

August 8, 2022

Mr. Michael Squire Remedial Bureau C, 11th Floor Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233-7014

Re: Johnstown (N. Market St.)

Former Manufactured Gas Plant Site (MGP)

Site # 518020

Semi-Annual Groundwater Monitoring Report (June 2022)

Dear Mr. Squire:

Enclosed is the Semi-Annual Groundwater Monitoring Report January through June 2022 for the Johnstown (N. Market St.) MGP Site located in Johnstown, New York. The report includes the groundwater monitoring results from April 13, 2022.

National Grid acknowledges the NYSDEC Fact sheet dated June 2016 approving the site's environmental remediation construction completion. Long-term OM&M activities are being conducted in accordance with the approved Site Management Plan (SMP) and the site's Environmental Easement.

Please contact me at (315) 428-5652 or <u>Steven.Stucker@NationalGrid.com</u> if you have any questions regarding the report.

Sincerely,

for

Steven P. Stucker, C.P.G. Senior Environmental Engineer

Cc: Joseph Giordano -National Grid Nathan Freeman- NYSDOH National Grid

Semi-Annual Groundwater Monitoring Report

National Grid 109 North Market Street Johnstown, NY 12095

August 2022

Version 1

Semi-Annual Groundwater Monitoring Report

National Grid Johnstown Site 109 North Market Street Johnstown, NY 12095

Prepared for: National Grid 300 Erie Boulevard West, C-1 Syracuse, NY 13202

Prepared by:

Groundwater & Environmental Services, Inc. 6780 Northern Boulevard, Suite 100 East Syracuse, NY 13057 TEL: 800-220-3069 www.gesonline.com

GES Project: 0603275.120950.221

Date: August 8, 2022

Devin T. Shay, PG

Program Manager / Principal Hydrogeologist

Table of Contents

1	lr	ntroduction	1
	1.1	Overview	1
	1.2	Purpose and Objective	1
2	В	ackground	2
	2.1	Site Description	2
	2.2	Site History	2
		2.2.1 Site Assessment and Investigations	3
		2.2.2 Interim Remedial Measures Completed	3
	2.3	Environmental Setting	3
		2.3.1 Site Geology	4
		2.3.2 Site Hydrogeology	4
3	M	Ionitoring Activities	5
	3.1	Groundwater Gauging and Sampling Procedures	5
		3.1.1 Gauging	5
		3.1.2 Sampling	5
		3.1.3 Natural Attenuation Parameters	6
	3.2	Groundwater Analytical Results	7
		3.2.1 Site Related Parameters	8
		3.2.2 Monitored Natural Attenuation Parameters	8
		3.2.3 Natural Attenuation Trending	9
4	С	Conclusions and Recommendations	10
	4.1	Conclusions	10
		4.1.1 Groundwater Levels	10
		4.1.2 Site-Related Constituents	10
		4.1.3 Natural Attenuation	11
	4.2	Recommendations	11
5	R	Pafarances	11

Figures

Figure 1 – Site Location Map

Figure 2 – Site Map

Figure 3 – Groundwater Monitoring Map

Figure 4 – Natural Attenuation Map

Figure 5 – BTEX Concentration Map

Figure 6 – Naphthalene Concentration Map

Tables

Table 1 – Contaminant Trend Analysis

Table 2 – Groundwater Level Measurements

Table 3 – Analytical Data Results

Appendices

Appendix A - Field Data

Appendix B - Data Usability Summary Report

Acronyms

bgs	Below ground surface		
BTEX	Benzene, Toluene, Ethylbenzene, and	NYSDEC	New York State Department of Environmental Conservation
000	Total Xylenes	ORP	Oxidation-Reduction Potential
COCs	Constituents of Concern	PAHs	Polycyclic Aromatic Hydrocarbons
cu. ft.	Cubic feet	PSA	Preliminary Site Assessment
DO	Dissolved Oxygen	QA/QC	Quality Assurance / Quality Control
DTB	Depth to Bottom	RI	Remedial Investigation
DTP	Depth to Product	ROD	Record of Decision
DTW	Depth to Water	SMP	Site Management Plan
DUSR	Data Usability Summary Report	SU	Standard Units
FS	Feasibility Study	SVOCs	Semi-Volatile Organic Compounds
GES	Groundwater & Environmental Services, Inc.		
IRMs	Interim Remedial Measures	USEPA	United States Environmental Protection Agency
		VOCs	Volatile Organic Compounds
mg/L	Milligrams per Liter	μg/L	Micrograms per Liter
MGP	Manufactured Gas Plant	WQ	Water Quality
MNA	Monitored Natural Attenuation		

1 Introduction

1.1 Overview

This Semi-Annual Groundwater Monitoring Report (the Report) summarizes the results of the April 2022 groundwater sampling event at the Johnstown, New York (N. Market Street) Former Manufactured Gas Plant (MGP) Site (the Site). This Report was developed as part of the long-term groundwater monitoring program on behalf of National Grid.

National Grid has been addressing the Site environmental conditions under an Order on Consent (Index Number D0-0001-9210), dated April 1999, that was entered into by Niagara Mohawk and the New York State Department of Environmental Conservation (NYSDEC). That Order on Consent was for the investigation and remediation of 21 former MGP sites, including the Johnstown (N. Market Street) Site. It was superseded by a new Order on Consent (Index Number A4-0473-0000), dated November 7, 2003. A NYSDEC-approved Supplemental Remedial Investigation (RI) Work Plan was finalized during November 2007, and a Final Supplemental RI Report was submitted to the NYSDEC, dated December 2008. The RI results report and subsequent Feasibility Study were approved in February 2010.

A Record of Decision (ROD) was issued by the NYSDEC, dated March 2010, in accordance with the requirements of New York State Environmental Conservation Law and Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York, 6 NYCRR Part 375. Based upon the results of the remedial investigation/feasibility study (RI/FS) for the Site, the interim remedial measures (IRMs) previously completed, and the ROD, the draft Final Engineering Report and Site Management Plan (SMP) were developed and submitted to the NYSDEC in June 2010. The Final Engineering Report, the Final SMP, and the Final Environmental Easement were approved by the NYSDEC in their June 2016 Fact Sheet.

The Final SMP includes:

- Semi-annual (April & October) site inspection and groundwater level measurements at monitoring wells MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, MW-16, RMW-1, and the creek surface gauging station (bridge);
- Semi-annual groundwater sampling/analysis [Volatile Organic Compounds (VOCs), Semi-Volatile Organic Compounds (SVOCs), Heavy Metals, and Natural Attenuation Parameters] for monitoring wells MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, and MW-16 (RMW-1 will not be sampled); and
- 3. Semi-annual reporting to NYSDEC.

1.2 Purpose and Objective

The purpose of this Report is to summarize the groundwater sampling activities and results of the latest event, and to compare the results to previous events. As described in the December 2008 Supplemental RI Report and the subsequent ROD, one of the primary goals is to evaluate whether

or not the groundwater constituents of concern (COCs) concentrations have decreased, in addition to continued assessment of the effectiveness of monitored natural attenuation.

2 Background

2.1 Site Description

The Site is located in the City of Johnstown, County of Fulton, New York (**Figure 1** presents the site location map) and is identified as Block 14 and Lot 7 on the Johnstown City Tax Map. The Site is an approximate 0.7-acre area bounded by the Cayadutta Creek to the north, the Colonial Cemetery to the south, Market Street to the east, and a wooded parcel of property to the west (**Figure 2** presents the site plan). The Site is located in a mixed commercial, industrial, and residential area.

Currently, National Grid operates a natural gas regulator station at the Site with equipment contained in fenced enclosures along the Site's southern boundary. The rest of the Site is grass-covered, including the stream bank adjacent to Cayadutta Creek along the northern boundary of the Site. An embankment exists along the north end of the Site that slopes down to the Cayadutta Creek. A chain-link fence exists along the north and west sides of the Site, and a retaining wall runs along the south side of the Site. Access to the Site is from North Market Street to the east.

The Johnstown Hospital is located south of the Site within one mile, and numerous residences exist to the west and east of the Site. The Johnstown Senior High School and Warren Street Elementary School are located within one mile of the Site to the west.

2.2 Site History

The Johnstown MGP Site was incorporated in March 1857 as the Johnstown Gas Light Company. The company operated a small coal gas plant with a 20,000 cubic foot (cu. ft.) holder (Holder #1), that was constructed in 1859 (see Figure 2 for all Holder locations at the former MGP Site). In 1861, the plant was improved with the addition of a coal shed and a covering for the tank holder. In 1886, the Johnstown and Gloversville Gas Light Corporation was formed, and the company purchased the rights to the Lowe water gas process. The United Gas Improvement Company planned the construction of a water gas plant for the Johnstown and Gloversville franchises.

In 1887, the Site consisted of a tool shop, an office, a coal gasometer, a lime house, a purifier room, a retort house, and a coal shed. Between 1887 and 1918, Holder #2 was located in the western-central part of the Site (exact size unknown). In 1892, a steam generator was constructed adjacent to the coal shed for the Lowe water gas process, and Holder #1 was decommissioned in 1896. In 1898, a 72,000 cu. ft. gas holder (Holder #3) was constructed on the Site. Between 1912 and 1918, the small gas holder (Holder #2) in the western-central area of the Site was removed. In 1929, a gas pipeline from an MGP in Troy, New York, reached Johnstown, and local gas production was only performed on a seasonal (winter) basis until local production of gas ceased in 1931. Niagara Hudson Power Company was the owner of the Site in 1930. By 1948, Holder #3 was decommissioned. In 1950, Niagara Hudson Power was consolidated under the

name Niagara Mohawk Power Company. By 1980, all Site buildings were removed. Currently, National Grid operates a natural gas regulator station at the Site.

2.2.1 Site Assessment and Investigations

An investigation of the Site began in 1997 with a Preliminary Site Assessment (PSA), which found that the Site was impacted with MGP wastes. A Supplemental PSA was conducted at the Site in 1998, followed by a RI in January 2000 and subsequent IRMs. The IRMs are discussed separately within this section.

A 2009 Supplemental RI was initiated to collect data to address potential residual MGP-related contaminants remaining in groundwater at the Site and to assess hydrogeologic conditions and groundwater quality on the Site. The results of the Supplemental RI were used to formulate potential remedial alternatives for groundwater and residual soil contamination. The Supplemental RI results were evaluated and presented in the 2010 Feasibility Study Report.

2.2.2 Interim Remedial Measures Completed

Several IRMs were performed to address the residual MGP impacts. In 2002 and 2003, the former holders and associated impacted soil were removed. During this IRM, former Holder #2 and the northern half of former Holder #3 were demolished and removed from the Site. Approximately 13,870 cubic yards of soil were excavated and disposed of off-site at a NYSDEC-approved facility. Permanent steel sheeting was left in place along the northeastern perimeter of the Site to avoid disturbance of the roadway and to provide containment of residual material left at depth.

Between 2005 and 2006, National Grid provided support to the City of Johnstown for subsurface work associated with the replacement of the North Market Street Bridge across Cayadutta Creek. Approximately 1,413 cubic yards of impacted soil were excavated from within the cofferdam area and disposed of off-site at a NYSDEC-approved facility.

In August 2009, the rip-rap area along the bank of Cayadutta Creek that had been restored during the previous IRMs was enhanced to allow for establishment of stream-side vegetation. Post-IRM inspections of the restored Cayadutta Creek bank were conducted in September 2009 and May 2010.

2.3 Environmental Setting

The Johnstown (N. Market Street) Site slopes northward toward Cayadutta Creek with elevations ranging from 652 to 672 feet (ft.) above sea level. Currently, the Site topography gradually slopes from south to north, becoming increasingly steeper adjacent to the Creek, and is generally covered with either vegetation or stone. Surface drainage is primarily to the north into the creek. Access to the Site is from North Market Street to the east, and the Site is currently used to support the natural gas regulator station operations.

2.3.1 Site Geology

The main units of unconsolidated deposits identified at the Site can be characterized in descending order as fill and native glacial deposits to bedrock. The glacial deposits are of lacustrine origin with glacial tills to the top of shale bedrock (Utica Shale). Bedrock was reached beneath the till in two soil borings explored during the 1998 Supplemental PSA. These stratigraphic units are more specifically described below, based on information obtained from the previous investigations and from the soil borings and monitoring well borings conducted during the 2007/ 2008 SRI.

Site geology includes a layer of disturbed soils (primarily fill) overlying glacial deposits. Based upon on-site soils and monitoring well borings, disturbed soils (including fills) varied in thickness up to 13 ft. and are typically composed of sand, gravel, silt, clay, wood, coal, and anthropogenic materials including ash, cinders, clinkers, brick fragments, wire, and wood chips. Wood chips were identified in three borings (SB-09, SB-12, and MW-8) and are often associated with purifier waste.

A thin layer of peat underlies the disturbed soils in the northern portion of the Site, ranging in thickness from 0.5 ft. to 3 ft., and appears to thicken and dip to the north. Except where it is locally covered by sedimentary deposits such as silts, sands, and clays, the peat, where present, appears to have been the historical ground cover prior to development of the Site.

Underlying the peat, where present, the soil consists of lacustrine deposits composed of silts, sands, and clays. The surface of the lacustrine deposits appears to dip and thin out toward the north. A sand and gravel unit (an outwash deposit of stratified drift) underlies the lacustrine deposits across the Site area. This unit contains varying amounts of silt and clay. These deposits overlie a dense, low-permeability glacial till to bedrock (Shale).

2.3.2 Site Hydrogeology

Groundwater depths on-site are typically in the 10- to 20-foot below ground surface (bgs) range, generally in the glacial deposits below the bottom of the fill material. Groundwater flow is consistently northward through the Site area toward Cayadutta Creek, with the steepest gradient from the center of the Site proximal to former gas holders #2 and #3 to the southern Creek bank (about 0.09 ft./ft.). In comparison, the average hydraulic gradient decreases to a value of approximately 0.05 ft./ft. on the east and west sides of the Site away from the former gas holders. The local groundwater flow is consistent with regional groundwater flow direction. The groundwater flow direction and hydraulic gradients calculated during this monitoring period are also generally consistent with historic data obtained prior to the issuance of the ROD.

3 Monitoring Activities

The long-term semi-annual groundwater monitoring program currently consists of the following elements:

- Semi-Annual Site Inspection including the creek bank protection, vegetative cover, monitoring wells, and security fence.
- Semi-Annual Groundwater Well Gauging of the following wells: RW-1, MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15 and MW-16 (Figure 2 presents the well locations).
 The creek surface water level is also gauged at one location: SG-1.
- Semi-Annual Groundwater Sampling and Analysis of the following: MW-4, MW-7, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15 and MW-16. Note that recovery well RW-1 is not sampled as part of the program but is inspected for the presence of non-aqueous phase liquids (NAPL). Note: Monitoring well MW-11 was not gauged or sampled during the April 2022 sampling round due to concrete/metal and wood debris at this off-site well location.

3.1 Groundwater Gauging and Sampling Procedures

3.1.1 Gauging

Long-term groundwater monitoring includes water level gauging at eight groundwater monitoring wells and one groundwater recovery well using an electronic oil/water interface probe. Depth to bottom of well (DTB), depth to product (DTP), and depth to water (DTW) are to be recorded at each well. Refer to **Table 2** for a summary of the water level measurements from April 2022 as well as previous events. **Appendix A** also presents the field documentation from the April 2022 water gauging event.

No product was present in recovery well RW-1 or the other eight groundwater monitoring wells that were gauged.

A creek surface water level measurement was collected from the Cayadutta Creek Bridge using a water level probe (from the surveyed gauging point at the bridge).

3.1.2 Sampling

Groundwater sampling was performed following low-flow sampling techniques [equivalent to United States Environmental Protection Agency (USEPA) low-flow procedures] using a pressure-driven peristaltic pump. During purging, measurements were collected for the following field parameters: pH, specific conductivity, turbidity, dissolved oxygen (DO), temperature, and oxidation-reduction potential (ORP). A Horiba U-22 was used to collect the field parameter data in a flow-through cell. The monitored field parameters are observed and recorded during low-flow sampling to determine when they have stabilized, and thus when the well has been adequately purged. Field parameter measurements were recorded at approximately 5-minute intervals. The

monitoring wells were purged until stabilization of the field parameters (±0.1 Standard Unit (SU) for pH, ±3% for specific conductivity, ±10 millivolts (mV) for ORP, and ±10% for DO) and turbidity was less than 50 Nephalometric Turbidity Units (NTU). Refer to **Attachment A** for the field data.

After stabilization of the field parameters, eight groundwater samples were collected directly from the dedicated tubing into laboratory-supplied sample containers (pre-preserved as required per the analytical method). Quality Assurance/Quality Control (QA/QC) samples included the collection of one field duplicate sample, one matrix spike (MS) sample, one duplicate matrix spike (DMS) sample, and one trip blank sample (VOCs only). Samples were transported to the laboratory, accompanied by the appropriate chain-of-custody documentation. Analytical results were validated.

3.1.3 Natural Attenuation Parameters

The ORP of groundwater may be used as a general indicator of the dominant attenuation processes and the relative tendency of the biological processes to accept or transfer electrons. ORP is dependent on and influences rates of biodegradation. Lower ORP readings indicate reduced conditions and are indicative of anaerobic biologic degradation processes.

The pH of the groundwater affects the presence and activity of microorganisms in the groundwater. The microorganisms may produce either organic acids or carbon dioxide which, when dissolved in water, forms weak carbonic acid. Microorganisms capable of degrading petroleum hydrocarbons are most active with pH values ranging from 6 to 8 SU.

Groundwater temperature affects the solubility of dissolved gases such as oxygen and carbon dioxide as well as the metabolic activity of microorganisms. Oxygen is less soluble in warm water, and groundwater temperatures below approximately 5 degrees Celsius tend to inhibit biodegradation.

DO is the most thermodynamically favored electron acceptor used by microorganisms during the degradation of both natural and anthropogenic organic carbon. An inverse relationship of high hydrocarbon concentrations and low DO concentrations can be used as a key indicator of biodegradation.

Nitrate, if available, may be used as an electron acceptor for anaerobic biodegradation after the depletion of DO [typically considered less than 0.5 milligrams per liter (mg/L)] and is used to biodegrade petroleum hydrocarbons. Lower nitrate concentrations in groundwater within a plume, with respect to higher concentrations in areas upgradient and outside a plume, may be expected.

Ferrous iron is a metabolic byproduct of hydrocarbon degradation. Reducing conditions in nitrogen- and oxygen-depleted groundwater creates an anaerobic environment that causes the reduction of ferric iron (Fe³⁺) to ferrous iron (Fe²⁺). Relatively low ferrous iron concentrations may be present in areas where natural attenuation is occurring if free ferrous iron is re-precipitating as sulfides or carbonates.

Sulfate may be used as an electron acceptor after the depletion or use limitation of DO, nitrate, and ferric iron. Lower sulfate concentrations in groundwater within a plume, with respect to higher concentrations in areas upgradient and outside a plume, may be expected.

The production of methane, termed methanogenesis, occurs only in strongly reducing conditions and generally after oxygen, nitrate, and sulfate have been depleted. The presence of methane in groundwater suggests Benzene, Toluene, Ethylbenzene, Xylene (BTEX) degradation via methanogenesis. Methane is not present in fuels, and therefore its presence at high concentrations relative to areas upgradient and outside a plume is indicative of the biodegradation of petroleum hydrocarbons.

The buffering capacity of groundwater is a function of alkalinity. Typically, alkalinity is primarily due to carbonate alkalinity. The organic acids or carbon dioxide (which produces a weak carbonic acid when dissolved in water) produced by biodegradation solubilize carbonate from the soil. Alkalinity concentrations that are elevated with respect to areas upgradient and outside a plume may be an indication of microbial activity and thus natural attenuation.

Typically, the relationships between BTEX and electron acceptors/metabolic byproduct concentrations (geochemical indicators) indicate potential for biodegradation. The concentrations are dependent on the location (and groundwater conditions) within the plume or outside of the plume limits.

3.2 Groundwater Analytical Results

The groundwater samples were analyzed for BTEX, Polycyclic Aromatic Hydrocarbons (PAHs), lead, total cyanide, and monitored natural attenuation/water quality (MNA/WQ) parameters including alkalinity, chloride, ethane, ethene, ferrous iron, manganese, methane, nitrate, nitrogen, sulfate and sulfide. BTEX, PAHs, and cyanide are constituents commonly associated with former MGP sites. BTEX, PAHs, lead, and cyanide were the primary contaminants detected during previous investigation activities conducted at the Site. The MNA/WQ parameters, as well as field-measured ORP, pH, temperature, and DO, are relevant to establishing whether conditions are favorable for natural attenuation to occur at the Site.

- Refer to Table 3 for the analytical results summary.
- Refer to Appendix A for field data.
- Refer to Appendix B for the data usability summary report (DUSR).

Groundwater analytical results were compared with levels specified in the NYSDEC Division of Water Final Amendment to Water Quality Standards Regulations, effective February 16, 2008 [hereafter referred to as NYSDEC WQ Values]. For groundwater, Class GA values were applied. Class GA waters are defined as fresh groundwater, found in the saturated zone of unconsolidated deposits and consolidated rock or bedrock, which are used as a source of potable water supply.

3.2.1 Site Related Parameters

BTEX - Groundwater samples collected on April 13, 2022, from monitoring wells MW-13, MW-15, and MW-16 contained concentrations of some or all individual BTEX constituents above their respective NYSDEC WQ Values [1 microgram per liter (μ g/L) for benzene and 5 μ g/L for other BTEX constituents]. The highest concentrations of BTEX were observed in the groundwater samples collected from monitoring well MW-15. Monitoring well MW-15 is located northeast of former gas holder #2.

PAHs – PAHs above NYSDEC WQ Values were detected in samples collected on April 13, 2022, from monitoring wells MW-10, MW-12, and MW-15. Naphthalene (MW-15) has typically been detected at the highest concentration of any PAH.

Cyanide - Concentrations of cyanide were below the NYSDEC WQ Value (0.2 mg/L) in all groundwater samples April 13, 2022, with the exception of MW-7 (0.26 mg/L) and MW-15 (0.23 mg/L).

3.2.2 Monitored Natural Attenuation Parameters

Site-specific levels of the MNA/WQ parameters (geochemical indicators) were compared to known screening values to identify whether the site-specific values are within the ranges known to be suitable for biodegradation. The April 2022 MNA/WQ analytical results for the individual monitoring wells are summarized in **Table 3**. **Figure 4** presents the groundwater data for the key MNA data parameters at their respective locations to assist with the MNA evaluation. Indications of biodegradation of petroleum-related MGP constituents within the plume include low levels of DO, nitrate and sulfate, with generally higher levels of manganese, ferrous iron and methane.

Indicator concentrations detected at monitoring wells identified within source and downgradient areas of the Site were compared to levels detected at upgradient and side gradient monitoring wells exhibiting little or no MGP-related contamination. Generally, indicator concentration levels at a distance from the center of the plume are expected to be significantly lower than levels within the plume. A summary of the MNA/WQ results and associated field indicator parameters are provided below:

- DO and ORP values demonstrate depleted levels of DO and a transformation to more anaerobic or reducing conditions at the former source and downgradient areas relative to side gradient and upgradient areas of the Site. These values suggest that biodegradation of MGP petroleum-related compounds at the source and at downgradient areas are occurring, consuming the available oxygen which produces decreased DO levels.
- The range of ORP levels observed at the source and downgradient area monitoring wells generally indicates reduced aquifer conditions which could be suitable for denitrification, ferric iron reduction, sulfate reduction, and methanogenesis.
- Nitrate concentrations are generally depleted at the former source and downgradient areas of the Site relative to upgradient (MW-4) and side gradient (MW-12) areas, indicating

denitrification may be a noteworthy biodegradation process occurring at this time at the source and downgradient areas.

