

December 15, 2016

Ms. Jamie Verrigni
Environmental Engineer
Remedial Bureau C, 11th Floor
Division of Environmental Remediation
New York State Department of Environmental Conservation
625 Broadway
Albany, NY 12233-7014

Re: Johnstown (N. Market St.)

Former Manufactured Gas Plant Site (MGP)

Site No. 5-18-020

Semi-Annual Groundwater Monitoring Report (October 2016)

Dear Ms. Verrigni:

Enclosed is the Semi-Annual Groundwater Monitoring Report for the Johnstown (N. Market St.) MGP Site located in Johnstown, New York. The report includes the October 25-26, 2016, groundwater monitoring results.

National Grid acknowledges the NYSDEC Fact sheet dated June 2016 approving the site's environmental remediation construction completion. Long-term OM&M activities will be conducted in accordance with the approved Site Management Plan (SMP) and the site's Environmental Easement.

Please contact me at (315) 428-5652 or <u>Steven.Stucker@NationalGrid.com</u> if you have any questions regarding the report.

Sincerely,

for SPS

Steven P. Stucker, C.P.G. Senior Environmental Engineer

Cc: Carolyn Rooney -National Grid Nathan Freeman- NYSDOH

Devin T Shay - Groundwater & Environmental Services, Inc.

SEMI-ANNUAL GROUNDWATER MONITORING REPORT

Former Manufactured Gas Plant Site North Market Street Johnstown, NY

October 2016 Sampling Event

Prepared For:

300 Erie Boulevard West Syracuse, NY 13202

Prepared By:

Groundwater & Environmental Services, Inc.

5 Technology Place, Suite 4 East Syracuse, New York 13057

TABLE OF CONTENTS

		Page
1.0 IN	TRODUCTION	1-1
1.1	PURPOSE AND OBJECTIVE	1-1
1.2	REPORT ORGANIZATION	1-2
2.0 B	ACKGROUND	2-1
2.1	SITE DESCRIPTION	2-1
2.2	SITE HISTORY	
2.3	ENVIRONMENTAL SETTING	
3.0 M	ONITORING ACTIVITIES	3-1
3.1	WATER GAUGING AND SAMPLING PROCEDURES	
3.2	GROUNDWATER ANALYTICAL RESULTS	3-2
4.0 C	ONCLUSIONS AND RECOMMENDATIONS	4-1
4.1	CONCLUSIONS	
4.1	RECOMMENDATIONS	
5.0 R	EFERENCES	5.1
5.0 K	EFERENCES	5-1
TABLE	\mathbf{S}	
Table 1	Groundwater Level Measurements	
Table 2	Analytical Data Results	
FIGURI	FS	
Figure 1	Site Location Map	
Figure 2	•	
Figure 3	1	
Figure 4	Natural Attenuation Map [October 25-26, 2016]	
Figure 5	1 6 / 3	
Figure 6	Naphthalene Concentration Map [October 25-26, 2016]	
APPEN	DICES	
. ۱ . سعاد عدد ناه سه مسا	v. A. Eigld Data [Oatahan 2016]	

Appendix A Field Data [October 2016]
Appendix B Data Usability Summary Report [October 2016]

1.0 INTRODUCTION

This Semi-Annual Groundwater Monitoring Report (the Report) summarizes the results of the October 2016 groundwater sampling event at the Johnstown, New York (N. Market Street) Former Manufactured Gas Plant (MGP) Site (the Site). This Report was developed as part of the long-term groundwater monitoring program on behalf of National Grid.

National Grid has been addressing the Site environmental conditions under an Order on Consent (Index Number D0-0001-9210), dated April 1999, that was entered into by Niagara Mohawk and the New York State Department of Environmental Conservation (NYSDEC). That Order on Consent was for the investigation and remediation of 21 former MGP sites, including the Johnstown (N. Market Street) Site. It was superseded by a new Order on Consent (Index Number A4-0473-0000), dated November 7, 2003. A NYSDEC-approved Supplemental Remedial Investigation (RI) Work Plan was finalized during November 2007, and a Final Supplemental RI Report was submitted to the NYSDEC, dated December 2008. The RI results report and subsequent Feasibility Study were approved in February 2010.

A Record of Decision (ROD) was issued by the NYSDEC, dated March 2010, in accordance with the requirements of New York State Environmental Conservation Law and Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York, 6 NYCRR Part 375. Based upon the results of the remedial investigation/feasibility study (RI/FS) for the Site, the interim remedial measures (IRMs) previously completed, and the ROD, the draft Final Engineering Report and Site Management Plan (SMP) were developed and submitted to the NYSDEC in June 2010. The Final Engineering Report, the Final SMP, and the Final Environmental Easement were approval by the NYSDEC in their June 2016 Fact Sheet.

The Final SMP includes:

- 1) Semi-annually (April & October) site inspection and groundwater level measurements at monitoring wells MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, MW-16, RMW-1, and the creek surface gauging station (bridge);
- 2) Semi-annual groundwater sampling/analysis [Volatile Organic Compounds (VOCs), Semi-Volatile Organic Compounds (SVOCs), Heavy Metals, and Natural Attenuation Parameters] for monitoring wells MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, and MW-16 (RMW-1 will not be sampled);
- 3) Semi-annual reporting (June & December) to NYSDEC.

1.1 PURPOSE AND OBJECTIVE

The purpose of this Report is to summarize the groundwater sampling activities and results of the latest event, and to compare the results to previous events. As described in the December 2008 Supplemental RI Report and the subsequent ROD, one of the primary goals is to evaluate whether or not the groundwater constituents of concern (COCs) concentrations decrease, and continue to assess the effectiveness of monitored natural attenuation.

1.2 REPORT ORGANIZATION

This Report is organized in to the following six sections. Section 1.0 presents the purpose and objectives of this program. Section 2.0 provides the history, environmental setting and location of the Site. Section 3.0 provides a description of the approach used to collect and analyze groundwater samples at the Site. Section 4.0 presents the physical and chemical analytical data collected, and Section 5.0 presents the conclusions and recommended approach for further monitoring at the Site. References for the Report are located in Section 6.0.

2.0 BACKGROUND

2.1 SITE DESCRIPTION

The Site is located in the City of Johnstown, County of Fulton, New York (Figure 1 presents the site location map) and is identified as Block 14 and Lot 7 on the Johnstown City Tax Map. The Site is an approximate 0.7-acre area bounded by the Cayadutta Creek to the north, the Colonial Cemetery to the south, Market Street to the east, and a wooded parcel of property to the west (Figure 2 presents the site plan). The Site is located in a mixed commercial, industrial, and residential area.

Currently, National Grid operates a natural gas regulator station at the Site with equipment contained in fenced enclosures along the Site's southern boundary. The rest of the Site is grass-covered, including the stream bank adjacent to Cayadutta Creek along the northern boundary of the Site. An embankment exists along the north end of the Site that slopes down to the Cayadutta Creek. A chain-link fence exists along the north and west sides of the Site, and a retaining wall runs along the south side of the Site. Access to the Site is from North Market Street to the east.

The Johnstown Hospital is located south of the Site within one mile, and numerous residences exist to the west and east of the Site. The Johnstown Senior High School and Warren Street Elementary School are located within one mile of the Site to the west.

2.2 SITE HISTORY

The Johnstown MGP Site was incorporated in March 1857 as the Johnstown Gas Light Company. The company operated a small coal gas plant with a 20,000 cubic foot (cu. ft.) holder (Holder #1), see Figure 2. In 1861, the plant was improved with the addition of a coal shed and a covering for the tank holder. In 1886, the Johnstown and Gloversville Gas Light Corporation was formed, and the company purchased the rights to the Lowe water gas process. The United Gas Improvement Company planned the construction of a water gas plant for the Johnstown and Gloversville franchises.

In 1887, the Site consisted of a tool shop, an office, a coal gasometer, a lime house, a purifier room, a retort house, and a coal shed. Between 1887 and 1918, Holder #2 was located in the central part of the Site (exact size unknown). In 1892, a steam generator was constructed adjacent to the coal shed for the Lowe water gas process, and Holder #1 was decommissioned in 1896. In 1898, a 72,000 cu. ft. gas holder (Holder #3) was constructed on the Site. Between 1912 and 1918, the western small gas holder (Holder #2) in the middle of the Site was removed. In 1929, a gas pipeline from a MGP in Troy, New York, reached Johnstown, and local gas production was only performed on a seasonal (winter) basis until local production of gas ceased in 1931. Niagara Hudson Power Company was the owner of the Site in 1930. By 1948, Holder #3 was decommissioned. In 1950, Niagara Hudson Power was consolidated under the name

Niagara Mohawk Power Company. By 1980, all Site buildings were removed. Currently, National Grid operates a natural gas regulator station at the Site.

Site Assessment and Investigations

An investigation of the Site began in 1997 with a Preliminary Site Assessment (PSA), which found that the Site was impacted with MGP wastes. A Supplemental PSA was then conducted at the Site in 1998, which was followed by a RI (January 2000) and subsequent remedial measures. Remedial measures are discussed separately below in this section.

A 2009 Supplemental RI was initiated to collect data to address potential residual MGP-related contaminants remaining in groundwater at the Site and to assess hydrogeologic conditions and groundwater quality on the Site. The results of the Supplemental RI were used to formulate potential remedial alternatives for groundwater and residual soil contamination. The Supplemental RI results were evaluated and presented in the 2010 FS Report.

Remedial Measures Completed

Several IRMs were performed to address the MGP impacts. In 2002 and 2003, the former holders and associated impacted soil were removed. During this IRM, former Holder #2 and the northern half of former Holder #3 were demolished and removed from the Site. Approximately 13,870 cubic yards of soil were excavated and disposed off site at a NYSDEC-approved facility. Permanent steel sheeting was left in place along the northeastern perimeter of the Site to avoid disturbance of the roadway and to provide containment of residual material left at depth.

Between 2005 and 2006, National Grid provided support to the City of Johnstown for subsurface work associated with the replacement of the North Market Street Bridge across Cayadutta Creek. Approximately 1,413 cubic yards of impacted soil were excavated from within the cofferdam area and disposed off-site at a NYSDEC-approved facility.

In August 2009, the rip-rap area along the bank of Cayadutta Creek that had been restored during the previous IRMs was enhanced to allow for establishment of stream-side vegetation. Post-IRM inspections of the restored Cayadutta Creek bank were conducted in September 2009 and May 2010.

2.3 ENVIRONMENTAL SETTING

The Johnstown (N. Market Street) Site slopes northward toward Cayadutta Creek with elevations ranging from 652 to 672 feet (ft.) above sea level. Currently, the Site topography gradually slopes from south to north, becoming increasingly steeper adjacent to the Creek, and is generally covered with either vegetation or stone. Surface drainage is primarily to the north into the creek. Access to the Site is from North Market Street to the east, and the Site is currently used to support the natural gas regulator station operations.

Site Geology

The main units of unconsolidated deposits identified at the Site can be characterized in descending order as fill and native glacial deposits to bedrock. The glacial deposits are of lacustrine origin with glacial tills to the top of shale bedrock (Utica Shale). Bedrock was reached beneath the till in two soil borings explored during the 1998 Supplemental PSA. These stratigraphic units are more specifically described below, based on information obtained from the previous investigations, and from the soil borings and monitoring well borings conducted during the 2007/2008 SRI.

Site geology includes a layer of disturbed soils (primarily fill) overlying glacial deposits. Based upon on-site soils and monitoring well borings, disturbed soils (including fills) range in thickness up to 13 ft. and are typically composed of sand, gravel, silt, clay, wood, coal, and anthropogenic materials including ash, cinders, clinkers, brick fragments, wire, and wood chips. Wood chips were identified in three borings (SB-09, SB-12, and MW-8) and are often associated with purifier waste.

A thin layer of peat underlies the disturbed soils in the northern portion of the Site, ranging in thickness from 0.5 ft. to 3 ft., and appears to thicken and dip to the north. Except where it is locally covered by sedimentary deposits such as silts, sands, and clays, the peat, where present, appears to have been the historical ground cover prior to development of the Site.

Underlying the peat, where present, the soils consist of lacustrine deposits composed of silts, sands, and clays. The surface of the lacustrine deposits appears to dip and thin out toward the north. A sand and gravel unit (an outwash deposit of stratified drift) underlies the lacustrine deposits across the Site area. This unit contains varying amounts of silt and clay. These deposits overlie a dense, low-permeability glacial till to bedrock (Shale).

Site Hydrogeology

Groundwater depths on site are typically in the 10- to 20-foot below ground surface (bgs) range, generally in the glacial deposits below the bottom of the fill material. Groundwater flow is consistently northward through the Site area toward Cayadutta Creek, with the steepest gradient from the center of the Site proximal to former gas holders #2 and #3 to the southern Creek bank (about 0.08 ft./ft.). In comparison, the average hydraulic gradient decreases to a value of approximately 0.04 ft./ft. on the east and west sides of the Site away from the former gas holders. The local groundwater flow is consistent with regional groundwater flow direction. The groundwater flow direction and hydraulic gradients calculated during this monitoring period are also generally consistent with historic data obtained prior to the issuance of the ROD.

3.0 MONITORING ACTIVITIES

The long-term semi-annual groundwater monitoring program currently consists of the following elements:

- Semi-Annual Site Inspection including the creek bank protection, vegetative cover, monitoring wells, and security fence.
- Semi-Annual Groundwater Well Gauging of the following: RW-1, MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15 and MW-16 (Figure 2 presents the well locations). The creek surface water level is also gauged at one location: SG-1.
- Semi-Annual Groundwater Sampling and Analysis of the following: MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15 and MW-16. Note that recovery well RW-1 is not sampled as part of the program but is inspected for the presence of non-aqueous phase liquids (NAPL). Monitoring well MW-11 was not sampled during the October 2016 sampling round due to concrete/metal and wood debris at this off-site well location.

3.1 WATER GAUGING AND GROUNDWATER SAMPLING PROCEDURES

Gauging

Long-term groundwater monitoring includes water gauging at 9 groundwater monitoring wells and 1 groundwater recovery well using an electronic oil/water interface probe. Depth to bottom of well (DTB), depth to product (DTP), and depth to water (DTW) are to be recorded at each well. Refer to Table 1 for a summary of the water level measurements from October 2016 as well as previous events. Appendix A also presents the field documentation from the October 2016 water gauging event.

No product was present in recovery well RW-1 or the other nine groundwater monitoring wells.

A creek surface water level measurement was collected from the Cayadutta Creek Bridge using a water level probe (from the surveyed gauging point at the bridge).

Sampling

Groundwater sampling was performed following low-flow sampling techniques [equivalent to United States Environmental Protection Agency (USEPA) low-flow procedures] using a pressure-driven peristaltic pump. During purging, measurements were collected for the following field parameters: pH, specific conductivity, turbidity, dissolved oxygen (DO), temperature, and oxidation-reduction potential (ORP). A Horiba U-22 was used to collect the field parameter data in a flow-through cell. The monitored field parameters are observed and recorded during low-flow sampling to determine when they have stabilized, and thus when the well has been adequately purged. Field parameter measurements were recorded at approximately 5-minute intervals. The monitoring wells were purged until stabilization of the field parameters (±0.1 Standard Unit (SU) for pH, ±3% for specific conductivity, ±10 millivolts

(mV) for ORP, and $\pm 10\%$ for DO) and turbidity was less than 50 Nephalometric Turbidity Units (NTU). Refer to Attachment A for the field data.

After stabilization of the field parameters, 8 groundwater samples were collected directly from the dedicated tubing into laboratory-supplied sample containers (pre-preserved as required per the analytical method). Quality Assurance/Quality Control (QA/QC) samples included the collection of one field duplicate sample, one matrix spike (MS) sample, one duplicate matrix spike (DMS) sample, and one trip blank sample (VOCs only). Samples were transported to the laboratory, accompanied by the appropriate chain-of-custody documentation. Analytical results were validated.

Natural Attenuation Parameters

The ORP of groundwater is an indicator of the relative tendency of the groundwater to accept or transfer electrons. ORP is dependent on and influences rates of biodegradation. Lower ORP readings indicate a greater tendency toward reducing conditions and anaerobic processes.

The pH of the groundwater affects the presence and activity of microorganisms in the groundwater. The microorganisms may produce either organic acids or carbon dioxide which, when dissolved in water, forms weak carbonic acid. Microorganisms capable of degrading petroleum hydrocarbons typically prefer pH values ranging from 6 to 8 SU.

Groundwater temperature affects the solubility of dissolved gases such as oxygen and carbon dioxide as well as the metabolic activity of microorganisms. Oxygen is less soluble in warm water, and groundwater temperatures below approximately 5 degrees Celsius tend to inhibit biodegradation.

DO is the most thermodynamically favored electron acceptor used by microorganisms during the degradation of both natural and anthropogenic organic carbon. An inverse relationship of high hydrocarbon concentrations and low DO concentrations can be used as a key indicator of biodegradation.

Nitrate, if available, may be used as an electron acceptor for anaerobic biodegradation after the depletion of DO [typically considered less than 0.5 milligrams per liter (mg/L)] and is used to biodegrade petroleum hydrocarbons. Lower nitrate concentrations in groundwater within a plume, with respect to higher concentrations in areas upgradient and outside a plume, may be expected.

Ferrous iron is a metabolic byproduct of hydrocarbon degradation. Reducing conditions in nitrogen- and oxygen-depleted groundwater creates an anaerobic environment that causes the reduction of ferric iron (Fe^{3+}) to ferrous iron (Fe^{2+}). Relatively low ferrous iron concentrations may be present in areas where natural attenuation is occurring if free ferrous iron is reprecipitating as sulfides or carbonates.

Sulfate may be used as an electron acceptor after the depletion or use limitation of DO, nitrate, and ferric iron. Lower sulfate concentrations in groundwater within a plume, with respect to higher concentrations in areas upgradient and outside a plume, may be expected.

The production of methane, termed methanogenesis, occurs only in strongly reducing conditions and generally after oxygen, nitrate, and sulfate have been depleted. The presence of methane in groundwater suggests Benzene, Toluene, Ethylbenzene, Xylene (BTEX) degradation via methanogenesis. Methane is not present in fuels, and therefore its presence at high concentrations relative to areas upgradient and outside a plume is indicative of the biodegradation of petroleum hydrocarbons.

The buffering capacity of groundwater is a function of alkalinity. Typically, alkalinity is primarily due to carbonate alkalinity. The organic acids or the carbon dioxide (which produces a weak carbonic acid when dissolved in water) produced by biodegradation solubilize carbonate from the soil. Alkalinity concentrations that are elevated with respect to areas upgradient and outside a plume may be an indication of microbial activity and thus natural attenuation.

Typically, the relationships between BTEX and electron acceptors/metabolic byproduct concentrations (geochemical indicators) indicate potential for biodegradation. The concentrations are dependent on the location (and groundwater conditions) within the plume or outside of the plume limits.

3.2 GROUNDWATER ANALYTICAL RESULTS

The groundwater samples were analyzed for BTEX, Polycyclic Aromatic Hydrocarbons (PAHs), lead, total cyanide, and monitored natural attenuation/water quality (MNA/WQ) parameters including alkalinity, chloride, ethane, ethene, ferrous iron, manganese, methane, nitrate, nitrogen, sulfate and sulfide. BTEX and PAHs are constituents commonly associated with former MGP sites. Cyanide is also a constituent commonly associated with former MGP sites. BTEX, PAHs, lead, and cyanide were the primary contaminants detected during previous investigation activities conducted at the Site. The MNA/WQ parameters, as well as field-measured ORP, pH, temperature, and DO, are relevant to establishing whether conditions are favorable for natural attenuation to occur at the Site.

- Refer to Table 2 for the analytical results summary.
- Refer to Appendix A for field data.
- Refer to Appendix B for the data usability summary report (DUSR).

Groundwater analytical results were compared with levels specified in the NYSDEC Division of Water Final Amendment to Water Quality Standards Regulations, effective February 16, 2008 [hereafter referred to as NYSDEC WQ Values]. For groundwater, Class GA values were applied. Class GA waters are defined as fresh groundwater, found in the saturated zone of unconsolidated deposits and consolidated rock or bedrock, which are used as a source of potable water supply.

Site Related Parameters

BTEX - Groundwater samples collected from monitoring wells MW-13, MW-15, and MW-16 contained concentrations of some or all individual BTEX constituents above their respective NYSDEC WQ Values [1 micrograms per liter (μg/L)] for benzene and 5 μg/L for other BTEX constituents). The highest concentrations were observed in the groundwater samples collected from monitoring wells MW-13, MW-15 and MW-16. Monitoring well MW-13 typically had the highest total BTEX concentrations. Monitoring well MW-15 is located generally downgradient of the former gas holders and monitoring well MW-13, while monitoring well MW-16 is located southwest of the former gas holders and generally upgradient of both monitoring wells MW-13 and MW-15.

PAHs – PAHs were detected in monitoring wells MW-4, MW-7, MW-10, MW-13, MW-14, MW-15 and MW-16. Naphthalene has consistently exhibited the highest concentration of any PAH.

Lead - Lead exhibited excedances above its respective NYSDEC WQ Value (25 μg/l) in one well (MW-14).

Cyanide - Concentrations of cyanide were detected above its NYSDEC WQ Value (0.2 mg/L) in groundwater samples collected from monitoring wells MW-13, MW-14, MW-15, and MW16.

Monitored Natural Attenuation Parameters

Site-specific levels of the MNA/WQ parameters (geochemical indicators) were compared to known screening values to identify whether the site-specific values are within the ranges known to be suitable for biodegradation. The MNA/WQ analytical results for the individual monitoring wells are summarized in Table 2. Figure 4 presents the groundwater data for the key MNA data parameters at their respective locations to assist with the MNA evaluation. Indications of biodegradation of petroleum-related MGP constituents within the plume include low levels of DO, nitrate and sulfate, with generally higher levels of manganese, ferrous iron and methane.

Indicator concentrations detected at monitoring wells identified within source and downgradient areas of the Site were compared to levels detected at upgradient and side gradient monitoring wells exhibiting little or no MGP-related contamination. Generally indicator concentration levels at a distance from the center of the plume will be significantly lower than levels within the plume. A summary of the MNA/WQ results and associated field indicator parameters are provided below:

• DO and ORP values demonstrate depleted levels of DO and a transformation to more anaerobic or reducing conditions at the former source and downgradient areas relative to side gradient and upgradient areas of the Site. These values suggest that biodegradation activities at the source and at downgradient areas are occurring, consuming the available

oxygen and resulting in MGP petroleum-related compound degradation and the lowering of DO levels.

- The range of ORP levels observed at the source and downgradient area monitoring wells generally indicates aquifer conditions could be suitable for denitrification, ferric iron reduction, sulfate reduction, and methanogenesis.
- Nitrate concentrations are generally depleted at the former source and downgradient areas of the Site relative to upgradient (MW-4) and side gradient areas, indicating denitrification may be a noteworthy biodegradation process occurring at this time at the source and downgradient areas.
- Ferrous iron concentrations at the former source and downgradient area monitoring wells do not exhibit higher levels relative to side gradient and upgradient monitoring wells. In addition, sulfate concentrations at the former source and upgradient areas are not depleted relative to upgradient and side gradient areas. These observations indicate ferric iron reduction and sulfate reduction are not likely to be significant biodegradation processes at this time at the source and downgradient areas.
- Based on the presence of methane, low DO amounts, and the ORP levels, methanogenesis is likely an important factor for biodegradation capacity in some areas of the Site. However, plume elongation is limited with a similar footprint throughout the monitoring period indicating that biodegradation is continuing and methanogenic conditions have not taken over completely.

Natural Attenuation Trending

Previous groundwater sampling data collected since June 2010 was utilized to develop and evaluate the contaminant plume and concentration trends of specific constituents at the Site. Plume size and concentration data are indicative of biodegradation capacity (natural attenuation) at the Site and whether the capacity has reached a limit of effectiveness. In order to determine and evaluate natural attenuation effectiveness, the use of statistical testing has been utilized for groundwater data collected from monitoring wells at the Site. The Mann-Kendall test was utilized for trend analysis. Trend analysis data started June 2010. The resultant statistical trend analysis for individual monitoring wells suggests (with 80% and 90% confidence) that total BTEX compounds and naphthalene plume lifecycle have been stable (no trend) to decreasing throughout the monitoring period. The table below depicts general concentration trend analysis results (decreasing, no trend or increasing) at 80% confidence levels for each well and associated constituents during the monitoring period. No trend is indicative of plume stability at well locations with contaminant detections throughout the monitoring period.

Well ID	Benzene	Toluene	Ethylbenzene	Total xylenes	Naphthalene
MW-4	No trend	No trend	No trend	No trend	No trend
MW-7	No trend	No trend	No trend	No trend	No trend
$MW-10^1$	Not trend	No trend	No trend	No trend	No trend
MW-11 ¹	No trend	No trend	No trend	No trend	Decreasing trend
MW-12	No trend	No trend	No trend	No trend	No trend
MW-13 ¹	No trend	Decreasing	Decreasing	Decreasing	No trend
MW-14 ¹	Decreasing	No trend	No trend	No trend	No trend
MW-15 ¹	Decreasing	No trend	No trend	No trend	No trend
MW-16 ¹	No trend	No trend	No trend	No trend	Increasing

No trend is indicative of plume stability at well locations with contaminant detections throughout the monitoring period.

Isoconcentration contour maps were developed for total BTEX (Figure 5) and naphthalene (Figure 6) contamination. The figures present locations of the groundwater monitoring wells and plume contours for total BTEX (as compared to the benzene WQ value of 1 μ g/L) and naphthalene exceeding the NYSDEC WQ values. Evaluation of the isoconcentration figures suggests that the contaminant plumes were relatively stable to decreasing (smaller footprint with time) within the Site boundary up until this latest sampling round of October 2016. BTEX constituent plume trends (concentrations above the benzene WQ at 1 μ g/L) have consistently included monitoring wells MW-13, MW-15 and MW-16. While the naphthalene plume (concentrations above the WQ) has decreased to include only monitoring wells MW-13 and MW-15.

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

Groundwater Levels

The groundwater elevation data indicates groundwater within the Site, south of the Creek, flows in a downgradient direction from the south to the north, toward Cayadutta Creek. The groundwater flow direction has been consistent during previous gauging events and with data obtained prior to the ROD. Figure 3 is a groundwater monitoring map verifying groundwater flow direction.

Flow on the north side of the Creek is to the south, towards the Creek. As such, Cayadutta Creek serves as the discharge location for the unconfined hydrostratigraphic unit, north and south of the Creek, and acts as a hydraulic boundary.

Site-Related Constituents

The highest concentrations of BTEX constituents and PAH compounds are within MW-13, MW-15, and MW-16. Site institutional controls continue to be effective and will continue to be monitored semi-annually.

There are minimal concentrations of lead in groundwater samples; however, Total Cyanide has been detected consistently in most wells.

Natural Attenuation

Plume stability at the Site is an indication that biodegradation capacity likely has not reached its limit of effectiveness. The use of statistical testing has identified the plume trends based on the constituent concentrations. Trend analysis data started with the June 2010 sampling event. Generally, the tests suggested that the plume and the related constituents were either stable or decreasing.

4.2 RECOMMENDATIONS

Based on the results of the October 2016 event and previous events, the following recommendations are made:

✓ Continue the long-term semi-annual site inspection and groundwater monitoring program. The next event will be April 2017.

5.0 REFERENCES

Borden, Robert C., et. al., "Geochemical Indicators of Intrinsic Bioremediation". Groundwater, Volume 33, Number 2, March/April 1995.

National Grid. "Site Management Plan for the Johnstown (N. Market Street) Former MGP Site, Johnstown, New York". National Grid, November 2011.

Niagara Mohawk Power Corporation. "Preliminary Historical Profile of the Johnstown (Market Street) MGP Site. Johnstown, New York". Niagara Mohawk Power Corporation, June 1993.

Niagara Mohawk Power Corporation. "Interim Remedial Measure (IRM) Summary Report for the Johnstown (N. Market Street) Site. Johnstown, Fulton County, New York. Site No. 5-18-020:. Tetra Tech FW, June 2007.

Niagara Mohawk Power Corporation. "IRM Summary Report for the Johnstown (N. Market Street) Site. Bridge Replacement Environmental Support Activities". Tetra Tech FW, October 2007.

Niagara Mohawk Power Corporation. "Record of Decision for the Johnstown (N. Market Street) Former MGP Site, Johnstown, New York". Niagara Mohawk Power Corporation, March 2010.

		6/30	/2010	9/29)/2010	1/5	/2011	4/8	/2011	6/16	5/2011
Well ID	ELEVATION REFERENCE POINT	Depth to Water (ft tic)	Groundwater Elevation (ft msl)	Depth to Water (ft tic)	Groundwater Elevation (ft msl)	Depth to Water (ft tic)	Groundwater Elevation (ft msl)	Depth to Water (ft toc)	Groundwater Elevation (ft msl)	Depth to Water (ft toc)	Groundwater Elevation (ft msl)
MW-4	676.54	23.10	653.44	23.41	653.13	22.95	653.59	22.50	654.04	22.04	654.50
MW-7	659.08	14.25	644.83	13.18	645.90	13.88	645.20	12.87	646.21	13.80	645.28
MW-10	657.59	14.80	642.79	14.60	642.99	14.75	642.84	14.09	643.50	14.77	642.82
MW-11	657.29	NM	NM	13.57	643.72	13.59	643.70	12.51	644.78	13.38	643.91
MW-12	660.08	NM	NM	NM	NM	15.06	645.02	NM	NM	NM	NM
MW-13	664.89	14.65	650.24	15.22	649.67	14.95	649.94	11.18	653.71	13.99	650.90
MW-14	663.91	13.50	650.41	14.46	649.45	14.28	649.63	12.86	651.05	13.65	650.26
MW-15	661.85	16.90	644.95	17.24	644.61	17.68	644.17	15.07	646.78	16.63	645.22
MW-16	665.57	9.70	655.87	10.19	655.38	12.33	653.24	11.00	654.57	10.50	655.07
RW-1											
GAUGE1	659.97	15.07	644.90	20.20	639.77	16.30	643.67	15.75	644.22	16.75	643.22

		10/13	3/2011	12/1	5/2011	3/15	/2012	10/9	/2012	4/18	3/2013	10	/7/2013
Well ID	ELEVATION REFERENCE POINT	Depth to Water (ft toc)	Groundwater Elevation (ft msl)										
MW-4	676.54	21.41	655.13	22.78	653.76	22.81	653.73	NM	NM	23.97	652.57	23.12	653.42
MW-7	659.08	13.15	645.93	15.45	643.63	13.55	645.53	14.17	644.91	13.53	645.55	14.36	644.72
MW-10	657.59	14.11	643.48	14.22	643.37	14.18	643.41	15.05	642.54	14.27	643.32	14.44	643.15
MW-11	657.29	12.95	644.34	12.76	644.53	12.73	644.56	13.95	643.34	13.01	644.28	13.16	644.13
MW-12	660.08	13.61	646.47	14.54	645.54	14.26	645.82	16.36	643.72	14.06	646.02	14.99	645.09
MW-13	664.89	11.91	652.98	14.31	650.58	14.98	649.91	16.12	648.77	14.18	650.71	15.08	649.81
MW-14	663.91	13.26	650.65	13.65	650.26	15.49	648.42	16.98	646.93	13.14	650.77	14.74	649.17
MW-15	661.85	15.95	645.90	16.38	645.47	16.41	645.44	17.85	644.00	16.26	645.59	17.21	644.64
MW-16	665.57	9.79	655.78	9.91	655.66	11.56	654.01	10.51	655.06	9.98	655.59	9.85	655.72
RW-1								17.98		16.21	-	15.95	-
GAUGE1	659.97	16.05	643.92	15.62	644.35	15.69	644.28	NM	NM	19.10	640.87	18.85	641.12

ft msl - feet mean sea level ft toc - feet from top of inner casing NM - not measured

		4/9	9/2014	10/	13/2014	4/:	16/2015	10/	13/2015	4,	6/2016	10/	25/2016
Well ID	ELEVATION REFERENCE POINT	Depth to Water (ft toc)	Groundwater Elevation (ft msl)										
MW-4	676.54	23.28	653.26	23.28	653.26	22.91	653.63	23.48	653.06	23.51	653.03	24.03	652.51
MW-7	659.08	13.71	645.37	14.61	644.47	13.23	645.85	14.61	644.47	14.19	644.89	15.00	644.08
MW-10	657.59	14.13	643.46	14.98	642.61	14.15	643.44	14.95	642.64	14.77	624.82	15.18	642.41
MW-11	657.29	12.68	644.61	13.71	643.58	12.62	644.67	-	-	NM	-	NM	-
MW-12	660.08	14.41	645.67	15.65	644.43	14.25	645.83	15.62	644.46	14.95	645.13	15.82	644.26
MW-13	664.89	14.84	650.05	15.53	649.36	11.34	653.55	14.98	649.91	15.95	648.94	16.32	648.57
MW-14	663.91	15.70	648.21	15.02	648.89	13.06	650.85	13.63	650.28	16.81	647.1	16.8	647.11
MW-15	661.85	16.67	645.18	17.55	644.30	15.31	646.54	17.23	644.62	17.355	644.3	17.9	643.95
MW-16	665.57	9.45	656.12	10.24	655.33	10.48	655.09	9.61	655.96	10.79	654.78	11.11	654.46
RW-1		12.32	-	17.31	-	16.84	-	13.21	-	13.03	NRP	12.88	NRP
GAUGE1	659.97	18.85	641.12	20.01	639.96	18.91	641.06	19.91	640.06	19.76	640.21	18.40	641.57

Table 2 Analytical Data Results (MW-4) Johnstown MGP Site Johnstown, NY

	1				1	1				1					1	
		NYSDEC WQ														
CONSTITUENT	UNITS	Values	4/6/11	6/14/11	10/11/11	12/13/11	3/14/12	10/9/12	4/18/13	10/8/13	4/9/14	10/20/14	4/16/15	10/14/15	4/6/16	10/25/16
BTEX Compounds																
Benzene	ug/l	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1U	1.0U
Ethylbenzene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1U	1.0U
m/p-Xylene	ug/l	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2U	2.0U
o-Xylene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1U	1.0U
Toluene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1U	1.0U
PAHs																
Acenaphthene	ug/l	20	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.52 U	0.52 U	0.10U
Acenaphthylene	ug/l	NC	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.52 U	0.52 U	0.10U
Anthracene	ug/l	50	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.52 U	0.52 U	0.10U
Benzo(a)anthracene	ug/l	0.002	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.52 U	0.52 U	0.10U
Benzo(a)pyrene	ug/l	0.000	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.52 U	0.52 U	0.10U
Benzo(b)fluoranthene	ug/l	0.002	0.47 U	0.48 U	0.47 U	0.26 J	0.49 U	0.49 U	0.52 U	0.52 U	0.10U					
Benzo(g,h,i)perylene	ug/l	NC	0.47 U	0.48 U	0.47 U	0.19 J	0.49 U	0.49 U	0.52 U	0.52 U	0.10U					
Benzo(k)fluoranthene	ug/l	0.002	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.52 U	0.52 U	0.10U
Chrysene	ug/l	0.002	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.52 U	0.52 U	0.10U
Dibenzo(a,h)anthracene	ug/l	NC	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.52 U	0.52 U	0.10U
Fluoranthene	ug/l	50	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.52 U	0.52 U	0.10U
Fluorene	ug/l	50	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.52 U	0.52 U	0.10U
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.52 U	0.52 U	0.10U
Naphthalene	ug/l	10	0.47 U	0.48 U	0.47 U	0.48 U	0.49 U	0.49 U	0.49 U	3.2	3.2	2.2	2.2	2.2	0.51U	0.29
Phenanthrene	ug/l	50	0.47 U	0.48 U	0.47 U	0.048 J	0.49 U	0.49 U	0.52 U	0.52 U	0.10U					
Pyrene	ug/l	50	0.47 U	0.48 U	0.47 U	0.10 J	0.49 U	0.49 U	0.52 U	0.52 U	0.10U					
Cyanide and Lead																
Lead	ug/l	25	5 U	3 U	3 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	10U	5.0U
Cyanide	mg/l	0.2	0.01 U	0.01 U	0.01 U	0.01 UJ	0.010 U	0.010 U	0.010 U	0.010U	0.010U					

Notes:

BTEX - Benzene, Ethylbenzene, Toluene and Xylene.

