nationalgrid

February 2, 2021

Mr. Michael Squire Remedial Bureau C, 11th Floor Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233-7014

Re: Johnstown (N. Market St.)

Former Manufactured Gas Plant Site (MGP)

Site No. 5-18-020

Semi-Annual Groundwater Monitoring Report (January 2021)

Dear Mr. Squire:

Enclosed is the Semi-Annual Groundwater Monitoring Report July through December 2020 for the Johnstown (N. Market St.) MGP Site located in Johnstown, New York. The report includes the groundwater monitoring results from October 7, 2020.

National Grid acknowledges the NYSDEC Fact sheet dated June 2016 approving the site's environmental remediation construction completion. Long-term OM&M activities are being conducted in accordance with the approved Site Management Plan (SMP) and the site's Environmental Easement.

Please contact me at (315) 428-5652 or <u>Steven.Stucker@NationalGrid.com</u> if you have any questions regarding the report.

Sincerely,

for

Steven P. Stucker, C.P.G. Senior Environmental Engineer

Cc: Carolyn Rooney -National Grid Nathan Freeman- NYSDOH National Grid

Semi-Annual Groundwater Monitoring

Report

National Grid 109 North Market Street Johnstown, NY 12095

February 2021

Version 1

Semi-Annual Groundwater Monitoring Report

National Grid Johnstown Site 109 North Market Street Johnstown, NY 12095

Prepared for: National Grid 300 Erie Boulevard West, C-1 Syracuse, NY 13202

Prepared by:

Groundwater & Environmental Services, Inc. 5 Technology Place, Suite 4
East Syracuse, NY 13057
TEL: 800-220-3069
www.gesonline.com

GES Project: 0603200.120950.221

Date:

February 2, 2021

Devin T. Shay, PG

Program Manager / Principal Hydrogeologist

Table of Contents

1	In	troduction	. 1
	1.1	Overview	. 1
	1.2	Purpose and Objective	. 1
2	Ва	ackground	.2
	2.1	Site Description	.2
	2.2	Site History	.2
	2	2.2.1 Site Assessment and Investigations	.3
	2	2.2.2 Interim Remedial Measures Completed	.3
	2.3	Environmental Setting	.3
	2	2.3.1 Site Geology	.4
	2	2.3.2 Site Hydrogeology	.4
3	M	onitoring Activities	.5
	3.1	Groundwater Gauging and Sampling Procedures	.5
	3	3.1.1 Gauging	.5
	3	3.1.2 Sampling	.5
	3	3.1.3 Natural Attenuation Parameters	.6
	3.2	Groundwater Analytical Results	. 7
	3	3.2.1 Site Related Parameters	.8
	3	3.2.2 Monitored Natural Attenuation Parameters	.8
	3	3.2.3 Natural Attenuation Trending	.9
4	C	onclusions and Recommendations	10
	4.1	Conclusions	10
	4	4.1.1 Groundwater Levels	10
	4	4.1.2 Site-Related Constituents	10
	4	4.1.3 Natural Attenuation	11
	4.2	Recommendations	11
5	R	eferences	11

Figures

Figure 1 – Site Location Map

Figure 2 – Site Map

Figure 3 – Groundwater Monitoring Map

Figure 4 – Natural Attenuation Map

Figure 5 – BTEX Concentration Map

Figure 6 – Naphthalene Concentration Map

Tables

Table 1 – Contaminant Trend Analysis

Table 2 – Groundwater Level Measurements

Table 3 – Analytical Data Results

Appendices

Appendix A - Field Data

Appendix B - Data Usability Summary Report

Acronyms

bgs	Below ground surface		
BTEX	Benzene, Toluene, Ethylbenzene, and	NYSDEC	New York State Department of Environmental Conservation
000	Total Xylenes	ORP	Oxidation-Reduction Potential
COCs	Constituents of Concern	PAHs	Polycyclic Aromatic Hydrocarbons
cu. ft.	Cubic feet	PSA	Preliminary Site Assessment
DO	Dissolved Oxygen	QA/QC	Quality Assurance / Quality Control
DTB	Depth to Bottom	RI	Remedial Investigation
DTP	Depth to Product	ROD	Record of Decision
DTW	Depth to Water	SMP	Site Management Plan
DUSR	Data Usability Summary Report	SU	Standard Units
FS	Feasibility Study	SVOCs	Semi-Volatile Organic Compounds
GES	Groundwater & Environmental Services, Inc.		
IRMs	Interim Remedial Measures	USEPA	United States Environmental Protection Agency
		VOCs	Volatile Organic Compounds
mg/L	Milligrams per Liter	μg/L	Micrograms per Liter
MGP	Manufactured Gas Plant	WQ	Water Quality
MNA	Monitored Natural Attenuation		

1 Introduction

1.1 Overview

This Semi-Annual Groundwater Monitoring Report (the Report) summarizes the results of the October 2020 groundwater sampling event at the Johnstown, New York (N. Market Street) Former Manufactured Gas Plant (MGP) Site (the Site). This Report was developed as part of the long-term groundwater monitoring program on behalf of National Grid.

National Grid has been addressing the Site environmental conditions under an Order on Consent (Index Number D0-0001-9210), dated April 1999, that was entered into by Niagara Mohawk and the New York State Department of Environmental Conservation (NYSDEC). That Order on Consent was for the investigation and remediation of 21 former MGP sites, including the Johnstown (N. Market Street) Site. It was superseded by a new Order on Consent (Index Number A4-0473-0000), dated November 7, 2003. A NYSDEC-approved Supplemental Remedial Investigation (RI) Work Plan was finalized during November 2007, and a Final Supplemental RI Report was submitted to the NYSDEC, dated December 2008. The RI results report and subsequent Feasibility Study were approved in February 2010.

A Record of Decision (ROD) was issued by the NYSDEC, dated March 2010, in accordance with the requirements of New York State Environmental Conservation Law and Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York, 6 NYCRR Part 375. Based upon the results of the remedial investigation/feasibility study (RI/FS) for the Site, the interim remedial measures (IRMs) previously completed, and the ROD, the draft Final Engineering Report and Site Management Plan (SMP) were developed and submitted to the NYSDEC in June 2010. The Final Engineering Report, the Final SMP, and the Final Environmental Easement were approved by the NYSDEC in their June 2016 Fact Sheet.

The Final SMP includes:

- Semi-annual (April & October) site inspection and groundwater level measurements at monitoring wells MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, MW-16, RMW-1, and the creek surface gauging station (bridge);
- Semi-annual groundwater sampling/analysis [Volatile Organic Compounds (VOCs), Semi-Volatile Organic Compounds (SVOCs), Heavy Metals, and Natural Attenuation Parameters] for monitoring wells MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, and MW-16 (RMW-1 will not be sampled); and
- 3. Semi-annual reporting to NYSDEC.

1.2 Purpose and Objective

The purpose of this Report is to summarize the groundwater sampling activities and results of the latest event, and to compare the results to previous events. As described in the December 2008 Supplemental RI Report and the subsequent ROD, one of the primary goals is to evaluate whether

or not the groundwater constituents of concern (COCs) concentrations have decreased, in addition to continued assessment of the effectiveness of monitored natural attenuation.

2 Background

2.1 Site Description

The Site is located in the City of Johnstown, County of Fulton, New York (**Figure 1** presents the site location map) and is identified as Block 14 and Lot 7 on the Johnstown City Tax Map. The Site is an approximate 0.7-acre area bounded by the Cayadutta Creek to the north, the Colonial Cemetery to the south, Market Street to the east, and a wooded parcel of property to the west (**Figure 2** presents the site plan). The Site is located in a mixed commercial, industrial, and residential area.

Currently, National Grid operates a natural gas regulator station at the Site with equipment contained in fenced enclosures along the Site's southern boundary. The rest of the Site is grass-covered, including the stream bank adjacent to Cayadutta Creek along the northern boundary of the Site. An embankment exists along the north end of the Site that slopes down to the Cayadutta Creek. A chain-link fence exists along the north and west sides of the Site, and a retaining wall runs along the south side of the Site. Access to the Site is from North Market Street to the east.

The Johnstown Hospital is located south of the Site within one mile, and numerous residences exist to the west and east of the Site. The Johnstown Senior High School and Warren Street Elementary School are located within one mile of the Site to the west.

2.2 Site History

The Johnstown MGP Site was incorporated in March 1857 as the Johnstown Gas Light Company. The company operated a small coal gas plant with a 20,000 cubic foot (cu. ft.) holder (Holder #1), that was constructed in 1859 (see Figure 2 for all Holder locations at the former MGP Site). In 1861, the plant was improved with the addition of a coal shed and a covering for the tank holder. In 1886, the Johnstown and Gloversville Gas Light Corporation was formed, and the company purchased the rights to the Lowe water gas process. The United Gas Improvement Company planned the construction of a water gas plant for the Johnstown and Gloversville franchises.

In 1887, the Site consisted of a tool shop, an office, a coal gasometer, a lime house, a purifier room, a retort house, and a coal shed. Between 1887 and 1918, Holder #2 was located in the western-central part of the Site (exact size unknown). In 1892, a steam generator was constructed adjacent to the coal shed for the Lowe water gas process, and Holder #1 was decommissioned in 1896. In 1898, a 72,000 cu. ft. gas holder (Holder #3) was constructed on the Site. Between 1912 and 1918, the small gas holder (Holder #2) in the western-central area of the Site was removed. In 1929, a gas pipeline from an MGP in Troy, New York, reached Johnstown, and local gas production was only performed on a seasonal (winter) basis until local production of gas ceased in 1931. Niagara Hudson Power Company was the owner of the Site in 1930. By 1948, Holder #3 was decommissioned. In 1950, Niagara Hudson Power was consolidated under the

name Niagara Mohawk Power Company. By 1980, all Site buildings were removed. Currently, National Grid operates a natural gas regulator station at the Site.

2.2.1 Site Assessment and Investigations

An investigation of the Site began in 1997 with a Preliminary Site Assessment (PSA), which found that the Site was impacted with MGP wastes. A Supplemental PSA was conducted at the Site in 1998, followed by a RI in January 2000 and subsequent IRMs. The IRMs are discussed separately within this section.

A 2009 Supplemental RI was initiated to collect data to address potential residual MGP-related contaminants remaining in groundwater at the Site and to assess hydrogeologic conditions and groundwater quality on the Site. The results of the Supplemental RI were used to formulate potential remedial alternatives for groundwater and residual soil contamination. The Supplemental RI results were evaluated and presented in the 2010 Feasibility Study Report.

2.2.2 Interim Remedial Measures Completed

Several IRMs were performed to address the residual MGP impacts. In 2002 and 2003, the former holders and associated impacted soil were removed. During this IRM, former Holder #2 and the northern half of former Holder #3 were demolished and removed from the Site. Approximately 13,870 cubic yards of soil were excavated and disposed of off-site at a NYSDEC-approved facility. Permanent steel sheeting was left in place along the northeastern perimeter of the Site to avoid disturbance of the roadway and to provide containment of residual material left at depth.

Between 2005 and 2006, National Grid provided support to the City of Johnstown for subsurface work associated with the replacement of the North Market Street Bridge across Cayadutta Creek. Approximately 1,413 cubic yards of impacted soil were excavated from within the cofferdam area and disposed of off-site at a NYSDEC-approved facility.

In August 2009, the rip-rap area along the bank of Cayadutta Creek that had been restored during the previous IRMs was enhanced to allow for establishment of stream-side vegetation. Post-IRM inspections of the restored Cayadutta Creek bank were conducted in September 2009 and May 2010.

2.3 Environmental Setting

The Johnstown (N. Market Street) Site slopes northward toward Cayadutta Creek with elevations ranging from 652 to 672 feet (ft.) above sea level. Currently, the Site topography gradually slopes from south to north, becoming increasingly steeper adjacent to the Creek, and is generally covered with either vegetation or stone. Surface drainage is primarily to the north into the creek. Access to the Site is from North Market Street to the east, and the Site is currently used to support the natural gas regulator station operations.

2.3.1 Site Geology

The main units of unconsolidated deposits identified at the Site can be characterized in descending order as fill and native glacial deposits to bedrock. The glacial deposits are of lacustrine origin with glacial tills to the top of shale bedrock (Utica Shale). Bedrock was reached beneath the till in two soil borings explored during the 1998 Supplemental PSA. These stratigraphic units are more specifically described below, based on information obtained from the previous investigations and from the soil borings and monitoring well borings conducted during the 2007/ 2008 SRI.

Site geology includes a layer of disturbed soils (primarily fill) overlying glacial deposits. Based upon on-site soils and monitoring well borings, disturbed soils (including fills) varied in thickness up to 13 ft. and are typically composed of sand, gravel, silt, clay, wood, coal, and anthropogenic materials including ash, cinders, clinkers, brick fragments, wire, and wood chips. Wood chips were identified in three borings (SB-09, SB-12, and MW-8) and are often associated with purifier waste.

A thin layer of peat underlies the disturbed soils in the northern portion of the Site, ranging in thickness from 0.5 ft. to 3 ft., and appears to thicken and dip to the north. Except where it is locally covered by sedimentary deposits such as silts, sands, and clays, the peat, where present, appears to have been the historical ground cover prior to development of the Site.

Underlying the peat, where present, the soil consists of lacustrine deposits composed of silts, sands, and clays. The surface of the lacustrine deposits appears to dip and thin out toward the north. A sand and gravel unit (an outwash deposit of stratified drift) underlies the lacustrine deposits across the Site area. This unit contains varying amounts of silt and clay. These deposits overlie a dense, low-permeability glacial till to bedrock (Shale).

2.3.2 Site Hydrogeology

Groundwater depths on-site are typically in the 10- to 20-foot below ground surface (bgs) range, generally in the glacial deposits below the bottom of the fill material. Groundwater flow is consistently northward through the Site area toward Cayadutta Creek, with the steepest gradient from the center of the Site proximal to former gas holders #2 and #3 to the southern Creek bank (about 0.09 ft./ft.). In comparison, the average hydraulic gradient decreases to a value of approximately 0.05 ft./ft. on the east and west sides of the Site away from the former gas holders. The local groundwater flow is consistent with regional groundwater flow direction. The groundwater flow direction and hydraulic gradients calculated during this monitoring period are also generally consistent with historic data obtained prior to the issuance of the ROD.

3 Monitoring Activities

The long-term semi-annual groundwater monitoring program currently consists of the following elements:

- Semi-Annual Site Inspection including the creek bank protection, vegetative cover, monitoring wells, and security fence.
- Semi-Annual Groundwater Well Gauging of the following wells: RW-1, MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15 and MW-16 (Figure 2 presents the well locations).
 The creek surface water level is also gauged at one location: SG-1.
- Semi-Annual Groundwater Sampling and Analysis of the following: MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15 and MW-16. Note that recovery well RW-1 is not sampled as part of the program but is inspected for the presence of non-aqueous phase liquids (NAPL). Note: Monitoring well MW-11 was not gauged or sampled during the October 2020 sampling round due to concrete/metal and wood debris at this off-site well location.

3.1 Groundwater Gauging and Sampling Procedures

3.1.1 Gauging

Long-term groundwater monitoring includes water level gauging at 8 groundwater monitoring wells and 1 groundwater recovery well using an electronic oil/water interface probe. Depth to bottom of well (DTB), depth to product (DTP), and depth to water (DTW) are to be recorded at each well. Refer to **Table 2** for a summary of the water level measurements from October 2020 as well as previous events. **Appendix A** also presents the field documentation from the October 2020 water gauging event.

No product was present in recovery well RW-1 or the other eight groundwater monitoring wells that were gauged.

A creek surface water level measurement was collected from the Cayadutta Creek Bridge using a water level probe (from the surveyed gauging point at the bridge).

3.1.2 Sampling

Groundwater sampling was performed following low-flow sampling techniques [equivalent to United States Environmental Protection Agency (USEPA) low-flow procedures] using a pressure-driven peristaltic pump. During purging, measurements were collected for the following field parameters: pH, specific conductivity, turbidity, dissolved oxygen (DO), temperature, and oxidation-reduction potential (ORP). A Horiba U-22 was used to collect the field parameter data in a flow-through cell. The monitored field parameters are observed and recorded during low-flow sampling to determine when they have stabilized, and thus when the well has been adequately

purged. Field parameter measurements were recorded at approximately 5-minute intervals. The monitoring wells were purged until stabilization of the field parameters (±0.1 Standard Unit (SU) for pH, ±3% for specific conductivity, ±10 millivolts (mV) for ORP, and ±10% for DO) and turbidity was less than 50 Nephalometric Turbidity Units (NTU). Refer to **Attachment A** for the field data.

After stabilization of the field parameters, eight groundwater samples were collected directly from the dedicated tubing into laboratory-supplied sample containers (pre-preserved as required per the analytical method). Quality Assurance/Quality Control (QA/QC) samples included the collection of one field duplicate sample, one matrix spike (MS) sample, one duplicate matrix spike (DMS) sample, and one trip blank sample (VOCs only). Samples were transported to the laboratory, accompanied by the appropriate chain-of-custody documentation. Analytical results were validated.

3.1.3 Natural Attenuation Parameters

The ORP of groundwater may be used as a general indicator of the dominant attenuation processes and the relative tendency of the biological processes to accept or transfer electrons. ORP is dependent on and influences rates of biodegradation. Lower ORP readings indicate reduced conditions and are indicative of anaerobic biologic degradation processes.

The pH of the groundwater affects the presence and activity of microorganisms in the groundwater. The microorganisms may produce either organic acids or carbon dioxide which, when dissolved in water, forms weak carbonic acid. Microorganisms capable of degrading petroleum hydrocarbons are most active with pH values ranging from 6 to 8 SU.

Groundwater temperature affects the solubility of dissolved gases such as oxygen and carbon dioxide as well as the metabolic activity of microorganisms. Oxygen is less soluble in warm water, and groundwater temperatures below approximately 5 degrees Celsius tend to inhibit biodegradation.

DO is the most thermodynamically favored electron acceptor used by microorganisms during the degradation of both natural and anthropogenic organic carbon. An inverse relationship of high hydrocarbon concentrations and low DO concentrations can be used as a key indicator of biodegradation.

Nitrate, if available, may be used as an electron acceptor for anaerobic biodegradation after the depletion of DO [typically considered less than 0.5 milligrams per liter (mg/L)] and is used to biodegrade petroleum hydrocarbons. Lower nitrate concentrations in groundwater within a plume, with respect to higher concentrations in areas upgradient and outside a plume, may be expected.

Ferrous iron is a metabolic byproduct of hydrocarbon degradation. Reducing conditions in nitrogen- and oxygen-depleted groundwater creates an anaerobic environment that causes the reduction of ferric iron (Fe³⁺) to ferrous iron (Fe²⁺). Relatively low ferrous iron concentrations may be present in areas where natural attenuation is occurring if free ferrous iron is re-precipitating as sulfides or carbonates.

Sulfate may be used as an electron acceptor after the depletion or use limitation of DO, nitrate, and ferric iron. Lower sulfate concentrations in groundwater within a plume, with respect to higher concentrations in areas upgradient and outside a plume, may be expected.

The production of methane, termed methanogenesis, occurs only in strongly reducing conditions and generally after oxygen, nitrate, and sulfate have been depleted. The presence of methane in groundwater suggests Benzene, Toluene, Ethylbenzene, Xylene (BTEX) degradation via methanogenesis. Methane is not present in fuels, and therefore its presence at high concentrations relative to areas upgradient and outside a plume is indicative of the biodegradation of petroleum hydrocarbons.

The buffering capacity of groundwater is a function of alkalinity. Typically, alkalinity is primarily due to carbonate alkalinity. The organic acids or carbon dioxide (which produces a weak carbonic acid when dissolved in water) produced by biodegradation solubilize carbonate from the soil. Alkalinity concentrations that are elevated with respect to areas upgradient and outside a plume may be an indication of microbial activity and thus natural attenuation.

Typically, the relationships between BTEX and electron acceptors/metabolic byproduct concentrations (geochemical indicators) indicate potential for biodegradation. The concentrations are dependent on the location (and groundwater conditions) within the plume or outside of the plume limits.

3.2 Groundwater Analytical Results

The groundwater samples were analyzed for BTEX, Polycyclic Aromatic Hydrocarbons (PAHs), lead, total cyanide, and monitored natural attenuation/water quality (MNA/WQ) parameters including alkalinity, chloride, ethane, ethene, ferrous iron, manganese, methane, nitrate, nitrogen, sulfate and sulfide. BTEX, PAHs, and cyanide are constituents commonly associated with former MGP sites. BTEX, PAHs, lead, and cyanide were the primary contaminants detected during previous investigation activities conducted at the Site. The MNA/WQ parameters, as well as field-measured ORP, pH, temperature, and DO, are relevant to establishing whether conditions are favorable for natural attenuation to occur at the Site.

- Refer to Table 3 for the analytical results summary.
- Refer to Appendix A for field data.
- Refer to Appendix B for the data usability summary report (DUSR).

Groundwater analytical results were compared with levels specified in the NYSDEC Division of Water Final Amendment to Water Quality Standards Regulations, effective February 16, 2008 [hereafter referred to as NYSDEC WQ Values]. For groundwater, Class GA values were applied. Class GA waters are defined as fresh groundwater, found in the saturated zone of unconsolidated deposits and consolidated rock or bedrock, which are used as a source of potable water supply.

3.2.1 Site Related Parameters

BTEX - Groundwater samples collected on October 7, 2020, from monitoring wells MW-13, MW-15, and MW-16 contained concentrations of some or all individual BTEX constituents above their respective NYSDEC WQ Values [1 microgram per liter (μ g/L) for benzene and 5 μ g/L for other BTEX constituents]. The highest concentrations were observed in the groundwater samples collected from monitoring well MW-13, which typically has the highest total BTEX concentrations. Monitoring well MW-13 is located between former gas holders #2 and #3.

PAHs – PAHs above NYSDEC WQ Values were detected in samples collected on October 7, 2020, from monitoring wells MW-7, MW-10, MW-13, MW-14, MW-15, and MW-16. Naphthalene (MW-13) has typically been detected at the highest concentration of any PAH.

Cyanide - Concentrations of cyanide were below the NYSDEC WQ Value (0.2 mg/L) in all groundwater samples October 7, 2020, with the exception of monitoring wells MW-7, MW-14, MW-15, and MW-16.

3.2.2 Monitored Natural Attenuation Parameters

Site-specific levels of the MNA/WQ parameters (geochemical indicators) were compared to known screening values to identify whether the site-specific values are within the ranges known to be suitable for biodegradation. The May 2020 MNA/WQ analytical results for the individual monitoring wells are summarized in **Table 3**. **Figure 4** presents the groundwater data for the key MNA data parameters at their respective locations to assist with the MNA evaluation. Indications of biodegradation of petroleum-related MGP constituents within the plume include low levels of DO, nitrate and sulfate, with generally higher levels of manganese, ferrous iron and methane.

Indicator concentrations detected at monitoring wells identified within source and downgradient areas of the Site were compared to levels detected at upgradient and side gradient monitoring wells exhibiting little or no MGP-related contamination. Generally, indicator concentration levels at a distance from the center of the plume are expected to be significantly lower than levels within the plume. A summary of the MNA/WQ results and associated field indicator parameters are provided below:

- DO and ORP values demonstrate depleted levels of DO and a transformation to more anaerobic or reducing conditions at the former source and downgradient areas relative to side gradient and upgradient areas of the Site. These values suggest that biodegradation of MGP petroleum-related compounds at the source and at downgradient areas are occurring, consuming the available oxygen which produces decreased DO levels.
- The range of ORP levels observed at the source and downgradient area monitoring wells generally indicates reduced aquifer conditions which could be suitable for denitrification, ferric iron reduction, sulfate reduction, and methanogenesis.
- Nitrate concentrations are generally depleted at the former source and downgradient areas of the Site relative to upgradient (MW-4) and side gradient (MW-12) areas, indicating

denitrification may be a noteworthy biodegradation process occurring at this time at the source and downgradient areas.