- Ferrous iron concentrations at the former source and downgradient area monitoring wells (MW-7, MW-10, MW-14, MW-15) exhibit higher levels relative to side gradient and upgradient monitoring wells (MW-4, MW-12). The presence of these metabolic by-products downgradient of the source area suggest biodegradation of MGP petroleum-related compounds may be occurring.
- Sulfate concentrations at the former source and downgradient areas are not depleted relative
 to upgradient and side gradient areas. This observation indicates sulfate reduction is not likely
 to be a significant biodegradation process at this time at the source and downgradient areas.
- Based on the presence of methane, low DO concentrations, and the reduced ORP levels, methanogenesis is likely an important factor for biodegradation capacity in the source and downgradient areas of the Site.

3.2.3 Natural Attenuation Trending

Previous groundwater sampling data collected since April 2013 (the dataset) were utilized to develop and evaluate the contaminant plume and concentration trends of specific constituents at the Site. Plume size and concentration data are indicative of biodegradation capacity (natural attenuation) at the Site and whether the capacity has reached a limit of effectiveness. In order to determine and evaluate natural attenuation effectiveness, statistical testing was utilized for groundwater data collected from monitoring wells at the Site. The Mann-Kendall test was performed on the dataset to identify potential trends in groundwater concentrations of site contaminants. The Mann-Kendall test is a nonparametric evaluation used to identify a trend in a series, even if there is a seasonal component in the series. The three possible hypotheses are that there is a negative, null, or positive trend. The resultant statistical trend analysis for individual monitoring wells suggests (with 80% and 90% confidence) that total BTEX compounds and the naphthalene plume lifecycle demonstrate either no trend or a decreasing trend throughout the monitoring period. It is worth noting that a failure to reject the null hypothesis (i.e. "no trend") does not prove that there is no trend; it merely means that the available data is not sufficient to conclude there is a trend. In cases where no trend was determined, a comparison of the dataset to the historical highs and lows was performed to determine if the plume is stable; in every case, this evaluation concluded the plume is stable. The table below depicts general concentration trend analysis results (decreasing, no trend or increasing) at 80% confidence levels for each well and associated constituents during the monitoring period. No trend is indicative of plume stability at well locations with contaminant detections throughout the monitoring period.

Table 1 – Contaminant Trend Analysis

Well ID	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene
MW-4	Stable	Stable	Stable	Stable	Decreasing
MW-7	Stable	Stable	Stable	Stable	Decreasing
MW-10	Stable	Stable	Stable	Stable	Decreasing
MW-11	Not sampled	Not sampled	Not sampled	Not sampled	Not sampled
MW-12	Stable	Stable	Stable	Stable	Decreasing
MW-13	Decreasing	Decreasing	Decreasing	Decreasing	Decreasing
MW-14	Stable	No Trend	No Trend	No Trend	Probably Decreasing
MW-15	Decreasing	No Trend	Stable	Stable	No Trend
MW-16	Stable	No Trend	Stable	Stable	Prob. Increasing

Isoconcentration contour maps were developed for total BTEX (**Figure 5**) and naphthalene (**Figure 6**) contamination. The figures present locations of the groundwater monitoring wells and plume contours for total BTEX (as compared to the benzene WQ value of 1 μ g/L) and naphthalene exceeding the NYSDEC WQ values. Evaluation of the isoconcentration figures suggests that the contaminant plumes were relatively stable to decreasing (smaller footprint with time) within the Site boundary. BTEX constituent plume trends (concentrations above the benzene WQ value of 1 μ g/L) have consistently included monitoring wells MW-13, MW-15, and MW-16. The naphthalene plume (concentrations above the WQ) includes monitoring wells MW-13, MW-15, and MW-16.

4 Conclusions and Recommendations

4.1 Conclusions

4.1.1 Groundwater Levels

The groundwater elevation data indicates groundwater within the Site flows from the south to the north, toward Cayadutta Creek. The groundwater flow direction has been consistent during previous gauging events and with data obtained prior to the ROD. **Figure 3** is a groundwater monitoring map verifying groundwater flow direction.

4.1.2 Site-Related Constituents

The highest concentrations of BTEX constituents and PAH compounds are at wells MW-13, MW-15, and MW-16. Site institutional controls continue to be effective and will continue to be monitored semi-annually.

There are minimal concentrations of lead in groundwater samples; however, Total Cyanide has been detected consistently in most wells.

4.1.3 Natural Attenuation

Plume stability at the Site is an indication that biodegradation capacity likely has not reached its limit of effectiveness. The use of statistical testing has identified the plume trends based on the constituent concentrations were typically either stable or decreasing.

4.2 Recommendations

Based on the results of the April 2022 groundwater sampling and monitoring event and results from previous events, it is recommended to continue the long-term semi-annual site inspection and groundwater monitoring program. The next event will occur in October 2022.

5 References

Borden, Robert C., et. al., "Geochemical Indicators of Intrinsic Bioremediation". Groundwater, Volume 33, Number 2, March/April 1995.

National Grid. "Site Management Plan for the Johnstown (N. Market Street) Former MGP Site, Johnstown, New York". National Grid, November 2011.

Niagara Mohawk Power Corporation. "Preliminary Historical Profile of the Johnstown (Market Street) MGP Site. Johnstown, New York". Niagara Mohawk Power Corporation, June 1993.

Niagara Mohawk Power Corporation. "Interim Remedial Measure (IRM) Summary Report for the Johnstown (N. Market Street) Site. Johnstown, Fulton County, New York. Site No. 5-18-020:. Tetra Tech FW, June 2007.

Niagara Mohawk Power Corporation. "IRM Summary Report for the Johnstown (N. Market Street) Site. Bridge Replacement Environmental Support Activities". Tetra Tech FW, October 2007.

Niagara Mohawk Power Corporation. "Record of Decision for the Johnstown (N. Market Street) Former MGP Site, Johnstown, New York". Niagara Mohawk Power Corporation, March 2010.

June 2022 Semi-Annual Groundwater Monitoring Report National Grid Johnstown Site 109 North Market Street, Johnstown NY 12095

Figures

Source: USGS 7.5 Minute Series Topographic Quadrangle, 1970 Gloversville, New York Contour Interval = 20'

Site Location Map

National Grid Former MGP Site 105 N Market Street Johnstown, New York

Date 11/15/19 Figure 1

Scale in Feet
0 2000

June 2022 Semi-Annual Groundwater Monitoring Report National Grid Johnstown Site 109 North Market Street, Johnstown NY 12095

Tables

Table 2

Groundwater Level Measurements

		6/30	/2010	9/29	/2010	1/5/	2011	4/8/	2011	6/16	/2011	10/13	3/2011	12/15	5/2011
Well ID	ELEVATION REFERENCE POINT	Depth to Water (ft TOC)	GW Elevation (ft AMSL)												
MW-4	676.54	23.10	653.44	23.41	653.13	22.95	653.59	22.50	654.04	22.04	654.50	21.41	655.13	22.78	653.76
MW-7	659.08	14.25	644.83	13.18	645.90	13.88	645.20	12.87	646.21	13.80	645.28	13.15	645.93	15.45	643.63
MW-10	657.59	14.80	642.79	14.60	642.99	14.75	642.84	14.09	643.50	14.77	642.82	14.11	643.48	14.22	643.37
MW-11	657.29	NM	NM	13.57	643.72	13.59	643.70	12.51	644.78	13.38	643.91	12.95	644.34	12.76	644.53
MW-12	660.08	NM	NM	NM	NM	15.06	645.02	NM	NM	NM	NM	13.61	646.47	14.54	645.54
MW-13	664.89	14.65	650.24	15.22	649.67	14.95	649.94	11.18	653.71	13.99	650.90	11.91	652.98	14.31	650.58
MW-14	663.91	13.50	650.41	14.46	649.45	14.28	649.63	12.86	651.05	13.65	650.26	13.26	650.65	13.65	650.26
MW-15	661.85	16.90	644.95	17.24	644.61	17.68	644.17	15.07	646.78	16.63	645.22	15.95	645.90	16.38	645.47
MW-16	665.57	9.70	655.87	10.19	655.38	12.33	653.24	11.00	654.57	10.50	655.07	9.79	655.78	9.91	655.66
RW-1	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-
GAUGE1	659.97	15.07	644.90	20.20	639.77	16.30	643.67	15.75	644.22	16.75	643.22	16.05	643.92	15.62	644.35

Table 2

Groundwater Level Measurements

		3/15	/2012	10/9	/2012	4/18	/2013	10/7	/2013	4/9/	/2014	10/1:	3/2014	4/16	/2015
Well ID	ELEVATION REFERENCE POINT	Depth to Water (ft TOC)	GW Elevation (ft AMSL)												
MW-4	676.54	22.81	653.73	NM	NM	23.97	652.57	23.12	653.42	23.28	653.26	23.28	653.26	22.91	653.63
MW-7	659.08	13.55	645.53	14.17	644.91	13.53	645.55	14.36	644.72	13.71	645.37	14.61	644.47	13.23	645.85
MW-10	657.59	14.18	643.41	15.05	642.54	14.27	643.32	14.44	643.15	14.13	643.46	14.98	642.61	14.15	643.44
MW-11	657.29	12.73	644.56	13.95	643.34	13.01	644.28	13.16	644.13	12.68	644.61	13.71	643.58	12.62	644.67
MW-12	660.08	14.26	645.82	16.36	643.72	14.06	646.02	14.99	645.09	14.41	645.67	15.65	644.43	14.25	645.83
MW-13	664.89	14.98	649.91	16.12	648.77	14.18	650.71	15.08	649.81	14.84	650.05	15.53	649.36	11.34	653.55
MW-14	663.91	15.49	648.42	16.98	646.93	13.14	650.77	14.74	649.17	15.70	648.21	15.02	648.89	13.06	650.85
MW-15	661.85	16.41	645.44	17.85	644.00	16.26	645.59	17.21	644.64	16.67	645.18	17.55	644.30	15.31	646.54
MW-16	665.57	11.56	654.01	10.51	655.06	9.98	655.59	9.85	655.72	9.45	656.12	10.24	655.33	10.48	655.09
RW-1	-	-	-	17.98	-	16.21	-	15.95	-	12.32	-	17.31	-	16.84	-
GAUGE1	659.97	15.69	644.28	NM	NM	19.10	640.87	18.85	641.12	18.85	641.12	20.01	639.96	18.91	641.06

Table 2

Groundwater Level Measurements

		10/13	3/2015	4/6/	2016	10/2	5/2016	4/26	/2017	10/1	1/2017	4/26	5/2018	10/17	7/2018
Well ID	ELEVATION REFERENCE POINT	Depth to Water (ft TOC)	GW Elevation (ft AMSL)												
MW-4	676.54	23.48	653.06	23.51	653.03	24.03	652.51	21.09	652.19	24.35	652.19	22.48	654.06	23.20	653.34
MW-7	659.08	14.61	644.47	14.19	644.89	15.00	644.08	13.62	645.46	14.83	644.25	12.85	646.23	14.40	644.68
MW-10	657.59	14.95	642.64	14.77	624.82	15.18	642.41	14.37	643.22	15.02	642.57	13.05	644.54	14.60	642.99
MW-11	657.29	-	-	NM	-										
MW-12	660.08	15.62	644.46	14.95	645.13	15.82	644.26	13.55	646.53	15.62	644.46	14.00	646.08	15.10	644.98
MW-13	664.89	14.98	649.91	15.95	648.94	16.32	648.57	13.27	651.62	15.80	649.09	12.98	651.91	14.15	650.74
MW-14	663.91	13.63	650.28	16.81	647.1	16.8	647.11	13.71	650.20	15.88	648.03	13.71	650.20	13.88	650.03
MW-15	661.85	17.23	644.62	17.355	644.3	17.9	643.95	16.05	645.80	17.86	643.99	15.71	646.14	16.70	645.15
MW-16	665.57	9.61	655.96	10.79	654.78	11.11	654.46	9.02	656.55	10.43	655.14	9.52	656.05	9.88	655.69
RW-1	-	13.21	-	13.03	NRP	12.88	NRP	10.6	NRP	17.40	NRP	12.35	NRP	12.38	NRP
GAUGE1	659.97	19.91	640.06	19.76	640.21	18.40	641.57	15.70	644.27	15.46	644.51	14.55	645.42	15.70	644.27

Table 2

Groundwater Level Measurements

		4/18	/2019	10/16	6/2019	5/20	/2020	10/7	/2020	4/14	/2021	10/6	/2021	4/13	/2022
Well ID	ELEVATION REFERENCE POINT	Depth to Water (ft TOC)	GW Elevation (ft AMSL)												
MW-4	676.54	22.60	653.94	23.47	653.07	22.11	654.43	24.21	652.33	23.46	653.08	22.99	653.55	22.55	653.99
MW-7	659.08	13.85	645.23	14.73	644.35	15.15	643.93	15.02	644.06	14.31	644.77	13.99	645.09	13.38	645.70
MW-10	657.59	14.50	643.09	15.02	642.57	15.02	642.57	15.15	642.44	14.77	642.82	14.24	643.35	14.12	643.47
MW-11	657.29	NM	-												
MW-12	660.08	14.40	645.68	15.54	644.54	14.62	645.46	15.85	644.23	15.29	644.79	14.81	645.27	13.68	646.40
MW-13	664.89	13.07	651.82	14.74	650.15	15.42	649.47	16.05	648.84	14.02	650.87	14.48	650.41	12.18	652.71
MW-14	663.91	13.80	650.11	13.8	650.11	14.23	649.68	16.15	647.76	13.95	649.96	14.21	649.70	13.76	650.15
MW-15	661.85	15.60	646.25	17.05	644.80	16.52	645.33	17.69	644.16	16.61	645.24	16.40	645.45	15.69	646.16
MW-16	665.57	10.39	655.18	9.78	655.79	9.81	655.76	10.93	654.64	9.94	655.63	9.81	655.76	8.84	656.73
RW-1	=	15.22	NRP	13.00	NRP	11.40	NRP	13.83	NRP	12.72	NRP	11.49	NRP	9.28	NRP
GAUGE1	659.97	15.50	644.47	16.28	643.69	16.05	643.92	16.38	643.59	16.73	643.24	16.02	643.95	15.60	644.37

Table 3 Groundwater Analytical Data MW-4

CONSTITUENT	UNITS	AWQS	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/14	04/16/15	10/14/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21	10/06/21	04/13/22
CONDITION	Oitilo	Values	03/23/10	00411	04100111	00.14.11	1011711	121011	00/14/12	10/05/12	04/10/10	10/00/10	04/05/14	10/20/14	04/10/10	10/14/10	04.00.10	10120110	04/20/17	10011111	042010	10/10/10	04/10/15	10/10/15	00:20:20	10.07720	04114121	10,0021	04.10.22
BTEX Compounds																													
Benzene	μg/L	1	ND (<1.0)																										
Ethylbenzene	μg/L	5	ND (<1.0)																										
m/p-Xylene	μg/L	5	ND (<2.0)																										
o-Xylene	µg/L	5	ND (<1.0)																										
Toluene	µg/L	5	ND (<1.0)																										
PAHs																													
Acenaphthene	μg/L	20	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.21	ND (<0.096)	ND (<0.10)							
Acenaphthylene	µg/L	NC	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)	ND (<0.10)							
Anthracene	µg/L	50	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)		ND (<0.099)						
Benzo(a)anthracene	µg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)								
Benzo(a)pyrene	µg/L	0.000	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)		ND (<0.099)						
Benzo(b)fluoranthene	µg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	0.26J	ND (<0.49)	ND (<0.49)	ND (<0.49)	ND (<0.49)		ND (<0.49)	ND (<0.49)	ND (<0.52)	ND (<0.52)		ND (<0.096)		ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)	ND (<0.10)	
Benzo(g,h,i)perylene	µg/L	NC	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	0.19J	ND (<0.49)		ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)	ND (<0.10)	ND (<0.099)				
Benzo(k)fluoranthene	µg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)		ND (<0.49)	ND (<0.49)		ND (<0.49)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)	ND (<0.10)	
Chrysene	µg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)		ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)		ND (<0.099)						
Dibenzo(a,h)anthracene	µg/L	NC	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.49)	ND (<0.49)	ND (<0.49)		ND (<0.49)	ND (<0.49)	ND (<0.52)	ND (<0.52)		ND (<0.096)		ND (<0.099)	ND (<0.11)		ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)	ND (<0.10)	
Fluoranthene	µg/L	50	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)		ND (<0.49)	ND (<0.52)	ND (<0.52)		ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)						
Fluorene	µg/L	50	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)								
Indeno(1,2,3-cd)pyrene	µg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)		ND (<0.099)						
Naphthalene	µg/L	10	0.27	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.49)	ND (<0.49)	ND (<0.49)	3.2	3.2	2.2	2.2	2.2	ND (<0.51)	0.29	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	2.4	0.17		ND (<0.099)
Phenanthrene	µg/L	50	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	0.048J	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)	ND (<0.10)							
Pyrene	µg/L	50	ND (<0.19)	ND (<0.19)	ND (<0.47)	ND (<0.48)	ND (<0.47)	0.10J	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.10)	ND (<0.096)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.098)	ND (<0.096)	ND (<0.10)	ND (<0.099)						
Cyanide and Lead															,														
Lead	µg/L	25	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<3.0)	ND (<3.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<10)	ND (<10)	ND (<5.0)	ND (<20)	ND (<10.0)									
Cyanide	mg/L	0.2	ND (<0.01)	ND (<0.010)																									

Table 3

Groundwater Analytical Data MW-4

CONSTITUENT	UNITS	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/14	04/16/15	10/14/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21	10/06/21	04/13/22
MNA/WQ Parameters																	•											
Alkalinity (as CaCO3)	mg/L	385	420	R	R	405J	431J	R	405	354	442	398	400	384	412	394	414	392	418	424	424	452	410	360	390	386	500	406
Chloride	mg/L	354	269	265	385 B	288J	R	228	222	275	411	304	329	295	365	304	421	377	ND (<300)	233	306	360	260	296	200	315	637	339
Ethane	µg/L	ND (<1.0)	ND (<1.0)	ND (<1.5)	ND (<7.5)	ND (<0.025)	ND (<0.025)	ND (<0.030)	0.037J	ND (<0.16)	ND (<1.0)	0.036 J	ND (<1.00)	ND (<5.00)	ND (<5.00)	ND (<2.00)	ND (<1.00)											
Ethene	μg/L	ND (<1.0)	ND (<1.0)	ND (<1.5)	ND (<7.0)	ND (<0.035)	ND (<0.035)	ND (<0.10)	ND (<0.10)	ND (<0.032)	ND (<1.0)	ND (<1.0)	ND (<1.00)	ND (<5.00)	ND (<5.00)		ND (<1.00)											
Ferrous Iron	mg/L	ND (<0.1)	ND (<0.1)	R	ND (<0.1)	0.013	ND (<0.1)	ND (<0.1)	ND (<0.1)	ND (<0.1)	0.14	0.11	ND (<0.10)	ND (<0.10)	ND (<0.10)	0.10	ND (<0.10)		ND (<0.10)									
Manganese	mg/L	NA	ND (<10)	0.64J	0.45J	ND (<3.0)	3.4	ND (<3.0)	0.0087	ND (<3.0)	0.019	0.0031	0.0053	ND (<0.005)	ND (<0.005)	ND (<0.005)	0.0065	ND (<0.005)	0.0318	ND (<0.005)	0.0541	ND (<0.005)	0.0621	ND (<0.005)				
Methane	μg/L	ND (<2.0)	ND (<2.0)	ND (<1.0)	ND (<4.0)	0.32J	0.47J	0.27J	0.29J	ND (<0.30)	ND (<2.5)	ND (<2.5)	ND (<1.00)	ND (<5.00)	ND (<5.00)	3.01 J	ND (<1.00)											
Nitrate	mg/L	NA	2.5	2.7	2.9	2.4	3	3.1	2.2	2.4	3.5	3.6	2.7	2.9	2.9	3.4	3.2	2.2	3.2	0.69	2.1	3.9	2.7	2.8	2.2	3.9	2.2	2.6
Nitrogen	mg/L	0.22	0.25	ND (<0.2)	ND (<0.2)	R	ND (<0.2)	ND (<0.2)	0.25	0.31	0.31	ND (<0.2)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)									
Sulfate	mg/L	NA	49.2	56.7	74.2 B	R	R	56 B	62.2	64.7	74.7	70.7	50.8	60	60	73.9	60.8	23.0	56.7	50.0	ND (<50.0)	35.8	42.1	23.7	37.0	35.9	51.4	35.1
Sulfide	mg/L	NA	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)																			

Persent in Associated Blank Sample

Dilute Sample

Estimated Concentration

= Millignam per Liter

= Millignam per Liter

= Nicholetero Alluturi Alfarusation

= Nich Analyzed

= Nicholetero Alluturi Alfarusation

= Nich Analyzed

= Nicholetero Alluturi Alfarusation

= Nicholetero Alluturi All B
D
J
mg/L
MNA
NA
ND (<#)
NS
R
µg/L
WQ

Table 3 Groundwater Analytical Data MW-7

CONSTITUENT	UNITS	AWQS Values	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/14	04/16/15	10/14/15	04/06/16	10/26/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21	10/06/21	04/13/22
BTEX Compounds													•	•									•			,			
Benzene	µg/L	1	ND (<1.0)	ND (<1.0)	ND (<1.0)	0.72J	ND (<1.0)	ND (<1.0)	1.3	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)							
Ethylbenzene	µg/L	5	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)											
m/p-Xylene	µg/L	5	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)											
o-Xylene	µg/L	5	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)											
Toluene	µg/L	5	ND (<1.0)	ND (<1.0)	1.3	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)											
PAHs																													
Acenaphthene	µg/L	20	0.075J	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.55	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	0.10	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.13	ND (<0.096)	ND (<0.11)					
Acenaphthylene	µg/L	NC	0.15J	0.11J	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.20J	0.13J	0.13J	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	0.20	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	0.10	ND (<0.10)	0.17	0.11	ND (<0.11)	ND (<0.099)
Anthracene	µg/L	50	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.099)	ND (<0.096)	ND (<0.11)					
Benzo(a)anthracene	µg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.12	ND (<0.096)	ND (<0.11)					
Benzo(a)pyrene	µg/L	0.000	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.11	ND (<0.096)	ND (<0.11)	ND (<0.099)				
Benzo(b)fluoranthene	μg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.15J	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.10	ND (<0.096)	ND (<0.11)					
Benzo(g,h,i)perylene	μg/L	NC	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.099)	ND (<0.096)	ND (<0.11)					
Benzo(k)fluoranthene	µg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.099)	ND (<0.096)	ND (<0.11)					
Chrysene	µg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.12	ND (<0.096)	ND (<0.11)					
Dibenzo(a,h)anthracene	µg/L	NC	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.099)							
Fluoranthene	µg/L	50	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	0.078J	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	0.16	ND (<0.10)	0.29	ND (<0.096)	ND (<0.11)	
Fluorene	µg/L	50	ND (<0.19)	0.057J	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.11J	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.099)	ND (<0.096)	ND (<0.11)					
Indeno(1,2,3-cd)pyrene	µg/L	0.002	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	ND (<0.099)	ND (<0.096)	ND (<0.11)					
Naphthalene	µg/L	10	0.43	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.47)	1.1	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.46)	ND (<0.46)	5.2	ND (<0.49)	3.0	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.83	ND (<0.096)	ND (<0.11)	
Phenanthrene	µg/L	50	ND (<0.19)	ND (<0.19)	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.097J	0.12J	ND (<0.48)	0.49	ND (<0.48)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)		ND (<0.098)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.14	ND (<0.096)	ND (<0.11)	
Pyrene	µg/L	50	ND (<0.19)	0.038J	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.35J	0.098J	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.46)	ND (<0.46)	ND (<0.49)	ND (<0.49)	ND (<0.10)	ND (<0.097)	ND (<0.097)	ND (<0.098)	ND (<0.11)	ND (<0.11)	0.26	ND (<0.10)	0.43	ND (<0.096)	ND (<0.11)	ND (<0.099)
Cyanide and Lead																													
Lead	µg/L	25	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<3.0)	19	12	3.2J	19	33	7.1	7.1	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	5.6	ND (<5.0)	ND (<20)	ND (<10.0)
Cyanide	mg/L	0.2	0.333	0.217	R	0.68J	0.986	R	0.22	5.9	1.4	0.4	0.16	0.13	0.18	0.18	0.18	0.15	0.18	0.16	0.14	0.17	0.129	0.17	ND (<0.010)	0.35	0.11	0.13	0.26

