

June 6, 2016

Ms. Jamie Verrigni
Environmental Engineer
Remedial Bureau C, 11th Floor
Division of Environmental Remediation
New York State Department of Environmental Conservation
625 Broadway
Albany, NY 12233-7014

Re: Johnstown (N. Market St.)

Former Manufactured Gas Plant Site (MGP)

Site No. 5-18-020

Semi-Annual Groundwater Monitoring Report (April 2016)

Dear Ms. Verrigni:

Enclosed is the Semi-Annual Groundwater Monitoring Report for the Johnstown (N. Market St.) MGP Site located in Johnstown, New York. The report includes the April 6, 2016 groundwater monitoring results.

National Grid acknowledges the NYSDEC Fact sheet dated June 2016 approving the site's environmental remediation construction completion. Long-term OM&M activities will be conducted in accordance with the approved Site Management Plan (SMP) and the site's Environmental Easement.

Please contact me at (315) 428-5652 or <u>Steven.Stucker@NationalGrid.com</u> if you have any questions regarding the report.

Sincerely,

Steven P. Stucker, C.P.G.

Senior Environmental Engineer

Matthew D. Millias for SPS

Ms. Jamie Verrigni June 6, 2016 Page 2 of 2

Cc: Carolyn Rooney -National Grid Nathan Freeman- NYSDOH

Matt Millias- CDM Smith

SEMI-ANNUAL GROUNDWATER MONITORING REPORT

Former Manufactured Gas Plant Site North Market Street Johnstown, NY

April 2016 Sampling Event

Prepared For:

300 Erie Boulevard West Syracuse, NY 13202

Prepared By:

CDM Smith

6800 Old Collamer Road, Suite 3 East Syracuse, New York 13057

TABLE OF CONTENTS

		Page
1.0 INTR	ODUCTION	1-1
	URPOSE AND OBJECTIVEEPORT ORGANIZATION	
2.0 BACE	KGROUND	2-1
2.2 SI	TE DESCRIPTION TE HISTORY IVIRONMENTAL SETTING	2-1
3.0 MON	ITORING ACTIVITIES	3-1
	ATER GAUGING AND SAMPLING PROCEDURESROUNDWATER ANALYTICAL RESULTS	
4.0 CON	CLUSIONS AND RECOMMENDATIONS	4-1
	DNCLUSIONSECOMMENDATIONS	
5.0 REFE	RENCES	5-1
TABLES		
Table 1 Table 2	Groundwater Level Measurements Analytical Data Results	
FIGURES		
Figure 1 Figure 2 Figure 3	Site Location Map Historical Site Features Map Groundwater Contours [April 2016]	
Figure 4 Figure 5	Groundwater Contours [April 2016] Monitored Natural Attenuation/Water Quality Parameters [April 2016] BTEX Contours [April 2016]	
Figure 6	Naphthalene Contours [April 2016]	
APPENDIC	CES	
Appendix A Appendix B	Field Data [April 2016] Data Usability Summary Report [April 2016]	

1.0 INTRODUCTION

This Semi-Annual Groundwater Monitoring Report summarizes the results of April 2016 groundwater sampling event at the Johnstown, New York (N. Market Street) Former Manufactured Gas Plant (MGP) Site (the Site). This Report was developed as part of the long-term groundwater monitoring program on behalf of National Grid.

National Grid has been addressing the Site environmental conditions under an Order on Consent (Index Number D0-0001-9210), dated April 1999, that was entered into by Niagara Mohawk and the New York State Department of Environmental Conservation (NYSDEC). That Order on Consent was for the investigation and remediation of 21 former MGP sites, including the Johnstown (N. Market Street) Site. It was superseded by a new Order on Consent (Index Number A4-0473-0000), dated November 7, 2003. A NYSDEC-approved Supplemental Remedial Investigation (RI) Work Plan was finalized during November 2007, and a Final Supplemental RI Report was submitted to NYSDEC, dated December 2008. The RI results report and subsequent Feasibility Study were approved in February 2010.

A Record of Decision (ROD) was issued by NYSDEC, dated March 2010, in accordance with the requirements of New York State Environmental Conservation Law and Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York, 6 NYCRR Part 375. Based upon the results of the remedial investigation/feasibility study (RI/FS) for the Site, the IRMs previously completed, and the ROD, the draft Final Engineering Report and Site Management Plan (SMP) were developed and submitted to the NYSDEC in June 2010. The Final Engineering Report, the Final SMP, and the Final Environmental Easement were approval by NYSDEC in their June 2016 Fact Sheet.

The Final SMP includes:

- 1) Semi-annually (April & October) site inspection and groundwater level measurements at MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, MW-16, RMW-1, and the creek surface gauging station (bridge);
- 2) Semi-annual groundwater sampling/analysis (VOCs, SVOCs, Heavy Metals, and Natural Attenuation Parameters) for MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, and MW-16 (RMW-1 will not be sampled);
- 3) Semi-annual reporting (June & December) to NYSDEC.

1.1 PURPOSE AND OBJECTIVE

The purpose of this Report is to summarize the activities and results of the latest event, and to compare the results to previous events. As described in the December 2008 Supplemental RI Report and the subsequent ROD, one of the primary goals is to evaluate whether or not the groundwater constituents of concern (COCs) concentrations decrease, and continue to assess the effectiveness of monitored natural attenuation.

1.2 REPORT ORGANIZATION

This Report is organized in to the following six sections. Section 1.0 presents the purpose and objectives of this program. Section 2.0 provides the history, environmental setting and location of the Site. Section 3.0 provides a description of the approach used to collect and analyze groundwater samples at the Site. Section 4.0 presents the physical and chemical analytical data collected, and Section 5.0 presents the conclusions and recommended approach for further monitoring at the Site. References for the Report are located in Section 6.0.

2.0 BACKGROUND

2.1 SITE DESCRIPTION

The Site is located in the City of Johnstown, County of Fulton, New York (Figure 1 presents the site location map) and is identified as Block 14 and Lot 7 on the Johnstown City Tax Map. The Site is an approximately 0.7 acre area bounded by the Cayadutta Creek to the north, the Colonial Cemetery to the south, Market Street to the east, and a wooded parcel of property to the west (Figure 2 presents the site plan). The Site is located in a mixed commercial, industrial, and residential area.

Currently, National Grid operates a natural gas regulator station at the Site, with equipment contained in fenced enclosures along the Site's southern boundary. The rest of the Site is grass-covered, including the stream bank adjacent to Cayadutta Creek along the northern boundary of the Site. An embankment exists along the north end of the Site that goes down to the Cayadutta Creek. A chain link fence exists along the north and west sides of the Site, and a retaining wall runs along the south side of the Site. Access to the Site is from North Market Street to the east.

The Johnstown Hospital is located south of the Site within one mile, and numerous residences exist to the west and east of the Site. The Johnstown Senior High School and Warren Street Elementary School are located within one mile of the Site to the west.

2.2 SITE HISTORY

The Johnstown MGP Site was incorporated in March 1857 as the Johnstown Gas Light Company. The company operated a small coal gas plant with a 20,000 cubic foot (cu. ft.) holder (Holder #1), see Figure 2. In 1861, the plant was improved with the addition of a coal shed and covering for the tank holder. In 1886, the Johnstown and Gloversville Gas Light Corporation was formed, and the company purchased the rights to the Lowe water gas process. The United Gas Improvement Company planned the construction of a water gas plant for the Johnstown and Gloversville franchises.

In 1887, the Site consisted of a tool shop, an office, a coal gasometer, a lime house, a purifier room, a retort house, and a coal shed. Between 1887 and 1918, Holder #2 was located in the central part of the Site (exact size unknown). In 1892, a steam generator was constructed adjacent to the coal shed for the Lowe water gas process, and Holder #1 was decommissioned in 1896. In 1898, a 72,000 cu. ft. gas holder (Holder #3) was constructed on the Site. Between 1912 and 1918, the western small gas holder (Holder #2) in the middle of the Site was removed. In 1929, a gas pipeline from a MGP in Troy, New York reached Johnstown, and local gas production was only performed on a seasonal (winter) basis, until local production of gas ceased in 1931. Niagara Hudson Power Company was the owner of the Site in 1930. By 1948, Holder #3 was decommissioned. In 1950, Niagara Hudson Power was consolidated under the name Niagara Mohawk Power Company. By 1980, all Site buildings were removed. Currently, National Grid operates a natural gas regulator station at the Site.

Site Assessment and Investigations

An investigation of the Site began in 1997 with a Preliminary Site Assessment (PSA), which found that the Site was impacted with MGP wastes. A Supplemental PSA was then conducted at the Site in 1998, which was followed by a RI (January 2000) and subsequent remedial measures. Remedial measures are discussed separately below in this section.

A 2009 Supplemental RI was initiated to collect data to address potential residual MGP-related contaminants remaining in groundwater at the Site and to assess hydrogeologic conditions and groundwater quality on the Site. The results of the Supplemental RI were used to formulate potential remedial alternatives for groundwater and residual soil contamination. The Supplemental RI results were evaluated and presented in the 2010 FS Report.

Remedial Measures Completed

Several interim remedial measures (IRMs) were performed to address the MGP impacts. In 2002 and 2003, the former holders and associated impacts soil were removed. During this IRM, former Holder #2 and the northern half of former Holder #3 were demolished and removed from the Site. Approximately 13,870 cubic yards of soil were excavated and disposed off-site at a NYSDEC-approved facility. Permanent steel sheeting was left in place along the northeastern perimeter of the Site to avoid disturbance of the roadway and to provide containment of residual material left at depth.

Between 2005 and 2006, National Grid provided support to the City of Johnstown for subsurface work associated with the replacement of the North Market Street Bridge across Cayadutta Creek. Approximately 1,413 cubic yards of impacted soil were excavated from within the cofferdam area and disposed off-site at a NYSDEC-approved facility.

In August 2009, the rip-rap area along the bank of Cayadutta Creek that had been restored during the previous IRMs was enhanced to allow for establishment of stream-side vegetation. Post-IRM inspections of the restored Cayadutta Creek Bank were conducted in September 2009 and May 2010.

2.3 ENVIRONMENTAL SETTING

The Johnstown (N. Market Street) Site slopes northward toward Cayadutta Creek with elevations ranging from 652 to 672 feet (ft.) above sea level. Currently, the Site ground surface gradually slopes from south to north, becoming increasingly steep adjacent to the Creek, and is generally covered with either vegetation or stone. Surface drainage is primarily to the north into the Creek. Access to the Site is from North Market Street to the east, and the Site is currently used to support the natural gas regulator station operations.

Site Geology

The main units of unconsolidated deposits identified at the Site can be characterized in descending order as fill and native glacial deposits to bedrock. The glacial deposits are of lacustrine origin with glacial tills to the top of Shale bedrock (Utica Shale). Bedrock was reached underneath the till in two soil borings explored during the 1998 Supplemental PSA. These stratigraphic units are more specifically described below, based on information obtained from the previous investigations, and from the soil borings and monitoring well borings conducted during the 2007/2008 SRI.

Site geology includes a layer of disturbed soils (primarily fill) overlying glacial deposits. Based upon on-site soils and monitoring well borings, disturbed soils (including fills) range in thickness up to 13 ft. on the Site and are typically composed of sand, gravel, silt, clay, wood, coal, and anthropogenic materials including ash, cinders, clinkers, brick fragments, wire, and wood chips. Wood chips were identified in three borings (SB-09, SB-12, and MW-8), and are often associated with purifier waste.

A thin layer of peat underlies the disturbed soils in the northern portion of the Site, ranging in thickness from 0.5 ft. to 3 ft., and appears to thicken and dip to the north. Except where it is locally covered by sedimentary deposits such as silts, sands, and clays, the peat, where present, appears to have been the historical ground cover prior to development of the Site.

Underlying the peat, where present, the soils consist of lacustrine deposits composed of silts, sands, and clays. The surface of the lacustrine deposits appears to dip and thin out toward the north. A sand and gravel unit (an outwash deposit of stratified drift) underlies the lacustrine deposits across the Site area. This unit contains varying amounts of silt and clay. These deposits overlie a dense, low-permeability glacial till to bedrock (Shale).

Site Hydrogeology

Groundwater depths on-site are typically in the 10- to 20-foot below ground surface (bgs) ranges, generally in the glacial deposits below the bottom of the fill material. Groundwater flow is consistently northward through the Site area toward Cayadutta Creek, with the steepest gradient from the center of the Site proximal to former gas holders #2 and #3 to the southern Creek bank (about 0.08 ft./ft.) In comparison the average hydraulic gradient decreases to a value of approximately 0.04 ft./ft. on the east and west sides of the site away from the gas holders. The groundwater flow is consistent with regional groundwater flow direction. This groundwater flow direction and hydraulic gradients calculated during this monitoring period are also generally consistent with data obtained prior to the issuance of the ROD.

3.0 MONITORING ACTIVITIES

The long-term semi-annual groundwater monitoring program currently consists of the following elements:

- Semi-Annual Site Inspection including the creek bank protection, vegetative cover, monitoring wells, and security fence.
- Semi-Annual Groundwater Well Gauging of the following: RW-1, MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15 and MW-16 (Figure 2 presents the well locations). The creek surface water level is also gauged at one location: SG-1.
- Semi-Annual Groundwater Sampling and Analysis of the following: MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15 and MW-16. Note that Recovery Well RW-1 is not sampled as part of the program but is inspected for the presence of NAPL. MW-11 was not sampled during the April 2016 sampling round due to concrete/metal and wood debris at this offsite well location.

3.1 WATER GAUGING AND GROUNDWATER SAMPLING PROCEDURES

Gauging

Long-term groundwater monitoring includes water gauging at 9 groundwater monitoring wells and 1 groundwater recovery well using an electronic oil/water interface probe. Depth to bottom of well (DTB), depth to product (DTP), and depth to water (DTW) are to be recorded at each well. Refer to Table 1 for a summary of the water level measurements from October 2015 as well as previous events. Appendix A also presents the field documentation from the October 2015 water gauging event.

No product was present in RW-1 or the other nine groundwater monitoring wells.

A surface water level measurement was collected from the Cayadutta Creek using a water level probe (from the surveyed gauging point at the bridge).

Sampling

Groundwater sampling was performed following low-flow sampling techniques (equivalent to United States Environmental Protection Agency [USEPA] low-flow procedures) using a pressure-driven peristaltic pump. During purging, measurements were collected for the following field parameters: pH, specific conductivity, turbidity, dissolved oxygen (DO), temperature, and oxidation-reduction potential (ORP). A Horiba U-22 was used to collect the field parameter data in a flow-through cell. The monitored field parameters are observed and recorded during low-flow sampling to determine when they have stabilized, and thus when the well has been adequately purged. Field parameter measurements were recorded at approximately 5-minute intervals. The monitoring wells were purged until stabilization of the field parameters (±0.1 Standard Unit (SU) for pH, ±3% for specific conductivity, ±10 millivolts (mV) for ORP, and ±10% for DO) and

turbidity was less than 50 Nephalometric Turbidity Units (NTU). Refer to Attachment A for the field data.

After stabilization of the field parameters, 8 groundwater samples were collected directly from the dedicated tubing into laboratory-supplied sample containers (pre-preserved as required per the analytical method). Quality Assurance/Quality Control (QA/QC) samples included the collection of one field duplicate sample, one matrix spike (MS) sample, one matrix spike duplicate (MSD) sample, and one trip blank sample (VOCs only). Samples were transported to the laboratory, accompanied by the appropriate chain-of-custody documentation. Analytical results were validated.

Natural Attenuation Parameters

The ORP of groundwater is an indicator of the relative tendency of the groundwater to accept or transfer electrons. ORP is dependent on and influences rates of biodegradation. Lower ORP readings indicate a greater tendency toward reducing conditions and anaerobic processes.

The pH of the groundwater affects the presence and activity of microorganisms in the groundwater. The microorganisms may produce either organic acids or carbon dioxide which, when dissolved in water, forms weak carbonic acid. Microorganisms capable of degrading petroleum hydrocarbons typically prefer pH values ranging from 6 to 8 SU.

Groundwater temperature affects the solubility of dissolved gases such as oxygen and carbon dioxide as well as the metabolic activity of microorganisms. Oxygen is less soluble in warm water, and groundwater temperatures below approximately 5 degrees Celsius tend to inhibit biodegradation.

Dissolved oxygen is the most thermodynamically favored electron acceptor used by microorganisms during the degradation of both natural and anthropogenic organic carbon. An inverse relationship of high hydrocarbon concentrations and low DO concentrations can be used as a key indicator of biodegradation.

Nitrate, if available, may be used as an electron acceptor for anaerobic biodegradation after the depletion of dissolved oxygen (typically considered less than 0.5 milligrams per liter [mg/L]) and is used to biodegrade petroleum hydrocarbons. Lower nitrate concentrations in groundwater within a plume, with respect to higher concentrations in areas upgradient and outside a plume, may be expected.

Ferrous iron is a metabolic byproduct of hydrocarbon degradation. Reducing conditions in nitrogen- and oxygen-depleted groundwater creates an anaerobic environment that causes the reduction of ferric iron (Fe³⁺) to ferrous iron (Fe²⁺). Relatively low ferrous iron concentrations may be present in areas where natural attenuation is occurring if free ferrous iron is re-precipitating as sulfides or carbonates.

Sulfate may be used as an electron acceptor after the depletion or use limitation of dissolved oxygen, nitrate, and ferric iron. Lower sulfate concentrations in groundwater within a plume, with respect to higher concentrations in areas upgradient and outside a plume, may be expected.

The production of methane, termed methanogenesis, occurs only in strongly reducing conditions and generally after oxygen, nitrate, and sulfate have been depleted. The presence of methane in groundwater suggests BTEX degradation via methanogenesis. Methane is not present in fuels, and therefore its presence at high concentrations relative to areas upgradient and outside a plume is indicative of the biodegradation of petroleum hydrocarbons.

The buffering capacity of groundwater is a function of alkalinity. Typically, alkalinity is primarily due to carbonate alkalinity. The organic acids or the carbon dioxide (which produces a weak carbonic acid when dissolved in water) produced by biodegradation solubilize carbonate from the soil. Alkalinity concentrations that are elevated with respect to areas upgradient and outside a plume may be an indication of microbial activity and thus natural attenuation.

Typically, the relationships between BTEX and electron acceptors/metabolic byproduct concentrations (geochemical indicators) indicate potential for biodegradation. The concentrations are dependent on the location (and groundwater conditions) within the plume or outside of the plume limits.

3.2 GROUNDWATER ANALYTICAL RESULTS

The groundwater samples were analyzed for BTEX, PAHs, lead, total cyanide, and MNA/WQ parameters including alkalinity, chloride, ethane, ethene, ferrous iron, manganese, methane, nitrate, nitrogen, sulfate and sulfide. BTEX and PAHs are constituents commonly associated with former MGP sites. Cyanide is also a constituent commonly associated with former MGP sites. BTEX, PAHs, lead, and cyanide were the primary contaminants detected during previous investigation activities conducted at the Site. The MNA/WQ parameters, as well as field-measured ORP, pH, temperature, and DO, are relevant to establishing whether conditions favorable to natural attenuation occur at the Site.

- Refer to Table 2 for the analytical results summary.
- Refer to Appendix A for field data
- Refer to Appendix B for the DUSR

Groundwater analytical results were compared with levels specified in NYSDEC Division of Water Final Amendment to Water Quality Standards Regulations, effective February 16, 2008 [hereafter referred to as NYSDEC WQ Values]. For groundwater, Class GA values were applied. Class GA waters are defined as fresh groundwater, found in the saturated zone of unconsolidated deposits and consolidated rock or bedrock, which are used as a source of potable water supply.

Site Related Parameters

BTEX - Groundwater samples collected from monitoring wells MW-7, MW-10, MW-13, MW-15, and MW-16 contained concentrations of some or all individual BTEX constituents above their respective NYSDEC WQ Values (1 micrograms per liter [μ g/L] for benzene and 5 μ g/L for other BTEX constituents). The highest concentrations were observed in the groundwater samples collected from MW-13, MW-15 and MW-16. MW-13 typically had the highest total BTEX concentrations. MW-15 is located generally downgradient of the former gas holders and of MW-13, while MW-16 is located southwest of the former gas holders and generally upgradient of both MW-13 and MW-15.

PAHs – PAHs were detected in MW-4, MW-7, MW-10, MW-12, MW-13, MW-15 and MW-16 since June 2010. Naphthalene has consistently exhibited the highest concentration of any PAH.

Lead - Lead exhibited excedances above its respective NYSDEC WQ Value (25 μ g/l) in two wells (MW-7, MW-12) since June 2010.

Cyanide - Concentrations of cyanide were detected above its NYSDEC WQ Value (0.2 mg/L) in groundwater samples collected from MW-7, MW-13, MW-14, MW-15, and MW16 since June 2010.

Monitored Natural Attenuation Parameters

Site-specific levels of the MNA/WQ parameters (geochemical indicators) were compared to known screening values to identify whether the site-specific values are within the ranges known to be suitable for biodegradation. The MNA/WQ analytical results for all individual monitoring wells are summarized in Table 2. Figure 4 presents the groundwater data for the key MNA data parameters at their respective locations to assist with the MNA evaluation. Indications of biodegradation of petroleum-related MGP constituents within the plume include low levels of DO, nitrate and sulfate, with generally higher levels of manganese, ferrous iron and methane.

Indicator concentrations detected at monitoring wells identified within source and downgradient areas of the Site were compared to levels detected at upgradient and side gradient monitoring wells exhibiting little or no MGP-related contamination. Generally indicator concentration levels at a distance from the center of the plume will be significantly lower than levels within the plume. A summary of the MNA/WQ results and associated field indicator parameters are provided below:

DO and ORP values demonstrate depleted levels of dissolved oxygen and a transformation
to more anaerobic or reducing conditions at the former source and downgradient areas
relative to side gradient and upgradient areas of the Site. These values suggest that
biodegradation activities at the source and at downgradient areas are occurring, consuming
the available oxygen and resulting in MGP petroleum-related compound degradation and
the lowering of dissolved oxygen levels.

