nationalgrid

September 27, 2021

Mr. Michael Squire Remedial Bureau C, 11th Floor Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233-7014

Re: Johnstown (N. Market St.)

Former Manufactured Gas Plant Site (MGP)

Site # 518020

Semi-Annual Groundwater Monitoring Report (June 2021)

Dear Mr. Squire:

Enclosed is the Semi-Annual Groundwater Monitoring Report January through June 2021 for the Johnstown (N. Market St.) MGP Site located in Johnstown, New York. The report includes the groundwater monitoring results from April 14, 2021.

National Grid acknowledges the NYSDEC Fact sheet dated June 2016 approving the site's environmental remediation construction completion. Long-term OM&M activities are being conducted in accordance with the approved Site Management Plan (SMP) and the site's Environmental Easement.

Please contact me at (315) 428-5652 or <u>Steven.Stucker@NationalGrid.com</u> if you have any questions regarding the report.

Sincerely,

for

Steven P. Stucker, C.P.G. Senior Environmental Engineer

Cc: Carolyn Rooney -National Grid Nathan Freeman- NYSDOH National Grid

Semi-Annual Groundwater Monitoring

Report

National Grid 109 North Market Street Johnstown, NY 12095

September 2021

Version 1

Semi-Annual Groundwater Monitoring Report

National Grid Johnstown Site 109 North Market Street Johnstown, NY 12095

Prepared for: National Grid 300 Erie Boulevard West, C-1 Syracuse, NY 13202

Prepared by:

Groundwater & Environmental Services, Inc. 6780 Northern Boulevard, Suite 100 East Syracuse, NY 13057 TEL: 800-220-3069

www.gesonline.com

GES Project:

0603200.120950.221

Date:

September 27, 2021

Devin T. Shay, PG

Program Manager / Principal Hydrogeologist

Table of Contents

1	Ir	troduction	1
	1.1	Overview	1
	1.2	Purpose and Objective	1
2	В	ackground	2
	2.1	Site Description	2
	2.2	Site History	2
		2.2.1 Site Assessment and Investigations	3
		2.2.2 Interim Remedial Measures Completed	3
	2.3	Environmental Setting	3
		2.3.1 Site Geology	4
		2.3.2 Site Hydrogeology	4
3	M	Ionitoring Activities	5
	3.1	Groundwater Gauging and Sampling Procedures	5
		3.1.1 Gauging	5
		3.1.2 Sampling	5
		3.1.3 Natural Attenuation Parameters	6
	3.2	Groundwater Analytical Results	7
		3.2.1 Site Related Parameters	8
		3.2.2 Monitored Natural Attenuation Parameters	8
		3.2.3 Natural Attenuation Trending	9
4	С	onclusions and Recommendations	10
	4.1	Conclusions	10
		4.1.1 Groundwater Levels	10
		4.1.2 Site-Related Constituents	10
		4.1.3 Natural Attenuation	11
	4.2	Recommendations	11
5	P	aferences	11

Figures

Figure 1 – Site Location Map

Figure 2 – Site Map

Figure 3 – Groundwater Monitoring Map

Figure 4 – Natural Attenuation Map

Figure 5 – BTEX Concentration Map

Figure 6 – Naphthalene Concentration Map

Tables

Table 1 – Contaminant Trend Analysis

Table 2 – Groundwater Level Measurements

Table 3 – Analytical Data Results

Appendices

Appendix A - Field Data

Appendix B – Data Usability Summary Report

Acronyms

bgs	Below ground surface		
BTEX	Benzene, Toluene, Ethylbenzene, and	NYSDEC	New York State Department of Environmental Conservation
000	Total Xylenes	ORP	Oxidation-Reduction Potential
COCs	Constituents of Concern	PAHs	Polycyclic Aromatic Hydrocarbons
cu. ft.	Cubic feet	PSA	Preliminary Site Assessment
DO	Dissolved Oxygen	QA/QC	Quality Assurance / Quality Control
DTB	Depth to Bottom	RI	Remedial Investigation
DTP	Depth to Product	ROD	Record of Decision
DTW	Depth to Water	SMP	Site Management Plan
DUSR	Data Usability Summary Report	SU	Standard Units
FS	Feasibility Study	SVOCs	Semi-Volatile Organic Compounds
GES	Groundwater & Environmental Services, Inc.		
IRMs	Interim Remedial Measures	USEPA	United States Environmental Protection Agency
		VOCs	Volatile Organic Compounds
mg/L	Milligrams per Liter	μg/L	Micrograms per Liter
MGP	Manufactured Gas Plant	WQ	Water Quality
MNA	Monitored Natural Attenuation		

1 Introduction

1.1 Overview

This Semi-Annual Groundwater Monitoring Report (the Report) summarizes the results of the April 2021 groundwater sampling event at the Johnstown, New York (N. Market Street) Former Manufactured Gas Plant (MGP) Site (the Site). This Report was developed as part of the long-term groundwater monitoring program on behalf of National Grid.

National Grid has been addressing the Site environmental conditions under an Order on Consent (Index Number D0-0001-9210), dated April 1999, that was entered into by Niagara Mohawk and the New York State Department of Environmental Conservation (NYSDEC). That Order on Consent was for the investigation and remediation of 21 former MGP sites, including the Johnstown (N. Market Street) Site. It was superseded by a new Order on Consent (Index Number A4-0473-0000), dated November 7, 2003. A NYSDEC-approved Supplemental Remedial Investigation (RI) Work Plan was finalized during November 2007, and a Final Supplemental RI Report was submitted to the NYSDEC, dated December 2008. The RI results report and subsequent Feasibility Study were approved in February 2010.

A Record of Decision (ROD) was issued by the NYSDEC, dated March 2010, in accordance with the requirements of New York State Environmental Conservation Law and Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York, 6 NYCRR Part 375. Based upon the results of the remedial investigation/feasibility study (RI/FS) for the Site, the interim remedial measures (IRMs) previously completed, and the ROD, the draft Final Engineering Report and Site Management Plan (SMP) were developed and submitted to the NYSDEC in June 2010. The Final Engineering Report, the Final SMP, and the Final Environmental Easement were approved by the NYSDEC in their June 2016 Fact Sheet.

The Final SMP includes:

- 1. Semi-annual (April & October) site inspection and groundwater level measurements at monitoring wells MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, MW-16, RMW-1, and the creek surface gauging station (bridge);
- Semi-annual groundwater sampling/analysis [Volatile Organic Compounds (VOCs), Semi-Volatile Organic Compounds (SVOCs), Heavy Metals, and Natural Attenuation Parameters] for monitoring wells MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, and MW-16 (RMW-1 will not be sampled); and
- 3. Semi-annual reporting to NYSDEC.

1.2 Purpose and Objective

The purpose of this Report is to summarize the groundwater sampling activities and results of the latest event, and to compare the results to previous events. As described in the December 2008 Supplemental RI Report and the subsequent ROD, one of the primary goals is to evaluate whether

or not the groundwater constituents of concern (COCs) concentrations have decreased, in addition to continued assessment of the effectiveness of monitored natural attenuation.

2 Background

2.1 Site Description

The Site is located in the City of Johnstown, County of Fulton, New York (**Figure 1** presents the site location map) and is identified as Block 14 and Lot 7 on the Johnstown City Tax Map. The Site is an approximate 0.7-acre area bounded by the Cayadutta Creek to the north, the Colonial Cemetery to the south, Market Street to the east, and a wooded parcel of property to the west (**Figure 2** presents the site plan). The Site is located in a mixed commercial, industrial, and residential area.

Currently, National Grid operates a natural gas regulator station at the Site with equipment contained in fenced enclosures along the Site's southern boundary. The rest of the Site is grass-covered, including the stream bank adjacent to Cayadutta Creek along the northern boundary of the Site. An embankment exists along the north end of the Site that slopes down to the Cayadutta Creek. A chain-link fence exists along the north and west sides of the Site, and a retaining wall runs along the south side of the Site. Access to the Site is from North Market Street to the east.

The Johnstown Hospital is located south of the Site within one mile, and numerous residences exist to the west and east of the Site. The Johnstown Senior High School and Warren Street Elementary School are located within one mile of the Site to the west.

2.2 Site History

The Johnstown MGP Site was incorporated in March 1857 as the Johnstown Gas Light Company. The company operated a small coal gas plant with a 20,000 cubic foot (cu. ft.) holder (Holder #1), that was constructed in 1859 (see Figure 2 for all Holder locations at the former MGP Site). In 1861, the plant was improved with the addition of a coal shed and a covering for the tank holder. In 1886, the Johnstown and Gloversville Gas Light Corporation was formed, and the company purchased the rights to the Lowe water gas process. The United Gas Improvement Company planned the construction of a water gas plant for the Johnstown and Gloversville franchises.

In 1887, the Site consisted of a tool shop, an office, a coal gasometer, a lime house, a purifier room, a retort house, and a coal shed. Between 1887 and 1918, Holder #2 was located in the western-central part of the Site (exact size unknown). In 1892, a steam generator was constructed adjacent to the coal shed for the Lowe water gas process, and Holder #1 was decommissioned in 1896. In 1898, a 72,000 cu. ft. gas holder (Holder #3) was constructed on the Site. Between 1912 and 1918, the small gas holder (Holder #2) in the western-central area of the Site was removed. In 1929, a gas pipeline from an MGP in Troy, New York, reached Johnstown, and local gas production was only performed on a seasonal (winter) basis until local production of gas ceased in 1931. Niagara Hudson Power Company was the owner of the Site in 1930. By 1948, Holder #3 was decommissioned. In 1950, Niagara Hudson Power was consolidated under the

name Niagara Mohawk Power Company. By 1980, all Site buildings were removed. Currently, National Grid operates a natural gas regulator station at the Site.

2.2.1 Site Assessment and Investigations

An investigation of the Site began in 1997 with a Preliminary Site Assessment (PSA), which found that the Site was impacted with MGP wastes. A Supplemental PSA was conducted at the Site in 1998, followed by a RI in January 2000 and subsequent IRMs. The IRMs are discussed separately within this section.

A 2009 Supplemental RI was initiated to collect data to address potential residual MGP-related contaminants remaining in groundwater at the Site and to assess hydrogeologic conditions and groundwater quality on the Site. The results of the Supplemental RI were used to formulate potential remedial alternatives for groundwater and residual soil contamination. The Supplemental RI results were evaluated and presented in the 2010 Feasibility Study Report.

2.2.2 Interim Remedial Measures Completed

Several IRMs were performed to address the residual MGP impacts. In 2002 and 2003, the former holders and associated impacted soil were removed. During this IRM, former Holder #2 and the northern half of former Holder #3 were demolished and removed from the Site. Approximately 13,870 cubic yards of soil were excavated and disposed of off-site at a NYSDEC-approved facility. Permanent steel sheeting was left in place along the northeastern perimeter of the Site to avoid disturbance of the roadway and to provide containment of residual material left at depth.

Between 2005 and 2006, National Grid provided support to the City of Johnstown for subsurface work associated with the replacement of the North Market Street Bridge across Cayadutta Creek. Approximately 1,413 cubic yards of impacted soil were excavated from within the cofferdam area and disposed of off-site at a NYSDEC-approved facility.

In August 2009, the rip-rap area along the bank of Cayadutta Creek that had been restored during the previous IRMs was enhanced to allow for establishment of stream-side vegetation. Post-IRM inspections of the restored Cayadutta Creek bank were conducted in September 2009 and May 2010.

2.3 Environmental Setting

The Johnstown (N. Market Street) Site slopes northward toward Cayadutta Creek with elevations ranging from 652 to 672 feet (ft.) above sea level. Currently, the Site topography gradually slopes from south to north, becoming increasingly steeper adjacent to the Creek, and is generally covered with either vegetation or stone. Surface drainage is primarily to the north into the creek. Access to the Site is from North Market Street to the east, and the Site is currently used to support the natural gas regulator station operations.

2.3.1 Site Geology

The main units of unconsolidated deposits identified at the Site can be characterized in descending order as fill and native glacial deposits to bedrock. The glacial deposits are of lacustrine origin with glacial tills to the top of shale bedrock (Utica Shale). Bedrock was reached beneath the till in two soil borings explored during the 1998 Supplemental PSA. These stratigraphic units are more specifically described below, based on information obtained from the previous investigations and from the soil borings and monitoring well borings conducted during the 2007/ 2008 SRI.

Site geology includes a layer of disturbed soils (primarily fill) overlying glacial deposits. Based upon on-site soils and monitoring well borings, disturbed soils (including fills) varied in thickness up to 13 ft. and are typically composed of sand, gravel, silt, clay, wood, coal, and anthropogenic materials including ash, cinders, clinkers, brick fragments, wire, and wood chips. Wood chips were identified in three borings (SB-09, SB-12, and MW-8) and are often associated with purifier waste.

A thin layer of peat underlies the disturbed soils in the northern portion of the Site, ranging in thickness from 0.5 ft. to 3 ft., and appears to thicken and dip to the north. Except where it is locally covered by sedimentary deposits such as silts, sands, and clays, the peat, where present, appears to have been the historical ground cover prior to development of the Site.

Underlying the peat, where present, the soil consists of lacustrine deposits composed of silts, sands, and clays. The surface of the lacustrine deposits appears to dip and thin out toward the north. A sand and gravel unit (an outwash deposit of stratified drift) underlies the lacustrine deposits across the Site area. This unit contains varying amounts of silt and clay. These deposits overlie a dense, low-permeability glacial till to bedrock (Shale).

2.3.2 Site Hydrogeology

Groundwater depths on-site are typically in the 10- to 20-foot below ground surface (bgs) range, generally in the glacial deposits below the bottom of the fill material. Groundwater flow is consistently northward through the Site area toward Cayadutta Creek, with the steepest gradient from the center of the Site proximal to former gas holders #2 and #3 to the southern Creek bank (about 0.09 ft./ft.). In comparison, the average hydraulic gradient decreases to a value of approximately 0.05 ft./ft. on the east and west sides of the Site away from the former gas holders. The local groundwater flow is consistent with regional groundwater flow direction. The groundwater flow direction and hydraulic gradients calculated during this monitoring period are also generally consistent with historic data obtained prior to the issuance of the ROD.

3 Monitoring Activities

The long-term semi-annual groundwater monitoring program currently consists of the following elements:

- Semi-Annual Site Inspection including the creek bank protection, vegetative cover, monitoring wells, and security fence.
- Semi-Annual Groundwater Well Gauging of the following wells: RW-1, MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15 and MW-16 (Figure 2 presents the well locations).
 The creek surface water level is also gauged at one location: SG-1.
- Semi-Annual Groundwater Sampling and Analysis of the following: MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15 and MW-16. Note that recovery well RW-1 is not sampled as part of the program but is inspected for the presence of non-aqueous phase liquids (NAPL). Note: Monitoring well MW-11 was not gauged or sampled during the April 2021 sampling round due to concrete/metal and wood debris at this off-site well location.

3.1 Groundwater Gauging and Sampling Procedures

3.1.1 Gauging

Long-term groundwater monitoring includes water level gauging at 8 groundwater monitoring wells and 1 groundwater recovery well using an electronic oil/water interface probe. Depth to bottom of well (DTB), depth to product (DTP), and depth to water (DTW) are to be recorded at each well. Refer to **Table 2** for a summary of the water level measurements from April 2021 as well as previous events. **Appendix A** also presents the field documentation from the April 2021 water gauging event.

No product was present in recovery well RW-1 or the other eight groundwater monitoring wells that were gauged.

A creek surface water level measurement was collected from the Cayadutta Creek Bridge using a water level probe (from the surveyed gauging point at the bridge).

3.1.2 Sampling

Groundwater sampling was performed following low-flow sampling techniques [equivalent to United States Environmental Protection Agency (USEPA) low-flow procedures] using a pressure-driven peristaltic pump. During purging, measurements were collected for the following field parameters: pH, specific conductivity, turbidity, dissolved oxygen (DO), temperature, and oxidation-reduction potential (ORP). A Horiba U-22 was used to collect the field parameter data in a flow-through cell. The monitored field parameters are observed and recorded during low-flow sampling to determine when they have stabilized, and thus when the well has been adequately purged. Field parameter measurements were recorded at approximately 5-minute intervals. The

monitoring wells were purged until stabilization of the field parameters (±0.1 Standard Unit (SU) for pH, ±3% for specific conductivity, ±10 millivolts (mV) for ORP, and ±10% for DO) and turbidity was less than 50 Nephalometric Turbidity Units (NTU). Refer to **Attachment A** for the field data.

After stabilization of the field parameters, eight groundwater samples were collected directly from the dedicated tubing into laboratory-supplied sample containers (pre-preserved as required per the analytical method). Quality Assurance/Quality Control (QA/QC) samples included the collection of one field duplicate sample, one matrix spike (MS) sample, one duplicate matrix spike (DMS) sample, and one trip blank sample (VOCs only). Samples were transported to the laboratory, accompanied by the appropriate chain-of-custody documentation. Analytical results were validated.

3.1.3 Natural Attenuation Parameters

The ORP of groundwater may be used as a general indicator of the dominant attenuation processes and the relative tendency of the biological processes to accept or transfer electrons. ORP is dependent on and influences rates of biodegradation. Lower ORP readings indicate reduced conditions and are indicative of anaerobic biologic degradation processes.

The pH of the groundwater affects the presence and activity of microorganisms in the groundwater. The microorganisms may produce either organic acids or carbon dioxide which, when dissolved in water, forms weak carbonic acid. Microorganisms capable of degrading petroleum hydrocarbons are most active with pH values ranging from 6 to 8 SU.

Groundwater temperature affects the solubility of dissolved gases such as oxygen and carbon dioxide as well as the metabolic activity of microorganisms. Oxygen is less soluble in warm water, and groundwater temperatures below approximately 5 degrees Celsius tend to inhibit biodegradation.

DO is the most thermodynamically favored electron acceptor used by microorganisms during the degradation of both natural and anthropogenic organic carbon. An inverse relationship of high hydrocarbon concentrations and low DO concentrations can be used as a key indicator of biodegradation.

Nitrate, if available, may be used as an electron acceptor for anaerobic biodegradation after the depletion of DO [typically considered less than 0.5 milligrams per liter (mg/L)] and is used to biodegrade petroleum hydrocarbons. Lower nitrate concentrations in groundwater within a plume, with respect to higher concentrations in areas upgradient and outside a plume, may be expected.

Ferrous iron is a metabolic byproduct of hydrocarbon degradation. Reducing conditions in nitrogen- and oxygen-depleted groundwater creates an anaerobic environment that causes the reduction of ferric iron (Fe³⁺) to ferrous iron (Fe²⁺). Relatively low ferrous iron concentrations may be present in areas where natural attenuation is occurring if free ferrous iron is re-precipitating as sulfides or carbonates.

Sulfate may be used as an electron acceptor after the depletion or use limitation of DO, nitrate, and ferric iron. Lower sulfate concentrations in groundwater within a plume, with respect to higher concentrations in areas upgradient and outside a plume, may be expected.

The production of methane, termed methanogenesis, occurs only in strongly reducing conditions and generally after oxygen, nitrate, and sulfate have been depleted. The presence of methane in groundwater suggests Benzene, Toluene, Ethylbenzene, Xylene (BTEX) degradation via methanogenesis. Methane is not present in fuels, and therefore its presence at high concentrations relative to areas upgradient and outside a plume is indicative of the biodegradation of petroleum hydrocarbons.

The buffering capacity of groundwater is a function of alkalinity. Typically, alkalinity is primarily due to carbonate alkalinity. The organic acids or carbon dioxide (which produces a weak carbonic acid when dissolved in water) produced by biodegradation solubilize carbonate from the soil. Alkalinity concentrations that are elevated with respect to areas upgradient and outside a plume may be an indication of microbial activity and thus natural attenuation.

Typically, the relationships between BTEX and electron acceptors/metabolic byproduct concentrations (geochemical indicators) indicate potential for biodegradation. The concentrations are dependent on the location (and groundwater conditions) within the plume or outside of the plume limits.

3.2 Groundwater Analytical Results

The groundwater samples were analyzed for BTEX, Polycyclic Aromatic Hydrocarbons (PAHs), lead, total cyanide, and monitored natural attenuation/water quality (MNA/WQ) parameters including alkalinity, chloride, ethane, ethene, ferrous iron, manganese, methane, nitrate, nitrogen, sulfate and sulfide. BTEX, PAHs, and cyanide are constituents commonly associated with former MGP sites. BTEX, PAHs, lead, and cyanide were the primary contaminants detected during previous investigation activities conducted at the Site. The MNA/WQ parameters, as well as field-measured ORP, pH, temperature, and DO, are relevant to establishing whether conditions are favorable for natural attenuation to occur at the Site.

- Refer to Table 3 for the analytical results summary.
- Refer to Appendix A for field data.
- Refer to Appendix B for the data usability summary report (DUSR).

Groundwater analytical results were compared with levels specified in the NYSDEC Division of Water Final Amendment to Water Quality Standards Regulations, effective February 16, 2008 [hereafter referred to as NYSDEC WQ Values]. For groundwater, Class GA values were applied. Class GA waters are defined as fresh groundwater, found in the saturated zone of unconsolidated deposits and consolidated rock or bedrock, which are used as a source of potable water supply.

3.2.1 Site Related Parameters

BTEX - Groundwater samples collected on April 14, 2021, from monitoring wells MW-13, MW-15, and MW-16 contained concentrations of some or all individual BTEX constituents above their respective NYSDEC WQ Values [1 microgram per liter (μ g/L) for benzene and 5 μ g/L for other BTEX constituents]. The highest concentrations of BTEX were observed in the groundwater samples collected from monitoring well MW-15. Monitoring well MW-15 is located northeast of former gas holder #2.

PAHs – PAHs above NYSDEC WQ Values were detected in samples collected on April 14, 2021, from monitoring wells MW-10, MW-13, MW-14, and MW-15. Naphthalene (MW-15) has typically been detected at the highest concentration of any PAH.

Cyanide - Concentrations of cyanide were below the NYSDEC WQ Value (0.2 mg/L) in all groundwater samples April 14, 2021, with the exception of monitoring well MW-15.

3.2.2 Monitored Natural Attenuation Parameters

Site-specific levels of the MNA/WQ parameters (geochemical indicators) were compared to known screening values to identify whether the site-specific values are within the ranges known to be suitable for biodegradation. The April 2021 MNA/WQ analytical results for the individual monitoring wells are summarized in **Table 3**. **Figure 4** presents the groundwater data for the key MNA data parameters at their respective locations to assist with the MNA evaluation. Indications of biodegradation of petroleum-related MGP constituents within the plume include low levels of DO, nitrate and sulfate, with generally higher levels of manganese, ferrous iron and methane.