Table 3

Groundwater Analytical Data MW-7

CONSTITUENT	UNITS	09/30/10	01/04/11	04/07/11	06/15/11	10/12/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/14	04/16/15	10/14/15	04/06/16	10/26/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21	10/06/21	04/13/22
MNA/WQ Parameters																		•		•								
Alkalinity (as CaCO3)	mg/L	321	330J	R	R	327J	370J	R	310	324	367	375	392	340	403	395	406	412	380	390	440	370	400	446	430	422	440	404
Chloride	mg/L	108	104	122	93.8 B	111J	R	91.2	101	114	84	79	62.8	67.7	66.7	66.2	79.4	68.9	64.6	63.6	59.4	63.9	50.9	58.1	56.5	62.6	53.4	83.3
Ethane	μg/L	ND (<5.0)	ND (<5.0)	ND (<1.5)	ND (<150)	ND (<1.5)	ND (<75)	ND (<75)	ND (<7.5)	ND (<7.5)	0.38J	0.86J	0.20J	0.32J	0.18J	0.13 J	ND (<1.0)	ND (<1.00)	ND (<5.00)	ND (<5.00)		ND (<1.00)						
Ethene	μg/L	ND (<5.0)	ND (<5.0)	ND (<1.5)	ND (<150)	ND (<1.5)	ND (<75)	ND (<75)	ND (<7.0)	ND (<7.0)	ND (<0.035)	0.090J	ND (<0.10)	ND (<0.10)	ND (<0.032)	ND (<1.0)	ND (<1.0)	ND (<1.00)	ND (<5.00)	ND (<5.00)	ND (<2.00)	ND (<1.00)						
Ferrous Iron	mg/L	1.12	ND (<0.1)	R	1.7J	0.83J	R	ND (<0.1)	0.37	ND (<0.1)	0.25	6.24	ND (<0.1)	ND (<0.1)	ND (<0.1)	0.14	0.59	3.7	3.3	2.8	3.2	2.5	2.1	4.3	2.9	0.66	2.3	0.93
Manganese	mg/L	NA	0.54	0.67	0.62	0.66	0.94	0.51	0.96	1.1	1.1	0.564	0.49	0.49	0.46	0.53	0.43	0.478	0.476	0.476	0.459	0.487	0.395	0.513	0.420	0.440	0.400	0.307
Methane	μg/L	290J	510	190	210	190	300	210	240	40	23	150	82	35	96	17	160	240	120	170	150	140	160	111	30.3	ND (<5.00)	88.2	67.2
Nitrate	mg/L	NA	ND (<1.0)	ND (<0.05)	ND (<0.02)	ND (<0.05)	0.14	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<0.10)	ND (<0.20)	0.11									
Nitrogen	mg/L	1.76	1.59	1.4	1.3	1.6	R	1.6	1.6	4.6	1.5	0.16	2	1.1	1.5	1.6	2.2	1.8	1.3	1.7	1.2	1.6	0.11	1.6	ND (<0.10)	1.7	1.7	1.4
Sulfate	mg/L	NA	576	745 B	611 B	R	R	674 B	509	654	518	540	457	442	533	384	476	396	394	389	331	334	259	307	298	280	321	287
Sulfide	mg/L	NA	1.4J	ND (<1.0)	U8.0	2.8	ND (<1.0)	ND (<1.0)	1.2	1.4	1.4	1.4	1	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	2.4	ND (<1.0)

B
D
J
mg/L
MNA
NA
ND (<#)
NS
R
µg/L
WQ Piercert in Associated Blank Sample
Diluted Sample
Estimated Concentration
Miligrams per Liter
Monitored Natural Albraustion
Not Analyzed
Not detected above laboratory reporting limit (indicated by #)
Not Sampled
Monitored Natural Nat

Table 3 Groundwater Analytical Data MW-10

CONSTITUENT	UNITS	NYSDEC	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/14	04/16/15	10/13/15	04/06/16	10/26/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21	10/06/21	04/13/22
OONOTITOENT	O.M.TO	Values	03/23/10	0.00011	04100111	00.14.11	1011711	12.10111	00/14/12	10,007,12	04/10/10	10/00/10	04100714	10/20/14	04/10/10	10/10/10	0400110	10120110	04120111	10.1111	0412010	10.10.10	04/10/15	10/10/15	00/20/20	10/0//20	0411421	10/00/21	04.10.22
BTEX Compounds		•												,			,												
3enzene	µg/L	1	ND (<1.0)	ND (<1.0)	ND (<1.0)	7.1	1.3	ND (<1.0)	2.3	ND (<1.0)	ND (<1.0)	1.9	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)							
Ethylbenzene	µg/L	5	ND (<1.0)	1	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)												
n/p-Xylene	µg/L	5	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)												
-Xylene	µg/L	5	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)												
Foluene	µg/L	5	ND (<1.0)	2	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)												
PAHs																													$\overline{}$
Acenaphthene	µg/L	20	1.6	1.3	1.8J	2.4	2.3	0.099J	1.4	2	2.2	1.1	0.8	ND (<0.48)	0.63	ND (<0.50)	ND (<0.50)	1.4	0.72	1.6	0.53	1.7	1.4	1.8	0.52	1.9	2.0	1.6	1.5
Acenaphthylene	μg/L	NC	0.43J	0.32	0.24J	0.42J	0.74J	0.13J	0.14J	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	0.18	0.16	0.18	0.11	0.22	0.22	0.27	ND (<0.095)	0.43	0.38	0.27	0.24				
Anthracene	µg/L	50	0.061J	0.047J	ND (<0.47)	ND (<0.47)	0.28J	ND (<0.47)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.10)	ND (<0.097)	ND (<0.099)	ND (<0.10)	ND (<0.11)	ND (<0.11)	ND (<0.096)	ND (<0.095)	0.14	0.14	ND (<0.11)	ND (<0.099)					
Benzo(a)anthracene	µg/L	0.002	0.13J	0.057J	ND (<0.47)	ND (<0.47)	1	ND (<0.47)	0.49 B	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.10)	0.11	ND (<0.099)	ND (<0.10)	ND (<0.11)	0.13	0.15	ND (<0.095)	0.63	0.61	0.16	0.20				
Benzo(a)pyrene	µg/L	0.002	0.14J	0.057J	ND (<0.47)	ND (<0.47)	0.81	ND (<0.47)	0.19J	ND (<0.48)	0.55	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.10)	0.10	ND (<0.099)	ND (<0.10)	ND (<0.11)	0.12	0.15	ND (<0.095)	0.56	0.67	0.16	0.16
Benzo(b)fluoranthene	μg/L	0.002	0.071J	0.047J	ND (<0.47)	ND (<0.47)	0.8	ND (<0.47)	0.24J	ND (<0.48)	0.86	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.10)	0.17	ND (<0.099)	ND (<0.10)	ND (<0.11)	0.13	0.15	ND (<0.095)	0.65	68.0	0.23	0.24
Benzo(g,h,i)perylene	μg/L	NC	0.051J	ND (<0.19)	ND (<0.47)	ND (<0.47)	0.37J	ND (<0.47)	0.08J	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.10)	ND (<0.097)	ND (<0.099)	ND (<0.10)	ND (<0.11)	ND (<0.11)	ND (<0.096)	ND (<0.095)	0.24	0.32	ND (<0.11)	ND (<0.099)				
Benzo(k)fluoranthene	μg/L	0.002	0.092J	0.047J	ND (<0.47)	ND (<0.47)	0.53	ND (<0.47)	0.18J	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.10)	0.15	ND (<0.099)	ND (<0.10)	ND (<0.11)	ND (<0.11)	ND (<0.096)	ND (<0.095)	0.25	0.85	0.19	0.22				
Chrysene	μg/L	0.002	0.12J	0.047J	ND (<0.47)	ND (<0.47)	0.91	ND (<0.47)	ND (<0.48)		ND (<0.48)	ND (<0.48)	ND (<0.48)		ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.10)	0.099	ND (<0.099)	ND (<0.10)	ND (<0.11)	ND (<0.11)	0.12	ND (<0.095)	0.53	0.51	ND (<0.11)	0.17
Dibenzo(a,h)anthracene	μg/L	NC	ND (<0.20)	ND (<0.19)	ND (<0.47)	ND (<0.47)	0.11J	ND (<0.47)	ND (<0.48)	ND (<0.48)	1.1	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.10)	ND (<0.097)	ND (<0.099)	ND (<0.10)	ND (<0.11)	ND (<0.11)	ND (<0.096)	ND (<0.095)	ND (<0.099)	0.11		ND (<0.099)
luoranthene	μg/L	50	0.24	0.11J	0.085J	ND (<0.47)	1.5	ND (<0.47)	0.34J	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	0.10	0.16	ND (<0.099)	ND (<0.10)	ND (<0.11)	0.18	0.22	ND (<0.095)	0.78	0.78	0.18	0.24				
luorene	μg/L	50	0.13J	0.14J	ND (<0.47)	ND (<0.47)	ND (<0.49)	ND (<0.47)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.10)	ND (<0.097)	ND (<0.099)	ND (<0.10)	ND (<0.11)	ND (<0.11)	ND (<0.096)	ND (<0.095)	0.21	ND (<0.096)	ND (<0.11)						
ndeno(1,2,3-cd)pyrene	μg/L	0.002	0.051J	ND (<0.19)	ND (<0.47)	ND (<0.47)	0.34J	ND (<0.47)	0.076J	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.10)	ND (<0.097)	ND (<0.099)	ND (<0.10)	ND (<0.11)	ND (<0.11)	ND (<0.096)	ND (<0.095)	0.23	0.30	ND (<0.11)					
Naphthalene	μg/L	10	0.33	ND (<0.19)	ND (<0.47)	ND (<0.47)	ND (<0.49)	ND (<0.47)	ND (<0.48)	0.7	0.7	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.50)	7.9	ND (<0.50)	0.23	ND (<0.097)	ND (<0.099)	ND (<0.10)	ND (<0.11)	ND (<0.11)	ND (<0.096)	ND (<0.095)	0.49	ND (<0.096)	ND (<0.11)	
Phenanthrene	μg/L	50	0.11J	ND (<0.19)	ND (<0.47)	ND (<0.47)	0.53	0.10J	0.18J	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.10)		ND (<0.099)	ND (<0.10)	ND (<0.11)	ND (<0.11)			0.18	0.20	ND (<0.11)					
Pyrene	μg/L	50	0.33J	0.13J	0.15J	ND (<0.57)	1.8	0.14J	0.41J	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<0.50)	0.15	0.20	ND (<0.099)	ND (<0.10)	0.13	0.22	0.27	ND (<0.095)	0.97	0.90	0.26	0.30				
Cyanide and Lead																													
.ead	μg/L	25	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<3.0)	9.1	3.9J	6.4	ND (<5.0)	8.4	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<5.0)	ND (<10.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	6.0	ND (<20)	ND (<10.0)
Cyanide	mg/L	0.2	0.139	0.124	R	0.17J	0.156	R	0.078	0.14	0.1	0.11	0.081	0.10	0.098	0.010	0.085	0.081	0.13	0.10	0.12	0.079	0.114	0.093	0.097	0.10	0.060	0.066	0.097

Table 3

Groundwater Analytical Data MW-10

CONSTITUENT	UNITS	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/14	04/16/15	10/13/15	04/06/16	10/26/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21	10/06/21	04/13/22
MNA/WQ Parameters																												
Alkalinity (as CaCO3)	mg/L	556	536J	R	R	523J	541J	R	589	584	552	566	548	512	581	586	660	628	616	606	650	550	640	624	502	524	650	612
Chloride	mg/L	344	277	181 B	160 B	156J	R	147	316	286	265	470	664	698	1060	893	784	390	427	419	709	440	566	314	472	945	768	816
Ethane	μg/L	ND (<1.0)	ND (<1.0)	ND (<1.5)	ND (<7.5)	ND (<1.5)	ND (<1.5)	ND (<1.5)	ND (<7.5)	0.16J	0.33J	0.20J	0.24J	0.42J	0.29 J	0.34 J	ND (<1.00)	ND (<5.00)	ND (<5.00)	ND (<2.0)	ND (<1.00)							
Ethene	μg/L	ND (<1.0)	ND (<1.0)	ND (<1.5)	ND (<7.5)	ND (<1.5)	ND (<1.5)	ND (<1.5)	ND (<7.0)	ND (<0.035)	0.12J	ND (<0.10)	ND (<0.10)	ND (<0.032)	ND (<1.0)	ND (<1.0)	ND (<1.00)	ND (<5.00)	ND (<5.00)	ND (<2.0)	ND (<1.00)							
Ferrous Iron	mg/L	0.31	ND (<0.2)	R	0.34J	0.47	ND (<0.1)	Я	ND (<0.10)	ND (<0.10)	0.12	6.06	ND (<0.10)	ND (<0.10)	ND (<0.10)	0.11	1.0	4.2	4.7	3.2	4.8	2.6	2.2	5.3	1.2	1.1	3.2	2.0
Manganese	mg/L	NA	1.14	1.2	0.95	0.88	0.58	0.83	1	1.2	0.75	1.07	1.3	1.3	1.6	1.2	1.2	1.020	1.030	0.882	0.994	0.946	1.15	0.953	0.771	1.09	1.040	1.150
Methane	μg/L	64J	75	34	9.8	33	85	40	72	32	28	110	130	63	82	56	420	300	330	470	680	460	1300	390	451	ND (<5.00)	780	594
Nitrate	mg/L	NA	ND (<1.0)	ND (<0.05)	0.11	ND (<0.05)	0.12	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.50)	ND (<0.10)	ND (<0.20)	ND (<0.50)										
Nitrogen	mg/L	6.02	4.91	8.5	4.9	4.9	R	5.4	5.7	6.1	4.1	4.8	6.2	5.6	6.3	4	6.5	5.1	3.8	3.3	4.5	4	ND (<1.0)	2.5	1.0	4.0	4.7	3.8
Sulfate	mg/L	NA	167	306	296 B	R	R	238 B	175	174	171	153	89.7	167	53.9	44.4	56.6	148	38.2	ND (<100)	23.0	59.4	20.9	55.2	23.9	7.8	9.7	12.3
Sulfide	mg/L	NA	R	R	ND (<1.0)	0.8J	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	3.4	ND (<1.0)										

Persent in Associated Blank Sample

Diluted Sample

Estimated Concentration

Miligrams per Liter

Monitored Natural Alternation

Net Ansized

Net detected above taboratory reporting limit (indicated by #)

Net Sampled

Micrograms per Liter

Wister Quality

Wister Quality

B D J mg/L MNA NA ND (<#) NS R µg/L WQ

Table 3 Groundwater Analytical Data MW-11

CONSTITUENT	UNITS	NYSDEC AWQS Values	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/14	04/16/15	10/14/15 to 10/06/21*	04/13/22
BTEX Compounds																	
Benzene	μg/L	1	27	16	2.8	13	18	15	7.9	12	3.5	8.1	10	22	7.3	NS	NS
Ethylbenzene	μg/L	5	7.3	7.2	1.9	6.9	6.1	5.5	3.5	ND (<1.0)	1.2	3.8	5.1	7.8	3	NS	NS
m/p-Xylene	μg/L	5	3	3.9	2.2	5.3	2.4	2.1	1.4J	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	2.1	ND (<2.0)	NS	NS
o-Xylene	μg/L	5	2.6	2.7	1.1	3.1	2.0	2.0	1.2	ND (<1.0)	ND (<1.0)	1.6	2.1	2.6	1.5	NS	NS
Toluene	μg/L	5	1.3	1.3	ND (<1.0)	1.4	0.97J	0.99J	0.69J	ND (<1.0)	ND (<1.0)	ND (<1.0)	1.1	1.9	ND (<1.0)	NS	NS
PAHs																	
Acenaphthene	μg/L	20	150 D	140 D	150	110	120	130	100	140 E	97	110	120	110	59	NS	NS
Acenaphthylene	μg/L	NC	280JD	330 D	290	290	240 D	270 D	210	160 E	120	170	110	150	56	NS	NS
Anthracene	μg/L	50	21	18	88	19 B	19	17	11	23	13	28	13	16	4.2	NS	NS
Benzo(a)anthracene	μg/L	0.002	2.2J	2.2	35	6.2 B	2.7	3.0 B	5.2 B	3.8	ND (<0.002)	8.3	3.2	4.8	1.9	NS	NS
Benzo(a)pyrene	μg/L	0.002	1.7	2.2	34	5.7 B	2.8	2.5 B	2.3J	2.7	3.3	8.5	2.8	4.7	0.84	NS	NS
Benzo(b)fluoranthene	μg/L	0.002	0.65J	0.82J	24	4.8 B	1.9	2.1	1.8J	1.7	ND (<0.002)	ND (<0.002)	ND (<0.002)	4.6	0.68	NS	NS
Benzo(g,h,i)perylene	μg/L	NC	0.90J	1.2J	20	4.0 B	1.4	1.7	1.3J	1	1	3.4	ND (<0.002)	1.8	ND (<0.002)	NS	NS
Benzo(k)fluoranthene	μg/L	0.002	0.90J	1.1J	12	2.5 B	1	0.78	1.2J	1.6	ND (<0.002)	ND (<0.002)	ND (<0.002)	2.1	ND (<0.002)	NS	NS
Chrysene	μg/L	0.002	2.8	2.9	43	8.1 B	3.3	3.5 B	ND (<5.1)	3.4	4.4	10	5.4	7.6	0.99	NS	NS
Dibenzo(a,h)anthracene	μg/L	NC	ND (<1.0)	ND (<2.1)	3.2	ND (<2.4)	0.30J	0.59	ND (<5.1)	ND (<5.1)	ND (<5.1)	ND (<5.1)	ND (<5.1)	ND (<0.47)	ND (<0.47)	NS	NS
Fluoranthene	μg/L	50	18	14	96	22 B	20	16	12	24	14	28	12	16	5.4	NS	NS
Fluorene	μg/L	50	110 D	100 D	130	72	79	83	62	92	62	70	31	44	16	NS	NS
Indeno(1,2,3-cd)pyrene	μg/L	0.002	0.65J	2.1U	13	2.8 B	0.96	1.0 B	0.69J	1.6	ND (<0.002)	ND (<0.002)	ND (<0.002)	1.2	ND (<0.002)	NS	NS
Naphthalene	μg/L	10	180 D	560 D	300	480	310 D	230 D	140	110	50	87	ND (<10)	51	2.3	NS	NS
Phenanthrene	μg/L	50	160 D	150 D	260	52 B	140 D	130	91	170	80	130	5.8	62	1.5	NS	NS
Pyrene	μg/L	50	26J	17	150	28 B	21	21	16	28	18	34	17	20	4.2	NS	NS
Cyanide and Lead																	
Lead	μg/L	25	ND (<5.0)	ND (<5.0)	40	7.6	12	ND (<5.0)	4.6J	ND (<5.0)	ND (<5.0)	5.9	ND (<5.0)	0.014	ND (<5.0)	NS	NS
Cyanide	mg/L	0.2	0.024	0.027	R	0.015J	0.021	ND (<0.01)	0.012	ND (<0.010)	ND (<0.010)	ND (<0.010)	0.018	0.021	0.012	NS	NS

AWQS
B BTEX
D E
F1
F2
Jmmpl
NC
ND (<#f)
NS
NYSDEC
PAHs
R
µg/L
Boided mgl. 0.2 0.24 0.027

* Antiser Water Coulty Standard

* Present in Associated Blank Sample

* Revenue Report Free County Standard

* Revenue R

* Monitoring well is inaccessible due to debris and was not sampled during this time period

CONSTITUENT	UNITS	09/29/10	01/04/11	04/07/11	06/15/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/14	04/16/15	10/14/15 to 10/06/21*	04/13/22
MNA/WQ Parameters					,	,					,	,				
Alkalinity (as CaCO3)	mg/L	502	504	R	R	518J	536J	R	623	507	573	465	457	428	NS	NS
Chloride	mg/L	612	606	345	414 B	514J	R	321	350	202	295	454	364	314	NS	NS
Ethane	μg/L	ND (<10)	ND (<5.0)	ND (<1.5)	ND (<1.5)	ND (<1.5)	ND (<15)	ND (<15)	ND (<380)	ND (<380)	ND (<380)	ND (<380)	ND (<7.5)	ND (<7.5)	NS	NS
Ethene	μg/L	ND (<10)	ND (<5.0)	ND (<1.5)	ND (<1.5)	ND (<1.5)	ND (<15)	ND (<15)	ND (<350)	ND (<350)	ND (<350)	ND (<350)	ND (<7.0)	ND (<7.0)	NS	NS
Ferrous Iron	mg/L	ND (<0.2)	ND (<0.5)	R	9.4J	0.9J	R	ND (<0.1)	0.5	0.18	0.22	0.29	ND (<0.1)	ND (<0.1)	NS	NS
Manganese	mg/L	NA	0.61	0.94	0.45	0.69	0.66	0.47	0.95	0.95	0.55	0.56	0.56	0.25	NS	NS
Methane	μg/L	730J	420	4.8	68	190	360	160	520	12	25	120	180	13	NS	NS
Nitrate	mg/L	NA	ND (<1.0)	0.13	ND (<0.05)	ND (<0.05)	ND (<0.05)	0.092	ND (<0.050)	0.79	0.32	0.32	0.059	0.28	NS	NS
Nitrogen	mg/L	1.76	1.36	1.3	0.59	1.3	R	1.3	1.4	0.58	0.64	0.57	1.2	0.26	NS	NS
Sulfate	mg/L	NA	46.3	126 B	65.1 B	R	R	8.5 B	16.9	112	94.1	58	44.3	82.9	NS	NS
Sulfide	mg/L	NA	ND (<1.0)	0.8J	0.8J	1.6	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	1.8	ND (<1.0)	NS	NS

Monitoring well is inaccessible due to debris and was not sampled during this time period

