

June 15, 2015

Ms. Jamie Verrigni Environmental Engineer Remedial Bureau C, 11th Floor Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233-7014

Re: Johnstown (N. Market St.)

Former Manufactured Gas Plant Site (MGP)

Site No. 5-18-020

Semi-Annual Groundwater Monitoring Report (April 2015)

Dear Ms. Verrigni:

Enclosed is the Semi-Annual Groundwater Monitoring Report for the Johnstown (N. Market St.) MGP Site located in Johnstown, New York. The report includes the April 16-17, 2015 groundwater monitoring results.

Please contact me at (315) 428-5652 or steven.stucker@us.ngrid.com if you have any questions regarding the report.

Sincerely,

Steven P. Stucker, C.P.G.

Senior Environmental Engineer

Matthew D. Millias for SPS

Ms. Jamie Verrigni June 15, 2015 Page 2 of 2

Cc: Carolyn Rooney -National Grid Nathan Freeman- NYSDOH

Matt Millias- CDM Smith

SEMI-ANNUAL GROUNDWATER MONITORING REPORT

April 2015 Sampling Event

Prepared For:

300 Erie Boulevard West Syracuse, NY 13202

Prepared By:

CDM Smith

6800 Old Collamer Road, Suite 3 East Syracuse, New York 13057

TABLE OF CONTENTS

			Page
1.0	IN	TRODUCTION	1-1
	1.1 1.2	PURPOSE AND OBJECTIVEREPORT ORGANIZATION	
2.0	BA	ACKGROUND	2-1
	2.1 2.2 2.3	SITE DESCRIPTIONSITE HISTORYENVIRONMENTAL SETTING	2-1
3.0	M	ONITORING ACTIVITIES	3-1
	3.1 3.2	WATER GAUGING AND SAMPLING PROCEDURESGROUNDWATER ANALYTICAL RESULTS	
4.0	C	ONCLUSIONS AND RECOMMENDATIONS	4-1
	4.1 4.2	CONCLUSIONSRECOMMENDATIONS	
5.0	RI	EFERENCES	5-1
TA	BLE	S	
	ole 1	Groundwater Level Measurements	
Tab	ole 2	Analytical Data Results	
FI(JURI	E S	
Fig	ure 1	Site Location Map	
Fig	ure 2	Site Plan	
_	ure 3	Potentiometric Surface Map	
_	ure 4	Monitored Natural Attenuation/Water Quality Parameters	
_	ure 5	BTEX Isoconcentration Contour	
Fig	ure 6	Naphthalene Isoconcentration Contour	
AP	PEN	DICES	

Appendix A Appendix B

Field Data Data Usability Summary Report

1.0 INTRODUCTION

This Semi-Annual Groundwater Monitoring Report summarizes the results of April 2015 groundwater sampling event at the Johnstown, New York (N. Market Street) Former Manufactured Gas Plant (MGP) Site (the Site). This Report was developed as part of the long-term groundwater monitoring program on behalf of National Grid.

National Grid has been addressing the Site environmental conditions under an Order on Consent (Index Number D0-0001-9210), dated April 1999, that was entered into by Niagara Mohawk and the New York State Department of Environmental Conservation (NYSDEC). That Order on Consent was for the investigation and remediation of 21 former MGP sites, including the Johnstown (N. Market Street) Site. It was superseded by a new Order on Consent (Index Number A4-0473-0000), dated November 7, 2003. A NYSDEC-approved Supplemental Remedial Investigation (RI) Work Plan was finalized during November 2007, and a Final Supplemental RI Report was submitted to NYSDEC, dated December 2008. The RI results report and subsequent Feasibility Study were approved in February 2010.

A Record of Decision (ROD) was issued by NYSDEC, dated March 2010, in accordance with the requirements of New York State Environmental Conservation Law and Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York, 6 NYCRR Part 375. Based upon the results of the remedial investigation/feasibility study (RI/FS) for the Site, the IRMs previously completed, and the ROD, the draft Final Engineering Report and Site Management Plan (SMP) were developed and submitted to the NYSDEC in June 2010. The Final Engineering Report approval by NYSDEC is predicated on the pending filing of an environmental easement by National Grid. The SMP was approved by NYSDEC on 12/2/11 and included a Groundwater Monitoring Program.

SMP modifications were approved by NYSDEC in their 7/5/12 letter to National Grid which included:

- 1) The groundwater monitoring frequency has been reduced from quarterly to semi-annually (May & October);
- 2) MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, MW-16 will continue to be sampled. MW 8 and MW-9 will be decommissioned in accordance with the Dept.'s CP-43 policy; and
- 3) RMW-1 will be monitored semi-annually and documented in the semi-annual report.

1.1 PURPOSE AND OBJECTIVE

The purpose of this Report is to summarize the activities and results of the latest event, and to compare the results to previous events. As described in the December 2008 Supplemental RI Report and the subsequent ROD, one of the primary goals is to evaluate whether or not the groundwater constituents of concern (COCs) concentrations decrease, and continue to assess the effectiveness of monitored natural attenuation (MNA).

1.2 REPORT ORGANIZATION

This Report is organized in to the following six sections. Section 1.0 presents the purpose and objectives of this program. Section 2.0 provides the history, environmental setting and location of the Site. Section 3.0 provides a description of the approach used to collect and analyze groundwater samples at the Site. Section 4.0 presents the physical and chemical analytical data collected, and Section 5.0 presents the conclusions and recommended approach for further monitoring at the Site. References for the Report are located in Section 6.0.

2.0 BACKGROUND

2.1 SITE DESCRIPTION

The Site is located in the City of Johnstown, County of Fulton, New York (Figure 1 presents the site location map) and is identified as Block 14 and Lot 7 on the Johnstown City Tax Map. The Site is an approximately 0.7 acre area bounded by the Cayadutta Creek to the north, the Colonial Cemetery to the south, Market Street to the east, and a wooded parcel of property to the west (Figure 2 presents the site plan). The Site is located in a mixed commercial, industrial, and residential area.

Currently, National Grid operates a natural gas regulator station at the Site, with equipment contained in fenced enclosures along the Site's southern boundary. The rest of the Site is grass-covered, including the stream bank adjacent to Cayadutta Creek along the northern boundary of the Site. An embankment exists along the north end of the Site that goes down to the Cayadutta Creek. A chain link fence exists along the north and west sides of the Site, and a retaining wall runs along the south side of the Site. Access to the Site is from North Market Street to the east.

The Johnstown Hospital is located south of the Site within one mile, and numerous residences exist to the west and east of the Site. The Johnstown Senior High School and Warren Street Elementary School are located within one mile of the Site to the west.

2.2 SITE HISTORY

The Johnstown MGP Site was incorporated in March 1857 as the Johnstown Gas Light Company. The company operated a small coal gas plant with a 20,000 cubic foot (cu. ft.) holder (Holder #1). In 1861, the plant was improved with the addition of a coal shed and covering for the tank holder. In 1886, the Johnstown and Gloversville Gas Light Corporation was formed, and the company purchased the rights to the Lowe water gas process. The United Gas Improvement Company planned the construction of a water gas plant for the Johnstown and Gloversville franchises.

In 1887, the Site consisted of a tool shop, an office, a coal gasometer, a lime house, a purifier room, a retort house, and a coal shed. Between 1887 and 1918, Holder #2 was located in the central part of the Site (exact size unknown). In 1892, a steam generator was constructed adjacent to the coal shed for the Lowe water gas process, and Holder #1 was decommissioned in 1896. In 1898, a 72,000 cu. ft. gas holder (Holder #3) was constructed on the Site. Between 1912 and 1918, the western small gas holder (Holder #2) in the middle of the Site was removed. In 1929, a gas pipeline from a MGP in Troy, New York reached Johnstown, and local gas production was only performed on a seasonal (winter) basis, until local production of gas ceased in 1931. Niagara Hudson Power Company was the owner of the Site in 1930. By 1948, Holder #3 was decommissioned. In 1950, Niagara Hudson Power was consolidated under the name Niagara Mohawk Power Company. By 1980, all Site buildings were removed. Currently, National Grid operates a natural gas regulator station at the Site.

Site Assessment and Investigations

An investigation of the Site began in 1997 with a Preliminary Site Assessment (PSA), which found that the Site was impacted with MGP wastes. A Supplemental PSA was then conducted at the Site in 1998, which was followed by a RI (January 2000) and subsequent remedial measures. Remedial measures are discussed separately below in this section.

A 2009 Supplemental RI was initiated to collect data to address potential residual MGP-related contaminants remaining in groundwater at the Site and to assess hydrogeologic conditions and groundwater quality on the Site. The results of the Supplemental RI were used to formulate potential remedial alternatives for groundwater and residual soil contamination. The Supplemental RI results were evaluated and presented in the 2010 FS Report.

Remedial Measures Completed

Several interim remedial measures (IRMs) were performed to address the MGP impacts. In 2002 and 2003, the former holders and associated impacts soil were removed. During this IRM, former Holder #2 and the northern half of former Holder #3 were demolished and removed from the Site. Approximately 13,870 cubic yards of soil were excavated and disposed off-site at a NYSDEC-approved facility. Permanent steel sheeting was left in place along the northeastern perimeter of the Site to avoid disturbance of the roadway and to provide containment of residual material left at depth.

Between 2005 and 2006, National Grid provided support to the City of Johnstown for subsurface work associated with the replacement of the North Market Street Bridge across Cayadutta Creek. Approximately 1,413 cubic yards of impacted soil were excavated from within the cofferdam area and disposed off-site at a NYSDEC-approved facility.

In August 2009, the rip-rap area along the bank of Cayadutta Creek that had been restored during the previous IRMs was enhanced to allow for establishment of stream-side vegetation. Post-IRM inspections of the restored Cayadutta Creek Bank were conducted in September 2009 and May 2010.

2.3 ENVIRONMENTAL SETTING

The Johnstown (N. Market Street) Site slopes northward toward Cayadutta Creek with elevations ranging from 652 to 672 feet (ft.) above sea level. Currently, the Site ground surface gradually slopes from south to north, becoming increasingly steep adjacent to the Creek, and is generally covered with either vegetation or stone. Surface drainage is primarily to the north into the Creek. Access to the Site is from North Market Street to the east, and the Site is currently used to support the natural gas regulator station operations.

Site Geology

The main units of unconsolidated deposits identified at the Site can be characterized in descending order as fill and native glacial deposits to bedrock. The glacial deposits are of lacustrine origin with glacial tills to the top of Shale bedrock (Utica Shale). Bedrock was reached underneath the till in two soil borings explored during the 1998 Supplemental PSA. These stratigraphic units are more specifically described below, based on information obtained from the previous investigations, and from the soil borings and monitoring well borings conducted during the 2007/2008 SRI.

Site geology includes a layer of disturbed soils (primarily fill) overlying glacial deposits. Based upon on-site soils and monitoring well borings, disturbed soils (including fills) range in thickness up to 13 ft. on the Site and are typically composed of sand, gravel, silt, clay, wood, coal, and anthropogenic materials including ash, cinders, clinkers, brick fragments, wire, and wood chips. Wood chips were identified in three borings (SB-09, SB-12, and MW-8), and are often associated with purifier waste.

A thin layer of peat underlies the disturbed soils in the northern portion of the Site, ranging in thickness from 0.5 ft. to 3 ft., and appears to thicken and dip to the north. Except where it is locally covered by sedimentary deposits such as silts, sands, and clays, the peat, where present, appears to have been the historical ground cover prior to development of the Site.

Underlying the peat, where present, the soils consist of lacustrine deposits composed of silts, sands, and clays. The surface of the lacustrine deposits appears to dip and thin out toward the north. A sand and gravel unit (an outwash deposit of stratified drift) underlies the lacustrine deposits across the Site area. This unit contains varying amounts of silt and clay. These deposits overlie a dense, low-permeability glacial till to bedrock (Shale).

Site Hydrogeology

Groundwater depths on-site are typically in the 10- to 20-foot below ground surface (bgs) ranges, generally in the glacial deposits below the bottom of the fill material. Groundwater flow is consistently northward through the Site area toward Cayadutta Creek, with the steepest gradient from the center of the Site proximal to former gas holders #2 and #3 to the southern Creek bank (about 0.08 ft./ft.) In comparison the average hydraulic gradient decreases to a value of approximately 0.04 ft./ft. on the east and west sides of the site away from the gas holders. The groundwater flow is consistent with regional groundwater flow direction. This groundwater flow direction and hydraulic gradients calculated during this monitoring period are also generally consistent with data obtained prior to the issuance of the ROD.

3.0 MONITORING ACTIVITIES

The long-term semi-annual groundwater monitoring program currently consists of the following elements:

- Semi-Annual Site Inspection including the creek bank protection, vegetative cover, monitoring wells, and security fence.
- Semi-Annual Groundwater Well Gauging of the following: RW-1, MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15 and MW-16 (Figure 2 presents the well locations). The creek surface water level is also gauged at one locations: SG-1 (bridge). The second surface water gauging point (SG-2 along creek) is not accessible and not monitored.
- Semi-Annual Groundwater Sampling and Analysis of the following: MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15 and MW-16. Note that Recovery Well RW-1 is not sampled as part of the program but is inspected for the presence of NAPL.

3.1 WATER GAUGING AND GROUNDWATER SAMPLING PROCEDURES

Gauging

Long-term groundwater monitoring includes water gauging at 9 groundwater monitoring wells and 1 groundwater recovery well using an electronic oil/water interface probe. Depth to bottom of well (DTB), depth to product (DTP), and depth to water (DTW) are to be recorded at each well. Refer to Table 1 for a summary of the water level measurements from April 2015 as well as previous events. Appendix A also presents the field documentation from the April 2015 water gauging event.

No product was present in RW-1 or the other nine groundwater monitoring wells.

A surface water level measurement was collected from the Cayadutta Creek using a water level probe (at the bridge; Gauging Point #1).

Sampling

Groundwater sampling was performed following low-flow sampling techniques (equivalent to United States Environmental Protection Agency [USEPA] low-flow procedures) using a pressure-driven peristaltic pump. During purging, measurements were collected for the following field parameters: pH, specific conductivity, turbidity, dissolved oxygen (DO), temperature, and oxidation-reduction potential (ORP). A Horiba U-22 was used to collect the field parameter data in a flow-through cell. The monitored field parameters are observed and recorded during low-flow sampling to determine when they have stabilized, and thus when the well has been adequately purged. Field parameter measurements were recorded at approximately 5-minute intervals. The monitoring wells were purged until stabilization of the field parameters (± 0.1 Standard Unit (SU) for pH, $\pm 3\%$ for specific conductivity, ± 10 millivolts (mV) for ORP, and $\pm 10\%$ for DO) and turbidity was less than 50 Nephalometric Turbidity Units (NTU). Refer to Attachment A for the field data.

After stabilization of the field parameters, 9 groundwater samples were collected directly from the dedicated tubing into laboratory-supplied sample containers (pre-preserved as required per the analytical method). Quality Assurance/Quality Control (QA/QC) samples included the collection of one field duplicate sample, one matrix spike (MS) sample, one matrix spike duplicate (MSD) sample, and one trip blank sample (VOCs only). Samples were transported to the laboratory, accompanied by the appropriate chain-of-custody documentation. Analytical results were validated.

Natural Attenuation Parameters

The ORP of groundwater is an indicator of the relative tendency of the groundwater to accept or transfer electrons. ORP is dependent on and influences rates of biodegradation. Lower ORP readings indicate a greater tendency toward reducing conditions and anaerobic processes.

The pH of the groundwater affects the presence and activity of microorganisms in the groundwater. The microorganisms may produce either organic acids or carbon dioxide which, when dissolved in water, forms weak carbonic acid. Microorganisms capable of degrading petroleum hydrocarbons typically prefer pH values ranging from 6 to 8 SU.

Groundwater temperature affects the solubility of dissolved gases such as oxygen and carbon dioxide as well as the metabolic activity of microorganisms. Oxygen is less soluble in warm water, and groundwater temperatures below approximately 5 degrees Celsius tend to inhibit biodegradation.

Dissolved oxygen is the most thermodynamically favored electron acceptor used by microorganisms during the degradation of both natural and anthropogenic organic carbon. An inverse relationship of high hydrocarbon concentrations and low DO concentrations can be used as a key indicator of biodegradation.

Nitrate, if available, may be used as an electron acceptor for anaerobic biodegradation after the depletion of dissolved oxygen (typically considered less than 0.5 milligrams per liter [mg/L]) and is used to biodegrade petroleum hydrocarbons. Lower nitrate concentrations in groundwater within a plume, with respect to higher concentrations in areas upgradient and outside a plume, may be expected.

Ferrous iron is a metabolic byproduct of hydrocarbon degradation. Reducing conditions in nitrogen- and oxygen-depleted groundwater creates an anaerobic environment that causes the reduction of ferric iron (Fe³⁺) to ferrous iron (Fe²⁺). Relatively low ferrous iron concentrations may be present in areas where natural attenuation is occurring if free ferrous iron is re-precipitating as sulfides or carbonates.

Sulfate may be used as an electron acceptor after the depletion or use limitation of dissolved oxygen, nitrate, and ferric iron. Lower sulfate concentrations in groundwater within a plume, with respect to higher concentrations in areas upgradient and outside a plume, may be expected.

The production of methane, termed methanogenesis, occurs only in strongly reducing conditions and generally after oxygen, nitrate, and sulfate have been depleted. The presence of methane in groundwater suggests BTEX degradation via methanogenesis. Methane is not present in fuels, and therefore its presence at high concentrations relative to areas upgradient and outside a plume is indicative of the biodegradation of petroleum hydrocarbons.

The buffering capacity of groundwater is a function of alkalinity. Typically, alkalinity is primarily due to carbonate alkalinity. The organic acids or the carbon dioxide (which produces a weak carbonic acid when dissolved in water) produced by biodegradation solubilize carbonate from the soil. Alkalinity concentrations that are elevated with respect to areas upgradient and outside a plume may be an indication of microbial activity and thus natural attenuation.

Typically, the relationships between BTEX and electron acceptors/metabolic byproduct concentrations (geochemical indicators) indicate potential for biodegradation. The concentrations are dependent on the location (and groundwater conditions) within the plume or outside of the plume limits.

3.2 GROUNDWATER ANALYTICAL RESULTS

The groundwater samples were analyzed for BTEX, PAHs, lead, total cyanide, and MNA/WQ parameters including alkalinity, chloride, ethane, ethene, ferrous iron, manganese, methane, nitrate, nitrogen, sulfate and sulfide. BTEX and PAHs are constituents commonly associated with former MGP sites. Cyanide is also a constituent commonly associated with former MGP sites. BTEX, PAHs, lead, and cyanide were the primary contaminants detected during previous investigation activities conducted at the Site. The MNA/WQ parameters, as well as field-measured ORP, pH, temperature, and DO, are relevant to establishing whether conditions favorable to natural attenuation occur at the Site.

- Refer to Table 2 for the analytical results summary.
- Refer to Appendix A for field data
- ➤ Refer to Appendix B for the DUSR

Groundwater analytical results were compared with levels specified in NYSDEC Division of Water Final Amendment to Water Quality Standards Regulations, effective February 16, 2008 [hereafter referred to as NYSDEC WQ Values]. For groundwater, Class GA values were applied. Class GA waters are defined as fresh groundwater, found in the saturated zone of unconsolidated deposits and consolidated rock or bedrock, which are used as a source of potable water supply.

Site Related Parameters

BTEX - Groundwater samples collected from monitoring wells MW-10, MW-11, MW-13, MW-14, MW-15, and MW-16 contained concentrations of some or all individual BTEX constituents above their respective NYSDEC WQ Values (1 micrograms per liter [μg/L] for benzene and 5 μg/L for other BTEX constituents). The highest concentrations were observed in the groundwater samples collected from MW-13, MW-15 and MW-16. MW-13 typically had the highest total BTEX concentrations. MW-15 is located generally downgradient of the former gas holders and of MW-13, while MW-16 is located southwest of the former gas holders and generally upgradient of both MW-13 and MW-15.

PAHs – No PAHs were detected in MW-4 or MW-7. PAH compounds were detected in groundwater samples collected from the other sampled monitoring wells. Naphthalene has consistently exhibited the highest concentration of any PAH.

Lead - Lead exhibited exceedances above its respective NYSDEC WQ Value (25 μ g/l) in three wells (MW-7, MW-10, and MW-13) since June 2010.

Cyanide - Concentrations of cyanide were detected above its NYSDEC WQ Value (0.2 mg/L) in groundwater samples collected from MW-7, MW-13, MW-14, MW-15, and MW16 since June 2010.

Monitored Natural Attenuation Parameters

Site-specific levels of the MNA/WQ parameters (geochemical indicators) were compared to known screening values to identify whether the site-specific values are within the ranges known to be suitable for biodegradation. The MNA/WQ analytical results for all individual monitoring wells are summarized in Table 2. Figure 4 presents the groundwater data for the key MNA data parameters at their respective locations to assist with the MNA evaluation. Indications of biodegradation of petroleum-related MGP constituents within the plume include low levels of DO, nitrate and sulfate, with generally higher levels of manganese, ferrous iron and methane.

Indicator concentrations detected at monitoring wells identified within source and downgradient areas of the Site were compared to levels detected at upgradient and side gradient monitoring wells exhibiting little or no MGP-related contamination. Generally indicator concentration levels at a distance from the center of the plume will be significantly lower than levels within the plume. A summary of the MNA/WQ results and associated field indicator parameters are provided below:

• DO and ORP values demonstrate depleted levels of dissolved oxygen and a transformation to more anaerobic or reducing conditions at the former source and downgradient areas relative to side gradient and upgradient areas of the Site. These values suggest that biodegradation activities at the source and at downgradient areas are occurring, consuming the available oxygen and resulting in MGP petroleum-related compound degradation and the lowering of dissolved oxygen levels.

- The range of ORP levels observed at the source and downgradient area monitoring wells generally indicates aquifer conditions could be suitable for denitrification, ferric iron reduction, sulfate reduction, and methanogenesis.
- Nitrate concentrations are generally depleted at the former source and downgradient areas of the Site relative to upgradient (MW-4) and side gradient areas, indicating denitrification may be a noteworthy biodegradation process occurring at this time at the source and downgradient areas.
- Ferrous iron concentrations at the former source and downgradient area monitoring wells do not exhibit higher levels relative to side gradient and upgradient monitoring wells. In addition, sulfate concentrations at the former source and upgradient areas are not depleted relative to upgradient and side gradient areas. These observations indicate ferric iron reduction and sulfate reduction are not likely to be significant biodegradation processes at this time at the source and downgradient areas.
- Based on the presence of methane, low DO amounts, and the ORP levels, methanogenesis
 is likely an important factor for biodegradation capacity in some areas of the Site.
 However, plume elongation is limited with a similar footprint throughout the monitoring
 period indicating that biodegradation is continuing and methanogenic conditions have not
 taken over completely.

Natural Attenuation Trending

Previous groundwater sampling data collected during the since June 2010 was utilized to develop and evaluate the contaminant plume and concentration trends of specific constituents at the Site. Plume size and concentration data are indicative of biodegradation capacity (natural attenuation) at the Site and whether the capacity has reached a limit of effectiveness. In order to determine and evaluate natural attenuation effectiveness, the use of statistical testing has been utilized for groundwater data collected from monitoring wells at the Site. The Mann-Kendall test was utilized for trend analysis. Trend analysis data started June 2010. The resultant statistical trend analysis for individual monitoring wells suggests (with 80% and 90% confidence) that total BTEX compounds and naphthalene plume lifecycle have been stable (no trend) to decreasing throughout the monitoring period. The table below depicts general concentration trend analysis results (decreasing, no trend or increasing) at 80% confidence levels for each well and associated constituents during the monitoring period. No trend is indicative of plume stability at well locations with contaminant detections throughout the monitoring period.

Well ID	Benzene	Toluene	Ethylbenzene	Total xylenes	Naphthalene
MW-4	No trend	No trend	No trend	No trend	No trend
MW-7	No trend	No trend	No trend	No trend	No trend
MW-10 ¹	No trend	No trend	No trend	No trend	No trend
MW-11 ¹	Decreasing	Decreasing	Decreasing	Decreasing	No trend
MW-12	No trend	No trend	No trend	No trend	No trend

MW-13 ¹	Decreasing	Decreasing	Decreasing	Decreasing	Decreasing
MW-14 ¹	No trend	Decreasing	No trend	Decreasing	Decreasing
MW-15 ¹	No trend	Increasing	No trend	Decreasing	No trend
MW-16 ¹	Decreasing	Decreasing	Decreasing	Decreasing	No trend

No trend is indicative of plume stability at well locations with contaminant detections throughout the monitoring period.

Isoconcentration maps were developed for total BTEX (Figure 5) and naphthalene (Figure 6) contamination. The figures present locations of the groundwater monitoring wells and plume contours for total BTEX (as compared to the benzene WQ value of 1 μ g/L) and naphthalene exceeding the NYSDEC WQ values. The sampling rounds depicted include June 2010, January 2011 and March 2012; which represent seasonality and a snapshot of time trends through that monitoring period. Evaluation of the isoconcentration figures suggests that the contaminant plumes are relatively stable to decreasing (smaller footprint with time) within the Site boundary. BTEX constituent plume trends (concentrations above the benzene WQ at 1 μ g/L) have consistently included MW-13, MW-15 and MW-16, while the naphthalene plume (concentrations above the WQ) has decreased to include only MW-13 and MW-15.

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

Groundwater Levels

The groundwater elevation data indicates groundwater within the Site, south of the Creek, flows in a hydraulically down gradient direction from the south to the north, toward Cayadutta Creek. The groundwater flow direction and hydraulic gradients have been consistent during previous gauging events and with data obtained prior to the ROD.

Flow on the north side of the Creek is to the south, towards the Creek. As such, Cayadutta Creek serves as the discharge location for the unconfined hydrostratigraphic unit, north and south of the Creek, and acts as a hydraulic boundary (no site groundwater migrates north of Cayadutta Creek).

Site-Related Constituents

Concentrations of BTEX, PAHs, lead, and cyanide in groundwater samples have been detected at consistent well locations on the Site. The overall concentrations continue to show a slight decreasing trend as compared to historic levels. Based on historic sampling results (as depicted on Table 1 – Groundwater from the ROD), benzene and naphthalene were exhibited in groundwater at concentrations up to 2,600 μ g/L and 7,300 μ g/L pre-ROD, respectively; with the highest occurrences in the central portion of the Site. These levels are higher than concentrations exhibited during this monitoring period.

The concentrations of BTEX constituents and PAH compounds (and specifically naphthalene) appear to be relatively stable or decreasing as indicated by groundwater concentration trend analysis from on-site monitoring wells. Site institutional controls continue to be effective and will continue to be monitored semi-annually.

Concentrations of benzene are significantly higher than the concentrations of toluene, ethylbenzene, and xylenes at source area monitoring wells MW-13, MW-15 and MW-16. Higher concentrations of benzene relative to the other BTEX compounds may indicate the amount of DO in the subsurface may not be sufficient to completely biodegrade BTEX (Borden, et. al., 1995).