- The range of ORP levels observed at the source and downgradient area monitoring wells generally indicates aquifer conditions could be suitable for denitrification, ferric iron reduction, sulfate reduction, and methanogenesis.
- Nitrate concentrations are generally depleted at the former source and downgradient areas of the Site relative to upgradient (MW-4) and side gradient areas, indicating denitrification may be a noteworthy biodegradation process occurring at this time at the source and downgradient areas.
- Ferrous iron concentrations at the former source and downgradient area monitoring wells do not exhibit higher levels relative to side gradient and upgradient monitoring wells. In addition, sulfate concentrations at the former source and upgradient areas are not depleted relative to upgradient and side gradient areas. These observations indicate ferric iron reduction and sulfate reduction are not likely to be significant biodegradation processes at this time at the source and downgradient areas.
- Based on the presence of methane, low DO amounts, and the ORP levels, methanogenesis
 is likely an important factor for biodegradation capacity in some areas of the Site.
 However, plume elongation is limited with a similar footprint throughout the monitoring
 period indicating that biodegradation is continuing and methanogenic conditions have not
 taken over completely.

Natural Attenuation Trending

Previous groundwater sampling data collected during the since June 2010 was utilized to develop and evaluate the contaminant plume and concentration trends of specific constituents at the Site. Plume size and concentration data are indicative of biodegradation capacity (natural attenuation) at the Site and whether the capacity has reached a limit of effectiveness. In order to determine and evaluate natural attenuation effectiveness, the use of statistical testing has been utilized for groundwater data collected from monitoring wells at the Site. The Mann-Kendall test was utilized for trend analysis. Trend analysis data started June 2010. The resultant statistical trend analysis for individual monitoring wells suggests (with 80% and 90% confidence) that total BTEX compounds and naphthalene plume lifecycle have been stable (no trend) to decreasing throughout the monitoring period. The table below depicts general concentration trend analysis results (decreasing, no trend or increasing) at 80% confidence levels for each well and associated constituents during the monitoring period. No trend is indicative of plume stability at well locations with contaminant detections throughout the monitoring period.

Well ID	Benzene	Toluene	Ethylbenzene	Total xylenes	Naphthalene
MW-4	No trend	No trend	No trend	No trend	No trend
MW-7	Increased ²	No trend	No trend	No trend	Increased ²
$MW-10^{1}$	Increased ²	No trend	No trend	No trend	Increased ²
MW-11 ¹	Decreasing	Decreasing	Decreasing	Decreasing	No trend
MW-12	No trend	No trend	No trend	No trend	No trend
MW-13 ¹	Decreasing	Decreasing	Decreasing	Decreasing	Decreasing

MW-14 ¹	No trend	Decreasing	No trend	Decreasing	Decreasing
MW-15 ¹	No trend	Increasing	No trend	Decreasing	No trend
MW-16 ¹	Decreasing	Decreasing	Decreasing	Decreasing	No trend

No trend is indicative of plume stability at well locations with contaminant detections throughout the monitoring period. Prior to the April 2016 sampling round, benzene was non-detect at both MW-7 and MW-10 and naphthalene was only detected one other time, in March 2012 for MW-7 and September 2010 for MW-10.

Isoconcentration contour maps were developed for total BTEX (Figure 5) and naphthalene (Figure 6) contamination. The figures present locations of the groundwater monitoring wells and plume contours for total BTEX (as compared to the benzene WQ value of 1 μ g/L) and naphthalene exceeding the NYSDEC WQ values. Evaluation of the isoconcentration figures suggests that the contaminant plumes were relatively stable to decreasing (smaller footprint with time) within the Site boundary up until this latest sampling round of April 2016. BTEX constituent plume trends (concentrations above the benzene WQ at 1 μ g/L) have consistently included MW-13, MW-15 and MW-16 but has extended to the northeast this sampling round to MW-7 and MW-10. While the naphthalene plume (concentrations above the WQ) has decreased to include only MW-13 and MW-15. However, during the April 2016 sampling round, naphthalene was detected in MW-7 and MW-10 at concentrations below the NYSDEC WQ values. Naphthalene was non-detect as these locations during the last six sampling rounds for MW-7 and the last three sampling rounds for MW-10. Due to the naphthalene detections at MW-7 and MW-10 below the NSYDEC WQ, the naphthalene plume did not change.

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

Groundwater Levels

The groundwater elevation data indicates groundwater within the Site, south of the Creek, flows in a downgradient direction from the south to the north, toward Cayadutta Creek. The groundwater flow direction has been consistent during previous gauging events and with data obtained prior to the ROD.

Flow on the north side of the Creek is to the south, towards the Creek. As such, Cayadutta Creek serves as the discharge location for the unconfined hydrostratigraphic unit, north and south of the Creek, and acts as a hydraulic boundary.

Site-Related Constituents

The highest concentrations of BTEX constituents and PAH compounds are within MW-13, MW-15, and MW-16. Site institutional controls continue to be effective and will continue to be monitored semi-annually.

There are minimal concentrations of lead in groundwater samples; however, Total Cyanide has been detected consistently in most wells.

Natural Attenuation

Plume stability at the Site is an indication that biodegradation capacity likely has not reached its limit of effectiveness. The use of statistical testing has identified the plume trends based on the constituent concentrations. Trend analysis data started with the June 2010 sampling event. Generally, the tests suggested that the plume and the related constituents were either stable or decreasing.

4.2 RECOMMENDATIONS

Based on the results of the April 2016 event and previous events, the following recommendations are made:

✓ Continue the long-term semi-annual site inspection and groundwater monitoring program. The next event will be October 2016.

5.0 REFERENCES

Borden, Robert C., et. al., "Geochemical Indicators of Intrinsic Bioremediation". Groundwater, Volume 33, Number 2, March/April 1995.

National Grid. "Site Management Plan for the Johnstown (N. Market Street) Former MGP Site, Johnstown, New York". National Grid, November 2011.

Niagara Mohawk Power Corporation. "Preliminary Historical Profile of the Johnstown (Market Street) MGP Site. Johnstown, New York". Niagara Mohawk Power Corporation, June 1993.

Niagara Mohawk Power Corporation. "Interim Remedial Measure (IRM) Summary Report for the Johnstown (N. Market Street) Site. Johnstown, Fulton County, New York. Site No. 5-18-020:. Tetra Tech FW, June 2007.

Niagara Mohawk Power Corporation. "IRM Summary Report for the Johnstown (N. Market Street) Site. Bridge Replacement Environmental Support Activities". Tetra Tech FW, October 2007.

Niagara Mohawk Power Corporation. "Record of Decision for the Johnstown (N. Market Street) Former MGP Site, Johnstown, New York". Niagara Mohawk Power Corporation, March 2010.

Table 1 Groundwater Level Measurements Johnstown MGP Site Johnstown, NY

		3/15	/2012	10/9	9/2012	4/18	3/2013	10	/7/2013	4/	9/2014	10,	/13/2014	4/	16/2015	10/	13/2015	4,	/6/2016
Well ID	ELEVATION REFERENCE POINT	Depth to Water (ft toc)	Groundwater Elevation (ft msl)	Depth to Water (ft toc)	Groundwater Elevation (ft msl)		Groundwater Elevation (ft msl)												
											T		T		ı				
MW-4	676.54	22.81	653.73	NM	NM	23.97	652.57	23.12	653.42	23.28	653.26	23.28	653.26	22.91	653.63	23.48	653.06	23.51	653.03
MW-7	659.08	13.55	645.53	14.17	644.91	13.53	645.55	14.36	644.72	13.71	645.37	14.61	644.47	13.23	645.85	14.61	644.47	14.19	644.89
MW-10	657.59	14.18	643.41	15.05	642.54	14.27	643.32	14.44	643.15	14.13	643.46	14.98	642.61	14.15	643.44	14.95	642.64	14.77	642.82
MW-11	657.29	12.73	644.56	13.95	643.34	13.01	644.28	13.16	644.13	12.68	644.61	13.71	643.58	12.62	644.67	NM	_	NM	-
MW-12	660.08	14.26	645.82	16.36	643.72	14.06	646.02	14.99	645.09	14.41	645.67	15.65	644.43	14.25	645.83	15.62	644.46	14.95	645.13
MW-13	664.89	14.98	649.91	16.12	648.77	14.18	650.71	15.08	649.81	14.84	650.05	15.53	649.36	11.34	653.55	14.98	649.91	15.95	648.94
MW-14	663.91	15.49	648.42	16.98	646.93	13.14	650.77	14.74	649.17	15.70	648.21	15.02	648.89	13.06	650.85	13.63	650.28	16.81	647.10
MW-15	661.85	16.41	645.44	17.85	644.00	16.26	645.59	17.21	644.64	16.67	645.18	17.55	644.30	15.31	646.54	17.23	644.62	17.55	644.30
MW-16	665.57	11.56	654.01	10.51	655.06	9.98	655.59	9.85	655.72	9.45	656.12	10.24	655.33	10.48	655.09	9.61	655.96	10.79	654.78
RW-1	NRP	NM	NRP	17.98	NRP	16.21	NRP	15.95	NRP	12.32	NRP	17.31	NRP	16.84	NRP	13.21	NRP	13.03	NRP
GAUGE1	659.97	15.69	644.28	NM	NM	19.10	640.87	18.85	641.12	18.85	641.12	20.01	639.96	18.91	641.06	19.91	640.06	19.76	640.21

Table 2 Analytical Data Results (MW-4) Johnstown MGP Site Johnstown, NY

	1										
CONSTITUENT	UNITS	NYSDEC WQ Values	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/2014	4/16/2015	10/14/2015	4/6/2016
BTEX Compounds											
Benzene	ug/l	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m/p-Xylene	ug/l	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
o-Xylene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
PAHs											
Acenaphthene	ug/l	20	0.49 U	0.49 U	0.52 U	0.52 U					
Acenaphthylene	ug/l	NC	0.49 U	0.49 U	0.52 U	0.52 U					
Anthracene	ug/l	50	0.49 U	0.49 U	0.52 U	0.52 U					
Benzo(a)anthracene	ug/l	0.002	0.49 U	0.49 U	0.52 U	0.52 U					
Benzo(a)pyrene	ug/l	0.000	0.49 U	0.49 U	0.52 U	0.52 U					
Benzo(b)fluoranthene	ug/l	0.002	0.49 U	0.49 U	0.52 U	0.52 U					
Benzo(g,h,i)perylene	ug/l	NC	0.49 U	0.49 U	0.52 U	0.52 U					
Benzo(k)fluoranthene	ug/l	0.002	0.49 U	0.49 U	0.52 U	0.52 U					
Chrysene	ug/l	0.002	0.49 U	0.49 U	0.52 U	0.52 U					
Dibenzo(a,h)anthracene	ug/l	NC	0.49 U	0.49 U	0.52 U	0.52 U					
Fluoranthene	ug/l	50	0.49 U	0.49 U	0.52 U	0.52 U					
Fluorene	ug/l	50	0.49 U	0.49 U	0.52 U	0.52 U					
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.49 U	0.49 U	0.52 U	0.52 U					
Naphthalene	ug/l	10	0.49 U	0.49 U	0.49 U	3.2	3.2	2.2	2.2	2.2	0.51 U
Phenanthrene	ug/l	50	0.49 U	0.49 U	0.52 U	0.52 U					
Pyrene	ug/l	50	0.49 U	0.49 U	0.52 U	0.52 U					
Cyanide and Lead											
Lead	ug/l	25	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	10 U
Cyanide	mg/l	0.2	0.010 U	0.010 U	0.010 U	0.010 U					

Notes:

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

J - Estimated

mg/l - Milligrams per liter

NC - No Criteria

PAHs - Polycyclic Aromatic Hydrocarbons

U - Not Detected

ug/l - Micrograms per liter

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-4) Johnstown MGP Site Johnstown, NY

Sa	mple Date	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/2014	4/16/2015	10/14/2015	4/6/2016
CONSTITUENT	UNITS									
MNA/WQ Parameters										
Alkalinity (as CaCO3)	mg/l	R	405	354	442	398	400	384	412	394
Chloride	mg/l	228	222	275	411	304	329	295	365	304
Ethane	ug/l	1.5 U	7.5 U	7.5 U	7.5 U	7.5 U				
Ethene	ug/l	1.5 U	7 U	7 U	7 U	7 U	7 U	7 U	7 U	7 U
Ferrous Iron	mg/l	0.1 U	0.1 U	0.1 U	0.013	0.1 U	0.1 U	0.1 U	0.1 U	0.14
Manganese	mg/l	3 U	0.0087	3 U	3 U	3 U	3 U	3 U	0.019	0.0031
Methane	ug/l	1 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U
Nitrate	mg/l	3.1	2.2	2.4	3.5	3.6	2.7	2.9	2.9	3.4
Nitrogen	mg/l	0.2 U	0.25	0.31	0.31	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Sulfate	mg/l	56 B	62.2	64.7	74.7	70.7	50.8	60	60	73.9
Sulfide	mg/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

- B Present in Associated Blank Sample
- J Estimated Concentration
- mg/l Milligrams per liter
- NA Not analyzed
- R Rejected
- U Not Detected
- ug/l Micrograms per liter

Table 2 Analytical Data Results (MW-7) Johnstown MGP Site Johnstown, NY

							1				
CONSTITUENT	UNITS	NYSDEC WQ Values	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/2014	4/16/2015	10/14/2015	4/6/2016
BTEX Compounds											
Benzene	ug/l	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.3	1 U
Ethylbenzene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m/p-Xylene	ug/l	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
o-Xylene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.3	1 U
PAHs		_									
Acenaphthene	ug/l	20	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U				
Acenaphthylene	ug/l	NC	0.13 J	0.13 J	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U
Anthracene	ug/l	50	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U				
Benzo(a)anthracene	ug/l	0.002	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U				
Benzo(a)pyrene	ug/l	0.000	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U				
Benzo(b)fluoranthene	ug/l	0.002	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U				
Benzo(g,h,i)perylene	ug/l	NC	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U				
Benzo(k)fluoranthene	ug/l	0.002	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U				
Chrysene	ug/l	0.002	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U				
Dibenzo(a,h)anthracene	ug/l	NC	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U				
Fluoranthene	ug/l	50	0.078 J	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U
Fluorene	ug/l	50	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U				
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U				
Naphthalene	ug/l	10	1.1	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U	5.2	0.49 U
Phenanthrene	ug/l	50	0.12 J	0.48 U	0.49	0.48 U	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U
Pyrene	ug/l	50	0.098 J	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U
Cyanide and Lead											
Lead	ug/l	25	3.2 J	19	33	7.1	7.1	0.010 U	0.010 U	0.010 U	0.010 U
Cyanide	mg/l	0.2	0.22	5.9	1.4	0.4	0.16	0.13	0.18	0.18	0.18

Notes:

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

J - Estimated Concentration

mg/l - Milligrams per liter

NC - No Criteria

PAHs - Polycyclic Aromatic Hydrocarbons

R - Rejected

U - Not Detected

ug/l - Micrograms per liter

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-7) Johnstown MGP Site Johnstown, NY

S	ample Date	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/2014	4/16/2015	10/14/2015	4/6/2016
CONSTITUENT	UNITS									
MNA/WQ Parameters										
Alkalinity (as CaCO3)	mg/l	R	310	324	367	375	392	340	403	395
Chloride	mg/l	91.2	101	114	84	79	62.8	67.7	66.7	66.2
Ethane	ug/l	75 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U
Ethene	ug/l	75 U	7.0U	7.0U	7.0U	7.0U	7.0U	7.0U	7.0U	7.0U
Ferrous Iron	mg/l	0.1 U	0.37	0.1 U	0.25	6.24	0.1 U	0.1 U	0.1 U	0.14
Manganese	mg/l	0.51	0.96	1.1	1.1	0.564	0.49	0.49	0.46	0.53
Methane	ug/l	210	240	40	23	150	82	35	96	17
Nitrate	mg/l	0.05 U	0.05 U	0.05 U	0.14					
Nitrogen	mg/l	1.6	1.6	4.6	1.5	0.16	2	1.1	1.5	1.6
Sulfate	mg/l	674 B	509	654	518	540	457	442	533	384
Sulfide	mg/l	1 U	1.2	1.4	1.4	1.4	1	1 U	1 U	1 U

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration
- mg/l Milligrams per liter
- NA Not analyzed
- R Rejected
- U Not Detected
- ug/l Micrograms per liter

Table 2 Analytical Data Results (MW-10) Johnstown MGP Site Johnstown, NY

CONSTITUENT	UNITS	NYSDEC WQ Values	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/2014	4/16/2015	10/13/2015	4/6/2016
BTEX Compounds											
Benzene	ug/l	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2.3	1 U
Ethylbenzene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1	1 U
m/p-Xylene	ug/l	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
o-Xylene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2	1 U
PAHs											
Acenaphthene	ug/l	20	1.4	2	2.2	1.1	0.8	0.48 U	0.63	0.50 U	0.50 U
Acenaphthylene	ug/l	NC	0.14 J	0.48 U	0.50 U	0.50 U	0.50 U				
Anthracene	ug/l	50	0.48 U	0.50 U	0.50 U	0.50 U					
Benzo(a)anthracene	ug/l	0.002	0.49 B	0.48 U	0.50 U	0.50 U	0.50 U				
Benzo(a)pyrene	ug/l	0.002	0.19 J	0.48 U	0.55	0.48 U	0.48 U	0.48 U	0.50 U	0.50 U	0.50 U
Benzo(b)fluoranthene	ug/l	0.002	0.24 J	0.48 U	0.86	0.48 U	0.48 U	0.48 U	0.50 U	0.50 U	0.50 U
Benzo(g,h,i)perylene	ug/l	NC	0.08 J	0.48 U	0.50 U	0.50 U	0.50 U				
Benzo(k)fluoranthene	ug/l	0.002	0.18 J	0.48 U	0.50 U	0.50 U	0.50 U				
Chrysene	ug/l	0.002	0.48 U	0.50 U	0.50 U	0.50 U					
Dibenzo(a,h)anthracene	ug/l	NC	0.48 U	0.48 U	1.1	0.48 U	0.48 U	0.48 U	0.50 U	0.50 U	0.50 U
Fluoranthene	ug/l	50	0.34 J	0.48 U	0.50 U	0.50 U	0.50 U				
Fluorene	ug/l	50	0.48 U	0.50 U	0.50 U	0.50 U					
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.076 J	0.48 U	0.50 U	0.50 U	0.50 U				
Naphthalene	ug/l	10	0.48 U	0.7	0.7	0.48 U	0.48 U	0.48 U	0.50 U	7.9	0.50 U
Phenanthrene	ug/l	50	0.18 J	0.48 U	0.50 U	0.50 U	0.50 U				
Pyrene	ug/l	50	0.41 J	0.48 U	0.50 U	0.50 U	0.50 U				
Cyanide and Lead											
Lead	mg/l	25	6.4	5 U	8.4	5 U	5 U	5 U	0.010 U	0.010 U	0.010 U
Cyanide	mg/l	0.2	0.078	0.14	0.1	0.11	0.081	0.10	0.098	0.010	0.085

Notes:

B - Present in Associated Blank Sample

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

J - Estimated Concentration

mg/l - Milligrams per liter

NC - No Criteria

PAHs - Polycyclic Aromatic Hydrocarbons

R - Rejected

U - Not Detected

ug/l - Micrograms per liter

Table 2
Monitored Natural Attenuation/Water Quality Data Results (MW-10)
Johnstown MGP Site
Johnstown, NY

Sa	imple Date	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/2014	4/16/2015	10/13/2015	4/6/2016
CONSTITUENT	UNITS									
MNA/WQ Parameters										
Alkalinity (as CaCO3)	mg/l	R	589	584	552	566	548	512	581	586
Chloride	mg/l	147	316	286	265	470	664	698	1060	893
Ethane	ug/l	1.5 U	7.5 U	7.5 U	7.5 U	7.5 U				
Ethene	ug/l	1.5 U	7.0 U	7.0 U	7.0 U	7.0 U				
Ferrous Iron	mg/l	R	0.10 U	0.10 U	0.12	6.06	0.10 U	0.10 U	0.10 U	0.11
Manganese	mg/l	0.83	1	1.2	0.75	1.07	1.3	1.3	1.6	1.2
Methane	ug/l	40	72	32	28	110	130	63	82	56
Nitrate	mg/l	0.05 U	0.05 U	0.11	0.05 U					
Nitrogen	mg/l	5.4	5.7	6.1	4.1	4.8	6.2	5.6	6.3	4
Sulfate	mg/l	238 B	175	174	171	153	89.7	167	53.9	44.4
Sulfide	mg/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Notes:

B - Present in Associated Blank Sample

mg/l - Milligrams per liter

NA - Not analyzed

R - Rejected

U - Not Detected

ug/l - Micrograms per liter

Table 2 Analytical Data Results (MW-11) Johnstown MGP Site Johnstown, NY

CONSTITUENT	UNITS	NYSDEC WQ Values	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/2014	4/16/2015	10/14/2015	4/6/2016
BTEX Compounds											
Benzene	ug/l	1	7.9	12	3.5	8.1	10	22	7.3	NS	NS
Ethylbenzene	ug/l	5	3.5	1 U	1.2	3.8	5.1	7.8	3	NS	NS
m/p-Xylene	ug/l	5	1.4 J	2 U	2 U	2 U	2 U	2.1	2 U	NS	NS
o-Xylene	ug/l	5	1.2	1 U	1 U	1.6	2.1	2.6	1.5	NS	NS
Toluene	ug/l	5	0.69 J	1 U	1 U	1 U	1.1	1.9	1 U	NS	NS
PAHs											
Acenaphthene	ug/l	20	100	140 E	97	110	120	110	59	NS	NS
Acenaphthylene	ug/l	NC	210	160 E	120	170	110	150	56	NS	NS
Anthracene	ug/l	50	11	23	13	28	13	16	4.2	NS	NS
Benzo(a)anthracene	ug/l	0.002	5.2 B	3.8	0.002U	8.3	3.2	4.8	1.9	NS	NS
Benzo(a)pyrene	ug/l	0.002	2.3 J	2.7	3.3	8.5	2.8	4.7	0.84	NS	NS
Benzo(b)fluoranthene	ug/l	0.002	1.8 J	1.7	0.002U	0.002U	0.002U	4.6	0.68	NS	NS
Benzo(g,h,i)perylene	ug/l	NC	1.3 J	1	1	3.4	0.002U	1.8	0.002U	NS	NS
Benzo(k)fluoranthene	ug/l	0.002	1.2 J	1.6	0.002U	0.002U	0.002U	2.1	0.002U	NS	NS
Chrysene	ug/l	0.002	5.1 U	3.4	4.4	10	5.4	7.6	0.99	NS	NS
Dibenzo(a,h)anthracene	ug/l	NC	5.1 U	0.47 U	0.47 U	NS	NS				
Fluoranthene	ug/l	50	12	24	14	28	12	16	5.4	NS	NS
Fluorene	ug/l	50	62	92	62	70	31	44	16	NS	NS
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.69 J	1.6	0.002U	0.002U	0.002U	1.2	0.002U	NS	NS
Naphthalene	ug/l	10	140	110	50	87	10U	51	2.3	NS	NS
Phenanthrene	ug/l	50	91	170	80	130	5.8	62	1.5	NS	NS
Pyrene	ug/l	50	16	28	18	34	17	20	4.2	NS	NS
Cyanide and Lead											
Lead	ug/l	25	4.6 J	5 U	5 U	5.9	5U	0.014	5U	NS	NS
Cyanide	mg/l	0.2	0.012	0.010 U	0.010 U	0.010 U	0.018	0.021	0.012	NS	NS