Persent in Associated Blank Sample

Diluted Sample

Estimated Concentration

Miligrams per Liter

Micholized Natural Admission

Not Avaluzed

Not Avaluzed

Not Avaluzed

Not Sampled

Miligrams per Liter

Will Sampled

Miligrams per Liter

Will Campled

Will Sampled

Will Sampled

Will Campled

W

B
D
J
mg/L
MNA
NA
ND (<#f)
NS
R
µg/L
WQ

CONSTITUENT	UNITS	NYSDEC AWQS Values	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/14	04/16/15	10/14/15	04/06/16	10/26/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21	10/06/21	04/13/22
BTEX Compounds																										1
Benzene	µg/L	1	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	2.1	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)
Ethylbenzene	µg/L	5	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)
m/p-Xylene	µg/L	5	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)
o-Xylene	µg/L	5	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)
Toluene	µg/L	5	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)
PAHs																										
Acenaphthene	µg/L	20	ND (<0.2)	ND (<0.49)	0.086J	ND (<0.52)	14	ND (<0.2)	1.1	1.1	ND (<0.48)	ND (<0.48)	ND (<0.47)	ND (<0.51)	0.11	ND (<0.097)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<011)	ND (<0.097)	ND (<0.096)	ND (<0.11)	ND (<0.099)
Acenaphthylene	µg/L	NC	0.09J	ND (<0.49)	0.25J	0.18J	100	ND (<0.2)	ND (<0.2)	ND (<0.2)	0.63	ND (<0.2)	ND (<0.47)	ND (<0.51)	4.4	ND (<0.097)	0.30	0.39	0.62	ND (<0.11)	1.0	0.1	0.61	0.41	0.14	0.21
Anthracene	µg/L	50	0.07J	ND (<0.49)	0.21J	0.13J	2.8	ND (<0.2)	1.1	1.1	0.88	ND (<0.2)	0.73	ND (<0.51)	1.4	ND (<0.097)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.099	ND (<0.11)	ND (<0.097)	ND (<0.096)	ND (<0.11)	1.4
Benzo(a)anthracene	µg/L	0.002	0.12J	ND (<0.49)	0.64 B	0.57 B	1.5	0.83	3	0.66	1.5	ND (<0.49)	ND (<0.47)	ND (<0.51)	2.1	0.11	0.14	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.24	0.34	ND (<0.097)	ND (<0.096)	ND (<0.11)	0.49
Benzo(a)pyrene	μg/L	0.002	0.2	ND (<0.49)	0.69 B	0.35J	1.5	1	3.6	0.92	1.8	ND (<0.49)	ND (<0.47)	ND (<0.51)	2.8	0.11	0.16	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.3	0.41	ND (<0.097)	ND (<0.096)	ND (<0.11)	0.46
Benzo(b)fluoranthene	μg/L	0.002	0.08J	ND (<0.49)	0.56	0.27J	1.3	0.91	3.4	0.71	2.1	ND (<0.49)	ND (<0.47)	ND (<0.51)	2.3	0.13	0.19	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.24	0.34	ND (<0.097)	ND (<0.096)	ND (<0.11)	0.49
Benzo(g,h,i)perylene	μg/L	NC	0.13J	ND (<0.49)	0.43J	0.27J	0.62	ND (<0.49)	ND (<0.49)	0.51	0.74	ND (<0.49)	ND (<0.47)	ND (<0.51)	1.6	ND (<0.097)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.15	0.21	ND (<0.097)	ND (<0.096)	ND (<0.11)	0.27
Benzo(k)fluoranthene	μg/L	0.002	0.10J	ND (<0.49)	ND (<0.49)	0.38J	0.58	ND (<0.49)	0.83	ND (<0.49)	0.74	ND (<0.49)	ND (<0.47)	ND (<0.51)	0.94	0.11	0.16	ND (<0.099)	ND (<0.11)	ND (<0.11)	ND (<0.097)	ND (<0.11)	ND (<0.097)	ND (<0.096)	ND (<0.11)	0.45
Chrysene	μg/L	0.002	0.13J	ND (<0.49)	0.55 B	0.60 B	1.1	1	3	ND (<0.49)	1.6	ND (<0.49)	ND (<0.47)	ND (<0.51)	1.9	ND (<0.097)	0.11	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.19	0.22	ND (<0.097)	ND (<0.096)	ND (<0.11)	0.72
Dibenzo(a,h)anthracene	μg/L	NC	ND (<0.2)	ND (<0.49)	ND (<0.49)	ND (<0.52)	ND (<0.52)	ND (<0.52)	ND (<0.52)	ND (<0.52)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<0.51)	0.29	ND (<0.097)	ND (<0.10)	ND (<0.099)	ND (<0.11)		ND (<0.097)	ND (<0.11)	ND (<0.097)	ND (<0.096)		ND (<0.099)
Fluoranthene	μg/L	50	0.2	ND (<0.49)	0.73	0.41J	3.4	1.4	4.3	0.87	2.00	ND (<0.49)	ND (<0.47)	0.52	3.9	0.11	0.17	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.33	0.43	ND (<0.097)	ND (<0.096)	ND (<0.11)	0.72
Fluorene	μg/L	50	ND (<0.2)	ND (<0.49)	ND (<0.49)	ND (<0.52)	2.2	ND (<0.49)	ND (<0.49)	ND (<0.49)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<0.51)	0.51	ND (<0.097)	ND (<0.10)	ND (<0.099)	0.13	ND (<0.11)	ND (<0.097)	ND (<0.11)	0.12	ND (<0.096)	ND (<0.11)	ND (<0.099)
Indeno(1,2,3-cd)pyrene	μg/L	0.002	0.09J	ND (<0.49)	ND (<0.49)	0.13J	0.97	ND (<0.49)	1.2	ND (<0.49)	0.51	ND (<0.49)	ND (<0.47)	ND (<0.51)	1.2	ND (<0.097)	ND (<0.10)	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.11	0.17	ND (<0.097)	ND (<0.096)	ND (<0.11)	0.20
Naphthalene	μg/L	10	ND (<0.2)	ND (<0.49)	0.68	ND (<0.52)	160 E	2.5	0.99	ND (<0.52)	1.6	ND (<0.49)	1.9	ND (<0.51)	0.96	ND (<0.097)	0.15	ND (<0.099)	ND (<0.11)	ND (<0.11)	1.8	ND (<0.11)	0.97	ND (<0.096)		ND (<0.099)
Phenanthrene	μg/L	50	1.9J	ND (<0.49)	0.66	0.48J	7.6	1.1	3.6	0.61	2	ND (<0.49)	ND (<0.47)	ND (<0.51)	3.5	ND (<0.097)	0.14	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.23	0.34	0.14	ND (<0.096)	ND (<0.11)	0.62
Pyrene	μg/L	50	0.23	ND (<0.49)	0.95	0.59	4.2	2.4	5.8	1.3	2.8	ND (<0.49)	ND (<0.47)	0.64	5.4	0.17	0.24	ND (<0.099)	ND (<0.11)	ND (<0.11)	0.49	0.61	ND (<0.097)	ND (<0.096)	ND (<0.11)	1.0
Cyanide and Lead																										
Lead	μg/L	25	ND (<5.0)	ND (<3.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	29	ND (<5.0)	0.018	ND (<0.49)	ND (<10)	ND (<10)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<0.02)	ND (<10.0)						
Cyanide	mg/L	0.2	0.01	0.004J	R	0.0062J	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)	0.013	ND (<0.49)	ND (<0.01)	ND (<0.01)	ND (<0.010)	0.011	0.011	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)					

Table 3

Groundwater Analytical Data MW-12

CONSTITUENT	UNITS	01/04/11	10/12/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/14	04/16/15	10/14/15	04/06/16	10/26/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21	10/06/21	04/13/22
MNA/WQ Parameters				•	•																				
Alkalinity (as CaCO3)	mg/L	502	455J	478J	R	434	391	415	329	414	368	401	415	436	466	366	456	430	416	400	380	360	430	512	356
Chloride	mg/L	488	165J	R	129 B	468	123	662	150	493	139	591	276	556	152	587	345	757	334	490	267	633	391	879	141
Ethane	μg/L	ND (<1.0)	ND (<1.5)	ND (<1.5)	ND (<1.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	ND (<7.5)	0.47J	ND (<0.025)	ND (<0.030)	ND (<0.030)	ND (<0.16)	ND (<1.0)	ND (<1.0)	ND (<1.00)	ND (<5.00)	ND (<5.00)	ND (<2.0)	ND (<1.00)
Ethene	μg/L	ND (<1.0)	ND (<1.5)	ND (<1.5)	ND (<1.5)	ND (<7.0)	ND (<7.0)	ND (<7.0)	ND (<7.0)	ND (<7.0)	ND (<7.0)	ND (<7.0)	ND (<7.0)	ND (<0.035)	ND (<0.035)	ND (<0.10)	ND (<0.10)	ND (<0.032)	ND (<1.0)	ND (<1.0)	ND (<1.00)	ND (<5.00)	ND (<5.00)	ND (<2.0)	ND (<1.00)
Ferrous Iron	mg/L	ND (<0.1)	R	ND (<0.1)	ND (<0.1)	0.44	ND (<0.1)	0.11	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)						
Manganese	mg/L	0.084	0.096	0.16	0.12	0.52	0.19	2.1	0.36	1.2	0.16	0.039	0.062	0.202	0.0201	0.0399	0.0113	0.0152	0.0153	0.0636	0.0386	0.0074	ND (<0.005)	ND (<0.015)	0.0157
Methane	μg/L	ND (<2.0)	ND (<1.0)	1.1	0.56J	47	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<4.0)	ND (<4.0)	ND (<4.0)	ND (<4.0)	1.95	0.24J	0.27J	1.0J	0.35J	ND (<2.5)	ND (<2.5)	ND (<0.10)	ND (<5.00)	ND (<5.00)	ND (<2.0)	ND (<1.00)
Nitrate	mg/L	4	6.6	6.2	3.2	ND (<0.05)	2.5	4.8	1.4	3.7	1.4	2.5	3.3	2.9	5.1	3.6	0.84	5.6	4.3	ND (<0.10)	5.9	2.5	3	4.4	2.7
Nitrogen	mg/L	0.48	ND (<0.2)	R	0.19J	0.29	0.24	2.4	0.44	0.61	0.61	ND (<0.2)	ND (<0.2)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	5.1	ND (<1.0)	3.9	ND (<0.10)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)
Sulfate	mg/L	97.9	R	R	53.5 B	81.4	73.5	115	51.6	73.5	54.8	70.2	93.7	56.0	115	53.7	70.3	66.8	53.9	55.1	77.2	48.3	65.9	64.1	39.9
Sulfide	mg/L	1.1J	0.8J	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	1.6	ND (<1.0)

Present in Associated Blank Sample

- Diluted Sample

- Estimated Concentration

- Milligrams per Liter

- Moloritore Nikural Alexaustion

- Not Analyzed

- Not detected above laboratory reporting limit (indicated by #)

- Ripident

- Ripident

- Milligrams per Liter

- Wilder Quality B
D
J
mg/L
MNA
NA
ND (<#)
NS
R
µg/L
WQ

Table 3 Groundwater Analytical Data MW-13

CONSTITUENT	UNITS	NYSDEC	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	40/00/42	04/18/13	40100149	04/00/44	10/20/14	DAMENTE	10/13/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21	10/06/21	04/13/22
CONSTITUENT	UNITS	Values	05/25/10	01/04/11	04/06/11	00/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/10/13	10/00/13	04/05/14	10/20/14	04/10/10	10/13/10	04/06/16	10/23/16	04/20/17	10/11/17	04/20/10	10/10/10	04/10/15	10/10/15	03/20/20	10/07/20	04/14/21	10/00/21	04/13/22
BTEX Compounds				•																					•				
Benzene	µg/L	1	430	360	71	200	59	300	370	360	490	400	200	300	17	360	300	348	15.5	363	11.6	32.8	16.9	328	126	268	11.7	187	7.1
Ethylbenzene	µg/L	5	850	730	87	200	110	520	670	490	600	320	200	340	17	190	270	366	7.4	210	4.8	23.3	12.4	230	85.6	193	4.5	164	5.1
m/p-Xylene	µg/L	5	920	810	110	240	140	550	740	590	730	420	250	480	24	270	360	467	12.1	257	8.6	34.8	16.6	229	89.5	179	8.7	152	5.0
o-Xylene	µg/L	5	390	350	71	130	74	260	340	260	320	190	120	210	16	120	150	203	8.4	117	9.3	18.6	9.7	112	48.6	90.7	5.5	74.2	4.0
Toluene	µg/L	5	800	660	80	260	89	550	740	520 E	710	440	270	430	17	320	410	552	7.6	332	3.9	25.1	11.1	288	95.7	279	5.8	158	3.9
PAHs		•																											
Acenaphthene	μg/L	20	120	140	17	46	60	76	82J	170	130	77	71	130	ND (<4.9)	65 E	130	225	0.34	78.4	0.16	4.3	6.8	141	4.6	124	0.35	106	5.6
Acenaphthylene	μg/L	NC	260JD	320 D	51	170	220J	230 D	210	570	430	350	22	450	ND (<4.9)	77 E	220	267	1.2	122	0.61	6.4	6.7	57.0	0.78	43.4	0.89	10.5	1.4
Anthracene	μg/L	50	12	15	3.6	12 B	15	15	ND (<97)	ND (<47)	ND (<47)	ND (<47)	6.9	14	ND (<4.9)	9.2 F1 F2	10	19.2	0.55	7.2	0.25	0.73	0.82	7.3	0.15	5.1	0.33	6.1	0.15
Benzo(a)anthracene	µg/L	0.002	1.9J	2J	0.35J	4.9 B	7.3J	5.3 B	ND (<97)	ND (<47)	ND (<47)	ND (<47)	ND (<47)	1.9	ND (<0.001)	0.59 F2	ND (<9.7)	6.7	0.93	1.7	0.30	0.22	0.14	0.79	0.18	0.51	0.38	0.98	ND (<0.098)
Benzo(a)pyrene	µg/L	0.002	1.9J	1.4J	0.13J	4.1 B	ND (<10)	5.3 B	ND (<97)	ND (<47)	ND (<47)	ND (<47)	ND (<47)	1.6	ND (<0.001)	ND (<0.49)	ND (<9.7)	6.5	1.0	1.3	0.40	0.20	ND (<0.10)	0.58	0.20	0.31	0.82	0.87	ND (<0.098)
Benzo(b)fluoranthene	µg/L	0.002	0.75J	0.78J	ND (<0.49)	3.5 B	ND (<10)	3.8	ND (<97)	ND (<47)	ND (<47)	ND (<47)	ND (<47)	2.8	ND (<0.001)	ND (<0.49)	ND (<9.7)	6.2	1.2	1.6	0.47	0.22	0.12	0.49	0.17	0.27	0.83	0.97	ND (<0.098)
Benzo(g,h,i)perylene	µg/L	NC	0.75J	ND (<3.9)	ND (<0.49)	2.5 B	ND (<10)	3.8	ND (<97)	ND (<47)	ND (<47)	ND (<47)	ND (<47)	0.6	ND (<0.001)	ND (<0.49)	ND (<9.7)	3.3	0.55	ND (<0.98)	0.21	ND (<0.099)	ND (<0.10)	0.23	ND (<0.10)	0.13	0.45	0.42	ND (<0.098)
Benzo(k)fluoranthene	μg/L	0.002	ND (<3.8)	0.78J	ND (<0.49)	ND (<2.4)	ND (<10)	2.6	ND (<97)	ND (<47)	ND (<47)	ND (<47)	ND (<47)	0.53	ND (<0.001)	ND (<0.49)	ND (<9.7)	2.5	1.1	1.3	0.35	0.20	0.11	0.21	ND (<0.10)	0.11	0.79	0.84	ND (<0.098)
Chrysene	μg/L	0.002	1.7J	1.4J	0.26J	3.6 B	5.5J	4.9 B	ND (<97)	ND (<47)	ND (<47)	ND (<47)	ND (<47)	1.8	ND (<0.001)	0.50 F1 F2	ND (<9.7)	6.1	0.81	1.3	0.22	0.20	ND (<0.10)	0.64	0.13	0.38	0.34	0.62	ND (<0.098)
Dibenzo(a,h)anthracene	μg/L	NC	ND (<3.8)	ND (<3.9)	ND (<0.49)	ND (<2.4)	ND (<10)	0.79 B	ND (<97)	ND (<47)	ND (<47)	ND (<47)	ND (<47)	ND (<0.47)	ND (<0.001)	ND (<0.49)	ND (<9.7)	0.85	0.13	ND (<0.98)	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.098)	ND (<0.10)	ND (<0.098)	0.11	ND (<0.11)	ND (<0.098)
Fluoranthene	μg/L	50	7.7	8.4	2.6	12 B	16	14	ND (<97)	ND (<47)	ND (<47)	ND (<47)	6.1	8.2	ND (<4.9)	5.5 F2	ND (<9.7)	17.8	1.9	5.4	0.51	0.77	0.66	4.6	1.3	4.0	0.58	4.4	0.27
Fluorene	μg/L	50	73	84	18	48	52J	53	37J	110	93	68	30	94J	ND (<4.9)	43 F1 F2	55	74.8	0.46	37.9	0.19	2.6	3.7	45.7	0.16	33.2	0.27	42.5	0.89
Indeno(1,2,3-cd)pyrene	μg/L	0.002	ND (<3.8)	ND (<3.9)	ND (<0.49)	ND (<2.4)	ND (<10)	2.3 B	ND (<97)	ND (<47)	ND (<47)	ND (<47)	ND (<47)	0.48	ND (<0.001)	ND (<0.49)	ND (<9.7)	2.7	0.42	ND (<0.98)	0.17	ND (<0.099)	ND (<0.10)	0.19	ND (<0.10)	0.11	0.34	0.34	ND (<0.098)
Naphthalene	μg/L	10	6000 D	5600 D	250 D	1600 D	2900 D	5000 D	4100	8200	7100	3700	ND (<10)	4200	ND (<4.9)	350 E	170	5560	0.96	1880	0.45	0.31	0.14	9,700	0.19	2,190	0.76	1.6	0.16
Phenanthrene	μg/L	50	58	68	7.2	44 B	60	55	44J	76	73	61	ND (<50)	70	ND (<4.9)	31 F1	ND (<9.7)	78.3	1.5	32.8	0.60	0.37	2.40	39.8	0.14	31	0.76	24.0	ND (<0.098)
Pyrene	µg/L	50	9.8J	8.8	2.9	14 B	19	17	ND (<97)	ND (<47)	ND (<47)	ND (<47)	7.2	9.7	ND (<4.9)	5.8 F2	ND (<9.7)	ND (<52.1)	1.7	6.0	0.54	0.78	0.63	4.8	0.86	4.1	0.71	4.6	0.13
Cyanide and Lead																													
Lead	μg/L	25	6.4	ND (<5.0)	ND (<5.0)	15J	27	9.2	5.8	ND (<5.0)	7.8	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<4.9)	ND (<10)	ND (<10)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<20)	ND (<10.0)
Cyanide	mg/L	0.2	0.618	0.652	R	0.42J	0.235	R	0.33	0.39	0.32	0.26	0.17	0.24	0.11	0.22 F1	0.29	0.23	0.070	0.20	0.062	0.10	0.09	0.16	0.11	0.16	0.050	0.095	0.096

| Description | Popular | Description | Desc

Table 3

MW-13

12/14/11 03/14/12 10/09/12 04/18/13 10/08/13 04/09/14 10/15/14 10/13/15 04/06/16 CONSTITUENT UNITS 09/30/10 01/05/11 04/07/11 06/15/11 10/25/16 04/26/17 10/11/17 04/26/18 10/16/18 04/18/19 05/20/20 10/07/20 04/14/21 10/06/21 10/12/11 10/16/19 04/13/22 MNAWQ Parameters
Alkalinity (as CaCO3)
Chloride
Ethane
Ethene
Ferrous Iron
Manganese
Methane
Nitrate
Nitrogen
Sulfate
Sulfate
Sulfide
 mgi.
 80
 96.4
 R
 R
 455.1
 165.1
 R
 159.2
 218
 117.0
 226
 228.1
 311
 364
 224
 308
 226
 220
 230
 380
 288
 320
 232
 380
 304

 mgi.
 12.3
 10.5
 22.1
 1.88
 8.4
 19.5
 2.1
 1.88
 8.4
 19.5
 9.2
 11.8
 8.4
 19.5
 9.3
 8.9
 11.8
 8.4
 19.5
 9.2
 11.8
 8.4
 19.5
 9.3
 8.9
 11.8
 8.4
 19.5
 9.2
 11.8
 8.4
 19.5
 9.3
 8.9
 11.8
 8.4
 19.5
 9.3
 8.9
 11.8
 8.4
 19.5
 9.3
 8.9
 11.8
 8.4
 19.5
 9.3
 8.9
 11.8
 8.4
 19.5
 9.2
 11.8
 8.4
 19.2
 10.0
 10.0
 2.2
 11.0
 10.0
 2.2
 10.0
 10.0
 10.0
 10.0
 10.0

Present in Associated Blank Sample
Diblated Sample
Estimated Concentration
Hillingsman pet Linearustion
Not Analyzed
Not Analyzed
Not Associated above laboratory reporting limit (indicated by #)
Not Sampled
Prejected
Not Grangman pet Liter
Vitter Caulity