Natural Attenuation

Plume stability at the Site is in indication that biodegradation capacity likely has not reached its limit of effectiveness. The use of statistical testing has identified the plume trends based on the constituent concentrations. Trend analysis data started with the June 2010 sampling event. Generally, the tests suggested that the plume and the related constituents were either stable or decreasing. Based on (1) trend analysis for BTEX and naphthalene and (2) MNA parameter

assessment, it is evident that attenuation at the Site is likely geochemically dependent, the source is being removed, and the plume is not migrating or increasing.

4.2 RECOMMENDATIONS

Based on the results of the April 2015 event and previous events, the following recommendations are made:

1. Continue the long-term semi-annual groundwater monitoring program. The next event will be October 2015.

5.0 REFERENCES

Borden, Robert C., et. al., "Geochemical Indicators of Intrinsic Bioremediation". Groundwater, Volume 33, Number 2, March/April 1995.

National Grid. "Site Management Plan for the Johnstown (N. Market Street) Former MGP Site, Johnstown, New York". National Grid, November 2011.

Niagara Mohawk Power Corporation. "Preliminary Historical Profile of the Johnstown (Market Street) MGP Site. Johnstown, New York". Niagara Mohawk Power Corporation, June 1993.

Niagara Mohawk Power Corporation. "Interim Remedial Measure (IRM) Summary Report for the Johnstown (N. Market Street) Site. Johnstown, Fulton County, New York. Site No. 5-18-020:. Tetra Tech FW, June 2007.

Niagara Mohawk Power Corporation. "IRM Summary Report for the Johnstown (N. Market Street) Site. Bridge Replacement Environmental Support Activities". Tetra Tech FW, October 2007.

Niagara Mohawk Power Corporation. "Record of Decision for the Johnstown (N. Market Street) Former MGP Site, Johnstown, New York". Niagara Mohawk Power Corporation, March 2010.

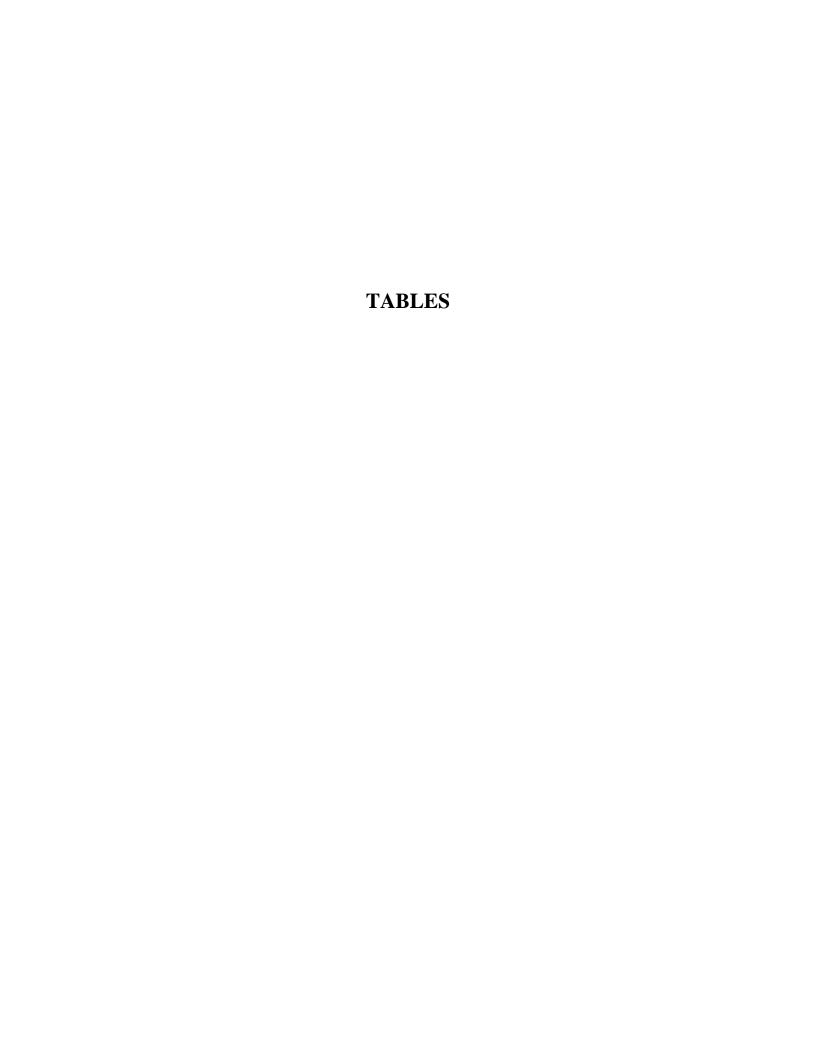


Table 1
Groundwater Level Measurements
Johnstown MGP Site
Johnstown, NY

		3/15	5/2012	10/9	/2012	4/18	/2013	10/7	/2013	4/9,	/2014	10/	13/2014	4/1	6/2015
Well ID	ELEVATION REFERENCE POINT	Depth to Water (ft toc)	Groundwater Elevation (ft msl)	Depth to Water (ft toc)	Groundwater Elevation (ft msl)	Depth to Water (ft toc)	Groundwater Elevation (ft msl)								
									,				_		
MW-4	676.54	22.81	653.73	NM	NM	23.97	652.57	23.12	653.42	23.28	653.26	23.28	653.26	22.91	653.63
MW-7	659.08	13.55	645.53	14.17	644.91	13.53	645.55	14.36	644.72	13.71	645.37	14.61	644.47	13.23	645.85
MW-10	657.59	14.18	643.41	15.05	642.54	14.27	643.32	14.44	643.15	14.13	643.46	14.98	642.61	14.15	643.44
MW-11	657.29	12.73	644.56	13.95	643.34	13.01	644.28	13.16	644.13	12.68	644.61	13.71	643.58	12.62	644.67
MW-12	660.08	14.26	645.82	16.36	643.72	14.06	646.02	14.99	645.09	14.41	645.67	15.65	644.43	14.25	645.83
MW-13	664.89	14.98	649.91	16.12	648.77	14.18	650.71	15.08	649.81	14.84	650.05	15.53	649.36	11.34	653.55
MW-14	663.91	15.49	648.42	16.98	646.93	13.14	650.77	14.74	649.17	15.70	648.21	15.02	648.89	13.06	650.85
MW-15	661.85	16.41	645.44	17.85	644.00	16.26	645.59	17.21	644.64	16.67	645.18	17.55	644.30	15.31	646.54
MW-16	665.57	11.56	654.01	10.51	655.06	9.98	655.59	9.85	655.72	9.45	656.12	10.24	655.33	10.48	655.09
RW-1				17.98		16.21		15.95		12.32		17.31		16.84	
GAUGE1	659.97	15.69	644.28	NM	NM	19.10	640.87	18.85	641.12	18.85	641.12	20.01	639.96	18.91	641.06

Table 2 Analytical Data Results (MW-4) Johnstown MGP Site Johnstown, NY

		NYSDEC WQ Values											
CONSTITUENT	UNITS	WISDLC WQ Values	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/2014	4/16/2015
BTEX Compounds													
Benzene	ug/l	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m/p-Xylene	ug/l	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
o-Xylene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
PAHs													
Acenaphthene	ug/l	20	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U					
Acenaphthylene	ug/l	NC	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U					
Anthracene	ug/l	50	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U					
Benzo(a)anthracene	ug/l	0.002	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U					
Benzo(a)pyrene	ug/l	0.000	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U					
Benzo(b)fluoranthene	ug/l	0.002	0.47 U	0.48 U	0.47 U	0.26 J	0.49 U	0.49 U					
Benzo(g,h,i)perylene	ug/l	NC	0.47 U	0.48 U	0.47 U	0.19 J	0.49 U	0.49 U					
Benzo(k)fluoranthene	ug/l	0.002	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U					
Chrysene	ug/l	0.002	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U					
Dibenzo(a,h)anthracene	ug/l	NC	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U					
Fluoranthene	ug/l	50	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U					
Fluorene	ug/l	50	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U					
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U					
Naphthalene	ug/l	10	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U	0.49 U	3.2	3.2	2.2	2.2
Phenanthrene	ug/l	50	0.47 U	0.48 U	0.47 U	0.048 J	0.49 U	0.49 U					
Pyrene	ug/l	50	0.47 U	0.48 U	0.47 U	0.10 J	0.49 U	0.49 U					
Cyanide and Lead													
Lead	ug/l	25	5 U	3 U	3 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Cyanide	mg/l	0.2	0.01 U	0.01 U	0.01 U	0.01 UJ	0.010 U	0.010 U					

Notes:

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

J - Estimated

mg/l - Milligrams per liter

NC - No Criteria

PAHs - Polycyclic Aromatic Hydrocarbons

U - Not Detected

Table 2
Monitored Natural Attenuation/Water Quality Data Results (MW-4)
Johnstown MGP Site
Johnstown, NY

	Sample Date	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/2014	4/16/2015
CONSTITUENT	UNITS											
MNA/WQ Parameters												
Alkalinity (as CaCO3)	mg/l	R	R	405 J	431 J	R	405	354	442	398	400	384
Chloride	mg/l	265	385 B	288 J	R	228	222	275	411	304	329	295
Ethane	ug/l	1.5 U	7.5 U	7.5 U								
Ethene	ug/l	1.5 U	7 U	7 U	7 U	7 U	7 U	7 U				
Ferrous Iron	mg/l	R	0.1 U	0.013	0.1 U	0.1 U	0.1 U					
Manganese	mg/l	0.64 J	0.45 J	3 U	3.4	3 U	0.0087	3 U	3 U	3 U	3 U	3 U
Methane	ug/l	1 U	1 U	1 U	1 U	1 U	4 U	4 U	4 U	4 U	4 U	4 U
Nitrate	mg/l	2.7	2.9	2.4	3	3.1	2.2	2.4	3.5	3.6	2.7	2.9
Nitrogen	mg/l	0.2 U	0.2 U	R	0.2 U	0.2 U	0.25	0.31	0.31	0.2 U	0.2 U	0.2 U
Sulfate	mg/l	56.7	74.2 B	R	R	56 B	62.2	64.7	74.7	70.7	50.8	60
Sulfide	mg/l	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

B - Present in Associated Blank Sample

J - Estimated Concentration

mg/l - Milligrams per liter

NA - Not analyzed

R - Rejected

U - Not Detected

Table 2 Analytical Data Results (MW-7) Johnstown MGP Site Johnstown, NY

CONSTITUENT	UNITS	NYSDEC WQ Values	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/2014	4/16/2015
BTEX Compounds			0 .7 0 07 ==	33, 2 ., 22		,,	00/ = 1/ ==	10,00,11	0 1/ 20/ 20	10,00,10	0 1, 00, 2 1	20, 20, 202 :	., _ 0, _ 0 _ 0
Benzene	ug/l	1	1 U	0.72 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m/p-Xylene	ug/l	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
o-Xylene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
PAHs	<u> </u>												
Acenaphthene	ug/l	20	0.50 U	0.48 U	0.48 U	0.55	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U
Acenaphthylene	ug/l	NC	0.50 U	0.48 U	0.48 U	0.20 J	0.13 J	0.13 J	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U
Anthracene	ug/l	50	0.50 U	0.48 U	0.48 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U
Benzo(a)anthracene	ug/l	0.002	0.50 U	0.48 U	0.48 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U
Benzo(a)pyrene	ug/l	0.000	0.50 U	0.48 U	0.48 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U
Benzo(b)fluoranthene	ug/l	0.002	0.50 U	0.48 U	0.48 U	0.15 J	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U
Benzo(g,h,i)perylene	ug/l	NC	0.50 U	0.48 U	0.48 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U
Benzo(k)fluoranthene	ug/l	0.002	0.50 U	0.48 U	0.48 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U
Chrysene	ug/l	0.002	0.50 U	0.48 U	0.48 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U
Dibenzo(a,h)anthracene	ug/l	NC	0.50 U	0.48 U	0.48 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U
Fluoranthene	ug/l	50	0.50 U	0.48 U	0.48 U	0.47 U	0.078 J	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U
Fluorene	ug/l	50	0.50 U	0.48 U	0.48 U	0.11 J	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.50 U	0.48 U	0.48 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U
Naphthalene	ug/l	10	0.50 U	0.48 U	0.48 U	0.47 U	1.1	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U
Phenanthrene	ug/l	50	0.50 U	0.48 U	0.48 U	0.097 J	0.12 J	0.48 U	0.49	0.48 U	0.48 U	0.46 U	0.46 U
Pyrene	ug/l	50	0.50 U	0.48 U	0.48 U	0.35 J	0.098 J	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U
Cyanide and Lead													
Lead	ug/l	25	5 U	3 U	19	12	3.2 J	19	33	7.1	7.1	0.010 U	0.010 U
Cyanide	mg/l	0.2	R	0.68 J	0.986	R	0.22	5.9	1.4	0.4	0.16	0.13	0.18

Notes:

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

J - Estimated Concentration

mg/l - Milligrams per liter

NC - No Criteria

PAHs - Polycyclic Aromatic Hydrocarbons

R - Rejected

U - Not Detected

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-7) Johnstown MGP Site Johnstown, NY

	Sample Date	04/07/11	06/15/11	10/12/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/2014	4/16/2015
CONSTITUENT	UNITS											
MNA/WQ Parameter	rs											
Alkalinity (as CaCO3)	mg/l	R	R	327 J	370 J	R	310	324	367	375	392	340
Chloride	mg/l	122	93.8 B	111 J	R	91.2	101	114	84	79	62.8	67.7
Ethane	ug/l	1.5 U	150 U	1.5 U	75 U	75 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U
Ethene	ug/l	1.5 U	150 U	1.5 U	75 U	75 U	7.0U	7.0U	7.0U	7.0U	7.0U	7.0U
Ferrous Iron	mg/l	R	1.7 J	0.83 J	R	0.1 U	0.37	0.1 U	0.25	6.24	0.1 U	0.1 U
Manganese	mg/l	0.67	0.62	0.66	0.94	0.51	0.96	1.1	1.1	0.564	0.49	0.49
Methane	ug/l	190	210	190	300	210	240	40	23	150	82	35
Nitrate	mg/l	0.05 U	0.02 U	0.05 U	0.05 U							
Nitrogen	mg/l	1.4	1.3	1.6	R	1.6	1.6	4.6	1.5	0.16	2	1.1
Sulfate	mg/l	745 B	611 B	R	R	674 B	509	654	518	540	457	442
Sulfide	mg/l	1 U	0.8 J	2.8	1 U	1 U	1.2	1.4	1.4	1.4	1	1 U

Notes:

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration

mg/l - Milligrams per liter

NA - Not analyzed

R - Rejected

U - Not Detected

Table 2 Analytical Data Results (MW-10) Johnstown MGP Site Johnstown, NY

		I								l			
CONSTITUENT	UNITS	NYSDEC WQ Values	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/2014	4/16/2015
BTEX Compounds													
Benzene	ug/l	1	1 U	7.1	1.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m/p-Xylene	ug/l	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
o-Xylene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
PAHs													
Acenaphthene	ug/l	20	1.8 J	2.4	2.3	0.099 J	1.4	2	2.2	1.1	0.8	0.48 U	0.63
Acenaphthylene	ug/l	NC	0.24 J	0.42 J	0.74 J	0.13 J	0.14 J	0.48 U	0.50 U				
Anthracene	ug/l	50	0.47 U	0.47 U	0.28 J	0.47 U	0.48 U	0.50 U					
Benzo(a)anthracene	ug/l	0.002	0.47 U	0.47 U	1	0.47 U	0.49 B	0.48 U	0.50 U				
Benzo(a)pyrene	ug/l	0.002	0.47 U	0.47 U	0.81	0.47 U	0.19 J	0.48 U	0.55	0.48 U	0.48 U	0.48 U	0.50 U
Benzo(b)fluoranthene	ug/l	0.002	0.47 U	0.47 U	0.8	0.47 U	0.24 J	0.48 U	0.86	0.48 U	0.48 U	0.48 U	0.50 U
Benzo(g,h,i)perylene	ug/l	NC	0.47 U	0.47 U	0.37 J	0.47 U	0.08 J	0.48 U	0.50 U				
Benzo(k)fluoranthene	ug/l	0.002	0.47 U	0.47 U	0.53	0.47 U	0.18 J	0.48 U	0.50 U				
Chrysene	ug/l	0.002	0.47 U	0.47 U	0.91	0.47 U	0.48 U	0.50 U					
Dibenzo(a,h)anthracene	ug/l	NC	0.47 U	0.47 U	0.11 J	0.47 U	0.48 U	0.48 U	1.1	0.48 U	0.48 U	0.48 U	0.50 U
Fluoranthene	ug/l	50	0.085 J	0.47 U	1.5	0.47 U	0.34 J	0.48 U	0.50 U				
Fluorene	ug/l	50	0.47 U	0.47 U	0.49 U	0.47 U	0.48 U	0.50 U					
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.47 U	0.47 U	0.34 J	0.47 U	0.076 J	0.48 U	0.50 U				
Naphthalene	ug/l	10	0.47 U	0.47 U	0.49 U	0.47 U	0.48 U	0.7	0.7	0.48 U	0.48 U	0.48 U	0.50 U
Phenanthrene	ug/l	50	0.47 U	0.47 U	0.53	0.10 J	0.18 J	0.48 U	0.50 U				
Pyrene	ug/l	50	0.15 J	0.57 U	1.8	0.14 J	0.41 J	0.48 U	0.50 U				
Cyanide and Lead													
Lead	mg/l	25	5 U	3 U	9.1	3.9 J	6.4	5 U	8.4	5 U	5 U	5 U	0.010 U
Cyanide	mg/l	0.2	R	0.17 J	0.156	R	0.078	0.14	0.1	0.11	0.081	0.10	0.098

Notes:

B - Present in Associated Blank Sample

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

J - Estimated Concentration

mg/l - Milligrams per liter

NC - No Criteria

PAHs - Polycyclic Aromatic Hydrocarbons

R - Rejected

U - Not Detected

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-10) Johnstown MGP Site Johnstown, NY

	Sample Date	04/06/11	06/14/11	10/11/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/2014	4/16/2015
CONSTITUENT	UNITS											
MNA/WQ Paramete	rs											
Alkalinity (as CaCO3)	mg/l	R	R	523 J	541 J	R	589	584	552	566	548	512
Chloride	mg/l	181 B	160 B	156 J	R	147	316	286	265	470	664	698
Ethane	ug/l	1.5 U	7.5 U	1.5 U	1.5 U	1.5 U	7.5 U	7.5 U				
Ethene	ug/l	1.5 U	7.5 U	1.5 U	1.5 U	1.5 U	7.0 U	7.0 U				
Ferrous Iron	mg/l	R	0.34 J	0.47	0.1 U	R	0.10 U	0.10 U	0.12	6.06	0.10 U	0.10 U
Manganese	mg/l	1.2	0.95	0.88	0.58	0.83	1	1.2	0.75	1.07	1.3	1.3
Methane	ug/l	34	9.8	33	85	40	72	32	28	110	130	63
Nitrate	mg/l	0.05 U	0.05 U									
Nitrogen	mg/l	8.5	4.9	4.9	R	5.4	5.7	6.1	4.1	4.8	6.2	5.6
Sulfate	mg/l	306	296 B	R	R	238 B	175	174	171	153	89.7	167
Sulfide	mg/l	R	1 U J	0.8 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Notes:

B - Present in Associated Blank Sample

mg/I - Milligrams per liter

NA - Not analyzed

R - Rejected

U - Not Detected

Table 2 Analytical Data Results (MW-11) Johnstown MGP Site Johnstown, NY

CONSTITUENT	UNITS	NYSDEC WQ Values	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/2014	4/16/2015
BTEX Compounds													
Benzene	ug/l	1	2.8	13	18	15	7.9	12	3.5	8.1	10	22	7.3
Ethylbenzene	ug/l	5	1.9	6.9	6.1	5.5	3.5	1 U	1.2	3.8	5.1	7.8	3
m/p-Xylene	ug/l	5	2.2	5.3	2.4	2.1	1.4 J	2 U	2 U	2 U	2 U	2.1	2 U
o-Xylene	ug/l	5	1.1	3.1	2.0	2.0	1.2	1 U	1 U	1.6	2.1	2.6	1.5
Toluene	ug/l	5	1 U	1.4	0.97 J	0.99 J	0.69 J	1 U	1 U	1 U	1.1	1.9	1 U
PAHs													
Acenaphthene	ug/l	20	150	110	120	130	100	140 E	97	110	120	110	59
Acenaphthylene	ug/l	NC	290	290	240 D	270 D	210	160 E	120	170	110	150	56
Anthracene	ug/l	50	88	19 B	19	17	11	23	13	28	13	16	4.2
Benzo(a)anthracene	ug/l	0.002	35	6.2 B	2.7	3.0 B	5.2 B	3.8	0.002U	8.3	3.2	4.8	1.9
Benzo(a)pyrene	ug/l	0.002	34	5.7 B	2.8	2.5 B	2.3 J	2.7	3.3	8.5	2.8	4.7	0.84
Benzo(b)fluoranthene	ug/l	0.002	24	4.8 B	1.9	2.1	1.8 J	1.7	0.002U	0.002U	0.002U	4.6	0.68
Benzo(g,h,i)perylene	ug/l	NC	20	4.0 B	1.4	1.7	1.3 J	1	1	3.4	0.002U	1.8	0.002U
Benzo(k)fluoranthene	ug/l	0.002	12	2.5 B	1	0.78	1.2 J	1.6	0.002U	0.002U	0.002U	2.1	0.002U
Chrysene	ug/l	0.002	43	8.1 B	3.3	3.5 B	5.1 U	3.4	4.4	10	5.4	7.6	0.99
Dibenzo(a,h)anthracene	ug/l	NC	3.2	2.4 U	0.30 J	0.59	5.1 U	0.47 U	0.47 U				
Fluoranthene	ug/l	50	96	22 B	20	16	12	24	14	28	12	16	5.4
Fluorene	ug/l	50	130	72	79	83	62	92	62	70	31	44	16
Indeno(1,2,3-cd)pyrene	ug/l	0.002	13	2.8 B	0.96	1.0 B	0.69 J	1.6	0.002U	0.002U	0.002U	1.2	0.002U
Naphthalene	ug/l	10	300	480	310 D	230 D	140	110	50	87	10U	51	2.3
Phenanthrene	ug/l	50	260	52 B	140 D	130	91	170	80	130	5.8	62	1.5
Pyrene	ug/l	50	150	28 B	21	21	16	28	18	34	17	20	4.2
Cyanide and Lead													
Lead	ug/l	25	40	7.6	12	5 U	4.6 J	5 U	5 U	5.9	5U	0.014	5U
Cyanide	mg/l	0.2	R	0.015 J	0.021	0.01 UJ	0.012	0.010 U	0.010 U	0.010 U	0.018	0.021	0.012

Notes:

B - Present in Associated Blank Sample

D - From a Diluted Sample

J - Estimated Concentration

NC - No Criteria

R - Rejected

U - Not Detected

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

PAHs - Polycyclic Aromatic Hydrocarbons

mg/l - Milligrams per liter

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-11) Johnstown MGP Site Johnstown, NY

	Sample Date	04/07/11	06/15/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/2014	4/16/2015
CONSTITUENT	UNITS											
MNA/WQ Paramete	rs											
Alkalinity (as CaCO3)	mg/l	R	R	518 J	536 J	R	623	507	573	465	457	428
Chloride	mg/l	345	414 B	514 J	R	321	350	202	295	454	364	314
Ethane	ug/l	1.5 U	1.5 U	1.5 U	15 U	15 U	380 U	380 U	380 U	380 U	7.5 U	7.5 U
Ethene	ug/l	1.5 U	1.5 U	1.5 U	15 U	15 U	350 U	350 U	350 U	350 U	7.0 U	7.0 U
Ferrous Iron	mg/l	R	9.4 J	0.9 J	R	0.1 U	0.5	0.18	0.22	0.29	0.1U	0.1U
Manganese	mg/l	0.94	0.45	0.69	0.66	0.47	0.95	0.95	0.55	0.56	0.56	0.25
Methane	ug/l	4.8	68	190	360	160	520	12	25	120	180	13
Nitrate	mg/l	0.13	0.05 U	0.05 U	0.05 U	0.092	0.050 U	0.79	0.32	0.32	0.059	0.28
Nitrogen	mg/l	1.3	0.59	1.3	R	1.3	1.4	0.58	0.64	0.57	1.2	0.26
Sulfate	mg/l	126 B	65.1 B	R	R	8.5 B	16.9	112	94.1	58	44.3	82.9
Sulfide	mg/l	0.8 J	0.8 J	1.6	1 U	1 U	1 U	1 U	1 U	1 U	1.8	1 U

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration
- mg/l Milligrams per liter
- NA Not analyzed
- R Rejected
- U Not Detected
- ug/l Micrograms per liter

Table 2 Analytical Data Results (MW-12) Johnstown MGP Site Johnstown, NY

	1	1		1	1	I	1	1	1
CONSTITUENT	UNITS	NYSDEC WQ Values	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/2014	4/16/2015
BTEX Compounds									
Benzene	ug/l	1	1 U	2.1	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m/p-Xylene	ug/l	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U
o-Xylene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
PAHs									
Acenaphthene	ug/l	20	0.52 U	14	0.2 U	1.1	1.1	0.48 U	0.48 U
Acenaphthylene	ug/l	NC	0.18 J	100	0.2 U	0.2 U	0.2 U	0.63	0.2 U
Anthracene	ug/l	50	0.13 J	2.8	0.2 U	1.1	1.1	0.88	0.2 U
Benzo(a)anthracene	ug/l	0.002	0.57 B	1.5	0.83	3	0.66	1.5	0.49 U
Benzo(a)pyrene	ug/l	0.002	0.35 J	1.5	1	3.6	0.92	1.8	0.49 U
Benzo(b)fluoranthene	ug/l	0.002	0.27 J	1.3	0.91	3.4	0.71	2.1	0.49 U
Benzo(g,h,i)perylene	ug/l	NC	0.27 J	0.62	0.49 U	0.49 U	0.51	0.74	0.49 U
Benzo(k)fluoranthene	ug/l	0.002	0.38 J	0.58	0.49 U	0.83	0.49 U	0.74	0.49 U
Chrysene	ug/l	0.002	0.60 B	1.1	1	3	0.49 U	1.6	0.49 U
Dibenzo(a,h)anthracene	ug/l	NC	0.52 U	0.48 U	0.49 U				
Fluoranthene	ug/l	50	0.41 J	3.4	1.4	4.3	0.87	2.00	0.49 U
Fluorene	ug/l	50	0.52 U	2.2	0.49 U	0.49 U	0.49 U	0.48 U	0.49 U
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.13 J	0.97	0.49 U	1.2	0.49 U	0.51	0.49 U
Naphthalene	ug/l	10	0.52 U	160 E	2.5	0.99	0.52 U	1.6	0.49 U
Phenanthrene	ug/l	50	0.48 J	7.6	1.1	3.6	0.61	2	0.49 U
Pyrene	ug/l	50	0.59	4.2	2.4	5.8	1.3	2.8	0.49 U
Cyanide and Lead									
Lead	ug/l	25	5 U	5 U	5 U	29	5 U	0.018	0.49 U
Cyanide	mg/l	0.2	0.0062 J	0.010 U	0.010 U	0.010 U	0.010 U	0.013	0.49 U