Indicator concentrations detected at monitoring wells identified within source and downgradient areas of the Site were compared to levels detected at upgradient and side gradient monitoring wells exhibiting little or no MGP-related contamination. Generally, indicator concentration levels at a distance from the center of the plume are expected to be significantly lower than levels within the plume. A summary of the MNA/WQ results and associated field indicator parameters are provided below:

- DO and ORP values demonstrate depleted levels of DO and a transformation to more anaerobic or reducing conditions at the former source and downgradient areas relative to side gradient and upgradient areas of the Site. These values suggest that biodegradation of MGP petroleum-related compounds at the source and at downgradient areas are occurring, consuming the available oxygen which produces decreased DO levels.
- The range of ORP levels observed at the source and downgradient area monitoring wells generally indicates reduced aquifer conditions which could be suitable for denitrification, ferric iron reduction, sulfate reduction, and methanogenesis.
- Nitrate concentrations are generally depleted at the former source and downgradient areas of the Site relative to upgradient (MW-4) and side gradient (MW-12) areas, indicating denitrification may be a noteworthy biodegradation process occurring at this time at the source and downgradient areas.

- Ferrous iron concentrations at the former source and downgradient area monitoring wells (MW-7, MW-10, MW-14, MW-15) exhibit higher levels relative to side gradient and upgradient monitoring wells (MW-4, MW-12). The presence of these metabolic by-products downgradient of the source area suggest biodegradation of MGP petroleum-related compounds may be occurring.
- Sulfate concentrations at the former source and downgradient areas are not depleted relative
 to upgradient and side gradient areas. This observation indicates sulfate reduction is not likely
 to be a significant biodegradation process at this time at the source and downgradient areas.
- Based on the presence of methane, low DO concentrations, and the reduced ORP levels, methanogenesis is likely an important factor for biodegradation capacity in the source and downgradient areas of the Site.

3.2.3 Natural Attenuation Trending

Previous groundwater sampling data collected since October 2012 (the dataset) were utilized to develop and evaluate the contaminant plume and concentration trends of specific constituents at the Site. Plume size and concentration data are indicative of biodegradation capacity (natural attenuation) at the Site and whether the capacity has reached a limit of effectiveness. In order to determine and evaluate natural attenuation effectiveness, statistical testing was utilized for groundwater data collected from monitoring wells at the Site. The Mann-Kendall test was performed on the dataset to identify potential trends in groundwater concentrations of site contaminants. The Mann-Kendall test is a nonparametric evaluation used to identify a trend in a series, even if there is a seasonal component in the series. The three possible hypotheses are that there is a negative, null, or positive trend. The resultant statistical trend analysis for individual monitoring wells suggests (with 80% and 90% confidence) that total BTEX compounds and the naphthalene plume lifecycle demonstrate either no trend or a decreasing trend throughout the monitoring period. It is worth noting that a failure to reject the null hypothesis (i.e. "no trend") does not prove that there is no trend; it merely means that the available data is not sufficient to conclude there is a trend. In cases where no trend was determined, a comparison of the dataset to the historical highs and lows was performed to determine if the plume is stable; in every case, this evaluation concluded the plume is stable. The table below depicts general concentration trend analysis results (decreasing, no trend or increasing) at 80% confidence levels for each well and associated constituents during the monitoring period. No trend is indicative of plume stability at well locations with contaminant detections throughout the monitoring period.

Table 1 – Contaminant Trend Analysis

Well ID	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene
MW-4	Stable	Stable	Stable	Stable	Decreasing
MW-7	Stable	Stable	Stable	Stable	Decreasing
MW-10	Stable	Stable	Stable	Stable	Decreasing
MW-11	Not sampled	Not sampled	Not sampled	Not sampled	Not sampled
MW-12	Stable	Stable	Stable	Stable	Decreasing
MW-13	Decreasing	Decreasing	Decreasing	Decreasing	Decreasing
MW-14	Stable	No Trend	No Trend	No Trend	No Trend
MW-15	Decreasing	No Trend	Stable	Stable	No Trend
MW-16	Stable	No Trend	Stable	Stable	No Trend

Isoconcentration contour maps were developed for total BTEX (**Figure 5**) and naphthalene (**Figure 6**) contamination. The figures present locations of the groundwater monitoring wells and plume contours for total BTEX (as compared to the benzene WQ value of 1 μ g/L) and naphthalene exceeding the NYSDEC WQ values. Evaluation of the isoconcentration figures suggests that the contaminant plumes were relatively stable to decreasing (smaller footprint with time) within the Site boundary. BTEX constituent plume trends (concentrations above the benzene WQ value of 1 μ g/L) have consistently included monitoring wells MW-13, MW-15, and MW-16. The naphthalene plume (concentrations above the WQ) includes monitoring wells MW-13, MW-15, and MW-16.

4 Conclusions and Recommendations

4.1 Conclusions

4.1.1 Groundwater Levels

The groundwater elevation data indicates groundwater within the Site flows from the south to the north, toward Cayadutta Creek. The groundwater flow direction has been consistent during previous gauging events and with data obtained prior to the ROD. **Figure 3** is a groundwater monitoring map verifying groundwater flow direction.

4.1.2 Site-Related Constituents

The highest concentrations of BTEX constituents and PAH compounds are at wells MW-13, MW-15, and MW-16. Site institutional controls continue to be effective and will continue to be monitored semi-annually.

There are minimal concentrations of lead in groundwater samples; however, Total Cyanide has been detected consistently in most wells.

4.1.3 Natural Attenuation

Plume stability at the Site is an indication that biodegradation capacity likely has not reached its limit of effectiveness. The use of statistical testing has identified the plume trends based on the constituent concentrations were typically either stable or decreasing.

4.2 Recommendations

Based on the results of the April 2021 groundwater sampling and monitoring event and results from previous events, it is recommended to continue the long-term semi-annual site inspection and groundwater monitoring program. The next event will occur in October 2021.

5 References

Borden, Robert C., et. al., "Geochemical Indicators of Intrinsic Bioremediation". Groundwater, Volume 33, Number 2, March/April 1995.

National Grid. "Site Management Plan for the Johnstown (N. Market Street) Former MGP Site, Johnstown, New York". National Grid, November 2011.

Niagara Mohawk Power Corporation. "Preliminary Historical Profile of the Johnstown (Market Street) MGP Site. Johnstown, New York". Niagara Mohawk Power Corporation, June 1993.

Niagara Mohawk Power Corporation. "Interim Remedial Measure (IRM) Summary Report for the Johnstown (N. Market Street) Site. Johnstown, Fulton County, New York. Site No. 5-18-020:. Tetra Tech FW, June 2007.

Niagara Mohawk Power Corporation. "IRM Summary Report for the Johnstown (N. Market Street) Site. Bridge Replacement Environmental Support Activities". Tetra Tech FW, October 2007.

Niagara Mohawk Power Corporation. "Record of Decision for the Johnstown (N. Market Street) Former MGP Site, Johnstown, New York". Niagara Mohawk Power Corporation, March 2010.

September 2021 Semi-Annual Groundwater Monitoring Report National Grid Johnstown Site 109 North Market Street, Johnstown NY 12095

Figures

Source: USGS 7.5 Minute Series Topographic Quadrangle, 1970 Gloversville, New York Contour Interval = 20'

Site Location Map

National Grid Former MGP Site 105 N Market Street Johnstown, New York

Drawn W.G.S. Designed

Date 11/15/19 Figure 1

September 2021 Semi-Annual Groundwater Monitoring Report National Grid Johnstown Site 109 North Market Street, Johnstown NY 12095

Tables

Table 2

Groundwater Level Measurements

		6/30	/2010	9/29	/2010	1/5/	2011	4/8/	2011	6/16	/2011	10/13	3/2011	12/15	5/2011
Well ID	ELEVATION REFERENCE POINT	Depth to Water (ft TOC)	GW Elevation (ft AMSL)												
MW-4	676.54	23.10	653.44	23.41	653.13	22.95	653.59	22.50	654.04	22.04	654.50	21.41	655.13	22.78	653.76
MW-7	659.08	14.25	644.83	13.18	645.90	13.88	645.20	12.87	646.21	13.80	645.28	13.15	645.93	15.45	643.63
MW-10	657.59	14.80	642.79	14.60	642.99	14.75	642.84	14.09	643.50	14.77	642.82	14.11	643.48	14.22	643.37
MW-11	657.29	NM	NM	13.57	643.72	13.59	643.70	12.51	644.78	13.38	643.91	12.95	644.34	12.76	644.53
MW-12	660.08	NM	NM	NM	NM	15.06	645.02	NM	NM	NM	NM	13.61	646.47	14.54	645.54
MW-13	664.89	14.65	650.24	15.22	649.67	14.95	649.94	11.18	653.71	13.99	650.90	11.91	652.98	14.31	650.58
MW-14	663.91	13.50	650.41	14.46	649.45	14.28	649.63	12.86	651.05	13.65	650.26	13.26	650.65	13.65	650.26
MW-15	661.85	16.90	644.95	17.24	644.61	17.68	644.17	15.07	646.78	16.63	645.22	15.95	645.90	16.38	645.47
MW-16	665.57	9.70	655.87	10.19	655.38	12.33	653.24	11.00	654.57	10.50	655.07	9.79	655.78	9.91	655.66
RW-1	-	-	-	•	-	-	-	1	-	-	-	-	-	-	-
GAUGE1	659.97	15.07	644.90	20.20	639.77	16.30	643.67	15.75	644.22	16.75	643.22	16.05	643.92	15.62	644.35

Table 2

Groundwater Level Measurements

		3/15	/2012	10/9	/2012	4/18	/2013	10/7	/2013	4/9/	2014	10/1:	3/2014	4/16	/2015
Well ID	ELEVATION REFERENCE POINT	Depth to Water (ft TOC)	GW Elevation (ft AMSL)												
MW-4	676.54	22.81	653.73	NM	NM	23.97	652.57	23.12	653.42	23.28	653.26	23.28	653.26	22.91	653.63
MW-7	659.08	13.55	645.53	14.17	644.91	13.53	645.55	14.36	644.72	13.71	645.37	14.61	644.47	13.23	645.85
MW-10	657.59	14.18	643.41	15.05	642.54	14.27	643.32	14.44	643.15	14.13	643.46	14.98	642.61	14.15	643.44
MW-11	657.29	12.73	644.56	13.95	643.34	13.01	644.28	13.16	644.13	12.68	644.61	13.71	643.58	12.62	644.67
MW-12	660.08	14.26	645.82	16.36	643.72	14.06	646.02	14.99	645.09	14.41	645.67	15.65	644.43	14.25	645.83
MW-13	664.89	14.98	649.91	16.12	648.77	14.18	650.71	15.08	649.81	14.84	650.05	15.53	649.36	11.34	653.55
MW-14	663.91	15.49	648.42	16.98	646.93	13.14	650.77	14.74	649.17	15.70	648.21	15.02	648.89	13.06	650.85
MW-15	661.85	16.41	645.44	17.85	644.00	16.26	645.59	17.21	644.64	16.67	645.18	17.55	644.30	15.31	646.54
MW-16	665.57	11.56	654.01	10.51	655.06	9.98	655.59	9.85	655.72	9.45	656.12	10.24	655.33	10.48	655.09
RW-1	-	-	-	17.98	-	16.21	-	15.95	-	12.32	-	17.31	-	16.84	-
GAUGE1	659.97	15.69	644.28	NM	NM	19.10	640.87	18.85	641.12	18.85	641.12	20.01	639.96	18.91	641.06

Table 2

Groundwater Level Measurements

		10/13	3/2015	4/6/	2016	10/2	5/2016	4/26	/2017	10/11	1/2017	4/26	5/2018	10/17	7/2018
Well ID	ELEVATION REFERENCE POINT	Depth to Water (ft TOC)	GW Elevation (ft AMSL)												
MW-4	676.54	23.48	653.06	23.51	653.03	24.03	652.51	21.09	652.19	24.35	652.19	22.48	654.06	23.20	653.34
MW-7	659.08	14.61	644.47	14.19	644.89	15.00	644.08	13.62	645.46	14.83	644.25	12.85	646.23	14.40	644.68
MW-10	657.59	14.95	642.64	14.77	624.82	15.18	642.41	14.37	643.22	15.02	642.57	13.05	644.54	14.60	642.99
MW-11	657.29	-	-	NM	-										
MW-12	660.08	15.62	644.46	14.95	645.13	15.82	644.26	13.55	646.53	15.62	644.46	14.00	646.08	15.10	644.98
MW-13	664.89	14.98	649.91	15.95	648.94	16.32	648.57	13.27	651.62	15.80	649.09	12.98	651.91	14.15	650.74
MW-14	663.91	13.63	650.28	16.81	647.1	16.8	647.11	13.71	650.20	15.88	648.03	13.71	650.20	13.88	650.03
MW-15	661.85	17.23	644.62	17.355	644.3	17.9	643.95	16.05	645.80	17.86	643.99	15.71	646.14	16.70	645.15
MW-16	665.57	9.61	655.96	10.79	654.78	11.11	654.46	9.02	656.55	10.43	655.14	9.52	656.05	9.88	655.69
RW-1	-	13.21	-	13.03	NRP	12.88	NRP	10.6	NRP	17.40	NRP	12.35	NRP	12.38	NRP
GAUGE1	659.97	19.91	640.06	19.76	640.21	18.40	641.57	15.70	644.27	15.46	644.51	14.55	645.42	15.70	644.27

Table 2

Groundwater Level Measurements

		4/18	/2019	10/16	6/2019	5/20	/2020	10/7	/2020	4/14	/2021
Well ID	ELEVATION REFERENCE POINT	Depth to Water (ft TOC)	GW Elevation (ft AMSL)								
MW-4	676.54	22.60	653.94	23.47	653.07	22.11	654.43	24.21	652.33	23.46	653.08
MW-7	659.08	13.85	645.23	14.73	644.35	15.15	643.93	15.02	644.06	14.31	644.77
MW-10	657.59	14.50	643.09	15.02	642.57	15.02	642.57	15.15	642.44	14.77	642.82
MW-11	657.29	NM	-								
MW-12	660.08	14.40	645.68	15.54	644.54	14.62	645.46	15.85	644.23	15.29	644.79
MW-13	664.89	13.07	651.82	14.74	650.15	15.42	649.47	16.05	648.84	14.02	650.87
MW-14	663.91	13.80	650.11	13.8	650.11	14.23	649.68	16.15	647.76	13.95	649.96
MW-15	661.85	15.60	646.25	17.05	644.80	16.52	645.33	17.69	644.16	16.61	645.24
MW-16	665.57	10.39	655.18	9.78	655.79	9.81	655.76	10.93	654.64	9.94	655.63
RW-1	=	15.22	NRP	13.00	NRP	11.40	NRP	13.83	NRP	12.72	NRP
GAUGE1	659.97	15.50	644.47	16.28	643.69	16.05	643.92	16.38	643.59	16.73	643.24

Table 3 Groundwater Analytical Data MW-4

CONSTITUENT	UNITS	NYSDEC AWQS Values	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/14	04/16/15	10/14/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21
BTEX Compounds																											
Benzene	μg/L	1	ND (<1.0)																								
Ethylbenzene	μg/L	5	ND (<1.0)																								
m/p-Xylene	μg/L	5	ND (<2.0)																								
o-Xylene	μg/L	5	ND (<1.0)																								
Toluene	μg/L	5	ND (<1.0)																								
PAHs																											
Acenaphthene	μg/L	20	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.21	ND (<0.096)						
Acenaphthylene	μg/L	NC	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)						
Anthracene	μg/L	50	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)						
Benzo(a)anthracene	μg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)						
Benzo(a)pyrene	μg/L	0.000	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)						
Benzo(b)fluoranthene	μg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	0.26J	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)						
Benzo(g,h,i)perylene	μg/L	NC	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	0.19J	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)						
Benzo(k)fluoranthene	μg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)						
Chrysene	μg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)						
Dibenzo(a,h)anthracene	μg/L	NC	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)						
Fluoranthene	μg/L	50	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)						
Fluorene	μg/L	50	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)						
Indeno(1,2,3-cd)pyrene	μg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)						
Naphthalene	μg/L	10	0.27	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.49)	ND (<0.49)	3.2	3.2	2.2	2.2	2.2	ND (<0.51)	0.29	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	2.4	0.17
Phenanthrene	μg/L	50	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	0.048J	ND (<0.49)	ND (<0.52)			ND (<0.096)		ND (<0.099)	ND (<0.11)											
Pyrene	μg/L	50	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	0.10J	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)						
Cyanide and Lead																											
Lead	μg/L	25	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<3.0)	ND (<3.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<10)	ND (<10)	ND (<5.0)									
Cyanide	mg/L	0.2	ND (<0.01)	ND (<0.010)																							

Table 3

Groundwater Analytical Data MW-4

CONSTITUENT	UNITS	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/14	04/16/15	10/14/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21
MNA/WQ Parameters																	,									
Alkalinity (as CaCO3)	mg/L	385	420	R	R	405J	431J	R	405	354	442	398	400	384	412	394	414	392	418	424	424	452	410	360	390	386
Chloride	mg/L	354	269	265	385 B	288J	R	228	222	275	411	304	329	295	365	304	421	377	ND (<300)	233	306	360	260	296	200	315
Ethane	μg/L	ND (<1.0)	ND (<1.0)	ND (<1.5)	ND (<7.5)	ND (<0.025)	ND (<0.025)	ND (<0.030)	0.037J	ND (<0.16)	ND (<1.0)	0.036 J	ND (<1.00)	ND (<5.00)	ND (<5.00)											
Ethene	μg/L	ND (<1.0)	ND (<1.0)	ND (<1.5)	ND (<7.0)	ND (<0.035)	ND (<0.035)	ND (<0.10)	ND (<0.10)	ND (<0.032)	ND (<1.0)	ND (<1.0)	ND (<1.00)	ND (<5.00)	ND (<5.00)											
Ferrous Iron	mg/L	ND (<0.1)	ND (<0.1)	R	ND (<0.1)	0.013	ND (<0.1)	ND (<0.1)	ND (<0.1)	ND (<0.1)	0.14	0.11	ND (<0.10)	ND (<0.10)	ND (<0.10)	0.10	ND (<0.10)									
Manganese	mg/L	NA	ND (<10)	0.64J	0.45J	ND (<3.0)	3.4	ND (<3.0)	0.0087	ND (<3.0)	0.019	0.0031	0.0053	ND (<0.005)	ND (<0.005)	ND (<0.005)	0.0065	ND (<0.005)	0.0318	ND (<0.005)		ND (<0.005)				
Methane	μg/L	ND (<2.0)	ND (<2.0)	ND (<1.0)	ND (<4.0)	0.32J	0.47J	0.27J	0.29J	ND (<0.30)	ND (<2.5)	ND (<2.5)	ND (<1.00)	ND (<5.00)	ND (<5.00)											
Nitrate	mg/L	NA	2.5	2.7	2.9	2.4	3	3.1	2.2	2.4	3.5	3.6	2.7	2.9	2.9	3.4	3.2	2.2	3.2	0.69	2.1	3.9	2.7	2.8	2.2	3.9
Nitrogen	mg/L	0.22	0.25	ND (<0.2)	ND (<0.2)	R	ND (<0.2)	ND (<0.2)	0.25	0.31	0.31	ND (<0.2)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)									
Sulfate	mg/L	NA	49.2	56.7	74.2 B	R	R	56 B	62.2	64.7	74.7	70.7	50.8	60	60	73.9	60.8	23.0	56.7	50.0	ND (<50.0)	35.8	42.1	23.7	37.0	35.9
Sulfide	mg/L	AA	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)																			

= Pineent in Associated Blank Sample
= Diluted Sample
= Estimated Concentration
= Militgrams per Liter
= Monitored National Alternation
= Nat Analyzed
= Nat detected above laboratory reporting limit (indicated by #)
= Repicted
= Report
= Militery and Part Sample
= Repicted
= Militery and Part Sample
= Water Quality B
D
J
mg/L
MNA
NA
ND (<#)
NS
R
µg/L
WQ

Table 3 Groundwater Analytical Data MW-7

CONSTITUENT	UNITS	NYSDEC	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/14	04/16/15	10/14/15	04/06/16	10/26/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21
CONSTITUENT	UNIIS	Values	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/16/13	10/06/13	04/09/14	10/20/14	04/16/15	10/14/15	04/06/16	10/26/16	04/26/17	10/11/17	04/26/16	10/16/16	04/16/19	10/16/19	05/20/20	10/0//20	04/14/21
BTEX Compounds	•			•							•																
Benzene	μg/L	1	ND (<1.0)	ND (<1.0)	ND (<1.0)	0.72J	ND (<1.0)	ND (<1.0)	1.3	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)							
Ethylbenzene	μg/L	5	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)											
m/p-Xylene	μg/L	5	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)											
o-Xylene	μg/L	5	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)											
Toluene	μg/L	5	ND (<1.0)	ND (<1.0)	1.3	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)											
PAHs																											
Acenaphthene	μg/L	20	0.075J	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.55	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	0.10	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.13	ND (<0.096)				
Acenaphthylene	μg/L	NC	0.15J	0.11J	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.20J	0.13J	0.13J	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	0.20	ND (<0.097)		ND (<0.098)	ND (<0.11)	ND (<0.11)	0.10	ND (<0.10)	0.17	0.11
Anthracene	μg/L	50	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.099)	ND (<0.096)				
Benzo(a)anthracene	μg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.12	ND (<0.096)				
Benzo(a)pyrene	μg/L	0.000	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.11	ND (<0.096)				
Benzo(b)fluoranthene	μg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.15J	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.10	ND (<0.096)				
Benzo(g,h,i)perylene	μg/L	NC	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.099)	ND (<0.096)				
Benzo(k)fluoranthene	μg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.099)	ND (<0.096)				
Chrysene	μg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.12	ND (<0.096)				
Dibenzo(a,h)anthracene	μg/L	NC	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.099)	ND (<0.096)				
Fluoranthene	μg/L	50	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	0.078J	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	0.16	ND (<0.10)	0.29	ND (<0.096)
Fluorene	μg/L	50	ND (<0.19)	0.057J	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.11J	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.099)	ND (<0.096)				
Indeno(1,2,3-cd)pyrene	μg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.099)	ND (<0.096)				
Naphthalene	μg/L	10	0.43	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	1.1	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.46)	ND (<0.46)	5.2	ND (<0.49)	3.0	ND (<0.097)		ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.83	ND (<0.096)
Phenanthrene	μg/L	50	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.097J	0.12J	ND (<0.48)	0.49	ND (<0.48)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.14	ND (<0.096)
Pyrene	μg/L	50	ND (<0.19)	0.038J	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.35J	0.098J	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	0.26	ND (<0.10)	0.43	ND (<0.096)
Cyanide and Lead																											
Lead	μg/L	25	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<3.0)	19	12	3.2J	19	33	7.1	7.1	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	5.6	ND (<5.0)
Cyanide	mg/L	0.2	0.333	0.217	R	0.68J	0.986	R	0.22	5.9	1.4	0.4	0.16	0.13	0.18	0.18	0.18	0.15	0.18	0.16	0.14	0.17	0.129	0.17	ND (<0.010)	0.35	0.11