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration
- NC No Criteria
- NS Not Sampled
- R Rejected
- U Not Detected
- BTEX Benzene, Ethylbenzene, Toluene and Xylene
- PAHs Polycyclic Aromatic Hydrocarbons
- mg/l Milligrams per liter
- ug/l Micrograms per liter

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-11) Johnstown MGP Site Johnstown, NY

Sa	mple Date	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/2014	4/16/2015	10/14/2015	4/6/2016
CONSTITUENT	UNITS									
MNA/WQ Parameters										
Alkalinity (as CaCO3)	mg/l	R	623	507	573	465	457	428	NS	NS
Chloride	mg/l	321	350	202	295	454	364	314	NS	NS
Ethane	ug/l	15 U	380 U	380 U	380 U	380 U	7.5 U	7.5 U	NS	NS
Ethene	ug/l	15 U	350 U	350 U	350 U	350 U	7.0 U	7.0 U	NS	NS
Ferrous Iron	mg/l	0.1 U	0.5	0.18	0.22	0.29	0.1U	0.1U	NS	NS
Manganese	mg/l	0.47	0.95	0.95	0.55	0.56	0.56	0.25	NS	NS
Methane	ug/l	160	520	12	25	120	180	13	NS	NS
Nitrate	mg/l	0.092	0.050 U	0.79	0.32	0.32	0.059	0.28	NS	NS
Nitrogen	mg/l	1.3	1.4	0.58	0.64	0.57	1.2	0.26	NS	NS
Sulfate	mg/l	8.5 B	16.9	112	94.1	58	44.3	82.9	NS	NS
Sulfide	mg/l	1 U	1 U	1 U	1 U	1 U	1.8	1 U	NS	NS

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration
- mg/l Milligrams per liter
- NA Not analyzed
- NS Not Sampled
- R Rejected
- U Not Detected
- ug/l Micrograms per liter

Table 2 Analytical Data Results (MW-12) Johnstown MGP Site Johnstown, NY

CONSTITUENT	UNITS	NYSDEC WQ Values	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/2014	4/16/2015	10/14/2015	4/6/2016
BTEX Compounds											
Benzene	ug/l	1	1 U	2.1	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
m/p-Xylene	ug/l	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
o-Xylene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
PAHs											
Acenaphthene	ug/l	20	0.52 U	14	0.2 U	1.1	1.1	0.48 U	0.48 U	0.47 U	0.51 U
Acenaphthylene	ug/l	NC	0.18 J	100	0.2 U	0.2 U	0.2 U	0.63	0.2 U	0.47 U	0.51 U
Anthracene	ug/l	50	0.13 J	2.8	0.2 U	1.1	1.1	0.88	0.2 U	0.73	0.51 U
Benzo(a)anthracene	ug/l	0.002	0.57 B	1.5	0.83	3	0.66	1.5	0.49 U	0.47 U	0.51 U
Benzo(a)pyrene	ug/l	0.002	0.35 J	1.5	1	3.6	0.92	1.8	0.49 U	0.47 U	0.51 U
Benzo(b)fluoranthene	ug/l	0.002	0.27 J	1.3	0.91	3.4	0.71	2.1	0.49 U	0.47 U	0.51 U
Benzo(g,h,i)perylene	ug/l	NC	0.27 J	0.62	0.49 U	0.49 U	0.51	0.74	0.49 U	0.47 U	0.51 U
Benzo(k)fluoranthene	ug/l	0.002	0.38 J	0.58	0.49 U	0.83	0.49 U	0.74	0.49 U	0.47 U	0.51 U
Chrysene	ug/l	0.002	0.60 B	1.1	1	3	0.49 U	1.6	0.49 U	0.47 U	0.51 U
Dibenzo(a,h)anthracene	ug/l	NC	0.52 U	0.48 U	0.49 U	0.47 U	0.51 U				
Fluoranthene	ug/l	50	0.41 J	3.4	1.4	4.3	0.87	2.00	0.49 U	0.47 U	0.52
Fluorene	ug/l	50	0.52 U	2.2	0.49 U	0.49 U	0.49 U	0.48 U	0.49 U	0.47 U	0.51 U
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.13 J	0.97	0.49 U	1.2	0.49 U	0.51	0.49 U	0.47 U	0.51 U
Naphthalene	ug/l	10	0.52 U	160 E	2.5	0.99	0.52 U	1.6	0.49 U	1.9	0.51 U
Phenanthrene	ug/l	50	0.48 J	7.6	1.1	3.6	0.61	2	0.49 U	0.47 U	0.51 U
Pyrene	ug/l	50	0.59	4.2	2.4	5.8	1.3	2.8	0.49 U	0.47 U	0.64
Cyanide and Lead											
Lead	ug/l	25	5 U	5 U	5 U	29	5 U	0.018	0.49 U	10 U	10 U
Cyanide	mg/l	0.2	0.0062 J	0.010 U	0.010 U	0.010 U	0.010 U	0.013	0.49 U	0.01 U	0.01 U

Notes:

B - Present in Associated Blank Sample

J - Estimated Concentration

NC - No Criteria

U - Not Detected

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

PAHs - Polycyclic Aromatic Hydrocarbons

Table 2
Monitored Natural Attenuation/Water Quality Data Results (MW-12)
Johnstown MGP Site
Johnstown, NY

Sa CONSTITUENT	ample Date UNITS	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/2014	4/16/2015	10/14/2015	4/6/2016
MNA/WQ Parameters	CIVITS									
Alkalinity (as CaCO3)	mg/l	R	434	391	415	329	414	368	401	412
Chloride	mg/l	129 B	468	123	662	150	493	139	591	276
Ethane	ug/l	1.5 U	7.5 U	7.5 U	7.5 U	7.5 U				
Ethene	ug/l	1.5 U	7 U	7 U	7 U	7 U	7 U	7 U	7 U	7 U
Ferrous Iron	mg/l	0.1 U	0.44	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Manganese	mg/l	0.12	0.52	0.19	2.1	0.36	1.2	0.16	0.039	0.062
Methane	ug/l	0.56 J	47	1 U	1 U	1 U	4 U	4 U	4 U	4 U
Nitrate	mg/l	3.2	0.05 U	2.5	4.8	1.4	3.7	1.4	2.5	3.3
Nitrogen	mg/l	0.19 J	0.29	0.24	2.4	0.44	0.61	0.61	0.2 U	0.2 U
Sulfate	mg/l	53.5 B	81.4	73.5	115	51.6	73.5	54.8	70.2	93.7
Sulfide	mg/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

- B Present in Associated Blank Sample
- J Estimated Concentration
- mg/l Milligrams per liter
- NA Not analyzed
- U Not Detected
- ug/l Micrograms per liter

Table 2 Analytical Data Results (MW-13) Johnstown MGP Site Johnstown, NY

		NYSDEC WQ Values									
CONSTITUENT	UNITS		03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/2014	4/16/2015	10/13/2015	4/6/2016
BTEX Compounds	1										
Benzene	ug/l	1	370	360	490	400	200	300	17	360	300
Ethylbenzene	ug/l	5	670	490	600	320	200	340	17	190	270
m/p-Xylene	ug/l	5	740	590	730	420	250	480	24	270	360
o-Xylene	ug/l	5	340	260	320	190	120	210	16	120	150
Toluene	ug/l	5	740	520 E	710	440	270	430	17	320	410
PAHs											
Acenaphthene	ug/l	20	82 J	170	130	77	71	130	4.9 U	65 E	130
Acenaphthylene	ug/l	NC	210	570	430	350	22	450	4.9 U	77 E	220
Anthracene	ug/l	50	97 U	47 U	47 U	47 U	6.9	14	4.9 U	9.2 F1 F2	10
Benzo(a)anthracene	ug/l	0.002	97 U	47 U	47 U	47 U	47 U	1.9	0.001 U	0.59 F2	9.7 U
Benzo(a)pyrene	ug/l	0.000	97 U	47 U	47 U	47 U	47 U	1.6	0.001 U	0.49 U	9.7 U
Benzo(b)fluoranthene	ug/l	0.002	97 U	47 U	47 U	47 U	47 U	2.8	0.001 U	0.49 U	9.7 U
Benzo(g,h,i)perylene	ug/l	NC	97 U	47 U	47 U	47 U	47 U	0.6	0.001 U	0.49 U	9.7 U
Benzo(k)fluoranthene	ug/l	0.002	97 U	47 U	47 U	47 U	47 U	0.53	0.001 U	0.49 U	9.7 U
Chrysene	ug/l	0.002	97 U	47 U	47 U	47 U	47 U	1.8	0.001 U	0.50 F1 F2	9.7 U
Dibenzo(a,h)anthracene	ug/l	NC	97 U	47 U	47 U	47 U	47 U	0.47 U	0.001 U	0.49 U	9.7 U
Fluoranthene	ug/l	50	97 U	47 U	47 U	47 U	6.1	8.2	4.9 U	5.5 F2	9.7 U
Fluorene	ug/l	50	37 J	110	93	68	30	94 J	4.9 U	43 F1 F2	55
Indeno(1,2,3-cd)pyrene	ug/l	0.002	97 U	47 U	47 U	47 U	47 U	0.48	0.001 U	0.49 U	9.7 U
Naphthalene	ug/l	10	4100	8200	7100	3700	10U	4200	4.9 U	350 E	170
Phenanthrene	ug/l	50	44 J	76	73	61	50U	70	4.9 U	31 F1	9.7 U
Pyrene	ug/l	50	97 U	47 U	47 U	47 U	7.2	9.7	4.9 U	5.8 F2	9.7 U
Cyanide and Lead											
Lead	ug/l	25	5.8	5 U	7.8	5 U	5 U	5 U	4.9 U	10 U	10 U
Cyanide	mg/l	0.2	0.33	0.39	0.32	0.26	0.17	0.24	0.11	0.22 F1	0.29

- B Present in Associated Blank Sample
- D From a Diluted Sample
- E Result exceeded calibration range.
- F1 MS and/or MSD Recovery is outside acceptance limits.
- F2 MS/MSD RPD exceeds control limits.
- J Estimated Concentration
- NC No Criteria
- R Rejected
- U Not Detected
- BTEX Benzene, Ethylbenzene, Toluene and Xylene
- PAHs Polycyclic Aromatic Hydrocarbons
- mg/l Milligrams per liter
- ug/l Micrograms per liter

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-13) Johnstown MGP Site Johnstown, NY

Sai	mple Date	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/2014	10/13/2015	4/6/2016
CONSTITUENT	UNITS								
MNA/WQ Parameters									
Alkalinity (as CaCO3)	mg/l	R	158	218	187	176	255	283 F1	311
Chloride	mg/l	20.5	21.6	20.4	7.3	9.2	17.3	11.2	9.8
Ethane	ug/l	15 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U
Ethene	ug/l	15 U	7.0 U	7.0 U	7.0 U	7.0 U	7.0 U	7.0 U	7.5 U
Ferrous Iron	mg/l	0.1 U	0.12	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
Manganese	mg/l	0.096	0.092	0.11	0.088	0.14	0.031	0.064	7.5 U
Methane	ug/l	66	120	36	15	74	4.0 U	110	50
Nitrate	mg/l	0.05 U	0.05 U	0.05					
Nitrogen	mg/l	1.4	1.4	1.8	1.2	2.1	0.62	1.4	1.2
Sulfate	mg/l	52.1 J	139	82.3	15.5	15.5	5.0 U	5.0 U	5 U
Sulfide	mg/l	R	1.2	1 U	1 U	1 U	1 U	1 U	1

- B Present in Associated Blank Sample
- D From a Diluted Sample
- F1 MS and/or MSD Recovery is outside acceptance limits.
- J Estimated Concentration
- mg/l Milligrams per liter
- NA Not analyzed
- R Rejected
- U Not Detected
- ug/l Micrograms per liter

Table 2 Analytical Data Results (MW-14) Johnstown MGP Site Johnstown, NY

CONSTITUENT	UNITS	NYSDEC WQ Values	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/2014	4/16/2015	10/13/2015	4/6/2016
BTEX Compounds	T.	<u>. </u>									
Benzene	ug/l	1	2.9	1 U	1 U	1.3	1 U	1 U	1 U	1 U	0.54U
Ethylbenzene	ug/l	5	1.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.54U
m/p-Xylene	ug/l	5	2.4	2 U	2 U	2 U	2 U	2 U	2 U	2 U	0.54U
o-Xylene	ug/l	5	2.2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.54U
Toluene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.54U
PAHs											
Acenaphthene	ug/l	20	5.1	1.4	0.48 U	2.2	0.5	2.00	0.47 U	0.52 U	0.54U
Acenaphthylene	ug/l	NC	9	1.9	0.48 U	2.5	0.48 U	2.9	0.47 U	0.52 U	0.54U
Anthracene	ug/l	50	0.5	0.48 U	0.48 U	0.48 U	0.48 U	0.5	0.47 U	0.52 U	0.54U
Benzo(a)anthracene	ug/l	0.002	0.50 U	0.48 U	0.48 U	0.62	1	1.9	0.47 U	0.52 U	0.54U
Benzo(a)pyrene	ug/l	0.002	0.12 J	0.48 U	0.48 U	0.65	1.3	2.4	0.47 U	0.52 U	0.54U
Benzo(b)fluoranthene	ug/l	0.002	0.50 U	0.48 U	0.48 U	0.79	1.2	3.8	0.47 U	0.52 U	0.54U
Benzo(g,h,i)perylene	ug/l	NC	0.09 J	0.48 U	0.48 U	0.48 U	0.95	1.3	0.47 U	0.52 U	0.54U
Benzo(k)fluoranthene	ug/l	0.002	0.17 J	0.48 U	0.48 U	0.48 U	0.83	1.1	0.47 U	0.52 U	0.54U
Chrysene	ug/l	0.002	0.50 U	0.48 U	0.48 U	0.69	1.2	2.1	0.47 U	0.52 U	0.54U
Dibenzo(a,h)anthracene	ug/l	NC	0.50 U	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.47 U	0.52 U	0.54U
Fluoranthene	ug/l	50	0.61	0.59	0.48 U	1.2	1.5	3.2	0.47 U	0.52 U	0.54U
Fluorene	ug/l	50	0.35 J	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.47 U	0.52 U	0.54U
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.054 J	0.48 U	0.48 U	0.48 U	0.63	0.95	0.47 U	0.52 U	0.54U
Naphthalene	ug/l	10	1.2	0.48 U	1.7	0.48	0.48 U	1.1	0.47 U	0.52 U	0.54U
Phenanthrene	ug/l	50	1.1	0.48 U	0.48 U	0.67	0.63	1.4	0.47 U	0.52 U	0.54U
Pyrene	ug/l	50	0.7	0.76	0.48 U	1.5	2.4	5.0	0.47 U	0.52 U	0.54U
Cyanide and Lead	Cyanide and Lead										
Lead	ug/l	25	5.7	21	5 U	15	5 U	0.031	0.01 U	0.01 U	10 U
Cyanide	mg/l	0.2	0.28	1.4	0.1	0.2	0.9	0.2	0.091	0.120	0.88

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration
- NC No Criteria
- R Rejected
- U Not Detected
- BTEX Benzene, Ethylbenzene, Toluene and Xylene
- PAHs Polycyclic Aromatic Hydrocarbons
- mg/l Milligrams per liter
- ug/l Micrograms per liter

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-14) Johnstown MGP Site Johnstown, NY

			I			1		1	
	Sample Date	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/2014	10/13/2014	4/6/2016
CONSTITUENT	UNITS								
MNA/WQ Parameters									
Alkalinity (as CaCO3)	mg/l	R	494	417	456	483	372	445	507
Chloride	mg/l	12.8	40.4	2	7.6	28.5	3.9	10.7	27.4
Ethane	ug/l	1.5 U	7.5 U	7.5 U	7.5 U				
Ethene	ug/l	1.5 U	7 U	7 U	7 U	7 U	7 U	7 U	7.5 U
Ferrous Iron	mg/l	0.1 U	0.17	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.11
Manganese	mg/l	0.51	2	0.008	0.25	1	0.019	0.011	7.5 U
Methane	ug/l	70	140	1 U	8.6	140	4.0 U	4.0 U	31
Nitrate	mg/l	0.05 U	0.05 U	0.8	0.05 U	0.05 U	0.87	0.16	0.05 U
Nitrogen	mg/l	0.86	2.5	0.54	0.68	1.5	0.22	0.72	1
Sulfate	mg/l	173 B	639	5 U	5 U	363	5.0 U	5.0 U	324
Sulfide	mg/l	R	1 U	1 U	1 U	1 U	1 U	1 U	1U

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration
- mg/l Milligrams per liter
- NA Not analyzed
- R Rejected
- U Not Detected
- ug/l Micrograms per liter

Table 2 Analytical Data Results (MW-15) Johnstown MGP Site Johnstown, NY

		NYSDEC									
CONSTITUENT	UNITS	WQ Values	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/2014	4/16/2015	10/13/2015	4/6/2016
BTEX Compounds											
Benzene	ug/l	1	1500 D	1100 E	410	390	210	300	16	350 E	330
Ethylbenzene	ug/l	5	220	200	75	53	38	74	1.9	92	110
m/p-Xylene	ug/l	5	6.6 J	23	19	5 U	5 U	10 U	3.2	8.1	8U
o-Xylene	ug/l	5	27	23	19	16	8.5	28	7.5	23	21
Toluene	ug/l	5	6.2 J	5	5 U	5 U	5 U	5.8	1 U	7	8U
PAHs											
Acenaphthene	ug/l	20	47	57	42	23	18	24	6.7	16	23
Acenaphthylene	ug/l	NC	12	16	11	6.5	3	3.9	0.59	3.1	5.1U
Anthracene	ug/l	50	1.5 J	2.8	2.6	1.4	0.95	0.81	0.49 U	0.57	5.1U
Benzo(a)anthracene	ug/l	0.002	4.7 U	0.58 U	0.96	0.59	0.58 U	0.48 U	0.49 U	0.47 U	5.1U
Benzo(a)pyrene	ug/l	0.000	4.7 U	0.58 U	0.96	0.59	0.58 U	0.48 U	0.49 U	0.47 U	5.1U
Benzo(b)fluoranthene	ug/l	0.002	4.7 U	0.58 U	0.85	0.62	0.58 U	0.72	0.49 U	0.47 U	5.1U
Benzo(g,h,i)perylene	ug/l	NC	4.7 U	0.58 U	0.58 U	0.58 U	0.58 U	0.48 U	0.49 U	0.47 U	5.1U
Benzo(k)fluoranthene	ug/l	0.002	4.7 U	0.58 U	0.72	0.58 U	0.58 U	0.48 U	0.49 U	0.47 U	5.1U
Chrysene	ug/l	0.002	4.7 U	0.58 U	1.2	0.59	0.58 U	0.48 U	0.49 U	0.47 U	5.1U
Dibenzo(a,h)anthracene	ug/l	NC	4.7 U	0.58 U	0.58 U	0.58 U	0.58 U	0.48 U	0.49 U	0.47 U	5.1U
Fluoranthene	ug/l	50	1.3 J	2.6	3.3	1.7	1.1	0.93	0.49 U	0.61	5.1U
Fluorene	ug/l	50	10	17	13	6.1	4.3	5.2	1.2	4.1	5.9
Indeno(1,2,3-cd)pyrene	ug/l	0.002	4.7 U	0.58 U	0.58 U	0.58 U	0.58 U	0.48 U	0.49 U	0.47 U	5.1U
Naphthalene	ug/l	10	51	27	94	13	29	210	1.5	48 E	110
Phenanthrene	ug/l	50	8.8	12	10	5.1	3.4	3.7	0.49 U	2.8	5.1U
Pyrene	ug/l	50	1.5 J	2.9	3.7	2	1.5	1.1	0.49 U	0.69	5.1U
Cyanide and Lead											
Lead	ug/l	25	5 U	5 U	10	5 U	5 U	0.010	0.010	0.010	10 U
Cyanide	mg/l	0.2	0.91	1.2	0.5	0.5	0.48	0.58	0.29	1	1.1

Notes:

B - Present in Associated Blank Sample

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

- D From a Diluted Sample
- E Result exceeded calibration range.
- J Estimated Concentration
- mg/l Milligrams per liter
- NC No Criteria

PAHs - Polycyclic Aromatic Hydrocarbons

- R Rejected
- U Not Detected
- ug/l Micrograms per liter

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-15) Johnstown MGP Site Johnstown, NY

	Sample Date	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/2014	4/16/2015	10/13/2015	4/6/2016
CONSTITUENT	UNITS									
MNA/WQ Parameters										
Alkalinity (as CaCO3)	mg/l	R	629	527	585	482	557	480	600	601
Chloride	mg/l	68.2	70.6	39.4	42	44.5	44.2	14.2	49.3	55.7
Ethane	ug/l	300 U	380 U	380 U	380 U	75U				
Ethene	ug/l	300 U	350 U	350 U	350 U	75U				
Ferrous Iron	mg/l	R	0.1 U	0.15	0.18	0.1U	0.1U	0.1U	0.15 HF	0.1 U
Manganese	mg/l	0.61	0.61	1	1.1	0.68	1	0.68	0.7	75U
Methane	ug/l	1600	1900	780	580	1100	2400	16	1600	720
Nitrate	mg/l	0.05 U	0.28	0.05 U	.05 U					
Nitrogen	mg/l	4.6	5.4	3	3.1	3.2	2.9	0.81	3.9	3.4
Sulfate	mg/l	202 B	217	113	139	122	91.1	28.7	78.5	116
Sulfide	mg/l	R	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1U

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration
- HF Field parameter with a holding time of 15 minutes. Test performed by laboratory at clients request.
- mg/l Milligrams per liter
- NA Not analyzed
- R Rejected
- U Not Detected
- ug/l Micrograms per liter