- B Present in Associated Blank Sample
- J Estimated Concentration
- NC No Criteria
- U Not Detected
- BTEX Benzene, Ethylbenzene, Toluene and Xylene
- PAHs Polycyclic Aromatic Hydrocarbons

Table 2
Monitored Natural Attenuation/Water Quality Data Results (MW-12)
Johnstown MGP Site
Johnstown, NY

	Sample Date	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/2014	4/16/2015
CONSTITUENT	UNITS								
MNA/WQ Parameter	's								
Alkalinity (as CaCO3)	mg/l	478 J	R	434	391	415	329	414	368
Chloride	mg/l	R	129 B	468	123	662	150	493	139
Ethane	ug/l	1.5 U	1.5 U	7.5 U	7.5 U				
Ethene	ug/l	1.5 U	1.5 U	7 U	7 U	7 U	7 U	7 U	7 U
Ferrous Iron	mg/l	0.1 U	0.1 U	0.44	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Manganese	mg/l	0.16	0.12	0.52	0.19	2.1	0.36	1.2	0.16
Methane	ug/l	1.1	0.56 J	47	1 U	1 U	1 U	4 U	4 U
Nitrate	mg/l	6.2	3.2	0.05 U	2.5	4.8	1.4	3.7	1.4
Nitrogen	mg/l	R	0.19 J	0.29	0.24	2.4	0.44	0.61	0.61
Sulfate	mg/l	R	53.5 B	81.4	73.5	115	51.6	73.5	54.8
Sulfide	mg/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

- B Present in Associated Blank Sample
- J Estimated Concentration
- mg/l Milligrams per liter
- NA Not analyzed
- U Not Detected
- ug/I Micrograms per liter

Table 2
Analytical Data Results (MW-13)
Johnstown MGP Site

				1		Johnstown, NY		ı				ı	
CONSTITUENT	UNITS	NYSDEC WQ Values	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/2014	4/16/2015
BTEX Compounds			0.,00,==	55, = 1, ==		,	557 = 37 ==		0 1, 20, 20		- 1, - 2, -		-,, ==, ====
Benzene	ug/l	1	71	200	59	300	370	360	490	400	200	300	17
Ethylbenzene	ug/l	5	87	200	110	520	670	490	600	320	200	340	17
m/p-Xylene	ug/l	5	110	240	140	550	740	590	730	420	250	480	24
o-Xylene	ug/l	5	71	130	74	260	340	260	320	190	120	210	16
Toluene	ug/l	5	80	260	89	550	740	520 E	710	440	270	430	17
PAHs													
Acenaphthene	ug/l	20	17	46	60	76	82 J	170	130	77	71	130	4.9 U
Acenaphthylene	ug/l	NC	51	170	220 J	230 D	210	570	430	350	22	450	4.9 U
Anthracene	ug/l	50	3.6	12 B	15	15	97 U	47 U	47 U	47 U	6.9	14	4.9 U
Benzo(a)anthracene	ug/l	0.002	0.35 J	4.9 B	7.3 J	5.3 B	97 U	47 U	47 U	47 U	47 U	1.9	0.001 U
Benzo(a)pyrene	ug/l	0.000	0.13 J	4.1 B	10 U	5.3 B	97 U	47 U	47 U	47 U	47 U	1.6	0.001 U
Benzo(b)fluoranthene	ug/l	0.002	0.49 U	3.5 B	10 U	3.8	97 U	47 U	47 U	47 U	47 U	2.8	0.001 U
Benzo(g,h,i)perylene	ug/l	NC	0.49 U	2.5 B	10 U	3.8	97 U	47 U	47 U	47 U	47 U	0.6	0.001 U
Benzo(k)fluoranthene	ug/l	0.002	0.49 U	2.4 U	10 U	2.6	97 U	47 U	47 U	47 U	47 U	0.53	0.001 U
Chrysene	ug/l	0.002	0.26 J	3.6 B	5.5 J	4.9 B	97 U	47 U	47 U	47 U	47 U	1.8	0.001 U
Dibenzo(a,h)anthracene	ug/l	NC	0.49 U	2.4 U	10 U	0.79 B	97 U	47 U	47 U	47 U	47 U	0.47 U	0.001 U
Fluoranthene	ug/l	50	2.6	12 B	16	14	97 U	47 U	47 U	47 U	6.1	8.2	4.9 U
Fluorene	ug/l	50	18	48	52 J	53	37 J	110	93	68	30	94 J	4.9 U
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.49 U	2.4 U	10 U	2.3 B	97 U	47 U	47 U	47 U	47 U	0.48	0.001 U
Naphthalene	ug/l	10	250 D	1600 D	2900 D	5000 D	4100	8200	7100	3700	10U	4200	4.9 U
Phenanthrene	ug/l	50	7.2	44 B	60	55	44 J	76	73	61	50U	70	4.9 U
Pyrene	ug/l	50	2.9	14 B	19	17	97 U	47 U	47 U	47 U	7.2	9.7	4.9 U
Cyanide and Lead													
Lead	ug/l	25	5 U	15 J	27	9.2	5.8	5 U	7.8	5 U	5 U	5 U	4.9 U
Cyanide	mg/l	0.2	R	0.42 J	0.235	R	0.33	0.39	0.32	0.26	0.17	0.24	0.11

B - Present in Associated Blank Sample

D - From a Diluted Sample

J - Estimated Concentration

NC - No Criteria

R - Rejected

U - Not Detected

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

PAHs - Polycyclic Aromatic Hydrocarbons

mg/l - Milligrams per liter

Table 2
Monitored Natural Attenuation/Water Quality Data Results (MW-13)
Johnstown MGP Site
Johnstown, NY

Sai	mple Date	04/07/11	06/15/11	10/12/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/2014
CONSTITUENT	UNITS										
MNA/WQ Parameters											
Alkalinity (as CaCO3)	mg/l	R	R	455 J	165 J	R	158	218	187	176	255
Chloride	mg/l	29.1	18.6 B	5.9 J	R	20.5	21.6	20.4	7.3	9.2	17.3
Ethane	ug/l	1.5 U	15 U	1.5 UJ	15 U	15 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U
Ethene	ug/l	1.5 U	15 U	1.5 UJ	15 U	15 U	7.0 U	7.0 U	7.0 U	7.0 U	7.0 U
Ferrous Iron	mg/l	R	0.1 UJ	3.1 J	0.08 J	0.1 U	0.12	0.1 U	0.1 U	0.1 U	0.1 U
Manganese	mg/l	0.12	0.077	0.83	0.16	0.096	0.092	0.11	0.088	0.14	0.031
Methane	ug/l	32	46	28 J	72	66	120	36	15	74	4.0 U
Nitrate	mg/l	0.05 U									
Nitrogen	mg/l	1.1	1.3	2 U	R	1.4	1.4	1.8	1.2	2.1	0.62
Sulfate	mg/l	5 U	3.3 JB	R	R	52.1 J	139	82.3	15.5	15.5	5.0 U
Sulfide	mg/l	1 U	3.2 J	1.2	R	R	1.2	1 U	1 U	1 U	1 U

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration
- mg/l Milligrams per liter
- NA Not analyzed
- R Rejected
- U Not Detected
- ug/I Micrograms per liter

Table 2 Analytical Data Results (MW-14) Johnstown MGP Site Johnstown, NY

	1	ı		1		1			I		1	T 1	
		NYSDEC WQ Values											
CONSTITUENT	UNITS	WISDLE WQ Values	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/2014	4/16/2015
BTEX Compounds											, ,		, ,
Benzene	ug/l	1	1 U	2.5	11	2.5	2.9	1 U	1 U	1.3	1 U	1 U	1 U
Ethylbenzene	ug/l	5	1 U	1 U	1 U	1 U	1.3	1 U	1 U	1 U	1 U	1 U	1 U
m/p-Xylene	ug/l	5	2 U	2 U	2 U	2 U	2.4	2 U	2 U	2 U	2 U	2 U	2 U
o-Xylene	ug/l	5	1 U	1 U	1 U	1 U	2.2	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
PAHs													
Acenaphthene	ug/l	20	0.47 U	0.47 U	1.2	0.82	5.1	1.4	0.48 U	2.2	0.5	2.00	0.47 U
Acenaphthylene	ug/l	NC	0.47 U	0.47 U	3	1.3	9	1.9	0.48 U	2.5	0.48 U	2.9	0.47 U
Anthracene	ug/l	50	0.47 U	0.47 U	0.50 U	0.18 J	0.5	0.48 U	0.48 U	0.48 U	0.48 U	0.5	0.47 U
Benzo(a)anthracene	ug/l	0.002	0.47 U	0.47 U	0.29 J	0.91 B	0.50 U	0.48 U	0.48 U	0.62	1	1.9	0.47 U
Benzo(a)pyrene	ug/l	0.002	0.47 U	0.47 U	0.15 J	0.90 B	0.12 J	0.48 U	0.48 U	0.65	1.3	2.4	0.47 U
Benzo(b)fluoranthene	ug/l	0.002	0.47 U	0.47 U	0.50 U	0.78	0.50 U	0.48 U	0.48 U	0.79	1.2	3.8	0.47 U
Benzo(g,h,i)perylene	ug/l	NC	0.47 U	0.47 U	0.50 U	0.70	0.09 J	0.48 U	0.48 U	0.48 U	0.95	1.3	0.47 U
Benzo(k)fluoranthene	ug/l	0.002	0.47 U	0.47 U	0.50 U	0.57	0.17 J	0.48 U	0.48 U	0.48 U	0.83	1.1	0.47 U
Chrysene	ug/l	0.002	0.47 U	0.47 U	0.19 J	0.85	0.50 U	0.48 U	0.48 U	0.69	1.2	2.1	0.47 U
Dibenzo(a,h)anthracene	ug/l	NC	0.47 U	0.47 U	0.50 U	0.50 U	0.50 U	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.47 U
Fluoranthene	ug/l	50	0.081 J	0.47 U	0.32 J	1.5	0.61	0.59	0.48 U	1.2	1.5	3.2	0.47 U
Fluorene	ug/l	50	0.47 U	0.47 U	0.50 U	0.17 J	0.35 J	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.47 U
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.47 U	0.47 U	0.50 U	0.50 U	0.054 J	0.48 U	0.48 U	0.48 U	0.63	0.95	0.47 U
Naphthalene	ug/l	10	0.47 U	0.47 U	1.3	0.50 U	1.2	0.48 U	1.7	0.48	0.48 U	1.1	0.47 U
Phenanthrene	ug/l	50	0.47 U	0.47 U	0.25 J	0.66	1.1	0.48 U	0.48 U	0.67	0.63	1.4	0.47 U
Pyrene	ug/l	50	0.098 J	0.52 U	0.39 J	2.2	0.7	0.76	0.48 U	1.5	2.4	5.0	0.47 U
Cyanide and Lead													
Lead	ug/l	25	5 U	4.2 J	4.8 J	9.1	5.7	21	5 U	15	5 U	0.031	0.01 U
Cyanide	mg/l	0.2	R	0.11 J	0.114	R	0.28	1.4	0.1	0.2	0.9	0.2	0.091

Notes:

B - Present in Associated Blank Sample

D - From a Diluted Sample

J - Estimated Concentration

NC - No Criteria

R - Rejected

U - Not Detected

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

PAHs - Polycyclic Aromatic Hydrocarbons

mg/l - Milligrams per liter

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-14) Johnstown MGP Site Johnstown, NY

CONCTITUENT	Sample Date	04/07/11	06/15/11	10/12/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/2014
CONSTITUENT	UNITS										
MNA/WQ Paramete	ers										
Alkalinity (as CaCO3)	mg/l	R	R	410	453 J	R	494	417	456	483	372
Chloride	mg/l	6.1	9.7 B	5.1	R	12.8	40.4	2	7.6	28.5	3.9
Ethane	ug/l	1.5 U	7.5 U								
Ethene	ug/l	1.5 U	7 U	7 U	7 U	7 U	7 U				
Ferrous Iron	mg/l	R	0.11 J	0.1 U	R	0.1 U	0.17	0.1 U	0.1 U	0.1 U	0.1 U
Manganese	mg/l	0.054	0.17	0.2	0.28	0.51	2	0.008	0.25	1	0.019
Methane	ug/l	1 U	6.2	46	15	70	140	1 U	8.6	140	4.0 U
Nitrate	mg/l	0.71	0.19	0.086	0.023 J	0.05 U	0.05 U	0.8	0.05 U	0.05 U	0.87
Nitrogen	mg/l	0.85	0.32	0.36	R	0.86	2.5	0.54	0.68	1.5	0.22
Sulfate	mg/l	5 U	19.6 B	5.6 JB	R	173 B	639	5 U	5 U	363	5.0 U
Sulfide	mg/l	1 U	1 UJ	1 U	R	R	1 U	1 U	1 U	1 U	1 U

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration
- mg/l Milligrams per liter
- NA Not analyzed
- R Rejected
- U Not Detected
- ug/I Micrograms per liter

Table 2 Analytical Data Results (MW-15) Johnstown MGP Site Johnstown, NY

							1	1			1		
		NYSDEC WQ Values											
CONSTITUENT	UNITS		04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/2014	4/16/2015
BTEX Compounds													
Benzene	ug/l	1	940 D	1300 D	670	790 D	1500 D	1100 E	410	390	210	300	16
Ethylbenzene	ug/l	5	190 D	210 D	120	190 D	220	200	75	53	38	74	1.9
m/p-Xylene	ug/l	5	17	18	19 J	9	6.6 J	23	19	5 U	5 U	10 U	3.2
o-Xylene	ug/l	5	44	48	37	38	27	23	19	16	8.5	28	7.5
Toluene	ug/l	5	6.1	4.7	10 U	6.3	6.2 J	5	5 U	5 U	5 U	5.8	1 U
PAHs													
Acenaphthene	ug/l	20	47	32	47	50	47	57	42	23	18	24	6.7
Acenaphthylene	ug/l	NC	24	17	22	19	12	16	11	6.5	3	3.9	0.59
Anthracene	ug/l	50	2.1	1.3 B	2.4	2	1.5 J	2.8	2.6	1.4	0.95	0.81	0.49 U
Benzo(a)anthracene	ug/l	0.002	0.38 J	0.48 U	0.21 J	0.54 U	4.7 U	0.58 U	0.96	0.59	0.58 U	0.48 U	0.49 U
Benzo(a)pyrene	ug/l	0.000	0.2 J	0.48 U	0.49 U	0.54 U	4.7 U	0.58 U	0.96	0.59	0.58 U	0.48 U	0.49 U
Benzo(b)fluoranthene	ug/l	0.002	0.27 J	0.48 U	0.49 U	0.16 J	4.7 U	0.58 U	0.85	0.62	0.58 U	0.72	0.49 U
Benzo(g,h,i)perylene	ug/l	NC	0.49 U	0.48 U	0.49 U	0.54 U	4.7 U	0.58 U	0.58 U	0.58 U	0.58 U	0.48 U	0.49 U
Benzo(k)fluoranthene	ug/l	0.002	0.49 U	0.48 U	0.49 U	0.54 U	4.7 U	0.58 U	0.72	0.58 U	0.58 U	0.48 U	0.49 U
Chrysene	ug/l	0.002	0.23 J	0.48 U	0.16 J	0.54 U	4.7 U	0.58 U	1.2	0.59	0.58 U	0.48 U	0.49 U
Dibenzo(a,h)anthracene	ug/l	NC	0.49 U	0.48 U	0.49 U	0.54 U	4.7 U	0.58 U	0.58 U	0.58 U	0.58 U	0.48 U	0.49 U
Fluoranthene	ug/l	50	1.8	1.2 B	1.7	1.7	1.3 J	2.6	3.3	1.7	1.1	0.93	0.49 U
Fluorene	ug/l	50	13	8.7	14	13	10	17	13	6.1	4.3	5.2	1.2
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.49 U	0.48 U	0.49 U	0.54 U	4.7 U	0.58 U	0.58 U	0.58 U	0.58 U	0.48 U	0.49 U
Naphthalene	ug/l	10	560 D	450 D	570 D	140 D	51	27	94	13	29	210	1.5
Phenanthrene	ug/l	50	8	6.7 B	13	11	8.8	12	10	5.1	3.4	3.7	0.49 U
Pyrene	ug/l	50	2.2	1.2 B	1.6	1.8	1.5 J	2.9	3.7	2	1.5	1.1	0.49 U
Cyanide and Lead													
Lead	ug/l	25	5 U	7.8	5.1	5 U	5 U	5 U	10	5 U	5 U	0.010	0.010
Cyanide	mg/l	0.2	R	0.61 J	0.427	R	0.91	1.2	0.5	0.5	0.48	0.58	0.29

Notes:

B - Present in Associated Blank Sample

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

D - From a Diluted Sample

J - Estimated Concentration

mg/l - Milligrams per liter

NC - No Criteria

PAHs - Polycyclic Aromatic Hydrocarbons

R - Rejected

U - Not Detected

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-15) Johnstown MGP Site Johnstown, NY

	Sample Date	04/07/11	06/15/11	10/12/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/2014	4/16/2015
CONSTITUENT	UNITS											
MNA/WQ Paramete	ers											
Alkalinity (as CaCO3)	mg/l	R	R	502 J	547 J	R	629	527	585	482	557	480
Chloride	mg/l	22.8	43.3 B	28.5 J	R	68.2	70.6	39.4	42	44.5	44.2	14.2
Ethane	ug/l	2.9	300 U	300 U	300 U	300 U	380 U	380 U				
Ethene	ug/l	1.5 U	300 U	300 U	300 U	300 U	350 U	350 U				
Ferrous Iron	mg/l	R	0.51 J	0.47 J	0.13 J	R	0.1 U	0.15	0.18	0.1U	0.1U	0.1U
Manganese	mg/l	0.89	0.67	0.79	0.77	0.61	0.61	1	1.1	0.68	1	0.68
Methane	ug/l	680	360	720	1900	1600	1900	780	580	1100	2400	16
Nitrate	mg/l	0.05 U	0.28									
Nitrogen	mg/l	1.9	3.1	2.1	R	4.6	5.4	3	3.1	3.2	2.9	0.81
Sulfate	mg/l	137 B	193 B	R	R	202 B	217	113	139	122	91.1	28.7
Sulfide	mg/l	1 U	1 UJ	2.4	1 U	R	1 U	1 U	1 U	1 U	1 U	1 U

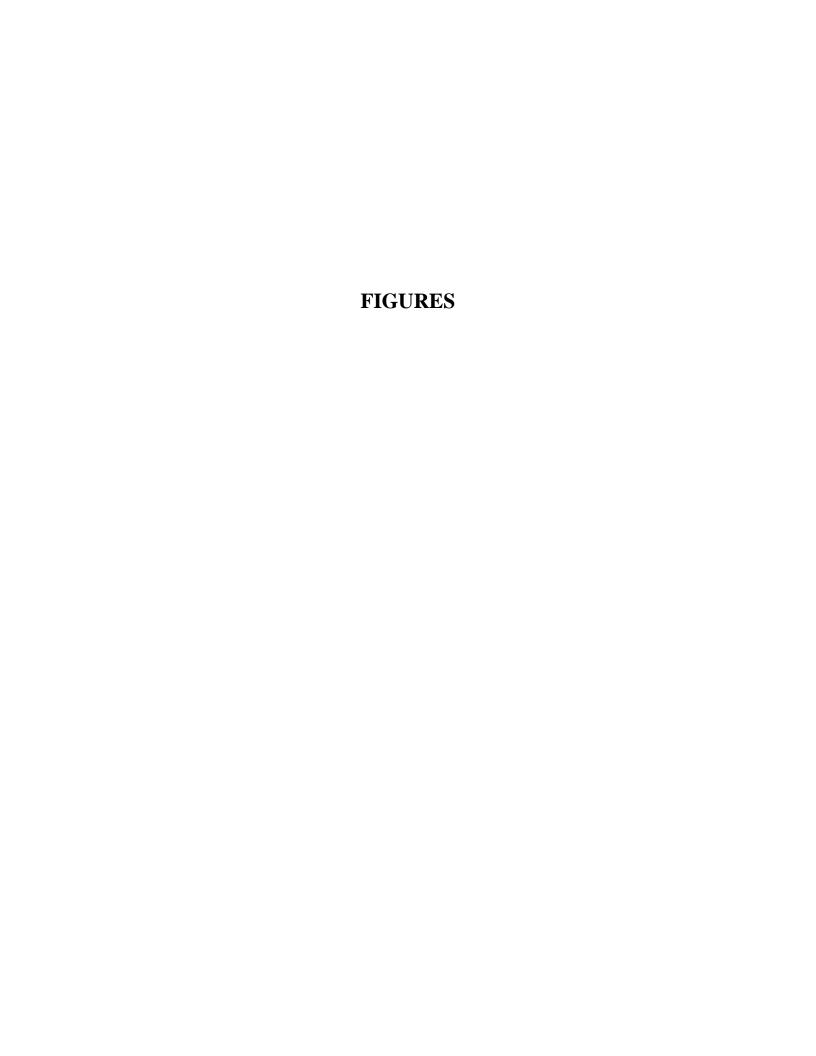
- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration
- mg/l Milligrams per liter
- NA Not analyzed
- R Rejected
- U Not Detected
- ug/l Micrograms per liter

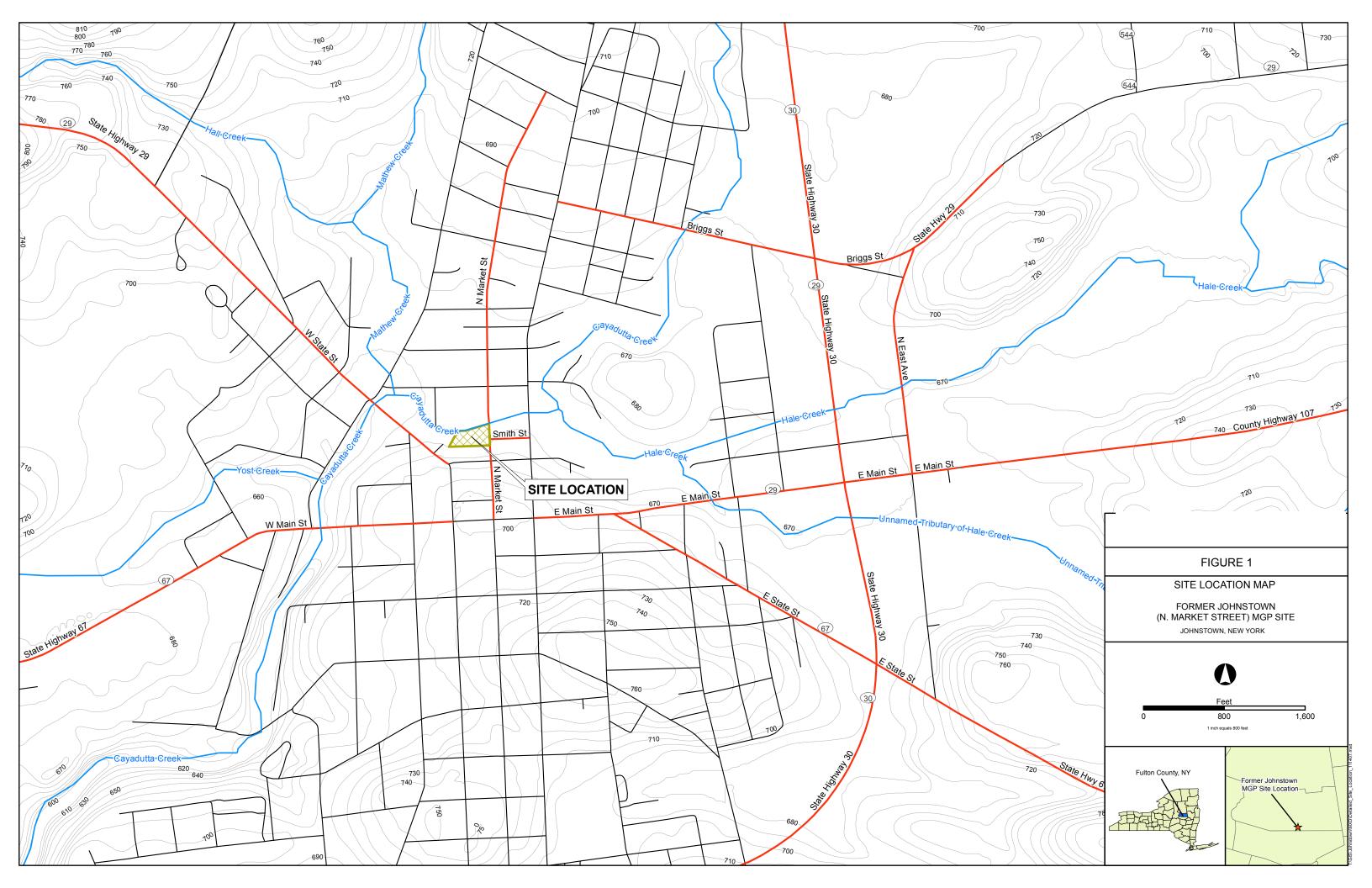
Table 2
Analytical Data Results (MW-16)
Johnstown MGP Site
Johnstown, NY