Table 3

Groundwater Analytical Data MW-7

CONSTITUENT	UNITS	09/30/10	01/04/11	04/07/11	06/15/11	10/12/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/14	04/16/15	10/14/15	04/06/16	10/26/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21
MNA/WQ Parameters																										
Alkalinity (as CaCO3)	mg/L	321	330J	R	R	327J	370J	R	310	324	367	375	392	340	403	395	406	412	380	390	440	370	400	446	430	422
Chloride	mg/L	108	104	122	93.8 B	111J	R	91.2	101	114	84	79	62.8	67.7	66.7	66.2	79.4	68.9	64.6	63.6	59.4	63.9	50.9	58.1	56.5	62.6
Ethane	μg/L	ND (<5.0)	ND (<5.0)	ND (<1.5)	ND (<150)	ND (<1.5)	ND (<75)	ND (<75)	ND (<7.5)	ND (<7.5)	0.38J	0.86J	0.20J	0.32J	0.18J	0.13 J	ND (<1.0)	ND (<1.00)	ND (<5.00)	ND (<5.00)						
Ethene	μg/L	ND (<5.0)	ND (<5.0)	ND (<1.5)	ND (<150)	ND (<1.5)	ND (<75)	ND (<75)	ND (<7.0)	ND (<7.0)	ND (<0.035)	0.090J	ND (<0.10)	ND (<0.10)	ND (<0.032)	ND (<1.0)	ND (<1.0)	ND (<1.00)	ND (<5.00)	ND (<5.00)						
Ferrous Iron	mg/L	1.12	ND (<0.1)	R	1.7J	0.83J	R	ND (<0.1)	0.37	ND (<0.1)	0.25	6.24	ND (<0.1)	ND (<0.1)	ND (<0.1)	0.14	0.59	3.7	3.3	2.8	3.2	2.5	2.1	4.3	2.9	0.66
Manganese	mg/L	NA	0.54	0.67	0.62	0.66	0.94	0.51	0.96	1.1	1.1	0.564	0.49	0.49	0.46	0.53	0.43	0.478	0.476	0.476	0.459	0.487	0.395	0.513	0.420	0.440
Methane	μg/L	290J	510	190	210	190	300	210	240	40	23	150	82	35	96	17	160	240	120	170	150	140	160	111	30.3	ND (<5.00)
Nitrate	mg/L	NA	ND (<1.0)	ND (<0.05)	ND (<0.02)	ND (<0.05)	0.14	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<0.10)									
Nitrogen	mg/L	1.76	1.59	1.4	1.3	1.6	R	1.6	1.6	4.6	1.5	0.16	2	1.1	1.5	1.6	2.2	1.8	1.3	1.7	1.2	1.6	0.11	1.6	ND (<0.10)	1.7
Sulfate	mg/L	NA	576	745 B	611 B	R	R	674 B	509	654	518	540	457	442	533	384	476	396	394	389	331	334	259	307	298	280
Sulfide	mg/L	NA	1.4J	ND (<1.0)	0.8J	2.8	ND (<1.0)	ND (<1.0)	1.2	1.4	1.4	1.4	1	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)

Present in Associated Blank Sample

Diluted Sample

Estimated Concentration

- Miligrams per Liter

- Micholeron Riskand Albraudion

- Not Avalyzed

- Not detected above laboratory reporting limit (indicated by #)

- Rojected

- Microgram per Liter

- Winder Could be above the control of th

B
D
J
mg/L
MNA
NA
NO (<#)
NS
R
µg/L
WQ

Table 3 Groundwater Analytical Data MW-10

CONSTITUENT	UNITS	NYSDEC AWQS Values	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/14	04/16/15	10/13/15	04/06/16	10/26/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21
TEX Compounds																											
enzene	μg/L	1	ND (<1.0)	ND (<1.0)	ND (<1.0)	7.1	1.3	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	2.3	ND (<1.0)	ND (<1.0)	1.9	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0
	μg/L	5	ND (<1.0)	ND (<1.0)		ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	1	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)		ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0
/p-Xylene	μg/L	5	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0
Xylene	µg/L µg/L	5	ND (<1.0) ND (<1.0)	ND (<1.0) ND (<1.0)	ND (<1.0) ND (<1.0)	ND (<1.0)	ND (<1.0) ND (<1.0)	ND (<1.0) ND (<1.0)	ND (<1.0)	ND (<1.0) ND (<1.0)	ND (<1.0) ND (<1.0)	ND (<1.0) ND (<1.0)	ND (<1.0) ND (<1.0)	ND (<1.0) ND (<1.0)	ND (<1.0) ND (<1.0)	ND (<1.0)	ND (<1.0) ND (<1.0)	ND (<1.0) ND (<1.0)	ND (<1.0) ND (<1.0)	ND (<1.0) ND (<1.0)	ND (<1.0) ND (<1.0)	ND (<1.0) ND (<1.0)	ND (<1.0) ND (<1.0)	ND (<1.0) ND (<1.0)	ND (<1.0) ND (<1.0)	ND (<1.0) ND (<1.0)	ND (<1.0 ND (<1.0
AHs	µg/L	5	ND (<1.0)	ND (<1.0)	ND (< 1.0)	ND (<1.0)	ND (< 1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)		ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0
cenaphthene	ua/L	20	1.6	1.3	181	2.4	2.3	0.099J	14	2	2.2	11	0.8	ND (<0.48)	0.63	ND (<0.50)	ND (<0.50)	1.4	0.72	16	0.53	1.7	1.4	1.8	0.52	1.9	2.0
cenaphthylene	ug/L	NC NC	0.43.1	0.32	0.24J	0.42J	0.74.1	0.0350	0.14.1	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)		ND (<0.50)	ND (<0.50)	0.18	0.12	0.18	0.33	0.22	0.22	0.27	ND (<0.095)	0.43	0.38
nthracene	µg/L	50	0.061J	0.047J	ND (<0.47)	ND (<0.47)	0.28J	ND (<0.47)		ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.10)		ND (<0.099)	ND (<0.10)	ND (<0.11)		ND (<0.096)	ND (<0.095)	0.14	0.00
enzo(a)anthracene	μg/L	0.002	0.13J	0.057J	ND (<0.47)	ND (<0.47)	1	ND (<0.47)	0.49 B	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.50)	ND (<0.50)		ND (<0.10)	0.11	ND (<0.099)	ND (<0.10)	ND (<0.11)	0.13	0.15	ND (<0.095)	0.63	0.61
enzo(a)pyrene	μg/L	0.002	0.14J	0.057J	ND (<0.47)	ND (<0.47)	0.81	ND (<0.47)	0.19J	ND (<0.48)	0.55	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.10)	0.10	ND (<0.099)	ND (<0.10)	ND (<0.11)	0.12	0.15	ND (<0.095)	0.56	0.67
enzo(b)fluoranthene	μg/L	0.002	0.071J	0.047J	ND (<0.47)	ND (<0.47)	0.8	ND (<0.47)	0.24J	ND (<0.48)	0.86	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.10)	0.17	ND (<0.099)	ND (<0.10)	ND (<0.11)	0.13	0.15	ND (<0.095)	0.65	0.89
enzo(g,h,i)perylene	μg/L	NC	0.051J	ND (<0.19)	ND (<0.47)	ND (<0.47)	0.37J	ND (<0.47)	0.08J	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.10)	ND (<0.097)	ND (<0.099)	ND (<0.10)	ND (<0.11)	ND (<0.11)	ND (<0.096)	ND (<0.095)	0.24	0.32
enzo(k)fluoranthene	μg/L	0.002	0.092J	0.047J	ND (<0.47)	ND (<0.47)	0.53	ND (<0.47)			ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)		ND (<0.50)	ND (<0.50)	ND (<0.10)		ND (<0.099)	ND (<0.10)	ND (<0.11)		ND (<0.096)	ND (<0.095)	0.25	0.85
hrysene	μg/L	0.002	0.12J	0.047J	ND (<0.47)		0.91			ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)		ND (<0.50)		ND (<0.50)	ND (<0.10)	0.099		ND (<0.10)	ND (<0.11)	ND (<0.11)		ND (<0.095)	0.53	0.51
ibenzo(a,h)anthracene	μg/L	NC	ND (<0.20)		ND (<0.47)		0.11J		ND (<0.48)		1.1	ND (<0.48)	ND (<0.48)		ND (<0.50)					ND (<0.099)				ND (<0.096)		ND (<0.099)	0.11
uoranthene	μg/L	50	0.24	0.11J	0.085J	ND (<0.47)	1.5	ND (<0.47)			ND (<0.48)	ND (<0.48)	ND (<0.48)		ND (<0.50)	ND (<0.50)	ND (<0.50)	0.10	0.16	ND (<0.099)			0.18	0.22	ND (<0.095)	0.78	0.78
deno(1.2.3-cd)pyrene	µg/L µg/L	50 0.002	0.13J 0.051J	0.14J ND (<0.19)	ND (<0.47) ND (<0.47)	ND (<0.47) ND (<0.47)	ND (<0.49) 0.34J	ND (<0.47)	ND (<0.48) 0.076J		ND (<0.48) ND (<0.48)	ND (<0.48) ND (<0.48)	ND (<0.48) ND (<0.48)	ND (<0.48) ND (<0.48)		ND (<0.50) ND (<0.50)	ND (<0.50) ND (<0.50)			ND (<0.099) ND (<0.099)	ND (<0.10) ND (<0.10)	ND (<0.11) ND (<0.11)		ND (<0.096) ND (<0.096)	ND (<0.095) ND (<0.095)	0.21	ND (<0.098
aphthalene	µg/L µg/L	10	0.0513	ND (<0.19)		ND (<0.47)		ND (<0.47)		0.7	0.7	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.50)	7.9	ND (<0.50) ND (<0.50)		ND (<0.097) ND (<0.097)					ND (<0.096)		0.23	ND (<0.096
henanthrene	ug/L	50	0.33 0.11J	ND (<0.19)		ND (<0.47)	0.53	0.10J	0.18J	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)				0.23 ND (<0.10)			ND (<0.10)	ND (<0.11) ND (<0.11)		ND (<0.096)		0.49	0.20
vrene	ug/L	50	0.113	0.13J	0.15J	ND (<0.57)		0.163 0.14J	0.163				ND (<0.48)				ND (<0.50)	0.15	0.20	ND (<0.099)		0.13	0.22	0.27	ND (<0.095)	0.18	0.20
vanide and Lead	P8"									()	()	112 (2112)	()	()	()	()	140 (-0.00)	0.10	0.20	(40.000)	140 (-0.10)	0.10	U.L.L	U.Li	140 (-0.000)	0.07	0.00
	ug/L	25	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<3.0)	9.1	3.9J	6.4	ND (<5.0)	8.4	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<5.0)	ND (<10.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	6.0
	mg/L	0.2	0.139	0.124	R	0.17J	0.156	R	0.078	0.14	0.1	0.11	0.081	0.10	0.098	0.010	0.085	0.081	0.13	0.10	0.12	0.079	0.114	0.093	0.097	0.10	0.060
P P P P P P P P P P	Diluted Sample Result exceede MS and/or MSI MS/MSD RPD Estimated Con- Milligrams per I No Criteria Not detected al Not Sampled New York State Polycyclic Aron Rejected Micrograms pe	ociated Blank benzene, Toli- ed calibration O Recovery o above contro- centration Va- Liter bove laborator a Department natic Hydroca	Sample uene and Xylen range utside acceptan l limits. ue ry reporting limi of Environment	ice limits. It (indicated by:																							

Table 3

Groundwater Analytical Data MW-10

CONSTITUENT	UNITS	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/14	04/16/15	10/13/15	04/06/16	10/26/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21
MNA/WQ Parameters	•						,	,	,	,	,	,									•		,			
Alkalinity (as CaCO3)	mg/L	556	536J	R	R	523J	541J	R	589	584	552	566	548	512	581	586	660	628	616	606	650	550	640	624	502	524
Chloride	mg/L	344	277	181 B	160 B	156J	R	147	316	286	265	470	664	698	1060	893	784	390	427	419	709	440	566	314	472	945
Ethane	μg/L	ND (<1.0)	ND (<1.0)	ND (<1.5)	ND (<7.5)	ND (<1.5)	ND (<1.5)	ND (<1.5)	ND (<7.5)	0.16J	0.33J	0.20J	0.24J	0.42J	0.29 J	0.34 J	ND (<1.00)	ND (<5.00)	ND (<5.00)							
Ethene	μg/L	ND (<1.0)	ND (<1.0)	ND (<1.5)	ND (<7.5)	ND (<1.5)	ND (<1.5)	ND (<1.5)	ND (<7.0)	ND (<0.035)	0.12J	ND (<0.10)	ND (<0.10)	ND (<0.032)	ND (<1.0)	ND (<1.0)	ND (<1.00)	ND (<5.00)	ND (<5.00)							
Ferrous Iron	mg/L	0.31	ND (<0.2)	R	0.34J	0.47	ND (<0.1)	R	ND (<0.10)	ND (<0.10)	0.12	6.06	ND (<0.10)	ND (<0.10)	ND (<0.10)	0.11	1.0	4.2	4.7	3.2	4.8	2.6	2.2	5.3	1.2	1.1
Manganese	mg/L	NA	1.14	1.2	0.95	0.88	0.58	0.83	1	1.2	0.75	1.07	1.3	1.3	1.6	1.2	1.2	1.020	1.030	0.882	0.994	0.946	1.15	0.953	0.771	1.090
Methane	μg/L	64J	75	34	9.8	33	85	40	72	32	28	110	130	63	82	56	420	300	330	470	680	460	1300	390	451	ND (<5.00)
Nitrate	mg/L	NA	ND (<1.0)	ND (<0.05)	0.11	ND (<0.05)	0.12	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.50)	ND (<0.10)										
Nitrogen	mg/L	6.02	4.91	8.5	4.9	4.9	R	5.4	5.7	6.1	4.1	4.8	6.2	5.6	6.3	4	6.5	5.1	3.8	3.3	4.5	4	ND (<1.0)	2.5	1.0	4.0
Sulfate	mg/L	NA	167	306	296 B	R	R	238 B	175	174	171	153	89.7	167	53.9	44.4	56.6	148	38.2	ND (<100)	23.0	59.4	20.9	55.2	23.9	7.8
Sulfide	mg/L	NA	R	R	ND (<1.0)	0.8J	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)										

Present is Augusted Blank Sample

- Present is Augusted Blank Sample

- Disked Sample

- Disked Sample

- Estimated Connectation

- Miligrams per Liber

- Miligrams per Liber

- Michigera Speak and Albraudson

- Not Analyzed

- Not detected above laboratory reporting limit (indicated by #)

- Not Sampled

- Not Sampled

- Micrograms per Liber

- Wider Quality

- Wider Quality

Table 3 Groundwater Analytical Data MW-11

CONSTITUENT	UNITS	NYSDEC AWQS Values	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/14	04/16/15	10/14/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21
BTEX Compounds																											
Benzene	μg/L	1	27	16	2.8	13	18	15	7.9	12	3.5	8.1	10	22	7.3	NS											
Ethylbenzene	μg/L	5	7.3	7.2	1.9	6.9	6.1	5.5	3.5	ND (<1.0)	1.2	3.8	5.1	7.8	3	NS											
m/p-Xylene	μg/L	5	3	3.9	2.2	5.3	2.4	2.1	1.4J	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	2.1	ND (<2.0)	NS											
o-Xylene	μg/L	5	2.6	2.7	1.1	3.1	2.0	2.0	1.2	ND (<1.0)	ND (<1.0)	1.6	2.1	2.6	1.5	NS											
Toluene	μg/L	5	1.3	1.3	ND (<1.0)	1.4	0.97J	0.99J	0.69J	ND (<1.0)	ND (<1.0)	ND (<1.0)	1.1	1.9	ND (<1.0)	NS											
PAHs																											
Acenaphthene	μg/L	20	150 D	140 D	150	110	120	130	100	140 E	97	110	120	110	59	NS											
Acenaphthylene	μg/L	NC	280JD	330 D	290	290	240 D	270 D	210	160 E	120	170	110	150	56	NS											
Anthracene	μg/L	50	21	18	88	19 B	19	17	11	23	13	28	13	16	4.2	NS											
Benzo(a)anthracene	μg/L	0.002	2.2J	2.2	35	6.2 B	2.7	3.0 B	5.2 B	3.8	ND (<0.002)	8.3	3.2	4.8	1.9	NS											
Benzo(a)pyrene	μg/L	0.002	1.7	2.2	34	5.7 B	2.8	2.5 B	2.3J	2.7	3.3	8.5	2.8	4.7	0.84	NS											
Benzo(b)fluoranthene	μg/L	0.002	0.65J	0.82J	24	4.8 B	1.9	2.1	1.8J	1.7	ND (<0.002)	ND (<0.002)	ND (<0.002)	4.6	0.68	NS											
Benzo(g,h,i)perylene	μg/L	NC	0.90J	1.2J	20	4.0 B	1.4	1.7	1.3J	1	1	3.4	ND (<0.002)	1.8	ND (<0.002)	NS											
Benzo(k)fluoranthene	μg/L	0.002	0.90J	1.1J	12	2.5 B	1	0.78	1.2J	1.6	ND (<0.002)	ND (<0.002)	ND (<0.002)	2.1	ND (<0.002)	NS											
Chrysene	μg/L	0.002	2.8	2.9	43	8.1 B	3.3	3.5 B	ND (<5.1)	3.4	4.4	10	5.4	7.6	0.99	NS											
Dibenzo(a,h)anthracene	μg/L	NC	ND (<1.0)	ND (<2.1)	3.2	ND (<2.4)	0.30J	0.59	ND (<5.1)	ND (<5.1)	ND (<5.1)	ND (<5.1)	ND (<5.1)	ND (<0.47)	ND (<0.47)	NS											
Fluoranthene	μg/L	50	18	14	96	22 B	20	16	12	24	14	28	12	16	5.4	NS											
Fluorene	μg/L	50	110 D	100 D	130	72	79	83	62	92	62	70	31	44	16	NS											
Indeno(1,2,3-cd)pyrene	μg/L	0.002	0.65J	2.1U	13	2.8 B	0.96	1.0 B	0.69J	1.6	ND (<0.002)	ND (<0.002)	ND (<0.002)	1.2	ND (<0.002)	NS											
Naphthalene	μg/L	10	180 D	560 D	300	480	310 D	230 D	140	110	50	87	ND (<10)	51	2.3	NS											
Phenanthrene	μg/L	50	160 D	150 D	260	52 B	140 D	130	91	170	80	130	5.8	62	1.5	NS											
Pyrene	μg/L	50	26J	17	150	28 B	21	21	16	28	18	34	17	20	4.2	NS											
Cyanide and Lead																											
Lead	μg/L	25	ND (<5.0)	ND (<5.0)	40	7.6	12	ND (<5.0)	4.6J	ND (<5.0)	ND (<5.0)	5.9	ND (<5.0)	0.014	ND (<5.0)	NS											
Cyanide	mg/L	0.2	0.024	0.027	R	0.015J	0.021	ND (<0.01)	0.012	ND (<0.010)	ND (<0.010)	ND (<0.010)	0.018	0.021	0.012	NS											

| Department | Dep

Table 3

Groundwater Analytical Data MW-11

CONSTITUENT	UNITS	09/29/10	01/04/11	04/07/11	06/15/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/14	04/16/15	10/14/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21
MNA/WQ Parameters	•				•											•						•				
Alkalinity (as CaCO3)	mg/L	502	504	R	R	518J	536J	R	623	507	573	465	457	428	NS											
Chloride	mg/L	612	606	345	414 B	514J	R	321	350	202	295	454	364	314	NS											
Ethane	μg/L	ND (<10)	ND (<5.0)	ND (<1.5)	ND (<1.5)	ND (<1.5)	ND (<15)	ND (<15)	ND (<380)	ND (<380)	ND (<380)	ND (<380)	ND (<7.5)	ND (<7.5)	NS											
Ethene	μg/L	ND (<10)	ND (<5.0)	ND (<1.5)	ND (<1.5)	ND (<1.5)	ND (<15)	ND (<15)	ND (<350)	ND (<350)	ND (<350)	ND (<350)	ND (<7.0)	ND (<7.0)	NS											
Ferrous Iron	mg/L	ND (<0.2)	ND (<0.5)	R	9.4J	0.9J	R	ND (<0.1)	0.5	0.18	0.22	0.29	ND (<0.1)	ND (<0.1)	NS											
Manganese	mg/L	NA	0.61	0.94	0.45	0.69	0.66	0.47	0.95	0.95	0.55	0.56	0.56	0.25	NS											
Methane	μg/L	730J	420	4.8	68	190	360	160	520	12	25	120	180	13	NS											
Nitrate	mg/L	NA	ND (<1.0)	0.13	ND (<0.05)	ND (<0.05)	ND (<0.05)	0.092	ND (<0.050)	0.79	0.32	0.32	0.059	0.28	NS											
Nitrogen	mg/L	1.76	1.36	1.3	0.59	1.3	R	1.3	1.4	0.58	0.64	0.57	1.2	0.26	NS											
Sulfate	mg/L	NA	46.3	126 B	65.1 B	R	R	8.5 B	16.9	112	94.1	58	44.3	82.9	NS											
Sulfide	mg/L	NA	ND (<1.0)	0.8J	0.8J	1.6	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	1.8	ND (<1.0)	NS											

mys. nv. nv. nv. (15.10.) 0.8.J

- Pieseri In Associated Blank Sample

- Dialed Sample

- Edimated Concentration

- Miligrams per Liber

- Miligrams per Liber

- Not detected above laboration reporting limit (indicated by 8)

- Not detected above laboration reporting limit (indicated by 9)