Table 2 Analytical Data Results (MW-16) Johnstown MGP Site Johnstown, NY

CONSTITUENT	UNITS	NYSDEC WO Values	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/2014	4/16/2015	10/13/2015	4/6/2016
BTEX Compounds	UNIIS		05/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/2014	4/10/2013	10/15/2015	4/0/2010
Benzene	ug/l	1	150 D	180	200	150	8.7	59	91	40	76
Ethylbenzene	ug/l	5	66	100	150	92	6.2	41	68	26	35
m/p-Xylene	ug/l	5	26	14	41	23	1U	10 U	1U	4.9	5
o-Xylene	ug/l	5	37	14	56	35	1U	17	24	11	20
Toluene	ug/l	5	11	10 U	14	9	1U	17	1U	1.4	2U
PAHs	ug/1	3	11	10.0	14	,	10	17	10	1.4	20
Acenaphthene	ug/l	20	15	30	30	16	1U	40	27	14	31
Acenaphthylene	ug/l	NC	2.2	34	49	0.48 U	0.48 U	31	25	16	27
Anthracene	ug/l	50	1.2	1.6	2.8	0.48 U	0.48 U	2.8	1.8	1.2	2.5U
Benzo(a)anthracene	ug/l	0.002	0.49 U	0.48 U	0.50U	0.50U	2.5U				
Benzo(a)pyrene	ug/l	0.000	0.49 U	0.48 U	0.50U	0.50U	2.5U				
Benzo(b)fluoranthene	ug/l	0.002	0.49 U	0.48 U	0.50U	0.50U	2.5U				
Benzo(g,h,i)perylene	ug/l	NC	0.49 U	0.48 U	0.50U	0.50U	2.5U				
Benzo(k)fluoranthene	ug/l	0.002	0.096 J	0.48 U	0.50U	0.50U	2.5U				
Chrysene	ug/l	0.002	0.49 U	0.48 U	0.50U	0.50U	2.5U				
Dibenzo(a,h)anthracene	ug/l	NC	0.49 U	0.48 U	0.50U	0.50U	2.5U				
Fluoranthene	ug/l	50	0.94	1.5	2	0.48 U	0.48 U	2.7	1.6	1.1	2.5U
Fluorene	ug/l	50	13	17	21	9.1	0.48 U	22	14	7.1	15
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.49 U	0.48 U	0.50U	0.50U	2.5U				
Naphthalene	ug/l	10	0.49 U	2.4	230E	0.48 U	0.48 U	1.7	4.6	5.1	7.4
Phenanthrene	ug/l	50	6.3	11	15	0.48 U	0.48 U	18	11	6.7	10
Pyrene	ug/l	50	0.87	1.3	2	0.48 U	0.48 U	3	1.8	1.2	2.5U
Cyanide and Lead											
Lead	ug/l	25	5 U	5 U	5 U	5 U	5 U	0.01U	0.01U	0.01U	10 U
Cyanide	mg/l	0.2	0.34	0.41	0.11	0.11	0.023	0.25	0.24	0.24	0.25

Notes:

B - Present in Associated Blank Sample

BTEX - Benzene, Ethylbenzene, Toluene and Xylene

D - From a Diluted Sample

J - Estimated Concentration

mg/l - Milligrams per liter

NC - No Criteria

PAHs - Polycyclic Aromatic Hydrocarbons

R - Rejected

U - Not Detected

ug/l - Micrograms per liter

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-16) Johnstown MGP Site Johnstown, NY

	Sample Date	03/13/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/2014	4/16/2015	10/13/2015	4/6/2016
CONSTITUENT	UNITS									
MNA/WQ Parameter	rs									
Alkalinity (as CaCO3)	mg/l	R	436	530	585	454	595	532	638	615
Chloride	mg/l	12.7	12.8	5.5	5.4	5	6.5	5.8	4.9	5.7
Ethane	ug/l	0.57 J	750 U	75U	75U	75U				
Ethene	ug/l	2.6	700 U	70U	70U	75U				
Ferrous Iron	mg/l	0.1 U	0.12	0.1 U	0.13	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Manganese	mg/l	0.88	1.1	0.63	0.7	0.22	0.63	0.42	0.33	75U
Methane	ug/l	140	550	170	150	75	410	160	1100	110
Nitrate	mg/l	0.05 U	0.05 U	0.1	0.05 U	0.53	0.05 U	0.05 U	0.37	0.074
Nitrogen	mg/l	3.2	3.8	3.6	2.8	2.4	3.3	2.1	1.9	2.6
Sulfate	mg/l	351 B	487	140	86	1U	107	38.2	22.8	13.3
Sulfide	mg/l	R	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Notes:

- B Present in Associated Blank Sample
- D From a Diluted Sample
- J Estimated Concentration
- mg/l Milligrams per liter
- NA Not analyzed
- R Rejected
- U Not Detected
- ug/l Micrograms per liter

APPENDIX A FIELD DATA

Site Management Plan Inspection Form

109 North Market Street Johnstown, New York

Date:	4/7/2016	
Technician:	Rosenzweig	-

Time:

13:50

Weather:

Rain 40 °F

Vegetation Cap							
Condition of Grass	GOOD	FAIF	R POOR	COMMENTS: Snow covered			
Condition of Site Trees	GOOD	FAIF	R POOR	COMMENTS:			
Surface Erosion	NONE	MINC	R SIGNIFICAN	COMMENTS:			
Has the site been maintained/mowed?	YES		NO	COMMENTS: driveway cleared			

Sheet Pile Wall						
Has any construction occurred that may have impacted the sheet pile wall?	YES	NO	COMMENTS:			

Site Wide							
Does the property continue to be used for commercial and/or industrial uses?	YES	NO	COMMENTS:				
Does the use of groundwater for potable or process water continue to be restricted?	YES	NO	COMMENTS:				
Are agricultural or vegetable gardens present on the property?	YES	NO	COMMENTS:				
Do the Engineering Controls continue to perform as designed?	YES	NO	COMMENTS:				
Do the Engineering Controls continue to be protective of human health and environment?	YES	NO	COMMENTS:				
Are the requirements of the Site Management Plan being met?	YES	NO	COMMENTS:				
Are the requirements of the Environmental Easement being met?	YES	NO	COMMENTS:				
Since the last inspection has the groundwater been sampled in accordance with the SMP?	YES	NO	COMMENTS:				
Since the last inspection have there been any changes to the remedial system?	YES	NO	COMMENTS:				
Are there any needed changes?	YES	NO	COMMENTS:				
Are the site records complete and up to date?	YES	NO	COMMENTS:				

Miscellaneous							
Evidence of Trespassing	YES NO			COMMENTS: Dog walking			
Litter	NONE	ONE MINOR SIGNIF		COMMENTS:			

General Comments:

Unable to access MW-11. Area is on adjacent property and was full of concrete/metal and wood debris.

4/6/2016-Knocked on door at Morrison residence no one home.

4/7/2016-Resident at Morrison residence said there loader is down and it would be awhile before the materials could be moved. CT Male was sampling wells at the adjacent property. Former gas station.

Well ID	Sample?	Well Size?	DTW	DTP	DTB	Comments
RW-1	No	2"	13.03		21.50	
MW-4	Yes	2"	23.51		27.32	
MW-7	Yes	2"	14.19		22.10	
MW-10	Yes	2"	14.77		22.05	
MW-11	Yes	2"	n/a		22.90	inaccessable
MW-12	Yes	2"	14.95		22.24	
MW-13	Yes	2"	15.95		22.75	MS/MSD
MW-14	Yes	2"	16.81		23.55	Duplicate Sample
MW-15	Yes	2"	17.55		23.00	
MW-16	Yes	2"	10.79	•	19.45	
Gauge-1 (bridge)	No		19.76			

DTW -depth to water DTP -depth to product DTB -depth to bottom

All from top of casing

Unable to access MW-11. Area is on adjacent property and was full of concrete/metal and wood debris.

4/6/2016-Knocked on door at Morrison residence no one home.

4/7/2016-Resident at Morrison residence said there loader is down and it would be awhile before the materials could be moved.

CT Male was sampling wells at the adjacent property. Former gas station.

480501-Albany TestAmerica Buffalo

10 Hazelwood Drive

Chain of Custody Record

TestAmerica

U - Acetone V - MCAA W - ph 4-5 Z - other (specify) N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3 S - H2SO4 T - TSP Dodecah **Albany** COC No: 480-81240-16327. D - Nitric Acid E - NathSOA F - MeCH G - Amchlor H - Ascorbic Acid Page: Page 1 of 2 Job#: Sample Disposal (A fee may be assessed if samples are retained to Return To Client Archive to A to a la facilitation de la fac Date/Time: lectod of Shipment 3569_FE_D - Ferrous fron Analysis Requested 23'S' 303'S MILLIO' DOLG' MILLO COLO' SW4000 CI E Coder Temperature(s) "C and Other Remarks: 2/0 SW4266 BY H · SUILID Special Instructions/QC Reg becky.mason@testamericainc.com negoriiM idabie[N latoT - S. f 8£ scained by: Lab PM: Mason, Becky C E-Maii: RSK_176_CO2 - Carbon dloxide Time: Company A.B S www. Water Water Water Water Water Water Water Water Water Radiological (C=comp, Sample G=grab) Type . Enichosentures 203-727-652 Sample 1450 435 435 <u>ま</u>、 デス \equiv Unknown (AT Requested (days): Due Date Requested: PO#: 36380,110154 WO#: 10111 Project #: 48011229 SSGW#: Poison B Skin Irritant Other (specify Custody Seals Intact: Custody Seal No.:

Δ Yes Δ No Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991 Flammable Neliverable Requested: I, II, III, IV, 6800 Old Collamer Road Suite 3 オーローローのか Possible Hazard Identification Johnstown semi-annual GW Empty Kit Relinquished by: beaumonttj@cdmsmith.com Client Information Imothy Beaumont Non-Hazard WW-13-0416 MS MW-13-0416 SD CDM Smith, Inc. East Syracuse AW-11-0416 WW-13-0416 MW-14-0416 MW-15-0416 MW-16-0416 AW-12-0416 W-10-0416 State, Zip: NY, 13057

ו בארשוונוויים מחוומוי

10 Hazelwood Drive

Phone (716) 691-2600 Fax (716) 691-7991 Amherst, NY 14228-2298

Chain of Custody Record

TestAmerica

5 - H2SO4 T - TSP Dodecahydrate 2 -, other (specify) 180501 R - Na2S203 J - Acetone N-P14-5 Months Y-MCAA Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Month 480-81240-16327.1 Preservation Codes G - Amchlor H - Ascorbic Acid Albany Page: Page'1 of 2 E - NAHSD4 F - MBOH J - Di Water K - EDTA L - EDA Archive For ethod of Shipment noni zuomen - G_37_005£ 文文 IstoT , ViiniishiA - 80203 **Analysis Requested** ablaD12B - Cyanide, Special Instructions/QC Requirements ٧. Ţ X becky.mason@testamericainc.com Return To Client ONGS - Motels Philips negonik kleidahi kitogen ceived by ž××× * 文 文 Lab PM: Mason, Becky C × 25/ 175_CO2 - Cerbón dloxide Time: Company Co Water. Water Water S-noile O-wantelole 8T-Tirrue, Water Water Water Water Water Water Water Water Ellosen zueing Radiological (C=comp. G=grab) 3 Sample Type J Prove 3-727-65 5 1150 8 8 8 83. Sample **3** Unknown Due Date Requested: . Spar Po#: 36380.110154 Sample Date 27 4 Project #: 48011229 Sampler # Q% Poison B 480501-Albany Skin Imitant Deliverable Requested: I, II, III, IV, Other (specify) Possible Hazard Identification
Non-Hazard Planmable Sample Identification 6800 Old Collamer Road Suite 3 Johnstown semi-annual GW beaumonttj@cdmsmith.com Empty Kit Relinquished by: Client Information imothy Beaumont A STATE OF THE STA MW-13-0416 MS MW-13-0416 SD Sompany: COM Smith, Inc. City: East Syracuse WW-15-0416 MW-14-0416 MW-16-0416 WW-12-0416 MW-13-0416 etinquished by: Relinquished by: MW-10-0416 MW-11-0416 MW-4-0416 MW-7-0416 State, Zlp. NY, 13057 Project Name hone.

lestamenca bunato

10 Hazelwood Drive

Amherst, NY 14228-2298 **480501-Albany** Phone (715) 691-2600 Fax (716) 691-7991

Chain of Custody Record

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

O - AsnaO2
P - Na2D4S
Q - Na2SO3
R - Na5SO3
S - H2SQ4
I - TSP Dodecanydras
V - MCAA
W - ph 4-5
Z - other (specify) Months Company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Ciient Poisposal By Lab Archive For Mont Albany COC No: 480-81240-16327,2 Preservation Codes: A - HCL
B - NaOH
C - Zn Acetate
D - Nitro Acid
E - Nah SOA
F - MeOH
G - Andrior
H - Ascorbis Acid Page: Page 2 of 2 Job #; Preservation
A - HCL
B - NaDH
C - Can Aceted
D - Nitto Aceted
C - Na Aceted
E - Na + SOA
E - Na Archive For Camer Tracking No(s) not) suomet- 0_37_0080 1220B - Alkalinity, Total Analysis Requested 363.2, 363.2 Withle, Dofe, Witters Calc, BM4500_C)_E Cooler Temperature(s) *C and Other Remarks: 9012B - Cyanide, Total Special Instructions/QC Requirements Ġ W4000 ZS E - SANGE 1560C - BIEX - 8560 Lab PM: Mason, Becky C E-Mair becky,mason@lestamericainc.com RSK_175 - MethanelEffanelEtheno eceived by: 9270D_LL_PAH - PAH tow tavet Semivotatites Time: Water Water Water Radiological Sample C=comp, G=grab) Type Sample Date Time Gagrat S Sample Unknown TAT Requested (days): Due Date Requested: PO#: 36380,110154 Project #: 48011229 Sampler ₩O#: Poison B Phone: Skin fritant eliverable Requested: I, II, III, IV, Other (specify) Custody Seals Intact: Custody Seal No.: Non-Hazard Flammable Address: 6800 Old Collamer Road Suite 3 Possible Hazard Identification Johnstown semi-annual GW beaumontij@cdmsmith.com Empty Kit Relinquished by: Client Information Sample Identification The state of the s imothy Beaumont Company: CDM Smith, Inc. East Syracuse IRIP BLANK TRIP BLANK State, Zp: NY, 13057 FD-0416 hone:

109 North Market Street, John	istown inew York			· ·		
Sampling Personnel: Eric R	Rosenzweig	Date: 4	17/16			
Job Number: 36380.110154			Weather: /	arn-40°	0	
Well Id. MW-4			Time In: 1010 Time Out:			
Well Information	TOC	Other	Well Type:	Flushmou	int Stick-Up	
Depth to Water:	(feet) 23.51	Outer	Well Locked:		es No	
Depth to Bottom:			Measuring Poir		es No	
Depth to Product:				R A		
Length of Water Column:	(feet) 3/8		Well Material Well Diamete		2" Other:	
Volume of Water in Well:			Comments:	#. ' <u> </u> '	2 Other	
Three Well Volumes:	(gal) 0.6		Clear	18 56	en/0200	
Three vven volumes.	(gal) /, 8 3		Clew	JUU 04	war C	
Purging Information				4		
				Con	version Factors	
Purging Method:	Bailer Peristaltic	Well Wizard	Dedicated Pump	gal/ft. 1" II	D 2" ID 4" ID 6" ID	
Tubing/Bailer Material:	Teflon Stainless St.	Polyethyl	ene other	of		
Sampling Method:	Bailer Peristaltic	Well Wizard	Dedicated Pump	water 0.0	4 0.16 0.66 1.47	
Average Pumping Rate:	(ml/min) , 500			1 gallon=3.78	85L=3785mL=1337cu. feet	
Duration of Pumping:	(min) 30			1		
Total Volume Removed:		d well go dry?	Yes No 🔀	ł		
Horiba U-52 Water Quality Me		No[]	NACOTO DE LA CONTRACTOR	1		
HOTIDA U-52 VValer Quality Me	Hel Oseni Les			-1		
Time DTW	Temp pH	ORP	10 mg - 1	Γurbidity	DO TDS	
(feet)	(°C)	(mV)			mg/L) (g/L)	
	0,21 6.61	-34	1 1 1		79 1.01	
1020	3.03 6,69	->	1.66		1.68 (.00	
1025 or 9	110 6.77	24	1,69		7.13 1.08	
1030 auf 9	.37 6.75	51		6.9 6		
1035	59 6.94	67			-41 611	
1048	7.84 6.68	1.1	1075	24 9	1.79 1.12	
Sampling Information:	1					
EPA SW-846 Method 8270	SVOC PAH's			50 ml amber	Yes No	
EPA SW-846 Method 8260	VOC's BTEX			40 ml vials	Yes No	
EPA Method 610B	LEAD MANGANESE		1 - 25	50 ml plastic	Yes No	
EPA Method 9012A	TOTAL CYANID		1 - 2!	50 ml plastic	Yes No	
RSK 175 CO2	DISSOLVED CARBON I		1 - 250 ml plastic Yes No 3 - 40 ml vials Yes No			
EPA Method 2320B	TOTAL ALKALINI		1 - 125 ml plastic Yes No			
EPA Method 351.2 TOTAL KJELDAHL NITROGEN		1 - 250 ml plastic Yes No				
SM 4500_S2_F SULFIDE		1 - 250 ml plastic Yes No				
SM_3500_FE_D	FERROUS IRON			25 ml plastic	Yes	
RSK_175	METHANE/ETHENE/E	THANE		40 ml vials	Yes No	
D516 EPA Method 353.2	SULFATE NITRATE		Z - 12	25 ml plastic	Yes No No	
SM_4500_CI_E	CHLORIDE		=			
			Shippe	ed: Drop-off Alba	any Service Center	
Sample ID: 109/6		Yes No	An and a second		N	
Sample Time:/645	MS/MSD?	Yes No	Lab	ooratory:	Test America	
				/NU	nherst, New York	

109 North Market Street, John	ISLOWIT INCW TOTA					
Sampling Personnel: Eric R	Rosenzweig		Date: .4/7// 6			
Job Number: 36380.110154			Weather: overcas f ~ 70			
Well Id. MW-7			Time In: 905 Time Out:			
Well Information						
-	TOC	Other	Well Type: Flushmount Stick-Up			
Depth to Water:	(feet) 14, 19	702.000	Well Locked: Yes No			
Depth to Bottom:	(feet) 22.10		Measuring Point Marked: Yes No			
Depth to Product:	(feet)		Well Material: PVC SS Other:			
Length of Water Column:	(feet) 7,91		Well Diameter: 1" 2" Other:			
Volume of Water in Well:	(gal) /.2.7		Comments:			
Three Well Volumes:	(gal) 3.86		char No Sheen Odor			
Tilloo vvoii voidilloo.	(gai)		Copar to the time to			
Purging Information						
11			Conversion Factors			
Purging Method:	Bailer Perista	altic Well Wiza	ard Dedicated Pump gal/ft. 1" ID 2" ID 4" ID 6" ID			
Tubing/Bailer Material:	Teflon Stainless		hylene other of			
Sampling Method:	Bailer Perista		ard Dedicated Pump water 0.04 0.16 0.66 1.47			
Average Pumping Rate:	(ml/min)	The state of the s	1 gallon=3.785L=3785mL=1337cu. feet			
Duration of Pumping:	(min) 300	Å.	1 gallott-0.100E-0100fftE-100704. 100E			
Total Volume Removed:		Did well go dry	v? Yes No ₩			
		No.	i tes Tino TX			
Horiba U-52 Water Quality Me	eter Used?	Yes No				
Time DTW	Temp pH	ORP	Conductivity Turbidity DO TDS			
(feet)	(°C)	(mV)	(mS/cm) (NTU) (mg/L) (g/L)			
910 1456	9.57 7.45		1.61 118 5.81 1.03			
215 14.87	9.06 691	7 -1	1-54 61.1 7,54 9,983			
920 15,10 9	7.02 6.87	1 -/	1.51 55.3 2.19 0.990			
	8.98 6.77	-1	1.48 50.9 2.00 6.994			
	9.10 6.67		1.47 51.8 1.96 0.939			
920 15 76 9	9.19 6.59		146 51,5 1.92 0.936			
131 / 3 . 7 . 7 . 7	.17 4.37		1.46 01,0			
Canadina Information:			Tig.			
Sampling Information:						
EPA SW-846 Method 8270	SVOC PA		2 - 250 ml amber Yes No			
EPA SW-846 Method 8260	VOC's BT	EX	3 - 40 ml vials Yes No			
EPA Method 610B	LEAD MANGANE	- QE	1 - 250 ml plastic Yes No			
EPA Method 9012A	TOTAL CYAI		1 - 250 ml plastic Yes No			
RSK 175 CO2	DISSOLVED CARBO		3 - 40 ml vials Yes No			
EPA Method 2320B	TOTAL ALKAL		1 - 125 ml plastic Yes No			
EPA Method 351.2	TOTAL KJELDAHL	NITROGEN	1 - 250 ml plastic Yes No			
SM 4500_S2_F	SULFIDE		1 - 250 ml plastic Yes No			
SM_3500_FE_D	FERROUS II		1 - 125 ml plastic Yes No			
RSK_175	METHANE/ETHEN		3 - 40 ml vials Yes No			
D516 EPA Method 353.2	SULFATI NITRATE		2 - 125 ml plastic Yes No			
SM_4500_CI_E	CHLORID	II S. I.				
		10000	Shipped: Drop-off Albany Service Center			
Sample ID: MW-7-8414		Yes No No				
Sample Time: 940	MS/MSD?	Yes No X	Laboratory: Test America			
			Amherst, New York			