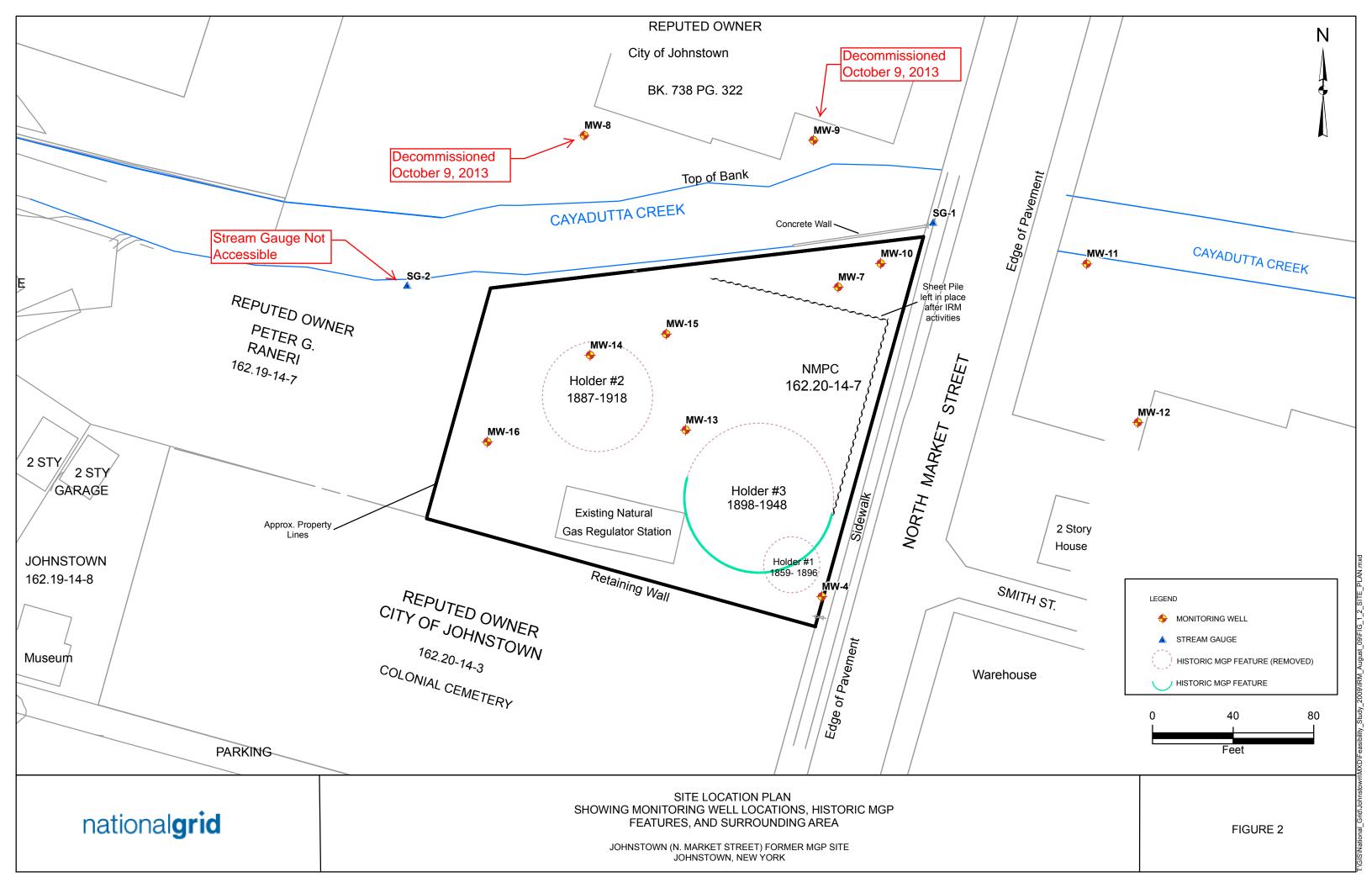
												<u> </u>	
CONSTITUENT	UNITS	NYSDEC WQ Values	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/2014	4/16/2015
BTEX Compounds													
Benzene	ug/l	1	150 D	100 D	17	140 D	150 D	180	200	150	8.7	59	91
Ethylbenzene	ug/l	5	92	51	5	78	66	100	150	92	6.2	41	68
m/p-Xylene	ug/l	5	47	27	2.8	29	26	14	41	23	1U	10 U	1U
o-Xylene	ug/l	5	41	27	3.6	36	37	14	56	35	1U	17	24
Toluene	ug/l	5	33	15	2	21	11	10 U	14	9	1U	17	1 U
PAHs													
Acenaphthene	ug/l	20	21	7	2.3	13	15	30	30	16	1U	40	27
Acenaphthylene	ug/l	NC	36	11	4.7	10	2.2	34	49	0.48 U	0.48 U	31	25
Anthracene	ug/l	50	2.3	0.97 B	0.20 J	1.4	1.2	1.6	2.8	0.48 U	0.48 U	2.8	1.8
Benzo(a)anthracene	ug/l	0.002	0.47 U	2.1 B	0.50 U	0.47 U	0.49 U	0.48 U	0.50U				
Benzo(a)pyrene	ug/l	0.000	0.47 U	2.3 B	0.50 U	0.47 U	0.49 U	0.48 U	0.50U				
Benzo(b)fluoranthene	ug/l	0.002	0.11 J	2.8 B	0.50 U	0.47 U	0.49 U	0.48 U	0.50U				
Benzo(g,h,i)perylene	ug/l	NC	0.47 U	1.8 B	0.50 U	0.47 U	0.49 U	0.48 U	0.50U				
Benzo(k)fluoranthene	ug/l	0.002	0.47 U	3.1 B	0.50 U	0.47 U	0.096 J	0.48 U	0.50U				
Chrysene	ug/l	0.002	0.47 U	2.7 B	0.50 U	0.47 U	0.49 U	0.48 U	0.50U				
Dibenzo(a,h)anthracene	ug/l	NC	0.47 U	1.4	0.50 U	0.47 U	0.49 U	0.48 U	0.50U				
Fluoranthene	ug/l	50	1.7	1.5 B	0.21 J	1.1	0.94	1.5	2	0.48 U	0.48 U	2.7	1.6
Fluorene	ug/l	50	16	4.7	1.3	8.8	13	17	21	9.1	0.48 U	22	14
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.47 U	1.7 B	0.50 U	0.47 U	0.49 U	0.48 U	0.50U				
Naphthalene	ug/l	10	220 D	0.47 U	26	0.47 U	0.49 U	2.4	230E	0.48 U	0.48 U	1.7	4.6
Phenanthrene	ug/l	50	13	4.8 B	1.1	6.7	6.3	11	15	0.48 U	0.48 U	18	11
Pyrene	ug/l	50	1.9	2.1 B	0.50 U	1.1	0.87	1.3	2	0.48 U	0.48 U	3	1.8
Cyanide and Lead													
Lead	ug/l	25	5 U	3 U	3 U	5 U	5 U	5 U	5 U	5 U	5 U	0.01U	0.01U
Cyanide	mg/l	0.2	R	0.25 J	0.137	R	0.34	0.41	0.11	0.11	0.023	0.25	0.24

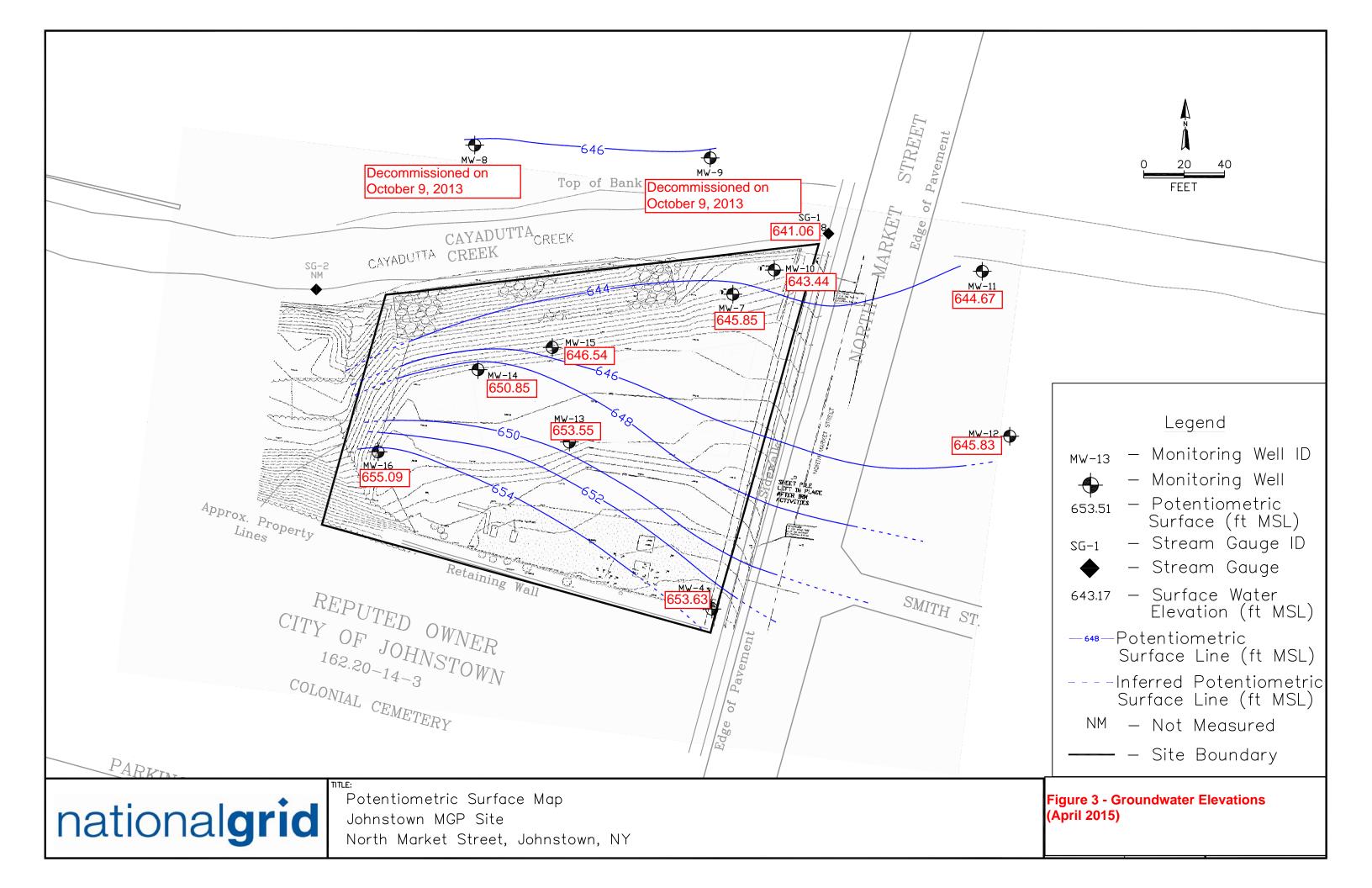
Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-16) Johnstown MGP Site Johnstown, NY

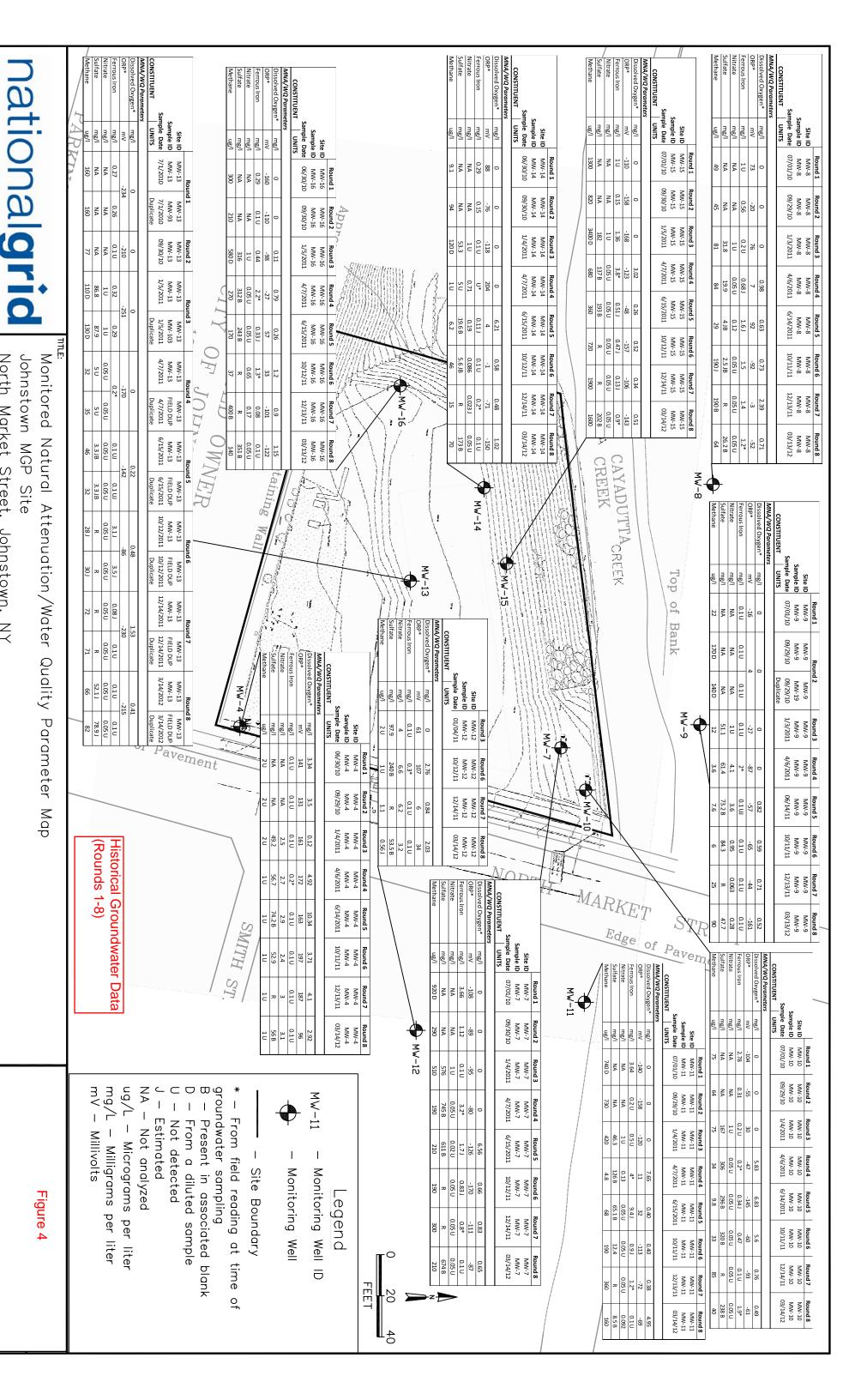
	Sample Date	04/07/11	06/15/11	10/12/11	12/13/11	03/13/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/2014	4/16/2015
CONSTITUENT	UNITS											
MNA/WQ Paramete	ers											
Alkalinity (as CaCO3)	mg/l	R	R	586 J	600 J	R	436	530	585	454	595	532
Chloride	mg/l	9.4	6.1 B	3.4 J	R	12.7	12.8	5.5	5.4	5	6.5	5.8
Ethane	ug/l	30 U	30 U	1.5 U	1.5 U	0.57 J	750 U	75U				
Ethene	ug/l	30 U	30 U	1.5 U	1.5 U	2.6	700 U	70U				
Ferrous Iron	mg/l	R	0.33 J	R	0.08	0.1 U	0.12	0.1 U	0.13	0.1 U	0.1 U	0.1 U
Manganese	mg/l	0.59	0.9	0.17	0.61	0.88	1.1	0.63	0.7	0.22	0.63	0.42
Methane	ug/l	270	170	37	400 B	140	550	170	150	75	410	160
Nitrate	mg/l	0.05 U	0.05 U	0.65	0.17	0.05 U	0.05 U	0.1	0.05 U	0.53	0.05 U	0.05 U
Nitrogen	mg/l	2.6	1.8	R	R	3.2	3.8	3.6	2.8	2.4	3.3	2.1
Sulfate	mg/l	312 B	243 B	R	R	351 B	487	140	86	1U	107	38.2
Sulfide	mg/l	1 U	1 UJ	0.8 J	1 U	R	1 U	1 U	1 U	1 U	1 U	1 U

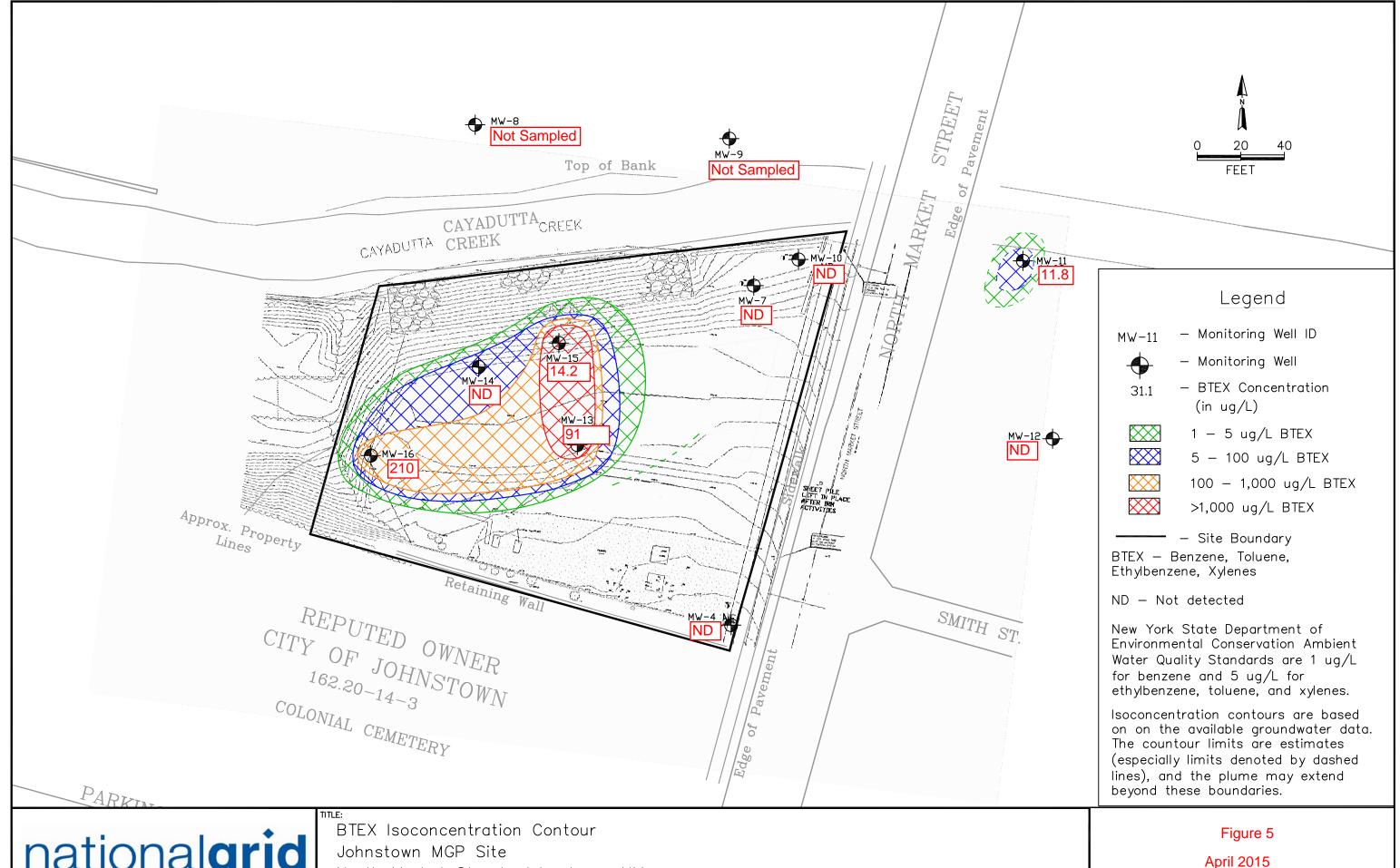

Notes:


- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration


mg/l - Milligrams per liter


- NA Not analyzed
- R Rejected
- U Not Detected


ug/I - Micrograms per liter



North

Market

Street,

Johnstown, NY

nationalgrid

North Market Street, Johnstown, NY

nationalgrid

North Market Street, Johnstown, NY

APPENDIX A FIELD DATA

Site Management Plan Inspection Form

109 North Market Street Johnstown, New York

Date: 4/16/2015
Technician: Rosenzweig

Time: 1300 Weather: Clear 65 °F

Vegetation Cap								
Condition of Grass	GOOD	FAIR	POOR	COMMENTS:				
Condition of Site Trees	NONE	MINOR	SIGNIFICANT	COMMENTS:				
Surface Erosion	NONE	MINOR	SIGNIFICANT	COMMENTS:				
Has the site been maintained/mowed?	YES		NO	COMMENTS:				

	Sheet Pile	e Wall	
Has any construction occurred that may have impacted the sheet pile wall?	YES	NO	COMMENTS:

	Site W	/ide	
Does the property continue to be used for commercial and/or industrial uses?	YES	NO	COMMENTS:
Does the use of groundwater for potable or process water continue to be restricted?	YES	NO	COMMENTS:
Are agricultural or vegetable gardens present on the property?	YES	NO	COMMENTS:
Do the Engineering Controls continue to perform as designed?	YES	NO	COMMENTS:
Do the Engineering Controls continue to be protective of human health and environment?	YES	NO	COMMENTS:
Are the requirements of the Site Management Plan being met?	YES	NO	COMMENTS:
Are the requirements of the Environmental Easement being met?	YES	NO	COMMENTS:
Since the last inspection has the groundwater been sampled in accordance with the SMP?	YES	NO	COMMENTS:
Since the last inspection have there been any changes to the remedial system?	YES	NO	COMMENTS:
Are there any needed changes?	YES	NO	COMMENTS:
Are the site records complete and up to date?	YES	NO	COMMENTS:

Miscellaneous								
Evidence of Trespassing	YES		NO	COMMENTS: Dog walking				
Litter	NONE	MINOR	SIGNIFICANT	COMMENTS:				

General Comments:

City has been piling snow up on property. Same as years past. Still some snow left.

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Chain of Custody Record

Phone (716) 691-2600 Fax (716) 691-7991

Amherst, · NY 1,4228-2298

10 Mazelwood Drive

TestAmerica Buffalo

0 - Asna02 P - Na2045 Q - Na2803 R - Na282803 S - H2804 T - TSP Dodecatyd Months Samble Disposal (A fee may be assessed if samples are retained longer than 1 month)
Return To Client Disposal By Lab Archive For Mon 480-64535-16327.1 reservation Codes Page 1 of 2 Job#: **医我说的话题 解解**原则 stenikinos to tedmuNikioT オーのーバ Method of Shipment 1500_FE_0 - Ferrous Iron saco - Alkalinity, Total **Analysis Requested** 353.2, 353.2 Mittite, D616, Mitrate_Calc, SM4500_C1_E IntoT ,abinayD - Estibe Special Instructions/QC Requirements: 260C - BTEX - 8260 becky, mason@testamericalnc.com (SK_176 - Methanofethanofethane Received by: 270D_LL_PAH - PAH tow toves Semivolation Lab PM: Mason, Becky C E-Mait: Water Water Water Water Water Water Water Company Radiological (C=comp, G=grab) Type 1290 180 B 135 Sample 345 7,49 Unknown (AT Requested (days): Oue Date Requested: PO#: 36380.105370 WO#: Project #: 48011229 SSOW#: Poison B Skin trritant eliverable Requested: I, II, III, IV, Other (specify Suite 3 ssible Hazard Identification Johnstown semî-annual GW eaumonttj@cdmsmith.com Empty Kit Relinquished by Address: 6800 Old Collamer Road Client Information ient Contact Imothy Béaumont Non-Hazard AW-13-0415 MS AW-13-0415 SD company: CDM Smith, Inc. East Syracuse NW-15-0415 elinquished by. F-18-0315 AW-13-0415 IW-14-0415 IW-16-0415 1W-10-0415 11011 WW-7-0415 A COLOR State, Zlp: NY, 13057

Chain of Custody Record

TestAmerica Buffalo

10 Hazetwood Drive

TestAmerica

Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Leb Archive For Mont Special Instructions/QC Requirements: COC No: 480-64535-16327.2 Ş Page 2 of 2 4-16-1 Method of Shipment 3200_FE_D - Ferrous Iron Analysis Requested 363.2, 363.2 Mithte, D516, Mitrate_Calc, SM4500_CI_E SM4600_52_F · Sulfide 3380C - STEX - 8560 E-Mait: becky.mason@testamericainc.com RSK_175 - MethenelEthanolEthono nMid9 aleteM - 20108 negoulM Idable() HatoT - S.186 Received by: BOILE LAND LL PAN - PAN TOWN SOUND LL Lab PM: Mason, Becky C 88K-116_CO2 - Carbon dloxide Water Water Water Radiological (C=comb, G=grab) Ϋ́ре 8 F Sample 27.50 Unknown Date AT Requested (days): Due Date Requested: Sample Date Po#: 36380.105370 Wo#: 1601 Project#: 48011229 SSOW#: Poison B Skin Imtant Deliverable Requested: I, II, III, IV, Other (specify) Amherst, NY 14228-2298 Phone (715) 691-2600 Fax (715) 691-7991 Potsible Hazard Identification 6800 Old Collamer Road Suite 3 Project Name: Johnstown semi-annual GW peaumonttj@cdmsmith.com Empty Kit Relinquished by Client Information mothy Beaumont CDM Smith, Inc. East Syracuse State, Zip: NY, 13057 FD-0415

of Custody Bocord

THE LEADER IN SNITHONIZENTAL TESTING

TestAmerica

Chain of Custody Record

Phone (716) 691-2600 Fax (716) 691-7991

Amherst, NY 14228-2298

10 Hazelwood Drive

TestAmerica Buffalo

0 - ASNAO2 P - Na204S Q - Na20503 R - Na20203 S - H2504 T - TSP Dodecatiydrats Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 morth) 480-64535-16327.1 S O Page 1 of 2 480-78711 Chain of Custody Archive For lethod of Shipment noti euotrof - C_BF_0086 Bisposal By Lab Analysis Requested 353.2, 363.2 Nitrite, D518, Nitrate_Calc, 8M4500_CI_E Cooler Temperature(s) °C and Other Remarks:... 60128 - Cyanide, Total M4600_S2_F - 8ulfide 9590C - BLEX - 9590 Special Instructions/QC Requi becky.mason@testamericainc.com BSK_176 - Methane/Ethane/Ethane Return To Client 151.2 - Total Kjeldahi Mitrogen BBT70D_LL_PAH • PAH tow level Semivolatiles Mason, Becky C 38K_176_CO2 - Carbon dloxide CDVC) Company Water Water Water Water Water Water Water Water Water Radiological (C=comb G=grab) Type 2 かる Ê Sample Time 100g Unknown Due Data Requested: PO #. 36380.105370 WO #. Sample Date Project#: 48011229 SSOW#: Poison B Skin Imitant eliverable Requested: I, II, III, IV, Other (specify) Custody Seal No.: Hammable Suite 3 afole Hazard Identification Johnstown semi-annual GW oeaumonttj@cdmsmith.com mpty Kit Relinquished by: 5800 Old Collamer Road Custody Seals Intact: Client Information Timothy Beaumont Non-Hazard MW-13-0415 MS MW-13-0415 SD CDM Smith, Inc. East Syracuse MW-14-0415 MW-15-0415 IW-10-0415 MW-11-0415 MW-12-0415 NY 40 0446 fW-16-0415 JW-4-0415 FW-7-04-6 State, Zp: NY, 13057