J - Estimated.

mg/l - Milligrams per liter.

NC - No Criteria.

PAHs - Polycyclic Aromatic Hydrocarbons.

U - Not Detected.

ug/I - Micrograms per liter.

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-4) Johnstown MGP Site Johnstown, NY

	Sample Date	4/6/11	6/14/11	10/11/11	12/13/11	3/14/12	10/9/12	4/18/13	10/8/13	4/9/14	10/15/14	4/16/15	10/14/15	4/6/16	10/25/16
CONSTITUENT	UNITS														
MNA/WQ Parameter	1														
Alkalinity (as CaCO3)	mg/l	R	R	405 J	431 J	R	405	354	442	398	400	384	412	394	414
Chloride	mg/l	265	385 B	288 J	R	228	222	275	411	304	329	295	365	304	421
Ethane	ug/l	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5U	0.025 U
Ethene	ug/l	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	7 U	7 U	7 U	7 U	7 U	7 U	7 U	7U	0.035 U
Ferrous Iron	mg/l	R	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.013	0.1 U	0.1 U	0.1 U	0.1 U	0.14	0.11
Manganese	mg/l	0.64 J	0.45 J	3 U	3.4	3 U	0.0087	3 U	3 U	3 U	3 U	3 U	0.019	0.0031	0.0053
Methane	ug/l	1 U	1 U	1 U	1 U	1 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4U	0.32 J
Nitrate	mg/l	2.7	2.9	2.4	3	3.1	2.2	2.4	3.5	3.6	2.7	2.9	2.9	3.4	3.2
Nitrogen	mg/l	0.2 U	0.2 U	R	0.2 U	0.2 U	0.25	0.31	0.31	0.2 U	0.2 U	0.2 U	0.2 U	0.2U	1.0 U
Sulfate	mg/l	56.7	74.2 B	R	R	56 B	62.2	64.7	74.7	70.7	50.8	60	60	73.9	60.8
Sulfide	mg/l	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1U	1.0 U

Notes:

B - Present in Associated Blank Sample.

J - Estimated Concentration.

mg/l - Milligrams per liter.

NA - Not analyzed.

R - Rejected.

U - Not Detected.

ug/I - Micrograms per liter.

Table 2 Analytical Data Results (MW-7) Johnstown MGP Site Johnstown, NY

CONSTITUENT	UNITS	NYSDEC WQ Values	4/6/11	6/14/11	10/11/11	12/13/11	3/14/12	10/9/12	4/18/13	10/8/13	4/9/14	10/20/14	4/16/15	10/14/15	4/6/16	10/26/16
BTEX Compounds		•														
Benzene	ug/l	1	1 U	0.72 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.3	1U	1.0U
Ethylbenzene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1U	1.0U
m/p-Xylene	ug/l	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2U	2.0U
o-Xylene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1U	1.0U
Toluene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.3	1U	1.0U
PAHs																
Acenaphthene	ug/l	20	0.50 U	0.48 U	0.48 U	0.55	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U	0.10
Acenaphthylene	ug/l	NC	0.50 U	0.48 U	0.48 U	0.20 J	0.13 J	0.13 J	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U	0.20
Anthracene	ug/l	50	0.50 U	0.48 U	0.48 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U	0.10U
Benzo(a)anthracene	ug/l	0.002	0.50 U	0.48 U	0.48 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U	0.10U
Benzo(a)pyrene	ug/l	0.000	0.50 U	0.48 U	0.48 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U	0.10U
Benzo(b)fluoranthene	ug/l	0.002	0.50 U	0.48 U	0.48 U	0.15 J	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U	0.10U
Benzo(g,h,i)perylene	ug/l	NC	0.50 U	0.48 U	0.48 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U	0.10U
Benzo(k)fluoranthene	ug/l	0.002	0.50 U	0.48 U	0.48 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U	0.10U
Chrysene	ug/l	0.002	0.50 U	0.48 U	0.48 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U	0.10U
Dibenzo(a,h)anthracene	ug/l	NC	0.50 U	0.48 U	0.48 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U	0.10U
Fluoranthene	ug/l	50	0.50 U	0.48 U	0.48 U	0.47 U	0.078 J	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U	0.10U
Fluorene	ug/l	50	0.50 U	0.48 U	0.48 U	0.11 J	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U	0.10U
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.50 U	0.48 U	0.48 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U	0.10U
Naphthalene	ug/l	10	0.50 U	0.48 U	0.48 U	0.47 U	1.1	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U	5.2	0.49U	3.0
Phenanthrene	ug/l	50	0.50 U	0.48 U	0.48 U	0.097 J	0.12 J	0.48 U	0.49	0.48 U	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U	0.10U
Pyrene	ug/l	50	0.50 U	0.48 U	0.48 U	0.35 J	0.098 J	0.48 U	0.48 U	0.48 U	0.48 U	0.46 U	0.46 U	0.49 U	0.49 U	0.10U
Cyanide and Lead																
Lead	ug/l	25	5 U	3 U	19	12	3.2 J	19	33	7.1	7.1	0.010 U	0.010 U	0.010 U	0.010 U	5.0 U
Cyanide	mg/l	0.2	R	0.68 J	0.986	R	0.22	5.9	1.4	0.4	0.16	0.13	0.18	0.18	0.18	0.15

Notes:

BTEX - Benzene, Ethylbenzene, Toluene and Xylene.

J - Estimated.

mg/I - Milligrams per liter.

NC - No Criteria.

PAHs - Polycyclic Aromatic Hydrocarbons.

R - Rejected.

U - Not Detected.

ug/I - Micrograms per liter.

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-7) Johnstown MGP Site Johnstown, NY

	Sample Date	4/7/11	6/15/11	10/12/11	12/14/11	3/14/12	10/9/12	4/18/13	10/8/13	4/9/14	10/15/14	4/16/15	10/14/15	4/6/16	10/26/16
CONSTITUENT	UNITS														
MNA/WQ Paramete	rs														
Alkalinity (as CaCO3)	mg/l	R	R	327 J	370 J	R	310	324	367	375	392	340	403	395	406
Chloride	mg/l	122	93.8 B	111 J	R	91.2	101	114	84	79	62.8	67.7	66.7	66.2	79.4
Ethane	ug/l	1.5 U	150 U	1.5 U	75 U	75 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5U	0.38 J
Ethene	ug/l	1.5 U	150 U	1.5 U	75 U	75 U	7.0U	7.0U	7.0U	7.0U	7.0U	7.0U	7.0U	7.0U	0.035 U
Ferrous Iron	mg/l	R	1.7 J	0.83 J	R	0.1 U	0.37	0.1 U	0.25	6.24	0.1 U	0.1 U	0.1 U	0.14	0.59
Manganese	mg/l	0.67	0.62	0.66	0.94	0.51	0.96	1.1	1.1	0.564	0.49	0.49	0.46	0.53	0.43
Methane	ug/l	190	210	190	300	210	240	40	23	150	82	35	96	17	160
Nitrate	mg/l	0.05 U	0.02 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.14	0.10 U
Nitrogen	mg/l	1.4	1.3	1.6	R	1.6	1.6	4.6	1.5	0.16	2	1.1	1.5	1.6	2.2
Sulfate	mg/l	745 B	611 B	R	R	674 B	509	654	518	540	457	442	533	384	476
Sulfide	mg/l	1 U	0.8 J	2.8	1 U	1 U	1.2	1.4	1.4	1.4	1	1 U	1 U	1U	1.0 U

Notes:

B - Present in Associated Blank Sample.

J - Estimated Concentration.

mg/I - Milligrams per liter.

NA - Not analyzed.

R - Rejected.

U - Not Detected.

ug/I - Micrograms per liter.

Table 2 Analytical Data Results (MW-10) Johnstown MGP Site Johnstown, NY

		NYSDEC WQ																
CONSTITUENT	UNITS	Values	09/29/10	1/4/11	4/6/11	6/14/11	10/11/11	12/13/11	3/14/12	10/9/12	4/18/13	10/8/13	4/9/14	10/20/14	4/16/15	10/13/15	4/6/16	10/26/16
BTEX Compounds	•																	
Benzene	ug/l	1	1 U	1 U	1 U	7.1	1.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2.3	1U	1.0U
Ethylbenzene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1	1U	1.0U
m/p-Xylene	ug/l	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2U	2.0U
o-Xylene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1U	1.0U
Toluene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2	1U	1.0U
PAHs																		
Acenaphthene	ug/l	20	1.6	1.3	1.8 J	2.4	2.3	0.099 J	1.4	2	2.2	1.1	0.8	0.48 U	0.63	0.50 U	0.50 U	1.4
Acenaphthylene	ug/l	NC	0.43 J	0.32	0.24 J	0.42 J	0.74 J	0.13 J	0.14 J	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.50 U	0.50 U	0.50 U	0.18
Anthracene	ug/l	50	0.061 J	0.047 J	0.47 U	0.47 U	0.28 J	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.50 U	0.50 U	0.50 U	0.10U
Benzo(a)anthracene	ug/l	0.002	0.13 J	0.057 J	0.47 U	0.47 U	1	0.47 U	0.49 B	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.50 U	0.50 U	0.50 U	0.10U
Benzo(a)pyrene	ug/l	0.002	0.14 J	0.057 J	0.47 U	0.47 U	0.81	0.47 U	0.19 J	0.48 U	0.55	0.48 U	0.48 U	0.48 U	0.50 U	0.50 U	0.50 U	0.10U
Benzo(b)fluoranthene	ug/l	0.002	0.071 J	0.047 J	0.47 U	0.47 U	0.8	0.47 U	0.24 J	0.48 U	0.86	0.48 U	0.48 U	0.48 U	0.50 U	0.50 U	0.50 U	0.10U
Benzo(g,h,i)perylene	ug/l	NC	0.051 J	0.19 U	0.47 U	0.47 U	0.37 J	0.47 U	0.08 J	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.50 U	0.50 U	0.50 U	0.10U
Benzo(k)fluoranthene	ug/l	0.002	0.092 J	0.047 J	0.47 U	0.47 U	0.53	0.47 U	0.18 J	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.50 U	0.50 U	0.50 U	0.10U
Chrysene	ug/l	0.002	0.12 J	0.047 J	0.47 U	0.47 U	0.91	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.50 U	0.50 U	0.50 U	0.10U
Dibenzo(a,h)anthracene	ug/l	NC	0.20 U	0.19 U	0.47 U	0.47 U	0.11 J	0.47 U	0.48 U	0.48 U	1.1	0.48 U	0.48 U	0.48 U	0.50 U	0.50 U	0.50 U	0.10U
Fluoranthene	ug/l	50	0.24	0.11 J	0.085 J	0.47 U	1.5	0.47 U	0.34 J	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.50 U	0.50 U	0.50 U	0.10
Fluorene	ug/l	50	0.13 J	0.14 J	0.47 U	0.47 U	0.49 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.50 U	0.50 U	0.50 U	0.10U
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.051 J	0.19 U	0.47 U	0.47 U	0.34 J	0.47 U	0.076 J	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.50 U	0.50 U	0.50 U	0.10U
Naphthalene	ug/l	10	0.33	0.19 U	0.47 U	0.47 U	0.49 U	0.47 U	0.48 U	0.7	0.7	0.48 U	0.48 U	0.48 U	0.50 U	7.9	0.50U	0.23
Phenanthrene	ug/l	50	0.11 J	0.19 U	0.47 U	0.47 U	0.53	0.10 J	0.18 J	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.50 U	0.50 U	0.50 U	0.10U
Pyrene	ug/l	50	0.33 J	0.13 J	0.15 J	0.57 U	1.8	0.14 J	0.41 J	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.50 U	0.50 U	0.50 U	0.15
Cyanide and Lead																		
Lead	ug/l	25	5 U	5 U	5 U	3 U	9.1	3.9 J	6.4	5 U	8.4	5 U	5 U	5 U	0.010 U	0.010 U	0.010U	5.0U
Cyanide	mg/l	0.2	0.139	0.124	R	0.17 J	0.156	R	0.078	0.14	0.1	0.11	0.081	0.10	0.098	0.010	0.085	0.081

Notes:

BTEX - Benzene, Ethylbenzene, Toluene and Xylene.

J - Estimated.

mg/I - Milligrams per liter.

NC - No Criteria.

PAHs - Polycyclic Aromatic Hydrocarbons.

R - Rejected.

U - Not Detected.

ug/l - Micrograms per liter.

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-10) Johnstown MGP Site Johnstown, NY

			1	ī		ı	ī	ī	ī	ı	ı		ī		
	Sample Date	4/6/11	6/14/11	10/11/11	12/14/11	3/14/12	10/9/12	4/18/13	10/8/13	4/9/14	10/15/14	4/16/15	10/13/15	4/6/16	10/26/16
CONSTITUENT	UNITS	, -,	-, ,		, ,	-, ,	-,-,	, -, -	-, -,	, - ,	-, -,	, -, -	-, -, -	, , ,	
MNA/WQ Paramete	rs														
Alkalinity (as CaCO3)	mg/l	R	R	523 J	541 J	R	589	584	552	566	548	512	581	586	660
Chloride	mg/l	181 B	160 B	156 J	R	147	316	286	265	470	664	698	1060	893	784
Ethane	ug/l	1.5 U	7.5 U	1.5 U	1.5 U	1.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5U	0.16 J
Ethene	ug/l	1.5 U	7.5 U	1.5 U	1.5 U	1.5 U	7.0 U	7.0 U	7.0 U	7.0 U	7.0 U	7.0 U	7.0 U	7.0U	0.035 U
Ferrous Iron	mg/l	R	0.34 J	0.47	0.1 U	R	0.10 U	0.10 U	0.12	6.06	0.10 U	0.10 U	0.10 U	0.11	1.0
Manganese	mg/l	1.2	0.95	0.88	0.58	0.83	1	1.2	0.75	1.07	1.3	1.3	1.6	1.2	1.2
Methane	ug/l	34	9.8	33	85	40	72	32	28	110	130	63	82	56	420
Nitrate	mg/l	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.11	0.05U	0.12
Nitrogen	mg/l	8.5	4.9	4.9	R	5.4	5.7	6.1	4.1	4.8	6.2	5.6	6.3	4	6.5
Sulfate	mg/l	306	296 B	R	R	238 B	175	174	171	153	89.7	167	53.9	44.4	56.6
Sulfide	mg/l	R	1 U J	0.8 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1U	1.0 U

Notes:

B - Present in Associated Blank Sample.

J - Estimated Concentration.

mg/l - Milligrams per liter.

NA - Not analyzed.

R - Rejected.

U - Not Detected.

ug/l - Micrograms per liter.

Table 2 Analytical Data Results (MW-11) Johnstown MGP Site Johnstown, NY

		NYSDEC WQ													1	
CONSTITUENT	UNITS	Values	4/6/11	C/14/11	10/11/11	12/12/11	2/14/12	10/0/12	4/10/12	10/0/12	4/0/14	10/20/14	4/16/15	10/14/15	A /C /1 C	10/25/16
	UNITS	Values	4/6/11	6/14/11	10/11/11	12/13/11	3/14/12	10/9/12	4/18/13	10/8/13	4/9/14	10/20/14	4/16/15	10/14/15	4/6/16	10/25/16
BTEX Compounds																
Benzene	ug/l	1	2.8	13	18	15	7.9	12	3.5	8.1	10	22	7.3	NS	NS	NS
Ethylbenzene	ug/l	5	1.9	6.9	6.1	5.5	3.5	1 U	1.2	3.8	5.1	7.8	3	NS	NS	NS
m/p-Xylene	ug/l	5	2.2	5.3	2.4	2.1	1.4 J	2 U	2 U	2 U	2 U	2.1	2 U	NS	NS	NS
o-Xylene	ug/l	5	1.1	3.1	2.0	2.0	1.2	1 U	1 U	1.6	2.1	2.6	1.5	NS	NS	NS
Total Xylenes			3.3	8.4	2.4	2.1	1.2	0	0	1.6	2.1	4.7	1.5			
Toluene	ug/l	5	1 U	1.4	0.97 J	0.99 J	0.69 J	1 U	1 U	1 U	1.1	1.9	1 U	NS	NS	NS
PAHs																1
Acenaphthene	ug/l	20	150	110	120	130	100	140 E	97	110	120	110	59	NS	NS	NS
Acenaphthylene	ug/l	NC	290	290	240 D	270 D	210	160 E	120	170	110	150	56	NS	NS	NS
Anthracene	ug/l	50	88	19 B	19	17	11	23	13	28	13	16	4.2	NS	NS	NS
Benzo(a)anthracene	ug/l	0.002	35	6.2 B	2.7	3.0 B	5.2 B	3.8	0.002U	8.3	3.2	4.8	1.9	NS	NS	NS
Benzo(a)pyrene	ug/l	0.002	34	5.7 B	2.8	2.5 B	2.3 J	2.7	3.3	8.5	2.8	4.7	0.84	NS	NS	NS
Benzo(b)fluoranthene	ug/l	0.002	24	4.8 B	1.9	2.1	1.8 J	1.7	0.002U	0.002U	0.002U	4.6	0.68	NS	NS	NS
Benzo(g,h,i)perylene	ug/l	NC	20	4.0 B	1.4	1.7	1.3 J	1	1	3.4	0.002U	1.8	0.002U	NS	NS	NS
Benzo(k)fluoranthene	ug/l	0.002	12	2.5 B	1	0.78	1.2 J	1.6	0.002U	0.002U	0.002U	2.1	0.002U	NS	NS	NS
Chrysene	ug/l	0.002	43	8.1 B	3.3	3.5 B	5.1 U	3.4	4.4	10	5.4	7.6	0.99	NS	NS	NS
Dibenzo(a,h)anthracene	ug/l	NC	3.2	2.4 U	0.30 J	0.59	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	0.47 U	0.47 U	NS	NS	NS
Fluoranthene	ug/l	50	96	22 B	20	16	12	24	14	28	12	16	5.4	NS	NS	NS
Fluorene	ug/l	50	130	72	79	83	62	92	62	70	31	44	16	NS	NS	NS
Indeno(1,2,3-cd)pyrene	ug/l	0.002	13	2.8 B	0.96	1.0 B	0.69 J	1.6	0.002U	0.002U	0.002U	1.2	0.002U	NS	NS	NS
Naphthalene	ug/l	10	300	480	310 D	230 D	140	110	50	87	10U	51	2.3	NS	NS	NS
Phenanthrene	ug/l	50	260	52 B	140 D	130	91	170	80	130	5.8	62	1.5	NS	NS	NS
Pyrene	ug/l	50	150	28 B	21	21	16	28	18	34	17	20	4.2	NS	NS	NS
Cyanide and Lead																
Lead	ug/l	25	40	7.6	12	5 U	4.6 J	5 U	5 U	5.9	5U	0.014	5U	NS	NS	NS
Cyanide	mg/l	0.2	R	0.015 J	0.021	0.01 UJ	0.012	0.010 U	0.010 U	0.010 U	0.018	0.021	0.012	NS	NS	NS

Notes:

- B Present in Associated Blank Sample.
- D From a Diluted Sample.
- J Estimated Concentration.
- NC No Criteria.
- NS Not Sampled. R - Rejected.
- U Not Detected.
- BTEX Benzene, Ethylbenzene, Toluene and Xylene.
- PAHs Polycyclic Aromatic Hydrocarbons.
- mg/l Milligrams per liter.
- ug/l Micrograms per liter.

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-11) Johnstown MGP Site Johnstown, NY

			1										1		
	Sample Date	4/7/11	6/15/11	10/11/11	12/13/11	3/14/12	10/9/12	4/18/13	10/8/13	4/9/14	10/15/14	4/16/15	10/14/15	4/6/16	10/25/16
CONSTITUENT	UNITS														
MNA/WQ Paramete	rs														
Alkalinity (as CaCO3)	mg/l	R	R	518 J	536 J	R	623	507	573	465	457	428	NS	NS	NS
Chloride	mg/l	345	414 B	514 J	R	321	350	202	295	454	364	314	NS	NS	NS
Ethane	ug/l	1.5 U	1.5 U	1.5 U	15 U	15 U	380 U	380 U	380 U	380 U	7.5 U	7.5 U	NS	NS	NS
Ethene	ug/l	1.5 U	1.5 U	1.5 U	15 U	15 U	350 U	350 U	350 U	350 U	7.0 U	7.0 U	NS	NS	NS
Ferrous Iron	mg/l	R	9.4 J	0.9 J	R	0.1 U	0.5	0.18	0.22	0.29	0.1U	0.1U	NS	NS	NS
Manganese	mg/l	0.94	0.45	0.69	0.66	0.47	0.95	0.95	0.55	0.56	0.56	0.25	NS	NS	NS
Methane	ug/l	4.8	68	190	360	160	520	12	25	120	180	13	NS	NS	NS
Nitrate	mg/l	0.13	0.05 U	0.05 U	0.05 U	0.092	0.050 U	0.79	0.32	0.32	0.059	0.28	NS	NS	NS
Nitrogen	mg/l	1.3	0.59	1.3	R	1.3	1.4	0.58	0.64	0.57	1.2	0.26	NS	NS	NS
Sulfate	mg/l	126 B	65.1 B	R	R	8.5 B	16.9	112	94.1	58	44.3	82.9	NS	NS	NS
Sulfide	mg/l	0.8 J	0.8 J	1.6	1 U	1 U	1 U	1 U	1 U	1 U	1.8	1 U	NS	NS	NS

Notes:

B - Present in Associated Blank Sample.

D - From a Diluted Sample.

J - Estimated Concentration.

mg/l - Milligrams per liter.

NA - Not analyzed.

NS - Not Sampled.

R - Rejected.

U - Not Detected.

ug/l - Micrograms per liter.

Table 2 Analytical Data Results (MW-12) Johnstown MGP Site Johnstown, NY

		NYCDEC										
		NYSDEC WQ Values					. (0.1		. / /		. / . /	
CONSTITUENT	UNITS	vvQ values	3/14/12	10/9/12	4/18/13	10/8/13	4/9/14	10/20/14	4/16/15	10/14/15	4/6/16	10/26/16
BTEX Compounds												
Benzene	ug/l	1	1 U	2.1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0U
Ethylbenzene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0U
m/p-Xylene	ug/l	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2.0U
o-Xylene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0U
Toluene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0U
PAHs												
Acenaphthene	ug/l	20	0.52 U	14	0.2 U	1.1	1.1	0.48 U	0.48 U	0.47 U	0.51U	0.11
Acenaphthylene	ug/l	NC	0.18 J	100	0.2 U	0.2 U	0.2 U	0.63	0.2 U	0.47 U	0.51U	4.4
Anthracene	ug/l	50	0.13 J	2.8	0.2 U	1.1	1.1	0.88	0.2 U	0.73	0.51U	1.4
Benzo(a)anthracene	ug/l	0.002	0.57 B	1.5	0.83	3	0.66	1.5	0.49 U	0.47 U	0.51U	2.1
Benzo(a)pyrene	ug/l	0.002	0.35 J	1.5	1	3.6	0.92	1.8	0.49 U	0.47 U	0.51U	2.8
Benzo(b)fluoranthene	ug/l	0.002	0.27 J	1.3	0.91	3.4	0.71	2.1	0.49 U	0.47 U	0.51U	2.3
Benzo(g,h,i)perylene	ug/l	NC	0.27 J	0.62	0.49 U	0.49 U	0.51	0.74	0.49 U	0.47 U	0.51U	1.6
Benzo(k)fluoranthene	ug/l	0.002	0.38 J	0.58	0.49 U	0.83	0.49 U	0.74	0.49 U	0.47 U	0.51U	0.94
Chrysene	ug/l	0.002	0.60 B	1.1	1	3	0.49 U	1.6	0.49 U	0.47 U	0.51U	1.9
Dibenzo(a,h)anthracene	ug/l	NC	0.52 U	0.52 U	0.52 U	0.52 U	0.52 U	0.48 U	0.49 U	0.47 U	0.51U	0.29
Fluoranthene	ug/l	50	0.41 J	3.4	1.4	4.3	0.87	2.00	0.49 U	0.47 U	0.52	3.9
Fluorene	ug/l	50	0.52 U	2.2	0.49 U	0.49 U	0.49 U	0.48 U	0.49 U	0.47 U	0.51U	0.51
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.13 J	0.97	0.49 U	1.2	0.49 U	0.51	0.49 U	0.47 U	0.51U	1.2
Naphthalene	ug/l	10	0.52 U	160 E	2.5	0.99	0.52 U	1.6	0.49 U	1.9	0.51U	0.96
Phenanthrene	ug/l	50	0.48 J	7.6	1.1	3.6	0.61	2	0.49 U	0.47 U	0.51U	3.5
Pyrene	ug/l	50	0.59	4.2	2.4	5.8	1.3	2.8	0.49 U	0.47 U	0.64	5.4
Cyanide and Lead												
Lead	ug/l	25	5 U	5 U	5 U	29	5 U	0.018	0.49 U	10 U	10U	5.0U
Cyanide	mg/l	0.2	0.0062 J	0.010 U	0.010 U	0.010 U	0.010 U	0.013	0.49 U	0.01 U	0.01U	0.010U

Notes:

B - Present in Associated Blank Sample.

J - Estimated Concentration.

NC - No Criteria.

U - Not Detected.

BTEX - Benzene, Ethylbenzene, Toluene and Xylene.

PAHs - Polycyclic Aromatic Hydrocarbons.

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-12) Johnstown MGP Site Johnstown, NY

	Cample Date	12/14/11	2/14/12	10/0/12	4/10/12	10/0/12	4/0/14	10/15/14	4/16/15	10/14/15	A /C /1 C	10/25/15
CONSTITUENT	Sample Date UNITS	12/14/11	3/14/12	10/9/12	4/18/13	10/8/13	4/9/14	10/15/14	4/16/15	10/14/15	4/6/16	10/26/16
MNA/WQ Parameters												
Alkalinity (as CaCO3)	mg/l	478 J	R	434	391	415	329	414	368	401	415	436
Chloride	mg/l	R	129 B	468	123	662	150	493	139	591	276	556
Ethane	ug/l	1.5 U	1.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5U	0.47 J
Ethene	ug/l	1.5 U	1.5 U	7 U	7 U	7 U	7 U	7 U	7 U	7 U	7U	0.035 U
Ferrous Iron	mg/l	0.1 U	0.1 U	0.44	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1U	0.11
Manganese	mg/l	0.16	0.12	0.52	0.19	2.1	0.36	1.2	0.16	0.039	0.062	0.202
Methane	ug/l	1.1	0.56 J	47	1 U	1 U	1 U	4 U	4 U	4 U	4U	1.95
Nitrate	mg/l	6.2	3.2	0.05 U	2.5	4.8	1.4	3.7	1.4	2.5	3.3	2.9
Nitrogen	mg/l	R	0.19 J	0.29	0.24	2.4	0.44	0.61	0.61	0.2 U	0.2U	1.0 U
Sulfate	mg/l	R	53.5 B	81.4	73.5	115	51.6	73.5	54.8	70.2	93.7	56.0
Sulfide	mg/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1U	1.0 U

Notes:

- B Present in Associated Blank Sample.
- J Estimated Concentration.

mg/I - Milligrams per liter.

NA - Not analyzed.

U - Not Detected.

ug/I - Micrograms per liter.

Table 2 Analytical Data Results (MW-13) Johnstown MGP Site Johnstown, NY

CONSTITUENT	UNITS	NYSDEC WQ Values	9/29/10	1/4/11	4/6/11	6/14/11	10/11/11	12/13/11	3/14/12	10/9/12	4/18/13	10/8/13	4/9/14	10/20/14	4/16/15	10/13/15	4/6/16	10/25/16
BTEX Compounds				•														
Benzene	ug/l	1	430	360	71	200	59	300	370	360	490	400	200	300	17	360	300	348
Ethylbenzene	ug/l	5	850	730	87	200	110	520	670	490	600	320	200	340	17	190	270	366
m/p-Xylene	ug/l	5	920	810	110	240	140	550	740	590	730	420	250	480	24	270	360	467
o-Xylene	ug/l	5	390	350	71	130	74	260	340	260	320	190	120	210	16	120	150	203
Toluene	ug/l	5	800	660	80	260	89	550	740	520 E	710	440	270	430	17	320	410	552
PAHs																		
Acenaphthene	ug/l	20	120	140	17	46	60	76	82 J	170	130	77	71	130	4.9 U	65 E	130	225
Acenaphthylene	ug/l	NC	260 JD	320 D	51	170	220 J	230 D	210	570	430	350	22	450	4.9 U	77 E	220	267
Anthracene	ug/l	50	12	15	3.6	12 B	15	15	97 U	47 U	47 U	47 U	6.9	14	4.9 U	9.2 F1 F2	10	19.2
Benzo(a)anthracene	ug/l	0.002	1.9 J	2 J	0.35 J	4.9 B	7.3 J	5.3 B	97 U	47 U	47 U	47 U	47 U	1.9	0.001 U	0.59 F2	9.7U	6.7
Benzo(a)pyrene	ug/l	0.000	1.9 J	1.4 J	0.13 J	4.1 B	10 U	5.3 B	97 U	47 U	47 U	47 U	47 U	1.6	0.001 U	0.49 U	9.7U	6.5
Benzo(b)fluoranthene	ug/l	0.002	0.75 J	0.78 J	0.49 U	3.5 B	10 U	3.8	97 U	47 U	47 U	47 U	47 U	2.8	0.001 U	0.49 U	9.7U	6.2
Benzo(g,h,i)perylene	ug/l	NC	0.75 J	3.9 U	0.49 U	2.5 B	10 U	3.8	97 U	47 U	47 U	47 U	47 U	0.6	0.001 U	0.49 U	9.7U	3.3
Benzo(k)fluoranthene	ug/l	0.002	3.8 U	0.78 J	0.49 U	2.4 U	10 U	2.6	97 U	47 U	47 U	47 U	47 U	0.53	0.001 U	0.49 U	9.7U	2.5
Chrysene	ug/l	0.002	1.7 J	1.4 J	0.26 J	3.6 B	5.5 J	4.9 B	97 U	47 U	47 U	47 U	47 U	1.8	0.001 U	0.50 F1 F2	9.7U	6.1
Dibenzo(a,h)anthracene	ug/l	NC	3.8 U	3.9 U	0.49 U	2.4 U	10 U	0.79 B	97 U	47 U	47 U	47 U	47 U	0.47 U	0.001 U	0.49 U	9.7U	0.85
Fluoranthene	ug/l	50	7.7	8.4	2.6	12 B	16	14	97 U	47 U	47 U	47 U	6.1	8.2	4.9 U	5.5 F2	9.7U	17.8
Fluorene	ug/l	50	73	84	18	48	52 J	53	37 J	110	93	68	30	94 J	4.9 U	43 F1 F2	55	74.8
Indeno(1,2,3-cd)pyrene	ug/l	0.002	3.8 U	3.9 U	0.49 U	2.4 U	10 U	2.3 B	97 U	47 U	47 U	47 U	47 U	0.48	0.001 U	0.49 U	9.7U	2.7
Naphthalene	ug/l	10	6000 D	5600 D	250 D	1600 D	2900 D	5000 D	4100	8200	7100	3700	10U	4200	4.9 U	350 E	170	5560
Phenanthrene	ug/l	50	58	68	7.2	44 B	60	55	44 J	76	73	61	50U	70	4.9 U	31 F1	9.7U	78.3
Pyrene	ug/l	50	9.8 J	8.8	2.9	14 B	19	17	97 U	47 U	47 U	47 U	7.2	9.7	4.9 U	5.8 F2	9.7U	52.1U
Cyanide and Lead																		
Lead	ug/l	25	6.4	5 U	5 U	15 J	27	9.2	5.8	5 U	7.8	5 U	5 U	5 U	4.9 U	10 U	10U	5.0U
Cyanide	mg/l	0.2	0.618	0.652	R	0.42 J	0.235	R	0.33	0.39	0.32	0.26	0.17	0.24	0.11	0.22 F1	0.29	0.23

Notes:

- B Present in Associated Blank Sample.
- D From a Diluted Sample.
- E Result exceeded calibration range.
- F1 MS and/or MSD Recovery is outside acceptance limits.
- F2 MS/MSD RPD exceeds control limits.
- J Estimated Concentration.
- NC No Criteria.
- R Rejected.
- U Not Detected.
- BTEX Benzene, Ethylbenzene, Toluene and Xylene.
- PAHs Polycyclic Aromatic Hydrocarbons.
- mg/l Milligrams per liter.
- ug/I Micrograms per liter.