Vitter Caulity

Professor

Vitter Caulity

Professor

Vitter Caulity

Vitter = Present in Associated Blank Sample

		NYSDEC																											
CONSTITUENT	UNITS	AWQS	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/14	04/16/15	10/13/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21	10/06/21	04/13/22
		Values																											
BTEX Compounds																													
Benzene	µg/L	1	25	17	ND (<1.0)	2.5	11	2.5	2.9	ND (<1.0)	ND (<1.0)	1.3	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<0.54)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)
Ethylbenzene	µg/L	5	5.1	3.3	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	1.3	ND (<1.0)	ND (<0.54)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)						
n/p-Xylene	µg/L	5	5.1	3.1	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	2.4	ND (<2.0)	ND (<0.54)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)						
-Xylene	µg/L	5	9.1	5.6	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	2.2	ND (<1.0)	ND (<0.54)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)						
Foluene	µg/L	5	1.8	0.88J	ND (<1.0)	ND (<0.54)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)											
PAHs																													
Acenaphthene	µg/L	20	9.3	4.9	ND (<0.47)	ND (<0.47)	1.2	0.82	5.1	1.4	ND (<0.48)	2.2	0.5	2.00	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.19	ND (<0.096)	1.7	ND (<0.099)	ND (<0.099)	ND (<0.10)	0.18	0.8	0.2	ND (<0.10)	0.20	ND (<0.10)
Acenaphthylene	µg/L	NC	17JD	11	ND (<0.47)	ND (<0.47)	3	1.3	9	1.9	ND (<0.48)	2.5	ND (<0.48)	2.9	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.99	0.25	4.1	0.19	0.34	0.26	0.71	8.4	1.2	0.38	1.6	0.21
Anthracene	µg/L	50	1.8	0.98	ND (<0.47)	ND (<0.47)	ND (<0.50)	0.18J	0.5	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	0.5	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.25	0.096	0.29	ND (<0.099)	0.15	0.11	0.11	3.5	0.6	0.16	0.62	ND (<0.10)
Benzo(a)anthracene	µg/L	0.002	0.42J	0.27J	ND (<0.47)	ND (<0.47)	0.29J	0.91 B	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.62	1	1.9	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.28	0.13	0.26	0.11	ND (<0.099)	ND (<0.10)	ND (<0.096)	19.8	2.1	0.51	3.5	ND (<0.10)
Benzo(a)pyrene	µg/L	0.002	0.46	0.24J	ND (<0.47)	ND (<0.47)	0.15J	0.90 B	0.12J	ND (<0.48)	ND (<0.48)	0.65	1.3	2.4	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.32	0.12	0.29	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.096)	24.8	2.6	0.66	3.9	ND (<0.10)
Benzo(b)fluoranthene	µg/L	0.002	0.27	0.15J	ND (<0.47)	ND (<0.47)	ND (<0.50)	0.78	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.79	1.2	3.8	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.55	0.21	0.47	0.14	ND (<0.099)	0.7	ND (<0.096)	26.1	2.8	0.87	5.4	ND (<0.10)
Benzo(g,h,i)perylene	µg/L	NC	0.28	0.18J	ND (<0.47)	ND (<0.47)	ND (<0.50)	0.70	0.09J	ND (<0.48)	ND (<0.48)	ND (<0.48)	0.95	1.3	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.29	0.11	0.24	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.096)	17.5	1.9	0.54	2.7	ND (<0.10)
Benzo(k)fluoranthene	μg/L	0.002	0.3	0.15J	ND (<0.47)	ND (<0.47)	ND (<0.50)	0.57	0.17J	ND (<0.48)	ND (<0.48)	ND (<0.48)	0.83	1.1	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.47	0.18	0.40	0.11	ND (<0.099)	0.14	ND (<0.096)	8.5	1.0	0.84	4.7	ND (<0.10)
Chrysene	μg/L	0.002	0.43	0.3J	ND (<0.47)	ND (<0.47)	0.19J	0.85	ND (<0.50)	ND (<0.48)	ND (<0.48)	0.69	1.2	2.1	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.27	0.13	0.24	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.096)	17.0	1.9	0.51	2.7	ND (<0.10)
Dibenzo(a,h)anthracene	μg/L	NC	0.20J	ND (<0.59)	ND (<0.47)	ND (<0.47)	ND (<0.50)	ND (<0.50)	ND (<0.50)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<0.52)	ND (<0.54)	ND (<0.10)	ND (<0.096)	ND (<0.099)	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.096)	4.5	0.4	0.13	0.59	ND (<0.10)
luoranthene	μg/L	50	1.7	1.2	0.081J	ND (<0.47)	0.32J	1.5	0.61	0.59	ND (<0.48)	1.2	1.5	3.2	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.45	0.17	0.55	0.13	ND (<0.099)	0.14	0.098	29.0	3.0	0.71	4.5	ND (<0.10)
luorene	μg/L	50	3.8	1.4	ND (<0.47)	ND (<0.47)	ND (<0.50)	0.17J	0.35J	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.14	ND (<0.096)	0.21	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.096)	1.3	0.2	ND (<0.10)	0.26	ND (<0.10)
ndeno(1,2,3-cd)pyrene	μg/L	0.002	0.21	ND (<0.59)	ND (<0.47)	ND (<0.47)	ND (<0.50)	ND (<0.50)	0.054J	ND (<0.48)	ND (<0.48)	ND (<0.48)	0.63	0.95	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.21	ND (<0.096)	0.18	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.096)	14.4	1.5	0.40	2.2	ND (<0.10)
Naphthalene	μg/L	10	63 D	2.8	ND (<0.47)	ND (<0.47)	1.3	ND (<0.50)	1.2	ND (<0.48)	1.7	0.48	ND (<0.48)	1.1	ND (<0.47)	ND (<0.52)	ND (<0.54)	5.2	ND (<0.096)	4.2	ND (<0.099)	ND (<0.099)	ND (<0.10)	0.72	0.86	1.10	ND (<0.10)	0.18	ND (<0.10)
Phenanthrene	µg/L	50	9.1	2	ND (<0.47)	ND (<0.47)	0.25J	0.66	1.1	ND (<0.48)	ND (<0.48)	0.67	0.63	1.4	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.22	ND (<0.096)	0.17	ND (<0.099)	ND (<0.099)	ND (<0.10)	ND (<0.096)	9.8	1.0	0.25	1.5	ND (<0.10)
Pyrene	μg/L	50	2.5J	1.2	0.098J	ND (<0.52)	0.39J	2.2	0.7	0.76	ND (<0.48)	1.5	2.4	5.0	ND (<0.47)	ND (<0.52)	ND (<0.54)	0.68	0.28	0.74	0.20	ND (<0.099)	0.22	0.12	47.0	5.0	1.2	7.3	ND (<0.10)
Cyanide and Lead																													
.ead	µg/L	25	7.7	ND (<5.0)	ND (<5.0)	4.2J	4.8J	9.1	5.7	21	ND (<5.0)	15	ND (<5.0)	0.031	ND (<0.01)	ND (<0.01)	ND (<10)	33.3	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	256	50.2	7.5	90.9	ND (<10.0)
Cyanide	mg/L	0.2	0.245	0.197	R	0.11J	0.114	R	0.28	1.4	0.1	0.2	0.9	0.2	0.091	0.120	0.88	0.67	0.079	0.25	0.062	0.11	0.0838	0.11	0.12	0.42	0.057	0.072	0.14

June 2022 Semi-Annual Groundwater Monitoring Report National Grid Johnstown Site 109 North Market Street, Johnstown NY 12095

Table 3 Groundwater Analytical Data MW-14

CONSTITUENT	UNITS	10/15/14	10/13/14	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21	10/06/21	04/13/22
MNA/WQ Parameters	,		,	,	,			,	,	,		,	,			
Alkalinity (as CaCO3)	mg/L	372	445	507	520	380	404	392	450	384	380	342	400	364	392	392
Chloride	mg/L	3.9	10.7	27.4	18.0	3.5	6.6	ND (<3.0)	3.2	3.5	ND (<3.0)	ND (<3.0)	6.7	6.9	4.5	ND (<3.0)
Ethane	μg/L	ND (<7.5)	ND (<7.5)	ND (<7.5)	0.17J	ND (<0.025)	0.13J	ND (<0.030)	ND (<0.16)	ND (<1.0)	ND (<1.0)	1.57	ND (<5.00)	ND (<5.00)	ND (<2.0)	ND (<1.00)
Ethene	μg/L	ND (<7.0)	ND (<7.0)	ND (<7.5)	ND (<0.035)	ND (<0.035)	ND (<0.10)	ND (<0.10)	ND (<0.032)	ND (<1.0)	ND (<1.0)	ND (<1.00)	ND (<5.00)	ND (<5.00)	ND (<2.0)	ND (<1.00)
Ferrous Iron	mg/L	ND (<0.1)	ND (<0.1)	0.11	0.55	0.22	0.93	0.47	0.30	0.39	0.12	1.90	2.1	0.44	1.4	0.38
Manganese	mg/L	0.019	0.011	ND (<7.5)	0.768	0.0262	0.416	0.201	0.0121	0.0208	0.051	3.79	0.940	0.268	4.29	0.203
Methane	μg/L	ND (<4.0)	ND (<4.0)	31	140	19	120	1.7J	1.4J	ND (<2.5)	19	1,020	ND (<5.00)	6.54	4.01 J	6.99
Nitrate	mg/L	0.87	0.16	ND (<0.05)	ND (<0.10)	0.29	ND (<0.10)	ND (<0.10)	0.59	0.4	ND (<1.0)	ND (<1.0)	ND (<0.50)	0.6	0.28	0.21
Nitrogen	mg/L	0.22	0.72	1	1.2	ND (<1.0)	ND (<1.0)	1.0	ND (<1.0)	ND (<1.0)	ND (<1.0)	4.2	3.6	1.0	1.8	ND (<1.0)
Sulfate	mg/L	ND (<5.0)	ND (<5.0)	324	153	12.5	52.4	15.2	20.3	ND (<10)	17.7	11.2	102.0	15.1	14.5	25.9
Sulfide	mg/L	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	1.4	1.0

Piesent in Associated Blank Sample
Diluted Sample
Estimated Concentration
Miligrams per Liter
Microtroe Natural Alternation
Not Analyzed
Not detected above laboratory reporting limit (indicated by #)
Not Gampled
Micrograms per Liter
Windowspare
Windowspare B D J mg/L MNA NA ND (<#) NS R μg/L WQ

CONSTITUENT	UNITS	NYSDEC AWQS Values	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/14	04/16/15	10/13/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21	10/06/21	04/13/22
STEX Compounds																													
Benzene	μg/L	1	1600 D	1200	940 D	1300 D	670	790 D	1500 D	1100 E	410	390	210	300	16	350 E	330	714	111	373	48.7	108	41.2	364	55.8	271	92.7	18.7	149
thylbenzene	µg/L	5	200	250	190 D	210 D	120	190 D	220	200	75	53	38	74	1.9	92	110	244	24.5	124	10.2	45.2	15.7	135	19.4	99.9	31.0	7.9	86.7
n/p-Xylene	µg/L	5	12	8.7	17	18	19J	9	6.6J	23	19	ND (<5.0)	ND (<5.0)	ND (<10)	3.2	8.1	ND (<8.0)	13.7	2.7	9.4	ND (<2.0)	2.8	ND (<2.0)	17.5	ND (<2.0)	12.3	ND(<2.0)	3.4	21.6
-Xylene	µg/L	5	39	39	44	48	37	38	27	23	19	16	8.5	28	7.5	23	21	31.7	7.3	22.8	3.7	18.8	8.1	26.2	4.6	23	4.2	15.4	28.1
oluene	µg/L	5	3.8J	ND (<10)	6.1	4.7	ND (<10)	6.3	6.2J	5	ND (<5.0)	ND (<5.0)	ND (<5.0)	5.8	ND (<1.0)	7	ND (<8.0)	6.1	1.1	7.4	ND (<1.0)	2.9	1.3	8.5	1.4	6.9	ND (<1.0)	1.1	11.1
PAHs																													
Acenaphthene	μg/L	20	44J	49	47	32	47	50	47	57	42	23	18	24	6.7	16	23	43.1	10.1	16.3	12.4	32.7	12.6	28.4	4.7	17.2	28.3	40.3	16.6
Acenaphthylene	µg/L	NC	19J	23	24	17	22	19	12	16	11	6.5	3	3.9	0.59	3.1	ND (<5.1)	2.4	1.5	2.5	1.4	3.9	1.6	1.9	0.66	1.2	2.5	3.7	1.2
Anthracene	µg/L	50	2.7J	3.3	2.1	1.3 B	2.4	2	1.5J	2.8	2.6	1.4	0.95	0.81	ND (<0.49)	0.57	ND (<5.1)	1.9	0.36	0.56	0.31	0.55	0.46	0.74	0.25	0.52	0.35	0.82	0.42
Benzo(a)anthracene	µg/L	0.002	1.8J	0.85J	0.38J	ND (<0.48)	0.21J	ND (<0.54)	ND (<4.7)	ND (<0.58)	0.96	0.59	ND (<0.58)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<5.1)	0.14	0.13	0.55	0.14	ND (<0.099)	0.14	0.14	0.16	0.20	0.16	0.37	0.13
Benzo(a)pyrene	µg/L	0.000	2.1J	0.75J	0.2J	ND (<0.48)	ND (<0.49)		ND (<4.7)	ND (<0.58)	0.96	0.59	ND (<0.58)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<5.1)	ND (<0.10)	0.10	0.58	0.11	ND (<0.099)	0.12	ND (<0.097)	0.18	0.20	0.13	0.37	ND (<0.1
Benzo(b)fluoranthene	µg/L	0.002	1.1J	0.57J	0.27J	ND (<0.48)	ND (<0.49)	0.16J	ND (<4.7)	ND (<0.58)	0.85	0.62	ND (<0.58)	0.72	ND (<0.49)	ND (<0.47)	ND (<5.1)	0.11	0.16	0.81	0.15	ND (<0.099)	0.17	0.11	0.16	0.21	0.16	0.48	0.11
Benzo(g,h,i)perylene	µg/L	NC	1.2J	0.38J	ND (<0.49)	ND (<0.48)		ND (<0.54)	ND (<4.7)	ND (<0.58)	ND (<0.58)	ND (<0.58)	ND (<0.58)		ND (<0.49)	ND (<0.47)	ND (<5.1)	ND (<0.10)	ND (<0.098)	0.4	ND (<0.099)		ND (<0.10)	ND (<0.097)	0.11		ND (<0.096)	0.21	ND (<0.1
Benzo(k)fluoranthene	μg/L	0.002	1.3J	0.38J	ND (<0.49)	ND (<0.48)	ND (<0.49)		ND (<4.7)	ND (<0.58)	0.72	ND (<0.58)	ND (<0.58)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<5.1)	ND (<0.10)	0.13	0.69	0.11	ND (<0.099)	0.15	0.10	ND (<0.10)	ND (<0.097)	0.15	0.41	ND (<0.1
Chrysene	μg/L	0.002	1.8J	0.85J	0.23J	ND (<0.48)	0.16J	ND (<0.54)	ND (<4.7)	ND (<0.58)	1.2	0.59	ND (<0.58)		ND (<0.49)	ND (<0.47)	ND (<5.1)	0.11	0.12	0.48	ND (<0.099)		0.12	0.11	0.12	0.17	0.13	0.26	ND (<0.1
Dibenzo(a,h)anthracene	μg/L	NC	0.9J	ND (<1.9)	ND (<0.49)	ND (<0.48)			ND (<4.7)	ND (<0.58)	ND (<0.58)	ND (<0.58)	ND (<0.58)	ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<5.1)	ND (<0.10)	ND (<0.098)	ND (<0.098)	ND (<0.099)		ND (<0.10)	ND (<0.097)	ND (<0.10)		ND (<0.096)	ND (<0.10)	ND (<0.1
luoranthene	μg/L	50	4.1J	2.7	1.8	1.2 B	1.7	1.7	1.3J	2.6	3.3	1.7	1.1	0.93	ND (<0.49)	0.61	ND (<5.1)	1.2	0.46	1.2	0.34	0.53	0.6	0.89	0.41	0.68	0.52	0.76	0.44
luorene	µg/L	50	12J	13	13	8.7	14	13	10	17	13	6.1	4.3	5.2	1.2	4.1	5.9	11.8	1.9	4.1	2.4	5.3	3.4	6.6	1.4	4.0	4.4	3.3	2.9
ndeno(1,2,3-cd)pyrene	μg/L	0.002	0.9J	ND (<1.9)	ND (<0.49)	ND (<0.48)			ND (<4.7)	ND (<0.58)	ND (<0.58)	ND (<0.58)		ND (<0.48)	ND (<0.49)	ND (<0.47)	ND (<5.1)	ND (<0.10)		0.31	ND (<0.099)		ND (<0.10)	ND (<0.097)	ND (<0.10)		ND (<0.096)	0.17	ND (<0.11
Vaphthalene	µg/L	10 50	110JD 8.3J	89	560 D	450 D 6.7 B	570 D	140 D	51	27	94	13	29 3.4	210 3.7	1.5	48 E	110	363	34.1	69.3	16.8	138	43	512	1.1	272	15.0	152	242
henanthrene	µg/L µg/L	50	5.9J	2.9	8 2.2	1.2 B	13 1.6	1.8	8.8 1.5J	12 2.9	3.7	5.1	1.5	1.1	ND (<0.49) ND (<0.49)	2.8 0.69	ND (<5.1)	8.5	1.2	2.5	0.99	1.9	1.8	3.7	0.52	2.1	1.2	2.7	1.6
yrene	µg/L	50	5.93	2.9	2.2	1.2 B	1.0	1.0	1.53	2.9	3.7	- 2	1.5	1.1	ND (<0.49)	0.09	ND (<5.1)	1.4	0.58	1.6	0.45	0.59	0.73	1.0	0.54	0.83	0.71	1.0	0.57
Cyanide and Lead																													T
ead	μg/L	25 0.2	8.2 0.843	ND (<5.0) 0.816	ND (<5.0)	7.8 0.61J	5.1 0.427	ND (<5.0)	ND (<5.0)	ND (<5.0)	10	ND (<5.0)	ND (<5.0)	0.010 0.58	0.010	0.010	ND (<10)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<20)	ND (<10.0
Syanide	mg/L	0.2	0.043	0.016	R	0.613	0.427	R	0.91	1.2	0.5	0.5	0.48	0.56	0.29	1	1.1	1.1	0.42	1.3	0.56	0.27	0.171	0.61	0.32	0.67	0.23	0.18	0.23
was	= Ambient Wat	or Ovality Ston	dondo																										
	= Present in As																												
	= Benzene. Eth			ne																									
	= Diluted Samo		acinc and Ayro																										
	= Result excee		range																										
	= MS and/or M			nce limits																									
	= MS/MSD RPI																												
	= Estimated Co																												
	= Milligrams pe																												
	= No Criteria																												
	= Not detected	above laborato	ry reporting lim	it (indicated by	m)																								
	= Not Sampled		.,	(
	= New York Sta		of Environmen	tal Concervatio	n																								
	= Polycyclic An			mai conscivano																									
		umanic riyaroca	IIDOIIS																										
•	= Rejected																												
ig/L Bolded	= Micrograms p																												

CONSTITUENT	UNITS	09/30/10	01/05/11	04/07/11	06/15/11	10/12/11	12/14/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/14	04/16/15	10/13/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21	10/06/21	04/13/22
MNA/WQ Parameters	•																			'								
Alkalinity (as CaCO3)	mg/L	558	550	R	R	502J	547J	R	629	527	585	482	557	480	600	601	676	562	610	616	600	478	590	446	550	534	480	478
Chloride	mg/L	44.3	46.4	22.8	43.3 B	28.5J	R	68.2	70.6	39.4	42	44.5	44.2	14.2	49.3	55.7	65.4	25.7	58.0	15.2	15.2	43.9	38	20.3	37.4	24.6	14.0	14.9
Ethane	μg/L	ND (<10)	ND (<10)	2.9	ND (<300)	ND (<300)	ND (<300)	ND (<300)	ND (<380)	ND (<380)	ND (<380)	ND (<75)	6.2	3.2	5.1	2.8	2.1	3.4	5.1	ND (<1.00)	3.53 J	ND (<5.00)	ND (<2.0)	2.02				
Ethene	μg/L	ND (<10)	ND (<10)	ND (<1.5)	ND (<300)	ND (<300)	ND (<300)	ND (<300)	ND (<350)	ND (<350)	ND (<350)	ND (<75)	0.038J	0.037J	ND (<0.10)	ND (<0.10)	0.042J	ND (<1.0)	ND (<1.0)	ND (<1.00)	ND (<5.00)	ND (<5.00)	ND (<2.0)	ND (<1.00)				
Ferrous Iron	mg/L	0.15	1.36	R	0.51J	0.47J	0.13J	Я	ND (<0.1)	0.15	0.18	ND (<0.1)	ND (<0.1)	ND (<0.1)	0.15 HF	ND (<0.1)	8.2	3.0	5.8	3.8	9.2	2.5	3.2	4.2	6.0	8.7	14.8	3.0
Manganese	mg/L	NA	0.74	0.89	0.67	0.79	0.77	0.61	0.61	1	1.1	0.68	1	0.68	0.7	ND (<75)	0.609	0.0639	0.735	0.484	1.56	0.775	0.952	0.312	0.685	0.894	1.27	1.03
Methane	μg/L	820	3400	680	360	720	1,900	1,600	1,900	780	580	1,100	2,400	16	1,600	720	3,400	1,900	2,900	640	3,100	1,400	3,600	416	2,400	348	1,020	2,650
Nitrate	mg/L	NA	ND (<1.0)	ND (<0.05)	0.28	ND (<0.05)	ND (<0.5)	ND (<0.10)	ND (<0.50)	ND (<0.10)	ND (<0.20)	ND (<2.0)																
Nitrogen	mg/L	4.07	4.15	1.9	3.1	2.1	R	4.6	5.4	3	3.1	3.2	2.9	0.81	3.9	3.4	4.7	2.0	4.4	3.1	1.9	1.4	3.1	1.9	2.0	2.2	1.8	1.9
Sulfate	mg/L	NA	182	137 B	193 B	R	R	202 B	217	113	139	122	91.1	28.7	78.5	116	67.9	17.7	60.6	39.0	28.4	25.1	65.9	31.9	71.0	46.8	1.8	24.4
Sulfide	mg/L	NA	1.4	ND (<1.0)	ND (<1.0)	2.4	ND (<1.0)	R	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	1.6				

Phresent in Associated Blank Sample
Olluted Sample
Estimated Concentration
Military and Part Internation
Military and Part Internation
Not Analyzed
Not Analyzed
Not described above laborationy reporting limit (indicated by #)
Not described
Wilder Quality
Wilder Quality
Wilder Quality B
D
J
mg/L
MNA
NA
NO (<#)
NS
R
µg/L
WQ