- Ferrous iron concentrations at the former source and downgradient area monitoring wells (MW-7, MW-10, MW-14, MW-15) exhibit higher levels relative to side gradient and upgradient monitoring wells (MW-4, MW-12). The presence of these metabolic by-products downgradient of the source area suggest biodegradation of MGP petroleum-related compounds may be occurring.
- Sulfate concentrations at the former source and downgradient areas are not depleted relative
 to upgradient and side gradient areas. This observation indicates sulfate reduction is not likely
 to be a significant biodegradation process at this time at the source and downgradient areas.
- Based on the presence of methane, low DO concentrations, and the reduced ORP levels, methanogenesis is likely an important factor for biodegradation capacity in the source and downgradient areas of the Site.

3.2.3 Natural Attenuation Trending

Previous groundwater sampling data collected since October 2012 (the dataset) were utilized to develop and evaluate the contaminant plume and concentration trends of specific constituents at the Site. Plume size and concentration data are indicative of biodegradation capacity (natural attenuation) at the Site and whether the capacity has reached a limit of effectiveness. In order to determine and evaluate natural attenuation effectiveness, statistical testing was utilized for groundwater data collected from monitoring wells at the Site. The Mann-Kendall test was performed on the dataset to identify potential trends in groundwater concentrations of site contaminants. The Mann-Kendall test is a nonparametric evaluation used to identify a trend in a series, even if there is a seasonal component in the series. The three possible hypotheses are that there is a negative, null, or positive trend. The resultant statistical trend analysis for individual monitoring wells suggests (with 80% and 90% confidence) that total BTEX compounds and the naphthalene plume lifecycle demonstrate either no trend or a decreasing trend throughout the monitoring period. It is worth noting that a failure to reject the null hypothesis (i.e. "no trend") does not prove that there is no trend; it merely means that the available data is not sufficient to conclude there is a trend. In cases where no trend was determined, a comparison of the dataset to the historical highs and lows was performed to determine if the plume is stable; in every case, this evaluation concluded the plume is stable. The table below depicts general concentration trend analysis results (decreasing, no trend or increasing) at 80% confidence levels for each well and associated constituents during the monitoring period. No trend is indicative of plume stability at well locations with contaminant detections throughout the monitoring period.

Table 1 – Contaminant Trend Analysis

Well ID	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene
MW-4	Stable	Stable	Stable	Stable	Decreasing
MW-7	Stable	Stable	Stable	Stable	Decreasing
MW-10	Stable	Stable	Stable	Stable	Decreasing
MW-11	Not sampled	Not sampled	Not sampled	Not sampled	Not sampled
MW-12	Stable	Stable	Stable	Stable	Decreasing
MW-13	Decreasing	Decreasing	Decreasing	Decreasing	Decreasing
MW-14	Stable	No Trend	No Trend	No Trend	No Trend
MW-15	Decreasing	No Trend	No Trend	Stable	No Trend
MW-16	Stable	No Trend	No Trend	No Trend	Increasing

Isoconcentration contour maps were developed for total BTEX (**Figure 5**) and naphthalene (**Figure 6**) contamination. The figures present locations of the groundwater monitoring wells and plume contours for total BTEX (as compared to the benzene WQ value of 1 μ g/L) and naphthalene exceeding the NYSDEC WQ values. Evaluation of the isoconcentration figures suggests that the contaminant plumes were relatively stable to decreasing (smaller footprint with time) within the Site boundary. BTEX constituent plume trends (concentrations above the benzene WQ value of 1 μ g/L) have consistently included monitoring wells MW-13, MW-15, and MW-16. The naphthalene plume (concentrations above the WQ) has decreased to include only monitoring wells MW-13 and MW-15.

4 Conclusions and Recommendations

4.1 Conclusions

4.1.1 Groundwater Levels

The groundwater elevation data indicates groundwater within the Site flows from the south to the north, toward Cayadutta Creek. The groundwater flow direction has been consistent during previous gauging events and with data obtained prior to the ROD. **Figure 3** is a groundwater monitoring map verifying groundwater flow direction.

4.1.2 Site-Related Constituents

The highest concentrations of BTEX constituents and PAH compounds are at wells MW-13, MW-15, and MW-16. Site institutional controls continue to be effective and will continue to be monitored semi-annually.

There are minimal concentrations of lead in groundwater samples; however, Total Cyanide has been detected consistently in most wells.

4.1.3 Natural Attenuation

Plume stability at the Site is an indication that biodegradation capacity likely has not reached its limit of effectiveness. The use of statistical testing has identified the plume trends based on the constituent concentrations were typically either stable or decreasing.

4.2 Recommendations

Based on the results of the October 2020 groundwater sampling and monitoring event and results from previous events, it is recommended to continue the long-term semi-annual site inspection and groundwater monitoring program. The next event will occur in May 2021.

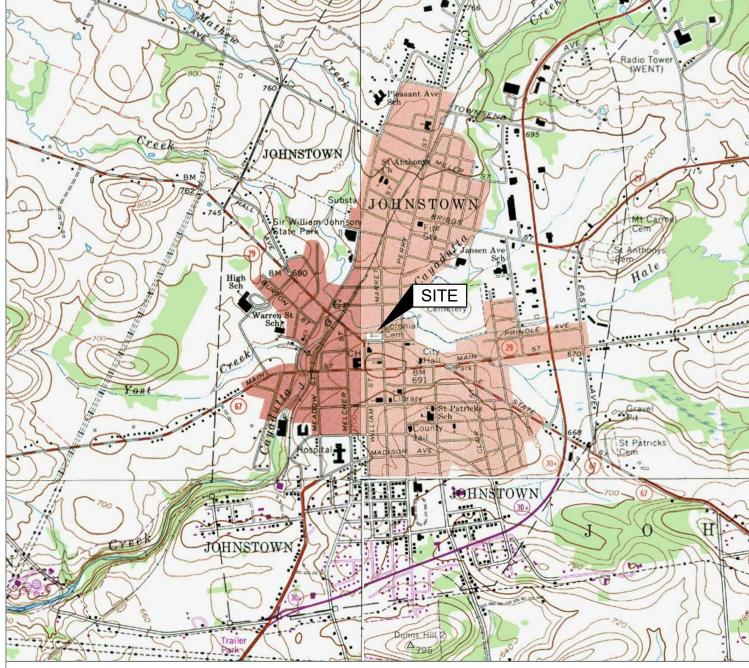
5 References

Borden, Robert C., et. al., "Geochemical Indicators of Intrinsic Bioremediation". Groundwater, Volume 33, Number 2, March/April 1995.

National Grid. "Site Management Plan for the Johnstown (N. Market Street) Former MGP Site, Johnstown, New York". National Grid, November 2011.

Niagara Mohawk Power Corporation. "Preliminary Historical Profile of the Johnstown (Market Street) MGP Site. Johnstown, New York". Niagara Mohawk Power Corporation, June 1993.

Niagara Mohawk Power Corporation. "Interim Remedial Measure (IRM) Summary Report for the Johnstown (N. Market Street) Site. Johnstown, Fulton County, New York. Site No. 5-18-020:. Tetra Tech FW, June 2007.


Niagara Mohawk Power Corporation. "IRM Summary Report for the Johnstown (N. Market Street) Site. Bridge Replacement Environmental Support Activities". Tetra Tech FW, October 2007.

Niagara Mohawk Power Corporation. "Record of Decision for the Johnstown (N. Market Street) Former MGP Site, Johnstown, New York". Niagara Mohawk Power Corporation, March 2010.

December 2020 Semi-Annual Groundwater Monitoring Report National Grid Johnstown Site 109 North Market Street, Johnstown NY 12095

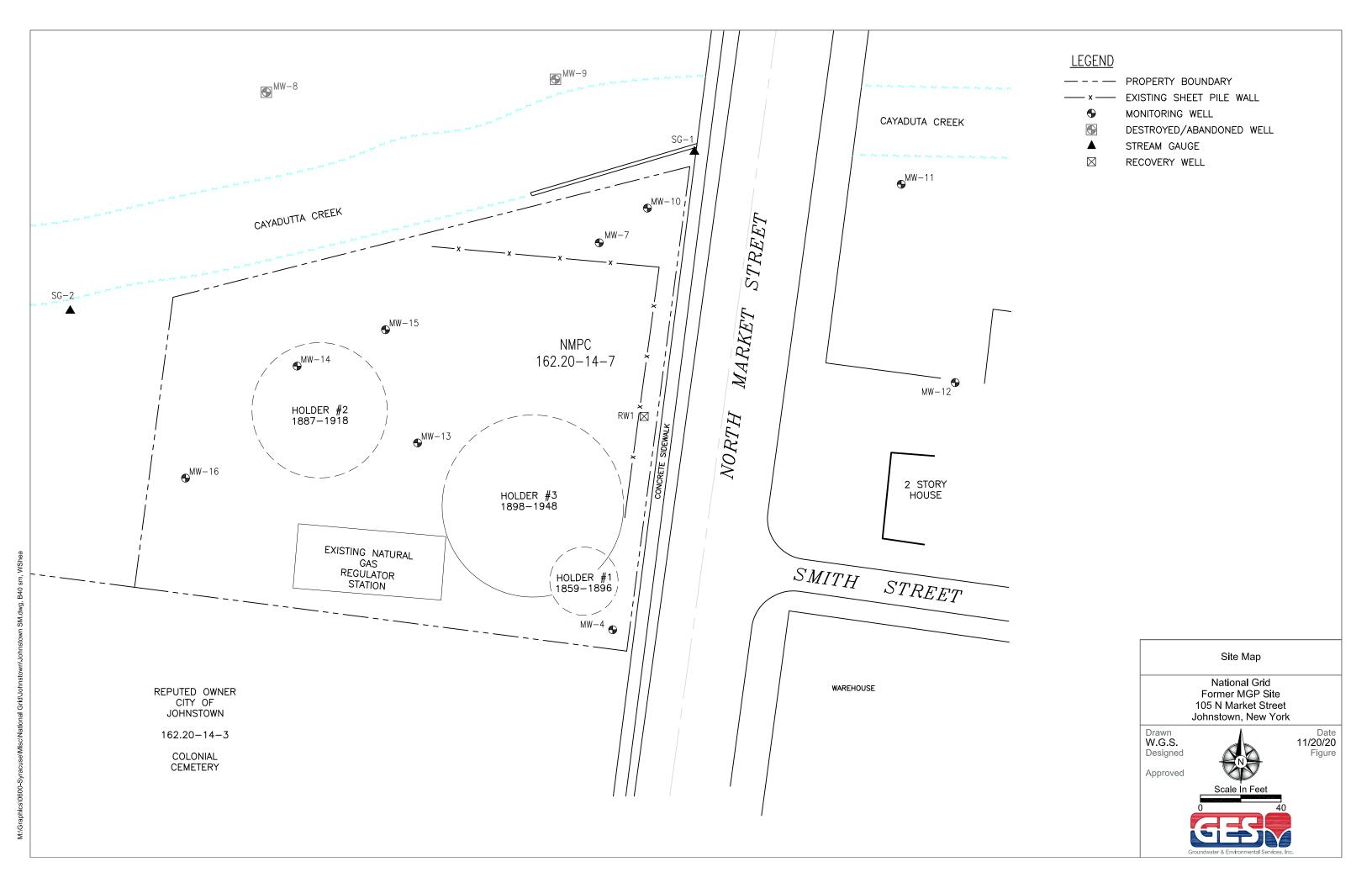
Figures

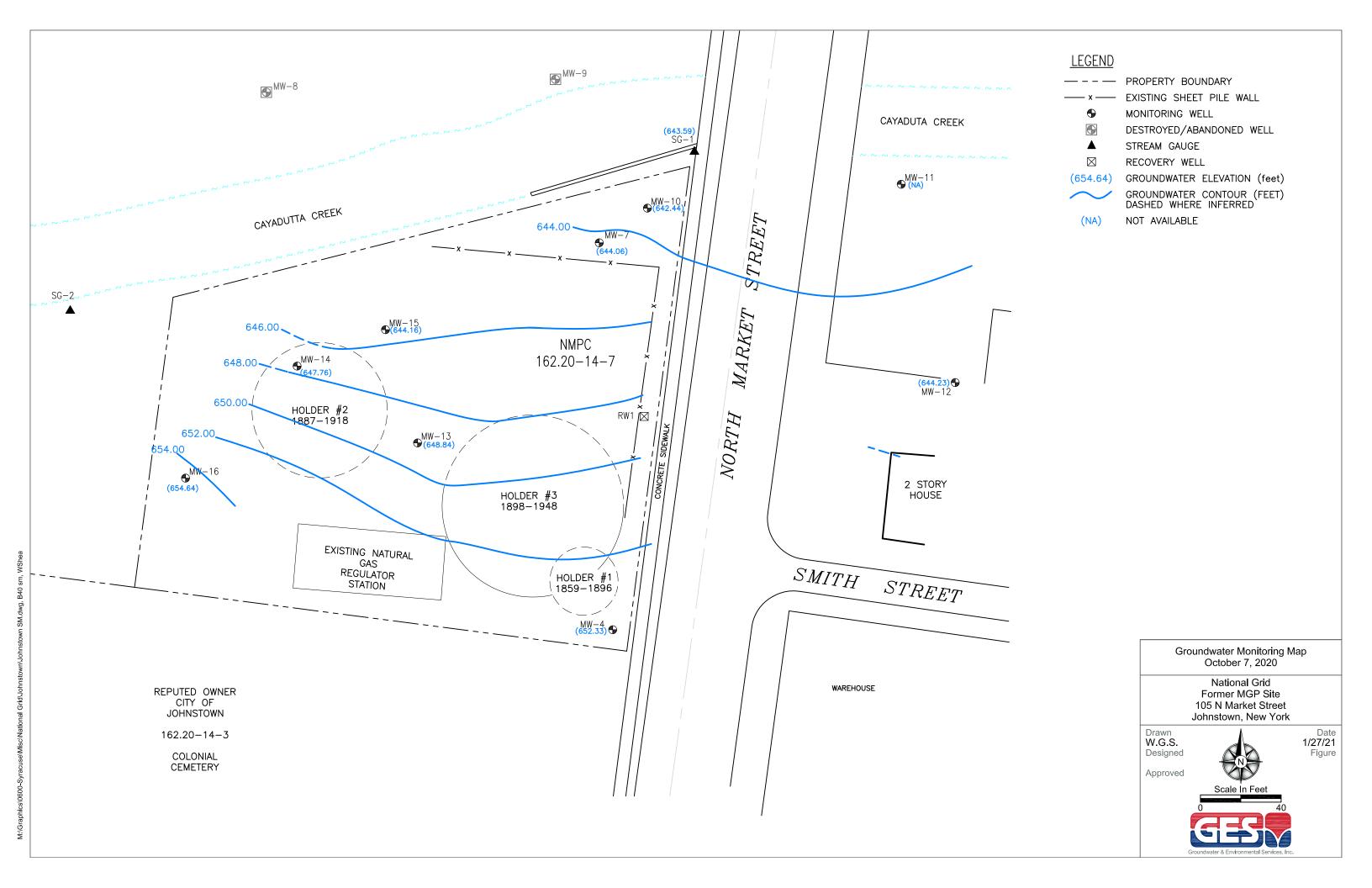
Source: USGS 7.5 Minute Series Topographic Quadrangle, 1970 Gloversville, New York Contour Interval = 20'

Site Location Map

National Grid Former MGP Site 105 N Market Street Johnstown, New York

Drawn W.G.S. Designed Approved




Date 11/15/19 Figure

Scale in Feet

0 2000

December 2020 Semi-Annual Groundwater Monitoring Report National Grid Johnstown Site 109 North Market Street, Johnstown NY 12095

Tables

Table 2

Groundwater Level Measurements

		6/30/	/2010	9/29	/2010	1/5/	/2011	4/8/	2011	6/16	/2011	10/13	3/2011	12/15	5/2011
Well ID	ELEVATION REFERENCE POINT	Depth to Water (ft TOC)	GW Elevation (ft AMSL)												
MW-4	676.54	23.10	653.44	23.41	653.13	22.95	653.59	22.50	654.04	22.04	654.50	21.41	655.13	22.78	653.76
MW-7	659.08	14.25	644.83	13.18	645.90	13.88	645.20	12.87	646.21	13.80	645.28	13.15	645.93	15.45	643.63
MW-10	657.59	14.80	642.79	14.60	642.99	14.75	642.84	14.09	643.50	14.77	642.82	14.11	643.48	14.22	643.37
MW-11	657.29	NM	NM	13.57	643.72	13.59	643.70	12.51	644.78	13.38	643.91	12.95	644.34	12.76	644.53
MW-12	660.08	NM	NM	NM	NM	15.06	645.02	NM	NM	NM	NM	13.61	646.47	14.54	645.54
MW-13	664.89	14.65	650.24	15.22	649.67	14.95	649.94	11.18	653.71	13.99	650.90	11.91	652.98	14.31	650.58
MW-14	663.91	13.50	650.41	14.46	649.45	14.28	649.63	12.86	651.05	13.65	650.26	13.26	650.65	13.65	650.26
MW-15	661.85	16.90	644.95	17.24	644.61	17.68	644.17	15.07	646.78	16.63	645.22	15.95	645.90	16.38	645.47
MW-16	665.57	9.70	655.87	10.19	655.38	12.33	653.24	11.00	654.57	10.50	655.07	9.79	655.78	9.91	655.66
RW-1	-	-	-		-	-	-	1	-	-	-	1	-	-	-
GAUGE1	659.97	15.07	644.90	20.20	639.77	16.30	643.67	15.75	644.22	16.75	643.22	16.05	643.92	15.62	644.35

ft AMSL

= Feet above mean sea level = Feet from top of inner casing

ft TOC = Feet from top GW = Groundwater

NM = Not measured

Table 2

Groundwater Level Measurements

		3/15	/2012	10/9	/2012	4/18	/2013	10/7	/2013	4/9/	/2014	10/1:	3/2014	4/16	/2015
Well ID	ELEVATION REFERENCE POINT	Depth to Water (ft TOC)	GW Elevation (ft AMSL)												
MW-4	676.54	22.81	653.73	NM	NM	23.97	652.57	23.12	653.42	23.28	653.26	23.28	653.26	22.91	653.63
MW-7	659.08	13.55	645.53	14.17	644.91	13.53	645.55	14.36	644.72	13.71	645.37	14.61	644.47	13.23	645.85
MW-10	657.59	14.18	643.41	15.05	642.54	14.27	643.32	14.44	643.15	14.13	643.46	14.98	642.61	14.15	643.44
MW-11	657.29	12.73	644.56	13.95	643.34	13.01	644.28	13.16	644.13	12.68	644.61	13.71	643.58	12.62	644.67
MW-12	660.08	14.26	645.82	16.36	643.72	14.06	646.02	14.99	645.09	14.41	645.67	15.65	644.43	14.25	645.83
MW-13	664.89	14.98	649.91	16.12	648.77	14.18	650.71	15.08	649.81	14.84	650.05	15.53	649.36	11.34	653.55
MW-14	663.91	15.49	648.42	16.98	646.93	13.14	650.77	14.74	649.17	15.70	648.21	15.02	648.89	13.06	650.85
MW-15	661.85	16.41	645.44	17.85	644.00	16.26	645.59	17.21	644.64	16.67	645.18	17.55	644.30	15.31	646.54
MW-16	665.57	11.56	654.01	10.51	655.06	9.98	655.59	9.85	655.72	9.45	656.12	10.24	655.33	10.48	655.09
RW-1	-	-	-	17.98	-	16.21	-	15.95	-	12.32	-	17.31	-	16.84	-
GAUGE1	659.97	15.69	644.28	NM	NM	19.10	640.87	18.85	641.12	18.85	641.12	20.01	639.96	18.91	641.06

ft AMSL = Feet above mean sea level

ft TOC = Feet from top of inner casing

GW = Groundwater NM = Not measured

Table 2

Groundwater Level Measurements

		10/13	3/2015	4/6/	2016	10/2	5/2016	4/26	/2017	10/1	1/2017	4/26	5/2018	10/17	7/2018
Well ID	ELEVATION REFERENCE POINT	Depth to Water (ft TOC)	GW Elevation (ft AMSL)												
MW-4	676.54	23.48	653.06	23.51	653.03	24.03	652.51	21.09	652.19	24.35	652.19	22.48	654.06	23.20	653.34
MW-7	659.08	14.61	644.47	14.19	644.89	15.00	644.08	13.62	645.46	14.83	644.25	12.85	646.23	14.40	644.68
MW-10	657.59	14.95	642.64	14.77	624.82	15.18	642.41	14.37	643.22	15.02	642.57	13.05	644.54	14.60	642.99
MW-11	657.29	-	-	NM	-										
MW-12	660.08	15.62	644.46	14.95	645.13	15.82	644.26	13.55	646.53	15.62	644.46	14.00	646.08	15.10	644.98
MW-13	664.89	14.98	649.91	15.95	648.94	16.32	648.57	13.27	651.62	15.80	649.09	12.98	651.91	14.15	650.74
MW-14	663.91	13.63	650.28	16.81	647.1	16.8	647.11	13.71	650.20	15.88	648.03	13.71	650.20	13.88	650.03
MW-15	661.85	17.23	644.62	17.355	644.3	17.9	643.95	16.05	645.80	17.86	643.99	15.71	646.14	16.70	645.15
MW-16	665.57	9.61	655.96	10.79	654.78	11.11	654.46	9.02	656.55	10.43	655.14	9.52	656.05	9.88	655.69
RW-1	-	13.21	-	13.03	NRP	12.88	NRP	10.6	NRP	17.40	NRP	12.35	NRP	12.38	NRP
GAUGE1	659.97	19.91	640.06	19.76	640.21	18.40	641.57	15.70	644.27	15.46	644.51	14.55	645.42	15.70	644.27

ft AMSL

= Feet above mean sea level = Feet from top of inner casing

ft TOC = Feet from top GW = Groundwater

NM = Not measured

Table 2

Groundwater Level Measurements

		4/18/	/2019	10/16	6/2019	5/20	/2020	10/7	/2020
Well ID	ELEVATION REFERENCE POINT	Depth to Water (ft TOC)	GW Elevation (ft AMSL)						
MW-4	676.54	22.60	653.94	23.47	653.07	22.11	654.43	24.21	652.33
MW-7	659.08	13.85	645.23	14.73	644.35	15.15	643.93	15.02	644.06
MW-10	657.59	14.50	643.09	15.02	642.57	15.02	642.57	15.15	642.44
MW-11	657.29	NM	-	NM	-	NM	-	NM	-
MW-12	660.08	14.40	645.68	15.54	644.54	14.62	645.46	15.85	644.23
MW-13	664.89	13.07	651.82	14.74	650.15	15.42	649.47	16.05	648.84
MW-14	663.91	13.80	650.11	13.8	650.11	14.23	649.68	16.15	647.76
MW-15	661.85	15.60	646.25	17.05	644.80	16.52	645.33	17.69	644.16
MW-16	665.57	10.39	655.18	9.78	655.79	9.81	655.76	10.93	654.64
RW-1	-	15.22	NRP	13.00	NRP	11.40	NRP	13.83	NRP
GAUGE1	659.97	15.50	644.47	16.28	643.69	16.05	643.92	16.38	643.59

ft AMSL = Feet above mean sea level

ft TOC = Feet from top of inner casing

GW = Groundwater NM = Not measured

CONSTITUENT	UNITS	NYSDEC AWQS Values	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/14	04/16/15	10/14/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20
BTEX Compounds																										
Benzene	μg/L	1	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)						
Ethylbenzene	μg/L	5	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)						
m/p-Xylene	μg/L	5	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)						
o-Xylene	μg/L	5	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)						
Toluene	μg/L	5	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)						
PAHs																										
Acenaphthene	μg/L	20	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.21						
Acenaphthylene	μg/L	NC	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)						
Anthracene	μg/L	50	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)		ND (<0.098)						
Benzo(a)anthracene	μg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)						
Benzo(a)pyrene	μg/L	0.000	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)						
Benzo(b)fluoranthene	μg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	0.26J	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)						
Benzo(g,h,i)perylene	μg/L	NC	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	0.19J	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)						
Benzo(k)fluoranthene	μg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)						
Chrysene	μg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)						
Dibenzo(a,h)anthracene	μg/L	NC	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)						
Fluoranthene	μg/L	50	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)						
Fluorene	μg/L	50	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)						
Indeno(1,2,3-cd)pyrene	μg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)						
Naphthalene	μg/L	10	0.27	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.49)	ND (<0.49)	3.2	3.2	2.2	2.2	2.2	ND (<0.51)	0.29	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	2.4
Phenanthrene	μg/L	50	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	0.048J	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)						
Pyrene	μg/L	50	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	0.10J	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)						
Cyanide and Lead																										
Lead	μg/L	25	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<3.0)	ND (<3.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<10)	ND (<10)	ND (<5.0)								
Cyanide	mg/L	0.2	ND (<0.01)	ND (<0.010)																						

amglt. U.2 ND (eU.01) ND (eU.01) ND (eU.01)