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-13) Johnstown MGP Site Johnstown, NY

	Sample Date	4/7/11	6/15/11	10/12/11	12/14/11	3/14/12	10/9/12	4/18/13	10/8/13	4/9/14	10/15/14	10/13/15	4/6/16	10/25/16
CONSTITUENT	UNITS													
MNA/WQ Paramete	rs													
Alkalinity (as CaCO3)	mg/l	R	R	455 J	165 J	R	158	218	187	176	255	283 F1	311	364
Chloride	mg/l	29.1	18.6 B	5.9 J	R	20.5	21.6	20.4	7.3	9.2	17.3	11.2	9.8	11.4
Ethane	ug/l	1.5 U	15 U	1.5 UJ	15 U	15 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5U	1.2
Ethene	ug/l	1.5 U	15 U	1.5 UJ	15 U	15 U	7.0 U	7.0 U	7.0 U	7.0 U	7.0 U	7.0 U	7.5U	3.3
Ferrous Iron	mg/l	R	0.1 UJ	3.1 J	0.08 J	0.1 U	0.12	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1U	0.18
Manganese	mg/l	0.12	0.077	0.83	0.16	0.096	0.092	0.11	0.088	0.14	0.031	0.064	7.5U	0.0938
Methane	ug/l	32	46	28 J	72	66	120	36	15	74	4.0 U	110	50	280
Nitrate	mg/l	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05	0.10 U
Nitrogen	mg/l	1.1	1.3	2 U	R	1.4	1.4	1.8	1.2	2.1	0.62	1.4	1.2	1.3
Sulfate	mg/l	5 U	3.3 JB	R	R	52.1 J	139	82.3	15.5	15.5	5.0 U	5.0 U	5U	18.3
Sulfide	mg/l	1 U	3.2 J	1.2	R	R	1.2	1 U	1 U	1 U	1 U	1 U	1	1.0 U

Notes:

- B Present in Associated Blank Sample.
- D From a Diluted Sample.
- F1 MS and/or MSD Recovery is outside acceptance limits.
- J Estimated Concentration.

mg/l - Milligrams per liter.

NA - Not analyzed.

R - Rejected.

U - Not Detected.

ug/l - Micrograms per liter.

Table 2 Analytical Data Results (MW-14) Johnstown MGP Site Johnstown, NY

		NYSDEC WQ															
CONSTITUENT	UNITS	Values	1/4/11	4/6/11	6/14/11	10/11/11	12/13/11	3/14/12	10/9/12	4/18/13	10/8/13	4/9/14	10/20/14	4/16/15	10/13/15	4/6/16	10/25/16
BTEX Compounds	•		•														
Benzene	ug/l	1	17	1 U	2.5	11	2.5	2.9	1 U	1 U	1.3	1 U	1 U	1 U	1 U	0.54U	1.0U
Ethylbenzene	ug/l	5	3.3	1 U	1 U	1 U	1 U	1.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.54U	1.0U
m/p-Xylene	ug/l	5	3.1	2 U	2 U	2 U	2 U	2.4	2 U	2 U	2 U	2 U	2 U	2 U	2 U	0.54U	2.0U
o-Xylene	ug/l	5	5.6	1 U	1 U	1 U	1 U	2.2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.54U	1.0U
Toluene	ug/l	5	0.88 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.54U	1.0U
PAHs																	
Acenaphthene	ug/l	20	4.9	0.47 U	0.47 U	1.2	0.82	5.1	1.4	0.48 U	2.2	0.5	2.00	0.47 U	0.52 U	0.54U	0.19
Acenaphthylene	ug/l	NC	11	0.47 U	0.47 U	3	1.3	9	1.9	0.48 U	2.5	0.48 U	2.9	0.47 U	0.52 U	0.54U	0.99
Anthracene	ug/l	50	0.98	0.47 U	0.47 U	0.50 U	0.18 J	0.5	0.48 U	0.48 U	0.48 U	0.48 U	0.5	0.47 U	0.52 U	0.54U	0.25
Benzo(a)anthracene	ug/l	0.002	0.27 J	0.47 U	0.47 U	0.29 J	0.91 B	0.50 U	0.48 U	0.48 U	0.62	1	1.9	0.47 U	0.52 U	0.54U	0.28
Benzo(a)pyrene	ug/l	0.002	0.24 J	0.47 U	0.47 U	0.15 J	0.90 B	0.12 J	0.48 U	0.48 U	0.65	1.3	2.4	0.47 U	0.52 U	0.54U	0.32
Benzo(b)fluoranthene	ug/l	0.002	0.15 J	0.47 U	0.47 U	0.50 U	0.78	0.50 U	0.48 U	0.48 U	0.79	1.2	3.8	0.47 U	0.52 U	0.54U	0.55
Benzo(g,h,i)perylene	ug/l	NC	0.18 J	0.47 U	0.47 U	0.50 U	0.70	0.09 J	0.48 U	0.48 U	0.48 U	0.95	1.3	0.47 U	0.52 U	0.54U	0.29
Benzo(k)fluoranthene	ug/l	0.002	0.15 J	0.47 U	0.47 U	0.50 U	0.57	0.17 J	0.48 U	0.48 U	0.48 U	0.83	1.1	0.47 U	0.52 U	0.54U	0.47
Chrysene	ug/l	0.002	0.3 J	0.47 U	0.47 U	0.19 J	0.85	0.50 U	0.48 U	0.48 U	0.69	1.2	2.1	0.47 U	0.52 U	0.54U	0.27
Dibenzo(a,h)anthracene	ug/l	NC	0.59 U	0.47 U	0.47 U	0.50 U	0.50 U	0.50 U	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.47 U	0.52 U	0.54U	0.10U
Fluoranthene	ug/l	50	1.2	0.081 J	0.47 U	0.32 J	1.5	0.61	0.59	0.48 U	1.2	1.5	3.2	0.47 U	0.52 U	0.54U	0.45
Fluorene	ug/l	50	1.4	0.47 U	0.47 U	0.50 U	0.17 J	0.35 J	0.48 U	0.48 U	0.48 U	0.48 U	0.49 U	0.47 U	0.52 U	0.54U	0.14
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.59 U	0.47 U	0.47 U	0.50 U	0.50 U	0.054 J	0.48 U	0.48 U	0.48 U	0.63	0.95	0.47 U	0.52 U	0.54U	0.21
Naphthalene	ug/l	10	2.8	0.47 U	0.47 U	1.3	0.50 U	1.2	0.48 U	1.7	0.48	0.48 U	1.1	0.47 U	0.52 U	0.54U	5.2
Phenanthrene	ug/l	50	2	0.47 U	0.47 U	0.25 J	0.66	1.1	0.48 U	0.48 U	0.67	0.63	1.4	0.47 U	0.52 U	0.54U	0.22
Pyrene	ug/l	50	1.2	0.098 J	0.52 U	0.39 J	2.2	0.7	0.76	0.48 U	1.5	2.4	5.0	0.47 U	0.52 U	0.54U	0.68
Cyanide and Lead	Cyanide and Lead																
Lead	ug/l	25	5 U	5 U	4.2 J	4.8 J	9.1	5.7	21	5 U	15	5 U	0.031	0.01 U	0.01 U	10U	33.3
Cyanide	mg/l	0.2	0.197	R	0.11 J	0.114	R	0.28	1.4	0.1	0.2	0.9	0.2	0.091	0.120	0.88	0.67

Notes:

- B Present in Associated Blank Sample.
- D From a Diluted Sample.
- J Estimated Concentration.
- NC No Criteria.
- R Rejected.
- U Not Detected.
- BTEX Benzene, Ethylbenzene, Toluene and Xylene.
- PAHs Polycyclic Aromatic Hydrocarbons.
- mg/l Milligrams per liter.
- ug/l Micrograms per liter.

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-14) Johnstown MGP Site Johnstown, NY

	1				1		1		1	1			Ī	
	Sample Date	4/7/11	6/15/11	10/12/11	12/14/11	3/14/12	10/9/12	4/18/13	10/8/13	4/9/14	10/15/14	10/13/14	4/6/16	10/25/16
CONSTITUENT	UNITS													
MNA/WQ Parameter	S													
Alkalinity (as CaCO3)	mg/l	R	R	410	453 J	R	494	417	456	483	372	445	507	520
Chloride	mg/l	6.1	9.7 B	5.1	R	12.8	40.4	2	7.6	28.5	3.9	10.7	27.4	18.0
Ethane	ug/l	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5U	0.17 J
Ethene	ug/l	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	7 U	7 U	7 U	7 U	7 U	7 U	7.5U	0.035 U
Ferrous Iron	mg/l	R	0.11 J	0.1 U	R	0.1 U	0.17	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.11	0.55
Manganese	mg/l	0.054	0.17	0.2	0.28	0.51	2	0.008	0.25	1	0.019	0.011	7.5U	0.768
Methane	ug/l	1 U	6.2	46	15	70	140	1 U	8.6	140	4.0 U	4.0 U	31	140
Nitrate	mg/l	0.71	0.19	0.086	0.023 J	0.05 U	0.05 U	0.8	0.05 U	0.05 U	0.87	0.16	0.05U	0.10 U
Nitrogen	mg/l	0.85	0.32	0.36	R	0.86	2.5	0.54	0.68	1.5	0.22	0.72	1	1.2
Sulfate	mg/l	5 U	19.6 B	5.6 JB	R	173 B	639	5 U	5 U	363	5.0 U	5.0 U	324	153
Sulfide	mg/l	1 U	1 UJ	1 U	R	R	1 U	1 U	1 U	1 U	1 U	1 U	1U	1.0 U

Notes:

- B Present in Associated Blank Sample.
- D From a Diluted Sample.
- J Estimated Concentration.

mg/l - Milligrams per liter.

NA - Not analyzed.

R - Rejected.

U - Not Detected.

ug/I - Micrograms per liter.

Table 2 Analytical Data Results (MW-15) Johnstown MGP Site Johnstown, NY

CONSTITUENT	UNITS	NYSDEC WQ Values	9/29/10	1/4/11	4/6/11	6/14/11	10/11/11	12/13/11	3/14/12	10/9/12	4/18/13	10/8/13	4/9/14	10/20/14	4/16/15	10/13/15	4/6/16	10/25/16
BTEX Compounds																		
Benzene	ug/l	1	1600 D	1200	940 D	1300 D	670	790 D	1500 D	1100 E	410	390	210	300	16	350 E	330	714
Ethylbenzene	ug/l	5	200	250	190 D	210 D	120	190 D	220	200	75	53	38	74	1.9	92	110	244
m/p-Xylene	ug/l	5	12	8.7	17	18	19 J	9	6.6 J	23	19	5 U	5 U	10 U	3.2	8.1	8U	13.7
o-Xylene	ug/l	5	39	39	44	48	37	38	27	23	19	16	8.5	28	7.5	23	21	31.7
Toluene	ug/l	5	3.8 J	10 U	6.1	4.7	10 U	6.3	6.2 J	5	5 U	5 U	5 U	5.8	1 U	7	8U	6.1
PAHs																		
Acenaphthene	ug/l	20	44 J	49	47	32	47	50	47	57	42	23	18	24	6.7	16	23	43.1
Acenaphthylene	ug/l	NC	19 J	23	24	17	22	19	12	16	11	6.5	3	3.9	0.59	3.1	5.1U	2.4
Anthracene	ug/l	50	2.7 J	3.3	2.1	1.3 B	2.4	2	1.5 J	2.8	2.6	1.4	0.95	0.81	0.49 U	0.57	5.1U	1.9
Benzo(a)anthracene	ug/l	0.002	1.8 J	0.85 J	0.38 J	0.48 U	0.21 J	0.54 U	4.7 U	0.58 U	0.96	0.59	0.58 U	0.48 U	0.49 U	0.47 U	5.1U	0.14
Benzo(a)pyrene	ug/l	0.000	2.1 J	0.75 J	0.2 J	0.48 U	0.49 U	0.54 U	4.7 U	0.58 U	0.96	0.59	0.58 U	0.48 U	0.49 U	0.47 U	5.1U	0.10U
Benzo(b)fluoranthene	ug/l	0.002	1.1 J	0.57 J	0.27 J	0.48 U	0.49 U	0.16 J	4.7 U	0.58 U	0.85	0.62	0.58 U	0.72	0.49 U	0.47 U	5.1U	0.11
Benzo(g,h,i)perylene	ug/l	NC	1.2 J	0.38 J	0.49 U	0.48 U	0.49 U	0.54 U	4.7 U	0.58 U	0.58 U	0.58 U	0.58 U	0.48 U	0.49 U	0.47 U	5.1U	0.10U
Benzo(k)fluoranthene	ug/l	0.002	1.3 J	0.38 J	0.49 U	0.48 U	0.49 U	0.54 U	4.7 U	0.58 U	0.72	0.58 U	0.58 U	0.48 U	0.49 U	0.47 U	5.1U	0.10U
Chrysene	ug/l	0.002	1.8 J	0.85 J	0.23 J	0.48 U	0.16 J	0.54 U	4.7 U	0.58 U	1.2	0.59	0.58 U	0.48 U	0.49 U	0.47 U	5.1U	0.11
Dibenzo(a,h)anthracene	ug/l	NC	0.9 J	1.9 U	0.49 U	0.48 U	0.49 U	0.54 U	4.7 U	0.58 U	0.58 U	0.58 U	0.58 U	0.48 U	0.49 U	0.47 U	5.1U	0.10U
Fluoranthene	ug/l	50	4.1 J	2.7	1.8	1.2 B	1.7	1.7	1.3 J	2.6	3.3	1.7	1.1	0.93	0.49 U	0.61	5.1U	1.2
Fluorene	ug/l	50	12 J	13	13	8.7	14	13	10	17	13	6.1	4.3	5.2	1.2	4.1	5.9	11.8
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.9 J	1.9 U	0.49 U	0.48 U	0.49 U	0.54 U	4.7 U	0.58 U	0.58 U	0.58 U	0.58 U	0.48 U	0.49 U	0.47 U	5.1U	0.10U
Naphthalene	ug/l	10	110 JD	89	560 D	450 D	570 D	140 D	51	27	94	13	29	210	1.5	48 E	110	363
Phenanthrene	ug/l	50	8.3 J	11	8	6.7 B	13	11	8.8	12	10	5.1	3.4	3.7	0.49 U	2.8	5.1U	8.5
Pyrene	ug/l	50	5.9 J	2.9	2.2	1.2 B	1.6	1.8	1.5 J	2.9	3.7	2	1.5	1.1	0.49 U	0.69	5.1U	1.4
Cyanide and Lead																		
Lead	ug/l	25	8.2	5 U	5 U	7.8	5.1	5 U	5 U	5 U	10	5 U	5 U	0.010	0.010	0.010	10U	5.0U
Cyanide	mg/l	0.2	0.843	0.816	R	0.61 J	0.427	R	0.91	1.2	0.5	0.5	0.48	0.58	0.29	1	1.1	1.1

Notes:

B - Present in Associated Blank Sample.

BTEX - Benzene, Ethylbenzene, Toluene and Xylene.

- D From a Diluted Sample.
- E Result exceeded calibration range.
- J Estimated Concentration.

mg/l - Milligrams per liter.

NC - No Criteria.

PAHs - Polycyclic Aromatic Hydrocarbons.

- R Rejected.
- U Not Detected.

ug/I - Micrograms per liter.

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-15) Johnstown MGP Site Johnstown, NY

	Sample Date	4/7/11	6/15/11	10/12/11	12/14/11	3/14/12	10/9/12	4/18/13	10/8/13	4/9/14	10/15/14	4/16/15	10/13/15	4/6/16	10/25/16
CONSTITUENT	UNITS	, ,	-, -,	-, ,	, ,	-, ,	-,-,	, -, -	, , ,	, -,	-, -,	, , ,	-, -, -	, , , ,	-, -, -
MNA/WQ Parameter	s														
Alkalinity (as CaCO3)	mg/l	R	R	502 J	547 J	R	629	527	585	482	557	480	600	601	676
Chloride	mg/l	22.8	43.3 B	28.5 J	R	68.2	70.6	39.4	42	44.5	44.2	14.2	49.3	55.7	65.4
Ethane	ug/l	2.9	300 U	300 U	300 U	300 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	75U	6.2
Ethene	ug/l	1.5 U	300 U	300 U	300 U	300 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	75U	0.038 J
Ferrous Iron	mg/l	R	0.51 J	0.47 J	0.13 J	R	0.1 U	0.15	0.18	0.1U	0.1U	0.1U	0.15 HF	0.1U	8.2
Manganese	mg/l	0.89	0.67	0.79	0.77	0.61	0.61	1	1.1	0.68	1	0.68	0.7	75U	0.609
Methane	ug/l	680	360	720	1,900	1,600	1,900	780	580	1,100	2,400	16	1600	720	3,400
Nitrate	mg/l	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.28	0.05 U	0.5U	0.10 U
Nitrogen	mg/l	1.9	3.1	2.1	R	4.6	5.4	3	3.1	3.2	2.9	0.81	3.9	3.4	4.7
Sulfate	mg/l	137 B	193 B	R	R	202 B	217	113	139	122	91.1	28.7	78.5	116	67.9
Sulfide	mg/l	1 U	1 UJ	2.4	1 U	R	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1U	1.0 U

Notes:

- B Present in Associated Blank Sample.
- D From a Diluted Sample.
- J Estimated Concentration.
- HF Field parameter with a holding time of 15 minutes. Test performed by laboratory at clients request.
- mg/I Milligrams per liter.
- NA Not analyzed.
- R Rejected.
- U Not Detected.
- ug/I Micrograms per liter.

Table 2 Analytical Data Results (MW-16) Johnstown MGP Site Johnstown, NY

		NYSDEC WQ																
CONSTITUENT	UNITS	Values	09/29/10	1/4/11	4/6/11	6/14/11	10/11/11	12/13/11	3/14/12	10/9/12	4/18/13	10/8/13	4/9/14	10/20/14	4/16/15	10/13/15	4/6/16	10/25/16
BTEX Compounds				•														
Benzene	ug/l	1	140	170	150 D	100 D	17	140 D	150 D	180	200	150	8.7	59	91	40	76	149
Ethylbenzene	ug/l	5	70	110	92	51	5	78	66	100	150	92	6.2	41	68	26	35	134
m/p-Xylene	ug/l	5	31	55	47	27	2.8	29	26	14	41	23	1U	10 U	1U	4.9	5	4.9
o-Xylene	ug/l	5	34	54	41	27	3.6	36	37	14	56	35	1U	17	24	11	20	32.1
Toluene	ug/l	5	17	36	33	15	2	21	11	10 U	14	9	1U	17	10	1.4	2U	2.9
PAHs																		
Acenaphthene	ug/l	20	14 D	18	21	7	2.3	13	15	30	30	16	1U	40	27	14	31	54.7
Acenaphthylene	ug/l	NC	16 J	27 D	36	11	4.7	10	2.2	34	49	0.48 U	0.48 U	31	25	16	27	47.3
Anthracene	ug/l	50	1.7	3	2.3	0.97 B	0.20 J	1.4	1.2	1.6	2.8	0.48 U	0.48 U	2.8	1.8	1.2	2.5U	1.4
Benzo(a)anthracene	ug/l	0.002	0.19 U	0.14	0.47 U	2.1 B	0.50 U	0.47 U	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.50U	0.50U	2.5U	0.10
Benzo(a)pyrene	ug/l	0.000	0.19 U	0.57 U	0.47 U	2.3 B	0.50 U	0.47 U	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.50U	0.50U	2.5U	0.10U
Benzo(b)fluoranthene	ug/l	0.002	0.19 U	0.57 U	0.11 J	2.8 B	0.50 U	0.47 U	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.50U	0.50U	2.5U	0.10U
Benzo(g,h,i)perylene	ug/l	NC	0.19 U	0.57 U	0.47 U	1.8 B	0.50 U	0.47 U	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.50U	0.50U	2.5U	0.10U
Benzo(k)fluoranthene	ug/l	0.002	0.19 U	0.57 U	0.47 U	3.1 B	0.50 U	0.47 U	0.096 J	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.50U	0.50U	2.5U	0.10U
Chrysene	ug/l	0.002	0.19 U	11 J	0.47 U	2.7 B	0.50 U	0.47 U	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.50U	0.50U	2.5U	0.10U
Dibenzo(a,h)anthracene	ug/l	NC	0.19 U	0.57 U	0.47 U	1.4	0.50 U	0.47 U	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.50U	0.50U	2.5U	0.10U
Fluoranthene	ug/l	50	1.2	1.4	1.7	1.5 B	0.21 J	1.1	0.94	1.5	2	0.48 U	0.48 U	2.7	1.6	1.1	2.5U	1.8
Fluorene	ug/l	50	10 D	11	16	4.7	1.3	8.8	13	17	21	9.1	0.48 U	22	14	7.1	15	22.2
Indeno(1,2,3-cd)pyrene	ug/l	0.002	0.19 U	0.57 U	0.47 U	1.7 B	0.50 U	0.47 U	0.49 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.50U	0.50U	2.5U	0.10U
Naphthalene	ug/l	10	0.19 U	110 D	220 D	0.47 U	26	0.47 U	0.49 U	2.4	230E	0.48 U	0.48 U	1.7	4.6	5.1	7.4	4.6
Phenanthrene	ug/l	50	5.6	9.6	13	4.8 B	1.1	6.7	6.3	11	15	0.48 U	0.48 U	18	11	6.7	10	15.9
Pyrene	ug/l	50	1.4 J	1.3	1.9	2.1 B	0.50 U	1.1	0.87	1.3	2	0.48 U	0.48 U	3	1.8	1.2	2.5U	2.0
Cyanide and Lead																		
Lead	ug/l	25	5 U	5 U	5 U	3 U	3 U	5 U	5 U	5 U	5 U	5 U	5 U	0.01U	0.01U	0.01U	10U	5.0U
Cyanide	mg/l	0.2	0.353	0.342	R	0.25 J	0.137	R	0.34	0.41	0.11	0.11	0.023	0.25	0.24	0.24	0.25	0.26
Notes:																		

Notes:
B - Present in Associated Blank Sample.
BTEX - Benzene, Ethylbenzene, Toluene and Xylene.

D - From a Diluted Sample. J - Estimated Concentration.

mg/l - Milligrams per liter.

NC - No Criteria.

PAHs - Polycyclic Aromatic Hydrocarbons.

R - Rejected.

U - Not Detected.

0 - Not Detection.
ug/l - Micrograms per liter.
Shaded cell represents New York State Department of Environmental Conservation (NYSDEC) Water Quality (WQ) exceedence.

Table 2 Monitored Natural Attenuation/Water Quality Data Results (MW-16) Johnstown MGP Site Johnstown, NY

	Sample Date	4/7/11	6/15/11	10/12/11	12/13/11	3/13/12	10/9/12	4/18/13	10/8/13	4/9/14	10/15/14	4/16/15	10/13/15	4/6/16	10/25/16
		4///11	0/15/11	10/12/11	12/15/11	3/13/12	10/9/12	4/10/13	10/6/15	4/9/14	10/15/14	4/10/13	10/15/15	4/0/10	10/25/10
CONSTITUENT	UNITS														l
MNA/WQ Paramete	ers														
Alkalinity (as CaCO3)	mg/l	R	R	586 J	600 J	R	436	530	585	454	595	532	638	615	636
Chloride	mg/l	9.4	6.1 B	3.4 J	R	12.7	12.8	5.5	5.4	5	6.5	5.8	4.9	5.7	6.8
Ethane	ug/l	30 U	30 U	1.5 U	1.5 U	0.57 J	750 U	750 U	750 U	750 U	750 U	75U	75U	75U	1.2
Ethene	ug/l	30 U	30 U	1.5 U	1.5 U	2.6	700 U	700 U	700 U	700 U	700 U	70U	70U	75U	0.24 J
Ferrous Iron	mg/l	R	0.33 J	R	0.08	0.1 U	0.12	0.1 U	0.13	0.1 U	0.1 U	0.1 U	0.1 U	0.1U	2.4
Manganese	mg/l	0.59	0.9	0.17	0.61	0.88	1.1	0.63	0.7	0.22	0.63	0.42	0.33	75U	0.601
Methane	ug/l	270	170	37	400 B	140	550	170	150	75	410	160	1100	110	900
Nitrate	mg/l	0.05 U	0.05 U	0.65	0.17	0.05 U	0.05 U	0.1	0.05 U	0.53	0.05 U	0.05 U	0.37	0.074	0.10 U
Nitrogen	mg/l	2.6	1.8	R	R	3.2	3.8	3.6	2.8	2.4	3.3	2.1	1.9	2.6	5.4
Sulfate	mg/l	312 B	243 B	R	R	351 B	487	140	86	1U	107	38.2	22.8	13.3	145
Sulfide	mg/l	1 U	1 UJ	0.8 J	1 U	R	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1U	1.0 U

Notes:

B - Present in Associated Blank Sample.

D - From a Diluted Sample.

J - Estimated Concentration.

mg/l - Milligrams per liter.

NA - Not analyzed.

R - Rejected.

U - Not Detected.

ug/I - Micrograms per liter.

MNA/WQ - Monitored Natural Attenuation/Water Quality.

APPENDIX A FIELD DATA

Date:	10/26/2016	Time:	
Technician:	Beaumont	Weather:	

Vegetation Cap											
Condition of Grass	GOOD	FA	AIR	POOR	COMMENTS:						
Condition of Site Trees	GOOD	FA	AIR	POOR	COMMENTS:						
Surface Erosion	NONE	MIN	NOR	SIGNIFICANT	COMMENTS:						
Has the site been maintained/mowed?	YES			NO	COMMENTS:						

	Sheet Pile	: Wall	
Has any construction occurred that may have impacted the sheet pile wall?	YES	NO	COMMENTS:

Site Wide											
Does the property continue to be used for commercial and/or industrial uses?	YES	NO	COMMENTS:								
Does the use of groundwater for potable or process water continue to be restricted?	YES	NO	COMMENTS:								
Are agricultural or vegetable gardens present on the property?	YES	NO	COMMENTS:								
Do the Engineering Controls continue to perform as designed?	YES	NO	COMMENTS:								
Do the Engineering Controls continue to be protective of human health and environment?	YES	NO	COMMENTS:								
Are the requirements of the Site Management Plan being met?	YES	NO	COMMENTS:								
Are the requirements of the Environmental Easement being met?	YES	NO	COMMENTS:								
Since the last inspection has the groundwater been sampled in accordance with the SMP?	YES	NO	COMMENTS:								
Since the last inspection have there been any changes to the remedial system?	YES	NO	COMMENTS:								
Are there any needed changes?	YES	NO	COMMENTS:								
Are the site records complete and up to date?	YES	NO	COMMENTS:								

	Misc	cellan	eous		
Evidence of Trespassing	YES			NO	COMMENTS:
Litter	NONE	MIN	IOR	SIGNIFICANT	COMMENTS:

General Comments:

Unable to access MW-11. Area is on adjacent property and was full of concrete/metal and wood debris.

4/6/2016-Knocked on door at Morrison residence no one home.

4/7/2016-Resident at Morrison residence said there loader is down and it would be awhile before the materials could be moved. 7/20/2016-Knocked on door at Morrison residence no one home.

10/26/2016- Labeled purge drum onsite by Gas regulator panels. Tree limb down along stone well- south side of property.

National Grid 109 North Market Street, Former MGP Site Johnstown, New York

Well ID	Sample?	Well Size?	DTW	DTP	DTB	Comments
RW-1	No	2"	12.88		21.50	
MW-4	Yes	2"	24.03		27.32	
MW-7	Yes	2"	15.00		22.10	
MW-10	Yes	2"	15.18		22.05	
MW-11	Yes	2"	n/a		22.90	inaccessable
MW-12	Yes	2"	15.82		22.24	
MW-13	Yes	2"	16.32		22.75	MS/DMS
MW-14	Yes	2"	16.80		23.55	Field Duplicate Sample
MW-15	Yes	2"	19.90		23.00	
MW-16	Yes	2"	11.11		19.45	
Gauge-1 (bridge)	No		18.40		19.76	

DTW -depth to water
DTP -depth to product
DTB -depth to bottom
All from top of casing

Unable to access MW-11. Area is on adjacent property and was full of concrete/metal and wood debris.

4/6/2016-Knocked on door at Morrison residence no one home.

4/7/2016-Resident at Morrison residence said there loader is down and it would be awhile before the materials could be moved.

CT Male was sampling wells at the adjacent property. Former gas station.

WO#:30200543

ocument accurately.