- Registed

- Registed

- Micrograms per Liber

- Wister Quality B D J mg/L MNA NA ND (<#) NS R µg/L

Table 3

Groundwater Analytical Data

MW-12

CONSTITUENT	UNITS	NYSDEC AWQS	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/14	04/16/15	10/14/15	04/06/16	10/26/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21
		Values																						4
BTEX Compounds																								
Benzene	μg/L	1	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	2.1	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)
Ethylbenzene	μg/L	5	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)
m/p-Xylene	μg/L	5	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)
o-Xylene	μg/L	5	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)
Toluene	μg/L	5	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)
PAHs																								
Acenaphthene	μg/L	20	ND (<0.2)	ND (<0.49)	0.086J	ND (<0.52)	14	ND (<0.2)	1.1	1.1	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.51)	0.11	ND (<0.097)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<011)	ND (<0.097)	ND (<0.096)
Acenaphthylene	μg/L	NC	0.09J	ND (<0.49)	0.25J	0.18J	100	ND (<0.2)	ND (<0.2)	ND (<0.2)	0.63	ND (<0.2)	ND (<0.47)	ND (<0.51)	4.4	ND (<0.097)	0.30	0.39	0.62	ND (<0.11)	1.0	0.1	0.61	0.41
Anthracene	μg/L	50	0.07J	ND (<0.49)	0.21J	0.13J	2.8	ND (<0.2)	1.1	1.1	0.88	ND (<0.2)	0.73	ND (<0.51)	1.4	ND (<0.097)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.099	ND (<0.11)	ND (<0.097)	ND (<0.096)
Benzo(a)anthracene	μg/L	0.002	0.12J	ND (<0.49)	0.64 B	0.57 B	1.5	0.83	3	0.66	1.5	ND (<0.49)	ND (<0.47)	ND (<0.51)	2.1	0.11	0.14	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.24	0.34	ND (<0.097)	ND (<0.096)
Benzo(a)pyrene	μg/L	0.002	0.2	ND (<0.49)	0.69 B	0.35J	1.5	1	3.6	0.92	1.8	ND (<0.49)	ND (<0.47)	ND (<0.51)	2.8	0.11	0.16	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.3	0.41	ND (<0.097)	ND (<0.096)
Benzo(b)fluoranthene	μg/L	0.002	0.08J	ND (<0.49)	0.56	0.27J	1.3	0.91	3.4	0.71	2.1	ND (<0.49)	ND (<0.47)	ND (<0.51)	2.3	0.13	0.19	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.24	0.34	ND (<0.097)	ND (<0.096)
Benzo(g,h,i)perylene	μg/L	NC	0.13J	ND (<0.49)	0.43J	0.27J	0.62	ND (<0.49)	ND (<0.49)	0.51	0.74	ND (<0.49)	ND (<0.47)	ND (<0.51)	1.6	ND (<0.097)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.15	0.21	ND (<0.097)	ND (<0.096)
Benzo(k)fluoranthene	μg/L	0.002	0.10J	ND (<0.49)	ND (<0.49)	0.38J	0.58	ND (<0.49)	0.83	ND (<0.49)	0.74	ND (<0.49)	ND (<0.47)	ND (<0.51)	0.94	0.11	0.16	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.11)	ND (<0.097)	ND (<0.096)
Chrysene	μg/L	0.002	0.13J	ND (<0.49)	0.55 B	0.60 B	1.1	1	3	ND (<0.49)	1.6	ND (<0.49)	ND (<0.47)	ND (<0.51)	1.9	ND (<0.097)	0.11	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.19	0.22	ND (<0.097)	ND (<0.096)
Dibenzo(a,h)anthracene	μg/L	NC	ND (<0.2)	ND (<0.49)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.52)	ND (<0.52)	ND (<0.52)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<0.51)	0.29	ND (<0.097)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.11)	ND (<0.097)	ND (<0.096)
Fluoranthene	ua/L	50	0.2	ND (<0.49)	0.73	0.41J	3.4	1.4	4.3	0.87	2.00	ND (<0.49)	ND (<0.47)	0.52	3.9	0.11	0.17	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.33	0.43	ND (<0.097)	ND (<0.096)
Fluorene	μg/L	50	ND (<0.2)	ND (<0.49)	ND (<0.49)	ND (<0.52)	2.2	ND (<0.49)	ND (<0.49)	ND (<0.49)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<0.51)	0.51	ND (<0.097)	ND (<0.10)	ND (<0.099)	0.13	ND (<0.11)	ND (<0.097)	ND (<0.11)	0.12	ND (<0.096)
Indeno(1,2,3-cd)pyrene	μg/L	0.002	0.09J	ND (<0.49)	ND (<0.49)	0.13J	0.97	ND (<0.49)	1.2	ND (<0.49)	0.51	ND (<0.49)	ND (<0.47)	ND (<0.51)	1.2	ND (<0.097)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.11	0.17	ND (<0.097)	ND (<0.096)
Naphthalene	μg/L	10	ND (<0.2)	ND (<0.49)	0.68	ND (<0.52)	160 E	2.5	0.99	ND (<0.52)	1.6	ND (<0.49)	1.9	ND (<0.51)	0.96	ND (<0.097)	0.15	ND (<0.099)	ND (<0.11)	ND (<0.11)	1.8	ND (<0.11)	0.97	ND (<0.096)
Phenanthrene	μg/L	50	1.9J	ND (<0.49)	0.66	0.48J	7.6	1.1	3.6	0.61	2	ND (<0.49)	ND (<0.47)	ND (<0.51)	3.5	ND (<0.097)	0.14	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.23	0.34	0.14	ND (<0.096)
Pyrene	μg/L	50	0.23	ND (<0.49)	0.95	0.59	4.2	2.4	5.8	1.3	2.8	ND (<0.49)	ND (<0.47)	0.64	5.4	0.17	0.24	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.49	0.61	ND (<0.097)	ND (<0.096)
Cyanide and Lead																								
Lead	μg/L	25	ND (<5.0)	ND (<3.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	29	ND (<5.0)	0.018	ND (<0.49)	ND (<10)	ND (<10)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)						
Cvanide	ma/l	0.2	0.01	0.004J	R	0.0062J	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)	0.013	ND (<0.49)	ND (<0.01)	ND (<0.01)	ND (<0.010)	0.011	0.011	ND (<0.010)	ND (<0.010)					

Table 3

Groundwater Analytical Data MW-12

CONSTITUENT	UNITS	01/04/11	10/12/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/14	04/16/15	10/14/15	04/06/16	10/26/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21
MNA/WQ Parameters																							
Alkalinity (as CaCO3)	mg/L	502	455J	478J	R	434	391	415	329	414	368	401	415	436	466	366	456	430	416	400	380	360	430
Chloride	mg/L	488	165J	R	129 B	468	123	662	150	493	139	591	276	556	152	587	345	757	334	490	267	633	391
Ethane	μg/L	ND (<1.0)	ND (<1.5)	ND (<1.5)	ND (<1.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	0.47J	ND (<0.025)	ND (<0.030)	ND (<0.030)	ND (<0.16)	ND (<1.0)	ND (<1.0)	ND (<1.00)	ND (<5.00)	ND (<5.00)
Ethene	μg/L	ND (<1.0)	ND (<1.5)	ND (<1.5)	ND (<1.5)	ND (<7.0)	ND (<7.0)	ND (<7.0)	ND (<7.0)	ND (<7.0)	ND (<7.0)	ND (<7.0)	ND (<7.0)	ND (<0.035)	ND (<0.035)	ND (<0.10)	ND (<0.10)	ND (<0.032)	ND (<1.0)	ND (<1.0)	ND (<1.00)	ND (<5.00)	ND (<5.00)
Ferrous Iron	mg/L	ND (<0.1)	R	ND (<0.1)	ND (<0.1)	0.44	ND (<0.1)	0.11	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)						
Manganese	mg/L	0.084	0.096	0.16	0.12	0.52	0.19	2.1	0.36	1.2	0.16	0.039	0.062	0.202	0.0201	0.0399	0.0113	0.0152	0.0153	0.0636	0.0386	0.0074	ND (<0.005)
Methane	μg/L	ND (<2.0)	ND (<1.0)	1.1	0.56J	47	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<4.0)	ND (<4.0)	ND (<4.0)	ND (<4.0)	1.95	0.24J	0.27J	1.0J	0.35J	ND (<2.5)	ND (<2.5)	ND (<0.10)	ND (<5.00)	ND (<5.00)
Nitrate	mg/L	4	6.6	6.2	3.2	ND (<0.05)	2.5	4.8	1.4	3.7	1.4	2.5	3.3	2.9	5.1	3.6	0.84	5.6	4.3	ND (<0.10)	5.9	2.5	3.0
Nitrogen	mg/L	0.48	ND (<0.2)	R	0.19J	0.29	0.24	2.4	0.44	0.61	0.61	ND (<0.2)	ND (<0.2)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	5.1	ND (<1.0)	3.9	ND (<0.10)	ND (<1.0)	ND (<1.0)
Sulfate	mg/L	97.9	R	R	53.5 B	81.4	73.5	115	51.6	73.5	54.8	70.2	93.7	56.0	115	53.7	70.3	66.8	53.9	55.1	77.2	48.3	65.9
Sulfide	mg/L	1.1J	0.8J	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)

= Present in Associated Blank Sample
= Dilated Sample
= Estimated Concentration
= Miligrams per Liter
= Micholzero Natural Admission
= Not Analyzed
= Not detected above bisoratory reporting smit (indicated by #)
= Repicted
= Reported
= Micrograms per Liter
= Wister Quality

B
D
J
mg/L
MNA
NA
NO (<#)
NS
R
µg/L

Table 3 Groundwater Analytical Data MW-13

CONSTITUENT	UNITS	NYSDEC AWQS	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/14	04/16/15	10/13/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21
BTEX Compounds		Values																									
Benzene	μg/L	1	430	360	71	200	59	300	370	360	490	400	200	300	17	360	300	348	15.5	363	11.6	32.8	16.9	328	126	268	11.7
Ethylbenzene	μg/L	5	850	730	87	200	110	520	670	490	600	320	200	340	17	190	270	366	7.4	210	4.8	23.3	12.4	230	85.6	193	4.5
m/p-Xylene	μg/L	5	920	810	110	240	140	550	740	590	730	420	250	480	24	270	360	467	12.1	257	8.6	34.8	16.6	229	89.5	179	8.7
o-Xylene	μg/L	5	390	350	71	130	74	260	340	260	320	190	120	210	16	120	150	203	8.4	117	9.3	18.6	9.7	112	48.6	90.7	5.5
Toluene	μg/L	5	800	660	80	260	89	550	740	520 E	710	440	270	430	17	320	410	552	7.6	332	3.9	25.1	11.1	288	95.7	279	5.8
PAHs																											
Acenaphthene	μg/L	20	120	140	17	46	60	76	82J	170	130	77	71	130	ND (<4.9)	65 E	130	225	0.34	78.4	0.16	4.3	6.8	141	4.6	124	0.35
Acenaphthylene	μg/L	NC	260JD	320 D	51	170	220J	230 D	210	570	430	350	22	450	ND (<4.9)	77 E	220	267	1.2	122	0.61	6.4	6.7	57.0	0.78	43.4	0.89
Anthracene	μg/L	50	12	15	3.6	12 B	15	15	ND (<97)	ND (<47)	ND (<47)	ND (<47)	6.9	14	ND (<4.9)	9.2 F1 F2	10	19.2	0.55	7.2	0.25	0.73	0.82	7.3	0.15	5.1	0.33
Benzo(a)anthracene	μg/L	0.002	1.9J	2J	0.35J	4.9 B	7.3J	5.3 B	ND (<97)	ND (<47)	ND (<47)	ND (<47)	ND (<47)	1.9	ND (<0.001)	0.59 F2	ND (<9.7)	6.7	0.93	1.7	0.30	0.22	0.14	0.79	0.18	0.51	0.38
Benzo(a)pyrene	μg/L	0.002	1.9J	1.4J	0.13J	4.1 B	ND (<10)	5.3 B	ND (<97)	ND (<47)	ND (<47)	ND (<47)	ND (<47)	1.6	ND (<0.001)	ND (<0.49)	ND (<9.7)	6.5	1.0	1.3	0.40	0.20	ND (<0.10)	0.58	0.20	0.31	0.82
Benzo(b)fluoranthene	μg/L	0.002	0.75J	0.78J	ND (<0.49)	3.5 B	ND (<10)	3.8	ND (<97)	ND (<47)	ND (<47)	ND (<47)	ND (<47)	2.8	ND (<0.001)	ND (<0.49)	ND (<9.7)	6.2	1.2	1.6	0.47	0.22	0.12	0.49	0.17	0.27	0.83
Benzo(g,h,i)perylene	μg/L	NC	0.75J	ND (<3.9)	ND (<0.49)	2.5 B	ND (<10)	3.8	ND (<97)	ND (<47)	ND (<47)	ND (<47)	ND (<47)	0.6	ND (<0.001)	ND (<0.49)	ND (<9.7)	3.3	0.55	ND (<0.98)	0.21	ND (<0.099)	ND (<0.10)	0.23	ND (<0.10)	0.13	0.45
Benzo(k)fluoranthene	μg/L	0.002	ND (<3.8)	0.78J	ND (<0.49)	ND (<2.4)	ND (<10)	2.6	ND (<97)	ND (<47)	ND (<47)	ND (<47)	ND (<47)	0.53	ND (<0.001)	ND (<0.49)	ND (<9.7)	2.5	1.1	1.3	0.35	0.20	0.11	0.21	ND (<0.10)	0.11	0.79
Chrysene	μg/L	0.002	1.7J	1.4J	0.26J	3.6 B	5.5J	4.9 B	ND (<97)	ND (<47)	ND (<47)	ND (<47)	ND (<47)	1.8	ND (<0.001)	0.50 F1 F2	ND (<9.7)	6.1	0.81	1.3	0.22	0.20	ND (<0.10)	0.64	0.13	0.38	0.34
Dibenzo(a,h)anthracene	μg/L	NC	ND (<3.8)	ND (<3.9)	ND (<0.49)	ND (<2.4)	ND (<10)	0.79 B	ND (<97)	ND (<47)	ND (<47)	ND (<47)	ND (<47)	ND (<0.47)	ND (<0.001)	ND (<0.49)	ND (<9.7)	0.85	0.13	ND (<0.98)	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.098)	ND (<0.10)	ND (<0.098)	0.11
Fluoranthene	μg/L	50	7.7	8.4	2.6	12 B	16	14	ND (<97)	ND (<47)	ND (<47)	ND (<47)	6.1	8.2	ND (<4.9)	5.5 F2	ND (<9.7)	17.8	1.9	5.4	0.51	0.77	0.66	4.6	1.3	4.0	0.58
Fluorene	μg/L	50	73	84	18	48	52J	53	37J	110	93	68	30	94J	ND (<4.9)	43 F1 F2	55	74.8	0.46	37.9	0.19	2.6	3.7	45.7	0.16	33.2	0.27
Indeno(1,2,3-cd)pyrene	μg/L	0.002	ND (<3.8)	ND (<3.9)	ND (<0.49)	ND (<2.4)	ND (<10)	2.3 B	ND (<97)	ND (<47)	ND (<47)	ND (<47)	ND (<47)	0.48	ND (<0.001)	ND (<0.49)	ND (<9.7)	2.7	0.42	ND (<0.98)	0.17	ND (<0.099)	ND (<0.10)	0.19	ND (<0.10)	0.11	0.34
Naphthalene	μg/L	10	6000 D	5600 D	250 D	1600 D	2900 D	5000 D	4100	8200	7100	3700	ND (<10)	4200	ND (<4.9)	350 E	170	5560	0.96	1880	0.45	0.31	0.14	9,700	0.19	2,190	0.76
Phenanthrene	μg/L	50	58	68	7.2	44 B	60	55	44J	76	73	61	ND (<50)	70	ND (<4.9)	31 F1	ND (<9.7)	78.3	1.5	32.8	0.60	0.37	2.40	39.8	0.14	31	0.76
Pyrene	μg/L	50	9.8J	8.8	2.9	14 B	19	17	ND (<97)	ND (<47)	ND (<47)	ND (<47)	7.2	9.7	ND (<4.9)	5.8 F2	ND (<9.7)	ND (<52.1)	1.7	6.0	0.54	0.78	0.63	4.8	0.86	4.1	0.71
Cyanide and Lead																											
Lead	μg/L	25	6.4	ND (<5.0)	ND (<5.0)	15J	27	9.2	5.8	ND (<5.0)	7.8	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<4.9)	ND (<10)	ND (<10)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)
Cyanide	mg/L	0.2	0.618	0.652	R	0.42J	0.235	R	0.33	0.39	0.32	0.26	0.17	0.24	0.11	0.22 F1	0.29	0.23	0.070	0.20	0.062	0.10	0.09	0.16	0.11	0.16	0.050

Table 3

Groundwater Analytical Data MW-13

CONSTITUENT	UNITS	09/30/10	01/05/11	04/07/11	06/15/11	10/12/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/14	10/13/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21
MNA/WQ Parameters																									
Alkalinity (as CaCO3)	mg/L	80	96.4	R	R	455J	165J	R	158	218	187	176	255	283 F1	311	364	234	308	226	280	230	380	268	320	232
Chloride	mg/L	12.3	10.5	29.1	18.6 B	5.9J	Я	20.5	21.6	20.4	7.3	9.2	17.3	11.2	9.8	11.4	3.4	7.6	92.7	31.6	8.4	19.5	9.3	6.9	11.8
Ethane	μg/L	1.4J	1.8	ND (<1.5)	ND (<15)	ND (<1.5)	ND (<15)	ND (<15)	ND (<7.5)	ND (<7.5)	1.2	ND (<0.025)	0.88J	ND (<0.030)	0.22J	0.11 J	0.74 J	ND (<1.00)	ND (<5.0)	ND (<5.00)					
Ethene	μg/L	2.4	2.8	ND (<1.5)	ND (<15)	ND (<1.5)	ND (<15)	ND (<15)	ND (<7.0)	ND (<7.5)	3.3	ND (<0.035)	2.3	ND (<0.10)	0.46J	0.19 J	2.1	ND (<1.00)	2.34 J	ND (<5.00)					
Ferrous Iron	mg/L	ND (<0.1)	0.32	R	ND (<0.1)	3.1J	U80.0	ND (<0.1)	0.12	ND (<0.1)	ND (<1.0)	0.18	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	0.15	ND (<0.10)	ND (<0.10)				
Manganese	mg/L	NA	0.84	0.12	0.077	0.83	0.16	0.096	0.092	0.11	0.088	0.14	0.031	0.064	ND (<7.5)	0.0938	0.0417	0.0705	0.0570	0.0619	0.0298	0.0710	0.0446	0.0709	0.0601
Methane	μg/L	77J	110 D	32	46	28J	72	66	120	36	15	74	ND (<4.0)	110	50	280	0.34J	190	12	73	41	250	84.7	218	ND (<5.00)
Nitrate	mg/L	NA	ND (<1.0)	ND (<0.05)	0.05	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<1.0)	ND (<1.0)	ND (<0.50)										
Nitrogen	mg/L	2.27	1.69	1.1	1.3	ND (<2.0)	Я	1.4	1.4	1.8	1.2	2.1	0.62	1.4	1.2	1.3	ND (<1.0)	2.1	ND (<1.0)	4.5	ND (<0.10)	ND (<0.10)	ND (<1.0)	ND (<1.0)	2.3
Sulfate	mg/L	NA	86.8	ND (<5.0)	3.3JB	R	R	52.1J	139	82.3	15.5	15.5	ND (<5.0)	ND (<5.0)	ND (<5.0)	18.3	16.0	42.3	20.4	28.6	26.1	23.4	10.8	17.3	32.1
Sulfide	mg/L	NA	3.3J	ND (<1.0)	3.2J	1.2	R	R	1.2	ND (<1.0)	1	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)				

= Present in Associated Blank Sample
= Diluted Sample
= Estimated Concentration
= Miligrams per Liter
= Municited Nutrial Albrauston
= Nat Analyzed
= Nat detected above biboratory reporting limit (indicated by #)
= Rejorder
= Rejorder
= Micrograms per Liter
= Water Quality B D J mg/L MNA NA ND (<#) NS R µg/L WQ

Table 3 Groundwater Analytical Data MW-14

		INCOREO																									-
CONSTITUENT	UNITS	NYSDEC AWQS	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/14	04/16/15	10/13/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21
CONDITION	0.4.10	Values	00,20,10	01104111	04/00/11	00.14.11	10,11,11	12/10/11	00/14/12	10/05/12	04/10/10	10,00,10	04/05/14	10/20/14	04/10/10	10/10/10	04,00,10	10/20/10	04,20,17	10/11/11	04/20/10	10/10/10	04/10/10	10/10/15	00:20:20	10/0//20	0411421
BTEX Compounds																											1
Benzene	μg/L	1	25	17	ND (<1.0)	2.5	11	2.5	2.9	ND (<1.0)	ND (<1.0)	1.3	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<0.54)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)
Ethylbenzene	μg/L	5	5.1	3.3	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	1.3	ND (<1.0)	ND (<0.54)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)						
m/p-Xylene	μg/L	5	5.1	3.1	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	2.4	ND (<2.0)	ND (<0.54)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)						
o-Xylene	μg/L	5	9.1	5.6	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	2.2	ND (<1.0)	ND (<0.54)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)						
Toluene	μg/L	5	1.8	0.88J	ND (<1.0)	ND (<0.54)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)											
PAHs																											$\overline{}$
Acenaphthene	μg/L	20	9.3	4.9	ND (<0.47)	ND (<0.47)	1.2	0.82	5.1	1.4	ND (<0.48)	2.2	0.5	2.00	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.19	ND (<0.096)	1.7	ND (<0.099)	ND (<0.099)	ND (<0.10)	0.18	0.8	0.2	ND (<0.10)
Acenaphthylene	μg/L	NC	17JD	11	ND (<0.47)	ND (<0.47)	3	1.3	9	1.9	ND (<0.48)	2.5	ND (<0.48)	2.9	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.99	0.25	4.1	0.19	0.34	0.26	0.71	8.4	1.2	0.38
Anthracene	μg/L	50	1.8	0.98	ND (<0.47)	ND (<0.47)	ND (<0.50)	0.18J	0.5	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	0.5	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.25	0.096	0.29	ND (<0.099)	0.15	0.11	0.11	3.5	0.6	0.16
Benzo(a)anthracene	μg/L	0.002	0.42J	0.27J	ND (<0.47)	ND (<0.47)	0.29J	0.91 B	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.62	1	1.9	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.28	0.13	0.26	0.11	ND (<0.099)	ND (<0.10)	ND (<0.096)	19.8	2.1	0.51
Benzo(a)pyrene	μg/L	0.002	0.46	0.24J	ND (<0.47)	ND (<0.47)	0.15J	0.90 B	0.12J	ND (<0.48)	ND (<0.48)	0.65	1.3	2.4	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.32	0.12	0.29	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.096)	24.8	2.6	0.66
Benzo(b)fluoranthene	μg/L	0.002	0.27	0.15J	ND (<0.47)	ND (<0.47)	ND (<0.50)	0.78	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.79	1.2	3.8	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.55	0.21	0.47	0.14	ND (<0.099)	0.7	ND (<0.096)	26.1	2.8	0.87
Benzo(g,h,i)perylene	μg/L	NC	0.28	0.18J	ND (<0.47)	ND (<0.47)	ND (<0.50)	0.70	0.09J	ND (<0.48)	ND (<0.48)	ND (<0.48)	0.95	1.3	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.29	0.11	0.24	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.096)	17.5	1.9	0.54
Benzo(k)fluoranthene	μg/L	0.002	0.3	0.15J	ND (<0.47)	ND (<0.47)	ND (<0.50)	0.57	0.17J	ND (<0.48)	ND (<0.48)	ND (<0.48)	0.83	1.1	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.47	0.18	0.40	0.11	ND (<0.099)	0.14	ND (<0.096)	8.5	1.0	0.84
Chrysene	μg/L	0.002	0.43	0.3J	ND (<0.47)	ND (<0.47)	0.19J	0.85	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.69	1.2	2.1	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.27	0.13	0.24	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.096)	17.0	1.9	0.51
Dibenzo(a,h)anthracene	μg/L	NC	0.20J	ND (<0.59)	ND (<0.47)	ND (<0.47)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<0.52)	ND (<0.54)	ND (<0.10)	ND (<0.096)	ND (<0.099)	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.096)	4.5	0.4	0.13
Fluoranthene	μg/L	50	1.7	1.2	0.081J	ND (<0.47)	0.32J	1.5	0.61	0.59	ND (<0.48)	1.2	1.5	3.2	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.45	0.17	0.55	0.13	ND (<0.099)	0.14	860.0	29.0	3.0	0.71
Fluorene	μg/L	50	3.8	1.4	ND (<0.47)	ND (<0.47)	ND (<0.50)	0.17J	0.35J	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.14	ND (<0.096)	0.21	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.096)	1.3	0.2	ND (<0.10)
Indeno(1,2,3-cd)pyrene	μg/L	0.002	0.21	ND (<0.59)	ND (<0.47)	ND (<0.47)	ND (<0.50)	ND (<0.50)	0.054J	ND (<0.48)	ND (<0.48)	ND (<0.48)	0.63	0.95	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.21	ND (<0.096)	0.18	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.096)	14.4	1.5	0.40
Naphthalene	μg/L	10	63 D	2.8	ND (<0.47)	ND (<0.47)	1.3	ND (<0.50)	1.2	ND (<0.48)	1.7	0.48	ND (<0.48)	1.1	ND (<0.47)	ND (<0.52)	ND (<0.54)	5.2	ND (<0.096)	4.2	ND (<0.099)	ND (<0.099)	ND (<0.10)	0.72	0.86	1.10	ND (<0.10)
Phenanthrene	μg/L	50	9.1	2	ND (<0.47)	ND (<0.47)	0.25J	0.66	1.1	ND (<0.48)	ND (<0.48)	0.67	0.63	1.4	ND (<0.47)	ND (<0.52)		0.22	ND (<0.096)	0.17	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.096)	9.8	1.0	0.25
Pyrene	μg/L	50	2.5J	1.2	0.098J	ND (<0.52)	0.39J	2.2	0.7	0.76	ND (<0.48)	1.5	2.4	5.0	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.68	0.28	0.74	0.20	ND (<0.099)	0.22	0.12	47.0	5.0	1.2
Cyanide and Lead																											$\overline{}$
Lead	μg/L	25	7.7	ND (<5.0)	ND (<5.0)	4.2J	4.8J	9.1	5.7	21	ND (<5.0)	15	ND (<5.0)	0.031	ND (<0.01)	ND (<0.01)	ND (<10)	33.3	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	256	50.2	7.5
Cyanide	mg/L	0.2	0.245	0.197	R	0.11J	0.114	R	0.28	1.4	0.1	0.2	0.9	0.2	0.091	0.120	0.88	0.67	0.079	0.25	0.062	0.11	0.0838	0.11	0.12	0.42	0.057