= Ambient Water Quality Standards
= Present in Associated Blank Sample
= Benzene, Ethylbenzene, Toluene and Xylene
= Diluted Sample
= Result exceeded calibration range
= Result exceeded calibration range
= NS and/or NSD Recovery outside acceptance limits.
= NS MSD RPD above control limits.
= SIMISSED Concentration Value
= Milingams per Liter
= No Criteria
= Not detected above laboratory reporting limit (indicated by #)
= Not Sampled
= New York State Department of Environmental Conservation
= Polycyclic Aromatic Hydrocarbons
= Rejected
= Micrograms per Liter AWQS B BTEX D E E F1 F2 J mg/L NC ND (<#) NS NYSDEC PAHs R

= Micrograms per Liter = values indicated exceedance of the NYSDEC AWQS

CONSTITUENT	UNITS	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/14	04/16/15	10/14/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20
MNA/WQ Parameters																									
Alkalinity (as CaCO3)	mg/L	385	420	R	R	405J	431J	R	405	354	442	398	400	384	412	394	414	392	418	424	424	452	410	360	390
Chloride	mg/L	354	269	265	385 B	288J	R	228	222	275	411	304	329	295	365	304	421	377	ND (<300)	233	306	360	260	296	200
Ethane	μg/L	ND (<1.0)	ND (<1.0)	ND (<1.5)	ND (<7.5)	ND (<0.025)	ND (<0.025)	ND (<0.030)	0.037J	ND (<0.16)	ND (<1.0)	0.036 J	ND (<1.00)	ND (<5.00)											
Ethene	μg/L	ND (<1.0)	ND (<1.0)	ND (<1.5)	ND (<7.0)	ND (<0.035)	ND (<0.035)	ND (<0.10)	ND (<0.10)	ND (<0.032)	ND (<1.0)	ND (<1.0)	ND (<1.00)	ND (<5.00)											
Ferrous Iron	mg/L	ND (<0.1)	ND (<0.1)	R	ND (<0.1)	0.013	ND (<0.1)	ND (<0.1)	ND (<0.1)	ND (<0.1)	0.14	0.11	ND (<0.10)	ND (<0.10)	ND (<0.10)	0.10									
Manganese	mg/L	NA	ND (<10)	0.64J	0.45J	ND (<3.0)	3.4	ND (<3.0)	0.0087	ND (<3.0)	0.019	0.0031	0.0053	ND (<0.005)	ND (<0.005)	ND (<0.005)	0.0065	ND (<0.005)	0.0318	ND (<0.005)	0.0541				
Methane	μg/L	ND (<2.0)	ND (<2.0)	ND (<1.0)	ND (<4.0)	0.32J	0.47J	0.27J	0.29J	ND (<0.30)	ND (<2.5)	ND (<2.5)	ND (<1.00)	ND (<5.00)											
Nitrate	mg/L	NA	2.5	2.7	2.9	2.4	3	3.1	2.2	2.4	3.5	3.6	2.7	2.9	2.9	3.4	3.2	2.2	3.2	0.69	2.1	3.9	2.7	2.8	2.2
Nitrogen	mg/L	0.22	0.25	ND (<0.2)	ND (<0.2)	R	ND (<0.2)	ND (<0.2)	0.25	0.31	0.31	ND (<0.2)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)									
Sulfate	mg/L	NA	49.2	56.7	74.2 B	R	R	56 B	62.2	64.7	74.7	70.7	50.8	60	60	73.9	8.09	23.0	56.7	50.0	ND (<50.0)	35.8	42.1	23.7	37.0
Sulfide	mg/L	NA	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)														

Present in Associated Blank Sample
Dilated Sample
Estimated Concentration
Millingrams per Liter
Monitored Matural Alteruation
Not described above laboratory reporting limit (indicated by #)
Not described above laboratory reporting limit (indicated by #)
Not described above laboratory reporting limit (indicated by #)
Not described above laboratory reporting limit (indicated by #)
Not described above laboratory reporting limit (indicated by #)
Not described above laboratory reporting limit (indicated by #)
Not described above laboratory reporting limit (indicated by #)
Not described above laboratory reporting limit (indicated by #)
Not described above laboratory reporting limit (indicated by #)
Not described above laboratory reporting limit (indicated by #)
Not described above laboratory reporting limit (indicated by #)
Not described above laboratory reporting limit (indicated by #)
Not described above laboratory reporting limit (indicated by #)
Not described above laboratory reporting limit (indicated by #)
Not described above laboratory reporting limit (indicated by #)
Not described above laboratory reporting limit (indicated by #)
Not described above laboratory reporting limit (indicated by #)
Not described above laboratory reporting limit (indicated by #)
Not described above laboratory reporting limit (indicated by #)
Not described above laboratory reporting limit (indicated by #)
Not described above laboratory reporting limit (indicated by #)
Not described above laboratory reporting limit (indicated by #)
Not described above laboratory reporting limit (indicated by #)
Not described above laboratory reporting limit (indicated by #)
Not described above limit (indicated by B
D
J
mg/L
MNA
NA
ND (<#)
NS
R
µg/L
WQ

CONSTITUENT	UNITS	NYSDEC AWQS Values	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/14	04/16/15	10/14/15	04/06/16	10/26/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20
BTEX Compounds																										
Benzene	μg/L	1	ND (<1.0)	ND (<1.0)	ND (<1.0)	0.72J	ND (<1.0)	ND (<1.0)	1.3	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)							
Ethylbenzene	μg/L	5	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)											
m/p-Xylene	μg/L	5	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)											
o-Xylene	μg/L	5	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)											
Toluene	μg/L	5	ND (<1.0)	ND (<1.0)	1.3	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)											
PAHs																										
Acenaphthene	μg/L	20	0.075J	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.55	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	0.10	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.13				
Acenaphthylene	μg/L	NC	0.15J	0.11J	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.20J	0.13J	0.13J	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	0.20	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	0.10	ND (<0.10)	0.17
Anthracene	μg/L	50	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.099)				
Benzo(a)anthracene	μg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.12				
Benzo(a)pyrene	μg/L	0.000	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.11				
Benzo(b)fluoranthene	μg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.15J	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.10				
Benzo(g,h,i)perylene	μg/L	NC	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.099)				
Benzo(k)fluoranthene	μg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)		ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.099)				
Chrysene	μg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.12				
Dibenzo(a,h)anthracene	μg/L	NC	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.099)				
Fluoranthene	μg/L	50	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	0.078J	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	0.16	ND (<0.10)	0.29
Fluorene	μg/L	50	ND (<0.19)	0.057J	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.11J	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.099)				
Indeno(1,2,3-cd)pyrene	μg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.099)				
Naphthalene	μg/L	10	0.43	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	1.1	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.46)	ND (<0.46)	5.2	ND (<0.49)	3.0	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.83
Phenanthrene	μg/L	50	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.097J	0.12J	ND (<0.48)	0.49	ND (<0.48)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.14
Pyrene	μg/L	50	ND (<0.19)	0.038J	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.35J	0.098J	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	0.26	ND (<0.10)	0.43
Cyanide and Lead		,			· ·									· ·	· ·			,		· ·		· ·				,
Lead	μg/L	25	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<3.0)	19	12	3.2J	19	33	7.1	7.1	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	5.6
Cyanide	mg/L	0.2	0.333	0.217	R	0.68J	0.986	R	0.22	5.9	1.4	0.4	0.16	0.13	0.18	0.18	0.18	0.15	0.18	0.16	0.14	0.17	0.129	0.17	ND (<0.010)	0.35

mg/L 0.2 0.333 0.217

- Anbient Muster Outility Standards
- Present in Aspociated Stans Sample
- Recent Entylenzens, Toluene and Xylene
- Diluted Sample
- Results exceeded calibration range
- MS andor MSD Recovery outside acceptance limits.
- Estimated Concentration Value
- MSINSO PPO above corror limits.
- Estimated Concentration Value
- Miligrapms per Liter
- Not detected above taboratory reporting limit (indicated by #)
- Not Sampled
- New York State Department of Environmental Conservation
- Polycyfold: Annabic Hydrocarbons
- Registed
- Micrograms per Liter
- values indicated exceedance of the NYSDEC AWOS AWQS
B
BTEX
D
E
F1
F2
J
mg/L
NC
ND (<#)
NS
NYSDEC
PAHs
R

CONSTITUENT	UNITS	09/30/10	01/04/11	04/07/11	06/15/11	10/12/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/14	04/16/15	10/14/15	04/06/16	10/26/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20
MNA/WQ Parameters		,	,	,																					
Alkalinity (as CaCO3)	mg/L	321	330J	R	R	327J	370J	R	310	324	367	375	392	340	403	395	406	412	380	390	440	370	400	446	430
Chloride	mg/L	108	104	122	93.8 B	111J	R	91.2	101	114	84	79	62.8	67.7	66.7	66.2	79.4	68.9	64.6	63.6	59.4	63.9	50.9	58.1	56.5
Ethane	μg/L	ND (<5.0)	ND (<5.0)	ND (<1.5)	ND (<150)	ND (<1.5)	ND (<75)	ND (<75)	ND (<7.5)	ND (<7.5)	0.38J	0.86J	0.20J	0.32J	0.18J	0.13 J	ND (<1.0)	ND (<1.00)	ND (<5.00)						
Ethene	μg/L	ND (<5.0)	ND (<5.0)	ND (<1.5)	ND (<150)	ND (<1.5)	ND (<75)	ND (<75)	ND (<7.0)	ND (<7.0)	ND (<0.035)	0.090J	ND (<0.10)	ND (<0.10)	ND (<0.032)	ND (<1.0)	ND (<1.0)	ND (<1.00)	ND (<5.00)						
Ferrous Iron	mg/L	1.12	ND (<0.1)	R	1.7J	0.83J	R	ND (<0.1)	0.37	ND (<0.1)	0.25	6.24	ND (<0.1)	ND (<0.1)	ND (<0.1)	0.14	0.59	3.7	3.3	2.8	3.2	2.5	2.1	4.3	2.9
Manganese	mg/L	NA	0.54	0.67	0.62	0.66	0.94	0.51	0.96	1.1	1.1	0.564	0.49	0.49	0.46	0.53	0.43	0.478	0.476	0.476	0.459	0.487	0.395	0.513	0.420
Methane	μg/L	290J	510	190	210	190	300	210	240	40	23	150	82	35	96	17	160	240	120	170	150	140	160	111	30.3
Nitrate	mg/L	NA	ND (<1.0)	ND (<0.05)	ND (<0.02)	ND (<0.05)	0.14	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<1.0)	ND (<1.0)	ND (<1.0)									
Nitrogen	mg/L	1.76	1.59	1.4	1.3	1.6	R	1.6	1.6	4.6	1.5	0.16	2	1.1	1.5	1.6	2.2	1.8	1.3	1.7	1.2	1.6	0.11	1.6	ND (<0.10)
Sulfate	mg/L	NA	576	745 B	611 B	R	R	674 B	509	654	518	540	457	442	533	384	476	396	394	389	331	334	259	307	298
Sulfide	mg/L	NA	1.4J	ND (<1.0)	0.8J	2.8	ND (<1.0)	ND (<1.0)	1.2	1.4	1.4	1.4	1	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)

Present in Associated Blank Sample
Diluted Sample
Estimated Concentration
Miligrams per Liter
Monitored Natural Attenuation
Not Analyzed
Not desceted above laboratory reporting limit (indicated by #)
Not diseased above laboratory reporting limit (indicated by #)
Not diseased above laboratory reporting limit (indicated by #)
Not dismipted
Micrograms per Liter
Water Ouality B
D
J
mg/L
MNA
NA
ND (<#)
NS
R
µg/L
WQ

Table 3 Groundwater Analytical Data MW-10

CONSTITUENT	UNITS	NYSDEC AWQS Values	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/14	04/16/15	10/13/15	04/06/16	10/26/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20
BTEX Compounds	•													•		•								•		
Benzene	μg/L	1	ND (<1.0)	ND (<1.0)	ND (<1.0)	7.1	1.3	ND (<1.0)	2.3	ND (<1.0)	ND (<1.0)	1.9	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)							
Ethylbenzene	μg/L	5	ND (<1.0)	1	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)												
m/p-Xylene	μg/L	5	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)												
o-Xylene	μg/L	5	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)												
Toluene	μg/L	5	ND (<1.0)	2	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)												
PAHs																										
Acenaphthene	μg/L	20	1.6	1.3	1.8J	2.4	2.3	0.099J	1.4	2	2.2	1.1	0.8	ND (<0.48)	0.63	ND (<0.50)	ND (<0.50)	1.4	0.72	1.6	0.53	1.7	1.4	1.8	0.52	1.9
Acenaphthylene	μg/L	NC	0.43J	0.32	0.24J	0.42J	0.74J	0.13J	0.14J	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	0.18	0.16	0.18	0.11	0.22	0.22	0.27	ND (<0.095)	0.43				
Anthracene	μg/L	50	0.061J	0.047J	ND (<0.47)	ND (<0.47)	0.28J	ND (<0.47)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.10)	ND (<0.097)	ND (<0.099)	ND (<0.10)	ND (<0.11)	ND (<0.11)	ND (<0.096)	ND (<0.095)	0.14					
Benzo(a)anthracene	μg/L	0.002	0.13J	0.057J	ND (<0.47)	ND (<0.47)	1	ND (<0.47)	0.49 B	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.10)	0.11	ND (<0.099)	ND (<0.10)	ND (<0.11)	0.13	0.15	ND (<0.095)	0.63				
Benzo(a)pyrene	μg/L	0.002	0.14J	0.057J	ND (<0.47)	ND (<0.47)	0.81	ND (<0.47)	0.19J	ND (<0.48)	0.55	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.10)	0.10	ND (<0.099)	ND (<0.10)	ND (<0.11)	0.12	0.15	ND (<0.095)	0.56
Benzo(b)fluoranthene	μg/L	0.002	0.071J	0.047J	ND (<0.47)	ND (<0.47)	0.8	ND (<0.47)	0.24J	ND (<0.48)	0.86	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.10)	0.17	ND (<0.099)	ND (<0.10)	ND (<0.11)	0.13	0.15	ND (<0.095)	0.65
Benzo(g,h,i)perylene	μg/L	NC	0.051J	ND (<0.19)	ND (<0.47)	ND (<0.47)	0.37J	ND (<0.47)	0.08J	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.10)	ND (<0.097)	ND (<0.099)	ND (<0.10)	ND (<0.11)	ND (<0.11)	ND (<0.096)	ND (<0.095)	0.24				
Benzo(k)fluoranthene	μg/L	0.002	0.092J	0.047J	ND (<0.47)	ND (<0.47)	0.53	ND (<0.47)	0.18J	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)		0.15	ND (<0.099)	ND (<0.10)	ND (<0.11)	ND (<0.11)	ND (<0.096)	ND (<0.095)	0.25				
Chrysene	μg/L	0.002	0.12J	0.047J	ND (<0.47)	ND (<0.47)	0.91	ND (<0.47)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.10)	0.099	ND (<0.099)	ND (<0.10)	ND (<0.11)	ND (<0.11)	0.12	ND (<0.095)	0.53					
Dibenzo(a,h)anthracene	μg/L	NC	ND (<0.20)	ND (<0.19)	ND (<0.47)	ND (<0.47)	0.11J	ND (<0.47)	ND (<0.48)	ND (<0.48)	1.1	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.10)	ND (<0.097)	ND (<0.099)	ND (<0.10)	ND (<0.11)	ND (<0.11)	ND (<0.096)	ND (<0.095)	ND (<0.099)
Fluoranthene	μg/L	50	0.24	0.11J	0.085J	ND (<0.47)	1.5	ND (<0.47)	0.34J	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	0.10	0.16	ND (<0.099)	ND (<0.10)	ND (<0.11)	0.18	0.22	ND (<0.095)	0.78				
Fluorene	μg/L	50	0.13J	0.14J	ND (<0.47)	ND (<0.47)	ND (<0.49)	ND (<0.47)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.10)	ND (<0.097)	ND (<0.099)	ND (<0.10)	ND (<0.11)	ND (<0.11)	ND (<0.096)	ND (<0.095)	0.21					
Indeno(1,2,3-cd)pyrene	μg/L	0.002	0.051J	ND (<0.19)	ND (<0.47)	ND (<0.47)	0.34J	ND (<0.47)	0.076J	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.10)	ND (<0.097)	ND (<0.099)	ND (<0.10)	ND (<0.11)	ND (<0.11)	ND (<0.096)	ND (<0.095)	0.23				
Naphthalene	μg/L	10	0.33	ND (<0.19)	ND (<0.47)	ND (<0.47)	ND (<0.49)	ND (<0.47)	ND (<0.48)	0.7	0.7	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.50)	7.9	ND (<0.50)	0.23	ND (<0.097)	ND (<0.099)	ND (<0.10)	ND (<0.11)	ND (<0.11)	ND (<0.096)	ND (<0.095)	0.49
Phenanthrene	μg/L	50	0.11J	ND (<0.19)	ND (<0.47)	ND (<0.47)	0.53	0.10J	0.18J	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.10)	ND (<0.097)	ND (<0.099)	ND (<0.10)	ND (<0.11)	ND (<0.11)	ND (<0.096)	ND (<0.095)	0.18				
Pyrene	μg/L	50	0.33J	0.13J	0.15J	ND (<0.57)	1.8	0.14J	0.41J	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	0.15	0.20	ND (<0.099)	ND (<0.10)	0.13	0.22	0.27	ND (<0.095)	0.97				
Cyanide and Lead																										
Lead	μg/L	25	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<3.0)	9.1	3.9J	6.4	ND (<5.0)	8.4	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<5.0)	ND (<10.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)
Cyanide	mg/L	0.2	0.139	0.124	R	0.17J	0.156	R	0.078	0.14	0.1	0.11	0.081	0.10	0.098	0.010	0.085	0.081	0.13	0.10	0.12	0.079	0.114	0.093	0.097	0.10

mgL 0.2 0.139 0.124

- Antibient Water Outility Survivariants
- Present in Aspositated Blank Sample
- Research Ethyleancene, Toluene and Xylene
- Diluted Sample
- Beauters, Ethyleancene, Toluene and Xylene
- Diluted Sample
- Result exceeded calibration range
- MS ander MSD Recovery outside acceptance limits.
- Estimated Concentration Value
- MISSIASE DRV above corroll miss.
- Estimated Concentration Value
- Missiance per Liter
- Not delected above laboratory reporting limit (indicated by #)
- Not Sampled
- New York State Department of Environmental Conservation
- Polycyfic Armatic Hydrocarbons
- Rejected
- Micrograms per Liter
- values indicated exceedance of the NYSDEC AWQS AWQS
B
BTEX
D
E
F1
F2
J
mg/L
NC
ND (<#)
NS
NYSDEC
PAHs
R

CONSTITUENT	UNITS	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/14	04/16/15	10/13/15	04/06/16	10/26/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20
MNA/WQ Parameters	•																								
Alkalinity (as CaCO3)	mg/L	556	536J	R	R	523J	541J	R	589	584	552	566	548	512	581	586	660	628	616	606	650	550	640	624	502
Chloride	mg/L	344	277	181 B	160 B	156J	R	147	316	286	265	470	664	698	1060	893	784	390	427	419	709	440	566	314	472
Ethane	μg/L	ND (<1.0)	ND (<1.0)	ND (<1.5)	ND (<7.5)	ND (<1.5)	ND (<1.5)	ND (<1.5)	ND (<7.5)	0.16J	0.33J	0.20J	0.24J	0.42J	0.29 J	0.34 J	ND (<1.00)	ND (<5.00)							
Ethene	μg/L	ND (<1.0)	ND (<1.0)	ND (<1.5)	ND (<7.5)	ND (<1.5)	ND (<1.5)	ND (<1.5)	ND (<7.0)	ND (<0.035)	0.12J	ND (<0.10)	ND (<0.10)	ND (<0.032)	ND (<1.0)	ND (<1.0)	ND (<1.00)	ND (<5.00)							
Ferrous Iron	mg/L	0.31	ND (<0.2)	R	0.34J	0.47	ND (<0.1)	R	ND (<0.10)	ND (<0.10)	0.12	6.06	ND (<0.10)	ND (<0.10)	ND (<0.10)	0.11	1.0	4.2	4.7	3.2	4.8	2.6	2.2	5.3	1.2
Manganese	mg/L	NA	1.14	1.2	0.95	0.88	0.58	0.83	1	1.2	0.75	1.07	1.3	1.3	1.6	1.2	1.2	1.020	1.030	0.882	0.994	0.946	1.15	0.953	0.771
Methane	μg/L	64J	75	34	9.8	33	85	40	72	32	28	110	130	63	82	56	420	300	330	470	680	460	1300	390	451
Nitrate	mg/L	NA	ND (<1.0)	ND (<0.05)	0.11	ND (<0.05)	0.12	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.50)										
Nitrogen	mg/L	6.02	4.91	8.5	4.9	4.9	R	5.4	5.7	6.1	4.1	4.8	6.2	5.6	6.3	4	6.5	5.1	3.8	3.3	4.5	4	ND (<1.0)	2.5	1.0
Sulfate	mg/L	NA	167	306	296 B	R	R	238 B	175	174	171	153	89.7	167	53.9	44.4	56.6	148	38.2	ND (<100)	23.0	59.4	20.9	55.2	23.9
Sulfide	mg/L	NA	R	R	ND (<1.0)	0.8J	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)										

Present in Associated Blank Sample
Diluted Sample
Estimated Concentration
Milligrams per Liber
Monitored Natural Alteruation
Not Avalyzed
Not descreted above laboratory reporting limit (indicated by 8)
Not Sampled
Monitored Natural Monitored Natural Monitory Reporting Limit (indicated by 9)
Not Sampled
Monitoring Natural Monitoring Natural Report B
D
J
mg/L
MNA
NA
NO (<#)
NS
R
µg/L
WQ