Section A	Section B		tion C	F	- እ	F	ľ								Pa	age: 1 of 1	
Required Client Information: Company: GES - Syracuse	Required Project Information: Report To: Robert N. Sickler (GES)	C1111111111111111111111111111111111111	ice Information: ntion: Accounts Payat	ole via email at 🖺	s-invoices@		com 📮						e e e u i	ATORY	/ AGEN	CV.	
	rsickler@gesonline.com	Com	nany Name: Grounds	vater & Environm	ental Servic	es Inc =	<u>г</u> г г		드니		eus (SEGen				an a Carrent		
Address: 5 Technology Place, Suite 4										NPDES	5		ROUND	WAIER		INKING WATER	
East Syracuse, New York 13057			Address: 5 Technology Place, Suite 4, East Syracuse, NY 13057							UST		F	CRA			HER	
Email To: rsickler@gesonline.com	Purchase Order No.;		e Quote Reference:								SITE		G,	۹ II	- IN	MI NC	
Phone:,800,220,3069 Fax: None x4052	Project Name: National Grid - 109 Nort Market Street, Johnstown NY	h Pace	e Project Manager: Ra	chel Christner						LOCATI	ON	-	0	H S	sc · v	WI OTHER_	
Requested Due Date/TAT: Standard	Project Number: 06-02882-120950-160-1106	Pace	e Profile #:							Filtered (Y/I	۷)	Ť		1/			
Section D Required Client Information SAMPLE ID One Character per box. (A-Z, 0-9 /,-) Samples IDs MUST BE UNIQUE	Valid Matrix Codes MATRIX CODE DRINGNOW WATER WY WATER WAY PRODUCT P SOUGOLD SC WWP AR AR AR AR OT TISSUE TS CODE DWY TO THE TO TO THE THE	SAMPLE TYPE G+GRA	COLLEC	•	SAMPLE TEMP AT COLLECTION	F COI	served	Preservativ 10H 10PR	Nap Sp. 1. Sp. Nap Sp. Na	Requested Analysis:		Tolks physical and the second of the second	100 16 64 16 16 16 16 16 16 16 16 16 16 16 16 16	To the state of th		14 8 19 19 19 19 19 19 19 19 19 19 19 19 19	Project Number Lab I.D.
1 MW-4-1016	w	r G		19296 14	00	12	3 1	1 3 1	1 2	2	2 2	1 1	3 1	. 1	1		©I .
2 MW-7-1016-	w	T G			-	12	3 1	1 3 1	1 2	2	2 2	1 1	3 1	1	1		Ď
3 MW-10-1016	w			-		12	3 1	1 3 1	1 2	2	2 2	1 1	3 1	1	1		\$BM
4 MW-11-1016	w				,	12	3 1	1 3 1	1 1 2	2	2 2	1 1	3 1	1	1		9 10
5 MW-12-1018 MW-13-101				10/15/16 111°	5	12	3 1	1 3 1	17	2 /	-2 2	1 1	3 1	1	1	08	25.
6: MW-14-1016	w		_	(des 15 10	15	12	3 1	1 3 1	1 :	2	2 2	1 ,1	3 1	` 1	1	00	23
7 MW-15-1016	w		_	10/20/5 130		12	3 1	1 3 1	1 1	2	2 2	1 1	3 1	1	1	(2)	74
8 MW-16-1016	w			10/24/6 90	•	12	3 1	1 3 1	1	2	2 2	1 1	3 1	1	1	<i>(</i> 90	55
9 MW-13-Matrix Spike- 1016	W			131 43561	6	12	3 1	1 3 1	1	2	2 2	1 1	3 1	1	1	00	0
10 MW-13-Duplicate Matrix Spike -				ज्यादाह ।।।		12	3 1	1 3 1	1	2	2 2	1 1	3 1	1 1	1	00	7
11. Field Duplicate - 1016	/ w	т в		10 DE -	-	12	3 1	1 3 1	1	2	2 2	1 1	3 1	1 1	1	<i>0</i> 0	8
12 Trip Blank	, w					3		3					3				
Additional Comments:	R	ELINQUISHE	ED BY / AFFILIATION	Ð	ATE TIN	ME ACCE	PTED BY	AFFILIAT	ION		i <u>i</u>	DATE	TIME	SAI	VIPLE C	ONDITIONS	
SAMPLES WILL ARRIVE IN # 3	COOLERS.	12 m. La			ifis 19.		n. je se y	()	2020	Plier F		29 <i>45</i> 15/14	1530		0.6	A'IN A'IN	N/
Please send reports to: rsickler@gesonline.c	com,	de Ja	PAÉCE	19/1	25/12 16	,00 //	Whi.		tenelle	C-17T	<u> Ic</u>	Holor	610	30 -1	.٤		- N
လ္က Symacuselabs@gesonline.com, ges@equiso	nline.com	•					WENT STREET OF STREET	outropic view	Slectiviti il marco medicono escencia	To a control of the c		7//((1880))				× ×	N. X.IV
SPECIFIC EDD NAME:			SAMPLER I	. 1 109	NATURE	1 (38	?Ain	JNS	ATE Signed (M)	4/DD/Y%)					Temp in °C	Received on fce Custody Sealed Cooler	Samples Intact
Ne Johnstown-labnumber.28351.EQEDI	O.zip			0		-			10/	20/16			E-	ì		യ ഗ്ഗ് 3 31Mar05), 13Jur	

CHAIN-OF-CUSTODY / Analytical Request The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be cor

WO#:30200846

Section A	Section B		Section C											·	302	008	46		IB		Page:	1 01		Vancous of t	
Required Client Information: Company: GES - Syracuse	Required Project Information: Report To: Robert N. Sickler (GB	=6/	Invoice Inform																		. ugo.	- 101	•		
	rsickler@gesonline.com			counts Payable				·	com	÷		_					5	EGUL	ATOR	RY AG	GENCY				
Address: 5 Technology Place, Suite 4			Company Nar	me: Groundwa	ater & Enviro	onmental S	ervices,	Inc.					1 /	NPDE	S		GR	OUND V	VATER		DRINKING WATER				
East Syracuse, New York 13057			Address: 5 Te	Idress: 5 Technology Place, Suite 4, East Syracuse, NY 13057								OTHER_	IO WATER												
Email To: rsickler@gesonline.com	Purchase Order No.:		Pace Quote Reference;								901	SIT			GA			IN	MI N						
Phone: 800.220.3069 Fax: None x4052	Project Name: National Grid - 10 Market Street, Johnstown NY	9 North	Pace Project I	Project Manager: Rachel Christner												NC									
Requested Due Date/TAT: Standard	Project Number:		Pace Profile #	# :														ОН		sc 77	WI	OTHER 7	R		
Section D Required Client Information	06-02882-120950-160-1106 Valid Matrix Codes			COLLECT					i			- 57a.	_	Filtered (Y/I	N)				//				/		
SAMPLE ID One Character per box.	MATRIX CODE PRINSON WATER WT WAVETER WT WAVETER PER PER PER PER PER PER PER PER PER P	MATRIX CODE SAMPLE TYPE G+GRAB C=COMP	COMPOSITE START				SAMPLE TEMP AT COLLECTION	#OF CONTAINERS	Inpreserved 1,50 ₃	23	Hoel	Ma ₂ S ₂ O ₃	- 8	Requested Analysis:		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	100, 8 18 10 10 10 10 10 10 10 10 10 10 10 10 10	1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	Same Dr. Est. May 60, Change 1.	30 00 45 65 60 00 00 00 00 00 00 00 00 00 00 00 00	Pace	ce Project Nu		
1 MW-4-1916->	18	WT G	DATE	TIME C	DATE	TIME			2 1	 			Ber					\$\\rightarrow\rightarrow\tag{\rightarrow\	<u>Š/,Š</u>	/ <u>XIII</u>	~		La	ab I.D.	
2 MW-7-1016		WT G	-	7.1	26/16 9	100		12	3 1	T	3 1	1	2	~	\vdash	2 1	1 3	1	1	1					
3 MW-10-1016	P1//U	WT G	1			000		12	3 1	1 3		1				2 1	1 3		1	1	20	<u></u>			
4 MVV-11-1016-			-		L	700		12	3 1	1 3	3 1	1			2 :	2 1	1 3	1	1	1	α				
5 MW-12-1016		WT G	-	<u></u>	26/d, [[12	3 1	1 3	3 1	1			2 2	2 1	1 3	1	1	1					
6 MVV-14-1016-		WT G	anconnection in the		Mary !!	00		12	3 1	1 3	+	1				2 1	1 3	1	1	1	∞	<u> </u>			
7 MW-15-1016		Wi G						12	3 1	1 3	+	_ 1				2 1	1 3	1	1	1_	-				
8 MVV-16-1016		WT G						12	3 1	1 3		1				2 1	1 3	 	1	1	-				
9 MW-13 Matrix Spike- 1016		WT G	-					12	3 1	1 3		1				2 1	1 3		1	1	-				
10 MW-13-Duplicate Matrix Spike - 1	016	WT G						12	3 1	1 3	+	1	2			2 1	1 3	1	1	1	-				
11 Field Duplicate 1016	010	WT G	-					12	3 1	1 3		1	2		2 2	2 1	1 3	1	1	1				•••	
12 Trip Blank	· · · · · · · · · · · · · · · · · · ·	WT Lab		-				12	3 1	1 3	3 1	1	2	7 980	2 2	2 1	1 3	1	1	1	-				
Additional Comments:	****	Shiptore country of the first of	ISHED BY / AF	FILIATION		DATE	TIME	3 ACC =	TENS	//AFFI	3					(22,302)	3			<u> </u>	<u> </u>			***************	
SAMPLES WILL ARRIVE IN #	COOLERS.	九	Math	(PAGE	149	Zef14,	5:30 (6)2		bat loù			1 CE				DATE 0/21 1-7%	1161	TIME 5:30 250	3.0	VIPLE CUY	B	TIONS		<u> </u>	
Please send reports to: rsickler@gesonline.com	 n,				, , , , , ,	-//10	- 'm'	V	V / //	7/11/	<u>, </u>	454	10	<u> </u>	168	2725	10 16	<u> </u>	 ^	۲ امار	<u>Ø</u> <u>₹</u>	<u>(S)</u>	2		
Syracuselabs@gesonline.com, ges@equisonlin			\cup					****						· · · · · · · · · · · · · · · · · · ·	+		+	-VI	+-		} N }	N/A	N/A		
			SA	AMPLER NAM	E AND SIG	SNATURE													1	ပ္	5				
SPECIFIC EDD NAME: NGJohnstown-labnumber.28351.EQEDD.z	ip			INT Name of SAMP	TIM	13 21	E/V)	Moq	T		DATE	Signed (N	"	6/16						Temp in	Received o	Custody	Samples Intact	Sallipies	

Sampling Personnel:		Date: /0/25/16					
Job Number: 06-02882		Weather: Sunny 37					
Well Id. MW-4		Time In: /330 Time Out: /920					
venu.		Time (ii. / 330)					
Well Information Depth to Water: Depth to Bottom: Depth to Product: Length of Water Column: Volume of Water in Well: Three Well Volumes:	TOC Other (feet) 27.03 (feet) 27.32 (feet) (feet) (gal) (52.04)	Well Type: Flushmount Stick-Up Well Locked: Yes No No Weasuring Point Marked: Yes No No Well Material: PVC SS Other: Well Diameter: 1" 2" Other: Comments:					
Purging Information Purging Method: Tubing/Bailer Material: Sampling Method: Average Pumping Rate: Duration of Pumping: Total Volume Removed: YSI 6920 or Horiba U-52 Water Q	Teflon Stainless St. Polyett Bailer Peristaltic Well Wiz (mi/min) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Conversion Factors 1" ID 2" ID 4" ID 6" ID					
Time DTW (feet) / 330 / 340 / 400	Temp (°C) (S.U.) (mV) 8.86 7.82 -/02 9.81 7.33 -4/ 9.99 7.31 -37 (0.31 7.30 -33 (0.29 7.29 -28 /8.36 7.30 -25	Conductivity (NTU) (mg/L) (g/L) (MS/cm) (MS/cm) (MS/cm) (MS/cm) (MS/cm) (MS/cm) (MS/					
EPA SW-846 Method 8270 EPA SW-846 Method 8260 EPA Method 6010 EPA Method 9012A EPA Method 310.2 EPA Method 351.2 EPA Method 376.1 SM_3500_FE_D	SVOC PAH'S VOC'S BTEX LEAD MANGANESE TOTAL CYANIDE TOTAL ALKALINITY TOTAL KJELDAHL NITROGEN SULFIDE FERROUS IRON METHANE/ETHENE/ETHANE/ CARBON	2 - 1L glass 3 - 40 ml vials HCl 2 - 250 ml plastic HNO3 1 - 250 ml plastic NaOH 1 - 125 ml plastic 1 - 250 ml plastic H2SO4 1 - 250 ml plastic Zn Acitate and NaOH 1 - 250 ml plastic Yes No					
RSK_175 EPA Method 375.4 EPA Method 363.2 SM_4500_CI_E Sample ID: Sample Time:	DIOXIDE SULFATE NITRATE CHLORIDE Duplicate? MS/DMS? Ves No	2 - 40 ml vials BAK 1 - 250 ml plastic Yes No Shipped: Drop-off Albany Service Center Laboratory: Pace Analytical Greensburg, Pennsylvania					

Sampling Personnel: Eric F	Rosenzweig	er Floringer	Date: 10/26/16
Job Number: 06-02882	<u> </u>		Weather: SUN14 34
Well Id. MW-7			Time In: 830 Time Out: 915
Well Information			
	TOC	Other	Well Type: Flushmount Stick-Up
Depth to Water:	(feet) /5,00		Well Locked: Yes No
Depth to Bottom:	(feet) 22.10		Well Material: PVC SS Other:
Depth to Product: Length of Water Column:	(feet) 7./0		Well Diameter: 1" 2" Other:
Volume of Water in Well:	(gal) /-14		Comments:
Three Well Volumes:	(gal) 3.42		
Purging Information			
			Conversion Factors 1 Dedicated Pump 1"
Purging Method:	Bailer Perista Teflon Stainless		1"
Tubing/Bailer Material: Sampling Method:	Teflon Stainless		Dedicated Pump of water 0.04 0.16 0.66 1.47
Average Pumping Rate:	(ml/min) 4 250		1 gallon=3.785L=3785mL=1337cu. feet
Duration of Pumping:	(min) 3 D		
Total Volume Removed:	(gal) ~ 2.0	Did well go dry?	Yes No 🔀
		K 21	
YSI 6920 or Horiba U-52 Wa	ter Quality Meter Used? Y	es No 🗌	
	Town I all	ORP	Conductivity Turbidity DO TDS
Time DTW (foot)	Temp pH (°C) (S.U)	(mV)	(mS/cm) (NTU) (mg/L) (g/L)
(feet) 750 (765	7685 7.54	-/18	1.46 106 3.87 .934
135 /5.70	1079 7.46	- 168	140 543 321 666
840 15.81	14.62 7.41	-174	1.50 67.3 1.09 (961
X45 15.83	14.58 7.43	-174	1.81 53.2 1.01 1.76
no 15.88	14.52 7.41	<u> </u>	1.54 39.4 .99 .969
70 10.12	14.45 7.41	1-/7/	1.54 40.0 .81 .775
9w 15.98	17.73 1.91	1-1-1	1.3-1 40.0
Sampling Information:			
			0 41 ml V 177 M-
EPA SW-846 Method 8270	SVOC PAH's		2 - 1L glass Yes No 3 - 40 ml vials HCl Yes No
EPA SW-846 Method 8260	VOC's BTEX		2 - 250 ml plastic HNO3 Yes No
EPA Method 6010	LEAD MANGANESE		2 - 200 mi plastic (1800) (65)
EPA Method 9012A	TOTAL CYANIDE		1 - 250 ml plastic NaOH Yes No
EPA Method 310.2	TOTAL CTAINDL		1 - 125 ml plastic Yes No
EPA Method 351.2	TOTAL KJELDAHL NITR		1 - 250 ml plastic H2SO4 Yes No
			1 - 250 ml plastic Zn Acitate
EPA Method 376.1	SULFIDE		and NaOH Yes No
SM_3500_FE_D	FERROUS IRON		1 - 250 ml plastic Yes No
DSV 175	METHANE/ETHENE/ETHANE DIOXIDE	=/ CARBON	2 - 40 ml vials BAK Yes No
RSK_175	SULFATE		1- 250 ml plastic Yes No
EPA Method 375.4 EPA Method 353.2	NITRATE		1- 250 mi platics H2SO4 Yes No
SM_4500_CI_E	CHLORIDE		1- 250ml plastic Yes No
<u> </u>			Shipped: Drop-off Albany Service Center
Sample ID: MW-7-1016	Duplicate?	Yes No	
	MS/DMS?	Yes No	Laboratory: Pace Analytical
Sample Time:			Greensburg, Pennsylvania

Sampling Personnel:			Date:	10/200/14	201	
Job Number: 06-02882			Weather:	Sunny		ana I
Well Id. MW-10			Time In:	930	Time Out:	
Well Information						
	TOC	Other	Well Type:	Fli	ushmount Stir	ck-Up 🔀
Depth to Water:	(feet) 15.18		Well Locke	d:	Yes 🔀	No 🗌
Depth to Bottom:	(feet) 22.05		Measuring F	oint Marked:	Yes 🔀	No
Depth to Product:	(feet)		Well Mater	ial: PVC	SS Other:	
ength of Water Column:	(feet) 6. 87		Well Diame	5	2" Other:	
/olume of Water in Well:	(gal) / .(0		Comments	:		
Three Well Volumes:	(gal) 3-3 6					
					***************************************	·
Purging Information			<u> </u>			
			_		Conversion Facto	
Purging Method:	Bailer Perista		Dedicated Pump		1" ID 2" ID	4" ID 6" ID
Fubing/Bailer Material:	Teflon Stainless		iene 🔀 other	of		
Sampling Method:	Bailer Perista	altic Well Wizard	Dedicated Pump			0.7 1.5
verage Pumping Rate:	(ml/min) 4200	_		1 gallo	n=3.785L=3785mL=13	37cu. feet
Ouration of Pumping:	(min) 3 0	• B		 1		
otal Volume Removed:	(gal) ~ 2.0	Did well go dry?	Yes No	L		
(-1.00001.1	to Constitut Mater Hood?	res No				
si 6920 or Horiba U-52 Wa	iter Quality Meter Oseu?	res No				
Time DTW	Temp pH	ORP	Conductivity	Turbidity	DO	TDS
(feet)	(°C) (S.U.)	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)
930 18.50	1330 7.31	-/41	7.76	78.3	2.22	241
435 14.00	1307 7.52	-16 FL	3.72	70.3	1-76	2.37
940 16.10	13.00 7.32	-163	3.64	61.2	1.67	2.84
140 16.27	12.57 7.31	-161	3.68	47.6	1.62	2.32
900 16.35	12.91 7.31	-159	3.63	32.1	1.57	2.30
95 16.48	12.87 7.30	- 161	3.43	21.6	1.50	2.33
(200 16.50	12.85 7.29	-162	3.62	13.2	1.47	2.51
			<u> </u>			
			<u> </u>			
			1	I		<u> </u>
Sampling Information:						
	SVOC DALIG			2 - 1L glass	Vec N	No□
PA SW-846 Method 8270 PA SW-846 Method 8260	SVOC PAH's			3 - 40 ml vials HC	Yes	N oH
FA SVV-040 IVIETNOG OZDU			3 - 40 ml vials HCl Yes No 2 - 250 ml plastic HNO3 Yes No			
PA Method 6010	LEAD MANGANESE		2.	250 mi piasuc Mi	Tes P	\triangle^{NO}
DA Madhad 00404	TOTAL CYANIE		.	250 ml plastic Na	ıOH Yes	ZNo
PA Method 9012A	TOTAL CYANIL			250 mi piastic Na 1 - 125 ml plastic		
PA Method 310.2	TOTAL ALKALIN		1 - 125 ml plastic Yes No 1 - 250 ml plastic H2SO4 Yes No			
PA Method 351.2	10 IAL NJELDANE NI	INOGEN		i0 ml plastic Zn A		ДH
PA Method 376.1	SULFIDE			and NaOH	Yes	XNo.
M_3500_FE_D	FERROUS IRC	N	i		No □	
	METHANE/ETHENE/ETHA				<u> </u>	\checkmark \Box
RSK_175	DIOXIDE	L	_ 2	? - 40 ml vials BA	· · · · · · · · · · · · · · · · · · ·	
PA Method 375.4	SULFATE		7	1- 250 ml plastic	Yes	XNo □
PA Method 353.2	NITRATE		1- 250 ml platics H2SO4 Yes No			XNo □
M_4500_CI_E	CHLORIDE			I- 250ml plastic	Yes	XNo 🗌
			Ship	ped: Drop-of	f Albany Service Ce	
Sample ID: MW-10-1016	Duplicate?	Yes No	3	•		-
Sample Time: (מעל	MS/DMS?	Yes No	1	_aboratory:	Pace Analytic	cal
Sample time.		L., K.	.SI .		Greensburg, Penns	

Sampling Pe	ersonnel:				Date: O W L		
Job Number: 06-02882				Weather: Sunn 28			
Well Id.	MW-12				Time In: 1030 Time Out: 1130		
Well In	formation						
Depth to Wa	tor	(E4)	TOC /5.82	Other	Well Type: Flushmount Stick-Up Well Locked: Yes No		
Depth to Wa		(feet) (feet)	22.24		Well Locked: Yes No		
Depth to Pro		(feet)	~		Well Material: PVC SS Other:		
	ater Column:	(feet)	6.42		Well Diameter: 1" 2" Other:		
	/ater in Well:	(gal)	1.03		Comments:		
Three Well \	/olumes:	(gal)	3.09				
Purging I	nformation		<u></u>				
					Conversion Factors		
Purging Metl		Bailer			rd Dedicated Pump gal/ft. 1" ID 2" ID 4" ID 6" I		
Tubing/Baile		Teflon			ylene other of		
Sampling Me		Bailer	_ ليسسا	Well Wiza	rd Dedicated Pump water 0.04 0.16 0.66 1.4		
Average Pur		(**************************************	12/0		1 gallon=3.785L=3785mL=1337cu. feet		
Duration of F Total Volume		(min)	<u>30</u> ∽2.0 Di	d well go dry?	? Yes No		
iotai volume	e removed:	(gal)	<u>~ 2.0</u> Di	a well go ary:	; res 1/0 M		
/SI 6020 ar I	Horiba U-52 W	ater Quality M	eterile Ves	No			
131092001	HOHDA O-52 VV	ater Quanty IV	eter OS Tes				
Time	I DTW	Temp	рН	ORP	Conductivity Turbidity DO TDS		
	(feet)	(°C)	(Ś.U.)	(mV)	(mS/cm) (NTU) (mg/L) (g/L)		
1030	16.00	10.8b	7.39	-18	2.38 176 2-19 1.82		
103.	16.02	10.84	7.41	- ラ	2.64 92.1 .79 6-69		
1040	16.02	10.92	7.34	- 2	2.65 73.2 .75 1.68		
(O4T	16.02	10.91	7.40	9	2.63 52.3 .69 1.68		
1050	16.02	10,90	7.39	9	2.63 36.1 .64 /.68		
lorg	16.02	10.89	7.91	13	2.62 23.2 61 1.68		
1130	16.02	10.92	7.40	 	2.65 /2.6 .58 /.68		
		·					
							
				<u>t</u>			
Sampling Inf	formation:						
PA SW-846 I	Mothod 9270	<u> </u>	SVOC PAH's		2 - 1L glass Yes No		
PA SW-846 !			VOC's BTEX		3 - 40 ml vials HCl Yes No		
1 / 044-040 1	100 0200				■		
PA Method 6	010		LEAD MANGANESE		2 - 250 ml plastic HNO3 Yes No		
PA Method 9			OTAL CYANIDE	=	1 - 250 ml plastic NaOH Yes		
					1 - 250 ml plastic NaOH Yes No 1 - 125 ml plastic Yes No		
EPA Method 310.2 TOTAL ALKALINITY EPA Method 351.2 TOTAL KJELDAHL NITROGEN		1 - 250 ml plastic Yes No					
EPA Method 351.2 TOTAL KJELDAHL NITROGEN 1 - 250 ml plastic H2SO4 Yes No 1 - 250 ml plastic Zn							
PA Method 3	i : ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;						
SM_3500_FE_D FERROUS IRON 1 - 250 ml plastic		₩					
	METHANE/ETHENE/ETHANE/						
RSK_175 CARBON DIOXIDE 2 - 40 ml vials BAK Yes No							
EPA Method 375.4 SULFATE		1- 250 ml plastic Yes No					
EPA Method 353.2 NITRATE		1- 250 ml platics H2SO4 Yes No					
SM_4500_CI_E CHLORIDE			1- 250ml plastic Yes No				
					Shipped: Drop-off Albany Service Center		
Sample ID:	MW-12-1016	Du	plicate?	Yes No	<u> </u>		
Sample Time:		MS	DMS?	Yes No	Laboratory: Pace Analytical		
					Greenshurg Pennsylvania		

Sampling Personnel:			Date: / ク/と// り	
Job Number: 06-02882			Weather: PCIV-dy 37'	
Well id. MW-13			Time In: /0//\$ Time Out: /200	
Well Information	тос	Other	Well Type: Flushmount Stick-Up Well Locked: Yes No	
Depth to Water:	(feet) 16.32 (feet) 22.75		Well Locked: Yes No	
Depth to Bottom: Depth to Product:	(feet) 22.75 (feet)		Well Material: PVC SS Other:	
Length of Water Column:	(feet) 6.43		Well Diameter: 1" 2" Other:	
Volume of Water in Well:	(gal) /.02		Comments:	
Three Well Volumes:	(gal) \$.06			
-				
Purging Information		***************************************	Gonversion Factors	
Purging Method:	Bailer Perist		rd Dedicated Pump gal/ft. 1" ID 2" ID 4" ID 6" ID	
Tubing/Bailer Material:	Teflon Stainless	St. Polyethy	rlene other of one of one of o	
Sampling Method:	Bailer Perist	altic Well Wiza	water 0.04 0.16 0.66 1.47	
Average Pumping Rate:	(ml/min)		1 gallon=3.785L=3785mL=1337cu. feet	
Duration of Pumping:	(min)	B13	v . 🗀(74)	
Total Volume Removed:	(gal)	Did well go dry?	Yes No Y	
V05 0000 10-25 - 11-50 18/15	Oveliki Meter Hendo 3	Yes No		
YSI 6920 or Horiba U-52 Water	Quality Meter Used?	Les MINO		
Time DTW I	Temp pH	ORP	Conductivity Turbidity DO TDS	
1 1 1 1 1 1	Temp pH (*C) (S.U.)	(mV)	(mS/cm) (NTU) (mg/L) (g/L)	
(feet) (feet)	1105 838	-/66	.60 99.2 75 ,411	
1048 16.78	11159 8.37		577 46.0 .48 .368	
1055 12.00	11:60 8.33	-208	.577 46.0 .49 .368 ,590 17.9 .46 .311	
1100 1119	11.67 8.61	-242	1600 12.0 141 1399	
1105 17.20	11.6 9.62	- 245	609 8.6 (40 .399	
1110 17.23	11.67 8.63	- 247	.615 61 .37 .389	
1(15 17.27	11.64 8.63	- 257	.620 3.6 .35 .407	
Sampling Information:				
EPA SW-846 Method 8270	SVOC PAH	's	2 - 1L glass Yes █ No █	
EPA SW-846 Method 8260	VOC's BTE		3 - 40 ml vials HCl Yes No	
EDA Mathad 6010	LEAD		2 - 250 ml plastic HNO3 Yes No	
EPA Method 6010	MANGANES		kz	
EPA Method 9012A	TOTAL CYAN		1 - 250 ml plastic NaOH Yes No	
EPA Method 310.2 TOTAL ALKALINITY			1 - 125 ml plastic Yes No 1 - 250 ml plastic H2SO4 Yes No	
El // Motilod Co 1.2			1 - 250 ml plastic H2SO4 Yes No 1 - 250 ml plastic Zn	
EDA Mathad 276.1 SUI FIDE Acitate and NaOH Yes No				
SM 3500 FE_D	FERROUS IR	ON	1 - 250 ml plastic Yes No	
<u> </u>	METHANE/ETHENE/ETH		\square	
RSK_175	DIOXIDE		2 - 40 ml vials BAK Yes No	
EPA Method 375.4	SULFATE		1- 250 ml plastic Yes No	
EPA Method 353.2	NITRATE		1- 250 ml platics H2SO4 Yes ➤ No	
SM_4500_CI_E	CHLORIDE		1- 250ml plastic Yes No	
"Matrix Spike-10	16" "Duplicate Matrix S	pike-1016"	Shipped: Drop-off Albany Service Center	
Sample ID: MW-13-1016	Duplicate?	Yes No		
Sample Time:	MS/DMS?	Yes No	Laboratory: Pace Analytical	
	-		Greensburg, Pennsylvania	

Sampling Personnel:		Date: /901/6
Job Number: 06-02882		Weather: P. Clwdy 38.
Well Id. MW-14		Time In: 930 / Time Out: 1040
Well Information Depth to Water: Depth to Bottom: Depth to Product: Length of Water Column:	TOC Other (feet) / 480 (feet) 23.55 (feet) (feet) (6et) (7.76	Well Type: Flushmount Stick-Up Well Locked: Yes No Measuring Point Marked: Yes No Well Material: PVC SS Well Diameter: 1" 2" Other:
Volume of Water in Well:	(gal) 1.08	Comments:
Three Well Volumes:	(gal) 3.24	
Purging Information Purging Method: Tubing/Bailer Material: Sampling Method: Average Pumping Rate: Duration of Pumping: Total Volume Removed: YSI 6920 or Horiba U-52 Water 6	Tefton Stainless St. Peristaltic W (ml/min) 70 (gal) 70 Did well (
		¥
Time DTW (feet) 947 17.55 470 17.57 120 17.57 120 17.57 120 17.57 1010 17.58	(°C) (S.U.) (m /0.4/ 7.57 -/4 /0.63 7.48 -/ /0.72 7.47 -/ /0.69 7.47 -/ /0.91 7.44 -/	52 1.92 60.2 .60 .910
- I		
Sampling Information: EPA SW-846 Method 8270 EPA SW-846 Method 8260 EPA Method 6010 EPA Method 9012A	SVOC PAH'S VOC'S BTEX LEAD MANGANESE TOTAL CYANIDE	2 - 1L glass Yes No 3 - 40 ml vials HCl Yes No 2 - 250 ml plastic HNO3 Yes No 1 - 250 ml plastic NaOH Yes No
EPA Method 310.2	TOTAL ALKALINITY	1 - 125 ml plastic Yes No No
EPA Method 351.2	TOTAL KJELDAHL NITROGEN	1 - 250 ml plastic H2SO4 Yes No
EPA Method 376.1 SM_3500_FE_D RSK_175 EPA Method 375.4	SULFIDE FERROUS IRON METHANE/ETHENE/ETHANE/ CARB DIOXIDE SULFATE	2 - 40 ml vials BAK Yes No 1- 250 ml plastic Yes No
EPA Method 353.2 NITRATE		1- 250 ml platics H2SO4 Yes No
SM_4500_CI_E	CHLORIDE	1- 250ml plastic Yes No
"Field Duplicate	·1016"	Shipped: Drop-off Albany Service Center
Sample ID: MW-14-1016 Sample Time: 1015	Duplicate? Yes MS/DMS? Yes	No No Laboratory: Pace Analytical Greensburg, Pennsylvania

Sampling Personnel:	Strangers.		Date: /8/25/16		
Job Number: 06-02882			Weather: P Clordy 38		
Well Id. MW-15			Time In: /2% Time Out: /3/5		
Well Information	TOC	Other	Well Type: Flushmount Stick-Up Stick-Up Stick S		
Depth to Water:	(feet) /2.90		Well Locked: Yes No No		
Depth to Bottom:	(feet) 23.00		Measuring Point Marked: Yes No No		
Depth to Product:	(feet)		Well Material: PVC SS Other:		
Length of Water Column:	(feet) 5 10		Well Diameter: 1" 2" Other:		
Volume of Water in Well:	(gal) . 91 (gal) 2.98		Comments:		
Three Well Volumes:	(gal) Z-%				
<u> </u>					
Purging Information					
			Conversion Factors		
Purging Method:	Bailer Peristalt		Dedicated Pump gal/ft. 1" ID 2" ID 4" ID 6" ID		
Tubing/Bailer Material:	Teflon Stainless S	⊢ →	ene other of Dedicated Pump water 0.04 0.16 0.66 1.47		
Sampling Method: Average Pumping Rate:	Bailer Peristatt	c vvei vvizaro	1 gallon=3.785L=3785mL=1337cu. feet		
Duration of Pumping:	(min) 30		1 gallot=3.7 001=07 001h=1001 00.1 001		
Total Volume Removed:		Did well go dry?	Yes No V		
Total Volume Actioved.	(900)1				
YSI 6920 or Horiba U-52 Water (Quality Meter Used? Ye	s No			
Time DTW	Temp pH		Conductivity Turbidity DO TDS		
(feet)	(°C) (S.U.)	(mV)	(mS/cm) (NTU) (mg/L) (g/L)		
1230 17.55	1/40 7.57	-184	1.48 02 1.32 .502 1.47 62.1 (St .94)		
123V hat DUMB	11.60 7.42	-700	1.47 62. (52 ,943		
1240	11.73 7.40	-206	1:44 12:3 :37 :559		
1250	11.70 7.40	1-213	1.52 8.8 35 ,977		
in	11. 11 1.40	-2/5	1.51 6.1 .31 .983		
1300 -	11.72 7.41	-217	1.53 S.3 .27 .490		
		<u> </u>			
Sampling Information:					
EPA SW-846 Method 8270	SVOC PAH's		2 - 1L glass Yes █ No █		
EPA SW-846 Method 8260	VOC's BTEX		3 - 40 ml vials HCl Yes No		
	LEAD		2 - 250 ml plastic HNO3 Yes No		
EPA Method 6010	MANGANESE				
EPA Method 9012A	TOTAL CYANIC	DE .	1 - 250 ml plastic NaOH Yes No		
EPA Method 310.2	TOTAL ALKALIN	ITY	1 - 125 ml plastic Yes No		
EPA Method 351.2	TOTAL KJELDAHL NI	TROGEN	1 - 250 ml plastic H2SO4 Yes No		
	011151005		1 - 250 ml plastic Zn Acitate and NaOH Yes No		
EPA Method 376.1	SULFIDE FERROUS IRC		Acitate and NaOH Yes No 1 - 250 ml plastic Yes No		
SM_3500_FE_D	METHANE/ETHENE/E		1 200 III plastic		
RSK_175	CARBON DIOXI		2 - 40 ml vials BAK Yes No		
EPA Method 375.4	SULFATE		1- 250 ml plastic Yes No		
EPA Method 373.2	NITRATE		1- 250 ml platics H2SO4 Yes No		
SM_4500_CI_E	CHLORIDE		1- 250ml plastic Yes No		
<u> </u>			Shipped: Drop-off Albany Service Center		
Sample ID: MW-15-1016	Duplicate?	Yes No No			
Sample Time: 1300	MS/DMS?	Yes No X	Laboratory: Pace Analytical		
			Greensburg, Pennsylvania		

Sampling Personnel:	Date: /めいけん
Job Numb∈ 06-02882	Weather: Sunny 37'
Well Id. MW-16	Time In: 930 Time Out: 925
Well Information TOC	Other Well Type: Flushmount Stick-Up
Depth to Water: (feet) [1 · 1]	Well Locked: Yes No No
Depth to Bottom: (feet) 19.45	Measuring Point Marked: Yes No No Well Material: PVC SS Other:
Deptir to Froduct. (leet)	Well Material: PVC SS Other: Well Diameter: 1" 2" Other:
Length of Water Column: (feet) 6.34 Volume of Water in Well: (gal) / 38	Comments:
Three Well Volumes: (gal) 7.56	Odishiono.
The Cover volation. (gail)	
Purging Information	O
	Conversion Factors Gal/ft. 1" ID 2" ID 4" ID 6" ID 1" ID 1"
Purging Method: Bailer Peristal	
Tubing/Bailer Material: Teflon stainless Sampling Method: Bailer Peristal	
Average Pumping Rate: (ml/min) 1200	
Duration of Pumping: (min) 30	•
Total Volume Removed: (gal) -2-0	Did well go dry? Yes No 🕏
YSI 6920 or Horiba U-52 Water Quality Mel Ye	Yes No
Time DTW Temp pH	ORP Conductivity Turbidity DO TDS
(feet) (°C) (S.U.)	
830 12.00 11.42 7.52	2 -199 1.28 4.3 1.96 .816
835 12.10 11.48 7.5X	
840 12.22 11.27 258	
848 12.25 11.24 7.59	
YEO 12.26 11.25 7.60	
10.30 11.21 7.61	
950 12.32 11.20 7.61	1 -227 1.30 ,9 .42 .842
Sampling Information	
FDA SW 946 Markad 9270 SVOC BA	PAH's 2 - 1L glass Yes No
EPA SW-846 Method 8270 SVOC PA EPA SW-846 Method 8260 VOC's BT	
LEAD	
EPA Method 6010 LEAD MANGANE	
EPA Method 9012A TOTAL CYA EPA Method 310.2 TOTAL ALKA	ALINITY 1-105 of 100 No.
EPA Method 351.2 TOTAL KJELDAHL	1 - 250 ml plastic Zn Acitate
EPA Method 376.1 SULFID	l X i i i i
SM_3500_FE_D FERROUS!	
METHANE/ETHEN	
RSK_175 CARBON DIC	
EPA Method 375.4 SULFAT	
EPA Method 353.2 NITRAT	
SM_4500_CI_E CHLORIE	
	Shipped: Drop-off Albany Service Center
Sample ID: MW-16-1016 Duplicate?	
Sample Time 9000 MS/DMS?	
	Greensburg, Pennsylvania

APPENDIX B DATA USABILITY SUMMARY REPORT

1750 Kraft Drive, Suite 2700 • Blacksburg, Virginia 24060 • (866) 756 0788

December 13, 2016

Mark Boorady Groundwater & Environmental Services 1599 Route 34, Suite 1 Wall Township, NJ 07727

RE: Data Usability Summary Report for National Grid: Johnstown, NY Site Data Package Pace Analytical Job No. 30200543

Groundwater & Environmental Services, Inc. (GES) reviewed one data package (Laboratory Project Number 30200543) from Pace Analytical Services, Inc., for the analysis of groundwater samples collected on October 25 - 26, 2016 from monitoring wells located at the National Grid: Johnstown, NY Site. Eight aqueous samples and a field duplicate were analyzed for dissolved gases, PAHs, Nitrogen, Metals, Alkalinity, Chloride, Ferrous Iron, Cyanide, Sulfide and Sulfate. Methodologies utilized were those of EPA RSK-175, EPA 351.2, EPA 6010, SM4500, EPA 310.2, EPA 353.2, EPA 376.1, EPA 375.4, EPA 200.7, and the USEPA SW846 methods 8260B/8270C/9012, with additional QC requirements of the NYSDEC ASP.