CONSTITUENT	UNITS	06/30/10	01/04/11	04/07/11	06/15/11	10/12/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/14	10/13/14	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21
MNA/WQ Parameters																									
Alkalinity (as CaCO3)	mg/L	528	450	R	R	410	453J	R	494	417	456	483	372	445	507	520	380	404	392	450	384	380	342	400	364
Chloride	mg/L	9	10.8	6.1	9.7 B	5.1	R	12.8	40.4	2	7.6	28.5	3.9	10.7	27.4	18.0	3.5	6.6	ND (<3.0)	3.2	3.5	ND (<3.0)	ND (<3.0)	6.7	6.9
Ethane	μg/L	ND (<1.0)	ND (<1.0)	ND (<1.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	0.17J	ND (<0.025)	0.13J	ND (<0.030)	ND (<0.16)	ND (<1.0)	ND (<1.0)	1.57	ND (<5.00)	ND (<5.00)				
Ethene	μg/L	ND (<1.0)	ND (<1.0)	ND (<1.5)	ND (<7.0)	ND (<7.0)	ND (<7.0)	ND (<7.0)	ND (<7.0)	ND (<7.0)	ND (<7.5)	ND (<0.035)	ND (<0.035)	ND (<0.10)	ND (<0.10)	ND (<0.032)	ND (<1.0)	ND (<1.0)	ND (<1.00)	ND (<5.00)	ND (<5.00)				
Ferrous Iron	mg/L	0.29	ND (<0.1)	R	0.11J	ND (<0.1)	R	ND (<0.1)	0.17	ND (<0.1)	ND (<0.1)	ND (<0.1)	ND (<0.1)	ND (<0.1)	0.11	0.55	0.22	0.93	0.47	0.30	0.39	0.12	1.90	2.1	0.44
Manganese	mg/L	NA	0.36	0.054	0.17	0.2	0.28	0.51	2	0.008	0.25	1	0.019	0.011	ND (<7.5)	0.768	0.0262	0.416	0.201	0.0121	0.0208	0.051	3.79	0.940	0.268
Methane	μg/L	9.1	120 D	ND (<1.0)	6.2	46	15	70	140	ND (<1.0)	8.6	140	ND (<4.0)	ND (<4.0)	31	140	19	120	1.7J	1.4J	ND (<2.5)	19	1020	ND (<5.00)	6.54
Nitrate	mg/L	NA	ND (<1.0)	0.71	0.19	0.086	0.023J	ND (<0.05)	ND (<0.05)	0.8	ND (<0.05)	ND (<0.05)	0.87	0.16	ND (<0.05)	ND (<0.10)	0.29	ND (<0.10)	ND (<0.10)	0.59	0.4	ND (<1.0)	ND (<1.0)	ND (<0.50)	0.59
Nitrogen	mg/L	0.81	0.77	0.85	0.32	0.36	R	0.86	2.5	0.54	0.68	1.5	0.22	0.72	1	1.2	ND (<1.0)	ND (<1.0)	1.0	ND (<1.0)	ND (<1.0)	ND (<1.0)	4.2	3.6	1.0
Sulfate	mg/L	NA	53.3	ND (<5.0)	19.6 B	5.6JB	R	173 B	639	ND (<5.0)	ND (<5.0)	363	ND (<5.0)	ND (<5.0)	324	153	12.5	52.4	15.2	20.3	ND (<10)	17.7	11.2	102.0	15.1
Sulfide	mg/L	NA	1.6	ND (<1.0)	ND (<1.0)	ND (<1.0)	R	R	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)

Present in Associated Blank Sample

Diluted Sample

Estimated Concentration

Miligrams per Liter

Microliver Natural Adhazuation

Net Analyzed

Net destended above laboration yeporting limit (indicated by #)

Red Gampide

Micrograms per Liter

Wider Quality

Wider Quality B
D
J
mg/L
MNA
NA
ND (<#)
NS
R
µg/L
WQ

CONSTITUENT	UNITS	NYSDEC AWQS Values	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/14	04/16/15	10/13/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21
BTEX Compounds																											
Benzene	μg/L	1	1600 D	1200	940 D	1300 D	670	790 D	1500 D	1100 E	410	390	210	300	16	350 E	330	714	111	373	48.7	108	41.2	364	55.8	271	92.7
Ethylbenzene	μg/L	5	200	250	190 D	210 D	120	190 D	220	200	75	53	38	74	1.9	92	110	244	24.5	124	10.2	45.2	15.7	135	19.4	99.9	31.0
m/p-Xylene	μg/L	5	12	8.7	17	18	19J	9	6.6J	23	19	ND (<5.0)	ND (<5.0)	ND (<10)	3.2	8.1	ND (<8.0)	13.7	2.7	9.4	ND (<2.0)	2.8	ND (<2.0)	17.5	ND (<2.0)	12.3	ND(<2.0)
o-Xylene	μg/L	5	39	39	44	48	37	38	27	23	19	16	8.5	28	7.5	23	21	31.7	7.3	22.8	3.7	18.8	8.1	26.2	4.6	23	4.2
Toluene	μg/L	5	3.8J	ND (<10)	6.1	4.7	ND (<10)	6.3	6.2J	5	ND (<5.0)	ND (<5.0)	ND (<5.0)	5.8	ND (<1.0)	7	ND (<8.0)	6.1	1.1	7.4	ND (<1.0)	2.9	1.3	8.5	1.4	6.9	ND (<1.0)
PAHs																											
Acenaphthene	μg/L	20	44J	49	47	32	47	50	47	57	42	23	18	24	6.7	16	23	43.1	10.1	16.3	12.4	32.7	12.6	28.4	4.7	17.2	28.3
Acenaphthylene	μg/L	NC	19J	23	24	17	22	19	12	16	11	6.5	3	3.9	0.59	3.1	ND (<5.1)	2.4	1.5	2.5	1.4	3.9	1.6	1.9	0.66	1.2	2.5
Anthracene	μg/L	50	2.7J	3.3	2.1	1.3 B	2.4	2	1.5J	2.8	2.6	1.4	0.95	0.81	ND (<0.49)	0.57	ND (<5.1)	1.9	0.36	0.56	0.31	0.55	0.46	0.74	0.25	0.52	0.35
Benzo(a)anthracene	μg/L	0.002	1.8J	0.85J	0.38J	ND (<0.48)	0.21J	ND (<0.54)	ND (<4.7)	ND (<0.58)	0.96	0.59	ND (<0.58)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<5.1)	0.14	0.13	0.55	0.14	ND (<0.099)	0.14	0.14	0.16	0.20	0.16
Benzo(a)pyrene	μg/L	0.000	2.1J	0.75J	0.2J	ND (<0.48)	ND (<0.49)	ND (<0.54)	ND (<4.7)	ND (<0.58)	0.96	0.59	ND (<0.58)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<5.1)	ND (<0.10)	0.10	0.58	0.11	ND (<0.099)	0.12	ND (<0.097)	0.18	0.20	0.13
Benzo(b)fluoranthene	μg/L	0.002	1.1J	0.57J	0.27J	ND (<0.48)	ND (<0.49)	0.16J	ND (<4.7)	ND (<0.58)	0.85	0.62	ND (<0.58)	0.72	ND (<0.49)	ND (<0.47)	ND (<5.1)	0.11	0.16	0.81	0.15	ND (<0.099)	0.17	0.11	0.16	0.21	0.16
Benzo(g,h,i)perylene	μg/L	NC	1.2J	0.38J	ND (<0.49)	ND (<0.48)	ND (<0.49)	ND (<0.54)	ND (<4.7)	ND (<0.58)	ND (<0.58)	ND (<0.58)	ND (<0.58)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<5.1)	ND (<0.10)	ND (<0.098)	0.4	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.097)	0.11	0.12	ND (<0.096)
Benzo(k)fluoranthene	μg/L	0.002	1.3J	0.38J	ND (<0.49)	ND (<0.48)	ND (<0.49)	ND (<0.54)	ND (<4.7)	ND (<0.58)	0.72	ND (<0.58)	ND (<0.58)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<5.1)	ND (<0.10)	0.13	0.69	0.11	ND (<0.099)	0.15	0.10	ND (<0.10)	ND (<0.097)	0.15
Chrysene	μg/L	0.002	1.8J	0.85J	0.23J	ND (<0.48)	0.16J	ND (<0.54)	ND (<4.7)	ND (<0.58)	1.2	0.59	ND (<0.58)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<5.1)	0.11	0.12	0.48	ND (<0.099)	ND (<0.099)	0.12	0.11	0.12	0.17	0.13
Dibenzo(a,h)anthracene	μg/L	NC	0.9J	ND (<1.9)	ND (<0.49)	ND (<0.48)	ND (<0.49)	ND (<0.54)	ND (<4.7)	ND (<0.58)	ND (<0.58)	ND (<0.58)	ND (<0.58)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<5.1)	ND (<0.10)	ND (<0.098)	ND (<0.098)	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.097)	ND (<0.10)	ND (<0.097)	ND (<0.096)
Fluoranthene	μg/L	50	4.1J	2.7	1.8	1.2 B	1.7	1.7	1.3J	2.6	3.3	1.7	1.1	0.93	ND (<0.49)	0.61	ND (<5.1)	1.2	0.46	1.2	0.34	0.53	0.6	0.89	0.41	0.68	0.52
Fluorene	μg/L	50	12J	13	13	8.7	14	13	10	17	13	6.1	4.3	5.2	1.2	4.1	5.9	11.8	1.9	4.1	2.4	5.3	3.4	6.6	1.4	4.0	4.4
Indeno(1,2,3-cd)pyrene	μg/L	0.002	0.9J	ND (<1.9)	ND (<0.49)	ND (<0.48)	ND (<0.49)	ND (<0.54)	ND (<4.7)	ND (<0.58)	ND (<0.58)	ND (<0.58)	ND (<0.58)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<5.1)	ND (<0.10)	ND (<0.098)	0.31	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.097)	ND (<0.10)	ND (<0.097)	ND (<0.096)
Naphthalene	μg/L	10	110JD	89	560 D	450 D	570 D	140 D	51	27	94	13	29	210	1.5	48 E	110	363	34.1	69.3	16.8	138	43	512	1.1	272	15.0
Phenanthrene	μg/L	50	8.3J	11	8	6.7 B	13	11	8.8	12	10	5.1	3.4	3.7	ND (<0.49)	2.8	ND (<5.1)	8.5	1.2	2.5	0.99	1.9	1.8	3.7	0.52	2.1	1.2
Pyrene	μg/L	50	5.9J	2.9	2.2	1.2 B	1.6	1.8	1.5J	2.9	3.7	2	1.5	1.1	ND (<0.49)	0.69	ND (<5.1)	1.4	0.58	1.6	0.45	0.59	0.73	1.0	0.54	0.83	0.71
Cyanide and Lead																											
Lead	μg/L	25	8.2	ND (<5.0)	ND (<5.0)	7.8	5.1	ND (<5.0)	ND (<5.0)	ND (<5.0)	10	ND (<5.0)	ND (<5.0)	0.010	0.010	0.010	ND (<10)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)
Cyanide	mg/L	0.2	0.843	0.816	R	0.61J	0.427	R	0.91	1.2	0.5	0.5	0.48	0.58	0.29	1	1.1	1.1	0.42	1.3	0.56	0.27	0.171	0.61	0.32	0.67	0.23

CONSTITUENT	UNITS	09/30/10	01/05/11	04/07/11	06/15/11	10/12/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/14	04/16/15	10/13/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21
MNA/WQ Parameters																	•						•	•		•
Alkalinity (as CaCO3)	mg/L	558	550	R	R	502J	547J	R	629	527	585	482	557	480	600	601	676	562	610	616	600	478	590	446	550	534
Chloride	mg/L	44.3	46.4	22.8	43.3 B	28.5J	R	68.2	70.6	39.4	42	44.5	44.2	14.2	49.3	55.7	65.4	25.7	58.0	15.2	15.2	43.9	38	20.3	37.4	24.6
Ethane	μg/L	ND (<10)	ND (<10)	2.9	ND (<300)	ND (<300)	ND (<300)	ND (<300)	ND (<380)	ND (<380)	ND (<380)	ND (<75)	6.2	3.2	5.1	2.8	2.1	3.4	5.1	ND (<1.00)	3.53 J	ND (<5.00)				
Ethene	μg/L	ND (<10)	ND (<10)	ND (<1.5)	ND (<300)	ND (<300)	ND (<300)	ND (<300)	ND (<350)	ND (<350)	ND (<350)	ND (<75)	0.038J	0.037J	ND (<0.10)	ND (<0.10)	0.042J	ND (<1.0)	ND (<1.0)	ND (<1.00)	ND (<5.00)	ND (<5.00)				
Ferrous Iron	mg/L	0.15	1.36	R	0.51J	0.47J	0.13J	R	ND (<0.1)	0.15	0.18	ND (<0.1)	ND (<0.1)	ND (<0.1)	0.15 HF	ND (<0.1)	8.2	3.0	5.8	3.8	9.2	2.5	3.2	4.2	6.0	8.7
Manganese	mg/L	NA	0.74	0.89	0.67	0.79	0.77	0.61	0.61	1	1.1	0.68	1	0.68	0.7	ND (<75)	0.609	0.0639	0.735	0.484	1.56	0.775	0.952	0.312	0.685	0.894
Methane	μg/L	820	3400	680	360	720	1,900	1,600	1,900	780	580	1,100	2,400	16	1,600	720	3,400	1,900	2,900	640	3,100	1,400	3,600	416	2,400	348
Nitrate	mg/L	NA	ND (<1.0)	ND (<0.05)	0.28	ND (<0.05)	ND (<0.5)	ND (<0.10)	ND (<0.50)	ND (<0.10)																
Nitrogen	mg/L	4.07	4.15	1.9	3.1	2.1	R	4.6	5.4	3	3.1	3.2	2.9	0.81	3.9	3.4	4.7	2.0	4.4	3.1	1.9	1.4	3.1	1.9	2.0	2.2
Sulfate	mg/L	NA	182	137 B	193 B	R	R	202 B	217	113	139	122	91.1	28.7	78.5	116	67.9	17.7	60.6	39.0	28.4	25.1	65.9	31.9	71.0	46.8
Sulfide	mg/L	NA	1.4	ND (<1.0)	ND (<1.0)	2.4	ND (<1.0)	R	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)				

Present in Associated Blank Sample

Diluted Sample

Estimated Concentration

Miligrams per Liter

Microliver Natural Adhenation

Not Averagized

Not Averagized

Not declerated above laboratory reporting limit (indicated by #)

which is a support of the control B D J mg/L MNA NA ND (<#) NS R μg/L

CONSTITUENT	UNITS	NYSDEC AWQS Values	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/14	04/16/15	10/13/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21
BTEX Compounds		Values																									
Benzene	μg/L	1	140	170	150 D	100 D	17	140 D	150 D	180	200	150	8.7	59	91	40	76	149	5.9	143	80.6	127	126	143	56.6	130	15.0
Ethylbenzene	µg/L	5	70	110	92	51	5	78	66	100	150	92	6.2	41	68	26	35	134	3.1	124	60.8	101	91.5	118	38.7	70.4	2.9
m/p-Xylene	µg/L	5	31	55	47	27	2.8	29	26	14	41	23	ND (<1.0)	ND (<10)	ND (<1.0)	4.9	5	4.9	ND (<2.0)	9.3	6.6	8.7	9.5	9.3	3.9	2.8	ND (<2.0)
o-Xylene	μg/L	5	34	54	41	27	3.6	36	37	14	56	35	ND (<1.0)	17	24	11	20	32.1	1.6	38.0	21.3	32.8	31.4	34.6	12.8	22.3	6.1
Toluene	μg/L	5	17	36	33	15	2	21	11	ND (<10)	14	9	ND (<1.0)	17	ND (<1.0)	1.4	ND (<2.0)	2.9	ND (<1.0)	3.8	2.1	3.8	3.7	4.5	1.5	3.0	ND (<1.0)
PAHs																											
Acenaphthene	μg/L	20	14 D	18	21	7	2.3	13	15	30	30	16	ND (<1.0)	40	27	14	31	54.7	3.0	39.5	39.1	57.8	45.2	53.3	14.6	47.0	9.9
Acenaphthylene	µg/L	NC	16J	27 D	36	11	4.7	10	2.2	34	49	ND (<0.48)	ND (<0.48)	31	25	16	27	47.3	1.9	26.2	24.4	30.6	17.6	21.4	5.9	16.0	3.2
Anthracene	μg/L	50	1.7	3	2.3	0.97 B	0.20J	1.4	1.2	1.6	2.8	ND (<0.48)	ND (<0.48)	2.8	1.8	1.2	ND (<2.5)	1.4	0.37	2.2	1.7	2.6	1.8	2.4	0.74	1.7	0.47
Benzo(a)anthracene	μg/L	0.002	ND (<0.19)	0.14	ND (<0.47)	2.1 B	ND (<0.50)	ND (<0.47)	ND (<0.49)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<2.5)	0.10	0.11	0.11	0.13	0.12	0.11	0.13	ND (<0.10)		ND (<0.098)				
Benzo(a)pyrene	μg/L	0.000	ND (<0.19)	ND (<0.57)	ND (<0.47)	2.3 B	ND (<0.50)	ND (<0.47)	ND (<0.49)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<2.5)	ND (<0.10)	0.11	ND (<0.098)	ND (<0.099)	ND (<0.099)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.21	ND (<0.098)				
Benzo(b)fluoranthene	μg/L	0.002	ND (<0.19)	ND (<0.57)	0.11J	2.8 B	ND (<0.50)	ND (<0.47)	ND (<0.49)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<2.5)	ND (<0.10)	0.17	ND (<0.098)	ND (<0.099)	ND (<0.099)	ND (<0.11)	0.11	ND (<0.10)	0.21	ND (<0.098)				
Benzo(g,h,i)perylene	μg/L	NC	ND (<0.19)	ND (<0.57)	ND (<0.47)	1.8 B	ND (<0.50)		ND (<0.49)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<2.5)	ND (<0.10)	ND (<0.097)	ND (<0.098)	ND (<0.099)	ND (<0.099)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.14	ND (<0.098)				
Benzo(k)fluoranthene	μg/L	0.002	ND (<0.19)	ND (<0.57)	ND (<0.47)	3.1 B	ND (<0.50)	ND (<0.47)	0.096J	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<2.5)	ND (<0.10)	0.15		ND (<0.099)	ND (<0.099)	ND (<0.11)	0.098	ND (<0.10)		ND (<0.098)				
Chrysene	μg/L	0.002	ND (<0.19)	11J	ND (<0.47)	2.7 B	ND (<0.50)	ND (<0.47)	ND (<0.49)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<2.5)	ND (<0.10)	0.098	ND (<0.098)	ND (<0.099)	ND (<0.099)	ND (<0.11)	0.11	ND (<0.10)	0.19	ND (<0.098)				
Dibenzo(a,h)anthracene	μg/L	NC	ND (<0.19)	ND (<0.57)	ND (<0.47)	1.4	ND (<0.50)		ND (<0.49)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<2.5)	ND (<0.10)	ND (<0.097)	ND (<0.098)	ND (<0.099)	ND (<0.099)	ND (<0.11)	ND (<0.097)	ND (<0.10)		ND (<0.098)				
Fluoranthene	μg/L	50	1.2	1.4	1.7	1.5 B	0.21J	1.1	0.94	1.5	2	ND (<0.48)	ND (<0.48)	2.7	1.6	1.1	ND (<2.5)	1.8	0.41	2.5	1.9	2.4	1.9	3.0	1.1	2.6	0.47
Fluorene	μg/L	50	10 D	11	16	4.7	1.3	8.8	13	17	21	9.1	ND (<0.48)	22	14	7.1	15	22.2	1.1	17.2	17.2	19.5	12.8	24.1	5.3	16.9	1.8
Indeno(1,2,3-cd)pyrene	μg/L	0.002	ND (<0.19)	ND (<0.57)	ND (<0.47)	1.7 B	ND (<0.50)		ND (<0.49)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<2.5)	ND (<0.10)	ND (<0.097)	ND (<0.098)	ND (<0.099)	ND (<0.099)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.11	ND (<0.098)				
Naphthalene	μg/L	10	ND (<0.19)	110 D	220 D	ND (<0.47)	26	ND (<0.47)	ND (<0.49)	2.4	230E	ND (<0.48)	ND (<0.48)	1.7	4.6	5.1	7.4	4.6	0.16	5.8	30.9	9.8	12.9	36.8	2.2	8.0	1.4
Phenanthrene	μg/L	50	5.6	9.6	13	4.8 B	1.1	6.7	6.3	11	15	ND (<0.48)	ND (<0.48)	18	11	6.7	10	15.9	0.99	15.7	14.1	16.5	11.6	18.4	2.5	13.1	ND (<0.098)
Pyrene	μg/L	50	1.4J	1.3	1.9	2.1 B	ND (<0.50)	1.1	0.87	1.3	2	ND (<0.48)	ND (<0.48)	3	1.8	1.2	ND (<2.5)	2.0	0.50	2.7	2.1	2.5	2.1	3.3	1.2	2.9	0.54
Cyanide and Lead																											
Lead	μg/L	25	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<3.0)	ND (<3.0)	ND (<5.0)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<10)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	6.1	ND (<5.0)					
Cyanide	mg/L	0.2	0.353	0.342	R	0.25J	0.137	R	0.34	0.41	0.11	0.11	0.023	0.25	0.24	0.24	0.25	0.26	0.21	0.26	0.23	0.26	0.192	0.23	0.19	0.25	0.17