109 North Market Street, Johr	nstown New York						
Sampling Personnel: Eric R	Rosenzweig		Date: 4/7/66				
Job Number: 36380.110154			Weather: Buccost				
Well Id. MW-10			Time In: 800 Time Out:				
n n							
Well Information	TOC	Other	Well Type: Flushmount Stick-Up				
Depth to Water:	(feet) 14.77		Well Locked: Yes No				
Depth to Bottom:	(feet) 22.05		Measuring Point Marked:Yes No				
Depth to Product:	(feet)		Well Material: PVC SS Other:				
Length of Water Column:	(feet) 7, 28		Well Diameter: 1" 2" Other:				
Volume of Water in Well:	(gal) 1 14		Comments: No Skoon Door				
Three Well Volumes:	(gal) 5,49		Clear NO Shoen 1000				
Purging Information			Conversion Factors				
Purging Method:	Bailer Peristali	tic Well Wizard					
Tubing/Bailer Material:	Teflon Stainless S		d Dedicated Pump gal/ft. 1" ID 2" ID 4" ID 6" ID				
Sampling Method:	Bailer Peristall		d Dedicated Pump water 0.04 0.16 0.66 1.47				
	(ml/min) . 500		1 gallon=3.785L=3785mL=1337cu. feet				
Duration of Pumping:	(min) 30						
Total Volume Removed:		oid well go dry?	Yes No				
Horiba U-52 Water Quality Me	/	es No					
Tionba G-32 Water Quality We	——————————————————————————————————————	25 MIAO					
Time DTW	Temp pH	ORP	Conductivity Turbidity DO TDS				
805 /4 97 /	(°C) 4.00 7.00	(mV)	(mS/cm) (NTU) (mg/L) (g/L)				
000	11.37 6.71	-12	3.20 26.3 8.14 2.12				
710 15.28	11.01 6.63	-58	3.6) 15.6 2.40 2.35 3.69 10.7 2.13 2.36				
120 15.62	0.39 6.52	-116	3.69 10.7 2.13 2.36				
201	0,12 6,49	-113	3.47 5.9 1.93 2.22				
	10.85 8.48	-112	3.76 2.9 1.96 2.21				
			2.70				
Sampling Information:							
EPA SW-846 Method 8270	SVOC PAH	s	2 - 250 ml amber Yes No No				
EPA SW-846 Method 8260	VOC's BTE.		3 - 40 ml vials Yes No				
EPA Method 610B	LEAD MANGANES		1 - 250 ml plastic Yes No				
EPA Method 9012A	TOTAL CYANI		1 - 250 ml plastic Yes No				
RSK_175_CO2 EPA Method 2320B	DISSOLVED CARBON TOTAL ALKALII		3 - 40 ml vials Yes No 1 - 125 ml plastic Yes No				
EPA Method 351.2	TOTAL KJELDAHL N		1 - 250 ml plastic Yes No				
SM 4500_S2_F	SULFIDE		1 - 250 ml plastic Yes No				
SM_3500_FE_D	FERROUS IR		1 - 125 ml plastic Yes No				
RSK_175	METHANE/ETHENE	/ETHANE	3 - 40 ml vials Yes No				
D516 EPA Method 353.2	SULFATE NITRATE		2 - 125 ml plastic Yes ☑No ☑				
SM_4500_CI_E	CHLORIDE						
Sample ID: MW~10-0-11	Duplicate?	Yes No	Shipped: Drop-off Albany Service Center				
Sample Time:	MS/MSD?	Yes No	Laboratory: Test America Amherst, New York				

1	
1	
10	
47	

	larket Street, J	- Comment of the same				11-111	F Connection of the control		
	Sampling Personnel: Eric Rosenzweig Job Number: 36380.110154				Date:				
		54				Kein 24			
Well Id.	MW-12				Time In:	1115	Time Out	<u>t:</u>	
Well In	formation	•	тос	Other	Well Type	e: Flush	nmount X	Stick-Up	
Depth to Wa	ater:	(feet)	14.95	1	Well Lock		Yes	No	
Depth to Bo		(feet)	22.24			Point Marked:	Yes	No	
Depth to Pro		(feet)	_		Well Mate	· ·		her:	
	/ater Column:	(feet)	7.29		Well Diar		2" X Ot		
	Vater in Well:	(gal)	117		Common	te:		•	
Three Well	Volumes:	(gal)	5.50		Clea	1 10 5	hear!	odor	
	Information						Conversion I		
Purging Met		Bailer	-	-	rd Dedicated Pump		1" ID 2" ID	4" ID 6" ID	
Tubing/Baile		Teflon		1/20 1	ylene other		004 040	0.60 4.47	
Sampling M		Bailer		: Well Wiza	rd Dedicated Pump		0.04 0.16		
Duration of	mping Rate:	VI 10 00	550			1 gallor	1=3.785L=37851	mL=1337cu. feet	
	e Removed:	(min) (gal)	30 4 Di	d well go dry	? Yes No				
	Water Quality			a well go dry	r resINO				
	The same of the sa		*						
Time	DTW	Temp	рН	ORP	Conductivity	Turbidity	DO	TDS	
	(feet)	(°C)	X.80	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)	
1/20	15.01	9.67	6.55	110	2.45	407	9.Z5	1-56	
1175	15,12	10.54	6.26	125	1.94	112	368	1.23	
1130	15.18	10.57	6.28	127	1.63	72-6	3.50	0.972	
1135	15,24	10-55	6.30	128	1.48	578	3.35	7.943	
1140	15.25	10.68	6.24	130	1.44	\$3.1	3.16	0.922	
1145	15.28	10.76	6,22	129	1.46	34,8	3,18	0.936	
				M 57 11					

	1								
Sampling Ir	nformation:			-					
	Method 8270		SVOC PAH's		,	2 - 250 ml ambei	. V		
	Method 8260		VOC's BTEX		2 - 250 ml amber Yes No 3 - 40 ml vials Yes No				
EPA Method	Access to the way of the state		LEAD		1	- 250 ml plastic		No -	
			MANGANESE						
EPA Method			OTAL CYANIE		1	- 250 ml plastic		N ₀	
			VED CARBON TAL ALKALIN		a	3 - 40 ml vials Yes No 1 - 125 ml plastic Yes No			
			KJELDAHL NIT			- 125 ml plastic - 250 ml plastic		\longrightarrow	
		SULFIDE			- 250 ml plastic		\longrightarrow		
SM_3500_FE_D FERROUS IRON				1	- 125 ml plastic				
RSK_175 METHANE/ETHANE		THANE	٦ -	3 - 40 ml vials	Yes				
D516 EPA Method :	353.2		SULFATE NITRATE		2	! - 125 ml plastic	Yes	No∐	
SM_4500_CI			CHLORIDE						
Sample ID:	me-12-	OHIL DI	plicate?	Yes No X	Sh	ipped: Drop-off	Albany Service	e Center X	
Sample Time:	WED	MS		Yes No		Laboratory:	Test Am		

109 North Market Street, John	nstown New York				
Sampling Personnel: Eric F	Rosenzweig		Date: 4/6/16		
Job Number: 36380.110154			Weather: Clear 230		
Well Id. MW-13			Time In: 1/12 Time Out:		
3 		N. II	110		
Well Information	TOC	Other	Well Type: Flushmount Stick-Up Stick-Up		
Depth to Water:	(feet) 15.95		Well Locked: Yes No		
Depth to Bottom:	(feet) 22.75		Measuring Point Marked: Yes No		
Depth to Product:	(feet)		Well Material: PVC SS Other:		
Length of Water Column:	(feet) 6.30		Well Diameter: 1" 2" Other:		
Volume of Water in Well:	(gal) 10 97		Comments:		
Three Well Volumes:	(gal) 3. 2 7		Clear No Sbean Ocor		
Purging Information Conversion Factors					
Purging Method:	Bailer Peristal	Itic Well Wizard	Dedicated Pump gal/ft. 1" ID 2" ID 4" ID 6" ID		
Tubing/Bailer Material:	Teflon Stainless	St. Polyethyl	lene other of		
Sampling Method:	Bailer Peristal	Itic Well Wizard	Dedicated Pump		
Average Pumping Rate:	(ml/min) , 500		1 gallon=3.785L=3785mL=1337cu. feet		
Duration of Pumping:	(min) %		* <u></u>		
Total Volume Removed:		Did well go dry?	Yes No C		
Horiba U-52 Water Quality Me	eter Used? Y	es No			
I THE I DELAY	- I	T 000	IO 1 11 11 11 11 11 11 11 11 11 11 11 11		
Time DTW	Temp pH	ORP	Conductivity Turbidity DO TDS		
(feet)	(°C)	(mV)	(mS/cm) (NTU) (mg/L) (g/L)		
	7.04 6.71 8.12 6.94	-108			
1125 16.29	8.43 7,21	-155	0.662 2.7 2.28 0.42		
A Maria A Maria	8.68 7.40	-11/1	0.595 5.6 1.61 0.387		
	2 70 - 1	-173	0.59/ 2.8 1.53 0.378		
	9.07 7.50	-173	0602 1.7 1.76 0.38		
The Alberta	.00		7.7 7.76 6.70		
Sampling Information:					
EPA SW-846 Method 8270 EPA SW-846 Method 8260	SVOC PAH VOC's BTE		6 - 250 ml amber Yes No 9 - 40 ml vials Yes No		
EPA Method 610B	LEAD		9 - 40 ml vials Yes No No No		
	MANGANES	The second secon	2 252 ml sloutie V		
EPA Method 9012A RSK_175_CO2	TOTAL CYAN DISSOLVED CARBO		3 - 250 ml plastic Yes No 9 - 40 ml vials Yes No		
EPA Method 2320B	TOTAL ALKALI		3 - 125 ml plastic Yes No		
EPA Method 351.2	TOTAL KJELDAHL N		3 - 125 ml plastic Yes No		
SM 4500_S2_F	SULFIDE		3 - 250 ml plastic Yes No		
SM_3500_FE_D	FERROUS IR		3 - 125 ml plastic Yes No		
RSK_175	METHANE/ETHENE	Settle 1	9 - 40 ml vials Yes No		
D516 EPA Method 353.2	SULFATE NITRATE		6 - 125 ml plastic Yes ☑No ☑		
SM_4500_CI_E	CHLORIDE				
Sample ID: 47 Mus-13-04/		Yes No	Shipped: Drop-off Albany Service Center		
Sample Time: // / 5	MS/MSD?	Yes No	Laboratory: Test America Amherst, New York		

100 North Market Offeet, 30	and the second second				and the graph of the beautiful and the	THE STATE OF STREET	
	Rosenzweig	ĺ		Date: 4//6/16			
Job Number: 36380.11015	i4			Weather: Clear = 25			
Well Id. MW-14				Time In:	100	Time Out:	
Well Information							
		TOC	Other	Well Type	e: Flush	mount X S	tick-Up
Depth to Water:	(feet)	16.31		Well Lock		Yes	No
Depth to Bottom:	(feet)	23.55		Measuring	Point Marked:	Yes	No
Depth to Product:	(feet) -			Well Mate		Xss Oth	ier:
Length of Water Column:	(feet)	5.74		Well Dian		2" X Oth	
Volume of Water in Well:	(gal)	1.08		Comment			
Three Well Volumes:		24	77 90	Clear			1
THIOO YVOII VOIGINOO.	(941)		- 32	Cra			*
	7			8			
Purging Information							
						Conversion F	actors
Purging Method:	Bailer	Peristaltic	Well Wizar	d Dedicated Pump		1" ID 2" ID	4" ID 6" ID
Tubing/Bailer Material:	Teflon	Stainless St.		ylene other	r lamir	1 10 2 10	4 10 0 10
Sampling Method:		Peristaltic		d Dedicated Pump		0.04 0.16	0.66 1.47
Average Pumping Rate:	Bailer	A Description of the second	VVeil VVIZard	d Dedicated Pump			
	(ml/min)	,500			1 gallor	n=3.785L=3785m	L=133/cu. reet
Duration of Pumping:	(min)	30	,				
Total Volume Removed:	(gal)	Dic	d well go dry?	? Yes No			
Horiba U-52 Water Quality I	Meter Used?	Yes	No		(mg/s)		
200		-					
IT Time I DTW I	Tomp	nH.	ODD	To-adventivity	T. abidity	DO 1	TDC
Time DTW	Temp	рН	ORP	Conductivity	Turbidity	DO (man/l)	TDS
(feet)	(°C)	7 10	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)
905 6.91	1 -	1.13	-26	0/890	7/000	8.66	0.574
910 699	6.00	6.94	-64	6/.78	808	2.97	0.387
915 7.09	7.30	6.62	-85	1.56	578	7.16	0999
920 7.16	7.98	6.60	- 89	1.53	1987	1.97	0.982
925 725	8.01	6.57	- 88	1.53	338	1.91	0.976
130 7.38	7,04	6.58	- 89	1.51	287	1.87	0.966
<u> </u>							
Sampling Information:		- 2					
		31/20 DALIE		e e e e e e e e e e e e e e e e e e e		v. 1	□ □
EPA SW-846 Method 8270 EPA SW-846 Method 8260		SVOC PAH's VOC's BTEX		4	- 250 ml ambei		$\bigotimes_{N_0} \bigcup$
		LEAD		1 2	6 - 40 ml vials	Yes	$\Theta \vdash \Box$
EPA Method 610B		MANGANESE		2	! - 250 ml plastic	Yes Yes	×No∐
EPA Method 9012A		OTAL CYANID		』	2 - 250 ml plastic	Yes	No□
RSK 175 CO2		/ED CARBON I		SE™	6 - 40 ml vials	Yes	
EPA Method 2320B		TAL ALKALINI		2	2 - 125 ml plastic	2000	
EPA Method 351.2		KJELDAHL NIT			2 - 250 ml plastic		\hookrightarrow \vdash
SM 4500_S2_F		SULFIDE		2	2 - 250 ml plastic	Yes	No 🗌
SM_3500_FE_D		ERROUS IRON		2	- 125 ml plastic		
RSK_175	METHAI	NE/ETHENE/E	THANE	٠.,	6 - 40 ml vials	Yes	\hookrightarrow \vdash
D516		SULFATE		4	- 125 ml plastic	Yes	∑NoL
EPA Method 353.2 SM_4500_CI_E		NITRATE CHLORIDE					
	1/			』 Sh	ipped: Drop-off	Albany Service	Center
Sample ID: DMW-MC	24-04/ Sur	olicate?	Yes No	ີ FD-0416	ipped. Diep c	Albany Corvice	Center
Sample Time: 135	MS		Yes No		Laboratory:	Test Am	erica
			K	31	650	Amherst Na	ow Vork

O I's B	TO THE RESERVE THE PARTY OF THE				
	Rosenzweig		Date: 6/4/16		
Job Number: 36380.110154	ř		Weather: clear 25		
Well Id. MW-15			Time In: 1015 Time Out:		
(b)					
Well Information Depth to Water: Depth to Bottom: Depth to Product: Length of Water Column: Volume of Water in Well: Three Well Volumes: Purging Information	TOC (feet) /7.55 (feet) 23.00 (feet) (feet) 6.45 (gal) 0.872 (gal) 6.67	Other	Well Type: Flushmount Stick-Up Well Locked: Yes No Measuring Point Marked: Yes No Well Material: PVC SS Other: Well Diameter: 1" 2" Other: Comments:		
Purging Method: Tubing/Bailer Material: Sampling Method: Average Pumping Rate: Duration of Pumping: Total Volume Removed: Horiba U-52 Water Quality M		. Polyethy	water 0.04 0.16 0.66 1.4 1 gallon=3.785L=3785mL=1337cu. fee		
Time DTM	T	I opp			
Time DTW (feet) 1076 17.83 (1075 19.0) 1075 1976 1079 1079 1079 1079 1079 1079 1079 1079	Temp pH (°C) (°C) (6.45 6.79 6.58 6.56 7.31 6.48 6.49 7.31 6.49 7.34 6.43	ORP (mV) -18 -73 -95 -107 -106 -117	Conductivity Turbidity DO TDS (mS/cm) (NTU) (mg/L) (g/L) /. 2.4 4.6 7.21 0.867 /. 3.6 4.5 3.85 0.823 /. 2.1 3.7 2.24 0.763 /. 2.1 2.4 1.20 5.763 /. 2.0 1.4 0.773		
Sampling Information:					
EPA SW-846 Method 8270 EPA SW-846 Method 8260 EPA Method 610B EPA Method 9012A RSK_175_CO2 EPA Method 2320B EPA Method 351.2 SM 4500_S2_F SM_3500_FE_D RSK_175 D516 EPA Method 353.2 SM_4500_CI_E	SVOC PAH'S VOC'S BTEX LEAD MANGANESE TOTAL CYANID DISSOLVED CARBON TOTAL ALKALINI TOTAL KJELDAHL NIT SULFIDE FERROUS IRO METHANE/ETHENE/E NITRATE CHLORIDE	DE DIOXIDE ITY FROGEN	2 - 250 ml amber 3 - 40 ml vials 1 - 250 ml plastic 1 - 250 ml plastic 2 - 250 ml plastic 3 - 40 ml vials 1 - 250 ml plastic 3 - 40 ml plastic 1 - 250 ml plastic 2 - 125 ml plastic 3 - 40 ml vials 2 - 125 ml plastic 2 - 125 ml plastic 3 - 40 ml vials 2 - 125 ml plastic 3 - 40 ml vials 4 - 40 ml vials 4 - 40 ml vials 5 - 40 ml vials 7 - 40 ml vials 7 - 40 ml vials 7 - 40 ml vials 7 - 40 ml vials 7 - 40 ml vials 7 - 40 ml vials 7 - 40 ml vials 7 - 40 ml vials 7 - 40 ml vials 7 - 40 ml vials 7 - 40 ml vials 7 - 40 ml vials		
Sample IDLT 15. 15.0		Yes No No Yes No	Shipped: Drop-off Albany Service Center Laboratory: Test America Amberst New York		

109 North Market Street, John	nstown New York					
Sampling Personnel: Eric F	Rosenzweig		Date: 4/6//6			
Job Number: 36380.110154			Weather: Clear # 20			
Well Id. MW-16			Time In: 730 Time Out:			
Well Information						
	TOC	Other	Well Type: Flushmount Stick-Up			
Depth to Water:	(feet) 10.79		Well Locked: Yes No			
Depth to Bottom:	(feet) 19.45		Measuring Point Marked: Yes No			
Depth to Product:	(feet)		Well Material: PVC SS Other:			
Length of Water Column:	(feet) \$,66		Well Diameter: 1" 2" Other:			
Volume of Water in Well:	(gal) / 39		Comments:			
Three Well Volumes:	(gal) Hill		Clear No Sheer Hoor			
Times ven volumes.	(gai)		slight odas			
			37			
Purging Information						
			Conversion Factors			
Purging Method:	Bailer Perista	Itic Well Wizard				
Tubing/Bailer Material:	Teflon Stainless		d Dedicated Pump X gal/ft. 1" ID 2" ID 4" ID 6" II 2" ID 4" ID 6" II 2" ID 4" ID 6" II 2" ID 4" ID 6" II 2" ID 4" ID 6" II 2" ID 4" ID 6" II 2" ID 4" ID 6" II 2" ID 4" ID 6" II 2" ID 4" ID 6" II 2" ID 4" ID 6" II 2" ID 4" ID 6" II 2" ID 4" ID 6" II 2" ID 4" ID 6" II 2" ID 4" ID 6" II 2" ID 4" ID 6" II 2" ID 4" ID 6" II 2" 2" 2" 2" 2" 2" 2"			
Sampling Method:	Bailer Perista		d Dedicated Pump water 0.04 0.16 0.66 1.4			
1777	(ml/min) 50 W		K			
Duration of Pumping:			1 gallon=3.785L=3785mL=1337cu. fee			
Total Volume Removed:		Did well go dry?	y v · · · · · · · · · · · · · · · · · ·			
and the second			Yes No			
Horiba U-52 Water Quality Me	eter Used?	es No				
Time DTW	Temp pH	ORP	Conductivity Turbidity DO TDS			
(feet)	(°C)	(mV)	(mS/cm) (NTU) (mg/L) (g/L)			
735 10.91	8 23 7.10	-64	1,110 162 4,29 0.73			
740 11.13	8.68 6.81	-74	1.17 83,2 3.55 0.753			
745 11.31	8.24 6.6x	-137	1.7/ 36.1 2.49 0.77			
750 11.49	7.60 6,67	125	1.22 12.7 2.13 0.77			
755 11.58 7	1,30 650	-130	1.22 9.3 2.18 0781			
800 (11.69 =	7:74 6.5	7 - 120	1.22 7.6 2.10 0.780			
300 5 77.67	1. 67 61 3	120	1,00 1,00			
	/ /+					
	700		Va			
(2)						
Sampling Information:						
		·				
EPA SW-846 Method 8270	SVOC PAH		2 - 250 ml amber Yes No			
EPA SW-846 Method 8260	VOC's BTE	:X	3 - 40 ml vials Yes No			
EPA Method 610B	LEAD MANGANES	SF	1 - 250 ml plastic Yes No			
EPA Method 9012A	TOTAL CYAN		1 - 250 ml plastic Yes No			
RSK_175_CO2	DISSOLVED CARBO		3 - 40 ml vials Yes No			
EPA Method 2320B	TOTAL ALKALI		1 - 125 ml plastic Yes No			
EPA Method 351.2	TOTAL KJELDAHL N	NITROGEN	1 - 250 ml plastic Yes No			
SM 4500_S2_F	SULFIDE		1 - 250 ml plastic Yes No			
SM_3500_FE_D	FERROUS IR		1 - 125 ml plastic Yes No			
RSK_175	METHANE/ETHENE	A PLANTAGE OF THE PARTY OF THE	3 - 40 ml vials Yes No			
D516 EPA Method 353.2	SULFATE NITRATE		2 - 125 ml plastic Yes ☑No ☑			
SM_4500_CI_E	CHLORIDE					
531	· ·		Shipped: Drop-off Albany Service Center			
Sample ID: (1) W * MW * //~		Yes No				
Sample Time: 135	MS/MSD?	Yes No	Laboratory: Test America			
			Amherst, New York			

APPENDIX B DATA USABILITY SUMMARY REPORT

Data Validation Services

120 Cobble Creek Road P.O. Box 208 North Creek, NY 12853

Phone 518-251-4429 harry@frontiernet.net

May 30, 2016

Matthew Millias CDM Smith One General Motors Dr. Suite 2 Syracuse, NY 13206

RE: Data Usability Summary Report for National Grid- Johnstown Landfill Site Data Package

TAL-Buffalo Job No. 480-97744-1 and 480-97853-1

Dear Mr. Millias:

Review has been completed for the data package generated by TestAmerica Laboratories, Inc. that pertains to samples collected 04/07/16 at the National Grid Johnstown site. Eight aqueous samples and a field duplicate were analyzed for BTEX, low level PAHs, three dissolved gases, carbon disulfide, lead, manganese, and eight wet chemistry parameters. Methodologies utilized are those of the USEPA SW846 methods 6010B/8260B/8270C/9012, and ASTM, with additional QC requirements of the NYSDEC ASP.