Table 3 Groundwater Analytical Data MW-11

CONSTITUENT	UNITS	NYSDEC AWQS Values	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/14	04/16/15	10/14/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20
BTEX Compounds																										
Benzene	μg/L	1	27	16	2.8	13	18	15	7.9	12	3.5	8.1	10	22	7.3	NS										
Ethylbenzene	μg/L	5	7.3	7.2	1.9	6.9	6.1	5.5	3.5	ND (<1.0)	1.2	3.8	5.1	7.8	3	NS										
m/p-Xylene	μg/L	5	3	3.9	2.2	5.3	2.4	2.1	1.4J	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	2.1	ND (<2.0)	NS										
o-Xylene	μg/L	5	2.6	2.7	1.1	3.1	2.0	2.0	1.2	ND (<1.0)	ND (<1.0)	1.6	2.1	2.6	1.5	NS										
Total Xylenes					3.3	8.4	2.4	2.1	1.2	0	0	1.6	2.1	4.7	1.5	NS										
Toluene	μg/L	5	1.3	1.3	ND (<1.0)	1.4	0.97J	0.99J	0.69J	ND (<1.0)	ND (<1.0)	ND (<1.0)	1.1	1.9	ND (<1.0)	NS										
PAHs	PAHS																									
Acenaphthene	μg/L	20	150 D	140 D	150	110	120	130	100	140 E	97	110	120	110	59	NS										
Acenaphthylene	μg/L	NC	280JD	330 D	290	290	240 D	270 D	210	160 E	120	170	110	150	56	NS										
Anthracene	µg/L	50	21	18	88	19 B	19	17	11	23	13	28	13	16	4.2	NS										
Benzo(a)anthracene	μg/L	0.002	2.2J	2.2	35	6.2 B	2.7	3.0 B	5.2 B	3.8	ND (<0.002)	8.3	3.2	4.8	1.9	NS										
Benzo(a)pyrene	μg/L	0.002	1.7	2.2	34	5.7 B	2.8	2.5 B	2.3J	2.7	3.3	8.5	2.8	4.7	0.84	NS										
Benzo(b)fluoranthene	μg/L	0.002	0.65J	0.82J	24	4.8 B	1.9	2.1	1.8J	1.7	ND (<0.002)	ND (<0.002)	ND (<0.002)	4.6	0.68	NS										
Benzo(g,h,i)perylene	μg/L	NC	0.90J	1.2J	20	4.0 B	1.4	1.7	1.3J	1	1	3.4	ND (<0.002)	1.8	ND (<0.002)	NS	NS		NS							
Benzo(k)fluoranthene	μg/L	0.002	0.90J	1.1J	12	2.5 B	1	0.78	1.2J	1.6	ND (<0.002)	ND (<0.002)	ND (<0.002)	2.1	ND (<0.002)	NS										
Chrysene	μg/L	0.002	2.8	2.9	43	8.1 B	3.3	3.5 B	ND (<5.1)	3.4	4.4	10	5.4	7.6	0.99	NS										
Dibenzo(a,h)anthracene	μg/L	NC	ND (<1.0)	ND (<2.1)	3.2	ND (<2.4)	0.30J	0.59	ND (<5.1)	ND (<5.1)	ND (<5.1)	ND (<5.1)	ND (<5.1)	ND (<0.47)	ND (<0.47)	NS										
Fluoranthene	μg/L	50	18	14	96	22 B	20	16	12	24	14	28	12	16	5.4	NS										
Fluorene	μg/L	50	110 D	100 D	130	72	79	83	62	92	62	70	31	44	16	NS										
Indeno(1,2,3-cd)pyrene	μg/L	0.002	0.65J	2.1U	13	2.8 B	0.96	1.0 B	0.69J	1.6	ND (<0.002)	ND (<0.002)	ND (<0.002)	1.2	ND (<0.002)	NS										
Naphthalene	μg/L	10	180 D	560 D	300	480	310 D	230 D	140	110	50	87	ND (<10)	51	2.3	NS										
Phenanthrene	μg/L	50	160 D	150 D	260	52 B	140 D	130	91	170	80	130	5.8	62	1.5	NS										
Pyrene	μg/L	50	26J	17	150	28 B	21	21	16	28	18	34	17	20	4.2	NS										
Cyanide and Lead			,			,				,	,	· ·		· ·					· ·							,
Lead	μg/L	25	ND (<5.0)	ND (<5.0)	40	7.6	12	ND (<5.0)	4.6J	ND (<5.0)	ND (<5.0)	5.9	ND (<5.0)	0.014	ND (<5.0)	NS										
Cyanide	mg/L	0.2	0.024	0.027	R	0.015J	0.021	ND (<0.01)	0.012	ND (<0.010)	ND (<0.010)	ND (<0.010)	0.018	0.021	0.012	NS										

mglt 0.2 0.024 0.027

- Ambient Water Guilty Sturiotatin
- Present in Associated Blank Sample
- Bencare, Emylemene, Toluene and Xylene
- Diluted Sample
- Browner, Emylemene, Toluene and Xylene
- Diluted Sample
- Result second calibration range
- MS andor MSD Recovery outside acoptance limits.
- Estimated Concentration Value
- Sample Concentration Value
- No Critera
- No State Department of Environmental Conservation
- Polycytic Aromatic Hydrocarbons
- Rejected
- Micrograms per Liter
- values indicated exceedance of the NYSDEC AWOS AWQS
B
BTEX
D
E
F1
F2
J
mg/L
NC
ND (<f)
NS
NYSDEC
PAHs
R
μg/L
Bolded

Table 3 Groundwater Analytical Data MW-11

CONSTITUENT	UNITS	09/29/10	01/04/11	04/07/11	06/15/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/14	04/16/15	10/14/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20
MNA/WQ Parameters	•	•	•	•	•	•			•							•				•				•	
Alkalinity (as CaCO3)	mg/L	502	504	R	R	518J	536J	R	623	507	573	465	457	428	NS										
Chloride	mg/L	612	606	345	414 B	514J	R	321	350	202	295	454	364	314	NS										
Ethane	μg/L	ND (<10)	ND (<5.0)	ND (<1.5)	ND (<1.5)	ND (<1.5)	ND (<15)	ND (<15)	ND (<380)	ND (<380)	ND (<380)	ND (<380)	ND (<7.5)	ND (<7.5)	NS										
Ethene	μg/L	ND (<10)	ND (<5.0)	ND (<1.5)	ND (<1.5)	ND (<1.5)	ND (<15)	ND (<15)	ND (<350)	ND (<350)	ND (<350)	ND (<350)	ND (<7.0)	ND (<7.0)	NS										
Ferrous Iron	mg/L	ND (<0.2)	ND (<0.5)	R	9.4J	0.9J	R	ND (<0.1)	0.5	0.18	0.22	0.29	ND (<0.1)	ND (<0.1)	NS										
Manganese	mg/L	NA	0.61	0.94	0.45	0.69	0.66	0.47	0.95	0.95	0.55	0.56	0.56	0.25	NS										
Methane	μg/L	730J	420	4.8	68	190	360	160	520	12	25	120	180	13	NS										
Nitrate	mg/L	NA	ND (<1.0)	0.13	ND (<0.05)	ND (<0.05)	ND (<0.05)	0.092	ND (<0.050)	0.79	0.32	0.32	0.059	0.28	NS										
Nitrogen	mg/L	1.76	1.36	1.3	0.59	1.3	R	1.3	1.4	0.58	0.64	0.57	1.2	0.26	NS										
Sulfate	mg/L	NA	46.3	126 B	65.1 B	R	R	8.5 B	16.9	112	94.1	58	44.3	82.9	NS										
Sulfide	mg/L	NA	ND (<1.0)	0.8J	0.8J	1.6	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	1.8	ND (<1.0)	NS										

Present in Associated Blank Sample
Diluted Sample
Estimated Concentration
Miligrams per Liter
Monitored Natural Alternation
Nat Avalyzed
Nationated State above laboratory reporting limit (indicated by 8)
Nat Sampled
Micrograms per Liter
Wilder Quality
Was Sampled

Was Campled

Was Campled B
D
J
mg/L
MNA
NA
NO (<#)
NS
R
µg/L
WQ

Table 3 Groundwater Analytical Data MW-12

CONSTITUENT	UNITS	NYSDEC AWQS Values	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/14	04/16/15	10/14/15	04/06/16	10/26/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20
BTEX Compounds																							
Benzene	μg/L	1	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	2.1	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)
Ethylbenzene	μg/L	5	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)
m/p-Xylene	μg/L	5	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)
o-Xylene	μg/L	5	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)
Toluene	μg/L	5	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)
PAHs																							
Acenaphthene	μg/L	20	ND (<0.2)	ND (<0.49)	0.086J	ND (<0.52)	14	ND (<0.2)	1.1	1.1	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.51)	0.11	ND (<0.097)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<011)	ND (<0.097)
Acenaphthylene	μg/L	NC	0.09J	ND (<0.49)	0.25J	0.18J	100	ND (<0.2)	ND (<0.2)	ND (<0.2)	0.63	ND (<0.2)	ND (<0.47)	ND (<0.51)	4.4	ND (<0.097)	0.30	0.39	0.62	ND (<0.11)	1.0	0.1	0.61
Anthracene	μg/L	50	0.07J	ND (<0.49)	0.21J	0.13J	2.8	ND (<0.2)	1.1	1.1	0.88	ND (<0.2)	0.73	ND (<0.51)	1.4	ND (<0.097)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.099	ND (<0.11)	ND (<0.097)
Benzo(a)anthracene	μg/L	0.002	0.12J	ND (<0.49)	0.64 B	0.57 B	1.5	0.83	3	0.66	1.5	ND (<0.49)	ND (<0.47)	ND (<0.51)	2.1	0.11	0.14	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.24	0.34	ND (<0.097)
Benzo(a)pyrene	μg/L	0.002	0.2	ND (<0.49)	0.69 B	0.35J	1.5	1	3.6	0.92	1.8	ND (<0.49)	ND (<0.47)	ND (<0.51)	2.8	0.11	0.16	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.3	0.41	ND (<0.097)
Benzo(b)fluoranthene	μg/L	0.002	0.08J	ND (<0.49)	0.56	0.27J	1.3	0.91	3.4	0.71	2.1	ND (<0.49)	ND (<0.47)	ND (<0.51)	2.3	0.13	0.19	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.24	0.34	ND (<0.097)
Benzo(g,h,i)perylene	μg/L	NC	0.13J	ND (<0.49)	0.43J	0.27J	0.62	ND (<0.49)	ND (<0.49)	0.51	0.74	ND (<0.49)	ND (<0.47)	ND (<0.51)	1.6	ND (<0.097)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.15	0.21	ND (<0.097)
Benzo(k)fluoranthene	μg/L	0.002	0.10J	ND (<0.49)	ND (<0.49)	0.38J	0.58	ND (<0.49)	0.83	ND (<0.49)	0.74	ND (<0.49)	ND (<0.47)	ND (<0.51)	0.94	0.11	0.16		ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.11)	ND (<0.097)
Chrysene	μg/L	0.002	0.13J	ND (<0.49)	0.55 B	0.60 B	1.1	1	3	ND (<0.49)	1.6	ND (<0.49)	ND (<0.47)	ND (<0.51)	1.9	ND (<0.097)	0.11	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.19	0.22	ND (<0.097)
Dibenzo(a,h)anthracene	μg/L	NC	ND (<0.2)	ND (<0.49)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.52)	ND (<0.52)	ND (<0.52)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<0.51)	0.29	ND (<0.097)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.11)	ND (<0.097)
Fluoranthene	μg/L	50	0.2	ND (<0.49)	0.73	0.41J	3.4	1.4	4.3	0.87	2.00	ND (<0.49)	ND (<0.47)	0.52	3.9	0.11	0.17	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.33	0.43	ND (<0.097)
Fluorene	μg/L	50	ND (<0.2)	ND (<0.49)	ND (<0.49)	ND (<0.52)	2.2	ND (<0.49)	ND (<0.49)	ND (<0.49)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<0.51)	0.51	ND (<0.097)	ND (<0.10)	ND (<0.099)	0.13	ND (<0.11)	ND (<0.097)	ND (<0.11)	0.12
Indeno(1,2,3-cd)pyrene	μg/L	0.002	0.09J	ND (<0.49)	ND (<0.49)	0.13J	0.97	ND (<0.49)	1.2	ND (<0.49)	0.51	ND (<0.49)	ND (<0.47)	ND (<0.51)	1.2	ND (<0.097)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.11	0.17	ND (<0.097)
Naphthalene	μg/L	10	ND (<0.2)	ND (<0.49)	0.68	ND (<0.52)	160 E	2.5	0.99	ND (<0.52)	1.6	ND (<0.49)	1.9	ND (<0.51)	0.96	ND (<0.097)	0.15	ND (<0.099)	ND (<0.11)	ND (<0.11)	1.8	ND (<0.11)	0.97
Phenanthrene	μg/L	50	1.9J	ND (<0.49)	0.66	0.48J	7.6	1.1	3.6	0.61	2	ND (<0.49)	ND (<0.47)	ND (<0.51)	3.5	ND (<0.097)	0.14	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.23	0.34	0.14
Pyrene	μg/L	50	0.23	ND (<0.49)	0.95	0.59	4.2	2.4	5.8	1.3	2.8	ND (<0.49)	ND (<0.47)	0.64	5.4	0.17	0.24	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.49	0.61	ND (<0.097)
Cyanide and Lead														· ·			· ·		· ·				
Lead	μg/L	25	ND (<5.0)	ND (<3.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	29	ND (<5.0)	0.018	ND (<0.49)	ND (<10)	ND (<10)	ND (<5.0)	ND (<5.0)	ND (<5.0)						
Cyanide	mg/L	0.2	0.01	0.004J	R	0.0062J	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)	0.013	ND (<0.49)	ND (<0.01)	ND (<0.01)	ND (<0.010)	0.011	0.011	ND (<0.010)					

| Description |

Table 3 Groundwater Analytical Data MW-12

CONSTITUENT	UNITS	01/04/11	10/12/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/14	04/16/15	10/14/15	04/06/16	10/26/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20
MNA/WQ Parameters																						
Alkalinity (as CaCO3)	mg/L	502	455J	478J	R	434	391	415	329	414	368	401	415	436	466	366	456	430	416	400	380	360
Chloride	mg/L	488	165J	R	129 B	468	123	662	150	493	139	591	276	556	152	587	345	757	334	490	267	633
Ethane	μg/L	ND (<1.0)	ND (<1.5)	ND (<1.5)	ND (<1.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	0.47J	ND (<0.025)	ND (<0.030)	ND (<0.030)	ND (<0.16)	ND (<1.0)	ND (<1.0)	ND (<1.00)	ND (<5.00)
Ethene	μg/L	ND (<1.0)	ND (<1.5)	ND (<1.5)	ND (<1.5)	ND (<7.0)	ND (<7.0)	ND (<7.0)	ND (<7.0)	ND (<7.0)	ND (<7.0)	ND (<7.0)	ND (<7.0)	ND (<0.035)	ND (<0.035)	ND (<0.10)	ND (<0.10)	ND (<0.032)	ND (<1.0)	ND (<1.0)	ND (<1.00)	ND (<5.00)
Ferrous Iron	mg/L	ND (<0.1)	R	ND (<0.1)	ND (<0.1)	0.44	ND (<0.1)	0.11	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)						
Manganese	mg/L	0.084	0.096	0.16	0.12	0.52	0.19	2.1	0.36	1.2	0.16	0.039	0.062	0.202	0.0201	0.0399	0.0113	0.0152	0.0153	0.0636	0.0386	0.0074
Methane	μg/L	ND (<2.0)	ND (<1.0)	1.1	0.56J	47	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<4.0)	ND (<4.0)	ND (<4.0)	ND (<4.0)	1.95	0.24J	0.27J	1.0J	0.35J	ND (<2.5)	ND (<2.5)	ND (<0.10)	ND (<5.00)
Nitrate	mg/L	4	6.6	6.2	3.2	ND (<0.05)	2.5	4.8	1.4	3.7	1.4	2.5	3.3	2.9	5.1	3.6	0.84	5.6	4.3	ND (<0.10)	5.9	2.5
Nitrogen	mg/L	0.48	ND (<0.2)	R	0.19J	0.29	0.24	2.4	0.44	0.61	0.61	ND (<0.2)	ND (<0.2)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	5.1	ND (<1.0)	3.9	ND (<0.10)	ND (<1.0)
Sulfate	mg/L	97.9	R	R	53.5 B	81.4	73.5	115	51.6	73.5	54.8	70.2	93.7	56.0	115	53.7	70.3	66.8	53.9	55.1	77.2	48.3
Sulfide	mg/L	1.1J	0.8J	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)

Present in Associated Blank Sample
Diluted Sample
Estimated Concentration
Milligrams per Liter
Monitored Marriard Alteruation
Not Indecided above laboratory reporting limit (indicated by #)
Not decided above laboratory reporting limit (indicated by #)
Not Sampled
Monitory B
D
J
mg/L
MNA
NA
NO
(<#)
NS
R
µg/L
WQ

Table 3 Groundwater Analytical Data MW-13

CONSTITUENT	UNITS	NYSDEC AWQS Values	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/14	04/16/15	10/13/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20
BTEX Compounds																										
Benzene	μg/L	1	430	360	71	200	59	300	370	360	490	400	200	300	17	360	300	348	15.5	363	11.6	32.8	16.9	328	126	268
Ethylbenzene	μg/L	5	850	730	87	200	110	520	670	490	600	320	200	340	17	190	270	366	7.4	210	4.8	23.3	12.4	230	85.6	193
m/p-Xylene	μg/L	5	920	810	110	240	140	550	740	590	730	420	250	480	24	270	360	467	12.1	257	8.6	34.8	16.6	229	89.5	179
o-Xylene	μg/L	5	390	350	71	130	74	260	340	260	320	190	120	210	16	120	150	203	8.4	117	9.3	18.6	9.7	112	48.6	90.7
Toluene	μg/L	5	800	660	80	260	89	550	740	520 E	710	440	270	430	17	320	410	552	7.6	332	3.9	25.1	11.1	288	95.7	279
PAHs																										
Acenaphthene	μg/L	20	120	140	17	46	60	76	82J	170	130	77	71	130	ND (<4.9)	65 E	130	225	0.34	78.4	0.16	4.3	6.8	141	4.6	124
Acenaphthylene	μg/L	NC	260JD	320 D	51	170	220J	230 D	210	570	430	350	22	450	ND (<4.9)	77 E	220	267	1.2	122	0.61	6.4	6.7	57.0	0.78	43.4
Anthracene	μg/L	50	12	15	3.6	12 B	15	15	ND (<97)	ND (<47)	ND (<47)	ND (<47)	6.9	14	ND (<4.9)	9.2 F1 F2	10	19.2	0.55	7.2	0.25	0.73	0.82	7.3	0.15	5.1
Benzo(a)anthracene	μg/L	0.002	1.9J	2J	0.35J	4.9 B	7.3J	5.3 B	ND (<97)	ND (<47)	ND (<47)	ND (<47)	ND (<47)	1.9	ND (<0.001)	0.59 F2	ND (<9.7)	6.7	0.93	1.7	0.30	0.22	0.14	0.79	0.18	0.51
Benzo(a)pyrene	μg/L	0.002	1.9J	1.4J	0.13J	4.1 B	ND (<10)	5.3 B	ND (<97)	ND (<47)	ND (<47)	ND (<47)	ND (<47)	1.6	ND (<0.001)	ND (<0.49)	ND (<9.7)	6.5	1.0	1.3	0.40	0.20	ND (<0.10)	0.58	0.20	0.31
Benzo(b)fluoranthene	μg/L	0.002	0.75J	0.78J	ND (<0.49)	3.5 B	ND (<10)	3.8	ND (<97)	ND (<47)	ND (<47)	ND (<47)	ND (<47)	2.8	ND (<0.001)	ND (<0.49)	ND (<9.7)	6.2	1.2	1.6	0.47	0.22	0.12	0.49	0.17	0.27
Benzo(g,h,i)perylene	μg/L	NC	0.75J	ND (<3.9)	ND (<0.49)	2.5 B	ND (<10)	3.8	ND (<97)	ND (<47)	ND (<47)	ND (<47)	ND (<47)	0.6	ND (<0.001)	ND (<0.49)	ND (<9.7)	3.3	0.55	ND (<0.98)	0.21	ND (<0.099)	ND (<0.10)	0.23	ND (<0.10)	0.13
Benzo(k)fluoranthene	μg/L	0.002	ND (<3.8)	0.78J	ND (<0.49)	ND (<2.4)	ND (<10)	2.6	ND (<97)	ND (<47)	ND (<47)	ND (<47)	ND (<47)	0.53	ND (<0.001)	ND (<0.49)	ND (<9.7)		1.1	1.3	0.35	0.20	0.11	0.21	ND (<0.10)	0.11
Chrysene	μg/L	0.002	1.7J	1.4J	0.26J	3.6 B	5.5J	4.9 B	ND (<97)	ND (<47)	ND (<47)	ND (<47)	ND (<47)	1.8	ND (<0.001)	0.50 F1 F2	ND (<9.7)	6.1	0.81	1.3	0.22	0.20	ND (<0.10)	0.64	0.13	0.38
Dibenzo(a,h)anthracene	μg/L	NC	ND (<3.8)	ND (<3.9)	ND (<0.49)	ND (<2.4)	ND (<10)	0.79 B	ND (<97)	ND (<47)	ND (<47)	ND (<47)	ND (<47)	ND (<0.47)	ND (<0.001)	ND (<0.49)	ND (<9.7)	0.85	0.13	ND (<0.98)	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.098)	ND (<0.10)	ND (<0.098)
Fluoranthene	μg/L	50	7.7	8.4	2.6	12 B	16	14	ND (<97)	ND (<47)	ND (<47)	ND (<47)	6.1	8.2	ND (<4.9)	5.5 F2	ND (<9.7)	17.8	1.9	5.4	0.51	0.77	0.66	4.6	1.3	4.0
Fluorene	μg/L	50	73	84	18	48	52J	53	37J	110	93	68	30	94J	ND (<4.9)	43 F1 F2	55	74.8	0.46	37.9	0.19	2.6	3.7	45.7	0.16	33.2
Indeno(1,2,3-cd)pyrene	μg/L	0.002	ND (<3.8)	ND (<3.9)	ND (<0.49)	ND (<2.4)	ND (<10)	2.3 B	ND (<97)	ND (<47)	ND (<47)	ND (<47)	ND (<47)	0.48	ND (<0.001)	ND (<0.49)	ND (<9.7)	2.7	0.42	ND (<0.98)	0.17	ND (<0.099)	ND (<0.10)	0.19	ND (<0.10)	0.11
Naphthalene	μg/L	10	6000 D	5600 D	250 D	1600 D	2900 D	5000 D	4100	8200	7100	3700	ND (<10)	4200	ND (<4.9)	350 E	170	5560	0.96	1880	0.45	0.31	0.14	9,700	0.19	2,190
Phenanthrene	μg/L	50	58	68	7.2	44 B	60	55	44J	76	73	61	ND (<50)	70	ND (<4.9)	31 F1	ND (<9.7)	78.3	1.5	32.8	0.60	0.37	2.40	39.8	0.14	31
Pyrene	μg/L	50	9.8J	8.8	2.9	14 B	19	17	ND (<97)	ND (<47)	ND (<47)	ND (<47)	7.2	9.7	ND (<4.9)	5.8 F2	ND (<9.7)	ND (<52.1)	1.7	6.0	0.54	0.78	0.63	4.8	0.86	4.1
Cyanide and Lead				· ·						· ·						· ·			,							
Lead	μg/L	25	6.4	ND (<5.0)	ND (<5.0)	15J	27	9.2	5.8	ND (<5.0)	7.8	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<4.9)	ND (<10)	ND (<10)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)
Cyanide	mg/L	0.2	0.618	0.652	R	0.42J	0.235	R	0.33	0.39	0.32	0.26	0.17	0.24	0.11	0.22 F1	0.29	0.23	0.070	0.20	0.062	0.10	0.09	0.16	0.11	0.16

mg/L 0.2 0.618 0.652

- Arabitor Number Coulty Standards
- Present in Asposited Blank Sample
- Review Employment, Toluren and Xylene
- Diluted Sample
- Results Employment, Toluren and Xylene
- Diluted Sample
- Result exceeded calibration range
- MS and/or MSD Recovery outside acceptance limits.
- Estimated Concentration Value
- Mingrams per Lier
- Not detected above laboratory reporting limit (indicated by #)
- Not Sampled
- New York State Department of Environmental Conservation
- Polycyclic Anmatic Hydrocarbons
- Rejected
- Mingrams - Rejected
- Values indicated exceedance of the NYSDEC AWQS AWQS
B
BTEX
D
E
F1
F2
J
mg/L
NC
ND (<#)
NS
NYSDEC
PAHs
R