CONSTITUENT	UNITS	09/30/10	01/05/11	04/07/11	06/15/11	10/12/11	12/13/11	03/13/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/14	04/16/15	10/13/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21
MNA/WQ Parameters																										
Alkalinity (as CaCO3)	mg/L	442	410	R	R	586J	600J	R	436	530	585	454	595	532	638	615	636	706	630	724	740	560	650	156	670	680
Chloride	mg/L	7.2	6.7	9.4	6.1 B	3.4J	R	12.7	12.8	5.5	5.4	5	6.5	5.8	4.9	5.7	6.8	3.4	6.5	5.6	4.8	11.8	4.8	3.6	5.2	3.6
Ethane	μg/L	ND (<2.5)	ND (<2.5)	ND (<30)	ND (<30)	ND (<1.5)	ND (<1.5)	0.57J	ND (<750)	ND (<750)	ND (<750)	ND (<750)	ND (<750)	ND (<75)	ND (<75)	ND (<75)	1.2	0.15J	0.84J	0.82J	0.99J	0.92 J	1.1	ND (<1.00)	ND (<5.00)	ND (<5.00)
Ethene	μg/L	ND (<2.5)	ND (<2.5)	ND (<30)	ND (<30)	ND (<1.5)	ND (<1.5)	2.6	ND (<700)	ND (<700)	ND (<700)	ND (<700)	ND (<700)	ND (<70)	ND (<70)	ND (<75)	0.24J	0.036J	0.16J	0.13J	0.17J	0.15 J	0.20 J	ND (<1.00)	ND (<5.00)	ND (<5.00)
Ferrous Iron	mg/L	ND (<0.1)	0.44	R	0.33J	R	0.08	ND (<0.1)	0.12	ND (<0.1)	0.13	ND (<0.1)	ND (<0.1)	ND (<0.1)	ND (<0.1)	ND (<0.1)	2.4	1.2	3.0	3.5	3.1	2.6	1.9	2.8	3.0	0.79
Manganese	mg/L	NA	0.7	0.59	0.9	0.17	0.61	0.88	1.1	0.63	0.7	0.22	0.63	0.42	0.33	ND (<75)	0.601	0.522	0.599	0.551	0.592	0.603	0.658	0.373	0.650	0.373
Methane	μg/L	210J	580 D	270	170	37	400 B	140	550	170	150	75	410	160	1100	110	900	180	780	820	830	850	1100	4.95 J	488	ND (<5.00)
Nitrate	mg/L	NA	ND (<1.0)	ND (<0.05)	ND (<0.05)	0.65	0.17	ND (<0.05)	ND (<0.05)	0.1	ND (<0.05)	0.53	ND (<0.05)	ND (<0.05)	0.37	0.074	ND (<0.10)	0.33	ND (<0.10)	ND (<1.0)	ND (<1.0)	ND (<0.10)				
Nitrogen	mg/L	3.2	2.75	2.6	1.8	R	R	3.2	3.8	3.6	2.8	2.4	3.3	2.1	1.9	2.6	5.4	2.4	3.2	2.3	3.2	3.4	3.9	2	2.8	2.4
Sulfate	mg/L	NA	316	312 B	243 B	R	R	351 B	487	140	86	ND (<1.0)	107	38.2	22.8	13.3	145	37.8	77.7	111	75.8	79.6	67.7	39	95.7	37.5
Sulfide	mg/L	NA	2.7J	ND (<1.0)	ND (<1.0)	0.8J	ND (<1.0)	R	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)

Present in Associated Blank Sample

Diluted Sample

Estimated Concentration

Miligrams per Liter

Microliver Natural Adhenation

Not Averagized

Not Averagized

Not declerated above laboratory reporting limit (indicated by #)

which is a second of the contract of the co

B D J mg/L MNA NA ND (<#) NS R μg/L

September 2021 Semi-Annual Groundwater Monitoring Report National Grid Johnstown Site 109 North Market Street, Johnstown NY 12095

Appendix A – Field Data and Inspections

April 14, 2021 AJ/PL

Well ID	Sample?	Well Size?	DTW	DTP	DTB	Comments
RW-1	No	2"	12.72	NP	21.50	4" Well?
MW-4	Yes	2"	23.46	NP	27.32	
MW-7	Yes	2"	14.31	NP	22.10	
MVV-10	Yes	2"	14.77	NP	22.05	
MW-11	No	2"	NA	NA	22.90	inaccessable- debris
MW-12	Yes	2"	15.29	NP	22.24	
MVV-13	Yes	2"	14.02	NP	22.75	MS/MSD
MW-14	Yes	2"	13.95	NP	23.55	Field Duplicate
MW-15	Yes	2"	16.61	NP	23.00	
MW-16	Yes	2"	9.94	NP	19.45	
Gauge-1 (bridge)	No		16.73	NP	19.76	

DTW-depth to water DTP-depth to product DTB-depth to bottom All from top of casing

Unable to access MW-11. Area is on adjacent property and was full of concrete/metal and wood debris.

ING	ational Grid									
10	9 North Mar	ket Street, J	ohnstown N	ew York				1		
	ampling Pers						Date:	4/14/21		
-	b Number:		120950-221				Weather:	-	20,	
W	ell ld.	MW-4					Time In:	11:00	Time Out:	
		With the second	The second secon							
II	Well In	formation				14000	Para Testian To			
_					TOC	Other	Well Type:		ushmount	Stick-Up
II	epth to Wate	THE RESERVE OF THE PERSON NAMED IN COLUMN TWO		eet) Z	27.32		Well Locked Measuring Po		Yes Yes	No No
	epth to Botton				JP		Well Materia			ner:
	ength of Wate				84		Well Diamet		2" Ott	
	olume of Wat				2-121		Comments:			
Th	ree Well Vol	umes:		gal)].	. 8					
		projection and the second								
	Purging I	nformation					 			
				V	_	_	_		Conversion Fa	
	rging Metho			Bailer	Peristaltic		ard Dedicated Pump		1" ID 2" ID	4" ID 6" ID
	bing/Bailer N	C. (1000) C. (10		Teflon	Stainless St.		ylene other	gal/ft. of		
	mpling Meth			Bailer	Peristaltic	Well Wiza	ard Dedicated Pump		0.04 0.16	0.66 1.47
	erage Pump ration of Pur				50			1 gall	on=3.785L=3785ml	_=1337cu. feet
	tal Volume F			(min) (gal) 22	<u> </u>	id well go dry?	Yes No	\checkmark		
10				,			TesNO_			
	Horiba I	U-52 Water	Quality Met	er Used?	Yes	No				2000
						55.5				
П	Time	DTW	Te	emp	рН	ORP	Conductivity	Turbidity	DO	TDS
	11110	(feet)		C)	(S.U.)	(mV)	(mS/cm)	(NTU)	(mg/L)	
\vdash	1120	. ,					()	()		I (q/L) II
╟	11 600	3 (4	6 15	n	7 30	76	179	04		(g/L)
	125	23,4		76	7.30	76	1,39	52,4	4,01	0.885
\vdash	1/25	24.0	1 13.	79	7.16	84	1.41	52.4	3,40	
	1130	24.0	1 13.	79	7.16	84	1.40	43.5	4,01 3,40 3,28	0.385
	11 35	24.0	1 13. 7 13. 13.	79 52 42	7.08	84 88 89	1.40	43.5	4,01 3,40 3,28 3,24	0.885
	1130	24.0 23.9 23.99 24.0	1 13. 7 13. 1 13.	79 52 42	7.16 7.38 7.06 7.05	84 88 89	1.40 1.40 1.38	43.5 8.8 3.7	4,01 3,40 3,28 3,24 3,24	0.885 0.906 0.897 0.895 0.887
	11 35 11 45 11 45	24.0 23.99 23.99 24.01 24.01	/ /3. 7 /3. 1 /3. 1 /3	79 52 42 65	7.16 7.08 7.06 7.05 7.05	84 88 89 90	1.40 1.40 1.38 1.38	43.5 8.8 3.7 9.3	4,01 3,40 3,28 3,24 3,24 4,5/	0.385 0.306 3.897 0.895 0.887 0.885
	11 35	24.0 23.9 23.99 24.0	1 13. 7 13. 1 13.	79 52 42	7.16 7.38 7.06 7.05	84 88 89	1.40 1.40 1.38	43.5 8.8 3.7	4,01 3,40 3,28 3,24 3,24	0.885 0.906 0.897 0.895 0.887
	11 35 11 45 11 45	24.0 23.99 23.99 24.01 24.01	/ /3. 7 /3. 1 /3. 1 /3	79 52 42 65	7.16 7.08 7.06 7.05 7.05	84 88 89 90	1.40 1.40 1.38 1.38	43.5 8.8 3.7 9.3	4,01 3,40 3,28 3,24 3,24 4,5/	0.385 0.306 0.897 0.895 0.887 0.885
	11 35 11 45 11 45	24.0 23.99 23.99 24.01 24.01	/ /3. 7 /3. 1 /3. 1 /3	79 52 42 65	7.16 7.08 7.06 7.05 7.05	84 88 89 90	1.40 1.40 1.38 1.38	43.5 8.8 3.7 9.3	4,01 3,40 3,28 3,24 3,24 4,5/	0.385 0.306 0.897 0.895 0.887 0.885
	11 35 11 45 11 45	24.0 23.99 23.99 24.01 24.01	/ /3. 7 /3. 1 /3. 1 /3	79 52 42 65	7.16 7.08 7.06 7.05 7.05	84 88 89 90	1.40 1.40 1.38 1.38	43.5 8.8 3.7 9.3	4,01 3,40 3,28 3,24 3,24 4,5/	0.385 0.306 0.897 0.895 0.887 0.885
	11 35 11 40 11 45	24.0 23.99 23.99 24.01 24.01	/ /3. 7 /3. 1 /3. 1 /3	79 52 42 65	7.16 7.08 7.06 7.05 7.05	84 88 89 90	1.40 1.40 1.38 1.38	43.5 8.8 3.7 9.3	4,01 3,40 3,28 3,24 3,24 4,5/	0.385 0.306 0.897 0.895 0.887 0.885
Sai	11 35 11 40 11 45	24.0 23.9 23.99 24.09 24.09 24.03	/ /3. 7 /3. 1 /3. 1 /3	79 52 42 65	7.16 7.08 7.06 7.05 7.05	84 88 89 90	1.40 1.40 1.38 1.38	43.5 8.8 3.7 9.3	4,01 3,40 3,28 3,24 3,24 4,5/	0.385 0.306 0.897 0.895 0.887 0.885
Sai	11 35 11 35 11 40 11 45 11 50	24.0 23.9 23.99 24.09 24.09	/ /3. 7 /3. 1 /3. 1 /3 / /3	79 52 42 65 65 ,58	7.08	84 88 89 90 90	1.40 1.40 1.38 1.38	43.5 8.8 3.7 9.3 10.9	4,01 3,40 3,28 3,24 3,24 4,51	0.385 0.306 0.897 0.895 0.887 0.885
San	il 35 il 49 il 45 il 50 mpling Inform	24.0 23.99 23.99 24.09 24.09	/ /3. / /3. / /3 / /3 / /3	79 52 42 .65 .78	7, 16 7, 38 7, 36 7, 35 7, 35 7, 37	84 88 89 90 90	1.40 1.40 1.38 1.38 1.38	43.5 8.8 3.7 9.3 10.9	4,0(3,40 3,28 3,24 3,24 4,5/ 24,29	0.385 0.906 0.897 0.895 0.887 0.885
Sa	11 35 11 35 11 40 11 45 11 50	24.0 23.9 23.99 24.09 24.09	/ /3. 7 /3. 1 /3. 1 /3 / /3	79 52 42 .65 .78	7.08	84 88 89 90 90	1.40 1.40 1.38 1.38 1.38	43.5 8.8 3.7 9.3 10.9	### 4.29 Method SW-846 Method	0.385 0.306 3.897 0.895 0.887 0.886
Sa	mpling Inform	24.0 23.99 23.99 24.0 24.05 24.05	/ /3. // /3, // /3 // /3 // /3 Material Glass	79 52 42 .65 .58	7, 16 7, 38 7, 38 7, 35 7, 35 7, 35 7, 35	84 88 89 90 90	1, 40 1, 40 1, 38 1, 38 1, 38 NOC PAH's Ferrous Iron	43.5 8.8 3.7 9.3 10.9	### Method SW-846 Method SM 3500 FE E	0.885 0.906 0.897 0.887 0.885 0.886
Sal	il 35 il 49 il 45 il 50 mpling Inform	24.0 23.99 23.99 24.09 24.09	/ /3. / /3. / /3 / /3 / /3	79 52 42 .65 .58	7, 16 7, 38 7, 36 7, 35 7, 35 7, 37	84 88 89 90 90	oounds analyzed SVOC PAH's Ferrous Iron Chloride	93,5 8,8 3,7 9,3 (0,9	## 4,0 (3,40 3,2 8 3,2 4 3,2 4 4,5 / 4,5 / 4,5 / Method SW-846 Method SM 3500 FE D SM 4500 CI E	0. 38.5 0. 90.6 0. 89.7 0. 88.7 0. 88.5 0. 88.6
1	mpling Inform Quantity 1	24.0 23.99 23.99 24.09 24.09 24.09 24.09 250 mL	/ /3. // /3 // /3 // /3 // /3 Material Glass Plastic	79 52 42 .65 .78 Unp	7, 16 7, 38 7, 38 7, 35 7, 35 7, 35 7, 35 7, 34	84 88 89 90 90	1.40 1.40 1.38 1.38 1.38 1.38 Indicate the second	93.5 8.8 3.7 9.3 10.9	#, 0 (3, 40 3, 2 4 3, 2 4 4, 5 / 4, 5 / 4, 5 / 4, 5 / 5 / 8 / 4, 29 Method SW-846 Method SM 4500 CI E EPA Method 310	0. 38.5 0. 30.6 0. 89.7 0. 89.5 0. 88.5 0. 88.6 0. 88.6
1		24.0 23.9 23.99 24.0 24.0 24.0 24.0 250 mL	/ /3. // /3 // /3 // /3 // /3 Material Glass Plastic	79 52 42 .65 .78 Pre Unp	eservative preserved	84 88 89 90 90	oounds analyzed SVOC PAH's Ferrous Iron Chloride Total Alkalinity Nitrogen	93.5 8.8 3.7 9.3 (0,9	### Method SM 3500 FE E SM 4500 CI E EPA Method 35:	0. \$3.5 0. 906 0. 897 0. 895 0. 887 0. 886 d 8270
1	mpling Inform Quantity 1 1 1 1	24.0 23.99 23.99 24.09 24.09 24.09 24.09 250 mL	/ /3. // /3 // /3 // /3 // /3 // /3 Material Glass Plastic Plastic Plastic	79 52 42 .65 .78 Pre Unp	eservative preserved	84 88 89 90 90	pounds analyzed SVOC PAH's Ferrous Iron Chloride Total Alkalinity Nitrogen d & Manganese	93.5 8.8 3.7 9.3 (0,9	Method SW-846 Method SM 3500 FE E SM 4500 CI E EPA Method 310 EPA Method 35 EPA Method 60	0. \$3.5 0. 906 0. 897 0. 895 0. 885 0. 886 0. 886
1		24.0 23.9 23.99 24.0 24.0 24.0 24.0 250 mL	/ /3. // /3 // /3 // /3 // /3 Material Glass Plastic	79 52 42 .65 .78 Pre Unp	eservative preserved	8 4 8 8 8 9 9 0 9 0 9 0 9 0 T Lea	oounds analyzed SVOC PAH's Ferrous Iron Chloride Total Alkalinity Nitrogen	93,5 8,8 3,7 9,3 (0,9	### Method SM 3500 FE E SM 4500 CI E EPA Method 35:	0. 38.5 0. 30.6 0. 89.7 0. 88.7 0. 88.6 0. 88.6 0. 2 1.2 10 d 8260

23	40 mL	Glass	Benzalkonium Chl	oride	Methane/Eth Ethene/C			RSK-175	
Sample ID: Sample Time:	MW-4-0	421	Duplicate? MS/MSD?	Yes Yes	No No	Shipped:	F aboratory:	Albany Service Cent Pace Courier Pace Analytic Greensburg, Penns	al

250 mL

Plastic

NaOH & Zinc Acetate

Nitrate & Nitrite

Sulfide Sulfate

Methane/Ethane/

EPA Method 353.2

EPA Method 376.1

EPA Method 375.4

10	9 North Mar	ket Street, J	ohnstown N	ew York							
Sa	mpling Pers	onnel: Rex	er ho				Date:	14/21			
Jo	b Number:	0603200-	120950-221				Weather:	Exhan	4 55°		
W	ell Id.	MW-7					Time In:	1045	1	Time Out:	1135
_	Well In	formation				0.11	147 W T		of -		011111
D.	epth to Wate	r.	/5	inat\ T	TOC 14, 31	Other	Well Type: Well Locke		FII	ushmount Yes	Stick-Up No
	epth to Wate			eet)	22.10		Measuring F		ked:	Yes	No
II	pth to Produ			eet)			Well Mater				ner:
	ngth of Wate		(f	eet)	7.79		Well Diame		1'	" 2" Oth	ner:
	lume of Wat		(9	gal)	1.24		Comments	:			
Th	ree Well Vol	umes:	(9	gal)	3.73						
	Puraina I	nformation									
	rurging i	Hiomiation							Γ	Conversion Fa	actors
Pu	rging Metho	d:		Bailer	Peristaltio	Well V	Vizard Dedicated Pump	∇		1" ID 2" ID	4" ID 6" ID
Tu	bing/Bailer N	/laterial:		Teflon	Stainless St	Poly	ethylene other	-	gal/ft. of		
	mpling Meth			Bailer		Well V	Vizard Dedicated Pump	\bowtie	water	0.04 0.16	0.66 1.47
	erage Pump			l/min)	200				1 gal	lon=3.785L=3785mL	.=1337cu. feet
	ration of Pur tal Volume F			(min) (gal)	30	Did well go dr	v? Yes No				
10							y: 105140				
	Horiba	J-52 Water	Quality Met	er Used	? Yes	No No					
						1104-140					
П	Time	DTW	Te	emp	рН	ORP	Conductivity	Tu	rbidity	DO	TDS
		(feet)		C)	(S.U.)	(mV)	(mS/cm)		NTU)	(mg/L)	(g/L)
	1056	15.08		.99	7.88	-39	1.08	8	06	1.55	1693
	1055	15.4	_	:00	2.83	-53	1.05		55	0.00	-681
	1000	15,65		.01	7.78	-48	1.05	6		0.00	1 673
	1105	15.93		66	7.76	-46	1.05	4		0,00	.621
	1110	16,19		52	7.28	-59	1.08	31	3	0.00	. 692
	1115	16.41	13	00	2,28	-65	1.07	21	9	0.00	.684
	1120	16.6	3 12.	58	2.29	-69	1.07	29	3	0.00	.682
Sa	mpling Inforr	nation:									
	Quantity	Size	Material		Preservative	Co	mpounds analyze	d		Method	
	2	100 mL	Glass		Jnpreserved	- 00	SVOC PAH's	·u	FPA	SW-846 Method	1 8270
		TOOTHE	Olass		STIPLESERVED	- 2	Ferrous Iron		L. 7.	SM 3500 FE D	
	1	250 mL	Plastic	١ .	Jnpreserved		Chloride			SM 4500 CI E	
		200 1112	ridotto	,	311p10001400		Total Alkalinity			EPA Method 310	
	1	250 mL	Plastic		H2SO4		Nitrogen			EPA Method 351	The second secon
	1	250 mL	Plastic		HNO3		ead & Manganese			EPA Method 60	
	3	40 mL	Glass		HCI		VOC's & BTEX			SW-846 Method	
	1 250 mL Plastic NaOH			Total Cyanide			EPA Method 901				
	1 250 ML Plastic NaOH			Nitrate & Nitrite			EPA Method 353	-			
	1 250 mL Plastic NaOH & Zinc Acetate		е 📙	Sulfide			EPA Method 376				
	1 230 IIIL Flastic NaOIT & Zilic Acetate			<u> </u>	Sulfate			EPA Method 375			
							Methane/Ethane/				
7,000,000,000							Ethene/CO2			RSK-175	
			21000	201120	ondin onlone	-			<u> </u>		
							Sh ☑	ipped:	Drop-off	Albany Service	Center
	nple ID:	MW-7-0				Yes No	\Rightarrow	1555	or or	Pace Courier	
San	nple Time:	1/20		N	IS/MSD?	Yes No 2	\leq	La	aboratory:		
										Greensburg, Pe	annayivania

National Grid											
	ket Street, Johns	stown New York									
Sampling Pers					Date: 4 H 2						
Job Number:	0603200-1209	350-221				Sunny 60°		273	,		
Well Id.	MW-10				Time In:	p.40 '	Time Out:	1231	<u> </u>		
Well In	formation	_									
			TOC	Other	Well Type:		ıshmount	Stick-Up	\times		
Depth to Wate		(feet)	14.77		Well Locke		Yes	No	_		
Depth to Botto		(feet)	22.05			oint Marked:	Yes	No			
Depth to Produ		(feet)	P 36		Well Materi Well Diame						
Length of Wate Volume of Wat		(feet)	7.28		Comments:		2" Oth	er:			
Three Well Vol		(gal)	3,49		Comments.						
Trilee Well Voi	iullies.	(gal)	3,77								
								-			
Purging I	Information	-					0	-4			
D Malla	.1.						Conversion Fa	4" ID	6" ID		
Purging Methor Tubing/Bailer M		Baile	\vdash		ard Dedicated Pump ylene other	gal/ft. of	1 10 2 10	4 10	0 10		
Sampling Meth		Teflor Baile			ard Dedicated Pump		0.04 0.16	0.66	1.47		
Average Pump		(ml/min)	200	VICII VVIZA	ard Dedicated Fullip		on=3.785L=3785mL				
Duration of Pur	mpina:	(min)	30			. 92	0 0 002 0 00	10070011			
Total Volume F		(gal)	2	Did well go dry?	Yes No	X					
Horiba	U-52 Water Qua	lity Meter Used	? Yes	No No							
-				STON CONTESTED OF WARD	A 200 (00 M 200 A		***				
Time	DTW	Temp	рН	ORP	Conductivity	Turbidity	DO	TD	S		
	(feet)	(°C)	(S.U.)	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/l	_)		
1145	15.21	10.33	7.82	-48	2-33	146	.49	1.5	0		
1150	15.81	9.31	7.82	-85	1,98	102	0.00	1.2			
1155	16125	9,10	7.79	-92	1.82	40.2	0.00	list			
1200	16.66	8.88	7.74	-100	1.98	32.6	0,00	1,28			
1205	17.02	8.71	7.72	-106	2.25	41.1	0.00	7,4			
1210	17.26	8.71	7.21	-111	2,43	48.6	0,00	1.50			
1215	17.44	8.87	2.71	-112	2,54	92.4	0.00	1,6.	2		
						4.00					
Sampling Inform	nation:										
Ougant!t	Cina Da	atauial [Dunnam rations	Com	naunda analusa		Mothod		\neg		

Quantity	Size	Material	Preservative	Compounds analyzed	Method
2	100 mL	Glass	Unpreserved	SVOC PAH's	EPA SW-846 Method 8270
				Ferrous Iron	SM 3500 FE D
1	250 mL	Plastic	Unpreserved	Chloride	SM 4500 CI E
				Total Alkalinity	EPA Method 310.2
1	250 mL	Plastic	H2SO4	Nitrogen	EPA Method 351.2
1	250 mL	Plastic	HNO3	Lead & Manganese	EPA Method 6010
3	40 mL	Glass	HCI	VOC's & BTEX	EPA SW-846 Method 8260
1	250 mL	Plastic	NaOH	Total Cyanide	EPA Method 9012B
				Nitrate & Nitrite	EPA Method 353.2
1 1	250 mL	Plastic	NaOH & Zinc Acetate	Sulfide	EPA Method 376.1
			Sulfate	EPA Method 375.4	
				Methane/Ethane/	
2	40 mL	Glass	Benzalkonium Chloride	Ethene/CO2	RSK-175

				Shipped: Drop-off Albany Service Center
Sample ID:	MW-10-0421	Duplicate?	Yes No	Pace Courier
Sample Time:	12:15	MS/MSD?	Yes No	Laboratory: Pace Analytical
				Greensburg, Pennsylvania

Sample ID:

Sample Time:

MW-12-0421

1045

Duplicate?