The data packages submitted contain full deliverables for validation, but this usability report is generated from review of the summary form information, with review of sample raw data, and limited review of associated QC raw data. The reported summary forms have been reviewed for application of validation qualifiers, using guidance from the NMPC generic QAPP, USEPA Region 2 validation SOPs, the USEPA National Functional Guidelines for Data Review, and professional judgment, as affects the usability of the data. The following items were reviewed:

- * Laboratory Narrative Discussion
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Field Duplicate Correlations
- * Laboratory Control Sample(LCS)
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Calibration/Low Level Standard Responses
- * Instrumental Tunes
- * ICP Serial Dilution Correlations
- * Instrument IDLs
- * Sample Quantitation and Identification

The items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for the DUSR level review.

In summary, sample results are usable either as reported, or with minor qualification.

Copies of the laboratory case narrative and sample identification summary forms are attached to this text, and should be reviewed in conjunction with this report. Also included with this narrative are sample results forms, with the recommended qualifications applied thereupon.

Custody Documentation

The custody form shows collection dates of 4/16/16 rather than 4/6/16 for some of the samples.

BTEX by EPA8260C/NYSDEC ASP

Sample holding times were met and instrumental tune fragmentations are within acceptance ranges. Surrogate and internal standard recoveries are within required limits. Blanks show no contamination.

Calibrations standards show acceptable responses within analytical protocol and validation action limits.

The matrix spikes of MW-13-0416 show outlying recoveries for toluene, ethylbenzene, and m,p-xylene (47% to 75%). The results for those three elements are qualified as estimated in the parent sample. The matrix spikes of MW-10--0416 show acceptable recoveries and correlations.

The blind field duplicate correlations of MW-14-0416 fall within guidance limits.

Some samples were processed only at dilution due to high concentrations of target analytes or initial foaming. This results in elevated reporting limits for undetected analytes.

PAHs by EPA8270D/NYSDEC ASP

Surrogate and internal standard recoveries are within required limits, unless diluted beyond an applicable evaluation.

The matrix spikes of MW-13-0416 show outlying recoveries of anthracene, indeno(1,2,3-cd)-pyrene, and phenanthrene. However, the parent sample and spikes were processed at twenty fold dilution, and the evaluations are therefore not applicable.

The blind field duplicate of MW-14-0416 show six analytes with correlations outside guidance limits, with the field duplicate showing higher concentrations that the parent sample (which reports no detections). Results for the following analytes are therefore qualified as estimated in the parent sample and the duplicate: benzo(g,h,i)perylene, benzo(a)pyrene, benzo(b)fluoranthene, fluoranthene, and pyrene

Some samples were processed only at dilution due to high concentrations of target analytes or initial foaming. This results in elevated reporting limits for undetected analytes.

Methane, Ethane, Ethene, and CO2 by RSK-175

The matrix spikes of MW-13-0416 show acceptable recoveries and correlations.

The blind field duplicate of MW-14-0416 shows an outlying correlation for methane, the results for which are qualified as estimated in the parent sample and duplicate.

Instrument performance is compliant, blanks show no contamination, and reported results are substantiated by raw data.

Some of the samples were processed only at dilution due to high concentrations of target analytes. This results in elevated reporting limits for undetected analytes.

Lead and Manganese by EPA 6010B/NYSDEC ASP

The matrix spikes of MW-13-0416 acceptable accuracy and precision, and the blind field duplicate correlations of MW-14-0416 fall within guidance limits.

The ICP Serial Dilution evaluations of MW-13-0416 are acceptable.

Instrument performance is compliant, blanks show no contamination affecting reported results, and reported results are substantiated by the raw data.

Wet Chemistry—Chloride, Sulfide, Sulfate, Nitrate, TKN, Alkalinity, Ferrous Iron, and Total Cyanide

Due to the very short holding time from sample collection (15 minutes), all ferrous ion analyses were conducted beyond the holding time, and those results have been qualified as estimated in value, with a likely low bias.

Calibration standard responses are compliant. Blanks show no detections that above the reporting limits.

Matrix spikes/laboratory duplicates of MW-13-0416 show acceptable recoveries/correlations, with the following exceptions: total cyanide (63% and 23%), sulfate (both 19%), total alkalinity (47% and 46%), and iron (17% and 14%). The result for those analytes in the parent sample are qualified as estimated.

The blind field duplicate correlations of MW-14-0416 fall within guidance limits, with the exception of that for nitrate, results for which are qualified as estimated in the parent sample and its duplicate.

Data Package Completeness

Although some of the specific NYSDEC Category B deliverables were not included in the laboratory data package, all information required for validation of the data is present.

Please do not hesitate to contact me if you have comments or questions regarding this report.

Very truly yours,

Judy Harry

VALIDATION DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- J- The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.
- J+ The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- UJ The analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
 - R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control limits. The analyte may or may not be present.
- EMPC The results do not meet all criteria for a confirmed identification.

 The quantitative value represents the Estimated Maximum Possible

 Concentration of the analyte in the sample.

CLIENT and LABORATORY SAMPLE IDS and CASE NARRATIVE

SAMPLE SUMMARY

Client: CDM Smith, Inc. Job Number: 480-97744-1

		011 (14 (1	Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
480-97744-1	TRIP BLANK	Water	04/06/2016 0000	04/07/2016 0120
480-97744-2	FD-0416	Water	04/06/2016 0000	04/07/2016 0120
480-97744-3	MW-13-0416	Water	04/06/2016 1145	04/07/2016 0120
480-97744-3MS	MW-13-0416 MS	Water	04/06/2016 1145	04/07/2016 0120
480-97744-3MSD	MW-13-0416 SD	Water	04/06/2016 1145	04/07/2016 0120
480-97744-4	MW-14-0416	Water	04/06/2016 0935	04/07/2016 0120
480-97744-5	MW-15-0416	Water	04/06/2016 1050	04/07/2016 0120
480-97744-6	MW-16-0416	Water	04/06/2016 0835	04/07/2016 0120

SAMPLE SUMMARY

Client: CDM Smith, Inc.

Job Number: 480-97853-1

Lab Sample ID Client Sample ID		Client Matrix	Date/Time Sampled	Date/Time Received	
480-97853-1	MW-4-0416	Water	04/07/2016 1045	04/08/2016 0245	
480-97853-2	MW-7-0416	Water	04/07/2016 0940	04/08/2016 0245	
480-97853-3	MW-10-0416	Water	04/07/2016 0835	04/08/2016 0245	
480-97853-4	MW-12-0416	Water	04/07/2016 1150	04/08/2016 0245	

Job Narrative 480-97744-1

Comments

No additional comments.

Receipt

The samples were received on 4/7/2016 1:20 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 0.3° C and 0.8° C.

GC/MS VOA

Method(s) 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-13-0416 (480-97744-3), MW-13-0416 MS (480-97744-3[MS]), MW-13-0416 SD (480-97744-3[MSD]) and MW-15-0416 (480-97744-5). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-16-0416 (480-97744-6). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D_LL_PAH: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-15-0416 (480-97744-5) and MW-16-0416 (480-97744-6). Elevated reporting limits (RLs) are provided.

Method(s) 8270D_LL_PAH: The following samples required a dilution to bring the concentration of target analytes within the calibration range: MW-13-0416 (480-97744-3), MW-13-0416 MS (480-97744-3[MS]) and MW-13-0416 SD (480-97744-3[MSD]). Because of this dilution, the surrogate and spike concentration in the samples were reduced to a level where the recovery calculation does not provide useful information.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

Method(s) RSK-175: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-15-0416 (480-97744-5) and MW-16-0416 (480-97744-6). Elevated reporting limits (RLs) are provided.

Method(s) RSK-175: The laboratory control sample (LCS) for batch analytical batch 480-294473 recovered outside control limits for the following analytes: Ethene. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported. The following samples were effected: FD-0416 (480-97744-2), MW-14-0416 (480-97744-4), MW-15-0416 (480-97744-5) and MW-16-0416 (480-97744-6)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method(s) SM 3500 FE D: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples have been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: FD-0416 (480-97744-2), MW-13-0416 (480-97744-3), MW-13-0416 MS (480-97744-3[MS]), MW-13-0416 SD (480-97744-3[MSD]), MW-14-0416 (480-97744-4), MW-15-0416 (480-97744-5) and MW-16-0416 (480-97744-6).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job Narrative 480-97853-1

Comments

No additional comments.

Receipt

The samples were received on 4/8/2016 2:45 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.2° C.

Receipt Exceptions

Trip blank vials can not be located. Sample has been removed from the login. TRIP BLANK (480-97853-5)

GC/MS VOA

Method(s) 8260C: The samples were collected in properly preserved vials for analysis of volatile organic compounds (VOCs). However, when verified by the laboratory, the pH was greater than 2 and the following were analyzed after 7 days from sampling: MW-4-0416 (480-97853-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC VOA

Method(s) RSK-175: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-10-0416 (480-97853-3). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010C: The Low Level Continuing Calibration Verification (CCVL 480-295276/28) contained Total Manganese outside the control limits. All reported samples (LCS 480-294794/2-A), (LCSD 480-294794/3-A) and (MB 480-294794/1-A) associated with this CCVL were either below the laboratory's standard reporting limit for this analyte or contained this analyte at a concentration greater than 10X the value found in the CCVL; therefore, re-analysis of samples was not performed.

Method(s) 6010C: The Low Level Continuing Calibration Verification (CCVL 480-295276/50) contained Total Manganese outside the control limits. All reported samples MW-7-0416 (480-97853-2), MW-10-0416 (480-97853-3) and MW-12-0416 (480-97853-4) associated with this CCVL were either below the laboratory's standard reporting limit for this analyte or contained this analyte at a concentration greater than 10X the value found in the CCVL; therefore, re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method(s) SM 3500 FE D: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: MW-4-0416 (480-97853-1), MW-7-0416 (480-97853-2), MW-10-0416 (480-97853-3) and MW-12-0416 (480-97853-4).

Method(s) 9012B: The laboratory control sample (LCS) for preparation batch 480-296736 and analytical batch 480-296842 recovered outside control limits for the following analytes: Cyanide, Total. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. MW-4-0416 (480-97853-1) and MW-12-0416 (480-97853-4)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

QUALIFIED SAMPLE RESULTS FORMS

Analytical Data

Client: CDM Smith, Inc. Job Number: 480-97744-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-97744-1 Date Sampled: 04/06/2016 0000

Client Matrix: Water Date Received: 04/07/2016 0120

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-295760 Instrument ID: HP5973C Prep Method: 5030C Prep Batch: N/A Lab File ID: C2177.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 04/14/2016 0016 Final Weight/Volume: 5 mL

Prep Date: 04/14/2016 0016

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		1.0
Toluene	ND		1.0
Ethylbenzene	ND		1.0
m-Xylene & p-Xylene	ND		2.0
o-Xylene	ND		1.0
Xylenes, Total	ND		2.0

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	106		66 - 137
Toluene-d8 (Surr)	96		71 - 126
4-Bromofluorobenzene (Surr)	104		73 - 120
Dibromofluoromethane (Surr)	108		60 - 140

Analytical Data

Client: CDM Smith, Inc. Job Number: 480-97744-1

Client Sample ID: FD-0416

Lab Sample ID: 480-97744-2 Date Sampled: 04/06/2016 0000

Client Matrix: Water Date Received: 04/07/2016 0120

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-295760 Instrument ID: HP5973C Prep Method: 5030C Prep Batch: N/A Lab File ID: C2178.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 04/14/2016 0041 Final Weight/Volume: 5 mL

Prep Date: 04/14/2016 0041

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		1.0
Toluene	ND		1.0
Ethylbenzene	ND		1.0
m-Xylene & p-Xylene	ND		2.0
o-Xylene	ND		1.0
Xylenes, Total	ND		2.0

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	105		66 - 137
Toluene-d8 (Surr)	96		71 - 126
4-Bromofluorobenzene (Surr)	103		73 - 120
Dibromofluoromethane (Surr)	104		60 - 140

Analytical Data

Client: CDM Smith, Inc. Job Number: 480-97744-1

Client Sample ID: MW-13-0416

Lab Sample ID: 480-97744-3 Date Sampled: 04/06/2016 1145

Client Matrix: Water Date Received: 04/07/2016 0120

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-295760 Instrument ID: HP5973C Prep Method: 5030C Prep Batch: N/A Lab File ID: C2179.D Dilution: 5.0 Initial Weight/Volume: 5 mL

Analysis Date: 04/14/2016 0106 Final Weight/Volume: 5 mL

Prep Date: 04/14/2016 0106

Analyte	Result (ug/L)	Qualifier	RL
Benzene	300		5.0
Toluene	410	F1 ^J	5.0
Ethylbenzene	270	F1 <mark>J</mark>	5.0
m-Xylene & p-Xylene	360	F1 <mark>J</mark>	10
o-Xylene	150		5.0
Xylenes, Total	510	J	10

Surrogate	%Rec	Qualifier	Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	103		66 - 137	
Toluene-d8 (Surr)	95		71 - 126	
4-Bromofluorobenzene (Surr)	110		73 - 120	
Dibromofluoromethane (Surr)	105		60 - 140	

Client: CDM Smith, Inc. Job Number: 480-97744-1

Client Sample ID: MW-14-0416

Lab Sample ID: 480-97744-4 Date Sampled: 04/06/2016 0935

Client Matrix: Water Date Received: 04/07/2016 0120

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-295851 Instrument ID: HP5973C Prep Method: 5030C Prep Batch: N/A Lab File ID: C2214.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 04/14/2016 1529 Final Weight/Volume: 5 mL

Prep Date: 04/14/2016 1529

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		1.0
Toluene	ND		1.0
Ethylbenzene	ND		1.0
m-Xylene & p-Xylene	ND		2.0
o-Xylene	ND		1.0
Xylenes, Total	ND		2.0

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	100		66 - 137
Toluene-d8 (Surr)	98		71 - 126
4-Bromofluorobenzene (Surr)	110		73 - 120
Dibromofluoromethane (Surr)	103		60 - 140

Client: CDM Smith, Inc. Job Number: 480-97744-1

Client Sample ID: MW-15-0416

Lab Sample ID: 480-97744-5 Date Sampled: 04/06/2016 1050

Client Matrix: Water Date Received: 04/07/2016 0120

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-295760 Instrument ID: HP5973C Prep Method: 5030C Prep Batch: N/A Lab File ID: C2181.D Dilution: 8.0 Initial Weight/Volume: 5 mL

Analysis Date: 04/14/2016 0156 Final Weight/Volume: 5 mL

Prep Date: 04/14/2016 0156

Analyte	Result (ug/L)	Qualifier	RL
Benzene	330		8.0
Toluene	ND		8.0
Ethylbenzene	110		8.0
m-Xylene & p-Xylene	ND		16
o-Xylene	21		8.0
Xylenes, Total	21		16
•			

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	98		66 - 137
Toluene-d8 (Surr)	97		71 - 126
4-Bromofluorobenzene (Surr)	108		73 - 120
Dibromofluoromethane (Surr)	103		60 - 140

Client: CDM Smith, Inc. Job Number: 480-97744-1

Client Sample ID: MW-16-0416

Lab Sample ID: 480-97744-6 Date Sampled: 04/06/2016 0835

Client Matrix: Water Date Received: 04/07/2016 0120

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-295851 Instrument ID: HP5973C Prep Method: 5030C Prep Batch: N/A Lab File ID: C2215.D Dilution: 2.0 Initial Weight/Volume: 5 mL

Analysis Date: 04/14/2016 1554 Final Weight/Volume: 5 mL

Prep Date: 04/14/2016 1554

Analyte	Result (ug/L)	Qualifier	RL
Benzene	76		2.0
Toluene	ND		2.0
Ethylbenzene	35		2.0
m-Xylene & p-Xylene	5.0		4.0
o-Xylene	20		2.0
Xylenes, Total	25		4.0

Surrogate	%Rec	Qualifier	Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	107		66 - 137	
Toluene-d8 (Surr)	97		71 - 126	
4-Bromofluorobenzene (Surr)	114		73 - 120	
Dibromofluoromethane (Surr)	105		60 - 140	

24 - 136

Client: CDM Smith, Inc. Job Number: 480-97744-1

Client Sample ID: FD-0416

p-Terphenyl-d14

 Lab Sample ID:
 480-97744-2
 Date Sampled: 04/06/2016 0000

 Client Matrix:
 Water
 Date Received: 04/07/2016 0120

	8270D_LL_PA	H Semivolatile Organi	ic Compounds	(GC/MS) Low level PAH	
Analysis Method:	8270D_LL_PAH	Analysis Batch:	480-295350	Instrument ID:	HP5973W
Prep Method:	3510C	Prep Batch:	480-295163	Lab File ID:	W0761.D
Dilution:	1.0			Initial Weight/Volume	: 224.6 mL
Analysis Date:	04/12/2016 2331			Final Weight/Volume	
Prep Date:	04/11/2016 1418			Injection Volume:	2 uL
Analyte		Result (u	ıg/L) Qı	alifier	RL
Acenaphthene		ND			0.56
Acenaphthylene		ND			0.56
Anthracene		ND			0.56
Benzo(a)anthrace	ne	1.1			0.56
Benzo(a)pyrene		1.3	J		0.56
Benzo(b)fluoranth	ene	1.6	J		0.56
Benzo(g,h,i)peryle	ene	1.3	J		0.56
Benzo(k)fluoranth	ene	ND			0.56
Chrysene		1.1			0.56
Dibenz(a,h)anthra	cene	ND			0.56
Fluoranthene		1.8	J		0.56
Fluorene		ND			0.56
Indeno(1,2,3-cd)p	yrene	0.90			0.56
Naphthalene		ND			0.56
Phenanthrene		0.65			0.56
Pyrene		2.8	J		0.56
Surrogate		%Rec	Qu	alifier Accepta	ance Limits
2-Fluorobiphenyl		83		48 - 120)
Nitrobenzene-d5		83		46 - 120)

24 - 136

Client: CDM Smith, Inc. Job Number: 480-97744-1

Client Sample ID: MW-13-0416

p-Terphenyl-d14

 Lab Sample ID:
 480-97744-3
 Date Sampled: 04/06/2016 1145

 Client Matrix:
 Water
 Date Received: 04/07/2016 0120

8270D_LL_PAH Semivolatile Organic Compounds (GC/MS) Low level PAH Analysis Method: 8270D_LL_PAH Analysis Batch: 480-295350 Instrument ID: HP5973W 3510C Prep Method: Prep Batch: 480-295163 Lab File ID: W0762.D Dilution: 20 Initial Weight/Volume: 258.6 mL Analysis Date: 04/13/2016 0000 Final Weight/Volume: 1 mL Prep Date: 04/11/2016 1418 Injection Volume: 2 uL Qualifier Analyte Result (ug/L) RL Acenaphthene 130 9.7 Acenaphthylene 220 F2 9.7 F1 F2 J Anthracene 10 9.7 Benzo(a)anthracene ND 9.7 Benzo(a)pyrene ND 9.7 Benzo(b)fluoranthene ND 9.7 Benzo(g,h,i)perylene ND 9.7 Benzo(k)fluoranthene ND 9.7 F1 Chrysene ND 9.7 Dibenz(a,h)anthracene ND 9.7 Fluoranthene ND 9.7 Fluorene 55 F1 9.7 J Indeno(1,2,3-cd)pyrene ND F1 9.7 Naphthalene 170 F2 9.7 F1 F2 J Phenanthrene 45 9.7 Pyrene ND 9.7 Surrogate %Rec Qualifier Acceptance Limits 2-Fluorobiphenyl 81 48 - 120 Nitrobenzene-d5 85 46 - 120

24 - 136

Client: CDM Smith, Inc. Job Number: 480-97744-1

Client Sample ID: MW-14-0416

p-Terphenyl-d14

 Lab Sample ID:
 480-97744-4
 Date Sampled: 04/06/2016 0935

 Client Matrix:
 Water
 Date Received: 04/07/2016 0120

92700 11 044 0	`:			
62/UD_LL_PAR S	semivolatile Organi	ic Compounds	(GC/MS) Low level PA	АН
Analysis Method: 8270D_LL_PAH	Analysis Batch:	480-295350	Instrument ID:	HP5973W
Prep Method: 3510C	Prep Batch:	480-295163	Lab File ID:	W0763.D
Dilution: 1.0			Initial Weight/Volu	ume: 231.4 mL
Analysis Date: 04/13/2016 0028			Final Weight/Volu	ıme: 1 mL
Prep Date: 04/11/2016 1418			Injection Volume:	
Analyte	Result (u	g/L) Q	ualifier	RL
Acenaphthene	ND			0.54
Acenaphthylene	ND			0.54
Anthracene	ND			0.54
Benzo(a)anthracene	ND			0.54
Benzo(a)pyrene	ND		UJ	0.54
Benzo(b)fluoranthene	ND		UJ	0.54
Benzo(g,h,i)perylene	ND		UJ	0.54
Benzo(k)fluoranthene	ND			0.54
Chrysene	ND			0.54
Dibenz(a,h)anthracene	ND			0.54
Fluoranthene	ND		UJ	0.54
Fluorene	ND			0.54
Indeno(1,2,3-cd)pyrene	ND			0.54
Naphthalene	ND			0.54
Phenanthrene	ND			0.54
Pyrene	ND		U J	0.54
Surrogate	%Rec	Q	ualifier Acc	eptance Limits
2-Fluorobiphenyl	88		48 -	120
Nitrobenzene-d5	91		46 -	120

24 - 136

Client: CDM Smith, Inc. Job Number: 480-97744-1

Client Sample ID: MW-15-0416

p-Terphenyl-d14

 Lab Sample ID:
 480-97744-5
 Date Sampled: 04/06/2016 1050

 Client Matrix:
 Water
 Date Received: 04/07/2016 0120

nds (GC/MS) Low level PAH Instrument ID: HP5973W Lab File ID: W0764.D
Initial Weight/Volume: 244 mL Final Weight/Volume: 1 mL Injection Volume: 2 uL
Qualifier RL
5.1
5.1
5.1
5.1
5.1
5.1
5.1
5.1
5.1
5.1
5.1
5.1
5.1
5.1
5.1
5.1
Qualifier Acceptance Limits
48 - 120
46 - 120