Table 3 Groundwater Analytical Data MW-13

CONSTITUENT	UNITS	09/30/10	01/05/11	04/07/11	06/15/11	10/12/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/14	10/13/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20
MNA/WQ Parameters																			•					
Alkalinity (as CaCO3)	mg/L	80	96.4	R	R	455J	165J	R	158	218	187	176	255	283 F1	311	364	234	308	226	280	230	380	268	320
Chloride	mg/L	12.3	10.5	29.1	18.6 B	5.9J	R	20.5	21.6	20.4	7.3	9.2	17.3	11.2	9.8	11.4	3.4	7.6	92.7	31.6	8.4	19.5	9.3	6.9
Ethane	μg/L	1.4J	1.8	ND (<1.5)	ND (<15)	ND (<1.5)	ND (<15)	ND (<15)	ND (<7.5)	ND (<7.5)	1.2	ND (<0.025)	0.88J	ND (<0.030)	0.22J	0.11 J	0.74 J	ND (<1.00)	ND (<5.0)					
Ethene	μg/L	2.4	2.8	ND (<1.5)	ND (<15)	ND (<1.5)	ND (<15)	ND (<15)	ND (<7.0)	ND (<7.5)	3.3	ND (<0.035)	2.3	ND (<0.10)	0.46J	0.19 J	2.1	ND (<1.00)	2.34 J					
Ferrous Iron	mg/L	ND (<0.1)	0.32	R	ND (<0.1)	3.1J	U80.0	ND (<0.1)	0.12	ND (<0.1)	ND (<1.0)	0.18	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	0.15	ND (<0.10)				
Manganese	mg/L	NA	0.84	0.12	0.077	0.83	0.16	0.096	0.092	0.11	0.088	0.14	0.031	0.064	ND (<7.5)	0.0938	0.0417	0.0705	0.0570	0.0619	0.0298	0.0710	0.0446	0.0709
Methane	μg/L	77J	110 D	32	46	28J	72	66	120	36	15	74	ND (<4.0)	110	50	280	0.34J	190	12	73	41	250	84.7	218
Nitrate	mg/L	NA	ND (<1.0)	ND (<0.05)	0.05	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<1.0)	ND (<1.0)										
Nitrogen	mg/L	2.27	1.69	1.1	1.3	ND (<2.0)	R	1.4	1.4	1.8	1.2	2.1	0.62	1.4	1.2	1.3	ND (<1.0)	2.1	ND (<1.0)	4.5	ND (<0.10)	ND (<0.10)	ND (<1.0)	ND (<1.0)
Sulfate	mg/L	NA	86.8	ND (<5.0)	3.3JB	R	R	52.1J	139	82.3	15.5	15.5	ND (<5.0)	ND (<5.0)	ND (<5.0)	18.3	16.0	42.3	20.4	28.6	26.1	23.4	10.8	17.3
Sulfide	mg/L	NA	3.3J	ND (<1.0)	3.2J	1.2	R	R	1.2	ND (<1.0)	1	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)				

Present in Associated Blank Sample
Diluted Sample
Estimated Concentration
Miligrams per Liter
Monitored Natural Attenuation
Not Analyzed
Not Charalyzed
Not B
D
J
mg/L
MNA
NA
ND (<#)
NS
R
µg/L
WQ

Table 3 Groundwater Analytical Data MW-14

CONSTITUENT	UNITS	NYSDEC AWQS Values	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/14	04/16/15	10/13/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20
BTEX Compounds																										
Benzene	μg/L	1	25	17	ND (<1.0)	2.5	11	2.5	2.9	ND (<1.0)	ND (<1.0)	1.3	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<0.54)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)
Ethylbenzene	μg/L	5	5.1	3.3	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	1.3	ND (<1.0)	ND (<0.54)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)						
m/p-Xylene	μg/L	5	5.1	3.1	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	2.4	ND (<2.0)	ND (<0.54)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)						
o-Xylene	μg/L	5	9.1	5.6	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	2.2	ND (<1.0)	ND (<0.54)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)						
Toluene	μg/L	5	1.8	0.88J	ND (<1.0)	ND (<0.54)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)											
PAHs																										
Acenaphthene	μg/L	20	9.3	4.9	ND (<0.47)	ND (<0.47)	1.2	0.82	5.1	1.4	ND (<0.48)	2.2	0.5	2.00	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.19	ND (<0.096)	1.7	ND (<0.099)	ND (<0.099)	ND (<0.10)	0.18	0.8	0.2
Acenaphthylene	μg/L	NC	17JD	11	ND (<0.47)	ND (<0.47)	3	1.3	9	1.9	ND (<0.48)	2.5	ND (<0.48)	2.9	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.99	0.25	4.1	0.19	0.34	0.26	0.71	8.4	1.2
Anthracene	μg/L	50	1.8	0.98	ND (<0.47)	ND (<0.47)	ND (<0.50)	0.18J	0.5	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	0.5	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.25	0.096	0.29	ND (<0.099)	0.15	0.11	0.11	3.5	0.6
Benzo(a)anthracene	μg/L	0.002	0.42J	0.27J	ND (<0.47)	ND (<0.47)	0.29J	0.91 B	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.62	1	1.9	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.28	0.13	0.26	0.11	ND (<0.099)	ND (<0.10)	ND (<0.096)	19.8	2.1
Benzo(a)pyrene	μg/L	0.002	0.46	0.24J	ND (<0.47)	ND (<0.47)	0.15J	0.90 B	0.12J	ND (<0.48)	ND (<0.48)	0.65	1.3	2.4	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.32	0.12	0.29	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.096)	24.8	2.6
Benzo(b)fluoranthene	μg/L	0.002	0.27	0.15J	ND (<0.47)	ND (<0.47)	ND (<0.50)	0.78	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.79	1.2	3.8	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.55	0.21	0.47	0.14	ND (<0.099)	0.7	ND (<0.096)	26.1	2.8
Benzo(g,h,i)perylene	μg/L	NC	0.28	0.18J	ND (<0.47)	ND (<0.47)	ND (<0.50)	0.70	0.09J	ND (<0.48)	ND (<0.48)	ND (<0.48)	0.95	1.3	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.29	0.11	0.24	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.096)	17.5	1.9
Benzo(k)fluoranthene	μg/L	0.002	0.3	0.15J	ND (<0.47)	ND (<0.47)	ND (<0.50)	0.57	0.17J	ND (<0.48)	ND (<0.48)	ND (<0.48)	0.83	1.1	ND (<0.47)	ND (<0.52)	ND (<0.54)		0.18	0.40	0.11	ND (<0.099)	0.14	ND (<0.096)	8.5	1.0
Chrysene	μg/L	0.002	0.43	0.3J	ND (<0.47)	ND (<0.47)	0.19J	0.85	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.69	1.2	2.1	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.27	0.13	0.24	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.096)	17.0	1.9
Dibenzo(a,h)anthracene	μg/L	NC	0.20J	ND (<0.59)	ND (<0.47)	ND (<0.47)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<0.52)	ND (<0.54)	ND (<0.10)	ND (<0.096)	ND (<0.099)	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.096)	4.5	0.4
Fluoranthene	μg/L	50	1.7	1.2	0.081J	ND (<0.47)	0.32J	1.5	0.61	0.59	ND (<0.48)	1.2	1.5	3.2	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.45	0.17	0.55	0.13	ND (<0.099)	0.14	0.098	29.0	3.0
Fluorene	μg/L	50	3.8	1.4	ND (<0.47)	ND (<0.47)	ND (<0.50)	0.17J	0.35J	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.14	ND (<0.096)	0.21	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.096)	1.3	0.2
Indeno(1,2,3-cd)pyrene	μg/L	0.002	0.21	ND (<0.59)	ND (<0.47)	ND (<0.47)	ND (<0.50)	ND (<0.50)	0.054J	ND (<0.48)	ND (<0.48)	ND (<0.48)	0.63	0.95	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.21	ND (<0.096)	0.18	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.096)	14.4	1.5
Naphthalene	μg/L	10	63 D	2.8	ND (<0.47)	ND (<0.47)	1.3	ND (<0.50)	1.2	ND (<0.48)	1.7	0.48	ND (<0.48)	1.1	ND (<0.47)	ND (<0.52)	ND (<0.54)	5.2	ND (<0.096)	4.2	ND (<0.099)	ND (<0.099)	ND (<0.10)	0.72	0.86	1.10
Phenanthrene	μg/L	50	9.1	2	ND (<0.47)	ND (<0.47)	0.25J	0.66	1.1	ND (<0.48)	ND (<0.48)	0.67	0.63	1.4	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.22	ND (<0.096)	0.17	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.096)	9.8	1.0
Pyrene	μg/L	50	2.5J	1.2	0.098J	ND (<0.52)	0.39J	2.2	0.7	0.76	ND (<0.48)	1.5	2.4	5.0	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.68	0.28	0.74	0.20	ND (<0.099)	0.22	0.12	47.0	5.0
Cyanide and Lead																										
Lead	μg/L	25	7.7	ND (<5.0)	ND (<5.0)	4.2J	4.8J	9.1	5.7	21	ND (<5.0)	15	ND (<5.0)	0.031	ND (<0.01)	ND (<0.01)	ND (<10)	33.3	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	256	50.2
Cyanide	mg/L	0.2	0.245	0.197	R	0.11J	0.114	R	0.28	1.4	0.1	0.2	0.9	0.2	0.091	0.120	0.88	0.67	0.079	0.25	0.062	0.11	0.0838	0.11	0.12	0.42

mgL 0.2 0.345 0.197

- Antibient Water Dustilly Standards
- Pressent in Associated Blank Sample
- Research Ethyleancene, Toluene and Xylene
- Diluted Sample
- Beautres, Ethyleancene, Toluene and Xylene
- Diluted Sample
- Result exceeded calibration range
- MS ander MSD Recovery outside acceptance limits.
- Estimated Concentration Value
- MISSIASE DRV above corroll initis.
- Estimated Concentration Value
- MISSIASE DRV above corroll initis.
- Result exceeded calibration range
- Not delected above laboratory reporting limit (indicated by #)
- Not Sampled
- Now York State Department of Environmental Conservation
- Polycyfici Armatic Hydrocarbons
- Rejected
- Micrograms per Liter
- values indicated exceedance of the NYSDEC AWQS AWQS
B
BTEX
D
E
F1
F2
J
mg/L
NC
ND (<#)
NS
NYSDEC
PAHs
R

Table 3 Groundwater Analytical Data MW-14

CONSTITUENT	UNITS	06/30/10	01/04/11	04/07/11	06/15/11	10/12/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/14	10/13/14	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20
MNA/WQ Parameters																								
Alkalinity (as CaCO3)	mg/L	528	450	R	R	410	453J	R	494	417	456	483	372	445	507	520	380	404	392	450	384	380	342	400
Chloride	mg/L	9	10.8	6.1	9.7 B	5.1	R	12.8	40.4	2	7.6	28.5	3.9	10.7	27.4	18.0	3.5	6.6	ND (<3.0)	3.2	3.5	ND (<3.0)	ND (<3.0)	6.7
Ethane	μg/L	ND (<1.0)	ND (<1.0)	ND (<1.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	0.17J	ND (<0.025)	0.13J	ND (<0.030)	ND (<0.16)	ND (<1.0)	ND (<1.0)	1.57	ND (<5.00)				
Ethene	μg/L	ND (<1.0)	ND (<1.0)	ND (<1.5)	ND (<7.0)	ND (<7.0)	ND (<7.0)	ND (<7.0)	ND (<7.0)	ND (<7.0)	ND (<7.5)	ND (<0.035)	ND (<0.035)	ND (<0.10)	ND (<0.10)	ND (<0.032)	ND (<1.0)	ND (<1.0)	ND (<1.00)	ND (<5.00)				
Ferrous Iron	mg/L	0.29	ND (<0.1)	R	0.11J	ND (<0.1)	R	ND (<0.1)	0.17	ND (<0.1)	ND (<0.1)	ND (<0.1)	ND (<0.1)	ND (<0.1)	0.11	0.55	0.22	0.93	0.47	0.30	0.39	0.12	1.90	2.1
Manganese	mg/L	NA	0.36	0.054	0.17	0.2	0.28	0.51	2	0.008	0.25	1	0.019	0.011	ND (<7.5)	0.768	0.0262	0.416	0.201	0.0121	0.0208	0.051	3.79	0.940
Methane	μg/L	9.1	120 D	ND (<1.0)	6.2	46	15	70	140	ND (<1.0)	8.6	140	ND (<4.0)	ND (<4.0)	31	140	19	120	1.7J	1.4J	ND (<2.5)	19	1020	ND (<5.00)
Nitrate	mg/L	NA	ND (<1.0)	0.71	0.19	0.086	0.023J	ND (<0.05)	ND (<0.05)	0.8	ND (<0.05)	ND (<0.05)	0.87	0.16	ND (<0.05)	ND (<0.10)	0.29	ND (<0.10)	ND (<0.10)	0.59	0.4	ND (<1.0)	ND (<1.0)	ND (<0.50)
Nitrogen	mg/L	0.81	0.77	0.85	0.32	0.36	R	0.86	2.5	0.54	0.68	1.5	0.22	0.72	1	1.2	ND (<1.0)	ND (<1.0)	1.0	ND (<1.0)	ND (<1.0)	ND (<1.0)	4.2	3.6
Sulfate	mg/L	NA	53.3	ND (<5.0)	19.6 B	5.6JB	R	173 B	639	ND (<5.0)	ND (<5.0)	363	ND (<5.0)	ND (<5.0)	324	153	12.5	52.4	15.2	20.3	ND (<10)	17.7	11.2	102.0
Sulfide	mg/L	NA	1.6	ND (<1.0)	ND (<1.0)	ND (<1.0)	R	R	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)

Present in Associated Blank Sample
Diluted Sample
Estimated Concentration
Alligrams per Liter
Almonitord Satural Attenuation
Not Analyzed
Not detected above laboratory reporting limit (indicated by 8)
Not detected above laboratory reporting limit (indicated by 9)
Not Campled

Williams and Campled

Williams B
D
J
mg/L
MNA
NA
ND (<#)
NS
R
µg/L
WQ

Table 3 Groundwater Analytical Data MW-15

CONSTITUENT	UNITS	NYSDEC AWQS Values	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/14	04/16/15	10/13/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20
BTEX Compounds																										
Benzene	μg/L	1	1600 D	1200	940 D	1300 D	670	790 D	1500 D	1100 E	410	390	210	300	16	350 E	330	714	111	373	48.7	108	41.2	364	55.8	271
Ethylbenzene	μg/L	5	200	250	190 D	210 D	120	190 D	220	200	75	53	38	74	1.9	92	110	244	24.5	124	10.2	45.2	15.7	135	19.4	99.9
m/p-Xylene	μg/L	5	12	8.7	17	18	19J	9	6.6J	23	19	ND (<5.0)	ND (<5.0)	ND (<10)	3.2	8.1	ND (<8.0)	13.7	2.7	9.4	ND (<2.0)	2.8	ND (<2.0)	17.5	ND (<2.0)	12.3
o-Xylene	μg/L	5	39	39	44	48	37	38	27	23	19	16	8.5	28	7.5	23	21	31.7	7.3	22.8	3.7	18.8	8.1	26.2	4.6	23
Toluene	μg/L	5	3.8J	ND (<10)	6.1	4.7	ND (<10)	6.3	6.2J	5	ND (<5.0)	ND (<5.0)	ND (<5.0)	5.8	ND (<1.0)	7	ND (<8.0)	6.1	1.1	7.4	ND (<1.0)	2.9	1.3	8.5	1.4	6.9
PAHs																										
Acenaphthene	μg/L	20	44J	49	47	32	47	50	47	57	42	23	18	24	6.7	16	23	43.1	10.1	16.3	12.4	32.7	12.6	28.4	4.7	17.2
Acenaphthylene	μg/L	NC	19J	23	24	17	22	19	12	16	11	6.5	3	3.9	0.59	3.1	ND (<5.1)	2.4	1.5	2.5	1.4	3.9	1.6	1.9	0.66	1.2
Anthracene	μg/L	50	2.7J	3.3	2.1	1.3 B	2.4	2	1.5J	2.8	2.6	1.4	0.95	0.81	ND (<0.49)	0.57	ND (<5.1)	1.9	0.36	0.56	0.31	0.55	0.46	0.74	0.25	0.52
Benzo(a)anthracene	μg/L	0.002	1.8J	0.85J	0.38J	ND (<0.48)	0.21J	ND (<0.54)	ND (<4.7)	ND (<0.58)	0.96	0.59	ND (<0.58)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<5.1)	0.14	0.13	0.55	0.14	ND (<0.099)	0.14	0.14	0.16	0.20
Benzo(a)pyrene	μg/L	0.000	2.1J	0.75J	0.2J	ND (<0.48)	ND (<0.49)	ND (<0.54)	ND (<4.7)	ND (<0.58)	0.96	0.59	ND (<0.58)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<5.1)	ND (<0.10)	0.10	0.58	0.11	ND (<0.099)	0.12	ND (<0.097)	0.18	0.20
Benzo(b)fluoranthene	μg/L	0.002	1.1J	0.57J	0.27J	ND (<0.48)	ND (<0.49)	0.16J	ND (<4.7)	ND (<0.58)	0.85	0.62	ND (<0.58)	0.72	ND (<0.49)	ND (<0.47)	ND (<5.1)	0.11	0.16	0.81	0.15	ND (<0.099)	0.17	0.11	0.16	0.21
Benzo(g,h,i)perylene	μg/L	NC	1.2J	0.38J	ND (<0.49)	ND (<0.48)	ND (<0.49)	ND (<0.54)	ND (<4.7)	ND (<0.58)	ND (<0.58)	ND (<0.58)	ND (<0.58)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<5.1)	ND (<0.10)	ND (<0.098)	0.4	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.097)	0.11	0.12
Benzo(k)fluoranthene	μg/L	0.002	1.3J	0.38J	ND (<0.49)	ND (<0.48)	ND (<0.49)	ND (<0.54)	ND (<4.7)	ND (<0.58)	0.72	ND (<0.58)	ND (<0.58)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<5.1)		0.13	0.69	0.11	ND (<0.099)	0.15	0.10	ND (<0.10)	ND (<0.097)
Chrysene	μg/L	0.002	1.8J	0.85J	0.23J	ND (<0.48)	0.16J	ND (<0.54)	ND (<4.7)	ND (<0.58)	1.2	0.59	ND (<0.58)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<5.1)	0.11	0.12	0.48	ND (<0.099)	ND (<0.099)	0.12	0.11	0.12	0.17
Dibenzo(a,h)anthracene	μg/L	NC	0.9J	ND (<1.9)	ND (<0.49)	ND (<0.48)	ND (<0.49)	ND (<0.54)	ND (<4.7)	ND (<0.58)	ND (<0.58)	ND (<0.58)	ND (<0.58)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<5.1)	ND (<0.10)	ND (<0.098)	ND (<0.098)	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.097)	ND (<0.10)	ND (<0.097)
Fluoranthene	μg/L	50	4.1J	2.7	1.8	1.2 B	1.7	1.7	1.3J	2.6	3.3	1.7	1.1	0.93	ND (<0.49)	0.61	ND (<5.1)	1.2	0.46	1.2	0.34	0.53	0.6	0.89	0.41	0.68
Fluorene	μg/L	50	12J	13	13	8.7	14	13	10	17	13	6.1	4.3	5.2	1.2	4.1	5.9	11.8	1.9	4.1	2.4	5.3	3.4	6.6	1.4	4.0
Indeno(1,2,3-cd)pyrene	μg/L	0.002	0.9J	ND (<1.9)	ND (<0.49)	ND (<0.48)	ND (<0.49)	ND (<0.54)	ND (<4.7)	ND (<0.58)	ND (<0.58)	ND (<0.58)	ND (<0.58)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<5.1)	ND (<0.10)	ND (<0.098)	0.31	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.097)	ND (<0.10)	ND (<0.097)
Naphthalene	μg/L	10	110JD	89	560 D	450 D	570 D	140 D	51	27	94	13	29	210	1.5	48 E	110	363	34.1	69.3	16.8	138	43	512	1.1	272
Phenanthrene	μg/L	50	8.3J	11	8	6.7 B	13	11	8.8	12	10	5.1	3.4	3.7	ND (<0.49)	2.8	ND (<5.1)	8.5	1.2	2.5	0.99	1.9	1.8	3.7	0.52	2.1
Pyrene	μg/L	50	5.9J	2.9	2.2	1.2 B	1.6	1.8	1.5J	2.9	3.7	2	1.5	1.1	ND (<0.49)	0.69	ND (<5.1)	1.4	0.58	1.6	0.45	0.59	0.73	1.0	0.54	0.83
Cyanide and Lead																										
Lead	μg/L	25	8.2	ND (<5.0)	ND (<5.0)	7.8	5.1	ND (<5.0)	ND (<5.0)	ND (<5.0)	10	ND (<5.0)	ND (<5.0)	0.010	0.010	0.010	ND (<10)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)
Cyanide	mg/L	0.2	0.843	0.816	R	0.61J	0.427	R	0.91	1.2	0.5	0.5	0.48	0.58	0.29	1	1.1	1.1	0.42	1.3	0.56	0.27	0.171	0.61	0.32	0.67

Ingit. Uses Cuship Standards

= Present in Associated Blank Sample

= Berzene, Etrybenzaen, Toluene and Xylene

= Diluted Sample

= Result exceeded calibration range

= MS and/or MSD Recovery outside acceptance limits.

= MS MSD RPD above control limits.

= Insignation SDS Recovery outside acceptance limits.

= MS mSD RPD above control limits.

= MS mSD RPD above control limits.

= MS mSD RPD above control limits.