MS/MSD?

Shipped:

Laboratory:

Pace Courier

Pace Analytical

Greensburg, Pennsylvania

109 North Market Street, Johnstown New York

Sampling Person		A5_			Date:	1/14/21		
ob Number:		120950-221			Weather:	55°F, 51	Time Out	1105
/ell ld.	MW-13				Time In: (1945	Time Out:	1105
Well Info Depth to Water Depth to Botton Depth to Produ ength of Water Volume of Water Three Well Vol	m: lct: er Column: er in Well:	(fo (fo (fo	TOC 14.02 eet) 22.75 eet) 0.00 eet) 3.73 eet) 3.73 eat) 1.39 eat) 4.1	Other	Well Type: Well Locked Measuring P Well Materia Well Diame Comments:	oint Marked: al: P		Stick-Up No No her:
- Durging I	nformation							
Purging II	nformation						Conversion F	actors
urging Method			Bailer Peristalti		izard Dedicated Pump		1" ID 2" ID	4" ID (
ubing/Bailer M			Teflon Stainless S		thylene other	gal/ft.		0.66
ampling Methorerage Pumpi		250 (Bailer Peristalti	c Well W	izard Dedicated Pump		er 0.04 0.16 gallon=3.785L=3785m	
verage Pumpluration of Pur			/min)			1	gallon=3.785L=3785m	L=1337Cu. 166
otal Volume R			(gal)	Did well go dry	/? Yes No	ঠা		
		-	***************************************					
Horiba l	J-52 Water	Quality Met	er Used? Ye	s No				

Time	DTW	Te	тр рН	ORP	Conductivity	Turbidity	DO	TDS
	(feet)	0.000	C) (S.U.)	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L
1000	14.15		06 7.80	-6	1.566	70.0	3.62	0.36
1005	14.15		9 7.84	-8	0.563	55.5	2.24	036
1010	14.15		10 7.89	-9	0.556	42.9	0.74	135
1015	14.15		39 7.92	-3	0.553	32-0	0.46	035
1020	14.15	14.			0.551	25.2	0.33	035
1025	14.18		18 7.95	9	0.531	23.8	0.00	0-34
1030	14.20	11.0		le	0.515	17.3	000	0.32
107-	7 107	112			0-0-0			

		100000						
mpling Inforn	nation:							
Quantity	Size	Material	Preservative	Cor	npounds analyze	d	Method	
2	100 mL	Glass	Unpreserved		SVOC PAH's		PA SW-846 Metho	d 8270
	TOUTHL	Jiass	Shiproserved		Ferrous Iron		SM 3500 FE I	
1 1	250 mL	Plastic	Unpreserved		Chloride		SM 4500 CI E	
	200 IIIL	i lastic	Jilpioserved		Total Alkalinity		EPA Method 31	
1	250 mL	Plastic	H2SO4	_	Nitrogen	_	EPA Method 35	
1	250 mL	Plastic	HNO3	12	ead & Manganese		EPA Method 60	
			HCI		VOC's & BTEX		PA SW-846 Metho	No. 1 Telephone Control
3	40 mL	Glass	NaOH		Total Cyanide		EPA Method 90	Alternative Co.
1	250 mL	Plastic	NaUH		THE RESERVE TO THE RE			
	250 ml	Plantin	NaOH & Zinc Aceta	to -	Nitrate & Nitrite		EPA Method 35	
1 1	250 mL	Plastic	Naur & Zinc Aceta		Sulfide Sulfate		EPA Method 37 EPA Method 37	
				-			EFA MELIOU 37	J. 4
	40	01	Dennelli		Methane/Ethane/ Ethene/CO2	1	DQV 475	
2	40 mL	Glass	Benzalkonium Chlori	ue	Etherie/CO2		RSK-175	
MW-13-MS	S-0421 and	MW-13-MSE	0-0421		Shi	pped: Drop-	off Albany Service	Center
mple ID:	MW-13-	0421	Duplicate?	Yes No			Pace Courier	\triangleright
mple Time:	103	5	MS/MSD?	Yes No		Laborato		
	- 0				_		Greensburg, P	ennsylvani

Depth to Water:

Depth to Bottom:

Depth to Product:

Length of Water Column:

Volume of Water in Well:

Three Well Volumes:

Well Information	TOC	Other	Well Type:	Flushmount	Stick-Up		
Well Id. MW-14			Time In: ///O	['] Time Out:	1205		
Job Number: 0603200-120950-221			Weather: 63° F, Synny				
Sampling Personnel:		Date: 4/14/21					
109 North Market Street, Johnstown New	York						

Well Locked:

Well Material:

Well Diameter:

Comments:

Measuring Point Marked:

water brange

Yes

Yes

Other:

Other:

13.95

23.55

NP

9.60

1.53

(feet)

(feet)

(feet)

(feet)

(gal)

(gal)

Purging Information									A.A.	
							Conve	rsion Fa	ctors	
Purging Method:		Bailer	Peristaltic		Dedicated Pump		1" ID	2" ID	4" ID	6" ID
Tubing/Bailer Material:		Teflon	Stainless St.	Polyethylen	ne other	gal/ft. of	550			
Sampling Method:		Bailer	Peristaltic	Well Wizard I	Dedicated Pump	water	0.04	0.16	0.66	1.47
Average Pumping Rate:	250	(ml/min)				1 gallo	on=3.785L	=3785mL	=1337cu.	feet
Duration of Pumping:	30	(min)								
Total Volume Removed:	2.5	(gal)	Did w	ell go dry?	Yes No 🗶					
Horiba U-52 Wate	r Quality N	Meter Used?	Yes	No						

Time	DTW	Temp	рН	ORP	Conductivity	Turbidity	DO	TDS
	(feet)	(°C)	(S.U.)	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)
1115	14.34	11,00	7.81	53	0619	226	0.30	0.391
1120	14.61	11-21	7.56	100	0.664	756	1.01	0427
1125	14.63	10.41	7.62	102	1.610	472	000	0391
1130	14.80	10,43	7.62	104	0.611	275	000	0391
1135	14.87	10.38	7.62	110	0-610	130	0.00	0.391
1140	14.95	10.38	7-63	115	0.410	69.0	0.00	0.390
1145	15.02	10.31	7.64	121	0.610	40.1	0.00	0390
								1.11

Sampling Information:

Quantity	Size	Material	Preservative	Compounds analyzed	Method
2	100 mL	Glass	Unpreserved	SVOC PAH's	EPA SW-846 Method 8270
				Ferrous Iron	SM 3500 FE D
1	250 mL	Plastic	Unpreserved	Chloride	SM 4500 CI E
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Total Alkalinity	EPA Method 310.2
1	250 mL	Plastic	H2SO4	Nitrogen	EPA Method 351.2
1	250 mL	Plastic	HNO3	Lead & Manganese	EPA Method 6010
3	40 mL	40 mL Glass	HCI	VOC's & BTEX	EPA SW-846 Method 8260
1	250 mL	Plastic	NaOH	Total Cyanide	EPA Method 9012B
				Nitrate & Nitrite	EPA Method 353.2
1	250 mL	Plastic	NaOH & Zinc Acetate	Sulfide	EPA Method 376.1
				Sulfate	EPA Method 375.4
			He	Methane/Ethane/	DOLLATE
2	40 mL	Glass	Benzalkonium Chloride	Ethene/CO2	RSK-175

Field D	unlica	to-0421
rielu D	upiica	IC-UTL I

MW-14-0421 Sample ID: 1150 Sample Time:

Duplicate? MS/MSD?

Shipped: Drop-off Albany Service Center

Pace Courier

Laboratory: Pace Analytical Greensburg, Pennsylvania

National Grid								
109 North Mark	cet Street, Johns	stown New York						
Sampling Person						14/21		
Job Number:	0603200-1209	950-221			Weather:	SUMM 550		
Well Id.	MW-15				Time In: 쮥	:55	Time Out:	1045
Depth to Water Depth to Bottor Depth to Produ Length of Water Volume of Water Three Well Vol	n: ct: er Column: er in Well:	(feet) (feet) (feet) (feet) (gal) (gal)	TOC 16,64 23.00 	Other	Well Type: Well Locke Measuring P Well Materi Well Diame Comments:	d: Point Marked: ial: PVC eter: 1"	shmount Yes Yes SS Oth 2" Oth	
Purging Method Tubing/Bailer M Sampling Method Average Pumpi Duration of Pur Total Volume R	flaterial: od: ing Rate: nping: temoved:		Stainless St. Peristaltic	Polyethy	ard Dedicated Pump ylene \times other ard Dedicated Pump Yes \times No	gal/ft. of water	Conversion Fa 1" ID 2" ID 0.04 0.16 on=3.785L=3785mL	0.66 1.47
Time	DTW	Temp	pН	ORP	Conductivity	Turbidity	DO	TDS
	(feet)	(°C)	(S.U.)	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)
10800 100	17.10	14.85	8.29	-59	-242	32,8	0.00	.473
0805100		14,44	7.89	-23	.676	59.6	0.00	.432
36 ni	17212	11 22	2 3 2	-25	6/04	56.0	0.00	1425

Time	DTW	Temp	рН	ORP	Conductivity	Turbidity	DO	TDS
	(feet)	(°C)	(S.U.)	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)
10800 100	1710	14.85	8.29	-59	-742	52,8	0.00	0473
0805100	5 12.76	14, 44	7.89	-23	.676	39.6	0.00	.432
0960 pi	17.67	14.27	7.77	-75	,664	56.0	0.00	1425
-0915 101	517,85	14.26	7.67	-76	,707	57.7	0.00	-453
0920 10	2018,00	12.29	7.60	-83	.751	57.4	6.50	1480
	518.06	10.26	7.61	-94	. 837	28.4	0.00	.536
093010	3018,24	10.34	2.59	-99	, 892	27.6	0,00	.571
					5 A A A A A A A A A A A A A A A A A A A			
				- Who				

Sampling Information	Samp	ling	Intorr	nation
----------------------	------	------	--------	--------

Quantity	Size	Material	Preservative	Compounds analyzed	Method
2	100 mL	Glass	Unpreserved	SVOC PAH's	EPA SW-846 Method 8270
				Ferrous Iron	SM 3500 FE D
1	250 mL	Plastic	Unpreserved	Chloride	SM 4500 CI E
				Total Alkalinity	EPA Method 310.2
1	250 mL	Plastic	H2SO4	Nitrogen	EPA Method 351.2
1	250 mL	Plastic	HNO3	Lead & Manganese	EPA Method 6010
3	40 mL	Glass	HCI	VOC's & BTEX	EPA SW-846 Method 8260
1	250 mL	Plastic	NaOH	Total Cyanide	EPA Method 9012B
				Nitrate & Nitrite	EPA Method 353.2
1	250 mL	Plastic	NaOH & Zinc Acetate	Sulfide	EPA Method 376.1
				Sulfate	EPA Method 375.4
				Methane/Ethane/	
2	40 mL	Glass	Benzalkonium Chloride	Ethene/CO2	RSK-175

Sample ID:	MW-15-0421	Duplicate?	Yes No No	Shipped: Drop-off Albany Service Center Pace Courier
Sample Time:	0930 1030	MS/MSD?	Yes No	Laboratory: Pace Analytical Greensburg, Pennsylvania

National Grid 109 North Mar	ket Street, Johns	stown New York						
Sampling Pers	onnel:	AJ			Date: 4	1/14/21		
Job Number:	0603200-1209	950-221			Weather:	COYOF, Sun	14	
Well Id.	MW-16				Time In:	1210	Time Out:	1300
Well In	formation		тос	Other	Well Type:	Flu	ıshmount	Stick-Up
Depth to Wate		(feet)	9.94		Well Locke	STATE OF THE STATE	Yes	No
Depth to Botto		(feet)	19.45			Point Marked:	Yes	No
Depth to Produ	The second secon	(feet)	NP		Well Mater		SS Oth	
Length of Wate		(feet)	1.52		Comments			ler
Three Well Vo		(gal)	45		Comments			
		(30.7)	11:2					

Purging	nformation	_						
							Conversion Fa	
Purging Metho		Bailer			ard Dedicated Pump		1" ID 2" ID	4" ID 6" ID
Tubing/Bailer N		Teflon			ylene other		0.04 0.16	0.66 1.47
Sampling Meth Average Pump		Bailer (ml/min)	Peristaltic	Well Wiza	ard Dedicated Pump		on=3.785L=3785mL	
Duration of Pu		30 (min)				I gain	011-3.703E-3703IIIE	1007 cd. 100t
Total Volume F		(gal)		Did well go dry?	Yes No	X		
	U-52 Water Qua	· · · · · · · · · · · · · · · · · · ·		No No				
Time	DTW	Temp	рН	ORP	Conductivity	Turbidity	DO	TDS
	(feet)	(°C)	(S.U.)	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)
1215	10.21	10.85	7.57	-4	1.09	114	363	0-697
1220	10-30	11.07	7.56	-9	1.09	91.5	2.14	0.698
1225	10-43	10.88	7.55	-22	1.09	44.2	0.00	0497
1130	10-49	1029	7.54	-19	1-08	31-1	000	0.652
1235	10.89	9.87	751	-1	1.07	21.3	0.00	0.686
100	11 10	0 11	71.0	1.2	1 67	1. 0.	1.00	01014

Time	DTW	Temp	рН	ORP	Conductivity	Turbidity	DO	TDS
	(feet)	(°C)	(S.U.)	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)
1215	10.21	10.85	7.57	-4	1.09	114	363	0-487
1220	10.30	11.07	7.56	-9	1.09	91.5	2.14	0.698
1225	10.43	10.88	7.55	-22	1.09	44.2	0.00	0497
1130	10-49	10.29	7.54	-19	1-08	31-1	000	0692
1235	10.89	9.87	7.51	-1	1.07	21.3	0.00	0.686
1240	11.05	9.74	7.48	19	1-07	11.8	000	0.684
1245	11.25	9.69	7.46	25	1.07	8.4	0-00	0.683
		_						
				200700				

Sampling Inf	orma	tion	
--------------	------	------	--

Quantity	Size	Material	Preservative	Compounds analyzed	Method
2	100 mL	Glass	Unpreserved	SVOC PAH's	EPA SW-846 Method 8270
				Ferrous Iron	SM 3500 FE D
1	250 mL	Plastic	Unpreserved	Chloride	SM 4500 CI E
				Total Alkalinity	EPA Method 310.2
1	250 mL	Plastic	H2SO4	Nitrogen	EPA Method 351.2
1	250 mL	Plastic	HNO3	Lead & Manganese	EPA Method 6010
3	40 mL	Glass	HCI	VOC's & BTEX	EPA SW-846 Method 8260
1	250 mL	Plastic	NaOH	Total Cyanide	EPA Method 9012B
				Nitrate & Nitrite	EPA Method 353.2
1	250 mL	Plastic	NaOH & Zinc Acetate	Sulfide	EPA Method 376.1
				Sulfate	EPA Method 375.4
2	40 mL	Glass	Benzalkonium Chloride	Methane/Ethane/ Ethene/CO2	RSK-175

Sample ID: MW-16-0421 Duplicate? Yes No Pace Courier Sample Time: 1150 MS/MSD? Yes No Laboratory: Pace Analytical		Albany Service Center	* *	
Sample Time: 1) 57) MS/MSD2 Ves No X Laboratory: Pace Analytical	Sample ID:	Pace Courier	Duplicate?	\times
odnipic fillic. [25] Morivion: Tool Inc.	Sample Time:	Pace Analytical	MS/MSD?	
Greensburg, Pennsylvan		Greensburg, Pennsylvania		nia

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A		Section B Required Project Information:			Section C																		Page:	1 of 1		7
Required Client Information: Company: GES - Syracuse		Report To: Devin Shay (GES)			Attention:		wahla wa a	mail at ges-inv	OLCOPI/MODE	□ Ch					1 1		10000	Total Sales			1000			- War Warren		
		dshay@gesonline.com Report To: Tim Beaumont (GES								eck.									R	EGUL	ATOR	Y AGE	NCY			
Address: 5 Technology Place, S	LECT 4	tbeaumont@gesonline.com	•)		Company N	lame: Grou	mdwater & I	Environmental	Services,	Inc.			1		П	NPDES	\$		GRO	W DNU	ATER	DR	INKING V	VATER		\neg
East Syracuse, New York 13057	2				Address: 5	Technology	Place, Sul	e 4, East Syrac	use, NY 1	3057	_				11	UST			RC	RA		OTI	HER			1
Email To: dshay@gesonline.com		Purchase Order No.:			Pace Quote	Reference	:								1		SIT	ΓE	1	GA	, 1	L IN	N	I NC		-
Phone : Fax: No 800 220 3069x4052	one	Project Name: National Grid - 1 Market Street, Johnstown NY	09 Nor	T)	Pace Projec	t Manager:	Rachel Chi	nstner								LOCATI	ON			OH	1 :	sc	wi	OTHER		
Requested Due Date/TAT: Stan	dard	Project Number: 0603200-120950-221-1106						Semi-An	nual G	ws				_	1	iNered (Y/N	n				7	77	111	7	$\overline{}$	\dashv
Section D Requision SAMP One Character (A-Z, D-91) (Ds MUST E	PLE ID ter per box.	b mod Alleres Codes AMATRIX CODE Commence martin Des Martin ANT MARTIN ARTIN ME ME ME ME ME ME ME ME ME M	MATRIX CODE	SAMPLE TYPE G+GRAB C+COMP	COMPOSITE ST.		DATE		SAMPLE TEMP AT COLLECTION	ADF CONTAINERS	parassandu PSO ₄		HOT	42.5.0, se table and Zn Acetate	٦	Requested	/**			(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		100 100 100 100 100 100 100 100 100 100	30001 210000 200 200 200 200 200 200 200	Pace Po	roject Num Lab	
1	MW-4-042	1	w	G			4/14/2			12	3 1	1	+	2 2	å		(3)	2 1			20/10		\leftarrow	Control of the State of the Sta		1.0.
2	MW-7-0421	1	w	G			-11/1/	1120		12	3 1	11	+	1	-		+-			3 1	+1	1	_			-
3	MW-10-042	1	w					12:15	-	12	3 1	1	1	+	2		+-+	2 1		3 1	1	1	-			_
1	MW-11-042	1		G				-7,				+++	+	-	=		2	2 1	1	3 1	1	1	_			_
5	MW-12-042		w	_				1045				1 3	1	1	2			2 1	1	3 1	1					
6	MW-13-042		WI					1035		12	3 1	1	1	1	2		2	2 1	1	3 1	1	1				
7	MW-13-MS-04		WT	1			\vdash	1035	-	12	3 1		\neg	1	2		2	2 1	1	3 1	1	1				
	MW-13-MSD-0		1				\vdash	1075		12	3 1	1 3	1	1	2		2	2 1	1	3 1	1	1				
9	MW-14-042		WT	1			\vdash		-	12	3 1	113	3 1	1	2		2	2 1	1	3 1	1	1				
10			WT				\vdash	1150	-	12	3 1	11:	11	1	2		2	2 1	1	3 1	1 1	1				
11	MW-15-042		WT				\vdash	1030		12	3 1	1 3	1	1	2		2	2 1	1	3 1	1 1	_ 1				
	MW-16-0421		WT				 ,	1250		12	3 1	1 :	3 1	1	2		2	2 1	1	3 1	1	1				
12 F	ield Duplicate -	0421	WT				7	-	_	12	3 1	11:	3 1	1	2		2	2 1	1	3 1	1 1	1				
Additional Comments:	Trip Blank		Name and Address of the Owner, where	Lab			200000000000000000000000000000000000000			3	Ш									3						
		7	KELI	NGUISA	DED BY / AF	HUATION		DATE	TIME	ACCEP	TED BY	/ AFFIL	IATIO	N				DATI	.	TIME	SA	MPLE	COND	TIONS		
SAMPLES WILL ARRIVE IN	#	COOLERS.	-	X	7 4	1		4/14/21	1255	d			_	OCE				4110	tlu	12:55	5		3	Z.	Z.	
																							Z.	Z.	Z	
fease send reports to: dshay@g							-										\neg			_		100	Z.	Ž.	E	
ERegion@gesonline.com, ge	s@equisonline.con	1																					Z	₹	3	
PECIFIC EDD NAME:								SIGNATUR	r										No.			ပ္	8	4	Infact	
						INT Name of S											****					emp in	Received	Custody aled Cool	Injes in	
GJohnstown-labnumber.28	8351.EQEDD.zip				Sic	MATURE of S	AMPLER				-		DATE	Signed (MM / D	0177)					\neg	Tem	Rece	Seale	Sampl	diago.