CONSTITUENT	UNITS	NYSDEC AWQS Values	09/29/10	01/04/11	04/06/11	06/14/11	10/11/11	12/13/11	03/14/12	10/09/12	04/18/13	10/08/13	04/09/14	10/20/14	04/16/15	10/13/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21	10/06/21	04/13/22
BTEX Compounds																													
Benzene	μg/L	1	140	170	150 D	100 D	17	140 D	150 D	180	200	150	8.7	59	91	40	76	149	5.9	143	80.6	127	126	143	56.6	130	15.0	97.6	9.1
Ethylbenzene	μg/L	5	70	110	92	51	5	78	66	100	150	92	6.2	41	68	26	35	134	3.1	124	60.8	101	91.5	118	38.7	70.4	2.9	65.5	3.8
n/p-Xylene	μg/L	5	31	55	47	27	2.8	29	26	14	41	23	ND (<1.0)	ND (<10)	ND (<1.0)	4.9	5	4.9	ND (<2.0)	9.3	6.6	8.7	9.5	9.3	3.9	2.8	ND (<2.0)	4.1	ND (<2.0)
>-Xylene	μg/L	5	34	54	41	27	3.6	36	37	14	56	35	ND (<1.0)	17	24	11	20	32.1	1.6	38.0	21.3	32.8	31.4	34.6	12.8	22.3	6.1	21.5	3.1
Toluene	μg/L	5	17	36	33	15	2	21	11	ND (<10)	14	9	ND (<1.0)	17	ND (<1.0)	1.4	ND (<2.0)	2.9	ND (<1.0)	3.8	2.1	3.8	3.7	4.5	1.5	3.0	ND (<1.0)	2.9	1.6
PAHs																													
Acenaphthene	μg/L	20	14 D	18	21	7	2.3	13	15	30	30	16	ND (<1.0)	40	27	14	31	54.7	3.0	39.5	39.1	57.8	45.2	53.3	14.6	47.0	9.9	55.1	10.6
Acenaphthylene	μg/L	NC	16J	27 D	36	11	4.7	10	2.2	34	49	ND (<0.48)	ND (<0.48)	31	25	16	27	47.3	1.9	26.2	24.4	30.6	17.6	21.4	5.9	16.0	3.2	19.4	4.9
Anthracene	μg/L	50	1.7	3	2.3	0.97 B	0.20J	1.4	1.2	1.6	2.8	ND (<0.48)	ND (<0.48)	2.8	1.8	1.2	ND (<2.5)	1.4	0.37	2.2	1.7	2.6	1.8	2.4	0.74	1.7	0.47	2.3	0.48
Benzo(a)anthracene	μg/L	0.002	ND (<0.19)	0.14	ND (<0.47)	2.1 B	ND (<0.50)	ND (<0.47)	ND (<0.49)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.50)	ND (<0.50)	ND (<2.5)	0.10	0.11	0.11	0.13	0.12	0.11	0.13	ND (<0.10)	0.23	ND (<0.098)	0.19	ND (<0.098)
Benzo(a)pyrene	μg/L	0.000	ND (<0.19)	ND (<0.57)	ND (<0.47)	2.3 B	ND (<0.50)	ND (<0.47)	ND (<0.49)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.50)	ND (<0.50)		ND (<0.10)	0.11	ND (<0.098)	ND (<0.099)	ND (<0.099)	ND (<0.11)	ND (<0.097)	ND (<0.10)	0.21	ND (<0.098)	ND (<0.10)	ND (<0.098)
Benzo(b)fluoranthene	μg/L	0.002	ND (<0.19)	ND (<0.57)	0.11J	2.8 B	ND (<0.50)	ND (<0.47)	ND (<0.49)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.50)	ND (<0.50)		ND (<0.10)	0.17	ND (<0.098)	ND (<0.099)	ND (<0.099)	ND (<0.11)		ND (<0.10)	0.21	ND (<0.098)	0.12	ND (<0.098)
Benzo(g,h,i)perylene	μg/L	NC	ND (<0.19)	ND (<0.57)	ND (<0.47)	1.8 B	ND (<0.50)	ND (<0.47)	ND (<0.49)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)			ND (<0.50)		ND (<0.10)	ND (<0.097)	ND (<0.098)			ND (<0.11)	ND (<0.097)	ND (<0.10)	0.14	ND (<0.098)		ND (<0.098)
Benzo(k)fluoranthene	μg/L	0.002	ND (<0.19)	ND (<0.57)	ND (<0.47)	3.1 B	ND (<0.50)	ND (<0.47)	0.096J	ND (<0.48)		ND (<0.48)	ND (<0.48)		ND (<0.50)	ND (<0.50)		ND (<0.10) ND (<0.10)	0.15	ND (<0.098) ND (<0.098)			ND (<0.11)	0.098		ND (<0.098)		0.11	ND (<0.098)
Chrysene	µg/L	0.002	ND (<0.19)	11J	ND (<0.47)	2.7 B	ND (<0.50)	ND (<0.47)	ND (<0.49)	ND (<0.48)		ND (<0.48)	ND (<0.48)		ND (<0.50)	ND (<0.50)						ND (<0.099)	ND (<0.11)		ND (<0.10)	0.19	ND (<0.098)	0.14	ND (<0.098)
Dibenzo(a,h)anthracene	μg/L	NC	ND (<0.19)	ND (<0.57)	ND (<0.47)	1.4	ND (<0.50)	ND (<0.47)	ND (<0.49)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.48)	ND (<0.50)	ND (<0.50)		ND (<0.10)	ND (<0.097) 0.41	ND (<0.098)	ND (<0.099)	ND (<0.099)	ND (<0.11)	ND (<0.097)			ND (<0.098)	ND (<0.10)	ND (<0.098)
Fluoranthene	μg/L	50 50	1.2 10.D	1.4	1.7	1.5 B	0.21J 1.3	1.1	0.94	1.5	21	ND (<0.48) 9.1	ND (<0.48) ND (<0.48)	2.7	1.6	7.1	ND (<2.5)	1.8	1.1	2.5	1.9	2.4 19.5	1.9	3.0 24.1	1.1 5.3	2.6 16.9	0.47	3.40 20.5	0.72
	µg/L																	22.2		17.2	17.2								
ndeno(1,2,3-cd)pyrene Nanhthalene	µg/L µg/L	0.002	ND (<0.19) ND (<0.19)	ND (<0.57)	ND (<0.47)	1.7 B ND (<0.47)	ND (<0.50) 26	ND (<0.47) ND (<0.47)	ND (<0.49) ND (<0.49)	ND (<0.48)	ND (<0.48)	ND (<0.48) ND (<0.48)	ND (<0.48) ND (<0.48)	ND (<0.48)	ND (<0.50) 4.6	ND (<0.50)	ND (<2.5) 7.4	ND (<0.10)	ND (<0.097) 0.16	ND (<0.098) 5.8	ND (<0.099) 30.9	ND (<0.099) 9.8	ND (<0.11) 12.9	ND (<0.097) 36.8	ND (<0.10) 2.2	0.11 8.0	ND (<0.098) 1.4	ND (<0.10)	ND (<0.098)
Phenanthrene	pg/L pg/L	50	5.6	9.6	13	4.8 B	1.1	6.7	6.3	11	230E	ND (<0.48)	ND (<0.48)	18	4.6	6.7	10	15.9	0.16	15.7	14.1	16.5	11.6	18.4	2.5	13.1	ND (<0.098)	15.4	3.5
Pyrene	ug/L	50	1.4J	1.3	1.9	2.1 B	ND (<0.50)	1.1	0.87	1.3	2	ND (<0.48)	ND (<0.48)	3	1.8	1.2	ND (<2.5)	2.0	0.50	2.7	21	2.5	2.1	3.3	1.2	2.9	0.54	3.8	0.80
Cvanide and Lead	pg/L	30	1.43	1.3	1.5	2.10	ND (~0.50)	1.1	0.07	1.3		ND (<0.40)	ND (~0.40)	3	1.0	1.2	ND (*2.5)	2.0	0.50	2.1	2.1	2.5	2.1	3.3	1.2	2.9	0.54	3.0	0.80
_ead	ug/L	25	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<3.0)	ND (<3.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<0.01)	ND (<0.01)	ND (<0.01)	ND (<10)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	6.1	ND (<5.0)	ND (<20)	ND (<10.0)
Dvanide	mg/L	0.2	0.353	0.342	ND (<0.0)	0.25J	0.137	P (<5.0)	0.34	0.41	0.11	0.11	0.023	0.25	0.24	0.24	0.25	0.26	0.21	0.26	0.23	0.26	0.192	0.23	0.19	0.25	0.17	0.14	0.14
AWQS	= Ambient Wate	er Quality Stan	dards	0.042		0.200	0.107		0.04	0.41	0.11	0.11	0.020	0.20	0.24	0.24	0.20	0.20	0.21	0.20	0.23	0.20	0.192	0.23	0.15	0.20	0.17	0.14	0.14
	= Present in Ass																												
	= Benzene, Eth		luene and Xyler	te																									
	= Diluted Sampl																												
	= Result exceed																												
	= MS and/or MS			nce limits.																									
	= MS/MSD RPD																												
	= Estimated Co		lue																										
	= Milligrams per	r Liter																											
	= No Criteria																												
	= Not detected a	above laborato	ry reporting lim	it (indicated by	#)																								
VS	= Not Sampled																												
NYSDEC	= New York Sta	ite Department	of Environmen	tal Conservatio	on																								
PAHs	= Polycyclic Ara	matic Hydroca	erbons																										
3	= Rejected	- 1																											
inl	= Micrograms p	er Liter																											
-0-	= values indicat			0.44400																									
Bolded																													

CONSTITUENT	UNITS	09/30/10	01/05/11	04/07/11	06/15/11	10/12/11	12/13/11	03/13/12	10/09/12	04/18/13	10/08/13	04/09/14	10/15/14	04/16/15	10/13/15	04/06/16	10/25/16	04/26/17	10/11/17	04/26/18	10/16/18	04/18/19	10/16/19	05/20/20	10/07/20	04/14/21	10/06/21	04/13/22
MNA/WQ Parameters																								•				
Alkalinity (as CaCO3)	mg/L	442	410	R	R	586J	600J	R	436	530	585	454	595	532	638	615	636	706	630	724	740	560	650	156	670	680	760	546
Chloride	mg/L	7.2	6.7	9.4	6.1 B	3.4J	R	12.7	12.8	5.5	5.4	5	6.5	5.8	4.9	5.7	6.8	3.4	6.5	5.6	4.8	11.8	4.8	3.6	5.2	3.6	3.8	ND (<3.0)
Ethane	μg/L	ND (<2.5)	ND (<2.5)	ND (<30)	ND (<30)	ND (<1.5)	ND (<1.5)	0.57J	ND (<750)	ND (<750)	ND (<750)	ND (<750)	ND (<750)	ND (<75)	ND (<75)	ND (<75)	1.2	0.15J	0.84J	0.82J	0.99J	0.92 J	1.1	ND (<1.00)	ND (<5.00)	ND (<5.00)	ND (<2.0)	ND (<1.00)
Ethene	μg/L	ND (<2.5)	ND (<2.5)	ND (<30)	ND (<30)	ND (<1.5)	ND (<1.5)	2.6	ND (<700)	ND (<700)	ND (<700)	ND (<700)	ND (<700)	ND (<70)	ND (<70)	ND (<75)	0.24J	0.036J	0.16J	0.13J	0.17J	0.15 J	0.20 J	ND (<1.00)	ND (<5.00)	ND (<5.00)	ND (<2.0)	ND (<1.00)
Ferrous Iron	mg/L	ND (<0.1)	0.44	R	0.33J	R	0.08	ND (<0.1)	0.12	ND (<0.1)	0.13	ND (<0.1)	ND (<0.1)	ND (<0.1)	ND (<0.1)	ND (<0.1)	2.4	1.2	3.0	3.5	3.1	2.6	1.9	2.8	3.0	0.79	4.7	3.6
Manganese	mg/L	NA	0.7	0.59	0.9	0.17	0.61	0.88	1.1	0.63	0.7	0.22	0.63	0.42	0.33	ND (<75)	0.601	0.522	0.599	0.551	0.592	0.603	0.658	0.373	0.650	0.373	0.646	0.275
Methane	μg/L	210J	580 D	270	170	37	400 B	140	550	170	150	75	410	160	1100	110	900	180	780	820	830	850	1100	4.95 J	488	ND (<5.00)	500	173
Nitrate	mg/L	NA	ND (<1.0)	ND (<0.05)	ND (<0.05)	0.65	0.17	ND (<0.05)	ND (<0.05)	0.1	ND (<0.05)	0.53	ND (<0.05)	ND (<0.05)	0.37	0.074	ND (<0.10)	0.33	ND (<0.10)	ND (<1.0)	ND (<1.0)	ND (<0.10)	ND (<1.0)	ND (<1.0)				
Nitrogen	mg/L	3.2	2.75	2.6	1.8	R	R	3.2	3.8	3.6	2.8	2.4	3.3	2.1	1.9	2.6	5.4	2.4	3.2	2.3	3.2	3.4	3.9	2	2.8	2.4	3.9	2.2
Sulfate	mg/L	NA	316	312 B	243 B	R	R	351 B	487	140	86	ND (<1.0)	107	38.2	22.8	13.3	145	37.8	77.7	111	75.8	79.6	67.7	39	95.7	37.5	56.8	25.9
Sulfide	mg/L	NA	2.7J	ND (<1.0)	ND (<1.0)	0.8J	ND (<1.0)	R	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	1.0

Present in Associated Blank Sample
Olitical Sample
Estimated Concentration
Microliver Montreal Renaultion
Not Analyzed
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory reporting limit (indicated by #)
Not detected above laboratory report

B
D
J
mg/L
MNA
NA
ND (<#)
NS
R
µg/L
WQ

Appendix A – Field Data and Inspections

		nstown New Y	JIR	Date:	4/13/	22		
Sampling Persor	11101	0050 221		Weather	VC.	60		
	0603275-120	1950-221		Time In:	11:4		Time Out:	12i0
Vell Id.	MW-4							
Well Infor	mation							Stick-Up
VVOII IIIIO	111111111111111111111111111111111111111		TOC Oth			Flush	K-7	No No
Depth to Water:		(feet)	12-55	Well Loc		4,	Yes Yes	No
Depth to Bottom		(feet)	27.32	Measuring Well Ma) Point Market orial:	ı. PVC		
Depth to Produc		(feet)	11.71	Well Dia		1"	2" Oth	
Length of Water		(feet)	7:11	Comme				
Volume of Wate		(gal)	534 -					
Three Well Volu	mes:	(gai)	de l					
Purging In	formation	_					Comunica F	actors
. Grania in		-		1			Conversion Factor ID 2" ID	actors 4" ID 6" I
Purging Method	1:	В	aller Peristaltic	Weil Wizard Dedicated Pt	imp 🗡		1 10 2 10	1 1 1 0
Tubing/Bailer M			eflon Stainless St.] , and any area [2	 1	gal/ft. of water	0.04 0.16	0.66 1.4
Sampling Metho			Bailer Peristaltic	Well Wizard Dedicated Pr			n=3.785L=3785m	
Average Pumpi		(ml/min)	200					
Duration of Pun		(min)		well go dry? Yes	No No			
Total Volume R		(gal)			8			
Horiba U	J-52 Water C	uality Meter U	sed? Yes] No				
								TDS
Time	DTW	Temp	pН	ORP Conductiv	· 1	oidity	DO (mag/1)	(g/L)
,	(feet)	(°C)	(S.U.)	(mV) (mS/cm		TU)	(mg/L)	1.09
11.10	22.63	3 12.22		87 1.68	40	7	5.66	1.00
31.15	22.65	10-89	7.05	101 1.80	39		3.0(1111
11:25	27.65	10.49	6.95	103 1.82	1	0.0	3-08	1112
	- C	- 10. 3	5 6.93	105 1.80		9	3.06	11:15
11:25	177 6	110.3			7 1 61	'.Z	3.04	1 1 1
11:25	2265	10.30	0 (0.92	100 1. 3:	3 8.	2	7 /	1 1
11:25	22.65	10.30			3 5		3.04	1.1
11:25	22.65	10.3	7 6 89	107 18	3 5	2 3	3.04	日1.1
11:25 11:30 11:35 11:40	22-45		7 6 89	_ , , , , , , , , , , , , , , , , , , , 	3 5			1.17 # 1.15
	22.65	10.3	7 6 89	_ , , , , , , , , , , , , , , , , , , , 	3 5			年(1)
	22.65	10.3	7 6 89	_ , , , , , , , , , , , , , , , , , , , 	3 5			1.17 F 1.1
	22.65	10.3	7 6 89	_ , , , , , , , , , , , , , , , , , , , 	3 5			1.13 14 1.15
	22.65	10.3	7 6 89	_ , , , , , , , , , , , , , , , , , , , 	3 5			1.17 F 1.15
Sampling Infor	mation:	10.35	3 6 87	_ , , , , , , , , , , , , , , , , , , , 	3 3.	3	3.07 Method	
Sampling Infor	mation:	70.35 /o.35	Preservative	110 7.8:	alyzed	3	Method SW-846 Met	hod 8270
Sampling Infor	mation:	10.35	3 6 87	Compounds an	alyzed	3	Method SW-846 Method SM 3500 Fi	hod 8270
Sampling Infor	72 - 65 72 - 65 mation: Size 100 mL	/0.35 /o.35 Material Glass	Preservative Unpreserved	Compounds an	alyzed	EPA	Method SW-846 Meth SM 3500 FI SM 4500 C	hod 8270 E D
Sampling Infor	mation:	70.35 /o.35	Preservative	Compounds an SVOC PAF	alyzed I's	EPA	Method SW-846 Metl SM 3500 FI SM 4500 C EPA Method	nod 8270 E D EI E 310.2
Sampling Infor Quantity 2	22 - 65 22 - 65 mation: Size 100 mL 250 mL	Material Glass Plastic	Preservative Unpreserved Unpreserved	Compounds an SVOC PAH Ferrous Iro Chloride	alyzed I's	EPA	Method SW-846 Method SM 3500 FI SM 4500 C EPA Method EPA Method	hod 8270 E D EI E 310.2
Sampling Infor Quantity 2 1	22 - 65 22 - 65 mation: Size 100 mL 250 mL	Material Glass Plastic Plastic	Preservative Unpreserved H2SO4	Compounds an SVOC PAF Ferrous Iro Chloride Total Alkalir Nitrogen	alyzed I's n	EPA	Method SW-846 Method SM 3500 FI SM 4500 C EPA Method EPA Method EPA Method	hod 8270 E D EI E 310.2 351.2 6010
Sampling Infor Quantity 2 1 1 1 1	22 - 6 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Material Glass Plastic Plastic Plastic	Preservative Unpreserved H2SO4 HNO3	Compounds an SVOC PAF Ferrous Iro Chloride Total Alkalir	alyzed I's n	EPA	Method SW-846 Method SM 3500 Find SM 4500 Control SM 4500 Cont	nod 8270 E D EI E 310.2 351.2 6010 thod 8260
Sampling Infor Quantity 2 1	22 - 65 22 - 65 mation: Size 100 mL 250 mL	Material Glass Plastic Plastic	Preservative Unpreserved H2SO4	Compounds an SVOC PAF Ferrous Iro Chloride Total Alkalir Nitrogen Lead & Manga	alyzed I's n iity	EPA	Method SW-846 Method SM 3500 FI SM 4500 C EPA Method EPA Method EPA Method	nod 8270 E D EI E 310.2 351.2 6010 thod 8260

Sample Time: (2 4) M. \\svrmt88-vm3\svracuse-01\Dashhqard\Planning\900043 xlsm

250 mL

40 mL

2

Sample ID:

Plastic

Glass

Duplicate? MS/MSD?

NaOH & Zinc Acetate

Benzalkonium Chloride

Yes		No	\bowtie
Yes	Ĺ	No	\geq

Nitrate & Nitrite

Sulfide

Sulfate

Methane/Ethane/
Ethene/CO2

Shipped: Drop-off Albany Service Center Pace Courier

EPA Method 353.2

EPA Method 376.1

EPA Method 375.4

RSK-175

Laboratory: Pace Analytical

Greensburg, Pennsylvania

Sample Time:

1010

\\svirmt88-vm3\svracuse-01\Dashboard\Planning\900043.xlsm

MS/MSD?

Greensburg, Pennsylvania age 9 of 17

Sample Time: ///O MS/MSD? Yes No Laboratory: Face Allalytical Greensburg, Pennsylvaniase 10

Sulfate Methane/Ethane/

Ethene/CO2

Benzalkonium Chloride

Duplicate?

MS/MSD?

Sample Time: 1205 M

rmt88-ym3\syracuse_01\Dashboard\Planning\900043 xlsm

MW-12-0422

40 mL

2

Sample ID:

Glass

Greensburg, Pennsylvania 12 of 17

RSK-175

Pace Courier

Pace Analytical

Shipped: Drop-off Albany Service Center

Laboratory:

North Market St		<u> </u>			Date: 7	DE 50		
oling Personne	3275-12095	0-221			Neather: ()	P 70	Time Out: /	0-30
101111111111111111111111111111111111111	W-13				Time In: 07			
ld. M								
Well Informa	ition		TOC Other		Well Type:	Flush	""" " 	ck-Up No
			TOC Other		Well Locked:		Yes Yes	No
th to Water:		(feet) (feet)	22.75		Measuring Point	Marked:	SS Other:	
oth to Bottom:		(feet)			Well Material: Well Diameter	411	2" Other	
oth to Product: gth of Water C	olumn:	(feet)	10.57		Comments:	_		
ume of Water is	n Well:	(gal)	1.67					
ee Well Volum	es:	(gal)	<u> </u>					
la fa	motion						Conversion Fac	tors
Purging Info	mation	-			edicated Pump	a	1" ID 2" ID	4" ID 6" ID
rging Method:			Bailer Peristaltic	Well Wizard L Polyethylen	other	gal/ft. of		0.00 1.47
bing/Bailer Mat	erial:		eflon Stainless St. Peristaltic	Well Wizard [Dedicated Pump	☑ Water	0.04 0.16	0.66 1.47
mpling Method	:				_	1 galk	on=3.785L=3785mL=	1007 (4. 166)
erage Pumping	Rate:	(ml/min) (min	30	_				
uration of Pump otal Volume Re	noved:	(gal	Did we	ell go dry?	Yes No)		
otal Volume Re	noveu.			No				
Horiba U-	2 Water Qu	ality Meter (
				ORP	Conductivity	Turbidity	DO	TDS
Time	DTW	Temp	pH (S.U.)	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)
	(feet)	(°C)		27	0.688	44_	1.0	12/101
79:40	16.50	8.2	3 7-50	91	0.635	1.6	000	2401
09:45	12.66	9.19	<u> </u>	- 95	0.634	0.8	10.00	a fue
29:50	12 60	2 2	3 7-46 -	102	0.633	0,7	0.00	0.405
29:55	12-6	1 8 3	3 7.45 -	104	0-633	0-5	15,00	12.405
10:00	17 60 4	7 9.9	7.46 -	-105	0.635 0.632	0.6	6.00	0-400
10:10	12 60	1 8.4	6 7.46	-106	0.632	 		
10.10	<u> </u>							
								<u> </u>
					<u></u>			
Sampling Infor	mation:	·			la analim	od 1	Method	
Quantity	Size	Material	Preservative		oounds analyz	EF	PA SW-846 Meth	nod 8270
Quantity	100 mL	Glass	Unpreserved		SVOC PAH's		SM 3500 FE	
-	1		· · · · · · · · · · · · · · · · · · ·	 	Ferrous Iron		SM 4500 C	
1	250 mL	Plastic	Unpreserved	 	Chloride Fotal Alkalinity		EPA Method	310.2
'				 	Nitrogen		EPA Method	351.2
1	250 mL	Plastic	H2SO4	 	ad & Mangane	se	EPA Method	6010
- 1	250 mL	Plastic	HNO3		OC's & BTEX	- E	PA SW-846 Me	
3	40 mL	Glass		T-t-L Cyanida			EPA Method	
1	250 mL	Plastic	NaOH		Nitrate & Nitrite		EPA Method	353.2
 	1	1		 	Sulfide		EPA Method	376.1
1	250 mL	Plastic	NaOH & Zinc Acetate		Sulfate		EPA Method	375.4
		1			Methane/Ethan	.,		
1	_i			1 .	/lathana/⊢tnan		RSK-17	

Laboratory:

Pace Analytical Greensburg, Pennsylvanja

Sample Time:

Sample ID:

MW-13-0422

Duplicate?

MS/MSD?