= NO Control

= NO Cited and Stampled of the North Control

= Not Stampled Department of Environmental Conservation

= Polycylic Aromatic Hydrocarbons

= Rejected

= Micrograms per Line

= values indicated exceedance of the NYSDEC AWOS AWQS
B
BTEX
D
E
F1
F2
J
MC
ND (<#)
NS
NYSDEC
PAHs
R
µg/L
Bolded

Table 3 Groundwater Analytical Data MW-15

CONSTITUENT	UNITS	09/30/10	01/05/11	04/07/11	06/15/11	10/12/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/14	04/16/15	10/13/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20
MNA/WQ Parameters																									
Alkalinity (as CaCO3)	mg/L	558	550	R	R	502J	547J	R	629	527	585	482	557	480	600	601	676	562	610	616	600	478	590	446	550
Chloride	mg/L	44.3	46.4	22.8	43.3 B	28.5J	R	68.2	70.6	39.4	42	44.5	44.2	14.2	49.3	55.7	65.4	25.7	58.0	15.2	15.2	43.9	38	20.3	37.4
Ethane	μg/L	ND (<10)	ND (<10)	2.9	ND (<300)	ND (<300)	ND (<300)	ND (<300)	ND (<380)	ND (<380)	ND (<380)	ND (<75)	6.2	3.2	5.1	2.8	2.1	3.4	5.1	ND (<1.00)	3.53 J				
Ethene	μg/L	ND (<10)	ND (<10)	ND (<1.5)	ND (<300)	ND (<300)	ND (<300)	ND (<300)	ND (<350)	ND (<350)	ND (<350)	ND (<75)	0.038J	0.037J	ND (<0.10)	ND (<0.10)	0.042J	ND (<1.0)	ND (<1.0)	ND (<1.00)	ND (<5.00)				
Ferrous Iron	mg/L	0.15	1.36	R	0.51J	0.47J	0.13J	R	ND (<0.1)	0.15	0.18	ND (<0.1)	ND (<0.1)	ND (<0.1)	0.15 HF	ND (<0.1)	8.2	3.0	5.8	3.8	9.2	2.5	3.2	4.2	6.0
Manganese	mg/L	NA	0.74	0.89	0.67	0.79	0.77	0.61	0.61	1	1.1	0.68	1	0.68	0.7	ND (<75)	0.609	0.0639	0.735	0.484	1.56	0.775	0.952	0.312	0.685
Methane	μg/L	820	3400	680	360	720	1,900	1,600	1,900	780	580	1,100	2,400	16	1,600	720	3,400	1,900	2,900	640	3,100	1,400	3,600	416	2,400
Nitrate	mg/L	NA	ND (<1.0)	ND (<0.05)	0.28	ND (<0.05)	ND (<0.5)	ND (<0.10)	ND (<0.50)																
Nitrogen	mg/L	4.07	4.15	1.9	3.1	2.1	R	4.6	5.4	3	3.1	3.2	2.9	0.81	3.9	3.4	4.7	2.0	4.4	3.1	1.9	1.4	3.1	1.9	2.0
Sulfate	mg/L	NA	182	137 B	193 B	R	R	202 B	217	113	139	122	91.1	28.7	78.5	116	67.9	17.7	60.6	39.0	28.4	25.1	65.9	31.9	71.0
Sulfide	mg/L	NA	1.4	ND (<1.0)	ND (<1.0)	2.4	ND (<1.0)	R	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)				

= Present in Associated Blank Sample
= Dikated Sample
= Estimated Concentration
= Miligrams per Liter
= Monthiesed Ratural Attenuation
= Monthiesed Ratural Attenuation
= Not Analysis
= Not Assigned
= Not Genetical above laboratory reporting limit (indicated by #)
= Not Sample
= Rejected
= Micrograms per Liter
= Water Quality B
D
J
mg/L
MNA
NA
ND (<#)
NS
R
µg/L
WQ

Table 3 Groundwater Analytical Data MW-16

CONSTITUENT	UNITS	NYSDEC AWQS Values	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/14	04/16/15	10/13/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20
BTEX Compounds																										
Benzene	μg/L	1	140	170	150 D	100 D	17	140 D	150 D	180	200	150	8.7	59	91	40	76	149	5.9	143	80.6	127	126	143	56.6	130
Ethylbenzene	μg/L	5	70	110	92	51	5	78	66	100	150	92	6.2	41	68	26	35	134	3.1	124	60.8	101	91.5	118	38.7	70.4
m/p-Xylene	μg/L	5	31	55	47	27	2.8	29	26	14	41	23	ND (<1.0)	ND (<10)	ND (<1.0)	4.9	5	4.9	ND (<2.0)	9.3	6.6	8.7	9.5	9.3	3.9	2.8
o-Xylene	μg/L	5	34	54	41	27	3.6	36	37	14	56	35	ND (<1.0)	17	24	11	20	32.1	1.6	38.0	21.3	32.8	31.4	34.6	12.8	22.3
Toluene	μg/L	5	17	36	33	15	2	21	11	ND (<10)	14	9	ND (<1.0)	17	ND (<1.0)	1.4	ND (<2.0)	2.9	ND (<1.0)	3.8	2.1	3.8	3.7	4.5	1.5	3.0
PAHs																										
Acenaphthene	μg/L	20	14 D	18	21	7	2.3	13	15	30	30	16	ND (<1.0)	40	27	14	31	54.7	3.0	39.5	39.1	57.8	45.2	53.3	14.6	47.0
Acenaphthylene	μg/L	NC	16J	27 D	36	11	4.7	10	2.2	34	49	ND (<0.48)	ND (<0.48)	31	25	16	27	47.3	1.9	26.2	24.4	30.6	17.6	21.4	5.9	16.0
Anthracene	μg/L	50	1.7	3	2.3	0.97 B	0.20J	1.4	1.2	1.6	2.8	ND (<0.48)	ND (<0.48)	2.8	1.8	1.2	ND (<2.5)	1.4	0.37	2.2	1.7	2.6	1.8	2.4	0.74	1.7
Benzo(a)anthracene	μg/L	0.002	ND (<0.19)	0.14	ND (<0.47)	2.1 B	ND (<0.50)	ND (<0.47)	ND (<0.49)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<2.5)	0.10	0.11	0.11	0.13	0.12	0.11	0.13	ND (<0.10)	0.23				
Benzo(a)pyrene	μg/L	0.000	ND (<0.19)	ND (<0.57)	ND (<0.47)	2.3 B	ND (<0.50)	ND (<0.47)	ND (<0.49)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<2.5)	ND (<0.10)	0.11	ND (<0.098)	ND (<0.099)	ND (<0.099)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.21				
Benzo(b)fluoranthene	μg/L	0.002	ND (<0.19)	ND (<0.57)	0.11J	2.8 B	ND (<0.50)	ND (<0.47)	ND (<0.49)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<2.5)	ND (<0.10)	0.17	ND (<0.098)	ND (<0.099)	ND (<0.099)	ND (<0.11)	0.11	ND (<0.10)	0.21				
Benzo(g,h,i)perylene	μg/L	NC	ND (<0.19)	ND (<0.57)	ND (<0.47)	1.8 B	ND (<0.50)	ND (<0.47)	ND (<0.49)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<2.5)	ND (<0.10)	ND (<0.097)	ND (<0.098)	ND (<0.099)	ND (<0.099)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.14				
Benzo(k)fluoranthene	μg/L	0.002	ND (<0.19)	ND (<0.57)	ND (<0.47)	3.1 B	ND (<0.50)	ND (<0.47)	0.096J	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<2.5)		0.15	ND (<0.098)	ND (<0.099)	ND (<0.099)	ND (<0.11)	0.098	ND (<0.10)	ND (<0.098)				
Chrysene	μg/L	0.002	ND (<0.19)	11J	ND (<0.47)	2.7 B	ND (<0.50)	ND (<0.47)	ND (<0.49)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<2.5)	ND (<0.10)	0.098	ND (<0.098)	ND (<0.099)	ND (<0.099)	ND (<0.11)	0.11	ND (<0.10)	0.19				
Dibenzo(a,h)anthracene	μg/L	NC	ND (<0.19)	ND (<0.57)	ND (<0.47)	1.4	ND (<0.50)	ND (<0.47)	ND (<0.49)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<2.5)	ND (<0.10)	ND (<0.097)	ND (<0.098)	ND (<0.099)	ND (<0.099)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)				
Fluoranthene	μg/L	50	1.2	1.4	1.7	1.5 B	0.21J	1.1	0.94	1.5	2	ND (<0.48)	ND (<0.48)	2.7	1.6	1.1	ND (<2.5)	1.8	0.41	2.5	1.9	2.4	1.9	3.0	1.1	2.6
Fluorene	μg/L	50	10 D	11	16	4.7	1.3	8.8	13	17	21	9.1	ND (<0.48)	22	14	7.1	15	22.2	1.1	17.2	17.2	19.5	12.8	24.1	5.3	16.9
Indeno(1,2,3-cd)pyrene	μg/L	0.002	ND (<0.19)	ND (<0.57)	ND (<0.47)	1.7 B	ND (<0.50)	ND (<0.47)	ND (<0.49)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<2.5)	ND (<0.10)	ND (<0.097)		ND (<0.099)	ND (<0.099)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.11				
Naphthalene	μg/L	10	ND (<0.19)	110 D	220 D	ND (<0.47)	26	ND (<0.47)	ND (<0.49)	2.4	230E	ND (<0.48)	ND (<0.48)	1.7	4.6	5.1	7.4	4.6	0.16	5.8	30.9	9.8	12.9	36.8	2.2	8.0
Phenanthrene	μg/L	50	5.6	9.6	13	4.8 B	1.1	6.7	6.3	11	15	ND (<0.48)	ND (<0.48)	18	11	6.7	10	15.9	0.99	15.7	14.1	16.5	11.6	18.4	2.5	13.1
Pyrene	μg/L	50	1.4J	1.3	1.9	2.1 B	ND (<0.50)	1.1	0.87	1.3	2	ND (<0.48)	ND (<0.48)	3	1.8	1.2	ND (<2.5)	2.0	0.50	2.7	2.1	2.5	2.1	3.3	1.2	2.9
Cyanide and Lead																										
Lead	μg/L	25	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<3.0)	ND (<3.0)	ND (<5.0)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<10)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	6.1					
Cyanide	mg/L	0.2	0.353	0.342	R	0.25J	0.137	R	0.34	0.41	0.11	0.11	0.023	0.25	0.24	0.24	0.25	0.26	0.21	0.26	0.23	0.26	0.192	0.23	0.19	0.25

Ambient Water Quality Standards

= Present in Associated Blank Sample

= Benzene, Ettybenzaen, Toluene and Xylene

= Diluted Sample

= Result exceeded calibration range

= MS and/or MSD Recovery outside acceptance limits.

= MSMSD RPD above control limits.

= Institute and the MSD Recovery outside acceptance limits.

= MSMSD RPD above control limits.

= Institute and the MSD Recovery outside acceptance limits.

= MSD RECOVER RECOVERY OF A RECOVER AWQS B BTEX D E F1 F2 J mg/L NC ND (<#) NS NYSDEC PAHs R

Table 3 Groundwater Analytical Data MW-16

CONSTITUENT	UNITS	09/30/10	01/05/11	04/07/11	06/15/11	10/12/11	12/13/11	03/13/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/14	04/16/15	10/13/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20
MNA/WQ Parameters	,			,						,				,	,	,							,	,	
Alkalinity (as CaCO3)	mg/L	442	410	R	R	586J	600J	R	436	530	585	454	595	532	638	615	636	706	630	724	740	560	650	156	670
Chloride	mg/L	7.2	6.7	9.4	6.1 B	3.4J	R	12.7	12.8	5.5	5.4	5	6.5	5.8	4.9	5.7	6.8	3.4	6.5	5.6	4.8	11.8	4.8	3.6	5.2
Ethane	μg/L	ND (<2.5)	ND (<2.5)	ND (<30)	ND (<30)	ND (<1.5)	ND (<1.5)	0.57J	ND (<750)	ND (<750)	ND (<750)	ND (<750)	ND (<750)	ND (<75)	ND (<75)	ND (<75)	1.2	0.15J	0.84J	0.82J	0.99J	0.92 J	1.1	ND (<1.00)	ND (<5.00)
Ethene	μg/L	ND (<2.5)	ND (<2.5)	ND (<30)	ND (<30)	ND (<1.5)	ND (<1.5)	2.6	ND (<700)	ND (<700)	ND (<700)	ND (<700)	ND (<700)	ND (<70)	ND (<70)	ND (<75)	0.24J	0.036J	0.16J	0.13J	0.17J	0.15 J	0.20 J	ND (<1.00)	ND (<5.00)
Ferrous Iron	mg/L	ND (<0.1)	0.44	R	0.33J	R	0.08	ND (<0.1)	0.12	ND (<0.1)	0.13	ND (<0.1)	ND (<0.1)	ND (<0.1)	ND (<0.1)	ND (<0.1)	2.4	1.2	3.0	3.5	3.1	2.6	1.9	2.8	3.0
Manganese	mg/L	NA	0.7	0.59	0.9	0.17	0.61	0.88	1.1	0.63	0.7	0.22	0.63	0.42	0.33	ND (<75)	0.601	0.522	0.599	0.551	0.592	0.603	0.658	0.373	0.650
Methane	μg/L	210J	580 D	270	170	37	400 B	140	550	170	150	75	410	160	1100	110	900	180	780	820	830	850	1100	4.95 J	488
Nitrate	mg/L	NA	ND (<1.0)	ND (<0.05)	ND (<0.05)	0.65	0.17	ND (<0.05)	ND (<0.05)	0.1	ND (<0.05)	0.53	ND (<0.05)	ND (<0.05)	0.37	0.074	ND (<0.10)	0.33	ND (<0.10)	ND (<1.0)	ND (<1.0)				
Nitrogen	mg/L	3.2	2.75	2.6	1.8	R	R	3.2	3.8	3.6	2.8	2.4	3.3	2.1	1.9	2.6	5.4	2.4	3.2	2.3	3.2	3.4	3.9	2	2.8
Sulfate	mg/L	NA	316	312 B	243 B	R	R	351 B	487	140	86	ND (<1.0)	107	38.2	22.8	13.3	145	37.8	77.7	111	75.8	79.6	67.7	39	95.7
Sulfide	mg/L	NA	2.7J	ND (<1.0)	ND (<1.0)	0.8J	ND (<1.0)	R	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)

= Present in Associated Blank Sample
= Dikated Sample
= Estimated Concentration
= Miligrams per Liter
= Monthied Ratural Attenuation
= Monthied Ratural Attenuation
= Not Analysis
= Not Assingles
= Not General
= Rejected
= Rejected
= Micrograms per Liter
= Water Quality B
D
J
mg/L
MNA
NA
ND (<#)
NS
R
µg/L
WQ

December 2020 Semi-Annual Groundwater Monitoring Report National Grid Johnstown Site 109 North Market Street, Johnstown NY 12095

Appendix A – Field Data and Inspections

Well ID	Sample?	Well Size?	DTW	DTP	DTB	Comments
RW-1	No	2"	13.83		21.50	
MW-4	Yes	2"	24.21		27.32	
MW-7	Yes	2"	15.02	_	22.10	
MW-10	Yes	2"	15.15		22.05	
MW 11	No	2"			22.90	inaccessable- debris
MW-12	Yes	2"	15.85	_	22.24	
MW-13	Yes	2"	16.05		22.75	MS/MSD
MW-14	Yes	- 2"	16.15		23.55	Field Duplicate
MW-15	Yes	2"	17.69		23.00	
MW-16	Yes	2"	10.93	_	19.45	
Gauge-1 (bridge)	No		16.38		19.76	

DTW -depth to water DTP -depth to product DTB -depth to bottom All from top of casing

Unable to access MW-11. Area is on adjacent property and was full of concrete/metal and wood debris.

National Grid 109 North Mar	ket Street, J	ohnstown N	ew York						
		The second secon	MANGE		Date: / C	47.	20		
Job Number:	Weather: PAIN SG								
Well Id.	MW-4				Time In:	300		Time O	ut: 1400
Wall In	formation							Time O	ut. / 100
Depth to Water Depth to Botton Depth to Production Length of Water Volume of Water Three Well Vo	er: om: uct: er Column: ter in Well:	(f (f (f	TOC (eet) 24.2 (eet) 27.32 (eet) V (2) (eet) 3.11 (gal) 4.4 (gal) 4.4	Other	Well Type Well Lock Measuring Well Mate Well Diam Comments	ed: Point Mar rial: eter:		" SS	Stick-Up No No Other:
Purging Methor Tubing/Bailer I Sampling Methor Average Pump Duration of Pu Total Volume I	Material: nod: ping Rate: mping:			Poly	Vizard Dedicated Pumpethylene		gal/ft. of water	Conversion 1" ID 2" II 0.04 0.16 IIon=3.785L=3785r	D 4" ID 6
Time 73(0 43(5) 43(3) 43(3) 43(3) 43(4)	10.	3 12 5	emp pH C) (s.u.) 88 7-30 78 7.16 74 7.14 70 7.21 74 7.19	ORP (mV) -29 -19 -23 -20 -19	Conductivity (mS/cm) 1-55 1-57 1-59 1-59 1-59	1	3.6	DO (mg/L) [2-72 5-87 \$5.46 7-2-1 4-75 4-86 4-82	TDS (g/L) .GG .GG 1.00 1.00 1.00 1.00 1.00
Sampling Inform	mation:								
Quantity	Size	Material	Preservative	Co	mpounds analyze	d		Method	
2	1 L	Glass	Unpreserved		SVOC PAH's	79	EPA	SW-846 Method	8270
	250 mL	Plastic	Unpreserved		Ferrous Iron Chloride			SM 3500 FE D	
	LOUTIL	I lastic	Onpreserved		Total Alkalinity			SM 4500 CIE	
	250 mL	Plastic	H2SO4	+	Nitrogen			EPA Method 310.	2
1	250 mL	Plastic	HNO3	1	ead & Manganese			EPA Method 351.	2
3	40 mL	Glass	HCI	+	VOC's & BTEX		FΡΔ	EPA Method 6010	0
	250 mL	Plastic	NaOH	+	Total Cyanide			SW-846 Method	8260
		, 100110	110011	+	Nitrate & Nitrite			PA Method 9012	В
1	250 mL	Plastic	NaOH & Zinc Acetate	-	Sulfide		-	EPA Method 353.2	2
		en der von/MSCA			Sulfate			EPA Method 376.1	1
2	40 mL	Glass	Benzalkonium Chloride		Methane/Ethane/ Ethene/CO2			EPA Method 375.4 RSK-175	1
Sample ID: Sample Time:	MW-4-1	020	Duplicate? Ye MS/MSD? Ye		Sh	ipped: La	aboratory:	Albany Service Ce Pace Courier Pace Analyti Greensburg, Penr	

	tional Grid		NI										
	North Mark		AND ADDRESS OF THE OWNER, THE PARTY NAMED IN	NA-6				21 10	0-7	20			
	mpling Perso			30+0	1 Sec					20			
	Number:		120950-221					Weather:	RAI	N 2			
We	ell Id.	MW-7						Time In:	1143	· · · · · · · · · · · · · · · · · · ·	Time Out	124	5
					- de-								
	Well Inf	ormation			=00	_		147 H T				V	
				.0.1	TOC		ther	Well Type: Well Locke		Flu	shmount	Stick-Up	\sim
	pth to Water			eet) /	22.10			Measuring F		kod:	Yes	No	
	pth to Bottor pth to Produ			eet)	22.10		-	Well Mater		PVC	Yes SS O	No	
	ngth of Wate			eet)	7.08			Well Diame		1"		ther: ther:	
	lume of Wate			gal)	613			Comments					
0.00	ree Well Vol			gal)	33								
	Puraina l	nformation											
_	r diging i	mormation.									Conversion F	actors	
Pu	rging Method	d:		Bailer	Peristalt	ic	Well Wiza	ard Dedicated Pump	\times		1" ID 2" ID		6" ID
	bing/Bailer N			Teflon	Stainless S	St.		ylene other	-	gal/ft. of	- 10	1	O ID
II	mpling Meth			Bailer		ic	Well Wiza	ard Dedicated Pump	\boxtimes	water	0.04 0.16	0.66	1.47
	erage Pump		(ml	/min) 😥	CO					1 gallo	n=3.785L=3785m	L=1337cu.	
	ration of Pur			(min)	50								
To	tal Volume R	Removed:		(gal)	2.0	Did	well go dry?	Yes No	\geq				
	Horiba l	J-52 Water	Quality Met	er Used	? Ye	sX	No						
	Time	DTW	Te	emp	pН		ORP	Conductivity	Tu	rbidity	DO	TD	S
		(feet)	(°	C)	(S.U.)		(mV)	(mS/cm)		NTU)	(mg/L)	(g/	L)
	1150	15.55	12.	57	7.34	-	16.6	1,43	13	5	4.57	,89	7
	1155	17.39	12.	14	7.20	_	169	1-39	4:	3	1,12	.85	0
	acu	17,57		50	7.25	-	128	1.41	35	15	1.05	,90	8
	1205	17 191	124	6	7.31	1-	201	141	24.	9	199	190	
	1216	Timo	124	4	7.34	1_/	204	145	16	2	197	9,1	3
	1213	70,00	13.7	11	7.34	-	205	1/2	10	0	00	, (1.	7
\parallel			12.4	20	537		0	1.43	18	7	7 77	" 91	$\frac{1}{2}$
∥⊢	1990	Á	10.	57	1.54	+-	20.1	1.90	12	- 1	1.01	190	10
∥—						+							
∥													
Щ_													
	***	*											
Sa	mpling Inforn	nation:			=								
	Quantity	Size	Material		Preservative		Com	noundo analyse	d		No. dl d		_
				- VIII	Www.we-states was		OUTSTANDARD TO STANDARD	pounds analyze	u	EDA	Method		_
	2	1 L	Glass		Unpreserved			SVOC PAH's		EPA	SW-846 Metho		_
			= 1					Ferrous Iron			SM 3500 FE D)	_
	1	250 mL	Plastic	,	Unpreserved			Chloride			SM 4500 CI E		
							Т	otal Alkalinity		E	PA Method 310).2	
	1	250 mL	Plastic		H2SO4			Nitrogen		E	PA Method 35	1.2	
	1	250 mL	Plastic		HNO3		Lea	d & Manganese		E	PA Method 60	10	
	3	40 mL	Glass		HCI			OC's & BTEX			SW-846 Metho		\neg
	1	250 mL	Plastic		NaOH			otal Cyanide	-		PA Method 901	-	-
		aOU IIIL	1 100110		110011			itrate & Nitrite		The second second	PA Method 353		\dashv \parallel
	1	250 mL	Plastic	NaO	H & Zinc Aceta	te	IN IN						
	, ,	ZJU IIIL	Flastic	INAU	i a ziiic Acela	ı.e		Sulfide			PA Method 376		
								Sulfate			PA Method 375	0.4	

Sample ID: MW-7-1020 Duplicate? Yes No Sample Time: MS/MSD? Yes No Shipped: Drop-off Albany Service Center Pace Courier Laboratory: Pace Analytical Greensburg, Pennsylvania

40 mL

Glass

Benzalkonium Chloride

Methane/Ethane/

Ethene/CO2

RSK-175

National Grid										
109 North Mar	ket Street,	Johnstown N	ew York							
Sampling Pers	onnel:	om UVV	MCS	<u> </u>		Date: (C	1-7-6	70	_	
Job Number:	0603200	-120950-221				Weather: (Ca	2R (500	
Well Id.	MW-10					Time In: (030)	Time Out	1140
\Mall lm	formation									
- Well In	formation			TOC _	Other	Well Type:	i	_	The share a second	01111
Depth to Wate	r:	(feet) /	5.15	Other	Well Locke			Tushmount Yes	Stick-Up No
Depth to Botto	m:	(eet)	22.05		Measuring F	Point Mar	rked:	Yes	No
Depth to Produ		(eet)	_		Well Mater	rial:	PV		ther:
Length of Wat		(eet)	4.9		Well Diam	eter:	1		ther:
Volume of Wa		(gal)	1.1		Comments	s:			
Three Well Vo	lumes:	(gal)	3.3						
Purging	Information									
Purging Metho	ıd.		Bailer	Peristal	tio Woll W	/izard Dedicated Pump			Conversion F	
Tubing/Bailer N			Teflon			ethylene other		gal/ft. of	1" ID 2" ID	4" ID 6" ID
Sampling Meth			Bailer			/izard Dedicated Pump		water		0.66 4.47
Average Pump		(m		00	Well V	rizard Dedicated Fullip			0.04 0.16 llon=3.785L=3785m	
Duration of Pu			(min)	30		3		i ya	1101-3.785L=3785M	L=1337cu. feet
Total Volume F			(gal)	2,00	Did well go dr	y? Yes No	20			
l la vila a	11 52 14/	Overlity NASA		2		,				
Horiba	U-52 Water	Quality Met	er Usea	? Y€	es No					
Time	DTW	Te	emp	рН	ORP	Conductivity	Tu	rbidity	DO	TDS
	(feet)		C)	(S.U.)	(<u>m</u> V)	(mS/cm)	1)	VTU)	(mg/L)	(g/L)
1045	15.60	5 14-1	3	7,23	-189	2.63	8.	2	5-64	1.71
1050	16.75	14.0	,9	7.19	-2.19	2.88	5.0		1.45	. 00
1022	16.96		0	7.19	-232	8 43	<u> </u>	<u>න</u> ව	1.31	(33
1100	10.10	14.0		7.21	-238	296			1111	1.02
		100	1	7.19	-236		0.0	<u>)</u>	11101	1.89
1105		10.	27		A	292	110	1	1.04	1.87
1110			36	7.19	-234	2.90	8.	2	1.00	1.86
1115		13,	89	7.20	-933	8-89	10	/	.99	1.86
					87					
Sampling Inform	nation:		_							
Quantity	Size	Material	F	Preservative	Co	mpounds analyze	d l		Method	
2	1 L	Glass	l	Inpreserved		SVOC PAH's		EPA	SW-846 Method	8270
						Estate Inches				

Quantity	Size	Material	Preservative	Compounds analyzed	Method
2	1 L	Glass	Unpreserved	SVOC PAH's	EPA SW-846 Method 8270
				Ferrous Iron	SM 3500 FE D
1	250 mL	Plastic	Unpreserved	Chloride	SM 4500 CI E
				Total Alkalinity	EPA Method 310.2
1	250 mL	Plastic	H2SO4	Nitrogen	EPA Method 351.2
1	250 mL	Plastic	HNO3	Lead & Manganese	EPA Method 6010
3	40 mL	Glass	HCI	VOC's & BTEX	EPA SW-846 Method 8260
1	250 mL	Plastic	NaOH	Total Cyanide	EPA Method 9012B
	41%			Nitrate & Nitrite	EPA Method 353.2
1	250 mL	Plastic	NaOH & Zinc Acetate	Sulfide	EPA Method 376.1
	@/ ·			Sulfate	EPA Method 375.4
				Methane/Ethane/	
2	40 mL	Glass	Benzalkonium Chloride	Ethene/CO2	RSK-175

Sample	E ID:
Sample	Time:

IIAC

Duplicate? MS/MSD?