TestAmerica Buffalo

Chain of Custody Record

TestAmerica THE LEADER IN BATHFORMS

10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991

	Sampler:		Carrier Tracking No(s):	COC Na. 480-64535-16327.2
	Phone:	E-Mait.		Page:
it	-	becky.mason@testamericainc.com		Page 2 of 2
ոնք, յոշ.		Analysis Requested		Job #.
r Road Suite 3	Due Date Requestad:			Preservation Codes:
əsr	TAT Requested (days):	4000		H cetate
p: 3057			009PN	D - Nitic Acid P - Na2O4S E - NaHSO4 Q - Na2SO3
	Po#. 36380,105370	Jalovin	16 ₁ 0 s:	i Ior bic Acid
	WO未	ebi ne8 lev	//(G	1-fee U-Acetone J-Di Water V-MCAA
	Project #. 48011229	el wot lew	ion ron	EDA
	ssow#.	HA9 - PAH HA9 - PAH HAPH HAPH HAPH HAPH HAPH HAPH HAPH	toT, VI I eirom	Other
	Sample Sample Sample (C=Comp.	(* Tatrical Consideration of the consideration of t	63.2, 363.2,VIII 600, FE_D - Fo	التوسيدي
	Time Caylan		2	Special first details/Role:
1	+	Water		The state of the s
Tip Blank	1/2/15 - 6	Water AM		
	ļ	Water		THE PROPERTY OF THE PROPERTY O
	-/			
	/	1 6/44		
•				
	5	(-/4)		
	3		-	
				-
Possible Hazard Identification Non-Hazard Pearmable Skin Inflant Poison B	n B Unknown Radiological	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Mon	sed if samples are retained III Set Lab	d longer than 1 month) e For Months
ssted: i, II, III, IV, Other (specify)		Special Instructions/QC Requirements:		
Empty Kit Rejinquished by:	. Date:	Time:	Method of Shipment	
Reingesplei. Alleran	01.71 5/14/	SW	Date/Time: 1,-17-15	1310 Company
Refinquished by:	7-15 (SOU)	Company Received by: MMM	Date-Time De U	O(30 Company
>	Date/Time:		Date/Time:	Company
Custody Seals Infact: Custody Seal No.: Δ Yes Δ No		Cooler Temperature(s) 9C and Other Remarks:		7# 6

National Grid 109 North Market Street, Former MGP Site Johnstown, New York

Well ID	Sample?	Well Size?	DTW	DTP	DTB	Comments
RW-1	No	2"	16.84		21.50	
MW-4	Yes	2"	22.91		27.32	
MW-7	Yes	2"	13.23		22.10	
MW-10	Yes	2"	14.15		22.05	
MW-11	Yes	2"	12.62		22.90	
MW-12	Yes	2"	14.25		22.24	
MW-13	Yes	2"	11.34		22.75	MS/MSD
MW-14	Yes	2"	13.06		23.55	Duplicate Sample
MW-15	Yes	2"	15.31		23.00	
MW-16	Yes	2"	10.48		19.45	
Gauge-1 (bridge)	No		18.91			

DTW -depth to water
DTP -depth to product
DTB -depth to bottom
All from top of casing

109 North Market Street, Johns	town New York						
Sampling Personnel: Eric Ros	senzweig		Date: 4///7				
Job Number: 36380.105370			Weather: No. 7 340	_			
Well Id. MW-4			Time In: 8/5 Time Out:	_			
				— 1			
Depth to Water: Depth to Bottom: Depth to Product: Length of Water Column:	TOC (feet) 22.9/ (feet) 27.32 (feet) (feet) 4.44	Other	Well Type: Flushmount Stick-Up Well Locked: Yes Measuring Point Marked: Yes Well Material: PVC SS Other: Well Diameter: 1" 2" Other:				
Volume of Water in Well:	(gai) 0 1 11		Comments: No Shape Odor				
Three Well Volumes:	(gal) 1.(1)		Clear NO Shap (Odor	<u> </u>			
				_			
Purging Information Purging Method: Tubing/Bailer Material: Sampling Method: Average Pumping Rate: Duration of Pumping: Total Volume Removed: Horiba U-52 Water Quality Methods		Polyethyle	water 0.04 0.16 0.66 1.4 1 gallon=3.785L=3785mL=1337cu. fee	.7			

825 1	Temp (°C) 8.66 7.3/ 5.10 7.00 3.25 7.00 1.82 6.76 1.37 6.99 1.52 6.97	ORP (mV) 28 62 71 77 96	Conductivity Turbidity DO TDS (mS/cm) (NTU) (mg/L) (g/L) 1.58 28.7 7.66 1.00 1.67 3.3 4.71 1.06 1.66 6.8 3.67 1.06 1.57 41.4 3.30 1.00 1.56 1.3 3.46 0.77	_			
							
Sampling Information: EPA SW-846 Method 8270 EPA SW-846 Method 8260 EPA Method 610B EPA Method 9012A RSK_175_CO2 EPA Method 2320B EPA Method 351.2 SM 4500_S2_F SM_3500_FE_D RSK_175 D516 EPA Method 353.2 SM_4500_CI_E	SVOC PAH'S VOC'S BTEX LEAD MANGANESE TOTAL CYANID DISSOLVED CARBON I TOTAL ALKALINI TOTAL KJELDAHL NIT SULFIDE FERROUS IROI METHANE/ETHENE/E SULFATE NITRATE CHLORIDE	DIOXIDE TY ROGEN	2 - 250 ml amber Yes No				
Sample ID: MW-4-04 Sample Time: 850		Yes No Yes No No	Laboratory: Test America Amherst, New York	1			

109 North Warket Street, Sortis				11/11/2 h.	_		
Sampling Personnel: Eric Ro	senzweig		Date: 4//6/15				
Job Number: 36380.105370			vvediller.				
Well Id. MW-7			Time In: /3	05	Time Out:		
	·			<u> </u>			
Well Information	TOC	Other	Well Type:	Flushi	mount Sti	ck-Up	
Depth to Water:	(feet) 13.23		Well Locked	d:	Yes	No	
Depth to Bottom:	(feet) 22.10		Measuring Po	oint Marked: _	Yes X	No	
Depth to Product:	(feet)		Well Materia	al: PVC	X SS∭Oth∈	er:	
Length of Water Column:	(feet) 4.81		Well Diame	ter: 1"	2" \(\sum_\) Othe	er:	
Volume of Water in Well:	(gal) 1,42		Comments:			/	
Three Well Volumes:	(gal) 4-27		Clear	No She	en 1100°		
Three Well Volumes.	(gai) [1 D /				7/		
<u> </u>							
Purging Information		***					
Purging information					Conversion F	actors	
	Bailer Peristaltic	N/oll MErord	Dedicated Pump	7 1		4" ID 6" ID	
Purging Method:		Polyethyl		gal/ft.	1 15 2 15	1 1 1	
Tubing/Bailer Material:	Teflon Stainless St.			of water	0.04 0.16	0.66 1.47	
Sampling Method:	Bailer Peristaltic	Well Wizard	Dedicated Pump				
Average Pumping Rate: (ml/min) , 500			1 gallon	=3.785L=3785m	L=1337cu. teet	
Duration of Pumping:	(min) 30						
Total Volume Removed:	(gal) 4 Did	l well go dry?	Yes No 2	4			
Lie ille a Li EQ Mater Quality Mai	tor Llead? Vac	No					
Horiba U-52 Water Quality Me	ler Oseur Tes						
Time DTW	Temp pH	ORP	Conductivity	Turbidity	DO	TDS	
(feet)	(°C)	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)	
	6.75 7.33	~72~	1.32	766	3.99	19.29	
	4.73 7.10	- 7	1.32	63.1	0.21	12.84cm	
	6.80, 1,10	-100	1.31	6181	0.01	0.840	
	6.87 709	-/03	1.3/	37w	001	0.836	
1330 14.91		-103	1229	35.1	0.61	0.828	
12 75 15 09 1	2.07	-102	1,29	26.1	0.01	17.824	
13 95 15.09 1	7.05 7.10	100	17,21				
	·						
			 				
						<u> </u>	
		**-					
Sampling Information:							
EPA SW-846 Method 8270	SVOC PAH's		2	- 250 ml ambe		No□	
EPA SW-846 Method 8260	VOC's BTEX		<u> </u>	3 - 40 ml vials		N₀☐	
	LEAD		1	- 250 ml plasti	c Yes	⊠No∐	
EPA Method 610B	MANGANESE						
EPA Method 9012A	TOTAL CYANIC			- 250 ml plasti		No -	
RSK_175_CO2	DISSOLVED CARBON			3 - 40 ml vials		N ₀	
EPA Method 2320B	TOTAL ALKALIN			- 125 ml plast	ic Yes ic Yes	No H	
EPA Method 351.2	TOTAL KJELDAHL NIT	IROGEN		 250 ml plast 250 ml plast 		_	
SM 4500_S2_F	SULFIDE	NNI		- 250 mi piasi - 125 mi piast			
SM_3500_FE_D	FERROUS IRO METHANE/ETHENE/E			3 - 40 ml vials	Yes	No	
RSK_175	SULFATE		_	- 125 ml plast		No	
D516 EPA Method 353.2	NITRATE						
SM_4500_CI_E	CHLORIDE						
			Shi	ipped: Drop-o	ff Albany Servic	e Center	
Sample ID: MW-7-0	7)5 Duplicate?	Yes No No					
Sample Time: ブメリン	MS/MSD?	Yes No No		Laboratory:	Test An Amherst, N		
					MillielSt, I	ACAN LOLL	

				Date: 4/16/19				
Sampling Personnel:				Weather: Class & 55				
Job Number: 36380				Time In:		Time Out:		
Well Id. MW-1	<u>U</u>			THICH. 7	<i>X/ O</i>			
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								
Well Information	<u>n</u>	T00	Othor	Well Type:	Eluch	mount St	ick-Up	
	<u> </u>		Other	Well Locke		Yes	No No	
Depth to Water:	(feet)	14.15				Yes	No	
Depth to Bottom:	(feet)	22.05		-	oint Marked:			
Depth to Product:	(feet)	20		Well Mater		SS Oth		
Length of Water Col	(1004)	7.90		Well Diame			er	
Volume of Water in V		26		Comments	No The	/0/	1	
Three Well Volumes	s: (gal) 🔏	<u>.79 </u>		Clear	TOD TIME	Supple	<u> </u>	
								
				<u></u>		* ***		
Purging Informat	ion					Conversion F	cotors	
				ĸ		Conversion F	4" ID 6" ID	
Purging Method:	Bailer	Peristaltic		Dedicated Pump	9~	1" ID 2" ID	4 10 0 10	
Tubing/Bailer Materi	ial: Teflon	Stainless St.	Polyethyl		of	0.04	0 66 4 47	
Sampling Method:	Bailer	Peristaltic	Well Wizard	Dedicated Pump			0.66 1.47	
Average Pumping R	tate: (ml/min) ,	500			1 gallo	n=3.785L=3785m	L=1337cu. feet	
Duration of Pumping		30		, -	-A			
Total Volume Remo		<u> </u>	d well go dry?	Yes No	XĮ			
Lienika II 50 Motor	Quality Meter Used?	Ves	No□	/	7			
Houpa 0-25 Marei	Quality Meter Oseur	163					:	
				I			I TOC I	
Time D1	TW Temp	рН	ORP	Conductivity	Turbidity	DO "	TDS	
(fe	eet) (°C)	10	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)	
1215 19.	63 18:18	7.10	- EC	2.62	302	5.59	1.05	
1220 14.	98 17.60	7.03	-65	2.61	254	1.55	1.67	
1225 15	11 10.97	6.79	- 81	2.57	2.17	001	1.60	
1230 15	125 16:39	6.78	78	238	700	001	1.52	
1735 16	38 1578	692	-75	2.49	191	001	1.55	
1241 15	51 15,11	6.98	-71	2.41	125	0.01	1.54	
			F				<u> </u>	
Sampling Informati	ion:			***				
				,	250 ml amb	or Vas	No	
EPA SW-846 Method		SVOC PAH'S		4	2 - 250 mi amb			
EPA SW-846 Method	18260	LEAD		1	- 250 ml plast		No 🗆	
EPA Method 610B		MANGANESE			p			
EPA Method 9012A		TOTAL CYANIE		-	I - 250 ml plas		s⊠No□	
RSK_175_CO2	1	VED CARBON			3 - 40 ml vials	yes		
EPA Method 2320B	T	OTAL ALKALIN	IITY		i - 125 ml plas			
EPA Method 351.2	Li 77 Michied 20202		TROGEN		1 - 250 ml plas		No No	
SM 4500_S2_F		SULFIDE			1 - 250 ml plas		S No	
SM_3500_FE_D		FERROUS IRC	ON	•	1 - 125 ml plas 3 - 40 ml vials			
RSK_175	METH.	ANE/ETHENE/	EIMANE	٦.	3 - 40 mi vias 2 - 125 ml plas		s No	
D516		SULFATE NITRATE		•	2 - 120 III pias		~~	
EPA Method 353.2 SM_4500_CI_E		CHLORIDE		1				
[OW_4000_OI_r				- SI	nipped: Drop-	off Albany Servic	ce Center	
Sample ID: WWW	U-15-0419 D	uplicate?	Yes No					
Sample Time:		S/MSD?	Yes No No		Laboratory:	Test A		
	17					Amherst,	New York	

109 North Warket Street, Johns			Date: 4/19/15					
	senzweig		Date:					
Job Number: 36380.105370			Weather:	N.C.	117			
Well Id. MW-11			Time In:	1025	Time Out:			
Well Information		 -			N 24			
	TOC	Other	Well Type:	Flush	mount X Sti	ck-Up		
Depth to Water:	(feet) 12.62		Well Locke	ed:	Yes	No		
Depth to Bottom:	(feet) 22.90		Measuring P	oint Marked:	Yes 🔀	No		
Depth to Product:	(feet)		Well Mater	ial: PVC	SSOthe	er:		
Length of Water Column:	(feet) 10128		Well Diame	eter: 1"[2" \(\sum \) Othe	er:		
Volume of Water in Well:	(gal) 1, lay		Comments	. 1		_		
Three Well Volumes:	(gal) 4,93	.,,,,	CICAS	No Sh	en 10 dos	i		
THICO VVCH VOIGINGS.								
		***			×			
Purging Information								
			_		Conversion Fa			
Purging Method:	Bailer Peristaltic	Well Wizard	Dedicated Pump	gal/ft.	1" ID 2" ID	4" ID 6" ID		
Tubing/Bailer Material:	Teflon Stainless St.	Polyethyl		of				
Sampling Method:	Bailer Peristaltic		Dedicated Pump		0.04 0.16	0.66 1.47		
	ml/min) 1/500		. 2		n=3.785L=3785m	L=1337cu. feet		
	(min) 502							
Duration of Pumping: Total Volume Removed:		well go dry?	Yes No	\overline{D}_{I}				
			, co					
Horiba U-52 Water Quality Me	ter Used? Yes	No.						
Time DTW	Temp pH	ORP	Conductivity	Turbidity	DO	TDS		
(feet)	(°C)	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)		
1030 12.71 1	7.35 7.10	~ 79	147	369	7.12	1.04		
	5.42 0.29	184	165	7 F 7	10.39	1.00		
1 /0 / / /	4.22 696	-70	1,70	186	0,01	1.09		
1040 12.81 19	3.97 6.92	-69	167	120	0.01	1.08		
1045 12.89 1	383 6.88	-63	1/2	100	8.01	1.00		
1050 12.86 1	Y	-54	1.17	100	001	1.07		
1099 12.87 1	3.71 681	- 39	16/	100	100/			
					-			
			<u> </u>					
Sampling Information:								
EPA SW-846 Method 8270	SVOC PAH's		2	2 - 250 ml amb		N ₀ □		
EPA SW-846 Method 8260	VOC's BTEX		۹ .	3 - 40 ml vials		No H		
EPA Method 610B	LEAD		. 1	l - 250 ml plas	tic Yes	⊠no∐		
	MANGANESE		J	1 - 250 ml plas	tio . Ves	N₀□		
EPA Method 9012A	TOTAL CYANIC DISSOLVED CARBON			a - 250 mi pias 3 - 40 ml vials		No I		
RSK_175_CO2			,	1 - 125 ml plas	tic Yes	N ₀ □		
EPA Method 2320B EPA Method 351.2	PA Method 2320B TOTAL ALKALINITY PA Method 351.2 TOTAL KJELDAHL NITROGEN			1 - 250 ml plas	tic Yes			
SM 4500_S2_F	SULFIDE			1 - 250 ml plas	tic Yes	No		
SM 3500_FE_D	FERROUS IRO		•	1 - 125 ml plas	***	N ₀ □		
RSK_175	METHANE/ETHENE/E		_	3 - 40 ml vial:		N ₀		
D516	SULFATE		1	2 - 125 ml plas	tic Yes	No L		
EPA Method 353.2	NITRATE							
SM_4500_CI_E	CHLORIDE		ا ا	ninned: Dron-	off Albany Servic	e Center		
Sample 10: M19-11-1	W/ 5 Dunlicate?	Yes No No		inppout Diop-	J., 7 112011, OOI 210			
Sample ID: PMD-(1-0	24/5 Duplicate? MS/MSD?	Yes No	₹	Laboratory:	Test Ar			
Sample Time:	-	· L	7	,	Amherst, N	lew York		

109 North Market Street, Johns	town New York			· / · · · ·		
Sampling Personnel: Eric Rosenzweig			Date: 4/17 // 5			
Job Number: 36380.105370			Weather: Rain 240			
Well Id. MW-12			Time In:	15	Time Out:	
						
Well Information					K	<u></u>
	TOC	Other	Well Type:	Flush	mount 🔀 Sti	ck-Up
Depth to Water:	(feet) 14.25		Well Locke	d:	Yes	No
Depth to Bottom:	(feet) 22.24		Measuring P	oint Marked:	Yes X	No
Depth to Product:	(feet)		Well Mater	al: PVC	XSSOthe	r:
Length of Water Column:	(feet) 7,99		Well Diame	eter: 1"	2" XOthe	r:
Volume of Water in Well:	(gal) 1.28		Comments	<i>97</i> 1	1 10	1
Three Well Volumes:	(gal) 3. & c/		Clear	100 E	treen/Co	<i>4</i> 7/
			W			<u> </u>
Purging Information						 [
		_	Γ.		Conversion Fa	
Purging Method:	Bailer Peristaltic		Dedicated Pump		1" ID 2" ID	4" ID 6" ID
Tubing/Bailer Material:	Teflon Stainless St.	Polyethyl		of		000 4 47
Sampling Method:	Bailer Peristaltic	Well Wizard	Dedicated Pump			0.66 1.47
Average Pumping Rate: (ml/min) . SOO			1 gallor	n=3.785L=3785ml	_=1337cu. feet
Duration of Pumping:	(min) 30					
Total Volume Removed:	(gal) / Did	l well go dry?	Yes No			
Horiba U-52 Water Quality Met	for Usad? Yes	No □				
Horiba 0-52 vvater Quality Met	lei Osea: Tosi					
				T	DO	TDS
Time DTW	Temp pH	ORP	Conductivity	Turbidity		(g/L)
(feet)	(°C)	(mV)	(mS/cm)	(NTU)	(mg/L)	
923 14.40 1	9.19 7.39	66	7:85	52.6	7.18	1.72
925 14.63 19	9.31 6.94	93	4 30	36.6	4.13	
	9.36 6.81	102	1,79	121	2.43	''
935 14.81 1	1.42 6.76	107	121		198	15-94
	7.43 6.77	//0	00429	6/6	1.85	8 503
945 14.93 1	9.53 Gillo	11.3	0.913	363	1.03	1,017
Sampling Information:						
EPA SW-846 Method 8270	SVOC PAH's		2	- 250 ml ambe		⊠ _{N°}
EPA SW-846 Method 8260	VOC's BTEX		- .	3 - 40 ml vials		No No
EPA Method 610B	LEAD	-	1	- 250 ml plast	ic Yes	
	MANGANESE		1	- 250 ml plast	ic Yes	N₀□
EPA Method 9012A	TOTAL CYANIE DISSOLVED CARBON		'	3 - 40 ml vials		No
RSK_175_CO2 EPA Method 2320B	TOTAL ALKALIN		1	- 125 ml plast	ic Yes	No□
EPA Method 351.2	TOTAL KJELDAHL NI			- 250 ml plast	. –	No No
SM 4500_S2_F	SULFIDE			- 250 ml plast		N ₀
SM_3500_FE_D	FERROUS IRO		,	- 125 ml plast 3 - 40 ml vials		No H
RSK_175	METHANE/ETHENE/E	IMANE	٦ ٠	3 - 40 mi viais 2 - 125 mi plasi		Ø _№ □
D516 EPA Method 353.2	SULFATE NITRATE			. LEO IIII Pido	100	<u></u>
SM_4500_CI_E	CHLORIDE					
			Sh	ipped: Drop-o	off Albany Service	e Center
Sample ID: MW-1Z-0		Yes No No		1 -11	T4 A	arias
Sample Time: 950	MS/MSD?	Yes No No		Laboratory:	Test An Amherst, N	
					Aminoist, N	ICW TOIN

Sampling Personnel: Eric Ro	senzweig		Date: 4/	16/15		
Job Number: 36380.105370			Weather: Clear 7503			
Well Id. MW-13			Time In: タ	30	Time Out:	
Depth to Water: Depth to Bottom: Depth to Product: Length of Water Column: Volume of Water in Well: Three Well Volumes:	TOC (feet) //.34 (feet) 22.75 (feet) (gal) 1.53 (gal) 5.48	Other	Well Type: Well Locked Measuring Po Well Materia Well Diamel Comments:	d: pint Marked: al: PVC ter: 1"	Yes Yes SS Oth	
Purging Information	<u> </u>	—		7 -	Conversion F	actors
Purging Method: Tubing/Bailer Material: Sampling Method:	Bailer Peristaltic Teflon Stainless St. Bailer Peristaltic	Polyethyl	Dedicated Pump ene other Dedicated Pump			0.66 1.47
Average Pumping Rate: Duration of Pumping: Total Volume Removed:	(mi/min) SCS (min) 3'U (min) Did	well go dry?	Yes No No	<u> </u>	n=3.785L=3785m	iL=133/cu, teet
Horiba U-52 Water Quality Me		No .				

Time DTW	Temp pH	ORP	Conductivity	Turbidity	DO (mag (l.)	TDS
(feet)	(°C)	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L) 9.357
	34 765	34	0.550	112	3870	1 1 1 1 1
	121 752	12_	0,572	45.5	0.56	0.346
945 11,53 8	23 7.86	- 5/	0541	10.6	8,01	033/
	8,22 7.71		0.524	6,5	001	0,336
	8,23 772	<u>-22</u>	0.524		00/	0.336
1000 11.67	8,32 4,75	<u>~18</u>	0.522	4.6	0.01	01589
Sampling Information:						
			_			
EPA SW-846 Method 8270	SVOC PAH's		•	- 250 ml ambe 9 - 40 ml vials		No No
EPA SW-846 Method 8260	VOC's BTEX		_	- 250 ml plasti		
EPA Method 610B	LEAD MANGANESE			r		
EPA Method 9012A	TOTAL CYANID			- 250 ml plast		N ₀
RSK_175_CO2	DISSOLVED CARBON			9 - 40 ml vials	res io Voc	No No
EPA Method 2320B	TOTAL ALKALINI TOTAL KJELDAHL NIT			- 125 ml plast - 250 ml plast		
EPA Method 351.2 SM 4500_S2_F	SULFIDE	NOGEN		- 250 ml plast - 250 ml plast	ic Yes	No
SM 3500_52_F	FERROUS IRO	N		- 125 ml plast	ic Yes	No No No No
RSK_175	METHANE/ETHENE/E			9 - 40 ml vials	Yes	
D516	SULFATE		6	- 125 ml plast	ic Yes	No No
EPA Method 353.2	NITRATE		1			
SM_4500_CI_E	CHLORIDE		. Shi∣	pped: Drop-c	off Albany Servic	e Center
Sample ID: 100 Sample Time: 100 S	y • =	Yes No X Yes No		Laboratory:	Test Ar Amherst, N	

Amherst, New York

	emale Erio	Doconzuloic			Date:	1116/15		
Sampling Personnel: Eric Rosenzweig Job Number: 36380.105370			Weather: CIPA & 45°					
	36380.105370 MW-14				Time In:	10	Time Out:	
Well Id.	19(VV- 4		******					
Well Infor	mation			Other	Well Type:	Flushr		ick-Up
Depth to Wate	r:	(feet)	3.00		Well Locke		Yes	No -
Depth to Botto	m:	(feet)	23.55		Measuring P		Yes X XISS Oth	No
Depth to Produ	uct:	(feet) -	0 (4)		Well Materi	···	2" Oth	
Length of Wat			9.49		Well Diame Comments	_		er
Volume of Wa			68		Clea	, ,	> Sheep	1000 cm
Three Well Vo	lumes:	(gal) S	,04		cresc	, ,,,		
<u> </u>				*				-
Purging Inf	formation						Conversion F	
Purging Metho	od:	Bailer	Peristaltic	Well Wizard	i Dedicated Pump	gal/ft.	1" ID 2" ID	4" ID 6" ID
Tubing/Bailer		Teflon	Stainless St.		riene other	of		
Sampling Met		Bailer	Peristaltic	Well Wizard	Dedicated Pump			0.66 1.47
Average Pum		(ml/min)	500			1 gallor	1=3.785L=3785n	nL=1337cu. feet
Duration of Pu		(min)	3O		[] r	<u>_</u>		
Total Volume		(gal)	<u>ej</u> Did	well go dry?	Yes No			
	Water Quality	Meter Used?	Yes	N₀				
HONDA O-52 V	- Guanty							
in in		—	рН	ORP	Conductivity	Turbidity	DO	TDS
Time	DTW (fact)	Temp (°C)	pri į	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)
	(feet)	(C)	7.52	1/2	0,900	329X	3.85	0.500
8/5	13.10	6.14	7.95	-10	0.885	7800	0.79	0.551
300	12/1	19.35	7.31	5	0. B//	281	004	0,516
865	1312	6185	7,34	29	0.782	-293	0.01	0500
830	13 13	6.88	2.35	66	0.753	223	0,01	0.48
2811	13,14	7.21	7.36	117	0729	50.0	0.01	0.466
390	1371	1.07						
		:						ļ
								<u></u>
<u> </u>								
Sampling In	formation:							
EPA SW-846			SVOC PAH's			4 - 250 ml amb	er Ye	s No
EPA SW-846	Method 8260		VOC's BTEX		_	6 - 40 ml vials	='	s No
			LEAD		1	2 - 250 ml plas	tic Ye	s No
EPA Method 6			MANGANESE			2 - 250 ml plas	tic Ye	s No
EPA Method 9			TOTAL CYANIC VED CARBON			2 - 250 mi pias 6 - 40 ml vials	Ye	s No
RSK_175_CC EPA Method 2			OTAL ALKALIN			2 - 125 ml plas	tic Ye	es No
EPA Method			KJELDAHL NI			2 - 250 ml plas	tic Ye	es No
SM 4500_S2_			SULFIDE			2 - 250 ml plas	tic Ye	es No
SM_3500_FE		, , , , , , , , , , , , , , , , , , ,	FERROUS IRC IANE/ETHENE/			2 - 125 ml plas 6 - 40 ml vial:	s Ye	es No
RSK_175		METH	SULFATE	LIFIANE	7	4 - 125 ml plas		es No
D516 EPA Method	353.2		NITRATE			•		
SM_4500_CI			CHLORIDE		_	L	- FE AM: O-	ion Contor
		1-171		, <u> </u>		hipped: Drop-	off Albany Serv	Ice Celliel
Sample ID: Sample Time	My-14	<u>~~9/5</u> D	uplicate? IS/MSD?	Yes No	FD-0415	Laboratory:		\merica New York