24 - 136

Client: CDM Smith, Inc. Job Number: 480-97744-1

Client Sample ID: MW-16-0416

p-Terphenyl-d14

 Lab Sample ID:
 480-97744-6
 Date Sampled: 04/06/2016 0835

 Client Matrix:
 Water
 Date Received: 04/07/2016 0120

	8270D_LL_PAF	l Semivolatile Organ	ic Compound	ds (GC/MS)	Low level PAH	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D_LL_PAH 3510C 5.0 04/13/2016 0125 04/11/2016 1418	Analysis Batch: Prep Batch:	480-295350 480-295163	Lab Initi Fina	trument ID: o File ID: al Weight/Volume: al Weight/Volume: bction Volume:	HP5973W W0765.D 252.1 mL 1 mL 2 uL
Analyte		Result (u	ıg/L)	Qualifier		RL
Acenaphthene		31				2.5
Acenaphthylene		27				2.5
Anthracene		ND				2.5
Benzo(a)anthrace	ne	ND				2.5
Benzo(a)pyrene		ND				2.5
Benzo(b)fluoranthe	ene	ND				2.5
Benzo(g,h,i)peryle	ne	ND				2.5
Benzo(k)fluoranthe	ene	ND				2.5
Chrysene		ND				2.5
Dibenz(a,h)anthra	cene	ND				2.5
Fluoranthene		ND				2.5
Fluorene		15				2.5
Indeno(1,2,3-cd)py	yrene	ND				2.5
Naphthalene		7.4				2.5
Phenanthrene		10				2.5
Pyrene		ND				2.5
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
2-Fluorobiphenyl		76			48 - 120	
Nitrobenzene-d5		77			46 - 120	

Client: CDM Smith, Inc. Job Number: 480-97744-1

Client Sample ID: FD-0416

Lab Sample ID: 480-97744-2 Date Sampled: 04/06/2016 0000

Client Matrix: Water Date Received: 04/07/2016 0120

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 480-294473 Instrument ID: PE-03

N/A N/A Initial Weight/Volume: 1 mL

Dilution: 1.0 Final Weight/Volume:

Analysis Date: 04/07/2016 1055 Injection Volume: 5 mL
Prep Date: N/A Result Type: PRIMARY

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Ethane
 ND
 7.5

 Ethene
 ND
 *
 7.0

 Methane
 19
 4.0

Client: CDM Smith, Inc. Job Number: 480-97744-1

Client Sample ID: FD-0416

Lab Sample ID: 480-97744-2 Date Sampled: 04/06/2016 0000

Client Matrix: Water Date Received: 04/07/2016 0120

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 200-103003 Instrument ID: CH2866.i

N/A Prep Batch: N/A Lab File ID: 19325016.D Dilution: 1.0 Initial Weight/Volume: 18 mL

Analysis Date: 04/11/2016 1234 Final Weight/Volume: 18 mL
Prep Date: N/A Injection Volume: 5 mL

Analyte Result (ug/L) Qualifier RL

Carbon dioxide 6300 1000

Client: CDM Smith, Inc. Job Number: 480-97744-1

Client Sample ID: MW-13-0416

Lab Sample ID: 480-97744-3 Date Sampled: 04/06/2016 1145

Client Matrix: Water Date Received: 04/07/2016 0120

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 480-294731 Instrument ID: PE-03

N/A N/A Initial Weight/Volume: 1 mL

Dilution: 1.0 Final Weight/Volume:

Analysis Date: 04/08/2016 1312 Injection Volume: 5 mL
Prep Date: N/A Result Type: PRIMARY

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Ethane
 ND
 7.5

 Ethene
 ND
 7.0

 Methane
 50
 4.0

Client: CDM Smith, Inc. Job Number: 480-97744-1

Client Sample ID: MW-13-0416

Lab Sample ID: 480-97744-3 Date Sampled: 04/06/2016 1145

Client Matrix: Water Date Received: 04/07/2016 0120

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 200-103003 Instrument ID: CH2866.i

N/A Prep Batch: N/A Lab File ID: 19325015.D

Dilution: 1.0 Initial Weight/Volume: 18 mL

Analysis Date: 04/11/2016 1225 Final Weight/Volume: 18 mL
Prep Date: N/A Injection Volume: 5 mL

Analyte Result (ug/L) Qualifier RL

Carbon dioxide ND 1000

Client: CDM Smith, Inc. Job Number: 480-97744-1

Client Sample ID: MW-14-0416

Lab Sample ID: 480-97744-4 Date Sampled: 04/06/2016 0935

Client Matrix: Water Date Received: 04/07/2016 0120

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 480-294473 Instrument ID: PE-03

N/A N/A Initial Weight/Volume: 1 mL

Dilution: 1.0 Final Weight/Volume:

Analysis Date: 04/07/2016 1205 Injection Volume: 5 mL
Prep Date: N/A Result Type: PRIMARY

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Ethane
 ND
 7.5

 Ethene
 ND
 *
 7.0

 Methane
 31
 J
 4.0

Client: CDM Smith, Inc. Job Number: 480-97744-1

Client Sample ID: MW-14-0416

Lab Sample ID: 480-97744-4 Date Sampled: 04/06/2016 0935

Client Matrix: Water Date Received: 04/07/2016 0120

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 200-103003 Instrument ID: CH2866.i

N/A Prep Batch: N/A Lab File ID: 19325019.D Dilution: 1.0 Initial Weight/Volume: 18 mL

Analysis Date: 04/11/2016 1253 Final Weight/Volume: 18 mL
Prep Date: N/A Injection Volume: 5 mL

Analyte Result (ug/L) Qualifier RL

Carbon dioxide 5400 1000

Client: CDM Smith, Inc. Job Number: 480-97744-1

Client Sample ID: MW-15-0416

Lab Sample ID: 480-97744-5 Date Sampled: 04/06/2016 1050

Client Matrix: Water Date Received: 04/07/2016 0120

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 480-294473 Instrument ID: PE-03

N/A N/A Initial Weight/Volume: 1 mL

Dilution: 10 Final Weight/Volume:

Analysis Date: 04/07/2016 1222 Injection Volume: 5 mL
Prep Date: N/A Result Type: PRIMARY

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Ethane
 ND
 75

 Ethene
 ND
 *
 70

 Methane
 720
 40

Client: CDM Smith, Inc. Job Number: 480-97744-1

Client Sample ID: MW-15-0416

Lab Sample ID: 480-97744-5 Date Sampled: 04/06/2016 1050

Client Matrix: Water Date Received: 04/07/2016 0120

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 200-103003 Instrument ID: CH2866.i

N/A Prep Batch: N/A Lab File ID: 19325020.D

1.0 Initial Weight/Volume: 18 mL

Dilution: 1.0 Initial Weight/Volume: 18 mL
Analysis Date: 04/11/2016 1259 Final Weight/Volume: 18 mL

Prep Date: N/A Injection Volume: 5 mL

Analyte Result (ug/L) Qualifier RL
Carbon dioxide 9700 1000

Client: CDM Smith, Inc. Job Number: 480-97744-1

Client Sample ID: MW-16-0416

Lab Sample ID: 480-97744-6 Date Sampled: 04/06/2016 0835

Client Matrix: Water Date Received: 04/07/2016 0120

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 480-294473 Instrument ID: PE-03

N/A N/A Initial Weight/Volume: 1 mL

Dilution: 10 Final Weight/Volume:

Analysis Date: 04/07/2016 1240 Injection Volume: 5 mL
Prep Date: N/A Result Type: PRIMARY

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Ethane
 ND
 75

 Ethene
 ND
 *
 70

 Methane
 110
 40

Client: CDM Smith, Inc. Job Number: 480-97744-1

Client Sample ID: MW-16-0416

Lab Sample ID: 480-97744-6 Date Sampled: 04/06/2016 0835

Client Matrix: Water Date Received: 04/07/2016 0120

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 200-103003 Instrument ID: CH2866.i

N/A Prep Batch: N/A Lab File ID: 19325021.D Dilution: 1.0 Initial Weight/Volume: 18 mL

Analysis Date: 04/11/2016 1306 Final Weight/Volume: 18 mL

Prep Date: N/A Injection Volume: 5 mL

Analyte Result (ug/L) Qualifier RL
Carbon dioxide 5300 1000

Client: CDM Smith, Inc. Job Number: 480-97744-1

Client Sample ID: FD-0416

Lab Sample ID: 480-97744-2 Date Sampled: 04/06/2016 0000

Client Matrix: Water Date Received: 04/07/2016 0120

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 480-294922 Instrument ID: ICAP1

Prep Method: 3005A Prep Batch: 480-294574 Lab File ID: I1040816B-1.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 04/08/2016 1505 Final Weight/Volume: 50 mL

Prep Date: 04/07/2016 1428

 Analyte
 Result (mg/L)
 Qualifier
 RL

 Lead
 ND
 0.010

 Manganese
 0.79
 0.0030

TestAmerica Buffalo Page 39 of 1060 04/19/2016

Client: CDM Smith, Inc. Job Number: 480-97744-1

Client Sample ID: MW-13-0416

Lab Sample ID: 480-97744-3 Date Sampled: 04/06/2016 1145

Client Matrix: Water Date Received: 04/07/2016 0120

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 480-294922 Instrument ID: ICAP1

Prep Method: 3005A Prep Batch: 480-294574 Lab File ID: I1040816B-1.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 04/08/2016 1508 Final Weight/Volume: 50 mL

Prep Date: 04/07/2016 1428

 Analyte
 Result (mg/L)
 Qualifier
 RL

 Lead
 ND
 0.010

 Manganese
 0.11
 0.0030

Client: CDM Smith, Inc. Job Number: 480-97744-1

Client Sample ID: MW-14-0416

Lab Sample ID: 480-97744-4 Date Sampled: 04/06/2016 0935

Client Matrix: Water Date Received: 04/07/2016 0120

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 480-294922 Instrument ID: ICAP1

Prep Method: 3005A Prep Batch: 480-294574 Lab File ID: I1040816B-1.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 04/08/2016 1533 Final Weight/Volume: 50 mL

Prep Date: 04/07/2016 1428

 Analyte
 Result (mg/L)
 Qualifier
 RL

 Lead
 ND
 0.010

 Manganese
 0.84
 0.0030

Client: CDM Smith, Inc. Job Number: 480-97744-1

Client Sample ID: MW-15-0416

Lab Sample ID: 480-97744-5 Date Sampled: 04/06/2016 1050

Client Matrix: Water Date Received: 04/07/2016 0120

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 480-294922 Instrument ID: ICAP1

Prep Method: 3005A Prep Batch: 480-294574 Lab File ID: I1040816B-1.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 04/08/2016 1536 Final Weight/Volume: 50 mL

Prep Date: 04/07/2016 1428

 Analyte
 Result (mg/L)
 Qualifier
 RL

 Lead
 ND
 0.010

 Manganese
 0.48
 0.0030

Client: CDM Smith, Inc. Job Number: 480-97744-1

Client Sample ID: MW-16-0416

Lab Sample ID: 480-97744-6 Date Sampled: 04/06/2016 0835

Client Matrix: Water Date Received: 04/07/2016 0120

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 480-294922 Instrument ID: ICAP1

Prep Method: 3005A Prep Batch: 480-294574 Lab File ID: I1040816B-1.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 04/08/2016 1540 Final Weight/Volume: 50 mL

Prep Date: 04/07/2016 1428

 Analyte
 Result (mg/L)
 Qualifier
 RL

 Lead
 ND
 0.010

 Manganese
 0.55
 0.0030

Client: CDM Smith, Inc. Job Number: 480-97744-1

General Chemistry

Client Sample ID: FD-0416

Lab Sample ID: 480-97744-2 Date Sampled: 04/06/2016 0000

Client Matrix: Water Date Received: 04/07/2016 0120

Analyte	Result	Qual	Units	RL	Dil	Method
Total Kjeldahl Nit	trogen 0.88		mg/L	0.20	1.0	351.2
	Analysis Batch: 480-294660	Analysis Date	: 04/07/2016 1910			
	Prep Batch: 480-294539	Prep Date: 04	/07/2016 1040			
Nitrate as N	0.13	J	mg/L	0.050	1.0	353.2
	Analysis Batch: 480-294673	Analysis Date	: 04/07/2016 2027			
Cyanide, Total	1.2		mg/L	0.050	5.0	9012B
	Analysis Batch: 480-296658	Analysis Date	: 04/18/2016 2254			
	Prep Batch: 480-296611	Prep Date: 04	/18/2016 1615			
Sulfate	339		mg/L	50.0	10	D516-90, 02
	Analysis Batch: 480-294619	Analysis Date	: 04/07/2016 1207			
Alkalinity, Total	471		mg/L	5.0	1.0	SM 2320B
• .	Analysis Batch: 480-295108	Analysis Date	: 04/08/2016 1616			
Ferrous Iron	ND	UJ HF	mg/L	0.10	1.0	SM 3500 FE D
	Analysis Batch: 480-294818	Analysis Date	: 04/08/2016 1150			
Chloride	26.4		mg/L	1.0	1.0	SM 4500 CI- E
	Analysis Batch: 480-294646	Analysis Date	: 04/07/2016 1401			
Sulfide	ND		mg/L	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 480-295127	Analysis Date	: 04/11/2016 0530			

Client: CDM Smith, Inc. Job Number: 480-97744-1

General Chemistry

Client Sample ID: MW-13-0416

Lab Sample ID: 480-97744-3 Date Sampled: 04/06/2016 1145 Client Matrix:

Date Received: 04/07/2016 0120 Water

Analyte	Result	Qual	Units	RL	Dil	Method
Total Kjeldahl Ni	trogen 1.2		mg/L	0.20	1.0	351.2
	Analysis Batch: 480-294660	Analysis Date	e: 04/07/2016 1910			
	Prep Batch: 480-294539	Prep Date: 04	1/07/2016 1040			
Nitrate as N	ND		mg/L	0.050	1.0	353.2
	Analysis Batch: 480-294673	Analysis Date	e: 04/07/2016 2031			
Cyanide, Total	0.29	F1	mg/L	0.010	1.0	9012B
	Analysis Batch: 480-296658	Analysis Date	e: 04/18/2016 2208			
	Prep Batch: 480-296611	Prep Date: 04	1/18/2016 1615			
Sulfate	ND	F1	mg/L	5.0	1.0	D516-90, 02
	Analysis Batch: 480-294856	Analysis Date	e: 04/08/2016 1342			
Alkalinity, Total	311	F1	mg/L	5.0	1.0	SM 2320B
	Analysis Batch: 480-295108	,	e: 04/08/2016 1622			
Ferrous Iron	ND	UJ HF F1	•	0.10	1.0	SM 3500 FE D
	Analysis Batch: 480-294818	Analysis Date	e: 04/08/2016 1150			
Chloride	9.8		mg/L	1.0	1.0	SM 4500 CI- E
	Analysis Batch: 480-294854	Analysis Date	e: 04/08/2016 1117			
Sulfide	1.0		mg/L	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 480-295127	Analysis Date	e: 04/11/2016 0530			

Client: CDM Smith, Inc. Job Number: 480-97744-1

General Chemistry

Client Sample ID: MW-14-0416

Lab Sample ID: 480-97744-4 Date Sampled: 04/06/2016 0935

Date Received: 04/07/2016 0120 Client Matrix: Water

Analyte	Result	Qual	Units	RL	Dil	Method
Total Kjeldahl Ni	trogen 1.0		mg/L	0.20	1.0	351.2
	Analysis Batch: 480-294660	Analysis Date	e: 04/07/2016 1910			
	Prep Batch: 480-294539	Prep Date: 04	1/07/2016 1040			
Nitrate as N	ND	UJ	mg/L	0.050	1.0	353.2
	Analysis Batch: 480-294633	Analysis Date	e: 04/07/2016 1343			
Cyanide, Total	0.88	J	mg/L	0.050	5.0	9012B
	Analysis Batch: 480-296658	Analysis Date	e: 04/18/2016 2255			
	Prep Batch: 480-296611	Prep Date: 04	1/18/2016 1615			
Sulfate	324	J	mg/L	50.0	10	D516-90, 02
	Analysis Batch: 480-294619	Analysis Date	e: 04/07/2016 1324			
Alkalinity, Total	507	J	mg/L	5.0	1.0	SM 2320B
	Analysis Batch: 480-295108	Analysis Date	e: 04/08/2016 1656			
Ferrous Iron	0.11	J- HF	mg/L	0.10	1.0	SM 3500 FE D
	Analysis Batch: 480-294818	Analysis Date	e: 04/08/2016 1150			
Chloride	27.4		mg/L	1.0	1.0	SM 4500 CI- E
	Analysis Batch: 480-294646	Analysis Date	e: 04/07/2016 1401			
Sulfide	ND		mg/L	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 480-295127	Analysis Date	e: 04/11/2016 0530			

Client: CDM Smith, Inc. Job Number: 480-97744-1

General Chemistry

Client Sample ID: MW-15-0416

Sulfide

 Lab Sample ID:
 480-97744-5
 Date Sampled: 04/06/2016 1050

 Client Matrix:
 Water
 Date Received: 04/07/2016 0120

Analyte RLDil Method Result Qual Units Total Kjeldahl Nitrogen 3.4 mg/L 0.20 1.0 351.2 Analysis Batch: 480-294660 Analysis Date: 04/07/2016 1910 Prep Batch: 480-294539 Prep Date: 04/07/2016 1040 Nitrate as N ND mg/L 0.050 1.0 353.2 Analysis Batch: 480-294633 Analysis Date: 04/07/2016 1344 Cyanide, Total 1.1 mg/L 0.050 5.0 9012B Analysis Batch: 480-296658 Analysis Date: 04/18/2016 2257 Prep Batch: 480-296611 Prep Date: 04/18/2016 1615 Sulfate 25.0 5.0 D516-90, 02 116 mg/L Analysis Batch: 480-294619 Analysis Date: 04/07/2016 1314 Alkalinity, Total 5.0 1.0 SM 2320B 601 mg/L Analysis Batch: 480-295108 Analysis Date: 04/08/2016 1704 Ferrous Iron ND UJ HF 0.10 1.0 SM 3500 FE D Analysis Batch: 480-294818 Analysis Date: 04/08/2016 1150 Chloride mg/L 2.0 2.0 SM 4500 CI- E 55.7 Analysis Batch: 480-294646 Analysis Date: 04/07/2016 1433

mg/L

1.0

1.0

SM 4500 S2 F

ND

Analysis Batch: 480-295127 Analysis Date: 04/11/2016 0530

Client: CDM Smith, Inc. Job Number: 480-97744-1

General Chemistry

Client Sample ID: MW-16-0416

Lab Sample ID: 480-97744-6 Date Sampled: 04/06/2016 0835

Client Matrix: Water Date Received: 04/07/2016 0120

Analyte	Result	Qual	Units	RL	Dil	Method
Total Kjeldahl Ni	trogen 2.6		mg/L	0.20	1.0	351.2
	Analysis Batch: 480-294660	Analysis Date	: 04/07/2016 1910			
	Prep Batch: 480-294539	Prep Date: 04	/07/2016 1040			
Nitrate as N	0.074		mg/L	0.050	1.0	353.2
	Analysis Batch: 480-294673	Analysis Date	: 04/07/2016 2034			
Cyanide, Total	0.25		mg/L	0.010	1.0	9012B
	Analysis Batch: 480-296658	Analysis Date	: 04/18/2016 2215			
	Prep Batch: 480-296611	Prep Date: 04	/18/2016 1615			
Sulfate	13.3		mg/L	5.0	1.0	D516-90, 02
	Analysis Batch: 480-294619	Analysis Date	: 04/07/2016 1257			
Alkalinity, Total	615		mg/L	5.0	1.0	SM 2320B
	Analysis Batch: 480-295108	Analysis Date	: 04/08/2016 1713			
Ferrous Iron	ND	UJ HF	mg/L	0.10	1.0	SM 3500 FE D
	Analysis Batch: 480-294818	Analysis Date	: 04/08/2016 1150			
Chloride	5.7		mg/L	1.0	1.0	SM 4500 CI- E
	Analysis Batch: 480-294646	Analysis Date	: 04/07/2016 1400			
Sulfide	ND		mg/L	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 480-295127	Analysis Date	: 04/11/2016 0530			

Client: CDM Smith, Inc. Job Number: 480-97853-1

Client Sample ID: MW-4-0416

Lab Sample ID: 480-97853-1 Date Sampled: 04/07/2016 1045

Client Matrix: Water Date Received: 04/08/2016 0245

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-296284 Instrument ID: HP5973Q
Prep Method: 5030C Prep Batch: N/A Lab File ID: Q0555.D
Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 04/16/2016 0016 Final Weight/Volume: 5 mL

Prep Date: 04/16/2016 0016

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		1.0
Toluene	ND		1.0
Ethylbenzene	ND		1.0
m-Xylene & p-Xylene	ND		2.0
o-Xylene	ND		1.0
Xylenes, Total	ND		2.0
-			

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	92		66 - 137
Toluene-d8 (Surr)	93		71 - 126
4-Bromofluorobenzene (Surr)	93		73 - 120
Dibromofluoromethane (Surr)	94		60 - 140

Client: CDM Smith, Inc. Job Number: 480-97853-1

Client Sample ID: MW-7-0416

Lab Sample ID: 480-97853-2 Date Sampled: 04/07/2016 0940

Client Matrix: Water Date Received: 04/08/2016 0245

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-296503 Instrument ID: HP5973Q
Prep Method: 5030C Prep Batch: N/A Lab File ID: Q0618.D
Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 04/18/2016 1336 Final Weight/Volume: 5 mL

Prep Date: 04/18/2016 1336

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		1.0
Toluene	ND		1.0
Ethylbenzene	ND		1.0
m-Xylene & p-Xylene	ND		2.0
o-Xylene	ND		1.0
Xylenes, Total	ND		2.0
•			

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	101		66 - 137
Toluene-d8 (Surr)	98		71 - 126
4-Bromofluorobenzene (Surr)	95		73 - 120
Dibromofluoromethane (Surr)	104		60 - 140

Client: CDM Smith, Inc. Job Number: 480-97853-1

Client Sample ID: MW-10-0416

Lab Sample ID: 480-97853-3 Date Sampled: 04/07/2016 0835

Client Matrix: Water Date Received: 04/08/2016 0245

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-296284 Instrument ID: HP5973Q
Prep Method: 5030C Prep Batch: N/A Lab File ID: Q0557.D
Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 04/16/2016 0104 Final Weight/Volume: 5 mL

Prep Date: 04/16/2016 0104

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		1.0
Toluene	ND		1.0
Ethylbenzene	ND		1.0
m-Xylene & p-Xylene	ND		2.0
o-Xylene	ND		1.0
Xylenes, Total	ND		2.0

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	90		66 - 137
Toluene-d8 (Surr)	93		71 - 126
4-Bromofluorobenzene (Surr)	93		73 - 120
Dibromofluoromethane (Surr)	93		60 - 140