_		_
Yes	No	\geq
Yes	No	\times

Shipped: Drop-off Albany Service Center

Pace Courier

Laboratory: Pace Analytical Greensburg, Pennsylvania

109 North Mai	The second secon			
Sampling Pers			HCEK	Date: / () - / - 2 C
Job Number:		120950-221		Weather: Clark 60°
Well Id.	MW-12			Time In: 0 845 Time Out: 1025
	formation			Other Well Type: Flushmount Stick-Up
Depth to Water			eet) 15.85	Well Locked: Yes No
Depth to Botto			eet) 22.24 eet) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Measuring Point Marked: Yes No Well Material: PVC SS Other:
Length of Wat			eet) / 39	Well Material: PVC SS Other: Well Diameter: 1" 2" Other:
Volume of Wa			gal) 3.8	Comments:
Three Well Vo	lumes:	(gal) 11.5	
Purging	Information			
Purging Metho	ıq.		Bailer Peristaltic	Conversion Factors
Tubing/Bailer I			Teflon Stainless St.	Polyethylene other gal/ft. of
Sampling Meth	nod:		Bailer Peristaltic	Well Wizard Dedicated Pump water 0.04 0.16 0.66 1.
Average Pump		(m	/min) 200	1 gallon=3.785L=3785mL=1337cu. feet
Duration of Pu			(min) 30	Lucalliana de O
Total Volume F				d well go dry? Yes No
Horiba	U-52 Water	Quality Met	er Used? Yes	No No
Time	DTW	Т	тр рН	ORP Conductivity Turbidity DO TDS
Time	(feet)		C) (S.U.)	(mV) (mS/cm) (NTU) (mg/L) (g/L)
0935	16:10	11 2	1 6.85 -	35 8-85 67.3 2,94 1.83
0940	16.13) 11.1	779-	53 291 13.3 2.17 1.86
ce145	16.08	11.1	0 7.19 -	47 2.91 6.7 2.01 1.86
0450	16.10	10.9	9 111	40 290 44 196 185
0955	16.11		74 7.23 -	38 2.90 2.9 1.95 1.85
1000	16.09	100		35 29 25 1.94 1.85
1005	16.11	10.0	13 720 -	33 2.89 2.3 1.94 1.85
	177			
Sampling Inform	mation:			
Quantity	Size	Material	Preservative	Compounds analyzed Method
2	1 L	Glass	Unpreserved	SVOC PAH's EPA SW-846 Method 8270
				Ferrous Iron SM 3500 FE D
1	250 mL	Plastic	Unpreserved	Chloride SM 4500 CI E
				Total Alkalinity EPA Method 310.2
1	250 mL	Plastic	H2SO4	Nitrogen EPA Method 351.2
1	250 mL	Plastic	HNO3	Lead & Manganese EPA Method 6010
3	40 mL	Glass	HCI	VOC's & BTEX EPA SW-846 Method 8260
1	250 mL	Plastic	NaOH	Total Cyanide EPA Method 9012B
				Nitrate & Nitrite EPA Method 353.2
1	250 mL	Plastic	NaOH & Zinc Acetate	Sulfide EPA Method 376.1
				Sulfate EPA Method 375.4
2	40 mL	Glass	Benzalkonium Chloride	Methane/Ethane/ Ethene/CO2 RSK-175
	TOTAL	Oldas	Donzamonium Onionae	
			20-2 20 See 1	Shipped: Drop-off Albany Service Center
Sample ID:	MW-12-	1020	Duplicate? Yes	
Sample Time:	1013		MS/MSD? Yes	
				Greensburg, Pennsylvania

₩.		
National Grid		
109 North Market Street, Johnstown New York		
Sampling Personnel:	Date: /	0/7/20
Job Number: 0603200-120950-221	Weather:	0915 Time Out: /25
Well Id. MW-13	Time In:	0915 Time Out: /22.5
		7020
Well Information		
TOC	Other Well Type:	
Depth to Water: (feet) / 6.05		
Depth to Bottom: (feet) 22.75		Point Marked: Yes No
Depth to Product: (feet)	Well Mater Well Diame	
Length of Water Column: (feet) Volume of Water in Well: (gal)	Comments	
Three Well Volumes: (gal)	Confinents	
Times (gai)		
Purging Information		
		Conversion Factors
	eristaltic Well Wizard Dedicated Pump	1" ID 2" ID 4" ID 6" ID
	nless St. Polyethylene other	
	eristaltic Well Wizard Dedicated Pump	
Average Pumping Rate: 200 (ml/min) Duration of Pumping: 30 (min)	-	1 gallon=3.785L=3785mL=1337cu. feet
Duration of Pumping: (min) Total Volume Removed: (gal)	Did well go dry? Yes No	
Horiba U-52 Water Quality Meter Used?	Yes No No	
Time DTW Temp ph	ORP Conductivity	Turbidity DO TDS
(feet) (°C) (S.L	.) (mV) (mS/cm)	(NTU) (mg/L) (g/L)
0925 16.62 19.15 7.4	4 -188 0.529	9.6 3.56 0.358
00-1	4 -196 A.533	7.5 2.94 0.341
0935 16.98 13.79 7.7	4 -211 0.545	4.3 2.05 0.348
1 0 1/2 //2 7/ " [/. 6		
0940 17.00 13.49 7.8	4 -223 0565	2.9 1.68 0361

Time	DTW	Temp	рН	ORP	Conductivity	Turbidity	DO	TDS
	(feet)	(°C)	(S.U.)	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)
0925	16.62	19.15	7.46	-188	0.529	9.4	3.56	0.335
0930	14.78	14.04	7.54	-196	1.533	7.5	2.94	0.341
0935	16.98	13,79	7,74	-211	0.545	4.3	2.05	0.348
0940	17.00	13.49	7.84	-223	0565	2.9	1.68	a 361
0945	17.10	13.31	7.89	-235	0.600	3.2	1.51	0.303
0950	17.10	13.30	7.91	-242	0.425	3.1	1.36	0.400
0955	17.10	13.29	7.73	-250	0.639	スつ		0.409
							1.4	
		2						

Sampling Information:

2 1 L Glas 1 250 mL Plast 1 250 mL Plast 1 250 mL Plast 3 40 mL Glas 1 250 mL Plast 1 250 mL Plast 1 250 mL Plast	c Unpreserved	SVOC PAH's Ferrous Iron Chloride Total Alkalinity	EPA SW-846 Method 8270 SM 3500 FE D SM 4500 CI E
1 250 mL Plast 1 250 mL Plast 3 40 mL Glas 1 250 mL Plast		Chloride	SM 4500 CI E
1 250 mL Plast 1 250 mL Plast 3 40 mL Glas 1 250 mL Plast			
1 250 mL Plast 3 40 mL Glas 1 250 mL Plast		Total Alkalinity	EDA M. U. 1040.0
1 250 mL Plast 3 40 mL Glas 1 250 mL Plast		r o ton r intollining	EPA Method 310.2
3 40 mL Glas 1 250 mL Plast	c H2SO4	Nitrogen	EPA Method 351.2
1 250 mL Plast	c HNO3	Lead & Manganese	EPA Method 6010
	HCI	VOC's & BTEX	EPA SW-846 Method 8260
1 250 mL Plast	c NaOH	Total Cyanide	EPA Method 9012B
1 250 mL Plast		Nitrate & Nitrite	EPA Method 353.2
	c NaOH & Zinc Acetate	Sulfide	EPA Method 376.1
		Sulfate	EPA Method 375.4
2 40 mL Glas		Methane/Ethane/ Ethene/CO2	RSK-175

MW-13-MS-	1020 and	MW-13-	-MSD-1020
-----------	----------	--------	-----------

Sample ID: Sample Time: MW-13-1020

1000

Duplicate? MS/MSD?

Drop-off Albany Service Center Shipped:

Pace Courier

Laboratory:

Pace Analytical

Greensburg, Pennsylvania

National Grid 109 North Market Street, Johnstown New York Sampling Personnel: Date: 0603200-120950-221 Weather: Job Number: E rain Well Id. MW-14 Time In: Time Out: 220 Well Information TOC Other Well Type: Flushmount Stick-Up Depth to Water: (feet) 6:15 Well Locked: Yes No Depth to Bottom: (feet) 23.55 Measuring Point Marked: Yes No PVC SS Depth to Product: (feet) Well Material: Other: 7.4 Length of Water Column: (feet) Well Diameter: 2" Other: Volume of Water in Well: Comments: (gal) Three Well Volumes: (gal) 3.6 **Purging Information** Conversion Factors Purging Method: Bailer Peristaltic Well Wizard Dedicated Pump 1" ID 2" ID 4" ID 6" ID Polyethylene Tubing/Bailer Material: Teflon Stainless St. gal/ft. of Sampling Method: Peristaltic Well Wizard Dedicated Pump Bailer water 0.04 0.16 0.66 1.47 06 (ml/min) Average Pumping Rate: 1 gallon=3.785L=3785mL=1337cu. feet **Duration of Pumping:** (min) 30 No 🔀 Did well go dry? Yes Total Volume Removed: (gal) Yes No Horiba U-52 Water Quality Meter Used? Time DTW Temp Hq ORP Conductivity Turbidity DO TDS (°C) (S.U.) (mV) (mS/cm) (NTU) (feet) (mg/L) (g/L)7.00 462 -133 0:59/ 55.6 5.31 0409 0.516 7.4 15.27 369 130 0.3/0 7.44 0.926 4.59 130 \$ 60 1135 05/8 -104 14.00 836 1140 1.01 0643 5800 108 7.48 1.01 .00 0,644/ 13.30 490 107 0.989 1150 0.633 ,970 Sampling Information: Quantity Size Material **Preservative** Compounds analyzed Method 2 1 L Glass Unpreserved SVOC PAH's EPA SW-846 Method 8270 Ferrous Iron SM 3500 FE D 1 250 mL **Plastic** Unpreserved Chloride SM 4500 CI E Total Alkalinity EPA Method 310.2 1 250 mL Plastic H2SO4 Nitrogen EPA Method 351.2 1 250 mL Plastic HNO3 Lead & Manganese EPA Method 6010 3 40 mL Glass HCI VOC's & BTEX EPA SW-846 Method 8260 1 250 mL Plastic NaOH **Total Cyanide** EPA Method 9012B Nitrate & Nitrite EPA Method 353.2 1 250 mL Plastic NaOH & Zinc Acetate Sulfide EPA Method 376.1 Sulfate EPA Method 375.4 Methane/Ethane/ 2 40 mL Glass Benzalkonium Chloride Ethene/CO2 RSK-175 Field Duplicate-1020 Drop-off Albany Service Center Shipped: Sample ID: MW-14-1020 Duplicate?

Pace Courier

Pace Analyti Greensburg, Penr

Laboratory:

* water rusty in color.
Organic dubris present

MS/MSD?

1200

Sample Time:

National Grid 109 North Mark	ket Street, Johns	stown New York												
Sampling Pers		A5			Date: /6/7/25									
Job Number:	0603200-1209	950-221		Weather:	630F. do	udy								
Well Id.	MW-15			STORY BANG	Time In: 1036 Time Out: 1100									
Well Inf	formation	-	TOC	Other	Well Type:	CI.	ushmount	Stick-Up						
Depth to Water	r:	(feet)	17.69	Other	Well Locke		Yes	No No						
Depth to Botton		(feet)	23.00			Point Marked:	Yes	No						
Depth to Produ		(feet)			Well Mater			her:						
Length of Water		(feet)	5.31		Well Diame		'	her:						
Three Well Vol		(gal)	0,47		Comments	:								
THICE WEIL VOI	-	(gai)	4.3											
Purging Ir	nformation	-												
Tubing/Bailer M Sampling Metho Average Pumpi Duration of Pun Total Volume R	Purging Method: Tubing/Bailer Material: Sampling Method: Bailer Peristaltic Stainless St. Peristaltic Well Wizard Dedicated Pump Polyethylene other Well Wizard Dedicated Pump Mell Wizard Dedicated Pump Mell Wizard Dedicated Pump Mell Wizard Dedicated Pump Material: Average Pumping Rate: Duration of Pumping: Total Volume Removed: Horiba U-52 Water Quality Meter Used? Peristaltic Well Wizard Dedicated Pump Well Wizard Dedicated Pump Mell Wizard Dedicated Pump Mell Wizard Dedicated Pump Material: 1" ID 2" ID 4" ID 6" ID Material: 1 gallon=3.785L=3785mL=1337cu. feet No Horiba U-52 Water Quality Meter Used? Yes No													
Time	DTW	Temp	рН	ORP	Conductivity	Turbidity	DO	TDS						
1020	(feet)	(°C)	(S.U.)	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)						
1035	17.90	19.25	7.81	-2/2	0.843	5.2	5.11	0.530						
1040		15.01	7.39	-155	01.03	9.2	8.62	8659						
1050	18.16	13.98	7.20	-15	1.07	10.1	6.35	0.686						
1055	11.25	13.75	7.22	-166	1.12	11.5	3.68	0.7/3						
1100	18.31	13.59	7.24	-184	1.15	7.6	2.35	0.725						
1105	639	13.46	7.27	-186	117	5,4	1.69	0.747						
.,00	10.//	15.74	1. 1.		10 % {	3, 4	10/6	0.11/						

					<u> </u>									

Camaralina	1-6
Sampling	Information:
Camping	IIIIOIIIIalioii

Quantity	Size	Material	Preservative	Compounds analyzed	Method				
2	1 L	Glass	Unpreserved	SVOC PAH's	EPA SW-846 Method 8270				
			Ferrous Iron	SM 3500 FE D					
1	250 mL	Plastic	Unpreserved	Chloride	SM 4500 CI E				
				Total Alkalinity	EPA Method 310.2				
1	250 mL	Plastic	H2SO4	Nitrogen	EPA Method 351.2				
1	250 mL	Plastic	HNO3	Lead & Manganese	EPA Method 6010				
3	40 mL	Glass	HCI	VOC's & BTEX	EPA SW-846 Method 8260				
1	250 mL	Plastic	NaOH	Total Cyanide	EPA Method 9012B				
				Nitrate & Nitrite	EPA Method 353.2				
1	250 mL	Plastic	NaOH & Zinc Acetate	Sulfide	EPA Method 376.1				
				Sulfate	EPA Method 375.4				
2	40 mL	Glass	Benzalkonium Chloride	Methane/Ethane/ Ethene/CO2	RSK-175				

Sample ID:
Sample Time:

MW-15-1020

Duplicate? MS/MSD?

Yes	No	\triangleright
Yes	No	\geq

Shipped: Drop-off Albany Service Center

Pace Courier

Laboratory:

Pace Analytical Greensburg, Pennsylvania

The state of the s	ket Street, Johns	stown New York										
Sampling Person		AS	Date: /c									
Job Number:	0603200-1209	950-221	Weather:	550F	Vain	15.100						
Well Id.	MW-16		Time In:	Time In: 1225 Time Out: 3 5								
Woll Inf	ormation											
- VVCII II II	omation	-	TOC	Other	Well Type:	Fli	ushmount	Stick-Up				
Depth to Water	:	(feet)	253		Well Locke		Yes	No				
Depth to Bottor		(feet)	19.45			oint Marked:	Yes	No				
Depth to Produ		(feet)	_		Well Materi	500 Dec		ther:				
Length of Water		(feet)	8.52		Well Diame Comments		" 2" Ot	ther:				
Three Well Vol		(gal)	1.36		Comments	•						
Three wen von	urrics.	(gai)	9.1									
Purging II	nformation	-										
							Conversion F					
Purging Method		Bailer	Peristaltic Stainless St.		ard Dedicated Pump	gal/ft. of	1" ID 2" ID	4" ID 6" ID				
Tubing/Bailer M Sampling Methor		Teflon Bailer	Peristaltic		ylene other other ard Dedicated Pump		0.04 0.16	0.66 1.47				
Average Pumpi		o (ml/min)	1 eristatic	Well Wize	ard Dedicated r drip		lon=3.785L=3785m					
Duration of Pun		30 (min)										
Total Volume R	emoved:	7 (gal)		Did well go dry?	Yes No	\searrow						
Horiba U	J-52 Water Qua	lity Meter Used?	Yes	No No								
Time	DTW	Temp	рН	ORP	Conductivity	Turbidity	DO	TDS				
	(feet)	(°C)	(S.U.)	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)				
1225	11.11	12:08	Zat	-158	1.17	24,5	13.85	0.747				
1230	12:12	12,418	7.51	-144	1-16	16.0	9.23	6.746				
1235	265	12.34	7.54	-187	1.18	3.7	2.86	0.704				
1240	13.07	12.33	7.57	-208	1.21	0.3	158	0.776				
1245	J	12.27	7.60	-218	1.23	0.4	1.31	0.708				
1250	~	12.18	762	-220	7.24	0.Ce	1-20	0.792				
1255	-	204	7-61	-216	24	218	1.11	0.795				
521						100						
Campling Inform	notion:											

Samo	lina	Informa	tion:

Quantity	Size	Material	Preservative	Compounds analyzed	Method			
2	1 L	Glass	Unpreserved	SVOC PAH's	EPA SW-846 Method 8270			
			Ferrous Iron	SM 3500 FE D				
1	250 mL	Plastic	Unpreserved	Chloride	SM 4500 CI E			
9				Total Alkalinity	EPA Method 310.2			
1	250 mL	Plastic	H2SO4	Nitrogen	EPA Method 351.2			
1	250 mL	Plastic	HNO3	Lead & Manganese	EPA Method 6010			
3	40 mL	Glass	HCI	VOC's & BTEX	EPA SW-846 Method 8260			
1	250 mL	Plastic	NaOH	Total Cyanide	EPA Method 9012B			
				Nitrate & Nitrite	EPA Method 353.2			
1	250 mL	Plastic	NaOH & Zinc Acetate	Sulfide	EPA Method 376.1			
				Sulfate	EPA Method 375.4			
2	40 mL	Glass	Benzalkonium Chloride	Methane/Ethane/ Ethene/CO2	RSK-175			

				Shipped: Drop-off Albany Service Center	
Sample ID:	MW-16-1020	Duplicate?	Yes No	Pace Courier	
Sample Time:	300	MS/MSD?	Yes No	Laboratory: Pace Analytical	
				Greensburg, Pennsylvania	i

CHAIN-OF-CUSTODY / Analytical 10042 The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

ection A	Section B			Section C Invoice Information	n				□ Ch	_				7 1					REC	GULA	TOF	EY A	GEN	CY			
equired Client Information:	Required Project Information: Report To: Devin Shay (GES)			Attention: Accoun	ts Pay	able via ema	nit at ges-involu	es@ges	r Ch	h								GB	OUN	ID WA	TER		DRIN	KING W	ATER		
ompany GES - Syracuse	dshay@gesonline.com Report To. Tim Beaumont (GES)		Company Name: Groundwater & Environmental Services, Inc.										NPDES								OTHE	R					
dress: 5 Technology Place, Suite 4	tbeaumont@gesonline.com		Address: 5 Technology Place, Suite 4, East Syracuse, NY 13057										UST		and i	R	CRA				IN	Mi		NC			
Syracuse, New York 13057	D. A Carlos No.			Pace Quote Refer								TIME.				SITI				GA		L			OTHE	D	
ail To: dshay@gesonline.com	Purchase Order No.:	O Blarth		Pace Project Man		Rachel Chris	tner								LOCATIO	N				OH		SC	, W	1	UITIE	//	-
ne : Fax: None 220 3069x4052	Project Name: National Grid - 10: Market Street, Johnstown NY	э мопи		race rioject man	ayer I										Filtered (Y/N)						//	//	/	11	1	1	/
quested Due Date/TAT: Standard	Project Number: 0603200-120950-221-1106						Semi-Ann	ual G	WS	_				4	Requested				1930	7	1	1	17	7	/	/	/
Section D Required Client Information SAMPLE ID One Character per box. (A-Z, 0-97,-) IDs MUST BE UNIQUE BE	Wall Martin Codes MATRIN MATRIN ESSANTIAL STATE ESSANTIAL STATE ESSANTIAL ES	MATRIX CODE	SAMPLE TYPE G.GRAB C-COMP	COMPOSTESTART	ME	DATE _	TIME	SAMPLE TEMP AT COLLECTION	#OF CONTAINERS	npreserved	0,	Port Hotel	taySyOs abOH and Zh Acetate	kenium Chloride	Analysis:		Voc. Chamber	The state of the s	100 1 (man man of 100 100 man of 100 100 100 100 100 100 100 100 100 10	Supplied to the supplied to th	TO SA SON BOOK FOR HERE	The state of the s	Marie VIII (19 19 19 19 19 19 19 19 19 19 19 19 19	CO SESSION SES	15.5 5 4 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ject Numbei Lab I.D.
MW-4-102	20	WT	G	NAME OF TAXABLE PARTY.	ME	-	4 1345		12	3	1	3 1	2 2	2		2 2	1	1	3	1	1	1	f				
MW-7-102			G			19/1	/230		12			3 1		1 2			2 1	1	3	1	1						
MW-10-10				Sell Black Co.			1125		12	ES FEED IN		3 1		2			2 1	1	3		+						
4 - MW-11-10		1400	-				1125		12	3		3 1				2 1			3		+		+		(Table)		
MW-12-10		WT	G				1015		12	3	1 1	3 1		2						4			+				
MW-13-10		WT					1000		12	3		3 1		1 2			2 1		3	1	1	-					
MW-13-MS-0		WT	1000				1000	1	12			3 1		1 2		2	13 10	1	3	1	1		1				
MW-13-MSD-		WT					1000		1000		1 1	3 1		1 2			2 1	1	3	1	1	-	1				
MW-14-10:	20	WT					1200		12		1 1	3 1		1 2		2	2 1	1	3	1	1	-	1				
MW-15-102		WT					1110		12		1 1	3 1		1 2		2	2 1	1	3	1	1		1				
MW-16-102		WT	1				1300		12	3	1 1	3 1		1 2		2	2 1	1 1	3	1	1		1				
Field Duplicate		WT	G				1300		12	3	1 1	3 1		1 2		2	2 1	1 1	3	1	1		1				
Trip Blank		WT				V		Talk .	12	3	1 1	3 1		1 2		2	2	1 1	3	1	1						
itional Comments:									3			3							3			-			1000		
MPLES WILL ARRIVE IN #	COOLERS.	0	110	un (/a			DATE	TIME	ACCE	PTED	Y / AF	LIATIO	JNI.				DA	16	1	IME	Q	AAAD					
	OUCLERS.	CHE	700	myes		oF 5	10/7/20	1350		do	1	P	VF.				w/-	WO			3/	-cial L	LEC	ONDI	_	-	
se send reports to: dshay@gesonline.com, the	Numoni@asses"-																47	WYC	113	2	-			× ×	_		N.
egion@gesonline.com, ges@equisonline.co	om											No.				-			-		-	V. Y. Y.		X X		A/A	N.
osse systemicity																	25		1					Z		N.	Z.
CIFIC EDD NAME:				SAMP	LER I	NAME AND	SIGNATUR	E																N.	-	Z >	N.
ohnstown-labnumber.28351.EQEDD.zi	n																	H				C	,	00			7
T. C. CLOD.ZI				SIGNATI	IME of S	AMPLER	/ *(TE)					DA	TE Signer	d (AM)	(M) da							3	Tempin	Received o	1	Sealed Cooler	intact
														- 1-2081	DD (M)	79 9469	1000	_				1	Ê	1 5 C	1	pe	Samples

Site Management Plan Inspection Form 109 North Market Street Former MGP Site

Date:	7/14/2020	Johnstown, New York	Time:	9:00
Technician:	KL	<u> </u>	Weather:	Sunny 75

Vegetation Cap												
Condition of Grass	GOOD	FA	IR	POOR	COMMENTS:							
Condition of Site Trees	GOOD FA		IR POOR		COMMENTS:							
Surface Erosion	NONE	MIN	OR	SIGNIFICANT	COMMENTS:							
Has the site been maintained/mowed?	YES			NO	COMMENTS:							

	Sheet Pile	· Wall	
Has any construction occurred that may have impacted the sheet pile wall?	YES	NO	COMMENTS:

Site Wide						
Does the property continue to be used for commercial and/or industrial uses?	YES	NO	COMMENTS:			
Does the use of groundwater for potable or process water continue to be restricted?	YES	NO	COMMENTS:			
Are agricultural or vegetable gardens present on the property?	YES	NO	COMMENTS:			
Do the Engineering Controls continue to perform as designed?	YES	NO	COMMENTS:			
Do the Engineering Controls continue to be protective of human health and environment?	YES	NO	COMMENTS:			
Are the requirements of the Site Management Plan being met?	YES	NO	COMMENTS:			
Are the requirements of the Environmental Easement being met?	YES	NO	COMMENTS:			
Since the last inspection has the groundwater been sampled in accordance with the SMP?	YES	NO	COMMENTS:			
Since the last inspection have there been any changes to the remedial system?	YES	NO	COMMENTS:			
Are there any needed changes?	YES	NO	COMMENTS:			
Are the site records complete and up to date?	YES	NO	COMMENTS:			

Miscellaneous						
Evidence of Trespassing	YES NO COMMENTS:				COMMENTS:	
Litter	NONE	MINOR		SIGNIFICANT	COMMENTS:	

General Comments:

Site Management Plan Inspection Form 109 North Market Street Former MGP Site Johnstown, New York

Time:

9:00

Technician: AJ					Weather:	Partly Sunny 55
	Vege	etation	1 Сар	o		
Condition of Grass	GOOD	FA	JR	POOR	COMMENTS:	
Condition of Site Trees	GOOD	FA	JR	POOR	COMMENTS:	
Surface Erosion	NONE	MIN	IOR	SIGNIFICANT	COMMENTS:	
Has the site been maintained/mowed?	YES			NO	COMMENTS:	

	Sheet Pile	Wall	
Has any construction occurred that may have impacted the sheet pile wall?	YES	NO	COMMENTS:

Site Wide						
Does the property continue to be used for commercial and/or industrial uses?	YES	NO	COMMENTS:			
Does the use of groundwater for potable or process water continue to be restricted?	YES	NO	COMMENTS:			
Are agricultural or vegetable gardens present on the property?	YES	NO	COMMENTS:			
Do the Engineering Controls continue to perform as designed?	YES	NO	COMMENTS:			
Do the Engineering Controls continue to be protective of human health and environment?	YES	NO	COMMENTS:			
Are the requirements of the Site Management Plan being met?	YES	NO	COMMENTS:			
Are the requirements of the Environmental Easement being met?	YES	NO	COMMENTS:			
Since the last inspection has the groundwater been sampled in accordance with the SMP?	YES	NO	COMMENTS:			
Since the last inspection have there been any changes to the remedial system?	YES	NO	COMMENTS:			
Are there any needed changes?	YES	NO	COMMENTS:			
Are the site records complete and up to date?	YES	NO	COMMENTS:			

Miscellaneous						
Evidence of Trespassing	YES NO			NO	COMMENTS:	
Litter	NONE	MIN	OR	SIGNIFICANT	COMMENTS:	

General Comments:

Date:

10/7/2020

December 2020 Semi-Annual Groundwater Monitoring Report National Grid Johnstown Site 109 North Market Street, Johnstown NY 12095

Appendix B – Data Usability Summary Report

Groundwater & Environmental Services, Inc.