Amherst, New York

Mational Ond		
109 North Market	Street, Johnstown	New York

109 North Market Street, Johnstown New York					
Sampling Personnel: Eric Ros	senzweig		Date: 2	1116/13	No at Mari
Job Number: 36380.105370			Weather:	Cfal p	Time Out
Well Id. MW-15			Time In: /	100	Time Out:
				*	
Well Information					
	TOC (Other	Well Type:		mount Stick-Up
Depth to Water:	(feet) 153/		Well Locke	d:	Yes No No
	(feet) 23.00		Measuring P	oint Marked: _	Yes No No
	(feet)		Well Mater	ial: PVC	SSOther:
	(feet) 7.69		Well Diame	eter: 1"	2" Other:
	(gal) /,23		Comments		
	1.46 1.43		Plear		es 11/0000
Three Well Volumes:	(gal) 3, 67				
Purging Information					
Fulging information					Conversion Factors
	Bailer Peristaltic	Moll Wizard D	edicated Pump		1" ID 2" ID 4" ID 6" ID
Purging Method:		Polyethyler	×	gai/it.	
Tubing/Bailer Material:	Teflon Stainless St.	****			0.04 0.16 0.66 1.47
Sampling Method:	Bailer Peristaltic	Well Wizard D	edicated Pump		
Average Pumping Rate: (r	ml/min)			1 gallon	=3.785L=3785mL=1337cu. feet
Duration of Pumping:	(min) 70				
Total Volume Removed:	(gal) C1 Did	well go dry?	Yes No		
	or Upad? Vas	No			
Horiba U-52 Water Quality Met	er Osed? Tes				
				T	
Time DTW	Temp pH	ORP (Conductivity	Turbidity	DO TDS
(feet)	(°C)	(mV)	(mS/cm)	(NTU)	(mg/L) (g/L)
1105 15.41 1	4109 7.22	√ 43	1.07	95.3	4.61 0.667
	3,17 6.92	-39	0,225	493	0.99 0.5-89
11/5 18.51 1	3.05 6.70	-3/	0,887	25.0	0.12 0.565
1120 15,55 1	2.90 6.76	-27	0,866	16.6	0,27 0.55
	1300 688	-21	0.360	2.9	2,11 0.550
	3,09 6.88	-37	0.874	1.8	0.01 0.5.59
1130 15.61 /	101 0.00		-014		
		 			
		<u> </u>			
			-		
Sampling Information:					
EPA SW-846 Method 8270	SVOC PAH's		2	2 - 250 ml ambe	er Yes No
EPA SW-846 Method 8260	VOC's BTEX			3 - 40 ml vials	Yes No
	LEAD		•	1 - 250 ml plast	ic Yes No
EPA Method 610B	MANGANESE				
EPA Method 9012A	TOTAL CYANIC		•	1 - 250 ml plast	N 2
RSK_175_CO2	DISSOLVED CARBON			3 - 40 ml vials	k →1 i─1
EPA Method 2320B	TOTAL ALKALIN			1 - 125 ml plast	
EPA Method 351.2	TOTAL KJELDAHL NI	rrogen		1 - 250 ml plast	
SM 4500_S2_F	SULFIDE			1 - 250 ml plast 1 - 125 ml plast	
SM_3500_FE_D	FERROUS IRO METHANE/ETHENE/E			3 - 40 ml vials	Yes
RSK_175		TIMANE		2 - 125 ml plast	(—) 1
D516	SULFATE NITRATE			2 - 120 m place	
EPA Method 353.2	CHLORIDE				
SM_4500_CI_E			S	nipped: Drop-o	off Albany Service Center
Sample ID: 15-0	415 Duplicate?	Yes No		•	
Sample Time: // 3.5	MS/MSD?	Yes No No		Laboratory:	Test America
	-				Amherst, New York

Test America Amherst, New York

			Date: 4//6/15		
Sampling Personnel: Eric Rosenzweig			Weather: Clear 2 45		
Job Number: 36380.105370			Time In: 7/0 Time Out:		
Well Id. MW-16			Time in. 770		
Well Information					
		Other	Well Type: Flushmount Stick-Up		
Depth to Water:	(feet) 10.48		Well Locked: Yes No		
Depth to Bottom:	(feet) 19.45		Measuring Point Marked: Yes No		
	(feet)		Well Material: PVC SS Other:		
	(feet)		Well Diameter: 1" 2" Other:		
Volume of Water in Well:	(gal) 1, 4/4		Comments:		
Three Well Volumes:	(gal) 4,3/		Chear Not Shanfods		
Thio voi voiane.					
Purging Information					
			Conversion Factors		
Purging Method:	Bailer Peristaltic		Dedicated Pump gal/ft. 1" ID 2" ID 4" ID 6" ID		
Tubing/Bailer Material:	Teflon Stainless St.	Polyethyl	iene other of		
Sampling Method:	Bailer Peristaltic	_	Dedicated Pump water 0.04 0.16 0.66 1.47		
	ml/min) (920		1 gallon=3.785L=3785mL=1337cu. feet		
	(min) 30				
Duration of Pumping: Total Volume Removed:	(nall) Did	well ao drv?	Yes No No		
	T N	Well go diy.	100		
Horiba U-52 Water Quality Met	er Used? Yes	No □			
<u> </u>					
Time DTW	Temp pH	ORP	Conductivity Turbidity DO TDS		
(feet)	(°C)	(mV)	(mS/cm) (NTU) (mg/L) (g/L)		
715 10.63 12		-64	1.34 22.1 7.860,862		
72-7 10-89 13	7 2/2 7 2 2	~142	1.38 12.7 024 0.884		
	1. 30 1. 2. 4	~ 152	1360 125 0,01 087]		
725 11.08 1	2.85 7.37	~ 144	1.30 566 0.01 0.343		
		* 1777 37:7	1.23 11.1 0.31 0.784		
	10 7.00	- 35	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
740 11.69 14	1.76,86	<u> - 87</u>	1,20 63 0.44 0.161		
Sampling Information:					
EPA SW-846 Method 8270	SVOC PAH's		2 - 250 ml amber Yes No		
EPA SW-846 Method 8260	VOC's BTEX		3 - 40 ml vials Yes No		
	LEAD		1 - 250 ml plastic Yes No		
EPA Method 610B	MANGANESE		J V V V V V V V V V V V V V V V V V V V		
EPA Method 9012A	TOTAL CYANID		1 - 250 ml plastic Yes No		
RSK_175_CO2	DISSOLVED CARBON		3 - 40 ml vials Yes No		
EPA Method 2320B	TOTAL KIELDALII NII		1 - 250 ml plastic Yes No		
EPA Method 351.2	TOTAL KJELDAHL NIT SULFIDE	RUGEN	1 - 250 ml plastic Yes No		
SM 4500_S2_F	FERROUS IRO	N	1 - 125 ml plastic Yes No		
SM_3500_FE_D	METHANE/ETHENE/E		3 - 40 ml vials Yes No No No		
RSK_175 D516	SULFATE		2 - 125 ml plastic Yes █ No █		
EPA Method 353.2	NITRATE				
SM_4500_CI_E	CHLORIDE		<u>.</u>		
	/		Shipped: Drop-off Albany Service Center		
Sample ID: MW-W-141	U	Yes No	Laboratory: Test America		
Sample Time: 745	MS/MSD?	Yes No	Laboratory: Test America Amherst, New York		

APPENDIX B DATA USABILITY SUMMARY REPORT

Data Validation Services

120 Cobble Creek Road P.O. Box 208 North Creek, NY 12853

Phone 518-251-4429 harry@frontiernet.net

June 10, 2015

Matthew Millias CDM Smith One General Motors Dr. Suite 2 Syracuse, NY 13206

RE:

Data Usability Summary Report for National Grid- Johnstown Landfill Site Data Package TAL-Buffalo Job Nos. 480-78609-1 and 480-78711-1

Dear Mr. Millias:

Review has been completed for the data package generated by TestAmerica Laboratories, Inc. that pertains to samples collected 04/16/15 and 04/17/15 at the National Grid Johnstown site. Nine aqueous samples and a field duplicate were analyzed for BTEX, low level PAHs, three dissolved gases, carbon disulfide, lead, manganese, and eight wet chemistry parameters. Methodologies utilized are those of the USEPA SW846 methods 6010B/8260B/8270C/9012, and ASTM, with additional QC requirements of the NYSDEC ASP.

The data packages submitted contain full deliverables for validation, but this usability report is generated from review of the summary form information, with review of sample raw data, and limited review of associated QC raw data. The reported summary forms have been reviewed for application of validation qualifiers, using guidance from the NMPC generic QAPP, USEPA Region 2 validation SOPs, the USEPA National Functional Guidelines for Data Review, and professional judgment, as affects the usability of the data. The following items were reviewed:

- * Laboratory Narrative Discussion
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Field Duplicate Correlations
- * Laboratory Control Sample(LCS)
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Calibration/Low Level Standard Responses
- * Instrumental Tunes
- * ICP Serial Dilution Correlations
- * Instrument IDLs
- * Sample Quantitation and Identification

The items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for the DUSR level review.

In summary, most sample results are usable either as reported, or with minor qualification. However, the reporting limits for the semivolatile analytes have been edited upward to reflect the limitations of the processing.

Copies of the laboratory case narrative and sample identification summary forms are attached to this text, and should be reviewed in conjunction with this report. Also included with this narrative are sample results forms, with the recommended qualifications applied thereupon.

Chain-of-Custody/Sample Receipt

The ID and collection date/time for MW-10-0415 was lined through on the custody. The sample was received by the laboratory and processed/reported.

BTEX by EPA8260B/NYSDEC ASP

The result for total xylene in MW-11-0415 has been edited to reflect the value of 1.5 ug/L (the oxylene concentration in the sample).

Sample holding times were met and instrumental tune fragmentations are within acceptance ranges. Surrogate and internal standard recoveries are within required limits. Blanks show no contamination.

Calibrations standards show acceptable responses within analytical protocol and validation action limits.

The matrix spikes of MW-13-0415 show acceptable recoveries and correlations.

The blind field duplicate correlations of MW-14-0415 fall within guidance limits.

Some samples were processed only at dilution due to high concentrations of target analytes or initial foaming. This results in elevated reporting limits for undetected analytes.

PAHs by EPA8270C/NYSDEC ASP

The laboratory reporting limit of 0.5 ug/L was not supported by the calibration standards that establish the system linearity/sensitivity. The limits have been adjusted upward by a factor of two to reflect the lowest calibration standard response.

Surrogate and internal standard recoveries are within required limits, unless diluted beyond an applicable evaluation.

Results for analytes initially reported with the laboratory "E" flag, acenaphthene and acenapthylene in MW-11-0415, have been derived from the dilution analysis, thus reflecting responses within the established linear range of the instrument.

The matrix spike recoveries and duplicate correlations of MW-13-0415 show acceptable recoveries and correlations.

The blind field duplicate correlations of MW-14-0415 fall within guidance limits.

Some samples were processed only at dilution due to high concentrations of target analytes. This results in elevated reporting limits for undetected analytes.

Methane, Ethane, Ethene, and CO2 by RSK-175

The matrix spikes of MW-13-0415 show acceptable recoveries and correlations.

The blind field duplicate correlations of MW-14-0415 fall within guidance limits.

Instrument performance is compliant, blanks show no contamination, and reported results are substantiated by raw data.

Some samples were processed only at dilution due to high concentrations of target analytes. This results in elevated reporting limits for undetected analytes.

Lead and Manganese by EPA 6010B/NYSDEC ASP

The matrix spikes of MW-11-0415 and MW-13-0415 acceptable accuracy and precision, and the blind field duplicate correlations of MW-14-0415 fall within guidance limits.

The ICP Serial Dilution evaluations of MW-11-0415 and MW-13-0415 are acceptable.

Instrument performance is compliant, blanks show no contamination affecting reported results, and reported results are substantiated by the raw data.

<u>Wet Chemistry—Chloride, Sulfide, Sulfate, Nitrate, TKN, Alkalinity, Ferrous Iron, and Total Cyanide</u>

Due to the very short holding time from sample collection (15 minutes), all ferrous ion analyses were conducted beyond the holding time, and those results have been qualified as estimated in value, with a likely low bias.

Calibration standard responses are compliant. Blanks show no detections that above the reporting limits.

Matrix spikes/laboratory duplicates of MW-13-0415 show acceptable recoveries/correlations, with the exception of the recovery for TKN (79% and 80%). The result for that analyte in the parent sample is qualified as estimated. A laboratory duplicate of alkalinity in MW-4-0415 shows a good correlation.

\The blind field duplicate correlations of MW-14-0415 fall within guidance limits, with the exception of that for TKN, which has a correlation above ±CRDL. The results for that analyte in the sample and its duplicate have been qualified as estimated.

Data Package Completeness

Although some of the specific NYSDEC Category B deliverables were not included in the laboratory data package, all information required for validation of the data is present.

Please do not hesitate to contact me if you have comments or questions regarding this report.

Very truly yours,

Judy Harry

VALIDATION DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- J- The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.
- J+ The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- UJ The analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control limits. The analyte may or may not be present.
- EMPC The results do not meet all criteria for a confirmed identification.

 The quantitative value represents the Estimated Maximum Possible

 Concentration of the analyte in the sample.

CLIENT and LABORATORY SAMPLE IDS and CASE NARRATIVE

SAMPLE SUMMARY

Client: CDM Smith, Inc.

Job Number: 480-78609-1

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
480-78609-1	MW-7-0415	Water	04/16/2015 1240	04/17/2015 0200
480-78609-2	MW-13-0415	Water	04/16/2015 1005	04/17/2015 0200
480-78609-2MS	MW-13-0415 MS	Water	04/16/2015 1005	04/17/2015 0200
480-78609-2MSD	MW-13-0415 SD	Water	04/16/2015 1005	04/17/2015 0200
480-78609-3	MW-14-0415	Water	04/16/2015 0845	04/17/2015 0200
480-78609-4	MVV-15-0415	Water	04/16/2015 1135	04/17/2015 0200
480-78609-5	MW-16-0415	Water	04/16/2015 0745	04/17/2015 0200
480-78609-6	FD-0415	Water	04/16/2015 0000	04/17/2015 0200
480-78609-7	MW-10-0415	Water	04/16/2015 1245	04/17/2015 0200
480-78609-8	trip blank	Water	04/16/2015 0000	04/17/2015 0200

SAMPLE SUMMARY

Client: CDM Smith, Inc.

Job Number: 480-78711-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
480-78711-1	MW-4-0415	Water	04/17/2015 0905	04/18/2015 0130
480-78711-2	MW-11-0415	Water	04/17/2015 1100	04/18/2015 0130
480-78711-3	MW-12-0415	Water	04/17/2015 1005	04/18/2015 0130
480-78711-4	TRIP BLANK	Water	04/17/2015 0000	04/18/2015 0130

Job Narrative 480-78609-1

Receipt

The samples were received on 4/17/2015 2:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 0.5° C, 0.6° C and 0.7° C.

Except:

From reviewing the COC it appeared Sampling Point MW-10-0415 was crossed off. When cooler was recieved it contained said sampling point. Log in includes MW-10-0415.

MW-10-0415 (480-78609-7)

GC/MS VOA

Method(s) 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: MW-7-0415 (480-78609-1), MW-13-0415 (480-78609-2), MW-13-0415 MS (480-78609-2[MSD]), MW-13-0415 SD (480-78609-2[MSD]), MW-14-0415 (480-78609-3) and MW-16-0415 (480-78609-5). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D_LL_PAH: The matrix spike and matrix spike duplicate (MS/MSD) recoveries for 237603 were outside control limits for Indeno[1,2,3-cd]pyrene. Sample matrix interference because the associated laboratory control sample (LCS) recovery was within acceptance limits.MW-13-0415 MS (480-78609-2[MS]) and MW-13-0415 SD (480-78609-2[MSD])

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

Method(s) RSK-175: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-16-0415 (480-78609-5). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method(s) SM 3500 FE D: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: MW-7-0415 (480-78609-1), MW-13-0415 (480-78609-2), MW-13-0415 MS (480-78609-2[MS]), MW-13-0415 SD (480-78609-2[MSD]), MW-14-0415 (480-78609-3), MW-15-0415 (480-78609-4), MW-16-0415 (480-78609-5), FD-0415 (480-78609-6) and MW-10-0415 (480-78609-7).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job Narrative 480-78711-1

Receipt

The samples were received on 4/18/2015 1:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.9° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D_LL_PAH: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-11-0415 (480-78711-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method(s) SM 3500 FE D: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: MW-4-0415 (480-78711-1), MW-11-0415 (480-78711-2), MW-12-0415 (480-78711-3) and (480-78609-I-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

QUALIFIED SAMPLE RESULTS FORMS

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID: MW-7-0415

Lab Sample ID: 480-78609-1 Date Sampled: 04/16/2015 1240

Client Matrix: Water Date Received: 04/17/2015 0200

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-237424 Instrument ID: HP5973Q Prep Method: 5030C Prep Batch: N/A Lab File ID: Q0582.D Dilution: Initial Weight/Volume: 5.0 5 mL

Analysis Date: 04/21/2015 0516 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		5.0
Toluene	ND		5.0
Ethylbenzene	ND		5.0
m-Xylene & p-Xylene	ND		10
o-Xylene	ND		5.0
Xylenes, Total	ND		10

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	114		66 - 137
Toluene-d8 (Surr)	105		71 - 126
4-Bromofluorobenzene (Surr)	113		73 - 120
Dibromofluoromethane (Surr)	118		60 - 140

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID: MW-13-0415

Lab Sample ID: 480-78609-2 Date Sampled: 04/16/2015 1005

Client Matrix: Water Date Received: 04/17/2015 0200

8260C Volatil	e Organic	Compounds I	by GC/MS
---------------	-----------	-------------	----------

Analysis Method: 8260C Analysis Batch: 480-237424 Instrument ID: HP5973Q Prep Method: 5030C Prep Batch: N/A Lab File ID: Q0583.D Dilution: Initial Weight/Volume: 5.0 5 mL

Analysis Date: 04/21/2015 0544 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	RL
Benzene	17		5.0
Toluene	17	F1	5.0
Ethylbenzene	17		5.0
m-Xylene & p-Xylene	24		10
o-Xylene	16		5.0
Xylenes, Total	40		10

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	113		66 - 137
Toluene-d8 (Surr)	106		71 - 126
4-Bromofluorobenzene (Surr)	112		73 - 120
Dibromofluoromethane (Surr)	121		60 - 140

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID: MW-14-0415

Lab Sample ID: 480-78609-3 Date Sampled: 04/16/2015 0845

Client Matrix: Water Date Received: 04/17/2015 0200

8260C	Volatile	Organic	Compounds	by GC/MS
02000	v Ulatile	Organic	COIIIDOUIIUS	DV GC/IVIO

Analysis Method: 8260C Analysis Batch: 480-237424 Instrument ID: HP5973Q Prep Method: 5030C Prep Batch: N/A Lab File ID: Q0584.D Dilution: Initial Weight/Volume: 4.0 5 mL

Analysis Date: 4.0 Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		4.0
Toluene	ND		4.0
Ethylbenzene	ND		4.0
m-Xylene & p-Xylene	ND		8.0
o-Xylene	ND		4.0
Xylenes, Total	ND		8.0

Surrogate	%Rec	Qualifier	Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	115	Qualifici	66 - 137	
Toluene-d8 (Surr)	106		71 - 126	
4-Bromofluorobenzene (Surr)	112		73 - 120	
Dibromofluoromethane (Surr)	120		60 - 140	

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID: MW-15-0415

Lab Sample ID: 480-78609-4 Date Sampled: 04/16/2015 1135

Client Matrix: Water Date Received: 04/17/2015 0200

8260C Volatile	Organic	Compounds b	y GC/MS
----------------	---------	-------------	---------

Analysis Method: 8260C Analysis Batch: 480-237424 Instrument ID: HP5973Q Prep Method: 5030C Prep Batch: N/A Lab File ID: Q0585.D Dilution: Initial Weight/Volume: 1.0 5 mL

Analysis Date: 04/21/2015 0640 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	RL
Benzene	16		1.0
Toluene	ND		1.0
Ethylbenzene	1.9		1.0
m-Xylene & p-Xylene	3.2		2.0
o-Xylene	7.5		1.0
Xylenes, Total	11		2.0

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	112		66 - 137
Toluene-d8 (Surr)	105		71 - 126
4-Bromofluorobenzene (Surr)	113		73 - 120
Dibromofluoromethane (Surr)	117		60 - 140

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID: MW-16-0415

Lab Sample ID: 480-78609-5 Date Sampled: 04/16/2015 0745

Client Matrix: Water Date Received: 04/17/2015 0200

8260C Volatile	Organic	Compounds	by	GC/MS
----------------	---------	-----------	----	-------

Analysis Method: 8260C Analysis Batch: 480-237424 Instrument ID: HP5973Q Prep Method: 5030C Prep Batch: N/A Lab File ID: Q0586.D Dilution: Initial Weight/Volume: 8.0 5 mL

Analysis Date: 04/21/2015 0708 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	RL
Benzene	91		8.0
Toluene	ND		8.0
Ethylbenzene	68		8.0
m-Xylene & p-Xylene	ND		16
o-Xylene	24		8.0
Xylenes, Total	24		16

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	114	Qualifici	66 - 137
Toluene-d8 (Surr)	107		71 - 126
4-Bromofluorobenzene (Surr)	113		73 - 120
Dibromofluoromethane (Surr)	121		60 - 140

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID: FD-0415

Lab Sample ID: 480-78609-6 Date Sampled: 04/16/2015 0000

Client Matrix: Water Date Received: 04/17/2015 0200

8260C Volatile Or	rganic Compounds b	y GC/MS
-------------------	--------------------	---------

Analysis Method: 8260C Analysis Batch: 480-237557 Instrument ID: HP5973Q Prep Method: 5030C Prep Batch: N/A Lab File ID: Q0615.D Dilution: Initial Weight/Volume: 1.0 5 mL

Analysis Date: 04/21/2015 2016 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		1.0
Toluene	ND		1.0
Ethylbenzene	ND		1.0
m-Xylene & p-Xylene	ND		2.0
o-Xylene	ND		1.0
Xylenes, Total	ND		2.0

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	116		66 - 137
Toluene-d8 (Surr)	103		71 - 126
4-Bromofluorobenzene (Surr)	111		73 - 120
Dibromofluoromethane (Surr)	121		60 - 140

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID: MW-10-0415

Lab Sample ID: 480-78609-7 Date Sampled: 04/16/2015 1245

Client Matrix: Water Date Received: 04/17/2015 0200

8260C Volatile Organic Compounds by GC/MS	s
---	---

Analysis Method: 8260C Analysis Batch: 480-237557 Instrument ID: HP5973Q Prep Method: 5030C Prep Batch: N/A Lab File ID: Q0616.D Dilution: Initial Weight/Volume: 1.0 5 mL

Analysis Date: 04/21/2015 2043 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		1.0
Toluene	ND		1.0
Ethylbenzene	ND		1.0
m-Xylene & p-Xylene	ND		2.0
o-Xylene	ND		1.0
Xylenes, Total	ND		2.0

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	117		66 - 137
Toluene-d8 (Surr)	104		71 - 126
4-Bromofluorobenzene (Surr)	110		73 - 120
Dibromofluoromethane (Surr)	119		60 - 140

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID: trip blank

Lab Sample ID: 480-78609-8 Date Sampled: 04/16/2015 0000

Client Matrix: Water Date Received: 04/17/2015 0200

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-237557 Instrument ID: HP5973Q Prep Method: 5030C Prep Batch: N/A Lab File ID: Q0617.D Dilution: Initial Weight/Volume: 1.0 5 mL

Analysis Date: 04/21/2015 2111 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		1.0
Toluene	ND		1.0
Ethylbenzene	ND		1.0
m-Xylene & p-Xylene	ND		2.0
o-Xylene	ND		1.0
Xylenes, Total	ND		2.0

Surrogate	%Rec	Qualifier	Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	116		66 - 137	
Toluene-d8 (Surr)	103		71 - 126	
4-Bromofluorobenzene (Surr)	110		73 - 120	
Dibromofluoromethane (Surr)	119		60 - 140	

Client: CDM Smith, Inc.

Job Number: 480-78609-1

Client Sample ID:

MW-7-0415

Lab Sample ID:

480-78609-1

Client Matrix:

Water

Date Sampled: 04/16/2015 1240 Date Received: 04/17/2015 0200

	8270D_LL	PAH Semivolatile Orga	nic Compounds (G	C/MS) Low level PAH	
Analysis Method:	8270D_LL_PAH	Analysis Batch:	480-238658	Instrument ID:	HP5973W
Prep Method:	3510C	Prep Batch:	480-237603	Lab File ID:	W3160.D
Dilution:	1.0			Initial Weight/Volume:	253.8 mL
Analysis Date:	04/26/2015 0527			Final Weight/Volume:	1 mL
Prep Date:	04/21/2015 1413			Injection Volume:	1 uL
Analyte		Result (u	g/L) Qu	alifier	RL
Acenaphthene		ND			0.49 1,0
Acenaphthylene		ND			0.49
Anthracene		ND			0.49
Benzo(a)anthracen	e	ND			0.49
Benzo(a)pyrene		ND			0.49
Benzo(b)fluoranthe		ND			0.49
Benzo(g,h,i)peryler		ND			0.49
Benzo(k)fluoranthe	ne	ND			0/49
Chrysene		ND			0 49
Dibenz(a,h)anthrac Fluoranthene	ene	ND			g.49
Fluoranthene Fluorene		ND ND			0.49
indeno(1,2,3-cd)py	rono	ND ND			0.49
Naphthalene	iene	ND ND			0.49 0.49
Phenanthrene		ND ND			0.49
Pyrene		ND			0.49
Surrogate		%Rec	Qu	alifier Accepta	ance Limits
2-Fluorobiphenyl		71		48 - 120)
Nitrobenzene-d5		71		46 - 120)
p-Terphenyl-d14		70		24 - 136	3

Client: CDM Smith, Inc.