The data were reported as part of a complete full deliverable type B data validation. This usability report is generated from review of the following:

- Laboratory Narrative Discussion
- Custody Documentation
- Holding Times
- Surrogate and Internal Standard Recoveries
- Matrix Spike Recoveries/Duplicate (MS/MSD) Correlations
- Field Duplicate Correlations
- Laboratory Control Sample (LCS)
- Preparation/Calibration Blanks
- Calibration/Low Level Standard Responses
- Instrumental Tunes
- Instrument MDLs
- Sample Quantitation and Identification

The items listed above which show deficiencies were discussed within the text of this narrative.

All of the other items were determined to be acceptable for the DUSR level review.

Table 1. Laboratory – Field Cross Reference

Lab ID	Sample ID	Date Collected	Date Received
30200543001	MW-4-2016	10/25/16 14:00	10/26/16 10:30
30200543002	MW-13-2016	10/25/16 11:15	10/26/16 10:30
30200543003	MW-14-2016	10/25/16 10:15	10/26/16 10:30
30200543004	MW-15-2016	10/25/16 13:00	10/26/16 10:30
30200543005	MW-16-2016	10/25/16 09:00	10/26/16 10:30
30200543006	MW-13-Matrix Spike-1016	10/25/16 11:15	10/26/16 10:30
30200543007	MW-13-Duplicate Matrix Spike-1	10/25/16 11:15	10/26/16 10:30
30200543008	Field Duplicate-1016	10/25/16 00:01	10/26/16 10:30
30200846001	MW-7-1016	10/26/16 09:00	10/28/16 10:50
30200846002	MW-10-1016	10/26/16 10:00	10/28/16 10:50
30200846003	MW-12-1016	10/26/16 11:00	10/28/16 10:50
30200663001	MW-4-1016	10/25/16 14:00	10/27/16 09:55
30200663002	MW-13-1016	10/25/16 11:15	10/27/16 09:55
30200663003	MW-14-1016	10/25/16 10:15	10/27/16 09:55
30200663004	MW-15-1016	10/25/16 13:00	10/27/16 09:55
30200663005	MW-16-1016	10/25/16 09:00	10/27/16 09:55
30200663006	MW-13Matrix Spike-1016	10/25/16 11:15	10/27/16 09:55
30200663007	MW-13-DuplicaMatrix Spike-1016	10/25/16 11:15	10/27/16 09:55
30200663008	Field Duplicate-1016	10/25/16 00:01	10/27/16 09:55
30200663009	Trip Blank	10/25/16 00:01	10/27/16 09:55

Table 2. Validation Qualifiers

Sample ID	Qualifier	Analyte	Reason for qualification
MW-13	J	All PAH analytes	RPD out of specification for MS/MSD Recoveries out of specification
MW-14	UJ-	Acenaphthylene, Benzo(k)fluoranthene, Pyrene	RPD out of specification for original/field duplicate
All Samples	J	Nitrogen as Nitrate/Nitrite	Sample was not preserved in the field. Laboratory preserved the sample.
All Samples	J	Fluoranthene	Analyte recovered outside QC limits in LCS
MW-13	J-	Alkalinity	MS/MSD recoveries low.
All Samples	J	Ferrous Iron	Samples were extracted outside laboratory established hold time.
MW-13	J-	Total Kjeldahl Nitrogen	MS/MSD recoveries low.
MW-13	J+	Chloride	MS/MSD recoveries high
MW-7	J-	Chloride	MS/MSD recoveries low
MW-13	J+	Cyanide	MS/MSD recoveries high
MW-13	J+	Sulfate	MS/MSD recoveries high
MW-4, MW-12	R	Methane	Positive blank detection

In summary, sample results were usable as reported, with exceptions due to poor precision or MS/MSD recoveries. Low level methane detections in two sample locations are unusable due to concurrent positive method blank methane concentrations. Qualifications are detailed in Table 2.

The laboratory case narratives and sample identification summary forms are attached to this text, and should be reviewed in conjunction with this report. Also included with this narrative are sample results forms with the data qualifier applied in red.

Dissolved Gases by USEPA RSK-175/ NYSDEC ASP

Sample holding times were met and instrumental tune fragmentations were within acceptance ranges. Surrogate and internal standard recoveries were within required limits. Calibrations standards show acceptable responses within analytical protocol and validation action limits. The method blank reported a low positive detection of methane above the reporting limit. Most of the samples reported methane at concentrations where the positive blank had no impact. However, for samples MW-4 and MW-12, the methane was <5X the concentration found in the blank and therefore the reported concentrations cannot be ascribed to location conditions. In these two samples the concentrations are qualified as unusable and the data is rejected "R".

BTEX and TCL Volatiles by EPA 8260C/NYSDEC ASP

Sample holding times were met and instrumental tune fragmentations were within acceptance ranges. Surrogate and internal standard recoveries were within required limits. Calibrations standards show acceptable responses within analytical protocol and validation action limits. The blind field duplicate correlations of MW-14-2016 fall within guidance limits. The MS/MSD showed out of compliance recoveries, however, the initial concentration was more than 4X the spike, therefore the recoveries do not indicate an issue with the method efficiency. Surrogate recovery was within bounds, and LCS recoveries were used to determine method efficacy.

PAHs by EPA8270D/NYSDEC ASP

Holding times were met with the exception of the field duplicate. RPD values between the original and duplicate sample showed that variance was within specification, and data was not impacted due to hold time exceedance. Instrumental tune fragmentations were within acceptance ranges. Surrogate recoveries were within analytical and validation guidelines. Blanks show no contamination. Calibration standards, both initial and continuing, show acceptable responses within analytical method protocols and validation guidelines. The blind field duplicate correlations of MW-14-2016 fall within guidance limits with the exceptions noted in Table 2.

Fluoranthene recovery was slightly low in one LCS sample (64%, minimum required 65%). The analyte recovered within specification for other LCS, and no qualifications were necessary.

SDG 30200543 reports an MS/MSD utilizing MW-13 where all PAH analytes had extremely low results and recoveries as well as extreme out-of-specification RPD values. As MS/MSD recoveries are used to determine sample matrix issues which systematically impact the data for the sample used, the recoveries and variability seems to indicate that MW-13 has matrix issues which impact the ability of the method to quantify the PAHs.

However, samples MW-13-Matrix Spike-1016 and MW-13-Duplicate Matrix Spike-1016 are field replicates of sample MW-13. The PAH concentrations reported in these samples confirm the values reported in the original MW-13 sample, and not those of the MS/MSD. Because of the consistency of the triplicate results, the MS/MSD results must be considered anomalous. In this case, the MS/MSD recoveries indicate an issue with the laboratory preparation and/or quantification of the QC samples. Because there is a laboratory issue, the PAH analytes for MW-13 are qualified as estimated, but still usable. Qualifications are detailed in Table 2.

MW-13-1016, MW-15-1016, and MW-16-1016 were processed at dilution due to concentrations of target analytes. Reporting limits for those samples are therefore elevated.

Lead and Manganese by EPA 6010/NYDESC ASP

The matrix spikes of MW-13-2016 show acceptable accuracy and precision. The blind field duplicate correlations of MW-14-2016 fall within guidance limits. Instrument performance is compliant, and blanks show no contamination above the reporting limit.

The ICP Serial Dilution evaluations were within specification for samples with detections of the target elements above the action limit.

Wet Chemistry Tests and Total Cyanide by 9012B/ NYSDEC ASP

Review was conducted for method compliance, holding times, transcription, calculations, standard and blank acceptability, accuracy and precision, etc., as applicable to each procedure. All were found acceptable for the validated samples with the following exceptions in the MS/MSDs:

Alkalinity: MW-13, recovery MS/MSD high; data is estimated with a possible low bias Chloride: MW-13, recovery MS high; data is estimated with a possible high bias Chloride: MW-7, recovery MS/MSD low; data is estimated with a possible low bias Cyanide: MW-13, recovery MS/MSD high; data is estimated with a possible low bias Sulfate: MW-13, recovery MS/MSD high; data is estimated with a possible low bias

Calibration standard responses were compliant. Blanks show no detections above the reporting limits.

The matrix spikes and/or laboratory duplicates of total cyanide show acceptable recoveries and/or correlations.

Ferrous Iron by S<3500-FeD-00/ NYSDEC ASP

Review was conducted for method compliance, holding times, transcription, calculations, standard and blank acceptability, and accuracy and precision. All were found acceptable for the validated samples with the exception of holding time. All the samples were analyzed outside of the laboratory set holding time. However, there is no EPA set holding time for Ferrous Iron, with a with the recommendation that the analysis be performed as soon as possible, preferably within 72 hours of collection. As the data was analyzed outside of laboratory hold time, but within the EPA suggested 72 hours, the data is qualified as estimated, but usable.

Calibration standard responses were compliant. Blanks show no detections above the reporting limits.

Total Kjeldahl Nitrogen, Nitrogen as Nitrate/Nitrite by EPA 351.2 & 353.2/NYDESC ASP

Review was conducted for method compliance, holding times, transcription, calculations, standard and blank acceptability, accuracy and precision, etc., as applicable to each procedure. All were found acceptable for the validated samples. Calibration standard responses were compliant. Blanks show no detections above the reporting limits.

Nitrogen/ Nitrate Nitrite was pulled from unpreserved bottles in the laboratory due to insufficient preservation in the field. The Nitrogen/ Nitrate Nitrite is therefore qualified as estimated in all samples.

The Total Kjeldahl Nitrogen MS/MSD based on MW-13 recovered low, so the data is qualified estimated with a possible low bias.

Data Package Completeness

Complete NYSDEC Category B deliverables were included in the laboratory data package, all information required for validation of the data is present.

Please do not hesitate to contact me if you have comments or questions regarding this report.

Bonnie Janowiak, Ph.D.

Project Chemist

1750 Kraft Drive, Suite 2700

Sparowisk

Blacksburg, VA 24060

VALIDATION DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- **J** The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- **J-** The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.
- **J**+ The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- **UJ** The analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- **NJ** The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control limits. The analyte may or may not be present.

Sample Summaries and Laboratory Case Narratives

SAMPLE SUMMARY

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30200543001	MW-4-2016	Water	10/25/16 14:00	10/26/16 10:30
30200543002	MW-13-2016	Water	10/25/16 11:15	10/26/16 10:30
30200543003	MW-14-2016	Water	10/25/16 10:15	10/26/16 10:30
30200543004	MW-15-2016	Water	10/25/16 13:00	10/26/16 10:30
30200543005	MW-16-2016	Water	10/25/16 09:00	10/26/16 10:30
30200543006	MW-13-Matrix Spike-1016	Water	10/25/16 11:15	10/26/16 10:30
30200543007	MW-13-Duplicate Matrix Spike-1	Water	10/25/16 11:15	10/26/16 10:30
30200543008	Field Duplicate-1016	Water	10/25/16 00:01	10/26/16 10:30
30200846001	MW-7-1016	Water	10/26/16 09:00	10/28/16 10:50
30200846002	MW-10-1016	Water	10/26/16 10:00	10/28/16 10:50
30200846003	MW-12-1016	Water	10/26/16 11:00	10/28/16 10:50
30200663001	MW-4-1016	Water	10/25/16 14:00	10/27/16 09:55
30200663002	MW-13-1016	Water	10/25/16 11:15	10/27/16 09:55
30200663003	MW-14-1016	Water	10/25/16 10:15	10/27/16 09:55
30200663004	MW-15-1016	Water	10/25/16 13:00	10/27/16 09:55
30200663005	MW-16-1016	Water	10/25/16 09:00	10/27/16 09:55
30200663006	MW-13Matrix Spike-1016	Water	10/25/16 11:15	10/27/16 09:55
30200663007	MW-13-DuplicaMatrix Spike-1016	Water	10/25/16 11:15	10/27/16 09:55
30200663008	Field Duplicate-1016	Water	10/25/16 00:01	10/27/16 09:55
30200663009	Trip Blank	Water	10/25/16 00:01	10/27/16 09:55

REPORT OF LABORATORY ANALYSIS

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Date: November 17, 2016

MW-13-1016 (Lab ID: 30200663002)

• 8270 DWPAH: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

MW-15-1016 (Lab ID: 30200663004)

• 8270 DWPAH: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

MW-16-1016 (Lab ID: 30200663005)

• 8270 DWPAH: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

MW-13Matrix Spike-1016 (Lab ID: 30200663006)

• 8270 DWPAH: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

MW-13-DuplicaMatrix Spike-1016 (Lab ID: 30200663007)

• 8270 DWPAH: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

REPORT OF LABORATORY ANALYSIS

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Method: EPA 6010C

Description: 6010C MET ICP

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 17, 2016

General Information:

11 samples were analyzed for EPA 6010C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Method: EPA 8270D by SIM

Description: 8270D MSSV PAH by SIM

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 17, 2016

General Information:

11 samples were analyzed for EPA 8270D by SIM. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H2: Extraction or preparation conducted outside EPA method holding time.

• Field Duplicate-1016 (Lab ID: 30200663008)

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 239199

L0: Analyte recovery in the laboratory control sample (LCS) was outside QC limits.

• LCS (Lab ID: 1175424)

Fluoranthene

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 238685

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30200663002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

MS (Lab ID: 1173012)2-Methylnaphthalene

REPORT OF LABORATORY ANALYSIS

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Method: EPA 8270D by SIM

Description: 8270D MSSV PAH by SIM

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 17, 2016

QC Batch: 238685

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30200663002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- Acenaphthene
- Acenaphthylene
- Anthracene
- Benzo(a)anthracene
- Benzo(a)pyrene
- Benzo(b)fluoranthene
- Benzo(g,h,i)perylene
- Benzo(k)fluoranthene
- Chrysene
- Dibenz(a,h)anthracene
- Fluoranthene
- Fluorene
- Indeno(1,2,3-cd)pyrene
- Naphthalene
- Phenanthrene
- Pyrene
- MSD (Lab ID: 1173013)
 - 2-Methylnaphthalene
 - Acenaphthylene
 - Anthracene
 - Benzo(a)anthracene
 - Benzo(a)pyrene
 - Benzo(b)fluoranthene
 - Benzo(g,h,i)perylene
 - Benzo(k)fluoranthene
 - Chrysene
 - Dibenz(a,h)anthracene
 - Fluoranthene
 - Fluorene
 - Indeno(1,2,3-cd)pyrene
 - Phenanthrene
 - Pyrene

R1: RPD value was outside control limits.

- MSD (Lab ID: 1173013)
 - 2-Methylnaphthalene
 - Acenaphthene
 - AcenaphthyleneAnthracene
 - Benzo(a)anthracene
 - Benzo(b)fluoranthene
 - Chrysene
 - Fluoranthene
 - Fluorene

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Method: EPA 8270D by SIM

Description: 8270D MSSV PAH by SIM

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 17, 2016

QC Batch: 238685

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30200663002

R1: RPD value was outside control limits.

Naphthalene

- Phenanthrene
- Pyrene

QC Batch: 239199

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Additional Comments:

Analyte Comments:

QC Batch: 239199

2c: A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

- Field Duplicate-1016 (Lab ID: 30200663008)
 - 2-Methylnaphthalene
 - Acenaphthene
 - Acenaphthylene
 - Anthracene
 - Benzo(k)fluoranthene
 - Benzo(g,h,i)perylene
 - Benzo(a)anthracene
 - Benzo(b)fluoranthene
 - Benzo(a)pyrene
 - Chrysene
 - Dibenz(a,h)anthracene
 - Fluorene
 - Fluoranthene
 - Indeno(1,2,3-cd)pyrene
 - Naphthalene
 - Phenanthrene
 - Pyrene

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Method: EPA 8260C Description: 8260C MSV

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 17, 2016

General Information:

12 samples were analyzed for EPA 8260C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 238706

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30200663002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1173107)
 - Ethylbenzene
 - Toluene
- MSD (Lab ID: 1173108)
 - Ethylbenzene
 - Toluene
 - m&p-Xylene
 - o-Xylene

Additional Comments:

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Method: SM2320B-97
Description: 2320B Alkalinity

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 17, 2016

General Information:

11 samples were analyzed for SM2320B-97. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 238772

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30200663002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

• MS (Lab ID: 1173394)

• Alkalinity, Total as CaCO3

• MSD (Lab ID: 1173395)

• Alkalinity, Total as CaCO3

Additional Comments:

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Method: SM3500-FeD-00
Description: Iron, Ferrous

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 17, 2016

General Information:

11 samples were analyzed for SM3500-FeD-00. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H3: Sample was received or analysis requested beyond the recognized method holding time.

- Field Duplicate-1016 (Lab ID: 30200663008)
- MW-10-1016 (Lab ID: 30200846002)
- MW-12-1016 (Lab ID: 30200846003)
- MW-13-1016 (Lab ID: 30200663002)
- MW-13-DuplicaMatrix Spike-1016 (Lab ID: 30200663007)
- MW-13Matrix Spike-1016 (Lab ID: 30200663006)
- MW-14-1016 (Lab ID: 30200663003)
- MW-15-1016 (Lab ID: 30200663004)
- MW-16-1016 (Lab ID: 30200663005)
- MW-4-1016 (Lab ID: 30200663001)
- MW-7-1016 (Lab ID: 30200846001)

H6: Analysis initiated outside of the 15 minute EPA required holding time.

- Field Duplicate-1016 (Lab ID: 30200663008)
- MW-10-1016 (Lab ID: 30200846002)
- MW-12-1016 (Lab ID: 30200846003)
- MW-13-1016 (Lab ID: 30200663002)
- MW-13-DuplicaMatrix Spike-1016 (Lab ID: 30200663007)
- MW-13Matrix Spike-1016 (Lab ID: 30200663006)
- MW-14-1016 (Lab ID: 30200663003)
- MW-15-1016 (Lab ID: 30200663004)
- MW-16-1016 (Lab ID: 30200663005)
- MW-4-1016 (Lab ID: 30200663001)
- MW-7-1016 (Lab ID: 30200846001)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Method: SM3500-FeD-00 Description: Iron, Ferrous

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 17, 2016

QC Batch: 238291

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

• DUP (Lab ID: 1171074)

• Iron, Ferrous

D8: The sample and duplicate results for this parameter are less than 5 times the reporting limit, the RPD may not be statistically valid.

• DUP (Lab ID: 1171074)

• Iron, Ferrous

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Method: SM4500S2F-00

Description: 4500S2F Sulfide, Iodometric

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 17, 2016

General Information:

11 samples were analyzed for SM4500S2F-00. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Method: EPA 351.2

Description: 351.2 Total Kjeldahl Nitrogen

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 17, 2016

General Information:

11 samples were analyzed for EPA 351.2. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 239191

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30200663002,30201370004

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1175384)
 - Nitrogen, Kjeldahl, Total
- MS (Lab ID: 1175386)
 - Nitrogen, Kjeldahl, Total
- MSD (Lab ID: 1175387)
 - Nitrogen, Kjeldahl, Total

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Method: SM4500CIE-97
Description: 4500 Chloride

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 17, 2016

General Information:

11 samples were analyzed for SM4500CIE-97. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 238841

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30200663002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

• MS (Lab ID: 1173696)

• Chloride

QC Batch: 238843

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30200846001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

• MS (Lab ID: 1173701)

• Chloride

• MSD (Lab ID: 1173702)

• Chloride

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Method: SM4500NO3F-00

Description: SM4500NO3-F, NO3-NO2

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 17, 2016

General Information:

19 samples were analyzed for SM4500NO3F-00. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Batch Comments:

30200543 SAMPLES HAD TO BE PULLED FROM UNPRESERVED BOTTLES AND USED FOR ANALYSIS

• QC Batch: 238698

Analyte Comments:

QC Batch: 238698

1c: 30200543 SAMPLES HAD TO BE PULLED FROM UNPRESERVED BOTTLES AND USED FOR ANALYSIS

- BLANK (Lab ID: 1173075)
 - Nitrogen, NO2 plus NO3
- Field Duplicate-1016 (Lab ID: 30200543008)
 - Nitrogen, NO2 plus NO3
- LCS (Lab ID: 1173076)
 - Nitrogen, NO2 plus NO3
- MS (Lab ID: 1173077)
 - Nitrogen, NO2 plus NO3
- MSD (Lab ID: 1173078)
 - Nitrogen, NO2 plus NO3
- MW-10-1016 (Lab ID: 30200846002)
 - Nitrogen, NO2 plus NO3
- MW-12-1016 (Lab ID: 30200846003)
 - Nitrogen, NO2 plus NO3
- MW-13-2016 (Lab ID: 30200543002)
 - Nitrogen, NO2 plus NO3
- MW-13-Duplicate Matrix Spike-1 (Lab ID: 30200543007)
 - Nitrogen, NO2 plus NO3
- MW-13-Matrix Spike-1016 (Lab ID: 30200543006)
 - Nitrogen, NO2 plus NO3

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Method: SM4500NO3F-00
Description: SM4500NO3-F, NO3-NO2

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 17, 2016

Analyte Comments: QC Batch: 238698

1c: 30200543 SAMPLES HAD TO BE PULLED FROM UNPRESERVED BOTTLES AND USED FOR ANALYSIS

• MW-14-2016 (Lab ID: 30200543003)

• Nitrogen, NO2 plus NO3

• MW-15-2016 (Lab ID: 30200543004)

• Nitrogen, NO2 plus NO3

• MW-16-2016 (Lab ID: 30200543005)

• Nitrogen, NO2 plus NO3

• MW-4-2016 (Lab ID: 30200543001)

• Nitrogen, NO2 plus NO3

• MW-7-1016 (Lab ID: 30200846001)

• Nitrogen, NO2 plus NO3

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Method: EPA 9012B

Description: 9012B Cyanide, Total

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 17, 2016

General Information:

11 samples were analyzed for EPA 9012B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 238777

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30200663002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1173457)
 - Cyanide
- MSD (Lab ID: 1173458)
 - Cyanide

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Method: ASTM D516-11

Description: ASTM D516 Sulfate Water

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 17, 2016

General Information:

10 samples were analyzed for ASTM D516-11. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 239725

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30200663002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1177895)
 - Sulfate
- MSD (Lab ID: 1177896)
 - Sulfate

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Date: 11/17/2016 02:21 PM

Sample: MW-4-2016	Lab ID:	30200543001	Collected	d: 10/25/16	3 14:00	Received: 10	/26/16 10:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
SM4500NO3-F, NO3-NO2	Analytical	Method: SM45	00NO3F-00)					
Nitrogen, NO2 plus NO3	3.3 J	mg/L	0.10	0.023	1		11/01/16 11:58		1c
Sample: MW-13-2016	Lab ID:	30200543002	Collected	d: 10/25/16	3 11:15	Received: 10	/26/16 10:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
SM4500NO3-F, NO3-NO2	Analytic	al Method: SM4	500NO3F-	00			_	-	'
Nitrogen, NO2 plus NO3	NDJ	mg/L	0.10	0.023	1		11/01/16 12:02		1c
Sample: MW-14-2016	Lab ID:	30200543003	Collected	d: 10/25/16	3 10:15	Received: 10	/26/16 10:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
SM4500NO3-F, NO3-NO2	Analytical	Method: SM45	00NO3F-00)					
Nitrogen, NO2 plus NO3	ND <mark>J</mark> r	ng/L	0.10	0.023	1		11/01/16 12:06		1c
Sample: MW-15-2016	Lab ID:	30200543004	Collected	d: 10/25/16	3 13:00	Received: 10	/26/16 10:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
SM4500NO3-F, NO3-NO2	Analytical	Method: SM45	00NO3F-00)				•	,
Nitrogen, NO2 plus NO3	ND J r	ng/L	0.10	0.023	1		11/01/16 12:07		1c
Sample: MW-16-2016	Lab ID:	30200543005	Collected	d: 10/25/16	6 09:00	Received: 10	/26/16 10:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
SM4500NO3-F, NO3-NO2	Analytical	Method: SM45	00NO3F-00)					-,
Nitrogen, NO2 plus NO3	ND J	mg/L	0.10	0.023	1		11/01/16 12:09		1c
Sample: MW-13-Matrix Spike-1016	Lab ID:	30200543006	Collected	d: 10/25/16	3 11:15	Received: 10	/26/16 10:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
SM4500NO3-F, NO3-NO2	Analytical	Method: SM45	00NO3F-00						

Benzene

Date: 11/17/2016 02:21 PM

ANALYTICAL RESULTS

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543 Lab ID: 30200543007 Sample: MW-13-Duplicate Matrix Collected: 10/25/16 11:15 Received: 10/26/16 10:30 Matrix: Water Spike-1 Report **Parameters** Results Units Limit MDL DF Prepared CAS No. Qual Analyzed SM4500NO3-F, NO3-NO2 Analytical Method: SM4500NO3F-00 Nitrogen, NO2 plus NO3 4.9 T mg/L 0.10 0.023 1 11/01/16 11:43 1c Sample: Field Duplicate-1016 Lab ID: 30200543008 Collected: 10/25/16 00:01 Received: 10/26/16 10:30 Matrix: Water Report Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual Analytical Method: SM4500NO3F-00 SM4500NO3-F, NO3-NO2 Nitrogen, NO2 plus NO3 ND I mg/L 0.10 0.023 11/01/16 12:10 1c Sample: MW-7-1016 Lab ID: 30200846001 Collected: 10/26/16 09:00 Received: 10/28/16 10:50 Report **Parameters** Results MDL DF CAS No. Units Limit Prepared Analyzed Qual Analytical Method: EPA 6010C Preparation Method: EPA 3005A 6010C MET ICP Lead ND ug/L 5.0 4.0 11/07/16 15:33 11/10/16 15:35 7439-92-1 430 5.0 0.71 1 11/07/16 15:33 11/10/16 15:35 7439-96-5 Manganese ug/L 8270D MSSV PAH by SIM Analytical Method: EPA 8270D by SIM Preparation Method: EPA 3510C Acenaphthene 0.10 ug/L 0.10 0.016 11/01/16 08:40 11/01/16 23:58 83-32-9 0.20 ug/L 0.10 0.014 11/01/16 08:40 11/01/16 23:58 208-96-8 Acenaphthylene 0.013 ND ug/L 0.10 11/01/16 08:40 11/01/16 23:58 120-12-7 Anthracene ND 0.10 0.015 11/01/16 08:40 11/01/16 23:58 56-55-3 Benzo(a)anthracene ug/L 1 ND 0.0072 11/01/16 23:58 50-32-8 ug/L 0.10 11/01/16 08:40 Benzo(a)pyrene 1 ND 205-99-2 Benzo(b)fluoranthene ug/L 0.10 0.016 1 11/01/16 08:40 11/01/16 23:58 Benzo(g,h,i)perylene ND ug/L 0.10 0.019 1 11/01/16 08:40 11/01/16 23:58 191-24-2 Benzo(k)fluoranthene ND ug/L 0.10 0.012 11/01/16 08:40 11/01/16 23:58 207-08-9 ip Chrysene ND 0.10 0.0077 11/01/16 08:40 11/01/16 23:58 218-01-9 ug/L Dibenz(a,h)anthracene ND 0.10 0.029 11/01/16 08:40 11/01/16 23:58 ug/L 53-70-3 Fluoranthene ND ug/L 0.10 0.011 1 11/01/16 08:40 11/01/16 23:58 206-44-0 Fluorene ND ug/L 0.10 0.016 1 11/01/16 08:40 11/01/16 23:58 86-73-7 Indeno(1,2,3-cd)pyrene ND 0.10 0.028 11/01/16 08:40 11/01/16 23:58 193-39-5 ug/L 1 2-Methylnaphthalene 0.21 0.10 0.021 1 11/01/16 08:40 11/01/16 23:58 91-57-6 ug/L Naphthalene 3.0 ug/L 0.10 0.018 1 11/01/16 08:40 11/01/16 23:58 91-20-3 Phenanthrene ND ug/L 0.10 0.016 1 11/01/16 08:40 11/01/16 23:58 85-01-8 11/01/16 23:58 129-00-0 Pyrene ND ug/L 0.10 0.013 1 11/01/16 08:40 Surrogates 2-Fluorobiphenyl (S) 79 % 19-123 1 11/01/16 08:40 11/01/16 23:58 321-60-8 Terphenyl-d14 (S) 89 % 58-130 11/01/16 08:40 11/01/16 23:58 1718-51-0 8260C MSV Analytical Method: EPA 8260C ND ug/L 1.0 0.16 11/01/16 15:44 71-43-2

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Date: 11/17/2016 02:21 PM

Sample: MW-7-1016	Lab ID:	30200846001	Collected	: 10/26/16	09:00	Received: 10	/28/16 10:50 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical	Method: EPA 8	260C						
Ethylbenzene	ND	ug/L	1.0	0.23	1		11/01/16 15:44	100-41-4	
Toluene	ND	ug/L	1.0	0.13	1		11/01/16 15:44	108-88-3	
Xylene (Total)	ND	ug/L	3.0	0.55	1		11/01/16 15:44		
m&p-Xylene	ND	ug/L	2.0	0.32	1		11/01/16 15:44		
o-Xylene Surregates	ND	ug/L	1.0	0.22	1		11/01/16 15:44	95-47-6	
Surrogates Toluene-d8 (S)	100	%	84-115		1		11/01/16 15:44	2037-26-5	
4-Bromofluorobenzene (S)	99	%	81-119		1		11/01/16 15:44		
1,2-Dichloroethane-d4 (S)	108	%	77-126		1		11/01/16 15:44		
Dibromofluoromethane (S)	101	%	70-130		1		11/01/16 15:44		
2320B Alkalinity	Analytical	Method: SM232	20B-97						
Alkalinity, Total as CaCO3	406	mg/L	10.0	1.1	1		11/01/16 19:30		
Iron, Ferrous	Analytical	Method: SM350	00-FeD-00						
Iron, Ferrous	0.59 _J	mg/L	0.10	0.012	1		10/31/16 18:26		H3,H6
4500S2F Sulfide, Iodometric	Analytical	Method: SM450	00S2F-00						
Sulfide	ND	mg/L	1.0	0.31	1		11/01/16 16:30	18496-25-8	
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 3	51.2						
Nitrogen, Kjeldahl, Total	2.2	mg/L	1.0	0.26	1		11/04/16 13:07	7727-37-9	
4500 Chloride	Analytical	Method: SM450	00CIE-97						
Chloride	79.4 <mark>J</mark>	mg/L	3.0	0.41	1		11/02/16 14:40	16887-00-6	M1
SM4500NO3-F, NO3-NO2	Analytical	Method: SM450	00NO3F-00						
Nitrogen, NO2 plus NO3	ND	mg/L	0.10	0.023	1		11/01/16 12:11		1c
9012B Cyanide, Total	Analytical	Method: EPA 9	012B						
Cyanide	0.15	mg/L	0.010	0.0018	1		11/01/16 21:57	57-12-5	
ASTM D516 Sulfate Water	Analytical	Method: ASTM	D516-11						
Sulfate	476	mg/L	200	9.7	20		11/09/16 16:21	14808-79-8	В
Sample: MW-10-1016	Lab ID:	30200846002	Collected	: 10/26/16	10:00	Received: 10	/28/16 10:50 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prepa	ration Met	hod: EP	A 3005A			
Lead	ND	ug/L	5.0	4.0	1	11/07/16 15:33	11/10/16 15:42	7439-92-1	
Manganese	1200	ug/L	5.0	0.71	1	11/07/16 15:33	11/10/16 15:42	7439-96-5	