Client: CDM Smith, Inc. Job Number: 480-97853-1

Client Sample ID: MW-12-0416

Lab Sample ID: 480-97853-4 Date Sampled: 04/07/2016 1150

Client Matrix: Water Date Received: 04/08/2016 0245

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-296284 Instrument ID: HP5973Q
Prep Method: 5030C Prep Batch: N/A Lab File ID: Q0558.D
Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 04/16/2016 0128 Final Weight/Volume: 5 mL

Prep Date: 04/16/2016 0128

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		1.0
Toluene	ND		1.0
Ethylbenzene	ND		1.0
m-Xylene & p-Xylene	ND		2.0
o-Xylene	ND		1.0
Xylenes, Total	ND		2.0

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	91		66 - 137
Toluene-d8 (Surr)	94		71 - 126
4-Bromofluorobenzene (Surr)	93		73 - 120
Dibromofluoromethane (Surr)	96		60 - 140

24 - 136

Client: CDM Smith, Inc. Job Number: 480-97853-1

Client Sample ID: MW-4-0416

p-Terphenyl-d14

 Lab Sample ID:
 480-97853-1
 Date Sampled: 04/07/2016 1045

 Client Matrix:
 Water
 Date Received: 04/08/2016 0245

	22727 11 741			. (00/140) !		
	8270D_LL_PAI	H Semivolatile Organi	ic Compound	is (GC/MS) Lov	w level PAH	
Analysis Method:	8270D_LL_PAH	Analysis Batch:	480-294954	Instrume	ent ID:	HP5973W
Prep Method:	3510C	Prep Batch:	480-294829	Lab File	ID:	W0702.D
Dilution:	1.0			Initial W	eight/Volume:	235.3 mL
Analysis Date:	04/09/2016 2001			Final W	eight/Volume:	1 mL
Prep Date:	04/08/2016 1442				volume:	2 uL
Analyte		Result (u	g/L)	Qualifier		RL
Acenaphthene		ND				0.53
Acenaphthylene		ND				0.53
Anthracene		ND				0.53
Benzo(a)anthrace	ne	ND				0.53
Benzo(a)pyrene		ND				0.53
Benzo(b)fluoranth	ene	ND				0.53
Benzo(g,h,i)peryle	ne	ND				0.53
Benzo(k)fluoranthe	ene	ND				0.53
Chrysene		ND				0.53
Dibenz(a,h)anthra	cene	ND				0.53
Fluoranthene		ND				0.53
Fluorene		ND				0.53
Indeno(1,2,3-cd)py	yrene	ND				0.53
Naphthalene		ND				0.53
Phenanthrene		ND				0.53
Pyrene		ND				0.53
Surrogate		%Rec		Qualifier	Acceptan	ce Limits
2-Fluorobiphenyl		85			48 - 120	
Nitrobenzene-d5		89			46 - 120	

Client: CDM Smith, Inc. Job Number: 480-97853-1

Client Sample ID: MW-7-0416

Lab Sample ID: 480-97853-2 Date Sampled: 04/07/2016 0940

Date Received: 04/08/2016 0245 Client Matrix: Water

	8270D_LL_PA	l Semivolatile Organ	ic Compoun	ds (GC/MS)	Low level PAH	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D_LL_PAH 3510C 1.0 04/09/2016 2030 04/08/2016 1442	Analysis Batch: Prep Batch:	480-294954 480-294829	9 Lab Initia Fina	rument ID: File ID: al Weight/Volume: al Weight/Volume: ction Volume:	HP5973W W0703.D 239.9 mL 1 mL 2 uL
Analyte		Result (u	ıg/L)	Qualifier		RL
Acenaphthene		ND				0.52
Acenaphthylene		ND				0.52
Anthracene		ND				0.52
Benzo(a)anthracer	ne	ND				0.52
Benzo(a)pyrene		ND				0.52
Benzo(b)fluoranthe		ND				0.52
Benzo(g,h,i)peryle	ne	ND				0.52
Benzo(k)fluoranthe	ene	ND				0.52
Chrysene		ND				0.52
Dibenz(a,h)anthrac	cene	ND				0.52
Fluoranthene		ND				0.52
Fluorene		ND				0.52
Indeno(1,2,3-cd)py	/rene	ND				0.52
Naphthalene		ND				0.52
Phenanthrene		ND				0.52
Pyrene		ND				0.52
Surrogate		%Rec		Qualifier	Acceptar	nce Limits
2-Fluorobiphenyl		92			48 - 120	
Nitrobenzene-d5		97			46 - 120	
p-Terphenyl-d14		98			24 - 136	

24 - 136

Client: CDM Smith, Inc. Job Number: 480-97853-1

Client Sample ID: MW-10-0416

p-Terphenyl-d14

 Lab Sample ID:
 480-97853-3
 Date Sampled: 04/07/2016 0835

 Client Matrix:
 Water
 Date Received: 04/08/2016 0245

	8270D_LL_PA	l Semivolatile Organ	ic Compoun	ds (GC/MS)	Low level PAH		
Analysis Method:	8270D_LL_PAH	Analysis Batch:	480-294954	l Insti	rument ID:	HP5973W	
Prep Method:	3510C	Prep Batch:	480-294829) Lab	File ID:	W0705.D	
Dilution:	1.0			Initia	al Weight/Volume:	247.3 mL	
Analysis Date:	04/09/2016 2127			Fina	Il Weight/Volume:	1 mL	
Prep Date:	04/08/2016 1442			Inje	ction Volume:	2 uL	
Analyte		Result (u	ıg/L)	Qualifier		RL	
Acenaphthene		ND				0.51	
Acenaphthylene		ND				0.51	
Anthracene		ND				0.51	
Benzo(a)anthracene		ND	ND		0.51		
Benzo(a)pyrene		ND	ND		0.51		
Benzo(b)fluoranthene		ND	ND		0.51		
Benzo(g,h,i)perylene		ND	ND		0.51		
Benzo(k)fluoranthene		ND	ND			0.51	
Chrysene		ND	ND			0.51	
Dibenz(a,h)anthracene		ND	ND		0.51		
Fluoranthene		ND	ND		0.51		
Fluorene		ND	ND			0.51	
Indeno(1,2,3-cd)pyrene		ND	ND		0.51		
Naphthalene		ND	ND		0.51		
Phenanthrene		ND	ND		0.51		
Pyrene		ND				0.51	
Surrogate		%Rec		Qualifier	Acceptar	nce Limits	
2-Fluorobiphenyl		79	79		48 - 120		
Nitrobenzene-d5		82	82		46 - 120		

24 - 136

Client: CDM Smith, Inc. Job Number: 480-97853-1

Client Sample ID: MW-12-0416

p-Terphenyl-d14

 Lab Sample ID:
 480-97853-4
 Date Sampled: 04/07/2016 1150

 Client Matrix:
 Water
 Date Received: 04/08/2016 0245

	8270D_LL_PAF	l Semivolatile Organ	ic Compound	ds (GC/MS) Lov	w level PAH		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D_LL_PAH 3510C 1.0 04/09/2016 2058 04/08/2016 1442	Analysis Batch: Prep Batch:	480-294954 480-294829	Lab File Initial W Final W	***************************************		
Analyte		Result (u	g/L)	Qualifier	RL		
Acenaphthene		ND			0.51		
Acenaphthylene		ND			0.51		
Anthracene		ND			0.51		
Benzo(a)anthracene		ND	ND		0.51		
Benzo(a)pyrene		ND		0.51			
Benzo(b)fluoranthene		ND			0.51		
Benzo(g,h,i)perylene		ND			0.51		
Benzo(k)fluoranthene		ND			0.51		
Chrysene		ND			0.51		
Dibenz(a,h)anthracene		ND			0.51		
Fluoranthene		0.52			0.51		
Fluorene		ND			0.51		
Indeno(1,2,3-cd)pyrene		ND		0.51			
Naphthalene		ND		0.51			
Phenanthrene		ND		0.51			
Pyrene		0.64			0.51		
Surrogate		%Rec		Qualifier	Acceptance Limits		
2-Fluorobiphenyl		73		48 - 120			
Nitrobenzene-d5		74	74		46 - 120		

Client: CDM Smith, Inc. Job Number: 480-97853-1

Client Sample ID: MW-4-0416

Lab Sample ID: 480-97853-1 Date Sampled: 04/07/2016 1045

Client Matrix: Water Date Received: 04/08/2016 0245

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 480-295104 Instrument ID: PE-03

N/A N/A Initial Weight/Volume: 1 mL

Dilution: 1.0 Final Weight/Volume:

Analysis Date: 04/11/2016 1140 Injection Volume: 5 mL
Prep Date: N/A Result Type: PRIMARY

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Ethane
 ND
 7.5

 Ethene
 ND
 7.0

 Methane
 ND
 4.0

Client: CDM Smith, Inc. Job Number: 480-97853-1

Client Sample ID: MW-4-0416

Lab Sample ID: 480-97853-1 Date Sampled: 04/07/2016 1045

Client Matrix: Water Date Received: 04/08/2016 0245

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 200-103151 Instrument ID: CH2866.i

N/A Prep Batch: N/A Lab File ID: 19393008.D Dilution: 1.0 Initial Weight/Volume: 18 mL

Analysis Date: 04/13/2016 1458 Final Weight/Volume: 18 mL
Prep Date: N/A Injection Volume: 5 mL

Analyte Result (ug/L) Qualifier RL

Carbon dioxide 4400 1000

Client: CDM Smith, Inc. Job Number: 480-97853-1

Client Sample ID: MW-7-0416

Lab Sample ID: 480-97853-2 Date Sampled: 04/07/2016 0940

Client Matrix: Water Date Received: 04/08/2016 0245

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 480-295104 Instrument ID: PE-03

N/A N/A Initial Weight/Volume: 1 mL

Dilution: 1.0 Final Weight/Volume:

Analysis Date: 04/11/2016 1157 Injection Volume: 5 mL
Prep Date: N/A Result Type: PRIMARY

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Ethane
 ND
 7.5

 Ethene
 ND
 7.0

 Methane
 17
 4.0

Client: CDM Smith, Inc. Job Number: 480-97853-1

Client Sample ID: MW-7-0416

Lab Sample ID: 480-97853-2 Date Sampled: 04/07/2016 0940

Client Matrix: Water Date Received: 04/08/2016 0245

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 200-103151 Instrument ID: CH2866.i

N/A Prep Batch: N/A Lab File ID: 19393009.D

Dilution: 1.0 Initial Weight/Volume: 18 mL Analysis Date: 04/13/2016 1516 Final Weight/Volume: 18 mL

Prep Date: N/A Injection Volume: 5 mL

Analyte Result (ug/L) Qualifier RL
Carbon dioxide 4500 1000

Client: CDM Smith, Inc. Job Number: 480-97853-1

Client Sample ID: MW-10-0416

Lab Sample ID: 480-97853-3 Date Sampled: 04/07/2016 0835

Client Matrix: Water Date Received: 04/08/2016 0245

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 480-295104 Instrument ID: PE-03

N/A N/A Initial Weight/Volume: 1 mL

Dilution: 1.0 Final Weight/Volume:

Analysis Date: 04/11/2016 1353 Injection Volume: 5 mL
Prep Date: N/A Result Type: PRIMARY

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Ethane
 ND
 7.5

Ethene ND 7.0

Client: CDM Smith, Inc. Job Number: 480-97853-1

Client Sample ID: MW-10-0416

Lab Sample ID: 480-97853-3 Date Sampled: 04/07/2016 0835

Client Matrix: Water Date Received: 04/08/2016 0245

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 480-295104 Instrument ID: PE-03

N/A N/A Initial Weight/Volume: 1 mL

Dilution: 10 Final Weight/Volume:

Analysis Date: 04/11/2016 1655 Run Type: DL Injection Volume: 5 mL

Prep Date: N/A Result Type: PRIMARY

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Methane
 56
 40

Client: CDM Smith, Inc. Job Number: 480-97853-1

Client Sample ID: MW-10-0416

Lab Sample ID: 480-97853-3 Date Sampled: 04/07/2016 0835

Client Matrix: Water Date Received: 04/08/2016 0245

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 200-103151 Instrument ID: CH2866.i

N/A Prep Batch: N/A Lab File ID: 19393010.D Dilution: 1.0 Initial Weight/Volume: 18 mL

Analysis Date: 04/13/2016 1522 Final Weight/Volume: 18 mL

Prep Date: N/A Injection Volume: 5 mL

Analyte Result (ug/L) Qualifier RL
Carbon dioxide 8900 1000

Client: CDM Smith, Inc. Job Number: 480-97853-1

Client Sample ID: MW-12-0416

Lab Sample ID: 480-97853-4 Date Sampled: 04/07/2016 1150

Client Matrix: Water Date Received: 04/08/2016 0245

RSK-175 Dissolved Gases (GC)

480-295104 Analysis Method: RSK-175 Analysis Batch: Instrument ID: PE-03 N/A

N/A Initial Weight/Volume: 1 mL

Dilution: Final Weight/Volume: 1.0

Analysis Date: 04/11/2016 1410 Injection Volume: 5 mL Prep Date: Result Type: **PRIMARY** N/A

Analyte Result (ug/L) Qualifier RLEthane ND 7.5 Ethene ND 7.0 ND Methane 4.0

Client: CDM Smith, Inc. Job Number: 480-97853-1

Client Sample ID: MW-12-0416

Lab Sample ID: 480-97853-4 Date Sampled: 04/07/2016 1150

Client Matrix: Water Date Received: 04/08/2016 0245

RSK-175 Dissolved Gases (GC)

Analysis Method: RSK-175 Analysis Batch: 200-103151 Instrument ID: CH2866.i

N/A Prep Batch: N/A Lab File ID: 19393011.D Dilution: 1.0 Initial Weight/Volume: 18 mL

Analysis Date: 04/13/2016 1529 Final Weight/Volume: 18 mL

Prep Date: N/A Injection Volume: 5 mL

Analyte Result (ug/L) Qualifier RL
Carbon dioxide 11000 1000

Client: CDM Smith, Inc. Job Number: 480-97853-1

Client Sample ID: MW-4-0416

Lab Sample ID: 480-97853-1 Date Sampled: 04/07/2016 1045

Client Matrix: Water Date Received: 04/08/2016 0245

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 480-295276 Instrument ID: ICAP1

Prep Method: 3005A Prep Batch: 480-294794 Lab File ID: I1041116A-4.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 04/12/2016 0023 Final Weight/Volume: 50 mL Prep Date: 04/11/2016 0740

 Analyte
 Result (mg/L)
 Qualifier
 RL

 Lead
 ND
 0.010

Analysis Method: 6010C Analysis Batch: 480-295529 Instrument ID: ICAP1

Prep Method: 3005A Prep Batch: 480-294794 Lab File ID: I1041216A-3.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 04/12/2016 1151 Final Weight/Volume: 50 mL Prep Date: 04/11/2016 0740

 Analyte
 Result (mg/L)
 Qualifier
 RL

 Manganese
 0.0031
 0.0030

Client: CDM Smith, Inc. Job Number: 480-97853-1

Client Sample ID: MW-7-0416

Lab Sample ID: 480-97853-2 Date Sampled: 04/07/2016 0940

Client Matrix: Water Date Received: 04/08/2016 0245

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 480-295276 Instrument ID: ICAP1

Prep Method: 3005A Prep Batch: 480-294794 Lab File ID: I1041116A-4.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 04/12/2016 0035 Final Weight/Volume: 50 mL

Prep Date: 04/11/2016 0740

 Analyte
 Result (mg/L)
 Qualifier
 RL

 Lead
 ND
 0.010

 Manganese
 0.53
 ^
 0.0030

Client: CDM Smith, Inc. Job Number: 480-97853-1

Client Sample ID: MW-10-0416

Lab Sample ID: 480-97853-3 Date Sampled: 04/07/2016 0835

Client Matrix: Water Date Received: 04/08/2016 0245

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 480-295276 Instrument ID: ICAP1

Prep Method: 3005A Prep Batch: 480-294794 Lab File ID: I1041116A-4.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 04/12/2016 0039 Final Weight/Volume: 50 mL

Prep Date: 04/11/2016 0740

 Analyte
 Result (mg/L)
 Qualifier
 RL

 Lead
 ND
 0.010

 Manganese
 1.2
 ^
 0.0030

Client: CDM Smith, Inc. Job Number: 480-97853-1

Client Sample ID: MW-12-0416

Lab Sample ID: 480-97853-4 Date Sampled: 04/07/2016 1150

Client Matrix: Water Date Received: 04/08/2016 0245

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 480-295276 Instrument ID: ICAP1

Prep Method: 3005A Prep Batch: 480-294794 Lab File ID: I1041116A-4.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 04/12/2016 0042 Final Weight/Volume: 50 mL

Prep Date: 04/11/2016 0740

 Analyte
 Result (mg/L)
 Qualifier
 RL

 Lead
 ND
 0.010

 Manganese
 0.062
 ^
 0.0030

Client: CDM Smith, Inc. Job Number: 480-97853-1

General Chemistry

Client Sample ID: MW-4-0416

 Lab Sample ID:
 480-97853-1
 Date Sampled: 04/07/2016 1045

 Client Matrix:
 Water
 Date Received: 04/08/2016 0245

Analyte	Result	Qual	Units	RL	Dil	Method
Total Kjeldahl Nit	trogen ND		mg/L	0.20	1.0	351.2
	Analysis Batch: 480-296025	Analysis Date	: 04/14/2016 1721			
	Prep Batch: 480-295916	Prep Date: 04	/14/2016 1030			
Nitrate as N	3.4		mg/L	0.050	1.0	353.2
	Analysis Batch: 480-294904	Analysis Date	: 04/08/2016 1844			
Cyanide, Total	ND	*	mg/L	0.010	1.0	9012B
	Analysis Batch: 480-296842	Analysis Date	: 04/19/2016 1407			
	Prep Batch: 480-296736	Prep Date: 04	/19/2016 0905			
Sulfate	73.9		mg/L	10.0	2.0	D516-90, 02
	Analysis Batch: 480-294856	Analysis Date	: 04/08/2016 1046			
Alkalinity, Total	394		mg/L	5.0	1.0	SM 2320B
	Analysis Batch: 480-295236	Analysis Date	: 04/11/2016 1813			
Ferrous Iron	0.14	J- HF	mg/L	0.10	1.0	SM 3500 FE D
	Analysis Batch: 480-294818	Analysis Date	: 04/08/2016 1150			
Chloride	304		mg/L	10.0	10	SM 4500 CI- E
	Analysis Batch: 480-294854	Analysis Date	: 04/08/2016 1155			
Sulfide	ND		mg/L	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 480-295127	Analysis Date	: 04/11/2016 0530			

Client: CDM Smith, Inc. Job Number: 480-97853-1

General Chemistry

Client Sample ID: MW-7-0416

Lab Sample ID: 480-97853-2 Date Sampled: 04/07/2016 0940

Client Matrix: Water Date Received: 04/08/2016 0245

Analyte	Result	Qual Units	RL	Dil	Method
Total Kjeldahl Ni	trogen 1.6	mg/L	0.20	1.0	351.2
	Analysis Batch: 480-296025	Analysis Date: 04/14/2016 1721			
	Prep Batch: 480-295916	Prep Date: 04/14/2016 1030			
Nitrate as N	0.14	mg/L	0.050	1.0	353.2
	Analysis Batch: 480-294904	Analysis Date: 04/08/2016 1845			
Cyanide, Total	0.18	mg/L	0.010	1.0	9012B
	Analysis Batch: 480-297139	Analysis Date: 04/20/2016 1249			
	Prep Batch: 480-296944	Prep Date: 04/19/2016 2000			
Sulfate	384	mg/L	50.0	10	D516-90, 02
	Analysis Batch: 480-294856	Analysis Date: 04/08/2016 1046			
Alkalinity, Total	395	mg/L	5.0	1.0	SM 2320B
	Analysis Batch: 480-295236	Analysis Date: 04/11/2016 1821			
Ferrous Iron	0.14	J- HF mg/L	0.10	1.0	SM 3500 FE D
	Analysis Batch: 480-294818	Analysis Date: 04/08/2016 1150			
Chloride	66.2	mg/L	2.0	2.0	SM 4500 CI- E
	Analysis Batch: 480-294854	Analysis Date: 04/08/2016 1121			
Sulfide	ND	mg/L	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 480-295127	Analysis Date: 04/11/2016 0530			

Client: CDM Smith, Inc. Job Number: 480-97853-1

General Chemistry

Client Sample ID: MW-10-0416

Lab Sample ID: 480-97853-3 Date Sampled: 04/07/2016 0835 Client Matrix:

Date Received: 04/08/2016 0245 Water

Analyte	Result	Qual	Units	RL	Dil	Method
Total Kjeldahl Ni	trogen 4.0		mg/L	0.20	1.0	351.2
	Analysis Batch: 480-296025	Analysis Date	: 04/14/2016 1721			
	Prep Batch: 480-295916	Prep Date: 04	/14/2016 1030			
Nitrate as N	ND		mg/L	0.050	1.0	353.2
	Analysis Batch: 480-294904	Analysis Date	: 04/08/2016 1647			
Cyanide, Total	0.085		mg/L	0.010	1.0	9012B
	Analysis Batch: 480-297139	Analysis Date	: 04/20/2016 1250			
	Prep Batch: 480-296944	Prep Date: 04	/19/2016 2000			
Sulfate	44.4		mg/L	10.0	2.0	D516-90, 02
	Analysis Batch: 480-294856	Analysis Date	: 04/08/2016 1059			
Alkalinity, Total	586		mg/L	5.0	1.0	SM 2320B
	Analysis Batch: 480-295236	Analysis Date	: 04/11/2016 1829			
Ferrous Iron	0.11	J₋ HF	mg/L	0.10	1.0	SM 3500 FE D
	Analysis Batch: 480-294818	Analysis Date	: 04/08/2016 1150			
Chloride	893		mg/L	30.0	30	SM 4500 CI- E
	Analysis Batch: 480-294854	Analysis Date	: 04/08/2016 1153			
Sulfide	ND		mg/L	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 480-295127	Analysis Date	: 04/11/2016 0530			

Client: CDM Smith, Inc. Job Number: 480-97853-1

General Chemistry

Client Sample ID: MW-12-0416

Lab Sample ID: 480-97853-4 Date Sampled: 04/07/2016 1150 Client Matrix: Date Received: 04/08/2016 0245

Water

1.0	351.2
1.0	353.2
1.0	9012B
3.0	D516-90, 02
1.0	SM 2320B
1.0	SM 3500 FE D
10	SM 4500 CI- E
1.0	SM 4500 S2 F
	1.0 3.0 1.0 1.0