708 North Main Street, Suite 201 Blacksburg, VA 24060

T. 800.662.5067

December 16, 2020

Devin Shay Groundwater & Environmental Services Syracuse 5 Technology Place, Suite 4 East Syracuse, NY 13057

RE: Data Usability Summary Report for National Grid: Johnstown, NY Site Data Package Pace Analytical Job No. 30386140

Groundwater & Environmental Services, Inc. (GES) reviewed one data package (Laboratory Project Number 30386140) from Pace Analytical Services, Inc., for the analysis of groundwater samples collected on October 7, 2020 from monitoring wells located at the National Grid: Johnstown, NY Site. Eight aqueous samples and a field duplicate were analyzed for dissolved gases, PAHs, Nitrogen, Metals, Alkalinity, Chloride, Ferrous Iron, Cyanide, Sulfide and Sulfate. Methodologies utilized were ASTM D516-11, EPA 351.2, EPA 6010C, SM 4500NO3F-2011, SM4500CIE-2011, SM 4500S2F-2011, SM 3500-FeB-2011, SM 2320B-2011, and the USEPA SW846 methods 8260C/8270DSIM/9012B, with additional QC requirements of the NYSDEC ASP. Dissolved gases analyses were subcontracted to Microbac Laboratories, 158 Starlite Drive, Marietta, OH.

The data were reported as part of a complete full deliverable type B data validation. This usability report is generated from review of the following:

- Laboratory Narrative Discussion
- Custody Documentation
- Holding Times
- Surrogate and Internal Standard Recoveries
- Matrix Spike Recoveries/Duplicate (MS/MSD) Correlations
- Field Duplicate Correlations
- Laboratory Control Sample (LCS)
- Preparation/Calibration Blanks
- Calibration/Low Level Standard Responses
- Instrumental Tunes
- Instrument MDLs

The items listed above which show deficiencies are discussed within the text of this narrative.

All of the other items were determined to be acceptable for the DUSR level review.

In summary, sample results were usable as reported, with exceptions due to poor precision or MS/MSD recoveries.

The laboratory case narratives and sample identification summary forms are attached to this text, and should be reviewed in conjunction with this report.

Table 1. Laboratory – Field Cross Reference

Lab ID	Sample ID	Date Collected	Date Received
30386140001	MW-4-1020	10/07/20 13:45	10/08/20 09:30
30386140002	MW-7-1020	10/07/20 12:30	10/08/20 09:30
30386140003	MW-10-1020	10/07/20 11:25	10/08/20 09:30
30386140004	MW-12-1020	10/07/20 10:15	10/08/20 09:30
30386140005	MW-13-1020	10/07/20 10:00	10/08/20 09:30
30386140006	MW-13-MS-1020	10/07/20 10:00	10/08/20 09:30
30386140007	MW-13-MSD-1020	10/07/20 10:00	10/08/20 09:30
30386140008	MW-14-1020	10/07/20 12:00	10/08/20 09:30
30386140009	MW-15-1020	10/07/20 11:10	10/08/20 09:30
30386140010	MW-16-1020	10/07/20 13:00	10/08/20 09:30
30386140011	Field Duplicate-1020	10/07/20 00:01	10/08/20 09:30
30386140012	Trip Blank	10/07/20 00:01	10/08/20 09:30

Table 2. Validation Qualifiers

Sample ID	Qualifier	Analyte	Reason for qualification
	J-	o-xylene, xylene	Low MS/MSD recoveries
MW-13	UJ-	Ferrous Iron	Low MS/MSD recoveries
	J	Manganese	RPD > 30%
All Samples	J-/UJ-	Ferrous Iron	Analyzed outside of hold time.
MW-4	J-	Sulfate Nitrogen, Total Kjeldahl	Low MS/MSD recoveries
MW-15	J+	Cyanide	High recovery in MS/MSD
MW-4 MW-14 Dup	J-/UJ-	Nitrogen, Total Kjeldahl Sulfate	Low MS/MSD recoveries Nitrogen RPD>30% in field duplicate pair
MW-13	J+	Anthracene, Fluoranthene, Pyrene	High MS/MSD recoveries
MW-7, MW-10, MW-12, MW-14, DUP	U at detected concentration	Naphthalene	Positive detection in method blank

In summary, sample results were usable as reported, with the following exceptions:

The following non-compliances were not used to qualify data:

• Benzene, toluene, 2-methylnaphthalene, acenaphthene, acenaphthylene, fluorene, naphthalene, phenanthrene and ethylbenzene all reported recoveries low out of specification in the MS/MSD; no qualification is necessary as the initial concentration in the sample is above the EPA maximum of >4X the spiking concentration.

The laboratory case narratives and sample identification summary forms are attached to this text, and should be reviewed in conjunction with this report.

BTEX and TCL Volatiles by EPA 8260C/NYSDEC ASP

Sample holding times were met and instrumental tune fragmentations were within acceptance ranges. Surrogate and internal standard recoveries were within required limits. Calibrations standards show acceptable responses within analytical protocol and validation action limits. The MS/MSD benzene, ethylbenzene and toluene calculations could not be used to gauge accuracy, as the initial concentrations in the sample were greater than the EPA guidelines required <4x the spiking concentrations for accuracy calculations. Precision calculations showed that the recoveries were consistent, as RPDs were within expected ranges. Precision calculations for LCS/LCSD indicate good reproducibility. Surrogate recovery was within bounds, and LCS recoveries were compliant, and used to determine method efficacy.

The field duplicate correlations were not calculated as neither sample had above reporting limit detections.

PAHs by EPA8270D/NYSDEC ASP

Holding times were met. Instrumental tune fragmentations were within acceptance ranges. Surrogate recoveries were within analytical and validation guidelines. Blanks show no contamination, with the exception of a low-level detection of naphthalene (0.37 μ g/L) in the method blank. MW-7, MW-10, MW-12, MW-14, and the field duplicate reported <5x the blank concentration, all above reporting limit. The data is qualified as non-detect at the concentration reported. Calibration standards, both initial and continuing, show acceptable responses within analytical method protocols and validation guidelines. The blind field duplicate correlations of MW-14-2020 fall within project objectives.

The MS/MSD reported multiple analytical recoveries outside of specification. The original concentration of most of the analytes was >4x the spiking concentration, so the out-of-compliance recoveries do not indicate a method failure. For three analytes, the recoveries in the MS/MSD were high, showing a high bias. For these analytes, the concentrations in the sample are qualified as estimated with a possible high bias. Anthracene RPD was higher than the laboratory limit, indicating a possible precision issue. The analyte is also qualified due to high recovery, and the precision issue does not require further qualification.

Precision calculations indicate good reproducibility. LCS recoveries were compliant for accuracy and precision, and no qualifications were required.

Lead and Manganese by EPA 6010/NYDESC ASP

Holding times were met. The calibration responses are within criteria. The blind field duplicate correlations of MW-14-1020 fall outside guidance limits of <30% for Manganese, and the analyte is qualified as estimated. Instrument performance is compliant, and blanks show no contamination above the reporting limit. The matrix spikes using MW-13 fall within laboratory-provided criteria. The ICP serial dilution evaluations were within specification for samples with detections of the target elements.

Wet Chemistry Tests (Alkalinity, Ions, Sulfide) and Total Cyanide by 9012B/ NYSDEC ASP

Review was conducted for method compliance, holding times, transcription, calculations, standard and blank acceptability, accuracy and precision, etc., as applicable to each procedure. All were found acceptable for the validated samples with the following exceptions in the MW-5 MS/MSDs:

- Cyanide: recovery was high in the matrix spike performed with MW-15, the data is qualified as estimated with a possible high bias.
- Sulfate recovered low in MS/MSD samples derived from MW-4 and the field duplicate associated with MW-14. The data in these three samples are qualified as estimated, with a possible low bias.

Calibration standard responses were compliant. Blanks show no detections above the reporting limits.

Ferrous Iron by S<3500-FeD-00/ NYSDEC ASP

Review was conducted for method compliance, holding times, transcription, calculations, standard and blank acceptability, and accuracy and precision. Samples were prepared outside of hold time, and all sample data is qualified as estimated low. All other compliance data were found acceptable for the validated samples, except for the MS/MSD recoveries associated with MW-13, which were low, outside of criteria. The non-detect data in MW-13 is therefore qualified as estimated non-detect, with a possible low bias.

Calibration standard responses were compliant. Blanks show no detections above the reporting limits.

Total Kjeldahl Nitrogen, Nitrogen as Nitrate/Nitrite by EPA 351.2 & 353.2/NYDESC ASP

Review was conducted for method compliance, holding times, transcription, calculations, standard and blank acceptability, accuracy and precision, etc., as applicable to each procedure. All were

found acceptable for the validated samples. Calibration standard responses were compliant. Blanks show no detections above the reporting limits. The MS/MSD recoveries were out of specification for MW-13 associated samples:

- Nitrogen, Kjeldahl: recovery was high, the analyte was non-detect, and no qualifications are required.
- Other MS/MSD recoveries associated with MW-14/dup pair and the MW-4 samples were low for Nitrogen, Kjeldahl, and the analyte was qualified as estimated with a possible low bias in these samples

Dissolved Gases by EPA 5021/RSK-175

Review was conducted for method compliance, holding times, transcription, calculations, standard and blank acceptability, accuracy and precision. Holding times for dissolved gases were missed by the duplicate sample by 6 minutes. Data was found to be consistent with in-hold original sample and no qualifications were assigned. All other criteria were found acceptable for the validated samples. Calibration standard responses were compliant. Blanks show no detections above the reporting limits.

Data Precision/ Field Duplicates

Table 3 Field Precision JOHNSTOWN NY SITE October 2019

<u> </u>	Octobe	er 2019			
Field Identification	Analyte	Sample Result (µg/L)	Duplicate Result (µg/L)	RPD (%)	Qualified
	Alkalinity	400	420	4.9	A
	Nitrogen, Kjeldahl, Total	3.6	2.5	36.1	J
	Chloride	6.7	6.6	1.5	Α
	Sulfate	102	94.1	8.1	Α
	Iron, Ferrous	2.1	2.7	25.0	A
	Cyanide	0.42	0.4	4.9	A
	Manganese	940	860	8.9	A
	Lead	50.2	46.8	7.0	A
	Acenaphthene	0.2	0.14	6.9	A
	Acenaphthylene	1.2	1.2	0.0	A
	Anthracene	0.6	0.56	1.8	A
MW-14/FIELD	Benzo(a)anthracene	2.1	2.2	4.7	A
DUP	Benzo(a)pyrene	2.6	2.8	7.4	Α
	Benzo(b)fluoranthene	2.8	3	6.9	A
	Benzo(g,h,i)perylene	1.90	2	5.1	Α
	Benzo(k)fluoranthene	1.00	1	0.0	Α
	Chrysene	1.9	2	5.1	Α
	Dibenz(a,h)anthracene	0.43	0.46	6.7	A
	Fluoranthene	3	3.3	9.5	Α
	Fluorene	0.18	0.19	5.4	A
	Indeno(1,2,3-cd)pyrene	1.5	1.6	6.5	A
	2-Methylnaphthalene	0.12	0.1	18.2	A
	Naphthalene	1.1	0.99	10.5	A
	Phenanthrene	1	1.1	9.5	A
	Pyrene	5	5.4	7.7	A

Page **6** of **9**

Data Package Completeness

Complete NYSDEC Category B deliverables were included in the laboratory data package, all information required for validation of the data is present.

Please do not hesitate to contact me if you have comments or questions regarding this report.

Bonnie Janowiak, Ph.D.

Spartwick

Project Chemist

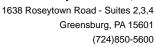
708 N Main St, Suite 201

Blacksburg, VA 24060

VALIDATION DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- **J** The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- **J-** The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.
- **J**+ The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- **UJ** The analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- **NJ** The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- **R** The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control limits. The analyte may or may not be present.

Sample Summaries and Laboratory Case Narratives


SAMPLE SUMMARY

Project: National Grid - Johnstown, NY

Pace Project No.: 30386140

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30386140001	MW-4-1020	Water	10/07/20 13:45	10/08/20 09:30
30386140002	MW-7-1020	Water	10/07/20 12:30	10/08/20 09:30
30386140003	MW-10-1020	Water	10/07/20 11:25	10/08/20 09:30
30386140004	MW-12-1020	Water	10/07/20 10:15	10/08/20 09:30
30386140005	MW-13-1020	Water	10/07/20 10:00	10/08/20 09:30
30386140006	MW-13-MS-1020	Water	10/07/20 10:00	10/08/20 09:30
30386140007	MW-13-MSD-1020	Water	10/07/20 10:00	10/08/20 09:30
30386140008	MW-14-1020	Water	10/07/20 12:00	10/08/20 09:30
30386140009	MW-15-1020	Water	10/07/20 11:10	10/08/20 09:30
30386140010	MW-16-1020	Water	10/07/20 13:00	10/08/20 09:30
30386140011	Field Duplicate-1020	Water	10/07/20 00:01	10/08/20 09:30
30386140012	Trip Blank	Water	10/07/20 00:01	10/08/20 09:30

REPORT OF LABORATORY ANALYSIS

PROJECT NARRATIVE

Project: National Grid - Johnstown, NY

Pace Project No.: 30386140

Method: EPA 6010C
Description: 6010C MET ICP

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 02, 2020

General Information:

11 samples were analyzed for EPA 6010C by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

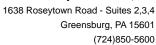
Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 417793

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30386140005,30386156001

ML: Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.


- MS (Lab ID: 2019807)
 - Lead

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project: National Grid - Johnstown, NY

Pace Project No.: 30386140

Method: EPA 8270D by SIM

Description: 8270D PAH SIM Reduced Volume

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 02, 2020

General Information:

11 samples were analyzed for EPA 8270D by SIM by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

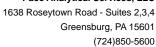
QC Batch: 417969

- B: Analyte was detected in the associated method blank.
 - BLANK for HBN 417969 [OEXT/422 (Lab ID: 2020941)
 - Naphthalene

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:


All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 417969

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30386140005

MH: Matrix spike recovery and/or matrix spike duplicate recovery was above laboratory control limits. Result may be biased high.

- MSD (Lab ID: 2020944)
 - Anthracene
 - Fluoranthene
 - Pyrene

Project: National Grid - Johnstown, NY

Pace Project No.: 30386140

Method: EPA 8270D by SIM

Description: 8270D PAH SIM Reduced Volume

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 02, 2020

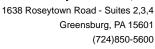
QC Batch: 417969

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30386140005

R1: RPD value was outside control limits.

• MSD (Lab ID: 2020944)

Anthracene


Additional Comments:

Analyte Comments:

QC Batch: 417969

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

- MS (Lab ID: 2020943)
 - Naphthalene
- MSD (Lab ID: 2020944)
 - Naphthalene
- MW-13-1020 (Lab ID: 30386140005)
 - Naphthalene
- MW-13-MS-1020 (Lab ID: 30386140006)
 - Naphthalene
- MW-13-MSD-1020 (Lab ID: 30386140007)
 - Naphthalene

Project: National Grid - Johnstown, NY

Pace Project No.: 30386140

Method: EPA 8260C Description: 8260C MSV

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 02, 2020

General Information:

12 samples were analyzed for EPA 8260C by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

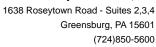
All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.


QC Batch: 419029

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30386140005

MH: Matrix spike recovery and/or matrix spike duplicate recovery was above laboratory control limits. Result may be biased high.

- MS (Lab ID: 2025921)
 - Benzene
 - Ethylbenzene
 - Toluene
- MSD (Lab ID: 2025922)
 - Ethylbenzene

Additional Comments:

Project: National Grid - Johnstown, NY

Pace Project No.: 30386140

Method: SM 2320B-2011 Description: 2320B Alkalinity

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 02, 2020

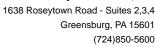
General Information:

11 samples were analyzed for SM 2320B-2011 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:


All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Project: National Grid - Johnstown, NY

Pace Project No.: 30386140

Method: SM 3500-FeB-2011

Description: Iron, Ferrous

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 02, 2020

General Information:

11 samples were analyzed for SM 3500-FeB-2011 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated outside of the 15 minute EPA required holding time.

- Field Duplicate-1020 (Lab ID: 30386140011)
- MW-10-1020 (Lab ID: 30386140003)
- MW-12-1020 (Lab ID: 30386140004)
- MW-13-1020 (Lab ID: 30386140005)
- MW-13-MS-1020 (Lab ID: 30386140006)
- MW-13-MSD-1020 (Lab ID: 30386140007)
- MW-14-1020 (Lab ID: 30386140008)
- MW-15-1020 (Lab ID: 30386140009)
- MW-16-1020 (Lab ID: 30386140010)
- MW-4-1020 (Lab ID: 30386140001)
- MW-7-1020 (Lab ID: 30386140002)

Method Blank:

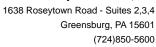
All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.


QC Batch: 417617

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30386140005

ML: Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.

- MS (Lab ID: 2018967)
 - Iron, Ferrous

Additional Comments:

Project: National Grid - Johnstown, NY

Pace Project No.: 30386140

Method: SM 4500S2F-2011

Description: 4500S2F Sulfide, Iodometric

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 02, 2020

General Information:

11 samples were analyzed for SM 4500S2F-2011 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Batch Comments:

Due to limited volume for MS/MSD, LCSD was analyzed

• QC Batch: 417703

Analyte Comments:

QC Batch: 417703

1c: Due to limited volume for MS/MSD, LCSD was analyzed

- BLANK (Lab ID: 2019386)
 - Sulfide
- Field Duplicate-1020 (Lab ID: 30386140011)
 - Sulfide
- LCS (Lab ID: 2019387)
 - Sulfide
- LCSD (Lab ID: 2019388)
 - Sulfide
- MW-10-1020 (Lab ID: 30386140003)
 - Sulfide
- MW-12-1020 (Lab ID: 30386140004)
- MW-13-1020 (Lab ID: 30386140005)
- Sulfide
- MW-13-MS-1020 (Lab ID: 30386140006)
- Sulfide • MW-13-MSD-1020 (Lab ID: 30386140007)
 - Sulfide

Project: National Grid - Johnstown, NY

Pace Project No.: 30386140

Method: SM 4500S2F-2011

Description: 4500S2F Sulfide, Iodometric

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 02, 2020

Analyte Comments:

QC Batch: 417703

1c: Due to limited volume for MS/MSD, LCSD was analyzed

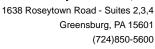
• MW-14-1020 (Lab ID: 30386140008)

• Sulfide

• MW-15-1020 (Lab ID: 30386140009)

Sulfide

• MW-16-1020 (Lab ID: 30386140010)


Sulfide

• MW-4-1020 (Lab ID: 30386140001)

• Sulfide

• MW-7-1020 (Lab ID: 30386140002)

• Sulfide

Project: National Grid - Johnstown, NY

Pace Project No.: 30386140

Method: 300.0 Rev.2.1, 1993 Description: 300.0 IC Anions 28 Days

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 02, 2020

General Information:

11 samples were analyzed for 300.0 Rev.2.1, 1993 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

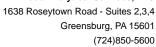
QC Batch: 419302

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30386140001

ML: Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.

- MS (Lab ID: 2027139)
 - Sulfate

QC Batch: 419303


A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30386140011

ML: Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.

- MS (Lab ID: 2027143)
 - Sulfate

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: National Grid - Johnstown, NY

Pace Project No.: 30386140

Method: EPA 351.2

Description: 351.2 Total Kjeldahl Nitrogen

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 02, 2020

General Information:

11 samples were analyzed for EPA 351.2 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 351.2 with any exceptions noted below.

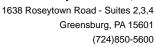
Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:


All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 419447

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30386140001,30386140011

ML: Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.

- MS (Lab ID: 2027875)
 - Nitrogen, Kjeldahl, Total
- MS (Lab ID: 2027877)
 - Nitrogen, Kjeldahl, Total

Project: National Grid - Johnstown, NY

Pace Project No.: 30386140

Method: SM 4500CIE-2011 Description: 4500 Chloride

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 02, 2020

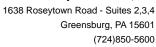
General Information:

11 samples were analyzed for SM 4500CIE-2011 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:


All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Project: National Grid - Johnstown, NY

Pace Project No.: 30386140

Method: SM 4500NO3F-2011

Description: SM4500NO3-F, NO3-NO2

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 02, 2020

General Information:

11 samples were analyzed for SM 4500NO3F-2011 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

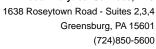
Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: 418446


D3: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

- MW-10-1020 (Lab ID: 30386140003)
 - Nitrogen, NO2 plus NO3
- MW-13-1020 (Lab ID: 30386140005)
 - Nitrogen, NO2 plus NO3
- MW-13-MS-1020 (Lab ID: 30386140006)
 - Nitrogen, NO2 plus NO3
- MW-13-MSD-1020 (Lab ID: 30386140007)
 - Nitrogen, NO2 plus NO3
- MW-14-1020 (Lab ID: 30386140008)
 - Nitrogen, NO2 plus NO3
- MW-15-1020 (Lab ID: 30386140009)
 - Nitrogen, NO2 plus NO3

QC Batch: 419304

D3: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

- MW-16-1020 (Lab ID: 30386140010)
 - Nitrogen, NO2 plus NO3

Project: National Grid - Johnstown, NY

Pace Project No.: 30386140

Method: EPA 9012B

Description: 9012B Cyanide, Total

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: November 02, 2020

General Information:

11 samples were analyzed for EPA 9012B by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 9012B with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 417959

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30386140009,30386364002

MH: Matrix spike recovery and/or matrix spike duplicate recovery was above laboratory control limits. Result may be biased high.

- MS (Lab ID: 2020900)
 - Cvanide
- MSD (Lab ID: 2020901)
 - Cyanide

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.