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Date: 11/17/2016 02:21 PM

Sample: MW-10-1016	Lab ID:	30200846002	Collected	: 10/26/16	10:00	Received: 10/	28/16 10:50 M	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3270D MSSV PAH by SIM	Analytical	Method: EPA 82	270D by SIN	/ Preparati	on Met	hod: EPA 3510C			
Acenaphthene	1.4	ug/L	0.10	0.016	1	11/01/16 08:40	11/02/16 00:16	83-32-9	
Acenaphthylene	0.18	ug/L	0.10	0.014	1	11/01/16 08:40	11/02/16 00:16	208-96-8	
Anthracene	ND	ug/L	0.10	0.013	1	11/01/16 08:40	11/02/16 00:16	120-12-7	
Benzo(a)anthracene	ND	ug/L	0.10	0.015	1	11/01/16 08:40	11/02/16 00:16	56-55-3	
Benzo(a)pyrene	ND	ug/L	0.10	0.0072	1	11/01/16 08:40	11/02/16 00:16		
Benzo(b)fluoranthene	ND	ug/L	0.10	0.016	1	11/01/16 08:40	11/02/16 00:16	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	0.10	0.019	1	11/01/16 08:40	11/02/16 00:16		
Benzo(k)fluoranthene	ND	ug/L	0.10	0.011	1	11/01/16 08:40	11/02/16 00:16	207-08-9	
Chrysene	ND	ug/L	0.10	0.0076	1	11/01/16 08:40	11/02/16 00:16	218-01-9	
Dibenz(a,h)anthracene	ND	ug/L	0.10	0.028	1	11/01/16 08:40	11/02/16 00:16	53-70-3	
Fluoranthene	0.10 <mark>]</mark>	ug/L	0.10	0.011	1	11/01/16 08:40	11/02/16 00:16	206-44-0	
Fluorene	ND	ug/L	0.10	0.016	1	11/01/16 08:40	11/02/16 00:16	86-73-7	
ndeno(1,2,3-cd)pyrene	ND	ug/L	0.10	0.028	1	11/01/16 08:40	11/02/16 00:16	193-39-5	
2-Methylnaphthalene	ND	ug/L	0.10	0.021	1	11/01/16 08:40	11/02/16 00:16	91-57-6	
Naphthalene	0.23	ug/L	0.10	0.018	1	11/01/16 08:40	11/02/16 00:16	91-20-3	
Phenanthrene	ND	ug/L	0.10	0.016	1	11/01/16 08:40	11/02/16 00:16	85-01-8	
Pyrene	0.15	ug/L	0.10	0.013	1	11/01/16 08:40	11/02/16 00:16	129-00-0	
Surrogates					_				
2-Fluorobiphenyl (S)	75	%	19-123		1	11/01/16 08:40	11/02/16 00:16		
Terphenyl-d14 (S)	90	%	58-130		1	11/01/16 08:40	11/02/16 00:16	1718-51-0	
3260C MSV	Analytical	Method: EPA 82	260C						
Benzene	ND	ug/L	1.0	0.16	1		11/01/16 16:09	71-43-2	
Ethylbenzene	ND	ug/L	1.0	0.23	1		11/01/16 16:09	100-41-4	
Toluene	ND	ug/L	1.0	0.13	1		11/01/16 16:09	108-88-3	
Kylene (Total)	ND	ug/L	3.0	0.55	1		11/01/16 16:09	1330-20-7	
n&p-Xylene	ND	ug/L	2.0	0.32	1		11/01/16 16:09	179601-23-1	
o-Xylene	ND	ug/L	1.0	0.22	1		11/01/16 16:09	95-47-6	
Surrogates	00	0.4	04.445				44/04/40 40 00	0007.00.5	
Toluene-d8 (S)	98	%	84-115		1		11/01/16 16:09		
4-Bromofluorobenzene (S)	99	%	81-119		1		11/01/16 16:09		
I,2-Dichloroethane-d4 (S)	109	%	77-126		1		11/01/16 16:09		
Dibromofluoromethane (S)	103	%	70-130		1		11/01/16 16:09	1868-53-7	
2320B Alkalinity	Analytical	Method: SM232	20B-97						
Alkalinity, Total as CaCO3	660	mg/L	10.0	1.1	1		11/01/16 19:30		
ron, Ferrous	Analytical	Method: SM350	00-FeD-00						
ron, Ferrous	1.0 _J	mg/L	0.10	0.012	1		10/31/16 18:26	i	H3,H6
1500S2F Sulfide, Iodometric	Analytical	Method: SM450	00S2F-00						
Sulfide	ND	mg/L	1.0	0.31	1		11/01/16 16:30	18496-25-8	
851.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 3	51.2						
Nitrogen, Kjeldahl, Total	6.5	mg/L	1.0	0.26	1		11/04/16 13:08	7727-37-9	

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Date: 11/17/2016 02:21 PM

Sample: MW-10-1016	Lab ID: 3	30200846002	Collected:	10/26/16	5 10:00	Received: 10/	28/16 10:50 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
4500 Chloride	Analytical N	Method: SM45	00CIE-97						
Chloride	784	mg/L	30.0	4.1	10		11/02/16 15:11	16887-00-6	
SM4500NO3-F, NO3-NO2	Analytical N	Method: SM45	00NO3F-00						
Nitrogen, NO2 plus NO3	0.12	mg/L	0.10	0.023	1		11/01/16 12:13		1c
9012B Cyanide, Total	Analytical N	/lethod: EPA 9	012B						
Cyanide	0.081	mg/L	0.010	0.0018	1		11/01/16 21:58	57-12-5	
ASTM D516 Sulfate Water	Analytical N	/lethod: ASTM	D516-11						
Sulfate	56.6	mg/L	10.0	0.48	1		11/09/16 16:21	14808-79-8	
Sample: MW-12-1016	Lab ID: 3	30200846003	Collected	: 10/26/16	S 11:00	Received: 10/	28/16 10:50 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010C MET ICP	Analytical N	/lethod: EPA 6	010C Prepa	ration Met	hod: EF	PA 3005A		-	
Lead	ND	ug/L	5.0	4.0	1	11/07/16 15:33	11/10/16 15:44	7439-92-1	
Manganese	202	ug/L	5.0	0.71	1	11/07/16 15:33	11/10/16 15:44	7439-96-5	
8270D MSSV PAH by SIM	Analytical N	/lethod: EPA 8	270D by SIM	1 Preparat	tion Met	hod: EPA 3510C			
Acenaphthene	0.11	ug/L	0.10	0.016	1	11/01/16 08:40	11/02/16 00:33	83-32-9	
Acenaphthylene	4.4	ug/L	0.10	0.014	1	11/01/16 08:40	11/02/16 00:33		
Anthracene	1.4	ug/L	0.10	0.013	1	11/01/16 08:40	11/02/16 00:33		
Benzo(a)anthracene	2.1	ug/L	0.10	0.015	1	11/01/16 08:40	11/02/16 00:33		
Benzo(a)pyrene	2.8	ug/L	0.10	0.0072	1	11/01/16 08:40	11/02/16 00:33		
Benzo(b)fluoranthene	2.3	ug/L	0.10	0.016	1	11/01/16 08:40	11/02/16 00:33		
Benzo(g,h,i)perylene	1.6	ug/L	0.10	0.019	1	11/01/16 08:40	11/02/16 00:33		
Benzo(k)fluoranthene	0.94	ug/L	0.10	0.012	1	11/01/16 08:40	11/02/16 00:33		
Chrysene	1.9	ug/L	0.10	0.0077	1	11/01/16 08:40	11/02/16 00:33		
Dibenz(a,h)anthracene	0.29	ug/L	0.10	0.029	1	11/01/16 08:40	11/02/16 00:33		
Fluoranthene	3.9J	ug/L	0.10	0.011	1	11/01/16 08:40	11/02/16 00:33		
Fluorene	0.51	ug/L	0.10	0.016	1	11/01/16 08:40	11/02/16 00:33		
Indeno(1,2,3-cd)pyrene	1.2	ug/L	0.10	0.028	1	11/01/16 08:40	11/02/16 00:33		
2-Methylnaphthalene	ND	ug/L	0.10	0.021	1	11/01/16 08:40	11/02/16 00:33		
Naphthalene	0.96	ug/L	0.10	0.018	1	11/01/16 08:40	11/02/16 00:33		
Phenanthrene	3.5	ug/L	0.10	0.016	1	11/01/16 08:40	11/02/16 00:33		
Pyrene <i>Surrogates</i>	5.4	ug/L	0.10	0.013	1	11/01/16 08:40	11/02/16 00:33	129-00-0	
2-Fluorobiphenyl (S)	76	%	19-123		1	11/01/16 08:40	11/02/16 00:33	321-60-8	
Terphenyl-d14 (S)	95	%	58-130		1	11/01/16 08:40	11/02/16 00:33		
8260C MSV	Analytical N	/lethod: EPA 8	260C						

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Date: 11/17/2016 02:21 PM

Sample: MW-12-1016	Lab ID: 3	30200846003	Collected	d: 10/26/16	3 11:00	Received: 10/	/28/16 10:50 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
i aiailieleis				IVIDL		i ichaica	- — Allalyzeu		- Quai
3260C MSV	Analytical M	lethod: EPA 8	260C						
Ethylbenzene	ND	ug/L	1.0	0.23	1		11/01/16 16:35	100-41-4	
Toluene	ND	ug/L	1.0	0.13	1		11/01/16 16:35	108-88-3	
Xylene (Total)	ND	ug/L	3.0	0.55	1		11/01/16 16:35		
m&p-Xylene	ND	ug/L	2.0	0.32	1		11/01/16 16:35		
o-Xylene	ND	ug/L	1.0	0.22	1		11/01/16 16:35	95-47-6	
Surrogates	99	%	84-115		1		11/01/16 16:35	2027 26 5	
Toluene-d8 (S) 4-Bromofluorobenzene (S)	100	%	81-119		1		11/01/16 16:35		
1,2-Dichloroethane-d4 (S)	105	%	77-126		1		11/01/16 16:35		
Dibromofluoromethane (S)	104	%	70-120		1		11/01/16 16:35		
2320B Alkalinity		/lethod: SM23							
				1.1	1		11/01/16 10:20		
Alkalinity, Total as CaCO3	436	mg/L	10.0	1.1	1		11/01/16 19:30		
ron, Ferrous	Analytical N	Method: SM350	00-FeD-00						
ron, Ferrous	0.11 _J	mg/L	0.10	0.012	1		10/31/16 18:26		B,D8, H3,H6
4500S2F Sulfide, Iodometric	Analytical M	Method: SM450	00S2F-00						
Sulfide	ND	mg/L	1.0	0.31	1		11/01/16 16:30	18496-25-8	
351.2 Total Kjeldahl Nitrogen	Analytical M	Method: EPA 3	51.2						
Nitrogen, Kjeldahl, Total	ND	mg/L	1.0	0.26	1		11/04/16 13:09	7727-37-9	
4500 Chloride	Analytical M	Method: SM450	00CIE-97						
Chloride	556	mg/L	30.0	4.1	10		11/02/16 15:12	16887-00-6	
SM4500NO3-F, NO3-NO2	Analytical M	Method: SM450	00NO3F-00						
Nitrogen, NO2 plus NO3	2.9	mg/L	0.10	0.023	1		11/01/16 12:14		1c
9012B Cyanide, Total	Analytical M	lethod: EPA 9	012B						
Cyanide	ND	mg/L	0.010	0.0018	1		11/01/16 21:59	57-12-5	
ASTM D516 Sulfate Water	Analytical M	Method: ASTM	D516-11						
Sulfate	56.0	mg/L	10.0	0.48	1		11/09/16 16:23	14808-79-8	
Sample: MW-4-1016	Lab ID: 3	30200663001	Collected	d: 10/25/16	6 14:00	Received: 10/	/27/16 09:55 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical M	lethod: EPA 6	010C Prepa	aration Met	hod: EP	A 3005A			
Lead	ND	ug/L	5.0	4.0	1	11/07/16 15:33	11/10/16 15:16	7439-92-1	
Manganese	5.3	ug/L	5.0	0.71	1	11/07/16 15:33	11/10/16 15:16	7439-96-5	

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Date: 11/17/2016 02:21 PM

Sample: MW-4-1016	Lab ID:	30200663001	Collected	: 10/25/16	14:00	Received: 10/	27/16 09:55 M	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3270D MSSV PAH by SIM	Analytical	Method: EPA 82	270D by SIN	/ Preparati	on Met	hod: EPA 3510C			
Acenaphthene	ND	ug/L	0.10	0.016	1	11/01/16 08:40	11/01/16 21:40	83-32-9	
Acenaphthylene	ND	ug/L	0.10	0.014	1	11/01/16 08:40	11/01/16 21:40	208-96-8	
Anthracene	ND	ug/L	0.10	0.013	1	11/01/16 08:40	11/01/16 21:40	120-12-7	
Benzo(a)anthracene	ND	ug/L	0.10	0.015	1	11/01/16 08:40	11/01/16 21:40	56-55-3	
Benzo(a)pyrene	ND	ug/L	0.10	0.0072	1	11/01/16 08:40	11/01/16 21:40	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	0.10	0.016	1	11/01/16 08:40	11/01/16 21:40	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	0.10	0.019	1	11/01/16 08:40	11/01/16 21:40		
Benzo(k)fluoranthene	ND	ug/L	0.10	0.011	1	11/01/16 08:40	11/01/16 21:40	207-08-9	
Chrysene	ND	ug/L	0.10	0.0076	1	11/01/16 08:40	11/01/16 21:40	218-01-9	
Dibenz(a,h)anthracene	ND	ug/L	0.10	0.028	1	11/01/16 08:40	11/01/16 21:40	53-70-3	
Fluoranthene	NDJ	ug/L	0.10	0.011	1	11/01/16 08:40	11/01/16 21:40	206-44-0	
Fluorene	ND	ug/L	0.10	0.016	1	11/01/16 08:40	11/01/16 21:40	86-73-7	
ndeno(1,2,3-cd)pyrene	ND	ug/L	0.10	0.028	1	11/01/16 08:40	11/01/16 21:40	193-39-5	
2-Methylnaphthalene	ND	ug/L	0.10	0.021	1	11/01/16 08:40	11/01/16 21:40	91-57-6	
Naphthalene	0.29	ug/L	0.10	0.018	1	11/01/16 08:40	11/01/16 21:40	91-20-3	
Phenanthrene	ND	ug/L	0.10	0.016	1	11/01/16 08:40	11/01/16 21:40	85-01-8	
Pyrene	ND	ug/L	0.10	0.013	1	11/01/16 08:40	11/01/16 21:40	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	78	%	19-123		1	11/01/16 08:40	11/01/16 21:40	321-60-8	
「erphenyl-d14 (S)	95	%	58-130		1	11/01/16 08:40	11/01/16 21:40	1718-51-0	
3260C MSV	Analytical	Method: EPA 82	260C						
Benzene	ND	ug/L	1.0	0.16	1		11/01/16 14:02	71-43-2	
Ethylbenzene	ND	ug/L	1.0	0.23	1		11/01/16 14:02	100-41-4	
Toluene	ND	ug/L	1.0	0.13	1		11/01/16 14:02	108-88-3	
Kylene (Total)	ND	ug/L	3.0	0.55	1		11/01/16 14:02	1330-20-7	
n&p-Xylene	ND	ug/L	2.0	0.32	1		11/01/16 14:02	179601-23-1	
o-Xylene	ND	ug/L	1.0	0.22	1		11/01/16 14:02	95-47-6	
Surrogates	00	0/	04.445		4		44/04/40 44:00	0007.00.5	
Toluene-d8 (S)	96	%	84-115		1		11/01/16 14:02		
4-Bromofluorobenzene (S)	96	%	81-119		1		11/01/16 14:02		
1,2-Dichloroethane-d4 (S)	109	%	77-126		1		11/01/16 14:02		
Dibromofluoromethane (S)	103	%	70-130		1		11/01/16 14:02	1868-53-7	
2320B Alkalinity	•	Method: SM232							
Alkalinity, Total as CaCO3	414	mg/L	10.0	1.1	1		11/01/16 18:00		
ron, Ferrous	Analytical	Method: SM350	00-FeD-00						
ron, Ferrous	0.11 _J	mg/L	0.10	0.012	1		10/27/16 18:45	i	H3,H6
1500S2F Sulfide, Iodometric	Analytical	Method: SM450	00S2F-00						
Sulfide	ND	mg/L	1.0	0.31	1		11/01/16 16:30	18496-25-8	
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 3	51.2						
Nitrogen, Kjeldahl, Total	ND	mg/L	1.0	0.26	1		11/04/16 13:00	7727-37-9	

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Date: 11/17/2016 02:21 PM

Sample: MW-4-1016	Lab ID:	30200663001	Collected	d: 10/25/16	3 14:00	Received: 10/	27/16 09:55 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
4500 Chloride	Analytical	Method: SM45	00CIE-97						
Chloride	421	mg/L	30.0	4.1	10		11/02/16 14:28	16887-00-6	
SM4500NO3-F, NO3-NO2	Analytical	Method: SM45	00NO3F-00						
Nitrogen, NO2 plus NO3	3.2	mg/L	0.10	0.023	1		11/01/16 12:20		
9012B Cyanide, Total	Analytical	Method: EPA 9	012B						
Cyanide	ND	mg/L	0.010	0.0018	1		11/01/16 21:49	57-12-5	
ASTM D516 Sulfate Water	Analytical	Method: ASTM	D516-11						
Sulfate	60.8	mg/L	10.0	0.48	1		11/09/16 15:58	14808-79-8	
Sample: MW-13-1016 Comments: • 8270 DWPAH: Sa		30200663002 due to the pres		d: 10/25/16				atrix: Water ence.	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: EF	PA 3005A		•	
Lead	ND	ug/L	5.0	4.0	1	11/07/16 15:33	11/10/16 15:02	7439-92-1	
Manganese	93.8	ug/L	5.0	0.71	1	11/07/16 15:33	11/10/16 15:02	7439-96-5	
9		Ü		· · · ·					
-						thod: EPA 3510C			
8270D MSSV PAH by SIM Acenaphthene						thod: EPA 3510C 11/01/16 08:40			
8270D MSSV PAH by SIM Acenaphthene Acenaphthylene	Analytical 225 J 267 J	Method: EPA 8 ug/L ug/L	270D by SI 52.1 52.1	M Prepara 8.2 7.4	500 500	11/01/16 08:40 11/01/16 08:40	11/03/16 19:34 11/03/16 19:34	83-32-9 208-96-8	R1 M1,R1
8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene	Analytical 225 J 267 J 19.2 J	Method: EPA 8 ug/L ug/L ug/L	270D by SI 52.1 52.1 0.10	M Prepara 8.2 7.4 0.013	500 500 500 1	11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	11/03/16 19:34 11/03/16 19:34 11/01/16 21:57	83-32-9 208-96-8 120-12-7	R1 M1,R1 M1,R1
8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	Analytical 225 J 267 J 19.2 J 6.7 J	Method: EPA 8 ug/L ug/L ug/L ug/L	270D by SI 52.1 52.1 0.10 0.10	M Prepara 8.2 7.4 0.013 0.015	500 500 500 1 1	11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	11/03/16 19:34 11/03/16 19:34 11/01/16 21:57 11/01/16 21:57	83-32-9 208-96-8 120-12-7 56-55-3	R1 M1,R1 M1,R1 M1,R1
8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	Analytical 225 J 267 J 19.2 J 6.7 J 6.5 J	Method: EPA 8 ug/L ug/L ug/L ug/L ug/L	52.1 52.1 52.1 0.10 0.10 0.10	8.2 7.4 0.013 0.015 0.0074	500 500 1 1 1	11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	11/03/16 19:34 11/03/16 19:34 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8	R1 M1,R1 M1,R1 M1,R1 M1
8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	Analytical 225 J 267 J 19.2 J 6.7 J 6.5 J 6.2 J	Method: EPA 8 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	270D by SI 52.1 52.1 0.10 0.10 0.10 0.10	8.2 7.4 0.013 0.015 0.0074 0.016	500 500 1 1 1	11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	11/03/16 19:34 11/03/16 19:34 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2	R1 M1,R1 M1,R1 M1,R1 M1
8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene	225 J 267 J 19.2 J 6.7 J 6.5 J 6.2 J 3.3 J	Method: EPA 8 ug/L	270D by SI 52.1 52.1 0.10 0.10 0.10 0.10 0.10	8.2 7.4 0.013 0.015 0.0074 0.016 0.020	500 500 1 1 1 1	11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	11/03/16 19:34 11/03/16 19:34 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2	M1,R1 M1,R1 M1,R1 M1 M1 M1,R1
8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	Analytical 225 J 267 J 19.2 J 6.7 J 6.5 J 6.2 J 3.3 J 2.5 J	Method: EPA 8 ug/L	270D by SI 52.1 52.1 0.10 0.10 0.10 0.10 0.10 0.10 0.10	8.2 7.4 0.013 0.015 0.0074 0.016 0.020 0.012	500 500 1 1 1 1 1	11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	11/03/16 19:34 11/03/16 19:34 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9	R1 M1,R1 M1,R1 M1,R1 M1 M1,R1 M1
8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	Analytical 225 J 267 J 19.2 J 6.7 J 6.5 J 6.2 J 3.3 J 2.5 J 6.1 J	Method: EPA 8 ug/L	270D by SI 52.1 52.1 0.10 0.10 0.10 0.10 0.10 0.10 0.10	8.2 7.4 0.013 0.015 0.0074 0.016 0.020 0.012 0.0078	500 500 1 1 1 1 1 1	11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	11/03/16 19:34 11/03/16 19:34 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9	R1 M1,R1 M1,R1 M1,R1 M1 M1,R1 M1 M1,R1
8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene	Analytical 225 J 267 J 19.2 J 6.7 J 6.5 J 6.2 J 3.3 J 2.5 J 6.1 J 0.85 J	Method: EPA 8 ug/L	270D by SI 52.1 52.1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0	8.2 7.4 0.013 0.015 0.0074 0.016 0.020 0.012 0.0078 0.029	500 500 1 1 1 1 1 1	11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	11/03/16 19:34 11/03/16 19:34 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3	R1 M1,R1 M1,R1 M1,R1 M1 M1,R1 M1 M1 M1,R1 M1,R1
8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene	Analytical 225 J 267 J 19.2 J 6.7 J 6.5 J 6.2 J 2.5 J 6.1 J 0.85 J 17.8 J	Method: EPA 8 ug/L	270D by SI 52.1 52.1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0	8.2 7.4 0.013 0.015 0.0074 0.016 0.020 0.012 0.0078 0.029 0.011	500 500 1 1 1 1 1 1 1 1	11/01/16 08:40 11/01/16 08:40	11/03/16 19:34 11/03/16 19:34 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0	R1 M1,R1 M1,R1 M1,R1 M1 M1,R1 M1 M1,R1 M1,R1 M1,R1
8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene	Analytical 225 j 267 j 19.2 j 6.7 j 6.5 j 6.2 j 3.3 j 2.5 j 6.1 j 0.85 j 17.8 j 74.8 j	Method: EPA 8 ug/L	52.1 52.1 52.1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0	8.2 7.4 0.013 0.015 0.0074 0.016 0.020 0.012 0.0078 0.029 0.011 8.3	500 500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11/01/16 08:40 11/01/16 08:40	11/03/16 19:34 11/03/16 19:34 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7	R1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1 M1 M1,R1 M1,R1 M1,R1 M1,R1
8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	Analytical 225 j 267 j 19.2 j 6.7 j 6.5 j 6.2 j 3.3 j 2.5 j 6.1 j 0.85 j 17.8 j 74.8 j 2.7 j	Method: EPA 8 ug/L	270D by SI 52.1 52.1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0	8.2 7.4 0.013 0.015 0.0074 0.016 0.020 0.012 0.0078 0.029 0.011 8.3 0.029	500 500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11/01/16 08:40 11/01/16 08:40	11/03/16 19:34 11/03/16 19:34 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/03/16 19:34 11/01/16 21:57	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5	R1 M1,R1 M1,R1 M1,R1 M1,R1 M1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1
8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene	Analytical 225 j 267 j 19.2 j 6.7 j 6.5 j 6.2 j 3.3 j 2.5 j 6.1 j 0.85 j 17.8 j 74.8 j	Method: EPA 8 ug/L	52.1 52.1 52.1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0	8.2 7.4 0.013 0.015 0.0074 0.016 0.020 0.012 0.0078 0.029 0.011 8.3	500 500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11/01/16 08:40 11/01/16 08:40	11/03/16 19:34 11/03/16 19:34 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-57-6	R1 M1,R1 M1,R1 M1,R1 M1,R1 M1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1
8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene	Analytical 225 J 267 J 19.2 J 6.7 J 6.5 J 6.2 J 3.3 J 2.5 J 6.1 J 0.85 J 17.8 J 74.8 J 2.7 J 558 J	Method: EPA 8 ug/L	270D by SI 52.1 52.1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	8.2 7.4 0.013 0.015 0.0074 0.016 0.020 0.012 0.0078 0.029 0.011 8.3 0.029 10.7	500 500 1 1 1 1 1 1 1 1 1 1 500 1	11/01/16 08:40 11/01/16 08:40	11/03/16 19:34 11/03/16 19:34 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/03/16 19:34 11/01/16 21:57 11/03/16 19:34	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-57-6 91-20-3	R1 M1,R1 M1,R1 M1,R1 M1,R1 M1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1
8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene	Analytical 225 J 267 J 19.2 J 6.7 J 6.5 J 6.2 J 3.3 J 2.5 J 6.1 J 0.85 J 17.8 J 74.8 J 2.7 J 558 J 5560 J	Method: EPA 8 ug/L ug/L	270D by SI 52.1 52.1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0	8.2 7.4 0.013 0.015 0.0074 0.016 0.020 0.012 0.0078 0.029 0.011 8.3 0.029 10.7 9.2	500 500 1 1 1 1 1 1 1 1 1 1 500 1 500 500	11/01/16 08:40 11/01/16 08:40	11/03/16 19:34 11/03/16 19:34 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/03/16 19:34 11/03/16 19:34 11/03/16 19:34	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-57-6 91-20-3 85-01-8	R1 M1,R1 M1,R1 M1,R1 M1,R1 M1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1
8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene Phenanthrene	Analytical 225 J 267 J 19.2 J 6.7 J 6.5 J 6.2 J 3.3 J 2.5 J 6.1 J 0.85 J 17.8 J 74.8 J 558 J 5560 J	Method: EPA 8 ug/L	270D by SI 52.1 52.1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0	8.2 7.4 0.013 0.015 0.0074 0.016 0.020 0.012 0.0078 0.029 0.011 8.3 0.029 10.7 9.2	500 500 1 1 1 1 1 1 1 1 1 500 1 500 500	11/01/16 08:40 11/01/16 08:40	11/03/16 19:34 11/03/16 19:34 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/03/16 19:34 11/03/16 19:34 11/03/16 19:34	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-57-6 91-20-3 85-01-8	R1 M1,R1 M1,R1 M1,R1 M1,R1 M1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1
8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene	Analytical 225 J 267 J 19.2 J 6.7 J 6.5 J 6.2 J 3.3 J 2.5 J 6.1 J 0.85 J 17.8 J 74.8 J 558 J 5560 J	Method: EPA 8 ug/L ug/L	270D by SI 52.1 52.1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0	8.2 7.4 0.013 0.015 0.0074 0.016 0.020 0.012 0.0078 0.029 0.011 8.3 0.029 10.7 9.2	500 500 1 1 1 1 1 1 1 1 1 500 1 500 500	11/01/16 08:40 11/01/16 08:40	11/03/16 19:34 11/03/16 19:34 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/01/16 21:57 11/03/16 19:34 11/03/16 19:34 11/03/16 19:34	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-57-6 91-20-3 85-01-8 129-00-0	R1 M1,R1 M1,R1 M1,R1 M1,R1 M1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1 M1,R1

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Date: 11/17/2016 02:21 PM

Lab ID: 30200663002 Sample: MW-13-1016 Collected: 10/25/16 11:15 Received: 10/27/16 09:55 Matrix: Water Comments: • 8270 DWPAH: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference. Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 8260C MSV Analytical Method: EPA 8260C Benzene 348 ug/L 1.0 0.16 11/01/16 17:25 71-43-2 1 366 0.23 Ethylbenzene ug/L 1.0 1 11/01/16 17:25 100-41-4 M1 552 ug/L 5.0 0.63 5 Toluene 11/02/16 13:05 108-88-3 M1 Xylene (Total) 669 ug/L 3.0 0.55 1 11/01/16 17:25 1330-20-7 MS m&p-Xylene 467 ug/L 2.0 0.32 1 11/01/16 17:25 179601-23-1 M1 o-Xylene 203 ug/L 1.0 0.22 1 11/01/16 17:25 95-47-6 M1 Surrogates Toluene-d8 (S) 93 % 84-115 11/01/16 17:25 2037-26-5 1 4-Bromofluorobenzene (S) 93 % 81-119 1 11/01/16 17:25 460-00-4 107 % 77-126 11/01/16 17:25 17060-07-0 1,2-Dichloroethane-d4 (S) 1 Dibromofluoromethane (S) 101 % 70-130 1 11/01/16 17:25 1868-53-7 Analytical Method: SM2320B-97 2320B Alkalinity Alkalinity, Total as CaCO3 364 11/01/16 18:00 M1 mg/L 10.0 1.1 1 Analytical Method: SM3500-FeD-00 Iron, Ferrous D6.D8. Iron, Ferrous 0.18 J mg/L 0.10 0.012 10/27/16 18:45 H3,H6 Analytical Method: SM4500S2F-00 4500S2F Sulfide, Iodometric Sulfide ND mg/L 1.0 0.31 11/01/16 16:30 18496-25-8 1 Analytical Method: EPA 351.2 351.2 Total Kjeldahl Nitrogen Nitrogen, Kjeldahl, Total 1.3] 1.0 0.26 11/04/16 13:00 7727-37-9 M1 mg/L 1 4500 Chloride Analytical Method: SM4500CIE-97 Chloride 0.41 11/02/16 14:28 16887-00-6 M1 11.4 I mg/L 3.0 1 SM4500NO3-F, NO3-NO2 Analytical Method: SM4500NO3F-00 0.023 Nitrogen, NO2 plus NO3 ND I mg/L 0.10 1 11/01/16 12:21 9012B Cyanide, Total Analytical Method: EPA 9012B 0.23 J 0.010 0.0018 Cyanide mg/L 11/01/16 21:44 57-12-5 M1 1 **ASTM D516 Sulfate Water** Analytical Method: ASTM D516-11 Sulfate 18.3 J 10.0 0.48 11/09/16 16:00 14808-79-8 mg/L

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Date: 11/17/2016 02:21 PM

Sample: MW-14-1016	Lab ID: 3	30200663003	Collected	1: 10/25/16	3 10:15	Received: 10/	27/16 09:55 M	atrix: Water	
_			Report						_
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010C MET ICP	Analytical N	Method: EPA 6	010C Prepa	aration Met	hod: EF	PA 3005A			
_ead	33.3	ug/L	5.0	4.0	1	11/07/16 15:33	11/10/16 15:18	7439-92-1	
Manganese	768	ug/L	5.0	0.71	1	11/07/16 15:33	11/10/16 15:18	7439-96-5	
3270D MSSV PAH by SIM	Analytical N	Method: EPA 8	270D by SIN	∕ Prepara	tion Met	hod: EPA 3510C			
Acenaphthene	0.19	ug/L	0.10	0.016	1	11/01/16 08:40	11/01/16 22:14	83-32-9	
Acenaphthylene	0.99 J	ug/L	0.10	0.014	1	11/01/16 08:40	11/01/16 22:14	208-96-8	
Anthracene	0.25	ug/L	0.10	0.013	1	11/01/16 08:40	11/01/16 22:14	120-12-7	
Benzo(a)anthracene	0.28	ug/L	0.10	0.015	1	11/01/16 08:40	11/01/16 22:14	56-55-3	
Benzo(a)pyrene	0.32	ug/L	0.10	0.0072	1	11/01/16 08:40	11/01/16 22:14	50-32-8	
Benzo(b)fluoranthene	0.55	ug/L	0.10	0.016	1	11/01/16 08:40	11/01/16 22:14		ip
Benzo(g,h,i)perylene	0.29	ug/L	0.10	0.019	1	11/01/16 08:40	11/01/16 22:14	191-24-2	•
Benzo(k)fluoranthene	0.47 J	ug/L	0.10	0.011	1	11/01/16 08:40	11/01/16 22:14		ip
Chrysene	0.27	ug/L	0.10	0.0076	1	11/01/16 08:40	11/01/16 22:14		•
Dibenz(a,h)anthracene	ND	ug/L	0.10	0.028	1	11/01/16 08:40	11/01/16 22:14		
Fluoranthene	0.45 J	ug/L	0.10	0.011	1	11/01/16 08:40	11/01/16 22:14		
Fluorene	0.14	ug/L	0.10	0.016	1	11/01/16 08:40	11/01/16 22:14		
ndeno(1,2,3-cd)pyrene	0.21	ug/L	0.10	0.028	1	11/01/16 08:40	11/01/16 22:14		
2-Methylnaphthalene	0.45	ug/L	0.10	0.021	1	11/01/16 08:40	11/01/16 22:14		
Naphthalene	5.2	ug/L	0.10	0.018	1	11/01/16 08:40	11/01/16 22:14		
Phenanthrene	0.22	ug/L	0.10	0.016	1	11/01/16 08:40	11/01/16 22:14		
Pyrene	0.68	ug/L	0.10	0.013	1	11/01/16 08:40	11/01/16 22:14		
Surrogates	0.00)	ug/L	0.10	0.013	'	11/01/10 00.40	11/01/10 22.14	129-00-0	
2-Fluorobiphenyl (S)	80	%	19-123		1	11/01/16 08:40	11/01/16 22:14	321-60-8	
Terphenyl-d14 (S)	87	%	58-130		1	11/01/16 08:40	11/01/16 22:14		
3260C MSV	Analytical N	Method: EPA 8	260C						
Benzene	ND	ug/L	1.0	0.16	1		11/01/16 14:28	71-43-2	
Ethylbenzene	ND	ug/L	1.0	0.23	1		11/01/16 14:28	100-41-4	
Toluene	ND	ug/L	1.0	0.13	1		11/01/16 14:28		
Xylene (Total)	ND	ug/L	3.0	0.55	1		11/01/16 14:28		
m&p-Xylene	ND	ug/L	2.0	0.32	1		11/01/16 14:28		
o-Xylene	ND	ug/L	1.0	0.22	1		11/01/16 14:28		
Surrogates		-y-		J	•				
Toluene-d8 (S)	101	%	84-115		1		11/01/16 14:28	2037-26-5	
4-Bromofluorobenzene (S)	96	%	81-119		1		11/01/16 14:28		
1,2-Dichloroethane-d4 (S)	111	%	77-126		1		11/01/16 14:28		
Dibromofluoromethane (S)	104	%	70-130		1		11/01/16 14:28		
2320B Alkalinity	Analytical N	Method: SM232	20B-97						
Alkalinity, Total as CaCO3	520	mg/L	10.0	1.1	1		11/01/16 18:00		
ron, Ferrous	Analytical N	Method: SM350	00-FeD-00						
Iron, Ferrous	0.55 J	mg/L	0.10	0.012	1		10/27/16 18:45		H3,H6