Job Number: 480-78609-1

Client Sample ID:

MW-13-0415

Lab Sample ID:

480-78609-2

Client Matrix:

Water

Date Sampled: 04/16/2015 1005 Date Received: 04/17/2015 0200

	8270D_LL_	PAH Semivolatile Orgai	nic Compounds (G	C/MS) Low level PAH	
Analysis Method:	8270D_LL_PAH	Analysis Batch:	480-238658	Instrument ID:	HP5973W
Prep Method:	3510C	Prep Batch:	480-237603	Lab File ID:	W3161.D
Dilution:	1.0			Initial Weight/Volume:	253.3 mL
Analysis Date:	04/26/2015 0556			Final Weight/Volume:	1 mL
Prep Date:	04/21/2015 1413			Injection Volume:	1 uL
Analyte		Result (u	g/L) Qı	ualifier	RL
Acenaphthene		ND			0.49 0.98
Acenaphthylene		ND			0.49
Anthracene		ND			0.49
Benzo(a)anthracen	е	ND			0.49
Benzo(a)pyrene		ND			0.49
Benzo(b)fluoranthe	ne	ND			0.49
Benzo(g,h,i)peryler	ne	ND			0.49
Benzo(k)fluoranthe	ne	ND			0.49
Chrysene		ND			0.49
Dibenz(a,h)anthrac	ene	ND			0/49
Fluoranthene		ND			0 49
Fluorene		ND			049
Indeno(1,2,3-cd)py	rene	ND	F1		q.49
Naphthalene		ND			d.49
Phenanthrene		ND			9.49
Pyrene		ND			p.40 Y
Surrogate		%Rec	Q	ualifier Accepta	nce Limits
2-Fluorobiphenyl		76		48 - 120	
Nitrobenzene-d5		79		46 - 120	
p-Terphenyl-d14		83		24 - 136	

Client: CDM Smith, Inc.

Job Number: 480-78609-1

Client Sample ID:

MW-14-0415

Lab Sample ID:

480-78609-3

Client Matrix:

Water

Date Sampled: 04/16/2015 0845 Date Received: 04/17/2015 0200

Analysis Method:	8270D_LL_PAH	Analysis Batch:	480-238658		Instrument ID:	HP5973W	
Prep Method:	3510C	Prep Batch:	480-237603		Lab File ID:	W3162.D	
Dilution:	1.0	· rop Batom	100 201 000		Initial Weight/Volume:	264.6 mL	
Analysis Date:	04/26/2015 0626				Final Weight/Volume:	1 mL	
Prep Date:	04/21/2015 1413				Injection Volume:	1 uL	
Analyte		Result (u	g/L)	Qualifier	r	RL	
Acenaphthene		ND				-0.47	0.94
Acenaphthylene		ND				0.47	
Anthracene		ND				0.47	
Benzo(a)anthracen	e	ND				0.47	
Benzo(a)pyrene		ND				0.47	İ
Benzo(b)fluoranthene		ND				0.47	
Benzo(g,h,i)perylene		ND			0.47		-
Benzo(k)fluoranthene		ND				0.47	
Chrysene		ND				0.47	
Dibenz(a,h)anthrac	ene	ND				0.47	
Fluoranthene		ND				0.47	
Fluorene		ND				0.47	
Indeno(1,2,3-cd)py	rene	ND				0. ∳ 7	
Naphthalene		ND				0.47	
Phenanthrene			ND		0.#7 /		/
Pyrene		ND				Q /47	
Surrogate		%Rec		Qualifie	r Accepta	nce Limits	
2-Fluorobiphenyl		74	74		48 - 120		
Nitrobenzene-d5		75	75		46 - 120		
p-Terphenyl-d14		70	70		24 - 136		

Client: CDM Smith, Inc.

Job Number: 480-78609-1

Client Sample ID:

MW-15-0415

Lab Sample ID:

480-78609-4

Client Matrix:

Water

Date Sampled: 04/16/2015 1135

Date Received: 04/17/2015 0200

Analysis Method:	8270D_LL_PAH	Analysis Batch:	480-238658	Instrum	ent ID:	HP5973W	
Prep Method:	3510C	Prep Batch:	480-237603	Lab File	e ID:	W3163.D	
Dilution:	1.0	•		Initial W	/eight/Volume:	254.4 mL	
Analysis Date:	04/26/2015 0656				/eight/Volume:	1 mL	
Prep Date:	04/21/2015 1413				n Volume:	1 uL	
Analyte		Result (u	g/L)	Qualifier		RL	
Acenaphthene		6.7				D.49	0.98
Acenaphthylene		0.59				0.49	
Anthracene		ND				0.49	
Benzo(a)anthracen	е	ND				0.49	
Benzo(a)pyrene		ND				0.49	
Benzo(b)fluoranthe		ND				0.49	1
Benzo(g,h,i)peryler		ND				0.49	
Benzo(k)fluoranthe	ne	ND				0.4 9	- 1
Chrysene		ND				0.49	
Dibenz(a,h)anthrac	ene	ND				0.49	
Fluoranthene		ND				0.49	
Fluorene		1.2				0.49	
indeno(1,2,3-cd)py	rene	ND				0.49	
Naphthalene		1.5				0.49	
Phenanthrene		ND				0.49	
Pyrene		ND				0.49	V
Surrogate		%Rec		Qualifier	Acceptar	nce Limits	
2-Fluorobiphenyl		64			48 - 120		
Nitrobenzene-d5		63			46 - 120		
p-Terphenyl-d14		66			24 - 136		

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID:

MW-16-0415

Lab Sample ID:

480-78609-5

Client Matrix:

Water

Date Sampled: 04/16/2015 0745 Date Received: 04/17/2015 0200

8270D_LL_PAH Semivolatile	e Organic C	compounds (GC/MS) Low level PAH
---------------------------	-------------	-------------	----------------------

	82/UD_LL	_PAH Semivolatile Orgal	nic Compounds	(GC/MS) Low leve	HAH		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D_LL_PAH 3510C 1.0 04/26/2015 0725 04/21/2015 1413	Analysis Batch: Prep Batch:	480-238658 480-237603		D: ght/Volume: ght/Volume:	HP5973W W3164.D 250 mL 1 mL 1 uL	
Analyte Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracen Benzo(a)pyrene Benzo(g,h,i)peryler Benzo(k)fluoranthe Chrysene Dibenz(a,h)anthrace Fluoranthene Fluorene Indeno(1,2,3-cd)py Naphthalene Phenanthrene Pyrene	ene ne ne eene	Result (u 27 25 1.8 ND ND ND ND ND ND 1.6 14 ND 4.6 11	g/L)	Qualifier		RL 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	1.0
Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 p-Terphenyl-d14		%Rec 67 66 58		Qualifier	Acceptar 48 - 120 46 - 120 24 - 136	nce Limits	Ja <u>J.</u>

Client: CDM Smith, Inc.

Job Number: 480-78609-1

Client Sample ID:

FD-0415

Lab Sample ID:

480-78609-6

Client Matrix:

Water

Date Sampled: 04/16/2015 0000 Date Received: 04/17/2015 0200

	8270D_LL	_PAH Semivolatile Orga	nic Compounds (G	GC/MS) Low level PAH	
Analysis Method:	8270D_LL_PAH	Analysis Batch:	480-238658	Instrument ID:	HP5973W
Prep Method:	3510C	Prep Batch:	480-237603	Lab File ID:	W3165.D
Dilution:	1.0			Initial Weight/Volume:	255.3 mL
Analysis Date:	04/26/2015 0755			Final Weight/Volume:	1 mL
Prep Date:	04/21/2015 1413			Injection Volume:	1 uL
Analyte		Result (u	g/L) Qı	ualifier	RL
Acenaphthene		ND			0:49 0.98
Acenaphthylene		ND			0.49
Anthracene		ND			0.49
Benzo(a)anthracen	е	ND			0.49
Benzo(a)pyrene		ND			0.49
Benzo(b)fluoranthene		ND			0.49
Benzo(g,h,i)perylene		ND			0.49
Benzo(k)fluoranthene		ND			0.49
Chrysene		ND			0.49
Dibenz(a,h)anthrac	ene	ND			0.49
Fluoranthene		ND			0.49
Fluorene		ND			0.49
indeno(1,2,3-cd)py	rene	ND			0 49
Naphthalene		ND			0 49
Phenanthrene		ND			0.49
Pyrene		ND			(1.49
Surrogate		%Rec	Qı	ualifier Accept	ance Limits
2-Fluorobiphenyl		75		48 - 12	0
Nitrobenzene-d5		75		46 - 12	0
p-Terphenyl-d14		75		24 - 13	6

Client: CDM Smith, Inc.

Job Number: 480-78609-1

Client Sample ID:

MW-10-0415

Lab Sample ID:

480-78609-7

Client Matrix:

Water

Date Sampled: 04/16/2015 1245 Date Received: 04/17/2015 0200

	02/00_CL_FAIT Setting organic Compounts (GO/MS) LOW 16461 FAIT							
Analysis Method:	8270D_LL_PAH	Analysis Batch:	480-238658	Instrument ID:	HP5973W			
Prep Method:	3510C	Prep Batch:	480-237603	Lab File ID:	W3166.D			
Dilution:	1.0			Initial Weight/Volume	: 248.6 mL			
Analysis Date:	04/26/2015 0824			Final Weight/Volume:	1 mL			
Prep Date:	04/21/2015 1413			Injection Volume:	1 uL			
Analyte		Result (u	g/L)	Qualifier	RL			
Acenaphthene		0.63			9.5 1.0			
Acenaphthylene		ND			0.50			
Anthracene		ND			0.50			
Benzo(a)anthracen	ie	ND			0.50			
Benzo(a)pyrene		ND			0.50			
Benzo(b)fluoranthe	ene	ND			0.50			
Benzo(g,h,i)peryler	ne	ND			0.50			
Benzo(k)fluoranthe	ene	ND			0.\$0			
Chrysene		ND			0.50			
Dibenz(a,h)anthrac	cene	ND			0,50			
Fluoranthene		ND			0/50			
Fluorene		ND			0 50			
Indeno(1,2,3-cd)py	rene	ND			q.50			
Naphthalene		ND			d .50			
Phenanthrene		ND			φ.50 <u> </u>			
Pyrene		ND			10.50 √			
Surrogate		%Rec		Qualifier Accep	tance Limits			
2-Fluorobiphenyl		75		48 - 1	20			
Nitrobenzene-d5		77		46 - 1:	20			
p-Terphenyl-d14		73		24 - 1	36			

Job Number: 480-78609-1 Client: CDM Smith, Inc.

Client Sample ID: MW-7-0415

1.0

Dilution:

Lab Sample ID: 480-78609-1 Date Sampled: 04/16/2015 1240

Client Matrix: Date Received: 04/17/2015 0200 Water

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 480-237083 Instrument ID: PE-03 N/A

N/A Initial Weight/Volume: 17 mL Final Weight/Volume: 17 mL Injection Volume: 5 mL

Analysis Date: 04/18/2015 1142 Prep Date: N/A Result Type: **PRIMARY**

Analyte Result (ug/L) Qualifier RLEthane ND 7.5 ND Ethene 7.0 Methane 35 4.0

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID: MW-7-0415

Dilution:

Lab Sample ID: 480-78609-1 Date Sampled: 04/16/2015 1240

Client Matrix: Water Date Received: 04/17/2015 0200

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 200-87345 Instrument ID: CH2866.i

N/A Prep Batch: N/A Lab File ID: 13296012.D

1.0 Initial Weight/Volume: 18 mL

Analysis Date: 04/27/2015 1304 Final Weight/Volume: 18 mL
Prep Date: N/A Injection Volume: 400 uL

Analyte Result (ug/L) Qualifier RL

Carbon dioxide 7600 1000

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID: MW-13-0415

Lab Sample ID: 480-78609-2 Date Sampled: 04/16/2015 1005 Client Matrix: Date Received: 04/17/2015 0200 Water

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 480-237083 Instrument ID: PE-03 17 mL

N/A N/A Initial Weight/Volume:

Final Weight/Volume: Dilution: 1.0 17 mL Analysis Date: 04/18/2015 1254 Injection Volume: 5 mL

Prep Date: N/A Result Type: **PRIMARY**

Analyte	Result (ug/L)	Qualifier	RL
Ethane	ND		7.5
Ethene	ND		7.0
Methane	ND		4.0

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID: MW-13-0415

Lab Sample ID: 480-78609-2 Date Sampled: 04/16/2015 1005

Client Matrix: Water Date Received: 04/17/2015 0200

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 200-87345 Instrument ID: CH2866.i

N/A Prep Batch: N/A Lab File ID: 13296013.D

Dilution: 1.0 Initial Weight/Volume: 18 mL

Analysis Date: 04/27/2015 1312 Final Weight/Volume: 18 mL Prep Date: N/A Injection Volume: 400 uL

Analyte Result (ug/L) Qualifier RL

Carbon dioxide 1300 1000

Job Number: 480-78609-1 Client: CDM Smith, Inc.

Client Sample ID: MW-14-0415

Dilution:

Lab Sample ID: 480-78609-3 Date Sampled: 04/16/2015 0845 Client Matrix: Date Received: 04/17/2015 0200 Water

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 480-237083 Instrument ID: PE-03

N/A N/A Initial Weight/Volume: 17 mL Final Weight/Volume: 1.0 17 mL

Analysis Date: 04/18/2015 1217 Injection Volume: 5 mL

Prep Date: N/A Result Type: **PRIMARY**

Analyte Result (ug/L) Qualifier RLEthane ND 7.5 Ethene ND 7.0 Methane ND 4.0

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID: MW-14-0415

Dilution:

Lab Sample ID: 480-78609-3 Date Sampled: 04/16/2015 0845

Client Matrix: Water Date Received: 04/17/2015 0200

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 200-87345 Instrument ID: CH2866.i

N/A Prep Batch: N/A Lab File ID: 13296016.D

1.0 Initial Weight/Volume: 18 mL

Analysis Date: 04/27/2015 1337 Final Weight/Volume: 18 mL
Prep Date: N/A Injection Volume: 400 uL

Analyte Result (ug/L) Qualifier RL
Carbon dioxide 5000 1000

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID: MW-15-0415

Dilution:

 Lab Sample ID:
 480-78609-4
 Date Sampled: 04/16/2015 1135

 Client Matrix:
 Water
 Date Received: 04/17/2015 0200

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 480-237083 Instrument ID: PE-03

N/A N/A Initial Weight/Volume: 17 mL
1.0 Final Weight/Volume: 17 mL

Analysis Date: 04/18/2015 1346 Injection Volume: 5 mL
Prep Date: N/A Result Type: PRIMARY

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Ethane
 ND
 7.5

 Ethene
 ND
 7.0

 Methane
 16
 4.0

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID: MW-15-0415

Lab Sample ID: 480-78609-4 Date Sampled: 04/16/2015 1135

Client Matrix: Water Date Received: 04/17/2015 0200

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 200-87345 Instrument ID: CH2866.i
N/A Prep Batch: N/A Lab File ID: 13296017.D

Dilution: 1.0 Initial Weight/Volume: 18 mL

Analysis Date: 04/27/2015 1347 Final Weight/Volume: 18 mL

Prep Date: N/A Injection Volume: 400 uL

Analyte Result (ug/L) Qualifier RL
Carbon dioxide 21000 1000

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID: MW-16-0415

 Lab Sample ID:
 480-78609-5
 Date Sampled: 04/16/2015 0745

 Client Matrix:
 Water
 Date Received: 04/17/2015 0200

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 480-237083 Instrument ID: PE-03

N/A N/A Initial Weight/Volume: 17 mL 10 Final Weight/Volume: 17 mL

Dilution: 10 Final Weight/Volume: 17 mL
Analysis Date: 04/18/2015 1404 Injection Volume: 5 mL

Prep Date: N/A Result Type: PRIMARY

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Ethane
 ND
 75

 Ethene
 ND
 70

 Methane
 160
 40

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID: MW-16-0415

Lab Sample ID: 480-78609-5 Date Sampled: 04/16/2015 0745

Client Matrix: Water Date Received: 04/17/2015 0200

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 200-87345 Instrument ID: CH2866.i
N/A Prep Batch: N/A Lab File ID: 13296018.D

N/A Prep Batch: N/A Lab File ID: 13296018.D

Dilution: 1.0 Initial Weight/Volume: 18 mL

Analysis Date: 04/27/2015 1357 Final Weight/Volume: 18 mL Prep Date: N/A Injection Volume: 400 uL

Analyte Result (ug/L) Qualifier RL

Carbon dioxide 9300 1000

4.0

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID: FD-0415

Methane

 Lab Sample ID:
 480-78609-6
 Date Sampled: 04/16/2015 0000

 Client Matrix:
 Water
 Date Received: 04/17/2015 0200

RSK-175 Dissolved Gases (GC) Analysis Method: RSK-175 Analysis Batch: 480-237083 Instrument ID: PE-03 N/A N/A Initial Weight/Volume: 17 mL Final Weight/Volume: Dilution: 1.0 17 mL Analysis Date: 04/18/2015 1430 Injection Volume: 5 mL Prep Date: N/A Result Type: **PRIMARY** Analyte Result (ug/L) Qualifier RLEthane ND 7.5 Ethene ND 7.0

ND

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID: FD-0415

Lab Sample ID: 480-78609-6 Date Sampled: 04/16/2015 0000

Client Matrix: Water Date Received: 04/17/2015 0200

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 200-87345 Instrument ID: CH2866.i

N/A Prep Batch: N/A Lab File ID: 13296019.D Dilution: 1.0 Initial Weight/Volume: 18 mL

Analysis Date: 04/27/2015 1406 Final Weight/Volume: 18 mL
Prep Date: N/A Injection Volume: 400 uL

Analyte Result (ug/L) Qualifier RL

Carbon dioxide 5100 1000

Job Number: 480-78609-1 Client: CDM Smith, Inc.

Client Sample ID: MW-10-0415

1.0

Dilution:

Lab Sample ID: 480-78609-7 Date Sampled: 04/16/2015 1245 Client Matrix: Date Received: 04/17/2015 0200 Water

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 480-237083 Instrument ID: PE-03 N/A

N/A Initial Weight/Volume: 17 mL Final Weight/Volume: 17 mL Injection Volume: 5 mL

Analysis Date: 04/18/2015 1447 Prep Date: N/A Result Type: **PRIMARY**

Analyte Result (ug/L) Qualifier RLEthane ND 7.5 ND Ethene 7.0 Methane 63 4.0

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID: MW-10-0415

Lab Sample ID: 480-78609-7 Date Sampled: 04/16/2015 1245

Client Matrix: Water Date Received: 04/17/2015 0200

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 200-87345 Instrument ID: CH2866.i

N/A Prep Batch: N/A Lab File ID: 13296020.D Dilution: 1.0 Initial Weight/Volume: 18 mL

Analysis Date: 04/27/2015 1417 Final Weight/Volume: 18 mL
Prep Date: N/A Injection Volume: 400 uL

Analyte Result (ug/L) Qualifier RL

Carbon dioxide 16000 1000

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID: MW-7-0415

Lab Sample ID: 480-78609-1 Date Sampled: 04/16/2015 1240

Client Matrix: Water Date Received: 04/17/2015 0200

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 480-237487 Instrument ID: ICAP1

Prep Method: 3005A Prep Batch: 480-236956 Lab File ID: I1042015A-5.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 04/20/2015 1925 Final Weight/Volume: 50 mL

Prep Date: 04/17/2015 0820

 Analyte
 Result (mg/L)
 Qualifier
 RL

 Lead
 ND
 0.010

 Manganese
 0.49
 0.0030

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID: MW-13-0415

Lab Sample ID: 480-78609-2 Date Sampled: 04/16/2015 1005

Client Matrix: Water Date Received: 04/17/2015 0200

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 480-237487 Instrument ID: ICAP1

Prep Method: 3005A Prep Batch: 480-236956 Lab File ID: I1042015A-5.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 04/20/2015 1928 Final Weight/Volume: 50 mL Prep Date: 04/17/2015 0820

Analyte Result (mg/L) Qualifier RL

 Lead
 ND
 0.010

 Manganese
 0.031
 0.0030

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID: MW-14-0415

Lab Sample ID: 480-78609-3 Date Sampled: 04/16/2015 0845

Client Matrix: Water Date Received: 04/17/2015 0200

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 480-237487 Instrument ID: ICAP1

Prep Method: 3005A Prep Batch: 480-236956 Lab File ID: I1042015A-5.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 04/20/2015 1950 Final Weight/Volume: 50 mL

Prep Date: 04/17/2015 0820

 Analyte
 Result (mg/L)
 Qualifier
 RL

 Lead
 ND
 0.010

 Manganese
 0.019
 0.0030

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID: MW-15-0415

Lab Sample ID: 480-78609-4 Date Sampled: 04/16/2015 1135

Client Matrix: Water Date Received: 04/17/2015 0200

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 480-237487 Instrument ID: ICAP1

Prep Method: 3005A Prep Batch: 480-236956 Lab File ID: I1042015A-5.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 04/20/2015 1953 Final Weight/Volume: 50 mL

Prep Date: 04/17/2015 0820

Analyte Result (mg/L) Qualifier RL
Lead ND 0.010
Manganese 0.68 0.0030

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID: MW-16-0415

Lab Sample ID: 480-78609-5 Date Sampled: 04/16/2015 0745

Client Matrix: Water Date Received: 04/17/2015 0200

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 480-237487 Instrument ID: ICAP1

Prep Method: 3005A Prep Batch: 480-236956 Lab File ID: I1042015A-5.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 04/20/2015 1955 Final Weight/Volume: 50 mL Prep Date: 04/17/2015 0820

Analyte Result (mg/L) Qualifier RL

 Lead
 ND
 0.010

 Manganese
 0.42
 0.0030

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID: FD-0415

Lab Sample ID: 480-78609-6 Date Sampled: 04/16/2015 0000

Client Matrix: Water Date Received: 04/17/2015 0200

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 480-237487 Instrument ID: ICAP1

Prep Method: 3005A Prep Batch: 480-236956 Lab File ID: I1042015A-5.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 04/20/2015 1958 Final Weight/Volume: 50 mL

Prep Date: 04/17/2015 0820

 Analyte
 Result (mg/L)
 Qualifier
 RL

 Lead
 ND
 0.010

 Manganese
 0.020
 0.0030

Client: CDM Smith, Inc. Job Number: 480-78609-1

Client Sample ID: MW-10-0415

Lab Sample ID: 480-78609-7 Date Sampled: 04/16/2015 1245

Client Matrix: Water Date Received: 04/17/2015 0200

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 480-237487 Instrument ID: ICAP1

Prep Method: 3005A Prep Batch: 480-236956 Lab File ID: I1042015A-5.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 04/20/2015 2001 Final Weight/Volume: 50 mL

Prep Date: 04/17/2015 0820

 Analyte
 Result (mg/L)
 Qualifier
 RL

 Lead
 ND
 0.010

 Manganese
 1.3
 0.0030

General Chemistry

Client Sample ID: MW-7-0415 Lab Sample ID:

480-78609-1 Date Sampled: 04/16/2015 1240 Client Matrix: Water

Date Received: 04/17/2015 0200

Analyte	Result	Qual Units	RL	Dil	Method
Total Kjeldahl Nitr	ogen 1.1	mg/L	0.20	1.0	351.2
	Analysis Batch: 480-239180	Analysis Date: 04/28/2015 1243			
	Prep Batch: 480-238989	Prep Date: 04/28/2015 2258			
Nitrate as N	ND	mg/L	0.050	1.0	353.2
	Analysis Batch: 480-236939	Analysis Date: 04/17/2015 1118			
Cyanide, Total	0.18	mg/L	0.010	1.0	9012B
	Analysis Batch: 480-238659	Analysis Date: 04/25/2015 1101			
	Prep Batch: 480-238531	Prep Date: 04/24/2015 2230			
Sulfate	442	F1 mg/L	75.0	15	D516-90, 02
	Analysis Batch: 480-238527	Analysis Date: 04/24/2015 2032			
Alkalinity, Total	340	mg/L	5.0	1.0	SM 2320B
	Analysis Batch: 480-238481	Analysis Date: 04/24/2015 1020			
Ferrous Iron	ND UJ	HF mg/L	0.10	1.0	SM 3500 FE D
	Analysis Batch: 480-237115	Analysis Date: 04/18/2015 1011			
Chloride	67.7	mg/L	2.0	2.0	SM 4500 CI- E
	Analysis Batch: 480-239257	Analysis Date: 04/28/2015 2013			
Sulfide	ND	mg/L	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 480-237411	Analysis Date: 04/20/2015 1036			

Client: CDM Smith, Inc. Job Number: 480-78609-1

General Chemistry

Client Sample ID: MW-13-0415

Lab Sample ID: 480-78609-2 Date Sampled: 04/16/2015 1005 Client Matrix: Water

Date Received: 04/17/2015 0200

Analyte	Result	Qual Units	RL	Dil	Method
Total Kjeldahl Nit	rogen 0.62	F1 mg/L	0.20	1.0	351.2
	Analysis Batch: 480-239180	Analysis Date: 04/28/2015 1243			
	Prep Batch: 480-238989	Prep Date: 04/28/2015 2258			
Nitrate as N	ND	mg/L	0.050	1.0	353.2
	Analysis Batch: 480-236939	Analysis Date: 04/17/2015 1316			
Cyanide, Total	0.11	F1 mg/L	0.010	1.0	9012B
	Analysis Batch: 480-238659	Analysis Date: 04/25/2015 1103			
	Prep Batch: 480-238531	Prep Date: 04/24/2015 2230			
Sulfate	ND	F1 mg/L	5.0	1.0	D516-90, 02
	Analysis Batch: 480-238527	Analysis Date: 04/24/2015 1756			
Alkalinity, Total	244	mg/L	5.0	1.0	SM 2320B
	Analysis Batch: 480-238481	Analysis Date: 04/24/2015 1020			
Ferrous Iron	ND U	J HF F1 mg/L	0.10	1.0	SM 3500 FE D
	Analysis Batch: 480-237115	Analysis Date: 04/18/2015 1011			
Chloride	17.3	mg/L	1.0	1.0	SM 4500 CI- E
	Analysis Batch: 480-239257	Analysis Date: 04/28/2015 1841			
Sulfide	ND	mg/L	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 480-237411	Analysis Date: 04/20/2015 1036			

Client: CDM Smith, Inc. Job Number: 480-78609-1

General Chemistry

Client Sample ID: MW-14-0415

Lab Sample ID: 480-78609-3 Date Sampled: 04/16/2015 0845

Analyte	Result	Qual	Units	RL	Dil	Method
Total Kjeldahl Nitro	ogen 0.22 J		mg/L	0.20	1.0	351.2
	Analysis Batch: 480-239180	Analysis Date:	04/28/2015 1243			
	Prep Batch: 480-238989	Prep Date: 04/2	28/2015 2258			
Nitrate as N	0.87		mg/L	0.050	1.0	353.2
	Analysis Batch: 480-236939	Analysis Date:	04/17/2015 1320			
Cyanide, Total	0.091		mg/L	0.010	1.0	9012B
	Analysis Batch: 480-238659	Analysis Date:	04/25/2015 1107			
	Prep Batch: 480-238531	Prep Date: 04/2	24/2015 2230			
Sulfate	ND		mg/L	5.0	1.0	D516-90, 02
	Analysis Batch: 480-238527	Analysis Date:	04/24/2015 1738			
Alkalinity, Total	372		mg/L	5.0	1.0	SM 2320B
	Analysis Batch: 480-238481	Analysis Date:	04/24/2015 1020			
Ferrous Iron	ND <mark>UJ</mark>	HF	mg/L	0.10	1.0	SM 3500 FE D
	Analysis Batch: 480-237115	Analysis Date:	04/18/2015 1011			
Chloride	3.9		mg/L	1.0	1.0	SM 4500 CI- E
	Analysis Batch: 480-239257	Analysis Date:	04/28/2015 1907			
Sulfide	ND		mg/L	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 480-237411	Analysis Date:	04/20/2015 1036			