E-File, (ALLQ020rev.3,31Mar05), 13Jun2005

Site Management Plan Inspection Form 109 North Market Street Former MGP Site Johnstown, New York

Date:	1/19/21
Technician:	1h

Time: Og: Weather: CLOVD4 2)

	Veget	ation Ca _l	0	
Condition of Grass	GOOD	, FAIR	POOR	COMMENTS:
Condition of Site Trees	GOOD) FAIR	POOR	COMMENTS:
Surface Erosion	NOME	MINOR	SIGNIFICANT	COMMENTS:
Has the site been maintained/mowed?	YES		NO	COMMENTS:

	Sheet Pile	Wall	
Has any construction occurred that may have impacted the sheet pile wall?	YES	(NO)	COMMENTS:

	Site Wi	de	
Does the property continue to be used for commercial and/or industrial uses?	YES	NO	COMMENTS:
Does the use of groundwater for potable or process water continue to be restricted?	(YES)	NO	COMMENTS:
Are agricultural or vegetable gardens present on the property?	YES	(NO	COMMENTS:
Do the Engineering Controls continue to perform as designed?	YES	NO	COMMENTS:
Do the Engineering Controls continue to be protective of human health and environment?	YES	NO	COMMENTS:
Are the requirements of the Site Management Plan being met?	VES	NO	COMMENTS:
Are the requirements of the Environmental Easement being met?	YES	NO	COMMENTS:
Since the last inspection has the groundwater been sampled in accordance with the SMP?	YES	NO	COMMENTS:
Since the last inspection have there been any changes to the remedial system?	YES	2	COMMENTS:
Are there any needed changes?	XES	(NO	COMMENTS:
Are the site records complete and up to date?	YES	NO	COMMENTS:

	Misc	ellaneous		
Evidence of Trespassing	TES.		(NO)	COMMENTS:
Litter	NONE) MINOR	SIGNIFICANT	COMMENTS:

General Comments:

Site Management Plan Inspection Form 109 North Market Street Former MGP Site Johnstown, New York

Date: 4/14/2/
Technician: 6, FRNST

Time: /2:30Weather: c/ear 50°5

Vegetation Cap					
Condition of Grass	GOOD	FAIR	POOR	COMMENTS:	
Condition of Site Trees	GOOD	FAIR	POOR	COMMENTS:	
Surface Erosion	NONE	MINOR	SIGNIFICANT	COMMENTS:	
Has the site been maintained/mowed?	YES		NO	COMMENTS:	

Sheet Pile Wall				
Has any construction occurred that may have impacted the sheet pile wall?	YES	MO	COMMENTS:	

Site Wide						
Does the property continue to be used for commercial and/or industrial uses?	YES	NO	COMMENTS:			
Does the use of groundwater for potable or process water continue to be restricted?	YES	NO	COMMENTS:			
Are agricultural or vegetable gardens present on the property?	YES	NO	COMMENTS:			
Do the Engineering Controls continue to perform as designed?	YES	NO	COMMENTS:			
Do the Engineering Controls continue to be protective of human health and environment?	YES	NO	COMMENTS:			
Are the requirements of the Site Management Plan being met?	YES	NO	COMMENTS:			
Are the requirements of the Environmental Easement being met?	YES	NO	COMMENTS:			
Since the last inspection has the groundwater been sampled in accordance with the SMP?	YES	NO	COMMENTS:			
Since the last inspection have there been any changes to the remedial system?	YES	NO	COMMENTS:			
Are there any needed changes?	YES	NO	COMMENTS:			
Are the site records complete and up to date?	YES	NO	COMMENTS:			

Miscellaneous					
Evidence of Trespassing	YES		(NO)	COMMENTS:	
Litter	NONE	MINOR	SIGNIFICANT	COMMENTS:	

General Comments:

September 2021 Semi-Annual Groundwater Monitoring Report National Grid Johnstown Site 109 North Market Street, Johnstown NY 12095

Appendix B – Data Usability Summary Report

708 North Main Street, Suite 201 Blacksburg, VA 24060

T. 800.662.5067

May 20, 2021

Devin Shay Groundwater & Environmental Services, Syracuse 6780 Northern Blvd., Suite 100 East Syracuse, NY 13057

RE: Data Usability Summary Report for National Grid: Johnstown, NY Site Data Package Pace Analytical Job No. 30415885

Groundwater & Environmental Services, Inc. (GES) reviewed one data package (Laboratory Project Number 30415885) from Pace Analytical Services, Inc., for the analysis of groundwater samples collected on April 14, 2021 from monitoring wells located at the National Grid: Johnstown, NY Site. Eight aqueous samples and a field duplicate were analyzed for dissolved gases, PAHs, Nitrogen, Metals, Alkalinity, Chloride, Ferrous Iron, Cyanide, Sulfide and Sulfate. Methodologies utilized were, ASTM D516-11, EPA 351.2, EPA 6010C, SM 4500NO3F-2011, SM4500CIE-2011, SM 4500S2F-2011, SM 3500-FeB-2011, SM 2320B-2011, and the USEPA SW846 methods 8260C/8270DSIM/9012B, with additional QC requirements of the NYSDEC ASP. A trip blanks was analyzed to insure that there was no impact to the data from transport operations.

The data were reported as part of a complete full deliverable type B data validation. This usability report is generated from review of the following:

- Laboratory Narrative Discussion
- Custody Documentation
- Holding Times
- Surrogate and Internal Standard Recoveries
- Matrix Spike Recoveries/Duplicate (MS/MSD) Correlations
- Field Duplicate Correlations
- Laboratory Control Sample (LCS)
- Preparation/Calibration Blanks
- Calibration/Low Level Standard Responses
- Instrumental Tunes
- Instrument MDLs
- Sample Quantitation and Identification

The items listed above which show deficiencies are discussed within the text of this narrative.

All of the other items were determined to be acceptable for the DUSR level review.

In summary, sample results were usable as reported, with exceptions due to poor precision or MS/MSD recoveries.

The laboratory case narratives and sample identification summary forms are attached to this text, and should be reviewed in conjunction with this report.

Table 1. Laboratory - Field Cross Reference

Lab ID	Sample ID	Date Collected	Date Received
30415885001	MW-4-0421	Water	04/14/21 11:55
30415885002	MW-7-0421	Water	04/14/21 11:20
30415885003	MW-10-0421	Water	04/14/21 12:15
30415885004	MW-12-0421	Water	04/14/21 10:45
30415885005	MW-13-0421	Water	04/14/21 10:35
30415885006	MW-13-MS-0421	Water	04/14/21 10:35
30415885007	MW-13-MSD-0421	Water	04/14/21 10:35
30415885008	MW-14-0421	Water	04/14/21 11:50
30415885009	MW-15-0421	Water	04/14/21 10:30
30415885010	MW-16-0421	Water	04/14/21 12:50
30415885011	Field Duplicate-0421	Water	04/14/21 00:01
30415885012	Trip Blank	Water	04/14/21 00:01

Table 2. Validation Qualifiers

Sample ID	Qualifier	Analyte	Reason for qualification
	J-	Nitrogen, Kjeldahl	MS/MSD low recoveries
MW-13 J+ B		Sulfate	MS/MSD concentrations << original concentration
		Benzo(a)pyrene	MS/MSD high recoveries
	J+ Alkalinity		RPD > 30%
All Samples	J-	Ferrous Iron	Analyzed outside of hold time
MW-14	J	Ferrous Iron and Nitrogen	Field RPD > 30%
MW-14	J	Cyanide	MS/MSD low recoveries
MW-10 MW-13 MW-14 MW-15 MW-16 Field Dup	J	Benzo(b)fluoranthene and Benzo(k)fluoranthene	Not resolved from each other on the instrument

In summary, sample results were usable as reported, with the following exceptions:

The MS/MSD recoveries of sulfate were not used to qualify data as inaccurate as the original data was >>4x the spiking concentration.

However, as a duplicate sample, the MS/MSD RPD has no variance, but the MS/MSD concentration (4.6 μ g/L) is ~800% less than the original concentration (32.1 μ g/L), suggesting that the original value for reported sulfate is suspect.

The following non-compliances were not used to qualify data:

• Benzene, toluene and ethylbenzene all reported recoveries low out of specification in the MS/MSD; no qualification is necessary as the initial concentration in the sample is >4X the spiking concentration.

The laboratory case narratives and sample identification summary forms are attached to this text, and should be reviewed in conjunction with this report.

BTEX and TCL Volatiles by EPA 8260C/NYSDEC ASP

Sample holding times were met and instrumental tune fragmentations were within acceptance ranges. Surrogate and internal standard recoveries were within required limits. Calibrations standards show acceptable responses within analytical protocol and validation action limits, with the exception of a high bias in toluene d8, the surrogate. This surrogate never reported out-of-criteria recoveries, and the calibration elevation does not affect the data. The MS/MSD recoveries and RPDs fell within criteria. Precision calculations showed that the recoveries were consistent, as RPDs were within expected ranges. Precision calculations for LCS/LCSD indicate good reproducibility. Surrogate recovery was within bounds, and LCS recoveries were compliant, and used to determine method efficacy.

The field duplicate correlations were not calculated as neither sample had above reporting limit detections.

PAHs by EPA8270D/NYSDEC ASP

Holding times were met. Instrumental tune fragmentations were within acceptance ranges. Surrogate recoveries were within analytical and validation guidelines. Blanks show no contamination. Calibration standards, both initial and continuing, show acceptable responses within analytical method protocols and validation guidelines. Two analytes were not resolved in the chromatogram, so all associated results are qualified as estimated.

The MS/MSD calculations showed good reproducibility and recovery.

Precision calculations indicate good reproducibility. Surrogate recovery was within bound =s for all samples. The field duplicate correlations showed good reproducibility.

Lead and Manganese by EPA 6010/NYDESC ASP

Instrument performance is compliant, and blanks show no contamination above the reporting limit. All QC recoveries and precision calculations show good efficacy for the method. The ICP serial dilution evaluations were within specification for samples with detections of the target elements above the action limit.

Wet Chemistry Tests and Total Cyanide by 9012B/NYSDEC ASP

Review was conducted for method compliance, holding times, transcription, calculations, standard and blank acceptability, accuracy and precision, etc., as applicable to each procedure. All were found acceptable for the validated samples with the following exceptions in the MW-13 MS/MSDs:

- Alkalinity: reported recoveries low out of specification; no qualification is necessary as the initial concentration in the sample is >4X the spiking concentration.
- Cyanide: recovery was low, the data is qualified as estimated with a possible low bias Calibration standard responses were compliant. Blanks show no detections above the reporting limits.

Ferrous Iron by S<3500-FeD-00/ NYSDEC ASP

Review was conducted for method compliance, holding times, transcription, calculations, standard and blank acceptability, and accuracy and precision. Holding time was exceeded for all samples, and all data is qualified as estimated with an indeterminate bias, except for the MS/MSD recoveries associated with MW-13, which were low, outside of criteria. The non-detect data in MW-13 is therefore qualified as estimated non-detect, with a possible low bias.

Field correlations indicate that ferrous iron results are not reproducible (RPD> 30%). The data is qualified as estimated for holding time and for precision.

Calibration standard responses were compliant. Blanks show no detections above the reporting limits.

Total Kjeldahl Nitrogen, Nitrogen as Nitrate/Nitrite by EPA 351.2 & 353.2/NYDESC ASP

Review was conducted for method compliance, holding times, transcription, calculations, standard and blank acceptability, accuracy and precision, etc., as applicable to each procedure. All were found acceptable for the validated samples. Calibration standard responses were compliant. Blanks show no detections above the reporting limits. The MS/MSD recoveries were out of specification for MW-13 associated samples:

• Nitrogen, Kjeldahl: recovery was high, the analyte was non-detect, and no qualifications are required.

Field correlations could not be calculated as the concentration did not meet EPA 2x reporting limit criteria.

Dissolved Gases by EPA 5021/RSK-175

Review was conducted for method compliance, holding times, transcription, calculations, standard and blank acceptability, accuracy and precision, etc., as applicable to each procedure.

All were found acceptable for the validated samples. Calibration standard responses were compliant. Blanks show no detections above the reporting limits.

Data Precision

Table 3 **Field Precision JOHNSTOWN NY SITE** Spring 2021

Spring 2021							
Field Identification	Analyte	Sample Result (µg/L)	Duplicate Result (μg/L)	RPD (%)	Qualified		
	Lead	5.7	7.5	27.3	A		
	Manganese	202	268	28.1	A		
	Acenaphthylene	0.38	0.38	0.0	A		
	Anthracene	0.16	0.16	0.0	A		
	Benzo(a)anthracene	0.49	0.51	4.0	A		
	Benzo(a)pyrene	0.61	0.66	7.9	A		
	Benzo(b)fluoranthene	0.81	0.87	7.1	A		
	Benzo(g,h,i)perylene	0.50	0.54	7.7	A		
	Benzo(k)fluoranthene	0.77	0.84	8.7	A		
MW-14/FIELD Dup	Chrysene	0.47	0.51	8.2	A		
	Dibenz(a,h)anthracene	0.12	0.13	8.0	A		
	Fluoranthene	0.70	0.71	1.4	A		
	Indeno(1,2,3-cd)pyrene	0.37	0.40	7.8	A		
	Phenanthrene	0.27	0.25	7.7	A		
	Pyrene	1.1	1.2	8.7	A		
	Alkalinity,Total (CaCO3 pH4.5)	336	364	8.0	A		
	Ferrous Iron	1	0.44	77.8	J		
	Sulfate	15.8	15.1	4.5	A		
	Nitrogen, Kjeldahl	3	1	NC	A		
	chloride	6.9	6.9	0.0	A		
	nitrogen	0.59	0.59	0.0	A		
	cyanide	0.055	0.057	3.6	A		

1 Data Package Completeness

Sparowisk

Complete NYSDEC Category B deliverables were included in the laboratory data package, all information required for validation of the data is present.

Please do not hesitate to contact me if you have comments or questions regarding this report.

Bonnie Janowiak, Ph.D.

Project Chemist

708 N Main St, Suite 201

Blacksburg, VA 24060

VALIDATION DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- J- The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.
- J+ The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- UJ The analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- **NJ** The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control limits. The analyte may or may not be present.

Sample Summaries and Laboratory Case Narratives

SAMPLE SUMMARY

Project: National Grid-Johnstown, NY

Pace Project No.: 30415885

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30415885001	MW-4-0421	Water	04/14/21 11:55	04/15/21 09:15
30415885002	MW-7-0421	Water	04/14/21 11:20	04/15/21 09:15
30415885003	MW-10-0421	Water	04/14/21 12:15	04/15/21 09:15
30415885004	MW-12-0421	Water	04/14/21 10:45	04/15/21 09:15
30415885005	MW-13-0421	Water	04/14/21 10:35	04/15/21 09:15
30415885006	MW-13-MS-0421	Water	04/14/21 10:35	04/15/21 09:15
30415885007	MW-13-MSD-0421	Water	04/14/21 10:35	04/15/21 09:15
30415885008	MW-14-0421	Water	04/14/21 11:50	04/15/21 09:15
30415885009	MW-15-0421	Water	04/14/21 10:30	04/15/21 09:15
30415885010	MW-16-0421	Water	04/14/21 12:50	04/15/21 09:15
30415885011	Field Duplicate-0421	Water	04/14/21 00:01	04/15/21 09:15
30415885012	Trip Blank	Water	04/14/21 00:01	04/15/21 09:15

Project: National Grid-Johnstown, NY

Pace Project No.: 30415885

Method: EPA 6010C

Description: 6010C MET ICP

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 04, 2021

General Information:

11 samples were analyzed for EPA 6010C by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: National Grid-Johnstown, NY

Pace Project No.: 30415885

Method: EPA 8270D by SIM

Description: 8270D PAH SIM Reduced Volume

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 04, 2021

General Information:

11 samples were analyzed for EPA 8270D by SIM by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 444206

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30415885005

MH: Matrix spike recovery and/or matrix spike duplicate recovery was above laboratory control limits. Result may be biased high.

- MS (Lab ID: 2144439)
 - Benzo(a)pyrene

Additional Comments:

Project: National Grid-Johnstown, NY

Pace Project No.: 30415885

Method: EPA 8260C Description: 8260C MSV

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 04, 2021

General Information:

12 samples were analyzed for EPA 8260C by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: 444532

CH: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

- BLANK (Lab ID: 2145912)
 - Toluene-d8 (S)
- Field Duplicate-0421 (Lab ID: 30415885011)
 - Toluene-d8 (S)
- LCS (Lab ID: 2145913)
 - Toluene-d8 (S)
- MS (Lab ID: 2145914)
 - Toluene-d8 (S)
- MSD (Lab ID: 2145915)
 - Toluene-d8 (S)
- MW-10-0421 (Lab ID: 30415885003)
 - Toluene-d8 (S)
- MW-12-0421 (Lab ID: 30415885004)
 - Toluene-d8 (S)
- MW-13-0421 (Lab ID: 30415885005)
 - Toluene-d8 (S)
- MW-13-MS-0421 (Lab ID: 30415885006)
 - Toluene-d8 (S)
- MW-13-MSD-0421 (Lab ID: 30415885007)
 - Toluene-d8 (S)
- MW-14-0421 (Lab ID: 30415885008)
 - Toluene-d8 (S)
- MW-15-0421 (Lab ID: 30415885009)
 - Toluene-d8 (S)
- MW-16-0421 (Lab ID: 30415885010)
 - Toluene-d8 (S)
- MW-4-0421 (Lab ID: 30415885001)
 - Toluene-d8 (S)
- MW-7-0421 (Lab ID: 30415885002)
 - Toluene-d8 (S)

Project: National Grid-Johnstown, NY

Pace Project No.: 30415885

Method: EPA 8260C Description: 8260C MSV

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 04, 2021

QC Batch: 444532

CH: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

• Trip Blank (Lab ID: 30415885012)

• Toluene-d8 (S)

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: National Grid-Johnstown, NY

Pace Project No.: 30415885

Method: SM 2320B-2011 Description: 2320B Alkalinity

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 04, 2021

General Information:

11 samples were analyzed for SM 2320B-2011 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 445183

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30415885005

MH: Matrix spike recovery and/or matrix spike duplicate recovery was above laboratory control limits. Result may be biased high.

- MS (Lab ID: 2149173)
 - Alkalinity, Total (CaCO3 pH4.5)

Additional Comments:

Project: National Grid-Johnstown, NY

Pace Project No.: 30415885

Method: SM 3500-FeB-2011

Description: Iron, Ferrous

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 04, 2021

General Information:

11 samples were analyzed for SM 3500-FeB-2011 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H1: Analysis conducted outside the EPA method holding time.

- MW-10-0421 (Lab ID: 30415885003)
- MW-12-0421 (Lab ID: 30415885004)
- MW-13-0421 (Lab ID: 30415885005)
- MW-13-MS-0421 (Lab ID: 30415885006)
- MW-13-MSD-0421 (Lab ID: 30415885007)
- MW-14-0421 (Lab ID: 30415885008)
- MW-15-0421 (Lab ID: 30415885009)
- MW-16-0421 (Lab ID: 30415885010)
- MW-4-0421 (Lab ID: 30415885001)
- MW-7-0421 (Lab ID: 30415885002)

H3: Sample was received or analysis requested beyond the recognized method holding time.

• Field Duplicate-0421 (Lab ID: 30415885011)

H6: Analysis initiated outside of the 15 minute EPA required holding time.

- Field Duplicate-0421 (Lab ID: 30415885011)
- MW-10-0421 (Lab ID: 30415885003)
- MW-12-0421 (Lab ID: 30415885004)
- MW-13-0421 (Lab ID: 30415885005)
- MW-13-MS-0421 (Lab ID: 30415885006)
- MW-13-MSD-0421 (Lab ID: 30415885007)
- MW-14-0421 (Lab ID: 30415885008)
- MW-15-0421 (Lab ID: 30415885009)
- MW-16-0421 (Lab ID: 30415885010)
- MW-4-0421 (Lab ID: 30415885001)
- MW-7-0421 (Lab ID: 30415885002)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: National Grid-Johnstown, NY

Pace Project No.: 30415885

Method: SM 4500S2F-2011

Description: 4500S2F Sulfide, Iodometric

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 04, 2021

General Information:

11 samples were analyzed for SM 4500S2F-2011 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Batch Comments:

Due to limited volume for MS/MSD, LCSD was analyzed

• QC Batch: 443757

Analyte Comments:

QC Batch: 443757

1c: Due to limited volume for MS/MSD, LCSD was analyzed

- BLANK (Lab ID: 2141938)
 - Sulfide
- Field Duplicate-0421 (Lab ID: 30415885011)
 - Sulfide
- LCS (Lab ID: 2141939)
 - Sulfide
- LCSD (Lab ID: 2141941)
 - Sulfide
- MW-10-0421 (Lab ID: 30415885003)
 Sulfide
 - Sullide
- MW-12-0421 (Lab ID: 30415885004)
 - Sullide
- MW-13-0421 (Lab ID: 30415885005)Sulfide
 - Sullide
- MW-13-MS-0421 (Lab ID: 30415885006)
 - Sulfide
- MW-13-MSD-0421 (Lab ID: 30415885007)
 - Sulfide

Project: National Grid-Johnstown, NY

Pace Project No.: 30415885

Method: SM 4500S2F-2011

Description: 4500S2F Sulfide, Iodometric

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 04, 2021

Analyte Comments:

QC Batch: 443757

1c: Due to limited volume for MS/MSD, LCSD was analyzed

• MW-14-0421 (Lab ID: 30415885008)

Sulfide

• MW-15-0421 (Lab ID: 30415885009)

Sulfide

• MW-16-0421 (Lab ID: 30415885010)

Sulfide

• MW-4-0421 (Lab ID: 30415885001)

• Sulfide

• MW-7-0421 (Lab ID: 30415885002)

Sulfide

Project: National Grid-Johnstown, NY

Pace Project No.: 30415885

Method: 300.0 Rev.2.1, 1993 Description: 300.0 IC Anions 28 Days

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 04, 2021

General Information:

11 samples were analyzed for 300.0 Rev.2.1, 1993 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 445391

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30415885005

ML: Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.

- MS (Lab ID: 2149970)
 - Sulfate
- MSD (Lab ID: 2149971)
 - Sulfate

QC Batch: 445393

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30416466001

ML: Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.

- MS (Lab ID: 2149975)
 - Sulfate

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: National Grid-Johnstown, NY

Pace Project No.: 30415885

Method: EPA 351.2

Description: 351.2 Total Kjeldahl Nitrogen

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 04, 2021

General Information:

11 samples were analyzed for EPA 351.2 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 351.2 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 445311

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30415718002,30415885005

MH: Matrix spike recovery and/or matrix spike duplicate recovery was above laboratory control limits. Result may be biased high.

- MSD (Lab ID: 2149678)
 - Nitrogen, Kjeldahl, Total

ML: Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.

- MS (Lab ID: 2149677)
 - Nitrogen, Kjeldahl, Total
- MS (Lab ID: 2149679)
 - Nitrogen, Kjeldahl, Total
- MSD (Lab ID: 2149680)
 - Nitrogen, Kjeldahl, Total

R1: RPD value was outside control limits.

- MSD (Lab ID: 2149678)
 - Nitrogen, Kjeldahl, Total

Additional Comments:

Project: National Grid-Johnstown, NY

Pace Project No.: 30415885

Method: SM 4500CIE-2011
Description: 4500 Chloride

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 04, 2021

General Information:

11 samples were analyzed for SM 4500CIE-2011 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: National Grid-Johnstown, NY

Pace Project No.: 30415885

Method: SM 4500NO3F-2011

Description: SM4500NO3-F, NO3-NO2

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 04, 2021

General Information:

11 samples were analyzed for SM 4500NO3F-2011 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: 445568

D3: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

- MW-13-0421 (Lab ID: 30415885005)
 - Nitrogen, NO2 plus NO3

Project: National Grid-Johnstown, NY

Pace Project No.: 30415885

Method: EPA 9012B

Description: 9012B Cyanide, Total

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 04, 2021

General Information:

11 samples were analyzed for EPA 9012B by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 9012B with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 444477

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30415885005,30415885008

ML: Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.

- MS (Lab ID: 2145740)
 - Cvanide
- MSD (Lab ID: 2145741)
 - Cyanide

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.