National Grid 109 North Market	Street, John	stown New	York			7. 1 . N 1		
Sampling Personi					Date:	4/13/22	5005	
Job Number: 0	603275-120	950-221			Weather:	cloudy_	Time Out:	1140
	MW-14				Time In:	030	Time Out.	
· <u>· · · · · · · · · · · · · · · · · · </u>								
Well Inforr	mation		TOC	Other	Well Type: Well Locked		shmount Yes	Stick-Up No
Depth to Water:		(feet)	13,76		Measuring Po		Yes	No
Depth to Bottom:		(feet)	23.55		Well Materi		ss Oth	er:
Depth to Product Length of Water		(feet) (feet)			Well Diame	ter: 1'	' 2" <u></u>	er:
Volume of Water		(gal)			Comments:			
Three Well Volum		(gal)						
								
Purging Info	ormation						Conversion Fa	actors
Purging Method:			Bailer Peristaltic		izard Dedicated Pump			4 10 0 10
Tubing/Bailer Ma	aterial:		Teflon Stainless St.		thylene other izard Dedicated Pump	water	0.04 0.16	0.66 1.47
Sampling Metho		(ml/mi	Bailer Peristattic	L vven vv	izaid bodicates i dirip		lion=3.785L=3785ml	_=1337cu, feet
Average Pumpir Duration of Pum	ning:	(mi	n) 30					
Total Volume Re		(g:	ai)	Did well go dr	y? YesNo			
		uality Meter		No □	ı	•		
HOIDA O	-Jz Water Q	dalley metal						
Time	DTW	Tem	р рН	ORP	Conductivity	Turbidity	DO	TDS
Inne	(feet)	(°C	•	(mV)	(mS/am)	(NTU)	(mg/L)	(g/L)
1035	13.94			66	0.002	167	1/128	0.00/
1040	14.08			69	0,002	196	11,52	0,30/
1245	14.40	9.0		-32	0.77/	388	0,00	0,498
1050	14.69			-38	0.778	90.9	0.00	0.499
1055	14,79	9,,		-48	0.782	32.0	0,00	0.500
1100	14.80			-53	0.787	17.0	0,00	0,503
1105	14.87	7 9.0	7.14	1 -2 /	- 0,767			
<u> </u>								
Sampling Infor	mation:							
	Size	Material	Preservative	С	ompounds analy	zed	Method	
Quantity 2	100 mL	Glass	Unpreserved		SVOC PAH's	E	PA SW-846 Meth	
	100 1112				Ferrous Iron		SM 3500 FE	
	250 mL	Plastic	Unpreserved		Chloride		SM 4500 C	
		[Total Alkalinity		EPA Method :	
1	250 mL	Plastic	H2SO4		Nitrogen		EPA Method	
1	250 mL	Plastic	HNO3		Lead & Mangane		PA SW-846 Met	
3	40 mL	Glass	HCI_		VOC's & BTEX	- -	EPA Method 9	
1	250 mL	Plastic	NaOH		Total Cyanide		EPA Method	
		_	N 0010 7' - 1 1 - 1	toto	Nitrate & Nitrite	'	EPA Method	
1	250 mL	Plastic	NaOH & Zinc Ace	late	Sulfide Sulfate		EPA Method	
		 			Methane/Ethan	e/		
	40	Class	Benzalkonium Chl	oride	Ethene/CO2	<u> </u>	RSK-17	5
	40 mL	Glass	Delizaronium Om	Ç.100	<u> </u>	Shinned: Dram	-off Albany Serv	ice Center
	Field Dupli	cate-0422	_	H	\bowtie	Shipped: Drop	Pace Courie	
Sample ID:	MW-14		Duplicate?	Yes	· H	Laborat	_	رم Analytical
Sample Time:		0	MS/MSD?	Yes No	\sim	Labora		, Pennsylvanja,

Sampling Personnel:	109 Nor	th Market	Street, John	stown New	York			Doto	41.	7/27		
Well information	Samplin	ng Personn	el:							1125	2°5	
Weel New 15	Job Nur	mber: 06	03275-120	950-221			_		1140	7		1230
Depth to Water: (New)	Well Id.	Ī	WW-15		<u> </u>			Time in.	11 10			
Depth to Product Depth to P			nation	(feet)	15,69	Other		Well Locke			Yes	No
Depth to Product:	Depth t	o Bottom:		(feet)	23.00					PVC		ner:
Length of Water Column: Teed 1.1					1 2 2 / 1		-			1"		
Purging Information					1 1 1 1		-			_		
Purging Information					 		=					
Purging Method:	Three \	Well Volum	ies:	(gai)								
Purging Method:	<u></u>											
Horiba U-52 Water Quality Meter Used? Yes No No	Purging Tubing Sampl Average Duration	g Method: g/Bailer Ma ing Method ge Pumping on of Pump	terial: l: g Rate: ping:	(mi	Teflon Stainless St. Bailer Peristaltic	,	Polyethyl Well Wizar	ene othe		al/ft. of water	1" ID 2" ID 0.04 0.16	0.66 1.47
Time	lotal \											
Time		Horiba U-	52 Water Q	uality Meter	Used? Yes		<u> </u>					<u> </u>
	T	ime		1	' ' .	1			ı		(mg/L)	(g/L)
	II	UR						1,01	/3	,4		
1	11-11-					-/	19	0,929	10	6		
1222		10				-/	24	0.956	1/1	3		
17.85 9.54 6.83 -/29 0.962 6.7 0.20 0.666	11-11-	55		2 9 4				0.939	7			
			-/ / 'C i			-/2	28	0.962				0.6/6
No No No No No No No No	1/5					-12	29	0,984				
Sampling Information: Sampling Information:	12					-/-	12	1.01			0,00	0.644
Sampling Information:	-/-		11.000	11.								
Sampling Information:	∦ ├──			_				<u> </u>				
Sampling Information:	∥├ ──					.]				<u> </u>		
Sampling Information:	Щ		(T.0	of Pun	10							
Quantity Size Material Preservative Compounds analyzed Method 2 100 mL Glass Unpreserved SVOC PAH's EPA SW-846 Method 8270 1 250 mL Plastic Unpreserved Chloride SM 3500 FE D 1 250 mL Plastic H2SO4 Nitrogen EPA Method 310.2 1 250 mL Plastic HNO3 Lead & Manganese EPA Method 6010 3 40 mL Glass HCI VOC's & BTEX EPA SW-846 Method 8260 1 250 mL Plastic NaOH Total Cyanide EPA Method 376.3 1 250 mL Plastic NaOH & Zinc Acetate Sulfide EPA Method 376.1 2 40 mL Glass Benzalkonium Chloride Methane/Ethane/ Ethene/CO2 RSK-175 Sample ID: MW-15-0422 Duplicate? Yes No Sample Time: 12.15 MS/MSD? Yes No	Sami				/							
1					D		Com	nounds analy	zed		Method	
1		Quantity								EPA	SW-846 Met	hod 8270
1 250 mL Plastic Unpreserved Chloride SM 4500 CI E Total Alkalinity EPA Method 310.2 1 250 mL Plastic H2SO4 Nitrogen EPA Method 351.2 1 250 mL Plastic HNO3 Lead & Manganese EPA Method 6010 3 40 mL Glass HCI VOC's & BTEX EPA SW-846 Method 8260 1 250 mL Plastic NaOH Total Cyanide EPA Method 9012B 1 250 mL Plastic NaOH Sitrate & Nitrate & National EPA Method 376.1 Sulfate EPA Method 376.1 EPA Method 375.4 Methane/Ethan	l L	2	100 mL	Glass	Unpreserved						SM 3500 F	ED
1 250 mL Plastic Oripleserved Total Alkalinity EPA Method 310.2 1 250 mL Plastic H2SO4 Nitrogen EPA Method 351.2 1 250 mL Plastic HNO3 Lead & Manganese EPA Method 6010 3 40 mL Glass HCI VOC's & BTEX EPA SW-846 Method 8260 1 250 mL Plastic NaOH Total Cyanide EPA Method 9012B 1 250 mL Plastic NaOH Nitrate & Nitrite EPA Method 353.2 1 250 mL Plastic NaOH & Zinc Acetate Sulfide EPA Method 376.1 Sulfate EPA Method 376.1 Sulfate EPA Method 375.4 Methane/Ethane/ Ethene/CO2 RSK-175 Shipped: Drop-off Albany Service Center Pace Courier Laboratory: Pace Analytical Greensburg, Pennsylvanjage Greensburg, Pennsylvanjage			_		Llamananiad	⊢						
1 250 mL Plastic H2SO4 Nitrogen EPA Method 351.2 1 250 mL Plastic HNO3 Lead & Manganese EPA Method 6010 3 40 mL Glass HCI VOC's & BTEX EPA SW-846 Method 8260 1 250 mL Plastic NaOH Total Cyanide EPA Method 9012B 1 250 mL Plastic NaOH Nitrate & Nitrite EPA Method 353.2 1 250 mL Plastic NaOH & Zinc Acetate Sulfide EPA Method 376.1 250 mL Glass Benzalkonium Chloride EPA Method 375.4 Shipped: Drop-off Albany Service Center Pace Courier Sample ID: Sample Time: MW-15-0422 Duplicate? Yes No No No Expression No Service Center Pace Courier Laboratory: Pace Analytical Greensburg, Pennsylvania.		1	250 mL	Plastic	Unpreserveu	⊢			,			
1 250 mL Plastic H2SO4 Lead & Manganese EPA Method 6010 1 250 mL Plastic HNO3 Lead & Manganese EPA Method 8260 3 40 mL Glass HCl VOC's & BTEX EPA SW-846 Method 8260 1 250 mL Plastic NaOH Total Cyanide EPA Method 9012B 1 250 mL Plastic NaOH Nitrate & Nitrite EPA Method 353.2 1 250 mL Plastic NaOH & Zinc Acetate Sulfide EPA Method 376.1 2 Sulfate EPA Method 375.4 Methane/Ethane/Ethane/Ethane/Ethane/Ethane/CO2 Shipped: Drop-off Albany Service Center Pace Courier Laboratory: Pace Analytical Greensburg, Pennsylvania.	1 L				110004							
1 250 mL Plastic HNO3 Lead & Management Service Center Sample ID: Sample Time: 1 250 mL Plastic HNO3 Lead & Management Service Center MW-15-0422 MS/MSD? Yes No Method 8260 1 250 mL Plastic HNO3 Lead & Management Service Center Model of the Method 8260 1 250 mL Plastic NaOH & Zinc Acetate Nitrite EPA Method 353.2 1 250 mL Plastic NaOH & Zinc Acetate Sulfide EPA Method 376.1 1 250 mL Plastic NaOH & Zinc Acetate Sulfide EPA Method 376.1 Sulfate EPA Method 375.4 Methane/Ethane/		1					1.0		ese			
3 40 mL Glass HCI Vocadatal EPA Method 9012B 1 250 mL Plastic NaOH Total Cyanide EPA Method 353.2 1 250 mL Plastic NaOH & Zinc Acetate Sulfide EPA Method 376.1 250 mL Plastic NaOH & Zinc Acetate Sulfide EPA Method 375.4 2 40 mL Glass Benzalkonium Chloride EPA Method 375.4 Methane/Ethane/ Ethene/CO2 RSK-175 Shipped: Drop-off Albany Service Center Pace Courier Laboratory: Pace Analytical Greensburg, Pennsylvanjage Greensburg, Pennsylvanjage	[1				-+						
1 250 mL Plastic NaOH Nitrate & Nitrite EPA Method 353.2 1 250 mL Plastic NaOH & Zinc Acetate Sulfide EPA Method 376.1 250 mL Plastic NaOH & Zinc Acetate Sulfide EPA Method 376.1 Sulfide EPA Method 375.4 Methane/Ethane/ Ethene/CO2 RSK-175 Shipped: Drop-off Albany Service Center Pace Courier Sample ID: MW-15-0422 Duplicate? Yes No Sample Time: // 2 / 5 / No MS/MSD? Yes No Greensburg, Pennsylvanjage		3				+						
1 250 mL Plastic NaOH & Zinc Acetate Sulfide EPA Method 376.1 Sulfide EPA Method 376.1 Sulfide EPA Method 375.4 Methane/Ethane/ Ethene/CO2 RSK-175 Sample ID: MW-15-0422 Duplicate? Yes No Sample Time: // 2 / 5 MS/MSD? Yes No Sulfide EPA Method 376.1 Methane/Ethane/ Ethene/CO2 RSK-175 Shipped: Drop-off Albany Service Center Pace Courier Laboratory: Pace Analytical Greensburg, Pennsylvania		1	250 mL	Plastic	NaOH							
Sample ID: Sample Time: 1	F		ļ		N. 011 0 77 A4	<u> </u>			<u> </u>			
2 40 mL Glass Benzalkonium Chloride Sample ID: Sample ID: Sample Time: Methane/Ethane/ Ethene/CO2 Shipped: Drop-off Albany Service Center Pace Courier Laboratory: Pace Analytical Greensburg, Pennsylvania		1	250 mL	Plastic	NaOH & ∠inc Acet 	ate _				 	EPA Method	375.4
2 40 mL Glass Benzalkonium Chloride Ethene/CO2 RSK-175 Sample ID: MW-15-0422 Duplicate? Yes No Sample Time: // 2/5 MS/MSD? Yes No Greensburg, Pennsylvanjage	1 1					+			<u> </u>		· · · · · · · · · · · · · · · · · · ·	
2 40 mL Glass Benzalkonium Chloride Ethich Get Sample ID: MW-15-0422 Duplicate? Yes No Sample Time: // 2 / 5 MS/MSD? Yes No Greensburg, Pennsylvanjage	[Daniellianii in Ohle	rida	V			1	RSK-17	′5
Sample ID: MW-15-0422 Duplicate? Yes No Laboratory: Pace Courier Laboratory: Pace Analytical Greensburg, Pennsylvanja	L	2	40 mL	Glass	Benzalkonium Chic	nice		LaisingOOZ				
Olechiopaig, remojator page	H	•			•	-	No No	3		•	Pace Couri	er 🔀 Analytical
NATURE OF THE PROPERTY OF THE					10043 xlsm						Greenspur	ALL CHILOTHAN DAPE

Natio	nal Grid		-t Nasar'	v/ o.e.k						
	North Market						Date:	4/13/	2 2	
	oling Personr	nel:		ERNST	<u> </u>		Weather:	11/10/14	50°5	
		303275-120	950-221					0930	Time Out:	1030
Well	1d. 1	MW-16					14110	<u> </u>		
	Well Inform	nation	-	TOO	Other		Well Type:		Flushmount	Stick-Up
				TOC 8,84	T		Well Locked:		Yes	No
	th to Water:		(feet)	19.45	 		Measuring Poi	nt Marked:	Yes 🔀	No
	th to Bottom:		(feet)	19.40	 		Well Materia	l: F	>∨c⊠ ssotr	
Dept	th to Product: gth of Water (Column:	(feet)	10,61			Well Diamete	er:	1" 2" Oth	ner:
Leng	me of Water	in Well	(gal)	1.70			Comments:			
	e Well Volun		(gal)	511						
<u> </u>	,0 , , , , , , , , , , , , , , , , , ,									
										
	Purging Info	ormation							Conversion F	actors
							rd Dedicated Pump	→	1" ID 2" ID	
Pur	ging Method:				ristaltic	Well Wiza	lene other	gal/f		
Tub	ing/Bailer Ma	iterial:		19/19/11	ess St.		rd Dedicated Pump	wa	ter 0.04 0.16	
	npling Method		/m1/mi		istailic	V4C// V1/20			1 gailon=3.785L=3785m	L=1337cu, feet
	rage Pumpin		<u>(ml/mi</u> (mi)							
	ation of Pum al Volume Re		(9:		 Did we	li go dry?	Yes No	$\boldsymbol{\times}$		
100					Yes N					
-	Horiba U-	52 Water Q	uality Meter	Used?	162	<u> </u>				
<u> </u>								1 1 111	, DO	TDS
П	Time	DTW	Tem	р рН	l l	ORP	Conductivity	Turbidity	(mg/L)	(g/L)
	,,,,,	(feet)	(°C)			(mV)	(mS/cm)	(NTU) 294		0.692
	0940	9.28	7.5	3 7.3		43	1,10			0.638
41	0945	7.58	7	7.2		<u> </u>	1.00	144	0.00	0.620
- 11	2950	9.94	7.0	7 7.0		14	0,970	58,		0.625
11 1	0355	16.35	6.8			<u> </u>	0.975	23. 7		0,642
11	000	10,74	6.8	2 6.9		2	1.00	13.2	2.25	0,655
	1005	11.11	6.9		0 -		1.52	8,8	0.80	0,665
	1010	11.48	7.0	4 6.8	9 -	i0	1.04	6.8	0,00	0,000
	101.0									
							<u> </u>	<u> </u>		
<u> </u>										
Sa	ampling Inforr	nation:								
	Quantity	Size	Material	Preserva	tive	Con	npounds analyz	ed	Method	
	2	100 mL	Glass	Unprese	rved		SVOC PAH's		EPA SW-846 Met	
		130 1112		<u> </u>			Ferrous Iron		SM 3500 F	
	1	250 mL	Plastic	Unprese	rved		Chloride		SM 4500 C	
	'				<u> </u>		Total Alkalinity		EPA Method	
	1-1	250 mL	Plastic	H2SC)4		Nitrogen		EPA Method	
	1	250 mL	Plastic	HNO		Le	ead & Manganes	e	EPA Method	
	3	40 mL	Glass	HCI			VOC's & BTEX		EPA SW-846 Me	
	1	250 mL	Plastic	NaOl			Total Cyanide		EPA Method	
		250 IIIL	i iddiro				Nitrate & Nitrite		EPA Method	
1	1 ,	250 mL	Plastic	NaOH & Zin	c Acetate		Sulfide	1	EPA Method	
	1	250 1112	Liastio	, <u></u>			Sulfate		EPA Method	375.4
		 	 				Methane/Ethane	/		
-	2	40 mL	Glass	Benzalkoniur	n Chloride	<u> </u>	Ethene/CO2		RSK-17	' 5
11	. /	- TO IIII								F

rmt88-ym3\syracuse-01\Dashhoard\Planning\900043 ylsm

Sample ID:

Sample Time:

Duplicate?

MS/MSD?

Pace Analytical Greensburg, Pennsylvania, 16 of 1:

Pace Courier

Laboratory:

National Grid 109 North Market Street, Former MGP Site Johnstown, New York

Well ID	Sample?	Well Size?	DTW	DTP	DTB	Comments
RW-1	No	2"	9.29		21.50	
MW-4	Yes	2"	22.55	(27.32	
MW-7	Yes	2"	13.38		22.10	
MW-10	Yes	2"	14.112		22.05	
MVV-11	No	2"			22.90	inaccessable- debris
MW-12	Yes	2"	13.60	<u> </u>	22.24	
MW-13	Yes	2"	12-18	12-	22.75	MS/MSD
MW-14	Yes	2"	13.76		23.55	Field Duplicate
MW-15	Yes	2"	15.69		23.00	
MW-16	Yes	2"	8.84		19.45	
Gauge-1 (bridge)	No		15.60	15-60	19.76	

DTW-depth to water DTP-depth to product DTB -depth to bottom All from top of casing

Unable to access MW-11. Area is on adjacent property and was full of concrete/metal and wood debris.

etlen Å	Section D		Section C				A STATE OF THE PARTY OF THE PAR
quires Client Information:	Regulted Project Information: Report To: Devin Shay (QES)		invoice information:		Che		Page: 1 of 1
inpany, UES - Cyrocuse	dshay@gasonina.com	in the state of the last of	Attention: Accounts Payable via ema		Chem		
dress: 8760 Northern Blvd, Suile 100	Report To: Tim Beaumont (GEB) theaumont@gesonline.com		Company Name: Groundwater & Em				DRY AGENCY
BI Synapusa, New York 1905?		A PERSONAL PROPERTY.	Address: \$780 Northern Blvd, Suite 1	100, East Sylecute, NY 1	3057	HIPOER OPOUND WATE	EP CONVING WATER
nail To: dahayoppasorithe com	Purchase Order No.:	The State of	Face Quota Reference			UST BCDA	THEP.
None : Fex: None 20.230.3069x4032	Project Name: National Cond - 105 Market Street, Johnstown NY	North	Race Project Manager, Rechal Chira	ner	The state of the s	SITE OA	IL IFF AM FAG
equested Duy Date/TAT: Standard	Project Number:		14 Theresian Control of the Control	Mark I Ma		EOCATION CH	SC VII OTHER
	0603275-120860-221-1108 Vini) Natio Come		The state of the s	emi-Annual GW	18	Filtered (Y/N)	
Section D Required Client Information SAMPLE ID Chie Character per box. (A-Z. 0-9 1.) Samples IDs MUST the UNIQUE	7) AMCETES CODE Unables Training Unables Unabl	MATERIA CODE CERTAN CALDRE		SAUTE TENT AT COLLECTION	Margarened Margar	Paquested Anertyale:	Prace Project Humbers
MW-4-	OADO	wi	BATE TIME GAYE	4.11.40		1/8/8/8/8/8/8	Lab LES
MW=7	A STATE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	THE PERSON NAMED IN	And the second s	10:10	12 3 1 1 3 1 1 1	2 2 1 1 3 1	1
MW-10	Control of the Contro		E	11170	12 3 1 1 3 1 1	The second secon	T 1
Man	THE RESIDENCE OF THE PERSON OF	W			12 3 1 1 3 1 1	2 2 1 1 3 1	
MW-12	a the same and the		g l	12:05			
MW-13		WT	- Contraction of the Contraction	10:10	12 3 1 3 1 1	2 2 1 1 3 1	The second secon
MW-13-1	The state of the s		The state of the s	10:10			1
MW-13-N	The state of the s		0	10:10	12 3 1 1 3 1 1	2 3 2 1 1 3 1	
MW-1	The second secon		3	61:11	12 3 1 1 3 1 1		1 1 Transference de la companya del companya de la companya del companya de la companya del la companya de la c
MW-1	A STATE OF THE PROPERTY OF THE	wr		12:15	12 3 1 1 3 1 1	2 2 1 1 3 1	1 1
MW-10	A STANDARD S	***	The second	10:15	12 3 1 1 3 1 1	2 2 1 1 3 1	The second secon
Field Dupli	The state of the s			- LV:C		2 2 1 1 3 1 1 2 2	
The state of the s	Blank	w	The state of the s	THE SHAREST AND SHAREST	3 1 1 3 1 4	3 1 3 1	
Additional Comments:	A CONTRACTOR OF THE PROPERTY O		erysulasia arte enem	DATE SINCE	AGREPTED BY AFFIRMAN	THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	SAMPLE CONDITIONS
SAMPLES WILL ARRIVE IN #	COOLERS.	1		1/3/22 123		and the second of the second o	
ALIM PRE SAME UNIVERSE (IA.	AAAIRIIG.	1	L.		and the state of t	7/4/45/14	
Diarea anno annota in de housin anno inc.	and the second second second second			-		Distriction of the second of t	
Please send reports to dehay@gesonline.co			The second se			THE PARTY OF THE P	THE RESERVE THE PROPERTY OF THE PARTY OF THE
NERegion@gesonline.com, ges@cquiso	ming.com	ļ	SAMPLEN HALL AT	mi Suscept den			The second secon
encacia can liates.				し色)			
SPECIFIC EDD NAME:	19	State of the second	SCHOOL SUPER	LEU	INTERVAL	MIGG(DD)	See

Appendix B – Data Usability Summary Report

708 North Main Street, Suite 201 Blacksburg, VA 24060

T. 800.662.5067

July 25, 2022

Devin Shay Groundwater & Environmental Services Syracuse 6780 Northern Blvd., Suite 100 East Syracuse, NY 13057

RE: Data Usability Summary Report for National Grid: Johnstown, NY Site Data Package Pace Analytical Job No. **30480776**

Groundwater & Environmental Services, Inc. (GES) reviewed one data package (Laboratory Project Number 30480776) from Pace Analytical Services, Inc., for the analysis of groundwater samples collected on April 13, 2022 from monitoring wells located at the National Grid: Johnstown, NY Site. Eight aqueous samples and a field duplicate were analyzed for BTEX, dissolved gases, PAHs, Nitrogen, Metals, Alkalinity, Chloride, Ferrous Iron, Cyanide, Sulfide and Sulfate. Methodologies utilized were, ASTM D516-11, EPA 351.2, EPA 6010D, SM 4500NO3F-2011, SM4500CIE-2011, SM 4500S2F-2011, SM 3500-FeB-2011, SM 2320B-2011, and the USEPA SW846 methods 8260C/8270DSIM/9012B, with additional QC requirements of the NYSDEC ASP. Dissolved gases analyses were subcontracted to Microbac Laboratories, 158 Starlite Drive, Marietta, OH.

The data were reported as part of a complete full deliverable type B data validation. This usability report is generated from review of the following:

- Laboratory Narrative Discussion
- Custody Documentation
- Holding Times
- Surrogate and Internal Standard Recoveries
- Matrix Spike Recoveries/Duplicate (MS/MSD) Correlations
- Field Duplicate Correlations
- Laboratory Control Sample (LCS)
- Preparation/Calibration Blanks
- Calibration/Low Level Standard Responses
- Instrumental Tunes
- Instrument MDLs

The items listed above which show deficiencies are discussed within the text of this narrative.

All of the other items were determined to be acceptable for the DUSR level review.

In summary, sample results were usable as reported, with exceptions due to poor precision or BS/BSD and MS/MSD recoveries.

The laboratory case narratives and sample identification summary forms are attached to this text, and should be reviewed in conjunction with this report.