Client: CDM Smith, Inc. Job Number: 480-78609-1

General Chemistry

Client Sample ID: MW-15-0415

Lab Sample ID: 480-78609-4 Date Sampled: 04/16/2015 1135

Analyte	Result	Qual Units	RL	Dil	Method
Total Kjeldahl Nitr	rogen 0.81	mg/L	0.20	1.0	351.2
	Analysis Batch: 480-239180	Analysis Date: 04/28/2015 1243			
	Prep Batch: 480-238989	Prep Date: 04/28/2015 2258			
Nitrate as N	0.28	mg/L	0.050	1.0	353.2
	Analysis Batch: 480-236939	Analysis Date: 04/17/2015 1321			
Cyanide, Total	0.29	mg/L	0.010	1.0	9012B
	Analysis Batch: 480-238938	Analysis Date: 04/27/2015 1645			
	Prep Batch: 480-238889	Prep Date: 04/27/2015 1314			
Sulfate	28.7	mg/L	5.0	1.0	D516-90, 02
	Analysis Batch: 480-239271	Analysis Date: 04/28/2015 2250			
Alkalinity, Total	480	mg/L	5.0	1.0	SM 2320B
-	Analysis Batch: 480-238481	Analysis Date: 04/24/2015 1020			
Ferrous Iron	ND <mark>U</mark>	J HF mg/L	0.10	1.0	SM 3500 FE D
	Analysis Batch: 480-237115	Analysis Date: 04/18/2015 1011			
Chloride	14.2	mg/L	1.0	1.0	SM 4500 CI- E
	Analysis Batch: 480-239257	Analysis Date: 04/28/2015 1907			
Sulfide	ND	mg/L	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 480-237411	Analysis Date: 04/20/2015 1036			

Client: CDM Smith, Inc. Job Number: 480-78609-1

General Chemistry

Client Sample ID: MW-16-0415

Lab Sample ID: 480-78609-5 Date Sampled: 04/16/2015 0745

Analyte	Result	Qual Units	RL	Dil	Method
Total Kjeldahl Nit	rogen 2.1	mg/L	0.20	1.0	351.2
	Analysis Batch: 480-239180	Analysis Date: 04/28/2015 1243			
	Prep Batch: 480-238989	Prep Date: 04/28/2015 2258			
Nitrate as N	0.14	mg/L	0.050	1.0	353.2
	Analysis Batch: 480-236939	Analysis Date: 04/17/2015 1322			
Cyanide, Total	0.24	mg/L	0.010	1.0	9012B
	Analysis Batch: 480-238938	Analysis Date: 04/27/2015 1647			
	Prep Batch: 480-238889	Prep Date: 04/27/2015 1314			
Sulfate	38.2	mg/L	5.0	1.0	D516-90, 02
	Analysis Batch: 480-238527	Analysis Date: 04/24/2015 1909			
Alkalinity, Total	532	mg/L	5.0	1.0	SM 2320B
	Analysis Batch: 480-238481	Analysis Date: 04/24/2015 1020			
Ferrous Iron	ND <mark>UJ</mark>	HF mg/L	0.10	1.0	SM 3500 FE D
	Analysis Batch: 480-237115	Analysis Date: 04/18/2015 1011			
Chloride	5.8	mg/L	1.0	1.0	SM 4500 CI- E
	Analysis Batch: 480-239257	Analysis Date: 04/28/2015 1907			
Sulfide	ND	mg/L	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 480-237411	Analysis Date: 04/20/2015 1036			

Client: CDM Smith, Inc. Job Number: 480-78609-1

General Chemistry

Client Sample ID: FD-0415

Lab Sample ID: 480-78609-6 Date Sampled: 04/16/2015 0000

Analyte	Result	Qual Units	RL	Dil	Method
Total Kjeldahl Nitr	rogen 0.43 J	mg/L	0.20	1.0	351.2
	Analysis Batch: 480-239180	Analysis Date: 04/28/2015 1252			
	Prep Batch: 480-238989	Prep Date: 04/28/2015 2258			
Nitrate as N	0.87	mg/L	0.050	1.0	353.2
	Analysis Batch: 480-236939	Analysis Date: 04/17/2015 1323			
Cyanide, Total	0.074	mg/L	0.010	1.0	9012B
	Analysis Batch: 480-238938	Analysis Date: 04/27/2015 1648			
	Prep Batch: 480-238889	Prep Date: 04/27/2015 1314			
Sulfate	ND	mg/L	5.0	1.0	D516-90, 02
	Analysis Batch: 480-238527	Analysis Date: 04/24/2015 1738			
Alkalinity, Total	360	mg/L	5.0	1.0	SM 2320B
	Analysis Batch: 480-238481	Analysis Date: 04/24/2015 1020			
Ferrous Iron	ND <mark>UJ</mark>	HF mg/L	0.10	1.0	SM 3500 FE D
	Analysis Batch: 480-237115	Analysis Date: 04/18/2015 1011			
Chloride	3.4	mg/L	1.0	1.0	SM 4500 CI- E
	Analysis Batch: 480-239257	Analysis Date: 04/28/2015 2003			
Sulfide	ND	mg/L	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 480-237411	Analysis Date: 04/20/2015 1036			

Client: CDM Smith, Inc. Job Number: 480-78609-1

General Chemistry

Client Sample ID: MW-10-0415

Lab Sample ID: 480-78609-7 Date Sampled: 04/16/2015 1245

Analyte	Result	Qual Units	RL	Dil	Method
Total Kjeldahl Nitr	ogen 5.6	mg/L	0.40	2.0	351.2
	Analysis Batch: 480-239180	Analysis Date: 04/28/2015 1417			
	Prep Batch: 480-238989	Prep Date: 04/28/2015 2258			
Nitrate as N	ND	mg/L	0.050	1.0	353.2
	Analysis Batch: 480-236939	Analysis Date: 04/17/2015 1127			
Cyanide, Total	0.098	mg/L	0.010	1.0	9012B
	Analysis Batch: 480-238938	Analysis Date: 04/27/2015 1650			
	Prep Batch: 480-238889	Prep Date: 04/27/2015 1314			
Sulfate	167	mg/L	25.0	5.0	D516-90, 02
	Analysis Batch: 480-238527	Analysis Date: 04/24/2015 1746			
Alkalinity, Total	512	mg/L	5.0	1.0	SM 2320B
	Analysis Batch: 480-238481	Analysis Date: 04/24/2015 1020			
Ferrous Iron	ND <mark>UJ</mark>	HF mg/L	0.10	1.0	SM 3500 FE D
	Analysis Batch: 480-237115	Analysis Date: 04/18/2015 1011			
Chloride	698	mg/L	15.0	15	SM 4500 CI- E
	Analysis Batch: 480-239257	Analysis Date: 04/28/2015 2006			
Sulfide	ND	mg/L	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 480-237411	Analysis Date: 04/20/2015 1036			

Client: CDM Smith, Inc. Job Number: 480-78711-1

Client Sample ID: MW-4-0415

Lab Sample ID: 480-78711-1 Date Sampled: 04/17/2015 0905

Client Matrix: Water Date Received: 04/18/2015 0130

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-237697 Instrument ID: HP5973Q Prep Method: 5030C Prep Batch: N/A Lab File ID: Q0633.D Dilution: Initial Weight/Volume: 1.0 5 mL

Analysis Date: 04/22/2015 0455 Final Weight/Volume: 5 mL

Prep Date: 04/22/2015 0455

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		1.0
Toluene	ND		1.0
Ethylbenzene	ND		1.0
m-Xylene & p-Xylene	ND		2.0
o-Xylene	ND		1.0
Xylenes, Total	ND		2.0

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	112		66 - 137
Toluene-d8 (Surr)	106		71 - 126
4-Bromofluorobenzene (Surr)	114		73 - 120
Dibromofluoromethane (Surr)	122		60 - 140

Client: CDM Smith, Inc. Job Number: 480-78711-1

Client Sample ID: MW-11-0415

Lab Sample ID: 480-78711-2 Date Sampled: 04/17/2015 1100 Client Matrix: Water

Date Received: 04/18/2015 0130

8260C Vola	itile Organic	Compounds b	y GC/MS
------------	---------------	-------------	---------

Analysis Method: 8260C Analysis Batch: 480-237697 Instrument ID: HP5973Q Prep Method: 5030C Prep Batch: N/A Lab File ID: Q0634.D Dilution: Initial Weight/Volume: 1.0 5 mL

Analysis Date: 04/22/2015 0523 Final Weight/Volume: 5 mL

Prep Date: 04/22/2015 0523

Analyte	Result (ug/L)	Qualifier	RL
Benzene	7.3		1.0
Toluene	ND		1.0
Ethylbenzene	3.0		1.0
m-Xylene & p-Xylene	ND		2.0
o-Xylene	1.5		1.0
Xylenes, Total	-ND 1.5		2.0

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	116		66 - 137
Toluene-d8 (Surr)	105		71 - 126
4-Bromofluorobenzene (Surr)	116		73 - 120
Dibromofluoromethane (Surr)	123		60 - 140

Client: CDM Smith, Inc. Job Number: 480-78711-1

Client Sample ID: MW-12-0415

Lab Sample ID: 480-78711-3 Date Sampled: 04/17/2015 1005

Client Matrix: Water Date Received: 04/18/2015 0130

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-237697 Instrument ID: HP5973Q Prep Method: 5030C Prep Batch: N/A Lab File ID: Q0635.D Dilution: Initial Weight/Volume: 1.0 5 mL

Analysis Date: 04/22/2015 0551 Final Weight/Volume: 5 mL

Prep Date: 04/22/2015 0551

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		1.0
Toluene	ND		1.0
Ethylbenzene	ND		1.0
m-Xylene & p-Xylene	ND		2.0
o-Xylene	ND		1.0
Xylenes, Total	ND		2.0

Surrogate	%Rec	Qualifier	Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	111		66 - 137	
Toluene-d8 (Surr)	105		71 - 126	
4-Bromofluorobenzene (Surr)	115		73 - 120	
Dibromofluoromethane (Surr)	118		60 - 140	

Client: CDM Smith, Inc. Job Number: 480-78711-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-78711-4 Date Sampled: 04/17/2015 0000

Client Matrix: Water Date Received: 04/18/2015 0130

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-237697 Instrument ID: HP5973Q Prep Method: 5030C Prep Batch: N/A Lab File ID: Q0636.D Dilution: Initial Weight/Volume: 1.0 5 mL

Analysis Date: 04/22/2015 0618 Final Weight/Volume: 5 mL

Prep Date: 04/22/2015 0618

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		1.0
Toluene	ND		1.0
Ethylbenzene	ND		1.0
m-Xylene & p-Xylene	ND		2.0
o-Xylene	ND		1.0
Xylenes, Total	ND		2.0

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	109		66 - 137
Toluene-d8 (Surr)	104		71 - 126
4-Bromofluorobenzene (Surr)	115		73 - 120
Dibromofluoromethane (Surr)	117		60 - 140

Client: CDM Smith, Inc.

Job Number: 480-78711-1

Client Sample ID:

MW-4-0415

Lab Sample ID:

480-78711-1

Client Matrix:

Water

Date Sampled: 04/17/2015 0905 Date Received: 04/18/2015 0130

Analysis Method:	8270D_LL_PAH	Analysis Batch:	480-238658	Instrume	nt ID:	HP5973W	
Prep Method:	3510C	Prep Batch:	480-237603	Lab File	ID:	W3167.D	
Dilution:	1.0	•		Initial We	eight/Volume:	253.3 mL	
Analysis Date:	04/26/2015 0854				eight/Volume:	1 mL	
Prep Date:	04/21/2015 1413				Volume:	1 uL	
Analyte		Result (u	g/L)	Qualifier		RL	
Acenaphthene		ND				0.49	1.0
Acenaphthylene		ND				0.49	ſ
Anthracene		ND				0.49	
Benzo(a)anthracen	е	ND				0.49	
Benzo(a)pyrene		ND				0.49	
Benzo(b)fluoranthe		ND				0.49	
Benzo(g,h,i)peryler		ND				0.49	1
Benzo(k)fluoranthe	ne	ND				0.49	1
Chrysene		ND				0/49	1
Dibenz(a,h)anthrac	ene	ND				0 49	1
Fluoranthene		ND				d.49	
Fluorene		ND				0.49	
Indeno(1,2,3-cd)py	rene	ND				Ø .49	
Naphthalene		ND				0.49	
Phenanthrene		ND				0.49	
Pyrene		ND				l 0.4 9	V
Surrogate		%Rec		Qualifier		nce Limits	
2-Fluorobiphenyl		65			48 - 120		
Nitrobenzene-d5		67			46 - 120		
p-Terphenyl-d14		84			24 - 136		

Client: CDM Smith, Inc.

Job Number: 480-78711-1

Client Sample ID:

MW-11-0415

Lab Sample ID:

480-78711-2

Client Matrix:

Water

Date Sampled: 04/17/2015 1100 Date Received: 04/18/2015 0130

	8270D_LL	_PAH Semivolatile Orga	nic Compound	s (GC/MS) Low level PAH		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D_LL_PAH 3510C 1.0 04/26/2015 0923 04/21/2015 1413	Analysis Batch: Prep Batch:	480-238658 480-237603	!	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	HP5973W W3168.D 256.5 mL 1 mL 1 uL	
Analyte		Result (u	a/L)	Qualifier		RL	
Acenaphthene		59 64		E -		0:49	0.98
Acenaphthylene		-56- 60		- E-		0.49	0.70
Anthracene		4.2		_		0.49	1
Benzo(a)anthracen	e	1.9				0.49	
Benzo(a)pyrene		0.84				0.49	
Benzo(b)fluoranthe	ene	0.68				0.49	
Benzo(g,h,i)peryler	ne	ND				0.49	
Benzo(k)fluoranthe	ne	ND				0.49	
Chrysene		0.99				0/49	i
Dibenz(a,h)anthrac	ene	ND				0/49	
Fluoranthene		5.4				q.49	1
Fluorene		16				0.49	1
Indeno(1,2,3-cd)py	rene	ND				ø .49	
Naphthalene		2.3				0 .49	
Phenanthrene		1.5				þ. 4 9	/
Pyrene		4.2				9.4 9	V
Surrogate		%Rec		Qualifier	Acceptar	nce Limits	
2-Fluorobiphenyl		70			48 - 120		
Nitrobenzene-d5		68			46 - 120		
p-Terphenyl-d14		77			24 - 136		

Client Sample ID: MW-12-0415

 Lab Sample ID:
 480-78711-3
 Date Sampled: 04/17/2015 1005

 Client Matrix:
 Water
 Date Received: 04/18/2015 0130

	02100_22	i Air commonante organ	nic Compounds	(GC/MS) Low le	vei PAN	
nalysis Method:	8270D_LL_PAH	Analysis Batch:	480-238658	Instrume	ent ID:	HP5973W
rep Method:	3510C	Prep Batch:	480-237603	Lab File	ID:	W3169.D
Dilution:	1.0			Initial W	eight/Volume:	248.9 mL
nalysis Date:	04/26/2015 0952			Final We	eight/Volume:	1 mL
rep Date:	04/21/2015 1413			Injection	Volume:	1 uL
nalyte		Result (u	g/L) (Qualifier		RL
cenaphthene		ND				0 :5 p 1
cenaphthylene		ND				0.50
nthracene		ND				0.50
enzo(a)anthracen	е	ND				0.\$0
enzo(a)pyrene		ND				0.50
enzo(b)fluoranthe		ND				0.50
enzo(g,h,i)peryler		ND				0 50
enzo(k)fluoranthe	ne	ND				0 50
hrysene		ND				0.50
ibenz(a,h)anthrac	ene	ND				q.50
luoranthene		ND				9 .50
luorene		ND				0 .50
ndeno(1,2,3-cd)py	rene	ND				0.50
laphthalene		ND				0.50
Phenanthrene		ND				0.50
Pyrene		ND				0:5 0 √
Surrogate		%Rec	i .	Qualifier	Acceptar	nce Limits
2-Fluorobiphenyl		69			48 - 120	a see a
Nitrobenzene-d5		69			46 - 120	
o-Terphenyl-d14		77			24 - 136	

Client: CDM Smith, Inc. Job Number: 480-78711-1

Client Sample ID: MW-4-0415

Dilution:

N/A

1.0

Lab Sample ID: 480-78711-1 Date Sampled: 04/17/2015 0905

Client Matrix: Water Date Received: 04/18/2015 0130

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 480-237263 Instrument ID: HP5890-21

I

N/A Initial Weight/Volume: 17 mL Final Weight/Volume: 17 mL

Analysis Date: 04/20/2015 1414 Injection Volume: 5 mL
Prep Date: N/A Result Type: PRIMARY

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Ethane
 ND
 7.5

 Ethene
 ND
 7.0

 Methane
 ND
 4.0

Client: CDM Smith, Inc. Job Number: 480-78711-1

Client Sample ID: MW-4-0415

Lab Sample ID: 480-78711-1 Date Sampled: 04/17/2015 0905

Client Matrix: Water Date Received: 04/18/2015 0130

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 200-87345 Instrument ID: CH2866.i
N/A Prep Batch: N/A Lab File ID: 13296021.D

Dilution: 1.0 Initial Weight/Volume: 18 mL

Analysis Date: 04/27/2015 1453 Final Weight/Volume: 18 mL

Analysis Date: 04/27/2015 1453 Final Weight/Volume: 18 mL
Prep Date: N/A Injection Volume: 400 uL

Analyte Result (ug/L) Qualifier RL
Carbon dioxide 12000 1000

Client: CDM Smith, Inc. Job Number: 480-78711-1

Client Sample ID: MW-11-0415

Dilution:

N/A

1.0

Lab Sample ID: 480-78711-2 Date Sampled: 04/17/2015 1100

Client Matrix: Water Date Received: 04/18/2015 0130

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 480-237263 Instrument ID: HP5890-21

ı

N/A Initial Weight/Volume: 17 mL Final Weight/Volume: 17 mL Injection Volume: 5 mL

Analysis Date: 04/20/2015 1527 Injection Volume: 5 mL
Prep Date: N/A Result Type: PRIMARY

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Ethane
 ND
 7.5

 Ethene
 ND
 7.0

 Methane
 13
 4.0

Client: CDM Smith, Inc. Job Number: 480-78711-1

Client Sample ID: MW-11-0415

Lab Sample ID: 480-78711-2 Date Sampled: 04/17/2015 1100

Client Matrix: Water Date Received: 04/18/2015 0130

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 200-87345 Instrument ID: CH2866.i
N/A Prep Batch: N/A Lab File ID: 13296022.D

 Dilution:
 1.0
 Initial Weight/Volume:
 18 mL

 Analysis Date:
 04/27/2015 1506
 Final Weight/Volume:
 18 mL

Prep Date: N/A Injection Volume: 400 uL

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Carbon dioxide
 15000
 1000

Job Number: 480-78711-1 Client: CDM Smith, Inc.

Client Sample ID: MW-12-0415

Dilution:

N/A

1.0

Lab Sample ID: 480-78711-3 Date Sampled: 04/17/2015 1005

Client Matrix: Date Received: 04/18/2015 0130 Water

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 480-237263 Instrument ID: HP5890-21

N/A Initial Weight/Volume: 17 mL Final Weight/Volume: 17 mL Injection Volume: 5 mL

Analysis Date: 04/20/2015 1449 Prep Date: N/A Result Type: **PRIMARY**

Analyte Result (ug/L) Qualifier RLEthane ND 7.5 Ethene ND 7.0 ND Methane 4.0

Client: CDM Smith, Inc. Job Number: 480-78711-1

Client Sample ID: MW-12-0415

Lab Sample ID: 480-78711-3 Date Sampled: 04/17/2015 1005

Client Matrix: Water Date Received: 04/18/2015 0130

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 200-87345 Instrument ID: CH2866.i

N/A Prep Batch: N/A Lab File ID: 13296023.D Dilution: 1.0 Initial Weight/Volume: 18 mL

Analysis Date: 04/27/2015 1515 Final Weight/Volume: 18 mL Prep Date: N/A Injection Volume: 400 uL

Analyte Result (ug/L) Qualifier RL

Carbon dioxide 17000 1000

Client: CDM Smith, Inc. Job Number: 480-78711-1

Client Sample ID: MW-4-0415

Lab Sample ID: 480-78711-1 Date Sampled: 04/17/2015 0905

Client Matrix: Water Date Received: 04/18/2015 0130

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 480-238008 Instrument ID: ICAP1

Prep Method: 3005A Prep Batch: 480-237618 Lab File ID: I1042215A-6.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 04/22/2015 1535 Final Weight/Volume: 50 mL

Prep Date: 04/21/2015 1429

 Analyte
 Result (mg/L)
 Qualifier
 RL

 Lead
 ND
 0.010

 Manganese
 ND
 0.0030

Client: CDM Smith, Inc. Job Number: 480-78711-1

Client Sample ID: MW-11-0415

Lab Sample ID: 480-78711-2 Date Sampled: 04/17/2015 1100

Client Matrix: Water Date Received: 04/18/2015 0130

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 480-238008 Instrument ID: ICAP1

Prep Method: 3005A Prep Batch: 480-237618 Lab File ID: I1042215A-6.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 04/22/2015 1538 Final Weight/Volume: 50 mL

Prep Date: 04/21/2015 1429

 Analyte
 Result (mg/L)
 Qualifier
 RL

 Lead
 ND
 0.010

 Manganese
 0.25
 0.0030

Client: CDM Smith, Inc. Job Number: 480-78711-1

Client Sample ID: MW-12-0415

Lab Sample ID: 480-78711-3 Date Sampled: 04/17/2015 1005

Client Matrix: Water Date Received: 04/18/2015 0130

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 480-238008 Instrument ID: ICAP1

Prep Method: 3005A Prep Batch: 480-237618 Lab File ID: I1042215A-6.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 04/22/2015 1600 Final Weight/Volume: 50 mL

Prep Date: 04/21/2015 1429

 Analyte
 Result (mg/L)
 Qualifier
 RL

 Lead
 ND
 0.010

 Manganese
 0.19
 0.0030

General Chemistry

Client Sample ID: MW-4-0415

Lab Sample ID: 480-78711-1 Date Sampled: 04/17/2015 0905

Analyte	Result	Qual Units	RL	Dil	Method
Total Kjeldahl Nitr	ogen ND	mg/L	0.20	1.0	351.2
	Analysis Batch: 480-239180	Analysis Date: 04/28/2015 1252			
	Prep Batch: 480-238989	Prep Date: 04/28/2015 2258			
Nitrate as N	2.9	mg/L	0.050	1.0	353.2
	Analysis Batch: 480-237138	Analysis Date: 04/18/2015 1232			
Cyanide, Total	ND	mg/L	0.010	1.0	9012B
	Analysis Batch: 480-239146	Analysis Date: 04/28/2015 1109			
	Prep Batch: 480-239006	Prep Date: 04/27/2015 2230			
Sulfate	60.0	mg/L	10.0	2.0	D516-90, 02
	Analysis Batch: 480-238527	Analysis Date: 04/24/2015 1946			
Alkalinity, Total	384	mg/L	5.0	1.0	SM 2320B
	Analysis Batch: 480-239237	Analysis Date: 04/28/2015 1928			
Ferrous Iron	ND UJ	HF mg/L	0.10	1.0	SM 3500 FE D
	Analysis Batch: 480-237115	Analysis Date: 04/18/2015 1011			
Chloride	295	mg/L	10.0	10	SM 4500 CI- E
	Analysis Batch: 480-239257	Analysis Date: 04/28/2015 2055			
Sulfide	ND	mg/L	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 480-237411	Analysis Date: 04/20/2015 1036			

General Chemistry

Client Sample ID: MW-11-0415

Lab Sample ID: 480-78711-2 Date Sampled: 04/17/2015 1100

Analyte	Result	Qual Units	RL	Dil	Method
Total Kjeldahl Nitr	rogen 0.26	mg/L	0.20	1.0	351.2
	Analysis Batch: 480-239180	Analysis Date: 04/28/2015 1252			
	Prep Batch: 480-238989	Prep Date: 04/28/2015 2258			
Nitrate as N	0.28	mg/L	0.050	1.0	353.2
	Analysis Batch: 480-237138	Analysis Date: 04/18/2015 1234			
Cyanide, Total	0.012	mg/L	0.010	1.0	9012B
	Analysis Batch: 480-239146	Analysis Date: 04/28/2015 1110			
	Prep Batch: 480-239006	Prep Date: 04/27/2015 2230			
Sulfate	82.9	mg/L	15.0	3.0	D516-90, 02
	Analysis Batch: 480-238527	Analysis Date: 04/24/2015 1956			
Alkalinity, Total	428	mg/L	5.0	1.0	SM 2320B
	Analysis Batch: 480-239237	Analysis Date: 04/28/2015 1928			
Ferrous Iron	ND <mark>UJ</mark>	HF mg/L	0.10	1.0	SM 3500 FE D
	Analysis Batch: 480-237115	Analysis Date: 04/18/2015 1011			
Chloride	314	mg/L	10.0	10	SM 4500 CI- E
	Analysis Batch: 480-239257	Analysis Date: 04/28/2015 2055			
Sulfide	ND	mg/L	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 480-237411	Analysis Date: 04/20/2015 1036			

General Chemistry

Client Sample ID: MW-12-0415

Lab Sample ID: 480-78711-3 Date Sampled: 04/17/2015 1005

Analyte	Result	Qual Units	RL	Dil	Method
Total Kjeldahl Nit	rogen ND	mg/L	0.20	1.0	351.2
	Analysis Batch: 480-239180	Analysis Date: 04/28/2015 1252			
	Prep Batch: 480-238989	Prep Date: 04/28/2015 2258			
Nitrate as N	1.4	mg/L	0.050	1.0	353.2
	Analysis Batch: 480-237138	Analysis Date: 04/18/2015 1237			
Cyanide, Total	ND	mg/L	0.010	1.0	9012B
-	Analysis Batch: 480-239146	Analysis Date: 04/28/2015 1112			
	Prep Batch: 480-239006	Prep Date: 04/27/2015 2230			
Sulfate	54.8	mg/L	10.0	2.0	D516-90, 02
	Analysis Batch: 480-238527	Analysis Date: 04/24/2015 1946			
Alkalinity, Total	368	mg/L	5.0	1.0	SM 2320B
	Analysis Batch: 480-239237	Analysis Date: 04/28/2015 1928			
Ferrous Iron	0.16 <mark>U</mark>	J <mark>J</mark> HF mg/L	0.10	1.0	SM 3500 FE D
	Analysis Batch: 480-237115	Analysis Date: 04/18/2015 1011			
Chloride	139	mg/L	5.0	5.0	SM 4500 CI- E
	Analysis Batch: 480-239257	Analysis Date: 04/28/2015 2006			
Sulfide	ND	mg/L	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 480-237411	Analysis Date: 04/20/2015 1036			