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Date: 11/17/2016 02:21 PM

Sample: MW-14-1016	Lab ID:	30200663003	Collected	l: 10/25/16	6 10:15	Received: 10/	27/16 09:55 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
4500S2F Sulfide, Iodometric	Analytical	Method: SM45	00S2F-00						
Sulfide	ND	mg/L	1.0	0.31	1		11/01/16 16:30	18496-25-8	
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 3	51.2						
Nitrogen, Kjeldahl, Total	1.2	mg/L	1.0	0.26	1		11/04/16 13:03	7727-37-9	
4500 Chloride	Analytical	Method: SM45	00CIE-97						
Chloride	18.0	mg/L	3.0	0.41	1		11/02/16 14:33	16887-00-6	
SM4500NO3-F, NO3-NO2	Analytical	Method: SM45	00NO3F-00						
Nitrogen, NO2 plus NO3	ND	mg/L	0.10	0.023	1		11/01/16 12:25		
9012B Cyanide, Total	Analytical	Method: EPA 9	012B						
Cyanide	0.67	mg/L	0.10	0.018	10		11/01/16 22:02	57-12-5	
ASTM D516 Sulfate Water	Analytical	Method: ASTM	D516-11						
Sulfate	153	mg/L	50.0	2.4	5		11/09/16 16:02	14808-79-8	В
Sample: MW-15-1016	Lab ID:	30200663004	Collected	: 10/25/16	6 13:00	Received: 10/	27/16 09:55 M	atrix: Water	
Comments: • 8270 DWPAH: San	nple was diluted o		ence of high Report	levels of r	non-targ	-	er matrix interfe	rence.	Ous
Comments: • 8270 DWPAH: San Parameters	Results	due to the pres	ence of high Report Limit	levels of r	non-targ	et analytes or oth Prepared			Qua
Parameters 6010C MET ICP	Results Analytical	Units Method: EPA 6	ence of high Report Limit 010C Prepa	MDL	DF thod: EF	PA 3005A	er matrix interfer	CAS No.	Qua
Parameters 6010C MET ICP Lead	Results Analytical	Units	ence of high Report Limit 010C Prepa	MDL Aration Met 4.0	DFthod: EF	PA 3005A 11/07/16 15:33	Analyzed 11/10/16 15:27	CAS No. 7439-92-1	Qua
Parameters 6010C MET ICP Lead Manganese	Results Analytical ND 609	Units Units Method: EPA 6 ug/L ug/L	ence of high Report Limit 010C Prepa 5.0 5.0	MDL aration Met 4.0 0.71	DF thod: EF	PA 3005A 11/07/16 15:33	er matrix interfer	CAS No. 7439-92-1	Qua
Parameters 6010C MET ICP Lead Manganese 8270D MSSV PAH by SIM	Results Analytical ND 609	Units Method: EPA 6 ug/L ug/L Method: EPA 8	ence of high Report Limit 010C Prepa 5.0 5.0	MDL aration Met 4.0 0.71	DF thod: EF	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33	Analyzed 11/10/16 15:27	CAS No. 7439-92-1 7439-96-5	Qua
Parameters 6010C MET ICP Lead Manganese 8270D MSSV PAH by SIM Acenaphthene	Results Analytical ND 609 Analytical	Units Units Method: EPA 6 ug/L ug/L	ence of high Report Limit 010C Prepa 5.0 5.0 270D by SIM	MDL aration Met 4.0 0.71 M Prepara	DF thod: EF 1 1 tion Mer	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33 thod: EPA 3510C	Analyzed 11/10/16 15:27 11/10/16 15:27	7439-92-1 7439-96-5 83-32-9	Qua
Parameters Parameters 6010C MET ICP Lead Manganese 8270D MSSV PAH by SIM Acenaphthene Acenaphthylene	Results Analytical ND 609 Analytical 43.1	Units Units Method: EPA 6 ug/L ug/L Method: EPA 8 ug/L	ence of high Report Limit 010C Prepa 5.0 5.0 270D by SIM	MDL aration Met 4.0 0.71 M Prepara 1.6	DF thod: EF 1 1 tion Met	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33 thod: EPA 3510C 11/01/16 08:40	Analyzed 11/10/16 15:27 11/10/16 15:27 11/03/16 19:52	7439-92-1 7439-96-5 83-32-9 208-96-8	Qua
Parameters 6010C MET ICP Lead Manganese 8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene	Results Analytical ND 609 Analytical 43.1 2.4	Units Method: EPA 6 ug/L ug/L Method: EPA 8 ug/L ug/L	ence of high Report Limit 010C Prepa 5.0 5.0 270D by SIM 10.1 0.10	MDL aration Met 4.0 0.71 M Prepara 1.6 0.014	DF thod: EF 1 1 tion Met 100 1	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33 thod: EPA 3510C 11/01/16 08:40 11/01/16 08:40	Analyzed 11/10/16 15:27 11/10/16 15:27 11/03/16 19:52 11/01/16 22:32	7439-92-1 7439-96-5 83-32-9 208-96-8 120-12-7	Qua
Parameters Parameters 6010C MET ICP Lead Manganese 8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	Analytical Analytical Analytical Analytical 43.1 2.4 1.9	Units Units Method: EPA 6 ug/L ug/L Method: EPA 8 ug/L ug/L ug/L ug/L	ence of high Report Limit 010C Prepa 5.0 5.0 270D by SIN 10.1 0.10 0.10	MDL aration Met 4.0 0.71 M Prepara 1.6 0.014 0.013	DF thod: EF 1 1 tion Met 100 1 1	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33 thod: EPA 3510C 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	Analyzed 11/10/16 15:27 11/10/16 15:27 11/03/16 19:52 11/01/16 22:32 11/01/16 22:32	7439-92-1 7439-96-5 83-32-9 208-96-8 120-12-7 56-55-3	Qua
Parameters Parameters 6010C MET ICP Lead Manganese 8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	Analytical Analytical Analytical Analytical 43.1 2.4 1.9 0.14	Units Units Method: EPA 6 ug/L ug/L Method: EPA 8 ug/L	ence of high Report Limit 010C Prepa 5.0 5.0 270D by SIN 10.1 0.10 0.10 0.10	MDL aration Met 4.0 0.71 M Prepara 1.6 0.014 0.013 0.015	DF thod: EF 1 1 tion Met 100 1 1 1 1	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33 thod: EPA 3510C 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	Analyzed 11/10/16 15:27 11/10/16 15:27 11/03/16 19:52 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32	7439-92-1 7439-96-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8	Qua
Parameters 6010C MET ICP Lead Manganese 8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene	Analytical Analytical Analytical Analytical 43.1 2.4 1.9 0.14 ND 0.11 ND	Units Units Method: EPA 6 ug/L ug/L Method: EPA 8 ug/L	ence of high Report Limit 010C Prepa 5.0 5.0 270D by SIN 10.1 0.10 0.10 0.10 0.10 0.10 0.10	MDL aration Met 4.0 0.71 M Prepara 1.6 0.014 0.013 0.015 0.0072 0.016 0.019	DF thod: EF 1 1 1 1 1 1 1 1 1 1 1	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33 thod: EPA 3510C 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	Analyzed 11/10/16 15:27 11/10/16 15:27 11/03/16 19:52 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32	7439-92-1 7439-96-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2	Qua
Parameters 6010C MET ICP Lead Manganese 8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	Analytical	Units Units Method: EPA 6 ug/L ug/L Method: EPA 8 ug/L	ence of high Report Limit 010C Prepa 5.0 5.0 270D by SIN 10.1 0.10 0.10 0.10 0.10 0.10 0.10 0.	MDL aration Met 4.0 0.71 M Prepara 1.6 0.014 0.013 0.015 0.0072 0.016 0.019 0.011	thod: EF thod: EF 1 1 tion Met 100 1 1 1 1	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33 thod: EPA 3510C 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	Analyzed 11/10/16 15:27 11/10/16 15:27 11/03/16 19:52 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32	7439-92-1 7439-96-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2	Qua
Parameters 6010C MET ICP Lead Manganese 8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	Analytical	Units Units Method: EPA 6 ug/L	ence of high Report Limit 010C Prepa 5.0 5.0 270D by SIN 10.1 0.10 0.10 0.10 0.10 0.10 0.10 0.	MDL aration Met 4.0 0.71 M Prepara 1.6 0.014 0.013 0.015 0.0072 0.016 0.019 0.011 0.0076	DF thod: EF 1 1 1 1 1 1 1 1 1 1 1	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33 thod: EPA 3510C 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	11/10/16 15:27 11/10/16 15:27 11/10/16 15:27 11/03/16 19:52 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32	7439-92-1 7439-96-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9	Qua
Parameters 6010C MET ICP Lead Manganese 8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene	Analytical	Units Units Method: EPA 6 ug/L	ence of high Report Limit 010C Prepa 5.0 5.0 270D by SIN 10.1 0.10 0.10 0.10 0.10 0.10 0.10 0.	MDL aration Met 4.0 0.71 M Prepara 1.6 0.014 0.013 0.015 0.0072 0.016 0.019 0.011 0.0076 0.028	DF thod: EF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33 thod: EPA 3510C 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	11/10/16 15:27 11/10/16 15:27 11/10/16 15:27 11/03/16 19:52 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32	7439-92-1 7439-96-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3	Qua
Parameters 6010C MET ICP Lead Manganese 8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene	Analytical	Units Units Method: EPA 6 ug/L	ence of high Report Limit 010C Prepa 5.0 5.0 270D by SIN 10.1 0.10 0.10 0.10 0.10 0.10 0.10 0.	MDL aration Met 4.0 0.71 M Prepara 1.6 0.014 0.015 0.0072 0.016 0.019 0.011 0.0076 0.028 0.011	DF thod: EF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33 11/07/16 15:33 thod: EPA 3510C 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	11/10/16 15:27 11/10/16 15:27 11/10/16 15:27 11/03/16 19:52 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32	7439-92-1 7439-96-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0	Qua
6010C MET ICP Lead Manganese 8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene	Analytical Analytical Analytical Analytical Analytical A3.1 2.4 1.9 0.14 ND 0.11 ND ND 0.11 ND 1.2 J 11.8	Units Units Method: EPA 6 ug/L	ence of high Report Limit 010C Prepa 5.0 5.0 270D by SIN 10.1 0.10 0.10 0.10 0.10 0.10 0.10 0.	MDL aration Met 4.0 0.71 M Prepara 1.6 0.014 0.015 0.0072 0.016 0.019 0.011 0.0076 0.028 0.011 0.016	DF thod: EF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33 thod: EPA 3510C 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	11/10/16 15:27 11/10/16 15:27 11/10/16 15:27 11/03/16 19:52 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32 11/01/16 22:32	7439-92-1 7439-96-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7	Qua
Parameters 6010C MET ICP Lead Manganese 8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	Analytical Analytical Analytical Analytical Analytical A3.1 2.4 1.9 0.14 ND 0.11 ND ND 0.11 ND ND 1.2 J 11.8 ND	Units Units Method: EPA 6 ug/L ug/L	ence of high Report Limit 010C Prepa 5.0 5.0 270D by SIN 10.1 0.10 0.10 0.10 0.10 0.10 0.10 0.	MDL aration Met 4.0 0.71 M Prepara 1.6 0.014 0.015 0.0072 0.016 0.019 0.011 0.0076 0.028 0.011 0.016 0.028	DF thod: EF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33 11/07/16 15:33 thod: EPA 3510C 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	11/10/16 15:27 11/10/16 15:27 11/10/16 15:27 11/03/16 19:52 11/01/16 22:32 11/01/16 22:32	7439-92-1 7439-96-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5	Qua
Parameters 6010C MET ICP Lead Manganese 8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene	Analytical	Units Units Method: EPA 6 ug/L	ence of high Report Limit 010C Prepa 5.0 5.0 270D by SIN 10.1 0.10 0.10 0.10 0.10 0.10 0.10 0.	MDL aration Met 4.0 0.71 M Prepara 1.6 0.014 0.015 0.0072 0.016 0.019 0.011 0.0076 0.028 0.011 0.016 0.028 0.021	DF thod: EF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33 11/07/16 15:33 thod: EPA 3510C 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	11/10/16 15:27 11/10/16 15:27 11/10/16 15:27 11/03/16 19:52 11/01/16 22:32 11/01/16 22:32	7439-92-1 7439-96-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-57-6	Qua
Parameters 6010C MET ICP Lead Manganese 8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	Analytical Analytical Analytical Analytical Analytical A3.1 2.4 1.9 0.14 ND 0.11 ND ND 0.11 ND ND 1.2 J 11.8 ND	Units Units Method: EPA 6 ug/L ug/L	ence of high Report Limit 010C Prepa 5.0 5.0 270D by SIN 10.1 0.10 0.10 0.10 0.10 0.10 0.10 0.	MDL aration Met 4.0 0.71 M Prepara 1.6 0.014 0.015 0.0072 0.016 0.019 0.011 0.0076 0.028 0.011 0.016 0.028	DF thod: EF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33 11/07/16 15:33 thod: EPA 3510C 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	11/10/16 15:27 11/10/16 15:27 11/10/16 15:27 11/03/16 19:52 11/01/16 22:32 11/01/16 22:32	7439-92-1 7439-96-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-57-6 91-20-3	Qua

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Date: 11/17/2016 02:21 PM

Collected: 10/25/16 13:00 Received: 10/27/16 09:55 Sample: MW-15-1016 Lab ID: 30200663004 Matrix: Water • 8270 DWPAH: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference. Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 8270D MSSV PAH by SIM Analytical Method: EPA 8270D by SIM Preparation Method: EPA 3510C Pyrene 1.4 ug/L 0.10 0.013 11/01/16 08:40 11/01/16 22:32 129-00-0 Surrogates 2-Fluorobiphenyl (S) 88 19-123 11/01/16 08:40 11/01/16 22:32 321-60-8 % 1 Terphenyl-d14 (S) 95 % 58-130 1 11/01/16 08:40 11/01/16 22:32 1718-51-0 8260C MSV Analytical Method: EPA 8260C 714 10.0 10 11/02/16 12:39 71-43-2 Benzene ua/L 1.6 Ethylbenzene 244 ug/L 1.0 0.23 11/01/16 14:53 100-41-4 1 Toluene 6.1 ug/L 1.0 0.13 11/01/16 14:53 108-88-3 1 45.4 ug/L 0.55 11/01/16 14:53 1330-20-7 Xylene (Total) 3.0 1 13.7 0.32 11/01/16 14:53 179601-23-1 m&p-Xylene ug/L 2.0 1 o-Xylene 31.7 ug/L 0.22 11/01/16 14:53 95-47-6 1.0 1 Surrogates 11/01/16 14:53 2037-26-5 Toluene-d8 (S) 96 % 84-115 4-Bromofluorobenzene (S) 96 % 81-119 11/01/16 14:53 460-00-4 1 1,2-Dichloroethane-d4 (S) 107 % 77-126 11/01/16 14:53 17060-07-0 1 Dibromofluoromethane (S) 105 % 70-130 1 11/01/16 14:53 1868-53-7 2320B Alkalinity Analytical Method: SM2320B-97 Alkalinity, Total as CaCO3 676 mg/L 10.0 11/01/16 18:00 1 1 1 Iron, Ferrous Analytical Method: SM3500-FeD-00 10 10/27/16 18:45 H3,H6 Iron, Ferrous 8.2 J mg/L 1.0 0.12 4500S2F Sulfide, Iodometric Analytical Method: SM4500S2F-00 Sulfide ND 1.0 0.31 11/01/16 16:30 18496-25-8 mg/L 1 351.2 Total Kjeldahl Nitrogen Analytical Method: EPA 351.2 Nitrogen, Kjeldahl, Total 4.7 mg/L 1.0 0.26 1 11/04/16 13:05 7727-37-9 4500 Chloride Analytical Method: SM4500CIE-97 Chloride 65.4 mg/L 15.0 2.0 5 11/02/16 14:33 16887-00-6 SM4500NO3-F, NO3-NO2 Analytical Method: SM4500NO3F-00 Nitrogen, NO2 plus NO3 ND 0.10 0.023 1 11/01/16 12:26 mg/L Analytical Method: EPA 9012B 9012B Cyanide, Total 0.018 11/01/16 22:03 57-12-5 Cyanide mg/L 0.10 10 **ASTM D516 Sulfate Water** Analytical Method: ASTM D516-11 Sulfate 67.9 mg/L 10.0 0.48 11/09/16 16:03 14808-79-8

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Date: 11/17/2016 02:21 PM

Collected: 10/25/16 09:00 Received: 10/27/16 09:55 Matrix: Water Sample: MW-16-1016 Lab ID: 30200663005 Comments: • 8270 DWPAH: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference. Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 6010C MET ICP Analytical Method: EPA 6010C Preparation Method: EPA 3005A ND ug/L 5.0 4.0 11/07/16 15:33 11/10/16 15:30 7439-92-1 I ead 601 11/10/16 15:30 7439-96-5 Manganese ug/L 5.0 0.71 1 11/07/16 15:33 8270D MSSV PAH by SIM Analytical Method: EPA 8270D by SIM Preparation Method: EPA 3510C Acenaphthene 54.7 ug/L 2.0 0.32 20 11/01/16 08:40 11/03/16 20:09 83-32-9 Acenaphthylene 47.3 ug/L 2.0 0.29 20 11/01/16 08:40 11/03/16 20:09 208-96-8 Anthracene 1.4 ug/L 0.10 0.013 1 11/01/16 08:40 11/01/16 22:49 120-12-7 Benzo(a)anthracene 0.10 ug/L 0.10 0.015 1 11/01/16 08:40 11/01/16 22:49 56-55-3 Benzo(a)pyrene ND ug/L 0.10 0.0072 1 11/01/16 08:40 11/01/16 22:49 50-32-8 Benzo(b)fluoranthene ND 0.10 0.016 11/01/16 08:40 11/01/16 22:49 205-99-2 ug/L 1 0.019 Benzo(q,h,i)perylene ND ug/L 0.10 1 11/01/16 08:40 11/01/16 22:49 191-24-2 Benzo(k)fluoranthene ND ug/L 0.10 0.011 1 11/01/16 08:40 11/01/16 22:49 207-08-9 in Chrysene ND ug/L 0.10 0.0076 11/01/16 08:40 11/01/16 22:49 218-01-9 1 ND 0.028 11/01/16 08:40 11/01/16 22:49 Dibenz(a,h)anthracene 0.10 1 53-70-3 ug/L Fluoranthene 1.8_I 0.10 0.011 11/01/16 08:40 11/01/16 22:49 206-44-0 ug/L 1 Fluorene 22.2 ug/L 0.32 20 11/01/16 08:40 11/03/16 20:09 86-73-7 2.0 Indeno(1,2,3-cd)pyrene ND ug/L 0.10 0.028 1 11/01/16 08:40 11/01/16 22:49 193-39-5 2-Methylnaphthalene ND ug/L 0.10 0.021 1 11/01/16 08:40 11/01/16 22:49 91-57-6 Naphthalene 4.6 ug/L 0.10 0.018 1 11/01/16 08:40 11/01/16 22:49 91-20-3 Phenanthrene 15.9 ug/L 0.10 0.016 1 11/01/16 08:40 11/01/16 22:49 85-01-8 Pyrene 0.013 1 11/01/16 08:40 11/01/16 22:49 129-00-0 2.0 ug/L 0.10 Surrogates 2-Fluorobiphenyl (S) 65 % 19-123 1 11/01/16 08:40 11/01/16 22:49 321-60-8 Terphenyl-d14 (S) 11/01/16 08:40 11/01/16 22:49 1718-51-0 70 % 58-130 1 8260C MSV Analytical Method: EPA 8260C 149 1.0 0.16 11/01/16 17:00 71-43-2 Benzene ug/L 1 11/01/16 17:00 100-41-4 Ethylbenzene 134 ug/L 1.0 0.23 1 Toluene 2.9 ug/L 1.0 0.13 1 11/01/16 17:00 108-88-3 Xylene (Total) 37.0 ug/L 3.0 0.55 1 11/01/16 17:00 1330-20-7 2.0 0.32 11/01/16 17:00 179601-23-1 m&p-Xylene 4.9 ug/L 1 o-Xylene 32.1 ug/L 1.0 0.22 1 11/01/16 17:00 95-47-6 Surrogates 98 % 84-115 11/01/16 17:00 2037-26-5 Toluene-d8 (S) 1 4-Bromofluorobenzene (S) 97 % 81-119 1 11/01/16 17:00 460-00-4 1,2-Dichloroethane-d4 (S) 105 % 77-126 1 11/01/16 17:00 17060-07-0 Dibromofluoromethane (S) 104 % 70-130 11/01/16 17:00 1868-53-7 Analytical Method: SM2320B-97 2320B Alkalinity Alkalinity, Total as CaCO3 636 mg/L 10.0 1.1 1 11/01/16 18:00 Analytical Method: SM3500-FeD-00 Iron, Ferrous Iron, Ferrous 2.4 J mg/L 0.10 0.012 10/27/16 18:45 H3,H6

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Date: 11/17/2016 02:21 PM

Sample: MW-16-1016		30200663005		d: 10/25/16				atrix: Water	
Comments: • 8270 DWPAH: San	nple was diluted d	•	nce of high Report	n levels of r	on-targ	et analytes or oth	er matrix interfer	ence.	
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
4500S2F Sulfide, lodometric	Analytical I	Method: SM450	0S2F-00						
Sulfide	ND	mg/L	1.0	0.31	1		11/01/16 16:30	18496-25-8	
351.2 Total Kjeldahl Nitrogen	Analytical I	Method: EPA 35	51.2						
Nitrogen, Kjeldahl, Total	5.4	mg/L	1.0	0.26	1		11/04/16 13:05	7727-37-9	
1500 Chloride	Analytical I	Method: SM450	0CIE-97						
Chloride	6.8	mg/L	3.0	0.41	1		11/02/16 14:34	16887-00-6	
SM4500NO3-F, NO3-NO2	Analytical I	Method: SM450	0NO3F-00						
Nitrogen, NO2 plus NO3	ND	mg/L	0.10	0.023	1		11/01/16 12:28		
9012B Cyanide, Total	Analytical I	Method: EPA 90)12B						
Cyanide	0.26	mg/L	0.010	0.0018	1		11/01/16 21:52	57-12-5	
ASTM D516 Sulfate Water	Analytical I	Method: ASTM	D516-11						
Sulfate	145	mg/L	50.0	2.4	5		11/09/16 16:04	14808-79-8	В
Sample: MW-13Matrix Spike-101		30200663006		d: 10/25/16				atrix: Water	
Sample: MW-13Matrix Spike-101 Comments: • 8270 DWPAH: San	nple was diluted d	lue to the prese	nce of high Report	n levels of r	on-targ	et analytes or oth	er matrix interfer	ence.	
Sample: MW-13Matrix Spike-101		lue to the prese	nce of high						Qual
Sample: MW-13Matrix Spike-101 Comments: • 8270 DWPAH: San Parameters	Results	lue to the prese	ence of high Report Limit	MDL	on-targ	et analytes or oth Prepared	er matrix interfer	ence.	Qual
Sample: MW-13Matrix Spike-101 Comments: •8270 DWPAH: San Parameters 6010C MET ICP	Results Analytical N	Units Method: EPA 60 ug/L	ence of high Report Limit – 010C Prep 5.0	MDL aration Met	DF hod: EF	Prepared PA 3005A 11/07/16 15:33	Analyzed 11/10/16 15:11	CAS No.	Qual
Sample: MW-13Matrix Spike-101 Comments: •8270 DWPAH: San Parameters 6010C MET ICP Lead	Results Analytical I	Units Method: EPA 60	ence of high Report Limit 010C Prep	MDL aration Met	DF hod: EF	et analytes or oth Prepared PA 3005A	er matrix interfer Analyzed	CAS No.	Qual
Sample: MW-13Matrix Spike-101 Comments: • 8270 DWPAH: San Parameters 6010C MET ICP Lead Manganese	Results Analytical N 496 579	Units Units Method: EPA 60 ug/L ug/L	Report Limit 110C Prep 5.0 5.0	MDL aration Met 4.0 0.71	DF hod: EF 1	Prepared PA 3005A 11/07/16 15:33	Analyzed 11/10/16 15:11	CAS No.	Qual
Sample: MW-13Matrix Spike-101 Comments: • 8270 DWPAH: San Parameters 6010C MET ICP Lead Manganese 8270D MSSV PAH by SIM	Results Analytical N 496 579	Units Method: EPA 60 ug/L ug/L Method: EPA 82 ug/L	Report Limit 110C Prep 5.0 5.0	MDL aration Met 4.0 0.71	DF hod: EF 1	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33	Analyzed 11/10/16 15:11	CAS No. 7439-92-1 7439-96-5	Qual
Sample: MW-13Matrix Spike-101 Comments: • 8270 DWPAH: San Parameters 6010C MET ICP Lead Manganese 8270D MSSV PAH by SIM Acenaphthene	Results Analytical I 496 579 Analytical I	Units Method: EPA 60 ug/L ug/L Method: EPA 82	Report Limit 110C Prep 5.0 5.0	MDL aration Met 4.0 0.71 M Prepara	DF hod: EF 1 1 tion Met	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33 thod: EPA 3510C	Analyzed 11/10/16 15:11 11/10/16 15:11	CAS No. 7439-92-1 7439-96-5 83-32-9	Qual
Sample: MW-13Matrix Spike-101 Comments: • 8270 DWPAH: Sam Parameters 6010C MET ICP Lead Manganese 8270D MSSV PAH by SIM Acenaphthene Acenaphthylene	Analytical N Analytical N Analytical N Analytical N Analytical N 180 241 18.1	Units Method: EPA 60 ug/L ug/L Method: EPA 82 ug/L	270D by SII 10.1 0.10	MDL aration Met 4.0 0.71 M Prepara 1.6 1.4 0.013	DF hod: EF 1 1 tion Met 100 100 1	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33 thod: EPA 3510C 11/01/16 08:40	Analyzed 11/10/16 15:11 11/10/16 15:11 11/03/16 20:27 11/03/16 20:27 11/01/16 23:06	CAS No. 7439-92-1 7439-96-5 83-32-9 208-96-8 120-12-7	Qual
Sample: MW-13Matrix Spike-101 Comments: • 8270 DWPAH: Sam Parameters 6010C MET ICP Lead Manganese 8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	Analytical N Analytical N Analytical N Analytical N Analytical N 180 241 18.1 6.5	Units Units Method: EPA 60 ug/L ug/L Method: EPA 82 ug/L ug/L ug/L ug/L ug/L ug/L	270D by SII 10.1 0.10 0.10	MDL 4.0 0.71 M Prepara 1.6 1.4 0.013 0.014	DF hod: EF 1 1 tion Met 100 100 1	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33 thod: EPA 3510C 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	Analyzed 11/10/16 15:11 11/10/16 15:11 11/03/16 20:27 11/03/16 20:27 11/01/16 23:06 11/01/16 23:06	7439-92-1 7439-96-5 83-32-9 208-96-8 120-12-7 56-55-3	Qual
Sample: MW-13Matrix Spike-101 Comments: • 8270 DWPAH: Sam Parameters 6010C MET ICP Lead Manganese 8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	Analytical N Analytical N Analytical N Analytical N Analytical N 180 241 18.1 6.5 6.3	Units Units Method: EPA 60 ug/L ug/L Method: EPA 82 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	270D by SII 10.1 0.10 0.10 0.10 0.10	MDL 4.0 0.71 M Prepara 1.6 1.4 0.013 0.014 0.0071	DF hod: EF 1 1 tion Met 100 100 1 1	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33 thod: EPA 3510C 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	11/10/16 15:11 11/10/16 15:11 11/10/16 15:11 11/03/16 20:27 11/03/16 20:27 11/01/16 23:06 11/01/16 23:06	CAS No. 7439-92-1 7439-96-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8	Qual
Sample: MW-13Matrix Spike-101 Comments: • 8270 DWPAH: Sam Parameters 5010C MET ICP Lead Manganese 8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	Analytical N Analytical N Analytical N Analytical N Analytical N 180 241 18.1 6.5 6.3 5.6	Units Units Method: EPA 60 ug/L ug/L Vethod: EPA 82 ug/L	270D by SII 10.1 0.10 0.10 0.10 0.10 0.10	MDL aration Met 4.0 0.71 M Prepara 1.6 1.4 0.013 0.014 0.0071 0.016	DF hod: EF 1 1 tion Met 100 100 1 1 1	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33 thod: EPA 3510C 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	11/10/16 15:11 11/10/16 15:11 11/10/16 15:11 11/03/16 20:27 11/03/16 20:27 11/03/16 23:06 11/01/16 23:06 11/01/16 23:06 11/01/16 23:06	7439-92-1 7439-96-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2	Qual
Sample: MW-13Matrix Spike-101 Comments: • 8270 DWPAH: Sam Parameters 5010C MET ICP Lead Manganese 8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene	Analytical Manalytical Manalyt	Units Units Method: EPA 60 ug/L ug/L Vethod: EPA 82 ug/L	270D by SII 10.1 0.10 0.10 0.10 0.10 0.10 0.10	MDL aration Met 4.0 0.71 M Prepara 1.6 1.4 0.013 0.014 0.0071 0.016 0.019	DF hod: EF 1 1 1 tion Met 100 100 1 1 1 1	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33 thod: EPA 3510C 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	11/10/16 15:11 11/10/16 15:11 11/10/16 15:11 11/03/16 20:27 11/03/16 20:27 11/03/16 23:06 11/01/16 23:06 11/01/16 23:06 11/01/16 23:06	7439-92-1 7439-96-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2	Qual
Sample: MW-13Matrix Spike-101 Comments: • 8270 DWPAH: Sam Parameters 6010C MET ICP Lead Manganese 8270D MSSV PAH by SIM Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	Analytical N Analytical N 496 579 Analytical N 180 241 18.1 6.5 6.3 5.6 3.9 3.5	Units Units Method: EPA 60 ug/L ug/L Vethod: EPA 82 ug/L	270D by SII 10.1 0.10 0.10 0.10 0.10 0.10 0.10 0	MDL aration Met 4.0 0.71 M Prepara 1.6 1.4 0.013 0.014 0.0071 0.016 0.019 0.011	DF hod: EF 1 1 1 100 100 1 1 1 1 1	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33 thod: EPA 3510C 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	11/10/16 15:11 11/10/16 15:11 11/10/16 15:11 11/03/16 20:27 11/03/16 20:27 11/03/16 23:06 11/01/16 23:06 11/01/16 23:06 11/01/16 23:06 11/01/16 23:06	7439-92-1 7439-96-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9	Qual
Sample: MW-13Matrix Spike-101 Comments: • 8270 DWPAH: Sam Parameters 6010C MET ICP Lead Manganese 8270D MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	Analytical N 496 579 Analytical N 180 241 18.1 6.5 6.3 5.6 3.9 3.5 5.9	Units Units Method: EPA 60 ug/L	270D by SII 10.1 0.10 0.10 0.10 0.10 0.10 0.10 0	MDL aration Met 4.0 0.71 M Prepara 1.6 1.4 0.013 0.014 0.0071 0.016 0.019 0.011 0.0075	DF hod: EF 1 1 1 100 100 1 1 1 1 1 1	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33 11/07/16 15:33 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	11/10/16 15:11 11/10/16 15:11 11/10/16 15:11 11/03/16 20:27 11/03/16 20:27 11/03/16 23:06 11/01/16 23:06 11/01/16 23:06 11/01/16 23:06 11/01/16 23:06 11/01/16 23:06	7439-92-1 7439-96-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9	Qual
Sample: MW-13Matrix Spike-101 Comments: • 8270 DWPAH: Sam Parameters 6010C MET ICP Lead Manganese 8270D MSSV PAH by SIM Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene	Analytical N Analytical N Analytical N Analytical N 180 241 18.1 6.5 6.3 5.6 3.9 3.5 5.9 2.1	Units Units Method: EPA 60 ug/L	270D by SII 10.1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	MDL aration Met 4.0 0.71 M Prepara 1.6 1.4 0.013 0.014 0.0071 0.016 0.019 0.011 0.0075 0.028	DF hod: EF 1 1 1 100 100 1 1 1 1 1 1 1	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33 11/07/16 15:33 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	11/10/16 15:11 11/10/16 15:11 11/10/16 15:11 11/03/16 20:27 11/03/16 20:27 11/03/16 23:06 11/01/16 23:06 11/01/16 23:06 11/01/16 23:06 11/01/16 23:06 11/01/16 23:06 11/01/16 23:06	CAS No. 7439-92-1 7439-96-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3	Qual
Sample: MW-13Matrix Spike-101 Comments: • 8270 DWPAH: San Parameters 6010C MET ICP Lead Manganese 8270D MSSV PAH by SIM Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene	Analytical N Analytical N 496 579 Analytical N 180 241 18.1 6.5 6.3 5.6 3.9 3.5 5.9 2.1 15.1	Units Units Method: EPA 60 ug/L	10C Prep 5.0 5.0 270D by SII 10.1 10.1 0.10 0.10 0.10 0.10 0.10 0.	MDL aration Met 4.0 0.71 M Prepara 1.6 1.4 0.013 0.014 0.0071 0.016 0.019 0.011 0.0075 0.028 0.011	DF hod: EF 1 1 1 100 100 1 1 1 1 1 1 1 1	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33 11/07/16 15:33 thod: EPA 3510C 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	11/10/16 15:11 11/10/16 15:11 11/10/16 15:11 11/03/16 20:27 11/03/16 20:27 11/03/16 23:06 11/01/16 23:06 11/01/16 23:06 11/01/16 23:06 11/01/16 23:06 11/01/16 23:06 11/01/16 23:06 11/01/16 23:06	7439-92-1 7439-96-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0	Qual
Sample: MW-13Matrix Spike-101 Comments: • 8270 DWPAH: San Parameters 6010C MET ICP Lead Manganese 8270D MSSV PAH by SIM Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene	Results Analytical N 496 579 Analytical N 180 241 18.1 6.5 6.3 5.6 3.9 3.5 5.9 2.1 15.1 60.4	Units Units Method: EPA 60 ug/L ug/L	10C Prep 5.0 5.0 270D by SII 10.1 10.1 0.10 0.10 0.10 0.10 0.10 0.	MDL aration Met 4.0 0.71 M Prepara 1.6 1.4 0.013 0.014 0.0071 0.016 0.019 0.011 0.0075 0.028 0.011 1.6	DF hod: EF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33 11/07/16 15:33 11/07/16 15:33 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	11/10/16 15:11 11/10/16 15:11 11/10/16 15:11 11/03/16 20:27 11/03/16 20:27 11/01/16 23:06 11/01/16 23:06	7439-92-1 7439-96-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7	Qual
Sample: MW-13Matrix Spike-101 Comments: • 8270 DWPAH: San	Analytical N Analytical N 496 579 Analytical N 180 241 18.1 6.5 6.3 5.6 3.9 3.5 5.9 2.1 15.1	Units Units Method: EPA 60 ug/L	10C Prep 5.0 5.0 270D by SII 10.1 10.1 0.10 0.10 0.10 0.10 0.10 0.	MDL aration Met 4.0 0.71 M Prepara 1.6 1.4 0.013 0.014 0.0071 0.016 0.019 0.011 0.0075 0.028 0.011	DF hod: EF 1 1 1 100 100 1 1 1 1 1 1 1 1	Prepared PA 3005A 11/07/16 15:33 11/07/16 15:33 11/07/16 15:33 thod: EPA 3510C 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40 11/01/16 08:40	11/10/16 15:11 11/10/16 15:11 11/10/16 15:11 11/03/16 20:27 11/03/16 20:27 11/03/16 23:06 11/01/16 23:06 11/01/16 23:06 11/01/16 23:06 11/01/16 23:06 11/01/16 23:06 11/01/16 23:06 11/01/16 23:06	CAS No. 7439-92-1 7439-96-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5	Qual

