | 5.0 2.5                       |              | ug/L         |   | 04/15/14 14:43                   | 04/22/14 18:44                   | 5       |
| Benzo(k)fluoranthene                  | ND                  |             | 5.0 2 <del>.5</del> -         |              | ug/L         |   | 04/15/14 14:43                   | 04/22/14 18:44                   | 5       |
| Chrysene                              | 5.4                 |             | 5.0 <del>2.5</del>            |              | ug/L         |   | 04/15/14 14:43                   | 04/22/14 18:44                   | 5       |
| Dibenz(a,h)anthracene                 | ND                  |             | 5.0 2.5                       |              | ug/L         |   | 04/15/14 14:43                   | 04/22/14 18:44                   | 5       |
| Fluoranthene                          | 12                  |             | 5.0 <del>2.5</del>            |              | ug/L         |   | 04/15/14 14:43                   | 04/22/14 18:44                   | 5       |
| Fluorene                              | 31                  |             | 5.0 2.5                       |              | ug/L         |   | 04/15/14 14:43                   | 04/22/14 18:44                   | 5       |
| Indeno(1,2,3-cd)pyrene                | ND                  |             | 5.0 2.5                       |              |              |   | 04/15/14 14:43                   | 04/22/14 18:44                   | 5       |
| · · · · · ·                           | ND<br>ND            |             | 5.0 <del>2.5</del>            |              | ug/L         |   | 04/15/14 14:43                   | 04/22/14 18:44                   | 5       |
| Naphthalene                           |                     |             | 5.0 2.5                       |              | ug/L         |   |                                  |                                  |         |
| Phenanthrene<br>Pyrene                | 5.8                 |             | 5.0 2.5<br>5.0 <del>2.5</del> |              | ug/L<br>ug/L |   | 04/15/14 14:43<br>04/15/14 14:43 | 04/22/14 18:44<br>04/22/14 18:44 | 5<br>5  |
|                                       |                     |             |                               |              | J            |   |                                  |                                  |         |
| Surrogate                             | %Recovery           | Qualifier   | Limits                        |              |              |   | Prepared                         | Analyzed                         | Dil Fac |
| 2-Fluorobiphenyl                      | 91                  |             | 48 - 120                      |              |              |   | 04/15/14 14:43                   | 04/22/14 18:44                   | 5       |
| Nitrobenzene-d5                       | 97                  |             | 46 - 120                      |              |              |   | 04/15/14 14:43                   | 04/22/14 18:44                   | 5       |
| p-Terphenyl-d14                       | 93                  |             | 24 - 136                      |              |              |   | 04/15/14 14:43                   | 04/22/14 18:44                   | 5       |
| Method: RSK-175 - Dissolved           | Gases (GC)          |             |                               |              |              |   |                                  |                                  |         |
| Analyte                               |                     | Qualifier   | RL                            | MDL          | Unit         | D | Prepared                         | Analyzed                         | Dil Fac |
| Ethane                                | ND                  |             | 75                            |              | ug/L         | _ | _                                | 04/14/14 15:16                   | 10      |
| Ethene                                | ND                  |             | 70                            |              | ug/L         |   |                                  | 04/14/14 15:16                   | 10      |
| Methane                               | 120                 |             | 40                            |              | ug/L         |   |                                  | 04/14/14 15:16                   | 10      |
| Analyte                               |                     | Qualifier   | RL                            | RL           | Unit         | D | Prepared                         | Analyzed                         | Dil Fac |
| Carbon dioxide                        | 21000               |             | 1000                          |              | ug/L         |   |                                  | 04/14/14 15:28                   | 1       |
| Method: 6010C - Metals (ICP)          | - Total Recoverat   | ole         |                               |              |              |   |                                  |                                  |         |
| Analyte                               | Result              | Qualifier   | RL                            | MDL          | Unit         | D | Prepared                         | Analyzed                         | Dil Fac |
| Iron                                  | 11800               |             | 100                           |              | ug/L         | _ | 04/17/14 09:58                   | 04/18/14 10:04                   | 1       |
|                                       |                     |             |                               |              |              |   |                                  |                                  |         |

TestAmerica Buffalo

04/18/14 10:04

04/18/14 10:04

10.0

15.0

ND

560

ug/L

ug/L

04/17/14 09:58

04/17/14 09:58

2

4

6

8

10

12

14

Client: CDM Smith, Inc.

Project/Site: Johnstown (N.Market Street)

TestAmerica Job ID: 480-57727-1

Lab Sample ID: 480-57727-4

Matrix: Ground Water

Client Sample ID: MW-11-0414 Date Collected: 04/10/14 11:30

Date Received: 04/11/14 01:45

| <b>General Chemistry</b> |        |           |       |     |      |   |                |                |         |
|--------------------------|--------|-----------|-------|-----|------|---|----------------|----------------|---------|
| Analyte                  | Result | Qualifier | RL    | MDL | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Total Kjeldahl Nitrogen  | 0.57   |           | 0.20  |     | mg/L |   | 04/18/14 03:33 | 04/18/14 10:24 | 1       |
| Nitrate as N             | ND     |           | 0.050 |     | mg/L |   |                | 04/11/14 11:16 | 1       |
| Cyanide, Total           | 0.018  |           | 0.010 |     | mg/L |   | 04/22/14 15:40 | 04/23/14 09:46 | 1       |
| Sulfate                  | 58.0   |           | 10.0  |     | mg/L |   |                | 04/15/14 16:59 | 2       |
| Alkalinity, Total        | 465    |           | 5.0   |     | mg/L |   |                | 04/11/14 14:16 | 1       |
| Ferrous Iron             | 0.29   | HF J      | 0.10  |     | mg/L |   |                | 04/12/14 00:58 | 1       |
| Chloride                 | 454    |           | 10.0  |     | mg/L |   |                | 04/19/14 09:42 | 10      |
| Sulfide                  | ND     |           | 1.0   |     | mg/L |   |                | 04/11/14 16:45 | 1       |

5

6

10

12

13

14