Table 1. Laboratory – Field Cross Reference

J J		
Sample ID	Date Collected	Date Received
MW-4-0422	04/13/22 11:40	04/14/22 11:45
MW-7-0422	04/13/22 10:10	04/14/22 11:45
MW-10-0422	04/13/22 11:10	04/14/22 11:45
MW-12-0422	04/13/22 12:05	04/14/22 11:45
MW-13-0422	04/13/22 10:10	04/14/22 11:45
MW-13-MS-0422	04/13/22 10:10	04/14/22 11:45
MW-13-MSD-0422	04/13/22 10:10	04/14/22 11:45
MW-14-0422	04/13/22 11:10	04/14/22 11:45
MW-15-0422	04/13/22 12:15	04/14/22 11:45
MW-16-0422	04/13/22 10:15	04/14/22 11:45
Field Duplicate -0422	04/13/22 00:00	04/14/22 11:45
trip blank	04/13/22 00:01	04/14/22 11:45
	MW-4-0422 MW-7-0422 MW-10-0422 MW-12-0422 MW-13-0422 MW-13-MS-0422 MW-13-MSD-0422 MW-14-0422 MW-15-0422 MW-16-0422 Field Duplicate -0422	MW-4-0422 04/13/22 11:40 MW-7-0422 04/13/22 10:10 MW-10-0422 04/13/22 11:10 MW-12-0422 04/13/22 12:05 MW-13-0422 04/13/22 10:10 MW-13-MS-0422 04/13/22 10:10 MW-13-MSD-0422 04/13/22 10:10 MW-14-0422 04/13/22 11:10 MW-15-0422 04/13/22 12:15 MW-16-0422 04/13/22 10:15 Field Duplicate -0422 04/13/22 00:00

Table 2. Validation Qualifiers

Those 20 , answeron & annual 2							
Sample ID	Qualifier	Analyte	Reason for qualification				
	J-	Alkalinity					
MW-13	J-	Sulfate	MS/MSD low recoveries				
IVI VV -13	UJ-	Nitrogen, Kjeldahl, Total					
	OJ-	Nitrogen, Kjeidani, Totai	RPD > 30%				
All	J	Ferrous Iron	Analyzed outside of hold time.				
Samples	UJ-/J-	Carbon Dioxide	Low BS/BSD				
MW-15	J+	Ethane	High CCV Recovery				

In summary, sample results were usable as reported.

The laboratory case narratives and sample identification summary forms are attached to this text, and should be reviewed in conjunction with this report.

BTEX and TCL Volatiles by EPA 8260C/NYSDEC ASP

Sample holding times were met and instrumental tune fragmentations were within acceptance ranges. Surrogate and internal standard recoveries were within required limits. Calibrations standards show acceptable responses within analytical protocol and validation action limits. The MS/MSD and BS/BSD recoveries were within criteria. Precision calculations showed that the recoveries were consistent, as RPDs were within expected ranges. Precision calculations for

LCS/LCSD indicate good reproducibility. Surrogate recovery was within bounds, and LCS recoveries were compliant, and used to determine method efficacy.

The field duplicate correlations were not calculated as neither sample had above reporting limit detections.

PAHs by EPA8270D/NYSDEC ASP

Holding times were met. Instrumental tune fragmentations were within acceptance ranges. Surrogate recoveries were within analytical and validation guidelines. Blanks show no contamination. Calibration standards, both initial and continuing, show acceptable responses within analytical method protocols and validation guidelines.

Benzo(b)fluoranthene and Benzo(k)fluoranthene elute together on the instrument, and must be considered a combined total. The blind field duplicate correlations of MW-14-0422 fall within guidance limits.

The MS/MSD recovered within laboratory-provided criteria.

Precision calculations indicate good reproducibility. Surrogate recovery was within bounds. LCS recoveries were compliant for accuracy and precision, and no qualifications were required.

Lead and Manganese by EPA 6010/NYDESC ASP

The matrix spikes of MW-13 recovered within criteria. Instrument performance is compliant, and blanks show no contamination above the reporting limit. The ICP serial dilution evaluations were within specification for samples with detections of the target elements above the action limit.

Wet Chemistry Tests and Total Cyanide by 9012B/ NYSDEC ASP

Review was conducted for method compliance, holding times, transcription, calculations, standard and blank acceptability, accuracy and precision, etc., as applicable to each procedure. All were found acceptable for the validated samples with the following exceptions in the MW-5 MS/MSDs:

- Alkalinity in MW-13 recovered low in the MS/MSD. The concentration reported may be biased low.
- Sulfate recovery in MW-13 was low in the MS/MSD. The concentration reported is qualified as possibly biased low.

Nitrate had to be diluted due to the presence of an interfering element in the matrix. Elevated reporting limits are provided.

Calibration standard responses were compliant. Blanks show no detections above the reporting limits.

Ferrous Iron by S<3500-FeD-00/ NYSDEC ASP

Review was conducted for method compliance, holding times, transcription, calculations, standard and blank acceptability, and accuracy and precision. Samples were prepared outside of hold time, and all sample data is qualified as estimated with an indeterminate bias. All other compliance data were found acceptable for the validated samples.

Calibration standard responses were compliant. Blanks show no detections above the reporting limits.

Total Kjeldahl Nitrogen, Nitrogen as Nitrate/Nitrite by EPA 351.2 & 353.2/NYDESC ASP

Review was conducted for method compliance, holding times, transcription, calculations, standard and blank acceptability, accuracy and precision, etc., as applicable to each procedure. All were found acceptable for the validated samples. Calibration standard responses were compliant. Blanks show no detections above the reporting limits. The MS/MSD recoveries were out of specification for MW-13 associated samples:

• Nitrogen, Kjeldahl: recovery was high, the analyte was non-detect, and no qualifications are required.

Dissolved Gases by EPA 5021/RSK-175

Holding times were met. Instrumental tune fragmentations were within acceptance ranges. Surrogate recoveries were within analytical and validation guidelines. Blanks show no contamination.

The case narrative notes a high recovery in the calibration verification sample for ethane that is not corroborated in the PDF report. However, the blank spike/blank spike duplicate recovery was high for both ethane and ethene, resulting in the same qualification as would be required for a CCV exceedance. For samples with a positive detection of either analyte, the data is qualified as estimated with a possible high bias.

Carbon dioxide recovered low in the blank spike/blank spike duplicate. All data from all samples is qualified as estimated with a possible low bias.

All other criteria were found acceptable for the validated samples. Calibration standard responses were compliant. Blanks show no detections above the reporting limits.

Data Precision

Table 3 Field Precision JOHNSTOWN NY SITE

April 2022

Field Identification	Analyte	Sample Result	Duplicate Result	RPD (%)	Qualified
	Alkalinity	392 mg/L	370 mg/L	5.8	Α
	Nitrogen, NO2 Plus NO3	0.21 mg/L	0.25 mg/L	17.4	А
	Sulfate	25.9 mg/L	24.7 mg/L	4.7	Α
MW-14/FIELD	Sulfide	1.0 mg/L	ND mg/L	NC	Not calculated Duplicate <5x RL
DUP	Iron, Ferruos	0.38 mg/L	0.37 mg/L	2.7	А
	Cyanide	0.14 mg/L	0.14 mg/L	0.0	Α
	Manganese	203 μg/L	217 μg/L	6.7	А
	Acenaphthylene	0.21 μg/L	0.21 μg/L	0.0	А

A: Acceptable NC: Not calculated

Data Package Completeness

Sjantwick

Complete NYSDEC Category B deliverables were included in the laboratory data package, all information required for validation of the data is present.

Please do not hesitate to contact me if you have comments or questions regarding this report.

Bonnie Janowiak, Ph.D.

Project Chemist

708 N Main St, Suite 201

Blacksburg, VA 24060

VALIDATION DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- J- The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.
- J+ The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- UJ The analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- **NJ** The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control limits. The analyte may or may not be present.

Sample Summaries and Laboratory Case Narratives

SAMPLE SUMMARY

Project: National Grid-Johnstown, NY

Pace Project No.: 30480776

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30480776001	MW-4-0422	Water	04/13/22 11:40	04/14/22 11:45
30480776002	MW-7-0422	Water	04/13/22 10:10	04/14/22 11:45
30480776003	MW-10-0422	Water	04/13/22 11:10	04/14/22 11:45
30480776004	MW-12-0422	Water	04/13/22 12:05	04/14/22 11:45
30480776005	MW-13-0422	Water	04/13/22 10:10	04/14/22 11:45
30480776006	MW-13-MS-0422	Water	04/13/22 10:10	04/14/22 11:45
30480776007	MW-13-MSD-0422	Water	04/13/22 10:10	04/14/22 11:45
30480776008	MW-14-0422	Water	04/13/22 11:10	04/14/22 11:45
30480776009	MW-15-0422	Water	04/13/22 12:15	04/14/22 11:45
30480776010	MW-16-0422	Water	04/13/22 10:15	04/14/22 11:45
30480776011	Field Duplicate -0422	Water	04/13/22 00:00	04/14/22 11:45
30480776012	trip blank	Water	04/13/22 00:01	04/14/22 11:45

REPORT OF LABORATORY ANALYSIS

Project: National Grid-Johnstown, NY

Pace Project No.: 30480776

Date: May 16, 2022

The samples were subcontracted to Microbac Laboratories, 158 Starlite Drive, Marietta, OH 45750, for Dissolved Gases analysis. The results of this analysis are reported on the Microbac data tables attached.

REPORT OF LABORATORY ANALYSIS

Project: National Grid-Johnstown, NY

Pace Project No.: 30480776

Method: EPA 6010D

Description: BVR 6010D ICP, Water, 3010A

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 16, 2022

General Information:

11 samples were analyzed for EPA 6010D by Pace Analytical Services Beaver. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project: National Grid-Johnstown, NY

Pace Project No.: 30480776

Method: EPA 8270D by SIM

Description: 8270D PAH SIM Reduced Volume

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 16, 2022

General Information:

11 samples were analyzed for EPA 8270D by SIM by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Batch Comments:

A matrix spike/matrix spike duplicate was not performed for this batch due to a laboratory error.

• QC Batch: 497686

Analyte Comments:

QC Batch: 497686

1c: A matrix spike/matrix spike duplicate was not performed for this batch due to a laboratory error.

- Field Duplicate -0422 (Lab ID: 30480776011)
 - 2-Methylnaphthalene
 - Acenaphthene

REPORT OF LABORATORY ANALYSIS

Project: National Grid-Johnstown, NY

Pace Project No.: 30480776

Method: EPA 8270D by SIM

Description: 8270D PAH SIM Reduced Volume

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 16, 2022

Analyte Comments: QC Batch: 497686

1c: A matrix spike/matrix spike duplicate was not performed for this batch due to a laboratory error.

- Field Duplicate -0422 (Lab ID: 30480776011)
 - Acenaphthylene
 - Anthracene
 - Benzo(k)fluoranthene
 - Benzo(g,h,i)perylene
 - Benzo(a)anthracene
 - Benzo(b)fluoranthene
 - Benzo(a)pyrene
 - Chrysene
 - Dibenz(a,h)anthracene
 - Fluorene
 - Fluoranthene
 - Indeno(1,2,3-cd)pyrene
 - Naphthalene
 - Phenanthrene
 - Pyrene
- MW-10-0422 (Lab ID: 30480776003)
 - 2-Methylnaphthalene
 - Acenaphthene
 - Acenaphthylene
 - Anthracene
 - Benzo(k)fluoranthene
 - Benzo(g,h,i)perylene
 - Benzo(a)anthracene
 - Benzo(b)fluoranthene
 - Benzo(a)pyrene
 - Chrysene
 - Dibenz(a,h)anthracene
 - Fluorene
 - Fluoranthene
 - Indeno(1,2,3-cd)pyrene
 - Naphthalene
 - Phenanthrene
 - Pyrene
- MW-12-0422 (Lab ID: 30480776004)
 - 2-Methylnaphthalene
 - Acenaphthene
 - Acenaphthylene
 - Anthracene
 - Benzo(k)fluoranthene
 - Benzo(g,h,i)perylene
 - Benzo(a)anthracene
 - Benzo(b)fluoranthene

REPORT OF LABORATORY ANALYSIS

Project: National Grid-Johnstown, NY

Pace Project No.: 30480776

Method: EPA 8270D by SIM

Description: 8270D PAH SIM Reduced Volume

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 16, 2022

Analyte Comments: QC Batch: 497686

1c: A matrix spike/matrix spike duplicate was not performed for this batch due to a laboratory error.

- MW-12-0422 (Lab ID: 30480776004)
 - Benzo(a)pyrene
 - Chrysene
 - Dibenz(a,h)anthracene
 - Fluorene
 - Fluoranthene
 - Indeno(1,2,3-cd)pyrene
 - Naphthalene
 - Phenanthrene
 - Pyrene
- MW-13-0422 (Lab ID: 30480776005)
 - 2-Methylnaphthalene
 - Acenaphthene
 - Acenaphthylene
 - Anthracene
 - Benzo(k)fluoranthene
 - Benzo(g,h,i)perylene
 - Benzo(a)anthracene
 - Benzo(b)fluoranthene
 - Benzo(a)pyrene
 - Chrysene
 - Dibenz(a,h)anthracene
 - Fluorene
 - Fluoranthene
 - Indeno(1,2,3-cd)pyrene
 - Naphthalene
 - Phenanthrene
 - Pyrene
- MW-13-MS-0422 (Lab ID: 30480776006)
 - 2-Methylnaphthalene
 - Acenaphthene
 - Acenaphthylene
 - Anthracene
 - Benzo(k)fluoranthene
 - Benzo(g,h,i)perylene
 - Benzo(a)anthracene
 - Benzo(b)fluoranthene
 - Benzo(a)pyrene
 - Chrysene
 - Dibenz(a,h)anthracene
 - Fluorene
 - Fluoranthene
 - Indeno(1,2,3-cd)pyrene

REPORT OF LABORATORY ANALYSIS

Project: National Grid-Johnstown, NY

Pace Project No.: 30480776

Method: EPA 8270D by SIM

Description: 8270D PAH SIM Reduced Volume

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 16, 2022

Analyte Comments:

QC Batch: 497686

1c: A matrix spike/matrix spike duplicate was not performed for this batch due to a laboratory error.

- MW-13-MS-0422 (Lab ID: 30480776006)
 - Naphthalene
 - Phenanthrene
 - Pyrene
- MW-13-MSD-0422 (Lab ID: 30480776007)
 - 2-Methylnaphthalene
 - Acenaphthene
 - Acenaphthylene
 - Anthracene
 - Benzo(k)fluoranthene
 - Benzo(g,h,i)perylene
 - Benzo(a)anthracene
 - Benzo(b)fluoranthene
 - Benzo(a)pyrene
 - Chrysene
 - Dibenz(a,h)anthracene
 - Fluorene
 - Fluoranthene
 - Indeno(1,2,3-cd)pyrene
 - Naphthalene
 - Phenanthrene
 - Pyrene
- MW-14-0422 (Lab ID: 30480776008)
 - 2-Methylnaphthalene
 - Acenaphthene
 - Acenaphthylene
 - Anthracene
 - Benzo(k)fluoranthene
 - Benzo(g,h,i)perylene
 - Benzo(a)anthracene
 - Benzo(b)fluoranthene
 - Benzo(a)pyrene
 - Chrysene
 - Dibenz(a,h)anthracene
 - Fluorene
 - Fluoranthene
 - Indeno(1,2,3-cd)pyrene
 - Naphthalene
 - Phenanthrene
 - Pyrene
- MW-15-0422 (Lab ID: 30480776009)
 - 2-Methylnaphthalene
 - Acenaphthene

REPORT OF LABORATORY ANALYSIS

Project: National Grid-Johnstown, NY

Pace Project No.: 30480776

Method: EPA 8270D by SIM

Description: 8270D PAH SIM Reduced Volume

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 16, 2022

Analyte Comments: QC Batch: 497686

1c: A matrix spike/matrix spike duplicate was not performed for this batch due to a laboratory error.

- MW-15-0422 (Lab ID: 30480776009)
 - Acenaphthylene
 - Anthracene
 - Benzo(k)fluoranthene
 - Benzo(g,h,i)perylene
 - Benzo(a)anthracene
 - Benzo(b)fluoranthene
 - Benzo(a)pyrene
 - Chrysene
 - Dibenz(a,h)anthracene
 - Fluorene
 - Fluoranthene
 - Indeno(1,2,3-cd)pyrene
 - Naphthalene
 - Phenanthrene
 - Pyrene
- MW-16-0422 (Lab ID: 30480776010)
 - 2-Methylnaphthalene
 - Acenaphthene
 - Acenaphthylene
 - Anthracene
 - Benzo(k)fluoranthene
 - Benzo(g,h,i)perylene
 - Benzo(a)anthracene
 - Benzo(b)fluoranthene
 - Benzo(a)pyrene
 - Chrysene
 - Dibenz(a,h)anthracene
 - Fluorene
 - Fluoranthene
 - Indeno(1,2,3-cd)pyrene
 - Naphthalene
 - Phenanthrene
 - Pyrene
- MW-4-0422 (Lab ID: 30480776001)
 - 2-Methylnaphthalene
 - Acenaphthene
 - Acenaphthylene
 - Anthracene
 - Benzo(k)fluoranthene
 - Benzo(g,h,i)perylene
 - Benzo(a)anthracene
 - Benzo(b)fluoranthene

REPORT OF LABORATORY ANALYSIS

Project: National Grid-Johnstown, NY

Pace Project No.: 30480776

Method: EPA 8270D by SIM

Description: 8270D PAH SIM Reduced Volume

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 16, 2022

Analyte Comments: QC Batch: 497686

1c: A matrix spike/matrix spike duplicate was not performed for this batch due to a laboratory error.

- MW-4-0422 (Lab ID: 30480776001)
 - Benzo(a)pyrene
 - Chrysene
 - Dibenz(a,h)anthracene
 - Fluorene
 - Fluoranthene
 - Indeno(1,2,3-cd)pyrene
 - Naphthalene
 - Phenanthrene
 - Pyrene
- MW-7-0422 (Lab ID: 30480776002)
 - 2-Methylnaphthalene
 - Acenaphthene
 - Acenaphthylene
 - Anthracene
 - Benzo(k)fluoranthene
 - Benzo(g,h,i)perylene
 - Benzo(a)anthracene
 - Benzo(b)fluoranthene
 - Benzo(a)pyrene
 - Chrysene
 - Dibenz(a,h)anthracene
 - Fluorene
 - Fluoranthene
 - Indeno(1,2,3-cd)pyrene
 - Naphthalene
 - Phenanthrene
 - Pyrene

REPORT OF LABORATORY ANALYSIS

Project: National Grid-Johnstown, NY

Pace Project No.: 30480776

Method: EPA 8260C Description: 8260C MSV

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 16, 2022

General Information:

12 samples were analyzed for EPA 8260C by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: National Grid-Johnstown, NY

Pace Project No.: 30480776

Method: SM 2320B-2011 Description: 2320B Alkalinity

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 16, 2022

General Information:

11 samples were analyzed for SM 2320B-2011 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 499396

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30480776005

ML: Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.

- MS (Lab ID: 2417093)
 - Alkalinity, Total (CaCO3 pH4.5)
- MSD (Lab ID: 2417094)
 - Alkalinity, Total (CaCO3 pH4.5)

Additional Comments:

Project: National Grid-Johnstown, NY

Pace Project No.: 30480776

Method: SM 3500-FeB-2011

Description: Iron, Ferrous

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 16, 2022

General Information:

11 samples were analyzed for SM 3500-FeB-2011 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H1: Analysis conducted outside the EPA method holding time.

- MW-12-0422 (Lab ID: 30480776004)
- MW-15-0422 (Lab ID: 30480776009)

H3: Sample was received or analysis requested beyond the recognized method holding time.

- Field Duplicate -0422 (Lab ID: 30480776011)
- MW-10-0422 (Lab ID: 30480776003)
- MW-13-0422 (Lab ID: 30480776005)
- MW-13-MS-0422 (Lab ID: 30480776006)
- MW-13-MSD-0422 (Lab ID: 30480776007)
- MW-14-0422 (Lab ID: 30480776008)
- MW-16-0422 (Lab ID: 30480776010)
- MW-4-0422 (Lab ID: 30480776001)
- MW-7-0422 (Lab ID: 30480776002)

H6: Analysis initiated outside of the 15 minute EPA required holding time.

- Field Duplicate -0422 (Lab ID: 30480776011)
- MW-10-0422 (Lab ID: 30480776003)
- MW-12-0422 (Lab ID: 30480776004)
- MW-13-0422 (Lab ID: 30480776005)
- MW-13-MS-0422 (Lab ID: 30480776006)
- MW-13-MSD-0422 (Lab ID: 30480776007)
- MW-14-0422 (Lab ID: 30480776008)
- MW-15-0422 (Lab ID: 30480776009)
- MW-16-0422 (Lab ID: 30480776010)
- MW-4-0422 (Lab ID: 30480776001)
- MW-7-0422 (Lab ID: 30480776002)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project: National Grid-Johnstown, NY

Pace Project No.: 30480776

Method: SM 4500-S2-F-2011

Description: 4500-S2-F Sulfide, Iodometric

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 16, 2022

General Information:

11 samples were analyzed for SM 4500-S2-F-2011 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: National Grid-Johnstown, NY

Pace Project No.: 30480776

Method: 300.0 Rev.2.1, 1993 Description: 300.0 IC Anions 28 Days

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 16, 2022

General Information:

11 samples were analyzed for 300.0 Rev.2.1, 1993 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 497909

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30480002001

ML: Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.

- MS (Lab ID: 2409909)
 - Sulfate

QC Batch: 498813

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30480776005

ML: Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.

- MS (Lab ID: 2414131)
 - Sulfate

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: National Grid-Johnstown, NY

Pace Project No.: 30480776

Method: EPA 351.2

Description: 351.2 Total Kjeldahl Nitrogen

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 16, 2022

General Information:

11 samples were analyzed for EPA 351.2 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 351.2 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 498017

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30480494002,30480776005

ML: Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.

- MS (Lab ID: 2410628)
 - Nitrogen, Kjeldahl, Total
- MSD (Lab ID: 2410629)
 - Nitrogen, Kjeldahl, Total
- MSD (Lab ID: 2410647)
 - Nitrogen, Kjeldahl, Total

R1: RPD value was outside control limits.

- MSD (Lab ID: 2410647)
 - Nitrogen, Kjeldahl, Total

QC Batch: 498019

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30480776008,30480777001

ML: Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.

- MSD (Lab ID: 2410639)
 - · Nitrogen, Kjeldahl, Total

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project: National Grid-Johnstown, NY

Pace Project No.: 30480776

Method: SM 4500-CI-E-2011 Description: 4500 Chloride

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 16, 2022

General Information:

11 samples were analyzed for SM 4500-Cl-E-2011 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: National Grid-Johnstown, NY

Pace Project No.: 30480776

Method: SM 4500NO3-F-2011

Description: SM4500NO3-F, NO3-NO2

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 16, 2022

General Information:

11 samples were analyzed for SM 4500NO3-F-2011 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: 498522

D3: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

- MW-10-0422 (Lab ID: 30480776003)
 - Nitrogen, NO2 plus NO3
- MW-13-MS-0422 (Lab ID: 30480776006)
 - Nitrogen, NO2 plus NO3
- MW-15-0422 (Lab ID: 30480776009)
 - Nitrogen, NO2 plus NO3
- MW-16-0422 (Lab ID: 30480776010)
 - Nitrogen, NO2 plus NO3

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

PROJECT NARRATIVE

Project: National Grid-Johnstown, NY

Pace Project No.: 30480776

Method: EPA 9012B

Description: 9012B Cyanide, Total

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: May 16, 2022

General Information:

11 samples were analyzed for EPA 9012B by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 9012B with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Sample Summary

Laboratory Report Number: M2D1192 Client Project ID: Greensburg PA

Microbac Laboratories Inc., - Marietta, OH

Client Sample ID:	Lab Sample ID:	Sampled:
30480776001	M2D1192-01	04/13/22 11:40
30480776002	M2D1192-02	04/13/22 10:10
30480776003	M2D1192-03	04/13/22 11:10
30480776004	M2D1192-04	04/13/22 12:05
30480776005	M2D1192-05	04/13/22 10:10
30480776008	M2D1192-06	04/13/22 11:10
30480776009	M2D1192-07	04/13/22 12:15
30480776010	M2D1192-08	04/13/22 10:15
30480776011	M2D1192-09	04/13/22 00:01