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Date: 11/17/2016 02:21 PM

Sample: MW-13Matrix Spike-1016 Lab ID: 30200663006 Collected: 10/25/16 11:15 Received: 10/27/16 09:55 Matrix: Water Comments: • 8270 DWPAH: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference. Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 8270D MSSV PAH by SIM Analytical Method: EPA 8270D by SIM Preparation Method: EPA 3510C Phenanthrene 54.1 ug/L 10.1 100 11/03/16 20:27 85-01-8 1.5 11/01/16 08:40 Pyrene 17.6 ug/L 0.10 0.013 1 11/01/16 08:40 11/01/16 23:06 129-00-0 Surrogates 2-Fluorobiphenyl (S) 73 % 19-123 1 11/01/16 08:40 11/01/16 23:06 321-60-8 Terphenyl-d14 (S) 83 % 58-130 11/01/16 08:40 11/01/16 23:06 1718-51-0 8260C MSV Analytical Method: EPA 8260C 372 1.0 0.16 11/01/16 20:22 71-43-2 Benzene ug/L 1 Ethylbenzene 392 ug/L 0.23 11/01/16 20:22 100-41-4 1.0 1 604 ug/L 5.0 0.63 11/02/16 13:30 108-88-3 Toluene 5 736 0.55 11/01/16 20:22 1330-20-7 Xylene (Total) ug/L 3.0 1 11/01/16 20:22 179601-23-1 513 ug/L 2.0 0.32 m&p-Xylene 1 o-Xylene 223 ug/L 1.0 0.22 1 11/01/16 20:22 95-47-6 Surrogates 94 % 84-115 11/01/16 20:22 2037-26-5 Toluene-d8 (S) 1 4-Bromofluorobenzene (S) 92 % 81-119 11/01/16 20:22 460-00-4 1 11/01/16 20:22 17060-07-0 1,2-Dichloroethane-d4 (S) 103 % 77-126 1 11/01/16 20:22 1868-53-7 Dibromofluoromethane (S) 100 % 70-130 1 Analytical Method: SM2320B-97 2320B Alkalinity Alkalinity, Total as CaCO3 370 mg/L 10.0 1 1 1 11/01/16 18:00 Iron, Ferrous Analytical Method: SM3500-FeD-00 0.17 0.10 0.012 10/27/16 18:45 H3,H6 Iron, Ferrous mg/L 4500S2F Sulfide, Iodometric Analytical Method: SM4500S2F-00 0.31 11/01/16 16:30 18496-25-8 Sulfide 5.8 mg/L 1.0 1 351.2 Total Kjeldahl Nitrogen Analytical Method: EPA 351.2 Nitrogen, Kjeldahl, Total 0.26 4.6 mg/L 1.0 1 11/04/16 13:01 7727-37-9 4500 Chloride Analytical Method: SM4500CIE-97 Chloride 34.6 mg/L 3.0 0.41 11/02/16 14:21 16887-00-6 SM4500NO3-F, NO3-NO2 Analytical Method: SM4500NO3F-00 Nitrogen, NO2 plus NO3 5.0 mg/L 0.10 0.023 11/01/16 12:22 Analytical Method: EPA 9012B 9012B Cyanide, Total Cyanide 0.24 mg/L 0.010 0.0018 11/01/16 21:53 57-12-5 1 **ASTM D516 Sulfate Water** Analytical Method: ASTM D516-11 11/09/16 16:07 14808-79-8 B Sulfate 33.0 mg/L 10.0 0.48 1

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Sample: MW-13-DuplicaMatrix Lab ID: 30200663007 Collected: 10/25/16 11:15 Received: 10/27/16 09:55 Matrix: Water

Spike-1016

Date: 11/17/2016 02:21 PM

Comments: • 8270 DWPAH: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

Doromotoro	Dogulto	Lleite	Report	MDI	DE	Dranara-l	Analyzad	CACNE	0!
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010C MET ICP	Analytical I	Method: EPA	A 6010C Prepa	aration Me	thod: El	PA 3005A			
Lead	517	ug/L	5.0	4.0	1	11/07/16 15:33	11/10/16 15:13	7439-92-1	
Manganese	591	ug/L	5.0	0.71	1	11/07/16 15:33	11/10/16 15:13	7439-96-5	
8270D MSSV PAH by SIM	Analytical I	Method: EP/	4 8270D by SI	И Prepara	tion Me	thod: EPA 3510C			
Acenaphthene	198	ug/L	10.2	1.6	100	11/01/16 08:40	11/03/16 21:01	83-32-9	
Acenaphthylene	274	ug/L	10.2	1.4	100	11/01/16 08:40	11/03/16 21:01	208-96-8	
Anthracene	18.6	ug/L	0.10	0.013	1	11/01/16 08:40	11/01/16 23:24	120-12-7	
Benzo(a)anthracene	7.6	ug/L	0.10	0.015	1	11/01/16 08:40	11/01/16 23:24	56-55-3	
Benzo(a)pyrene	7.5	ug/L	0.10	0.0072	1	11/01/16 08:40	11/01/16 23:24	50-32-8	
Benzo(b)fluoranthene	7.2	ug/L	0.10	0.016	1	11/01/16 08:40	11/01/16 23:24	205-99-2	
Benzo(g,h,i)perylene	4.5	ug/L	0.10	0.019	1	11/01/16 08:40	11/01/16 23:24	191-24-2	
Benzo(k)fluoranthene	3.9	ug/L	0.10	0.011	1	11/01/16 08:40	11/01/16 23:24	207-08-9	
Chrysene	6.8	ug/L	0.10	0.0076	1	11/01/16 08:40	11/01/16 23:24	218-01-9	
Dibenz(a,h)anthracene	2.4	ug/L	0.10	0.028	1	11/01/16 08:40	11/01/16 23:24		
Fluoranthene	16.9 J	ug/L	0.10	0.011	1	11/01/16 08:40	11/01/16 23:24		
Fluorene	66.8	ug/L	10.2	1.6	100	11/01/16 08:40	11/03/16 21:01		
ndeno(1,2,3-cd)pyrene	4.1	ug/L	0.10	0.028	1	11/01/16 08:40	11/01/16 23:24		
2-Methylnaphthalene	556	ug/L	10.2	2.1	100	11/01/16 08:40	11/03/16 21:01		
Naphthalene	4600	ug/L	102	18.0	1000	11/01/16 08:40	11/03/16 21:19		
Phenanthrene	61.9	ug/L	10.2	1.6	1000	11/01/16 08:40	11/03/16 21:19		
Pyrene	19.8	Ū	0.10	0.013	100	11/01/16 08:40	11/03/16 21:01		
Surrogates	19.0	ug/L	0.10	0.013	'	11/01/10 00.40	11/01/10 23.24	129-00-0	
2-Fluorobiphenyl (S)	75	%	19-123		1	11/01/16 08:40	11/01/16 23:24	221 60 9	
	73 84		58-130		1				
Terphenyl-d14 (S)	04	%	36-130		1	11/01/16 08:40	11/01/16 23:24	1716-51-0	
3260C MSV	Analytical	Method: EPA	4 8260C						
Benzene	364	ug/L	1.0	0.16	1		11/01/16 20:48		
Ethylbenzene	352	ug/L	1.0	0.23	1		11/01/16 20:48	100-41-4	
Toluene	509	ug/L	5.0	0.63	5		11/02/16 13:55	108-88-3	
Xylene (Total)	658	ug/L	3.0	0.55	1		11/01/16 20:48	1330-20-7	
m&p-Xylene	459	ug/L	2.0	0.32	1		11/01/16 20:48	179601-23-1	
o-Xylene	199	ug/L	1.0	0.22	1		11/01/16 20:48	95-47-6	
Surrogates		_							
Toluene-d8 (S)	87	%	84-115		1		11/01/16 20:48	2037-26-5	
4-Bromofluorobenzene (S)	90	%	81-119		1		11/01/16 20:48	460-00-4	
1,2-Dichloroethane-d4 (S)	107	%	77-126		1		11/01/16 20:48	17060-07-0	
Dibromofluoromethane (S)	101	%	70-130		1		11/01/16 20:48	1868-53-7	
2320B Alkalinity	Analytical	Method: SM	2320B-97						
Alkalinity, Total as CaCO3	328	mg/L	10.0	1.1	1		11/01/16 18:00		
Iron, Ferrous	Analytical I	Method: SM	3500-FeD-00						
Iron, Ferrous	NDJ	mg/L	0.10	0.012	1		10/27/16 18:45		H3,H6
	•	-							

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Date: 11/17/2016 02:21 PM

Sample: MW-13-DuplicaMatrix Lab ID: 30200663007 Collected: 10/25/16 11:15 Received: 10/27/16 09:55 Matrix: Water Spike-1016

Comments: • 8270 DWPAH: San	nple was diluted d	ue to the prese	ū	h levels of r	on-targ	et analytes or oth	ner matrix interfer	ence.	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
4500S2F Sulfide, Iodometric	Analytical N	Method: SM450	00S2F-00						
Sulfide	6.0	mg/L	1.0	0.31	1		11/01/16 16:30	18496-25-8	
351.2 Total Kjeldahl Nitrogen	Analytical N	Method: EPA 3	51.2						
Nitrogen, Kjeldahl, Total	5.2	mg/L	1.0	0.26	1		11/04/16 13:01	7727-37-9	
4500 Chloride	Analytical N	Method: SM450	00CIE-97						
Chloride	32.6	mg/L	3.0	0.41	1		11/02/16 14:21	16887-00-6	
SM4500NO3-F, NO3-NO2	Analytical N	Method: SM450	00NO3F-00)					
Nitrogen, NO2 plus NO3	4.9	mg/L	0.10	0.023	1		11/01/16 12:22		
9012B Cyanide, Total	Analytical N	lethod: EPA 9	012B						
Cyanide	0.22	mg/L	0.010	0.0018	1		11/01/16 21:54	57-12-5	
ASTM D516 Sulfate Water	Analytical N	Method: ASTM	D516-11						
Sulfate	33.9	mg/L	10.0	0.48	1		11/09/16 16:09	14808-79-8	
Sample: Field Duplicate-1016	Lab ID: 3	30200663008	Collecte	d: 10/25/16	6 00:01	Received: 10/	/27/16 09:55 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical N	Method: EPA 6	010C Prep	aration Met	hod: EF	PA 3005A	-		
Lead	49.8	ug/L	5.0	4.0	1	11/07/16 15:33	11/10/16 15:32	7439-92-1	
Manganese	829	ug/L	5.0	0.71	1	11/07/16 15:33	11/10/16 15:32	7439-96-5	
8270D MSSV PAH by SIM	Analytical N	lethod: EPA 8	270D by SI	M Prepara	tion Met	hod: EPA 3510C			
Acenaphthene	ND	ug/L	0.11	0.017	1	11/04/16 12:21	11/07/16 10:56	83-32-9	2c,H2
Acenaphthylene	0.60	ug/L	0.11	0.015	1	11/04/16 12:21	11/07/16 10:56		2c,H2
Anthracene	0.15	ug/L	0.11	0.013	1	11/04/16 12:21	11/07/16 10:56		2c,H2
Benzo(a)anthracene	0.24	ug/L	0.11	0.015	1	11/04/16 12:21	11/07/16 10:56		2c,H2
Benzo(a)pyrene	0.25	ug/L	0.11	0.0075	1	11/04/16 12:21	11/07/16 10:56		2c,H2
Benzo(b)fluoranthene	0.45	ug/L	0.11	0.017	1	11/04/16 12:21	11/07/16 10:56		2c,H2,ip
Benzo(g,h,i)perylene	0.24	ug/L	0.11	0.020	1	11/04/16 12:21	11/07/16 10:56		2c,H2
Benzo(k)fluoranthene	0.35	ug/L	0.11	0.012	1	11/04/16 12:21	11/07/16 10:56		2c,H2,ip
Chrysene	0.24	ug/L	0.11	0.0079	1	11/04/16 12:21	11/07/16 10:56		2c,H2
Dibenz(a,h)anthracene	ND	ug/L	0.11	0.029	1	11/04/16 12:21	11/07/16 10:56		2c,H2
Fluoranthene	0.36 J	ug/L	0.11	0.011	1	11/04/16 12:21	11/07/16 10:56		2c,H2, L2
Fluorene	ND	ug/L	0.11	0.017	1	11/04/16 12:21	11/07/16 10:56		2c,H2
Indeno(1,2,3-cd)pyrene	0.17	ug/L	0.11	0.029	1	11/04/16 12:21	11/07/16 10:56		2c,H2
2-Methylnaphthalene	ND	ug/L	0.11	0.022	1	11/04/16 12:21	11/07/16 10:56		2c,H2
Naphthalene	ND	ug/L	0.11	0.019	1	11/04/16 12:21	11/07/16 10:56	91-20-3	2c,H2

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Date: 11/17/2016 02:21 PM

Sample: Field Duplicate-1016	Lab ID:	30200663008	Collected:	10/25/16	00:01	Received: 10	/27/16 09:55 N	latrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
3270D MSSV PAH by SIM		Method: EPA 8		Preparati	on Me	thod: EPA 3510C	- 		
Phenanthrene	0.14	ug/L	0.11	0.016	1	11/04/16 12:21	11/07/16 10:56	85-01-8	2c,H2
Pyrene	0.56	ug/L	0.11	0.013	1	11/04/16 12:21	11/07/16 10:56		2c,H2
Surrogates		o .							,
2-Fluorobiphenyl (S)	65	%	19-123		1	11/04/16 12:21	11/07/16 10:56	321-60-8	
Terphenyl-d14 (S)	68	%	58-130		1	11/04/16 12:21	11/07/16 10:56	1718-51-0	
3260C MSV	Analytical	Method: EPA 8	260C						
Benzene	ND	ug/L	1.0	0.16	1		11/01/16 15:19	71-43-2	
Ethylbenzene	ND	ug/L	1.0	0.23	1		11/01/16 15:19	100-41-4	
Toluene	ND	ug/L	1.0	0.13	1		11/01/16 15:19	108-88-3	
Xylene (Total)	ND	ug/L	3.0	0.55	1		11/01/16 15:19		
m&p-Xylene	ND	ug/L	2.0	0.32	1			179601-23-1	
o-Xylene	ND	ug/L	1.0	0.22	1		11/01/16 15:19	95-47-6	
Surrogates Foluene-d8 (S)	98	%	84-115		1		11/01/16 15:19	2037-26-5	
4-Bromofluorobenzene (S)	100	%	81-119		1		11/01/16 15:19		
1,2-Dichloroethane-d4 (S)	110	%	77-126		1		11/01/16 15:19		
Dibromofluoromethane (S)	103	%	70-130		1		11/01/16 15:19		
2320B Alkalinity	Analytical	Method: SM23	20B-97						
Alkalinity, Total as CaCO3	506	mg/L	10.0	1.1	1		11/01/16 18:00)	
Iron, Ferrous	Analytical	Method: SM35	00-FeD-00						
ron, Ferrous	0.58 _J	mg/L	0.10	0.012	1		10/27/16 18:45	5	H3,H6
4500S2F Sulfide, lodometric	Analytical	Method: SM45	00S2F-00						
Sulfide	ND	mg/L	1.0	0.31	1		11/01/16 16:30	18496-25-8	
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 3	51.2						
Nitrogen, Kjeldahl, Total	1.4	mg/L	1.0	0.26	1		11/04/16 13:06	7727-37-9	
4500 Chloride	Analytical	Method: SM45	00CIE-97						
Chloride	16.4	mg/L	3.0	0.41	1		11/02/16 14:35	16887-00-6	
SM4500NO3-F, NO3-NO2	Analytical	Method: SM45	00NO3F-00						
Nitrogen, NO2 plus NO3	ND	mg/L	0.10	0.023	1		11/01/16 12:29)	
9012B Cyanide, Total	Analytical	Method: EPA 9	012B						
Cyanide	0.62	mg/L	0.10	0.018	10		11/01/16 22:04	57-12-5	

Project: National Grid-Johnstown, NY

Pace Project No.: 30200543

Date: 11/17/2016 02:21 PM

Sample: Trip Blank	Lab ID:	30200663009	Collecte	d: 10/25/16	00:01	Received: 10	0/27/16 09:55 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical	Method: EPA 8	260C						
Benzene	ND	ug/L	1.0	0.16	1		11/01/16 12:21	71-43-2	
Ethylbenzene	ND	ug/L	1.0	0.23	1		11/01/16 12:21	100-41-4	
Toluene	ND	ug/L	1.0	0.13	1		11/01/16 12:21	108-88-3	
Xylene (Total)	ND	ug/L	3.0	0.55	1		11/01/16 12:21	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	0.32	1		11/01/16 12:21	179601-23-1	
o-Xylene	ND	ug/L	1.0	0.22	1		11/01/16 12:21	95-47-6	
Surrogates		-							
Toluene-d8 (S)	98	%	84-115		1		11/01/16 12:21	2037-26-5	
4-Bromofluorobenzene (S)	99	%	81-119		1		11/01/16 12:21	460-00-4	
1,2-Dichloroethane-d4 (S)	102	%	77-126		1		11/01/16 12:21	17060-07-0	
Dibromofluoromethane (S)	102	%	70-130		1		11/01/16 12:21	1868-53-7	

> Phone: (412) 826-5245 Fax: (412) 826-3433

SAMPLE SUMMARY

Workorder: 20853 30200663

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
208530001	30200663 001	Water	10/25/2016 14:00	11/1/2016 15:00	
208530002	30200663 002	Water	10/25/2016 11:15	11/1/2016 15:00	
208530003	30200663 003	Water	10/25/2016 10:15	11/1/2016 15:00	
208530004	30200663 004	Water	10/25/2016 13:00	11/1/2016 15:00	
208530005	30200663 005	Water	10/25/2016 09:00	11/1/2016 15:00	
208530006	30200663 006	Water	10/25/2016 11:15	11/1/2016 15:00	
208530007	30200663 007	Water	10/25/2016 11:15	11/1/2016 15:00	
208530008	30200663 008	Water	10/25/2016 00:01	11/1/2016 15:00	

Report ID: 20853 - 860820

Page 3 of 17

CERTIFICATE OF ANALYSIS

. Phone: (412) 826-5245

Fax: (412) 826-3433

SAMPLE SUMMARY

Workorder: 20855 30200846

Lab ID	Sample ID	Matrix	Date Collected	Date Received
208550001	30200846 001	Water	10/26/2016 09:00	11/1/2016 15:00
208550002	30200846 002	Water	10/26/2016 10:00	11/1/2016 15:00
208550003	30200846 003	Water	10/26/2016 11:00	11/1/2016 15:00

Report ID: 20855 - 861062

> Phone: (412) 826-5245 Fax: (412) 826-3433

PROJECT SUMMARY

Workorder: 20853 30200663

Workorder Comments

The samples 20853 (0001-0008) were collected in an alternate container type, than that assigned to PAES method RSK175. Containers were BAK preserved.

Only one vial was provided for analysis of method RSK175; samples 20853 (0001-0008). In order to assure accurate reporting of all analytes, the equilibrated headspace was transferred to a headspace vial. Results reported at dilution.

Report ID: 20853 - 860820

Page 4 of 17

Phone: (412) 826-5245

Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 20853 30200663

Lab ID:

208530001

Date Received: 11/1/2016 15:00

Water

Matrix:

Date Collected: 10/25/2016 14:00

Sample ID: 30200663 001	Date Collected: 10/25/2016 14:00						
Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers	
RISK - PAES Analysis Desc: AM20GAX	Analytical Method: AM20GAX						
Carbon Dioxide	45 mg/l	5.0	0.45 1	11/8/2016 13:22	BW	n	
Analysis Desc: EPA RSK175	Analyt	ical Method: El	PA RSK175		•		
Methane	0.32J ug/l	2.5	0.095 5	11/4/2016 08:47	AK	'd,B	
Ethane	0.025U ug/l	1.0	0.025 5	11/4/2016 08:47	ΑK	đ	
Ethene	0.035U ug/l	1.0	0.035 5	11/4/2016 08:47	AK	d	

Report ID: 20853 - 860820

Page 5 of 17

CERTIFICATE OF ANALYSIS

> Phone: (412) 826-5245 Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 20853 30200663

Lab ID: Sample ID:

208530002 30200663 002 Date Received: 11/1/2016 15:00

Matrix:

Water

Date Collected: 10/25/2016 11:15

				·		•
Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: AM20GAX	Analy	tical Method: Al	M20GAX			
Carbon Dioxide	4.3J mg/l	5.0	0.45 1	11/8/2016 13:34	BW	n
Analysis Desc: EPA RSK175	Analy	tical Method: El	PA RSK175	٠,		
Methane	280 ug/l	2.5	0.095 5	11/4/2016 08:57	AK	d,B
Ethane	1.2 ug/l	1.0	0.025 5	11/4/2016 08:57	AK	d
Ethene	3.3 ug/l	1.0	0.035 5	11/4/2016 08:57	AK	d

Report ID: 20853 - 860820

Page 6 of 17

> Phone: (412) 826-5245 Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 20853 30200663

Lab ID: Sample ID: 208530003 30200663 003 Date Received: 11/1/2016 15:00

Matrix:

Water

Date Collected: 10/25/2016 10:15

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	:	Qualifiers
RISK - PAES							
Analysis Desc: AM20GAX	Analyt	ical Method: AN	//20GAX				
Carbon Dioxide	44 mg/l	5.0	0.45 1	11/8/2016 13:45	BW		n
Analysis Desc: EPA RSK175	Analyl	ical Method; El	PA RSK175				
Methane	140 ug/l	2.5	0.095 5	11/4/2016 09:07	AK		d,B
Ethane	0.17J ug/l	1.0	0.025 5	11/4/2016 09:07	ΑK		d
Ethene	0.035U ug/l	1.0	0.035 5	11/4/2016 09:07	AK		d

Report ID: 20853 - 860820

CERTIFICATE OF ANALYSIS This report shall not be reproduced, except in full, without the written consent of Pace Analytical Energy Services LLC.

Page 7 of 17

Phone: (412) 826-5245 Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 20853 30200663

Lab ID: Sample ID:

208530004 30200663 004 Date Received: 11/1/2016 15:00

Matrix:

Water

Date Collected: 10/25/2016 13:00

Parameters	Results Units .	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: AM20GAX	Analyt	cal Method: Al	M20GAX		•	$\mathcal{A}^{(i)} = \mathcal{A}^{(i)} = \mathcal{A}^{(i)}$
Carbon Dioxide ,	70 mg/l	5.0	0.45 1	11/8/2016 13:56	BW	'n
Analysis Desc: EPA RSK175	Analyti	cal Method: El	PA RSK175			
Methane	3400 ug/l	10	0.38 20	11/4/2016 13:11	AK .	d,B
Ethane	6.2 ug/l	1.0	0.025 5	11/4/2016 09:21	AK	d
Ethene	0.038J ug/l	1.0	0.035 5	11/4/2016 09:21	AK	d

Report ID: 20853 - 860820

Page 8 of 17

> Phone: (412) 826-5245 Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 20853 30200663

Lab ID: Sample ID: 208530005 30200663 005 Date Received: -11/1/2016 15:00

Matrix:

Water

Date Collected: 10/25/2016 09:00

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifie
RISK - PAES			-			
Analysis Desc: AM20GAX	Analyt	ical Method: Al	M20GAX		1.1	
Carbon Dioxide	42 mg/i	5.0	0.45 1	11/8/2016 14:10	BW	
Analysis Desc: EPA RSK175	Analyti	ical Method: El	PARSK175			
Methane	900 ug/l	2.5	0.095 5	11/4/2016 09:31	AK	d
Ethane	1.2 ug/l	. 1.0	0.025 5	11/4/2016 09:31	AK	
Ethene	0.24J ug/l	1.0	0.035 5	11/4/2016 09:31	AK	

Report ID: 20853 - 860820

Page 9 of 17

Phone: (412) 826-5245 Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 20853 30200663

Lab ID: Sample ID: 208530006

30200663 006

Date Received: 11/1/2016 15:00

Matrix:

Water

Date Collected: 10/25/2016 11:15

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву		Q	ualifiers
RISK - PAES	A. 1 .							
Analysis Desc; AM20GAX	Analyt	ical Method: Al	M20GAX	* *				
Carbon Dioxide	3.7J mg/l	5.0	0.45 1	11/8/2016 14:22	BW			n
Analysis Desc: EPA RSK175	Analyt	ical Method: El	PARSK175			•		
Methane	290 ug/l	2.5	0.095 5	11/4/2016 09:42	AK	•		d,B
Ethane	1.2 ug/l	1.0	0.025 5	11/4/2016 09:42	AK			d
Ethene	3.3 ug/l	1.0	0.035 5	11/4/2016 09:42	AK			d

Report ID: 20853 - 860820

Page 10 of 17

> Phone: (412) 826-5245 Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 20853 30200663

Lab ID: Sample ID: 208530007

30200663 007

Date Received: 11/1/2016 15:00 Matrix: Water

Date Collected: 10/25/2016 11:15

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: AM20GAX	Analyt	cal Method: Al	M20GAX			
Carbon Dioxide	4.4J mg/i	5.0	0.45 1	11/8/2016 14:32	BW ·	n
Analysis Desc: EPA RSK175	Analyti	cal Method: El	A RSK175			
Methane	270 ug/l	2.5	0.095 5	11/4/2016 09:52	AK	d,B
Ethane	1.2 ug/l	1.0	0.025 5	11/4/2016 09:52	AK	d
Ethene	3.2 ug/l	1.0	0.035 5	11/4/2016 09:52	AK	d

Report ID: 20853 - 860820

Page 11 of 17

Phone: (412) 826-5245 Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 20853 30200663

Lab ID: Sample ID: 208530008 30200663 008 Date Received: 11/1/2016 15:00

Water

Matrix:

Date Collected: 10/25/2016 00:01

•			•			
Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: AM20GAX	Ar	nalytical Method: AM	120GAX			4
Carbon Dioxide	44 mg/l	5.0	0.45 1	11/8/2016 14:42	BW	n .
Analysis Desc: EPA RSK175	Ar	nalytical Method: EP	A RSK175			
Methane	140 ug/l	2.5	0.095 5	11/4/2016 10:03	AK	d,B
Ethane	0.17J ug/l	1.0	0.025 5	11/4/2016 10:03	AK	d
Ethene	0.035U ug/l	1.0	0.035 5	11/4/2016 10:03	AK	d

Report ID: 20853 - 860820

Page 12 of 17

Phone: (412) 826-5245

Fax: (412) 826-3433

ANALYTICAL RESULTS QUALIFIERS

Workorder: 20853 30200663

MDL Method Detection Limit. Can be used synonymously with LOD; Limit Of Detection.

PQL Practical Quantitation Limit. Can be used synonymously with LOQ; Limit Of Quantitation.

ND Not detected at or above reporting limit.

DF Dilution Factor.

S Surrogate.

RPD Relative Percent Difference.

% Rec Percent Recovery.

U Indicates the compound was analyzed for, but not detected at or above the noted concentration.

J Estimated concentration greater than the set method detection limit (MDL) and less than the set reporting limit (PQL).

n The laboratory does not hold NELAP/TNI accreditation for this method or analyte.

B The analyte was detected in the associated blank.

d The analyte concentration was determined from a dilution.

Report ID: 20853 - 860820

Page 13 of 17

. Phone: (412) 826-5245

Fax: (412) 826-3433

SAMPLE SUMMARY

Workorder: 20855 30200846

Lab ID	Sample ID	Matrix	Date Collected	Date Received
208550001	30200846 001	Water	10/26/2016 09:00	11/1/2016 15:00
208550002	30200846 002	Water	10/26/2016 10:00	11/1/2016 15:00
208550003	30200846 003	Water	10/26/2016 11:00	11/1/2016 15:00

Report ID: 20855 - 861062

Pace Analytical Energy Services LLC 220 William Pitt Way Pittsburgh, PA 15238 Phone: (412) 826-6245

hone: (412) 826-5245 Fax: (412) 826-3433

PROJECT SUMMARY

Workorder: 20855 30200846

Workorder Comments

The samples 20855 (0001-0003) were collected in an alternate container type, than that assigned to PAES method RSK175. Containers were BAK preserved.

Only one vial was provided for analysis of method RSK175; samples 20855 (0001-0003). In order to assure accurate reporting of all analytes, the equilibrated headspace was transferred to a headspace vial. Results reported at dilution.

Report ID: 20855 - 861062

Page 4 of 12

CERTIFICATE OF ANALYSIS

Phone: (412) 826-5245

Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 20855 30200846

Lab ID: Sample ID: 208550001

30200846 001

Date Received: 11/1/2016 15:00

Matrix:

Water

Date Collected: 10/26/2016 09:00

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву		Qualifiers
RISK - PAES							
Analysis Desc: AM20GAX	Analyt	ical Method: AN	A20GAX			•	
Carbon Dioxide	45 mg/l	5.0	0.45 1	11/9/2016 16:43	BW ·		n
Analysis Desc; EPA RSK175	Analyl	ical Method: Ef	PA RSK175			.*	
Methane	160 ug/l	2.5	0.095 5	11/4/2016 10:13	AK		d,B
Ethane	0.38J ug/l	1.0	0.025 5	11/4/2016 10:13	AK		d
Ethene	0.035U ug/l	1.0	0.035 5	11/4/2016 10:13	AK		d

Report ID: 20855 - 861062

Page 5 of 12

CERTIFICATE OF ANALYSIS

> Phone: (412) 826-5245 Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 20855 30200846

Lab ID:

208550002

Date Received: 11/1/2016 15:00

Matrix:

Water

Sample ID: 30200846 002			Date Collected: 10/26/2016 10:00			
Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: AM20GAX	Analyti	cal Method: Af	M20GAX			
Carbon Dioxide	85 mg/l	5.0	0.45 1	11/9/2016 16:53	BW	n
Analysis Desc: EPA RSK175	Analyti	cal Method: Ef	PA RSK175			
Methane	420 ug/l	2.5	0.095 5	11/4/2016 10:24	AK	d,B
Ethane	0.16J ug/l	1.0	0.025 5	11/4/2016 10:24	AK	d
Ethene	0.035U ug/l	1.0	0.035 5	11/4/2016 10:24	AK	d

Report ID: 20855 - 861062

Page 6 of 12

Phone: (412) 826-5245

Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 20855 30200846

Lab ID:

208550003

30200846 003

Date Received: 11/1/2016 15:00

Matrix:

Water

Date Collected: 10/26/2016 11:00

Sample ID: 30200846 003			Date Collected: 10/26/2016 11:00				
Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers	
RISK - PAES Analysis Desc: AM20GAX	Analytic	al Method: AM	//20GAX				
Carbon Dioxide	38 mg/l	5.0	0.45 1	11/9/2016 17:02	BW	n	
Analysis Desc: EPA RSK175	Analytic	cal Method: Ef	PA RSK175				
Methane	1.9J ug/l	2.5	0.095 5	11/4/2016 10:57	AK	d,B	
Ethane	0.47J ug/i	1.0	0.025 5	11/4/2016 10:57	AK	d	
Ethene	0.035U ug/l	1.0	0.035 5	11/4/2016 10:57	AK	d	

Report ID: 20855 - 861062

Page 7 of 12

CERTIFICATE OF ANALYSIS

Phone: (412) 826-5245

Fax: (412) 826-3433

ANALYTICAL RESULTS QUALIFIERS

Workorder: 20855 30200846

DEFIN	IITIONS.	/QUAL	IFIERS
-------	----------	-------	--------

MDL Method Detection Limit. Can be used synonymously with LOD; Limit Of Detection.

PQL Practical Quantitation Limit. Can be used synonymously with LOQ; Limit Of Quantitation.

ND Not detected at or above reporting limit.

DF Dilution Factor.

S Surrogate.

RPD Relative Percent Difference.

% Rec Percent Recovery.

U Indicates the compound was analyzed for, but not detected at or above the noted concentration.

J Estimated concentration greater than the set method detection limit (MDL) and less than the set reporting limit (PQL).

The laboratory does not hold NELAP/TNI accreditation for this method or analyte.

B The analyte was detected in the associated blank.

d The analyte concentration was determined from a dilution.

Report ID: 20855 - 861062

Page 8 of 12

